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Surface elasticity and residual stress have a strong influence on the effective properties of nanowire (NW) due to its excessively
large surface area-to-volume ratio. Here, the classical displacement method is used to solve the field equations of the core-surface
layer model subjected to tension and torsion..e effective Young’s modulus is defined as the ratio of normal stress to axial strain,
which decreases with the increase in NW radius and gradually reaches the bulk value. .e positive or negative surface residual
stresses will increase or decrease Young’s modulus and shear modulus due to the surface residual strains. Nonzero radial and
circumferential strains enhance the influence of surface moduli on the effective modulus.

1. Introduction

Typical nanowires (NWs) are often referred to as 1D materials
with nanometer-scale diameters or perimeters and excessively
large surface area-to-volume ratio. NWs have considerable
potential in various applications, such as molecular electronics,
nanoelectromechanical systems, and novel building materials,
for disaster prevention and mitigation [1–12]. .e applications
of NWs into future generation nanodevices require a complete
understanding of the NW mechanical properties [2]. Many
direct measurements have been performed to investigate the
mechanical properties of NWs [3]. Unlike the mechanical
testing of bulk materials, NW testing heavily depends on the
experimental setup; in particular, manipulation procedure
leads to substantial challenges due to the small NWdimensions
[4]. In many experiments, such as in [1–6], the measured
deflections are less than the diameter which can be classified
small-deflection problem. In addition to experimental en-
deavors, theoretical prediction can also be used in NW me-
chanical analysis. .eoretical prediction is classified into two
main categories as follows: first is the atomic modeling, which
includes techniques such as tedious ab initio molecular

dynamics calculations and density functional model [5], and
second one is continuum mechanics modeling [6–10]. NWs
are strongly influenced by their surface characteristics, thereby
leading to distinct mechanical properties compared with their
bulk counterpart. Consequently, in the continuum mechanics
modeling of the mechanical properties of a solid NW, the role
of surface stress must be considered. Zhang et al. analyzed the
effect of surface residual stress and elasticity on the asymmetric
yield strength of NWs on the basis of the potential energy
method [6]. Chuang presented a simplistic theory to study the
enhanced strength of a solid NW [7]. Gupta also presented a
continuum formulation to investigate the finite deformation of
nanorod/NWs [8]. .e large-deflection deformation of NW
implicates large rotational angle and infinitesimal strain. So,
this situation will not be considered in our mode.

Although the classical continuummechanics models can
efficiently predict NW deformation, their applicability in
identifying the surface effect on the effective modulus of
NWs is tedious. .erefore, a relatively simple approach that
can directly characterize the mechanical properties of a solid
NW should be developed. In this work, the classical dis-
placement method is used to study the tension and torsion of
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NW and the influence of surface elasticity on the effective
Young’s moduli and shear moduli.

2. Model Analysis

As schematically shown in Figure 1, we consider a stretched
and twisted core-shell NW model viewed as a composite,
comprising a cylindrical core (bulk) and surface layer. .e
equilibrium equations, strain-displacement relationships,
and constitutive equations for the isotropic bulk materials
are expressed as follows:

εij �
1
2

ui,j + uj,i , (1)

σij � λεkkδij + 2Gεij, (2)

σij,j � 0, (3)

where σij, ui, and εij denote the stresses, displacements, and
strains in core, respectively, and λ and G are the Lamé con-
stants of the bulk. For the elastic isotropic surface layer, the
linear relationship of the surface stress and elastic strain can be
expressed by Gurtin–Murdoch elasticity as follows [9]:

τs
αβ � τ0δαβ + λsε

s
χχδαβ + 2Gsε

s
αβ, (4)

where λs and Gs are the surface modulus, τ0 is the surface
residual stress, and δαβ denotes the surface Christoffel symbols.
According to the analysis of the mechanical equilibrium of
surface layer and core, the generalized Young–Laplace equa-
tions for NW are expressed as follows [6, 10]:

σαjnj + τs
αβ,β � 0, (5)

