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Nonlinear differential equations have been extensively used
to mathematically model many of the interesting and impor-
tant phenomena that are observed in many areas of science
and technology. They are inspired by problems which arise
in diverse fields such as economics, biology, fluid dynamics,
physics, differential geometry, engineering, control theory,
materials science, and quantum mechanics.

The purpose of this special issue is to highlight some
recent developments in methods and applications of non-
linear differential equations. The majority of the papers
contained in this special issue are based on areas of research
ranging from functional analytic techniques to Lie symmetry
and singularity methods as well as numerical methods that
are applied to both partial and ordinary differential equations.
There are papers which deal with fractional and stochastic
differential equations and in addition papers analysing equa-
tions that arise in engineering as well as classical and fluid
mechanics and finance.

Hundred and fifteen papers were submitted for possible
publication in this special issue. After a rigorous reviewing
process, fifty-three papers were finally accepted for publica-
tion.

We very much hope that the papers published in this spe-
cial issue will be useful to a large community of researchers
andwill arouse further research in the topics presented aswell
as in the connected fields.
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This paper applied, for the first time, the Bernstein’s approximation on delay differential equations and delay systems with inverse
delay that models these problems. The direct algorithm is given for solving this problem. The delay function and inverse time
function are expanded by the Bézier curves. The Bézier curves are chosen as piecewise polynomials of degree 𝑛, and the Bézier
curves are determined on any subinterval by 𝑛 + 1 control points. The approximated solution of delay systems containing inverse
time is derived. To validate accuracy of the present algorithm, some examples are solved.

1. Introduction

Delay differential equations (DDEs) differ fromODEs in that
the derivative at any time depends on the solution at prior
times (and in the case of neutral equations on the derivative
at prior times).

DDEs often arise when traditional pointwise model-
ing assumptions are replaced by more realistic distributed
assumptions, for example, when the birth rate of predators
is affected by prior levels of predators or prey rather than by
only the current levels in a predator-prey model.

Because the derivative ̇𝑥(𝑡) depends on the solution at
previous time(s), it is necessary to provide an initial history
function to specify the value of the solution before time 𝑡 =

0. In many common models the history is a constant; but
nonconstant history functions are encountered routinely.

For most problems there is a jump derivative discontinu-
ity at the initial time. In most models, the DDE and the initial
function are incompatible: for some derivative order, usually
the first, the left and right derivatives at 𝑡 = 0 are not equal.
Delay systems containing inverse time are an important class
of systems:

̇𝑥 (𝑡) = 𝑥 (𝑡 − 1) , ̇𝑥 (0
+

) = 1, ̇𝑥 (0
−

) = 0. (1)

A fascinating property is how such derivative discontinuities
are propagated in time. For the equation and history just
described, for example, the initial first discontinuity is propa-
gated as a second degree discontinuity at time 𝑡 = 1, as a third
degree discontinuity at time 𝑡 = 2, and, more generally, as a
discontinuity in the (𝑛 + 1)st derivative at time 𝑡 = 𝑛.

Delay differential equations are type of differential equa-
tions where the time derivatives at the current time depend
on the solution and possibly its derivatives at previous times
(see [1–4]).

The basic theory concerning the stable factors, for exam-
ple, existence and uniqueness of solutions, was presented in
[1, 3]. Since then, DDEs have been extensively studied in
recent decades and a great number of monographs have been
published including significant works on dynamics of DDEs
by Hale and Lunel [5] and on stability by Niculescu [6]. The
interest in study of DDEs is caused by the fact that many
processes have time delays and have been models for better
representations by systems of DDEs in science, engineering,
economics, and so forth. Such systems, however, are still not
feasible to actively analyze and control precisely; thus the
study of systems of DDEs has actively been conducted over
the recent decades (see [7–10]).
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2 Mathematical Problems in Engineering

Wu et al. [11] developed a computational method for
solving an optimal control problem which is governed by
a switched dynamical system with time delay. Kharatishivili
[12] has approached this problem by extending Pontryagin’s
maximum principle to time delay systems. The actual solu-
tion involves a two-point boundary-value problem in which
advances and delays are presented. In addition, this solution
does not yield a feedback controller. Optimal-time control
of delay systems has been considered by Oguztoreli [13]
who obtained several results concerning bang-bang controls
which are parallel to those of LaSalle [14] for nondelay sys-
tems. For a time-invariant system with an infinite upper limit
in the performance measure, Krasovskii [15] has developed
the forms of the controller and the performance measure.
Ross [16] has obtained a set of differential equations for the
unknowns in the forms of Krasovskii. However, Ross’s results
are not applicable to time-varying systems with a finite limit
in the performance measure.

Basin and Perez [17] presented an optimal regulator for
a linear system with multiple state and input delays and a
quadratic criterion. The optimal regulator equations were
obtained by reducing the original problem to the linear-
quadratic regulator design for a system without delays (see
[17, 18]).

This paper aims at solving delay systems containing
inverse time of the following form:

̇x (𝑡) = 𝐴 (𝑡) x (𝑡) + 𝐶 (𝑡) (𝑥
1
(𝑡 − 𝜏
1
) ⋅ ⋅ ⋅ 𝑥

𝑝
(𝑡 − 𝜏
𝑝
))

𝑇

+ 𝐷 (𝑡) (𝑥
1
(𝑡
𝑓
− 𝑡) ⋅ ⋅ ⋅ 𝑥

𝑝
(𝑡
𝑓
− 𝑡))

𝑇

+ 𝐺 (𝑡) u (𝑡) ,

x (𝑡) = 𝜙 (𝑡) , 𝑡 ∈ [−𝜏max, 𝑡0] ,

(2)

where x(𝑡) = (𝑥
1
(𝑡) ⋅ ⋅ ⋅ 𝑥

𝑝
(𝑡))
𝑇

∈ R𝑝, u(𝑡) = (𝑢
1
(𝑡) ⋅ ⋅ ⋅

𝑢
𝑚
(𝑡))
𝑇

∈ R𝑚 are, respectively, state and control functions
while 𝜙(𝑡) = (𝜙

1
(𝑡) ⋅ ⋅ ⋅ 𝜙

𝑝
(𝑡))
𝑇 is known vector function and

𝜏
𝑖
’s (𝑖 = 1, 2, . . . , 𝑝) are nonnegative constant time delays,

and 𝜏max = max{𝜏
𝑖
, 1 ≤ 𝑖 ≤ 𝑝}. We assume the matrices

𝐴(𝑡) = [𝑎
𝑖𝑗
(𝑡)]
𝑝×𝑝

, 𝐶(𝑡) = [𝑐
𝑖𝑗
(𝑡)]
𝑝×𝑝

, 𝐷(𝑡) = [𝑑
𝑖𝑗
(𝑡)]
𝑝×𝑝

, and
𝐺(𝑡) = [𝑔

𝑖𝑗
(𝑡)]
𝑚×𝑚

are matrix functions. We need to impose
the continuity condition on x(𝑡) and its first derivative where
these constraints appeared in Section 2.

Piecewise polynomial functions are often used to repre-
sent the approximate solution in the numerical solution of
differential equations (see [19–22]). B-splines, due to numer-
ical stability and arbitrary order of accuracy, have become
popular tools for solving differential equations (where Bézier
form is a special case of B-splines).There aremany papers and
books dealing with the Bézier curves or surface techniques.

Harada and Nakamae [23], N ̈urnberger and Zeilfelder
[24] used the Bézier control points in approximated data
and functions. Zheng et al. [22] proposed the use of control
points of the Bernstein-Bézier form for solving differential
equations numerically and also Evrenosoglu and Somali [25]
used this approach for solving singular perturbed two-point
boundary-value problems. The Bézier curves are used in
solving partial differential equations; as well, Wave and Heat

equations are solved in Bézier form (see [26–29]), the Bézier
curves are used for solving dynamical systems (see [30]), and
also the Bézier control pointsmethod is used for solving delay
differential equation (see [31, 32]).

TheBézier curvesmethodwas presentedwhichwas stated
for solving the optimal control systems with pantograph
delays (see [33]). The method was computationally attractive
and also reduced the CPU time and the computer memory
and at the same time keeps the accuracy of the solution. The
algorithm had been successfully applied to the pantograph
equations. Comparing with other methods, the results of
numerical examples demonstrated that thismethodwasmore
accurate than some existing methods (see [33]).

Using Bezier curve, Ghomanjani et al. [34] had used
least square method for numerical solutions of time-varying
linear optimal control problems with time delays in state and
control.

Some other applications of the Bézier functions and
control points are found in [35–37] that are used in computer
aided geometric design and image compression.

The use of the Bézier curves is a novel idea for solving
delay systems containing inverse time. The approach used in
this paper reduces the CPU time and the computer memory
comparing with existingmethods (see the numerical results).
Although the method is very easy to use and straightforward,
the obtained results are satisfactory (see the numerical
results). We suggest a technique similar to the one used in
[22, 25] for solving delay systems containing inverse time.The
current paper is organized as follows.

In Section 2, Function approximation will be introduced.
Convergence analysis will be stated in Section 3. In Section 4,
some numerical examples are solved which show the effi-
ciency and reliability of the method. Finally, Section 5 will
give a conclusion briefly.

2. Function Approximation

Divide the interval [𝑡
0
, 𝑡
𝑓
] into a set of grid points such that

𝑡
𝑖
= 𝑡
0
+ 𝑖ℎ, 𝑖 = 0, 1, . . . , 𝑘, (3)

where ℎ = (𝑡
𝑓
− 𝑡
0
)/𝑘 and 𝑘 is a positive integer. Let 𝑆

𝑗
=

[𝑡
𝑗−1

, 𝑡
𝑗
] for 𝑗 = 1, 2, . . . , 𝑘. Then, for 𝑡 ∈ 𝑆

𝑗
, delay

systems containing inverse time (2) can be decomposed to
the following problem:

̇x
𝑗
(𝑡) = 𝐴 (𝑡) x

𝑗
(𝑡)

+ 𝐶 (𝑡) (𝑥
−𝑘
1

1
+𝑗

1
(𝑡 − 𝜏
1
) ⋅ ⋅ ⋅ 𝑥

−𝑘
𝑝

1
+𝑗

𝑝
(𝑡 − 𝜏
𝑝
))

𝑇

+ 𝐷 (𝑡) (𝑥
𝑘
2
−𝑗

1
(𝑡
𝑓
− 𝑡) ⋅ ⋅ ⋅ 𝑥

𝑘
2
−𝑗

𝑝
(𝑡
𝑓
− 𝑡))

𝑇

+ 𝐺 (𝑡) u
𝑗
(𝑡) ,

x
𝑗
(𝜃) = 𝜙 (𝜃) , 𝜃 ∈ [−𝜏max, 𝑡0] ,

(4)

where x
𝑗
(𝑡) = (𝑥

𝑗

1
(𝑡) ⋅ ⋅ ⋅ 𝑥

𝑗

𝑝
(𝑡))
𝑇 and u

𝑗
(𝑡) = (𝑢

𝑗

1
(𝑡) ⋅ ⋅ ⋅ 𝑢

𝑗

𝑚
(𝑡))
𝑇

are, respectively, vectors of x(𝑡) and u(𝑡)which are considered
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in 𝑡 ∈ 𝑆
𝑗
. We mention that 𝑥−𝑘

𝑖

1
+𝑗

𝑖
(𝑡 − 𝜏
𝑖
), 1 ≤ 𝑖 ≤ 𝑝, is the 𝑖th

component of (𝑥−𝑘
1

1
+𝑗

1
(𝑡−𝜏
1
) ⋅ ⋅ ⋅ 𝑥

−𝑘
𝑝

1
+𝑗

𝑝
(𝑡−𝜏
𝑝
))
𝑇where (𝑡−𝜏

𝑖
) ∈

[𝑡
−𝑘
𝑖

1
+𝑗−1

, 𝑡
−𝑘
𝑖

1
+𝑗
], and 𝑥

𝑘
2
−𝑗

𝑖
(𝑡
𝑓

− 𝑡), 1 ≤ 𝑖 ≤ 𝑝, is the 𝑖th
component of (𝑥𝑘2−𝑗

1
(𝑡
𝑓
− 𝑡) ⋅ ⋅ ⋅ 𝑥

𝑘
2
−𝑗

𝑝
(𝑡
𝑓
− 𝑡))
𝑇 where (𝑡

𝑓
− 𝑡) ∈

[𝑡
𝑘
2
−𝑗−1

, 𝑡
𝑘
2
−𝑗
]. Also

𝑘
𝑖

1
=

{
{
{

{
{
{

{

𝜏
𝑖

ℎ

,

𝜏
𝑖

ℎ

∈ N,

([

𝜏
𝑖

ℎ

] + 1) ,

𝜏
𝑖

ℎ

∉ N,

1 ≤ 𝑖 ≤ 𝑝,

𝑘
2
=

{
{
{
{

{
{
{
{

{

𝑡
𝑓

ℎ

,

𝑡
𝑓

ℎ

∈ N,

([

𝑡
𝑓

ℎ

] + 1) ,

𝑡
𝑓

ℎ

∉ N,

(5)

where [𝜏
𝑖
/ℎ] and [𝑡

𝑓
/ℎ] denote the integer part of 𝜏

𝑖
/ℎ and

𝑡
𝑓
/ℎ, respectively.
Our strategy is to use Bézier curves to approximate the

solutions x
𝑗
(𝑡) and u

𝑗
(𝑡) by k

𝑗
(𝑡) and w

𝑗
(𝑡), respectively,

where k
𝑗
(𝑡) and w

𝑗
(𝑡) are given below. Individual Bézier

curves that are defined over the subintervals are joined
together to form the Bézier spline curves. For 𝑗 = 1, 2, . . . , 𝑘,
define the Bézier polynomials of degree 𝑛 that approximate,
respectively, the actions of x

𝑗
(𝑡) and u

𝑗
(𝑡) over the interval

[𝑡
𝑗−1

, 𝑡
𝑗
] as follows:

k
𝑗
(𝑡) =

𝑛

∑

𝑟=0

a𝑗
𝑟
𝐵
𝑟,𝑛

(

𝑡 − 𝑡
𝑗−1

ℎ

) ,

w
𝑗
(𝑡) =

𝑛

∑

𝑟=0

b𝑗
𝑟
𝐵
𝑟,𝑛

(

𝑡 − 𝑡
𝑗−1

ℎ

) ,

(6)

where

𝐵
𝑟,𝑛

(

𝑡 − 𝑡
𝑗−1

ℎ

) = (

𝑛

𝑟
)

1

ℎ
𝑛
(𝑡
𝑗
− 𝑡)

𝑛−𝑟

(𝑡 − 𝑡
𝑗−1

)

𝑟

(7)

is the Bernstein polynomial of degree 𝑛 over the interval
[𝑡
𝑗−1

, 𝑡
𝑗
], a𝑗
𝑟
and b𝑗

𝑟
are, respectively, 𝑝 and 𝑚 ordered vectors

from the control points (see [22]). By substituting (6) in (4),
𝑅
1,𝑗

(𝑡) for 𝑡 ∈ [𝑡
𝑗−1

, 𝑡
𝑗
] can be defined as follows:

𝑅
1,𝑗

(𝑡) = ̇k
𝑗
(𝑡) − 𝐴 (𝑡) k

𝑗
(𝑡)

− 𝐶 (𝑡) (V−𝑘
1

1
+𝑗

1
(𝑡 − 𝜏
1
) ⋅ ⋅ ⋅ V−𝑘

𝑝

1
+𝑗

𝑝
(𝑡 − 𝜏
𝑝
))

𝑇

− 𝐷 (𝑡) (V𝑘2−𝑗
1

(𝑡
𝑓
− 𝑡) ⋅ ⋅ ⋅ V𝑘2−𝑗

𝑝
(𝑡
𝑓
− 𝑡))

𝑇

− 𝐺 (𝑡)w
𝑗
(𝑡) .

(8)

Let k(𝑡) = ∑
𝑘

𝑗=1
𝜒
1

𝑗
(𝑡)k
𝑗
(𝑡) and w(𝑡) = ∑

𝑘

𝑗=1
𝜒
2

𝑗
(𝑡)w
𝑗
(𝑡)

where𝜒1
𝑗
(𝑡) and𝜒

2

𝑗
(𝑡) are, respectively, characteristic function

of k
𝑗
(𝑡) and w

𝑗
(𝑡) for 𝑡 ∈ [𝑡

𝑗−1
, 𝑡
𝑗
]. Beside the boundary

conditions on k(𝑡), at each node, we need to impose the
continuity condition on each successive pair of k

𝑗
(𝑡) to

guarantee the smoothness.

Since the differential equation is of first order, the conti-
nuity of x (or k) and its first derivative gives

k(𝑠)
𝑗

(𝑡
𝑗
) = k(𝑠)
𝑗+1

(𝑡
𝑗
) , 𝑠 = 0, 1, 𝑗 = 1, 2, . . . , 𝑘 − 1, (9)

where k(𝑠)
𝑗
(𝑡
𝑗
) is the 𝑠th derivative k

𝑗
(𝑡) with respect to 𝑡 at

𝑡 = 𝑡
𝑗
.

Thus, the vector of control points a𝑗
𝑟
(𝑟 = 0, 1, 𝑛 − 1, 𝑛)

must satisfy (see the Appendix)

a𝑗
𝑛
(𝑡
𝑗
− 𝑡
𝑗−1

)

𝑛

= a𝑗+1
0

(𝑡
𝑗+1

− 𝑡
𝑗
)

𝑛

,

(a𝑗
𝑛
− a𝑗
𝑛−1

) (𝑡
𝑗
− 𝑡
𝑗−1

)

𝑛−1

= (a𝑗+1
1

− a𝑗+1
0

) (𝑡
𝑗+1

− 𝑡
𝑗
)

𝑛−1

.

(10)

According to the definition of the 𝑡
𝑖
= 𝑡
0
+ 𝑖ℎ we get that

𝑡
𝑗
− 𝑡
𝑗−1

= ℎ. Therefore,

a𝑗
𝑛
= a𝑗+1
0

,

(a𝑗
𝑛
− a𝑗
𝑛−1

) = (a𝑗+1
1

− a𝑗+1
0

) .

(11)

One may recall that a𝑗
𝑟
is a 𝑝 ordered vector. This approach is

called the subdivision scheme (or ℎ-refinement in the finite
element literature). This method is based on the control-
point-based method.

Remark 1. By considering the 𝐶1 continuity of w, the follow-
ing constraints will be added to constraints in (10):

b𝑗
𝑛
(𝑡
𝑗
− 𝑡
𝑗−1

)

𝑛

= b𝑗+1
0

(𝑡
𝑗+1

− 𝑡
𝑗
)

𝑛

,

(b𝑗
𝑛
− b𝑗
𝑛−1

) (𝑡
𝑗
− 𝑡
𝑗−1

)

𝑛−1

= (b𝑗+1
1

− b𝑗+1
0

) (𝑡
𝑗+1

− 𝑡
𝑗
)

𝑛−1

,

(12)

where the so-called b𝑗
𝑟
(𝑟 = 0, 1, 𝑛 − 1, 𝑛) is an 𝑚 ordered

vector.
Now, the residual function can be defined in 𝑆

𝑗
as follows:

𝑅
𝑗
= ∫

𝑡
𝑗

𝑡
𝑗−1






𝑅
1,𝑗

(𝑡)







2

𝑑𝑡, (13)

where ‖ ⋅ ‖ is the Euclidean norm (recall that 𝑅
1,𝑗

(𝑡) is a 𝑝

vector where 𝑡 ∈ 𝑆
𝑗
).

Our aim is to solve the following problem over 𝑆 =

⋃
𝑘

𝑗=1
𝑆
𝑗
:

min
𝑘

∑

𝑗=1

𝑅
𝑗

s.t. a𝑗
𝑛
= a𝑗+1
0

,

(a𝑗
𝑛
− a𝑗
𝑛−1

) = (a𝑗+1
1

− a𝑗+1
0

) , 𝑗 = 1, 2, . . . , 𝑘 − 1.

(14)

The mathematical programming problem (14) can be solved
by many subroutine algorithms. Here, we used Maple 12 to
solve this optimization problem.
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Remark 2. Consider the following boundary value problem:

̇y (𝑡) = 𝑅 (𝑡) y (𝑡) + 𝑄 (𝑡) y (𝑡 − 𝛼) + 𝑆 (𝑡) z (𝑡) + a (𝑡) ,

̇z (𝑡) = 𝑉 (𝑡) y (𝑡) + 𝐾 (𝑡) z (𝑡 + 𝛼) + 𝑊 (𝑡) z (𝑡) + b (𝑡) ,

y (𝑡
0
) = y
0
,

y (𝑡) = 𝜙 (𝑡) , 𝑡 ∈ [−𝛼, 𝑡
0
) ,

z (𝑡
𝑓
) = z
0
,

z (𝑡) = 𝜓 (𝑡) , 𝑡 ∈ (𝑡
𝑓
, 𝑡
𝑓
+ 𝛼] ,

(15)

where y(𝑡), z(𝑡), a(𝑡), b(𝑡), 𝜙(𝑡), and 𝜓(𝑡) are the vectors
of appropriate dimensions. 𝑅(𝑡), 𝑄(𝑡), 𝑆(𝑡), 𝑉(𝑡), 𝐾(𝑡), and
𝑊(𝑡) are the matrices of appropriate dimensions, and 𝛼 is
nonnegative constant time delay.

Let

x (𝑡) = [y(𝑡)𝑇 z(𝑡
𝑓
− 𝑡)

𝑇

]

𝑇

, (16)

where 𝑇 is the transpose; then

̇x (𝑡) = [ ̇y𝑇 (𝑡) − ̇z𝑇 (𝑡
𝑓
− 𝑡)]

𝑇 (17)

satisfies that

̇x (𝑡) = 𝐴 (𝑡) x (𝑡) + 𝐶 (𝑡) x (𝑡 − 𝛼)

+ 𝐷 (𝑡) x (𝑡
𝑓
− 𝑡) + u (𝑡) , 𝑡 ∈ [𝑡

0
, 𝑡
𝑓
] ,

x (𝑡
0
) = x
0
= [y𝑇
0

z𝑇
0
]

𝑇

,

(18)

where

𝐴 (𝑡) = 𝐸
(2)

11
⊗ 𝑅 (𝑡) − 𝐸

(2)

22
⊗ 𝑊(𝑡

𝑓
− 𝑡) ,

𝐶 (𝑡) = 𝐸
(2)

11
⊗ 𝑄 (𝑡) − 𝐸

(2)

22
⊗ 𝐾 (𝑡

𝑓
− 𝑡) ,

𝐷 (𝑡) = 𝐸
(2)

12
⊗ 𝑆 (𝑡) − 𝐸

(2)

21
⊗ 𝑉 (𝑡

𝑓
− 𝑡) ,

u (𝑡) = [a𝑇 (𝑡) −b𝑇 (𝑡
𝑓
− 𝑡)]

𝑇

,

(19)

where𝐸(𝑓)
𝑖𝑗

is the𝑓×𝑓matrix with 1 at its entry (𝑖, 𝑗) and zeros
elsewhere and ⊗ is Kronecker product (see, e.g., [4, 38, 39]).

Remark 3. Now, the following delay differential equation can
be considered:

̇𝑥 (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏 (𝑡, 𝑥 (𝑡)))) , 𝑡 ≥ 0 (20)

with initial condition

𝑥 (𝑡) = 𝜙 (𝑡) , 𝑡 ∈ [−𝜆, 0] , (21)

where 𝜆 ≡ inf{𝑡 − 𝜏(𝑡, 𝑢) : 𝑡 ≥ 0, 𝑢 ∈ R}. In the case when 𝜆 is
not finite, [−𝜆, 0] denotes the interval (−∞, 0].

Furthermore, we assume that

𝜏 (𝑡, 𝑢) ≥ 0, ∀𝑡 ≥ 0, 𝑢 ∈ R; (22)

that is, (20) is a delay differential equation.The existence and
uniqueness of the solution of initial value problem (20)-(21)
was stated in [40].

Equation (20) is converted into a nonlinear programming
problem (NLP) by applying Bézier control points method,
whereas the MATLAB optimization routine FMINCON is
used for solving resulting NLP. Numerical example shows
that the proposed method is efficient and very easy to use.

Remark 4. Now, we limit ourselves to consider the following
nonlinear delay differential equation in the type

𝐿𝑥 (𝑡) = 𝐹 (𝑡, 𝑥 (𝑡) , 𝑥 (𝜏 (𝑡))) , 𝑡
0
≤ 𝑡 ≤ 𝑡

𝑓 (23)

with the following initial conditions:

𝑥
(𝑘)

(𝑡
0
) = 𝑥
𝑘

0
, 𝑘 = 0, 1, . . . , 𝑛 − 1,

𝑥 (𝑡) = 𝜙 (𝑡) , 𝑡 ≤ 𝑡
0
,

(24)

where the differential operator 𝐿 is defined by 𝐿(⋅) =

𝑑
𝑛
(⋅)/𝑑𝑡
𝑛.

3. Convergence Analysis

In this section, without loss of generality, we analyze the
convergence of the control-point-based method applied to
the problem (2) with time delay in state when 𝑝 = 𝑚 = 1,
and the time interval is [0, 1]. So, the following problem is
considered:

𝐿(𝑥 (𝑡) , 𝑢 (𝑡) , 𝑥 (𝑡 − 𝜏) , 𝑥 (1 − 𝑡) ,

𝑑𝑥 (𝑡)

𝑑𝑡

) =

𝑑𝑥 (𝑡)

𝑑𝑡

− 𝐴 (𝑡) 𝑥 (𝑡) − 𝐶 (𝑡) 𝑥 (𝑡 − 𝜏) − 𝐺 (𝑡) 𝑢 (𝑡)

− 𝐷 (𝑡) 𝑥 (1 − 𝑡) = 𝐹 (𝑡) , 𝑡 ∈ [0, 1] ,

𝑥 (𝑡) = 𝑥
0
= 𝑎, 𝑡 ≤ 0, 𝑥 (1) = 𝑥

𝑓
= 𝑏,

𝑢 (𝑡) = 𝑢
0
= 𝑎
1
, 𝑡 ≤ 0,

(25)

where 𝑥(𝑡) ∈ 𝑅, 𝑢(𝑡) ∈ 𝑅, and 𝑎, 𝑏, 𝑎
1
are given real numbers

and 𝐴(𝑡), 𝐶(𝑡), 𝐺(𝑡), 𝐷(𝑡), and 𝐹(𝑡) are known polynomials
for 𝑡 ∈ [0, 1]. The constant time delay 𝜏 is nonnegative.

Without loss of generality, we consider the interval [0, 1]
instead of [𝑡

0
, 𝑡
𝑓
] since the variable 𝑡 can be changed with the

new variable 𝑧 by 𝑡 = (𝑡
𝑓
− 𝑡
0
)𝑧 + 𝑡
0
where 𝑧 ∈ [0, 1].

Lemma 5. For a polynomial in Bézier form

𝑥 (𝑡) =

𝑛
1

∑

𝑖=0

𝑎
𝑖,𝑛
1

𝐵
𝑖,𝑛
1
(𝑡) , (26)

we have

∑
𝑛
1

𝑖=0
𝑎
2

𝑖,𝑛
1

𝑛
1
+ 1

≥

∑
𝑛
1
+1

𝑖=0
𝑎
2

𝑖,𝑛
1
+1

𝑛
1
+ 2

≥ ⋅ ⋅ ⋅

≥

∑
𝑛
1
+𝑚
1

𝑖=0
𝑎
2

𝑖,𝑛
1
+𝑚
1

𝑛
1
+ 𝑚
1
+ 1

→ ∫

1

0

𝑥
2

(𝑡) 𝑑𝑡, 𝑚
1
→ +∞,

(27)
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where 𝑎
𝑖,𝑛
1
+𝑚
1

is the Bézier coefficient of 𝑥(𝑡) after degree-
elevating to degree 𝑛

1
+ 𝑚
1
.

Proof. See [22, page 245].

The convergence of the approximate solution could be
done in two ways:

(1) degree raising the Bezier polynomial approximation,
(2) subdivision of the time interval.

In the following, the convergence in each case can
be proven, although in numerical examples, we used only
subdivision case (see [32]).

3.1. Degree Raising

Theorem 6. If the problem (25) with inverse time in state has
a unique 𝐶

1 continuous trajectory solution 𝑥, 𝐶0 continuous
control solution 𝑢, then the approximate solution obtained by
the control-point-based method converges to the exact solution
(𝑥, 𝑢) as the degree of the approximate solution tends to infinity.

Proof. Given an arbitrary small positive number 𝜖 >

0, by the Weierstrass theorem (see [41]), one can easily
find polynomials 𝑄

1,𝑁
1

(𝑡) of degree 𝑁
1
and 𝑄

2,𝑁
2

(𝑡) of
degree 𝑁

2
such that ‖𝑑𝑖𝑄

1,𝑁
1

(𝑡)/𝑑𝑡
𝑖
− 𝑑
𝑖
𝑥(𝑡)/𝑑𝑡

𝑖
‖
∞

≤ 𝜖/16,
‖𝑑
𝑖
𝑄
1,𝑁
1

(𝑡 − 𝜏)/𝑑𝑡
𝑖
− 𝑑
𝑖
𝑥(𝑡 − 𝜏)/𝑑𝑡

𝑖
‖
∞

≤ 𝜖/16, 𝑖 = 0, 1,
‖𝑄
2,𝑁
2

(𝑡) − 𝑢(𝑡)‖
∞

≤ 𝜖/16, and ‖𝑄
1,𝑁
1

(1 − 𝑡) − 𝑥(1 − 𝑡)‖
∞

≤

𝜖/16, where ‖ ⋅ ‖
∞

stands for the 𝐿
∞
-norm over [0, 1].

Especially, we have





𝑎 − 𝑄

1,𝑁
1
(0)





∞

≤

𝜖

16

,






𝑏 − 𝑄
1,𝑁
1
(1)





∞

≤

𝜖

16

,






𝑎
1
− 𝑄
2,𝑁
2
(0)





∞

≤

𝜖

16

.

(28)

In general, 𝑄
1,𝑁
1

(𝑡) and 𝑄
2,𝑁
2

(𝑡) do not satisfy the boundary
conditions. After a small perturbation with linear and con-
stant polynomials 𝛼𝑡 + 𝛽, 𝛾, respectively, for 𝑄

1,𝑁
1

(𝑡) and
𝑄
2,𝑁
2

(𝑡), we can obtain polynomials 𝑃
1,𝑁
1

(𝑡) = 𝑄
1,𝑁
1

(𝑡) +

(𝛼𝑡 + 𝛽) and 𝑃
2,𝑁
2

(𝑡) = 𝑄
2,𝑁
2

(𝑡) + 𝛾 such that 𝑃
1,𝑁
1

(𝑡) satisfies
the boundary conditions 𝑃

1,𝑁
1

(0) = 𝑎, 𝑃
1,𝑁
1

(1) = 𝑏, and
𝑃
2,𝑁
2

(0) = 𝑎
1
.Thus,𝑄

1,𝑁
1

(0)+𝛽 = 𝑎, and𝑄
1,𝑁
1

(1)+𝛼+𝛽 = 𝑏.
By using (28), one has






𝑏 − 𝑄
1,𝑁
1
(1)





∞

=




𝛼 + 𝛽




∞

≤

𝜖

16

,






𝑎 − 𝑄

1,𝑁
1
(0)





∞

=




𝛽



∞

≤

𝜖

16

.

(29)

Since

‖𝛼‖
∞

−




𝛽



∞

≤




𝛼 + 𝛽




∞

≤

𝜖

16

, (30)

so,

‖𝛼‖
∞

≤

𝜖

16

+




𝛽



∞

≤

𝜖

16

+

𝜖

16

=

𝜖

8

. (31)

By the time, from 𝑎
1
= 𝑃
2,𝑁
2

(0) = 𝑄
2,𝑁
2

(0) + 𝛾,






𝑎
1
− 𝑄
2,𝑁
2
(0)





∞

=




𝛾



∞

≤

𝜖

16

. (32)

Now, we have






𝑃
1,𝑁
1
(𝑡) − 𝑥 (𝑡)





∞

=






𝑄
1,𝑁
1
(𝑡) + 𝛼𝑡 + 𝛽 − 𝑥 (𝑡)





∞

≤






𝑄
1,𝑁
1
(𝑡) − 𝑥 (𝑡)





∞

+




𝛼 + 𝛽




∞

≤

𝜖

8

<

𝜖

5

,











𝑑𝑃
1,𝑁
1
(𝑡)

𝑑𝑡

−

𝑑𝑥 (𝑡)

𝑑𝑡









∞

=











𝑑𝑄
1,𝑁
1
(𝑡)

𝑑𝑡

+ 𝛼 −

𝑑𝑥 (𝑡)

𝑑𝑡









∞

≤











𝑑𝑄
1,𝑁
1
(𝑡)

𝑑𝑡

−

𝑑𝑥 (𝑡)

𝑑𝑡









∞

+ ‖𝛼‖
∞

≤

3𝜖

16

<

𝜖

5

,






𝑃
2,𝑁
2
(𝑡) − 𝑢 (𝑡)





∞

=






𝑄
2,𝑁
2
(𝑡) + 𝛾 − 𝑢 (𝑡)





∞

≤






𝑄
2,𝑁
2
(𝑡) − 𝑢 (𝑡)





∞

+




𝛾



∞

≤

𝜖

8

<

𝜖

5

,

(33)

so,






𝑃
1,𝑁
1
(𝑡 − 𝜏) − 𝑥 (𝑡 − 𝜏)





∞

<

𝜖

5

,











𝑑𝑃
1,𝑁
1
(𝑡 − 𝜏)

𝑑𝑡

−

𝑑𝑥 (𝑡 − 𝜏)

𝑑𝑡









∞

<

𝜖

5

,






𝑃
1,𝑁
1
(1 − 𝑡) − 𝑥 (1 − 𝑡)





∞

<

𝜖

5

.

(34)

Now, let 𝐿𝑃
𝑁
(𝑡) = 𝐿(𝑃

1,𝑁
1

(𝑡), 𝑃
2,𝑁
2

(𝑡), 𝑃
1,𝑁
1

(𝑡−𝜏), 𝑃
1,𝑁
1

(1−𝑡),
𝑑𝑃
1,𝑁
1

(𝑡)/𝑑𝑡) = 𝑑𝑃
1,𝑁
1

(𝑡)/𝑑𝑡−𝐴(𝑡)𝑃
1,𝑁
1

(𝑡)−𝐶(𝑡)𝑃
1,𝑁
1

(𝑡−𝜏)−

𝐺(𝑡)𝑃
2,𝑁
2

(𝑡) − 𝐷(𝑡)𝑃
1,𝑁
1

(1 − 𝑡) = 𝐹(𝑡), for every 𝑡 ∈ [0, 1].
Thus, for𝑁 ≥ max{𝑁

1
, 𝑁
2
}, an upper bound is found for the

following residual:





𝐿𝑃
𝑁
(𝑡) − 𝐹 (𝑡)




∞

=











𝐿(𝑃
1,𝑁
1
(𝑡) , 𝑃
2,𝑁
2
(𝑡) , 𝑃
1,𝑁
1
(𝑡 − 𝜏) ,

𝑃
1,𝑁
1
(1 − 𝑡) ,

𝑑𝑃
1,𝑁
1
(𝑡)

𝑑𝑡

) − 𝐹 (𝑡)









∞
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≤











𝑑𝑃
1,𝑁
1
(𝑡)

𝑑𝑡

−

𝑑𝑥 (𝑡)

𝑑𝑡









∞

+ ‖𝐴 (𝑡)‖
∞






𝑃
1,𝑁
1
(𝑡) − 𝑥 (𝑡)





∞

+ ‖𝐶 (𝑡)‖
∞






𝑃
1,𝑁
1
(𝑡 − 𝜏) − 𝑥 (𝑡 − 𝜏)





∞

+ ‖𝐺 (𝑡)‖
∞






𝑃
2,𝑁
2
(𝑡) − 𝑢 (𝑡)





∞

+ ‖𝐷 (𝑡)‖
∞






𝑃
1,𝑁
1
(1 − 𝑡) − 𝑥 (1 − 𝑡)





∞

≤ 𝐶
1
(

𝜖

5

+

𝜖

5

+

𝜖

5

+

𝜖

5

+

𝜖

5

) = 𝐶
1
𝜖,

(35)

where 𝐶
1
= 1 + ‖𝐴(𝑡)‖

∞
+ ‖𝐶(𝑡)‖

∞
+ ‖𝐺(𝑡)‖

∞
+ ‖𝐷(𝑡)‖

∞
is a

constant.
Since the residual 𝑅(𝑃

𝑁
) := 𝐿𝑃

𝑁
(𝑡)−𝐹(𝑡) is a polynomial,

it can be represented by a Bézier form. Therefore, we have

𝑅 (𝑃
𝑁
) :=

𝑚
1

∑

𝑖=0

𝑑
𝑖,𝑚
1

𝐵
𝑖,𝑚
1
(𝑡) . (36)

Then, by Lemma 5, there exists an integer𝑀(≥ 𝑁) such that,
when𝑚

1
> 𝑀, we have











1

𝑚
1
+ 1

𝑚
1

∑

𝑖=0

𝑑
2

𝑖,𝑚
1

− ∫

1

0

(𝑅 (𝑃
𝑁
))
2

𝑑𝑡












< 𝜖, (37)

which gives

1

𝑚
1
+ 1

𝑚
1

∑

𝑖=0

𝑑
2

𝑖,𝑚
1

< 𝜖 + ∫

1

0

(𝑅 (𝑃
𝑁
))
2

𝑑𝑡

≤ 𝜖 + 𝐶
2

1
𝜖
2

.

(38)

Suppose 𝑥(𝑡) and 𝑢(𝑡) are approximated solution of (25)
obtained by the control-point-based method of degree 𝑚

2

(𝑚
2
≥ 𝑚
1
≥ 𝑀). Let

𝑅(𝑥 (𝑡) , 𝑢 (𝑡) , 𝑥 (𝑡 − 𝜏) , 𝑥 (1 − 𝑡) ,

𝑑𝑥 (𝑡)

𝑑𝑡

)

= 𝐿(𝑥 (𝑡) , 𝑢 (𝑡) , 𝑥 (𝑡 − 𝜏) , 𝑥 (1 − 𝑡) ,

𝑑𝑥 (𝑡)

𝑑𝑡

) − 𝐹 (𝑡)

=

𝑚
2

∑

𝑖=0

𝑐
𝑖,𝑚
2

𝐵
𝑖,𝑚
2
(𝑡) , 𝑚

2
≥ 𝑚
1
≥ 𝑀, 𝑡 ∈ [0, 1] .

(39)

Define the following norm for difference approximated solu-
tion (𝑥(𝑡), 𝑢(𝑡)) and exact solution (𝑥(𝑡), 𝑢(𝑡)):

‖(𝑥 (𝑡) , 𝑢 (𝑡)) − (𝑥 (𝑡) , 𝑢 (𝑡))‖

:= ∫

1

0

1

∑

𝑗=0











𝑑
𝑗
𝑥 (𝑡)

𝑑𝑡
𝑗

−

𝑑
𝑗
𝑥 (𝑡)

𝑑𝑡
𝑗











2

𝑑𝑡

+ ∫

1

0

|𝑢 (0) − 𝑢 (0)| 𝑑𝑡.

(40)

By (40), Lemma 5, the boundary conditions 𝑥(0) = 𝑎 =

𝑃
1,𝑁
1

(0) = 𝑥(0), 𝑥(1) = 𝑏 = 𝑃
1,𝑁
1

(1) = 𝑥(1), and 𝑢(0) =

𝑎
1
= 𝑃
2,𝑁
2

(0) = 𝑢(0), one can show that

‖(𝑥 (𝑡) , 𝑢 (𝑡)) − (𝑥 (𝑡) , 𝑢 (𝑡))‖

≤ 𝐶( |𝑥 (0) − 𝑥 (0)|

+ |𝑥 (1) − 𝑥 (1)| + |𝑢 (0) − 𝑢 (0)|

+










𝑅((𝑥 (𝑡) , 𝑢 (𝑡) , 𝑥 (𝑡 − 𝜏) , 𝑥 (1 − 𝑡) ,

𝑑𝑥 (𝑡)

𝑑𝑡

)

− (𝑥 (𝑡) , 𝑢 (𝑡) , 𝑥 (𝑡 − 𝜏) , 𝑥 (1 − 𝑡) ,

𝑑𝑥 (𝑡)

𝑑𝑡

))










2

2

)

= 𝐶∫

1

0

𝑚
2

∑

𝑖=0

(𝑐
𝑖,𝑚
2

𝐵
𝑖,𝑚
2
(𝑡))

2

𝑑𝑡

≤

𝐶

𝑚
2
+ 1

𝑚
2

∑

𝑖=0

𝑐
2

𝑖,𝑚
2

.

(41)

The last inequality in (41) is obtained by Lemma 5, where𝐶 is
a constant positive number. Now

‖(𝑥 (𝑡) , 𝑢 (𝑡)) − (𝑥 (𝑡) , 𝑢 (𝑡))‖ ≤

𝐶

𝑚
2
+ 1

𝑚
2

∑

𝑖=0

𝑐
2

𝑖,𝑚
2

≤

𝐶

𝑚
2
+ 1

𝑚
2

∑

𝑖=0

𝑑
2

𝑖,𝑚
2

≤

𝐶

𝑚
1
+ 1

𝑚
1

∑

𝑖=0

𝑑
2

𝑖,𝑚
1

≤ 𝐶 (𝜖 + 𝐶
2

1
𝜖
2

)

= 𝜖
1
, 𝑚
1
≥ 𝑀,

(42)

where the last inequality in (42) comes from (36). This
completes the proof.

3.2. Subdivision

Theorem 7. Let (𝑥, 𝑢) be the approximate solution of the
problem (25) with inverse time obtained by the subdivision
scheme of the control-point-based method. If (25) has a unique
solution (𝑥, 𝑢) and (𝑥, 𝑢) is smooth enough so that the cubic
spline 𝑇(𝑥, 𝑢) interpolates to (𝑥, 𝑢) and converges to (𝑥, 𝑢) in
the order 𝑂(ℎ

𝑞
), (𝑞 > 2), where ℎ is the maximal width of all

subintervals, then (𝑥, 𝑢) converges to (𝑥, 𝑢) as ℎ → 0.

Proof. We first impose a uniform partition ∏
𝑑
= ⋃
𝑖
[𝑡
𝑖
, 𝑡
𝑖+1

]

on the interval [0, 1] as 𝑡
𝑖
= 𝑖𝑑, where 𝑑 = 1/(𝑛

1
+ 1).
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Let 𝐼
𝑑
(𝑥(𝑡), 𝑢(𝑡), 𝑥(𝑡 − 𝜏), 𝑥(1 − 𝑡), 𝑑𝑥(𝑡)/𝑑𝑡) be the cubic

spline over ∏
𝑑
which is interpolating to (𝑥, 𝑢). Then, for an

arbitrary small positive number 𝜖 > 0, there exists a 𝛿
1
> 0

such that










𝐿 (𝑥 (𝑡) , 𝑢 (𝑡) , 𝑥 (𝑡 − 𝜏) , 𝑥 (1 − 𝑡) ,

𝑑𝑥 (𝑡)

𝑑𝑡

)

−𝐿(𝐼
𝑑
(𝑥 (𝑡) , 𝑢 (𝑡) , 𝑥 (𝑡 − 𝜏) , 𝑥 (1 − 𝑡) ,

𝑑𝑥 (𝑡)

𝑑𝑡

))








∞

≤ 𝜖

(43)

provided that 𝑑 < 𝛿
1
. Let 𝑅(𝐼

𝑑
(𝑥(𝑡), 𝑢(𝑡), 𝑥(𝑡 −

𝜏), 𝑥(1 − 𝑡), 𝑑𝑥(𝑡)/𝑑𝑡)) = 𝐿(𝐼
𝑑
(𝑥(𝑡), 𝑢(𝑡), 𝑥(𝑡 − 𝜏), 𝑥(1 −

𝑡), 𝑑𝑥(𝑡)/𝑑𝑡)) − 𝐹(𝑡) be the residual. For each subinterval
[𝑡
𝑖
, 𝑡
𝑖+1

], 𝑅(𝐼
𝑑
(𝑥(𝑡), 𝑢(𝑡), 𝑥(𝑡 − 𝜏), 𝑥(1 − 𝑡), 𝑑𝑥(𝑡)/𝑑𝑡))

is a polynomial. On each interval [𝑡
𝑖
, 𝑡
𝑖+1

], we impose
another uniform partition ∏

𝑖,ℎ
= ⋃

𝑗
[𝑡
𝑖,𝑗
, 𝑡
𝑖,𝑗+1

] as
𝑡
𝑖,𝑗

= 𝑖𝑑 + 𝑗ℎ where ℎ = 𝑑/(𝑚
1
+ 1), 𝑗 = 0, . . . , 𝑚

1
.

Express 𝑅(𝐼
𝑑
(𝑥(𝑡), 𝑢(𝑡), 𝑥(𝑡 − 𝜏), 𝑥(1 − 𝑡), 𝑑𝑥(𝑡)/𝑑𝑡)) in

[𝑡
𝑖,𝑗−1

, 𝑡
𝑖,𝑗
] as

𝑅(𝐼
𝑑
(𝑥 (𝑡) , 𝑢 (𝑡) , 𝑥 (𝑡 − 𝜏) , 𝑥 (1 − 𝑡) ,

𝑑𝑥 (𝑡)

𝑑𝑡

))

=

𝑙

∑

𝑝
1
=0

𝑟
𝑖,𝑗

𝑝
1

𝐵
𝑝
1
,𝑙
(𝑡) , 𝑡 ∈ [𝑡

𝑖,𝑗−1
, 𝑡
𝑖,𝑗
] .

(44)

By Lemma 3 in [22], there exists a 𝛿
2
> 0 (𝛿

2
≤ 𝛿
1
) such that,

when ℎ < 𝛿
2
, we have













𝑚
1

∑

𝑗=1

(𝑡
𝑖,𝑗

− 𝑡
𝑖,𝑗−1

)

𝑙

∑

𝑝
1
=0

(𝑟
𝑖,𝑗

𝑝
1

)

2

− (𝑙 + 1)

× ∫

𝑡
𝑖+1

𝑡
𝑖

𝑅
2

(𝐼
𝑑
(𝑥 (𝑡) , 𝑢 (𝑡) , 𝑥 (𝑡 − 𝜏) ,

𝑥 (1 − 𝑡) ,

𝑑𝑥 (𝑡)

𝑑𝑡

))













𝑑𝑡 ≤

𝜖

𝑑

.

(45)

Thus,













𝑛
1

∑

𝑖=1

𝑚
1

∑

𝑗=1

(𝑡
𝑖,𝑗

− 𝑡
𝑖,𝑗−1

)

𝑙

∑

𝑝
1
=0

(𝑟
𝑖,𝑗

𝑝
1

)

2

− (𝑙 + 1) ∫

1

0

𝑅
2

(𝐼
𝑑
(𝑥 (𝑡) , 𝑢 (𝑡) , 𝑥 (𝑡 − 𝜏) ,

𝑥 (1 − 𝑡) ,

𝑑𝑥 (𝑡)

𝑑𝑡

))













𝑑𝑡

≤ 𝜖,

(46)

or

𝑛
1

∑

𝑖=1

𝑚
1

∑

𝑗=1

(𝑡
𝑖,𝑗

− 𝑡
𝑖,𝑗−1

)

𝑙

∑

𝑝
1
=0

(𝑟
𝑖,𝑗

𝑝
1

)

2

< (𝑙 + 1) ∫

1

0

𝑅
2

(𝐼
𝑑
(

𝑑𝑥 (𝑡)

𝑑𝑡

𝑥 (𝑡) , 𝑢 (𝑡) , 𝑥 (𝑡 − 𝜏) ,

𝑥 (1 − 𝑡) ,

𝑑𝑥 (𝑡)

𝑑𝑡

))𝑑𝑡 + 𝜖

< (𝑙 + 1) 𝜖
2

+ 𝜖.

(47)

Now combining the partitions∏
𝑑
and all∏

𝑖,ℎ
gives a denser

partition with the length ℎ for each subinterval. Suppose
(𝑥(𝑡), 𝑢(𝑡)) is the approximate solution by the control-point-
based method with respect to this partition, and denote the
residual over [𝑡

𝑖,𝑗−1
, 𝑡
𝑖,𝑗
] by

𝑅(𝑥 (𝑡) , 𝑢 (𝑡) , 𝑥 (𝑡 − 𝜏) , 𝑥 (1 − 𝑡) ,

𝑑𝑥 (𝑡)

𝑑𝑡

)

= 𝐿(𝑥 (𝑡) , 𝑢 (𝑡) , 𝑥 (𝑡 − 𝜏) , 𝑥 (1 − 𝑡) ,

𝑑𝑥 (𝑡)

𝑑𝑡

) − 𝐹 (𝑡)

=

𝑙

∑

𝑝
1
=0

𝑐
𝑖,𝑗

𝑝
1

𝐵
𝑝
1
,𝑙
(𝑡) .

(48)

Define the following norm for difference approximate solu-
tion (𝑥(𝑡), 𝑢(𝑡)) and exact solution (𝑥(𝑡), 𝑢(𝑡)):

‖(𝑥 (𝑡) , 𝑢 (𝑡)) − (𝑥 (𝑡) , 𝑢 (𝑡))‖

:=

𝑛
1

∑

𝑖=1

𝑚
1

∑

𝑗=1

∫

𝑡
𝑖,𝑗

𝑡
𝑖,𝑗−1

|𝑥 (𝑡) − 𝑥 (𝑡)|
2

𝑑𝑡

+

𝑛
1

∑

𝑖=1

𝑚
1

∑

𝑗=1

∫

𝑡
𝑖,𝑗

𝑡
𝑖,𝑗−1










𝑑𝑥 (𝑡)

𝑑𝑡

−

𝑑𝑥 (𝑡)

𝑑𝑡










2

𝑑𝑡

+

𝑛
1

∑

𝑖=1

𝑚
1

∑

𝑗=1

∫

𝑡
𝑖,𝑗

𝑡
𝑖,𝑗−1

|𝑢 (0) − 𝑢 (0)| 𝑑𝑡.

(49)

Then, there is a constant 𝐶 such that

‖(𝑥 (𝑡) , 𝑢 (𝑡)) − (𝑥 (𝑡) , 𝑢 (𝑡))‖

≤ 𝐶










𝑅((𝑥 (𝑡) , 𝑢 (𝑡) , 𝑥 (𝑡 − 𝜏) , 𝑥 (1 − 𝑡) ,

𝑑𝑥 (𝑡)

𝑑𝑡

)

−(𝑥 (𝑡) , 𝑢 (𝑡) , 𝑥 (𝑡 − 𝜏) , 𝑥 (1 − 𝑡) ,

𝑑𝑥 (𝑡)

𝑑𝑡

))








2

≤

𝐶

𝑙 + 1

𝑛
1

∑

𝑖=1

𝑚
1

∑

𝑗=1

(𝑡
𝑖,𝑗

− 𝑡
𝑖,𝑗−1

)

𝑙

∑

𝑝
1
=0

(𝑐
𝑖,𝑗

𝑝
1

)

2

;

(50)
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the last inequality in (50) is obtained by Lemma 5. It can be
shown that

𝐶

𝑙 + 1

𝑛
1

∑

𝑖=1

𝑚
1

∑

𝑗=1

(𝑡
𝑖,𝑗

− 𝑡
𝑖,𝑗−1

)

𝑙

∑

𝑝
1
=0

(𝑐
𝑖,𝑗

𝑝
1

)

2

≤

𝐶

𝑙 + 1

𝑛
1

∑

𝑖=1

𝑚
1

∑

𝑗=1

(𝑡
𝑖,𝑗

− 𝑡
𝑖,𝑗−1

)

𝑙

∑

𝑝
1
=0

(𝑟
𝑖,𝑗

𝑝
1

)

2

≤ 𝐶(𝜖
2

+

𝜖

𝑙 + 1

) = 𝜖
2
.

(51)

By Lemma 3 in [22], we conclude that the approximate
solution converges to the exact solution in order 𝑜(ℎ𝑞), (𝑞 >

2). This completes the proof.

4. Numerical Examples

Applying the presented method, in Examples 1, 2, and 3, the
Bézier curves are chosen as piecewise polynomials of degree
3.

Example 8. Consider the delay system containing inverse
time described by (see [4])

̇x (𝑡) = [
𝑡
2
+ 1 −𝑡

2

0 −9

] x (𝑡) + [

1 −1

9 0
] x (𝑡 −

1

3

)

+ [

1 0

−1 1
] x (1 − 𝑡) + [

4𝑡 + 3

8𝑡 + 15
] 𝑢 (𝑡) ,

𝜙 (𝑡) = [

𝑡
2
− 1

𝑡
2
+ 1

] , 𝑡 ∈ [−

1

3

, 0] ,

(52)

where we have the following exact solution:

x (𝑡) = [𝑥
1
(𝑡) 𝑥
2
(𝑡)]

𝑇

= [𝑡
2
− 1 𝑡
2
+ 1]

𝑇

. (53)

Let 𝑢(𝑡) = 1. Then, by (14) and choosing 𝑛 = 3, 𝑘 = 6 we
have the approximate solution x(𝑡) = [𝑥

1
(𝑡) 𝑥
2
(𝑡)]

𝑇

𝑥
1
(𝑡) =

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

−1.000000001 + 8.333333337 × 10
−9
𝑡 + 0.9999999669𝑡

2
+ 10
−7
𝑡
3
, 0 ≤ 𝑡 ≤

1

6

,

−0.9999999988 + 8.13333333 × 10
−9
𝑡 + 0.9999999829𝑡

2
,

1

6

≤ 𝑡 ≤

1

3

,

−0.9999999997 + 2.00 × 10
−10

𝑡 + 𝑡
2
,

1

3

≤ 𝑡 ≤

1

2

,

−0.9999999927 − 2.202222223 × 10
−8
𝑡 + 1.000000017𝑡

2
,

1

2

≤ 𝑡 ≤

2

3

,

−0.9999999902 − 1.504444443 × 10
−8
𝑡 + 0.9999999963𝑡

2
+ 10
−8
𝑡
3
,

2

3

≤ 𝑡 ≤

5

6

,

−1.000000032 + 1.120666667 × 10
−7
𝑡 + 0.9999998702𝑡

2
+ 5 × 10

−8
𝑡
3
,

5

6

≤ 𝑡 ≤ 1,

𝑥
2
(𝑡) =

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

1.000000001 + 0.000011825𝑡 + 0.9996447669𝑡
2
+ 0.0023693𝑡

3
, 0 ≤ 𝑡 ≤

1

6

,

1.000000001 + 0.00001180813339𝑡 + 0.9996447663𝑡
2
+ 0.0023695𝑡

3
,

1

6

≤ 𝑡 ≤

1

3

,

0.9999999645 + 0.00001211131104𝑡 + 0.9996439669𝑡
2
+ 0.0023702𝑡

3
,

1

3

≤ 𝑡 ≤

1

2

,

1.000000063 + 0.00001151408882𝑡 + 0.9996452169𝑡
2
+ 0.0023693𝑡

3
,

1

2

≤ 𝑡 ≤

2

3

,

0.9581187057 + 0.1594325022𝑡 + 0.8040813829𝑡
2
+ 0.0783674𝑡

3
,

2

3

≤ 𝑡 ≤

5

6

,

0.9581181451 + 0.1594344559𝑡 + 0.8040791002𝑡
2
+ 0.0783683𝑡

3
,

5

6

≤ 𝑡 ≤ 1.

(54)
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The graphs of approximate trajectories are shown in Figures
1 and 2.

Example 9. Consider the boundary value problem described
by (see [4])

̇𝑦 (𝑡) = 16𝑡𝑦 (𝑡 −

1

4

) − 16𝑧 (𝑡) + 8𝑡
2

+ 17𝑡 + 16,

̇𝑧 (𝑡) = 64𝑡𝑦 (𝑡) − 64𝑧 (𝑡 +

1

4

) + 51𝑡
2

+ 76𝑡 + 65,

𝑦 (𝑡) = 𝑡
2

− 1, −

1

4

≤ 𝑡 ≤ 0,

𝑧 (𝑡) = 𝑡
3

+ 1, 1 ≤ 𝑡 ≤

5

4

.

(55)

From (18), we have (see [4])

̇x (𝑡) = [

16𝑡 0

0 64
] x (𝑡 −

1

4

) + [

0 −16

64𝑡 − 64 0
] x (1 − 𝑡)

+ [

8𝑡
2
+ 17𝑡 + 16

−51𝑡
2
+ 178𝑡 − 62

] ,

𝜙 (𝑡) = [

𝑡
2
− 1

−𝑡
3
+ 3𝑡
2
− 3𝑡 + 1

] , 𝑡 ∈ [−

1

4

, 0] ,

(56)

where x(𝑡) = [𝑥
1
(𝑡) 𝑥
2
(𝑡)]

𝑇

= [𝑦(𝑡) 𝑧(1 − 𝑡)]

𝑇, and we have
the following exact solution:

x (𝑡) = [𝑥
1
(𝑡) 𝑥
2
(𝑡)]

𝑇

= [𝑡
2
− 1 𝑡
3
+ 1]

𝑇

. (57)

Let 𝑢(𝑡) = 1. Then, by (14) and choosing 𝑛 = 3, 𝑘 = 4 we have
the approximate solution x(𝑡) = [𝑥

1
(𝑡) 𝑥
2
(𝑡)]

𝑇:

𝑥
1
(𝑡) =

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

𝑡
2
− 1, 0 ≤ 𝑡 ≤

1

4

,

𝑡
2
− 1,

1

4

≤ 𝑡 ≤

1

2

,

𝑡
2
− 1,

1

2

≤ 𝑡 ≤

3

4

,

−1.000000006 + 2.0625 × 10
−8
𝑡

+0.999999975𝑡
2
+ 10
−8
𝑡
3
,

3

4

≤ 𝑡 ≤ 1,

𝑥
2
(𝑡) = 𝑡

3

+ 1.

(58)

The graphs of approximate trajectories are shown in Figures
3 and 4.

0 1

−0.2

−0.4

−0.6

−0.8

−1

−0.5 0.5

t

Approximate x1(t)
Exact x1(t)

Figure 1:The graph of approximated trajectory 𝑥
1
(𝑡) for Example 1.

2

1.8

1.6

1.4

1.2

−0.5 0 0.5 1

t

Approximate x2(t)
Exact x2(t)

Figure 2:The graph of approximated trajectory 𝑥
2
(𝑡) for Example 1.

Example 10. Consider the time-varying delay system
described by (see [42])

[

̇𝑥
1
(𝑡)

̇𝑥
2
(𝑡)

] = [

0 1

−25 −5𝑡
]

[

[

[

[

𝑥
1
(𝑡 −

1

4

)

𝑥
2
(𝑡 −

1

4

)

]

]

]

]

+ [

0

1
] ,

[

𝑥
1
(𝑡)

𝑥
2
(𝑡)

] = [

0

0
] , 𝑡 ∈ [−

1

4

, 0] .

(59)



10 Mathematical Problems in Engineering

The exact solutions are [42]

𝑥
1
(𝑡) =

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

0, 𝑡 ∈ [0,

1

4

] ,

1

32

−

1

4

𝑡 +

1

2

𝑡
2
, 𝑡 ∈ [

1

4

,

1

2

] ,

1

32

−

19

96

𝑡 +

3

16

𝑡
2
+

5

8

𝑡
3
−

5

12

𝑡
4
, 𝑡 ∈ [

1

2

,

3

4

] ,

−

9641

32768

+

37391

24576

𝑡 −

3183

1024

𝑡
2
+

7065

2304

𝑡
3
−

135

384

𝑡
4
−

85

96

𝑡
5
+

5

18

𝑡
6
, 𝑡 ∈ [

3

4

, 1] ,

𝑥
2
(𝑡) =

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

𝑡, 𝑡 ∈ [0,

1

4

] ,

−

5

384

+ 𝑡 +

5

8

𝑡
2
−

5

3

𝑡
3
, 𝑡 ∈ [

1

4

,

1

2

] ,

775

1536

−

17

8

𝑡 +

1295

192

𝑡
2
−

115

24

𝑡
3
−

75

32

𝑡
4
+

5

3

𝑡
5
, 𝑡 ∈ [

1

2

,

3

4

] ,

87997

132120

−

1051

1024

𝑡 −

95755

49152

𝑡
2
+

21515

1536

𝑡
3
−

55325

3072

𝑡
4
+

335

96

𝑡
5
+

2125

576

𝑡
6
−

25

21

𝑡
7
, 𝑡 ∈ [

3

4

, 1] .

(60)

Here, this problem is solved by choosing 𝑘 = 8 and 𝑛 = 3. the
following approximate solutions 𝑥

1
(𝑡) and 𝑥

2
(𝑡) are found. In

Tables 1 and 2, exact, numerical results of this method and
obtained results in [42] are shown, respectively:

𝑥
1
(𝑡) =

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

−0.001524977445𝑡 + 0.04981148910𝑡
2
− 0.3456171465𝑡

3
, 𝑡 ∈ [0,

1

8

] ,

−0.002668294207 + 0.06251408351𝑡 − 0.4625009986𝑡
2
+ 1.020549487𝑡

3
, 𝑡 ∈ [

1

8

,

1

4

] ,

0.006613889339 − 0.04887212012𝑡 − 0.01695618114𝑡
2
+ 0.4264897281𝑡

3
, 𝑡 ∈ [

1

4

,

3

8

] ,

0.01307452454 − 0.1005572014𝑡 + 0.1208707015𝑡
2
+ 0.303976944𝑡

3
, 𝑡 ∈ [

3

8

,

1

2

] ,

0.1271590458 − 0.7850643303𝑡 + 1.489884961𝑡
2
− 0.608699230𝑡

3
, 𝑡 ∈ [

1

2

,

5

8

] ,

0.06579667219 − 0.4905249419𝑡 + 1.018621948𝑡
2
− 0.357358960𝑡

3
, 𝑡 ∈ [

5

8

,

3

4

] ,

0.3247255416 − 1.526240419𝑡 + 2.399575918𝑡
2
− 0.9711162800𝑡

3
, 𝑡 ∈ [

3

4

,

7

8

] ,

0.6384881122 − 2.601997790𝑡 + 3.629012898𝑡
2
− 1.439473220𝑡

3
, 𝑡 ∈ [

7

8

, 1] ,

,
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𝑥
2
(𝑡) =

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

1.003041110𝑡 − 0.09123330000𝑡
2
+ 0.6082219700𝑡

3
, 𝑡 ∈ [0,

1

8

] ,

0.003925049727 + 0.9088399072𝑡 + 0.6623763650𝑡
2
− 1.401403820𝑡

3
, 𝑡 ∈ [

1

8

,

1

4

] ,

0.003925049727 + 0.9088399072𝑡 + 0.6623763650𝑡
2
− 1.401403820𝑡

3
, 𝑡 ∈ [

1

4

,

3

8

] ,

−0.02462216250 + 1.075221794𝑡 + 0.4666746125𝑡
2
− 1.558091100𝑡

3
, 𝑡 ∈ [

3

8

,

1

2

] ,

0.3991598156 − 1.467470069𝑡 + 5.552058325𝑡
2
− 4.948346900𝑡

3
, 𝑡 ∈ [

1

2

,

5

8

] ,

0.00006281562500 + 0.4481955219𝑡 + 2.486993388𝑡
2
− 3.313645600𝑡

3
, 𝑡 ∈ [

5

8

,

3

4

] ,

−1.159405308 + 5.086068009𝑡 − 3.696836582𝑡
2
− 0.5652767300𝑡

3
, 𝑡 ∈ [

3

4

,

7

8

] ,

−5.634050302 + 20.42770799𝑡 − 21.23013942𝑡
2
+ 6.114076730𝑡

3
, 𝑡 ∈ [

7

8

, 1] .

(61)

Example 11. Consider the following system described by (see
[40])

̇𝑥 (𝑡) =

8

𝑡 + 1

𝑥 (𝑡 − (

𝑡

2

+

1

2

)) , 𝑡 ≥ 0,

𝑥 (𝑡) = (𝑡 + 1)
2

, 𝑡 ∈ [−

1

2

, 0] .

(62)

Analytic solution of the initial value problem (IVP) is 𝑥(𝑡) =

(𝑡 + 1)
2. By choosing 𝑘 = 1 and 𝑛 = 16 (degree raising), we

obtain the following solution:

𝑥 (𝑡) = 1 + 0.2018032795 × 10
−4

𝑡
12

− 0.01572515756𝑡
7

− 0.008572702573𝑡
5

+ 0.01741959010𝑡
6

− 0.0001540665901𝑡
11

− 0.1834453040 × 10
−5

𝑡
13

+ 1.101285958 × 10
−7

𝑡
14

+ 0.008669328894𝑡
8

+ 1.999552507𝑡

+ 6.306939519 × 10
−11

𝑡
16

− 3.928281389

× 10
−9

𝑡
15

− 0.003213347229𝑡
9

+ 0.9993525856𝑡
2

+ 0.0008342736689𝑡
10

+ 0.004438985657𝑡
3

− 0.002620448442𝑡
4

.

(63)

In Table 3, exact and presented methods are shown, respec-
tively.

Example 12. Consider the following system described by (see
[40])

̇𝑥 (𝑡) = 𝑥 (𝑡 − 1 −

1

𝑡 + 1

) , 𝑡 ≥ 0,

𝑥 (𝑡) =

{

{

{

2

3

(𝑡 + 2) , −2 ≤ 𝑡 ≤ −0.5,

1, −0.5 ≤ 𝑡 ≤ 0,

(64)

where the exact solution is 𝑥(𝑡) = 1 + (2/3)𝑡 + 𝑡
3
/3 −

(2/3) log(𝑡+1) on [0, 1] and 𝑥(𝑡) = 1−(2/3) log 2+𝑡 on [1, 2].
By choosing 𝑘 = 1 and 𝑛 = 7 (degree raising), we obtain the
following solution:

𝑥 (𝑡) = 1 + 5.424427795𝑡
5

− 1.611981446𝑡
6

− 2.552250886𝑡
2

+ 7.963903747𝑡
3

+ 0.3574277875𝑡 − 9.236517482𝑡
4

+ 0.1928923646𝑡
7

.

(65)

In Table 4, exact, numerical results of this method, method in
[40], error of presented method, and error of the method in
[40] are shown, respectively.

Example 13. Consider the following system described by (see
[40])

̇𝑥 (𝑡) = −𝑥 (𝑡 − 𝜏 (𝑡)) , 𝑡 ∈ [0, 2] ,

𝑥 (0) = 1,

𝜏 (𝑡) ≡ {

𝑡 − 2 + √4 − 2𝑡, 0 ≤ 𝑡 ≤ 2,

0, 𝑡 > 2.

(66)
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The solution of this problem is

𝑥 (𝑡) =

{

{

{

(𝑡 − 2)
2

4

, 0 ≤ 𝑡 ≤ 2,

0, 𝑡 > 2.

(67)

By choosing 𝑘 = 1 and 𝑛 = 7 (degree raising), we obtain the
following solution:

𝑥 (𝑡) = 1 − 1.000000002𝑡 + 3.207267830 × 10
−9

𝑡
6

+ 0.2500000112 × 𝑡
2

− 3.416339151 × 10
−10

𝑡
7

− 1.204800000 × 10
−8

𝑡
5

− 2.304000000 × 10
−8

𝑡
3

+ 2.296000000 × 10
−8

𝑡
4

.

(68)

In Table 5, exact, numerical results of this method, method in
[40], error of presented method, and error of the method in
[40] are shown, respectively.

Example 14. Consider the following LDDE described by

𝑑
3
𝑥 (𝑡)

𝑑𝑡
3

= −𝑥 (𝑡) − 𝑥 (𝑡 − 0.3) + 𝑒
−𝑡+0.3

, 0 ≤ 𝑡 ≤ 1, (69)

with the initial conditions

𝑥 (0) = 1,

𝑑𝑥 (0)

𝑑𝑡

= −1,

𝑑
2
𝑥 (0)

𝑑𝑡
2

= 1, 𝑥 (𝑡) = 𝑒
−𝑡

,

𝑡 ≤ 0,

(70)

where the exact solution of this example is 𝑥(𝑡) = 𝑒
−𝑡. Here,

this problem is solved by choosing 𝑘 = 10 and 𝑛 = 3.
The graph of error is shown in Figure 5, and the following
approximate solution 𝑥(𝑡) is found:

𝑥 (𝑡) =

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

1 − 𝑡 + 0.5𝑡
2
− 0.172928𝑡

3
, 𝑡 ∈ [0, 0.1] ,

0.9999767558 − 0.999302674𝑡 + 0.49302674𝑡
2
− 0.1496838𝑡

3
, 𝑡 ∈ [0.1, 0.2] ,

0.9998081522 − 0.996773576𝑡 + 0.48038104𝑡
2
− 0.1286073𝑡

3
, 𝑡 ∈ [0.2, 0.3] ,

0.9992953871 − 0.991645877𝑡 + 0.46328853𝑡
2
− 0.1096154𝑡

3
, 𝑡 ∈ [0.3, 0.4] ,

0.9982244623 − 0.983613861𝑡 + 0.44320829𝑡
2
− 0.0928817𝑡

3
, 𝑡 ∈ [0.4, 0.5] ,

0.9964070488 − 0.972709334𝑡 + 0.42139914𝑡
2
− 0.0783422𝑡

3
, 𝑡 ∈ [0.5, 0.6] ,

0.9937493164 − 0.9594206𝑡 + 0.39925114𝑡
2
− 0.0660377𝑡

3
, 𝑡 ∈ [0.6, 0.7] ,

0.9903114379 − 0.944686777𝑡 + 0.37820273𝑡
2
− 0.0560146𝑡

3
, 𝑡 ∈ [0.7, 0.8] ,

0.9863822587 − 0.929952279𝑡 + 0.35978451𝑡
2
− 0.0483403𝑡

3
, 𝑡 ∈ [0.8, 0.9] ,

0.9825547252 − 0.917193744𝑡 + 0.34560826𝑡
2
− 0.0430898𝑡

3
, 𝑡 ∈ [0.9, 1] .

(71)

Example 15. Consider the second-order linear decay differ-
ential equation:

̈𝑥 (𝑡) =

3

4

𝑥 (𝑡) + 𝑥 (

𝑡

2

) − 𝑡
2

+ 2, 0 ≤ 𝑡 ≤ 1,

𝑥 (0) = 0, ̇𝑥 (0) = 0.

(72)

The exact solution of this problem is 𝑥(𝑡) = 𝑡
2. Here, this

problem is solved by choosing 𝑘 = 1 and 𝑛 = 7. The following
approximate solution 𝑥(𝑡) is found.

𝑥 (𝑡) = 1.882848000𝑡
2

− 5.072623999𝑡
3

+ 15.56400000𝑡
4

− 28.14240000𝑡
5

+ 30.84000000𝑡
6

− 𝑡
9

+ 7𝑡
8

− 0.06182400000𝑡

− 20.01000000𝑡
7

.

(73)

In Table 6, exact, numerical results of this method, error of
presentedmethod, and error of themethod in [43] are shown,
respectively.

5. Conclusions

Using the Bézier curves, the general algorithm is provided
for the delay systems containing inverse time. Numerical
examples show that the proposedmethod is efficient and very
easy to use.

Appendix

In this Appendix, we specify the derivative of Bézier curve.
By (6), we have

k
𝑗
(𝑡) =

𝑛

∑

𝑖=0

𝑎
𝑗

𝑖
𝐵
𝑖,𝑛

(𝑡) , 𝑡 ∈ [0, 1] , (A.1)

where 𝐵
𝑖,𝑛
(𝑡) = (𝑛!/𝑖!(𝑛 − 𝑖)!)𝑡

𝑖
(1 − 𝑡)

𝑛−𝑖.
Now, we have (see [44])

𝑑𝐵
𝑖,𝑛

(𝑡)

𝑑𝑡

= 𝑛 (𝐵
𝑖−1,𝑛−1

(𝑡) − 𝐵
𝑖,𝑛−1

(𝑡)) , 0 ≤ 𝑖 ≤ 𝑛, (A.2)
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2
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Figure 4:The graph of approximated trajectory 𝑥
2
(𝑡) for Example 2.

where 𝐵
−1,𝑛−1

(𝑡) = 𝐵
𝑛,𝑛−1

(𝑡) = 0, and

𝐵
𝑖−1,𝑛−1

(𝑡) =

(𝑛 − 1)!

(𝑖 − 1)! (𝑛 − 𝑖)!

𝑡
𝑖−1

(1 − 𝑡)
𝑛−𝑖

,

𝐵
𝑖,𝑛−1

(𝑡) =

(𝑛 − 1)!

𝑖! (𝑛 − 𝑖 − 1)!

𝑡
𝑖

(1 − 𝑡)
𝑛−𝑖−1

.

(A.3)
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Figure 5: The graph of error for Example 7.

By using (A.2), the first derivative k
𝑗
(𝑡) is shown as

𝑑k
𝑗
(𝑡)

𝑑𝑡

=

𝑛−1

∑

𝑖=1

𝑛a𝑗
𝑖
𝐵
𝑖−1,𝑛−1

(𝑡) −

𝑛−1

∑

𝑖=0

𝑛a𝑗
𝑖
𝐵
𝑖,𝑛−1

(𝑡)

=

𝑛−1

∑

𝑖=0

𝑛a𝑗
𝑖+1

𝐵
𝑖,𝑛−1

(𝑡) −

𝑛−1

∑

𝑖=0

𝑛a𝑗
𝑖
𝐵
𝑖,𝑛−1

(𝑡)

=

𝑛−1

∑

𝑖=0

𝐵
𝑖,𝑛−1

(𝑡) 𝑛 {a𝑗
𝑖+1

− a𝑗
𝑖
} .

(A.4)

Now, we specify the procedure of derivation of (10) from (9).
By (6), we have

k
𝑗
(𝑡) = (

𝑛

0
) a𝑗
0

1

ℎ
𝑛
(𝑡
𝑗
− 𝑡)

𝑛

+ ⋅ ⋅ ⋅ + (

𝑛

𝑛
) a𝑗
𝑛

1

ℎ
𝑛
(𝑡 − 𝑡
𝑗−1

)

𝑛

,

k
𝑗+1

(𝑡) = (

𝑛

0
) a𝑗+1
0

1

ℎ
𝑛
(𝑡
𝑗+1

− 𝑡)

𝑛

+ ⋅ ⋅ ⋅ + (

𝑛

𝑛
) a𝑗+1
𝑛

1

ℎ
𝑛
(𝑡 − 𝑡
𝑗
)

𝑛

;

(A.5)

by substituting 𝑡 = 𝑡
𝑗
into (A.5), one has

k
𝑗
(𝑡
𝑗
) = a𝑗
𝑛

1

ℎ
𝑛
(𝑡
𝑗
− 𝑡
𝑗−1

)

𝑛

,

k
𝑗+1

(𝑡
𝑗
) = a𝑗+1
0

1

ℎ
𝑛
(𝑡
𝑗+1

− 𝑡
𝑗
)

𝑛

.

(A.6)
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Table 1: Exact and estimated values of 𝑥
1
(𝑡) for Example 3.

𝑡 Exact 𝑥
1
(𝑡) Present 𝑥

1
(𝑡) 𝑥

1
(𝑡) in [42]

0.00 0.000000 0.0000000000000000 −0.000088

0.05 0.000000 0.0000050777072400 −0.000046

0.10 0.000000 0.0000000000000000 0.000021
0.15 0.000000 −0.000253099630375 0.000083
0.20 0.000000 −0.000501121553000 −0.000128

0.25 0.000000 −1.06875 × 10
−11

−0.000024

0.30 0.001250 0.0019414196591000 0.001400
0.35 0.005000 0.0057172621996375 0.004987
0.40 0.011250 0.0116454806360000 0.011157
0.45 0.020000 0.0199999999857500 0.019968
0.50 0.031250 0.0310107172150000 0.031304
0.55 0.044971 0.04479153044625000 0.045021
0.60 0.061000 0.06099999990000000 0.060991
0.65 0.079086 0.0791835285950000 0.079044
0.70 0.098917 0.0989798441000000 0.098901
0.75 0.120117 0.1201170006000000 0.120143
0.80 0.142244 0.1422502585600000 0.142266
0.85 0.164728 0.1647280007500000 0.164710
0.90 0.186819 0.1868145712000000 0.186803
0.95 0.207606 0.2076060001475000 0.207623
1.00 0.226030 0.2260300002000000 0.226030

Table 2: Exact and estimated values of 𝑥
2
(𝑡) for Example 3.

𝑡 Exact 𝑥
2
(𝑡) Present 𝑥

2
(𝑡) 𝑥

2
(𝑡) in [42]

0.00 0.000000 0.000000000000000 0.001169
0.05 0.050000 0.050000000000000 0.049923
0.10 0.100000 0.099999999970000 0.100294
0.15 0.150000 0.150424766127000 0.149740
0.20 0.200000 0.200976855207000 0.199902
0.25 0.250000 0.250636614672500 0.250170
0.30 0.298229 0.298229000000000 0.298294
0.35 0.345083 0.342083000067500 0.342098
0.40 0.380313 0.380416662700000 0.380186
0.45 0.411667 0.411748202343750 0.411593
0.50 0.434896 0.434896000125000 0.435025
0.55 0.448306 0.4482677054750000 0.448326
0.60 0.448532 0.4485758408000000 0.448483
0.65 0.432078 0.432134688390000 0.432080
0.70 0.395846 0.395846000275000 0.395868
0.75 0.337199 0.337199000906250 0.337171
0.80 0.254052 0.254052000960000 0.254038
0.85 0.145303 0.145637497343750 0.145354
0.90 0.011316 0.011635894970000 0.011295
0.95 −0.145872 −0.14587200166625 −0.145924

1.00 −0.322405 −0.32240500200000 −0.322386

To preserve the continuity of the Bézier curves at the nodes,
one needs to impose the condition k

𝑗
(𝑡
𝑗
) = k
𝑗+1

(𝑡
𝑗
); so from

(A.6), we have

a𝑗
𝑛
(𝑡
𝑗
− 𝑡
𝑗−1

)

𝑛

= a𝑗+1
0

(𝑡
𝑗+1

− 𝑡
𝑗
)

𝑛

. (A.7)

Table 3: Exact and estimated values of 𝑥(𝑡) for Example 4.

𝑡 Exact Presented method
0.5 2.25 2.24991525903163
1.0 4 4.00000000000000
1.5 6.25 6.24995700258759
2 9 9.00000000128046

From (A.4), the first derivatives of k
𝑗
(𝑡) and k

𝑗+1
(𝑡) are,

respectively,

𝑑k
𝑗
(𝑡)

𝑑𝑡

=

𝑛−1

∑

𝑖=0

𝐵
𝑖,𝑛−1

(𝑡) 𝑛 (a𝑗
𝑖+1

− a𝑗
𝑖
)

=

𝑛−1

∑

𝑖=0

(

𝑛 − 1

𝑖
) (𝑡
𝑗
− 𝑡)

𝑛−1−𝑖

(𝑡 − 𝑡
𝑗−1

)

𝑖

×

1

ℎ
𝑛
{𝑛 (a𝑗
𝑖+1

− a𝑗
𝑖
)}

= (

𝑛 − 1

0
) {𝑛 (a𝑗

1
− a𝑗
0
)}

1

ℎ
𝑛
(𝑡
𝑗
− 𝑡)

𝑛−1

+ ⋅ ⋅ ⋅ + (

𝑛 − 1

𝑛 − 1
) {𝑛 (a𝑗

𝑛
− a𝑗
𝑛−1

)}

×

1

ℎ
𝑛
(𝑡 − 𝑡
𝑗−1

)

𝑛−1

,

𝑑k
𝑗+1

(𝑡)

𝑑𝑡

=

𝑛−1

∑

𝑖=0

(

𝑛 − 1

𝑖
) (𝑡
𝑗+1

− 𝑡)

𝑛−1−𝑖

(𝑡 − 𝑡
𝑗
)

𝑖

×

1

ℎ
𝑛
{𝑛 (a𝑗+1
𝑖+1

− a𝑗+1
𝑖

)}

= (

𝑛 − 1

0
) {𝑛 (a𝑗+1

1
− a𝑗+1
0

)}

1

ℎ
𝑛
(𝑡
𝑗+1

− 𝑡)

𝑛−1

+ ⋅ ⋅ ⋅ + (

𝑛 − 1

𝑛 − 1
) {𝑛 (a𝑗+1

𝑛
− a𝑗+1
𝑛−1

)}

×

1

ℎ
𝑛
(𝑡 − 𝑡
𝑗
)

𝑛−1

.

(A.8)

By substituting 𝑡 = 𝑡
𝑗
into (A.8), we have

𝑑k
𝑗
(𝑡
𝑗
)

𝑑𝑡

= 𝑛 (a𝑗
𝑛
− a𝑗
𝑛−1

)

1

ℎ
𝑛
(𝑡
𝑗
− 𝑡
𝑗−1

)

𝑛−1

,

𝑑k
𝑗+1

(𝑡
𝑗
)

𝑑𝑡

= 𝑛 (a𝑗+1
1

− a𝑗+1
0

)

1

ℎ
𝑛
(𝑡
𝑗+1

𝑡
𝑗
)

𝑛−1

,

(A.9)

and to preserve the continuity of the first derivative of Bézier
curves at nodes, by equalizing (A.9), we have

(a𝑗
𝑛
− a𝑗
𝑛−1

) (𝑡
𝑗
− 𝑡
𝑗−1

)

𝑛−1

= (a𝑗+1
1

− a𝑗+1
0

) (𝑡
𝑗+1

− 𝑡
𝑗
)

𝑛−1

,

(A.10)

where it shows the equality (10).
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Table 4: Exact and estimated values of 𝑥(𝑡) for Example 5.

𝑡 Exact Presented method Method in [40] Error of presented method Error of the method in [40]
0.5 1.10468992792789 1.10468992817860 1.1451 2.50709000000000 × 10

−10

1.2232 × 10
−3

1.0 1.53790187962670 1.53790188062000 1.5361 9.93297 × 10
−10

1.7685 × 10
−3

1.4 1.93790187962670 1.93768171138582 1.9361 0.220168240883 × 10
−3

1.7685 × 10
−3

1.5 2.03790187962670 2.03790188078453 2.0362 1.157827 × 10
−9

1.6125 × 10
−3

2.0 2.53790187962670 2.53790188032000 2.5870 6.93297 × 10
−10

4.9096 × 10
−2

Table 5: Exact and estimated values of 𝑥(𝑡) for Example 6.

𝑡 Exact Presented method Method in [40] Error of presented method Error of the method in [40]
1.0 0.25 0.250000000017634 0.250013 1.7634 × 10

−11

1.28346 × 10
−5

2.0 0.0 0.0 5.26486 × 10
−7 0.0 5.26486 × 10

−7

Table 6: Exact and estimated values of 𝑥(𝑡) for Example 8.

𝑡 Exact Presented method Error Of presented method Error of the method in [43]
0.2 0.04 0.0400000000049152 4.9152 × 10

−12

1.73 × 10
−6

0.4 0.16 0.1600000000193540 1.9354 × 10
−11

1.10 × 10
−5

0.6 0.36 0.3600000000221180 2.2118 × 10
−11

1.26 × 10
−4

0.8 0.64 0.6400000000073730 7.373 × 10
−12

7.07 × 10
−4
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Cocurrent and countercurrent imbibitions are the crucial mechanism in many multiphase flow processes. In cocurrent imbibition
wetting phase displaces nonwetting phase such that the nonwetting phasemoves in the same direction to the wetting phase, whereas
in countercurrent imbibitions wetting and non-wetting phase flow in opposite directions. However for cocurrent imbibitions,
mathematical models need total flux condition as both phases flow in the same direction. Thus cocurrent imbibitions have been
considered neglecting pressure gradient of nonwetting phase and only pressure gradient of displacing phase is considered which
gives additional velocity to the displacing phase. An approximate analytical solution is derived by the method of small parameter;
an approximate expression for the wetting phase saturation has been obtained. From analytical expression graphical presentation
of saturation of wetting phase shows that cocurrent imbibition is faster than countercurrent imbibition. Also, the small parameter
is chosen from initial wetting phase saturation and wetting phase saturation at imbibition phase, thus giving comparative behavior
of imbibition at initial and later stage. It is shown that cocurrent imbibition proceeds faster with more amount of wetting phase
present in porous matrix.

1. Introduction

Imbibition is one of the most important mechanisms, if
wetting phase (like water and brine) enters in porous matrix
and displaces nonwetting phase (like air, oil, and nonaqueous
phase liquids (NAPL)). Imbibition is defined as the displace-
ment of nonwetting phase (generally air or oil) by wetting
phase (generally water), where driving force is capillary
pressure. During imbibition two main types of flow modes
are recognized: cocurrent flow in which displacing (wetting)
phase and displaced (nonwetting) phase flow in the same
direction and countercurrent flow in which displacing phase
flows in the opposite direction to displaced phase. Imbibition
in water-wet porous media is commonly considered to be
counter current, but studies have shown that when a porous
matrix block is partially covered by wetting fluid, flow is
dominated by cocurrent imbibition, not countercurrent [1].
Such situation may arise during water flowing in unsaturated
soil or oil recovery from fractured porous matrix. Though
permeability of fracture is higher having relatively low vol-
ume, porousmatrix with low permeability and higher volume

contains major volume of oil. During water flooding process,
water quickly surrounds oil-saturated (water wet) porous
matrix. Imbibition may occur as cocurrent or counter cur-
rent, depending on fracture network and water injection rate.
Having an oil filled porous matrix exposed from both sides
to water, imbibition is countercurrent from each end. If the
matrix is exposed so that one end is in the water and the other
is in the oil, then imbibition is cocurrent with water entering
from one end and oil leaving from the other end (Figure 1).

In spite of the fact that cocurrent imbibition is faster and
more efficient countercurrent imbibitions have received con-
siderable attention in the literature; comparatively less studies
are undertaken to understand cocurrent imbibitions exper-
imentally as well as theoretically. Through a detailed study
of the governing equations and boundary conditions, signif-
icant insight has been provided into the physical differences
between co- and countercurrent imbibitions by some authors
[1–3]. Experimental studies have shown that there are signifi-
cant recovery differences between cocurrent and countercur-
rent imbibition [4–6]. Pooladi-Darvish and Firoozabadi [1]
developed a numericalmodel and studied the similarities and
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Figure 1: Cocurrent and countercurrent imbibition when nonwetting phase is displaced by wetting phase.

differences of cocurrent and countercurrent imbibition and
point out the consequences for practical applications.

In the present study cocurrent imbibition is formulated
neglecting the nonwetting phase pressure gradient and con-
sidering that capillary pressure gradient and wetting fluid
pressure gradient are equal [1, 3]). Darcy-like formulation
of the flow equation is assumed to be sufficient for analysis,
in which the local wetting phase (water) saturation 𝑆

𝑤
(𝑥, 𝑡)

obeys a differential equation of the diffusion type with
one additional convective term. Wetting and nonwetting
phases flow in the same direction; thus the sum of Darcy’s
velocities is taken as nonzero. Also specific results for the
dependence of relative permeability and capillary pressure,
on phase saturation, have been taken from standard literature.
Governing differential equation is formulated and solved by
method of small parameter; an approximate expression for
saturation of wetting phase 𝑆

𝑤
(𝑥, 𝑡) has been obtained.

2. Governing Flow Equation for Imbibition

Theone-dimensional horizontal flow of two immiscible flow-
ing phases can be described by the multiphase extension of
the Darcy law for each phase, which describes the seepage
velocity of each phase because of a gradient in the phase
pressures:

V
𝑤
= −

𝑘
𝑟𝑤

𝜇
𝑤

𝑘(

𝜕𝑃
𝑤

𝜕𝑥

) ,

V
𝑛
= −

𝑘
𝑟𝑛

𝜇
𝑛

𝑘(

𝜕𝑃
𝑛

𝜕𝑥

) ,

(1)

where V
𝑤
, V
𝑛
are the velocity of the wetting and the nonwet-

ting phases, respectively, 𝑘 is the absolute permeability, and
𝜇
𝑤
, 𝜇
𝑛
are the viscosity of the wetting and the nonwetting

phases, respectively. Also 𝑘
𝑟𝑤

= 𝑘
𝑟𝑤
(𝑆
𝑤
), 𝑘
𝑟𝑛

= 𝑘
𝑟𝑛
(𝑆
𝑤
) are

the relative permeability of the wetting and the nonwetting
phase, respectively, which are function of the wetting phase
saturation and describe the impairment of one fluid phase by
the other.

The definition of capillary pressure 𝑃
𝑐
as the pressure

discontinuity between the flowing phases yields 𝑃
𝑐
= 𝑃
𝑛
− 𝑃
𝑤

[7].Hence, pressure gradients of both phases are related to the

gradient of the capillary pressure, which was first introduced
for two-phase flow in porous media by Leveratt [8]; that is,

𝜕𝑃
𝑐

𝜕𝑥

=

𝜕𝑃
𝑛

𝜕𝑥

−

𝜕𝑃
𝑤

𝜕𝑥

. (2)

Total velocity V
𝑡
= V
𝑤
+ V
𝑛
, (3)

is the sum of the velocities of wetting and nonwetting phases.
Using total velocity and from (1) and (2) velocity of wetting
phase can be written as

V
𝑤
=

V
𝑡

(1 + 𝑘
𝑟𝑛
𝜇
𝑤
/𝑘
𝑟𝑤
𝜇
𝑛
)

+

𝑘 (𝑘
𝑟𝑛
/𝜇
𝑛
) (𝜕𝑃
𝑐
/𝜕𝑥)

(1 + 𝑘
𝑟𝑛
𝜇
𝑤
/𝑘
𝑟𝑤
𝜇
𝑛
)

. (4)

Equation (4) gives the velocity of wetting phase as the sum of
two terms; first term on right is dictated by the rate at which
fluid is entering at the boundary. The second term occurs
due to additional impelling force resulting from gradient of
capillary pressure (effect of wettability).

Neglecting phase density variation, the equation of con-
tinuity for wetting phase may be written as

𝜙

𝜕𝑆
𝑤

𝜕𝑡

+

𝜕V
𝑤

𝜕𝑥

= 0, (5)

where 𝜙 ∈ (0, 1) is porosity of porous matrix.
Considering capillary pressure as function of phase satu-

ration of displacing fluid [1] in (5) and using (4) for velocity
of displacing phase give

(

𝜕𝑆
𝑤

𝜕𝑡

) = −

𝜕

𝜕𝑥

(

V
𝑡

𝜙

𝑓 (𝑆
𝑤
) + 𝐷
𝑐
(𝑆
𝑤
)

𝜕𝑆
𝑤

𝜕𝑥

) , (6)

where𝐷
𝑐
(𝑆
𝑤
) = (𝑘/𝜙)(𝑓(𝑆

𝑤
)(𝑘
𝑟𝑛
/𝜇
𝑛
))(𝑑𝑃
𝑐
/𝑑𝑆
𝑤
) is known as

capillary diffusion coefficient and function 𝑓(𝑆
𝑤
) is given by

the following expression:

𝑓 (𝑆
𝑤
) =

1

1 + (𝑘
𝑟𝑛
/𝑘
𝑟𝑤
) (𝜇
𝑛
/𝜇
𝑤
)

. (7)

The above partial differential equation has been previously
derived by several authors which describes one-dimension-
al, immiscible, incompressible, isothermal, two-phase flow
through homogeneous, horizontal porous media. Imbibition
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is cocurrent or countercurrent, that is, described by the
second term containing V

𝑡
, for countercurrent flow V

𝑡
= 0 and

for cocurrent flow V
𝑡

̸=0. Equation (6) has been formulated
earlier for nonlinear relation between capillary pressure
and phase saturation of displacing fluid so as to describe
imbibition model by McWhorter and Sunada [2], Pooladi-
Darvish and Firoozabadi [1], and Le Guen and Kovscek [3].
For countercurrent and cocurrent imbibition, the coefficient
of diffusion𝐷

𝑐
(𝑆
𝑤
) is function of saturation of wetting phase

only because capillary pressure and relative permeability of
wetting phase depend only on wetting fluid saturation. In
(6) V
𝑡
is unknown and thus an additional equation, that is,

the pressure equation with initial and boundary conditions is
required to complete the formulation. Only a few analytical
solutions of this equation are known because of strong non-
linearity due to capillary drive in 𝐷

𝑐
and 𝑓. Thus, generally

two approaches are taken to solve this equation. In first
approach, closed form solutions are determined restricting
the 𝑘
𝑟𝑤
(𝑆
𝑤
), 𝑘
𝑟𝑛
(𝑆
𝑤
), and 𝑃

𝑐
(𝑆
𝑤
) to particular nonlinearities;

otherwise more general nonlinearities are chosen and the
resulting exact analytical expression is mostly nonlinear
expression that generally needs to be solved numerically [9].
In the first approach, the specific form of the nonlinearities is
considered. In the present paper first approach has been taken
to find approximate analytical solution.

Some studies of the imbibition process have assumed
that the pressure gradient in the displaced oil phase may
be neglected [3]. This assumption is based on the common
practice in hydrology, where themathematical formulation of
unsaturated water flow ignores the air pressure gradient [10].
Under this assumption, (2) gives

𝜕𝑃
𝑐

𝜕𝑥

= −

𝜕𝑃
𝑤

𝜕𝑥

. (8)

From (8) simplification of (6) results in

𝜕𝑆
𝑤

𝜕𝑡

= −

𝜕

𝜕𝑥

{𝐷 (𝑆
𝑤
)

𝜕𝑆
𝑤

𝜕𝑥

} , (9)

where𝐷(𝑆
𝑤
) = (𝑘𝑘

𝑟𝑤
/𝜙𝜇
𝑤
)(𝑑𝑃
𝑐
/𝑑𝑆
𝑤
) is diffusion coefficient.

Following Scheidegger and Johnson [11], relation between
relative permeability of wetting and nonwetting phases and
saturation of wetting phase can be written as

𝑘
𝑟𝑤

= 𝑆
𝑤
,

𝑘
𝑟𝑛

= 1 − 𝛼𝑆
𝑤
, 𝛼 = 1.11.

(10)

Babchin andNasr [12] suggested that when both the phas-
es are continuous then the capillary pressure gradient (in
present notations) can be written as Δ𝑃

𝑐
= (𝛾
𝑛𝑠

− 𝛾
𝑤𝑠
)𝑆VΔ𝑆𝑛,

where 𝑆V is the specific surface area of homogeneous porous
media and 𝛾

𝑛𝑠
and 𝛾

𝑤𝑠
are native fluid-solid and displacing

fluid-solid specific surface energies, respectively. Also Mehta
[13] suggested the presence of a linear relation between
capillary pressure and phase saturation of displacing phase
when external force does not apply. Hence, capillary pressure
and wetting phase saturation can be considered related by
expression 𝑃

𝑐
= −𝛽𝑆

𝑤
, where 𝛽 is constant of proportionality

[14].Thus substitution of capillary pressure andwetting phase
relation and expression of relative permeability of wetting
phase from (10) in (9) gives

𝜕𝑆
𝑤

𝜕𝑡

= −

𝜕

𝜕𝑥

{

(−𝛽) 𝑘𝑆
𝑤

𝜙𝜇
𝑤

𝜕𝑆
𝑤

𝜕𝑥

} . (11)

Equation (11) is the desired nonlinear partial differential
equation in wetting phase saturation, which describes the lin-
ear cocurrent imbibition.The governing differential equation
of counter current imbibition is given inMehta andYadav [15]
which differs in diffusivity co-efficient.

Set of suitable boundary and initial conditions associated
with (11) are

𝑆
𝑤
(0, 𝑡) = 𝑆

1
at 𝑥 = 0, 𝑡 ≥ 0, (12a)

𝑆
𝑤
(𝑥, 0) = 𝑆

2
at 𝑡 = 0, 𝑥 > 0, (12b)

where 𝑆
1
is the saturation of wetting phase at the imbibition

phase, as only displacing phase, that is, wetting phase, flows
through imbibition face 0 < 𝑆

1
= 1 − 𝑆

𝑟𝑛
< 1 at 𝑥 = 0 for

𝑡 > 0, where 𝑆
𝑟𝑛
is irreducible saturation of nonwetting phase.

𝑆
2
is the initial saturation of the wetting phase in the porous

matrix under consideration, at 𝑡 = 0 for 𝑥 > 0.
Equation (11) along with initial and boundary conditions

(12a) and (12b) is a nonlinear differential equation which
describes the cocurrent imbibition phenomenon in a homo-
geneous porous cylindrical matrix with impervious cylindri-
cal bounding surfaces. With all the linear relations used to
derive (11), it now becomes possible to use some of the calcu-
lations that occur in the theory of motion with free surface.

3. Solution of the Problem

Introducing the dimensionless variables:

𝑋 =

𝑥

𝐿

, 𝑇 =

𝛽𝑘𝑡

𝜙𝐿
2
𝜇
𝑤

, (13)

where 0 ≤ 𝑋 ≤ 1 and 0 ≤ 𝑇 ≤ 1 in (11), it reduces to

𝜕𝑆
𝑤

𝜕𝑇

=

𝜕

𝜕𝑋

(𝑆
𝑤

𝜕𝑆
𝑤

𝜕𝑋

) . (14)

From (12a) and (12b), initial and boundary conditions are

𝑆
𝑤
(0, 𝑇) = 𝑆

1
, at 𝑋 = 0, 𝑇 ≥ 0, (15a)

𝑆
𝑤
(𝑋, 0) = 𝑆

2
, at 𝑇 = 0, 𝑋 > 0. (15b)

Introducing the transformations as below;

𝑆
𝑤
(𝑋, 𝑇) = 𝑆

1
𝜉 (𝜂) , 𝜂 =

𝑋

2√𝑆
1
𝑇

(16)

in (14) results in

𝑑
2
𝜉
2

𝑑𝜂
2

+ 4𝜂

𝑑𝜉

𝑑𝜂

= 0. (17a)
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Initial and boundary conditions given in (15a) and (15b) will
transform to

𝜉 (0) = 1, (17b)

lim
𝜂→∞

𝜉 (𝜂) =

𝑆
2

𝑆
1

. (17c)

We now seek an approximate analytical solution for (17a)
through an exposed method by power series expansion in
powers of a small parameter [16]. Exposed method can be
applied to (17a) with conditions (17b) and (17c), as conditions
are considered to be constant. Assuming that solution of (17a)
can be expressed in the form of a power series in powers of
small parameter 𝜀 gives

𝜉 (𝜂) = 1 + 𝜀𝜉
∗
+ 𝜀
2

𝜉
∗∗

+ 𝜀
3

𝜉
∗∗∗

+ ⋅ ⋅ ⋅ , (18)

where 𝜉
∗
(𝜂), 𝜉
∗∗

(𝜂), 𝜉
∗∗∗

(𝜂), . . . are some functions of 𝜂. In
order to satisfy initial and boundary conditions in (17b) and
(17c), 𝜉

∗
(𝜂), 𝜉
∗∗

(𝜂), 𝜉
∗∗∗

(𝜂), . . . are subject to the following
conditions:

𝜉
∗
(0) = 𝜉

∗∗
(0) = 𝜉

∗∗∗
(0) = ⋅ ⋅ ⋅ = 0,

𝜉
∗∗

(∞) = 𝜉
∗∗∗

(∞) = ⋅ ⋅ ⋅ = 0.

(19)

In order to satisfy condition (17b) at infinity, we must set
lim
𝜂→∞

𝜉(𝜂) = 𝑆
2
/𝑆
1
= 1 + 𝜀𝜉

∗
(∞), choosing 𝜉

∗
(∞) such

that lim
𝜂→∞

𝜉
∗
(𝜂) = 1.

Thus the value for the small parameter 𝜀 can be obtained
as follows:

𝜀 =

𝑆
2
− 𝑆
1

𝑆
1

. (20)

Substituting the series (18) in (17a) and equating like powers
of 𝜀 gives

𝑑
2
𝜉
∗

𝑑𝜂
2

+ 2𝜂

𝑑𝜉
∗

𝑑𝜂

= 0,

𝑑
2
𝜉
∗∗

𝑑𝜂
2

+ 2𝜂

𝑑𝜉
∗∗

𝑑𝜂

− 𝜂𝜉
∗

𝑑𝜉
∗

𝑑𝜂

= 0,

𝑑
2
𝜉
∗∗∗

𝑑𝜂
2

+ 2𝜂

𝑑𝜉
∗∗∗

𝑑𝜂

+

3

4

𝜂𝜉
2

∗

𝑑𝜉
∗

𝑑𝜂

− 𝜂{𝜉
∗

𝑑𝜉
∗∗

𝑑𝜂

+ 𝜉
∗∗

𝑑𝜉
∗

𝑑𝜂

} = 0,

....

(21)

The first approximation in (21) together with conditions
in (19) gives probability function [16]

𝜉
∗
(𝜂) =

2

√𝜋

∫

𝜂

0

𝑒
−𝜏
2

𝑑𝜏. (22)

Integrating by parts after simplification of the second equa-
tion in (21) and using the conditions in (19), the expression of
second approximation can be given as follows:

𝜉
∗∗

(𝜂) =

1

𝜋

(1 − 𝑒
−2𝜂
2

) −

1

√𝜋

𝜂𝑒
−2𝜂
2

𝜉
∗
−

1

2

(𝜉
∗
)
3

+ (

1

2

−

1

𝜋

) 𝜉
∗
.

(23)

Similarly, for the third approximation the expression is
obtained as follows:

𝜉
∗∗∗

(𝜂) =

1

2

𝜉
3

∗
+

9

4√𝜋

𝜂𝑒
−𝜂
2

𝜉
2

∗
−

1

2√𝜋

𝜂
3

𝑒
−𝜂
2

𝜉
2

∗

+

3

𝜋

𝑒
−𝜂
2

𝜉
∗
−

1

𝜋

𝜂
2

𝑒
−2𝜂
2

𝜉
∗
−

𝜂𝑒
−𝜂
2

𝜋√𝜋

−

𝜂𝑒
−3𝜂
2

2𝜋√𝜋

−

3√3

4𝜋

𝜉
∗
(𝜂√3) + (1 −

2

𝜋

) 𝜉
∗∗

+ (

3√3

4𝜋

−

1

2

) 𝜉
∗
.

(24)

From (22), (23), and (24), considering 𝜉
∗
(𝜂), 𝜉

∗∗
(𝜂),

𝜉
∗∗∗

(𝜂), . . . in series (18) and using (16), the solution of (14)
can be given as follows,

𝑆
𝑤
(𝑋, 𝑇) = 𝑆

1
𝜉 (𝜂) = 𝑆

1
(1 + 𝜀𝜉

∗
+ 𝜀
2

𝜉
∗∗

+ 𝜀
3

𝜉
∗∗∗

+ ⋅ ⋅ ⋅ ) ,

(25)

where value of parameter 𝜀 is as in (20) with conditions in
(19). Thus (25) gives saturation of wetting phase at any time
𝑇 and at distance 𝑋, where 𝑇 and 𝑋 are dimensionless time
and distance, respectively.

4. Discussion and Conclusions

An approximate analytical solution in infinite series is
obtained for cocurrent imbibition, which satisfies initial
and boundary conditions with terms containing negative
exponential term in coefficients. From the expressions given
in (22), (23), and (24) the coefficient of the series may be
considered [17] as shown in Table 1. Also, for the free surface
Polubarinova-Kochina concluded from Table 1 that the series
up to third-degree approximation was not valid for the
extreme cases (zero initial and boundary conditions) consid-
ered. But for the cocurrent imbibition occurring due to water
injection in secondary oil recovery thismethodworks. As dis-
cussed earlier, 0 < 𝑆

1
= 1 − 𝑆

𝑟𝑛
< 1 at 𝑥 = 0 for 𝑡 > 0, where

𝑆
𝑟𝑛
is irreducible saturation of nonwetting phase and the ini-

tial (irreducible) saturation of the wetting phase in the porous
matrix under consideration is 0 < 𝑆

2
at 𝑡 = 0 for 𝑥 > 0. Also

saturation of wetting phase is relatively more due to sponta-
neous imbibition during primary recovery. One more advan-
tage of thismethod lies in using only one boundary condition,
that is, 𝑥 = 0. Also the saturation of wetting phase increases at
𝑥 = 𝐿 gradually hence may be left as free boundary. From the
expressions (22), (23), and (24) and fromTable 1, for the coef-
ficients of the series observation can bemade that for 𝜂 → ∞
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Table 1

𝜂 𝜉
∗

𝜉
∗∗

𝜉
∗∗∗

0 0 0 0
0.1 0.1125 0.0141 −0.0039
0.2 0.2227 0.0160 −0.0081
0.3 0.3286 0.0073 −0.0090
0.4 0.4284 −0.0092 −0.0049
0.5 0.5205 −0.0300 0.0039
0.6 0.6039 −0.0519 0.0159
0.7 0.6778 −0.0718 0.0280
0.8 0.7421 −0.0874 0.0373
0.9 0.7969 −0.0975 0.0422
1 0.8427 −0.1017 0.0418
1.1 0.8802 −0.1004 0.0368
1.2 0.9103 −0.0946 0.0281
1.3 0.9340 −0.0855 0.0194
1.4 0.9523 −0.0744 0.0078
1.5 0.9661 −0.0626 −0.0011
1.6 0.9764 −0.0510 −0.0079
1.7 0.9838 −0.0394 −0.0125
1.8 0.9891 −0.0310 −0.0147
1.9 0.9928 −0.0232 −0.0151
2 0.9953 −0.0169 −0.0141
2.5 0.9996 −0.0024 −0.0047
3 0.9999 −0.0002 −0.0006
3.5 1 −0.0 −0.0001
4 1 −0.0 −0.0001

each coefficient approaches zero. The small parameter 𝜀 has
been chosen depending upon the ratio (𝑆

2
−𝑆
1
)/𝑆
1
, where 0 <

𝑆
2
< 𝑆
1
< 1. Hence the parameter 𝜀 is small with negative sign

which compensates the negative series coefficients occurring
in Table 1; giving a convergent series in (25).

Saturation of displacing fluid 𝑆
𝑤
increases at distance

𝑥 as time 𝑡 increases; graphical presentation of saturation
profile in dimensionless variables is shown for cocurrent and
countercurrent imbibition [15] with 𝑆

𝑤
(𝑋, 0) = 𝑆

2
= 0.2.

Saturation profile shows different behaviors during cocurrent
and countercurrent imbibition.

Also, during cocurrent imbibition for given time 𝑇

saturation varies nonlinearly initially showing faster rate but
slowly becomes linear after long time 𝑇 (Figure 2). Figure 3
shows saturation in porous matrix for countercurrent for the
same initial and boundary condition. During countercurrent
imbibition saturation profile shows the same behavior for
all time 𝑇. From both saturation profiles it can be observed
that saturation profile of wetting phase increases faster in
cocurrent imbibition than in countercurrent imbibition.

Also, the expression (25) gives saturation of wetting phase
through a power series expansion in powers of parameter 𝜀.
Thus for the purpose of comparison of cocurrent imbibition
at different initial wetting phase saturation, saturation profile
is depicted in Figure 4. These profiles show cocurrent imbi-
bition is faster in later stages than primary or in other words
connected wetting phase is dominant during the imbibition

Saturation of wetting fluid in the porous matrix 
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Figure 2: Saturation of wetting fluid versus distance during cocur-
rent imbibition.
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Saturation of wetting fluid in the porous matrix at
given time T

Figure 3: Saturation of wetting fluid versus distance during coun-
tercurrent imbibition.

mechanism. Earlier few authors [18, 19] argue over this aspect
by conducting experimental work on countercurrent imbi-
bition. They observed that secondary imbibition proceeds
via the thickening of the preexisting wetting phase. The
expression given by (25) shows faster progress in saturation
profile as a consequence of the thickening of initially present
wetting phase in the porous medium.

In summary, the present paper addresses cocurrent imbi-
bition with some restrictive assumption on capillary pressure
and relative permeability of wetting and nonwetting phases
to derive approximate analytical solution in power series.
The method may be applied to solve more general problems
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Figure 4: Saturation of wetting phase at fixed time for different
initial conditions during cocurrent imbibition.

with nonlinear relation for capillary pressure and relative
permeabilities, if resultant set of differential equations for
series coefficients (as in (21)) is solvable. In conclusion we
have found the approximate analytical expression for wetting
phase saturation during cocurrent imbibition for a simplified
model formulated by using linear relation curves. In spite
of the restrictive formulation of the solution, saturation
profile behavior shows agreement with available literature.
The proposed method can be used to find solution for more
general forms.
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Biodiesel is an alternative diesel fuel chemically defined as themono-alkyl esters of long chain fatty acids derived from vegetable oils
or animal fat. It is becomingmore attractive as an alternative fuel due to the depleting fossil fuel resources. Amathematicalmodel for
the synthesis of biodiesel from vegetable oils and animal fats is presented in this study. Numerical solutions of the model are found
using a spectral relaxationmethod.Themethod, originally developed for boundary value problems, is an iterative scheme based on
the Chebyshev spectral collocation method developed by decoupling systems of equations using Gauss-Seidel type of techniques.
The effects of the reaction rate constants and initial concentrations of the reactants on the amount of the final product are being
investigated. The accuracy of the numerical results is validated by comparison with known analytical results and numerical results
obtained using ode45, an efficient explicit 4th and 5th order Runge-Kutta method used to integrate both linear and nonlinear
differential equations.

1. Introduction

Due to the continuous uncertainty and increasing environ-
mental impact associated with the utilization of petroleum-
based diesel fuel, the demands for alternative fuels have
increased considerably in recent years [1]. Methyl and ethyl
esters derived from vegetable oil or animal fat, known as
biodiesel, have good potential as alternative diesel fuel [2].
Biodiesel is synthesized through a chemical process called
transesterification. During this chemical process, triglyc-
erides (TG) in vegetable oils or animal fats react with short
chain alcohols such as methanol (MeOH) and ethanol in
the presence of homogeneous basic catalysts such as sodium
hydroxide (NaOH) and potassium hydroxide (KOH) to form
fatty acid methyl esters (biodiesel) and glycerin [3, 4].

Biodiesel has many advantages over petroleum-based
diesel fuels. It is biodegradable and nontoxic and produce less
particles, smoke, and carbon monoxide [2]. It is also renew-
able and usable in a variety of diesel engines with minimum
or nomodification necessary [3, 5]. It burns clean, and do not

form engine deposits or generate harmful pollutants which
results in a significant reduction of the types of pollutants that
contribute to pollution and global warming and releases up to
85% fewer cancer-causing agents [6–10].

Experiments have been carried out to investigate different
aspects in the production of biodiesel [3, 4, 11–15]. In this
work, we carry out a numerical study of the transesterification
process for the synthesis of biodiesel from vegetable oils. We
develop a mathematical model from the experimental works
of Santos et al. [2], Burnham et al. [6], and Gunvachai et al.
[7], where the reaction equations and reaction rates are
given. In this study, the chemical reaction equations and
rates are reduced to a set of nonlinear first order differential
equations that are solved using a spectral relaxation method.
The method decouples nonlinear systems of equations using
ideas similar to those of the Gauss-Seidel iterative scheme to
give rise to a linear system which is solved sequentially using
the Chebyshev spectral method.Themethod’s applicability to
initial value problems is also explored in this work.The effects
of the reaction rate constants and initial concentrations of
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the reactants on the amount of the final product are being
investigated. The accuracy of the numerical results is val-
idated by comparison with known analytical results and
numerical results obtained using ode45, an efficient explicit
4th and 5th order Runge-Kuttamethod used to integrate both
linear and nonlinear differential equations.

2. Mathematical Formulation

Biodiesel (BD) is produced by the transesterification of large,
branched triglyceride (TG) molecules into smaller, straight
chainmolecules withmethanol (MeOH) in the presence of an
alkali or acid as a (nonreactive) catalyst. The process occurs
in three consecutive reactions which in turn produce three
by-products, di-glyceride (DG), mono-glyceride (MG), and
glycerol (GL) [2, 4, 6, 7, 15, 16].The thermal transesterification
reactions proposed in [12, 13] may be characterized as

TG +MeOH
𝑘
1

→ DG + R
1
COOH

3
,

(1)

DG +MeOH
𝑘
2

→ MG + R
2
COOH

3
,

(2)

MG +MeOH
𝑘
3

→ GL + R
3
COOH

3
,

(3)

where 𝑘
1
, 𝑘
2
, and 𝑘

3
are reaction rate constants. The alter-

native mathematical model proposed by Kusdiana and Saka
[14] ignores the two intermediate reactions and assumes the
reaction

TG +MeOH 𝑘

→ GL + RCOOH
3
. (4)

In this study we consider the three-stage model defined
by (1)–(3). Following [4, 6], we assume that there is only
one biodiesel product produced in all three reactions so that
𝑅
1
= 𝑅
2
= 𝑅
3
= 𝑅. In [6], an adaptive Runge-Kutta integrator

was used to simulate the set of ODEs that represent the
reaction network defined by (1)–(3). In this study, we derive a
system of differential equations that model the change in the
concentrations of the reactants and the product species with
time from (1)–(3) by using the notation,

𝑥
1
= [TG] , 𝑥

2
= [MeOH] ,

𝑥
3
= [DG] , 𝑥

4
= [BD] ,

𝑥
5
= [MG] , 𝑥

6
= [GL] ,

(5)

where the square bracket denotes the concentration of the
given chemical at time 𝑡. These equations are

𝑥


1
(𝑡) = −𝑘

1
𝑥
1
𝑥
2
,

𝑥


2
(𝑡) = −𝑘

2
𝑥
1
𝑥
2
− 𝑘
2
𝑥
2
𝑥
3
− 𝑘
3
𝑥
2
𝑥
5
,

𝑥


3
(𝑡) = 𝑘

1
𝑥
1
𝑥
2
− 𝑘
2
𝑥
2
𝑥
3
,

𝑥


4
(𝑡) = 𝑘

1
𝑥
1
𝑥
2
+ 𝑘
2
𝑥
2
𝑥
3
+ 𝑘
3
𝑥
2
𝑥
5
,

𝑥


5
(𝑡) = 𝑘

2
𝑥
2
𝑥
3
− 𝑘
3
𝑥
2
𝑥
5
,

𝑥


6
(𝑡) = 𝑘

3
𝑥
2
𝑥
5
,

(6)

where the prime denotes the time derivative, subject to the
initial conditions

𝑥
1
(0) = 𝑥

1,0
, 𝑥

2
(0) = 𝑥

2,0
,

𝑥
3
(0) = 𝑥

4
(0) = 𝑥

5
(0) = 𝑥

6
(0) = 0.

(7)

In (6), the positive terms in the differential equations
are those that contribute to an increase in the 𝑥

𝑖
th variable

(𝑖 = 1, . . . 6), that is to say those terms that contribute
positively to the concentration of the different products. The
negative terms are those contributing to the decay in the
concentration of the different species. Effectively, we start
with definite known concentrations of the reacting species
with no by-products. As 𝑡 → ∞, the concentrations of the
reacting species are expected to approach zero and those of
the by-products to approach some limiting values, 𝑥

𝑖,∞
(𝑖 =

3, 4, 5, 6).

3. Method of Solution

In this section, (6) are solved using the spectral relaxation
method (SRM). Principally, the method has been developed
for similarity boundary layer problems with at least one
the essential profiles such as velocity, temperature, or con-
centration decaying exponentially. The governing systems of
equations are decoupled in a manner parallel to the Gauss-
Seidel relaxation method normally used for solving linear
algebraic system of equations. Worth noting also is that the
method bears some similarities with the Jacobi and Gauss-
Seidel waveform relaxation methods earlier developed by
Lelarasmee et al. [17] for solutions of initial value prob-
lems (IVPs) in very large-scale electrical networks. How-
ever, these methods may result into nonlinear differential
equations which require further linearization using appro-
priate linearization schemes while the SRM gives rise into
a sequence of linear differential equations which can be
directly solved using standard methods. Spectral methods
[18, 19] are then used in this work to solve the resulting
scheme hence, the name spectral relaxationmethod. Spectral
methods have been chosen in this work because of their
well-documented advantages including high accuracy. In
developing the sequence of linear equations using the SRM,
the following guidelines are used.

(1) The equations have to be arranged in such a way that
the equation with the least number of unknowns is
placed first on the list.

(2) Variables say 𝑍
1
, 𝑍
2
, 𝑍
3
, . . . , 𝑍

𝑛
can be used to assign

the ordered equations in [1], such that 𝑍
𝑖
, (𝑖 =

1, 2, 3 . . .) is an unknown function in the 𝑖th equation.
It is chosen to be the unknown function associated
with the highest order derivative of the 𝑖th equation.

(3) To generate the iterative scheme, in each equation,
only terms linear in 𝑍

𝑖
are to be evaluated at the

current iteration level, 𝑟+1. All other terms, linear and
nonlinear, in the other functions are to be evaluated
from the previous iteration, 𝑟, with an exception from
the second equation, where updated solutions for𝑍

𝑖−1



Mathematical Problems in Engineering 3

obtained from the previous 𝑖 − 1 equation will be
used. Nonlinear terms in 𝑍

𝑖
are also evaluated from

the previous iteration. Terms made up of a product of
𝑍
𝑖
and its derivatives, the derivative terms are to be

evaluated from 𝑟.

In view of the guidelines above, we develop the iterative
scheme for (6) as follows:

̇𝑥
1,𝑟+1
+ 𝑘
1
𝑥
2,𝑟
𝑥
1,𝑟+1
= 0, 𝑥

1,𝑟+1
(0) = 𝑥

1,0
,

̇𝑥
3,𝑟+1
+ 𝑘
2
𝑥
2,𝑟
𝑥
3,𝑟+1
= 𝑘
1
𝑥
1,𝑟+1
𝑥
2,𝑟
, 𝑥
3,𝑟+1
(0) = 0,

̇𝑥
2,𝑟+1
+ (𝑘
2
𝑥
1,𝑟+1
+ 𝑘
2
𝑥
3,𝑟+1
+ 𝑘
3
𝑥
5,𝑟+1
) 𝑥
2,𝑟+1
= 0,

𝑥
2,𝑟+1
(0) = 𝑥

2,0
,

̇𝑥
5,𝑟+1
+ 𝑘
3
𝑥
2,𝑟+1
𝑥
5,𝑟+1
= 𝑘
2
𝑥
2,𝑟+1
𝑥
3,𝑟+1
, 𝑥
5,𝑟+1
(0) = 0,

̇𝑥
4,𝑟+1
= (𝑘
1
𝑥
1,𝑟+1
+ 𝑘
2
𝑥
3,𝑟+1
+ 𝑘
3
𝑥
5,𝑟+1
) 𝑥
2,𝑟+1
,

𝑥
5,𝑟+1
(0) = 0,

̇𝑥
6,𝑟+1
= 𝑘
3
𝑥
2,𝑟+1
𝑥
5,𝑟+1
, 𝑥
6,𝑟+1
(0) = 0.

(8)

To solve the iteration schemes (8) we use the Chebyshev
spectral collocation method. For brevity, we omit the details
of the spectral methods and refer interested readers to [18,
19]. Before applying the spectral method, it is convenient to
transform the domain on which the governing equation is
defined to the interval [−1, 1] on which the spectral method
can be implemented. We use the transformation 𝑡 = 𝑡

𝐹
(𝜏 +

1)/2 to map the interval [0, 𝑡
𝐹
] to [−1, 1], where 𝑡

𝐹
is a finite

time. The basic idea behind the spectral collocation method
is the introduction of a differentiationmatrix𝐷which is used
to approximate the derivatives of the unknown variables 𝑥 at
the collocation points as the matrix vector product

𝑑𝑥

𝑑𝑡

=

𝑁

∑

𝑘=0

D
𝑗𝑘
𝑥 (𝜏
𝑘
) = DX, 𝑗 = 0, 1, . . . , 𝑁, (9)

where𝑁+1 is the number of grid points known as collocation
points, D = 2𝐷/𝑡

𝐹
, and X = [𝑥(𝜏

0
), 𝑥(𝜏
1
), . . . , 𝑥(𝜏

𝑁
)]
𝑇 is

the vector function at the collocation points 𝜏
𝑗
. Applying the

Chebyshev spectral collocation method in (8) gives

𝐴
1
x
1,𝑟+1
= 𝐵
1
, 𝑥

1,𝑟+1
(𝜉
𝑁
) = 𝑥
1,0
,

𝐴
3
x
3,𝑟+1
= 𝐵
3
, 𝑥

3,𝑟+1
(𝜉
𝑁
) = 0,

𝐴
2
x
2,𝑟+1
= 𝐵
2
, 𝑥

2,𝑟+1
(𝜉
𝑁
) = 𝑥
2,0
,

𝐴
5
x
5,𝑟+1
= 𝐵
5
, 𝑥

5,𝑟+1
(𝜉
𝑁
) = 0,

𝐴
4
x
4,r+1 = 𝐵4, 𝑥4,𝑟+1 (𝜉𝑁) = 0,

𝐴
6
x
6,𝑟+1
= 𝐵
6
, 𝑥

6,𝑟+1
(𝜉
𝑁
) = 0,

(10)

where

𝐴
1
= D + diag (𝑘

2
x
2,𝑟
) , 𝐵

1
= 0,

𝐴
3
= D + diag (𝑘

1
x
2,𝑟
) , 𝐵

3
= 𝑘
1
x
1,𝑟+1

x
2,𝑟
,

𝐴
2
= D + diag (𝑘

2
x
1,𝑟+1
+ 𝑘
2
x
3,𝑟+1
+ 𝑘
3
x
5,𝑟
) , 𝐵

2
= 0,

𝐴
5
= D + diag (𝑘

3
x
2,𝑟+1
) , 𝐵

5
= 𝑘
2
x
2,𝑟+1

x
3,𝑟+1
,

𝐴
4
= D, 𝐵

4
= (𝑘
1
x
1,𝑟+1
+ 𝑘
2
x
3,𝑟+1
+ 𝑘
3
x
5,𝑟+1
) x
2,𝑟+1
,

𝐴
6
= D, 𝐵

6
= 𝑘
3
x
2,𝑟+1

x
5,𝑟+1
.

(11)

From the above equations, diag is a diagonal matrix and
x
𝑗
, 𝑗 = 1, . . . 6, are the values of the functions 𝑥

𝑗
when

evaluated at the collocation points. To start the SRM iterative
scheme (20), we use the initial conditions (7) as initial
solutions.The scheme is repeated until the solution converges
to the numerical solution obtained using the ode45.

4. Results and Discussion

In this section we present SRM results of the governing equa-
tions (6) subject to the initial conditions (7). In experiments,
the contents of TG, DG, MG, and GL in samples of reaction
product are analyzed periodically using, for example, gas
chromatography and the mass fractions of each component
calculated based on the concentration of some internal
standard [4, 20]. However in this work we use concentration-
time curves to determine the concentration of each reacting
component and products at any given time. We also present
results showing the effect of the reaction rate constants on the
main product, biodiesel, and the effect of the concentration
of the main reactant, methanol, on the concentration of
biodiesel produced.The accuracy of the SRM in this workwas
validated using ode45, a fourth and fifth order Runge-Kutta
scheme whose tolerance level was set to be seven decimal
digits (10−7). A further comparison with similar results in
the literature was made. Figures 1, 2, 3, and 4 show the
conversion of the reaction and yield of biodiesel and the other
by-products with reaction time. In all figures, the solid line
represents the ode45 solution while the filled circles, squares,
and diamonds represent the SRM solutions. Convergence of
the SRM was reached after the 15th iteration when 𝑁 = 80
in all simulations. Figure 1 shows the variation of [BD(𝑡)]
with reaction rate constant 𝑘

1
at different concentrations of

MeOH. The concentration of TG was taken to be 0.25 and
𝑘
2
= 0.2 while 𝑘

3
= 0.13. The concentration of BD produced

shows to be directly proportional to 𝑘
1
as it increases with

increase in 𝑘
1
. The concentration of BD produced doubles

when [MeOH] is also doubled.The SRM solutions agree with
the ode45 results.

In Figure 2, the effect of 𝑘
2
is shown to decrease [BD(𝑡)].

In the figure, 𝑘
1
= 0.10, 𝑘

3
= 0.13, and [TG] = 0.25. The

concentration of biodiesel produced in this case is shown to
be equal to that of the methanol used. A good agreement
between the two solutions is observed.



4 Mathematical Problems in Engineering

0 20 40 60 80 100 120 140 160 180 200
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Time (days)

[MeOH] = 0.25
[B

D
(t

)]

k1 = 0.1

k1 = 0.2

k1 = 0.3

(a)

Time (days)
0 20 40 60 80 100 120 140 160 180 200

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7 [MeOH] = 0.5

[B
D

(t
)]

k1 = 0.1

k1 = 0.2

k1 = 0.3

(b)

Figure 1: Concentration-time curves showing the effect of 𝑘
1
on the concentration of biodiesel produced for different concentrations of

MeOH.The solid lines represent ode45 solutions while the figures represent SRM solutions for 𝑘
2
= 0.20, 𝑘

3
= 0.13, [TG] = 0.25.
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Figure 2: The effect of 𝑘
2
on the concentration-time curves for biodiesel produced at different concentrations of MeOH. The solid lines

represent ode45 solutions while the figures represent SRM solutions for 𝑘
1
= 0.10, 𝑘

3
= 0.13, [TG] = 0.25.

The variation of [BD(𝑡)] with the concentration of the
main reactant, MeOH, is shown in Figure 3. Increasing
[MeOH] increases that of BD produced. In the same figure, it
is shown that when 𝑘

1
= 0.10, 𝑘

2
= 0.20, and 𝑘

3
= 0.13, about

40%of [TG] gets used up in the reaction, while methanol gets
exhausted after about 120 days.The results here are consistent
with the analytical results in our earlier study [21]. The two
sets of solutions continue to show a very good agreement.

Concentration-time curves for the three by-products are
shown in Figure 4. Di-glyceride is produced in stronger
concentrations followed by ML and lastly DG.

5. Conclusion

A spectral relaxation method has been used successfully in
this work to solve a system of differential equations governing
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Figure 3: Concentration-time curves for BD at different concentrations of MeOH and that of TG and MeOH when 𝑘
1
= 0.10, 𝑘

2
= 0.20,

𝑘
3
= 0.13. The solid lines represent ode45 solutions while the figures represent SRM solutions.
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Figure 4: The variation of [DG], [MG], and [GL] with time when
[TG] = [MeOH] = 0.25, 𝑘

1
= 0.10, 𝑘

2
= 0.20, 𝑘

3
= 0.13. The

solid lines denote ode45 solutions while the figures represent SRM
solutions.

the thermal transesterification reactions in the production
of biodiesel from vegetable oils. The method proved useful
in solving initial value problems of the type in this study.
The results were consistent with numerical results obtained
using ode45 and those in the works of Sibanda et al. [21].
In the study we investigated the effect of the reaction rate

constants and that of the concentration of methanol as the
main reactant on the final concentration of biodiesel pro-
duced. For optimal results, the study showed that the first
reaction rate constant 𝑘

1
should be kept large while the

value of 𝑘
2
should be small. The results showed that that is

increasing 𝑘
1
increases biodiesel production while increasing

𝑘
2
decreases biodiesel production. The amount of biodiesel

produced increases with increase in the initial concentration
of methanol used. Methanol is used up in the reaction
after sometime. Experimental research is costly compared to
theoretical studies. It is however essential to usemethods that
give accurate results for trustworthy findings. The spectral
relaxation method promises to be a viable tool for theoretical
studies in the biosciences.
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The Bezier curves are presented to estimate the solution of the linear Fredholm integral equation of the second kind. A direct
algorithm for solving this problem is given. We have chosen the Bezier curves as piecewise polynomials of degree n and determine
Bezier curves on [0, 1] by n + 1 control points. Numerical examples illustrate that the algorithm is applicable and very easy to use.

1. Introduction

Integral equations are often involved in the mathematical
formulation of physical phenomena, and they can be encoun-
tered in various fields of science such as physics [1], biology
[2], and engineering (see [3, 4]). But we can also use it
in numerous applications, such as control, biomechanics,
elasticity, economics, electrical engineering, electrodynam-
ics, electrostatics, fluid dynamics, game theory, heat and
mass transfer, medicine, oscillation theory, plasticity, and
queuing theory [5]. Fredholm integral equations of the
second kind are shown in studies which include airfoil
theory [6], elastic contact problems (see [7, 8]), fracture
mechanics [9], combined infrared radiation, and molecular
conduction [10]. Many different basic functions have been
used to estimate the solution of integral equations, such as
orthogonal functions and wavelets (see [11, 12]). Depending
on the structure, the orthogonal functions may be widely
classified into three families [13]. The first includes sets of
piecewise constant orthogonal functions (e.g., Walsh, block-
pulse, Haar, etc.). The second consists of sets of orthogonal
polynomials (e.g., Laguerre, Legendre, Chebyshev, etc.). The
third are the widely used sets of sine-cosine functions
in the Fourier series. Fredholm integral equations of the
second kind are much more difficult to solve than ordinary

differential equations. Therefore, many authors have tried
various transform methods to overcome these difficulties
(see [11, 12]). Recently, hybrid functions have been applied
extensively for solving differential equations or systems, and
they proved to be a useful mathematical tool. The pioneering
work in system analysis via hybrid functions was led in [14,
15], who first derived an operational matrix for the integrals
of the hybrid function vector and paved the way for the
hybrid function analysis of the dynamic systems. But they
derived the matrix of small order, and the calculations are
not enough to achieve high accuracy. Hsiao [16] presented
the properties of hybrid functions which consist of block-
pulse functions plus the Legendre polynomials. Based upon
some useful properties of hybrid functions, integration of
the cross product, a special product matrix and a related
coefficient matrix with optimal order are applied to solve
these integral equations. The main characteristic of this
technique is to convert an integral equation into an algebraic
one. Maleknejad and Mahmoudi [17] used a simple base, a
combination of block-pulse functions on [0, 1] and the Taylor
polynomials, that is called the hybrid Taylor block-pulse
functions, to solve the linear Fredholm integral equation of
the second kind. One of the advantages of this method is
that the coefficients of expansion of each function in this base
could be computed directly without estimation.
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Consider the following integral equation:

𝑦 (𝑡) = ∫

1

0

𝑘 (𝑡, 𝑠) 𝑦 (𝑠) 𝑑𝑠 + 𝑥 (𝑡) , (1)

where 𝑥(𝑡) ∈ 𝐿2[0, 1), 𝑘(𝑡, 𝑠) ∈ 𝐿2([0, 1) × [0, 1)), 𝑦(𝑡) is an
unknown function.

In this paper, we discuss a technique similar to that used
in [18] for solving integral equations by using the Bezier
control points. There are many papers and books that deal
with the Bezier curves or surface techniques. Harada and
Nakamae [19] and Nürnberger and Zeilfelder [20] used the
Bezier control points in approximated data and functions.
Zheng et al. [21] proposed the use of the control points of
the Bernstein-Bezier form for solving differential equations
numerically, and also Evrenosoglu and Somali [18] used this
approach for solving singular-perturbed two-point boundary
value problems. The Bezier curves are used in solving partial
differential equations; besides, Wave and Heat equations are
solved in Bezier form (see [22–25] ). Wu [26] presented the
least squares method for solving partial differential equations
on arbitrary polygon domain by the Bezier control points.
Wu [26] used triangular Bezier patches of degree 𝑛 with
𝐶
𝑘 continuity to approximate the exact solution of partial

differential equations. Bezier curves are used for solving
dynamical systems (see [27]), also the Bezier control points
method is used for solving delay differential equation (see
[28]). Some other applications of the Bezier functions and
control points are found in ([29–31]), that are used in
computer-aided geometric design and image compression.

The use of the Bezier curves for solving Fredholm integral
equations of the second kind is a novel idea. Although the
method is very easy to be used and straightforward, the
obtained results are satisfactory (see the numerical results).

We suggest a technique similar to that used in [28] for
solving Fredholm integral equations of the second kind. The
current paper is organized as follows.

Presented algorithm will be stated in Section 2. In
Section 3, the convergence analysis will be presented. Some
numerical examples are solved in Section 4 which show the
efficiency and reliability of the method. Finally, Section 5 will
give a conclusion in brief.

2. The Algorithm

Our strategy is to use Bezier curves to approximate the
solutions 𝑦(𝑡) by V(𝑡) where V(𝑡) is given below. Define the
Bezier polynomial of degree 𝑛 that approximates the values
of 𝑦(𝑡) over the interval [𝑡

0
, 𝑡
𝑓
] as follows:

V (𝑡) =
𝑛

∑

𝑟=0

𝑎
𝑟
𝐵
𝑟,𝑛
(

𝑡 − 𝑡
0

ℎ

) , (2)

where ℎ = 𝑡
𝑓
− 𝑡
0
;

𝐵
𝑟,𝑛
(

𝑡 − 𝑡
0

ℎ

) = (

𝑛

𝑟
)

1

ℎ
𝑛
(𝑡
𝑓
− 𝑡)

𝑛−𝑟

(𝑡 − 𝑡
0
)
𝑟 (3)

is the Bernstein polynomial of degree 𝑛 over the interval
[𝑡
0
, 𝑡
𝑓
], and 𝑎

𝑟
is the control point (see [21]). By substituting

(2) in (1), one may define 𝑅
1
(𝑡) for 𝑡 ∈ [𝑡

0
, 𝑡
𝑓
] as follows:

𝑅
1
(𝑡) = V (𝑡) − (∫

𝑡
𝑓

𝑡
0

𝑘 (𝑡, 𝑠) V (𝑠) 𝑑𝑠 + 𝑥 (𝑡)) . (4)

In Section 3, the convergence of this method is proven by
Bezier curves when the degree of the approximate solution,
𝑛, tends to infinity.

Now, we define the residual function over the interval
[𝑡
0
, 𝑡
𝑓
] as follows:

𝑅 = ∫

𝑡
𝑓

𝑡
0

(




𝑅
1
(𝑡)





2

) 𝑑𝑡, (5)

where ‖ ⋅ ‖ is the Euclidean norm. Our aim is to solve the
following problem over the interval [𝑡

0
, 𝑡
𝑓
]:

min 𝑅

s.t. V (𝑡
0
) = V
0
.

(6)

When the minimization problem (6) is posed, the condition
V(𝑡
0
) = V
0
is equivalent to fix the first control point 𝑎

0
= V
0
.

The mathematical programming problem (6) can be solved
by many subroutine algorithms, and we used Maple 12 to
solve this optimization problem.

3. Convergence Analysis

In this section without the loss of generality, we analyze
the convergence of the control-point-based method when
applied to the integral equation (1) with the time interval
[0, 1]. So, the following problem is considered:

𝐿 (𝑡, 𝑦 (𝑡)) = 𝑦 (𝑡) − ∫

1

0

𝑘 (𝑡, 𝑠) 𝑦 (𝑠) 𝑑𝑠 = 𝑥 (𝑡) , 𝑡 ∈ [0, 1] ,

𝑦 (0) = 𝑦
0
= 𝑎,

(7)

where 𝑎 is a given real number and 𝑘(𝑡, 𝑠) ∈ 𝐿2([0, 1) × [0, 1))
and 𝑥(𝑡) ∈ 𝐿2[0, 1) are known functions for 𝑡 ∈ [0, 1].

Lemma 1. For a polynomial in Bezier form

𝑦 (𝑡) =

𝑛
1

∑

𝑖=0

𝑎
𝑖,𝑛
1

𝐵
𝑖,𝑛
1
(𝑡) , (8)

we have

∑
𝑛
1

𝑖=0
𝑎
2

𝑖,𝑛
1

𝑛
1
+ 1

≥

∑
𝑛
1
+1

𝑖=0
𝑎
2

𝑖,𝑛
1
+1

𝑛
1
+ 2

≥ ⋅ ⋅ ⋅ ≥

∑
𝑛
1
+𝑚
1

𝑖=0
𝑎
2

𝑖,𝑛
1
+𝑚
1

𝑛
1
+ 𝑚
1
+ 1

, (9)

where 𝑎
𝑖,𝑛
1
+𝑚
1

is the Bezier coefficient of 𝑦(𝑡) after being degree-
elevated to degree 𝑛

1
+ 𝑚
1
.

Proof . See [21].
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The convergence of the approximate solution could be
done in degree raising of the Bezier polynomial approxima-
tion.

Theorem 2. If the integral equation (7) has a unique 𝐶1
continuous solution 𝑦, then the approximate solution obtained
by the control-point-based method converges to the exact
solution 𝑦 as the degree of the approximate solution tends to
infinity.

Proof. Given an arbitrary small positive number 𝜖 > 0, by
the Weierstrass Theorem (see [32]), one can easily find poly-
nomial 𝑄

1,𝑁
1

(𝑡) of degree 𝑁
1
such that ‖𝑄

1,𝑁
1

(𝑡) − 𝑦(𝑡)‖
∞
≤

𝜖/16, where ‖ ⋅ ‖
∞

stands for the 𝐿
∞
-norm over [0, 1]. In

particular, we have





𝑎 − 𝑄

1,𝑁
1
(0)





∞
≤

𝜖

16

. (10)

In general,𝑄
1,𝑁
1

(𝑡) does not satisfy the boundary conditions.
After a small perturbation with constant polynomial 𝛼, for
𝑄
1,𝑁
1

(𝑡), we can obtain polynomial 𝑃
1,𝑁
1

(𝑡) = 𝑄
1,𝑁
1

(𝑡) + 𝛼

such that 𝑃
1,𝑁
1

(𝑡) satisfies the boundary condition 𝑃
1,𝑁
1

(0) =

𝑎. Thus, 𝑄
1,𝑁
1

(0) + 𝛼 = 𝑎. By using (10), one has






𝑎 − 𝑄

1,𝑁
1
(0)





∞
= ‖𝛼‖

∞
≤

𝜖

16

. (11)

We have





𝑃
1,𝑁
1
(𝑡) − 𝑦 (𝑡)





∞
=






𝑄
1,𝑁
1
(𝑡) + 𝛼 − 𝑦 (𝑡)





∞

≤






𝑄
1,𝑁
1
(𝑡) − 𝑦 (𝑡)





∞
+ ‖𝛼‖
∞
≤

𝜖

8

<

𝜖

5

.

(12)

Now, let

𝐿𝑃
𝑁
(𝑡) = 𝐿 (𝑡, 𝑃

1,𝑁
1
(𝑡))

= 𝑃
1,𝑁
1
(𝑡) − ∫

1

0

𝑘 (𝑡, 𝑠) 𝑃
1,𝑁
1
(𝑠) 𝑑𝑠 = 𝑥 (𝑡)

(13)

for every 𝑡 ∈ [0, 1]. Thus, for𝑁 ≥ 𝑁
1
, one may find an upper

bound for the following residual:




𝐿𝑃
𝑁
(𝑡) − 𝑦 (𝑡)




∞
=






𝐿 (𝑡, 𝑃

1,𝑁
1
(𝑡)) − 𝑦 (𝑡)





∞

≤






𝑃
1,𝑁
1
(𝑡) − 𝑦 (𝑡)





∞

+ ∫

1

0






𝑘 (𝑡, 𝑠) 𝑃

1,𝑁
1
(𝑠) 𝑑𝑠





∞

≤ 𝐶
1
(

𝜖

5

+

𝜖

5

) < 𝐶
1
𝜖,

(14)

where 𝐶
1
= 1 + ‖𝑘(𝑡, 𝑠)‖

∞
is a constant.

Since the residual 𝑅(𝑃
𝑁
) := 𝐿𝑃

𝑁
(𝑡) − 𝑦(𝑡) can be

considered as a polynomial because if it is not a polynomial,
we can use the Taylor series for it, we can represent the
statement 𝑅(𝑃

𝑁
) by a Bezier form. Thus, we have

𝑅 (𝑃
𝑁
) :=

𝑚
1

∑

𝑖=0

𝑑
𝑖,𝑚
1

𝐵
𝑖,𝑚
1
(𝑡) . (15)

Then, by Lemma 1, there exists an integer𝑀(≥ 𝑁) such that
when𝑚

1
> 𝑀, we have











1

𝑚
1
+ 1

𝑚
1

∑

𝑖=0

𝑑
2

𝑖,𝑚
1

− ∫

1

0

(𝑅 (𝑃
𝑁
))
2

𝑑𝑡












< 𝜖, (16)

which gives

1

𝑚
1
+ 1

𝑚
1

∑

𝑖=0

𝑑
2

𝑖,𝑚
1

< 𝜖 + ∫

1

0

(𝑅 (𝑃
𝑁
))
2

𝑑𝑡 ≤ 𝜖 + 𝐶
2

1
𝜖
2

. (17)

Suppose that 𝑦(𝑡) is an approximated solution of (7) obtained
by the control-point-based method of degree𝑚

2
(𝑚
2
≥ 𝑚
1
≥

𝑀). Let

𝑅 (𝑡, 𝑦 (𝑡)) = 𝐿 (𝑡, 𝑦 (𝑡)) − 𝑦 (𝑡)

=

𝑚
2

∑

𝑖=0

𝑐
𝑖,𝑚
2

𝐵
𝑖,𝑚
2
(𝑡) , 𝑚

2
≥ 𝑚
1
≥ 𝑀, 𝑡 ∈ [0, 1] .

(18)

Define the following norm for the difference-approximated
solution 𝑦(𝑡) and the exact solution 𝑦(𝑡):





𝑦 (𝑡) − 𝑦 (𝑡)





:= ∫

1

0





𝑦 (𝑡) − 𝑦 (𝑡)





𝑑𝑡. (19)

It is easy to show that




𝑦 (𝑡) − 𝑦 (𝑡)





≤ 𝐶 (





𝑦 (0) − 𝑦 (0)






+




𝑅 ((𝑡, 𝑦 (𝑡)) − (𝑡, 𝑦 (𝑡))






2

2

= 𝐶∫

1

0

𝑚
2

∑

𝑖=0

(𝑐
𝑖,𝑚
2

𝐵
𝑖,𝑚
2
(𝑡))

2

𝑑𝑡

≤

𝐶

𝑚
2
+ 1

𝑚
2

∑

𝑖=0

𝑐
2

𝑖,𝑚
2

.

(20)

The last inequality in (20) is obtained by Lemma 1 in which
𝐶 is a constant positive number. Now, by Lemma 1 and (15),
it can be shown that





𝑦 (𝑡) − 𝑦 (𝑡)





≤

𝐶

𝑚
2
+ 1

𝑚
2

∑

𝑖=0

𝑐
2

𝑖,𝑚
2

≤

𝐶

𝑚
2
+ 1

𝑚
2

∑

𝑖=0

𝑑
2

𝑖,𝑚
2

≤

𝐶

𝑚
1
+ 1

𝑚
1

∑

𝑖=0

𝑑
2

𝑖,𝑚
1

≤ 𝐶 (𝜖 + 𝐶
2

1
𝜖
2

) = 𝜖
1
, 𝑚
1
≥ 𝑀,

(21)

where the last inequality in (21) is coming from (17).
Thus, from (21) we have





𝑦 (𝑡) − 𝑦 (𝑡)





≤ 𝜖
1
. (22)

Since the infinite norm and the norm defined in (19) are
equivalent, there is a 𝜌

1
> 0 where





𝑦 (𝑡) − 𝑦 (𝑡)




∞
≤ 𝜌
1
𝜖
1
= 𝜖
2
. (23)

This completes the proof.
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The error (in semilogarithmic scale)
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Figure 1: The error for Example 1.

4. Numerical Examples

In this Section, we present some test problems and apply the
method presented in this paper for solving them. The well-
known symbolic software “Maple 12” has been employed for
calculations.

Example 1. Consider the integral equation described by

𝑦 (𝑡) = ∫

1

0

(𝑡 + 𝑠) 𝑦 (𝑠) 𝑑𝑠 + 𝑒
𝑡

+ (1 − 𝑒) 𝑡 − 1, 𝑦 (0) = 1,

(24)

For this integral equation, there exists the exact solution
𝑦(𝑡) = 𝑒

𝑡 (see [17]). With the method described in the paper,
and with 𝑛 = 4 one can find the following approximate
solution:

𝑦 (𝑡) = (1 − 𝑡)
4

+ 4.999424084𝑡(1 − 𝑡)
3

+ 9.506308758𝑡
2

(1 − 𝑡)
2

+ 8.155525672𝑡
3

(1 − 𝑡) + 2.718281828𝑡
4

.

(25)

Figure 1 shows the value of error for Example 1 where the
maximum error of hybrid Taylor and Block-Pulse functions
[17] is 1.777834 × 10−4 for𝑀 = 3 and𝑁 = 20.

Example 2. Consider the following integral equation:

𝑦 (𝑡) = ∫

1

0

(𝑠
2

𝑡 −

3

2

𝑠𝑡
2

)𝑦 (𝑠) 𝑑𝑠 +

3

4

𝑡
2

−

4

3

Ln (2) 𝑡 + 5
9

𝑡 + 2Ln (𝑡 + 1) , 𝑦 (0) = 0,

(26)

The error (in semilogarithmic scale)
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Figure 2: The error for Example 2.

𝑦(𝑡) = 2Ln(𝑡 + 1), (see [17]). With the described method and
with 𝑛 = 5, one can find the following solution:

𝑦 (𝑡) = 1.999482218𝑡(1 − 𝑡)
4

+ 7.008252137𝑡
2

(1 − 𝑡)
3

+ 9.625408201𝑡
3

(1 − 𝑡)
2

+ 5.93033𝑡
4

(1 − 𝑡)

+ 1.386294361𝑡
5

.

(27)

The error curve of Example 2 is shown in Figure 2 where the
maximum error of hybrid Taylor and Block-Pulse functions
is 9.509965 × 10−5 for 𝑀 = 3 and 𝑁 = 80 (see [17]). In
Table 1, analytic, numerical results of the presented method,
and the absolute error of the presented method are shown,
respectively.

Example 3. Consider the following integral equation (see
[17]):

𝑦 (𝑡) = −

1

3

∫

1

0

𝑒
2𝑡−(5/3)𝑠

𝑦 (𝑠) 𝑑𝑠 + 𝑒
2𝑡+(1/3)

, 𝑦 (0) = 1, (28)

𝑦(𝑡) = 𝑒
2𝑡 (see [17]). With the described method and with

𝑛 = 6, one can find the following approximate solution:

𝑦 (𝑡) = (1 − 𝑡)
6

+ 7.998720114𝑡(1 − 𝑡)
5

+ 27.01533534𝑡
2

(1 − 𝑡)
4

+ 49.29396712𝑡
3

(1 − 𝑡)
3

+ 51.71626551𝑡
4

(1 − 𝑡)
2

+ 29.55669277𝑡
5

(1 − 𝑡) + 7.389056099𝑡
6

.

(29)

Figure 3 shows the value of error for Example 3 where the
maximum error of hybrid Taylor and Block-Pulse functions
[17] is 4.625381 × 10−5 for𝑀 = 4 and𝑁 = 80.
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Table 1: Exact and estimated values of 𝑥(𝑡) for Example 2.

𝑡 Analytic 𝑥(𝑡) Presented method Errors of presented method
0.125 0.235566071312766 0.235569180133636 3.108820870 × 10

−6

0.250 0.446287102628420 0.446276196803712 1.0905824708 × 10
−5

0.375 0.636907462237070 0.636874894051300 3.2568185770 × 10
−5

0.500 0.810930216216328 0.81093021615625 6.0078 × 10
−11

0.625 0.971015631563402 0.971084086456756 6.8454893354 × 10
−5

0.750 1.11923157587085 1.11932128616895 8.971029810 × 10
−5

0.875 1.25721731884475 1.25723533320645 1.801436170 × 10
−5

1.000 1.38629436111989 1.38629436100000 1.1989 × 10
−10

The error (in semilogarithmic scale)
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Figure 3: The error for Example 3.

Example 4. Consider the nonlinear Fredholm integral equa-
tion with exact solution 𝑦(𝑡) = sinh(𝑡) (see [33]):

𝑦 (𝑡) = sinh (𝑡) − 1 + ∫
1

0

(cosh (𝑠2) − 𝑦 (𝑠2)) 𝑑𝑠,

𝑦 (0) = 0.

(30)

In ourmethod, with 𝑛 = 4 one can find the following solution

𝑦 (𝑡) = 0.9995869312𝑡(1 − 𝑡)
3

+ 3.0045666𝑡
2

(1 − 𝑡)
2

+ 3.158170163𝑡
3

(1 − 𝑡) + 1.175201194𝑡
4

.

(31)

Figure 4 shows the value of error for Example 4.

5. Conclusions

A simple and effective algorithm based on Bezier curves
is presented for solving Fredholm integral equations of the
second kind. The method is computationally attractive and
also reduces the CPU time and the computer memory while
at the same time keeping the accuracy of the solution.

The error (in semilogarithmic scale)
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Figure 4: The error for Example 4.
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We investigate a slow diffusion equation with nonlocal source and inner absorption subject to homogeneous Dirichlet boundary
condition or homogeneous Neumann boundary condition. Based on an auxiliary function method and a differential inequality
technique, lower bounds for the blow-up time are given if the blow-up occurs in finite time.

1. Introduction

Ourmain interest lies in the following slowdiffusion equation
with nonlocal source term and inner absorption term:

𝑢
𝑡

= Δ𝑢
𝑚

+ 𝑢
𝑝

∫

Ω

𝑢
𝑞

𝑑𝑥 − 𝑘𝑢
𝑠

, (𝑥, 𝑡) ∈ Ω × (0, 𝑡
∗

) , (1)

𝑢 (𝑥, 0) = 𝑢
0

(𝑥) ≥ 0, 𝑥 ∈ Ω, (2)

subject to homogeneous Dirichlet boundary condition

𝑢 = 0, (𝑥, 𝑡) ∈ 𝜕Ω × (0, 𝑡
∗

) , (3a)

or homogeneous Neumann boundary condition

𝜕𝑢

𝜕V
= 0, (𝑥, 𝑡) ∈ 𝜕Ω × (0, 𝑡

∗

) , (3b)

where Ω ⊂ R3 is a bounded domain with smooth boundary
𝜕Ω, Ω is the closure of Ω, 𝑚 > 1, 𝑝 ≥ 0, 𝑞 > 0, 𝑠 > 1, 𝑝 + 𝑞 >

max {𝑚, 𝑠}, 𝑘 > 0, V is the unit outer normal vector on 𝜕Ω, and
𝑡
∗ is the possible blow-up time. By the maximum principle,
it follows that 𝑢(𝑥, 𝑡) ≥ 0 in the time interval of existence.
In the present investigation we derive a lower bound for the
blow-up time 𝑡

∗ when Ω ⊂ R3 for the solutions that blow up.
Equation (1) describes the slow diffusion of concentration

of some Newtonian fluids through porous medium or the
density of some biological species in many physical phenom-
ena and biological species theories. It has been known that

the nonlocal source term presents a more realistic model for
population dynamics; see [1–3]. In the nonlinear diffusion
theory, there exist obvious differences among the situations
of slow (𝑚 > 1), fast (0 < 𝑚 < 1), and linear (𝑚 = 1)

diffusions. For example, there is a finite speed propagation
in the slow and linear diffusion situation, whereas an infinite
speed propagation exists in the fast diffusion situation.

The bounds for the blow-up time of the blow-up solutions
to nonlinear diffusion equations have been widely studied in
recent years. Indeed, most of the works have dealt with the
upper bounds for the blow-up time when blow-up occurs.
For example, Levine [4] introduced the concavity method,
Gao et al. [5] employed the way of combining an auxiliary
function method and comparison method with upper-lower
solutions method, andWang et al. [6] used the regularization
method and an auxiliary function method. However, the
lower bounds for the blow-up time are more difficult in
general. Recently, Payne and Schaefer in [7, 8] used a differ-
ential inequality technique and an auxiliary functionmethod
to obtain a lower bound on blow-up time for solution of
the heat equation with local source term under boundary
condition (3a) or (3b). Specially, Song [9] considered the
lower bounds for the blow-up time of the blow-up solution to
the nonlocal problem (1)-(2) when 𝑚 = 1 and 𝑝 = 0, subject
to homogeneous boundary condition (3a) or (3b); for the case
𝑘 = 0, we refer to [10].

Motivated by the works above, we investigate the lower
bounds for the blow-up time of the blow-up solutions to
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the nonlocal problem (1)-(2) with homogeneous boundary
condition (3a) or (3b). Actually, it is well known that if 𝑝 +

𝑞 > max{𝑚, 𝑠} and the initial value is large enough, then the
solutions of our problem blow up in a finite time; one can see
[11]. Unfortunately, our results are restricted inR3 because of
the best constant of a Sobolev type inequality (see [12]).

This paper is organized as follows. In Section 2, we estab-
lish problem (1)-(2) with homogeneous Dirichlet boundary
condition (3a). Problem (1)-(2) with homogeneousNeumann
boundary condition (3b) is considered in Section 3.

2. Blow-Up Time for Dirichlet Boundary
Condition

In this section, we derive a lower bound for 𝑡
∗ if the solution

𝑢(𝑥, 𝑡) ≥ 0 of (1)–(3a) blows up in finite time 𝑡
∗.

Theorem 1. Let 𝑢(𝑥, 𝑡) be a classical solution of (1)–(3a) with
𝑝 + 𝑞 > max{𝑚, 𝑠}; then a lower bound of the blow-up time for
any solutionwhich blows up in 𝐿

𝑛(𝑝+𝑞−1) norm (𝑛 > max {2, (1/

(𝑝+𝑞−1))}) is 𝑡
∗

≥ 1/(2𝐴[𝜂(0)]
2

), where𝐴 is a suitable positive
constant given later and 𝜂(0) = ∫

Ω
𝑢
𝑛(𝑝+𝑞−1)

0
𝑑𝑥.

Proof. Define an auxiliary function of the form

𝜂 (𝑡) = ∫

Ω

𝑢
𝑛(𝑝+𝑞−1)

𝑑𝑥, (4)

with

𝑛 > max{2,

1

𝑝 + 𝑞 − 1

} . (5)

Taking the derivative of 𝜂(𝑡) with respect to 𝑡 gives

𝜂


(𝑡) = 𝑛 (𝑝 + 𝑞 − 1) ∫

Ω

𝑢
𝑛(𝑝+𝑞−1)−1

𝑢
𝑡
𝑑𝑥

= 𝑛 (𝑝 + 𝑞 − 1)

× ∫

Ω

𝑢
𝑛(𝑝+𝑞−1)−1

× (Δ𝑢
𝑚

+ 𝑢
𝑝

∫

Ω

𝑢
𝑞

𝑑𝑥 − 𝑘𝑢
𝑠

) 𝑑𝑥

= 𝑛 (𝑝 + 𝑞 − 1) ∫

Ω

𝑢
𝑛(𝑝+𝑞−1)−1

Δ𝑢
𝑚

𝑑𝑥

+ 𝑛 (𝑝 + 𝑞 − 1) ∫

Ω

𝑢
𝑛(𝑝+𝑞−1)+𝑝−1

𝑑𝑥 ∫

Ω

𝑢
𝑞

𝑑𝑥

− 𝑛𝑘 (𝑝 + 𝑞 − 1) ∫

Ω

𝑢
𝑛(𝑝+𝑞−1)+𝑠−1

𝑑𝑥

= −𝑚𝑛 (𝑝 + 𝑞 − 1) [𝑛 (𝑝 + 𝑞 − 1) − 1]

× ∫

Ω

𝑢
𝑛(𝑝+𝑞−1)+𝑚−3

|∇𝑢|
2

𝑑𝑥

+ 𝑛 (𝑝 + 𝑞 − 1) ∫

Ω

𝑢
𝑛(𝑝+𝑞−1)+𝑝−1

𝑑𝑥 ∫

Ω

𝑢
𝑞

𝑑𝑥

− 𝑛𝑘 (𝑝 + 𝑞 − 1) ∫

Ω

𝑢
𝑛(𝑝+𝑞−1)+𝑠−1

𝑑𝑥

= −

4𝑚𝑛 (𝑝 + 𝑞 − 1) [𝑛 (𝑝 + 𝑞 − 1) − 1]

[𝑛 (𝑝 + 𝑞 − 1) + 𝑚 − 1]
2

× ∫

Ω






∇𝑢
(𝑛(𝑝+𝑞−1)+𝑚−1)/2





2

𝑑𝑥

+ 𝑛 (𝑝 + 𝑞 − 1) ∫

Ω

𝑢
𝑛(𝑝+𝑞−1)+𝑝−1

𝑑𝑥 ∫

Ω

𝑢
𝑞

𝑑𝑥

− 𝑛𝑘 (𝑝 + 𝑞 − 1) ∫

Ω

𝑢
𝑛(𝑝+𝑞−1)+𝑠−1

𝑑𝑥,

(6)

where ∇ is the gradient operator.
The application of Hölder inequality to the second term

on the right hand side of (6) yields

∫

Ω

𝑢
𝑞

𝑑𝑥

≤ |Ω|
1−(𝑞/(𝑛+1)(𝑝+𝑞−1))

× (∫

Ω

𝑢
(𝑛+1)(𝑝+𝑞−1)

𝑑𝑥)

𝑞/(𝑛+1)(𝑝+𝑞−1)

,

∫

Ω

𝑢
𝑛(𝑝+𝑞−1)+𝑝−1

𝑑𝑥

≤ |Ω|
𝑞/(𝑛+1)(𝑝+𝑞−1)

× (∫

Ω

𝑢
(𝑛+1)(𝑝+𝑞−1)

𝑑𝑥)

(𝑛(𝑝+𝑞−1)+𝑝−1)/((𝑛+1)(𝑝+𝑞−1))

,

(7)

where |Ω| denotes the volume of Ω.
By (7), it follows from (6) that

𝜂


(𝑡) ≤ −

4𝑚𝑛 (𝑝 + 𝑞 − 1) [𝑛 (𝑝 + 𝑞 − 1) − 1]

[𝑛 (𝑝 + 𝑞 − 1) + 𝑚 − 1]
2

× ∫

Ω






∇𝑢
(𝑛(𝑝+𝑞−1)+𝑚−1)/2





2

𝑑𝑥

+ 𝑛 (𝑝 + 𝑞 − 1) |Ω| ∫

Ω

𝑢
(𝑛+1)(𝑝+𝑞−1)

𝑑𝑥

− 𝑛𝑘 (𝑝 + 𝑞 − 1) ∫

Ω

𝑢
𝑛(𝑝+𝑞−1)+𝑠−1

𝑑𝑥.

(8)

Let

V = 𝑢
𝑝+𝑞−1

, 𝑚
1

=

𝑚 − 1

𝑝 + 𝑞 − 1

, 𝛿 =

𝑠 − 1

𝑝 + 𝑞 − 1

; (9)

then

𝜂 (𝑡) = ∫

Ω

V𝑛𝑑𝑥, (10)



Mathematical Problems in Engineering 3

and (8) can be written in the from

𝜂


(𝑡) ≤ −

4𝑚𝑛 (𝑝 + 𝑞 − 1) [𝑛 (𝑝 + 𝑞 − 1) − 1]

[𝑛 (𝑝 + 𝑞 − 1) + 𝑚 − 1]
2

× ∫

Ω






∇V(𝑛+𝑚1)/2







2

𝑑𝑥 + 𝑛 (𝑝 + 𝑞 − 1) |Ω|

× ∫

Ω

V(𝑛+1)𝑑𝑥 − 𝑛𝑘 (𝑝 + 𝑞 − 1) ∫

Ω

V𝑛+𝛿𝑑𝑥.

(11)

Now we seek a bound for ∫
Ω
V𝑛+1𝑑𝑥 in terms of 𝜂 and the

first and third terms on the right in (11). First, the application
of Hölder inequality yields

∫

Ω

V𝑛+1𝑑𝑥

≤ (∫

Ω

V𝑛+𝛿𝑑𝑥)

(2𝑛+3𝑚
1
−4)/(2𝑛+3𝑚

1
−4𝛿)

× (∫

Ω

V(6𝑛+3𝑚1)/4𝑑𝑥)

(4−4𝛿)/(2𝑛+3𝑚
1
−4𝛿)

.

(12)

Using the following Sobolev type inequality (see [12]):

(∫

Ω

|0|
𝛽

𝑑𝑥)

1/𝛽

≤ 𝑐(∫

Ω

|∇0|
𝛾

𝑑𝑥)

1/𝛾

, (13)

with 𝛽 = 6, 𝛾 = 2, and 𝑐 = 4
1/3

3
−1/2

𝜋
−2/3, we obtain

∫

Ω

V𝑛+1𝑑𝑥

≤ (∫

Ω

V𝑛+𝛿𝑑𝑥)

(2𝑛+3𝑚
1
−4)/(2𝑛+3𝑚

1
−4𝛿)

× [𝑐
3/2

(∫

Ω

V𝑛𝑑𝑥 ∫

Ω






∇V(𝑛+𝑚1)/2







2

𝑑𝑥)

3/4

]

(4−4𝛿)/(2𝑛+3𝑚
1
−4𝛿)

.

(14)

Then for some positive constant 𝜇
1
to be determined it

follows that

∫

Ω

V𝑛+1𝑑𝑥

≤ 𝑐
6(1−𝛿)/(2𝑛+3𝑚

1
−4𝛿)

× (𝜇
1

4(1−𝛿)/(2𝑛+3𝑚
1
−4)

∫

Ω

V𝑛+𝛿𝑑𝑥)

(2𝑛+3𝑚
1
−4)/(2𝑛+3𝑚

1
−4𝛿)

× [𝜇
1
(∫

Ω

V𝑛𝑑𝑥 ∫

Ω






∇V(𝑛+𝑚1)/2







2

𝑑𝑥)

3/4

]

(4−4𝛿)/(2𝑛+3𝑚
1
−4𝛿)

.

(15)

Next, we use the fundamental inequality

𝑎
1

𝑟
1
𝑎
2

𝑟
2

≤ 𝑟
1
𝑎
1

+ 𝑟
2
𝑎
2
, 𝑎
1
, 𝑎
2

> 0, 𝑟
1
, 𝑟
2

> 0,

𝑟
1

+ 𝑟
2

= 1,

(16)

to obtain

∫

Ω

V𝑛+1𝑑𝑥

≤ 𝑐
6(1−𝛿)/(2𝑛+3𝑚

1
−4𝛿)

× [

2𝑛 + 3𝑚
1

− 4

2𝑛 + 3𝑚
1

− 4𝛿

𝜇
1

−(4(1−𝛿)/(2𝑛+3𝑚
1
−4))

× ∫

Ω

V𝑛+𝛿𝑑𝑥 +

4 (1 − 𝛿) 𝜇
1

2𝑛 + 3𝑚
1

− 4𝛿

× (∫

Ω

V𝑛𝑑𝑥 ∫

Ω






∇V(𝑛+𝑚1)/2







2

𝑑𝑥)

3/4

] .

(17)

Note the fact that, for some positive constant 𝜇
2
,

[(∫

Ω

V𝑛𝑑𝑥)

3

]

1/4

(∫

Ω






∇V(𝑛+𝑚1)/2







2

𝑑𝑥)

3/4

≤

1

4𝜇
2

3
(∫

Ω

V𝑛𝑑𝑥)

3

+

3𝜇
2

4

∫

Ω






∇V(𝑛+𝑚1)/2







2

𝑑𝑥.

(18)

Substituting inequality (18) into (17) gives

∫

Ω

V𝑛+1𝑑𝑥 ≤ 𝑐
6(1−𝛿)/(2𝑛+3𝑚

1
−4𝛿)

× {

2𝑛 + 3𝑚
1

− 4

2𝑛 + 3𝑚
1

− 4𝛿

𝜇
1

−(4(1−𝛿)/(2𝑛+3𝑚
1
−4𝛿))

× ∫

Ω

V𝑛+𝛿𝑑𝑥 +

4 (1 − 𝛿) 𝜇
1

2𝑛 + 3𝑚
1

− 4𝛿

× [

1

4𝜇
2

3
(∫

Ω

V𝑛𝑑𝑥)

3

+

3𝜇
2

4

∫

Ω






∇V(𝑛+𝑚1)/2







2

𝑑𝑥] } .

(19)

Then, by applying inequality (19), it follows from (11) that

𝜂


(𝑡) ≤ {3𝜇
2
𝑐
6(1−𝛿)/(2𝑛+3𝑚

1
−4𝛿)

×

(1 − 𝛿) 𝜇
1
𝑛 (𝑝 + 𝑞 − 1) |Ω|

2𝑛 + 3𝑚
1

− 4𝛿

−

4𝑚𝑛 (𝑝 + 𝑞 − 1) [𝑛 (𝑝 + 𝑞 − 1) − 1]

[𝑛 (𝑝 + 𝑞 − 1) + 𝑚 − 1]
2

}

× ∫

Ω






∇V(𝑛+𝑚1)/2







2

𝑑𝑥 + 𝑐
6(1−𝛿)/(2𝑛+3𝑚

1
−4𝛿)

×

(1 − 𝛿) 𝜇
1
𝑛 (𝑝 + 𝑞 − 1) |Ω|

(2𝑛 + 3𝑚
1

− 4𝛿) 𝜇
2

3
(∫

Ω

V𝑛𝑑𝑥)

3
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+ [𝑐
6(1−𝛿)/(2𝑛+3𝑚

1
−4𝛿)

𝜇
1

−4(1−𝛿)/(2𝑛+3𝑚
1
−4)

×

(2𝑛 + 3𝑚
1

− 4) 𝑛 (𝑝 + 𝑞 − 1) |Ω|

2𝑛 + 3𝑚
1

− 4𝛿

−𝑛𝑘 (𝑝 + 𝑞 − 1) ] ∫

Ω

V𝑛+𝛿𝑑𝑥.

(20)

We next choose 𝜇
1
to make the coefficient of ∫

Ω
V𝑛+𝛿𝑑𝑥

vanish and then choose 𝜇
2
to make the coefficient of

∫
Ω

|∇V(𝑛+𝑚1)/2|2𝑑𝑥 vanish. It follows that

𝜂


(𝑡) ≤ 𝐴[𝜂 (𝑡)]
3

, (21)

with

𝐴 = 𝑐
6(1−𝛿)/(2𝑛+3𝑚

1
−4𝛿)

𝜇
1
𝑛 |Ω| (1 − 𝛿) (𝑝 + 𝑞 − 1)

(2𝑛 + 3𝑚
1

− 4𝛿) 𝜇
2

3
. (22)

Integrating inequality (21) from 0 to 𝑡 gives

1

[𝜂 (0)]
2

−

1

[𝜂 (𝑡)]
2

≤ 2𝐴𝑡, (23)

from which we derive a lower bound for 𝑡
∗:

𝑡
∗

≥

1

2𝐴[𝜂 (0)]
2
. (24)

This completes the proof of Theorem 1.

3. Blow-Up Time for Neumann Boundary
Condition

In this final section, we discuss a lower bound for 𝑡
∗ if the

solution 𝑢(𝑥, 𝑡) of (1), (2), and (3b) is blow-up in finite time
𝑡
∗.

Theorem 2. Let 𝑢(𝑥, 𝑡) be a classical solution of (1), (2), and
(3b)with𝑝+𝑞 > max{𝑚, 𝑠}; then a lower bound of the blow-up
time for any solution which blows up in 𝐿

𝑛(𝑝+𝑞−1) norm is 𝑡
∗

≥

∫

∞

𝜂(0)
(𝑑𝜉/(𝐾

2
𝜉
(3(𝑛+1))/(𝑛+4−3𝑚

1
)

+ 𝐾
3
𝜉
3
)), where 𝐾

2
and 𝐾

3
are

suitable positive constants given later, respectively, and 𝜂(0) =

∫
Ω

𝑢
𝑛(𝑝+𝑞−1)

0
𝑑𝑥.

Proof. We estimate ∫
Ω
V(6𝑛+3𝑚1)/4𝑑𝑥 in inequality (14). In a

similar way to the process of the derivation of (3.3) in [10],
we have

∫

Ω

V3/2((2𝑛+𝑚1)/2)𝑑𝑥

≤

1

3
3/4

[

3

2𝜌
0

∫

Ω

V(2𝑛+𝑚1)/2𝑑𝑥

+

(2𝑛 + 𝑚
1
) (𝑑 + 𝜌

0
)

4𝜌
0

(∫

Ω

V𝑛𝑑𝑥)

1/2

× (∫

Ω






∇V(𝑛+𝑚1)/2







2

)

1/2

]

3/2

,

(25)

where 𝜌
0

= min
𝜕Ω

𝑥
𝑖
V
𝑖
, 𝑑
2

= max
Ω

𝑥
𝑖
𝑥
𝑖
, 𝑖 = 1, 2, 3, and V

𝑖
is

the 𝑖th component of the unit outer normal vector V on 𝜕Ω.
By virtue of Hölder inequality, we get

∫

Ω

V
(2𝑛+𝑚

1
)/2

𝑑𝑥 ≤ (∫

Ω

V𝑛𝑑𝑥)

1/2

(∫

Ω

V𝑛+𝑚1𝑑𝑥)

1/2

≤ (|Ω|
(1−𝑚
1
)/(𝑛+1)

(∫

Ω

V𝑛+1𝑑𝑥)

(𝑛+𝑚
1
)/(𝑛+1)

)

1/2

× (∫

Ω

V𝑛𝑑𝑥)

1/2

.

(26)

Substituting inequality (26) into (25) yields

∫

Ω

V3/2((2𝑛+𝑚1)/2)𝑑𝑥

≤

1

3
3/4

[

3

2𝜌
0

(|Ω|
(1−𝑚
1
)/(𝑛+1)

(∫

Ω

V𝑛+1𝑑𝑥)

(𝑛+𝑚
1
)/(𝑛+1)

)

1/2

× (∫

Ω

V𝑛𝑑𝑥)

1/2

+

(2𝑛 + 𝑚
1
) (𝑑 + 𝜌

0
)

4𝜌
0

(∫

Ω

V𝑛𝑑𝑥)

1/2

× (∫

Ω






∇V(𝑛+𝑚1)/2







2

𝑑𝑥)

1/2

]

3/2

.

(27)

Applying the following inequality:

(𝑎
1

+ 𝑎
2
)
𝑠

≤ 2
𝑠

(𝑎
1

𝑠

+ 𝑎
2

𝑠

) , 𝑎
1
, 𝑎
2

> 0, 𝑠 > 1, (28)

we conclude that

∫

Ω

V3/2((2𝑛+𝑚1)/2)𝑑𝑥

≤

2
3/2

3
3/4

(

3

2𝜌
0

)

3/2

|Ω|
3(1−𝑚

1
)/4(𝑛+1)

× (∫

Ω

V𝑛+1𝑑𝑥)

3(𝑛+𝑚
1
)/4(𝑛+1)

× (∫

Ω

V𝑛𝑑𝑥)

3/4

+

2
3/2

3
3/4

(

(2𝑛 + 𝑚
1
) (𝑑 + 𝜌

0
)

4𝜌
0

)

3/2

× (∫

Ω

V𝑛)
3/4

(∫

Ω






∇V(𝑛+𝑚1)/2







2

𝑑𝑥)

3/4

.

(29)
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Applying inequality (16), we obtain

∫

Ω

V3/2((2𝑛+𝑚1)/2)𝑑𝑥 ≤

2
3/2

3
3/4

(

3

2𝜌
0

)

3/2

|Ω|
3(1−𝑚

1
)/4(𝑛+1)

×

3 (𝑛 + 𝑚
1
)

4 (𝑛 + 1)

𝜃
1

∫

Ω

V𝑛+1𝑑𝑥

+

2
3/2

3
3/4

(

3

2𝜌
0

)

3/2

|Ω|
3(1−𝑚

1
)/4(𝑛+1)

×

𝑛 + 4 − 3𝑚
1

4 (𝑛 + 1)

𝜃
−3(𝑛+𝑚

1
)/(𝑛+4−3𝑚

1
)

1

× (∫

Ω

V𝑛𝑑𝑥)

3(𝑛+1)/(𝑛+4−3𝑚
1
)

+

2
3/2

4 × 3
3/4

× (

(2𝑛 + 𝑚
1
) (𝑑 + 𝜌

0
)

4𝜌
0

)

3/2

× 𝜃
2

−3

(∫

Ω

V𝑛𝑑𝑥)

3

+

3 × 2
3/2

4 × 3
3/4

(

(2𝑛 + 𝑚
1
) (𝑑 + 𝜌

0
)

4𝜌
0

)

3/2

× 𝜃
2

∫

Ω






∇V(𝑛+𝑚1)/2







2

𝑑𝑥,

(30)

where 𝜃
1
and 𝜃
2
are arbitrary positive constants.

Recalling (12) and applying inequality (16) again, for a
suitable constant 𝜇

3
, we obtain

∫

Ω

V𝑛+1𝑑𝑥 ≤

2𝑛 + 3𝑚
1

− 4

2𝑛 + 3𝑚
1

− 4𝛿

𝜇
3

−(4(1−𝛿)/(2𝑛+3𝑚
1
−4))

× ∫

Ω

V𝑛+𝛿𝑑𝑥 +

4 − 4𝛿

2𝑛 + 3𝑚
1

− 4𝛿

𝜇
3

× ∫

Ω

V(6𝑛+3𝑚1)/4𝑑𝑥.

(31)

By applying (30), it follows from (31) that

∫

Ω

V𝑛+1𝑑𝑥 ≤

2𝑛 + 3𝑚
1

− 4

2𝑛 + 3𝑚
1

− 4𝛿

𝜇
3

−(4(1−𝛿)/(2𝑛+3𝑚
1
−4))

× ∫

Ω

V𝑛+𝛿𝑑𝑥 +

1 − 𝛿

2𝑛 + 3𝑚
1

− 4𝛿

2
3/2

3
3/4

(

3

2𝜌
0

)

3/2

× |Ω|
3(1−𝑚

1
)/4(𝑛+1)

3 (𝑛 + 𝑚
1
)

𝑛 + 1

𝜃
1
𝜇
3

∫

Ω

V𝑛+1𝑑𝑥

+

1 − 𝛿

2𝑛 + 3𝑚
1

− 4𝛿

2
3/2

3
3/4

(

3

2𝜌
0

)

3/2

|Ω|
3(1−𝑚

1
)/4(𝑛+1)

×

𝑛 + 4 − 3𝑚
1

𝑛 + 1

𝜃
1

−3(𝑛+𝑚
1
)/(𝑛+4−3𝑚

1
)

× 𝜇
3
(∫

Ω

V𝑛𝑑𝑥)

3(𝑛+1)/(𝑛+4−3𝑚
1
)

+

1 − 𝛿

2𝑛 + 3𝑚
1

− 4𝛿

2
3/2

3
3/4

(

(2𝑛 + 𝑚
1
) (𝑑 + 𝜌

0
)

4𝜌
0

)

3/2

× 𝜇
3
𝜃
2

−3

(∫

Ω

V𝑛𝑑𝑥)

3

+

3 (1 − 𝛿)

2𝑛 + 3𝑚
1

− 4𝛿

2
3/2

3
3/4

× (

(2𝑛 + 𝑚
1
) (𝑑 + 𝜌

0
)

4𝜌
0

)

3/2

× 𝜇
3
𝜃
2

∫

Ω






∇V(𝑛+𝑚1)/2







2

𝑑𝑥.

(32)

Taking

𝐾
0

= 1 −

1 − 𝛿

2𝑛 + 3𝑚
1

− 4𝛿

2
3/2

3
3/4

(

3

2𝜌
0

)

3/2

× |Ω|
3(1−𝑚

1
)/4(𝑛+1)

3 (𝑛 + 𝑚
1
)

𝑛 + 1

𝜃
1
𝜇
3

> 0,

(33)

then combining (32) with (11) gives

𝜂


(𝑡) ≤ 𝐾
1

∫

Ω






∇V(𝑛+𝑚1)/2







2

𝑑𝑥

+ 𝐾
2
(∫

Ω

V𝑛𝑑𝑥)

3(𝑛+1)/(𝑛+4−3𝑚
1
)

+ 𝐾
3
(∫

Ω

V𝑛𝑑𝑥)

3

+ 𝐾
4

∫

Ω

V𝑛+𝛿𝑑𝑥,

(34)

where

𝐾
1

=

1

𝐾
0

3 (1 − 𝛿)

2𝑛 + 3𝑚
1

− 4𝛿

2
3/2

3
3/4

× (

(2𝑛 + 𝑚
1
) (𝑑 + 𝜌

0
)

4𝜌
0

)

3/2

× 𝜇
3
𝜃
2
𝑛 (𝑝 + 𝑞 − 1) |Ω|

−

4𝑚𝑛 (𝑝 + 𝑞 − 1) [𝑛 (𝑝 + 𝑞 − 1) − 1]

[𝑛 (𝑝 + 𝑞 − 1) + 𝑚 − 1]
2

,

𝐾
2

=

1

𝐾
0

3 (1 − 𝛿)

2𝑛 + 3𝑚
1

− 4𝛿

2
3/2

3
3/4

(

3

2𝜌
0

)

3/2

× |Ω|
1+(3(1−𝑚

1
)/4(𝑛+1))

𝑛 + 4 − 3𝑚
1

𝑛 + 1

× 𝜃
1

−3(𝑛+𝑚
1
)/(𝑛+4−3𝑚

1
)

𝜇
3
𝑛 (𝑝 + 𝑞 − 1) ,
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𝐾
3

=

1

𝐾
0

1 − 𝛿

2𝑛 + 3𝑚
1

− 4𝛿

2
3/2

3
3/4

(

(2𝑛 + 𝑚
1
) (𝑑 + 𝜌

0
)

4𝜌
0

)

3/2

× 𝜇
3
𝜃
2

−3

𝑛 (𝑝 + 𝑞 − 1) |Ω| ,

𝐾
4

=

1

𝐾
0

2𝑛 + 3𝑚
1

− 4

2𝑛 + 3𝑚
1

− 4𝛿

𝜇
−(4(1−𝛿)/(2𝑛+3𝑚

1
−4))

3

× 𝑛 (𝑝 + 𝑞 − 1) |Ω| − 𝑛𝑘 (𝑝 + 𝑞 − 1) .

