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*is paper aims to solve the optimization problems in far-field wireless power transfer systems using deep reinforcement learning
techniques. *e Radio-Frequency (RF) wireless transmitter is mounted on a mobile robot, which patrols near the harvested
energy-enabled Internet of*ings (IoT) devices.*e wireless transmitter intends to continuously cruise on the designated path in
order to fairly charge all the stationary IoT devices in the shortest time. *e Deep Q-Network (DQN) algorithm is applied to
determine the optimal path for the robot to cruise on. When the number of IoT devices increases, the traditional DQN cannot
converge to a closed-loop path or achieve the maximum reward. In order to solve these problems, an area division Deep
Q-Network (AD-DQN) is invented. *e algorithm can intelligently divide the complete charging field into several areas. In each
area, the DQN algorithm is utilized to calculate the optimal path. After that, the segmented paths are combined to create a closed-
loop path for the robot to cruise on, which can enable the robot to continuously charge all the IoTdevices in the shortest time.*e
numerical results prove the superiority of the AD-DQN in optimizing the proposed wireless power transfer system.

1. Introduction

*e wireless power transfer technique is proved to be the
most effective solution to the charging problem as the
number of the IoT devices grows drastically, since it is
impossible to replace the batteries of all IoT devices [1]. In
recent years’ Consumer Electronics Show (CES), a large
number of wireless power transfer products have come into
consumers’ sights. *ere are two types of wireless power
transmission products: near-field and far-field. In near-field
wireless power transfer, the IoT devices, which are charged
by resonant inductive coupling, have to be placed very close
to the wireless transmitters (less than 5 cm) [2]. In far-field
wireless power transfer, the IoT devices use the electro-
magnetic waves from transmitters as the power resource and
the effective charging distance ranges from 50 centimeters to
1.5 meters [3–5]. Compared to the near-field transmitters,

the far-field wireless power transmitters can charge the IoT
devices (including the mobile IoTdevices) that are deployed
in a larger space.

However, the far-field wireless power transfer is still in
its infancy for two reasons. First, the level of power supply is
very low due to the long distance between the power
transmitters and the energy harvesters. In [6], the authors
mentioned that the existing far-field RF energy harvesting
technologies can only achieve nanowatts-level power
transfer, which is too tiny to power up the high-power-
consuming electronic devices. In [3], the authors investi-
gated the RF beamforming in radiative far field for wireless
power transfer. *e authors demonstrated that, with
beamforming techniques, the level of the energy harvesting
can be boosted. However, as the distance between the
transceivers increases to 1.5meters, the amount of the
harvested energy is less than 5 milliwatts, which is still not
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ideal to power up the high-energy-consuming devices.
Second, most of the existing wireless charging systems can
only effectively charge stationary energy harvesters. In [7], a
set of wireless chargers (Powercast [8]) are deployed on the
square area. *e Powercast transmitters can adjust the
transmission strategies to optimize energy harvested at
the stationary energy harvesters. In [9], the Powercast
wireless charger is mounted on the moving robot.
*erefore, the charger is a mobile wireless charger, which
can adjust the transmission patterns of the stationary
sensors while moving. However, the number of the IoT
devices to be charged is too small. In order to wirelessly
charge multiple IoT devices, some researchers proposed
using Unmanned Aerial Vehicle (UAV) to implement the
wireless power transfer [10–13]. *e UAV is designed to
plan the optimal path to charge the designated IoT de-
vices. However, it is very inefficient to use UAV to charge
the IoT devices, since UAV has very high power con-
sumption and very short operational time. Installing the
wireless power emitter on the UAV will further shorten
the operational time of UAV.

In order to enhance the level of the energy harvesting
and efficiency in charging a large number of energy-hungry
IoT devices, in this paper, we assembled the wireless power
transfer robot and applied deep reinforcement learning
algorithm to optimize its performance. In the system, the
wireless transmitter aims to find the optimal path for the
wireless power transfer robot. *e robot cruises on the path,
which can charge each IoTdevice in the shortest time. DQN
has been widely used to play the complicated games which
have a large number of system states even when the envi-
ronment information is not entirely available [14]. Lately, a
lot of researchers have started to implement DQN in solving
the complicated wireless communication optimization
problems because the systems are very complicated and
environment information is time-varying and hard to
capture [15–18]. In particular, the researchers applied deep
reinforcement learning to plan the optimal path for auto-
drive robots [19–22] and the robots can quickly converge to
the optimal path. Henceforth, we found that DQN is a
perfect match to solve our proposed optimization problem.
However, those papers either only proposed the theoretical
model or could not implement wireless power transfer
functions. To the best of our knowledge, we are the first ones
to implement the automatic far-field wireless power transfer
system in the test field and invent a DQN algorithm to solve
it. In our system, the entire test field is evenly quantified into
the square spaces. *e time is slotted with the same interval.
We consider the relative location of the robot in the test field
as the system state, while we define the direction to move in
the next time slot. At the beginning of each time slot, the
wireless power transfer robot generates the system state and
takes it as the input to DQN. *e DQN can generate the Q
values for each possible action and the one with the max-
imum Q value is picked to guide robot’s move during the
current time slot.

As the number of IoT devices increases and the testing
field becomes more complicated, the traditional DQN
cannot generate the close-loop path for the robot to cruise

on, which does not satisfy the requirement of charging every
regular time interval. In order to deal with this problem, area
division deep reinforcement learning is proposed in this
paper. At first, the algorithm divides the whole test field into
several areas. In each area, DQN is utilized to calculate the
optimal path. Next, the entire path is formulated with the
paths of each separated area. In this way, a closed loop is
guaranteed and the numerical results prove that the cal-
culated path is also the optimal path.

2. System Model

*e symbols used in this paper and the corresponding ex-
planations are listed in Table 1.

As shown in Figure 1, a mobile robot that carries two RF
wireless power transmitters cruises on the calculated path to
radiate the RF power to K nearby RF energy harvesters. Both
the power transmitter and the RF power harvesters are
equipped with one antenna. *e power received at receiver
k, k ∈K � 1, 2, . . . , K{ }, is

pk �
ηGtxGrx(λ/4π)

2

lp(L + μ)
2 ptx, (1)

where ptx is the transmit power; Gtx is the gain of the
transmitter’s antenna; Grx is the gain of the receiver’s an-
tenna; L is the distance between the transmitter and har-
vester k; η is the rectifier efficiency; λ denotes the wavelength
of the transmitted signal; lp denotes the polarization loss; μ is
the adjustable parameter due to Friis’s free space equation.
Since the effective charging area is critical in determining the
level of energy harvesting and it is the parameter to be
adjusted at the transmitter, equation (1) is reexpressed using
the effective area:

pk �
ηStxSrx cos α
lpλ

2
(L + μ)

2ptx, (2)

where Stx is the maximum effective transmit area; Srx is the
effective received area; α is the angle between the transmitter
and the vertical reference line.

Since we consider the mobile energy harvesters in the
system, the distance and effective charging area may vary
over the time; we assume that the time is slotted and the
position of any mobile device within one time slot is con-
stant. In time slot n, the power harvested at receiver k can be
denoted as

pk(n) �
ηStxSrx cos α(n)

lpλ
2
(L(n) + μ)

2ptx. (3)

For a mobile energy harvester, the power harvested in
different time slots is determined by the angle between the
transmitter and the vertical reference line α(n) together with
the distance between the transmitter and the harvester L(n)

in the time slot.
In our model, the mobile transmitter is free to adjust the

transmit angle α(n) and L(n) as it can move around the IoT
devices. We assume that the effective charging is counted
only when α(n) � 0 and L(n)< � 45 cm.
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3. Problem Formulation

In this paper, the optimization problem is formulated as a
Markov Decision Process (MDP) and reinforcement
learning (RL) algorithm is utilized to solve the problem.

Furthermore, DQN algorithm is applied to address the large
number of system states.