σijnjni � τs
αβκ

s
αβ, (6)

where nj is the unit normal vector and κs
αβ is the curvature

tensor of the surface (Figure 2). .e stress distribution of NW
can be obtained using the classical displacementmethod on the
basis of equations (1)∼(6), that is, the bulk stress and the surface
stress can be obtained by directly substituting the bulk dis-
placement/strain formula into the constitutive equations. .e
global displacements dominant governing equations are
established using generalized Young–Laplace equations. .e
solution of the field equations in the cylinder coordinate can be
simplified if the NW is subjected to tension and torsion. We
assume that uz is function of z and uρ is function of ρ.
According to equation (1), the nonzero strains are

εz �
duz

dz
,

ερ �
duρ

dρ
r,

εφ �
uρ

ρ
,

czφ �
zuφ

zz
.

(7)

After substituting equation (7) into equation (2), the
stress components in the bulk are

σρ � (λ + 2G)
duρ

dρ
+ λ

duz

dz
+ λ

uρ

ρ
, (8)

σφ � (λ + 2G)
uρ

ρ
+ λ

duz

dz
+ λ

duρ

dρ
, (9)

σz � (λ + 2G)
duz

dz
+ λ

uρ

ρ
+ λ

duρ

dρ
, (10)

τzφ � Gczφ. (11)

After substituting equations (8)–(11) into equation (3), it
is noted that σρ � σφ, and the stress components are found to
be automatically satisfied the radial equilibrium equation.
And, we get ερ � εφ and uρ is the linear distribution along the
radial direction. .e axial and circumferential equilibrium
equation can be simplified into the following forms:

d
2
uz

dz
2 � 0, (12)

z
2
uφ

zφ2 � 0, (13)

which implies that uz and uφ are linear distribution along the
axial direction of NW. Now, the displacement field can be
expressed by

uφ � ρ a1z + b1( , (14)

uz � a2z + b2, (15)

uρ � a3ρ, (16)

where a1 ∼ a3 and b1 ∼ b2 are constants related to boundary
conditions. .e surface of NW is assumed to be charac-
terized by the deformation of the bulk solid so that surface
strains can be expressed by

εs
zz � a2,

εs
φφ � a3,

c
s
zφ � R0a1,

(17)

where R0 is the radius of NW. Substituting equation (17) into
equation (4), the surface stresses are

τs
zz � τ0 + λs + 2Gs( a2 + λsa3, (18)

τs
φφ � τ0 + λs + 2Gs( a3 + λsa2, (19)

τs
zφ � GsR0a1. (20)

After substituting equations (18)–(20) into equations (5)
and (6), the above surface stress components automatically
satisfy the axial and circumferential generalized

2 Advances in Civil Engineering



Young–Laplace equations. .e generalized Young–Laplace
equation along the radial direction gives σρ � τs

φφ/R0, and it is

a3 � −
λ + λp a2

2(λ + G) + λp + 2Gp

. (21)

Under a constant external load P, the average normal
stress on the cross section of NW is

σ �
P

πR
2
0

�
2τ0
R0

+ (λ + 2G) + 2 λp + 2Gp  a2 + 2 λ + λp a3,

(22)

where λp � λs/R0 andGp � Gs/R0. Under a constant external
torsion T, the shear stress on the cross section of NW satisfy
the following equation:

GIp + GsIs a1 � T, (23)

where Ip � πR4
0/32 and Is � 2πR3

0. Combining equations
(17), (22), and (23), the constants can be confirmed as
follows:

a1 �
T

GIp + GsIs

, (24)

a2 �
σ − 2τ0/R0( (  2λ + 2G + λp + 2Gp 

2G(2G + 3λ) + λP(6G + λ) + 2Gp 6G + 5λ + 4Gp + 4λp 
, (25)

a3 � −
− σ − 2τ0/R0( (  λ + λp 

2G(2G + 3λ) + λP(6G + λ) + 2Gp 6G + 5λ + 4Gp + 4λp 
. (26)

We next determine the distribution of the surface re-
sidual strain and then consider the effective modulus of NW.
If nonzero surface residual stress is present on the NW

surface and let σ � 0 in equations (25) and (26), then the
relaxed surface axial strain and circumferential strain are
expressed as follows:

εs
zz0 �

−2τ0/R0(  2λ + 2G + λp + 2Gp 

2G(2G + 3λ) + λP(6G + λ) + 2Gp 6G + 5λ + 4Gp + 4λp 
,

εs
φφ0 �

−2τ0/R0(  λ + λp 

2G(2G + 3λ) + λP(6G + λ) + 2Gp 6G + 5λ + 4Gp + 4λp 
.