(35)

We can make 𝐾
1
and 𝐾

4
vanish by taking suitable 𝜇

3
, 𝜃
1
, and

𝜃
2
; then we have

𝜂


(𝑡) ≤ 𝐾
2
𝜂
3(𝑛+1)/(𝑛+4−3𝑚

1
)

+ 𝐾
3
𝜂
3

. (36)

Integrating inequality above from 0 to 𝑡 gives

𝑡 ≥ ∫

𝜂(𝑡)

𝜂(0)

𝑑𝜉

𝐾
2
𝜉
3(𝑛+1)/(𝑛+4−3𝑚

1
)
+ 𝐾
3
𝜉
3
, (37)

from which we derive a lower bound for 𝑡 < 𝑡
∗; namely,

𝑡
∗

≥ ∫

∞

𝜂(0)

𝑑𝜉

𝑘
2
𝜉
3(𝑛+1)/(𝑛+4−3𝑚

1
)
+ 𝐾
3
𝜉
3
. (38)

This completes the proof of Theorem 2.
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Classical orbit intercept applications are commonly formulated and solved as Lambert-type problems, where the time-of-flight
(TOF) is prescribed. For general three-dimensional intercept problems, selecting a meaningful TOF is often a difficult and an
iterative process. This work overcomes this limitation of classical Lambert’s problem by reformulating the intercept problem in
terms of a minimum-energy application, which then generates both the desired initial interceptor velocity and the TOF for the
minimum-energy transfer. The optimization problem is formulated by using the classical Lagrangian 𝑓 and 𝑔 coefficients, which
map initial position and velocity vectors to future times, and a universal time variable 𝑥. A Newton-Raphson iteration algorithm
is introduced for iteratively solving the problem. A generalized problem formulation is introduced for minimizing the TOF as part
of the optimization problem. Several examples are presented, and the results are compared with the Hohmann transfer solution
approaches. The resulting minimum-energy intercept solution algorithm is expected to be broadly useful as a starting iterative for
applications spanning: targeting, rendezvous, interplanetary trajectory design, and so on.

1. Introduction

A fundamental problem of astrodynamics is concerned with
computing intercept trajectories or interplanetary mission
orbit for objects in space [1, 2]. These calculations are often
performed assuming a predetermined time-of-flight (TOF).
This is the well-known Lambert’s problem [3–6]. Applica-
tions of Lambert’s problem are common in interplanetary
trajectory design, spacecraft intercept, rendezvous, ballistic
missile targeting, and so on. These problems are formulated
by specifying the initial position vectors of an interceptor
and target satellite. When the TOF is specified, the initial
velocity vector for the interceptor is an unknown implicit
function of the local gravity field and can only be recovered
by a successive approximation strategy. Other authors have
considered alternative problem formulations for a specified
TOF that have includedminimum-fuel andmultiple-impulse
strategies [7, 8]. This work overcomes the limitations of these
approaches by introducing a minimum-energy approach

that simultaneously generates both the TOF and the initial
velocity vector for the interceptor.

For the special case of coplanar orbits, the Hohmann
transfer algorithm generates a two-impulse minimum-
energy orbit transfer by using tangential burns [3–5]. This
technique provides a reference orbit transfer for various
space applications. For direct applications of the Hohmann
transfer to interplanetary orbit transfer, the position vectors
of the target planet and initial departure planet are specified
assuming a prescribed TOF. When the spacecraft is far from
the initial position, one must be alert to the possibility that a
multiorbit maneuver may be required.

Clearly, the TOF is a critical parameter for various appli-
cations. Once a TOF is determined, the rest of the procedure
is solved readily by the solution of Lambert’s problem. This
work addresses the problem that there are no adequate meth-
ods available for determining a TOF, especially, in general
three-dimensional (3D) cases. The problem of finding an
optimal TOF only becomes well defined when one specifies
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a minimization criteria. To this end, a minimum-energy
version of classical interceptor problem is formulated for
recovering the TOF for a 3D orbit transfer. The results of this
calculation are useful as a reference value for interplanetary
trajectory design, spacecraft intercept, rendezvous, ballistic
missile targeting, and so on. Of course, one can also bound
the range of achievable transfer trajectory times by solving for
theminimumTOF consistent with themaximum energy that
can be generated. Yielding a mission design space that spans
the range of TOF consists in the range [TOFmin,TOFmax].

The design goal for the optimization problem is to simul-
taneously recover the required initial interceptor velocity
and the TOF for the intercept. The mathematical advantage
of this approach is that the problem has a unique optimal
solution, rather than the family of solutions that characterize
the classical Lambert’s problem.Mathematically, the problem
is defined by a constrained optimization algorithm. Particular
care is exercised in formulating the problem for handling
the near-parabolic orbits that arise in intercept applications.
Analytically, this is handled in a comprehensive way by
introducing a universal variable that permits a single TOF
equation to be developed that is valid for all conic orbits.

This work is organized in three sections. First, Kepler’s
equation is used to define the TOF equation. This is followed
by a description of the universal variable used for the problem
formulation. For completeness, Lambert’s problem is briefly
described. Second, the minimum-energy problem for the
intercept problem is introduced and solved.Third, simulation
results are presented which compare the TOF obtained for an
interplanetary trajectory design with a trajectory developed
using the Hohmann transfer methodology and interceptor
design solution approaches.

2. Mathematical Review

A fundamental approach for determining the TOF for space-
craft starts with Kepler’s equation that is given by

𝑀 = 𝑛 (𝑡 − 𝑇) = 𝐸 − 𝑒 sin𝐸, (1)

where 𝑀 is the mean anomaly, 𝐸 and 𝑒 denote the eccentric
anomaly and the eccentricity, respectively, 𝑇 is the time of
periapsis passage, 𝑡 is the TOF, 𝑛 is the mean motion defined
as √𝜇/𝑎

3, 𝜇 denotes the gravitational constant, and 𝑎 is the
semimajor axis of orbit.

As 𝑒 ∼ 1, the solution for Kepler’s equation becomesmore
difficult to obtain. This problem is overcome by introducing
the universal variable given by [3]

̇𝑥 =

√𝜇

𝑟

, (2)

where 𝑟 is the position of spacecraft. As shown in [3], by
introducing the universal variable defined by (2), one can

express Kepler’s equation and the radial spacecraft coordinate
in the following form:

√𝜇𝑡 = 𝑎 [𝑥 − √𝑎 sin(

𝑥

√𝑎

)]

+ 𝑎

r
0
⋅ v
0

√𝜇

[1 − cos( 𝑥

√𝑎

)] + 𝑟
0
√𝑎 sin(

𝑥

√𝑎

) ,

(3)

𝑟 = 𝑎 + 𝑎 [

r
0
⋅ v
0

√𝜇𝑎

sin(

𝑥

√𝑎

) + (

𝑟
0

𝑎

− 1) cos( 𝑥

√𝑎

)] , (4)

where 𝑇 is assumed to be zero without loss of generality
and r
0
and v

0
are the initial position and velocity vectors of

spacecraft, respectively. These necessary conditions describe
the position and velocity of an orbiting object as a function
of time. If the value of the universal variable from (3) is
known, the position of the spacecraft at that time is evaluated.
Even though (3) is transcendental in 𝑥, a Newton’s iteration
technique is used to successfully solve for 𝑥 when the TOF, 𝑡,
is given.

Assuming that there are no external forces, then the four
vectors r

0
, v
0
, r, and v are assumed to be governed by Kep-

lerian motion. To compute v and r in terms of v
0
, r
0
, and 𝑥,

the position and velocity vectors of spacecraft at time 𝑡 are
described as [9]

r = 𝑓r
0
+ 𝑔v
0
,

v =
̇

𝑓r
0
+ ̇𝑔v
0
,

(5)

where 𝑓, 𝑔, ̇
𝑓, and ̇𝑔 are scalar time-dependent constants,

which are subject to the following constraint:

𝑓 ̇𝑔 −
̇

𝑓𝑔 = 1, (6)

where

𝑓 = 1 −

𝑎

𝑟
0

[1 − cos( 𝑥

√𝑎

)] ,

𝑔 = 𝑡 −

𝑎

√𝜇

[𝑥 − √𝑎 sin(

𝑥

√𝑎

)] ,

̇
𝑓 = −

√𝜇𝑎

𝑟𝑟
0

sin(

𝑥

√𝑎

) ,

̇𝑔 = 1 −

𝑎

𝑟

[1 − cos( 𝑥

√𝑎

)] .

(7)

The energy minimum form of Lambert’s problem is
solved by introducing the classical Lagrangian coefficients
and universal variable in the problem necessary conditions.

3. Time-of-Flight for Minimum-Energy
Orbit Transfer

The major objective in this paper is to compute (i) the TOF
and (ii) the initial velocity for an interceptor object for two
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Interceptor 
initial position

Target orbit

Target initial position
 and vector:

Final condition
between interceptor and target

r̂ = r

r̂0

r0, v0

Figure 1: Geometry of the minimum-energy problem for a TOF.

arbitrary given position vectors so that the transfer orbit
energy is a minimum.This problem differs from the classical
Lambert’s problem, which fixes a TOF and only recovers
a solution for the initial velocity for the interceptor object,
given initial and final position vectors of spacecraft.

The optimization problem is formulated by assuming that
a target and an interceptor exist in arbitrary orbits, respec-
tively. The problem geometry is illustrated in Figure 1, where
r
0
and v
0
denote the initial position and velocity vectors of the

target, respectively, and r̂
0
and v̂
0
represent the initial position

and velocity vectors of interceptor, respectively.
The unknowns for the problem are the TOF and initial

velocity correction for the interceptor. The goal of the tra-
jectory optimization is to reduce the displacement position
vector locating the interceptor relative to the target to zero
values at the TOF, while minimizing the orbit energy of
the interceptor. The problem is formulated as a nonlinear
optimization problem.

4. Constrained Optimization Problem

For given r
0
, v
0
, and r̂

0
, find 𝑡 and v̂

0
by minimizing the

performance index defined as the interceptor’s orbit energy,
J, defined as

J =

V̂2
0

2

−

𝜇

𝑟
0

(8)

subject to

𝜂 (𝑥, 𝑥, v̂
0
, 𝑡) = [

𝜂 (𝑥, 𝑡)

𝜂 (𝑥, v̂
0
, 𝑡)

] = 0,

r̂ − r = 0,

(9)

where 𝑥 and 𝑥 (9) denote the universal variables for the
target and the interceptor, respectively, and 𝑡 is the TOF to
be determined.

The displacement vectors for the target and interceptor
are expressed using 𝑓 and 𝑔 as follows:

r − r̂ = (𝑓r
0
+ 𝑔v
0
) − (

̂
𝑓r̂
0
+ 𝑔v̂
0
) . (10)

As a constraint vector, 𝜂 ∈ R2, (3) for 𝑥 and 𝑥 is rewritten
as

𝜂 (𝑥, 𝑡) = 𝑎 [𝑥 − √𝑎 sin(

𝑥

√𝑎

)] + 𝑟
0
√𝑎 sin(

𝑥

√𝑎

)

+ 𝑎

r
0
⋅ v
0

√𝜇

[1 − cos( 𝑥

√𝑎

)] − √𝜇𝑡,

𝜂 (𝑥, v̂
0
, 𝑡) = 𝑎 [𝑥 − √𝑎 sin(

𝑥

√𝑎

)] + 𝑟
0
√𝑎 sin(

𝑥

√𝑎

)

+ 𝑎

r̂
0
⋅ v̂
0

√𝜇

[1 − cos( 𝑥

√𝑎

)] − √𝜇𝑡.

(11)

Note that the augmented variables to be obtained are v̂
0
, 𝑥, 𝑥,

and 𝑡.

5. Optimal Necessary Conditions

Since the second term of the energy is constant, it does not
affect the performance index so that the index is redefined,
without loss of generality, as [10]

J (v̂
0
) =

1

2

v̂𝑇
0
v̂
0
. (12)

The Hamiltonian is formed by appending the constraints
of (9) with Lagrange multipliers as follows:

𝐻 = J (v̂
0
) + 𝜆
𝑇

𝜂 (𝑥, 𝑥, v̂
0
, 𝑡) + 𝜙

𝑇

(r − r̂) , (13)

where 𝜆 = [𝜆
1
, 𝜆
2
]
𝑇 and 𝜙 = [𝜙

1
, 𝜙
2
, 𝜙
3
]
𝑇. To minimize the

performance index with respect to the augmented variables,
the necessary conditions provide the following [11]:

𝜕𝐻

𝜕𝑥

= 𝜆
1
𝑟 + 𝜙
𝑇 𝜕r
𝜕𝑥

= 0, (14)

𝜕𝐻

𝜕𝑥

= 𝜆
2
𝑟 − 𝜙
𝑇 𝜕r̂
𝜕𝑥

= 0, (15)

𝜕𝐻

𝜕𝑡

= −√𝜇𝜆
1
− √𝜇𝜆

2
+ 𝜙
𝑇

(v
0
− v̂
0
) = 0, (16)

𝜕𝐻

𝜕v̂
0

= v̂𝑇
0
+ 𝜆
2

𝜕𝜂

𝜕v̂
0

− 𝜙
𝑇 𝜕r̂
𝜕v̂
0

= 0, (17)
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where 𝜕𝜂/𝜕v̂
0
∈ R1×3 represents a row vector, 𝜕r̂/𝜕v̂

0
∈ R3×3

is a matrix (refer to the Appendix for detail derivation), and

𝜕𝜂

𝜕𝑥

= 𝑟,

𝜕𝜂

𝜕𝑥

= 𝑟. (18)

The necessary conditions of (14)–(17) are simplified by
the following manipulations. First, from (15), the Lagrange
multiplier 𝜆

2
is obtained as

𝜆
2
=

1

𝑟

𝜙
𝑇 𝜕r̂
𝜕𝑥

. (19)

Second, substituting (19) into (17) yields

v̂𝑇
0
+ 𝜙
𝑇

(

1

𝑟

𝜕r̂
𝜕𝑥

𝜕𝜂

𝜕v̂
0

−

𝜕r̂
𝜕v̂
0

) = 0 (20)

which can be solved for 𝜙, leading to

𝜙
𝑇

= v̂𝑇
0
(

𝜕r̂
𝜕v̂
0

−

1

𝑟

𝜕r̂
𝜕𝑥

𝜕𝜂

𝜕v̂
0

)

−1

. (21)

Third, by using (14), the Lagrange multiplier 𝜆
1
follows

as

𝜆
1
= −

1

𝑟

𝜙
𝑇 𝜕r
𝜕𝑥

. (22)

Collecting the Lagrange multiplier solutions from (19)
and (22), introducing the results into (16), one obtains

√𝜇

𝑟

𝜙
𝑇 𝜕r
𝜕𝑥

−

√𝜇

𝑟

𝜙
𝑇 𝜕r̂
𝜕𝑥

+ 𝜙
𝑇

(v
0
− v̂
0
) = 0. (23)

This equation is further simplified by recalling the termi-
nal constraint 𝑟 = 𝑟, leading to

𝜙
𝑇

[(

𝜕r
𝜕𝑥

−

𝜕r̂
𝜕𝑥

) +

𝑟

√𝜇

(v
0
− v̂
0
)] = 0. (24)

Substituting (21) into (3) yields the final necessary condi-
tion required for finding the TOF for the intercept problem:

v̂𝑇
0
�̂� [(

𝜕r
𝜕𝑥

−

𝜕r̂
𝜕𝑥

) +

𝑟

√𝜇

(v
0
− v̂
0
)] = 0, (25)

where the new matrix is defined for simplicity as

�̂� = (

𝜕r̂
𝜕v̂
0

−

1

𝑟

𝜕r̂
𝜕𝑥

𝜕𝜂

𝜕v̂
0

)

−1

. (26)

Satisfaction of the new equation implies that the inter-
ceptor can meet the target with minimum energy in a time
provided by the computed TOF, not by a predetermined time.

6. Summary

The approach for obtaining the nonlinear 3D intercept prob-
lem by using the classical Lagrangian 𝑓 and 𝑔 coefficients is
summarized. Computing the TOF and the interceptor’s initial
velocity is the goal to meet the requirement that the final

distance between the two spacecrafts becomes zero. Firstly,
one can simply obtain 𝑎 and 𝑟

0
using the following:

𝑟
0
=




r
0





,

𝑎 = −

𝜇

2E
,

(27)

where the orbital energy is given by

E =

V2
0

2

−

𝜇

𝑟
0

. (28)

Then, one can find the universal variables, the initial
velocity for the interceptor, and the TOF using the following
equations:

𝜂 (𝑥, 𝑥, v̂
0
, 𝑡) = 0,

𝑓r
0
+ 𝑔v
0
−

̂
𝑓r̂
0
− 𝑔v̂
0
= 0,

v̂𝑇
0
�̂� [(

𝜕r
𝜕𝑥

−

𝜕r̂
𝜕𝑥

) +

𝑟

√𝜇

(v
0
− v̂
0
)] = 0,

(29)

where the semimajor axis 𝑎 of the interceptor can be iter-
atively computed with estimated v̂

0
. The Newton-Raphson

iteration algorithm is applied to solve the previous equations.
Next, one can compute all of the 𝑓 and 𝑔 expressions using
(7). Then, (5) is applied to obtain the final position and
velocity vectors.

There are many feasible performance indices to specify a
TOF. For example, consider the candidate performance index

J (v̂
0
, 𝑡) =

1

2

v̂𝑇
0
v̂
0
+ 𝛼𝑡, (30)

where 𝛼 is nonnegative weight. By adding the time as one
part of the performance index, the TOF is expected to be
shortened with respect to the variation of 𝛼. In a similar
manner with theminimum-energy procedure in the previous
section, the optimization solution to this problem is readily
determined.The partial derivative of theHamiltonian𝐻with
respect to 𝑡 is given by

𝜕𝐻

𝜕𝑡

= −√𝜇𝜆
1
− √𝜇𝜆

2
+ 𝜙
𝑇

(k
0
− k̂
0
) + 𝛼 = 0. (31)

Finally, a cost-effective equation weighted to the time is
obtained as

k̂𝑇
0
�̂� [(

𝜕r
𝜕𝑥

−

𝜕r̂
𝜕𝑥

) +

𝑟

√𝜇

(k
0
− k̂
0
)] +

𝑟

√𝜇

𝛼 = 0. (32)

Numerical convergences based on different methods
and their overall computational cost depend on the chosen
parameterization, the initial guess, and the numerical tech-
nique used for solving the resulting equation. It is known
that singularities exist when solving Lambert’s problem that
prevent some algorithms from converging for particular cases
or make convergence extremely slow. For example, Lambert’s
method fails when the transfer angle is 180 degrees [9].
Therefore, the features of the suggested method must be
analyzed.However, this is out of the scope of this paper, which
is focused on approaches to determine the TOF and initial
velocity of the interceptor.
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7. Application Examples

The specification of a TOF for an intercept problem is
generally not unique, and a family of solutions are possible
when the initial trust level is variable. As a result, the process
of determining a useful TOF requires experimentation and
iteration. The minimum-energy optimization approach of
this work finds a unique value for the TOF. The solution for
the intercept problem simultaneously determines the initial
interceptor velocity vector and TOF. Numerical examples are
presented that compare and contrast the classical Hohmann
transfer with the proposed method.

Let us briefly review the Hohmann transfer and compare
the minimum-energy problem with it. The geometry of the
Hohmann transfer is illustrated in Figure 2. The distances
of the departure and arrival orbits are denoted as 𝑟

1
and 𝑟
2
,

respectively.
The semimajor axis for the elliptic orbit and the energy

are given by [3]

2𝑎
ℎ
= 𝑟
1
+ 𝑟
2
, (33)

E
ℎ
= −

𝜇

𝑟
1
+ 𝑟
2

, (34)

and, then, the departure velocity of the transfer orbit is readily
obtained as

V
ℎ
0

= √2(

𝜇

𝑟
1

+E
ℎ
). (35)

Since the velocity of the departure orbit is given by

V
1
= √

𝜇

𝑟
1

, (36)

the velocity change for the Hohmann transfer is calculated as

ΔV = V
ℎ
0

− V
1
, (37)

and the TOF of the Hohmann transfer is written as

𝑡 = 𝜋√
𝑎
3

ℎ

𝜇

, (38)

where 𝑎
ℎ
is obtained from (33). Two circular orbits are

assumed with the radii of 𝑟
1
= 4000 km and 𝑟

2
= 6000 km,

respectively. Then, the velocity of the departure circular orbit
is V
1

= 9.9825 km/s, and the remaining parameters for the
Hohmann transfer are obtained as 𝑡 = 1759.3 sec, V

ℎ0
=

10.9353 km/s, and ΔV = 0.9528 km/s. To navigate to the final
position of the arrival orbit by the Hohmann transfer, the
initial position and velocity vectors are assumed to be given
by

r
1
= [0, −4000]

𝑇

, r
2
= [4097.2993, −4383.1653]

𝑇

,

k
1
= [9.9825, 0]

𝑇

, k
2
= [5.9543, 5.5660]

𝑇

.

(39)

Target planetDeparture planet

Hohmann transfer

r2

r1

Figure 2: Geometry of the Hohmann transfer.

Table 1: Numerically computed transfer orbits.

Transfer orbit [V
𝑥
, V
𝑦
]

𝑇

(km/s) ΔV (km/s) Time (sec)
Hohmann [10.9353, 0]

𝑇 0.9528 1759.3
Case 1 [10.8784, 0.8351]

𝑇 1.2248 1943.3
Case 2 [10.8440, −1.0574]

𝑇 1.3639 1479.0
Case 3 [10.3372, −2.6878]

𝑇 2.7111 1063.9

Four cases including the Hohmann case are analyzed.
Initial velocities, velocity changes, and TOF obtained by
the solution of the proposed minimum-energy problem are
arranged in Table 1. Also, the initial positions of target space-
craft and their resultant transfer trajectories are displayed in
Figure 3.

As shown in Table 1, the result for the Hohmann case
is nearly identical to the output from the classical approach
in (35)–(38) with a small numerical error. It proves that the
proposed approach provides optimal solutionswe are looking
for. Moreover, it is obvious that it gives theminimum velocity
change, which is tangential with the trajectory, compared
with the other cases. If the target is positioned at case 1, 2, or 3,
relative to the interceptor’s initial position and it is required to
start the orbit transfer mission at this time, it would be a great
advantage to have a reference minimum-energy trajectory to
accomplish themission. Fortunately, the results in Table 1 can
be utilized, since they represent theminimumvelocity in each
case. This means that there are no more efficient trajectories
in these cases than the transfer orbit listed in Table 1. When
the target is positioned forward compared to the Hohmann
transfer, the phase angle, sometimes called flight-path-angle,
at departure should be negative tomeet the optimal trajectory
requirement. When the target, on the contrary, is positioned
backward, the flight-path-angle should be positive.

Even if a circular orbit is selected for the comprehen-
sive analysis by comparing with the Hohmann transfer,
the application of the proposed approach is not limited.
Therefore, an illustrative example in Figure 4 is conducted
to demonstrate the performance of space maneuver of the
interceptor. There are two arbitrary elliptic orbits, which are
not coplanar.The initial positions of the target and interceptor
orbit are depicted in Figure 4. By solving the nonlinear 3D
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Figure 3: Trajectory generation by initial positions of target.
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Figure 4: An illustrative example for the intercept problem.

intercept problem through minimizing energy, the TOF and
initial velocity is computed.Then, applyingminimum-energy
velocity obtained for the interceptor confirms that the final
distance between the two orbits is zero at the computed TOF.
Note that the problems formulated by the universal variable
and 𝑓 and 𝑔 expressions in this paper are solved in 3D space
for supporting the design of arbitrary intercept problemswith
minimum energy.

The intercept problem is easily generalized by introducing
a time weighting factor in the definition of the optimal
control problem, which allows a systematic exploration of the
intercept design space as a function of the allowed transfer

Initial position of interceptor

Initial position

−2000

−2000 0

0

2000

2000

4000

4000

6000

t = 530.4 (s)
𝛼 = 0.0

t = 353.2 (s)
𝛼 = 0.05

t = 296.8 (s)
𝛼 = 0.1

t = 186.9 (s)
𝛼 = 0.5

Target orbit

y
(k

m
)

x (km)

 of target

Figure 5: TOF for intercept due to variation of 𝛼.

energy. In this example, the outer orbit is selected as a target
orbit to be captured as illustrated in Figure 5. The initial
position of the interceptor is at the inner orbit. The TOF
obtained from the optimization problem is shortened when
𝛼 increases, and the results are illustrated in Figure 5. As
expected, the longest TOF is obtained when 𝛼 is zero. If 𝛼
approaches one in this simulation case, the interceptor can
hit the target in a very short time. It means that shortening
the TOF is the optimal solution to minimize the chosen cost
function.
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8. Conclusions

A general algorithm is presented for generalizing the classical
Lambert’s transfer problem,where the determination of time-
of-flight (TOF) for a spacecraft intercept, in arbitrary three-
dimensional orbit, is addressed. A constrained optimization
technique is introduced and iteratively solved to find both the
TOF and the initial intercept velocity vector. The proposed
algorithm provides a benchmark minimum-energy solution
that provides an optimal reference trajectory. A significant
advantage of this approach is that the TOF is uniquewhen the
energy is minimized. This implies that the interceptor with
lower energy than the evaluated minimum energy cannot
meet the target. Numerical results are presented, and they
compare the intercept solutions with those obtained using
the classical Hohmann transfer technique. The proposed
algorithm is expected to be broadly useful for all classes of
intercept problem that have a Lambert-like character.

Appendix

The Partial Derivatives

The partial derivatives r and r̂ with respect to 𝑥 and 𝑥,
respectively, are given by

𝜕r
𝜕𝑥

=

𝜕𝑓

𝜕𝑥

r
0
+

𝜕𝑔

𝜕𝑥

k
0
,

𝜕r̂
𝜕𝑥

=

𝜕
̂
𝑓

𝜕𝑥

r̂
0
+

𝜕𝑔

𝜕𝑥

k̂
0
.

(A.1)

Applying (4) and using (7), the partial derivatives with
respect to the universal variable are written as

𝜕𝑓

𝜕𝑥

= −

√𝑎

𝑟
0

sin(

𝑥

√𝑎

) ,

𝜕𝑔

𝜕𝑥

= −

𝑎

√𝜇

[1 − cos( 𝑥

√𝑎

)] ,

𝜕
̂
𝑓

𝜕𝑥

= −

√𝑎

𝑟
0

sin(

𝑥

√𝑎

) ,

𝜕𝑔

𝜕𝑥

= −

𝑎

√𝜇

[1 − cos( 𝑥

√𝑎

)] .

(A.2)

The orbit energy has the following relationship:

k̂𝑇
0
k̂
0

2

−

𝜇

𝑟
0

= −

𝜇

2𝑎

. (A.3)

Since 𝑟
0
is a constant in this case, differentiating both sides

with respect to k̂
0
yields

k̂𝑇
0
=

𝜇

2𝑎
2

𝜕𝑎

𝜕k̂
0

. (A.4)

The partial derivative of 𝑎 with respect to k̂
0
is readily

written as
𝜕𝑎

𝜕k̂
0

=

2𝑎
2

𝜇

k̂𝑇
0
. (A.5)

The row vector, partial derivative of 𝜂 with respect to k̂
0
,

is given by

𝜕𝜂

𝜕k̂
0

=

𝜕𝜂 (𝑎)

𝜕𝑎

𝜕𝑎

𝜕k̂
0

+

𝜕𝜂(k̂
0
)

𝜕k̂
0








𝑎

, (A.6)

where

𝜕𝜂 (𝑎)

𝜕𝑎

= 𝑥 − √𝑎 sin(

𝑥

√𝑎

)

+

𝑎

2

[

𝑥

𝑎

cos( 𝑥

√𝑎

) −

1

√𝑎

sin(

𝑥

√𝑎

)]

+

r̂𝑇
0
k̂
0

√𝜇

[1 − cos( 𝑥

√𝑎

) −

𝑥

2√𝑎

sin(

𝑥

√𝑎

)]

+

𝑟
0

2

[

1

√𝑎

sin(

𝑥

√𝑎

) −

𝑥

𝑎

cos( 𝑥

√𝑎

)] ,

𝜕𝜂(k̂
0
)

𝜕k̂
0








𝑎

=

𝑎

√𝜇

[1 − cos( 𝑥

√𝑎

)] r̂𝑇
0
.

(A.7)

Next, the partial derivative of r̂ with respect to k̂
0
follows

as

𝜕r̂
𝜕k̂
0

= (

𝜕
̂
𝑓

𝜕𝑎

r̂
0
+

𝜕𝑔

𝜕𝑎

k̂
0
)

𝜕𝑎

𝜕k̂
0

+

𝜕r̂
𝜕k̂
0








𝑎

, (A.8)

where

𝜕
̂
𝑓

𝜕𝑎

= −

1

𝑟
0

[1 − cos( 𝑥

√𝑎

) −

𝑥

2√𝑎

sin(

𝑥

√𝑎

)] ,

𝜕𝑔

𝜕𝑎

= −

1

√𝜇

[𝑥 −

3√𝑎

2

sin(

𝑥

√𝑎

) +

𝑥

2

cos( 𝑥

√𝑎

)] ,

𝜕r̂
𝜕k̂
0








𝑎

= 𝑔𝐼
3×3

.

(A.9)

The matrix, �̂�, in (26), consists of the combination of
two vectors and one scaled identity matrix. If 𝑔 is not zero,
the matrix would have a full rank of three. The position and
velocity vectors in orbit are in general not parallel. Since the
condition that 𝑔 is zero means that r and k are parallel, this
is impossible in orbit. It could guarantee the existence of the
inverse of the matrix.
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This work presents the possible generalization of the Volterra integral equation second kind to the concept of fractional integral.
Using the Picard method, we present the existence and the uniqueness of the solution of the generalized integral equation. The
numerical solution is obtained via the Simpson 3/8 rule method. The convergence of this scheme is presented together with
numerical results.

1. Introduction

The integral equations form an important part of applied
mathematics, with links with many theoretical fields, espe-
cially with practical fields [1–3]. The Volterra integral [1–
3] equations were introduced by Vito Volterra and then
studied by Traian Lalescu in his 1908 thesis. Volterra integral
equations find application in demography, the study of
viscoelastic materials, and in insurancemathematics through
the renewal equation. Fredholm equations [4] arise naturally
in the theory of signal processing, most notably as the famous
spectral concentration problempopularized byDavid Slepian
[4]. They also commonly arise in linear forward modeling
and inverse problems. Throughout the last decade, physicists
and mathematicians have paid attention to the concept of
fractional calculus [5–9]. Actually, real problems in scientific
fields such as groundwater problems, physics, mechanics,
chemistry, and biology are described by partial differential
equations or integral equations. Many scholars have shown
with great success the applications of fractional calculus to
groundwater pollution and groundwater flow problems [5–
9], acoustic wave problems [10], and others [11–14]. There are
also several iteration methods for solving fractional integral
equations like homotopy decomposition method [15–17],

variational iteration method [18–20], Adomian decomposi-
tion method [21, 22], and others [23, 24]. But in this work, we
will make use of the numerical method called the Simpson
3/8 rule. The general equation under analysis here is given as

𝐹 (𝑡) = 𝐺 (𝑡) +

1

Γ (𝛼)

∫

𝑡

𝑎

(𝑡 − 𝜏)
𝛼−1

[𝐾 (𝑡, 𝜏) 𝐹 (𝜏)] 𝑑𝜏,

0 < 𝜏 ≤ 𝑡 ≤ 𝑇; 𝛼 ≥ 0.

(1)

Here,

𝐹 (𝑡) = [𝑓
1
(𝑡) , 𝑓
2
(𝑡) , 𝑓
3
(𝑡) , 𝑓
4
(𝑡) , . . . 𝑓

𝑛
(𝑡)]
𝑇

,

𝐺 (𝑡) = [𝑔
1
(𝑡) , 𝑔
2
(𝑡) , 𝑔
3
(𝑡) , 𝑔
4
(𝑡) , . . . 𝑔

𝑛
(𝑡)]
𝑇

,

𝐾(𝑡, 𝜏, 𝐹 (𝜏))

=(

𝐾
1
([𝑡, 𝜏, 𝑓

1
(𝜏) , 𝑓
2
(𝜏) , 𝑓
3
(𝜏) , 𝑓
4
(𝜏) , . . . 𝑓

𝑛
(𝜏)])

𝐾
2
([𝑡, 𝜏, 𝑓

1
(𝜏) , 𝑓
2
(𝜏) , 𝑓
3
(𝜏) , 𝑓
4
(𝜏) , . . . 𝑓

𝑛
(𝜏)])

...
𝐾
𝑛
([𝑡, 𝜏, 𝑓

1
(𝜏) , 𝑓
2
(𝜏) , 𝑓
3
(𝜏) , 𝑓
4
(𝜏) , . . . 𝑓

𝑛
(𝜏)])

)

.

(2)

For the rest of this paper, we assume that 𝑎 < 𝜏 ≤ 𝑡 ≤ 𝑇 < ∞.
In this paper, system (1) can be linear or nonlinear.
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2. Basic Information about
the Fractional Calculus

Definition 1. A real function 𝑓(𝑥), 𝑥 > 0, is said to be in the
space 𝐶

−𝜇
, 𝜇 ∈ R, if there exists a real number 𝑝 > 𝜇, such

that 𝑓(𝑥) = 𝑥𝑝ℎ(𝑥), where ℎ(𝑥) ∈ 𝐶 [0,∞), and it is said to
be in space 𝐶𝑚

𝜇
if 𝑓(𝑚) ∈ 𝐶

𝜇
,𝑚 ∈ N.

Definition 2. TheRiemann-Liouville fractional integral oper-
ator of order 𝛼 ≥ 0, of a function 𝑓 ∈ 𝐶 𝜇, 𝜇 ≥ −1, is defined
as

𝐽
𝛼

𝑓 (𝑥) =

1

Γ (𝛼)

∫

𝑥

0

(𝑥 − 𝑡)
𝛼−1

𝑓 (𝑡) 𝑑𝑡, 𝛼 > 0, 𝑥 > 0,

𝐽
0

𝑓 (𝑥) = 𝑓 (𝑥) .

(3)

Properties of the operator can be found in [25–29]; we
mention only the following.

For 𝑓 ∈ 𝐶
𝜇
, 𝜇 ≥ −1, 𝛼, 𝛽 ≥ 0 and 𝛾 > −1,

𝐽
𝛼

𝐽
𝛽

𝑓 (𝑥) = 𝐽
𝛼+𝛽

𝑓 (𝑥) , 𝐽
𝛼

𝐽
𝛽

𝑓 (𝑥) = 𝐽
𝛽

𝐽
𝛼

𝑓 (𝑥) ,

𝐽
𝛼

𝑥
𝛾

=

Γ (𝛾 + 1)

Γ (𝛼 + 𝛾 + 1)

𝑥
𝛼+𝛾

.

(4)

The fractional derivative of 𝑓(𝑥) in the Caputo sense is
defined as

𝑐

𝑎
𝐷

𝛼

𝑥
𝑓 (𝑥) = 𝐽

𝑚−𝛼

𝐷
𝑚

𝑓 (𝑥)

=

1

Γ (𝑚 − 𝛼)

∫

𝑥

𝑎

(𝑥 − 𝑡)
𝑚−𝛼−1

𝑓
𝑚

(𝑡) 𝑑𝑡,

𝑚 − 1 < 𝛼 ≤ 𝑚, 𝑚 ∈ N,

𝑥 > 0, 𝑓 ∈ 𝐶
𝜇

−1
.

(5)

Also, we need here two of its basic properties.

Lemma 3. If 𝑚 − 1 < 𝛼 ≤ 𝑚, 𝑚 ∈ N, and 𝑓 ∈ 𝐶𝑚
𝜇
, 𝜇 ≥ −1,

then
𝑐

𝑎
𝐷

𝛼

𝑥
𝐽
𝛼

𝑓 (𝑥) = 𝑓 (𝑥) ,

𝐽
𝛼

𝐷
𝛼

0
𝑓 (𝑥) = 𝑓 (𝑥) −

𝑚−1

∑

𝑘=0

𝑓
(𝑘)

(0
+

)

𝑥
𝑘

𝑘!

, 𝑥 > 0.

(6)

3. Existence and Uniqueness Analysis

The analysis of the existence and the uniqueness analysis
are important aspects that must be investigated before the
presentation of the solution. One of the most common tech-
niques used to achieve this is the fixed point theorem tech-
nique. To prove the existence and uniqueness of the solution
of the system (1), we make use of the method of successive
approximation, also called the Picard method [30]. This
consists of simple iterations. Beforewe start this proof, wewill
assume the following.

First, making use of the vector norm, we assume that

‖𝐹 (𝑡)‖ = max
1≤𝑖≤𝑛





𝑓
𝑖
(𝑡)




,

‖𝐾 (𝑠, 𝑡)‖ = max
1≤𝑖≤𝑛

𝑛

∑

𝑘






𝑘
𝑖,𝑗
(𝑠, 𝑡)






.

(7)

In this method, we assume that the following iteration can
be used to provide a series solution of the problem under
investigation:

𝐹
𝑛
(𝑡) = 𝐺 (𝑡) +

1

Γ (𝛼)

∫

𝑡

𝑎

(𝑡 − 𝜏)
𝛼−1

[𝐾 (𝑡, 𝜏) 𝐹
𝑛−1
(𝜏)] 𝑑𝜏.

(8)

It also assumes that the initial component of the series
solution is given as

𝐹
0
(𝑡) = 𝐺 (𝑡) . (9)

Let us in addition put the difference between the consecutive
components as

𝛿
𝑛
(𝑡) = 𝐹

𝑛
(𝑡) − 𝐹

𝑛−1
(𝑡) . (10)

It is very easy to see that

𝐹
𝑛
(𝑡) =

𝑛

∑

𝑖=0

𝛿
𝑖
(𝑡) . (11)

3.1. Existence and Uniqueness of the Linear Volterra Fractional
Integral Equations of the Second Kind

Theorem 4 (see [31]). Under the conditions that the vector
functions𝐺(𝑡) and𝐾(𝑠, 𝑡) are continuous 0 ≤ 𝑎 < 𝜏 ≤ 𝑡 ≤ 𝑇 <
∞, then, the system of Volterra fractional integral equations of
the second kind (1) has a unique continuous solution for 0 ≤
𝑎 < 𝑡 ≤ 𝑇 < ∞.

The proof is similar to the one in [31].

Theorem 5. Assuming that the system (1) has a unique
solution, say 𝐹(𝑡) in 𝑎 < 𝑡 ≤ 𝑇, such that 𝐾(𝑡, 𝜏)𝐹(𝜏) is
absolutely fractionally integrable, and if in addition

‖𝐺 (𝑡)‖ < 𝑔 (𝑡) , ‖𝐾 (𝑡, 𝑠)‖ < 𝑘 (𝑡, 𝑠) , (12)

providing that 𝑘 and 𝑔 are continuous functions, then it is
possible to find a function, say 𝑓(𝑡), such that

‖𝐹 (𝑡)‖ < 𝑓 (𝑡) , (13)

where 𝑓(𝑡) is the continuous function solutions of

𝑓 (𝑡) = 𝑔 (𝑡) +

1

Γ (𝛼)

∫

𝑡

𝑎

(𝑡 − 𝜏)
𝛼−1

[𝐾 (𝑡, 𝜏) 𝑓 (𝜏)] 𝑑𝜏. (14)

Proof. From (1), applying the vector norm on both sides, we
obtain the following:

‖𝐹 (𝑡)‖ =










𝐺 (𝑡) +

1

Γ (𝛼)

∫

𝑡

𝑎

(𝑡 − 𝜏)
1−𝛼

[𝐾 (𝑡, 𝜏) 𝐹 (𝜏)] 𝑑𝜏










.

(15)
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Now, making use of the inequality triangular, we obtain the
following:

‖𝐹 (𝑡)‖ ≤ ‖𝐺 (𝑡)‖ +










1

Γ (𝛼)

∫

𝑡

𝑎

(𝑡 − 𝜏)
𝛼−1

[𝐾 (𝑡, 𝜏) 𝐹 (𝜏)] 𝑑𝜏










,

‖𝐹 (𝑡)‖ ≤ ‖𝐺 (𝑡)‖ +

1

Γ (𝛼)

∫

𝑡

𝑎

(𝑡 − 𝜏)
𝛼−1

[‖𝐾 (𝑡, 𝜏)‖ ‖𝐹 (𝜏)‖] 𝑑𝜏.

(16)

Thus, making use of the hypothesis, we obtain

‖𝐹 (𝑡)‖ < 𝑔 (𝑡) +

1

Γ (𝛼)

∫

𝑡

𝑎

(𝑡 − 𝜏)
𝛼−1

[𝑘 (𝑡, 𝜏) ‖𝐹 (𝜏)‖] 𝑑𝜏.

(17)

If now the difference between (14) and (17) gives

𝑓 (𝑡) − ‖𝐹 (𝑡)‖ >

1

Γ (𝛼)

× ∫

𝑡

𝑎

(𝑡 − 𝜏)
𝛼−1

× [𝑘 (𝑡, 𝜏) (𝑓 (𝑡) − ‖𝐹 (𝜏)‖)] 𝑑𝜏,

(18)

since𝑓(𝑎)−‖𝐹(𝑎)‖ > 0 and also 𝑘(𝑡, 𝜏) is a continuous positive
function, it is then true to conclude that

𝑓 (𝑡) − ‖𝐹 (𝑡)‖ > 0, for 𝑡 ≤ 𝑇, (19)

which concludes the proof.

Theorem6. Under the condition that𝐺(𝑡),𝐾(𝑡, 𝑠),Δ𝐺(𝑡), and
Δ𝐾(𝑡, 𝑠) are smooth functions and bounded one has

‖𝐾 (𝑡, 𝜏)‖ ≤ 𝑘, ‖Δ𝐾 (𝑡, 𝜏)‖ ≤ Δ𝑘,

‖𝐺 (𝑡)‖ ≤ 𝑔, ‖Δ𝐺 (𝑡)‖ ≤ Δ𝑔.

(20)

Let 𝐹
𝑒𝑥𝑎𝑐𝑡

(𝑡) be the exact solution of

𝐹
𝑒𝑥𝑎𝑐𝑡

(𝑡) = 𝐺 (𝑡) + Δ𝐺 (𝑡)

+

1

Γ (𝛼)

∫

𝑡

𝑎

(𝑡 − 𝜏)
𝛼−1

𝑑𝜏

× [(𝐾 (𝑡, 𝜏) − Δ𝐾 (𝑡, 𝜏)) 𝐹
𝑒𝑥𝑎𝑐𝑡

(𝜏)] ;

(21)

then,




𝐹
𝑒𝑥𝑎𝑐𝑡

(𝑡) − 𝐹 (𝑡)





≤ {Δ𝑔 + Δ𝑘𝑡 (𝑔 + Δ𝑔) 𝐸
𝛼
((𝑘 + Δ𝑘) 𝑡)} × 𝐸

𝛼
(𝑘
−𝛼

𝑡)

= 𝑂 (Δ𝑔) + 𝑂 (Δ𝑘) ,

(22)

with 𝐹
𝑒𝑥𝑎𝑐𝑡

is the solution of system (1).

Proof. Since𝐺(𝑡),𝐾(𝑡, 𝑠) are smooth functions and bounded,
usingTheorem 4, there exists a positive smooth function𝑓(𝑡)
such that

𝑓 (𝑡) = 𝑔 (𝑡) +

1

Γ (𝛼)

∫

𝑡

𝑎

(𝑡 − 𝜏)
𝛼−1

[𝑘𝑓 (𝜏)] 𝑑𝜏. (23)

For simplicity, we chose 𝑎 = 0; then,

𝑓 (𝑡) = 𝑔 (𝑡) +

𝑘

Γ (𝛼)

∫

𝑡

0

(𝑡 − 𝜏)
𝛼−1

[𝑓 (𝜏)] 𝑑𝜏. (24)

Using the methodology of the homotopy decomposition
method, we arrive at the following exact solution:

𝑓 (𝑡) = 𝑔𝐸
𝛼
(𝑘
−𝛼

𝑡) , (25)

where

𝐸
𝛼
(𝑘
−𝛼

𝑡) =

∞

∑

𝑛=0

𝑘
𝑛
𝑡
𝑛𝛼

Γ [1 + 𝑛𝛼]

(26)

known as the Mittag-Leffler function. Therefore,

‖𝐹 (𝑡)‖ < 𝑔𝐸
𝛼
(𝑘
−𝛼

𝑡) . (27)

With the above in hand, it is very easy to show that




𝐹exact (𝑡)





≤ (𝑔 + Δ𝑔) 𝐸

𝛼
((𝑘 + Δ𝑘)

−𝛼

𝑡) . (28)

Since 𝐹exact(𝑡) is the approximate solution of system (1), then
it follows that

𝐹exact (𝑡) ≈ 𝐺 (𝑡) +
1

Γ (𝛼)

∫

𝑡

0

(𝑡 − 𝜏)
𝛼−1

[𝐾 (𝑡, 𝜏) 𝐹exact (𝜏)] 𝑑𝜏.

(29)

So the error in the approximation can be represented as

𝑅 (𝑡) = 𝐺 (𝑡) +

1

Γ (𝛼)

∫

𝑡

0

(𝑡 − 𝜏)
𝛼−1

× [𝐾 (𝑡, 𝜏) 𝐹exact (𝜏)] 𝑑𝜏

− 𝐹exact (𝑡) .

(30)

Now replacing 𝐹exact(𝑡) as in (21), we obtain

𝑅 (𝑡) = −Δ𝐺 (𝑡) +

1

Γ (𝛼)

∫

𝑡

0

(𝑡 − 𝜏)
𝛼−1

[Δ𝐾 (𝑡, 𝜏) 𝐹exact (𝜏)] 𝑑𝜏.

(31)

Then, the difference between the exact solution and the
approximate solution can be obtained as

𝐹 (𝑡) − 𝐹exact (𝑡)

= 𝑅 (𝑡) + ∫

𝑇

0

1

Γ (𝛼)

× (𝑡 − 𝜏)
𝛼−1

[Δ𝐾 (𝑡, 𝜏)

× [𝐹 (𝑡) − 𝐹exact (𝜏)]] 𝑑𝜏

(32)

so that




𝐹 (𝑡) − 𝐹exact (𝑡)






< Δ𝑔 + 𝑘𝑡 max (‖𝐹 (𝑡)‖)

≤ {Δ𝑔 + Δ𝑘𝑡 (𝑔 + Δ𝑔) × 𝐸
𝛼
((𝑘 + Δ𝑘) 𝑡)} 𝐸

𝛼
(𝑘
−𝛼

𝑡)

= 𝑂 (Δ𝑔) + 𝑂 (Δ𝑘) ,

(33)

which completes the proof.
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3.2. Existence and Uniqueness of the Nonlinear Volterra Frac-
tional Integral Equations of the Second Kind. In this case, the
nonlinear Volterra fractional integral equations of the second
kind considered here are

𝐹 (𝑡) = 𝐺 (𝑡) +

1

Γ (𝛼)

∫

𝑡

𝑎

(𝑡 − 𝜏)
𝛼−1

[𝐾 (𝑡, 𝜏, 𝐹 (𝜏))] 𝑑𝜏,

0 < 𝜏 ≤ 𝑡 ≤ 𝑇; 𝛼 ≥ 0.

(34)

𝐹(𝑡), 𝐺(𝑡), and 𝐾(𝑡, 𝜏, 𝐹(𝜏)) have the same form as in the
previous subsection; also the norm used in the previous
section is maintained.

In analogy with what was done in Section 3.1, we define
the iteration formula as

𝐹
𝑛
(𝑡) = 𝐺 (𝑡) +

1

Γ (𝛼)

∫

𝑡

𝑎

(𝑡 − 𝜏)
𝛼−1

[𝐾 (𝑡, 𝜏, 𝐹 (𝜏))] 𝑑𝜏, (35)

with initial component

𝐹
0
(𝑡) = 𝐺 (𝑡) . (36)

Similarly, the difference between the consecutive terms is
given as

𝐹
𝑛
(𝑡) − 𝐹

𝑛−1
(𝑡)

=

1

Γ (𝛼)

∫

𝑡

𝑎

(𝑡 − 𝜏)
𝛼−1

[𝐾 (𝑡, 𝜏, 𝐹
𝑛−1
(𝜏))

− 𝐾 (𝑡, 𝜏, 𝐹
𝑛−2
(𝜏))] 𝑑𝜏.

(37)

We will perhaps recall that in case the kernel 𝐾 satisfies the
Lipchitz conditions, we have the following inequality:





𝐾 (𝑡, 𝜏, 𝐹

1
) − 𝐾 (𝑡, 𝜏, 𝐹

2
)




≤ 𝐻





𝐹
1
− 𝐹
2





, (38)

with of course𝐻 being a real positive number not depending
on the parameters 𝑡, 𝜏, 𝐹

1
, and 𝐹

2
.

As in Section 3.1, we put

𝛿
𝑛
(𝑡) = 𝐹

𝑛
(𝑡) − 𝐹

𝑛−1
(𝑡) . (39)

Again, we have that

𝐹
𝑛
(𝑡) =

𝑛

∑

𝑖=0

𝛿
𝑖
(𝑡) . (40)

Then,




𝛿
𝑛
(𝑡)





=










1

Γ (𝛼)

∫

𝑡

𝑎

(𝑡 − 𝜏)
𝛼−1

[𝐾 (𝑡, 𝜏, 𝐹
𝑛−1
(𝜏))

−𝐾 (𝑡, 𝜏, 𝐹
𝑛−2
(𝜏))] 𝑑𝜏














𝛿
𝑛
(𝑡)




≤

1

Γ (𝛼)

∫

𝑡

0

(𝑡 − 𝜏)
𝛼−1

×




𝐾 (𝑡, 𝜏, 𝐹

𝑛−1
(𝜏) − 𝐾 (𝑡, 𝜏, 𝐹

𝑛−2
(𝜏)




𝑑𝜏.

(41)

In case the Lipchitz condition is satisfied by the kernel, we
have the following inequality:





𝛿
𝑛
(𝑡)




≤

1

Γ (𝛼)

∫

𝑡

𝑎

(𝑡 − 𝜏)
𝛼−1

×




𝐾 (𝑡, 𝜏, 𝐹

𝑛−1
(𝜏)) 𝑑𝜏,

−𝐾 (𝑡, 𝜏, 𝐹
𝑛−2
(𝜏))






(42)





𝛿
𝑛
(𝑡)




≤

1

Γ (𝛼)

∫

𝑡

𝑎

(𝑡 − 𝜏)
𝛼−1 



𝛿
𝑛−1





𝑑𝜏. (43)

We will then present the following theorem.

Theorem 7. Under the conditions that 𝐺(𝑡), 𝐾(𝑡, 𝜏, 𝐹) are
continuous in 0 < 𝜏 ≤ 𝑡 ≤ 𝑇 < ∞, −∞ < 𝐹 < ∞ and
the kernel satisfies the Lipchitz condition, that is, ‖𝐾(𝑡, 𝜏, 𝐹

1
) −

𝐾(𝑡, 𝜏, 𝐹
2
)‖ ≤ 𝐻‖𝐹

1
− 𝐹
2
‖, then, (34) has a unique solution.

Proof. From (43), it follows that





𝛿
𝑛
(𝑡)




≤ max
0<𝑡≤𝑇

‖𝐺 (𝑡)‖

(𝐻
−𝛼
𝑡)
𝑛𝛼

Γ (1 + 𝑛𝛼)

; (44)

therefore,

𝐹 (𝑡) =

𝑛

∑

𝑖=0

𝛿
𝑛
(𝑡) (45)

exists and is a continuous function.However, to prove that the
above function is the solution of the system of the nonlinear
Volterra fractional integral equations (34) of the second kind,
we let

𝐹 (𝑡) = 𝐹
𝑛
(𝑡) − 𝑃

𝑛
(𝑡) . (46)

Now, using (36), we have the following equation:

𝐹 (𝑡) − 𝐹
𝑛
(𝑡)

= 𝐺 (𝑡) +

1

Γ (𝛼)

∫

𝑡

0

(𝑡 − 𝜏)
𝛼−1

𝐾(𝑡, 𝜏, 𝐹 (𝜏) − 𝑃
𝑛
(𝜏)) 𝑑𝜏.

(47)

It follows that

𝐹 (𝑡) − 𝐺 (𝑡) −

1

Γ (𝛼)

∫

𝑡

0

(𝑡 − 𝜏)
𝛼−1

𝐾 (𝑡, 𝜏, 𝐹 (𝜏)) 𝑑𝜏

= 𝑃
𝑛
(𝑡) +

1

Γ (𝛼)

∫

𝑡

0

(𝑡 − 𝜏)
𝛼−1

× 𝐾 (𝑡, 𝜏, 𝐹 (𝜏) − 𝑃
𝑛
(𝜏)

−𝐾 (𝑡, 𝜏, 𝐹 (𝜏)) 𝑑𝜏) .

(48)

Now, applying the norm and Lipchitz condition, we arrive
at the following inequality:









𝐹 (𝑡) − 𝐺 (𝑡) −

1

Γ (𝛼)

∫

𝑡

0

(𝑡 − 𝜏)
𝛼−1

𝐾 (𝑡, 𝜏, 𝐹 (𝜏)) 𝑑𝜏










≤




𝑃
𝑛
(𝑡)




+ 𝐻𝑡





𝑃
𝑛−1
(𝑡)




.

(49)
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Applying the limit on both sides of the above inequality when
𝑛 tends to infinity, the right-hand side tends to zero; then,𝐹(𝑡)
in (45) satisfies

𝐹 (𝑡) = 𝐺 (𝑡) +

1

Γ (𝛼)

∫

𝑡

0

(𝑡 − 𝜏)
𝛼−1

𝐾 (𝑡, 𝜏, 𝐹 (𝜏)) 𝑑𝜏, (50)

and indeed it is the solution of (34).
We will now present the uniqueness of this solution. To

achieve this, we assume that (34) has another solution, say
𝐹
1
(𝑡); then,

𝐹 (𝑡) − 𝐹
1
(𝑡)

=

1

Γ (𝛼)

∫

𝑡

0

(𝑡 − 𝜏)
𝛼−1

× [𝐾 (𝑡, 𝜏, 𝐹 (𝜏)) −𝐾 (𝑡, 𝜏, 𝐹
1
(𝜏))] 𝑑𝜏.

(51)

Applying the norm and making use of the Lipchitz condition
of the kernel, we arrive at





𝐹 (𝑡) − 𝐹

1
(𝑡)




≤ 𝐻∫

𝑡

0

(𝑡 − 𝜏)
𝛼−1 



𝐹 (𝜏) − 𝐹

1
(𝜏)




𝑑𝜏, (52)

but ‖𝐹(𝑡) − 𝐹
1
(𝑡)‖ ≤ 𝐷; then,





𝐹 (𝑡) − 𝐹

1
(𝑡)




≤ 𝐷

(𝐻
−𝛼
𝑡)
𝑛𝛼

Γ (1 + 𝑛𝛼)

, (53)

for any 𝑛; then,

𝐹 (𝑡) = 𝐹
1
(𝑡) . (54)

4. Numerical Method to Solve the Volterra
Fractional Integral Equations

We consider the general form of the Volterra fractional
integral equation as

𝐹 (𝑡) = 𝐺 (𝑡) +

1

Γ (𝛼)

∫

𝑡

𝑎

(𝑡 − 𝜏)
𝛼−1

× [𝐾 (𝑡, 𝜏, 𝐹 (𝜏))] 𝑑𝜏,

0 < 𝜏 ≤ 𝑡 ≤ 𝑇; 𝛼 ≥ 0,

(55)

where𝐺(𝑡) is a known function, 𝐹(𝑡) is an unknown function
to be determined, and the kernel is 𝐾(𝑡, 𝑦, 𝑓).

In numerical analysis, Simpson’s rule is a method for
numerical integration, the numerical approximation of def-
inite integrals [32]. Simpson’s rule also corresponds to the
3-point Newton-Cotes quadrature rule. The method is cred-
ited to the mathematician Thomas Simpson (1710–1761) of
Leicestershire, England. Simpson’s rule is a staple of scientific
data analysis and engineering. It is widely used, for example,
by naval architects, to numerically integrate hull offsets and
cross-sectional areas to determine volumes and centroids of
ships or lifeboats [33].

4.1. Application of the Simpson 3/8 to Volterra Fractional
Integral Equation. To use Simpson’s rule here, we let 0 = 𝑎 <
𝑡
1
< 𝑡
2
< 𝑡
3
⋅ ⋅ ⋅ < 𝑡

𝑛
be a possible division of [0, 𝑏], with step

size 𝑥
𝑖
= 𝑖𝑘 for 𝑖 = 0, 1, . . . 𝑁. We construct a block by block

method that is the system of Volterra fractional integral equa-
tion (1) for 𝑞 > 1 simultaneous equations is then a set of 𝑞
simultaneous value of the function 𝐹. Without loss of gen-
erality, we consider 𝑞 = 6.

For the rest of the paper,

(𝑡 − 𝜏)
𝛼−1

𝐾 [𝑡, 𝜏 𝐹 (𝜏)] = 𝐾
𝛼
(𝑡, 𝜏, 𝐹 (𝜏)) (56)

will be called the fractional kernel. Having the fractional
kernel in hand, system (1) can be rewritten as follows:

𝐹 (𝑡) = 𝐺 (𝑡) +

1

Γ (𝛼)

∫

𝑡

0

[𝐾
𝛼
(𝑡, 𝜏, 𝐹 (𝜏))] 𝑑𝜏. (57)

Now, if we set 𝑡 = 𝑡
3𝑛+1

in the previous equation, we obtain

𝐹
1,3𝑛+1

(𝑡) = 𝑔
1
(𝑡
3𝑛+1
)

+

1

Γ (𝛼)

∫

𝑡
3𝑛+1

0

𝐾
𝛼(1,1)

[𝑡
3𝑛+1
, 𝜏, 𝑓
1
(𝜏)] 𝑑𝜏

+

1

Γ (𝛼)

∫

𝑡
3𝑛

0

𝐾
𝛼(1,2)

[𝑡
3𝑛+1
, 𝜏, 𝑓
2
(𝜏)] 𝑑𝜏

+

1

Γ (𝛼)

∫

𝑡
3𝑛+1

𝑡
3𝑛

𝐾
𝛼(1,1)

[𝑡
3𝑛+1
, 𝜏, 𝑓
1
(𝜏)] 𝑑𝜏

+

1

Γ (𝛼)

∫

𝑡
3𝑛+1

𝑡
3𝑛

𝐾
𝛼(1,2)

[𝑡
3𝑛+1
, 𝜏, 𝑓
2
(𝜏)] 𝑑𝜏,

(58)

𝐹
2,3𝑛+1

(𝑡) = 𝑔
2
(𝑡
3𝑛+1
)

+

1

Γ (𝛼)

∫

𝑡
3𝑛+1

0

𝐾
𝛼(2,1)

[𝑡
3𝑛+1
, 𝜏, 𝑓
2
(𝜏)] 𝑑𝜏

+

1

Γ (𝛼)

∫

𝑡
3𝑛

0

𝐾
𝛼(2,2)

[𝑡
3𝑛+1
, 𝜏, 𝑓
2
(𝜏)] 𝑑𝜏

+

1

Γ (𝛼)

∫

𝑡
3𝑛+1

𝑡
3𝑛

𝐾
𝛼(2,1)

[𝑡
3𝑛+1
, 𝜏, 𝑓
2
(𝜏)] 𝑑𝜏

+

1

Γ (𝛼)

∫

𝑡
3𝑛+1

𝑡
3𝑛

𝐾
𝛼(2,2)

[𝑡
3𝑛+1
, 𝜏, 𝑓
2
(𝜏)] 𝑑𝜏.

(59)

From here if one integrates over the interval [0, 𝑡
3𝑛
], we

can apply Simpson’s 3/8 rule, and also by integrating over
[𝑡
3𝑛
, 𝑡
3𝑛+1
], one can calculate it by using a cubic interpolation.

Then, we can have the following:

𝐹
1,3𝑛+1

(𝑡
3𝑛+1
)

= 𝑔
1
(𝑡
3𝑛+1
)
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+

3ℎ

8Γ (𝛼)

(𝐾
𝛼(1,1)

(𝑡
3𝑛+1
, 𝑡
0
, 𝐹
1,0
)

+ 3𝐾
𝛼(1,1)

(𝑡
3𝑛+1
, 𝑡
1
, 𝐹
1,1
)

+ 3𝐾
𝛼(1,1)

(𝑡
3𝑛+1
, 𝑡
2
, 𝐹
1,2
)

+ 2𝐾
𝛼(1,1)

(𝑡
3𝑛+1
, 𝑡
3
, 𝐹
1,3
) + ⋅ ⋅ ⋅

+𝐾
𝛼(1,1)

(𝑡
3𝑛+1
, 𝑡
3𝑛
, 𝐹
1,3𝑛
))

+

3ℎ

8Γ (𝛼)

(𝐾
𝛼(2,1)

(𝑡
3𝑛+1
, 𝑡
0
, 𝐹
2,0
)

+ 3𝐾
𝛼(2,1)

(𝑡
3𝑛+1
, 𝑡
1
, 𝐹
2,1
)

+ 3𝐾
𝛼(2,1)

(𝑡
3𝑛+1
, 𝑡
2
, 𝐹
2,2
)

+ 2𝐾
𝛼(2,1)

(𝑡
3𝑛+1
, 𝑡
3
, 𝐹
2,3
) + ⋅ ⋅ ⋅

+𝐾
𝛼(2,1)

(𝑡
3𝑛+1
, 𝑡
3𝑛
, 𝐹
2,3𝑛
))

+

ℎ

8Γ (𝛼)

(𝐾
𝛼(1,1)

(𝑡
3𝑛+1
, 𝑡
3𝑛
, 𝐹
1,3𝑛
) + 3𝐾

𝛼(1,1)

× (𝑡
3𝑛+1
, 𝑡
3𝑛+1/3

,

40

81

𝐹
1,3𝑛

−

20

27

𝐹
1,3𝑛+1

−

8

27

𝐹
1,3𝑛+1

+

5

81

𝐹
1,3𝑛+3

)

+ 3𝐾
𝛼(1,1)

× (𝑡
3𝑛+1
, 𝑡
3𝑛+2/3

,

14

81

𝐹

1,3𝑛+1

−

7

27

𝐹
1,3𝑛+2

+

4

81

𝐹
1,3𝑛+3

)

+𝐾
𝛼(1,1)

(𝑡
3𝑛+1
, 𝑡
3𝑛+1
, 𝐹
1,3𝑛
))

+

ℎ

8Γ (𝛼)

(𝐾
𝛼(1,2)

(𝑡
3𝑛+1
, 𝑡
3𝑛
, 𝐹
2,3𝑛
)

+ 3𝐾
𝛼(1,2)

(𝑡
3𝑛+1
, 𝑡
3𝑛+1/3

,

40

81

𝐹

2,3𝑛

−

20

27

𝐹
2,3𝑛+1

−

8

27

𝐹
2,3𝑛+2

+

5

81

𝐹
2,3𝑛+3

)

+ 3𝐾
𝛼(1,2)

(𝑡
3𝑛+1
, 𝑡
3𝑛+2/3

,

14

81

𝐹
2,3𝑛+1

−

7

27

𝐹
2,3𝑛+2

+

4

81

𝐹
2,3𝑛+3

)

+𝐾
𝛼(1,2)

(𝑡
3𝑛+1
, 𝑡
3𝑛+1
, 𝐹
2,3𝑛
)) .

(60)

In a similar way, if one let 𝑥 = 𝑥
3𝑛+2

, we get the following:

𝐹
1,3𝑛+2

(𝑡) = 𝑔
1
(𝑡
3𝑛+2
)

+

1

Γ (𝛼)

∫

𝑡
3𝑛+2

0

𝐾
𝛼(1,1)

× [𝑡
3𝑛+2
, 𝜏, 𝑓
1
(𝜏)] 𝑑𝜏

+

1

Γ (𝛼)

∫

𝑡
3𝑛

0

𝐾
𝛼(1,2)

× [𝑡
3𝑛+2
, 𝜏, 𝑓
2
(𝜏)] 𝑑𝜏

+

1

Γ (𝛼)

∫

𝑡
3𝑛+2

𝑡
3𝑛

𝐾
𝛼(1,1)

× [𝑡
3𝑛+1
, 𝜏, 𝑓
1
(𝜏)] 𝑑𝜏

+

1

Γ (𝛼)

∫

𝑡
3𝑛+2

𝑡
3𝑛

𝐾
𝛼(1,2)

× [𝑡
3𝑛+2
, 𝜏, 𝑓
2
(𝜏)] 𝑑𝜏,

𝐹
2,3𝑛+2

(𝑡) = 𝑔
2
(𝑡
3𝑛+1
)

+

1

Γ (𝛼)

∫

𝑡
3𝑛+2

0

𝐾
𝛼(2,1)

× [𝑡
3𝑛+2
, 𝜏, 𝑓
2
(𝜏)] 𝑑𝜏

+

1

Γ (𝛼)

∫

𝑡
3𝑛

0

𝐾
𝛼(2,2)

× [𝑡
3𝑛+2
, 𝜏, 𝑓
2
(𝜏)] 𝑑𝜏

+

1

Γ (𝛼)

∫

𝑡
3𝑛+2

𝑡
3𝑛

𝐾
𝛼(2,1)

× [𝑡
3𝑛+2
, 𝜏, 𝑓
2
(𝜏)] 𝑑𝜏

+

1

Γ (𝛼)

∫

𝑡
3𝑛+2

𝑡
3𝑛

𝐾
𝛼(2,2)

× [𝑡
3𝑛+2
, 𝜏, 𝑓
2
(𝜏)] 𝑑𝜏.

(61)

From here if one integrates over the interval [0, 𝑡
3𝑛
], we

can apply Simpson’s 3/8 rule, and also by integrating over
[𝑡
3𝑛
, 𝑡
3𝑛+2
], one can calculate it by using a cubic interpolation.

Then, we can have the following:

𝐹
1,3𝑛+2

(𝑡
3𝑛+2
)

= 𝑔
1
(𝑡
3𝑛+2
)

+

3ℎ

8Γ (𝛼)

(𝐾
𝛼(1,1)

(𝑡
3𝑛+2
, 𝑡
0
, 𝐹
1,0
)

+ 3𝐾
𝛼(1,1)

(𝑡
3𝑛+1
, 𝑡
1
, 𝐹
1,1
)

+ 3𝐾
𝛼(1,1)

(𝑡
3𝑛+2
, 𝑡
2
, 𝐹
1,2
)
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+ 2𝐾
𝛼(1,1)

(𝑡
3𝑛+2
, 𝑡
3
, 𝐹
1,3
) + ⋅ ⋅ ⋅

+ 𝐾
𝛼(1,1)

(𝑡
3𝑛+2
, 𝑡
3𝑛
, 𝐹
1,3𝑛
))

+

3ℎ

8Γ (𝛼)

(𝐾
𝛼(2,1)

(𝑡
3𝑛+2
, 𝑡
0
, 𝐹
2,0
)

+ 3𝐾
𝛼(2,1)

(𝑡
3𝑛+2
, 𝑡
1
, 𝐹
2,1
)

+ 3𝐾
𝛼(2,1)

(𝑡
3𝑛+2
, 𝑡
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Using the similar formulas, we can obtain 𝐹
1,3𝑛+3

and 𝐹
2,3𝑛+3

.
Now, from (58) to (62), we formed a system of six equations
with normally six unknowns for 𝑛 = 1, 2, . . ..

In particular, we do have six simultaneous equations
for each step. Our next concern in this work is to show
the convergence analysis of Simpson’s 3/8 rule for solving
the Volterra fractional integral equations, and this will be
presented in the next section.

5. Convergence Analysis of
Simpson’s 3/8 Rule for Solving the Volterra
Fractional Integral Equations

This section is devoted to the discussion underpinning
the convergence of the well-known Simpson’s 3/8 rule to
approximate the Volterra fractional equation of second kind.
There are also other numerical methods to deal with these
equations [32, 34–36]. To achieve this, and without loss of
generality, we assume that the error in approximating the
solution of the Volterra fractional equation of second kind
via Simpson’s 3/8 rule is 𝑅

1,3𝑛+1
for the first approximation in

(60); the rest can be obtained similarly; then,
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(63)

Now, employing the Lipchitz condition for the fractional
kernel function, we can arrive at the following:
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Here, it is important to recall that 𝑤
𝑘,3𝑛+1

, 𝑤
𝑘,3𝑛+2

(𝑘 = 1, 2)

are the errors of integration rule. In addition, without loss of
generality, we assume that
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thus, by letting 𝐴 = max
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Now by rearranging, we obtain the following inequality:
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(67)

However,making use of the so-calledGronwall inequality, we
arrive at





𝑅
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(68)

For the fractional kernel function 𝐾
𝛼
and 𝐹 with at least

fourth-order derivatives, we have 𝐴 = 𝑂(ℎ
4
) and then

‖𝑅
𝑘,𝑖
‖
∞

= 𝑂(ℎ
4
). Therefore, we can state the following

theorem.

Theorem 8. Simpson’s 3/8 rule for solving the Volterra frac-
tional integral equations of second kind is convergent and its
order of convergence is at least four.

6. Numerical Solutions

In this section, we present some numerical examples of
solutions of the Volterra fractional integral equations via the
so-called Simpson’s 3/8 rule.

Example 9. Let us consider the following Volterra fractional
integral equation for which the order is half:

𝑓 (𝑥) = 2√𝑥 − ∫

𝑥

0

𝑓 (𝑡)

√𝑥 − 𝑡

𝑑𝑥 = 𝑥, 0 ≤ 𝑡 < 𝑥 < 1. (69)

The exact solution of this equation is given as

𝑓 (𝑥) = 1 − exp [𝜋𝑥] er 𝑓 (√𝑥𝜋) . (70)
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Table 1: Numerical errors corresponding to the value of ℎ.

𝑥

ℎ

0.001 0.01 0.02 0.03 0.04 0.05
Error (1) ×10−5 Error (2) ×10−5 Error (3) ×10−5 Error (5) ×10−5 Error (6) ×10−5

0 0.01 0.02 0.03 0.04 0.05
0.1 0.00216833 0.00433666 0.00650499 0.00867332 0.0108417
0.2 0.003822808 0.00765615 0.0114842 0.0153123 0.0191404
0.3 0.0113064 0.0226128 0.339192 0.0452256 0.0565321
0.4 0.0211693 0.0423387 0.063508 0.0846773 0.105847
0.5 0.0344335 0.0688669 0.1033 0.137734 0.172167
0.6 0.0524239 0.104848 0.157272 0.209695 0.262119
0.7 0.0769263 0.157272 0.230779 0.307705 0.384631
0.8 0.110371 0.220743 0.331114 0.441485 0.551856
0.9 0.156078 0.312156 0.468234 0.624312 0.780391
1 0.218586 0.437173 0.655759 0.874345 1.09293

Exact-approx-for h = 0.001

−5

−10

−15

−20

0.2 0.4 0.6 0.8 1.0
x

Figure 1: Comparison of exact solution and approximate solution
for ℎ = 0.001.

Exact-approx-for h = 0.03
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−10

−15

−20

0.2 0.4 0.6 0.8 1.0
x

Figure 2: Comparison of exact solution and the approximate solu-
tion for ℎ = 0.03.

Using the Simpson 3/8, we obtained the following numerical
values indicated in Table 1.

The approximate solutions have been depicted in Figures
1, 2, and 3. Figure 1 shows the comparison of the exact and
approximate solutions for ℎ = 0.001, Figure 2 shows the

Exact-approx-for h = 0.04

−5

−10

−15

−20

0.2 0.4 0.6 0.8 1.0
x

Figure 3: Comparison of the exact and approximate solution for ℎ =
0.04.

comparison for ℎ = 0.03, and Figure 3 shows the comparison
for ℎ = 0.04. The numerical solution shows that the method
is very efficient and accurate.

7. Conclusion

The existence and the uniqueness of the Volterra fractional
integral equations second kind were examined in this work.
The numerical method called the Simpson 3/8 rule method
was used to present the numerical solution of these equations.
We presented the convergence analysis of this numerical
scheme.
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We consider an investment and consumption problem under the constant elasticity of variance (CEV)model, which is an extension
of the original Merton’s problem. In the proposedmodel, stock price dynamics is assumed to follow a CEVmodel and our goal is to
maximize the expected discounted utility of consumption and terminal wealth. Firstly, we apply dynamic programming principle to
obtain the Hamilton-Jacobi-Bellman (HJB) equation for the value function. Secondly, we choose power utility and logarithm utility
for our analysis and apply variable change technique to obtain the closed-form solutions to the optimal investment and consumption
strategies. Finally, we provide a numerical example to illustrate the effect of market parameters on the optimal investment and
consumption strategies.

1. Introduction

In the classical Merton’s portfolio optimization problems [1,
2], an investor dynamically allocates his wealth between one
risk asset and one risk-free asset and chooses an optimal
consumption rate to maximize total expected discounted
utility of consumption. But in the Merton’s model, there
are no transaction costs and borrowing constraints and no-
shorting constraints. Since the pioneer work of Merton,
the investment and consumption problems have inspired
literally hundreds of extensions and applications. For exam-
ple, introducing transaction costs into the investment and
consumption problems, one can refer to Shreve and Soner [3],
Akian et al. [4], and Janeček and Shreve [5]. Some authors as
well investigated the optimal consumption problemwith bor-
rowing constraints; see Fleming and Zariphopoulou [6], Vila
and Zariphopoulou [7], and Yao and Zhang [8]. However, the
above mentioned models generally were studied under the
assumption that risky asset price dynamics was driven by a
geometric Brownian motion (GBM).

The constant elasticity of variance (CEV) model is a
natural extension of the GBM. Compared with the GBM,

the advantages of the CEV model are that the volatility rate
has correlation with the risky asset price and can explain
volatility smile. The CEV model was originally proposed
by Cox and Ross [9] as an alternative diffusion process for
European option pricing.TheCEVmodel was usually applied
to analyze the option pricing formula, see; for example,
Schroder [10], Lo et al. [11], Phelim and Yisong [12], and
Davydov and Linetsky [13]. In the recent years, the CEV
model has been introduced into annuity contracts and the
optimal investment strategies in the utility framework are
investigated by applying dynamic programming principle.
For more detailed discussion, one can refer to Xiao et al.
[14], Gao [15, 16], Gu et al. [17], Lin and Li [18], Gu et al.
[19], Jung and Kim [20] and Zhao and Rong [21]. However,
the application of the CEV model to an investment and
consumption problem has not been reported in the existing
academic articles.

In this paper, we introduce a CEV model into an invest-
ment and consumption problem and optimally allocate the
wealth between one risk-free asset and one risky asset, whose
price process is supposed to follow a CEVmodel. Our goal is
to maximize the expected discounted utility of consumption



2 Mathematical Problems in Engineering

and terminal wealth. Dynamic programming principle is
applied to obtain the HJB equation for the value function.
Owing to the introducing of consumption factor and the
CEVmodel, the HJB equation derived is much more difficult
to deal with than the one obtained by Gao [15]. Inspired
by the techniques of Gao [15] and Liu [22], we transform
the nonlinear second-order partial differential equation into
a linear one, which is easy to tackle. In the techniques of
tackling the CEV model, one of the most important inno-
vations in this paper is to suppose that the structure of the
solution to (22) is of the expression form (23) and prove that
(22) and (25) are equivalent. Secondly, we derive the closed-
form solutions to the optimal investment and consumption
strategies for power utility and logarithm utility by applying
variable change technique. Finally, we propose a numerical
example to illustrate the properties and sensitivities of the
optimal investment and consumption strategy on market
parameters.There are three main contributions in this paper:
(i) we first consider an investment and consumption problem
under a CEV process and obtain the closed-form solutions
of the optimal investment and consumption strategies in
the power and logarithm utility cases; (ii) we use the same
approach as Liu [22] to solve (22), which is very difficult
to solve directly; (iii) we provide a numerical example to
illustrate our results.

The rest of this paper is organized as follows. In Section 2,
we formulate the financial market and propose the optimiza-
tion problem. In Section 3, we apply dynamic programming
principle to obtain the HJB equation and investigate the
optimal investment and consumption strategies in the power
and logarithm utility cases. Section 4 provides a numerical
example and Section 5 concludes the paper.

2. Problem Formulation

In this section, we propose the problem formulation of
optimal investments and consumption decisions with a CEV
process.

We consider a financial market where two assets are
traded continuously over [0, 𝑇]. One asset is a bondwith price
𝑃
𝑡
at time 𝑡, whose price process 𝑃

𝑡
satisfies

𝑑𝑃
𝑡
= 𝑟𝑃
𝑡
𝑑𝑡, 𝑃

0

0
= 𝑝
0
> 0, (1)

where the constant 𝑟 > 0 is the interest rate of the bond.
The other asset is a stock with prices 𝑆

𝑡
at time 𝑡, whose

price process 𝑆
𝑡
is given by the following constant elasticity of

variance model (CEV):

𝑑𝑆
𝑡
= 𝑆
𝑡
(𝜇 𝑑𝑡 + 𝑘𝑆

𝛾

𝑡
𝑑𝑊
𝑡
) , 𝑆

0
= 𝑠
0
> 0, (2)

where 𝜇 (𝜇 > 𝑟) is an expected instantaneous return rate of
the stock. 𝑘 and 𝛾 are constant parameters and the elasticity
parameter 𝛾 satisfies the general condition: 𝛾 ⩽ 0. 𝑘𝑆𝛾

𝑡
is

defined as the instantaneous volatility of the stock. 𝑊
𝑡
is a

one-dimensional standard adapted Brownianmotion defined
on a filtered complete probability space (Ω,F, 𝑃, {F

𝑡
}
0⩽𝑡⩽𝑇

),
where {F

𝑡
}
0⩽𝑡⩽𝑇

is a𝜎-algebra generated byBrownianmotion
𝑊
𝑡
.

Remark 1. Noting that there are four special interpretations
for the elasticity parameter 𝛾: (i) if 𝛾 = 0, the CEV model is
reduced to a geometric Brownian motion (GBM); (ii) if 𝛾 =

−1, it is the Ornstein-Uhlenbeck process; (iii) if 𝛾 = −1/2, it is
themodel first presented byCox andRoss [9] as an alternative
diffusion process for valuation of options; (iv) if 𝛾 < 0, this
means that the instantaneous volatility 𝑘𝑆𝛾

𝑡
increases as the

stock price decreases and can generate a distribution with a
fatter left tail.

Assume that the investor invests the market value of his
wealth 𝜋

𝑡
into the stock at time 𝑡, 𝑡 ∈ [0, 𝑇]. Clearly, the

amount invested in the bond is𝑋
𝑡
−𝜋
𝑡
, in which𝑋

𝑡
represents

the wealth of the investor at time 𝑡. Suppose that short-selling
of stocks and borrowing at the interest rate of the bond are
allowed and transaction cost is not taken into consideration.
We also introduce the consumption rate denoted by 𝐶

𝑡
. The

wealth process 𝑋
𝑡
corresponding to trading strategy (𝜋

𝑡
, 𝐶
𝑡
)

is subject to the following equation:

𝑑𝑋
𝑡
= (𝑋
𝑡
− 𝜋
𝑡
)

𝑑𝑃
𝑡

𝑃
𝑡

+ 𝜋
𝑡

𝑑𝑆
𝑡

𝑆
𝑡

− 𝐶
𝑡
𝑑𝑡; (3)

namely, we have

𝑑𝑋
𝑡
= [𝑟𝑋

𝑡
+ (𝜇 − 𝑟) 𝜋

𝑡
− 𝐶
𝑡
] 𝑑𝑡 + 𝜋

𝑡
𝑘𝑆
𝛾

𝑡
𝑑𝑊
𝑡
,

𝑋
0
= 𝑥
0
> 0.

(4)

Definition 2 (admissible strategy). An investment and con-
sumption (𝜋

𝑡
, 𝐶
𝑡
) is admissible if the following conditions are

satisfied:

(i) (𝜋
𝑡
, 𝐶
𝑡
) is F

𝑡
-progressively measurable and

∫

𝑇

0
𝜋
2

𝑡
𝑑𝑡 < ∞, ∫𝑇

0
𝐶
𝑡
𝑑𝑡 < ∞, a.s. ∀𝑇 > 0;

(ii) 𝐸[∫𝑇
0
(𝜋
𝑡
𝑘𝑆
𝛾

𝑡
)
2

𝑑𝑡] < ∞;

(iii) For ∀(𝜋
𝑡
, 𝐶
𝑡
), stochastic differential equation (4) has

a unique solution.

Assume that the set of all admissible investment and con-
sumption strategies (𝜋

𝑡
, 𝐶
𝑡
) is denoted by Γ = {(𝜋

𝑡
, 𝐶
𝑡
) : 0 ⩽

𝑡 ⩽ 𝑇}. Mathematically, an investor wishes to maximize the
following objective function:

Maximize
{𝜋𝑡,𝐶𝑡}∈Γ

E [𝛼∫
𝑇

0

𝑒
−𝛽𝑡

𝑈
1
(𝐶
𝑡
) 𝑑𝑡 + (1 − 𝛼) 𝑒

−𝛽𝑇

𝑈
2
(𝑋
𝑇
)] ,

(5)

where utility function 𝑈(⋅) is assumed to be strictly concave
and continuously differentiable on (−∞, +∞) and 𝛽 is the
subjective discount. The parameter 𝛼 determines the relative
importance of the intermediate consumption and the termi-
nal wealth. Since𝑈(⋅) is strictly concave, there exists a unique
optimal trading strategy (𝜋

𝑡
, 𝐶
𝑡
) which maximizes (5).

In this paper, we consider two-type utility functions𝑈(⋅).
One is power utility function defined by 𝑈(𝑥) = 𝑥

𝜂
/𝜂, 𝜂 <

1 and 𝜂 ̸= 0. The other is logarithm utility function given by
𝑈(𝑥) = ln𝑥.
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3. The Closed-Form Solution

In this section, we apply dynamic programming principle
to derive the HJB equation for the value function and
investigate the optimal investment and consumption policies
for problem (5) in the power and logarithm utility cases.

The value function is defined as

𝐻(𝑡, 𝑠, 𝑥)

= sup
{𝜋𝑡,𝐶𝑡}∈Γ

E{𝛼∫
𝑇

0

𝑒
−𝛽𝑡

𝑈
1
(𝐶
𝑡
) 𝑑𝑡

+(1 − 𝛼) 𝑒
−𝛽𝑇

𝑈
2
(𝑋
𝑇
) | 𝑆
𝑡
=𝑠, 𝑋

𝑡
= 𝑥} ,

(6)

with boundary condition given by 𝐻(𝑇, 𝑠, 𝑥) = (1 −

𝛼)𝑒
−𝛽𝑇

𝑈
2
(𝑥).

Using dynamic programming principle, one can get the
HJB equation as follows:

sup
{𝜋𝑡,𝐶𝑡}∈Γ

{

𝜕𝐻

𝜕𝑡

+ [(𝜇 − 𝑟) 𝜋
𝑡
+ 𝑟𝑥 − 𝐶

𝑡
]

𝜕𝐻

𝜕𝑥

+

1

2

(𝜋
𝑡
𝑘𝑠
𝛾

)
2 𝜕
2
𝐻

𝜕𝑥
2
+ 𝜇𝑠

𝜕𝐻

𝜕𝑠

+

1

2

(𝑘𝑠
𝛾+1

)

2 𝜕
2
𝐻

𝜕𝑠
2

+𝜋
𝑡
𝑘
2

𝑠
2𝛾+1 𝜕
2
𝐻

𝜕𝑥𝜕𝑠

+ 𝛼𝑒
−𝛽𝑡

𝑈
1
(𝐶
𝑡
)} = 0,

(7)

where 𝜕𝐻/𝜕𝑡, 𝜕𝐻/𝜕𝑥, 𝜕2𝐻/𝜕𝑥2, 𝜕𝐻/𝜕𝑠, 𝜕
2
𝐻/𝜕𝑠
2, and

𝜕
2
𝐻/𝜕𝑥𝜕𝑠denote first-order and second-order partial deriva-

tives with respect to the variables 𝑡, 𝑠, and 𝑥, respectively.
The first-order maximizing conditions for the optimal

value is given by

𝜋
∗

𝑡
= −

𝜇 − 𝑟

(𝑘𝑠
𝛾
)
2
⋅

𝜕𝐻/𝜕𝑥

𝜕
2
𝐻/𝜕𝑥

2
− 𝑠 ⋅

𝜕
2
𝐻/𝜕𝑥𝜕𝑠

𝜕
2
𝐻/𝜕𝑥

2
,

𝑈


(𝐶
∗

𝑡
) =

𝜕𝐻/𝜕𝑥

𝛼𝑒
−𝛽𝑡

.

(8)

Introducing (8) into (7), we obtain

𝜕𝐻

𝜕𝑡

+ 𝑟𝑥

𝜕𝐻

𝜕𝑥

+ 𝜇𝑠

𝜕𝐻

𝜕𝑠

+

1

2

(𝑘𝑠
𝛾+1

)

2 𝜕
2
𝐻

𝜕𝑠
2

−

1

2

⋅

[(𝜇 − 𝑟) 𝜕𝐻/𝜕𝑥 + 𝑘
2
𝑠
2𝛾+1

𝜕
2
𝐻/𝜕𝑥𝜕𝑠]

2

𝑘
2
𝑠
2𝛾
𝜕
2
𝐻/𝜕𝑥

2

− 𝐶
∗

𝑡

𝜕𝐻

𝜕𝑥

+ 𝛼𝑒
−𝛽𝑡

𝑈
1
(𝐶
∗

𝑡
) = 0.

(9)

Here, we notice that the stochastic control problem
has been transformed into a nonlinear second-order partial
differential equation; yet it is difficult to solve it. In the
following subsection, we choose power utility and logarithm
utility for our analysis, respectively, and try to obtain the
closed-form solutions to (9).

3.1. Power Utility. Power utility function is defined as

𝑈
1
(𝑥) = 𝑈

2
(𝑥) =

𝑥
𝜂

𝜂

, 𝜂 < 1, 𝜂 ̸= 0. (10)

For (9), we can conjecture a solution with the following
structure:

𝐻(𝑡, 𝑠, 𝑥) = 𝑒
−𝛽𝑡 𝑥
𝜂

𝜂

𝑓 (𝑡, 𝑠) , 𝑓 (𝑇, 𝑠) = 1 − 𝛼. (11)

Then
𝜕𝐻

𝜕𝑡

= −𝛽𝑒
−𝛽𝑡 𝑥
𝜂

𝜂

𝑓 (𝑡, 𝑠) + 𝑒
−𝛽𝑡 𝑥
𝜂

𝜂

⋅

𝜕𝑓

𝜕𝑡

,

𝜕𝐻

𝜕𝑥

= 𝑒
−𝛽𝑡

𝑥
𝜂−1

𝑓,

𝜕
2
𝐻

𝜕𝑥
2
= (𝜂 − 1) 𝑒

−𝛽𝑡

𝑥
𝜂−2

𝑓,

𝜕𝐻

𝜕𝑠

= 𝑒
−𝛽𝑡 𝑥
𝜂

𝜂

⋅

𝜕𝑓

𝜕𝑠

,

𝜕
2
𝐻

𝜕𝑠
2
= 𝑒
−𝛽𝑡 𝑥
𝜂

𝜂

⋅

𝜕
2
𝑓

𝜕𝑠
2
,

𝜕
2
𝐻

𝜕𝑠𝜕𝑥

= 𝑒
−𝛽𝑡

𝑥
𝜂−1

𝜕𝑓

𝜕𝑠

.

(12)

Therefore, (8) is rewritten as

𝜋
∗

𝑡
=

1

1 − 𝜂

⋅

𝜇 − 𝑟

(𝑘𝑠
𝛾
)
2
𝑥 +

𝑠

1 − 𝜂

⋅

𝜕𝑓/𝜕𝑠

𝑓

𝑥,

𝐶
∗

𝑡
= 𝛼
1/(1−𝜂)

𝑓
−1/(1−𝜂)

𝑥.

(13)

Putting these partial derivatives and the optimal policy
(13) into (9), we get

𝑒
−𝛽𝑡 𝑥
𝜂

𝜂

[

𝜕𝑓

𝜕𝑡

+ (𝜂𝑟 − 𝛽) 𝑓 + 𝜇𝑠

𝜕𝑓

𝜕𝑠

+

1

2

𝑘
2

𝑠
2𝛾+2

𝜕
2
𝑓

𝜕𝑠
2

−

𝜂

2 (𝜂 − 1)

(

𝜇 − 𝑟

𝑘𝑠
𝛾
)

2

𝑓 −

𝜂

𝜂 − 1

(𝜇 − 𝑟) 𝑠

𝜕𝑓

𝜕𝑠

−

𝜂

2 (𝜂 − 1)

𝑘
2

𝑠
2𝛾+2

𝜕𝑓/𝜕𝑠

𝑓

+ (1 − 𝜂) 𝛼
1/(1−𝜂)

𝑓
𝜂/(𝜂−1)

] = 0.

(14)

Eliminating the dependence on 𝑥, we obtain

𝑓
𝑡
+ (𝜂𝑟 − 𝛽) 𝑓 + 𝜇𝑠𝑓

𝑠
+

1

2

𝑘
2

𝑠
2𝛾+2

𝑓
𝑠𝑠

−

𝜂

2 (𝜂 − 1)

(

𝜇 − 𝑟

𝑘𝑠
𝛾
)

2

𝑓 −

𝜂

𝜂 − 1

(𝜇 − 𝑟) 𝑠𝑓
𝑠

−

𝜂

2 (𝜂 − 1)

𝑘
2

𝑠
2𝛾+2

𝜕𝑓/𝜕𝑠

𝑓

+ (1 − 𝜂) 𝛼
1/(1−𝜂)

𝑓
𝜂/(𝜂−1)

= 0.

(15)

Inspired by the approach of Gao [15], we can use the
following power transform and variable change technique. So
letting

𝑓 (𝑡, 𝑠) = 𝑔 (𝑡, 𝑦) , 𝑦 = 𝑠
−2𝛾

, (16)
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we get

𝜕𝑓

𝜕𝑡

=

𝜕𝑔

𝜕𝑡

,

𝜕𝑓

𝜕𝑠

=

𝜕𝑔

𝜕𝑦

(−2𝛾) 𝑠
−2𝛾−1

,

𝜕
2
𝑓

𝜕𝑠
2
=

𝜕
2
𝑔

𝜕𝑦
2
4𝛾
2

𝑠
−4𝛾−2

+

𝜕𝑔

𝜕𝑦

(−2𝛾) (−2𝛾 − 1) 𝑠
−2𝛾−2

.

(17)

Introducing these derivatives into (15), we obtain

𝜕𝑔

𝜕𝑡

+ (𝜂𝑟 − 𝛽) 𝑔 −

𝜂

2 (𝜂 − 1)

(

𝜇 − 𝑟

𝑘

)

2

𝑦𝑔

+ (

𝜂

𝜂 − 1

2𝛾 (𝜇 − 𝑟) − 2𝛾𝜇)𝑦

𝜕𝑔

𝜕𝑦

+ 𝛾 (2𝛾 + 1) 𝑘
2
𝜕𝑔

𝜕𝑦

+ 2𝛾
2

𝑘
2

𝑦

𝜕
2
𝑔

𝜕𝑦
2
−

2𝜂

𝜂 − 1

𝛾
2

𝑘
2

𝑦

(𝜕𝑔/𝜕𝑦)
2

𝑔

+ (1 − 𝜂) 𝛼
−1/(𝜂−1)

𝑔
𝜂/(𝜂−1)

= 0, 𝑔 (𝑇, 𝑦) = 1 − 𝛼.

(18)

In addition, we use the following variable change tech-
nique. Assume that

𝑔 (𝑡, 𝑦) = ℎ(𝑡, 𝑦)
1−𝜂

, ℎ (𝑇, 𝑦) = (1 − 𝛼)
1/(1−𝜂)

. (19)

Then

𝜕𝑔

𝜕𝑡

= (1 − 𝜂) ℎ
−𝜂 𝜕ℎ

𝜕𝑡

,

𝜕𝑔

𝜕𝑦

= (1 − 𝜂) ℎ
−𝜂 𝜕ℎ

𝜕𝑦

,

𝜕
2
𝑔

𝜕𝑦
2
= (1 − 𝜂) (−𝜂) ℎ

−𝜂−1

(

𝜕ℎ

𝜕𝑦

)

2

+ (1 − 𝜂) ℎ
−𝜂 𝜕
2
ℎ

𝜕𝑦
2
.

(20)

Substituting these derivatives back into (18), we have

(1 − 𝜂) ℎ
−𝜂
[

𝜕ℎ

𝜕𝑡

+ (

𝜂𝑟 − 𝛽

1 − 𝜂

+

𝜂

2(𝜂 − 1)
2
(

𝜇 − 𝑟

𝑘

)

2

𝑦)ℎ

+ (

𝜂

𝜂 − 1

2𝛾 (𝜇 − 𝑟) − 2𝛾𝜇)𝑦

𝜕ℎ

𝜕𝑦

+ 𝛾 (2𝛾 + 1) 𝑘
2
𝜕ℎ

𝜕𝑦

+ 2𝛾
2
𝑘
2
𝑦

𝜕
2
ℎ

𝜕𝑦
2

+𝛼
1/(1−𝜂)

] = 0.

(21)

So we obtain the following partial differential equation:

𝜕ℎ

𝜕𝑡

+ (

𝜂𝑟 − 𝛽

1 − 𝜂

+

𝜂

2(𝜂 − 1)
2
(

𝜇 − 𝑟

𝑘

)

2

𝑦)ℎ

+ (

𝜂

𝜂 − 1

2𝛾 (𝜇 − 𝑟) − 2𝛾𝜇)𝑦

𝜕ℎ

𝜕𝑦

+ 𝛾 (2𝛾 + 1) 𝑘
2 𝜕ℎ

𝜕𝑦

+ 2𝛾
2

𝑘
2

𝑦

𝜕
2
ℎ

𝜕𝑦
2
+ 𝛼
1/(1−𝜂)

= 0,

ℎ (𝑇, 𝑦) = (1 − 𝛼)
1/(1−𝜂)

.

(22)

Noting that (22) has been a linear second-order partial
differential equation, it is still very difficult to solve it directly.
Inspired by the approach proposed by Liu [22], we try to fit a
solution to (22) and we have the following Lemma.

Lemma 3. Assume that ℎ(𝑡, 𝑦) = 𝛼
1/(1−𝜂)

∫

𝑇

𝑡

̃
ℎ(𝑢, 𝑦)𝑑𝑢 + (1 −

𝛼)
1/(1−𝜂)̃

ℎ(𝑡, 𝑦) is a solution of (22); then one can prove that
̃
ℎ(𝑡, 𝑦) satisfies the equation:

𝜕
̃
ℎ

𝜕𝑡

+ (

𝜂𝑟 − 𝛽

1 − 𝜂

+

𝜂

2(𝜂 − 1)
2
(

𝜇 − 𝑟

𝑘

)

2

𝑦)
̃
ℎ

+ (

𝜂

𝜂 − 1

2𝛾 (𝜇 − 𝑟) − 2𝛾𝜇)𝑦

𝜕
̃
ℎ

𝜕𝑦

+ 𝛾 (2𝛾 + 1) 𝑘
2 𝜕
̃
ℎ

𝜕𝑦

+ 2𝛾
2

𝑘
2

𝑦

𝜕
2̃
ℎ

𝜕𝑦
2
= 0,

̃
ℎ (𝑇, 𝑦) = 1.

(23)

Proof. Define differential operator ∇ on any function ℎ(𝑡, 𝑦)
by

∇ℎ (𝑡, 𝑦)

= 2𝛾
2

𝑘
2

𝑦

𝜕
2
ℎ

𝜕𝑦
2
+ (

𝜂

𝜂 − 1

2𝛾 (𝜇 − 𝑟) − 2𝛾𝜇)𝑦

𝜕ℎ

𝜕𝑦

+ 𝛾 (2𝛾 + 1) 𝑘
2 𝜕ℎ

𝜕𝑦

+ (

𝜂𝑟 − 𝛽

1 − 𝜂

+

𝜂

2(𝜂 − 1)
2
(

𝜇 − 𝑟

𝑘

)

2

𝑦)ℎ.

(24)

Then (22) can be rewritten as

𝜕ℎ (𝑡, 𝑦)

𝜕𝑡

+ ∇ℎ (𝑡, 𝑦) + 𝛼
1/(1−𝜂)

= 0,

ℎ (𝑇, 𝑦) = (1 − 𝛼)
1/(1−𝜂)

.

(25)
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On the other hand, we find that

𝜕ℎ (𝑡, 𝑦)

𝜕𝑡

= −𝛼
1/(1−𝜂)̃

ℎ (𝑡, 𝑦) + (1 − 𝛼)
1/(1−𝜂)

𝜕
̃
ℎ (𝑡, 𝑦)

𝜕𝑡

= 𝛼
1/(1−𝜂)

[∫

𝑇

𝑡

𝜕
̃
ℎ (𝑢, 𝑦)

𝜕𝑢

𝑑𝑢 −
̃
ℎ (𝑇, 𝑦)]

+ (1 − 𝛼)
1/(1−𝜂)

𝜕
̃
ℎ (𝑡, 𝑦)

𝜕𝑡

,

∇ℎ (𝑡, 𝑦) = 𝛼
1/(1−𝜂)

∫

𝑇

𝑡

∇
̃
ℎ (𝑢, 𝑦) 𝑑𝑢

+ (1 − 𝛼)
1/(1−𝜂)

⋅ ∇
̃
ℎ (𝑡, 𝑦) .

(26)

Further, (25) is reduced to

𝛼
1/(1−𝜂)

[∫

𝑇

𝑡

(

𝜕
̃
ℎ (𝑢, 𝑦)

𝜕𝑢

+ ∇
̃
ℎ (𝑢, 𝑦))𝑑𝑢 −

̃
ℎ (𝑇, 𝑦) + 1]

+ (1 − 𝛼)
1/(1−𝜂)

[

𝜕
̃
ℎ (𝑡, 𝑦)

𝜕𝑡

+ ∇
̃
ℎ (𝑡, 𝑦)] = 0.

(27)

Then we obtain

𝜕
̃
ℎ (𝑡, 𝑦)

𝜕𝑡

+ ∇
̃
ℎ (𝑡, 𝑦) = 0,

̃
ℎ (𝑇, 𝑦) = 1. (28)

Therefore, (23) holds.

Lemma 4. Suppose that a solution to (23) is of the form
̃
ℎ(𝑡, 𝑦) = 𝑒

𝐴(𝑡)+𝐵(𝑡)𝑦, with terminal conditions 𝐴(𝑇) = 0 and
𝐵(𝑇) = 0; then 𝐴(𝑡) and 𝐵(𝑡) are given by (31) and (32),
respectively.

Proof. Putting ̃ℎ(𝑡, 𝑦) = 𝑒
𝐴(𝑡)+𝐵(𝑡)𝑦 into (23) yields

̃
ℎ (𝑡, 𝑦) [𝑦(

𝑑𝐵 (𝑡)

𝑑𝑡

+ 2𝛾
2

𝑘
2

𝐵
2

(𝑡)

+ (

𝜂

𝜂 − 1

2𝛾 (𝜇 − 𝑟) − 2𝛾𝜇)𝐵 (𝑡)

+

1

2

𝜂

(𝜂 − 1)
2
(

𝜇 − 𝑟

𝑘

)

2

)

+

𝑑𝐴 (𝑡)

𝑑𝑡

+

𝜂𝑟 − 𝛽

1 − 𝜂

+ 𝛾 (2𝛾 + 1) 𝑘
2

𝐵 (𝑡) ] = 0.

(29)

We can decompose (29) into two equations in order to
eliminate the dependence on 𝑦:
𝑑𝐵 (𝑡)

𝑑𝑡

+ 2𝛾
2

𝑘
2

𝐵
2

(𝑡) + (

𝜂

𝜂 − 1

2𝛾 (𝜇 − 𝑟) − 2𝛾𝜇)𝐵 (𝑡)

+

1

2

⋅

𝜂

(𝜂 − 1)
2
(

𝜇 − 𝑟

𝑘

)

2

= 0, 𝐵 (𝑇) = 0;

𝑑𝐴 (𝑡)

𝑑𝑡

+

𝜂𝑟 − 𝛽

1 − 𝜂

+ 𝛾 (2𝛾 + 1) 𝑘
2

𝐵 (𝑡) = 0, 𝐴 (𝑇) = 0.

(30)

Solving the above two equations by using the same
approach as Gao [15], we obtain

𝐴 (𝑡) = {𝜆
1
𝛾 (2𝛾 + 1) 𝑘

2

+

𝜂𝑟 − 𝛽

1 − 𝜂

} (𝑇 − 𝑡)

+ ln{ 𝜆
2
− 𝜆
1

𝜆
2
− 𝜆
1
𝑒
−2𝛾
2
𝑘
2
(𝜆
1
−𝜆
2
)(𝑇−𝑡)

}

(2𝛾+1)/2𝛾

,

(31)

𝐵 (𝑡) = 𝑘
−2

𝐼 (𝑡) , (32)

where

𝐼 (𝑡) =

𝜆
1
𝜆
2
(1 − 𝑒

−2𝛾
2
𝑘
2
(𝜆
1
−𝜆
2
)(𝑇−𝑡)

)

𝜆
2
− 𝜆
1
𝑒
−2𝛾
2
𝑘
2
(𝜆
1
−𝜆
2
)(𝑇−𝑡)

,

𝜆
1,2

=

(𝜇 − 𝑟𝜂) ± √(1 − 𝜂) (𝜇
2
− 𝑟
2
𝜂)

2𝛾𝑘
2
(1 − 𝜂)

.

(33)

As a result, Lemma 4 is completed.

Taking 𝑓(𝑡, 𝑠) = 𝑔(𝑡, 𝑦) = ℎ(𝑡, 𝑦)
1−𝜂 and their relation-

ships into consideration, we derive
𝜕𝐻/𝜕𝑥

𝜕
2
𝐻/𝜕𝑥

2
= −

1

1 − 𝜂

𝑥,

𝜕
2
𝐻/𝜕𝑥𝜕𝑠

𝜕
2
𝐻/𝜕𝑥

2
=

𝑥

𝜂 − 1

⋅

𝜕𝑓/𝜕𝑠

𝑓

=

𝑥

𝜂 − 1

⋅ (−2𝛾) 𝑠
−2𝛾−1

𝜕𝑔/𝜕𝑦

𝑔

= 2𝛾𝑠
−2𝛾−1

𝜕ℎ/𝜕𝑦

ℎ

𝑥.

(34)

Therefore, the optimal investment strategy is

𝜋
∗

𝑡
=

1

1 − 𝜂

⋅

𝜇 − 𝑟

(𝑘𝑆
𝛾

𝑡
)

2
𝑋
𝑡
− 2𝛾𝑆

−2𝛾

𝑡

𝜕ℎ/𝜕𝑦

ℎ

𝑋
𝑡
. (35)

So, we can summarize the above results in the following
theorem.

Theorem 5. If utility function is given by 𝑈
1
(𝑥) = 𝑈

2
(𝑥) =

𝑥
𝜂
/𝜂, 𝜂 < 1 and 𝜂 ̸= 0, the optimal investment and consump-

tion strategy of the problem (5) is

𝜋
∗

𝑡
=

1

1 − 𝜂

⋅

𝜇 − 𝑟

(𝑘𝑆
𝛾

𝑡
)

2
𝑋
𝑡
(1 −

2𝛾 (1 − 𝜂) 𝑘
2

𝜇 − 𝑟

⋅

𝜕ℎ/𝜕𝑦

ℎ

) ,

𝐶
∗

𝑡
= 𝛼
1/(1−𝜂)

ℎ
−1

𝑋
𝑡
,

(36)
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where ℎ = ℎ(𝑡, 𝑦) = 𝛼
1/(1−𝜂)

∫

𝑇

𝑡
𝑒
𝐴(𝑡)+𝐵(𝑡)𝑦

𝑑𝑡 + (1 −

𝛼)
1/(1−𝜂)

𝑒
𝐴(𝑡)+𝐵(𝑡)𝑦, 𝑦 = 𝑆

−2𝛾

𝑡
, and𝐴(𝑡) and 𝐵(𝑡) are determined

by (31) and (32), respectively.

Remark 6. Noting that a CEVmodel includes several existing
stochastic processes as special cases, for example, geometric
Brownian motion (GBM), Ornstein-Uhlenbeck process, and
an alternative diffusion process investigated by Cox and Ross
[9], the closed-form expression (36) obtained is the general
framework of the optimal investment and consumption
strategies when stock price dynamics is given by the above
stochastic processes.

Remark 7. It can be seen from (36) that the optimal invest-
ment strategy 𝜋∗

𝑡
can be decomposed into two terms. One

term is (1/(1−𝜂))⋅((𝜇−𝑟)/(𝑘𝑆𝛾
𝑡
)
2

)𝑋
𝑡
, which has an analogical

form of the optimal policy under a GBM model. The other
term is 1 − ((2𝛾(1 − 𝜂)𝑘

2
)/(𝜇 − 𝑟)) ⋅ ((𝜕ℎ/𝜕𝑦)/ℎ), which can

be called asmodification factor denoted by �̃�(𝑡). In addition,
we notice that two terms are influenced by stock price 𝑆

𝑡
.

In order to compare our results with those in the existing
literature, we discuss several special cases for Theorem 5.

Special Case 1. If 𝛾 → 0, the CEVmodel is reduced to aGBM.
In addition, we obtain 𝑦 = 1 and

𝐵 (𝑡) =

𝜂

2(𝜂 − 1)
2
(

𝜇 − 𝑟

𝑘

)

2

(𝑇 − 𝑡) ,

𝐴 (𝑡) =

𝜂𝑟 − 𝛽

1 − 𝜂

(𝑇 − 𝑡) .

(37)

Letting

𝜃 =

𝜂

2(𝜂 − 1)
2
(

𝜇 − 𝑟

𝑘

)

2

+

𝜂𝑟 − 𝛽

1 − 𝜂

, (38)

then we have

ℎ (𝑡, 𝑦) = ℎ (𝑡) = 𝛼
1/(1−𝜂)

⋅

1

𝜃

(𝑒
𝜃(𝑇−𝑡)

− 1)

+ (1 − 𝛼)
1/(1−𝜂)

𝑒
𝜃(𝑇−𝑡)

,

(39)

and (𝜕ℎ/𝜕𝑦)/ℎ = 0. Therefore, (36) is reduced to

𝜋
∗

𝑡
=

1

1 − 𝜂

⋅

𝜇 − 𝑟

𝑘
2
𝑋
𝑡
, 𝐶

∗

𝑡
= 𝛼
1/(1−𝜂)

ℎ
−1

(𝑡) 𝑋
𝑡
, (40)

where ℎ(𝑡) is given by (39).

Special Case 2. If 𝛼 → 0, then ℎ(𝑡, 𝑦) = 𝑒
𝐴(𝑡)+𝐵(𝑡)𝑦 and

(𝜕ℎ/𝜕𝑦)/ℎ = 𝐵(t). As a result, the optimal consumption
policy is 𝐶∗

𝑡
= 0 and the optimal investment strategy is given

by

𝜋
∗

𝑡
=

1

1 − 𝜂

⋅

𝜇 − 𝑟

(𝑘𝑆
𝛾

𝑡
)

2
𝑋
𝑡
(1 −

2𝛾 (1 − 𝜂) 𝐼 (𝑡)

𝜇 − 𝑟

) , (41)

where 𝐼(𝑡) is given by (33). This is just the optimal policy
for power utility maximizing when consumption is not
considered and stock price follows a CEV process.

Special Case 3. If 𝜂 → 0, then 𝐵(𝑡) = 0 and 𝐴(𝑡) = 𝛽(𝑡 − 𝑇).
In addition, we have

ℎ (𝑡, 𝑦) =

𝛼

𝛽

(1 − 𝑒
−𝛽(𝑇−𝑡)

) + (1 − 𝛼) 𝑒
−𝛽(𝑇−𝑡) (42)

and (𝜕ℎ/𝜕𝑦)/ℎ = 0. Therefore, (36) is reduced to

𝜋
∗

𝑡
=

𝜇 − 𝑟

(𝑘𝑆
𝛾

𝑡
)

2
𝑋
𝑡
,

𝐶
∗

𝑡
=

𝛼

(𝛼/𝛽) (1 − 𝑒
−𝛽(𝑇−𝑡)

) + (1 − 𝛼) 𝑒
−𝛽(𝑇−𝑡)

𝑋
𝑡
.

(43)

It is well known that power utility is degenerated to logarithm
utility if 𝜂 → 0. Furthermore, we find that the optimal
investment and consumption strategy obtained by (43) is just
that under logarithm utility function.

3.2. Logarithm Utility. Logarithm utility function is defined
as

𝑈
1
(𝑥) = 𝑈

2
(𝑥) = ln𝑥. (44)

We can assume that the solution to the HJB equation (9) is of
the following structure:

𝐻(𝑡, 𝑠, 𝑥) = V (𝑡) 𝑒−𝛽𝑡 ln𝑥 + 𝑤 (𝑡, 𝑠) ,

V (𝑇) = 1 − 𝛼, 𝑤 (𝑇, 𝑠) = 0.

(45)

Then, partial derivatives with respect to 𝑡, 𝑠, and 𝑥 are
given by

𝜕𝐻

𝜕𝑡

= V (𝑡) 𝑒−𝛽𝑡 ln𝑥 − 𝛽V (𝑡) 𝑒−𝛽𝑡 ln𝑥 + 𝜕𝑤

𝜕𝑡

,

𝜕𝐻

𝜕𝑥

= V (𝑡) 𝑒−𝛽𝑡
1

𝑥

,

𝜕
2
𝐻

𝜕𝑥
2
= V (𝑡) 𝑒−𝛽𝑡

−1

𝑥
2
,

𝜕𝐻

𝜕𝑠

=

𝜕𝑤

𝜕𝑠

,

𝜕
2
𝐻

𝜕𝑠
2
=

𝜕
2
𝑤

𝜕𝑠
2
,

𝜕
2
𝐻

𝜕𝑠𝜕𝑥

= 0.

(46)

Substituting these partial derivatives back into (9) yields

𝜕𝑤

𝜕𝑡

+ 𝜇𝑠

𝜕𝑤

𝜕𝑠

+

1

2

𝑘
2

𝑠
2𝛾+2 𝜕
2
𝑤

𝜕𝑠
2
+ (𝑟 +

1

2

(

𝜇 − 𝑟

𝑘𝑠
𝛾
)

2

) 𝑒
−𝛽𝑡V (𝑡)

+ 𝛼𝑒
−𝛽𝑡

(ln𝛼 − ln V (𝑡) − 1)

+ 𝑒
−𝛽𝑡 ln𝑥(𝑑V (𝑡)

𝑑𝑡

− 𝛽V (𝑡) + 𝛼) = 0.

(47)
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We can split this equation into the following two equa-
tions:

𝑑V (𝑡)
𝑑𝑡

− 𝛽V (𝑡) + 𝛼 = 0, V (𝑇) = 1 − 𝛼; (48)

𝜕𝑤

𝜕𝑡

+ 𝜇𝑠

𝜕𝑤

𝜕𝑠

+

1

2

𝑘
2

𝑠
2𝛾+2 𝜕
2
𝑤

𝜕𝑠
2
+ (𝑟 +

1

2

(

𝜇 − 𝑟

𝑘𝑠
𝛾
)

2

) 𝑒
−𝛽𝑡V (𝑡)

+ 𝛼𝑒
−𝛽𝑡

(ln𝛼 − ln V (𝑡) − 1) = 0, 𝑤 (𝑇, 𝑠) = 0.

(49)
Solving (48), we get

V (𝑡) = (1 − 𝛼) 𝑒
−𝛽(𝑇−𝑡)

−

𝛼

𝛽

(𝑒
−𝛽(𝑇−𝑡)

− 1) . (50)

Lemma 8. For (49), one tries to fit a solution of the form
𝑤(𝑡, 𝑠) = 𝐷(𝑡) + 𝐸(𝑡)𝑦, 𝑦 = 𝑠

−2𝛾, with boundary conditions
𝐷(𝑇) = 0 and 𝐸(𝑇) = 0; then 𝐸(𝑡) and 𝐷(𝑡) are given by (55)
and (56), respectively.

Proof. Note that
𝜕𝑤

𝜕𝑡

=

𝑑𝐷 (𝑡)

𝑑𝑡

+

𝑑𝐸 (𝑡)

𝑑𝑡

𝑦,

𝜕𝑤

𝜕𝑠

= 𝐸 (𝑡) (−2𝛾) 𝑠
−2𝛾−1

,

𝜕
2
𝑤

𝜕𝑠
2
= 𝐸 (𝑡) (−2𝛾) (−2𝛾 − 1) 𝑠

−2𝛾−2

.

(51)
Introducing these derivatives into (49), we get

𝑦 [

𝑑𝐸 (𝑡)

𝑑𝑡

− 2𝛾𝜇𝐸 (𝑡) +

1

2

(

𝜇 − 𝑟

𝑘

)

2

𝑒
−𝛽𝑡V (𝑡)]

+

𝑑𝐷 (𝑡)

𝑑𝑡

+ 𝑟𝑒
−𝛽𝑡V (𝑡) + 𝛾 (2𝛾 + 1) 𝑘2𝐸 (𝑡)

+ 𝛼𝑒
−𝛽𝑡

(ln𝛼 − ln V (𝑡) − 1) = 0.

(52)

Thenwe can decompose this equation into two equations:
𝑑𝐸 (𝑡)

𝑑𝑡

− 2𝛾𝜇𝐸 (𝑡) +

1

2

(

𝜇 − 𝑟

𝑘

)

2

𝑒
−𝛽𝑡V (𝑡) = 0, 𝐸 (𝑇) = 0;

(53)
𝑑𝐷 (𝑡)

𝑑𝑡

+ 𝑟𝑒
−𝛽𝑡V (𝑡) + 𝛾 (2𝛾 + 1) 𝑘2𝐸 (𝑡)

+ 𝛼𝑒
−𝛽𝑡

(ln𝛼 − ln V (𝑡) − 1) = 0, 𝐷 (𝑇) = 0.

(54)

Solving (53) and (54) yields

𝐸 (𝑡) =

1

2

(

𝜇 − 𝑟

𝑘

)

2
𝛽 − 𝛼𝛽 − 𝛼

2𝛽𝛾𝜇

𝑒
−𝛽𝑇

(1 − 𝑒
−2𝛾𝜇(𝑇−𝑡)

)

+

1

2

(

𝜇 − 𝑟

𝑘

)

2
𝛼

𝛽 (𝛽 + 2𝛾𝜇)

𝑒
−𝛽𝑇

(𝑒
𝛽(𝑇−𝑡)

− 𝑒
−2𝛾𝜇(𝑇−𝑡)

) ,

(55)

𝐷 (𝑡) = ∫

𝑇

𝑡

𝑟𝑒
−𝛽𝑡V (𝑡) 𝑑𝑡 + 𝛾 (2𝛾 + 1) 𝑘2 ∫

𝑇

𝑡

𝐸 (𝑡) 𝑑𝑡 − 𝛼

× ∫

𝑇

𝑡

𝑒
−𝛽𝑡 ln V (𝑡) 𝑑𝑡 − 𝛼 (ln𝛼 − 1)

𝛽

(𝑒
−𝛽𝑇

− 𝑒
−𝛽𝑡

) .

(56)
At the end, Lemma 8 is proved.

Noting that

𝜕𝐻/𝜕𝑥

𝜕
2
𝐻/𝜕𝑥

2
= −𝑥,

𝜕
2
𝐻/𝜕𝑥𝜕𝑠

𝜕
2
𝐻/𝜕𝑥

2
= 0, (57)

we can rewrite the optimal investment and consumption
strategy as

𝜋
∗

𝑡
=

𝜇 − 𝑟

(𝑘𝑠
𝛾
)
2
𝑥, 𝐶

∗

𝑡
=

𝛼

V (𝑡)
𝑥. (58)

Finally, we can conclude the optimal investment and
consumption strategy for logarithm utility in the following
theorem.

Theorem 9. If utility function is given by 𝑈
1
(𝑥) = 𝑈

2
(𝑥) =

ln𝑥, the optimal investment and consumption policy of prob-
lem (5) is

𝜋
∗

𝑡
=

𝜇 − 𝑟

(𝑘𝑆
𝛾

𝑡
)

2
𝑋
𝑡
,

𝐶
∗

𝑡
=

𝛼

(1 − 𝛼) 𝑒
−𝛽(𝑇−𝑡)

− (𝛼/𝛽) (𝑒
−𝛽(𝑇−𝑡)

− 1)

𝑋
𝑡
.

(59)

Remark 10. It can be seen from (59) that the optimal invest-
ment strategy 𝜋∗

𝑡
is not correlated with the parameters 𝛼 and

𝛽. And when 𝛼 → 0, the optimal consumption policy is
𝐶
∗

𝑡
= 0 and the optimal portfolios are still given by 𝜋∗

𝑡
=

((𝜇 − 𝑟)/(𝑘𝑆
𝛾

𝑡
)
2

)𝑋
𝑡
.

4. Numerical Analysis

This section provides a numerical example to illustrate the
dynamic behavior of the optimal investment and consump-
tion strategy in the power utility case. Assume that there are
two assets in the financial market; one is a bond and the
other is a stock. Throughout the numerical analysis, unless
otherwise stated, the basic parameters are given by 𝑟 = 0.03,
𝜇 = 0.12, 𝑘 = 16.16, 𝛾 = −1, 𝑆

0
= 67, 𝑡 = 0, 𝑇 = 2, 𝑥

0
= 100,

and 𝜂 = −2. Notice that the first five parameters are taken
from the paper of Gao [15]; without loss of a generality, we
consider the initial time 𝑡 = 0 and the initial wealth 𝑥

0
= 100.

4.1. Sensitivity Analysis for the Optimal Investment Strategy.
Figures 1, 2, and 3 provide some sensitivity analysis of market
parameters on the optimal investment strategy. Some results
and economic implications can be summarized as follows.

(a1) The optimal investment strategy 𝜋
∗

𝑡
decreases with

respect to interest rate 𝑟. When risk-free interest rate
is increasing, the income from investment in the risk-
free asset will be more and more bigger; accordingly,
the investor will reduce the investment amount in the
stock in order to avoid the risk form investments. It is
consistent with the intuition.

(a2) 𝜋∗
𝑡
is increasing as the parameter 𝜇 becomes bigger.

In fact, as the value of 𝜇 is increasing, the appreciate
rate of the stock is increasing; the investor would
invest more money in the stock in order to gain more
revenue.
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(a3) 𝜋∗
𝑡
is decreasing in 𝛾. As a matter of fact, when

elasticity parameter 𝛾 (under the constraints 𝛾 <

0 and 𝑟 < 𝜇) becomes larger, the instantaneous
volatility 𝑘𝑆

𝛾

𝑡
of the stock will be more and more

bigger, which leads to the more risk of investment.
Therefore, the investor needs to reduce the amount
invested in the stock. Moreover, we can draw the
conclusion that the amount invested in the stock
under a CEV model is more than that under a GBM
model.

(a4) 𝜋∗
𝑡
is increasing with the aversion factor of risk 𝜂

increasing. In reality, the aversion coefficient of risk is
given by 1 − 𝜂 in the power utility case. It means that
the bigger the value of 𝜂 is, the less the risk aversion
of the investor is. It leads to that the investor would
invest more money in the stock in order to get more
income.

(a5) 𝜋∗
𝑡

increases with respect to stock price 𝑠
0
. It is

completely different from the optimal investment
strategy under a geometric Brownian motion. From
Special Case 1, we can get that the optimal policy
under a GBM is not correlated with stock price.
In fact, under the CEV model, the instantaneous
volatility 𝑘𝑆𝛾

𝑡
of the stock decreases when stock price

is increasing. So the risk of investments is decreasing;
accordingly, the investor has more willing to invest
more money in the stock in order to get more wealth.

(a6) 𝜋∗
𝑡
has opposite trendwith the value of 𝑘. Actually, the

larger the value of 𝑘 is, the bigger the instantaneous
volatility 𝑘𝑆𝛾

𝑡
of the stock is, which leads to the more

risk of investment. Therefore, the investor should
invest less money in the stock.

4.2. Sensitivity Analysis for theOptimal Consumption Strategy.
From Figures 4, 5, and 6, we can draw the following conclu-
sions.

(b1) The optimal consumption strategy𝐶∗
𝑡
is increasing in

interest rate 𝑟. In fact, the bigger the value of risk-free
interest rate 𝑟 is, the more the amount invested in the
risk-free asset is, and meantime the less the amount
in the stock is. But the total expected wealth of the
investorwill becomemore andmore larger.Therefore,
The amount the investor can consume will increase
accordingly.

(b2) 𝐶∗
𝑡
has same trend with the appreciation rate of

the stock 𝜇. It implies that when the value of 𝜇
is increasing, the amount invested in the stock is
rising, which leads to that the expected wealth of an
investor will increase as well. Therefore, the optimal
consumption amount will become more and more
bigger.

(b3) 𝐶∗
𝑡
is decreasing in 𝛾. This displays that the bigger the

value of elasticity parameter 𝛾 is, the less the optimal
consumption amount is. As a matter of fact, when the
value of 𝛾 becomes larger, the amount invested in the
stock is decreasing, which leads to that the expected

wealth of an investor will become less. So the amount
to consume will decrease.

(b4) 𝐶∗
𝑡
increases with respect to the risk aversion factor

𝜂. According to the above analysis, when the value
of 𝜂 is increasing, the amount invested in the stock
is also increasing, which results in that the expected
wealth of an investor is rising meantime. Therefore,
an investor can consume more money.

(b5) 𝐶∗
𝑡
is increasing as the value of 𝛼 is rising. When the

parameter 𝛼 becomes larger, the relative importance
of consumption will become bigger between con-
sumption and terminal wealth.Therefore, an investor
must add the amount to consume.

(b6) 𝐶∗
𝑡
has the same trend with discount factor 𝛽. It

implies that the larger the value of 𝛽 is, the more the
amount to consume is.

5. Conclusions

In this paper, we have investigated an investment and con-
sumption problem, in which stock price is assumed to follow
a CEV process. The CEV process is a natural extension of a
geometric Brownian motion. It is one of the most important
innovations. By applying dynamic programming principle
and variable change technique, we derive the closed-form
solutions to the optimal investment and consumption strate-
gies in the power and logarithm utility cases. Finally, we
propose a numerical example to illustrate the impact of
market parameters on the optimal investment and consump-
tion strategies and give some economic implications. Some
important conclusions are found: (i) 𝜋∗

𝑡
and𝐶∗

𝑡
have opposite

trend in risk-free interest rate 𝑟; (ii) 𝜋∗
𝑡
and 𝐶

∗

𝑡
have same

trend in the parameters 𝜇, 𝛾, and 𝜂.
In future research on the investment and consumption

problem, we focus on the cases of more sophisticated situa-
tions such as introducing transaction costs, stochastic affine
interest rate, and the other uncertain factors, which would
result in more sophisticated nonlinear second-order partial
differential equations and cannot deal with them. We leave
these points to future research.
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This paper presents the general case study of previous works on generalized Boussinesq equations, (Abazari, 2011) and (Kılıcman
and Abazari, 2012), that focuses on the application of (𝐺/𝐺)-expansion method with the aid of Maple to construct more general
exact solutions for the coupled Boussinesq equations. In this work, the mentioned method is applied to construct more general
exact solutions of Boussinesq equation and improved Boussinesq equation, which the French scientist Joseph Valentin Boussinesq
(1842–1929) described in the 1870s model equations for the propagation of long waves on the surface of water with small amplitude.
Our work is motivated by the fact that the (𝐺/𝐺)-expansion method provides not only more general forms of solutions but also
periodic, solitary waves and rational solutions. The method appears to be easier and faster by means of a symbolic computation.

1. Introduction

In the recent five decades, a new direction related to the
investigation of nonlinear evolution equations (NLEEs) and
processes has been actively developing in various areas of
sciences.Nonlinear evolution equations have been the impor-
tant subject of study in various branches of mathematical-
physical sciences such as physics, fluidmechanics, and chem-
istry. The analytical solutions of NLEEs are of fundamental
importance, sincemany ofmathematical-physical models are
described byNLEEs. Among the possible solutions toNLEEs,
certain special form solutions may depend only on a single
combination of variables such as solitons. Inmathematics and
physics, a soliton is a self reinforcing solitary wave, a wave
packet or pulse, thatmaintains its shapewhile it travels at con-
stant speed. Solitons are caused by a cancelation of nonlinear
and dispersive effects in the medium. The term “dispersive
effects” refers to a property of certain systemswhere the speed
of the waves varies according to frequency. Solitons arise
as the solutions of a widespread class of weakly nonlinear
dispersive partial differential equations describing physical
systems.The soliton phenomenon was first described by John
Scott Russell (1808–1882) who observed a solitary wave in the

Union Canal in Scotland. He reproduced the phenomenon
in a wave tank and named it the “wave of translation” (also
known as solitary wave or soliton) [1]. The soliton solutions
are typically obtained by means of the inverse scattering
transform [2] and be in dept their stability to the integrability
of the field equations.

In fluid mechanics, the Boussinesq approximation for
water waves is an approximation valid for weakly nonlinear
and fairly long waves. The approximation is named after
Joseph Valentin Boussinesq (1842–1929), who first derived
them in response to the observation by John Scott Russell of
the wave of translation [3, 4]. According to the 1872 paper of
Boussinesq, for water waves on an incompressible fluid and
irrotational flow in the (𝑥, 𝑧) plane, the boundary conditions
at the free surface elevation 𝑧 = 𝜂(𝑥, 𝑡) are

𝜕𝜂

𝜕𝑡

+ k
𝜕𝜂

𝜕𝑥

− w = 0,

𝜕𝜑

𝜕𝑡

+

1

2

(k2 + w2) + 𝑔𝜂 = 0,
(1)

where k is the horizontal flow velocity component, k =

𝜕𝜑/𝜕𝑥, w is the vertical flow velocity component,w = 𝜕𝜑/𝜕𝑧,



2 Mathematical Problems in Engineering

and 𝑔 is the acceleration by gravity. Now, the Boussinesq
approximation for the velocity potential 𝜑, as given previ-
ously, is applied in these boundary conditions. Further, in
the resulting equations, only the linear and quadratic terms
with respect to 𝜂 and k

𝑏
are retained (with k

𝑏
= 𝜕𝜑
𝑏
/𝜕𝑥 the

horizontal velocity at the bed 𝑧 = −ℎ). The cubic and higher
order terms are assumed to be negligible.Then, the following
partial differential equations are obtained:

𝜕𝜂

𝜕𝑡

+

𝜕

𝜕𝑥

[(ℎ + 𝜂) k
𝑏
] =

1

6

ℎ
3
𝜕
3k
𝑏

𝜕𝑥
3
,

𝜕k
𝑏

𝜕𝑡

+ k
𝑏

𝜕k
𝑏

𝜕𝑥

+ 𝑔

𝜕𝜂

𝜕𝑥

=

1

2

ℎ
2
𝜕
3k
𝑏

𝜕𝑡𝜕𝑥
2
.

(2)

This set of equations has been derived for a flat horizontal bed;
that is, themean depth ℎ is a constant independent of position
𝑥. When the right-hand sides of the previous equations are
set to zero, they reduce to the shallow water equations. Under
some additional approximations, but at the same order of
accuracy, (2) can be reduced to a single partial differential
equation for the free surface elevation 𝜂(𝑥, 𝑡):

𝜕
2
𝜂

𝜕𝑡
2
− 𝑔ℎ

𝜕
2
𝜂

𝜕𝑥
2
− 𝑔ℎ

𝜕
2

𝜕𝑥
2
(

3

2

𝜂
2

ℎ

+

1

3

ℎ
2
𝜕
2
𝜂

𝜕𝑥
2
) = 0. (3)

In dimensionless quantities, by using the water depth ℎ and
gravitational acceleration 𝑔 for nondimensionalization, (3)
leads to the following, after normalization:

𝜕
2
𝜓

𝜕𝜏
2
−

𝜕
2
𝜓

𝜕𝜒
2
−

𝜕
2

𝜕𝜒
2
(

1

2

𝜓
2

+

𝜕
2
𝜓

𝜕𝜒
2
) = 0, (4)

where 𝜓 = 3(𝜂/ℎ), 𝜏 = √3(𝑔/ℎ)𝑡, and 𝜒 = √3(𝑥/ℎ). In the
recent years, (4) rewrites as follows [5]:

𝑢
𝑡𝑡
− 𝑢
𝑥𝑥
− (

1

2

𝑢
2

+ 𝑞𝑢
𝑥𝑥
)

𝑥𝑥

= 0, (5)

where |𝑞| = 1 is a real parameter. Setting 𝑞 = −1 gives
the goodBoussinesq equation (GB) orwell-posed Boussinesq
equation, while by setting 𝑞 = 1, we get the bad Boussinesq
equation (BB) or ill-posed classical Boussinesq equation.
Following Bogolubsky’smodification [6] in (5) when the term
𝑞𝑢
𝑥𝑥
, is replaced with 𝑞𝑢

𝑡𝑡
it gives the so-called improved

Boussinesq equation (IBq):

𝑢
𝑡𝑡
− 𝑢
𝑥𝑥
− (

1

2

𝑢
2

+ 𝑞𝑢
𝑡𝑡
)

𝑥𝑥

= 0. (6)

Similarily, using an analogous characterization used for
Boussinesq equation (5), the IBq equation for 𝑞 = −1will give
the good or well-posed (GIBq), while for 𝑞 = 1 the bad or ill-
posed (BIBq) equation.The IBq equation appears in studying
the transverse motion and nonlinearity in acoustic waves on
elastic rodswith circular cross-section. In particular, the BIBq
is used to discuss the wave propagation at right angles to
the magnetic field and also to approach the bad BS equation
(see Makhankov [7]) or to study ion-sound(s) waves (see
Bogolubsky [6]).

There are some review articles and some collected works
that have been focused to study the classical Boussinesq
equation from various points of view. The initial boundary
value and the Cauchy problem of (5) have been described
in [8–11]. Yajima [12] has studied the nonlinear evolution of
a linearly stable solution, while the exponentially decaying
solution of the spherical Boussinesq equation was obtained
by Nakamura [13].The global existence of the strong solution
and the small amplitude solution for the Cauchy problem
of the multidimensional equation (5) is proved in [14]. A
general approach to construct exact solution to (5) is given by
Clarkson [9], and Hirota [10] has deduced conservation laws
and has examined N-soliton interaction. Bona and Sachs, in
[8], have discussed that the special solitary-wave solutions for
(5), when nonlinear term is 𝑢2, are nonlinearly stable for a
range of their wave speeds.

On the other hand, recently, the (𝐺

/𝐺)-expansion

method, firstly introduced by Wang et al. [15], has become
widely used to search for various exact solutions of NLEEs
[15–19].The value of the (𝐺/𝐺)-expansionmethod is that one
treats nonlinear problems by essentially linear methods. The
method is based on the explicit linearization of NLEEs for
traveling waves with a certain substitution which leads to a
second-order differential equation with constant coefficients.
Moreover, it transforms a nonlinear equation to a simple
algebraic computation. Although many efforts have been
devoted to find various methods to solve (integrable or
nonintegrable) NLEEs, there is no unified method. The
main merits of the (𝐺/𝐺)-expansion method over the other
methods are that it gives more general solutions with some
free parameters which, by suitable choice of the parameters,
turn out to be some known solutions gained by the existing
methods.

Our first interest in the present work is in implementing
the (𝐺/𝐺)-expansion method to show its power in handling
nonlinear partial differential equations (PDEs), so that one
can apply it to other models of various types of nonlinearity.
The next interest is in the determination of exact travelling
wave solutions for generalized equations (5) and (6).

2. Description of the (𝐺/𝐺)-Expansion
Method

Theobjective of this section is to outline the use of the (𝐺/𝐺)-
expansion method for solving certain nonlinear PDEs. Sup-
pose that we have a nonlinear PDE for 𝑢(𝑥, 𝑡), in the form

𝑃 (𝑢, 𝑢
𝑥
, 𝑢
𝑡
, 𝑢
𝑥𝑥
, 𝑢
𝑥𝑡
, 𝑢
𝑡𝑡
, . . .) = 0, (7)

where 𝑃 is a polynomial in its arguments, which includes
nonlinear terms and the highest order derivatives. The trans-
formation 𝑢(𝑥, 𝑡) = 𝑈(𝜉), 𝜉 = 𝑘𝑥 + 𝜔𝑡, reduces (7) to the
ordinary differential equation (ODE)

𝑃 (𝑈, 𝑘𝑈


, 𝜔𝑈


, 𝑘
2

𝑈


, 𝑘𝜔𝑈


, 𝜔
2

𝑈


, . . .) = 0, (8)
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where 𝑈 = 𝑈(𝜉), and prime denotes derivative with respect
to 𝜉. We assume that the solution of (8) can be expressed by
a polynomial in (𝐺/𝐺) as follows:

𝑈 (𝜉) =

𝑚

∑

𝑖=1

𝛼
𝑖
(

𝐺


𝐺

)

𝑖

+ 𝛼
0
, 𝛼
𝑚

̸= 0, (9)

where 𝛼
0
and 𝛼

𝑖
, for 𝑖 = 1, 2, . . . , 𝑚, are constants to be

determined later and 𝐺(𝜉) satisfies a second order linear

ordinary differential equation (LODE):

𝑑
2
𝐺 (𝜉)

𝑑𝜉
2

+ 𝜆

𝑑𝐺 (𝜉)

𝑑𝜉

+ 𝜇𝐺 (𝜉) = 0, (10)

where 𝜆 and 𝜇 are arbitrary constants. Using the general
solutions of (10), we have

𝐺


(𝜉)

𝐺 (𝜉)

=

{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{

{

√𝜆
2
− 4𝜇

2

(

𝐶
1
sinh((√𝜆2 − 4𝜇/2) 𝜉) + 𝐶

2
cosh ((√𝜆2 − 4𝜇/2) 𝜉)

𝐶
1
cosh ((√𝜆2 − 4𝜇/2) 𝜉) + 𝐶

2
sinh((√𝜆2 − 4𝜇/2) 𝜉)

) −

𝜆

2

, 𝜆
2
− 4𝜇 > 0,

√4𝜇 − 𝜆
2

2

(

−𝐶
1
sin((√4𝜇 − 𝜆2/2) 𝜉) + 𝐶

2
cos((√4𝜇 − 𝜆2/2) 𝜉)

𝐶
1
cos((√4𝜇 − 𝜆2/2) 𝜉) + 𝐶

2
sin((√4𝜇 − 𝜆2/2) 𝜉)

) −

𝜆

2

, 𝜆
2
− 4𝜇 < 0,

(11)

and it follows from (9) and (10), that

𝑈


= −

𝑚

∑

ℓ=1

ℓ𝛼
ℓ
((

𝐺


𝐺

)

ℓ+1

+ 𝜆(

𝐺


𝐺

)

ℓ

+ 𝜇(

𝐺


𝐺

)

ℓ−1

) ,

𝑈


=

𝑚

∑

ℓ=1

ℓ𝛼
ℓ
((ℓ + 1) (

𝐺


𝐺

)

ℓ+2

+ (2ℓ + 1) 𝜆(

𝐺


𝐺

)

ℓ+1

+ ℓ (𝜆
2

+ 2𝜇)(

𝐺


𝐺

)

ℓ

+ (2ℓ − 1) 𝜆𝜇(

𝐺


𝐺

)

ℓ−1

+ (ℓ − 1) 𝜇
2

(

𝐺


𝐺

)

ℓ−2

) ,

(12)

and so on, here the prime denotes the derivative with respec-
tive to 𝜉. To determine 𝑢 explicitly, we take the following four
steps.

Step 1. Determine the integer𝑚 by substituting (9) alongwith
(10) into (8) and balance the highest order nonlinear term(s)
and the highest order partial derivative.

Step 2. Substitute (9) to give the value of 𝑚 determined in
Step 1 along with (10) into (8) and collect all terms with
the same order of (𝐺/𝐺) together, the left-hand side of (8)
is converted into a polynomial in (𝐺


/𝐺). Then, set each

coefficient of this polynomial to zero to derive a set of
algebraic equations for 𝑘, 𝜔, 𝛼

0
, and 𝛼

𝑖
, for 𝑖 = 1, 2, . . . , 𝑚.

Step 3. Solve the system of algebraic equations obtained in
Step 2, for 𝑘, 𝜔, 𝛼

0
, and 𝛼

𝑖
, for 𝑖 = 1, 2, . . . , 𝑚, by the use of

Maple.

Step 4. Use the results obtained in the above steps to derive
a series of fundamental solutions 𝑢(𝜉) of (8) depending on
(𝐺

/𝐺); since the solutions of (10) have been well known for

us, then we can obtain exact solutions of (7).

3. Application

In this section, we will demonstrate the (𝐺/𝐺)-expansion
method on three of the well-known Boussinesq type equa-
tions (5) and (6).

3.1. Boussinesq Equation. To look for the traveling wave
solution of Boussinesq equation (5), we use the gauge trans-
formation:

𝑢 (𝑥, 𝑡) = 𝑈 (𝜉) , (13)

where 𝜉 = 𝑘𝑥 + 𝜔𝑡, and 𝑘 and 𝜔 are constants. We substitute
(13) into (5) to obtain the nonlinear ordinary differential
equation

(𝜔
2

− 𝑘
2

)𝑈


− 𝑘
2

(

1

2

𝑈
2

+ 𝑞𝑘
2

𝑈


)



= 0. (14)

According to Step 1, we get𝑚+4 = 2𝑚+2; hence,𝑚 = 2. We
then suppose that (14) has the following formal solutions:

𝑈 = 𝛼
2
(

𝐺


𝐺

)

2

+ 𝛼
1
(

𝐺


𝐺

) + 𝛼
0
, 𝛼
2
̸= 0, (15)

where 𝛼
2
, 𝛼
1
, and 𝛼

0
are constants which are unknowns

to be determined later. Substituting (15) along with (10)
into (14) and collecting all terms with the same order of
(𝐺

/𝐺) together, the left-hand sides of (14) are converted

into a polynomial in (𝐺/𝐺). Setting each coefficient of each
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polynomial to zero, we derive a set of algebraic equations for
𝑘, 𝜔, 𝜆, 𝜇, 𝛼

0
, 𝛼
1
, and 𝛼

2
as follows:

(

𝐺


𝐺

)

0

: (−𝜇𝜆 (𝜆
2

+ 8𝜇) 𝛼
1
− 2𝜇
2

𝛼
2
(8𝜇 + 7𝜆

2

)) 𝑞𝑘
4

+ (−2𝛼
2

1
𝜇
2

− 𝜆𝛼
1
(1 + 2𝛼

0
) 𝜇 − 2𝜇

2

(1 + 2𝛼
0
) 𝛼
2
) 𝑘
2

+ 2𝜔
2

𝛼
2
𝜇
2

+ 𝜔
2

𝛼
1
𝜆𝜇 = 0,

(

𝐺


𝐺

)

1

: ((−22𝜇𝜆
2

− 16𝜇
2

− 𝜆
4

) 𝛼
1

−30𝜇𝜆𝛼
2
(4𝜇 + 𝜆

2

)) 𝑞𝑘
4

+ (−6𝛼
2

1
𝜆𝜇 + (−2𝜇 − 𝜆

2

− 2𝛼
0
𝜆
2

− 4𝛼
0
𝜇 − 12𝛼

2
𝜇
2

) 𝛼
1

−6𝜇𝜆𝛼
2
(1 + 2𝛼

0
) ) 𝑘
2

+ 𝜔
2

(2𝜇 + 𝜆
2

) 𝛼
1

+ 6𝜔
2

𝛼
2
𝜆𝜇 = 0,

(

𝐺


𝐺

)

2

: (−15𝜆 (4𝜇 + 𝜆
2

) 𝛼
1

−8𝛼
2
(29𝜇𝜆

2

+ 2𝜆
4

+ 17𝜇
2

)) 𝑞𝑘
4

+ ((−4𝜆
2

− 8𝜇) 𝛼
1

2

− 3𝜆 (2𝛼
0
+ 1 + 10𝜇𝛼

2
) 𝛼
1

−4𝛼
2
(3𝛼
2
𝜇
2

+ 2𝜇 + 𝜆
2

+ 4𝛼
0
𝜇 + 2𝛼

0
𝜆
2

)) 𝑘
2

+ 3𝜔
2

𝛼
1
𝜆 + 4𝜔

2

𝛼
2
(2𝜇 + 𝜆

2

) = 0,

(

𝐺


𝐺

)

3

: ((−40𝜇 − 50𝜆
2

) 𝛼
1
− 10𝜆𝛼

2
(13𝜆
2

+ 44𝜇)) 𝑞𝑘
4

+ (−10𝛼
2

1
𝜆 + (−36𝜇𝛼

2
− 18𝛼

2
𝜆
2

− 2 − 4𝛼
0
) 𝛼
1

−2𝛼
2
𝜆 (14𝜇𝛼

2
+ 5 + 10𝛼

0
) ) 𝑘
2

+ 2𝜔
2

𝛼
1
+ 10𝜔

2

𝛼
2
𝜆 = 0,

(

𝐺


𝐺

)

4

: (−60𝛼
1
𝜆 − 30𝛼

2
(11𝜆
2

+ 8𝜇)) 𝑞𝑘
4

+ ( − 6𝛼
2

1
− 42 𝛼

2
𝛼
1
𝜆

−2 𝛼
2
(16𝜇𝛼

2
+ 8𝛼
2
𝜆
2

+ 3 + 6𝛼
0
)) 𝑘
2

+ 6𝜔
2

𝛼
2
= 0,

(

𝐺


𝐺

)

5

: (−24𝛼
1
− 336𝛼

2
𝜆) 𝑞𝑘
4

+ (−36𝛼
2

2
𝜆 − 24𝛼

2
𝛼
1
) 𝑘
2

= 0,

(

𝐺


𝐺

)

6

: −120𝑞𝑘
4

𝛼
2
− 10𝑘

2

𝛼
2

2
= 0.
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Figure 1: Hyperbolic function solution (20a) of the Boussinesq
equation (5) for 𝑞 = −1, 𝑘 = −1, 𝜔 = 1/2, 𝜆 = 4, 𝜇 = 1, and 𝜂H = 0.

Solving the obtained algebraic equations by the use of Maple,
we get the following results:

{𝛼
0
= −

8𝑞𝑘
4
𝜇 + 𝑞𝑘

4
𝜆
2
− 𝜔
2
+ 𝑘
2

𝑘
2

,

𝛼
1
= −12𝑘

2

𝑞𝜆, 𝛼
2
= −12𝑘

2

𝑞} ,

(17)

and 𝑘, 𝜔, 𝜆, and 𝜇 are arbitrary constants. Therefore, substi-
tute the previous case in (15), we get

𝑈 = − 12𝑘
2

𝑞(

𝐺


𝐺

)

2

− 12𝑘
2

𝑞𝜆(

𝐺


𝐺

)

−

8𝑞𝑘
4
𝜇 + 𝑞𝑘

4
𝜆
2
− 𝜔
2
+ 𝑘
2

𝑘
2

.

(18)

Substituting the general solutions (11) into (18), we obtain
three types of travelingwave solutions of Boussinesq equation
(5) in the view of the positive, negative, or zero of 𝜆2 − 4𝜇.

When D = 𝜆
2
− 4𝜇 > 0, we obtain hyperbolic function

solution 𝑈H of Boussinesq equation (5) (see Figure 1) as
follows:

𝑈H (𝜉)

= −3𝑘
2

𝑞 (( (√D [𝐶
1
sinh ((1/2)√D𝜉)

+ 𝐶
2
cosh ((1/2)√D𝜉)])

× (𝐶
2
sinh ((1/2)√D𝜉)

+ 𝐶
1
cosh ((1/2)√D𝜉))

−1

) − 𝜆)

2
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− 6𝑘
2

𝑞𝜆 (( (√D [𝐶
1
sinh ((1/2)√D𝜉)

+ 𝐶
2
cosh ((1/2)√D𝜉)])

× (𝐶
2
sinh ((1/2)√D𝜉)

+ 𝐶
1
cosh ((1/2)√D𝜉))

−1

) − 𝜆)

−

8𝑞𝑘
4
𝜇 + 𝑞𝑘

4
𝜆
2
− 𝜔
2
+ 𝑘
2

𝑘
2

,

(19)

where 𝜉 = 𝑘𝑥 + 𝜔𝑡, and 𝐶
1
, 𝐶
2
are arbitrary constants. It is

easy to see that the hyperbolic solution (19) can be rewritten
at 𝐶2
1
> 𝐶
2

2
as follows:

𝑢H (𝑥, 𝑡) = − 3𝑘
2

𝑞Dtanh2 (1
2

√D𝜉 + 𝜂H)

−

−2𝑞𝑘
4D − 𝜔

2
+ 𝑘
2

𝑘
2

,

(20a)

while at 𝐶2
1
< 𝐶
2

2
, one can obtain

𝑢H (𝑥, 𝑡) = − 3𝑘
2

𝑞Dcoth2 (1
2

√D𝜉 + 𝜂H)

−

−2𝑞𝑘
4D − 𝜔

2
+ 𝑘
2

𝑘
2

,

(20b)

where 𝜉 = 𝑘𝑥 + 𝜔𝑡, 𝜂H = tanh−1(𝐶
1
/𝐶
2
), and 𝑘, 𝜔, 𝜆, and

𝜇 are arbitrary constants. Now, when D = 𝜆
2
− 4𝜇 < 0, the

trigonometric function solutions 𝑈T of Boussinesq equation
(5) will be

𝑈T (𝜉)

= −3𝑘
2

𝑞 (( (√−D [−𝐶
1
sin ((1/2)√−D𝜉)

+ 𝐶
2
cos ((1/2)√−D𝜉)])

× (𝐶
2
sin ((1/2)√−D𝜉)

+ 𝐶
1
cos ((1/2)√−D𝜉))

−1

) − 𝜆)

2

− 6𝑘
2

𝑞𝜆 (( (√−D [−𝐶
1
sin ((1/2)√−D𝜉)

+𝐶
2
cos ((1/2)√−D𝜉)])

× (𝐶
2
sin ((1/2)√−D𝜉)

+𝐶
1
cos ((1/2)√−D𝜉))

−1

) − 𝜆)

−

8𝑞𝑘
4
𝜇 + 𝑞𝑘

4
𝜆
2
− 𝜔
2
+ 𝑘
2

𝑘
2

,

(21)
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Figure 2: Trigonometric function solution (22a) of the Boussinesq
equation (5) for 𝑞 = −1, 𝑘 = −1, 𝜔 = 1/20, 𝜆 = 4, 𝜇 = −1, and
𝜂T = 0.

where 𝜉 = 𝑘𝑥 + 𝜔𝑡, and 𝐶
1
, 𝐶
2
are arbitrary constants (see

Figure 2). Similarly, the trigonometric solutions (21) can be
rewritten at 𝐶2

1
> 𝐶
2

2
and 𝐶2

1
< 𝐶
2

2
, respectively, as follows:

𝑢T (𝑥, 𝑡) = 3𝑘
2

𝑞Dtan2 (1
2

√−D𝜉 + 𝜂T)

−

−2𝑞𝑘
4D − 𝜔

2
+ 𝑘
2

𝑘
2

,

(22a)

𝑢T (𝑥, 𝑡) = 3𝑘
2

𝑞Dcot2 (1
2

√−D𝜉 + 𝜂T)

−

−2𝑞𝑘
4D − 𝜔

2
+ 𝑘
2

𝑘
2

,

(22b)

where 𝜉 = 𝑘𝑥 + 𝜔𝑡, 𝜂T = tan−1(𝐶
1
/𝐶
2
), and 𝑘, 𝜔, 𝜆, and 𝜇

are arbitrary constants. Finally, when 𝜆2 − 4𝜇 = 0, then the
rational function solutions to (5) will be

𝑢rat (𝑥, 𝑡) = −
12𝑘
2
𝑞𝐶
2

2

(𝐶
1
+ 𝐶
2
(𝑘𝑥 + 𝜔𝑡))

2
+

𝜔
2

𝑘
2
− 1, (23)

where 𝐶
1
, 𝐶
2
, 𝑘, and 𝜔 are arbitrary constants.

3.2. Improved Boussinesq Equation. Similar to the previous
section, to obtain the traveling wave solution of improved
Boussinesq equation (6) we substitute the gauge transforma-
tion (13) into (6) to obtain nonlinear ordinary differential
equation

(𝜔
2

− 𝑘
2

)𝑈


− 𝑘
2

(

1

2

𝑈
2

+ 𝑞𝜔
2

𝑈


)



= 0. (24)

According to Step 1, we get 𝑚 + 4 = 2𝑚 + 2; hence, 𝑚 = 2.
Then, similar to the previous section, we suppose that (24) has
the same formal solutions (15). Substituting (15) along with
(10) into (24) and collecting all terms with the same order
of (𝐺/𝐺) together, the left-hand sides of (24) are converted
into a polynomial in (𝐺/𝐺). Setting each coefficient of each
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polynomial to zero, we derive a set of algebraic equations for
𝑘, 𝜔, 𝜆, 𝜇, 𝛼

0
, 𝛼
1
, and 𝛼

2
as follows:

(

𝐺


𝐺

)

0

: ((−𝜇𝜔
2

𝜆 (𝜆
2

+ 8𝜇) 𝛼
1
− 2𝜇
2

𝜔
2

𝛼
2
(8𝜇 + 7𝜆

2

)) 𝑞

−2𝛼
2

1
𝜇
2

− 𝜆𝜇 (1 + 2𝛼
0
) 𝛼
1
− 2𝜇
2

𝛼
2
(1 + 2𝛼

0
)) 𝑘
2

+ 2𝜔
2

𝛼
2
𝜇
2

+ 𝜔
2

𝛼
1
𝜆𝜇 = 0,

(

𝐺


𝐺

)

1

: ((−𝜔
2

(22𝜆
2

𝜇 + 16𝜇
2

+ 𝜆
4

) 𝛼
1

−30𝜇𝜔
2

𝛼
2
𝜆 (𝜆
2

+ 4𝜇)) 𝑞 − 6𝛼
1

2

𝜆𝜇

+ (−2𝜇 − 𝜆
2

− 12𝛼
2
𝜇
2

− 4𝛼
0
𝜇 − 2𝛼

0
𝜆
2

) 𝛼
1

−6𝜆𝜇𝛼
2
(1 + 2𝛼

0
) ) 𝑘
2

+ 𝜔
2

(2𝜇 + 𝜆
2

) 𝛼
1
+ 6𝜔
2

𝛼
2
𝜆𝜇 = 0,

(

𝐺


𝐺

)

2

: ((−15𝜔
2

𝜆 (𝜆
2

+ 4𝜇) 𝛼
1

−8𝜔
2

𝛼
2
(29𝜆
2

𝜇 + 2𝜆
4

+ 17𝜇
2

)) 𝑞

+ (−4𝜆
2

− 8𝜇) 𝛼
2

1
− 3𝜆 (1 + 2𝛼

0
+ 10𝛼

2
𝜇) 𝛼
1

−4𝛼
2
(3𝛼
2
𝜇
2

+ 2𝜇 + 𝜆
2

+ 4𝛼
0
𝜇 + 2𝛼

0
𝜆
2

)) 𝑘
2

+ 3𝜔
2

𝛼
1
𝜆 + 4𝜔

2

𝛼
2
(2𝜇 + 𝜆

2

) = 0,

(

𝐺


𝐺

)

3

: ((−10𝜔
2

(4𝜇 + 5𝜆
2

) 𝛼
1

−10𝜔
2

𝛼
2
𝜆 (13𝜆

2

+ 44𝜇)) 𝑞 − 10𝛼
2

1
𝜆

+ (−4𝛼
0
− 2 − 36𝛼

2
𝜇 − 18𝛼

2
𝜆
2

) 𝛼
1

−2𝛼
2
𝜆 (14𝛼

2
𝜇 + 10𝛼

0
+ 5) ) 𝑘

2

+ 10𝜔
2

𝛼
2
𝜆 + 2𝜔

2

𝛼
1
= 0,

(

𝐺


𝐺

)

4

: ((−60𝜔
2

𝛼
1
𝜆 − 30𝜔

2

𝛼
2
(11𝜆
2

+ 8𝜇)) 𝑞

− 6𝛼
2

1
− 42𝛼

2
𝛼
1
𝜆

−2𝛼
2
(16𝛼
2
𝜇 + 8𝛼

2
𝜆
2

+ 3 + 6𝛼
0
) ) 𝑘
2

+ 6𝜔
2

𝛼
2
= 0,

(

𝐺


𝐺

)

5

: ((−24𝜔
2

𝛼
1
− 336𝜔

2

𝛼
2
𝜆) 𝑞 − 36𝛼

2

2
𝜆 − 24𝛼

2
𝛼
1
) 𝑘
2

= 0,

(

𝐺


𝐺

)

6

: (−10𝛼
2

2
− 120𝑞𝜔

2

𝛼
2
) 𝑘
2

= 0,

(25)

0
123

0
1

2
3

−10

−5

0

5

−3
−2

−1 −3
−2−1

Figure 3: Hyperbolic function solution (20a) of the improved
Boussinesq equation (6) for 𝑞 = −1, 𝑘 = −1, 𝜔 = 1/2, 𝜆 = 4, 𝜇 = 1,
and 𝜂H = 0.

and solving by use of Maple, we get the following results:

{𝛼
0
= −

8𝑞𝑘
2
𝜔
2
𝜇 + 𝑞𝑘

2
𝜔
2
𝜆
2
+ 𝑘
2
− 𝜔
2

𝑘
2

,

𝛼
1
= −12𝜔

2

𝑞𝜆, 𝛼
2
= −12𝜔

2

𝑞} ,

(26)

and 𝑘, 𝜔, 𝜆, and 𝜇 are arbitrary constants. Therefore, the
solution (15) leads to

𝑈 = − 12𝜔
2

𝑞(

𝐺


𝐺

)

2

− 12𝜔
2

𝑞𝜆(

𝐺


𝐺

)

−

8𝑞𝑘
2
𝜔
2
𝜇 + 𝑞𝑘

2
𝜔
2
𝜆
2
+ 𝑘
2
− 𝜔
2

𝑘
2

,

(27)

Now, forD = 𝜆
2
−4𝜇 > 0 andD = 𝜆

2
−4𝜇 < 0, the hyperbolic

function solution 𝑈H, and trigonometric function solution
𝑈T, of improved Boussinesq equation (6) are obtained as
follows (see Figures 3 and 4), respectively:

𝑈H (𝜉)

= −3𝜔
2

𝑞 (( (√D [𝐶
1
sinh ((1/2)√D𝜉)

+ 𝐶
2
cosh ((1/2)√D𝜉)])

× (𝐶
2
sinh ((1/2)√D𝜉)

+ 𝐶
1
cosh ((1/2)√D𝜉))

−1

) − 𝜆)

2
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−1.1

−1.05

−1

−0.95

−0.9

0
1

2
3

−3
−2

−1

t
0

1
23

−3−2
−1

x

Figure 4: Trigonometric function solution (22a) of the improved
Boussinesq equation (6) for 𝑞 = −1, 𝑘 = −1, 𝜔 = 1/20, 𝜆 = 4,
𝜇 = −1, and 𝜂T = 0.

− 6𝜔
2

𝑞𝜆 (( (√D [𝐶
1
sinh ((1/2)√D𝜉)

+ 𝐶
2
cosh ((1/2)√D𝜉)])

× (𝐶
2
sinh ((1/2)√D𝜉)

+ 𝐶
1
cosh ((1/2)√D𝜉))

−1

) − 𝜆)

−

8𝑞𝑘
2
𝜔
2
𝜇 + 𝑞𝑘

2
𝜔
2
𝜆
2
+ 𝑘
2
− 𝜔
2

𝑘
2

,

(28)

𝑈T (𝜉)

= −3𝜔
2

𝑞 (( (√−D [−𝐶
1
sin ((1/2)√−D𝜉)

+ 𝐶
2
cos ((1/2)√−D𝜉)])

× (𝐶
2
sin ((1/2)√−D𝜉)

+ 𝐶
1
cos ((1/2)√−D𝜉))

−1

) − 𝜆)

2

− 6𝜔
2

𝑞𝜆 (( (√−D [−𝐶
1
sin ((1/2)√−D𝜉)

+𝐶
2
cos ((1/2)√−D𝜉)])

× (𝐶
2
sin ((1/2)√−D𝜉)

+𝐶
1
cos ((1/2)√−D𝜉))

−1

) − 𝜆)

−

8𝑞𝑘
2
𝜔
2
𝜇 + 𝑞𝑘

2
𝜔
2
𝜆
2
+ 𝑘
2
− 𝜔
2

𝑘
2

,

(29)

where 𝜉 = 𝑘𝑥+𝜔𝑡, and𝐶
1
,𝐶
2
are arbitrary constants. It is easy

to see that the hyperbolic solution (28) and trigonometric

solution (29) can be rewritten at 𝐶2
1
> 𝐶
2

2
as follows:

𝑢H (𝑥, 𝑡) = − 3𝜔
2

𝑞Dtanh2 (1
2

√D𝜉 + 𝜂H)

−

−2𝑞𝑘
2
𝜔
2D − 𝜔

2
+ 𝑘
2

𝑘
2

,

(30a)

𝑢T (𝑥, 𝑡) = 3𝜔
2

𝑞Dtan2 (1
2

√−D𝜉 + 𝜂T)

−

−2𝑞𝑘
2
𝜔
2D − 𝜔

2
+ 𝑘
2

𝑘
2

,

(30b)

while at 𝐶2
1
< 𝐶
2

2
, one can obtain

𝑢H (𝑥, 𝑡) = − 3𝜔
2

𝑞Dcoth2 (1
2

√D𝜉 + 𝜂H)

−

−2𝑞𝑘
2
𝜔
2D − 𝜔

2
+ 𝑘
2

𝑘
2

,

(31a)

𝑢T (𝑥, 𝑡) = 3𝜔
2

𝑞Dcot2 (1
2

√−D𝜉 + 𝜂T)

−

−2𝑞𝑘
2
𝜔
2D − 𝜔

2
+ 𝑘
2

𝑘
2

,

(31b)

where 𝜉 = 𝑘𝑥+𝜔𝑡, 𝜂H = tanh−1(𝐶
1
/𝐶
2
), 𝜂T = tan−1(𝐶

1
/𝐶
2
),

and 𝑘, 𝜔, 𝜆, and 𝜇 are arbitrary constants.
Finally, when 𝜆2 − 4𝜇 = 0, then the rational function

solutions of improved Boussinesq equation (6) will be

𝑢rat (𝑥, 𝑡) = −
12𝜔
2
𝑞𝐶
2

2

(𝐶
1
+ 𝐶
2
(𝑘𝑥 + 𝜔𝑡))

2
+

𝜔
2

𝑘
2
− 1, (32)

where 𝐶
1
, 𝐶
2
, 𝑘, and 𝜔 are arbitrary constants.

4. Conclusions

This study shows that the (𝐺

/𝐺)-expansion method is

quite efficient and practically well suited for use in finding
exact solutions for the Boussinesq equation and improved
Boussinesq equations. The reliability of the method and the
reduction in the size of computational domain give this
method a wider applicability. Though the obtained solutions
represent only a small part of the large variety of possible
solutions for the equations considered, they might serve as
seeding solutions for a class of localized structures existing in
the physical systems. Furthermore, our solutions are in more
general forms, and many known solutions to these equations
are only special cases of them.With the aid of Maple, we have
assured the correctness of the obtained solutions by putting
them back into the original equation.
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The Mickens iteration method (MIM) is modified to solve self-excited systems containing nonsmooth nonlinearities and/or
nonlinear damping terms. If the MIM is implemented routinely, the unknown frequency and amplitude of limit cycle (LC) would
couple to each other in complicated nonlinear algebraic equations at each iteration. It is cumbersome to solve these algebraic
equations, especially for nonsmooth systems. In the modified procedures, the unknown frequency is substituted by the determined
value obtained at the previous iteration. By this means, the frequency is decoupled from the nonlinear terms. Numerical examples
show that the LCs obtained by the modified MIM agree well with numerical results. The presented method is very suitable for
solving self-excited systems, especially those with nonlinear damping and nonsmooth nonlinearities.

1. Introduction

Recent years have witnessed the wide applications of iter-
ation techniques, such as the Mickens iteration method
(MIM) [1–6] and the variational iteration method [7–10].
In order to improve the efficiency, Lim and Wu [11], Mar-
inca and Herisanu [12], and Hu [13] modified the MIM,
respectively.

In principle, the approximations can be obtained to any
desired accuracy by the MIM as long as the iteration pro-
ceeds. In theMIM, algebraic equations are introduced at each
iteration to eliminate the so-called secular terms. In the appli-
cations in conservative oscillators, the algebraic equations
are linear. Nonlinear damping and nonsmooth terms appear
widely in many dynamical systems [14, 15]. As for the oscil-
lators with nonlinear damping terms, however, very compli-
cated nonlinear algebraic equations have to be solved at each
iteration [16]. Moreover, the algebraic equations cannot be
deduced for systems with nonsmooth nonlinearities. It
is necessary and worthwhile, therefore, to propose some
approaches to simplify the MIM. This paper will present a
modified iteration algorithm by decoupling the unknown
frequency from nonlinear terms.

2. A Modified MIM

Consider a self-excited oscillator
..

𝑥 +𝑓 (𝑥, ̇𝑥) = 0, (1)

where the superscript denotes the differentiation with respect
to time 𝑡 and𝑓(𝑥, ̇𝑥) is a nonlinear termwith damping terms.
Assume that system (1) has at least one limit cycle (LC) solu-
tion. Since the LC frequency and amplitude are independent
of initial conditions, they should be considered as unknowns
to be determined at every iteration. Denote the angular
frequency as 𝜔 and introduce the transformation as 𝜏 = 𝜔𝑡;
thus, we rewrite (1) as

𝜔
2

𝑥


+ 𝜔
2

𝑥 = 𝜔
2

𝑥 − 𝑓 (𝑥, 𝜔𝑥


) (2)

subject to the following initial conditions:

𝑥 (0) = 𝛼, 𝑥


(0) = 0, (3)

where 𝛼 is the unknown LC amplitude and the superscript
denotes the differentiation with respect to 𝜏. Note that 𝛼 will
be approximated as a series {𝛼

𝑘
} by eliminating the secular
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terms at each iteration stage. In order to obtain the LC, the
MIM [16] can be given as

𝜔
2

𝑘−1
(𝑥


𝑘
+ 𝑥
𝑘
) = 𝜔
2

𝑘−1
𝑥
𝑘−1
− 𝑓 (𝑥

𝑘−1
, 𝜔
𝑘−1
𝑥


𝑘−1
) ,

𝑘 = 1, 2, . . . ,

(4)

with the initial conditions being rewritten at each iteration as

𝑥
𝑘
(0) = 𝛼

𝑘
, 𝑥



𝑘
(0) = 0. (5)

Note that the coefficient of the first harmonic in 𝑥
𝑘−1

remains
still to be an unknown, that is,𝛼

𝑘−1
.This unknownwill couple

with the unknown frequency,𝜔
𝑘−1

, which will result in a cou-
pled nonlinear term (i.e., 𝜔

𝑘−1
𝑥


𝑘−1
) in the right side of (4). If

higher powers of𝑥 exist, these termswill lead to very compli-
cated functions in 𝜔

𝑘−1
and 𝛼

𝑘−1
. Different from conservative

systems, 𝜔2
𝑘−1

can no longer be considered as an independent
unknown. In order to simplify theMIM, therefore, amodified
scheme is proposed as

𝜔
2

𝑘−1
(𝑥


𝑘
+ 𝑥
𝑘
) = 𝜔
2

𝑘−1
𝑥
𝑘−1
− 𝑓 (𝑥

𝑘−1
, 𝜔
𝑘−2
𝑥


𝑘−1
) ,

𝑘 = 1, 2, . . . .

(6)

As 𝑘 = 1, we choose 𝜔
−1
= 𝜔
0
. In the 𝑘th iteration, 𝜔

𝑘−2
is a

given constant that is obtained at the (𝑘 − 1)th iteration. The
square of the unknown frequency, that is,𝜔2

𝑘−1
, can be treated

as an independent parameter, because 𝜔
𝑘−1

appears only in
𝜔
2

𝑘−1
𝑥
𝑘−1

. According to the initial conditions, the starting
iteration solution can be chosen as

𝑥
0
(𝜏) = 𝛼

0
cos 𝜏. (7)

It is obvious that as long as the series {𝜔
𝑘
, 𝑘 = 1, 2, . . .} and

{𝑥
𝑘
, 𝑘 = 1, 2, . . .} are convergent, they must converge to the

exact solutions. The right-hand side of (6) can be expressed
by Fourier series as

𝜔
2

𝑘−1
𝑥
𝑘−1
− 𝑓 (𝑥

𝑘−1
, 𝜔
𝑘−2
𝑥


𝑘−1
)

=

𝜑(𝑘)

∑

𝑖=1

[𝑐
𝑘−1,𝑖

(𝜔
2

𝑘−1
, 𝛼
𝑘−1
) cos (𝑖𝜏)

+ 𝑠
𝑘−1,𝑖

(𝜔
2

𝑘−1
, 𝛼
𝑘−1
) sin (𝑖𝜏)] ,

(8)

where the harmonic coefficients 𝑐
𝑘−1,𝑖
(𝜔
2

𝑘−1
, 𝛼
𝑘−1
) and

𝑠
𝑘−1,𝑖
(𝜔
2

𝑘−1
, 𝛼
𝑘−1
) are functions in 𝜔2

𝑘−1
and 𝛼

𝑘−1
. Here, 𝜑(𝑘) is

a positive integer denoting the order of the highest harmonic.
Approximations𝜔

𝑘−1
and 𝛼
𝑘−1

are determined by eliminating
the secular terms, that is, letting

𝑐
𝑘−1,1

(𝜔
2

𝑘−1
, 𝛼
𝑘−1
) = 0, 𝑠

𝑘−1,1
(𝜔
2

𝑘−1
, 𝛼
𝑘−1
) = 0,

𝑘 = 1, 2, . . . .

(9)

These equations can be solved analytically if 𝜔2
𝑘−1
𝛼
𝑘−1

is
considered as an independent unknown. They can also be
numerically solved by Newton-Raphson method. The latter
is employed in this study.

Different from the existing procedures [16], as 𝑘 increases,
𝜔
2

𝑘−1
is always an independent unknown in the modified

MIM. Moreover, unknown 𝜔
𝑘−1

does not couple with non-
linear terms. It simplifies the MIM to a large extent, as shown
later.

3. Numerical Examples

Example 1 (system with nonlinear damping terms). The
van der Pol equation is chosen to illustrate the previous
procedures more clearly:

..

𝑥 +𝑥 + 𝜀 (𝑥
2

− 1) ̇𝑥 = 0, (10)

where 𝜀 is a given constant. As known, (10) has a stable LC
solution when 𝜀 > 0 while an unstable one when 𝜀 < 0.

According to themodifiedMIM, the corresponding itera-
tion scheme is given as

..

𝑥
𝑘
+ 𝜔
2

𝑘−1
𝑥
𝑘
= 𝜔
2

𝑘−1
𝑥
𝑘−1
− 𝑥
𝑘−1
− 𝜀 (𝑥

2

𝑘−1
− 1) ̇𝑥

𝑘
,

𝑘 = 1, 2, . . . .

(11)

Introducing a new time variable 𝜏 = 𝜔
𝑘−1
𝑡 at each iteration

stage, we rewrite (11) as

𝜔
2

𝑘−1
(𝑥


𝑘
+ 𝑥
𝑘
) = 𝜔
2

𝑘−1
𝑥
𝑘−1
− 𝑥
𝑘−1
− 𝜀𝜔
𝑘−1
(𝑥
2

𝑘−1
− 1) 𝑥



𝑘−1
,

(12)

where the superscript denotes the derivative with respect to
𝜏. The iteration algorithm begins with an initial solution

𝑥
0
(𝜏) = 𝛼

0
cos 𝜏. (13)

Then, we obtain the governing equations in 𝑥
1
(𝜏) as

𝜔
2

0
(𝑥


1
+ 𝑥
1
) = (𝜔

2

0
𝛼
0
− 𝛼
0
) cos 𝜏 − (𝜀𝛼

0
𝜔
0
− 𝜀

𝛼
3

0
𝜔
0

4

) sin 𝜏

+ 𝜀

𝛼
3

0
𝜔
0

4

sin 3𝜏, 𝑥
1
(0) = 𝛼

1
, 𝑥


1
(0) = 0.

(14)

Equating the coefficients of cos 𝜏 and sin 𝜏 to zeros results into

𝜔
2

0
𝛼
0
− 𝛼
0
= 0, 𝜀𝛼

0
𝜔
0
− 𝜀

𝛼
3

0
𝜔
0

4

= 0 (15)

which yields that 𝜔
0
= 1 and 𝛼

0
= 2. Substituting them into

(16), we have

𝑥


1
+ 𝑥
1
= 2𝜀 sin 3𝜏. (16)

Considering initial conditions (14), we can obtain

𝑥
1
= 𝛼
1
cos 𝜏 + 3𝜀 sin 𝜏

4

−

𝜀 sin 3𝜏
4

, (17)

where 𝛼
1
is to be determined at the next iteration stage.
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Table 1: Comparison of the second-order frequency obtained by IS and LP method with the forth-order approximation obtained by LP
method, when 𝜀 = 1.

𝜀 𝜔
IS
2

𝜔
LP
2

𝜔
LP
4

|𝜔
IS
2
− 𝜔

LP
4
| |𝜔

LP
2
− 𝜔

LP
4
|

1 0.944799584 0.93750000 0.943033854 1.76𝐸 − 3 5.53𝐸 − 3

0.5 0.984820946 0.98437500 0.984720866 1.00𝐸 − 4 3.46𝐸 − 4

0.25 0.996121460 0.99609375 0.996115367 6.09𝐸 − 6 2.16𝐸 − 5

According to iterative scheme (11), the equation in 𝑥
2
(𝜏)

is deduced as

𝜔
2

1
(𝑥


2
+ 𝑥
2
) =

9

∑

𝑖=1

[𝑐
1,𝑖
(𝜔
2

1
, 𝛼
1
) cos (𝑖𝜔

1
𝑡)

+𝑠
1,𝑖
(𝜔
2

1
, 𝛼
1
) sin (𝑖𝜔

1
𝑡)] .

(18)

Equate the coefficients of cos 𝜏 and sin 𝜏 to zeros:

3𝜔
2

1

4

−

15𝛼
1

64

−

𝛼
3

1

4

−

3

4

= 0,

𝛼
1
𝜔
2

1
− 𝛼
1
−

𝛼
3

1

8

+

75

128

= 0.

(19)

By solving (19) numerically, we can determine 𝛼
1
and 𝜔2

1
.

Here, we obtain the second-order approximation and expand
it as

𝜔
IS
2
= 1 −

𝜀
2

16

+

29𝜀
4

2048

+ 𝑜 (𝜀
4

) . (20)

According to [17], the Lindstedt-Poincare (LP) method pro-
vides the second- and forth-order approximate frequency
𝜔
LP
2
= 1−𝜀

2
/16 and𝜔LP

4
= 1−𝜀

2
/16+17𝜀

4
/3072, respectively.

The attained approximation agrees well with the 4th-order LP
solution. Table 1 indicates that 𝜔IS

2
is more accurate than 𝜔LP

2

when compared with 𝜔LP
4
.

Figure 1 shows the comparison of the phase planes
between iteration solutions (𝑥

𝑘
) and numerical result. Rapid

convergence of 𝑥
𝑘
to the numerical result can be observed.

Note that all numerical solutions are obtained by the fourth-
order Runge-Kutta (RK) integration method. When |𝜀| > 1,
the iteration procedure presented by Chen and Liu [16] does
not converge. This is probably the difference between the
starting function (𝑥

0
= 𝛼
0
cos 𝑡) and the exact solution is

too large. The modified MIM is still effective for |𝜀| ≤ 1.5. As
Figure 2 shows, the LC solution with 𝜀 = 1.5 obtained by the
presented method is in excellent agreement with numerical
one. It is necessary to point out that the presented method is
able to track unstable LCs, whereas the RK method is not.

Also plotted in Figure 2 are the results provided by the LP
method [17].The iteration results aremuchmore precise than
the 2nd and 4th-order LP approximations.

It is necessary to point out that the presented method is
able to track unstable LCs, whereas the RK method is not.
Figure 3 shows an unstable LC of the van der Pol equation
with 𝜀 = −1 obtained by the presentedmethod. As shown, the
RK begins at the LC; however, the solution curve converges
to the equilibrium.

IS2
IS4

IS6
RK
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1
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−3

Displacement
−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

Figure 1:The LC solutions of system (10) with 𝜀 = 1 obtained by the
modifiedMIM and RKmethod, respectively.The 𝑘th-order solution
(𝑥
𝑘
) is represented by IS𝑘.

In order to further demonstrate the merit of the modified
MIM when applied to problems with nonlinear damping
terms, we consider the following self-excited system [18]:

..

𝑥 +𝑥 + 𝜀 [( ̇𝑥)
2

− 1] ̇𝑥 + 𝑓 ( ̇𝑥) = 0. (21)

The nonlinear term contains high powers of ̇𝑥, that is, 𝑓( ̇𝑥) =
( ̇𝑥)
3. If the originalMIM is employed, the algebraic equations

governing 𝜔 will become very complicated. Therefore, it
is necessary to employ the modified approach. Figure 4
indicates that the approximations obtained by the presented
method converge rapidly to the numerical solution as 𝑘
increased.

Example 2 (systemwith nonsmooth nonlinearity). Themod-
ified MVIM is further applied to nonsmooth dynamical
system expressed as

..

𝑥 +𝑓 (𝑥, ̇𝑥) + 𝜂𝑔 (𝑥) = 0. (22)

Here, 𝑓(𝑥, ̇𝑥) is a nonlinear damping term, and 𝑔(𝑥) is a
nonsmooth function. If substituting the 𝑥

𝑘−1
into 𝑔(𝑥), on

account of𝑥
𝑘−1

contained unknown quantities (𝛼
𝑘−1
), so𝑔(𝑥)

can not be expanded as Fourier progression by numerical
integration. To this end, (9) cannot be deduced by eliminating
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Figure 2: The LC solutions of system (10) with 𝜀 = 1.5 obtained by
the modified MIM, RK method, and LP method, respectively. The
iteration solution is denoted as IS and the 𝑘th-order LP approxi-
mation as LP𝑘.
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Figure 3: Comparison of the LC solution of system (10) with 𝜀 = −1,
provided by the modified MIM, and by RK method, respectively.

the secular terms. Likewise, we present the following iteration
scheme:

𝜔
2

𝑘−1
( ̈𝑥
𝑘
+ 𝑥
𝑘
) = 𝜔
2

𝑘−1
𝑥
𝑘−1
+ 𝑓 (𝑥

𝑘−1
, 𝜔
𝑘−2

̇𝑥
𝑘−1
) + 𝜂𝑔 (𝑥

𝑘−2
) .

