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In the data mining of road networks, trajectory clustering of moving objects plays an important role in many applications. Most
existing algorithms for this problem are based on every position point in a trajectory and face a significant challenge in dealing
with complex and length-varying trajectories. This paper proposes a grid-based whole trajectory clustering model (GBWTC) in
road networks, which regards the trajectory as a whole. In this model, we first propose a trajectory mapping algorithm based
on grid estimation, which transforms the trajectories in road network space into grid sequences in grid space and forms grid
trajectories by recognizing and eliminating redundant, abnormal, and stranded information of grid sequences. We then design
an algorithm to extract initial clustering centers based on density weight and improve a shape similarity measuring algorithm
to measure the distance between two grid trajectories. Finally, we dynamically allocate every grid trajectory to the best clusters
by the nearest neighbor principle and an outlier function. For the evaluation of clustering performance, we establish a
clustering criterion based on the classical Silhouette Coefficient to maximize intercluster separation and intracluster
homogeneity. The clustering accuracy and performance superiority of the proposed algorithm are illustrated on a real-world

dataset in comparison with existing algorithms.

1. Introduction

With the advancement of Global Position System (GPS)
technology and the growing economy, people’s travel is
becoming fast and convenient. The massive position and
movement information of moving objects are generated con-
tinuously, forming large-scale trajectory data. It is of great
academic significance and commercial value to mine the
underlying distribution information and the evolvement
rules, such as urban function partition (Niu et al. [1]), traffic
jam prediction (Yu et al. [2]), and privacy protection (Wang
et al. [3]). In addition, some classical trajectory clustering
algorithms such as DBSCAN (Ester et al. [4]) are widely used
in anomaly trajectory detection and anomaly event preven-

tion (Belhadi et al. [5], Belhadi et al. [6], Djenouri et al.
[7]). As a significant branch of trajectory data mining, trajec-
tory clustering mainly divides trajectory with high similarity
or small distance into one cluster. The main purpose of tra-
jectory clustering is to find representative path or the com-
mon moving tendency of different moving objects and
extract human behavioral pattern and distribution rules of
hot events contained in massive information.

In recent years, a large number of trajectory clustering
studies have been published, which can be divided into three
categories: trajectory points clustering, subtrajectories clus-
tering, and whole trajectories clustering. Trajectory point
clustering partitions are with similar GPS points into the
same cluster based on the similarity criteria. Subtrajectory
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FiGure 1: The comparison between subtrajectories clustering and whole trajectories clustering. (a) 9 trajectories in the road network.
(b) Partitioning trajectories and subtrajectory clustering result. (c¢) Whole trajectory clustering result.

clustering firstly divides the whole trajectory into several tra-
jectory segments according to the time stamp, the direction
of trajectory points, and road condition and then clusters
the trajectory segments based on the similarity between
them, while whole trajectory clustering directly forms clus-
ters by calculating the similarity between the whole trajecto-
ries. Trajectory point clustering is more applied to extract
hotspots. Clustering based on subtrajectories tends to mine
movement patterns within a specific period or road segment,
but the unit of whole trajectories clustering is much wider in
the range of time and space, so this approach can reflect the
complete movement trend and rule of trajectories, and the
continuous and whole trajectory in the road network shows
the connection between the trajectory owner and the exter-
nal world. That is to say, the whole trajectory clustering
can provide more comprehensive support for analyzing dif-
ferent movement patterns in a day and predicting users’ next
travel information. Figure 1(a) shows 9 trajectories in the
road network, which are marked with different colors.
Figures 1(b) and 1(c) show the clustering results by the sub-
trajectory clustering algorithms and the whole trajectory
clustering algorithm for the 9 trajectories in Figure 1(a). In
both figures, the same color trajectories are in the same clus-
ter. As can be seen from Figures 1(b) and 1(c), these 9 trajec-
tories are clustered by the classic subtrajectory clustering
algorithms TraClus [8] and the classic whole trajectory clus-
tering algorithm GridCSD-TraceMob (Han et al. [9]), and
they are partitioned into 4 clusters. In Figure 1(b), those
marked black squares in some trajectories are the turning
points where the trajectories are divided into a series of sub-
trajectories based on angular offset of adjacent trajectory
points and road segments by the algorithm TraClus. In
Figure 1(b), it can be observed that the subtrajectories clus-
tering algorithm mines the local trajectory information
located in subroad segment but ignores the complete move-
ment rules of objects. However, the whole trajectory cluster-
ing treats the trajectory as a complete path, which can better
reflect the overall information of the trajectory, as shown in
Figure 1(c).

Most of the existing whole trajectories clustering algo-
rithms usually take K-means [10], DBSCAN, and other basic
clustering algorithms as the premise and introduce or
improve different trajectories distance measurement stan-
dards to complete the partition of similar trajectories. Yana-
gisawa et al. [11] represented the trajectory data as the
directed line segments in space and defined the similarity
between trajectories as the Euclidean distance between the
directed discrete lines, but the algorithm can only compare
the trajectories with the same time interval or the same
length. To solve this problem, several methods based on
warping distance are defined in literatures [12, 13], while
Lin and Su [14] propose a method to compare the space
shape of trajectory. But these methods still rely on all the
position points in trajectories and assume that these points
are accurately collected in the road network, while Gariel
et al. [15] reorganized the trajectory sequences by identifying
the turning points in the trajectory or using the resampling
of principal component analysis and the augmented trajec-
tory method and then partitioned similar trajectories based
on representative sequences. Although the whole trajectory
clustering is well completed in this method, it is not suitable
for the vehicle trajectories with very irregular moving pro-
cess under road network constraints, and the clustering
results are limited by the accuracy of the extraction of trajec-
tory representative sequence.

In this paper, the concept of grid cell space is introduced,
and a whole trajectory clustering model in road network envi-
ronment is proposed. Firstly, the sequence of trajectory points
in road network space is mapped to grid trajectory based on
grid cell space and grid estimation algorithm. Secondly, the
center density rule and shape similarity measure are intro-
duced to extract the initial cluster centers, and finally, the out-
lier function and nearest neighbor principle are combined to
dynamically adjust and update the clusters of grid trajectory.
The key information of the original trajectory in the road net-
work is retained, and the clustering results with high accuracy
are obtained, while solving the problem of large amount of tra-
jectory data and their complex structure.
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In sum, our work makes the following technical contri-
butions to the area of trajectory clustering:

(i) A grid cell space is defined for the scattered and
changing trajectory data, and an effective mapping
algorithm based on grid estimation is designed to
transform the complex trajectories in the road net-
work space into the plane grid trajectories in the
grid cell space with the original spatial structure
preserved

(ii) A clustering algorithm of whole grid trajectories
is proposed based on center density rule, shape
similarity measure, and anomaly function. The
algorithm can accurately identify the abnormal
trajectories in the dataset and quickly and effi-
ciently divide the grid trajectories into clusters

(iii) A mapping-clustering-verification framework pro-
vides a trajectory clustering analysis model with a
Silhouette index-based criterion for clustering per-
formance evaluation.

The rest of this paper is organized as follows. Section 2
conducts a survey of related work. The whole trajectory
clustering problem is defined in Section 3. The design of a
grid-based whole trajectory clustering model (GBWTC) in
road networks is detailed in Section 4. We present experimen-
tal results in Section 5 and conclude our work in Section 6.

2. Related Work

Trajectory clustering is mainly divided into point-based
clustering, subtrajectories clustering, and whole trajectories
clustering. The point-based approaches take GPS points as
the basic unit for clustering. The trajectory spatial aggrega-
tion pattern is mined and analyzed based on the sparse
and dense spatial distribution of vehicle trajectory points,
to extract hot area information or key road information.
Qiu and Wang [16] improved the structure of the DBSCAN
method by combining the position and orientation of the
trajectory points, proposed the O-DBSCAN algorithm to
divide the entire trajectory point set into representative clus-
ters, and used Gestalt’s law to infer the route map. Lu et al.
[17] made a breakthrough from the DBSCAN algorithm,
redefining the core neighborhood and core objects in the
DBSCAN algorithm, introduced a kernel function to mea-
sure the similarity between trajectory points, and finally
extracted road segments based on the optimized DBSCAN
structure information. Yan-Wei et al. [18] further extended
the related terminology of DBSCAN, introduced the concept
of density through grid cells, converted DBSCAN’s extended
clustering based on the density of data points to an extended
cluster based on the density of cell, and proposed a simple
and eflicient fast density clustering algorithm CBSCAN.
The algorithm can quickly find clustering patterns and
noises of arbitrary shapes in location big data. Different from
Qiu and Lu, Yu et al. [19] proposed a grid density algorithm
based on trajectory points to identify hot spots in different
periods of time and used spatiotemporal trajectory cluster-

ing methods to mine frequent paths between hot spots.
Although the clustering of trajectory points is convenient,
concise, and easy to understand, its essence destroys the time
continuity of the trajectory. At the same time, it increases the
clustering cost due to the similarity calculation of the time
complexity of the Cartesian product between the trajectory
points in the most of point-based clustering algorithms.

The concept of subtrajectory clustering first appeared in
the TraClus [8] algorithm proposed by Lee and Han. The
algorithm divides the trajectory into several trajectory
segments based on the principle of minimum description
length and clusters these trajectory segments based on the
DBSCAN algorithm and Euclidean distance. The algorithm
has a good effect on hurricane data and animal migration
data, but the results have not been very good on real road
trajectory datasets, and there are problems such as many
clustering parameters and parameter sensitivity. At present,
there are a lot of researches to correct these shortcomings,
such as the ATCGD algorithm (Mao et al. [20]), NEAT algo-
rithm (Binh Han et al. [21]), and LBTC algorithm (Niu et al.
[22]). The ATCGD algorithm maps the divided subtrajec-
tory segments to the grid cell space, then calculates the num-
ber of trajectory segments in the grid cell and the distance of
the trajectory segments based on this mapping space, adap-
tively determines the parameters based on the DBSCAN
method, and finally completes the clustering. The NEAT
algorithm comprehensively considers the speed, flow, den-
sity, and other factors of the trajectory. By revising the
Hausdorft distance calculation formula, the calculation of
the vertical distance, parallel distance, and angular distance
between all the line segments of the two subtrajectory sets
in the TraClus algorithm is transformed into the distance
between the endpoints of two representative trajectories.
The flow clusters are combined according to the revised flow
distance calculation formula by optimizing the distance
between the two flow clusters. However, the road segments
are mainly clustered in this algorithm through the traffic
flow, and user trajectories are not specifically clustered, so
it cannot accurately mine a large amount of user trajectory
clustering information. Kumar et al. [23] proposed the
Fast-clusiVAT algorithm for this deficiency of NEAT. First,
the trajectory is decomposed into a directed graph or an
undirected graph. In the process of executing the DTW
algorithm, a step is added of using the Dijkstra algorithm
to calculate the shortest path between two trajectory seg-
ments within a specified range. Moreover, this algorithm
can accurately find the trajectory clusters in the dense area
of the real road network, but it cannot solve the multidimen-
sional problem of the trajectory. Bermingham and Lee [24]
proposed a highly versatile n-dimensional data clustering
algorithm and an arbitrary-dimensional representative trajec-
tory extraction algorithm within a cluster, which can cluster
any number of trajectory datasets and express valuable, previ-
ously unknown higher dimensional trajectory patterns.

In addition, some subtrajectory clustering algorithms
expand around subtrajectories, and they generally need to
calculate the distance between each point on the subtrajec-
tory and finally add the weights of several different distances.
For example, Salarpour and Khotanlou [25] used spectral



clustering to segment the trajectory, proposed a trajectory
description method based on the change of the subtrajectory
direction, and measured the similarity of the described tra-
jectory based on the time warping matching algorithm. Tak-
ing into account the uncertainty of trajectory data, Guo et al.
[26] proposed a similarity measurement method based on an
amended ellipse model, referred to as UTSM, to reduce the
interpolation error and positioning error. This method has
good robustness and tolerance to abnormal data and noise.
In order to clearly describe the difference between the sub-
trajectories of a moving target, Liu and Zhang [27] proposed
a distance measurement method between subtrajectories
based on time, space, and direction, but this method ignores
the key factor of moving speed. Yu et al. [28] put forward a
multifeature subtrajectory similarity measurement method
which comprehensively considered the subtrajectory’s direc-
tion, speed, time, and space location. Trajectory segments
are used as the basic unit of similarity evaluation in the sub-
trajectory clustering algorithm, which reduces the clustering
cost to a certain extent and more comprehensively considers
the characteristics of trajectory data to accurately identify
local differences in trajectories. However, the segmented fea-
ture points are difficult to identify and easy to lose, so the
subtrajectory clustering algorithm is not good at mining
users’ complete travel rules, and the clustering result is also
easily affected by the segmentation method.

The whole trajectory clustering is to use the whole trajec-
tory as a clustering unit from a more macroperspective,
define different whole trajectory similarity evaluation
methods according to the scene, and cluster trajectories to
mine their information. Domingo-Ferrer and Trujillo-
Rasua [29] proposed a trajectory similarity measurement
algorithm spatially and temporally and clustered the trajec-
tories through a microaggregation algorithm, while [30]
comprehensively considered the spatial, temporal, and
shaped characteristics of the trajectories to calculate the sim-
ilarity between trajectories, and a greedy clustering algo-
rithm is proposed based on this, but it needs to traverse all
points in the trajectory to calculate the distance between
the trajectories, which consumes more memory. In order
to reduce computational cost and improve efficiency, Pan
et al. [31] used specific sampling of the complete trajectory
and evaluated the similarity between the trajectories based
on the sampling points and their density. Experiments show
that this method can significantly improve the whole trajec-
tory clustering efficiency while ensuring the accuracy of clus-
tering. The TAD algorithm (Yang et al. [32]) was effective
for various complex or special trajectories with long-
duration gaps by introducing a noise tolerance fact to evalu-
ate and deal with the influence of noise. Wang et al. [33]
proposed a novel vehicle trajectory clustering method based
on dynamic network representation learning which can
avoid biased results. Stefan et al. [34] proposed a time series
distance measurement method MSM based on edit distance,
which defines the three steps of move, split, and merge to
calculate the cost of mutual conversion between two time
series. However, this method is only suitable for simple time
series, not for complex or long trajectory series. Yao et al.
[35] used a sliding window to extract the movement features
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of each attribute of the input trajectory and convert it into a
feature sequence. The quality representation of each trajec-
tory is obtained by a convolutional neural network, and
finally, high-quality trajectory clusters are obtained. How-
ever, the automatic encoding of trajectories by deep learning
belongs to supervised learning, and it is difficult to be widely
used in trajectory data lacking label information. Han et al.
[9] proposed the whole trajectory algorithm TRACEMOB,
which uses the coincidence rate of the trajectory in the grid
as the basis for the trajectory similarity and converts the dis-
tance in the grid space into a d-dimensional Euclidean space.
Finally, the K-means-based algorithm is used to complete
the clustering. But the algorithm does not screen abnormal
trajectories or trajectory points and requires secondary map-
ping before clustering, which is inefficient and easy to cause
errors.

The whole trajectory clustering algorithm regards the
trajectory as a whole and ensures the integrity of the trajec-
tory compared to the trajectory point clustering and subtra-
jectory clustering. This algorithm has achieved good results
in trajectory clustering. However, the above methods lack
effective trajectory preprocessing steps and concise and fast
trajectory similarity measurement. In addition, most of them
only focus on the accuracy of clustering and neglect their
application in the actual road network. For these limitations,
we propose a grid-based whole trajectory clustering model in
the road network environment, which is aimed at solving the
problem of inefficient clustering caused by redundant trajec-
tory points in the road network and inaccurate positioning.
Without destroying the internal structure of the trajectory,
the complete trajectory is accurately divided into corre-
sponding clusters.

3. Problem Statement

3.1. Trajectory. A trajectory Tr; of any object in road
networks is represented by a list of spatiotemporal points
sampled at equal time intervals, denoted as Tr; = (p;, p,, -+

P+ Py)» where p,=((x,y,),t;) represents the geographic
location coordinates (x;,y;) of the moving object and ¢; is

the time stamp recorded when the moving object passes
through the location point.

According to the above definition, we formulate the
problem of trajectories clustering as follows. Given a set of
trajectories TS={Tr, Tr,, -+, Tr,}, it is divided into N
different clusters C={C,,C,, -+, CNC}' The quality of clus-

tering is usually evaluated by intercluster separation and
intracluster homogeneity [36]. In general, a larger interclus-
ter separation and a higher degree of intracluster homogene-
ity indicate a more accurate clustering. In this work, we
adopt the Silhouette Coefficient (SI) which is widely used
in clustering validation, to measure the clustering quality
of road networks.

The method of Silhouette Coefficient combines the
degree of separation and homogeneity to measure the simi-
larity between any trajectory Tr; and other trajectories of
its cluster, and the similarity of other trajectories of different
clusters. Specifically, the Silhouette Coeflicient is defined as
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FIGURE 2: Trajectories located in different road segments but close
to each other.
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where |C;| is the number of trajectories in C;, a(j) is the
average distance between trajectory Tr; and other trajecto-

ries in the same cluster, and b(j) is the minimum average
distance between trajectory T'r; and other clusters. Note that

the distance here is calculated by the edit distance of grid tra-
jectories algorithm (EDG). The average of the Silhouette
Coefficients of all trajectories in TS is the total SI of the clus-
tering result [37]. The value of SI ranges from -1 to 1, and
the closer to 1, the better homogeneity and separation are.

We formally define the road trajectory clustering optimi-
zation problem as follows:

Given a set of trajectories {Tr, Tr,, -+,
to process trajectories and abnormal data, to divide the tra-
jectories into groups {C;,C,, -+, Cy_} under the defined

similarity criteria, and to output each cluster of trajectories
so that the value of SI is close to 1.

In fact, the traditional trajectory clustering based on road
networks divides the trajectories located in the same road
segment into a group, while ignoring the trajectories located
in different road segments but close to each other, as shown
in Figure 2. In addition, there may be some subroad seg-
ments in a road segment, and the distance between trajecto-
ries in the same subroad segment is smaller than that in
different subroad segments. However, these trajectories are
divided into the same cluster since they all share the same
road segment. Therefore, it is unreasonable to cluster vehicle
trajectories only based on road segments, so we introduce a
whole trajectory clustering model based on grid cell space to
solve these problems.

Tr,}, our goal is

4. A Grid-Based Whole Trajectory Clustering
Model: GBWTC

This section will elaborate the proposed grid-based whole
trajectory clustering model in road network environment,
referred to as GBWTGC, from the two stages of grid trajectory

Trajectory
dataset
| Grid trajectory serialization ‘

l

Grid trajectory

v
Overall clustering based on
grid trajectory

h 4

Trajectory
clustering results

FiGUre 3: Overview of our proposed model.

serialization and overall clustering algorithm based on grid
trajectory. The specific flowchart is shown in Figure 3.

Phase 1 for grid trajectory serialization is as follows:
based on the trajectory mapping algorithm, the trajectories
in road network space are transformed into grid sequences
in grid space, and the redundant, abnormal, and stranded
information of grid sequences are eliminated to form the
representative sequence of trajectories, i.e., grid trajectories.
While retaining the key information of the original trajec-
tory, they can express the moving trend of the trajectories
concisely and accurately.

Phase 2 for overall clustering based on grid trajectory is
as follows: in the grid trajectory serialization phase, the orig-
inal trajectory clustering problem in road network is trans-
formed into an overall clustering problem of plane grid
trajectory. While K-means is taken as the core in this stage,
and the center density rule, shape similarity measure, and
outlier function are introduced to deal with the whole clus-
tering of grid trajectories in plane space.

4.1. Grid Trajectory Serialization. Grid trajectory serializa-
tion (gridTrS) is the process of transforming trajectories
from road network space into grid space. This section first
gives the following definitions to better describe the process:

Grid space: given a set of trajectories TS = {Tr;, Tr,, -,
Tr,}, the grid space is the minimum boundary rectangle
required to cover any trajectory in TS, defined as R(G) = Rec
t(L, W), where L=lat . —lat, and W=lon,, —lon .,
which is the actual geographic coordinate range of the trajec-
tory set TS. lat, . and lon, . are the maximum x and y coor-
dinates of all trajectory points in TS, and lat,;,, and lon;, are
the minimum x and y coordinates of all trajectory points in T'S.

Grid cell space: given grid space R(G) and grid cell size
gridsize, grid cell space is a square with gridsize side length
in the grid space, defined as

S¢(R(G) :1<m<longrid, 1 <n <latgrid,

), gridsize) = { Im,
Iun = Rect(gridsize, gridsize) },

(2)



where longrid = [Ligridsize|, latgrid = [w/gridsize], [.] is
rounding up the value, and g, , denotes a grid cell with gr
idsize of the length and width in row m and column n of
S;(R(G), gridsize).

Given a set of trajectories TS={Tr, Try, -+, Tr,}, we
first extract grid space R(G) and divide R(G) based on the
given gridsize to form grid cell space S;(R(G), gridsize).
Secondly, every trajectory Tr; in the TS is mapped to grid
cell space S;(R(G), gridsize)-based mapping relationship,
and each GPS point p(x, y, t) in the trajectory Tr; falls into
the grid cell g, corresponding to its position, where the
mapping relationship between p(x,y,t) and g, , is defined
as

ridsize
FEer g = 7 3)
’70} - lonmin)“ ,

gridsize

{(x - latmin)" ’

where x,y are the geographic coordinates of point p, lat,;,
and lon,,;, are the minimum values of the x and y coordi-
nates of all trajectory points in TS, and [.] is rounding up
the value. Any trajectory Tr;= (P, Py 5 P> -+ Py) €Al
obtain the corresponding grid cell sequence representing
the trajectory points, referred to as gridTr;, i.e,, the grid tra-
jectory gridTr;={(c! - '), where

i i
my,n;° sz,nz’ my,n;> > €

my,,ny,
i
C

mn, 1S the grid cell mapped by the trajectory point p; on
the gridTr;, and my, n; represent the row and column num-
bers of the grid in S;(R(G), gridsize), respectively, i is the
unique identifier of gridTr;. However, grid trajectory will
be redundant, and the clustering cost will increase if several
trajectory points are mapped to the same grid cell. Figure 4
shows grid trajectory gridTr, = ( oy " Cony o)
mapped by trajectory Tr, in grid cell space S, i.e., gridTr,
=930 G50 G300 9,00 G20 2.3 923 93 92,20 2.2 922> G >
951> 911> 9110 911)- There are many duplicate grid cells in
the grid trajectory because many points map the same grid
cell; besides, the trajectory points are easy to drift due to
the influence of the collected signals. Therefore, this paper
proposes a trajectory mapping algorithm based on grid esti-
mation (TMGE). This method combines the characteristics
of grid cell space and further identifies and eliminates the
abnormal, redundant, and stranded grid cells based on the
grid trajectory and completes the data structure optimiza-
tion of the grid trajectory.

Specifically, TMGE first forms grid trajectories set GT'S
={gridTry, gridTr,, ---, gridTr,} corresponding to TS= {
Try, Try, -+, Tr,} based on grid cell space and the mapping

relationship. Then, any grid cell ¢

1
le,nl

i
mMy,h,

grid trajectory gridTr; in GTS, and its previous grid cell

i in gridTr, is confirmed if it is the same as ¢/, , . If
0o

is selected from any

o-1>Mo-1
- i
they are the same, grid cell ¢,

is judged as the redundant
cell and is removed from the grid trajectory gridTr,. If they

are not same, grid cell ¢}, , is confirmed if it is adjacent to
. n,, and next grid cell ¢, If

o+1>Mo+1

its previous grid cell ¢
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FIGURE 4: Trajectory Tr, is mapped to grid cell space.

they are not adjacent, ie. ¢, , ¢Adja(c,, , )andc, .
¢ Adja(c,, |

outlier cell and is removed from gridTr;, where the set of
adjacent grid cells Adja(c!, n,) of ¢l arethe grid cells with

0> My,

i
m,,n,

, grid cell ¢ is judged as abnormal or

1Mo+ )

the same row(column) as cin and whose column (row)

0olo

spacing difference is 1 with ¢}, . . Adja(c], , ) is denoted as

Adja (Cin,,,nu) = {ka,nk(|mk —m,| =1&m =n,)
| (|nk - n0| =1&my = mo)}'

(4)

As is shown in Figure 5, TMGE first maps trajectory T
ry=(p1sPy > Py3) to grid trajectory gridTr, = (ci“)nl,

G T Cf)1]3,n13> =(921> 921 922 923 9320 923 Gop0 o3>

Go4> 93> 924> G340 93.4)- Then, each redundant or abnormal
grid cell of gridTr, is identified and processed. Figure 5(b)
shows Cfnz’nz mapped by point p, is redundant grid cell and
is removed from gridTr,, so the point p, is drawn with dot-
ted lines. Then, ¢;, , andc;, , are not identified to be either

redundant or abnormal cells, so they are retained in gridTr,.
However, as shown in Figure 5(c), 2 . mapped by point ps

2 " Figure 5(d)

>
my,ny

2
- and Conene”

shows grid trajectory gridTr, =(g,1> 955> 923 G20 9.3
Go4> 93> 9o 934) Dy removing the abnormal grid cell

Gy, and redundant grid cells ¢, ., ¢, ., and ¢

Ms,Ns my,n,> Cm6

is not adjacent to grid cells ¢

M3
from original gridTr,. In Figure 5(d), the points drawn
with dotted lines are redundant, and the points painted
with red are abnormal.

2 2
However, the subsequence (cm4,n4,cm5,n5,cfn7,n7,

CZ

mg,ng’
Cfng,ng’ Cfnm,nm> = (923 920> 923 o0 923> G2.4)
moves repeatedly two adjacent cells g, ; and g, ,. Therefore,
there exist a few stranded cells in this subsequence. As
shown in Figure 6(a), only the first and last grid cells in
the subsequence are retained, and the other grid cells of con-
tinuous repetition are deleted. In Figure 6(a), the points
enclosed by the larger ellipse drawn with dotted lines are
the removed stranded points, and all deleted points are
drawn with dotted lines. Figure 6(b) shows the grid trajec-
tory gridTr, = (g, > 922 923 Gow> G34) after processing,
the grid trajectory in Figure 6(b) is shown in Figure 6(c) with
the background of the highlighted grid cells, and the

in gridTr,
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FiGure 5: Identification and processing of redundant cells and abnormal cells. (a) The trajectory Tr, is mapped to the grid trajectory. (b)
Identification of the redundant cell. (c) The adjacent grid cells. (d) Identification and processing of the abnormal cell.

sequence of the highlighted grid cells covering gridTr, is
(921922 923 9o G3.4)-

After the trajectory Tr; = (py, p,> -++ py,) in TS is mapped
and abnormal, redundant, and stranded grid cells in T7,
are removed, the final trajectory is denoted by gridTr; =

<Cinl,n1 4 Cinz,nz’

The pseudocode of the grid trajectory serialization
(gridTrS) algorithm is presented in Algorithm 1, in which
lines 2-5 add grid cells mapped by all points of Tr; in TS
to sg,., lines 6-10 remove the redundant and abnormal grid
cells from sg,, lines 11-19 remove stranded grid cells and
form the eventual grid trajectory gridTr,, and line 20 adds

gridTr, to the set of grid trajectories GTS.

i
“**s Cpy )» Where [<h.

4.2. Overall Clustering Based on Grid Trajectory. As one of
the most classic clustering algorithms, K-means is widely
used in the trajectory field on account of its simplicity and
rapidity, and this algorithm can be completed quickly. How-
ever, the algorithm usually uses the trajectory point as the
basic unit, so it is not suitable for the whole trajectory clus-
tering. On account of this, this paper proposes an overall
clustering algorithm based on grid trajectories with K
-means as the core. The algorithm is mainly divided into
the formation of initial cluster centers based on density
weights and the adjustment and update of clusters based
on the grid trajectory.

4.2.1. Formation of Initial Cluster Centers Based on Density
Weights. The formation of initial clustering centers based
on density weights is to extract the initial cluster centers
according to the generated grid trajectory set GT'S. The clus-
tering centers of original K-means algorithm are usually
selected based on random algorithms. Although it is easy
to understand and implement, the random selection of ini-
tial clustering mode may result in the clustering results not
easy to converge and inconsistent. Therefore, this paper pro-
poses an algorithm to select initial cluster centers (SICC). In
this algorithm, the distance and density weight concept are
introduced to evaluate the probability of grid trajectories
becoming cluster centers. Specifically, given a set of grid tra-
jectories GTS={gridTry, gridTr,, -, gridTr,} and the
number of clusters k, SICC first calculates the density Den(
gridTr;) of each grid trajectory gridTr; in the grid cell space,
and the trajectory with the maximum density is selected as
the first initial clustering center. The density Den(gridTr;)
is specifically defined as

Den (Cim,m) + Den (cinz,nz) +++++Den (Cinl,n,)
l b
(5)

Den(gridTr;) =

where [ is the length of grid trajectory gridTr; and Den(cﬁﬂlm1 )
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FIGURE 6: Processing of stranded cells and trajectories mapping based on grid estimation. (a) Identification and processing of stranded cells.

(b) Trajectories mapping based on grid estimation. (c) The highlighted grid trajectory.

Input: TS={Tr,, Tr, -+, Tr,}
Output: GTS = {gridTr,, gridTr,, ---, gridTr,}

1: for each trajectory Tr, in TS (1<k<p) do

2 G = ¢

3 n =sizeof (Try);

4: for each GPS point p; in Tr, (1<I<n) do

5: Add lenz,m (grid cell mapped by p)) to sg,;

6 for each grid cell c’,‘n’,n[ in sg, (2<1<n) do

7 if ey, , =k, then

8 Remove clfnl’”l from sg;;

9 ifcf, , ¢ Adja(ck, . ) &dh, ¢ Adja(ck, ) then

10: Remove c’fn ,, from sg;;
D
11: gridTr, = ¢;
12: Add Cfnl-m in sg, to gridTr;
13:  for each grid cell Clr(nl,m in sg, (2 <I<sizeof (sg,)) do

21: Add gridTr; to GTS;
22: return GTS

14: s =sizeof (gridTry);

15: if s=1 then

16: if (cfnl,n[ in sg,) != (c’r‘nynj in gridTr,) then

17: Add (C’:nzmz in sg,) to gridTr;

18: if s1 then

19: if (cfnl,n[ in sg,) != (Clr(onnH in gridTr,) & (Clr(nl,n, in sg,) = (cfnyns in gridTr,) then
20: Add (c’fnm in sg,) to gridTr;

ALGorITHM 1: gridT7S.
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Input: GTS = {gridTr,, gridTr,, --
Output: Tg_centers;

- gridTr,}
Tg-num«—p; Tg dens= ¢ ; Tg_centers = ¢;
for i <1 to Tg_num do

1:
2
3:
4: sort the vector T'g_dens in descending order;
5. Tg_centers,,;(1) «— Tg_dens(1);

6: fori «—1 to Tg_num do

7

Tg_centers;,;(selected), gridTr;);

8: To sum up all d;: sy, «— sum(d); s4,, —— sum(Tg,ens);
9: random «—— (s;;./4) + (Sgen/4)s

10:  while random >0 do

11:  random «— random — d; — Tg_dens(i) ; //i € 1, p]

12:  Tg_centers;,;(q) «—i;//q € [2, k|

13:  return Tg_centers;,;

Calculate the density of each grid trajectory: CalculateT g_dens(i);

For each grid trajectory in GT'S, using EDG to calculate the distance between it and the selected cluster center: d; «—— EDG(

AvrcoriTHM 2: SICC.

is the density of the grid cell ¢!

jectory points on all trajectories contained in the cell.
Secondly, to follow the principle that the distance
between the initial cluster centers is as far as possible and
the grid trajectory density of the cluster centers is as large
as possible, the distance between the grid trajectories and
the cluster centers should be calculated. Since the classical
Euclidean distance cannot measure the distance between
grid trajectories with different lengths, a new method based
on edit distance ([38, 39] is proposed to measure the shape
similarity between grid trajectories, referred to as EDG.

that is, the number of tra-

my,n;°

0,

1)

J —
msert( myny> Sy, ”h) =
- gid —

H my,ny, mh D

.gid—-¢

H my,1y .

where e is the length of grid trajectory gridTr, c],'ﬂh),,h - gid rep-

resent the row and column numbers of c],;qh,,,h inSg, and ||.|| is
the Euclidean distance between them. In this paper, it is trans-
formed into the sum of the absolute value of the difference of

each element to improve the efficiency. For example, ||c],'nh,,,h
n, * 9id|| = 1(my —my) | +](n, = m)|. In fact, the
Euclidean distance between the grid cells of different grid

-gid - ¢,

The following concepts are introduced before defining this
method.

The insertion cost of grid cells: given two trajectory grids
) and gridTr;=(

grszr,:(mn,cmzn2 e el

C]ml,nl, Clmz,nz, B C]mh,nh, R

insert a grid cell c

M M1y

c’me,n), the insertion cost is to
wm, i gridTr; into the grid sequence of
gridTr;. The cost of the insertion operation is defined as

the Euclidean distance between the grid cell c’@)nh in gridT
r; and the grid cell cm being compared in gridTr;. It is

71
denoted as

isMerging( ¢, , > d = true&k > 1,

My =,y

isMerging| c false&k1&h =e,

MMy

false&k1&h > 1,

. cr'nh n, | = false&k > 1,

isMerging| ¢

(o o)
(AL
isMerging (c O )
(AL,

trajectories is calculated as the insertion cost, and the grid tra-
jectories in different grid cells have certain distance by default,
so the grid trajectories are not considered which are still in the
adjacent interval and in the adjacent grid cells. If the case in
Figure 7(a) occurs, the distance between the two grid trajecto-
ries is very close when transforming gridTr, to gridTr,.
However, there will be a large error in the calculation results
due to the high operation costs in different grid cells.
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F1GURE 7: Merging of grid cells. (a) The grid trajectories in the adjacent grid cells. (b) The condition of merging.

To solve this problem, isMerging(cink,nk, i, ) i intro-

duced to determine whether the grid cells cink’nk and Cl@,n,,

can be merged; the specific calculation formula is as follows:

: : Lods+ Yo,
; . i j true, ¢, , €Adja (c’m ; )&D(SisS') = M < gridsize,
isMerging (ka’”k’ Cm;.,nh) = o ok j r+1/2 (7)
false, other,

where cink’nk(l <k<g)and c’;nh,nh (1 <h<e) are two grid cells
located on gridTr; and gridTr; and q and e are the lengths
of grid trajectory gridTr; and grid trajectory gridTr,,
respectively. While subsequence s; = (p; , -, p; ) in trajectoy
Tr, is contained in the grid cell cink)nk, where 7 is the number

of points in s, and subsequence s; = (p; , -, p; ) in trajectoy

Trj is contained in the grid cell C]@.)ﬂw similarly, ¢ is the num-
ber of points in s;. > ol and Zizod{, are the sum of the ver-

tical Euclidean distances from each location point on
subsequences s; and s; to the coincident boundaries of grid

cell Cfﬂkmk and c’,‘nh,nh. If the value of distance D(s;, s;) exceeds

0

>
i j -

replace (kamk’ th,ﬂ;,) = A ‘

Hc’ -gid -,

my,ny

where the replacement cost between grid cells ¢/, and
"k

Cinwﬂz« is 0 if the grid cells merging condition in Equation (7)
is satisfied.
The deletion cost of grid cells: given two trajectory grids

1 ={c i ce ce i
gridTr; = (Coy 1> Cop> > Copn> ™5 cmq’nq), the deletion cost

MMy

gridsize, i.e., the size of the grid cell, the calculation will be
terminated. Subsequences s; and s; can be regarded as
located in one grid cell if the grid cells can be merged, as
shown in Figure 7(b).

The replacement cost of grid cells: given two trajectory
i i i and gridT

C oo e C >
> “myny> > “myony? > Moy

grids gridTr; = (

i
le,ﬂl
ri= (Chny > Oy % Cinyy> > O, )» the replacement cost
is to transform a grid cell ¢,

k

cell cy,

is defined as the Euclidean distance between cink

. specified in gridTr; to a grid

N

in gridTr;. The cost of the replacement operation

. and Clmh’nh'

N

It is denoted as

is Merging (Clmkﬂk’ Ciﬂw@) = true,
S (8)
-gid||, isMerging (c;ﬂk,nk, C]m,,,nh> = false,

is to delete a grid cell specified in gridTr;. The cost of the
deletion operation is defined as the Euclidean distance
between the current grid cell cink _ to be deleted and the next

in the grid sequence of gridTr;. It

N

i
uncompleted cell ¢,

is denoted as
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FIGURE 8: Transformation between grid trajectories. (a) The insertion of grid cell. (b) The replacement of grid cells. (c) The deletion of grid
cell.
1, k=g, gridTr,, the insertion cost is [(3-2)|+|(4-2)|=3.
delete(cink nk) = ) ) Figure 8(b) shows that the grid cell C:m " in gridTr, is
, i ) i . ,
Con, " 914 = Cp ., 90|, 1<k<gq. replaced by Cfn3,n3’ and the cost of the replacement operation
9) is [(3—2)|+|(4-2)|=3. Figure 8(c) shows that cinpm is
removed from the grid cell sequence of gridTr,, and the
. . . . _ 1 . . _
Figure 8(a) shows the grid trajectory gridTr, =(c,, ,, deletion cost is [(2—1) | +[(2-2)|=1.

1
b
m,y,n,

¢ "'>C;1n(,,n6> = <95,2’g4,2’93,2392,2’91,2’91,1> and gridT

_2 2 2 _
rh= <Cm1,n1 > Cnynys "5 Cms,n6> = <95,4’ 944> 934> 935 a5 91,5>~

1 . . . .
Suppose ¢, , in gridTr, and C%n3,n3 in gridTr, are com-
2 is inserted in front of ¢!, in

m3,ns My

pared. If the grid cell ¢

f

h=1

) X q
EDG(gridTr;, gridTr;) = Y delete(C’mk,nA}
k=1

To sum up, the edit distance from grid trajectory gridTr;
to gridTr; is the sum of the operation costs of insertion,

replacement, and deletion; EDG(gridTr;, gridTr;) is defined
as

e=0,

min {EDG(Resr(gridTr,), Rest(gridTr;)) + replace(c’mk’nk, Eﬁw»m‘)’ EDG(gridTr;, Rest(gridTr;)) + insert (c'm»nk’ C{V’h'"h) , EDG Rest(gridTr;), gridTr;) + delete (C’mwu) }, otherwise,

(1<k<q) is the kth grid cell in the trajectory
sequence of gridTr; and c’,;,h,nh is the hth grid cell in the tra-
jectory sequence of gridTr;. Rest(gridTr;) is defined as the

grid cells other than the compared grid cells in gridTr;, sim-
ilarly, Rest(gridTr;) is defined as the grid cells other than

the compared grid cells in gridTr;. From formula (10), it
can be concluded that the higher the value of edit distance

i
where Conn,

Sden 1 Sdis

bl
random = b

(10)

between two grid trajectories, the more dissimilar they are,
otherwise, the higher the degree of similarity.

Finally, based on the first initial cluster center that has
been determined, k — 1 centers of grid trajectory cluster with
larger distance and higher density are selected. A random
value random is set to fuse the density and distance of grid
trajectories, denoted as

(a) ()

random — EDG(T g_centers,,;(selected), gridTr;) — D(gridTr;)i € [1, p|&il =m, (b)
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. 1 ={c! 1 oo
Input: gridTr, = (c,, > Co >

Output: EDG(gridTr,, gridTr,)

1

2: for each row i «—1 to N do

3 D[i, 0] «— D[i - 1,0] + delete(c}, , );

4: for each column j «—1 to M do

5: D[0, j] — D[0,j - 1] + insert(c}nv o o)
> 7

6: for each row i «—1 to N do

7. for each column j «—1 to M do

8

9

return D[N, M]

1 ; — 2
Cm,\:>nN>’ ngdTrZ - <Cfnl,nl > 6

Initialize the zeroth row and column of the N + 1 rows and M + 1 columns distance matrix D: D[0, 0] «<— 0;

Dli, j]=min {D[i - 1,j - 1] + replace(c}, .2, , ), Dli,j— 1] +insert(c}, ,,c% ), Dli—1,j] +delete(c}, )}
iofti” M pfti” M i

)

my,n,> MMy

ALGorITHM 3: EDG.

Output: TgClusters, TgAbnormal

: Initialize the parameter k;

. iter «—— 0;

: Tg_Centers «—— Tg_centers,,;

: while Tg_centerschanged | iter <10 do

s iter «— iter + 1; TgClusters = ¢ ; TgAbnormal = ¢;
:fori <1 to p do

1 if i ¢ Tg_centers then

O N U R W~

9: if R(gridTr;, TgClusters{q}) >0 then
10: TgClusters{q} «— TgClusters{q} U {i};
11: else

12: TgAbnormal — TgAbnormal U {i};
13: for h «—1 to k do

14: numc «— length(T gClusters{h})

15: for i «—1 to numc do

16: for j «—i to numc do

17: dsum(i) «— dsum(i) + dist(i, j);

18: if dsum(i) < min {dsumin} then

19: dsumin — dsum(i);

20: ClustID «— i

21: Tg_centers(h) «— ClustID;

22: return TgClusters, TgAbnormal

Input: GTS = {gridTr,, gridTr,, -, gridTr,}, Predefined number of trajectory clusters k, The initial clustering centers Tg_centers,,,

: d; «— min (EDG(Tg_Centers, gridTr;)) and record the index q of Tg_Centers;

ALGoriTHM 4: GBWTC.

where s,,, is the sum of the density of the grid trajectories
other than clustering centers. EDG(Tg_centers,,;(selected),
gridTr;) is the distance between the grid trajectory just
selected as the clustering center Tg_centers,,;(selected) and
the grid trajectory of non clustering centers gridTr;, and
s i the sum of these distances, that is, s, = sum(EDG(T
g-centers,,;(selected), gridTr;)). m is the index of the grid
trajectory just selected as the clustering center in GTS. In
formula (11)(a), the value of random is initialized, and after
repeated experiments, the value of b is set as 4; after assign-
ing the initial value to random, the formula (11)(b) is exe-
cuted until the value of random is less than 0, and the grid
trajectory is the next selected cluster center at this time.

The above steps are repeated until all initial cluster centers
are selected.

4.2.2. The Adjustment and Update of Clusters Based on the
Grid Trajectory. The adjustment and update of clusters
based on the grid trajectory are a process of dynamically
allocating the optimal clusters of grid trajectories according
to the nearest neighbor principle. After determining the
cluster centers, the traditional K-means method divides each
trajectory into the cluster which is closest to the trajectory,
but there is no determination of the abnormal trajectories
in the trajectory dataset in the iteration process. For this
problem, an outlier function R(gridTr;, C,) is introduced
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to measure the influence of grid trajectory on other trajecto-
ries in cluster and determine whether the grid trajectory is
abnormal. If it is not abnormal, it will be added to the clus-

d - EDG(gridTr;, gridTr,),

R(gridTr;, C,) = 1

|C“‘ B 1gridTrj€Ca

where d_ ;. is the minimum distance between cluster cen-
ters. C, represents the cluster with the nearest cluster center
to the grid trajectory gridTr;, and gridTr, is the center of
the cluser C,. |C, | is the number of grid trajectories con-
tained in cluster C,.

Specifically, the outlier function first calculates the dis-
tance between the grid trajectory and the cluster center
and finds the nearest cluster center. Then, based on the aver-
age distance between all the other grid trajectories in the
cluster and the cluster center, the influence of the trajectory
on the existing structure of the cluster is numerically calcu-
lated. As shown in Equation (12), generally, the smaller the
value of R(gridTr,;, C,) is, the smaller the influence of judg-
ing the grid trajectory as abnormal. If the value of R(gridT
r;, C,) is less than 0, the grid trajectory will be marked as
abnormal.

The pseudocode of the grid-based whole trajectory clus-
tering GBWTC is presented in Algorithm 4. There are
mainly two steps in the algorithm. Firstly, the related vari-
ables are initialized (lines 1-2), and the initial clustering cen-
ters determined by Algorithm 2 are assigned to the
clustering centers (line 3). Then, the clusters are adjusted
and updated based on the iterative process, and the cluster-
ing centers are updated after each iteration. If the conditions
are met, the clustering process will stop, and the trajectory
clusters and abnormal trajectory set will be output (lines 4-
22). Specifically, according to the outlier function, it is deter-
mined whether each trajectory can be clustered into a cluster
or temporarily as an exception (lines 4-12). The new trajec-
tory centers are calculated according to the clustering results.
The clustering process is terminated until the end condition
of the iterative process is satisfied (lines 14-21). Finally, the
algorithm GBWTC outputs a set of trajectory clusters
TgClusters and a set of abnormal trajectories TgAbnormal
(lines 22).

5. Experimental Evaluation

5.1. Experimental Data. We use two real-world datasets as
experimental data to verify the efficiency and accuracy of
the algorithm: (i) travel records of 536 taxis in San Francisco
in more than 30 days that include the longitude and latitude
of the vehicles, vehicle ID, time stamp, and whether they
carry passengers or not. In this paper, we extract the data
of a car in a day according to the time stamp, including

Z EDG(gridTr), gridTr,) | — EDG(gridTr;, gridTr,), |C,|>1,

13

ter; if it is, the grid trajectory is added to the abnormal trajec-
tory set. The outlier function is specifically defined as

|Ca| = 13
(12)

11943 trajectories and filter the longitude and latitude that
do not belong to San Francisco city. Finally, we select the
longitude and latitude, sampling time, and other attributes
to participate in the experiment; (ii) a month’s driving data
of 320 taxis in Rome City that includes the longitude and
latitude of the vehicle, vehicle ID, time stamp, and other
information. The dataset is also preprocessed according to
the above method, and a total of 7356 trajectories are
obtained eventually. Table 1 and Figure 9 show the statistical
information of the above two trajectory datasets and the
road network composed of the trajectory.

Figure 10 plots the initial distribution of users by average
travel time per day in San Francisco and Roman. It can be
observed that 89.23% and 82.79% of users have more than
6 hours of travel time in a day in the two datasets, which
provides abundant trajectory data for the experiment. There
are differences in more subdivided periods, as shown in
Figures 10(a) and 10(b), and 39.34% of users travel 6-9
hours a day in the San Francisco dataset, while 68.56% users
travel 6-9 hours a day in the Roman dataset. The existence of
difference increases the diversity and persuasiveness of
experimental results. Further, we plot the mean and stan-
dard deviation of the number of users each day per week
in the San Francisco and Roman datasets as showed in
Figure 11. It shows the stability of the San Francisco data
and the Rome data over time. The box plots of normalized
longitude and latitude of all moving trajectories of users each
week in a month in two datasets are shown in Figure 12. It
can be observed that the movement of users is basically in
the same region, and there are some differences in the range
of motion. Therefore, the data are valuable and the results
are representative.

5.2. Raw Algorithms in Comparison. GridCSD-TraceMob
firstly executes the trajectory mapping algorithm to calculate
the distance between trajectories iteratively. Each iteration is
divided into three steps: (1) the two trajectories with the
largest distance are selected as the initial pivots, (2) each tra-
jectory is mapped to d-dimensional metric space, and (3) the
Euclidean distances between trajectories in the space are cal-
culated. After the iteration, the classical K-means algorithm
is used for clustering.

TRACLUS partitions a trajectory into a series of subtra-
jectories and performs DBSCAN to group similar subtrajec-
tories together. The algorithm determines whether each
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TaBLE 1: Dataset statistics.
Regions Memory of dataset Acquisition time Number of trajectories Number of GPS points Sampling interval
San Francisco Bay Area 411 MB 2008.5.17-6.10 11943 12787048 10s
Roman 1.49 GB 2014.2.1-3.2 7356 21817852 7s
Cabs
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F1GUure 9: The distribution of real datasets. (a) San Francisco Bay Area. (b) Roman.
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FIGURE 10: Initial distribution of users by average travel time. (a) San Francisco datasets. (b) Roman datasets.

point of the trajectory meets the segmentation conditions
based on the minimum description principle. In the
DBSCAN phase, the iteration is executed for n, times,
which is the number of subtrajectories. In each iteration,
the subtrajectory in the cluster is performed two steps: (1)
e-neighborhood query and (2) cluster expansion performs
a linear scanning for each selected subtrajectory’s neighbors.

K-means is a classical clustering method, in which clus-
ters are groups of elements characterized by a small distance
to the cluster center. The general process of K-means is to
assign each element to the nearest cluster center and update

u . i i unti ver-
the cluster centers. This process is repeated until a conver
gence condition is satisfied.

5.3. Parameter Settings. The parameter gridsize is as follows.
To determine the sequence of trajectory grid cells, the size of
grid cell gridsize needs to be provided to grid cell space.
Users may provide their desirable parameters or use the
suggested parameters. Generally, most of the dense road sec-
tions are concentrated in the city center in the whole dataset
of road network, while the distribution of trajectory in some
suburban or marginal areas is relatively sparse. Hence, the
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FIGURE 12: The box plots of the longitude and latitude distribution. (a) San Francisco datasets. (b) Roman datasets.

size of grid cell in grid cell space should not be set too large,
to avoid the loss of vehicle driving conditions in dense road
sections. But it should not also be set too small; otherwise,
the efficiency of the subsequent trajectory clustering stage
will be reduced. In our experiments, the grid cell size is set
to be 0.1 by default.