(27)

P

l0
T

(a)

R0

Bulk core

Surface layer

(b)

Figure 1: Core-surface layer model of NW. (a) Tension and torsion of NW. (b) Cross section of NW.

γ

τsαβ

τsαα
τsαβ τsββ

α R

β

Figure 2: Elementary surface layer.
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.e surface residual stresses of the NW are inherent and
in the self-equilibrium state, that is, independent of the
external load. If the NW is subjected to tension and torsion,
then the strain and stress analysis of NW can be also per-
formed using equations (7)∼(26). Let uz0 and uzl be the axial
displacements of the two NW ends and l0 be the initial
length of NW; the average axial strain is

ε �
uzl − uz0

l0
� a2. (28)

.e effective strains of NW are the difference between
average axial strain and surface radial strain, as expressed
below:

εzeff � εzz − εs
zz0,

εφeff � εφφ − εs
zz0.

(29)

Consequently, the effective Young’s modulus of NW is
obtained as follows:

Eeff �
σ
εzeff

�
2G(2G + 3λ) + λP(6G + λ) + 2Gp 6G + 5λ + 4Gp + 4λp 

2λ + 2G + λp + 2Gp

. (30)

.e effective Poisson’s ratio of NW is

Eeff � −
a3

a2
�

λ + λp

2λ + 2G + λp + 2Gp

. (31)

.e effective shear modulus of NW is

Geff �
T

Ipa1
� G +

GsIs

Ip

. (32)

3. Results and Discussion

All the displacements, strains, bulk stresses, and surface
stresses of the NW have been determined using the classical
displacement approach. Figure 3 shows the variation in the
effective Young’s moduli of the NW compared with its
radius. For example, in Al NW, the surface moduli
are λs � 6.8415N/m and Gs � −0.3755N/m [6]. .e bulk
parameters are λ � 59.2GPa and G � 25.4GPa [6]..e solid
curve on the basis of our continuum formula (equation (16))
matches Zhang et al. [6] approach (the dotted curve). .e
effect of surface stresses on the effective Young’s modulus of
NW is illustrated, where Young’s modulus decreases with
the increase in the NW radius (R0) and gradually reaches a
constant value of 69GPa. As shown in Figure 3, the two
approaches provide slightly different results with small ra-
dius (<5 nm). Our formula offers small effective Young’
modulus and rapid reduction because the potential energy
method adds to the influence of radial and circumferential
strains in the definition of Young’s modulus. Homogeni-
zation theory of nanocomposites can provide a rigorous

definition to define effective properties [10]. As depicted in
equation (28), the surface residual stresses (τ0) also affects
Young’s modulus. .e surface residual stresses are inherent
and in the self-equilibrium state, that is, independent of the
external load, due to the surface residual strain (equation
[10]). Hence, the positive or negative surface residual stresses
will increase (or decrease) Young’s modulus of NW.

Surface moduli also have strong influence on Young’s
modulus. .e absolute value of the NW surface elasticity is
generally <1000N/m, but it is difficult to accurately quantify.
A minimal difference is observed between the experimental
approach and numerical atomistic analysis even with small
radius. For reference, we also present the variation of the
effective modulus of NW compared with its surface moduli
in Figure 4. .e NW with a large radius is considered
(R� 10 nm, 20 nm, 30 nm, 40 nm) solely for computational
purpose. Figure 4 illustrates the increase in Young’s modulus
with the increase in the surface moduli (λs). Equations
(8)–(11) show that the surface shear strains are zero, but the
surface area expansion is nonzero. Equation (4) implies high
surface stress values with high surface moduli, thereby
resulting in large NW Young’s modulus. However, the
amplification of the surface moduli on Young’s modulus is
controlled by the NW radius, that is, the surface area-to-
volume ratio increases with the decrease in NW radius. .is
result suggested that the effective modulus of NW is en-
hanced by the surface stress. Size dependence is the general
characteristics of nanomaterials. Classical displacement
approach can provide the surface strain and stress and
simplifies the analysis of the effect of surface elasticity on
Young’s modulus.
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Figure 3: Young’s modulus of NW vs. radius.
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4. Conclusions