3.1. Problem Formulation. In order to model our optimi-
zation problem as an RL problem, we define the test field
consisting of same area unit square, whose side length is
30 cm. K � 8 harvested energy-enabled IoT devices are
deployed in the test field, whose orders are 0, 1, 2, 3, 4, 5, 6,
and 7, respectively.*emap is shown in Figure 2.*e system
state sn at time slot n is defined as the position of a particular
square where the robot is currently located at in the test field,
which is specified as sn � pos(h, v), where h is the distance
between the present square and the leftmost edge, which is
counted by the number of squares. v indicates the distance
between the present square and the upmost edge, which is
counted by the number of squares. For example, the No. 5
IoT device can be denoted as o5 � pos(2, 0). *e shadow
area adjacent to No. k IoT devices indicates the effective
charging area for the respective IoT devices, which is
denoted as effk. For example, the boundary of effective
charging areas for No. 6 IoTdevice is highlighted in red. We
define the direction of movement in a particular time slot n

as the actions an. *e set of possible actions A consists of 4
different A � U,D,L,R{ }, where U is moving upward one
unit, D is moving downward one unit, L is moving left one
unit, and R is moving right one unit.

Given the above, the mobile wireless charging problem
can be formulated as minimizing the time duration T for the
robot to complete running one loop at the same time the
robot has to pass through one of the effective areas of each
IoT device.

P1:

minimize
an{ }

T,

subject to
s
0

� s
T
,

∃sn ∈ effk,∀k ∈K, n � 1, 2, . . . , T.

(4)

Time duration for the robot to complete running one
loop is defined as T. *e starting position is the same as the
last position, since the robot cruises in a loop. In the loop, the
robot has to pass through at least one of the effective
charging areas of each IoT device.

Adapting to the different positions, the agent chooses
different action at each time slot. Henceforth, we can model
our proposed system as a Markov chain. In the system, we
use the current position to specify a particular state s. S
denotes the system state set. *e starting state s0 and final
state sT are the same, since the robot needs to move and
return to the starting point. *e MDP process can be de-
scribed as the agent chooses an action a fromA at a specific
system state s. After that, a new system state s′ will be transit
into. ps,s′(a), s, s′ ∈ S and a ∈ A, denotes the probability
that system state transits from s to s′ with a.

*e reward of the MDP is denoted as w(s, a, s′), which is
defined for the condition that system state transits from s to
state s′. *e optimization problem is formulated as reaching
sT in the fewest transmission time slots; henceforth, the
reward has to be defined to motivate the mobile robot that

Table 1: Symbols and explanations.

Symbol Explanation
K *e number of energy harvesters
η Rectifier efficiency
Gtx Gain of transmitter’s antenna
Grx Gain of receiver’s antenna
λ Wavelength of transmitted signal
lp Polarization loss
μ Friis’s free space adjustable parameter
L Distance between transmitter and harvester
ptx Transmit power
pk Received power

α Angle between transmitter and the vertical reference
line

Stx Maximum effective transmit area
Srx Effective received area
n Time instant
pos(h, v) Position h and v units to left and upmost edges
ok Position of kth energy harvester
effk Effective charging area for kth IoT devices
s Present system state
s′ Next system state
an Action taken at n

T Total time consumption

ps,s′(a)
Transition probability from state s to state s′ taking

action a
w(s, a, s′) Reward function at state s taking action a
accok−1

Indicator whether k − 1 harvesters have been charged
ζ Unit price for reward function
π Optimal strategy
Q(s, a) Cost function at state s taking action a
c Reward decay
σ(s′, a) Learning rate for Q-learning
pi Selected location for ith area
Wi ith area

Figure 1: Mobile wireless power transmitter cruises on the calculated
path to charge multiple harvested energy-enabled IoT devices.
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does not repeatedly pass through any effective charging area
of any IoTdevices. Besides, the rewards at different positions
are interconnected with each other, since the goal of the
optimization is to pass through the effective charging areas
of all the IoT devices. We assume that the optimal order to
pass through all the IoT devices is defined as o0, o1, . . . , o7.
ok � 0, 1, . . . , 7. Specifically, the reward function can be
expressed as

w s, a, s′( 􏼁 �
okζ, s′ ∈ effok

, accok−1
� 1,

−1, otherwise.

⎧⎨

⎩ (5)

In the above equation, accok−1
� 1 if the robot has already

passed through as effective area of the ok−1th IoTdevice; and
ζ denotes the unit price of the harvested energy.

As we have defined all the necessary elements for MDP,
we can characterize the formulated problem as a stochastic
shortest path search that starts at s0 and ends at sT. At each
system state s, we derive the best action a∗(s) which can
generate the maximum reward. *e optimal policy sets are
defined as π � a(s): s ∈ S{ }.

3.2. Optimal Path Planning with Reinforcement Learning.
If the systematic dynamics obey a specific transition prob-
ability, reinforcement learning will be the perfect match to
solve the optimization problems. In this section, Q-learning
[23] is first introduced to solve the proposed problem. After
that, to address the large states and actions sets, the DQN
algorithm [14] is utilized to determine the optimal action for
each particular system state.

3.2.1. Q-Learning Method. *e traditional Q-learning
method is widely used to solve the dynamic optimization
problem provided that the number of the system states is
moderate. Corresponding to each particular system state, the
best action can be determined to generate the highest
reward.

Q(s, a) denotes the cost function, which uses a numerical
value to describe the cost of taking action a at state s. At the
beginning of the algorithm, all the cost function is zero since
no action has ever been taken to generate any consequence
Q(s, a) � 0. All the Q values are saved in the Q table. Only
one cost function is updated in each time slot as the action is
taken and the reward function is calculated. *e cost
function is updated as

Q(s, a) � (1 − σ(s, a))Q(s, a)

+ σ(s, a) w s, a, s′( 􏼁 + cf s′, a( 􏼁􏼂 􏼃,
(6)

where

f s′, a( 􏼁 � max
a∈A

Q s′, a( 􏼁. (7)

*e learning rate is defined as σ(s′, a).
When the algorithm initializes, the Q table is empty since

no exploration has been made to obtain any useful cost
function to fill the Q table. Since the agent has no experience
about the environment, the random action selection is
implemented at the beginning of the algorithm. A threshold
ϵc ∈ [0.5, 1] is designed to start the exploration. In each time
slot, a numerical value p ∈ [0, 1] is generated and compared
with the threshold. If p≥ ϵc, action a is picked as

a � max
a∈A

Q(s, a). (8)

However, provided that p< ϵc, an action is randomly
selected from the action set A.

After iteratively updating the value in the Q table, the Q
value converges. We can calculate the best action corre-
sponding to each action and state by

π∗(s) � argmax
a∈A

Q
∗
(s, a), (9)

which corresponds to finding the optimal moving direction
for each system state explored during the charging process.

3.2.2. DQN Algorithm. *e increase in the number of IoT
devices has led to an increase in the number of system states.
Suppose that Q-learning algorithm is used; a very large Q
table has to be created and the convergence speed is too slow.
DQN algorithm is more compatible since there is a deep
neural network in the structure that can be well trained and
take immediate action to determine the best action that is
going to be taken.

*e deep neural network in the structure has the system
state as the input and the Q value for each action is defined as
the output. Henceforth, the function of the neural network is
to generate the cost function for particular state and action.
We can describe the cost function as Q(s, a, θ), where θ is the
weight on the neuron nodes in the structure. As we collect

Figure 2: *e entire test field consists of same space unit square.
K � 8 harvested energy-enabled IoTdevices are deployed in the test
field. *e shadow area adjacent to each IoT device indicates the
effective charging area for the respective IoT devices. For example,
the boundary of effective charging areas for No. 6 IoT device is
highlighted in red.
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the data when different actions are taken in different time
slot, the neural network is trained to update the weight of the
neural network, which can output a more precise Q value:

Q(s, a, θ) ≈ Q
∗
(s, a). (10)

*ere are two identical neural networks existing in the
structure of DQN [24]: one is called the evaluation network
eval net, and the other is called the target network
target net. Since these two deep neural networks have the
same structure, multiple hidden layers are defined for each
network. We use the current system state s and the next
system state s′ as the input to eval net and target net, re-
spectively. We use Qe(s, a, θ) and Qt(s, a, θ′) to define the
output of two deep neural networks eval net and target net.
In the structure, in order to update the value of the weight of
neuron nodes, we only continuously train the evaluation
network eval net. *e target network is not trained. It pe-
riodically duplicates the weights of the neurons from the
evaluation network (i.e., θ′ � θ). *e loss function is de-
scribed as follows, which is used to train eval net:

Loss(θ) � E y − Qe(s, a, θ)( 􏼁
2

􏽨 􏽩. (11)

We use y to represent the real Q value, which can be
expressed as

y � w s, a, s′( 􏼁 + ϵmax
a′∈A

, Qt s′, a′, θ′( 􏼁. (12)

We denote the learning rate as ϵ. *e idea of back-
propagation is utilized to update the weight of eval net; as a
result, the neural network is trained.