(23)

In this scheme, 𝑔(𝑥
𝑘−2
) can be expanded as a Fourier series

since 𝛼
𝑘−2

has been determined at the previous iteration.
Let us consider a van der Pol type oscillator with a non-

smooth function as

̈𝑥 + 𝑥 + 𝜀 (1 − 𝑥
2

) ̇𝑥 + 𝜂𝑔 (𝑥) = 0 (24)
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Figure 4:The LC solutions of system (21) with 𝜀 = 1 obtained by the
modifiedMIM and RKmethod, respectively.The 𝑘th-order solution
(𝑥
𝑘
) is represented by IS𝑘.
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Figure 5: LC solutions of system (24) with (25) (𝜀 = 1, 𝜂 = 0.5)
provided by the modified MIM and by RK method, respectively.

with

𝑔 (𝑥) =

{
{
{

{
{
{

{

𝑥 − 1 𝑥 ≥ 1

0 −1 < 𝑥 < 1

𝑥 + 1 𝑥 ≤ −1.

(25)

Figure 5 shows the LC of system (14) with 𝜀 = 1 and 𝜂 =
0.5. The 5th-order approximations obtained by the presented
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Figure 6: LC solutions of system (24) with (26) (𝜀 = 1, 𝜂 = 0.5)
provided by the modified MIM and by RK method, respectively.

method agree well with the numerical solution when the
nonsmooth term is given as

𝑔 (𝑥) = sgn (𝑥) =
{
{

{
{

{

1, 𝑥 > 0

0, 𝑥 = 0

−1, 𝑥 < 0.

(26)

The LC can also be obtained very accurate, as Figure 6 shows.

4. Conclusions

The Mickens iteration method (MIM) has been modified,
so that it is suitable for solving LC solutions of self-excited
systemswith nonsmooth and/or damping nonlinearities. Dif-
ferent from the routinely-used MIM, the modified method
decouples the unknown frequency from nonlinear terms.
This modification simplifies the MIM significantly. Numeri-
cal examples show the feasibility and validity of the presented
method, which implies that it could be applicable to more
nonlinear dynamical systems, especially those with nonlinear
damping terms and nonsmooth nonlinearities.
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The relationship between first integrals of submaximal linearizable third-order ordinary differential equations (ODEs) and their
symmetries is investigated. We obtain the classifying relations between the symmetries and the first integral for submaximal cases
of linear third-order ODEs. It is known that the maximum Lie algebra of the first integral is achieved for the simplest equation and
is four-dimensional.We show that for the other two classes they are not unique.We also obtain counting theorems of the symmetry
properties of the first integrals for these classes of linear third-order ODEs. For the 5 symmetry class of linear third-order ODEs,
the first integrals can have 0, 1, 2, and 3 symmetries, and for the 4 symmetry class of linear third-order ODEs, they are 0, 1, and 2
symmetries, respectively. In the case of submaximal linear higher-order ODEs, we show that their full Lie algebras can be generated
by the subalgebras of certain basic integrals.

1. Introduction

Algebraic properties of first integrals of scalar-order differ-
ential equations have been of interest in the recent literature
since the early works of Lie [1, 2] on symmetries and
invariants ofODEs.TheNoether classification has also drawn
attention to them in [3].The symmetry classification of scalar
ordinary differential equations has been studied in recent
years (see, e.g., [4, 5]). Of the algebraic properties, the max-
imal symmetry properties of first integrals of linear ODEs
have attracted particular attention. In [6], the authors showed
that the full Lie algebra sl(3, 𝑅) of scalar linear second-order
ODEs represented by the simplest free particle equation can
be generated by the three triplets of the three-dimensional
algebras of the two basic integrals and their quotient. In their
work [4], they found that the symmetries of the maximal
cases of scalar linear 𝑛th-order ODEs, 𝑛 ≥ 3, are 𝑛 + 1, 𝑛 + 2,
and 𝑛 + 4. Thus, for scalar linear third-order equations these
correspond to 4, 5, and 7 symmetries. Govinder and Leach
studied the symmetry properties of first integrals of scalar
linear third-order ODEs which belong to these three classes
in [7].They showed that the three equivalence classes each has

certain first integrals with a specific number of point symme-
tries. Later Flessas et al. in [8] examined the symmetry struc-
ture of the first integrals of higher-order equations of maxi-
mal symmetry and they proved some interesting basic propo-
sitions related to the scaling symmetry and basic integrals.

In a recent paper [9], Mahomed andMomoniat, obtained
a classifying relation between the symmetries and the first
integrals of linear or linearizable scalar second-order ODEs.
They presented a complete classification of point symmetries
of first integrals of such linear ODEs, and as a consequence,
they provided a counting theorem for the point symmetries
of first integrals of scalar linearizable second-order ODEs.
They showed that there exist the 0, 1, 2, or 3 point symmetry
cases and that the maximal algebra case is unique. These
authors then considered the problem of classifying the
symmetry property of the first integrals of the simplest third-
order equation 𝑦 = 0 in the paper [10]. They found that
the maximal Lie algebra of a first integral for this equation
is unique and four-dimensional. They also showed that the
Lie algebra of the simplest linear third-order equation is
generated by the symmetries of two basic integrals instead
of three. Moreover, they obtained counting theorems of
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the symmetry properties of the first integrals for such linear
third-order ODEs of maximal symmetry. Furthermore, they
provided insights into the manner in which one can generate
the full Lie algebra of higher-order ODEs of maximal
symmetry from two of their basic integrals.

The discussion of this work is about the Lie algebraic
properties of first integrals of scalar linearizable third-order
ODEs of the submaximal classes which are represented by
𝑦

− 𝑦

= 0 and 𝑦 + 𝑓(𝑥)𝑦 − 𝑦 − 𝑓(𝑥)𝑦 = 0, where

𝑓(𝑥) is an arbitrary function of 𝑥. The former has four-point
symmetries, and the latter has five. As we mentioned earlier,
there was somework [8] done by Flessas et al. for the simplest
class and extended by Mahomed and Momoniat in [10] to
provide a complete analysis on the symmetries and first
integrals for this simplest class of ODEs which included
the maximal algebra case being generated by algebras of
two basic integrals of the equation. In the present study, we
deduce the classifying relation between the point symmetries
and first integrals for the submaximal classes of scalar linear
third-order equations. Then, by using this, we find the point
symmetry properties of the first integrals of the submaximal
classes of third-order equations 𝑦 − 𝑦 = 0 and 𝑦 +
𝑓(𝑥)𝑦


−𝑦

−𝑓(𝑥)𝑦 = 0which also represent all linearizable

by point transformations third-order ODEs that reduce to
these classes.We obtain counting theorems for the number of
point symmetries possessed by an integral of such equations.
Noteworthy is that the maximal algebra is not unique.

In the next section, we study the point symmetry proper-
ties of the integrals of the 4 symmetry class represented by
𝑦

− 𝑦

= 0. This section is to remind the reader under

what conditions point symmetries of first integrals of scalar
linear third-order ODEs exist [10]. Then, in Section 3 we
analyze the class 𝑦 + 𝑓(𝑥)𝑦 − 𝑦 − 𝑓(𝑥)𝑦 = 0 which
has four-point symmetries for the symmetry structure of its
first integrals. In Section 4, we focus on the generation of
the full algebra by subalgebras of certain basic integrals. The
Conclusion contains a summary and hints for future work.

2. Algebraic Properties of the Integrals of
𝑦


−𝑦


= 0

We consider the representative third-order ODE
𝑦


− 𝑦


= 0, (1)
which has five-point symmetries

𝑋
1
=

𝜕

𝜕𝑥

,

𝑋
2
=

𝜕

𝜕𝑦

,

𝑋
3
= 𝑒
𝑥 𝜕

𝜕𝑦

,

𝑋
4
= 𝑒
−𝑥 𝜕

𝜕𝑦

,

𝑋
5
= 𝑦

𝜕

𝜕𝑦

.

(2)

The ordering of these is the translation in 𝑥 followed by
the three solution symmetries and then the homogeneity
symmetry. It is easy to see here that (1) has three functionally
independent first integrals

𝐼
1
= 𝑦


− 𝑦,

𝐼
2
= 𝑒
𝑥

𝑦


− 𝑒
𝑥

𝑦


,

𝐼
3
= 𝑒
−𝑥

𝑦


+ 𝑒
−𝑥

𝑦


.

(3)

The order of the integrals is dictated by their algebraic
properties which come at the end of this section.

2.1. Classifying Relation for the Symmetries of𝑦−𝑦 = 0. Let
𝐹 be an arbitrary function of 𝐼

1
, 𝐼
2
, and 𝐼

3
; namely, 𝐹 =

𝐹(𝐼
1
, 𝐼
2
, 𝐼
3
).The symmetry of this general function of the first

integrals is

𝑋
[2]

𝐹 = 𝑋
[2]

𝐼
1

𝜕𝐹

𝜕𝐼
1

+ 𝑋
[2]

𝐼
2

𝜕𝐹

𝜕𝐼
2

+ 𝑋
[2]

𝐼
3

𝜕𝐹

𝜕𝐼
3

= 0, (4)

where

𝑋
[2]

𝐼
1
= [𝜉

𝜕

𝜕𝑥

+ 𝜂

𝜕

𝜕𝑦

+ 𝜁
𝑥

𝜕

𝜕𝑦

+ 𝜁
𝑥𝑥

𝜕

𝜕𝑦

] (𝑦


− 𝑦)

= −𝜂 + 𝜁
𝑥𝑥
,

𝑋
[2]

𝐼
2
= [𝜉

𝜕

𝜕𝑥

+ 𝜂

𝜕

𝜕𝑦

+ 𝜁
𝑥

𝜕

𝜕𝑦

+ 𝜁
𝑥𝑥

𝜕

𝜕𝑦

] (𝑒
𝑥

𝑦


− 𝑒
𝑥

𝑦


)

= (𝑒
𝑥

𝑦


− 𝑒
𝑥

𝑦


) 𝜉 − 𝑒
𝑥

𝜁
𝑥
+ 𝑒
𝑥

𝜁
𝑥𝑥
,

𝑋
[2]

𝐼
3
= [𝜉

𝜕

𝜕𝑥

+ 𝜂

𝜕

𝜕𝑦

+ 𝜁
𝑥

𝜕

𝜕𝑦

+ 𝜁
𝑥𝑥

𝜕

𝜕𝑦

] (𝑒
−𝑥

𝑦


+ 𝑒
−𝑥

𝑦


)

= (−𝑒
−𝑥

𝑦


− 𝑒
−𝑥

𝑦


) 𝜉 + 𝑒
−𝑥

𝜁
𝑥
+ 𝑒
−𝑥

𝜁
𝑥𝑥
.

(5)

Now 𝜉, 𝜂, 𝜁
𝑥
, and 𝜁

𝑥𝑥
are

𝜉 = 𝑎
1
,

𝜂 = 𝑎
2
+ 𝑒
𝑥

𝑎
3
+ 𝑒
−𝑥

𝑎
4
+ 𝑦𝑎
5
,

𝜁
𝑥
= 𝑒
𝑥

𝑎
3
− 𝑒
−𝑥

𝑎
4
+ 𝑦


𝑎
5
,

𝜁
𝑥𝑥
= 𝑒
𝑥

𝑎
3
+ 𝑒
−𝑥

𝑎
4
+ 𝑦


𝑎
5
.

(6)

These are the coefficients of𝑋[2] which are obtained by

𝑋
[2]

=

5

∑

𝑖=1

𝑎
𝑖
𝑋
[2]

𝑖
, (7)

where𝑋
𝑖
s are the symmetry generators as given in (2) and the

𝑎
𝑖
s are constants. The reason for taking a linear combination

is that the symmetries of the first integrals are always the
symmetries of the equation (see [11] for a general result on
this).



Mathematical Problems in Engineering 3

After substitution of the values of 𝑋[2]𝐼
1
, 𝑋[2]𝐼

2
, and

𝑋
[2]
𝐼
3
given in (5), with 𝜉, 𝜂, 𝜁

𝑥
, and 𝜁

𝑥𝑥
as in (6) and

together using the first integrals 𝐼
1
= 𝑦

−𝑦, 𝐼
2
= 𝑒
𝑥
𝑦

−𝑒
𝑥
𝑦
,

and 𝐼
3
= 𝑒
−𝑥
𝑦

+ 𝑒
−𝑥
𝑦
 in (4), we finally arrive at the

classifying relation

(−𝑎
2
+ 𝐼
1
𝑎
5
)

𝜕𝐹

𝜕𝐼
1

+ [(𝑎
1
+ 𝑎
5
) 𝐼
2
+ 2𝑎
4
]

𝜕𝐹

𝜕𝐼
2

+ [(𝑎
5
− 𝑎
1
) 𝐼
3
+ 2𝑎
3
]

𝜕𝐹

𝜕𝐼
3

= 0.

(8)

The relation (8) provides the relationship between the
symmetries and first integrals of the third-order equation (1).
We use this relation in order to classify the first integrals
according to their symmetries.

2.2. Symmetry Structure of the First Integrals of 𝑦−𝑦 = 0.
We utilize the classifying relation (8) to investigate the
number and properties of the symmetries of the first integrals
of the ODE (1).

In the first instance we see that if 𝐹 is arbitrary, then by
use of (8) we immediately see that

−𝑎
2
+ 𝐼
1
𝑎
5
= 0,

(𝑎
1
+ 𝑎
5
) 𝐼
2
+ 2𝑎
4
= 0,

(𝑎
5
− 𝑎
1
) 𝐼
3
+ 2𝑎
3
= 0.

(9)

The relations in (9) imply that all the 𝑎’s are zero. Hence,
there is no symmetry for this case, that is, for 𝐹 an arbitrary
function.

In order to effectively and systematically study the one
and higher symmetry cases of first integrals, we obtain
optimal systems of one-dimensional subalgebra spanned by
(2). Then, we invoke the classifying relation (8). So the
strategy followed here is different from that employed for
the simplest third-order ODE, 𝑦 = 0. The reason is that
we do not have a simple manner subalgebra structure of the
symmetries of (1), as we had for 𝑦 = 0.

The Lie algebra of the operators (2) is five-dimensional
and has commutator relations given in Table 1.

In order to calculate the adjoint representation, we utilize
the Lie series (see Olver [12])

Ad (exp (𝜖𝑋)) 𝑌 = 𝑌 − 𝜖 [𝑋, 𝑌] + 1
2!

𝜖
2

[𝑋, [𝑋, 𝑌]]

−

1

3!

𝜖
3

[𝑋, [𝑋, [𝑋, 𝑌]]] + ⋅ ⋅ ⋅

(10)

together with the commutator table, namely, Table 2. As an
example,

Ad (exp (𝜖𝑋
1
))𝑋
3

= 𝑋
3
− 𝜖 [𝑋

1
, 𝑋
3
] +

1

2!

𝜖
2

[𝑋
1
, [𝑋
1
, 𝑋
3
]] − ⋅ ⋅ ⋅

= 𝑋
3
− 𝜖𝑋
3
+

1

2!

𝜖
2

𝑋
3
−

1

3!

𝜖
3

𝑋
3
+ ⋅ ⋅ ⋅

= 𝑒
−𝜖

𝑋
3
.

(11)

In like manner, we obtain the other entries of the adjoint
table, andwe have the adjoint representation given by Table 2.

Here, the (𝑖, 𝑗) entry represents Ad(exp(𝜖𝑋
𝑖
))𝑋
𝑗
. For a

nonzero vector

𝑋 = 𝑎
1
𝑋
1
+ 𝑎
2
𝑋
2
+ ⋅ ⋅ ⋅ + 𝑎

5
𝑋
5
, (12)

we need to simplify the coefficients 𝑎
𝑖
as far as possible

through adjoint maps to 𝑋. The computations are straight-
forward, and we find an optimal system of one-dimensional
subalgebras spanned by

𝑋
1
,

𝑋
2
,

𝑋
1
± 𝑋
2
,

𝑋
2
± 𝑋
4
,

𝑎𝑋
1
+ 𝑋
5
,

𝑋
1
+ 𝑋
5
± 𝑋
3
,

−𝑋
1
+ 𝑋
5
± 𝑋
4
.

(13)

The discrete symmetry transformation 𝑦 → −𝑦 will map
𝑋
1
− 𝑋
2
to 𝑋
1
+ 𝑋
2
and that of 𝑥 → −𝑥 will transform the

last entry in (13) to𝑋
1
+ 𝑋
5
± 𝑋
3
. Also𝑋

1
+ 𝑋
5
− 𝑋
3
will go

to𝑋
1
+ 𝑋
5
+ 𝑋
3
under 𝑦 → −𝑦. Therefore the above list (13)

is reduced by four.
We now invoke each of the operators of (13) in the clas-

sifying relation (8) to systematically work out the symmetry
structure of the first integral of (1).

Firstly, we consider𝑋
1
. Since 𝑎

1
is arbitrary, we have

𝐼
2

𝜕𝐹

𝜕𝐼
2

− 𝐼
3

𝜕𝐹

𝜕𝐼
3

= 0, (14)

and hence,

𝐹 = 𝐹 (𝐼
1
, 𝐼
2
𝐼
3
) , (15)

which possesses 𝑋
1
as symmetry. After the substitution of

(14) into (8) and taking into account (15), we arrive at

(−𝑎
2
+ 𝑎
5
𝐼
1
)

𝜕𝐹

𝜕𝐼
1

+ 2 (𝑎
5
𝛼 + 𝑎
3
𝐼
2
+ 𝑎
4
𝐼
3
)

𝜕𝐹

𝜕𝛼

= 0, (16)

where 𝛼 = 𝐼
2
𝐼
3
. This at once gives 𝑎

3
= 𝑎
4
= 0.

Note that for 𝑎
3
, 𝑎
4
nonzero, we have 𝜕𝐹/𝜕𝛼 = 0 in which

casewe further have that 𝑎
2
= 𝑎
5
= 0.This results in𝐹 = 𝐹(𝐼

1
)

which has symmetry generators 𝑋
1
, 𝑋
3
, and 𝑋

4
which is the

maximal case.
We systematically consider the cases when (16) imply two

generators. These arise as follows.

(i) Suppose that 𝑎
1
, 𝑎
2
are arbitrary. Then, (16) gives

𝜕𝐹/𝜕𝐼
1
= 0 and

2𝛼𝑎
5

𝜕𝐹

𝜕𝛼

= 0. (17)
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Table 1: The commutation relations for the symmetries of (1).

[𝑋
𝑖
,𝑋
𝑗
] 𝑋

1
𝑋
2

𝑋
3

𝑋
4

𝑋
5

𝑋
1

0 0 𝑋
3

−𝑋
4

0
𝑋
2

0 0 0 0 𝑋
2

𝑋
3

−𝑋
3

0 0 0 𝑋
3

𝑋
4

𝑋
4

0 0 0 𝑋
4

𝑋
5

0 −𝑋
2

−𝑋
3

0 0

Table 2: The adjoint table for the symmetries (2).

Ad 𝑋
1

𝑋
2

𝑋
3

𝑋
4

𝑋
5

𝑋
1

𝑋
1

𝑋
2

𝑒
−𝜖

𝑋
3

𝑒
𝜖

𝑋
4

𝑋
5

𝑋
2

𝑋
1

𝑋
2

𝑋
3

𝑋
4

𝑋
5
− 𝜖𝑋
2

𝑋
3

𝑋
1
+ 𝜖𝑋
3

𝑋
2

𝑋
3

𝑋
4

𝑋
5
− 𝜖𝑋
3

𝑋
4

𝑋
1
− 𝜖𝑋
4

𝑋
2

𝑋
3

𝑋
4

𝑋
5
− 𝜖𝑋
4

𝑋
5

𝑋
1

𝑒
𝜖

𝑋
2

𝑒
𝜖

𝑋
3

𝑒
𝜖

𝑋
4

𝑋
5

For 𝐹, not a constant, we must have that 𝑎
5
= 0, and

we get

𝐹 = 𝐹 (𝐼
2
𝐼
3
) , (18)

which has𝑋
1
and𝑋

2
as symmetries.

(ii) Suppose that 𝑎
1
, 𝑎
5
are arbitrary. Then, (16) implies

that

𝐼
1

𝜕𝐹

𝜕𝐼
1

+ 2𝛼

𝜕𝐹

𝜕𝐼
1

= 0, (19)

from which we arrive at

𝐹 = 𝐹 (𝐼
1
(𝐼
2
𝐼
3
)
−1/2

) . (20)

This integral (20) has 𝑋
1
and 𝑋

5
as symmetry gener-

ators.

We do not obtain any further three symmetry cases from
(16) apart from the earlier for 𝐼

1
as it gives 𝐹 a constant and

hence no integral.
Next we focus on 𝑋

2
. The use of the classifying relation

(8) gives rise to

[(𝑎
1
+ 𝑎
5
) 𝐼
2
+ 2𝑎
4
]

𝜕𝐹

𝜕𝐼
2

+ [(𝑎
5
− 𝑎
1
) 𝐼
3
+ 2𝑎
3
]

𝜕𝐹

𝜕𝐼
3

= 0, (21)

and therefore,

𝐹 = 𝐹 (𝐼
2
, 𝐼
3
) , (22)

admits 𝑋
2
. In a similar manner as for 𝑋

1
we have the fol-

lowing cases.

(i) If 𝑎
1
, 𝑎
2
are arbitrary, then we obtain 𝐹 as in (15).

(ii) If 𝑎
2
, 𝑎
3
are arbitrary, then we have 𝑋

2
, 𝑋
3
, 𝑋
1
− 𝑋
5
,

and 𝐹 = 𝐹(𝐼
2
).

(iii) If 𝑎
2
, 𝑎
4
are arbitrary, then we have 𝑋

2
, 𝑋
4
, 𝑋
1
+ 𝑋
5
,

and 𝐹 = 𝐹(𝐼
3
).

(iv) If 𝑎
2
, 𝑎
5
are arbitrary, then 𝑋

2
, 𝑋
5
result in 𝐹 =

𝐹(𝐼
3
/𝐼
2
).

We do not get any three symmetry case here.
The pattern is now clear. Instead of going through each

of the remaining cases which are quite tedious albeit straight-
forward, we present our findings in a table. For completeness,
this table also includes the cases𝑋

1
and𝑋

2
together with the

corresponding first integrals (see Tables 3 and 4).
Finally, we look at the three symmetry cases.
For 𝐼
1
, there are three symmetries

𝑋
1
= exp 𝑥 𝜕

𝜕𝑦

,

𝑋
2
= exp (−𝑥) 𝜕

𝜕𝑦

,

𝑋
3
=

𝜕

𝜕𝑥

,

(23)

which have nonzero commutation relations

[𝑋
1
, 𝑋
3
] = −𝑋

1
, [𝑋

2
, 𝑋
3
] = 𝑋

2
. (24)

The Lie algebra is 𝐿
3;4
. In the case of the first integral 𝐼

2
,

the symmetries are

𝑋
1
= exp 𝑥 𝜕

𝜕𝑦

,

𝑋
2
=

𝜕

𝜕𝑦

,

𝑋
3
=

1

2

𝑦

𝜕

𝜕𝑦

−

1

2

𝜕

𝜕𝑥

,

(25)

which have nonzero Lie brackets

[𝑋
1
, 𝑋
3
] = 𝑋

1
, [𝑋

2
, 𝑋
3
] =

1

2

𝑋
2

(26)

and constitute the Lie algebra 𝐿
3;5
, 𝑎 = 1/2. The Lie algebra

of the symmetries of 𝐼
3
is isomorphic to that of 𝐼

2
by means

of the discrete transformation 𝑥 = −𝑥.
Thus, there are two Lie algebras of dimension three,

namely, 𝐿
3;4

and 𝐿
3;5
, 𝑎 = 1/2. There are no four symmetry

cases. Therefore, we have the following result.

Theorem 1. Themaximal dimension of the Lie algebra admit-
ted by a first integral of 𝑦 − 𝑦 = 0 or a third-order ODE
linearizable by point transformation to this linear ODE is three.
The maximal Lie algebras are 𝐿

3;4
and 𝐿

3;5
, 𝑎 = 1/2.

The proof follows easily from the preceding discussion.
We also have the following counting theorem.

Theorem 2. The Lie algebra admitted by a first integral of
𝑦

− 𝑦

= 0 or a third-order ODE linearizable by point

transformation to this linear ODE is 0, 1, 2, or 3.

Theproof follows from (9), Tables 3 and 4 andTheorem 1.
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Table 3: One symmetry cases and the integrals of (1).

One symmetry First integral
𝑋
1

𝐹 = 𝐹(𝐼
1
, 𝐼
2
𝐼
3
)

𝑋
2

𝐹 = 𝐹(𝐼
2
, 𝐼
3
)

𝑋
1
+ 𝑋
2

𝐹 = 𝐹(𝐼
2
𝐼
3
, 𝐼
2
exp(𝐼
1
))

𝑋
2
± 𝑋
4

𝐹 = 𝐹(𝐼
2
± 𝐼
1
, 𝐼
3
)

𝑋
5

𝐹 = 𝐹(𝐼
3
/(𝐼
2
± 𝐼
1
))

𝑋
5
+ 𝑎𝑋
1
, 𝑎 ̸= 0 𝐹 = 𝐹(𝐼

2
𝐼
−1−𝑎

1
, 𝐼
3
𝐼
𝑎−1

1
)

𝑋
1
+ 𝑋
5
+ 𝑋
3

𝐹 = 𝐹(𝐼
2
𝐼
−2

1
, 𝐼
3
− ln 𝐼

2
)

3. Algebraic Properties of the Integrals of
𝑦


+𝑓𝑦


−𝑦


−𝑓𝑦 = 0

We consider the representative third-order ODE

𝑦


+ 𝑓 (𝑥) 𝑦


− 𝑦


− 𝑓 (𝑥) 𝑦 = 0, (27)

where 𝑓 is an arbitrary function of 𝑥.This equation possesses
four symmetries

𝑋
1
= 𝑒
𝑥 𝜕

𝜕𝑦

,

𝑋
2
= 𝑒
−𝑥 𝜕

𝜕𝑦

,

𝑋
3
= 𝛼 (𝑥)

𝜕

𝜕𝑦

,

𝑋
4
= 𝑦

𝜕

𝜕𝑦

,

(28)

where again we commenced with the three solution sym-
metries and then the homogeneity symmetry. Here, 𝛼 =
(1/2)𝑒

𝑥
∫ 𝑒
(−𝑥−∫𝑓(𝑥)𝑑𝑥)

𝑑𝑥−(1/2)𝑒
−𝑥
∫ 𝑒
(𝑥−∫𝑓(𝑥)𝑑𝑥)

𝑑𝑥 is a solu-
tion of (27). The third-order equation (27) has the three
functionally independent first integrals

𝐼
1
= (𝑦


− 𝑦) 𝑒
∫𝑓(𝑥)𝑑𝑥

,

𝐼
2
= 𝑦𝑒
−𝑥

+ 𝑦


𝑒
−𝑥

− [∫ 𝑒
(−𝑥−∫𝑓(𝑥)𝑑𝑥)

𝑑𝑥] (𝑦


− 𝑦) 𝑒
∫𝑓(𝑥)𝑑𝑥

,

𝐼
3
= 𝑦𝑒
𝑥

− 𝑦


𝑒
𝑥

+ [∫ 𝑒
(𝑥−∫𝑓(𝑥)𝑑𝑥)

𝑑𝑥] (𝑦


− 𝑦) 𝑒
∫𝑓(𝑥)𝑑𝑥

.

(29)

The first in this list is the simplest, followed by the other
two for which the order does not matter.

3.1. Classifying Relation for the Symmetries of 𝑦+𝑓𝑦−
𝑦

−𝑓𝑦 = 0. Let 𝐹 be an arbitrary function of 𝐼

1
, 𝐼
2
, and

𝐼
3
; namely, 𝐹 = 𝐹(𝐼

1
, 𝐼
2
, 𝐼
3
). The symmetry of this general

function of the first integrals is

𝑋
[2]

𝐹 = 𝑋
[2]

𝐼
1

𝜕𝐹

𝜕𝐼
1

+ 𝑋
[2]

𝐼
2

𝜕𝐹

𝜕𝐼
2

+ 𝑋
[2]

𝐼
3

𝜕𝐹

𝜕𝐼
3

= 0, (30)

Table 4: Two symmetry cases and the integrals of (1).

Two symmetries First integral
𝑋
1
,𝑋
2

𝐹 = 𝐹(𝐼
2
𝐼
3
)

𝑋
1
,𝑋
5

𝐹 = 𝐹(𝐼
1
(𝐼
2
𝐼
3
)
−1/2

)

𝑋
2
,𝑋
5

𝐹 = 𝐹(𝐼
3
/𝐼
2
)

𝑋
2
± 𝑋
4
, 𝑋
5

𝐹 = 𝐹(𝐼
3
/(𝐼
2
± 𝐼
1
))

𝑋
3
, 𝑋
5

𝐹 = 𝐹(𝐼
2
/𝐼
1
)

𝑋
5
+ 𝑎𝑋
1
, 𝑋
2
, 𝑎 ̸= 0 𝐹 = 𝐹(𝐼

3
𝐼
𝑎−1/𝑎+1

2
)

𝑋
5
+ 𝑎𝑋
1
, 𝑋
3

𝐹 = 𝐹(𝐼
2
𝐼
−1−𝑎

1
)

𝑋
2
, 𝑋
1
+ 𝑋
5
+ 𝑋
3

𝐹 = 𝐹(𝐼
3
− ln 𝐼

2
)

𝑋
4
, 𝑋
1
+ 𝑋
5
+ 𝑋
3

𝐹 = 𝐹(𝐼
3
− ln 𝐼2

1
)

where

𝑋
[2]

𝐼
1
= [𝜉

𝜕

𝜕𝑥

+ 𝜂

𝜕

𝜕𝑦

+ 𝜁
𝑥

𝜕

𝜕𝑦

+ 𝜁
𝑥𝑥

𝜕

𝜕𝑦

]

× (𝑦


− 𝑦) 𝑒
∫𝑓(𝑥)𝑑𝑥

= 𝜉 [(𝑦


− 𝑦) 𝑒
∫𝑓(𝑥)𝑑𝑥

𝑓 (𝑥)] − 𝜂𝑒
∫𝑓(𝑥)𝑑𝑥

+ 𝜁
𝑥𝑥
𝑒
∫𝑓(𝑥)𝑑𝑥

,

𝑋
[2]

𝐼
2
= [𝜉

𝜕

𝜕𝑥

+ 𝜂

𝜕

𝜕𝑦

+ 𝜁
𝑥

𝜕

𝜕𝑦

+ 𝜁
𝑥𝑥

𝜕

𝜕𝑦

]

× (𝑦𝑒
−𝑥

+ 𝑦


𝑒
−𝑥

− [∫ 𝑒
(−𝑥−∫𝑓(𝑥)𝑑𝑥)

𝑑𝑥] (𝑦


− 𝑦) 𝑒
∫𝑓(𝑥)𝑑𝑥

)

= [− (𝑦 + 𝑦


) 𝑒
−𝑥

− (∫ 𝑒
(−𝑥−∫𝑓(𝑥)𝑑𝑥)

𝑑𝑥)

× (𝑦


− 𝑦) 𝑒
∫𝑓(𝑥)𝑑𝑥

𝑓 (𝑥)

− (𝑦


− 𝑦) 𝑒
∫𝑓(𝑥)𝑑𝑥

𝑒
(−𝑥−∫𝑓(𝑥)𝑑𝑥)

] 𝜉

+ [𝑒
−𝑥

+ (𝑒
∫𝑓(𝑥)𝑑𝑥

) (∫ 𝑒
(−𝑥−∫𝑓(𝑥)𝑑𝑥)

𝑑𝑥)] 𝜂

+ 𝑒
−𝑥

𝜁
𝑥
− [(∫ 𝑒

(−𝑥−∫𝑓(𝑥)𝑑𝑥)

𝑑𝑥) 𝑒
∫𝑓(𝑥)𝑑𝑥

] 𝜁
𝑥𝑥
,

𝑋
[2]

𝐼
3
= [𝜉

𝜕

𝜕𝑥

+ 𝜂

𝜕

𝜕𝑦

+ 𝜁
𝑥

𝜕

𝜕𝑦

+ 𝜁
𝑥𝑥

𝜕

𝜕𝑦

]

× (𝑦𝑒
𝑥

− 𝑦


𝑒
𝑥

+ [∫ 𝑒
(𝑥−∫𝑓(𝑥)𝑑𝑥)

𝑑𝑥] (𝑦


− 𝑦) 𝑒
∫𝑓(𝑥)𝑑𝑥

)

= [(𝑦 − 𝑦


) 𝑒
𝑥

+ (∫ 𝑒
(𝑥−∫𝑓(𝑥)𝑑𝑥)

𝑑𝑥)

× (𝑦


− 𝑦) 𝑒
∫𝑓(𝑥)𝑑𝑥

𝑓 (𝑥)

+ (𝑦


− 𝑦) 𝑒
∫𝑓(𝑥)𝑑𝑥

𝑒
(𝑥−∫𝑓(𝑥)𝑑𝑥)

] 𝜉
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+ [𝑒
𝑥

− (𝑒
∫𝑓(𝑥)𝑑𝑥

) (∫ 𝑒
(𝑥−∫𝑓(𝑥)𝑑𝑥)

𝑑𝑥)] 𝜂 − 𝑒
𝑥

𝜁
𝑥

+ [(∫ 𝑒
(𝑥−∫𝑓(𝑥)𝑑𝑥)

𝑑𝑥) 𝑒
∫𝑓(𝑥)𝑑𝑥

] 𝜁
𝑥𝑥
.

(31)

Now 𝜉, 𝜂, 𝜁
𝑥
, and 𝜁

𝑥𝑥
are

𝜉 = 0,

𝜂 = 𝑒
𝑥

𝑎
1
+ 𝑒
−𝑥

𝑎
2
+ 𝛼 (𝑥) 𝑎

3
+ 𝑦𝑎
4
,

𝜁
𝑥
= 𝑒
𝑥

𝑎
1
− 𝑒
−𝑥

𝑎
2
+ 𝛼


(𝑥) 𝑎
3
+ 𝑦


𝑎
4
,

𝜁
𝑥𝑥
= 𝑒
𝑥

𝑎
1
+ 𝑒
−𝑥

𝑎
2
+ 𝛼


(𝑥) 𝑎
3
+ 𝑦


𝑎
4
.

(32)

These are the coefficients functions of 𝑋[2] which are ob-
tained by setting

𝑋
[2]

=

4

∑

𝑖=1

𝑎
𝑖
𝑋
[2]

𝑖
, (33)

where 𝑋
𝑖
s are the symmetry generators as given in (28)

and the 𝑎
𝑖
s are constants. The reason for taking a linear

combination mentioned earlier is that the symmetries of the
first integrals are always the symmetries of the equation (see
[11] for a general result).

After insertion of the values of𝑋[2]𝐼
1
,𝑋[2]𝐼

2
, and𝑋[2]𝐼

3
as

in (31), with 𝜉, 𝜂, 𝜁
𝑥
, and 𝜁

𝑥𝑥
as in (32), and first integrals 𝐼

1
=

(𝑦

−𝑦)𝑒
∫𝑓(𝑥)𝑑𝑥, 𝐼

2
= 𝑦𝑒
−𝑥
+𝑦

𝑒
−𝑥
− [∫ 𝑒
(−𝑥−∫𝑓(𝑥)𝑑𝑥)

𝑑𝑥](𝑦

−

𝑦)𝑒
∫𝑓(𝑥)𝑑𝑥, and 𝐼

3
= 𝑦𝑒
𝑥
− 𝑦

𝑒
𝑥
+ [∫ 𝑒

(𝑥−∫𝑓(𝑥)𝑑𝑥)
𝑑𝑥](𝑦


−

𝑦)𝑒
∫𝑓(𝑥)𝑑𝑥 as well as use of

𝛼


− 𝛼 = 𝑒
−∫𝑓(𝑥)𝑑𝑥

,

𝛼


+ 𝛼 = 𝑒
𝑥

∫ 𝑒
(−𝑥−∫𝑓(𝑥)𝑑𝑥)

𝑑𝑥,

𝛼 − 𝛼


= −𝑒
−𝑥

∫ 𝑒
(𝑥−∫𝑓(𝑥)𝑑𝑥)

𝑑𝑥,

𝑦


− 𝑦 = 𝐼
1
𝑒
−∫𝑓(𝑥)𝑑𝑥

,

(𝑦


+ 𝑦) 𝑒
−𝑥

= 𝐼
2
+ 𝐼
1
∫ 𝑒
(−𝑥−∫𝑓(𝑥)𝑑𝑥)

𝑑𝑥,

(𝑦 − 𝑦


) 𝑒
𝑥

= 𝐼
3
− 𝐼
1
∫ 𝑒
(𝑥−∫𝑓(𝑥)𝑑𝑥)

𝑑𝑥

(34)

in (30), we eventually find the classifying relation

(𝑎
3
+ 𝐼
1
𝑎
4
)

𝜕𝐹

𝜕𝐼
1

+ (2𝑎
1
+ 𝐼
2
𝑎
4
)

𝜕𝐹

𝜕𝐼
2

+ (2𝑎
2
+ 𝐼
3
𝑎
4
)

𝜕𝐹

𝜕𝐼
3

= 0.

(35)

The relation (35) provides the relationship between the
symmetries and first integrals of the third-order equation
(27). We utilize this to classify the first integrals in terms of
their symmetries.

3.2. Symmetry Structure of the First Integrals of 𝑦+𝑓𝑦−
𝑦

−𝑓𝑦 = 0. We use the relation (35) to systematically study

the relationship between the symmetries and first integrals of
(27).

We quickly note that if 𝐹 is arbitrary, then (35) implies

𝑎
3
+ 𝐼
1
𝑎
4
= 0,

2𝑎
1
+ 𝐼
2
𝑎
4
= 0,

2𝑎
4
+ 𝐼
3
𝑎
4
= 0,

(36)

which in turn give the result that the 𝑎’s are zero. Thus, there
results no symmetry for this case.

As in the previous section on the constant coefficient
ODE, we obtain the optimal system of one-dimensional sub-
algebras of the four-dimensional algebra symmetry algebra of
our ODE spanned by (28).

The Lie algebra of the symmetries (28) is represented by
Table 5.

By use of Table 5, we can construct the adjoint represen-
tation which we present in Table 6.

We then obtain an optimal system of one-dimensional
subalgebras spanned by

𝑋
3
,

𝑋
4
,

𝑋
2
+ 𝑎𝑋
3
,

𝑋
1
+ 𝑎𝑋
2
+ 𝑏𝑋
3
.

(37)

For each of these operators, we are systematically able
to compute the corresponding first integrals by using the
classifying relation (35).

In Tables 7 and 8 we tabulate the symmetries and the
corresponding first integrals.

It follows that there are no three symmetry cases. More-
over, we note that the maximal case of symmetries of the first
integrals for (27) is two and these are listed in Table 8.

We therefore have the following result.

Theorem3. TheLie algebra admitted by a first integral of𝑦+
𝑓(𝑥)𝑦


−𝑦

−𝑓(𝑥)𝑦 = 0 or a third-order ODE linearizable by

point transformation to this linear ODE is 0, 1, or 2.

The proof follows from (36) and Tables 7 and 8.

4. Further Considerations:
Symmetries of First Integrals of
Submaximal Higher-Order ODEs

We know that one cannot generate the full Lie algebra of any
scalar first-order ODE via the algebras of any of its integrals
[10]. Also for scalar linear second-order ODEs, it has been
shown in [6] that the full Lie algebra of 𝑦 = 0 which rep-
resents any linear or linearizable second-order ODE can be
generated by three isomorphic triplets of three-dimensional
algebras of the basic integrals and one of their quotient which
have the interesting property that the algebras are isomorphic
to each other. In our recent work [10], we have pointed out
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Table 5: The commutation relations for the symmetries of (27).

[𝑋
𝑖
,𝑋
𝑗
] 𝑋

1
𝑋
2

𝑋
3

𝑋
4

𝑋
1

0 0 0 𝑋
1

𝑋
2

0 0 0 𝑋
2

𝑋
3

0 0 0 𝑋
3

𝑋
4

−𝑋
1

−𝑋
2

−𝑋
3

0

Table 6: The adjoint table for the symmetries (28).

Ad 𝑋
1

𝑋
2

𝑋
3

𝑋
4

𝑋
1

𝑋
1

𝑋
2

𝑋
3

𝑋
4
− 𝜖𝑋
1

𝑋
2

𝑋
1

𝑋
2

𝑋
3

𝑋
4
− 𝜖𝑋
2

𝑋
3

𝑋
1

𝑋
2

𝑋
3

𝑋
4
− 𝜖𝑋
3

𝑋
4

𝑒
𝜖

𝑋
1

𝑒
𝜖

𝑋
2

𝑒
𝜖

𝑋
3

𝑋
4

that the full Lie algebra of the simplest third-order equation
𝑦

= 0 is generated by the point symmetries of only two of

the basic integrals 𝐼
1
and 𝐼
3
from the three

𝐼
1
= 𝑦


,

𝐼
2
= 𝑥𝑦


− 𝑦


,

𝐼
3
=

1

2

𝑥
2

𝑦


− 𝑥𝑦


+ 𝑦.

(38)

This is indeed very different towhat happens to the classes
𝑦

= 0 and 𝑦 = 0. One has that the seven symmetries

of our the simplest third-order ODE are generated by four
symmetries of 𝐼

1
together with three symmetries of 𝐼

3
. In

the case of higher-order ODEs of maximal symmetry, it was
shown in [10] that similar properties persist. That is, the full
Lie algebra of𝑦(𝑛) = 0, 𝑛 ≥ 3 is generated by two subalgebras,
namely the 𝑛 + 1-dimensional algebra of the integral 𝐼

1
=

𝑦
(𝑛−1) and the three-dimensional subalgebra of the integral
𝐼
𝑛
= ∑
𝑛

𝑖=1
((−1)
𝑖−1

/(𝑛 − 𝑖)!)𝑥
𝑛−𝑖
𝑦
(𝑛−𝑖).

What occurs to higher-order ODEs of submaximal sym-
metry? We discuss this in the following.

Consider the 𝑛th-order ODE of submaximal symmetry

𝑦
(𝑛)

− 𝑦
(𝑛−2)

= 0, 𝑛 ≥ 3. (39)

This ODE (39) can be taken as a representative of higher-
order ODEs which has 𝑛 + 2-point symmetries. We have
chosen this in a way that reduces to the third-order case
focused on earlier. The 𝑛 first integrals of (39) have the
same pattern as for the third-order case and are thus easily
constructible, and we focus on the first and second which are

𝐼
1
= 𝑦
(𝑛−1)

− 𝑦
(𝑛−3)

, (40)

𝐼
2
= 𝑒
𝑥

(𝑦
(𝑛−1)

− 𝑦
(𝑛−2)

) . (41)

The first integral (40) has 𝑛 point symmetries

𝑋
1
= 𝑒
𝑥 𝜕

𝜕𝑥

, 𝑋
2
= 𝑒
−𝑥 𝜕

𝜕𝑦

, 𝑋
3
=

𝜕

𝜕𝑥

,

𝑋
𝑖
= 𝑥
𝑖−4 𝜕

𝜕𝑦

, 𝑖 = 4, . . . , 𝑛.

(42)

Table 7: One symmetry cases and the integrals of (27).

One symmetry First integral
𝑋
3

𝐹 = 𝐹(𝐼
2
, 𝐼
3
)

𝑋
4

𝐹 = 𝐹(𝐼
2
/𝐼
1
, 𝐼
3
/𝐼
2
)

𝑋
2
+ 𝑎𝑋
3

𝐹 = 𝐹(𝐼
2
𝐼
3
, 𝐼
2
exp(𝐼
1
))

𝑋
2
± 𝑋
4

𝐹 = 𝐹(𝐼
1
− (1/2)𝑎𝐼

3
, 𝐼
2
)

𝑋
1
+ 𝑎𝑋
2

𝐹 = 𝐹(𝐼
3
− 𝑎𝐼
2
, 𝐼
1
)

𝑋
1
+ 𝑎𝑋
2

𝐹 = 𝐹(𝐼
1
− (1/2)𝑎𝐼

2
, 𝐼
3
)

𝑋
1
+ 𝑎𝑋
2
+ 𝑏𝑋
3
, 𝑎, 𝑏 ̸= 0 𝐹 = 𝐹(𝑏𝐼

3
− 2𝑎𝐼

1
, 𝐼
2
)

Table 8: Two symmetry cases and the integrals of (27).

Two symmetries First integral
𝑋
2
, 𝑋
3

𝐹 = 𝐹(𝐼
2
)

𝑋
3
, 𝑋
4

𝐹 = 𝐹(𝐼
3
/𝐼
2
)

𝑋
1
, 𝑋
2
+ 𝑎𝑋
3

𝐹 = 𝐹(𝐼
1
− (1/2)𝑎𝐼

3
)

𝑋
2
+ 𝑎𝑋
3
, 𝑋
4

𝐹 = 𝐹(𝐼
2
/(𝐼
1
− (1/2)𝑎𝐼

3
))

𝑋
1
+ 𝑎𝑋
2
, 𝑋
3

𝐹 = 𝐹(𝐼
3
− 𝑎𝐼
2
)

𝑋
1
+ 𝑎𝑋
2
, 𝑋
4

𝐹 = 𝐹(𝐼
3
− 𝑎𝐼
2
/𝐼
2
)

𝑋
1
+ 𝑎𝑋
3
, 𝑋
2
, 𝑎 ̸= 0 𝐹 = 𝐹(𝐼

1
− (1/2)𝑎𝐼

2
)

𝑋
1
+ 𝑎𝑋
3
, 𝑋
4
, 𝑎 ̸= 0 𝐹 = 𝐹(𝐼

1
− (1/2)𝑎𝐼

2
/𝐼
3
)

𝑋
2
+ 𝑎𝑋
3
, 𝑋
1
, 𝑎 ̸= 0 𝐹 = 𝐹(𝐼

1
− (1/2)𝑎𝐼

3
)

𝑋
1
+ 𝑎𝑋
2
+ 𝑏𝑋
3
, 𝑋
4
, 𝑎, 𝑏 ̸= 0 𝐹 = 𝐹(𝑏𝐼

3
− 2𝑎𝐼

1
/𝐼
2
)

This forms an 𝑛-dimensional subalgebra of the symmetry
algebra of (39). The nonzero commutation relations are

[𝑋
1
, 𝑋
3
] = −𝑋

1
, [𝑋

2
, 𝑋
3
] = 𝑋

2
,

[𝑋
3
, 𝑋
𝑖
] = (𝑖 − 4)𝑋

𝑖−1
, 𝑖 = 4, . . . , 𝑛.

(43)

The first integral (41) has point symmetries

𝑌
1
= 𝑒
𝑥 𝜕

𝜕𝑦

,

𝑌
𝑖
= 𝑥
𝑖−2 𝜕

𝜕𝑦

, 𝑖 = 2, . . . , 𝑛 − 1,

𝑌
𝑛
= 𝑦

𝜕

𝜕𝑦

−

𝜕

𝜕𝑥

.

(44)

These generators have nonzero commutation relations

[𝑌
1
, 𝑌
𝑛
] = 2𝑌

1
,

[𝑌
𝑖
, 𝑌
𝑛
] = 𝑌
𝑖
+ (𝑖 − 2) 𝑌

𝑖−1
, 𝑖 = 2, . . . , 𝑛 − 1.

(45)

We see that these two sets of symmetries (42) and (44) are
easy to deduce as it is clear that (42) form symmetries of (40)
since they are translation in 𝑥 and solution symmetries with
maximum degree power 𝑥(𝑛−4). Also for 𝑛 = 3, they reduce
to the third-order case of the previous section. The full Lie
algebra of (39) is generated from the 𝑛 symmetries of (42)
and two symmetries of (44), namely, 𝑌

𝑛−1
and 𝑌

𝑛
of (44).

However, the latter does not close due to the commutation
relations (45). However, if we exclude 𝑌

1
, then ⟨𝑌

2
, . . . , 𝑌

𝑛
⟩
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does span an (𝑛 − 1)-dimensional algebra. Alternatively, a
simpler way to generate the full algebra of (39) is to utilize the
symmetries (44) togetherwith the two symmetries𝑋

2
and𝑋

3

of (42).
We therefore have the theorem the proof of which follows

from the above discussion.

Theorem 4. The full Lie algebra of the linear 𝑛th-order ODE
𝑦
(𝑛)
− 𝑦
(𝑛−1)

= 0, 𝑛 ≥ 3, which is 𝑛 + 2 dimensional,
is generated by two subalgebras, namely, the 𝑛-dimensional
algebra ⟨𝑌

𝑗
: 𝑗 = 1, . . . , 𝑛⟩ of 𝐼

2
= 𝑒
𝑥
(𝑦
(𝑛−1)

− 𝑦
(𝑛−2)
) and the

two-dimensional subalgebra ⟨𝑋
2
, 𝑋
3
⟩ of 𝐼
1
= 𝑦
(𝑛−1)
− 𝑦
(𝑛−3).

We now study the generation of the full algebra of a rep-
resentative 𝑛th-order, 𝑛 ≥ 3 of submaximal symmetries 𝑛+1.
A natural extension of the third-order ODE (27) is

𝑦
(𝑛)

− 𝑦
(𝑛−2)

+ 𝑓 (𝑥) (𝑦
(𝑛−1)

− 𝑦
(𝑛−3)

) = 0, 𝑛 ≥ 3, (46)

where 𝑓(𝑥) is an arbitrary function of 𝑥. Following the pat-
tern of the integrals in (29), we can write the corresponding
three out of 𝑛 immediately. They are

𝐼
1
= (𝑦
(𝑛−1)

− 𝑦
(𝑛−3)

) 𝑒
∫𝑓(𝑥)𝑑𝑥

,

𝐼
2
= 𝑒
−𝑥

(𝑦
(𝑛−2)

+ 𝑦
(𝑛−3)

) − [∫ 𝑒
(−𝑥−∫𝑓(𝑥)𝑑𝑥)

𝑑𝑥]

× (𝑦
(𝑛−1)

− 𝑦
(𝑛−3)

) 𝑒
∫𝑓(𝑥)𝑑𝑥

,

𝐼
3
= 𝑒
𝑥

(𝑦
(𝑛−3)

− 𝑦
(𝑛−2)

) + [∫ 𝑒
(𝑥−∫𝑓(𝑥)𝑑𝑥)

𝑑𝑥]

× (𝑦
(𝑛−1)

− 𝑦
(𝑛−3)

) 𝑒
∫𝑓(𝑥)𝑑𝑥

.

(47)

We show that the symmetries of these integrals are suf-
ficient to generate the full algebra. From Table 8 in the
previous section, we notice that 𝑋

1
and 𝑋

2
of (28) are

symmetries of the integral 𝐼
1
in (29). Further we note that

𝑋
3
and 𝑋

4
of (28) are symmetries of the quotient integral

𝐼
3
/𝐼
2
. In a similar fashion, we have these algebraic properties

persisting for the linear higher-order equation (46). Equation
(46) has the 𝑛 + 1 point symmetries

𝑋
1
= 𝑒
𝑥 𝜕

𝜕𝑦

, 𝑋
2
= 𝑒
−𝑥 𝜕

𝜕𝑦

,

𝑋
𝑖
= 𝑥
𝑖−3 𝜕

𝜕𝑦

, 𝑖 = 3, . . . , 𝑛 − 1,

𝑋
𝑛
= 𝛼 (𝑥)

𝜕

𝜕𝑦

,

𝑋
𝑛+1
= 𝑦

𝜕

𝜕𝑦

,

(48)

where 𝛼 is a solution to (46) and satisfies similar properties
to that of the corresponding linear third-order equation;
namely,

𝛼
(𝑛−1)

− 𝛼
(𝑛−3)

= 𝑒
−∫𝑓(𝑥)𝑑𝑥

,

𝛼
(𝑛−1)

− 𝛼
(𝑛−2)

= −𝑒
𝑥

∫ 𝑒
𝑥−∫𝑓(𝑥)𝑑𝑥

𝑑𝑥 + 𝑒
−∫𝑓(𝑥)𝑑𝑥

,

𝛼
(𝑛−2)

+ 𝛼
(𝑛−3)

= 𝑒
𝑥

∫ 𝑒
−𝑥−∫𝑓(𝑥)𝑑𝑥

𝑑𝑥.

(49)

It is evident that the first 𝑛 are solution symmetries
and the (𝑛 + 1)th is the homogeneity symmetry which are
straightforward to observe. The first integral 𝐼

1
in (47) has

the 𝑛 − 1 symmetries𝑋
1
, . . . , 𝑋

𝑛−1
which is clear. The algebra

constituted is Abelian.This fact can also be seen for 𝐼
1
of (29).

Now, we analyze what occurs for the quotient integral 𝐼
3
/𝐼
2

of (47). It is noticed that the homogeneity symmetry 𝑋
𝑛+1

is
a symmetry of 𝐼

3
/𝐼
2
, as if we replace 𝑦 by 𝛾𝑦 in the quotient;

it is left invariant. Moreover, for 𝑋
𝑛
we have the invariance

condition

𝑋
(𝑛−1)

𝑛
(

𝐼
3

𝐼
2

)

=

1

𝐼
2

{[𝑒
𝑥

(𝛼
(𝑛−3)

− 𝛼
(𝑛−2)

)

+ ∫ 𝑒
𝑥−∫𝑓(𝑥)𝑑𝑥

𝑒
∫𝑓(𝑥)𝑑𝑥

𝑑𝑥 (𝛼
(𝑛−1)

− 𝛼
(𝑛−3)

)]

−

𝐼
3

𝐼
2

[𝑒
−𝑥

(𝛼
(𝑛−2)

+ 𝛼
(𝑛−3)

)

− ∫ 𝑒
−𝑥−∫𝑓(𝑥)𝑑𝑥

𝑒
∫𝑓(𝑥)𝑑𝑥

𝑑𝑥

× (𝛼
(𝑛−1)

− 𝛼
(𝑛−3)

)]} = 0.

(50)

The terms in the square brackets vanish due to the rela-
tions in (49).Thus,𝑋

𝑛
is a symmetry of this quotient integral.

In view of the previous, we have the following theorem.

Theorem 5. The full Lie algebra of the linear 𝑛th-order ODE
𝑦
(𝑛)
− 𝑦
(𝑛−2)
+ 𝑓(𝑥)(𝑦

(𝑛−1)
− 𝑦
(𝑛−3)
) = 0, 𝑛 ≥ 3, which is 𝑛 + 1

dimensional, is generated by two subalgebras, namely, the (𝑛 −
1)-dimensional algebra ⟨𝑋

𝑗
: 𝑗 = 1, . . . , 𝑛 − 1⟩ of 𝐼

1
as given in

(47) and the two-dimensional subalgebra ⟨𝑋
𝑛
, 𝑋
𝑛+1
⟩ of 𝐼
3
/𝐼
2

as in (47).

Hence, the manner in which the full Lie algebra is gen-
erated for the ODEs 𝑦 = 0 [6], 𝑦(𝑛) = 0, 𝑛 ≥ 3 [10], and
two submaximal linear cases investigated in the foregoing is
quite interesting. This also conforms with the properties of
their symmetry algebra which are different (see, e.g., [5]).

5. Conclusion

The algebraic properties of the first integrals of the 8 symme-
tries or maximal class were pursued in [6] in which it was
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shown that the algebra sl(3, 𝑅) of the linearizable equations
can be generated by three isomorphic triplets of three-
dimensional algebras.Then, in [7] the authors considered the
symmetry properties of the basic first integrals of scalar linear
third-orderODEs for which the symmetry structure has been
investigated before (see, e.g., the review [5]). In a recent paper
we performed a complete study of the symmetry structure
of first integrals of the free particle or linearizable second-
orderODEs.We showed in ourwork [9] that the first integrals
have rich symmetry algebras. We found that they have 0, 1,
2, or 3 dimensional algebras and that the maximal case is
unique with algebra 𝐿𝐼

3;5
. Motivated by this and recent works

[6–8], we performed in [10] a symmetry classification of the
first integrals of themaximal class of linear third-order ODEs
represented by 𝑦 = 0. Many interesting properties came
to light. It was shown in [10] that the symmetry structure
of the first integrals is also rich, and there exit the 0, 1, 2,
and 3 symmetry cases. In the case of the maximal algebra of
the integrals which is 3 here, we showed that similar to the
free particle case, it is unique. We also proved that the full
Lie algebra of the equation for linear third and higher order
can be generated by just two basic integrals.This result differs
from what happens to the free particle or even first order
equations [9].

In this work, we investigated the symmetry properties of
the first integrals of scalar linearizable third-order ODEs of
submaximal classes, namely, the 4 and 5 symmetry classes.
Here we obtained the result that there can be the 0, 1, or
2 symmetry cases for the 4 symmetry class and 0, 1, 2, or
3 symmetry cases for the 5 symmetry class. Also we noted
that the maximal cases are not unique as for the free particle
or simplest third-order equations. We further studied the
generation of the full Lie algebras of the submaximal classes
of linear higher-order ODEs and have shown how these are
generated by subalgebras of certain basic integrals and a
quotient of two integrals.

Further work could be done to study submaximal classes
of higher order ODEs for the symmetry properties of their
first integrals.
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The aim of this paper focuses on applying a nonlinearization method to transform forced, damped nonlinear equations of motion
of oscillatory systems into the well-known forced, damped Duffing equation. The accuracy obtained from the derived equivalent
equations of motion is evaluated by studying the amplitude-time, the phase portraits, and the continuous wavelet transform
diagrams of the cubic-quintic Duffing equation, the generalized pendulum equation, the power-form elastic term oscillator, the
Duffing equation with linear and cubic damped terms, and the pendulum equation with a cubic damped term.

1. Introduction

Here, in this paper, we illustrate how the nonlinearization
approach can be used to obtain equivalent equations of
motion of forced, damped nonlinear oscillators of the form

̈𝑥 + 𝐹 (] ̇𝑥) + 𝑓 (𝑥) + 𝑄 (𝜔
𝑓
𝑡) = 0; 𝑥 (0) = 𝐴, ̇𝑥 (0) = 0,

(1)

where 𝐴 is the initial oscillation amplitude, 𝑓(𝑥) and 𝐹(] ̇𝑥)

are the system conservative and nonconservative restoring
forces, respectively, ] is a damping parameter, and 𝑄(𝜔

𝑓
𝑡)

is a periodic external force with driving frequency 𝜔
𝑓
. In

accordance with the nonlinear transformation approach [1],
we first write the conservative force terms as a polynomial
expression by using the Chebyshev polynomials of the first
kind [2–4]:

𝑓 (𝑥) =

𝑁

∑

𝑛=0

𝑏
2𝑛+1

(𝑥
10
) 𝑇
2𝑛+1

(𝑥) , (2)

where

𝑏
2𝑛+1

=

2

𝜋

∫

+1

−1

1

√1 − 𝑥
2

𝑓 (𝑥) 𝑇
2𝑛+1

(𝑥) 𝑑𝑥, (3)

and𝑇
2𝑛+1

are the Chebyshev polynomials of the first kind.We
can see that the usage of (3) could transform (2) into a fifth
or higher order polynomial expression. In the case for which
a fifth-order Chebyshev polynomial is used, the conservative
force in (2) becomes

𝑓 (𝑥) ≡ 𝑏
1
(𝑞) 𝑇
1
(𝑦) + 𝑏

3
(𝑞) 𝑇
3
(𝑦) + 𝑏

5
(𝑞) 𝑇
5
(𝑦)

≈ 𝛼 (𝐴) 𝑥 + 𝛽 (𝐴) 𝑥
3

+ 𝛾 (𝐴) 𝑥
5

,

(4)

where𝛼(𝐴),𝛽(𝐴) and 𝛾(𝐴)will be defined later on.Therefore,
the equivalent representation form of (1) is given as

̈𝑥 + 𝐹 (] ̇𝑥) + 𝛼 (𝐴) 𝑥 + 𝛽 (𝐴) 𝑥
3

+ 𝛾 (𝐴) 𝑥
5

+ 𝑄 (𝜔
𝑓
𝑡) ≈ 0.

(5)

By following the nonlinearization method, we now find the
equivalent representation form of (1) as a function of a cubic-
like polynomial equation. This procedure leads to

̈𝑥 + 𝐹 (] ̇𝑥) + 𝛼 (𝐴) 𝑥 + 𝛽 (𝐴) 𝑥
3

+ 𝛾 (𝐴) 𝑥
5

+ 𝑄 (𝜔
𝑓
𝑡)

≃ ̈𝑥 + 𝐹 (]
1

̇𝑥) + 𝛿 (𝐴) 𝑥 + 𝜖 (𝐴) 𝑥
3

+ 𝑄 (𝜔
𝑓
𝑡) ,

(6)
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where ]
1
, 𝛿, and 𝜀 are determined from

𝐹
1
(𝛿, 𝜖, ]

1
, 𝑄)

= ∫

𝜎

0

(𝐹 (] ̇𝑥) + 𝛼𝑥 + 𝛽𝑥
3

+ 𝛾𝑥
5

+ 𝑄 (𝜔
𝑓
𝑡)

− 𝐹 (]
1

̇𝑥) − 𝛿𝑥 − 𝜖𝑥
3

− 𝑄 (𝜔
𝑓
𝑡))

2

𝑑𝑥 → min

(7)

𝐹
2
(𝛿, 𝜖, ]

1
, 𝑄)

= ∫

𝜐

0

(𝐹 (] ̇𝑥) + 𝛼𝑥 + 𝛽𝑥
3

+ 𝛾𝑥
5

+ 𝑄 (𝜔
𝑓
𝑡)

− 𝐹 (]
1

̇𝑥) − 𝛿𝑥 − 𝜖𝑥
3

− 𝑄 (𝜔
𝑓
𝑡))

2

𝑑 ̇𝑥 → min,
(8)

in which

𝜕𝐹
1
(𝛿, 𝜖, ]

1
, 𝑄)

𝜕𝛿

= 0,

𝜕𝐹
1
(𝛿, 𝜖, ]

1
, 𝑄)

𝜕𝜖

= 0,

𝜕𝐹
2
(𝛿, 𝜖, ]

1,
𝑄)

𝜕]
1

= 0.

(9)

Notice that in our proposed procedure we are assuming that
the magnitude of the external force and its driving frequency
remain constants during the transformation process.Thus, (1)
can be written in equivalent form as

𝑑
2
𝑥

𝑑𝑡
2

+ 𝐹 (] ̇𝑥) + 𝑓 (𝑥) + 𝑄 (𝜔
𝑓
𝑡)

≡

𝑑
2
𝑥

𝑑𝑡
2

+ 𝐹 (]
1

̇𝑥) + 𝛿 (𝐴) 𝑥 + 𝜖 (𝐴) 𝑥
3

+ 𝑄 (𝜔
𝑓
𝑡) ≈ 0.

(10)

We will next explore the applicability of our proposed
approach and derive the equivalent representation form of
some forced, damped nonlinear systems.

2. The Forced, Damped Cubic-Quintic
Oscillator

The equation of motion that describes the dynamical
response of the forced, damped cubic-quintic oscillator is
given as

̈𝑦 + 2] ̇𝑦 + 𝐴𝑦 + 𝐵𝑦
3

+ 𝐺𝑦
5

= 𝑄
0
cos𝜔
𝑓
𝑡,

with 𝑦 (0) = 𝑦
10
, ̇𝑦 (0) = 0,

(11)

where 𝑦 denotes the displacement of the system, ] is the
damping coefficient, 𝐴, 𝐵, and 𝐺 are system constant param-
eters, 𝑄

0
is the magnitude of the external force, and 𝜔

𝑓
is the

driving frequency [6, 7]. We next use 𝑥 = 𝐴/𝑦 and write (11)
as

̈𝑥 + 2] ̇𝑥 + 𝛼𝑥 + 𝛽𝑥
3

+ 𝛾𝑥
5

= 𝑄 cos𝜔
𝑓
𝑡,

with 𝑥 (0) = 1, ̇𝑥 (0) = 0,

(12)
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Figure 1: Amplitude-time response curves obtained from the
numerical integration solution of (12) and (13) for the system
parameter values of ] = 0.01, 𝐴 = 3, 𝐵 = −4, 𝐺 = 1, 𝑄

0
= 0.1,

and 𝜔
𝑓
= 3 with 𝑦(0) = 1/2 and ̇𝑦(0) = 0. Here, the black solid line

represents the numerical integration solution of (12), while the red
dashed line represents the prediction obtained by using the derived
equivalent equation of motion (13) with 𝛿 = 2.8713, 𝜖 = −0.7178,
]
1
= 0.0101, 𝜎 = 2.1191, and 𝜐 = −350.4.

where 𝛼 = 𝐴, 𝛽 = 𝐵𝑦
2

10
, 𝛾 = 𝐺𝑦

4

10
, and 𝑄 = 𝑄

0
/𝑦
10
. By

following our proposed nonlinear method and by using (4)
and (7)–(9), we obtain the equivalent representation form of
(12) as

̈𝑥 + 2]
1

̇𝑥 + 𝛿𝑥 + 𝜖𝑥
3

= 𝑄 cos𝜔
𝑓
𝑡, (13)

where 𝛿, 𝜖, and ]
1
can be determined from the following

equations:

𝛿 = 𝛼 −

25𝛾𝜎
4

21

, 𝜖 = 𝛽 +

50𝛾𝜎
2

27

, ]
1
= ] +

32𝛾𝜎
5

189𝜐

,

(14)

𝛿 = 𝛼 −

5𝛾𝜎
4

49

, 𝜖 = 𝛽 +

190𝛾𝜎
2

189

, ]
1
= ] −

32𝛾𝜎
5

1323𝜐

.

(15)

Here, 𝜎 and 𝜐 are fitting parameters that satisfy (7)-(8). To
examine the accuracy of (13), we next compare its solution
with the one obtained from (12) by using the fourth-order
Runge-Kutta numerical integration method. Let us consider
the parameter values of 𝑦

10
= 1/2, ] = 0.01, 𝐴 = 3, 𝐵 = −4,

𝐺 = 1, 𝑄
0

= 0.1, and 𝜔
𝑓

= 3. In this case, the parameter
values assigned to 𝐴, 𝐵, and 𝐺 provide a triple-well potential
to the cubic-quinticDuffing oscillator that can have up to four
resonance frequencies [8]. Figure 1 illustrates the comparison
between the amplitude-time response curves of (12) and
(13) obtained from their corresponding numerical integration
solutions. As one can see form Figure 1, both solutions are
almost the same. In fact, the computed root-mean-square
error (RMSE) value does not exceed 0.0741 on 0 ≤ 𝑡 ≤ 50

with 𝛿 = 2.8713, 𝜖 = −0.7178, ]
1

= 0.0101, 𝜎 = 2.1191,
and 𝜐 = −350.4. The accuracy of the numerical simulations is
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Figure 2: Amplitude-time response curves, phase diagrams, and Morlet CWT plots of (12) and (13), for the system parameter values of
] = 0.01, 𝐴 = 1, 𝐵 = 3.5, 𝐺 = 0.5, 𝑄

0
= 0.5, 𝜔

𝑓
= 0.5 with 𝑦(0) = 1 and ̇𝑦(0) = 0. Here, the black solid line represents the numerical

integration solution of (12) while the red dotted and the red dashed lines represent the prediction obtained by using the derived equivalent
equation of motion (13) with 𝛿 = 0.9838, 𝜖 = 3.7827, and ]

1
= 0.0099.

surprisingly good if we consider that the potential of a cubic
Duffing oscillator cannot have triple-well form.

As a second example, let us consider the parameter values
of 𝑦
10

= 1, ] = 0.01, 𝐴 = 1, 𝐵 = 3.5, 𝐺 = 0.5, 𝑄
0

= 0.5,
and 𝜔

𝑓
= 0.5. Figure 2 shows the amplitude-time response

curves and the corresponding phase portraits, as well as the
Morlet continuos wavelet transforms (CWT) obtained from
the numerical integration solutions of (12) and (13). Here,
the values of 𝜎 = 0.75 and 𝜐 = 100 were computed from
(15) which provides good agreement between (12) and (13).
Notice that the numerical integration solutions of (12) and
(13) are almost the same. In this particular problem, the
Morlet CWT was used to extract system dynamics effects
such as the one shown at the system transient motion in
which the transient frequency has strong influence on the
system dynamic behavior. In fact on the time interval 0 ≤ 𝑡 ≤

100, the transient frequency dominates the system motion.
When 𝑡 > 100, the system oscillates at the driving frequency
𝜔
𝑓
. Besides, we have computed the RMSE value between both

numerical solutions and found that it has the value of 0.0301.
Here, 𝛿 = 0.9838, 𝜖 = 3.7827, and ]

1
= 0.0099. Of course,

we can consider other parameter values, as those shown in
Table 1, to describe the dynamic response of (12) by using
(13). Therefore, we can conclude that our nonlinear method

leads to the derivation of an equivalent equation of motion
that follows well the qualitative and quantitative numerical
response of the original equation (12).

We next determine the equivalent representation form of
the forced, damped general pendulum equation.

3. The Forced, Damped General
Pendulum Equation

Wenow proceed to derive the equivalent representation form
of the forced, damped pendulum equation

𝑑
2
𝑦

𝑑𝑡
2

+ 2] ̇𝑦 − 𝑏𝑦 + 𝑎 sin𝑦 = 𝑄
0
cos (𝜔

𝑓
𝑡) ,

𝑦 (0) = 𝐴, ̇𝑦 (0) = 0,

(16)

where 𝑎 and 𝑏 represent system constant parameter values, ]
is the damping coefficient, 𝜔

𝑓
is the driving frequency, and

𝑄
0
is the external force magnitude [9]. If we introduce the

transformation 𝑥 = 𝑦/𝐴, then (16) can be rewritten as

𝑑
2
𝑥

𝑑𝑡
2

+ 2] ̇𝑥 − 𝑏𝑥 +

𝑎

𝐴

sin (𝑥𝐴) = 𝑄 cos (𝜔
𝑓
𝑡) ,

𝑥 (0) = 1, ̇𝑥 (0) = 0,

(17)
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Table 1: Estimated RMSE values computed on the time interval of 0 ≤ 𝑡 ≤ 50 with 𝜔
𝑓
= 1 and ] = 0.01.

Oscillator 𝑥
0
= 1/2 𝑥

0
= 1

𝑄 = 0.1 𝑄 = 1 𝑄 = 0.1 𝑄 = 1

Cubic-quintic duffing oscillator with parameter values of RMSE RMSE RMSE RMSE
𝐴 = 1, 𝐵 = 0.1, 𝐺 = 0.1, 𝜎 = 2.1, 𝜐 = 30 0.0600 2.2148 0.0967 0.1147
𝐴 = 10, 𝐵 = 10, 𝐺 = 10, 𝜎 = 0.915, 𝜐 = −350.4 0.0121 0.0270 0.2948 0.0530
Pendulum oscillator with parameter values of
𝑎 = 0.1, 𝑏 = −5, 𝜎 = 0.8, 𝜐 = −50 0 0 0.00001 0.00001
𝑎 = 5, 𝑏 = −1, 𝜎 = 0.8, 𝜐 = −50 0 0 0.0009 0.0008
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Figure 3: Amplitude-time response curves, phase diagrams, andMorlet CWR plots of (17) and (18) for the system parameter values of 𝑎 = 1,
𝑏 = −1, ] = 0.035, 𝑄 = 1, 𝜔

𝑓
= 2 with 𝑥(0) = 57.3

∘ and ̇𝑥(0) = 0. Here, the black solid line represents the numerical integration solution of
(17), while the red dotted and red dashed lines represent the predictions obtained from the derived equivalent equation of motion (18). Here,
𝛼 = 1.999, 𝛽 = −0.1664, 𝛾 = 0.0079, 𝛿 = 1.999, 𝜖 = −0.1613, and ]

1
= 0.035.

with 𝑄 = 𝑄
0
/𝐴. By applying our proposed transformation

method to (17), we obtain the following expression:

𝑑
2
𝑥

𝑑𝑡
2

+ 2]
1

̇𝑥 + 𝛿𝑥 + 𝜖𝑥
3

= 𝑄 cos (𝜔
𝑓
𝑡) , (18)

where

𝛼 =

6𝑎

𝐴
4
(𝐴 (𝐴

2

− 80) 𝐽
1
(𝐴) − 16 (𝐴

2

− 20) 𝐽
2
(𝐴)) − 𝑏,

𝛽 =

32𝑎

𝐴
4

(−𝐴 (𝐴
2

− 60) 𝐽
1
(𝐴) + 2 (7𝐴

2

− 120) 𝐽
2
(𝐴)) ,

𝛾 =

32𝑎

𝐴
4

(𝐴 (𝐴
2

− 48) 𝐽
1
(𝐴) − 12 (𝐴

2

− 16) 𝐽
2
(𝐴)) ,

(19)

and 𝛿, 𝜖, and ]
1
are given by (14) and (15). Here, 𝐽

1
(𝐴) and

𝐽
2
(𝐴) are the first and second order Bessel functions of the

first kind. To illustrate the degree of accuracy attained by our
derived solution (18), let us consider the system parameter
values of 𝑎 = 1, 𝑏 = −1, ] = 0.035, 𝑄 = 1, and 𝜔

𝑓
= 2 with

𝑥(0) = 1 or 57.3∘ and ̇𝑥(0) = 0. One can notice from Figure 3
that the numerical integration solutions of (17) and (18) are
almost the same. In this case, 𝛼 = 1.999, 𝛽 = −0.1664, 𝛾 =

0.0079, 𝛿 = 1.999, 𝜖 = −0.1613, and ]
1
= 0.035, and the values

of𝜎, 𝜐, and ]
1
were fitted by using (15), since these expressions

provide the best predictionswith a RMSE value of 0.0087.The
same degree of accuracy was found by considering different
system parameter values, as those illustrated in Table 1 in
which the RMSE values are close to zero.
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To further assess the applicability of our nonlinear cubi-
cation approach, we next derive the equivalent representation
form of a forced, damped oscillator with a power-form elastic
term.

4. A Generalized Forced, Damped Power-Form
Elastic Term Oscillator

The equation of motion of this oscillator is given as

𝑑
2
𝑦

𝑑𝑡
2

+ 2]
𝑑𝑦

𝑑𝑡

+ 𝜔
2

𝑛
𝑦 + ℎ sgn (𝑦)





𝑦





𝑚

= 𝑄
0
cos (𝜔

𝑓
𝑡) , 𝑦 (0) = 𝐴, ̇𝑦 (0) = 0,

(20)

where 𝜔
𝑛
and ℎ are constant parameters and 𝑚 can take

any nonnegative real value, such as odd, even, rational, or
irrational, that is, 0 ≤ 𝑚 < ∞ [10]. As usual, let us use the
following coordinate transformation 𝑥 = 𝑦/𝐴 and write (20)
as,

𝑑
2
𝑥

𝑑𝑡
2

+ 2]
𝑑𝑥

𝑑𝑡

+ 𝜔
2

𝑛
𝑥 + 𝑐
1
sgn (𝑥) |𝑥|

𝑚

= 𝑄 cos (𝜔
𝑓
𝑡) ,

𝑐
1
= ℎ𝐴
(𝑚−1)

; 𝑄 =

𝑄
0

𝐴

with 𝑥 (0) = 1, ̇𝑥 (0) = 0.

(21)

We next use Chebyshev polynomial expansion to write the
restoring forces 𝜔

2

𝑛
𝑥 + 𝑐
1
sgn(𝑥)|𝑥|𝑚 as a nonic polynomial

expression

𝜔
2

𝑛
𝑥 + 𝑐
1
sgn (𝑥) |𝑥|

𝑚

≈ 𝛼
2
𝑥 + 𝛽𝑥

3

+ 𝛾𝑥
5

+ Δ𝑥
7

+ 𝜀𝑥
9

, (22)

where

𝛼
2
=

5𝑐
1
(𝑚 − 9) (𝑚 − 7) (𝑚 − 5) (𝑚 − 3) Γ [𝑚/2 + 1]

8√𝜋Γ [(11 + 𝑚) /2]

+ 𝜔
2

𝑛
,

(23)

𝛽 = −

10𝑐
1
(𝑚 − 9) (𝑚 − 7) (𝑚 − 5) (𝑚 − 1) Γ [𝑚/2 + 1]

√𝜋Γ [(11 + 𝑚) /2]

,

(24)

𝛾 =

42𝑐
1
(𝑚 − 9) (𝑚 − 7) (𝑚 − 3) (𝑚 − 1) Γ [𝑚/2 + 1]

√𝜋Γ [(11 + 𝑚) /2]

, (25)

Δ = −

64𝑐
1
(𝑚 − 9) (𝑚 − 5) (𝑚 − 3) (𝑚 − 1) Γ [𝑚/2 + 1]

√𝜋Γ [(11 + 𝑚) /2]

,

(26)

𝜀 =

32𝑐
1
(𝑚 − 7) (𝑚 − 5) (𝑚 − 3) (𝑚 − 1) Γ [𝑚/2 + 1]

√𝜋Γ [(11 + 𝑚) /2]

. (27)

Notice that in (23)–(27) the terms Γ[𝑚] represent the Euler
gamma function. It is important to point out that in this
particular problem we have used five Chebyshev expansion
coefficient terms that provide, for the system restoring force,
an equivalent representation form that is based on a ninth-
order polynomial expression. This example illustrates the
applicability of our procedure in usingmore than three terms

in (4). We next follow our solution procedure and find, by
using (7) and (8), that

𝑑
2
𝑥

𝑑𝑡
2

+ 2]
𝑑𝑥

𝑑𝑡

+ 𝜔
2

𝑛
𝑥 + 𝑐
1
sgn (𝑥) |𝑥|

𝑚

≃

𝑑
2
𝑥

𝑑𝑡
2

+ 2]
1

𝑑𝑥

𝑑𝑡

+ 𝛿𝑥 + 𝜖𝑥
3

= 𝑄 cos (𝜔
𝑓
𝑡) ,

(28)

where

𝛿 = 𝛼
2
−

5 (715𝛾𝜎
4
+ 1274Δ𝜎

6
+ 1701𝜀𝜎

8
)

3003

,

𝜖 = 𝛽 +

50𝛾𝜎
2

27

+

245Δ𝜎
4

99

+

420𝜀𝜎
6

143

,

]
1
= ] +

32 (143𝛾𝜎
5
+ 273Δ𝜎

7
+ 378𝜀𝜎

9
)

27027𝜐

,

(29)

𝛿 = 𝛼
2
−

5𝛾𝜎
4

49

−

10Δ𝜎
6

231

+

45𝜀𝜎
8

1001

, (30)

𝜖 = 𝛽 +

190𝛾𝜎
2

189

+

85Δ𝜎
4

99

+

100𝜀𝜎
6

143

, (31)

]
1
=

189189]𝜐 − 32 (143𝛾𝜎
5
+ 273Δ𝜎

7
+ 378𝜀𝜎

9
)

189189𝜐

.
(32)

To assess the accuracy of our derived equivalent representa-
tion form (28) of (21), we shall consider the following data
values: 𝑚 = 8/5, 𝐴 = 1, 𝜔

𝑛
= 0, ℎ = 10, 𝑄 = 10,

and ] = 0.1 with a driving frequency value of 𝜔
𝑓

= 3

[11]. Figure 4 illustrates the amplitude-time response curves
obtained by numerically integrating (21) and (28). As we
can see from Figure 4, the numerical integration of (28)
follows closely the amplitude-time response curve obtained
from (21). In this case, the RMSE value of 0.384 is obtained
by using equations (30)–(32). Here, the red solid and black
dashed lines represent, respectively, the numerical integra-
tion solution of (21) and (28).The computed parameter values
are 𝛼
2

= 3.0954, 𝛽 = 21.2256, 𝛾 = −36.7078, Δ =

35.2187, 𝜀 = −12.8501, 𝛿 = 3.5311, 𝜖 = 3.6588, ]
1

=

0.1155, 𝜐 = −50, and 𝜎 = −1.22. Also, Figure 5 provides a
comparison of the numerical solutions of (21) and (28) with
respect to the approximate general solution of (28) derived
by using Jacobi elliptic functions [5]. One can notice from
Figure 5 that all solutions are almost the same. Therefore,
we can conclude that our derived equivalent representation
form (28) describes well the qualitative and quantitative
behavior of (21). The amplitude-frequency response curve of
(28) can be obtained by using, for instance, the approximate
solutions developed in [5, 11]. As a second case, we now use
our equivalent representation form (28) and consider the
following parameter values of 𝑚 = 1/3, 𝐴 = 1, 𝜔

𝑛
= 2, ℎ =

0.1, 𝑄 = 0.1, ] = 0.025, and 𝜔
𝑓

= 2 in (21) and compute the
corresponding amplitude-time response curve. We can see
from Figure 6 that the amplitude-time curve obtained from
(28) followswell the curve obtained from (21). In this case, the
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Figure 4: Amplitude-time response curves of (21) and (28) for the system parameter values of 𝑚 = 8/5, 𝐴 = 1, 𝜔
𝑛
= 0, ℎ = 10, 𝑄 = 10,

] = 0.1, and 𝜔
𝑓
= 3 with 𝑥(0) = 1 and ̇𝑥(0) = 0. Here, the red solid and black dashed lines represent, respectively, the numerical integration

solution of (21) and (28) with 𝛼
2
= 3.0954, 𝛽 = 21.2256, 𝛾 = −36.7078, Δ = 35.2187, 𝜀 = −12.8501, 𝛿 = 3.5311, 𝜖 = 3.6588, ]

1
= 0.1155,

𝜐 = −50, and 𝜎 = −1.22.
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Figure 5: Amplitude-time response curves of (21) and (28) for the
system parameter values of𝑚 = 8/5, 𝐴 = 1, 𝜔

𝑛
= 0, ℎ = 10, 𝑄 = 10,

] = 0.1, and 𝜔
𝑓

= 3 with 𝑥(0) = 1 and ̇𝑥(0) = 0. Here, the red
solid and black dashed lines represent, respectively, the numerical
integration solution of (21) and (28), while the purple triangles
represent the approximate solution of (21) derived in [5] with 𝛼

2
=

3.0954, 𝛽 = 21.2256, 𝛾 = −36.7078, Δ = 35.2187, 𝜀 = −12.8501,
𝛿 = 3.5311, 𝜖 = 3.6588, ]

1
= 0.1155, 𝜐 = −50, and 𝜎 = −1.22.

RMSE value is about 0.0219 for which the parameter values
are 𝛼
2
= 4.3426, 𝛽 = −1.3704, 𝛾 = 3.289, Δ = −3.508, 𝜀 =

1.3493, 𝛿 = 4.2695, 𝜖 = −0.2956, ]
1
= 0.2537, 𝜐 = −10, and

𝜎 = 0.75. For illustrative purposes, we show in Table 2 some
values of the exponent 𝑚 with their fitting parameter values
of 𝜎 and 𝜐 that can be used to study the dynamical behavior of
some nonlinear oscillator with a rational or irrational power
restoring forces.

Wenext develop the equivalent representation formof the
Duffing equation with linear and cubic damped terms.
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Figure 6: Amplitude-time response curves of (21) and (28) for the
system parameter values of𝑚 = 1/3,𝐴 = 1,𝜔

𝑛
= 2, ℎ = 0.1,𝑄 = 0.1,

] = 0.025, and 𝜔
𝑓

= 2 with 𝑥(0) = 1 and ̇𝑥(0) = 0. Here, the red
solid and black dashed lines represent, respectively, the numerical
integration solution of (21) and (28) with 𝛼

2
= 4.3426, 𝛽 = −1.3704,

𝛾 = 3.289, Δ = −3.508, 𝜀 = 1.3493, 𝛿 = 4.2695, 𝜖 = −0.2956,
]
1
= 0.2537, 𝜐 = −10, and 𝜎 = 0.75.

5. The Forced Duffing Equation with
Linear and Cubic Damped Terms

We now explore the applicability of our method to derive the
equivalent representation form of the following equation of
motion

𝑑
2
𝑦

𝑑𝑡
2

+ ] ̇𝑦 + 𝐴𝑦 + 𝐵
0
𝑦
3

+ 𝜅
0

̇𝑦
3

= 𝑄
0
cos𝜔
𝑓
𝑡,

𝑦 (0) = 𝑦
10
, ̇𝑦 (0) = ̇𝑦

10
,

(33)
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Table 2: Estimated values of the fitting parameter𝜎 and 𝜐 at different
exponent values of 𝑚. Here, we assume that 𝜔

𝑛
= 2, ℎ = 0.1,

] = 0.025, 𝑄 = 0.1 and consider the following interval values of the
initial oscillation amplitude 0.1 ≤ 𝐴 ≤ 10, with driving frequency
values on 0.1 ≤ 𝜔

𝑓
≤ 3 to best fit the values of 𝜎 and 𝜐.

Exponent
value

Fitting Parameter
value

Fitting Parameter
value

𝑚 𝜎 𝜐

3/5 −1.1 50
2/3 −0.95 50
4/3 −1.177 −50
5/3 −0.95 5
7/5 −0.95 5
10/7 0.9 1

which has a linear damped term, ], and a cubic one, 𝜅
0
[12, 13].

Let 𝑥 = 𝑦/𝑦
10
; then, (33) can be written as

𝑑
2
𝑥

𝑑𝑡
2

+ ] ̇𝑥 + 𝐴𝑥 + 𝐵𝑥
3

+ 𝜅 ̇𝑥
3

= 𝑄 cos𝜔
𝑓
𝑡,

𝑥 (0) = 1, ̇𝑥 (0) = ̇𝑥
10
,

(34)

where 𝐵 = 𝐵
0
𝑦
2

10
, 𝜅 = 𝜅

0
𝑦
2

10
, and 𝑄 = 𝑄

0
/𝑦
10
.

Since (34) has a damped nonlinear termof the cubic-type,
we need tomodify our nonlinearmethod to take into account
its effects on the solution response of (34).Therefore, we now
assume that (7) and (8) can be re-written as

𝐹
1
(𝛿, 𝜖, ]

1
)

= ∫

𝜎

0

(] ̇𝑥 + 𝐴𝑥 + 𝐵𝑥
3

+ 𝜅 ̇𝑥
3

+ 𝑄 cos (𝜔
𝑓
𝑡)

− (𝜅




]
1





+ ]) ̇𝑥 − 𝛿𝑥

− 𝜖𝑥
3

− 𝑄 cos (𝜔
𝑓
𝑡))

2

𝑑𝑥 → min

(35)

𝐹
2
(𝛿, 𝜖, ]

1
)

= ∫

𝜐

0

(] ̇𝑥 + 𝐴𝑥 + 𝐵𝑥
3

+ 𝜅 ̇𝑥
3

+ 𝑄 cos (𝜔
𝑓
𝑡)

− (𝜅




]
1





+ ]) ̇𝑥 − 𝛿𝑥 − 𝜖𝑥

3

−𝑄 cos (𝜔
𝑓
𝑡))

2

𝑑 ̇𝑥 → min,

(36)

which yield the equivalent representation form of (34) as

𝑑
2
𝑥

𝑑𝑡
2

+ (𝜅




]
1





+ ]) ̇𝑥 + 𝛿𝑥 + 𝜖𝑥

3

= 𝑄 cos (𝜔
𝑓
𝑡) , (37)

where

𝛿 =

18𝜅𝜐
3
+ 𝐴𝜎

𝜎

, 𝜖 =

𝐵𝜎
3
− 14𝜅𝜐

3

𝜎
3

, ]
1
=

27𝜐
2

5

.

(38)

Before we evaluate the accuracy achieved by our derived
expression (37), we first recall that Trueba and coworkers

in [13], by using Melnikov analysis, found an equivalent
equation of motion for (34) given as

𝑑
2
𝑥

𝑑𝑡
2

+ 𝜇 ̇𝑥 + 𝐴𝑥 + 𝐵𝑥
3

= 𝑄 cos𝜔
𝑓
𝑡, (39)

where 𝜇 is defined as

𝜇 = ] +

12

35

𝜅. (40)

In what follows, we will use (37) and (39) to compare their
numerical predictions with those provided by (34). First, let
us consider the parameter values of ] = 0.1, 𝐴 = −1,
𝐵 = 1, 𝜅 = 0.01, 𝜔

𝑓
= 1, and 𝑄 = 0.075 with 𝑥

10
=

1, and ̇𝑥
10

= −1.1463 and use our derived expressions to
compute the values of 𝛿, 𝜖, ]

1
, 𝜎, and 𝜐 which are given

as −0.9906, 0.9858, 0.6060, 0.72, and 0.335, respectively.
Figure 7 shows a comparison of the amplitude-time curves,
the phase portrait plots, and the Morlet CWT diagram
obtained from the numerical integrations of (34), (37), and
(39). Notice from Figure 7, that our equivalent equation of
motion (37) closely follows the numerical integration curve
of (34). Here, the RMSE value is close to 0.082, while
the numerical predictions obtained from (39) show some
discrepancies in the amplitude-time curve at the time interval
of 30 ≤ 𝑡 ≤ 60. In this solution, the computed RMSE value is
0.199.

As a second case, we now explore the accuracy of our
equivalent representation form (37) by assuming that ] = 0.2,
𝐴 = 2, 𝐵 = 5, 𝜅 = 0.15, 𝜔

𝑓
= 1/2, and 𝑄 = 5 with

𝑥
10

= 1 and ̇𝑥
10

= 1. As we can see from Figure 8, the
numerical integration solutions of (37) and (39) agree well
with the solution of (34). Furthermore, the Morlet CWT of
(39) shown in Figure 8, exhibits the subharmonic effects that
the original system (34) experiences at the frequencies values
of 1/2𝜔

𝑓
, 1/4𝜔

𝑓
, and 1/8𝜔

𝑓
which correspond to the Morlet

continuous wavelet transform scale values of 3, 4, and 5,
respectively. In this case, the estimated RMSE values are 0.009
for (37) and 0.0166 for (39).The values of 𝛿, 𝜖, ]

1
, 𝜎, and 𝜐 are

found to be 2.1409, 4.7884, 0.6060, −0.72, and 0.335. Notice
that in both examples the values of ]

1
= 0.6060, 𝜎 = 0.72,

and 𝜐 = 0.335 remain unchanged. In Figures 7 and 8, the
black and the red dashed lines describe the amplitude-time
and phase portrait curves of (34) and (39), respectively.

As a final example, we now derive the equivalent equation
of the forced pendulum equation with a cubic damped term

𝑑
2
𝑥

𝑑𝑡
2

+ ] ̇𝑥 + 𝜅 ̇𝑥
3

+ 𝑎 sin (𝑥𝐴)

= 𝑄 cos (𝜔
𝑓
𝑡) , 𝑥 (0) = 1, ̇𝑥 (0) = ̇𝑥

10
,

(41)

where 𝐴 is the initial oscillation amplitude, 𝑎 = 𝑎
0
/𝐴, 𝜅 =

𝜅
0
𝐴
2, with 𝑄 = 𝑄

0
/𝐴. We first use Chebyshev polynomial

expansion and then (35) and (36) to get that

𝑑
2
𝑥

𝑑𝑡
2

+ (𝜅




]
1





+ ]) ̇𝑥 + 𝛿𝑥 + 𝜖𝑥

3

= 𝑄 cos (𝜔
𝑓
𝑡) , (42)
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Figure 7: Amplitude-time, phase plane, and Morlet CWT diagrams for the system parameter values of ] = 0.1, 𝐴 = −1, 𝐵 = 1, 𝜅 = 0.01,
𝜔
𝑓
= 1, and 𝑄 = 0.075 with 𝑥

10
= 1 and ̇𝑥

10
= −1.1463. Here, the dashed black and red lines represent the numerical integration solutions of

(34) and (39), while the blue solid line describes the numerical integration solution of (37). Similarly, in (b) the black solid line and the red
dots represent the numerical integration solutions computed respectively, from (34) and (37).

where

𝛼 =

6𝑎

𝐴
3
(𝐴 (𝐴

2

− 80) 𝐽
1
(𝐴) − 16 (𝐴

2

− 20) 𝐽
2
(𝐴)) − 𝑏,

𝛽 =

32𝑎

𝐴
3

(−𝐴 (𝐴
2

− 60) 𝐽
1
(𝐴) + 2 (7𝐴

2

− 120) 𝐽
2
(𝐴)) ,

𝛾 =

32𝑎

𝐴
3

(𝐴 (𝐴
2

− 48) 𝐽
1
(𝐴) − 12 (𝐴

2

− 16) 𝐽
2
(𝐴)) ,

(43)

and 𝛿, 𝜖, and ]
1
are determined from

𝛿 = 𝛼 +

18𝜅𝜐
3

𝜎

−

185𝛾𝜎
4

21

,

𝜖 = 𝛽 −

14𝜅𝜐
3

𝜎
3

+

70𝛾𝜎
2

9

,

]
1
=

567𝜅𝜐
3
− 320𝛾𝜎

5

105𝜅𝜐

.

(44)

By using Melnikov analysis, Trueba and coworkers [13]
developed the equivalent representation form of (41) which
is given as

𝑑
2
𝑥

𝑑𝑡
2

+ 𝜇 ̇𝑥 + 𝑎 sin (𝑥𝐴) = 𝑄 cos (𝜔
𝑓
𝑡) , 𝜇 = ] +

8

3

𝜅.

(45)
We next consider the parameter values of 𝐴 = 1, 𝑎

0
= 1,

] = 0.05, 𝜅
0

= 0.1, 𝑄
0

= 0.41, ̇𝑥
10

= 1, and 𝜔
𝑓

= 2.5,
and plot the numerical integration solutions of (41), (42),
and (45). The corresponding amplitude-time, phase portrait,
and Morlet CWT plots are shown in Figure 9 for which the
computed parameter values are 𝛿 = 0.9531, 𝜖 = −0.1048,
]
1
= 0.615, 𝛼 = 0.999, 𝛽 = −0.1664, 𝛾 = 0.0079, 𝜇 = 0.3166,

with 𝜎 = 0.8, and 𝜐 = −0.2. We can see from Figure 9 that
our solution closely follows the numerical simulations of (41).
In this case, the computed RMSE values from (42) and (45)
are 0.0893 and 0.2556, respectively. In Figure 9, the black,
the purple, and the red solid lines represent, respectively, the
numerical integration solutions of (41), (42), and (45).

This confirms the usefulness of our proposed nonlinear
method to obtain equivalent equations of motion of nonlin-
ear oscillators.
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Figure 8: Amplitude-time, phase plane, and Morlet CWT diagrams for the system parameter values of ] = 0.2, 𝐴 = 2, 𝐵 = 5, 𝜅 = 0.15,
𝜔
𝑓
= 0.5, and 𝑄 = 5 with 𝑥

10
= 1 and ̇𝑥

10
= 1. Here, the dashed black and red lines represent the numerical integration solutions of (34) and

(39), while the blue dots describe the numerical integration solution of (37). Similarly, in (b) the black solid line and the red dots represent
the numerical integration solutions computed respectively, from (34) and (37).

6. Conclusions

In this paper, we have obtained the equivalent represen-
tation form of some driven, damped nonlinear oscillators
by using a nonlinearization approach. We have found that
in all cases, the numerical predictions obtained from the
corresponding equivalent representation form of the cubic-
quintic, the general pendulum, the power-form elastic term,
and the cubic damped nonlinear oscillators describe well
the qualitative and quantitative behavior of their original
equations of motion.

During the solution processes of the forced Duffing
equation with a cubic damped term, we have found that our
equivalent solution (37) provides numerical estimates that are
similar to those obtained from (39) which was derived from
Melnikov analysis in [13]. Besides, the numerical predictions
of (37) are closer to the numerical integration values of (34)
than those obtained from (39). In this oscillator, we have
found that the values of ]

1
= 0.6060, 𝜎 = 0.72, and

𝜐 = 0.335 could remain unchanged even at larger values
of ], 𝐴, 𝐵, 𝜅, and 𝑄. To further evaluate the accuracy of
our proposed method, we have developed the solution of a
pendulum equationwith a cubic damped term and compared
its numerical estimated values with those obtained from the

original equation of motion and with respect to those of its
equivalent representation form derived by Melnikov analysis
[13]. We found that our derived equation (42) describes well
the numerical estimated values of (41). Moreover, and based
on the numerical simulations performed on the last example
of this work, it is clear that the derived equivalent equation
of motion, when compared to other solutions such as the
one derived by using the well-established Melnikov analysis,
exhibits good accuracy for a wide range of system parameter
values [13]. Of course, one must be careful when using the
equivalent transformation forms previously derived, since
their degree of accuracy depends not only on the system
parameter values but also on the method used to replace
the corresponding restoring forces for equivalent ones of the
cubic type.

Finally, it is evident that our proposed nonlinearization
method can be used to derive equivalent representation forms
of other nonlinear oscillators such as the ones examined by
the authors in [14, 15] and references cited therein, in which
rational or irrational restoring forces, as well as damping
terms, are used to model the dynamics behavior of common
problems that arise in the physical sciences and engineering
fields.
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Figure 9: Amplitude-time, phase plane, and Morlet CWT diagrams for system parameter values of 𝐴 = 1, 𝑎
0

= 1, ] = 0.05, 𝜅
0

= 0.1,
𝑄
0
= 0.41, ̇𝑥

10
= 1, and 𝜔

𝑓
= 2.5. Here, the black, the purple, and the red lines represent, respectively, the numerical integration solutions of

(41), (42), and (45). Similarly, in (b) the black solid line and the red dots represent the numerical integration solutions computed respectively,
from (41) and (42).
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This paper deals with nonlinear stochastic pantograph equations. For solving the equations, a class of extended Milstein methods
are suggested. Amean-square stability criterion for this type of equations is presented. It is proved that under the suitable conditions
the Milstein methods preserve the mean-square stability. Numerical examples further illustrate the obtained theoretical results.

1. Introduction

Stochastic delay differential equations (SDDEs) are often used
to model some problems with aftereffect in many scientific
fields such as physics, biology, mechanics, finance, and con-
trol theory. Generally speaking, it is hard to obtain the ana-
lytical solutions of SDDEs. Hence, recently, many researchers
began to study their numerical solutions, and hence, some
significant results have been achieved.

The stability analysis plays an important role in construc-
tion of excellent numerical algorithms for SDDEs. Hence, it
has received wide attention of researchers. The early related
results can be found in Mao [1, 2], Baker and Buckwar [3],
Buckwar [4, 5], Küchler and Platen [6], and the references
therein.More recently, for the linear SDDEs, Cao et al. [7], Liu
et al. [8], and Wang and Zhang [9] studied mean-square sta-
bility (MS-stability) of Euler-Maruyama, semi-implicit Euler-
Maruyama, andMilsteinmethods, respectively. Taking use of
the Halanay inequality, Baker and Buckwar [10] extended the
MS-stability analysis of Euler-Maruyamamethods to nonlin-
ear SDDEs. Moreover, Wang and Zhang [11] also dealt with
nonlinear MS-stability of Milstein methods.

We note that the above numerical stability investigations
were mainly devoted to the case of constant delay. Although
the deterministic delay differential equations with variable
delays have been widely studied (see, e.g., [12, 13] and the
references therein), the case of variable delay of SDDEs was

rarely concerned. Fan and Liu [14] first studied linear stochas-
tic pantograph equations and gave MS-stability criteria of
semi-implicit Euler methods. Also, by taking use of the
analytical and discrete Razumikhin theorems, they dealt with
𝛼-moment stability of linear stochastic pantograph equations
and their semi-implicit Eulermethod (cf. [15]). Recently, Xiao
et al. [16, 17] gave sufficient MS-stability conditions of back-
ward Euler method and semi-implicit Euler method with
variable stepsize for linear stochastic pantograph differential
equations. In the present paper, we will investigate the MS-
stability of nonlinear stochastic pantograph equations and
their Milstein methods. Some criteria for MS-stability of the
analytical and numerical solutions will be derived. Numerical
experiments will be used to illustrate the obtained theoretical
results.

2. MS-Stability of the Analytical Solutions

Let (Ω,A, 𝑃) be a complete probability space with a filtration
(A
𝑡
)
𝑡≥0

, which is right-continuous and satisfies that each
A
𝑡
(𝑡 ≥ 0) contains all𝑃-null sets inA, and𝑤 is a one-dimen-

sional Brownian motion defined on the probability space.
Moreover, we introduce the following notations:

|⋅| : |𝐴| = √trace (𝐴𝑇𝐴) (the trace norm of matrix 𝐴) ;
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𝐿
𝑝

(Ω, 𝑅
𝑑

) : the family of 𝑅𝑑-value random variable 𝑥

with 𝐸|𝑥|
𝑝

< ∞;

L
𝑝

([𝑎, 𝑏] , 𝑅
𝑑

) : the family of 𝑅𝑑-value A
𝑡
-adapted

processes {𝑥 (𝑡)}
𝑎≤𝑡≤𝑏

with∫
𝑏

𝑎

|𝑥 (𝑡)|
𝑝

𝑑𝑡 < ∞ a.s.;

M
𝑝

([𝑎, 𝑏] , 𝑅
𝑑

) : the family of processes {𝑥 (𝑡)}
𝑡≥0

∈ L
𝑝

([𝑎, 𝑏] , 𝑅
𝑑

)

with 𝐸∫

𝑏

𝑎

|𝑥 (𝑡)|
𝑝

𝑑𝑡 < ∞;

L
𝑝

(𝑅
+
, 𝑅
𝑑

) : the family of processes {𝑥 (𝑡)}
𝑡≥0

with {𝑥 (𝑡)}
0≤𝑡≤𝑇

∈ L
𝑝

([0, 𝑇] , 𝑅
𝑑

)

∀𝑇 > 0;

M
𝑝

(𝑅
+
, 𝑅
𝑑

) : the family of processes {𝑥 (𝑡)}
𝑡≥0

with {𝑥 (𝑡)}
0≤𝑡≤𝑇

∈ M
𝑝

([0, 𝑇] , 𝑅
𝑑

)

∀𝑇 > 0.

(1)

Consider the following nonlinear stochastic pantograph
equations:

𝑑𝑥 (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑝𝑡)) 𝑑𝑡

+ 𝑔 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑝𝑡)) 𝑑𝑤 (𝑡) , 𝑡 > 0,

𝑥 (0) = 𝜉,

(2)

where 𝑥(𝑡) is a 𝑅𝑑-value random process, 𝑝 ∈ (0, 1) denotes a
given constant,𝑓 : 𝑅

+
×𝑅
𝑑
×𝑅
𝑑
→ 𝑅
𝑑 and𝑔 : 𝑅

+
×𝑅
𝑑
×𝑅
𝑑
→

𝑅
𝑑 are two given Borel-measurable functions, 𝜉 is an A

0
-

measurable 𝑅𝑑-value random variable, and 𝜉 ∈ 𝐿
2
(Ω, 𝑅
𝑑
).

Throughout this paper, we always assume that (2) has a
unique solution 𝑥(𝑡) ∈ M2(𝑅

+
, 𝑅
𝑑
).

Definition 1. The solution of (2) is said to be MS-stable if

lim
𝑡→+∞

𝐸|𝑥 (𝑡)|
2

= 0. (3)

Theorem 2. Assume that there exist constants 𝛼 > 0, 𝛽 ≥ 0,
and 𝛾 ≥ 0 such that

𝑥
𝑇

𝑓 (𝑡, 𝑥, 𝑢) ≤ −𝛼|𝑥|
2

+ 𝛽|𝑢|
2

, ∀𝑥, 𝑢 ∈ 𝑅
𝑑

, (4)





𝑔 (𝑡, 𝑥, 𝑢)






2

≤ 𝛾 (|𝑥|
2

+ |𝑢|
2

) , ∀𝑥, 𝑢 ∈ 𝑅
𝑑

. (5)

Then, the solution of (2) is MS-stable whenever

𝛾 − 2𝛼 +

𝛾 + 2𝛽

𝑝

< 0. (6)

Proof. By the Itô formula (cf. [1]), we have

𝑑|𝑥 (𝑡)|
2

= [2𝑥
𝑇

(𝑡) 𝑓 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑝𝑡)) +




𝑔 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑝𝑡))






2

] 𝑑𝑡

+ 2𝑥
𝑇

(𝑡) 𝑔 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑝𝑡)) 𝑑𝑤 (𝑡) .

(7)

Integrating from 0 to 𝑡 on both sides of the equality (7) and
then taking expectation yield that

𝐸|𝑥 (𝑡)|
2

= 𝐸




𝜉





2

+ 𝐸∫

𝑡

0

[2𝑥
𝑇

(𝑠) 𝑓 (𝑠, 𝑥 (𝑠) , 𝑥 (𝑝𝑠))

+




𝑔 (𝑠, 𝑥 (𝑠) , 𝑥 (𝑝𝑠))






2

] 𝑑𝑠

+ 𝐸∫

𝑡

0

2𝑥
𝑇

(𝑠) 𝑔 (𝑠, 𝑥 (𝑠) , 𝑥 (𝑝𝑠)) 𝑑𝑤 (𝑠) .

(8)

Since 𝑥(𝑡) ∈ M2(𝑅
+
, 𝑅
𝑑
), we further have

𝐸|𝑥 (𝑡)|
2

= 𝐸




𝜉





2

+ 𝐸∫

𝑡

0

[2𝑥
𝑇

(𝑠) 𝑓 (𝑠, 𝑥 (𝑠) , 𝑥 (𝑝𝑠))

+




𝑔 (𝑠, 𝑥 (𝑠) , 𝑥 (𝑝𝑠))






2

] 𝑑𝑠.

(9)

Applying the conditions (4) and (5) to (9), it follows that

𝐸|𝑥 (𝑡)|
2

≤ 𝐸




𝜉





2

+ (𝛾 − 2𝛼) 𝐸∫

𝑡

0

|𝑥 (𝑠)|
2

𝑑𝑠

+ (𝛾 + 2𝛽) 𝐸∫

𝑡

0





𝑥 (𝑝𝑠)






2

𝑑𝑠

≤ 𝐸




𝜉





2

+ (𝛾 − 2𝛼 +

𝛾 + 2𝛽

𝑝

)𝐸∫

𝑡

0

|𝑥 (𝑠)|
2

𝑑𝑠,

(10)

which gives

−(𝛾 − 2𝛼 +

𝛾 + 2𝛽

𝑝

)𝐸∫

𝑡

0

|𝑥 (𝑠)|
2

𝑑𝑠 ≤ 𝐸




𝜉





2

, ∀𝑡 > 0. (11)

This, together with (6), implies lim
𝑡→∞

𝐸|𝑥(𝑡)|
2

= 0. There-
fore, the theorem is proven.

3. MS-Stability of the Numerical Solutions

For the stability analysis, we introduce the following nota-
tional conventions:

𝑔


1
(𝑡, 𝑥, 𝑢) =

𝜕𝑔 (𝑡, 𝑥, 𝑢)

𝜕𝑥

, 𝑔


2
(𝑡, 𝑥, 𝑢) =

𝜕𝑔 (𝑡, 𝑥, 𝑢)

𝜕𝑢

,

𝐼
1
= ∫

𝑡
𝑛+1

𝑡
𝑛

∫

𝑠

𝑡
𝑛

𝑑𝑤 (𝑟) 𝑑𝑤 (𝑠) =

(Δ𝑤
𝑛
)
2

− ℎ

2

,

𝐼
2
= ∫

𝑡
𝑛+1

𝑡
𝑛

∫

𝑠

𝑡
𝑛

𝑑𝑤 (𝑝𝑟) 𝑑𝑤 (𝑠) ,

(12)

where Δ𝑤
𝑛

:= ∫

𝑡
𝑛+1

𝑡
𝑛

𝑑𝑤(𝑠) = 𝑤(𝑡
𝑛+1

) − 𝑤(𝑡
𝑛
), denoting

independent𝑁(0, ℎ)-distributed Gaussian random variables.
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Moreover, on space 𝑅𝑑, we define an inner product ⟨⋅, ⋅⟩ and
the corresponding induced norm | ⋅ | as follows:

⟨𝑈, 𝑉⟩ =

𝑑

∑

𝑖=1

𝑢
𝑖
V
𝑖
, |𝑈| = √

𝑑

∑

𝑖=1

𝑢
2

𝑖
, (13)

where 𝑈 = (𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑑
)
𝑇, 𝑉 = (V

1
, V
2
, . . . , V

𝑑
)
𝑇

∈ 𝑅
𝑑.

Applying theMilsteinmethod to (2) derives the following
numerical scheme:

𝑥
𝑛+1

= 𝑥
𝑛
+ ℎ𝑓 (𝑡

𝑛
, 𝑥
𝑛
, 𝑥
𝑛
) + 𝑔 (𝑡

𝑛
, 𝑥
𝑛
, 𝑥
𝑛
) Δ𝑤
𝑛

+ 𝑔


1
(𝑡
𝑛
, 𝑥
𝑛
, 𝑥
𝑛
) 𝑔 (𝑡
𝑛
, 𝑥
𝑛
, 𝑥
𝑛
) 𝐼
1

+ 𝑔


2
(𝑡
𝑛
, 𝑥
𝑛
, 𝑥
𝑛
) 𝑔 (𝑡
𝑛
, 𝑥
𝑛
, 𝑥
𝑛
) 𝐼
2
, 𝑛 ≥ 0,

𝑥
0
= 𝜉,

(14)

where ℎ > 0 is the computational stepsize, Δ𝑤
𝑛
= 𝑤 (𝑡

𝑛+1
) −

𝑤 (𝑡
𝑛
), and𝑥

𝑛
,𝑥
𝑛
, and𝑥

𝑛
are approximations to𝑥 (𝑡

𝑛
),𝑥 (𝑝𝑡

𝑛
),

and 𝑥 (𝑝2𝑡
𝑛
), respectively. When set

𝑝𝑡
𝑛
= (𝑛 − ]

𝑛
) ℎ + 𝛿

𝑛
ℎ, 𝑝

2

𝑡
𝑛
= (𝑛 − ]

𝑛
) ℎ + 𝛿

𝑛
ℎ, (15)

where ]
𝑛
, ]
𝑛
∈ N and 𝛿

𝑛
, 𝛿
𝑛
∈ [0, 1), the approximations of

𝑥(𝑝𝑡
𝑛
) and 𝑥(𝑝2𝑡

𝑛
) can be defined as follows:

𝑥
𝑛
= 𝛿
𝑛
𝑥
𝑛−]
𝑛
+1
+ (1 − 𝛿

𝑛
) 𝑥
𝑛−]
𝑛

,

𝑥
𝑛
= 𝛿
𝑛
𝑥
𝑛−]
𝑛
+1
+ (1 − 𝛿

𝑛
) 𝑥
𝑛−]
𝑛

, 𝑛 ≥ 0.

(16)

In this way, an extended Milstein method, composed by (14)
and (16), is obtained.

Definition 3. An extended Milstein method (14)–(16) is said
to be MS-stable if there exists an ℎ

0
> 0 such that

lim
𝑛→+∞

𝐸




𝑥
𝑛






2

= 0, ℎ ∈ (0, ℎ
0
] . (17)

Lemma 4. The Itô-type double integrals 𝐼
1
, 𝐼
2
have the follow-

ing properties:

𝐸 [𝐼
1
] = 𝐸 [𝐼

2
] = 0, 𝐸





𝐼
1






2

=

ℎ
2

2

, 𝐸




𝐼
2






2

=

𝑝ℎ
2

2

.

(18)

Proof. The equalities 𝐸[𝐼
1
] = 𝐸[𝐼

2
] = 0 can be derived

directly from the properties of martingales. Moreover, by the
equality 𝐼

1
= [(Δ𝑤)

2

− ℎ]/2, we have

𝐸




𝐼
1






2

=

1

4

𝐸[(Δ𝑤
𝑛
)
2

− ℎ]

2

=

ℎ
2

2

. (19)

Also, it follows from the properties of Itô integral that

𝐸




𝐼
2






2

= 𝐸[∫

𝑡
𝑛+1

𝑡
𝑛

∫

𝑠

𝑡
𝑛

𝑑𝑤(𝑝𝑟)𝑑𝑤(𝑠)]

2

= ∫

𝑡
𝑛+1

𝑡
𝑛

𝐸[∫

𝑠

𝑡
𝑛

𝑑𝑤 (𝑝𝑟)]

2

𝑑𝑠

= ∫

𝑡
𝑛+1

𝑡
𝑛

∫

𝑠

𝑡
𝑛

𝑑 (𝑝𝑟) 𝑑𝑠 =

𝑝ℎ
2

2

.

(20)

This completes the proof.

Let 𝑞 = 1 − 𝑝. Then, we have the following lemma.

Lemma 5. Assume that there exist positive integers 𝑟, ]
𝑖
and

𝛿
𝑖
∈ [0, 1) such that

𝑟 ≤

1

𝑞

< 𝑟 + 1, 𝑖𝑞 = ]
𝑖
− 𝛿
𝑖
, 𝑖 = 0, 1, 2, . . . . (21)

Then, the sequence {]
𝑖
} is monoincreasing and has at most 𝑟+1

equal components.

Proof. It follows from 𝑖𝑞 = ]
𝑖
− 𝛿
𝑖
that

]
𝑖+1

+ 𝛿
𝑖
= ]
𝑖
+ 𝛿
𝑖+1

+ 𝑞, 𝑖 = 0, 1, 2, . . . . (22)

Let ⌊⋅⌋ denote the integer part of a real number. Then, by
𝑞, 𝛿
𝑖
∈ [0, 1) and ]

𝑖
∈ N, we have for all 𝑖 that

⌊]
𝑖+1

+ 𝛿
𝑖
⌋ = ]
𝑖+1
, ⌊]

𝑖
+ 𝛿
𝑖+1

+ 𝑞⌋ ≥ ]
𝑖
. (23)

Hence, it holds that

]
𝑖+1

≥ ]
𝑖
, 𝑖 = 0, 1, 2, . . . , (24)

This shows that the sequence {]
𝑖
} is monoincreasing.

For proving the second part of this lemma, we use reduc-
tion to absurdity. If the sequence {]

𝑖
} has 𝑟 + 2 components

which satisfy that

]
𝑖
0

= ]
𝑖
1

= ⋅ ⋅ ⋅ = ]
𝑖
𝑟+1

, where 0 ≤ 𝑖
0
< 𝑖
1
< ⋅ ⋅ ⋅ < 𝑖

𝑟+1
, (25)

then, by ]
𝑖
𝑟+1

−]
𝑖
0

= 0, 𝛿
𝑖
𝑟+1

∈ [0, 1), and 𝑞 > 1/(𝑟+1), we have

𝛿
𝑖
0

= 𝛿
𝑖
𝑟+1

+ (𝑖
𝑟+1

− 𝑖
0
) 𝑞 ≥

𝑖
𝑟+1

− 𝑖
0

𝑟 + 1

≥ 1. (26)

This is contrary to𝛿
𝑖
0

∈ [0, 1). Hence, Lemma 5 is proven.

With the above lemmas, the main result can be stated as
follows.

Theorem 6. Assume that the conditions (4) and (5) hold and
that there exist constants 𝜅,𝑀, and𝑁 ≥ 0 such that





𝑓 (𝑡, 𝑥, 𝑢)






2

≤ 𝜅 (|𝑥|
2

+ |𝑢|
2

) , 𝑥, 𝑢 ∈ 𝑅
𝑑

, (27)






𝑔


1
(𝑡, 𝑥, 𝑢)






≤ 𝑀,






𝑔


2
(𝑡, 𝑥, 𝑢)






≤ 𝑁, 𝑥, 𝑢 ∈ 𝑅

𝑑

. (28)

Then, the extended Milstein method (14)–(16) is MS-stable
whenever

𝑐
1
+ 2𝑐
2
(𝑟 + 1) + 2𝑐

3
(𝑟 + 1) < 0, (29)

where

𝑐
1
= −2 (𝛼 − 2𝛾 −𝑀

2

𝛾) ,

𝑐
2
= 2 (𝛽 + 2𝛾 +𝑀

2

𝛾 + 𝑁
2

𝛾𝑝) , 𝑐
3
= 2𝑁
2

𝛾𝑝.

(30)
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Proof. By (14), we have





𝑥
𝑛+1






2

≤




𝑥
𝑛






2

+ 2 ⟨𝑥
𝑛
, ℎ𝑓 (𝑡

𝑛
, 𝑥
𝑛
, 𝑥
𝑛
) + 𝑔 (𝑡

𝑛
, 𝑥
𝑛
, 𝑥
𝑛
) Δ𝑤
𝑛

+ 𝑔


1
(𝑡
𝑛
, 𝑥
𝑛
, 𝑥
𝑛
) 𝑔 (𝑡
𝑛
, 𝑥
𝑛
, 𝑥
𝑛
) 𝐼
1

+ 𝑔


2
(𝑡
𝑛
, 𝑥
𝑛
, 𝑥
𝑛
) 𝑔 (𝑡
𝑛
, 𝑥
𝑛
, 𝑥
𝑛
) 𝐼
2
⟩

+




ℎ𝑓 (𝑡
𝑛
, 𝑥
𝑛
, 𝑥
𝑛
) + 𝑔 (𝑡

𝑛
, 𝑥
𝑛
, 𝑥
𝑛
) Δ𝑤
𝑛

+ 𝑔


1
(𝑡
𝑛
, 𝑥
𝑛
, 𝑥
𝑛
) 𝑔 (𝑡
𝑛
, 𝑥
𝑛
, 𝑥
𝑛
) 𝐼
1

+ 𝑔


2
(𝑡
𝑛
, 𝑥
𝑛
, 𝑥
𝑛
) 𝑔 (𝑡
𝑛
, 𝑥
𝑛
, 𝑥
𝑛
) 𝐼
2







2

≤




𝑥
𝑛






2

+ 2ℎ𝑥
𝑇

𝑛
𝑓 (𝑡
𝑛
, 𝑥
𝑛
, 𝑥
𝑛
)

+ 2𝑥
𝑇

𝑛
[𝑔 (𝑡
𝑛
, 𝑥
𝑛
, 𝑥
𝑛
) Δ𝑤
𝑛
]

+ 2𝑥
𝑇

𝑛
[𝑔


1
(𝑡
𝑛
, 𝑥
𝑛
, 𝑥
𝑛
) 𝑔 (𝑡
𝑛
, 𝑥
𝑛
, 𝑥
𝑛
) 𝐼
1
]

+ 2𝑥
𝑇

𝑛
[𝑔


2
(𝑡
𝑛
, 𝑥
𝑛
, 𝑥
𝑛
) 𝑔 (𝑡
𝑛
, 𝑥
𝑛
, 𝑥
𝑛
) 𝐼
2
]

+ 4ℎ
2



𝑓 (𝑡
𝑛
, 𝑥
𝑛
, 𝑥
𝑛
)





2

+ 4




𝑔 (𝑡
𝑛
, 𝑥
𝑛
, 𝑥
𝑛
)





2



Δ𝑤
𝑛






2

+ 4






𝑔


1
(𝑡
𝑛
, 𝑥
𝑛
, 𝑥
𝑛
)







2



𝑔 (𝑡
𝑛
, 𝑥
𝑛
, 𝑥
𝑛
)





2



𝐼
1






2

+ 4






𝑔


2
(𝑡
𝑛
, 𝑥
𝑛
, 𝑥
𝑛
)







2



𝑔 (𝑡
𝑛
, 𝑥
𝑛
, 𝑥
𝑛
)





2



𝐼
2






2

.

(31)
Using conditions (4) and (27) generates

𝐸 [𝑥
𝑇

𝑛
𝑓 (𝑡
𝑛
, 𝑥
𝑛
, 𝑥
𝑛
)] ≤ −𝛼𝐸





𝑥
𝑛






2

+ 𝛽𝐸




𝑥
𝑛






2

, (32)

𝐸




𝑓 (𝑡
𝑛
, 𝑥
𝑛
, 𝑥
𝑛
)





2

≤ 𝜅 (𝐸




𝑥
𝑛






2

+ 𝐸




𝑥
𝑛






2

) , (33)

respectively. Moreover, theA
𝑡
𝑛

-measurability implies that

𝐸 [𝑥
𝑇

𝑛
[𝑔 (𝑡
𝑛
, 𝑥
𝑛
, 𝑥
𝑛
) Δ𝑤
𝑛
]]

= 𝐸 [𝑥
𝑇

𝑛
[𝑔 (𝑡
𝑛
, 𝑥
𝑛
, 𝑥
𝑛
) 𝐸 (Δ𝑤

𝑛
| A
𝑡
𝑛

)]] = 0,

𝐸 [




𝑔 (𝑡
𝑛
, 𝑥
𝑛
, 𝑥
𝑛
)





2



Δ𝑤
𝑛






2

]

= 𝐸 [




𝑔 (𝑡
𝑛
, 𝑥
𝑛
, 𝑥
𝑛
)





2

𝐸 (




Δ𝑤
𝑛






2

| A
𝑡
𝑛

)]

≤ 𝛾ℎ (𝐸




𝑥
𝑛






2

+ 𝐸




𝑥
𝑛






2

) ,

𝐸 [𝑥
𝑇

𝑛
[𝑔


1
(𝑡
𝑛
, 𝑥
𝑛
, 𝑥
𝑛
) 𝑔 (𝑡
𝑛
, 𝑥
𝑛
, 𝑥
𝑛
) 𝐼
1
]]

= 𝐸 [𝑥
𝑇

𝑛
[𝑔


1
(𝑡
𝑛
, 𝑥
𝑛
, 𝑥
𝑛
) 𝑔 (𝑡
𝑛
, 𝑥
𝑛
, 𝑥
𝑛
) 𝐸 (𝐼
1
| A
𝑡
𝑛

)]] = 0,

𝐸 [𝑥
𝑇

𝑛
[𝑔


2
(𝑡
𝑛
, 𝑥
𝑛
, 𝑥
𝑛
) 𝑔 (𝑡
𝑛
, 𝑥
𝑛
, 𝑥
𝑛
) 𝐼
2
]]

= 𝐸 [𝑥
𝑇

𝑛
[𝑔


2
(𝑡
𝑛
, 𝑥
𝑛
, 𝑥
𝑛
) 𝑔 (𝑡
𝑛
, 𝑥
𝑛
, 𝑥
𝑛
) 𝐸 (𝐼
2
| A
𝑡
𝑛

)]] = 0,

(34)

and a combination of Lemma 4, (5), and (28) gives

𝐸 [






𝑔


1
(𝑡
𝑛
, 𝑥
𝑛
, 𝑥
𝑛
)







2



𝑔 (𝑡
𝑛
, 𝑥
𝑛
, 𝑥
𝑛
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𝑥
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(35)
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(36)
Taking expectation on both sides of (31) and then substituting
(32)–(36) into the obtained inequality yield

𝐸
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Combining (16) and (37) derives

𝐸




𝑥
𝑛+1






2

≤ 𝐸




𝑥
𝑛






2

+ (𝑐
1
+ 4𝜅ℎ) ℎ𝐸





𝑥
𝑛






2

+ (𝑐
2
+ 4𝜅ℎ) ℎ𝛿

𝑛
𝐸






𝑥
𝑛−]
𝑛
+1







2

+ (𝑐
2
+ 4𝜅ℎ) × ℎ (1 − 𝛿

𝑛
) 𝐸






𝑥
𝑛−]
𝑛







2

+ 𝑐
3
ℎ𝛿
𝑛
𝐸






𝑥
𝑛−]
𝑛
+1







2

+ 𝑐
3
ℎ (1 − 𝛿

𝑛
) 𝐸






𝑥
𝑛−]
𝑛







2

.

(38)
An induction to (38) yields
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(39)
Applying Lemma 5 to (39), it follows that
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Figure 1: Numerical solutions with stepsizes ℎ = 1/24, 1/25, 1/26, 1/27.

≤ [1 + (𝑐
2
+ 4𝜅) (𝑟 + 1) + 𝑐
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(𝑟 + 1)] 𝐸





𝜉





2

+ ℎ [𝑐
1
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2
(𝑟 + 1) + 2𝑐

3
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+ 8𝜅 (𝑟 + 1) ℎ]

𝑛

∑

𝑖=1

𝐸




𝑥
𝑖
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(40)

This shows that the positive series ∑𝑛
𝑖=1

𝐸|𝑥
𝑖
|
2 is bounded

when (29) holds and ℎ ∈ (0, ℎ
0
), where

ℎ
0
= min{1,

−𝑐
1
− 2𝑐
2
(𝑟 + 1) − 2𝑐

3
(𝑟 + 1)

4𝜅 [1 + 2 (𝑟 + 1)]

} . (41)

Therefore, it holds that lim
𝑛→∞

𝐸|𝑥
𝑛
|
2

= 0. This completes
the proof.

4. Numerical Illustration

In this section, we give a numerical example to illustrate the
obtained theoretical results. Consider the following stochas-
tic pantograph equation:

𝑑𝑥 (𝑡) = −

1

4

𝑥 (𝑡) [1 + cos2𝑥( 𝑡
2

)] 𝑑𝑡

+

1

5

𝑥 (𝑡) 𝑥 (

𝑡

2

) 𝑑𝑤 (𝑡) , 𝑡 > 0,

𝑥 (0) = 2.

(42)

It is easy to verify that the conditions ofTheorems 2 and 6 can
be satisfied with parameters

𝛼 =

1

4

, 𝛽 = 0, 𝛾 =

1

50

, 𝜅 =

1

16

,
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Figure 2: Numerical solutions with stepsizes ℎ = 1/22, 1/23.

𝑟 = 1, 𝑀 = 𝑁 =

1

5

, ℎ
0
=

428

6250

>

1

2
4
.

(43)
Hence, both the solution of (42) and its solving method (14)
are all MS-stable.

Applying the extended Milstein method (14)–(16), with
stepsizes ℎ = 1/2

4
, 1/2
5
, 1/2
6
, 1/2
7
∈ (0, ℎ

0
], respectively, to

(42) on interval [0, 20], we can obtain four groups of numeri-
cal solutions (see Figure 1), where we take the average of 1000
block samples. Figure 1 shows that the numerical solutions
are all stable. However, if we take a larger stepsize, then
the numerical stability cannot be assured. This is shown in
Figure 2, where stepsizes ℎ = 1/2

2
, 1/2
3
∉ (0, ℎ

0
] are used,

which leads to two groups of unstable solutions.

5. Conclusions

In this paper, a class of extendedMilsteinmethods for solving
nonlinear stochastic pantograph equations are suggested. A
mean-square stability criterion for this type of equations is
presented. It is proved that, under the suitable conditions, if
the stepsize satisfies the sufficient condition ℎ ≤ ℎ

0
, where

ℎ
0
is given by (41), then the Milstein methods preserve the

mean-square stability. How does one obtain an exact critical
stepsize ̃ℎ

0
such that the method is stable for ℎ ∈ (0,

̃
ℎ
0
]

and unstable for ℎ ∈ (
̃
ℎ
0
, +∞)? This is a difficult problem

which keeps open at present. We will work on it in the future
research.
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This paper is concerned with the 𝐻
∞

filtering problem for a class of switched linear neutral systems with time-varying delays.
The time-varying delays appear not only in the state but also in the state derivatives. Based on the average dwell time approach
and the piecewise Lyapunov functional technique, sufficient conditions are proposed for the exponential stability of the filtering
error dynamic system. Then, the corresponding solvability condition for a desired filter satisfying a weighted 𝐻

∞
performance is

established. All the conditions obtained are delay-dependent. Finally, two numerical examples are given to illustrate the effectiveness
of the proposed theory.

1. Introduction

Switched time-delay systems have been attracting consid-
erable attention during the recent years [1–9], due to the
significance both in theory development and practical appli-
cations. However, it is worth noting that only the state
time delay is considered, and the time delay in the state
derivatives is largely ignored in the existing literature. If
each subsystem of a switched system has time delay in
the state derivatives, then the switched system is called
switched neutral system [10]. Switched neutral systems exist
widely in engineering and social systems, many physical
plants can be modeled as switched neutral systems, such as
distributed networks and heat exchanges. For example, in
[11], a switched neutral type delay equation with nonlinear
perturbations was exploited to model the drilling system.
Compared with the switched systems with state time delay,
switched neutral systems aremuchmore complicated [12–15].
As effective tools, the common Lyapunov function method,
dwell time approaches, and average dwell time approaches
have been extended to study the switched neutral systems,
and many valuable results have been obtained for switched
neutral systems. On the research of stability analysis for
switched neutral systems, the asymptotically stable problem

of switched neutral systems was considered in [16]. If there
exists a Hurwitz linear convex combination of state matrices,
and subsystems are not necessarily stable, switching rules can
be designed to guarantee the asymptotical stability of the
switched neutral system. The method of Lyapunov-Metzler
linear matrix inequalities in [17] was extended to switched
neutral systems [18], and some less conservative stability
results were obtained.

In contrast with the traditional Kalman filtering, the
𝐻
∞

filtering does not require the exact knowledge of the
statistics of the external noise signals, and it is insensitive
to the uncertainties both in the exogenous signal statistics
and in dynamic models [19, 20]. Because of these advantages,
the 𝐻

∞
filtering has attracted much attention in the past

decade for nonswitched neutral systems [21–24]. In [22],
some sufficient conditions for the existence of an 𝐻

∞
filter

of a Luenberger observer type have been provided. However,
to the authors’ best knowledge, the𝐻

∞
filtering for switched

neutral systems has been rarely investigated and still remains
challenging. This motivates our research.

The contribution of this paper lies in three aspects.
First, we address the delay-dependent 𝐻

∞
filtering prob-

lem for switched linear neutral systems with time-varying
delays, which appear not only in the state, but also in the
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state derivatives. The resulting filter is of the Luenberger-
observer type. Second, by using average dwell time approach
and the piecewise Lyapunov function technique, we derive
a delay-dependent sufficient condition, which guarantees
exponential stability of the filtering error system. Then,
the corresponding solvability condition for a desired filter
satisfying a weighted 𝐻

∞
performance is established. Here,

to reduce the conservatism of the delay-dependent condition,
we introduce some slack matrix variables and a new integral
inequality recently proposed in [25]. Finally, we succeed in
transforming the filter design problem into the feasibility
problem of some linear matrix inequalities. To show the
efficiency of the obtained results, we present two relevant
examples.

The remainder of this paper is organized as follows.
The 𝐻

∞
filtering problem for switched neutral systems is

formulated in Section 2. Section 3 presents our main results.
Numerical examples are given in Section 4, and we conclude
this paper in Section 5.
Notation. Throughout this paper, 𝑅𝑛 denotes 𝑛-dimensional
Euclidean space; 𝑅𝑛×𝑚 is the set of all 𝑛 × 𝑚 real matrices;
𝑃 > 0means that 𝑃 is positive definite; 𝐿

2
denotes the space

of square integrable vector functions on [0,∞) with norm
‖ ⋅ ‖ = (∫

∞

0
‖ ⋅ ‖
2

𝑑𝑡)
1/2, where ‖⋅‖denotes the Euclidean vector

norm; 𝐼 is the identity matrix with appropriate dimensions;
the symmetric terms in a symmetric matrix are denoted by ∗
as for example

[

𝑋 𝑌

∗ 𝑍
] = [

𝑋 𝑌

𝑌
𝑇

𝑍

] . (1)

2. Problem Statement

Consider the following switched linear neutral system:

̇𝑥 (𝑡) = 𝐴
0𝜎(𝑡)

𝑥 (𝑡) + 𝐴
1𝜎(𝑡)

𝑥 (𝑡 − ℎ (𝑡))

+ 𝐹
𝜎(𝑡)

̇𝑥 (𝑡 − 𝜏 (𝑡)) + 𝐵
𝜎(𝑡)

𝜔 (𝑡) ,

𝑦 (𝑡) = 𝐶
0𝜎(𝑡)

𝑥 (𝑡) + 𝐶
1𝜎(𝑡)

𝑥 (𝑡 − ℎ (𝑡)) + 𝐷
𝜎(𝑡)

𝜔 (𝑡) ,

𝑧 (𝑡) = 𝐿
𝜎(𝑡)

𝑥 (𝑡) ,

𝑥 (𝜃) = 𝜓 (𝜃) , ∀𝜃 ∈ [−𝐻, 0] , 𝐻 = max {ℎ, 𝜏} ,

(2)

where 𝑥(𝑡) ∈ 𝑅
𝑛 is the state vector; 𝑦(𝑡) ∈ 𝑅

𝑚 is
the measurements vector; 𝜔(𝑡) ∈ 𝑅

𝑝 is the noise signal
vector, which belongs to 𝐿

2
[0,∞); 𝑧(𝑡) ∈ 𝑅

𝑞 is the signal
to be estimated; 𝜓(𝑡) is the initial vector function that is
continuously differentiable on [−𝐻, 0]; 𝜎(𝑡) : [0,∞) → 𝑀 =

{1, 2, . . . , 𝑚} is a piecewise constant function of time 𝑡 called
switching signal. Corresponding to the switching signal 𝜎(𝑡),
we have the switching sequence {𝑥

𝑡
0

: (𝑖
0
, 𝑡
0
), . . . , (𝑖

𝑘
, 𝑡
𝑘
), . . . , |

𝑖
𝑘
∈ 𝑀, 𝑘 = 0, 1, . . .}, which means that the 𝑖

𝑘
th subsystem

is active when 𝑡 ∈ [𝑡
𝑘
, 𝑡
𝑘+1

). The system coefficient matrices
𝐴
0𝑖
𝑘

, 𝐴
1𝑖
𝑘

, 𝐹
𝑖
𝑘

, 𝐵
𝑖
𝑘

, 𝐶
0𝑖
𝑘

, 𝐶
1𝑖
𝑘

, 𝐷
𝑖
𝑘

, and 𝐿
𝑖
𝑘

are known real

constantmatrices of appropriate dimensions. ℎ(𝑡) and 𝜏(𝑡) are
time-varying delays satisfying

0 ≤ ℎ (𝑡) ≤ ℎ,
̇
ℎ (𝑡) ≤ ℎ < 1,

0 ≤ 𝜏 (𝑡) ≤ 𝜏, ̇𝜏 (𝑡) ≤ 𝜏 < 1.

(3)

The objective of this paper is to design a family of filters
of Luenberger observer type as follows:

̇
�̂� (𝑡) = 𝐴

0𝜎(𝑡)
𝑥 (𝑡) + 𝐴

1𝜎(𝑡)
𝑥 (𝑡 − ℎ (𝑡)) + 𝐹

𝜎(𝑡)

̇
�̂� (𝑡 − 𝜏 (𝑡))

+ 𝐾
𝜎(𝑡)

[𝑦 (𝑡) − 𝐶
0𝜎(𝑡)

𝑥 (𝑡) − 𝐶
1𝜎(𝑡)

𝑥 (𝑡 − ℎ (𝑡))] ,

�̂� (𝑡) = 𝐿
𝜎(𝑡)

𝑥 (𝑡) ,

𝑥 (𝜃) = �̂� (𝜃) , ∀𝜃 ∈ [−𝐻, 0] , 𝐻 = max {ℎ, 𝜏} ,
(4)

where 𝐾
𝑖
𝑘

are the filter parameters, which are to be deter-
mined.

Now, we introduce the estimation errors: 𝑥
𝑒
(𝑡) = 𝑥(𝑡) −

𝑥(𝑡), 𝑧
𝑒
(𝑡) = 𝑧(𝑡) − �̂�(𝑡).

Combining (2) with (4) gives the following filtering error
dynamic system:

̇𝑥
𝑒
(𝑡) = 𝐴

0𝜎(𝑡)
𝑥
𝑒
(𝑡) + 𝐴

1𝜎(𝑡)
𝑥
𝑒
(𝑡 − ℎ (𝑡))

+ 𝐹
𝜎(𝑡)

̇𝑥
𝑒
(𝑡 − 𝜏 (𝑡)) + 𝐵

𝜎(𝑡)
𝜔 (𝑡) ,

𝑧
𝑒
(𝑡) = 𝐿

𝜎(𝑡)
𝑥
𝑒
(𝑡) ,

𝑥
𝑒
(𝜃) = 𝜓 (𝜃) − �̂� (𝜃) , ∀𝜃 ∈ [−𝐻, 0] , 𝐻 = max {ℎ, 𝜏} ,

(5)

where 𝐴
0𝜎

= 𝐴
0𝜎

− 𝐾
𝜎
𝐶
0𝜎
, 𝐴
1𝜎

= 𝐴
1𝜎

− 𝐾
𝜎
𝐶
1𝜎
, 𝐵
𝜎
= 𝐵
𝜎
−

𝐾
𝜎
𝐷
𝜎
.

The following definitions are introduced, which will play
key roles in deriving our main results.

Definition 1 (see [26]). The equilibrium 𝑥
∗

𝑒
= 0 of the filtering

error system (5) is said to be exponentially stable under 𝜎(𝑡)
if the solution 𝑥

𝑒
(𝑡) of system (5) with 𝜔(𝑡) = 0 satisfies

‖𝑥
𝑒
(𝑡)‖ ≤ Γ𝑒

−𝜆(𝑡−𝑡
0
)
‖𝑥
𝑒
(𝑡
0
)‖
𝐻
, for all 𝑡 ≥ 𝑡

0
for constants

Γ > 0 and 𝜆 > 0, where ‖ ⋅ ‖ denotes the Euclidean norm,
and ‖𝑥

𝑒
(𝑡)‖
𝐻
= sup

−𝐻≤𝜃≤0
{𝑥
𝑒
(𝑡 + 𝜃), ̇𝑥

𝑒
(𝑡 + 𝜃)}.

Definition 2 (see [26]). For any 𝑇
2
> 𝑇
1
≥ 0, let 𝑁

𝜎
(𝑇
1
, 𝑇
2
)

denote the number of switching of 𝜎(𝑡) over (𝑇
1
, 𝑇
2
). If

𝑁
𝜎
(𝑇
1
, 𝑇
2
) ≤ 𝑁

0
+ (𝑇
2
− 𝑇
1
)/𝑇
𝑎
holds for 𝑇

𝑎
> 0, 𝑁

0
≥ 0,

then 𝑇
𝑎
is called average dwell time. As commonly used in

the literature, we choose𝑁
0
= 0.

The filtering problem addressed in this paper is to seek
for suitable filter gain 𝐾

𝑖
such that the filtering error system

(5) for any switching signal with average dwell time has a
prescribed𝐻

∞
performance 𝛾; that is,

(1) the error system (5) with 𝜔(𝑡) = 0 is exponentially
stable;
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(2) under the zero initial conditions, that is, 𝑥
𝑒
(𝜃) = 0,

for all 𝜃 ∈ [−𝐻, 0], the weighted 𝐻
∞

performance
∫

∞

0
𝑒
−𝛼𝑠

𝑧
𝑇

𝑒
(𝑠)𝑧
𝑒
(𝑠)𝑑𝑠 ≤ 𝛾

2
∫

∞

0
𝜔
𝑇
(𝑠)𝜔(𝑠)𝑑𝑠 is guaran-

teed for all nonzero 𝜔(𝑡) ∈ 𝐿
2
[0,∞) and a prescribed

level of noise attenuation 𝛾 > 0.

Before concluding this section, we introduce three lem-
mas which are essential for the development of the results.

Lemma 3 (see [25]). Let 𝑥(𝑡) ∈ 𝑅
𝑛 be a vector-valued

function with first-order continuous-derivative entries. Then,
the following integral inequality holds for any matrices 𝑀

1
,

𝑀
2
∈ 𝑅
𝑛×𝑛, and 𝑋 = 𝑋

𝑇
> 0, and a scalar ℎ ≥ 0,

− ∫

𝑡

𝑡−ℎ

̇𝑥
𝑇

(𝑠)𝑋 ̇𝑥 (𝑠) 𝑑𝑠

≤ 𝜉
𝑇

(𝑡)
[

[

𝑀
𝑇

1
+𝑀
1
−𝑀
𝑇

1
+𝑀
2

∗ −𝑀
𝑇

2
−𝑀
2

]

]

𝜉 (𝑡)

+ ℎ𝜉
𝑇

(𝑡)
[

[

𝑀
𝑇

1

𝑀
𝑇

2

]

]

𝑋
−1
[𝑀
1
𝑀
2
] 𝜉 (𝑡) ,

(6)

where 𝜉𝑇(𝑡) = [𝑥
𝑇
(𝑡) 𝑥
𝑇
(𝑡 − ℎ)].

Lemma 4 (see [27]). For any constant matrix 0 < 𝑅 =

𝑅
𝑇

∈ 𝑅
𝑛×𝑛, scalar 𝑟 > 0, vector function 𝜔 : [0, 𝑟] → 𝑅

𝑛

such that the integrations concerned are well defined; then,
(∫

𝑟

0
𝜔(𝑠)𝑑𝑠)

𝑇

𝑅(∫

𝑟

0
𝜔(𝑠)𝑑𝑠) ≤ 𝑟 ∫

𝑟

0
𝜔
𝑇
(𝑠)𝑅𝜔(𝑠)𝑑𝑠.

Lemma 5 (Schur complement). For given 𝑆 = [
𝑆
11
𝑆
12

∗ 𝑆
22

] < 0,
where 𝑆

11
= 𝑆
𝑇

11
and 𝑆
22

= 𝑆
𝑇

22
, the following is equivalent:

(1) 𝑆
11

< 0, 𝑆
22
− 𝑆
𝑇

12
𝑆
−1

11
𝑆
12

< 0;

(2) 𝑆
22

< 0, 𝑆
11
− 𝑆
12
𝑆
−1

22
𝑆
𝑇

12
< 0.

(7)

3. Main Results

In this section, we first present a sufficient condition for
exponential stability of the filtering error system (5) with
𝜔(𝑡) = 0. Then, it is applied to formulate an approach to
design the desired𝐻

∞
filters for switched neutral system (2).

3.1. Stability Analysis

Theorem 6. Given 𝛼 > 0, ‖𝐹
𝑖
𝑘

‖ < 1, for all 𝑖
𝑘
∈ 𝑀. If there

exist matrices 𝑃
𝑖
𝑘

> 0, 𝑄
𝑖
𝑘

> 0, 𝑅
𝑖
𝑘

> 0,𝑀
𝑖
𝑘

> 0,𝑁
𝑖
𝑘

> 0, and
𝑇
1𝑖
𝑘

, 𝑇
2𝑖
𝑘

,𝑁
𝑔𝑖
𝑘

(𝑔 = 1, 2, . . . , 7) of appropriate dimensions, and
𝜇 ≥ 1, such that for all 𝑖

𝑘
∈ 𝑀,

Σ
𝑖
𝑘

=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Σ
11

Σ
12

Σ
13

Σ
14

Σ
15

𝐴
𝑇

0𝑖
𝑘

𝑁
6𝑖
𝑘

Σ
17

∗ Σ
22

Σ
23

−𝑁
4𝑖
𝑘

Σ
25

−𝑁
6𝑖
𝑘

−𝑁
7𝑖
𝑘

∗ ∗ Σ
33

𝐴
𝑇

1𝑖
𝑘

𝑁
4𝑖
𝑘

Σ
35

𝐴
𝑇

1𝑖
𝑘

𝑁
6𝑖
𝑘

𝐴
𝑇

1𝑖
𝑘

𝑁
7𝑖
𝑘

∗ ∗ ∗ Σ
44

𝑁
𝑇

4𝑖
𝑘

𝐹
𝑖
𝑘

0 𝜏𝑇
𝑇

2𝑖
𝑘

∗ ∗ ∗ ∗ Σ
55

𝐹
𝑇

𝑖
𝑘

𝑁
6𝑖
𝑘

𝐹
𝑇

𝑖
𝑘

𝑁
7𝑖
𝑘

∗ ∗ ∗ ∗ ∗ −

1

ℎ

𝑒
−𝛼ℎ

𝑀
𝑖
𝑘

0

∗ ∗ ∗ ∗ ∗ ∗ −𝜏𝑒
𝛼𝜏
𝑁
𝑖
𝑘

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

< 0, (8)

𝑃
𝑖
𝑘

≤ 𝜇𝑃
𝑖
𝑗

, 𝑄
𝑖
𝑘

≤ 𝜇𝑄
𝑖
𝑗

, 𝑅
𝑖
𝑘

≤ 𝜇𝑅
𝑖
𝑗

, 𝑀
𝑖
𝑘

≤ 𝜇𝑀
𝑖
𝑗

, 𝑁
𝑖
𝑘

≤ 𝜇𝑁
𝑖
𝑗

, ∀𝑖
𝑘
, 𝑖
𝑗
∈ 𝑀, (9)

where

Σ
11

= ℎ𝑀
𝑖
𝑘

+ 𝛼𝑃
𝑖
𝑘

+ 𝑄
𝑖
𝑘

+ 𝑒
−𝛼𝜏

𝑇
𝑇

1𝑖
𝑘

+ 𝑒
−𝛼𝜏

𝑇
1𝑖
𝑘

+ 𝑁
𝑇

1𝑖
𝑘

𝐴
0𝑖
𝑘

+ 𝐴
𝑇

0𝑖
𝑘

𝑁
1𝑖
𝑘

,

Σ
12

= 𝑃
𝑖
𝑘

− 𝑁
𝑇

1𝑖
𝑘

+ 𝐴
𝑇

0𝑖
𝑘

𝑁
2𝑖
𝑘

,

Σ
13

= 𝑁
𝑇

1𝑖
𝑘

𝐴
1𝑖
𝑘

+ 𝐴
𝑇

0𝑖
𝑘

𝑁
3𝑖
𝑘

,

Σ
14

= −𝑒
−𝛼𝜏

𝑇
𝑇

1𝑖
𝑘

+ 𝑒
−𝛼𝜏

𝑇
2𝑖
𝑘

+ 𝐴
𝑇

0𝑖
𝑘

𝑁
4𝑖
𝑘

,

Σ
15

= 𝑁
𝑇

1𝑖
𝑘

𝐹
𝑖
𝑘

+ 𝐴
𝑇

0𝑖
𝑘

𝑁
5𝑖
𝑘

,

Σ
17

= 𝜏𝑇
𝑇

1𝑖
𝑘

+ 𝐴
𝑇

0𝑖
𝑘

𝑁
7𝑖
𝑘

,

Σ
22

= 𝑅
𝑖
𝑘

+ 𝜏𝑁
𝑖
𝑘

− 𝑁
𝑇

2𝑖
𝑘

− 𝑁
2𝑖
𝑘

,

Σ
23

= −𝑁
3𝑖
𝑘

+ 𝑁
𝑇

2𝑖
𝑘

𝐴
1𝑖
𝑘

,

Σ
25

= −𝑁
5𝑖
𝑘

+ 𝑁
𝑇

2𝑖
𝑘

𝐹
𝑖
𝑘

,

Σ
33

= − (1 − ℎ) 𝑒
−𝛼ℎ

𝑄
𝑖
𝑘

+ 𝑁
𝑇

3𝑖
𝑘

𝐴
1𝑖
𝑘

+ 𝐴
𝑇

1𝑖
𝑘

𝑁
3𝑖
𝑘

,

Σ
35

= 𝑁
𝑇

3𝑖
𝑘

𝐹
𝑖
𝑘

+ 𝐴
𝑇

1𝑖
𝑘

𝑁
5𝑖
𝑘

,
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Σ
44

= −𝑒
−𝛼𝜏

𝑇
𝑇

2𝑖
𝑘

− 𝑒
−𝛼𝜏

𝑇
2𝑖
𝑘

,

Σ
55

= − (1 − 𝜏) 𝑒
−𝛼𝜏

𝑅
𝑖
𝑘

+ 𝑁
𝑇

5𝑖
𝑘

𝐹
𝑖
𝑘

+ 𝐹
𝑇

𝑖
𝑘

𝑁
5𝑖
𝑘

,

(10)

then the error dynamic system (5) with 𝜔(𝑡) = 0 is exponen-
tially stable for any switching signal with average dwell time
satisfying 𝑇

𝑎
> 𝑇
∗

𝑎
= ln 𝜇/𝛼.

Proof. Define the piecewise Lyapunov-Krasovskii functional
candidate

𝑉 (𝑡) = 𝑉
𝜎(𝑡)

(𝑡) =

5

∑

𝑗=1

𝑉
𝑗𝜎(𝑡)

(𝑡) , (11)

where

𝑉
1𝑖
𝑘
(𝑡) = 𝑥

𝑇

𝑒
(𝑡) 𝑃
𝑖
𝑘

𝑥
𝑒
(𝑡) ,

𝑉
2𝑖
𝑘
(𝑡) = ∫

𝑡

𝑡−ℎ(𝑡)

𝑥
𝑇

𝑒
(𝑠) 𝑒
𝛼(𝑠−𝑡)

𝑄
𝑖
𝑘

𝑥
𝑒
(𝑠) 𝑑𝑠,

𝑉
3𝑖
𝑘
(𝑡) = ∫

𝑡

𝑡−𝜏(𝑡)

̇𝑥
𝑇

𝑒
(𝑠) 𝑒
𝛼(𝑠−𝑡)

𝑅
𝑖
𝑘

̇𝑥
𝑒
(𝑠) 𝑑𝑠,

𝑉
4𝑖
𝑘
(𝑡) = ∫

0

−ℎ

∫

𝑡

𝑡+𝜃

𝑥
𝑇

𝑒
(𝑠) 𝑒
𝛼(𝑠−𝑡)

𝑀
𝑖
𝑘

𝑥
𝑒
(𝑠) 𝑑𝑠 𝑑𝜃,

𝑉
5𝑖
𝑘
(𝑡) = ∫

0

−𝜏

∫

𝑡

𝑡+𝜃

̇𝑥
𝑇

𝑒
(𝑠) 𝑒
𝛼(𝑠−𝑡)

𝑁
𝑖
𝑘

̇𝑥
𝑒
(𝑠) 𝑑𝑠 𝑑𝜃.

(12)

Now, taking the derivative of 𝑉
𝑗𝑖
𝑘

(𝑡), 𝑗 = 1, 2, . . . , 5 with
respect to 𝑡 along the trajectory of the error system (5) with
𝜔(𝑡) = 0, according to (3) and Lemma 4, we have

𝑉
𝑖
𝑘
(𝑡) + 𝛼𝑉

𝑖
𝑘
(𝑡)

≤ 2𝑥
𝑇

𝑒
(𝑡) 𝑃
𝑖
𝑘

̇𝑥
𝑒
(𝑡) + 𝑥

𝑇

𝑒
(𝑡) 𝑄
𝑖
𝑘

𝑥
𝑒
(𝑡) + ̇𝑥

𝑇

𝑒
(𝑡) 𝑅
𝑖
𝑘

̇𝑥
𝑒
(𝑡)

− (1 − ℎ) 𝑥
𝑇

𝑒
(𝑡 − ℎ (𝑡)) 𝑒

−𝛼ℎ

𝑄
𝑖
𝑘

𝑥
𝑒
(𝑡 − ℎ (𝑡))

+ ℎ𝑥
𝑇

𝑒
(𝑡)𝑀
𝑖
𝑘

𝑥
𝑒
(𝑡) + 𝜏 ̇𝑥

𝑇

𝑒
(𝑡)𝑁
𝑖
𝑘

̇𝑥
𝑒
(𝑡) + 𝛼𝑥

𝑇

𝑒
(𝑡) 𝑃
𝑖
𝑘

𝑥
𝑒
(𝑡)

− (1 − 𝜏) ̇𝑥
𝑇

𝑒
(𝑡 − 𝜏 (𝑡)) 𝑒

−𝛼𝜏

𝑅
𝑖
𝑘

̇𝑥
𝑒
(𝑡 − 𝜏 (𝑡))

−

𝑒
−𝛼ℎ

ℎ

∫

𝑡

𝑡−ℎ

𝑥
𝑇

𝑒
(𝑠) 𝑑𝑠𝑀

𝑖
𝑘

∫

𝑡

𝑡−ℎ

𝑥
𝑒
(𝑠) 𝑑𝑠

− ∫

𝑡

𝑡−𝜏

̇𝑥
𝑇

𝑒
(𝑠) 𝑒
𝛼(𝑠−𝑡)

𝑁
𝑖
𝑘

̇𝑥
𝑒
(𝑠) 𝑑𝑠.

(13)

From Lemma 3, it holds

− ∫

𝑡

𝑡−𝜏

̇𝑥
𝑇

𝑒
(𝑠) 𝑒
𝛼(𝑠−𝑡)

𝑁
𝑖
𝑘

̇𝑥
𝑒
(𝑠) 𝑑𝑠

≤ −∫

𝑡

𝑡−𝜏

̇𝑥
𝑇

𝑒
(𝑠) 𝑒
−𝛼𝜏

𝑁
𝑖
𝑘

̇𝑥
𝑒
(𝑠) 𝑑𝑠

≤ 𝑒
−𝛼𝜏

[𝑥
𝑇

𝑒
(𝑡) 𝑥
𝑇

𝑒
(𝑡 − 𝜏)]

[

[

𝑇
𝑇

1𝑖
𝑘

+ 𝑇
1𝑖
𝑘

−𝑇
𝑇

1𝑖
𝑘

+ 𝑇
2𝑖
𝑘

∗ −𝑇
𝑇

2𝑖
𝑘

− 𝑇
2𝑖
𝑘

]

]

× [

𝑥
𝑒
(𝑡)

𝑥
𝑒
(𝑡 − 𝜏)

] + 𝜏𝑒
−𝛼𝜏

[𝑥
𝑇

𝑒
(𝑡) 𝑥
𝑇

𝑒
(𝑡 − 𝜏)]

×
[

[

𝑇
𝑇

1𝑖
𝑘

𝑇
𝑇

2𝑖
𝑘

]

]

𝑁
−1

𝑖
𝑘

[𝑇
1𝑖
𝑘

𝑇
2𝑖
𝑘
]
[

[

𝑥
𝑒
(𝑡)

𝑥
𝑒
(𝑡 − 𝜏)

]

]

.

(14)

Define

𝜉
𝑇

𝑒
(𝑡) = [𝜁

𝑇

𝑒
(𝑡) ̇𝑥
𝑇

𝑒
(𝑡 − 𝜏 (𝑡)) ∫

𝑡

𝑡−ℎ

𝑥
𝑇

𝑒
(𝑠) 𝑑𝑠] , (15)

where 𝜁𝑇
𝑒
(𝑡) = [𝑥

𝑇

𝑒
(𝑡) ̇𝑥
𝑇

𝑒
(𝑡) 𝑥
𝑇

𝑒
(𝑡 − ℎ(𝑡)) 𝑥

𝑇

𝑒
(𝑡 − 𝜏)].

By some algebraic manipulations, it is easy to show that

𝑉
𝑖
𝑘
(𝑡) + 𝛼𝑉

𝑖
𝑘
(𝑡) ≤ 𝜉

𝑇

𝑒
(𝑡) Σ
𝑖
𝑘

𝜉
𝑒
(𝑡) , (16)

where

Σ
𝑖
𝑘

=

[

[

[

[

[

[

[

[

Σ
11

𝑃
𝑖
𝑘

0 Σ
14

0 0

∗ 𝑅
𝑖
𝑘

+ 𝜏𝑁
𝑖
𝑘

0 0 0 0

∗ ∗ − (1 − ℎ) 𝑒
−𝛼ℎ

𝑄
𝑖
𝑘

0 0 0

∗ ∗ ∗ Σ
44

0 0

∗ ∗ ∗ ∗ Σ
55

0

∗ ∗ ∗ ∗ ∗ Σ
66

]

]

]

]

]

]

]

]

,

(17)

where

Σ
11

= ℎ𝑀
𝑖
𝑘

+ 𝛼𝑃
𝑖
𝑘

+ 𝑄
𝑖
𝑘

+ 𝑒
−𝛼𝜏

𝑇
𝑇

1𝑖
𝑘

+ 𝑒
−𝛼𝜏

𝑇
1𝑖
𝑘

+ 𝜏𝑒
−𝛼𝜏

𝑇
𝑇

1𝑖
𝑘

𝑁
−1

𝑖
𝑘

𝑇
1𝑖
𝑘

,

Σ
14

= −𝑒
−𝛼𝜏

𝑇
𝑇

1𝑖
𝑘

+ 𝑒
−𝛼𝜏

𝑇
2𝑖
𝑘

+ 𝜏𝑒
−𝛼𝜏

𝑇
𝑇

1𝑖
𝑘

𝑁
−1

𝑖
𝑘

𝑇
2𝑖
𝑘

,

Σ
55

= − (1 − 𝜏) 𝑒
−𝛼𝜏

𝑅
𝑖
𝑘

,

Σ
44

= −𝑒
−𝛼𝜏

𝑇
𝑇

2𝑖
𝑘

− 𝑒
−𝛼𝜏

𝑇
2𝑖
𝑘

+ 𝜏𝑒
−𝛼𝜏

𝑇
𝑇

2𝑖
𝑘

𝑁
−1

𝑖
𝑘

𝑇
2𝑖
𝑘

,

Σ
66

= −

1

ℎ

𝑒
−𝛼ℎ

𝑀
𝑖
𝑘

.

(18)



Mathematical Problems in Engineering 5

0 500 1000 1500 2000 2500 3000
−0.05

0

Time

x
e
(
t
)

0.3

0.25

0.2

0.15

0.1

0.05

Figure 1: The state responses of the filtering error dynamic system
with 𝜔(𝑡) = 0.

From Lemma 5, Σ
𝑖
𝑘

< 0 is equivalent to

Σ̃
𝑖
𝑘

=

[

[

[

[

[

[

[

[

[

[

[

Σ̃
11

𝑃
𝑖
𝑘

0 Σ̃
14

0 0 𝜏𝑇
𝑇

1𝑖
𝑘

∗ 𝑅
𝑖
𝑘

+ 𝜏𝑁
𝑖
𝑘

0 0 0 0 0

∗ ∗ Σ̃
33

0 0 0 0

∗ ∗ ∗ Σ̃
44

0 0 𝜏𝑇
𝑇

2𝑖
𝑘

∗ ∗ ∗ ∗ Σ̃
55

0 0

∗ ∗ ∗ ∗ ∗ Σ̃
66

0

∗ ∗ ∗ ∗ ∗ ∗ −𝜏𝑒
𝛼𝜏
𝑁
𝑖
𝑘

]

]

]

]

]

]

]

]

]

]

]

< 0,

(19)

where

Σ̃
11

= ℎ𝑀
𝑖
𝑘

+ 𝛼𝑃
𝑖
𝑘

+ 𝑄
𝑖
𝑘

+ 𝑒
−𝛼𝜏

𝑇
𝑇

1𝑖
𝑘

+ 𝑒
−𝛼𝜏

𝑇
1𝑖
𝑘

,

Σ̃
14

= −𝑒
−𝛼𝜏

𝑇
𝑇

1𝑖
𝑘

+ 𝑒
−𝛼𝜏

𝑇
2𝑖
𝑘

, Σ̃
33

= − (1 − ℎ) 𝑒
−𝛼ℎ

𝑄
𝑖
𝑘

,

Σ̃
44

= −𝑒
−𝛼𝜏

𝑇
𝑇

2𝑖
𝑘

− 𝑒
−𝛼𝜏

𝑇
2𝑖
𝑘

, Σ̃
55

= Σ
55
, Σ̃

66
= Σ
66
.

(20)

In addition, the following is true from (5) with 𝜔(𝑡) = 0:

2𝜉
𝑇

𝑒
(𝑡)[𝑁1𝑖

𝑘

𝑁
2𝑖
𝑘

𝑁
3𝑖
𝑘

𝑁
4𝑖
𝑘

𝑁
5𝑖
𝑘

𝑁
6𝑖
𝑘

𝑁
7𝑖
𝑘
]

𝑇

× [𝐴
0𝑖
𝑘

−𝐼 𝐴
1𝑖
𝑘

0 𝐹
𝑖
𝑘

0 0] 𝜉
𝑒
(𝑡) = 0,

(21)

where 𝜉 𝑇
𝑒
(𝑡) = [𝜉

𝑇

𝑒
(𝑡) 0].

Then, (19) along with (21) givesΣ
𝑖
𝑘

< 0, which yieldsΣ
𝑖
𝑘

<

0; thus,

𝑉
𝑖
𝑘
(𝑡) + 𝛼𝑉

𝑖
𝑘
(𝑡) ≤ 0. (22)

Combining (9) with (22), for any 𝑡 ∈ [𝑡
𝑘
, 𝑡
𝑘+1

), we have

𝑉 (𝑡) = 𝑉
𝑖
𝑘
(𝑡)

≤ 𝑒
−𝛼(𝑡−𝑡

𝑘
)

𝑉
𝑖
𝑘

(𝑡
𝑘
)

≤ 𝜇𝑒
−𝛼(𝑡−𝑡

𝑘
)

𝑉
𝜎(𝑡
−

𝑘
)
(𝑡
−

𝑘
)

≤ 𝜇𝑒
−𝛼(𝑡−𝑡

𝑘
)

𝑒
−𝛼(𝑡
𝑘
−𝑡
𝑘−1
)

𝑉
𝜎(𝑡
𝑘−1
)
(𝑡
𝑘−1

)

≤ ⋅ ⋅ ⋅

≤ 𝜇
𝑘

𝑒
−𝛼(𝑡−𝑡

0
)

𝑉 (𝑡
0
)

≤ 𝑒
−(𝛼−(ln 𝜇/𝑇

𝑎
))(𝑡−𝑡

0
)

𝑉 (𝑡
0
) .

(23)

According to (11), we have

𝑎




𝑥
𝑒
(𝑡)






2

≤ 𝑉 (𝑡) ≤ 𝑏




𝑥
𝑒
(𝑡
0
)





2

𝐻
, (24)

where

𝑎 = min
∀𝑖
𝑘
∈𝑀

{𝜆min (𝑃𝑖
𝑘

)} ,

𝑏 = max
∀𝑖
𝑘
∈𝑀

{𝜆max (𝑃𝑖
𝑘

)} + ℎmax
∀𝑖
𝑘
∈𝑀

{𝜆max (𝑄𝑖
𝑘

)}

+ 𝜏max
∀𝑖
𝑘
∈𝑀

{𝜆max (𝑅𝑖
𝑘

)} +

ℎ
2

2

max
∀𝑖
𝑘
∈𝑀

{𝜆max (𝑀𝑖
𝑘

)}

+

𝜏
2

2

max
∀𝑖
𝑘
∈𝑀

{𝜆max (𝑁𝑖
𝑘

)} .

(25)

Considering (23) and (24), it holds ‖𝑥
𝑒
(𝑡)‖ ≤

√(𝑏/𝑎)𝑒
−(1/2)(𝛼−(ln 𝜇/𝑇

𝑎
))(𝑡−𝑡

0
)
‖𝑥
𝑒
(𝑡
0
)‖
𝐻
.

Therefore, if 𝛼 − (ln 𝜇/𝑇
𝑎
) > 0, that is 𝑇

𝑎
> (ln 𝜇/𝛼), then

error dynamic system (5) is exponentially stable.

Remark 7. When 𝜇 = 1, we have 𝑇
∗

𝑎
= 0, which means

that the switching signal 𝜎(𝑡) can be arbitrary. In this case,
condition (9) implies that there exists a common Lyapunov
functional for all subsystems. Moreover, setting 𝛼 = 0 in
(8) gives asymptotic stability of the filtering error system (5)
under arbitrary switching.

Remark 8. The filters of Luenberger observer type has been
adopted in the literatures, see [17]. The Luenberger-type
observer can produce an approximation to the system state
that is independent of the system trajectory, and it only
depends on the initial value of the system state.

Remark 9. The condition ‖𝐹
𝑖
𝑘

‖ < 1 guarantees that Lipschitz
constant for the right hand of (2) with respect to ̇𝑥(𝑡 − 𝜏(𝑡))

is less than one.

3.2. Filter Design. Now, we design the desired 𝐻
∞

filter for
the switched neutral system (2).

Theorem 10. Given 𝛼 > 0, if ‖𝐹
𝑖
𝑘

‖ < 1, for all 𝑖
𝑘
∈ 𝑀, and

if there exists matrices 𝑃
𝑖
𝑘

> 0, 𝑄
𝑖
𝑘

> 0, 𝑅
𝑖
𝑘

> 0, 𝑀
𝑖
𝑘

> 0,
𝑁
𝑖
𝑘

> 0, and 𝑇
1𝑖
𝑘

, 𝑇
2𝑖
𝑘

,𝑊
𝑖
𝑘

,𝑋
𝑖
𝑘

of appropriate dimensions, and
𝜇 ≥ 1, such that, for any 𝑖

𝑘
∈ 𝑀,
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Ω
𝑖
𝑘

=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Ω
11

Ω
12

Ω
13

Ω
14

𝑊
𝑇

𝑖
𝑘

𝐹
𝑖
𝑘

0 𝜏𝑇
𝑇

1𝑖
𝑘

Ω
18

∗ Ω
22

Ω
23

0 𝑊
𝑇

𝑖
𝑘

𝐹
𝑖
𝑘

0 0 Ω
28

∗ ∗ Ω
33

0 𝑊
𝑇

𝑖
𝑘

𝐹
𝑖
𝑘

0 0 Ω
38

∗ ∗ ∗ Ω
44

0 0 𝜏𝑇
𝑇

2𝑖
𝑘

0

∗ ∗ ∗ ∗ Ω
55

0 0 0

∗ ∗ ∗ ∗ ∗ Ω
66

0 0

∗ ∗ ∗ ∗ ∗ ∗ −𝜏𝑒
𝛼𝜏
𝑁
𝑖
𝑘

0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝛾
2
𝐼

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

< 0, (26)

𝑃
𝑖
𝑘

≤ 𝜇𝑃
𝑖
𝑗

, 𝑄
𝑖
𝑘

≤ 𝜇𝑄
𝑖
𝑗

, 𝑅
𝑖
𝑘

≤ 𝜇𝑅
𝑖
𝑗

, 𝑀
𝑖
𝑘

≤ 𝜇𝑀
𝑖
𝑗

, 𝑁
𝑖
𝑘

≤ 𝜇𝑁
𝑖
𝑗

, ∀𝑖
𝑘
, 𝑖
𝑗
∈ 𝑀, (27)

where

Ω
11

= ℎ𝑀
𝑖
𝑘

+ 𝛼𝑃
𝑖
𝑘

+ 𝑄
𝑖
𝑘

+ 𝑒
−𝛼𝜏

𝑇
𝑇

1𝑖
𝑘

+ 𝑒
−𝛼𝜏

𝑇
1𝑖
𝑘

+𝑊
𝑇

𝑖
𝑘

𝐴
0𝑖
𝑘

+ 𝐴
𝑇

0𝑖
𝑘

𝑊
𝑖
𝑘

− 𝑋
𝑖
𝑘

𝐶
0𝑖
𝑘

− 𝐶
𝑇

0𝑖
𝑘

𝑋
𝑇

𝑖
𝑘

+ 𝐿
𝑇

𝑖
𝑘

𝐿
𝑖
𝑘

,

Ω
12

= 𝑃
𝑖
𝑘

−𝑊
𝑇

𝑖
𝑘

+ 𝐴
𝑇

0𝑖
𝑘

𝑊
𝑖
𝑘

− 𝐶
𝑇

0𝑖
𝑘

𝑋
𝑇

𝑖
𝑘

,

Ω
13

= 𝑊
𝑇

𝑖
𝑘

𝐴
1𝑖
𝑘

+ 𝐴
𝑇

0𝑖
𝑘

𝑊
𝑖
𝑘

− 𝑋
𝑖
𝑘

𝐶
1𝑖
𝑘

− 𝐶
𝑇

0𝑖
𝑘

𝑋
𝑇

𝑖
𝑘

,

Ω
14

= −𝑒
−𝛼𝜏

𝑇
𝑇

1𝑖
𝑘

+ 𝑒
−𝛼𝜏

𝑇
2𝑖
𝑘

,

Ω
18

= 𝑊
𝑇

𝑖
𝑘

𝐵
𝑖
𝑘

− 𝑋
𝑖
𝑘

𝐷
𝑖
𝑘

,

Ω
22

= 𝑅
𝑖
𝑘

+ 𝜏𝑁
𝑖
𝑘

−𝑊
𝑇

𝑖
𝑘

−𝑊
𝑖
𝑘

,

Ω
23

= 𝑊
𝑇

𝑖
𝑘

𝐴
1𝑖
𝑘

−𝑊
𝑖
𝑘

− 𝑋
𝑖
𝑘

𝐶
1𝑖
𝑘

,

Ω
28

= 𝑊
𝑇

𝑖
𝑘

𝐵
𝑖
𝑘

− 𝑋
𝑖
𝑘

𝐷
𝑖
𝑘

,

Ω
33

= − (1 − ℎ) 𝑒
−𝛼ℎ

𝑄
𝑖
𝑘

+𝑊
𝑇

𝑖
𝑘

𝐴
1𝑖
𝑘

+ 𝐴
𝑇

1𝑖
𝑘

𝑊
𝑖
𝑘

− 𝑋
𝑖
𝑘

𝐶
1𝑖
𝑘

− 𝐶
𝑇

1𝑖
𝑘

𝑋
𝑇

𝑖
𝑘

,

Ω
38

= 𝑊
𝑇

𝑖
𝑘

𝐵
𝑖
𝑘

− 𝑋
𝑖
𝑘

𝐷
𝑖
𝑘

,

Ω
44

= −𝑒
−𝛼𝜏

𝑇
𝑇

2𝑖
𝑘

− 𝑒
−𝛼𝜏

𝑇
2𝑖
𝑘

,

Ω
55

= − (1 − 𝜏) 𝑒
−𝛼𝜏

𝑅
𝑖
𝑘

, Ω
66

= −

1

ℎ

𝑒
−𝛼ℎ

𝑀
𝑖
𝑘

,

(28)

then the filter problem for the system (2) is solvable for any
switching signal with average dwell time satisfying 𝑇

𝑎
> 𝑇
∗

𝑎
=

ln 𝜇/𝛼.
Moreover, the filter gain 𝐾

𝑖
𝑘

are given by𝐾
𝑖
𝑘

= 𝑊
−𝑇

𝑖
𝑘

𝑋
𝑖
𝑘

.

Proof. Consider the piecewise Lyapunov-krasovskii func-
tional candidate as (11) and introduce the vector 𝜂

𝑇

𝑒
(𝑡) =

[𝜉
𝑇

𝑒
(𝑡) 𝜔

𝑇
(𝑡)], where 𝜉

𝑒
(𝑡) is defined in (21). Then, replace

(21) with the following

2𝜂
𝑇

𝑒
(𝑡)[𝑊𝑖

𝑘

𝑊
𝑖
𝑘

𝑊
𝑖
𝑘

0 0 0 0 0]

𝑇

× [𝐴
0𝑖
𝑘

−𝐼 𝐴
1𝑖
𝑘

0 𝐹
𝑖
𝑘

0 0 𝐵
𝑖
𝑘

] 𝜂
𝑒
(𝑡) = 0.

(29)

Let 𝑋
𝑖
𝑘

= 𝑊
𝑇

𝑖
𝑘

𝐾
𝑖
𝑘

and 𝑇(𝑡) = 𝑧
𝑇

𝑒
(𝑡)𝑧
𝑒
(𝑡) − 𝛾

2
𝜔
𝑇
(𝑡)𝜔(𝑡),

similar to the proof of Theorem 6, we have

𝑉 (𝑡) + 𝛼𝑉 (𝑡) + 𝑇 (𝑡) ≤ 𝜂
𝑇

𝑒
(𝑡) Ω
𝑖
𝑘

𝜂
𝑒
(𝑡) . (30)

IfΩ
𝑖
𝑘

< 0, it has

𝑉 (𝑡) ≤ −𝛼𝑉 (𝑡) − 𝑇 (𝑡) . (31)

Integrating both sides of (31) from 𝑡
𝑘
to 𝑡, for any 𝑡 ∈

[𝑡
𝑘
, 𝑡
𝑘+1

), gives

𝑉 (𝑡) ≤ 𝑒
−𝛼(𝑡−𝑡

𝑘
)

𝑉 (𝑡
𝑘
) − ∫

𝑡

𝑡
𝑘

𝑒
−𝛼(𝑡−𝑠)

𝑇 (𝑠) 𝑑𝑠. (32)

Therefore, similar to the proofmethod ofTheory 2 in [13],
we have

𝑉 (𝑡) ≤ 𝑒
−𝛼(𝑡−𝑡

0
)+𝑁
𝜎
(𝑡
0
,𝑡) ln 𝜇

𝑉 (𝑡
0
)

− ∫

𝑡

𝑡
0

𝑒
−𝛼(𝑡−𝑠)+𝑁

𝜎
(𝑠,𝑡) ln 𝜇

𝑇 (𝑠) 𝑑𝑠.

(33)

Under the zero initial condition, (33) gives

0 ≤ −∫

𝑡

0

𝑒
−𝛼(𝑡−𝑠)+𝑁

𝜎
(𝑠,𝑡) ln 𝜇

𝑇 (𝑠) 𝑑𝑠. (34)
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Multiplying both sides of (34) by 𝑒−𝑁𝜎(0,𝑡) ln 𝜇 yields

∫

𝑡

0

𝑒
−𝛼(𝑡−𝑠)−𝑁

𝜎
(0,𝑠) ln 𝜇

𝑧
𝑇

𝑒
(𝑠) 𝑧
𝑒
(𝑠) 𝑑𝑠

≤ ∫

𝑡

0

𝑒
−𝛼(𝑡−𝑠)−𝑁

𝜎
(0,𝑠) ln 𝜇

𝛾
2

𝜔
𝑇

(𝑠) 𝜔 (𝑠) 𝑑𝑠.

(35)

Notice that𝑁
𝜎
(0, 𝑠) ≤ (𝑠/𝑇

𝑎
) and 𝑇

𝑎
> 𝑇
∗

𝑎
= (ln 𝜇/𝛼), we

have𝑁
𝜎
(0, 𝑠) ln 𝜇 ≤ 𝛼𝑠. Thus, (35) implies that

∫

𝑡

0

𝑒
−𝛼(𝑡−𝑠)−𝛼𝑠

𝑧
𝑇

𝑒
(𝑠) 𝑧
𝑒
(𝑠) 𝑑𝑠 ≤ 𝛾

2

∫

𝑡

0

𝑒
−𝛼(𝑡−𝑠)

𝜔
𝑇

(𝑠) 𝜔 (𝑠) 𝑑𝑠.

(36)

Integrating both sides of (36) from 𝑡 = 0 to 𝑡 = ∞, we
have

∫

∞

0

∫

𝑡

0

𝑒
−𝛼𝑡

𝑧
𝑇

𝑒
(𝑠) 𝑧
𝑒
(𝑠) 𝑑𝑠 𝑑𝑡

≤ 𝛾
2

∫

∞

0

∫

𝑡

0

𝑒
−𝛼(𝑡−𝑠)

𝜔
𝑇

(𝑠) 𝜔 (𝑠) 𝑑𝑠 𝑑𝑡.

(37)

Then, we can obtain

∫

∞

0

1

𝛼

𝑒
−𝛼𝑠

𝑧
𝑇

𝑒
(𝑠) 𝑧
𝑒
(𝑠) 𝑑𝑠 ≤ 𝛾

2

∫

∞

0

1

𝛼

𝑒
−𝛼𝑠

𝑒
𝛼𝑠

𝜔
𝑇

(𝑠) 𝜔 (𝑠) 𝑑𝑠.

(38)

Obviously, it follows from (38) that

∫

∞

0

𝑒
−𝛼𝑠

𝑧
𝑇

𝑒
(𝑠) 𝑧
𝑒
(𝑠) 𝑑𝑠 ≤ 𝛾

2

∫

∞

0

𝜔
𝑇

(𝑠) 𝜔 (𝑠) 𝑑𝑠. (39)

Remark 11. Theorem 10 provides a sufficient condition for the
solvability of the 𝐻

∞
filtering problem for switched neutral

system with time-varying delay. If the condition is satisfied,
then matrices𝑊

𝑖
are nonsingular.

4. Numerical Examples

In this section, we present two numerical examples to
illustrate the effectiveness of the results presented previously.

Example 1. Consider the switched neutral system (2) with
two subsystems.
Subsystem 1.

𝐴
01

= [

−1.5 −0.2

0.2 −1.3
] , 𝐴

11
= [

−0.3 0

0.1 −0.4
] ,

𝐷
1
= 0.03, 𝐹

1
= [

0.1 −0.6

0 0.09
] ,

𝐶
01

= [−0.2 0.26] , 𝐶
11

= [−0.2 0.1] ,

𝐵
1
= [

0.2

−0.3
] , 𝐿

1
= [0.5 −0.19] ,

(40)
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Figure 2: 𝑧
𝑒
(t) of the filtering error dynamic system with 𝜔(𝑡) = 0.
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Figure 3: The state responses of the filtering error dynamic system
with 𝜔(𝑡) = 0.1𝑒

−0.5𝑡.

Subsystem 2.

𝐴
02

= [

−1.4 −0.2

0.2 −1.3
] , 𝐴

12
= [

−0.2 0

0.1 −0.4
] ,

𝐷
2
= 𝐷
1
, 𝐹

2
= 𝐹
1
,

𝐶
02

= [−0.2 0.46] , 𝐶
12

= 𝐶
11
,

𝐵
2
= 𝐵
1
, 𝐿

2
= [0.5 −0.09] ,

ℎ (𝑡) = 0.3, 𝜏 (𝑡) = 0.3, 𝛼 = 0.0376.