In our experiments, to identify the optimal grid cell size,
we run GBWTC and GridCSD-TraceMob algorithms with
different grid cell sizes ranging from 0.025 to 0.2 at an inter-
val of 0.025 on the Roman dataset and San Francisco dataset.
Figure 13 shows the performance comparison of these two
clustering algorithms in terms of SI under given trajectory
number and cluster number on the datasets, respectively.
As shown in Figures 13(a) and 13(b), the SI index of both
decreases gradually with the increase of gridsize. The reason
is that the trajectories located in different road segments or
far away from each other will be divided into the same grid

when gridsize is set too large, which will cause the error of
trajectory similarity measurement. Under the same gridsize
, even when gridsize is larger, the SI index obtained by
GBWTC is higher in two different road network datasets,
which indicates that the trajectory clustering results obtained
by GBWTC have higher similarity in the same cluster, and
the separation degree of trajectories between different clus-
ters is also higher, that is, compared with GridCSD-Trace-
mob, GBWTC has a better overall clustering quality.
However, the efficiency of the algorithm affected by gri
dsize cannot be taken into account only by the SI index,
and the optimal parameters cannot be determined. We fur-
ther compare GBWTC with GridCSD-TraceMob in terms
of running time with different gridsize ranging from 0.025
to 0.2 at an interval of 0.025. We plot the mean and standard
deviation of the algorithm running time across 8 grid cell
spaces with different sizes in Figure 14. As illustrated in
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FIGURE 13: Comparison of clustering quality using SI with different gridsize. (a) San Francisco datasets (2400 trajectories, k =15). (b)

Roman datasets (2000 trajectories, k = 15).
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FiGURE 14: Comparison of algorithm running time with different gridsize. (a) San Francisco datasets (2400 trajectories, k = 15). (b) Roman

datasets (2000 trajectories, k = 15).

Figures 14(a) and 14(b), the running time presents an overall
downward trend with the increase of gridsize. The larger the
gridsize, the shorter the running time. It is obvious that the
running time of GBWTC is shorter and smoother than that
of GridCSD-TraceMob algorithm, and the standard devia-
tion of running time is smaller. Moreover, we observe that
GBWTC is approximately four times faster than GridCSD-
TraceMob on average.

It can be observed from Figures 13 and 14 that the SI
index is higher and the running time is faster than other
smaller grid cell sizes when gridsize is 0.1, which is a more
suitable gridsize parameter. Therefore, the gridsize is set as
0.1 of GBWTC and GridCSD-TraceMob in the other exper-
iments of this paper.

The parameter k is as follows. To better divide the
trajectories, the number of clusters k needs to be pro-
vided. In our work, we run GBWTC, GridCSD-Trace-
Mob, and K-means algorithms with different numbers
of clusters ranging from 2 to 15 at an interval of 1. Since
TraClus is a density-based clustering algorithm, it does
not participate in the comparison. Figure 15 plots the
mean and standard deviation of SI index of the three
algorithms across 14 different numbers of clusters in the
San Francisco and Roman datasets. For these two data-
sets, no matter how the value of k changes, GBWTC
shows a stronger clustering effect than the other two
algorithms, which shows the effectiveness of our improve-
ment in the distance measurement and the steps in the
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clustering process to some extent. Since three algorithms
have good clustering effect with 15 clusters in the two data-
sets, the number of clusters k of GBWTC, GridCSD-Trace-
Mob, and K-means is set by 15 in all other experiments of
this paper.

5.4. Performance Evaluation. We conduct a simulation-
based evaluation of our proposed grid-based whole trajec-
tory clustering model in terms of clustering quality and run-
time performance in comparison with existing approaches.
We implement all of these algorithms in Intelli] IDEA
2018.3.5 (64-bit), and all experiments are conducted on a
Windows PC workstation equipped with Intel(R) Core(TM)
i5-5200U CPU@2.20 GHz and 4 GB of memory.

We evaluate the clustering quality of GBWTC in com-
parison with GridCSD-TraceMob, TraClus, and K-means
in terms of Silhouette Coefficient, which are representatives
of whole trajectory-based, subtrajectory-based, and point-
based clustering. The value of Silhouette Coefficients is pro-
portional to the clustering quality, and the closer to 1, the
better the clustering quality is. We run these four algorithms,
GBWTC, GridCSD-TraceMob, TraClus, and K-Means, with
different numbers of trajectories ranging from 400 to 3200 at
an interval of 400. For each number of trajectories, we gen-
erate 8 random trajectory datasets. Figure 16 plots the mean
and standard deviation of the SI index across 8 different
datasets for each number of trajectories in San Francisco
and Roman datasets. It can be observed that the SI index
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F1GURE 17: Comparison of algorithm running time with different numbers of trajectories. (a) San Francisco datasets (k = 15, gridsize = 0.1).

(b) Roman datasets (k = 15, gridsize =0.1).

TaBLE 2: Comparison of running time.

Number of trajectories 20 40 60 80 100 120
Running time of Scheme 1 (s) 0.33 0.72 0.87 0.99 1.12 1.26
Running time of Scheme 2 (s) 37.27 68.62 87.71 122.76 157.29 184.95

of GBWTC algorithm is closer to 1. With the change of
parameters, the SI index of GBWTC is higher than that of
the other three clustering algorithms in most cases, that is
to say, it shows good adaptability and effect in dealing with
different number of trajectories.

Figure 17 compares the proposed clustering algorithm
GBWTC with GridCSD-TraceMob, TraClus, and K-means
in terms of running time. We run these four algorithms with
different numbers of trajectories on the real-world San Fran-
cisco and Roman datasets, ranging from 400 to 3200 at an
interval of 400 trajectories. Again, for each number of trajec-
tories, we generate 8 random trajectory datasets. We plot the
mean and standard deviation of the algorithm running time
across 8 datasets for each number of trajectories in
Figure 17. These results show that GBWTC runs signifi-
cantly faster than the other three algorithms in comparison
for both San Francisco and Roman datasets, and the change
speed of GBWTC algorithm is more gentle. The superiority
of GBWTC becomes more obvious as the number of trajec-
tories increases. This is because the GBWTC algorithm elim-
inates some useless points in the dataset before clustering
and optimizes the selection of the clustering center in the
clustering process, so that the clustering process is easier to
converge, and there is no need for secondary mapping in
the clustering process.

In addition, there are two advantages in the implementa-
tion of the steps of deleting redundant, abnormal, and
stranded cells in the trajectory grid serialization: one is to
reduce the running time; the other is to reduce the interfer-
ence of these cells on clustering results. Table 2 shows the

time comparison of whether to remove redundant, abnor-
mal and stranded cells in San Francisco dataset using the
GBWTC algorithm. The first scheme is to remove the
redundant points, while the second scheme is not.

6. Conclusion

We proposed a novel grid-based whole trajectory clustering
model, referred to as GBWTC, which leverages the mapping
theory to form the simple and representative grid trajectory.
The proposed approach has potential to determine not only
a series of trajectory clusters but also some abnormal trajec-
tories and GPS points. Extensive experiments demonstrated
that GBWTC significantly improves the clustering quality
over the existing methods. The proposed whole trajectory
clustering approach has a wide range of applications in var-
ious traffic and location service systems, including vehicle
path planning, urban planning, service ecommendation,
traffic navigation, logistics and distribution, and detection
and prevention of abnormal events.

Data Availability

The San Francisco Bay Area Dataset analyzed during the
current study is available in the Dataverse repository 10
.15783/C7]010. The Roman Dataset during the current study
is available in the Dataverse repository 10.15783/C7QC7M.
These datasets were derived from the following public
domain  resources:  https://crawdad.org/epfl/mobility/
20090224, https://crawdad.org/roma/taxi/20140717.
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In this paper, we present a method for generating bird’s eye video from egocentric RGB videos. Working with egocentric views is
tricky since such the view is highly warped and prone to occlusions. On the other hand, a bird’s eye view has a consistent scaling in
at least the two dimensions it shows. Moreover, most of the state-of-the-art systems for tasks such as path prediction are built for
bird’s eye views of the subjects. We present a deep learning-based approach that transfers the egocentric RGB images captured
from a dashcam of a car to bird’s eye view. This is a task of view translation, and we perform two experiments. The first one
uses an image-to-image translation method, and the other uses a video-to-video translation. We compare the results of our
work with homographic transformation, and our SSIM values are better by a margin of 77% and 14.4%, and the RMSE errors
are lower by 40% and 14.6% for image-to-image translation and video-to-video translation, respectively. We also visually show
the efficacy and limitations of each method with helpful insights for future research. Compared to previous works that use
homography and LIDAR for 3D point clouds, our work is more generalizable and does not require any expensive equipment.

1. Introduction

Egocentric videos, commonly referred to as first-person
videos, are captured from the POV of a subject (in our case
from the POV of an autonomous vehicle). Egocentric videos
are easy to capture and hence are accessible in real-time to
the vehicle. However, they are deviously hard to for a com-
puter to comprehend and work with. This is because egocen-
tric videos are prone to occlusions, and there is a significant
warping effect due to perspective which causes the objects
closer to the camera to look inflated. Another drawback of
the egocentric view is the nonlinear nature of objects in
motion.

On the other hand, top-down views such as the views
from a surveillance camera or drones show a more holistic
and consistently scaled view of the environment, which
makes them rich in data and easy to work with (see
Figure 1). Previous work done in fields such as trajectory

prediction is mainly focused on CCTV footage. State-of-
the-art methods work irrespective of view but perform much
better at top-down views of 45°or greater. Not only that,
increasing the angle from 0° (eye level) to 90" (top-down)
eliminates most of the occlusions and improves the visibility.
With advancements in self-driving autonomous vehicle
technology, it becomes important that we devise a way to
overcome the shortcomings of egocentric perspective and
make their accessibility useful [1-3].

In this paper, we present an approach for generating a
bird’s eye view of the environment from egocentric images.
Unlike previous works [1, 4, 5] that use homography and/or
perspective transform for estimating the coordinates of
objects in a bird’s eye view, we majorly aim to reconstruct
the whole visible scene including the objects of interests
(such as cars and pedestrians) and all other objects (such
as buildings, trees, and crosswalks) that may affect the future
behavior of the objects of interests. Our work is aimed at
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F1GURE 1: Example pairs of egocentric views (left row) and their corresponding bird’s eye view (right row). The egocentric views are highly
warped due to perspective and a major part of the environment is out of the field of camera’s view. Bird’s eye view shows a holistic view of

the environment, and the scaling is consistent.

maintaining geometrical, spatial, and temporal consistency
during the view translation. To the best of our knowledge,
this has been an unexplored domain [6].

We identify this as a problem of view translation, and it
can be solved through image-to-image or video-to-video
translation, each having its own perks and shortcomings.
We show experiments with both approaches and give direc-
tions for future research. We use an adversarial approach for
the deep learning model takes as input an egocentric image
and learns to generate its corresponding bird’s eye view.
Our work opens new avenues for progress in self-reliant
and smarter autonomous systems [7, 8]. This also enables
the development of smarter connected vehicles. Having ego-
centric views from multiple nearby vehicles, a much more
accurate prediction of bird’s eye view will be possible which
is an area of interest for future research [9].

With the advent of Industry 5.0, interconnection of not
only devices but also vehicles will be possible. Vehicles in
proximity can collaboratively develop the novel viewpoint
and fill in blind spot caused by occlusions [10]. Our work
acts as a stepping stone towards making this possible [11].

2. Related Work

2.1. Classical Approach for View Translation. Perspective
transformation is a classical approach to compensate for
the camera angle. Using homography [4, 12-18], a plane is
resolved, and the transformation is applied to correct the
perspective. Since this approach relies on a mathematical
approach to the problem, the resulting image can appear to
be distorted and out of proportion.

2.2. 3D Point Cloud for View Translation. With the availabil-
ity of technologies such as Lidar that readily give the 3D
point clouds for the scene, obtaining a bird’s eye representa-
tion for various applications [19-23] is relatively simple as

compared to using RGB image as input. The LIDAR gives
a readymade 3D point cloud of the environment which after
some processing can be transformed into a 2D view from
any specific angle. However, such sensors are expensive,
and not all vehicles are equipped with them. Dashcams
and cameras installed on mobile phones are generally inca-
pable of inferring the 3D information and only provide
RGB images. Our method uses a single RGB image as input,
thus eliminating the use of any expensive equipment.

2.3. Learning-Based Approach. Learning-based approaches
have been gaining popularity as they provide promising
results in similar applications. This majorly includes those
approaches in which we train our system to learn from a
predisposed set of data. Convolutional neural networks have
impacted the domain of image analysis greatly, and conse-
quently, there have been works that use CNN along with
other traditional methods such as homography to have a
more dynamic approach towards generating bird’s eye view
from a single image. [18] uses a CNN to predict 4 parame-
ters of the homography matrix which is used to transform
the image into its bird’s eye representation further. However,
their model is majorly for images that already have some
vertical leverage (for example from CCTV cameras) and
would not be able to work on egocentric images such as
those coming from a dashcam of a car, where the views are
highly skewed with little scope for homography to work. In
our work, we show an end-to-end approach for translating
nonvertical egocentric images into their corresponding
bird’s eye views using a completely learning approach.

3. Methods

3.1. Dataset. We needed a dataset that has egocentric images
(from a car’s point of view) along with their corresponding
bird’s eye views. This poses three major constraints for bird’s
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eye views (see Figure 2). (1) The pixel position of the subject
car in all of bird’s eye frames should be the same, in a way
that the rest of the environment appears to be moving and
the subject car appears to be stationary. (2) The camera
angle in bird’s eye view should also be such that a vertical
line through the centre of the image should pass through
vehicle’s body perpendicularly. (3) The distance of the top-
down camera from the car should also remain constant. A
dataset satisfying all three of these requirements will allow
for a consistent representation and avoid any discrepancy
regarding the alignment and position of the camera during
the image generation process.

Such a dataset is extremely hard to curate in the real
world. Capturing the egocentric feed is easy and can be
achieved by simply placing a fixed camera inside the car or
on car’s body. However, capturing bird’s eye view is nearly
impossible, especially with the constraints mentioned above.
A plausible approach may be using a drone camera that
hovers over the car. But keeping it stationary relative to the
car is practically impossible.

So, we decided to make use of synthetic data for training
purposes. Advances in graphics technology ofter us hyperre-
alistic animation and games that we can make use of as an
alternative for real-world data. One such game is Grand
Theft Auto V (GTAV) in which the visuals of the environ-
ment and the behaviour of the cars and pedestrians mimic
that of the real world. We make use of the SVA dataset
released by [24] in which the camera changes between ego-
centric and bird’s eye view at alternate time steps, which
gives a highly accurate bird’s eye representation for each
egocentric frame. The camera also follows the constraints
we mentioned above. Two sample sequences from the data-
set can be seen in Figure 3. While the dataset released by [24]
also contains bounding boxes, yaw, and other relevant infor-
mation for nearby cars, we do not include that into our
training process and leave that to future work.

3.2. View Translation. Before building a system, it is neces-
sary to understand the data from the egocentric images that
we would like to retain in bird’s eye views. Taking the case of
the view from a dashcam of a car, we not only want the
objects of interest such as other cars and pedestrians to
appear in bird’s eye view but also the other aspects of the
environment that may affect our or other cars and pedes-
trians’ behaviours. For this, simply projecting the coordi-
nates of the objects of interest in a top-down view is not
enough. To this end, we treat this as a problem of view trans-
lation where we try to retain as much information as possi-
ble and describe how we achieve it below.

Image to image translation [25-35] is one such approach
that generates images in one domain using images from
another domain. This approach is best suited for isolated
frames or images as it lacks temporal consistency. Video to
video translation [36] is similar to image-to-image transla-
tion but improves upon temporal consistency [37]. We talk
about how we made use of these in our work and how well
they perform compared to each other.

The major task at this point is to generate a bird’s eye
view y given an egocentric input x. Generative adversarial

networks (GANSs) [38] have performed remarkably well in
the deep learning-based generative area of study. The archi-
tecture of a GAN consists of two parts: a generator G and a
discriminator D. The generator is supposed to generate
unseen but realistic data that falls in a similar domain as
the training dataset, and the job of the discriminator is to
classify a generated data point as realistic or fake. G and D
are both trained together in a two-player min-max situation,
where we try to establish a Nash equilibrium. But simple
GANS s are only effective in generative image synthesis appli-
cations if we need to generate new examples of images. We
basically have no control over the data being generated
[39]. To be able to control the outputs and to make use of
additional information, such as class labels, or in our case,
an input image of egocentric domain x that we want to be
translated into an image of bird’s eye domain y, we use an
extension of GANSs called conditional GANs [40, 41].

In conditional generative adversarial networks, the gen-
erator G learns to generate fake samples with a conditioned
data point of domain x instead of unknown noise distribu-
tion as in simple GANs. The final objective of a conditional
GAN looks like the following:

Zan(6, D) = Ey [log D(x, y)] + Ey . [log (1 - D(x, y))].
(1)

In the task of image-to-image translation, the condition
input is an image of domain x, and the generator outputs
its corresponding image in the search space of domain y.
There has been quite some progress in the field of image-
to-image translation when combined with conditional
GANs. Conditional GANs for image-to-image translation
has been used to achieve tasks like colourization of black
and white images by Zhang et al. [42], future frame predic-
tion [43, 44], and image prediction from normal maps [45,
46]. We build on the work by Isola et al. [26] which consists
of a general image to image translation network. They also
incorporate a convolutional PatchGAN classifier for the dis-
criminator which allows the structure to penalize at the scale
of image patches. So, instead of trying to check whether the
image as a whole is real or not, the PatchGAN checks
whether each N x N patch in the image fed to the discrimi-
nator is real or not [47]. Then, the predictions by the dis-
criminator for all patches are averaged and given out as
the final output.

Along with the cGAN loss in Equation (1), they also use
a traditional L1 loss. This forces the generator to generate
images near the ground truth output in an L1 sense while
also trying to fool the discriminator into believing the gener-
ated images are real.

Z11(G) =By [lly - G(x y)L1]|. (2)
This results in their final objective function as

G" =arg n(l;in n})axfchAN(G, D) +1Z},(G). (3)

Apart from the PatchGAN, their generator network uses
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FIGURE 2: An overview of the camera placements for collecting the dataset. The camera with orange field of view captures the egocentric
view, and the camera with blue field of view captures bird’s eye view. The position (constant) and a range of the camera views (not to

scale) are demonstrated as well.
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FIGURE 3: Sample images from the dataset we used. Each pair of rows are a different sequence, and the top row in each sequence shows the

egocentric views, and the bottom shows bird’s eye views.

a U-Net [48] style architecture which allows them to estab-
lish a better relationship between the input and output
images that have the same low-level structure such as in
image colourization and simulation to reality. In our case,
this feature is not as useful since our input images and out-
put images are considerably different, and this does not
prove to be a disadvantage either as the network without

the U-Net architecture gave similar results to the original
Pix2Pix network. We also show the quantitative comparison
of both in the next section.

For each step in training the network, we randomly pick
an egocentric image from the sequences and give it as the
input along with its corresponding bird’s eye view as the
ground truth label. An overview of the training process can
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FIGURE 4: Training pipeline for image-to-image translation. The egocentric image is sent into the generator, and the generator outputs a
predicted bird’s eye view, which is compared to the ground truth view (not shown). To make the results look realistic, a discriminator is
also trained simultaneously that predicts whether the generated image is real or not.

F1GURE 5: Each column represents three different methods for providing the egocentric (top) and bird’s eye view (bottom) images to the

image translation model.

be seen in Figure 4 The images were originally of the aspect
ratio 16:9, whereas the network takes as input images with a
1:1 aspect ratio (or square images). To solve this, we could
do three things as shown in Figure 5. (1) Centre crop the
image as a square. This however leaves out the peripheral
vision which is very important especially for autonomous
vehicles since it is important to keep track of the vehicles
that are trying to overtake you. (2) Add padding to the top
and bottom of the original image so that it turns into a

square. Unlike centre cropping, this does not leave out any
information present in the original image. However, the
issue with this was that almost a quarter of the image space
was being wasted on padding. (3) Resize the image into a
square. In this approach, no information is being left out,
and the space is being utilised efficiently. The only issue with
this method is that the internal aspect ratio of the original
image is ruined which makes the image look squished. How-
ever, this does not seem to affect the learning of the model
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FIGURE 6: Training pipeline for video-to-video translation. For the first three egocentric frames, we use the image-to-image translation
module to generate rough predictions of bird’s eye view. All these along with the fourth egocentric views are input to the model, and the
model generates bird’s eye view for the fourth frame. Then, for the fifth frame, we also send the previously generated output as the label
for the fourth frame, and this goes on until all frames have been processed.

negatively and seemed to be the most effective out of all
three methods. Further efforts on evaluating the three differ-
ent methods can be seen in the experiments section.

Since the application of our work is primarily in a video-
based task, we also decided to use a temporally consistent
model [36] for training. In this approach, the model requires
us to send a sequence of frames as input instead of a single
frame as we saw in image-to-image translation [26]. The
model works in a coarse-to-fine way, ie., first, a low-
resolution model takes as input an image and along with a
sequence of previous output images. For the very first image,
we use the image-to-image translation model for generating
the previous output images. Then, the generator outputs the
next frame (Figure 6). Then, higher resolution generator is
stacked on top of this generator which is used to increase
the resolution of the generated frame. Once the model starts
to predict the next frame in the sequence, we then use its
predicted frame for subsequent inputs (this also deteriorates
the input quality for the next frame, which might cause a sig-
nificant cascading effect and the quality of the predictions
decrease continuously) (Figure 7). We use images of sizes
1024 x 512 which require us to use two generators. The first
one outputs images of size 512 x 256, and the second one
gives us the final output.

4. Results

In this section, we will show and evaluate the results of our
view translation pipeline.

4.1. Image-to-Image Translation. For image-to-image trans-
lation, the first experiment that we conducted was to estab-
lish the best method to crop and resize the images before

feeding them into the model as ground truth. We checked
three different methods of arranging them as seen in
Figure 5. We trained a model three times on the same dataset
and each time preprocessing the images differently. We did a
qualitative and quantitative analysis for establishing which
method is the best. For qualitative analysis, we did a user study
with 5 human subjects and asked them to rate the generated
images from each method on a scale of 1 to 10 on three factors:
image quality, amount of crucial information retained, and the
amount of details in the image (Table 1).

Note that for the third method, we resized the images
into a square and sent that into the model. The generated
image was a square as well. However, since it looked
squished, we inverted the resize factor of the generated
image back to their original aspect ratio so that they look
natural to the users.

To quantitatively evaluate the different methods, we
checked the mean structural similarity index and the root
mean square error between the output images and their cor-
responding ground truth images on a test dataset containing
20 images. We show the average values in Table 2 where
method I correspond to Figure 5 (first column), method II
corresponds to Figure 5 (second column), and method III
corresponds to Figure 5 (third column). After testing, it
seemed intuitive to use method III for the final training.

Next, we show the results of the final image-to-image
translation model on unseen input images in Figure 8. On
comparing the generated results with the ground truth, we
get the average SSIM value as 0.72 and RMSE value as
30.56. We also tested the model with the U-net with skip
connections, and we got nearly the same results with an
average SSIM value of 0.712 and RMSE value of 28.25. To
quantitatively evaluate the details, present in the generated
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FIGURE 7: Results of the video-to-video translation experiments on a test sequence.

TABLE 1: A user study on different types of generated images from
differences in preprocessing.

Factor I II I
Image quality 8.5 6 8.5
Crucial information present 6.5 8 8.5
Details persevered 8.5 5 8

TaBLE 2: Quantitative analysis of different types of generated
images from differences in preprocessing.

I 1I III
RMSE 30.1 354 32.19
SSIM 0.62 0.51 0.65

images, we further perform edge detection using a Canny
edge detector on multiple predicted images and their corre-
sponding ground truth images.

On comparing the ground truth edges with the edges in
the generated images, we get an average SSIM score of 0.761
and an average RMSE score of 70.54. With the skip connec-
tions, we got an average SSIM score of 0.728 and an average
RMSE score of 68.25. In Figure 9, we show three good results
(retained most of the useful details, such as shapes of cars
and crosswalks) bounded with a green and three failure cases
(did not retain much useful details) bounded with a red box.
The model is even able to understand subtle details such as
the headlights being on in the vehicles. On a visual observa-
tion of the generated images, the results seem blurry and do
not quite capture the environment exactly as in the ground
truth images. This is a limitation of the type of model we
selected, and we talk more about this in the discussion sec-
tion and also mention the research areas that might help in
tackling this issue. In Figure 10, we also compare our results
with the results obtained from homographic transforma-
tions. We compare the nonblank parts of the image with
the corresponding parts in the ground truth image and get
an average SSIM of 0.41 and an average RMSE of 47.0. Com-

Egocentric image Predicted image Ground truth

4%

FIGURE 8: Sample results of the image-to-image translation method.
Bounding boxes are given in second and third columns to show the
actual positions of vehicles. A green bounding box signifies a
successful ~reconstruction including the position of the
reconstructed vehicle, whereas a red bounding box signifies an
unsuccessful or missing reconstruction.

pared to the homographic results, our image-to-image trans-
lation results are better by a margin of 77% for SSIM and
40% for RMSE. Visually, the homographic results look very
distorted, and the objects cannot be reliably detected.

We finally conducted experiments for video-to-video
translation. In Figure 7, we show the results for a test
sequence of 14 frames. The model is able to reconstruct
bird’s eye view and successfully captures details such as
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FiGUurg 9: Comparison of detected edges on predicted and ground truth bird’s eye view images. The generated images outlined with green
retain the useful details such as shapes of cars, roads, and buildings, whereas the generated images outlined with red fail to retain useful

details.

Input image

Homography

FiGUure 10: Comparison of our method with homography.

nearby cars, headlights, and ambient lights in a temporally
consistent manner. On the negative side, the results are
blurry. We talk about why this is so in the discussions sec-
tion below and also mention the possible solutions. Initial
results are better than the future frames, and the details start
to deteriorate as more frames are predicted by the model.
This happens because, for each consequent step, the model
takes as input the previously generated frame, which propa-
gates the errors forward deteriorating the quality of each
consequent image. To evaluate the results quantitatively,
we compared the generated bird’s eye views and their corre-
sponding ground truths and got the calculated RMSE value
as 40.25 and the SSIM as 0.47. Compared to the homo-

graphic results, our video-to-video translation results are
better by a margin of 14.4% for SSIM and 14.6% for RMSE.

We also show the comparison between the two methods
in Figure 11. We ran both models on the same set of 6
frames of multiple sequences. In Figure 11(a), we show the
abilities of the model to generate images that are similar to
the actual ground truth. For this, we simply calculate the
SSIM values of each generated image and its corresponding
ground-truth bird’s eye view. The SSIM values for image-
to-image translation do not follow any trend; however, the
values for video-to-video translation degrade as more frames
are generated. This is due to the cascading effect on errors in
each generated frame being propagated forward. In
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F1GUrE 11: Comparison of the results from image-to-image and video-to-video translation methods. (a) The SSIM values of each generated
frame with its corresponding ground-truth frame. The SSIM values in (a) for the image-to-image method do not seem to follow any trend,
whereas for the video-to-video translation method, the quality of the image seems to degrade a little as more frames are generated. (b) The
SSIM values of each generated frame with its previous generated frame. In (b), the consecutive frames from image-to-image translation show
little similarity, whereas the consecutive frames from video-to-video translation show high similarity and hence consistency.

Figure 11(b), we compare the consistency and similarity in
the consecutive frames generated from both methods. For
this, we find the SSIM between a generated frame and the
frame generated before it. It should be noted that even in
the most ideal case, the value will never be 1 as the temporal
change in the egocentric images will always incur a change
in bird’s eye view. However, a high value still shows that
there is a good level of consistency in the consecutive frames.
Video-to-video translation shows high levels of consistency,
whereas image-to-image translation gives low SSIM values.

5. Discussions and Future Works

Our work shows the possibility of using RGB egocentric
images for inferring bird’s eye view around the subject vehi-
cle. The failure results of work also provide key insights and
directions that may benefit future researchers. Architectures
such as [26, 36] work better for translations that have some
level of geometric alignment, for example, horse-to-zebra or
oranges-to-apples, where the input image and the output
image are geometrically and structurally very similar, with
differences only in the appearances and textures. However,
in the task that we aimed to solve, there is a high level of geo-
metric deformation in the input and output images. Egocen-
tric images are completely different from top-down images,
and even though this difference is consistent in all such
images, models such as [26, 36] are not well-equipped for
this. In order to solve the issue of geometric deformation
in such images, future works may look at deformable convo-
lutional networks [49], proposed by Dai et al., and deform-
able skip-connections [50], proposed by Siarohin et al.
Since the motivation for this work came from the expensive-
ness of sensors such as Lidar, we discourage the use of such
sensors. However, using deep learning methods for estimat-
ing depth data is also an area of interest for future work.

6. Conclusion

In this paper, we presented an end-to-end method for trans-
lating egocentric views from RGB cameras such as those

installed on vehicles into bird’s eye views of the environment
the subject vehicle was present in. One of the biggest hurdles
is that egocentric views have a high level of distortion due to
perspective, whereas a bird’s eye view has a consistent scal-
ing. The two are quite opposite in terms of geometric align-
ment. Previous traditional methods such as handcrafted
homography transformations are not generalizable, and they
do not work very well for views with minimal vertical lever-
age (e.g., view from the dashcam). More modern methods
that use external sensors such as LIDAR can be very costly
and computationally extensive. Taking all this into consider-
ation, we develop our method to only use RGB frames from
a single inexpensive camera installed in the car and so that it
can be used for inference on the go on most modern mobile
systems. We treat this as a task of view translation and
implement it for two different use cases, one where we have
a single image and one where we have a sequence of frames.
We use an adversarial approach for training the model and
experiment with image-to-image and video-to-video trans-
lation. The results from both experiments show that this
can be a reliable approach to perform this task, and in
the future, it can be used in the real world. However, there
do exist some limitations, such as artefacts and loss of
details over time, and we provide key insights for future
researchers on how the performance and accuracy can be
improved for this specific task. The work opens up new
avenues for research on environment sensing in autono-
mous vehicles that only use dashcams as a sensor. While
we have only shown the efficacy of this work for vehicle
data, this can be extended to all sorts of egocentric views
such as wearable cameras, and cameras installed on
domestic assistant robots.

Data Availability

All data generated or analyzed during this study are
included in this published article. Data is available at
https://aimagelab.ing.unimore.it/imagelab/page.asp?IdPage=
19.
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With the continuous development of deep learning in computer vision, semantic segmentation technology is constantly employed
for processing remote sensing images. For instance, it is a key technology to automatically mark important objects such as ships or
port land from port area remote sensing images. However, the existing supervised semantic segmentation model based on deep
learning requires a large number of training samples. Otherwise, it will not be able to correctly learn the characteristics of the
target objects, which results in the poor performance or even failure of semantic segmentation task. Since the target objects
such as ships may move from time to time, it is nontrivial to collect enough samples to achieve satisfactory segmentation
performance. And this severely hinders the performance improvement of most of existing augmentation methods. To tackle
this problem, in this paper, we propose an object-level remote sensing image augmentation approach based on leveraging the
U-Net-based generative adversarial networks. Specifically, our proposed approach consists two components including the
semantic tag image generator and the U-Net GAN-based translator. To evaluate the effectiveness of the proposed approach,
comprehensive experiments are conducted on a public dataset HRSC2016. State-of-the-art generative models, DCGAN,
WGAN, and CycleGAN, are selected as baselines. According to the experimental results, our proposed approach significantly
outperforms the baselines in terms of not only drawing the outlines of target objects but also capturing their meaningful details.

1. Introduction

With the continuous development of satellite remote sensing
image technology, high-resolution satellite image makes the
target segmentation technology of satellite image realized.
In many fields, the segmentation of satellite image can help
to collect information and collect information quickly. Dif-
ferent from other image segmentation, satellite image con-
tains a large number of elements and is easily affected by
weather and season, so it needs a large number of datasets
for training; otherwise, the target model will have difficulty
in learning the relevant feature distribution. Especially, for
the ship remote sensing image, because the ship is usually
in dynamic change, it is difficult to collect a lot of data from

the target, so it is necessary to augment the dataset. For
semantic segmentation task, when training a model, paired
data is needed, that is, an original image and an image with
semantic tag. Therefore, we need to construct two corre-
sponding images at the same time.

For traditional data augmentation methods such as Cut-
Out [1], the input square region is randomly masked in the
training process, which can improve the robustness and
overall performance of the convolutional neural network.
CutMix [2] generates a new training sample by randomly
combining two trimmed training samples, which makes its
performance better than CutOut. However, these methods
generate new samples directly modified and then stitched
at the image level, which means that the boundaries among
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different objects cannot be clearly identified. Since bound-
aries are of vital importance in the semantic segmentation
task, the above-mentioned methods are not suitable for aug-
menting samples targeting at semantic segmentation task.

In recent years, the concept of generative adversarial net-
works [3] (GAN) has become one of the most popular unsu-
pervised algorithms. For instance, DCGAN [4] and Marta
GAN [5] have been proposed to augment remote sensing
images. However, due to the complexity and uncertainty pre-
sented in remote sensing images, it is difficult for GAN-based
augmentation methods to learn the distribution characteristics
of the target objects, resulting in unsatisfactory augmentation
effect. For example, the resolution of the generated images is
limited while most of meaningful details are missed. More-
over, GAN-based augmentation methods cannot be able to
generate the paired semantic tag images which are critical to
enable semantic segmentation task and usually annotated
manually with high cost. Therefore, it is desired to propose
an approach to augment remote sensing images by effectively
tackling the complexity and reducing the annotation cost.

Recently, conditional GANSs [6] are proposed, which is a
variant of GANs and capable of performing the image transla-
tion task. Inspired by conditional GANs, we propose an
approach consisting two main components including the
semantic tag image generator and the translator to augment
remote sensing images. Firstly, the target objects are extracted
by learning original training samples and then reasonably
composed to construct the semantic tag image. Secondly, the
translator based on U-Net [7] GANs is responsible of trans-
forming the generated semantic tag images into realistic-
looking images (please refer to Section 4 for more details).

In this work, our contributions could be summarized as
follows:

(i) A framework based on U-Net GANs for remote
sensing image augmentation is proposed in this

paper.

(ii) A new method to automatically generate semantic
tag images is proposed with a set of heuristic gener-
ation rules and restriction rules.

(iii) Comprehensive experiments are conducted on a
public remote sensing image dataset while in-
depth analysis is provided focusing on the compar-
ison between our proposed approach and baselines.

The rest part of this paper is organized as follows. Con-
crete examples about remote sensing image augmentation
and basics of both GAN and U-Net models are offered in
Section 2. The remote sensing image augmentation problem
is formally defined in Section 3. In Section 4, the methodology
is illustrated in detail including the overall architecture of the
proposed approach, semantic tag image generator, and remote
sensing image translator. In Section 5, the experiments are
conducted on a public remote sensing image dataset to vali-
date the effectiveness of the proposed approach. Related works
about existing remote sensing image augmentation solutions
are discussed in Section 6 followed by the conclusion provided
in Section 7 to summarize this work.
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2. Preliminaries

2.1. Examples of Remote Sensing Image Augmentation. Dif-
ferent from the data augmentation task directly performed
at the image scale, for semantic segmentation tasks, they
mainly focus on differentiating target objects from the back-
ground. The reason that traditional image-level augmenta-
tion cannot well support semantic segmentation tasks is
due to its inability to identify the features of target objects,
or the boundary between target objects and the background.
Therefore, it becomes the motivation for the work in this
paper to propose an approach to augment the original
images at the object level rather than the image level.

To further illustrate the difference between image-level
and object-level remote sensing image augmentation, exam-
ples are provided as shown in Figure 1. The upper row of
Figure 1 shows the typical augmentation operations such as
crop, flipping, cutout, and stretch usually adopted in image-
level augmentation. And the lower row of Figure 1 presents
object-level augmentation operations including object remove,
object flipping, cutout without destroying the integrity of the
original object, and semantically reasonable object add.
Obviously, object-level remote sensing image augmentation
can better serve the semantic segmentation task by flexibly
composing different objects into the newly generated images,
compared with the image-level counterpart.

2.2. Basics of Generative Adversarial Networks. Generative
adversarial networks (GANs) were introduced in 2014 [3]
and widely applied to various application scenarios [5, 8, 9].
GAN is able to produce high-quality output images through
the mutual game learning of (at least) two independent mod-
ules: the generative model and the discriminative model.

(1) Generative model (aka Generator) has the goal of
capturing the data distribution from training sam-
ples by receiving a random noise z and generating
an image from that noise, which is denoted as G(z)

(2) Discriminative model (aka Discriminator) has the
task of telling if the current sample comes from the
training set or from the Generator. Its input param-
eter is x, which may be extracted from the training
sample or the “fake” sample generated by the Gener-
ator. Its output is 1 or 0, while 1 indicates that the
Discriminator judges the sample as the real sample
and 0 means that the Discriminator judges the sam-
ple as the fake sample.

The generative model G aims to learn a distribution p,
over data x, by building a mapping function from a prior
noise distribution p,(z) to the data space, G(z;0,), where
0, are the parameters of the model G, e.g. the weights of

the multilayer perceptrons to implement G.

The discriminative model D(x;6,) is an independent
module to be implemented as a binary classifier, which out-
puts a single scalar (i.e., 0 or 1) representing the probability
that x came form the training set rather than p, .
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F1GURE 1: Examples of image-level and object-level remote sensing image augmentation.

Then, both models are jointly trained to play the follow-
ing two-player min-max game as defined in the following
equation until they reach the Nash Equilibrium:

mGin max V(D,G) = Eypoal®)

+E.p () [log (1 = D(G(2)))]-

log D(x
[log D(x)] )

2.3. Basics of U-Net. In the last decade, deep learning models
have been universally applied to different application scenar-
ios such as time series analytics [10], rate adaptation [11],
and edge computing [12]. As a dedicated deep learning
model, U-Net has made great successes on the semantic seg-
mentation task of medical images [7]. Therefore, it is chosen
as the basic component of the model employed in this work
for object-level remote sensing image augmentation. U-Net
is named due to its symmetrical structure looks like an upper
letter U as shown in Figure 2. For an input image with the
size N x N, U-Net will firstly conduct the 3 x 3 convolution
for twice as shown in the upper left component of
Figure 2. And then, the max pooling will be executed to
downsize the output of the last layer of the upper component
to fit the size of the first layer of the lower component, which
is shown as the red downward arrow. The above procedure
will be iterated for 4 times until the bottom component is
reached, which plays the role as the conjunction of the left
and right edges of U-Net. On the right edge of U-Net, the
3 x3 convolution will be done within each component.
Different from the operations among components of the left
edge, the 2 x2 upconvolution is conducted to restore the
downsized sample to its original size. Moreover, the gray
horizontal arrow represents the copy and crop operations
on the output of the last layer of the left edge component
that is taken as part of the input of the first layer of the cor-
responding right edge component. This feature is regarded
as one of the factors making U-Net so successful on seman-
tic segmentation of medical images, which embeds multi-
scale grain of the input image into the learning process.

3. Problem Formulation

The object-level remote sensing image augmentation prob-
lem could be formulated as follows.
The following are given:

(i) I={p}"*", where I is a remote sensing image, p is
a pixel, and W and H mean the width and height of
the image

(ii) T ={t,}"*", where T is a semantic tag image and ¢
is a pixel with the tag n

(iti) S={I;, T\}, where S is the training set with K
paired original image I and its semantic tag image
Tk.

Assume that

(i) The pixels p and t at the same position of the paired
I and T} indicate the same object

(ii) Each object identified in T} consists a set of pixels
which are spatially connected

(ili) There exists at least one mapping function from T
to I, which not only draws the outlines of objects of
T} but also captures their meaningful details to be
presented in I;.

The objective is as follows:

(i) By learning the mapping function from T, to I, it
aims to generate a set of synthetic remote sensing
images A={I,, T,,} which are of higher diversity
and reasonably realistic looking.

In the following section, we would like to introduce an
approach to augment the remote sensing images at the
object level by leveraging the generative adversarial network
architecture based on U-Net.
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4. Methodology

4.1. Overall Architecture. As shown in Figure 3, the proposed
approach to augmenting remote sensing image at the object
level is composed of two key components. The first key com-
ponent is the semantic tag image generator, while the other
is the translator based on U-Net GANs. At the very begin-
ning of the whole process, the semantic tag image generator
takes the original training set as the input to identify different
types of the objects in a pixel-wise manner. And then, those
objects could be flexibly composed into a tag image subject
to the predefined constraints. After that, by taking original
training set and tag images as the input, the translator based
on U-Net GANS is responsible of generating remote sensing
images. Finally, the new training set for semantic segmenta-
tion task is obtained by integrating the original training set
with both the generated images and their corresponding tag
images. The design details about the semantic tag image gen-
erator and translator based on U-Net GANS are illustrated in
detain in Section 4.2 and Section 4.3.

4.2. Semantic Tag Image Generator. The semantic tag image
generator is aimed at identifying and extracting the target
objects as pure color regions from original images of the
training set. Each color represents one specific type of the
target objects. Since we are more interested in remote sens-
ing images mostly containing the port areas, three types of
the target objects will be automatically identified and
extracted including the water surface, the port land, and
ships as shown in Figure 4. Besides the identification and
extraction of target objects, out proposed semantic tag image
generator is able to automatically compose the identified
objects into tag images in a harmonic manner under the

guidance of generation rules and restriction rules which are
presented in detail as follows.

The overall procedure for generating semantic tag
images is shown in Figure 4. The generation rules are listed
as follows.

(i) The black-colored region is generated as the back-
ground which is usually the water surface around
the port land or the ships

(ii) The white-colored region is composed of a set of
randomly generated white pixels which are adjacent
to each other

(ili) Ship tags are learned from the training set and
placed to the proper black color regions subject to
the restriction rules that are stated as below.

In order to ensure the reasonability of the generated
images, it is required to make sure that the special layout
among different objects of the tag image is proper and rea-
sonable. Hence, three restriction rules on the placement of
all objects are proposed as follows.

(i) There is no overlapping between any two ships, i.e.,
no overlapping between any two red-colored
regions in the generated tag image

(ii) There is no overlapping between any ship and the
port land, i.e., no overlapping between any red color
region and the white-colored region in the gener-
ated tag image

(iii) There is at least one ship but no more than the max-
imum number of ships observed in the training set.
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By applying the above introduced generation rules and
restriction rules to the generation procedure of tag images,
proper tag images with typical objects flexibly placed could
be trivially obtained. Afterwards, given the generated tag
images, we propose a translator based on U-Net GANs to
transform each tag image to a synthetic remote sensing
image by learning pixel-wise details from the original train-
ing set. And the second use of the tag image is to take them
as the ground truth for training and testing the semantic seg-
mentation model. The design details of the translator are
provided in Section 4.3.

4.3. U-Net GAN-Based Translator. Given the generated tag
image, the translator is responsible in transforming it to a
synthetic but realistic-looking remote sensing image. In this
paper, we employ the generative adversarial networks as the
reference for implementing the translator. As shown in
Figure 5, the translator consists two key components includ-
ing a generative model Generator and a discriminative
model Discriminator. The design of the Generator conforms
to that of U-Net introduced in Section 2.3. And the design of
Discriminator is a FCN model as proposed by [13]. The
training procedure for U-Net GAN-based translator follows
the steps stated as below.

(i) Step 1: Generator takes the semantic tag image as
the input which is denoted as z

(ii) Step 2: Generator generates a new remote sensing
image denoted as IMG' which tries to deceive the
Discriminator for judging IMG' as the real remote
sensing image

(iii) Step 3: Discriminator makes every endeavour to fig-

ure out whether IMG' is real or fake according to

original images IMG from the training set

(iv) Step 4: the above three steps will be executed in an
iterative manner until the Nash Equilibrium is

reached.

The optimization goal of U-Net GAN-based translator
consists two parts. The Generator denoted as G for short
needs to learn a distribution p_ over output images x by
building a mapping function G(z;6,) from the given tag
image distribution p,(z) to the original image representation
space. 0, are the parameters of the Generator, ie., the
weights of U-Net implementing Generator in this paper.
And the Discriminator denoted as D for short is imple-
mented as a binary classifier, which outputs a single scalar
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F1GURE 5: Model architecture of U-Net GAN-based translator.

representing the probability that output images x of the
Generator came from the training set rather than p,.

The loss function L(G) of the GeneratorG could be
mathematically defined as shown in the following equation.

L(G)=E.,, ;) [log (1 - D(z, G(2)))]. (2)

The loss function L(D) of the DiscriminatorD could be
mathematically defined as shown in Equation (3).

L(D)=E., (v [log D(z x)] 3)

Generally, the optimization objective of the translator
could be defined as shown in the following equation:

min maxV(D, G) = L(D) + L(G). (4)

In order to let the generator better learn the details of
target images, it is beneficial to integrate the traditional
GANSs’ optimization objective with an extra loss such as
the smooth L1 distance. The smooth L1 distance
Loornr1 (G) is mathematically defined as shown in the fol-
lowing equation:

E,.[0.5% (x—G(2))’]
E_.[ll(x - G(z))[| - 0.5]

[(x = G(2))] <1

LsmoothL1<G) = { th .
otherwise.

()

Meanwhile, the role of the GeneratorG has changed
to not only fool the DiscriminatorD but also approach
multiscale grains of the ground-truth images guided by
the new optimization objective as defined by the follow-
ing equation:

min max V(D,G) =L(D) + L(G) + Lynootn 11 (G) (6)

5. Evaluation

5.1. Experimental Settings. A public dataset called
HRSC2016 [14] is adopted to evaluate the effectiveness of
the proposed U-Net GAN-based approach to remote sensing
image augmentation. In the dataset HRSC2016, all the
images are collected from six famous harbors with the reso-
lutions ranging from 0.4 m to 2 m. The image sizes vary from
300 to 1500 while most of them are larger than 1000 x 600.
The training set contains 436 images including 1207 sam-
ples, and the validation set contains 181 images including
541 samples, respectively. The test set contains 444 images
including 1228 samples.

As for the baselines, we are going to compare our
approach with two typical types of augmentation methods
including the geometric transformation methods and gener-
ative models. Specifically, four types of transformations
including Scaling, Flipping, CutOut, and CutMix will be
tested for evaluation. Moreover, three generative models
including WGAN [15], DCGAN, and CycleGAN [16] will
also be evaluated under the same evaluation settings. The
key hyperparameter settings of the baseline models and
our proposed model are shown in Table 1.

All the experiments are conducted on a Windows 10 64-
bit server equipped with one Intel Xeon CPU at 3.7 GHz and
64 GB main memory at 2666 MHz. All the generative models
are trained on one NVIDIA GeForce RTX 2080Ti GPU of
which the dedicated memory is 11 GB. And the deep learn-
ing framework to support the implementation and training
of generative models is tensorflow 2.3 library in the Python
3.8 environment.

5.2. Experimental Results and Analysis. Firstly, we would like
to compare the performance of geometric transformation
methods with the approach proposed in this work. As shown
in Figure 6, given a pair of the original image and its tag
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TasBLE 1: Key hyperparameter settings of baselines and our model.

Model Key hyperparameter settings

Epochs = 300, batch size = 16, activation Func. = tan h
DCGAN . .

Optimizer = Adam, loss Func. = binary cross entropy

Epochs = 300, batch size = 16, activation Func. = tan h
WGAN . .

Optimizer = Adam, loss Func. = binary cross entropy

Epochs = 300, batch size = 16, activation Func. = tan h
CycleGAN . .

Optimizer = Adam, loss Func. = binary cross entropy, lambda = 10

Epochs = 300, batch size = 16, activation Func. = tan h

Ours

Optimizer = Adam, loss Func. = binary cross entropy, LAMBDA = 100

Existing data augmentation methods

Original Image

/

Ours

Original mask
Scaling

Flipping

CutOut CutMix

FIGURrE 6: Comparison with existing geometric transformation methods.

image, the upper row lists the augmented images after Scal-
ing, Flipping, CutOut, and CutMix by leveraging traditional
geometric transformation methods while the lower row
shows the augmented images generated by our proposed
approach. In the “Scaling” case, the target object (i.e., the
ship) is partially cut while it is simultaneously scaled with
the whole image by our approach. In the “Flipping” case,
our approach turns the direction of the ship instead of sim-
ply doing the vertical flipping as done by traditional geomet-
ric transformation methods. In the “CutOut” case, the
augmented image has a very inharmonious black region
which is smartly processed by our proposed approach. More
interesting, our approach patches the black region with the
water surface while maintains the integrity of the ship. At
last, in the “CutMix” case, the traditional geometric transfor-
mation methods simply place a rectangle patch containing
another ship with considering the semantic consistency
between the patch and the original image. In contrast, our
proposed approach places the newly added ship to the
proper area of the original image with its background seam-
lessly wired. According to the above analyzed cases, it is clear
that our proposed approach significantly outperform the
traditional geometric transformation methods in terms of

maintaining object integrity, diversity, and background har-
mony for the augmented remote sensing images.