NW can be viewed as a composite structure, with the inner
core having the normal properties and the surface layer
having surface elasticity on the basis of the Gurtin–Murdoch
elasticity. .e generalized Young–Laplace equations for NW
are required in addition to the field equations for core and
surface layer. Classical displacement approach in the cyl-
inder coordinate has been used to determine the stress
distribution of NW. .e nominal normal stress and axial
strain are defined in the initial NW configuration with initial
length (l0) and radius (R0). .e l0/R0 ratio shows that the
effective Young’s modulus decreases with the increase in R0
of the nanowire and gradually reaches the bulk value. .e
positive or negative surface residual stresses will increase (or
decrease) Young’s modulus of NW due to the surface re-
sidual strain. Surface moduli also have strong influence on
the effective Young’s modulus. Nonzero radial and cir-
cumferential strains lead to nonzero area expansion, which
enhances the influence of surface moduli effective Young’s
modulus.

.e radial displacement in the NW is finite [8], and the
present model can be easily extended to analyze the effective
properties if true strain is used. NW torsion and bending
may also be modeled if we consider a proper assumption of
the displacement distribution in equation (7). In conclusion,
classical displacement approach can obtain NW displace-
ments, strains, and stress distributions and as well as its
effective properties. .e mechanism underlying the influ-
ence of the general characteristics of NW on Young’s
modulus can also be easily considered.
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Surface elasticity and residual stress strongly influence the flexural properties of nanowire due to the excessively large ratio of
surface area to volume. In this work, we adopt linearized surface elasticity theory, which was proposed by Chhapadia et al., to
capture the influence of surface curvature on the flexural rigidity of nanowire with rectangular cross section. Additionally, we have
tried to study the bending deformation of circular nanowire. All stresses and strains are measured relative to the relaxed state in
which the difference in surface residual stress between the upper and lower faces of rectangular nanowire with no external load
induces additional bending. /e bending curvature of nanowire in the reference and relaxed states is obtained. We find that
flexural rigidity is composed of three parts./e first term is defined by the precept of continuummechanics, and the last two terms
are defined by surface elasticity. /e normalized curvature increases with the decrease in height, thereby stiffening the nanowire.
We also find that not only sizes but also surface curvature induced by surface residual stress influence the bending rigidity
of nanowire.

1. Introduction

/e effect of surface/interface elasticity on the mechanical
properties of one-dimensional nanostructures, particularly
those of nanowires, has attracted widespread interest [1, 2].
/e equilibrium position and free energy of surface/interface
atoms are different from those of internal atoms, and the
differences should be considered in predicting the size-de-
pendent elastic properties of nanowire due to the large ratio
of surface area to volume. /e extensional and flexural
properties are strongly affected by the surface characteristics.
/ree methods have been used to reveal the surface effects.
Continuum mechanics formulation provides a global ex-
pression for the combination of surface elasticity and bulk
deformation, and the defined surface parameters are de-
termined by atomistic calculation or experiments [3].

Gurtin and Ian Murdoch (GM) were the first to establish
rigorous mechanics to model the surface elasticity [4]. Miller

and Shenoy studied the size-dependent effective stiffness
properties of nanosized bar and beams using a core-shell
model [5]. Zhang et al. estimated the effect of surface stress
on the effective elastic modulus and asymmetric yield
strength of nanowire [6]. Wang and Feng presented a
theoretical model for investigating the effect of surface
elasticity and residual surface tension on the natural fre-
quency of nanobeam [7]. Xu et al. improved a core-shell
model composed of a core and a surface shell layer with
constant thickness to predict the effective elastic modulus of
nanowire under tension and bending [8]. However, the
intrinsic flexural resistance of the surface is ignored in the
aforementioned model. /e surface energy of nanowire
should depend not only on the surface strain but also on the
surface curvature. Steignmann andOgden (SO) established a
more general model for surface energy; this model depends
on surface curvature in addition to in-plane stretch and
shear [9]. Chhapadia et al. provided a simplified and
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linearized version of the model to study the influences of
curvature dependence of surface energy on the effective
elastic modulus of a thin cantilever beam under pure
bending [10]. Gao et al. proposed a curvature-dependent
interface energy function to study the nature of the interface
stress and bending moment in a nanostructure [11].