*e experience reply method is utilized to improve the
training effect, since it can effectively eliminate the corre-
lation among the training data. Each single experience in-
cludes the system state s, the action a, and the next system
state s′, together with the reward function w(s, a, s′). We
define the experience set as ep � s, a, w(s, a, s′), s′􏼈 􏼉. In the
algorithm, D individual experiences are saved and, in each
training epoch, only Ds (with Ds <D) experiences are se-
lected from D. As the training process is completed,
target net copies the weight of the neurons from the eval-
uation network (i.e., θ′ � θ). D different experiences are
generated from ep, while only Ds are picked to train the
evaluation network eval net. *e total number of training
iterations can be denoted as U. Both evaluation network and
target network share the same structure, in which the deep
neural networks have Nl hidden layers.

3.2.3. Dueling Double DQN. In order to leverage the per-
formance of DQN, which can effectively select the optimal
action to charge multiple harvesters in a time-varying
channel conditions, we redesign the structure of the deep
neural network by using Dueling Double DQN. Doubling
DQN is an advanced version of DQN which can prevent the
overestimating problem appearing throughout the training
[24]. Dueling Double DQN can efficiently solve the over-
estimating problem throughout the training process. In the
same training epochs, Dueling Double DQN is proved to
outperform the original DQN in learning efficiency.

In traditional DQN, as shown in equation (12), the
target network target net is designed to derive the cost
function for a particular system state. Nevertheless, be-
cause we do not update the weight of the target network
target net in each training epoch, the training error
will increase while training, hence prolonging the
training procedure. In Doubling DQN, both the target
network target net and the evaluation network eval net
are used to calculate the cost functions. We use evaluation
network eval net to calculate the best action for system
state s′.

y � w s, a, s′( 􏼁 + ϵmax
a′∈A

Qe s′, arg
a∈A

maxQ s′, a, θ( 􏼁, θ′􏼠 􏼡.

(13)

*e latest research proves that the training error can be
dramatically reduced using the Doubling DQN structure
[24].

In traditional DQN, we only define the cost function Q

value as the output of the deep neural network. *e
Dueling DQN is invented to speed up the convergence of
the deep neural network by designing 2 individual streams
of the output for the deep neural network. We use the
output value V(s, θ, β) to represent the first stream of the
neural network. It denotes the cost function for a specific
system state. We name the second stream of the output as
advantage output A(s′, a, θ, α), which is utilized to illus-
trate the advantage of using a specific action to a system
state [25]. We define α and β as the parameters to correlate
the output of two streams and the neural network. *e
cost function can be denoted as

Q(s, a, θ, α, β) � V(s, θ, β)

+ A s′, a, θ, α( 􏼁 −
1

|A|
􏽘

a′

A s′, a, θ, α( 􏼁⎛⎝ ⎞⎠.

(14)

*e latest research proves that Dueling DQN can speeds
up the training procedure by efficiently annihilating the
additional freedom while training the deep neural
network [25].

3.3. Area Division Deep Reinforcement Learning. In this
paper, the optimization problem can be seen as calculating
the optimal close-loop path which generates the maximum
accumulated reward. However, the traditional DQN shows
the difficulty converging to the optimal path because of the
complicated experimental field. In order to leverage the
performance of traditional DQN, we invent an AD-DQN in
this paper. At first, the experimental field is divided into
multiple separate parts. DQN is run on each part individ-
ually to obtain the optimal path for the robot, respectively.
Finally, the entire close-loop path is formulated using the
path on each part. In area division, the whole area is defined
as W. *e whole area is divided at multiple specific loca-
tions. pi ∈ P.

Wireless Power Transfer 5



*e criterion to pick pi is finding the squares, which exist
in more than one effective charging area of the IoT devices.

∀pi ∈ P,

pi ∈ effm,

pi ∈ effn,

m, n � 0, 1, . . . , K − 1, m≠ n.

(15)

For each pi, we define Ni � pi􏼈 􏼉. We define set

Ke � oargpi∈effj, j�0,1,...,K−1􏼚 􏼛. In the clockwise direction, we

find that the IoTdevice oi has the shortest distance to pi, and
then add both oi and the effective charging area of oi to Ni.
*e new area can be expressed as

Ni � Ni ∪ oi􏼈 􏼉∪ eff i􏼈 􏼉. (16)

Next, we find the IoTdevice having the shortest distance
to the IoTdevice oi that is just added to setNi, and then add
both the new IoTdevice and the effective charging area of it
toNi. Iteratively, we find that all the IoTdevices besides the
ones in Ke are included in one Ni. Finally, classify all the
rest squares to the nearest Ni. Ni􏼈 􏼉 � W.

In each area, the DQN is run to determine the optimal
path for the robot. In each area, the starting point is the same
as the position of pi; the end point is one of the effective
charging squares of the furthest IoTdevice from the starting
point in the same area. After the optimal path is calculated
for each individual area, the close-loop optimal path for the
entire area can be synthesized. *e algorithm is shown in
Algorithm 1.

(i) Define E � effk, k � 0, 1, . . . , K − 1􏼈 􏼉. Among
E, find all the area division points pi by pi􏼈 􏼉 �

pos(h, v)|pos􏼈

(h, v) ∈ effm, pos(h, v) ∈ effn, m, n ∈K}

(ii) *e number of area divison points is defined as
|P|.

(iii) i � 1, . . . , |P|. *e number of the area to be
divided is |P| + 1.

(iv) Ke � oargpi∈effj, j�0,1,...,K−1􏼚 􏼛.
(v) for i � 1, . . . , |P|:
(vi) r1 � pi. r2 � pi.
(vii) while∄og ∈Ni, og ∈NI\ i{ }

(viii) if i< � |P|

(ix) In the clockwise direction, find the the
IoT devices, that has the shortest distance to
r1. *e order of the IoT device is:
g � argminoi ∉Ke

|oi − r1|. Ni is updated as:
Ni � Ni ∪ og􏽮 􏽯∪ effg􏽮 􏽯. r1 � og.

(x) else
(xi) In the counterclockwise direction, find the

the IoT devices, that has the shortest distance to
r2. *e order of the IoT device is:
g � argminoi ∉Ke

|oi − r2|. Ni is updated as:
Ni � Ni ∪ og􏽮 􏽯∪ effg􏽮 􏽯. r2 � og.

(xii) en d
(xiii) en dw hile
(xiv) en d
(xv) for i � 1, . . . , |P|:
(xvi) Define set Wi

(xvii) Wi � Ni ∪ pos(h, v)􏼈

|argh,vminpos(h,v)∈W|pos(h, v) − ok|, k ∉Ke}

(xviii) en d
(xix) for i � 1, 2, . . . , |P| + 1:
(xx) for j � 1, 2, . . . , |J|:
(xxi) *e starting point is defined as pi. *e end point

is defined as ej ∈ effc, j ∈ J.
(xxii) *e weight of the neuron nodes θ are randomly

generated for the eval net and the weights are
copied by target netθ′ � θ. u � 1. D � d � 1.

(xxiii) while u<U s � s0. t � 1.
(xxiv) A probability is generated as a numerical pa-

rameter p ∈ [0, 1].
(xxv) if D> 200 an dp≥ ϵch

(xxvi) a � maxa∈AQ(s, a)

(xxvii) else
(xxviii) Randomly choose the action from action set A.
(xxix) en d
(xxx) while s′ ≠ sT

(xxxi) *e state transit into s′ after taking the action.
d � d + 1. ep(d) � s, a, w(s, a, s′), s′􏼈 􏼉. Suppose
D keeps unchanged if it goes over the experience
pool’s limitation, d � 1; otherwise, $ D � d$.
t � t + 1. s � s′. After enough data has been col-
lected in experience pool, eval net is trained using
D of Ds experiences. Minimize the loss function
Loss(θ) using Back-propagation. target net copies
the weight from eval net periodically.

(xxxii) en dw hile
(xxxiii) en dw hile
(xxxiv) *e optimal path of the entire test field is

synthesized with the optimal path in each Wi.

4. Experimental Results

*e implementation of the proposed wireless power transfer
system is shown in Figure 3.