In another set of experiments, we compare the perfor-
mance of different generative models including DCGAN,
WCGAN, CycleGAN, and our proposed approach. As
shown in the first two rows of Table 2, DCGAN and WGAN
only accept random noise as the input and can hardly gener-
ate meaningful output images. The most competitive gener-
ative model is CycleGAN of which the generation results are
shown in the third row of Table 2. Obviously, CycleGAN is
able to generate the outline for each type of target objects
(i.e., the water surface, port land, and ships). However, if
we zoom in the images generated by CycleGAN, it is found
that almost no detail of the target objects is captured. And
our proposed approach does not only draw the outline of
multiple objects but also capture their much more details
in the generated images.

Furthermore, the detailed training process of each gener-
ative model is shown in Table 3. It is observed that DCGAN
and WGAN are not able to generate images rather than ran-
dom noise until Epoch 200. And even after Epoch 200,
DCGAN and WGAN just capture some very vague features
which cannot be clearly identified. CycleGAN and our
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TaBLE 3: Detailed training process of baselines and our model.
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FIGURE 7: Generator loss of baselines and our model over train steps.

proposed approach start the training with the similar pure
color input. Both models are able to capture the outline of
each object as early as Epoch 5. But as the training epoch
elapsed, CycleGAN is unable to capture more details about
outlined objects while our proposed approach gradually
adds more details to those objects. And finally, the output
image generated by our proposed approach at Epoch 300
shows the highest visible similarity with the ground-truth
image among all the generative models. According to the
experimental results listed above, in summary, it is validated
that our proposed approach to remote sensing image aug-
mentation significantly outperforms the baselines including
the traditional geometric transformation methods and gen-
erative models.

Last but not the least, the generator loss of all baselines
and our model over each train step is shown in Figure 7 so
that we can observe the learning behavior of the generator
of all baseline models and our proposed model. And it can
be clearly observed that the loss value of DCGAN’s genera-
tor fluctuates from the very beginning of the training process
till the last train step. For WGAN, the loss value of its gen-
erator becomes higher and higher over train steps. It indi-
cates the fact that the generator of both DCGAN and
WGAN can hardly converge on the experimental dataset,
and thus, no meaningful image could be generated. As for
CycleGAN, it performs better than DCGAN and WGAN
by showing a converging trend during the training process.
However, its loss value has a high deviation which probably
means its generator cannot learn complex features from
original images in a stable manner. At last, when we analyze
the loss value of the generator of our proposed model, it pre-
sents a much better converging trend over train steps than
baseline models. And this is a strong evidence to confirm
the superiority of our proposed model over baselines in the
task of object-level remote sensing image augmentation.

6. Related Work

Data augmentation is the technique to augment original
training samples by generating new samples. The existing
data augmentation techniques can be roughly divided into

the following two categories: (1) geometric transformation
methods, which generate new samples by performing various
geometric operations on original samples, and (2) generative
models, which generate new samples by learning discrimina-
tive features of original samples and utilizing their labels.

Geometric transformation methods have been widely
used, including random cropping, horizontal flipping, and
color enhancement [17], which can improve the robustness
of translation and reflection and illumination objects,
respectively. Random scaling, random rotation, and affine
transformation are also widely used in data augmentation
scenarios [1]. Moreover, CutOut and CutMix [2] are also
employed to augment new samples by learning features from
original samples. In general, geometric transformation
methods are usually applied to solve either the class imbal-
ance problem or the limited sample problem. According to
previous studies [1, 2, 17], the above-mentioned methods
have been proved to be fast, reproducible, and reliable.
And their implementation is relatively simple, which can
be easily generalized to the currently popular deep learning
framework. However, these methods can only perform
image-level transformation, which means they only change
the depth or scale of the image after generation. Although
image-oriented tasks such as image classification benefit
from geometric transformation methods, they are not capa-
ble of improving object-oriented tasks such as the semantic
image segmentation.

Despite the many successes of generative adversarial net-
work (GAN) and its numerous variants, there are still a lot
of challenging issues such as mode collapse [8] and genera-
tion quality [18, 19]. Objectaug [20] is one kind of generative
models for object-level data augmentation. It decomposes
the image into separate objects and backgrounds using
semantic tags and applies augmentation on background
and objects individually. Objectaug can effectively enhance
the boundaries between the target objects and the back-
ground. However, its core data augmentation method is still
based on the traditional geometric transformation, which
limits the diversity of generated samples. Conditional adver-
sarial nets [6] are proposed to handle both unimodal and
multimodal samples by extending the original GAN to its
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conditional variant. As for other GAN-based models like
DCGAN [4] and WGAN [15], they are not capable of gener-
ating new samples with visually similar features as those of
the original samples due to the lack of properly guided input.
Different from DCGAN and WGAN, CycleGAN [16] incor-
porates additional information with the original input which
greatly enhances the quality of the generated samples. How-
ever, the main drawback of CycleGAN is its unpaired training
process which limits its further performance improvement.

By taking drawbacks of the aforementioned data aug-
mentation methods into accounts, in this paper, it motivates
us to design and implement a new approach to augmenting
existing dataset by generating diverse and high-quality sam-
ples at the object level.

7. Conclusion

In this paper, we study the object-level remote sensing image
augmentation problem. In Section 3, the problem formulation
is provided in a formal format to facilitate the understanding
of the target problem. Then, an approach composed of the
semantic tag image generator and the U-Net GAN-based
translator is proposed in Section 4 to illustrate in detail how
we can achieve object-level remote sensing image augmenta-
tion. To validate the effectiveness of the proposed approach,
comprehensive experiments are conducted on a public dataset
HRSC2016. With experimental results carefully examined and
analyzed in Section 5.2, our proposed approach shows the
promising performance by not only drawing the outline of
different objects but also capturing their meaningful details.
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Molecular property prediction is an essential task in drug discovery. Most computational approaches with deep learning
techniques either focus on designing novel molecular representation or combining with some advanced models together.
However, researchers pay fewer attention to the potential benefits in massive unlabeled molecular data (e.g., ZINC). This
task becomes increasingly challenging owing to the limitation of the scale of labeled data. Motivated by the recent
advancements of pretrained models in natural language processing, the drug molecule can be naturally viewed as language
to some extent. In this paper, we investigate how to develop the pretrained model BERT to extract useful molecular
substructure information for molecular property prediction. We present a novel end-to-end deep learning framework,
named Mol-BERT, that combines an effective molecular representation with pretrained BERT model tailored for molecular
property prediction. Specifically, a large-scale prediction BERT model is pretrained to generate the embedding of molecular
substructures, by using four million unlabeled drug SMILES (i.e., ZINC 15 and ChEMBL 27). Then, the pretrained BERT
model can be fine-tuned on various molecular property prediction tasks. To examine the performance of our proposed
Mol-BERT, we conduct several experiments on 4 widely used molecular datasets. In comparison to the traditional and
state-of-the-art baselines, the results illustrate that our proposed Mol-BERT can outperform the current sequence-based

methods and achieve at least 2% improvement on ROC-AUC score on Tox21, SIDER, and ClinTox dataset.

1. Introduction

Effectively identifying the molecular properties (e.g., bioac-
tivity and toxicity) plays an essential part in drug discovery
and material science, which can alleviate the costly and
time-consuming process in comparison to the traditional
experiment methods [1]. Such a process is usually known
as molecular property prediction, and it is a fundamental
task to explore the functionality of new drugs. A typical
molecular property prediction system takes the drug features
of descriptors as the input and outputs the predicted result
of predefined chemical properties. The predicted value can
benefit various subsequent tasks, including virtual screening
[2-4] and drug repurposing [5-7]. However, accurately pre-
dicting molecular property with computational methods
remains challenging.

Previous machine learning approaches focused on
designing a variety of expert-engineered descriptors or
molecular fingerprints manually based on experimental sta-
tistics to predict molecular property [8-10]. For example,
extended-connectivity fingerprint (ECFP) [11], as the most
representative fingerprint method, was designed to generate
different types of circular fingerprints that extracted the
molecular structures of atom neighborhoods by using a fixed
hash function [12]. Then, these obtained fingerprint repre-
sentations would be sent to traditional machine learning
models to perform further predictions, and it can be applied
to a wide range of different models, such as logistic regres-
sion, support vector classification, kernel ridge regression,
random forest, influence relevance voting, and multitask
networks [13]. However, this line of researches heavily
depends on the design of hand-crafted features and domain
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knowledge. Besides, the generated hash bit vectors are diffi-
cult to biologically understand the relationship between
chemical properties and molecular structures.

Inspired by the remarkable achievements that deep
learning has shown in a variety of domains, including com-
puter vision [14] and natural language processing [15, 16], it
also has gained lots of attention for molecular property pre-
diction. The molecular representation methods being intro-
duced can be mainly summarized into two parts: sequence-
based and graph-based approaches. For sequence-based
methods, simplified molecular input line entry specification,
shortened as SMILES, is the most common molecular linear
notation that encodes the molecular topology on the basis of
chemical rules [17]. In this way, several methods are
attempted to take SMILES representation as the input and
use current successful models (e.g., recurrent neural net-
works) to obtain molecular representations [18], while this
line of work suffered from insufficient labeled data for spe-
cific molecular tasks. More recently, researchers adopted
the unsupervised and pretraining strategies in natural lan-
guage processing (NLP) to learn contextual information
from large unlabeled molecular datasets. For example, an
unsupervised machine learning method named Mol2vec
was developed to learn vector representations of molecular
substructures [19]. And SMILES-BERT was proposed to
pretrain the model through a masked SMILES recovery task
by designing attention mechanism-based transformer layer
[20]. These pretrained methods pay more attention to the
contextual information of molecular sequences, but they
hardly consider some molecular substructure (i.e., functional
groups) that essentially contributes to the molecular
property [21, 22].

On the other hand, graph neural networks (GNNs) have
been adopted to explore the graph-based representation for
molecular property prediction [23-25]. Graph convolutions
were the first work that applied the convolutional layers to
encode molecular graph into neural fingerprints [26]. Simi-
larly, much efforts are made to extend a variety of GNNs
on property prediction tasks. For example, the weave featur-
ization encoded chemical features to form molecule-level
representations [27]. And some methods extended graph
attention network [28] to learn the aggregation weights
[25, 29]. Moreover, to better encode the interactions between
atoms, a message passing neural network named MPNN was
designed to utilize the attributed features of both atoms and
edges [30]. More recently, DMPNN [31] and CMPNN [32]
were further introduced to leverage the attributed informa-
tion of nodes and edges during message passing. Although
graph-based models have achieved great performance on
molecular graph representation, they seldom make use of
the vast available biological sequence data.

Recently, substantial pretrained models [33-37] trained
on the large corpus or unlabeled data can learn universal
representations, which are benefit for various downstream
tasks, including protein sequence representation [38, 39],
biomedical text mining [40, 41], and chemical reaction pre-
diction [42]. Advances in pretrained models have shown
their powerful ability for extracting information from unla-
beled sequences, which raises a tantalizing question: can
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we develop a pretrained model to extract useful molecular
substructure information from massive SMILES sequence
datasets? To help solve this problem, we propose a novel
neural framework, named Mol-BERT, tailored for molecular
property prediction. The idea of Mol-BERT is natural and
intuitive. Our framework consists of three types of modules.
The feature extractor is first to extract atom-level and sub-
structure features centered on the current atom, and the first
module can be replaced with a wide range of different
molecular representation methods. Then, the pretrained
BERT module learns molecular substructure or fragment
information from large pretraining corpus (i.e., unlabeled
SMILES sequences). The final module is to predict the spe-
cific molecular property after fine-tuning the pretrained
Mol-BERT via a multityped classifier. To illustrate the per-
formance of our proposed method in various prediction
tasks, Mol-BERT is fine-tuned and evaluated on 4 widely
used molecular benchmark datasets. In comparison to
state-of-the-art baselines (i.e., sequence- and graph-based
methods), the experimental results prove the effectiveness
of our proposed Mol-BERT.

This paper is organized as follows. Section 2 firstly intro-
duces the preprocessed corpus for Mol-BERT pretraining
and several molecular benchmark datasets used in this work.
Then, Section 3 presents the molecular representation
method, the pretraining, and fine-tuning of the Mol-BERT
model, respectively. Moreover, Section 4 analyzes the
prediction performance of our proposed method on several
molecular datasets and compares it with state-of-the-art
sequence-based and graph-based approaches. Finally, the
conclusion of this work is summarized in Section 5.

2. Materials

The corpus of chemical compound (i.e., unlabeled SMILES)
was obtained from the available ZINC and ChEMBL data-
bases. As a free and available database for virtual screening,
ZINC database contains over 230 million purchasable com-
pounds in multiple formats, including ready-to-dock and 3D
structures [43]. And ChEMBL database is a manually built
database of bioactive molecules with drug-like properties,
which collects 1,961,462 distinct compounds [44]. Specifi-
cally, we selected compound SMILES from ZINC version
15 and ChEMBL version 27 that can be processed by RDKit
software [45], and the duplicates were removed in merged
dataset. Moreover, we filtered them by following the same
criteria of Mol2Vec [19]. Specifically, the two databases were
firstly merged, and duplicates were removed. Then, only
compounds SMILES that could be processed by RDKit were
kept, and they were filtered according to the following cut-
offs and criteria: molecular weight between 12 and 600;
heavy-atom count between 3 and 50; clogP21between 5
and 7; and only H, B, C, N, O, F, P, S, Cl, and Br atoms
allowed. Additionally, all counterions and solvents were
removed, and canonical SMILES representations were gen-
erated by RDKit. Finally, this procedure yielded 4 million
compounds. Detailed information on the pretraining corpus
is provided in Supplementary (available here).
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In this paper, we selected 4 widely used benchmark data-
sets from MoleculeNet [13] to evaluate the performance of
our proposed method. SMILES strings were used to encode
the input chemical compound in all benchmark datasets.
The benchmark datasets we used are introduced as follows:

(i) BBBP. The BBBP dataset provides 2,053 com-
pounds on their permeability properties to predict
the barrier permeability

(ii) Tox21. The Tox21 dataset measures 8,014 com-
pounds with their corresponding toxicity data
against 12 targets. The label of toxicity is recorded
as binary task: if the label value is 1, then it means
the compound has toxicity on specific target or 0
otherwise

(iii) SIDER. The SIDER dataset contains a total of 1,427
compounds and their adverse drug reactions (ADR)
against 27 system-organ class. The ADR result is
described as binary labels

(iv) ClinTox. The ClinTox dataset provides 2 classifica-
tion tasks for 1,491 drug compounds with known
chemical structures, including clinical trial toxicity
and FDA approval status

In this paper, we followed the experimental setting of
FP2VEC [46], and we split the datasets into the train, valida-
tion, and test set with a ratio of 8/1/1. Table 1 shows the
detailed description of selected benchmark datasets. Please
note that binary and multilabel correspond to the binary
and multilabel classification tasks, respectively. And random
splitting method randomly splits the samples into training,
validation, and test subsets. Scaffold splitting method splits
the samples on the basis of their 2D structural frameworks
implemented by RDKit software.

3. Methods

In this section, we first describe the overview of our pro-
posed Mol-BERT; then, we separately introduce three mod-
ules, which we refer to as the feature extractor, pretraining,
and fine-tuning of Mol-BERT, respectively.

3.1. Overview. Figure 1 illustrates the overall process of Mol-
BERT. As shown in Figure 1, Mol-BERT consists of three
modules, including feature extractor, pretraining, and fine-
tuning of Mol-BERT. The Mol-BERT framework learns to
predict the molecular property as follows. Given the input
drug data (i.e., canonical SMILES), the featurizer module
adopts the effective molecular representation to transform
them into a set of atom identifier (recall the detail in Feature
Extractor). Then, the outputs are fed into a BERT module to
obtain a contextual embedding of each molecular substruc-
ture through pretraining BERT on vast preprocessed corpus
(recall the detail in Pretraining Mol-BERT). Finally, the fine-
tuned Mol-BERT outputs a value indicating the probability
of certain molecular property in classification task (recall
the detail in Fine-Tuning Mol-BERT).

TaBLE 1: The detailed description of selected benchmark datasets.

Dataset  Category Compound Tasks Task type mSeIt)}lll(t) d
BBBP  Physiology 2,053 1 Binary Scaffold
Tox21  Physiology 8,014 12 Multilabel ~ Scaffold
SIDER  Physiology 1,427 27  Multilabel ~ Scaffold
ClinTox Physiology = 1,491 2 Multilabel ~ Scaffold

3.2. Feature Extractor. The molecular substructure is an
important cue for molecular interactions [21, 22]. Therefore,
the key idea behind Mol-BERT is that we strengthen to
obtain a better representation of molecular substructures
by pretraining BERT on the vast unlabeled SMILES
sequences. Inspired by Mol2Vec [19] that considered molec-
ular substructures or fragments derived from the Morgan
algorithm as “words” and compound as “sentences,” here
we adopt a similar method to decompose the input SMILES
sequences into biological words and sentences.

To achieve it, given an input compound SMILES string,
we first obtain its standardize and canonical SMILES
representation S generated by RDKit. Then, the Morgan
algorithm [11] is used to generate all atom identifiers with
radius 0 and 1, denoted by A? and A}, respectively, where
the subscript i represents the index of each atom. As illus-
trated in the left part of Figure 1, A? (i.e., green node) repre-
sents the current node set traversed in an atom order while
A; (ie., Kelly node) represents the neighboring node set
connecting directly to the current atom, so Ajan be viewed
as a kind of substructure or fragment. And A; are then
hashed into a fixed-length vector. Take CC(N)C(=0)O as
an example; it consists of six atoms, and we obtain its atom
identifiers AY (i.e., AJ-A?) and the corresponding substruc-
tures (i.e, Aj-A;), and then, they are hashed into a fixed-
length vector (e.g., A] corresponds to 3537119591). Finally,
all vectors of the Morgan substructures are summed to
obtain the molecular representation. Therefore, in this way,
we can generate 119 atom identifiers at radius 0 and 13325
substructure identifiers at radius 1, respectively. The feature
extractor module in Mol-BERT can be replaced with various
molecular representation methods. For example, FP2Vec
[46] can be used as the feature extractor to generate the
1024-bit Morgan (or circular) fingerprint with the prede-
fined radius value.

3.3. Pretraining Mol-BERT. As a contextualized word repre-
sentation model, BERT [33] adopted the masked technique
to predict randomly masked words in a sequence, which
can result in learning bidirectional representations. There-
fore, Mol-BERT also uses a masked SMILES task (i.e., atom
identifier) to predict random substructure in a SMILES
string. Different from the traditional way of pretraining lan-
guage models in NLP that BERT was trained on English
Wikipedia and BooksCopus, in this paper, we pretrain
Mol-BERT on our preprocessed corpus obtained from ZINC
version 15 and ChEMBL version 27 datasets. Specifically, the
input SMILES is transformed into a list of atom identifiers A,
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FIGURE 1: Overview of our proposed Mol-BERT for molecular property prediction.

via a previous module, rather than character-level for
SMILES [20], and then, they are embedded as the input of
BERT module for pretraining. We initialized our proposed
Mol-BERT with weights from BERT [33] and follow the
same way to randomly mask 15% tokens in a SMILES (i.e.,
atom identifier) as [MASK] token. The tokens are embedded
into the feature vector. Here, we use token embedding and
positional embedding since only the Masked Language
Model (MLM) task is adopted in this paper. The proposed
Mol-BERT is different from BERT in several ways as follows:
(1) Mol-BERT adopted single masked SMILES task (i.e.,
MLM) on large-scale unlabeled datasets, while BERT uses
two kinds of self-supervised tasks on English Wikipedia
and BooksCopus, and (2) w exclude the segmentation
embedding adopted in the BERT model since Mol-BERT
does not require the continuous sentence training.

3.4. Fine-Tuning Mol-BERT. After pretraining on the vast of
unlabeled SMILES compounds, with minimal modification
of hyperparameters, Mol-BERT can be applied to molecular
property prediction on various downstream tasks. We
mostly follow the same architecture, optimization, and
hyperparameter choices used in [8]. For classification task
(i.e., BBBP and Tox21), we feed the final BERT vector into
a linear classification layer to predict the molecular property.
A simple classifier is adopted to output the binary value.
Then, the labeled sample is used for fine-tuning the model.
Mol-BERT feeds the learned drug embeddings into a multi-
typed MLP classifier to generate predictions. Output scores
include both continuous scores, such as the solubility value
and as binary outputs indicating whether a molecule is toxic
or nontoxic. The multityped classifier detects whether the
task is regression or classification and switches to the correct
loss function and evaluation metrics. In the case of regres-
sion, we use the mean square error (MSE) as the loss func-
tion and root mean square error (RMSE) as performance
metrics. In the classification case, we use binary cross
entropy as the loss function and area under the receiver
operating characteristics (AUC-ROC) as performance met-
rics. Given a set of SMILES compounds and the ground-

TaBLE 2: The fine-tuning hyperparameters.

Parameter Value/range
Learning rate le-5~1e-3
Batch size 8
Epoch 100
Optimizer Adam
Embedding dimension 300
Size of dictionary 13,325
Number of attention head 6
Layers of fully connected neural network 6

truth labels in the training dataset, we used the crossentropy
and the mean square error as loss function for classification
and regression tasks, respectively.

4. Results and Discussion

In this section, we first introduce the experimental settings.
Then, we demonstrate the performance of our proposed
Mol-BERT in comparison to state-of-the-art methods to
predict the molecular property on 4 wildly used bench-
mark datasets.

4.1. Baseline Methods. We compare Mol-BERT with many
state-of-the-art sequence-based and graph-based baselines
which can be categorized as follows:

(i) ECFP: extended-connectivity fingerprints, referred
to as ECFP [11], are a type of widely used circular
or Morgan fingerprints for encoding the substruc-
tures in a molecule

(ii) GraphCov: graph convolutions are proposed by
[26] to apply the convolutional networks for learn-
ing molecular fingerprints. Here, we term it as
GraphCov
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TaBLE 3: The metric scores of the test set against BBBP, Tox21, SIDER, and ClinTox datasets.

Model/dataset BBBP Tox21 SIDER ClinTox

ECFP 0.702 + 0.006 0.810+0.013 0.673 +0.025 0.783 £ 0.023
GraphCov 0.877 £0.036 0.772 £0.041 0.593 +0.035 0.845+0.051
Weave 0.837 £ 0.065 0.741 £ 0.044 0.543 +0.034 0.823 +0.023
MPNN 0.913 +0.041 0.808 + 0.024 0.595 +0.030 0.879 +0.054
FP2VEC 0.874 +£0.023 0.730 = 0.006 0.582 +0.008 0.643 +0.032
SMILES-BERT 0.814 +0.093 0.732 +£0.025 0.601 +0.010 0.872+0.017
Mol-BERT 0.875+0.048 0.839+0.075 0.695+0.071 0.923 +0.025

(iii) Weave: similar to GraphCov, the weave featuriza-
tion [27] encodes meaningful features of atom,
bond, and graph distances between matching pairs
to form molecule-level representations

(iv) MPNN: a novel message passing method is pro-
posed to be operated on undirected graph [30]

(v) FP2VEC: based on Morgan or circular fingerprint, it
introduces and encodes a molecule as trainable vec-
tors [46]

(vi) SMILES-BERT: [20] proposes a semisupervised
BERT model that takes the SMILES representation
as input

We report the results of these baselines in FP2Vec [46],
including ECFP, GraphCov, Weave, and FP2VEC. And we
reimplemented MPNN and SMILES-BERT, respectively.
As for MPNN [30], it is a graph-based model considering
the edge features during message passing. And SMILES-
BERT [20] is a sequence-based model based on transformer
layer and attention mechanisms entirely to encode com-
pound SMILES. These models are relied on the public code
and kept the same settings of models the same as reported
in the original papers.

4.2. Evaluation Metrics. We applied the area under the
receiver operating characteristic curve (AUC-ROC) metric
for classification task. Following [46], we train the prediction
model with a train set and optimize the model based on the
AUC-ROC metric of validation set for classification task.
And the prediction results are measured using those opti-
mized models on the test set. For all experiments in this
paper, we repeated the same procedures on each task for 5
times and reported the mean and standard deviation of
AUC scores. Besides, we evaluated all models on the scaffold
splitting method as reported by [46].

4.3. Implementation Details. To optimize all trainable
parameters, we adopt Adam optimizer for pretraining and
fine-tuning. The dynamic learning rate technique is adopted
to adjust the learning rate during training and fine-tuning
according to various downstream tasks. We use PyTorch to
implement Mol-BERT. And we use 3 NVIDIA GTX
1080Ti GPUs to pretrain Mol-BERT. All fine-tuning tasks

are run on a single NVIDIA GTX 2080Ti GPU. Table 2
shows all the hyperparameters of the fine-tuning model.

4.4. Comparison Results. To examine the competitiveness of
the proposed model, we compared Mol-BERT with state-of-
the-art models used for molecular property prediction on
classification task. Table 3 reports the mean and standard
deviation of ROC-AUC score on BBBP, SIDER, Tox21,
and ClinTox datasets. From this table, we can observe that
the proposed Mol-BERT significantly outperforms the base-
lines across three datasets, including Tox21, SIDER, and
ClinTox. More specifically, our proposed Mol-BERT
achieved at least 2.9% on Tox21, 2.2% on SIDER, and 4.4%
on ClinTox higher ROC-AUC metric than baselines. For
example, on the Tox21 dataset, Mol-BERT achieved a
ROC-AUC score of 0.839 with 2.9% absolute gain compared
to ECFP (the second best method). This is because Mol-
BERT leverages the molecular representation pretrained on
large- scale unlabeled SMILES sequences, while ECFP
heavily relied on feature engineering. Compared with
graph-based methods that explore the molecular graph fea-
tures, the proposed Mol-BERT outperformed them on three
datasets while it achieved comparable performance with
MPNN on the BBBP dataset. This is due to the fact that
the contextual information learned from large unlabeled
datasets can benefit a lot to the model performance. More-
over, in comparison to the sequence-based pretrained model
(i.e., SMILES-BERT), our proposed Mol-BERT achieved sta-
ble performance across all datasets. This is a very encourag-
ing result. The reason could be that our method adopted the
molecular representation to consider the structural feature
of molecular substructures, which benefits to the perfor-
mance. Overall, it is essentially a nontrivial achievement in
terms of molecular property prediction.

5. Conclusions

In this paper, we proposed an effective molecular representa-
tion method with the pretrained BERT model, named Mol-
BERT, to resolve the molecular property prediction. Our
proposed Mol-BERT leverages the molecular representation
of substructures pretrained on large-scale unlabeled SMILES
dataset, which is able to learn both structural and the con-
textual information of drug. We implement the proposed
method and conduct experimental comparisons on four



widely used benchmarks. The experimental results show that
Mol-BERT outperforms the classic and state-of-the-art
graph-based models on molecular property prediction.

While our proposed method achieves good performance
on classification tasks, there are still some limitations
expected to be overcome. First, our method achieves rela-
tively poorer performance on regression task, mainly owing
to the small number of samples in the dataset (e.g., Free-
Solv). We would like to investigate metalearning strategies
for data augmentation, which results in great success in nat-
ural language processing. Second, molecular property pre-
diction is the primary step in drug discovery; we will
continue to improve our method to further investigate the
following prediction task (e.g., protein-protein interaction,
drug-disease associations) in the future.
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github.com/cxfjiang/MolBERT).

Conflicts of Interest

The authors declare no competing financial interest.

Supplementary Materials

The pretraining corpus are available at “https://drive.google
.com/drive/folders/1STOWD1-hX9XtiPWwCceZbgZIBV0fK
Pbe.” (Supplementary Materials)

References

[1] S. Ekins, A. C. Puhl, K. M. Zorn et al., “Exploiting machine
learning for end-to-end drug discovery and development,”
Nature Materials, vol. 18, no. 5, pp. 435-441, 2019.

[2] X.Lin, Z. Quan, Z.]. Wang, H. Huang, and X. Zeng, “A novel
molecular representation with BiGRU neural networks for
learning atom,” Briefings in Bioinformatics, vol. 21, no. 6,
pp. 2099-2111, 2020.

[3] X. Lin, Z. Quan, Z. J. Wang, T. Ma, and X. Zeng, “KGNN:
knowledge graph neural network for drug-drug interaction
prediction,” in Proceedings of the Twenty-Ninth International
Joint Conference on Artificial Intelligence, pp. 2739-2745,
Yokohama, Japan, 2020.

[4] B. K. Shoichet, “Virtual screening of chemical libraries,”
Nature, vol. 432, no. 7019, pp. 862-865, 2004.

[5] S.Pushpakom, F. Iorio, P. A. Eyers et al., “Drug repurposing:
progress, challenges and recommendations,” Nature Reviews
Drug Discovery, vol. 18, no. 1, pp. 41-58, 2019.

[6] Z.Quan, Y. Guo, X. Lin, Z. J. Wang, and X. Zeng, “GraphCPI:
graph neural representation learning for compound-protein
interaction,” in 2019 IEEE International Conference on Bioin-
formatics and Biomedicine, pp. 717-722, San Diego, CA,
USA, 2019.

[7] Y. Zhou, Y. Hou, J. Shen, Y. Huang, W. Martin, and F. Cheng,
“Network-based drug repurposing for novel coronavirus 2019-
nCoV/SARS-CoV-2,” Cell Discovery, vol. 6, no. 1, pp. 1-18,
2020.

Wireless Communications and Mobile Computing

[8] D.S. Cao, Q. S. Xu, Q. N. Hu, and Y. Z. Liang, “ChemoPy:
freely available python package for computational biology
and chemoinformatics,” Bioinformatics, vol. 29, no. 8,
pp. 1092-1094, 2013.

[9] A.Mauri, V. Consonni, M. Pavan, and R. Todeschini, “Dragon
software: an easy approach to molecular descriptor calcula-
tions,” Match, vol. 56, no. 2, pp. 237-248, 2006.

[10] H. Moriwaki, Y. S. Tian, N. Kawashita, and T. Takagi, “Mor-
dred: a molecular descriptor calculator,” Journal of Cheminfor-
matics, vol. 10, no. 1, p. 4, 2018.

[11] D.Rogers and M. Hahn, “Extended-connectivity fingerprints,”
Journal of Chemical Information and Modeling, vol. 50, no. 5,
pp. 742-754, 2010.

[12] R. C. Glen, A. Bender, C. H. Arnby, L. Carlsson, S. Boyer, and
J. Smith, “Circular fingerprints: flexible molecular descriptors
with applications from physical chemistry to ADME,” IDrugs,
vol. 9, no. 3, p. 199, 2006.

[13] Z. Wu, B. Ramsundar, E. N. Feinberg et al., “MoleculeNet: a
benchmark for molecular machine learning,” Chemical Sci-
ence, vol. 9, no. 2, pp. 513-530, 2018.

[14] K.He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 770-778, Las
Vegas, United States, 2016.

[15] C. Xia, C. Zhang, X. Yan, Y. Chang, and P. S. Yu, “Zero-shot
user intent detection via capsule neural networks,” 2018,
https://arxiv.org/abs/1809.00385.

[16] J. Yin, C. Gan, K. Zhao, X. Lin, Z. Quan, and Z. J. Wang, “A
novel model for imbalanced data classification,” Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 34,
no. 4, pp. 6680-6687, 2020.

[17] D. Weininger, A. Weininger, and J. L. Weininger, “SMILES. 2.
Algorithm for generation of unique smiles notation,” Journal
of Chemical Information and Computer Sciences, vol. 29,
no. 2, pp. 97-101, 1989.

[18] Z.Xu, S. Wang, F. Zhu, and J. Huang, “Seq2seq fingerprint: an
unsupervised deep molecular embedding for drug discovery,”
in Proceedings of the 8th ACM international conference on bio-
informatics, computational biology, and health informatics,
pp- 285-294, New York, NY, USA, 2017.

[19] S. Jaeger, S. Fulle, and S. Turk, “Mol2vec: unsupervised
machine learning approach with chemical intuition,” Journal
of Chemical Information and Modeling, vol. 58, no. 1,
pp. 27-35, 2018.

[20] S. Wang, Y. Guo, Y. Wang, H. Sun, and J. Huang, “SMILES-
BERT: large scale unsupervised pre-training for molecular
property prediction,” in Proceedings of the 10th ACM Interna-
tional Conference on Bioinformatics, Computational Biology
and Health Informatics, pp. 429-436, New York, NY, USA,
2019.

[21] K.Huang, C. Xiao, T. Hoang, L. Glass, and J. Sun, “Caster: pre-
dicting drug interactions with chemical substructure represen-
tation,” Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 34, no. 1, pp. 702-709, 2020.

[22] R.B.Silverman and M. W. Holladay, The Organic Chemistry of
Drug Design and Drug Action, Academic Press, 2014.

[23] K. Schiitt, P. J. Kindermans, H. E. S. Felix, S. Chmiela,
A. Tkatchenko, and K. R. Miiller, “SchNet: a continuous-
filter convolutional neural network for modeling quantum
interactions,” Advances in neural information processing sys-
tems, pp. 991-1001, 2017, https://arxiv.org/abs/1706.08566.


https://github.com/cxfjiang/MolBERT
https://github.com/cxfjiang/MolBERT
https://drive.google.com/drive/folders/1ST0WD1-hX9XtiPWwCceZbgZlBV0fKPbe
https://drive.google.com/drive/folders/1ST0WD1-hX9XtiPWwCceZbgZlBV0fKPbe
https://drive.google.com/drive/folders/1ST0WD1-hX9XtiPWwCceZbgZlBV0fKPbe
https://downloads.hindawi.com/journals/wcmc/2021/7181815.f1.txt
https://arxiv.org/abs/1809.00385
https://arxiv.org/abs/1706.08566

Wireless Communications and Mobile Computing

(24]

(25]

(26]

[27]

(29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

K. T. Schiitt, F. Arbabzadah, S. Chmiela, K. R. Miiller, and
A. Tkatchenko, “Quantum-chemical insights from deep tensor
neural networks,” Nature Communications, vol. 8, no. 1, pp. 1-
8, 2017.

Z. Xiong, D. Wang, X. Liu et al., “Pushing the boundaries of
molecular representation for drug discovery with the graph
attention mechanism,” Journal of Medicinal Chemistry,
vol. 63, no. 16, pp. 8749-8760, 2020.

D. K. Duvenaud, D. Maclaurin, J. Iparraguirre et al., “Convolu-
tional networks on graphs for learning molecular finger-
prints,” Advances in Neural Information Processing Systems,
pp. 2224-2232, 2015, https://arxiv.org/abs/1509.09292.

S. Kearnes, K. McCloskey, M. Berndl, V. Pande, and P. Riley,
“Molecular graph convolutions: moving beyond fingerprints,”
Journal of Computer-Aided Molecular Design, vol. 30, no. 8,
pp. 595-608, 2016.

P. Veli¢kovi¢, G. Cucurull, A. Casanova, A. Romero, P. Lio,
and Y. Bengio, “Graph attention networks,” 2017, https://
arxiv.org/abs/1710.10903.

S. Ryu, J. Lim, S. H. Hong, and W. Y. Kim, “Deeply learning
molecular structure-property relationships using attention-
and gate-augmented graph convolutional network,” 2018,
https://arxiv.org/abs/1805.10988.

J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E.
Dahl, Neural Message Passing for Quantum Chemistry. in
International Conference on Machine Learning, PMLR, 2017.

K. Yang, K. Swanson, W. Jin et al., “Are learned molecular rep-
resentations ready for prime time?, [Ph.D. thesis],” Massachu-
setts Institute of Technology, 2019.

Y. Song, S. Zheng, Z. Niu, Z. H. Fu, Y. Lu, and Y. Yang, “Com-
municative representation learning on attributed molecular
graphs,” in Proceedings of the Twenty-Ninth International
Joint Conference on Artificial Intelligence, pp. 2831-2838,
Yokohama, Japan, 2020.

J. Devlin, M. W. Chang, K. Lee, and K. Toutanova, “BERT:
pre-training of deep bidirectional transformers for language
understanding,” in Proceedings of the 2019 Conference of the
North American Chapter of the Association for Computational
Linguistics, vol. 1, pp. 4171-4186, Minneapolis, United States,
2019.

W. Hu, B. Liu, J. Gomes et al., “Strategies for pre-training
graph neural networks,” 2019, https://arxiv.org/abs/1905
.12265.

K. Li, Y. Zhong, X. Lin, and Z. Quan, “Predicting the disease
risk of protein mutation sequences with pre-training model,”
Frontiers in Genetics, vol. 11, p. 1535, 2020.

B. Song, Z. Li, X. Lin, J]. Wang, T. Wang, and X. Fu, “Pretrain-
ing model for biological sequence data,” Briefings in Func-
tional Genomics, vol. 20, no. 3, pp. 181-195, 2021.

A. Vaswani, N. Shazeer, N. Parmar et al., “Attention is all you
need,” in Advances in Neural Information Processing Systems,
NIPS (Conference and Workshop on Neural Information Pro-
cessing Systems), 2017.

S. Min, S. Park, S. Kim, H. S. Choi, and S. Yoon, “Pre-training
of deep bidirectional protein sequence representations with
structural information,” 2019, https://arxiv.org/abs/1912
.05625.

R. Rao, N. Bhattacharya, N. Thomas et al., “Evaluating protein
transfer learning with tape,” in Advances in Neural Informa-
tion Processing Systems, NIPS (Conference and Workshop on
Neural Information Processing Systems), 2019.

[40] K. Huang, J. Altosaar, and R. Ranganath, “Clinical BERT:

(41]

(42]

(43]

[44]

(45]

[46]

modeling clinical notes and predicting hospital readmission,”
2019, https://arxiv.org/abs/1904.05342.

J. Lee, W. Yoon, S. Kim et al., “BioBERT: a pre-trained bio-
medical language representation model for biomedical text
mining,” Bioinformatics, vol. 36, no. 4, pp. 1234-1240, 2020.

P. Schwaller, T. Laino, T. Gaudin et al., “Molecular trans-
former: a model for uncertainty-calibrated chemical reaction
prediction,” ACS Central Science, vol. 5, no. 9, pp. 1572-
1583, 2019.

J.J. Irwin, T. Sterling, M. M. Mysinger, E. S. Bolstad, and R. G.
Coleman, “ZINC: a free tool to discover chemistry for biol-
ogy,” Journal of Chemical Information and Modeling, vol. 52,
no. 7, pp. 1757-1768, 2012.

D. Mendez, A. Gaulton, A. P. Bento et al., “ChEMBL: towards
direct deposition of bioassay data,” Nucleic Acids Research,
vol. 47, no. D1, pp. D930-D940, 2019.

J. Woosung and K. Dongsup, RDKit: Open-Source Cheminfor-
matics, 2006, https://www.rdkit.org.

W. Jeon and D. Kim, “FP2VEC: a new molecular featurizer for
learning molecular properties,” Bioinformatics, vol. 35, no. 23,
pp. 4979-4985, 2019.


https://arxiv.org/abs/1509.09292
https://arxiv.org/abs/1710.10903
https://arxiv.org/abs/1710.10903
https://arxiv.org/abs/1805.10988
https://arxiv.org/abs/1905.12265
https://arxiv.org/abs/1905.12265
https://arxiv.org/abs/1912.05625
https://arxiv.org/abs/1912.05625
https://arxiv.org/abs/1904.05342
https://www.rdkit.org

Hindawi

Wireless Communications and Mobile Computing
Volume 2021, Article ID 1391801, 14 pages
https://doi.org/10.1155/2021/1391801

Research Article

WILEY

Hindawi

Joint Generative Image Deblurring Aided by Edge Attention Prior

and Dynamic Kernel Selection

Zhichao Zhang(»,' Hui Chen,” Xiaoqing Yin,” and Jinsheng Deng’

ICollege of Computer, National University of Defense Technology, Changsha 410000, China
2Science and Technology on Integrated Logistics Support Laboratory, National University of Defense Technology,

Changsha 410000, China

3College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410000, China

Correspondence should be addressed to Zhichao Zhang; 1933978660@qq.com

Received 27 May 2021; Accepted 2 July 2021; Published 1 August 2021

Academic Editor: Jerry Chun-Wei Lin

Copyright © 2021 Zhichao Zhang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Image deblurring is a classic and important problem in industrial fields, such as aviation photo restoration, object recognition in
robotics, and autonomous vehicles. Blurry images in real-world scenarios consist of mixed blurring types, such as a natural
motion blurring owing to shaking of the camera. Fast deblurring does not deblur the entire image because it is not the
best option. Considering the computational costs, it is also better to have an alternative kernel to deblur different objects
at a high-semantic level. To achieve better image restoration quality, it is also beneficial to combine the blurring category
location and important structural information in terms of specific artifacts and degree of blurring. The goal of blind image
deblurring is to restore sharpness from the unknown blurring kernel of an image. Recent deblurring methods tend to
reconstruct prior knowledge, neglecting the influence of blur estimation and visual fidelity on image details and structure.
Generative adversarial networks(GANs) have recently been attracting considerable attention from both academia and
industry because GAN can perfectly generate new data with the same statistics as the training set. Therefore, this study
proposes a generative neural architecture and an edge attention algorithm developed to restore vivid multimedia patches.
Joint edge generation and image restoration techniques are designed to solve the low-level multimedia retrieval. This
multipath refinement fusion network (MRFNet) can not only perform deblurring of images directly but also individual the
frames separately from videos. Ablation experiments validate that our generative adversarial network MRFNet performs
better in joint training than in multimodel. Compared to other GAN methods, our two-phase method exhibited state-of-
the-art performance in terms of speed and accuracy as well as has a significant visual improvement.

1. Introduction

GANSs have exhibited a promising performance on edge res-
toration and image deblurring [1, 2]tasks. However, restora-
tion methods typically introduces artifacts if the blurred area
has uniform intensity, because it selects an incorrect region
for deblurring. Deep learning approaches have been pro-
posed to handle complex natural blurring. These methods
use convolutional layers to extract features by scanning
blurred and sharp images and subsequently fusing features
with deconvolution layers and recording the learned results
[3-5]. Xu et al. [6], Schuler et al. [7], and Zhang et al. [8]
adopted this two-stage traditional procedure based on the

use of an encoder-decoder neural network. However, these
methods still adopt the traditional framework with low pre-
diction performance.

Inspired by the problems described above, Kupyn et al.
[9] designed a new framework for deblurring that could
calculate the differences between generative and original
images. GANs have shown promising performance in image
deblurring. Scholars have also achieved significant improve-
ments using other complicated GAN networks, such as
DeblurGAN [9], DeblurGANv2 [10], and EGAN [1, 2, 11,
12]. However, a GAN requires a large amount of computa-
tional and memory resources when comparing the generated
and original images of the discriminator. With advancements
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in the design of complicated network models, more complex
end-to-end deep learning approaches have been proposed
for deblurring. These networks can be divided into four
classes: including multiscale, recurrent, multipatch, and
scale-iterative networks.

The frameworks of Nah et al. [13] and Lin et al. [14]
employ a multiscale style. The main idea of their frameworks
is the implementation of the coarse-to-fine strategy to deblur
images in consecutive stages. The coarse stage obtains fea-
tures by using scales, and the features are then halved in a
series of steps. The fine stage learns the larger-scale features
with the aid of the coarse features until the original size is
reached. The coarse-to-fine mechanism is performed directly
via the scale-cascaded structure. However, despite the
achievement of suitable results, such networks size and depth
eventually become excessive, thus leading to increased
graphics processing unit (GPU) memory consumption.

Tao et al. proposed the recurrent architecture in which
subsequentthe next rounds of training can be aided by the
results of the previous round [15]. Multipatch networks have
been proposed by Nekrasov et al. [16] and Zhang et al. [17],
whereby the recurrent method was applied by regarding the
last-turn results as the next round input for refining final
checkpoints. Images are separated into patches and extracted
features, and the meaningful results are sent to the next
iteration for further enhancement. This method can be
conducive to the reduction of the parameters by learning
from patches in a single round. However, the method is not
stable for a complex blurring.

Ye et al. [18] used the scale-iterative architecture to train
the model by applying an upsampling path with the aid of the
results of the previous iteration, blurring kernels varied in
different regions. Low-frequency information was present,
such as semantic and category contents, and background
color, along with high-frequency information, such as edge
and structure. High-spatial gradients are diminished more
in blurred or low-resolution images. Hence, we combine
the ideas of multiscale and recurrent architectures to produce
a new framework. The design of the MRF network over-
comes the parameter and low-efficiency issues of multiscale
and recurrent architectures, respectively. Considering the
above limitations and strengths, we propose a multipath
refinement network called MRFNet. The main contributions
of this study are summarized as follows.

Firstly, in terms of the network, we develop a multipath
refinement network (MRFNet) for joint low-level image
training, with a plug-and-play feature for multiple attention
modules. It is plug and play for several edge detection net-
works for image information prior and feature extraction,
and multiple attention modules can also be added at multi-
scale dataflow paths. An iterative and recurrent strategy is
first designed to train a lightweight yet efficient network.
We design a deblurring network to search the blurring ker-
nels dynamically, fully exploiting the attention mechanism
to focus on the blurring area.

Secondly, universally, image restoration of edge attention
is preformed in three steps. First, we abstract the edge infor-
mation by edge prior, the proposed approach refines the
inside features by attention modules to finally reconstruct
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the whole image. Reconsidering edge attention mechanism
for the image prior, we develop a general algorithm for low
level image restoration. This method applies a different
feature extraction sequence: objects are targeted by a class
activated function. Only the main structures and key features
of the marked object can be recognized by edge detection.
Finally, preset proper kernels are adopted to process the
suitable regions.

Thirdly, several techniques are investigated ablation
experiments to explore various deep learning strategies. In
this study, we verify that image deblurring performs better
in joint training than transfer learning or multimodel train-
ing. An edge attention algorithm, lightweight residual
strategy, fine-tuned weight, and multipath refinement loss
function are developed in a plug-and-play architecture to
adapt different demands for image processing efficiency,
GPU requirements of the model, speed and accuracy balance,
and training efficiency. We modify the network in a light-
weight manner by combining the iterative and recurrent
architectures. The design of a lightweight convolution and
residual connection network architecture makes the model
more streamlined, efficient, and fast.

The remainder of this study is organized as follows. We
introduce the related work on image deblurring in network
architectures in Section 2. Section 3 illustrates the methodology
and outlines the implementation of our proposed network. We
discuss our experimental results in Section 4 and present our
conclusions in Section 5.

2. Related Work

2.1. Blurring Kernel Estimation. The early work on image
deblurring depended on a variety of assumptions and natural
images acquired a priori [19]. Subsequently, some uncertain
parameters would be determined in blurring models, such
as the type of blurring kernel and additive noise [20, 21].
However, in real applications, these simplified assumptions
about sampled scenes and blurring models may lead to per-
formance degradation. In addition, these methods are com-
putationally expensive, and numerous parameters typically
need to be adjusted.

In recent years, the application of deep learning and gen-
erative networks in computer vision tasks has led to great
breakthroughs in many research fields. Several regression
networks based on convolution neural network (CNNs) have
been proposed for image restoration, including some
methods that involve with image deblurring [22, 23]. Com-
pared with traditional methods, the methods based on deep
learning are less dependent on prior knowledge. These new
models have demonstrated the ablity to reconstruct images
more accurately on both global and local scales.

It is generally believed that a blurred image is formed by
the convolution of a blurring kernel and additive noise [3].
Therefore, the existing algorithms normally use the blurring
kernel function for the deconvolution of a blurred image.
The existing algorithms can be divided into two categories,
according to whether the blurring kernel is known, including
(a) blind image deconvolution (BID) [16, 24, 25] and (b)
nonblinded image deconvolution (NBID) [20, 22]. BID



Wireless Communications and Mobile Computing

restores a clear image without knowledge of a blurred kernel.
It only knows the blurred images it has captured. NBID
deblurs images with a known blurring kernel. It is usually
difficult to know the blurring kernel in practical applications
in advance. Therefore, the requirements of BID are much
higher than those of NBID.

Such models may use a known fixed kernel to blur [20,
26]. Recent studies have used end-to-end learning methods
to handle the blurring of spatial changes, achieving state-of-
the-art performance [23, 27].

Some problems remain with prior deep neural network
architecture for image deblurring. First, although neural net-
works that use deeper architectures are usually effective, it is
difficult to explain the impact of individual components in
these networks. Second, the evaluation indicators used in
image restoration tasks, such as PSNR and SSIM, are usually
based on pixel or feature differences between clear natural
images and processed images. This tends to improve mathe-
matical similarity rather than the quality of human subjective
perception. PSNR measures image quality by calculating the
mean square error (MSE). However, there is a gap between
the MSE and evaluation performed by a human visual sys-
tem. SSIM models human visual quality in terms of multiple
components, such as brightness, contrast, and structure.
These components can be used to assess visual quality, but
they are essentially unilateral assessments of the complexity
of human vision.

On the assumption of fixed blurring kernels for sensors,
we can consider it as a mean blurring operation and can
use it to model the blurring estimation as a convolution of
a latent image I and blurring kernel k,

B=kx*I+a, (1)

where B and « represent the blurring image and added noise,
respectively, and “+” is the convolution operator. This is a
mathematically ill-posed problem, because different I and k

pairs can produce the same B values.