/e two most studied types of cross section of nanowire
are the rectangular and circular sections. Circular nanowire
with no external load may also present surface residual and
couple stresses due to the initial curvature. /e extensional
properties of circular nanowire have been discussed in detail
in [12, 13]. Rectangular nanowire represents different
mechanisms on the surface from the circular nanowire. /e
nonuniform surface residual stress may induce the bending
of nanowire, which corresponds to a relaxed state. Plane
upper and lower surfaces will have a relaxation bending
curvature that occupies a part of the surface energy. In this
work, simple beam theory and the GM and SO models are
adopted to predict the flexural properties of rectangular
nanowire.

2. Model Analysis

In this section, the reference state of nanowire shown in
Figure 1 is considered. /e nanowire has four faces, namely,
the upper surface, the lower surface, and two profile surfaces.
/e nanowire has thickness h, width b, and length l. h defines
the size of nanowire. /e definition of surface parameters
depends on the constitutive relationship of nanowire, which
is obscure in surface/interface mechanics. /e hyperelastic
model is the most commonly used constitutive model in
which the surface energy density can be expressed by a
function of the invariants of surface strain and relative
curvature tensors [9, 12]. /e derived relationship among
surface stress, surface strain, and curvature denotes the usual
nonlinear elasticity. In particular, a linearized curvature-
dependent surface elasticity can be obtained for the infin-
itesimal deformation of nanowire [9]. Miller and Shenoy
adopted Timoshenko’s symmetric bending theory to obtain
the surface stress difference between the upper and lower
surfaces [5]. Chhapadia et al. provided a correction of cur-
vature dependence of surface to Stoney’s formula [10]. /e
constructions are defined in the reference or undeformed
state of nanowire. However, the difference in surface residual
stress between the upper and lower faces of nanowire with no
external load may induce additional bending, which corre-
sponds to a relaxation state. All stresses and strains in the
nanowire will be measured relative to this state.

Following Chhapadia’s formulation, only surface tension
and compression along the axial direction on the upper and
lower surfaces are considered, and they are assumed to be
uniform along the width direction. /e surface stresses can
be expressed by

τsu � τsu0 + bsuεsu,

τsl � τsl0 + bslεsl,
 (1)

where τsu0 and τsl0 denote the surface residual stresses on the
upper and lower surfaces, respectively; εsu and εsl denote the

surface strains; and bsu and τsl0 are the material constants
associated with surface strains. Under a constant bending
moment M, the axial strain in bulk is given by

εx � −κy y − hy , (2)

where κy is the bending curvature of nanowire and hy is the
height of neutral axis from the lower surface. /e surface
strains are determined by the axial strain at y � 0 and y � h.
/us, we have

εsu � −κy h − hy ,

εsu � κyhy.

⎧⎨

⎩ (3)

We assume that the residual stain in bulk in the relaxed
state is linearly distributed along the height direction. /us,
we have

εx0 � −κy0 y − hy0 , (4)

where κy0 is the relaxation curvature of nanowire and hy0 is
the height of neutral axis in the reference state./erefore, the
stress in the bulk is given by

σx � E εx − εx0( , (5)

where E is the elastic modulus of bulk material. For the
upper and lower surface layers, the surface couple is given by

msu � Cu κy − κy0 ,

msl � Cl κy − κy0 ,

⎧⎪⎨

⎪⎩
(6)

where Cu and Cl are the SO constants. We can establish the
equilibrium equations by using the internal force balance of
simple beam with the effect of surface stress. Surface stress,
surface couple stress, and stress in bulk balance the applied
momentM, and the integration over the cross-sectional area
yields


h

0
σx(h − y)bdy + hbτsl + b msu + msl(  � M. (7)