In the test field, 8 harvested energy-enabled IoT devices
are placed as Figure 2 indicates. *e top view of the test field
can be seen as a 2D map. Henceforth, the map is modeled
and inputted into the computer. *en the AD-DQN algo-
rithm is implemented in computer using Python and the
optimal charging path can be derived. At the same time, a
wireless power transfer robot is assembled. Two Powercast
RF power transmitters TX91501 [8] are mounted on two
sides of the Raspberry Pi [26] enabled intelligent driving
robot. Each transmitter is powered by 5V power bank and
continuously emits 3 Watts RF power. *e infrared patrol
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module is installed on the robot to implement the autodrive
on the test field; henceforth, the robot can automatically
cruise on along the path and continuously charge the
multiple IoTdevices, as shown in Figure 1. To the best of our
knowledge, we are the first ones to implement the automatic
wireless power transfer system in the test field and invent
AD-DQN algorithm to design the optimal path for the
wireless power transfer robot. Since we are the first ones to
design and implement the mobile far-field wireless power
transfer system, there is no hardware reference design we
can refer to and use for validation. So the validation of our
work is done in the software aspect. But referring to the
flowchart, our mobile wireless power transfer system can be
replicated.

For the software, we use TensorFlow 0.13.1 together with
Python 3.8 in Jupyter Notebook 5.6.0 as the software sim-
ulation environment to train the AD-DQN. *e number of
hidden layers is 4 and each hidden layer owns 100 nodes.*e
learning rate is less than 0.1. *e mini-batch size is 10. *e
learning frequency is 5. *e training starting step is 200. *e
experience pool is greater than 20000. *e exploration in-
terval is 0.001. *e target network replacement interval is
greater than 100. Reward decay is 0.99.

First, different reward functions are tested for the op-
timal one. Reward one reward1 is defined using equation (5).
*e unit price is defined as ζ � 4. Reward two reward2 is
defined as

w2 s, a, s′( 􏼁 �
ζ, s′ ∈ effok

, accok−1
� 1,

−1, otherwise,

⎧⎨

⎩ (17)

where ζ � 4. Reward three reward3 is defined with equation
(5); however, ζ � 2. Two factors are observed for the per-
formance of different rewards, which are average reward
during the training and average time consumption during
the training.

Based on the procedures of AD-DQN in Algorithm 1,
the experimental field is divided into two areas along the
only shared effective charging area for both device 2 and
device 3. In area I, IoT devices 2, 3, 4, 5, and 6 are included,
while in area II, IoT devices 0, 1, 2, 6, and 7 are included.

In area I, the performances of three different rewards are
compared in Figures 4 and 5.

In area II, the performances of three different rewards
are compared in Figures 6 and 7.

From Figures 4 and 5, we can observe that reward1 is
optimal. Since all three rewards perform similarly on the
time consumption, reward1 is the highest reward among all,

Assemble the robot and configure the
robot with raspberry pi 4B

microcontroller

Assemble two RF power transmitters on
the raspberry pi 4B controlled robot

Install the infrared patrol modules
on the robot

Implement Area Division Deep
Reinforcement Learning using Python

and derive the optimal charge path

Model the 2D harvested energy enable
loT devices map in computer by

inputting the position of each device

Build the road corresponding to
the calculated path in the test field

Implement mobile wireless power
transfer on test field using well

configured auto drive robot

Figure 3: Flowchart of wireless power transfer implementation.
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reward2, and reward3 versus the training episodes in area I of the
experimental field.
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which means that reward1 can effectively charge most of the
IoT devices compared with the other two rewards.

From Figures 6 and 7, we can observe that reward3
performs best on the time consumption to complete one
episode; however, reward1 is much more average reward

than reward3. *at can be explained as follows: compared
with reward1, reward3 can only effectively charge fewer
number of the IoT devices.

Overall, reward1 has optimal performance in both areas
I and II; henceforth, reward1 is used to define the reward for
AD-DQN.

In Figures 8 and 9, the performances of four different
algorithms are compared. *e random action selection
randomly selects the action in the experimental test field.
Same as AD-DQN, reward1 is used as the reward of
Q-learning and DQN.

We define the successful charging rate as the number of
IoTdevices that can be successfully charged in one complete
charging episode over the total number of the IoT devices.
From Figure 8, we can observe that random action selection
has the worst successful charging rate. *at can be explained
as follows: random action selection never converges to either
suboptimal or optimal path. Q-learning has a better per-
formance than random action selection; however, it is
outperformed by the other two algorithms, since Q-learning
can only deal with the simple reinforcement learning model.
DQN performs better than Q-learning and random action
selection; however, it is outperformed by the AD-DQN,
since the rewards for different states are defined as inter-
connected; even the reward decay is 0.99; DQN still cannot
learn the optimal solution.When the total number of the IoT
devices decreases, both DQN and AD-DQN perform the
same since the decrease of the number of the IoT devices
degrades the interconnections between different system
states. From Figure 9, we can observe that, compared with
the other algorithms, AD-DQN is not the one consuming
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Figure 7: *e average time consumption achieved by reward1,
reward2, and reward3 versus the training episodes in area II of the
experimental field.
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the least time slots to complete one charging episode;
however, AD-DQN is still the optimal algorithm, since all
the other algorithms cannot achieve 100% effective charging
rate; hence they consume fewer time slots to complete one
charging episode.

In Figure 10, the optimal path determined by AD-DQN
is shown as the bold black line. *e arrows on the path show
the direction of the robot to move as we assume that the

robot is regulated to cruise on the path in the counter-
clockwise direction. In this way, the robot can continuously
charge all the IoT devices. *e experimental demonstration
is shown in Figure 1.

5. Conclusions

In this paper, we invent a novel deep reinforcement learning
algorithm AD-DQN to determine the optimal path for the
mobile wireless power transfer robot to dynamically charge
the harvesting energy-enabled IoT devices. *e invented
algorithm can intelligently divide a large area into multiple
subareas and implement the individual DQN in each area,
finally synthesizing the entire path for the robot. Compared
with the state of the art, the proposed algorithm can ef-
fectively charge all the IoTdevices on the experimental field.
*e whole system can be used in a lot of application sce-
narios, like charging IoT devices in the dangerous area and
charging medical devices.
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Companies that produce energy transmit it to any or all households via a power grid, which is a regulated power transmission hub
that acts as a middleman. When a power grid fails, the whole area it serves is blacked out. To ensure smooth and effective
functioning, a power grid monitoring system is required. Computer vision is among the most commonly utilized and active
research applications in the world of video surveillance.*ough a lot has been accomplished in the field of power grid surveillance,
a more effective compression method is still required for large quantities of grid surveillance video data to be archived compactly
and sent efficiently. Video compression has become increasingly essential with the advent of contemporary video processing
algorithms. An algorithm’s efficacy in a power grid monitoring system depends on the rate at which video data is sent. A novel
compression technique for video inputs from power grid monitoring equipment is described in this study. Due to a lack of
redundancy in visual input, traditional techniques are unable to fulfill the current demand standards for modern technology. As a
result, the volume of data that needs to be saved and handled in live time grows. Encoding frames and decreasing duplication in
surveillance video using texture information similarity, the proposed technique overcomes the aforementioned problems by
Robust Particle Swarm Optimization (RPSO) based run-length coding approach. Our solution surpasses other current and
relevant existing algorithms based on experimental findings and assessments of different surveillance video sequences utilizing
varied parameters. A massive collection of surveillance films was compressed at a 50% higher rate using the suggested approach
than with existing methods.