(41)

By using the LMI toolbox, it can be checked that the
conditions given in Theorem 10 are satisfied. Therefore, the
previously switched neutral system has the given𝐻

∞
perfor-

mance 𝛾, when 𝑇
𝑎
≥ 𝑇
∗

𝑎
= ln 𝜇min/𝛼 = 2.6596𝑒

−004 (here, the
allowable minimum of 𝜇 is 𝜇min = 1.00001).
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Figure 4: 𝑧
𝑒
(𝑡) of the filtering error dynamic system with 𝜔(𝑡) =

0.1𝑒
−0.5𝑡.
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Figure 5: The noise signal 𝑤(𝑡).

Setting 𝜇 = 1.01 and solving LMIs (26) using the LMI
Toolbox in MATLAB, it follows that the minimized feasible
𝛾 is 𝛾∗ = 2.0, 𝑇

𝑎
= 0.2646, and the corresponding filter

parameters are computed as

𝐾
1
= [

−5.0768

1.2264
] , 𝐾

2
= [

−2.8724

0.9217
] . (42)

In the following, we illustrate the effectiveness of the
designed 𝐻

∞
filter through simulation. Let the initial con-

dition be 𝑥
𝑒
(𝑡) = [

0.3

0.2
], 𝑡 ∈ [−0.3, 0]. Figures 1 and 2 are,

respectively, the simulation results on 𝑥
𝑒
(𝑡) and 𝑧

𝑒
(𝑡); we can

see that the filtering error dynamic system with 𝜔(𝑡) = 0 is
stable. 𝑥

𝑒
(𝑡) and 𝑧

𝑒
(𝑡) of the filtering error dynamic system

with 𝑤(𝑡) = 0.1𝑒
−0.5𝑡 are given in Figures 3 and 4. Figure 5

shows 𝑤(𝑡).

Table 1

𝛾 ℎmax 𝜏max 𝐾
1

𝐾
2

0.80 2.0 3.2 [−4.7398 1.1340]
𝑇

[−2.8595 0.9824]
𝑇

0.54 1.1 1.9 [−4.1874 1.1606]
𝑇

[−2.5316 0.9494]
𝑇

0.48 0.7 0.2 [−3.9220 1.1308]
𝑇

[−2.3354 0.8774]
𝑇

0.46 0.5 1.3 [−3.8076 1.0948]
𝑇

[−2.2459 0.8288]
𝑇

0.44 0.3 1.1 [−3.6949 1.0686]
𝑇

[−2.1560 0.7834]
𝑇

Example 2. Consider the switched neutral system in
Example 1 with constant delays; that is, ℎ = 0, 𝜏 = 0,
𝛼 = 0.0376, and 𝜇 = 1.0001. We calculate the admissible
maximum value ℎmax of ℎ, 𝜏max of 𝜏, which ensures that the
resulting filtering error system is exponentially stable with
a prescribed level 𝛾 of noise attenuation. For the different
values, 𝛾, the obtained ℎmax, 𝜏max, and the filter gain 𝐾

𝑖
are

listed in Table 1.

5. Conclusions

We have addressed the 𝐻
∞

filtering problem for a class of
switched neutral systems with time-varying delays which
appear in both the state and the state derivatives. For switched
neutral systems with average dwell time scheme, we have
provided a condition, in terms of upper bounds on the delays
and in terms of a lower bound on the average dwell time,
for the solvability of the 𝐻

∞
filtering problem. The piece-

wise Lyapunov functional technique has been used, which
makes the proposed conditions are both delay-dependent and
neutral delay-dependent. The design of filters for switched
neutral systems is a difficult issue that is far from being well
explored. Since multiple Lyapunov functional approach is
commonly considered less conservative, the design of filters
for switching neutral system with an appropriate switching
law using multiple Lyapunov functionals is of great signifi-
cance which deserves further study.
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Amodel applicable to describe the propagation of computer virus is developed and studied, along with the latent time incorporated.
We regard time delay as a bifurcating parameter to study the dynamical behaviors including local asymptotical stability and local
Hopf bifurcation. By analyzing the associated characteristic equation, Hopf bifurcation occurs when the time delay passes through a
sequence of critical values. A formula for determining the direction of the Hopf bifurcation and the stability of bifurcating periodic
solutions is given by using the normal formmethod and centermanifold theorem. Finally, illustrative examples are given to support
the theoretical results.

1. Introduction

With the rapid development of computer technologies and
network applications, the Internet has become a powerful
mechanism for propagating computer virus. Because of this,
computers connected to the Internet become much vulnera-
ble to digital threats.

It is quite urgent to understand how computer viruses
spread over the Internet and to propose effective measures
to cope with this issue. To achieve this goal, and in view of
the fact that the spread of virus among computers resembles
that of biological virus among a population, it is suitable
to establish dynamical models describing the propagation
of computer viruses across the Internet by appropriately
modifying epidemic models [1].

Based on the fact that infectivity is one of the common
features shared by computer viruses and their biological
counterparts [2], some classic epidemic models were estab-
lished for computer virus propagation, such as the SIRS
model [3–7], the SEIR model [8, 9], the SEIRS model [10],
the SEIQVmodel [11], and the SEIQRSmodel [12]. In [13–15]
the authors made the following assumptions.
(H1) All computers connected to the Internet are parti-

tioned into three compartments: susceptible com-
puters (S-computers), infected computers that are

latent (L-computers), and infected computers that are
breaking out (B-computers).

(H2) All newly connected computers are virus-free.
(H3) External computers are connected to the Internet at

constant rate 𝛿. Meanwhile, internal computers are
disconnected from the Internet at rate 𝛿.

(H4) Each virus-free computer is infected by a virulent
computer at constant rate 𝛽, and the ratio of previ-
ously virus-free computers that are infected exactly at
time 𝑡 is 𝛽𝑆 (𝐿 + 𝐵) [16].

(H5) Breaking-out computers are cured at constant rate 𝛾.
(H6) Latent computers break out at constant rate 𝛼.

According to the above assumptions, the authors of [14,
15] proposed the proposed the following SLBS model, which
is formulated as

̇𝑆 = 𝛿 − 𝛽𝑆 (𝐿 + 𝐵) + 𝛾𝐵 − 𝛿𝑆,

̇𝐿 = 𝛽𝑆 (𝐿 + 𝐵) − 𝛼𝐿 − 𝛿𝐿,

̇𝐵 = 𝛼𝐿 − 𝛾𝐵 − 𝛿𝐵.

(1)

It is well known that some computer viruses would delay a
period to break out after the computer is infected. However,
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the above model fails to consider the concrete time of
the delay. Thus, this paper aims to establish a model to
incorporate the unconsidered factor, by adding a delay item to
the above model. First, we give another assumption as (H7):
L-computers turn out to be B-computers with constant time
delay 𝜏.

According to the above assumptions (H1)–(H7), the new
model with time delay is formulated as

̇𝑆 = 𝛿 − 𝛽𝑆 (𝐿 + 𝐵) + 𝛾𝐵 − 𝛿𝑆,

̇𝐿 = 𝛽𝑆 (𝐿 + 𝐵) − 𝛼𝐿 (𝑡 − 𝜏) − 𝛿𝐿,

̇𝐵 = 𝛼𝐿 (𝑡 − 𝜏) − 𝛾𝐵 − 𝛿𝐵.

(2)

Here, we let 𝑆(𝑡), 𝐿(𝑡), and 𝐵(𝑡) represent the percentage of
S-, L-, and B-computers in all internal computers at time 𝑡,
respectively. Then we get 𝑆(𝑡) + 𝐿(𝑡) + 𝐵(𝑡) ≡ 1 and consider
the following equivalent two-dimensional subsystem:

̇𝐿 = 𝛽 (1 − 𝐿 − 𝐵) (𝐿 + 𝐵) − 𝛼𝐿 (𝑡 − 𝜏) − 𝛿𝐿,

̇𝐵 = 𝛼𝐿 (𝑡 − 𝜏) − 𝛾𝐵 − 𝛿𝐵.

(3)

The initial conditions of (3) are given by𝐿(𝜃) = 𝜙
1
(𝜃) > 0,

𝐵(𝜃) = 𝜙
2
(𝜃) > 0, and 𝜃 ∈ [−𝜏, 0], where (𝜙

1
(𝜃), 𝜙
2
(𝜃)) ∈

𝐶([−𝜏, 0], 𝑅
2

+
), the Banach space of the continuous functions

mapping the interval [−𝜏, 0] into 𝑅2
+
= {(𝑥
1
, 𝑥
2
) : 𝑥
𝑖
≥ 0, 𝑖 =

1, 2}.
The remainder of this paper is organized as follows. In

Section 2, the stability of trivial solutions and the existence
of Hopf bifurcation are discussed. In Section 3, a formula for
determining the direction of Hopf bifurcation and the stabil-
ity of bifurcating periodic solutions will be given by using
the normal form and center manifold theorem introduced
by Hassard et al. in [17]. In Section 4, numerical simulations
aimed at justifying the theoretical analysis will be reported.

2. Stability of the Equilibria and Existence of
Hopf Bifurcation

This section is intended to study model (3) theoretically,
by analyzing the stability of its solutions and the existence
of Hopf bifurcation. For the convenience of the following
description, we define the basic reproduction number of
system (3) as

𝑅
0
=

𝛽 (𝛼 + 𝛾 + 𝛿)

(𝛼 + 𝛿) (𝛾 + 𝛿)

. (4)

We have the following result with respect to the stable
state of system (3).

Theorem 1. Consider system (3) with 𝜏 = 0. Then the unique
virus-free equilibrium 𝐸

0
= (0, 0) is globally asymptotically

stable if 𝑅
0
< 1, whereas 𝐸

0
becomes unstable and the unique

positive equilibrium 𝐸
∗
= ((𝛾+𝛿)(1−1/𝑅

0
)/(𝛼+𝛿+𝛾), 𝛼(1−

1/𝑅
0
)/(𝛼 + 𝛿 + 𝛾)) is locally asymptotically stable if 𝑅

0
> 1.

The proof is omitted here (see [14] for details).

The linearized equations of (3) are as follows:

̇𝐿 = [−𝛽 +

2𝛽

𝑅
0

− 𝛿] 𝐿 + [−𝛽 +

2𝛽

𝑅
0

]𝐵 − 𝛼𝐿 (𝑡 − 𝜏) ,

̇𝐵 = 𝛼𝐿 (𝑡 − 𝜏) − 𝛾𝐵 − 𝛿𝐵.

(5)

The determinant of the Jacobian matrix of the system (5) at
𝐸
∗
is given by |𝑦𝐸 − 𝐴

1
− 𝐵
1
𝑒
−𝑦𝜏
| = 0, where

𝐴
1
=
[

[

[

−𝛽 +

2𝛽

𝑅
0

− 𝛿 −𝛽 +

2𝛽

𝑅
0

0 −𝛾 − 𝛿

]

]

]

,

𝐵
1
= [

−𝛼 0

𝛼 0
] .

(6)

Let 𝑑 = −𝛽 + (2(𝛼 + 𝛿)(𝛾 + 𝛿))/(𝛼 + 𝛾 + 𝛿), and we can obtain
the following characteristic equation:

𝑦
2

+ 𝑚
1
𝑦 + 𝑚

0
+ (𝑛
1
𝑦 + 𝑛
0
) 𝑒
−𝑦𝜏

= 0, (7)

where 𝑚
1
= 𝛾 + 2𝛿 − 𝑑, 𝑚

0
= (𝛾 + 𝛿)(𝛿 − 𝑑), 𝑛

1
= 𝛼, 𝑛

0
=

𝛼(𝛾 + 𝛿 − 𝑑).

Theorem 2. Suppose that 𝑅
0

> 1, 𝛾 + 𝛿 ≥ 𝛼, and
(𝛾 + 𝛿)

2

(𝛿 − 𝑑)
2

− 𝛼
2
(𝛾 + 𝛿 − 𝑑)

2

< 0 hold; then the positive
equilibrium 𝐸

∗
is asymptotically stable for 𝜏 ∈ [0, 𝜏

0
) and

system (3) undergoes a Hopf bifurcation at 𝐸
∗
when 𝜏 = 𝜏

0
.

Proof. Suppose that 𝑦 = 𝑖𝜔 (𝜔 > 0) is a root of (7); then
separating the real and imaginary parts of (7), we have

𝑚
1
𝜔 = 𝑛

0
sin𝜔𝜏 − 𝑛

1
𝜔 cos𝜔𝜏,

𝜔
2

− 𝑚
0
= 𝑛
0
cos𝜔𝜏 + 𝑛

1
𝜔 sin𝜔𝜏.

(8)

Adding up the squares of (8) yields

𝜔
4

+ (𝑚
2

1
− 2𝑚
0
− 𝑛
2

1
) 𝜔
2

+ 𝑚
2

0
− 𝑛
2

0
= 0. (9)

Since 𝛾 + 𝛿 ≥ 𝛼, we derive the following equations:

𝑚
2

1
− 2𝑚
0
− 𝑛
2

1

= (𝛾 + 2𝛿 − 𝑑)
2

− 2 (𝛾 + 𝛿) (𝛿 − 𝑑) − 𝛼
2

= (𝛿 − 𝑑)
2

+ (𝛾 + 𝛿 + 𝛼) (𝛾 + 𝛿 − 𝛼) > 0,

𝑚
2

0
− 𝑛
2

0
= (𝛾 + 𝛿)

2

(𝛿 − 𝑑)
2

− 𝛼
2

(𝛾 + 𝛿 − 𝑑)
2

< 0.

(10)

Therefore, (9) exists as a unique positive solution 𝜔
0
, and

the characteristic equation (7) has a pair of pure imaginary
roots ±𝑖𝜔

0
. By (8), we have

𝜏
𝑛
=

1

𝜔
0

arccos
𝑛
0
(𝜔
2

0
− 𝑚
0
) − 𝑚

1
𝑛
1
𝜔
2

0

𝑛
2

0
+ 𝑛
2

1
𝜔
2

0

+

2𝑛𝜋

𝜔
0

, 𝑛 = 0, 1, 2, . . . .

(11)
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ByTheorem 1, for 𝜏 = 0, the positive equilibrium 𝐸
∗
is locally

asymptotically stable, and hence by Butler’s Lemma [18], 𝐸
∗

remains stable for 𝜏 < 𝜏
0
. Now, we need to show

d(Re𝑦)
d𝜏








𝜏=𝜏
0

> 0. (12)

This will signify that there exists at least one eigenvalue with
positive real part for 𝜏 > 𝜏

0
. Moreover, the conditions for

Hopf bifurcation [19] are then satisfied yielding the required
periodic solution. Now, by differentiating (9) with respect to
𝜏, we get

(2𝑦 + 𝑚
1
+ 𝑛
1
𝑒
−𝑦𝜏

− 𝜏 (𝑛
1
𝑦 + 𝑛
0
) 𝑒
−𝑦𝜏

)

d𝑦
d𝜏

= 𝑦 (𝑛
1
𝑦 + 𝑛
0
) 𝑒
−𝑦𝜏

.

(13)

This gives

[

d𝑦
d𝜏
]

−1

=

2𝑦 + 𝑚
1
+ 𝑛
1
𝑒
−𝑦𝜏

− 𝜏 (𝑛
1
𝑦 + 𝑛
0
) 𝑒
−𝑦𝜏

𝑦 (𝑛
1
𝑦 + 𝑛
0
) 𝑒
−𝑦𝜏

=

2𝑦 + 𝑚
1

𝑦 (𝑛
1
𝑦 + 𝑛
0
) 𝑒
−𝑦𝜏

+

𝑛
1

𝑦 (𝑛
1
𝑦 + 𝑛
0
)

−

𝜏

𝑦

=

𝑦
2
− 𝑚
0

−𝑦
2
(𝑦
2
+ 𝑚
1
𝑦 + 𝑚

0
)

+

−𝑛
0

𝑦
2
(𝑛
1
𝑦 + 𝑛
0
)

−

𝜏

𝑦

.

(14)
Thus,

sign{
d(Re𝑦)

d𝜏
}

𝜏=𝜏
𝑘

= sign{Re [
d𝑦
d𝜏
]

−1

}

𝑦=𝑖𝜔
0

= sign{Re[
𝑦
2
− 𝑚
0

−𝑦
2
(𝑦
2
+ 𝑚
1
𝑦 + 𝑚

0
)

]

+Re[
−𝑛
0

𝑦
2
(𝑛
1
𝑦 + 𝑛
0
)

]}

𝑦=𝑖𝜔
0

= sign
{

{

{

(𝜔
2

0
+ 𝑚
0
) (𝜔
2

0
− 𝑚
0
)

𝜔
2

0
[(𝑚
0
− 𝜔
2

0
)
2

+ (𝑚
1
𝜔
0
)
2

]

+

𝑛
2

0

𝜔
2

0
(𝑛
2

0
+ 𝑛
2

1
𝜔
2

0
)

}

}

}

.

(15)

Since (𝑚
0
− 𝜔
2

0
)
2

+ (𝑚
1
𝜔
0
)
2

= 𝑛
2

0
+ 𝑛
2

1
𝜔
2

0
, we have that

sign{
d(Re𝑦)

d𝜏
}

𝜏=𝜏
𝑘

= sign
{

{

{

(𝜔
2

0
+ 𝑚
0
) (𝜔
2

0
− 𝑚
0
)

𝜔
2

0
[(𝑚
0
− 𝜔
2

0
)
2

+ (𝑚
1
𝜔
0
)
2

]

+

𝑛
2

0

𝜔
2

0
(𝑛
2

0
+ 𝑛
2

1
𝜔
2

0
)

}

}

}

= sign{
𝜔
4

0
+ 𝑛
2

0
− 𝑚
2

0

𝜔
2

0
(𝑛
2

0
+ 𝑛
2

1
𝜔
2

0
)

} .

(16)

As𝑚2
0
− 𝑛
2

0
< 0, thus

d(Re𝑦)
d𝜏








𝜏=𝜏
0

> 0. (17)

Therefore, the transversality condition holds and thus Hopf
bifurcation occurs at 𝜏 = 𝜏

0
. The proof is complete.

3. Direction of the Hopf Bifurcation

In this section, we derive explicit formulae for computing
the direction of the Hopf bifurcation and the stability of
bifurcation periodic solution at critical value 𝜏

0
by using the

normal form theory and center manifold reduction.
Letting 𝑡 = 𝑠𝜏, 𝑢

1
= 𝐿 − 𝐿

∗
, 𝑢
2
= 𝐵 − 𝐵

∗
, 𝑢
𝑖
(𝑡) = 𝑢

𝑖
(𝜏𝑡),

and 𝜏 = 𝜏
0
+ 𝜇, system (3) is transformed to an FDE as

̇𝑢 (𝑡) = 𝐿V (𝑢𝑡) + 𝑓 (𝜇, 𝑢𝑡) , (18)

where 𝑢(𝑡) = (𝑢
1
(𝑡), 𝑢
2
(𝑡))
𝑇

∈ 𝑅
2, 𝑢
𝑡
(𝜃) = 𝑢(𝑡 + 𝜃), 𝜃 ∈ [0, 1],

𝐿V : 𝐶 → 𝑅, 𝑓 : 𝑅 × 𝐶 → 𝑅,

𝐿V (𝑢𝑡)

= (𝜏
0
+ 𝜇)

×
[

[

[

−𝛽 +

2 (𝛼 + 𝛿) (𝛾 + 𝛿)

𝛼 + 𝛾 + 𝛿

− 𝛿 −𝛽 +

2 (𝛼 + 𝛿) (𝛾 + 𝛿)

𝛼 + 𝛾 + 𝛿

0 −𝛾 − 𝛿

]

]

]

× [

𝜑
1
(0)

𝜑
2
(0)
] + (𝜏

0
+ 𝜇) [

−𝛼 0

𝛼 0
] [

𝜑
1
(−1)

𝜑
2
(−1)

]

= (𝜏
0
+ 𝜇)𝐴

1
[

𝜑
1
(0)

𝜑
2
(0)
] + (𝜏

0
+ 𝜇) 𝐵

1
[

𝜑
1
(−1)

𝜑
2
(−1)

] ,

𝑓 (V, 𝑢
𝑡
) = (𝜏

0
+ 𝜇) [

−𝛽𝜑
2

1
(0) − 2𝛽𝜑

1
(0) 𝜑
2
(0) − 𝛽𝜑

2

2
(0)

0

] .

(19)

Using the Riesz representation theorem, there exists a func-
tion 𝜂(𝜃, 𝜇) of bounded variation for 𝜃 ∈ [0, 1], such that

𝐿V𝜑 = ∫
0

−1

d𝜂 (𝜃, 𝜇) 𝜑 (𝜃) , 𝜑 ∈ 𝐶. (20)

In fact, we can choose

𝜂 (𝜃, 𝜇) = (𝜏
0
+ 𝜇)𝐴

2
𝛿 (𝜃) + (𝜏

0
+ 𝜇) 𝐵

2
𝛿 (𝜃 + 1) , (21)

where 𝛿(𝜃) is Dirac delta function. In the following, for 𝜑 ∈
[0, 1], we define

𝐴 (𝜇) 𝜑 =

{
{
{
{

{
{
{
{

{

d𝜑 (𝜃)
d𝜃

, 𝜃 ∈ [−1, 0) ,

∫

0

−1

d𝜂 (𝑠, 𝜇) 𝜑 (𝑠) , 𝜃 = 0,

𝑅 (𝜇) 𝜑 = {

0, 𝜃 ∈ [−1, 0) ,

𝑓 (𝜇, 𝜑) , 𝜃 = 0.

(22)
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Then system (18) can be rewritten as

̇𝑢 (𝑡) = 𝐴 (𝜇) 𝑢
𝑡
+ 𝑅 (𝜇) 𝑢

𝑡
, (23)

where

d𝑢
𝑡
(𝜃)

d𝜃
=

d𝑢 (𝑡 + 𝜃)
d𝜃

=

d𝑢 (𝑡 + 𝜃)
d𝑡

=

d𝑢
𝑡
(𝜃)

d𝑡
. (24)

For 𝜙 ∈ 𝐶∗ = 𝐶([0, 1], (𝑅2)∗), the adjoint operator 𝐴∗ of A is
defined by

𝐴
∗

(0) 𝜙 (𝑠) =

{
{
{
{

{
{
{
{

{

−

d𝜙 (𝑠)
d𝑠

, 𝑠 ∈ (0, 1] ,

∫

0

−1

d𝜂𝑇 (𝑡, 0) 𝜙 (−𝑡) , 𝑠 = 0,

(25)

where 𝜂𝑇 is the transpose of the matrix 𝜂. We define

⟨𝜙, 𝜑⟩ = 𝜙 (0) 𝜑 (0)

− ∫

0

−1

∫

𝜃

𝜉=0

𝜙 (𝜉 − 𝜃) d𝜂 (𝜃) 𝜑 (𝜉) d𝜉,
(26)

where 𝜂(𝜃) = 𝜂(𝜃, 0). We know that 𝑖𝜔
0
𝜏
0
is an eigenvalue

of 𝐴(0), so −𝑖𝜔
0
𝜏
0
is also an eigenvalue of 𝐴∗(0). We can get

𝑞(𝜃) = (1, 𝑞
1
)
𝑇

𝑒
𝑖𝜔
0
𝜏
0
𝜃.

From the above discussion, it is easy to know that

𝐴𝑞 (𝜃) = 𝑖𝜔
0
𝜏
0
𝑞 (𝜃) ,

𝜏
0
𝐴
1
𝑞 (0) + 𝜏

0
𝐵
1
𝑞 (−1) = 𝑖𝜔

0
𝜏
0
𝑞 (0) .

(27)

Hence, we obtain

𝑞
1
=

𝛼

(𝑖𝜔
0
+ 𝛾 + 𝛿) 𝑒

𝑖𝜔
0
𝜏
0

. (28)

Suppose that the eigenvector

𝑞
∗

(𝑠) =

1

𝜌

(1, 𝑞
∗

1
)
𝑇

𝑒
𝑖𝜔
0
𝜏
0
𝑠

. (29)

Then the following relationship is obtained:

𝐴
∗

𝑞
∗

(0) = −𝑖𝜔
0
𝜏
0
𝑞
∗

(0) . (30)

Hence, we obtain

𝑞
∗

1
=

1

(𝛾 + 𝛿 − 𝑖𝜔
0
)

(

2 (𝛼 + 𝛿) (𝛾 + 𝛿)

𝛼 + 𝛾 + 𝛿

− 𝛽) . (31)

Let

⟨𝑞
∗

, 𝑞⟩ = 1,

⟨𝑞
∗

, 𝑞⟩ = 𝑞
∗

(0) 𝑞 (0) − ∫

0

𝜃=−1

∫

𝜃

𝜉=0

𝑞
∗𝑇

(𝜉 − 𝜃) d𝜂 (𝜃) 𝜑 (𝜉) d𝜉

=

1

𝜌

(1 + 𝑞
1
𝑞
∗

1
)

− ∫

0

𝜃=−1

∫

𝜃

𝜉=0

𝜏
0

1

𝜌

[1, 𝑞
∗

1
] [𝐴
2
𝛿 (𝜃) + 𝐵

2
𝛿 (𝜃 + 1)]

× [

1

𝑞
1

] 𝑒
𝑖𝜏
0
𝜔
0
𝜃d𝜉 d𝜃

=

1

𝜌

(1 + 𝑞
1
𝑞
∗

1
) + 𝜏
0

1

𝜌

𝛼 (1 − 𝑞
∗

1
) 𝑒
−𝑖𝜏
0
𝜔
0
= 1.

(32)

Hence, we obtain

𝜌 = (1 + 𝑞
1
𝑞
∗

1
) + 𝜏
0
𝛼 (1 − 𝑞

∗

1
) 𝑒
−𝑖𝜏
0
𝜔
0
. (33)

In the remainder of this section, by using the same
notations as in the work by Hassard et al. [17], we first
compute the coordinates f or describing the center manifold
𝐶
0
at 𝜇 = 0. Letting 𝑢

𝑡
be the solution of (18) with 𝜇 = 0, we

define 𝑧(𝑡) = ⟨𝑞∗, 𝑢
𝑡
⟩, and

𝑊(𝑡, 𝜃) = 𝑢
𝑡
− 2Re {𝑧 (𝑡) 𝑞 (𝜃)} . (34)

On the center manifold C
0
we have

𝑊(𝑡, 𝜃) = 𝑊 (𝑧, 𝑧, 𝑡) , (35)

where

𝑊(𝑧, 𝑧, 𝑡) = 𝑊
20
(𝜃)

𝑧
2

2

+𝑊
11
(𝜃)

𝑧𝑧

2

+𝑊
02
(𝜃)

𝑧
2

2

+ ⋅ ⋅ ⋅ .

(36)

In fact, 𝑧 and 𝑧 are local coordinates for 𝐶
0
in the direction

of 𝑞 and 𝑞∗. Note that if 𝑢
𝑡
is, we will deal with real solutions

only. Since 𝜇 = 0,

̇𝑧 (𝑡) = ⟨𝑞
∗

, 𝑢
𝑡
⟩ = ⟨𝑞

∗

, 𝐴 (𝜇) 𝑢
𝑡
+ 𝑅 (𝜇) 𝑢

𝑡
⟩

= ⟨𝑞
∗

, 𝐴𝑢
𝑡
⟩ + ⟨𝑞

∗

, 𝑅𝑢
𝑡
⟩

= 𝑖𝜏
0
𝜔
0
𝑧 + 𝑞
∗

(0) ⋅ 𝑓 (0,𝑊 (𝑡, 0) + 2Re [𝑧 (𝑡) 𝑞 (0)]) .
(37)

Rewrite (37) as

̇𝑧 (𝑡) = 𝑖𝜏
0
𝜔
0
𝑧 + 𝑔 (𝑧, 𝑧) , (38)

where

𝑔 (𝑧, 𝑧) = 𝑔
20

𝑧
2

2

+ 𝑔
11
𝑧𝑧 + 𝑔

02

𝑧
2

2

+ 𝑔
21

𝑧
2
𝑧

2

+ ⋅ ⋅ ⋅ . (39)
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Figure 1: The positive equilibrium 𝐸
∗
of system (3) is asymptotically stable.

From (18) and (38), we have

𝑊 = ̇𝑢
𝑡
− ̇𝑧𝑞 −

̇
𝑧 𝑞

= {

𝐴𝑊 − 2Re [𝑞∗ (0) 𝑓 (𝑧, 𝑧) 𝑞 (𝜃)] , −1 ≤ 𝜃 < 0,

𝐴𝑊 − 2Re [𝑞∗ (0) 𝑓 (𝑧, 𝑧) 𝑞 (𝜃)] + 𝑓, 𝜃 = 0.

(40)

Let

𝑊 = 𝐴𝑊 +𝐻(𝑧, 𝑧, 𝜃) , (41)

where

𝐻(𝑧, 𝑧, 𝜃) = 𝐻
20
(𝜃)

𝑧
2

2

+ 𝐻
11
(𝜃) 𝑧𝑧 + 𝐻

02
(𝜃)

𝑧
2

2

+ ⋅ ⋅ ⋅ .

(42)

Taking the derivative ofW with respect to 𝑡 in (36), we have

𝑊 = 𝑊
𝑧
̇𝑧 +𝑊
𝑧

̇
𝑧. (43)

Substituting (36) and (38) into (43), we obtain

𝑊 = (𝑊
20
𝑧 +𝑊

11
𝑧 + ⋅ ⋅ ⋅ ) (𝑖𝜏

0
𝜔
0
𝑧 + 𝑔)

+ (𝑊
11
𝑧 +𝑊

02
𝑧 + ⋅ ⋅ ⋅ ) (−𝑖𝜏

0
𝜔
0
𝑧 + 𝑔) .

(44)

Then substituting (36) and (41) into (42), we have the
following results:

𝑊 = (𝐴𝑊
20
+ 𝐻
20
)

𝑧
2

2

+ (𝐴𝑊
11
+ 𝐻
11
) 𝑧𝑧

+ (𝐴𝑊
02
+ 𝐻
02
)

𝑧
2

2

+ ⋅ ⋅ ⋅ .

(45)

Comparing the coefficients of (44) with (45), the following
equations hold:

(𝐴 − 2𝑖𝜏
0
𝜔
0
)𝑊
20
(𝜃) = −𝐻

20
(𝜃) , (46)

𝐴𝑊
11
(𝜃) = −𝐻

11
(𝜃) . (47)
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Figure 2: The bifurcation periodic solution is stable.

Since 𝑢
𝑡
= 𝑢(𝑡 + 𝜃) = 𝑊(𝑧, 𝑧, 𝜃) + 𝑧𝑞 + 𝑧 ⋅ 𝑞, we have

𝑢
𝑡
= (

𝑊
(1)

(𝑧, 𝑧, 𝜃)

𝑊
(2)

(𝑧, 𝑧, 𝜃)

) + 𝑧(

1

𝑞
1

) 𝑒
𝑖𝜔
0
𝜃

+ 𝑧(

1

𝑞
1

) 𝑒
−𝑖𝜔
0
𝜃

. (48)

Thus, we can obtain

𝜑
1
(0) = 𝑧 + 𝑧 +𝑊

(1)

20
(0)

𝑧
2

2

+𝑊
(1)

11
(0) 𝑧𝑧 +𝑊

(1)

02
(0)

𝑧
2

2

,

𝜑
2
(0) = 𝑧𝑞

1
+ 𝑧 𝑞
1
+𝑊
(2)

20
(0)

𝑧
2

2

+𝑊
(2)

11
(0) 𝑧𝑧 +𝑊

(2)

02
(0)

𝑧
2

2

.

(49)

So, we have

𝜑
1
(0) 𝜑
2
(0) = 𝑞

1
𝑧
2

+ 𝑞
1
𝑧
2

+ (𝑞
1
+ 𝑞
1
) 𝑧𝑧

+ (𝑊
(2)

11
+

1

2

𝑊
(2)

20
+𝑊
(1)

11
𝑞
1
+

1

2

𝑊
(1)

20
𝑞
1
) 𝑧
2

𝑧,

𝜑
2

1
(0) = 𝑧

2

+ 𝑧
2

+ 2𝑧𝑧 + (𝑊
(1)

20
+ 2𝑊

(1)

11
) 𝑧
2

𝑧,

𝜑
2

2
(0) = 𝑞

2

1
𝑧
2

+ 𝑞
2

1
𝑧
2

+ 2𝑞
1
𝑞
1
𝑧𝑧 + (𝑞

1
𝑊
(2)

20
+ 2𝑞
1
𝑊
(2)

11
) 𝑧
2

𝑧.

(50)

It follows from (38) and (39) that

𝑓 (𝑧, 𝑧) = (
𝐾
1
𝑧
2
+ 𝐾
2
𝑧𝑧 + 𝐾

3
𝑧
2

+ 𝐾
4
𝑧
2
𝑧

0

) , (51)

where
𝐾
1
= −𝛽𝜏

0
(1 + 𝑞

2

1
+ 2𝑞
1
) ,

𝐾
2
= −𝛽𝜏

0
(2 + 2𝑞

1
𝑞
1
+ 2𝑞
1
+ 2𝑞
1
) ,

𝐾
3
= −𝛽𝜏

0
(1 + 𝑞

2

1
+ 2𝑞
1
) ,

𝐾
4
= − 𝛽𝜏

0
(2𝑊
(2)

11
+𝑊
(2)

20
+ 2𝑊

(1)

11
𝑞
1
+𝑊
(1)

20
𝑞
1

+ 𝑊
(1)

20
+ 2𝑊

(1)

11
+ 𝑞
1
𝑊
(2)

20
+ 2𝑞
1
𝑊
(2)

11
) .

(52)
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Figure 3: The positive equilibrium 𝐸
∗
of system is asymptotically stable.

Then we have

𝑔 (𝑧, 𝑧) =

1

𝜌

(1, 𝑞
∗

1
) (
𝐾
1
𝑧
2
+ 𝐾
2
𝑧𝑧 + 𝐾

3
𝑧
2

+ 𝐾
4
𝑧
2
𝑧

0

) . (53)

Comparing the coefficients of the above equation with those
in (41), we have

𝑔
20
=

1

𝜌

𝐾
1
, 𝑔

11
=

1

𝜌

𝐾
2
,

𝑔
02
=

1

𝜌

𝐾
3
, 𝑔

21
=

1

𝜌

𝐾
4
.

(54)

In what follows, we focus on the computation of𝑊
20
(𝜃) and

𝑊
11
(𝜃). For the expression of 𝑔

21
, we have

𝐻(𝑧, 𝑧, 𝜃) = − 2Re (𝑞∗ (0) 𝑓 (𝑧, 𝑧) 𝑞 (𝜃)) + 𝑅𝑢
𝑡

= − (

1

2

𝑔
20
𝑧
2

+ 𝑔
11
𝑧𝑧 +

1

2

𝑔
02
𝑧
2

+ ⋅ ⋅ ⋅ ) 𝑞 (𝜃)

− (

1

2

𝑔
20
𝑧
2

+ 𝑔
11
𝑧𝑧 +

1

2

𝑔
02
𝑧
2

+ ⋅ ⋅ ⋅ ) 𝑞 (𝜃)

+ 𝑅𝑢
𝑡
.

(55)

Comparing the coefficients of the above equation, we can
obtain that

𝐻
20
(𝜃) = −𝑔

20
𝑞 (𝜃) − 𝑔

02
𝑞 (𝜃) , 𝜃 ∈ [−1, 0) , (56)

𝐻
11
(𝜃) = −𝑔

11
𝑞 (𝜃) − 𝑔

11
𝑞 (𝜃) , 𝜃 ∈ [−1, 0) . (57)

Substituting (56) into (46) and (57) into (47), respectively, we
get

𝑊
20
(𝜃) = 2𝑖𝜏

0
𝜔
0
𝑊
20
(𝜃) + 𝑔

20
𝑞 (𝜃) + 𝑔

02
𝑞 (𝜃) ,

𝑊
11
(𝜃) = 𝑔

11
𝑞 (𝜃) + 𝑔

11
𝑞 (𝜃) .

(58)

We can easily obtain the solutions of (58) as

𝑊
20
(𝜃) =

𝑖𝑔
20

𝜏
0
𝜔
0

𝑞 (0) 𝑒
𝑖𝜏
0
𝜔
0
𝜃

−

𝑔
02

3𝑖𝜏
0
𝜔
0

𝑞 (0) 𝑒
−𝑖𝜏
0
𝜔
0
𝜃

+ 𝐸
1
𝑒
2𝑖𝜏
0
𝜔
0
𝜃

,

𝑊
11
(𝜃) =

𝑔
11

𝑖𝜏
0
𝜔
0

𝑞 (0) 𝑒
𝑖𝜏
0
𝜔
0
𝜃

−

𝑔
11

𝑖𝜏
0
𝜔
0

𝑞 (0) 𝑒
−𝑖𝜏
0
𝜔
0
𝜃

+ 𝐸
2
.

(59)
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Figure 4: The bifurcation periodic solution is stable.

Wewill determine𝐸
1
and𝐸

2
. Form the definition of𝐴 in (23),

we have

∫

0

−1

𝑑𝜂 (𝜃)𝑊
20
(0) = 2𝑖𝜏

0
𝜔
0
𝑊
20
(0) − 𝐻

20
(0) ,

∫

0

−1

𝑑𝜂 (𝜃)𝑊
11
(0) = −𝐻

11
(0) .

(60)

From (59), (56) and (57), we have

𝐻
20
(𝜃) = −𝑔

20
𝑞 (𝜃) − 𝑔

02
𝑞 (𝜃) + (𝐾

1
, 0)
𝑇

, (61)

𝐻
11
(𝜃) = −𝑔

11
𝑞 (𝜃) − 𝑔

11
𝑞 (𝜃) + (𝐾

2
, 0)
𝑇

. (62)

Substituting (59) and (61) into (62) and noticing that

(𝑖𝜔
0
𝐼 − ∫

0

−1

𝑒
𝑖𝜔
0
𝜃

𝑑𝜂 (𝜃)) 𝑞 (0) = 0,

(−𝑖𝜔
0
𝐼 − ∫

0

−1

𝑒
−𝑖𝜔
0
𝜃

𝑑𝜂 (𝜃)) 𝑞 (0) = 0,

(63)

we can obtain

(2𝑖𝜔
0
𝐼 − ∫

0

−1

𝑒
2𝑖𝜏
0
𝜔
0
𝜃

𝑑𝜂 (𝜃))𝐸
1
= (𝐾
1
, 0)
𝑇

, (64)

which leads to

(

2𝑖𝜔
0
− 𝛽 −

2 (𝛼 + 𝛿) (𝛾 + 𝛿)

𝛼 + 𝛾 + 𝛿

+ 𝛿 + 𝛼𝑒
−2𝑖𝜔0𝜏0

𝛽 −

2 (𝛼 + 𝛿) (𝛾 + 𝛿)

𝛼 + 𝛾 + 𝛿

−𝛼𝑒
−2𝑖𝜔0𝜏0

2𝑖𝜔
0
+ 𝛾 + 𝛿

)𝐸
1

= (

𝐾
1

0

) ,

(

−𝛽 −

2 (𝛼 + 𝛿) (𝛾 + 𝛿)

𝛼 + 𝛾 + 𝛿

+ 𝛿 + 𝛼 𝛽 −

2 (𝛼 + 𝛿) (𝛾 + 𝛿)

𝛼 + 𝛾 + 𝛿

−𝛼 𝛾 + 𝛿

)𝐸
2
= (

𝐾
2

0

) .

(65)
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It follows that

𝐸
1
= (

2𝑖𝜔
0
− 𝛽 −

2 (𝛼 + 𝛿) (𝛾 + 𝛿)

𝛼 + 𝛾 + 𝛿

+ 𝛿 + 𝛼𝑒
−2𝑖𝜔0𝜏0

𝛽 −

2 (𝛼 + 𝛿) (𝛾 + 𝛿)

𝛼 + 𝛾 + 𝛿

−𝛼𝑒
−2𝑖𝜔0𝜏0

2𝑖𝜔
0
+ 𝛾 + 𝛿

)

−1

×(

𝐾
1

0

) ,

𝐸
2
= (

−𝛽 −

2(𝛼 + 𝛿)(𝛾 + 𝛿)

𝛼 + 𝛾 + 𝛿

+ 𝛿 + 𝛼 𝛽 −

2(𝛼 + 𝛿)(𝛾 + 𝛿)

𝛼 + 𝛾 + 𝛿

−𝛼 𝛾 + 𝛿

)

−1

(

𝐾
2

0

) .

(66)

Hence, we know 𝑊
20

and then we can obtain 𝑔
21
. The

following parameters can be calculated:

𝐶
1
(0) =

𝑖

2𝜔
0
𝜏
0

(𝑔
20
𝑔
11
− 2




𝑔
11






2

−

1

3





𝑔
02






2

) +

𝑔
21

2

,

𝜇
2
= −

Re {𝐶
1
(0)}

Re {𝜆 (𝜏
0
)}

, 𝛽
2
= 2Re {𝐶

1
(0)} ,

𝑇
2
= −

Im {𝐶
1
(0)} + 𝜇

2
Im {𝜆 (𝜏

0
)}

𝜏
0
𝜔
0

.

(67)

Theorem 3. Under the condition of Theorem 1, one has the
following.

(1) 𝜇 = 0 is Hopf bifurcation value of system (18).
(2) The direction of Hopf bifurcation is determined by

the sign of 𝜇
2
: if 𝜇

2
> 0, the Hopf bifurcation

is supercritical; if 𝜇
2
< 0, the Hopf bifurcation is

subcritical.
(3) The stability of bifurcating periodic solutions is deter-

mined by 𝛽
2
: if 𝛽
2
< 0, the periodic solutions are stable;

if 𝛽
2
> 0, they are unstable.

4. Numerical Examples

In this section, some numerical examples of system (3) are
presented to justify the previous theorem above.

Example 1. Consider system (3)with parameters𝛼 = 0.8, 𝛽 =
0.8, 𝛾 = 0.8, and 𝛿 = 0.4. Then 𝑅

0
= 1.1111, 𝐸

∗
=

(0.06, 0.04), and (7) has one positive real root 𝜔 = 0.3470.
It follows by (11) that 𝜏

0
= 3.5705. First, we choose 𝜏 = 3 < 𝜏

0
.

For a set of initial conditions satisfying 𝐿(0) = 0.1 and 𝐵(0) =
0.1, Figure 1 demonstrates the evolutions fromwhich it can be
seen that the equilibrium is asymptotically stable. Second, we
choose 𝜏 = 3.7 > 𝜏

0
. For a set of initial conditions satisfying,

the corresponding wave form and phase plots are shown in
Figure 2, from which it is easy to see that a Hopf bifurcation
occurs.

Example 2. Consider system (3) with parameters 𝛼 =

0.7, 𝛽 = 0.8, 𝛾 = 0.5, and 𝛿 = 0.4. Then 𝑅
0
= 1.2929, 𝐸

∗
=

(0.1274, 0.0991), and (7) has one positive real root 𝜔 =

0.4463. It follows by (11) that 𝜏
0
= 4.0204. First, we choose

𝜏 = 3.3 < 𝜏
0
. For a set of initial conditions satisfying

𝐿(0) = 0.1 and 𝐵(0) = 0.1, Figure 3 demonstrates the
evolutions from which it can be seen that the equilibrium is
asymptotically stable. Second, we choose 𝜏 = 4.2 > 𝜏

0
. For a

set of initial conditions satisfying 𝐿(0) = 0.1 and 𝐵(0) = 0.1,
the corresponding wave form and phase plots are shown in
Figure 4, from which it is easy to see that a Hopf bifurcation
occurs.

5. Conclusions

In this paper, we have constructed a computer virus model
with time delay depending on the SLBS model. The the-
oretical analyses for the computer virus models are given.
Furthermore, it is proved that there exists a Hopf bifurcation
when time crosses through the critical value. Finally, the
numerical simulations illustrate our results.
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He Chengtian’s inequalities from ancient Chinese algorithm are applied to strong tangent nonlinear packaging system. The
approximate solution is obtained and compared with the solution yielded by computer simulation, showing a great high accuracy
of this method. The suggested approach provides a novel method to solve some essential problems in packaging engineering.

1. Introduction

In order to avoid some restrictions of perturbation method
[1], some othermethods are developed, such as the homotopy
perturbation method (HPM) [2, 3], the variational iteration
method (VIM) [4–6], the homotopy analysis method (HAM)
[7], and He Chengtian’s inequalities which cannot be found
in the literature but recently reported in [8]. The max-min
approachwhich is developed from the idea of ancientChinese
mathematics is demonstrated to be of convenient applica-
tion, less calculation, and high accuracy. Among current
researches about He Chengtian’s inequalities and their appli-
cations [9–11], few involved coupled nonlinear problems. In
our previous research [12], He Chengtian’s inequalities were
introduced to study the nonlinear dropping shock response
for coupled cubic nonlinear packaging system, showing the
effectiveness of the method. In packaging system, many
cushioningmaterials behave as the tangent nonlinear charac-
teristics [13, 14], and the dropping shock response of tangent
packaging system with critical component is also studied
[15]. In this paper, He Chengtian’s inequalities are applied to
the coupled nonlinear tangent packaging system with critical
component, and the obtained analytical solution is compared
with the solution of computer simulation. The aim of this
research is to suggest a new and simplemathematical method

for solving the nonlinear dropping shock equations arisen in
packaging system.

2. Modelling and Equations

The governing equations of tangent nonlinear cushion-
ing packaging system with the critical component can be
expressed as [15]

𝑚
1
𝑥


+ 𝑘
1
(𝑥 − 𝑦) = 0,

𝑚
2
𝑦


+

2𝑘
2
𝑑
𝑏

𝜋

tan 𝜋

2𝑑
𝑏

𝑦 − 𝑘
1
(𝑥 − 𝑦) = 0,

(1)

where
𝑥 (0) = 0,

𝑦 (0) = 0,

𝑥


(0) = √2𝑔ℎ,

𝑦


(0) = √2𝑔ℎ.

(2)

Here the coefficients 𝑚
1
and 𝑚

2
denote the mass of

the critical component and the main part of the product,
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respectively, while 𝑘
1
and 𝑘

2
are the coupling stiffness of the

critical component and that of cushioning pad, respectively,
𝑑
𝑏
is the compression limit of the cushioning pad, and ℎ is the

dropping height. Equation (1) can be equivalently written in
the following forms:

𝑋 + 𝜔
2

1
(𝑋 − 𝑌) = 0,

̈𝑌 + 𝑌 +

1

3

𝑌
3

+

2

15

𝑌
5

+ (1 − 𝜔
2

2
) (𝑋 − 𝑌) = 0,

(3)

where

𝑋 =

𝑥

√2𝑑
𝑏
/𝜋

, (4)

𝑌 =

𝑦

√2𝑑
𝑏
/𝜋

, (5)

𝜏 =

𝑡

√𝑚
2
/𝑘
2

, (6)

𝜔
1
= √

𝑘
1
𝑚
2

𝑘
2
𝑚
1

, (7)

𝜔
2
= √1 +

𝑚
1
𝜔
2

1

𝑚
2

, (8)

𝑋 (0) = 0, (9)

𝑌 (0) = 0, (10)

𝑋 (0) =

√𝑚
2
/𝑘
2

√2𝑑
𝑏
/𝜋

√2𝑔ℎ, (11)

̇𝑌 (0) =

√𝑚
2
/𝑘
2

√2𝑑
𝑏
/𝜋

√2𝑔ℎ. (12)

3. Application of He Chengtian’s Inequalities

From (3), we can easily obtain

𝑌
(4)

+ (𝜔
2

1
+ 𝜔
2

2
+ 𝑌
2

+

2

3

𝑌
4

) ̈𝑌

+ 𝜔
2

1
(𝑌 +

1

3

𝑌
3

+

2

15

𝑌
5

) = 0.

(13)

Rewrite (13) in the form

𝑌
(4)

= − [(

𝜔
2

1
+ 𝜔
2

2

𝑌

+ 𝑌
2

+

2

3

𝑌
3

) ̈𝑌

+ 𝜔
2

1
(1 +

1

3

𝑌
2

+

2

15

𝑌
4

)]𝑌.

(14)

According to He Chengtian’s inequalities, we choose a
trialfunction in the form

𝑌 = 𝐴 sin (Ω𝜏) , (15)

which meets the initial conditions as described in (10) and
(12).

By simple analysis, from (14)-(15), we know that

Ω
4

= (𝜔
2

1
+ 𝜔
2

2
)Ω
2

− 𝜔
2

1

+ (𝐴
2

Ω
2sin2Ω𝜏 + 2

3

𝐴
4

Ω
2sin4Ω𝜏)

− (

1

3

𝐴
2

𝜔
2

1
sin2Ω𝜏 + 2

15

𝐴
4

𝜔
2

1
sin4Ω𝜏) .

(16)

The maximal and minimal value of sin2Ω𝜏 are, respec-
tively, 1 and 0. So, we can immediately obtain

𝑓min = (𝜔
2

1
+ 𝜔
2

2
+ 𝐴
2

+

2

3

𝐴
4

)Ω
2

−

2𝐴
4
+ 5𝐴
2
+ 15

15

𝜔
2

1

< Ω
4

< (𝜔
2

1
+ 𝜔
2

2
)Ω
2

− 𝜔
2

1
= 𝑓max.

(17)

According to He Chengtian’s interpolation [8, 12], we
obtain

Ω
4

=

𝑚𝑓min + 𝑛𝑓max
𝑚 + 𝑛

= (𝜔
2

1
+ 𝜔
2

2
)Ω
2

− 𝜔
2

1
+ 𝑘𝑀, (18)

where 𝑚 and 𝑛 are weighting factors, 𝑘 = 𝑚/(𝑚 + 𝑛), and
𝑀 = (𝐴

2
+ (2/3)𝐴

4
)Ω
2
− ((2𝐴

4
+ 5𝐴
2
)/15)𝜔

2

1
.

Then, the approximate solution of (13) can be written as

𝑌 = 𝐴 sin [(𝜔2
1
+ 𝜔
2

2
)Ω
2

− 𝜔
2

1
+ 𝑘𝑀]

1/4

𝜏. (19)

To determine the value of 𝑘, substituting (19) into (13)
results in the following residual [8]:

𝑅 (𝜏, 𝑘) = (Ω
2

−

1

3

𝜔
2

1
)𝑌
3

+ (

2

3

Ω
2

−

2

15

𝜔
2

1
)𝑌
5

− 𝑘𝑀𝑌.

(20)

And by setting

∫

𝑇/4

0

𝑅 (𝜏, 𝑘) sinΩ𝜏𝑑𝜏 = 0, (21)

where 𝑇 = 2𝜋/Ω, we obtain the 𝑘 value as

𝑘 =

6𝐴
2
(Ω
2
− (1/3) 𝜔

2

1
) + 5𝐴

4
((2/3)Ω

2
− (2/15) 𝜔

2

1
)

8𝑀

.

(22)

Substituting (22) into (18) yields

8Ω
4

= 8 (𝜔
2

1
+ 𝜔
2

2
)Ω
2

− 8𝜔
2

1
+ 6𝐴
2

(Ω
2

−

1

3

𝜔
2

1
)

+ 5𝐴
4

(

2

3

Ω
2

−

2

15

𝜔
2

1
) .

(23)

From (23), we can easily obtain the frequency value Ω.
Table 1 gives the values of Ω with different 𝜔

1
and 𝜔

2
, and

Figure 1 shows that the approximate solution, (19), agrees well
with the exact solution for various different values of 𝜔

1
and

𝜔
2
, where the initial velocity is assumed as ̇𝑌(0) = 𝐴Ω = 1.
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Figure 1: Comparison of the approximate solution with the exact solution (asterisk: the approximate solution; continuous line: the exact
solution).

Table 1: Values ofΩ from (23) with different values of 𝜔
1
and 𝜔

2
.

𝜔
1

𝜔
2

1 2 3
3 1.08323559 0.95968791 0.84368664
4 1.10039777 1.02416608 0.93503514
5 1.10757043 1.05683775 0.99009216

4. Conclusion

He Chengtian’s inequalities are for the first time applied to
study the nonlinear response of coupled tangent packaging
system. The results show that this method can be easily
used in engineering application with high accuracy without
cumbersome calculation.
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[10] S. A. Demirbaǧ and M. O. Kaya, “Application of He’s max-min
approach to a generalized nonlinear discontinuity equation,”
International Journal of Nonlinear Sciences and Numerical Sim-
ulation, vol. 11, no. 4, pp. 269–272, 2010.

[11] S. S. Ganji, D. D. Ganji, A. G. Davodi, and S. Karimpour,
“Analytical solution to nonlinear oscillation system of the
motion of a rigid rod rocking back using max-min approach,”
Applied Mathematical Modelling, vol. 34, no. 9, pp. 2676–2684,
2010.

[12] J. Wang, “He’s Max-Min approach for coupled cubic nonlinear
equations arising in packaging system,”Mathematical Problems
in Engineering, vol. 2013, Article ID 382509, 4 pages, 2013.

[13] Z. W.Wang, “Dropping damage boundary curves for cubic and
tangent package cushioning systems,”Packaging Technology and
Science, vol. 15, no. 5, pp. 263–266, 2002.

[14] D. Gao and F. D. Lu, “Shock response of a nonlinear tangent
packaging systemwith rotation,” Journal of Vibration and Shock,
vol. 29, no. 10, pp. 131–210, 2010.

[15] J. Wang, J. Jiang, L. Lu, and Z. Wang, “Dropping damage evalu-
ation for a tangent nonlinear systemwith a critical component,”
Computers andMathematics with Applications, vol. 61, no. 8, pp.
1979–1982, 2011.



Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2013, Article ID 708935, 8 pages
http://dx.doi.org/10.1155/2013/708935

Research Article
Reorientation of Asymmetric Rigid Body Using Two Controls

Donghoon Kim,1 James D. Turner,1 and Henzeh Leeghim2

1 Texas A&M University, College Station, TX 77843-3141, USA
2Chosun University, Gwangju 501-759, Republic of Korea

Correspondence should be addressed to Henzeh Leeghim; h.leeghim@gmail.com

Received 9 May 2013; Accepted 25 July 2013

Academic Editor: Mufid Abudiab

Copyright © 2013 Donghoon Kim et al.This is an open access article distributed under the Creative CommonsAttribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Most spacecrafts are designed to be maneuvered to achieve pointing goals. This is accomplished usually by designing a three-axis
control system, which can achieve arbitrary maneuvers, where the goal is to repoint the spacecraft and match a desired angular
velocity at the end of the maneuver. New control laws are required, however, if one of the three-axis control actuators fails. This
paper explores suboptimal maneuver strategies when only two control torque inputs are available. To handle this underactuated
system control problem, the three-axis maneuver strategy is transformed to two successive independent submaneuver strategies.
The first maneuver is conducted on one of the available torque axes. Next, the secondmaneuver is conducted on the torque available
plane using two available control torques. However, the resulting control law ismore complicated than the general three-axis control
law. This is because an optimal switch time needs to be found for determining the end time for the single-axis maneuver or the
start time for the second maneuver. Numerical simulation results are presented that compare optimal maneuver strategies for both
nominal and failed actuator cases.

1. Introduction

This work addresses the problem of finding suboptimal
spacecraft maneuver control laws for handling underactu-
ated system, with only two control torques available. Many
researchers have considered controlling the attitude of rigid
and flexible spacecrafts when all actuators are available.Many
different control strategies have been introduced for handling
the nominal three-axis control case [1–3]. For underactuated
system control application, more limited literatures exist.
For example, Tsiotras and Longuski [4] have considered the
case designing control strategies for handling situations in
which sensor and actuator failures limit the control options
available for carrying out the original mission objectives.
Keräı [5] has considered a more extreme case in which only
a single control actuator is available but is shown to be
uncontrollable, which is intuitively reasonable. Brockett [6]
has shown that two controls can be made asymptotically
stable about the origin. Tsiotras et al. [7–14] have further
addressed the problem of stabilization of axis-symmetric
spacecraft including tracking control laws. Others [15, 16]
have presented approximate strategies that switch between

two different control laws. Much of the later work has con-
sidered complex mathematical approaches for overcoming
the underactuated spacecraft control problem. Recently, Kim
and Turner [17] have suggested a simple way to handle the
failure control problemby introducing a sequentialmaneuver
approach that avoids exciting nonlinear coupling interaction
effects in the equation of motion and attitude kinematics
during suboptimal maneuvers. Analytically the problem
leads to a high-dimensional optimization problem, where it
is very important to specify accurate starting guesses [18].
The problem becomes computationally challenging, because
of increased number of unknowns and constraints [19]. A
major contribution to this work is the reduction of the
number of unknowns and constraints through two successive
maneuver strategies. Reducing three submaneuvers to two
submaneuvers confirms that the suggested strategy requires
less torque than the three-successive-maneuver strategy.

In this work, we address the problem of formulating and
solving a rigorous nonlinear optimal control problem for-
mulation for handling spacecraft maneuvers where actuator
failures limit the number of control inputs to two axes. First, a
single-axis maneuver is conducted to move the given attitude
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to a torque available plane. Then the general simultaneous
maneuver is conducted for reorienting the spacecraft attitude.
The necessary conditions are developed for two cases, such
as control torque minimization and control torque-rate min-
imization. Unless the closed-loop control is considered, the
second approach provides continuous control time histories
to avoid an unexpected flexible body response [20, 21]. The
nonlinear necessary conditions are handled by introducing
a multiple shooting method [22], which enforces both the
terminal and interior boundary conditions that define the
optimal solution.

An asymmetric rigid spacecraft math model with two
control inputs is assumed. The control design objective is
to avoid the axis where the actuator failure has occurred.
With only two control inputs available, our strategy consists
of carrying out two successive submaneuvers of unknown
duration. For obtaining a suboptimal solution, an optimal
switch time must be found. Provided numerical examples
demonstrate that, if one fails to determine the optimal
switch time, then the impact on the integrated value of the
performance index is very significant. The full nonlinear set
of necessary conditions is solved by introducing a multiple
shooting method that is found to require ∼80 iterations for
convergence.

2. Dynamics and Kinematics for a Rigid Body

In general, the rotational dynamics equation of a rigid
spacecraft is given by [1–3]

𝜔 = 𝐽
−1

(− [𝜔
×

] 𝐽𝜔 + U) , (1)

where 𝐽 ∈ R3×3 is the moment of inertia tensor for the
spacecraft, which is assumed to be diagonal, 𝜔 ∈ R3 is
the angular velocity vector of the spacecraft, and U ∈ R3 is
the control torque vector, and the cross-product matrix with
a generic variable k ∈ R3 is define as

[k×] ≜ [

[

0 −𝑘
3

𝑘
2

𝑘
3

0 −𝑘
1

−𝑘
2

𝑘
1

0

]

]

. (2)

For describing an actuator failure condition, (1) is modi-
fied as [21]

𝜔 ≜ f (u,𝜔) = 𝐽
−1

(− [𝜔
×

] 𝐽𝜔 + 𝑃u) , (3)

where u ∈ R2 is the available control torque vector, and the
control mapping matrix 𝑃 is defined as

𝑃 ≜
[

[

1 0

0 1

0 0

]

]

. (4)

There are various parameters to describe attitude such as
the quaternion, Euler angles, direction cosine matrix, modi-
fiedRodrigues parameters (MRPs), and so forth. Considering
the number of parameters to describe the attitude and
singularity issues, the MRPs are selected to define kinematic

equations. The MRPs are defined in terms of the quaternion
or the principal rotational elements as [23]

𝜎 =

𝜌

1 + 𝑞
4

, (5a)

𝜎 = ê tan Φ

4

, (5b)

where the MRPs have a geometric singularity at Φ = ±2𝜋

radians from (5b).
The kinematic differential equations for the MRPs can be

expressed as

̇𝜎 ≜ r (𝜎,𝜔) = 1

4

[𝐵 (𝜎)]𝜔 , (6)

where

[𝐵 (𝜎)] ≜ (1 − 𝜎
𝑇

𝜎) 𝐼
3×3

+ 2 [𝜎
×

] + 2𝜎𝜎
𝑇

. (7)

3. Problem Formulation for Normal Control

Two quadratic performance indices are introduced for defin-
ing the optimal control problem for the actuator mechanical
failure maneuver case. Both the nominal and failed con-
trol actuator maneuvers are designed to achieve the three-
dimensional rigid body boundary conditions. Two related
control formulations are presented: (i) quadratic penalties on
control, leading to discontinuous control time histories, and
(ii) quadratic penalties on control rate, leading to continuous
control time histories. Both performance indices are defined
as follows:

J
u
≜

1

2

∫

𝑡
𝑓

𝑡
0

u𝑇u d𝑡, (8a)

J
u
≜

1

2

∫

𝑡
𝑓

𝑡
0

̇u𝑇 ̇u d𝑡, (8b)

where the time derivative of control torque is defined as

̇u ≜ g ( ̇u) ∈ R
2

. (9)

As shown in the numerical results section, (8a) leads
to a discontinuous control solution whereas (8b) leads to a
continuous control solution. With only two control inputs
available for the failed actuator case, one defines first single-
axis maneuver to move given attitude to controllable plane.
By introducing two successive submaneuvers, one must
define an unknown switch time between the first single-axis
maneuver and the following maneuver.

3.1. Optimal Control Formulation. We seek a solution of (3)
and (6) satisfying the prescribed terminal boundary condi-
tions

𝜎 (𝑡
0
) = 𝜎
0
, 𝜔 (𝑡

0
) = 𝜔
0
,

𝜎 (𝑡
𝑓
) = 𝜎
𝑓
, 𝜔 (𝑡

𝑓
) = 𝜔

𝑓
,

(10)
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where the 12 members of (10) are prescribed constants
characterizing the attitude and angular velocity at the initial
and final times. Defining the Hamiltonian for the system

H = L + 𝜉
𝑇r + 𝜇𝑇f , (11)

where the loss function L = u𝑇u/2 and the Lagrange
multipliers are 𝜉 ∈ R3 and 𝜇 ∈ R3, one obtains the
following first-order nonlinear necessary conditions.

State Equations Are

̇𝜎 = H𝜉 = r, (12a)

𝜔 = H𝜇 = f , (12b)

where (⋅)𝜁 ≜ 𝜕(⋅)/𝜕𝜁 for a generic variable 𝜁.

Costate Equations Are

̇𝜉 = −H𝜎 = −r𝑇𝜎𝜉, (13a)

̇𝜇 = −H𝜔 = −r𝑇𝜔𝜉 − f𝑇𝜔𝜇, (13b)

where

f𝜔 =

[

[

[

[

[

[

[

[

[

0

𝐽
2
− 𝐽
3

𝐽
1

𝜔
3

𝐽
2
− 𝐽
3

𝐽
1

𝜔
2

𝐽
3
− 𝐽
1

𝐽
2

𝜔
3

0

𝐽
3
− 𝐽
1

𝐽
2

𝜔
1

𝐽
1
− 𝐽
2

𝐽
3

𝜔
2

𝐽
1
− 𝐽
2

𝐽
3

𝜔
1

0

]

]

]

]

]

]

]

]

]

, r𝜔 =
1

4

[𝐵 (𝜎)] ,

r𝜎 =
1

2

[

[

𝜎
1
𝜔
1
+ 𝜎
2
𝜔
2
+ 𝜎
3
𝜔
3

𝜔
3
− 𝜎
2
𝜔
1
+ 𝜎
1
𝜔
2

𝜎
1
𝜔
3
− 𝜎
3
𝜔
1
− 𝜔
2

𝜎
2
𝜔
1
− 𝜔
3
− 𝜎
1
𝜔
2

𝜎
1
𝜔
1
+ 𝜎
2
𝜔
2
+ 𝜎
3
𝜔
3

𝜔
1
− 𝜎
3
𝜔
2
+ 𝜎
2
𝜔
3

−𝜎
1
𝜔
3
+ 𝜎
3
𝜔
1
+ 𝜔
2

𝜎
3
𝜔
2
− 𝜔
1
− 𝜎
2
𝜔
3

𝜎
1
𝜔
1
+ 𝜎
2
𝜔
2
+ 𝜎
3
𝜔
3

]

]

.

(14)

Stationarity Condition Is

0 = Hu = Lu + f𝑇u 𝜇 = u + 𝑃𝑇𝐽−1𝜇. (15)

Given the fixed initial time 𝑡
0
and final time 𝑡

𝑓
, the initial

states 𝜎(𝑡
0
) and 𝜔(𝑡

0
), and the final states 𝜎(𝑡

𝑓
) and 𝜔(𝑡

𝑓
),

there are no extra boundary conditions. These fixed terminal
boundary conditions define a classical two-point boundary-
value problem.

3.2. Optimal Control-Rate Formulation. We seek a solution of
(3), (6), and (9) satisfying the terminal boundary conditions
in (10) and

u (𝑡
0
) = u
0
, u (𝑡

𝑓
) = u
𝑓
, (16)

where the 16 members of (10) and (16) are prescribed
constants characterizing the attitude, angular velocity, and
control torque at the initial and final times. Defining the
Hamiltonian for the system

H = L + 𝜉
𝑇r + 𝜇𝑇f + 𝜂𝑇g, (17)

where the loss function L = ̇u𝑇 ̇u/2 and the Lagrange
multiplier is 𝜂 ∈ R2, one obtains the following first-order
nonlinear necessary conditions.

State Equations Are
̇𝜎 = H𝜉 = r, (18a)

𝜔 = H𝜇 = f , (18b)

̇u = H𝜂 = g. (18c)

Costate Equations Are
̇𝜉 = −H𝜎 = −r𝑇𝜎𝜉, (19a)

̇𝜇 = −H𝜔 = −r𝑇𝜔𝜉 − f𝑇𝜔𝜇, (19b)

̇𝜂 = −Hu = −f𝑇u 𝜇 = −𝑃
𝑇

𝐽
−1

𝜇. (19c)
Stationarity Condition Is

0 = Hu = Lu + g𝑇u𝜂 = u + 𝜂. (20)
As described in optimal control formulation, no addi-

tional boundary conditions exist.

4. Problem Formulation for Failure Control

For the underactuated system, a concept of sequential control
is introduced to avoid a control input about the failed control
axis. A sequential Euler angle transformation [23] is used
for determining the MRPs at the switch time. Assuming
that an Euler angle rotation sequence is selected that avoids
the failed actuator axis, one seeks to design two successive
submaneuvers where the maneuver times are unknown. At
the interior switch time, the angular velocity is set to zero
to avoid cross-coupling term’s effect. These control design
assumptions guarantee that the constraints for the states at
the interior switch time are perfectly known.

After developing a strategy for carrying out two succes-
sive submaneuvers, the switch timemust be specified. Failure
to solve the optimal switch time leads to large penalties
in performance indices, which indicates poor maneuver
performance.
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4.1. Switch-Time Boundary Conditions. A free interior switch
time 𝑡

𝑠
is introduced for changing the control actuator

being used; the following unknown boundary conditions are
introduced:

H (𝑡
𝑠
) = H(𝑡) = constant, (21)

since the Hamiltonian is not an explicit function of time.
Because the unknown switch time is defined, a multiple

shootingmethod [22] is applied to find a suboptimal solution,
where the interior point condition [24] is given by

𝑁(z (𝑡
𝑠
)) = 0, (22)

where z is the total states. The interior point condition yields
the following two additional boundary conditions that define
the suboptimal solution

𝜅
𝑇

(𝑡
+

𝑠
) = 𝜅
𝑇

(𝑡
−

𝑠
) − 𝛼
𝑇

𝑁z




𝑡
𝑠

, (23a)

H (𝑡
+

𝑠
) = H (𝑡

−

𝑠
) , (23b)

where 𝜅 is the total Lagrange multipliers associated with
the total states and 𝛼 is the another Lagrange multiplier
describing the maneuver switch-time jump conditions.

4.2. Optimal Control Formulation for Failure Control. An
Euler angle transformation algorithm [23] is used to define
the boundary conditions for the MRPs. Unlike the normal
control, the MRPs at the switch time need to be determined.
The boundary conditions for the MRPs are handled by using
an Euler angle rotation sequence that avoids the failed control
actuator axis.

To formulate themathematical structure for the problem,
one now collects all the problem unknowns and constraint
conditions as follows.

19 Unknowns Are

@𝑡
0
: 𝜉 (𝑡
0
) ∈ R

3

, 𝜇 (𝑡
0
) ∈ R

3

, (24a)

@𝑡
𝑠
: 𝛼
1
∈ R
3

, 𝛼
2
∈ R
3

, 𝑡
𝑠
∈ R
1

, (24b)

@𝑡
𝑓
: 𝜉 (𝑡
𝑓
) ∈ R

3

, 𝜇 (𝑡
𝑓
) ∈ R

3

. (24c)

19 Constraints Are
@𝑡
𝑠
: 𝜎 (𝑡−
𝑠
) = 𝜎
𝑡
𝑠

, 𝜔 (𝑡
−

𝑠
) = 𝜔
𝑡
𝑠

,

𝜎 (𝑡
+

𝑠
) = 𝜎
𝑡
𝑠

, 𝜔 (𝑡
+

𝑠
) = 𝜔
𝑡
𝑠

,

𝜉 (𝑡
−

𝑠
) = 𝜉 (𝑡

+

𝑠
) + 𝛼

3
,

𝜇 (𝑡
−

𝑠
) = 𝜇 (𝑡

+

𝑠
) + 𝛼
4
, H (𝑡

−

𝑠
) = H (𝑡

+

𝑠
) .

(25)

The constraints in (25) are particularly challenging
because jump conditions govern the optimality of the result-
ing solutions. The problem is characterized by both high
dimension and nonlinearity, which makes it critically impor-
tant to develop useful approximate starting solutions. The
unknowns in (24a), (24b), and (24c) and the constraints in
(25) are enforced by iteratively solving (12a), (12b), (13a),
(13b), and (15).

Table 1: Numerical simulation parameters.

Parameter Value Unit
Inertia of the spacecraft diag [14.2, 17.3, 20.3] kg⋅m2

Initial angular velocity [0, 0, 0]𝑇 deg/s
Initial control torque [0, 0]𝑇 Nm
Initial Euler angles (1-2-1 set) [15, 30, 45]𝑇 deg
Initial MRPs [0.263, 0.1361, −0.037]𝑇 —
Interior angular velocity [0, 0, 0]𝑇 deg/s
Interior control torque [0, 0]𝑇 Nm
Interior Euler angles (1-2-1 set) [15, 30, 0]𝑇 deg
Interior MRPs [0.064, 0.131, 0.017]𝑇 —
Final angular velocity [0, 0, 0]𝑇 deg/s
Final control torque [0, 0]𝑇 Nm
Final Euler angles (1-2-1 set) [0, 0, 0]𝑇 deg
Final MRPs [0, 0, 0]𝑇 —

4.3. Optimal Control-Rate Formulation for Failure Control.
To formulate the mathematical structure for the problem,
one now collects all the problem unknowns and constraint
conditions as follows.

25 Unknowns Are

@𝑡
0
: 𝜉 (𝑡
0
) ∈ R

3

, 𝜇 (𝑡
0
) ∈ R

3

,

𝜂 (𝑡
0
) ∈ R

2

,

(26a)

@𝑡
𝑠
: 𝛼
1
∈ R
3

, 𝛼
2
∈ R
3

,

𝛼
3
∈ R
2

, 𝑡
𝑠
∈ R
1

,

(26b)

@𝑡
𝑓
: 𝜉 (𝑡
𝑓
) ∈ R

3

, 𝜇 (𝑡
𝑓
) ∈ R

3

,

𝜂 (𝑡
𝑓
) ∈ R

2

.

(26c)

25 Constraints Are

@𝑡
𝑠
: 𝜎 (𝑡−
𝑠
) = 𝜎
𝑡
𝑠

, 𝜔 (𝑡
−

𝑠
) = 𝜔

𝑡
𝑠

,

u (𝑡−
𝑠
) = u
𝑡
𝑠

,

𝜎 (𝑡
+

𝑠
) = 𝜎
𝑡
𝑠

, 𝜔 (𝑡
+

𝑠
) = 𝜔
𝑡
𝑠

,

u (𝑡+
𝑠
) = u
𝑡
𝑠

,

𝜉 (𝑡
−

𝑠
) = 𝜉 (𝑡

+

𝑠
) + 𝛼
4
, 𝜇 (𝑡

−

𝑠
) = 𝜇 (𝑡

+

𝑠
) + 𝛼
5
,

𝜂 (𝑡
−

𝑠
) = 𝜂 (𝑡

+

𝑠
) + 𝛼
6
, H (𝑡

−

𝑠
) = H (𝑡

+

𝑠
) .

(27)

The unknowns of (26a), (26b), and (26c) and the con-
straints of (27) are enforced by iteratively solving (18a), (18b),
(18c), (19a), (19b), (19c), and (20).

5. Numerical Results

Thenumerical simulation parameters are listed in Table 1. For
asymmetric rigid spacecraft, a diagonal moment of inertia
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Figure 1: Initial attitude movement to torque available plane using torque available axis rotation.

Table 2: Comparison between guesses and found values (torque-
rate minimization).

Parameter Guess Found value
𝜇 (𝑡
0
) [0, 0, 0]𝑇 [2.040, 0, 0]𝑇

𝜉 (𝑡
0
) [0, 0, 0]𝑇 [1.117, −0.001, −0.310]𝑇

𝜂 (𝑡
0
) [0, 0]𝑇 [0.310, 0]𝑇

𝜇 (𝑡
𝑓
) [0, 0, 0]𝑇 [−2.898, −0.710, −115.523]𝑇

𝜉 (𝑡
𝑓
) [0, 0, 0]𝑇 [2.528, 3.429, −7.982]𝑇

𝜂 (𝑡
𝑓
) [0, 0]𝑇 [0.310, −0.003]𝑇

𝛼
1

[0, 0, 0]𝑇 [−5.286, −1.983, 148.211]𝑇

𝛼
2

[0, 0, 0]𝑇 [−3.354, −2.203, 6.941]𝑇

𝛼
3

[0, 0]𝑇 [0.146, −0.263]𝑇

𝑡
𝑠

15 12.930

tensor is assumed to model the spacecraft, where all values
of the inertia are different.

Numerical simulations are performed for both nominal
(3-axis controls) and failure control cases (2-axis controls).
For the failure control simulation case, 𝑢

1
and 𝑢

2
are only

available. Using the Euler transformation, the given initial
attitude can be transformed into two possible sets of expres-
sion, such as (1-2-1) and (2-1-2). In this paper, the (1-2-1) set
is studied, and a trend of first single-axis maneuver is shown
in Figure 1. Future workwill develop algorithms for optimally
selecting the Euler angle rotation sequence.

The unknown Lagrange multipliers are selected arbitrar-
ily, and the unknown switch times are initialized by assuming
half of the total simulation time. With this initial guesses, the
Lagrange multipliers and switch time are found and listed in
Tables 3 and 2.

The simulation results for minimizing control torques
are shown in Figures 2–5. Figure 2 shows that all the states
meet the terminal and interior conditions using only two
control torques. Since a single-axis maneuver is conducted
until the switch time, we observe linear control time histories.
Then, two control torques are utilized for reorientation.
Note that discontinuous control time histories are obtained for
torque minimization case. Figure 3 presents time histories of
Lagrange multipliers associated with the states.

The results among the normal control, failure control
using two successive maneuvers, and failure control using
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Figure 2: Time trajectory of states (torque minimization).

three successive maneuvers are compared. Figure 4 presents
the Hamiltonian and performance index time histories. As
defined in (21), it shows that Hamiltonian is constant over
time regardless of normal and failure controls. For the normal
control, the performance index value at final time indicates
the torque consumption. For the failure control, the sum
of the performance index value at switch times and final
time indicates the torque consumption. Figure 5 presents the
principal angle time histories. We observe that the principal
angle path using three successive submaneuvers is the longest.
Thus we can expect that the two-successive-submaneuver
strategy has better performance than the three-successive-
submaneuver strategy.
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Table 3: Comparison between guesses and found values (torque
minimization).

Parameter Guess Found value
𝜇 (𝑡
0
) [0, 0, 0]𝑇 [5.616, 0, 0]𝑇

𝜉 (𝑡
0
) [0, 0, 0]𝑇 [3.056, −0.004, −0.849]𝑇

𝜇 (𝑡
𝑓
) [0, 0, 0]𝑇 [−5.549, −1.053, −285.835]𝑇

𝜉 (𝑡
𝑓
) [0, 0, 0]𝑇 [5.929, 6.798, −10.628]𝑇

𝛼
1

[0, 0, 0]𝑇 [−8.389, −5.949, 329.183]𝑇
𝛼
2

[0, 0, 0]𝑇 [−5.322, −4.968, 8.416]𝑇

𝑡
𝑠

15 13.008

The simulation results for minimizing control torque
rates are shown in Figures 6–9. Figure 6 shows that all the
states meet the terminal and interior conditions using only
two control torques. Even though a single-axis maneuver is
conducted until the switch time, different control time histo-
ries are obtained.This is because control rates are minimized
instead of control torques. Also, it leads to continuous control
time histories. Figure 7 presents time histories of Lagrange
multipliers associated with the state.

Similarly, constant Hamiltonian time histories are
obtained in Figure 8. Like the control torque minimization
results of the principal angle path, the three-successive-
submaneuver result has the longest path in Figure 9. For
comparing torque consumptions according to the usage of
control rate as a performance index, Gu

≜ (1/2) ∫

𝑡
𝑓

𝑡
0

u𝑇u d𝑡
is calculated. For both torque and torque-rate minimization
cases, torque consumptions are compared and listed in
Table 4.
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Figure 4: Time trajectory of Hamiltonian and performance index
(torque minimization).
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Figure 5: Time trajectory of principal angle (torque minimization).

As shown in Table 4, the two-successive-submaneuver
strategy requires less torque than the three-successive-
submaneuver one.

6. Conclusion

The classic spacecraft maneuver problem is generalized to
handle the special case that an actuator failure alters the
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Figure 8: Time trajectory of Hamiltonian and performance index
(torque-rate minimization).
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Figure 9: Time trajectory of principal angle (torque-rate minimiza-
tion).

Table 4: Torque consumption comparison.

Observation Normal 2 man. (ratio) 3 man. (ratio)
Ju 0.0671 0.7820 (11.6502) 1.0432 (15.5414)
Gū 0.0959 1.0525 (10.9700) 1.5348 (15.9965)

hardware capabilities available for repointing the vehicle. A
key objective is to maintain a suboptimal solution strategy
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even during the degraded hardware environment. A solution
strategy is presented that enables two control inputs to
complete the originally defined three-dimensional rigid body
maneuver. Nonlinear necessary conditions are defined for
carrying out a sequence of maneuvers. For a single-axis
and simultaneous submaneuver, an unknown switch time
must be recovered switching between the remaining control
actuators. Two control formulations are presented. The first
approach penalizes the control torques but is shown to lead
to discontinuous control time histories.The second approach
penalizes the control torque rates but is shown to eliminate
the discontinuous control time histories, which is important
for flexible body applications. The problem is defined by
a nonlinear high-dimensional set of necessary conditions,
which are iteratively solved by introducing a multiple shoot-
ing method. On comparing the performance indices for the
nominal and failed actuator cases, it is demonstrated that the
failed actuator case requires ∼20-fold increase in computa-
tional cost. The proposed method is expected to be broadly
useful for spacecraft applications that must deal with actuator
failures on orbit, where optimized approaches are required
for maintaining vehicle pointing goals. Future research will
investigate developing more accurate starting guess solutions
for reducing the number of nonlinear optimization iterations
required.
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This paper presents a differential-evolution- (DE-) optimized, independent multiloop proportional-integral-derivative (PID)
controller design for full-car nonlinear, electrohydraulic suspension systems. The multiloop PID control stabilises the actuator via
force feedback and also improves the system performance. Controller gains are computed using manual tuning and through DE
optimization to minimise a performance index, which addresses suspension travel, road holding, vehicle handling, ride comfort,
and power consumption constraints. Simulation results showed superior performance of the DE-optimized PID-controlled active
vehicle suspension system (AVSS) over themanually tuned PID-controlled AVSS and the passive vehicle suspension system (PVSS).

1. Introduction

The evolution of modern instrumentation and control tech-
niques has made semi-active vehicle suspension systems
(SAVSS) [1] and AVSS designs more promising. However,
the biggest challenge remains the attainment of trade-offs
between the conflicting performance criteria like suspension
travel, ride comfort, road holding, and vehicle handling.

Although there is a vast amount of literature documented
about AVSS design, most are affected by at least one of
the following limitations: use of linear suspension models,
ignoring actuator dynamics and performance evaluation
based on the 2 degree-of-freedom (dof) quarter-car model
[2, 3].Thiswork presents a 7 dof full-car nonlinear suspension
system that accounts for system complexities associated with
inherent nonlinearities, actuator dynamics, and coupling
interactions [4].

Linear optimal control schemes like linear quadratic
regulator (LQR), linear quadratic gaussian (LQG), H

∞
,

mixedH
2
/H
∞
, and linear parameter varying (LPV) control

methods are well-developed control schemes that have been
employed in SAVSS and AVSS designs [1, 4–8].Their stability
and robustness properties are more readily established but
always limited when employed for complex nonlinear control
schemes; they also normally assume time-invariant situation.
Minimising the chosen performance objectives when using
these control methods requires that some optimal feedback
gains be obtained. Need formeasurement of all state variables
is another additional challenge. Moreover, solving AVSS
control problemby the use of linear control schemes is usually
based on the assumption of a broad bandwidth actuator,
whose response is fast enough and its parameters can be
linearised (the Jacobian way) within some operating regions
[9].

Application of nonlinear control methods like feedback
linearization (FBL) [4], backstepping, and sliding mode con-
trol [10] methods is also well documented among the AVSS
control design literature.Thesemethods are able to overcome
most of the challenges encountered in the implementation
of the linear control methods, but challenges like difficulty
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in establishing system stability and repeated differentiation
of nonlinear functions in backstepping lead to additional
system complications, and exact FBL is not always possible
because full knowledge about the system is unavailable.
Moreover, FBL and sliding mode are usually susceptible to
chattering that degrades system performance. Availability
of good system dynamic model is usually necessary and
performance is also readily affected by measurement noise
[4, 10–12].

Intelligent controllers provide new alternatives with bet-
ter prospects but they inherit the setbacks of the nonlinear
controllers since they are implemented in most cases in
combination with the nonlinear control techniques [12–15].

PID control is well known for its simplicity and ease
with which its gains can be adjusted. It is also known to
have setbacks in its lack of robustness to parameter variations
and physical implementation limitations due to high-loop
gains [2]. Evidence in the literature shows that tuning of the
majority of the industrial PID controllers was either done
manually or based on its default setting [16].

Previous works have demonstrated the prospect for supe-
rior AVSS performance when PID control is combined with
appropriate computational intelligence or global optimiza-
tion methods, especially for the selection of PID optimal
gains. Ziegler Nichols tuning method has been successfully
employed over the years in tuning PID controllers but it often
requires further fine tuning which has been donemanually or
intuitively [9, 13, 15, 17].

Evolutionary-based optimization techniques such as
genetic algorithms (GA) and particle swarm optimization
(PSO) have been successfully applied for controller tuning
of linear PID control of quarter-car AVSS [18–20]. Similarly,
optimizations of H

∞
and LQR-based control methods were

performed with success [21, 22]. Optimization has also been
combinedwith intelligent controlmethods to obtain superior
performance in some cases [23–25]. With the aid of these
evolutionary-based optimization algorithms, the AVSS was
able to meet hard design specifications that could not be
achieved by conventional tuning methods. The drawback of
the proposedmethods was the weakness of the cost functions
as they were only based on improving ride comfort or vertical
body displacement.There was no attemptmade to resolve the
other conflicting design requirements of an AVSS.

Differential evolution is a heuristic, population set-based
direct search global optimization algorithm with numer-
ous applications [13, 17, 26–28]. The global optimization
algorithm is inherently flexible and relatively simpler in
comparison with other techniques. It gives better search
space exploration characteristics with similar or even better
results than previously employed optimization routines [26,
29, 30]. Secondly, it applies predefined conditions where new
generations are only accepted if they produce enriched and
better solutions. Those characteristics slow the routine down
but helps to prevent early convergence [31].

Four independent multi-loop PID controllers have been
employed in this work to simultaneously control the full-
car AVSS and to ensure actuator stability. Multiobjective DE
direct search global optimization algorithm was employed in
tuning the multi-loop PID controllers’ gains. The objective

function simultaneously addressed the conflicting trade-off
challenge in the AVSS design.

2. System Overview and Modelling

AVSS responds dynamically to road disturbance inputs by
inducing relative motion between the body and the wheel
through the force generated by the servo-hydraulic actuator.
Obtaining the appropriate control voltage for the actuator
requires an optimal trade-off between the design objectives
in the presence of road disturbance inputs.The success of this
process yields a suspension system that is adaptive to the road
disturbance and other operating conditions.

Figure 1 presents the generic AVSS feedback control loop.
The system consists of a controller issuing the command
input signal to the actuator to generate a manipulating signal.
Better command input signal is sent because the controller
output is optimized by the use of evolutionary algorithms.

2.1. Physical Modelling. Figure 2 shows the seven dof full-
car suspension system used in this study.𝑀

𝑠
, 𝐼
𝜃
, and 𝐼

𝜙
are

the sprung mass, pitch inertia, and roll inertia of the vehicle,
respectively; 𝑙

𝑓
, 𝑙
𝑟
, and 𝑡

𝑓
are the distance from the vehicle

front axle to the centre of gravity, the distance from the vehicle
rear axle to the centre of gravity, and the half width of the
vehicle, respectively. 𝑧, 𝜃, and 𝜙 are the vehicle body heave,
pitch, and roll, respectively; the displacement and mass of
each wheel are denoted as 𝑧

𝑡
𝑖𝑗

and𝑚
𝑢
𝑖𝑗

respectively with (𝑖, 𝑗)
representing the position of the tyre, where 𝑖 refers to the
lateral position front 𝑓 or rear 𝑟, and 𝑗 to the longitudinal
position right 𝑟 or left 𝑙, and the respective road disturbance
profile at each wheel is given as 𝑤

𝑖𝑗
. The spring and damping

force contributions of the suspension system are denoted by
𝐹
𝑘
𝑖𝑗

and 𝐹
𝑏
𝑖𝑗

, respectively, and those of the tyre are denoted by
𝐹
𝑘𝑡
𝑖𝑗

and 𝐹
𝑏𝑡
𝑖𝑗

, respectively. 𝐹
𝑎
𝑖𝑗

is the actuator force supplied
between the chassis and each wheel. The suspension travels
are denoted by 𝑧

𝑖𝑗
[4].

2.2. Mathematical Modelling. The governing equations are
derived using Newton-Euler approach, with the resultant
force acting in each suspension system given as

𝐹
𝑖𝑗
= 𝐹
𝑘
𝑖𝑗

+ 𝐹
𝑏
𝑖𝑗

− 𝐹
𝑎
𝑖𝑗

. (1)

The heave, pitch, and roll dynamics of the vehicle are [4]

𝑀
𝑠
̈𝑧 = 𝐹
𝑓𝑟
+ 𝐹
𝑓𝑙
+ 𝐹
𝑟𝑟
+ 𝐹
𝑟𝑙
,

𝐼
𝜃

̈
𝜃 = −𝐹

𝑓𝑟
𝑙
𝑓
− 𝐹
𝑓𝑙
𝑙
𝑓
+ 𝐹
𝑟𝑟
𝑙
𝑟
+ 𝐹
𝑟𝑙
𝑙
𝑟
,

𝐼
𝜙

̈
𝜙 = 𝑡
𝑓
[𝐹
𝑓𝑟
− 𝐹
𝑓𝑙
+ 𝐹
𝑟𝑟
− 𝐹
𝑟𝑙
] .

(2)

The dynamics of each wheel are determined as follows:

𝑚
𝑢
𝑖𝑗

̈𝑧
𝑡
𝑖𝑗

= −𝐹
𝑘
𝑖𝑗

− 𝐹
𝑏
𝑖𝑗

+ 𝐹
𝑎
𝑖𝑗

+ 𝐹
𝑘𝑡
𝑖𝑗

+ 𝐹
𝑏𝑡
𝑖𝑗

. (3)
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Figure 1: AVSS feedback control loop.
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Figure 2: Simplified full-car model of the active vehicle suspension system.
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The suspension travel at each wheel is determined as

𝑧
𝑓𝑙
= 𝑧 − 𝑙

𝑓
sin 𝜃 − 𝑡

𝑓
sin𝜙,

𝑧
𝑟𝑙
= 𝑧 + 𝑙

𝑟
sin 𝜃 − 𝑡

𝑓
sin𝜙,

𝑧
𝑓𝑟
= 𝑧 − 𝑙

𝑓
sin 𝜃 + 𝑡

𝑓
sin𝜙,

𝑧
𝑟𝑟
= 𝑧 + 𝑙

𝑓
sin 𝜃 + 𝑡

𝑓
sin𝜙.

(4)

The suspension spring and damping forces are computed as

𝐹
𝑘
𝑖𝑗

= 𝑘
𝑙

𝑠
𝑖𝑗

(𝑧
𝑡
𝑖𝑗

− 𝑧
𝑖𝑗
) + 𝑘

nl
𝑠
𝑖𝑗

(𝑧
𝑡
𝑖𝑗

− 𝑧
𝑖𝑗
)

3

,

𝐹
𝑏
𝑖𝑗

= 𝑏
𝑙

𝑠
𝑖𝑗

( ̇𝑧
𝑡
𝑖𝑗

− ̇𝑧
𝑖𝑗
)

+ 𝑏
nl
𝑠
𝑖𝑗

√








̇𝑧
𝑡
𝑖𝑗

− ̇𝑧
𝑖𝑗








sgn ( ̇𝑧
𝑡
𝑖𝑗

− ̇𝑧
𝑖𝑗
)

= 𝑏
sym
𝑠
𝑖𝑗








̇𝑧
𝑡
𝑖𝑗

− ̇𝑧
𝑖𝑗








(5)

with linear and nonlinear suspension spring coefficients
𝑘
𝑙

𝑠
𝑖𝑗

and 𝑘nl
𝑠
𝑖𝑗

, and linear, nonlinear, and symmetric damping
coefficients 𝑏𝑙

𝑠
𝑖𝑗

, 𝑏nl
𝑠
𝑖𝑗

, and 𝑏sym
𝑠
𝑖𝑗

, respectively. The dynamics of
the tyres are modelled as

𝐹
𝑘𝑡
𝑖𝑗

= 𝑘
𝑡
𝑖𝑗

(𝑤
𝑖𝑗
− 𝑧
𝑡
𝑖𝑗

) ,

𝐹
𝑏𝑡
𝑖𝑗

= 𝑏
𝑡
𝑖𝑗

(𝑤
𝑖𝑗
− 𝑧
𝑡
𝑖𝑗

) ,

(6)

where 𝑘
𝑡
𝑖𝑗

and 𝑏
𝑡
𝑖𝑗

are the spring and damping coefficients
of the wheel. The pressure developed by the servo-hydraulic
actuators is modelled as [4, 32]

̇𝑃
𝐿
𝑖𝑗

= 𝛾
𝑖𝑗
Φ
𝑖𝑗
𝑥V
𝑖𝑗

− 𝛽
𝑖𝑗
𝑃
𝐿
𝑖𝑗

+ 𝛼
𝑖𝑗
𝐴
𝑖𝑗
̇𝑧
𝑖𝑗
, (7)

where

𝛼
𝑖𝑗
=

4𝛽
𝑒
𝑖𝑗

𝑉
𝑡
𝑖𝑗

, 𝛽
𝑖𝑗
= 𝛼
𝑖𝑗
𝐶
𝑡𝑝
𝑖𝑗

,

𝛾
𝑖𝑗
= 𝐶
𝑑
𝑖𝑗

𝑆
𝑖𝑗√

1

𝜌
𝑖𝑗

, Φ
𝑖𝑗
= 𝜙
1
𝑖𝑗

× 𝜙
2
𝑖𝑗

,

𝜙
1
𝑖𝑗

= sgn (𝑃
𝑠
𝑖𝑗

− sgn (𝑥V
𝑖𝑗

)𝑃
𝐿
𝑖𝑗

) ,

𝜙
2
𝑖𝑗

= √








𝑃
𝑠
𝑖𝑗

− sgn (𝑥V
𝑖𝑗

)𝑃
𝐿
𝑖𝑗








,

(8)

where 𝑥V
𝑖𝑗

are the spool-valves’ displacements, 𝑃
𝑠
𝑖𝑗

are the
supply pressures,𝐴

𝑖𝑗
are the pistons’ cross-sectional areas,𝑉

𝑡
𝑖𝑗

are the volumes of the cylinders, 𝛽
𝑒
𝑖𝑗

are the bulk moduli of
the working fluids, Φ

𝑖𝑗
are the hydraulic load flows, 𝐶

𝑡𝑝
𝑖𝑗

are
the leakage coefficients.

𝐶
𝑑
𝑖𝑗

are the discharge coefficients between the supply lines
and the hydraulic cylinders and 𝑆

𝑖𝑗
are spool-valves’ area

gradients. The valves’ positions are modelled with first-order
lag as follows:

̇𝑥V
𝑖𝑗

=

1

𝜏
𝑖𝑗

(𝐾V
𝑖𝑗

𝑢
𝑖
− 𝑥V

𝑖𝑗

) , (9)

where 𝐾V
𝑖𝑗

are the servo-valves’ gains and 𝜏
𝑖𝑗
are the time

constants. The disturbance is a deterministic road bump.The
vehicle approaches a sinusoidal bump at 40 km/h.Theheights
of the bump on the right and left sides are 4 and 6 cm,
respectively, such that roll motion is induced.The road profile
at each wheel is given as

𝑤
𝑓𝑟
=

{

{

{

𝑎
1

(1 − cos 2𝜋 (𝑉/𝜆) 𝑡)
2

0.45 ≤ 𝑡 ≤ 0.9

0 otherwise,

𝑤
𝑓𝑙
=

{

{

{

𝑎
2

(1 − cos 2𝜋 (𝑉/𝜆) 𝑡)
2

0.45 ≤ 𝑡 ≤ 0.9

0 otherwise,

𝑤
𝑟𝑟
= 𝑤
𝑟𝑙

=

{

{

{

𝑎
1

(1 − cos 2𝜋 (𝑉/𝜆) 𝑡)
2

0.45 +

𝜆

𝑉

≤ 𝑡 ≤ 0.9 +

𝜆

𝑉

0 otherwise,
(10)

where 𝑎
1
and 𝑎

2
are the amplitudes of the bump, 𝑉 is the

horizontal speed, and 𝜆 is the wavelength of the bump. Values
of the system parameters are given in Table 1.

3. System Performance Specification and
Evaluation

3.1. Performance Specifications. The following characteristics
are required of the AVSS controller in a bid to meet the set
performance objectives.

(1) Nominal stability: the closed loops should be nom-
inally stable. Stability in the inner loop is enhanced
through a force feedback loop.The enhanced stability
of the actuator dynamics should improve the overall
system stability.

(2) Disturbance rejection: the controller should demon-
strate good low frequency disturbance attenuation.

(3) Good command following: the suspension travel
response of the AVSS is examined in the presence of
the deterministic road inputs shown. The controller
should be able to keep the steady-state error as close
to zero as possible.

(4) Suspension travel is constrained to physical limits to
avoid damages due to topping and bottoming.Thus it
is not to exceed ±0.1m [33].
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Table 1: Parameters of the full-car model.

Parameters Value
Sprung mass (𝑀

𝑠
) 1060 kg

Unsprung masses (𝑚
𝑢𝑖𝑗
) 40, 40, 35, 35 kg

Pitch moment of inertia (𝐼
𝜃
) 2200 kgm2

Roll moment of inertia (𝐼
𝜙
) 460 kgm2

Distance from vehicle front axle to its centre of gravity (𝑙
𝑓
) 1m

Distance from vehicle rear axle to its centre of gravity (𝑙
𝑟
) 1.5m

Vehicle width (𝑡
𝑓
) 1.5m

Linear suspension stiffness at each wheel (𝑘𝑙
𝑠𝑖𝑗

) 2.35 × 10
4N/m

Nonlinear suspension stiffness at each wheel (𝑘nl
𝑠𝑖𝑗

) 2.35 × 10
6N/m

Tyre stiffness at each wheel (𝑘
𝑡𝑖𝑗
) 1.9 × 10

5N/m
Linear suspension damping at each wheel (𝑏𝑙

𝑠𝑖𝑗

) 700Ns/m
Nonlinear suspension damping at each wheel (𝑏nl

𝑠𝑖𝑗

) 400Ns/m
Asymmetric suspension damping at each wheel (𝑏sym

𝑠𝑖𝑗

) 400Ns/m
Tyre damping at each wheel (𝑏

𝑡𝑖𝑗
) 80, 70Ns/m

Actuator parameter (𝛼
𝑖𝑗
) 4.515 × 10

13

Actuator parameter (𝛽
𝑖𝑗
) 1

Actuator parameter (𝛾
𝑖𝑗
) 1.545 × 10

9

Piston area (𝐴
𝑖𝑗
) 3.35 × 10

−4m2

Supply pressure (𝑃
𝑠𝑖𝑗
) 10,342,500 Pa

Time constant (𝜏
𝑖𝑗
) 3.33 × 10

−2 s
Servo-valve gains (𝐾V𝑖𝑗 ) 0.001m/V
Bump amplitudes (𝑎

1
, 𝑎
2
) 4, 6 cm

Bump wavelength (𝜆) 5m
Vehicle speed (𝑉) 40 km/h

(5) The control voltage is also limited to ±10V.

(6) The maximum actuator force must be less than the
static weight of the vehicle; that is, 𝐹hyd < 𝑚𝑠𝑔.

(7) For good road holding, the dynamic load that is
transmitted through the road should not be larger
than the static weight of the vehicle.

(8) Ride comfort: this is quantified using the vehicle body
acceleration in the vertical direction. The vertical
acceleration of the vehicle body needs to be minimal
for a good ride comfort, especially within the low
frequency band of 0.1 to 10Hz.The peak sprung mass
acceleration is ̈𝑧 < 4.5m/s2 [34–38].

3.2. Optimal Trade-Off among Performance Criteria. The
objective function employed in the optimisation algorithms
is presented in (11). It is designed to minimise the suspension
travels, 𝑦

𝑖
, actuators’ forces, 𝐹

𝑎
𝑖𝑗

, sprung mass acceleration,
̈𝑧, control voltages, 𝑢

𝑖
, and wheels’ dynamic loads. This way,

ride comfort and road holding are improved while control
voltages and actuator forces are kept as small as possible.

The objective of the proposed controller is to minimise
the performance index:

𝐽 = 𝐽
1
+ 𝐽
2
+ 𝐽
3
+ 𝐽
4
+ 𝐽
5
,

𝐽
1
=

1

𝑇

∫

𝑇

0

[(

̈𝑧

̈𝑧max
)

2

+ (

̈
𝜃

̈
𝜃max

)

2

+ (

̈
𝜙

̈
𝜙max

)

2

]𝑑𝑡,

𝐽
2
= ∑

𝑗=𝑓𝑟

∑

𝑖=𝑟𝑙

1

𝑇

∫

𝑇

0

[

[

[

(

𝐹
𝑘𝑡
𝑖𝑗

+ 𝐹
𝑏𝑡
𝑖𝑗

(𝐹
𝑘𝑡
𝑖𝑗

+ 𝐹
𝑏𝑡
𝑖𝑗

)

max

)

2

]

]

]

𝑑𝑡,

𝐽
3
=

4

∑

𝑖=1

1

𝑇

∫

𝑇

0

[(

𝑦
𝑖

𝑦
𝑖max

)

2

]𝑑𝑡,

𝐽
4
= ∑

𝑗=𝑓𝑟

∑

𝑖=𝑟𝑙

1

𝑇

∫

𝑇

0

(

𝐹
𝑎
𝑖𝑗

𝐹
𝑎
𝑖𝑗max

)

2

𝑑𝑡,

𝐽
5
=

4

∑

𝑖=1

1

𝑇

∫

𝑇

0

[(

𝑢
𝑖

𝑢
𝑖max

)

2

]𝑑𝑡,

(11)

where 𝐽 is the performance index, 𝐽
1
, 𝐽
2
, 𝐽
3
, 𝐽
4
, and 𝐽

5
relate to

the vehicle ride comfort and vehicle handling, road holding
properties, suspension travel, actuation force, and power
consumption, respectively, ̈𝑧max, ̈

𝜃max, ̈
𝜙max, (𝐹𝑘𝑡

𝑖𝑗

+ 𝐹
𝑏𝑡
𝑖𝑗

)
max

,
𝑦
𝑖max

, 𝐹
𝑎
𝑖𝑗max

, and 𝑢
𝑖max

are the maximum allowable heave
body acceleration, pitch acceleration, roll acceleration, tyre
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Figure 3: Control architecture of the proposed multiloop PID controller.

dynamic load, suspension travels, actuation forces, and con-
trol input voltages, respectively,𝑇 is the period overwhich the
simulation runs. The controller gains are determined either
using manual tuning or through DE.

4. Controller Design

The control system is made up of multiple control loops:
four outer control loops are used to regulate the controlled
variables, while the four inner control loops are used to
stabilise the hydraulic actuators [2]. Figure 3 shows the pro-
posed control architecture. The controlled variables are the
suspension travel at each of the wheels and force developed
by the actuator is fed back in the inner control loops.

PID controllers are described as follows:

𝑢
𝑖𝑗
= 𝐾
𝑃
𝑖𝑗

𝑒
𝑖𝑗
(𝑡) + 𝐾

𝐷
𝑖𝑗

𝑑𝑒
𝑖𝑗
(𝑡)

𝑑𝑡

+ 𝐾
𝐼
𝑖𝑗

∫

𝑇

0

𝑒
𝑖𝑗
(𝑡) 𝑑𝑡, (12)

where 𝐾
𝑃
𝑖𝑗

are the proportional gains, 𝐾
𝐷
𝑖𝑗

are the derivative
gains, 𝐾

𝐼
𝑖𝑗

are the integral gains, and the error signals 𝑒
𝑖𝑗
are

given as

eij = ydij (t) − yij (t)

= Rd (t) − yij (t) ,
(13)

where 𝑦
𝑑
𝑖𝑗

(𝑡) are the desired suspension travels. Thus this
investigation addresses the issue of regulation, and the
desired setpoints are hence set to zero.

4.1. Differential Evolution Optimization Method. Differen-
tial evolution is another heuristic routine and operates by
firstly generating a uniformly distributed population 𝑆 =

{𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑁
} to search a feasible region, where each vector

denotes a set of PID gains. For each iteration, every vector
in 𝑆 is targeted with the objective of being altered such that
its fitness improves. This alteration consists of three steps.
Firstly, three distinctive individuals apart from the targeted
individual, 𝑥

𝑝(1)
, 𝑥
𝑝(2)

, and 𝑥
𝑝(3)

, are selected randomly and
are thereafter utilized to produce a mutant vector using (14)
[26]:

𝑥
𝑖
= 𝑥
𝑝(1)

+ 𝐹 (𝑥
𝑝(2)

− 𝑥
𝑝(3)
) , (14)

where 𝐹 > 0 is a scaling factor and 𝑥
𝑝(1)

is known as the base
vector. If the point 𝑥

𝑖
∉ Ω, then the mutation operation is

repeated.The trial point 𝑦
𝑖
is found from its parents 𝑥

𝑖
and 𝑥

𝑖

using the following crossover rule:

𝑦
𝑗

𝑖
= {

𝑥
𝑗

𝑖
if 𝑅𝑗 ≤ 𝐶

𝑅
or 𝑗 = 𝐼

𝑖

𝑥
𝑗

𝑖
if 𝑅𝑗 > 𝐶

𝑅
and 𝑗 ̸=𝐼

𝑖
,

(15)

where 𝐼
𝑖
denotes a randomly selected integer, which is an

element of the set 𝐼 = 𝐼
1
, 𝐼
2
, . . . , 𝐼

𝑛
, superscript 𝑗 signifies the

𝑗th component of the respective vectors, and 𝑅𝑗 ∈ (0, 1) is a
vector of randomnumbers drawn for each 𝑗.Theultimate aim
of the crossover rule (15) is to obtain the trial vector 𝑦

𝑖
with

components coming from the components of target vector 𝑥
𝑖

andmutated vector 𝑥
𝑖
. And this is ensured by introducing𝐶

𝑅

and the set 𝐼. Notice that for 𝐶
𝑅
= 1 the trial vector 𝑦

𝑖
is the
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Figure 4: Convergence history of performance index through the
use of differential evolution algorithm.
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Figure 5: Time response of the rear left suspension travel for the
passive and the proposed tuning methods.

replica of the mutated vector 𝑥
𝑖
. The effect of 𝐶

𝑅
has been

studied in [26, 31] and it was found that 𝐶
𝑅
= 0.5 is a good

choice.The targeting process continues until all members of 𝑆
are considered. After all𝑁 trial points𝑦

𝑖
have been generated,

acceptance is applied. In the acceptance phase, the function
value at the trial point, 𝑓(𝑦

𝑖
), is compared to 𝑓(𝑥

𝑖
), the value

at the target point. If 𝑓(𝑦
𝑖
) < 𝑓(𝑥

𝑖
), then 𝑦

𝑖
replaces 𝑥

𝑖
in 𝑆;

otherwise, 𝑆 retains the original 𝑥
𝑖
. Reproduction (mutation

and crossover) and acceptance continue until some stopping
conditions are met.

Algorithm: The DE Algorithm

Step 1. Determine the initial set 𝑆 = {𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑁
}, where

the points 𝑥
𝑖
, 𝑖 = 1, 2, . . . , 𝑁, are sampled randomly in Ω;

0 1 2 3 4 5

0

500

1000

1500

Time (s)

−500

−1000

Re
ar

 le
ft 

ty
re

 d
yn

am
ic

 lo
ad

 (N
)

Passive
PID
PID + DE

Figure 6: Time response of the rear left tyre dynamic load for the
passive and the proposed tuning methods.

evaluate 𝑓(𝑥) at each 𝑥
𝑖
, 𝑖 = 1, 2, . . . , 𝑁. Set iteration counter

𝑘 = 0.

Step 2. Stopping condition: if the stopping condition such as
𝑘 > 𝑘max is satisfied, then stop.

Step 3. Generate points to replace points in 𝑆 for the next
population (or iteration). For each 𝑥

𝑖
∈ 𝑆 (𝑖 = 1, 2, . . . , 𝑁),

determine 𝑦
𝑖
by the following two operations.

(i) Mutation: 𝑥
𝑖
= 𝑥
𝑝(1)

+ 𝐹(𝑥
𝑝(2)

− 𝑥
𝑝(3)
), where 𝑥

𝑝(1)
,

𝑥
𝑝(2)

, and 𝑥
𝑝(3)

are three random vectors from 𝑆 and𝐹
is a scaling factor, chosen randomly. The tournament
selection is applied for each 𝑖. If the 𝑗th component
𝑥
𝑗

𝑖
∉ Ω, then it is generated randomly.

(ii) Crossover: calculate the trial vector 𝑦
𝑖
corresponding

to the target 𝑥
𝑖
from 𝑥

𝑖
and 𝑥

𝑖
using the crossover rule

(15).

Step 4. Acceptance rule to replace points in 𝑆: select each trial
vector 𝑦

𝑖
for the 𝑘+1 iteration using the acceptance criterion:

replace 𝑥
𝑖
∈ 𝑆 with 𝑦

𝑖
if 𝑓(𝑦

𝑖
) < 𝑓(𝑥

𝑖
), otherwise retain, 𝑥

𝑖
.

Set 𝑘 := 𝑘 + 1 and go to Step 2.

We have used 𝐶
𝑅
= 0.5, 𝐹 = 0.75, 𝑘max = 500, and

𝑁 = 100. The individual 𝑥
0
of the population 𝑆 was chosen

as an initial condition to be used by the algorithm. It had a
performance index of 2.4. The evolution of the performance
index from this initial condition is plotted in Figure 4, and
the controller gains selected for the manually tuned and DE-
optimized cases are listed in Table 2.

5. Simulation Results and Discussion

This paper investigates a novel tuning method, which uses
DE optimization to compute gains with the objective of
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Table 2: PID tuning parameters.

Technique Outer PID loop gains Inner PID loop gains
𝐾
𝑝

𝐾
𝑖

𝐾
𝑑

𝑘
𝑝

𝑘
𝑖

𝑘
𝑑

Front right suspension system
Manual 1100 360 140 0.002 0.001 0

DE 5837.262 239.436 −123.923 4.783 × 10
−3

2.563 × 10
−3

3.618 × 10
−9

Front left suspension system
Manual 1050 170 220 0.002 0.001 0

DE 1692.418 267.7925 166.1722 0.003855 0.001056 3.124 × 10
−9

Rear right suspension system
Manual 1200 340 150 0.002 0.001 0

DE 5051.295 269.968 702.321 0.003084 0.001891 3.117 × 10
−9

Rear left suspension system
Manual 1000 200 200 0.002 0.001 0

DE 3762.704 −54.3744 −415.94 0.004145 0.004006 1.992 × 10
−9
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Figure 7: Time response of the rear left control input voltage for the
proposed tuning methods.

firstly improving the overall performance index of an AVSS
and secondly finding the best compromise between these
conflicting performance criteria. Simulations were executed
inMATLAB/Simulink.Thus far, it was shown in Figure 4 that
theDE-optimized casewas able tominimize the performance
index, but this information alone cannot guarantee that the
trade-offs between the various performance criterion have
been resolved.Thus, it is still imperative that the AVSS system
response in each performance criteria must be analysed
to test the effectiveness of DE optimization algorithm in
performing its objectives.

The conflicting performance criteria results reported
include the suspension travel at each wheel, road holding
which is directly related to the force experienced by each
of the tyres, ride comfort which is essentially analysed
through the body-heave acceleration, vehicle handling which
primarily is a function of roll and pitch accelerations, and
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Figure 8: Time response of the pitch acceleration for the passive and
the proposed tuning methods.

power consumption which is the voltage utilised at each
actuator and the resulting hydraulic force, each of which are
plotted in Figures 5–11, respectively. The suspension travel,
road holding, and power consumption at the rear left wheel
were only considered as it possessed the worst response in
each of these facets. The root-mean-square (RMS) and peak
values of all suspension performance criteria are listed in
Table 3.

The suspension travel response shown in Figure 5 indi-
cated a considerable improvement in terms of peak and
RMS values when using control. Furthermore, there was an
improvement in transient behaviour where the controlled
cases had one less oscillation. DE-optimized PID controller
tuning produced marginally better peaks and RMS values
than the manually tuned case and had a slightly quicker
settling time (see Table 3). Such response of the DE-based
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Table 3: RMS and peak values of all the suspension performance criteria.

Technique RMS Peak RMS Peak
Front right suspension travel (m) Front left suspension travel (m)

Passive 0.01313 0.04816 0.01079 0.03815

Manual 0.00915 0.03922 0.00667 0.02942

DE 0.00943 0.03915 0.00676 0.02516

Rear right suspension travel (m) Rear Left suspension travel (m)
Passive 0.00798 0.03398 0.00766 0.03367

Manual 0.00866 0.03483 0.00557 0.02593

DE 0.00678 0.02863 0.00545 0.024698

Front right tyre dynamic load (N) Front Left tyre dynamic load (N)
Passive 395.74 1594.05 321.46 1254.53

Manual 321.18 1531.90 263.39 1295.15

DE 189.83 984.83 132.095 713.38

Rear right tyre dynamic load (N) Rear left tyre dynamic load (N)
Passive 248.95 1194.39 240.81 1158.58

Manual 248.77 1234.10 218.73 1096.45

DE 229.63 1196.07 185.24 930.12

Front right control input voltage (V) Front left control input voltage (V)
Passive N/A N/A N/A N/A
Manual 0.3166 1.4946 0.2256 1.0739

DE 0.3189 1.6125 0.2255 1.1875

Rear right control input voltage (V) Rear left control input voltage (V)
Passive N/A N/A N/A N/A
Manual 0.2659 1.3492 0.2129 1.0484

DE 0.2786 1.3710 0.2044 1.0156

Pitch acceleration (rad/s2) Roll acceleration (rad/s2)
Passive 0.5163 2.3672 0.1308 0.5885

Manual 0.4631 2.2687 0.1169 0.5388

DE 0.3140 1.6223 0.06685 0.3289

Heave acceleration (m/s2) Cumulative actuation force (N)
Passive 0.6488 2.4473 N/A N/A
Manual 0.4298 1.5946 498.569 1849.75

DE 0.3070 1.7250 342.1241 1363.52

PID-controlled case was expected as suspension travel was a
major factor in the cost function of the algorithm.

Figures 6, 8, 9, and 10 showed a similar trend in the road
holding, pitch, roll, and body-heave accelerations, respec-
tively. This is for the very same reason that these afore-
mentioned responses significantly affected the performance
index. Moreover, in these criteria, the variations in peak and
RMS values between the DE-optimized and manually tuned
PID-controlled cases, as shown in Table 3, weremuch greater.
This was because the weighting factors of these criteria with
the performance index were slightly larger than that of the
suspension travel.

On the other hand, the control input voltages of the two
tuning methods were fairly similar (see Figure 7), whereas

the control force of the DE-optimized case was considerably
better in both peak and RMS values and had a transient
behaviour (see Table 3 and Figure 11). In reality, the direct
opposite would have been anticipated as a larger actuation
force is often required tominimise the suspension travel, road
holding, and vehicle handlingwhichwas previously reported.
However, the inherent coupling as well as nonlinearities in
this full-car system plays a significant role in altering such
relationships.The fact that the DE-optimized case was able to
produce such a solution infers that it is fully capable of dealing
with nonlinearities and coupling.

However, the controlled cases did possess a drawback
in terms of chattering, with the DE-optimized case being
more severe. Such a response could be due to the marginally



10 Mathematical Problems in Engineering

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

0.2

0.4

0.6

Time (s)

Passive
PID

−0.2

−0.4

PID + DE

Ro
ll 

ac
ce

le
ra

tio
n 

(r
ad

/s
2
)

Figure 9: Time response of the roll acceleration for the passive and
the proposed tuning methods.
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Figure 10: Time response of the body-heave acceleration for the
passive and the proposed tuning methods.

high outer control loop gains used computed by the DE
optimization algorithm. Such behaviour is undesirable as it
will lead to component degradation.

5.1. Sensitivity to Parameter Variations Analysis. Each of the
results plotted possessed a steady-state error that was in the
order of magnitude of 0.001% of the peak values. Further-
more, a stability study was conducted to test the control
systems sensitivity to parameter variations. The parameter
variations apply to the mass and inertia of the vehicle, as
the chassis will fluctuate in mass due to variations in fuel
and passengers, tyre damping and stiffness, as the wheels
will experience changes in pressure, and vehicle speed. Such

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

500

1000

1500

2000

Time (s)

PID

−500

−1000

−1500

−2000

Fo
rc

e (
N

)

PID + DE

Figure 11: Time response of the electrohydraulic actuator force for
the proposed tuning methods.
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Figure 12: Suspension travel response of the DE-based PID-
controlled case for a −20% variation in selected parameters.

parameters are expected to change within a range of ±20%,
and hence a sensitivity investigation was conducted along
these lines. Since the DE-optimized case produced the most
favourable results, stability is conducted on it. Figures 12 and
13 show the suspension travel response at the rear left wheel
for −20% and +20% variations in the selected parameters,
respectively.

Figures 12 and 13 show that the control system remains
bounded-input-bounded-output (BIBO) stable within an
acceptable steady-state error for all anticipated parameter
variations. Apart from the +20% variation in vehicle speed,
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Figure 13: Suspension travel response of the DE-based PID-
controlled case for a +20% variation in selected parameters.
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Figure 14: Frequency domain analysis of the body-heave accelera-
tion.

the sensitivity was excellent with good transient behaviour
and peak values. Hence, it may be concluded that the
DE-based PID controller has an acceptable sensitivity to
parameter variations except for a 20% increase in vehicle
speed.

5.2. Frequency Domain Analysis. This section presents the
pseudo-frequency domain analysis (based on power spec-
trum density estimation) for the vehicle ride comfort and
handling characteristics. While vehicle ride comfort is com-
monly associated with the level of vibrations perceived by the
occupants of the vehicle, it is also necessary to minimise the
pitch and roll accelerations to obtain good handling. Analysis
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Figure 15: Frequency domain analysis of the pitch acceleration.
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Figure 16: Frequency domain analysis of the roll acceleration.

for ride comfort is normally carried out in consonance with
ISO 2631 [36, 38].

Figures 14–16 present a pseudo-frequency domain anal-
ysis carried out using the power-spectral-density-(PSD-)
estimates based Welch algorithm in the MATLAB/Simulink
signal processing toolbox. The Welch periodograms were
computed using the following parameters: the windowing
function—Hanning window function, the number of points
used in forming each fast Fourier transform, NFFT = 1024,
and length of the window, NWind = 256; and the sampling
frequency of the windows was set at 80Hz to accommodate
the whole-body vibration (WBV) range.

Figure 14 presents the frequency weighted vehicle body-
heave acceleration mode. This mode of acceleration is most
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critical in the estimation of vehicle ride comfort.The analysis
presented covers 0.5–80Hz, which is the WBV frequency
range. This range includes the critical frequency ranges that
need to be avoided for both human and vehicle comfort.
Apart from the PID-controlled AVSS whose magnitude
reached 1dB at the onset of the analysis, all the signals showed
attenuation until a sharp resonance occurred around 40Hz.
The attenuation trend stopped around 80Hz.

Figures 15 and 16 show similar trend for the pitch and
roll acceleration modes. The signals for the PID-controlled
AVSS and the PVSS coincided all through the range of the
analysis. All the signals showed attenuation of the signals at
frequencies below 80Hz, except at 40Hz where there was a
sharp spike of resonance.

6. Conclusion

DE-optimized multi-loop PID-based control involving force
feedback produced significant improvements in comparison
to the PVSS and manually tuned cases. The recommended
DEoptimizationwas successful both in improving the perfor-
mance index of the AVSS and in finding a better compromise
between the conflicting AVSS design requirements. It also
attained superior RMS and peak values in suspension travel,
road holding, vehicle handling, and cumulative actuation
force as compared to themanually tunedPID-controlled case.
The observed reduction in actuation force is counterintuitive
as larger forces are often required to minimise the other
performance criteria. However, when dealing with nonlinear
and coupled systems such as the full-car AVSS, this is possi-
ble, which infers that the DE-based optimization algorithm
was able to account for coupling and nonlinearities as well.
Chattering was the only shortfall of the controlled systems as
it would degrade system components.
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A new method for parameter sensitivity analysis of Lorenz equations is presented. The sensitivity equations are derived based on
the staggered methods. Experimental results indicate that it is possible to determine effects of parameters on model variables so
that we can eliminate the less effective ones. Robustness can also be verified in some confidence intervals by simply looking at the
corresponding phase portraits. This enables us to control the system. Although the stability properties of the Lorenz equations are
studied extensively, to the best knowledge of the authors, the PSA of Lorenz equations has not been considered which is the main
goal of this paper.

1. Introduction

Parameter sensitivity analysis (PSA) of large-scale differ-
ential algebraic systems is important in many engineering
and scientific applications, including biology, chemistry, and
economics. Problems such as population dynamics, network
modeling, and chemical reactors coming from different
branches of science have many parameters whose values may
not be known accurately. Infinitesimal changes in most of
these model input parameters change the future behavior
of the systems partially or completely. Consequently, one
can observe an uncontrolled and chaotic behavior of the
system. In the present day, one has an opportunity to adjust
these parameter values accordingly and make some list of
parameters with respect to their effect onmodel. For instance,
if a parameter is less effective than the other parameters,
the designer of the model can eliminate that parameter. The
analysis of this effectiveness is called parameter sensitivity
analysis. Consequently, algorithms which perform PSA in an
efficient and rapid manner are invaluable to researchers in
many fields.

In this paper, a new method for parameter sensitivity
analysis of Lorenz equations is presented. The sensitivity
equations are derived based on the staggered methods.
Experimental results indicate that it is possible to determine
effects of parameters on model variables so that we can

eliminate the less effective ones. Robustness can also be
verified in some confidence intervals by simply looking at
the corresponding phase portraits. This enables us to control
the system. Although the stability properties of the Lorenz
equations are studied extensively, to the best knowledge of the
authors, the PSAof Lorenz equations has not been considered
which is the main goal of this paper.

The structure of this paper is as follows. In Section 2,
we overview the concept of parameter sensitivity analysis.
In Sections 3 and 4, we study the chaotic and sensitivity
analysis of Lorenz equations.We complete the paper by some
simulation results.

2. Parameter Sensitivity Analysis

It is difficult to construct a model without any parameter. In
fact, in reality, the problems coming from different branches
of science such as engineering, biology, ecology, and meteo-
rology havemanyparameters.With the help of faster comput-
ers of today, one has a chance to adjust them and make some
list of parameters with respect to their effect on model. If a
parameter is less effective than the others we, the designer of
the model, can eliminate it. The analysis of this effectiveness
is called “sensitivity.”When qualitative estimates of sensitivity
are desired, a mathematical model of phenomena is desired
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or at least a relationship is required. Infinitesimal changes
in all (or some) of the model input parameters change the
future of mathematical design partially or completely (in
some cases). The important thing here is the sensitivity of a
single component compared to other input variables changed
a little bit simultaneously. By saying single component we
mean the parameters in the model whose values may not
be accurately known. However, such a model brings the
questions concerning stability, optimality, sensitivity, and so
forth. In this work we concentrated on only the sensitivity
analysis of a concrete example, namely, Lorenz equations.

PSA generates essential information for parameter esti-
mation, optimization, control, model simplification, and
experimental design. In the literature, staggered direct
method, simultaneous corrector method, adjoint method,
and staggered corrector method are some of the well-known
methods for parameter sensitivity analysis. We can give [1] as
a general reference for most of these methods. Some popular
software packages for the same task can be listed as ASAP,
DASPK, and DASKADJOINT.

In the theory of PSA, another important concept is the
index structure which could be defined as the number of
differentiations needed for transforming a DAE to an ODE.
Intuitively, it is clear that all ODEs have index 0. What defines
the index is up to the constraints given in systems. For
example, let us consider a simple predator-prey model

𝑦


= 3𝑥 − 𝑦,

𝑥
2

+ 𝑦 = 𝑔 (𝑥) ,

(1)

where 𝑔 is differentiable. Taking derivative of constraint
equality, we get 𝑦 = 3𝑥 − 𝑦, and 2𝑥𝑥 + 𝑦


= 𝑔

(𝑥) ⇒ 𝑥


=

(𝑔

(𝑥) − 3𝑥 + 𝑦)/2𝑥. Hence, new ODEs are given as

𝑦


= 3𝑥 − 𝑦,

𝑥


=

𝑔


(𝑥) − 3𝑥 + 𝑦

2𝑥

.

(2)

To obtain this, it takes one differentiation. Thus, the model
has index 1.

In order to capture the main idea of the PSA, let us
consider the general form of the parameter-dependent DAEs
given by

𝐹 (𝑡, 𝑥, ̇𝑥, 𝑝) = 0,

𝑥 (0) = 𝑥
0
(𝑝) ,

(3)

where 𝑥 ∈ 𝑅
𝑛 and 𝑝 ∈ 𝑅

𝑝.
It is not always the case but assume that we have index 0

or 1 DAEs and convert (3) to explicit form of ODEs:

̇𝑥 = 𝑓 (𝑡, 𝑥, 𝑝) ,

𝑥 (0) = 𝑥
0
(𝑝) ,

(4)

where (𝑥, 𝑡, 𝑝) ∈ 𝑅𝑛 × 𝑅 × 𝑅
𝑝.

Sensitivity analysis requires the calculation of the term,
namely, 𝑠

𝑖
, defined as the derivative of 𝑥 with respect to

𝑝
𝑖
; that is, 𝑠

𝑖
:= 𝜕𝑥/𝜕𝑝

𝑖
. Since we are interested in partial

derivatives, we can treat one parameter after another, while
keeping the remaining ones fixed.Therefore, the derivative of
(4) with respect to parameter 𝑝

𝑖
is

𝜕

𝜕𝑝
𝑖

(

𝜕𝑥

𝜕𝑡

) =

𝜕

𝜕𝑝
𝑖

𝑓 (𝑡, 𝑥, 𝑝) ⇐⇒

𝜕

𝜕𝑡

(

𝜕𝑥

𝜕𝑝
𝑖

) =

𝜕𝑓

𝜕𝑝
𝑖

+

𝜕𝑓

𝜕𝑥

𝜕𝑥

𝜕𝑝
𝑖

.

(5)

Replacing 𝑠
𝑖
= 𝜕𝑥/𝜕𝑝

𝑖
into the right-hand side of (5), the 𝑖th

sensitivity equation becomes

̇𝑠
𝑖
= 𝑓
𝑝
𝑖

+ 𝑓
𝑥
𝑠
𝑖
. (6)

Since we have 𝑠
𝑖
= 𝜕𝑥/𝜕𝑝

𝑖
= [𝜕𝑥

1
/𝜕𝑝
𝑖
, 𝜕𝑥
2
/𝜕𝑝
𝑖
, . . . , 𝜕𝑥

𝑛
/

𝜕𝑝
𝑖
]
𝑇

= [𝑠
𝑖1
, 𝑠
𝑖2
, . . . , 𝑠

𝑖𝑛
]
𝑇, the previous process introduces

𝑛 ⋅ 𝑝 additional differential equations. Finally, defining a new
variable

𝑧 := [

𝑥

𝑠
] , (7)

where

𝑠 = [𝑠
1
, 𝑠
2
, . . . , 𝑠

𝑝
]

= [𝑠
11
, 𝑠
12
, . . . , 𝑠

1𝑛
, 𝑠
21
, 𝑠
22
, . . . , 𝑠

2𝑛
, . . . , 𝑠

𝑝1
, 𝑠
𝑝2
, . . . , 𝑠

𝑝𝑛
] ,

(8)

we write

̇𝑧 = [

̇𝑥

̇𝑠
] =

[

[

𝑓 (𝑡, 𝑥, 𝑝)

𝜕𝑓

𝑑𝑝
𝑖

+

𝜕𝑓

𝜕𝑝
𝑖

𝑠

]

]

=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

𝑓 (𝑡, 𝑥, 𝑝)

𝜕𝑓

𝜕𝑝
1

+

𝜕𝑓

𝜕𝑝
1

𝑠
1

𝜕𝑓

𝜕𝑝
2

+

𝜕𝑓

𝜕𝑝
2

𝑠
2

...
𝜕𝑓

𝜕𝑝
𝑝

+

𝜕𝑓

𝜕𝑝

𝑠
𝑝

]

]

]

]

]

]

]

]

]

]

]

]

]

]

. (9)

The initial condition takes the form

∀𝑖, 𝑠
𝑖
(0) =

𝜕𝑥
0

𝜕𝑝
𝑖

⇒ 𝑧 (0) =
[

[

𝑥
0

𝜕𝑥
0

𝜕𝑝
𝑖

]

]

=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

𝑥
0

𝑠
11
(0)

𝑠
21
(0)

𝑠
31
(0)

...
𝑠
𝑛1
(0)

...
𝑠
1𝑝
(0)

𝑠
2𝑝
(0)

...
𝑠
𝑛𝑝
(0)

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

. (10)

3. Lorenz Equations

The Lorenz equations invented by E. N. Lorenz, a meteorol-
ogist and a pioneer of chaos theory, are typical examples of
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Figure 3: For 𝑟 = 30, the behavior of the systems at 𝑥-𝑧 plane.

equations for system of differential algebraic equations that
can be written as

[

[

𝑋


𝑌


𝑍


]

]

=
[

[

𝜎 (𝑌 − 𝑋)

𝑟𝑋 − 𝑌 − 𝑋𝑍

−𝑏𝑍 + 𝑋𝑌

]

]

, (11)

where 𝑟 > 0 is Rayleigh number, 𝜎 is Prandtl number corre-
sponding to temperature difference between two horizontal
plates in convection problem, and 𝑏 is a positive number.
These equations arise in studies of convection and instability
in planetary atmospheres, models of lasers and dynamos, and
so forth. Although the stability and bifurcation properties of
the Lorenz equations are studied in the literature [2, 3], to
the best knowledge of the authors, the parameter sensitivity
analysis of Lorenz equations has not been considered so far
which is the main goal of this paper.

The Lorenz equations are nonlinear due to the terms
𝑥𝑦 and 𝑥𝑧. They are also symmetric equations, because
the equations are invariant under (𝑥, 𝑦) → (−𝑥, −𝑦).
Thus, if (𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)) is a solution of Lorenz equations,
so is (−𝑥(𝑡), −𝑦(𝑡), 𝑧(𝑡)). System of the Lorenz equations is
dissipative. In other words, volumes in phase-space contract
under the flow and 𝜎 and 𝑏 are usually known as dissipation
parameters. Next, we compute the fixed points of Lorenz
equations. Letting each term of (11) be equal to 0, that is,
letting ̇𝑥 = ̇𝑦 = ̇𝑧 = 0, we get the following identities:

𝑥 = 𝑦,

𝑟𝑥 − 𝑦 − 𝑥𝑧 = 0,

𝑥𝑦 = 𝑏𝑧,

(12)

which implies that (0, 0, 0) is a fixed point of the Lorenz
equations. If 𝑥 = 𝑦 ̸= 0, then from the appropriate ones of the
previous equations we obtain 𝑧 = 𝑥

2
/𝑏, 𝑟𝑥 − 𝑥 − 𝑥(𝑥2/𝑏) = 0

which gives us 𝑥2 = 𝑏(𝑟 − 1) by bearing in mind that 𝑥 ̸= 0. If
𝑟 > 1, then 𝑥

∗
= 𝑦
∗
= ±√𝑏(𝑟 − 1) and 𝑧∗ = 𝑟 − 1 that are

the fixed-points of Lorenz equations. While 𝑟 → 1
+, these

equations generate a so-called pitchfork bifurcation. Now, we

aremaking behavior analysis of these fixed points.Depending
on the parameter 𝑟, we have three critical points; namely,

𝑥 = 𝑦 = 𝑧 = 0,

𝑎
1
: 𝑥 = 𝑦 = +[𝑏 (𝑟 − 1)]

1/2

,

𝑎
1
: 𝑥 = 𝑦 = −[𝑏 (𝑟 − 1)]

1/2

.

(13)

In this study, behaviors dependent on initial conditions
are not studied, and they are fixed as 𝑥

0
= 0, 𝑦

0
= 1, and

𝑧
0
= 0. In the following figures different trajectories are given

with respect to different 𝑟 values.
The behavior in Figure 1 continues up to a value of 𝑟 =

24.08. After that, it becomes more complicated and chaotic;
for example, for 𝑟 = 27 some periodic and aperiodic motions
are observed as seen in Figure 2.

Further explanations of these and stability features of
Lorenz equations might be seen, for instance, at [4]. In
the next section, we study parameter sensitivity analysis of
Lorenz equations.

4. Parameter Sensitivity Analysis of
Lorenz Equations

Let us write the Lorenz equations having some initial condi-
tions in the following way:

[

[

[

[

̇𝑥
1

̇𝑥
2

̇𝑥
3

]

]

]

]

=

[

[

[

[

𝑝
1
(𝑥
2
− 𝑥
1
)

𝑝
2
𝑥
1
− 𝑥
2
− 𝑥
1
𝑥
3

−𝑝
3
𝑥
3
+ 𝑥
1
𝑥
2

]

]

]

]

𝑥
1
(0) = 0,

𝑥
2
(0) = 1,

𝑥
3
(0) = 0.

(14)

Our new variable 𝑧 defined in (7) is given as follows:

𝑧 =

[

[

[

[

[

[

[

[

[

[

[

[

[

[

𝑥
1

𝑥
2

𝑥
3

𝑠
1

𝑠
2

𝑠
3

]

]

]

]

]

]

]

]

]

]

]

]

]

]

, (15)

where

{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{

{

𝑠
1
=

𝑑𝑥

𝑑𝑝
1

= [

𝑑𝑥
1

𝑑𝑝
1

𝑑𝑥
2

𝑑𝑝
1

𝑑𝑥
3

𝑑𝑝
1

]

𝑇

= [𝑠
11

𝑠
12

𝑠
13
]

𝑇

𝑠
2
=

𝑑𝑥

𝑑𝑝
2

= [

𝑑𝑥
1

𝑑𝑝
2

𝑑𝑥
2

𝑑𝑝
2

𝑑𝑥
3

𝑑𝑝
2

]

𝑇

= [𝑠
21

𝑠
22

𝑠
23
]

𝑇

𝑠
1
=

𝑑𝑥

𝑑𝑝
3

= [

𝑑𝑥
1

𝑑𝑝
3

𝑑𝑥
2

𝑑𝑝
3

𝑑𝑥
3

𝑑𝑝
3

]

𝑇

= [𝑠
31

𝑠
32

𝑠
33
]

𝑇

}
}
}
}
}
}
}
}
}
}

}
}
}
}
}
}
}
}
}
}

}

.

(16)
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Figure 4: (a) 𝑠
13
and 𝑠

31
components. (b) Phase portrait of 𝑠
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and

𝑠
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Finally, the sensitivity equations take the form

[ ̇𝑧] =

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

̇𝑥
1

̇𝑥
2

̇𝑥
3

̇𝑠
11

̇𝑠
12

̇𝑠
13

̇𝑠
21

̇𝑠
22

̇𝑠
23

̇𝑠
31

̇𝑠
32

̇𝑠
33

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

𝑝
1
(𝑥
2
− 𝑥
1
)

𝑝
2
𝑥
1
− 𝑥
2
− 𝑥
1
𝑥
3

−𝑝
3
𝑥
3
+ 𝑥
1
𝑥
2

𝑥
2
− 𝑥
1
+ 𝑝
1
(𝑠
12
− 𝑠
11
)

𝑝
2
𝑠
11
− 𝑠
12
− 𝑠
11
𝑥
3
− 𝑥
1
𝑠
13

−𝑝
3
𝑠
13
+ 𝑠
11
𝑥
2
+ 𝑥
1
𝑠
12

𝑝
1
(𝑠
22
− 𝑠
21
)

𝑥
1
+ 𝑝
2
𝑠
21
− 𝑠
22
− 𝑠
21
𝑥
3
− 𝑥
1
𝑠
23

−𝑝
3
𝑠
23
+ 𝑠
21
𝑥
2
+ 𝑥
1
𝑠
22

𝑝
1
(𝑠
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− 𝑠
31
)

𝑝
2
𝑠
31
− 𝑠
32
− 𝑠
31
𝑥
3
− 𝑥
1
𝑠
33

−𝑥
3
− 𝑝
3
𝑠
33
+ 𝑠
31
𝑥
2
+ 𝑥
1
𝑠
32

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

. (17)

Note that the initial conditions do not depend on param-
eters, so the new initial conditions 𝑠

𝑖𝑗
= 0 for all 𝑖, 𝑗 = 1, 2, 3.
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Figure 5: Phase portrait for 𝑠
31
and 𝑥

1
.

In other words, the initial conditions for the new variable are
given as

𝑧
0
= [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

𝑇

. (18)

In the next section we are making some simulations in
order to visualize the results.

5. Computational Results

In order to visualize the results, we made many different sim-
ulations as phase portraits, sensitivity analysis, and relation
between the components. In this section, we present only
some of the simulation results.

After integrating the sensitivity equations, we get 𝑠
𝑖
’s as

a function of time so that one can analyze the change in the
solution with respect to perturbations in the parameters. In
these experiments, for time interval 𝑡 = [0100], we solved the
system by Matlab ODE solver, namely, ode45, based on an
explicit Runge-KuttaMethod. After integrating the sensitivity
equations, we get 𝑠

𝑖
’s as a function of time so that one can

analyze the sensitivity in phase portraits.
For 𝑟 = 30, the qualitative behaviors of the system might

be seen in Figure 3.
Before entering the chaotic region which starts from the

value 𝑟 = 24.08, all nine sensitivity components demonstrate
the same behavior. For example, taking 𝑟 = 20, we have
well stable solutions, but the relation between the sensitivity
variables is highly nonlinear, that is, a significantly important
result for this well-known system. This is illustrated in
Figure 4.

Remember that 𝑠
21

and 𝑠
31

represent sensitivity compo-
nents of 𝑥

1
with respect to 𝑝

2
and 𝑝

3
. Figure 4(b) tells us that

altering 𝑝
2
and 𝑝

3
in a simultaneous manner can affect the

controllability of the system completely. In Figure 5, phase
portrait for 𝑠

31
and 𝑥

1
is given.

In the chaotic region, what happened to the sensitivity
equations is that, first, they seemed to be very complicated
and irregular when they are considered as a function of time
as seen in Figure 6.

However, in the phase portraits of 𝑠
22
and 𝑠
13
, we obtained

a completely linear relation between them as seen in Figure 7.
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6. Conclusion

When qualitative estimates of sensitivity are desired, a
mathematical model of phenomena is desired or at least
a relationship is required. However, such a model brings
the questions concerning stability, optimality, sensitivity, and
so forth. In this work, we concentrated only on the PSA
of Lorenz equations. As we saw in the small application,
it is possible to determine effects of parameters on model
variables so that we can eliminate the less effective ones.
Robustness can also be verified in some confidence intervals
by just looking at the phase portraits. This enables us to
control the system. This method is efficient if the number of

variables ismuchmore than that of the parameters. In a future
work, we plan to study PSA for Van der Pool equations.
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The boundary-type hybrid finite element formulation coupling the Kirchhoff transformation is proposed for the two-dimensional
nonlinear heat conduction problems in solids with or without circular holes, and the thermal conductivity of material is assumed
to be in terms of temperature change. The Kirchhoff transformation is firstly used to convert the nonlinear partial differential
governing equation into a linear one by introducing the Kirchhoff variable, and then the new linear system is solved by the present
hybrid finite element model, in which the proper fundamental solutions associated with some field points are used to approximate
the element interior fields and the conventional shape functions are employed to approximate the element frame fields. The weak
integral functional is developed to link these two fields and establish the stiffness equation with sparse and symmetric coefficient
matrix. Finally, the algorithm is verified on several examples involving various expressions of thermal conductivity and existence
of circular hole, and numerical results show good accuracy and stability.

1. Introduction

Compared to conventional materials, materials with temper-
ature-dependent thermal conductivities usually serve in
the high-temperature environment, for example, refractory
materials for blast furnace, and thus the thermal analysis
is important for such materials. However, the temperature-
dependent feature of material properties leads to the nonlin-
earity of the governing equation, and thus the difficulties of
the derivation of analytical solutions increase.

Different to analytical solutions, numerical results can be
easily obtained by numericalmethods for such nonlinear heat
transfer problems, for example, the finite element method
(FEM) [1, 2], the boundary element method (BEM) [3–5],
or the dual-reciprocity BEM (DRBEM) [6, 7], the method
of fundamental solution (MFS) [8, 9], and the meshless
element free Galerkin method [10, 11]. As an alternative to
numerical approaches mentioned above, the fundamental-
solution-based hybrid finite element method, named as

HFS-FEM, was initially developed for linear heat transfer
problem [12] and then was extended to complicated thermal
analysis in composite structures [13] and biological tissues
[14]. More recently, the elastic analysis was also performed
by means of the present HFS-FEM and several types of
special elements were developed for problems associatedwith
circular or elliptical holes, nonhomogeneous materials, and
discontinuous loads [15–17]. Generally, as one of the domain-
type methods based on element division in the domain, the
HFS-FEM has some advantages over the conventional FEM.
For instance, arbitrary-shape elements including element
boundary integrals only can be constructed in the HFS-
FEM, and thus special-purposed elements can be developed
for problems with local defects like holes and inclusions
[13, 15, 17] to achieve the effort of significant mesh reduction.
Besides, in contrast to the boundary-type BEM or DRBEM,
the HFS-FEM based on element discretization of the domain
of interest can be easily applied tomultidomain problems and
each element can have itself material definition during the
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analysis. However, in the formulation of BEM, the treatment
of interface continuity conditions between adjacent subdo-
mains can highly weaken the symmetry of the coefficient
matrix of the final solving equation in the formulation of
BEM.

In this study, the hybrid finite element formulation with
fundamental solution kernels (HFS-FEM)will be extended to
the nonlinear heat conduction problems with temperature-
dependent thermal conductivity, by coupling the nonit-
eration technique, Kirchhoff transformation [18]. During
the computation, the Kirchhoff transformation is firstly
employed to remove the temperature dependence of thermal
conductivity, and then a new linear system in terms of the
introduced Kirchhoff variable can be obtained. Subsequently,
the fundamental-solution-based hybrid finite element for-
mulation is presented to solve this new linear system. Once
the Kirchhoff variable distribution in the domain under
consideration is determined, the inverse transformation can
be available to derive the desired temperature distribution.

A brief outline of the paper is arranged as follows: the
mathematical models including the basic equations of heat
conduction, the Kirchhoff transformation, and the hybrid
finite element formulation are described in Section 2, and
numerical results are presented and discussed in Section 3.
Finally, conclusions are summarized in Section 4.

2. Mathematical Models

2.1. Basic Equations. In the paper, the two-dimensional
steady-state heat conduction in isotropic media is taken into
consideration with reference to the Cartesian coordinate sys-
tem (𝑋

1
, 𝑋
2
). The heat equilibrium equation in the absence

of internal heat generation is expressed as [18]

𝜕𝑞
1

𝜕𝑋
1

+

𝜕𝑞
2

𝜕𝑋
2

= 0 in Ω, (1)

whereΩ denotes the computing domain bounded by a simple
closed curve Γ, and the quantity 𝑞

𝑖
is the heat transfer rate

along the 𝑖th direction governed by the Fourier’s law

𝑞
𝑖
= −𝑘

𝜕𝑇

𝜕𝑋
𝑖

. (2)

In (2), 𝑇 is the temperature change and 𝑘 is the thermal
conductivity of the material. In the study, the thermal
conductivity is assumed to be temperature-dependent, that
is, 𝑘 = 𝑘(𝑇), and thus the governing equation (1) shows
nonlinearity.

Besides, the following boundary conditions:

𝑇 = 𝑇 on Γ
1

𝑞 ≡ 𝑞
𝑖
𝑛
𝑖
= 𝑞 on Γ

2

(3)

should be complemented to (1) to obtain a complete mathe-
matic system. In (3), 𝑇 and 𝑞, respectively, stand for the given
distributions on the boundary Γ = Γ

1
+ Γ
2
.

X2

X1

u
=
3
0
0

u
=
4
0
0

q = 0

q = 0

Figure 1: Sketch of material nonlinearity in unit square domain.

2.2. Kirchhoff Transformation. Usually, for the case that the
material property is dependent on the temperature, that
is, 𝑘 = 𝑘(𝑇), necessary iteration procedures, for instance,
Newton iteration, Nash iteration, Picard iteration, and so on,
can be employed to perform linearization for such nonlinear
problems. In the present work, a noniteration technology is
employed by introducing the Kirchhoff transformation such
as [18]

d𝜙
d𝑇

= 𝑘 (𝑇) or 𝜙 = ∫𝑘 (𝑇) d𝑇, (4)

where 𝜙 is a new quantity named as Kirchhoff variable, which
is related to the sought temperature field 𝑇.

Then, substituting (4) into (2), one obtains

𝑞
𝑖
= −𝑘 (𝑇)

𝜕𝑇

𝜕𝑋
𝑖

= −𝑘 (𝑇)

𝜕𝑇

𝜕𝜙

𝜕𝜙

𝜕𝑋
𝑖

= −

𝜕𝜙

𝜕𝑋
𝑖

. (5)

As a result, the nonlinear governing equation (1) and
boundary conditions (3) reduce to the following linear system
consisting of the linear partial differential equation associated
with the introduced Kirchhoff variable 𝜙:

𝜕
2
𝜙

𝜕𝑋
2

1

+

𝜕
2
𝜙

𝜕𝑋
2

2

= 0 (6)

and the transformed boundary conditions

𝜙 = 𝜙 (𝑇) on Γ
1

𝜓 ≡ −

𝜕𝜙

𝜕𝑋
𝑖

𝑛
𝑖
= 𝑞 on Γ

2
.

(7)

In this paper, two types of material nonlinearities are
considered.
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2.2.1. Power-TypeThermalConductivity. Consider the follow-
ing:

𝑘 = 𝑘
0
(𝛼 + 𝛽𝑇)

𝑛 (8)

with constants 𝑘
0
, 𝛼, 𝛽, and 𝑛.

Integrating (8) by the Kirchhoff transformation (4) gives

𝜙 =

𝑘
0

𝛽 (𝑛 + 1)

(𝛼 + 𝛽𝑇)
𝑛+1 (9)

from which the inverse manipulation produces

𝑇 =

[𝛽 (𝑛 + 1) 𝜙/𝑘
0
]
1/(𝑛+1)

− 𝛼

𝛽

. (10)

2.2.2. Exponent-Type Thermal Conductivity. Consider the
following:

𝑘 = 𝑘
0
𝑒
(𝛼+𝛽𝑇) (11)

Integrating (11) by the Kirchhoff transformation (4) gives

𝜙 =

𝑘
0

𝛽

𝑒
(𝛼+𝛽𝑇) (12)

from which the inverse manipulation produces

𝑇 =

ln (𝛽𝜙/𝑘
0
) − 𝛼

𝛽

. (13)

2.3. Hybrid Finite Element Formulation. Currently, the
hybrid finite element with fundamental solution as trial
function has been successfully formulated to solve the linear
heat transfer problems using general or special elements. In
this section, the HFS-FEM is applied to solve the new linear
system consisting of (6) and (7) to determine the induced
Kirchhoff variable.

The overall computing domain is firstly discretized with
some elements. For a typical element 𝑒, the weak integral
functional can be written as follows [12, 13]:

Π
𝑚𝑒

= −

1

2

∫

Ω
𝑒

[(

𝜕𝜙

𝜕𝑋
1

)

2

+ (

𝜕𝜙

𝜕𝑋
2

)

2

] dΩ

− ∫

Γ
2𝑒

𝜓
̃
𝜙 dΓ + ∫

Γ
𝑒

𝜓 (
̃
𝜙 − 𝜙) dΓ,

(14)

where 𝜙 and ̃
𝜙 stand for independent element interior and

boundary fields, respectively.
Within the element 𝑒, the assumed element interior field

𝜙, also named as intraelement field, is usually approximated
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by the linear combination of the fundamental solution
𝜙
∗
(x, x
𝑠
), that is,

𝜙 (x, x
𝑠
) = {N} {c

𝑒
} , (15)

where

{N} = {𝜙
∗

1
𝜙
∗

2
⋅ ⋅ ⋅ 𝜙
∗

𝑁
𝑠
} ,

{c
𝑒
} = {𝑐
1

𝑐
2

⋅ ⋅ ⋅ 𝑐
𝑁
𝑠
}

T
,

(16)

and x and x
𝑠
are field point and source field, respectively. 𝑁

𝑠

is the number of source points x
𝑠
located outside the element

domain, and 𝑐
𝑖
presents unknown source intensity.

In the paper, two different fundamental solutions are
involved. One is the general fundamental solution associated
with the problem without hole, and another is the special
fundamental solution associated with the problem with cir-
cular hole. For completeness, we present, in theAppendix, the
involved expressions of fundamental solutions. According to
the physical definitions of fundamental solutions given in
the Appendix, we can easily find that the linear combination
of fundamental solutions with different source points can
exactly satisfy the linear partial differential equation (6) and
the specified interfacial condition along the circular hole.This
feature is important to simplify the hybrid functional (14) by
removing the domain integral in it.

Besides, the independent frame field defined over the
element boundary is constructed by

̃
𝜙 (x) = {

̃N} {d
𝑒
} , (17)

where {d
𝑒
} and {

̃N} represent the element nodal degree
of freedom (DOF) and conventional interpolating shape
functions, respectively.
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Subsequently, applying the Gaussian divergence theorem
to (14), we have the following formula:

Π
𝑚𝑒

= −

1

2

∫

Γ
𝑒

𝜓𝜙 dΓ − ∫

Γ
2𝑒

𝜓
̃
𝜙 dΓ + ∫

Γ
𝑒

𝜓
̃
𝜙 dΓ (18)

in which only element boundary integrals are included.
The substitution of (15) and (17) into (18) finally yields

Π
𝑚𝑒

= −

1

2

{c
𝑒
}
T
[H
𝑒
] {c
𝑒
} − {d

𝑒
}
T
{g
𝑒
} + {c
𝑒
}
T
[G
𝑒
] {d
𝑒
} ,

(19)

where

[H
𝑒
] = ∫

Γ
𝑒

{Q}
T
{N} dΓ,

[G
𝑒
] = ∫

Γ
𝑒

{Q}
T
{
̃N} dΓ,

{g
𝑒
} = ∫

Γ
2𝑒

{Ñ}

T
𝜓dΓ

(20)

with

{Q} = −

𝜕 {N}

𝜕𝑥
𝑖

𝑛
𝑖
= − {𝑛

1
𝑛
2
}

[

[

[

[

𝜕 {N}

𝜕𝑥
1

𝜕 {N}

𝜕𝑥
2

]

]

]

]

. (21)
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The stationary conditions of the functional Π
𝑚𝑒

with
respect to {c

𝑒
} and {d

𝑒
} produce

[K
𝑒
] {d
𝑒
} = {g

𝑒
} ,

{c
𝑒
} = [H

𝑒
]
−1

[G
𝑒
] {d
𝑒
}

(22)

in which the stiffness equation and the optional relationship
between {c

𝑒
} and {d

𝑒
} are well established.

3. Numerical Examples

In this section, some numerical examples are presented to
illustrate the validity of the proposed hybrid finite element
formulation with fundamental solution kernels. There are
few nonlinear problems that have the known exact solutions.
Among them is the first example in Section 3.1.Thenumerical
results computed by the present method are compared with
the exact solutions. The second example in Section 3.2 is
a problem with a centered circular cut, and the numerical
results by the present algorithm are compared with those by
the MATLAB PDE Toolbox.

3.1. Nonlinear Heat Transfer in a Unit Square. As a first
example, let us consider the numerical solutions for plane
heat transfer over a unit square domain. The temperatures
on the left and right edges of the square remain 300K and
400K, respectively, while the remainders are assumed to be
insulated, as shown in Figure 1.
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For the case of power-type variation of the thermal
conductivity with temperature, that is, 𝑘 = 𝑘

0
(𝛼 + 𝛽𝑇)

𝑛, an
analytical solution of the form

𝑇 = ( {[(𝛼 + 400𝛽)
𝑛+1

− (𝛼 + 300𝛽)
𝑛+1

]𝑋
1

+(𝛼 + 300𝛽)
𝑛+1

}

1/(𝑛+1)

− 𝛼) (𝛽)
−1

(23)

is obtained to verify the numerical solutions. In the practical
computation, two different mesh schemes (regular mesh and
irregular mesh) are employed to model the square domain
and validate the stability of the proposed approach (see
Figure 2). For this purpose, we first set 𝑘

0
= 1, 𝑛 = 1, 𝛼 = −2,

and 𝛽 = 0.01, which corresponds to 𝑘 = −2 + 0.01𝑇 and
𝑇 = 100√3𝑋

1
+ 1+200. Figure 3 displays the variation of the

error defined by

Arerr (𝑢) = √

∑
𝑁

𝑖=1
(𝑢HFS-FEM − 𝑢exact)

2

𝑖

∑
𝑁

𝑖=1
(𝑢exact)

2

𝑖

(24)

with the parameter 𝛾, which controls the location of source
point used for intraelement approximation. It can be seen that
there are large stable range to choose the parameter 𝛾, for
either regular or irregular meshes. At the same time, one also
observes that too small values of 𝛾, meaning that the source
points lie so closely to the element boundary that the distance
𝑟 between the source points and element nodes approaches
to zero, bring bad results. The main reason is that the kernel
functions of the fundamental solution vary according to
𝑂(ln 𝑟), and 𝑂(𝑟

−2
), respectively, in two dimensions so that

inaccuracies in the evaluation of element boundary integrals
(near-singular problems)would be causedwhen 𝑟 approaches
to zero. On the other hand, too large value of 𝛾 corresponding
to the large distance of the source points and element nodes
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Table 1: Sensitivity to distortion of sub-domain mesh.

Regular mesh Irregular mesh (|𝑇regular − 𝑇irregular|/|𝑇regular|) × 100%
A 324.9997 324.9990 0.000
B 374.9998 375.0006 0.000
C 339.1944 339.1934 0.000
D 385.4052 385.4057 0.000
E 358.1139 358.1139 0.000

Regular mesh Irregular mesh (|𝑞1regular − 𝑞1irregular|/|𝑞1regular|) × 100%
A −150.0053 −150.0102 0.003
B −150.0053 −150.0034 0.001
C −150.0053 −150.0033 0.001
D −150.0053 −150.0103 0.003
E −149.9287 −149.8496 0.053

will affect the inverse manipulation of the element matrix
{H
𝑒
}, which is nearly singular due to the almost same entries

[12]. Therefore, 𝛾 = 5 is chosen in the following practical
computation.

To investigate the sensitivity to mesh distortion of
the presented formulation, numerical results at five test
points for uniform and distorted meshes are obtained by
the formulation presented in the paper and displayed in
Table 1. The coordinates of the five test points are, respec-
tively, A(0.1875, 0.2500), B(0.6875, 0.2500), C(0.3125, 0.7500),
D(0.8125, 0.7500), and E(0.5000, 0.5000). As expected, a
marked insensitivity to the mesh distortion is observed
in the table. Besides, we find that the results inside the
subdomains, that is, at points A, B, C, and D, are less affected
by the irregularity of the mesh than those at the subdomains
boundary point E.

Next, the temperature and heat flux distributions with
various power parameter 𝑛 are, respectively, given in Figures
4 and 5 to illustrate the effect of nonlinear material property.
It can be seen that the temperature profile becomes steeper,
and the temperature gradient has larger value, as 𝑛 increases.
Besides, the good agreement between numerical results
and exact solutions means that the proposed approach can
capture the nonlinear effect, even with coarse mesh.

In contrast to the power-type variation of thermal con-
ductivity, another form of thermal conductivity with expo-
nent expression is also investigated in this example. For the
case 𝑘 = 𝑘

0
𝑒
(𝛼+𝛽𝑇), it is easy to get the following analytical

solutions:

𝑇 =

ln [(𝑒
𝛼+400𝛽

− 𝑒
𝛼+300𝛽

)𝑋
1
+ 𝑒
𝛼+300𝛽

] − 𝛼

𝛽

,

𝑞
1
= −

𝑘
0

𝛽

[𝑒
(𝛼+400𝛽)

− 𝑒
(𝛼+300𝛽)

] .

(25)

During computation, the same 2 by 2 regular mesh as the
one used in the previous test is used to model the computing
domain. Simultaneously, we keep 𝑘

0
= 1 and 𝛼 = −2

invariant.The results obtained by theHFS-FEMare displayed
in Figures 6 and 7, from which we notice that the results
of HFS-FEM and exact solutions agree well. At the same

time, it is found that the temperature curve shows stronger
nonlinearity, as the parameter 𝛽 becomes larger. Meanwhile,
the average values of heat flux component 𝑞

1
dramatically

increase by almost fourteen orders of magnitude, that is, the
value increases from −466.9718 to −3.1847 × 10

17.

3.2. Nonlinear Heat Transfer in a Unit Square with a Circular
Cut. To illustrate the advantage of the present approach over
the conventional FEM in the aspect of mesh reduction, let
us consider a unit square with a centered circular cut. The
diameter of the circular hole is taken to be 0.5. The boundary
conditions along the outer edges of the square are the same
as those in the previous example, and the rim of the hole
is assumed to be insulated. The thermal conductivity of the
material is assumed as 𝑘 = −2 + 0.01𝑇.

In the computation, two special elements, respectively,
including 8 nodes and 16 nodes are compared (see Figure 8)
to investigate the change of accuracy of the present algo-
rithm. Figure 9 displays the temperature isoline maps corre-
sponding to the two different elements shown in Figure 8.
In the figure, the numerical results of conventional FEM
implemented by MATLAB PDE toolbox are also provided to
make comparison. Total 4448 triangle finite elements with
2339 nodes are employed to discretize the computing domain
in the MATLAB PDE toolbox. It can be observed that the
numerical accuracy of the present special elements increases,
as the number of nodes of the special element becomes large.
Moreover, there is a good agreement between the numerical
results of the present special element with 16 nodes and
that of MATLAB PDE toolbox. More interestingly, a great
effect on mesh reduction is achieved by use of the proposed
special elements. Thus, the present hybrid finite element
model with special elements can obtain better efficiency than
the conventional FEM, when the circular hole exists in the
computing domain.

4. Conclusions

The present study proposes the fundamental-solution-based
hybrid finite element formulation to solve the nonlinear heat
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(a) 8-node special circular hole element (b) 16-node special circular hole element

Figure 8: Two special elements with different number of nodes.
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Figure 9: Temperature distribution in the computing domain.

conduction problems with temperature-dependent thermal
conductivity. It is a direct extension of the HFS-FEM for
linear heat conduction problems by combining the Kirchhoff
transformation and it is easy to be numerically implemented.
The numerical results show that the present hybrid finite
element formulation is very effective and convenient to solve
the nonlinear heat conduction problem. It is shown that, for
the analysis of nonlinear heat conduction problems, espe-
cially those related to the circular hole, the improvements of
both the efficiency of mesh discretization and the numerical

accuracy of the present hybrid finite element model are
significant, for the sake of the use of general or special
fundamental solutions.

Appendix

Fundamental Solutions

In the formulation of the present hybrid finite element, the
fundamental solution of the problem plays an important
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role. Based on the mathematical definition of them, they
are employed to construct the element interior field, which
exactly satisfies the governing equation, and simultaneously
convert the domain integral into the boundary integral in the
hybrid functional.

General Fundamental Solution. For the general case without
holes in the 2D infinite plane, the fundamental solution
𝜙
∗
(x, x
𝑠
) of the problem is required to satisfy the following

partial differential equation:

(

𝜕
2

𝜕𝑥
2

1

+

𝜕
2

𝜕𝑥
2

2

)𝜙
∗

(x, x
𝑠
) + 𝛿 (x, x

𝑠
) = 0 ∀ x, x

𝑠
∈ R
2

(A.1)

which produces

𝜙
∗

(x, x
𝑠
) = −

1

2𝜋

Re [ln (𝑧 − 𝑧
𝑠𝑗
)] . (A.2)

In (A.1) and (A.2), 𝛿 represents the Dirac delta function,
Re denotes the real part of the bracketed expression, and 𝑧 =

𝑥
1
+ 𝑥
2
𝑖 and 𝑧

𝑠𝑗
= 𝑥
𝑠

1𝑗
+ 𝑥
𝑠

2𝑗
𝑖 are the field point and source

point expressed in the complex space, respectively.
The derivative of (A.2) is given by

𝜕𝜙
∗

𝜕𝑧

= −

1

2𝜋

Re[ 1

𝑧 − 𝑧
𝑠𝑗

] . (A.3)

Special Fundamental Solution. Specially, when there is a
central circular hole with radius 𝑅 in the 2D infinite plane,
the fundamental solution satisfies both partial differential
equation (A.1) and the specific boundary condition along the
rim of circular hole. Here, the insulated boundary condition
𝜕𝜙
∗
/𝜕𝑛 = 0 is assumed, and the corresponding special

fundamental solutions can be written as

𝜙
∗

(𝑧, 𝑧
𝑠𝑗
) = −

1

2𝜋

Re[ln
(𝑧 − 𝑧

𝑠𝑗
) (𝑅
2
− 𝑧𝑧
𝑠𝑗
)

𝑧

] (A.4)

whose derivative is

𝜕𝜙
∗

𝜕𝑧

= −

1

2𝜋

Re[
𝑧
𝑠𝑗
𝑅
2
− 𝑧
2
𝑧
𝑠𝑗

𝑧 (𝑧 − 𝑧
𝑠𝑗
) (𝑅
2
− 𝑧𝑧
𝑠𝑗
)

] . (A.5)
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A class of third-order boundary value problems with advanced arguments and Stieltjes integral boundary conditions is discussed.
Some existence criteria of at least one positive solution are established. The main tool used is the Guo-Krasnoselskii fixed point
theorem.

1. Introduction

Third-order differential equations arise in a variety of differ-
ent areas of applied mathematics and physics, for example, in
the deflection of a curved beam having a constant or varying
cross-section, a three-layer beam, electromagnetic waves or
gravity-driven flows, and so on [1].

Recently, third-order boundary value problems (BVPs for
short) with integral boundary conditions, which cover third-
order multipoint BVPs as special cases, have attracted much
attention from many authors; see [2–6] and the references
therein. In particular, in 2012, by using a fixed point theorem
due to Avery and Peterson [7], Jankowski [4] established
the existence of at least three nonnegative solutions to the
following BVP:

𝑢


(𝑡) + ℎ (𝑡) 𝑓 (𝑡, 𝑢 (𝛼 (𝑡))) = 0, 𝑡 ∈ (0, 1) ,

𝑢 (0) = 𝑢


(0) = 0, 𝑢 (1) = 𝛽𝑢 (𝜂) + 𝜆 [𝑢] ,

(1)

where 𝜆 denoted a linear functional on 𝐶[0, 1] given by

𝜆 [𝑢] = ∫

1

0

𝑢 (𝑡) 𝑑Λ (𝑡) (2)

involving a Stieltjes integral with a suitable function Λ of
bounded variation. The measure 𝑑Λ could be a signed one.
The situation with a signed measure 𝑑Λ was first discussed
in [8, 9] for second-order differential equations; it was also
discussed in [10, 11] for second-order impulsive differential

equations. For some other related results, one can refer to [12–
14].

Among the boundary conditions in (1), only 𝑢(1) is
related to a Stieltjes integral. In this paper, we are concerned
with the following third-order BVPwith advanced arguments
and Stieltjes integral boundary conditions:

𝑢


(𝑡) + 𝑓 (𝑡, 𝑢 (𝛼 (𝑡))) = 0, 𝑡 ∈ (0, 1) ,

𝑢 (0) = 𝛾𝑢 (𝜂) + 𝜆 [𝑢] , 𝑢


(0) = 0,

𝑢 (1) = 𝛽𝑢 (𝜂) + 𝜆 [𝑢] .

(3)

Throughout this paper, we always assume that 𝛼 : [0, 1] →

[0, 1] is continuous and 𝛼(𝑡) ≥ 𝑡 for 𝑡 ∈ [0, 1], 0 < 𝜂 < 1,
0 ≤ 𝛾 < 𝛽 < 1, Λ is a suitable function of bounded variation,
and 𝜆[𝑢] is defined as in (2). It is important to indicate that
it is not assumed that 𝜆[𝑢] is positive to all positive 𝑢. Some
existence criteria of at least one positive solution to the BVP
(3) are obtained by using the following well-known Guo-
Krasnoselskii fixed point theorem [15, 16].

Theorem 1. Let 𝐸 be a Banach space, and let 𝐾 be a cone in
𝐸. Assume thatΩ

1
andΩ

2
are bounded open subsets of 𝐸 such

that 0 ∈ Ω
1
, Ω
1
⊂ Ω
2
, and let 𝑇 : 𝐾 ∩ (Ω

2
\ Ω
1
) → 𝐾 be a

completely continuous operator such that either

(1) ‖𝑇𝑢‖ ≤ ‖𝑢‖ for 𝑢 ∈ 𝐾 ∩ 𝜕Ω
1
and ‖𝑇𝑢‖ ≥ ‖𝑢‖ for

𝑢 ∈ 𝐾 ∩ 𝜕Ω
2
or
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(2) ‖𝑇𝑢‖ ≥ ‖𝑢‖ for 𝑢 ∈ 𝐾 ∩ 𝜕Ω
1
and ‖𝑇𝑢‖ ≤ ‖𝑢‖ for

𝑢 ∈ 𝐾 ∩ 𝜕Ω
2
.

Then, 𝑇 has a fixed point in 𝐾 ∩ (Ω
2
\ Ω
1
).

2. Preliminaries

Let Δ = 1 − 𝛾 − (𝛽 − 𝛾)𝜂. Then, Δ > 0.

Lemma 2. For any 𝑦 ∈ 𝐶[0, 1], the BVP

𝑢


(𝑡) = −𝑦 (𝑡) , 𝑡 ∈ (0, 1) ,

𝑢 (0) = 𝛾𝑢 (𝜂) + 𝜆 [𝑢] , 𝑢


(0) = 0,

𝑢 (1) = 𝛽𝑢 (𝜂) + 𝜆 [𝑢]

(4)

has the unique solution

𝑢 (𝑡) =

1 − (𝛽 − 𝛾) 𝜂 + (𝛽 − 𝛾) 𝑡

Δ

𝜆 [𝑢]

+

𝛾 + (𝛽 − 𝛾) 𝑡

Δ

∫

1

0

𝑘 (𝜂, 𝑠) 𝑦 (𝑠) 𝑑𝑠

+ ∫

1

0

𝑘 (𝑡, 𝑠) 𝑦 (𝑠) 𝑑𝑠, 𝑡 ∈ [0, 1] ,

(5)

where

𝑘 (𝑡, 𝑠) =

1

2

{

{

{

(1 − 𝑡) (𝑡 − 𝑠
2
) , 0 ≤ 𝑠 ≤ 𝑡 ≤ 1,

𝑡(1 − 𝑠)
2

, 0 ≤ 𝑡 ≤ 𝑠 ≤ 1.

(6)

Proof. By integrating the differential equation in (4) three
times from 0 to 𝑡 and using the boundary condition 𝑢


(0) =

0, we get

𝑢 (𝑡) = 𝑢 (0) + 𝑢


(0) 𝑡 −

1

2

∫

𝑡

0

(𝑡 − 𝑠)
2

𝑦 (𝑠) 𝑑𝑠, 𝑡 ∈ [0, 1] .

(7)

So,

𝑢


(0) = 𝑢 (1) − 𝑢 (0) +

1

2

∫

1

0

(1 − 𝑠)
2

𝑦 (𝑠) 𝑑𝑠. (8)

In view of (7), (8), and the boundary conditions 𝑢(0) =

𝛾𝑢(𝜂) + 𝜆[𝑢] and 𝑢(1) = 𝛽𝑢(𝜂) + 𝜆[𝑢], we have

𝑢 (𝑡) = [𝛾 + (𝛽 − 𝛾) 𝑡] 𝑢 (𝜂) + 𝜆 [𝑢]

+ ∫

1

0

𝑘 (𝑡, 𝑠) 𝑦 (𝑠) 𝑑𝑠, 𝑡 ∈ [0, 1] .

(9)

So,

𝑢 (𝜂) =

1

Δ

𝜆 [𝑢] +

1

Δ

∫

1

0

𝑘 (𝜂, 𝑠) 𝑦 (𝑠) 𝑑𝑠. (10)

Substituting (10) into (9), we get

𝑢 (𝑡) =

1 − (𝛽 − 𝛾) 𝜂 + (𝛽 − 𝛾) 𝑡

Δ

𝜆 [𝑢]

+

𝛾 + (𝛽 − 𝛾) 𝑡

Δ

∫

1

0

𝑘 (𝜂, 𝑠) 𝑦 (𝑠) 𝑑𝑠

+ ∫

1

0

𝑘 (𝑡, 𝑠) 𝑦 (𝑠) 𝑑𝑠, 𝑡 ∈ [0, 1] .

(11)

Lemma 3 (see [4]). Consider that 0 ≤ 𝑘(𝑡, 𝑠) ≤ (1/2)(1 +

𝑠)(1 − 𝑠)
2, (𝑡, 𝑠) ∈ [0, 1] × [0, 1].

Throughout, we assume that the following conditions are
fulfilled:

(C1) 𝑓 ∈ 𝐶([0, 1] × [0, +∞), [0, +∞)),
(C2)

∫

1

0

𝑑Λ (𝑡) ≥ 0, ∫

1

0

𝑡𝑑Λ (𝑡) ≥ 0,

𝜅 (𝑠) = ∫

1

0

𝑘 (𝑡, 𝑠) 𝑑Λ (𝑡) ≥ 0, 𝑠 ∈ [0, 1] .

(12)

For convenience, we denote

𝜌 = [1 − (𝛽 − 𝛾) 𝜂] ∫

1

0

𝑑Λ (𝑡) + (𝛽 − 𝛾)∫

1

0

𝑡𝑑Λ (𝑡) ,

𝜌


= 𝛾∫

1

0

𝑑Λ (𝑡) + (𝛽 − 𝛾)∫

1

0

𝑡𝑑Λ (𝑡) .

(13)

Obviously, 𝜌, 𝜌 ≥ 0. In the remainder of this paper, we always
assume that 𝜌 < Δ.

Let 𝐶[0, 1] be equipped with the maximum norm. Then,
𝐶[0, 1] is a Banach space. Define

𝐾 = {𝑢 ∈ 𝐶 [0, 1] : 𝑢 (𝑡) ≥ 0, 𝑡 ∈ [0, 1] ,

min
𝑡∈[𝜂,1]

𝑢 (𝑡) ≥ Γ ‖𝑢‖ , 𝜆 [𝑢] ≥ 0} ,

(14)

where

Γ = min{

𝛽 (1 − 𝜂)

1 − 𝛽𝜂

,

𝛽𝜂

1 − 𝛾 (1 − 𝜂)

} . (15)

Then, 𝐾 is a cone in 𝐶[0, 1].
Now, we define operators 𝑇 and 𝑆 on 𝐾 by

(𝑇𝑢) (𝑡) =

1 − (𝛽 − 𝛾) 𝜂 + (𝛽 − 𝛾) 𝑡

Δ

𝜆 [𝑢] + (𝐹𝑢) (𝑡) ,

𝑡 ∈ [0, 1] ,

(𝑆𝑢) (𝑡) =

1 − (𝛽 − 𝛾) 𝜂 + (𝛽 − 𝛾) 𝑡

Δ − 𝜌

𝜆 [𝐹𝑢] + (𝐹𝑢) (𝑡) ,

𝑡 ∈ [0, 1] ,

(16)
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where

(𝐹𝑢) (𝑡) =

𝛾 + (𝛽 − 𝛾) 𝑡

Δ

∫

1

0

𝑘 (𝜂, 𝑠) 𝑓 (𝑠, 𝑢 (𝛼 (𝑠))) 𝑑𝑠

+ ∫

1

0

𝑘 (𝑡, 𝑠) 𝑓 (𝑠, 𝑢 (𝛼 (𝑠))) 𝑑𝑠, 𝑡 ∈ [0, 1].

(17)

Lemma 4. Consider that 𝑇, 𝑆 : 𝐾 → 𝐾.

Proof. Let 𝑢 ∈ 𝐾. Then, it is easy to verify that

(𝑇𝑢)


(𝑡) = −∫

𝑡

0

𝑓 (𝑠, 𝑢 (𝛼 (𝑠))) 𝑑𝑠 ≤ 0, 𝑡 ∈ [0, 1] , (18)

which shows that 𝑇𝑢 is concave down on [0, 1]. In view of

(𝐹𝑢) (0) =

𝛾

Δ

∫

1

0

𝑘 (𝜂, 𝑠) 𝑓 (𝑠, 𝑢 (𝛼 (𝑠))) 𝑑𝑠 ≥ 0,

(𝐹𝑢) (1) =

𝛽

Δ

∫

1

0

𝑘 (𝜂, 𝑠) 𝑓 (𝑠, 𝑢 (𝛼 (𝑠))) 𝑑𝑠 ≥ 0,

(19)

we have

(𝑇𝑢) (0) =

1 − (𝛽 − 𝛾) 𝜂

Δ

𝜆 [𝑢] + (𝐹𝑢) (0) ≥ 0,

(𝑇𝑢) (1) =

1 + (𝛽 − 𝛾) (1 − 𝜂)

Δ

𝜆 [𝑢] + (𝐹𝑢) (1) ≥ 0.

(20)

So, (𝑇𝑢)(𝑡) ≥ 0, 𝑡 ∈ [0, 1].
Now, we prove that min

𝑡∈[𝜂,1]
(𝑇𝑢)(𝑡) ≥ Γ‖𝑇𝑢‖. To do it,

we consider two cases.

Case 1. Let (𝑇𝑢)(𝜂) ≤ (𝑇𝑢)(1). Then min
𝑡∈[𝜂,1]

(𝑇𝑢)(𝑡) =

(𝑇𝑢)(𝜂), and there exists 𝑡 ∈ [𝜂, 1] such that ‖𝑇𝑢‖ = (𝑇𝑢)(𝑡).
Moreover,

(𝑇𝑢) (𝑡) − (𝑇𝑢) (0)

𝑡 − 0

≤

(𝑇𝑢) (𝜂) − (𝑇𝑢) (0)

𝜂 − 0

. (21)

So,

‖𝑇𝑢‖ ≤

1

𝜂

(𝑇𝑢) (𝜂) −

1 − 𝜂

𝜂

(𝑇𝑢) (0) , (22)

which together with

(𝑇𝑢) (0) = 𝛾 (𝑇𝑢) (𝜂) + 𝜆 [𝑢] (23)

implies that

‖𝑇𝑢‖ ≤

1 − 𝛾 (1 − 𝜂)

𝜂

(𝑇𝑢) (𝜂) ; (24)

that is,

min
𝑡∈[𝜂,1]

(𝑇𝑢) (𝑡) ≥

𝜂

1 − 𝛾 (1 − 𝜂)

‖𝑇𝑢‖ . (25)

Case 2. Let (𝑇𝑢)(𝜂) > (𝑇𝑢)(1) and ‖𝑇𝑢‖ = (𝑇𝑢)(𝑡). Note that
in this case min

𝑡∈[𝜂,1]
(𝑇𝑢)(𝑡) = (𝑇𝑢)(1).

If 𝑡 ∈ [0, 𝜂], then

(𝑇𝑢) (1) − (𝑇𝑢) (𝑡)

1 − 𝑡

≥

(𝑇𝑢) (1) − (𝑇𝑢) (𝜂)

1 − 𝜂

. (26)

So,

‖𝑇𝑢‖ ≤

1

1 − 𝜂

(𝑇𝑢) (𝜂) −

𝜂

1 − 𝜂

(𝑇𝑢) (1) , (27)

which together with

(𝑇𝑢) (𝜂) =

1

𝛽

((𝑇𝑢) (1) − 𝜆 [𝑢]) (28)

implies that

‖𝑇𝑢‖ ≤

1 − 𝛽𝜂

𝛽 (1 − 𝜂)

(𝑇𝑢) (1) ; (29)

that is,

min
𝑡∈[𝜂,1]

(𝑇𝑢) (𝑡) ≥

𝛽 (1 − 𝜂)

1 − 𝛽𝜂

‖𝑇𝑢‖ . (30)

If 𝑡 ∈ (𝜂, 1), then

(𝑇𝑢) (𝑡) − (𝑇𝑢) (𝜂)

𝑡 − 𝜂

≤

(𝑇𝑢) (𝜂) − (𝑇𝑢) (0)

𝜂 − 0

. (31)

So,

‖𝑇𝑢‖ ≤

1

𝜂

(𝑇𝑢) (𝜂) −

1 − 𝜂

𝜂

(𝑇𝑢) (0) , (32)

which together with (23) and (28) implies that

‖𝑇𝑢‖ ≤

1 − 𝛾 (1 − 𝜂)

𝛽𝜂

(𝑇𝑢) (1) ; (33)

that is,

min
𝑡∈[𝜂,1]

(𝑇𝑢) (𝑡) ≥

𝛽𝜂

1 − 𝛾 (1 − 𝜂)

‖𝑇𝑢‖ . (34)

It follows from (25), (30), and (34) that

min
𝑡∈[𝜂,1]

(𝑇𝑢) (𝑡) ≥ Γ ‖𝑇𝑢‖ . (35)

Finally, we need to show that 𝜆[𝑇𝑢] ≥ 0. In view of

𝜆 [𝐹𝑢] = ∫

1

0

𝛾 + (𝛽 − 𝛾) 𝑡

Δ

∫

1

0

𝑘 (𝜂, 𝑠) 𝑓 (𝑠, 𝑢 (𝛼 (𝑠))) 𝑑𝑠 𝑑Λ (𝑡)

+ ∫

1

0

∫

1

0

𝑘 (𝑡, 𝑠) 𝑓 (𝑠, 𝑢 (𝛼 (𝑠))) 𝑑𝑠 𝑑Λ (𝑡)

=

𝜌


Δ

∫

1

0

𝑘 (𝜂, 𝑠) 𝑓 (𝑠, 𝑢 (𝛼 (𝑠))) 𝑑𝑠

+ ∫

1

0

𝜅 (𝑠) 𝑓 (𝑠, 𝑢 (𝛼 (𝑠))) 𝑑𝑠 ≥ 0,

(36)
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we have

𝜆 [𝑇𝑢] =

𝜌

Δ

𝜆 [𝑢] + 𝜆 [𝐹𝑢] ≥ 0. (37)

This shows that 𝑇 : 𝐾 → 𝐾. Similarly, we can prove that
𝑆 : 𝐾 → 𝐾.

Lemma 5. The operators 𝑇 and 𝑆 have the same fixed points
in 𝐾.