/us, we have

κy �
M + Ebh

2 3hy0 − h /6 + b Cu + Cl(   − bhτsl0
Ebh

2 3hy − h /6 + bslbhhy + b Cu + Cl( 
. (8)

We balance the force, that is,


h

0
σxdy + τsu + τsl � 0, (9)

which gives us

hy �
κyh Eh/2 + bsu(  + κy0Eh hy0 − h/2  − τsl0 + τsu0( 

κy Eh + bsu + bsl( 
.

(10)

If the surface stress emerges on the front and back
surfaces by repeating the analysis of the preceding few pages,
then the strains and stresses on the surfaces and in the bulk
can be obtained.We now consider the curvature of nanowire
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in the relaxed state. We can use equations (8) and (10) to
obtain the curvature at which the bending moment vanishes.
We let M � 0 and κy � 0. /us, we have

hy0 �
τsu0 + τsl0

Eκy0
+

h

2
, (11)

where hy0 is the height of neutral axis and is measured in the
reference state. By substituting equation (11) into equation
(8), we obtain

κy0 �
hτsl0

Eh
2 3hy0 − h /6 + Cu + Cl

�
6hΔτs0

Eh
3

+ 12 Cu + Cl( 
,

(12)

where Δτs0 � τsl0 − τsu0. /e above equation gives the same
expression as Chhapadia’s.

But for circular nanowire, the surface property is more
complicated than that of rectangular nanowire. /ere is no
two-dimensional periodicity on the cylindrical surface. /e
surface presents strong anisotropy. It is difficult to determine
the surface elastic constants. /e deformation in bulk in-
duced by surface residual stress is still unclear. To qualita-
tively analyze the flexural properties of circular nanowire, we
consider an isotropic surface without residual stress. For
simplicity, the x axis is placed at the axial line of nanowire.
Essentially repeating the analysis of the rectangular nano-
wire, the stress in the bulk is given by

σx � −Eκyy. (13)

/e above equation is derived by letting hy � d/2 and
κy0 � 0 in equation (5). /e surface strain is

εs � −
κyd sinφ

2
, (14)

where φ is the polar angle on the cross section of nanowire.
/ere are two curvatures on the cylindrical surface after the
deformation of nanowire. One is d/2 which is independent
of the deformation. /e other curvature is κy. /e surface
stress and surface moment stress are

τs � C0εs,

ms � C1κs.
(15)

Similarly balancing the moment, we have

κy �
M

EIz + C0Is + C1S
, (16)

where Iz � πd4/64 is themoment of inertia of the beam cross
section, Is � πd3/8 is the perimeter moment of inertia, and
S � π d. /e effective bending rigidity is defined as

E
∗
Iz � EIz + C0Is + C1S, (17)

where E∗ is the effective elastic modulus. Equation (16) can
be rewritten as

κy �
M

E
∗
Iz

�
M

EIz 1 + 8C0/dE + 64C1/d
3
E 

. (18)

We see that the surface elasticity has a definite influence
on the bending rigidity of circular nanowire.

3. Results and Discussion

We compare the curvature changes in the relaxed and pure
bending moment loading states to explain the influence of
curvature-dependent surface elasticity on the flexural
properties of nanowire clearly. Chhapadia et al. [10] carried
out an atomistic simulation of a silver nanowire with a
thickness ranging from 1.6 nm to 6 nm. /ey found that
Cu � Cl � C, bsu � bsl � b, C � −42.3155 eV, and
b � −0.37938 eV/Å2 for the 〈1 0 0〉 axially oriented nano-
wire, and C � 114.1895 eV and b � 2.5227 eV/Å2 for the
〈1 1 0〉 axially oriented nanowire. /e effective elastic
constants for the 〈1 0 0〉 surface orientations are negative,
thereby softening the nanowire. Only the surface couple
stresses on the upper and lower surfaces are considered in
this discussion./e configuration of the nanowire is set to be
〈1 1 0〉 axially, and the positive constants are adopted here.