2.2. Attention Mechanism Screening Blurring Kernel. In this
study, we reviewed the global average pooling layer proposed
in [5] and illustrate how it explicitly enables CNNs to have
excellent location capabilities, despite training on image-
level tags. Although this technique has been previously pro-
posed as a method for regularization training, we find that
it establishes a universally localizable deep representation
that can be applied to a variety of tasks. We locate objects
with high accuracy even though the global average pool
appears simple. Furthermore, we demonstrate that our net-
work can locate differentiated image regions for a variety of
tasks, even without training.

The latest work of Zhou et al. [28] shows that the convo-
lution units of each layer of the CNN act as object detectors
for the location of objects, even without supervision. This
function is lost when classifying objects with fully connected
layers. Popular CNNs have recently been proposed to avoid
the use of fully connected layers to minimize the number of
parameters, while maintaining high performance [5]. To

achieve this goal, Lin et al. [5] used global average pooling
(GAP) as the structure regulator to prevent overfitting.

It is important to highlight the intuitive difference
between GAP and global maximum pooling (GMP). GMP
encourages the identification of only one discriminatory part,
while GAP encourages the network to identify a range of
objects. It is designed to replace fully connected layers in clas-
sical CNNs. GMP has been used for weakly supervised object
locations in previous research [29]. In our experiments, we
found that the advantages of GAP layers extended beyond
their functionality as a normalization regulator. With a small
adjustment, the network can retain its excellent localization
capabilities to the last layer. Distinguishable image areas
can be easily identified in a single forward pass using this
adjustment to accomplish a variety of tasks, even those for
which the network was not initially trained.

The aim is for each unit to be activated by a visual pattern
in its receptive area. Therefore, a map of the visual mode is
required. The class activation graph is the weighted linear
sum of the presence of these visual patterns in different spa-
tial locations. The most relevant images areas to a particular
category can be identified by simply sampling the class acti-
vation graph to the size of the input image.

Traditional methods rely on blur kernel estimation to
reconstruct images by focusing on specific types of blurs [3,
24, 30-32]. Recent studies have attempted to settle the resto-
ration problem by adopting multiscale CNNs to deblur the
images. In these end-to-end frameworks, blurry images are
used as inputs to the neural network to immediately generate
clear images [20]. However, the performance of such
methods remains unsatisfactory owing to the fixed assump-
tion of the blurring kernel. CNNs can greatly improve the
computational speed of traditional methods, but their predic-
tion accuracy remains inefficient, and they require the use of
considerable GPU memory resources.

2.3. Network Architecture. Image deblurring CNNs can be
divided into GAN, multiscale, recurrent, multipatch, and
scale-iterative architecture networks for feature extraction.

2.3.1. Multiscale Architecture. Multiscale networks [13]
extract various features from each scale by scaling an image
into different sizes, as shown in Figure 1(a). The input images
are converted into feature maps, and scales are used to halve
the feature maps at each level. In multiscale detection, the
various scale features are fused with different methods and
contain a large quantity of information, suggesting the possi-
bility of high accuracy. However, the multiscale strategy
strictly requires the features to be extracted from the small
scale to the large scale; which means that large-scale concat-
enation processes must wait for the computational results
from the small scales, which results in a relatively slow
training speed.

2.3.2. Recurrent Architecture. An input layer, loop hiding
layer, and output layer constitute a recurrent network [18,
33, 34] as shown in Figure 1(b). Recurrent networks can learn
features and long-term dependencies in sequence. However,
as the number of network layers increases, so does the
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FIGURE 1: Various deblurring network architectures. (a) Nah et al. [13] proposed the multiscale architecture to extract features from different
scales. (b) Tao et al. [15] proposed the recurrent architecture, in which the next round of training can be aided by the last round results. (c)
Zhang et al. [17] utilized the multipatch architecture to directly extract features from image pairs by cropping images in different scales. (d) Ye
et al. [18] used the scale-iterative architecture to train the model with an upsampling path with aid of the last-iterative middle results. We
combine the ideas of (a) and (b) and propose a new framework whose core module involves the MRF and call it MRFNet. The MRFNet

can operate in both multiscale and recurrent manner.

required computational complexity. The process deteriorates
if invalid features are extracted in the last round because the
concatenation of recurrent networks relies heavily on last-
round results. Subsequently, the deblurring inference becomes
extremely unstable if image restorations are of poor quality.

2.3.3. Multipatch Architecture. A deep multipatch hierarchi-
cal network (DMPHN) is a CNN model that appears simple
but operates as an effective multipatch network, as shown in
Figure 1(c) [17]. An input image is divided into different sizes
each time. Features were then extracted with the use of a
multiscale architecture. Although DMPHN has attained
remarkable progress in terms of computational effectiveness,
their precision is low.

2.3.4. Iterative Architecture. Ye et al. [18] proposed a scale-
iterative upscaling network (SIUN) to iteratively restore

sharp images, as shown in Figure 1(d). The super-
resolution structure of an upsampling layer was adopted
between two consecutive scales to restore the details. Image
features are extracted from small to large scales, with the
aim of reconstructing high-resolution images from low-
resolution originals. The downsampling process begins to
restore the image until it is equal to the size of the original
image. Moreover, its weight sharing can be preserved, and
its training process is flexible. However, the method failed
to achieve high deblurring precision and network effi-
ciency, and substantial memory was required for the iter-
ative calculation.

We extend this method by combining the edge feature
learning strategy and contextual attention modules for fur-
ther image restoration, which can locate objects aided by
structure information and adopt appropriate deblurring
priors to reconstruct sharp images.
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3. Model Design and Implementation

The MRFNet is extensively constructed to ensure a balance
between accuracy and speed. We first exploit the recurrent
and multiscale strategies to learn multifrequency informa-
tion. A structure is designed with a branch depth and fusion
unit on basis of the lightweight process and remote residual
connection [35]. Finally, a multiscale refinement loss func-
tion is used to train the network in a coarse-to-fine manner.

3.1. Multiscale and Recurrent Learning. The recurrent and
multiscale learning strategies are applied in this study. The
basic idea of the multiscale learning strategy is to extract fea-
tures from large coarse scale maps and upsampled results as
green lines shown in Figure 2(a). Meanwhile, in the recurrent
learning strategy, the high-level feature extraction path acquires
fusion information from the low-level refinement maps and the
final feedback in the form of purple flow lines, as shown in
Figure 2(a). In our study, the two strategies are combined by
designing four refinement paths to extract features in different
scales, instead of directly predicting the entire deblurred image.
Thus, the network only needs to focus on learning highly non-
linear residual features, which is effective in restoring deblurred
images in a coarse-to-fine manner. The architecture of the pro-
posed MRENet is shown in Figure 2.

In the multipath input stream illustrated in Figure 2(a),
the upper MRFNet layer takes blurred and sharp images as
input and processes the deblurring datasets in a total of four
scales, i.e., k varies from 2 to 4. The four scale blurring feature
maps are denoted as by, while the refinement results are
denoted as [,. First, the k level of the multipath input stream
concatenates the same scale feature maps b, and upsampling
feature maps /., into a middle feature map denoted as

Ckzbk@lk+1(2SkS4). (2)

The fusion unit then adds ¢; and the results from the last
iteration /,_, to obtain the final outcomes, which is denoted
as I;.. This process briefly describes how the refinement fusion
path functions. The entire process can be calculated as

3.2. Lightweight Residual Process. Numbers of parameters
and floating-point operations of our original MRF network
originate from the commonly used 3 x 3 convolution. There-
fore, we focus on the replacement of these elements with sim-
pler counterparts without compromising performance.

The original design of our MRFNet employs an encoder-
decoder structure equipped with four feature extraction and
downsampling layers. Each path includes a fusion unit. The
basic block uses a 3 x 3 convolution, which we call the fusion
unit. Herein, the 1 x 1 fusion unit in Figure 3(a) is replaced
with a 3 x 3 convolution. A chained residual pool (CRP) is also
considered to naturally illustrate the operation of the light-
weight process and how the three former units are reshaped.
The lightweight process is applied to the CRP unit by
substituting the 5 x 5 and 3 x 3 convolutions with the 5x 5
and 1 x 1 convolutions, respectively, as shown in Figure 3(b).

The refinement path adopts a convolution layer with a
stride of 1 followed by a convolution layer with a stride of 2,
such that they consistently shrink the feature map size by half.
The two convolution layers act as a residual connection unit
(RCU). Two RCUs are installed in the encoder, and three
RCUs are installed in the decoder. All blocks use 1 x 1, 3 x 3,
and 1 x 1 convolutions compared with those in the RCU that
use 3 x 3 and 3 x 3 convolutions. We call the two convolution
layers the lightweight residual connection unit (LWRCU), as
illustrated in Figure 3(c).

Intuitively, a convolution with a relatively large core size
is designed to increase the size of the receiving field as well as
the global context coverage. The 1 x 1 convolution can only
transform the features of each pixel locally from one space
to another. Herein, we empirically prove that the replace-
ment with a 1 x 1 convolution does not weaken the network
performance. Specifically, we replaced the 3 x 3 convolutions
in the CRP and fusion block with a 1 x 1 counterpart. We
also modify the RCU to LWRCU with a bottleneck design,
as shown in Figure 3(c). This method was able to reduce
the number of parameters by more than 50% and the number
of triggers by more than 75%, as shown in Table 1. The con-
volutions have been shown to save considerable computation
time without sacrificing performance.

We also enhanced the MRF unit, as illustrated in
Figure 3(d). Deep residual networks obtain rich feature infor-
mation from multisize inputs [36]. Residual blocks, originally
derived for image classification tasks,are extensively used to
learn robust features and train deeper networks. Residual
blocks can address vanishing gradient problems. Thus, we
replaced the connection layer in the MRF unit.

Herein, the MRF is specifically designed as a combination
of multiple convolution layers (conv-f-1 to conv-f-5), and
each convolution layer is followed by a rectifier linear unit
activation function. Conv-f-2 uses feature maps generated
by conv-f-1 to generate more complex feature maps. Simi-
larly, conv-f-4 and conv-f-5 continue to use the feature map
generated by conv-f-3 for further processing. Finally, the fea-
ture maps obtained from multiple paths are fused together.
The specific calculation expression is given as follows:

y=LUGE) + (L)), (4)

where f, x, and y represent the convolution operation, char-
acteristic graph of the input, and characteristic graph of the
output, respectively.

We construct a residual connection in each path of the
MREFNet. In the process of forward transmission, the remote
residual connections transmit low-level features, which are
used to refine the visual details of coarse high-level feature
maps. The residual connections allow the gradients to prop-
agate directly to the early convolution layers, thus contribut-
ing to effective end-to-end training.

We set the number of paths from 1 to 6 for the multipath
process. The operation used the least number of parameters
when the number of paths is 3, whereas better performance
is achieved when the number of paths was 4. When the num-
ber of paths was less than 3, the extracted features were in
accurate. When the number of paths exceeds 4, the
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finally compute the loss in the scale refinement loss function, and then, the best deblur results are obtained.

deblurring process encountered severe performance degra-
dation, and the training loss remains at a high level continu-
ously. To this end, we chose the four-path refinement setting
as the final backbone.

3.3. Loss Design and Training Strategy. Given a pair of sharp
and blurred images, MRFNet takes them as input and
produces four groups of feature maps at different scales.
The input image size is Hx W. The four scales of the
feature maps are H/4x W/4, H/8 x W/8, H/16 x W/16,
and H/32 x W/32. Loss design: in the training process,
we adopt an L2 loss between the predicted deblurring
result map and the ground truth, as follows:

1(6)= 50 |- E()I (5)

i=1

where 0 is the parameter set, x; is the ground truth patch,
and F is the mapping function generating the restored
image from the N-interpolated LR training patches x;.
Herein, the patch size is defined at different levels.

The multiscale refinement loss function is useful in learn-
ing the features in a coarse-to-fine manner. Each refinement
path includes a loss function that can be used to evaluate the
training process. Moreover, our scale refinement loss func-
tion computes the results at different scales, which leads to
a much faster convergence speed and an even higher infer-

ence precision. The final loss is calculated as follows:

1 K

Lgnat = == Y ——— |1l = SklI* + Ledger 6
final ZK];Ckwkth k k” edge ( )

where L, represents the model output of the scale level K and
S; denotes the k-scale sharp maps. The loss at each scale is
normalized by the number of channels ¢;, width w;, and
height h,.

Progressive weighted training process: the entire feature
extraction and fusion process is illustrated in Figure 2(b).
In the multipath refinement extraction and fusion stages,
the task is to fuse the deblurring feature and edge feature
from the outputs to generate the final restored frame. The
patches with blurry and refined features and the ground truth
are input during the training process.

First, the edge feature is extracted from the ground truth
patches and the hyper parameter « is initially set to 0 to con-
trol the proportion of the refined resource. Second, the
refined and mixed edge feature patches are fused in the con-
textual attention module, which uses the softmax function to
predict the foreground and generate the preliminary acti-
vated heatmaps. Third, « is set to 1, and the deblurred,
refined feature patches are sent to the attention module in
the middle of the training process and are then predicted
again by the attention module. The results are compared with
the synthesis loss function between the predicted deblurring
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TaBLE 1: Specific parameters of the MRFNet.
Network Kernel Stride Padding Network Kernel Stride Padding
Convl 5x5x32 1 2 conv_r2_m2 1x1x128 1 1
Conv2 1x1x64 1 1 conv_r2_m3 3x3x128 1 1
Conv3 5x5x128 2 2 conv_r2_m4 1x1x128 1 1
Conv4 1x1x128 1 1 deconv2 4x4x64 1 2
Conv5 3 X3 %256 1 2 conv_r3_1 3X3x64 1 1
Conv6 1x1x256 1 1 conv_r3_ml 3x3x64 1 1
Conv7 3x3x256 1 2 conv_r3_m?2 1x1x64 1 1
Conv8 1x1x256 1 1 conv_r3_m3 3x3x64 1 1
conv_rl 1 3x3x256 1 1 conv_r3_m4 1x1x64 1 1
conv_rl _ml 3x3x256 1 1 deconv3 4x4x32 1 2
conv_rl_m2 3x1x256 1 1 conv_r4_1 3x3x32 1 1
conv_rl_m3 3x3x%x256 1 1 conv_r4 ml 3x3x32 1 1
conv_rl_m4 3x1x256 1 1 conv_r4_m?2 3x3x32 1 1
deconvl 4x4x128 1 2 conv_r4 _m3 1x1x32 1 1
conv_r2_1 3x3x128 1 1 conv_r4_m4 3x3x32 1 1

results and patches with sharp features. Therefore, the
deblurring feature refines the input of blurry images and ben-
efits the edge feature extraction at the beginning of the train-
ing. In the middle of the training process, the deblurring and
edge features are fused by controlling the parameter a.
Finally, each path containing different scales of double fea-
ture patches is refined and matched with the use of the mul-
tipath context attention module with activated heatmaps to
infer the final predictions.

4. Performance Evaluation

In this section, we compare MRFNet to recently adopted
methods specifically, DeepDeblur [37], DeblurGAN [9],
DeblurGANvV2 [10], DMPHN [17], and SIUN [18], in terms
of accuracy and time efficiency.

4.1. Experimental Setup. MRFNet was implemented using the
Caffe deep learning framework. The model was trained with
the Adam optimizer (8, =0.9, ,=0.999). Input images
were randomly cropped to 256 x 256 in the training process.
A batch size of 16 was used for the training, which are per-
formed with four NVIDIA RTX2080Ti graphical processing
GPUs. At the beginning of each epoch, the learning rate
was initialized to 10™* and was subsequently halved every
10 epochs. We trained for 170 epochs on the VisDrone data-
set and 150 epochs on GOPRO.

For the sake of time efficiency, we evaluated the inference
time of the existing state-of-the-art CNNs on an 11 GB
RTX2080Ti GPUs.

4.2. Dataset. We used two popular benchmark datasets to
train and evaluate the performance of MRENet: VisDrone
and GOPRO. VisDrone provides synthetic blurring tech-
niques and collects real blurry aerial scenarios [38]. GOPRO

captures real-world motion blurring scenarios [9]. The
images collected from GOPRO were 1280 x 768, while those
of VisDrone were 256 x 256. The VisDrone dataset included
extreme blurry and distorted texture augmentation.

4.3. Comparative Experiments. We conducted comparative
experiments using on DeepDeblur [37], DeblurGAN [9],
DeblurGANv2 [10], DMPHN [17], and SIUN [18] to verify
the performance of our proposed model. The visual effects
of different methods are illustrated in Figure 4. MRFNet
achieved state-of-the-art performance compared with STUN
and demonstrated clear object boundaries without artifacts
Figure 5. The PSNR and SSIM values for MRFNet were much
higher than those for DeblurGAN, DeepDeblur, and
DMPHN.

Moreover, our method performed better than SIUN and
DMPHN and much better than DeblurGANV2 in addressing
the GOPRO motion blurs. The trends in Table 2 prove the
superiority of the MRFNet framework based on the PSNR
and SSIM values. Other methods show considerable limita-
tions in SSIM, indicating that they lack the capacity to restore
missing significant structural information and perform
deblurring on extremely blurry images.

claim : nypp > n

mean>
Hy : fiyrp < Pieans

H, : nype > fpeans (7)
Ty = ((ny(ny +ny +1))/2)

Sy (ny +ny F1))12

As for the peak of signal-to-noise ratio (PSNR), we can
use the data in Table 2 with the Wilcoxon rank-sum test
and a 0.05 significance level to test the claim that the
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FIGURE 4: Visual effects of different methods on GOPRO: (a) blurred image and results of (b) DeblurGAN, (c) DMPHN, (d) SIUN, and (e)
ours. The left images are global deblur results, while local restoration details are shown on the right. Our results show clear object boundaries
without artifacts and produce various generative edge maps for the discriminator D to judge the realness of the generation. The small zoom-in
pictures of (e) show the good visual effect of edge attention prior and dynamic kernel selection.

TaBLE 2: Test results of the blurred image datasets and their peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM) values.

GOPRO VisDrone

Method PSNR SSIM PSNR SSIM

DeepDeblur [37] 2942370 0.761372 27.14940 0.539367
DeblurGAN [9] 2822642 0.747912 2829447 0.609642
DeblurGANv2 [10] 32.19638 0.87114 28.43967 0.614876
DMPHN [17] 3421846 0.898285 28.54136 0.526301
STUN [18] 3446135 0.900913 2828039 0.543417
MRENET 34.63429 0.907881 29.40845 0.862474

multipath refinement fusion n,; has a confidence larger
than mean value of other methods n,,,,. H, is a hypoth-
esis to resist the confidence zone, while H, is for it. Z is
the specific computation to decide which is correct. The
overall deviation is T, and », and n, are the number of
each sample. Then, the value of Z is 1.732; which is larger
than 1.645 so that H, is in the confidence zone. In conclu-
sion, the performance of MRFNet is better than others in
terms of PSNR.

DeblurGAN required the least amount of GPU memory
(equal to 4538 MB), while our proposed method required a
slightly higher amount of GPU memory than DeblurGAN
in GOPRO, as shown in Table 3. This is because DeblurGAN
only adopts the generative network for training, which means
the model is unstable and the restored color deviates from
expectations, as shown in Figure 4(b). MRFNet required
the least amount of GPU memory in the VisDrone dataset
for a batch size of 16. The lightweight process reduced the
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TABLE 3: Memory consumption of graphics cards.
GOPRO VisDrone
Method Network (MB) + Network (MB) +
batch (8) batch (16)

DeepDeblur 6311 7930
DeblurGAN 4538 6012
DeblurGANv2 6861 8107
DMPHN 6541 7329
SIUN 8399 8561

Our model 5452 5898

TaBLE 4: Average time of inferring images.
GOPRO VisDrone
Method Inference Times Inference Times
time(s) time(s)

DeepDeblur 2.427 1.04X 2.362 1.13X
Deblur GAN 2.346 1.08X 2.144 1.24X
DeblurGANv2 2.528 1.00X 2.663 1.00X
DMPHN 1.886 1.34X 0.764 3.46X
SIUN 0.684 3.69X 0.357 7.46X
MREFNet 0.494 5.12X 0.319 8.35X

TABLE 5: Quantitative numerical PSNR and SSIM results.

GOPRO VisDrone
Method PSNR SSIM PSNR SSIM
RefineNet [14]  34.17826  0.894369  28.73991  0.854758
LR-RefineNet 3421445 0906998  29.24461  0.860164
EA-RefineNet 3439430 0903012  29.03971  0.858601
MREFNet 34.63429  0.907881  29.40845  0.862474

number of parameters of the model and contributed to low
memory usage.

MRFNet was the fastest method in terms of the time of
loading the network model and inferences, as shown in
Table 4. The inference was also executed on an NVIDIA
RTX2080Ti GPU.

4.4. Ablation Experiments. The original MRF network used as
the benchmark is denoted as RefineNet [14]. We added the
lightweight and residual connection to the benchmark and
denoted it as LR-RefineNet. LR-RefineNet adopts multimo-
del training strategy. We then added the edge reconstruction
and attention modules to the refinement path on RefineNet
and denoted this combination as EA-RefineNet. EA-
RefineNet adopts the joint training strategy. Finally, we
combined the lightweight, residual strategy, and attention
modules in the benchmark and denoted combination as
MRFNet. MRFNet adopts the joint training strategy as
shown in Table 5; the LR-RefineNet and EA-RefineNet per-
formed slightly better than RefineNet. MRFNet achieved
the most significant numerical results.

Wireless Communications and Mobile Computing

The multiscale refinement loss function takes each subtask
as an independent component within a joint task, allowing the
training process to converge more rapidly and perform better
than other methods. The training losses of other approaches
markedly decrease during the first round and then consis-
tently remain at a 6% smooth trend in the following training
courses. The MRFNet method, aided by the loss weight sched-
uling technique, exhibited a dramatic downward trend initially
and then remained at approximately 4%. The model accuracy
improvements (approximately 10% to 21%) attributed to the
multiple rounds of training for the four loss weight groups
verified the convergence and advantages of our method’s
training strategy.

The experimental results indicate that MRFNet could
achieve considerable precision. Furthermore, MRFNet exe-
cuted much more quickly than other deblurring models, such
as SIUN and DMPHN. Compared with DeblurGAN and
DeblurGANV2, the proposed MRFNet model performed well
in terms of the speed (increased by 7.4%) and deblurring
quality of images (increased by 4.2%). The GPU memory
use remained low owing to the added lightweight process.
Our method could also recover more details and achieved
relatively high SSIM and PSNR values. Images remained
unstable and sometimes contained artifacts and color distor-
tions for other models. Conversely, MRFNet was also uesd to
perform image deblurring in a stable manner and resulted in
high image sharpness.

4.5. Edge Attention Perception. Real-world image capture
cannot avoid blurring. For instance, Figure 6(a) shows cars
moving fast on a street, which causes motion blurring. The
distance from the lens to the car causes a Gaussian blur.
We employed the MRENet to restore images in three steps,
including edge reconstruction, localization of the blurring
species, and deblurring of the patches. Edge reconstruction:
edge information (high-frequency features) is very important
for reconstructing images because a sharper background is
beneficial for the refinement of different blurring kernels
[35]. The inputs are blur and ground-truth pairs. The edge
generative network then predicts the structure of the entire
image. Subsequently, the pretrained networks preprocess
the edge feature information to ensure that the location and
class are associated with the deblurred kernels.

A broad view of edge boundaries is illustrated in
Figure 6(b). The ground truth images are then preprocessed
into grayscale images for further edge feature extraction and
are then sent to the discriminator for the comparable bench-
mark. The generator produces various generative edge maps
for the discriminator D to judge how real the generation is.

Ledge = I%ln erla‘XLGe = ném <aadv,1 ngaX(Ladv,l) * aFMLAM) .
[

(8)

Blurring category location: the attention mechanism acts
in a similar manner toneural cells to focus on interesting ele-
ments using broad view [25], classification [39], and location
techniques [22]. From Figures 6(e)-6(g), we can conclude that
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FIGURE 5: Edge maps and experimental results. Our restored images show vivid colors and sharp details.

changing the receptive field generates different contextual
attention results. When the receptive field is large, objects
are perceived in their entirety. When the receptive field is
small, each object in the image is perceived and the texture
is detailed.

First, we search the background using convolutional
layers to create a broad view for latent meaningful objects
and extract semantic information through a multipath
refinement fusion unit. The second step involved classifica-
tion. For a given image, g,(a, b) is the spatial information

in the Ith layer. G, then represents the sum of g,(a, b). Thus,

for a specific object class, the input A;G; is the input of the

softmax function. A is the weight corresponding to class,

and it predicts the essential level of G,. Finally, Q is the output

of the softmax function and is denoted as exp (S)/Y., exp (S).
The score S is defined as follows:

 SAYg(ab)
S S @b AT @b ®)
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FIGURE 6: Joint generative image deblurring aided by edge attention prior is used to locate the area which is red in the picture and deblur the
patches aided with edge prior. During the process of deblurring, multiple blur kernels are adopted dynamically including motion blur and
Gaussian blur and so on. (a) An original blur image. (b) Attention map of specific objects. (c) Receptive field of attention is large, and the
scan is with large-scale objects. (f, g) The small receptive fields, respectively. The edge recovery of a generative adversarial network (GAN)
tends to be slightly intermittent, but the restoration effect is the best in complex structures. (e-g) The experimental validation of the
selective regions to deblur the specific categories of blur objects in multiscale.

The score of the global average pooling predicts the
importance of the location of (a, b), thus leading to the clas-
sification of a blurry object in the image.

Third, the deblurring category is located. Based on the
edge maps, we can search, locate, and itemize the blurry
objects into six categories, including sharp area, random
deviation, changeable blur size, changeable shaking angle,
changeable shaking length, and motion blurring. In terms
of each category, MRFNet uses a different deblurring kernel
to refine the blurring features for specific objects. The atten-
tion module was able to find and locate the general objects
and apply different deblurring approaches through a deep
learning training process. Subsequently, the specific objects
were deblurred into sharp objects, aided by the edge genera-
tion modules and contextual attention mapping.

Patches deblurring: the structure information, predicted
object, and blurry potential class could be determined when
the data flow from the edge feature extraction and contex-
tual attention were located. Subsequently, we use the
deblurring feature prior network to deblur the images into
sharper outputs. In this manner, we can restore the image
by applying different blurring strategies in various image
areas. As a result, the reconstruction of the object structure
is meaningful and vivid, and the target is more specific,
which improves performance.

5. Conclusions and Future Work

In conclusion, neither edge attention prior nor multimodel
training can focus on the core objects in the foreground
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and select the proper kernels to restore. Therefore, we have
designed a new algorithm consisting of three steps, including
focusing, locating, and processing. The key insight of the net-
work model and this algorithm is that the restoration of the
key objects can significantly enhance the visual effects of
the whole picture and retain the most semantic information.
In addition, due to the selection of deblurring part of the
regions with the appropriate deblur kernels rather than the
whole image efficiently, the accuracy and speed are both opti-
mized to a new level.

This study has illustrated an efficient and accurate joint
edge and deblurring GAN for multifrequency feature extrac-
tion and fusion called MRENet. This image deblurring frame-
work uses a generative edge prior and dynamically selects
proper deblurring kernels. The model is designed to overcome
the challenges posed by the substantial computational
resources required by CNNs and poor restoration results
obtained with other methods that deal with large-scale data-
sets or neglect edges and color reconstruction. The proposed
model has three main features for processing multiple image
tasks, including color, position, and differences. Edge detectors
and attention modules are then aggregated into units to refine
and learn knowledge. Finally, efficient multilearning features
transform a fusion into a final perceptive result.

The proposed network exploits a lightweight process,
remote residual connection, edge attention mechanism, and
scale refinement loss function to handle real blurring scenar-
ios, preserving fast inference speed and high precision. It can
extract different features by scheduling the weight of joint
training losses and produce a fusion guided by attention
modules. This leads to an efficient image restoration. The
proposed MRFNet model was compared with existing
models on two popular datasets for deblurring. It achieved
state-of-the-art performance compared with other methods
on the benchmark datasets.

In the future, we will develop a faster MRFNet model for
edge computing devices. The computational capability will
likely be much higher than that of the GPUs used in our
experiments. The techniques of model compression, includ-
ing pruning and quantization, will also be explored. This
model will also be applied to video deblurring or deblurring
of inpainting results at the postprocessing stage.
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Today’s internets are made up of nearly half a million different networks. In any network connection, identifying the attacks by
their types is a difficult task as different attacks may have various connections, and their number may vary from a few to
hundreds of network connections. To solve this problem, a novel hybrid network IDS called NID-Shield is proposed in the
manuscript that classifies the dataset according to different attack types. Furthermore, the attack names found in attack types are
classified individually helping considerably in predicting the vulnerability of individual attacks in various networks. The hybrid
NID-Shield NIDS applies the efficient feature subset selection technique called CAPPER and distinct machine learning methods.
The UNSW-NB15 and NSL-KDD datasets are utilized for the evaluation of metrics. Machine learning algorithms are applied for
training the reduced accurate and highly merit feature subsets obtained from CAPPER and then assessed by the cross-validation
method for the reduced attributes. Various performance metrics show that the hybrid NID-Shield NIDS applied with the
CAPPER approach achieves a good accuracy rate and low FPR on the UNSW-NB15 and NSL-KDD datasets and shows good

performance results when analyzed with various approaches found in existing literature studies.

1. Introduction

Research in network security is a vastly emerging topic in the
domain of computer networking due to the ever-increasing
density of advanced cyberattacks. The intrusion detection
systems (IDSs) are designed to avert the intrusions and to
protect the programs, data, and illegitimate access of the
computer systems. The IDSs can classify the intrinsic and
extrinsic intrusions in the computer networks of an organiza-
tion and instigate the alarm if security infringement is com-
prised in an organization network [1]. One of the notable
definitions for intrusion is that it produces malignant, out-
wardly activated functional violations. The primary goal of
intrusion detection systems is to recognize a broad variety
of intrusions, heretofore identified and unidentified attacks;
to discover and adapt to unfamiliar attacks; and to detect
and recognize intrusions in a prompt pattern [2]. The pre-

liminary work on IDSs was researched by Anderson [3]
who recommended means of examining data. Subsequent
to Anderson’s work, the previous work was aimed at develop-
ing the algorithms and procedures for online automated
systems. The Sytek project [4] started producing audit trails
having enhanced security and considered different
approaches for analyzing automated systems. These observa-
tions contributed to the first empirical evidence that the end
users can be recognized from each other through user action
of using the computer [5]. The proof of SRI and Sytek studies
[6] was the foundation of real-time IDS. The behavior of the
users, whether it is normal or suspected, is continuously
monitored by these systems. The real-time IDS relies on
two techniques: (1) intrusions whether normal or suspected
can be tracked by the flagged departure from the factual pat-
terns of respective users and (2) perceived system susceptibil-
ities and various infractions of the system-aimed security
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protocols are best tracked from rule-based expert systems.
The stability of precision and detection is primarily two mea-
sures applied mainly to assess the IDSs [7], and in recent
years, many IDS research surveys have been accomplished
to enhance these measures [8]. In the inception stages, many
of the research studies mainly focus on the rule-based expert
system and statistical approach. However, the various perfor-
mance results show that these approaches when applied to
large datasets are not accurate and precise [9].

To get the better of the above-mentioned problem, data
mining approaches [10, 11] and machine learning techniques
were introduced [12]. Some machine learning paradigms
containing Graph-based methods [13], Linear Genetic Pro-
gramming [14], Bayesian Network [15], k-NN [16], K-means
clustering [17], Hidden Markov Model [18], Self-organizing
map [19], etc. have been explored for the architecture of IDSs.
Machine learning [20] can detect the correlation between fea-
tures and classes found in training data and identify relevant
subsets of attributes by feature selection and dimensionality
reduction, then use the data to build a model for classifying data
to perform predictions. The data dimensionality related to data
mining and machine learning has doubled in the last decade
that leads to several questions to current learning approaches
[21]. Due to the presence of excessive cardinal features, the
model that tends to learn gets overfitted, resulting in the perfor-
mance degradation of the model.

To solve the problem of data dimensionality in machine
learning and data mining, various dimensionality reduction
approaches have been accessed which is considered as an
essential step in the area of machine learning and data
mining. Feature selection is an extensively employed and
efficient technique applied for dimensionality reduction.
The main aim of feature selection is to select the limited
feature subsets from primary features conferring to rele-
vancy appraisal standard that manages the training model
to accomplish greater performance outcomes and reduced
execution time and achieve higher model predictability.
Most of the classification problem needs the supervised
learning where the class-conditional possibilities and cardi-
nal class are not familiar and the class labels and its
instances are associated with each other [22]. There is a
scarcity of knowledge in real-world applications related
to relevant features. Endless feature candidates are
acquired to generate the more coherent domain, which
results in the existence of irrelevant and redundant fea-
tures to the target approach or objective function. For
the target approach, the relevant or significant features
are not irrelevant or redundant; neither the redundant fea-
ture is spontaneously correlated with the target approach
or objective function but impacts the learning approach.
The new events are not added by the redundant features
to the target approach or objective function. In the major-
ity of the classification problems, it is a composite to learn
even if the classifier is competent due to the presence of
an enormous number of data, till the redundant features
are excluded from the objective function. For the classifi-
cation problem, the features are once generated then
instead of processing with full data; the feature selection
will bring about the feature subsets from the initial fea-
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tures and then process with the feature subsets to a learn-
ing algorithm. The nominally sized feature subsets for the
classification problem are selected by the feature selection
approach conferring to the following criterion:

(i) Normally, the classifier accuracy does not decline
considerably

(ii) Among all the likely features, the initial distribution
of the class shall be approximately close to the pro-
ceeding distribution of the class whenever the values
are likely towards the features selected

To obtain the high merit feature subsets from 2" subsets,
the feature subset selection approaches search feature subsets
conferring to a few significant appraisal criteria. However,
this approach is intensive for the conclusion of the best sub-
set and to select the intermediate-sized feature subsets with
the volume (m); the strategy is expensive and restrictive. Var-
ious approaches like heuristic and random search lower the
computational intricacy by a trade-off. To prohibit the fea-
ture subsets from exhaustively searching, a stopping criterion
is required. A feature selection approach [23] does the job by
subset generation, subset evaluation, stopping criterion, and
the result from the validation. With the likely search
approach, the chosen feature subsets are sent for subset eval-
uators with significant evaluation criteria. After the stopping
criterion is performed, the feature subset that is competent
enough to fit in the evaluation strategy is preferred, and then,
finally, the finest feature subset is selected and gets authenti-
cated by employing the domain knowledge or validation.

The detection methods of intrusion detection systems are
classified into three major types: anomaly-based, signature-
based, and hybrid-based. The signature-based IDS and
anomaly-based IDS were the most favored methods in an
organization until numerous shortcomings were observed,
which leads to the development of hybrid intrusion detection
systems. In the designing of IDS, classifying the datasets
according to attack types and selecting the good feature sub-
sets are a hard problem. The classifying of datasets according
to attack types aids in predicting the vulnerability of individ-
ual attacks in various networks. Moreover, relevant features
should not be irrelevant or redundant so that accurate and
highly merit feature subsets are obtained. To address this
issue, a new hybrid network intrusion detection system called
NID-Shield is designed that classifies the dataset according to
attack types. Furthermore, the hybrid CAPPER approach is
applied as a feature subset selection approach. Screening is
applied to those features by the CAPPER approach which is
redundant having a high-class correlation. Moreover,
machine learning algorithms are applied for selecting high
merit and accurate feature subsets.

The major contributions of this manuscript are as
follows:

(i) An efficient hybrid NID-Shield NIDS is proposed in
this manuscript that classifies the UNSW-NB15 and
NSL-KDD datasets according to the attack types and
attack names
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(ii) An effective hybrid feature subset selection method
called CAPPER is applied as a feature subset selec-
tion that combines the CFS and Wrapper
approaches for obtaining the reduced accurate and
high merit feature subsets

(iii) The reduced accurate and high merit datasets
obtained from CAPPER are trained by the machine
learning approaches and assessed by a 10-fold
cross-validation method

(iv) The hybrid NID-Shield network intrusion detection
system shows overall good improvement results on
the different approaches found in the existing litera-
ture studies

The remaining article is coordinated accordingly. Section
2 focuses on related work. Section 3 proposes the architecture
of the hybrid NID-Shield NIDS. Section 4 relates to the char-
acteristics of UNSW-NB15 and NSL-KDD datasets. Section 5
discusses the performance evaluation of the hybrid NID-
Shield NIDS approach with various existing approaches on
the UNSW-NB15 and NSL-KDD dataset, and Section 6 then
concludes the work.

2. Related Work

This section introduces the existing literature studies on the
hybrid network intrusion detection system. Moreover, this
section discusses the advantage of a hybrid intrusion detec-
tion system over a traditional intrusion detection system.
Furthermore, distinct machine learning approaches are
acquainted and discuss the usefulness of selecting specific
machine learning techniques.

2.1. State-of-the-Art Network IDSs. The research in the man-
uscript is focused on studying the appropriateness of intru-
sion detection approaches to recognize network-level
intrusions, as the network structures generate resources more
susceptible to intrusions than autonomous machines. Three
facets of network structures generate resources more exposed
to attack by an autonomous machine: (1) networks generally
provide additional resources than autonomous machines; (2)
networks are usually formed to aid resource sharing; and (3)
the global security policies that are applied to the IDS are lim-
ited [24]. Moreover, the hybrid methods are suggested over
the signature and anomaly-based IDS, as the integration of
multiple approaches into a distinct hybrid system retains
the advantages of multiple techniques, while reducing many
of the deficiencies [25].

Acharya and Singh [26] conclude that for obtaining the
best possible detection and accuracy rate, the hybrid learning
approaches can be a good choice and proposed intelligent
water drop (IWD) algorithm, introduced by Shah-Hosseini
[27]. This approach applies the support vector machine
(SVM) as a classification algorithm and IWD approach as a
feature selection technique that is inspired by the nature.
IWD approach selects the best feature subsets, and the eval-
uation of the subsets is executed by the SVM classifier. The
proposed model lowers the forty-five features from the

applied dataset to the lowest of ten features. KDD-Cup ‘99
dataset is used for the appraisal of metrics. The proposed
approach attains an accuracy, detection, and precision of
99%. The disadvantage of applying the elemental IWD algo-
rithm is the likelihood of choosing the adjacent node for a
water drop to stream.

Arif et al. [28] introduced the hybrid approach for IDSs.
In this approach, pruning of the node is performed by PSO
and pruned decision tree is applied for the classification pur-
pose in a NIDS. The proposed approach applies the single
and multiple-objective particle swarm optimization (PSO)
algorithms. The KDD-Cup ‘99 dataset is used as an experi-
mental evaluation approach. From the 10% KDD-Cup ‘99
training and testing dataset, thirty arbitrary samples are cho-
sen for evaluation purposes. The statistical records in every
training and testing dataset are 12,000 and 24,000 accord-
ingly for the appraisal of the metrics. The precision of
99.95% and accuracy of 93.5% are achieved using the above
approaches. But there are some primary problems involved
with traditional PSO when adopted as a feature selection
approach. The most significant problem submits the follow-
ing question: in a random initialization, from the initial pop-
ulation, how far is it to reach an optimal solution. If the
optimum answer tells that the predicted prediction is far dis-
tant, then it may not be possible to obtain the global optimal
solution within the allocated time. The second problem
involves the conventional upgrading mechanism of global
best and personal best of the PSO approach, as these mecha-
nisms may result in losing some valuable features.

Ahmed et al. [29] applied a triple strategy to build a
hybrid IDS in which the Naive Bayes feature subset selector
(NBFS) technique has been applied for dimensionality reduc-
tion. For the outlier rejection, optimized support vector
machines (OSVM) are applied, whereas prioritized k-near-
est neighbors (PKNN) are applied as a classifier. The NSL-
KDD, KDD-Cup 99, and Kyoto 2006+ datasets are used
for evaluation purposes. 18 efficient features are preferred
from the KDD-Cup ‘99 dataset with a detection ratio of
90.28%. 24 features are selected from the Kyoto 2006+ data-
set having a detection ratio of 91.60%. The author has com-
pared with previous work and has the best overall detection
ratio of 93.28%. The major disadvantage with the Naive
Bayes is that it presumes prediction of the features that are
mutually independent to one another. The features with
mutual independence are consistently hard to get in real-
world problems.

Dash et al. [30] reports two new hybrid intrusion detec-
tion methods that are GS and sequence of GSPSO which is
the combination of gravitational search and the particle
swarm optimization algorithms. It involves search agents
who relate to each other having heavy masses from the grav-
itational force, and their performance is assessed by their
mass. The combination approach has been carried out to
train ANN with models such as GS-ANN and GSPSO-
ANN. The random selection of 10% features is selected for
training purposes, while 15% is used for testing purposes
and is applied successfully for intrusion detection purposes.
The author does not apply any feature selection technique.
The KDD-Cup ‘99 dataset was applied as a metric for
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TaBLE 1: Taxonomy of latest hybrid intrusion detection methods.
Hybrid-based intrusion detection techniques with feature selection techniques
Year Research Algorithms Techniques Dataset Eval'uat.lon Featgre Results
papers criteria selection
. . Achieves a detection
SVM 'S ap plied as a Detection rate, rate of 99.40%,
classifier. Feature KDD-Cu recision rate recision rate of
2017 [26] SVM, IWD reduction applying . PP g WD p
. . 99 dataset accuracy rate, 99.10%, false alarm of
IWD (intelligent water N
drop) method false alarm rate 1.40%, accuracy rate of
99.05%
Particle swarm
optimization (PSO) Accuracy of 96.65%, a
algorithm is applied Accuracy rate precision of 99.98%,
2017 [28] Particle swarm for pruning the node of KDD-Cup recisior)ll ra te, PSO FPR of 0.136, IDR of
optimization (PSO) DT, and the pruned ‘99 dataset FI;’R IDR tin;e 92.71%, and execution
DT is applied for the ” ’ time of 383.58 sec. is
network IDS obtained
classification
PKNN is used for
detecting input attacks,  Kyoto o
. An overall sensitivity
Prioritized KNN  [ybrid HIDS strategy - 2006+ o rate of 53.24%,
. L. (based on Naive Bayes  dataset, Specificity, .
algorithm, optimized feature selection); KDD-Cu sensitivit detection rate of
2017 [29] SVM algorithm, Naive . 1 . P . V> NBFS 94.6%, precision of
. OSVM is applied for ‘99 dataset,  detection rate, .
Bayes feature selection . o N . 56.62%, specificity of
outlier rejection. Naive and NSL- precision .
approach . . 98.21% are obtained
Bayes is applied as the KDD
on all datasets
feature selector dataset
approach
Particle swarm o
optimization (GSPSO) hgitic?[ifo%?azgob(;;
2017 30] Artificial neural is employeq to‘tram NSL-KDD  MSE, det.ectlon Not applied  95.26%, and execution
network ANN, gravitational dataset rate, time .
time of 103.70 seconds
search (GS), and are obtained
combination of GS
Flexible mutual
information-based
feature selection
(FIMS) is employed as A detection rate of
feature selector, MH- . o
ML (multilevel hybrid Detection rate, 66.69%, accuracy of
Hybrid multilevel data . . KDD-Cup  recall, accuracy 96.70%, recall of
2017 [31] .. . machine learning), . FIMS .
mining algorithm . 99 dataset  rate, F-value, 96.70%, precision of
MH-DE (multilevel .. N
hybrid data precision rate 96.55%, and F-value of
o .
engineering), MEM 96.60% are achieved
(micro expert module)
for training the KDD-
Cup ‘99 dataset
Chisgselector AUPR of 96.24%,
0,
Support vector employing the SVM  KDD-Cup AUPR, AUROC, . AUROC (.)f 99'.55 %,
2018 [32] . : . . . Chisgselector and execution time of
machine (SVM) classifier for reduction ‘99 dataset time
10.79 seconds are
of features

obtained
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TaBLE 1: Continued.

Hybrid-based intrusion detection techniques with feature selection techniques

Year Research Algorithms Techniques Dataset Eval'uat.lon Featgre Results
papers criteria selection
Three feature selection
methods are employed,
linear correlation-
based feature selection
m(uLtgflsi)ﬁ gr"n‘i;ﬁtfjn KDD-Cup FPR of 0.17% is
Vector-based genetic . ‘99 dataset ~ FPR, accuracy =~ LCFS, FFSA, achieved, and accuracy
2018 [33] . based feature selection .
algorithm (MMIES), and forward and CTU- rate MMIFS rate for the DoS is
’ . 13 dataset 99.8%
feature selection
algorithm (FFSA),
chromosomes as
vector and training
data as metrics
Neural network with
NeuraI. r}etwork with resﬂ¥ent back. ISCX & Detection rate, An accuracy rate of
resilient back propagation algorithm 99.20%, detection rate
2018 [34] . . ISOT accuracy rate, CART
propagation to update the weights; dataset FPR of 99.08%, and FPR of
algorithm, CART feature reduction is 0.75% are obtained
performed by CART
Symm.etrlcal Genetic algorithm is An accuracy of 83.83%
uncertainty and . .
enetic algorithm (SU- used on selected ucI is obtained, and an
2018 [35] 8 GA) 1gs used as features; symmetric dataset Accuracy rate GA execution time of 0.23
dassification uncertainty is applied seconds is achieved on
algorithm to find best features all approaches
Neurofuzzy inference
system, neural fuzzy A true attack detection
. . genetic, fuzzy logic ~ KDD-Cup and false alarm
2018 [36] Genetic algorithm controller, multilayer ‘99 dataset Accuracy rate Fuzzy rule detection accuracy up
perception for attack to 99% rate of 1%.
classification
Overall accuracy rate
of 99.86%, overall FPR
WrapperSubsetEval of 0.00035%, overall
and CfsSubsetEval are detection ratio of
) . 0.9828%, F-measure of
applied as two feature Detection rate, 0.706%. overall TPR of
Random forest, Naive  selection techniques, accuracy rate, F- S
. NSL-KDD Wrapper and  0.929%, overall MCC
2019 [37] Bayes, J-48, k-nearest while random forest, k dataset  measure, TP rate, flter of 0.955%. and total
neighbor algorithm  -NN algorithm, Naive FP rate, MCC, TR S
. execution time of
Bayes, and J-48 are and time
apvlied as the 10.625 seconds
pflassiﬁers (executed on NSL-
KDD dataset with 25
attributes on all attack
types)
K-means is applied for
data grouping, .
. An approx detection
2019 [38] K-means clustering, tlzlzlsigﬁitlesrf;?sikf)ﬁi KDD-Cup  Detection rate, DBSCAN rate of 70% and an
DBSCAN, SMO ‘99 dataset  accuracy rate approx accuracy of

data, and SMO is
applied for intrusion
detection

98.1% are obtained
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TaBLE 1: Continued.

Hybrid-based intrusion detection techniques with feature selection techniques

Research . . Evaluation Feature
Year Algorithms Techniques Dataset o . Results
papers criteria selection

Intelligent flawless
feature selection
algorithm (IFLFSA),
entropy-based

EWOD is used to
detect outliers in data,
IFLFSA is used as

feature selection, and KDD-Cup Overall accuracy of

2019 [39] V.Velg.hted outlier intelligent layered 99 dataset Accuracy rate TFLESA 99.45% is achieved
rejection (EWOD), . :
. . classification
intelligent layered . . .
P algorithm is applied to
classification classify the data
algorithm
The performance with
k-nearest neighbor is KDD-Cup .99 dataset
has a detection rate of
used to apply a class to 97.20%, accuracy of
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Hybrid-based intrusion detection techniques with feature selection techniques

Research

Evaluation Feature

Year Algorithms Techniques Dataset . . Results
papers criteria selection
and an execution time
of 1023 seconds are
achieved
SVM is used as a o
classifier and, modified Modified Ff?)lﬁtcfcgi)as‘c}’ d2£e9c6ti/(()),n
2021 [45] SVM, modified binary binary gray wolf NSL-KDD SVM binary gray rate olf 0 ’9 6. and
gray wolf algorithm  algorithm is applied as  dataset wolf exect tior; ti;ne of
feature selection algorithm 69.6h
approach '
Random forest
differential evaluation
with kernel density for
P r§d} c.tlng ungsual Random forest
activities. For input differential
classification, a evaluation with An accuracy rate of
Multiclassifier, deep multiclassifier is . . o ¥ rat
2021 (46] neural network, kernel  applied, while a deep HHAR kernel density, Basic sort- 98.4%, a sensitivity of
? i dataset multiclassifier, merge tree 96.02%, and a

neural network is
employed as the
learning and training
of the data. Kernel
density is used for
clustering and
prediction of data.

density

deep neural
network, kernel
density

specificity of 99.8%

calculation. Normalization of the dataset was done for uni-
form distribution by MATLAB. An average detection ratio
of 95.26% was achieved. The gradual shift of the search agent
encourages the relevant solution of the algorithm, but the
major weakness is its speed of convergence that slows down
in subsequent stages and has the tendency to get trapped in
the local optimum solution.