1. Introduction

As discussed by Memos et al. [1], the number of Switch-
Mode Power Supply is increasing, as are incentive-based
switching activities at the end-user level. A high-resolution
time-resolution monitoring system will be required for
future smart grids’ operational stability to properly examine
the state of the electricity grid. When it comes to power grid
measurement applications, kilohertz frequencies are used,
but the degree of aggregation and the reporting rate is not
the same. Instead of using a second rate for instantaneous
data like the smart meters, they utilize a day or more rate for
the cumulative consumption data. As a result of the con-
solidation, communication lines and storage space needs
have been significantly reduced. Assessing power quality

(PQ) as well as disaggregating loads necessitates more data,
as Gao et al. have shown [2]. Several features can be added on
top of Harmonics; however, they can only provide partial
information. Changes in grid operating approaches, de-
mand-side control, and the rise of decentralized generation
have led to an unknown number of combinations of in-
terruptions. Features-based approaches may be unreliable
due to the fact that data gets destroyed, particularly when
exciting short-lived occurrences. Some thresholds may be
adjusted by the user in commercially available equipment for
PQmeasurement at sample rates ranging from 10 kHz to 100
megahertz; raw data is captured when an event happens. A
future smart grid, on the other hand, will have hard-to-
predict threshold values. *ere may be further insights to be
gained by examining raw data from synchronized
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measurements at different locations—even if not all
scattered sensors were able to classify events simultaneously
and hence did not capture them at a high resolution was
depicted by Tsakanikas et al. [3]. Deploying a continuous
storage system for raw data will assist data-driven research
that attempts to improve event classification and smart grid
analysis algorithms; for example, when using lossless data
compression, compressing and transmitting large volumes
of data is considerably easier. Uncommonly, the raw data
stream of a recording device has three voltage readings (from
the 3 phases) and 4 current measurements (3 for the phase
currents and 1 for the neutral conductor). Nominally si-
nusoidal voltage curves that are 120° out of phase make up a
three-phase power system. A strong relationship has been
established between the various modes of communication.
*e same applies to current lines, and leveraging this in-
teraction allows for a particular minimization in data vol-
ume. As a result of their unique distortion, the waveforms
are less connected. Conceived as a way to decrease corre-
lation in current channels owing to phase-load distortions. It
is important to note that waveforms only change at the
equipment’s contact state or load alterations in terms of
distortions. In general, these operations are slow compared
to the length of time. With only one load connection,
waveform changes are rare. Because load currents are in-
creased whenever a massive number of demands get linked
to the sensing field of the grid, variations exist rapidly.
Waveform compression is therefore conceivable. It is known
that lossless compression methods exist for certain appli-
cations, such as music and video. However, no method has
been identified that is specifically designed to take advantage
of the periodicity and multichannel nature of electrical
signals encountered in a stream compression methodology.
An overview of lossy and nonlossy techniques is included in
the book, as are the CR values from trials. Applications that
focus on PQ-event compression are listed; these imple-
mentations were developed by Shidik and his colleagues [4]
among themselves. *ere is no statistical analysis of lengthy
original data. *ese models focused on extremely precise
incident data to validate the applicability of algorithmic
changes in their own unique contexts. In the majority of
cases, data sources are not referenced or provided at all. We
find the researchers do not have a benchmark against which
to assess the feasibility of compression algorithms for grid
wave information, regardless of whether they are using
known techniques or new ones that have yet to be found.We
have chosen to focus on the development of compression
with no degradation techniques and performances for grid
data at a lot of sampling to address these issues in the present
contribution. When utilizing input data with a variety of
ideas, we are considering new growth ideas made of natural
time-series analysis. New lossless compression algorithms
could be developed by using testing data and comparison
parameters for the first thorough accessible standard. *ey
can be used as a decision assistance tool by researchers
dealing with data-intensive smart grid measures. *e pre-
processing phase entails changing the color space, after
which the features may be retrieved using pseudo-compo-
nent analysis. *en, utilizing Robust Particle Swarm

Optimization, the encoding and decoding process may be
completed. *e main contribution of the research work is as
follows:

(i) To design and develop a compression-based video
surveillance technology based on the optimization
approach

(ii) For the purpose of the authentication, run-length
encoding and decoding were performed

*e following is how the rest of the article is organized.
In Section 2, a literature survey is being reported on
strategies to reduce loss during video compression.*e issue
of lossless video compression mechanisms was then
addressed in Section 3. Section 4 then poses the proposed
mechanism over lossless video compression. *e results of
the suggested method and the conclusions were examined in
Sections 5 and Section 6.

2. Related Works

In [1], the article looks into wireless sensor networks (WSNs)
alongside the most recent research on social confidentiality
and protection in WSNs. While adopting High-Efficiency
Video Coding (HEVC) as a new media compression stan-
dard, a novel EAMSuS in the IoT organization is presented
(HEVC). In [5], complete situational awareness is provided
via real-time video analysis and active cameras. In [6], a new
section of MPEG standards called Video Compression
Modulation (VCM) has been suggested by the author. Video
Coding for Machine Vision seeks to bridge the gap between
machine vision feature coding and human vision video
coding to accomplish collaborative compression and intel-
ligent analytics. VCM’s definition, formulation, and para-
digm are provided first, corresponding with Digital Retina’s
rising compress instance. *is is why they analyze video
compression and features from the unique perspective of
MPEG standards, which offers both academics and industry
proof to accomplish the collaborative compression of the
video shortly. In [7], using MapReduce, the author has
developed UTOPIA Smart Video Surveillance for smart
cities. From their end, we were able to incorporate smart
video surveillance into our middleware platform. With the
help of this article, we show that the system is scalable,
efficient, dependable, and flexible. In [8], here when it comes
to edge computing capabilities, the cloud object tracking and
behavior identification system (CORBIS) was demonstrated.
To increase distributed video surveillance systems’ resiliency
and intelligence, network bandwidth and reaction time
between wireless cameras and cloud servers are being re-
duced in the Internet-of-things (IoT). In [9], an effective
cryptosystem is used to create a safe IoT-based surveillance
system. *ere are three parts to it. An automated summary
technique based on histogram clustering is used to extract
keyframes from the surveillance footage in the first stage. To
compress the data, a discrete cosine transform is applied to it
(DCT). Not to mention, a discrete fractional random
transform is used to develop an efficient picture encryption
approach in the suggested framework (DFRT). In [10], the
author proposes a novel approach for compressing video
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inputs from surveillance systems. *ere is no way to reduce
visual input redundancy using outdated methods that do not
meet the demands of modern technologies. Video input
storage needs to increase as a result, as does the time re-
quired to process the video input in real-time. To compress
video inputs from surveillance systems, a unique technique
is presented in this research paper. Visual input redundancy
cannot be reduced using obsolete approaches that do not
match the expectations of contemporary technology. *is
raises the storage requirements for video input and the
processing time as a result. In [11], by using compressed
sensing (CS), the author suggests creating security keys from
the measurement matrix elements to secure your identity.
Assailants cannot reconstruct the video using these.*ey are
designed to prevent this. AWMSN testbed is used to analyze
the effectiveness of the proposed security architecture in
terms of memory footprint, security processing overhead,
communication overhead, energy consumption, and packet
loss, for example. In [12], a new binary exponential backoff
(NBEB) technique was suggested by the author to “com-
press” unsent data that can preserve important information
but recover the electronic trend as much as feasible. Data
coming in may be temporally chosen and dumped into a
buffer, while fresh data can be added to the buffer as it is
received. As a result of the algorithm, the incoming traffic
rate can be reduced in an exponential relationship with the
transmitting failure times. In [13], the author suggested the
lossless compression technique to handle the problem of
managing huge raw data amounts with their quasiperiodic
nature. *e best compression method for this sort of data is
determined by comparing the many freely accessible algo-
rithms and implementations in terms of compression ratio,
calculation time, and operating principles as well as algo-
rithms for audio archiving; there are other algorithms for
general data compression (Lempel–Ziv–Markov chain al-
gorithm (LZMA), Deflate, Prediction by partial matching
(PPMd), Burrows–Wheeler algorithm (Bzip2), and GNU zip
(Gzip)) that are put to the test against one other. Deal with
the challenge of managing enormous raw data quantities
with their quasiperiodic nature by using lossless compres-
sion. Compression ratio, computation time, and operating
principles are all taken into account when comparing
publicly available algorithms and implementations to decide
which is the most efficient. Additionally, generic data
compression techniques such as LZMA, Deflate, PPMd,
Bzip2, and Gzip are also put to the test. In [14], an efficient
embedded image coder based on a reversibly discrete cosine
transform is proposed for lossless. ROI coding with a high
compression ratio (RDCT) was suggested. To further
compress the background, a hierarchical (SPIHT) parti-
tioning technique is used to combine the proposed rear-
ranged structure with a lost zero tree wavelet coding. Results
of the coding process indicate that the new encoder out-
performs many state-of-the-art methods for still photo
compression. In [15–17], the focus was based on the loss of
video compression. Even at lower bit rates, the novel loss-
compression method improves contourlet compression
performance. Along with SVD, compression efficiency is
improved by standardization and prediction of broken