Figure 2 presents the normalized curvature of nanowire
(κy0/(6Δτs0/Eh2) versus the height in the relaxed state. /e
normalized curvature without SO correction (C � 0) does
not vary with the change in height, whereas the normalized
curvature with SO correction decreases with the decrease in
height. /is condition implies that the relative stiffness of
nanowire increases with the increase in height. /e positive
SO constant C induces additional surface energy, thereby

Upper surface b

l

h

x

y

z
Lower surface

(a)

MM b

h

(b)

Figure 1: Configuration of nanowire. (a) Reference configuration. (b) Relaxation configuration.
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stiffening the nanowire./us, the negative SO constant has a
softening influence on the 〈1 0 0〉 axially oriented nanowire.
Notably, the difference in surface residual stress on the upper
and lower surfaces induces the relaxation curvature of
nanowire. If Δτs0 � 0, that is, τsu0 � τsl0, then equation (12)
shows that κy0 � 0, and no bending deformation emerges in
the relaxed state. /e height of neutral axis hy0 has no
meaning in such a case. If Δτs0 � 2τsl0, that is, τsu0 + τsl0 � 0,
then hy0 � h/2. In pure bending loaded state, hy � h/2. By
substituting equation (11) into equation (10), we can see that
the height of neutral axis hy does not affect the surface
residual stress, the height of neutral axis, and the curvature
in relaxed state. /erefore, the choice of reference or relaxed
configuration does not influence the bending deformation of
nanowire.

Equation (8) indicates that flexural rigidity is composed of
three parts. /e first term is defined by the precept of con-
tinuum mechanics, and the last two terms are defined by
surface elasticity. We can also conjecture that the positive GM
and SO constants will increase the flexural rigidity, whereas
the negative ones will decrease the rigidity of nanowire.
Figure 3 presents the normalized curvature (12κy/Ebh3)
versus the height of the 〈1 1 0〉 axially oriented nanowire./e
figure shows that the normalized curvature also increases with
the decrease in height, thereby stiffening the nanowire. For a
2 nm-high nanowire, its curvature changes by 8.2% when SO
and GM corrections are applied. Notably, the bending cur-
vature (κy) is independent of the surface residual stress. It is
the relaxation curvature of nanowire (κy0) that is influenced
by the surface residual stress. For the isotropic circular
nanowire without surface residual stress, the components of
rigidity are the same as the rectangular nanowire.We also find
the stiffening effect for the positive SO and GM constants and
the reverse for negative constants.

4. Conclusions

In this work, simple beam theory and curvature-dependent
surface elasticity are adopted to capture the flexural prop-
erties of nanowire. Surface tension is depicted by the GM
model, and surface couple stress is depicted by the SO
model. Following the work of Chhapadia et al., we divide the
bending deformation of nanowire into the reference and
relaxed states. We obtain the expressions of bending cur-
vature and height of neutral axis by using the internal force
balance of simple beam with the effect of surface stress. In
the relaxed state, the relaxation bending curvature caused by
the surface residual stress difference between the upper and
lower faces relates to the height of nanowire and the SO
constant. /e bending rigidity increases with the decrease in
the height of nanowire and the positive SO constant. In
particular, the height of neutral axis will be half of the height
of nanowire if the surface residual stress on the upper and
lower surfaces is asymmetrically distributed along the axial
direction. In the pure bending moment state, the bending
curvature relates to the height of nanowire and the GM and
SO constants. /e bending rigidity also increases with the
decrease in the height of nanowire and the positive GM and
SO constants, thereby stiffening the nanowire./erefore, not
only sizes and elastic modulus of bulk material but also
relaxation surface curvature induced by surface residual
stress influence the bending rigidity of nanowire.

Data Availability

/e cited data about surface elastic constants of silver
nanowire used to support the findings of this study are
included within the referenced article. /ese data were used
to verify our theoretical prediction.
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Figure 3: Curvature of 〈110〉 axially oriented silver nanowire in
relaxed state.
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Figure 2: Curvature of 〈110〉 axially oriented silver nanowire in
reference state.
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