Yao et al. [31] introduced a hybrid framework for IDS. K
-means algorithm is employed for clustering purposes. In the
classification phase, many machine learning algorithms
(SVM, ANN, DT, and RF) which are all supervised learning
algorithms are compared on different parameters. The super-
vised learning algorithm has various parameters for different
kinds of attacks (DoS, U2R, Probe, and R2L). FIMS is applied
as a feature selection technique. The proposed approach has
obtained an accuracy rate reaching 96.70% with the KDD-
Cup 99 dataset. The drawback with the FIMS approach is
that the correlation between the candidate features and their
class is not considered.

Suad and Fadl [32] introduced an IDS model applying
the machine learning algorithm to the big data environment.
This paper employs a Spark-Chi-SVM model. ChisqSelector
is applied as a feature selection method, and an IDS model
is constructed by applying the SVM as a classifier. The com-
parison is done with the Spark-Chi-SVM classifier and Chi-
logistic-regression classifier. The KDD-Cup ‘99 dataset is
used for the metrics of the evaluation process. The result
shows that the Spark-Chi-SVM model shows good perfor-
mance having an AUROC of 99.55% and an AUPR of
96.24%. The disadvantage of ChisqSelector is having a larger

sensitiveness towards the sample size. However, when the
sample size increases, the total differences become smaller
than the predicted value.

Jjaz et al. [33] introduce a genetic algorithm, which is
based on vectors. In this technique, vector chromosomes
are applied. The uniqueness of this algorithm is that it shows
the chromosomes as a vector and training data as metrics. It
grants multiple pathways to have a fitness function. Three
feature selection techniques are chosen: forward feature
selector algorithm (FFSA), linear correlation feature selector
(LCFS), and modified mutual information feature selector
(MMIES). The novel algorithm is tested in two datasets
(CDU-13 and KDD-Cup 99). Performance metrics demon-
strate that the vector genetic algorithm has a high detection
ratio of 99.8% and a low false positive rate of 0.17% on the
denial of service (DoS) attack. However, the authors do not
evaluate the U2R, Probe, and R2L attacks which are consid-
ered important metrics in the IDS.

Alauthaman et al. [34] proposed an approach of peer-to-
peer bot detection build on a feed-forward neural network in
assistance with the DT. CART is then applied as a feature
selection approach to obtain the significant features. Network
traffic reduction techniques were applied by using six rules to
pick the most relevant features. Twenty-nine features are
selected from six rules. The proposed approach obtained an
accuracy of 99.20% and a detection ratio of 99.08%, respectively.
The disadvantage of utilizing a CART is that the decision tree
may not be stable and the CART splits the variables one by one.

Venkataraman and Selvaraj [35] report an efficient
hybrid feature selection structure for the classification of



the data. For classification purposes, symmetrical uncertainty
is applied to find the relevant features. Moreover, GA is
applied to search for the merit subset with higher accuracy.
The author combined SU-GA as a hybrid feature selection
approach. MATLAB and Weka tools are applied for evalua-
tion purposes. Different classification algorithms (KStar,
J48, NB, SMO, DT, JRIP, Multilayer Perceptron, and Ran-
dom forest) are used to classify different attacks. The average
learning accuracy with Multi Perpn and SU-GA is the highest
having 86.0%. The major drawback of a genetic algorithm is
that it may be computationally expensive, as the training of
the model is required for the appraisal of each candidate.
GA is stochastic, so it may require a longer time to converge.

Kumar and Kumar [36] introduce an intelligent-based
hybrid NIDS model. This model then integrates the multi-
layer perception, fuzzy logic controller, adaptive neurofuzzy
interference system, and a neurofuzzy genetic. The author
applied fuzzy logic as a feature selection method. The pro-
posed system has three key elements: analyzer, collector,
and predictor modules, for gathering and filtering network
traffic to classify the data and prepare the final decision in
assuming knowledge on the accurate attack. The experiment
is assessed on the KDD-Cup ‘99 dataset that achieves an
improvement of true attack detection and false alarm detec-
tion accuracy upto 99% rate of 1% using MATLAB. The dis-
advantage of fuzzy logic is that the results are observed based
on assumptions, and due to this reason, accuracy is some-
times incorrect.

Cavusoglu et al.[37] applied the hybrid approach for IDS
using machine learning techniques. k-nearest neighbor and
Naive Bayes algorithms are used for classification purposes,
while the random forest algorithm is used as a classifier.
The author applied two feature selection techniques called
the CfsSubsetEval and WrapperSubsetEval approach. J48
algorithm is applied in conjunction with WrapperSubsetEval
for selecting accurate attributes. For the evaluation of met-
rics, the NSL-KDD dataset is applied. The overall accuracy
of 99.86% is obtained on all types of attacks.

Saxena et al. [38] implemented a DBSCAN-based hybrid
technique for obtaining the high-quality feature subsets for
IDS. DBSCAN is employed as a method for eliminating noise
from data. For grouping data, K-means clustering is pro-
posed. The SMO classifier is applied for classification pur-
poses. The KDD-Cup ‘99 dataset is applied for evaluation
purposes with reduced attributes. The proposed approach,
DBKSMO, achieved an accuracy of about 98%. Weka and
MATLAB tools are applied for the execution of the results.
However, the major disadvantage of DBSCAN is that when-
ever there is a cluster having variations in density or the clus-
ters having similar variation, its performance declines, the
major reason being the setting of e (distance threshold),
and minimum points for determining the neighborhood
points will change from clusters to clusters, whenever density
changes. This problem exists for high-dimensional data, as
the ¢ (distance threshold) becomes difficult to examine.

Kambattan and Rajkumar [39] introduced effective IDS,
which employs a feature selection technique named IFLESA
to select the finest reduced features that are effective for ana-
lyzing the attacks. To identify the outliers from the dataset,
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the EWOD approach is utilized. An intelligent layered tech-
nique is employed for efficient classification. For experimen-
tal purposes, the KDD-Cup ‘99 dataset is applied. The
comprehensive detection rate wraps the detection rate on
four types of attacks, namely, Probe, DoS, U2R, and R2L.
The detection rate of the proposed system is achieved at a
rate of 99.45%. The weakness of using intelligent agents is
that whenever the global constraints are applied, the intelli-
gent agent fails to deliver appropriately. Each agent is more
effective in dealing individually with the main or central con-
troller. The agents make the decisions based on locally
acquired knowledge; whenever there is global knowledge
available, the agents are missing the major available knowl-
edge globally.

Kar et al. [40] utilize the decision tree algorithm called
ID3 which is applied for the classification of the data into
its corresponding classes. To designate the class labels to its
unexplored data point on its class labels to the k-nearest
point, the k-NN approach is applied. Isolation forest is intro-
duced to isolate the anomaly against normal instances. The
suggested approach HFA has applied to the NSL-KDD and
KDD-Cup ‘99 dataset. The metrics on the KDD-Cup ‘99
dataset obtained the ACC of 96.92%, DR of 97.20%, and
FPR of 7.49%. The proposed algorithm performance with
the NSL-KDD dataset has an ACC of 93.95%, DR of 95.5%,
and FPR of 10.34%. However, the main drawback of applying
the k-NN is that whenever the size of the variables increases,
the k-NN finds it difficult in predicting the output of the new
data positions. On the other side, the k-NN does well with the
variables having smaller numbers.

Mishra et al. [41] applied the BFS-NB hybrid structure in
IDS. This paper proposes the best first search technique for
dimensionality reduction which was employed for the attri-
bute selection technique. For the classification of data, Naive
Bayes classifier is applied for a classification purpose and to
maximize the accuracy of detecting intrusion. The BFS-NB
algorithm is analyzed with the KDD dataset gathered from
the US Air Force. The classification accuracy of BS-NFB is
93% while the sensitivity analysis of 97% is achieved. The
major disadvantage with the Naive Bayes is that it presumes
prediction of the features that are mutually independent to
one another.

Dutta et al. [42] introduced a hybrid model for improving
the classification metrics in a NIDS. The literature applies a
deep neural network for enhancing classification accuracy.
Furthermore, classical autoencoder is used as a feature subset
selection technique. The efficiency of a proposed technique is
evaluated with the UNSW-NB15 dataset. A precision rate of
92.08%, a recall of 90.64%, an accuracy of 91.29%, and F
-measure of 91.35%, and an FPR of 0.805 are obtained from
the proposed architecture. The deep neural network has activa-
tion functions and multiple layers that produce nonconvex
shapes. The drawback of a deep neural network probably intro-
duces the complex error space, leading to the substantially tun-
ing of hyperparameters to be able to get into a small error space
so that the model can be beneficial. Moreover, the training is
very slow due to the tuning of many hyperparameters.

Latah and Toker [43] introduce an efficient flow-based
multilevel hybrid intrusion detection system. The author
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applies the k-NN, H-ELM, and ELM which are used for clas-
sification purposes, and the SDN controller is used as a fea-
ture selection method. An accuracy of 84.29%, FPR of 6.3%,
a precision of 94.18%, a recall of 77.18%, and F-measure of
84.83% are obtained from the proposed approach. However,
the disadvantages of k-NN are that it is not able to handle
well with large and high-dimensional datasets. Furthermore,
the k-NN is sensitive to the noise in the dataset.

Sumaiya Thaseen et al. [44] applied the integrated tech-
niques CFS+ ANN to improve the classification accuracy.
CES is applied as a feature selection approach for selecting
the best feature subsets, while the ANN is employed as a clas-
sifier. UNSW-NBI15 and NSL-KDD datasets are used for
evaluating purposes. An accuracy of 98.45%, a sensitivity of
92.94%, a specificity of 94.38%, and an execution time of
500 seconds are obtained on the NSL-KDD dataset. For the
UNSW-NBI15 dataset, an accuracy of 96.44%, a sensitivity
of 50.4%, specificity of 98.4%, and an execution time of
1023 seconds are achieved. The major disadvantage of
ANN is that it takes a longer time for training the data.

Safaldin et al. [45] applied the improved binary gray wolf
optimizer as a feature selection method and support vector
machine for classification in an IDS in a wireless sensor net-
work. The proposed approach attains an accuracy of 96%,
FPR of 0.03, a detection rate of 0.96, and an execution time
of 69.6h. The choosing of a good kernel function is hard
which is the major disadvantage of the SVM classifier. More-
over, SVM takes a longer time in training the large datasets,
and to store all the support vectors, the memory consump-
tion is extensive.

Vallathan et al. [46] introduce the skeptical action detec-
tion system that is based on the deep learning approach in
IoT surroundings. Unexpected activities obtained from the
footage of the N/W surveillance devices are predicted with
the help of deep learning approaches and RFKD. For classifi-
cation purposes, the multiclassifier approach is used, while
DNN is used for training and learning the data. Moreover,
for prediction and clustering of data, the kernel density
approach is applied. The proposed approach uses the basic
merge-sort tree as a feature subset selection approach. For
evaluation purposes, HHAR datasets are used. The proposed
approach obtained an accuracy rate of 98.4%, specificity of
99.8%, and a sensitivity of 96.02%, on the HHAR dataset.
However, the main drawback of the neural network is that
the training is very slow due to the tuning of many
hyperparameters.

Table 1 depicts the taxonomy of the latest hybrid IDS
techniques with its various feature selection approaches.
When the literature studies are analyzed, most of them do
not classify the dataset according to attack types and attack
names thus preventing the assessment of individual attacks
on the various networks. Distinct attacks may have peculiar
connections as some of the attacks such as R2L and U2R
may have very few N/W connections, while other attacks
such as Probe and DoS may have a large number of N/W
connections or can be a combination of any of them. The
attack names found in the attack types help in predicting
the vulnerability of individual attacks in various networks.
Moreover, a feature selection approach that utilizes highly

merit and accurate feature subsets which apply machine
learning techniques is not utilized. Furthermore, perfor-
mance metrics such as precision, MCC, ROC area, PRC area,
kappa statistic, MAE, RAE, RMSE, and RRSE which are con-
sidered important metrics in model predictability are not uti-
lized in the existing works of literature.

Due to the reviewed problem in the literature studies, a
novel hybrid network IDS named NID-Shield has been intro-
duced that employs a distinct machine learning and efficient
hybrid feature subset selection approach called CAPPER that
is the sequence of the CFS and Wrapper method. Moreover,
the hybrid NID-Shield NIDS classifies the dataset according
to the various attack names and their types found in the
dataset.

2.2. Advantages of Hybrid NIDSs. This section introduces the
problem of the existing approaches of IDSs based on anom-
aly and signature IDSs and explains the advantages of hybrid
network intrusion detection systems.

Cybersecurity ventures [47] in the report estimate that
the damages arising due to cybercrime in 2025 will increase
to $10.5 trillion annually as compared to $3 trillion in 2015.
Furthermore, there is a prediction of nearly 7.5 billion active
internet users by the end of 2030 worldwide and spending on
cybersecurity aggregately surpasses $1 trillion approximately
in the coming five years globally.

Despite having enormous financing in the field of IDSs,
the losses brought by the intrusions are soaring at an alarm-
ing rate leading to enormous debt revenues to the organiza-
tions. Considering the efficiency of the IDS, there should be
an analytical and stringent proceeding to be acclimated so
that network susceptibilities can be classified in a precise
and accurate fashion. In past decades, the IDS has been the
blocking source for ever-growing intrusion violations and it
is utilized as a primary prevention method against computer
attacks, safeguarding networks and computer systems. IDS
employs statistical techniques, logical operation, and
machine learning approaches to analyze distinct kinds of net-
work behaviors [48]. Although present-day IDSs are cer-
tainly effective and pursue upgrades, they still develop
numerous false alarm rates and fail to analyze the unidenti-
fied attacks. Utmost IDSs rely upon inappropriate and
redundant inferior level network data to observe cyber intru-
sions [49]. At two layers of supervision, the existing intrusion
detection approaches work to counter the cyberattacks, the
host, and the network level. NIDS audits the details of N/W
connections to identify the cyberattacks. Contrarily, HIDS
scans the workstations’ stature and internals of the comput-
ing structure utilizing definitive IDS techniques so that at
the host level, the potential intrusions can be detected. NIDS
is the operating system and platform-independent that does
not require any modification when NIDS operates. This
makes NIDS more scalable and robust compared with HIDS.

Machine learning analysts classify IDS within three
extensive categories: anomaly-based, signature-based, and
hybrid-based [50]. The anomaly-based IDS employs the
new action profiles which are created every time to distin-
guish the deviation of outliers from the new profiles.
Anomaly-based IDS depends on analytical methods to
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constitute an attack predictor model. The attack that does not
have predefined signatures is recognized by the anomaly-
based IDS as its main strength. However, a major weakness
lies in the difficulty in creating new action profiles every time.
Moreover, the deviations of outliers from the new profiles
always are not an attack. Failing to analyze the perimeters
of new actions leads to the false prediction of new actions
as an attack, possibly ending in a high false-positive rate.
The signature-based intrusion detection systems evaluate
resemblance among occurrences under scrutiny and the
familiar attack patterns. If the patterns formerly established
are recognized, then alarms are triggered. For signature-
based IDS, e.g., the SNORT [51] is among the utmost prefer-
able, consistently adapted technique. SNORT carries out
content seeking, content resembling, and real-time traffic
investigation to recognize attacks by employing the prede-
fined precise signatures. Although these systems are definite
in analyzing the identified attack, they are incapable to per-
ceive the unidentified attack.

The hybrid-based IDS integrates the anomaly and signa-
ture detection approaches to detect attacks. However, the
computational expense of utilizing the anomaly and signa-
ture IDS that examines the N/W connections is the major
drawback of hybrid approaches. The anomaly and signature
IDS were the most preferred methods in an organization
until various weaknesses were observed leading to the devel-
opment of hybrid intrusion detection systems. Furthermore,
when Table 1 is observed related to hybrid network IDS,
most of the literature studies do not classify the dataset
according to attack types and their names leading to the dif-
ficulty in predicting the attacks individually on different net-
works. To solve this problem, a novel hybrid NIDS called
NID-Shield is proposed in the manuscript that classifies a
dataset according to different attack types.

2.3. Machine Learning Algorithms Used in This Study. Dis-
tinct machine learning algorithms such as neural network
[52], decision trees [53], k-nearest neighbor [54], and sup-
port vector machine [55] are introduced by the researchers
to attain learning on the datasets. Under the contrasting
structure of the datasets, the particular algorithms apply dis-
tinct methods for achieving higher performance from the
datasets. The relevant approach may be applied according
to the divergent form of the datasets [56]. Machine learning
algorithms such as Naive Bayes, random forest, and J48 (C
4.5) are applied in this study for analyzing the outcome of
feature selection and training of the classifier. These algo-
rithms are known to be prominent in the area of machine
learning and have proven appropriate in the process.

2.3.1. Random Forest. Random forest [57] is the sequel of tree
predictors, and every tree corresponds to the profit of ran-
dom vector that is sampled independently, and there is an
identical distribution of entire trees in the forest. In a forest,
as the tree grows larger, the generalization error coincides
to a greater extent. The generalization error from a forest
relies on the individual strengths of a tree in the forest and
correlation between each other in a forest of classifier trees.
The random forest performs sequences of inputs or the
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inputs that are randomly selected at every node so that the
accuracy can be increased. By applying this method, the cor-
relation is decreased and simultaneously yields efficacy to
forests. The random forest constructs the random features
at every node by dividing the limited number from the input
variables and electing the features randomly. In the random
forest, the tree is grown with the same procedure as the
CART [58] approach and the branch that is to be developed
is determined by the Gini index. Random forest applies bag-
ging [59] besides the selection of random features. From the
standard training dataset, a contemporary training dataset is
performed with substitution, and then, on the contemporary
training dataset with the help of random feature selection, the
tree is grown. Pruning of the tree is not performed on the
random forest; rather, the trees are grown in this approach.
Employing bagging has mainly two benefits. Firstly, the
accuracy is increased each time the random features are
enforced. Secondly, estimation of the generalization error
containing the ensemble tree combination and the correla-
tions and its intensity appraisal is provided by the bagging.
The assessment is carried out-of-bag [60]. The main
approach behind the out-of-bag estimation is the incorpora-
tion of nearly one-third of classifiers from the continuing
prevailing sequence. Whenever the statistic of the sequence
is incremented, the rate of error declines. Therefore, the con-
temporary error rate can be augmented by out-of-bag esti-
mation; hence, it is necessary to pass on from the area
where the merging of the error occurs. In the cross-valida-
tion, there is a high probability of the existence of bias; also,
the degree of extent of the bias is unfamiliar, whereas the
out- of-bag estimation is free from bias. The random forest
applies two-thirds of the data and for testing one-third of
the data from training data, to grow the tree. Out-of-bag data
is simply the one-third data from the training data. Pruning
is not performed by the random forest which thus aids in fast
and high performance. Moreover, having the multiple tree
construction, the random forest performs reasonably well
with additional tree framework and it achieves a higher
performance rather than any other decision tree method.

2.3.2. Naive Bayes. Naive Bayes [61] is the classifier having
the probabilistic nature, having the relationship relevant to
Bayes belief with the strong expectation, and having naive
independence between its features. With the kind of probabi-
listic analysis, the Naive Bayes represent the knowledge. In
mathematical terms, the Naive Bayes can be defined as

where R and S are the events and P(R) and P(S) are the
events.

P(R/S) is the posterior probability, having the probability
of observation of the event R, given that the S is true. P(R)
and P(S) are called the prior probabilities of R and S. P(S/R
) is called likelihood, the probability of observation of an
event S, given that R is true. The Naive Bayes version that is
applied in this study is the implementation by [62]. The
nominal feature probabilities are approximated from the
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F1Gure 1: The simplified block diagram of hybrid NID-Shield NIDS according to various attack types.

given data and the Gaussian distribution. The highly appar-
ent class for the given instance based on the entire data distri-
bution is predicted by the Bayes classifier or Bayes rule.
Whenever the log probabilities are applied, the Naive Bayes
is easy to understand. There are added scoring objectives
and natural expression capabilities found in the log probabil-
ities. High accuracy can be obtained from the Bayes classifier.
Whenever the redundant features have been eliminated, the
performance of the Naive Bayes improves considerably, as
discussed by Langley and Sage [63]. Moreover, when modest
dependencies prevail in the data, the Naive Bayes performs
exceptionally, as discussed by Domingos and Pazzani [64].
A minimal execution time is needed from Naive Bayes to
train the data.

2.3.3. J48(C4.5) Decision Tree Generator. C4.5 [65] decision
tree is applied in this study. C4.5 is a descendent of an ID3
algorithm. C4.5 is commonly known as J48 in the Weka
library. C4.5 constructs the decision trees, and the pruning
is performed on the decision trees with the help of the top-

down method. The construction of the trees is performed
by C4.5 by finding the feature sets having distinct best char-
acteristics so that on the root node of a tree, the testing of the
features can be performed. The nodes of the tree relate to its
features and branches that relate to its values. The leaf of the
tree is reciprocal to the classes, and to classify the new
instance, one needs to analyze the features that are tested at
the nodes of the tree and pursue the branch corresponding
to the values noticed in an instance. The process gets termi-
nated, whenever it arrives at the leaf and also the nomination
of the class to its instance.

The greedy approach is used by C4.5 to construct the
decision trees which applies the information-theoretic esti-
mates. For obtaining the attribute for tree root, this algorithm
splits the instances of the training into subsets which coin-
cides with the attributes corresponding amount. If there is
insignificant entropy among the labels of the class in a subset
corresponding to labels of the class in the entire training
dataset, gaining the information is done by dividing the attri-
bute. The gain ratio principle is enforced by C4.5 for the
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FIGURE 2: A proposed architecture of hybrid NID-Shield network intrusion detection system
TaBLE 2: Four categories of attack.
Attack category Name of attack
Denial of service (DoS) teardrop, smurf, neptune, back, land, pod
Probe satan, nmap, ipsweep, portsweep
User to root (U2R) loadmodule, buffer_overflow, rootkit
Remote to local (R2L) multihop, phf, ftp_write, warezclient, imap, guess_passwd, warezmaster
TaBLE 3: Number of instances in NSL-KDD and NSL-KDD 20% training on normal and attack type.
NSL-KDD dataset Normal Probe DoS U2R R2L Total instances
NSL-KDD training 67343 11656 45927 52 995 125973

NSL-KDD 20% training 13449 2289 9234 11 209 25192
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TaBLE 4: Features of NSL-KDD 20% dataset.
Index Feature name Type Missing Distinct Unique Mean Std. Dev.
1 duration Numeric 0 758 682 0.007 0.063
2 protocol_type Nominal 0 3 0 0.125 0.283
3 service Nominal 0 66 1 0.157 0.198
4 flag Nominal 0 11 0 0.062 0.103
5 src_bytes Numeric 0 1665 864 0 0.006
6 dst_bytes Numeric 0 3922 2377 0.001 0.017
7 land Nominal 0 2 0 0 0.009
8 wrong_fragment Numeric 0 3 0 0.008 0.087
9 urgent Numeric 0 2 1 0 0.006
10 hot Numeric 0 22 7 0.003 0.028
11 num_failed_logins Numeric 0 5 2 0 0.011
12 logged_in Numeric 0 2 0 0.395 0.489
13 num_compromised Numeric 0 28 18 0 0.012
14 root_shell Numeric 0 0 0.002 0.039
15 su_attempted Numeric 0 3 0 0.001 0.024
15 num_root Numeric 0 28 20 0 0.012
17 num_file_creations Numeric 0 20 13 0 0.013
18 num_shells Numeric 0 2 0 0 0.019
19 num_access_files Numeric 0 7 2 0.001 0.012
20 num_outbound_cmds Numeric 0 1 0 0 0
21 is_host_login Nominal 0 1 0 0 0
22 is_guest_login Numeric 0 2 0 0.009 0.095
23 count Numeric 0 466 70 0.164 0.225
24 srv_count Numeric 0 414 69 0.052 0.142
25 serror_rate Numeric 0 70 9 0.286 0.447
26 srv_serror_rate Numeric 0 56 25 0.284 0.448
27 rerror_rate Numeric 0 72 9 0.119 0.319
28 srv_rerror_rate Numeric 0 42 10 0.12 0.322
29 same_srv_rate Numeric 0 97 7 0.661 0.44
30 diff_srv_rate Numeric 0 79 14 0.062 0.179
31 srv_diff_host_rate Numeric 0 57 4 0.096 0.257
32 dst_host_count Numeric 0 256 1 0.716 0.388
33 dst_host_srv_count Numeric 0 256 1 0.451 0.434
34 dst_host_same_srv_rate Numeric 0 101 0 0.52 0.449
35 dst_host_diff_srv_rate Numeric 0 101 0 0.083 0.187
36 dst_host_same_src_port_rate Numeric 0 101 0 0.147 0.308
37 dst_host_srv_diff_host_rate Numeric 0 63 8 0.032 0.111
38 dst_host_serror_rate Numeric 0 100 5 0.286 0.445
39 dst_host_srv_serror_rate Numeric 0 88 19 0.28 0.446
40 dst_host_rerror_rate Numeric 0 101 0 0.118 0.306
41 dst_host_srv_rerror_rate Numeric 0 100 7 0.119 0.317

selection tree of the root attribute. The gain ratio principle
elects those attributes which have an average or better gain
between its distinct attributes.

By employing the algorithm iteratively, subtrees are con-
structed in this algorithm. Furthermore, the algorithm termi-
nates upon finding the likely subset that contains a distinct
class. The main distinction between C4.5 and ID3 is that
pruning is performed on decision trees by C4.5; hence, by

applying the pruning, the simplification is done on the deci-
sion trees and has the high chance of reducing the overfitting
on a training data. C4.5 performs pruning by employing the
confidence interval upper bound on the resubstitution error.
The succession of the node is preceded by the best leaf, when-
ever the error of the estimation of the leaf is situated within a
single standard deviation from the predicted error of a node.
C4.5 is considered as an efficient algorithm, whenever the
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efficacy regarding the machine learning algorithm is assessed;
also, it is fast, robust, and accurate whenever the knowledge is
brought in. Moreover, it performs well with feature subset
selection on the relevant and redundant data, thus aiding in
increasing the accuracy.

3. The Proposed Hybrid NID-Shield Network
Intrusion Detection System

This section introduces the various techniques applied by the
hybrid NID-Shield NIDS. The data preprocessing steps are
performed by applying the transformation and normaliza-
tion operations on datasets, and then, an effective hybrid fea-
ture subset selection technique called CAPPER is applied for
obtaining the accurate and highest merit feature subsets.
Finally, the hybrid NID-Shield NIDS is suggested as a whole
exclusively.

3.1. Data Preprocessing. In data preprocessing, the transfor-
mation and normalization operation is performed on NSL-
KDD 20% dataset. It can help to better expose the underlying
structure of the data to the learning algorithm and, in turn,
may result in better predictive performance.

3.1.1. Data Transformation. In the transformation operation,
the nominal values are converted to numeric values. The
IDSs are considered as the classification issue and some clas-
sification approaches are not able to handle the nominal fea-
tures [66]. In the NSL-KDD 20% dataset, the attributes such
as protocol_type, service, and flag are transformed from
nominal to numeric values and the final NSL-KDD 20%
dataset contains the entire numeric values for the classifica-
tion process.

3.1.2. Data Normalization. Data normalization is an essential
paradigm, specifically in the area of classification. The
instances are observed as a multidimensional area in the lin-
ear classification approaches. Without normalization, few
objective functions do not work accordingly due to the wide
variations of raw data. For example, if the particular feature
has wide value ranges, then the range within the points is
controlled by the distinct feature. Thus, normalization of
the numeric features needs to be done so that every feature
provides nearly proportional to the eventual distance. There-
fore, by applying the normalization, there is a significant
improvement in accuracy and speed. For this study,
minimal-maximal normalization approach is applied to the
dataset. The minimal-maximal normalization is given as

x — minimal(x)

z= (2)

[maximal(x) — minimal (x)]

The minimal-maximal normalization technique linearly
scales each feature to the interval of [0, 1]. Resizing of the
interval [0, 1] is performed by altering every feature value
such that the minimum value is 0, and then, division is per-
formed by the current maximum value. The current maxi-
mum value is the change among the initial maximum value
and minimum value which is obtained from equation (2).
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TaBLE 5: Total instances in UNSW-NB 15 training and testing
dataset.

Training dataset
(UNSW-NBI15)

Testing dataset

S.no. Total instances (UNSW-NB15)

1 Normal 56000 37000
2 DoS 12264 4089
3 Fuzzers 18184 6062
4 Analysis 2000 677
5 Worms 130 44

6 Exploits 33393 11132
7 Shellcode 1133 378
8 Generic 40000 18871
9 Reconnaissance 10491 3496
10 Backdoor 1746 583

3.2. Feature Selection Approaches. A hybrid feature subset
selection approach named CAPPER [67] is employed for fea-
ture subset selection that combines the feature subsets from
the CFS and Wrappers for the feature subset selection
method. This section introduces the CAPPER approach.

3.2.1. Correlation-Based Feature Subset Approach. CFS is the
filter method that utilizes correlation-based searching for the
appraisal of the feature subsets. The feature subset ranking is
accomplished by conferring to correlation-based searching.
The bias is accessed to those subsets which are greatly corre-
lated to its class and uncorrelated among them. This
approach ignores the features that are irrelevant and having
fewer correlations among its class. The screening is applied
to the features which are redundant and hugely correlated
among its class. The acceptance of the features is done by
the CFS when the residual features do not predict the pre-
dicted class in the instant space.

mn_¢
Fs= 7, (3)
m+m(m— 1),

where Fg is the heuristic merit of the feature subset S having
the m features, 715 is the average feature-feature intercorrela-
tion, and 7 are the feature mean class correlation. The
searching of the space is performed with the help of a best-
first approach. The high-quality subset of the features is
obtained by equation (3), which aids in reducing the dimen-
sional reduction of testing and training data. Moreover, the
numerator of equation (3) illustrates that how remarkably
the class predictability is with feature sets and the denomina-
tor denotes the redundancy between the features.

3.2.2. Wrapper Subset Selection Approach. In the Wrapper
approach, the feature subset selector is performed with the
help of an induction approach. The searching of the feature
subset space is performed with the help of backward elimina-
tion and forward selection methods. The backward elimina-
tion begins with complete feature sets and removing those
features that degrade the performance. The forward selection
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TABLE 6: Features of UNSW-NB 15 dataset.

Index Feature name Type Missing Distinct Unique Mean Std. Dev.
1 id Numeric 0 82332 82332 0.5 0.289
2 dur Numeric 0 39888 35946 0.017 0.079
3 proto Nominal 0 131 0 0 0.002
4 service Nominal 0 13 0 0.26 0.438
5 state Nominal 0 7 2 0.047 0.5
6 spkts Numeric 0 420 174 0.002 0.013
7 dpkts Numeric 0 436 205 0.002 0.01
8 sbytes Numeric 0 4489 2570 0.001 0.012
9 dbytes Numeric 0 4034 2446 0.001 0.01
10 rate Numeric 0 40616 32279 0.082 0.149
11 sttl Numeric 0 11 1 0.71 0.398
12 dttl Numeric 0 8 0 0.378 0.461
13 sload Numeric 0 42873 38993 0.012 0.034
14 dload Numeric 0 40614 37491 0.03 0.115
15 sloss Numeric 0 253 101 0.001 0.012
15 dloss Numeric 0 311 124 0.001 0.01
17 sinpkt Numeric 0 39970 36718 0.013 0.103
18 dinpkt Numeric 0 37617 34993 0.002 0.022
19 sjit Numeric 0 39944 37503 0.004 0.038
20 djit Numeric 0 38381 36358 0.001 0.008
21 swin Nominal 0 11 9 0.523 0.499
22 stcpb Numeric 0 39219 37322 0.253 0.324
23 dtcpb Numeric 0 39108 37295 0.25 0.322
24 dwin Numeric 0 14 11 0.503 0.5
25 teprtt Numeric 0 26130 22613 0.015 0.03
26 synack Numeric 0 24934 20749 0.009 0.022
27 ackdat Numeric 0 24020 19622 0.009 0.019
28 smean Numeric 0 1282 178 0.078 0.141
29 dmean Numeric 0 1222 236 0.078 0.163
30 trans_depth Numeric 0 8 4 0.001 0.004
31 response_body_len Numeric 0 1190 809 0 0.007
32 ct_srv_src Numeric 0 57 0 0.138 0.179
33 ct_state_ttl Numeric 0 7 1 0.228 0.178
34 ct_dt_ltm Numeric 0 50 1 0.082 0.145
35 ct_src_dport_ltm Numeric 0 50 1 0.068 0.145
36 ct_dst_sport_ltm Numeric 0 33 1 0.072 0.16
37 ct_dst_src_ltm Numeric 0 57 0 0.104 0.184
38 is_ftp_login Numeric 0 0 0.004 0.046
39 ct_ftp_cmd Numeric 0 0 0.004 0.046
40 ct_ftw_http_mthd Numeric 0 0 0.008 0.04
41 ct_src_ltm Numeric 0 50 1 0.093 0.145
42 ct_srv_dst Numeric 0 57 0 0.134 0.182
43 is_sm_ips_ports Numeric 0 2 0 0.011 0.105
44 attack_cat Nominal 0 10 0 0.074 0.261
45 label Numeric 0 2 0 0.551 0.497
begins with empty feature sets and starts adding the good fea- ~ appraisal function, the five fold cross-validation approach is

tures. The goal of this approach is to obtain the state with the =~ performed, and it is replicated numerous times by examining
highest appraisal by applying the heuristic function. For the = the accuracy estimation and its standard deviation. The k
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-fold cross-validation is also called an out-of-sample test or
rotation estimation. S is the original sample, which splits into
folds of S}, S,, S;,....S,, relatively identical size every time ¢t €
{1,2,. -+, k} trained on S\ S, and tested on S,. The induction
approach is tested and trained k times. The estimation of the
cross-validation accuracy is the comprehensive figure of
accurate classifications divided from the total instances from
the dataset. Let S; is the testing set that contains the instances
p; =<v; q; > then, the estimation of cross-validation accu-
racy is obtained as

acc,, = ! Y SIS\ Su ), qy). (4)

n <v,g;>€S

The best-first approach is applied as the search tech-
nique. Upon arriving at the goal, the best-first search usually
terminates. The accuracy estimation is obtained from equa-
tion (4). By combining the feature subsets from Wrapper
and CFS approaches, CAPPER attains the accurate and
high-quality feature subsets.

3.3. Ensemble Learning. Ensemble learning [68] was initially
evolved in automated decision-making systems to lessen
the variance and thus increase the accuracy. The problems
in machine learning domains such as error correction, esti-
mation confidence, missing features, and cumulative learning
are strongly addressed by ensemble learning techniques.
Ensemble learning is widely used in the area of pattern recog-
nition, artificial intelligence, machine learning, data mining,
and neural networks. Ensemble learning has proved its effi-
ciency and functionality in an extensive area of real-world
problems.

The ensemble learning combines various base learners or
weak learners and integrates them to make a strong learner.
The superiority of ensemble learning is that it increases the
accuracy of the weak learning system so that the comprehen-
sive accuracy of the classifier on the training datasets is
increased as compared to the single base learning algorithms.

3.3.1. Stacking. In stacking [69], the cardinal classifier obtains
anew dataset from the original datasets. If the same instances
are generated from the original dataset by the cardinal classi-
fier, then there is high speculation that the data gets over-
fitted, which is the primary reason the datasets with
contemplating nature need to be obtained for discarding
the overfitting of the data. There is a suggestion to use the
cross-validation approach for the new instances of the cardi-
nal classifier; also, the group of features has to be considered
for the contemporary training dataset and the different cate-
gories of the learning algorithms on the Meta-learner. Dis-
tinct learning algorithms are applied for obtaining the
cardinal learner. Then, the new datasets are used with
Meta-learner to train the data. Stacking is the induction of
numerous machine learning approaches.

3.4. k-Fold Cross-Validation. Cross-validation techniques are
frequently mentioned as test/train holdout approach by the
researchers. In the k-fold cross-validation [70], the repetition
on the dataset is performed k times. At every round, the data-
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TaBLE 7: Confusion matrix.

Predicted negative Predicted positive

Class

class class
Actual negative P TN
class
Actual positive TP EN

class

set is split into k parts; one part is applied for the validation
and the residual k-1 parts of the datasets are combined into
a training subset for appraisal of the model. In k-fold cross-
validation, a complete set of testing and training data is used,
and the main idea of this technique is to lessen the fatalistic
bias by applying the major number of training data while
keeping the large testing datasets separately. The folds of
the test data do not overlap each other. In k-fold cross-valida-
tion, each of the samples is applied for validation. Sometimes,
it is necessary to choose the exact value of k to avoid the high
bias in the model. Usually, the value of k=10 is chosen
mostly, as the various experimental results show that the
model has small bias and low variance whenever this value
is applied. The results from this approach are then combined
or averaged to generate the distinct estimation.

3.5. The Proposed Hybrid NID-Shield Network Intrusion
Detection System Using Hybrid Feature Selector. The prelim-
inary design approach behind the hybrid NID-Shield is the
classification of datasets according to different attack types.
The advantage of classification of the dataset according to
attack types is that it can find a set of arbitrary features.
Moreover, the attack names found in the attack types help
in predicting the vulnerability of individual attacks in various
networks. Distinct machine learning algorithms are analyzed
as per the individual attack types. The machine learning algo-
rithms having high accuracy; low FPR are selected for differ-
ent attack types and applied in the designing of the hybrid
NID-Shield NIDS. The hybrid NID-Shield NIDS applies the
hybrid approach called CAPPER for selecting the optimal
feature subsets. The hybrid CAPPER approach for feature
selection combines the optimal feature subsets from the
CFS and Wrappers for the feature subset selection method.
From the CFS approach, a prominently superior feature sub-
set is obtained which is independent of irrelevant and redun-
dant features. The wrapper method uses induction learning
algorithms to attain a highly accurate feature subset. By com-
bining the filter and wrapper approaches, high merit and
accurate feature subsets are obtained which is then applied
for training and testing purposes.

For designing the hybrid NID-Shield NIDS, single and
ensemble learning algorithms are used together so that a
high-performance rate and lower FPR can be achieved. Test-
ing is performed with single and ensemble learning algo-
rithms; it has been found that ensemble learning achieved
high-performance results, where the NSL-KDD 20% having
fewer samples in some of its attack types. The high-
performance classifier is determined for different attack
types, and for the classifier performance, the k-fold cross-
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TasLE 8: DOS attack evaluated with hybrid NID-Shield NIDS approach.

Total instances
Correctly classified instances
Incorrectly classified instances

Execution time

22,683
22,679 (99.98%)
4(0.00176%)
6.77 seconds

Kappa measures 0.9997
MAE 0.0003
RMSE 0.0081
RAE 0.2207%
RRSE 2.9778%
Accuracy TPrate  FPrate  Precision Recall ~ F-measure = MCC  ROCarea  PRCarea Class
100% 1.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000 normal
100% 1.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000 back
100% 1.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000 land
100% 1.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000 neptune
94.7% 0.947 0.000 0.973 0.947 0.960 0.960 1.000 0.997 pod
99.6% 0.996 0.000 0.998 0.996 0.997 0.997 1.000 1.000 smurf
100% 1.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000 teardrop
Weighted Avg. 100% 1.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000
()

Confusion matrix
a b c d e f g
13,449 0 0 0 0 0
0 196 0 0 0 0
0 0 4 0 0 0
0 0 0 8279 0 0 0
0 0 1 36 1 0
0 0 0 2 527 0
0 0 0 0 0 188

a—classified as normal, b—classified as back, c—classified as land, d—classified as neptune, e—classified as pod, f—classified as smurf, g—classified as

teardrop.

validation approach is applied. The advantage of this method
is that all observations are used for training and validation,
and each observation is used for validation exactly once.
For the classification problem, a cross-validation technique
with 10-fold is applied. The folds are selected in a manner
such that every fold consists of the approximately identical
distribution of the class. To test the network data according
to attack type, the various attack type data are passed to dif-
ferent layers of the hybrid NID-Shield NIDS; the high-
performance classifier determines the data as normal or
attack type. Figure 1 depicts the simple block diagram of
the hybrid NID-Shield network intrusion detection system
and Figure 2 displays the architecture of the hybrid NID-
Shield NIDS.

Accuracy

normal
back
land
neptune
pod
smurf
teardrop

FIGURE 3: Accuracy of the normal and attack types evaluated by the
NID-Shield NIDS on DoS attack.
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FI1GURE 4: TP rate of the normal and attack types evaluated by the
NID-Shield NIDS on DoS attack.
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FIGURE 7: Recall of the normal and attack types evaluated by the
NID-Shield NIDS on DoS attack.
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FIGURE 5: FP rate of the normal and attack types evaluated by the
NID-Shield NIDS on DoS attack.

Precision
1
0.98
0.96
0.94 |
0.92 |
0.9 T T T
T YT TR OYTOB
3
i E g
=) ) @ <
= 2

FIGURE 6: Precision of the normal and attack types evaluated by the
NID-Shield NIDS on DoS attack.

4. Dataset Characteristics

For the performance of the hybrid NID-Shield NIDS, two
contemporary UNSWNB-15 and NSL-KDD 20% datasets
are utilized for evaluation purposes. These datasets are
related to cybersecurity and are high-dimensional and class
imbalanced datasets [71]. For the NSL-KDD dataset, the sta-
tistical prevalence of around 36% was found in denial of ser-
vice (DoS), while for other attack types like Root to Local
(R2L) and User to Root (U2R), the prevalence is lesser than
1%. This shows that NSL-KDD is a highly imbalanced data-

FIGURE 8: F-measure of the normal and attack types evaluated by
the NID-Shield NIDS on DoS attack.

set. For the UNSW-NBI5 dataset, the normal class frequency
is about 32%, while attack type frequency is very few and dif-
fers highly. For example, Worms and Exploits attack patterns
vary around 257 times. This reflects that UNSW-NBI15 is a
highly imbalanced dataset.

4.1. NSL-KDD Dataset. From DARPA 98 intrusion detection
system appraisal programs, the KDD-Cup ‘99 dataset is
obtained and widely applied dataset in the domain of IDS,
but the main disadvantage of the KDD-Cup ‘99 datasets
has various duplicate and redundant records. The duplicate
records have a total of 75%. The redundant record has a total
of 78%. Due to this duplication and redundant information
hinders from categorizing the additional records [72]. A
new NSL-KDD dataset was suggested [73] that does not con-
tain the duplicate and redundant records in testing and train-
ing data [74], which aided in removing the duplicate and
redundant issues which is an implicit issue in KDD-Cup ‘99
dataset. The arrangements of elected records from every
adversity class level are inversely proportional to the percent
of records available in the standard KDD datasets. With these
results, the classifying rates of apparent machine learning
approaches differ in an extensive range that makes it more
efficient to obtain a precise appraisal of distinct learning
approaches. The statistical records in the training and testing
sets are feasible that causes it to be reasonable to conduct the
experiments on an entire set, thus preventing the unneces-
sary need to randomly select the limited part. Therefore,
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TABLE 9: Probe attack evaluated with hybrid NID-Shield NIDS approach without stacking.
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(a)
Total instances 15,738
Correctly classified instances 15,685
Incorrectly classified instances 53
Execution time 4.23 seconds
Kappa measures 0.9872
MAE 0.0034
RMSE 0.0343
RAE 3.1818%
RRSE 14.9173%

(b)
Accuracy TP rate  FPrate  Precision  Recall F-measure @ MCC ROCarea  PRC area Class
99.9% 0.999 0.016 0.997 0.999 0.998 0.988 1.000 1.000 normal
99.3% 0.993 0.000 1.000 0.993 0.997 0.996 0.999 0.998 portsweep
96.8% 0.968 0.000 0.999 0.968 0.983 0.982 0.999 0.996 satan
99.3% 0.993 0.001 0.989 0.993 0.991 0.990 1.000 0.996 ipsweep
95.3% 0.953 0.000 0.976 0.953 0.965 0.964 0.998 0.992 nmap
Weighted Avg.  99.7% 0.997 0.014 0.997 0.997 0.997 0.988 1.000 0.999

(c)

Confusion matrix

a b d e
13441 0 0 3
2 593 0 0
4 0 1 2
2 0 718 2
0 0 3 287

a—classified as normal, b—classified as portsweep, c—classified as satan, d—classified as ipsweep, and e—classified as nmap.

the classified results will be persistent and proportionate.
There are entirely 37 attacks in a testing dataset out of which
21 different attacks are of training dataset and the remaining
attacks are available only for testing the data. Table 2 shows
the four categories of attack. Table 3 depicts the total number
of instances on the distinct attack types and normal and on
the NSL-KDD and 20% of the NSL-KDD training dataset.
The attack classes are categorized into Probe, DoS, U2R,
and R2L categories, and Table 4 shows the features of the
NSL-KDD 20% dataset.

(i) Denial of service (DoS). These kinds of attack result
in the unavailability of computing resources to legit-
imate users. The intruder overloads the resources, by
accomplishing the resources of the computer active,
so that authentic users are unable to utilize the full
resources of the computer. In DoS, there are 13449
normal instances and 9234 attack instances with
six attack names, namely, neptune, smurf, back,
teardrop, pod, and land

(ii) Probe. The intruder gathers the knowledge from the

networks or hosts and scans the whole networks or
hosts that are prone to attacks. An intruder then
exploits the system vulnerabilities by looking at the
known security breaches so that the whole system
is compromised for malicious purposes. In Probe,
there are 13449 normal instances and 2289 attack
instances with four attack names, namely, nmap,
ipsweep, satan, and portsweep

(iii) User to root (U2R). An intruder tries to acquire

accessing the system roots or the administrator priv-
ileges by sniffing the passwords. The attacker then
looks for the vulnerabilities in the system, to acquire
the gain of the administrator authorization. In U2R,
there are 13449 normal instances and 11 attack
instances with three attack names, namely, loadmo-
dule, buffer_overflow, and rootkit

(iv) Root to local (R2L). The intruder attempts by gaining

a connection to the remote machine, which does not
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TaBLE 10: Probe attack evaluated with hybrid NID-Shield NIDS approach with stacking.

Wireless Communications and Mobile Computing

(a)
Total instances 15,738
Correctly classified instances 15,690
Incorrectly classified instances 48
Execution time 42.99
Kappa measures 0.9884
MAE 0.002
RMSE 0.0318
RAE 1.8696%
RRSE 13.82%

(b)
Accuracy TP rate  FPrate  Precision  Recall F-measure @ MCC ROCarea  PRC area Class
99.9% 0.999 0.010 0.998 0.999 0.999 0.990 0.999 1.000 normal
99.7% 0.997 0.000 1.000 0.997 0.998 0.998 1.000 1.000 portsweep
97.7% 0.977 0.000 0.993 0.977 0.985 0.984 0.995 0.990 satan
99.3% 0.993 0.001 0.987 0.993 0.990 0.990 0.999 0.994 ipsweep
96.3% 0.963 0.001 0.967 0.963 0.965 0.964 0.997 0.986 nmap
Weighted Avg.  99.7% 0.997 0.009 0.997 0.997 0.997 0.990 0.999 0.999

(0)

Confusion matrix

a b c d e
13435 0 5 4
2 585 0 0
8 2 675 1 2
1 2 705 4
3 2 3 290

a—classified as normal, b—classified as portsweep, c—classified as satan, d—classified as ipsweep, and e—classified as nmap.

have the necessary and legal privilege to access that
machine. The attacker then exploits the susceptibil-
ity of the remote system and tries gaining access
rights to the remote machine. There are 13449 nor-
mal instances and 209 attack instances in this data-
set. There are eight attack names in this dataset,
namely, ftp_write, guess_passwd, multihop, phf,
imap, warezclient, spy, and warezmaster

4.2. UNSW-NBI15 Dataset. The UNSW-NBI15 [75] dataset
was generated at the cyber range lab by the IXIA Perfect-
Storm tool at the Center for cybersecurity, Australia. There
are 2,540,044 records in the dataset. The part of the dataset
is further divided into train and test sets. There are 82,332
records in the testing set and 1,75,341 records in the training
set, having normal and attack instances. There are 45 features
in this dataset obtained in immaculate format, including class
and label. Moreover, there are nine attack types in a UNSW-
NB15 dataset: DoS, Analysis, Backdoor, Exploit, Fuzzers,
Generic, Worm, Shellcode, and Reconnaissance and a Nor-
mal instance. Table 5 shows the total instances in UNSW-

NB 15 training and testing dataset, and Table 6 depicts the
UNSW-NB 15 dataset and its features.

For the evaluation of the proposed approach, the
machine learning workbench tool, Weka 3.8 [76], is used.
In Weka, the Wrapper approach, the CFS approach, and
the classifier algorithms like J48, Naive Bayes, and Random
forest are implemented in Java, and evaluation of code is
accomplished on Intel i3 8100 processor with 2.20 GHz hav-
ing 4.00 GB RAM and carried out on NetBeans 8.0.2.

5. Performance Metrics

For validation of the results, this section presents various
performance evaluation metrics. The researchers apply false
negative (FN), true negative (TN), true positive (TP), false
positive (EP), etc. [77] for the justification of the results.