Proof. Suppose that 𝑢 ∈ 𝐾 is a fixed point of 𝑆. Then,

𝜆 [𝑢] = ∫

1

0

(

1 − (𝛽 − 𝛾) 𝜂 + (𝛽 − 𝛾) 𝑡

Δ − 𝜌

𝜆 [𝐹𝑢]

+ (𝐹𝑢) (𝑡)) 𝑑Λ (𝑡) =

Δ

Δ − 𝜌

𝜆 [𝐹𝑢] ,

(38)

which shows that

𝜆 [𝐹𝑢] =

Δ − 𝜌

Δ

𝜆 [𝑢] . (39)

So,

𝑢 (𝑡) = (𝑆𝑢) (𝑡)

=

1 − (𝛽 − 𝛾) 𝜂 + (𝛽 − 𝛾) 𝑡

Δ − 𝜌

𝜆 [𝐹𝑢] + (𝐹𝑢) (𝑡)

=

1 − (𝛽 − 𝛾) 𝜂 + (𝛽 − 𝛾) 𝑡

Δ

𝜆 [𝑢] + (𝐹𝑢) (𝑡)

= (𝑇𝑢) (𝑡) , 𝑡 ∈ [0, 1] ,

(40)

which indicates that 𝑢 is a fixed point of 𝑇.
Suppose that 𝑢 ∈ 𝐾 is a fixed point of 𝑇. Then,

𝜆 [𝑢] = ∫

1

0

(

1 − (𝛽 − 𝛾) 𝜂 + (𝛽 − 𝛾) 𝑡

Δ

𝜆 [𝑢]

+ (𝐹𝑢) (𝑡) ) 𝑑Λ (𝑡) =

𝜌

Δ

𝜆 [𝑢] + 𝜆 [𝐹𝑢] ,

(41)

which shows that

𝜆 [𝑢] =

Δ

Δ − 𝜌

𝜆 [𝐹𝑢] . (42)

So,

𝑢 (𝑡) = (𝑇𝑢) (𝑡)

=

1 − (𝛽 − 𝛾) 𝜂 + (𝛽 − 𝛾) 𝑡

Δ

𝜆 [𝑢] + (𝐹𝑢) (𝑡)

=

1 − (𝛽 − 𝛾) 𝜂 + (𝛽 − 𝛾) 𝑡

Δ − 𝜌

𝜆 [𝐹𝑢] + (𝐹𝑢) (𝑡)

= (𝑆𝑢) (𝑡) , 𝑡 ∈ [0, 1] ,

(43)

which indicates that 𝑢 is a fixed point of 𝑆.

Lemma 6. 𝑇, 𝑆 : 𝐾 → 𝐾 is completely continuous.

Proof. First, by Lemma 4, we know that 𝑇(𝐾) ⊂ 𝐾.
Next, we show that𝑇 is compact. Let𝐷 ⊂ 𝐾 be a bounded

set. Then, there exists 𝑀
1

> 0 such that ‖𝑢‖ ≤ 𝑀
1
for any

𝑢 ∈ 𝐷. SinceΛ is a function of bounded variation, there exists
𝑀
2

> 0 such that V
Δ
 = ∑

𝑛

𝑖=1
|Λ(𝑡
𝑖
) − Λ(𝑡

𝑖−1
)| ≤ 𝑀

2
for any

partition Δ

: 0 = 𝑡

0
< 𝑡
1
< ⋅ ⋅ ⋅ < 𝑡

𝑛−1
< 𝑡
𝑛
= 1. Let

𝑀
3
= sup {𝑓 (𝑡, 𝑢) : (𝑡, 𝑢) ∈ [0, 1] × [0,𝑀

1
]} . (44)

Then, for any 𝑢 ∈ 𝐷,

‖𝑇𝑢‖ = max
𝑡∈[0,1]

(𝑇𝑢) (𝑡)

≤

1 + (𝛽 − 𝛾) (1 − 𝜂)

Δ

𝜆 [𝑢]

+

𝛽

Δ

∫

1

0

𝑘 (𝜂, 𝑠) 𝑓 (𝑠, 𝑢 (𝛼 (𝑠))) 𝑑𝑠

+

1

2

∫

1

0

(1 + 𝑠) (1 − 𝑠)
2

𝑓 (𝑠, 𝑢 (𝛼 (𝑠))) 𝑑𝑠

≤

1 + (𝛽 − 𝛾) (1 − 𝜂)

Δ

𝑀
1
𝑀
2

+

𝛽𝑀
3

Δ

∫

1

0

𝑘 (𝜂, 𝑠) 𝑑𝑠 +

5
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𝑀
3
,

(45)

which shows that 𝑇(𝐷) is uniformly bounded.
On the other hand, for any 𝜀 > 0, since 𝑘(𝑡, 𝑠) is uniformly

continuous on [0, 1] × [0, 1], there exists 𝛿
1
(𝜀) > 0 such that

for any 𝑡
1
, 𝑡
2
∈ [0, 1] with |𝑡

1
− 𝑡
2
| < 𝛿
1
(𝜀),





𝑘 (𝑡
1
, 𝑠) − 𝑘 (𝑡

2
, 𝑠)





<

𝜀

3𝑀
3

, 𝑠 ∈ [0, 1] . (46)

Let 𝛿 = min{𝛿
1
(𝜀), 𝜀Δ/3(𝛽−𝛾)𝑀

1
𝑀
2
, 𝜀Δ/3(𝛽−𝛾)𝑀

3
∫

1

0
𝑘(𝜂,

𝑠)𝑑𝑠}. Then, for any 𝑢 ∈ 𝐷, 𝑡
1
, 𝑡
2
∈ [0, 1] with |𝑡

1
− 𝑡
2
| < 𝛿, we

have





(𝑇𝑢) (𝑡

1
) − (𝑇𝑢) (𝑡

2
)





=











(𝛽 − 𝛾) (𝑡
1
− 𝑡
2
)

Δ

𝜆 [𝑢] +

(𝛽 − 𝛾) (𝑡
1
− 𝑡
2
)

Δ

× ∫

1

0

𝑘 (𝜂, 𝑠) 𝑓 (𝑠, 𝑢 (𝛼 (𝑠))) 𝑑𝑠

+ ∫

1

0

(𝑘 (𝑡
1
, 𝑠) − 𝑘 (𝑡

2
, 𝑠))

×𝑓 (𝑠, 𝑢 (𝛼 (𝑠))) 𝑑𝑠
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≤

(𝛽 − 𝛾)




𝑡
1
− 𝑡
2






Δ

𝜆 [𝑢] +

(𝛽 − 𝛾)




𝑡
1
− 𝑡
2






Δ

× ∫

1

0

𝑘 (𝜂, 𝑠) 𝑓 (𝑠, 𝑢 (𝛼 (𝑠))) 𝑑𝑠

+ ∫

1

0





𝑘 (𝑡
1
, 𝑠) − 𝑘 (𝑡

2
, 𝑠)





𝑓 (𝑠, 𝑢 (𝛼 (𝑠))) 𝑑𝑠

≤

(𝛽 − 𝛾)




𝑡
1
− 𝑡
2





𝑀
1
𝑀
2

Δ

+

(𝛽 − 𝛾)




𝑡
1
− 𝑡
2





𝑀
3

Δ

∫

1

0

𝑘 (𝜂, 𝑠) 𝑑𝑠

+ 𝑀
3
∫

1

0





𝑘 (𝑡
1
, 𝑠) − 𝑘 (𝑡

2
, 𝑠)





𝑑𝑠 < 𝜀,

(47)

which shows that 𝑇(𝐷) is equicontinuous. It follows from the
Arzela-Ascoli theorem that 𝑇(𝐷) is relatively compact. Thus,
we have shown that 𝑇 is a compact operator.

Finally, we prove that 𝑇 is continuous. Suppose that 𝑢
𝑛
,

𝑢 ∈ 𝐾 and lim
𝑛→∞

𝑢
𝑛

= 𝑢. Then, there exists 𝑀
4

> 0 such
that ‖𝑢‖ ≤ 𝑀

4
and ‖𝑢

𝑛
‖ ≤ 𝑀

4
(𝑛 = 1, 2, . . .). For any 𝜀 >

0, since 𝑓(𝑠, 𝑥) is uniformly continuous on [0, 1] × [0,𝑀
4
],

there exists 𝛿 > 0 such that for any 𝑥
1
, 𝑥
2

∈ [0,𝑀
4
] with

|𝑥
1
− 𝑥
2
| < 𝛿,





𝑓 (𝑠, 𝑥

1
) − 𝑓 (𝑠, 𝑥

2
)




<

𝜀

(2𝛽/Δ) ∫

1

0
𝑘 (𝜂, 𝑠) 𝑑𝑠 + (5/12)

,

𝑠 ∈ [0, 1] .

(48)

At the same time, since lim
𝑛→∞

𝑢
𝑛

= 𝑢, there exists positive
integer 𝑁 such that for any 𝑛 > 𝑁,





𝑢
𝑛
− 𝑢





< min{𝛿,

𝜀Δ

2 [1 + (𝛽 − 𝛾) (1 − 𝜂)] |Λ (1) − Λ (0)|

} .

(49)

It follows from (48) and (49) that for any 𝑛 > 𝑁,





𝑇𝑢
𝑛
− 𝑇𝑢





= max
𝑡∈[0,1]





(𝑇𝑢
𝑛
) (𝑡) − (𝑇𝑢) (𝑡)






≤

1 + (𝛽 − 𝛾) (1 − 𝜂)

Δ





𝜆 [𝑢
𝑛
] − 𝜆 [𝑢]






+

𝛽

Δ

∫

1

0

𝑘 (𝜂, 𝑠)




𝑓 (𝑠, 𝑢

𝑛
(𝛼 (𝑠)))

−𝑓 (𝑠, 𝑢 (𝛼 (𝑠)))




𝑑𝑠

+

1

2

∫

1

0

(1 + 𝑠) (1 − 𝑠)
2 



𝑓 (𝑠, 𝑢

𝑛
(𝛼 (𝑠)))

−𝑓 (𝑠, 𝑢 (𝛼 (𝑠)))




𝑑𝑠

≤

1 + (𝛽 − 𝛾) (1 − 𝜂)

Δ





𝑢
𝑛
− 𝑢





|Λ (1) − Λ (0)|

+ ∫

1

0

(

𝛽

Δ

𝑘 (𝜂, 𝑠) +

1

2

(1 + 𝑠) (1 − 𝑠)
2

)

×




𝑓 (𝑠, 𝑢

𝑛
(𝛼 (𝑠))) − 𝑓 (𝑠, 𝑢 (𝛼 (𝑠)))





𝑑𝑠 < 𝜀,

(50)

which indicates that 𝑇 is continuous. Therefore, 𝑇 : 𝐾 →

𝐾 is completely continuous. Similarly, we can prove that 𝑆 :

𝐾 → 𝐾 is also completely continuous.

3. Main Results

For convenience, we define

𝑓
0

= lim sup
𝑥→0

+

max
𝑡∈[0,1]

𝑓 (𝑡, 𝑥)

𝑥

, 𝑓
0
= lim inf
𝑥→0

+

min
𝑡∈[𝜂,1]

𝑓 (𝑡, 𝑥)

𝑥

,

𝑓
∞

= lim sup
𝑥→+∞

max
𝑡∈[0,1]

𝑓 (𝑡, 𝑥)

𝑥

, 𝑓
∞

= lim inf
𝑥→+∞

min
𝑡∈[𝜂,1]

𝑓 (𝑡, 𝑥)

𝑥

,

𝐻
1
=

1 + (𝛽 − 𝛾) (1 − 𝜂)

Δ − 𝜌

[

𝜌


Δ

∫

1

0

𝑘 (𝜂, 𝑠) 𝑑𝑠 + ∫

1

0

𝜅 (𝑠) 𝑑𝑠]

+

𝛽

Δ

∫

1

0

𝑘 (𝜂, 𝑠) 𝑑𝑠 +

5
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,

𝐻
2
= Γ{

1

Δ − 𝜌

[

𝜌


Δ

∫

1

𝜂

𝑘 (𝜂, 𝑠) 𝑑𝑠 + ∫

1

𝜂

𝜅 (𝑠) 𝑑𝑠]

+

1

Δ

∫

1

𝜂

𝑘 (𝜂, 𝑠) 𝑑𝑠} .

(51)

Theorem 7. If 𝐻
1
𝑓
0

< 1 < 𝐻
2
𝑓
∞
, then the BVP (3) has at

least one positive solution.

Proof. Since 𝐻
1
𝑓
0
< 1, there exists 𝜀

1
> 0 such that

𝐻
1
(𝑓
0

+ 𝜀
1
) ≤ 1. (52)

By the definition of 𝑓0, we may choose 𝜌
1
> 0 so that

𝑓 (𝑡, 𝑥) ≤ (𝑓
0

+ 𝜀
1
) 𝑥, 𝑡 ∈ [0, 1] , 𝑥 ∈ [0, 𝜌

1
] . (53)

LetΩ
1
= {𝑢 ∈ 𝐶[0, 1] : ‖𝑢‖ < 𝜌

1
}. Then, for any 𝑢 ∈ 𝐾 ∩ 𝜕Ω

1
,

0 ≤ 𝑢 (𝑡) ≤ ‖𝑢‖ = 𝜌
1
, 𝑡 ∈ [0, 1] , (54)
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which together with (52) and (53) implies that

(𝑆𝑢) (𝑡) =

1 − (𝛽 − 𝛾) 𝜂 + (𝛽 − 𝛾) 𝑡

Δ − 𝜌

× [

𝜌


Δ

∫

1

0

𝑘 (𝜂, 𝑠) 𝑓 (𝑠, 𝑢 (𝛼 (𝑠))) 𝑑𝑠

+∫

1

0

𝜅 (𝑠) 𝑓 (𝑠, 𝑢 (𝛼 (𝑠))) 𝑑𝑠]

+

𝛾 + (𝛽 − 𝛾) 𝑡

Δ

∫

1

0

𝑘 (𝜂, 𝑠) 𝑓 (𝑠, 𝑢 (𝛼 (𝑠))) 𝑑𝑠

+ ∫

1

0

𝑘 (𝑡, 𝑠) 𝑓 (𝑠, 𝑢 (𝛼 (𝑠))) 𝑑𝑠

≤

1 + (𝛽 − 𝛾) (1 − 𝜂)

Δ − 𝜌

× [

𝜌


Δ

∫

1

0

𝑘 (𝜂, 𝑠) 𝑓 (𝑠, 𝑢 (𝛼 (𝑠))) 𝑑𝑠

+∫

1

0

𝜅 (𝑠) 𝑓 (𝑠, 𝑢 (𝛼 (𝑠))) 𝑑𝑠]

+

𝛽

Δ

∫

1

0

𝑘 (𝜂, 𝑠) 𝑓 (𝑠, 𝑢 (𝛼 (𝑠))) 𝑑𝑠

+

1

2

∫

1

0

(1 + 𝑠) (1 − 𝑠)
2

𝑓 (𝑠, 𝑢 (𝛼 (𝑠))) 𝑑𝑠

≤ (𝑓
0

+ 𝜀
1
) {

1 + (𝛽 − 𝛾) (1 − 𝜂)

Δ − 𝜌

× [

𝜌


Δ

∫

1

0

𝑘 (𝜂, 𝑠) 𝑢 (𝛼 (𝑠)) 𝑑𝑠

+∫

1

0

𝜅 (𝑠) 𝑢 (𝛼 (𝑠)) 𝑑𝑠]

+

𝛽

Δ

∫

1

0

𝑘 (𝜂, 𝑠) 𝑢 (𝛼 (𝑠)) 𝑑𝑠

+

1

2

∫

1

0

(1 + 𝑠) (1 − 𝑠)
2

𝑢 (𝛼 (𝑠)) 𝑑𝑠}

≤ (𝑓
0

+ 𝜀
1
) ‖𝑢‖ {

1 + (𝛽 − 𝛾) (1 − 𝜂)

Δ − 𝜌

× [

𝜌


Δ

∫

1

0

𝑘 (𝜂, 𝑠) 𝑑𝑠

+∫

1

0

𝜅 (𝑠) 𝑑𝑠]

+

𝛽

Δ

∫

1

0

𝑘 (𝜂, 𝑠) 𝑑𝑠 +

5

24

}

= 𝐻
1
(𝑓
0

+ 𝜀
1
) ‖𝑢‖ ≤ ‖𝑢‖ , 𝑡 ∈ [0, 1] .

(55)

This shows that

‖𝑆𝑢‖ ≤ ‖𝑢‖ , 𝑢 ∈ 𝐾 ∩ 𝜕Ω
1
. (56)

On the other hand, since 1 < 𝐻
2
𝑓
∞
, there exists 𝜀

2
> 0

such that

𝐻
2
(𝑓
∞

− 𝜀
2
) ≥ 1. (57)

By the definition of 𝑓
∞
, we may choose 𝜌

2
> 0 so that

𝑓 (𝑡, 𝑥) ≥ (𝑓
∞

− 𝜀
2
) 𝑥, 𝑡 ∈ [𝜂, 1] , 𝑥 ∈ [𝜌

2
, +∞) . (58)

Let 𝜌
2

= max{2𝜌
1
, 𝜌
2
/Γ} and Ω

2
= {𝑢 ∈ 𝐶[0, 1] : ‖𝑢‖ < 𝜌

2
}.

Then, for any 𝑢 ∈ 𝐾 ∩ 𝜕Ω
2
,

𝑢 (𝑡) ≥ Γ ‖𝑢‖ = Γ𝜌
2
≥ 𝜌
2
, 𝑡 ∈ [𝜂, 1] , (59)

which together with (57) and (58) implies that

(𝑆𝑢) (𝜂) =

1

Δ − 𝜌

[

𝜌


Δ

∫

1

0

𝑘 (𝜂, 𝑠) 𝑓 (𝑠, 𝑢 (𝛼 (𝑠))) 𝑑𝑠

+∫

1

0

𝜅 (𝑠) 𝑓 (𝑠, 𝑢 (𝛼 (𝑠))) 𝑑𝑠]

+

1

Δ

∫

1

0

𝑘 (𝜂, 𝑠) 𝑓 (𝑠, 𝑢 (𝛼 (𝑠))) 𝑑𝑠

≥

1

Δ − 𝜌

[

𝜌


Δ

∫

1

𝜂

𝑘 (𝜂, 𝑠) 𝑓 (𝑠, 𝑢 (𝛼 (𝑠))) 𝑑𝑠

+∫

1

𝜂

𝜅 (𝑠) 𝑓 (𝑠, 𝑢 (𝛼 (𝑠))) 𝑑𝑠]

+

1

Δ

∫

1

𝜂

𝑘 (𝜂, 𝑠) 𝑓 (𝑠, 𝑢 (𝛼 (𝑠))) 𝑑𝑠
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≥ (𝑓
∞

− 𝜀
2
) {

1

Δ − 𝜌

[

𝜌


Δ

∫

1

𝜂

𝑘 (𝜂, 𝑠) 𝑢 (𝛼 (𝑠)) 𝑑𝑠

+∫

1

𝜂

𝜅 (𝑠) 𝑢 (𝛼 (𝑠)) 𝑑𝑠]

+

1

Δ

∫

1

𝜂

𝑘 (𝜂, 𝑠) 𝑢 (𝛼 (𝑠)) 𝑑𝑠}

≥ (𝑓
∞

− 𝜀
2
) Γ ‖𝑢‖ {

1

Δ − 𝜌

[

𝜌


Δ

∫

1

𝜂

𝑘 (𝜂, 𝑠) 𝑑𝑠

+∫

1

𝜂

𝜅 (𝑠) 𝑑𝑠]

+

1

Δ

∫

1

𝜂

𝑘 (𝜂, 𝑠) 𝑑𝑠}

= 𝐻
2
(𝑓
∞

− 𝜀
2
) ‖𝑢‖ ≥ ‖𝑢‖ .

(60)

This indicates that

‖𝑆𝑢‖ ≥ ‖𝑢‖ , 𝑢 ∈ 𝐾 ∩ 𝜕Ω
2
. (61)

Therefore, it follows from (56), (61), and Theorem 1 that
the operator 𝑆 has one fixed point 𝑢 ∈ 𝐾 ∩ (Ω

2
\ Ω
1
), which

is a positive solution of the BVP (3).

Theorem 8. If 𝐻
1
𝑓
∞

< 1 < 𝐻
2
𝑓
0
, then the BVP (3) has at

least one positive solution.

Proof. Since 𝐻
2
𝑓
0
> 1, there exists 𝜀

3
> 0 such that

𝐻
2
(𝑓
0
− 𝜀
3
) ≥ 1. (62)

By the definition of 𝑓
0
, we may choose 𝜌

3
> 0 so that

𝑓 (𝑡, 𝑥) ≥ (𝑓
0
− 𝜀
3
) 𝑥, 𝑡 ∈ [𝜂, 1] , 𝑥 ∈ [0, 𝜌

3
] . (63)

LetΩ
3
= {𝑢 ∈ 𝐶[0, 1] : ‖𝑢‖ < 𝜌

3
}. Then, for any 𝑢 ∈ 𝐾 ∩ 𝜕Ω

3
,

Γ ‖𝑢‖ ≤ 𝑢 (𝑡) ≤ ‖𝑢‖ = 𝜌
3
, 𝑡 ∈ [𝜂, 1] , (64)

which together with (62) and (63) implies that

(𝑆𝑢) (𝜂) =

1

Δ − 𝜌

[

𝜌


Δ

∫

1

0

𝑘 (𝜂, 𝑠) 𝑓 (𝑠, 𝑢 (𝛼 (𝑠))) 𝑑𝑠

+∫

1

0

𝜅 (𝑠) 𝑓 (𝑠, 𝑢 (𝛼 (𝑠))) 𝑑𝑠]

+

1

Δ

∫

1

0

𝑘 (𝜂, 𝑠) 𝑓 (𝑠, 𝑢 (𝛼 (𝑠))) 𝑑𝑠

≥

1

Δ − 𝜌

[

𝜌


Δ

∫

1

𝜂

𝑘 (𝜂, 𝑠) 𝑓 (𝑠, 𝑢 (𝛼 (𝑠))) 𝑑𝑠

+∫

1

𝜂

𝜅 (𝑠) 𝑓 (𝑠, 𝑢 (𝛼 (𝑠))) 𝑑𝑠]

+

1

Δ

∫

1

𝜂

𝑘 (𝜂, 𝑠) 𝑓 (𝑠, 𝑢 (𝛼 (𝑠))) 𝑑𝑠

≥ (𝑓
0
− 𝜀
3
) {

1

Δ − 𝜌

[

𝜌


Δ

∫

1

𝜂

𝑘 (𝜂, 𝑠) 𝑢 (𝛼 (𝑠)) 𝑑𝑠

+∫

1

𝜂

𝜅 (𝑠) 𝑢 (𝛼 (𝑠)) 𝑑𝑠]

+

1

Δ

∫

1

𝜂

𝑘 (𝜂, 𝑠) 𝑢 (𝛼 (𝑠)) 𝑑𝑠}

≥ (𝑓
0
− 𝜀
3
) Γ ‖𝑢‖ {

1

Δ − 𝜌

[

𝜌


Δ

∫

1

𝜂

𝑘 (𝜂, 𝑠) 𝑑𝑠

+∫

1

𝜂

𝜅 (𝑠) 𝑑𝑠]

+

1

Δ

∫

1

𝜂

𝑘 (𝜂, 𝑠) 𝑑𝑠}

= 𝐻
2
(𝑓
0
− 𝜀
3
) ‖𝑢‖ ≥ ‖𝑢‖ .

(65)

This shows that

‖𝑆𝑢‖ ≥ ‖𝑢‖ , 𝑢 ∈ 𝐾 ∩ 𝜕Ω
3
. (66)

On the other hand, since 𝐻
1
𝑓
∞

< 1, there exists 𝜀
4

> 0

so that

𝐻
1
(𝑓
∞

+ 𝜀
4
) < 1. (67)

By the definition of 𝑓∞, we may choose 𝜌
4
> 0 such that

𝑓 (𝑡, 𝑥) ≤ (𝑓
∞

+ 𝜀
4
) 𝑥, 𝑡 ∈ [0, 1] , 𝑥 ∈ [𝜌

4
, +∞) , (68)

which implies that

𝑓 (𝑡, 𝑥) ≤ 𝑀 + (𝑓
∞

+ 𝜀
4
) 𝑥, 𝑡 ∈ [0, 1] , 𝑥 ∈ [0, +∞) ,

(69)

where

𝑀 = max {𝑓 (𝑡, 𝑥) : 𝑡 ∈ [0, 1] , 𝑥 ∈ [0, 𝜌
4
]} . (70)
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Now, we choose 𝜌
4
= max{2𝜌

3
,𝑀𝐻
1
/(1−𝐻

1
(𝑓
∞

+𝜀
4
))}, and

let Ω
4
= {𝑢 ∈ 𝐶[0, 1] : ‖𝑢‖ < 𝜌

4
}. Then, for any 𝑢 ∈ 𝐾 ∩ 𝜕Ω

4
,

0 ≤ 𝑢 (𝑡) ≤ ‖𝑢‖ , 𝑡 ∈ [0, 1] , (71)

which together with (69) implies that

(𝑆𝑢) (𝑡) =

1 − (𝛽 − 𝛾) 𝜂 + (𝛽 − 𝛾) 𝑡

Δ − 𝜌

× [

𝜌


Δ

∫

1

0

𝑘 (𝜂, 𝑠) 𝑓 (𝑠, 𝑢 (𝛼 (𝑠))) 𝑑𝑠

+∫

1

0

𝜅 (𝑠) 𝑓 (𝑠, 𝑢 (𝛼 (𝑠))) 𝑑𝑠]

+

𝛾 + (𝛽 − 𝛾) 𝑡

Δ

∫

1

0

𝑘 (𝜂, 𝑠) 𝑓 (𝑠, 𝑢 (𝛼 (𝑠))) 𝑑𝑠

+ ∫

1

0

𝑘 (𝑡, 𝑠) 𝑓 (𝑠, 𝑢 (𝛼 (𝑠))) 𝑑𝑠

≤

1 + (𝛽 − 𝛾) (1 − 𝜂)

Δ − 𝜌

× [

𝜌


Δ

∫

1

0

𝑘 (𝜂, 𝑠) 𝑓 (𝑠, 𝑢 (𝛼 (𝑠))) 𝑑𝑠

+∫

1

0

𝜅 (𝑠) 𝑓 (𝑠, 𝑢 (𝛼 (𝑠))) 𝑑𝑠]

+

𝛽

Δ

∫

1

0

𝑘 (𝜂, 𝑠) 𝑓 (𝑠, 𝑢 (𝛼 (𝑠))) 𝑑𝑠

+

1

2

∫

1

0

(1 + 𝑠) (1 − 𝑠)
2

𝑓 (𝑠, 𝑢 (𝛼 (𝑠))) 𝑑𝑠

≤ [𝑀 + (𝑓
∞

+ 𝜀
4
) ‖𝑢‖] {

1 + (𝛽 − 𝛾) (1 − 𝜂)

Δ − 𝜌

× [

𝜌


Δ

∫

1

0

𝑘 (𝜂, 𝑠) 𝑑𝑠

+∫

1

0

𝜅 (𝑠) 𝑑𝑠]

+

𝛽

Δ

∫

1

0

𝑘 (𝜂, 𝑠) 𝑑𝑠 +

5

24

}

= [𝑀 + (𝑓
∞

+ 𝜀
4
) ‖𝑢‖]𝐻

1
≤ ‖𝑢‖ , 𝑡 ∈ [0, 1] .

(72)

This indicates that

‖𝑆𝑢‖ ≤ ‖𝑢‖ , 𝑢 ∈ 𝐾 ∩ 𝜕Ω
4
. (73)

Therefore, it follows from (66), (73), and Theorem 1 that
the operator 𝑆 has one fixed point 𝑢 ∈ 𝐾 ∩ (Ω

4
\ Ω
3
), which

is a positive solution of the BVP (3).

Example 9. Consider the following BVP:

𝑢


(𝑡) + 𝑡
[

[

3359𝑢 (√𝑡)

913𝑒
𝑢(√𝑡)

+

5881(𝑢 (√𝑡))

2

17 (𝑢 (√𝑡) + 1)

]

]

= 0,

𝑡 ∈ (0, 1) ,

𝑢 (0) =

1

4

𝑢 (

1

2

) + ∫

1

0

𝑢 (𝑡) (2𝑡 − 1) 𝑑𝑡, 𝑢


(0) = 0,

𝑢 (1) =

1

2

𝑢 (

1

2

) + ∫

1

0

𝑢 (𝑡) (2𝑡 − 1) 𝑑𝑡.

(74)

In view of 𝑑Λ(𝑡) = (2𝑡 − 1)𝑑𝑡, we have

∫

1

0

𝑑Λ (𝑡) = 0, ∫

1

0

𝑡𝑑Λ (𝑡) =

1

6

, 𝜅 (𝑠) =

1

12

𝑠
2

(1 − 𝑠)
2

,

𝑠 ∈ [0, 1] .

(75)

At the same time, since 𝛾 = 1/4 and 𝛽 = 𝜂 = 1/2, a simple
calculation shows that

Δ =

5

8

, 𝜌 = 𝜌


=

1

24

, Γ =

2

7

,

∫

1

0

𝑘 (𝜂, 𝑠) 𝑑𝑠 =

1

16

, ∫

1

𝜂

𝑘 (𝜂, 𝑠) 𝑑𝑠 =

1

96

,

∫

1

0

𝜅 (𝑠) 𝑑𝑠 =

1

360

, ∫

1

𝜂

𝜅 (𝑠) 𝑑𝑠 =

1

720

.

(76)

So,

𝐻
1
=

913

3360

, 𝐻
2
=

17

2940

. (77)

If we let 𝑓(𝑡, 𝑥) = 𝑡[(3359𝑥/913𝑒
𝑥
) + (5881𝑥

2
/17(𝑥 + 1))],

(𝑡, 𝑥) ∈ [0, 1] × [0, +∞), then it is easy to compute that

𝑓
0

=

3359

913

, 𝑓
∞

=

5881

34

, (78)

which together with (77) implies that

𝐻
1
𝑓
0

=

3359

3360

< 1 < 𝐻
2
𝑓
∞

=

5881

5880

. (79)

Therefore, it follows fromTheorem 7 that the BVP (74) has at
least one positive solution.
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We introduce Chebyshev wavelet analysis method to solve the nonlinear Troesch and Bratu problems. Chebyshev wavelets
expansions together with operational matrix of derivative are employed to reduce the computation of nonlinear problems to a
system of algebraic equations. Several examples are given to validate the efficiency and accuracy of the proposed technique. We
compare the results with those ones reported in the literature in order to demonstrate that the method converges rapidly and
approximates the exact solution very accurately by using only a small number of Chebyshev wavelet basis functions. Convergence
analysis is also included.

1. Introduction

Nonlinear equations occurring in a wide variety of problems
in engineering and science have received a great deal of atten-
tion in the recent decades. Consider the Troesch nonlinear
two-point boundary value problem [1–3] in the following
form:

𝑢


(𝑡) + 𝜆 sinh (𝜆𝑢 (𝑡)) = 0, 𝑡 ∈ [0, 1] ,

𝑢 (0) = 0, 𝑢 (1) = 1,

(1)

where 𝜆 is a positive constant. Troesch’s problem comes
from the investigation of the confinement of a plasma
column under radiation pressure. Many authors have paid
considerable attention to solving Troesch’s problem. Weibel
was the first to explain and solve the problem [4]. Roberts
and Shipman [3] obtained the closed form solution of the
problem in terms of the Jacobi elliptic function. Troesch
obtained numerical solution of this problem by the shooting
method [5]. Deeba et al. [6] proposed a numerical method
based on the decomposition technique. A numerical scheme
based on the modified homotopy perturbation method is
deduced by Feng et al. [7]. Variational iteration method was
proposed by Momani et al. [8]. Khuri solved this problem
numerically based on Laplace transform and a modified

decomposition technique [9] and also proposed B-spline
collocation approach for solving Troesch’s problem [10].
The Sinc-Galerkin method was introduced by Zarebnia and
Sajjadian [11]. S.-H. Chang and I.-L. Chang [12] proposed
a new technique based on differential transform for solving
Troesch’s problem. A new algorithm based on the variational
method and variable transformation was proposed by Chang
[13]. More detailed information and references to other
discussions on Troesch’s problem may be found in [14–18].

The closed form solution of Troesch’s problem is given in
[3], where 𝑢(0) is the derivative at 0 given by

𝑢


(0) = 2(1 − 𝑚)
1/2

. (2)

The constant𝑚 satisfies the transcendental equation

sinh (𝜆/2)
(1 − 𝑚)

1/2
= sc (𝜆𝑚) , (3)

where sc(𝜆 | 𝑚) is the Jacobi function defined by sc(𝜆 | 𝑚) =
sin𝜙/ cos𝜙, where 𝜙, 𝜆, and𝑚 satisfy the following integral:

𝜆 = ∫

𝜙

0

1

√1 − 𝑚 sin2𝜃
𝑑𝜃. (4)
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It has been indicated in [3, 5] that 𝑢(𝑡) has a singularity
located approximately at

𝑡
𝑠
=

1

2𝜆

ln( 16

1 − 𝑚

) =

1

𝜆

ln( 8

𝑢

(0)

) , (5)

which implies that the singularity lies within the integration
range if 𝑢(0) > 8𝑒𝜆. This characteristic of Troesch’s problem
makes it impossible to be solved by some methods when 𝜆 >
1 [6, 7, 9, 19].

Another well-known problem is the Bratu nonlinear two-
point boundary value problem given in the following form:

𝑢


(𝑡) + 𝜆𝑒
𝑢(𝑡)

= 0, 𝑡 ∈ (0, 1) ,

𝑢 (0) = 0, 𝑢 (1) = 0,

(6)

where 𝜆 is a physical parameter and the prime denotes the
differentiation with respect to 𝑡. The Bratu problem is indeed
a special case of the following well-known classical Gelfand
problem by assuming𝑁 = 1:

𝑢


(𝑡) +

𝑁 − 1

𝑟

𝑢


(𝑡) + 𝜆𝑒
𝑢(𝑡)

= 0,

𝑟 ∈ (0, 1] , 𝑁 = 1, 2, 3, . . . ,

(7)

𝑢 (0) = 0, 𝑢 (1) = 0, (8)

where𝑁 = 1, 2, and 3 correspond to the infinite slab, infinite
circular cylinder, and sphere, respectively. The numerical
solutions for all 𝑁 = 1, 2, 3, . . . were obtained by Joseph and
Lundgren [20] for the domain of a unit ball.

The Bratu problem has an analytical solution given in the
following form:

𝑢 (𝑡) = −2 ln [cosh ((𝑡 − (1/2)) (𝜃/2))
cosh (𝜃/4)

] , (9)

where 𝜃 is the solution of 𝜃 = √2𝜆 cosh(𝜃/4).
The Bratu problem has zero, one, or two solutions when

𝜆 > 𝜆
𝑐
, 𝜆 = 𝜆

𝑐
, and 𝜆 < 𝜆

𝑐
, respectively, where the critical

value 𝜆
𝑐
satisfies the equation 1 = (1/4)√2𝜆

𝑐
sinh(𝜃

𝑐
/4) and

it was obtained in [21, 22] that the critical value 𝜆
𝑐
is given by

𝜆
𝑐
= 3.513830719.
TheBratu problem is used in a different variety of applica-

tions such as the fuel ignition of the thermal combustion the-
ory, the model thermal reaction process, the Chandrasekhar
model of the expansion of the universe, chemical reaction
theory, radiative heat transfer, and nanotechnology [23–29].

Solving the Bratu Problem by analytical and numeri-
cal methods has gained considerable attention from many
authors. Aregbesola applied weighted residual method [22]
and Wazwaz has employed the Adomian decomposition
method to get exact solutions [23]. Homotopy analysis
method was developed by Liao and Tan [29] and Laplace
transform decomposition method was used in [30]. Non-
polynomial spline method has been applied by Jalilian to

obtain smooth approximate solution of the one-dimensional
Bratu problem [31]. Caglar et al. [32] developed the B-
splinemethod. Variationalmethod and differential transform
method were used in [33, 34]. Also Abbasbandy et al. [35]
tried to solve the problem using the Lie-group shooting
method.

In the recent years, wavelets have received considerable
attention by researchers in different fields of science and
engineering. One advantage of wavelet analysis is the ability
to perform local analysis [36]. Wavelet analysis is able to
reveal signal aspects that other analysismethodsmiss, such as
trends, breakdownpoints, anddiscontinuities. In comparison
with other orthogonal functions, multiresolution analysis
aspect of wavelets permits the accurate representation of a
variety of functions and operators. In other words, we can
change𝑀 and 𝑘 simultaneously to getmore accurate solution.
In addition, the coefficient matrix of algebric equations
obtained after dicretization is sparse. So it is computationally
efficient to use wavelet methods for solving equations. In
addition, the solution is convergent.

We organize our paper as follows. In Section 2, we intro-
duce the Chebyshev wavelets, and the operational matrix of
derivative for Chebyshev wavelets is defined. In Section 3,
convergence analysis is included. In Section 4, we introduce
the method of solving Troesch’s and Bratu’s problems by
wavelet analysis method. Several numerical examples are
included in Section 5 to confirm that our method is efficient
and accurate. Some conclusions are drawn in Section 6.

2. Chebyshev Wavelets and Their Properties

2.1. Wavelets and Chebyshev Wavelets. Wavelets have been
very successfully used in many scientific and engineering
fields. They constitute a family of functions constructed
from dilation and transformation of a single function called
the mother wavelet 𝜓(𝑡); we have the following family of
continuous wavelets:

𝜓
𝑎,𝑏
(𝑡) = |𝑎|

−1/2

𝜓(

𝑡 − 𝑏

𝑎

) , 𝑎, 𝑏 ∈ 𝑅, 𝑎 ̸= 0. (10)

Chebyshev wavelets, 𝜓
𝑛,𝑚

= 𝜓(𝑘, 𝑛,𝑚, 𝑡), have four argu-
ments, 𝑛 = 0, 1, . . . , 2𝑘 − 1, where 𝑘 can assume any positive
integer,𝑚 is the degree of Chebyshev polynomials of the first
kind, and 𝑡 denotes the time.

Consider

𝜓
𝑛,𝑚
(𝑡) =

{
{

{
{

{

2
(𝑘+1)/2 ̃

𝑇
𝑚
(2
𝑘+1
𝑡 − 2𝑛 − 1) ,

𝑛

2
𝑘
≤ 𝑡 <

𝑛 + 1

2
𝑘
,

0, otherwise,
(11)

where

̃
𝑇
𝑚
(𝑡) =

{
{
{

{
{
{

{

1

√𝜋

, 𝑚 = 0,

√
2

𝜋

𝑇
𝑚
(𝑡) , 𝑚 ≥ 1,

(12)
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and 𝑚 = 0, 1, . . . ,𝑀, and 𝑛 = 0, 1, . . . , 2
𝑘
− 1. In (10)

the coefficients are used for orthonormality. Here 𝑇
𝑚
(𝑡) are

Chebyshev polynomials of the first kind of degree 𝑚 which
are orthogonal with respect to the weight function, 𝑤(𝑡) =
1/√1 − 𝑡

2, and satisfy the following recursive formula:

𝑇
0
(𝑡) = 1, 𝑇

1
(𝑡) = 𝑡,

𝑇
𝑚+1
(𝑡) = 2𝑡𝑇

𝑚
(𝑡) − 𝑇

𝑚−1
(𝑡) , 𝑚 = 1, 2, . . . .

(13)

Note that, in dealing with Chebyshev wavelets, the weight
function 𝑤(𝑡) has to be dilated and translated as follows:

𝑤
𝑛,𝑘
(𝑡) = 𝑤 (2

𝑘+1

𝑡 − 2𝑛 − 1) (14)

in order to get orthogonal wavelets.

2.2. Function Approximation. A function 𝑢(𝑡) ∈ 𝐿
2

𝑤
[0, 1]

(where 𝑤(𝑡) = 𝑤(2𝑡 − 1)) may be expanded as

𝑢 (𝑡) =

∞

∑

𝑛=0

∞

∑

𝑚=0

𝑐
𝑛,𝑚
𝜓
𝑛,𝑚
(𝑡) , (15)

where 𝑐
𝑛,𝑚

= (𝑢(𝑡), 𝜓
𝑛,𝑚
(𝑡))
𝑤
𝑛,𝑘

, in which (⋅, ⋅) denotes the
inner product in 𝐿2

𝑤
[0, 1]. If we consider truncated series in

(15), we obtain

𝑢 (𝑡) =

2
𝑘
−1

∑

𝑛=0

𝑀

∑

𝑚=0

𝑐
𝑛,𝑚
𝜓
𝑛,𝑚
(𝑡) = 𝐶

𝑇

Ψ (𝑡) , (16)

where 𝐶 and Ψ(𝑡) are 2𝑘(𝑀 + 1) × 1matrices given by

𝐶 = [𝑐
0,0
, 𝑐
0,1
, . . . , 𝑐

0,𝑀
, 𝑐
1,0
, 𝑐
1,1
, . . . , 𝑐

1,𝑀
, . . . ,

𝑐
2
𝑘
−1,0
, 𝑐
2
𝑘
−1,1
, . . . , 𝑐

2
𝑘
−1,𝑀

]
𝑇

,

Ψ (𝑡) = [𝜓
0,0
, 𝜓
0,1
, . . . , 𝜓

0,𝑀
, 𝜓
1,0
, 𝜓
1,1
, . . . , 𝜓

1,𝑀
, . . . ,

𝜓
2
𝑘
−1,0
, 𝜓
2
𝑘
−1,1
, . . . , 𝜓

2
𝑘
−1,𝑀

]
𝑇

.

(17)

2.3. Operational Matrix of Derivative (OMD). The derivative
of the vector Ψ(𝑡), which is defined in (17), can be expressed
by

𝑑

𝑑𝑡

𝜓 (𝑡) = 𝐷𝜓 (𝑡) , (18)

where 𝐷 is 2𝑘(𝑀 + 1) × 2
𝑘
(𝑀 + 1) operational matrix of

derivative defined as follows:

𝐷 =

[

[

[

[

[

𝐸 0 ⋅ ⋅ ⋅ 0

0 𝐸 ⋅ ⋅ ⋅ 0

...
... d

...
0 0 0 𝐸

]

]

]

]

]

, (19)

in which 𝐸 is (𝑀+1)× (𝑀+1)matrix and its (𝑖, 𝑗)th element
is defined as follows:

𝐸
𝑖,𝑗

=

{
{

{
{

{

2
𝑘+2
𝑚
√

𝛾
𝑖−1

𝛾
𝑗−1

,

𝑖 = 2, . . . , (𝑀 + 1) , 𝑗 = 1, . . . , 𝑗 − 1;

(𝑖 + 𝑗) is odd,
0, otherwise,

(20)

where

𝛾
𝑛
= {

2, 𝑛 = 0,

1, 𝑛 ≥ 1.

(21)

The method of calculation of𝐷 is illustrated in [37].

Corollary 1. The operational matrix for nth derivative can be
obtained using (18) as

𝑑
𝑛
Ψ (𝑡)

𝑑𝑥
𝑛
= 𝐷
𝑛

Ψ (𝑡) , (22)

where𝐷𝑛 is the 𝑛th power of matrix 𝐷.

3. Convergence Analysis

Lemma 2. If the Chebyshev wavelet expansion of a continuous
function 𝑢(𝑡) converges uniformly, then the Chebyshev wavelet
expansion converges to the function 𝑢(𝑡).

Proof. Suppose the Chebyshev wavelet expansion of the
continuous function 𝑢(𝑡) converges to function V(𝑡)

V (𝑡) =
2
𝑘−1

∑

𝑛=1

𝑀

∑

𝑚=0

𝑐
𝑛𝑚
𝜓
𝑛𝑚
(𝑡) , (23)

where 𝑐
𝑛,𝑚

= (𝑢(𝑡), 𝜓
𝑛,𝑚
(𝑡))
𝑤
𝑛,𝑘

. Multiply both sides of (23)
by 𝜓
𝑟,𝑠
(𝑡)𝑤
𝑟,𝑘
(𝑡), where 𝑟 and 𝑠 are fixed. Due to the uniform

convergence, we can then integrate termwise on interval [0, 1]

∫

1

0

V (𝑡) 𝜓
𝑟,𝑠
(𝑡) 𝑤
𝑟,𝑘
𝑑𝑡

=

2
𝑘−1

∑

𝑛=1

𝑀

∑

𝑚=0

∫

1

0

𝑐
𝑛𝑚
𝜓
𝑛𝑚
(𝑡) 𝜓
𝑟,𝑠
(𝑡) 𝑤
𝑟,𝑘
𝑑𝑡.

(24)

By the orthonormality of wavelet basis functions, we have

∫

1

0

V (𝑡) 𝜓
𝑟,𝑠
(𝑡) 𝑤
𝑟,𝑘
𝑑𝑡 = 𝑐

𝑟,𝑠
. (25)

Thus (V(𝑡), 𝜓
𝑛,𝑚
(𝑡))
𝑤
𝑛,𝑘

= 𝑐
𝑛,𝑚

for 𝑛 = 1, 2, . . . , 2𝑘−1 and 𝑚 =
0, 1, . . . ,𝑀; consequently, 𝑢(𝑡) and V(𝑡) have the same Fourier
expansions with Chebyshev wavelet basis; therefore, 𝑢(𝑡) =
V(𝑡), for 𝑡 ∈ [0, 1] [38].

Theorem 3. A function 𝑢(𝑡) ∈ 𝐿2
𝑤
𝑛,𝑘

([0, 1]), with bounded
second derivative, say |𝑢(𝑡)| ≤ 𝐵, can be expanded as
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Table 1: Obtained absolute errors of Troesch’s problem for 𝜆 = 0.5.

𝑡

Chebyshev wavelet Laplace HPM HAM Spline VIM
𝑀 = 4, 𝑘 = 1 [9] [7] [18] [10] [7]

0.1 7.6 × 10
−4

7.7 × 10
−4

8.2 × 10
−4

7.7 × 10
−4

7.7 × 10
−4

4.9 × 10
−3

0.2 1.5 × 10
−3

1.5 × 10
−3

1.6 × 10
−3

1.5 × 10
−3

1.5 × 10
−3

9.7 × 10
−3

0.3 2.1 × 10
−3

2.1 × 10
−3

2.3 × 10
−3

2.1 × 10
−3

2.1 × 10
−3

1.4 × 10
−2

0.4 2.7 × 10
−3

2.7 × 10
−3

2.9 × 10
−3

2.7 × 10
−3

2.7 × 10
−3

1.9 × 10
−2

0.5 3.0 × 10
−3

3.0 × 10
−3

3.2 × 10
−3

3.0 × 10
−3

3.0 × 10
−3

2.3 × 10
−2

0.6 3.1 × 10
−3

3.1 × 10
−3

3.4 × 10
−3

3.1 × 10
−3

3.1 × 10
−3

2.8 × 10
−2

0.7 3.0 × 10
−3

3.0 × 10
−3

3.2 × 10
−3

3.0 × 10
−3

3.0 × 10
−3

3.2 × 10
−2

0.8 2.4 × 10
−3

2.4 × 10
−3

2.7 × 10
−3

2.4 × 10
−3

2.4 × 10
−3

3.6 × 10
−2

0.9 1.5 × 10
−3

1.5 × 10
−3

1.6 × 10
−3

1.5 × 10
−3

1.5 × 10
−3

4.0 × 10
−2

Table 2: Obtained absolute errors of Troesch’s problem for 𝜆 = 1.0.

𝑡

Chebyshev wavelet Laplace HPM HAM Spline VIM
𝑀 = 4, 𝑘 = 1 [9] [7] [18] [10] [7]

0.1 2.8 × 10
−3

2.9 × 10
−3

3.6 × 10
−3

2.9 × 10
−3

2.8 × 10
−3

1.8 × 10
−2

0.2 5.6 × 10
−3

5.9 × 10
−3

7.1 × 10
−2

5.7 × 10
−3

5.6 × 10
−3

3.6 × 10
−2

0.3 8.2 × 10
−3

8.2 × 10
−3

1.0 × 10
−2

8.3 × 10
−3

8.2 × 10
−3

5.5 × 10
−2

0.4 1.0 × 10
−2

1.0 × 10
−2

1.3 × 10
−2

1.0 × 10
−2

1.0 × 10
−2

7.4 × 10
−2

0.5 1.2 × 10
−2

1.2 × 10
−2

1.6 × 10
−2

1.2 × 10
−2

1.2 × 10
−2

9.3 × 10
−2

0.6 1.3 × 10
−2

1.3 × 10
−2

1.7 × 10
−2

1.3 × 10
−2

1.3 × 10
−2

1.1 × 10
−1

0.7 1.3 × 10
−2

1.3 × 10
−2

1.7 × 10
−2

1.2 × 10
−2

1.3 × 10
−2

1.3 × 10
−1

0.8 1.1 × 10
−2

1.1 × 10
−2

1.5 × 10
−2

1.2 × 10
−2

1.1 × 10
−2

1.5 × 10
−1

0.9 7.4 × 10
−3

7.4 × 10
−3

9.7 × 10
−3

7.4 × 10
−3

7.4 × 10
−3

1.7 × 10
−1

an infinite sum of Chebyshev wavelets, and the series converges
uniformly to 𝑢(𝑡); that is,

𝑢 (𝑡) =

∞

∑

𝑛=1

∞

∑

𝑚=0

𝑐
𝑛𝑚
𝜓
𝑛𝑚
(𝑡) . (26)

Proof. We have

𝑐
𝑛,𝑚
= (𝑢 (𝑡) , 𝜓

𝑛,𝑚
(𝑡))
𝑤
𝑛,𝑘

= ∫

1

0

𝑢 (𝑡) 𝜓
𝑛𝑚
(𝑡) 𝑤
𝑛,𝑘
(𝑡) 𝑑𝑡

= ∫

𝑛/2
𝑘−1

𝑛−1/2
𝑘−1

2
𝑘/2

𝑝
𝑚
𝑢 (𝑡) 𝑇

𝑚
(2
𝑘

𝑡 − 2𝑛 + 1)

× 𝑤 (2
𝑘

𝑡 − 2𝑛 + 1) 𝑑𝑡.

(27)

For𝑚 > 1, by substituting 2𝑘𝑡 − 2𝑛 + 1 = cos𝛼, it yields

𝑐
𝑛𝑚
=

1

2
𝑘/2
∫

𝜋

0

𝑢 (

cos𝛼 + 2𝑛 − 1
2
𝑘

)√
2

𝜋

cos𝑚𝛼𝑑𝛼. (28)

Using integration by parts, we get

𝑐
𝑛𝑚
=

√2

2
𝑘/2
√𝜋

𝑢(

cos𝛼 + 2𝑛 − 1
2
𝑘

) (

sin𝑚𝛼
𝑚

)









𝜋

0

+

√2

2
3𝑘/2
𝑚√𝜋

∫

𝜋

0

𝑢


(

cos𝛼 + 2𝑛 − 1
2
𝑘

) sin𝑚𝛼 sin𝛼𝑑𝛼.

(29)

The first part is zero; therefore,

𝑐
𝑛𝑚
=

√2

2
3𝑘/2
𝑚√𝜋

∫

𝜋

0

𝑢


(

cos𝛼 + 2𝑛 − 1
2
𝑘

) sin𝑚𝛼 sin𝛼𝑑𝛼.

(30)

Using integration by parts again, it yields

𝑐
𝑛𝑚
=

1

2
3𝑘/2
𝑚√2𝜋

×𝑢


(

cos𝛼+2𝑛−1
2
𝑘

) (

sin (𝑚−1) 𝛼
𝑚−1

−

sin (𝑚+1) 𝛼
𝑚+1

)










𝜋

0

+

1

2
5𝑘/2
𝑚√2𝜋

∫

𝜋

0

𝑢


((

cos𝛼 + 2𝑛 − 1
2
𝑘

) 𝑟
𝑚
(𝛼)) 𝑑𝛼,

(31)

where

𝑟
𝑚
(𝛼) = sin𝛼( sin (𝑚 − 1) 𝛼

𝑚 − 1

−

sin (𝑚 + 1) 𝛼
𝑚 + 1

) . (32)
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Table 3: Numerical solution of Troesch’s problem for 𝜆 = 5.

𝑡 Fortran code B-spline
|Error| Chebyshev wavelet

|Error|
[10] 𝑀 = 9, 𝑘 = 3

0.0 0.00000000 0.00000000 0.0 0.00000000 0.0

0.2 0.01075342 0.01002027 7.3 × 10
−3

0.01075412 7.0 × 10
−7

0.4 0.03320051 0.03099793 2.2 × 10
−3

0.03320271 2.2 × 10
−6

0.8 0.25821664 0.24170496 1.4 × 10
−2

0.25823492 1.8 × 10
−5

0.9 0.45506034 0.42461830 3.0 × 10
−2

0.45508401 2.4 × 10
−5

1.0 1.00000000 1.00000000 0.0 1.00000000 0.0

Thus, we get





𝑐
𝑛𝑚





=










1

2
5𝑘/2
𝑚√2𝜋

∫

𝜋

0

𝑢


(

cos𝛼 + 2𝑛 − 1
2
𝑘

) 𝑟
𝑚
(𝛼) 𝑑𝛼










≤ (

1

2
5𝑘/2
𝑚√2𝜋

)∫

𝜋

0









𝑢


(

cos𝛼 + 2𝑛 − 1
2
𝑘

) 𝑟
𝑚
(𝛼)









𝑑𝛼

≤

𝐵

2
5𝑘/2
𝑚√2𝜋

∫

𝜋

0





𝑟
𝑚
(𝛼)




𝑑𝛼.

(33)

However

∫

𝜋

0





𝑟
𝑚
(𝛼)




𝑑𝛼

= ∫

𝜋

0










sin𝛼( sin (𝑚 − 1) 𝛼
𝑚 − 1

−

sin (𝑚 + 1) 𝛼
𝑚 + 1

)










𝑑𝛼

≤ ∫

𝜋

0










sin𝛼 sin (𝑚 − 1) 𝛼
𝑚 − 1










+










sin𝛼 sin (𝑚 + 1) 𝛼
𝑚 + 1










𝑑𝛼

≤

2𝑚𝜋

𝑚
2
− 1

.

(34)

Since 𝑛 ≤ 2𝑘−1, we obtain





𝑐
𝑛𝑚





≤

√2𝜋𝐵

(2𝑛)
5/2

(𝑚
2
− 1)

. (35)

Now, if𝑚 = 1, by using (30), we have





𝑐
𝑛1





<

√2𝜋

(2𝑛)
3/2

max
0≤𝑡≤1






𝑢


(𝑡)






. (36)

It is mentioned in [39] that {𝜓
𝑛0
}
∞

𝑛=1
form an orthogonal

system constructed by Haar scaling function with respect to
the weight function𝑤(𝑡), and so∑∞

𝑛=1
𝑐
𝑛0
𝜓
𝑛0
(𝑡) is convergent.

Hence, we will have
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∞
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∞
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∞
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+
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𝑛=1

∞

∑
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𝑐
𝑛𝑚





< ∞.

(37)

Therefore, in view of Lemma 2, the series
∑
∞

𝑛=1
∑
∞

𝑚=1
𝑐
𝑛𝑚
𝜓
𝑛𝑚
(𝑡) converges to 𝑢(𝑡) uniformly.

4. The Chebyshev Wavelet Analysis Method

4.1. Troesch’s Problem. Troesch’s problems (1) can be consid-
ered as follows:

𝑢


= 𝑤,

𝑤


= 𝜆 sinh (𝜆𝑢) ,

𝑢 (0) = 0, 𝑢 (1) = 1.

(38)

Then the Jacobian matrix of system (38) is given by

𝐽 (𝑢, 𝑤) = [

0 1

𝜆
2 cosh (𝜆𝑢) 0] . (39)

Therefore, the eigenvalues of the Jacobian matrix at the end
points of the interval [0, 1] are

𝜆


(0) = ±𝜆, 𝜆


(1) = ±𝜆√cosh (𝜆). (40)

If we choose large 𝜆, we will have large eigenvalues; for
example, if 𝜆 = 10, then the eigenvalue becomes 𝜆 = ±1049.
On the other hand, the Jacobianmatrix 𝐽 is normal if and only
if 𝜆2 cosh(𝜆𝑢) = 1. This equality is satisfied only for relatively
small values of 𝜆. This clarifies why conventional methods,
such as finite differences, are not convenient for large values of
𝜆 [10]. To solve Troesch’s problems where there exist, a strong
nonlinear term sinh(𝜆𝑢) and boundary layer only at the right
endpoint (𝜆 > 1) [10], we proposeChebyshevwavelet analysis
method especially to handle larger eigenvalues.

Consider the Troesch nonlinear boundary value problem

𝑢


(𝑡) + 𝜆 sinh (𝜆𝑢 (𝑡)) = 0, 𝑡 ∈ (0, 1) , (41)

with the boundary conditions

𝑢 (0) = 0, 𝑢 (1) = 1. (42)

In order to solve the problem, we first approximate all
functions 𝑢(𝑡) and 𝑢(𝑡) using basis functions Ψ(𝑡) as

𝑢 (𝑡) = 𝐶
𝑇

Ψ (𝑡) , 𝑢


(𝑡) = 𝐶
𝑇

𝐷
2

Ψ (𝑡) . (43)

Substituting (43) in (41), we obtain

𝐶
𝑇

𝐷
2

Ψ (𝑡) − 𝜆 sinh (𝜆𝐶𝑇Ψ (𝑡)) = 0. (44)
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Table 4: Numerical solution of Troesch’s problem for 𝜆 = 10.

𝑡 Present method B-spline,𝑁 = 790 𝑦
1750
(𝑥) 𝑦

1
(𝑥) =

4

𝜇

tanh−1(𝜇
1
(𝑥)) 𝑦

2
(𝑥) =

4

𝜇

tanh−1(𝜇
2
(𝑥))

𝑀 = 20, 𝑘 = 5 [10] [12] [13] [13]
0.00 0 0 0 0 0
0.100 4.2110 × 10

−5

4.2097 × 10
−5

4.2113 × 10
−5

4.2112 × 10
−5

4.2112 × 10
−5

0.200 1.2996 × 10
−4

1.2992 × 10
−4

1.2997 × 10
−4

1.2996 × 10
−4

1.2996 × 10
−4

0.300 3.5896 × 10
−4

3.5886 × 10
−4

3.5899 × 10
−4

3.5898 × 10
−4

3.5898 × 10
−4

0.400 9.7785 × 10
−4

9.7762 × 10
−4

9.7792 × 10
−4

9.7790 × 10
−4

9.7790 × 10
−4

0.500 2.6589 × 10
−3

2.6583 × 10
−3

2.6591 × 10
−3

2.6590 × 10
−3

2.6590 × 10
−3

0.600 7.2286 × 10
−3

7.2272 × 10
−3

7.2291 × 10
−3

7.2289 × 10
−3

7.2289 × 10
−3

0.700 1.9663 × 10
−2

1.9660 × 10
−2

1.9664 × 10
−2

1.9664 × 10
−2

1.9664 × 10
−2

0.800 5.3728 × 10
−2

5.3720 × 10
−2

5.3732 × 10
−2

5.3730 × 10
−2

5.3730 × 10
−2

0.900 1.5210 × 10
−1

1.5209 × 10
−1

1.5212 × 10
−1

1.5211 × 10
−1

1.5211 × 10
−1

0.925 2.0199 × 10
−1

2.0199 × 10
−1

2.0201 × 10
−1

2.0201 × 10
−1

2.0201 × 10
−1

0.950 2.7625 × 10
−1

2.7623 × 10
−1

2.7628 × 10
−1

2.7627 × 10
−1

2.7627 × 10
−1

0.970 3.7224 × 10
−1

3.7223 × 10
−1

3.7229 × 10
−1

3.7226 × 10
−1

3.7226 × 10
−1

0.980 4.4822 × 10
−1

4.4820 × 10
−1

4.4825 × 10
−1

4.4823 × 10
−1

4.4823 × 10
−1

0.990 5.7407 × 10
−1

5.7405 × 10
−1

5.7411 × 10
−1

5.7408 × 10
−1

5.7408 × 10
−1

0.995 6.9011 × 10
−1

6.9010 × 10
−1

6.9018 × 10
−1

6.9011 × 10
−1

6.9011 × 10
−1

0.997 7.6577 × 10
−1

7.6576 × 10
−1

7.6587 × 10
−1

7.6577 × 10
−1

7.6577 × 10
−1

0.998 8.1802 × 10
−1

8.1802 × 10
−1

8.1816 × 10
−1

8.1803 × 10
−1

8.1803 × 10
−1

0.999 8.8899 × 10
−1

8.8899 × 10
−1

8.8917 × 10
−1

8.8899 × 10
−1

8.8899 × 10
−1

1.000 1.0000 1.0000 1.0000 9.9999 9.9999

Now,we have 2𝑘(𝑀+1)−2 nonlinear equations by collocating
(41) at 2𝑘(𝑀 + 1) − 2 suitable collocation, points. From
boundary conditions we also get two equations. So we have
a nonlinear system of 2𝑘(𝑀 + 1) equations with the same
number of unknowns which can be solved by Newton’s
iterative method to obtain the vector 𝐶 and consequently the
approximated solution 𝑢(𝑡).

4.2. Bratu’s Problem. Consider the Bratu nonlinear boundary
value problem

𝑢


(𝑡) + 𝜆𝑒
𝑢(𝑡)

= 0, 𝑡 ∈ (0, 1) , (45)

with the boundary conditions

𝑢 (0) = 0, 𝑢 (1) = 0, (46)

or initial conditions

𝑢 (0) = 0, 𝑢


(0) = 0. (47)

In order to solve the problem, we first approximate all
functions 𝑢(𝑡), 𝑢(𝑡), and 𝑢(𝑡) using basis functions Ψ(𝑡) as

𝑢 (𝑡) = 𝐶
𝑇

Ψ (𝑡) ,

𝑢


(𝑡) = 𝐶
𝑇

𝐷Ψ (𝑡) , 𝑢


(𝑡) = 𝐶
𝑇

𝐷
2

Ψ (𝑡) .

(48)

Substituting (48) in (45), we obtain

𝐶
𝑇

𝐷
2

Ψ (𝑡) + 𝜆𝑒
𝐶
𝑇
Ψ(𝑡)

= 0. (49)

Now,we have 2𝑘(𝑀+1)−2 nonlinear equations by collocating
(49) at 2𝑘(𝑀 + 1) − 2 suitable collocation points. From
boundary conditions, or initial conditions, we also get two
equations. So we have a nonlinear system of 2𝑘(𝑀 + 1)

equations with the same number of unknowns which can be
solved by Newton’s iterative method to obtain the vector 𝐶
and consequently the approximated solution 𝑢(𝑡).

5. Numerical Examples

In this section, we solve Troesch’s and Bratu’s problems for
different values of the parameter𝜆using the computer algebra
system Maple and make a comparison between our results
and those ones reported in the literature to confirm the
efficiency and accuracy of our method.

Example 1. Troesch’s problem for 𝜆 = 0.5, 1, and 10.
In Tables 1 and 2, the absolute errors in solutions obtained

by the introducedmethod for 𝜆 = 0.5 and 𝜆 = 1, respectively,
are compared with those ones reported by other existing
methods. We observe that the wavelet analysis method with
only a few number of basis functions is comparable to
Laplace, HAM, and spline methods but is slightly better
than perturbation method and much better than variational
method in terms of accuracy.

Due to the nonlinear term sinh(𝜆𝑢(𝑡)), which is not
analytic, some methods like Laplace, variational iteration
method, and homotopy are not able to solve the Troesch
problem when 𝜆 ≥ 5. In Table 3, the numerical solution for
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Table 5: Obtained absolute errors for 𝜆 = 1.

𝑡

Present method NPSM LGSM Decomposition Laplace B-spline
𝑀 = 10, 𝑘 = 3 [31] [35] [6] [30] [32]

0.1 1.23 × 10
−19

5.77 × 10
−10

7.51 × 10
−7

2.68 × 10
−3

1.98 × 10
−6

2.98 × 10
−6

0.2 3.13 × 10
−19

2.47 × 10
−10

1.02 × 10
−6

2.02 × 10
−3

3.94 × 10
−6

5.46 × 10
−6

0.3 6.20 × 10
−19

4.56 × 10
−11

9.05 × 10
−7

1.52 × 10
−4

5.85 × 10
−6

7.33 × 10
−6

0.4 7.80 × 10
−19

9.64 × 10
−11

5.24 × 10
−7

2.20 × 10
−3

7.70 × 10
−6

8.50 × 10
−6

0.5 7.70 × 10
−19

1.46 × 10
−10

5.07 × 10
−9

3.01 × 10
−3

9.47 × 10
−6

8.89 × 10
−6

0.6 7.80 × 10
−19

9.64 × 10
−11

5.14 × 10
−7

2.20 × 10
−3

1.11 × 10
−5

8.50 × 10
−6

0.7 6.20 × 10
−19

4.56 × 10
−11

8.95 × 10
−7

1.52 × 10
−4

1.26 × 10
−5

7.33 × 10
−6

0.8 3.13 × 10
−19

2.47 × 10
−10

1.01 × 10
−6

2.02 × 10
−3

1.35 × 10
−5

5.46 × 10
−6

0.9 1.22 × 10
−19

5.77 × 10
−10

7.42 × 10
−7

2.68 × 10
−3

1.20 × 10
−5

2.98 × 10
−6

𝜆 = 5 obtained by the current method is compared with the
numerical approximation of the exact solutions given by a
Fortran code called TWPBVP and B-spline method [10]. It
can be seen that our obtained results are muchmore accurate
than those obtained by B-spline method.

In Table 4, the numerical solution obtained by the current
method using𝑀 = 20 and 𝑘 = 5 (672-term approximant),
for 𝜆 = 10, is compared with the results obtained by B-
spline method over a nonuniform mesh using 𝑛 = 790

mesh points [10], with those in [12] computed using 1750-
term approximant, and with those obtained by [13] using
a method based on the variational iteration method and
variable transformation. It can be seen that the results
obtained by the present method with much lesser number of
terms to approximate the solution are compatible and in well
agreement with those ones obtained by Chang [13].

Example 2. Consider the Bratu problem for 𝜆 = 1.
We solve the problem by applying the technique

described in Section 4 with𝑀 = 10 and 𝑘 = 3. The absolute
errors in solutions are tabulated in Table 5. As can be seen
in Table 5, only a small number of Chebyshev wavelet basis
functions are needed to get the approximate solution which is
in full agreement with the exact solution up to 18 digits while,
using other methods, we can find a numerical approximation
to the exact solution which is the same at most in 10 digits.
We display the exact and obtained solutions in Figure 1.
Absolute errors in solutions are plotted in Figure 2.

Example 3. Consider the Bratu problem for 𝜆 = 2.
We solve the problem with 𝑀 = 10 and 𝑘 = 3.

The absolute errors in solutions are tabulated in Table 6.
We display the exact and obtained solutions in Figure 3.
The plot of absolute errors in solutions in Figure 4 confirms
the priority of our method over other methods in terms of
efficiency and accuracy.

Example 4. Consider the Bratu problem for 𝜆 = 3.51.
In this example, we set𝑀 = 10 and 𝑘 = 3. The absolute

errors in solutions are tabulated in Table 7. As can be seen
in Table 7, when 𝜆 is close to the critical value 𝜆

𝑐
, some of

the mentioned methods are not able to handle the problem

t

0 0.2 0.4 0.6 0.8 1

0.14

0.12

0.10

0.08

0.06

0.04

0.02

0

Figure 1: Plot of exact and approximated solutions for 𝜆 = 1.

very well. However, using wavelet analysis method, we get the
approximate solutionwhich ismuchmore accurate than non-
polynomial spline method and Lie-group shooting method.
We display the exact and obtained solutions in Figure 5.
Absolute errors in solutions are illustrated in Figure 6.

The maximum absolute errors in solutions for different
values of𝑀, 𝑘, and 𝜆 are tabulated in Table 8. According to
Table 8, we can conclude that more accurate results can be
obtained by increasing the values of𝑀 and 𝑘 properly.

6. Conclusion

The well-known nonlinear Troesch and Bratu problems arise
in a different variety of applications, and many researchers
have drawn attention to solve them. The difficulty in this
type of problems, due to existing strong nonlinear terms,
is overcome here. The main characteristic of the proposed
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Table 6: Obtained absolute errors for 𝜆 = 2.

𝑡

Present method NPSM LGSM Decomposition Laplace B-spline
𝑀 = 10, 𝑘 = 3 [31] [35] [6] [30] [32]

0.1 2.03 × 10
−18

9.71 × 10
−9

4.03 × 10
−6

1.52 × 10
−2

2.13 × 10
−3

1.72 × 10
−5

0.2 9.58 × 10
−18

1.41 × 10
−8

5.70 × 10
−6

1.47 × 10
−2

4.21 × 10
−3

3.26 × 10
−5

0.3 2.86 × 10
−17

1.98 × 10
−8

5.22 × 10
−6

5.89 × 10
−3

6.19 × 10
−3

4.49 × 10
−5

0.4 5.44 × 10
−17

2.42 × 10
−8

3.07 × 10
−6

3.25 × 10
−3

8.00 × 10
−3

5.28 × 10
−5

0.5 6.87 × 10
−17

2.60 × 10
−8

1.46 × 10
−8

6.98 × 10
−3

9.60 × 10
−3

5.56 × 10
−5

0.6 5.44 × 10
−17

2.42 × 10
−8

3.05 × 10
−6

3.25 × 10
−3

1.09 × 10
−3

5.28 × 10
−5

0.7 2.86 × 10
−17

1.98 × 10
−8

5.19 × 10
−6

5.89 × 10
−3

1.19 × 10
−2

4.49 × 10
−5

0.8 9.58 × 10
−18

1.41 × 10
−8

5.68 × 10
−6

1.47 × 10
−2

1.24 × 10
−2

3.26 × 10
−5

0.9 2.03 × 10
−18

9.71 × 10
−9

4.01 × 10
−6

1.52 × 10
−2

1.09 × 10
−2

1.72 × 10
−5

Table 7: Obtained absolute errors for 𝜆 = 3.51.

𝑡

Present method NPSM LGSM B-spline
𝑀 = 10, 𝑘 = 3 [31] [35] [32]

0.1 2.34 × 10
−10

6.61 × 10
−6

4.45 × 10
−5

3.84 × 10
−2

0.2 3.20 × 10
−10

5.83 × 10
−6

7.12 × 10
−5

7.48 × 10
−2

0.3 7.88 × 10
−10

6.19 × 10
−6

7.30 × 10
−5

1.06 × 10
−1

0.4 1.11 × 10
−9

6.89 × 10
−6

4.47 × 10
−5

1.27 × 10
−1

0.5 1.22 × 10
−9

7.31 × 10
−6

6.76 × 10
−7

1.35 × 10
−1

0.6 1.11 × 10
−9

6.89 × 10
−6

4.56 × 10
−5

1.27 × 10
−1

0.7 7.88 × 10
−10

6.19 × 10
−6

7.20 × 10
−5

1.06 × 10
−1

0.8 3.20 × 10
−10

5.83 × 10
−6

7.05 × 10
−5

7.48 × 10
−2

0.9 2.34 × 10
−10

6.61 × 10
−6

4.41 × 10
−5

3.84 × 10
−2

t

0 0.2 0.4 0.6 0.8 1

8 × 10
−19

7 × 10
−19

6 × 10
−19

5 × 10
−19

4 × 10
−19

3 × 10
−19

2 × 10
−19

1 × 10
−19

0

Figure 2: Plot of absolute errors for 𝜆 = 1.

method is reducing the given problems to those of solving
a system of algebraic equations, thus greatly simplifying the
problems. Sparseness of the coefficients matrix of algebraic
equations makes it computationally efficient to solve these
problems using the current method. It is also seen that

t

0
0

0.2 0.4 0.6

0.2

0.1

0.3

0.8 1

Figure 3: Plot of exact and approximated solutions for 𝜆 = 2.

increasing the number of subintervals or the number of
collocation points in subintervals results in improving the
accuracy. Numerical results confirm that ourmethod ismuch
better than other reported ones in the literature in the sense
of accuracy and efficiency. According to Tables 1–4, our
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Table 8: Obtained maximum absolute errors.

𝑀 = 8, 𝑘 = 1 𝑀 = 8, 𝑘 = 2 𝑀 = 8, 𝑘 = 3 𝑀 = 10, 𝑘 = 1 𝑀 = 10, 𝑘 = 2 𝑀 = 10, 𝑘 = 3

𝜆 = 1 2.5 × 10
−10

5.0 × 10
−12

3.0 × 10
−15

1.2 × 10
−12

8.0 × 10
−16

8.0 × 10
−19

𝜆 = 2 1.8 × 10
−8

1.5 × 10
−10

1.6 × 10
−13

1.5 × 10
−10

7.0 × 10
−14

6.9 × 10
−17

𝜆 = 3.51 3.0 × 10
−5

1.8 × 10
−8

1.0 × 10
−9

4.0 × 10
−7

2.0 × 10
−9

1.2 × 10
−9

t

0 0.2 0.4 0.6 0.8 1

6 × 10
−17

5 × 10
−17

4 × 10
−17

3 × 10
−17

2 × 10
−17

1 × 10
−17

0

Figure 4: Plot of absolute errors for 𝜆 = 2.

t

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Figure 5: Plot of exact and approximated solutions for 𝜆 = 3.51.

approach is applicable to solve Troesch’s problem especially
when 𝜆 is large while some other methods fail to do so. As
shown in Tables 5–8, we can obtain the results for Bratu’s
problem only by using a small number of Chebyshev wavelet
basis functions. When 𝜆 is close to the critical value 𝜆

𝑐
,

t

0 0.2 0.4 0.6 0.8 1

1.2 × 10
−9

1 × 10
−9

8 × 10
−10

6 × 10
−10

4 × 10
−10

2 × 10
−10

Figure 6: Plot of absolute errors for 𝜆 = 3.51.

the wavelet analysis method was also accurate to the ninth
order, whereas other methods especially the B-spline method
yielded poorer results.
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We introduced a novel integral transform operator. We proved the existence and the uniqueness of the relatively new operator.
We presented some useful properties of the new operator. We presented the application of this operator for solving some kind of
fractional ordinary and partial differential equation containing some kind of singularity.

1. Introduction

Mathematical notation aside, the motivation behind integral
transforms is easy to understand. There are many classes of
problems that are difficult to solve or at least quite unwieldy
algebraically in their original representations. An integral
transform “maps” an equation from its original “domain” into
another domain [1–3].Manipulating and solving the equation
in the target domain can be much easier than manipulation
and solution in the original domain. The solution is then
mapped back to the original domain with the inverse of
the integral transform. There exist few integral transform
operators in the literature [1–3], which are commonly used
to solve partial fractional and fractional ordinary differential
equations.

The Fourier transform, named after Joseph Fourier, is a
mathematical transform with many applications in physics
and engineering [4–11]. Very commonly it transforms a
mathematical function of time, 𝑓(𝑡), into a new function,
sometimes denoted by 𝐹, whose argument is frequency with
units of cycles per second or (hertz) or radians per second.
The new function is then known as the Fourier transform
and/or the frequency spectrumof the function𝑓.The Fourier
transform is also a reversible operation. Thus, given the
function ̂

𝑓 one can determine the original function 𝑓; see in
[8].

The Laplace transform is an integral transform perhaps
second only to the Fourier transform in its utility in solving
physical problems [12–17]. The Laplace transform is particu-
larly useful in solving linear ordinary differential equations or
partial fractional differential equations such as those arising
in the analysis of groundwater pollution model [13] and
electronic circuits [14].

In mathematics, the Mellin transform [15] is an integral
transform that may be regarded as the multiplicative version
of the two-sided Laplace transform. This integral transform
is closely connected to the theory of Dirichlet series and is
often used in number theory and the theory of asymptotic
expansions; it is closely related to the Laplace transform and
the Fourier transform and the theory of the gamma function
and allied special functions.

The Mellin transform is widely used in computer science
because of its scale invariance property [18]. The magnitude
of the Mellin transform of a scaled function is identical to
the magnitude of the original function [18]. This scale invari-
ance property is analogous to the Fourier transform’s shift
invariance property.Themagnitude of a Fourier transform of
a time-shifted function is identical to the original function.
This property is useful in image recognition. An image of an
object is easily scaled when the object is moved towards or
away from the camera [19].
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In mathematics, the Sumudu transform is an integral
transform similar to the Laplace transform, introduced in the
early 1990s by Watugala to solve differential equations and
control engineering problems [20–27]. It is equivalent to the
Laplace-Carson transform with the substitution 𝑝 = 1/𝑢.

However, there exists some kind of fractional ordinary
and partial differential equations with some kind of singu-
larities that cannot be solved directly via the above integral
transform operators. In particular, the following kind of
fractional ordinary and partial differential equations

0
𝐷
𝛼

𝑥
𝑦 (𝑥) +

1

𝑥
𝑛
𝑦 (𝑥) = 𝑓 (𝑥) (1)

or

0
𝐷
𝛼

𝑥
𝑢 (𝑥, 𝑡) +

1

𝑥
𝑛
𝑢 (𝑥, 𝑡) = ℎ (𝑥, 𝑡) , (2)

where 𝛼 > 0,
0𝐷
𝛼

𝑥
, is the fractional derivative (Riemann-

Liouville or Caputo) and 𝑛 ≥ 1.
To solve the above equations, some scholars make use

of the Frobenius method, to obtain the solutions in series
form. The Laplace transform of the product of two functions
is different from the product of the Laplace transform of
the two functions. The Fourier transform of the product
of two functions is equivalent to the convolution of the
Fourier transform of the two functions. This renders it
very difficult to apply directly either the Laplace transform
or the Fourier transform operators to solve this type of
equation. Therefore some scholars multiply 𝑥𝑛 on both sides
of the above equations and then apply the Fourier or the
Laplace transform. It is therefore worth to define an integral
transform similar to Laplace or Laplace-Carson transform to
transform such equation to an ordinary or partial differential
equation without any additional transformation.

The aim of this work is to further introduce an integral
transform operator that can be used to solve some kind of
ordinary, partial and fractional ordinary, partial differential
equation with some kind of singularities. We will start with
the definition and present some theorems.

2. Definitions and Theorems

Definition 1. Let 𝑓(𝑥) be a continuous function over an open
interval (0,∞) such that its Laplace transform is 𝑛 time
differentiable; then, the new integral transform of order 𝑛 of
𝑓 is defined as follows:

𝑀
𝑛
(𝑠) = 𝑀

𝑛
[𝑓 (𝑥)] (𝑠) = ∫

∞

0

𝑥
𝑛

𝑒
−𝑥𝑠

𝑓 (𝑥) 𝑑𝑥 (3)

and the inverse of the new integral transform of order 𝑛 is
defined as

𝑓 (𝑥) = 𝑀
−1

𝑛
[𝑀
𝑛
[𝑓 (𝑥)]]

=

(−1)
𝑛

2𝜋𝑖

∫

𝛼+𝑖∞

𝛼−𝑖∞

𝑒
𝑠𝑥

[(−1)
𝑛

[

1

Γ (𝑛 − 1)

× ∫

𝑠

0

(𝑠 − 𝑡)
𝑛−1

𝑀
𝑛
(𝑡) 𝑑𝑡

+

𝑛−1

∑

𝑘=0

𝑠
𝑘

𝑘!

𝑦
𝑘
]]𝑑𝑠,

𝑦
𝑘
=

𝜕
𝑘
𝐹 (0)

𝜕𝑠
𝑘
,

(4)

where 𝐹(𝑠) is the Laplace transform of 𝑓(𝑥). Before we
continue, we will prove that the above definition is indeed
the inverse operator transform of order 𝑛. In fact from the
definition of new transform of order 𝑛 of a function 𝑓(𝑥), we
have that

𝑀
𝑛
(𝑠) = 𝑀

𝑛
[𝑓 (𝑥)] (𝑠)

= ∫

∞

0

𝑥
𝑛

𝑒
−𝑥𝑠

𝑓 (𝑥) 𝑑𝑥 = (−1)
𝑛 𝑑
𝑛
𝐹 (𝑠)

𝑑𝑠
𝑛
,

(5)

thus

1

Γ (𝑛 − 1)

∫

𝑠

0

(𝑠 − 𝑡)
𝑛−1

𝑀
𝑛
(𝑡) 𝑑𝑡

= (−1)
𝑛

[𝐹 (𝑠) −

𝑛−1

∑

𝑘=0

𝑠
𝑘

𝑘!

𝑦
𝑘
] .

(6)

It follows that

(−1)
𝑛

2𝜋𝑖

∫

𝛼+𝑖∞

𝛼−𝑖∞

𝑒
𝑠𝑥

[(−1)
𝑛

[

1

Γ (𝑛 − 1)

× ∫

𝑠

0

(𝑠 − 𝑡)
𝑛−1

𝑀
𝑛
(𝑡) 𝑑𝑡

+

𝑛−1

∑

𝑘=0

𝑠
𝑘

𝑘!

𝑦
𝑘
]]𝑑𝑠

=

(−1)
𝑛

2𝜋𝑖

∫

𝛼+𝑖∞

𝛼−𝑖∞

𝑒
𝑠𝑥

[(−1)
𝑛

[𝐹 (𝑠)]] 𝑑𝑠

𝑀
−1

𝑛
[𝑀
𝑛
[𝑓 (𝑥)]]

=

(−1)
2𝑛

2𝜋𝑖

∫

𝛼+𝑖∞

𝛼−𝑖∞

𝑒
𝑠𝑥

[[𝐹 (𝑠)]] 𝑑𝑠 = 𝑓 (𝑥) .

(7)

Therefore the inverse of the new integral transform is well
defined. Our next concern is to prove the uniqueness and the
existence of the new integral transform.
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Theorem 2. Let 𝑓(𝑥) and 𝑔(𝑥) be continuous functions
defined for 𝑥 ≥ 0 and having new transforms of order 𝑛, 𝐹(𝑝),
and 𝐺(𝑝), respectively. If 𝐹(𝑝) = 𝐺(𝑝), then 𝑓(𝑥) = 𝑔(𝑥).

Proof. From the definition of the inverse of the new transform
of order 𝑛, if 𝛼 is sufficiently large, then the integral expres-
sion, by

𝑓 (𝑥) =

(−1)
𝑛

2𝜋𝑖

∫

𝛼+𝑖∞

𝛼−𝑖∞

𝑒
𝑝𝑥

[(−1)
𝑛

𝐹 (𝑝)] 𝑑𝑝 (8)

for the inverse of the new integral transform of order 𝑛, can
be used to obtain

𝑓 (𝑥) =

(−1)
2𝑛

2𝜋𝑖

∫

𝛼+𝑖∞

𝛼−𝑖∞

𝑒
𝑝𝑥

[𝐹 (𝑝)] 𝑑𝑝. (9)

By hypothesis we have that 𝐹(𝑝) = 𝐺(𝑝); then replacing this
in the above expression we have the following:

𝑓 (𝑥) =

(−1)
𝑛

2𝜋𝑖

∫

𝛼+𝑖∞

𝛼−𝑖∞

𝑒
𝑝𝑥

[(−1)
𝑛

𝐺 (𝑝)] 𝑑𝑝 (10)

which boils down to

𝑓 (𝑥) =

(−1)
𝑛

2𝜋𝑖

∫

𝛼+𝑖∞

𝛼−𝑖∞

𝑒
𝑝𝑥

[(−1)
𝑛

𝐺 (𝑝)] 𝑑𝑝 = 𝑔 (𝑥) (11)

and this proves the uniqueness of the new integral transform
of order 𝑛.

Theorem 3. If 𝑓(𝑡) is a piecewise continuous on every finite
interval in [0, 𝑡

0
) and satisfies:





𝑡
𝑛

𝑓 (𝑡)




≤ 𝑀𝑒
𝛼𝑡 (12)

for all 𝑡 ∈ [𝑡
0
,∞), then𝑀

𝑛
[𝑓(𝑥)](𝑠) exists for all 𝑠 > 𝛼.

Proof. To prove the theoremwemust show that the improper
integral converges for 𝑠 > 𝑎. Splitting the improper integral
into two parts, we have

∫

∞

0

𝑡
𝑛

𝑒
−𝑠𝑡

𝑓 (𝑡) 𝑑𝑡

= ∫

𝑡
0

0

𝑡
𝑛

𝑒
−𝑠𝑡

𝑓 (𝑡) 𝑑𝑡 + ∫

∞

𝑡
0

𝑡
𝑛

𝑒
−𝑠𝑡

𝑓 (𝑡) 𝑑𝑡.

(13)

The first integral on the right side exists by hypothesis 1;
hence the existence of the new integral transform of order 𝑛,
𝑀
𝑛
(𝑠), depends on the convergence of the second integral. By

hypothesis 2, we have





𝑡
𝑛

𝑒
−𝑠𝑡

𝑓 (𝑡)






≤ 𝑀𝑒
𝛼𝑡

𝑒
−𝑠𝑡

= 𝑀𝑒
(𝛼−𝑠)𝑡

. (14)

Now

∫

∞

𝑡
0

𝑀𝑒
(𝛼−𝑠)𝑡

𝑑𝑡 = 𝑀

𝑒
(𝛼−𝑠)𝑡

0

𝛼 − 𝑠

, (15)

this converges for 𝛼 < 𝑠. Then, by the comparison test for
improper integrals theorem,𝑀

𝑛
(𝑠), exists for 𝛼 < 𝑠.

Remark 4. There is a relationship between the Laplace trans-
form and the new integral transform of order 𝑛 as follows:

𝐿 (𝑓 (𝑥)) (𝑠) = 𝑀
𝑛
(

1

𝑥
𝑛
𝑓 (𝑥)) (𝑠) ,

𝐿 (𝑓 (𝑥)) (𝑠) = 𝑀
0
(𝑓 (𝑥)) (𝑠) ,

𝑀
𝑛
(𝑓 (𝑥)) (𝑠) = (−1)

𝑛 𝑑
𝑛

[𝐹 (𝑠)]

𝑑𝑠
𝑛

,

(16)

where 𝐹(𝑠) is the Laplace transform of 𝑓(𝑥).

Remark 5. There is a relationship between the Laplace-
Carson transform and then new integral transform of order
𝑛 as follows:

𝐿
𝑐
(𝑓 (𝑥)) (𝑠) = 𝑀

1
(𝑓 (𝑥)) (𝑠) . (17)

Theorem 6. A function 𝑓(𝑥) which is continuous on [0,∞)
and satisfies the growth condition 𝑓(𝑥) can be recovered from
the Laplace transform 𝐹(𝑝) as follows:

𝑓 (𝑥) = lim
𝑛→∞

(−1)
𝑛

𝑛!

(

𝑛

𝑥

)

𝑛+1

𝑀
𝑛
(

𝑛

𝑠

) . (18)

Evidently, themain difficulty in usingTheorem 6 for computing
the inverse Laplace transform is the repeated symbolic differen-
tiation of 𝐹(𝑝).

3. Some Properties of the New
Integral Transform

In this section, we consider some of the properties of the
new integral transform that will enable us to find further
transform pairs {𝑓(𝑥),𝑀

𝑛
(𝑠)} without having to compute

consider the following:

(I) 𝑀
𝑛
[𝑠 + 𝑐] = 𝑀

𝑛
[𝑒
−𝑐𝑥

𝑓 (𝑥)] ,

(II) 𝑀
𝑛
[𝑓 (𝑎𝑥)] (𝑠) =

1

𝑎

𝑀
𝑛
[

𝑠

𝑎

] ,

(III) ∫
𝛼+𝑖∞

𝛼−𝑖∞

𝑒
𝑠𝑥

𝑀
𝑛
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𝑛

𝑓 (𝑥) ,

(IV) 𝑀
𝑛
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𝑛
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𝑛
(𝑔 (𝑥))] (𝑠)

(V) 𝑀
𝑛
[

𝑓 (𝑥)

𝑥
𝑛
] (𝑠) = 𝐿 [𝑓 (𝑥)] (𝑠) ,

(VI) 𝑀
𝑛
[𝑓 (𝑥) ∗ ℎ (𝑥)] (𝑠)
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𝑛

𝑛

∑
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𝐶
𝑘

𝑛

𝑑
𝑘

(𝐺 (𝑠))

𝑑𝑠
𝑘

×

𝑑
𝑛−𝑘

(𝐹 (𝑠))

𝑑𝑠
𝑛−𝑘

(VII) 𝑀
𝑛
[

𝑑
𝑛
𝑓 (𝑥)

𝑑𝑥
𝑛
] (𝑠)

= (−1)
𝑛

𝑛

∑

𝑘=0

𝐶
𝑘

𝑛

𝑑
𝑘
(𝑠
𝑛
)

𝑑𝑠
𝑘

×

𝑑
𝑛−𝑘

(𝐹 (𝑠))

𝑑𝑠
𝑛−𝑘

.

(19)
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Let us verify the above properties. We will start with I, by
definition we have the following:

𝑀
𝑛
[𝑒
−𝑐𝑥

𝑓 (𝑥)]

= ∫

∞

0

[𝑥
𝑛

𝑒
−𝑐𝑥

𝑒
−𝑠𝑥

𝑓 (𝑥)] 𝑑𝑥

= ∫

∞

0

[𝑥
𝑛

𝑒
−(𝑐+𝑠)𝑥

𝑓 (𝑥)] 𝑑𝑥 = 𝑀
𝑛
[𝑠 + 𝑐]

(20)

and then the first property is verified.
For II we have the following by definition:

𝑀
𝑛
[𝑓 (𝑎𝑥)] (𝑠)

= ∫

∞

0

[𝑥
𝑛

𝑒
−𝑥𝑠

𝑓 (𝑎𝑥)] 𝑑𝑥 = (−1)
𝑛 𝑑
𝑛

𝑑𝑠
𝑛
[𝐿 [𝑓 (𝑎𝑥)] (𝑠)] .

(21)

Now using the property of the Laplace transform
𝐿[𝑓(𝑎𝑥)](𝑠) = (1/𝑎)𝐹(𝑠/𝑎), from this we can further
obtain

𝑀
𝑛
[𝑓 (𝑎𝑥)] (𝑠)

= (−1)
𝑛 𝑑
𝑛

𝑑𝑠
𝑛
[

1

𝑎

𝐹 (

𝑠

𝑎

)]

=

1

𝑎

(−1)
𝑛 𝑑
𝑛

𝑑𝑠
𝑛
[𝐹 (

𝑠

𝑎

)] =

1

𝑎

𝑀
𝑛
[

𝑠

𝑎

]

(22)

and then, the property number II is verified.
For number III we have the following: Let 𝑔(𝑥) = 𝑥𝑛𝑓(𝑥),

then

∫

𝛼+𝑖∞

𝛼−𝑖∞

𝑒
𝑠𝑥

𝑀
𝑛
(𝑠) 𝑑𝑠

= ∫

𝛼+𝑖∞

𝛼−𝑖∞

𝑒
𝑠𝑥

[∫

∞

0

𝑒
−𝑥𝑠

𝑥
𝑛

𝑓 (𝑥) 𝑑𝑥] 𝑑𝑠

= ∫

𝛼+𝑖∞

𝛼−𝑖∞

𝑒
𝑠𝑥

[∫

∞

0

𝑒
−𝑥𝑠

𝑔 (𝑥) 𝑑𝑥] 𝑑𝑠.

(23)

By the theorem of inverse Laplace transform we obtain

∫

𝛼+𝑖∞

𝛼−𝑖∞

𝑒
𝑠𝑥

𝑀
𝑛
(𝑠) 𝑑𝑠 = 𝑔 (𝑥) = 𝑥

𝑛

𝑓 (𝑥) , (24)

numbers IV and V are obvious to be verified. For number VI
we have the following by definition:

𝑀
𝑛
[𝑓 (𝑥) ∗ ℎ (𝑥)] (𝑠)

= ∫

∞

0

[𝑥
𝑛

𝑒
−𝑠𝑥

𝑓 (𝑥) ∗ ℎ (𝑥)]

= (−1)
𝑛 𝑑
𝑛

𝑑𝑠
𝑛
[𝐿 (𝑓 (𝑥) ∗ ℎ (𝑥)) (𝑠)] ,

(25)

now using the property of Laplace transform of the convolu-
tion, we obtain the following:

𝐿 (𝑓 (𝑥) ∗ ℎ (𝑥)) (𝑠) = 𝐹 (𝑠) ⋅ 𝐺 (𝑠) (26)

and then, using the property of the derivative of order 𝑛 for
the product of two functions, we obtain

𝑀
𝑛
[𝑓 (𝑥) ∗ ℎ (𝑥)] (𝑠)

= (−1)
𝑛 𝑑
𝑛

𝑑𝑠
𝑛
[𝐹 (𝑠) ⋅ 𝐺 (𝑠)]

= (−1)
𝑛

𝑛

∑

𝑘=0

𝐶
𝑘

𝑛

𝑑
𝑘

(𝐺 (𝑠))

𝑑𝑠
𝑘

×

𝑑
𝑛−𝑘

(𝐹 (𝑠))

𝑑𝑠
𝑛−𝑘

(27)

and then, the property number VI is verified.
For number VII, by definition, we have the following:

𝑀
𝑛
[

𝑑
𝑛
𝑓 (𝑥)

𝑑𝑥
𝑛
] (𝑠)

= ∫

∞

0

[𝑥
𝑛

𝑒
−𝑠𝑥
𝑑
𝑛
𝑓 (𝑥)

𝑑𝑥
𝑛
] 𝑑𝑥

= (−1)
𝑛 𝑑
𝑛

𝑑𝑠
𝑛
[𝐿(

𝑑
𝑛
𝑓 (𝑥)

𝑑𝑥
𝑛
) (𝑠)] ,

(28)

now using the property of the Laplace transform,

𝐿(

𝑑
𝑛
𝑓 (𝑥)

𝑑𝑥
𝑛
) (𝑠) = 𝑠

𝑛

𝐹 (𝑠) −

𝑛−1

∑

𝑘=0

𝑠
𝑛−𝑘−1

𝑑
𝑘
𝑓 (0)

𝑑𝑥
𝑘

(29)

now deriving the above expression 𝑛 times, we obtain the
following expression:

(−1)
𝑛 𝑑
𝑛

𝑑𝑠
𝑛
[𝐿(

𝑑
𝑛
𝑓 (𝑥)

𝑑𝑥
𝑛
) (𝑠)]

= (−1)
𝑛

𝑛

∑

𝑘=0

𝐶
𝑘

𝑛

𝑑
𝑘
(𝑠
𝑛
)

𝑑𝑠
𝑘

×

𝑑
𝑛−𝑘

(𝐹 (𝑠))

𝑑𝑠
𝑛−𝑘

(30)

that is:

𝑀
𝑛
[

𝑑
𝑛
𝑓 (𝑥)

𝑑𝑥
𝑛
] (𝑠) = (−1)

𝑛

𝑛

∑

𝑘=0

𝐶
𝑘

𝑛

𝑑
𝑘
(𝑠
𝑛
)

𝑑𝑠
𝑘

×

𝑑
𝑛−𝑘

(𝐹 (𝑠))

𝑑𝑠
𝑛−𝑘

. (31)

This completes the proof of number VI.

4. Application to FODE and FPDE

Recently, the differential equations of fractional order deriva-
tive with singularities have been the focus of many studies
due to their frequent appearance in various applications in
fluidmechanics, viscoelasticity, biology physics, engineering,
and groundwater models, in particular the monitoring of
the flow through the geological formation and the pollution
migration. Consequently, considerable attention has been
given to the solutions of fractional differential equations and
integral equations with singularity of physical interest. There
exists in the literature some integral transform method that
can be used to derive exact and approximate solutions for
such equations; see, for instance, Laplace transform method
[4–11], the Fourier transform method [12–17], the Mellin
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transform method [18, 19], the Sumudu transform method
[20–27], the Adomian decomposition method [28, 29], and
the homotopy decompositionmethod [30–33]. In this section
we present the application of the proposed integral operator
to the Cauchy-type of fractional ordinary differential and
partial differential equations.We will start with the fractional
ordinary differential equation. Here we consider the Cauchy-
type equation of the following form:

𝐷
𝛼

𝑟𝑟
Φ (𝑟) +

1

𝑟
𝑛
Φ (𝑟) = 0, 𝑙 − 1 < 𝛼 ≤ 𝑙. (32)

To solve the above equation, we apply on both sides the new
integral transform of order 𝑛 to obtain the following:

(−1)
𝑛 𝑑
𝑛

𝑑𝑠
𝑛
𝐷
𝛼

𝑟𝑟
Φ (𝑠) + Φ (𝑠) = 0. (33)

The new integral transform has gotten rid of the singularity;
the new equation is just an ordinary fractional differential
equation, which can be solved with, for instance, the homo-
topy decomposition method. Let us find the exact solution of
the above equation for 𝑛 = 1 given below as

𝐷
𝛼

𝑟𝑟
Φ (𝑟) +

1

𝑟

Φ (𝑟) = 0, 𝑙 − 1 < 𝛼 ≤ 𝑙. (34)

We will make use of the new integral transform to derive
analytical solution of (34). Applying the new transform of
order 1 on both sides of the above equation, we obtain the
following expression:

𝑑 [𝐿 (Φ) (𝑠)]

𝑑𝑠

+ (

𝛼

𝑠

+

1

𝑠
𝛼
) (𝐿 (Φ) (𝑠))

=

𝑙

∑

𝑚=2

𝑑
𝑚
(𝑚 − 1) 𝑠

𝑚−2−𝛼

,

(35)

where 𝑑
𝑚
= 𝐷
𝛼−𝑚

0
+ Φ(0

+
) (𝑚 = 2, . . . , 𝑙). Now, one can derive

the solution of the ordinary order differential equation with
respect to the Laplace transform of Θ(s) = 𝐿(Φ(𝑟)):

Θ (𝑠) = 𝑠
−𝛼 exp[− 𝑠

1−𝛼

1 − 𝛼

]

× [𝑎
1
+

𝑙

∑

𝑚=2

𝑑
𝑚
(𝑚 − 1) ∫ 𝑠

𝑚−2 exp[− 𝑠
1−𝛼

1 − 𝛼

]𝑑𝑠] ,

(36)

with 𝑎
1
an arbitrary real constant that will be obtained via the

initial condition.We next expand the exponential function in
the integrand in a series, and using term-by-term integration,
we arrive at the following expression:

Θ (𝑠) = 𝑐Θ
1
(𝑠) +

𝑙

∑

𝑚=2

𝑑
𝑚
(𝑚 − 1)Θ

∗

𝑚
(𝑠) (37)

with of course

Θ
1
(𝑠) = 𝑠

−𝛼 exp[− 𝑠
1−𝛼

1 − 𝛼

] ,

Θ
∗

𝑚
(𝑠) = 𝑠

−𝛼 exp[ 𝑠
1−𝛼

𝛼 − 1

]

×

∞

∑

𝑗=0

(

1

1 − 𝛼

)

𝑗
𝑠
(1−𝛼)𝑗+𝑚−1

[(1 − 𝛼) 𝑗 + 𝑚 − 1] 𝑗!

.

(38)

Now, applying the inverse Laplace transform on Θ
1
(𝑠) and

using the fact that

𝑠
−[𝛼+(𝛼−1)𝑗]

= 𝐿[

𝑟
𝛼+(𝛼−1)𝑗−1

Γ (𝛼 + (𝛼 − 1) 𝑗)

] (39)

we obtain

Φ
1
(𝑟) = 𝑟

𝛼−1oΨ
1
[(𝛼, 𝛼 − 1) |

𝑥
𝛼−1

𝛼 − 1

] (40)

with oΨ
1
[] the generalized Wright function for 𝑝 = 1 and

𝑞 = 2 [34–37]. We next expand the exponential function
exp[−𝑠1−𝛼/(1 − 𝛼)] in power series, multiplying the resulting
two series; in addition to this if we consider the number
𝑏
𝑘
(𝛼,𝑚) defined for 𝛼 > 0, 𝑚 = 2, . . . 𝑙 (𝛼 ̸=(𝑝+𝑚−1)/𝑝, 𝑝 ∉

N), and 𝑘 ∈ N
0
,

𝑏
𝑘
(𝛼,𝑚) =

𝑙

∑

𝑝,𝑗=0,...,𝑘,𝑝+𝑗=𝑘

(−1)
𝑞

𝑝!𝑗! (1 − 𝛼) 𝑞 + 𝑚 − 1

. (41)

The above family of number possesses satisfies the following
recursive formula:

𝑏
𝑘
(𝛼,𝑚)

𝑏
𝑘+1
(𝛼,𝑚)

=

𝛼 − 𝑚

𝛼 − 1

+ 𝑘, (42)

which produces the explicit expression for 𝑏
𝑘
(𝛼,𝑚) in the

form of

𝑏
𝑘
(𝛼,𝑚) =

Γ [(𝛼 − 𝑚) / (𝛼 − 1)]

(𝑚 − 1) Γ [((𝛼 − 𝑚) / (𝛼 − 1)) + 𝑘]

, 𝑘 ∈ N
0
.

(43)

Now having the above expression on hand, we can derive that

Θ
∗

𝑚
(𝑠) = 𝑠

𝑚−𝛼−1

(

∞

∑

𝑗=0

(

1

1 − 𝛼

)

𝑗
𝑠
(1−𝛼)𝑝

𝑝!

)

× (

∞

∑

𝑝=0

(

1

1 − 𝛼

)

𝑝
(−1)
𝑝

[(1 − 𝛼) 𝑝 + 𝑚 − 1]

𝑠
(1−𝛼)𝑗

𝑝!

)

=

∞

∑

𝑘=0

𝑏
𝑘
(𝛼,𝑚) (

1

1 − 𝛼

)

𝑘

× 𝑠
(1−𝛼)𝑘+𝑚−𝛼−1

(𝑚 = 2, . . . , 𝑙) .

(44)
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However, remembering (40) with 𝛽 = (𝛼 − 1)𝑘 + 𝛼 + 1 − 𝑚,
we can further derive the following expression forΦ∗

𝑚
(𝑟) as

Φ
∗

𝑚
(𝑟) =

∞

∑

𝑘=0

𝑏
𝑘
(𝛼,𝑚) (

1

1 − 𝛼

)

𝑘

×

Γ (𝑘 + 1)

Γ [𝛼 + 1 − 𝑚 + (𝛼 − 1) 𝑘]

𝑥
(𝛼−1)𝑘+𝛼−𝑚

𝑘!

(45)

or in the simplified version we have

Φ
∗

𝑚
(𝑟) =

Γ [(𝛼 − 𝑚) / (𝛼 − 1)]

(𝑚 − 1)

Φ
𝑚
(𝑟) , (46)

where

Φ
𝑚
(𝑟)

= 𝑟
𝛼−𝑚

1
Ψ
2

× [

(1, 1)

(𝛼 + 1 − 𝑚, 𝛼 − 1) , (

𝛼 − 𝑚

𝛼 − 1

, 1)
|

𝑟
𝛼−1

𝛼 − 1

] .

(47)

It follows that the solution of the Cauchy-type equation is in
the form of

Φ (𝑟)

= 𝑎
1
𝑟
𝛼−1 oΨ

1
[(𝛼, 𝛼 − 1) |

𝑥
𝛼−1

𝛼 − 1

]

+ 𝑎
2

𝑙

∑

𝑚=2

𝑏
𝑚
(𝑚 − 1)

Γ [(𝛼 − 𝑚) / (𝛼 − 1)]

(𝑚 − 1)

𝑟
𝛼−𝑚

1
Ψ
2

× [

(1, 1)

(𝛼 + 1 − 𝑚, 𝛼 − 1) , (

𝛼 − 𝑚

𝛼 − 1

, 1)
|

𝑟
𝛼−1

𝛼 − 1

] .

(48)

We will examine the solution of the following fractional
partial differential equation of the following form:

𝐶

0
𝐷

𝛼

𝑡
𝑢 (𝑥, 𝑡) =

1

𝑥

𝜕
2
𝑢 (𝑥, 𝑡)

𝜕𝑥
2

, 0 < 𝛼 ≤ 1, (49)

with initial and boundary conditions of the form

𝑢 (𝑥, 0) = 0, 𝑢 (𝑥
0
, 𝑡) = ℎ (𝑡) ,

𝜕
𝑥
𝑢 (0, 𝑡) = 𝑢 (0, 𝑡) = 0 (𝑡 ≥ 0) .

(50)

To solve the above problem, the first step consists of applying
the new integral transform on both sides of (49) to obtain

𝜕
𝑠

𝐶

0
𝐷

𝛼

𝑡
𝑈 (𝑠, 𝑡) = −𝑠

2

𝑈 (𝑠, 𝑡) , (51)

where 𝑠 is the Laplace variable.Thenext step in this derivation
is to apply the Fourier transform in time to obtain

(𝑖𝑝)
𝛼

𝜕
𝑠
𝑈
1
(𝑠, 𝑝) = −𝑠

2

𝑈
1
(𝑠, 𝑝) , (52)

where𝑝 is the Fourier variable. It follows that the solution of
the above equation is simply given as

𝑈
1
(𝑠, 𝑝) = 𝑐 (𝑝) exp[−𝑠

3

3

(𝑖𝑝)
−𝛼

] . (53)

The next step is to put exponential function in series form as
follows

exp[−𝑠
3

3

(𝑖𝑝)
−𝛼

]

=

∞

∑

𝑘=0

((−𝑠
3
/3) (𝑖𝑝)

−𝛼

)

𝑘

𝑘!

=

∞

∑

𝑘=0

(−𝑠
3
/3)

𝑘

(𝑖𝑝)
−𝑘𝛼

𝑘!

.

(54)

Then, we first apply the inverse Laplace in both sides of the
above equation to obtain

𝑈
1
(𝑥, 𝑝) = 𝐿

−1

(𝑐 (𝑝)

∞

∑

𝑘=0

(−𝑠
3
/3)

𝑘

(𝑖𝑝)
−𝑘𝛼

𝑘!

) . (55)

Making use of the linearity to the inverse Laplace transform,
we obtain

𝑈
1
(𝑥, 𝑝) =

∞

∑

𝑘=0

𝐿
−1
[(−𝑠
3
/3)

𝑘

] 𝑐(𝑝) (𝑖𝑝)
−𝑘𝛼

𝑘!

.
(56)

And finally making use of the inverse Fourier transform and
its linearity, we obtain

𝑢 (𝑥, 𝑡) =

∞

∑

𝑘=0

𝐿
−1
[(−𝑠
3
/3)

𝑘

] 𝐹
−1
[𝑐(𝑝) (𝑖𝑝)

−𝑘𝛼

]

𝑘!

.
(57)

This, produces the solution of (49).

5. Conclusion

We introduced a new integral operator transform. We pre-
sented its existence and uniqueness. We presented some
properties and its application for solving some kind of
ordinary and partial fractional differential equations that
arise in many fields of sciences.
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Aerated underbalanced horizontal drilling technology has become the focus of the drilling industry at home and abroad, and
one of the engineering core issues is the horizontal borehole cleaning. Therefore, calculating the minimum injection volume of
gas and liquid accurately is essential for the construction in aerated underbalanced horizontal drilling. This paper establishes a
physical model of carrying cuttings and borehole cleaning in wellbore of horizontal well and a critical transport mathematical
model according to gas-liquid-solid flow mechanism and large plane dunes particle transport theory.

1. Introduction

With the development of horizontal drilling oriented tech-
nology and thin formation of oil and gas reservoirs, aerated
underbalanced horizontal drilling technology has become
the focus of the drilling industry at home and abroad, and
one of the engineering core issues is the horizontal bore-
hole cleaning when gas-bearing mud exists [1–3]. Therefore,
calculating the minimum injection volume of gas and liquid
accurately is essential for the construction in aerated under-
balanced horizontal drilling. To calculate the required mini-
mum injection volume of gas and liquid accurately which can
safely carry cuttings, it is necessary to carry out the researches
of carrying cuttings theory and visualization experiment of
particle motion in depth.

2. Transport Law Analysis of Cuttings in
the Horizontal Wellbore

2.1. Particularity of Cuttings Transport in Horizontal Well.
The cuttings’ distributions in horizontal section and vertical
section are shown in Figures 1 and 2.When the rock is broken
by bit, the large particle cuttings can transport smoothly at

drill collar because of the high flow rate, but when they reach
the drill collar and drill pipe junction large particle cuttings
are accumulated due to the annulus area sudden increase.
Contrasting vertical section and horizontal section [4, 5], we
can find that in vertical section the larger cuttings will fall
to the bottom of the well then be repeatedly broken, but in
horizontal section once the large cuttings are producedwhich
the fluid cannot carry, these cuttingswill only stay at the lower
side of the wall waiting for drill tool rolling until forming
small particles to be carried by fluid to downstream.

2.2. Horizontal Well Cuttings Movement Form. In horizontal
well cuttings transportation can be divided into suspension,
rolling, and saltation.

2.2.1. Suspension. Suspension is an important way of cuttings
movement. The form of the suspension is drift with drilling
fluid. In suspension there are two kinds of force, one is gravity
which makes cuttings settle down to the lower side of the
wall and another kind is gas-liquid two-phase flow driving
force which makes cuttings particle move to downstream
along the wellbore. The speed of cuttings moving to down-
stream is related to the speed of gas-liquid two-phase flow,
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Figure 1: Cuttings distribution in horizontal section.

Figure 2: Cuttings distribution in vertical section.

the transportation volume of cuttings can indirectly represent
the speed of cuttings moving to downstream, and the greater
the flow, the more it carried cuttings. In settling process
suspended particles are brought back to the top by eddy
current thatmakes the cuttings drift up and down. As a result,
the settling velocity becomes slow. Suspension of cuttings
schematic diagram is shown in Figure 3.

2.2.2. Rolling. When flow drag force is greater than particle
resistance, the particles located in the surface outstanding
position of cuttings bed begin tomove in the formof slipping.
Because of the roughwall surface, slipping often converts into
rolling and the cuttings always keep contact with the lower
side of the wall, the force as shown in Figure 4 and cuttings
rolling schematic diagram as shown in Figure 5.

2.2.3. Saltation. When the jumping cuttings fall to the lower
side of the wall, it will impact the cuttings bed, and the force
is related to the jump height and drilling fluid velocity [6–
8]. If the cuttings jump low, the momentum obtained from
the fluid is small and they will stop jumping. If not, they
will jump again.The jumping height is inversely proportional
to the drilling fluid density. This special movement is called
saltation, cuttings saltation force as shown in Figure 6.

Figure 3: Cuttings suspension diagram in multiphase flow condi-
tion.

Buoyancy

Lift force

Drag forceFrictional resistance

Gravity

Figure 4: Cuttings rolling force in horizontal well.

Figure 5: Cuttings rolling schematic diagram in horizontal well.

Pipe wallPipe wall

Saltation

Figure 6: Cuttings saltation schematic diagram in horizontal sec-
tion.

3. Carrying Cuttings Model of Multiphase
Flow in Horizontal Well Annulus

3.1. Cuttings Rolling. When cuttings are based on single par-
ticle rolling on the lower side of the wall, with the effect of the
gas-liquid two-phase flow, they transport to the downstream
[9].

3.1.1. Cuttings Particle Rolling Force Analysis. When the gas-
liquid flow rate is small, the particles first roll in single in
the wall, and the forces include: drag force 𝐹

𝐷
produced by

air current, friction force 𝐹friction along the contact surface
between the particle and the wall, gravity 𝐺, buoyancy
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Figure 7: The force analysis of cuttings accumulation.

𝐹buoyancy, and support 𝑁 on longitudinal, as shown in
Figure 4.

3.1.2. Cuttings Particle Rolling Starting Condition. It is nec-
essary to build a horizontal mathematical equation to deter-
mine the minimum gas liquid volume when single particle
cuttings roll forward [10]:

𝐶
𝐷

𝜌
𝑚
V2
𝑚

2

𝜋𝑑
2

𝑠

4

= 𝑘𝐺,

V
𝑚
=

𝑞
𝑙
+ 𝑞
𝑔

𝐴

,

(1)

where 𝐶
𝐷
is resistance coefficient, dimensionless; 𝜌

𝑚
is fluid

density, kg/m3; V
𝑚
is fluid velocity, m/s; 𝑑

𝑠
is cuttings particle

diameter, m; 𝑘 is friction resistance coefficient, dimension-
less; 𝐺 is cuttings particle gravity, N; 𝑞

𝑙
is liquid phase flow

rate, m3/s; 𝑞
𝑔
is gas phase flow rate, m3/s; 𝐴 is flow area, m2.

The minimum velocity V
𝑚
can be derived from the dif-

ferent particle gravity𝐺 and differentmaterials friction resist-
ance coefficient 𝑘.

3.2. Cuttings Saltation

3.2.1. Cuttings Particle Rolling Force Analysis. When cuttings
transport in the annulus, the forces mainly include gravity,
resistance, the saffman lift force, buoyancy, basset force,
pressure gradient force, added mass force and magnus effect
force in underbalanced drilling [11, 12]; force analysis is as
shown in Figure 7. In the horizontal section, cuttings gravity
is the main force to constitute horizontal friction resistance,
and the calculation formula is

𝑊 = 𝜌
𝑠
𝑉
𝑠
𝑔, (2)

where𝑊 is cuttings particle gravity, N; 𝜌
𝑠
is cuttings particle

density, kg/m3;𝑉
𝑠
is cuttings particle volume, m3; 𝑔 is gravity

acceleration coefficient, m/s2.
The driving force of the cuttings is mainly gas-liquid

two-phase dragging force. The dragging force is influenced
by many factors like the Reynolds number, cuttings size,
cuttings shape, flow state, and fluid compressibility [13, 14].
Its direction is consistent with the speed of fluid relative to
the particles, and the calculation formula is

𝐹
𝐷
= 𝐶
𝐷

𝜌
𝑚
(V
𝑚
− V
𝑠
)
2

2

𝜋𝑑
2

𝑠

4

,
(3)

Figure 8: Horizontal experiment facilities.

where 𝐹
𝐷
is dragging force, N; 𝐶

𝐷
is dragging coefficient,

dimensionless; V
𝑚
is fluid velocity, m/s; V

𝑠
is cuttings particle

transport velocity, m/s; 𝑑
𝑠
is cuttings particle diameter, m.

3.2.2. Cuttings Particle Rolling Starting Condition. Cuttings
particle group located in cuttings bed and flow boundary
presents a state of bulk material accumulation [15]. The bulk
materials limit equilibrium equation of cuttings particles can
be signified as follows:

𝑇lim = 𝑁𝑓𝑖 + 𝐹𝐴, (4)

where 𝑇lim is the ultimate shear force making the particle
moves, N; 𝑁 is internal force effecting on the particle, N; 𝑓

𝑖

is internal friction coefficient of bulk material accumulation,
dimensionless; 𝐹 is unit cohesion, N/m2; 𝐴 is flow area, m2.

According to the force analysis of cuttings particles as
shown in Figure 8, ignoring cohesive force and buoyancy [16],
the accumulation particles limit force balance equation can be
deformed into

𝐹
𝐷
= 𝑓
𝑖
𝑊, (5)

where 𝑇lim = 𝐹𝐷, 𝑁 = 𝑊.
𝑓
𝑖
can be determined by experiment. In general, 𝑓

𝑖
is of

particle group 𝜀, given as

𝑓
𝑖
= 𝜇
𝑖
+

𝛼/𝛽

𝑒
𝛼(𝜀−0.26)

− 1 + 𝛼/𝛽

, (6)

where 𝜀 is void fraction of particle group, dimensionless;
𝛼, 𝛽 is parameters related to cuttings accumulation degree,
dimensionless; 𝜇

𝑖
is internal friction coefficient of particles,

dimensionless.
When saltation starts, force balance formula can be

derived by combining formula (2), (3), and (6) as follows:
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𝑚
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3

𝑠

6

𝜌
𝑠
𝑔, (7)

where V
𝑚
is fluid flow velocity under granular limit balance

state; when V
𝑚
continues to increase, the balance will be bro-

ken and cuttings will begin to transport, m/s.
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4. The Visualization Experiment of
Horizontal Section

This study establishes an annulus visualization organic glass
experimental facility (total length 25m, experimental annu-
lus outer tube and inner diameter 140mm, inner tube outer
diameter 63mm, inner tube inner diameter 55mm), which
uses compressed air and water as experiment flow and sim-
ulation cuttings (equivalent diameter 6mm) as experiment
medium, developing critical carrying cuttings in different
liquid injections and tests the hydrodynamic parameters.
Then we can get borehole cleaning critical carrying cuttings
data in different experiment conditions.

4.1. Experiment Research Content

(1) Simulation of multiphase flow and carrying cuttings
large bench in horizontal section (simulation of the
rotating drill pipe in rotary drilling)

(2) Simulation of multiphase flow and carrying cuttings
large bench in horizontal section (simulation of the
slide drilling and circulation after stopping drilling).

4.2. Experimental Facilities. Experimental facilities which
simulate air flow condition at certain range of pressure and
flow rate down the hole include experimental bench, air com-
pressor, gas tank, water tank, liquid pump, and flowmeter, as
shown in Figure 8. Experiment testing part is monitoring and
recording pipe section pressure, gas flow rate, liquid flow rate,
image of the phenomenon, and so forth.

4.3. Experiment Process. The simulation cuttings are injected
in different speeds at the bottom, maintaining a certain
amount of gas injection and then increasing the liquid
injection (liquid injection can be controlled from 0∼5 L/s)
until the cuttings are suspended in the experiment pipe
section; at this time the gas flow rate is considered as the
critical flow rate. The liquid flow rate was ratcheted up after
injecting the liquid for 2minutes steadily, and the experiment
was stopped until the cuttings of the bottom are carried out
completely. The test parameters include liquid injection, gas
injection, liquid flow velocity, cuttings velocity, and cuttings
concentration. Flow pressure is controlled from 0.1MPa to
0.6MPa throughout the experiment.

4.4. Experiment Phenomena

(1) When the drill string is rotating, experiment phe-
nomena are shown in Figures 9 and 10.

(2) When the drill is immovability, experiment phenom-
ena are shown in Figures 11, 12, and 13.

Through the observation, comparing with the drill which
is immovability, when the drill string is rotating it has a
viscous impact on the surrounding drilling fluid due to its
viscosity, and then cuttings on the cuttings bed are agitated,
so the effect of carrying cuttings is better in conditions of

Figure 9: The formation of the cuttings bed.

Figure 10: Cuttings transport.

Figure 11: The drill is 100% eccentric.

Figure 12: The formation of the cuttings bed.

Figure 13: Cuttings transport.

injecting the same volume of gas. The way of cuttings trans-
port is mainly saltation.

4.5. Experimental Data and Processing Results

(1) When the drill string is rotating, calculation results
in different injecting volumes of gas and liquid (see
Table 1).

(2) When the drill is immovability, calculation results
in different injecting volumes of gas and liquid (see
Table 2).

Through the previous experimental data and phenomena,
comparing with the drill which is immovability, the drill
rotating can make the water acts as the simulation drilling
fluid moving in spirals and the pressure of annular flow field
distributing in fluctuation forms. At the same time, when
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Table 1: Calculation results in different injecting volumes of gas and liquid (rotating).

Liquid injection (l/s) Gas injection
(m3/h)

Model mixing speed (bottom)
(m/s)

Critical mixing speed
(bottom) (m/s)

Error between model
and real (%)

0.87 65 0.72 1.05 45.9%
1.3 70 0.80 0.96 20.8%
1.86 90 1.04 1.32 26.8%
2.17 95 1.11 1.37 23.2%
2.6 120 1.40 1.64 17.5%
3.25 130 1.52 1.73 13.4%
Average error 24.6%
In Table 1 the critical flow speed refers to the minimummixing speed when cuttings start to saltate. In the condition attaining to the critical carrying cuttings,
comparing the speed calculated by multiphase flow simulation software with the real mixing speed of gas-liquid two-phase flow, the error is concluded and
then the current carrying cuttings model is amended.

Table 2: Calculation results in different injecting volumes of gas and liquid (immovability).

Liquid injection (l/s) Gas injection
(m3/h)

Model mixing speed (bottom)
(m/s)

Critical mixing speed
(bottom) (m/s)

Error between model
and real (%)

0.87 90 0.99 1.29 30.2%
1.3 115 1.28 1.59 24.5%
1.86 130 1.46 1.73 18.6%
2.17 150 1.67 1.91 14.4%
2.6 170 1.88 2.11 12.5%
3.25 190 2.09 2.28 9.3%
Average error 18.3%
In Table 2 the critical flow speed refers to the minimummixing speed when cuttings start to saltate. In the condition attaining to the critical carrying cuttings,
comparing the speed calculated by multiphase flow simulation software with the real mixing speed of gas-liquid two-phase flow, the error is concluded and
then the current carrying cuttings model is modified.

the drill string is rotating it will have a viscous impact on
the surrounding drilling fluid due to its viscosity, and then
cuttings on the cuttings bed are agitated, so the effect of
carrying cuttings is better in conditions that injecting the
same volume of gas.

5. Model Modification

5.1. Critical Carrying Cuttings Mathematical Model Modi-
fication in Horizontal Well (Rotation). From the result of
experimental data, the real minimum continuous carrying
cuttings comprehensive speed is the equal of 124%of saltation
critical velocity as a modification model, given as

V
𝑚
= 1.24√[𝜇

𝑖
+

𝛼/𝛽

𝑒
𝛼(𝜀−0.26)

− 1 + 𝛼/𝛽

]

4𝑑
𝑠

3𝐶
𝐷
𝜌
𝑚

𝜌
𝑠
𝑔, (8)

where 𝜏
𝑖
= 𝑓
𝑖
𝜌
𝑚
(V
𝑚
− V
𝑠
)
2, stratified flow is 𝑓

𝑖
= 64/𝑁Re, and

turbulent (slug flow, agitation flow, and annular mist flow) is

𝑓
𝑖
= [1.14 − 2lg( 𝑒

𝐷

+

21.25

𝑁
0.9

Re
)]

−2

, (9)

where 𝜇
𝑖
is internal friction coefficient of particles, dimen-

sionless; 𝛼, 𝛽 are parameters related to cuttings accumulation
degree, dimensionless; 𝑓

𝑖
is gas-liquid interface friction coef-

ficient, dimensionless; 𝜏
𝑖
is stress between mixture and wall

shear, Pa; 𝜌
𝑚
is mixture real density, kg/m3; V

𝑚
is gas-liquid

mixing velocity, m/s; 𝐶
𝐷
is drag coefficient, dimensionless,

function of Re; V
𝑠
is cuttings particle transport velocity, m/s;

𝑑
𝑠
is cuttings particle diameter, m; 𝜌

𝑠
is cuttings particle

density, kg/m3; 𝑁Re is the Reynolds number; 𝐷 is pipe
diameter, m.

5.2. Critical Carrying Cuttings Mathematical Model Modifi-
cation in Horizontal Well (Immovability). From the result of
experimental data, the real minimum continuous carrying
cuttings comprehensive speed is the equal of 124%of saltation
critical velocity as a modification model when the drill is ro-
tating, namely,
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where 𝜏
𝑖
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𝑖
𝜌
𝑚
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− V
𝑠
)
2, stratified flow is 𝑓
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6. Conclusions

(1) Comparing vertical section and horizontal section,
in vertical section the larger cuttings will fall to
the bottom of the well repeatedly broken, but in
horizontal section once the large particle cuttings are
produced which the fluid cannot carry, these cuttings
will only stay at the lower side of the wall waiting for
drill tool rolling until forming small particles to be
carried by fluid to downstream.

(2) In horizontal section cuttings transport depending on
gas-liquid comprehensive velocity and drilling fluid
viscosity is mainly saltation, and the drill rotation
benefits cuttings transport. In the condition of carry-
ing cuttings smoothly, when the drill is immovability
the comprehensive velocity is 1.18 times as big as when
it is rotating. After processing the experimental data,
the established mathematic model is modified.
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The Lie symmetry approach with simplest equation method is used to construct exact solutions of the bad Boussinesq and good
Boussinesq equations. As the simplest equation, we have used the equation of Riccati.

1. Introduction

Nonlinear wave phenomena, which are modelled by nonlin-
ear partial differential equations (NLPDEs), appear in various
scientific and engineering fields, such as fluid mechanics,
plasma physics, optimal fiber, biology, solid state physics,
chemical physics, geometry, and oceanology [1–15]. Much
effort has been made on the construction of exact solutions
of NLPDEs. These nonlinear equations have been studied
by using various analytical methods, such as tanh-function
method, extended tanh-function method [1–3], sine-cosine
method [4, 5], (𝐺/𝐺)-expansion method [6], and so on. In
this paper, we study the Boussinesq equations [7]:

𝑢
𝑡𝑡
− 𝑢
𝑥𝑥
− 3(𝑢

2

)
𝑥𝑥

− 𝑢
𝑥𝑥𝑥𝑥
= 0, bad equation, (1)

𝑢
𝑡𝑡
− 𝑢
𝑥𝑥
− 3(𝑢

2

)
𝑥𝑥

+ 𝑢
𝑥𝑥𝑥𝑥
= 0, good equation, (2)

which are named after the French scientist Joseph Boussinesq
(1842–1929). These equations were modelled in the 1870s
and they describe the propagation of long waves on the
surface of water with a small amplitude. The Boussinesq
equations have been solved using several methods [8–11]. In
this paper, we use the Lie symmetry method along with the
simplest equation method to obtain exact solutions of the
Boussinesq equations (1)-(2). The simplest equation method
was developed byKudryashov [12] on the basis of a procedure

analogous to the first step of the test for the Painlevé property.
The outline of this paper is as follows.

In Section 2, we discuss the methodology of the simplest
equation method when the simplest equation is the equation
of Riccati. In Section 3, we discuss the symmetry analysis,
and in Section 4, we obtain exact solutions of the mentioned
Boussinesq equations. Concluding remarks are summarized
in Section 5.

2. Analysis of the Simplest Equation Method

We consider a partial differential equation and assume
that by means of an appropriate transformation this partial
differential equation is transformed to a nonlinear ordinary
differential equation in the form

𝑃 (𝐹, 𝐹


, 𝐹


, 𝐹


, . . .) = 0. (3)

Exact solution of this equation can be constructed as finite
series

𝐹 (𝜉) =

𝑛

∑

𝑖=0

𝐴
𝑖
(𝐺(𝜉))

𝑖

, (4)

where 𝐺(𝜉) is a solution of some ordinary differential equa-
tion referred to as the simplest equation. The simplest equa-
tion has two properties:

(1) the order of simplest equation should be less than the
order of (3);
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(2) we should know the general solution of the simplest
equation or at least exact analytical particular solu-
tion(s) of the simplest equation.

In this paper, we use the equation of Riccati as the simplest
equation. This equation is a well-known nonlinear ordinary
differential equation which has exact solutions in terms of
elementary functions. In this paper, for the Riccati equation

𝐺


(𝜉) = 𝑐𝐺 (𝜉) + 𝑑𝐺(𝜉)
2

, (5)

where 𝑐 and 𝑑 are nonzero constants, we use the solution

𝐺 (𝜉) =

𝑐 exp [𝑐 (𝜉 + 𝜉
0
)]

1 − 𝑑 exp [𝑐 (𝜉 + 𝜉
0
)]

, for 𝑑 < 0, 𝑐 > 0, (6)

𝐺 (𝜉) = −

𝑐 exp [𝑐 (𝜉 + 𝜉
0
)]

1 + 𝑑 exp [𝑐 (𝜉 + 𝜉
0
)]

, for 𝑑 > 0, 𝑐 < 0. (7)

Here, 𝜉
0
is a constant of integration. Now, 𝐹(𝜉) can be

determined explicitly by using the following three steps.

Step 1. By considering the homogeneous balance between the
highest nonlinear terms and the highest order derivatives of
𝐹(𝜉) in (3), the positive integer 𝑛 in (4) is determined.

Step 2. By substituting (4) into (3), making use of (5), and
collecting all terms with the same powers of 𝐺 together, the
left-hand side of (3) is converted into a polynomial. After
setting each coefficient of this polynomial to zero, we obtain
a set of algebraic equations in terms of 𝐴

𝑖
(𝑖 = 0, 1, 2, . . . , 𝑛).

Step 3. Solving the system of algebraic equations and then
substituting the results and the general solutions (6) or (7)
into (4) gives solutions of (3).

3. Lie Symmetry Analysis

To apply the classical method of symmetry analysis [16, 17],
we consider the one-parameter Lie group of infinitesimal
transformations in 𝑥, 𝑡, 𝑢 given by

𝑥
∗

= 𝑥 + 𝜖𝜉
1

(𝑥, 𝑡, 𝑢) + 𝑂 (𝜖
2

) ,

𝑡
∗

= 𝑡 + 𝜖𝜉
2

(𝑥, 𝑡, 𝑢) + 𝑂 (𝜖
2

) ,

𝑢
∗

= 𝑢 + 𝜖𝜙
1

(𝑥, 𝑡, 𝑢) + 𝑂 (𝜖
2

) ,

(8)

where 𝜖 is the group parameter. The related Lie algebra is
generated by the vector field

𝑋 = 𝜉
1

(𝑥, 𝑡, 𝑢)

𝜕

𝜕𝑥

+ 𝜉
2

(𝑥, 𝑡, 𝑢)

𝜕

𝜕𝑡

+ 𝜙
1

(𝑥, 𝑡, 𝑢)

𝜕

𝜕𝑢

. (9)

Applying the fourth prolongation of the vector field (9),𝑋[4],
to (1), we have

𝑋
[4]

(𝑢
𝑡𝑡
− 𝑢
𝑥𝑥
− 3(𝑢

2

)
𝑥𝑥

− 𝑢
𝑥𝑥𝑥𝑥
)





(1)
= 0. (10)

Expanding the above equation, we obtain the following
overdetermined system of linear partial differential equa-
tions:

𝜉
1

𝑢
= 0,

𝜉
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𝜙
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𝑥
= 0,
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𝑡𝑢
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2

𝑡𝑡
= 0.

(11)

Solving the above system of equations, we obtain the follow-
ing three Lie point symmetries of (1):

𝑋
1
=

𝜕

𝜕𝑡

, 𝑋
2
=

𝜕

𝜕𝑥

,

𝑋
3
= (1 + 6𝑢)

𝜕

𝜕𝑢

− 6𝑡

𝜕

𝜕𝑡

− 3𝑥

𝜕
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.

(12)

We now use the two translation symmetries 𝑋
1
and 𝑋

2
and

consider 𝑋 = 𝑋
1
+ ]𝑋
2
. This symmetry 𝑋 yields the two

invariants

𝜉 = 𝑥 − ]𝑡, 𝑢 = 𝐹, (13)

which gives a group invariant solution 𝑢 = 𝐹(𝜉), and con-
sequently using these invariants (1), is transformed into the
fourth-order nonlinear ordinary differential equation

(𝛽
2

− 1) 𝐹


− 3(𝐹
2

)



− 𝐹
(4)

= 0. (14)

Likewise, (2) is transformed to

(𝛽
2

− 1) 𝐹


− 3(𝐹
2

)



+ 𝐹
(4)

= 0. (15)

4. Exact Solutions of the Boussinesq Equations

We now use the simplest equation method to obtain exact
solutions. Let us consider the solutions of (14) and (15) in the
form

𝐹 (𝜉) =

𝑛

∑

𝑖=0

𝐴
𝑖
(𝐺(𝜉))

𝑖

, (16)
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where 𝐺(𝜉) satisfies the Riccati equation (5), 𝑛 is a positive
integer that can be determined by a balancing procedure, and
𝐴
0
, 𝐴
1
, 𝐴
2
, . . . , 𝐴

𝑛
are parameters to be determined.

In this case, the balancing procedure yields 𝑛 = 2, and so
the solutions of (14) and (15) are of the form

𝐹 (𝜉) =

2

∑

𝑖=0

𝐴
𝑖
(𝐺(𝜉))

𝑖

. (17)

4.1. Solutions of (1) Using Simplest Equation Method. Substi-
tuting (17) into (14), making use of the Riccati equation (5)
and then equating all coefficients of the functions 𝐺𝑖 to zero,
we obtain an algebraic system of equations in terms of 𝐴

0
,

𝐴
1
, and 𝐴

2
. Solving the algebraic system of equations, with

the aid of mathematica, we obtain the following values of𝐴
0
,

𝐴
1
, 𝐴
2
:

𝐴
0
= (

1

6

) (]2 − 𝑐2 − 1) ,

𝐴
1
= −2𝑐𝑑,

𝐴
2
= −2𝑑

2

.

(18)

Therefore, for the case 𝑑 < 0, 𝑐 > 0, the solution of (1) is given
by

𝑢
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0
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2
(

𝑐 exp [𝑐 (𝜉 + 𝜉
0
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1 − 𝑑 exp [𝑐 (𝜉 + 𝜉
0
)]

)

2

,

(19)

and when 𝑑 > 0, 𝑐 < 0, the solution of (1) is given by

𝑢
2
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𝑐 exp [𝑐 (𝜉 + 𝜉
0
)]
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2
(
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0
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1 + 𝑑 exp [𝑐 (𝜉 + 𝜉
0
)]

)

2

,

(20)

where 𝜉 = 𝑥 − ]𝑡.

4.2. Solutions of (2) Using Simplest Equation Method. Fol-
lowing the same procedure as above, for (15), we obtain the
following values of 𝐴

0
, 𝐴
1
, 𝐴
2
:

𝐴
0
= (

1

6

) (𝑐
2

+ ]2 − 1) ,

𝐴
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= 2𝑐𝑑,

𝐴
2
= 2𝑑
2

,

(21)

and so for the case 𝑑 < 0, 𝑐 > 0, the solution of (2) is given
by

𝑢
1
(𝑥, 𝑡) = 𝐴

0
+ 𝐴
1

𝑐 exp [𝑐 (𝜉 + 𝜉
0
)]

1 − 𝑑 exp [𝑐 (𝜉 + 𝜉
0
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0
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)

2

,

(22)

and for 𝑑 > 0, 𝑐 < 0 the solution of (2) is given by

𝑢
2
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0
− 𝐴
1

𝑐 exp [𝑐 (𝜉 + 𝜉
0
)]
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0
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0
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0
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)

2

,

(23)

where 𝜉 = 𝑥 − ]𝑡.

5. Concluding Remarks

In this paper, Lie symmetry method along with the simplest
equation method has been successfully used to obtain exact
solutions of the bad and good Boussinesq equations. As the
simplest equation, we have used the equation of Riccati. We
have also verified that the solutions we have found are indeed
solutions to the original equations.
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Based on the finite difference scheme in time, the method of particular solutions using radial basis functions is proposed to solve
one-dimensional time-dependent inhomogeneous Burgers’ equations. Two numerical examples with good accuracy are given to
validate the proposed method.

1. Introduction

In this paper we consider the one-dimensional nonlinear
evolutionary partial differential equation

𝜕𝑢 (𝑥, 𝑡)

𝜕𝑡

+ 𝑢 (𝑥, 𝑡)

𝜕𝑢 (𝑥, 𝑡)

𝜕𝑥

−

1

𝑅

𝜕
2
𝑢 (𝑥, 𝑡)

𝜕𝑥
2

= 𝑓 (𝑥, 𝑡) . (1)

The corresponding homogeneous equation

𝜕𝑢 (𝑥, 𝑡)

𝜕𝑡

+ 𝑢 (𝑥, 𝑡)

𝜕𝑢 (𝑥, 𝑡)

𝜕𝑥

−

1

𝑅

𝜕
2
𝑢 (𝑥, 𝑡)

𝜕𝑥
2

= 0 (2)

was first introduced by Bateman [1] who considered its steady
state solutions. Later, Burgers [2, 3] treated it as a mathemati-
cal model for free turbulence, and subsequently this equation
is widely referred to as Burgers’ equation. Burgers’ equation
can model several physical phenomena such as traffic, shock
waves, and continuous stochastic processes. It can also be
used to test various numerical algorithms. Due to its wide
range of applicability, several researchers have been interested
in the properties of its solution.

Burgers’ equation has been solved analytically for a
restricted set of arbitrary initial and boundary conditions [4,
5]. Benton and Platzman [6] surveyed about 35 distinct exact
solutions of the one-dimensional Burgers-like equations and
their classifications. It is well known that the exact solution

of Burgers’ equation can only be computed for restricted
values of 𝑅. Therefore, various numerical methods were
employed to obtain the solution of Burgers’ equation. It is
not our purpose to exhaust all these numerical schemes.
Nevertheless, the solutionmethodologies commonly fall into
the following classes: finite difference method (FDM), finite
element method (FEM), and spectral methods. A survey of
these techniques is given in [7, 8]. The previous numerical
methods all depend on the mesh of the studied domain [9–
12].

To alleviate the difficulty of mesh generation, various
meshless techniques have been introduced during the past
two decades. In a meshless (meshfree) method, a set of
scattered nodes are selected in the computational domain.
Meshless schemes include the method of fundamental solu-
tions (MFS) [13], the method of particular solutions (MPS)
[14–17], the element-free Galerkin method [18], local point
interpolation [12], and boundary knot method [19]. It is
known that the MFS is a boundary-type meshless method
which is highly accurate for solving homogeneous equations
if the fundamental solution of the given differential operator
is known [20]. However, the fundamental solution of a given
differential equation is not always available and often very
difficult to derive.The ill-conditioning of thematrix resulting
from the formulation of using the MFS and the location
of source points are still outstanding research problems.
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To extend the MFS to inhomogeneous equations or time-
dependent problems, the MPS has been introduced to eval-
uate the particular solution of the given differential equation.
Since the particular solution is not unique, there is a rich
variety of numerical techniques developed for this purpose.

Radial basis functions (RBFs), polynomial functions,
trigonometric functions, and so forth [20–24], have been
employed as the basis functions to approximate the particular
solutions for the given differential equation. Once a partic-
ular solution has been evaluated, the given inhomogeneous
equations can be reduced to the homogeneous equation. The
original differential equation can be recovered by adding the
homogeneous solution and the particular solution. This is a
two-stage numerical scheme and is a well-known procedure
for solving linear partial differential equations.

In general, the fundamental solution can be viewed as a
special type of particular solution.When the inhomogeneous
term is replaced by the delta function, a particular solution
becomes a fundamental solution. The main idea of the MFS
is that a fundamental solution satisfies the homogeneous
equation inside the domain, and one only needs to enforce the
fundamental solution on the boundary conditions to obtain
the solution of the given homogeneous problem. Motivated
by a similar idea, the particular solution can be used to
solve inhomogeneous problems; that is, since the particular
solution satisfies the given inhomogeneous equation through
the domain without satisfying the boundary conditions, one
only needs to impose the boundary conditions to obtain the
solution of the given inhomogeneous problem.

It is the purpose of this paper to extend the MPS to
a one-stage numerical scheme for solving one-dimensional
time-dependent Burgers’ equations through the use of RBFs
and then solve the time-dependent problems without the
need of a two-stage numerical scheme [25] for obtaining
homogeneous solution.

2. The Method of Particular Solutions

Consider the following boundary value problem:

Δ𝑢 (x) = 𝑓 (x) , x ∈ Ω, (3)

𝐵𝑢 (x) = 𝑏 (x) , x ∈ Γ, (4)

where Δ and 𝐵 are the Laplace operator and boundary
differential operators, respectively, Ω ⊆ R𝑑 is the solution
domain, Γ is its boundary, and 𝑓(x) and 𝑏(x) are given
functions.

Approximate𝑓(x) by a finite series of RBFs {𝜙
𝑗
}
𝑁

1
through

interpolation, and interpolants ̂
𝑓
𝑛
(x) to 𝑓(x) can be con-

structed as

𝑓 (x) ≃ ̂
𝑓
𝑁
(x) =

𝑁

∑

𝑗=1

𝜆
𝑗
𝜙 (𝑟
𝑗
) , (5)

in which 𝑟
𝑗
= ‖x − x

𝑗
‖ is Euclidean distance, {x

𝑗
}
𝑁

1
is a set of

interpolation points, and the real coefficients {𝜆
𝑗
}
𝑁

1
are to be

determined by solving
𝑁

∑

𝑗=1

𝜆
𝑗
𝜙 (𝑟
𝑗
) = 𝑓 (x

𝑘
) , 1 ≤ 𝑘 ≤ 𝑁 (6)

if the 𝑛 × 𝑛 real coefficient matrix 𝐴
𝜙
= (𝜙(𝑟

𝑘𝑗
)) is positive

definite.
Therefore, from (6) an approximate particular solution

𝑢(x) to (3) is given by

𝑢 (x) ≃
𝑁

∑

𝑗=1

𝜆
𝑗
Φ(𝑟
𝑗
) , (7)

where Φ(𝑟
𝑗
) is obtained analytically by solving

ΔΦ(𝑟
𝑗
) = 𝜙 (𝑟

𝑗
) . (8)

If we impose 𝑢(x) in (7) to satisfy the governing equation
in (3) and boundary conditions in (4), then 𝑢(x) becomes
an approximate solution of the original partial differential
equations (3)-(4). To be more specific, we have

𝑁

∑

𝑗=1

𝜆
𝑗
𝜙 (𝑟
𝑗
) = 𝑓 (x

𝑘
) , x

𝑘
∈ Ω,

𝑁

∑

𝑗=1

𝜆
𝑗
𝐵Φ(𝑟

𝑗
) = 𝑏 (x

𝑘
) , x

𝑘
∈ Γ.

(9)

For the numerical implementation, we let {x
𝑘
}
𝑛
𝐼

1
be the

interior points, {x
𝑘
}
𝑁

𝑛
𝐼
+1
the boundary points, and𝑁 = 𝑛

𝐼
+𝑛
𝐵
.

From (9) we have
𝑁

∑

𝑗=1

𝜆
𝑗
𝜙 (𝑟
𝑗
) = 𝑓 (x

𝑘
) , 1 ≤ 𝑘 ≤ 𝑛

𝐼
,

𝑁

∑

𝑗=1

𝜆
𝑗
𝐵Φ(𝑟

𝑗
) = 𝑏 (x

𝑘
) , 𝑛

𝐼
+ 1 ≤ 𝑘 ≤ 𝑁.

(10)

The above system of equations can be easily solved using a
standard matrix solver. Once the {𝜆

𝑗
}
𝑁

1
are determined, the

approximate particular solution becomes the approximate
solution 𝑢(x) of (3)-(4); that is,

𝑢 (x) =
𝑁

∑

𝑗=1

𝜆
𝑗
Φ(𝑟
𝑗
) . (11)

Note that an accurate approximation of the particular solu-
tion 𝑢(x) depends on the appropriate choice of radial basis
function 𝜙. In the RBF literature [20, 26], some of the globally
defined RBFs are only conditionally positive definite [26].
The unique solvability of the interpolation problem can be
obtained by adding a polynomial term to the interpolation
(5), giving

𝑓 (x) ≃ ̂
𝑓
𝑛
(x) =

𝑁

∑

𝑗=1

𝜆
𝑗
𝜙 (𝑟
𝑗
) +

𝐾

∑

𝑘=1

𝜇
𝑘
𝑝
𝑘
(x) , (12)
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along with the constraints

𝑁

∑

𝑗=1

𝜆
𝑗
𝑝
𝑘
(x
𝑗
) = 0, 1 ≤ 𝑘 ≤ 𝐾, (13)

where {𝑝
𝑘
}
𝐾

1
is a basis of P

𝑚−1
, the space of 𝑑-variate

polynomials of order not exceeding𝑚 − 1, and

𝐾 = (

𝑚 − 1 + 𝑑

𝑑
) (14)

is the dimension ofP
𝑚−1

.
There are many types of globally defined RBFs [20], and

the most popular RBFs are

Inverse multiquadric (IMQ),

𝜙 (𝑟) = (𝑟
2

+ 𝑐
2

)

𝑞/2

, 𝑞 < 0, 𝑐 > 0, (15)

Multiquadric (MQ),

𝜙 (𝑟) = (𝑟
2

+ 𝑐
2

)

𝑞/2

, 𝑞 ∈ R
+

\ 2Z, 𝑐 > 0, 𝑚 > [

𝑞

2

] , (16)

Gaussian (G),

𝜑 (𝑟) = 𝑒
−𝑐𝑟
2

, 𝑐 > 0. (17)

Polyharmonic (PH),

𝜙 (𝑟) = 𝑟
𝑞

, 𝑞 ∈ R
+

\ 2Z, 𝑐 > 0, 𝑚 > [

𝑞

2

] . (18)

Polyharmonic (PH),

𝜙 (𝑟) = 𝑟
𝑞 log (𝑟) , 𝑞 ∈ 2Z, 𝑚 >

𝑞

2

. (19)

3. Methodology

In order to solve such whole-space problems by numerical
methods, we limit our consideration to a finite subdomain
[𝑎, 𝑏]. In other words, function 𝑢(𝑥, 𝑡) satisfies the following
general nonlinear one-dimensional time-dependent Burgers’
equation:

𝜕𝑢 (𝑥, 𝑡)

𝜕𝑡

=

1

𝑅

𝜕
2
𝑢 (𝑥, 𝑡)

𝜕𝑥
2

− 𝑢 (𝑥, 𝑡)

𝜕𝑢 (𝑥, 𝑡)

𝜕𝑥

+ 𝑓 (𝑥, 𝑡)

(𝑥, 𝑡) ∈ [𝑎, 𝑏] × [0, 𝑇] ,

(20)

with the initial condition

𝑢 (𝑥, 0) = 𝑔 (𝑥) , 𝑥 ∈ [𝑎, 𝑏] , (21)

and the Dirichlet boundary condition

𝑢 (𝑎, 𝑡) = 𝑝 (𝑡) , 𝑢 (𝑏, 𝑡) = 𝑞 (𝑡) , 𝑡 ∈ [0, 𝑇] , (22)

where 𝑅 > 0 is interpreted as the Reynolds number, and 1/𝑅
is the kinematic viscosity, and𝑓(𝑥, 𝑡), 𝑔(𝑥), 𝑝(𝑡), and 𝑞(𝑡) are
known functions.

In the following section, a generalized trapezoidal
method (𝜃-method) is used to approximate the time deriva-
tive in (20). Let 𝜏 = 𝑡

𝑛+1
− 𝑡
𝑛 be the time step and 𝑡𝑛 = 𝑛𝜏. For

any 𝑡𝑛 ≤ 𝑡 ≤ 𝑡
𝑛+1 and 0 ≤ 𝜃 ≤ 1, 𝑢(𝑥, 𝑡) can be approximated

as follows:

𝑢 (𝑥, 𝑡) ≃ 𝜃𝑢 (𝑥, 𝑡
𝑛+1

) + (1 − 𝜃) 𝑢 (𝑥, 𝑡
𝑛

) ,

𝑓 (𝑥, 𝑡) ≃ 𝜃𝑓 (𝑥, 𝑡
𝑛+1

) + (1 − 𝜃) 𝑓 (𝑥, 𝑡
𝑛

) .

(23)

Then,

Δ𝑢 (𝑥, 𝑡) ≃ 𝜃Δ𝑢 (𝑥, 𝑡
𝑛+1

) + (1 − 𝜃) Δ𝑢 (𝑥, 𝑡
𝑛

) ,

𝜕𝑢 (𝑥, 𝑡)

𝜕𝑡

≃

𝑢 (𝑥, 𝑡
𝑛+1

) − 𝑢 (𝑥, 𝑡
𝑛
)

𝜏

,

(24)

where Δ = 𝜕
2
/𝜕𝑥
2. For simplicity, we denote 𝑢

𝑛
≡

𝑢(𝑥, 𝑡
𝑛
), 𝑢𝑛
𝑥
≡ 𝜕𝑢(𝑥, 𝑡

𝑛
)/𝜕𝑥, and 𝑓

𝑛
≡ 𝑓(𝑥, 𝑡

𝑛
). Substituting

(23)–(24) into (20)–(22), we obtain the following equation:

𝑢
𝑛+1

− 𝑢
𝑛

𝜏

= 𝜃 [

1

𝑅

Δ𝑢
𝑛+1

− 𝑢
𝑛+1

𝑢
𝑛+1

𝑥
+ 𝑓
𝑛+1

]

+ (1 − 𝜃) [

1

𝑅

Δ𝑢
𝑛

− 𝑢
𝑛

𝑢
𝑛

𝑥
+ 𝑓
𝑛

] .

(25)

Rewrite the previous equation as follows:

𝑢
𝑛+1

− 𝜃𝜏 [

1

𝑅

Δ𝑢
𝑛+1

− 𝑢
𝑛+1

𝑢
𝑛+1

𝑥
+ 𝑓
𝑛+1

]

= 𝑢
𝑛

+ (1 − 𝜃) 𝜏 [

1

𝑅

Δ𝑢
𝑛

− 𝑢
𝑛

𝑢
𝑛

𝑥
+ 𝑓
𝑛

] .

(26)

Then,

Δ𝑢
𝑛+1

=

𝑅

𝜃𝜏

𝑢
𝑛+1

+ 𝑅𝑢
𝑛+1

𝑢
𝑛+1

𝑥
− 𝑅𝑓
𝑛+1

−

𝑅

𝜃𝜏

𝑢
𝑛

−

𝑅 (1 − 𝜃)

𝜃

[

1

𝑅

Δ𝑢
𝑛

− 𝑢
𝑛

𝑢
𝑛

𝑥
+ 𝑓
𝑛

] .

(27)

Assume that 𝑢𝑛+1(𝑥) is a sought solution to the elliptic
PDE. We can represent the right hand side of (27) as a
function𝐹(𝑥).Thismeans that (27) is a standardPoisson-type
differential equation

Δ𝑢
𝑛+1

= 𝐹 (𝑥) . (28)

Therefore, if the fictitious function 𝐹(𝑥) is known, (27) is
equivalent to the Poisson-type equation (28) under the same
boundary conditions.

Uniformly choose𝑁−2 collocation points {𝑥
𝑘
}
𝑁−1

2
in the

interior of domain [𝑎, 𝑏] and two boundary points 𝑥 = 𝑎

and 𝑥 = 𝑏. For implementation, let 𝑥
1

= 𝑎, 𝑥
𝑁

= 𝑏.
Approximating the function 𝐹(𝑥) by RBFs {𝜙

𝑗
}
𝑁

1
, we have

𝐹 (𝑥) ≃

𝑁

∑

𝑗=1

𝜆
𝑛+1

𝑗
𝜙
𝑗
(𝑟
𝑘𝑗
) , 𝑘, 𝑗 = 1, 2, . . . , 𝑁, (29)
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where 𝑟
𝑘𝑗
= ‖(𝑥

𝑘
− 𝑥
𝑗
)
2

‖. Then we can approximate 𝑢(𝑥) at
time step 𝑛 + 1 as follows:

𝑢
𝑛+1

(𝑥) ≃

𝑁

∑

𝑗=1

𝜆
𝑛+1

𝑗
Φ
𝑗
(𝑟
𝑗
) , (30)

where Φ
𝑗
(𝑥) is obtained by solving

ΔΦ (𝑥) = 𝜙 (𝑥) . (31)

We use two RBFs, namely, IMQ and PH, where

𝜙
𝑗
(𝑥) =

1

√(𝑟
2

𝑗
+ 𝑐
2
)

3

, 𝜙
𝑘
(𝑥) = 𝑟

3

𝑘
.

(32)

It is easy to obtain the followingΦ(𝑥):

Φ
𝑗
(𝑥) =

1

𝑐
2
√𝑟
2

𝑗
+ 𝑐
2
, Φ

𝑘
(𝑥) =

1

20

𝑟
5

𝑘
. (33)

Note that (27) is a recursion formula, and we can solve
each elliptic PDE step by step starting with initial condition
(21). As is well known, it is difficult to obtain an accurate
numerical derivative from scattered data. Therefore, we
choose 𝜃 = 1 in our method in order to avoid evaluating Δ𝑢𝑛
in (27). In this case, we can reformulate (27) as follows:

𝑢
𝑛+1

− 𝜏 [

1

𝑅

Δ𝑢
𝑛+1

− 𝑢
𝑛+1

𝑢
𝑛+1

𝑥
] = 𝑢
𝑛

+ 𝜏𝑓
𝑛+1

. (34)

The nonlinear term 𝑢
𝑛+1

𝑢
𝑛+1

𝑥
is linearized as follows:

𝑢
𝑛+1

𝑢
𝑛+1

𝑥
= 𝑢
𝑛+1

𝑢
𝑛

𝑥
+ 𝑢
𝑛

𝑢
𝑛+1

𝑥
− 𝑢
𝑛

𝑢
𝑛

𝑥
. (35)

Substituting (35) into (34) and rearranging, we obtain

𝑢
𝑛+1

− 𝜏 [

1

𝑅

Δ𝑢
𝑛+1

− 𝑢
𝑛+1

𝑢
𝑛

𝑥
− 𝑢
𝑛

𝑢
𝑛+1

𝑥
]

= 𝑢
𝑛

+ 𝜏𝑢
𝑛

𝑢
𝑛

𝑥
+ 𝜏𝑓
𝑛+1

.

(36)

Write (30) together with boundary condition (22) in
matrix form

[𝑢]
𝑛

= 𝐴[𝜆]
𝑛

, (37)

where [𝑢]𝑛 = [𝑢
𝑛

1
, 𝑢
𝑛

2
, . . . , 𝑢

𝑛

𝑁
], [𝜆]𝑛 = [𝜆

𝑛

1
, 𝜆
𝑛

2
, . . . , 𝜆

𝑛

𝑁
], and

𝐴 = [𝑎
𝑘𝑗
], 1 ≤ 𝑘, 𝑗 ≤ 𝑁. There are 𝑁 − 2 internal points

and 2 boundary points. The𝑁×𝑁matrix𝐴 can be split into
𝐴 = 𝐴

𝑑
+ 𝐴
𝑏
, where

𝐴
𝑑
= {

(𝑎
𝑘𝑗
) if 2 ≤ 𝑘 ≤ 𝑁 − 1, 1 ≤ 𝑗 ≤ 𝑁

𝑎
𝑘𝑗
= 0 otherwise,

𝐴
𝑏
= {

(𝑎
𝑘𝑗
) if 𝑘 = 1,𝑁, 1 ≤ 𝑗 ≤ 𝑁

𝑎
𝑘𝑗
= 0 otherwise.

(38)

Applying this to the domain points and boundary points, (37)
and (22) can be reformulated in the following matrix form:

{A
𝑑
− 𝜏𝜀∇

2A
𝑑

+𝜏 [diag (A
𝑑
[𝜆]
𝑛

) ∇A
𝑑
+ diag (∇A

𝑑
[𝜆]
𝑛

)A
𝑑
] + A
𝑏
} [𝜆]
𝑛+1

= A
𝑑
[𝜆]
𝑛

+ 𝜏 (A
𝑑
[𝜆]
𝑛

) ⋅ ∗ (∇A
𝑑
[𝜆]
𝑛

) + [𝐹]
𝑛+1

,

(39)

where ∇ is the gradient differential operator, diag(A
𝑑
[𝜆]
𝑛

) is
a diagonal matrix with A

𝑑
[𝜆]
𝑛 as its main diagonal, [𝐹]𝑛+1 =

[𝑝
𝑛+1

, 𝜏𝑓
𝑛+1

2
, . . . , 𝜏𝑓

𝑛+1

𝑁−1
, 𝑞
𝑛+1

]
𝑇, and the accent “⋅∗” means

component by component multiplication of two vectors.

4. Numerical Results

Two different problems are used to test the accuracy of our
method. In order to evaluate the numerical errors, we adopt
three kinds of errors defined by

𝐿
∞
= max
𝑗






𝑢
𝑗
− 𝑈
𝑗






,

𝐿
2
= √

𝑁

∑

𝑗=1






𝑢
𝑗
− 𝑈
𝑗







2

,

RMS = √

1

𝑁

𝑁

∑

𝑗=1






𝑢
𝑗
− 𝑈
𝑗







2

,

(40)

where 𝑢
𝑗
= 𝑢(𝑥

𝑗
, 𝑇) is the exact analytical solution, and 𝑈

𝑗
is

the numerical solution of 𝑢
𝑗
.

Example 1. Consider the following nonlinear one-
dimensional time-dependent Burgers’ equation with a
large Reynolds number 𝑅 = 10000, in the square domain
[0, 2𝜋],

𝜕𝑢 (𝑥, 𝑡)

𝜕𝑡

+ 𝑢 (𝑥, 𝑡)

𝜕𝑢 (𝑥, 𝑡)

𝜕𝑥

−

1

𝑅

𝜕
2
𝑢 (𝑥, 𝑡)

𝜕𝑥
2

= −

1

2

sin (2𝑥) 𝑒−2𝑡/𝑅,
(41)

with the initial condition

𝑢 (𝑥, 0) = cos (𝑥) , (42)

and the boundary condition

𝑢 (𝑥, 𝑡) = 𝑢 (𝑥 + 2𝜋, 𝑡) . (43)

The analytical solution is given as

𝑢 (𝑥, 𝑡) = cos (𝑥) 𝑒−𝑡/𝑅. (44)

We choose twoRBFs, namely, IMQandPH, as defined in (32).
The 𝐿

∞
, 𝐿
2
, and root-mean-square (RMS) errors for our
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Table 1: 𝐿
∞
, 𝐿
2
, and RMS errors, with 𝜏 = 0.1, 𝑑

𝑥
= 𝜋 /10, and 𝑥 ∈ [0, 2𝜋].

𝑡

𝐿
∞

𝐿
2

RMS
IMQ PH IMQ PH IMQ PH

0.5 9.6592 × 10
−6

7.7103 × 10
−3

1.3706 × 10
−5

8.2398 × 10
−3

3.0648 × 10
−6

1.8425 × 10
−3

1.0 9.9640 × 10
−6

1.2424 × 10
−2

1.5692 × 10
−5

1.7040 × 10
−2

3.5088 × 10
−6

3.8102 × 10
−3

1.5 9.9985 × 10
−6

1.5138 × 10
−2

1.4249 × 10
−5

2.3674 × 10
−2

3.1863 × 10
−6

5.2937 × 10
−3

2.0 1.7471 × 10
−6

2.7952 × 10
−2

2.7217 × 10
−5

4.0602 × 10
−2

6.0859 × 10
−6

9.0788 × 10
−3

Table 2: 𝐿
∞
, 𝐿
2
, and RMS errors, with 𝜏 = 0.1, 𝑑

𝑥
= 0.05, and 𝑥 ∈ [0, 1].

t 𝐿
∞

𝐿
2

RMS
IMQ PH IMQ PH IMQ PH

0.5 1.0490 × 10
−4

6.2473 × 10
−3

3.8990 × 10
−4

1.9479 × 10
−2

5.5140 × 10
−5

2.7547 × 10
−3

1.0 2.6814 × 10
−4

1.0352 × 10
−2

1.0921 × 10
−3

3.2281 × 10
−2

1.5445 × 10
−4

4.5652 × 10
−2

1.5 7.1806 × 10
−4

1.7210 × 10
−2

2.8510 × 10
−3

5.3690 × 10
−2

4.0320 × 10
−4

7.5929 × 10
−3

2.0 1.9485 × 10
−3

2.8760 × 10
−2

7.8048 × 10
−3

8.9872 × 10
−2

1.1038 × 10
−3

1.2710 × 10
−2
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Figure 1: Analytical and numerical solution at 𝑡 = 2, with IMQ as
RBF, 𝜏 = 0.1, 𝑑

𝑥
= 𝜋/10, and 𝑥 ∈ [0, 2𝜋], for Example 1.

numerical solutions are shown in Table 1 for 𝑡 = 0.5, 1, 1.5,
and 2. It can be seen that the accuracy of the method using
IMQ is much higher than that using PH.

The graph of the analytical and estimated solutions for 𝑡 =
2 is shown in Figure 1. The absolute error graph is shown in
Figure 2. We also show the space-time graph of the estimated
solution in Figure 3.

Example 2. We consider the second-order nonlinear Burgers’
equation

𝜕𝑢 (𝑥, 𝑡)

𝜕𝑡

+ 𝑢 (x, 𝑡) 𝜕𝑢 (𝑥, 𝑡)
𝜕𝑥

−

1

𝑅

𝜕
2
𝑢 (𝑥, 𝑡)

𝜕𝑥
2

= 𝑓 (𝑥, 𝑡) , (45)
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3

4

Ab
so

lu
te

 er
ro

r
Absolute error

0.5

1.5

2.5

3.5

4.5
×10

−5

x

Figure 2: Absolute error at 𝑡 = 2, with IMQ as RBF, 𝜏 = 0.1, 𝑑
𝑥
=

𝜋/10, and 𝑥 ∈ [0, 2𝜋], for Example 1.

where 𝑓(𝑥, 𝑡) depends upon the exact solution of (45) as
follows:

𝑢 (𝑥, 𝑡) = [sin (2𝜋𝑥) + 1

2

sin (𝜋𝑥)] 𝑒𝑡. (46)

We take the required initial and boundary functions from the
exact solution in the domain [0, 1]. Similar to Example 1, we
also choose twoRBFs, namely, IMQandPH, as shown in (32).
In Table 2, we compute the 𝐿

∞
, 𝐿
2
errors and RMS errors at

𝑡 = 0.5, 1, 1.5, and 2, with the Reynolds number𝑅 = 0.001. It
indicates that the case of IMQ also has higher accuracy than
the case of PH. In Figure 4, we draw the graph of the analytical
and estimated solutions, and in Figure 5 the absolute error
graph is shown. Figures 4 and 5 are shown at 𝑡 = 2.The space-
time graph of the numerical solution is shown in Figure 6.
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Figure 3: Space-time graph of the solution up to 𝑡 = 2, with IMQ as
RBF, 𝜏 = 0.1, 𝑑

𝑥
= 𝜋/10, and 𝑥 ∈ [0, 2𝜋], for Example 1.
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Figure 4: Analytical and numerical solution at 𝑡 = 2, with PH as
RBF, 𝜏 = 0.1, 𝑑

𝑥
= 0.05, and 𝑥 ∈ [0, 1], for Example 2.

Remark 3. Note that, for the two examples shown previously,
the RBFs are unconditionally positive definite to guarantee
the solvability of the resulting systems. However, some RBFs
are conditionally positive definite. These types of interpola-
tion problems can be obtained by adding a polynomial term
to the interpolation (12), and it is also easy to verify the
efficiency of the proposed schemes for these cases.

5. Conclusions

In this paper we proposed and implemented the method
of particular solutions to solve the one-dimensional time-
dependent Burgers’ equation.The effectiveness of the compu-
tational scheme is well demonstrated. It must be emphasized
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Figure 5: Absolute error at 𝑡 = 2, with PH as RBF, 𝜏 = 0.1, 𝑑
𝑥
=

0.05, and 𝑥 ∈ [0, 1], for Example 2.
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Figure 6: Space-time graph of the solution up to 𝑡 = 2, with PH as
RBF, 𝜏 = 0.1, 𝑑

𝑥
= 𝜋/10, and 𝑥 ∈ [0, 2𝜋], for Example 2.

that the choice of radial basis functions is a flexible feature
of these methods. The radial basis functions can be globally
supported, infinitely differentiable and contain free param-
eters, namely, shape parameters, which affect both accuracy
of the solutions and conditioning of the collocation matrix.
The optimal shape parameters in Examples 1 and 2 using
IMQ and PH, respectively, for all the calculations were found
experimentally. The optimal choice of the shape parameters
in RBFs is still an outstanding research problem [27–29].
A similar approach can be extended to solving 2D or 3D
time-dependent partial differential equations.These research
topics will be the focus of future investigation.
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We study the conservation laws of evolution equation, lubrication models, sinh-Poisson equation, Kaup-Kupershmidt equation,
andmodified Sawada-Kotera equation.The symbolic software GeM (Cheviakov (2007) and (2010)) is used to derive the multipliers
and conservation law fluxes. Software GeM is Maple-based package, and it computes conservation laws by direct method and first
homotopy and second homotopy formulas.

1. Introduction

The study of conservation laws plays a vital role in analysis,
solution, and reductions of PDEs. For the PDEs, the con-
servation laws are used in wide variety of applications, for
example, inverse scattering transform in soliton solutions [1],
bi-Hamiltonian structures and recursion operators [2], Lax
operators [3], and derivation of conserved quantities for jet
flows [4].

Different methods have been developed so far for the
construction of conservation laws and are well documented
in [5–7]. In the last few decades, the researchers focused
on the development of symbolic computational packages
based on different approaches of conservation laws. These
packages work with either Mathematica or Maple. The
development of symbolic computational packages gives relief
to perform complicated and tedious algebraic computation.
Recently, several computational packages have been devel-
oped, for example, CONDENS.M by Göktaş and Hereman
[8], RUDCE by Wolf et al. [9–11], TransPDEDensity.m by
Adams and Hereman [12], GeM by Cheviakov [13, 14],
Vessiot suite by Anderson and Cheb-Terrab [15], Conserva-
tionLawsMD.m by Poole and Hereman [16], and SADE by
Rocha Filho and Figueiredo [17].

In this paper, we will use GeM package [13] to com-
pute the conservation laws for partial differential equations

(PDEs) arising in applications. GeM package works with
Maple to obtain the symmetries and conservation laws of
differential equations. In symmetry analysis, it first computes
the overdetermined system of determining equations and
then simplifies the system by Rif package routines. After
simplification, a Maple command in GeM generates all
symmetry generators of differential equation. In conservation
laws analysis, GeM computes an overdetermined system
of determining equation of conservation law multipliers,
and then this system is simplified by Rif package which is
solved by using the built-in Maple function pdsolve to get
multipliers. After computing multipliers, the conservation
laws fluxes are derived by one of the following four methods:
direct method [18, 19], first homotopy formula [20], second
homotopy formula [19], and scaling symmetry formula [21].
All these four methods have some limitations in their use.
The direct method written in GeM [13] is a Maple implemen-
tation based on Wolf [11] program in REDUCE. For simple
partial differential equation (PDE) systems and multipliers,
direct method is used to calculate fluxes. It is also used
if arbitrary functions are involved. The conservation laws
fluxes for complicated PDEs or multipliers, not involving
arbitrary functions, are established by using first and second
homotopy formulas. The scaling symmetry method is used
to compute fluxes for the scaling-homogeneous PDEs or/and
multipliers. For the complicated scaling-homogeneous PDEs
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and/or multipliers involving arbitrary functions, this is only
a systematic method for computing fluxes.

The evolution equations are important and arise in many
applications. We compute the conservation laws of various
nonlinear evolution equations using GeM Maple routines.
This includes a (1 + 1)-dimensional evolution equation [22],
lubrication models [23], sinh-Poisson equation [24], Kaup-
Kupershmidt equation [25], and modified Sawada-Kotera
equation [26]. At last, we summarize and discuss our results.

2. Multipliers and Conservation Laws
Using GeM Maple Routines

2.1. Evolution Equation. As a first example, consider the
following evolution equation [22]:

𝑢
𝑡𝑡
+ 𝑎𝑢
𝑥𝑥
+ 𝑏𝑢 + 𝑐𝑢

3

= 0, (1)

where 𝑢(𝑡, 𝑥) and 𝑎, 𝑏, 𝑐 are constants. We will explain this
example in detail along with GeM Maple routines given in
[13, 14]. The variables and partial differential equation (PDE)
(1) are defined in GeM by the following Maple commands.

With(GeM):
gem decl vars(indeps=[t,x], deps=[u(t,x)]);
gem decl eqs([diff(u(t,x),t,t)+a∗diff(u(t,x),x,x)+b∗
u(t,x)+c∗u3(t,x)=0],
solve for=[diff(u(t,x),t,t)]).

The option solve for is used in the flux-computation routine,
and actually it defines a set of leading derivatives the given
PDE systems can be solved for.

Consider multipliers of the form Λ = Λ(𝑡, 𝑥, 𝑢, 𝑢
𝑡
, 𝑢
𝑥
). In

GeM, we use the Maple routines,

det eqs:=gem conslaw det eqs([t,x,u(t,x),diff(u(t,x),
t),diff(u(t,x),x)]):
CL multipliers:=gem conslaw multipliers();
simplified eqs:=DEtools[rifsimp](det eqs,
CL multipliers,mindim=1),

to obtain the set of determining equations for the multipliers
expressed in the simplified form as

Λ
𝑥𝑥
= 0, Λ

𝑢
= 0, Λ

𝑥𝑢
𝑥

= 0, Λ
𝑢
𝑥
𝑢
𝑥

= 0,

Λ
𝑡
= −

𝑎𝑢
𝑥
Λ
𝑥

𝑢
𝑡

,

Λ
𝑢
𝑡

=

Λ − 𝑢
𝑥
Λ
𝑢
𝑥

𝑢
𝑡

, with 𝑎 ̸= 0, 𝑏 ̸= 0, 𝑐 ̸= 0.

(2)

To solve the system (2), we use the Maple command

multipliers sol:=pdsolve(simplified eqs[Solved]),

and it yields

Λ (𝑡, 𝑥, 𝑢, 𝑢
𝑡
, 𝑢
𝑥
) = (𝑐
3
𝑥 + 𝑐
1
) 𝑢
𝑡
+ (−𝑐
3
𝑎𝑡 + 𝑐
2
) 𝑢
𝑥
, (3)

where 𝑐
1
, 𝑐
2
, 𝑐
3
are arbitrary constants. We obtain three

linearly independent conservation laws, arising from the
multipliers

Λ
(1)

= 𝑢
𝑡
, Λ

(2)

= 𝑢
𝑥
, Λ

(3)

= 𝑥𝑢
𝑡
− 𝑎𝑡𝑢
𝑥
. (4)

Next step is the derivation of conservation laws associated
with multipliers given in (4). The Maple command

gem get CL fluxes(multipliers sol)
computes the flux expressions by the direct method. For
the multipliers (4), we have the following conservation laws
fluxes:

𝜙
(1)

=

1

2

𝑢
2

𝑡
−

1

2

𝑎𝑢
2

𝑥
+

1

4

𝑐𝑢
4

+

1

2

𝑏𝑢
2

, 𝜓
(1)

= 𝑎𝑢
𝑥
𝑢
𝑡
,

𝜙
(2)

= 𝑢
𝑡
𝑢
𝑥
+ 𝑏𝑡𝑢𝑢

𝑥
+ 𝑐𝑡𝑢
3

𝑢
𝑥
,

𝜓
(2)

= −

1

2

𝑢
2

𝑡
− 𝑐𝑡𝑢
3

𝑢
𝑡
− 𝑏𝑡𝑢𝑢

𝑡
+

1

2

𝑎𝑢
2

𝑥
,

𝜙
(3)

= −

1

2

𝑎𝑥𝑢
2

𝑥
− 𝑎𝑡𝑢
𝑡
𝑢
𝑥
+

1

2

𝑥𝑢
2

𝑡
+

1

4

𝑐𝑥𝑢
4

+

1

2

𝑏𝑥𝑢
2

,

𝜓
(3)

= −

1

4

𝑎𝑐𝑡𝑢
4

−

1

2

𝑎𝑏𝑡𝑢
2

+

1

2

𝑎𝑡𝑢
2

𝑡
+ 𝑎𝑥𝑢

𝑥
𝑢
𝑡
−

1

2

𝑎
2

𝑡𝑢
2

𝑥
.

(5)

The multipliers given in (4) do not involve arbitrary func-
tions, so homotopy formulas can be used to compute fluxes.
We call the routine for first homotopy method

gem get CL fluxes(multipliers sol,
method=“Homotopy1”)

to get the following expressions for conservation law fluxes:

𝜙
(1)

=

1

4

𝑐𝑢
4

+

1

2

𝑢
2

𝑡
+

1

2

𝑎𝑢𝑢
𝑥𝑥
+

1

2

𝑏𝑢
2

,

𝜓
(1)

= −

1

2

𝑎𝑢𝑢
𝑡𝑥
+

1

2

𝑎𝑢
𝑥
𝑢
𝑡
,

𝜙
(2)

= −

1

2

𝑢𝑢
𝑡𝑥
+

1

2

𝑢
𝑡
𝑢
𝑥
,

𝜓
(2)

=

1

4

𝑐𝑢
4

+

1

2

𝑎𝑢
2

𝑥
+

1

2

𝑢𝑢
𝑡𝑡
+

1

2

𝑏𝑢
2

,

𝜙
(3)

=

1

4

𝑐𝑢
4

𝑥 +

1

2

𝑎𝑢𝑢
𝑥
+

1

2

𝑎𝑡𝑢𝑢
𝑡𝑥
−

1

2

𝑎𝑡𝑢
𝑡
𝑢
𝑥

+

1

2

𝑥𝑢
2

𝑡
+

1

2

𝑎𝑥𝑢𝑢
𝑥𝑥
+

1

2

𝑏𝑥𝑢
2

,

𝜓
(3)

= −

1

4

𝑎𝑐𝑡𝑢
4

−

1

2

𝑎𝑢𝑢
𝑡
−

1

2

𝑎𝑥𝑢𝑢
𝑡𝑥
−

1

2

𝑎
2

𝑡𝑢
2

𝑥

+

1

2

𝑎𝑥𝑢
𝑡
𝑢
𝑥
−

1

2

𝑎𝑡𝑢𝑢
𝑡𝑡
−

1

2

𝑎𝑏𝑡𝑢
2

.

(6)

For second homotopy formula, the Maple command
gem get CL fluxes(multipliers sol,
method=“Homotopy2”)

yields divergence expressions in the same form as in (6).
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Table 1: Multipliers and conserved vectors for PDE (14).

Multiplier Fluxes

Λ
(1)

= 𝑢
𝑡

𝜙
(1)

= 𝜆
2

+

1

2

𝑢𝑢
𝑥𝑥
+

1

2

𝑢𝑢
𝑧𝑧
−

1

2

𝑢
2

𝑡
− 𝜆
2 cosh 𝑢

𝜓
(1)

= −

1

2

𝑢𝑢
𝑡𝑥
+

1

2

𝑢
𝑡
𝑢
𝑥

𝜋
(1)

= −

1

2

𝑢𝑢
𝑡𝑧
+

1

2

𝑢
𝑡
𝑢
𝑧

Λ
(2)

= 𝑢
𝑥

𝜙
(2)

=

1

2

𝑢𝑢
𝑡𝑥
−

1

2

𝑢
𝑡
𝑢
𝑥

𝜓
(2)

= 𝜆
2

+

1

2

𝑢𝑢
𝑧𝑧
+

1

2

𝑢
2

𝑥
− 𝜆
2 cosh 𝑢 − 1

2

𝑢𝑢
𝑡𝑡

𝜋
(2)

= −

1

2

𝑢𝑢
𝑥𝑧
+

1

2

𝑢
𝑥
𝑢
𝑧

Λ
(3)

= 𝑢
𝑧

𝜙
(3)

=

1

2

𝑢𝑢
𝑡𝑧
−

1

2

𝑢
𝑡
𝑢
𝑧

𝜓
(3)

= −

1

2

𝑢𝑢
𝑥𝑧
+

1

2

𝑢
𝑥
𝑢
𝑧

𝜋
(3)

= 𝜆
2

+

1

2

𝑢𝑢
𝑥𝑥
+

1

2

𝑢
2

𝑧
− 𝜆
2 cosh 𝑢 − 1

2

𝑢𝑢
𝑡𝑡

Λ
(4)

= 𝑥𝑢
𝑡
+ 𝑡𝑢
𝑥

𝜙
(4)

=

1

2

𝑢𝑢
𝑥
−

1

2

𝑥𝑢
2

𝑡
+

1

2

𝑡𝑢𝑢
𝑡𝑥
−

1

2

𝑡𝑢
𝑡
𝑢
𝑥
+

1

2

𝑥𝑢𝑢
𝑧𝑧
+

1

2

𝑥𝑢𝑢
𝑥𝑥
− 𝜆
2

𝑥 cosh 𝑢 + 𝜆2𝑥

𝜓
(4)

= −

1

2

𝑥𝑢𝑢
𝑡𝑥
−

1

2

𝑡𝑢𝑢
𝑡𝑡
+

1

2

𝑥𝑢
𝑥
𝑢
𝑡
+

1

2

𝑡𝑢𝑢
𝑧𝑧
+ 𝜆
2

𝑡 − 𝜆
2

𝑡 cosh 𝑢 − 1
2

𝑢𝑢
𝑡
+

1

2

𝑡𝑢
2

𝑥

𝜋
(4)

= −

1

2

𝑥𝑢𝑢
𝑡𝑧
+

1

2

𝑥𝑢
𝑡
𝑢
𝑧
−

1

2

𝑡𝑢𝑢
𝑥𝑧
+

1

2

𝑡𝑢
𝑥
𝑢
𝑧

Λ
(5)

= −𝑧𝑢
𝑥
+ 𝑥𝑢
𝑧

𝜙
(5)

=

1

2

𝑧𝑢𝑢
𝑡𝑥
+

1

2

𝑥𝑢𝑢
𝑡𝑧
+

1

2

𝑧𝑢
𝑡
𝑢
𝑥
−

1

2

𝑥𝑢
𝑡
𝑢
𝑧

𝜓
(5)

= −

1

2

𝑢𝑢
𝑧
−

1

2

𝑧𝑢𝑢
𝑧𝑧
−

1

2

𝑥𝑢𝑢
𝑥𝑧
+

1

2

𝑧𝑢𝑢
𝑡𝑡
−

1

2

𝑧𝑢
2

𝑥
+

1

2

𝑥𝑢
𝑥
𝑢
𝑧
− 𝜆
2

𝑧 + 𝜆
2

𝑧 cosh 𝑢

𝜋
(5)

=

1

2

𝑢𝑢
𝑥
+

1

2

𝑥𝑢𝑢
𝑥𝑥
− 𝜆
2

𝑥 cosh 𝑢 + 1
2

𝑥𝑢
2

𝑧
+

1

2

𝑧𝑢𝑢
𝑥𝑧
−

1

2

𝑧𝑢
𝑧
𝑢
𝑥
−

1

2

𝑥𝑢𝑢
𝑡𝑡
+ 𝜆
2

𝑥

Λ
(6)

= 𝑡𝑢
𝑧
+ 𝑧𝑢
𝑡

𝜙
(6)

=

1

2

𝑢𝑢
𝑧
−

1

2

𝑧𝑢
2

𝑡
+

1

2

𝑡𝑢𝑢
𝑡𝑧
−

1

2

𝑡𝑢
𝑡
𝑢
𝑧
+

1

2

𝑧𝑢𝑢
𝑧𝑧
+

1

2

𝑧𝑢𝑢
𝑥𝑥
+ 𝜆
2

𝑧 − 𝜆
2

𝑧 cosh 𝑢

𝜓
(6)

= −

1

2

𝑧𝑢𝑢
𝑡𝑥
+

1

2

𝑧𝑢
𝑡
𝑢
𝑥
−

1

2

𝑡𝑢𝑢
𝑥𝑧
+

1

2

𝑡𝑢
𝑥
𝑢
𝑧

𝜋
(6)

= −

1

2

𝑡𝑢𝑢
𝑡𝑡
+ 𝜆
2

𝑡 − 𝑡𝜆
2 cosh 𝑢 − 1

2

𝑢𝑢
𝑡
+

1

2

𝑡𝑢
2

𝑧
−

1

2

𝑧𝑢𝑢
𝑡𝑧
+

1

2

𝑧𝑢
𝑧
𝑢
𝑡
+

1

2

𝑡𝑢𝑢
𝑥𝑥

The PDE (1) has no scaling symmetry; therefore, we can-
not apply the scaling symmetry formula here for derivation
of fluxes.