subband coefficients (BSCs) [18]. We measure the
computational complexity of our solution with a better video
quality. HCD uses DWT, DCT, and genetic optimization to
improve the performance of transformed coefficients,
among other techniques. *is method works well with MVC
to get the best possible rate distortion.*e simulation results
are produced using MATLAB Simulink R2015 to examine
PSNR, bit rate, and calculation time for various video se-
quences using various wavelet functions, and the perfor-
mance results are evaluated [19]. To solve the optimization
issue of trajectory combination while producing video
synopses, a new approach has been devised. When dealing
with the optimization issue of motion trajectory combina-
tion, the technique makes use of the genetic algorithm’s
temporal combination methods (GA) [20]. *e evolutionary
algorithm is utilized as an activation function within the
hidden layer of the neural network to construct an optimum
codebook for adaptive vector quantization, which is pro-
posed as a modified video compression model. *e context-
based initial codebook is generated using a background
removal technique that extracts motion items from frames.
Furthermore, lossless compression of important wavelet
coefficients is achieved using Differential Pulse Code
Modulation (DPCM), whereas lossy compression of low
energy coefficients is achieved using Learning Vector
Quantization (LVQ) neural networks [21]. *is paper
presents a rapid text encryption method based on a genetic
algorithm. It is possible to use genetic operators Crossover
and Mutation to encrypt data. By splitting up the plain text
characters into pairs and using a crossover operation to
obtain the encrypted text from the plain text, this encryption
approach uses mutations to get its encrypted message.

From the literature survey, reviewed images and videos
are compressed using transform-based and fractal ap-
proaches, along with other lossless encoding algorithms,
which are now the most frequently used methods for still
and video compression. Each technique has its own set of
pros and downsides like breaking of the wavelet signal and
low compression ratio; hence, it is important to choose the
right one. It is most common for video-based images to be
compressed using transform-based compression (TBC). In
order to achieve compression, the signal or values are al-
tered. Using various transformations, they convert a spatial
domain representation into a picture. Brushlet is an example
of an adaptive transformation (Verdoja and Grangetto
2017); bandelet (Raja 2018) (Erwan et al. 2005) and direc-
tionlet (Jing, et al. 2021) give information about the picture
in advance. After applying these modifications to a picture,
its essential function is altered. Hence, we are motivated to
develop a methodology that overcomes all the existing video
compression issues.

3. Problem Statement

Rapid advances are being made in compressing technology.
As a challenging and essential topic, real-time video com-
pression has sparked a lot of studies. *is corpus of in-
formation has been included in the motion video standards
to a large extent. Unanswered are several significant
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questions. According to the point of view of a compression
algorithm, eliminating various redundancies from certain
types of video data is a compression challenge. *orough
knowledge of the problem is needed, as well as a novel
approach to solve all of the existing research gaps with ir-
reversible video compression. Progress in other fields, such
as artificial intelligence, has contributed to the break-
throughs in compression. A compression algorithm’s suc-
cess depends on the acceptance of a new generation of
algorithms in addition to its technological excellence.

4. Proposed Work

As a result of the smart grid’s usage of ICTs, the generation,
distribution, and consumption of electricity are all more
efficient (Information and Communication Technologies).
For example, the transmission system and the medium-
voltage level distribution system are monitored by Super-
visory Control and Data Acquisition (SCADA) and wide-
area monitoring systems (WAMS). It is important to re-
member that the primary objective of compression is to
minimize the amount of data. *at is if the compressed data
retains most of its original content. Various scholars are
currently involved in proposing effective techniques of data
compression. Listed below are some of the most prevalent
data compression techniques. With this analysis, we are
focusing on compressing the PQ-event data in a video
context in each successive frame to save space. To accom-
plish this, we must first identify the video frame object.
Robust Particle Swarm Optimization is used to create a
lossless video compression method. *is is a diagram of the
recommended technique shown in Figure 1.

4.1. Dataset. *ey used the UK Domestic Appliance-Level
Electricity (UK-DALE) Dataset to conduct the experiments.
A smart distribution system collects data on three-phase
voltage, current, active and reactive power, and power factor
from transformers at 54 substations as well as estimations of
current and voltage at the inlets of three homes. *e data is
then analyzed and compared with the raw data from three
homes. A 16 kHz sampling rate and a 24-bit vertical reso-
lution were employed in the acquisition.*ere was a random
selection of six FLAC-compressed recordings from 2014-8-
08 to 2014-05-15, each having an hour of recordings. In a
proprietary format, these data are recorded as four-byte
floating-point numbers with timestamps at a sampling rate
of 15 kHz. Voltage and current values are included in phase 2
of house 5. Every one of the four files contains 266 s. Large-
scale databases hold all data transferred via a network. Raw
data for three-phase voltages need 8.4GB per day, whereas
three-phase currents (including neutral) require 19.35GB
per day. To transmit the data, you need 0.8 Mbit/s and 1.8
Mbit/s in turn. *is dataset was compiled in the following
locations: as our institution’s main power supply in Karls-
ruhe, Germany, we also have power outlets in our practical
room and a substation transformer there. A total of seven
channels consisting of four currents and three voltages are
sampled at 12.8 and 25 kS/sec, respectively. *ere are seven

channels, with four currents and three voltages sampled at
12.8 and 25 kS/sec, for a total of seven channels. Single-
channel testing and dual-channel testing include measuring
the current and/or voltage of a single phase in both situa-
tions, depending on which method is used. To save the data,
raw 16-bit integers are stored in blocks of 60 s.

Electricity generation, transmission, and distribution in
smart power systems are all affected by the analysis of the
data. As a result, data exchange and memory requirements
are expected to grow considerably, and data storage and
bandwidth requirements for communication links in smart
grids are also expected to increase. It is necessary to raise the
sampling frequency to receive reliable and real-time infor-
mation from the intelligent grid. *ere will be a greater
emphasis on smart grid data compression in the future.
Figure 1 illustrates the proposed compression approach. In
areas of the grid with significant data volume, this approach
can be used successfully.

4.1.1. Preprocessing. *ere are several steps to video com-
pression, the first being preprocessing. Preprocessing is
essential for a database’s longevity and usefulness. For this
reason, each stage in the video data processing workflow
appears to be crucial. *e procedure involves preprocessing,
such as error detection or any other conversions that are not
essential. Power grid video can cause picture frames to be
split. *e Bayesian motion subsampling approach may be
used to create the video frame.*is is a commonmethod for
removing frames from a movie. As the name implies, it is a
computerized method used to enhance the frame creation
process. For the most common sensitivities, the picture
frame intensity range has been expanded, which results in a
better image frame sensitivity value.

Let p denote the subsampled of each possible frame il-
lustrated as

py
�

(Number of the pixel frameswith they intensity)

Total number of the pixel frames
.

(1)

Here, y � 0, 1, . . . , y − 1.
*e separated pixel frames can be defined as depicted in

[22]:

Hi,j � base (Y − 1) 􏽘

bi,j

Y�0
p

Y⎛⎝ ⎞⎠, (2)

where base represents the nearest integer. *is is equivalent
to transforming the pixel intensity [23]:

zN

zx
􏽚

N

0
pN(x)dz􏼠 􏼡 � zN(N) x

− 1
􏼐 􏼑(N)􏼐 􏼑

d
dN

. (3)

Here, finally, the probability distributed uniformity
function can be represented as zN/zx.

When it comes to histograms, the equalization proce-
dure can soften and enhance them. However, even though
the histogram produced by the equalization is perfectly flat,
it will be softened. After reducing the pictures’ superfluous
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noise, we apply a threshold technique to improve the refined
frame acquired from the context. *ereafter, binary images
are created, which streamlines the image processing process.
As a result of the color space conversion, we see a shading
effect in the majority of pictures. *e picture contains three
channels in most cases (red, green, blue). In the blue
channel, there is no more information, but there is a great
deal of contrast. Preprocessed green channel was deleted
next. For example, here is how to extract the green channel
[24]:

Iorg � f(σ, μ, β),

Ired � f(1, μ, β),

IGreen � f(σ, 2, β),

(4)

where σ denotes the Red channel, µ denotes the Green
channel, and β denotes the Blue channel.

Translation of color representation from one basis to
another is called color space conversion (CSC). In most
cases, this occurs while converting a picture from one color
space to another. *e use of a single threshold value for
converting the color space is thus not recommended.