Definition 1 (confusion matrix). Also called error metric,
which allows the interaction among actual and predicted
classes. It is significant for calculating precision, recall, accu-
racy, specificity, AUC, and ROC curve. On the testing
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FIGURE 9: Accuracy of the normal and attack types evaluated by the
NID-Shield NIDS on Probe attack.
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F1GUrE 10: TP-Rate of the normal and attack types evaluated by the
NID-Shield NIDS on Probe attack.
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FI1GURE 11: FP-Rate of the normal and attack types evaluated by the
NID-Shield NIDS on Probe attack.

dataset, the confusion matrix allows visualizing the algo-
rithms’ efficiency and is usually adapted to describe the clas-
sifier performance. Table 7 shows the confusion matrix.

Definition 2 (accuracy). The proportion of correct predic-
tions of calculating the classification instances precisely is
obtained from

TP + TN
(TN +FN + TP +FP)

(5)

acc =

FIGURE 12: Precision of the normal and attack types evaluated by the
NID-Shield NIDS on Probe attack.

Definition 3 (error rate). The proportion of whole predictions
done that are classified falsely: it is given by

ERR =1 - acc. (6)

Definition 4 (true positive). The intrusions are accurately
classified as an attack by the intrusion detection systems. It
is also called sensitivity, recall, or detection rate. It is obtained
from

TP

TPR= ————.
TP + EN

(7)
Definition 5 (false positive). The usual patterns which are
misclassified as attacks and calculated as

FP

FPR= — .
FP+ TN

(8)

Definition 6 (true negative). The usual patterns that are pre-
cisely analyzed as normal and obtained from

TNR =1 - FPR. (9)

Definition 7 (false negative). The intrusions misclassified as
normal and obtained from

FNR =1 - TPR. (10)

Definition 8 (precision). The behaviors that are exactly
arrayed as attacks and given by

TP

—_—. 11
FP + TP (1)

Precision =

Definition 9 (F-measure). It is interpreted as the harmonic
mean of recall and precision. Also known as F-score or F
-value and calculated as

precision x recall
X

FM =2 (12)

precision + recall -

Definition 10 (Matthews’s correlation coefficient). Applied
only in the binary intrusion detection system in which it
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computes the observed and predicted values of binary classi-
fication. It is calculated by

M- (TPXTN) — (FPXFN)
~ /(TP + FP)(TP + EN)(TN + FP)(TN + FN) |

(13)

Definition 11 (kappa statistic). It is applied to calculate the
concurrence between observed and predicted values of the
datasets, while the concurrence is corrected that occurs unex-
pectedly. It is calculated by
k= p 0 P e , (1 4)
1 —Pp.

where p,, is the comparative noticed concurrence between the
estimates and p, is the assumed likelihood of possible
concurrence.

Definition 12 (mean absolute error). It is the averaging of the
magnitude of the distinctive error and the computing the
standard of absolute errors. It is calculated as

MAE = |p1_a‘|+':|P”_a"|, (15)

where p, is the value predicted on the test instances and a, is
the actual value.

Definition 13 (root mean-squared error). The RMSE calcu-
lates the dissimilarities among observed values and predicted
values of a model. It is given by

RMSE V(pl “a)ttp,ma) o

n

where p, is the value predicted on the test instances and a, is
the actual value.

Definition 14 (relative absolute error). The errors are normal-
ized from the errors of simple predictors in which the average
value is predicted. It is calculated as

RAE= @il P, (17)
la, —al+-+la, —al

where p, is the value predicted on the test instances and 4, is
the actual value.

Definition 15 (root relative squared error). It normalizes the
total squared error by division of the total squared error from
the simple predictor. It is obtained from

@1 _a1)2+---+(pn_an)2 (18)

RRSE = ) —5
(al —a)*+---+(a,—a)
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FIGURE 13: Recall of the normal and attack types evaluated by the
NID-Shield NIDS on Probe attack.
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FIGURE 14: F-measure of the normal and attack types evaluated by
the NID-Shield NIDS on Probe attack.

where p, is the value predicted on the test instances and 4, is
the actual value.

Definition 16 (AUC and ROC). ROC explains detection ratio
changes in contrast to its internal verge to develop a high or
low FPR. The larger the AUC values, the better the perfor-
mance of the classifier.

5.1. Performance Evaluation with NSL-KDD 20% according
to Attack Types. This section evaluates the DOS, Probe,
U2R, and R2L, the types of attack of the NSL-KDD 20% data-
set. The NID-Shield NIDS is assessed with J48 as an attribute
selection approach, and finally, the selected attributes are
appraised with a machine learning algorithm as a classifier.

5.1.1. Evaluation of DoS Attack with Normal and Attack
Instances on Hybrid NID-Shield NIDS

(1) DoS Attack Evaluated with Hybrid NID-Shield NIDS. The
following algorithms were applied for evaluation of feature
subsets: attribute evaluator: CAPPER, attribute evaluator
algorithm: J48, search method: best first, classifier evaluator:
random forest.

The CAPPER evaluated subsets are as follows: 3, 4, 5, 6, 7,
8, 10, 12, 23, 24, 25, 29, 30, 36, 38, and 41.

In this section, the DoS attack is evaluated by the hybrid
NID-Shield NIDS on the DoS attack dataset. The CAPPER
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TaBLE 11: U2R attack evaluated with hybrid NID-Shield NIDS approach.

(a)
Total instances 13,460
Correctly classified instances 13,460
Incorrectly classified instances 0
Execution time 1.86 seconds
Kappa measures 1
MAE 0.0003
RMSE 0.0066
RAE 11.2411%
RRSE 19.9452%

(b)
Accuracy TPrate FPrate Precision Recall F-measure MCC ROCarea PRCarea Class
100% 1.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000 normal
100% 1.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000 buffer_overflow
100% 1.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000 loadmodule
100% 1.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000 rootkit
Weighted Avg.  100% 1.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000

(c)

Confusion matrix

a b c d
13423 0 0
0 7 0
0 0 13 0
0 0 0 17

a—classified as normal, b—classified as buffer_overflow, c—classified as loadmodule, and d—classified as rootkit.

feature selector obtains the highest merit and accurate feature
subsets from the combination of CFS and Wrapper
approaches. Table 8 depicts the metrics of the DoS attack
with its attack names classified individually. In the DoS, there
are six attacks, namely, neptune, back, land, smurf, pod, and
teardrop, and the normal instances. Figure 3 shows that the
NID-Shield NIDS achieved an accuracy of 100% on the nor-
mal instances and 100% accuracy on the attack names such
as land, back, teardrop, and neptune, while on the names of
the attack such as pod and smurf, the NID-Shield NIDS
achieves an accuracy of 94.7% and 99.6%, respectively. Over-
all, the weighted average of the accuracy of the normal and
attack names is calculated; the NID-Shield NIDS achieves
100% accuracy on normal and all the attack types. Figure 4
shows the NID-Shield NIDS achieved a TP rate of 1.000 on
the normal instances and a TP rate of 1.000 on attack names
such as land, back, teardrop, and neptune, while on the attack
names such as pod and smurf, the NID-Shield NIDS achieves
a TP rate of 0.947 and 0.996, respectively. Overall, the
weighted average of the TP rate is measured on normal and
all attack names; the NID-Shield NIDS achieves 100% TP
rate on normal and all attack names. Figure 5 depicts the
FP rate evaluated by the NID-Shield NIDS on normal and

attacks names, the NID-Shield NIDS achieves a 0.000 false-
positive rate on all attack names, and an FP rate of 0.000 is
achieved on the normal instance.

Figure 6 illustrates the precision of the NID-Shield NIDS
which is assessed with normal and attack names. The NID-
Shield NIDS obtained a precision of 1.000 on all normal
instances and a precision of 1.000 on attack names such as
neptune, back, land, and teardrop, while the precision of
0.998 and 0.973 is obtained on smurf and pod attack by the
NID-Shield NIDS. Overall, a weighted average of 1.000 is
obtained on precision for normal instances and attack names.
Figure 7 depicts the recall appraised with NID-Shield NIDS
on normal and attack names, the normal instances achieve
a recall of 1.000 by the NID-Shield NIDS, and the attack
names such as neptune, land, back, and teardrop achieve a
recall of 1.000 by the NID-Shield NIDS, while the NID-
Shield NIDS achieves a recall 0.996 and 0.947 on the attack
names such as smurf and pod, respectively. Overall, the
weighted average of recall is appraised for normal and all
types of attack names; the NID-Shield NIDS obtained a recall
of 1.000 on normal and attack names. Figure 8 depicts the F
-measure of the NID-Shield NIDS appraised with the normal
and attack names; the NID-Shield NIDS achieves an F



24
Accuracy
100
991 -
98 1 - M - - - - -
97 4- - - - - - - -
961 B - - -
95 4 T T T
= z <t biv]
g < 5 2
) o =} o)
= > g =
S 3
@ —
=}
5

FIGURE 15: Accuracy of the normal and attack types evaluated by the
NID-Shield NIDS on U2R attack.
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F1GURE 16: TP-Rate of the normal and attack types evaluated by the
NID-Shield NIDS on U2R attack.
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FIGURE 17: FP-rate of the normal and attack types evaluated by the
NID-Shield NIDS on U2R attack.

-measure of 1.000 on normal instances and attack names
such as neptune, land, back, and teardrop; and the NID-
Shield NIDS achieves an F-measure of 1.000, while for attack
names such as smurf and pod, the NID-Shield NIDS obtains
the F-measure of 0.997 and 0.960, respectively. Overall, the
weighted average is appraised for F-measure on normal
and all attack names; the NID-Shield NIDS obtained an F
-measure of 1.000 on normal and attack names. For the
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FIGURE 18: Precision of the normal and attack types evaluated by the
NID-Shield NIDS on U2R attack.
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MCC, the NID-Shield NIDS is appraised with the normal
and attack names; the NID-Shield NIDS achieves an MCC
of 1.000 on normal instances and with attack names such
as neptune, back, land, teardrop; and the NID-Shield NIDS
achieves an MCC of 1, while for attack names such as smurf
and pod, the NID-Shield NIDS obtains the MCC of 0.997 and
0.960, respectively. Overall, the weighted average of MCC is
measured for normal and on all attack names; the NID-
Shield NIDS obtained an MCC of 1.00, respectively.

For the ROC area, the NID-Shield NIDS achieves an
overall 1.000 on normal and all attack names, respectively.
For the PRC area, the NID-Shield NIDS obtained a 1.000
on normal instances, while for attack names such as land,
back, teardrop, smurf, and neptune, the NID-Shield NIDS
obtained a PRC area of 1.000 and for attack names called
pod, the NID-Shield NIDS obtained a PRC area of 0.997.
Opverall, the weighted average is calculated for the PRC area
on normal and all attack names; the NID-Shield NIDS
achieved a PRC area of 1.000 on normal and all attack names.

5.1.2. Evaluation of Probe Attack with Normal and Attack
Instances on Hybrid NID-Shield NIDS

(1) Probe Attack Evaluated with Hybrid NID-Shield NIDS.
The following algorithms were applied for evaluation of fea-
ture subsets: attribute evaluator: CAPPER, attribute evaluator
algorithm: J48, search method: best first, classifier evaluator:
random forest.

The CAPPER evaluated subsets are as follows: 2, 3, 4, 12,
24,27, 29, 31, 32, 35, 36, 37, and 40.

In this section, the Probe attack is evaluated with the
hybrid NID-Shield NIDS on the Probe attack dataset. The
stacking is applied for further improvement of the metrics.
The stacked ensemble applies the random forest plus the
Naive Bayes as a base classifier. Table 9 shows the Probe
attack evaluation metrics without stacking ensemble, and
Table 10 shows the evaluation of the Probe attack with a
stacked ensemble. A considerable improvement in the FP
rate is noticed when the NID-Shield NIDS is evaluated with
a stacked ensemble. In the Probe attack, there are four
attacks, namely, portsweep, satan, ipsweep, and nmap, and
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the normal instances. Figure 9 shows that the NID-Shield
NIDS achieved an accuracy of 99.90% on the normal
instances and for the attack names such as portsweep, satan,
ipsweep, and nmap, the NID-Shield NIDS achieved an accu-
racy of 99.7%, 97.7%, 99.3%, and 96.3%, respectively. Overall,
the weighted average of accuracy is calculated on normal and
attack names; the NID-Shield NIDS obtains 99.7% accuracy
on normal and on all attack names.

Figure 10 depicts that the NID-Shield NIDS achieved a
TP rate of 0.999 on the normal instances and attack names
such as portsweep, satan, ipsweep, and nmap; the NID-
Shield NIDS achieved an accuracy of 0.997, 0.977, 0.993,
and 0.963, respectively. Overall, the weighted average of the
TP rate is measured on normal and attack names; the NID-
Shield NIDS achieves a TP rate of 0.997 on normal and all
attack names. Figure 11 depicts the FP rate evaluated by the
NID-Shield NIDS on normal and attacks names; the NID-
Shield NIDS achieves a 0.000 false-positive rate on attack
names such as portsweep and satan; and for other attack
names like ipsweep and nmap, the NID-Shield NIDS obtains
an FP rate of 0.001, respectively. For the normal instance, an
FPR of 0.010 is achieved by the proposed NIDS. Figure 12
depicts that the precision of the NID-Shield NIDS is assessed
with normal and attack names. The NID-Shield NIDS
achieves a precision of 0.998 on normal instances, and for
attack names such as portsweep, satan, ipsweep, and nmap,
the NID-Shield NIDS achieved a precision of 1.000, 0.993,
0.987, and 0.967, respectively.

Figure 13 depicts the recall appraised with NID-Shield
NIDS on normal and attack names; the normal instances
achieve a recall of 0.999, while for the attack names such as
portsweep, satan, ipsweep, and nmap, the NID-Shield NIDS
achieves a recall of 0.997, 0.977, 0.993, and 0.963, respec-
tively. Overall, a weighted average of the recall is appraised
for normal and on all types of attack names; the NID-
Shield NIDS obtains a recall of 0.997. Figure 14 illustrates
the F-measure of the NID-Shield NIDS assessed with the
normal and attack names, the NID-Shield NIDS achieves
an F-measure of 0.999 on normal instances, and on attack
name types such as portsweep, satan, ipsweep, and nmap,
the NID-Shield NIDS achieves an F-measure of 0.998,
0.985, 0.990, and 0.965, respectively. Overall, the weighted
average is appraised for F-measure on normal and on all
types of attack names; the NID-Shield NIDS obtained an F
-measure of 0.997. For the MCC, the NID-Shield NIDS is
appraised with the normal and attack names, the NID-
Shield NIDS achieves an MCC of 0.990 on normal instances,
and with attack names such as portsweep, satan, ipsweep, and
nmap, the NID-Shield NIDS achieves an MCC of 0.998,
0.984, 0.990, and 0.964, respectively.

Overall, the weighted average of MCC is calculated for
normal and on all attack names; the NID-Shield NIDS
obtained an MCC of 0.990, respectively. The NID-Shield
NIDS obtained a ROC of 0.999 on normal instances, and
with attack names such as portsweep, satan, ipsweep, and
nmap, the NID-Shield NIDS achieves a ROC area of 1.000,
0.995, 0.999, and 0.997, respectively. Overall, the weighted
average of 0.999 is obtained by the NID-Shield NIDS in the
ROC area. For the PRC area, the NID-Shield NIDS achieves
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FIGURE 19: Recall of the normal and attack types evaluated by the
NID-Shield NIDS on U2R attack.
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FIGURE 20: F-measure of the normal and attack types evaluated by
the NID-Shield NIDS on U2R attack.

1.000 on normal instances, and with attack names such as
portsweep, satan, ipsweep, and nmap, the NID-Shield NIDS
achieves a PRC area of 1.000, 0.990, 0.994, and 0.986, respec-
tively. Overall, a weighted average is appraised for the PRC
area; the NID-Shield NIDS achieves a PRC area of 0.999,
respectively.

5.1.3. Evaluation of U2R Attack with Normal and Attack
Instances on Hybrid NID-Shield NIDS

(1) U2R Attack Evaluated with Hybrid NID-Shield NIDS. The
following algorithms were applied for evaluation of feature
subsets: attribute evaluator: CAPPER, attribute evaluator
algorithm: J48, search method: best first, classifier evaluator:
random forest.

The CAPPER evaluated subsets are as follows: 3, 4, 6, 9,
10, 13, 14, 17, 18, 33, and 36.

In this section, the U2R attack is evaluated by the hybrid
NID-Shield NIDS on the U2R attack dataset. Table 11 shows
the metrics of the U2R attack with the three attack names in
the U2R attack, namely, buffer_overflow, loadmodule, and
rootkit. Figure 15 shows that the NID-Shield NIDS achieved
an accuracy of 100% on the normal instances and all attack
types. Figure 16 shows the NID-Shield NIDS achieved a TP
rate of 1.000 on the normal instances and all attack names.
Figure 17 depicts the FP rate evaluated by the NID-Shield
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TaBLE 12: R2L attack evaluated with hybrid NID-Shield NIDS approach.

(a)
Total instances 13,658
Correctly classified instances 13,648
Incorrectly classified instances 10
Execution time 1.92 seconds
Kappa measures 0.9758
MAE 0.0005
RMSE 0.0118
RAE 7.3124%
RRSE 20.4253%

(b)
Accuracy TP rate  FPrate Precision Recall F-measure MCC ROCarea PRC area Class
100% 1.000 0.019 1.000 1.000 1.000 0.978 1.000 1.000 normal
100% 1.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000 ftp_write
100% 1.000 0.000 0.875 1.000 0.933 0.935 1.000 0.982 imap
100% 1.000 0.000 0.900 1.000 0.947 0.949 1.000 1.000 phf
100% 1.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000 multihop
100% 1.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000 warezmaster
97.4% 0.974 0.000 0.974 0.974 0.974 0.974 1.000 0.999 warezclient
91.7% 0917 0.000 1.000 0917 0.957 0.957 1.000 0.969 spy
100% 1.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000 gess_passwd
Weighted Avg. 99.99% 0.999 0.019 0.999 0.999 0.999 0.978 1.000 1.000

(0)

Confusion matrix

a b c d e f g h i
13444 0 0 0 0 0 0 0 0
0 5 0 0 0 0 0 0 0
0 0 7 0 0 0 0 0 0
0 0 0 9 0 0 0 0 0
0 0 0 0 6 0 0 0 0
0 0 0 0 0 12 0 0 0
0 0 0 0 0 0 150 0 0
0 0 1 0 2 0 0 11 0
0 0 0 1 0 4 0 4

a—classified as normal, b—classified as ftp_write, c—classified as imap, d—classified as phf, e—classified as multihop, f—classified as warezmaster, g
—classified as warezclient, h—classified as spy, i—classified as guess_passwd.

the NID-Shield NIDS achieves an F-measure of 1.000 on
normal instances and attack names.

NIDS on normal and attacks names; the NID-Shield NIDS
achieves a 0.000 false-positive rate on all attack names and

normal instances. Figure 18 depicts the precision of the
NID-Shield NIDS assessed with normal and attack names.
The NID-Shield NIDS achieves a precision of 1.000 on all
normal instances and attack names. Figure 19 depicts the
recall appraised with NID-Shield NIDS on normal and attack
names the normal instances and attack names achieve a recall
of 1.000. Figure 20 illustrates the F-measure with NID-Shield
NIDS evaluated with the normal instances and attack names;

For the MCC, the NID-Shield NIDS is appraised with the
normal and attack names; the NID-Shield NIDS achieves an
MCC of 1.000 on normal instances and attack names. For the
ROC area and PRC area, the NID-Shield NIDS achieves an
overall 1.000 on normal and all attack names, respectively.

5.1.4. Evaluation of R2L Attack with Normal and Attack
Instances on Hybrid NID-Shield NIDS
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FIGURE 21: Accuracy of the normal and attack types evaluated by the
NID-Shield NIDS on R2L attack.
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FIGURE 22: TP-rate of the normal and attack types evaluated by the
NID-Shield NIDS on R2L attack.
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FI1GURE 23: FP-rate of the normal and attack types evaluated by the
NID-Shield NIDS on R2L attack.

(1) R2L Attack Evaluated with Hybrid NID-Shield NIDS. The
following algorithms were applied for evaluation of feature
subsets: attribute evaluator: CAPPER, attribute evaluator
algorithm: J48, search method: best first, classifier evaluator:
random forest.

The CAPPER evaluated subsets are as follows: 4, 5, 6, 10,
11, 17, 22, 31, 32, 33, 36, and 38.

In this section, the R2L attack is evaluated by the hybrid
NID-Shield NIDS approach on the R2L attack dataset.
Table 12 shows the evaluation metrics of the R2L attack. In
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FIGURE 24: Precision of the normal and attack types evaluated by the
NID-Shield NIDS on R2L attack.

the R2L attack, there are eight attack names, namely, ftp_
write, guess_passwd, phf, imap, warezmaster, multihop,
warezclient, and spy, and normal instance. Figure 21 shows
that the NID-Shield NIDS achieved an accuracy of 100% on
the normal instances and for attack names such as ftp_write,
guess_passwd, phf, imap, warezmaster, and multihop, the
NID-Shield NIDS achieved an accuracy of 100%, respec-
tively, while for the attack names such as warezclient and
spy, the NID-Shield NIDS achieves an accuracy of 97.4%
and 91.7%, respectively. Overall, the weighted average in
terms of accuracy is appraised for the normal and attack
names; the NID-Shield NIDS achieves 99.99% accuracy on
normal and all attack names. Figure 22 depicts that the
NID-Shield NIDS achieved a TP rate of 1.000 on the normal
instances and for the attack names such as ftp_write, guess_
passwd, phf, imap, warezmaster, and multihop, the NID-
Shield NIDS achieved a TP rate of 1.000, respectively, while
the attack names such as warezclient and spy, the NID-
Shield NIDS achieved a TP rate of 0.974 and 0.917, respec-
tively. Overall, the weighted average of the TP rate is mea-
sured on normal and an attack name; the NID-Shield NIDS
achieves a TP rate of 0.999 on normal and all attack names.
Figure 23 depicts the FP rate evaluated by the NID-Shield
NIDS on normal and attacks names; the NID-Shield NIDS
achieves a 0.000 false-positive rate on all attack names. For
the normal instance, an FPR of 0.019 is achieved. Overall, a
weighted average FP rate of 0.019 is obtained on normal
and attack names. Figure 24 shows that the precision of the
NID-Shield NIDS is evaluated with normal and attack
names. The NID-Shield NIDS achieved a precision of 1.000
on normal instances, and for attack names such as guess_
passwd, ftp_write, multihop, warezmaster, and spy, the
NID-Shield NIDS achieved a precision of 1.000, respectively,
while for attack names such as imap, phf, and warezclient, the
NID-Shield NIDS obtained a precision of 0.875, 0.900, and
0.974, respectively. Overall, a weighted average precision of
0.999 is achieved on normal and attack names. Figure 25
depicts the recall appraised with NID-Shield NIDS on nor-
mal and attack names, the normal instances achieve a recall
of 1.000, and for the attack names such as guess_passwd,
ftp_write, imap, phf, multihop, and warezmaster, the NID-
Shield NIDS achieves a recall of 1.000, respectively, while
for attack names such as warezclient and spy, a recall of
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0.974 and 0.917 is achieved by the proposed NIDS. Overall,
the weighted average of the recall is appraised for normal
and all types of attack names; the NID-Shield NIDS obtained
a recall of 0.999, respectively. Figure 26 depicts the F-mea-
sure with the NID-Shield NIDS assessed with the normal
and attack names, the NID-Shield NIDS achieves an F
-measure of 1.000 on normal instances, and with attack
names such as guess_passwd, ftp_write, multihop, and
warezmaster, the NID-Shield NIDS achieves an F-measure
of 1.000, respectively, while for attack names such as ware-
zclient, spy, phf, and imap, the NID-Shield NIDS achieves
an F-measure of 0.974, 0.957, 0.947, and 0.933, respectively.
Overall, the weighted average is calculated for F-measure
on normal and all types of attack names; the NID-Shield
NIDS obtained an F-measure of 0.999, respectively, on nor-
mal and attack names. For the MCC, the NID-Shield NIDS
is appraised with the normal and attack names, the NID-
Shield NIDS achieves an MCC of 0.978 on normal instances,
and with attack names such as guess_passwd, ftp_write, mul-
tihop, and warezmaster, the NID-Shield NIDS achieves an
MCC of 1.000, respectively, and on attack names such as
imap, phf, warezclient, and spy, the NID-Shield NIDS
obtained an MCC of 0.935, 0.949, 0.974, and 0.957, respec-
tively. Overall, a weighted average is appraised for MCC;
the NID-Shield NIDS achieves an MCC of 0.978 for normal
and attacks names. For the ROC area, the NID-Shield NIDS
achieves a 1.000 on normal instances and attack names. For
the PRC area, the proposed NID-Shield NIDS achieves a
1.000 on normal instances, and with attack instances such
as guess_passwd, ftp_write, phf, multihop, and warezmaster,
the NID-Shield NIDS achieves a PRC area of 1.000, and for
attack names such as warezclient, imap, and spy, the PRC
area obtained is 0.999, 0.982, and 0.969, respectively. Overall,
a weighted average PRC area of 1.000 is obtained by the NID-
Shield NIDS for all normal instances and attack names.

5.1.5. Evaluation of UNSW-NBI5 Dataset with Normal and
Attack Instances on Hybrid NID-Shield NIDS. The following
algorithms were applied for the evaluation of feature subsets:
attribute evaluator: CAPPER, attribute evaluator algorithm:
J48, search method: best first, classifier evaluator: random
forest.

The CAPPER evaluated subsets for Reconnaissance
attack are as follows: 2, 3, 7, 12, 27, 31, 36, 40, and 41.

The CAPPER evaluated subsets for Backdoor attack are
as follows: 2, 3, 7, 10, 16, 27, 28, 39, and 40.

The CAPPER evaluated subsets for DoS attack are as fol-
lows: 3,7, 8, 9, 10, 16, 31, 36, 40, and 41.

The CAPPER evaluated subsets for Exploits attack are as
follows: 2, 3,7, 8,9, 10, 15, 17, 31, 36, and 40.

The CAPPER evaluated subsets for Analysis attack are as
follows: 2, 3, 7, 8, 10, 12, 17, 28, 36, 40, and 41.

The CAPPER evaluated subsets for Fuzzers attack are as
follows: 3, 7, 8, 9, 10, 12, 17, 32, and 33.

The CAPPER evaluated subsets for Worms attack are as
follows: 3, 7, 8, 9, 10, 12, 17, 32, and 33.

The CAPPER evaluated subsets for Shellcode attack are
as follows: 2, 3, 7, 8, 12, 27, 33, and 36.
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FIGURE 25: Recall of the normal and attack types evaluated by the
NID-Shield NIDS on R2L attack.
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FIGURE 26: F-measure of the normal and attack types evaluated by
the NID-Shield NIDS on R2L attack.

The CAPPER evaluated subsets for Generic attack are as
follows: 2, 3, 7, 8, 9, 25, 31, 39, and 40.

In this section, the UNSW-NB15 dataset attack is evalu-
ated by the hybrid NID-Shield NIDS approach on the
UNSW-NBI15 testing dataset. Table 13 illustrates the evalua-
tion metrics of the UNSW-NBI5 normal and attack
instances. In the UNSW-NB15 dataset attack, there are nine
attack names, namely, Backdoor, Reconnaissance, Exploits,
DoS, Fuzzers, Analysis, Worms, Generic, and Shellcode,
and normal instances. Figure 27 shows that the NID-Shield
NIDS achieved an accuracy of 100% on the normal instances
and Worms attack while for other attacks such as Backdoor,
Reconnaissance, Exploits, DoS, Fuzzers, Analysis, Generic,
and Shellcode, the NID-Shield NIDS achieved an accuracy
of 99.71%, 99.45%, 98.70%, 99.10%, 90.14%, 99.20%,
99.70%, and 99.61%, respectively. Overall, the weighted aver-
age in terms of accuracy is appraised for the normal and an
attack name; the NID-Shield NIDS achieves 99.89% accuracy
on normal and all attack names. Figure 28 shows that the
NID-Shield NIDS achieved a TP rate of 1 on the normal
instances and Worms attack while for other attacks such as
Backdoor, Reconnaissance, Exploits, DoS, Fuzzers, Analysis,
Generic, and Shellcode, the NID-Shield NIDS achieved a
TP rate of 0.997, 0.994, 0.987, 0.991, 0.901, 0.992, 0.997,
and 0.996, respectively. Overall, the weighted average in
terms of TP rate is appraised for the normal and attack
names; the NID-Shield NIDS achieved an accuracy of 0.998
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TaBLE 13: UNSW-NBI15 dataset evaluated with hybrid NID-Shield NIDS approach.

(a)
Total instances 1,75,341
Correctly classified instances 1, 75,183 (99.91%)
Incorrectly classified instances 158
Execution time 318.15 seconds
Kappa measures 0.9835
MAE 0.0007
RMSE 0.0121
RAE 6.3124%
RRSE 18.4253%

(b)
Accuracy TP rate FPrate DPrecision Recall F-measure MCC ROCarea PRC area Class
100% 1.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000 Normal
99.45% 0.994 0.007 0.996 0.998 0.997 0.995 0.999 0.999 Reconnaissance
99.71% 0.997 0.006 0.998 0.999 0.999 0.999 1.000 1.000 Backdoor
99.10% 0.991 0.007 0.995 0.991 0.997 0.997 1.000 1.000 DoS
98.70% 0.987 0.008 0.993 0.982 0.982 0.993 0.994 0.993 Exploits
99.20% 0.992 0.007 0.989 0.993 0.996 0.998 1.000 1.000 Analysis
90.14% 0.901 0.012 0917 0.941 0.962 0.972 0.971 0.978 Fuzzers
100% 1.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000 Worms
99.61% 0.996 0.006 0.997 0.999 0.997 0.997 1.000 1.000 Shellcode
99.70% 0.997 0.004 0.998 0.998 0.999 0.997 1.000 1.000 Generic
Weighted Avg.  99.89% 0.998 0.006 0.999 0.998 0.997 0.992 1.000 1.000

(0)

Confusion matrix

a b c d e f g h i j
56000 0 0 0 0 0 0 0 0 0
0 10488 0 0 0 0 0 0 0 0
0 0 1740 0 0 0 0 0 0 2
0 0 0 12260 0 0 0 0 0 0
0 2 0 0 33383 0 0 0 0 3
0 0 0 0 0 1993 0 0 0 0
0 0 3 3 7 0 18177 0 4 8
0 0 0 0 0 3 0 130 0 0
0 1 0 0 3 0 7 0 1129 0
0 0 3 1 0 4 0 0 0 39987

a—classified as Normal, b—classified as Reconnaissance, c—classified as Backdoor, d—classified as DoS, e—classified as Exploits, f—classified as Analysis, g
—classified as Fuzzers, h—classified as Worms, i—classified as Shellcode, and j—classified as Generic.

on normal and all attack names. Figure 29 shows that the
NID-Shield NIDS achieved an FP rate of 0.000 on the normal
instances and Worms attack while for other attacks such as
Backdoor, Reconnaissance, Exploits, DoS, Fuzzers, Analysis,
Generic, and Shellcode, the NID-Shield NIDS achieved an
FP rate of 0.006, 0.007, 0.008, 0.007, 0.012, 0.007, 0.004, and
0.006, respectively. Overall, the weighted average in terms
of FP rate is appraised for the normal and attack names; the
NID-Shield NIDS achieved an FP rate of 0.006 on normal

and all attack names. Figure 30 shows that the precision of
the NID-Shield NIDS is evaluated with normal instances
and attack names. The NID-Shield NIDS achieved a preci-
sion of 1.000 on the normal instances and Worms attack
while for other attacks such as Backdoor, Reconnaissance,
Exploits, DoS, Fuzzers, Analysis, Generic, and Shellcode,
the NID-Shield NIDS achieved a precision of 0.998, 0.996,
0.993, 0.995, 0.917, 0.989, 0.998, and 0.997, respectively.
Overall, the weighted average in terms of precision is
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FIGURE 27: Accuracy of normal and attack types evaluated by the
NID-Shield NIDS on UNSW-NB15 dataset.

TP-Rate

=T D S S 0 S - B B - B B DU O
€ 9 2 © £ 3 § g 9 &
E 5 S 78 & ¥ E ¢ 3
5 8 9 T e N O 8B g
s 2 K 2=z3T 8

© < [s3} =

& /M < »

=

o

153

L

o~

FiGurg 28: TP-Rate of normal and attack types evaluated by the
NID-Shield NIDS on UNSW-NB15 dataset.
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FIGURE 29: FP-rate of normal and attack types evaluated by the
NID-Shield NIDS on UNSW-NBI5 dataset.

appraised for the normal and attack names; the NID-Shield
NIDS achieved a precision of 0.999 on normal and all attack
names. Figure 31 depicts the recall appraised with NID-
Shield NIDS on normal and attack names, the NID-Shield
NIDS achieved a recall of 1.000 on the normal instances
and Worms attack, while for other attacks such as Backdoor,
Reconnaissance, Exploits, DoS, Fuzzers, Analysis, Generic,
and Shellcode, the NID-Shield NIDS achieved a recall of
0.999, 0.998, 0.982, 0.991, 0.941, 0.993, 0.998, and 0.999,
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FIGURE 30: Precision of normal and attack types evaluated by the
NID-Shield NIDS on UNSW-NBI5 dataset.

respectively. Overall, the weighted average in terms of recall
is appraised for the normal and attack names; the NID-
Shield NIDS achieved a recall of 0.998 on normal and all
attack names. Figure 32 shows the F-measure of the NID-
Shield NIDS evaluated with the normal and attack names;
the NID-Shield NIDS achieved an F-measure of 1.000 on
the normal instances and Worms attack, while for other
attacks such as Backdoor, Reconnaissance, Exploits, DoS,
Fuzzers, Analysis, Generic, and Shellcode, the NID-Shield
NIDS achieved an F-measure of 0.999, 0.997, 0.982, 0.997,
0.962, 0.996, 0.999, and 0.997, respectively. Overall, the
weighted average in terms of F-measure is appraised for the
normal and attack names; the NID-Shield NIDS achieved
an F-measure of 0.997 on normal and all attack names.

For the MCC, the NID-Shield NIDS is appraised with the
normal and attack names; the NID-Shield NIDS achieved an
MCC of 1.000 on the normal instances and Worms attack,
while for other attacks such as Backdoor, Reconnaissance,
Exploits, DoS, Fuzzers, Analysis, Generic, and Shellcode,
the NID-Shield NIDS achieved an MCC of 0.999, 0.995,
0.993, 0.997, 0.972, 0.998, 0.997, and 0.997, respectively.
Opverall, the weighted average in terms of MCC is appraised
for the normal and attack names; the NID-Shield NIDS
achieved an MCC of 0.992 on normal and all attack names.
The NID-Shield NIDS achieves a ROC and PRC area of
1.000 on normal and attack instances.

Table 14 shows the hybrid NID-Shield NIDS with the
existing approaches in this literature. The details of the exist-
ing approaches are shown in Table 1. For the evaluation of
the hybrid NID-Shield NIDS approach, the proposed hybrid
NID-Shield NIDS evaluates the attack names on the UNSW-
NB15 dataset, and overall performance metrics are consid-
ered such as Probe, DoS, R2L, and U2R, and attack names
on the NSL-KDD 20% dataset. The NID-Shield NIDS
achieves a 99.89% on the UNSW-NB15 dataset and overall
accuracy of 99.90% on the NSL-KDD dataset, which is the
highest among all other approaches. When the TP rate is
calculated, overall, the NID-Shield NIDS obtained a TPR
of 0.999 on the NSL-KDD 20% dataset and 0.9998 on
the UNSW-NBI15 dataset which is the best among all
other approaches. When FPR is comprehensively evalu-
ated, the literature proposed by Cavusoglu achieves an
overall best FPR of 0.000035 and the NID-Shield NIDS
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FIGURE 31: Recall of normal and attack types evaluated by the NID-
Shield NIDS on UNSW-NBI15 dataset.

achieves a second-best FPR of 0.007 and 0.006 on NSL-
KDD 20% and UNSW-NBI15 datasets. The TNR is evalu-
ated globally; the NID-Shield NIDS achieved the true neg-
ative rate of 0.993 on both datasets which are the highest
among all other approaches.

The literature proposed by Arif et al. achieves the highest
precision of 0.9998, and the NID-Shield NIDS achieves the
second-best precision of 0.9990 on NSL-KDD 20% dataset.
The NID-Shield NIDS achieves a recall of 0.999 and 0.989
on NSL-KDD 20% and UNSW-NB 15 datasets which is the
highest among all other approaches. The F-measure is evalu-
ated comprehensively; the NID-Shield NIDS achieves the
highest F-measure of 0.997 and 0.999 on UNSW-NB15 and
NSL-KDD 20% datasets. When MCC is appraised globally,
the NID-Shield NIDS achieves the best MCC of 0.992 on
both datasets which are overall best among all approaches.
The ROC and PRC area of the NID-Shield NIDS is evaluated
comprehensively; the NID-Shield NIDS achieves the best
ROC and PRC area on both datasets which are the best
among all other approaches. When the execution time is
evaluated, the literature proposed by Venkataraman and
Selvaraj achieves the lowest execution time of 0.23 sec-
onds, followed by an execution time of 10.79 seconds by
the literature proposed by Suad and Fadl and execution
time of 10.62 seconds by the literature proposed by Cavu-
soglu. The NID-Shield NIDS achieves an execution time of
318.15 and 13.785 seconds on the UNSW-NBI15 and NSL-
KDD 20% datasets. Overall, the NID-Shield NIDS achieves
the highest measures in terms of accuracy, TP rate, TNR,
F-measure, MCC, recall, PRC, and ROC area on both
the datasets.

For the insight of the discussion of the results, CAPPER
and the random forest is the primary speculation for obtain-
ing high metrics on both datasets. CAPPER is an effective
feature subset selection technique that obtains accurate and
high merit feature subsets from CFS and Wrapper methods.
CES searches the space of the feature subset by employing
the best first search method and calculates the feature-class
correlations and feature-feature correlations by applying the
approaches based on conditional entropy. The high merit
subset is measured by equation (3), which greatly aids in
dimensionality reduction of both the testing and training
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FIGURE 32: F-measure of normal and attack types evaluated by the
NID-Shield NIDS on UNSW-NBI15 dataset.

data. In Wrapper, the feature subset search is executed by
the best first search approach. The best first search at each
iteration creates its successors having a node with maximal
estimation accuracy. The induction algorithm is employed
as a feature subset selection approach. The induction algo-
rithm is run k times, and the training set uses the k — 1 parti-
tions, while the test set employs other partitions. Five fold
cross-validation techniques are applied as the subset evalua-
tion approach. The estimation of the accuracy is obtained
by equation (4). To obtain the accurate and finest feature
subsets, the machine learning approaches are applied by the
Wrapper approach. The accurate and high merit feature sub-
sets obtained by CFS and Wrapper are then combined to
obtain the reduced dataset.

The random forest is considered as the most efficient
classifier as compared to other classifiers. The foremost rea-
son for obtaining the high accuracy is applying the bagging
by the random forest. Employing bagging has mainly two
benefits. Firstly, the accuracy is increased each time the ran-
dom features are enforced. Secondly, estimation of the gener-
alization error containing the ensemble tree combination and
the correlations and its intensity appraisal is provided by the
bagging. The assessment is carried out-of-bag. The main
approach behind the out-of-bag estimation is the incorpora-
tion of nearly one-third of classifiers from the continuing
prevailing sequence. Whenever the statistic of the sequence
is incremented, the rate of error declines. Therefore, the con-
temporary error rate can be augmented by out-of-bag esti-
mation; hence, it is necessary to pass on from the area
where the merging of the error occurs. In the cross-valida-
tion, there is a high probability of the existence of bias;
also, the degree of extent of the bias is unfamiliar, whereas
the out-of-bag estimation is free from bias. The random
forest applies two-thirds of the data and for testing one-
third of the data from training data, to grow the tree.
Out-of-bag data is simply the one-third data from the
training data. Pruning is not performed by the random
forest and thus aids in fast and high performance. More-
over, having the multiple-tree construction, the random
forest performs reasonably well with an additional tree
framework and it achieves a higher performance rather
than any other decision tree method.
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TaBLE 14: Comparison of the hybrid NID-Shield NIDS with existing approaches in this study.
Accuracy TPR FPR TNR  Precision Recall MCC ROC PRC , Lime
-measure (seconds)
Proposed
?\?SerOI?IC)hDWZIE)E 9990 0.9990 0.007 0.993 0999 0999 0999 0992 1.000 1.000  13.785
- 0
dataset
Proposed
?}Eg‘{;ﬁgﬁ‘ 99.89 0.9989 0.006 0.993 0999 0989 0997 0992 1.000 1.000  318.15
dataset
Neha et al. [26] 99.05% 0.994 0.014 _ 0.991 _ _ _ _ _ _
Arif et al. [28] 96.65% 0.9271 0.136 _ 0.9998 _ _ _ _ _ _
‘é};lfled etal. _ 0.9577 0.975 05662  _ _ _ 311287
Tirtharaj [30] B 0.9526 _ B _ _ _ _ L 103.70
Yao et al. [31] 99.20% 0.6699 _ _ 0.9655 0.967 _ _ _ _ _
Suad et al. [32] _ _ _ _ _ _ _ 0.995 0.962 10.79
0.17
1 0,
Ljaz etal. [33]  99.8% (DoS) _ (DoS) _ _ _ _ _ _ _ _
?tlzi‘t?;ga“ 99.20% 0.9908 0.75 _ _ _ _ _ _ _
Venkataraman
and Selvaraj 83.83% _ _ _ _ _ _ _ _ - 0.23
[35]
Kumar and o
Kumar [36] 99% - - - - _ _ _ _ _ _
Cavusoglu [37] 99.86% 0.9292 0.000035 0.706 0.954 10.62
& (overall) (overall) (overall) - - - (overall) (overall) — - (overall)
Saxena et al. o
38] 98.1% 0.7 _ _ _ _ _ _ _ _ _
Kambattan and o
Rajkumar [39] 99.45% - - - - - - - - - -
Kar et al. [40] 93.95% 0.955 0.1034 _ _ _ _ _ _ _
Mishra et al. 92.12% 0.971 - ~ - - - - - - -
[41]
Dutta et al. [42] 91.29% _ _ _ 92.08% 90.64% 091 _ _ _ _
;"(‘)tl‘jfr 72;1] 84.29% 0.063 _ 77.18% 84.83% - _
98.45%, on 0.9294 on 0.9438 on 500 on
NSL-KDD NSL-KDD NSL-KDD NSL-KDD
Sumaiya dataset and  dataset and dataset and dataset and
Thaseen et al. 96.44% on 0.504 on 0.984 on _ _ _ _ _ 1023 on
[44] UNSW- UNSW- UNSW- UNSW-
NB15 NB15 NBI15 NBI15
dataset dataset dataset dataset
Safaldin et al. 96% 0.96 0.03 B B 3 B _ _ 69.6h
[45]
Vallathan etal. = oo 4o 0.9602 0.998

[46]
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6. Conclusion and Future Work

An efficient hybrid NID-Shield NIDS is proposed in this lit-
erature. Moreover, CAPPER an effective hybrid feature selec-
tion method is applied for accurate and highly merit feature
subsets. The proposed hybrid NID-Shield NIDS classifies
the UNSW-NB15 and NSL-KDD 20% dataset according to
attack types and attack names. Distinct attacks may have
peculiar connections as some of the attacks such as R2L
and U2R may have very few N/W connections, while other
attacks such as Probe and DoS may have a large number of
N/W connections or can be a combination of any of them.
Moreover, the hybrid NID-Shield NIDS calculates the per-
formance metrics of attack names found in the NSL-KDD
20% dataset (DoS, Probe, U2R, and R2L) and UNSW-NB15
dataset individually. This approach further helps us to know
the metrics of individual attack names and the vulnerability
of the attack on the individual network. From the concluding
results, it is noticed that the proposed hybrid NID-Shield
NIDS with an effective CAPPER hybrid feature selection
approach can improve various performance metrics on the
network intrusions.

When Tables 8-14 are examined, the proposed hybrid
NID-Shield NIDS obtains a comprehensive excellent perfor-
mance in terms of various performance metrics on all attack
types. The hybrid NID-Shield NIDS with its various param-
eters is investigated with existing literature studies; it has
been found that the hybrid NID-Shield NIDS is the most effi-
cient of all approaches found in the existing literature studies.
In future work, we will consider applying the hybrid NID-
Shield NIDS to fog computing.

Data Availability

The data used to support the findings of this study are avail-
able from the corresponding author upon request.

Conflicts of Interest

The authors declare that they have no conflict of interest.

References

[1] L. Hung-Jen and C.-h. R. Lin, “Intrusion detection system a
comprehensive review,” Journal of network and applications,
vol. 36, no. 1, pp. 16-24, 2013.

[2] H.L. Motoda and H. Motoda, Feature Selection for Knowledge
Discovery and Data Mining, vol. 454, Springer, 1998.

[3] J.P. Anderson, Computer Security Threat Monitoring and Sur-
veillance, Technical report, James P. Anderson Company, Fort
Washington, Pennsylvania, 1980.

[4] T.F.Lunt,].van Horne, and L. Halme, “Automated analysis of
computer system audit trails,” in Proceedings of the Ninth DOE
Computer Security Group Conference, Las Vegas, Nevada,
1986.

[5] H. S. Javitz, A. Valdes, D. E. Denning, and P. G. Neumann,
Analytical Techniques Development for a Statistical Intrusion
Detection System (SIDS) Based on Accounting Records, Techni-
cal report, SRI International, Menlo Park, California, 1986.

33

[6] D. Anderson, T. Frivold, and A. Valdes, Next-Generation
Intrusion Detection Expert System (NIDES). A Summary, SRI
International Computer Science Laboratory Technical Report
SRI-CSL-95-07, 1995.

[7] L. D. S. Silva, A. C. Santos, T. D. Mancilha, J. D. Silva, and
A. Montes, “Detecting attack signatures in the real network
traffic with ANNIDA,” Expert Systems with Applications,
vol. 34, no. 4, pp- 2326-2333, 2008.

[8] A. Patcha and J. M. Park, “An overview of anomaly detection
techniques: existing solutions and latest technological trends,”
Computer Networks, vol. 51, no. 12, pp. 3448-3470, 2007.

[9] C. Manikopoulos and S. Papavassiliou, “Network intrusion
and fault detection. A statistical anomaly approach,” IEEE
Communications Magazine, vol. 40, no. 10, pp. 76-82, 2002.

[10] P. Fournier-Viger, C. W. Lin, A. Gomariz et al., “The SPMF
open-source data mining library version 2,” in Joint European
conference on machine learning and knowledge discovery in
databasespp. 36-40, Cham, Riva del Garda, Italy, 2016.

[11] P. Fournier-Viger, J. C.-W. Lin, R. U. Kiran, Y. S. Koh, and
R. Thomas, “A survey of sequential pattern mining,” Data Sci-
ence and Pattern Recognition, vol. 1, no. 1, pp. 54-77, 2017.

[12] A.Smola and S. V. N. Vishwanathan, Introduction to Machine
Learning, Cambridge University Press, 2008, ISBN-10:
0521825830.

[13] Z. Xiaojin, Semi-Supervised Learning Literature Survey, vol. 2,
Computer Science, University of Wisconsin, Madison, 2008.

[14] S. Mukkamala, A. H. Sung, and A. Abraham, “Modeling intru-
sion detection systems using linear genetic programming
approach,” in The 17th international conference on industrial
& engineering applications of artificial intelligence and expert
systems, innovations in applied artificial intelligence, pp. 633—
642, Berlin, Heidelberg, 2004.

[15] J. Pearl, “Bayesian networks. A model of self-activated mem-
ory for evidential reasoning,” in Proceedings of the 7th Confer-
ence of the Cognitive Science Society, University of California,
pp- 329-334, Irvine, CA, 2009.

[16] N.S. Altman, “An introduction to kernel and nearest-neighbor
nonparametric regression (PDF),” The American Statistician,
vol. 46, no. 3, pp. 175-185, 1992.

[17] J. B. MacQueen, “Some methods for classification and analysis
of multivariate observations,” in 5th Berkeley Symposium on
Mathematical Statistics and Probability, pp. 281-297, Univer-
sity of California Press, 1967.

[18] L.E.Baum and T. Petrie, “Statistical inference for probabilistic
functions of finite state Markov chains,” The annals of mathe-
matical statistics, vol. 37, no. 6, pp. 1554-1563, 1966.

[19] T. Kohonen, “The self-organizing map,” Proceedings of IEEE,
pp. 1464-1480, 1990.

[20] M. Mohammed, M. B. Khan, and E. B. Bashier, Machine
Learning Algorithms and Applications, CRC press Taylor and
Francis Group, 2016, ISBN-10: 1498705383.

[21] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Sta-
tistical Learning, vol. 2, Springer, 2009, ISBN 978-0-387-
84858-7.

[22] M. Dash and H. Liu, “Feature selection for classification,”
Intelligent data analysis, vol. 1, no. 1-4, pp. 131-156, 1997.