2.2. Lubrication Models. Now we will study two lubrication
models for conservation laws point of view. Gandarias and
Medina [23] performed the symmetry analysis of lubrication
model

𝑢
𝑡
= 𝑓 (𝑢) 𝑢

𝑥𝑥𝑥𝑥
, (7)

where 𝑓 is an arbitrary function. For 𝑓(𝑢) = 𝑐(𝑢 + 𝑏)𝑎 and
𝑓(𝑢) = 𝛾𝑒

𝛼𝑢, this equation has some extra symmetry [23].
Without loss of generality, take 𝑓(𝑢) = 𝑢 + 𝑏 in (7); we have

𝑢
𝑡
= (𝑢 + 𝑏) 𝑢

𝑥𝑥𝑥𝑥
, (8)

where 𝑏 is arbitrary constant. Consider themultipliers of form
Λ(𝑡, 𝑥, 𝑢) in GeM Maple routines, and then we obtain the
following four multipliers:

Λ
(1)

(𝑡, 𝑥, 𝑢) =

1

(𝑢 + 𝑏)

, Λ
(2)

(𝑡, 𝑥, 𝑢) =

𝑥

(𝑢 + 𝑏)

,

Λ
(3)

(𝑡, 𝑥, 𝑢) =

𝑥
2

2 (𝑢 + 𝑏)

, Λ
(4)

(𝑡, 𝑥, 𝑢) =

𝑥
3

6 (𝑢 + 𝑏)

.

(9)

The fluxes associated with the multipliers given in (7) are
computed by homotopy first method and are given by

𝜙
(1)

= ln(𝑢 + 𝑏
𝑏

) , 𝜓
(1)

= 𝑢
𝑥𝑥𝑥
,

𝜙
(2)

= 𝑥 ln(𝑢 + 𝑏
𝑏

) , 𝜓
(2)

= −𝑢
𝑥𝑥
+ 𝑥𝑢
𝑥𝑥𝑥
,

𝜙
(3)

=

1

2

𝑥
2 ln(𝑢 + 𝑏
𝑏

) , 𝜓
(3)

= 𝑢
𝑥
− 𝑥𝑢
𝑥𝑥
+

𝑥
2
𝑢
𝑥𝑥𝑥

2

,
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Table 2: Multipliers and conserved vectors for PDE (15).

Multiplier Fluxes

Λ
(1)

= 1

𝜙
(1)

= 𝑢

𝜓
(1)

= −𝑢
𝑥𝑥𝑥𝑥
−

5

3

𝑢
3

− 5𝑢𝑢
𝑥𝑥
−

15

4

𝑢
2

𝑥

Λ
(2)

= 2𝑢
2

+ 𝑢
𝑥𝑥

𝜙
(2)

=

2

3

𝑢
3

+

1

2

𝑢𝑢
𝑥𝑥

𝜓
(2)

= 4𝑢𝑢
𝑥
𝑢
𝑥𝑥𝑥
+

1

2

𝑢
𝑡
𝑢
𝑥
− 4𝑢
2

𝑥
𝑢
𝑥𝑥
−

9

2

𝑢𝑢
2

𝑥𝑥
+

1

2

𝑢
2

𝑥𝑥𝑥
− 2𝑢
2

𝑢
𝑥𝑥𝑥𝑥
− 𝑢
𝑥𝑥
𝑢
𝑥𝑥𝑥𝑥
−

1

2

𝑢𝑢
𝑡𝑥
− 10𝑢

3

𝑢
𝑥𝑥
− 2𝑢
5

Λ
(3)

= 𝑥 + 5𝑡𝑢
2

+

5

2

𝑡𝑢
𝑥𝑥

𝜙
(3)

=

5

3

𝑡𝑢
3

+

5

4

𝑢𝑢
𝑥𝑥
+ 𝑥𝑢

𝜓
(3)

= 𝑢
𝑥𝑥𝑥
− 𝑥𝑢
𝑥𝑥𝑥𝑥
+

5

4

𝑡𝑢
2

𝑥𝑥𝑥
−

5

4

𝑡𝑢𝑢
𝑡𝑥
− 5𝑡𝑢

2

𝑢
𝑥𝑥𝑥𝑥
−

5

2

𝑡𝑢
𝑥𝑥
𝑢
𝑥𝑥𝑥𝑥
+ 10𝑡𝑢𝑢

𝑥
𝑢
𝑥𝑥𝑥
+

5

4

𝑡𝑢
𝑡
𝑢
𝑥
−

5

3

𝑥𝑢
3

−5𝑡𝑢
5

−

15

4

𝑥𝑢
4

𝑥
− 10𝑡𝑢

2

𝑥
𝑢
𝑥𝑥
−

45

4

𝑡𝑢𝑢
2

𝑥𝑥
− 5𝑥𝑢𝑢

𝑥𝑥
− 25𝑡𝑢

3

𝑢
𝑥𝑥
+

15

4

𝑢𝑢
𝑥

Λ
(4)

= 𝑢𝑢
𝑥𝑥
+

1

2

𝑢
2

𝑥
+

1

6

𝑢
𝑥𝑥𝑥𝑥
+

4

9

𝑢
3

𝜙
(4)

=

1

9

𝑢
4

+

1

3

𝑢
2

𝑢
𝑥𝑥
+

1

6

𝑢𝑢
2

𝑥
+

1

12

𝑢𝑢
𝑥𝑥𝑥𝑥

𝜓
(4)

= −

5

6

𝑢
3

𝑢
2

𝑥
+

1

12

𝑢𝑢
2

𝑥𝑥𝑥
−

10

27

𝑢
6

−

11

16

𝑢
4

𝑥
−

1

12

𝑢
2

𝑥𝑥𝑥𝑥
−

1

12

𝑢𝑢
𝑡𝑥𝑥𝑥
+

1

12

𝑢
𝑥
𝑢
𝑡𝑥𝑥
−

1

2

𝑢
2

𝑥
𝑢
𝑥𝑥𝑥𝑥

−

1

12

𝑢
𝑡𝑥
𝑢
𝑥𝑥
+ 𝑢𝑢
𝑥𝑥
𝑢
𝑥𝑥𝑥𝑥
+

1

12

𝑢
𝑡
𝑢
𝑥𝑥𝑥
−

1

3

𝑢
2

𝑢
𝑡𝑥
−

1

12

𝑢
𝑥
𝑢
𝑥𝑥
𝑢
𝑥𝑥𝑥
+

1

3

𝑢𝑢
𝑡
𝑢
𝑥
+

1

36

𝑢
3

𝑥𝑥

−

11

4

𝑢
2

𝑢
2

𝑥𝑥
−

20

9

𝑢
4

𝑢
𝑥𝑥
−

4

9

𝑢
3

𝑢
𝑥𝑥𝑥𝑥
−

7

2

𝑢𝑢
2

𝑥
𝑢
𝑥𝑥
+

1

2

𝑢
2

𝑢
𝑥
𝑢
𝑥𝑥𝑥

𝜙
(4)

=

1

6

𝑥
3 ln(𝑢 + 𝑏
𝑏

) ,

𝜓
(4)

= −𝑢 + 𝑥𝑢
𝑥
−

𝑥
2
𝑢
𝑥𝑥

2

+

𝑥
3
𝑢
𝑥𝑥𝑥

6

.

(10)
We will get the same fluxes for (7) if we define higher order
multipliers in GeMMaple routines.

Another interesting lubrication model is

𝑢
𝑡
+

𝑢
𝑥𝑥𝑥𝑥

𝑒
𝑢
= 0. (11)

It is obtained by taking 𝑓(𝑢) = 𝑒−𝑢 in (7). The GeM Maple
routines yield the following fourmultipliers of formΛ(𝑡, 𝑥, 𝑢):

Λ
(1)

(𝑡, 𝑥, 𝑢) = 𝑒
𝑢

, Λ
(2)

(𝑡, 𝑥, 𝑢) = 𝑥𝑒
𝑢

,

Λ
(3)

(𝑡, 𝑥, 𝑢) =

1

2

𝑥
2

𝑒
𝑢

, Λ
(4)

(𝑡, 𝑥, 𝑢) =

1

6

𝑥
3

𝑒
𝑢

.

(12)

The corresponding fluxes obtained by homotopy first
method are

𝜙
(1)

= −1 + 𝑒
𝑢

, 𝜓
(1)

= 𝑢
𝑥𝑥𝑥
,

𝜙
(2)

= 𝑥 (−1 + 𝑒
𝑢

) , 𝜓
(2)

= −𝑢
𝑥𝑥
+ 𝑥𝑢
𝑥𝑥𝑥
,

𝜙
(3)

=

1

2

𝑥
2

(−1 + 𝑒
2

) , 𝜓
(3)

= 𝑢
𝑥
− 𝑥𝑢
𝑥𝑥
+

𝑥
2
𝑢
𝑥𝑥𝑥

2

,

𝜙
(4)

=

1

6

𝑥
3

(−1 + 𝑒
𝑢

) ,

𝜓
(4)

= −𝑢 + 𝑥𝑢
𝑥
−

𝑥
2
𝑢
𝑥𝑥

2

+

𝑥
3
𝑢
𝑥𝑥𝑥

6

.

(13)

The conservation laws fluxes derived here can be used to find
the solution of lubrication models and will be considered in
future work.

2.3. sinh-Poisson Equation. The (2 + 1)-dimensional sinh-
Poisson equation is [24]

𝑢
𝑥𝑥
+ 𝑢
𝑧𝑧
− 𝑢
𝑡𝑡
= 𝜆
2 sinh 𝑢, (14)

where 𝑢(𝑡, 𝑥, 𝑧). The conservation laws for PDE (14) are
derived here by usingGeM routines. Consider themultipliers
of formΛ(𝑡, 𝑥, 𝑢, 𝑢

𝑡
, 𝑢
𝑥
, 𝑢
𝑧
) in GeM routines, then it will yield

six multipliers not containing any arbitrary function. The
expression for fluxes is computed by using first homotopy
formula. The multipliers and associated conserved vectors
computed by first homotopy formula are given in Table 1.

2.4. Kaup-Kupershmidt Equation. Now, we will compute the
conservation laws for the fifth order Kaup-Kupershmidt [25]:

𝑢
𝑡
= 𝑢
𝑥𝑥𝑥𝑥𝑥
+ 5𝑢𝑢

𝑥𝑥𝑥
+

25

2

𝑢
𝑥
𝑢
𝑥𝑥
+ 5𝑢
2

𝑢
𝑥
. (15)

The GeM Maple routines yield three multipliers of the
form Λ(𝑡, 𝑥, 𝑢, 𝑢

𝑡
, 𝑢
𝑥
, 𝑢
𝑥𝑥
) for PDE (14). The first homo-

topy formula is applied to derive the expressions for con-
servation laws fluxes. One more multiplier can be com-
puted if we consider higher order multipliers of the form
Λ(𝑡, 𝑥, 𝑢, 𝑢

𝑡
, 𝑢
𝑥
, 𝑢
𝑥𝑥
, 𝑢
𝑥𝑥𝑥
, 𝑢
𝑥𝑥𝑥𝑥
). All themultipliers and asso-

ciated conserved vectors for PDE (14) computed by first
homotopy formula are presented in Table 2.
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Table 3: Multipliers and conserved vectors for PDE (16).

Multiplier Fluxes

Λ
(1)

= 1
𝜙
(1)

= 𝑢, 𝜓(1) = 5𝑢
𝑥
𝑢
𝑥𝑥
− 𝑢
𝑥𝑥𝑥𝑥
+ 5𝑢
2

𝑢
𝑥𝑥
+ 5𝑢𝑢

2

𝑥
− 𝑢
5

Λ
(2)

= 𝑢

𝜙
(2)

=

1

2

𝑢
2

,

𝜓
(2)

= 5𝑢𝑢
𝑥
𝑢
𝑥𝑥
−

1

2

𝑢
2

𝑥𝑥
+ 𝑢
𝑥
𝑢
𝑥𝑥𝑥
−

5

3

𝑢
3

𝑥
+

5

2

𝑢
2

𝑢
2

𝑥
+ 5𝑢
3

𝑢
𝑥𝑥
−

5

6

𝑢
6

− 𝑢𝑢
𝑥𝑥𝑥𝑥

Λ
(3)

= 𝑢
5

+ 𝑢
𝑥𝑥𝑥𝑥
− 5𝑢
𝑥
𝑢
𝑥𝑥

−5𝑢
2

𝑢
𝑥𝑥
− 5𝑢𝑢

2

𝑥

𝜙
(3)

=

1

6

𝑢
6

−

5

4

𝑢
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2.5. Modified Sawada-Kotera Equation. Consider the fifth
order modified SK equation:

𝑢
𝑡
= 𝑢
𝑥𝑥𝑥𝑥𝑥
− (5𝑢

𝑥
𝑢
𝑥𝑥
+ 5𝑢𝑢

2

𝑥
+ 5𝑢
2

𝑢
𝑥𝑥
− 𝑢
5

)
𝑥

. (16)

For PDE (16), two conserved densities were derived by
first computing Lax pair (see [26]). The higher order
conservation laws fluxes exist for higher order multipliers
and are not reported in [26]. Consider the multipliers of
form Λ(𝑡, 𝑥, 𝑢, 𝑢

𝑡
, 𝑢
𝑥
, 𝑢
𝑡𝑡
, 𝑢
𝑡𝑥
, 𝑢
𝑥𝑥
, 𝑢
𝑥𝑥𝑥
, 𝑢
𝑥𝑥𝑥𝑥
) in GeM rou-

tines, then it will yield two simple and three higher order
multipliers not containing any arbitrary function.The simple
multipliers yield same fluxes as derived in [26], and three
new fluxes corresponding to higher order multipliers are
computed. The multipliers and associated conserved vectors
computed by first homotopy formula are listed in Table 3.

3. Conclusions

The conservation laws for the evolution equation, Benjamin
equation, lubrication models, sinh-Poisson equation, Kaup-
Kupershmidt equation, and modified Sawada-Kotera equa-
tion were derived by using the symbolic software GeM.
First of all, we considered the evolution equation, and the
commands for all GeMMaple routines, were explicitly given.
The first order multipliers were defined in GeM Maple
routines and threemultipliers were obtained.The expressions
for fluxes were computed by direct method and first and
second homotopy formulas and equivalent expressions for
fluxes were obtained. The scaling symmetry method was
not applicable here as no scaling symmetry exists for the
nonlinear evolution equation. The conservation laws fluxes
for the lubrication models, sinh-Poisson equation, Kaup-
Kupershmidt equation, and modified Sawada-Kotera equa-
tion were derived by the first homotopy formula. For the
modified Sawada-Kotera equation, three new fluxes were
derived.

The fluxes derived here can be used in constructing the
solutions of underlying PDEs and will be considered in the
future work.
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A new solution technique for analytical solutions of fractional partial differential equations (FPDEs) is presented. The solutions
are expressed as a finite sum of a vector type functional. By employing MAPLE software, it is shown that the solutions might be
extended to an arbitrary degree which makes the present method not only different from the others in the literature but also quite
efficient. The method is applied to special Bagley-Torvik and Diethelm fractional differential equations as well as a more general
fractional differential equation.

1. Introduction

Fractional calculus is a significantly important and useful
branch of mathematics having a broad range of applications
at almost any branch of science. Techniques of fractional cal-
culus have been employed at the modeling of many different
phenomena in engineering, physics, and mathematics. Prob-
lems in fractional calculus are not only important but also
quite challenging which usually involves hard mathematical
solution techniques (see, e.g., [1]). Unfortunately, a general
solution theory for almost each problem in this area has yet to
be established. Each application venue has developed its own
approaches and implementations. As a consequence, a single
standard method for the problems in fractional calculus has
not emerged.Therefore, finding reliable and efficient solution
techniques along with fast implementation methods is a
significantly important and active research area.

In the literature, a number of methods have been devel-
oped for the numerical or analytical solutions for FPDEs.
We can list some of these methods as follows: Adomian
decomposition method [2], the collocation method [3],
the fractional differential transform method [4], homotopy
analysis method [5], homotopy perturbation method [6],
and some other methods [7, 8] listed on the references of
these papers. In this paper, we present a new method for the

analytical solutions of FPDEs. The solutions are expressed as
a finite sumof a vector type functional. By employingMAPLE
software, it is shown that the solutions might be extended
to an arbitrary degree which makes the present method not
only different from the others in the literature but also quite
efficient. The method is applied to special Bagley-Torvik and
Diethelm fractional differential equations as well as a more
general fractional differential equation.

Now let us briefly review some significant concepts in
fractional calculus. The fractional calculus is a name for
the theory of integrals and derivatives of arbitrary order,
which unifies and generalizes the notions of integer-order
differentiation and 𝑛-fold integration. We have well-known
definitions of a fractional derivative of order 𝛼 > 0 such as
Riemann-Liouville, Grunwald-Letnikow, Caputo, and gen-
eralized functions approach [9]. The most commonly used
definitions of fractional derivative belongs to Riemann-
Liouville and Caputo. For the purpose of this paper, Caputo’s
definition of fractional differentiation will be used, taking
the advantage of Caputo’s approach that the initial conditions
for fractional differential equations with Caputo’s derivatives
take on the traditional form as for integer-order differential
equations. We give some basic definitions and properties of
the fractional calculus theorywhichwere used through paper.
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Definition 1. A real function 𝑓(𝑥), 𝑥 > 0, is said to be in the
space 𝐶

𝜇
, 𝜇 ∈ 𝑅 if there exists a real number (𝑝 > 𝜇), such

that 𝑓(𝑥) = 𝑥𝑝𝑓
1
(𝑥), where 𝑓

1
(𝑥) ∈ 𝐶[0,∞), and it is said to

be in the space 𝐶𝑚
𝜇
if 𝑓𝑚 ∈ 𝐶

𝜇
, 𝑚 ∈ 𝑁.

Definition 2. TheRiemann-Liouville fractional integral oper-
ator of order 𝛼 ≥ 0 of a function 𝑓 ∈ 𝐶

𝜇
, 𝜇 ≥ −1 is defined as

𝐽
V
0
𝑓 (𝑥) =

1

Γ (V)
∫

𝑥

0

(𝑥 − 𝑡)
V−1
𝑓 (𝑡) 𝑑𝑡, V > 0,

𝐽
0

𝑓 (𝑥) = 𝑓 (𝑥) .

(1)

It has the following properties.
For 𝑓 ∈ 𝐶

𝜇
, 𝜇 ≥ −1, 𝛼, 𝛽 ≥ 0, and 𝛾 > 1,

(1) 𝐽𝛼𝐽𝛽𝑓(𝑥) = 𝐽𝛼+𝛽𝑓(𝑥),

(2) 𝐽𝛼𝐽𝛽𝑓(𝑥) = 𝐽𝛽𝐽𝛼𝑓(𝑥),

(3) 𝐽𝛼𝑥𝛾 = (Γ(𝛾 + 1)/Γ(𝛼 + 𝛾 + 1))𝑥𝛼+𝛾.

The Riemann-Liouville fractional derivative is mostly used
by mathematicians but this approach is not suitable for the
physical problems of the real world since it requires the
definition of fractional order initial conditions, which have
no physicallymeaningful explanation yet. Caputo introduced
an alternative definition, which has the advantage of defining
integer order initial conditions for fractional order differen-
tial equations.

Definition 3. The fractional derivative of 𝑓(𝑥) in the Caputo
sense is defined as

𝐷
V
∗
𝑓 (𝑥) = 𝐽

𝑚−V
𝑎
𝐷
𝑚

𝑓 (𝑥)

=

1

Γ (𝑚 − V)
∫

𝑥

0

(𝑥 − 𝑡)
𝑚−V−1

𝑓
(𝑚)

(𝑡) 𝑑𝑡,

(2)

for𝑚 − 1 < V < 𝑚, 𝑚 ∈ 𝑁, 𝑥 > 0, 𝑓 ∈ 𝐶𝑚
−1
.

Lemma 4. If 𝑚 − 1 < 𝛼 < 𝑚, 𝑚 ∈ 𝑁, and 𝑓 ∈ 𝐶𝑚
𝜇
, 𝜇 ≥ −1,

then

𝐷
𝛼

∗
𝐽
𝛼

𝑓 (𝑥) = 𝑓 (𝑥) ,

𝐽
𝛼

𝐷
V
∗
𝑓 (𝑥) = 𝑓 (𝑥) −

𝑚−1

∑

𝑘=0

𝑓
𝑘

(0
+

)

𝑥
𝑘

𝑘!

, 𝑥 > 0.

(3)

The Caputo fractional derivative is considered here because
it allows traditional initial and boundary conditions to be
included in the formulation of the problem.

Definition 5. For 𝑚 to be the smallest integer that exceeds
𝛼, the Caputo time-fractional derivative operator of order
𝛼 > 0 is defined as

𝐷
𝛼

∗𝑡
𝑢 (𝑥, 𝑡) =

𝜕
𝛼
𝑢 (𝑥, 𝑡)

𝜕𝑡
𝛼

=

{
{
{
{

{
{
{
{

{

1

Γ (𝑚 − 𝛼)

∫

𝑡

0

(𝑡 − 𝜉)
𝑚−𝛼−1 𝜕

𝑚
𝑢 (𝑥, 𝜉)

𝜕𝜉
𝑚

𝑑𝜉,

for 𝑚 − 1 < 𝛼 < 𝑚,
𝜕
𝑚
𝑢 (𝑥, 𝑡)

𝜕𝑡
𝑚

, for 𝛼 = 𝑚 ∈ 𝑁,

(4)

and the space-fractional derivative operator of order 𝛽 > 0 is
defined as

𝐷
𝛼

∗𝑥
𝑢 (𝑥, 𝑡) =

𝜕
𝛽
𝑢 (𝑥, 𝑡)

𝜕𝑥
𝛽

=

{
{
{
{
{

{
{
{
{
{

{

1

Γ (𝑚 − 𝛽)

∫

𝑥

0

(𝑥 − 𝜃)
𝑚−𝛽−1 𝜕

𝑚
𝑢 (𝜃, 𝑡)

𝜕𝜃
𝑚

𝑑𝜃,

for 𝑚 − 1 < 𝛽 < 𝑚,
𝜕
𝑚
𝑢 (𝑥, 𝑡)

𝜕𝑥
𝑚

, for 𝛽 = 𝑚 ∈ 𝑁.
(5)

Another concept which plays a very significant role in the
fractional calculus is the Gamma function. Next we briefly
overview the definition and some important properties of
Gamma function.

Definition 6. For 0 < 𝑛 < ∞, the integral (sometimes known
as Euler integral) defined as

Γ (𝑛) = ∫

∞

0

(− log (𝑡))(𝑛−1)𝑑𝑡 (6)

is said to be Gamma function. From (6), it is clear that for
𝑛 > 0,

Γ (𝑛) = ∫

∞

0

𝑡
(𝑛−1)

𝑒
−𝑡

𝑑𝑡. (7)

Again for 𝑛 > 0, the function defined as

Γ (𝑛) = 2∫

∞

0

𝑡
(2𝑛−1)

𝑒
−𝑡
2

𝑑𝑡 (8)

is known as theGamma function.Detailed information about
the significant features of the Gamma function might be
obtained from any well-written differential equation book.

Organization of the paper is in the following way. Firstly,
we overview basic concepts of fractional derivative. Because
we employ Caputo sense derivative, we describe it in detail.
Secondly, we introduce a newmethod for analytical solutions
of FPDEs. In the third section, we illustrate three computa-
tional examples as the application of the present method and
complete the paper with a discussion section.

2. A Novel Method for Analytical
Solutions of FPDEs

Let us consider the FPDE given as

𝐷
𝑛

𝑥 (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡) , 𝐷
𝛼
1
𝑥 (𝑡) , 𝐷

𝛼
2
𝑥 (𝑡) , . . . , 𝐷

𝛼
𝑚
𝑥 (𝑡)) ,

𝑡 > 0,

(9)
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where𝛼
𝑖
is a real number for every 𝑖 and 𝑛 is a natural number.

Initial conditions for this equation are given by

𝐷
𝑗

𝑥 (0) = 𝑎
𝑗
, 𝑗 = 0, 1, . . . , 𝑛 − 1,

0 < 𝛼
1
< 𝛼
2
< ⋅ ⋅ ⋅ < 𝛼

𝑚
< 𝑛.

(10)

Writing

𝑦
𝑖
(𝑡) = 𝐷

𝛼
𝑖
𝑥 (𝑡) , (11)

we can express (9) as

𝐷
𝑛

𝑥 (𝑡) = 𝑓 (𝑡, 𝑦
0
(𝑡) , 𝑦
1
(𝑡) , . . . , 𝑦

𝑚
(𝑡)) , 𝑡 > 0. (12)

Now let us assume that the solution of (12) is given by

𝑦 = 𝑦
0
+ 𝑦
1
𝑥
𝛼
1
+ 𝑦
2
𝑥
𝛼
2
+ ⋅ ⋅ ⋅ + 𝑒𝑥

𝛼
𝑛
, (13)

where 𝑦 is an 𝑚 dimensional vector function and 𝑒 is also
a vector type function having the same dimension with 𝑦.
If the solution (13) is plugged into (12) and the higher order
derivatives are ignored, a linear equation expressed in terms
of 𝑒 is obtained. As a consequence, 𝑒 is plugged in (13) and
solution is obtained. If the same process is repeated for the
higher order derivatives, series solution of (9) (or (13)) from
an arbitrary degree is obtained.

Now in order to express the solution in a newpower series
form, let us explain the application of this method to the
power series. When (13) is plugged into (9), we can write

𝑓 (𝑥) = 𝑓
0
+ 𝑓
1
𝑥
𝛼
1
+ 𝑓
2
𝑥
𝛼
2
+ ⋅ ⋅ ⋅

+ (𝑓
𝑛
+ 𝑝
1
𝑒
1
+ 𝑝
2
𝑒
2
+ ⋅ ⋅ ⋅ + 𝑝

𝑚
𝑒
𝑚
) 𝑥
𝛼
𝑛
,

(14)

where 𝑝
1
, 𝑝
2
, . . . , 𝑝

𝑚
are constant real numbers, 𝑒

1
, 𝑒
2
, . . . , 𝑒

𝑚

are the bases of 𝑒, and𝑚 is the dimension of the vector 𝑒. It is
clear that using (13) it is possible to define that

𝑦
𝑖
= 𝑦
𝑖,0
+ 𝑦
𝑖,1
𝑥
𝛼
1
+ 𝑦
𝑖,2
𝑥
𝛼
2
+ ⋅ ⋅ ⋅ + 𝑒

𝑖
𝑥
𝛼
𝑛
. (15)

If 𝑦 and its derivatives are written at (14), one obtains

𝑓
𝑖
(𝑥) = 𝑓

𝑖,𝑛
+ 𝑝
𝑖,1
𝑒
1
+ ⋅ ⋅ ⋅ + (𝑝

𝑖,𝑚
𝑒
𝑚
) 𝑥
𝛼
𝑛
−𝑗

+ 𝑂 (𝑥
𝛼
𝑛
−𝑗+1

) ,

(16)

where 𝑓
𝑖
is an element of 𝑓(𝑦, 𝑦, 𝑥) appearing at (9) and 𝑗 is

an index which is only 1 less than the degree of the highest
derivative given in the initial problem. By solving (16), one
obtains 𝑒

𝑖
, for each 𝑖 = 1, 2, . . . , 𝑚. By writing these 𝑒

𝑖
values

at (15), for each 𝑖, the polynomial 𝑦
𝑖
having the degree of 𝑛 is

obtained. This gives us power series solution of (9) from an
arbitrary order. Finally let us suppose that step size of 𝑥 is ℎ. If
this value is plugged in 𝑦 and 𝑦, 𝑦 and 𝑦 are obtained at the
point of 𝑥 = 𝑥

0
+ ℎ. Repeating the same process, one obtains

solution of (9).
In the next section, we illustrate the application of this

new and novel method to the analytical solutions of some
FPDEs.

3. Computational Applications

Example 7. In the first example, we consider a special case of
Bagley-Torvik equation

𝑑
2
𝑦

𝑑𝑥
2
+

𝑑
3/2
𝑦

𝑑𝑥
3/2
+ 𝑦 = 1 + 𝑥 (17)

with the initial conditions

𝑦 (0) = 1, 𝑦


(0) = 1. (18)

Now bearing in mind the aforementioned solution pro-
cedure, let us assume that the solution of (17) is given by

𝑦 = 𝑦
0
+ 𝑦
1
𝑥
1/𝛼

+ 𝑦
2
𝑥
2/𝛼

+ 𝑦
3
𝑥
3/𝛼

+ 𝑦
4
𝑥
4/𝛼

. (19)

For 𝛼 = 2, from (13) we can write that

𝑦 = 1 + 𝑥 + 𝑒𝑥
2

. (20)

Taking the derivatives of 𝑦, we get

Γ (3)

Γ (1.5)

𝑒𝑥
0.5

+ 1 + 𝑥 + 𝑒𝑥
2

= 1 + 𝑥 (21)

which implies that 𝑒 = 0. In a similar way, one obtains

𝑦 = 1 + 𝑥 + 𝑒𝑥
5/𝛼

. (22)

Again by taking the derivatives of 𝑦, one obtains that 𝑒 = 0.
In the next step, we have

𝑦 = 1 + 𝑥 + 𝑦
6
𝑥
6/𝛼 (23)

which implies that 𝑒 = 0. Repeating this procedure, one
obtains the solution of (17) as

𝑦 = 1 + 𝑥. (24)

Example 8. In this example, we consider the initial value
problem studied by Diethelm and given as

𝐷
0.5

𝑦 (𝑥) = 𝑦 (𝑥) + 𝑥
2

+

2

Γ (2.5)

𝑥
1.5 (25)

with initial conditions

𝑦 (0) = 0. (26)

Let us suppose that the solution of (25) is given by 𝑦 = 𝑒𝑥.
When we write this solution in the original equation (25), we
get 𝑒 = 0. In the same way, if we consider the solution

𝑦 = 𝑒𝑥
2

, (27)

we obtain 𝑒 = 1. Again by considering the solution

𝑦 = 𝑥
2

+ 𝑒𝑥
3

, (28)

we obtain 𝑒 = 0. Repeating the procedure in this way, we
obtain the solution of the initial value problem (25) as

𝑦 = 𝑥
2 (29)

which is also exact solution of the problem.
In the last example, we consider a more general example

to illustrate the application of the novel method.
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Example 9. Let us consider the equation

𝑎 (𝑡)𝐷
2

𝑥 (𝑡) + 𝑏 (𝑡)𝐷
𝛼
2
𝑥 (𝑡)

+ 𝑐 (𝑡)𝐷𝑥 (𝑡) + 𝑒 (𝑡)𝐷
𝛼
1
𝑥 (𝑡) + 𝑘 (𝑡) 𝑥 (𝑡)

= 𝑓 (𝑡) , 0 < 𝛼
1
< 𝛼
2
< 1,

(30)

where

𝑓 (𝑡) = − 𝑎 −

𝑏 (𝑡)

Γ (3 − 𝛼
2
)

𝑡
2−𝛼
2
− 𝑐 (𝑡) 𝑡

−

𝑒 (𝑡)

Γ (3 − 𝛼
1
)

𝑡
2−𝛼
1
+ 𝑘 (𝑡) (2 −

1

2

𝑡
2

) ,

(31)

with the initial conditions

𝑥 (0) = 2, 𝑥


(0) = 0. (32)

Following the steps of aforementioned solution algo-
rithm, one can obtain the solution of (30) as

𝑥 (𝑡) = 2 −

1

2

𝑡
2

, (33)

which is also the exact solution of this problem.

4. Conclusion

A new technique for the analytical solutions of FPDEs has
been successfully developed in this paper. By employing
MAPLE software, it is shown that the solutions might be
extended to an arbitrary degree which makes the present
method not only different from the others in the literature but
also quite efficient. The method is applied to special Bagley-
Torvik and Diethelm fractional partial differential equations
as well as a more general fractional differential equation.
Experimental results prove that the presentmethod is a useful
and highly efficient technique.
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We use the fractional variational iteration method (FVIM) with modified Riemann-Liouville derivative to solve some equations in
fluidmechanics and in financial models.The fractional derivatives are described in Riemann-Liouville sense. To show the efficiency
of the considered method, some examples that include the fractional Klein-Gordon equation, fractional Burgers equation, and
fractional Black-Scholes equation are investigated.

1. Introduction

The topic of fractional calculus (theory of integration and dif-
ferentiation of an arbitrary order) was started over 300 years
ago. Recently, fractional differential equations have attracted
many scientists and researchers due to the tremendous use in
fluidmechanics, mathematical biology, electrochemistry, and
physics. For example, differential equations with fractional
order have recently proved to be suitable tools to modeling
ofmany physical phenomena [1] and the fluid-dynamic traffic
modelwith fractional derivative [2], andnonlinear oscillation
of earthquake can be modeled with fractional derivatives [3].

There are several types of time fractional differential
equations.

(1) Fractional Klein-Gordon equations

𝜕
𝛼
𝑢 (𝑥, 𝑡)

𝜕𝑡
𝛼

−

𝜕
2
𝑢 (𝑥, 𝑡)

𝜕𝑥
2

+ 𝑎𝑢 (𝑥, 𝑡) + 𝑏𝑢
2

+ 𝑐𝑢
3

= 𝑓 (𝑥, 𝑡) , 𝑥 ∈ 𝑅.

(1)

This model is obtained by replacing the order time
derivative with the fractional derivative of order 𝛼.
The linear and nonlinear Klein-Gordon equations are
used to modeling many problems in classical and
quantum mechanics and condensed matter physics.

For example, nonlinear sine Klein-Gordon equation
models a Josephson junction [4, 5].

(2) Fractional Burger’s equation

𝜕
𝛼
𝑢 (𝑥, 𝑡)

𝜕𝑡
𝛼

=

𝜕
2
𝑢 (𝑥, 𝑡)

𝜕𝑥
2

+

𝜕𝑢 (𝑥, 𝑡)

𝜕𝑥

+ 𝑓 (𝑥, 𝑡) , 𝑥 ∈ 𝑅. (2)

In general, fractional Burger’s model is derived from
well-known Burger’s equation model by replacing the
ordinary time derivatives to fractional order time
derivatives. Reference [6] has investigated unsteady
flows of viscoelastic fluids with fractional Burger’s
model and fractional generalized Burger’s model
through channel (annulus) tube and solutions for
velocity field.

(3) Fractional Black-Scholes European option pricing
equations
In financial model the fractional Black-Scholes equa-
tion is obtained by replacing the order of derivative
with a fractional derivative order [10].

𝜕
𝛼V
𝜕𝑡
𝛼
+

𝜎𝑥
2

2

𝜕
2V
𝜕𝑥
2
+ 𝑟 (𝑡) 𝑥

𝜕V
𝜕𝑥

− 𝑟 (𝑡) V = 0,

(𝑥, 𝑡) ∈ 𝑅
+

× (0, 𝑇) , 0 < 𝛼 ≤ 1,

(3)
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where V(𝑥, 𝑡) is the European call option price at asset
price 𝑥 and at time 𝑡, 𝑇 is the maturity, 𝑟(𝑡) is the risk-
free interest rate, and 𝜎(𝑥, 𝑡) represents the volatility
function of underlying asset.
The payoff functions are

V
𝑐
(𝑥, 𝑡) = max (𝑥 − 𝐸, 0) ,

V
𝑝
(𝑥, 𝑡) = max (𝐸 − 𝑥, 0) ,

(4)

where V
𝑐
(𝑥, 𝑡) and V

𝑝
(𝑥, 𝑡) are the value of the Euro-

pean call and put options, respectively, 𝐸 denotes
the expiration price for the option, and the function
max(𝑥, 0) gives the large value between 𝑥 and 0. The
Black-Scholes equation is one of the most significant
mathematical models for a financial market. This
equation is used to submit a reasonable price for call
or put options based on factors such as underlying
stock volatility and days to expiration.

Formerly, [7] investigated approximate analytical solu-
tion of fractional nonlinear Klein-Gordon equation (1) when
0 < 𝛼 ≤ 1 by using HPM, while [8] solved this equation
by using HAM also when 1 ≤ 𝛼 < 2. Reference [9] solved
the coupled Klein-Gordon equation with time fractional
derivative by ADM. References [10, 11] solved fractional
Black-Scholes equations by using HPM using Sumudu and
Laplace transforms, respectively. Reference [12] gave the exact
solution of fractional Burgers equation, while [13] used DTM
to find the approximate and exact solution of space- and
time fractional Burgers equations. Reference [14] solved this
equation by using VIM.

The variational iteration method [15–29] is one of
approaches to provide an analytical approximation solutions
to linear and nonlinear problems. The fractional variational
iterationmethod with Riemann-Liouville derivative was pro-
posed byWu and Lee [30] and applied to solve time fractional
and space fractional diffusion equations. Furthermore Wu
[31] explained a possible use of the fractional variational
iteration method as a fractal multiscale method. Recently
fractional variational iteration method has been used to
obtain approximate solutions of fractional Riccati differential
equation [32].

The objective of this paper is to extend the application
of the fractional variational iteration method to obtain ana-
lytical approximate solution for some fractional partial dif-
ferential equations.These equations include fractional Klein-
Gordon equation (1), Burgers equation (2), and fractional
Black-Scholes equations (3).

Motivated and inspired by the ongoing research in this
field, we will consider the following time fractional differen-
tial equation:

𝜕
𝛼
𝑢 (𝑥, 𝑡)

𝜕𝑡
𝛼

= 𝑅 [𝑥] 𝑢 (𝑥, 𝑡) + 𝑞 (𝑥, 𝑡) ,

0 < 𝛼 ≤ 1, 𝑥 ∈ R, 𝑡 > 0,
(5)

with initial condition

𝑢 (𝑥, 0) = 𝑓 (𝑥) , (6)

where 𝜕𝛼/𝜕𝑡𝛼 is modified Riemann-Liouville derivative [33–
35] of order 𝛼 defined in Section 2, 𝑓(𝑥) and 𝑞(𝑥, 𝑡) are
continuous functions, 𝑅[𝑥]𝑢(𝑥, 𝑡) are linear and nonlinear
operators, and 𝑢(𝑥, 𝑡) is unknown function.

To solve the problem (1)-(2), we consider the FVIM in
this work. This method is based on variational iteration
method [19, 36] and modified Riemann-Liouville derivatives
proposed by Jumarie.

This paper is organized as follows. in Section 2 some
basic definitions of fractional calculus theory are given. In
Section 3, the solution procedure of the fractional iteration
method is given; we present the application of the FVIM
for some fractional partial differential equations in Section 4.
The conclusions are drawn in Section 5.

2. Fractional Calculus

2.1. Fractional Derivative via Fractional Difference

Definition 1. The left-sides Riemann-Liouville fractional inte-
gral operator of order 𝛼 ≥ 0, of a function 𝑓 ∈ 𝐶

𝜇
, 𝜇 ≥ −1, is

a defined as

𝐽
𝛼

𝑓 (𝑥) =

1

Γ (𝛼)

∫

𝑥

0

(𝑥 − 𝑡)
𝛼−1

𝑓 (𝑡) 𝑑𝑡, 𝛼 > 0,

𝑥 > 0, 𝐽
0

𝑓 (𝑥) = 𝑓 (𝑥) .

(7)

Definition 2. Themodified Riemann-Liouville derivative [34,
35] is defined as

𝐷
𝑥

𝛼
𝑓 (𝑥) =

1

Γ (𝑛 − 𝛼)

𝑑
𝑛

𝑑𝑥
𝑛
∫

𝑥

0

(𝑥 − 𝑡)
𝑛−𝛼

(𝑓 (𝑡) − 𝑓 (0)) 𝑑𝑡,

(8)

where 𝑥 ∈ [0, 1], 𝑛 − 1 ≤ 𝛼 < 𝑛, and 𝑛 ≥ 1.

Definition 3. Let𝑓 : 𝑅 → 𝑅, 𝑥 → 𝑓(𝑥) denote a continuous
(but not necessarily differentiable) function, and let ℎ > 0

denote a constant discretization span. Define the forward
operator FW(ℎ) by the equality

FW (ℎ) 𝑓 (𝑥) := 𝑓 (𝑥 + ℎ) . (9)

Then the fractional difference of order 𝛼, 0 < 𝛼 < 1, of 𝑓(𝑥)
is defined by the expression

Δ
(𝛼)

𝑓 (𝑥) := (FW − 1)
𝛼

𝑓 (𝑥)

=

∞

∑

𝑘=0

(−1)
𝑘

(

𝛼

𝑘
)𝑓 [𝑥 + (𝑎 − 𝑘) ℎ] ,

(10)

and its fractional derivative of order 𝛼 is defined by the limit

𝑓
𝛼

(𝑥) = lim
𝑥→0

Δ
(𝛼)
[𝑓 (𝑥) − 𝑓 (0)]

ℎ
𝛼

. (11)

Equation (11) is defined as Jumarie fractional derivative of
order 𝛼 which is equivalent to (8). For more details we refer
the reader to [35].
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For 0 < 𝛼 ≤ 1, some properties of the fractional modified
Riemann-Liouville derivative.

Fractional Leibnitz product law:

0
𝐷
𝛼

𝑥
(𝑢V) = 𝑢(𝛼)V + 𝑢V(𝛼), (12)

fractional Leibnitz formulation:

0
𝐼
𝛼

𝑥
𝐷
𝛼

𝑥
(𝑢V) = 𝑓 (𝑥) − 𝑓 (0) , (13)

The fractional integration by parts formula:

𝑎
𝐼
𝛼

𝑏
(𝑢
(𝛼)V) = (𝑢V)|𝑏

𝑎
−
𝑎
𝐼
𝛼

𝑏
(𝑢V(𝛼)) . (14)

Definition 4. Fractional derivative of compounded function
[34, 35] is defined as

𝑑
𝛼

𝑓 ≅ Γ (1 + 𝛼) 𝑑𝑓, 0 < 𝛼 < 1. (15)

Definition 5 (see [34, 35]). The integral with respect to (𝑑𝑡)𝛼 is
defined as the solution of the fractional differential equation

𝑑𝑥 ≅ 𝑓 (𝑥) (𝑑𝑡)
𝛼

, 𝑡 ≥ 0, 𝑥 (0) = 0, 0 < 𝛼 < 1. (16)

Lemma 6 (see [34, 35]). Let 𝑓(𝑥) denote a continuous
function; then the solution of (2) is defined as

𝑦 = ∫

𝑥

0

𝑓 (𝜏) (𝑑𝜏)
𝛼

= 𝛼∫

𝑥

0

(𝑥 − 𝜏)
𝛼−1

𝑓 (𝜏) 𝑑𝜏, 0 < 𝛼 < 1,

(17)

that is,

𝐽
𝛼

𝑓 (𝑥) = (

1

Γ (𝛼)

)∫

𝑥

0

(𝑥 − 𝜏)
𝛼−1

𝑓 (𝜏) 𝑑𝜏

=

1

(Γ (𝛼 + 1))

∫

𝑥

0

𝑓 (𝜏) (𝑑𝜏)
𝛼

.

(18)

For example, with 𝑓(𝑥) = 𝑥𝛽 in (7), one obtains

∫

𝑥

0

𝑡
𝛽

(𝑑𝑡)
𝛼

=

Γ (𝛽 + 1) Γ (𝛼 + 1)

Γ (𝛼 + 𝛽 + 1)

𝑥
𝛼+𝛽

, 0 < 𝛼 < 1. (19)

Definition 7. The Mittag-Leffler function 𝐸
𝛼
(𝑧) with 𝛼 > 0

is defined by the following series representation, valid in the
whole complex plane [37]:

𝐸
𝛼
(𝑧) =

∞

∑

0

𝑧
𝑛

Γ (𝛼𝑛 + 1)

. (20)

3. Fractional Variational Iteration Method

To describe the solution procedure of fractional variational
iterationmethod, we consider the time-fractional differential
equations (1)–(3).

According to variational iteration method we construct
the following correction function:

𝑢
𝑛+1

(𝑥, 𝑡)

= 𝑢
𝑛
(𝑥, 𝑡) + 𝐽

𝛼

𝑡
[𝜇(

𝜕
𝛼
𝑢 (𝑥, 𝑠)

𝜕𝑠
𝛼

− 𝑅 [𝑥] �̃� (𝑥, 𝑠) − 𝑞 (𝑥, 𝑠))]

= 𝑢
𝑛
(𝑥, 𝑡) +

1

Γ (𝛼)

× ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

{𝜇 (𝑠) (

𝜕
𝛼
𝑢 (𝑥, 𝑠)

𝜕𝑠
𝛼

−𝑅 [𝑥] �̃� (𝑥, 𝑠) − 𝑞 (𝑥, 𝑠))} 𝑑𝑠,

(21)

where 𝜇 is the general Lagrange multiplier which can be
defined optimally via variational theory [22] and �̃�(𝑥, 𝑡) is the
restricted variation, that is, 𝛿�̃�(𝑥, 𝑡) = 0.

By using (7), we obtain a new correction functional

𝑢
𝑛+1

(𝑥, 𝑡) = 𝑢
𝑛
(𝑥, 𝑡) +

1

Γ (𝛼 + 1)

× ∫

𝑡

0

{𝜇 (𝑠) (

𝜕
𝛼
𝑢 (𝑥, 𝑠)

𝜕𝑠
𝛼

− 𝑅 [𝑥] �̃� (𝑥, 𝑠)

−𝑞 (𝑥, 𝑠))} (𝑑𝑠
𝛼

) .

(22)

Making the above functional stationary the following condi-
tions can be obtained:

𝛿𝑢
𝑛+1

(𝑥, 𝑡) = 𝛿𝑢
𝑛
(𝑥, 𝑡) +

𝛿

Γ (𝛼 + 1)

× ∫

𝑡

0

{𝜇 (𝑠) (

𝜕
𝛼
𝑢 (𝑥, 𝑠)

𝜕𝑠
𝛼

− 𝑅 [𝑥] �̃� (𝑥, 𝑠)

−𝑞 (𝑥, 𝑠))} (𝑑𝑠
𝛼

) .

(23)

Now, we can get the coefficients of 𝛿𝑢 to zero:

1 + 𝜇 (𝑠) = 0,

𝜕
𝛼
𝜇 (𝑠)

𝜕𝑠
𝛼

= 0. (24)

So, the generalized Lagrange multiplier can be identified as

𝜇 = −1. (25)
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Then we obtain the following iteration formula by substitut-
ing (25) in (23):

𝛿𝑢
𝑛+1

(𝑥, 𝑡) = 𝛿𝑢
𝑛
(𝑥, 𝑡) −

𝛿

Γ (𝛼 + 1)

× ∫

𝑡

0

{𝜇 (𝑠) (

𝜕
𝛼
𝑢 (𝑥, 𝑠)

𝜕𝑠
𝛼

− 𝑅 [𝑥] �̃� (𝑥, 𝑠)

−𝑞 (𝑥, 𝑠))} (𝑑𝑠
𝛼

) ,

(26)

where 0 < 𝛼 ≤ 1 and 𝑢
0
(𝑥, 𝑡) is an initial approximation

which can be freely chosen if it satisfies the initial and
boundary conditions of the problem.

4. Applications

In this section, we have applied fractional variational iteration
method (FVIM) to fractional partial differential equations.

Example 8. In this example we consider the following frac-
tional nonlinear Klein-Gordon differential equation:

𝜕
𝛼
𝑢

𝜕𝑡
𝛼
−

𝜕
2
𝑢

𝜕𝑥
2
+ 𝑢
2

= 0, 𝑡 ≥ 0, 0 < 𝛼 ≤ 1, (27)

subject to initial condition

𝑦 (𝑥, 0) = 1 + sin (𝑥) . (28)

Substituting (𝑎 = 0, 𝑏 = 0 and 𝑐 = 1) in (1). Construction the
iteration formula as follows:

𝑢
𝑛+1

(𝑥, 𝑡) = 𝑢
𝑛
(𝑥, 𝑡) −

1

Γ (𝛼 + 1)

× ∫

𝑡

0

{

𝜕
𝛼
𝑢
𝑛

𝜕𝑠
𝛼
−

𝜕
2
𝑢
𝑛

𝜕𝑥
2
+ 𝑢
2

𝑛
} (𝑑𝑠)

𝛼

.

(29)

Taking the initial value 𝑢
0
(𝑥, 𝑡) = 1+ sin(𝑥)we can derive the

first approximate 𝑢
1
(𝑥, 𝑡) as follows:

𝑢
1
(𝑥, 𝑡) = 𝑢

0
(𝑥, 𝑡) −

1

Γ

(𝛼 + 1)

× ∫

𝑡

0

{

𝜕
𝛼
𝑢
0

𝜕𝑠
𝛼
−

𝜕
2
𝑢
0

𝜕𝑥
2
+ 𝑢
2

0
} (𝑑𝑠)

𝛼

= 1 + sin (𝑥) − 𝑡
𝛼+1

Γ (𝛼 + 1)

× (1 + 3 sin (𝑥) + sin2 (𝑥)) ,

𝑢
2
(𝑥, 𝑡) = 𝑢

1
(𝑥, 𝑡) −

1

Γ (𝛼 + 1)

× ∫

𝑡

0

{

𝜕
𝛼
𝑢
1

𝜕𝑠
𝛼
−

𝜕
2
𝑢
1

𝜕𝑥
2
+ 𝑢
2

1
} (𝑑𝑠)

𝛼

= 1 + sin (𝑥) − 𝑡
𝛼+1

Γ (𝛼 + 1)

(1 + 3 sin (𝑥) + sin2 (𝑥))

+

𝑡
2𝛼+1

Γ (2𝛼 + 1)

(11 sin (𝑥) + 12sin2 (𝑥) + 2sin3 (𝑥)) ,

𝑢
3
(𝑥, 𝑡) = 𝑢

2
(𝑥, 𝑡) −

1

Γ (𝛼 + 1)

× ∫

𝑡

0

{

𝜕
𝛼
𝑢
2

𝜕𝑠
𝛼
−

𝜕
2
𝑢
2

𝜕𝑥
2
+ 𝑢
2

2
} (𝑑𝑠)

𝛼

= 1 + sin (𝑥) − 𝑡
𝛼

Γ (𝛼 + 1)

(1 + 3 sin (𝑥) + sin2 (𝑥))

+

𝑡
2𝛼

Γ (2𝛼 + 1)

(11 sin (𝑥) + 12sin2 (𝑥) + 2sin3 (𝑥))

+

𝑡
3𝛼

Γ (3𝛼 + 1)

(18 − 57 sin (𝑥) − 160sin2 (𝑥)

−82sin3 (𝑥) − 10sin4 (𝑥)) .
(30)

Thus, the approximate solution is

𝑢 (𝑥, 𝑡) = 1 + sin (𝑥) − 𝑡
𝛼

Γ (𝛼 + 1)

× (1 + 3 sin (𝑥) + sin2 (𝑥)) + 𝑡
2𝛼

Γ (2𝛼 + 1)

× (11 sin (𝑥) + 12sin2 (𝑥) + 2sin3 (𝑥))

+

𝑡
3𝛼

Γ (3𝛼 + 1)

(18 − 57 sin (𝑥) − 160sin2 (𝑥)

− 82sin3 (𝑥) − 10sin4 (𝑥)) + ⋅ ⋅ ⋅ .
(31)

In Figures 1 and 2 we have shown the surface of 𝑢(𝑥, 𝑡)
corresponding to the values 𝛼 = 0.01, 0.5, 1 for FVIM and
HPM; the two figures indicate that the differences among
VIM and HPM, and the exact solution in Example 8 are
negligible when 𝛼 = 0.5, 1 while when 𝛼 = 0.01 the results
of VIM and HPM somewhat diverge from the exact solution.
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Figure 1:The surface shows the solution 𝑢(𝑥, 𝑡) for (27) with initial condition (28): FVIM results are, respectively, (a) 𝛼 = 0.01 and (c) 𝛼 = 0.5;
HPM [7] results are, respectively, (b) 𝛼 = 0.01 and (d) 𝛼 = 0.5.

Example 9. Weconsider the one-dimensional linear inhomo-
geneous fractional Burger equation

𝜕
𝛼
𝑢

𝜕𝑡
𝛼
+

𝜕𝑢

𝜕𝑥

−

𝜕
2
𝑢

𝜕𝑥
2
=

2𝑡
2−𝛼

Γ (3 − 𝛼)

+ 2𝑥 − 2,

𝑡 > 0, 𝑥 ∈ 𝑅, 0 < 𝛼 ≤ 1,

(32)

subject to initial condition

𝑢 (𝑥, 0) = 𝑥
2

. (33)

By construction the iteration formula as follows:

𝑢
𝑛+1

(𝑥, 𝑡) = 𝑢
𝑛
(𝑥, 𝑡) −

1

Γ (𝛼 + 1)

× ∫

𝑡

0

{

𝜕
𝛼
𝑢
𝑛

𝜕𝑡
𝛼
+

𝜕𝑢
𝑛

𝜕𝑥

−

𝜕
2
𝑢
𝑛

𝜕𝑥
2

−

2𝑡
2−𝛼

Γ (3 − 𝛼)

− 2𝑥 + 2} (𝑑𝑠)
𝛼

.

(34)
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Figure 2: The surface shows the solution 𝑢(𝑥, 𝑡) for (27) with initial condition (28): (a) FVIM when 𝛼 = 1, (b) HPM [7] when 𝛼 = 1, and (c)
exact solution.

Taking the initial value 𝑢
0
(𝑥, 𝑡) = 0 we can derive the first

approximate 𝑢
1
(𝑥, 𝑡) as follows:

𝑢
1
(𝑥, 𝑡) = 𝑢

0
(𝑥, 𝑡) −

1

Γ (𝛼 + 1)

× ∫

𝑡

0

{

𝜕
𝛼
𝑢
0

𝜕𝑡
𝛼
+

𝜕𝑢
0

𝜕𝑥

−

𝜕
2
𝑢
0

𝜕𝑥
2

−

𝑡
2−𝛼

Γ (3 − 𝛼)

− 2𝑥 + 2} (𝑑𝑠)
𝛼

= 𝑥
2

+ 𝑡
2

,

𝑢
2
(𝑥, 𝑡) = 𝑢

1
(𝑥, 𝑡) −

1

Γ (𝛼 + 1)

× ∫

𝑡

0

{

𝜕
𝛼
𝑢
1

𝜕𝑡
𝛼
+

𝜕𝑢
1

𝜕𝑥

−

𝜕
2
𝑢
0

𝜕𝑥
2

−

𝑡
2−𝛼

Γ (3 − 𝛼)

− 2𝑥 + 2} (𝑑𝑠)
𝛼

= 𝑥
2

+ 𝑡
2

...
𝑢
𝑛
(𝑥, 𝑡) = 𝑥

2

+ 𝑡
2

. (35)
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Figure 3: The surface shows the solution 𝑢(𝑥, 𝑡) for (36) with initial condition (37): (a) FVIM (𝛼 = 1), (b) HPM [10] (𝛼 = 1), and (c) FVIM
(𝛼 = 0.01).

So, the exact solution 𝑢(𝑥, 𝑡) = 𝑥
2
+ 𝑡
2 follows immediately.

The exact solution is obtained by using two iterations and this
is dependent on proper selection of initial guess 𝑢

0
(𝑥, 𝑡).

Example 10. We consider the following fractional Black-
Scholes option pricing equation [38] as follows:

𝜕
𝛼
𝑢

𝜕𝑡
𝛼
=

𝜕
2
𝑢

𝜕𝑥
2
+ (𝑘 − 1)

𝜕𝑢

𝜕𝑥

− 𝑘𝑢, 0 < 𝛼 ≤ 1, (36)

where 𝑘 is the risk-free interest rate subject to initial condition

𝑢 (𝑥, 0) = max (𝑒𝑥 − 1, 0) . (37)

The exact solution for special case 𝛼 = 1 is given by

𝑢 (𝑥, 𝑡) = max (𝑒𝑥 − 1, 0) 𝑒−𝑘𝑡 +max (𝑒𝑥, 0) (1 − 𝑒−𝑘𝑡) . (38)
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By construction the iteration formula as follows:

𝑢
𝑛+1

(𝑥, 𝑡) = 𝑢
𝑛
(𝑥, 𝑡) −

1

Γ (𝛼 + 1)

× ∫

𝑡

0

{

𝜕
𝛼
𝑢
𝑛

𝜕𝑠
𝛼
−

𝜕
2
𝑢
𝑛

𝜕𝑥
2

+ (𝑘 − 1)

𝜕𝑢
𝑛

𝜕𝑥

− 𝑘𝑢
𝑛
} (𝑑𝑠)

𝛼

.

(39)

Taking the initial value 𝑢
0
(𝑥, 𝑡) = max(𝑒𝑥−1, 0)we can derive

the first approximate 𝑢
1
(𝑥, 𝑡) as follows:

𝑢
1
(𝑥, 𝑡) = 𝑢

0
(𝑥, 𝑡) −

1

Γ (𝛼 + 1)

× ∫

𝑡

0

{
𝜕
𝛼
𝑢
0

𝜕𝑠
𝛼
−

𝜕
2
𝑢
0

𝜕𝑥
2
+ (𝑘 − 1)

𝜕𝑢
0

𝜕𝑥

− 𝑘𝑢
0
} (𝑑𝑠)

𝛼

= max (𝑒𝑥 − 1, 0) −max (𝑒𝑥, 0)
(−𝑘𝑡
𝛼
)

Γ (𝛼 + 1)

+max (𝑒𝑥 − 1, 0)
(−𝑘𝑡
𝛼
)

Γ (𝛼 + 1)

,

𝑢
2
(𝑥, 𝑡) = 𝑢

1
(𝑥, 𝑡) −

1

Γ (𝛼 + 1)

× ∫

𝑡

0

{

𝜕
𝛼
𝑢
1

𝜕𝑠
𝛼
−

𝜕
2
𝑢
1

𝜕𝑥
2

+ (𝑘 − 1)

𝜕𝑢
1

𝜕𝑥

− 𝑘𝑢
1
} (𝑑𝑠)

𝛼

= max (𝑒𝑥 − 1, 0) −max (𝑒𝑥, 0)

× (

(−𝑘𝑡
𝛼
)

Γ (𝛼 + 1)

+

(−𝑘𝑡
𝛼
)
2

Γ (2𝛼 + 1)

)

+max (𝑒𝑥 − 1, 0)(
(−𝑘𝑡
𝛼
)

Γ (𝛼 + 1)

+

(−𝑘𝑡
𝛼
)
2

Γ (2𝛼 + 1)

)

...

𝑢
3
(𝑥, 𝑡) = 𝑢

2
(𝑥, 𝑡) −

1

Γ (𝛼 + 1)

× ∫

𝑡

0

{

𝜕
𝛼
𝑢
2

𝜕𝑠
𝛼
−

𝜕
2
𝑢
2

𝜕𝑥
2

+ (𝑘 − 1)

𝜕𝑢
2

𝜕𝑥

− 𝑘𝑢
2
} (𝑑𝑠)

𝛼

= max (𝑒𝑥 − 1, 0) −max (𝑒𝑥, 0)

× (

(−𝑘𝑡
𝛼
)

Γ (𝛼 + 1)

+

(−𝑘𝑡
𝛼
)
2

Γ (2𝛼 + 1)

+

(−𝑘𝑡
𝛼
)
3

Γ (3𝛼 + 1)

)

+max (𝑒𝑥 − 1, 0)

× (

(−𝑘𝑡
𝛼
)

Γ (𝛼 + 1)

+

(−𝑘𝑡
𝛼
)
2

Γ (2𝛼 + 1)

+

(−𝑘𝑡
𝛼
)
3

Γ (3𝛼 + 1)

)

...

𝑢
𝑛
(𝑥, 𝑡) = max (𝑒𝑥 − 1, 0) 𝐸

𝛼
(−𝑘𝑡
𝛼

)

+max (𝑒𝑥, 0) (1 − 𝐸
𝛼
(−𝑘𝑡
𝛼

)) ,

(40)

so that the solution 𝑢(𝑥; 𝑡) of the problem is given by

𝑢
𝑛
(𝑥, 𝑡) = max (𝑒𝑥 − 1, 0) 𝐸

𝛼
(−𝑘𝑡
𝛼

)

+max (𝑒𝑥, 0) (1 − 𝐸
𝛼
(−𝑘𝑡
𝛼

)) ,

(41)

where 𝐸
𝛼
(𝑧) is Mittag-Leffler function in one parameter.

Equation (41) represents the closed form solution of the
fractional Black-Scholes equation (36). Now for the standard
case 𝛼 = 1, this series has the closed form of the solution
𝑢(𝑥; 𝑡) = max(𝑒𝑥 − 1, 0)𝑒−𝑘𝑡 + max(𝑒𝑥, 0)(1 − 𝑒−𝑘𝑡), which is
an exact solution of the given Black-Scholes equation (36) for
𝛼 = 1.

In Figure 3 we have shown the surface of 𝑢(𝑥, 𝑡) corre-
sponding to the value (𝛼 = 1 for FVIM&HPM and for FVIM
𝛼 = 0.01).

5. Conclusion

Variational iteration method has been known as a powerful
method for solving many fractional equations such as partial
differential equations, integrodifferential equations, and so
many other equations. In this paper, based on the variational
iteration method and modified Riemann-Liouville deriva-
tive, we have presented a general framework of fractional
variational iteration method for analytical and numerical
treatment of fractional partial differential equations in fluid
mechanics and in financial models. All of the examples
concluded that the fractional variational iteration method
is powerful and efficient in finding analytical approximate
solutions as well as numerical solutions. For example, the
results of Examples 8 and 10 illustrate that the presentmethod
is in excellent agreement with those of HPM and exact
solution, where the obtained solution is shown graphically.
Further, in Example 9 we got the exact solution in two
iterations. The basic idea described in this paper is expected
to be further employed to solve other similar linear and
nonlinear problems in fractional calculus. Maple has been
used for presenting graph of solution in the present paper.
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We construct conservation laws for a generalized coupledKdV system,which is a third-order systemof nonlinear partial differential
equations. We employ Noether’s approach to derive the conservation laws. Since the system does not have a Lagrangian, we make
use of the transformation 𝑢 = 𝑈

𝑥
, V = 𝑉

𝑥
and convert the system to a fourth-order system in𝑈,𝑉.This new systemhas a Lagrangian,

and so the Noether approach can now be used to obtain conservation laws. Finally, the conservation laws are expressed in the 𝑢, V
variables, and they constitute the conservation laws for the third-order generalized coupled KdV system. Some local and infinitely
many nonlocal conserved quantities are found.

1. Introduction

The generalized coupled KdV system given by [1]

𝑢
𝑡
+ 𝑎𝑢
𝑥𝑥𝑥

− 𝑏𝑢𝑢
𝑥
+ 𝑐VV
𝑥
= 0,

V
𝑡
+ 𝑑V
𝑥𝑥𝑥

− 𝑒𝑢V
𝑥
+ 𝑓𝑢
𝑥
V = 0,

(1)

where 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, and 𝑓 are real constants, describes the
interaction of two long waves, whose dispersion relations are
different. For the casewhen𝑓 = 0, soliton solutions have been
obtained in [2, 3]. Many other special cases of (1) have been
considered in the literature, and various methods have been
used to find its exact solutions. See, for example, [4–11].

In this study, we consider a special case of the generalized
coupled KdV system given by

𝑢
𝑡
+ 𝑎𝑢
𝑥𝑥𝑥

+ 𝑏𝑢𝑢
𝑥
+ 𝑐VV
𝑥
= 0,

V
𝑡
+ 𝑑V
𝑥𝑥𝑥

+ 𝑐𝑢V
𝑥
+ 𝑐𝑢
𝑥
V = 0

(2)

and construct conservation laws for (2). Recently, the conser-
vation laws of system (2) for special values of the constants
𝑎 = 𝑑 = −1 and 𝑏 = 𝑐 = −6 were derived in [12] using the
multiplier approach.

Many nonlinear partial differential equations (PDEs)
of mathematical physics and engineering are continuity

equations, which express conservation of mass, momentum,
energy, or electric charge. It is well known that conservation
laws play a crucial role in the solution and reduction of
PDEs. For variational problems the conservation laws can
be constructed by means of the Noether theorem [13].
The application of the Noether theorem depends upon the
existence of a Lagrangian. However, there are nonlinear
differential equations that do not have a Lagrangian. In
such instances, researchers have developed several methods
to derive conserved quantities for such equations. See, for
example, [14–20].

The organization of this paper is as follows. In Section 2
we briefly recall some notations and fundamental relations
concerning the Noether symmetries approach, which we
utilize in the same section to obtain the Noether symmetries
and the corresponding conserved vectors. The concluding
remarks are summarized in Section 3.

2. Conservation Laws of
Coupled KdV Equations

In this section we derive the conservation laws for the
generalized coupled KdV system (2). This system does not
have a Lagrangian. In order to apply the Noether theorem we
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transform our system (2) to a fourth-order system, using the
transformations 𝑢 = 𝑈

𝑥
and V = 𝑉

𝑥
.Then system (2) becomes

𝑈
𝑡𝑥
+ 𝑎𝑈
𝑥𝑥𝑥𝑥

+ 𝑏𝑈
𝑥
𝑈
𝑥𝑥
+ 𝑐𝑉
𝑥
𝑉
𝑥𝑥
= 0,

𝑉
𝑡𝑥
+ 𝑑𝑉
𝑥𝑥𝑥𝑥

+ 𝑐𝑈
𝑥
𝑉
𝑥𝑥
+ 𝑐𝑉
𝑥
𝑈
𝑥𝑥
= 0.

(3)

It can readily be verified that the second-order Lagrangian for
system (3) is given by

𝐿 =

1

2

(𝑎𝑈
2

𝑥𝑥
+ 𝑑𝑉
2

𝑥𝑥
−

1

3

𝑏𝑈
3

𝑥
− 𝑐𝑈
𝑥
𝑉
2

𝑥
− 𝑈
𝑥
𝑈
𝑡
− 𝑉
𝑡
𝑉
𝑥
)

(4)

because

𝛿𝐿

𝛿𝑈

= 0,

𝛿𝐿

𝛿𝑉

= 0, (5)

where 𝛿/𝛿𝑈 and 𝛿/𝛿𝑉 are the standard Euler operators
defined by

𝛿

𝛿𝑈

=

𝜕

𝜕𝑈

− 𝐷
𝑡

𝜕

𝜕𝑈
𝑡

− 𝐷
𝑥

𝜕

𝜕𝑈
𝑥

+ 𝐷
2

𝑡

𝜕

𝜕𝑈
𝑡𝑡

+ 𝐷
2

𝑥

𝜕

𝜕𝑈
𝑥𝑥

+ 𝐷
𝑥
𝐷
𝑡

𝜕

𝜕𝑈
𝑡𝑥

− ⋅ ⋅ ⋅ ,

𝛿

𝛿𝑉

=

𝜕

𝜕𝑉

− 𝐷
𝑡

𝜕

𝜕𝑉
𝑡

− 𝐷
𝑥

𝜕

𝜕𝑉
𝑥

+ 𝐷
2

𝑡

𝜕

𝜕𝑉
𝑡𝑡

+ 𝐷
2

𝑥

𝜕

𝜕𝑉
𝑥𝑥

+ 𝐷
𝑥
𝐷
𝑡

𝜕

𝜕𝑉
𝑡𝑥

− ⋅ ⋅ ⋅ .

(6)

Consider the vector field

𝑋 = 𝜉
1

(𝑡, 𝑥, 𝑈, 𝑉)

𝜕

𝜕𝑡

+ 𝜉
2

(𝑡, 𝑥, 𝑈, 𝑉)

𝜕

𝜕𝑥

+ 𝜂
1

(𝑡, 𝑥, 𝑈, 𝑉)

𝜕

𝜕𝑈

+ 𝜂
2

(𝑡, 𝑥, 𝑈, 𝑉)

𝜕

𝜕𝑉

,

(7)

which has the second-order prolongation defined by

𝑋
[2]

= 𝜉
1

(𝑡, 𝑥, 𝑈, 𝑉)

𝜕

𝜕𝑡

+ 𝜉
2

(𝑡, 𝑥, 𝑈, 𝑉)

𝜕

𝜕𝑥

+ 𝜂
1

(𝑡, 𝑥, 𝑈, 𝑉)

𝜕

𝜕𝑈

+ 𝜂
2

(𝑡, 𝑥, 𝑈, 𝑉)

𝜕

𝜕𝑉

+ 𝜁
1

𝑡

𝜕

𝜕𝑈
𝑡

+ 𝜁
2

𝑡

𝜕

𝜕𝑉
𝑡

+ 𝜁
1

𝑥

𝜕

𝜕𝑈
𝑥

+ 𝜁
2

𝑥

𝜕

𝜕𝑉
𝑥

+ ⋅ ⋅ ⋅ .

(8)

Here

𝜁
1

𝑡
= 𝐷
𝑡
(𝜂
1

) − 𝑈
𝑡
𝐷
𝑡
(𝜉
1

) − 𝑈
𝑥
𝐷
𝑡
(𝜉
2

) ,

𝜁
1

𝑥
= 𝐷
𝑥
(𝜂
1

) − 𝑈
𝑡
𝐷
𝑥
(𝜉
1

) − 𝑈
𝑥
𝐷
𝑥
(𝜉
2

) ,

𝜁
2

𝑡
= 𝐷
𝑡
(𝜂
2

) − 𝑉
𝑡
𝐷
𝑡
(𝜉
1

) − 𝑉
𝑥
𝐷
𝑡
(𝜉
2

) ,

𝜁
2

𝑥
= 𝐷
𝑥
(𝜂
2

) − 𝑉
𝑡
𝐷
𝑥
(𝜉
1

) − 𝑉
𝑥
𝐷
𝑥
(𝜉
2

) ,

𝐷
𝑡
=

𝜕

𝜕𝑡

+ 𝑈
𝑡

𝜕

𝜕𝑈

+ 𝑉
𝑡

𝜕

𝜕𝑉

+ 𝑈
𝑡𝑡

𝜕

𝜕𝑈
𝑡

+ 𝑉
𝑡𝑡

𝜕

𝜕𝑉
𝑡

+ 𝑈
𝑡𝑥

𝜕

𝜕𝑈
𝑥

+ 𝑉
𝑡𝑥

𝜕

𝜕𝑉
𝑥

+ ⋅ ⋅ ⋅ ,

𝐷
𝑥
=

𝜕

𝜕𝑥

+ 𝑈
𝑥

𝜕

𝜕𝑈

+ 𝑉
𝑥

𝜕

𝜕𝑉

+ 𝑈
𝑥𝑥

𝜕

𝜕𝑈
𝑥

+ 𝑉
𝑥𝑥

𝜕

𝜕𝑉
𝑥

+ 𝑈
𝑡𝑥

𝜕

𝜕𝑈
𝑡

+ 𝑉
𝑡𝑥

𝜕

𝜕𝑉
𝑡

+ ⋅ ⋅ ⋅ .

(9)

The Lie-Bäcklund operator 𝑋 defined in (7) is a Noether
operator corresponding to the Lagrangian (4) if it satisfies

𝑋
[2]

(𝐿) + 𝐿 [𝐷
𝑡
(𝜉
1

) + 𝐷
𝑥
(𝜉
2

)] = 𝐷
𝑡
(𝐵
1

) + 𝐷
𝑥
(𝐵
2

) ,

(10)

where 𝐵
1
(𝑡, 𝑥, 𝑈, 𝑉), 𝐵2(𝑡, 𝑥, 𝑈, 𝑉) are the gauge terms.

Expansion of (10) yields

−

1

2

𝑈
𝑥
[𝜂
1

𝑡
+ 𝑈
𝑡
𝜂
1

𝑈
+ 𝑉
𝑡
𝜂
1

𝑉
− 𝑈
𝑡
𝜉
1

𝑡
− 𝑈
2

𝑡
𝜉
1

𝑈

− 𝑈
𝑡
𝑉
𝑡
𝜉
1

𝑉
− 𝑈
𝑥
𝜉
2

𝑡
− 𝑈
𝑡
𝑈
𝑡
𝜉
2

𝑈
− 𝑈
𝑥
𝑉
𝑡
𝜉
2

𝑉
]

−

1

2

𝑉
𝑥
[𝜂
2

𝑡
+ 𝑈
𝑡
𝜂
2

𝑈
+ 𝑉
𝑡
𝜂
2

𝑉
− 𝑉
𝑡
𝜉
1

𝑡
− 𝑈
𝑡
𝑉
𝑡
𝜉
1

𝑈

−𝑉
2

𝑡
𝜉
1

𝑉
− 𝑉
𝑥
𝜉
2

𝑡
− 𝑈
𝑡
𝑉
𝑥
𝜉
2

𝑈
− 𝑉
𝑡
𝑉
𝑥
𝜉
2

𝑉
]

−

1

2

(𝑏𝑈
2

𝑥
+ 𝑐𝑉
2

𝑥
+ 𝑈
𝑡
)

× [𝜂
1

𝑥
+ 𝑈
𝑥
𝜂
1

𝑈
+ 𝑉
𝑥
𝜂
1

𝑉
− 𝑈
𝑡
𝜉
1

𝑥
− 𝑈
𝑡
𝑈
𝑥
𝜉
1

𝑈

−𝑈
𝑡
𝑉
𝑥
𝜉
1

𝑉
− 𝑈
𝑥
𝜉
2

𝑥
− 𝑈
2

𝑥
𝜉
2

𝑈
− 𝑈
𝑥
𝑉
𝑥
𝜉
2

𝑉
]

−

1

2

(𝑐𝑈
𝑥
𝑉
𝑥
+ 𝑉
𝑡
)

× [𝜂
2

𝑥
+ 𝑈
𝑥
𝜂
2

𝑈
+ 𝑉
𝑥
𝜂
2

𝑉
− 𝑉
𝑡
𝜉
1

𝑥
− 𝑈
𝑥
𝑉
𝑡
𝜉
1

𝑈

−𝑉
𝑡
𝑉
𝑥
𝜉
1

𝑉
− 𝑉
𝑥
𝜉
2

𝑥
− 𝑈
𝑥
𝑉
𝑥
𝜉
2

𝑈
− 𝑉
2

𝑥
𝜉
2

𝑉
]

+ 𝑑𝑉
𝑥𝑥
[𝐷
2

𝑥
(𝜂
1

) − 𝑈
𝑡
𝐷
2

𝑥
(𝜉
1

) − 𝑈
𝑥
𝐷
2

𝑥
(𝜉
2

)

− 2𝑈
𝑡𝑥
(𝜉
1

𝑥
+ 𝑈
𝑥
𝜉
1

𝑈
+ 𝑉
𝑥
𝜉
1

𝑉
)

− 2𝑈
𝑥𝑥
(𝜉
2

𝑥
+ 𝑈
𝑥
𝜉
2

𝑈
+ 𝑉
𝑥
𝜉
2

𝑉
)]

+ 𝑎𝑈
𝑥𝑥
[𝐷
2

𝑥
(𝜂
2

) − 𝑉
𝑡
𝐷
2

𝑥
(𝜉
1

) − 𝑉
𝑥
𝐷
2

𝑥
(𝜉
2

)

− 2𝑉
𝑡𝑥
(𝜉
1

𝑥
+ 𝑈
𝑥
𝜉
1

𝑈
+ 𝑉
𝑥
𝜉
1

𝑉
)

− 2𝑉
𝑥𝑥
(𝜉
2

𝑥
+ 𝑈
𝑥
𝜉
2

𝑈
+ 𝑉
𝑥
𝜉
2

𝑉
)]
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+

1

2

(𝑎𝑈
2

𝑥𝑥
+ 𝑑𝑉
2

𝑥𝑥
−

1

3

𝑏𝑈
3

𝑥
− 𝑐𝑈
𝑥
𝑉
2

𝑥
− 𝑈
𝑥
𝑈
𝑡
− 𝑉
𝑡
𝑉
𝑥
)

× [𝜉
1

𝑡
+ 𝑈
𝑡
𝜉
1

𝑈
+ 𝑉
𝑡
𝜉
1

𝑉
+ 𝜉
2

𝑥
+ 𝑈
𝑥
𝜉
2

𝑈
+ 𝑉
𝑥
𝜉
2

𝑉
]

= 𝐵
1

𝑡
+ 𝑈
𝑡
𝐵
1

𝑈
+ 𝑉
𝑡
𝐵
1

𝑉
+ 𝐵
2

𝑥
+ 𝑈
𝑥
𝐵
2

𝑈
+ 𝑉
𝑥
𝐵
2

𝑉
.

(11)

The splitting of (11) with respect to different combinations of
derivatives of 𝑈 and 𝑉 results in an overdetermined system
of PDEs for 𝜉1, 𝜉2, 𝜂1, 𝜂2, 𝐵1, and 𝐵2. Solving this system of
PDEs we arrive at the following two cases for which Noether
symmetries exist.

Case 1. 𝑏 ̸= 𝑐.
In this case we obtain the following Noether symmetries

and gauge terms:

𝜉
1

= 𝐴
1
,

𝜉
2

= 𝐴
2
,

𝜂
1

= 𝐸 (𝑡) ,

𝜂
2

= 𝐹 (𝑡) ,

𝐵
1

= 𝑃 (𝑡, 𝑥) ,

𝐵
2

= −

1

2

𝑈𝐸


(𝑡) −

1

2

𝑉𝐹


(𝑡) + 𝑆 (𝑡, 𝑥) ,

𝑃
𝑡
+ 𝑆
𝑥
= 0.

(12)

The above results will now be used to find the components of
the conserved vectors for the second-order Lagrangian. Here
we can choose 𝑃 = 0, 𝑆 = 0 as they contribute to the trivial
part of the conserved vector. We recall that the conserved
vectors for the second-order Lagrangian are given by [13, 21]

𝑇
1

= − 𝐵
1

+ 𝜉
1

𝐿 +𝑊
1

[

𝜕𝐿

𝜕𝑈
𝑡

− 𝐷
𝑡

𝜕𝐿

𝜕𝑈
𝑡𝑡

− 𝐷
𝑥

𝜕𝐿

𝜕𝑈
𝑡𝑥

⋅ ⋅ ⋅ ]

+ 𝑊
2

[

𝜕𝐿

𝜕𝑉
𝑡

− 𝐷
𝑡

𝜕𝐿

𝜕𝑉
𝑥𝑡

− 𝐷
𝑥

𝜕𝐿

𝜕𝑉
𝑡𝑡

⋅ ⋅ ⋅ ]

+ 𝐷
𝑡
(𝑊
1

)

𝜕𝐿

𝜕𝑈
𝑡𝑡

+ 𝐷
𝑡
(𝑊
2

)

𝜕𝐿

𝜕𝑉
𝑡𝑡

,

𝑇
2

= − 𝐵
2

+ 𝜉
2

𝐿 +𝑊
1

[

𝜕𝐿

𝜕𝑈
𝑥

− 𝐷
𝑡

𝜕𝐿

𝜕𝑈
𝑥𝑡

− 𝐷
𝑥

𝜕𝐿

𝜕𝑈
𝑥𝑥

⋅ ⋅ ⋅ ]

+ 𝑊
2

[

𝜕𝐿

𝜕𝑉
𝑥

− 𝐷
𝑡

𝜕𝐿

𝜕𝑉
𝑥𝑡

− 𝐷
𝑥

𝜕𝐿

𝜕𝑉
𝑥𝑥

⋅ ⋅ ⋅ ]

+ 𝐷
𝑥
(𝑊
1

)

𝜕𝐿

𝜕𝑈
𝑥𝑥

+ 𝐷
𝑥
(𝑊
2

)

𝜕𝐿

𝜕𝑉
𝑥𝑥

.

(13)

Here𝑊1 and𝑊2 are the Lie characteristic functions, given by
𝑊
1
= 𝜂
1
−𝑈
𝑡
𝜉
1
−𝑈
𝑥
𝜉
2 and𝑊2 = 𝜂2 −𝑉

𝑡
𝜉
1
−𝑉
𝑥
𝜉
2. Using (13)

together with (12) and 𝑢 = 𝑈
𝑥
, V = 𝑉

𝑥
we obtain the following

independent conserved vectors for system (2):

𝑇
1

1
=

1

2

(𝑎𝑢
2

𝑥
+ 𝑑V2
𝑥
−

1

3

𝑏𝑢
3

− 𝑐𝑢V2) ,

𝑇
2

1
=

1

2

∫𝑢
𝑡
𝑑𝑥∫𝑢

𝑡
𝑑𝑥 +

1

2

(𝑏𝑢
2

+ 𝑐V2)

× ∫𝑢
𝑡
𝑑𝑥 + 𝑎𝑢

𝑥𝑥
∫𝑢
𝑡
𝑑𝑥

+

1

2

∫ V
𝑡
𝑑𝑥∫ V

𝑡
𝑑𝑥 + 𝑑V

𝑥𝑥
∫ V
𝑡
𝑑𝑥

+ 𝑐𝑢V∫ V
𝑡
𝑑𝑥 − 𝑎𝑢

𝑡
𝑢
𝑥
− 𝑑V
𝑡
𝑢
𝑥
,

(14)

𝑇
1

2
=

1

2

(𝑢
2

+ V2) ,

𝑇
2

2
= 𝑎𝑢𝑢

𝑥𝑥
+ 𝑑VV

𝑥𝑥
−

1

2

𝑎𝑢
2

𝑥
−

1

2

𝑑V2
𝑥
+

1

3

𝑏𝑢
3

+ 𝑐𝑢V2,
(15)

and for the arbitrary functions 𝐸(𝑡) and 𝐹(𝑡),

𝑇
1

(𝐸,𝐹)
= −

1

2

𝑢𝐸 (𝑡) −

1

2

V𝐹 (𝑡) ,

𝑇
2

(𝐸,𝐹)
=

1

2

𝐸


(𝑡) ∫ 𝑢𝑑𝑥 +

1

2

𝐹


(𝑡) ∫ V𝑑𝑥

−

1

2

𝐸 (𝑡) ∫ 𝑢
𝑡
𝑑𝑥 −

1

2

𝐹 (𝑡) ∫ V
𝑡
𝑑𝑥

−

1

2

(𝑏𝑢
2

+ 𝑐V2) 𝐸 (𝑡) − 𝑎𝑢
𝑥𝑥
𝐸 (𝑡)

− 𝑑V
𝑥𝑥
𝐹 (𝑡) − 𝑐𝑢V𝐹 (𝑡) .

(16)

Conserved vector (14) is a nonlocal conserved vector, and (15)
is a local conserved vector for system (2). We now derive two
particular cases from conserved vector (16) by letting𝐸(𝑡) = 1
and 𝐹(𝑡) = 0, which gives a nonlocal conserved vector

𝑇
1

3
= −

1

2

𝑢,

𝑇
2

(3)
= −

1

2

(𝑏𝑢
2

+ 𝑐V2) − 𝑎𝑢
𝑥𝑥
−

1

2

∫𝑢
𝑡
𝑑𝑥,

(17)

and by choosing 𝐸(𝑡) = 0 and 𝐹(𝑡) = 1, we get the nonlocal
conserved vector

𝑇
1

4
= −

1

2

V,

𝑇
2

4
= −𝑐𝑢V − 𝑑V

𝑥𝑥
−

1

2

∫ V
𝑡
𝑑𝑥.

(18)
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Case 2. 𝑏 = 𝑐.
The second case gives the following Noether symmetries

and gauge terms:

𝜉
1

= 𝐴
1
,

𝜉
2

= 𝑐𝐴
2
𝑡 + 𝐴
3
,

𝜂
1

= 𝐴
2
𝑥 + 𝐹 (𝑡) ,

𝜂
2

= 𝐺 (𝑡) ,

𝐵
1

= −

1

2

𝐴
2
𝑈 + 𝑃 (𝑡, 𝑥) ,

𝐵
2

= −

1

2

𝑈𝐹


(𝑡) −

1

2

𝑉𝐺


(𝑡) + 𝑅 (𝑡, 𝑥) ,

𝑃
𝑡
+ 𝑅
𝑥
= 0.

(19)

Again we can set 𝑃 = 0 and 𝑅 = 0 as they contribute
to the trivial part of the conserved vector. The independent
conserved vectors for system (2), in this case, are

𝑇
1

1
=

1

2

(𝑎𝑢
2

𝑥
+ 𝑑V2
𝑥
−

1

3

𝑏𝑢
3

− 𝑐𝑢V2) ,

𝑇
2

1
=

1

2

∫𝑢
𝑡
𝑑𝑥∫𝑢

𝑡
𝑑𝑥 +

1

2

(𝑏𝑢
2

+ 𝑐V2)∫ 𝑢
𝑡
𝑑𝑥

+ 𝑎𝑢
𝑥𝑥
∫𝑢
𝑡
𝑑𝑥 +

1

2

∫ V
𝑡
𝑑𝑥∫ V

𝑡
𝑑𝑥

+ 𝑑V
𝑥𝑥
∫ V
𝑡
𝑑𝑥 + 𝑐𝑢V∫ V

𝑡
𝑑𝑥 − 𝑎𝑢

𝑡
𝑢
𝑥
− 𝑑V
𝑡
𝑢
𝑥
,

𝑇
1

2
=

1

2

(−𝑥𝑢 + 𝑐𝑡𝑢
2

+ 𝑐𝑡V2 + ∫𝑢𝑑𝑥) ,

𝑇
2

2
= 𝑎𝑢
𝑥
+ 𝑎𝑐𝑡𝑢𝑢

𝑥𝑥
+ 𝑐𝑑𝑡VV

𝑥𝑥
+ 𝑐
2

𝑡𝑢V2 − 𝑎𝑥𝑢
𝑥𝑥
+

1

3

𝑐𝑏𝑡𝑢
3

−

1

2

(𝑎𝑐𝑡𝑢
2

𝑥
+ 𝑐𝑑𝑡V2

𝑥
+ 𝑏𝑥𝑢

2

+ 𝑐𝑥V2 + 𝑥∫𝑢
𝑡
𝑑𝑥) ,

(20)

𝑇
1

3
=

1

2

(𝑢
2

+ V2) ,

𝑇
2

3
= 𝑎𝑢𝑢

𝑥𝑥
+ 𝑑VV

𝑥𝑥
−

1

2

𝑎𝑢
2

𝑥
−

1

2

𝑑V2
𝑥
+

1

3

𝑏𝑢
3

+ 𝑐𝑢V2,
(21)

and for the arbitrary functions 𝐸(𝑡) and 𝐹(𝑡), we obtain

𝑇
1

(𝐸,𝐹)
= −

1

2

𝑢𝐸 (𝑡) −

1

2

V𝐹 (𝑡) ,

𝑇
2

(𝐸,𝐹)
=

1

2

𝐸


(𝑡) ∫ 𝑢𝑑𝑥 +

1

2

𝐹


(𝑡) ∫ V𝑑𝑥

−

1

2

𝐸 (𝑡) ∫ 𝑢
𝑡
𝑑𝑥 −

1

2

𝐹 (𝑡) ∫ V
𝑡
𝑑𝑥

−

1

2

(𝑏𝑢
2

+ 𝑐V2) 𝐸 (𝑡) − 𝑎𝑢
𝑥𝑥
𝐸 (𝑡)

− 𝑑V
𝑥𝑥
𝐹 (𝑡) − 𝑐𝑢V𝐹 (𝑡) .

(22)

Conserved vectors (20) are nonlocal, whereas (21) is a local
conserved vector for system (2). Conserved vector (22) for
𝐸(𝑡) = 1 and 𝐹(𝑡) = 0 gives a nonlocal conserved vector

𝑇
1

3
= −

1

2

𝑢,

𝑇
2

3
= −

1

2

(𝑏𝑢
2

+ 𝑐V2) − 𝑎𝑢
𝑥𝑥
−

1

2

∫𝑢
𝑡
𝑑𝑥,

(23)

and for 𝐸(𝑡) = 0 and 𝐹(𝑡) = 1 it gives a nonlocal conserved
vector

𝑇
1

4
= −

1

2

V,

𝑇
2

4
= −𝑐𝑢V − 𝑑V

𝑥𝑥
−

1

2

∫ V
𝑡
𝑑𝑥.

(24)

We note that for arbitrary values of 𝐸(𝑡) and 𝐹(𝑡) infinitely
many nonlocal conservation laws exist for system (2).

3. Conclusion

In this paper we studied the third-order generalized coupled
Korteweg-de Vries system (2). This system did not have a
Lagrangian. In order to apply Noether theorem the transfor-
mations 𝑢 = 𝑈

𝑥
and V = 𝑉

𝑥
were utilized, and the system was

transformed to fourth-order system (3) in𝑈 and𝑉 variables.
This system admitted the Lagrangian (4). Noether theorem
was then used to derive the conservation laws in 𝑈 and 𝑉
variables. Finally, by reverting back to our original variables
𝑢 and V we obtained the conservation laws for the third-
order generalized coupled KdV system (2). The conservation
laws obtained consisted of some local and infinite number of
nonlocal conserved vectors.
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We study a coupled Zakharov-Kuznetsov system, which is an extension of a coupled Korteweg-de Vries system in the sense of
the Zakharov-Kuznetsov equation. Firstly, we obtain some exact solutions of the coupled Zakharov-Kuznetsov system using the
simplest equation method. Secondly, the conservation laws for the coupled Zakharov-Kuznetsov system will be constructed by
using the multiplier approach.

1. Introduction

It is well known that the two-dimensional generalizations of
the Korteweg-de Vries (KdV) equation

𝑢
𝑡
+ 𝑎𝑢𝑢

𝑥
+ 𝑢
𝑥𝑥𝑥

= 0 (1)

are the Kadomtsev-Petviashivili (KP) equation and the
Zakharov-Kuznetsov (ZK) equation. The ZK equation

𝑢
𝑡
+ 𝑎𝑢𝑢

𝑥
+ 𝑏(𝑢

𝑥𝑥
+ 𝑢
𝑦𝑦
)
𝑥

= 0 (2)

governs the behaviour of weakly nonlinear ion-acoustic
waves in a plasma comprising cold ions and hot isothermal
electrons in the presence of a uniform magnetic field [1].
In [2] a new hierarchy of nonlinear evolution equations was
derived, and one particular system of equations

𝑢
𝑡
= 𝛽𝑢
𝑥𝑥𝑥

+ 𝛼(𝑢V)
𝑥
+ 𝛾(V𝑤)

𝑥
, (3a)

V
𝑡
= 𝛽V
𝑥𝑥𝑥

+ 𝜆(𝑤𝑢)
𝑥
, (3b)

𝑤
𝑡
= 𝛽𝑤
𝑥𝑥𝑥

+ 𝜆(𝑢V)
𝑥
, (3c)

where 𝛼, 𝛽, 𝛾, and 𝜆 are constants, was later studied by [3].
This coupled KdV system (3a), (3b), and (3c) was extended to
the new coupled ZK system

𝑢
𝑡
− 𝛼(𝑢V)

𝑥
− 𝛾(V𝑤)

𝑥
− 𝛽(𝑢

𝑥𝑥
+ 𝑢
𝑦𝑦
)
𝑥

= 0, (4a)

V
𝑡
− 𝜆(𝑤𝑢)

𝑥
− 𝛽(V

𝑥𝑥
+ V
𝑦𝑦
)
𝑥

= 0, (4b)

𝑤
𝑡
− 𝜆(𝑢V)

𝑥
− 𝛽(𝑤

𝑥𝑥
+ 𝑤
𝑦𝑦
)
𝑥

= 0, (4c)

in the sense of the ZK Equation (2) in [1], and travelling
wave solutions were determined using the extended tanh-
coth method and sech method.

In the last few decades, several powerful methods have
been introduced in the literature, which can be used to find
exact solutions of nonlinear differential equations arising
from physical problems. These methods include the inverse
scattering transform method [4], the Darboux transforma-
tion [5], the Hirota’s bilinear method [6], the Jacobi elliptic
function expansion method [7, 8], the multiple-exp method
[9], the sine-cosine method [10], the Lie symmetry method
[11, 12], and the (𝐺/𝐺)-expansion method [13].

The purpose of this paper is to employ the simplest
equation method [14, 15] to obtain some exact explicit
solutions of the coupled Zakharov-Kuznetsov system (4a),
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(4b), and (4c). Furthermore, we derive conservation laws for
(4a), (4b), and (4c) using the multiplier approach [16–18].

2. Exact Solutions Using Simplest
Equation Method

In this section we employ the simplest equation method [14,
15] and obtain some exact explicit solutions of (4a), (4b), and
(4c). The simplest equations that will be used in this paper
are the Bernoulli and Riccati equations. It is well known that
their solutions can be written in elementary functions. See,
for example, [19].

By using the transformation

𝑧 = 𝑘
1
𝑡 + 𝑘
2
𝑥 + 𝑘
3
𝑦 + 𝑘
4
, (5)

where 𝑘
𝑖
, 𝑖 = 1, . . . , 4, are constants, the coupled Zakharov-

Kuznetsov system (4a), (4b), and (4c) transforms to a third-
order coupled system of nonlinear ordinary differential equa-
tions (ODEs)

𝛽𝑘
3

2
𝐸


(𝑧) + 𝛽𝑘
2

3
𝑘
2
𝐸


(𝑧) + 𝛼𝑘
2
𝐹 (𝑧) 𝐸



(𝑧)

− 𝑘
1
𝐸


(𝑧) + 𝛼𝑘
2
𝐸 (𝑧) 𝐹



(𝑧) + 𝛾𝑘
2
𝐺 (𝑧) 𝐹



(𝑧)

+ 𝛾𝑘
2
𝐹 (𝑧) 𝐺



(𝑧) = 0,

(6a)

𝛽𝑘
3

2
𝐹


(𝑧) + 𝛽𝑘
2

3
𝑘
2
𝐹


(𝑧) + 𝜆𝑘
2
𝐺 (𝑧) 𝐸



(𝑧)

+ 𝜆𝑘
2
𝐸 (𝑧) 𝐺



(𝑧) − 𝑘
1
𝐹


(𝑧) = 0,

(6b)

𝛽𝑘
3

2
𝐺


(𝑧) + 𝛽𝑘
2

3
𝑘
2
𝐺


(𝑧) + 𝜆𝑘
2
𝐹 (𝑧) 𝐸



(𝑧)

+ 𝜆𝑘
2
𝐸 (𝑧) 𝐹



(𝑧) − 𝑘
1
𝐺


(𝑧) = 0.

(6c)

We now present the simplest equation method for a system
of three ODEs. Consider the solutions of (6a), (6b), and (6c)
in the form

𝐸 (𝑧) =

𝑀

∑

𝑖=0

𝐴
𝑖
(𝐻 (𝑧))

𝑖

,

𝐹 (𝑧) =

𝑀

∑

𝑖=0

𝐵
𝑖
(𝐻 (𝑧))

𝑖

,

𝐺 (𝑧) =

𝑀

∑

𝑖=0

𝐶
𝑖
(𝐻 (𝑧))

𝑖

,

(7)

where 𝐻(𝑧) satisfies the Bernoulli or Riccati equation, 𝑀
is a positive integer that can be determined by balancing
procedure [15], and 𝐴

𝑖
, 𝐵
𝑖
, and 𝐶

𝑖
(𝑖 = 0, 1, . . . ,𝑀) are

parameters to be determined.
The Bernoulli equation we consider in this paper is

𝐻


(𝑧) = 𝑎𝐻 (𝑧) + 𝑏𝐻
2

(𝑧) , (8)

where 𝑎 and 𝑏 are constants. Its solution can be written as

𝐻(𝑧) = 𝑎{

cosh [𝑎 (𝑧 + 𝐶)] + sinh [𝑎 (𝑧 + 𝐶)]

1 − 𝑏 cosh [𝑎 (𝑧 + 𝐶)] − 𝑏 sinh [𝑎 (𝑧 + 𝐶)]

} .

(9)

For the Riccati equation

𝐻


(𝑧) = 𝑎𝐻
2

(𝑧) + 𝑏𝐻 (𝑧) + 𝑐, (10)

where 𝑎, 𝑏, and 𝑐 are constants, we will use the solutions

𝐻(𝑧) = −

𝑏

2𝑎

−

𝜃

2𝑎

tanh [1
2

𝜃 (𝑧 + 𝐶)] ,

𝐻 (𝑧) = −

𝑏

2𝑎

−

𝜃

2𝑎

tanh(1
2

𝜃𝑧)

+

sech (𝜃𝑧/2)
𝐶 cosh (𝜃𝑧/2) − (2𝑎/𝜃) sinh (𝜃𝑧/2)

,

(11)

where 𝜃2 = 𝑏
2
− 4𝑎𝑐.

2.1. Solutions of (4a), (4b), and (4c)Using the Bernoulli Equa-
tion as the Simplest Equation. Thebalancing procedure yields
𝑀 = 2. Thus, the solutions of (6a), (6b), and (6c) are of the
form

𝐸 (𝑧) = 𝐴
0
+ 𝐴
1
𝐻 + 𝐴

2
𝐻
2

, (12a)

𝐹 (𝑧) = 𝐵
0
+ 𝐵
1
𝐻 + 𝐵

2
𝐻
2

, (12b)

𝐺 (𝑧) = 𝐶
0
+ 𝐶
1
𝐻 + 𝐶

2
𝐻
2

. (12c)

Substituting (12a), (12b), and (12c) into (6a), (6b), and (6c)
and making use of the Bernoulli equation (8) and then
equating the coefficients of the functions𝐻𝑖 to zero, we obtain
an algebraic systemof equations in terms of𝐴

𝑖
,𝐵
𝑖
, and𝐶

𝑖
(𝑖 =

0, 1, 2). Solving this system of algebraic equations, with the
aid of Mathematica, one possible set of values of 𝐴

𝑖
, 𝐵
𝑖
, and

𝐶
𝑖
(𝑖 = 0, 1, 2) is

𝑎 = 1, 𝑏 = 3,

𝛼 = −

𝛾 𝐵
2

2
+ 54 𝛽 𝑘

2

2

𝐴
2
+ 54 𝛽 𝑘

3

2

𝐴
2

𝐴
2
𝐵
2

,

𝜆 = −

54𝛽 (𝑘
2

2

+ 𝑘
3

2

)

𝐴
2

,

𝐴
0
=

𝐴
2
𝐵
0

𝐵
2

, 𝐴
1
= (

1

3

)𝐴
2
, 𝐵

1
= (

1

3

)𝐵
2
,

𝐶
0
= 𝐵
0
, 𝐶

1
= (

1

3

)𝐵
2
, 𝐶

2
= 𝐵
2
,

𝑘
1
= −

𝛽 𝑘
2
(108 𝐵

0
𝑘
3

2

− 𝑘
2

2

𝐵
2
− 𝑘
3

2

𝐵
2
+ 108 𝐵

0
𝑘
2

2

)

𝐵
2

.

(13)
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As a result, a solution of (4a), (4b), and (4c) is

𝑢 (𝑡, 𝑥, 𝑦)

= 𝐴
0
+𝐴
1
𝑎 {

cosh [𝑎 (𝑧 + 𝐶)] + sinh [𝑎 (𝑧 + 𝐶)]

1 − 𝑏 cosh [𝑎 (𝑧 + 𝐶)] − 𝑏 sinh [𝑎 (𝑧 + 𝐶)]

}

+ 𝐴
2
𝑎
2

{

cosh [𝑎 (𝑧 + 𝐶)] + sinh [𝑎 (𝑧 + 𝐶)]

1 − 𝑏 cosh [𝑎 (𝑧 + 𝐶)] − 𝑏 sinh [𝑎 (𝑧 + 𝐶)]

}

2

,

(14a)

V (𝑡, 𝑥, 𝑦)

= 𝐵
0
+ 𝐵
1
𝑎 {

cosh [𝑎 (𝑧 + 𝐶)] + sinh [𝑎 (𝑧 + 𝐶)]

1 − 𝑏 cosh [𝑎 (𝑧 + 𝐶)] − 𝑏 sinh [𝑎 (𝑧 + 𝐶)]

}

+ 𝐵
2
𝑎
2

{

cosh [𝑎 (𝑧 + 𝐶)] + sinh [𝑎 (𝑧 + 𝐶)]

1 − 𝑏 cosh [𝑎 (𝑧 + 𝐶)] − 𝑏 sinh [𝑎 (𝑧 + 𝐶)]

}

2

,

(14b)

𝑤 (𝑡, 𝑥, 𝑦)

= 𝐶
0
+ 𝐶
1
𝑎 {

cosh [𝑎 (𝑧 + 𝐶)] + sinh [𝑎 (𝑧 + 𝐶)]

1 − 𝑏 cosh [𝑎 (𝑧 + 𝐶)] − 𝑏 sinh [𝑎 (𝑧 + 𝐶)]

}

+ 𝐶
2
𝑎
2

{

cosh [𝑎 (𝑧 + 𝐶)] + sinh [𝑎 (𝑧 + 𝐶)]

1 − 𝑏 cosh [𝑎 (𝑧 + 𝐶)] − 𝑏 sinh [𝑎 (𝑧 + 𝐶)]

}

2

,

(14c)

where 𝑧 = 𝑘
1
𝑡 + 𝑘
2
𝑥 + 𝑘
3
𝑦 + 𝑘
4
.

2.2. Solutions of (4a), (4b), and (4c)Using Riccati Equation as
the Simplest Equation. Thebalancing procedure yields𝑀 = 2

and so the solutions of (6a), (6b), and (6c) are of the form

𝐸 (𝑧) = 𝐴
0
+ 𝐴
1
𝐻 + 𝐴

2
𝐻
2

, (15a)

𝐹 (𝑧) = 𝐵
0
+ 𝐵
1
𝐻 + 𝐵

2
𝐻
2

, (15b)

𝐺 (𝑧) = 𝐶
0
+ 𝐶
1
𝐻 + 𝐶

2
𝐻
2

. (15c)

Substituting (15a), (15b), and (15c) into (6a), (6b), and (6c)
and using (10), we obtain an algebraic system of equations in
terms of𝐴

𝑖
, 𝐵
𝑖
, and𝐶

𝑖
(𝑖 = 0, 1, 2) by equating all coefficients

of the functions𝐻𝑖 to zero. Solving the resultant system, one
possible set of values is

𝑎 = 1, 𝑏 = 3, 𝑐 = 1,

𝛼 =

𝛾𝐵
2

2
− 6 𝛽𝑘

2

2

𝐴
2
− 6 𝛽𝑘

3

2

𝐴
2

𝐵
2
𝐴
2

,

𝜆 =

6𝛽 (𝑘
2

2

+ 𝑘
3

2

)

𝐴
2

,

𝐴
0
=

𝐴
2
𝐵
0

𝐵
2

, 𝐴
1
= 3𝐴
2
, 𝐵

1
= 3𝐵
2
,

𝐶
0
= −𝐵
0
, 𝐶

1
= −3𝐵

2
, 𝐶

2
= −𝐵
2
,

𝑘
1
= −

𝛽 𝑘
2
(−17 𝑘

3

2

𝐵
2
− 17 𝑘

2

2

𝐵
2
+ 12 𝐵

0
𝑘
3

2

+ 12 𝐵
0
𝑘
2

2

)

𝐵
2

.

(16)

Consequently, the solutions of (4a), (4b), and (4c) are

𝑢 (𝑡, 𝑥, 𝑦) = 𝐴
0
+ 𝐴
1
{−

𝑏

2𝑎

−

𝜃

2𝑎

tanh [1
2

𝜃 (𝑧 + 𝐶)]}

+ 𝐴
2
{−

𝑏

2𝑎

−

𝜃

2𝑎

tanh [1
2

𝜃 (𝑧 + 𝐶)]}

2

,

(17a)

V (𝑡, 𝑥, 𝑦) = 𝐵
0
+ 𝐵
1
{−

𝑏

2𝑎

−

𝜃

2𝑎

tanh [1
2

𝜃 (𝑧 + 𝐶)]}

+ 𝐵
2
{−

𝑏

2𝑎

−

𝜃

2𝑎

tanh [1
2

𝜃 (𝑧 + 𝐶)]}

2

,

(17b)

𝑤 (𝑡, 𝑥, 𝑦) = 𝐶
0
+ 𝐶
1
{−

𝑏

2𝑎

−

𝜃

2𝑎

tanh [1
2

𝜃 (𝑧 + 𝐶)]}

+ 𝐶
2
{−

𝑏

2𝑎

−

𝜃

2𝑎

tanh [1
2

𝜃 (𝑧 + 𝐶)]}

2

,

(17c)

𝑢 (𝑡, 𝑥, 𝑦)

= 𝐴
0
+ 𝐴
1
{−

𝑏

2𝑎

−

𝜃

2𝑎

tanh(1
2

𝜃𝑧)

+

sech (𝜃𝑧/2)
𝐶 cosh (𝜃𝑧/2) − (2𝑎/𝜃) sinh (𝜃𝑧/2)

}

+ 𝐴
2
{−

𝑏

2𝑎

−

𝜃

2𝑎

tanh(1
2

𝜃𝑧)

+

sech (𝜃𝑧/2)
𝐶 cosh (𝜃𝑧/2) − (2𝑎/𝜃) sinh (𝜃𝑧/2)

}

2

,

(18a)

V (𝑡, 𝑥, 𝑦) = 𝐵
0
+ 𝐵
1
{ −

𝑏

2𝑎

−

𝜃

2𝑎

tanh(1
2

𝜃𝑧)

+

sech (𝜃𝑧/2)
𝐶 cosh (𝜃𝑧/2) − (2𝑎/𝜃) sinh (𝜃𝑧/2)

}

+ 𝐵
2
{ −

𝑏

2𝑎

−

𝜃

2𝑎

tanh(1
2

𝜃𝑧)

+

sech (𝜃𝑧/2)
𝐶 cosh (𝜃𝑧/2) − (2𝑎/𝜃) sinh (𝜃𝑧/2)

}

2

,

(18b)
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𝑤 (𝑡, 𝑥, 𝑦)

= 𝐶
0
+ 𝐶
1
{ −

𝑏

2𝑎

−

𝜃

2𝑎

tanh(1
2

𝜃𝑧)

+

sech (𝜃𝑧/2)
𝐶 cosh (𝜃𝑧/2) − (2𝑎/𝜃) sinh (𝜃𝑧/2)

}

+ 𝐶
2
{ −

𝑏

2𝑎

−

𝜃

2𝑎

tanh(1
2

𝜃𝑧)

+

sech (𝜃𝑧/2)
𝐶 cosh (𝜃𝑧/2) − (2𝑎/𝜃) sinh (𝜃𝑧/2)

}

2

,

(18c)

where 𝑧 = 𝑘
1
𝑡 + 𝑘
2
𝑥 + 𝑘
3
𝑦 + 𝑘
4
.

3. Conservation Laws of (4a), (4b), and (4c)
In this section we derive conservation laws for the coupled
Zakharov-Kuznetsov system (4a), (4b), and (4c). The multi-
plier approach will be used. For details the reader is referred
to [11, 16–18].

In our case we obtain multipliers [17] of the form

Λ
1
= 𝑓
1
(𝑦) , Λ

2
= 𝑓
2
(𝑦) , Λ

3
= 𝑓
3
(𝑦) , (19)

and corresponding to the above multipliers we then obtain
the following conserved vectors [17] of (4a), (4b), and (4c):

𝑇
𝑡

1
= 𝑓
1
(𝑦) 𝑢,

𝑇
𝑥

2
=

1

3

{−3𝛼𝑓
1
(𝑦) 𝑢V − 𝛽𝑓



1
(𝑦) 𝑢 − 3𝛾𝑓

1
(𝑦) V𝑤

−3𝛽𝑓
1
(𝑦) 𝑢
𝑥𝑥

+ 𝛽𝑓


1
(𝑦) 𝑢
𝑦
− 𝛽𝑓
1
(𝑦) 𝑢
𝑦𝑦
} ,

𝑇
𝑦

3
=

1

3

{𝛽𝑓


1
(𝑦) 𝑢
𝑥
− 2𝛽𝑓

1
(𝑦) 𝑢
𝑥𝑦
} ,

𝑇
𝑡

2
= 𝑓
2
(𝑦) V,

𝑇
𝑥

2
=

1

3

{−3𝜆𝑓
2
(𝑦) 𝑢𝑤 − 𝛽𝑓



2
(𝑦) V − 3𝛽𝑓

2
(𝑦) V
𝑥𝑥

+𝛽𝑓


2
(𝑦) V
𝑦
− 𝛽𝑓
2
(𝑦) V
𝑦𝑦
} ,

𝑇
𝑦

2
=

1

3

{𝛽𝑓


2
(𝑦) V
𝑥
− 2𝛽𝑓

2
(𝑦) V
𝑥𝑦
} ,

𝑇
𝑡

3
= 𝑓
3
(𝑦)𝑤,

𝑇
𝑥

3
=

1

3

{−3𝜆𝑓
3
(𝑦) 𝑢V − 𝛽𝑓



3
(𝑦)𝑤 − 3𝛽𝑓

3
(𝑦)𝑤
𝑥𝑥

+𝛽𝑓


3
(𝑦)𝑤
𝑦
− 𝛽𝑓
3
(𝑦)𝑤
𝑦𝑦
} ,

𝑇
𝑦

3
=

1

3

{𝛽𝑓


3
(𝑦)𝑤
𝑥
− 2𝛽𝑓

3
(𝑦)𝑤
𝑥𝑦
} .

(20)

It should be noted that due to the presence of the arbitrary
function𝑓(𝑦) in themultipliers there are infinitelymany con-
servation laws for the coupled Zakharov-Kuznetsov system
(4a), (4b), and (4c).

4. Concluding Remarks

In this paper we obtained some exact solutions of the coupled
Zakharov-Kuznetsov system (4a), (4b), and (4c) by the aid
of the simplest equation method. The solutions obtained
are solitary waves. Moreover, the conservation laws for the
coupled Zakharov-Kuznetsov system (4a), (4b), and (4c)
were also derived by using the multiplier approach.
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A noise removal technique using partial differential equations (PDEs) is proposed. It combines a second-order filter with a fourth-
order filter. The combined method takes the advantage of both filters since it can preserve edges and at the same time avoid the
blocky effects in smooth regions. The experimental results illustrate the effectiveness of the model in image restoration.

1. Introduction

In the last two decades, the second-order partial differential
equations have been well studied by many scholars as one
of the useful tools for the image restoration problem. For
instance, the anisotropic diffusion model [1–3], the total
variation models [4], and the curve evolution equations [5],
have been demonstrated to be effective for removing noise
and edge preservation. However, the images resulting from
these second-order models are often piecewise constant, and
therefore, the processed image suffers from the so-called
blocky effects, which make it be visually uncomfortable.

To be precise, we first give a brief description about
the blocky effects associated with anisotropic diffusion. Let
𝑢 denote the image intensity function, 𝑡 the time. The
anisotropic diffusion as formulated by Perona and Malik [1]
can be presented as

𝜕𝑢

𝜕𝑡

= ∇ ⋅ (𝑔 (|∇𝑢|) ∇𝑢) , (1)

where 𝑔 is the diffusion coefficient and ∇⋅ and ∇ denote the
divergence and the gradient, respectively. You et al. [6] carried
out a detailed analysis to show that the solution of (1) is equal
to the minimization of energy functional

𝐸 (𝑢) = ∫

Ω

𝑓 (|∇𝑢|) 𝑑𝑥 𝑑𝑦. (2)

From energy functional, it is obvious that level images are
the global minima of the energy functional. The analysis in
[6] indicates that when there is no backward diffusion, a
level image is the only minimum of the energy functional, so
Perona-Malik’s model will evolve toward the formation of a
level image function. Since Perona-Malik’s model is designed
such that smooth areas are diffused faster than less smooth
ones, blocky effects will appear in the early stage of the
diffusion and will develop as time evolves.

In particular, one of the classical diffusivity functions
defined in [1] is given by

𝑔 (𝑥) =

1

1 + (𝑥/𝑘)
2
, (3)

where 𝑘 is the so-called constant parameter.Then the Perona-
Malik’s model is equivalent to minimizing

𝐸 (𝑢) = ∫

Ω

𝑘
2

2

ln(𝑘2 + |∇𝑢|2) 𝑑𝑥 𝑑𝑦, (4)

where Ω ⊂ 𝑅
2 is the image domain. The energy functional

(4) is minimized when |∇𝑢|
2 is minimum, which leads to

piecewise constant approximation of 𝑢. Therefore, formation
of staircase on the ramp edges is unavoidable.

To reduce the blocky effect, high-order PDEs (typically,
fourth-order PDEs) have been introduced into image restora-
tion [7–18]. In 2000, You and Kaveh [7] proposed a family
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of fourth-order partial differential equations (the You-Kaveh
model). They considered the second-order functional

𝐸 (𝑢) = ∫

Ω

𝑓 (






∇
2

𝑢






) 𝑑𝑥 𝑑𝑦, (5)

where 𝑓(𝑠) = 𝑠𝑔(𝑠) and |∇2𝑢| is simply an absolute value of
Laplacian of 𝑢 approximated by |𝑢

𝑥𝑥
+𝑢
𝑦𝑦
|. For the diffusivity

function in (3), the energy functional (5) is in the form of

𝐸 (𝑢) = ∫

Ω

𝑘
2

2

ln(𝑘2 + 

∇
2

𝑢






) 𝑑𝑥 𝑑𝑦, (6)

meaning that (6) minimized when |∇2𝑢| is minimum.There-
fore, the ramp region of 𝑢 (i.e., the regions where |∇2𝑢| =
0) are fit in the solution of the associate fourth-order PDE.
The solutions of the minimization problem of (5) after
using Euler-Lagrange equation followed by gradient descent
procedure is given by

𝜕𝑢

𝜕𝑡

= −∇
2

(𝑔 (






∇
2

𝑢






) ∇
2

𝑢) . (7)

The You-Kaveh model replaces the gradient operator in the
Perona-Malik’s model with a Laplacian operator. Due to the
fact that the Laplacian of an image at a pixel is zero only if the
image is planar in its neighborhood, the You-Kaveh fourth-
order PDE attempts to remove noise and preserve edge by
approximating an observed image with a piece planar image.
It is well known that piecewise smooth images look more
natural.

The further theoretical analysis in [10, 19] shows that
fourth-order equations have advantages over second-order
equations in some aspects. First, fourth-order linear diffusion
dampens oscillations at high frequencies (i.e., noise) much
faster than second order diffusion. Second, there is the possi-
bility of having schemes that include effects of curvature (i.e.,
the second derivatives of the image) in the dynamics, thus
creating a richer set of functional behaviors [19]. Therefore,
the blocky effect will be reduced and image will look more
natural. However, the fourth-order equation of the type You-
Kaveh model tends to leave images with speckle artifacts.

Therefore, both the Perona-Malik’s model and the You-
Kavehmodel have their strengths and weaknesses depending
on the characteristics of the image of interest.Motivated by [1,
6, 7, 12, 17], the aim of this paper is to generate a new solution
by taking the best from each of the two methods by a convex
combination. For other recent studies on the noise removal by
using the second- or fourth-order diffusion PDEs, we refer to
[20–23].

The outline of this paper is as follows. Section 2 gives
a detailed description of two minimization problems. A
fourth-order PDE together with a second-order is the basic
ingredients in our proposed model. The way these two PDEs
interfere with each other is discussed in Section 3. Section 4
elaborates on the numerical method for our proposedmodel.
And experimental results are provided in Section 5, followed
by some conclusions in Section 6.

2. Description of Two Minimization Problems

We use functionals 𝐸
𝑖
, 𝑖 = 1, 2 to measure the quality of the

restoration process. Smaller values of𝐸
𝑖
correspond to a result

that reflects features (flat, smooth, and jumps) in a better way
than larger values do. Instead of (2), we consider

𝐸
1
(𝑢) = ∫

Ω

𝑓 (|∇𝑢|) +

𝜆
1

2

(𝑢 − 𝑢
0
)
2

𝑑𝑥 𝑑𝑦, (8)

where Ω ⊂ 𝑅
2, 𝜆
1
is a fixed positive constant that balances

the regularity of the solution and the fidelity.Theminimizing
functional (8) yields the associated Euler-Lagrange equation

∇ ⋅ (𝑔 (|∇𝑢|) ∇𝑢) − 𝜆
1
(𝑢 − 𝑢

0
) = 0. (9)

On the other hand, we replace (5) by

𝐸
2
(𝑢) = ∫

Ω

𝑓 (






∇
2

𝑢






) +

𝜆
2

2

(𝑢 − 𝑢
0
)
2

𝑑𝑥 𝑑𝑦, (10)

where Ω ⊂ 𝑅
2 and 𝜆

2
is a fixed positive constant with

the contribution as 𝜆
1
. Then, the minimizing functional (10)

yields the associated Euler-Lagrange equation

−∇
2

(𝑔 (






∇
2

𝑢






) ∇
2

𝑢) − 𝜆
2
(𝑢 − 𝑢

0
) = 0. (11)

In this section, we have treated 𝐸
1
(𝑢) and 𝐸

2
(𝑢) and their

associated Euler-Lagrange equations separately. However,
we want to establish a positive interaction between these
equations, and that is the topic for the next section.

3. Convex Combination of the Two
Minimization Problems

In this section, we denote the solutions (9), (11) by 𝑢 and
V, respectively. It follows from the Euler-Lagrange variation
principle that the minimizer of 𝑢 and the minimizer of V can
be interpreted as the steady-state solution of the nonlinear
diffusion process

𝑢
𝑡
= ∇ ⋅ (𝑔 (|∇𝑢|) ∇𝑢) − 𝜆

1
(𝑢 − 𝑢

0
) , (12)

with initial data 𝑢(𝑥, 𝑦, 0) = 𝑢
0
(𝑥, 𝑦), and

V
𝑡
= −∇
2

(𝑔 (






∇
2V





) ∇
2V) − 𝜆

2
(V − V

0
) , (13)

with the same initial data V(𝑥, 𝑦, 0) = 𝑢
0
(𝑥, 𝑦), respectively.

As mentioned in the last section, each of the above PDEs
substantially suppress noise, but (12) is designed such that
smooth areas are diffused faster than less smooth ones and
thus the blocky effects will appear, while (13) attempts to
preserve edges by approximating an observed image with a
piecewise planar image at the cost of leaving images with
speckle artifacts.Then, we do not expect their solutions 𝑢 and
V to be equal all over the image domainΩ.

Considering that the methods in (12) and (13) have their
strengths and weakness, we try to generate a new model by
a convex combination 𝑤 = 𝛼𝑢 + (1 − 𝛼)V with 𝛼 ∈ [0, 1]

to fully take advantage of the strengths of (12) and (13).
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We prefer that the weighting constant 𝛼 can be found
adaptively. Through several different approaches to calculate
the weighting constant, we have found that the assumption
𝛼 ≤ 1/2 could give good results. Indeed, we will take 𝛼 =

0.315. The details of the algorithm we have used are given in
the next section. We remark that the theoretical analysis of
the best constant 𝛼 for the convex combination is out of the
scope of this paper.

4. Discredited Numerical Scheme

In this section, we use a simple numerical scheme that
discrete (12), (13) and then combine them. For this purpose,
we divide it into three steps.

Firstly, (12) can be discredited on a square lattice with
the horizontal and vertical directions having the same step
of space. Suppose that ℎ denotes the spatial mesh size and
Δ𝑡 the temporal step length. We quantize the space and time
coordinates as follows:

𝑡 = 𝑘
𝑖
∗ Δ𝑡, 𝑘

𝑖
= 0, 1, 2, . . . , (𝑖 = 1, 2) ,

𝑥 = 𝑖 ∗ ℎ, 𝑖 = 0, 1, 2, . . . ,𝑀,

𝑦 = 𝑗 ∗ ℎ, 𝑗 = 0, 1, 2, . . . , 𝑁,

(14)

where𝑀 × 𝑁 is the size of the image, and then a 4-nearest-
neighbors discretization of the Laplacian operator can be
used:

�̃�
𝑘
1
+1

𝑖,𝑗
= 𝑢
𝑘
1

𝑖,𝑗
+ Δ𝑡 ∗ ( (𝑐

𝑁
⋅ ∇
𝑁
𝑢 + 𝑐
𝑆
⋅ ∇
𝑆
𝑢

+ 𝑐
𝐸
⋅ ∇
𝐸
𝑢 + 𝑐
𝑊
⋅ ∇
𝑊
𝑢)
𝑘
1

𝑖,𝑗

−𝜆
1
(𝑢
𝑘
1

𝑖,𝑗
− 𝑢
𝑘
1

0
)) ,

(15)

where

∇
𝑁
𝑢
𝑘
1

𝑖,𝑗
= 𝑢
𝑘
1

𝑖−1,𝑗
− 𝑢
𝑘
1

𝑖,𝑗
, ∇

𝑆
𝑢
𝑘
1

𝑖,𝑗
= 𝑢
𝑘
1

𝑖+1,𝑗
− 𝑢
𝑘
1

𝑖,𝑗
,

∇
𝐸
𝑢
𝑘
1

𝑖,𝑗
= 𝑢
𝑘
1

𝑖,𝑗+1
− 𝑢
𝑘
1

𝑖,𝑗
, ∇

𝑊
𝑢
𝑘
1

𝑖,𝑗
= 𝑢
𝑘
1

𝑖,𝑗−1
− 𝑢
𝑘
1

𝑖,𝑗
,

𝑐
𝑘
1

𝑁
= 𝑔 (








∇
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𝑢
𝑘
1

𝑖,𝑗








) , 𝑐
𝑘
1

𝑆
= 𝑔 (








∇
𝑆
𝑢
𝑘
1

𝑖,𝑗








) ,

𝑐
𝑘
1

𝐸
= 𝑔 (








∇
𝐸
𝑢
𝑘
1

𝑖,𝑗








) , 𝑐
𝑘
1

𝑊
= 𝑔 (








∇
𝑊
𝑢
𝑘
1

𝑖,𝑗








) .

(16)

Secondly, (13) still can be discredited on a square lattice
as described above. We calculate the Laplacian of the image
intensity function as

∇
2V𝑘2
𝑖,𝑗
= V𝑘2
𝑖+1,𝑗

+ V𝑘2
𝑖−1,𝑗

+ V𝑘2
𝑖,𝑗+1

+ V𝑘2
𝑖,𝑗−1

− 4V𝑘2
𝑖,𝑗

(17)

with symmetric boundary conditions

V𝑘2
−1,𝑗

= V𝑘2
0,𝑗
, V𝑘2
𝑀+1,𝑗

= V𝑘2
𝑀,𝑗

, 𝑗 = 0, 1, . . . , 𝑁,

V𝑘2
𝑖,−1

= V𝑘2
𝑖,0
, V𝑘2
𝑖,𝑁+1

= V𝑘2
𝑖,𝑁
, 𝑖 = 0, 1, . . . ,𝑀.

(18)

Let 𝑐𝑘2
𝑖,𝑗
= 𝑔(|∇

2V𝑘2
𝑖,𝑗
|∇
2V𝑘2
𝑖,𝑗
), which can be discredited as

∇
2

𝑐
𝑘
2

𝑖,𝑗
=

𝑐
𝑘
2

𝑖+1,𝑗
+ 𝑐
𝑘
2

𝑖−1,𝑗
+ 𝑐
𝑘
2

𝑖,𝑗+1
+ 𝑐
𝑘
2

𝑖,𝑗−1
− 4𝑐
𝑘
2

𝑖,𝑗

ℎ
2

,
(19)

with symmetric boundary conditions

𝑐
𝑘
2

−1,𝑗
= 𝑐
𝑘
2

0,𝑗
, 𝑐
𝑘
2

𝑀+1,𝑗
= 𝑐
𝑘
2

𝑀,𝑗
, 𝑗 = 0, 1, . . . , 𝑁,

𝑐
𝑘
2

𝑖,−1
= 𝑐
𝑘
2

𝑖,0
, 𝑐
𝑘
2

𝑖,𝑁+1
= 𝑐
𝑘
2

𝑖,𝑁
, 𝑖 = 0, 1, . . . ,𝑀.

(20)

Thus, the numerical approximation to the differential equa-
tion (13) is given as

Ṽ𝑘2+1
𝑖,𝑗

= V𝑘2
𝑖,𝑗
− Δ𝑡 (∇

2

𝑐
𝑘
2

𝑖,𝑗
− 𝜆
2
(V𝑘2
𝑖,𝑗
− V𝑘2
0
)) . (21)

Thirdly, we deal with the convex combination

𝑢 = 𝛼�̃�
𝑘
1
+1

+ (1 − 𝛼) Ṽ𝑘2+1. (22)

Noticing that 𝑢 and V can be found independently each
other, we can combine them when they are convergent.
Numerical tests indicate that a combination at convergence is
most effective and accurate. Each of the numerical schemes
(12) and (13) is stable if they are solved separately, as long
as Δ𝑡 fulfills the Courant-Friedrichs-Lewy (CFL) condition.
Note that the corresponding algorithm for the Perona-Malik’s
model and the You-Kaveh’s model can be given by setting
𝛼 = 1, 𝜆

1
= 0, and 𝛼 = 0, 𝜆

2
= 0 in (22), respectively.

5. Experimental Results

In this section, we present some of the results obtained by the
proposed model and compare them with the corresponding
ones for the Perona-Malik’s model given by solving PDE (1)
and the You-Kaveh’s model given by solving PDE (7). From
the experimental results, the new model presented in this
paper can performance better than Perona-Malik’s model
and You-Kaveh’s model. In particular, the new model can
reduce the blocky effects appeared in Perona-Malik’s model
and avoid leaving the speckle artifacts appeared in the You-
Kaveh’s model.

Our example is a 256 × 256 sized gray-scale image Lena,
which is displayed in Figure 1(a). Figure 1(b) is its degraded
version corrupted by white random Gaussian noise with
standard deviation 15. Then, Figure 1(c) is the recovered
results by employing the Perona-Malik’s model, Figure 1(d)
is the recovered results by employing the You-Kaveh’s model,
and Figure 1(e) is the recovered results by employing the
proposedmodel. Figure 1(c) is obtainedwithΔ𝑡 = 0.2, 𝑘 = 10
for iteration 25, Figure 1(d) is obtained with Δ𝑡 = 0.2, 𝑘 = 5

for iteration 300, while our result is carried out by setting
𝛼 = 0.315,Δ𝑡 = 0.185, 𝜆

1
= 0.02, 𝜆

2
= 0.002, 𝑘 = 10, 𝑘

1
= 25,

and 𝑘
2
= 100.

In order to better understand the behavior of the pro-
posed model in local regions, especially in regions with
smooth signals and regions with discontinuities, we present
the following zoomed-in local results.

A small part of the Lena image is shown in Figure 2. It is
clear that the Perona-Malik’s model appears obvious blocky
effect and the You-Kaveh model leaves the speckle artifacts.
Our proposed model can avoid the staircase and the speckle
artifacts while removing the noise.



4 Mathematical Problems in Engineering

(a) Original image (b) Noisy image

(c) Perona-Malik’s model (d) You-Kaveh’s model

(e) Our proposed model

Figure 1: Recovered results via our proposed model and compared with the Perona-Malik’s model and the You-Kaveh model.
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(a) Original image (b) Noisy image

(c) Perona-Malik’s model (d) You-Kaveh’s model

(e) Our proposed model

Figure 2: Partially enlarged results are displayed to compare the denoising performance of the Perona-Malik’s model and the You-Kaveh’s
model with our proposed model.
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Table 1: The comparison of the SNRs and PSNRs for experiments.

Image Peronal-Malik’s
model

You-Kaveh’s
model

Our proposed
model

SNR (dB) 23.14387 21.56607 23.29253
PSNR (dB) 28.0408 26.46297 28.18947

The restoration quality can be quantitatively measured by
the signal-to-noise ratio (SNR) and the peak signal-to-noise
ratio (PSNR), which are defined as

SNR =

Variance of image
Variance of noise

,

PSNR = 10 log 10( 255
2

∑
𝑖𝑗
(𝑔
𝑖𝑗
− ℎ
𝑖𝑗
)

2
) ,

(23)

and, respectively, where 𝑔 is the original image, ℎ denotes the
compared image, and the unit of SNR(PSNR) is decibel (dB).

In Table 1, we give the comparison of the SNR and PSNRs
for Figure 1, which shows that our model has the better SNR
and PSNR than those of the Perona-Malik’s model and the
You-Kaveh’s model.

6. Conclusions

This paper proposes a new model for noise removal. The
new model is based on a convex combination of the second-
order filter with the fourth-order filter. We have tested
our algorithm on images consisting of edges and smooth
regions. From these experimental results, we observed that
the proposed method is able to preserve edges while at the
same time avoiding the blocky effects in smooth regions. In a
word, the combinedmodel reaps benefits of both the Perona-
Malik’s model and the You-Kaveh’s model, surpassing each
individually in image restoration.
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We will compare the standard Adomian decomposition method and the homotopy perturbation method applied to obtain the
solution of nonlinear functional equations. We prove analytically that the two methods are equivalent for solving nonlinear
functional equations. In Ghorbani (2009), Ghorbani presented a new definition which he called as He’s polynomials. In this paper,
we also show that He’s polynomials are only the Adomian polynomials.

1. Introduction

TheAdomian decompositionmethod (ADM) and the homo-
topy perturbation method (HPM) are two powerful methods
which consider the approximate solution of a nonlinear equa-
tion as an infinite series usually converging to the accurate
solution.Thesemethods have been used in obtaining analytic
and approximate solutions to a wide class of linear and non-
linear, differential, and integral equations.

Öziş and Yıldırım compared Adomian’s method and He’s
homotopy perturbation method [1] for solving certain non-
linear problems. Li also has shown that the ADM and HPM
for solving nonlinear equations are equivalent [2]. In [3],
Ghorbani has presented a definition which he called it as He’s
polynomials.

Consider the following nonlinear functional equation:

𝑢 = 𝑓 + 𝑁 (𝑢) , (1)

where 𝑁 is a nonlinear operator from Hilbert space 𝐻 to
𝐻, 𝑢 is an unknown function, and 𝑓 is a known function
in 𝐻. We are looking for a solution 𝑢 of (1) belonging to 𝐻.
We will suppose that (1) admits a unique solution. If (1) does
not possess a unique solution, the ADM and HPM will give
a solution among many (possible) other solutions. However,
relatively few papers deal with the comparison of these

methods with other existing techniques. In [4], a useful
comparison between the decompositionmethod and the per-
turbationmethod showed the efficiency of the decomposition
method compared to the tediouswork required by the pertur-
bation techniques. In [5], the advantage of the decomposition
method over the Picard’s method has been emphasized. Sadat
has shown that the Adomian decomposition method and
perturbation method are closely related and lead to the same
solution in many heat conduction problems [6]. In [7, 8] the
HPM has compared with Liao’s homotopy analysis method
and showed the HPM is special case of HAM, and the
advantage of the HAM over the HPM has been emphasized.

In this paper, we want to prove that He’s polynomials
are only Adomian’s polynomials. We will also show that the
standard Adomian decomposition method and the standard
HPM are equivalent when applied for solving nonlinear
functional equations.

2. Adomian’s Decomposition Method (ADM)

Let us consider the nonlinear equation (1) which can be
written in the following canonical form:

𝑢 = 𝑓 + 𝑁 (𝑢) . (2)
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The standardADMconsists of representing the solution of (1)
as a series

𝑢 (𝑥) =

∞

∑

𝑖=0

𝑢
𝑖
(𝑥) , (3)

and the nonlinear function as the decomposed form:

𝑁(𝑢 (𝑥)) =

∞

∑

𝑖=0

𝐴
𝑖
, (4)

where 𝐴
𝑛
, 𝑛 = 0, 1, 2, . . . are the Adomian polynomials of

𝑢
0
, 𝑢
1
, . . . , 𝑢

𝑛
given by [9, 10]

𝐴
𝑛
=

1

𝑛!

𝑑
𝑛

𝑑𝑝
𝑛
[𝑁(

𝑛

∑

𝑖=0

𝑢
𝑖
𝑝
𝑖

)]

𝑝=0

. (5)

Substituting (3) and (4) into (1) yields
∞

∑

𝑖=0

𝑢
𝑖
(𝑥) = 𝑓 +

∞

∑

𝑖=0

𝐴
𝑖
. (6)

The convergence of the series in (6) gives the desired relation

𝑢
0
= 𝑓,

𝑢
𝑛+1

= 𝐴
𝑛
, 𝑛 = 0, 1, 2, . . . .

(7)

It should be pointed out that 𝐴
0
depends only on 𝑢

0
, 𝐴
1

depends only on 𝑢
0
and𝑢
1
;𝐴
2
depends only on 𝑢

0
,𝑢
1
, and𝑢

2
,

and so on.TheAdomian technique is very simple in its princi-
ples.The difficulties consist in proving the convergence of the
introduced series.

3. Homotopy Perturbation Method (HPM)

This is a basic idea of homotopy method which is to con-
tinuously deform a simple problem easy to solve into the
difficult problem under study.

In this section, we apply the homotopy perturbation
method [11–13] to the discussed problem. To illustrate the
homotopy perturbation method (HPM), we consider (1) as

𝐿 (V) = V (𝑥) − 𝑓 (𝑥) − 𝑁 (V) = 0, (8)

with solution 𝑢(𝑥). The basic idea of the HPM is to construct
a homotopy𝐻(V; 𝑝) : 𝑅 × [0, 1] → 𝑅 which satisfies

H (V; 𝑝) = (1 − 𝑝) 𝐹 (V) + 𝑝𝐿 (V) = 0, (9)

where 𝐹(V) is a proper function with known solution which
can be obtained easily. The embedding parameter 𝑝 mono-
tonically increases from 0 to 1 as the trivial problem 𝐹(V) = 0

is continuously transformed to the original problem V − 𝑓 −

𝑁(V) = 0. FromH(V; 𝑝) = 0, we have𝐻(V; 0) = 𝐹(V) = 0 and
𝐻(V; 1) = V − 𝑓 − 𝑁(V) = 0.

It is better to take 𝐹(V) as a deformation of 𝐿(V). For
example, in (9), 𝐹(V) = V−𝑓(𝑥). By selecting 𝐹(V) = V−𝑓(𝑥)
we can define another convex homotopyH(V; 𝑝) by

H (V; 𝑝) = V (𝑥) − 𝑓 (𝑥) − 𝑝𝑁 (V) = 0. (10)

The embedding parameter 𝑝 ∈ (0, 1] can be considered as an
expanding parameter [14, 15]. The HPM uses the embedding
parameter 𝑝 as a “small parameter,” and writes the solution of
(10) as a power series of 𝑝, that is,

V = V
0
+ V
1
𝑝 + V
2
𝑝
2

+ ⋅ ⋅ ⋅ . (11)

Setting 𝑝 = 1 results in the approximate solution of (10):

𝑢 = lim
𝑝→1

V = V
0
+ V
1
+ V
2
+ ⋅ ⋅ ⋅ . (12)

Substituting (11) into (10) and equating the terms with
identical powers of 𝑝, we can obtain a series of equations of
the following form:

𝑝
0: V
0
− 𝑓 (𝑥) = 0,

𝑝
1: V
1
− 𝐻 (V

0
) = 0,

𝑝
2: V
2
− 𝐻 (V

0
, V
1
) = 0,

𝑝
3: V
3
− 𝐻 (V

0
, V
1
, V
2
) = 0,

...,

(13)

where𝐻(V
0
, V
1
, . . . , V

𝑗
) depend upon V

0
, V
1
, . . . , V

𝑗
. In view of

(10) to determine𝐻(V
0
, V
1
, . . . , V

𝑗
), we use [16]

𝐻(V
0
, V
1
, . . . , V

𝑗
) =

1

𝑗!

𝜕
𝑗

𝜕𝑝
𝑗
𝑁(

𝑗

∑

𝑖=0

V
𝑖
𝑝
𝑖

)











𝑝=0

. (14)

It is obvious that the system of nonlinear equations in (13) is
easy to solve, and the components V

𝑖
, 𝑖 ≥ 0 of the homotopy

perturbation method can be completely determined, and the
series solutions are thus entirely determined. For the conver-
gence of the previous method we refer the reader to the work
of He [12, 17, 18].

4. Equivalence between ADM and HPM

In this section, we prove that the HPM and the ADM give
same solution for solving nonlinear functional equations.We
also show that the He polynomials are like the Adomian
polynomials. In [3], Ghorbani has presented the following
definition.

Definition 1 (see [3]). The He polynomials are defined as
follows:

𝐻
𝑛
(V
0
, . . . , V

𝑛
) =

1

𝑛!

𝜕
𝑛

𝜕𝑝
𝑛
𝑁(

𝑛

∑

𝑖=0

V
𝑖
𝑝
𝑖

)










𝑝=0

, 𝑛 = 0, 1, 2, . . . .

(15)

Note 1. Comparison between (5) and (15) has shown that the
He polynomials are only Adomian’s polynomials, and it is
calculated like Adomian’s polynomials.
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Theorem 2. Suppose that nonlinear function 𝑁(𝑢) and the
parameterized representation of V are V(𝑝) = ∑

∞

𝑖=0
V
𝑖
𝑝
𝑖, where

𝑝 is a parameter, then we have

𝜕
𝑛
𝑁(V (𝑝))
𝜕𝑝
𝑛









𝑝=0

=

𝜕
𝑛
𝑁(∑
∞

𝑖=0
V
𝑖
𝑝
𝑖
)

𝜕𝑝
𝑛











𝑝=0

=

𝜕
𝑛
𝑁(∑
𝑛

𝑖=0
V
𝑖
𝑝
𝑖
)

𝜕𝑝
𝑛











𝑝=0

.

(16)

Proof (see [3, 19]). In Theorem 3, we prove that the He poly-
nomials are the Adomian polynomials.

Theorem 3. The He polynomials which are given by (15) are
the Adomian polynomials.

Proof. From Taylor’s expansion of𝑁(V), we have

𝑁(V) = 𝑁 (V
0
) + 𝑁



(V
0
) (V − V

0
)

+

1

2!

𝑁


(V
0
) (V − V

0
)
2

+ ⋅ ⋅ ⋅

(17)

substituting (11) in (17) and expanding it in terms of 𝑝 leads
to

𝑁(

∞

∑

𝑖=0

V
𝑖
𝑝
𝑖

) = 𝑁(V
0
) + 𝑁



(V
0
) (V
1
𝑝 + V
2
𝑝
2

+ ⋅ ⋅ ⋅ )

+

1

2!

𝑁


(V
0
) (V
1
𝑝 + V
2
𝑝
2

+ ⋅ ⋅ ⋅ )

2

+ ⋅ ⋅ ⋅

= 𝑁 (V
0
) + 𝑁



(V
0
) V
1
𝑝

+ (𝑁


(V
0
) V
2
+

1

2!

𝑁


(V
0
) V2
1
)𝑝
2

+ ⋅ ⋅ ⋅

= 𝐻
0
+ 𝐻
1
𝑝 + 𝐻

2
𝑝
2

+ ⋅ ⋅ ⋅ ,

(18)
where𝐻

𝑖
, 𝑖 = 0, 1, 2, . . ., depends only on V

0
, V
1
, . . . , V

𝑖
.

In order to obtain𝐻
𝑛
, we give 𝑛-order derivative of both

sides of (18) with respect to 𝑝 and let 𝑝 = 0, that is,

𝜕
𝑛
𝑁(V (𝑝))
𝜕𝑝
𝑛









𝑝=0

=

𝜕
𝑛
∑
∞

𝑖=0
𝐻
𝑖
𝑝
𝑖

𝜕𝑝
𝑛









𝑝=0

. (19)

According toTheorem 2

𝜕
𝑛
𝑁(∑
∞

𝑖=0
V
𝑖
𝑝
𝑖
)

𝜕𝑝
𝑛











𝑝=0

=

𝜕
𝑛
𝑁(∑
𝑛

𝑖=0
V
𝑖
𝑝
𝑖
)

𝜕𝑝
𝑛











𝑝=0

,

𝜕
𝑛
∑
∞

𝑖=0
𝐻
𝑖
𝑝
𝑖

𝜕𝑝
𝑛









𝑝=0

=

𝜕
𝑛
∑
𝑛

𝑖=0
𝐻
𝑖
𝑝
𝑖

𝜕𝑝
𝑛









𝑝=0

= 𝑛!𝐻
𝑛
.

(20)

We know that 𝐻
𝑖

just depends on V
0
, V
1
, . . . , V

𝑖
so

(𝜕
𝑛
∑
𝑛

𝑖=0
𝐻
𝑖
𝑝
𝑖
)/𝜕𝑝
𝑛
|
𝑝=0

= 𝑛!𝐻
𝑛
. Substituting (20) in (19) leads

us to find𝐻
𝑖
in the following form:

𝐻
𝑛
=

1

𝑛!

𝜕
𝑛
𝑁(∑
𝑛

𝑖=0
V
𝑖
𝑝
𝑖
)

𝜕𝑝
𝑛











𝑝=0

(21)

which is called for the first time by Ghorbani as the He
polynomials [3]!

Theorem 4. The homotopy perturbation method for solving
nonlinear functional equations is the Adomian decomposition
method with the homotopyH(V; 𝑝) given by

H (V; 𝑝) = V − 𝑓 (𝑥) − 𝑝𝑁 (V) . (22)

Proof. Substituting (11) and (18) into (10) and equating the
terms with the identical powers of 𝑝, we have

H (V; 𝑝) =
∞

∑

𝑖=0

V
𝑖
𝑝
𝑖

− 𝑓 (𝑥) − 𝑝

∞

∑

𝑖=0

𝐻
𝑖
𝑝
𝑖

= 0,

H (V; 𝑝) = V
0
− 𝑓 (𝑥) +

∞

∑

𝑖=0

(V
𝑖+1

− 𝐻
𝑖
) 𝑝
𝑖+1

= 0,

(23)

𝑝
0: V
0
− 𝑓 (𝑥) = 0,

𝑝
𝑛+1: V
𝑛+1

− 𝐻
𝑛
= 0, 𝑛 = 0, 1, 2, . . .

(24)

From (24) we have

V
0
= 𝑓 (𝑥) ,

V
𝑛+1

= 𝐻
𝑛
, 𝑛 = 0, 1, 2, . . .

(25)

According to Theorem 3 we have𝐻
𝑛
= 𝐴
𝑛
. Substituting (25)

in (11) leads us to

V = V
0
+ V
1
𝑝 + V
2
𝑝
2

+ ⋅ ⋅ ⋅

= 𝑓 (𝑥) + 𝐴
0
𝑝 + 𝐴

1
𝑝
2

+ ⋅ ⋅ ⋅ ,

(26)

so

lim
𝑝→1

V = 𝑓 (𝑥) + 𝐴
1
+ 𝐴
2
+ ⋅ ⋅ ⋅

= 𝑓 (𝑥) +

∞

∑

𝑖=0

𝐴
𝑖
=

∞

∑

𝑖=0

𝑢
𝑖
= 𝑢.

(27)

Therefore, by letting

H (V; 𝑝) = V − 𝑓 (𝑥) − 𝑝𝑁 (V) , (28)

we observe that the power series V
0
+ V
1
𝑝 + V

2
𝑝
2
+ ⋅ ⋅ ⋅

corresponds to the solution of the equation H(V; 𝑝) = V −
𝑓(𝑥) − 𝑝𝑁(V) = 0 and becomes the approximate solution of
(1) if 𝑝 → 1. This shows that the homotopy perturbation
method is the Adomian decomposition method with the
homotopy H(V; 𝑝) given by (28). The proof of Theorem 4 is
completed.

These two approaches give the same equations for high-
order approximations. This is mainly because the Taylor
series of a given function is unique, which is a basic theory
in calculus. Thus, nothing is new in Ghorbani’s definition,
except the new name “He’s polynomial.” He just employed the
early ideas of ADM.
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Example 5 (see [20]). Consider the following nonlinear Vol-
terra integral equation:

𝑦 (𝑥) = 𝑥 + ∫

𝑥

0

𝑦
2

(𝑡) 𝑑𝑡, (29)

with the exact solution 𝑦(𝑥) = tan𝑥.

We apply standard ADM and HPM. For applying stan-
dard HPM, we construct following homotopy:

H (𝑢; 𝑝) = 𝑢 (𝑥) − 𝑥 − 𝑝∫

𝑥

0

[𝑢 (𝑡)]
2

𝑑𝑡 = 0. (30)

In view of (13), we have

𝑝
0: V
0
(𝑥) − 𝑥 = 0,

𝑝
𝑛: V
𝑛+1

(𝑥) − ∫

𝑥

0

𝐻(V
0
, V
1
, . . . , V

𝑛
) 𝑑𝑡 = 0, 𝑛 ≥ 0.

(31)

Now if we apply ADM for solving (29), substituting (3) and
(4) in (29) leads to

∞

∑

𝑖=0

𝑢
𝑖
(𝑥) = 𝑥 + ∫

𝑥

0

∞

∑

𝑖=0

𝐴
𝑖
𝑑𝑡. (32)

In view of (7), we have following recursive formula:

𝑢
0
(𝑥) = 𝑥,

𝑢
𝑛+1

(𝑥) = ∫

𝑥

0

𝐴
𝑛
𝑑𝑡 𝑛 ≥ 0.

(33)

According to Theorem 3, we have 𝐴
𝑛
= 𝐻(V

0
, V
1
, . . . , V

𝑛
). By

solving (31) and (33), we have

𝑢 (𝑥) =

∞

∑

𝑖=0

𝑢
𝑖
(𝑥) = lim

𝑝→1

V
0
+ V
1
𝑝 + V
2
𝑝
2

+ ⋅ ⋅ ⋅

= 𝑥 +

𝑥
3

3

+

2𝑥
5

15

+

17𝑥
7

315

+

62𝑥
9

2835

+ ⋅ ⋅ ⋅ = tan𝑥.

(34)

5. Conclusion

It has been shown that the standard HPM provides exactly
the same solutions as the standard Adomian decomposition
method for solving functional equations. It has been proved
that He’s polynomials are only Adomian’s polynomials with
different name.
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We propose a pseudospectral method for solving the Thomas-Fermi equation which is a nonlinear ordinary differential equation
on semi-infinite interval. This approach is based on the rational third-kind Chebyshev pseudospectral method that is indeed a
combination of Tau and collocation methods. This method reduces the solution of this problem to the solution of a system of
algebraic equations. Comparison with some numerical solutions shows that the present solution is highly accurate.

1. Introduction

Many science and engineering problems of current interest
are set in unbounded domains. We can apply different
spectral methods that are used to solve problems in semi-
infinite domains. The first approach is using the Laguerre
polynomials [1–4]. The second approach is replacing semi-
infinite domain with [0, 𝐿] interval by choosing 𝐿, sufficiently
large.Thismethod is named domain truncation [5].The third
approach is reformulating original problem in semi-infinite
domain to singular problem in bounded domain by variable
transformation and then using the Jacobi polynomials to
approximate the resulting singular problem [6]. The fourth
approach of spectral method is based on rational orthogonal
functions. Boyd [7] defined a new spectral basis, named the
rational Chebyshev functions on the semi-infinite interval,
by mapping to the Chebyshev polynomials. Guo et al. [8]
introduced a new set of the rational Legendre functionswhich
aremutually orthogonal in𝐿2(0, +∞).They applied a spectral
scheme using the rational Legendre functions for solving the
Korteweg-de Vries equation on the half line. Boyd et al. [9]

applied pseudospectral methods on a semi-infinite interval
and compared the rational Chebyshev, Laguerre, andmapped
Fourier-sine methods.

The authors of [10–12] applied spectral method to solve
nonlinear ordinary differential equations on semi-infinite
intervals.Their approachwas based on a rational Taumethod.
They obtained the operational matrices of the derivative
and the product of the rational Chebyshev and Legendre
functions and then they applied these matrices together with
the Tau method to reduce the solution of these problems to
the solution of system of algebraic equations. Furthermore,
the authors of [13, 14] introduced the rational second- and
third-kind Chebyshev-Tau method for solving the Lane-
Emden equation and Volterra’s population model as nonlin-
ear differential equations over infinite interval.

One of the most important nonlinear singular ordinary
differential equations that occurs in semi-infinite interval is
theThomas-Fermi equation, which is given as follows [15, 16]:

𝑑
2
𝑦

𝑑𝑥
2
=

1

√𝑥

𝑦
3/2

(𝑥) , (1)
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which appears in the problem of determining the effective
nuclear charge in heavy atoms. Boundary conditions for this
equation are given as follows:

𝑦 (0) = 1, lim
𝑥→∞

𝑦 (𝑥) = 0. (2)

TheThomas-Fermi equation is useful for calculating the form
factors and for obtaining effective potentials which can be
used as initial trial potentials in self-consistent field calcula-
tions. The problem has been solved by different techniques.
[17–19] used perturbative approach to determine analytic
solutions for The studies in Thomas-Fermi equation. Bender
et al. [17] replaced the right-hand side of a this equation
by one which contains the parameter 𝛿, that is, 𝑦(𝑥) =

𝑦(𝑥)(𝑦(𝑥)/𝑥)
𝛿; the potential is then expanded in a power

series in 𝛿 as follows:

𝑦 = 𝑦
0
+ 𝛿𝑦
1
+ 𝛿
2

𝑦
2
+ 𝛿
3

𝑦
3
+ ⋅ ⋅ ⋅ . (3)

This procedure reduced (1) into a set of linear equations
with associated boundary conditions. Laurenzi [19] applied
perturbativemethod by combining it with an alternate choice
of the nonlinear term of (1) to produce a rapidly converging
analytic solution. Cedillo [18] wrote (1) in terms of density,
and then the 𝛿-expansion was employed to obtain an abso-
lute converging series of equations. Adomian [20] applied
the decomposition method for solving the Thomas-Fermi
equation, and then Wazwaz [21] proposed a nonperturbative
approximate solution to this equation by using the modified
decomposition method in a direct manner without any need
for a perturbative expansion or restrictive assumptions. He
combined the series obtained with the Padé approximation
which provided a promising tool to handle problems on
an unbounded domain. Liao [22] solved the Thomas-Fermi
equation by the homotopy analysis method. This method
provided a convenient way to control the convergence of
approximation series and adjusted convergence regions when
necessary, which was a fundamental qualitative difference
in analysis between the homotopy analysis method and all
other reported analytic techniques. Khan and Xu [23] used
the homotopy analysis method (HAM) with a new and better
transformation which improved the results in comparison
with Liao’s work. In [24], the quasilinearization approach
was applied for solving (1). This method approximated the
solution of a nonlinear differential equation by treating the
nonlinear terms as a perturbation about the linear ones, and,
unlike perturbation theories it is not based on the existence
of some kind of a small parameter. Ramos [25] presented
two piecewise quasilinearization methods for the numerical
solution of (1). Bothmethodswere based on the piecewise lin-
earization of ordinary differential equations.The firstmethod
(C1-linearization) provided global smooth solutions, whereas
the second one (C0-linearization) provided continuous solu-
tions. Recently, Boyd [26] solved theThomas-Fermi equation
using the rational first-kind Chebyshev collocation method
with very high accuracy. He showed that the singularity of the
Thomas-Fermi function at the origin, which would otherwise
degrade convergence of the rational Chebyshev series to
fourth order, can be eliminated by a simple transformation

of the coordinate and the unknown coefficients to reach a
convergence slightly larger than that of the tenth order.

In this paper, we introduce the rational third-kindCheby-
shev (RTC) functions, and, for the first time, we derive the
operational matrix of the derivatives of RTC functions. We
then introduce a combination of Tau and pseudospectral
methods based on RTC functions to illustrate its efficiency in
solving differential equations on a semi-infinite interval. The
proposed method requires the definition of RTC functions,
the operational matrix of the derivative, and the rational
third-kind Chebyshev-Gauss collocation points and weights.
The application of themethod to theThomas-Fermi equation
leads to a nonlinear algebraic system. High accurate results
for 𝑦(0) are obtained with moderate number of colloca-
tion points. We employ this method to the Thomas-Fermi
equation because, first, this equation is nonlinear singular,
second, the proposedmethod is easy to apply andnumerically
achieve spectral convergence, and, because of singularity in
this equation, this method can handle this problem, third, the
limit of the RTC functions at infinity is computable, and thus
the boundary conditions at infinity can be easily handled.

This paper is arranged as follows. In Section 2, we
describe the formulation and some properties of the rational
third-kind Chebyshev functions required for our subsequent
development. Section 3 summarizes the application of this
method for solving the Thomas-Fermi equation, and a com-
parison is made with existing methods in the literature. The
results show preference of this method in comparison with
the others. The conclusions are described in the final section.

2. Properties of RTC Functions

In this section, we present some properties of the rational
third-kind Chebyshev functions and introduce the rational
third-kind Chebyshev pseudospectral approach.

2.1. RTC Functions. The third-kind Chebyshev polynomials
are orthogonal in the interval [−1, 1] with respect to the
weight function

𝜌 (𝑥) = √
1 + 𝑥

1 − 𝑥

, (4)

and we find that 𝑉
𝑛
(𝑥) satisfies the recurrence relation

𝑉
0
(𝑥) = 1, 𝑉

1
(𝑥) = 2𝑥 − 1,

𝑉
𝑛
(𝑥) = 2𝑥𝑉

𝑛−1
(𝑥) − 𝑉

𝑛−2
(𝑥) , 𝑛 ≥ 2.

(5)

The RTC functions are defined by

𝑅
𝑛
(𝑥) = 𝑉

𝑛
(

𝑥 − 𝐿

𝑥 + 𝐿

) . (6)

Thus, RTC functions satisfy

𝑅
0
(𝑥) = 1, 𝑅

1
(𝑥) = 2 (

𝑥 − 𝐿

𝑥 + 𝐿

) − 1,

𝑅
𝑛
(𝑥) = 2 (

𝑥 − 𝐿

𝑥 + 𝐿

)𝑅
𝑛−1

(𝑥) − 𝑅
𝑛−2

(𝑥) , 𝑛 ≥ 2.

(7)
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2.2. Function Approximation. Let 𝑤(𝑥) = 2√𝐿𝑥/(𝑥 + 𝐿)
2

denote a nonnegative, integrable, real-valued function over
the interval 𝐼 = [0, +∞). We define

𝐿
2

𝑤
(𝐼) = {𝑦 : 𝐼 → R | 𝑦 is measurable and 


𝑦



𝑤

< ∞} ,

(8)

where





𝑦



𝑤

= (∫

∞

0





𝑦 (𝑥)






2

𝑤 (𝑥) 𝑑𝑥)

1/2

(9)

is the norm induced by the scalar product

⟨𝑦, 𝑧⟩
𝑤
= ∫

∞

0

𝑦 (𝑥) 𝑧 (𝑥)𝑤 (𝑥) 𝑑𝑥. (10)

Thus, {𝑅
𝑛
(𝑥)}
𝑛≥0

denote a system which is mutually orthogo-
nal under (10), that is,

∫

∞

0

𝑅
𝑛
(𝑥) 𝑅
𝑚
(𝑥)𝑤 (𝑥) 𝑑𝑥 = 𝜋𝛿

𝑛𝑚
, (11)

where 𝛿
𝑛𝑚

is the Kronecker delta function. This system is
complete in 𝐿2

𝑤
(𝐼); as a result, any function 𝑦 ∈ 𝐿

2

𝑤
(𝐼) can

be expanded as follows:

𝑦 (𝑥) =

∞

∑

𝑘=0

𝑎
𝑘
𝑅
𝑘
(𝑥) , (12)

with

𝑎
𝑘
=

1

𝜋

⟨𝑦, 𝑅
𝑘
⟩
𝑤
. (13)

The 𝑎
𝑘
’s are the expansion coefficients associated with the

family {𝑅
𝑘
(𝑥)}. If the infinite series in (12) is truncated, then

it can be written as

𝑦 (𝑥) ≃

𝑁

∑

𝑘=0

𝑎
𝑘
𝑅
𝑘
(𝑥) = 𝐴

𝑇

𝑅 (𝑥) , (14)

where

𝐴 = [𝑎
0
, 𝑎
1
, . . . , 𝑎

𝑁
]
𝑇

,

𝑅 (𝑥) = [𝑅
0
(𝑥) , 𝑅

1
(𝑥) , . . . , 𝑅

𝑁
(𝑥)]
𝑇

.

(15)

Moreover, from recurrence relation in (7), we have

𝑅 (0) = [1, −3, 5, . . . , (−1)
𝑁

(2𝑁 + 1)]

𝑇

= e
1
,

lim
𝑥→∞

𝑅 (𝑥) = [1, 1, . . . , 1]
𝑇

= e
2
.

(16)

2.3. Operational Matrix of Derivative. The derivative of the
vector 𝑅(𝑥) defined in (14) can be approximated by

𝑅


(𝑥) ≃ 𝐷𝑅 (𝑥) , (17)
where 𝐷 is the 𝑛 × 𝑛 operational matrix for the derivative.
Differentiating (7), we get

𝑅


0
(𝑥) = 0,

𝑅


1
(𝑥) =

1

2

𝑅
0
(𝑥) −

3

4

𝑅
1
(𝑥) +

1

4

𝑅
2
(𝑥) ,

𝑅


𝑛
(𝑥) = (𝑅

1
(𝑥) 𝑅
𝑛−1

(𝑥))


+ 𝑅


𝑛−1
(𝑥) − 𝑅



𝑛−2
(𝑥) , 𝑛 ≥ 2.

(18)

By using (18), the matrix 𝐷 can be calculated. The matrix 𝐷
is a lower Hessenberg matrix and can be expressed as 𝐷 =

𝐷
1
+ 𝐷
2
, where 𝐷

1
is a tridiagonal matrix which is obtained

from

𝐷
1
=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

0 0

1

2

−

3

4

1

4

9

4

−

7

4

1

2

4 d d
d

𝑁 − 1

4

7𝑁 − 5

4

1 − 4𝑁

4

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

(19)

and the matrix𝐷
2
is obtained from

𝐷
2
=

[

[

[

[

[

[

[

[

[

[

[

[

[

0 0 0 ⋅ ⋅ ⋅ 0 0 0 0

0 0 0 ⋅ ⋅ ⋅ 0 0 0 0

−1 0 0 ⋅ ⋅ ⋅ 0 0 0 0

1 −3 0 ⋅ ⋅ ⋅ 0 0 0 0

...
...

... d
...

...
...

...
(−1)
𝑁−1

(−1)
𝑁

3 (−1)
𝑁+1

5 ⋅ ⋅ ⋅ 0 0 0 0

(−1)
𝑁

(−1)
𝑁+1

3 (−1)
𝑁+2

5 ⋅ ⋅ ⋅ − (2𝑁 − 5) 0 0 0

(−1)
𝑁+1

(−1)
𝑁+2

3 (−1)
𝑁+3

5 ⋅ ⋅ ⋅ (2𝑁 − 5) − (2𝑁 − 3) 0 0

]

]

]

]

]

]

]

]

]

]

]

]

]

. (20)



4 Mathematical Problems in Engineering

2.4. RTC Collocation Points and Weights

Theorem 1. Consider the interpolatory quadrature formula

∫

1

−1

𝑓 (𝑥) 𝜌 (𝑥) 𝑑𝑥 =

𝑁

∑

𝑖=0

𝜔
𝑖
𝑓 (𝜏
𝑖
) + 𝐸
𝑁
(𝑓) . (21)

If nodes 𝜏
𝑖
zeros of the (𝑁+ 1)th-degree Chebyshev polynomial

of the third kind 𝑉
𝑁+1

and the corresponding weights 𝜔
𝑖
are

given by

𝜔
𝑖
=

4 sin ((2𝑖 + 1) 𝜋/ (2𝑁 + 3))

(𝑁 + 3/2) 𝜌 (𝜏
𝑖
)

×

[(𝑁+1)/2]

∑

𝑘=0

sin ((2𝑘 + 1) (2𝑖 + 1) 𝜋/ (2𝑁 + 3))

2𝑘 + 1

,

𝑖 = 0, 1, . . . , 𝑁,

(22)

then 𝐸
𝑁
(𝑓) = 0 for all 𝑓 ∈ P

2𝑁+1
.

Proof (see [29]). Abramowitz and Stegun [30] introduced the
rational third-kind Chebyshev-Gauss points. Let

R
𝑁
= span {𝑅

0
, 𝑅
1
, . . . , 𝑅

𝑁
} ,

𝜏
𝑖
= cos((2𝑖 + 1) 𝜋

2𝑁 + 3

) , 𝑖 = 0, 1, . . . , 𝑁,

(23)

Be the 𝑁 + 1 third-kind Chebyshev-Gauss points; thus, we
define

𝑥
𝑖
= 𝐿

1 + 𝜏
𝑖

1 − 𝜏
𝑖

, 𝑖 = 0, 1, . . . , 𝑁, (24)

which are named the rational third-kind Chebyshev-Gauss
nodes. Boyd [31] offered guidelines for optimizing the map
parameter 𝐿. The relations between the rational third-kind
Chebyshev orthogonal systems and the rational third-kind
Gauss integration are given as follows:

∫

∞

0

𝑦 (𝑥)𝑤 (𝑥) 𝑑𝑥 = ∫

1

−1

𝑦(𝐿

1 + 𝑡

1 − 𝑡

) 𝜌 (𝑡) 𝑑𝑡

=

𝑁

∑

𝑖=0

𝑦 (𝑥
𝑗
)𝑤
𝑗
, ∀𝑦 ∈ R

2𝑁+1
.

(25)

3. Numerical Solution of
the Thomas-Fermi Equation

In this phase, at first, we rewrite the Thomas-Fermi equation
introduced in (1) and (2) as

√𝑥𝑦


(𝑥) − 𝑦
3/2

(𝑥) = 0,

𝑦 (0) = 1, lim
𝑥→∞

𝑦 (𝑥) = 0.

(26)

By applying (14) and (17) on (26), we define

Res (𝑥) = √𝑥𝐴𝑇𝐷2𝑅 (𝑥) − (𝐴𝑇𝑅 (𝑥))
3/2

. (27)

Table 1: Approximations of 𝑦(0) for the present method.

𝑁 𝐿 𝑦


(0) Absolute error
5 0.149599864 −1.5880710242 1.57 × 10

−9

7 0.07732831999 −1.588071022646 3.51 × 10
−11

8 0.0849432650716649 −1.588071022611374 1.78 × 10
−15

Boyd result [26]: 𝑦(0) = −1.5880710226113753127186845.

As in a typical Tau method and using (10), we can write

⟨Re 𝑠 (𝑥) , 𝑅
𝑘
(𝑥)⟩
𝑤

= ∫

∞

0

Re 𝑠 (𝑥) 𝑅
𝑘
(𝑥) 𝑤 (𝑥) 𝑑𝑥 = 0,

𝑘 = 0, 1, . . . , 𝑁 − 2.

(28)

Now, a pseudospectralmethod is defined by applying (25)
on (28) to generate (𝑁 − 2) algebraic equations as follows:

𝑁

∑

𝑖=0

Re 𝑠 (𝑥
𝑖
) 𝑅
𝑘
(𝑥
𝑖
) 𝑤
𝑖
= 0, 𝑘 = 0, 1, . . . , 𝑁 − 2. (29)

In addition, using (14)–(16), the boundary conditions in (26)
can be approximated as

𝐴
𝑇e
1
= 1, 𝐴

𝑇e
2
= 0. (30)

Solving the system of 𝑁 + 1 nonlinear equations in (29)
and (30) usingNewton’smethod for the unknown coefficients
𝑎
𝑗
and substituting the obtained results in (14) and (17), the

values of 𝑦(𝑥) and 𝑦(0) can be approximated.
The importance of the initial slope 𝑦(0) is that it plays a

major role in determining the energy of a neutral atom in the
Thomas-Fermi approximation

𝐸 =

6

7

(

4𝜋

3

)

2/3

𝑍
7/3

𝑦


(0) , (31)

where 𝑍 is the nuclear charge.
The initial slope 𝑦(0) of the Thomas-Fermi equation is

calculated byKobayashi et al. [32] as𝑦(0) = −1.588071. Boyd
[26] obtained 𝑦


(0) = −1.5880710226113753127186845,

correct to 25 decimal places; however, he obtained this
accuracy with 𝑁 = 600 and 𝐿 = 64. In fact, he overcame
the singularity of the problem by a change of variable and,
increasing 𝑁. The proposed method in this paper has the
ability that it provides high accurate values for 𝑦(0) by
moderate number of collocation points and by obtaining
suitable mapping parameter 𝐿 > 0. This method overcame
the singularity by employing the Tau method and, obtaining
suitable 𝐿. As Boyd stated, the constant 𝐿 is a user-choosable
map parameter, which sets the length scale of the mapping.
Although there are sophisticated ways to estimate the best
choice of 𝐿 [31], in practice, it is usual to begin with an 𝐿

according to the physical properties of the problem, and then
experiment.The criterion for optimum is rate of convergence.
In general, there is no way to avoid a small amount of
trial and error in choosing 𝐿 when solving problems on an
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Table 2: Comparison between methods in [22, 23, 27] and the present method for 𝑦(0).

𝑁 Padé Liao [22] Khan and Xu [23] Yao [27] Present method
7 [20, 20] −1.58281 −1.582901807 −1.585148733 −1.588071022646
8 [30, 30] −1.58606 −1.586494973 −1.588004950 −1.588071022611374

Table 3: Approximations of 𝑦(𝑥) for the present method, [23, 28].

𝑥 Khan and Xu [23] Liao [28] Present method
0.25 0.776191000 0.755202000 0.755455402
0.50 0.615917000 0.606987000 0.602998554
0.75 0.505380000 0.502347000 0.494347872
1.00 0.423772000 0.424008000 0.416399658
1.25 0.362935000 0.363202000 0.358770806
1.50 0.314490000 0.314778000 0.314761643
1.75 0.275154000 0.275451000 0.280179962
2.00 0.242718000 0.243009000 0.252344355
2.25 0.215630000 0.215895000 0.229482688
2.50 0.192795000 0.192984000 0.210384924
2.75 0.173364000 0.173441000 0.194199930
3.00 0.156719000 0.156633000 0.180313058
3.25 0.142371000 0.142070000 0.168270054
3.50 0.129937000 0.129370000 0.157728304
3.75 0.119108000 0.118229000 0.148424721
4.00 0.109632000 0.108404000 0.140154047
4.25 0.101303000 0.099697900 0.132753853
4.50 0.093950400 0.091948200 0.126093968
4.75 0.087432000 0.085021800 0.120068868
5.00 0.081629600 0.078807800 0.114592127
6.00 0.063816200 0.059423000 0.096904158
7.00 0.051800500 0.046097800 0.083941323
8.00 0.043285900 0.036587300 0.074034822
9.00 0.037002300 0.029590900 0.066218399
10.0 0.032208100 0.024314300 0.059894055
15.0 0.019184300 0.010805400 0.040533524
20.0 0.013493700 0.005784940 0.030630632
25.0 0.010357000 0.003473750 0.024616163
50.0 0.004730890 0.000632255 0.012420906
75.0 0.003052460 0.000218210 0.008305908
100 0.002251000 0.000100243 0.006238954

infinite domain. Note that our experiments show that (i)
for obtaining accurate results for 𝑦(0) using the present
method optimum 𝐿 is less than 1 and (ii) the number of
decimal places of 𝐿 and the number of correct values of
𝑦

(0) are almost the same. The reason that such a value of 𝐿

provides high accurate initial slope is that it essentially moves
collocation points associated with large values of 𝑥 to the left.
Because the exact solution changes slowly when 𝑥 is large,
this leftward movement of the collocation points is beneficial
since more collocation points are situated where the solution
is changing most rapidly. For this particular reason, very
accurate approximations of 𝑦(0) are obtained with moderate
number of collocation points. We point out that the scheme
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Figure 1: Thomas-Fermi graph obtained by the present method.

of Boyd [26] is based on collocation, and for approximating
𝑦

(0) it needs very large number of collocation points and

a large value for 𝐿, while our scheme is based on the Tau
method and the Chebyshev-Gauss quadrature that needs few
collocation points and small 𝐿.

The approximations of 𝑦(0) computed by the present
method and their relative errors are shown in Table 1. Obvi-
ously, this method is convergent by increasing the number
of points and obtaining suitable 𝐿. The comparison of the
initial slope 𝑦(0) calculated by the present paper with values
obtained by Liao [22], Khan and Xu [23], and Yao [27] is
given in Table 2, which shows that the present solution is
highly accurate. Table 3 shows the approximations of 𝑦(𝑥)
obtained by the method proposed in this paper for 𝑁 = 8

and 𝐿 = 0.0849432650716649 and those obtained by Khan
and Xu [23] and Liao [28]. Figure 1 shows the resulting graph
of theThomas-Fermi equation for𝑁 = 8 which tends to zero
as 𝑥 increases by the boundary condition lim

𝑥→∞
𝑦(𝑥) = 0.

4. Conclusion

The fundamental goal of this paper has been to construct
an approximation to the solution of the nonlinear Thomas-
Fermi equation in a semi-infinite interval which has singular-
ity at 𝑥 = 0 and whose boundary condition occurs in infinity.
In the above discussion, the pseudospectral method with
RTC functions, which have the property of orthogonality, is
employed to achieve this goal. Advantages of this method
are that we do not reform the problem to a finite domain
and that with a small 𝑁 very accurate results are obtained.
There is a good agreement between the obtained results, and
exact values which demonstrates the validity of the present
method for this type of problems and gives the method a
wider applicability. Comparing the computed results by this
method with the others shows that this method provides



6 Mathematical Problems in Engineering

more accurate and numerically stable solutions than those
obtained by other methods.
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An analysis has been carried out for the flow and heat transfer of an incompressible laminar and viscous fluid in a rectangular
domain bounded by two moving porous walls which enable the fluid to enter or exit during successive expansions or contractions.
The basic equations governing the flow are reduced to the ordinary differential equations using Lie-group analysis. Effects of the
permeation Reynolds number 𝑅

𝑒
, porosity 𝑅, and the dimensionless wall dilation rate 𝛼 on the self-axial velocity are studied both

analytically and numerically.The solutions are represented graphically.The analytical procedure is based on double perturbation in
the permeation Reynolds number 𝑅

𝑒
and the wall expansion ratio 𝛼, whereas the numerical solution is obtained using Runge-Kutta

method with shooting technique. Results are correlated and compared for some values of the physical parameters. Lastly, we look
at the temperature distribution.

1. Introduction

The studies on the boundary layer flow and heat transfer over
a stretching surface have become more and more prominent
in a number of engineering applications. For instance, during
extrusion of a polymer sheet, the reduction of both thickness
andwidth takes place in a cooling bath.Thequality of the final
product depends upon the heat transfer rate at the stretching
surface. In the past, many experimental and theoretical at-
tempts on this topic have been made. Such studies have been
presented under the various assumptions of small Reynolds
number 𝑅

𝑒
, intermediate 𝑅

𝑒
, large 𝑅

𝑒
, and arbitrary 𝑅

𝑒
. The

steady flow in a channel with stationarywalls and small𝑅
𝑒
has

been studied by Berman [1]. Dauenhauer and Majdalani [2]
numerically discussed the two-dimensional viscous flow in a
deformable channel when −50 < 𝑅

𝑒
< 200 and −100 < 𝛼 <

100 (𝛼 denotes the wall expansion ratio). Majdalani et al. [3]
analyzed the channel flow of slowly expanding-contracting
walls which leads to the transport of biological fluids. They
first derived the analytic solution for small 𝑅

𝑒
and 𝛼 and then

compared it with the numerical solution.

The flow problem given in study [3] has been analytically
solved by Boutros et al. [4] when 𝑅

𝑒
and 𝛼 vary in the ranges

−5 < 𝑅
𝑒

< 5 and −1 < 𝛼 < 1. They used the Lie-group
method in this study. Mahmood et al. [5] discussed the
homotopy perturbation and numerical solutions for viscous
flow in a deformable channel with porous medium. Asghar
et al. [6] computed exact solution for the flow of viscous
fluid through expanding-contracting channels. They used
symmetry methods and conservation laws.

The flow and heat transfer in square domain have been
studied by Noor et al. [7]. Our main aim is to study the heat
transfer in a rectangular domain. In this study, symmetry
methods are applied to a natural convection boundary layer
problem. The main advantage of such a method is that it can
successfully be applied to a nonlinear differential equation.
The symmetries of differential equations are those groups
of transformation under which the differential equation
remains invariant, that is, a symmetry group maps any solu-
tion to any other solutions.The symmetry solutions are quite
popular because they result in reductions of independent
variable of the problem.
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The purpose of this paper is to generalize the flow analy-
sis and heat distribution of [4]. The salient features have
been taken into account when the fluid saturates the porous
medium. Like in [4], the analytic solution for the arising
nonlinear flow problem is given by employing the Lie-group
method (with 𝑅

𝑒
and 𝛼 as the perturbation quantities).

Finally, the graphs of velocity and temperature are plotted and
discussed.

2. Mathematical Formulation of the Problem

Let us consider a rectangular domain bounded by twowalls of
equal permeability that enable the fluid to enter or exit during
successive expansions or contractions. The walls expand
or contract uniformly at the time-dependent rate ̇

ℎ. The
continuous sheet aligned with the 𝑥-axis at 𝑦 = 0 means
that the wall is impulsively stretched with the velocity 𝑈

𝑤

along the 𝑥-axis and 𝑇
𝑤
(𝑥, 𝑡) as our surface temperature. At

𝑦 = ℎ(𝑡), it is assumed that the fluid inflow velocity 𝑉
𝑤
is

independent of the position. A thin fluid film with uniform
thickness ℎ(𝑡) rests on the horizontal wall. The governing
time-dependent equations for mass, momentum, and energy
are given by

𝜕𝑢

𝜕𝑥

+

𝜕V
𝜕𝑦

= 0, (1)

𝜕𝑢

𝜕𝑡

+ 𝑢

𝜕𝑢

𝜕𝑥

+ V
𝜕𝑢

𝜕𝑦

= −

1

𝜌

𝜕𝑃

𝜕𝑥

+ ][
𝜕
2
𝑢

𝜕𝑥
2
+

𝜕
2
𝑢

𝜕𝑦
2
] −

]𝜙
𝑘

𝑢, (2)

𝜕V
𝜕𝑡

+ 𝑢

𝜕V
𝜕𝑥

+ V
𝜕V
𝜕𝑦

= −

1

𝜌

𝜕𝑃

𝜕𝑦

+ ][
𝜕
2V

𝜕𝑥
2
+

𝜕
2V

𝜕𝑦
2
]

−

]𝜙
𝑘

V + 𝑔𝛽 (𝑇 − 𝑇
𝑤
) ,

(3)

𝜕𝑇

𝜕𝑡

+ 𝑢

𝜕𝑇

𝜕𝑥

+ V
𝜕𝑇

𝜕𝑦

= 𝛼[

𝜕
2
𝑇

𝜕𝑥
2
+

𝜕
2
𝑇

𝜕𝑦
2
] , (4)

where 𝑢 and V are the velocity components in the 𝑥 and 𝑦

directions, respectively, and𝑇 is temperature.We assume that
the fluid properties are constant. Here, 𝜌 is the fluid density,
𝜇 is the dynamic viscosity, and 𝑘 is the thermal conductivity
of an incompressible fluid. Thus, the kinematic viscosity is
] = 𝜇/𝜌,𝑔 is the acceleration due to gravity,𝛽 is the coefficient
of the thermal expansion, and the thermal diffusivity is 𝛼 =

𝑘/𝜌𝑐
𝑝
, where 𝑐

𝑝
is the specific heat, 𝑃 is the pressure, 𝑡 is

time, and 𝜙 and 𝑘 are the porosity and permeability of porous
medium, respectively.