θ∝Threshold (E) ≈ j∗
u

v
1/3

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

⎛⎝ ⎞⎠ jbest − ji( 􏼁, (5)

where E represents converted the color space.
*e color space is transformed to grayscale by keeping

the brightness information. A grayscale picture frame can be
represented as a collection of grayscale images by D2.

ED2 � GS D1( 􏼁 � d2(1), d2(2), . . . , d2(i), . . . , d2(|D|)􏼈 􏼉.

(6)

After the frame gets preprocessed, the data can undergo
the step of feature extraction.

4.1.2. Feature Extraction. We implemented the pseudo-
component analysis in the feature extraction module to
improve the compression performance and concentrate the
image’s information.*e method for decreasing the size and
complexity of data sets involves converting huge numbers of
variables into smaller ones that retain the majority of the
information contained in the large set. Naturally, limiting
the number of parameters in sets of data lowers the

Input video

Converting video
into frames 

Color space
conversion 

Feature
Extraction 

Redundancy removal
by similarity

measurement 

Run-length encoding
process

Compressed bit
stream

Run-length decoding
process

Proposed Robust
Particle Swarm

Optimization (RPSO)

Grid status
monitoring 

Performance
Analysis

Figure 1: Schematic representation of the suggested methodology.
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information’s accuracy, but the trick is to give up just a little
precision for convenience. It is simpler to examine and
interpret smaller data sets. Machine learning algorithms can
also examine data more easily and quickly without dealing
with extraneous issues. Each pseudo-redundancy compo-
nent must be selected as a first stage in the process of feature
extraction. In this module, the main goal is to extract the
highlighted characteristics. Below are the configurations of
this mechanism.

yinput � V
T
c yc + Bc, V

T
s ys + Bs􏽨 􏽩,

β � f2 V
T
intf1 yinput􏼐 􏼑 + Bint􏼐 􏼑.

(7)

Here, [VT
c yc + Bc, VT

s ys + Bs] Error! Bookmark not de-
fined denotes the overall feature level;
VT

c ∈ Z
Cc×Cint , VT

s ∈Z
Cs×Cint , and VT

int ∈ Z
2Cint×1 represent

feature weights; Bc, Bs, and Bint depict the associated fea-
tures; Cc and Cs correspond to the sizes of the input medium
of the categorization and feature sections, accordingly; and
Cint denotes the internal input. Operations
f1(y) � max(y, 0) and f1(y) � 1/(1 + exp(−y)) associate
to sigmoid activation operation, accordingly. *e attention
map is further standardized to [0, 1]. *e outcome of the
feature extraction is represented as depicted in [25]:

yout � f3 β × yc, ys􏼂 􏼃( 􏼁. (8)

Here, f3 consists of a sequence of the feature
components.

Pseudo- and nonpseudo-component characteristics can
be selected using a property calculation technique. To de-
termine pseudo-component characteristics, Hong correla-
tions approaches, which employ averaging techniques, and
Leibovici correlations, which usemixing principles, are used.
In this approach, the phase fraction values are collected from
a compositional system to minimize the difference between
them. Pseudo- and nonpseudo-redundancy characteristics
can be retrieved, as shown as follows [26]:

LoPseudo,nonpseudo � 1 −
2|A∩B|

|A| +|B|
� 1 −

􏽐
N
j pjgj + sm

􏽐
N
j pj + 􏽐

N
j gj + sm

,

(9)

where pj represents the pseudo features, gj represents the
nonpseudo features, and sm represents the empirical
constant.

4.1.3. Optimized Compression Process. Video data may be
compressed without losing any information using this
method. Concerning Robust Particle Swarm Optimization
(RPSO) and run-length coding (RLC), the common RLC can
be optimized by using the optimization algorithm and has
been employed for the compression stage. We analyze the
properties of compressed data using this technique. To
maximize compression-related parameters, it is advised to
use this method as a population-based approach. RPSO is
initialized with the sample particles and modified with the
optimal answer in each cycle. *e resulting answer is called
fitness and is referred to as the best. *e best solution

obtained by a particle in a population is considered the
world’s top value monitored by the particle swarm optimizer
(gbest). By the two pbest and gbest solutions, the positions of
each particle change to global optima. *e individual speeds
and location functions of each particle are as follows. In a
dimension search space D, there is a swarm composed of
particles where each particle is represented by ‘i’ in a vector
of Xi � xi1, xi2, . . . . . . , xid and the particle bet solution pbest
is denoted as pi � pi1, pi2, . . . . . . , pid. *en, the best solution
of the subset swarm is given by
gbestpg � pg1, pg2, . . . . . . , pg d􏽮 􏽯. *e ith particle velocity is
represented as Vi � Vi1, Vi2, . . . . . . , Vid.*e particle velocity
and location are updated based on equations (10) and (11).

*e weights updates are given by [27]

vid(n + 1) � W(it)∗ v
n
id + C1 ∗ rand∗ pid − x

n
id( 􏼁

+ C2 ∗ rand∗ pg d − x
n
id􏼐 􏼑,

(10)

where W represents the weighed features, C represents the
cross features, n represents the constant, rand represents the
random number, xid represents the particle velocity, and pid
represents the particle motion. Here, depending on the
feature extracted, the details can be updated depending upon
the weightage, where Vid � Vmax, and it reflects the number
of iterations between 1 and 10, where 10 is the maximum
number of iterations. *e random value of 0 to 1 is rep-
resented by the rand. C1 and C2 normally signify a non-
negative amount of an acceleration constant; here, C1 and
C2 �1.05. *e particle orientation is also modified with [28]

x
n+1
id � x

n
id + v

n+1
id . (11)

Any swarm obtains the health or objective f and each
iteration provides the best solution; then if f(xi)< f(pbest) and
f(gbest), then pbest and gbest � xi. *e optimal measurement is
obtained to maximize the curve transformation coefficients.

Video reconstruction can be done via run-length
encoding once the optimized values are acquired. Using
sequential data, this is a fairly simple operation to perform
on your computer. For redundant data, it is a great tool.
Running symbols are replaced by shorter ones in this
technique.*ere are two ways to express the run-length code
in grayscale images: V and R, where V represents the
character count and R represents the run length. For op-
timized run-length optimal run-length encoding (ORLE),
the following steps are required:

Step 1: Coefficient optimization
Step 2: Enter the string
Step 3: Give a unique value from the very first symbol or
letter
Step 4: Otherwise, leave if the character or symbol is the
final one in the string
Step 4: Additional symbols can be read and counted
Step 5: Until the preceding symbol subband has a
nonmatching value, move on to step 3
Step 6:*is will give you a count of the number of times
a certain symbol appears in a given sentence
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*e suggested methodology uses a vector that contains a
variety of scales to convert subbands that are optimized
minimum and maximum to achieve the best result.

CompressedFitness value �
−40∗ q −3∗

����
􏽐 Sv

􏽰
( 􏼁

2 − exp 􏽐 cos 3π ∗ Sv( 􏼁/db( 􏼁
+ 10 exp ,

(12)

where q denotes the compressed reconstructed value and Sv

is the compressed score value that is obtained. Finally, the
best rate of compression can get obtained. *e RPSO re-
constructs the data by using run-length decoding after re-
fining the transforming Algorithm 1 curvelet parameters are
as follows.

Finally, after compression, the status of the grid can get
sorted out and it can get monitored and the irregular grid
distribution can get identified.

5. Performance Analysis

Increasingly, data is being exchanged across smart grid
sectors. Many types of data are created every day. For ex-
ample, meteorological data such as the amount of sun or
wind, humidity, or temperature are essential for optimal
performance in many industries. Two phases in the data
interchange procedure are encoding and decoding (or de-
cryption). Numerous operations take place during the
encoding phase to prepare data for transmission; when the
data is encoded and decoded, it will be returned to its
original form. In this section, you will learn about the
complete process of performing experiments for perfor-
mance evaluation. It is written in MATLAB, which is a
programming language. Measurement data was collected
over 24 hours in 1-minute, 5-second, 10-second, and 20-
second intervals to assess the proposed compression
methods. Readings from multiple meters were collected for
each period in a data matrix.