[23] H. Liu and L. Yu, “Towards integrating feature selection algo-
rithms for classification and clustering,” IEEE Transactions on
Knowledge and Data Engineering, vol. 17, no. 4, pp. 491-502,
2005.



34

(24]

(25]

[26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

[40]

R. Heady, G. Luger, A. Maccabe, and M. Servilla, The Architec-
ture of Network Level Intrusion Detection System, Technical
report CS90-20, Department of computer science, University
of New Mexico, 1990.

E. Carter, CCSP Self-Study: Cisco Secure Intrusion Detection
System (CSIDS), Cisco Press, 2nd edition, 2004, ISBN-10:
9781587051449.

A. Neha and S. Shailendra, “An IWD-based feature selection
method for intrusion detection system,” Soft computing,
vol. 22, pp. 4407-4416, 2017.

H. Shah-Hosseini, “Optimization with the nature-inspired
intelligent water drops algorithm,” in Evolutionary Computa-
tion, W. P. Dos Santos, Ed., pp. 298-320, I-Tech, Vienna,
2009, ISBN 978-953-307-008-7.

J. Arif, F. Malik, and K. Aslam, “A hybrid technique using
binary particle swarm optimization and decision tree pruning
for network intrusion detection,” Cluster Computing, vol. 21,
pp. 667-680, 2017.

I. Ahmed, L. Saleh, M. Fatma, and L. Talaat, “A hybrid intru-
sion detection system (HIDS) based on prioritized k-nearest
neighbors and optimized SVM classifiers,” Artificial Intelli-
gence Review, vol. 51, pp. 403-443, 2017.

D. Tirtharaj, “A study on intrusion detection using neural net-
works trained with evolutionary algorithms,” Soft Computing,
vol. 21, pp. 2687-2700, 2017.

Y. Haipeng and W. Qiyi, “An intrusion detection framework
based on hybrid multi-level data mining,” International Jour-
nal of Parallel Programming, vol. 47, pp. 740-758, 2017.

M. Suad and M. Fadl, “Intrusion detection model using
machine learning algorithm on Big Data environment,” Jour-
nal of big data, vol. 5, pp. 1-12, 2018.

S. Jjaz, F. A. Hashmi, S. Asghar, and M. Alam, “Vector based
genetic algorithm to optimize predictive analysis in network
security,” Applied intelligence, vol. 48, no. 5, pp. 1086-1096,
2018.

A. Mohammad and A. Nauman, “A P2P Botnet detection
scheme based on decision tree and adaptive multilayer neural
networks,” Neural Computing & Applications, vol. 29,
pp. 991-1004, 2018.

V. Sivakumar and S. Rajalakshmi, “Optimal and novel hybrid
feature selection framework for effective data classification,”
in Advances in Systems, Control and Automation, pp. 499-
514, Springer, Singapore, 2018.

K. Neeraj and K. Upendra, “Knowledge computational intelli-
gence in network intrusion detection systems,” in Knowledge
Computing and Its Applications, pp. 161-176, Springer, Singa-
pore, 2018.

C. Unal, “A new hybrid approach for intrusion detection using
machine learning methods,” Applied Intelligence, vol. 49,
pp. 2735-2761, 2019.

S. Akash and S. Khushboo, “Hybrid technique based on
DBSCAN for selection of improved features for intrusion
detection system,” in Emerging Trends in Expert Applications
and Security, pp. 365-377, Springer, Singapore, 2019.

K. Rajesh and R. Manimegalai, “An effective intrusion detec-
tion system using flawless feature selection, outlier detection
and classification,” in Progress in Advanced Computing and
Intelligent Engineering, pp. 203-213, Springer, Singapore,
2019.

P. Kar, S. Banerjee, K. C. Mondal, G. Mahapatra, and
S. Chattopadhyay, “A hybrid intrusion detection system for

[41]

(42]

(43]

[44]

(45]

[46]

(47]

(48]

[49]

(50]

(51]

(52]

(53]

(54]

(55]
(56]

(57]

Wireless Communications and Mobile Computing

hierarchical filtration of anomalies,” in Information and Com-
munication Technology for Intelligent Systems, vol. 106,
pp. 417-426, Springer, Singapore, 2019.

S. Mishra, C. Mahanty, S. Dash, and B. K. Mishra, “Implemen-
tation of BFS-NB hybrid model in intrusion detection system,
recent developments in machine learning and data analytics,”
in Recent Developments in Machine Learning and Data Analyt-
ics, vol. 740, pp. 167-175, Springer, Singapore, 2019.

V. Dutta, M. Choras, R. Kozik, and M. Pawlicki, “Hybrid
model for improving the classification effectiveness on net-
work intrusion detection system,” in Conference on Complex,
Intelligent, and Software Intensive Systems, Cham, 2020.

M. Latah and L. Toker, “An efficient flow-based multi-level
hybrid intrusion detection system for software-defined net-
works,” CCF Transactions on Networking, vol. 3, pp. 26-271,
2020.

I. Sumaiya Thaseen, J. Saira Banu, K. Lavanya, M. Rukunuddin
Ghalib, and K. Abhishek, “An integrated intrusion detection
system using correlation-based attribute selection and artificial
neural network,” Transactions on Emerging Telecommunica-
tions Technologies, vol. 32, no. 2, article e4014, 2021.

M. Safaldin, M. Qtair, and L. Abualigah, “Improved binary
gray wolf optimizer and SVM for intrusion detection system
in wireless sensor networks,” Journal of Ambient Intelligence
and Humanized Computing, vol. 12, no. 2, pp. 1559-1576,
2021.

G. Vallathan, A. John, and C. Thirumalai, “Suspicious activity
detection using deep learning in secure assisted living IoT
environments,” The Journal of Supercomputing, vol. 77,
pp. 3242-3260, 2021.

Hackerpocalypse-cybercrime report, In Cybersecurity Ven-
tures, 2016.

A. AlEroud, G. Karabatis, P. Sharma, and P. He, “Context and
semantics for detection of cyber attacks,” International Journal
of Information and Computer Security, vol. 6, no. 1, pp. 63-92,
2014.

A. AlEroud and G. Karabatis, “Toward zero-day attack identi-
fication using linear data transformation techniques,” in IEEE
7th international conference on software security and reliability
(SERE’13), pp. 159-168, Washington, D.C., 2013.

S. Axelsson, “Intrusion detection systems: a survey and taxon-
omy,” 2000.

R. M. Snort, “Lightweight intrusion detection for networks,” in
Proceedings of thirteenth USENIX conference on system admin-
istration, (LISA ‘99), pp. 229-238, Seattle, Washington, USA,
1999.

J. Cannady, “Artificial neural networks for misuse detection,”
in National information systems security conference, vol. 26,
pp. 368-381, Arlington, Virginia, United States, 1998.

R. C. Quinlan, 4.5: Programs for Machine Learning, Morgan
Kaufmann publishers Inc, San Francisco, 1993, ISBN: 978-1-
55860-238-0.

T. Denoeux, “A k-nearest neighbor classification rule based on
Dempster-Shafer theory,” IEEE Transactions on Systems, Man,
and Cybernetics, vol. 25, no. 5, pp. 804-813, 1995.

C. Cortes and V. N. Vapnik, “Support-vector networks,”
Machine Learning, vol. 20, no. 3, pp. 273-297, 1995.

E. Alpaydin, Introduction to Machine Learning, MIT Press,
Cambridge, 2014, ISBN: 978-0-262-028189.

L. Breiman, “Random forests,” Machine Learning, vol. 45,
pp. 5-32, 2001.



Wireless Communications and Mobile Computing

(58]

(59]

(60]

[61]

[62]

(63]

(64]

[65]

[66]

[67]

(68]

(69]

[70]

(71]

(72]

(73]

(74]

[75]

L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Clas-
sification and Regression Trees, Wadsworth & Brooks/Cole
Advanced books & Software, Monterey, CA, 1984.

L. Breiman, “Bagging predictors,” Machine Learning, vol. 24,
pp. 123-140, 1996.

L. Breiman, Out-of-Bag Estimation, Technical Report, Dept. of
statistics, University of California, Berkeley, 1996.

D. Mladenic and M. Grobelnik, “Feature selection for unbal-
anced class distribution and naive bayes,” in ICML 99: Pro-
ceedings of the Sixteenth International Conference on
Machine Learning, vol. 99, pp. 258-267, Bled, Slovenia, 1999.

G. H. John, R. Kohavi, and K. Pfleger, “Irrelevant features and
the subset selection problem,” Machine learning proceedings, ,
pp. 121-129, 1994.

P. Langley and S. Sage, “Scaling to domains with irrelevant fea-
tures,” in Computational Learning Theory and Natural Learn-
ing Systems, R. Greiner, Ed., vol. 4, MIT Press, 1994.

P. Domingos and M. Pazzani, “Beyond independence: condi-
tions for the optimality of the simple Bayesian classifier,” in
Machine Learning: Proceedings of the Thirteenth International
Conference on Machine Learning, pp. 105-112, San Francisco,
CA, 1996.

R. C. Quinlan, 4.5: Programs for Machine Learning, Morgan
Kaufmann publishers Inc, San Francisco, 1993.

J. D. Rodriguez, A. Perez, and J. A. Lozano, “Sensitivity analy-
sis of k-fold cross validation in prediction error estimation,”
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 32, no. 3, pp. 569-575, 2010.

N. Thomas Rincy and R. Gupta, “An efficient feature subset
selection approach for machine learning,” Multimedia tools
and applications, vol. 80, pp. 12737-12830, 2021.

Z. H. Zhou, Ensemble Methods Foundation and Algorithms,
CRC press: Taylor and Francis Group, 2012.

P. Smyth and D. Wolpert, “Stacked density estimation,” in
Advances in Neural Information Processing Systems, pp. 668—
674, MIT Press, Cambridge, MA, 1998.

S. Samdani and S. Shukla, “A novel technique for converting
nominal attributes to numeric attributes for intrusion detec-
tion,” in 2017 8th International Conference on Computing,
Communication and Networking Technologies (ICCCNT),
pp- 1-5, Delhi, 2017.

A. Binbusayyis and T. Vaiyapuri, “Comprehensive analysis
and recommendation of feature evaluation measures for intru-
sion detection,” Heliyon, vol. 6, no. 7, 2020.

S. Revathi and A. Malathi, “A detailed analysis on NSL-KDD
dataset using various machine learning,” International Journal
of Engineering Research & Technology, vol. 2, no. 12, pp. 1848-
1853, 2013.

M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, “A
detailed analysis of the KDD CUP-‘99 data set,” in Proceedings
of the IEEE Symposium on Computational Intelligence in Secu-
rity and Defense Applications, Ottawa, Canada, 2009.

P. Kavitha and M. Usha, “Anomaly based intrusion detection
in WLAN using discrimination algorithm combined with
Naive Bayesian classifier,” Journal of Theoretical and Applied
Information Technology, vol. 62, no. 1, pp. 77-84, 2014.

N. Moustafa and J. Slay, “UNSW-NB15 a comprehensive data
set for network intrusion detection systems (UNSW-NBI15
network data set),” in Military Communications and Informa-
tion Systems Conference (MilCIS), pp. 1-6, Canberra, 2015.

35

[76] 1. H. Witten and E. Frank, Data Mining: Practical Machine

Learning Tools and Techniques, Morgan Kaufmann, San Fran-
cisco, 2nd edition, 2005.

[77] H.Hanan and B. David, “A taxonomy and survey of intrusion

detection system design techniques, network threats and data-
sets,” pp. 1-35, 2018, https://arxiv.org/abs/1806.03517.


https://arxiv.org/abs/1806.03517

Hindawi

Wireless Communications and Mobile Computing
Volume 2021, Article ID 2034125, 8 pages
https://doi.org/10.1155/2021/2034125

Research Article

WILEY

Hindawi

DeepLab and Bias Field Correction Based Automatic Cone
Photoreceptor Cell Identification with Adaptive Optics Scanning

Laser Ophthalmoscope Images

Yiwei Chen,' Yi He,! Jing Wang,l’2 Wanyue Li,"? Lina Xing,1 Xin Zhang,1

and Guohua Shi® >3

'Tiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy

of Sciences, Suzhou 215163, China

Department of Biomedical Engineering, University of Science and Technology of China, Hefei 230041, China
3Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China

Correspondence should be addressed to Guohua Shi; ghshi_lab@126.com

Received 3 May 2021; Revised 24 May 2021; Accepted 1 June 2021; Published 12 June 2021

Academic Editor: Yulin Wang

Copyright © 2021 Yiwei Chen et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The identification of cone photoreceptor cells is important for early diagnosing of eye diseases. We proposed automatic deep-
learning cone photoreceptor cell identification on adaptive optics scanning laser ophthalmoscope images. The proposed
algorithm is based on DeepLab and bias field correction. Considering manual identification as reference, our algorithm is highly
effective, achieving precision, recall, and F1 score of 96.7%, 94.6%, and 95.7%, respectively. To illustrate the performance of our
algorithm, we present identification results for images with different cone photoreceptor cell distributions. The experimental
results show that our algorithm can achieve accurate photoreceptor cell identification on images of human retinas, which is

comparable to manual identification.

1. Introduction

Vision is one of the most important human senses. Unfortu-
nately, as a major cause of blindness, retinopathy has become
increasingly common. Most retinopathy patients can prevent
blindness with early diagnosis and treatment, which provide
promising outcomes. Although optical imaging allows
observing the retina, higher-resolution imaging is required
for the early diagnosis of retinopathy. However, ocular aber-
rations limit the resolution of optical imaging. To address
this limitation, adaptive optics (AO), which was originally
intended for removing aberrations caused by atmospheric
instability [1], has been used to correct ocular aberrations
in retinal imaging [2-4]. AO allows the resolution of in vivo
retinal imaging to reach the cellular level [4-6]. In particular,
AQ scanning laser ophthalmoscopy (AO-SLO) uses an inte-
grated AO for clearly imaging cone photoreceptor cells [4].
Thus, AO-SLO allows to observe pathological changes in

the distribution of photoreceptor cells on the retina, thus,
outperforming other retinal imaging techniques in the diag-
nosis of certain diseases characterized by disorders in the dis-
tribution of cone photoreceptor cells [7-11].

To quantitatively calculate the distribution of cone pho-
toreceptor cells, individual cells should be identified.
Although manual identification of cone photoreceptor cells
is reliable, it is time-consuming and subjective. Therefore,
semiautomatic and automatic algorithms for cone
photoreceptor-cell identification have been devised [12-26].
They can be nonlearning-based algorithms [12-18],
supervised-learning algorithms [19-23], and unsupervised-
learning algorithms [24-26]. Among them, supervised
deep-learning algorithms have achieved the highest accuracy,
thus, being a promising research direction given their poten-
tially high performance.

In 2014, Google introduced a supervised deep-learning
semantic segmentation model called DeepLab [27]. With
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FIGURE 3: Representative example of failed segmentation by directly using AO-SLO images and trained DeepLab. (a) AO-SLO image and (b)

segmentation results.

remarkable advantages, DeepLab has become a hot topic in
research and engineering [28-33], and one of its popular var-
iants, DeepLab v3 [34], has been widely used in medical
image processing [35-41]. We propose an automatic cone
photoreceptor cell identification algorithm based on Dee-
pLab v3 for AO-SLO images. The proposed algorithm also
uses bias field correction [42] to further improve the identifi-
cation accuracy. To confirm the effectiveness of the proposed
algorithm, we determined various evaluation measures (i.e.,
precision, recall, and F1 score) with respect to manual iden-
tification, which is considered as the reference providing the
ground truth. The performance of the proposed algorithm is
further demonstrated by showing cone photoreceptor-cell

AO-SLO image Bias field corrected image Segmented image

Bias field correction Trained DeepLab model

F1GURE 4: Outline of testing process.
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(d)

FIGURE 5: Representative example of bias field correction and DeepLab segmentation. (a) AO-SLO image, (b) bias field image, (c) Bias-field-

corrected image, and (d) segmentation results.

identification results for AO-SLO images with different cell
distributions.

2. Methods

Figure 1 shows the outline of the proposed deep-learning
cone photoreceptor-cell identification algorithm with its
main steps of (1) training, (2) testing, and (3) postprocessing.
First, the training dataset that includes AO-SLO images and
their corresponding segmented images is used to train Dee-
pLab [34]. Second, the bias-field-corrected images obtained
from the test dataset after applying bias field correction
[42] are input to the trained DeepLab [32] to generate seg-
mented test images. Third, the bias-field-corrected images
and segmented test images are processed by threshold-
based algorithm to obtain finely segmented images to identify
individual cone photoreceptor cells by calculating their
centroids.

2.1. Training. To achieve a fine segmentation of cone photo-
receptor cells, we magnified the training AO-SLO images and
their corresponding segmented images four times isotropi-
cally before training segmentation. In detail, the training
AO-SLO images were interpolated using the antialiasing
mode to obtain high-quality images, and the corresponding

segmented images were interpolated using the nearest mode
for binarization. Both interpolation operations are available
in Python Imaging Library. Then, DeepLab v3 [34] with its
ResNet-101 backbone pretrained on the ImageNet dataset
was trained using the magnified images. In the training
images, the area of the cone photoreceptor cells is larger than
that of the background. To compensate for such imbalance,
we introduced a cross-entropy loss function that weights
the cone photoreceptor cells (0.3) and background (0.7) sep-
arately. During training, we set the batch size and number of
epochs to 2 and 100, respectively. The outline of the training
process is shown in Figure 2.

2.2. Testing. The direct usage of the trained DeepLab v3 to
segment four-time magnified test AO-SLO images can cause
failure with high probability. A representative example of a
failure case is shown in Figure 3, where segmentation is based
on local intensity bias instead of cone photoreceptor cells,
leading to segmentation failure.

To solve this problem, we applied bias field correction to
the AO-SLO images. First, a bias field image is generated by
applying a Gaussian filter whose sigma value is 22 pixels
length to the AO-SLO image [26]:

Bias field image = Gaussian filter(AO-SLO image). (1)
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(d)

FIGURE 6: Representative example of postprocessing. (a) AO-SLO image, (b) bias field corrected image, (c) thresholding results, and (d) cone

photoreceptor cell identification results.

TaBLE 1: Performance measures obtained from cone photoreceptor cell identification algorithms.

Methods Precision Recall F1 score
Graph theory based algorithm [15] 98.2% 98.5% 98.3%
Proposed algorithm 96.7% 94.6% 95.7%
Watershed based algorithm [18] 93.2% 96.6% 94.9%
K-means clustering based algorithm [26] 93.4% 95.2% 94.3%
Superpixels based algorithm [25] 80.1% 93.5% 86.3%

Second, the AO-SLO image is corrected by extracting the
bias field image [42]:

AO-SLO image(x, y
Bias field image(x, y

(2)

) .
)

Bias field corrected image(x, y) = Mean(Bias field image) x

Third, the four-time magnified bias-field-corrected
image is input to the trained DeepLab, and the segmentation
results are obtained. The outline of the testing process is
shown in Figure 4.

Figure 5 depicts the bias field correction [42] and Dee-
pLab segmentation [34] performed on the image shown in

Figure 3. The bias field is corrected, and the segmented image
is accurate.

2.3. Postprocessing. Figure 5 shows that some cone photore-
ceptor cells are merged after DeepLab segmentation. To mit-
igate this problem, we applied thresholding to the bias-field-
corrected images [36]. The intensity values in the DeepLab
segmentation mask were first extracted from the bias-field-
corrected image. Then, the mean intensity value was calcu-
lated and used as the threshold to segment the bias-field-
corrected image. Through thresholding, cone photoreceptor
cells were identified in two steps. In detail, the contours of
the segmentation results were extracted using function find
Contours of OpenCV, and the centroids of the areas inside
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FIGURE 7: Results of proposed algorithm with different cone photoreceptor cell distributions. (a) Input AO-SLO images and (b) identified

cone photoreceptor cells.

the contours were then considered as identified cone photo-
receptor cells. A representative example of postprocessing is
shown in Figure 6, where adjacent cell merging is mostly
solved, and individual cone photoreceptor cells are accurately
identified.

3. Results

We evaluated the proposed algorithm on a publicly available
dataset [15] that contains 840 AO-SLO images and their cor-
responding cone photoreceptor cell segmentation results as

ground truth [15]. We used 800 AO-SLO images for the
training dataset, and the remaining 40 images for the test
dataset. The automatic processing took 2.95 hours for train-
ing with two batch sizes over 100 epochs, 8.77s for testing,
and 0.76 s for postprocessing. These computation times were
obtained on a computer running 64-bit Python and equipped
with an Intel Core i7-10870H processor (2.20 GHz), 16.0 GB
RAM, and NVIDIA GeForce RTX 2060 graphics card.

To confirm the effectiveness of the proposed algorithm
for cone photoreceptor cell identification, we evaluated its
identification performance regarding three measures,



namely, precision, recall, and F1 score, with respect to the
manual identification results taken as reference. The overall
precision, recall, and F1 score for identification are listed in
Table 1, where the values are compared with those of several
algorithms [15, 18, 25, 26]. The proposed algorithm achieves
accurate cone photoreceptor cell identification, outperform-
ing the comparison algorithm [18, 25, 26] except the graph
theory-based algorithm [15] which is often referred to as
ground truthing cone photoreceptor cell identification but
needs a large amount of computing and complex
implementation.

To illustrate the performance of the proposed algorithm,
Figure 7 shows cone photoreceptor cell identification results
for different cone photoreceptor cell distributions on AO-
SLO images. The cone photoreceptor cells are accurately
identified on the three AO-SLO images with different
distributions.

4. Discussion

In semantic segmentation, the relationship between the tar-
get segmentation objects and background is usually complex.
Cone photoreceptor cell identification is relatively simple: (1)
only one type of object, a cone photoreceptor cell, should be
segmented; (2) cone photoreceptor cells do not contain rich
texture details. Thus, an algorithm can segment the images
according to area-based information. As the target area con-
taining the cone photoreceptor cells is much larger than the
area in general semantic segmentation, DeepLab algorithm
is trained with bias if the cone photoreceptor cells and back-
ground are weighted equally. To prevent bias, we designed a
cross-entropy loss function with a smaller weight given to
cone photoreceptor cells.

In general, supervised deep-learning algorithms provide
higher accuracy than nonlearning-based and unsupervised-
learning algorithms. Therefore, automatic algorithms for
the accurate identification of cone photoreceptor cells on
AO-SLO images can be developed by applying and modify-
ing deep learning algorithms, which have demonstrated
high-performance image segmentation and identification
but have not yet been used for cone photoreceptor cell iden-
tification. In this regard, we presented the modified versions
of three famous methods [43-45] as promising solutions for
developing automatic and accurate cone photoreceptor cell
identification algorithms on AO-SLO images.

5. Conclusions

We propose an automatic deep-learning algorithm for the
identification of cone photoreceptor cells on AO-SLO
images. The algorithm implements DeepLab v3 and bias field
correction as its core techniques. To confirm the effectiveness
of the proposed algorithm, we obtained its precision, recall,
and F1 score with respect to manual identification, obtaining
values of 96.7%, 94.6%, and 95.7%, respectively. Further-
more, to illustrate the performance of the proposed algo-
rithm, we obtained the cone photoreceptor cell
identification results for different cone photoreceptor cell
distributions on AO-SLO images.
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Data Availability

The original dataset used in this paper is a publicly available
dataset which can be obtained online (http://people.duke
.edu/~sf59/Chiu_BOE_2013_dataset.htm) [25]. However,
our source codes are not publicly available due to them con-
taining information that could compromise research partici-
pant privacy.
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Nowadays, large volumes of multimodal data have been collected for analysis. An important type of data is trajectory data, which
contains both time and space information. Trajectory analysis and clustering are essential to learn the pattern of moving objects.
Computing trajectory similarity is a key aspect of trajectory analysis, but it is very time consuming. To address this issue, this
paper presents an improved branch and bound strategy based on time slice segmentation, which reduces the time to obtain the
similarity matrix by decreasing the number of distance calculations required to compute similarity. Then, the similarity matrix
is transformed into a trajectory graph and a community detection algorithm is applied on it for clustering. Extensive
experiments were done to compare the proposed algorithms with existing similarity measures and clustering algorithms. Results
show that the proposed method can effectively mine the trajectory cluster information from the spatiotemporal trajectories.

1. Introduction

Nowadays, a huge amount of data is collected and it is impor-
tant to develop tools to analyze data to extract useful knowl-
edge. The collected data is often multimodal, that is of
different types (e.g., audio [1], video [2], text [3], and image
[4]), and can be analyzed jointly or separately [5, 6]. An
emerging type of data that is playing a key role in multimodal
data analysis is trajectory data [7]. It consists of spatial and
temporal information about moving objects. Common tra-
jectory data can be divided into four categories, namely,
human trajectories, vehicle trajectories, animal trajectories,
and natural phenomenon trajectories. Analyzing and discov-
ering patterns in trajectory data have applications in several
fields such as intelligent transportation, human mobility
analysis, urban planning, meteorology, and travel recom-
mendations and can reveal insights that are not discovered
from other data types.

The process of trajectory data analysis mainly consists of
obtaining and preprocessing trajectory data, trajectory data
management, and a variety of mining tasks, including trajectory

pattern mining, privacy protection, outlier detection [8, 9], and
clustering trajectories on complex road networks [10, 11]. Many
studies have been published, and trajectory data analysis is a
very active research field. A generative adversarial network
(GAN) was used to predict pedestrian movement by analyzing
multimodal trajectory data [12]. However, most techniques for
trajectory data analysis require measuring trajectory similarity,
which necessitates a large amount of calculations on trajectory
data and results that the time complexity of these similarity
measurement methods is relatively high. Based on the idea of
branch and bound, a novel similarity measurement method,
called FSTM [13], was proposed that sets a distance threshold
to prune certain mismatched points. Still, FTSM only considers
space constraints.

More recently, there is an increasing interest on time
series clustering using graphs [14, 15]. Traditional analysis
methods only focus on the local relationship between data
samples, while ignoring the global information. Advanced
trajectory data mining techniques take network dynamics
of trajectories into account, such as to mine trajectory group
patterns and to assess the importance of a moving object in
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trajectory networks [16-18]. A complex network is suitable
for revealing important relationships in trajectory data visu-
ally and can provide global information as time series data.
In addition, there is no restriction on the shape of clusters.

Based on the above advantages and limitations, we pro-
pose an approach to spatiotemporal trajectory clustering
based on community detection (STTC-CD). The algorithm
implements an improved branch and bound strategy based
on time slice segmentation. While richer trajectory informa-
tion is taken into consideration, redundant trajectory points
are pruned. Then, the trajectory data is converted into a
graph representation based on the similarity matrix. Finally,
a suitable community detection algorithm is applied to per-
form clustering on the graph. The main contribution of this
paper is as follows:

(i) An improved similarity calculation method is
designed, which matches pairs of trajectory points
and applies a pruning strategy based on time slicing
to reduce the time complexity

(ii) A method is proposed to convert trajectories into a
suitable data format to apply many types of tech-
niques for trajectory data mining. Based on this, a
community detection algorithm is applied to cluster
trajectories, which captures global relationships
among trajectories from a graph-based perspective

(iii) Experiments have been conducted to evaluate the
proposed algorithm on several datasets to verify
the influence of multiple factors. It was found that
the proposed algorithm is more efficient than the
compared methods

The rest of this paper is organized as follows: Section 2
surveys relevant related work. Section 3 formally defines the
trajectory clustering problem. Section 4 presents the designed
STTC-CD algorithm. Then, Section 5 describes the experi-
mental evaluation and Section 6 draws a conclusion.

2. Related Work

The key problem in trajectory clustering is how to measure
trajectory similarity. This section first reviews techniques
for trajectory similarity measurement and then surveys rele-
vant work on community detection.

2.1. Trajectory Similarity Measure. Most trajectory data anal-
ysis tasks require computing trajectory similarity measure-
ments, such as trajectory clustering [19], transforming data
for privacy-preservation [20], movement pattern mining
[21], and abnormal trajectory detection [22]. Traditional tra-
jectory measurement techniques such as EDR (edit distance
on real sequence), LCSS (longest common subsequence),
and DTW (Dynamic Time Warping) compute the overall
trajectory similarity by analyzing each trajectory as a whole
rather than considering subtrajectories or random trajectory
points. Among these techniques, DTW [23] aligns trajecto-
ries of different lengths by warping a trajectory sequence
and can match a point at a certain time from a trajectory to
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a number of continuous points from another trajectory.
Hence, it has no restriction on the length of the compared
trajectories. LCSS [24] calculates the longest common subse-
quence of two trajectories as their similarity. EDR calculates
the minimum number of changes required to transform a
trajectory into another as the similarity between the two tra-
jectories. Clue-Aware Trajectory Similarity (CATS) [25] is
aimed at overcoming the influence of track bias in time and
space. Multidimensional Similarity Measure (MSM) [26]
and Multiple-Aspect Trajectory Similarity Measure (MUI-
TAS) [27] provide similarity measures for multidimensional
sequences, adding information such as weather, user activity,
and user interest into trajectory comparison.

However, DTW is a distance-based method, which
directly accumulates the distances between trajectory point
pairs. A problem of DTW is that the sum of the distances
can greatly increase when there are noise points, which
makes it sensitive to noise points. Quite the reverse, the €
-threshold-based measures use an e-threshold value to deter-
mine if two points match, which can be more robust to noise.
LCSS, EDR, CATS, and MSM fall all in the e-threshold-based
strategy, and the computation of similarity score is based on
the point matching of two trajectories. They have a O(n?)
time complexity and cause a performance bottleneck for tra-
jectory clustering algorithms. Furtado et al. proposed a
branch and bound method (FTSM) to achieve fast similarity
measuring by utilizing a transitive range pruning strategy to
reduce the number of matching point pairs.

2.2. Community Detection in Networks. A community is a
subset of network nodes. Connections between nodes within
a subset are relatively close, while connections between nodes
from different subsets are relatively sparse, which is exactly in
line with the needs and principles of clustering. Recently,
community detection algorithms have been increasingly uti-
lized for trajectory clustering.

Depending on whether a node can belong to multiple
communities or only one, community detection methods
can be categorized as finding nonoverlapping or overlapping
communities. In a nonoverlapping community, each net-
work node can belong to one community. Algorithms that
detect communities of this type are Fastgreedy [28], Louvain
[29], Label Propagation [30], and Infomap [31]. Modularity
is used to measure the quality of community division. The
Fastgreedy algorithm applies a bottom-up process. Initially,
each node is regarded as a community. Then, at each itera-
tion, the two communities providing the largest increase in
modularity are merged until the entire network is merged
into a single community. The final community structure is
a division that maximizes the modularity. The Louvain algo-
rithm improves upon the Fastgreedy algorithm by assigning
each node to neighboring nodes for maximum modularity.
When the ownership of a node no longer changes, the algo-
rithm collapses each community into a node to form a new
community for the next iteration. The basic idea of the Label
Propagation algorithm (LPA) is to predict labels of unlabeled
network nodes from labeled nodes. Each node label is prop-
agated to neighboring nodes according to their similarity.
At each step of node propagation, the node updates itself
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according to the label of the neighboring node until the label
no longer changes. Similar to K-means, the results of LPA are
affected by the initial label selection. The Infomap algorithm
introduces a coding-based technique based on random
walks. A good group division can lead to shorter coding
length.

A trajectory clustering algorithm based on an improved
Label Propagation algorithm was proposed where road net-
work is modeled as a dual graph to capture and characterize
the similarity between nodes [10]. Liu and Guo proposed a
semantic trajectory clustering algorithm based on commu-
nity detection [32], where different community detection
algorithms were discussed.

3. Problem Statement

The following definitions are provided to facilitate the for-
mulation of the problem under study:

Definition 1 (trajectory). A trajectory is a sequence of points

in chronological order, denoted as TR; = {p}, pf,---,p{,-n,p?"
}, where each point p] = (i, x, y, t) represents the spatial loca-
tion (x, ¥) of an entity at given time ¢ of trajectory TR;, and n;
is the number of points in TR,.

Definition 2 (silhouette coefficient SI). The silhouette coeffi-
cient is a metric to evaluate the quality of a clustering, which
considers two aspects that are cohesion and resolution. The
s(i) of each trajectory point p; is calculated as follows:

()= 20 0
max {a(i) b(i)}

where a(i) denotes the average distance from p, to all trajec-
tory points in the cluster to which p; belongs, and b(i) is the
average distance between p; and trajectory points in other
clusters. Given a trajectory dataset TS = {TR;, TR,,---, TRy}
, the silhouette coeflicient of TS is the average of the silhou-
ette coeflicients of all trajectories, denoted as

ESRU] @

where N is the number of trajectories, 7; is the number of tra-
jectory points in TR;, and (I/nj)zzlﬁs(i) is the silhouette
coefficient of trajectory TR;.

The value of SI is between -1 and 1 such that a higher SI
value indicates a better clustering result in general. According
to the above definition, the road trajectory clustering optimi-
zation problem is defined as follows:

Definition 3 (trajectory clustering optimization problem).
Given a set of trajectories TS={TR;, TR,,---,TRy} in
Euclidean space for the time period [0, T}, the goal is to divide
TS into groups {C;, C,,++,Cy_} to maximize SI.

4. The Proposed STTC-CD Algorithm

This paper proposes an approach to spatiotemporal trajec-
tory clustering based on community detection, named
STTC-CD, which is applied in three steps: (1) trajectory par-
tition, (2) graph generation, and (3) trajectory clustering, as
illustrated in Figure 1.

Stage 1. Trajectory Partition. Given a collection of space-time
trajectories {TR;, TR,,---,TRy }, STTC-CD divides them into
time slices and then utilizes transitive range pruning to calcu-
late the number of pairs of matching points between trajecto-
ries in each time period to generate a matching matrix.

Stage 2. Graph Generation. STTC-CD aggregates the match-
ing matrix of each time period to generate a global matching
matrix. Then, the algorithm transforms the matching matrix
into a similarity matrix according to similarity rules, and a
trajectory-connected graph is generated.

Stage 3. Trajectory Clustering. Based on the trajectory graph
obtained in the second stage, we utilize a community detec-
tion algorithm for clustering to capture global relationships
between trajectories from the perspective of the network.

4.1. Trajectory Partition. An algorithm is proposed that takes
the time characteristics of trajectories into account and uti-
lizes a branch and bound strategy for fast trajectory similarity
measurement. The algorithm is called STTC-CD. It not only
improves the accuracy of similarity measurement but also
only compares each trajectory segment with others from
the same time slice instead of all trajectories, thereby improv-
ing computational efficiency through further pruning.

Given a trajectory dataset TS = {TR;, TR,,---, TRy } and a
partition threshold «, TS is divided into x subdatasets {TS,,
TS,, -+, TS, } according to the time slice and then allocated
to the corresponding subdataset of the time slice. Let ¢,
and ¢, be the minimum and maximum timestamp in the
dataset, respectively. The length of each time slice is defined
as follows:

At = max min ) (3)

Each trajectory TR;={p},p?---p"--pi'} €TS s
divided into subdatasets according to the time slice (as shown
in Figure 2). The index of the subdataset to which a point p!”
is assigned is [ (¢ -t )/At].

4.2. Graph Generation. The graph is generated based on the
similarity matrix. The calculation of similarity in each time
slice is done based on the following definitions:

Definition 4 (point matching (PM)). Let there be two points
p; and p;, a matching threshold ¢, and a distance function

dist(p;, p;). If dist(p;, p;) < &, then p; and p; match each other;

otherwise, they do not match. The formula is defined as fol-
lows:
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FIGURE 2: The schematic diagram of trajectory partition.

- 1, dist (pi,pj) <g, W

0, dist(pi,pj) >e.

Definition 5 (trajectory segment matching (TM)). Given two
trajectory segment sTR;={p,,p,,---,p,,} and sTR;={q,,
4y -++» 4, }» trajectory segment matching is defined as follows:

PM( )

()

m n

ZZPMQ’P qj) + i

i=1 j=1 j=li

™=

™ (sTR sTR

Il
—

where m and » are the numbers of the points of sTR; and
sTR..
j

Considering that trajectory elements are points in Euclid-
ean space, the following definitions adopt the Euclidean dis-
tance as distance function to perform point matching. Hence,
the matching threshold can be seen as the radius € of a
matching circle.

Definition 6 (pivot point). For a trajectory TR,, the pivot
point of TR, is the point at half of the trajectory as follows:

1+n;)/2
p=pitm, (6)
where #; is the number of trajectory points of TR;.
Definition 7 (pruning radius (PR)). Given a pivot point pf-‘

€ TR, and a matching threshold ¢, the pruning radius is a cir-
cle around p¥ that covers all the points that are at maximum

k-1

PR = ¢ + max <Z dist(p}", p/"™*),

m=1

Z dist (p, p*") )
(7)

Lemma 8 (transitive range pruning). Let TR;={p},p7, -,
p?’,. . .)p?’} and TR] = {P]]’P]Z’ . .,p;”. .
€ be a matching threshold, dist(p{", p/) be the metric comput-
ing the distance between two points, and PR be a pruning
radius around a pivot point p* € TR,. Then, for any point p!"
€ TR; and p} € TR,

~,p;.lj } be two trajectories,

dist (p;‘, p;") <e= dist (p;?, pf) < PR. (8)

This lemma [13] means that for any point in TR, if its dis-
tance to a certain point of TR, is less than ¢, then its distance to
the pivot point of TR; must be less than PR. Therefore, if the
distance from a point to the pivot point of TR, is greater than
PR, the distance from it to all points of TR; is greater than &,
and the pruning operation can be performed accordingly.

Based on the subdatasets generated in Stage 1, the num-
ber of matching points in each subdataset is calculated. Given
two subtrajectories sTR; and sTR;, the calculation of point
matching consists of three steps, as shown in Figure 3:

(a) Pruning step: the pivot point of sTR; is denoted as p¥.
For any point pf" € sTR;, the distance is calculated
from p¥ to py" and is compared with the threshold
PR. If dist(pf, PI")PR, p}" is added to the matching
queue

(b) Splitting step: sTR; is separated from the pivot point
p¥ to form two subtrajectories. The center points of
subtrajectories are taken as new pivot points, and
the points in the matching queue form the new sT
R;. The pruning step is repeated until the matching

queue is empty or the trajectory segment can no lon-
ger be divided

(c) Matching step: the points of sTR; in the matching

queue are matched with sTR; to get the number of
matching points
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(a) Subdataset 2

(b) Matching result of subdataset 2

FIGURE 4: Matching step for a subdataset.

FIGURE 5: Trajectory graph.

TaBLE 1: Datasets.

v puw T M T
DS1 Trucks 1,100 85 39 days
DS2 T-drive 10,357 1448 7 days
DS3 UCI 163 111 493 days

For instance, Figure 4 shows one of the subdatasets after
partition. Figure 4(a) is a subdataset consisting of three sub-
trajectories, and Figure 4(b) shows the matching result of it,
where the number of matching points between sTR, and
other trajectories in subdataset 2 is calculated as 2 and 0.

The matching matrix is aggregated of each time slice.
According to the matching point matrix, the similarity
matrix can be obtained. The similarity is defined as follows:

Definition 9 (trajectory similarity measure). For two trajecto-
ries TR, = {sTRgU, sTR<12), - sTRgm)} and TR, = {sTRgl),
TR, -+, sTR\"}, the similarity of them is calculated as

Sim(TR,, TR;) = Sim (TR, TR,)
oY TM (sTRSp), sTRJ(-q)) + YL ™ (sTR]@, sTR,@)

>

m+n

©)

where m and n are the number of sub-trajectories in TR; and
TR, respectively. The similarity measure satisfies the prop-

erty of nonnegativity, which means Sim(TR;, TR;) > 0 in all
cases, and a large score indicates a high similarity.

Then, the matching matrix is transformed by Equation
(9) to obtain the similarity matrix S, where Sim(TR,;, TRj)
represents the similarity between TR; and TR;. A trajectory
graph G=(V,E) is constructed by exploiting the similarity
matrix S. Firstly, N vertices are constructed for a dataset with
N trajectories and each trajectory corresponds to a vertex.
For each v; corresponding to the trajectory TR; and v; corre-
sponding to the trajectory TR;, edge is added between them if
Sim(TR;, TR;) > 0. The weight of each edge is equal to the

similarity between the two vertices. For instance, given a
matrix [[0,0.5,0.3,0],[0.5,0,0,0.2], [0.3,0, 0,0.8], [0,0.2,0.8,0]],
the trajectory graph is as shown in Figure 5.

4.3. Trajectory Clustering. A community is composed of a
group of closely connected nodes that are sparsely connected
with nodes outside the community. Community detection is
to discover these closely connected community structures in
a complex network, which coincides with the objective of
clustering. Therefore, the Infomap algorithm [31] is
employed for clustering, which combines community detec-
tion with information encoding.

The basic idea of the Infomap algorithm is to find the
shortest codes to describe the path generated by a random
walk on the network. This is done using a two-level cod-
ing of all network nodes to find the module partition with
the shortest encoding length by minimizing entropy to
find the optimal clustering. The two-level code assigns
unique module names, and nodes in different modules
are allowed to use repeated codewords. The module code
is inserted before the nodes in the same module, and the
termination mark is inserted at the end. The average code
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length is calculated as follows:

L(M)=q€H(Q)+ ) poH(F'), (10)

where q € represents the probability of switching from
one module to another per step of the random walk, H(
Q) is the entropy of movements between modules, pf
denotes the proportion of all nodes in group i in the
encoding, and H(P') denotes the average code length
required by all nodes in group i. The Infomap algorithm
performs three steps:

Step 1. Initialization. Each graph node is treated as an inde-
pendent group.

Step 2. Each node is traversed in a random order, and each
point is assigned to the adjacent module that gives the largest
decrease in Equation (10).

Step 3. Step 2 is repeated in a different random order until
Equation (10) does not decrease.

5. Performance Evaluation

The performance of the proposed SSTC-CD algorithm was
evaluated in terms of silhouette coefficient and runtime. All
algorithms were implemented in Java 14, and all experiments
were conducted on a Windows PC workstation equipped
with an Intel(R) Core(TM) i5-10400 CPU@2.90 GHz and
16 GB of memory.

5.1. Datasets. The algorithm was evaluated on several widely
used public datasets, described in Table 1. The trucks dataset
(DS1) is a real-word dataset composed of 1,100 trajectories
generated by 50 different trucks transporting concrete in
Greece. T-drive dataset [33] (DS2), provided by Microsoft

Research Asia, is a collection of trajectories generated by
10,357 taxis located in Beijing within a week. The UCI dataset
(DS3) was collected by the GoTrack Android app in 2016. It
has a high sampling rate for a single trajectory, but the inter-
val between trajectories is long.

DS2 was collected in Beijing, which is located in longi-
tude 115.7°E to 117.4°E and latitude 39.4°N to 41.6°N. There-
fore, out-of-range points were deleted as abnormal points.
The average trajectory length in DS2 is about 1,500 points.
Yet, the longest trajectory has 150,000 points, and there are
many repeated points and stay points, which we have
removed from the dataset. Figure 6 presents the longest tra-
jectory in DS2 with id 6275. Figure 6(a) is the original trajec-
tory, and Figure 6(b) is the processed trajectory.

5.2. Evaluation. In our experiments, we run STTC-CD with
different e-threshold and different number of time slices to
identify the optimal parameters. Figure 7 shows the influence
of different parameters on the proposed algorithm. As shown
in Figure 7(a), the SI index shows a trend of rising first and
then falling as the number of time slices increases, and it
reaches the maximum value when the number of time slices
is 45. As shown in Figure 7(b), the value of € was set from 2
to 35 and the SI index reaches its maximum value when & is
10.

The performance of the proposed STTC-CD algorithm
was compared with several similarity measurement algo-
rithms, namely, FTSM [13], DTW [23], MSM [26], and LCSS
[24], on DS1 and DS3. The parameter € was set to 10, and the
number of time slices was set to 45. Results are presented in
Figure 8(a).

It can be observed that the running time of STTC-CD and
FTSM on both datasets is shorter than that of other algo-
rithms. For large datasets, the runtime gap is greater. The rea-
son is that the other three algorithms are implemented using
dynamic programming, which have quadratic time complex-
ity. As the data size increases, the time required by these
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algorithms rises sharply. Since FTSM and STTC-CD pruned
the sequence to be matched on the trajectory, the complexity
is close to linear in the best case. When the data size is small,
STTC-CD prunes more pair-wise trajectory points than
FTSM by splitting in time slices. However, the operations
of splitting and matching time slices take more time, which
results in spending more time than FTSM.

To further evaluate FTSM and STTC-CD, DS2 was split
into six subdatasets of different sizes and the two algorithms
were applied. It can be seen in Figure 8(b) that when the data-
set is small, the runtimes of the two algorithms are almost the
same. As dataset size increases, the gap becomes more obvi-
ous. This result is also consistent with the results for the other
two datasets.

The performance of algorithms was further compared in
terms of the SI index. The time dimension of the dataset is
considered in the algorithm; therefore, the three-
dimensional Euclidean distance combined with the time
dimension is utilized as the distance measure of SI. Com-
pared with DTW, MSM, and LCSS implemented by dynamic

programming, FTSM only pruned away some unnecessary
comparisons, which improved the running speed of the algo-
rithm without affecting the accuracy of the algorithm. Based
on FTSM, the proposed algorithm further reduces the num-
ber of point matching in similarity calculation, but it also
affects the accuracy of the algorithm. Therefore, the SI index
was used to compare the accuracy of FTSM and STTC-CD,
and K-means was used as the benchmark algorithm. As illus-
trated in Figure 9, the proposed algorithm was compared
with FTSM and K-means with different numbers of trajecto-
ries on DS1 and DS2. It can be observed that the SI of FTSM
and STTC-CD are greater than the SI of K-means on both
datasets, and most of the time, STTC-CD results are better
than FTSM, which indicates that the proposed STTC-CD
takes better account of time correlation.

The clustering results of FTSM and STTC-CD on DS1 are
displayed using lines of different colors, while trajectories
from the same cluster are represented using the same color.
Figure 10(a) shows the clustering result of FTSM, and
Figure 10(b) shows the clustering result of STTC-CD. It is
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found that FTSM does not discriminate in the time dimen-
sion. In contrast, the proposed algorithm has better results
in the division of time levels.

6. Conclusion

This article presented an approach to spatiotemporal trajec-
tory clustering based on community detection (STTC-CD),
which is based on time slicing to reduce the time for similar-
ity calculation. STTC-CD relies on a new trajectory represen-
tation, which enables various algorithms such as for
community detection to be applied for trajectory clustering.
Experimental results have shown that the proposed algo-
rithm can effectively reduce runtimes on large datasets and
that clustering results are more meaningful in the time
dimension.

The approach proposed in this paper is designed to ana-
lyze and cluster trajectory data. An interesting research pos-
sibility for future work is to see this work as a building
block to build a system for analyzing multimodal data con-
sisting not only of trajectory but also text, video, and audio
data. In particular, a hybrid system could be developed com-
bining the proposed approach with a neural network or other
machine learning models.

Data Availability

The T-drive dataset used to support the findings of this study
has been deposited in the Microsoft Research Asia (doi:10
.1145/2020408.2020462). The trucks dataset used to support
the findings of this study is included within the article “Clus-
tering Trajectories of Moving Objects in an Uncertain
World” (doi:10.1109/ICDM.2009.57). The UCI dataset used
to support the findings of this study has been feed by
Android app called GoTrack. It is available at Google Play
Store.
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Hand, foot, and mouth disease (HFMD) is an infection that is common in children under 5 years old. This disease is not a serious
disease commonly, but it is one of the most widespread infectious diseases which can still be fatal. HFMD still poses a threat to the
lives and health of children and adolescents. An effective prediction model would be very helpful to HEMD control and prevention.
Several methods have been proposed to predict HFMD outpatient cases. These methods tend to utilize the connection between
cases and exogenous data, but exogenous data is not always available. In this paper, a novel method combined time series
composition and local fusion has been proposed. The Empirical Mode Decomposition (EMD) method is used to decompose
HFMD outpatient time series. Linear local predictors are applied to processing input data. The predicted value is generated via
fusing the output of local predictors. The evaluation of the proposed model is carried on a real dataset comparing with the state-
of-the-art methods. The results show that our model is more accurately compared with other baseline models. Thus, the model

we proposed can be an effective method in the HEMD outpatient prediction mission.

1. Introduction

Hand, foot, and mouth disease (HFMD) is a common infec-
tion caused by a group of viruses. It is likely to occur to chil-
dren under 5 years old. HFMD causes a serious threat to
children’s health. Especially in developing Asian countries,
this disease is more likely to cause big damage. China is a
country with a large population and vast territory, and the
development of different regions is uneven. Under this situa-
tion, it is difficult to control infectious diseases spread in
China. HEMD has been a nationally notifiable disease since
2008. The new cases should be reported in 24 hours. How-
ever, the situation is still worsening. According to the data
from the Chinese Centre for Disease Control and Prevention
(CCDC) [1], nearly 2 million cases were reported in China in
2019, with an incident rate of over 137/100,000. Although
most HFMD patients are self-limiting, HFMD can still be
fatal. Thus, the prevention and control of HFMD are very
important. And if health authorities had anticipated the situ-

ation before the outbreak, a lot of unnecessary damage could
have been avoided.