The appropriate boundary conditions are

(i) 𝑢 = 0, V = −𝑉
𝑤
, 𝑇 = 𝑇

𝑤
at 𝑦 = ℎ (𝑡) ,

(ii) 𝜕𝑢

𝜕𝑦

= 0, V = 0,

𝜕𝑇

𝜕𝑦

= 0 at 𝑦 = 0,

(iii) 𝑢 = 0 at 𝑥 = 0,

(5)

where ℎ(𝑡) is the film thickness. The boundary condition
reflects that the fluid motion within the liquid film is caused

by the viscous shear arising from the stretching of the elastic
wall.

Now we will express the axial velocity, normal velocity,
and boundary conditions in terms of the stream function Ψ.
From the continuity Equation (1), there exists a dimensional
stream function Ψ(𝑥, 𝑦, 𝑡) such that

𝑢 =

𝜕Ψ

𝜕𝑦

, V = −

𝜕Ψ

𝜕𝑥

, (6)

which satisfies (1) identically.
Introducing the dimensionless normal coordinate 𝑦 =

𝑦/ℎ(𝑡), (6) becomes

𝑢 =

1

ℎ

𝜕Ψ

𝜕𝑦

, V = −

𝜕Ψ

𝜕𝑥

. (7)

Substituting (7) into (2)–(4), we obtain

ℎ
2

Ψ
𝑦𝑡

− ℎ
̇

ℎ𝑦Ψ
𝑦𝑦

− ℎ
̇

ℎΨ
𝑦
+ ℎΨ
𝑦
Ψ
𝑥𝑦

− ℎΨ
𝑥
Ψ
𝑦𝑦

= −

ℎ
3

𝜌

𝑃
𝑥
+ ] [ℎ2Ψ

𝑥𝑥𝑦
+ Ψ
𝑦𝑦𝑦

] −

ℎ
2]𝜙
𝑘

Ψ
𝑦
,

− ℎ
2

Ψ
𝑥𝑡

+ ℎ
̇

ℎ𝑦Ψ
𝑥𝑦

− ℎΨ
𝑦
Ψ
𝑥𝑥

+ ℎΨ
𝑥
Ψ
𝑥𝑦

= −

ℎ

𝜌

𝑃
𝑦
+ ] [−ℎ2Ψ

𝑥𝑥𝑥
− Ψ
𝑥𝑦𝑦

]

+

ℎ
2]𝜙
𝑘

Ψ
𝑥
+ 𝑔𝛽 (𝑇 − 𝑇

𝑤
) ℎ
2

,

𝜕𝑇

𝜕𝑡

+

1

ℎ

Ψ
𝑦

𝜕𝑇

𝜕𝑥

− Ψ
𝑥

𝜕𝑇

𝜕𝑦

= 𝛼[

𝜕
2
𝑇

𝜕𝑥
2
+

𝜕
2
𝑇

𝜕𝑦
2
] ,

(8)

where a dot denotes the derivative with respect to 𝑡.
The variables in (8) are dimensionless according to

𝑢 =

𝑢

𝑉
𝑤

, V =

𝑢

𝑉
𝑤

, 𝑥 =

𝑥

ℎ (𝑡)

,

𝑦 =

𝑦

ℎ (𝑡)

, Ψ =

Ψ

ℎ𝑉
𝑤

, 𝑃 =

𝑃

𝜌𝑉
2

𝑤

,

𝑡 =

𝑡

ℎ𝑉
𝑤

, 𝛼 =

ℎ
̇

ℎ

]
, 𝜃 =

𝑇 − 𝑇
ℎ

𝑇
𝑤
− 𝑇
ℎ

,

1

𝑅

=

]𝜙𝑎
𝑘𝑉
𝑤

.

(9)

Substituting (9) into (8), we have

Ψ
𝑦𝑡

+ Ψ
𝑦
Ψ
𝑥𝑦

− Ψ
𝑥
Ψ
𝑦𝑦

+ 𝑃
𝑥

−

1

𝑅
𝑒

[𝛼Ψ
𝑦
+ 𝛼𝑦Ψ

𝑦𝑦
+ Ψ
𝑥𝑥𝑦

+ Ψ
𝑦𝑦𝑦

] −

1

𝑅

Ψ
𝑦
= 0,

(10)

Ψ
𝑥𝑡

+ Ψ
𝑦
Ψ
𝑥𝑥

− Ψ
𝑥
Ψ
𝑥𝑦

− 𝑃
𝑦

−

1

𝑅
𝑒

[𝛼𝑦Ψ
𝑥𝑦

+ Ψ
𝑥𝑦𝑦

+ Ψ
𝑥𝑥𝑥

] +

1

𝑅

Ψ
𝑥
+

1

ℎ
2
𝐺
𝑟
𝜃 = 0,

(11)

𝜕𝜃

𝜕𝑡

+ Ψ
𝑦

𝜕𝜃

𝜕𝑥

− Ψ
𝑥

𝜕𝜃

𝜕𝑦

=

1

𝑃
𝑟
𝑅
𝑒

[

𝜕
2
𝜃

𝜕𝑥
2
+

𝜕
2
𝜃

𝜕𝑦
2
] , (12)

in which 𝑅
𝑒

= ℎ𝑉
𝑤
/] is the permeation Reynolds number,
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𝐺
𝑟
= 𝑔𝛽(𝑇

𝑤
− 𝑇
ℎ
)ℎ
3
/V2 is the Grashof number, 𝑃

𝑟
= ]/𝛼 is

the Prandtl number, and ̇
ℎ = 𝛼]/ℎ.

Through (7) and (9), we have

𝑢 =

𝜕Ψ

𝜕𝑦

, V = −

𝜕Ψ

𝜕𝑥

, (13)

and, thus, the boundary conditions take the following forms:

Ψ
𝑦
= 0, Ψ

𝑥
= 1, 𝜃 = 1 at 𝑦 = 1, (14a)

Ψ
𝑦𝑦

= 0, Ψ
𝑥
= 0, 𝜃

𝑦
= 0 at 𝑦 = 0, (14b)

Ψ
𝑦
= 0 at 𝑥 = 0. (14c)

3. Solution of the Problem

This section derives the similarity solutions using Lie-group
method under which (10)–(12) are invariant.

3.1. Lie Symmetry Analysis. We consider the one-parameter
(𝜀) Lie group of infinitesimal transformation in (𝑥, 𝑦, 𝑡, Ψ,

𝑃, 𝜃) given by

𝑥
∗

= 𝑥 + 𝜀𝜙 (𝑥, 𝑦, 𝑡, Ψ, 𝑃, 𝜃) + 0 (𝜀
2

) ,

𝑦
∗

= 𝑦 + 𝜀𝜁 (𝑥, 𝑦, 𝑡, Ψ, 𝑃, 𝜃) + 0 (𝜀
2

) ,

𝑡
∗

= 𝑡 + 𝜀𝐹 (𝑥, 𝑦, 𝑡, Ψ, 𝑃, 𝜃) + 0 (𝜀
2

) ,

Ψ
∗

= Ψ + 𝜀𝜂 (𝑥, 𝑦, 𝑡, Ψ, 𝑃, 𝜃) + 0 (𝜀
2

) ,

𝑃
∗

= 𝑃 + 𝜀𝑔 (𝑥, 𝑦, 𝑡, Ψ, 𝑃, 𝜃) + 0 (𝜀
2

) ,

𝜃
∗

= 𝜃 + 𝜀𝐻 (𝑥, 𝑦, 𝑡, Ψ, 𝑃, 𝜃) + 0 (𝜀
2

) ,

(15)

with 𝜀 as a small parameter.
In view of Lie’s algorithm, the vector field is

𝑋 = 𝜙

𝜕

𝜕𝑥

+ 𝜁

𝜕

𝜕𝑦

+ 𝐹

𝜕

𝜕𝑡

+ 𝜂

𝜕

𝜕Ψ

+ 𝑔

𝜕

𝜕𝑃

+ 𝐻

𝜕

𝜕𝜃

, (16)

if it is left variant by the transformation (𝑥, 𝑦, 𝑡, Ψ, 𝑃, 𝜃) →

(𝑥
∗
, 𝑦
∗
, 𝑡
∗
, Ψ
∗
, 𝑃
∗
, 𝜃
∗
).

The solutions Ψ = Ψ(𝑥, 𝑦, 𝑡), 𝑃 = 𝑃(𝑥, 𝑦, 𝑡) and 𝜃 = 𝜃(𝑥,

𝑦, 𝑡) are invariant under the symmetry (16) if

Φ
Ψ

= 𝑋 (Ψ − Ψ (𝑥, 𝑦, 𝑡)) = 0, where Ψ = Ψ (𝑥, 𝑦, 𝑡) ,

Φ
𝑃
= 𝑋 (𝑃 − 𝑃 (𝑥, 𝑦, 𝑡)) = 0, where 𝑃 = 𝑃 (𝑥, 𝑦, 𝑡) ,

Φ
𝜃
= 𝑋 (𝜃 − 𝜃 (𝑥, 𝑦, 𝑡)) = 0, where 𝜃 = 𝜃 (𝑥, 𝑦, 𝑡) .

(17)

We set

Δ
1
= Ψ
𝑦𝑡

+ Ψ
𝑦
Ψ
𝑥𝑦

− Ψ
𝑥
Ψ
𝑦𝑦

+ 𝑃
𝑥

−

1

𝑅
𝑒

[𝛼Ψ
𝑦
+ 𝛼𝑦Ψ

𝑦𝑦
+ Ψ
𝑥𝑥𝑦

+ Ψ
𝑦𝑦𝑦

] −

1

𝑅

Ψ
𝑦
,

Δ
2
= Ψ
𝑥𝑡

+ Ψ
𝑦
Ψ
𝑥𝑥

− Ψ
𝑥
Ψ
𝑥𝑦

− 𝑃
𝑦

−

1

𝑅
𝑒

[𝛼𝑦Ψ
𝑥𝑦

+ Ψ
𝑥𝑦𝑦

+ Ψ
𝑥𝑥𝑥

] +

1

𝑅

Ψ
𝑥
+

1

ℎ
2
𝐺
𝑟
𝜃,

Δ
3
=

𝜕𝜃

𝜕𝑡

+ Ψ
𝑦

𝜕𝜃

𝜕𝑥

− Ψ
𝑥

𝜕𝜃

𝜕𝑦

−

1

𝑃
𝑟
𝑅
𝑒

[

𝜕
2
𝜃

𝜕𝑥
2
+

𝜕
2
𝜃

𝜕𝑦
2
] .

(18)

The vector field 𝑋 given by (16) is a symmetry generator of
(10)–(12) if and only if

𝑋
[3]

(Δ
𝑗
)





Δ
𝑗
=0

= 0, 𝑗 = 1, 2, 3, (19)

in which

𝑋
[3]

= 𝜙

𝜕

𝜕𝑥

+ 𝜁

𝜕

𝜕𝑦

+ 𝐹

𝜕

𝜕𝑡

+ 𝜂

𝜕

𝜕Ψ

+ 𝑔

𝜕

𝜕𝑃

+ 𝐻

𝜕

𝜕𝜃

+ 𝜂
𝑥 𝜕

𝜕Ψ
𝑥

+ 𝜂
𝑦 𝜕

𝜕Ψ
𝑦

+ 𝑔
𝑥 𝜕

𝜕𝑃
𝑥

+ 𝑔
𝑦 𝜕

𝜕𝑃
𝑦

+ 𝐻
𝑥 𝜕

𝜕𝜃
𝑥

+ 𝐻
𝑦 𝜕

𝜕𝜃
𝑦

+ 𝐻
𝑡 𝜕

𝜕𝜃
𝑡

+ 𝜂
𝑥𝑦 𝜕

𝜕Ψ
𝑥𝑦

+ 𝜂
𝑥𝑡 𝜕

𝜕Ψ
𝑥𝑡

+ 𝜂
𝑦𝑡 𝜕

𝜕Ψ
𝑦𝑡

+ 𝜂
𝑥𝑥 𝜕

𝜕Ψ
𝑥𝑥

+ 𝜂
𝑦𝑦 𝜕

𝜕Ψ
𝑦𝑦

+ 𝐻
𝑥𝑥 𝜕

𝜕𝜃
𝑥𝑥

+ 𝐻
𝑦𝑦 𝜕

𝜕𝜃
𝑦𝑦

+ 𝜂
𝑥𝑥𝑦 𝜕

𝜕Ψ
𝑥𝑥𝑦

+ 𝜂
𝑥𝑦𝑦 𝜕

𝜕Ψ
𝑥𝑦𝑦

+ 𝜂
𝑥𝑥𝑥 𝜕

𝜕Ψ
𝑥𝑥𝑥

+ 𝜂
𝑦𝑦𝑦 𝜕

𝜕Ψ
𝑦𝑦𝑦

(20)

is the third prolongation of𝑋.
We now introduce the total derivatives by differentiating

(15) with respect to 𝑥, 𝑦, and 𝑡 and construct

𝐷
𝑥
= 𝜕
𝑥
+ Ψ
𝑥
𝜕
Ψ
+ 𝑃
𝑥
𝜕
𝑝
+ 𝜃
𝑥
𝜕
𝜃
+ Ψ
𝑥𝑥

𝜕
Ψ
𝑥

+ 𝑃
𝑥𝑥

𝜕
𝑃
𝑥

+ 𝜃
𝑥𝑥

𝜕
𝜃
𝑥

+ Ψ
𝑥𝑦
𝜕
Ψ
𝑦

+ 𝜃
𝑥𝑦
𝜕
𝜃
𝑦

+ ⋅ ⋅ ⋅ ,

𝐷
𝑦
= 𝜕
𝑦
+ Ψ
𝑦
𝜕
Ψ
+ 𝑃
𝑦
𝜕
𝑃
+ 𝜃
𝑦
𝜕
𝜃
+ Ψ
𝑦𝑦

𝜕
Ψ
𝑦

+ 𝑃
𝑦𝑦

𝜕
𝑃
𝑦

+ 𝜃
𝑦𝑦

𝜕
𝜃
𝑦

+ Ψ
𝑥𝑦
𝜕
Ψ
𝑥

+ 𝜃
𝑥𝑦
𝜕
𝜃
𝑥

+ ⋅ ⋅ ⋅ ,

𝐷
𝑡
= 𝜕
𝑡
+ Ψ
𝑡
𝜕
Ψ
+ 𝑃
𝑡
𝜕
𝑃
+ 𝜃
𝑡
𝜕
𝜃
+ Ψ
𝑡𝑡
𝜕
Ψ
𝑡

+ 𝑃
𝑡𝑡
𝜕
𝑃
𝑡

+ 𝜃
𝑡𝑡
𝜕
𝜃
𝑡

+ Ψ
𝑥𝑡
𝜕
Ψ
𝑥

+ 𝜃
𝑥𝑡
𝜕
𝜃
𝑥

+ ⋅ ⋅ ⋅ .

(21)
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Choosing small𝐺
𝑟
when𝑇

ℎ
≈ 𝑇
𝑤
, the system of (10)–(12) has

the six parameter Lie-group points of symmetries generated
by

𝑋
1
=

𝜕

𝜕𝑡

, 𝑋
2
= 𝜃

𝜕

𝜕𝑡

, 𝑋
3
=

𝜕

𝜕𝜃

, 𝑋
4
=

𝜕

𝜕Ψ

,

𝑋
5
= 𝐹
2
(𝑡)

𝜕

𝜕𝑦

, 𝑋
6
= 𝐹
1
(𝑡)

𝜕

𝜕𝑥

.

(22)

3.2. Invariant Solution. When calculating invariant solutions
under the group generators 𝑋

3
and 𝑋

4
, we found that there

are no invariant solutions. Then 𝑋
5
and 𝑋

6
give solutions of

(1)–(3) and this contradicts the boundary conditions.
For 𝑋

1
and 𝑋

2
, the characteristic Φ = (Φ

Ψ
, Φ
𝑃
, Φ
𝜃
) has

the following components:

Φ
Ψ

= −Ψ
𝑡
, Φ
𝑃
= −𝑃
𝑡
, Φ
𝜃
= −𝜃
𝑡
. (23)

The general solutions of invariant surface conditions (17) are
given by

Ψ = ℎ (𝑦)𝐻 (𝑥, y) , 𝑃 = Γ (𝑥, 𝑦) , 𝜃 = 𝜏 (𝑥, 𝑦) . (24)

Invoking (24) into (10), we have

− 𝐾

𝑑
3
ℎ

𝑑𝑦
3
+ [−𝛼𝐾𝑦 − ℎ𝐾

1
− 3𝐾𝐾

2
]

𝑑
2
ℎ

𝑑𝑦
2

+ [ − 𝛼𝐾 − 2𝛼𝐾𝑦𝐾
2
− ℎ𝐾
3

+ ℎ𝐾
4
−𝐾𝐾
5
− 3𝐾𝐾

6
+

1

𝑅

]

𝑑ℎ

𝑑𝑦

,

𝐾
1
(

𝑑ℎ

𝑑𝑦

)

2

+ [−𝛼𝐾𝐾
2
+

1

𝑅

𝐾
2
− 𝛼𝐾𝐾

6
𝑦 − 𝐾𝐾

9
− 𝐾𝐾

10
] ℎ

+ [𝐾
7
− 𝐾
8
] ℎ
2

+

1

𝐻

𝑑Γ

𝑑𝑥

,

(25)

𝐾
1
= 𝐻
𝑥
, 𝐾
2
=

𝐻
𝑦

𝐻

, 𝐾
3
=

𝐻
𝑥
𝐻
𝑦

𝐻

,

𝐾
4
= 𝐻
𝑥𝑦
, 𝐾
5
=

𝐻
𝑥𝑥

𝐻

, 𝐾
6
=

𝐻
𝑦𝑦

𝐻

,

𝐾
7
=

𝐻
𝑦
𝐻
𝑥𝑦

𝐻

, 𝐾
8
=

𝐻
𝑥
𝐻
𝑦𝑦

𝐻

, 𝐾
9
=

𝐻
𝑥𝑥𝑦

𝐻

,

𝐾
10

=

𝐻
𝑦𝑦𝑦

𝐻

, 𝐾 = 𝑅
𝑒
.

(26)

Integration of 𝐻
𝑥

= 𝐾
1
from (26) leads to the following ex-

pression:

𝐻(𝑥, 𝑦) = 𝑥𝐾
1
(𝑦) + 𝐾

11
(𝑦) . (27)

The above equation when used into Ψ = ℎ(𝑦)𝐻(𝑥, 𝑦) (from
(24)) gives

Ψ = (𝑥𝐾
1
(𝑦) + 𝐾

11
(𝑦)) ℎ (𝑦) , (28)

which after differentiating with respect to 𝑦 and using (14c)
yields

𝐾
11

(𝑦) ℎ (𝑦) = 𝐾
12
, (29)

where𝐾
12
is a constant of integration and hence (28) reads

Ψ = 𝑥𝐺 (𝑦) + 𝐾
12

(30)

with 𝐺(𝑦) = 𝐾
1
(𝑦)ℎ(𝑦).

Putting 𝑃 = Γ(𝑥, 𝑦) from (24) and (27) into the last term
of (25) yields

𝐾
11

= 0. (31)

With the help of (27) and (31), one obtains

𝐻(𝑥, 𝑦) = 𝑥𝐾
1
(𝑦) , (32)

while (29)–(31) yield

Ψ = 𝑥𝐺 (𝑦) . (33)

Due to (13) and (33), one may write

𝑢 = 𝑥

𝑑𝐺

𝑑𝑦

, V = −𝐺. (34)

Using (33) in (11) and then differentiating with respect to 𝑥,
one arrives at the following result:

𝑃
𝑥𝑦

=

1

ℎ
2
𝐺
𝑟
𝜃
𝑥
. (35)

Putting (33) into (10), differentiating with respect to 𝑦, and
then using (35), we obtain

𝑑
4
𝐺

𝑑𝑦
4
𝑥 + 𝛼[𝑦

𝑑
3
𝐺

𝑑𝑦
3

+ 2

𝑑
2
𝐺

𝑑𝑦
2
]𝑥 + 𝑅

𝑒
𝐺

𝑑
3
𝐺

𝑑𝑦
3
𝑥

− 𝑅
𝑒

𝑑𝐺

𝑑𝑦

𝑑
2
𝐺

𝑑𝑦
2
𝑥 − 𝑅
𝑒

𝑑
2
𝐺

𝑑𝑦
2

1

𝑅

𝑥 +

1

ℎ
2
𝐺
𝑟
𝜃
𝑥
= 0.

(36)

Using (33) and 𝜃 = 𝜏(𝑥, 𝑦) from (24) in (12), we can write

𝑥

𝑑𝐺

𝑑𝑦

𝜕𝜏

𝜕𝑥

− 𝐺

𝜕𝜏

𝜕𝑦

−

1

𝑃
𝑟
𝑅
𝑒

[

𝜕
2
𝜏

𝜕𝑥
2
+

𝜕
2
𝜏

𝜕𝑦
2
] = 0, (37)

and the boundary conditions (14a), (14b), and (14c) become

(i) 𝑑𝐺 (1)

𝑑𝑦

= 0, (ii) 𝐺 (1) = 1, (iii) 𝑑
2
𝐺 (0)

𝑑𝑦
2

= 0,

(iv) 𝐺 (0) = 0, (v) 𝜏 (𝑥, 1) = 0, (vi) 𝜏 (𝑥, 0) = 1.

(38)

Using 𝜃 = 𝜏(𝑥, 𝑦) and equating-like powers of ℎ, (36) helps in
writing the following equations:

𝑑
4
𝐺

𝑑𝑦
4

+ 𝛼[𝑦

𝑑
3
𝐺

𝑑𝑦
3

+ 2

𝑑
2
𝐺

𝑑𝑦
2
] + 𝑅
𝑒
𝐺

𝑑
3
𝐺

𝑑𝑦
3

− 𝑅
𝑒

𝑑𝐺

𝑑𝑦

𝑑
2
𝐺

𝑑𝑦
2

− 𝑅
𝑒

𝑑
2
𝐺

𝑑𝑦
2

1

𝑅

= 0,

𝐺
𝑟
𝜏
𝑥
= 0.

(39)
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The above equation implies that 𝜏 = 𝐸(𝑦) and 𝐺
𝑟
= 0 which

satisfy our assumption that 𝐺
𝑟
is very small. Now (36)–(38)

yield

𝑑
4
𝐺

𝑑𝑦
4

+ 𝛼[𝑦

𝑑
3
𝐺

𝑑𝑦
3

+ 2

𝑑
2
𝐺

𝑑𝑦
2
] + 𝑅
𝑒
𝐺

𝑑
3
𝐺

𝑑𝑦
3

− 𝑅
𝑒

𝑑𝐺

𝑑𝑦

𝑑
2
𝐺

𝑑𝑦
2

− 𝑅
𝑒

𝑑
2
𝐺

𝑑𝑦
2

1

𝑅

= 0,

(40)

𝐺 (𝑦)

𝜕𝐸

𝜕𝑦

+

1

𝑃
𝑟
𝑅
𝑒

[

𝜕
2
𝐸

𝜕𝑦
2
] = 0, (41)

(i) 𝑑𝐺 (1)

𝑑𝑦

= 0, (ii) 𝐺 (1) = 1, (iii) 𝑑
2
𝐺 (0)

𝑑𝑦
2

= 0,

(iv) 𝐺 (0) = 0, (v) 𝐸 (1) = 1, (vi) 𝐸


(0) = 0.

(42)

3.3. Analytical Solution. The aim of this section is to find the
solutions of (40)–(42) using double perturbation [3, 4]. For
small 𝑅

𝑒
and 𝛼, we expand

𝐺 = 𝐺
1
+ 𝑅
𝑒
𝐺
2
+ 𝑂 (𝑅

2

𝑒
) ,

𝐺
1
= 𝐺
10

+ 𝛼𝐺
11

+ 𝑂 (𝛼
2

) ,

𝐺
2
= 𝐺
20

+ 𝛼𝐺
21

+ 𝑂 (𝛼
2

) .

(43)

Using (43) into (40)–(42) and then solving the resulting prob-
lems for small 𝑅

𝑒
and 𝛼, we obtain

𝐺
10

(𝑦) = −

1

2

𝑦
3

+

3

2

𝑦,

𝐺
11

(𝑦) =

3

40

𝑦
5

−

3

20

𝑦
3

+

3

40

𝑦,

𝐺
20

(𝑦) =

1

280

𝑦
7

−

3

280

𝑦
3

+

1

140

𝑦

+

1

𝑅

(−

1

40

𝑦
5

+

1

20

𝑦
3

−

1

40

𝑦) ,

𝐺
21

(𝑦) = −

13

20160

𝑦
9

−

9

2800

𝑦
7

+

9

5600

𝑦
5

+

227

25200

𝑦
3

+

227

33600

𝑦

+

1

𝑅

(

1

210

𝑦
7

−

3

200

𝑦
5

+

11

700

𝑦
3

−

23

4200

𝑦) ,

𝐺
1
(𝑦) = −

1

2

𝑦
3

+

3

2

𝑦 + 𝛼 [

3

40

𝑦
5

−

3

20

𝑦
3

+

3

40

𝑦] ,

𝐺
2
(𝑦) =

1

280

𝑦
7

−

3

280

𝑦
3

+

1

140

𝑦

+

1

𝑅

(−

1

40

𝑦
5

+

1

20

𝑦
3

−

1

40

𝑦)

+ 𝛼 [−

13

20160

𝑦
9

−

9

2800

𝑦
7

+

9

5600

𝑦
5

+

227

25200

𝑦
3

−

227

33600

𝑦

+

1

𝑅

(

1

210

𝑦
7

−

3

200

𝑦
5

+

11

700

𝑦
3

−

23

4200

𝑦)] ,

(44)

𝐺 (𝑦) = (−

1

2

𝑦
3

+

3

2

𝑦 + 𝛼 [

3

40

𝑦
5

−

3

20

𝑦
3

+

3

40

𝑦])

+ 𝑅
𝑒
(

1

280

𝑦
7

−

3

280

𝑦
3

+

1

140

𝑦

+

1

𝑅

(−

1

40

𝑦
5

+

1

20

𝑦
3

−

1

40

𝑦)

+ 𝛼 [ −

13

20160

𝑦
9

−

9

2800

𝑦
7

+

9

5600

𝑦
5

+

227

25200

𝑦
3

−

227

33600

𝑦

+

1

𝑅

(

1

210

𝑦
7

−

3

200

𝑦
5

+

11

700

𝑦
3

−

23

4200

𝑦)] ) .

(45)

It is noted that for 𝑅 → ∞, the expression of 𝐺(𝑦) in [4] is
recovered.

Let

𝐸 = 𝐸
1
+ 𝑅
𝑒
𝐸
2
+ 𝑂 (𝑅

2

𝑒
) . (46)

From (41), (45), and (46), we obtain

𝑑
2
𝐸
1

𝑑𝑦
2

= 0, 𝐸
1
(1) = 1, 𝐸



1
(0) = 0,

𝑃
𝑟
𝐺 (𝑦)

𝑑𝐸
1
(𝑦)

𝑑𝑦

+

𝑑
2
𝐸
2
(𝑦)

𝑑𝑦
2

, 𝐸
2
(1) = 0, 𝐸



2
(0) = 0.

(47)

Solving the above problems and using (46), one obtains

𝐸 (𝑦) = 1. (48)

3.4. Numerical Solution. Now the numerical solution of
(40)–(42) has been obtained using shooting method with
Runge-Kutta scheme.

4. Results and Discussion

Figures 1, 2, 3, and 4 illustrate the behaviour of self-axial
velocity over a range of 𝑅 with 𝑅

𝑒
and 𝛼 fixed.

Figures 1 and 2 illustrate the behaviour of self-axial veloc-
ity 𝑢/𝑥 for permeation Reynolds number 𝑅

𝑒
= 1 (injection)

and 𝛼 = 0.5, −0.5 (expansion and contraction, resp.) over
a range of porosity parameter𝑅. For𝑅 > 0, these figures show
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Figure 1: Self-axial velocity profiles over a range of 𝑅, where blue =

1, pink = 0.5, yellow = −0.5, and green = −1 at 𝑅
𝑒
= 1 and 𝛼 = 0.5.
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Figure 2: Self-axial velocity profiles over a range of 𝑅, where blue =

1, pink = 0.5, yellow = −0.5, and green = −1 at 𝑅
𝑒
= 1 and 𝛼 = −0.5.

that the higher porosity 𝑅 leads to higher self-axial velocity
near the center and lower near the wall. The results for 𝑅 < 0

are quite opposite to that of 𝑅 > 0. A comparative study of
these figures further indicates that the self-axial velocity near
the center in case of injection with expanding wall and high
porosity is higher than injection with contracting wall and
high porosity.

The plots of self-axial velocity 𝑢/𝑥 for permeation
Reynolds number 𝑅

𝑒
= −1 (suction) and 𝛼 = 0.5, −0.5

(expansion and contraction, resp.) over a range of 𝑅 have
been displayed in Figures 3 and 4. In case of 𝑅 > 0, these
graphs depict that the higher porosity 𝑅 leads to lower self-
axial velocity near the center and higher near the wall. For
𝑅 < 0, these figures depict that the lower porosity 𝑅 leads to
higher self-axial velocity near the center and lower near the
wall. By comparing Figures 3 and 4, we note that the self-axial
velocity near the center in case of suctionwith expandingwall
and high porosity is higher than suctionwith contractingwall
and high porosity.

The behaviour of the self-axial velocity 𝑢/𝑥 for wall
dilation rate 𝛼 = −0.5 (contraction) and 𝑅

𝑒
= 1, −1 (injection

and suction) over a range of 𝑅 has been displayed in Figures 2
and 3. For 𝑅 > 0, Figure 3 shows that the higher the porosity
𝑅, the lower the self-axial velocity at the center and higher
near the wall. Figure 2 shows that the higher the porosity 𝑅,

−0.5−1 0 0.5 1

y
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0

−1
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/
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Figure 3: Self-axial velocity profiles over a range of 𝑅 where blue =

1, pink = 0.5, yellow = −0.5 and green = −1 at 𝑅
𝑒
= −1 and 𝛼 =

−0.5.
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Figure 4: Self-axial velocity profiles over a range of 𝑅, where blue =

1, pink = 0.5, yellow = −0.5, and green = −1 at 𝑅
𝑒
= −1 and 𝛼 = 0.5.

the higher the self-axial velocity at the center and lower near
the wall. When 𝑅 < 0, Figure 3 elucidates that the lower
porosity 𝑅 gives a higher self-axial velocity near the center
and a lower one near the wall. Figure 2 elucidates that the
lower porosity 𝑅 gives a lower self-axial velocity near the
center and a higher one near the wall. A comparative study
of Figures 2 and 3 indicates that the self-axial velocity near
the center in case of injection with contracting wall and high
porosity is higher than suctionwith contractingwall and high
porosity.

The variations of self-axial velocity 𝑢/𝑥 for wall dilation
rate 𝛼 = 0.5 (expansion) and 𝑅

𝑒
= 1, −1 (injection and suc-

tion) over a range of 𝑅 have been plotted in Figures 1 and 4.
When 𝑅 > 0, then Figure 1 shows that the higher the porosity
𝑅, the higher the self-axial velocity at the center and lower
near the wall. Figure 4 shows that the higher the porosity
𝑅, the lower the self-axial velocity at the center and higher
near the wall. When 𝑅 < 0, Figure 1 describes that the
lower porosity𝑅 gives lower self-axial velocity near the center
and higher near the wall. Figure 4 provides that the lower
porosity𝑅 yields higher self-axial velocity near the center and
lower near the wall. Comparison of Figures 1 and 4 leads to
the conclusion that the self-axial velocity near the center for
suction with expanding wall and high porosity is higher than
injection with expanding wall and high porosity.
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Figure 5: Self-axial velocity profiles over a range of 𝛼, where blue =

1, pink = 0.5, yellow = −0.5, and green = −1 at 𝑅
𝑒
= 1 and 𝑅 = 0.5.
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Figure 6: Self-axial velocity profiles over a range of 𝛼, where blue =

1, pink = 0.5, yellow = −0.5, and green = −1 at𝑅
𝑒
= −1 and𝑅 = 0.5.

Tables 1, 2, 3, and 4 depict that the percentage error
decreases when 𝑅 increases.

Figures 5, 6, 7, and 8 plot the behaviour of self-axial
velocity over a range of 𝛼 with fixed 𝑅

𝑒
and 𝑅.

For 𝛼 > 0, Figures 5–8 witness that the greater 𝛼 leads
to higher self-axial velocity at the center and lower near the
wall. For 𝛼 < 0, these figures show that an increase in
contraction ratio leads to lower self-axial velocity near the
center and higher near the wall. By comparing Figures 5
and 6, we note that the self-axial velocity near the center
in case of suction with expanding wall and high porosity is
higher than injection with expanding wall and high porosity.

Comparison of Figures 5 and 8 shows that the self-axial
velocity near the center in case of injection with expanding
wall and low porosity is higher than injection with expanding
wall and high porosity. Comparative study of Figures 6 and 7
reveals that the self-axial velocity near the center in case of
suction with expanding wall and high porosity is higher than
suction with expanding wall and low porosity. By comparing
Figures 7 and 8, the self-axial velocity near the center in case
of injection with expanding wall and low porosity is higher
than suction with expanding wall and low porosity.

Tables 5, 6, 7, and 8 indicate that the percentage error is
an increasing function of 𝛼.
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Figure 7: Self-axial velocity profiles over a range of 𝛼, where blue =

1, pink = 0.5, yellow = −0.5, and green = −1 at 𝑅
𝑒
= −1 and 𝑅 =

−0.5.
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Figure 8: Self-axial velocity profiles over a range of 𝛼, where blue =

1, pink = 0.5, yellow = −0.5, and green = −1 at𝑅
𝑒
= 1 and𝑅 = −0.5.

Figures 9, 10, 11, and 12 illustrate the behaviour of self-axial
velocity over a range of 𝑅

𝑒
with fixed 𝛼 and 𝑅.

The self-axial velocity 𝑢/𝑥 for porosity parameter 𝑅 = 0.5

(high porosity) andwall dilation rate𝛼 = 0.5, −0.5 (expansion
and contraction, resp.) over a range of 𝑅

𝑒
has been sketched

in Figures 9 and 10. For 𝑅
𝑒

> 0, we found that increasing
injection 𝑅

𝑒
leads to a lower self-axial velocity at the center

and a higher one near the wall. When 𝑅
𝑒

< 0, Figures
9 and 10 indicate that increasing suction ratio leads to a
higher self-axial velocity near the center and a lower one
near the wall. Comparison of Figures 9 and 10 shows that
the self-axial velocity near the center in case of injection with
expanding wall and high porosity is higher than injection
with contracting wall and high porosity.

Figures 11 and 12 provide the variation of self-axial veloc-
ity 𝑢/𝑥 for porosity parameter 𝑅 = −0.5 (low porosity) and
wall dilation rate 𝛼 = 0.5, −0.5 (expansion and contraction,
resp.) over a range of 𝑅

𝑒
. In case of 𝑅

𝑒
> 0, Figures 11 and

12 show that increasing injection leads to a higher self-axial
velocity near the center and a lower one near the wall. For
𝑅
𝑒
< 0, Figures 11 and 12 show that increasing suction ratio

leads to a lower self-axial velocity at the center and a higher
one near the wall. A comparison between Figures 11 and 12
shows that the self-axial velocity near the center in case of
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Figure 9: Self-axial velocity profiles over a range of𝑅
𝑒
, where blue =

1, pink = 0.5, yellow = −0.5, and green = −1 at 𝛼 = 0.5 and 𝑅 = 0.5.
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Figure 10: Self-axial velocity profiles over a range of 𝑅
𝑒
, where

blue = 1, pink = 0.5, yellow = −0.5, and green = −1 at 𝛼 = −0.5 and
𝑅 = 0.5.

Table 1: Comparison between analytical and numerical solutions
for self-axial velocity 𝑢/𝑥 at 𝑦 = 0.1 for 𝑅

𝑒
= 1, 𝛼 = 0.5.

Analytical
method

Numerical
method

Percentage
error (%)

𝑅 = −1 1.549755 1.549040 0.046138
𝑅 = −0.5 1.575774 1.576305 0.033691
𝑅 = 0.5 1.471699 1.480956 0.625085
𝑅 = 1 1.497718 1.501653 0.262055

Table 2: Comparison between analytical and numerical solutions
for self-axial velocity 𝑢/𝑥 at 𝑦 = 0.1. for 𝑅

𝑒
= 1, 𝛼 = −0.5.

Analytical
method

Numerical
method

Percentage
error (%)

𝑅 = −1 1.480690 1.480513 0.012005
𝑅 = −0.5 1.501697 1.503207 0.100457
𝑅 = 0.5 1.417671 1.423694 0.423027
𝑅 = 1 1.438678 1.440991 0.160530

injection with expanding wall and low porosity is higher than
injection with contracting wall and low porosity.
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Figure 11: Self-axial velocity profiles over a range of𝑅
𝑒
, where blue =

1, pink = 0.5, yellow = −0.5, and green = −1 at 𝛼 = −0.5 and
𝑅 = −0.5.
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Figure 12: Self-axial velocity profiles over a range of 𝑅
𝑒
, where

blue = 1, pink = 0.5, yellow = −0.5, and green = −1 at 𝛼 = 0.5

and 𝑅 = −0.5.

Table 3: Comparison between analytical and numerical solutions
for self-axial velocity 𝑢/𝑥 at 𝑦 = 0.1 for 𝑅

𝑒
= −1, 𝛼 = 0.5.

Analytical
method

Numerical
method

Percentage
error (%)

𝑅 = −1 1.490782 1.490460 0.012660
𝑅 = −0.5 1.464764 1.466093 0.090696
𝑅 = 0.5 1.568838 1.583640 0.934648
𝑅 = 1 1.542820 1.548592 0.372749

Table 4: Comparison between analytical and numerical solutions
for self-axial velocity 𝑢/𝑥 at 𝑦 = 0.1 for 𝑅

𝑒
= −1, 𝛼 = −0.5.

Analytical
method

Numerical
method

Percentage
error (%)

𝑅 = −1 1.418772 1.419039 0.018778
𝑅 = −0.5 1.397766 1.399917 0.153681
𝑅 = 0.5 1.481791 1.491195 0.630644
𝑅 = 1 1.460785 1.464232 0.235434

The self-axial velocity 𝑢/𝑥 for porosity parameter 𝑅 =

−0.5, 0.5 (low and high porosity, resp.,) and wall dilation rate
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Table 5: Comparison between analytical and numerical solutions
for self-axial velocity 𝑢/𝑥 at 𝑦 = 0.1 for 𝑅 = 1, 𝑅

𝑒
= 1.

Analytical
method

Numerical
method

Percentage
error (%)

𝛼 = −1 1.409157 1.412797 0.257641
𝛼 = −0.5 1.438678 1.440991 0.160530
𝛼 = 0.5 1.497718 1.501653 0.262055
𝛼 = 1 1.527238 1.534003 0.440984

Table 6: Comparison between analytical and numerical solutions
for self-axial velocity 𝑢/𝑥 at 𝑦 = 0.1 for 𝑅 = 1, 𝑅

𝑒
= −1.

Analytical
method

Numerical
method

Percentage
error (%)

𝛼 = −1 1.419768 1.426770 0.490778
𝛼 = −0.5 1.460785 1.464232 0.235434
𝛼 = 0.5 1.542820 1.548592 0.372749
𝛼 = 1 1.583837 1.595620 0.738487

Table 7: Comparison between analytical and numerical solutions
for self-axial velocity 𝑢/𝑥 at 𝑦 = 0.1 for 𝑅 = −1, 𝑅

𝑒
= −1.

Analytical
method

Numerical
method

Percentage
error (%)

𝛼 = −1 1.382767 1.387131 0.314608
𝛼 = −0.5 1.418772 1.419039 0.018778
𝛼 = 0.5 1.490782 1.490460 0.021660
𝛼 = 1 1.526788 1.530071 0.214601

Table 8: Comparison between analytical and numerical solutions
for self-axial velocity 𝑢/𝑥 at 𝑦 = 0.1 for 𝑅 = −1, 𝑅

𝑒
= 1.

Analytical
method

Numerical
method

Percentage
error (%)

𝛼 = −1 1.446158 1.448653 0.172244
𝛼 = −0.5 1.480690 1.480513 0.012005
𝛼 = 0.5 1.549755 1.549040 0.046138
𝛼 = 1 1.584287 1.585538 0.078889

𝛼 = −0.5 (contraction) over a range of 𝑅
𝑒
has been explained

in Figures 10 and 11. When 𝑅
𝑒

> 0, Figure 10 shows that
increasing injection leads to a lower self-axial velocity near
the center and a higher one near the wall. Figure 11 shows that
increasing injection leads to a higher self-axial velocity near
the center and a lower one near the wall. In case of 𝑅

𝑒
< 0,

Figure 10 shows that increasing suction ratio leads to a higher
self-axial velocity at the center and a lower one near the wall.
Increasing suction ratio leads to a lower self-axial velocity
at the center and a higher one near the wall (Figure 11). A
comparison shows that the self-axial velocity near the center
in case of injection with contracting wall and low porosity is
higher than injection with contracting wall and high porosity
(Figures 10 and 11).

Figures 9 and 12 indicate the behaviour of self-axial
velocity 𝑢/𝑥 for porosity parameter 𝑅 = −0.5, 0.5 (low
and high porosity, resp.) and wall dilation rate 𝛼 = 0.5

Table 9: Comparison between analytical and numerical solutions
for self-axial velocity 𝑢/𝑥 at 𝑦 = 0.1 for 𝑅 = 1, 𝛼 = −0.5.

Analytical
method

Numerical
method

Percentage
error (%)

𝑅
𝑒
= −1 1.460785 1.464232 0.235434

𝑅
𝑒
= −0.5 1.455288 1.456930 0.114768

𝑅
𝑒
= 0.5 1.444204 1.445507 0.090102

𝑅
𝑒
= 1 1.438678 1.440991 0.160530

Table 10: Comparison between analytical and numerical solutions
for self-axial velocity 𝑢/𝑥 at 𝑦 = 0.1 for 𝑅 = 1, 𝛼 = 0.5.

Analytical
method

Numerical
method

Percentage
error (%)

𝑅
𝑒
= −1 1.542820 10548592 0.372749

𝑅
𝑒
= −0.5 1.531544 1.533740 0.143138

𝑅
𝑒
= 0.5 1.508993 1.510721 0.114334

𝑅
𝑒
= 1 1.497718 1.501653 0.262055

Table 11: Comparison between analytical and numerical solutions
for self-axial velocity 𝑢/𝑥 at 𝑦 = 0.1 for 𝑅 = −1, 𝛼 = −0.5.

Analytical
method

Numerical
method

Percentage
error (%)

𝑅
𝑒
= −1 1.418772 1.419039 0.018778

𝑅
𝑒
= −0.5 1.434252 1.435114 0.060097

𝑅
𝑒
= 0.5 1.465211 1.465912 0.048020

𝑅
𝑒
= 1 1.480690 1.480513 0.012005

Table 12: Comparison between analytical and numerical solutions
for self-axial velocity 𝑢/𝑥 at 𝑦 = 0.1 for 𝑅 = −1, 𝛼 = 0.5.

Analytical
method

Numerical
method

Percentage
error (%)

𝑅
𝑒
= −1 1.490782 1.490460 0.021660

𝑅
𝑒
= −0.5 1.505526 1.506243 0.047638

𝑅
𝑒
= 0.5 1.535012 1.535561 0.035738

𝑅
𝑒
= 1 1.523217 1.524206 0.046138

(expansion) over a range of 𝑅
𝑒
. In case of 𝑅

𝑒
> 0, Figure 9

shows that increasing injection leads to a lower self-axial
velocity near the center and a higher one near the wall.
Figure 12 shows that increasing injection leads to a higher
self-axial velocity near the center and a lower one near the
wall. In case of 𝑅

𝑒
< 0, Figure 9 depicts that increasing

suction ratio leads to a higher self-axial velocity at the center
and a lower one near the wall. Figure 12 shows that increasing
suction ratio leads to a lower self-axial velocity at the center
and a higher one near the wall. By comparing Figures 9 and
12, the self-axial velocity near the center in case of injection
with expansion wall and low porosity is higher than injection
with expansion wall and large porosity.

Tables 9, 10, 11, and 12 show the percentage error decrease
for a small 𝑅

𝑒
.

The plots in Figure 13 elucidate that the temperature
distribution is constant throughout and it is independent of
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Figure 13: Temperature distribution profile.

physical parameter. Numerical solution for temperature is
similar to our analytical solution, and therefore, temperature
distribution has no error.

5. Conclusions

In this paper, we have generalized the flow analysis of [4] with
the influence of porous medium and heat transfer. Analytical
solution for the arising nonlinear problem is obtained by
using Lie symmetry technique in conjunction with a second-
order double perturbation method. We have studied the
effects of porous medium (𝑅), permeation Reynolds 𝑅

𝑒
, and

wall dilation rate 𝛼 on the self-axial velocity and temperature
distribution within the fluid. We compared the analytical
solution with the numerical solution for self-axial velocity for
the different values of 𝑅, 𝑅

𝑒
, and 𝛼.

It was found that the temperature distribution has no
error since analytical solution is similar to numerical solution
and both are equal to one. We also found that as 𝑅 increases,
the percentage error decreases and that temperature distri-
bution is constant throughout. Here, we have noticed that
the obtained analytical results match quite well with the
numerical results for a good range of these parameters. We
also noticed that in all cases, the self-axial velocity has similar
trend as in [4], that is, the self-axial velocity approaches a
cosine profile. Finally, we observed that when 𝑅 approaches
infinity, our problem reduces to the problem in [4] and our
results (analytical and numerical) also reduce to the results
in [4].
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Existence of global solutions to continuous nonlocal convection-fragmentation equations is investigated in spaces of distributions
with finite higher moments. Under the assumption that the velocity field is divergence-free, we make use of the method of
characteristics and Friedrichs’s lemma (Mizohata, 1973) to show that the transport operator generates a stochastic dynamical
system. This allows for the use of substochastic methods and Kato-Voigt perturbation theorem (Banasiak and Arlotti, 2006) to
ensure that the combined transport-fragmentation operator is the infinitesimal generator of a strongly continuous semigroup. In
particular, we show that the solution represented by this semigroup is conservative.

1. Motivation and Introduction

The process of fragmentation of clusters occurs in many
branches of natural sciences ranging from physics, through
chemistry, engineering, biology, to ecology and in numerous
domains of applied sciences, such as the depolymerization,
the rock fractures, and the breakage of droplets.The fragmen-
tation rate can be size and position dependent, and new parti-
cles resulting from the fragmentation are spatially distributed
across the space. Fragmentation equations, combined with
transport terms, have been used to describe a wide range
of phenomena. For instance, in ecology or aquaculture, we
have phytoplankton population in flowing water. In chemical
engineering, we have applications describing polymerization,
polymer degradation, and solid drugs breakup in organisms
or in solutions. We also have external processes such as
oxidation, melting, or dissolution, which cause the exposed
surface of particles to recede, resulting in the loss of mass
of the system. Simultaneously, they widen the surface pores
of the particle, causing the loss of connectivity and thus
fragmentation, as the pores join each other (see [1–4] and
references therein). Various types of pure fragmentation
equations have been comprehensively analyzed in numerous
works (see, e.g., [5–9]). Conservative and nonconservative

regimes for pure fragmentation equations have been thor-
oughly investigated, and, in particular, the breach of the mass
conservation law (called shattering) has been attributed to a
phase transition creating a dust of “zero-size” particles with
nonzero mass, which are beyond the model’s resolution. But
fragmentation and transport processes combined in the same
model are still barely touched in the domain of mathematical
and abstract analysis. Kinetic-type models with diffusion
were globally investigated in [5] and later extended in [10],
where the author showed that the diffusive part does not affect
the breach of the conservation laws, and, very recently, in [11],
the author investigated equations describing fragmentation
and coagulation processes with growth or decay and proved
an analogous result.

In this paper, we present and analyze a special and
noncommon type of transport process. In social grouping
population, if we define a spatial dynamical system in
which locally group-size distribution can be estimated, but
in which we also allow immigration and emigration from
adjacent areas with different distributions, we obtain the
general model consisting of transport, direction changing,
and fragmentation and coagulation processes describing
the dynamics a population of, for example, phytoplankton,
which is a spatially explicit group-size distribution model
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as presented in [12]. We analyze, in this work, the model
consisting of transport and fragmentation processes, hoping
that it will bring a significant contribution to the analysis
of the full problem (with transport, direction changing, and
fragmentation and coagulation processes) which remains an
open problem.

2. Well Posedness of the Transport Problem
with Fragmentation

We consider the following Cauchy problem [12]:

𝜕

𝜕𝑡

𝑝 (𝑡, 𝑥,𝑚)

= − div (𝜔 (𝑥,𝑚) 𝑝 (𝑡, 𝑥,𝑚))

− 𝑎 (𝑥,𝑚) 𝑝 (𝑡, 𝑥,𝑚)

+ ∫

∞

𝑚

𝑏 (𝑥, 𝑠, 𝑚) 𝑎 (𝑥, 𝑠) 𝑝 (𝑡, 𝑥, 𝑠) 𝑑𝑠,

𝑝 (0, 𝑥,𝑚) =

𝑜

𝑝 (𝑥,𝑚) , 𝑎.𝑒. (𝑥,𝑚) ∈ R
3

×R
+
,

(1)

where, in terms of the mass size 𝑚 and the position 𝑥, the
state of the system is characterized at any moment 𝑡 by the
particle-mass-position distribution 𝑝 = 𝑝(𝑡, 𝑥,𝑚) (𝑝 is also
called the density or concentration of particles), with 𝑝 : R

+
×

R3 × R
+
→ R
+
. The three-dimensional vector 𝜔 = 𝜔(𝑥,𝑚)

represents the velocity of the transport and is supposed to
be a known quantity depending on 𝑚 and 𝑥; 𝑎(𝑥,𝑚) is the
average fragmentation rate; that is, it describes the ability of
aggregates of size 𝑚 and position 𝑥 to break into smaller
particles. Once an aggregate of mass 𝑠 and position 𝑥 breaks,
the expected number of daughter particles of size 𝑚 is the
nonnegative measurable function 𝑏(𝑥, 𝑠, 𝑚) defined on R3 ×

R × R. The space variable 𝑥 is supposed to vary in the whole
ofR3. The function

𝑜

𝑝 (𝑥,𝑚) represents the density of groups
of size𝑚 at position 𝑥 at the beginning (𝑡 = 0).

2.1. Fragmentation Equation. Let us introduce necessary
assumptions that will be useful in our analysis. Since a group
of size 𝑚 ≤ 𝑠 cannot split to form a group of size 𝑠, the
function 𝑏(𝑥, 𝑠, 𝑚) has its support in the set

R
3

× {(𝑠, 𝑚) ∈ R
+
×R
+
: 𝑚 < 𝑠} . (2)

After the fragmentation of amass 𝑠particle, the sumofmasses
of all daughter particles should again be 𝑠; hence it follows
that, for any 𝑠 > 0, 𝑥 ∈ R3

∫

𝑠

0

𝑚𝑏 (𝑥, 𝑠, 𝑚) 𝑑𝑚 = 𝑠. (3)

Because the space variable 𝑥 varies in the whole of R3

(unbounded) and since the total number of individuals in a
population is notmodified by interactions among groups, the
following conservation law is supposed to be satisfied:

𝑑

𝑑𝑡

N (𝑡) = 0, (4)

where N(𝑡) = ∫
R3
∫

∞

0
𝑝(𝑡, 𝑥,𝑚)𝑚𝑑𝑚𝑑𝑥 is the total number

of individuals in the space (or total mass of the ensemble).
Since 𝑝 = 𝑝(𝑡, 𝑥,𝑚) is the density of groups of size 𝑚 at
the position 𝑥 and time 𝑡 and that mass is expected to be
a conserved quantity, the most appropriate Banach space to
work in is the space

X
1
:= 𝐿
1
(R
3

×R
+
, 𝑚𝑑𝑚𝑑𝑥) . (5)

But because uniqueness of solutions of (1) proved to be amore
difficult problem [11], we restrict our analysis to a smaller class
of functions, so we introduce the following class of Banach
spaces (of distributions with finite higher moments):

X
𝑟
:= 𝐿
1
(R
3

×R
+
, 𝑚
𝑟

𝑑𝑚𝑑𝑥) , 𝑟 ≥ 1, (6)

which coincides with X
1
for 𝑟 = 1 and is endowed with the

norm ‖ ⋅ ‖
𝑟
. We assume that

o
𝑝∈ X

𝑟
, and, for each 𝑡 ≥ 0, the

function (𝑥,𝑚) → 𝑝(𝑥,𝑚) = 𝑝(𝑡, 𝑥,𝑚) is from the spaceX
𝑟

with 𝑟 ≥ 1. When any subspace 𝑆 ⊆ X
𝑟
, we will denote by

𝑆
+
the subset of 𝑆 defined as 𝑆

+
= {𝑔 ∈ 𝑆; 𝑔(𝑥,𝑚) ≥ 0,𝑚 ∈

R
+
, 𝑥 ∈ R3}. Note that any 𝑔 ∈ (X

𝑟
)
+
will possess moments

𝑀
𝑞
(𝑡) := ∫

∞

0

𝑚
𝑞

𝑔 (𝑡, 𝑥,𝑚) 𝑑𝑚 (7)

of all orders 𝑞 ∈ [0, 𝑟]. InX
𝑟
, we define from the expressions

on the right-hand side of (1) the operators 𝐴 and 𝐵 by

[𝐴𝑔] (𝑥,𝑚) := 𝑎 (𝑥,𝑚) 𝑔 (𝑥,𝑚) ,

𝐷 (𝐴) := {𝑔 ∈ X
𝑟
: 𝑎𝑔 ∈ X

𝑟
} ,

(8)

[𝐵𝑔] (𝑥,𝑚) := ∫

∞

𝑚

𝑏 (𝑥, 𝑠, 𝑚) 𝑎 (𝑥, 𝑠) 𝑝 (𝑥, 𝑠) 𝑑𝑠,

𝐷 (𝐵) := 𝐷 (𝐴) .

(9)

Lemma 1. (𝐴 + 𝐵,𝐷(𝐴)) is a well-defined operator.

Proof. To prove that𝐵 is well defined on𝐷(𝐴) as stated in (9),
we use the condition (3) to show that

𝑠
𝑟

− ∫

𝑠

0

𝑚
𝑟

𝑏 (𝑥, 𝑠, 𝑚) 𝑑𝑚 = 𝑠
𝑟

− ∫

𝑠

0

𝑚
𝑟−1

𝑚𝑏 (𝑥, 𝑠, 𝑚) 𝑑𝑚

≥ 𝑠
𝑟

− 𝑠
𝑟−1

∫

𝑠

0

𝑚𝑏 (𝑥, 𝑠, 𝑚) 𝑑𝑚 = 0.

(10)

Hence

∫

𝑠

0

𝑚
𝑟

𝑏 (𝑥, 𝑠, 𝑚) 𝑑𝑚 ≤ 𝑠
𝑟 (11)
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for 𝑟 ≥ 1, 𝑚 > 0. Note that the equality holds for 𝑟 = 1. For
every 𝑝 ∈ 𝐷(𝐴)

+
, changing the order of integration by the

Fubini theorem, we have





𝐵𝑝



𝑟

= ∫

R3
∫

∞

0

[𝐵𝑝] (𝑥,𝑚)𝑚
𝑟

𝑑𝑚𝑑𝑥

= ∫

R3
∫

∞

0

(∫

∞

𝑚

𝑏 (𝑥, 𝑠, 𝑚) 𝑎 (𝑥, 𝑠) 𝑝 (𝑥, 𝑠)𝑚
𝑟

𝑑𝑠) 𝑑𝑚𝑑𝑥

= ∫

R3
∫

∞

0

(∫

𝑠

0

𝑏 (𝑥, 𝑠, 𝑚) 𝑎 (𝑥, 𝑠) 𝑝 (𝑥, 𝑠)𝑚
𝑟

𝑑𝑚)𝑑𝑠𝑑𝑥

≤ ∫

R3
∫

∞

0

𝑎 (𝑥, 𝑠) 𝑝 (𝑥, 𝑠) 𝑠
𝑟

𝑑𝑠𝑑𝑥

=




𝐴𝑝



𝑟

< ∞,

(12)

where we have used inequality (11). The result follows from
the fact that any arbitrary element 𝑝 of 𝐷(𝐴) can be written
in the form𝑝 = 𝑝

+
−𝑝
−
, where𝑝

+
, 𝑝
−
∈ 𝐷(𝐴)

+
.Then ‖𝐵𝑝‖

𝑟
≤

‖𝐴𝑝‖
𝑟
, for all 𝑝 ∈ 𝐷(𝐴), so that we can take 𝐷(𝐵) := 𝐷(𝐴),

and (𝐴 + 𝐵,𝐷(𝐴)) is well defined.

2.2. Cauchy Problem for the Transport Operator in Λ =R3 ×
R
+
. Λ is endowed with the Lebesgue measure 𝑑𝜇 = 𝑑𝜇

𝑚,𝑥
=

𝑑𝑚𝑑𝑥. Our primary objective in this section is to analyze the
solvability of the transport problem

𝜕

𝜕𝑡

𝑝 (𝑡, 𝑥,𝑚) = − div (𝜔 (𝑥,𝑚) 𝑝 (𝑡, 𝑥,𝑚)) ,

𝑝 (0, 𝑥,𝑚) =

𝑜

𝑝 (𝑥,𝑚) , 𝑚 ∈ R
+
, 𝑥 ∈ R

3

(13)

in the spaceX
𝑟
.

Furthermore, to simplify the notationwe put k = (𝑥,𝑚) ∈
Λ. We consider the function 𝜔 : Λ → R3 and ̃D the expre-
ssion appearing on the right-hand side of (13). Then

̃D [𝑝 (𝑡, k)] : = − div (𝜔 (k) 𝑝 (𝑡, k))

= (∇ ⋅ 𝜔 (k)) 𝑝 (𝑡, k) + 𝜔 (k) ⋅ (∇𝑝 (𝑡, k)) .
(14)

We assume that 𝜔 is divergence-free and globally Lipschitz
continuous. Then div𝜔(k) := ∇ ⋅ 𝜔(k) = 0, and (14) becomes

̃D [𝑝 (𝑡, k)] := 𝜔 (k) ⋅ (∇𝑝 (𝑡, k)) . (15)

For k ∈ Λ and 𝑡 ∈ R, the initial value problem

𝑑r

𝑑𝑠

= 𝜔 (r) , 𝑠 ∈ R,

r (𝑡) = k
(16)

has one and only one solution r(𝑠) taking values in Λ. Thus
we can consider the function 𝜙 : Λ×R2 → Λ defined by the
condition that, for (k, 𝑡) ∈ Λ ×R,

𝑠 → 𝜙 (k, 𝑡, 𝑠) , 𝑠 ∈ R, (17)

is the only solution of the Cauchy problem (16). The integral
curves given by the 𝜙-parameter family (r)

𝜙
(with r(𝑠) =

𝜙(k, 𝑡, 𝑠), 𝑠 ∈ R, the only solution of (16)) are called the
characteristics of̃D.The function 𝜙 possesses many desirable
properties [13–15] that will be relevant for studying the
transport operator in X

𝑟
. Some of them are listed in [5,

Proposition 10.1]. Now we can properly study the transport
operator D. Using the above proposition in our application,
we can take

D𝑝 = ̃D𝑝, with ̃D𝑝 represented by (15) ,

𝐷 (D) := {𝑝 ∈ X
𝑟
,D𝑝 ∈ X

𝑟
} .

(18)

Note that D𝑝 is understood in the sense of distribution.
Precisely speaking, if we take 𝐶1

0
(Λ) as the set of the test

functions, each 𝑝 ∈ 𝐷(D) if and only if 𝑝 ∈ 𝐿
1
(Λ), and there

exists 𝑔 ∈ X
𝑟
such that

∫

Λ

𝜉𝑔𝑑𝜇 = ∫

Λ

𝑝𝜕 ⋅ (𝜉𝜔) 𝑑𝜇 = ∫

Λ

𝑝𝜔 ⋅ 𝜕𝜉𝑑𝜇, (19)

for all 𝜉 ∈ 𝐶1
0
(Λ), where

𝜔 ⋅ 𝜕𝜉 (k) :=
3

∑

𝑗=1

𝜔
𝑗
𝜕
𝑗
𝜉 (k) (20)

with 𝜔
𝑗
= 𝜔
𝑗
(k), the 𝑗th component of the velocity 𝜔(k).

The middle term in (19) exists as 𝜔 is globally Lipschitz
continuous, and the last equality follows as 𝜔 is divergence-
free. If this is the case, we defineD𝑝 = 𝑔.

Now we can show that the operatorD is the generator of
a stochastic semigroup onX

𝑟
.

Theorem 2. If the function 𝜔 is globally Lipschitz continuous
and divergence-free, then the operator (𝐷(D),D) defined
by (18) is the generator of a strongly continuous stochastic
semigroup (𝐺D(𝑡))𝑡≥0, given by

[𝐺D (𝑡) 𝑝] (k) = 𝑝 (𝜙 (k, 𝑡, 0)) (21)

for any 𝑝 ∈ X
𝑟
and 𝑡 > 0.

Proof. Let (𝑍
0
(𝑡))
𝑡≥0

be the family defined by the right-hand
side of the relation (21). The proof of the theorem will follow
three steps.

(i) First we show that (𝑍
0
(𝑡))
𝑡≥0

is a strongly continuous
semigroup of bounded linear operators. We need some
properties of 𝜙 as listed in [5] and given as follows. The
function 𝜙 has the following properties:

(𝑝
1
) 𝜙(k, 𝑡, 𝑡) = k for all k ∈ Λ, 𝑡 ∈ R;

(𝑝
2
) 𝜙(𝜙(k, 𝑡, 𝑠), 𝑠, 𝜏) = 𝜙(k, 𝑡, 𝜏) for all k ∈ Λ, 𝑡, 𝑠, and 𝜏 ∈
R;
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(𝑝
3
) 𝜙(k, 𝑡, 𝑠) = 𝜙(k, 𝑡 − 𝑠, 0) = 𝜙(k, 0, 𝑠 − 𝑡) for all k ∈ Λ,
𝑡, 𝑠 ∈ R;

(𝑝
4
) |𝜙(k, 𝑡, 𝑠) − 𝜙(y, 𝑡, 𝑠)| ≤ 𝑒𝐾|𝑡−𝑠||k − y| for all k, y ∈ Λ,
𝑡, 𝑠 ∈ R;

(𝑝
5
) function Λ×R ×R ∋ (k, 𝑡, 𝑠) → 𝜙(k, 𝑡, 𝑠) is continu-
ous;

(𝑝
6
) the transformation T defined by 𝑡 = 𝑡, 𝑠 = 𝑠, and
y = 𝜙(k, 𝑡, 𝑠) is a topological homeomorphism which
is bimeasurable, and its inverseT−1 is represented by
𝑡 = 𝑡, 𝑠 = 𝑠, and k = 𝜙(y, 𝑠, 𝑡);

(𝑝
7
) for all 𝑡, 𝑠 ∈ R the transformation of Λ onto itself
defined by y = 𝜙(k, 𝑡, 𝑠) is measure preserving.

Then by the properties (𝑝
6
) and (𝑝

7
), we see that, for any

𝑝, the composition (k, 𝑡) → 𝑝(𝜙(k, 𝑡, 0)), in (21), is a
measurable function satisfying the equality





𝑍
0
(𝑡)𝑝



𝑟
=




𝑝



𝑟
. (22)

Hence the family (𝑍
0
(𝑡))
𝑡≥0

is of bounded linear operators
from X

𝑟
→ X

𝑟
. Then we can easily verify the following

relations:

(𝑖
𝑎
) 𝑍
0
(0) = 𝐼;

(𝑖
𝑏
) 𝑍
0
(𝑡 + 𝑠) = 𝑍

0
(𝑡)𝑍
0
(𝑠), for all 𝑡, 𝑠 ∈ R;

(𝑖
𝑐
) lim
𝑡→0
+‖𝑍
0
(𝑡)𝑝 − 𝑝‖

𝑟
= 0, for each 𝑝 ∈ X

𝑟
.

In fact, (𝑖
𝑎
) and (𝑖

𝑏
) follow immediately from the properties

(𝑝
1
) and (𝑝

2
). To prove (𝑖

𝑐
), we can follow the argument of

Example 3.10 in [5]. Thus, it is enough to show (𝑖
𝑐
) for 𝑝 ∈

𝐶
∞

0
(Λ). For such 𝑝

𝑠
, we have lim

𝑡→0
+(𝑍
0
(𝑡)𝑝)(k) = 𝑝(k) for

all k ∈ Λ. Furthermore, if |𝑝(k)| ≤ 𝑀 for all k ∈ Λ, then
|(𝑍
0
(𝑡)𝑝)(k)| ≤ 𝑀 for all k ∈ Λ, and, because the support

of 𝑍
0
(𝑡)𝑝 is bounded, the Lebesgue dominated convergence

theorem shows that (𝑖
𝑐
) is satisfied. Thus (𝑍

0
(𝑡))
𝑡≥0

is a 𝐶
0
-

semigroup.
(ii) Secondly, we prove that the generator 𝑇

0
of (𝑍
0
(𝑡))
𝑡≥0

is an extension ofD.
Let Y be the set of real-valued functions which are

defined on Λ, are Lipschitz continuous, and compactly
supported. ObviouslyY ⊂ 𝐷(D) because if 𝑝 ∈ Y, then the
first-order partial derivatives of 𝑝 are measurable, bounded,
and compactly supported and thus, multiplied by Lipschitz
continuous functions of 𝜔, belong to 𝐿

1
(Λ, 𝑑𝜇). For any fixed

𝑝 ∈ Y, we denote by 𝜗 the real-valued function defined on
Λ × 𝑅

+
by

𝜗 (k, 𝑡) = (𝑍
0
(𝑡) 𝑝) (k) . (23)

From the previous considerations and properties (𝑝
3
)–(𝑝
5
)

there exists a measurable subset 𝐸 of Λ×𝑅
+
, with 𝜇(Λ × 𝑅

+
\

𝐸) = 0, such that at each point (k, 𝑡) ∈ 𝐸 the function 𝜗 has
measurable first-order partial derivatives. In particular,

𝜕𝜗

𝜕𝑡

(k, 𝑡) = (𝑍
0
(𝑡)D𝑝) (k) , (k, 𝑡) ∈ 𝐸, (24)

and, therefore, if we let 𝜆
𝑝
:= ess sup

(k)∈Λ|D𝑝|, then




𝜕
𝑡
𝜗 (k, 𝑡)


≤ 𝜆
𝑝

(25)

for any (k, 𝑡) ∈ 𝐸. From this and from part (i) of the proof it
follows that, for every ℎ > 0,






ℎ
−1

(𝑍
0
(ℎ)𝑝 − 𝑝) −D𝑝





𝑟

=











ℎ
−1

∫

ℎ

0

(𝑍
0
(𝑠) − 𝐼)D𝑝𝑑𝑠









𝑟

→ 0

(26)

as ℎ → 0+. This proves thatY ⊂ 𝐷(𝑇
0
) and that 𝑇

0
𝑝 = D𝑝,

for all 𝑝 ∈ Y. Next we prove that Y is a core of D, that is,
that (D, 𝐷(D)) is the closure of (D,Y). Let 𝜛

𝜀
, 𝜀 > 0, be a

mollifier (see Example 2.1 in [5]), and, for 𝑝, let 𝜛
𝜀
∗ 𝑝 be the

mollification of 𝑝. We use the Friedrichs lemma, [16, pp. 313–
315], or [17, Lemma 1.2.5], which states that there is 𝐶 > 0,
independent of 𝜀, such that for any𝐿

𝑟
function𝑝, 1 ≤ 𝑟 < ∞,

we have




D (𝜛
𝜀
∗ 𝑝) − 𝜛

𝜀
∗D𝑝




𝑟
≤ 𝐶




𝑝



𝑟
, (27)

lim
𝜀→0
+

(




𝜛
𝜀
∗ 𝑝 − 𝑝




𝑟
+




D (𝜛
𝜀
∗ 𝑝) −D𝑝




𝑟
) = 0. (28)

Estimates of Equation (2.9) in [5] and the above relation (27)
imply





D(𝜛
𝜀
∗ 𝑝)



𝑟
≤ 𝐶




𝑝



𝑟
+




D𝑝



𝑟

(29)

which shows that the mollification 𝑝 → 𝜛
𝜀
∗ 𝑝 is a contin-

uous operator in 𝐷(D) (equipped with the graph norm)
uniformly bounded with respect to 𝜀. Next we observe
that the subset of 𝐷(D) consisting of compactly supported
functions is dense in 𝐷(D) with the graph norm. Indeed, let
𝑝 ∈ 𝐷(D). Because both 𝑝,D𝑝 ∈ X

𝑟
, the absolute continuity

of the Lebesgue integral implies that for any given 𝛿 > 0 there
exists a compact subsetΩ of Λ such that

∫

Λ\Ω


(




𝑝




+




D𝑝




) 𝑑𝜇 < 𝛿. (30)

For thisΩ we choose 𝜓 ∈ 𝐶∞
0
(Λ) satisfying 0 ≤ 𝜓(k) ≤ 1 for

all k ∈ Λ, and 𝜓(k) = 1 for all k ∈ Ω. Now it is easy to see
that 𝜓𝑝 ∈ 𝐷(D) and has a compact support. Moreover,





𝜓𝑝 − 𝑝




𝑟
≤ 2∫

Λ\Ω






𝑝




𝑑𝜇,





D (𝜓𝑝) −D𝑝




𝑟
≤ 2∫

Λ\Ω






D𝑝




𝑑𝜇 + 𝐿∫

Λ\Ω






𝑝




𝑑𝜇,

(31)

where 𝐿 = sup |D𝜓| can be made independent of Ω due to
the fact that Λ is the whole space.

Let 𝑝 ∈ 𝐷(D) be compactly supported. From Example
2.1 in [5] we know that 𝜛

𝜀
∗ 𝑝 is infinitely differentiable

and compactly supported and thus belongs to Y. Equation
(28) yields that 𝜛

𝜀
∗ 𝑝 → 𝑝 as 𝜀 → 0

+ in the graph
norm of𝐷(D). Because we have shown above that compactly
supported functions from 𝐷(D) are dense in 𝐷(D), we see
that (D, 𝐷(D)) is the closure of (D,Y), and, because 𝑇

0
is a

closed extension of (D,Y), we obtainD ⊂ 𝑇
0
.

(iii) Lastly we recognize that 𝐷(𝑇
0
) ⊂ 𝐷(D) so that the

operators 𝑇
0
and D coincide, and (𝐺D(𝑡))𝑡≥0 = (𝑍0(𝑡))𝑡≥0.
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Suppose 𝑝 ∈ 𝐷(𝑇
0
). Then for any fixed 𝜆 > 0 there exists a

unique 𝑔 ∈ X
𝑟
such that 𝑝 = (𝜆𝐼−𝑇

0
)
−1

𝑔. For any𝜓 ∈ 𝐶1
0
(Λ)

we have, by (19),

∫

Λ

D𝑝𝜓𝑑𝜇

= ∫

Λ

𝑝 (k) (𝜔 ⋅ 𝜕𝜓) (k) 𝑑𝜇k

= ∫

Λ

(∫

∞

0

𝑒
−𝜆𝑡

𝑔 (𝜙 (k, 𝑡, 0)) 𝑑𝑡) (𝜔 ⋅ 𝜕𝜓) (k) 𝑑𝜇k

= ∫

∞

0

(∫

Λ

𝑒
−𝜆𝑡

𝑔 (𝜙 (k, 𝑡, 0)) (𝜔 ⋅ 𝜕𝜓) (k) 𝑑𝜇k)𝑑𝑡

= ∫

∞

0

(∫

Λ

𝑒
−𝜆𝑡

𝑔 (y) (𝜔 ⋅ 𝜕𝜓) (𝜙 (y, 0, 𝑡)) (k) 𝑑𝜇y)𝑑𝑡

= ∫

Λ

(∫

∞

0

𝑒
−𝜆𝑡 𝑑

𝑑𝑡

𝜓 (𝜙 (y, 0, 𝑡)) 𝑑𝑡) 𝑔 (y) 𝑑𝜇y

= ∫

Λ

(𝑒
−𝜆𝑡

𝜓(𝜙 (y, 0, 𝑡))


∞

0
𝑔 (y) 𝑑𝑦

+𝜆∫

Λ

(∫

∞

0

𝑒
−𝜆𝑡

𝜓 (𝜙 (y, 0, 𝑡)) 𝑑𝑡))𝑔 (y) 𝑑𝜇y

= −∫

Λ

𝑔 (y) 𝜓 (y) 𝑑𝜇y

+ 𝜆∫

Λ

(∫

∞

0

𝑒
−𝜆𝑡

𝑔 (𝜙 (k, 0, 𝑡)) 𝑑𝑡)𝜓 (k) 𝑑𝜇k

= −∫

Λ

(𝑔 − 𝜆𝑝)𝜓𝑑𝜇.

(32)

This implies that 𝑝 ∈ 𝐷(D). Hence 𝑇
0
⊂ D, and D𝑝 =

𝑇
0
𝑝.

Remark 3 (conservativeness of the transportmodel). Because
the flow process does not modify the total number of
individuals in the system, let us show that the model (13) is
conservative in the space X

𝑟
; that is, the law (4) is satisfied.

We have proved that the semigroup generated by the operator
D is stochastic; then we have

0 = ∫

Λ

D𝑝 𝑑𝜇, ∀𝑝 ∈ 𝐷 (D) , then

0 = ∫

R3
∫

∞

0

𝑚
𝑟

D𝑝 (𝑡, 𝑥,𝑚) 𝑑𝑚𝑑𝑥, ∀𝑡 ≥ 0, 𝑟 ≥ 1.

(33)

Thus, ∫
R3
∫

∞

0
𝑚D𝑝(𝑡, 𝑥,𝑚)𝑑𝑚𝑑𝑥 = 0, for all 𝑡 ≥ 0 which

leads to
𝑑

𝑑𝑡

N (𝑡) =
𝑑

𝑑𝑡

(∫

R3
∫

∞

0

𝑚𝑝 (𝑡, 𝑥,𝑚) 𝑑𝑚𝑑𝑥)

= ∫

R3
∫

∞

0

𝑚𝜕
𝑡
𝑝 (𝑡, 𝑥,𝑚) 𝑑𝑚𝑑𝑥

= ∫

R3
∫

∞

0

𝑚D𝑝 (𝑡, 𝑥,𝑚) 𝑑𝑚𝑑𝑥

= 0

(34)

and therefore proving the conservativeness of the transport
model in (18).

3. Perturbed Transport-Fragmentation
Problems

We turn now to the transport problem with the loss part
of the fragmentation process. We assume that there are two
constants 0 < 𝜃

1
and 𝜃
2
such that for every 𝑥 ∈ R3,

𝜃
1
𝛼
𝑚
≤ 𝑎 (𝑥,𝑚) ≤ 𝜃

2
𝛼
𝑚
, (35)

with 𝛼
𝑚
∈ R
+
and independent of 𝑥. Then we can consider

the loss operator (𝐴,𝐷(𝐴)) defined in (8).The corresponding
abstract Cauchy problem reads as

𝜕
𝑡
𝑝 (𝑡, k) = D𝑝 (𝑡, k) − 𝐴𝑝 (𝑡, k) = 𝐹𝑝 (𝑡, k) ,

𝑝 (0, k) =
𝑜

𝑝 (k) , k ∈ Λ,
(36)

where

𝐹 = D − 𝐴. (37)

We provide a characterization of the domain𝐷(𝐹).

Lemma 4. Consider𝐷(𝐹) = 𝐷(D) ∩ 𝐷(𝐴) (=D(D)).

Proof. First of all it is obvious to see that 𝐷(D) ∩
𝐷(𝐴) = 𝐷(D) since 𝐷(𝐴) = X

𝑟
. Because D is con

servative, integration of (36) over Λ gives (𝑑/𝑑𝑡)‖𝑝‖
𝑟
=

(𝑑/𝑑𝑡) ∫
R3
∫

∞

0
𝑚
𝑟
𝑝(𝑡, 𝑥,𝑚)𝑑𝑚𝑑𝑥 = −∫

R3
∫

∞

0
𝑎(𝑥,𝑚)𝑚

𝑟
𝑝(𝑥,

𝑚)𝑑𝑚𝑑𝑥. Hence (35) leads to

− ∫

R3
∫

∞

0

𝜃
2
𝛼
𝑚
𝑚
𝑟

𝑝 (𝑥,𝑚) 𝑑𝑚𝑑𝑥

≤ −∫

R3
∫

∞

0

𝑎 (𝑥,𝑚)𝑚
𝑟

𝑝 (𝑥,𝑚) 𝑑𝑚𝑑𝑥

≤ −∫

R3
∫

∞

0

𝜃
1
𝛼
𝑚
𝑚
𝑟

𝑝 (𝑥,𝑚) 𝑑𝑚𝑑𝑥

(38)

for all 𝑝 ∈ (X
𝑟
)
+
, and, using Gronwall’s inequality, we obtain

−𝜃
2
𝛼
𝑚





𝑝



𝑟
≤

𝑑

𝑑𝑡





𝑝



𝑟
≤ −𝜃
1
𝛼
𝑚





𝑝



𝑟
. (39)

Then

𝑒
−𝜃
2
𝛼
𝑚
𝑡








𝑜

𝑝







𝑟

≤




𝑝



𝑟
≤ 𝑒
−𝜃
1
𝛼
𝑚
𝑡








𝑜

𝑝







𝑟

. (40)

This inequality for 𝑝 = 𝐺
𝐹
(𝑡)

𝑜

𝑝 yields

𝑒
−𝜃
2
𝛼
𝑚
𝑡








𝑜

𝑝







𝑟

≤









𝐺
𝐹
(𝑡)

𝑜

𝑝







𝑟

≤ 𝑒
−𝜃
1
𝛼
𝑚
𝑡








𝑜

𝑝







𝑟

, (41)
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where
𝑜

𝑝∈ (𝐶
∞

0
(Λ))
+
⊆ 𝐷(𝐹)

+
. If we take 0 ≤

𝑜

𝑝∈ X
𝑟
, then we

can alwaysmollify it by construction of approximations to the
identity (mollifiers)𝜛

𝜀
(k) = 𝐶

𝜀
𝜛(k/𝜀) (as in [5, Example 2.1]),

where 𝜛 is a 𝐶∞
0
(Λ) function defined by

𝜛 (k) =
{

{

{

exp( 1

|k|2 − 1
) for |k| < 1,

0 for |k| ≥ 1
(42)

and 𝐶
𝜀
are constants chosen so that ∫

Λ
𝜛
𝜀
(k)𝑑𝑥 = 1.

Using the mollification of
𝑜

𝑝 by taking the convolution
𝑜

𝑝
𝜀
:= ∫

Λ

𝑜

𝑝 (k − y) 𝜛
𝜀
(y) 𝑑𝜇

𝑦
= ∫

Λ

𝑜

𝑝 (y) 𝜛
𝜀
(k − y) 𝑑𝜇

𝑦
,

(43)

we obtain
𝑜

𝑝
𝜀
inX
𝑟
(since

𝑜

𝑝∈ X
𝑟
) and

𝑜

𝑝= lim
𝜀→0
+

𝑜

𝑝
𝜀
in X
𝑟
.

Moreover,
𝑜

𝑝
𝜀
are also nonnegative by (43) since 0 ≤

𝑜

𝑝, and
the family (

𝑜

𝑝
𝜀
)
𝜀
⊆ 𝐶
∞

0
(Λ). This shows that any nonnegative

𝑜

𝑝 taken in X
𝑟
can be approximated by a sequence of

nonnegative functions of 𝐶∞
0
(Λ). Inequality (41) is therefore

valid for any nonnegative
𝑜

𝑝∈ X
𝑟
. Using the fact that any

arbitrary element
𝑜

𝑔 ofX
𝑟
(equipped with the pointwise order

almost everywhere) can be written in the form
𝑜

𝑔=

𝑜

𝑔
+
−

𝑜

𝑔
−
,

where
𝑜

𝑔
+
,

𝑜

𝑔
−
∈ (X
𝑟
)
+
, the positive element approach [18, 19]

or [5, Theorem 2.64], allows us to extend the right inequality
of (41) to allX

𝑟
so as to have





𝐺
𝐹
(𝑡) 𝑝



𝑟
≤ 𝑒
−𝜃
1
𝛼
𝑚
𝑡



𝑝



𝑟
. (44)

Using the semigroup representation of the resolvent [5,
Theorem 3.34], we obtain for 𝜆 > 0





𝑅 (𝜆, 𝐹) 𝑝




𝑟
≤ ∫

∞

0

𝑒
−𝜆𝑡



𝐺
𝐹
(𝑡) 𝑝



𝑟
𝑑𝑡

≤ ∫

∞

0

𝑒
−𝜆𝑡

𝑒
−𝜃
1
𝛼
𝑚
𝑡



𝑝



𝑟
𝑑𝑡

≤

1

𝜆 + 𝜃
1
𝛼
𝑚





𝑝



𝑟
.

(45)

By the right inequality of (35), we obtain that





𝐴𝑅 (𝜆, 𝐹) 𝑝




𝑟
≤

𝜃
2
𝛼
𝑚

𝜆 + 𝜃
1
𝛼
𝑚





𝑝



𝑟
≤

𝜃
2

𝜃
1





𝑝



𝑟
. (46)

This relation states that 𝐷(𝐴) ⊇ 𝐷(𝐹) (the domain of 𝐴 is at
least that of 𝐹). Because 𝐹 = D − 𝐴 and 𝐴 is bounded, we
exploit the following relation for resolvent inX

𝑟
:

𝜆𝐼 − 𝐹 = 𝜆𝐼 −D + 𝐴𝑅 (𝜆, 𝐹) (𝜆𝐼 − 𝐹) ,

𝐼 = (𝜆𝐼 −D) 𝑅 (𝜆, 𝐹) + 𝐴𝑅 (𝜆, 𝐹) ,

𝑅 (𝜆,D) = 𝑅 (𝜆, 𝐹) + 𝑅 (𝜆,D) 𝐴𝑅 (𝜆, 𝐹) ,

𝑅 (𝜆, 𝐹) = 𝑅 (𝜆,D) (𝐼 − 𝐴𝑅 (𝜆, 𝐹))

(47)

for every 𝑚 ∈ R
+
. This leads to 𝐷(D) ⊇ 𝐷(𝐹), and therefore

𝐷(𝐹) ⊆ 𝐷(D) ∩ 𝐷(𝐴).
On the other hand, if 𝑝 ∈ 𝐷(D) ∩𝐷(𝐴) then ‖D𝑝‖

𝑟
< ∞

and ‖𝐴𝑝‖
𝑟
< ∞. Therefore




D𝑝 − 𝐴𝑝




𝑟
≤




D𝑝



𝑟
+




𝐴𝑝



𝑟
< ∞, (48)

meaning that 𝑝 ∈ 𝐷(𝐹), and thus 𝐷(D) ∩ 𝐷(𝐴) ⊆ 𝐷(𝐹),
which ends the proof.

By the condition (35), the operator 𝐴 is the generator
of a 𝐶

0
-semigroup of contractions, let us say (𝐺

𝐴
(𝑡))
𝑡≥0

. The
following theorem holds.

Theorem 5. Assume that (35) is satisfied; then the opera-
tor (𝐹,𝐷(𝐹)) is the generator of a substochastic semigroup
(𝐺
𝐹
(𝑡))
𝑡≥0

given by

[𝐺
𝐹
(𝑡)𝑝] (k) = [ lim

V→∞
[𝐺D (

𝑡

V
)𝐺
𝐴
(

𝑡

V
)]

V
𝑝] (k) (49)

for 𝑝 ∈ X
𝑟
and 𝑡 > 0, where (𝐺D(𝑡))𝑡≥0 is defined by (21).

Proof. First of all let us prove that 𝐹 is the generator of a
substochastic semigroup (𝐺

𝐹
(𝑡))
𝑡≥0

inX
𝑟
given by

𝐺
𝐹
(𝑡) 𝑝 = lim

V→∞
[𝐺D (

𝑡

V
)𝐺
𝐴
(

𝑡

V
)]

V
𝑝 (50)

for 𝑝 ∈ 𝐷(𝐹).
We need to show that D and 𝐴 satisfy the conditions of

Corollary 5.5 in the book by Pazy [20].
(a) We know by Theorem 2 and assumption (35) that D

and 𝐴 are generators of positive semigroups of contractions;
then





𝐺D(𝑡)




𝑟
≤ 1 = 1𝑒

0𝑡

,





𝐺
𝐴
(𝑡)



𝑟
≤ 1 = 1𝑒

0𝑡

∀𝑡 ≥ 0.

(51)

Thus,D, 𝐴 ∈ G(1, 0) and 𝐺D(𝑡) ≥ 0, 𝐺𝐴(𝑡) ≥ 0 for all 𝑡 ≥ 0.
(b) ByHille-YosidaTheorem [5,Theorem 3.5],D is closed

and densely defined inX
𝑟
, and becauseX

𝑟
= 𝐷(𝐴) ⊃ 𝐷(D),

we have𝐷(D) ∩ 𝐷(𝐴) = 𝐷(D) is dense inX
𝑟
.

(c) By the above condition (a), we can write





(𝐺D (𝑡) 𝐺𝐴 (𝑡))

V


𝑟
≤




𝐺D (𝑡)






V
𝑟





𝐺
𝐴
(𝑡)





V
𝑟

≤ 1

= 1𝑒
0V𝑡
, V = 1, 2, 3, . . . .

(52)

(d) By the bounded perturbation theorem [5, Theorem
4.9], D − 𝐴 is the generator of a positive semigroup of
contractions since D generates a positive semigroups of
contractions (Theorem 2), and 𝐴 is bounded (assumption
(35)).

We know that 𝜆𝐼− (D−𝐴) : 𝐷(D) → X
𝑟
, and by Hille-

Yosida Theorem, 𝜆𝐼 − (D − 𝐴) must be invertible for some
𝜆 > 0 and (𝜆𝐼 − (D − 𝐴))−1 ∈ L(X

𝑟
) (the space of bounded

linear operators from X
𝑟
into X

𝑟
). Then the range of 𝜆𝐼 −

(D − 𝐴) = X
𝑟
. Thus 𝜆𝐼 − (D − 𝐴) is densely defined inX

𝑟
.
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All the conditions of Corollary 5.5 in [20] are satisfied by
D and 𝐴; then 𝐹 = D − 𝐴 = D − 𝐴 = 𝐹 is the generator of a
semigroup (𝐺

𝐹
(𝑡))
𝑡≥0

defined by

[𝐺
𝐹
(𝑡) 𝑝] (k)

= [ lim
V→∞

[𝐺D (
𝑡

V
)𝐺
𝐴
(

𝑡

V
)]

V
𝑝] (k) , 𝑝 ∈ X

𝑟
,

(53)

where we have used the fact that D − 𝐴 is closed since it is
the generator of a positive semigroup of contractions (Hille-
Yosida Theorem).

Let us show that (𝐺
𝐹
(𝑡))
𝑡≥0

is substochastic. By (50) and
the above condition (a), we have 𝐺

𝐹
(𝑡) ≥ 0 for all 𝑡 ≥ 0 since

𝐺
𝐹
(𝑡)𝑝 is the limit of a sequence of elements of the positive

cone ofX
𝑟

(X
𝑟
)
+
= {𝑔 ∈ X

𝑟
; 𝑔 ≥ 0} which is closed. (54)

Lastly, by (52) and (50), we have




𝐺
𝐹
(𝑡)



𝑟
≤ lim

V→∞




𝐺D (𝑡)






V
𝑟





𝐺
𝐴
(𝑡)





V
𝑟

≤ 1

(55)

for all 𝑡 ≥ 0.

Now we take the gain part of the fragmentation process
defined by (9) with the coefficients satisfying the conserva-
tion law (3) and consider the perturbed transport equation

𝜕

𝜕𝑡

𝑝 = D𝑝 − 𝐴𝑝 + 𝐵𝑝,

𝑝



𝑡=0
=

o
𝑝 .

(56)

Theorem 6. If the assumptions of Theorem 5 hold, then there
is an extension (K, 𝐷(K)) of (D − 𝐴 + 𝐵, 𝐷(D) that
generates the smallest substochastic semigroup onX

𝑟
, denoted

by (𝐺K(𝑡))𝑡≥0.

Proof. This theorem is a direct continuation of Theorem 5
by virtue of the substochastic semigroup theory in Kato’s
Theorem in 𝐿

1
(see [5, Corollary 5.17]). Because 𝐷(𝐵) :=

𝐷(𝐴) (relation (9)), we have 𝐷(𝐵) ⊃ 𝐷(D) ∩ 𝐷(𝐴). Thus,
to apply Kato’s Perturbation Theorem, we just need to show
that, for all 𝑝 ∈ 𝐷(D − 𝐴)

+
= (𝐷(D))

+
,

∫

Λ

(D𝑝 − 𝐴𝑝 + 𝐵𝑝) 𝑑𝜇 ≤ 0. (57)

Since 𝑝 ∈ 𝐷(D)
+
and since ‖𝐴𝑝‖

𝑟
< ∞, ‖𝐵𝑝‖

𝑟
< ∞, then

we can split (57) so as to get its left-hand side equal to

∫

Λ

D𝑝𝑑𝜇

+ ∫

R3
∫

∞

0

𝑚
𝑟

( − 𝑎 (𝑥,𝑚) 𝑝 (𝑡, 𝑥,𝑚)

+∫

∞

𝑚

𝑏 (𝑥, 𝑠, 𝑚) 𝑎 (𝑥, 𝑠) 𝑝 (𝑥, 𝑠) 𝑑𝑠) 𝑑𝑚𝑑𝑥.

(58)

The first term vanishes by the stochasticity (33) of the
operator D. For the other term, using the relations (11) and
(12) yields

∫

R3
∫

∞

0

𝑚
𝑟

( − 𝑎 (𝑥,𝑚) 𝑝 (𝑡, 𝑥,𝑚)

+∫

∞

𝑚

𝑏 (𝑥, 𝑠, 𝑚) 𝑎 (𝑥, 𝑠) 𝑝 (𝑥, 𝑠) 𝑑𝑠)𝑑𝑚𝑑𝑥

≤ ∫

R3
∫

∞

0

𝑚
𝑟

(−𝑎 (𝑥,𝑚) 𝑝 (𝑡, 𝑥,𝑚)) 𝑑𝑚𝑑𝑥

+ ∫

R3
∫

∞

0

𝑎 (𝑥, 𝑠) 𝑝 (𝑥, 𝑠) 𝑠
𝑟

𝑑𝑠𝑑𝑥

= 0,

(59)

which proves the theorem.

4. Concluding Remarks

In this paper, we used the theory of strongly continuous
semigroups of operators [20] to analyze the well posedness
of an integrodifferential equation modelling convection-
fragmentation processes. This work generalizes the preced-
ing ones with the inclusion of the spatial transportation
kernel which was not considered before. We proved that
the combined fragmentation-transportation operator is the
infinitesimal generator of a strongly continuous stochastic
semigroup, thereby addressing the problem of existence of
solutions for thismodel. However the full identification of the
generator and characterization of its domain remain an open
problem.
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The vorticity exterior and interior to a viscous liquid drop in steady motion in an unbounded fluid is investigated.The perturbation
solution to first order in the Reynolds number derived by Taylor and Acrivos (1964) is used. New analytical results are derived for
the attached region of positive vorticity behind the drop and for the region of positive vorticity inside the drop.

1. Introduction

In this paper we will consider the steady axisymmetric flow
of a viscous fluid past a liquid drop with constant interfacial
tension. From numerical investigations [1–4] it is known
that a detached wake consisting of a standing eddy and a
region of positive vorticity exist outside the viscous drop if the
Reynolds number, Re, and the ratio of the viscosity of the drop
to the viscosity of the surrounding fluid, 𝜅, are sufficiently
large and that a region of positive vorticity exists inside the
drop if either Re is sufficiently large or 𝜅 is sufficiently small.
In a recent paper [5] new analytical results for the detached
wake and the streamlines inside and outside the liquid drop
were derived using the singular perturbation solution for the
stream function derived by Taylor and Acrivos [6]. In this
paper we will derive corresponding analytical results for the
equivorticity lines and for the regions of positive vorticity
outside and inside the liquid drop.

The singular perturbation solution of Taylor and Acrivos
[6] will again be used. This perturbation solution has two
parameters, Re and 𝜅. Although it was derived assuming that
Re < 1, we will apply it to flows with Re > 1. There is
evidence that the predictions of this solution are applicable
for Re > 1. For example,Wellek et al. [7] found that the Taylor

and Acrivos perturbation solution predicted quite accurately
the eccentricity of the deformed drop for Reynolds numbers
up to Re = 20. Also as 𝜅 → ∞, the solution of Taylor
and Acrivos tends to the singular perturbation solution of
Proudman and Pearson [8] for the stream function for slow
viscous flow past a solid sphere. Van Dyke [9] found that the
length of the attached wake behind a solid sphere calculated
from the Proudman and Pearson perturbation solution to
first order in the Reynolds number is in good agreement with
experimental and numerical values for Reynolds number up
to about Re = 60.

We will assume also that the interfacial tension is large
so that the Weber number, We, is small, and therefore the
deformation of the spherical drop is small.

An outline of the paper is as follows. In Section 2 the
assumptions of the model are stated and the perturbation
solution of Taylor and Acrivos for the stream functions out-
side and inside the liquid drop to first order in the Reynolds
number Re is presented. In Section 3 the equivorticity lines
and the attached region of positive vorticity exterior to the
liquid drop are investigated. In Section 4 the equivorticity
lines and the region of positive vorticity inside the liquid drop
are considered. Finally the conclusions are summarised in
Section 5.
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Figure 1: Spherical polar coordinate system (𝑟, 𝜃, 𝜙) for axisymmet-
ric flow past a liquid drop. If 𝜌 > 𝜌, the gravity vector g points in the
direction shown while if 𝜌 < 𝜌, g points in the opposite direction.

2. Stokes Stream Functions

In this section we will summarise the assumptions made
in the derivation of the perturbation solution of Taylor and
Acrivos [6] and state the Stokes stream functions inside and
outside the liquid drop.

Consider the steady axisymmetric motion under gravity
of a viscous liquid drop slightly deformed from the spherical
shape in an unbounded quiescent fluid. The fluids inside and
outside the liquid drop are incompressible and immiscible
and the interfacial tension is assumed to be uniform. Fluid
variables inside the liquid drop are denoted by a circumflex.
The terminal velocity of the drop is 𝑈. The spherical polar
coordinate system (𝑟, 𝜃, 𝜙) shown in Figure 1 with origin at
the centre of mass of the drop is used. The fluid variables
are dimensionless, and since the flow is axisymmetric, they
are independent of 𝜙. The characteristic length is the radius,
𝑎, of the spherical drop with the same volume, and the
characteristic velocity is the terminal velocity, 𝑈.

Since the fluids outside and inside the liquid drop are
incompressible and the flow is axisymmetric with V

𝜙
= 0

and V̂
𝜙
= 0, Stokes stream functions, 𝜓(𝑟, 𝜃) and �̂�(𝑟, 𝜃), can

be introduced outside and inside the liquid drop. They are
defined in terms of the velocity components parallel to the 𝑟
and 𝜃 coordinate lines by

V
𝑟
(𝑟, 𝜃) =

1

𝑟
2 sin 𝜃

𝜕𝜓

𝜕𝜃

, V
𝜃
(𝑟, 𝜃) = −

1

𝑟 sin 𝜃
𝜕𝜓

𝜕𝑟

,

V̂
𝑟
(𝑟, 𝜃) =

1

𝑟
2 sin 𝜃

𝜕�̂�

𝜕𝜃

, V̂
𝜃
(𝑟, 𝜃) = −

1

𝑟 sin 𝜃
𝜕𝜓

𝜕𝑟

.

(1)

The continuity equations outside and inside the liquid drop
are automatically satisfied.

The perturbation parameter is the Reynolds number, Re,
defined in terms of the parameters of the flow outside the
drop by

Re = 𝑈𝑎
]
, (2)

where ] = 𝜂/𝜌 is the kinematic viscosity and 𝜂 is the shear
viscosity of the exterior fluid. Taylor and Acrivos [6] used
the method of matched asymptotic expansions outside the

liquid drop to obtain an expansion uniformly valid in 𝑟 for
𝑎 ≤ 𝑟 ≤ ∞. The inner expansion outside the drop is
the straightforward expansion in powers of Re. This inner
expansion is used to analyse the exterior flow close to the
drop which includes the region of positive vorticity. The
deformation of the drop at zero order in Re was found to be
zero. Hence the boundary condition for the first order in Re
solution was imposed at 𝑟 = 1. The inner expansion for the
stream function outside the drop to first order in Re found by
Taylor and Acrivos [6] can be written as

𝜓 (𝑟, 𝜃) =

1

4

(𝑟 − 1) sin2𝜃

× [ (1 +

1

8

(

2 + 3𝜅

1 + 𝜅

)Re)

× (2𝑟 −

𝜅

1 + 𝜅

−

𝜅

1 + 𝜅

1

𝑟

)

−

Re
8

(

2 + 3𝜅

1 + 𝜅

)

× (2𝑟 −

𝜅

1 + 𝜅

−

𝜅

5(1 + 𝜅)
2

1

𝑟

−

𝜅 (6 + 5𝜅)

5(1 + 𝜅)
2

1

𝑟
2
) cos 𝜃]

+ 𝑂 (Re2) ,

(3)

as Re → 0, where 𝜅 is the ratio of the shear viscosity of the
drop to the shear viscosity of the exterior fluid:

𝜅 =

𝜂

𝜂

. (4)

Since shear viscosity is nonnegative, the range of values of 𝜅
is 0 ≤ 𝜅 ≤ ∞. For an inviscid gas bubble, 𝜅 = 0, while for
a solid sphere, 𝜅 = ∞. The stream function inside the liquid
drop to first order in Re can be written as

�̂� (𝑟, 𝜃) = −

𝑟
2
(1 − 𝑟

2
) sin2𝜃

4 (1 + 𝜅)

× [1 +

𝜅 (2 + 3𝜅)

40(1 + 𝜅)
2
Re

+Re (2 + 3𝜅) (5 + 4𝜅)
40(1 + 𝜅)

2
(1 − 𝑟 cos 𝜃)]

+ 𝑂 (Re2) ,

(5)

as Re → 0.
The deformation of the drop to first order in Re is

proportional to the Weber number We and depends on the
density ratio 𝛾 (and on 𝜅) where

We =
𝜌𝑎𝑈
2

𝜎

, 𝛾 =

𝜌

𝜌

, (6)
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and 𝜎 is the uniform interfacial tension. The boundary
conditions for the order Re solutionwere imposed on the zero
order surface of the drop, 𝑟 = 1, which is not deformed. The
results therefore apply only for small Weber number.

3. Attached Region of Positive Vorticity
Exterior to the Liquid Drop

Consider first the fluid flow exterior to the liquid drop.
Since the flow is axisymmetric, the vorticity 𝜔 expressed

in terms of the stream function 𝜓(𝑟, 𝜃) is

𝜔 = −
1

𝑟 sin 𝜃
𝐷
2

𝜓e
𝜙
= 𝜔
𝜙
e
𝜙
, (7)

where

𝐷
2

=

𝜕
2

𝜕𝑟
2
+

sin 𝜃
𝑟
2

𝜕

𝜕𝜃

(

1

sin 𝜃
𝜕

𝜕𝜃

) , (8)

and e
𝜙
is the unit base vector parallel to the 𝜙-coordinate line

in the direction of increase of 𝜙. For the exterior flow close to
the drop the stream function is given by (3). With the aid of
the identities

𝐷
2

(𝑓 (𝑟) sin2𝜃) = (
𝑑
2
𝑓

𝑑𝑟
2
−

2

𝑟
2
𝑓) sin2𝜃,

𝐷
2

(𝑓 (𝑟) sin2𝜃 cos 𝜃) = (
𝑑
2
𝑓

𝑑𝑟
2
−

6

𝑟
2
𝑓) sin2𝜃 cos 𝜃,

(9)

it can be verified that

𝜔
𝜙
(𝑟, 𝜃) = −

1

2

(

2 + 3𝜅

1 + 𝜅

)

sin 𝜃
𝑟

× [ (1 + (

2 + 3𝜅

1 + 𝜅

)

Re
8

)

1

𝑟

+

Re
8

{ 4 − 3 (

2 + 3𝜅

1 + 𝜅

)

1

𝑟

+

3𝜅 (4 + 5𝜅)

5(1 + 𝜅)
2

𝑟
2

−

2𝜅

(1 + 𝜅) 𝑟
3
} cos 𝜃] .

(10)

The curves 𝜔
𝜙
= constant in an axial plane 𝜙 = constant are

the equivorticity lines [10].
To zero order in Re

𝜔
𝜙
= −

1

2

(

2 + 3𝜅

1 + 𝜅

)

sin 𝜃
𝑟
2
, (11)

and hence 𝜔
𝜙
< 0 except when 𝜃 = 0 and 𝜃 = 𝜋 in which

case 𝜔
𝜙
= 0. When Re > 0, 𝜔

𝜙
may not always be negative

everywhere. We will show that a region of positive vorticity
exists behind the drop and that it is attached to the surface of
the drop.Wewill then investigate the properties of this region
of positive vorticity.

From (10), 𝜔
𝜙
(𝑟, 𝜃) > 0 if cos 𝜃 > 𝐻(𝑟; 𝜅,Re), where

𝐻(𝑟; 𝜅,Re) = (

8

Re
+

2 + 3𝜅

1 + 𝜅

) 5(1 + 𝜅)
2

𝑟
2

× ([−20(1 + 𝜅)
2

𝑟
3

+ 15 (1 + 𝜅) (2 + 3𝜅) 𝑟
2

−3𝜅 (4 + 5𝜅) 𝑟 + 10𝜅 (1 + 𝜅) ])

−1

.

(12)

The dividing curve in an axial plane 𝜙 = constant between a
region of positive vorticity and a region of negative vorticity
outside the drop is

cos 𝜃 = 𝐻 (𝑟; 𝜅,Re) . (13)

The curve will be attached to the surface of the drop, 𝑟 = 1, if
there is a solution, 𝜃 = 𝜃

𝑃
, to the equation

cos 𝜃
𝑃
= 𝐻 (1; 𝜅,Re)

=

5 (1 + 𝜅) [8 (1 + 𝜅) + (2 + 3𝜅)Re]
(5 + 4𝜅) (2 + 5𝜅)Re

.

(14)

Since cos 𝜃
𝑃
≤ 1, (14) has a solution for 𝜃

𝑃
only if Re ≥ Re

𝑃
,

where

Re
𝑃
=

40(1 + 𝜅)
2

𝜅 (8 + 5𝜅)

. (15)

We have

Re
𝑃
= 8 (1 +

2

5𝜅

+

9

25𝜅
2
+ 𝑂(

1

𝜅
3
)) as 𝜅 → ∞,

Re
𝑃
=

5

𝜅

(1 +

11

8

𝜅 +

9

64

𝜅
2

+ 𝑂 (𝜅
3

)) as 𝜅 → 0.

(16)

If Re < Re
𝑃
, there is no region of positive vorticity attached

to the surface of the drop. It can be shown that Re
𝑃
is a

decreasing function of 𝜅.
For an inviscid gas bubble, 𝜅 = 0 and Re

𝑃
= ∞. This

indicates that there is not a region of positive vorticity
attached to an inviscid gas bubble. For an inviscid gas bubble
there is also no downstream wake with standing eddies
because no vorticity is generated upstream on the surface of
an inviscid bubble [5].

For a solid sphere, 𝜅 = ∞ and Re
𝑃
= 8. At Re = 8

the perturbation solution of Proudman and Pearson [5, 8, 9]
predicts that an attached wake consisting of two standing
eddies first appears downstream of the solid sphere. The
standing eddies are due to the accumulation of vorticity
generated upstream on the surface of the sphere. For a solid
sphere, the attached region of positive vorticity and the
attached wake first appear at the same value of the Reynolds
number, Re = 8.

For 0 < 𝜅 < ∞ the standing eddy is detached from the
surface of the liquid drop. It first appears in the flow down-
stream of the drop at Reynolds number Re

𝐴
. A perturbation

solution with perturbation parameter 1/𝜅 as 𝜅 → ∞, and a
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numerical solution have been derived for Re
𝐴
[5]. It can be

shown that Re
𝐴
> Re∗, where

Re∗ = 120 (2 + 3𝜅) (1 + 𝜅)
2

𝜅 (2 + 3𝜅) (4 + 5𝜅)

. (17)

It is readily verified that Re
𝑃
< Re∗, and hence the attached

region of positive vorticity appears outside the drop before
the appearance of the standing eddy.

The value of 𝜅 for given Re > 8 at which the region of
positive vorticity first occurs as 𝜅 is increased from zero is
obtained by solving (14) with 𝜃

𝑃
= 0 for 𝜅. This gives the

quadratic equation

5 (Re− 8) 𝜅2 + 8 (Re−10) 𝜅 − 40 = 0. (18)

For Re > 8, (18) has one real positive root

𝜅
𝑃
=

−8 (Re−10) + [32Re (2Re− 15)]1/2

10 (Re− 8)
. (19)

Consider now the range of 𝜃
𝑃
on the outer surface of the

drop for 0 < 𝜅 ≤ ∞ and Re
𝑃
≤ Re ≤ ∞. It can be shown

from (14) that

𝜕𝜃
𝑃

𝜕Re
> 0,

𝜕𝜃
𝑝

𝜕𝜅

> 0, (20)

and hence 𝜃
𝑃
is an increasing function of Re and 𝜅. Also,

lim
Re→∞

𝜃
𝑃
= cos−1 [5 (1 + 𝜅) (2 + 3𝜅)

(5 + 4𝜅) (2 + 5𝜅)

] , (21)

lim
𝜅→∞

𝜃
𝑃
= cos−1 [3

4

+

2

Re
] . (22)

Equation (21) gives themaximumvalue of 𝜃
𝑃
for a given value

of 𝜅 while (22) gives the maximum value of 𝜃
𝑃
for a given

value of Re. Further

lim
Re→∞

lim
𝜅→∞

𝜃
𝑃
= lim
𝜅→∞

lim
Re→∞

𝜃
𝑃
= cos−1 (3

4

) = 41.4
0

. (23)

For Re
𝑃
≤ Re ≤ ∞, 𝜃

𝑃
lies in the range 0 ≤ 𝜃

𝑃
≤ 41.4

0.
WhenRe = Re

𝑃
, 𝜃
𝑃
= 0 andwhenRe = ∞ and 𝜅 = ∞, 𝜃

𝑃
=

41.4
0. In Figure 2, 𝜃

𝑃
is plotted against Re for a range of values

of 𝜅. Each curve starts at 𝜃
𝑃
= 0, Re = Re

𝑃
, increases

steadily for Re > Re
𝑃
, and tends to (21) for large values of

Re. The distribution of vorticity over the outer surface of the
drop, 𝑤

𝜙
(1, 𝜃), is illustrated in Figures 3 and 4. The vorticity

is positive on the outer surface of the drop for 0 ≤ 𝜃 < 𝜃
𝑃

provided either Re > Re
𝑃
or 𝜅 > 𝜅

𝑃
.

Consider now the maximum point of extension, 𝑟 = 𝑟
𝑃
,

of the region of positive vorticity downstream of the drop.
By putting 𝜃 = 0 in (13), we find that 𝑟

𝑃
satisfies the cubic

equation

𝑄 (𝑟) = 0, (24)

where

𝑄 (𝑟) = 𝑟
3

− (

2 + 3𝜅

2 (1 + 𝜅)

−

2

Re
) 𝑟
2

+

3𝜅 (4 + 5𝜅)

20(1 + 𝜅)
2
𝑟 −

𝜅

2 (1 + 𝜅)

.

(25)
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Figure 2: Graphs of 𝜃
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plotted against Re for a range of values of 𝜅.
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Figure 3: Graphs of 𝜔
𝜙
(1, 𝜃) plotted against 𝜃 for 𝜅 = 2 and a range

of values of Re. When 𝜅 = 2, Re
𝑃
= 10.

When 𝜅 = 0, which describes an inviscid gas bubble, (24)
reduces to

𝑟
2

[𝑟 − (1 −

2

Re
)] = 0. (26)

The roots of (26) are 𝑟 = 0 (twice) and 𝑟 = 1−2/Re which do
not lie outside the inviscid bubble. These results indicate that
there is not a region of positive vorticity in the flow outside
an inviscid gas bubble. We therefore consider 𝜅 > 0.

Consider first Re = Re
𝑃
. Then (24) reduces to

(𝑟 − 1) [20(1 + 𝜅)
2

𝑟
2

− 𝜅 (2 + 5𝜅) 𝑟 + 10𝜅 (1 + 𝜅)] = 0, (27)

which has one real root, 𝑟 = 1, and two complex conjugate
roots. When Re = Re

𝑃
, 𝑟
𝑃
= 1 and 𝜃

𝑃
= 0. The region of

positive vorticity first appears behind the drop.
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Figure 4: Graphs of 𝜔
𝜙
(1, 𝜃) plotted against 𝜃 for Re = 20 and a

range of values of 𝜅. When Re = 20, 𝜅
𝑃
= 0.39.

Consider next Re > Re
𝑃
. We first show that (24) always

has a positive real root greater than unity. Now

𝑄 (1) = −

2 (Re−Re
𝑃
)

ReRe
𝑃

, (28)

and hence 𝑄(1) < 0 since Re > Re
𝑃
. Also since 𝑄(𝑟) → ∞

as 𝑟 → ∞, it follows that 𝑄(𝑟) = 0 for some 𝑟 = 𝑟
𝑃
> 1.

This root is the end point on the axis of symmetry 𝜃 = 0 of
the region of positive vorticity.

Since the production of vorticity at the interface increases
as 𝜅 and Re increase, we can expect that 𝑟

𝑃
attains its

maximum value when 𝜅 = ∞ and Re = ∞. We have seen
that this is indeed the case for 𝜃

𝑃
which attains its maximum

value when 𝜅 = ∞ and Re = ∞. When 𝜅 = ∞ and Re = ∞,
(24) becomes

𝑟
3

−

3

2

𝑟
2

+

3

4

𝑟 −

1

2

= 0. (29)

Now the standard form of a cubic equation is [11]

𝑠
3

+ 3𝐻𝑠 + 𝐺 = 0. (30)

In order to transform (29) to the standard form, let

𝑟 = 𝑠 +

1

2

. (31)

Then (29) becomes

𝑠
3

−

3

8

= 0. (32)

Thus𝐺2+4𝐻3 > 0 and there is one real root and two complex
conjugate roots [11]. The real root is 𝑠 = 0.72, and hence

𝑟
𝑃
(max) = 1.22. (33)

The region of positive vorticity behind the drop is therefore
a thin layer attached to the rear surface of the drop. Its
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Figure 5:The numerical solution for 𝑟
𝑃
, the end point of the region

of positive vorticity behind the drop, plotted against Re for a range
of values of 𝜅.
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Figure 6: Graphs of ̂𝜃
𝑃
plotted against Re for a range of values of 𝜅.

maximum extension is 0 ≤ 𝜃 ≤ 41.40 and 1 ≤ 𝑟 ≤ 1.22. The
dividing curve (13) generates a surface of revolution about
the line 𝜃 = 0 which encloses the attached region of positive
vorticity downstream of the drop.

A straightforward perturbation solution of (24) for 𝑟
𝑃
in

terms of the perturbation parameter

𝜀 =

Re−Re
𝑃

Re
𝑃

, Re > Re
𝑃
, (34)
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is readily derived:

𝑟
𝑃
= 1 +

𝜅 (8 + 5𝜅)

(25𝜅
2
+ 48𝜅 + 20)

𝜀 + 𝑂 (𝜀
2

) , (35)

as 𝜀 → 0. For small 𝜅,

𝑟
𝑃
− 1 =

2𝜅

5

(1 + 𝑂 (𝜅)) 𝜀, as 𝜅 → 0, (36)

while for large 𝜅,

𝑟
𝑃
− 1 =

1

5

(1 −

8

25𝜅

+ 𝑂(

1

𝜅
2
)) 𝜀, as 𝜅 → ∞. (37)

Equations (36) and (37) give an approximation to the maxi-
mum thickness of the region of positive vorticity for small 𝜀
when 𝜅 is small and 𝜅 is large, respectively.

The numerical solution for the real root of (24) is plotted
in Figure 5. For each value of 𝜅 the curve starts at 𝑟 = 1, Re =

Re
𝑃
. The graphs clearly show that 𝑟

𝑃
increases as both 𝜅 and

Re increase and that (33) gives an upper bound for 𝑟
𝑃
.

We have seen that if Re or 𝜅 are sufficiently large, a thin
region of positive vorticity exists behind the drop and is
attached to the surface. It appears before the appearance of
the standing eddies and occurs due to the accumulation of
positive vorticity at the outer surface of the drop. The size
of the region of positive vorticity increases as each of Re
and 𝜅 increases because the generation of positive vorticity
at the outer surface increases as Re and 𝜅 increase as shown
in Figures 3 and 4.

4. Region of Positive Vorticity inside the
Liquid Drop

Inside the drop the equivorticity lines have more structure
than the streamlines [5]. In this section we investigate the
region of positive vorticity inside the drop and compare
its properties with the properties of the attached region of
positive vorticity outside the drop.

The vorticity �̂� inside the drop is given by

�̂� = −
1

𝑟 sin 𝜃
𝐷
2

�̂�e
𝜙
= �̂�
𝜙
e
𝜙
, (38)

where𝐷2 and �̂�(𝑟, 𝜃) are defined by (8) and (5). With the aid
of the identities (9) it can be shown that

�̂�
𝜙
(𝑟, 𝜃) = −

5𝑟 sin 𝜃
2 (1 + 𝜅)

× [1 +

Re
8

(

2 + 3𝜅

1 + 𝜅

)

−7Re (2 + 3𝜅) (5 + 4𝜅)
200(1 + 𝜅)

2
𝑟 cos 𝜃] .

(39)

To zero order in Re,

�̂�
𝜙
(𝑟, 𝜃) = −

5𝑟 sin 𝜃
2 (1 + 𝜅)

. (40)

Thus when Re = 0, �̂�
𝜙
(𝑟, 𝜃) < 0 if 𝜃 ̸=0 and 𝜃 ̸=𝜋. The

equivorticity lines, 𝜔
𝜙
= constant, in the plane 𝜙 = constant

are straight lines parallel to the axis of symmetry, 𝜃 = 0.
Consider now �̂�

𝜙
(𝑟, 𝜃) to first order in Re. From (39),

�̂�
𝜙
(𝑟, 𝜃) > 0 if

𝑟 cos 𝜃 > 25 (1 + 𝜅) [8 (1 + 𝜅) + Re (2 + 3𝜅)]
7 (2 + 3𝜅) (5 + 4𝜅)Re

. (41)

The region of positive vorticity therefore consists of the part
of the drop

25 (1 + 𝜅) [8 (1 + 𝜅) + Re (2 + 3𝜅)]
7 (2 + 3𝜅) (5 + 4𝜅)Re

< 𝑟 cos 𝜃 < 1. (42)

It exists provided Re > R̂e
𝑃
, where

R̂e
𝑃
=

200(1 + 𝜅)
2

(2 + 3𝜅) (10 + 3𝜅)

. (43)
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Figure 9: Equivorticity lines inside the drop in an axial plane for 𝜅 = 2 and Re = 0, 5, 14, and 40. When 𝜅 = 2, R̂e
𝑃
= 14.

We have

R̂e
𝑃
=

200

9

[1 −

2

𝜅

+

61

9𝜅
2
+ 𝑂(

1

𝜅
3
)] as 𝜅 → ∞,

R̂e
𝑃
= 10 [1 +

𝜅

5

+

19

100

𝜅
2

+ 𝑂(

1

𝜅
3
)] as 𝜅 → 0.

(44)

It can be shown that R̂e
𝑃
is an increasing function of 𝜅, which

compares with Re
𝑃
which is a decreasing function of 𝜅. The

Reynolds number R̂e
𝑃
increases steadily from 10 at 𝜅 = 0 for

an inviscid gas bubble to 22.22 at 𝜅 = ∞ for a solid sphere.
For Re < 10, the region of positive vorticity inside the drop
does not exist for any value of 𝜅 while for Re > 22.22 it exists
for all values of 𝜅.

The value of 𝜅 for given Re at which the region of positive
vorticity first occurs as 𝜅 decreases from 𝜅 = ∞ is obtained
by solving (43) for 𝜅. This yields the quadratic equation

(200 − 9Re) 𝜅2 + 4 (100 − 9Re) 𝜅 + 20 (10 − Re) = 0. (45)

For 10 < Re < 22.22, (45) has one real positive root:

𝜅
𝑃
=

−2 (100 − 9Re) + 2[2Re (18Re−175)]1/2

(200 − 9Re)
. (46)

The region of positive vorticity exists for 0 ≤ 𝜅 < 𝜅
𝑃
. It does

not exist for 𝜅 > 𝜅
𝑃
.
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Figure 10: Equivorticity lines inside the drop in an axial plane for Re = 15 and 𝜅 = 0, 0.5, 2.72, and 10. When Re = 15, 𝜅
𝑃
= 2.72.

On the inner surface of the liquid drop the region of
positive vorticity extends over the range 0 ≤ 𝜃 ≤ ̂

𝜃
𝑃
, where

̂
𝜃
𝑃
is obtained from (41) with 𝑟 = 1:

̂
𝜃
𝑃
= cos−1 [25 (1 + 𝜅) [8 (1 + 𝜅) + (2 + 3𝜅)Re]

7 (2 + 3𝜅) (5 + 4𝜅)Re
] . (47)

It can be verified that

𝜕
̂
𝜃
𝑃

𝜕Re
> 0,

𝜕
̂
𝜃
𝑃

𝜕𝜅

< 0, (48)

and hence ̂𝜃
𝑃
is an increasing function of Re and a decreasing

function of 𝜅. Also

lim
Re→∞

̂
𝜃
𝑃
= cos−1 [25 (1 + 𝜅)

7 (5 + 4𝜅)

] , (49)

lim
𝜅→0

̂
𝜃
𝑃
= cos−1 [5

7

(1 +

4

Re
)] . (50)

Equation (49) gives the maximum value of ̂𝜃
𝑃
for a given

value of 𝜅 while (50) gives the maximum value of ̂𝜃
𝑃
for a

given value of Re. Further,

lim
Re→∞

lim
𝜅→0

̂
𝜃
𝑃
= lim
𝜅→0

lim
Re→∞

̂
𝜃
𝑃
= cos−1 (5

7

) = 44.4
0

. (51)
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Figure 11: Equivorticity lines for flow past a drop with 𝜅 = 5 and
Re = 40. The direction of flow is from left to right.

Equation (51) gives the maximum value of ̂𝜃
𝑃
. It compares

with 41.40 for the maximum value of 𝜃
𝑃
derived in (23). In

Figure 6, ̂𝜃
𝑃
is plotted against Re for values of 𝜅 ranging from

0 to∞. The curves are confined to a narrow band emanating
from 10 ≤ Re ≤ 22.22. The limiting cases, 𝜅 = ∞ and
𝜅 = 0, are reversed in Figures 2 and 6. The distribution
of vorticity over the inner surface of the drop, �̂�

𝜙
(1, 𝜃), is

shown in Figures 7 and 8.The vorticity is positive on the inner
surface for 0 < 𝜃 <

̂
𝜃
𝑃
provided Re > R̂e

𝑃
or 𝜅 < 𝜅

𝑃
. The

vorticity is discontinuous across the interface 𝑟 = 1 and the
angles 𝜃

𝑃
and ̂𝜃
𝑃
are different for given values of 𝜅 and Re.

In Figure 9 the equivorticity lines inside the drop are
plotted for 𝜅 = 2 and a range of values of Re. When 𝜅 = 2,
the region of positive vorticity exists for Re > R̂e = 14. In
Figure 10 the equivorticity lines inside the drop are plotted
for Re = 15 and a range of values of 𝜅. When Re = 15, the
region of positive vorticity exists for 0 ≤ 𝜅 < 𝜅

𝑃
= 2.72.

If 0 ≤ 𝜅 < 1, then R̂e
𝑃
< Re

𝑃
, and as Re increases

from zero, the region of positive vorticity occurs inside the
drop before it occurs outside and ̂𝜃

𝑃
> 𝜃
𝑃
. If 𝜅 > 1, then

Re
𝑃
< R̂e
𝑃
and the region of positive vorticity occurs outside

the drop before it occurs inside and 𝜃
𝑃
>
̂
𝜃
𝑃
. When 𝜅 < 1

the generation of vorticity at the interface due to the no-slip
condition is more effective in the interior because the interior
fluid is less viscous than the exterior fluid. When 𝜅 > 1, the
opposite is the case.

In Figure 11, the equivorticity lines inside and outside the
drop are plotted for 𝜅 = 5 and Re = 40. For these values
of 𝜅 and Re, 𝜃

𝑃
= 36
0 and ̂𝜃

𝑃
= 23.4

0. We see that there is
also a region of positive vorticity upstream of the drop. In a
diagram showing the streamlines there would be a standing
eddy downstream of the drop since when 𝜅 = 5 and Re = 40,
Re > Re

𝐴
[5].

5. Concluding Remarks

The significant fluid dynamical features in flow past a liquid
drop are the detached wake behind the drop, the attached

region of positive vorticity outside the drop, and the region
of positive vorticity at the rear inside the drop. Using the
perturbation solution of Taylor and Acrivos [6] to first order
in Re, we have derived in this paper analytical expressions
for the main properties of the regions of positive vorticity
outside and inside the drop. The results should be useful in
numerical and experimental investigations when the Weber
number, and therefore the deformation of the drop, is small.
The analytical results are in qualitative agreement with the
numerical results of Dandy and Leal [4] who present plots
of the equivorticity lines and regions of positive vorticity in
flow past a liquid drop. The expansions for large values of
the viscosity ratio 𝜅 should be useful in flow past a very
viscous drop because they tend to results for a solid sphere
derived from the perturbation solution of Proudman and
Pearson [8] which are in good agreement with numerical and
experimental results. The expansions for small values of 𝜅
should be useful in flow past a gas bubble.

Acknowledgment

D. P. Mason thanks the National Research Foundation,
Pretoria, South Africa, for the financial support.

References

[1] V. Y. Rwkind and G. Ryskin, “Flow structure in motion of a
spherical drop in a fluid medium at intermediate Reynolds
numbers,” Fluid dynamics, vol. 11, pp. 5–12, 1976.

[2] D. L. R. Oliver and J. N. Chung, “Steady flow inside and
around a fluid sphere at lowReynolds numbers,” Journal of Fluid
Mechanics, vol. 154, pp. 215–230, 1985.

[3] D. L. R.Oliver and J. N. Chung, “Flow about a fluid sphere at low
to moderate Reynolds numbers,” Journal of Fluid Mechanics,
vol. 177, pp. 1–18, 1987.

[4] D. S. Dandy and L. G. Leal, “Buoyancy-driven motion of a
deformable drop through a quiescent liquid at intermediate
Reynolds number,” Journal of FluidMechanics, vol. 208, pp. 161–
192, 1989.

[5] G. M. Moremedi and D. P. Mason, “Streamlines and detached
wake in steady flow past a spherical liquid drop,”Mathematical
andComputational Applications, vol. 15, no. 4, pp. 543–557, 2010.

[6] T. D. Taylor and A. Acrivos, “On the deformation and drag of a
falling viscous drop at low Reynolds number,” Journal of Fluid
Mechanics, vol. 18, pp. 466–476, 1964.

[7] R. M. Wellek, A. K. Agrawal, and A. H. P. Skelland, “Shape of
liquid drops moving in liquid media,” AIChE Journal, vol. 12,
pp. 854–862, 1965.

[8] I. Proudman and J. R. A. Pearson, “Expansions at small
Reynolds numbers for the flow past a sphere and a circular
cylinder,” Journal of Fluid Mechanics, vol. 2, pp. 237–262, 1957.

[9] M.VanDyke,PerturbationMethods in FluidMechanics, Applied
Mathematics and Mechanics, Academic Press, New York, NY,
USA, 1964.

[10] S. C. R. Dennis and J. D. A. Walker, “Calculation of the steady
flow past a sphere at low to moderate Reynolds numbers,”
Journal of Fluid Mechanics, vol. 48, pp. 771–789, 1971.

[11] W. Briggs and G. H. Bryan, The Tutorial Algebra, University
Tutorial Press, London, UK, 1942.



Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2013, Article ID 481672, 6 pages
http://dx.doi.org/10.1155/2013/481672

Research Article
Existence and Continuity of Solutions to a Class of
Pseudodifferential Equations over 𝑝-Adic Field

Bo Wu

Department of Applied Mathematics, Nanjing University of Finance & Economics, Nanjing 210023, China

Correspondence should be addressed to Wu Bo; bowu8800@gmail.com

Received 12 April 2013; Accepted 19 May 2013

Academic Editor: Guo-Cheng Wu

Copyright © 2013 Bo Wu. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We study the pseudodifferential operator 𝑇𝛼 and the pseudodifferential equations of type 𝑇𝛼𝑢 + 𝑢 = 𝛿
𝑥𝑘

over 𝑝-adic field Q
𝑝
,

where 𝛿
𝑥𝑘
is the Dirac delta function. We discuss the existence and uniqueness of solutions to the equations. Furthermore, we give

conditions for the continuity of the solutions 𝑢
𝑘
when 𝑢 belongs to the space 𝐿

2
(Q
𝑝
).

1. Introduction

In recent years 𝑝-adic analysis has received a lot of attention
due to its applications inmathematical physics; see, for exam-
ple, [1–13] and references therein.

A good example of the applications is the pseudodiffer-
ential equations on the field Q

𝑝
. In 60s of the last century,

Gibbs first gives logic derivative on dyadic field. Since then,
Vladimirov et al. [13] extended logic derivative to 𝑝-adic
field and made the certain correction of the original Gibbs
definition. This kind of derivative referred to Vladimirov
pseudodifferential operator. Kuzhel and Albeverio et al. used
Vladimirov operator to study pseudodifferential equations;
and see, for example, [14–16]. However, the Vladimirov pseu-
dodifferential operator, as a kind of operation, is not closed
in the test function space 𝑆(Q

𝑝
). This makes the definition

of Vladimirov operator difficult to be applied to distribution
space 𝑆(Q

𝑝
). In 1992, Su [17] defined derivative and integral

operator𝑇𝛼 on locally compact Vilenkin groups𝐺.The space
of test functions space 𝑆(𝐺) and its distribution 𝑆(𝐺)with the
operation of𝑇𝛼 is closed.𝑇𝛼 is defined as a pseudodifferential
operator with the symbol ⟨𝜉⟩𝛼

𝑇
𝛼

𝜑 = (⟨𝜉⟩
𝛼

𝜑
∧

(𝜉))

∨

, (1)

where ⟨𝜉⟩ = max{1, |𝜉|}, 𝛼 ∈ R. The new definition plays a
role in promoting the development of theory for 𝑝-adic anal-
ysis.

In this paper, we study a class of pseudodifferential equa-
tions of type

𝑇
𝛼

𝑢 + 𝑢 = 𝛿
𝑥
𝑘

, 𝑢 ∈ 𝐿
2
(Q
𝑝
) , 𝑥
𝑘
∈ Q
𝑝
, (2)

where𝑇𝛼 is pseudodifferential operator defined by Su andQ
𝑝

is the field of 𝑝-adic numbers.
Our aim is to show that (2) has a unique solution 𝑢

𝑘

belonging to 𝐿
2
(Q
𝑝
) if 𝛼 > 1/2 and has no solutions if 𝛼 ≤

1/2.
Moreover, we give the condition for the continuity of the

solutions 𝑢
𝑘
with the index 𝛼.

2. Preliminaries

We use the notations indicated in Taiblesons book [18]. Let
𝑝 ≥ 2 be a prime number. The field Q

𝑝
of 𝑝-adic numbers

is a topologically complete space of rational numbers Q

with respect to 𝑝-adic norm | ⋅ |
𝑝
(non-Archimedean norm),

which is defined as follows:

if 𝑥 = 0, then |0|
𝑝
= 0;

if 𝑥 ̸= 0 is an arbitrary rational number, we define
|𝑥|
𝑝
= 𝑝
−𝑟. And 𝑥 can be represented as 𝑥 = 𝑝

𝑟
(𝑚/𝑛),

where 𝑟 = order
𝑝
𝑥 ∈ Z and integers 𝑚 and 𝑛 are

relatively primes and not divisible by 𝑝.

The𝑝-adic norm | ⋅ |
𝑝
satisfies the strong triangle inequal-

ity |𝑥 + 𝑦|
𝑝
≤ max(|𝑥|

𝑝
, |𝑦|
𝑝
).
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Any 𝑝-adic number 𝑥 ̸= 0 in the topologically complete
spaceQ

𝑝
can be presented as series uniquely:

𝑥 =

+∞

∑

𝑖=𝑚

𝑥
𝑖
𝑝
𝑖

,

0 ≤ 𝑥
𝑖
≤ 𝑝 − 1, 𝑖 = 𝑚,𝑚 + 1, . . . , 𝑚 ∈ Z, 𝑥

𝑚
̸=0.

(3)

Define the bitwise operation of addition and multipli-
cation of 𝑥 in Q

𝑝
(either from left to right carry, or not

carry); thenQ
𝑝
is a locally compact, totally disconnected, and

complete topological field.
Denote by 𝐵

0
= {𝑥 ∈ Q

𝑝
: |𝑥|
𝑝
≤ 1} the ring of integers

in Q
𝑝
which is the subring of Q

𝑝
. 𝐵
0
is the compact subring

and compact subspace of locally compact field Q
𝑝
. With the

addition operation of 𝑝-adic field Q
𝑝
, there exists the Haar

measure 𝑑𝑥 onQ
𝑝
such that ∫

𝐵
0

𝑑𝑥 = 1. Denote by

𝐵
𝑟
= {𝑥 ∈ Q

𝑝
: |𝑥|
𝑝
≤ 𝑝
𝑟

} ,

𝑆
𝑟
= {𝑥 ∈ Q

𝑝
: |𝑥|
𝑝
= 𝑝
𝑟

} ,

(4)

respectively, the ball and the sphere of radius 𝑝𝑟 with the
center at 0 ∈ Q

𝑝
. Obviously, ∫

𝐵
𝑟

𝑑𝑥 = 𝑝
𝑟, ∫
𝑆
𝑟

𝑑𝑥 = 𝑝
𝑟
(1−𝑝
−1
).

A complex-valued function 𝜑 : Q
𝑝
→ C defined onQ

𝑝

is called locally constant if for any 𝑥 ∈ Q
𝑝
there exists an inte-

ger 𝑙(𝑥) ∈ Z satisfying

𝜑 (𝑥 + 𝑥


) = 𝜑 (𝑥) , ∀𝑥


∈ 𝐵
𝑙(𝑥)

. (5)

Denote by 𝜀 = 𝜀(Q
𝑝
) the linear space of all the locally constant

functions. 𝑆 = 𝑆(Q
𝑝
) is defined as the linear space of all locally

constant functions with compact support inQ
𝑝
.

The convergence of the point in 𝜀 according to the follow-
ing definition: 𝜑

𝑘

𝜀

→ 0, 𝑘 → ∞ if and only if for any compact
subset 𝐸 ⊂ Q

𝑝
, 𝜑
𝑘
→ 0, 𝑘 → ∞ holds uniformly on 𝐸.

The convergence in 𝑆 has the following meaning: 𝜑
𝑘

𝑆

→ 0,
𝑘 → ∞ if and only if there exists the indices 𝑙 and 𝑁

which do not depend on 𝑘, such that the functions {𝜑
𝑘
} with

supports in the ball 𝐵
𝑁
and with constant on the coset of 𝐵

𝑙
,

𝜑
𝑘
→ 0, 𝑘 → ∞ hold uniformly in 𝐵

𝑁
. Then, 𝜀 and 𝑆 are

complete topological linear spaces. Also denote by 𝑆 the test
function space.

The Fourier transform of 𝜑 ∈ 𝑆(Q
𝑝
) is defined by the

formula

𝜑
∧

(𝜉) = ∫

Q
𝑝

𝜑 (𝑥) 𝜒
𝑝
(𝜉𝑥) 𝑑𝑥, 𝜉 ∈ Q

𝑝
, (6)

and inverse Fourier transform 𝜑
∨ by

𝜑
∨

(𝑥) = ∫

Q
𝑝

𝜑 (𝜉) 𝜒
𝑝
(𝜉𝑥) 𝑑𝜉, 𝑥 ∈ Q

𝑝
, (7)

where 𝜒
𝑝
(𝑥) = 𝑒

2𝜋𝑖{𝑥} is an additive character of the field Q
𝑝
,

with value 1 in𝐵
0
, and {𝑥} = 𝑥

−1
𝑝
−1
+𝑥
−2
𝑝
−2
+⋅ ⋅ ⋅+𝑥

𝑚
𝑝
𝑚.The

Fourier transform and inverse Fourier transform map 𝑆(Q
𝑝
)

onto 𝑆(Q
𝑝
).

Denote by 𝑆

= 𝑆

(Q
𝑝
) the distribution space of test

function space 𝑆. 𝑆 is a complete topological linear space
under the dual topology. The convergence in 𝑆 according to

the following definition: 𝑓
𝑘

𝑆


→ 0, 𝑘 → ∞ if and only if
⟨𝑓
𝑘
, 𝜑⟩ → 0, 𝑘 → ∞ holds for any 𝜑 ∈ 𝑆.
It follows from the definition of 𝑆(Q

𝑝
) that any test func-

tion 𝜑 ∈ 𝑆(Q
𝑝
) is continuous on Q

𝑝
. This means the Dirac

delta function ⟨𝛿
𝑥
, 𝜑⟩ = 𝜑(𝑥) is well posed for any point

𝑥 ∈ Q
𝑝
.

Denote by 𝐿
2
(Q
𝑝
) the set of the measurable functions 𝑓

onQ
𝑝
with the condition∫

Q
𝑝

|𝑓(𝑥)|
2
𝑑𝑥 < ∞. And set𝐿

2
(Q
𝑝
)

is a Hilbert space satisfying the scalar product (𝑓, 𝑔)
𝐿
2
(Q
𝑝
)
=

∫
Q
𝑝

𝑓(𝑥)𝑔(𝑥)𝑑𝑥.
Let 𝐸 be compact set, and 1

𝐸
is the indicative function

of set 𝐸. Then there exist standard sequences Δ
𝑘
(𝑥) of 1

satisfying Δ
𝑘
(𝑥) = 1

𝐵
𝑘

, 𝑘 ∈ Z, 𝑥 ∈ Q
𝑝
.

3. Pseudodifferential Operator 𝑇𝛼

In 1992, Su [17] has given definitions of the derivative for the
𝑝-adic local fields Q

𝑝
, including derivatives of the fractional

orders and real orders.
Let 𝜉 ∈ Q

𝑝
and ⟨𝜉⟩ = max{1, |𝜉|}. Its role is played by the

operator of pseudodifferential operator 𝑇𝛼 (𝛼 ∈ R) which is
defined as

𝑇
𝛼

𝜑 (𝑥) = (⟨𝜉⟩
𝛼

𝜑
∧

(𝜉))

∨

(𝑥) , (8)

for 𝜑 ∈ 𝑆(Q
𝑝
). It is easy to see that 𝑇𝛼𝜑 ∈ 𝑆(Q

𝑝
). With

⟨𝑇
𝛼

𝑓, 𝜑⟩ = ⟨𝑓, 𝑇
𝛼

𝜑⟩ , 𝑓 ∈ 𝑆


(Q
𝑝
) , 𝜑 ∈ 𝑆 (Q

𝑝
) ,

(9)

the defineddomain of𝑇𝛼 can be extended to the space 𝑆(Q
𝑝
).

Thus, we also have 𝑇𝛼𝑓 = (⟨𝜉⟩
𝛼

𝑓
∧
(𝜉))
∨ with 𝑓 ∈ 𝑆


(Q
𝑝
) and

𝑇
𝛼
𝑓 ∈ 𝑆

(Q
𝑝
).

Definition 1. If 𝛼 > 0, then 𝑇𝛼 is defined as 𝑝-adic derivatives
of the order 𝛼 on 𝑆(Q

𝑝
). And if 𝛼 < 0, then 𝑇𝛼 is defined as

𝑝-adic integral of the order −𝛼 on 𝑆(Q
𝑝
). If 𝛼 = 0, 𝑇0𝑓 = 𝑓

for any 𝑓 ∈ 𝑆
, then 𝑇0 is called the identity operator.

In what follows we consider 𝑇𝛼 as an operator in Hilbert
space 𝐿

2
(Q
𝑝
) = 𝐿

2
. Obviously, the set of functions 𝐷(𝑇𝛼) =

{𝑓 ∈ 𝐿
2
: ⟨𝜉⟩
𝛼

𝑓
∧
∈ 𝐿
2
} is the domain of definition of 𝑇𝛼 on

the space 𝐿
2

𝑇
𝛼

𝑓 = (⟨𝜉⟩
𝛼

𝑓
∧

)

∨

. (10)

In [19], Qiu and Su have recently studied the spectrum of
𝑇
𝛼 and constructed the set of eigenfunctions of 𝑇𝛼:

𝜓
𝑁𝑗𝐼

(𝑥) = 𝑝
−𝑁/2

𝜒 (𝑝
𝑁−1

𝑗𝑥) Δ
0
(𝑝
𝑁

𝑥 − 𝑧
𝐼
) ,

𝑁 ∈ Z, 𝐼 = 𝑧
𝐼
+ 𝐵
0
∈

Q
𝑝

𝐵
0

, 𝑗 = 1, 2, . . . , 𝑝 − 1

(11)
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which forms an orthonormal basis in 𝐿
2
(Q
𝑝
) (𝑝-adic wavelet

basis) such that

𝑇
𝛼

𝜓
𝑁𝑗𝐼

(𝑥) = {

𝑝
(1−𝑁)𝛼

𝜓
𝑁𝑗𝐼

(𝑥) , 𝑁 < 1,

𝜓
𝑁𝑗𝐼

(𝑥) , 𝑁 ≥ 1.

(12)

Theorem 2. The function𝑓 is continuous in𝐷(𝑇𝛼) if and only
if 𝛼 > 1/2.

Proof. Let 𝑓 ∈ 𝐷(𝑇
𝛼
); we expand the function 𝑓 under the

𝑝-adic wavelet basic (11) as follows:

𝑓 (𝑥) =

∞

∑

𝑁=1

𝑝−1

∑

𝑗=1

∑

𝐼

(𝑓, 𝜓
𝑁𝑗𝐼

) 𝜓
𝑁𝑗𝐼

(𝑥)

+

0

∑

𝑁=−∞

𝑝−1

∑

𝑗=1

∑

𝐼

(𝑓, 𝜓
𝑁𝑗𝐼

) 𝜓
𝑁𝑗𝐼

(𝑥) .

(13)

Evidently, 𝜓
𝑁𝑗𝐼

(𝑥) belong to the domain of definition of
𝑇
𝛼, and then, the functions 𝜓

𝑁𝑗𝐼
(𝑥) are continuous on Q

𝑝
.

Thus, it is sufficient to prove the continuity of 𝑓(𝑥) with
verifying that the series (13) converges uniformly.

First, we note that there is at most one 𝑧
𝐼
such that

𝜓
𝑁𝑗𝐼

(𝑥) ̸= 0 for the fixed𝑁 and 𝑥. Indeed, if there are 𝑧
𝐼
1

and
𝑧
𝐼
2

satisfying𝜓
𝑁𝑗𝐼

(𝑥) ̸= 0, thenwe haveΔ
0
(𝑝
𝑁
𝑥−𝑧
𝐼
𝑖

) = 1. But
|𝑝
𝑁
𝑥 − 𝑧
𝐼
1

| ≤ 1 and |𝑝𝑁𝑥 − 𝑧
𝐼
2

| ≤ 1. With the strong triangle
inequality |𝑧

𝐼
1

− 𝑧
𝐼
2

| ≤ 1. From the condition 𝐼 = 𝑧
𝐼
+ 𝐵
0
∈

Q
𝑝
/𝐵
0
, we can get the equality 𝐼

1
= 𝐼
2
.

Thus, the sum with the parameter 𝐼 consists of at most
one nonzero term for fixed𝑁 and 𝑥.

Further, following from (11) and (13), we obtain





𝜓
𝑁𝑗𝐼

(𝑥)






≤ 𝑝
−𝑁/2

,






(𝑓, 𝜓
𝑁𝑗𝐼

)






≤




𝑓



𝐿
2
(𝑄)
𝑝

. (14)

The relations (14) obtain the following estimate if𝑁 ≥ 1













𝑝−1

∑

𝑗=1

∑

𝐼

(𝑓, 𝜓
𝑁𝑗𝐼

) 𝜓
𝑁𝑗𝐼

(𝑥)













≤ 𝑝
−𝑁/2




𝑓



𝐿
2
(𝑄)
𝑝

(𝑝 − 1) . (15)

The estimate gives the uniform convergency of the first series
in (13).

The condition 𝑓 ∈ 𝐷(𝑇
𝛼
) and (12) imply (𝑓, 𝜓

𝑁𝑗𝐼
) =

𝑝
(𝑁−1)

(𝑇
𝛼
𝑓, 𝜓
𝑁𝑗𝐼

) for𝑁 < 1. For a fixed𝑁 < 1, usingCauchy-
Schwarz equality and (14), we obtain













𝑝−1

∑

𝑗=1

∑

𝐼

(𝑓, 𝜓
𝑁𝑗𝐼

) 𝜓
𝑁𝑗𝐼

(𝑥)













=













𝑝−1

∑

𝑗=1

∑

𝐼

𝑝
(𝑁−1)

(𝑇
𝛼

𝑓, 𝜓
𝑁𝑗𝐼

) 𝜓
𝑁𝑗𝐼

(𝑥)













≤

{

{

{

𝑝−1

∑

𝑗=1

∑

𝐼






(𝑇
𝛼

𝑓, 𝜓
𝑁𝑗𝐼

)







2}

}

}

1/2

×

{

{

{

𝑝−1

∑

𝑗=1

∑

𝐼

𝑝
2(𝑁−1)




𝜓
𝑁𝑗𝐼

(𝑥)







2}

}

}

1/2

≤




𝑇
𝛼

𝑓



𝐿
2
(𝑄)
𝑝

{

{

{

𝑝−1

∑

𝑗=1

𝑝
−𝑁+2(𝑁−1)

}

}

}

1/2

.

(16)

The estimate obtained abovemeans the second series in (13) is
uniformly convergent if 𝛼 > 1/2. Thus, function 𝑓 is contin-
uous in𝐷(𝑇𝛼) onQ

𝑝
for 𝛼 > 1/2. Theorem 2 is proved.

Next when 𝛼 ≤ 1/2, we will give an example in which the
function belongs to𝐷(𝑇𝛼) but is not continuous onQ

𝑝
.

Example 3. The function

𝑓 (𝑥) =

−1

∑

−∞

1

|𝑁|

𝑝
(𝑁−1)/2

𝜓
𝑁10

(𝑥) (17)

belongs to 𝐷(𝑇𝛼) but 𝑓(𝑥) is not continuous on Q
𝑝
for 𝛼 ≤

1/2.

It is easy to see 𝑓 ∈ 𝐿
2
(Q
𝑝
) and its Fourier transform is

𝑓
∧

(𝜉) =

−1

∑

−∞

1

|𝑁|

𝑝
(𝑁−1)/2

𝜓
∧

𝑁10
(𝜉) . (18)

From (8) and (12), ⟨𝜉⟩𝛼𝜓∧
𝑁10

(𝜉) = 𝑝
𝛼(1−𝑁)

𝜓
∧

𝑁10
(𝜉). Thus

⟨𝜉⟩
𝛼

𝑓
∧

(𝜉) =

−1

∑

−∞

1

|𝑁|

𝑝
(𝑁−1)/2

𝑝
𝛼(1−𝑁)

𝜓
∧

𝑁10
(𝜉) . (19)

⟨𝜉⟩
𝛼

𝑓
∧
(𝜉) ∈ 𝐿

2
(Q
𝑝
) for 𝛼 ≤ 1/2 and ⟨𝜉⟩𝛼𝑓∧(𝜉) ∉ 𝐿

2
(Q
𝑝
) for

𝛼 > 1/2 with the orthonormal basis {𝜓
𝑁10

}
𝑁<0

. So, 𝑓(𝑥) ∈
𝐷(𝑇
𝛼
) for 𝛼 ≤ 1/2.

Next, We will show that 𝑓(𝑥) is not continuous on Q
𝑝
.

First, using (11), we rewrite the definition (17) of 𝑓 as

𝑓 (𝑥) =

−1

∑

−∞

1

|𝑁|

𝑝
−1/2

𝜒 (𝑝
𝑁−1

𝑥)Δ
0
(𝑝
𝑁

𝑥) . (20)

We consider the sequence 𝑥
𝑛
= 𝑝
𝑛, 𝑛 ∈ N. It is easy to see

𝑥
𝑛

→ 0, (𝑛 → ∞) in the 𝑝-adic norm | ⋅ |
𝑝
. Moreover,

Δ
0
(𝑝
𝑁
𝑥
𝑛
) = Δ

0
(𝑝
𝑁+𝑛

) = 0 when 𝑁 + 𝑛 ≤ −1. On the other
hand, when 𝑁 + 𝑛 ≤ 1, 𝑝𝑁−1𝑥

𝑛
become an integer 𝑝-adic

number, and then 𝜒(𝑝
𝑁−1

𝑥
𝑛
) = 𝜒(𝑝

𝑁+𝑛−1
) = 1. From the

above relations and (20) we can get that

𝑓 (𝑥
𝑛
) = 𝑓 (𝑝

𝑛

)

= 𝑝
−1/2

(

𝜒 (𝑝
−1
)

𝑛

+

−1

∑

𝑁=−𝑛+1

1

|𝑁|

) → ∞

as 𝑛 → ∞.

(21)

Therefore, 𝑓(𝑥) cannot be continuous at 𝑥 = 0.

4. Pseudodifferential Equation

In this section we will consider the pseudodifferential equa-
tion

𝑇
𝛼

𝑢 + 𝑢 = 𝛿
𝑥
𝑘

, 𝑢 ∈ 𝐿
2
(Q
𝑝
) , 𝑥
𝑘
∈ Q
𝑝
, (22)

where 𝑇𝛼 : 𝐿
2
(Q
𝑝
) → 𝑆


(Q
𝑝
) is pseudodifferential operator

in the distribution sense.
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Theorem 4. Equation (22) has a unique solution 𝑢 = 𝑢
𝑘
∈

𝐿
2
(Q
𝑝
) for 𝛼 > 1/2 and has no solutions belonging to 𝐿

2
(Q
𝑝
)

for 𝛼 ≤ 1/2.

Proof. Let 𝜑 ∈ 𝐷(𝑇
𝛼
). Similar to the proof of Theorem 2,

we give the expansion of 𝜑 using the uniformly convergent
series with respect to the complex-conjugated 𝑝-adic wavelet
basis {𝜓

𝑁𝑗𝐼
}. For {𝜓

𝑁𝑗𝐼
} are continuous functions on Q

𝑝
we

can write

𝜑 (𝑥
𝑘
) =

+∞

∑

𝑁=−∞

𝑝−1

∑

𝑗=1

∑

𝐼

(𝜑, 𝜓
𝑁𝑗𝐼

) 𝜓
𝑁𝑗𝐼

(𝑥
𝑘
) (23)

for 𝑥 = 𝑥
𝑘
.

Consider

𝜓
𝑁𝑗𝐼

(𝑥
𝑘
) = 𝑝
−𝑁/2

𝜒 (𝑝
𝑁−1

𝑗𝑥
𝑘
)Δ
0
(𝑝
𝑁

𝑥
𝑘
− 𝑧
𝐼
)

= 𝑝
−𝑁/2

𝜒 (−𝑝
𝑁−1

𝑗𝑥
𝑘
) Δ
0
(𝑝
𝑁

𝑥
𝑘
− 𝑧
𝐼
) .

(24)

It is easy to see 𝜓
𝑁𝑗𝐼

(𝑥
𝑘
) ̸= 0 equals |𝑝𝑁𝑥

𝑘
− 𝑧
𝐼
| ≤ 1. Here

𝐼 = 𝑧
𝐼
+ 𝐵
0
∈ Q
𝑝
/𝐵
0
and by the strong triangle inequality we

obtain |𝑝𝑁𝑥
𝑘
− 𝑧
𝐼
| ≤ 1 equals 𝑧

𝐼
= {𝑝
𝑁
𝑥
𝑘
}. Then, we obtain

the conclusion that

𝜓
𝑁𝑗𝐼

(𝑥
𝑘
) =

{

{

{

0, 𝑧
𝐼
̸= {𝑝
𝑁
𝑥
𝑘
} ,

𝑝
−𝑁/2

𝜒 (−𝑝
𝑁−1

𝑗𝑥
𝑘
) , 𝑧

𝐼
= {𝑝
𝑁
𝑥
𝑘
} .

(25)
And then
⟨𝛿
𝑥
𝑘

, 𝜑⟩ = 𝜑 (𝑥
𝑘
)

=

+∞

∑

𝑁=−∞

𝑝−1

∑

𝑗=1

𝑝
−𝑁/2

𝜒 (−𝑝
𝑁−1

𝑗𝑥
𝑘
) (𝜑, 𝜓

𝑁𝑗{𝑝
𝑁
𝑥
𝑘
}
)

=

+∞

∑

𝑁=−∞

𝑝−1

∑

𝑗=1

𝑝
−𝑁/2

𝜒 (−𝑝
𝑁−1

𝑗𝑥
𝑘
) ⟨𝜓
𝑁𝑗{𝑝
𝑁
𝑥
𝑘
}
, 𝜑⟩ .

(26)

For 𝑆(Q
𝑝
) ⊂ 𝐷(𝑇

𝛼
), the equality (26) implies that

𝛿
𝑥
𝑘

=

+∞

∑

𝑁=−∞

𝑝−1

∑

𝑗=1

𝑝
−𝑁/2

𝜒 (−𝑝
𝑁−1

𝑗𝑥
𝑘
) 𝜓
𝑁𝑗{𝑝
𝑁
𝑥
𝑘
}
, (27)

in which series converges uniformly in 𝑆(Q
𝑝
).

We suppose that there is a function 𝑢
𝑘
∈ 𝐿
2
(Q
𝑝
) which

can be represented as a convergent series in 𝐿
2
:

𝑢
𝑘
(𝑥) =

+∞

∑

𝑁=−∞

𝑝−1

∑

𝑗=1

∑

𝐼

𝑐
𝑁𝑗𝐼

𝜓
𝑁𝑗𝐼

(𝑥) . (28)

Applying pseudodifferential operator 𝑇𝛼 + 𝐼 on the both
sides, we obtain a series with (12)

𝑇
𝛼

𝑢
𝑘
+ 𝑢
𝑘

=

0

∑

𝑁=−∞

𝑝−1

∑

𝑗=1

∑

𝐼

𝑐
𝑁𝑗𝐼

(1 + 𝑝
𝛼(1−𝑁)

) 𝜓
𝑁𝑗𝐼

+

+∞

∑

𝑁=1

𝑝−1

∑

𝑗=1

∑

𝐼

2𝑐
𝑁𝑗𝐼

𝜓
𝑁𝑗𝐼

,

(29)

which converges in 𝑆(Q
𝑝
) for 𝑇𝛼𝑆(Q

𝑝
) ⊂ 𝐿
2
(Q
𝑝
). Compar-

ing the two series (27) and (29), we obtain

𝑐
𝑁𝑗{𝑝
𝑁
𝑥
𝑘
}
=

{
{

{
{

{

1

2

𝑝
−𝑁/2

𝜒 (−𝑝
𝑁−1

𝑗𝑥
𝑘
) , 𝑁 ≥ 1,

(𝑝
𝛼(1−𝑁)

+ 1)

−1

𝑝
−𝑁/2

𝜒 (−𝑝
𝑁−1

𝑗𝑥
𝑘
) , 𝑁 < 1.

(30)

Thus,

𝑢
𝑘
(𝑥) =

+∞

∑

𝑁=1

𝑝−1

∑

𝑗=1

1

2

𝑝
−𝑁/2

× 𝜒 (−𝑝
𝑁−1

𝑗𝑥
𝑘
) 𝜓
𝑁𝑗{𝑝
𝑁
𝑥
𝑘
}
(𝑥)

+

0

∑

𝑁=−∞

𝑝−1

∑

𝑗=1

(𝑝
𝛼(1−𝑁)

+ 1)

−1

𝑝
−𝑁/2

× 𝜒 (−𝑝
𝑁−1

𝑗𝑥
𝑘
) 𝜓
𝑁𝑗{𝑝
𝑁
𝑥
𝑘
}
(𝑥) .

(31)

Next, We will show that the series (31) belong to 𝐿
2
(Q
𝑝
) for

𝛼 > 1/2. For the general term of the first series we obatin









1

2

𝑝
−𝑁/2

𝜒 (−𝑝
𝑁−1

𝑗𝑥
𝑘
)









2

≤

1

4

𝑝
−𝑁

, 𝑁 ≥ 1 (32)

that means the first series converges in 𝐿
2
(Q
𝑝
) for any 𝛼 ∈ R.

We estimate the general term of the second series as fol-
lows:








(𝑝
𝛼(1−𝑁)

+ 1)

−1

𝑝
−𝑁/2

𝜒 (−𝑝
𝑁−1

𝑗𝑥
𝑘
)








2

≤ 𝑝
−𝑁

(𝑝
𝛼(1−𝑁)

+ 1)

−2

≤ 𝑝
−2𝛼

𝑝
−𝑁(1−2𝛼)

, 𝑁 < 1.

(33)

It is easy to see the second series converges in 𝐿
2
(Q
𝑝
) for 𝛼 >

1/2.
Thus 𝑢

𝑘
is a unique solution of (31) for 𝛼 > 1/2.

For 𝑝𝛼(1−𝑁) + 1 ≤ 2𝑝
𝛼(1−𝑁) with 𝑁 < 1, we estimate the

general term of the second series as follows:








(𝑝
𝛼(1−𝑁)

+ 1)

−1

𝑝
−𝑁/2

𝜒 (−𝑝
𝑁−1

𝑗𝑥
𝑘
)








2

≥

1

4

𝑝
−2𝛼

𝑝
−𝑁(1−2𝛼)

, 𝑁 < 1

(34)

that means the series diverges in 𝐿
2
(Q
𝑝
) for 𝛼 ≤ 1/2.

Theorem 4 is proved.

Theorem 5. The solution 𝑢
𝑘
of (22) is continuous on Q

𝑝
for

𝛼 > 1.

Proof. We will show that the series (31) converges uniformly
on Q
𝑝
if 𝛼 > 1 and converges uniformly on the ball not

containing 𝑥
𝑘
if 1/2 < 𝛼 ≤ 1.

Indeed, the general term (31) of the first series does not
exceed (1/2)𝑝−𝑁 by (14) when 𝑁 ≥ 1. Thus, the first series
converges uniformly with𝑁 ≥ 1.
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When 𝑁 < 1 the general term (31) of the second series
satisfies

(𝑝
𝛼(1−𝑁)

)

−1

𝑝
−𝑁

≤ 𝑝
−𝛼

𝑝
−𝑁(1−𝛼)

. (35)

The estimate we obtained above implies that for 𝛼 > 1 the
subseries of (31) converges uniformly with 𝑁 < 1. Hence,
the series (31) converges uniformly for 𝛼 > 1. Theorem 5 is
proved.

Let 𝛼 > 1/2 and fixed points 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
∈ Q
𝑝
. Then,

define 𝑆𝑝{𝑢
𝑘
}
𝑛

1
as the linear span of solutions 𝑢

𝑘
(𝑘 = 1, 2,

. . . , 𝑛) of (22). Hence, we have the following.

Theorem 6. 𝑆𝑝{𝑢
𝑘
}
𝑛

1
∩ 𝐷(𝑇

𝛼/2
) = {0} for 1/2 < 𝛼 ≤ 1 and

𝑆𝑝{𝑢
𝑘
}
𝑛

1
⊂ 𝐷(𝑇

𝛼/2
) for 𝛼 > 1.

Proof. Thesolution𝑢
𝑘
of (22) is obtained by (31). Considering

the expansion (31) and semigroup property (c.f. [19])

𝑇
𝛼
1
𝑇
𝛼
2
= 𝑇
𝛼
1
+𝛼
2
, 𝛼
1
, 𝛼
2
> 0 (36)

of 𝑇𝛼. Obviously, 𝑢
𝑘
∈ 𝐷(𝑇

𝛼/2
) if and only if the following

series converge in 𝐿
2
(Q
𝑝
):

+∞

∑

𝑁=1

𝑝−1

∑

𝑗=1

1

2

𝑝
−𝑁/2

𝜒 (−𝑝
𝑁−1

𝑗𝑥
𝑘
) 𝜓
𝑁𝑗{𝑝
𝑁
𝑥
𝑘
}
(𝑥)

+

0

∑

𝑁=−∞

𝑝−1

∑

𝑗=1

(𝑝
𝛼(1−𝑁)

+ 1)

−1

𝑝
−𝑁/2

× 𝜒 (−𝑝
𝑁−1

𝑗𝑥
𝑘
) 𝑝
(𝛼/2)(1−𝑁)

𝜓
𝑁𝑗{𝑝
𝑁
𝑥
𝑘
}
(𝑥) .

(37)

For the general term of the first series,we have the estimate as
follows:









1

2

𝑝
−𝑁/2

𝜒 (−𝑝
𝑁−1

𝑗𝑥
𝑘
)









2

≤

1

4

𝑝
−𝑁

, 𝑁 ≥ 1 (38)

that means it converges in 𝐿
2
(Q
𝑝
) for any 𝛼 ∈ R.

Similarly, for the general term of the second series, we
have








(𝑝
𝛼(1−𝑁)

+ 1)

−1

𝑝
−𝑁/2

𝜒 (−𝑝
𝑁−1

𝑗𝑥
𝑘
) 𝑝
(𝛼/2)(1−𝑁)








2

≤ 𝐶𝑝
(𝛼−1)𝑁

, 𝑁 < 1.

(39)

Hence the series converges when 𝛼 > 1. Then 𝑆𝑝{𝑢
𝑘
}
𝑛

1
⊂

𝐷(𝑇
𝛼/2
) if 𝛼 > 1.

For 𝑝𝛼(1−𝑁) + 1 ≤ 2𝑝
𝛼(1−𝑁) with𝑁 < 1, the general term

of the second series can be estimated below







(𝑝
𝛼(1−𝑁)

+ 1)

−1

𝑝
−𝑁/2

𝜒 (−𝑝
𝑁−1

𝑗𝑥
𝑘
) 𝑝
(𝛼/2)(1−𝑁)








2

≥

1

4

𝑝
−𝛼

𝑝
−𝑁(1−𝛼)

, 𝑁 < 1

(40)

that means it diverges in 𝐿
2
(Q
𝑝
) for 𝛼 ≤ 1.

Hence 𝑢
𝑘
∉ 𝐷(𝑇

𝛼/2
). Since the estimate (40) does not

depend on the choice of 𝑢
𝑘
. And considering the functions

{𝜓
𝑁𝑗{𝑝
𝑁
𝑥
𝑘
}
(𝑥)} (𝑁 < 1) of the basis {𝜓

𝑁𝑗𝐼
(𝑥)} in the 𝑢

𝑘
(𝑘 =

1, 2, . . . , 𝑛) of (31) are different for any small negative 𝑁, we
obtain that 𝑆𝑝{𝑢

𝑘
}
𝑛

1
∩ 𝐷(𝑇

𝛼/2
) = {0} if 1/2 < 𝛼 ≤ 1.

Theorem 6 is proved.

5. Conclusions

In this paper, solutions of pseudodifferential equations with
the type 𝑇𝛼𝑢 + 𝑢 = 𝛿

𝑥
𝑘

over 𝑝-adic field Q
𝑝
are considered.

First, we give the condition for the continuity of arbitrary
function in the domain of definition 𝐷(𝑇

𝛼
) with the index

𝛼 > 1/2 and give the example to show noncontinuity when
𝛼 ≤ 1/2. Then, we obtain the existence of solutions to
the pseudodifferential equations. The results show that the
equation has a unique solution belonging to 𝐿

2
(Q
𝑝
) for 𝛼 >

1/2 and has no solutions for 𝛼 ≤ 1/2. Furthermore, we
show the continuity of solutions when 𝛼 > 1. Finally, the
embedding from the linear span of solutions to the domain
of definition𝐷(𝑇𝛼) is obtained.
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Spectral homotopy analysis method (SHAM) as a modification of homotopy analysis method (HAM) is applied to obtain solution
of high-order nonlinear Fredholm integro-differential problems. The existence and uniqueness of the solution and convergence of
the proposed method are proved. Some examples are given to approve the efficiency and the accuracy of the proposed method.
The SHAM results show that the proposed approach is quite reasonable when compared to homotopy analysis method, Lagrange
interpolation solutions, and exact solutions.

1. Introduction

The integro-differential equations stem from the mathemat-
ical modeling of many complex real-life problems. Many
scientific phenomena have been formulated using integro-
differential equations [1, 2]. Solving nonlinear integro-
differential equation is much more difficult than linear one
analytically. So different types of numerical methods have
been used to obtain an efficient approximation solution [3, 4].
In 1992 Liao [5] proposed the homotopy analysis method
(HAM) concept in topology for solving nonlinear differential
equations. Liao [6, 7] found that the convergence of series
solutions of nonlinear equations cannot be guaranteed by the
early HAM. Further, Liao [6] introduced a nonzero auxiliary
parameter to solve this limitation. Unlike the special cases of
HAM such as Lyapunove’s artificial small parameter method
[8], Adomian decomposition method [9–12], and the 𝛿-
expansion method [13], this method need not a small pertur-
bation parameter. In the HAM the perturbation techniques
[14] need not be converted a nonlinear problem to infinite
number of linear problems. The homotopy analysis method
is applicable for solving problems having strong nonlinearity
[15], even if they do not have any small or large parameters,
so it is more powerful than traditional perturbationmethods.

The convergence region and the rate of approximation
in series can been adjusted by this method. Also it can

give us freedom to use different base function to approxi-
mate a non linear problem. The convergence of HAM for
solving Volterra-Fredholm integro-differential equations is
presented in [16].

In 2010, Motsa et al. [17] suggested the so-called spectral
homotopy analysis method (SHAM) using the Chebyshev
pseudospectral method to solve the linear high-order defor-
mation equations. Since the SHAM combines the HAM
with the numerical techniques, it provides us larger freedom
to choose auxiliary linear operators. Thus, one can choose
more complicated auxiliary linear operators in the frame
of the SHAM. In theory, any continuous function in a
bounded interval can be best approximated using Chebyshev
polynomial. So, the SHAMprovides larger freedom to choose
the auxiliary linear operator 𝐿 and initial guess. Further, it is
easy to employ the optimal convergence-control parameter in
the frame of the SHAM.Thus, the SHAM has great potential
to solve more complicated nonlinear problems in science
and engineering, although further modifications in theory
and more applications are needed. Chebyshev polynomial is
considered a kind of special function. There are many other
special functions such as Hermite polynomial, Legendre
polynomial, Airy function, Bessel function, Riemann zeta
function, and hypergeometric functions. Since the HAM
provides us extremely large freedom to choose the auxiliary
linear operator 𝐿 and the initial guess, it should be possible
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to develop a generalized spectral HAM which can use a
proper special function for a given nonlinear problem. The
spectral homotopy analysis method has been used for solving
partial and ordinary differential equations [18–20]. Spectral
homotopy analysis method and its convergency for solving
a class of optimal control problems are presented in [21].
Motsa et al. [17–19] found that the spectral homotopy analysis
method is more efficient than the homotopy analysis method
as it does not depend on the rule of solution expression
and the rule of ergodicity. This method is more flexible
than homotopy analysis method, since it allows for a wider
range of linear and nonlinear operators, and one is not
restricted to use the method of higher-order differential
mapping for solving boundary value problems in bounded
domains, unlike the homotopy analysis method. The range
of admissible ℎ values is much wider in spectral homotopy
analysis method than in homotopy analysis method. The
main restriction of HAM in solving integral equations is
to choose the best initial guess, as the series solution is
convergent. In SHAM the initial approximation is taken to be
the solution of the nonhomogeneous linear part of the given
equation. In 2012, Pashazadeh Atabakan et al. solved linear
Volterra and Fredholm integro-differential equations using
spectral homotopy analysis method; see [22].

In this paper, we apply spectral homotopy analysis
method (SHAM) to solve higher-order nonlinear Fredholm
type of integro-differential equations. Fredholm integro-
differential equation is given by

2

∑

𝑗=0

𝑎
𝑗
(𝑥) 𝑦
(𝑗)

(𝑥) = 𝑓 (𝑥) + 𝜇∫

1

−1

𝑘 (𝑥, 𝑡) [𝑦 (𝑡)]
𝑟

𝑑𝑡,

𝑦 (−1) = 𝑦 (1) = 0,

(1)

where𝜇 is constant value,𝑓(𝑥), 𝑘(𝑥, 𝑡), [𝑦(𝑡)]𝑟, and 𝑎
𝑗
(𝑥)𝑟 ≥ 1

are functions that have suitable derivatives on interval −1 ≤
𝑡 ≤ 𝑥 ≤ 1 and 𝑎

2
(𝑥) ̸= 0.

The paper is organized in the following way. Section 2
includes a brief introduction in homotopy analysis method.
Spectral homotopy analysis method for solving nonlinear
Fredholm integral equations is presented in Section 3. The
existence and uniqueness of the solution and convergence of
the proposed method are proved in Section 4. In Section 5,
numerical examples are presented. In Section 6, concluding
remarks are given.

2. Homotopy Analysis Solution

In this section, we give a brief introduction to HAM. We
consider the following differential equation in a general form
as follows:

𝑁[𝑦 (𝜂)] = 0, (2)

where 𝑁 is nonlinear operator, 𝜂 denotes independent vari-
ables, and 𝑦(𝜂) is an unknown function, respectively. For
simplicity we disregard all initial and all boundary conditions

which can be dealt in similar way. The so-called zero-order
deformation equation was constructed by Liao as follows:

(1 − 𝑝) 𝐿 [𝜓 (𝜂; 𝑝) − 𝑦
0
(𝜂)] = 𝑝ℎ𝐻 (𝜂) (𝑁 [𝜓 (𝜂; 𝑝)]) ,

(3)

where 𝑝 ∈ [0, 1] is the embedding parameter, ℎ is a nonzero
convergence-parameter, 𝐻(𝜂) is an auxiliary function, 𝑦

0
(𝜂)

is called an initial guess of 𝑦(𝜂), and 𝜓(𝜂; 𝑝) is an unknown
function. In addition, 𝐿 is an auxiliary linear operator, and𝑁
is nonlinear operator as follows:

𝐿 (𝜓 (𝑥; 𝑝)) = 𝑎
𝑘
(𝑥)

𝜕
2
𝜓 (𝑥; 𝑝)

𝜕𝑥
2

(4)

with the property 𝐿(∑2
𝑗=0
𝑐
𝑗
𝑡
𝑗
) = 0, where 𝑐

𝑗
, are constants

and

𝑁[𝜓 (𝑥; 𝑝)] =

2

∑

𝑗=0

𝑎
𝑗
(𝑥)

𝜕
𝑗
𝜓 (𝑥; 𝑝)

𝜕𝑥
𝑗

− 𝑓 (𝑥)

− 𝜇∫

1

−1

𝑘 (𝑥, 𝑡) 𝜓
𝑟

(𝑡) 𝑑𝑡

(5)

is a nonlinear operator. Obviously, when 𝑝 = 0 and 𝑝 = 1,
it holds 𝜓(𝜂; 0) = 𝑦

0
(𝜂) and 𝜓(𝜂; 1) = 𝑦(𝜂). In this way, as

𝑝 increase from 0 to 1, 𝜓(𝜂; 𝑝) alter from initial guess 𝑦
0
(𝜂)

to the solution 𝑦(𝜂), and 𝜓(𝜂; 𝑝) is expanded in Taylor series
with respect to 𝑝 as follows:

𝜓 (𝜂; 𝑝) = 𝑦
0
(𝜂) +

+∞

∑

𝑚=1

𝑦
𝑚
(𝜂) 𝑝
𝑚

, (6)

where

𝑦
𝑚
(𝜂) = 𝐷

𝑚
[𝜓 (𝜂; 𝑝)] ,

𝐷
𝑚
𝜓 =

1

𝑚!

𝜕
𝑚
𝜓

𝜕𝑝
𝑚








𝑝=0

.

(7)

The series (6) converges at 𝑝 = 1 if the auxiliary linear
operator, the initial guess, the convergence-parameter, and
the auxiliary function are properly selected as follows:

𝜓 (𝜂) = 𝑦
0
(𝜂) +

+∞

∑

𝑚=1

𝑦
𝑚
(𝜂) . (8)

The admissible and valid values of the convergence-
parameter ℎ are found from the horizontal portion of the
ℎ-curves. Liao proved that 𝑦(𝜂) is one of the solutions of
original nonlinear equation. As𝐻(𝜂) = 1, so (3) becomes

(1 − 𝑝) 𝐿 [𝜓 (𝜂; 𝑝) − 𝑦
0
(𝜂)] = 𝑝ℎ (𝑁 [𝜓 (𝜂; 𝑝)]) . (9)

Define the vector 𝑦
𝑚
= {𝑦
0
(𝜂), 𝑦
1
(𝜂), . . . , 𝑦

𝑚
(𝜂)}. Operating

on both side of (9) with𝐷
𝑚
, we have the so called𝑚th-order

deformation equation as follows:

𝐿 [𝑦
𝑚
(𝜂) − 𝜒

𝑚
𝑦
𝑚−1

(𝜂)] = ℎ𝐻 (𝜂) 𝑅
𝑚
(𝑦
𝑚−1

(𝜂)) , (10)
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where

𝑅
𝑚
(𝑦
𝑚−1
) =

1

(𝑚 − 1)!

𝜕
𝑚−1
𝑁[𝜓 (𝜂; 𝑝)]

𝜕𝑝
𝑚−1









𝑝=0

,

𝜒
𝑚
= {

0, 𝑚 ≤ 1

1, otherwise,

(11)

𝑦
𝑚
(𝜂) for 𝑚 ≥ 0 that is governed by the linear equation

(10) can be solved by symbolic computation software such as
MAPLE, MATLAB, and similar CAS.

3. Spectral-Homotopy Analysis Solution

Consider the non linear Fredholm integro-differential equa-
tion:
2

∑

𝑗=0

𝑎
𝑗
(𝑥) 𝑦
(𝑗)

(𝑥) = 𝑓 (𝑥) + 𝜇∫

1

−1

𝑘 (𝑥, 𝑡) [𝑦 (𝑡)]
𝑟

𝑑𝑡,

𝑦 (−1) = 𝑦 (1) = 0.

(12)

We begin by defining the following linear operator:

𝐿 (𝜓 (𝑥; 𝑝)) =

2

∑

𝑗=0

𝑎
𝑗
(𝑥)

𝜕
𝑗
𝜓 (𝑥; 𝑝)

𝜕𝑥
𝑗

, (13)

where𝑝 ∈ [0, 1] is the embedding parameter and𝜓(𝑥; 𝑝) is an
unknown function. The zeroth-order deformation equation
is given by

(1 − 𝑝) 𝐿 [𝜓 (𝜂; 𝑝) − 𝑦
0
(𝜂)] = 𝑝ℎ (𝑁 [𝜓 (𝜂; 𝑝)] − 𝑓 (𝜂)) ,

(14)

where ℎ is the nonzero convergence controlling auxiliary
parameter and𝑁 is a nonlinear operator given by

𝑁[𝜓 (𝜂; 𝑝)] =

2

∑

𝑗=0

𝑎
𝑗
(𝜂)

𝜕
𝑗
𝜓 (𝜂; 𝑝)

𝜕𝜂
𝑗

− 𝑓 (𝜂)

− 𝜇∫

1

−1

𝑘 (𝜂, 𝑡) 𝜓
𝑟

(𝑡) 𝑑𝑡.

(15)

Differentiating (14) 𝑚 times with respect to the embedding
parameter 𝑝, setting 𝑝 = 0, and finally dividing them by 𝑚!,
we have the so called𝑚th-order deformation equation

𝐿 [𝑦
𝑚
(𝜂) − 𝜒

𝑚
𝑦
𝑚−1

(𝜂)] = ℎ𝑅
𝑚
, (16)

subject to boundary conditions

𝑦
𝑚
(−1) = 𝑦

𝑚
(1) = 0, (17)

where

𝑅
𝑚
(𝜂) =

2

∑

𝑗=0

𝑎
𝑗
(𝜂)

𝜕
𝑗
𝜓 (𝜂; 𝑝)

𝜕𝜂
𝑗

− 𝑓 (𝜂) (1 − 𝜒
𝑚
)

− 𝜇∫

1

−1

𝑘 (𝜂, 𝑡) 𝜓
𝑟

(𝑡) 𝑑𝑡.

(18)

The initial approximation that is used in the higher-order
equation (18) is obtained on solving the following equation:

2

∑

𝑗=0

𝑎
𝑗
(𝑥) 𝑦
(𝑗)

0
(𝑥) = 𝑓 (𝑥) (19)

subject to boundary conditions

𝑦
0
(−1) = 𝑦

0
(1) = 0, (20)

where we use the Chebyshev pseudospectral method to solve
(19)-(20).

We first approximate 𝑦
0
(𝜂) by a truncated series of

Chebyshev polynomial of the following form:

𝑦
0
(𝜂) ≈ 𝑦

𝑁

0
(𝜂
𝑗
) =

𝑁

∑

𝑘=0

𝑦
𝑘
𝑇
𝑘
(𝜂
𝑗
) , 𝑗 = 0, . . . , 𝑁, (21)

where 𝑇
𝑘
is the 𝑘th Chebyshev polynomials, 𝑦

𝑘
are coef-

ficients and Gauss-Lobatto collocation points 𝜂
0
, 𝜂
1
, . . . , 𝜂

𝑁

which are the extrema of the 𝑁th-order Chebyshev polyno-
mial defined by

𝜂
𝑗
= cos(

𝜋𝑗

𝑁

) . (22)

Derivatives of the functions𝑦
0
(𝜂) at the collocation points

are represented as

𝑑
𝑠
𝑦
0
(𝜂
𝑘
)

𝑑𝜂
𝑠

=

𝑁

∑

𝑗=0

𝐷
𝑠

𝑘𝑗
𝑦
0
(𝜂
𝑗
) , 𝑘 = 0, . . . , 𝑁, (23)

where 𝑠 is the order of differentiation and𝐷 is the Chebyshev
spectral differentiationmatrix. Following [23], we express the
entries of the differentiation matrix𝐷 as

𝐷
𝑘𝑗
= (

−1

2

)

𝑐
𝑘

𝑐
𝑗

×

(−1)
𝑘+𝑗

sin (𝜋 (𝑗 + 𝑘) /2𝑁) sin (𝜋 (𝑗 − 𝑘) /2𝑁)
, 𝑗 ̸= 𝑘,

𝐷
𝑘𝑗
= (

−1

2

)

𝑥
𝑘

sin2 (𝜋𝑘/𝑁)
, 𝑘 ̸= 0,𝑁, 𝑘 = 𝑗,

𝐷
00
= −𝐷
𝑁𝑁
=

2𝑁
2
+ 1

6

.