Table 1 illustrates the effect of truncating small singular
values on the compression ratio (CR) and percentage re-
sidual root difference. It can be seen that the minimum root
mean square distance is obtained when eight singular values
are considered. *is leads to a reduction in the signal length.
Compared to other sets of data, the calculated CR values for
the 5-second time interval data are closer to the Total
compression ratios (TCR) values in Table 1. Data obtained at
1-minute, 10-second, and 20-second intervals have gener-
ated CRs that deviate somewhat from the TCRs. Figure 2
illustrates the relationship between the number of significant
singular values and TCR. According to the plotted data, the
size of the data matrix has an impact on the ratio of
compression (r), the number of singularly significant values.
*ere are two different sizes of a data matrix: 5 seconds and 1
minute. A greater number of significant single values were
required to match the TCR in 5-, 10-, and 20-second datasets
than in the 1-minute dataset, as can be observed in Figure 2.
As an alternative, selecting a shorter time interval, such as
five seconds, will offer a better approximation on the number
of significant singular values, resulting in the computed CRs
being closer to the TCRs.

*e mean error is a colloquial phrase that refers to the
average of all mistakes in a collection. In this context, an
“error” refers to a measurement uncertainty or the difference
between the measured value and the correct/true value.
Measuring error, often known as observational error, is the
more formal word for error. According to Figure 3, there is a
relationship between the related mean error for different
time interval data and TCRs. As shown in Figure 3, the data
consisting of measurements per 1-minute interval has the
lowest mean error.*eMAE found for greater matrix sizes is
larger when the TCRs are higher.

According to Figure 4, there is a correlation between the
number of significant singular values and the rate of mistake.
For the first 100 single values, the 5-second dataset has the
greatest MAE, followed by 10-seconds, 20-seconds, and 1-
minute time interval dataset that has the lowest MAE. *ere
is practically no inaccuracy in any dataset after the first 100
single values. A dataset’s size has a substantial impact on
singular values and the correctness of reconstructed data.

A smart distribution system’s data is compressed in this
part to see how well the approach works. To sum up, more
singular values are required to fulfill TCR as a data set grows
in size, as shown by the experimental findings. Nevertheless,
increasing the number of singular values will reduce the
amount of data that has to be compressed. As a result, there
are fewer errors when the data is rebuilt after it has been
compressed. As a result, a greater amount of data must be
transferred through a wider range of communication
channels. By compressing information with a high number
of singular values to fulfill the TCR, you will have to send
more data.*e TCRmust be matched to the quantity of data
to be compressed to maximize the connection bandwidth
when transferring the compressed data. *e data recon-
struction error can be calculated between the reconstructed
data g(i, j, s) and the original data F(i, j, s) using

P(s) �
1

3MN
􏽘

a−1

i�0
􏽘

b−1

j�0
􏽘

2

s�0
‖g(i, j, s) − F(i, j, k)‖. (13)

In addition, the Mean Average Error (MSE) (calculated
by averaging squared error) is another way to assess re-
construction accuracy.

*e MAE is defined as [29]

MAE � 􏽘
a−1

i�0
􏽘

b−1

j�0
􏽘

2

s�0
‖g(i, j, s) − f(i, j, s)‖

2
. (14)

A measure of the quality of compression and recon-
struction is the signal-to-noise ratio (SNR). *ere are two
ways to define the peak SNR [30]:

PSNR(dB) � 10 log10
Maxi( 􏼁
�����
MAE

√ , (15)

where Maxi is the maximum possible pixel value.
MD quantifies the greatest difference between original

and reconstructed values. *e average difference between
original and reconstructed values is denoted as SSIM. For
each of the formulas [31],
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Input: Extracted features
Output: Compressed data Cd

To compute compressed value,
For i � 1: size(Dn parameters, 1)

For j � 1: size(Dn features, 1)

Weighed updates
vid(n + 1) � W(it)∗ v

n
id + C1 ∗ rand∗ (pid − x

n
id)

+C2 ∗ rand∗ (pg d − x
n
id),

End
End
Data compressed features dn fea � [dn fearand ]

To compute, Run length encoding
Class label� unique(target)
K� length(class label)
For d� 1: k
Temp� total class mean(I, :)

Run length decoding
Data grouping
CompressedFitness value �

(−40∗ q(−3∗
����
􏽐 Sv

􏽰
)/2 − exp(􏽐 cos(3π ∗ Sv)/db))

+10 exp,
End

ALGORITHM 1: (RPSO)

Table 1: Computed CR, and number of singular values, r of compression.

TCR
1 minute 20 seconds 10 seconds 5 seconds

r CR r CR r CR r CR
100 6 96.68 8 103.62 9 101.89 10 96.84
80 7 82.87 10 82.90 11 83.36 12 80.70
60 10 58.01 14 59.21 15 61.13 16 60.53
50 12 48.34 17 48.76 18 50.94 19 50.97
30 19 30.53 28 29.60 31 29.58 32 30.26
10 58 10.00 83 9.99 92 9.97 97 9.98
5 116 5.00 166 4.99 183 5.01 194 4.99
4 145 4.00 207 4.00 229 4.00 242 4.00
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Figure 2: Plot of the number of singular values versus TCR for the different datasets.
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SSIM � 􏽘
M−1

i�0
􏽘

N−1

j�0
􏽘

s−1

s�0
‖I(i, j, s)‖,

MD � max0≤i≤M‖I(i, j, s)‖.

(16)

*e video reconstruction error (MSE), signal-to-noise
ratio (PSNR), matching distance (MD), and percent com-
pression ratio (PCR) values are obtained as depicted in
Figure 5. *e satisfying results are obtained over the
compression as depicted in Table 2. From Table 2 and
Figure 5, the suggested methodology shows the highest
performance over PSNR, MSE, andMD. As illustrated in the
PSNR contours for the testing set in Figure 5, the PSNR
improves as the compressed image bit rate increases. *e

results demonstrate a rising pattern in PSNR values, whereas
MSE drops progressively as the compressed image bit rate
improves. As a result, a higher compressed image bit rate
means higher resolution images and fewer mistakes.

*e advantages of the existing mechanism in which the
high compression ratio was obtained but it takes more time
for compression. Hence, it can be overcome by the proposed
mechanism.

5.1. Complexity Analysis. In general, the total number of
states is approximately equal to 2N for computing nth RLE
number (F(N)). Notice that each state denotes a function call
to ‘RPSOwith RLE()′which does nothing but makes another
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Figure 3: Plot of MAE versus TCR for different sampling rates.
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Figure 5: Image Quality metrics.

Table 2: Average Data Quality metrics.

Parameters 5 sec 10 sec 20 sec 1min
PSNR 14.1913 13.2848 11.168 12.778
MAE 43.5359 54.1624 70.49 59.7
MD 222.1475 249.0821 249.05 232.1
PCR 100 100 100 100

Table 3: Average compression ratio.

Compression level Number of images Compression ratio
Discrete spatial multilayer perceptron (proposed) 100 10 :1
Haar [17] 100 10 :17
Cosine [17] 100 10 :18

RPSO (Proposed) Haar [17] Cosine [17]
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Figure 6: Compression ratio.
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recursive call. *erefore, the total time taken to compute the
nth number of the sequence is O(2N).

In digital file compression, duplication is the most im-
portant issue. If N1 and N2 signify the amounts of data
holding units in the raw and encoded images, corre-
spondingly, the compression ratio, CR, could be specified as
CR�N1/N2 as well as the data duplication of the original
image as RD� 1− (1/CR). From Table 3 and Figure 6, the
proposed methodology can acquire the exact ratio of
compression (10 :1) when compared to Haar [17] (10 :16.5)
and Cosine [17] (10 :17.2) techniques.

6. Conclusion

Data compression techniques such as RPSO compression
were examined and evaluated in this article. Data from a
smart distribution system was used to evaluate the algorithm
with 1-minute, 10-second, 20-second, and 5-second interval
datasets. *e results obtained demonstrate that the amount
of the data has a considerable influence on the proposed
approach. Larger datasets require more significant single
values to achieve low error rates. When used to the smart
grid, RPSO may be used as a simple and uncomplicated
compression method. *e significant singular values will
provide a decent approximation when the compressed data
has to be rebuilt using the recommended approach.
Depending on the number of singular values used, RPSO
compression can lower the volume of data. However, if you
have a lot of data, you should consider using the proposed
compression technique, which has a faster execution time
and low error rates. Also, a lot of the pointed advantages
exist. *ere will be some disadvantages also; in the proposed
work, the order of bytes is independent. Compilation needs
to be done again for compression. Errors may occur while
transmitting data. We have to decompress the previous data.
*e disadvantages can be overcome in future work.
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*e data used to verify the study’s findings can be obtained
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