Many methods have been proposed to predict HFMD
cases. ARIMA is one of the most general time series models,
which is already used in HFMD prediction work [2]. ARI-
MAX is the ARIMA with external parameters added, and
study showed that the ARIMAX has better performance than
ARIMA [3]. With the increase of computer computing
power, multiple learning models are utilized in HFMD pre-
diction, such as LSTM [4], RNN, and CNN-RNN [5]. These
methods often attempt to learn the law of the disease spread
trend based on a global predictor.

However, on the one hand, the HFMD outpatient data is
nonlinear and nonstationary. On the other hand, the spread
of HFMD is affected by complex and diverse external factors,
such as climate, living habits, and living conditions. These
two characteristics make it difficult to improve performance
based on a global predictor. The relationship between target
data and external factors provides a new idea to researchers,
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and many studies focus on prediction using external factors
to enhance the model performance have been down. The
data about external factors is named exogenous data to dis-
tinguish it from target data. In this paper, we use new ideas
to improve the accuracy of prediction: time series decompo-
sition and local fusion.

Essentially, decomposition is the process of dividing a
complex problem into subproblems that can be easily solved.
In our experiments, a classical method named Empirical
Mode Decomposition (EMD) is used to decompose the
HEMD outpatient data. This method decomposes a time
series into several subseries named Intrinsic Mode Function
(IMF) and a residual. Each IMF contains a local feature. In
addition, in our study, the residual is also treated as an
IMEF. Each IMF is treated equally by local predictors in the
experiment.

In this paper, we propose a Concurrent Autoregression
with Decomposition (CARD) model for HEMD prediction.
We try to improve the accuracy of prediction as much as pos-
sible without exogenous data. CARD generates predicted
value by fusing the output of the local predictors. The
method utilizes two linear autoregression predictors to pro-
cess the past outpatient data and the IMFs, respectively.
Then, a fusion component fuses the outputs of two linear
predictors. Finally, a global predictor is introduced to gener-
ate the predicted result. In a word, we propose an effective
time series decomposition and local fusion method, which
can catch a higher accuracy than several general methods
that only use history outpatient data.

The main contributions of this paper can be summarized
as follows:

(1) We propose a novel prediction model, which applied
time series decomposition and local fusion to the pre-
diction of outpatient cases of HFMD

(2) A classical decomposition method named EMD is
introduced to decompose the HEMD outpatient time
series. Compare with several other decomposition
methods, EMD is simpler and more efficient in this
study

(3) The proposed method applies a linear weighted mod-
ule to fuse the output of two local predictors. Each
local predictor predicts an output result indepen-
dently. Then, the fusion module trains to generate
the final predicted value of the output of local
predictors

The rest of the paper is organized as follows. Section 2
introduces related work. The CARD model we proposed is
explained in detail in Section 3. Section 4 illustrates the
experiment design. Section 5 analyzes the experimental
results. Finally, the whole research is summarized in Section
6.

2. Related Work

This section introduces several most commonly used decom-
position methods and fusion methods related to our research.
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2.1. Decomposition Methods. A time series can be decom-
posed into several subseries via decomposition methods.
For time series decomposition, the following methods are
widely used: wavelet transform [6], Robust Seasonal-Trend
Decomposition (RobustSTL) [7, 8], EMD [9], and Ensemble
Empirical Mode Decomposition (EEMD) [10].

Wavelet transform [6] inherits and develops the idea of
localization short-time Fourier transform. Wavelet trans-
form is a local transform not only the frequency but also time
can be obtained. The method replaces the basis of Fourier
transform. For a signal that has been processed by wavelet
transform, both frequency part and specific position in time
can be obtained. Compared with Fourier transform, it has
good time-frequency localization characteristics and can
extract information on signals more effectively.

RobustSTL [7, 8] is a robust method for decomposing
complex time series into trend, seasonality, and remainder
components. This method allows for multiple seasonal, cyclic
components, and multiple linear regressors with constant,
flexible, seasonal, and cyclic influence.

EMD [9] is a Fourier transform-based signal decomposi-
tion method, which can process any nonlinear and nonsta-
tionary signal adaptively. Compared with most of the
decomposition methods, EMD is easy to use, since EMD
decomposes data based on the local feature of the data, so this
method is adaptive and does not require setting up extra
parameters in advance.

EEMD [10] is a variant of EMD. For EMD, the extremum
points of the signal will affect IMFs, and mode mixing will
occur if the distribution of the extremum is uneven. EEMD
is proposed to solve the mode mixing problem of EMD. This
method using the advantage of uniform distribution of white
noise spectrum, the white noise is added to the signal to be
analyzed so that the signals of different time scales can be
automatically separated to the corresponding reference
scales. This method is mainly to add white noise to the signal
to supply some missing scale which has good performance in
signal decomposition.

In recent years, there are some time series prediction
works using time series decomposition in several search
areas. A regression model combined with wavelet transform
is proposed to forecast the future value of the S&P 500 [11].
EMD is used for electricity load forecasting [12]. Besides,
time series decomposition has been applied to disease predic-
tion work. An ensemble model for chickenpox forecast uti-
lizes the STL decomposition to generate the input of the
model. Wavelet-ARIMA model got a good performance in
COVID-19 case prediction [13]. An improved EEMD algo-
rithm is used to decompose the diarrhea time series [14]. A
TDDF model utilizes heterogeneous data to predict the
HDMD cases [15].

The HFMD outpatient time series data is applied in our
study. The spread of HFMD is easily affected by many exter-
nal factors. Thus, the processing of the time series is difficult.
But the adaptive nature of EMD overcomes this problem. In
this paper, we introduce EMD to process our input data.

2.2. Fusion Methods. Time series forecasting has been a sub-
ject of interest in several different research areas including
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disease control and prevention. In the practical problems of
nature, things are not isolated from each other but inextrica-
bly connected. The same goes for HFMD. Many studies have
fused exogenous data to improve the accuracy of prediction.

The spread of HFMD is influenced by many external fac-
tors, such as meteorological factors including temperature,
humidity, rapid climate change, local policies, air quality,
and population [15-17]. Besides, making good use of some
data can help researchers to predict, for instance, the search
engine query data [18, 19].

Several methods using exogenous data are collected, and
these models can be classified into two categories—stochastic
methods and learning methods. Stochastic methods usually
combine the past data and exogenous data by a linear method
and then learn a linear function to get prediction results [16,
17, 19-23]. The main differences between these methods are
the regression of target variables, functions on exogenous
data, and the decomposition of exogenous data. In the past
few years, exogenous data has been widely used in learning
methods. These methods can be roughly divided into the fol-
lowing three categories:

(1) Traditional Learning Methods Using Exogenous
Inputs. The most common models are multiple linear
regression (MLR), support vector regression (SVR),
and neural network. For these methods, exogenous
data is treated as an input dimension, just like the
past data, in which each element of the inputs is
equally treated. To prevent data jitter, these methods
need to be validated.

(2) The learning methods focus on temporal, which
inputs of different categories are differential treat-
ment, such as [24-26]. For these methods, the tem-
poral dynamics of input data is captured to use
RNN structures, and a nonlinear mapping from
inputs to the target is learned from training data. To
differently treat exogenous inputs and target inputs,
the encoder-decoder structure is employed to do time
series prediction tasks. The encoder-decoder frame-
work consists of two RNN layers and maps input
sequence to output sequence [27]

(3) Temporal Attention Learning Methods. The attention
mechanism is fused into sequential models to predict
future values, such as TPA-LSTM [28], DA-RNN
[29], HRHN [30], and LSTNet [31]. These models
have strong memory abilities in keeping numerous
samples. Especially for small-scale infection data,
the training loss value would be very small, but the
accuracy would be worse than the general methods
and is not general enough.

Though the exogenous data can help to improve accu-
racy, it still has some unavoidable defects. That is, the exoge-
nous data requires a mass of energy to collect and organize
and it is unavailable sometimes. Therefore, it is not always
wise to do prediction relying on exogenous data, especially
in real-time systems. It is almost impossible to integrate
required data into the model dynamically. Considering the

drawbacks of exogenous data, we discussed above, our atten-
tion focuses on target data itself and we do not utilize the
exogenous data.

3. The Proposed CARD

This section formulates the problem and illustrates our
approach.

Figure 1 shows an overview of the proposed model. The
model consists of 3 stages: data preprocessing (left), Concur-
rent Autoregression with Decomposition (upper right), and
data postprocessing (bottom right). For any module in
Figure 1, if it makes any changes in the input data, then this
module will be connected to the following modules using
dotted lines.

In the data preprocessing stage, the input data is the
HEMD outpatient. The outpatient data is normalized and
then further segmented. Finally, they are decomposed into
finite IMFs and residual by EMD. In the CARD, softmax
function is introduced to avoid unfairness in feature extrac-
tion. Two linear autoregression components are used to mine
the sequence feature details and enhance the feature repre-
sentation of input data. At last, the output of two linear com-
ponents is fused and another linear component is applied to
generate the predicted value. In the data postprocessing
stage, the final result is generated and evaluated after
denormalization.

3.1. Problem Formulation and Notations. The main notations
are explained in Table 1.

Windows size T. A window is a subsequence of the orig-
inal data. T is the length of the subsequence. And the subse-
quence is the data in a certain interval be observed to predict
the value of future time point.

IMF. If we do not have a termination, the EMD algorithm
will loop an infinite number of times. In our experiments, we
set a max number of the IMF which is symbolized as K to
stop the decomposition.

The problem of this paper can be addressed as the prob-
lem of time series prediction missions. A time series is a list of
continuous history observation values with equal time inter-
vals. Our goal is to get a predicted value of the outpatient
value of the next day.

It is a mapping from the history observation time series
and IMFs to the future outpatient value. The symbol y, €
R! is the value at time ¢. The history observation values with
window size T are symbolized as [y,, ¥, --*, y7]. And D(y,,
¥y -+ Y7) is the matrix obtained by decomposing the win-
dowed time series. y,, denotes the predicted value at time
T + 1. The mapping process can be formulated as follows:

Yr = FOpye 5y D0s e 5 y1))- (1)

In this study, [y;,¥,, -, yy] denotes the HFMD outpa-
tient window size T.

3.2. Data Preprocessing. Normalization. The normalization
operation scales the data in a specified range. In order to
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avoid large data dominance caused by the difference of data
magnitude, normalization is essentially requisite.

Min-max normalization (0-1 normalization) is a widely
use method in time series normalization. It is a linear trans-
formation of the original data, making the result fall into
the interval of (0,1). The original data can maintain the dif-
ference of value after the linear transformation. Thus, Min-
max is suitable to normalize the outpatient time series in
our study. The formula of the Min-max normalization is
expressed as follows:

, X — min (x)

x' = ., (2)

max (X) — min (x)

where x denotes a sample of observed samples, x' is the nor-
malization result, min (x) is the smallest value in the sam-
ples, and max (x) is the biggest.

where the left matrix is the input data and the right matrix is
the output data.

Empirical Mode Decomposition. In this paper, we use
EMD [13] to do data decomposition. We perform time series
decomposition on the supervision data generated by segmen-
tation. For each sequence, we decompose it into 3 IMFs and a
residual.

An IMF must satisfy the requirements as follows:

(1) In any local time scale, the number of extrema and
the number of points cross zero must be equal or
the difference is 1

(2) At any point, the mean value of the upper envelop
defined by the local maxima and the lower envelope
defined by local minima is close to 0

The procedures of EMD algorithm are shown in
Algorithm 1.

Let X = [IMF,, IME,, ---
posed data.

, IMF,, residual] be the decom-
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Input: The original signal x(t), max-IMF k
Output: kK IMFs and a residual

l.i=1;

. while i < k do

. Upper(t) = spline local maxima x(t);

. Lower(t) = spline local minima x(#);

. Avg(t) = 1/2(Upper(t) + Lower(t));

. h(t) = x(t) - Avg(t);

. if h(t) meets two requirements of IMF do
. IMF, = h(t);

i+

10. x(t) = Avg(t);

11. Residual = x(¢)

O O NOU AW

ArLcoriTHM 1: EMD

3.3. Concurrent Autoregression. The processing of IMF. We
utilize the softmax function to process the IMF future. The
softmax function is an extension of the logistic function. This
function maps a k-dimensional vector containing any real
number to another k-dimensional real-valued vector. Such
that each element is in the interval (0, 1), and the sum of all
elements is 1. After the process of softmax, the largest value
is highlighted and the other components that are far below
the maximum value are suppressed. The formula of softmax
function is expressed as follows:

eki

= ﬂ’ (4)

w;

where X; is the output value of the i-th input vector. w is the
weight matrix. k is the number of output elements. The gen-
eration of input memory a, is based on the input vector X and
the weight matrix w. The formula is expressed as follows:

a,=wxX. (5)

CARD employs a linear layer to receive a regression
result of IMF. The formula is expressed as follows:

eq = qu X a; + bq, (6)

where e, is the weighted IMF feature matrix, w, is the weight
corresponding to the input dimension, and b, is a bias value.

The processing of the HEMD outpatient data. The pro-
cessing of outpatient data is essentially the same as that of
IMFs. The difference is the softmax function is not use for
normalization. Only a linear component is applied to analyze
the trends in outpatient data. The formula is expressed as fol-
lows:

e, =Y w, xy,+b, (7)

where e, is the weighted outpatient feature matrix, w, is the

weight corresponding to the input dimension, and b, is a bias
value.

Concatenation. The CARD model combines the output
of two concurrent working components by the cat function
in PyTorch. The data is treated as the input for last linear
module, and finally, this module generates a predicted value
Y141+ The generation of 3., is formulated as follows:

V. =@(wle,e] +b), (8)

where [e,, e ] is the concatenated vector of dual side outputs,
w is the weight of outputs from dual represented sources,
Y1, is the predicted value of the outpatient number in the
next day, b is a bias value, and @ represents the activation

function.

3.4. Data Postprocessing. Denormalization. Denormalization
is an inverse procedure of normalization, and the denormali-
zation formula is applied to generate the final prediction
results acquired from our model. The formula is expressed
as follows:

x=x' x (max (x) - min (x)) + min (x). 9)

The detail steps of the proposed CARD are shown in
Algorithm 2.

4. Experimental Setup

This section configures our experiments. Section 4.1 intro-
duces the dataset we use. Section 4.2 gives three evaluation
metrics. And Section 4.3 presents the implementation of
our model and the baseline models for comparison. All
experiments are proceeding with the real-world HFMD out-
patient case time series data.

4.1. Data. The real dataset we applied in our experiments is
HEMD outpatient case data which is collected from the Xia-
men Center for Disease Control and Prevention (XCDC).
This dataset is the daily record data from January 1, 2012,
to December 30, 2018. A total of 2555 sample points are
included. In Figure 2, the time series is shown at one-year
intervals.

4.2. Metric. To measure the performance of our proposed
model and compare our model with the selected baseline
models, 3 widely used standard methods are adopted in our
experiments, and the formulas are defined as follows:

T
MAE= =Y (1y, ~3,)) (10)

t=1

RMSE =

2 _ 1 Zthl()’z _y/\t)z
ST 5 oy -

In these equations, the parameter y, is the real
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.Y « Split using Equation (3);

. for each sample y in Y do
fori— 1do
for j<— 1do
e, <Y, using Equation (7);

© N U W~

. for each sample x in X do
fori«— 1do

10 for j— 1do

11. forn— 1do

O

13. A «— w and X using Equation (5);
14. e, < A using Equation (6);

Input: Observed HFMD outpatient time series O € R'K, window size T, max-IMF k
Output: Prediction value for future cases Yy, € R>*(X-T)
. O’ — normalization O using Equation (2);

. X « Time series decomposition using Algorithm 1;

12. o — softmax x; ; using Equation (4);

15.y' 1, < e, and e, using Equation (8);

16.¥;,, < denormalization y' ., using Equation (9);

ArcoriTEM 2: CARD

1460 1825 2190 2555

Relative time (day)

—s— HFMD

FIGURE 2: The distribution of outpatient cases ranges from Jan 1, 2012, to Dec 30, 2018.

observation value at time ¢, and 3, is the predicted value pre-
dicted by model at the same time.

MAE is a basic and universal metric in regression mis-
sion. Compared with MAE, RMSE has the same degree as
the data. For R?, the denominator is understood as the dis-
persion degree of the original data, and the molecule is the
error between the predicted data and the original data. The
division of the two can eliminate the influence of the disper-
sion degree of the original data. These three metrics can be
used together to evaluate the performance of the model com-
prehensively and objectively.

4.3. Configuration. Parameter settings. In our experiments,
the target data is divided into two parts: training set (80%)
and test set (20%). The batch size is set to 32. A set of exper-
iments are completed to find the best values of window size,
and the results are shown in Figure 3, and as we can see, the
best performance is achieved when T = 10. For each experi-
ment, we chose the learning rate between 0.0005 and 0.002
for a step 0.0005 to acquire the best performance of every
model. We repeat each set of experiments five times and take

the average value to obtain the final result. Thus, the result is
stable and has a high level of credibility.

Decomposition algorithm. RobustSTL is more suitable for
long-time series processing, and the time series we used is too
short for this method. Therefore, we only consider wavelet
transform, EMD, and EEMD as the time series decomposi-
tion method candidates. There are four experiments for com-
parison that have been done, and the results are shown in
Figure 4. “IMF3” means the original data will be decomposi-
tion into three IMFs and one residual. Both “db” and “sym”
are commonly used wavelet basis functions. “db” is the
abbreviation of Daubechies, and “db2” represents a wavelet
of order 2. “sym” is symlets and “sym3” means a wavelet of
order 3. As we have seen in Figure 4, the wavelet
transform-based approach has a time advantage, while the
EEMD algorithm consumes too much computational time.
Although the EMD algorithm is at a time disadvantage, it
takes the lead in three metrics. Thus, this configure is applied
in the formal experiments.

Baseline models. To verify the effectiveness of the EMD
function and local fusion, experiments based on multiple
models are necessary. MLR [32], LSTM [33], GRU [34], ED
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FIGURE 4: The comparison of four methods in terms of MAE, RMSE, R?, and computation time.

[35], CNN-1d, and CNN-RNN [36] are selected as the base-
line models. To explain, MLR is a widely used regression
model in many research areas. LSTM, GRU, and ED are
improved neural networks based on RNN. CNN-RNN is a
hybrid model of CNN and RNN.

Experiment process. All experiments could be divided
into 3 groups. The main difference between the three groups
of experiments is their input data. The input data of the first
group of experiments contains only historical data, and the
second group uses only the data after time series decomposi-
tion. The last group of experiments takes both historical and

decomposed data as input. As a result, the final group has the
best performance. Details are discussed in the next section.

5. Results and Analysis

This section gives prediction results, comparisons, and
analyses.

5.1. Effects on Decomposition and Fusion. In this subsection,
we investigate the effects of decomposition and fusion. As
we can see in Figure 5, the result of three metrics shows that
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F1GURE 5: The comparison of eleven methods on three groups of inputs in terms of MAE, RMSE, and R?. The windows size T is fixed at 10.

the CARD model we proposed has the ideal performance
compared with baseline models.

Time series decomposition is an important part of this
study. We decompose the HFMD outpatient time series into
finite and multitime scale IMFs and a residual; then, each
subsequence is modeled and predicted with a local linear pre-
dictor separately. The single IMF contains a specific physical
meaning, such as seasonality and trend. Each sequence is
treated equally in the model. Compared with the original
data, each IMF can represent the local features by itself. This
means that separate predictions for each sequence and then
fusion may give better results than using only the raw data,
and the experimental results proved this.

The prediction accuracy of all baseline models has
increased after fusing the HFMD outpatient case data. This
result shows the superiority of data fusion. A possible expla-
nation is that existing models do not work well with complex
time series like IMF, and some methods cannot capture the
relation between different sequences. The data processing of
the CARD can be divided into two stages. In the first stage,
each sequence is predicted separately, and then, the results
are fused. In the second stage, the predicted values are
obtained from the fused data, which can analyze the relation-
ship between each sequence. So, we get better results than
other models. By the way, the IMFs may lose some features
in the original data. These defects are more obvious with
the short and complex time series data. However, the fusion
of IMF and case data overcomes this shortage. That may

explain why all models have various degrees of improvement
after fusion.

5.2. Comparison. The main results are shown in Figure 5. The
major results can be observed, and the analysis of them is as
follows:

Out of all the models, CARD performs the best. In detail,
MLR is the second-best model. Compared to MLR, CARD is
slightly behind in MAE and RMSE, and we are slightly ahead
in R?. In addition, we are at least 0.1, 0.4, and 0.1 ahead of the
other models in three metrics. The advantages of our model
are described in Section 5.1, and these should explain the
leading position of our model.

In the experiments using only decomposed data as input,
several baseline models showed various degrees of degrada-
tion in performance. And their performance is improved if
the outpatient data is added to the dataset. However, as we
can see in Figure 5, the best performance of these models is
still obtained in the first set of experiments—the input is out-
patient data. In contrast, the performance of CNN-1d and
MLR shows only small fluctuations. One possible explana-
tion is that the EMD algorithm filters peaks in the time series
while CNN-1d and MLR are insensitive to peaks. Therefore,
the accuracy of these two models is not affected much. LSTM,
ED, and GRU study the dependence of time series, and since
these models cannot capture the relationship between the
series, the IMF may negatively affect the prediction accuracy.
CARD performs weighting at each time point and predicts
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each IMF separately. Finally, the model generates a result by
fusion. Thus, CARD solves these problems and obtains better
performance.

Although the CARD model does not make revolutionary
advances, however, the model is much less computationally
intensive compared to most neural network models. There-
fore, the model has relatively low hardware requirements.
Moreover, this model still has good predictive performance
when using only historical data, which means that the data
needed to run the model is easily available. This further
lowers the threshold for practical using the model. Therefore,
our proposed model has good prospects for practical
applications.

6. Conclusions

Our experiment indicates that data decomposition and local
fusion can improve prediction performance. In this paper, we
propose a time series decomposition and local fusion model
named CARD for HFMD outpatient case prediction. The
main conclusions of this study are shown as follows:

(1) Compared with wavelet transform and EEMD, the
EMD method has advantages in predicting accuracy
in terms of HFMD outpatient prediction. Therefore,
EMD is suitable for HFMD outpatient time series

(2) The fusion model we proposed is superior to the
most general methods, which means that such a
model still has great potential in infectious disease
forecasting

Our study must go further research. In this paper, we do
not test the predicting accuracy on the multistep prediction.
In the next step, we can try to extend our model to multistep
times series prediction and other diseases.
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Separating printed or handwritten characters from a noisy background is valuable for many applications including test paper
autoscoring. The complex structure of Chinese characters makes it difficult to obtain the goal because of easy loss of fine details
and overall structure in reconstructed characters. This paper proposes a method for separating Chinese characters based on
generative adversarial network (GAN). We used ESRGAN as the basic network structure and applied dilated convolution and a
novel loss function that improve the quality of reconstructed characters. Four popular Chinese fonts (Hei, Song, Kai, and
Imitation Song) on real data collection were tested, and the proposed design was compared with other semantic segmentation
approaches. The experimental results showed that the proposed method effectively separates Chinese characters from noisy
background. In particular, our methods achieve better results in terms of Intersection over Union (IoU) and optical character

recognition (OCR) accuracy.

1. Introduction

Converting paper documents into electronic documents and
then recognizing them using optical character recognition
(OCR) technology have been widely used in daily life. In
recent years, with the development of machine learning tech-
nology, the recognition accuracy of OCR has been greatly
improved [1-3]. We can now process a document with both
machine-printed text and handwritten text and then recog-
nize them separately [4, 5]. Similar applications can be found
in the archiving and processing of historical documents [6,
7].In the field of education, related technologies for examina-
tion paper autoscoring have emerged, which greatly reduce
burden for teachers and students. Taking Figure 1 as an
example, an examination paper with students’ answers can
first be processed by OCR, and then the recognized answers
can be evaluated and scored automatically by the machine.
Under certain circumstance, since the test paper template
cannot be easily obtained, it is also necessary to directly
identify the printed test paper template.

In order to achieve examination paper autoscoring, one
of the technical challenges to be solved is handling overlap-
ping characters. This may happen when an elementary
school student did not master writing well or put annotation
on the test paper. The current OCR technology cannot han-
dle the mixed situation of printed text and handwritten text
in the same image. Generally, only a single type of text can
be recognized by OCR technology [8]. Our early experiments
showed that when recognizing printed text, the OCR accu-
racy was greatly reduced if there were handwritten strokes
or handwritten characters around the printed text. Even
worse was that the machine was not able to find the text area
needed to be recognized. Therefore, it is desirable to separate
the handwritten characters from the printed characters on
the examination paper and then process different text types
accordingly. Furthermore, for Chinese characters, the separa-
tion of handwriting and printing becomes more difficult
because the font structure is far more complicated than
Western fonts [9, 10]. A slight loss or increase of strokes
may change the meaning of the characters completely, which
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FIGURE 1: Basic process of examination paper autoscoring. (a) A
sample examination paper which consists of both handwriting and
printed text. (b) A subquestion with answers to be scored. (c)
Handwriting touches or even overlaps with printed text. The red
circle shows an example of overlapping characters. (d) The
proposed method targets separation of overlapping Chinese
characters into printed text (left rectangle) and handwriting (right
rectangle). (e, f) After successful separation is made,
postprocessing and autoscoring become feasible.

makes it difficult to separate effectively when handwriting
fonts and printed fonts are highly overlapped.

Separating Chinese characters from noisy background
(particularly with overlappings) can be considered an image
semantic segmentation problem. Previous deep learning
methods [11-13] have shown success in other applications.
However, these methods have poor performance due to the
complex structure of Chinese characters. To distinguish Chi-
nese characters from similar fonts, we adopted a GAN-based
approach [14-19]. A network, called DESRGAN, was devel-
oped to denoise background and reconstruct both the stroke
structure and fine details of targeted Chinese characters. Our
method used ESRGAN [19] as the basic network structure
and applied dilated convolution to residual-in-residual dense
blocks. A new loss function that can measure the integrity of
the font skeleton was imposed. Then, the generator of the
trained GAN model was used to separate targeted characters.

Our main contributions include the following: (a) we
proposed a new network structure and a loss function that
achieves the goal of Chinese character separation from noisy
background, especially when characters are highly over-
lapped; (b) the proposed method achieved the best results
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in both IoU and OCR accuracy; and (c) our dataset (upon
request) for further research is provided.

2. Related Work

Many applications in document processing need to solve the
problem of separation of handwriting and printed. The
Maurdor project created a realistic corpus of annotated doc-
uments in French, English, and Arabic to support the effi-
cient development and evaluation of extraction method
[20]. DeepErase [21] uses neural networks to erase ink arti-
facts on scanned documents and only extract text written
by a user. The ink artifacts that DeepErase targets mainly
include a tabular structure, fill-in-the-blank boxes, and
underlines. Guo and Ma [22] used a machine-printed and
handwritten annotation discrimination algorithm based on
the Hidden Markov Model. Solely focusing on English and
other Latin languages, their algorithm can locate the position
of the handwritten part in the document in the form of a
bounding box. Zagoris et al. [23] proposed a method of rec-
ognizing and separating handwritten content from docu-
ment images mixed with handwritten and printed
characters through the bag of visual word model. Their
method first computes a descriptor for each block of interest
and then classifies the descriptor into handwritten text,
machine printed text or noise. However, few research has
been focusing on highly overlapped texts, especially Chinese
characters that are structurally more complex than English or
other Latin languages.

Recent deep learning methods provide new ways for
solving the separation of handwriting and printed. Li
et al. [5] handles printed/handwritten text separation
within a single framework by using conditional random
fields. Their algorithm only performs extraction at con-
nected component (CC) level. Each CC is classified into
printed and handwritten no matter it is overlapping or
not. U-Net [11], which performs well in many segmenta-
tion tasks, builds upon only convolution layers and the idea
of propagating context information to higher resolution
layers during upsampling. Pix2Pix [17] translates an input
image into a corresponding output image. With a paired
training dataset, it can output sharp and realistic images.
Such features make it attractive for solving our character
segregation problem. However, a paired training dataset
may not be easy to find in real-world applications. Cycle-
GAN [16] is an approach for learning to translate an image
from a source domain to a target domain without paired
examples. CycleGAN’s coding scheme is to hide part of
the information about the input image in low-amplitude,
high-frequency signal added to the output image [14].
Another way to solve the separation of printed is to treat
the image overlapped by handwriting and printed as a
low-resolution picture, and the neural network determines
which part needs to be enhanced in the process of single-
image super-resolution. SRGAN [18] takes advantage of a
perceptual loss function which consists of an adversarial
loss and a content loss. Based on SRGAN, ESRGAN [19]
improves the network structure by introducing the
residual-in-residual dense block and computes perceptual
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FIGURE 2: The network structure of the DESRGAN. An image with overlapping handwritten and printed characters is first processed by a
series of convolution and RRDB modules. There is an operation of dilated convolution inside each residual-in-residual dense block. The
generator outputs separated printed part or handwritten part from the overlapping. The discriminator classifies separated printed or

handwritten characters and ground truth into real or fake.

F1GURE 3: Image gridding (3 x 3 or 5 x5) in the calculation of the
integrity loss. From left to right: the overlapping image I°Y, the
recovered image G(I°Y), and its ground truth 16T, Note that our
integrity loss will focus on the center cells of G(I°') and 16T
which are severely inconsistent.

loss by using features before activation instead of after acti-
vation. These techniques significantly improve the overall
visual quality of reconstruction. Due to its versatility,
GAN-based super-resolution techniques can potentially
improve poor quality of document images, which is attrib-
uted to low scanning quality and resolution. Lat and Jawa-
har [24] super-resolve the low resolution document images
before passing them to the OCR engine and greatly
improve OCR accuracy on test images. However, we found
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FIGURE 4: A simple example of image synthesis of overlapping of
handwritten and printed characters. The three columns from left
to right are printed Chinese, Chinese handwriting, and
synthesized overlapping character.

that existing approaches could not provide satisfactory seg-
regation results.

Besides, there are research efforts toward handwriting
synthesis. Graves [25] utilizes Long Short-term Memory
recurrent neural networks to generate highly realistic cursive
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handwriting in a wide variety of styles. His algorithm
employs an augmentation that allows the network to gener-
ate data sequences conditioned on some high-level annota-
tion sequence (e.g., a character string). Lian et al. [10]
propose a system to automatically synthesize personal hand-
writing for all (e.g., Chinese) characters in the font library.
Their work showed feasibility of learning style from a small
number (as few as 1%) of carefully selected samples hand-
written by an ordinary person. Although the handwriting
fonts produced by their models have better visual effects,
their offline processing flow requires the preparation of the
writing trajectory of each stroke for all characters, which
requires a lot of manual effort. Zhang et al. [9] use a recurrent
neural network as a generative model for drawing Chinese
characters. Under their framework, a conditional generative
model with character embedding is employed to indicate
the RNN of the identity of the character to be generated.
The character embedding, which is jointly trained with the

generative model, essentially limits the model to search the
characters with similar writing trajectory (or similar shape)
in the embedded space. Chang et al. [26] formulate the Chi-
nese handwritten character generation as a style learning
problem. Technically, they use CycleGAN to learn a mapping
from an existing printed font to a personalized handwritten
style. Our work referred to these methods to construct a data-
set for training and evaluating the proposed DESRGAN.

3. Design

Based on the GAN architecture, our method is shown in
Figure 2. Given a Chinese character with noisy background
(e.g., overlapping), the generative network separates the tar-
geted character, which can be printed or handwritten, from
the input image. Since each stroke in a Chinese character is
almost indispensable, extra attention should be paid to main-
taining the integrity of the Chinese character structure. We
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clipped and enlarged for further examination. Wrong recognition results by OCR tool are colored in red while the correct ones in green.

used a network structure similar to ESRGAN [19] as our
backbone network, with major modifications. The dense
connection structure of the ESRGAN generator network
directly transfers the Chinese character strokes and skeleton
information extracted from the intermediate layer to the sub-
sequent layer. The proposed DESRGAN generator network
removed the original upsampling layer of the ESRGAN and
further replaced original convolution kernels with dilated
convolution kernels. VGG19 was used to implement the dis-
criminator which validates whether the image generated by
the generative network is real or fake.

In ESRGAN, the loss function is a weighted sum of three
components: a perceptual loss L., which measures the dis-
tance between the separated image and the ground truth
image features before activation in pretrained VGG19, an
adversarial loss L based on the probabilities of a relativistic
discriminator, and a content loss L, = E, [|G(x;) - y||, which
evaluates the 1-norm distance between separated printed or
handwritten character image G(x;) and ground truth y.

The perceptual loss L., is defined as

Lpercep = [|#(5,) = #(x7) > (1)

where ¢(-) represents features before activation in pretrained
VGGL109, x, stands for clean printed or handwritten character

image, x; = G(x;), and x; stands for the mixed image of hand-
written and printed characters.
The adversarial loss for generator is defined as

L = -E, [log (1 Dy (%)) - E,,flog (D (%))
(2)

where Dy, (x,, x7) = 0(C(x,) — E[C(x/)]), o is sigmoid func-
tion, C(x) is the nontransformed discriminator output, and
[Exf [] represents the operation of taking average for all fake

data in the mini-batch.

Perceptual loss Ly, plays an important role in com-
puter vision tasks such as super resolution where the richness
of the details of the recovered image is critical. It is designed
to improve high-frequency details and avoid blurry and
unpleasant visual effects. However, the goal we want to
achieve here is to separate the printed part from the over-
lapped handwriting as much as possible and indirectly
improve the recognition accuracy of subsequent OCR. With
regard to this, we believe that the overall structure of the
character and the integrity of the strokes are more important
than the high-frequency details for OCR tools. Take the case
in Figure 3 for example, due to the lack of a stroke in the cen-
ter of the recovered image, OCR tools output the character
“JL” other than the correct one “}.”.
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Therefore, a novel gradient-based loss term that can mea-
sure the integrity of the font skeleton was explored. Image
gradients are powerful shape features, widely used in com-
puter vision tasks. Given an overlapping image I°', the
recovered image G(I°), and its ground truth 1T, the gradi-
ents of G(I°Y) and I°T were calculated, denoted as VG(I°Y)
and VI®T, respectively. Instead of relying on whole image
level losses, we build on the ideas of gridding and max-
pooling. As seen in Figure 3, the whole image area is divided
into a square gird (3 x 3 or 5 x 5) of cells {C;}, and the integ-
rity loss was defined as the largest mean square error between
VG(I®') and VI®T of each cell C;

L.

integrity — > (3 )

max

= > | vig-vero), o[
l x,y€C;

where W; and H; are the width and height of cell C;. With
this strategy, the integrity of every cell of the skeleton is
evaluated. The integrity loss will locate the cell with severe
discrepancy between the recovered strokes and the ground
truth strokes.
Therefore, the total loss for the generator is
Lo=L

percep + ALRa + ’7L + “Lmtegnty’ (4)

where A, 7, and « are the coeflicients to balance different loss
terms.

4. Experiment Settings

4.1. Dataset. In this work, we focus on character-level sep-
aration techniques. To process a document, some existing
related technologies, such as layout analysis [27-29] and
connected-component analysis [30], can help locate char-
acter positions. Therefore, we assume that there are some
front-end modules that can help us roughly segment
printed characters from a complete document. For the
experiment, a dataset containing only overlapping printed
and handwritten characters was created, as described
below.

The handwritten character images used for synthesis
come from the CASIA HWDB (CASIA Handwritten
Database) 1.1 dataset [31], which contains images of 3755
commonly used Chinese character images written by 300 dif-
ferent writers. Specifically, we randomly chose handwritten
images from four different writers (writer IDs 1003, 1062,
1187, and 1235) for synthesis.

The printed character images used in the synthesis
include images of the same 3,755 commonly used Chinese
characters listed in CASIA HWDB 1.1. In addition, basic
symbols (plus sign, minus sign, equal sign, and answer box)
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and Arabic numerals 0 to 9 were also added to the printed
image dataset, which contains a total of 3,769 characters.
For those 3,769 characters, they were printed on the A4 size
paper in four fonts (Song, Hei, Kai, and Imitation Song).
The printed paper was scanned and transferred to an image.
Then, the scanned image was cropped at the character level
to obtain the printed images for synthesis.

Existing researches on the pixel level separation of hand-
written characters and printed characters are few. There is
currently no publicly available dataset of overlapped hand-
written and printed characters with pixel-level annotations.
Therefore, this work uses handwritten character images and
printed character images to synthesize samples of handwrit-
ten characters overlapped with printed characters. As
Figure 4 shows, the method of image synthesis is to calculate
the minimum value of the gray value of the pixels of the two
images at the same position and use this minimum value as
the gray value of the corresponding pixel of the composite
picture.

The selected handwriting samples are paired with the
printed samples by random matching. The final pairing
results are as follows: printed Hei is randomly paired with
the handwritten from CASIA HWDB writer ID 1003; printed
Song is randomly paired with the handwritten from CASIA
HWDB writer ID 1062; printed Kai randomly paired with

the handwritten from CASIA HWDB writer ID 1187; and
printed Imitation Song randomly paired with the handwrit-
ten from CASIA HWDB writer ID 1235.

On this basis, we refer to a 708 Chinese character set
that contains various basic components of Chinese charac-
ters proposed by Lian et al. [10] in the study of handwrit-
ten Chinese character synthesis [10] (the collection of
Chinese characters in their work contains a total of 775
characters, of which there are 67 unusual characters that
are not in the CASIA HWDB dataset). Images containing
these 708 Chinese characters also constitute the training
dataset during the training phase. We assume that the
model only needs to learn the features of these 708 Chi-
nese characters to achieve the separation goal, rather than
learning the features of all 3769 characters. Reducing the
number of characters in the training set has a beneficial
effect on both data collection effort and computation cost.
Therefore, shown in Figure 5, 708 corresponding samples
from handwriting samples and printed samples were
selected for random pairing synthesis as the training set.
The remaining samples are also taken as a test set by ran-
dom pair synthesis. The resulting training set contains
2832 samples (708 samples for each font type), and the
test set contains 12244 samples. This dataset is used as
the dataset commonly used in all subsequent experiments.



Wireless Communications and Mobile Computing

Kai font

Synthesized overlapping

Print handwriting and printing

s

i

Ground
truth

ESRGAN DESRGAN

FIGURE 12: Results of separating handwritten characters from superimposed printed characters in Kai font.

4.2. Evaluation Metrics. Both intersection over Union (IoU)
and OCR accuracy were used as our evaluation metrics.
The separation of handwritten characters and printed char-
acters can essentially be regarded as the semantic segmenta-
tion of a mixed image of handwritten and printed
characters. The most commonly used quantitative evaluation
metric in image semantic segmentation is IoU. Therefore,
IoU was used as one of the quantitative evaluation metrics
for evaluating the separation quality of handwriting and
printed characters.

Because this study is a pixel-level segmentation of hand-
written printed mixed pictures, IoU is calculated by the num-
ber of pixels in the corresponding category (i.e., background
and printed). Before calculating IoU, the image is first binar-
ized, and the black area after binarization is regarded as the
printed area, and the white area is regarded as the back-
ground area. In the process of binarization, the Otsu algo-
rithm is first used to calculate the average binarization
threshold of all printed samples in the test set, and this single
threshold value is used for binarization of all samples. In our
synthesized dataset, the average binarization threshold calcu-
lated by the Otsu algorithm for the test set is 184. Finally, we
divide the intersection of the separated printed part (or
background) and the printed part (or background) in ground
truth by their union.

One of applications targeted by this study is the auto-
matic grading of exam papers for primary and middle school

students. Therefore, the main purpose of separating hand-
written characters from printed characters in this research
is to improve the recognition accuracy of the printed text
and handwritten text and to prevent the deterioration of rec-
ognition of the printed text due to the interference of hand-
written strokes or characters on the exam paper. Therefore,
the accuracy of OCR for printed characters is used as another
quantitative evaluation metric for the separation of
handwritten and printed characters.

The OCR tool used to calculate the accuracy of OCR is
Chinese_OCR [32], which is open sourced on Github. This
model recognizes Chinese characters with high speed and
high accuracy. It is very suitable for evaluating the accuracy
of OCR of the separated printed samples. When calculating
the accuracy of OCR, because Chinese_ OCR cannot detect
the text of a single character image, we had to first horizon-
tally concatenate every 25 samples into a long image for
OCR. Then, the correct number of characters was counted
and identified according to the character order in the long
image.

4.3. Model Training. The experiment was conducted on a PC
with Intel Xeon E5-2603 v3@1.600GHz CPU, NVIDIA Tesla
P40 24GB GPU, and 64GB memory. The PC runs the Cen-
tOS 7 operating system, and the deep learning framework
used is PyTorch 1.2.0.
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FIGURE 13: Results of separating handwritten characters from superimposed printed characters in Hei font.

In order to verify the effectiveness of the DESRGAN
model, U-Net, Pix2pix, and CycleGAN which are commonly
used in image semantic segmentation were selected as a com-
parison. Both Pix2pix and CycleGAN models were trained
for 200 epochs with the batch size set to 1. The learning rate
of the first 100 epochs remained at 0.0002, and the learning
rate of the last 100 epochs decayed linearly to 0. U-Net was
trained for 200 epochs with the batch size set to 100. The
learning rate was initially 0.01 and then dropped to tenth of
its value after every 50 epochs.

At the same time, we compared with ESRGAN to verify
the effectiveness of the proposed modification to ESRGAN.
Both ESRGAN and DESRGAN first used L1 loss to train their
generators for 2500 epochs separately with the batch size set
to 16. The initial learning rate was 0.0002 and then halved
after every 200,000 iterations. Then, combined with the dis-
criminator network, the training method of the GAN is used
to train 2500 epochs with the batch size set to 16. The initial
learning rate was 0.00001 and halved after the 50,000th,
100,000th, 200,000th, and 300,000th iterations. Throughout
our work, the coefficient A of adversarial loss L§* and the
coeflicient # of content loss L, are set to 0.005 and 0.01,
respectively.

TaBLE 1: IoU of the separation results of printed characters by
different deep learning methods. The IoU of printed and the IoU
of background are first calculated for each result against ground
truth in the test set and then averaged. The overall IoU is the
average of the first two values.

IoU CycleGAN Pix2pix IEIJe;t ESRGAN DESRGAN
Printed 0.631 0.755 0.697  0.905 0.911
Background 0.869 0935 0910 0977 0.978
Overall 0.750 0.845 0.803 0.941 0.944

5. Results and Discussion

5.1. Visual Effects of Separation Results. We verified several
deep learning methods including our proposed DESRGAN
and visually compared the separation results of Chinese char-
acters in the test set. To understand the performance of sep-
arating printed Chinese characters from noisy background,
we synthesized handwritten/printed overlapped data samples
and tested five methods (i.e., CycleGAN, Pix2pix, U-Net,
ESRGAN, and DESRGAN). Figures 6-9 show the results of
these five methods, along with the separation ground truth.
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TaBLE 2: Impact of the proposed loss function on IoU of the separated printed characters.

IoU DESRGAN without Liyyegiy  DESRGAN + Liyyie (@=0.1)  DESRGAN + Lipyepiey (@=1)  DESRGAN + Ly ooy (0= 10)
Printed 0911 0.913 0.912 0.910
Background 0.978 0.979 0.978 0.978
Overall 0.944 0.946 0.945 0.944

To further understand the impact of a slight loss or increase
of strokes in the separation result, the recognition results of
OCR tool were additionally placed next to the separation
results.

Four popular printed Chinese font types were tested:
Hei, Kai, Song, and Imitation Song. For all tested font
types, ESRGAN and DESRGAN gave the most visually
pleasing results. As shown in Figures 6-9, other methods
could not completely eliminate handwriting strokes in
the separation result. However, not all fonts are designed
equal and some of them (i.e, Song font and Imitation
Song font) contain much thinner strokes. As a result, ESR-
GAN failed to reconstruct some seemly trivial strokes or
remove artifacts which are harder to distinguish from the
superimposed handwriting. The more complex the struc-
ture of Chinese characters or the greater the possibility
of similar structures, the easier it is for OCR tools to pre-
dict seemly correct but substantially wrong results. Only
DESRGAN gave separation results that produced most
successful OCR predictions (see Figures S1-S4 in the
Supplementary Material for more separation results of
printed characters).

Since DESRGAN can effectively separate the printed
part from the overlapping image, the next question is
whether it is capable of the separating the handwritten
part. In essence, this task is more difficult because the
handwriting style varies from person to person. For this
test, only ESRGAN and DESRGAN were compared
because the other three methods produce poor results.
We did not report recognition results because no suitable
OCR tool for handwriting recognition was found.
Figures 10-13 show the visual effect of separating hand-
written parts from superimposed printed characters in
four different font types. The best separation effect came
from the Imitation Song font (Figure 10) and the Song
font (Figure 11), while the Hei font gave the worst effect
(Figure 13). We speculated that it is because the strokes
of printed characters in Hei font are thicker and the colors
are darker, which interfered more with handwritten char-
acters. Nonetheless, DESRGAN produced less artifacts
and reconstructed better character structure than ESRGAN
(see Figures S5-S8 in the Supplementary Material for more
separation results of handwriting).

5.2. Quantitative Analysis. As shown in Table 1, the IoU of
the separation results of printed characters confirmed the
previous visual effect comparison. Both ESRGAN and DESR-
GAN achieved better results than other deep learning
methods, and DESRGAN has a small advantage over ESR-
GAN. It should be noted that through visual analysis, DESR-

TaBLE 3: IoU of the separation results of handwritten characters.

ESRGAN DESRGAN
IoU of handwriting 0.830 0.834
IoU of background 0.952 0.953
Overall IoU 0.891 0.894

GAN is better at restoring important details, which only
account for a small part of the total pixels.

In order to study the impact of the proposed loss func-
tion, we conducted experiments under three different settings
(i.e, a=0.1, a=1, and a =10). Table 2 shows that the pro-
posed loss function had almost no impact on IoU. This is
in line with our expectations, because the main purpose of
the new loss function is to improve the overall structure of
the characters.

The IoU of separation of handwritten characters by ESR-
GAN and DESRGAN was also evaluated. Both models
received more than 10,000 overlapping Chinese characters
from which the handwriting parts were reconstructed indi-
vidually. The IoU of separated handwriting and the IoU of
separated background were first calculated for each result
against ground truth in the test set. Table 3 shows that DESR-
GAN achieved slightly better IoU results.

Table 4 shows that the superimposed handwriting has
a great negative impact on the accuracy of OCR. The
worst synthesized overlapping in Imitation Song font only
achieved zero accuracy. The separation results of ESR-
GAN and DESRGAN led to higher OCR accuracy than
those of CycleGAN, Pix2pix, and U-Net, which proved
the advantage of network structure in identifying charac-
ters from a noisy background. Furthermore, DESRGAN
achieved the highest OCR accuracy in three fonts (i.e.,
Kai, Song, and Imitation Song) thanks to better preserva-
tion of the strokes and basic skeleton of Chinese charac-
ters. Compared to ESRGAN, the proposed method
improved the OCR accuracy by more than 1% in Song
font and Imitation Song font which are more difficult
to handle due to their thin strokes and light colors after
scanning. Except Imitation Song font, the recognition
accuracy rate of the OCR tool for the separation results
of DESRGAN has almost reached the level of recognition
of ground truth.

The impact of the proposed loss function on OCR
accuracy was also measured. As shown in Table 5, the
proposed loss component improved the OCR accuracy,
especially in the case of Imitation Song font. This result
coincides with previous visual analysis, where the OCR
results of Imitation Song font are susceptible to trivial loss
in characters most.
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TABLE 4: Recognition result of separated printed characters and ground truth by OCR tool.

Hei font Kai font Song font Imitation Song font Average
Synthesized overlapping 0.288 0.001 0.020 0.000 0.077
CycleGAN 0.615 0.063 0.129 0.028 0.209
Pix2pix 0.909 0.831 0.507 0.345 0.648
U-Net 0.622 0.587 0.296 0.217 0.431
ESRGAN 0.966 0.962 0.925 0.889 0.936
DESRGAN 0.964 0.971 0944 0.903 0.945
Ground truth 0.968 0.981 0.976 0.981 0.977

TaBLE 5: Impact of the proposed loss function on OCR accuracy of separated printed characters.

Hei font Kai font Song font Imitation Song font Average
DESRGAN without L egicy 0.964 0.971 0.944 0.903 0.945
DESRGAN + Liyyegrity (0= 0.1) 0.965 0.972 0.947 0912 0.949
DESRGAN + Liyiegrty (@ =1) 0.964 0.972 0.936 0.910 0.946
DESRGAN + Ly egrty (0= 10) 0.962 0.971 0.948 0912 0.948

6. Conclusions

In summary, a method to separate Chinese characters from
noisy background where other characters are likely to overlap
was proposed. Our method reconstructed important strokes
and retained the overall structure in the complex Chinese
characters. The proposed method also allowed the OCR tool
to achieve better recognition accuracy. Those findings may
have great benefits to scenarios such as test paper autoscoring
and advanced document analysis. Our future works include
studying how color of handwriting impacts separation pro-
cess and applying to other writing system.
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