(24)

Substituting (21)–(23) into (19) will result in

AY
0
= F (25)

subject to the boundary conditions

𝑦
0
(𝜂
0
) = 𝑦
0
(𝜂
𝑁
) = 0, (26)
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where

A =
2

∑

𝑗=0

a
𝑗
D𝑗,

Y
0
= [𝑦
0
(𝜂
0
) , 𝑦
0
(𝜂
1
) , . . . , 𝑦

0
(𝜂
𝑁
)]
𝑇

,

F = [𝑓 (𝜂
0
) , 𝑓 (𝜂

1
) , . . . , 𝑓 (𝜂

𝑁
)]
𝑇

,

a
𝑟
= diag (𝑎

𝑟
(𝜂
0
) , 𝑎
𝑟
(𝜂
1
) , . . . , 𝑎

𝑟
(𝜂
𝑁
)) .

(27)

The values of 𝑦
0
(𝜂
𝑖
), 𝑖 = 0, . . . , 𝑁 are determined from the

equation

Y
0
= A−1F, (28)

which is the initial approximation for the SHAM solu-
tion of the governing equation (12). Apply the Chebyshev
pseudospectral transformation on (16)–(18) to obtain the
following result:

AY
𝑚
= (𝜒
𝑚
+ ℎ)AY

𝑚−1
− ℎ [S

𝑚−1
− (1 − 𝜒

𝑚
) F] , (29)

subject to the boundary conditions

𝑦
𝑚
(𝜂
0
) = 𝑦
𝑚
(𝜂
𝑁
) = 0, (30)

where A and F were defined in and

Y
𝑚
= [𝑦
𝑚
(𝜂
0
) , 𝑦
𝑚
(𝜂
1
) , . . . , 𝑦

𝑚
(𝜂
𝑁
)]
𝑇

,

s
𝑚
= ∫

1

−1

𝑘 (𝜏, 𝑡) [Y
𝑚
]
𝑟

𝑑𝑡.

(31)

To implement the boundary condition (30) we delete the first
and the last rows of S

𝑚−1
, F and the first and the last rows and

columns ofA. Finally this recursive formula can be written as
follows:

Y
𝑚
= (𝜒
𝑚
+ ℎ)Y

𝑚−1
− ℎA−1 [S

𝑚−1
− (1 − 𝜒

𝑚
) F
𝑚−1
] ,

(32)

with starting from the initial approximation we can obtain
higher-order approximation Y

𝑚
for 𝑚 ≥ 1 recursively. To

compute the integral in (32) we use the Clenshaw-Curtis
quadrature formula as follows:

S
𝑚
(𝜂) = ∫

1

−1

𝑘 (𝜂, 𝑡, Ỹ
𝑚
) 𝑑𝑡 =

𝑁

∑

𝑗=0

𝑤
𝑗
𝑘 (𝜂, 𝜂

𝑗
, Ỹ
𝑚
) , (33)

where the nodes 𝜂
𝑗
are given by (22) and the weights 𝑤

𝑗
are

given by

𝑤
0
= 𝑤
𝑁
=

{
{

{
{

{

1

𝑁
2
, 𝑁 odd,
1

𝑁
2
− 1

, 𝑁 even,
(34)

𝑤
𝑙
=

2

𝑁𝛾
𝑙

[1 −

⌊𝑁/2⌋

∑

𝑘=1

2

𝛾
2𝑘
(4𝑘
2
− 1)

cos 2𝑘𝑙𝜋
𝑁

] ,

𝑙 = 1, . . . , 𝑁 − 1,

(35)

where 𝛾
0
= 𝛾
𝑁
= 2 and 𝛾

𝑙
= 1, for 𝑙 = 1, . . . , 𝑁 − 1. Ỹ is

a column vector of the elements of the vector Y that is
computed as follows:

Ỹ
𝑚
=

𝑚

∑

𝑛
1
=0

𝑦
𝑚−𝑛
1

𝑛
1

∑

𝑛
2
=0

𝑦
𝑛
1
−𝑛
2

⋅ ⋅ ⋅

𝑛
𝑟−2

∑

𝑛
𝑟−1
=0

𝑦
𝑛
𝑟−2
−𝑛
𝑟−1

𝑦
𝑛
𝑟−1

, (36)

where𝑚, 𝑟 ≥ 0 are positive integers [24].
Regarding to accuracy, the stability, and the error of

previous quadrature formula at the Gauss-Lobatto points we
refer the reader to [25].

4. Convergence Analysis

Following the authors in [7, 16, 26], we present the con-
vergence of spectral homotopy analysis method for solving
Fredholm integro-differential equations.

In view of (13) and (27), (12) can be written as follows:

AY = F + 𝜇∫
1

−1

𝑘 (𝑥, 𝑡)G (Y) 𝑑𝑡, (37)

where Y, F, and G(Y) are vector functions.
We obtain

Y = A−1F + 𝜇∫
1

−1

𝑘 (𝑥, 𝑡)A−1G (Y) 𝑑𝑡. (38)

By substituting F̃ = A−1F and G̃(Y) = A−1G(Y) in (38), we
obtain

Y = F̃ + 𝜇∫
1

−1

𝑘 (𝑥, 𝑡) G̃ (Y) 𝑑𝑡. (39)

In (39), we assume that F̃ is bounded for all 𝑡 in 𝐶 = [−1, 1]
and

|𝑘 (𝑥, 𝑡)| ≤ 𝑀. (40)

Also, we suppose that the non linear term ̃G(Y) is Lipschitz
continuous with







̃G (Y) − ̃G (Y∗)

≤ 𝐿





Y − Y∗


. (41)

If we set 𝛼 = 2𝜇𝐿𝑀, then the following can be proved by
using the previous assumptions.

Theorem 1. Thenonlinear Fredholm integro-differential equa-
tion in (32) has a unique solution whenever 0 < 𝛼 < 1.

Proof. Let Y and Y∗ be two different solutions of (39), then





Y − Y∗


=











𝜇∫

1

−1

𝑘 (𝑥, 𝑡) [
̃G (Y) − ̃G (Y∗)] 𝑑𝑡











≤ 𝜇∫

1

−1

|𝑘 (𝑥, 𝑡)|







̃G (Y) − ̃G (Y∗)

𝑑𝑡

≤ 2𝜇𝐿𝑀




Y − Y∗


.

(42)

Sowe get (1−𝛼)‖Y−Y∗‖ ≤ 0. Since 0 < 𝛼 < 1, so ‖Y−Y∗‖ = 0,
therefore Y = Y∗, and this completes the proof.
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Figure 1: The ℎ-curve 𝑦(0) and 𝑦(0) for 10th-order (a) SHAM, (b) HAM.

Theorem 2. If the series solution Y = ∑∞
𝑚=0

Y
𝑚
obtained from

(32) is convergent, then it converges to the exact solution of the
problem (39).

Proof. We assume

Y =
∞

∑

𝑚=0

Y
𝑚
, V (Y) =

∞

∑

𝑚=0

̃G (Y
𝑚
) , (43)

where lim
𝑚→∞

Y
𝑚
= 0. We can write

𝑛

∑

𝑚=1

[Y
𝑚
− 𝜒
𝑚
Y
𝑚−1
]

= Y
1
+ (Y
2
− Y
1
) + ⋅ ⋅ ⋅ + (Y

𝑛
− Y
𝑛−1
) = Y
𝑛
.

(44)

Hence, from (44),
∞

∑

𝑚=1

[Y
𝑚
− 𝜒
𝑚
Y
𝑚−1
] = 0, (45)

so using (45) and the definition of the linear operator 𝐿, we
have
∞

∑

𝑚=1

𝐿 [Y
𝑚
− 𝜒
𝑚
Y
𝑚−1
] = 𝐿 [

∞

∑

𝑚=1

Y
𝑚
− 𝜒
𝑚
Y
𝑚−1
] = 0. (46)

Therefore, from (16), we can obtain that
∞

∑

𝑚=1

𝐿 [Y
𝑚
− 𝜒
𝑚
Y
𝑚−1
] = ℎ

∞

∑

𝑚=1

𝑅
𝑚
(Y
𝑚−1
) = 0. (47)

Since ℎ ̸= 0, we have
∞

∑

𝑚=1

𝑅
𝑚
(Y
𝑚−1
) = 0. (48)

By applying (39) and (43),

∞

∑

𝑚=1

𝑅
𝑚
(Y
𝑚−1
)

=

∞

∑

𝑚=1

[Y
𝑚−1

− (1 − 𝜒
𝑚−1
)
̃F − 𝜇∫

1

−1

𝑘 (𝑥, 𝑡)
̃G (Y
𝑚−1
) 𝑑𝑡]

= Y − F̃ − 𝜇∫
1

−1

𝑘 (𝑥, 𝑡)V (Y) 𝑑𝑡.
(49)

Therefore, Ymust be the exact solution of (39).

5. Numerical Examples

In this section we apply the technique described in Section 3
to some illustrative examples of higher-order nonlinear Fred-
holm integro-differential equations.

Example 1. Consider the second-order Fredholm integro-
differential equation

𝑦


(𝑥) = 6𝑥 + ∫

1

−1

𝑥𝑡(𝑦


(𝑡))

2

(𝑦 (𝑡))
2

𝑑𝑡 (50)

subject to 𝑦(−1) = 𝑦(1) = 0 with the exact solution 𝑦(𝑥) =
𝑥
3
− 𝑥. We employ SHAM and HAM to solve this example.

From the ℎ-curves (Figure 1), it is found that when −1.5 ≤
ℎ ≤ 1.5 and −1 ≤ ℎ ≤ 0, the SHAM solution and
HAM solution converge to the exact solution, respectively.
A numerical results of Example 1 against different order of
SHAM approximate solutions is shown in Table 1.
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Table 1: The numerical results of Example 1 against different order of SHAM approximate solutions with ℎ = −0.01.

𝑥

SHAM Numerical
2nd order 4th order

1.00000 0 0 0
0.99965 −0.01162119 −0.01162119 −0.01162119
0.99861 −0.04513180 −0.04513187 −0.04513187
0.99687 −0.16001177 −0.16001177 −0.16001177
0.99443 −0.22774902 −0.22774902 −0.22774902
0.99130 −0.29155781 −0.29155781 −0.29155781
0.98748 −0.34334545 −0.34334545 −0.34334545
0.98297 −0.37606083 −0.37606087 −0.3760608
0.97778 −0.38445192 −0.38445192 −0.38445192
0.97191 −0.36563660 −0.36563661 −0.36563661

Example 2. Consider the second order Fredholm integro-
differential equation

𝑥𝑦


(𝑥) + 𝑥
2

𝑦


(𝑥) + 2𝑦 (𝑥)

= (−𝜋
2

𝑥 + 2) sin (𝜋𝑥) + 𝜋𝑥2 cos (𝜋𝑥)

+ ∫

1

−1

cos (𝜋𝑡) 𝑦4 (𝑡) 𝑑𝑡

(51)

subject to 𝑦(−1) = 𝑦(1) = 0 with the exact solution 𝑦(𝑥) =
sin(𝜋𝑥). We employ HAM and SHAM to solve this example.
The numerical results of Example 2 against different order of
SHAM approximate solutions with ℎ = −0.01 is shown in
Table 2. In Table 3, there is a comparison of the numerical
result against the HAM and SHAM approximation solutions
at different orders with ℎ = −0.001. It is worth noting that the
SHAM results become very highly accurate only with a few
iterations, and fifth-order solutions are very close to the exact
solution. Comparison of the numerical solution with the 4th-
order SHAM solution for ℎ = −0.01 is made in Figure 2. As
it is shown in Figure 3, the rate of convergency in SHAM is
faster than HAM. In Figure 4, it is found that when −2.5 ≤
ℎ ≤ 0.5 and −1 ≤ ℎ ≤ 1, the SHAM solution and HAM
solution converge to the exact solution, respectively. In HAM
we choose 𝑦

0
(𝑥) = 1 − 𝑥

2 as initial guess.

Example 3. Consider the first-order Fredholm integro-
differential equation [27, 28]

𝑦


(𝑥) = −

1

2

𝑒
𝑥+2

+

3

2

𝑒
𝑥

+ ∫

1

0

𝑒
𝑥−𝑡

𝑦
3

(𝑡) 𝑑𝑡 (52)

subject to the boundary condition 𝑦(0) = 1. In order to
apply the SHAM for solving the given problem, we should
transform using an appropriate change of variables as

𝑥 =

𝜁 + 1

2

, 𝜁 ∈ [−1, 1] . (53)

Then, we use the following transformation:

𝑦 (𝑥) = 𝑌 (𝜁) + 𝑒
(𝑥+1)/2

. (54)

10.50

0.5

𝑥

−1

−0.5

−1 −0.5

1

Figure 2: Comparison of the numerical solution of Example 2 with
the 4th-order SHAM solution for ℎ = −0.01.

We make the governing boundary condition homogeneous.
Substituting (54) into the governing equation and boundary
condition results in

𝑌


(𝜁) =

1

4

∫

1

−1

𝑒
(𝜁−𝑡)/2

(𝑌
3

(𝑡) + 3𝑒
𝑡+1

𝑌 (𝑡) + 3𝑒
(𝑡+1)/2

𝑌
2

(𝑡)) 𝑑𝑡

(55)

subject to the boundary condition 𝑌(−1) = 0. A comparison
between absolute errors in solutions by SHAM, Lagrange
interpolation, and Rationalized Haar functions is tabulated
in Table 4. It is also worth noting that the SHAM results are
very close to exact solutions only with two iterations.

6. Conclusion

In this paper, we presented the application of spectral
homotopy analysis method (SHAM) for solving nonlinear
Fredholm integro-differential equations. A comparison was
made between exact analytical solutions and numerical
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Table 2: The numerical results of Example 2 against different order of SHAM approximate solutions with ℎ = −0.01.

𝑥 2nd order 3rd order 4th order Numerical
1.00000 0 0 0 0
0.99965 0.00437807 0.00437807 0.00437807 0.00437807
0.99861 0.00109471 0.00109471 0.00109471 0.00109471
0.99687 0.00984768 0.00984768 0.00984768 0.00984768
0.99443 0.01749926 0.01749926 0.01749926 0.01749926
0.99130 0.02732631 0.02732631 0.02732631 0.02732631
0.98748 0.03931949 0.03931949 0.03931950 0.03931950
0.98297 0.05346606 0.05346607 0.05346607 0.06974900
0.97778 0.06974898 0.06974899 0.06974899 0.06974900
0.97191 0.0881459 0.08814599 0.08814599 0.08814600

Table 3: Numerical result of Example 2 against the HAM and the SHAM solutions with ℎ = −0.001.

𝑥

SHAM HAM Numerical
5th order 6th order 7th order 3rd order 4th order

−0.97191 −0.0881460 −0.0881460 −0.0881460 −0.05395836 −0.05794467 −0.0881460
−0.97778 −0.06974902 −0.06974902 −0.06974902 −0.04280765 −0.04597139 −0.06974902
−0.98297 −0.05346609 −0.05346609 −0.05346609 −0.03289259 −0.03532441 −0.05346607
−0.98748 −0.03931951 −0.03931951 −0.03931951 −0.02424140 −0.02603420 −0.03931950
−0.99130 −0.02732631 −0.02732631 −0.02732631 −0.01687877 −0.01812740 −0.02732630
−0.99443 0.01749926 0.01749926 0.01749926 −0.00609972 −0.01162680 −0.01749926
−0.99687 −0.00984768 −0.00984768 −0.00984768 −0.00609972 −0.01162680 −0.00984768
−0.99861 −0.00437807 −0.00437807 −0.00437807 −0.00271424 −0.00655115 −0.00437807
−0.99965 −0.00109471 0.00109471 −0.00109471 −0.00067905 −0.00072931 −0.00109471
−1.00000 0 0 0 0 0 0
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Figure 3: Comparison of the absolute error of third-order (a) SHAM, (b) HAM.
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Figure 4: The ℎ-curve 𝑦(−1) and 𝑦(1) for 6th-order (a) SHAM, (b) HAM.

Table 4: A comparison of absolute errors between SHAM, LIM, and RHFS.

𝑥

SHAM LIM RHFS
2nd order (ℎ = −1) 6th order 𝑘 = 32

0.0 0 0 8.0 × 10
−5

0.1 0 1.0 × 10
−7

2.0 × 10
−5

0.2 2.0 × 10
−19

7.0 × 10
−7

5.0 × 10
−5

0.3 1.2 × 10
−19

1.0 × 10
−6

1.0 × 10
−5

0.4 0 3.0 × 10
−6

2.0 × 10
−5

0.5 1.0 × 10
−19

4.0 × 10
−6

7.0 × 10
−5

results obtained by the spectral homotopy analysis method,
Rationalized Haar functions, and Lagrange interpolation
solutions. In Example 1, the numerical results indicate that
the rate of convergency in SHAM is faster than HAM. In
this example, we found that the forth-order SHAM approx-
imation sufficiently gives a match with the numerical results
up to eight decimal places. In contrast, HAM solutions have
a good agreement with the numerical results in 20th order
with six decimal places. As we can see in Table 4, the spectral
homotopy analysis results are more accurate and efficient
than Lagrange interpolation solutions and rationalized Haar
functions solutions [27, 28]. As it is shown in Figures 1 and
4 the rang of admissible values of ℎ is much wider in SHAM
than HAM.

In this paper, we employed the spectral homotopy analy-
sis method to solve nonlinear Fredholm integro-difflerential
equations; however, it remains to be generalized and verified
formore complicated integral equations that we consider it as
future works.
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“On spectralhomotopy analysismethod for solvingVolterra and
Fredholm typeof integro-differential equations,” Abstract and
Applied Analysis, vol. 2012, Article ID 960289, 16 pages, 2012.

[23] W. S. Don and A. Solomonoff, “Accuracy and speed in com-
puting the Chebyshev collocation derivative,” SIAM Journal on
Scientific Computing, vol. 16, no. 6, pp. 1253–1268, 1995.

[24] A. Molabahrami and F. Khani, “The homotopy analysis method
to solve the Burgers-Huxley equation,”Nonlinear Analysis. Real
World Applications, vol. 10, no. 2, pp. 589–600, 2009.

[25] P. J. Davis and P. Rabinowits, Method of Numerical Integration,
Academic Press, London, UK, 2nd edition, 1970.

[26] H. Jafari, M. Alipour, and H. Tajadodi, “Convergence of homo-
topy perturbation method for solving integral equations,” Thai
Journal of Mathematics, vol. 8, no. 3, pp. 511–520, 2010.

[27] A. Shahsavaran and A. Shahsavaran, “Application of Lagrange
interpolation for nonlinear integro differential equations,”
Applied Mathematical Sciences, vol. 6, no. 17–20, pp. 887–892,
2012.

[28] F. Mirzaee, “The RHFs for solution of nonlinear Fredholm
integro-differential equations,” Applied Mathematical Sciences,
vol. 5, no. 69–72, pp. 3453–3464, 2011.



Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2013, Article ID 391901, 7 pages
http://dx.doi.org/10.1155/2013/391901

Research Article
On Approximate Solutions for Fractional Logistic
Differential Equation

M. M. Khader1,2 and Mohammed M. Babatin1

1 Department of Mathematics and Statistics, College of Science, Al-ImamMohammed Ibn Saud Islamic University (IMSIU),
P.O. Box 65892, Riyadh 11566, Saudi Arabia

2Department of Mathematics, Faculty of Science, Benha University, Benha, Egypt

Correspondence should be addressed to M. M. Khader; mohamedmbd@yahoo.com

Received 6 March 2013; Revised 1 April 2013; Accepted 2 April 2013

Academic Editor: Guo-Cheng Wu

Copyright © 2013 M. M. Khader and M. M. Babatin. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

A new approximate formula of the fractional derivatives is derived. The proposed formula is based on the generalized Laguerre
polynomials. Global approximations to functions defined on a semi-infinite interval are constructed.The fractional derivatives are
presented in terms of Caputo sense. Special attention is given to study the convergence analysis and estimate an error upper bound
of the presented formula. The new spectral Laguerre collocation method is presented for solving fractional Logistic differential
equation (FLDE). The properties of Laguerre polynomials approximation are used to reduce FLDE to solve a system of algebraic
equations which is solved using a suitable numerical method. Numerical results are provided to confirm the theoretical results and
the efficiency of the proposed method.

1. Introduction

Ordinary and partial fractional differential equations (FDEs)
have been the focus of many studies due to their frequent
appearance in various applications in fluid mechanics, vis-
coelasticity, biology, physics, and engineering [1]. Fractional
calculus is a generalization of ordinary differentiation and
integration to an arbitrary noninteger order. Many physical
processes appear to exhibit fractional order behavior that
may vary with time or space. Most FDEs do not have exact
solutions, so approximate and numerical techniques [2–8]
must be used. Several numerical and approximate methods
to solve FDEs have been given such as variational itera-
tion method [9–12], homotopy perturbation method [13],
Adomian’s decomposition method [14, 15], and collocation
method [16, 17].

The fractional Logisticmodel can be obtained by applying
the fractional derivative operator on the Logistic equation.
The model is initially published by Pierre Verhulst in 1838
[18, 19]. The continuous Logistic model is described by first-
order ordinary differential equation. The discrete Logistic
model is simple iterative equation that reveals the chaotic

property in certain regions [20]. There are many variations
of the population modeling [19, 21]. The Verhulst model is
the classic example to illustrate the periodic doubling and
chaotic behavior in dynamical system [20].Themodel which
is described the population growth may be limited by certain
factors like population density [18, 19, 21].

Applications of Logistic Equation. A typical application of the
Logistic equation is a common model of population growth.
Another application of Logistic curve is in medicine, where
the Logistic differential equation is used to model the growth
of tumors. This application can be considered an extension
of the above-mentioned use in the framework of ecology.
Denoting by 𝑢(𝑡) the size of the tumor at time 𝑡.

The solution of Logistic equation is explained the constant
population growth rate which not includes the limitation on
food supply or spread of diseases [19]. The solution curve of
themodel is increasing exponentially from themultiplication
factor up to saturation limit which is maximum carrying
capacity [19], 𝑑𝑁/𝑑𝑡 = 𝜌𝑁(1 − (𝑁/𝐾)) where 𝑁 is the
population size with respect to time, 𝜌 is the rate of max-
imum population growth, and 𝐾 is the carrying capacity.
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The solution of continuous Logistic equation is in the form
of constant growth rate as in formula𝑁(𝑡) = 𝑁

0
𝑒
𝜌𝑡 where𝑁

0

is the initial population [22].
In this paper, we consider FLDE of the form

𝐷
]
𝑢 (𝑡) = 𝜌𝑢 (𝑡) (1 − 𝑢 (𝑡)) , 𝑡 > 0, 𝜌 > 0, (1)

here, the parameter ] refers to the fractional order of time
derivative with 0 < ] ≤ 1.

We also assume an initial condition

𝑢 (0) = 𝑢
0
, 𝑢
0
> 0. (2)

For ] = 1, (1) is the standard Logistic differential equation

𝑑𝑢 (𝑡)

𝑑𝑡

= 𝜌𝑢 (𝑡) (1 − 𝑢 (𝑡)) . (3)

The exact solution to this problem is 𝑢(𝑡) = 𝑢
0
/((1−𝑢

0
)𝑒
−𝜌𝑡

+

𝑢
0
).
The existence and the uniqueness of the proposed prob-

lem (1) are introduced in details in [23, 24].
The main aim of the presented paper is concerned with

an extension of the previous work on FDEs and derive
an approximate formula of the fractional derivative of the
Laguerre polynomials and then we apply this approach to
obtain the numerical solution of FLDE. Also, we present
study of the convergence analysis and estimate an error upper
bound of the proposed formula.

The structure of this paper is arranged in the following
way: in Section 2, we introduce some basic definitions about
Caputo fractional derivatives and properties of the Laguerre
polynomials. In Section 3, we give an approximate formula
of the fractional derivative of Laguerre polynomials and
its convergence analysis. In Section 4, we implement the
proposed method for solving FLDE to show the accuracy of
the presented method. Finally, in Section 5, the paper ends
with a brief conclusion and some remarks.

2. Preliminaries and Notations

In this section, we present some necessary definitions and
mathematical preliminaries of the fractional calculus theory
that will be required in the present paper.

2.1. The Caputo Fractional Derivative

Definition 1. The Caputo fractional derivative operator𝐷] of
order ] is defined in the following form:

𝐷
]
𝑓 (𝑥) =

1

Γ (𝑚 − ])
∫

𝑥

0

𝑓
(𝑚)

(𝑡)

(𝑥 − 𝑡)
]−𝑚+1 𝑑𝑡, ] > 0, 𝑥 > 0,

(4)

where𝑚 − 1 < ] ≤ 𝑚,𝑚 ∈ N.
Similar to integer-order differentiation, Caputo fractional

derivative operator is linear

𝐷
]
(𝜆𝑓 (𝑥) + 𝜇𝑔 (𝑥)) = 𝜆𝐷

]
𝑓 (𝑥) + 𝜇𝐷

]
𝑔 (𝑥) , (5)

where 𝜆 and 𝜇 are constants. For the Caputo’s derivative we
have

𝐷
]
𝐶 = 0, 𝐶 is a constant, (6)

𝐷
]
𝑥
𝑛

=

{

{

{

0, for 𝑛 ∈ N
0
, 𝑛 < ⌈]⌉ ;

Γ (𝑛 + 1)

Γ (𝑛 + 1 − ])
𝑥
𝑛−]

, for 𝑛 ∈ N
0
, 𝑛 ≥ ⌈]⌉ .

(7)

We use the ceiling function ⌈]⌉ to denote the smallest integer
greater than or equal to ], and N

0
= {0, 1, 2, . . .}. Recall that

for ] ∈ N, the Caputo differential operator coincides with the
usual differential operator of integer order.

For more details on fractional derivatives definitions and
their properties see [1, 25–28].

2.2. The Definition and Properties of the Generalized Laguerre
Polynomials. Spectral collocation methods are efficient and
highly accurate techniques for numerical solution of non-
linear differential equations. The basic idea of the spectral
collocation method is to assume that the unknown solution
𝑢(𝑡) can be approximated by a linear combination of some
basis functions, called the trial functions, such as orthogonal
polynomials. The orthogonal polynomials can be chosen
according to their special properties, which make them par-
ticularly suitable for a problem under consideration. In [16],
Khader introduced an efficient numerical method for solving
the fractional diffusion equation using the shifted Chebyshev
polynomials. In [29] the generalized Laguerre polynomials
were used to compute a spectral solution of a nonlinear
boundary value problems. The generalized Laguerre poly-
nomials constitute a complete orthogonal sets of functions
on the semi-infinite interval [0,∞). Convolution structures
of Laguerre polynomials were presented in [30]. Also, other
spectral methods based on other orthogonal polynomials are
used to obtain spectral solutions on unbounded intervals [31].

The generalized Laguerre polynomials [𝐿(𝛼)
𝑛
(𝑥)]
∞

𝑛=0
, 𝛼 >

−1 are defined on the unbounded interval (0,∞) and can be
determined with the aid of the following recurrence formula:

(𝑛 + 1) 𝐿
(𝛼)

𝑛+1
(𝑥) + (𝑥 − 2𝑛 − 𝛼 − 1) 𝐿

(𝛼)

𝑛
(𝑥)

+ (𝑛 + 𝛼) 𝐿
(𝛼)

𝑛−1
(𝑥) = 0, 𝑛 = 1, 2, . . . ,

(8)

where 𝐿(𝛼)
0
(𝑥) = 1 and 𝐿(𝛼)

1
(𝑥) = 𝛼 + 1 − 𝑥.

The analytic form of these polynomials of degree 𝑛 is
given by

𝐿
(𝛼)

𝑛
(𝑥) =

𝑛

∑

𝑘 = 0

(−1)
𝑘

𝑘!

(

𝑛 + 𝛼

𝑛 − 𝑘
)𝑥
𝑘

= (

𝑛 + 𝛼

𝑛
)

𝑛

∑

𝑘 = 0

(−𝑛)
𝑘

(𝛼 + 1)
𝑘

𝑥
𝑘

𝑘!

,

(9)
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𝐿
(𝛼)

𝑛
(0) = (

𝑛+𝛼

𝑛
). These polynomials are orthogonal on the

interval [0,∞) with respect to the weight function 𝑤(𝑥) =

(1/Γ(1 + 𝛼))𝑥
𝛼
𝑒
−𝑥. The orthogonality relation is

1

Γ (1 + 𝛼)

∫

∞

0

𝑥
𝛼

𝑒
−𝑥

𝐿
(𝛼)

𝑚
(𝑥) 𝐿
(𝛼)

𝑛
(𝑥) 𝑑𝑥 = (

𝑛 + 𝛼

𝑛
) 𝛿
𝑚𝑛
.

(10)

Also, they satisfy the differentiation formula

𝐷
𝑘

𝐿
(𝛼)

𝑛
(𝑥) = (−1)

𝑘

𝐿
(𝛼+𝑘)

𝑛−𝑘
(𝑥) , 𝑘 = 0, 1, . . . , 𝑛. (11)

Any function 𝑢(𝑥) belongs to the space 𝐿2
𝑤
[0,∞) of all square

integrable functions on [0,∞)with weight function𝑤(𝑥) can
be expanded in the following Laguerre series:

𝑢 (𝑥) =

∞

∑

𝑖 = 0

𝑐
𝑖
𝐿
(𝛼)

𝑖
(𝑥) , (12)

where the coefficients 𝑐
𝑖
are given by

𝑐
𝑖
=

Γ (𝑖 + 1)

Γ (𝑖 + 𝛼 + 1)

∫

∞

0

𝑥
𝛼

𝑒
−𝑥

𝐿
(𝛼)

𝑖
(𝑥) 𝑢 (𝑥) 𝑑𝑥, 𝑖 = 0, 1, . . . .

(13)

Consider only the first (𝑚 + 1) terms of generalized Laguerre
polynomials, so we can write

𝑢
𝑚
(𝑥) =

𝑚

∑

𝑖 = 0

𝑐
𝑖
𝐿
(𝛼)

𝑖
(𝑥) . (14)

Formore details on Laguerre polynomials, its definitions, and
properties, see [29, 31, 32].

3. An Approximate Fractional Derivative of
𝐿
(𝛼)

𝑛
(𝑥) and Its Convergence Analysis

The main goal of this section is to introduce the following
theorems to derive an approximate formula of the fractional
derivatives of the generalized Laguerre polynomials and
study the truncating error and its convergence analysis.

Lemma 2. Let 𝐿(𝛼)
𝑛
(𝑥) be a generalized Laguerre polynomial

then

𝐷
]
𝐿
(𝛼)

𝑛
(𝑥) = 0, 𝑛 = 0, 1, . . . , ⌈]⌉ − 1, ] > 0. (15)

Proof. This lemma can be proved directly by applying (6)-(7)
on (9).

The main approximate formula of the fractional deriva-
tive of 𝑢(𝑥) is given in the following theorem.

Theorem 3. Let 𝑢(𝑥) be approximated by the generalized
Laguerre polynomials as (14) and also suppose ] > 0; then
its approximated fractional derivative can be written in the
following form:

𝐷
]
(𝑢
𝑚
(𝑥)) ≅

𝑚

∑

𝑖 =⌈]⌉

𝑖

∑

𝑘 =⌈]⌉

𝑐
𝑖
𝑤
(])
𝑖, 𝑘

𝑥
𝑘−]

, (16)

where 𝑤(])
𝑖, 𝑘

is given by

𝑤
(])
𝑖, 𝑘

=

(−1)
𝑘

Γ (𝑘 + 1 − ])
(

𝑖 + 𝛼

𝑖 − 𝑘
) . (17)

Proof. Since the Caputo’s fractional differentiation is a linear
operation, we obtain

𝐷
]
(𝑢
𝑚
(𝑥)) =

𝑚

∑

𝑖 = 0

𝑐
𝑖
𝐷

]
(𝐿
(𝛼)

𝑖
(𝑥)) . (18)

Also, from (9) we can get

𝐷
]
𝐿
(𝛼)

𝑖
(𝑥) = 0, 𝑖 = 0, 1, . . . , ⌈]⌉ − 1, ] > 0. (19)

Therefore, for 𝑖 = ⌈]⌉, ⌈]⌉ + 1, . . . , 𝑚, and by using (6)-(7) in
(9), we get

𝐷
]
𝐿
(𝛼)

𝑖
(𝑥) =

𝑖

∑

𝑘 = 0

(−1)
𝑘

𝑘!

(

𝑖 + 𝛼

𝑖 − 𝑘
)𝐷

]
𝑥
𝑘

=

𝑖

∑

𝑘 = ⌈]⌉

(−1)
𝑘

Γ (𝑘 + 1 − ])
(

𝑖 + 𝛼

𝑖 − 𝑘
)𝑥
𝑘−]

.

(20)

A combination of (18)–(20) leads to the desired result (16)
and ends the proof of the theorem.

Test Example. Consider the function 𝑢(𝑥) = 𝑥
3 with 𝑚 = 3,

] = 1.5, and 𝛼 = −0.5, the generalized Laguerre series of 𝑥3 is

𝑥
3

= 1.875𝐿
(𝛼)

0
(𝑥) − 11.25𝐿

(𝛼)

1
(𝑥) + 15𝐿

(𝛼)

2
(𝑥) − 6𝐿

(𝛼)

3
(𝑥) .

(21)

Now, by using formula (16), we obtain

𝐷
1.5

𝑥
3

=

3

∑

𝑖 = 2

𝑖

∑

𝑘 = 2

𝑐
𝑖
𝑤
(1.5)

𝑖,𝑘
𝑥
𝑘 −1.5

, (22)

where 𝑤(1.5)
2,2

= 1.12838, 𝑤(1.5)
3,2

= 2.82095, 𝑤(1.5)
3,3

= −0.752253,
therefore,

𝐷
1.5

𝑥
3

= 𝑐
2
𝑤
(1.5)

2,2
𝑥
0.5

+ 𝑐
3
𝑤
(1.5)

3,2
𝑥
0.5

+ 𝑐
3
𝑤
(1.5)

3,3
𝑥
1.5

=

Γ (4)

Γ (2.5)

𝑥
1.5

,

(23)

which agrees with the exact derivative (7).

Theorem4. TheCaputo fractional derivative of order ] for the
generalized Laguerre polynomials can be expressed in terms
of the generalized Laguerre polynomials themselves in the
following form:

𝐷
]
𝐿
(𝛼)

𝑖
(𝑥) =

𝑖

∑

𝑘 = ⌈]⌉

𝑘 −⌈]⌉

∑

𝑗 = 0

Ω
𝑖𝑗𝑘

𝐿
(𝛼)

𝑗
(𝑥) ,

𝑖 = ⌈]⌉ , ⌈]⌉ + 1, . . . , 𝑚,

(24)

where

Ω
𝑖𝑗𝑘

=

𝑗

∑

𝑟 = 0

(−1)
𝑟+𝑘

(𝛼 + 𝑖)! (𝑗)! (𝑘 + 𝛼 − ] + 𝑟)!
(𝑘 − ])! (𝑖 − 𝑘)! (𝛼 + 𝑘)!𝑟! (𝑗 − 𝑟)! (𝛼 + 𝑟)!

.

(25)
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Proof. From the properties of the generalized Laguerre poly-
nomials [33] and expanding 𝑥

𝑘−] in (20) in the following
form:

𝑥
𝑘−]

=

𝑘 − ⌈]⌉

∑

𝑗 = 0

𝑐
𝑘𝑗
𝐿
(𝛼)

𝑗
(𝑥) , (26)

where 𝑐
𝑘𝑗
can be obtained using (13), where 𝑢(𝑥) = 𝑥

𝑘−], then

𝑐
𝑘𝑗
=

Γ (𝑗 + 1)

Γ (𝑗 + 1 + 𝛼)

∫

∞

0

𝑥
𝑘+𝛼−]

𝑒
−𝑥

𝐿
(𝛼)

𝑗
(𝑥) 𝑑𝑥

=

𝑗

∑

𝑟 = 0

(−1)
𝑟

(𝑗)! (𝑘 − ] + 𝛼 + 𝑟)!
𝑟! (𝑗 − 𝑟)! (𝛼 + 𝑟)!

,

𝑗 = 0, 1, . . . ,

(27)

this by substituting from (9) and using the definition of
Gamma function. Now, we can write (26) in the following
form:

𝑥
𝑘−]

=

𝑘 − ⌈]⌉

∑

𝑗 = 0

𝑗

∑

𝑟 = 0

(−1)
𝑟

(𝑗)! (𝑘 − ] + 𝛼 + 𝑟)!
𝑟! (𝑗 − 𝑟)! (𝛼 + 𝑟)!

𝐿
(𝛼)

𝑗
(𝑥) . (28)

Therefore, the Caputo fractional derivative 𝐷]
𝐿
(𝛼)

𝑖
(𝑥) in (20)

can be rewritten in the following form:

𝐷
]
𝐿
(𝛼)

𝑖
(𝑥)

=

𝑖

∑

𝑘 = ⌈]⌉

𝑘 − ⌈]⌉

∑

𝑗 = 0

𝑗

∑

𝑟 = 0

((−1)
𝑟+𝑘

(𝛼 + 𝑖)! (𝑗)! (𝑘 − ] + 𝛼 + 𝑟)!

× ((𝑘 − ])! (𝑖 − 𝑘)! (𝛼 + 𝑘)!𝑟! (𝑗 − 𝑟)!

× (𝛼 + 𝑟)!)
−1

) 𝐿
(𝛼)

𝑗
(𝑥) ,

(29)

for 𝑖 = ⌈]⌉, ⌈]⌉ + 1, . . . , 𝑚. Equation (29) leads to the desired
result (24) and this completes the proof of the theorem.

Theorem 5. For the Laguerre polynomials 𝐿(𝛼)
𝑛
(𝑥), one has the

following global uniform bounds estimates:






𝐿
(𝛼)

𝑛
(𝑥)






≤

{
{
{
{
{
{
{

{
{
{
{
{
{
{

{

(𝛼 + 1)
𝑛

𝑛!

𝑒
𝑥/2
, for 𝛼 ≥ 0, 𝑥 ≥ 0,

𝑛 = 0, 1, . . . ;

(2 −

(𝛼 + 1)
𝑛

𝑛!

) 𝑒
𝑥/2
, for − 1 < 𝛼 ≤ 0,

𝑥 ≥ 0, 𝑛 = 0, 1, . . . .

(30)

Proof. These estimates were presented in [33–35].

Theorem 6. The error in approximating 𝐷]
𝑢(𝑥) by 𝐷]

𝑢
𝑚
(𝑥)

is bounded by





𝐸
𝑇
(𝑚)





≤

∞
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𝑒
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,

− 1 < 𝛼 ≤ 0, 𝑥 ≥ 0, 𝑗 = 0, 1, . . . ,

(31)

where |𝐸
𝑇
(𝑚)| = |𝐷

]
𝑢(𝑥) − 𝐷

]
𝑢
𝑚
(𝑥)| and Π](𝑖, 𝑗) =

∑
𝑖

𝑘 = ⌈]⌉∑
𝑘−⌈]⌉
𝑗 = 0

Ω
𝑖𝑗𝑘
.

Proof. A combination of (12), (14), and (24) leads to
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𝐿
(𝛼)

𝑗
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,

(32)

using (30) and subtracting the truncated series from the infi-
nite series, bounding each term in the difference, and sum-
ming the bounds completes the proof of the theorem.

4. Implementation of Laguerre Spectral
Method for Solving FLDE

In this section, we introduce a numerical algorithm using
Laguerre spectral method for solving the fractional Logistic
differential equation of the form (1).

The procedure of the implementation is given by the
following steps.

(1) Approximate the function 𝑢(𝑡) using the formula (14)
and its Caputo fractional derivative 𝐷]

𝑢(𝑡) using the
presented formula (16) with 𝑚 = 5, then FLDE (1) is
transformed to the following approximated form:

5

∑

𝑖 = 1

𝑖

∑

𝑘 = 1

𝑐
𝑖
𝑤
(])
𝑖,𝑘
𝑡
𝑘−]

− 𝜌(

5

∑

𝑖 = 0

𝑐
𝑖
𝐿
(𝛼)

𝑖
(𝑡))

× (1 −

5

∑

𝑖 = 0

𝑐
𝑖
𝐿
(𝛼)

𝑖
(𝑡)) = 0,

(33)

where 𝑤(])
𝑖, 𝑘

is defined in (17).
We now collocate (33) at (𝑚 + 1 − ⌈]⌉) points 𝑡

𝑝
, 𝑝 =

0, 1, . . . , 𝑚 − ⌈]⌉ as

5

∑

𝑖 = 1

𝑖

∑

𝑘 = 1

𝑐
𝑖
𝑤
(])
𝑖,𝑘
𝑡
𝑘−]
𝑝

− 𝜌(

5

∑

𝑖 = 0

𝑐
𝑖
𝐿
(𝛼)

𝑖
(𝑡
𝑝
))

× (1 −

5

∑

𝑖 = 0

𝑐
𝑖
𝐿
(𝛼)

𝑖
(𝑡
𝑝
)) = 0.

(34)

(2) From the initial condition (2) we obtain the following
equation:

5

∑

𝑖 = 0

𝑐
𝑖
𝐿
(𝛼)

𝑖
(0) = 𝑢

0
. (35)
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Figure 1: A comparison between the approximate solution and the exact solution at ] = 1 (a).The behavior of the approximate solution using
the proposed method at ] = 0.85 (b).
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Figure 2: The behavior of the approximate solution using the proposed method at ] = 0.65 (a) and at ] = 0.45 (b).

Equations (34)-(35) represent a system of nonlinear
algebraic equations which contains six equations for
the unknowns 𝑐

𝑖
, 𝑖 = 0, 1, . . . , 5.

(3) Solve the resulting system using the Newton iteration
method to obtain the unknowns 𝑐

𝑖
, 𝑖 = 0, 1, . . . , 5.

Therefore, the approximate solutionwill take the form

𝑢 (𝑡) = 𝑐
0
𝐿
(𝛼)

0
(𝑡) + 𝑐

1
𝐿
(𝛼)

1
(𝑡) + 𝑐

2
𝐿
(𝛼)

2
(𝑡)

+ 𝑐
3
𝐿
(𝛼)

3
(𝑡) + 𝑐

4
𝐿
(𝛼)

4
(𝑡) + 𝑐

5
𝐿
(𝛼)

5
(𝑡) .

(36)

The numerical results of the proposed problem (1) are given
in Figures 1 and 2 with different values of ] in the interval

[0, 1] with 𝜌 = 0.5 and 𝑢
0
= 0.25. Where in Figure 1, we

presented a comparison between the behavior of the exact
solution and the approximate solution using the introduced
technique at ] = 1 (Figure 1(a)), and the behavior of the
approximate solution using the proposed method at ] = 0.85

(Figure 1(b)). But, in Figure 2, we presented the behavior of
the approximate solution with different values of ] (] = 0.65

(Figure 2(a)) and ] = 0.45 (Figure 2(b))).

5. Conclusion and Remarks

In this paper, we introduced a new spectral collocation
method based on Laguerre polynomials for solving FLDE.
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We have introduced an approximate formula for the Caputo
fractional derivative of the generalized Laguerre polynomials
in terms of generalized Laguerre polynomials themselves. In
the proposed method we used the properties of the Laguerre
polynomials to reduce FLDE to solve a system of algebraic
equations. The error upper bound of the proposed approxi-
mate formula is stated and proved. The obtained numerical
results show that the proposed algorithm converges as the
number of𝑚 terms is increased. The solution is expressed as
a truncated Laguerre series and so it can be easily evaluated
for arbitrary values of time using any computer program
without any computational effort. From illustrative examples,
we can conclude that this approach can obtain very accurate
and satisfactory results. Comparisons are made between the
approximate solution and the exact solution to illustrate
the validity and the great potential of the technique. All
computations are done using Matlab.
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This study focuses on obtaining a new class of closed-form shock wave solution also known as soliton solution for a nonlinear
partial differential equation which governs the unsteady magnetohydrodynamics (MHD) flow of an incompressible fourth grade
fluid model. The travelling wave symmetry formulation of the model leads to a shock wave solution of the problem.The restriction
on the physical parameters of the flow problem also falls out naturally in the course of derivation of the solution.

1. Introduction

A shock wave (also called shock front or simply “shock”)
is a type of propagating disturbance through a media. It
actually expresses a sharp discontinuity of the parameters that
delineate themedia.Unlike solitons, the energy is a conserved
quantity and thus remains constant during its propagation.
Shock wave dissipates energy relatively quickly with distance.
One source of a shock wave is when the supersonic jets
fly at a speed that is greater than the speed of sound. This
results in the drag force on aircraft with shocks. These waves
also appear in various interesting phenomena in real-life
situations. For example, solitons appear in the propagation
of pulses through optical fibers. Another example is where
cnoidal waves appear in shallow water waves although an
extremely scarce phenomena.

The dynamics and mechanics of non-Newtonain fluid
flow problems have been an important area of interest in
the recent few years.The flow phenomena of non-Newtonian
fluids occur in a variety of industrial and technological
applications. Because of the diverse physical structure and
behavior of non-Newtonian fluids, there is no single mathe-
matical expression which describes all the characteristics of
non-Newtonian fluids. Due to this fact, several models of
non-Newtonian fluids have been proposed. Apart from this

fact, the model equations of the problem dealing with the
flow of non-Newtonian fluids are higher-order nonlinear and
complex in nature. Several methods have been developed in
the recent years to obtain the solutions of these sort of flow
problems. Some of these techniques are variational iteration
method, the Adomian decomposition method, homotopy
perturbation method, homotopy analysis method, and semi-
inverse variational method. But all these techniques fail
to develop the exact (closed-form) solutions of the non-
Newtonian fluid flow problems.

One of the simplest classes of non-Newtonian fluid mod-
els is the second grade fluid [1]. Although the second grade
model is found to predict the normal stress differences, it does
not take into account the shear thinning and shear thickening
phenomena due to its constant apparent shear viscosity. For
this reason, some experimentsmay bewell described through
fluids of grade three or four. Very little attention has been
given to date to the flows of fourth grade fluid [2]. This
model is known as the most generalized model amongst the
differential-type non-Newtonian fluidmodels [3].The fourth
grade fluid model describes most of the non-Newtonian
flow properties at one time. This model is known to cap-
ture the interesting non-Newtonian flow properties such as
shear thinning and shear thickening that many other non-
Newtonianmodels do not show.This model is also capable of
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predicting the normal stress effects that lead to phenomena
like “die-swell” and “rod-climbing” [4]. With these facts in
mind, we have considered a fourth grade fluid model in
this study. In general, the model equations of the problem
dealing with the flow of fourth grade fluids are higher-
order nonlinear equations. The literature survey witnesses
that very limited studies are reported in the literature, up to
now, dealing with the flow problems of fourth grade fluid
and these investigations that further narrow are down when
we discussed the closed-form solutions of these problems.
However, some useful and interesting communications in
this direction are made in the studies [5–11].

In this study, we have used an interesting method to
construct the solution of nonlinear problem arising in the
study of non-Newtonian fluid. We have explored the shock
wave behavior of the problem which deals with the unsteady
flowof fourth grade fluid.We have also taken into account the
magnetohydrodynamic nature of the fluid by applying uni-
formmagnetic field as an external body force.This concept is
introduced so that our solution can be easily reduced to the
problem that deals with the effects of body forces.

2. Mathematical Structure of the Model

The unsteady MHD flow of an incompressible fluid is
governed by law of conservation of mass and momentum;
namely,

divV = 0, (1)

𝜌

𝑑V
𝑑𝑡

= divT − 𝜎𝐵2
0
V. (2)

In the above equations, V is the velocity vector, 𝜌 the density
of the fluid, 𝑑/𝑑𝑡 the total time derivative, and T the Cauchy
stress tensor. We have considered a uniformmagnetic field of
strength𝐵

0
, which is applied in the transverse direction of the

flow as an external body force by assuming that the induced
magnetic field and the external field are negligible.

For fourth grade fluid model, the Cauchy stress tensor
satisfies the constitutive equations [3]:

T = −𝑝I +
𝑛

∑

𝑗=1

S
𝑗

with 𝑛 = 4, (3)

where 𝑝 is the pressure, I the identity tensor, and S
𝑗
the extra

stress tensor as
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(4)

Here, 𝜇 is the dynamic viscosity; 𝛼
𝑖
(𝑖 = 1, 2), 𝛽

𝑖
(𝑖 = 1, 2, 3),

and 𝛾
𝑖
(𝑖 = 1, 2, ..., 8) are material constants. The Rivlin-

Ericksen tensors A
1
to A
4
are defined by

A
1
= (gradV) + (gradV)𝑇, (5)

A
𝑛
=

𝑑A
𝑛−1

𝑑𝑡

+ A
𝑛−1

(gradV) + (gradV)𝑇A
𝑛−1

(𝑛 > 1) ,

(6)

in which grad is the gradient operator.
Consider the unsteady MHD flow of an incompressible

fourth grade fluid which occupies the half-space 𝑦 > 0 over
an infinite rigid plate which lies in the 𝑥𝑧-plane. The 𝑥-axis
and 𝑦-axis are chosen parallel and perpendicular to the plate.
By taking the velocity field (𝑢(𝑦, 𝑡), 0, 0), the conservation of
mass equation is identically satisfied. To obtain the governing
PDE in 𝑢, substituting (3)–(6) into (2) and rearranging, we
obtain the following model equation in the absence of the
modified pressure gradient:
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+ 2 (3𝛾
2
+ 𝛾
3
+ 𝛾
4
+ 𝛾
5
+ 3𝛾
7
+ 𝛾
8
)

𝜕

𝜕𝑦

× [(

𝜕𝑢

𝜕𝑦

)

2

𝜕
2
𝑢

𝜕𝑦𝜕𝑡

] − 𝜎𝐵
2

0
𝑢.

(7)

3. Reduction of the Model Equation

We know that from the principal of the Lie symmetry meth-
ods that if a differential equation is explicitly independent of
any dependent or independent variable, then this particular
differential equation remains invariant under the translation
symmetry corresponding to that particular variable. We
noticed that (7) admits the Lie point symmetry generators,
𝜕/𝜕𝑡 (time-translation) and 𝜕/𝜕𝑦 (space-translation in𝑦). For
a detailed analysis, the readers are referred to [12, 13].

Let 𝑋
1
and 𝑋

2
be time-translation and space-translation

symmetry generators, respectively. Then, the solution corre-
sponding to the generator

𝑋 = 𝑋
1
+ 𝑚𝑋

2
=

𝜕

𝜕𝑡

+ 𝑚

𝜕

𝜕𝑦

(𝑚 > 0) (8)

would represent the travelling wave solution with constant
wave speed𝑚. The Langrangian system corresponding to (8)
is

𝑑𝑦

𝑚

=

𝑑𝑡

1

=

𝑑𝑢

0

. (9)

Solving (9), invariant solutions are given by

𝑢 (𝑦, 𝑡) = 𝑓 (𝜂) with 𝜂 = 𝑦 − 𝑚𝑡, (10)
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where 𝑓(𝜂) is an arbitrary function of the characteristic
variable 𝜂 = 𝑦 − 𝑚𝑡. Making use of (10) into (7) results in
a fifth-order ordinary differential for 𝑓(𝜂)

−𝑚𝜌

𝑑𝑓

𝑑𝜂

= 𝜇

𝑑
2
𝑓

𝑑𝜂
2
− 𝛼
1
𝑚

𝑑
3
𝑓

𝑑𝜂
3
+ 𝛽
1
𝑚
2
𝑑
4
𝑓

𝑑𝜂
4

+ 6 (𝛽
2
+ 𝛽
3
) (

𝑑𝑓

𝑑𝜂

)

2

𝑑
2
𝑓

𝑑𝜂
2
− 𝛾
1
𝑚
3
𝑑
5
𝑓

𝑑𝜂
5

− 2𝑚 (3𝛾
2
+ 𝛾
3
+ 𝛾
4
+ 𝛾
5
+ 3𝛾
7
+ 𝛾
8
)

𝑑

𝑑𝜂

× [(

𝑑𝑓

𝑑𝜂

)

2

𝑑
2
𝑓

𝑑𝜂
2
] − 𝜎𝐵

2

0
𝑓.

(11)

Thus, the original fifth-order nonlinear PDE (7) reduced
to a fifth-order ODE (11) along certain curves in the 𝑦-𝑡
plane. These curves are called characteristic curves or just the
characteristic.

4. Shock Wave Solution

Now, we obtain shock wave solution of the reduced equation
(11). The starting hypothesis for shock wave solution is given
by [14–17]

𝑓 (𝜂) = 𝐴 exp (𝐵𝜂) , (12)

where 𝐴 and 𝐵 are the free parameters to be determined.
Inserting (12) in (11), we obtain

0 = [𝑚𝜌𝐵 + 𝜇𝐵
2

− 𝑚𝛼
1
𝐵
3

+ 𝛽
1
𝑚
2

𝐵
4

− 𝛾
1
𝑚
3

𝐵
5

− 𝜎𝐵
2

0
]

+ 𝑒
2𝐵𝜂

[6 (𝛽
2
+ 𝛽
3
) 𝐴
2

𝐵
4

−6𝑚 (3𝛾
2
+ 𝛾
3
+ 𝛾
4
+ 𝛾
5
+ 3𝛾
7
+ 𝛾
8
) 𝐴
2

𝐵
5

] .

(13)

Separating (13) in the powers of 𝑒0 and 𝑒
2𝐵𝜂, we find the

following:

𝑒
0

: 𝑚𝜌𝐵 + 𝜇𝐵
2

− 𝑚𝛼
1
𝐵
3

+ 𝛽
1
𝑚
2

𝐵
4

− 𝛾
1
𝑚
3

𝐵
5

− 𝜎𝐵
2

0
= 0,

(14)

𝑒
2𝐵𝜂

: 6 (𝛽
2
+ 𝛽
3
) 𝐴
2

𝐵
4

− 6𝑚 (3𝛾
2
+ 𝛾
3
+ 𝛾
4
+ 𝛾
5
+ 3𝛾
7
+ 𝛾
8
) 𝐴
2

𝐵
5

= 0.

(15)

From (15), we deduce

𝐵 =

(𝛽
2
+ 𝛽
3
)

𝑚 (3𝛾
2
+ 𝛾
3
+ 𝛾
4
+ 𝛾
5
+ 3𝛾
7
+ 𝛾
8
)

. (16)

Using the value of 𝐵 in (14), we obtain

0 =

𝜌 (𝛽
2
+ 𝛽
3
)

(3𝛾
2
+ 𝛾
3
+ 𝛾
4
+ 𝛾
5
+ 3𝛾
7
+ 𝛾
8
)

+

𝜇(𝛽
2
+ 𝛽
3
)
2

𝑚
2
(3𝛾
2
+ 𝛾
3
+ 𝛾
4
+ 𝛾
5
+ 3𝛾
7
+ 𝛾
8
)
2

−

𝛼
1
(𝛽
2
+ 𝛽
3
)
3

𝑚
2
(3𝛾
2
+ 𝛾
3
+ 𝛾
4
+ 𝛾
5
+ 3𝛾
7
+ 𝛾
8
)
3

+

𝛽
1
(𝛽
2
+ 𝛽
3
)
4

𝑚
2
(3𝛾
2
+ 𝛾
3
+ 𝛾
4
+ 𝛾
5
+ 3𝛾
7
+ 𝛾
8
)
4

−

𝛾
1
(𝛽
2
+ 𝛽
3
)
5

𝑚
2
(3𝛾
2
+ 𝛾
3
+ 𝛾
4
+ 𝛾
5
+ 3𝛾
7
+ 𝛾
8
)
5
− 𝜎𝐵
2

0
.

(17)

Thus, the solution for 𝑓(𝜂) (provided the condition (17)
holds) can be written as

𝑓 (𝜂) = 𝐴 exp[
(𝛽
2
+ 𝛽
3
)

𝑚 (3𝛾
2
+ 𝛾
3
+ 𝛾
4
+ 𝛾
5
+ 3𝛾
7
+ 𝛾
8
)

𝜂] . (18)

So, the solution 𝑢(𝑦, 𝑡) which satisfies the condition (17) is
written as

𝑢 (𝑦, 𝑡) = 𝐴 exp[
(𝛽
2
+ 𝛽
3
) (𝑦 − 𝑚𝑡)

𝑚 (3𝛾
2
+ 𝛾
3
+ 𝛾
4
+ 𝛾
5
+ 3𝛾
7
+ 𝛾
8
)

]

with 𝑚 > 0.

(19)

We observe that the solution (19) does satisfy the physically
relevant boundary and initial conditions

𝑢 (0, 𝑡) = 𝐸 (𝑡), (20a)

𝑢 (𝑦, 0) = 𝐹 (𝑦), (20b)

𝜕𝑢 (𝑦, 0)

𝜕𝑡

= 𝐺 (𝑦), (20c)

𝜕
2
𝑢 (𝑦, 0)

𝜕𝑡
2

= 𝐻 (𝑦), (20d)

where

𝐸 (𝑡) = 𝐴 exp(
− (𝛽
2
+ 𝛽
3
)𝑚𝑡

𝑚 (3𝛾
2
+ 𝛾
3
+ 𝛾
4
+ 𝛾
5
+ 3𝛾
7
+ 𝛾
8
)

) , (21a)

𝐹 (𝑦) = 𝐴 exp(
(𝛽
2
+ 𝛽
3
) 𝑦

𝑚 (3𝛾
2
+ 𝛾
3
+ 𝛾
4
+ 𝛾
5
+ 3𝛾
7
+ 𝛾
8
)

) , (21b)

𝐺 (𝑦) =

− (𝛽
2
+ 𝛽
3
)

(3𝛾
2
+ 𝛾
3
+ 𝛾
4
+ 𝛾
5
+ 3𝛾
7
+ 𝛾
8
)

𝐹 (𝑦) , (21c)

𝐻(𝑦) = (

(𝛽
2
+ 𝛽
3
)

(3𝛾
2
+ 𝛾
3
+ 𝛾
4
+ 𝛾
5
+ 3𝛾
7
+ 𝛾
8
)

)

2

𝐹 (𝑦) , (21d)

with

𝐴 = 𝐸 (0) = 𝐹 (0) . (22)
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Figure 1: Shock wave behaviour of solution (19), where 𝛽
2
= 2, 𝛽

3
=

1, 𝑚 = 1, 𝑡 = 𝜋/2, and 𝛾
2
= 𝛾
3
= 𝛾
4
= 𝛾
5
= 𝛾
7
= 𝛾
8
= 0.2.

The functions 𝐸(𝑡), 𝐹(𝑦), 𝐺(𝑦), and 𝐻(𝑦) depend on the
physical parameters of the flow model. The boundary condi-
tion (20a) is the no-slip condition at𝑦 = 0.The initial velocity
𝐸(0) of the rigid plate can be prescribed, but its velocity for
𝑡 > 0,𝐸(𝑡), cannot be arbitrary and is given by (21a). Similarly,
the initial velocity profile 𝑢(𝑦, 0) cannot be arbitrary and is
given by (21b).

Note that the solution (19) is the soliton solution or
the shock wave solution to the governing PDE (7). The
above solution is valid under the particular condition on the
physical parameters of the flow model given in (17). This
solution does show the hidden shock wave behavior of the
flow problem with slope of the velocity field or the velocity
gradient approaches to infinity such that

𝜕𝑢

𝜕𝑦

→ ∞ as 𝑦 > 0. (23)

If we denote

𝜖 =

(𝛽
2
+ 𝛽
3
)

(3𝛾
2
+ 𝛾
3
+ 𝛾
4
+ 𝛾
5
+ 3𝛾
7
+ 𝛾
8
)

, (24)

thus, the imposing condition (17) can be written as

𝑚
2

=

[−𝛾
1
𝜖
5
+ 𝛽
1
𝜖
4
− 𝛼
1
𝜖
3
+ 𝜇𝜖
2
]

(𝜎𝐵
2

0
− 𝜌𝜖)

, with 𝜎𝐵2
0
̸= 𝜌𝜖. (25)

We observe that the condition (25) gives the speed 𝑚 of the
travelling shockwave.The range of the values of 𝜖 for which𝑚
is real depends not only on the zeros of the cubic polynomial
in 𝜖 on the numerator of (25) but also on the sign of the
denominator. The shock wave behavior of solution (19) is
observed from Figure 1.

5. Concluding Remarks

In this study, we have obtained the mathematical structure
of the closed-form shock wave solution of higher-order

nonlinear PDE arising in the study of a fourth grade non-
Newtonian fluid model. Translational symmetry generators
in variables 𝑡 and 𝑦 have been utilized to perform reduction
of governing nonlinear partial differential equation into
ordinary differential equation, and, thereafter, the closed-
form shock wave solution has been constructed. We have
considered a prototype model of the flow problem, but
the solution is going to be very helpful in carrying out
further analysis of the shock wave behavior associated with
the non-Newtonian fluid flow models. The method that we
have adopted is also prosperous for tackling wide range of
nonlinear problems in non-Newtonian fluid mechanics.
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The homotopy perturbation method, Sumudu transform, and He’s polynomials are combined to obtain the solution of fractional
Black-Scholes equation. The fractional derivative is considered in Caputo sense. Further, the same equation is solved by homotopy
Laplace transform perturbation method. The results obtained by the two methods are in agreement. The approximate analytical
solution of Black-Scholes is calculated in the form of a convergence power series with easily computable components. Some
illustrative examples are presented to explain the efficiency and simplicity of the proposed method.

1. Introduction

Fractional differential equations have attracted much atten-
tion, recently, see, for instance [1–5].This is mostly due to the
fact that fractional calculus provides an efficient and excellent
instrument for the description of many practical dynamical
phenomena arising in engineering and scientific disciplines
such as, physics, chemistry, biology, economy, viscoelasticity,
electrochemistry, electromagnetic, control, porous media,
and many more, see, for example, [6–9].

Many partial differential equations of fractional order
have been studied and solved. For example many researchers
studied the existence of solutions of the Black-Scholes model
using many methods, see [10–14].

The homotopy perturbation method was first introduced
and applied by He [15–17]. This method has been applied by
many authors in many fields, for example, it is applied to
nonlinear oscillator [18], nonlinear wave equation [19], non-
linear partial differential equations [20], integro-differential
equation of fractional order [21], fuzzy differential equation
[22], and other fields [23, 24]. Further homotopy perturbation
methods are combined with Laplace transform to solve
many problems such as one dimensional nonhomogeneous
partial differential equations with a variable coefficient [25],

Black-Scholes of fractional order [26], and parabolic par-
tial differential equations [27]. The homotopy perturbation
method coupled with Sumudu transform basically illustrates
how Sumudu transform can be used to approximate the
solutions of the linear and nonlinear differential equations
by manipulating the homotopy perturbation method. In [28]
Singh et al. studied the solution of linear and nonlinear partial
differential equations by using the homotopy perturbation
method coupled with Sumudu transform. Further, in [29]
the authors proposed the homotopy perturbation method
coupled with Sumudu transform to solve nonlinear fractional
gas dynamics equation.

The Black-Scholes equation is one of the most significant
mathematical models for a financial market. It is a second-
order parabolic partial differential equation that governs the
value of financial derivatives. This Black-Scholes model for
the value of an option is described by the following equation:

𝜕V
𝜕𝑡

+

𝜎𝑥
2

2

𝜕
2V

𝜕𝑥
2
+ 𝑟 (𝑡) 𝑥

𝜕V
𝜕𝑥

− 𝑟 (𝑡) V = 0,

(𝑥, 𝑡) ∈ 𝑅
+

× (0, 𝑇) , 0 < 𝛼 ≤ 1,

(1)

where V(𝑥, 𝑡) is the European call option price at asset price
𝑥 and at time 𝑡, 𝑇 is the maturity, 𝑟(𝑡) is the risk free
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interest rate, and 𝜎(𝑥, 𝑡) represents the volatility function of
underlying asset. The payoff functions are

V
𝑐
(𝑥, 𝑡) = max (𝑥 − 𝐸, 0) ; V

𝑝
(𝑥, 𝑡) = max (𝐸 − 𝑥, 0) ,

(2)

where V
𝑐
(𝑥, 𝑡) and V

𝑝
(𝑥, 𝑡) are the value of the European call

and put options, respectively, 𝐸 denotes the expiration price
for the option, and the function max(𝑥, 0) gives the large
value between 𝑥 and 0.

In this paper, we consider the following fractional Black-
Scholes of the form

𝜕
𝛼V

𝜕𝑡
𝛼
+

𝜎𝑥
2

2

𝜕
2V

𝜕𝑥
2
+ 𝑟 (𝑡) 𝑥

𝜕V
𝜕𝑥

− 𝑟 (𝑡) V = 0,

(𝑥, 𝑡) ∈ 𝑅
+

× (0, 𝑇) , 0 < 𝛼 ≤ 1.

(3)

In [29] Singh et al. used homotopy perturbation method
coupled with Sumudu transform to solve fractional gas
dynamics equation. The aim of this paper is to applied the
homotopy perturbation method for fractional Black-Scholes
equation by using He’s polynomials and Sumudu transform.

2. Sumudu Transform

The Sumudu transform was first introduced and applied by
Watugala [30] in (1998). For further details and properties
of Sumudu transform see [31–34]. The Sumudu transform is
defined over the set of functions:

𝐴 = {𝑓 (𝑡) : ∃𝑀, 𝜏
1
, 𝜏
2
> 0,





𝑓 (𝑡)





< 𝑀𝑒
𝑡/𝜏
𝑗
,

if 𝑡 ∈ (−1)
𝑗

× [0,∞)}

(4)

by the following formula

𝑓 (𝑢) = 𝑆 [𝑓 (𝑡) ; 𝑢] =: ∫

∞

0

𝑓 (𝑢𝑡) 𝑒
−

𝑡𝑑𝑡, 𝑢 ∈ (−𝜏, 𝜏) . (5)

The existence and uniqueness was discussed in [35]. For
further properties of Sumudu transform and its derivatives,
see [36]. Some fundamental further established properties of
Sumudu transform can be found in [31].

Similarly, this new transform was applied to one-dimen-
sional neutron transport equation [37]. In [34] Kılıçman et al.
show that there is a strong relationship between Sumudu and
other integral transforms. Further in [33] the Sumudu trans-
form was extended to the distributions, and some of their
properties were also studied in [38]. Recently Kılıçman et al.
applied this transform to solve system of differentials equa-
tions, for more details see [34, 35, 37–39].

3. Basic Definitions of Fractional Calculus

In this section, we give some basic definitions and properties
of fractional calculus theory which will be used in this paper.

Definition 1. TheRiemann-Liouville fractional integral oper-
ator of order 𝛼 ≥ 0 of a function 𝑓 ∈ 𝐶𝜇, 𝜇 ≥ −1 is defined as
follows:

𝐽
𝛼

𝑓 (𝑥) =

1

Γ (𝛼)

∫

𝑥

0

(𝑥 − 𝑡)
𝛼−1

𝑓 (𝑡) 𝑑𝑡,

𝛼 > 0, 𝑡 > 0

(6)

in particular 𝐽0𝑓(𝑥) = 𝑓(𝑥).

For Riemann-Liouville fractional integral, one has

𝐽
𝛼

𝑥
𝛾

=

Γ (𝛾 + 1)

Γ (𝛼 + 𝛾 + 1)

𝑥
𝛼+𝛾

. (7)

Definition 2. The Caputo fractional derivative of 𝑓 ∈ 𝐶
𝑚

−1
,

𝑚 ∈ 𝑁 is defined as follows:

𝐷
𝛼

𝑓 (𝑥) =

1

Γ (𝑚 − 𝛼)

∫

𝑥

0

(𝑥 − 𝑡)
𝑚−𝛼−1

𝑓
𝑚

(𝑡) 𝑑𝑡,

𝑚 − 1 < 𝛼 ≤ 𝑚.

(8)

Lemma 3. If 𝑚 − 1 < 𝛼 ≤ 𝑚, 𝑚 ∈ 𝑁, 𝑓 ∈ 𝐶
𝑚

𝜇
, 𝜇 > −1 then

the following two properties hold:

(1) 𝐷𝛼[𝐽𝛼𝑓(𝑥)] = 𝑓(𝑥),

(2) 𝐽𝛼[𝐷𝛼𝑓(𝑥)] = 𝑓(𝑥) − ∑
𝑚−1

𝑘=1
𝑓
𝑘
(0)(𝑥
𝑘
/𝑘!).

Definition 4. TheMittag-Leffler function 𝐸
𝛼
(𝑧) with 𝛼 > 0 is

defined by the following series representation, valid in the
whole complex plane:

𝐸
𝛼
(𝑧) =

∞

∑

0

𝑧
𝑛

Γ (𝛼𝑛 + 1)

. (9)

Definition 5. TheSumudu transform of the Caputo fractional
derivative is defined as follows [40]:

𝑆 [𝐷
𝛼

𝑡
𝑓 (𝑡)] = 𝑢

−𝛼

𝑆 [𝑓 (𝑡)] −

𝑚−1

∑

𝑘=0

𝑢
−𝛼+𝑘

𝑓
(𝑘)

(0
+

) ,

(𝑚 − 1 < 𝛼 ≤ 𝑚) .

(10)

4. Homotopy Perturbation Method

To illustrate the basic idea of this method, we consider the
following nonlinear differential equation:

𝐴 (𝑢) − 𝑓 (𝑟) = 0, 𝑟 ∈ Ω (11)

with boundary conditions

𝐵(𝑢,

𝜕𝑢

𝜕𝑛

) = 0, 𝑟 ∈ Γ, (12)

where 𝐴 is a general differential operator, 𝐵 is a boundary
operator, 𝑓(𝑟) is a known analytic function, and Γ is the
boundary of the domainΩ.
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In general, the operator𝐴 can be divided into two parts 𝐿
and 𝑁, where 𝐿 is linear, while 𝑁 is nonlinear. Equation (11)
therefor can be rewritten as follows:

𝐿 (𝑢) + 𝑁 (𝑢) − 𝑓 (𝑟) = 0. (13)

By the homotopy technique [41, 42] we construct a homotopy
V(𝑟, 𝑝) : Ω × [0, 1] → 𝑅 which satisfies

𝐻(V, 𝑝) = (1 − 𝑝) [𝐿 (V) − 𝐿 (𝑢
0
)] + 𝑝 [𝐴 (V) − 𝑓 (𝑟)] = 0

𝑝 ∈ [0, 1] , 𝑟 ∈ Ω

(14)

or

𝐻(V, 𝑝) = 𝐿 (V) − 𝐿 (𝑢
0
) + 𝑝𝐿 (𝑢

0
) + 𝑝 [𝑁 (V) − 𝑓 (𝑟)] = 0,

(15)

where 𝑝 ∈ [0, 1] is an embedding parameter, and 𝑢
0
is an

initial approximation of (11) which satisfies the boundary
conditions.

From (14) and (15) we have

𝐻(V, 0) = 𝐿 (V) − 𝐿 (𝑢
0
) = 0,

𝐻 (V, 1) = 𝐴 (V) − 𝑓 (𝑟) = 0.

(16)

The changing in the process of 𝑝 from zero to unity is just
that of V(𝑟, 𝑝) from 𝑢

0
(𝑟) to 𝑢(𝑟). In topology this is called

deformation, and 𝐿(V) − 𝐿(𝑢
0
) and 𝐴(V) − 𝑓(𝑟) are called

homotopic.
Now, assume that the solution of (14), (15) can be

expressed as

V = V
0
+ 𝑝V
1
+ 𝑝
2V
2
+ ⋅ ⋅ ⋅ . (17)

Setting 𝑝 = 1 results in the approximate solution of (11):

𝑢 = lim
𝑝→1

V = V
0
+ V
1
+ V
2
+ ⋅ ⋅ ⋅ . (18)

5. Homotopy Perturbation Method Coupled
with Sumudu Transform

To illustrate the basic idea of this method, we consider the
following nonlinear fractional differential equation:

𝐷
𝛼

𝑡
𝑢 (𝑥, 𝑡) + 𝐿 [𝑥] 𝑢 (𝑥, 𝑡) + 𝑁 [𝑥] 𝑢 (𝑥, 𝑡)

= 𝑞 (𝑥, 𝑡) , 𝑡 > 0, 𝑚 − 1 < 𝛼 ≤ 𝑚,

(19)

where 𝐷𝛼
𝑡
= 𝜕
𝛼
/𝜕𝑡
𝛼 is the fractional Caputo derivative of the

function 𝑢(𝑥, 𝑡), 𝐿 is the linear differential operator, 𝑁 is the
nonlinear differential operator, and 𝑞(𝑥, 𝑡) is the source term.

Now, applying the Sumudu transform on both sides of
(19), we have

𝑆 [𝐷
𝛼

𝑡
𝑢 (𝑥, 𝑡)] + 𝑆 [𝐿 [𝑥] 𝑢 (𝑥, 𝑡) + 𝑁 [𝑥] 𝑢 (𝑥, 𝑡)]

= 𝑆 [𝑞 (𝑥, 𝑡)] .

(20)

Using the differential property of Sumudu transform, we have

𝑆 [𝑢 (𝑥, 𝑡)]

= 𝑓 (𝑥) − 𝑢
𝛼

𝑆 [𝐿 [𝑥] 𝑢 (𝑥, 𝑡) + 𝑁 [𝑥] 𝑢 (𝑥, 𝑡)]

+ 𝑢
𝛼

𝑆 [𝑞 (𝑥, 𝑡)] .

(21)

Operating with Sumudu inverse on both sides of (21)

𝑢 (𝑥, 𝑡) = 𝑄 (𝑥, 𝑡) − 𝑆
−1

[𝑢
𝛼

𝑆 (𝐿 [𝑥] 𝑢 (𝑥, 𝑡) + 𝑁 [𝑥] 𝑢 (𝑥, 𝑡))] ,

(22)

where 𝑄(𝑥, 𝑡) represents the term arising from the source
term and the prescribed initial conditions.

Now, applying the classical homotopy perturbation tech-
nique, the solution can be expressed as a power series in 𝑝 as
given below:

𝑢 (𝑥, 𝑡) =

∞

∑

𝑛=0

𝑝
𝑛

𝑢
𝑛
(𝑥, 𝑡) , (23)

where the homotopy parameter 𝑝 is considered as a small
parameter (𝑝 ∈ [0, 1]).

We can decompose the nonlinear term as

𝑁𝑢 (𝑥, 𝑡) =

∞

∑

𝑛=0

𝑝
𝑛

𝐻
𝑛
(𝑢) , (24)

where 𝐻
𝑛
are He’s polynomials of 𝑢

0
, 𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑛
[43–45],

and it can be calculated by the following formula:

𝐻(𝑢
0
, 𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑛
)

=

1

𝑛!

𝜕
𝑛

𝜕𝑝
𝑛
[𝑁(

∞

∑

𝑛=0

𝑝
𝑖

𝑢
𝑖
)]

𝑝=0

, 𝑛 = 0, 1, 2, . . . .

(25)

By substituting (23) and (24) and using HPM [15] we get
∞

∑

𝑛=1

𝑝
𝑛

𝑢
𝑛
(𝑥, 𝑡)

= 𝑄 (𝑥, 𝑡)

− 𝑝(𝑆
−1

[𝑢
𝛼

𝑆 [𝐿

∞

∑

𝑛=0

𝑝
𝑛

𝑢
𝑛
(𝑥, 𝑡) +

∞

∑

𝑛=0

𝑝
𝑛

𝐻
𝑛
(𝑢)]]) .

(26)

This is coupling of Sumudu transform and homotopy per-
turbation method using He’s polynomials. By equating the
coefficient of corresponding power of 𝑝 on both sides, the
following approximations are obtained as

𝑝
0

: 𝑢
0
(𝑥, 𝑡) = 𝑄 (𝑥, 𝑡) ,

𝑝
1

: 𝑢
1
(𝑥, 𝑡) = −𝑆

−1

(𝑢
𝛼

𝑆 [𝐿 [𝑥] 𝑢
0
(𝑥, 𝑡) + 𝐻

0
(𝑢)]) ,

𝑝
2

: 𝑢
2
(𝑥, 𝑡) = −𝑆

−1

(𝑢
𝛼

𝑆 [𝐿 [𝑥] 𝑢
1
(𝑥, 𝑡) + 𝐻

1
(𝑢)]) ,

𝑝
3

: 𝑢
3
(𝑥, 𝑡) = −𝑆

−1

(𝑢
𝛼

𝑆 [𝐿 [𝑥] 𝑢
2
(𝑥, 𝑡) + 𝐻

2
(𝑢)]) ,

...

(27)
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Proceeding in the same manner, the rest of the components
𝑢
𝑛
(𝑥, 𝑡) can be completely obtained, and the series solution is

thus entirely determined. Finlay we approximate the solution
𝑢(𝑥, 𝑡) by truncated series

𝑢 (𝑥, 𝑡) = lim
𝑁→∞

𝑁

∑

𝑛=0

𝑢
𝑛
(𝑥, 𝑡) . (28)

This series solutions generally converge very rapidly.

6. Examples

In this section, we discuss the implementation of the pro-
posed method.

Example 6. We consider the following fractional Black-
Scholes option pricing equation as follows:

𝜕
𝛼V

𝜕𝑡
𝛼
=

𝜕
2V

𝜕𝑥
2
+ (𝑘 − 1)

𝜕V
𝜕𝑥

− 𝑘V, 0 < 𝛼 ≤ 1 (29)

subject to initial condition

V (𝑥, 0) = max (𝑒𝑥 − 1, 0) . (30)

Applying Sumudu transform on both sides of (29) subject to
initial condition (30), we get

𝑆 [V (𝑥, 𝑡)]

= max (𝑒𝑥 − 1, 0) + 𝑢
𝛼

𝑆 [V
𝑥𝑥

+ (𝑘 − 1) V
𝑥
− 𝑘V] .

(31)

Operating the inverse Sumudu transform on both sides in
(31), we have

V (𝑥, 𝑡) = max (𝑒𝑥 − 1, 0) − 𝑆
−1

[𝑢
𝛼

𝑆 (V
𝑥𝑥

+ (𝑘 − 1) V
𝑥
− 𝑘V)] .

(32)

Now, applying homotopy perturbation method

∞

∑

𝑛=0

𝑝
𝑛V
𝑛
(𝑥, 𝑡)

= max (𝑒𝑥 − 1, 0) − 𝑝(𝑆
−1

[𝑢
𝛼

𝑆 [

∞

∑

𝑛=0

𝑝
𝑛

𝐻
𝑛
(V)]]) ,

(33)

where

𝐻
𝑛
= V
𝑛𝑥𝑥

+ (𝑘 − 1) V
𝑛𝑥

+ 𝑘V
𝑛
, 𝑛 ∈ 𝑁. (34)

Equating the corresponding power of 𝑝 on both sides in
(38), we have

𝑝
0

: V
0
(𝑥, 𝑡) = max (𝑒𝑥 − 1, 0) ,

𝑝
1

: V
1
(𝑥, 𝑡) = 𝑆

−1

(𝑢
𝛼

𝑆 [𝐻
0
(V)])

= −max (𝑒𝑥, 0)
(−𝑘𝑡
𝛼
)

Γ (𝛼 + 1)

+max (𝑒𝑥 − 1, 0)

(−𝑘𝑡
𝛼
)

Γ (𝛼 + 1)

,

𝑝
2

: V
2
(𝑥, 𝑡) = 𝑆

−1

(𝑢
𝛼

𝑆 [𝐻
1
(V)])

= max (𝑒𝑥, 0)
(−𝑘𝑡
𝛼
)
2

Γ (2𝛼 + 1)

+max (𝑒𝑥 − 1, 0)

(−𝑘𝑡
𝛼
)
2

Γ (2𝛼 + 1)

,

...

𝑝
𝑛

: V
𝑛
(𝑥, 𝑡) = 𝑆

−1

(𝑢
𝛼

𝑆 [𝐻
𝑛
(V)])

= max (𝑒𝑥, 0)
(−𝑘𝑡
𝛼
)
𝑛

Γ (𝑛𝛼 + 1)

+max (𝑒𝑥 − 1, 0)

(−𝑘𝑡
𝛼
)
𝑛

Γ (𝑛𝛼 + 1)

.

(35)

So that the solution V(𝑥, 𝑡) of the problem is given by

V (𝑥, 𝑡) = lim
𝑝→1

∞

∑

𝑖=0

𝑝
𝑖

𝑢
𝑖
(𝑥, 𝑡)

= max (𝑒𝑥 − 1, 0) 𝐸
𝛼
(−𝑘𝑡
𝛼

)

+max (𝑒𝑥, 0) (1 − 𝐸
𝛼
(−𝑘𝑡
𝛼

)) ,

(36)

where 𝐸
𝛼
(𝑧) is Mittag-Leffler function in one parameter. For

special case 𝛼 = 1, we get

V (𝑥, 𝑡) = max (𝑒𝑥 − 1, 0) 𝑒
−𝑘𝑡

+max (𝑒𝑥, 0) (1 − 𝑒
−𝑘𝑡

) ,

(37)

which is an exact solution of the given Black-Scholes equation
(29) for 𝛼 = 1.

The behaviour of V (𝑥, 𝑡)with respect to 𝑥 and 𝑡when 𝛼 =

1 is given in Figure 1.

Example 7. We consider the following fractional Black-
Scholes option pricing equation as follows:

𝜕
𝛼V

𝜕𝑡
𝛼
+ 0.08(2 + sin𝑥)

2

𝑥
2 𝜕
2V

𝜕𝑥
2
+ 0.06

𝜕V
𝜕𝑥

− 0.06V = 0,

0 < 𝛼 ≤ 1

(38)
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Figure 1:The surface shows the V(𝑥, 𝑡) for (29) with respect to 𝑥 and
𝑡 for 𝛼 = 1.

subject to initial condition

V (𝑥, 0) = max (𝑥 − 25𝑒
−0.06

, 0) . (39)

Firstly, applying Sumudu transform on both sides of (38)
subject to initial condition (39), we get

𝑆 [V (𝑥, 𝑡)] = max (𝑥 − 25𝑒
−0.06

, 0) − 𝑢
𝛼

𝑆

× [0.08(2 + sin𝑥)
2

𝑥
2V
𝑥𝑥

+ 0.06V
𝑥
− 0.06V] .

(40)

Operating the inverse Sumudu transform on both sides in
(40), we have

V (𝑥, 𝑡) = max (𝑥 − 25𝑒
−0.06

, 0) − 𝑆
−1

× [𝑢
𝛼

𝑆 (0.08(2 + sin𝑥)
2

𝑥
2V
𝑥𝑥

+ 0.06V
𝑥
− 0.06V)] .

(41)

Now, applying the homotopy perturbation method we have

∞

∑

𝑛=0

𝑝
𝑛V
𝑛
(𝑥, 𝑡) = max (𝑥 − 25𝑒

−0.06

− 1, 0)

− 𝑝(𝑆
−1

[𝑢
𝛼

𝑆 [

∞

∑

𝑛=0

𝑝
𝑛

𝐻
𝑛
(V)]]) ,

(42)

where

𝐻
𝑛
= 0.08(2 + sin𝑥)

2

𝑥
2V
𝑛𝑥𝑥

+ 0.06V
𝑛𝑥

− 0.06V
𝑛
, 𝑛 ∈ 𝑁.

(43)

Equating the corresponding power of 𝑝 on both sides in (42),
we have

𝑝
0

: V
0
(𝑥, 𝑡) = max (𝑥 − 25𝑒

−0.06

, 0) ,

𝑝
1

: V
1
(𝑥, 𝑡)

= 𝑆
−1

(𝑢
𝛼

𝑆 [𝐻
0
(V)])

= −𝑥

(−0.06𝑡
𝛼
)

Γ (𝛼 + 1)

+max (𝑥 − 25𝑒
−0.06

, 0)

(−0.06𝑡
𝛼
)

Γ (𝛼 + 1)

,

𝑝
2

: V
2
(𝑥, 𝑡)

= 𝑆
−1

(𝑢
𝛼

𝑆 [𝐻
1
(V)])

= −𝑥

(−0.06𝑡
𝛼
)
2

Γ (2𝛼 + 1)

+max (𝑥 − 25𝑒
0.06

, 0)

(−0.06𝑡
𝛼
)
2

Γ (2𝛼 + 1)

,

...

𝑝
𝑛

: V
𝑛
(𝑥, 𝑡) = 𝑆

−1

(𝑢
𝛼

𝑆 [𝐻
𝑛
(V)])

= −𝑥

(−0.06𝑡
𝛼
)
𝑛

Γ (𝑛𝛼 + 1)

+max (𝑥 − 25𝑒
𝑥

, 0)

(−0.06 − 𝑡
𝛼
)
𝑛

Γ (𝑛𝛼 + 1)

.

(44)

So that the solution V(𝑥, 𝑡) of the problem is given by

V (𝑥, 𝑡) = lim
𝑝→1

∞

∑

𝑖=0

𝑝
𝑖

𝑢
𝑖
(𝑥, 𝑡)

= 𝑥 (1 − 𝐸
𝛼
(−0.06𝑡

𝛼

))

+max (𝑥 − 25𝑒
−0.06

, 0) 𝐸
𝛼
(−0.06𝑡

𝛼

) .

(45)

This is the exact solution of the given option pricing equation
(38). The solution of (38) at the special case 𝛼 = 1 is

V (𝑥, 𝑡) = 𝑥 (1 − 𝑒
0.06𝑡

− 1, 0)

+max (𝑥 − 25𝑒
−0.06

, 0) 𝑒
−0.06𝑡

.

(46)

The behaviour of V(𝑥, 𝑡) with respect to 𝑥 and 𝑡 when 𝛼 = 1 is
given in Figure 2.

7. Conclusion

In this paper, the homotopy perturbation Sumudu transform
method (HPSTM) is successfully applied for getting the
analytical solution of the fractional Black-Scholes option
pricing equation. Two examples from the literature [26]
are presented. The results of the illustrated examples are in
agreementwith the results of themethod presented in [26]. In
conclusion, HPSTM is a very powerful and efficient method
to find approximate solutions as well as numerical solutions.
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Figure 2:The surface shows the V(𝑥, 𝑡) for (38) with respect to 𝑥 and
𝑡 for 𝛼 = 1.
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[35] A. Kılıçman and H. Eltayeb, “A note on integral transforms and
partial differential equations,” Applied Mathematical Sciences,
vol. 4, no. 6, pp. 109–118, 2010.

[36] M. A. Asiru, “Sumudu transform and the solution of integral
equations of convolution type,” International Journal of Mathe-
matical Education in Science and Technology, vol. 32, no. 6, pp.
906–910, 2001.

[37] A. Kadem, “Solving the one-dimensional neutron transport
equation using Chebyshev polynomials and the Sumudu trans-
form,” Analele Universitatiidin Oradea. Fascicola Matematica,
vol. 12, pp. 153–171, 2005.
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The temperature profile for fins with temperature-dependent thermal conductivity and heat transfer coefficients will be considered.
Assuming such forms for these coefficients leads to a highly nonlinear partial differential equation (PDE) which cannot easily be
solved analytically. We establish a numerical balance rule which can assist in getting a well-balanced numerical scheme. When
coupled with the zero-flux condition, this scheme can be used to solve this nonlinear partial differential equation (PDE) modelling
the temperature distribution in a one-dimensional longitudinal triangular fin without requiring any additional assumptions or
simplifications of the fin profile.

1. Introduction

There is a wide range of applications for extended surfaces,
mostly called fins, in heat transfer which is more formally
described as the temperature propagation or flow of the heat.
Obvious examples may be found in several applications of
mechanical engineering and in many home appliances [1].
In support of their use, Sparrow and Vemuri [2] have shown
that with finned surfaces the heat transfer increases six times
in comparison to unfinned surfaces. It has been found by
many researchers that the fin orientation, height, length,
and spacing in arrays play major roles in the manner and
efficiency of heat transfer [3–8]. Given that these parameters
play a fundamental role in the structure of the problem, and
even though these interlinked factors increase the complexity
of the problem, they should not be removed for the sake
of simplicity. The consequence of this, however, is that
we end up considering a nonlinear PDE, the solution of
which is not always possible analytically. In fact, the use of
analytical methods has often led to the consideration of a
simplifiedmodel, especially for complex geometries, whereas
this is not necessary when using certain numerical methods.
However, as suggested by Wang et al. [9], when using
numerical schemes as the solution method, it is fundamental

to recognize that a proper numerical treatment of the source
term may eliminate possible spurious steady-state numerical
solutions. In this paper we will follow this line of thought
and thus specifically focus on an appropriate treatment of the
source term of the problem under consideration. As such, the
well-balancing approachwill be considered and implemented
as per the work of LeVeque [10].More precisely, this approach
is applied to triangular fins which have been characterized by
singularities in the literature [11, 12].

When solving the problem of heat transfer in a triangular
fin, it is essential to remember that triangular fin profiles have
been classified by Kraus et al. [11] among singular profiles
because it is analytically impossible to characterize them by
any linear transformation. Kraus proposes that one assume
the triangular profiles to be trapezoidal in nature so as to ren-
der the problem solvable. In thismanner the original problem
is oversimplified so as to guarantee solutions; however, this
methodology may lead to inaccurate results given that fins
with trapezoidal profiles have already been classified as such
and solved accordingly. Therefore, the objective of this paper
is to provide a numerical approach that effectively deals with
the proper form of the triangular fin and solve, via a well-
balancing numerical scheme, the problem of heat transfer in
such a fin.
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In this work we use the finite volume method and
illustrate how it reduces the order of differentiation by
one. In this manner, by using volume averaging and the
Taylor series expansion, we are able to obtain a numerical
balance law. As described by Gosse and Wang [9, 13, 14], we
establish a balance law from information obtained through a
consideration of the steady-state equation, which in turn is
incorporated into the transient heat transfer equation. This
approach is referred to as the well-balancing technique and
maintains steady-state solutions. It is through this approach
that we will obtain solutions to the unsteady heat transfer
problem for a triangular fin.

Contrary to the suggestion made by Kraus et al. [11] that
the profile of the triangular fin should be altered in order
to solve the problem under consideration, we maintain the
original profile, and when implementing the well-balancing
approach we incorporate the zero-flux condition. In much
research, the triangular fin has been considered in an inap-
propriate manner due to a misunderstanding of the unusual
physics of the problem, especially when pertaining to the tip
of the fin. Through a consideration of unsuitable boundary
conditions, the numerical solution of the problem has led
to inaccurate and unusual results—see [12] for such discus-
sions. Through an incorporation of the zero-flux boundary
condition, however, we eliminate any additional assumptions
which would usually be required in order to solve the PDE.
Rather, we establish a numerical well-balanced scheme via
the incorporation of the zero-flux condition, and we validate
the results obtained through the use of benchmark results
[12, 15, 16].Thismethod of solution is novel and to the authors’
best knowledge has not been used in the literature to solve the
problem of singular fins. Furthermore, the approach used can
easily be applied to other singular profiles such as the concave
parabolic and convex parabolic profiles.

2. Model

We consider a longitudinal one-dimensional finwith a profile
area 𝐴

𝑝
. The perimeter of the fin is denoted by 𝑃 and the

length of fin by 𝐿. The fin is attached to a fixed base surface
of temperature 𝑇

𝑏
and extends into a fluid of temperature

𝑇
𝑎
. The fin profile is given by the function 𝐹(𝑋), and the

fin thickness at the base is 𝛿
𝑏
. The energy balance for a

longitudinal fin is given by [11]

𝜌𝑐V
𝜕𝑇

𝜕𝑡

= 𝐴
𝑝

𝜕

𝜕𝑥

(𝐹 (𝑋)𝐾 (𝑇)

𝜕𝑇

𝜕𝑥

)

− 𝑃𝐻 (𝑇) (𝑇 − 𝑇
𝑎
) , 0 < 𝑋 < 𝐿,

(1)

where 𝐾 and 𝐻 are the nonuniform thermal conductivity
and heat transfer coefficient depending on the temperature
(see, e.g., [17–20]). We define 𝜌 as the density and 𝑐V as the
volumetric heat capacity.The fin length is measured from the
tip to the base as shown in Figure 1 (see also [11, 18, 19]).

An insulated fin at one end with the base temperature at
the other implies boundary conditionswhich are given by [11]

𝑇 (𝑡, 𝐿) = 𝑇
𝑏
,

𝜕𝑇

𝜕𝑋








𝑋=0

= 0, (2)

𝛿

𝑏

𝛿

𝑑𝑋

𝐿

𝑦 = 0

𝑋 = 𝐿 𝑋 = 0

𝑦 = 𝐹(𝑋)

Fin base

Figure 1: Schematic representation of a longitudinal fin with
arbitrary profile 𝐹(𝑋).

and initially the fin is kept at the temperature of the fluid (the
ambient temperature):

𝑇 (0,𝑋) = 𝑇
𝑎
. (3)

Introducing the dimensionless variables

𝑥 =

𝑋

𝐿

, 𝜏 =

𝑘
𝑎
𝑡

𝜌𝑐V𝐿
2
, 𝜃 =

𝑇 − 𝑇
𝑎

𝑇
𝑏
− 𝑇
𝑎

,

ℎ =

𝐻

ℎ
𝑏

, 𝑘 =

𝐾

𝑘
𝑎

,

M
2

=

2𝑃ℎ
𝑏
𝐿
2

𝑘
𝑎
𝛿
𝑏
𝐴
𝑝

, 𝑓 (𝑥) =

2

𝛿
𝑏

𝐹 (𝑋) ,

(4)

then (1) reduces to the relevant dimensionless energy equa-
tion given by

𝜕𝜃

𝜕𝜏

=

𝜕

𝜕𝑥

[𝑓 (𝑥) 𝑘 (𝜃)

𝜕𝜃

𝜕𝑥

] −M
2

𝜃ℎ (𝜃) , 0 < 𝑥 < 1. (5)

The above equation represents the nonlinear heat transfer
equation when the thermal conductivity and heat transfer
coefficients depend on temperature. The heat transfer coeffi-
cient is given by the power law used in most of the industrial
applications [12, 21] as

𝐻(𝑇) = ℎ
𝑏
(

𝑇 − 𝑇
𝑎

𝑇
𝑏
− 𝑇
𝑎

)

𝑛

. (6)

The exponent 𝑛 varies between −6.6 and 5; however, it tends
to lie between −3 and 3 in most practical applications [12].
Furthermore, the thermal conductivity of the fin is assumed
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to vary linearly with the temperature [12] as is the case for
many engineering applications. As such we find that

𝐾 (𝑇) = 𝑘
𝑎
[1 + 𝛽 (𝑇 − 𝑇

𝑎
)] , (7)

which in dimensionless variables gives 𝑘(𝜃) = 1 + 𝐵𝜃 where
𝐵 = 𝛽(𝑇

𝑏
−𝑇
𝑎
) is nonzero with 𝛽 as the thermal conductivity

gradient. Hence, the dimensionless heat transfer equation for
a longitudinal one-dimensional fin is given by [12, 16, 22]

𝜕𝜃

𝜕𝜏

=

𝜕

𝜕𝑥

(𝑓 (𝑥) (1+𝐵𝜃)

𝜕𝜃

𝜕𝑥

)−M
2

𝜃
𝑛+1

, 0 < 𝑥 < 1, 𝜏 ≥ 0,

(8)

where boundary conditions are as follows:

𝜕𝜃

𝜕𝑥








𝑥=0

= 0 at the fin tip,

𝜃 (𝜏, 1) = 1, at the base

(9)

with initial condition

𝜃 (0, 𝑥) = 0. (10)

3. Numerical Approach

3.1. The Finite Volume Method and Numerical Balance Law.
At first we intend to briefly introduce the manner in which
we will employ the finite volume method (FVM) and its
advantages within the context of heat transfer problems. In
this scenario, due to its integral approach, the FVM reduces
the order of the spatial derivative by one. This motivates its
use for the heat transfer equation, under consideration given
the presence of a second derivative in its conduction term. If
we were to consider the method for a more general structure
of the heat transfer equation, we would consider the partial
differential equation of the form

𝜕𝑇

𝜕𝑡

−

𝐴
𝑝

𝜌𝑐V

𝜕

𝜕𝑥

(𝐺 (𝑇,𝑋)

𝜕𝑇

𝜕𝑥

) = −

1

𝜌𝑐V
𝑄 (𝐻 (𝑇)) , (11)

where 𝐺(𝑇,𝑋) = 𝐹(𝑋)𝐾(𝑇) is a function of thermal con-
ductivity 𝐾, involved in the convective term, and 𝑄(𝐻(𝑇)) a
function of the heat transfer coefficient 𝐻, which represents
the source term from radiation. Furthermore, we define 𝜌 as
the density, 𝑐V as the heat capacity, and 𝑇 as the temperature.

In order to reduce the order of the spatial derivatives by
one,we integrate (11) over the grid cell [𝑥

𝑖−1/2
, 𝑥
𝑖+1/2

] to obtain

∫

𝑥
𝑖+1/2

𝑥
𝑖−1/2

𝜕𝑇

𝜕𝑡

𝑑𝑥 −

𝐴
𝑝

𝜌𝑐

∫

𝑥
𝑖+1/2

𝑥
𝑖−1/2

𝜕

𝜕𝑥

(𝐺 (𝑇,𝑋)

𝜕𝑇

𝜕𝑥

)𝑑𝑥

= −

1

𝜌𝑐

∫

𝑥
𝑖+1/2

𝑥
𝑖−1/2

𝑄 (𝐻 (𝑇)) 𝑑𝑥.

(12)

By cell averaging we find that

Δ𝑥
𝑖

𝑑
̃
𝑇
𝑖
(𝑡)

𝑑𝑡

−

𝐴
𝑝

𝜌𝑐

(𝐺 (𝑇,𝑋)

𝜕𝑇

𝜕𝑥

)











𝑥
𝑖+1/2

𝑥
𝑖−1/2

= −Δ𝑥
𝑖

1

𝜌𝑐

𝑄
𝑖
, (13)

where

̃
𝑓
𝑖
=

1

Δ𝑥
𝑖

∫

𝑥
𝑖+1/2

𝑥
𝑖−1/2

𝑓𝑑𝑥 (14)

is the cell-averaged quantity of 𝑓 over the grid cell [𝑥
𝑖−1/2

,

𝑥
𝑖+1/2

]. It is obvious that the order of the partial differential
equation under consideration has been reduced by one, and
this increases the accuracy of the results we are to obtain.

In the next section, we will employ the numerical
approach described above for (8) and in doing so develop
a numerical balance law as given by (14). In this manner,
we obtain a well-balanced scheme which preserves specific
nontrivial steady-state solutions and may help to minimize
some of the oscillations which occur around steady states
[23]. Thus for the more general heat transfer equation (11) a
well-balanced scheme can provide a solution thatmust satisfy

𝐴
𝑝

𝜕

𝜕𝑥

(𝐺 (𝑇,𝑋)

𝜕𝑇

𝜕𝑥

) = 𝑄 (𝐻 (𝑇)) (15)

for steady states. An easily understandable and effective
procedure has been established by Wang et al. [9] which
will be implemented in this work for the one-dimensional
heat transfer problem given by (8). It should also be kept in
mind that this methodologymay easily be extended to higher
dimensions.

3.2. Numerical Well-Balanced Scheme. In considering (8)
we find that the one-dimensional steady heat equation for
regular fins is expressed by

𝑑

𝑑𝑥

(𝑓 (𝑥) (1 + 𝐵𝜃)

𝑑𝜃

𝑑𝑥

) = M
2

𝜃
𝑛+1

, 0 < 𝑥 < 1,

𝑑𝜃

𝑑𝑥








𝑥=0

= 0, 𝜃 (1) = 1.

(16)

Integrating over the grid cell [0, 𝑥 + Δ𝑥/2], as discussed
previously within the context of the FVM, we obtain

∫

𝑥+Δ𝑥/2

0

(

𝑑

𝑑𝑥

(𝑓 (𝑥) (1 + 𝐵𝜃)

𝑑𝜃

𝑑𝑥

))𝑑𝑥

= M
2

∫

𝑥+Δ𝑥/2

0

𝜃
𝑛+1

𝑑𝑥, 0 < 𝑥 < 1,

(17)

which is equivalent to

(𝑓(𝑥 +

Δ𝑥

2

) (1 + 𝐵𝜃 (𝑥 +

Δ𝑥

2

)))

𝑑𝜃 (𝑥 + Δ𝑥/2)

𝑑𝑥

= M
2

∫

𝑥+Δ𝑥/2

0

𝜃
𝑛+1

𝑑𝑥, 0 < 𝑥 < 1.

(18)
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Similarly over [0, 𝑥 − Δ𝑥/2], we find that

(𝑓(𝑥 −

Δ𝑥

2

) (1 + 𝐵𝜃 (𝑥 −

Δ𝑥

2

)))

𝑑𝜃 (𝑥 − Δ𝑥/2)

𝑑𝑥

= M
2

∫

𝑥−Δ𝑥/2

0

𝜃
𝑛+1

𝑑𝑥, 0 < 𝑥 < 1.

(19)

By cell averaging over [0, 𝑥 + Δ𝑥/2] and [0, 𝑥 − Δ𝑥/2] and
by using the first-order Taylor approximation around 𝑥 equa-
tions (18) and (19), after simple algebraic transformations,
give the cell-averaged quantity

∫

𝑥+Δ𝑥/2

𝑥−Δ𝑥/2

𝜃
𝑛+1

𝑑𝑥

= Δ𝑥(𝜃
𝑛+1

(𝑥)

+

(𝑛 + 1)M2𝑥Δ𝑥𝜃2𝑛+1 (𝑥)

2𝑓 (𝑥) (1 + 𝐵𝜃 (𝑥)) − (𝑛 + 1)M2𝑥2𝜃𝑛 (𝑥)
) .

(20)

Equation (20) constitutes our numerical balance law.
Integrating (8) over [𝑥−Δ𝑥/2, 𝑥+Δ𝑥/2] and incorporat-

ing expression (20) into the resulting expression we obtain

𝜕𝜃

𝜕𝜏

=

1

(Δ𝑥)
2

× {𝑓(𝑥 +

Δ𝑥

2

) (1 + 𝐵𝜃 (𝑥 +

Δ𝑥

2

))

𝜕𝜃 (𝑥 + Δ𝑥/2)

𝜕𝑥

−𝑓(𝑥−

Δ𝑥

2

) (1+𝐵𝜃 (𝑥−

Δ𝑥

2

))

𝜕𝜃 (𝑥−Δ𝑥/2)

𝜕𝑥

}

−M
2

(𝜃
𝑛+1

(𝑥)

+

(𝑛 + 1)M2𝑥Δ𝑥𝜃2𝑛+1 (𝑥)

2𝑓 (𝑥) (1 + 𝐵𝜃 (𝑥)) − (𝑛 + 1)M2𝑥2𝜃𝑛 (𝑥)
) ,

(21)

where we can see that the order of our equation has been
reduced as expected. We now substitute finite difference
approximations to our derivatives into (21).We consider [𝑥

𝑖
−

Δ𝑥/2, 𝑥
𝑖
+ Δ𝑥/2] for a particular time 𝑡

𝑗
which provides us

with the following approximations:

𝜕𝜃 (𝑥
𝑖
+ Δ𝑥/2)

𝜕𝑥









𝑗

=

𝜃
𝑗
(𝑥
𝑖
+ Δ𝑥) − 𝜃

𝑗
(𝑥
𝑖
)

Δ𝑥

=

𝜃
𝑗

𝑖+1
− 𝜃
𝑗

𝑖

Δ𝑥

,

𝜕𝜃 (𝑥
𝑖
+ Δ𝑥/2)

𝜕𝑥









𝑗

=

𝜃
𝑗
(𝑥
𝑖
) − 𝜃
𝑗
(𝑥
𝑖
− Δ𝑥)

Δ𝑥

=

𝜃
𝑗

𝑖
− 𝜃
𝑗

𝑖−1

Δ𝑥

,

𝜕𝜃

𝜕𝜏








𝑖

=

𝜃
𝑗+1

𝑖
− 𝜃
𝑗

𝑖

Δ𝑡

.

(22)

Hence, our well-balanced numerical scheme is given by the
following recurrence relation:

𝜃
𝑗+1

𝑖

= 𝜃
𝑗

𝑖
+

Δ𝑡

(Δ𝑥)
2
[𝑓
𝑖+1/2

(1 + 𝐵𝜃
𝑗

𝑖+1/2
) (𝜃
𝑗

𝑖+1
− 𝜃
𝑗

𝑖
)

−𝑓
𝑖−1/2

(1 + 𝐵𝜃
𝑗

𝑖−1/2
) (𝜃
𝑗

𝑖
− 𝜃
𝑗

𝑖−1
)]

− Δ𝑡M
2

((𝜃
𝑗

𝑖
)

𝑛+1

+

(𝑛+1)M2𝑥
𝑖
Δ𝑥(𝜃
𝑗

𝑖
)

2𝑛+1

2𝑓
𝑖
(1 + 𝐵𝜃

𝑗

𝑖
)−(𝑛 +1)M2𝑥2

𝑖
(𝜃
𝑗

𝑖
)

𝑛
) ,

(23)

where a linear interpolation is used to determine𝑓
𝑖+1/2

,𝑓
𝑖−1/2

,
𝜃
𝑖+1/2

, and 𝜃
𝑖−1/2

.

3.2.1. No Heat Flux Flow at the Fin Tip. In order to imple-
ment our well-balanced numerical scheme, we need to first
incorporate the relevant boundary conditions. According to
the work by Kraus et al. [11], some fins’ shapes require special
interpretation—a clear example thereof is the triangular fin
profile. Longitudinal fins of triangular profile have been
classified among singular fins that cannot be characterized
by any linear transformations. As such it is important to
remember that the fin profile tapers to zero thickness at the
tip, and hence, there will be zero flux at this point.Thismeans
that

(𝑓 (𝑥) (1 + 𝐵𝜃)

𝜕𝜃

𝜕𝑥

)








𝑥=0

= 0. (24)

We now implement a time forward discretisation at the origin
and employ the zero-flux condition given by (24) to obtain

𝜃
𝑗+1

0
= 𝜃
𝑗

0
− Δ𝜏M

2

(𝜃
𝑗

0
)

𝑛+1

. (25)

As one can see the physical reality of zero thickness at the tip
complicates the solution of the problem. If one were to only
employ the zero-flux condition, given the initial condition of
zero temperature, one would always have a zero temperature
at the origin as per (25). This does not make physical sense,
however, given that after a considerable time the temperature
would be expected to increase at the tip of the fin. At this
stage we turn to the well-balancing principle as a means of
overcoming this problem.

We employ the well-balancing principle at the origin as
a means of incorporating the expression of 𝜃𝑗

0
into (25). As

such, we consider the steady-sate equation as follows:

∫

𝑥
0
+Δ𝑥/2

𝑥
0

𝑑

𝑑𝑥
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𝑑𝜃

𝑑𝑥
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Δ𝑥

2

M
2

𝜃
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(𝑥
0
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𝑓 (𝑥
0
+

Δ𝑥

2

) (1 + 𝐵𝜃 (𝑥
0
+

Δ𝑥

2

))

𝑑

𝑑𝑥

𝜃 (𝑥
0
+

Δ𝑥

2

)

=

Δ𝑥

2

M
2

𝜃
𝑛+1

(𝑥
0
) .

(26)
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Figure 2: A triangular fin profile with 𝐵 = 1, 𝑛 = 1, M = 0.01, M = 1, M = 1.5, andM = 5 for 𝜏 = 0.0001 (a) and 𝜏 = 0.001 (b).

Through the use of a central difference approximation, we
then obtain

𝜃
𝑗

0
= 𝜃
𝑗

1
−

Δ𝑥
2

2𝑓 (𝑥
1/2
) (1 + 𝐵𝜃

𝑗

1/2
)

M
2

(𝜃
𝑗

0
)

𝑛+1

. (27)

The coupled equations (25) and (27) provide a numerical
well-balanced discretisation for a triangular fin profile at the
origin.

3.2.2. Heat Flux Flow at the Fin Tip. For regular fin profiles,
the flux at the origin is a finite nonzero value in which case
there would be heat flow from the tip. It is difficult to impose
such a boundary condition because the nonzero value is not
known. Instead we impose an adiabatic boundary condition
which allows for this nonzero-flux value at the tip to come out
as part of the numerical solution obtained.Thus, at the origin
we employ the condition

𝜕𝜃

𝜕𝑥








𝑥=0

= 0 (28)

which upon substitution into the equation under considera-
tion gives

𝜕𝜃

𝜕𝜏

− 𝑓 (𝑥) (1 + 𝐵𝜃)

𝜕
2
𝜃

𝜕𝑥
2
+M
2

(𝜃)
𝑛+1









𝑥=0

= 0. (29)

Implementing the forward difference approximation for time
and the central difference approximation for space, we find
that

𝜃
𝑗+1

0
= 𝜃
𝑗

0
+

2Δ𝜏𝑓 (𝑥
0
) (1 + 𝐵𝜃

𝑗

0
)

Δ𝑥
2

(𝜃
𝑗

1
− 𝜃
𝑗

0
) − Δ𝜏M

2

(𝜃
𝑗

0
)

𝑛+1

,

(30)

and using similar finite difference approximations on the
steady-state equation of regular fins, we obtain

𝜃
𝑗

0
= 𝜃
𝑗

1
−

Δ𝑥
2

2𝑓 (𝑥
0
) (1 + 𝐵𝜃

𝑗

0
)

M
2

(𝜃
𝑗

0
)

𝑛+1

. (31)

Equations (30) and (31) summarize the discretisation at the
origin for regular fin profiles.

4. Results and Discussion

4.1. Triangular Fin Profiles. As stated earlier, previous re-
searches have proposed that one approximates the shape
of triangular fins by considering the trapezoidal profile as
a means of facilitating linear transformations. Aside from
proposed simplifications, work has also been done while
maintaining the profile in its original triangular form. In
[12] for instance, numerical solutions were obtained for the
heat transfer in a triangular fin which did not maintain the
adiabatic condition—this was thought to be due to thermal
instability within the fin as discussed by Yeh and Liaw [21].

The importance of the work conducted here is that the
numerical scheme developed did not rely on any simplifying
assumptions as proposed byKraus et al. [11]. Furthermore, the
results obtained in [12] are shown to be due to an inaccurate
methodology, specifically related to the boundary conditions
for profiles which lead to singularities. In applying the zero-
flux condition in a novel manner, we were able to obtain a
recursive scheme able to capture the true behaviour of the
model under consideration.

We obtained numerical solutions via our well-balanced
scheme to (8) for a triangular fin profile with 𝐵 = 1, 𝑛 = 1,
M = 0.01, 1, 1.5, andM = 5 at different values of 𝜏. Figures 2
and 3 indicate that the temperature decreases from the base to
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Figure 3: A triangular fin profile with 𝐵 = 1, 𝑛 = 1, M = 0.01, M = 1, M = 1.5, andM = 5 for 𝜏 = 0.1 (a) and 𝜏 = 0.5 (b).
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Figure 4: A triangular fin profile with 𝐵 = 1, 𝑛 = 1, M = 0.01, M = 1, M = 1.5, andM = 5 for 𝜏 = 0.75 (a) and 𝜏 = 1 (b).

tip of the fin and that the temperature at the tip increases with
time. These results make physical sense and also match the
behaviour of the temperature distribution found for other fin
profiles. Interestingly, for small values of time 𝜏, the response
temperature is virtually independent of the value of M, and
this is why a single curve is shown for 𝜏 = 0.0001, 𝜏 = 0.001,
and 𝜏 = 0.01. This has been explained by Suryanarayana [16]
where it is said that at small values of 𝜏, the bulk of the thermal
energy entering at the base remains stored in the fin with
only a small fraction available for dissipation through surface
convection. Thus, the heat transfer coefficient has very little

direct impact on the temperature profile—rather its impact
may be related to the length of the finwhich in turn influences
the temperature profile [12].

In turn, as 𝜏 increases, it is seen that the role of convection
and hence M become progressively significant as shown in
Figures 4 and 5. Another point is that the steady state is
reached quicker for longer fins or fins with higher values of
M as shown in Figure 3 for 𝜏 = 0.5. This same Figure 3
shows clearly that at 𝜏 = 0.5 only a stationary state has
been reached for the fin profile where M = 5, which is the
largest value chosen.This is a consequence of the fact that the
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Figure 5: A triangular fin profile with 𝐵 = 1, 𝑛 = 1, M = 0.01, M = 1, M = 1.5, andM = 5 for 𝜏 = 5 (a) and 𝜏 = 10 (b).
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dimensionless time 𝜏 = 𝑘
𝑎
𝑡/𝜌𝑐𝐿

2 should decrease with an
increase inM.

While the numerical results we have obtained for the heat
transfer in triangular fins match those obtained by Surya-
narayana [16] for other types of fin profiles in linear cases,
we still require further verification of our results. The results
provided in [16] in and of itself cannot justify the accuracy of
the results obtained via our well-balanced numerical scheme
given the fact that no other concrete analysis currently exists
and that all previous attempts at obtaining solutions for the
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Figure 7: A rectangular fin profile with 𝐵 = 1, 𝑛 = 1, M = 1, and
varying 𝜏.

triangular case were done with reservations regarding the
results obtained [12]. For this reason, our model has been
applied to the rectangular case, where we do have confirmed
results, as a means of validating the scheme implemented.

4.2. Model Validation via a Consideration of the Rectangular
Fin Profile. For a rectangular fin profile, the solution profiles
from our well-balanced numerical scheme are depicted by
Figures 6, 7, and 8. It is clearly visible that the temperature
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is an increasing function of time and that it decreases
from the base to the tip. Figure 6 depicts the effect of the
thermogeometric fin parameter on the temperature. We can
see that the temperature is a decreasing function of M.
In contrast, the temperature distribution is an increasing
function of parameter 𝑛 as shown in Figure 8. What is
important to realise is that the results we have obtained for
the rectangular case via the well-balanced scheme employed
for the triangular case verify the benchmarks results of [12, 16]
and hence act as a validation of our well-balanced numerical
scheme.

5. Conclusion

The well-balanced numerical scheme which we have estab-
lished in this work has been shown to effectively and effi-
ciently obtain results for the rectangular fin profile, matching
previous results found in the literature [12, 15, 16]. Our
discretisation incorporates the flux condition for the rectan-
gular case as is appropriate; however, for the triangular fin
profile, we have incorporated the zero-flux condition into
our established well-balanced numerical scheme. It is this
latter scheme and the manner in which it is employed which
constitute the originality of our work.

Several researchers [15, 20] have proposed some exact so-
lutions, but themain problemwas that the problemwas being
simplified through an adjustment of the geometric form of
the fin as a means of guaranteeing analytical solutions. Kraus
et al. [11], for example, suggested that one assumes triangular
profiles to be trapezoidal so as to guarantee the existence of
linear transformations.

In our work however, such simplifications are not needed.
The well-balanced numerical scheme which we have devel-
oped is able to handle the triangular case without any addi-
tional assumptions due to the incorporation of an appropriate
boundary condition, namely, the zero-flux condition. This
approach can easily be extended to other singular profiles,
such as the convex and concave parabolic profiles, and hence,
it constitutes a clear path to a generalized numerical scheme
for the solution of problems in heat transfer.

Nomenclature

𝐴
𝑝
: Profile area, m2

𝐵: Thermal conductivity parameter
𝑐: Specific heat capacity, J/KgK
𝑐V: Volumetric heat capacity 2𝑐/(𝛿

𝑏
𝐴
𝑝
)

𝐹(𝑋): Fin profile, m2
𝑓(𝑥): Dimensionless fin profile
𝐻: Heat transfer coefficient, W/m2K
ℎ: Dimensionless heat transfer coefficient
ℎ
𝑏
: Heat transfer at the base, W/m2K

𝐾: Thermal conductivity, W/mK
𝑘: Dimensionless thermal conductivity
𝑘
𝑎
: Thermal conductivity of the fin at the

ambient temperature, W/mK
𝐿: Length of the fin, m
𝑛: Exponent
𝑃: Fin perimeter, m
𝑄: Heat flux, W/m2
𝑇: Temperature distribution, K
𝑇
𝑏
: Fin base temperature, K

𝑇
𝑎
: Surrounding temperature, K

𝑡: Time, S
𝑋: Spatial variable, m
𝑥: Dimensionless spatial variable.

Greek Symbols

𝛽: Thermal conductivity gradient
𝛿: Fin thickness, m
𝛿
𝑏
: Fin thickness at the base, m

𝜂: Fin efficiency
𝜃: Dimensionless temperature
M: Thermogeometric fin parameter
𝜏: Dimensionless time.

Acknowledgments

C. Harley acknowledges support from the National Research
Foundation, South Africa, under Grant no. 79184. Further-
more, this publication was made possible (in part) by a grant
from Carnegie Corporation of New York. The statements
made and views expressed are, however, solely the responsi-
bility of the authors.



Mathematical Problems in Engineering 9

References

[1] V. D. Rao, S. V. Naidu, B. G. Rao, and K. V. Sharma, “Heat
transfer from a horizontal fin array by natural convection and
radiation—a conjugate analysis,” International Journal of Heat
and Mass Transfer, vol. 49, no. 19-20, pp. 3379–3391, 2006.

[2] E. M. Sparrow and S. B. Vemuri, “Natural convection-radiation
heat transfer from highly populated pin-fin arrays,” ASME
Journal of Heat Transfer, vol. 107, no. 1, pp. 190–197, 1985.
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Signal attenuates whileMeasurement-While-Drilling (MWD)mud pulse is transmited in drill string during high temperature deep
well drilling. In this work, an analytical model for the propagation of mud pulse was presented. The model consists of continuity,
momentum, and state equations with analytical solutions based on the linear perturbation analysis.Themodel can predict the wave
speed and attenuation coefficient of mud pulse. The calculated results were compared with the experimental data showing a good
agreement. Effects of the angular frequency, static velocity, mud viscosity, and mud density behavior on speed and attenuation
coefficients were included in this paper. Simulated results indicate that the effects of angular frequency, static velocity, and mud
viscosity are important, and lower frequency, viscosity, and static velocity benefit the transmission of mud pulse. Influenced by
density behavior, the speed and attenuation coefficients in drill string are seen to have different values with respect to well depth. For
different circulation times, the profiles of speed and attenuation coefficients behave distinctly different especially in lower section.
In general, the effects of variables above on speed are seen to be small in comparison.

1. Introduction

The oil industry trend to deep formation exploration has
increased technological challenges to drill. An important
problem in deep drilling is the propagation of Measurement-
While-Drilling (MWD) mud pulse, transmitting real-time
various data from sensors (accelerometers, magnetometers,
Gamma Ray sensor, etc.) located downhole near the drill bit
[1]. MWD systems can provide important information [2, 3],
such as inclination and azimuth of the wellbore, tool face,
formation properties, rotating speed of the drill string, torque
and weight on bit, andmud flow volume, which is critical and
indispensable to deepwell drilling.Mudpulse telemetry is the
most common method of data transmission used by MWD.
In deep formation environments, where the temperature
and pressure are prevalently high, dynamic of mud and its
density behavior in drill string are very different from those in
normal conditions [4].This aggravates the attenuation ofmud

pulse, eventually reduces the signal strength at the surface,
and makes detection of the signal more difficult. This paper
considered the propagation behavior of MWD mud pulse in
drill string during high temperature deep drilling operations.

Understanding the propagation and attenuation charac-
teristics of mud pulse in drill string still needs strong theories
to be formulated together with reliable smart experiments.
The prime factor which opposes any pressure wave propaga-
tion is the irreversibility of the process associated with fric-
tion [5]. Therefore, wall shear stresses and molecular inter-
actions between adjacent flow layers have to be accurately
quantified. In addition, themud density behavior during high
temperature and high pressure drilling operations has to be
considered, which directly affects the propagation of mud
pulse. A simple theoretical model simulating the propagation
of mud pulse was first proposed by Chen and Aumann [6],
with a numerical solution. In the proposed model, only
wall shear stresses were considered. Liu et al. [7] proposed
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a mathematical model to simulate the dynamic transmission
behavior ofmudpulse. Essentially, whatwas proposed is still a
single phasemodel, despite the fact that amultiphase formula
in the paper is used to calculate mud solids and free gas
content change. Besides, the authors merely considered the
effects ofwall shear stresses and inclination.A realmultiphase
flow model simulating the propagation of mud pulse in
aerated drilling was derived by Li et al. [8]. It is thought
that the effects of the momentum and energy exchange
at phase interface, gravity of each phase, and wall shear
stresses on mud pulse propagation were taken into account.
However, the model cannot be used in high temperature
deep well drilling, where primary circulating fluids are single
phase, and the density behavior of mud and friction between
adjacent flow layers cannot be neglected. Up to date, no
complete mathematical model of mud pulse propagation in
drill string during high temperature deep drilling operations
has been derived.

The mud pulse discussed in this paper can be interpreted
as pressure wave in the fluid down the drill string, a kind
of typical hard walled rigid pipe, which propagates with
the speed of sound through fluid flow [9]; the speed of
sound depends on the type and temperature of the fluids
for a given pipe [10]. In transient analysis of the pipe flow,
the transmitting of pressure wave can be looked on as a
forced oscillatory motion process [11]. There is a large body
of literature on the propagation of pressure wave in rigid
pipe with hard walls. Binder [12] studied fluid vibrations
in a tube with friction. He gave an expression for total
excess pressure at any point in a straight rigid tube of
constant cross-sectional area filled with a compressible fluid.
Lighthill [13] discussed the dissipation of acoustic energy
and the mechanisms modifying the linear theory of sound.
Brown [14] studied the dispersivemechanism in transmission
systems and gave a prediction of dispersion in fluid lines
with laminar flow. Iberall [15] and Nichols [16] analyzed,
respectively, the behavior of unsteady laminar flow in a long
rigid pipe used the method of characteristics. Based on the
Iberall model of fluid transients, Jayasinghe et al. [17] derived
a frequency-dependent friction coefficient for laminar pipe
flow of compressible fluids. Zielke [18] has indicated that the
method of characteristics can handle frequency-dependent
absorption. He related the wall viscosity to the weighted
past velocity change and the instant mean flow velocity.
Suzuki et al. [19] have proposed an improved method of
characteristics without losing the accuracy, but it seems to be
complicated. Brunelli [20] reported recently a computational
method to calculate two-dimensional velocity profiles under
the compressible fluid condition. The frequency-dependent
absorptionwas taken into account in hismethod.Anonlinear
wave equation was reported by Kuznetsov [21], similar to
Blackstock [22] formulation. A higher order formulation of
nonlinear wave equation was investigated by Chester [23].
Acoustic wave propagation in circular ducts with hard walls
containing shear flow has been studied by a number of
researchers (see, e.g., references [24–32]). In most cases the
mean velocity profile of shear flow has been taken as that
of fully developed laminar flow or as a uniform core flow
with a thin boundary layer at the wall. Agarwal and Bull

[33] presented theoretical results for sound propagation in a
hardwalled pipe with a fully developed turbulent flow profile.
Auslander [34] predicted the frequency response of fluid lines
with turbulent flow. Experimental tests were conducted to
inspect the contributions of unsteady friction on pressure
wave [35]. Brunone et al. [36] matched the test results to
a classical one-dimensional elastic water hammer model
coupledwith an unsteady frictionmodel, known as Brunone’s
corrected unsteady friction model. Semiempirical analytical
and experimental studies of the acoustic frequency response
of circular tubes withmean turbulent flow have beenmade by
Brown et al. [37]. They discussed the behavior of amplitude
disturbances superimposed on a gross turbulent flow and
proposed an equation for calculating the wave attenuation
factor. Numerical solutions based on the method of charac-
teristics were applicable to the modified wave attenuation,
as shown by Wylie and Streeter [11]. Mitra and Rouleau
[38] developed a numerical method for fluid transients in
rigid pipes, based on implicit factorization. Stuckenbruck et
al. [39] gave numerical results of an improved analysis of
wave speed. Pressure wave transmission attenuation in a pipe
flow was investigated both theoretically and experimentally
by Wang et al. [5]. Sato and Kanki [40, 41] obtained the
analytical solutions for the compression wave and steady
state oscillating flow in a pipe with a circular cross-section.
However, previous researches have not provided a simple and
reliable analytical model for calculating the mud pulse speed
and attenuation in a viscous fluid pipe flow,where the effect of
density behavior in high temperature deepwell environments
on mud pulse transmission cannot be neglected.

The objective of the present work is to study the propaga-
tion and attenuation of mud pulse in high temperature deep
well drilling. In this paper, besides, and thewall shear stresses,
gravitational effects, themolecular interactions between adja-
cent flow layers were also deeply analyzed, in addition to
the effect of mud density behavior on the propagation and
attenuation of mud pulse. By performing linear perturbation
analysis to solve nonlinear differential governing equations,
newly analytical formulas of speed and attenuation factor
have been developed.

2. Mathematical Model and Solutions

A one-dimensional analytical model for mud pulse propaga-
tion and attenuation in drill string during high temperature
deep well drilling is developed, and by performing a linear
perturbation analysis, we derived the mud pulse speed and
attenuation factor formulas.

Some basic assumptions for the formulation of the model
are as follows: the mud liquid constitutes a continuum. Oscil-
latory motion process aroused by mud pulse transmission is
of momentum conservation. Besides, the motion process is
isentropic.

2.1. Governing Equations. In drilling, we consider the mud
pulse travelling along drill string through single phase mud
fluid, which is shown in Figure 1. Mud pulse transmits in
−𝑥 direction, reversing the mud flow, and the pipe wall is
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Figure 1: Mud pulse propagation in drilling.

a rigid body. It is assumed to be laminar flow. In addition, it is
assumed that 𝑝 and V are independent of the circumferential
angle around the pipe axis. The mud flow behavior in drill
string can be described using the one-dimensional nonlinear
differential equation of continuity and motion as follows:

𝜕𝜌

𝜕𝑡

+ 𝜌

𝜕V
𝜕𝑥

+ V
𝜕𝜌

𝜕𝑥

= 0, (1)

𝜌

𝜕V
𝜕𝑡

+ 𝜌V
𝜕V
𝜕𝑥

= −

𝜕𝑝

𝜕𝑥

− 𝜌𝑔 sin 𝜃 − 𝜆

2𝑑

V2, (2)

where 𝜌 is the density of mud, 𝑡 is the time, 𝑝 is the pressure,
V is the velocity, 𝑔 is the acceleration of gravity, 𝜃 is the
deviation angle, 𝑑 is the inner diameter of drill string, and 𝜆
is the traction coefficient. An empirical formula was derived
by Blasius:

𝜆 = 0.3164Re−0.25, (3)

where Re is the Reynolds number for mud flow in drill string.
Inmomentum equation (2), external forces affectingmud

flowbehaviorwere restricted to gravity andwall shear stresses
only.

It is assumed that the effects of thermal conductivity of
the fluid are negligible; this allows the pressure and density
fluctuations to be isentropic related so that

𝜕𝑝

𝜕𝑡

+ V
𝜕𝑝

𝜕𝑥

=

𝜀

𝜌

(

𝜕𝜌

𝜕𝑡

+ V
𝜕𝜌

𝜕𝑥

) , (4)

where 𝜀 denotes the bulk modulus of mud.
So far we have described the governing equations of mud

flow.These equations are nonlinear. Linear perturbation anal-
ysis was applied to derive governing equations of oscillatory
motion aroused by incident mud pulse. We assume that the
state variables V, 𝑝, and 𝜌 are perturbed from their state
values by some small amount. The motion of the particle
due to its oscillation in the mud pulse may be completely
decoupled from its gross motion. Hence, our state variables
can be denoted collectively by

𝑓 = 𝑓
0
+ 𝑓


, (5)

where subscript “0” and prime “” denote the time-averaged
state and the oscillating state.

The linearized perturbation equations are (to first order
in the perturbed variables)
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0

𝜕𝜌


𝜕𝑥

) . (8)

We obtained governing equations of oscillatingmotion as
the above. Essentially, these linearized equations constitute
the mathematical model of mud pulse propagation in drill
string. However, in the momentum equation (7), molecular
interactions between adjacent flow layers were neglected. It is
out of character to use such simplification for mud, a typical
viscous medium. Inevitably, viscous dissipation generated by
oscillatory motion between adjacent layers in mud a viscous
system gives rise to the attenuation of mud pulse. In a
standard text, the momentum conservation equation for the
oscillatory motion of fluid particle between adjacent layers
was given in the following manner:

𝜌
0

𝜕V

𝜕𝑡

+ 𝜌
0
V
0

𝜕V

𝜕𝑥

= −
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𝜕𝑥

−

2

𝑑

√2𝜇𝜌
0
𝜔V, (9)

where 𝜔 is the angular frequency of mud pulse.
Combination of (7) and (9) yields the complete momen-

tum equation for mud pulse propagation in drill string:

𝜌
0
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+ 𝜌
0
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0
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2
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√2𝜇𝜌
0
𝜔V.

(10)

A complete set of linearized equations has now been
developed, and their limits of validity have clearly been
investigated. Continuity is imposed by (6), with the equation
of state (8), allowing for the compressibility ofmud fluid. Lin-
earized momentum is conserved by (10), which describes the
momentum interactions associated with wall shear stresses,
gravity, and oscillatory motion between adjacent layers. In
the following, these equations are analytically solved, and
travelling mud pulse solutions are presented in terms of wave
speed and attenuation coefficients.

2.2. Solving Linearized Equations. We seek wave-like solu-
tions to these equations of the form

𝑓


= 𝑓
0
𝑒
𝑖(𝜔𝑡−𝑘𝑥)

, (11)

where

𝑘 =

𝜔

𝑐

+ 𝑖𝜂 (12)

where 𝑘 is wave number of mud pulse in drill string, 𝑐
is the wave speed, and 𝜂 is the attenuation coefficient.
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Substituting the perturbed variable into the full equations
and omitting minute terms, the following equations were
obtained, respectively:

(𝜔 − V
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− 𝜌
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(13)

The above equations can be regarded as a system of
linear homogeneous first-order equations in three unknowns:
𝜌
, 𝑝, and V. Under low Mach number, we have the

approximation 𝜔 − 𝑘V ≈ 𝜔. Hence these equations have a
nontrivial solution if and only if
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which in turn implies that
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The wave speed and attenuation coefficients of mud pulse
in drilling are given, respectively, by
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where R(k) is the real part of wave number k and Im(k) is the
imaginary part.

Hereunto, we have derived formulas used to compute
the wave speed and attenuation coefficients of mud pulse in
drilling. The static state density of mud 𝜌

0
is a key sensitive

parameter in the authors’ formulas. In general, the static state
density 𝜌

0
is deemed to be invariable [7, 8]. For the conditions

of interest, where the temperature and pressure of mud flow
behave in an extremely high mode, mud density cannot be
regarded as numeric constant. Hence, the density behavior of
mud in high temperature high pressure environments has to
be discussed in this paper.

2.3. Density Behavior of Mud. It has been found experimen-
tally that the density fluctuation in drilling is nonmonotonic
with respect to the depth of interest. As the pressure and
temperature of mud column increase in depth, the mud
experiences two opposing effects. Increase in pressure tends
to increase the mud density due to compressibility, while the
increase in temperature tends to decrease the mud density
due to thermal expansion. Karstad and Aadnoy [43] studied
the density behavior of mud during high pressure high
temperature drilling operations. A more accurate analytical
model for density-pressure-temperature dependence formud
in drilling was presented in the following manner:

𝜌 = 𝜌sf 𝑒
Γ(𝜌
0
,𝑇)

, (18)

where 𝜌sf is the static state density of mud fluid at surface
conditions, 𝑇 is the temperature of interest, the coefficient
Γ(𝑝
0
, 𝑇) is given by

Γ (𝑝
0
, 𝑇) = 𝛾

𝑝
(𝑝
0
− 𝑝sf) + 𝛾𝑝𝑝(𝑝0 − 𝑝sf)

2

+ 𝛾
𝑇
(𝑇 − 𝑇sf)

2

+ 𝛾
𝑇𝑇
(𝑇 − 𝑇sf)

2

+ 𝛾
𝑝𝑇
(𝑝
0
− 𝑝sf) (𝑇 − 𝑇sf) ,

(19)

and 𝑇 sf is the temperature of mud fluid at surface conditions
The values of 𝛾

𝑝
, 𝛾
𝑝𝑝
, 𝛾
𝑇
, 𝛾
𝑇𝑇
, and 𝛾

𝑝𝑇
are essentially

unknown and must be determined for different muds from
density measurements at elevated pressures and tempera-
tures. The constants for some different muds have been
measured by Peters et al. [44] and Isambourg et al. [42].

Estimation of temperature of mud down drill string is
also required to ascertain the mud density. Many efforts have
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beenmade to calculatemud temperature in wellbore [45, 46].
Kabir et al. [46] presented a simple and available analytical
model for calculating circulating mud fluid temperature; the
expression is given by

𝑇 (𝑧, 𝑡
𝑐
) = 𝜑𝑒

𝜉
1
𝑧

+ 𝛿𝑒
𝜉
2
𝑧

+ 𝑔G𝑧 − 𝐴𝑔G + 𝑇es, (20)

𝐴 =

𝑐fl𝑤

2𝜋𝑟
𝑑
𝑈
𝑑

, (21)

where z is the wellbore depth of interest, 𝑡
𝑐
is the circulation

time, 𝑇 es is the surface temperature of earth, 𝑐 fl is the heat
capacity of mud fluid, w is the mass flow rate of mud fluid,
𝑟
𝑑
is the radius of drill string, 𝑈

𝑑
is the overall heat-transfer

coefficient in drill string, and 𝑔G is the geothermal gradient.
The constants 𝜑, 𝜁

1
, 𝜁
2
, and 𝛿 are given in the appendix.

3. Experiments

3.1. Experimental Apparatus and Method. The experiments
conducted to measure pulse velocity and attenuation were
performed to verify the mathematic model’s veracity. The
experimental apparatus consists of fluid supply lines, pressure
pulse generator, and a test section, as shown in Figure 2.
Circulating fluid used in our experiments is water. The test
section was made up of a 50mm diameter stainless steel tube
24m in length, found to be able to sustain a pressure of 2MPa
without breaking.The flowwas circulated by a pumping unit.
The water flow was controlled by a variable speed motor
and measured by a clip ultrasonic flow meter. The discharge
of the piston pumping was limited to 10m3/h, although it
could deliver a higher capacity to 20m3/h. A needle valve was
installed at the terminal to control the pressure of test section.
Four pressure transducers were fitted along the tube axis at
intervals of 7m in Figure 2. The pressure transducers have a
frequency response of 0.1∼1000Hz and amaximum full-scale
output error of 0.75% FSO over the 0 to 70∘C compensated
range. Each of them was attached to an oscilloscope and a
data recorder. At the top of the test section there was a water
plenum (box with 1m radius, 2m height) which was open to
the atmosphere.

A pressure pulse can be generated in the system by
means of an extra outlet pipe placed behind the flow meter
at the head end of the test section, connected to a fast-
opening magnetic valve. Both the closing and opening times
of the magnetic valve can be controlled in steps of 1ms.
The generated pressure pulse was measured by four pressure
transducers and the signal from which was captured by
oscilloscope and then recorded by a data recorder.

The typical pressure pulses with a step-like form, gen-
erated by fast-opening magnetic valve and recorded by a
digital oscilloscope, were given in Figure 3. It was noted that
the pressure pulses appeared at the upper transducer station
of Figure 2 exhibited some attenuation as they passed the
lower transducer station, with little distortion of pulse shape
observed.

The pulse speed and attenuation coefficient measure-
ments were made using a time of flight method. The node
where pressure swoops down was chosen as the discrete time

future of each pulse. With the nodes chosen in curve lines,
the time of pressure pulse traveling from upper transducer
station to the lower one can be read out in Figure 3.Thedigital
oscilloscope in our experiments has two channels, which
means that it can capture simultaneously two pressure pulse
signals measured by upper and lower pressure transducers.
This ensures the reliability of the time measured above. In
order to investigate the instant of time at which the pressure
waves pass through the measurement section, the wavelet
analysis technique proposed by Ferrante et al. [47, 48] was
also used in this paper. Similarly, it is easy to determine
the amplitude of each pressure pulse. With the known
distance between two transducer stations, the pulse speed and
attenuation coefficients can be given, respectively, as follows:

𝑐 =

Δ𝑙

Δ𝑡

, (22)

where Δ𝑡 is the time pressure travelling from upper trans-
ducer station to the lower one and Δ𝑙 is the distance between
two transducer station,

𝜂 =

ln (𝑁upper/𝑁lower)

Δ𝑙

,
(23)

where the nomenclature N is the amplitude of pressure pulse
and subscripts “upper” and “lower” denote, respectively, the
upper transducer and lower transducer.

3.2. Comparison of Analysis and Experimental Results. The
wave speed of pressure pulse calculated by using the present
model is compared in Figure 4 with the experimental data.
Similarly, a comparison of the attenuation coefficient between
calculated and the tested one is shown in Figure 5. Both
comparisons are good, showing that the model has the
capability of predicting the propagation and attenuation
phenomena of pressure pulse. Note that the wave speed
and attenuation coefficients are almost constant regardless
of the static pressure through the pressure range of 0.15–
0.8MPa. The results agree with the experimental results
reported in the past as well. In our analytical model, the
static pressure plays a role in the value of wave speed and
attenuation by affecting the static state fluid density.The effect
of fluid density behavior due to compression and thermal
expansion on pressure pulse propagation and attenuation is
considered in this paper, and the density fluctuations are too
minute to affect the speed and attenuation profiles in our
experiments with a constant temperature and a very puny
static pressure change for 0.65MPa. This gives a theoretical
explanation for the experimental phenomena that the wave
speed and attenuation are almost constant with changing
static pressure. For high temperature deep well drilling,
where the circulating mud may reach 450K in temperature
and 100MPa in pressure, the effect of density behavior is not
minute any more but large enough to change the speed and
attenuation profiles of mud pulse.

4. Results and Discussion

Themodel is able to predict the propagation and attenuation
of mud pulse in drilling. It is absolutely essential to discuss
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the effects ofmajor sensitive variables on the propagation and
attenuation of mud pulse. Data of a water-base mud from
Isambourg et al. [42] reproduced in Table 1 are used here to
calculate the analytical solution.

4.1. Influences of Angular Frequency. The wave speed and
attenuation coefficients of mud pulse in drill string were
calculated by (16) and (17), respectively. In order to focus on
the effect of the angular frequency, we eliminated the effects
ofmud density behavior andmud viscosity by fixing the static
density at 2212 kg⋅m−3, plastic viscosity at 20mPa⋅s, and static
velocity at 2m⋅s−1 in the analyses presented in this section.
The deviation angle and inner diameter of tube are assumed
to be 0 rad and 0.078m, respectively.

The computed propagation speed is shown in Figure 6
for a range of angular frequencies. This figure clearly shows
that the wave speed increases monotonically with increasing
angular frequency at low frequencies and approaches a
constant value at high frequencies.The demarcation between
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Figure 4: Comparison of simulated and experimental wave speed
of pressure pulse for V

0
= 0.81m⋅s−1, and 𝜔 = 25Hz.

the two regimes can be drawn at 𝜔 ∼ 30 in Figure 6. The
high frequency limit for the wave speed as predicted by (16)
is given by

lim
𝜔→∞

𝑐 = √

𝜀

𝜌
0

(24)

which is entirely independent of the frequency other than the
mud static density and compressibility. Equation (24) is also
the traditional phenomenological model for pressure wave
speed. That is, the traditional phenomenological model is
a special case in high frequency of the wave speed model
proposed in this paper. In drilling, the frequency of mud
pulse is usually less than 24Hz, and the practices indicate
that the wave speed is sensitive to the frequency. In this case,
the phenomenological model which is independent of the
frequency seems to be inapplicable. By contrast, our wave
speed model is more feasible and valuable. The attenuation
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Table 1: Empirical constants for the water-base mud (from Isambourg et al. [42]).

𝜌sf
kg⋅m−3

𝛾
𝑝
⋅1010

Pa−1
𝛾
𝑝𝑝
⋅1019

Pa−2
𝛾
𝑇
⋅104
K−1

𝛾
𝑇𝑇
⋅107

K−2
𝛾
𝑝𝑇
⋅1013

K−1Pa−1
𝜇

mPa⋅s
𝜀⋅10−9
Pa

2212 2.977 −2.293 −1.957 −16.838 0.686 20 3.359
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Figure 5: Comparison of simulated and experimental attenuation
coefficient of pressure pulse for V

0
= 0.81m⋅s−1, and 𝜔 = 25Hz.
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Figure 6:Theoretical wave speed as a function of angular frequency
for mud.

coefficient predicted by (17), plotted in Figure 7, exhibits a
different change trend in slope from that of wave speed.
The attenuation coefficient profile does not show a constant
value at high frequencies but rather increases monotonically
with increasing frequency. Besides, the effect of frequency
on attenuation coefficient is seen to be large compared with
the speed. This figure also suggests that at low frequencies,
good penetration can readily be achieved with mud fluid in
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Figure 7:Theoretical attenuation coefficient as a function of angular
frequency for mud.
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drilling, which may contribute to enlightening the design of
new MWD core components.

4.2. Influences of Static Velocity and Mud Viscosity. Two
primary variables in our solutions are 𝜇 and V

0
, representing

the influences of mud viscous and inertia on wave speed and
attenuation coefficients, separately. The speed and attenua-
tion coefficients against V

0
for mud pulse are plotted, respec-

tively, in Figures 8 and 9 as the curve A. In the computations,
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we fixed the angular frequency at 1Hz, deviation angle at
0 rad, and some parameters of mud as shown in Table 1.
In order to investigate the influence of viscous oscillatory
motion between adjacent layers, the simulated results of
mud pulse neglecting this effect are also plotted in Figures
8 and 9 as the curve B. As shown in the graphs, the wave
speed decreases with the increase of V

0
, but the attenuation

coefficient takes on an inverse tendency. Compared with the
speed, the attenuation coefficient curve takes on an obvious
variation in magnitude with respect to the static velocity. In
general, the influence of viscous oscillation between adjacent
layers on propagation speed is seen to be small in comparison
with attenuation coefficient, especially in low static velocity.
In this paper, the viscous dissipation between adjacent layers
in the system which has not been studied before is involved.
In drilling operations, a better efficiency of receiving mud
pulse signal can be acquired by stopping the mud pumps or
lowering circulation velocity. The validity of the operations
can be demonstrated theoretically in Figures 8 and 9, which is
also a convincing illustration of the valid analytical approach
developed here.

The influences of mud viscosity on wave speed and
attenuation coefficients of mud pulse are illustrated by Fig-
ures 10 and 11, respectively. The figures clearly show that
the viscous effect restricts the propagation of mud pulse,
while aggravating the pulse attenuation. Consequently, on the
premise of satisfying the requirements of carrying cuttings,
maintaining the rheology property of mud and other drilling
engineering needs to reduce the viscosity of mud benefits
alleviating the attenuation of mud pulse and improving the
propagation of the measurement signals.

4.3. Wave Speed and Attenuation Coefficient Profiles Affected
by Density Behavior. In high temperature deep formation,
the mud density influenced by high temperature and high
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Figure 10: Theoretical wave speed as a function of 𝜇 at 𝜔 = 1Hz,
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Figure 11: Theoretical attenuation coefficient as a function of 𝜇 at
𝜔 = 1Hz, and V
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= 2m⋅s−1.

pressure becomes critical, which has inevitable effects on the
mud pulse transmission along the wellbore. In this section,
we focus on the influences of density behavior on mud
pulse wave speed and attenuation coefficient profiles for
different circulation time. Table 2 presents the data used for
the calculation. In addition, some data for mud has been
shown in Table 1.

The influence of density behavior on wave speed and
attenuation coefficient profiles is illustrated by Figures 12 and
13, respectively. The mud density is always in a transient
state and varies along the wellbore, strongly sensitive to
the pressure and temperature as shown in Figure 14. In our
simulation, we consider the wellbore heat transfer during
drilling and give the temperature profile for different circula-
tion times illustrated in Figure 15. Accordingly, the pressure
profile along the wellbore is also provided in Figure 16. The
figures clearly indicate that the wave speed and attenuation
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Table 2: Parameters for the calculation of temperature profile.

H
m

𝑟
𝑑

m
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𝑇di
K
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K

𝑘
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W⋅m−1 ⋅K−1
𝑐fl

J⋅kg−1 ⋅K−1
𝑈
𝑎

W⋅m−2⋅K−1
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W⋅m−2 ⋅K−1
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Figure 12: Wave speed profile for different circulation times at 𝜔 =
1Hz.
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Figure 13: Attenuation coefficient profile for different circulation
times at 𝜔 = 1Hz.

coefficients in drill sting are not invariable but show a distinct
changewith the increase inwell depth. Affected by the density
behavior, the mud pulse attenuates severer in the upper
section of the wellbore. Besides, Figures 12 and 13 also show
the differences of speed and attenuation coefficient profiles
for different circulation times. With circulating of mud fluid,
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Figure 14: Mud density profile for different circulation times at 𝜔 =
1Hz.
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Figure 15: Temperature profile for different circulation times at 𝜔 =
1Hz.

the pulse propagates with a lower speed and attenuates more
and more seriously in lower section of the wellbore. We
can explain this phenomenon by inspecting the temperature
profile change in Figure 15. Caused by the cooling effect, the
rate of heat transfer between the wellbore and the formation
diminishes with increasing circulation time. Consequently,
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Figure 16: Pressure profile in drill string for different circulation
times at 𝜔 = 1Hz.

the temperature in drill string declines with circulating and
engenders eventually the changes of speed and attenuation
coefficient profiles.

5. Conclusion

In this study, an analytical model has been developed for
the study of mud pulse propagation and attenuation through
the drill string in high temperature deep well drilling. The
model formulation takes account of wall shear stresses,
gravitational effects, and momentum interchange between
adjacent layers and assumes transient mud density behavior
to be sensitive to pressure and temperature in drilling string.
In comparisonwith experiments, testing datameasured show
a good agreement with this model. Based on the analytical
solutions, the influences of angular frequency, mud viscosity,
static velocity, and mud density behavior on mud pulse
propagation were discussed and summarized as follows.

(1) The effect of angular frequency onwave speed appears
at low frequency, but the attenuation coefficient
increases monotonically with increasing frequency.

(2) The wave speed decreases with increasing static velo-
city, while the attenuation coefficient takes on an
inverse tendency. Dissipation due to viscous oscilla-
tion plays a prominent role in mud pulse attenuation
at low static velocity.

(3) The viscous effect restricts the propagation of mud
pulse, aggravating the pulse attenuation.

(4) Influenced by mud density behavior as a function of
temperature and pressure, the wave speed and atten-
uation coefficients change along the wellbore and
differ for different circulation times. The profiles of
speed and attenuation coefficients behave distinctly
different due to the cooling effect with circulating.

(5) For high temperature deep well drilling operation,
lower angular frequency, viscosity, and circulation
velocity help relieve the attenuation of measurement
signals propagated bymud pulse, and longtime circu-
lationmakes against the transmission of pulse signals.

Appendix

Constants of (20), and mud flow down the drill string.
The constants of (20) are given by the following equations:

𝜑 = −

(𝑇di + 𝐴𝑔G − 𝑇es) 𝜉2𝑒
𝜉
2
𝐻
+ 𝑔G

𝜉
1
𝑒
𝜉
1
𝐻
− 𝜉
2
𝑒
𝜉
2
𝐻

, (A.1)

𝛿 = −

(𝑇di + 𝐴𝑔G − 𝑇es) 𝜉1𝑒
𝜉
1
𝐻
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𝜉
1
𝑒
𝜉
1
𝐻
− 𝜉
2
𝑒
𝜉
2
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, (A.2)
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=
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+
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where

𝐵 =

𝑐fl𝑤

2𝜋

[

𝑘
𝑒
+ 𝑟
𝑐
𝑈
𝑎
𝑇
𝐷

𝑟
𝑐
𝑈
𝑎
𝑘
𝑒

] , (A.5)

where 𝑇
𝐷
is the dimensionless temperature, and the estimat-

ing models used in this work were presented by Hasan and
Kabir [49] as

𝑇
𝐷
= (1.1281√𝑡

𝐷
) × (1 − 0.3√𝑡

𝐷
) if 10−10 ≤ 𝑡

𝐷
≤ 1.5,

𝑇
𝐷
= (0.4063 + 0.5 ln 𝑡

𝐷
) × (1 +

0.6

𝑡
𝐷

) if 𝑡
𝐷
> 1.5,

(A.6)

where𝑇di is the initial temperature ofmudfluid in drill string,
𝐻 is the well depth, 𝑟

𝑐
is the radius of casing,𝑈

𝑎
is the overall

heat-transfer coefficient in annulus, and 𝑘
𝑒
is the conductivity

of earth.
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Numerical solutions of a coupled system of nonlinear partial differential equationsmodelling the effects of surfactant on the spread-
ing of a thin film on a horizontal substrate are investigated. A CFL condition is obtained from a von Neumann stability analysis of
a linearised system of equations. Numerical solutions obtained from a Roe upwind scheme with a third-order TVD Runge-Kutta
approximation to the time derivative are compared to solutions obtainedwith aRoe-Sweby scheme coupled to aminmod limiter and
a TVD approximation to the time derivative. Results from both of these schemes are compared to a Roe upwind scheme and a BDF
approximation to the time derivative. In all three cases high-order approximations to the spatial derivatives are employed on the
interior points of the spatial domain.TheRoe-BDF scheme is shown to be an efficient numerical scheme for capturing sharp changes
in gradient in the free surface profile and surfactant concentration. Numerical simulations of an initial exponential free surface
profile coupled with initial surfactant concentrations for both exogenous and endogenous surfactants are considered.

1. Introduction

In this paper we investigate numerical solutions of a cou-
pled system of hyperbolic/degenerate-parabolic equations [1]
modelling the spreading of an insoluble surfactant on the
free surface of a thin liquid film. Surfactants are known to
decrease the effects of surface tension by creating a spatial
variation in the surface tension due to a tangential surface
stress. This effect is also known as a Marangoni stress. The
coupled system of nonlinear equations is given by [1, 2]

ℎ
𝑡
+ ∇ ⋅ (kℎ) = 0, Γ

𝑡
+ ∇ ⋅ (wΓ) = 𝛿 △ Γ, (1)

where

k =
1

2

ℎ∇𝜎 (Γ) −

𝛽

3

ℎ
2

∇ℎ +

𝜅

3

ℎ
2

∇ △ ℎ,

w = ℎ∇𝜎 (Γ) −

𝛽

2

ℎ
2

∇ℎ +

𝜅

2

ℎ
2

∇ △ ℎ.

(2)

The free surface of the thin film is given by ℎ = ℎ(𝑥, 𝑦, 𝑡)
and the surfactant concentration by Γ = Γ(𝑥, 𝑦, 𝑡). The
nondimensional constants 𝛽 and 𝜅 balance gravity, capillar-
ity, and Marangoni stress, respectively. The nondimensional
constant 𝛿 = 1/𝑃𝑒 where 𝑃𝑒 is the Peclet number. Surfactants
have important applications in both industrial and biological
applications.

The reviews of Craster and Matar [3] and Afsar-Siddiqui
et al. [4] contain applications of surfactant and thin film flow
problems to industry. These include thin film spreading
driven by surfactant [5–7] and the use of surfactants in indus-
trial coating [8, 9]. Warner et al. [10] study the effects of sur-
factants on the dewetting of ultrathin films.This is important
for templating of films in microelectronics [11, 12]. Halpern
et al. [13] perform a theoretical study of the delivery of sur-
factant into the lung. This is part of a much larger investiga-
tion dealing with the delivery of treatment for neonate and
adult respiratory distress syndrome [14–21]. Extensions to
this works have been undertaken by Craster and Matar [22]
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and Matar et al. [23] by modelling the effect of surfactants
on a layer of mucus modelled as a non-Newtonian fluid.
This is a significant improvement of the Newtonian models
considered previously. Other biological models in which the
use of surfactants is relevant are applications to the human eye
[24]. Schwartz et al. [25] model cell division and motility as
a consequence of the interaction of surfactants with the free
surface of the cell membrane.

In this paper we consider numerical solutions of the one-
dimensional case ℎ = ℎ(𝑥, 𝑡) and Γ = Γ(𝑥, 𝑡) where surface
tension effects are ignored. The resulting coupled system of
nonlinear equations is given by

𝜕ℎ

𝜕𝑡

+

𝜕𝑄

𝜕𝑥

= 0,

𝜕Γ

𝜕𝑡

+

𝜕𝑃

𝜕𝑥

= 0, (3)

where

𝑄 = −

ℎ
2

2

𝜕Γ

𝜕𝑥

+

ℎ
3

3

, 𝑃 = −ℎΓ

𝜕Γ

𝜕𝑥

+

ℎ
2

2

Γ. (4)

The model equations (3) have been derived in [17, 26, 27]
where surface tension effects have been ignored. Levy and
Shearer [2] have considered numerical solutions of the
coupled system (3) by implementing an implicit scheme and
solving the resulting equations using a Newton’s method.
Of particular interest in the numerical investigation are the
shock type structures that develop in the travellingwave solu-
tions. Peterson and Shearer [1] consider numerical solutions
of a one-dimensional case of (3) for 𝛽 = 𝜅 = 0 and a linear
equation of state for the surface tension.They consider a front
tracking numerical scheme and an implicit numerical scheme
where the resulting equations are solved using a Newton’s
method. A front capturing method is also introduced based
onGodunov’s methodwhich is very effective in capturing the
moving front. Peterson and Shearer then go on to consider
two-dimensional spreading for𝛽+𝜅 > 0which is not relevant
to our purposes. Peterson and Shearer [28] make analytical
progress in solving (1) by investigating similarity solutions for
𝛽 = 𝜅 = 𝛿 = 0.

In this paper we use an explicit upwind numerical scheme
of Roe [29, 30] to solve the coupled system (3). Upwind
schemes are typically implemented to solve hyperbolic partial
differential equations while the coupled system (3) is hyper-
bolic/degenerate-parabolic [1]. For 𝛿 = 0 (1) is degenerate at
Γ = 0 [1]. Peterson and Shearer [1] have pointed out that
the degeneracy for the case 𝛿 = 0 implies that if Γ(x, 0) has
compact support, then the solution Γ(x, 𝑡) will have compact
support for 𝑡 > 0. This holds true for the case 𝛽 = 1 and
𝜅 = 0 for a linear equation of state 𝜎(Γ) = 1 − Γ considered
in this paper. It is this compact support that makes it possible
to implement an upwind scheme to solve the hyperbolic/de-
generate-parabolic coupled system. Another advantage of
using the Roe scheme is, as Jaisankar and Raghurama Rao
[31] have shown, that the approximation to the flux gradient
used in the Roe scheme is related to the speed of the shock
through the Rankine-Hugoniot condition. This ties in with
the front tracking and front capturing methods implemented
by Peterson and Shearer [1]. The standard Roe formulation

is compared to a Roe-Sweby scheme [32] with a minmod
limiter. An advantage of an explicit scheme over an implicit
scheme is the ease with which we can implement the scheme
in parallel. We implement the explicit scheme using OpenMP
with C++.

A further improvementwemake to the numerical scheme
is to improve the order of the time integration. TVD (total
variation diminishing) Runge-Kutta schemes [33, 34] are
popular high-order time integration schemes. At each time
step more than one iteration of the numerical scheme is
required for an improvement in the accuracy of the scheme.
This can prove to be computationally expensive for a coupled
system of nonlinear equations. We compare a TVD Runge-
Kutta approximation to the time derivative to a second-order
approximation to the time derivative given by a BDF (back-
ward difference formula) leading to an A-stable multistep
method [35]. Unlike the TVD Runge-Kutta scheme the BDF
scheme requires only one Roe scheme evaluation at each time
step.

The paper is divided up as follows. In Section 2 we derive
the numerical scheme to solve the coupled system of non-
linear equations (3). In Section 3 we consider the stability of
an FTCS scheme which gives the stability of the equivalent
upwind scheme. In Section 4 we consider simulations of
the numerical scheme. Concluding remarks are made in
Section 5.

2. Upwind Numerical Scheme

We define ℎ𝑗
𝑖
= ℎ(𝑥

𝑖
, 𝑡
𝑗
) and Γ𝑗

𝑖
= Γ(𝑥

𝑖
, 𝑡
𝑗
) where the spatial

domain is discretized into 𝑛+1 equidistant intervals of width
△𝑥 and 𝑥

𝑖
= 𝑖 △ 𝑥. The time 𝑡

𝑗
is defined by 𝑡

𝑗
= 𝑗 △ 𝑡

where△𝑡 is the time step length. We approximate the spatial
derivatives in (4) by the low-order forward and backward
difference approximations

𝜕Γ

𝜕𝑥








𝑥=𝑥
𝑖

≈

Γ
𝑗

𝑖+1
− Γ
𝑗

𝑖

△𝑥

+ O (△𝑥) ,
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𝜕𝑥
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𝑖

≈

Γ
𝑗
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𝑗

𝑖−1

△𝑥

+ O (△𝑥) ,

(5)

the central difference approximation
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𝑖

≈

Γ
𝑗

𝑖+1
− Γ
𝑗
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+ O (△𝑥
2

) , (6)

and the high-order central difference approximation

𝜕Γ

𝜕𝑥








𝑥=𝑥
𝑖
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−Γ
𝑗

𝑖+2
+ 8Γ
𝑗
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− 8Γ
𝑗

𝑖−1
+ Γ
𝑗

𝑖−2

12 △ 𝑥

+ O (△𝑥
4

) . (7)
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We therefore obtain the approximations to the fluxes given by

𝑄
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(8)
An Euler forward approximation to the time derivative is

given by
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𝜕𝑡
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A BDF approximation to the time derivative is given by
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A third-order TVD Runge-Kutta approximation to the time
derivative to the free surface ℎ(𝑥, 𝑡) yields
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(11)

The third-order TVD Runge-Kutta approximation to the
surfactant concentration will have a similar form.

A finite volume approximation to (3) is given by
𝜕ℎ

𝜕𝑡
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(12)

The fluxes are approximated by the three-point central
difference schemes with a numerical viscosity term of Roe
[29, 30] given by
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where
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(14)

Using a finite volume approximation to the spatial derivatives
in (3) with an Euler approximation to the time derivatives we
obtain

ℎ
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(15)

A finite volume approximation to the spatial derivatives in (3)
combined with the BDF approximation to the time derivative
given by (10) leads to the numerical scheme
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We implement the multistep method by evaluating (15) for
𝑗 = 0 to determine ℎ1

𝑖
and Γ1
𝑖
. We evaluate (16) for 𝑗 = 1, 2, . . .,

where we use the values for ℎ1
𝑖
and Γ1

𝑖
obtained from (15)

to start the scheme. Both (15) and (16) are evaluated for 𝑖 =
1, 2, . . . , 𝑛 − 1. The values at 𝑖 = 0 and 𝑖 = 𝑛 are determined
from the boundary conditions. The initial conditions come
from the physics of the problem being considered.

The Roe approximations to the flux given by (13) coupled
with the third-order Runge-Kutta approximation to the time
derivative lead to a Roe-TVD numerical scheme. A Roe-
Sweby scheme [32] combines the high-order Roe flux approx-
imation (13) with the low-order Lax-Wendroff approximation
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such that
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𝑖+(1/2)
+ Φ (𝑟) (𝑄

𝐿𝑊
𝑗

𝑖+(1/2)
− 𝑄
𝑗

𝑖+(1/2)
) ,

𝑃
∗𝑗

𝑖+(1/2)
= 𝑃
𝑗

𝑖+(1/2)
+ Φ (𝑤) (𝑃

𝐿𝑊
𝑗

𝑖+(1/2)
− 𝑃
𝑗

𝑖+(1/2)
) ,

𝑟 =

ℎ
𝑖
− ℎ
𝑖−1

ℎ
𝑖+1

− ℎ
𝑖

, 𝑤 =

Γ
𝑖
− Γ
𝑖−1

Γ
𝑖+1

− Γ
𝑖

.

(18)

After some numerical experimentation we find that the
limiter that works best is the minmod limiter given by

Φ (𝑟) = max [0,min (1, 𝑟)] . (19)

The Roe-Sweby scheme is coupled with the third-order TVD
approximation to the time derivative leading to a Roe-Sweby-
TVD numerical scheme. The final scheme we consider is the
Roe-BDF scheme given by (16) where the approximations to
the fluxes are given by (13). The Roe-TVD, Roe-Sweby-TVD,
and Roe-BDF numerical schemes are simulated in the next
section.

The surfactant concentration has two forms. For a preex-
isting or endogenous surfactant

Γ (𝑥, 0) = 1, (20)

and for a deposited or exogenous surfactant [17, 26, 27]

Γ (𝑥, 0) = exp (−𝑥2) . (21)

We consider an initial exponential film profile given by

ℎ (𝑥, 0) = exp (−𝑥2) . (22)

We are interested in simulating the behaviour of a moving
front at the leading edge of a thin film. We thus fix the height
of the filmand surfactant concentration at the origin such that

ℎ (0, 𝑡) = 1, Γ (0, 𝑡) = 1. (23)

The continuity boundary conditions

𝜕ℎ

𝜕𝑥








𝑥=0,𝑥=∞

= 0,

𝜕Γ

𝜕𝑥








𝑥=0,𝑥=∞

= 0 (24)

close the problem. The boundary conditions (23) coupled
with (24) give

ℎ
𝑗

0
= 1, ℎ

𝑗

1
= 1,

Γ
𝑗

0
= 1, Γ

𝑗

1
= 1.

(25)

The model equation (3) is degenerate since the coefficient of
the highest derivative tends to zero as the film height tends
to zero [36]. To avoid numerical difficulties which arise out
of this degeneracy for the boundary conditions at 𝑥 = ∞ we
assume the height of the film is not zero but rather the height
of a precursor film [37]. In this paper we fix the height of the
precursor film to be the height of the initial film profile at the
end point. We make a similar assumption with the surfactant
concentration. This precursor boundary condition coupled
with the derivative condition at 𝑥 = ∞ gives

ℎ
𝑗+1

𝑛
= ℎ
𝑗

𝑛
, ℎ

𝑗+1

𝑛−1
= ℎ
𝑗

𝑛−1
,

Γ
𝑗+1

𝑛
= Γ
𝑗

𝑛
, Γ

𝑗+1

𝑛−1
= Γ
𝑗

𝑛−1
.

(26)

3. Stability

In this section we consider the stability of the system (3). We
linearise the system around the constant solutions ℎ = 1 and
Γ = 1 by making the substitutions

ℎ = 1 + 𝜖ℎ
0
(𝑥, 𝑡) , Γ = 1 + 𝜖Γ

0
(𝑥, 𝑡) , (27)

where 𝜖 ≪ 1. Substituting (27) into (3) and separating to
leading order coefficients in 𝜖 we obtain the linear system

𝜕ℎ
0

𝜕𝑡

+

𝜕ℎ
0

𝜕𝑥

−

1

2

𝜕
2
𝑔
0

𝜕𝑥
2
= 0,

𝜕𝑔
0

𝜕𝑡

+

1

2

𝜕𝑔
0

𝜕𝑥

+

𝜕ℎ
0

𝜕𝑥

−

𝜕
2
𝑔
0

𝜕𝑥
2
= 0.

(28)

We now perform a von Neumann stability analysis on the
linear system (28) to determine theCourant-Friedrichs-Lewy
(CFL) condition for numerical stability. We approximate the
spatial derivatives in (28) by central difference approxima-
tions

𝜕ℎ
0

𝜕𝑥








𝑥=𝑥
𝑖

≈

ℎ
0

𝑗

𝑖+1
− ℎ
0

𝑗

𝑖−1

2 △ 𝑥

+ O (△𝑥
2

) ,

𝜕𝑔
0

𝜕𝑥








𝑥=𝑥
𝑖

≈

𝑔
0

𝑗

𝑖+1
− 𝑔
0

𝑗

𝑖−1

2 △ 𝑥

+ O (△𝑥
2

) ,

𝜕
2
𝑔
0

𝜕𝑥
2









𝑥=𝑥
𝑖

≈

𝑔
0

𝑗

𝑖+1
− 2𝑔
0

𝑗

𝑖
+ 𝑔
0

𝑗

𝑖−1

△𝑥
2

+ O (△𝑥
2

) .

(29)



Mathematical Problems in Engineering 5

We approximate the time derivatives by the forward differ-
ence approximations

𝜕ℎ
0

𝜕𝑡








𝑡=𝑡
𝑗

≈

ℎ
0

𝑗+1

𝑖
− ℎ
0

𝑗

𝑖

△𝑡

+ O (△𝑡) ,

𝜕𝑔
0

𝜕𝑡








𝑡=𝑡
𝑗

≈

𝑔
0

𝑗+1

𝑖
− 𝑔
0

𝑗

𝑖

△𝑡

+ O (△𝑡) .

(30)

We obtain the forward-time central-space (FTCS) approxi-
mation to (28) given by

ℎ
0

𝑗+1

𝑖
= ℎ
0

𝑗

𝑖
−

△𝑡

2 △ 𝑥

(ℎ
0

𝑗

𝑖+1
− ℎ
0

𝑗

𝑖−1
)

+

△𝑡

2 △ 𝑥
2
(𝑔
0

𝑗

𝑖+1
− 2𝑔
0

𝑗

𝑖
+ 𝑔
0

𝑗

𝑖−1
) ,

(31)

𝑔
0

𝑗+1

𝑖
= 𝑔
0

𝑗

𝑖
−

△𝑡

4 △ 𝑥

(𝑔
0

𝑗

𝑖+1
− 𝑔
0

𝑗

𝑖−1
) −

△𝑡

2 △ 𝑥

(ℎ
0

𝑗

𝑖+1
− ℎ
0

𝑗

𝑖−1
)

+

△𝑡

△𝑥
2
(𝑔
0

𝑗

𝑖+1
− 2𝑔
0

𝑗

𝑖
+ 𝑔
0

𝑗

𝑖−1
) .

(32)

To perform a von Neumann stability analysis we substitute

ℎ
0

𝑗

𝑖
= 𝐻
𝑗

𝑒
𝐼𝜔𝑖△𝑥

, 𝑔
0

𝑗

𝑖
= 𝐺
𝑗

𝑒
𝐼𝜔𝑖△𝑥

, (33)

into (32) where 𝐼2 = −1 to obtain the system

(

𝐻
𝑗+1

𝐺
𝑗+1
) = 𝐴(

𝐻
𝑗

𝐺
𝑗
) , (34)

where

𝐴 = (

1 −

𝐼 △ 𝑡

△𝑥

sin (𝜔 △ 𝑥)

△𝑡

△𝑥
2
(cos (𝜔 △ 𝑥) − 1)

−

𝐼 △ 𝑡

△𝑥

sin (𝜔 △ 𝑥) 1 −

𝐼 △ 𝑡

2 △ 𝑥

sin (𝜔 △ 𝑥) +

2 △ 𝑡

△𝑥
2
(cos (𝜔 △ 𝑥) − 1)

) . (35)

In terms of a vonNeumann stability analysis we need to show
that the amplification factor |𝐻𝑗+1/𝐻𝑗| < 1 and |𝐺𝑗+1/𝐺𝑗| <
1. Alternatively, we need to show that the iterative system (34)
is bounded. We can show this by showing that the spectral
radius 𝜌(𝐴) satisfies the condition

𝜌 (𝐴) < 1. (36)

The matrix 𝐴 admits the eigenvalues

𝜆
1
= 1 −

𝐼 △ 𝑡

2 △ 𝑥

sin (𝜔 △ 𝑥) ,

𝜆
2
= 1 +

2 △ 𝑡

△𝑥
2
(cos (𝜔 △ 𝑥) − 1) −

𝐼 △ 𝑡

△𝑥

sin (𝜔 △ 𝑥) .

(37)

The spectral radius, 𝜌(𝐴), is defined as

𝜌 (𝐴) = max (

𝜆
𝑖





) , 𝑖 = 1, 2. (38)

We find that





𝜆
1





= √1 + (

△𝑡

4 △ 𝑥

)

2

sin2 (𝜔 △ 𝑥),





𝜆
2





=

√(1 +

2 △ 𝑡

△𝑥
2
(cos (𝜔 △ 𝑥) − 1))

2

+ (

△𝑡

△𝑥

)

2

sin2 (𝜔 △ 𝑥).

(39)

Condition (36) therefore gives

√(1 +

2 △ 𝑡

△𝑥
2
(cos (𝜔 △ 𝑥) − 1))

2

+ (

△𝑡

△𝑥

)

2

sin2 (𝜔 △ 𝑥)

< 1.

(40)

The nonlinear equation (40) can be simplified to give the
Courant-Friedrichs-Lewy (CFL) condition

△𝑡

△𝑥
2
<

1

2

, (41)

where we have chosen 𝜔 = (𝜋 + 2𝑧𝜋)/ △ 𝑥 for 𝑧 ∈ I.
In this section we have shown that the FTCS numerical

scheme given by (31) and (32) will give stable results provided
the CFL condition (41) is satisfied. This condition holds true
for the Roe upwind scheme derived in Section 2. In the next
section we consider the evolution of the initial exponential
thin film profile for both endogenous and exogenous surfac-
tants.

4. Simulation of Numerical Scheme

We simulate the numerical schemes on a 2.66GHzWindows
machine with 6.00GB of RAM with 2 Intel QUAD core
CPUs using the MinGW version of C++. We first consider a
simulation of all three numerical schemes taking 𝑛 = 250 and
△𝑡 = 2.5×10

−6 where we have chosen 𝑥
0
= 0, 𝑥

𝑛
= 4 and ℎ =

(𝑥
𝑛
−𝑥
0
)/𝑛.We take our iterations up to a final time of 𝑡 = 1.0.
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Table 1: Comparing 𝐿
2
and 𝐿

∞
norms for Roe-TVD, Roe-Sweby-TVD, and Roe-BDF schemes where we have taken 𝑛 = 500 and Δ𝑡 =

2.5 × 10
−6.

Method ℎ(𝑥, 𝑡) 𝑔(𝑥, 𝑡)

𝐿
2

𝐿
∞

𝐿
2

𝐿
∞

Endogenous surfactant
Roe-TVD versus Roe-Sweby-TVD 0.00694248 0.01257900 0.0015539400 0.002015310
Roe-Sweby-TVD versus Roe-BDF 0.00168707 0.00780482 0.0000845757 0.000414136
Roe-TVD versus Roe-BDF 0.00721239 0.01252690 0.0015349300 0.002011100

Exogenous surfactant
Roe-TVD versus Roe-Sweby-TVD 0.00919323 0.01143190 0.0111612 0.03605900
Roe-Sweby-TVD versus Roe-BDF 0.00636653 0.01057280 0.0021225 0.00227495
Roe-TVD versus Roe-BDF 0.00571950 0.00672977 0.0105552 0.03629150
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Figure 1: Numerical simulation of the evolution of the initial free surface (22) and an endogenous surfactant (20) where we have taken
𝑛 = 500 and△𝑡 = 2.5 × 10−5.

The mean and maximum differences between the different
approximations are defined by the 𝐿

2
and 𝐿

∞
norms where

𝐿
2
=






𝑢 (𝑥
𝑖
, 𝑡
𝑗
) − 𝑢
∗

(𝑥
𝑖
, 𝑡
𝑗
)





2

= (△𝑥

𝑛

∑

𝑖=0






𝑢 (𝑥
𝑖
, 𝑡
𝑗
) − 𝑢
∗

(𝑥
𝑖
, 𝑡
𝑗
)







2

)

1/2

,

𝐿
∞
=






𝑢 (𝑥
𝑖
, 𝑡
𝑗
) − 𝑢
∗

(𝑥
𝑖
, 𝑡
𝑗
)





∞

= max
𝑖






𝑢 (𝑥
𝑖
, 𝑡
𝑗
) − 𝑢
∗

(𝑥
𝑖
, 𝑡
𝑗
)






.

(42)

The approximations 𝑢(𝑥
𝑖
, 𝑡
𝑗
) and 𝑢

∗
(𝑥
𝑖
, 𝑡
𝑗
) correspond to

numerical solutions from two different schemes. We tabulate
our results in Table 1.

From the results in Table 1 we note that the Roe-BDF
approach produces the smallest error for the 𝐿

2
and 𝐿

∞

norms for both an endogenous surfactant as well as for an
exogenous surfactant. We interpret these results to mean that
the Roe-BDF approach will produce the most stable results
with the least variation for long-time simulations.

We next consider long-time simulations at high resolu-
tion where we take 𝑛 = 500 and △𝑡 = 2.5 × 10

−5. This
implies that△𝑡/ △ 𝑥

2
= 0.390625 and△𝑡/ △ 𝑥

2
= 0.003125.

Table 2: Comparing run times in seconds for an endogenous
surfactant using OpenMP where we have taken 𝑛 = 500 and Δ𝑡 =
2.5 × 10

−5.

Final time Nonparallel Parallel
1 48 s 43 s
2 96 s 86 s
5 237 s 227 s
10 457 s 431 s

We simulate this case in parallel using OpenMP. In Table 2
we show the advantage of using OpenMP over nonparallel
computations for long-time simulations of an endogenous
surfactant.

From Table 2 we note that implementing the numerical
scheme on OpenMP is faster than using the nonparallel
formulation. While the improvement is not significant for
the times considered here, when one considers an increase
in the resolution (larger 𝑛 values) and long-time solutions, a
significant improvement is noted.

In Figures 1 and 2 we obtain the propagating front solu-
tions observed by Levy and Shearer [2]. We have obtained
these solutions without recourse to an implicit numerical
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Figure 2: Numerical simulation of the evolution of the initial free surface (22) and an exogenous surfactant (21) where we have taken 𝑛 = 500
and△𝑡 = 2.5 × 10−5.

method as implemented by Levy and Shearer [2] as well as
Peterson and Shearer [1].

5. Concluding Remarks

In this paper we have considered numerical solutions of a
coupled system of nonlinear equations modelling the effects
of surfactant on the free surface of a thin film on a horizontal
substrate. The original system has been investigated by Levy
and Shearer [2] and solved by implementing an implicit
numerical scheme coupled with Newton’s method. We have
shown that an explicit upwind scheme coupled with high-
order approximations to the spatial derivatives and a BDF
scheme for the time integration in which the time step and
space step satisfy the CFL condition△𝑡/ △ 𝑥

2
< 1/2 are able

to capture the sharp changes in gradient that occur in both the
free surface profile and surfactant concentration.The upwind
schemes are easier to implement than implicit schemes and
can be implemented in parallel.
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He’s inequalities and the Max-Min approach are briefly introduced, and their application to a coupled cubic nonlinear packaging
system is elucidated. The approximate solution is obtained and compared with the numerical solution solved by the Runge-
Kutta algorithm yielded by computer simulation. The result shows a great high accuracy of this method. The research extends
the application of He’s Max-Min approach for coupled nonlinear equations and provides a novel method to solve some essential
problems in packaging engineering.

1. Introduction

Various kinds of nonlinear oscillation problems exist in the
engineering field, which are usually difficult to be solved
analytically. However, the analytical solution is significant for
the further intensive study. Among themethods for analytical
solution, the Perturbation method [1] is one of the most well-
known approaches and is based on the existence of small
or large parameters which is not commonly contained in
many nonlinear problems. Besides, in order to avoid some
restrictions of Perturbation Method, some other methods
are developed, including the homotopy perturbation method
(HPM), the variational interation method (VIM), many
well-established asymptotic methods [2], a novel Max-Min
method [3]. The Max-Min approach is developed from the
idea of ancient Chinese math and owns the property of
convenient application, less calculation and high accuracy,
and so forth. Among current researches about He’s Max-Min
approach and its applications [4–10], few involve coupled
nonlinear problems such in packaging engineering, espe-
cially the higher-dimensional coupled nonlinear problems.

In this paper, He’s Max-Min approach is applied to the
second order coupled cubic nonlinear packaging system to
get its frequencies and periods under different situations.

What’s more, the obtained analytical solution is compared
with the solution of computer simulation by Matlab. Conse-
quently, the comparison shows the efficiency of this method.

2. He’s Inequalities and
the Max-Min Approach [3]

According to He’s Max-Min approach, in order to obtain the
exact solution of certain variable x, its minimum of Max
values and maximum of Min values should firstly gained as
follows:

𝑎

𝑏

< 𝑥 <

𝑑

𝑐

, (1)

where a, b, c, and d are real numbers, and then

𝑎

𝑏

<

𝑚𝑎 + 𝑛𝑑

𝑚𝑏 + 𝑛𝑐

<

𝑑

𝑐

, (2)

and 𝑥 is approximated by

𝑥 =

𝑚𝑎 + 𝑛𝑑

𝑚𝑏 + 𝑛𝑐

=

𝑘𝑎 + 𝑑

𝑘𝑏 + 𝑐

, (3)

where𝑚 and 𝑛 are weighing factors and 𝑘 = 𝑚/𝑛.



2 Mathematical Problems in Engineering

Critical component Product

Packaging

𝑚

1

𝑚

2

𝑘

1

𝑘

2

𝑥

1

𝑥

2

𝑐

1

𝑐

2

Figure 1: The model of a packaging system with a critical compo-
nent.

The changing progress of 𝑘 from zero to infinite is just that
of 𝑥 from 𝑑/𝑐 to 𝑎/𝑏. Thus there must exist a certain value
of 𝑘 while the corresponding value of 𝑥 locates at its exact
solution.

However, the method to determine the value of 𝑘 is
varied. In this paper, the method in [3] is used to determine
the value of 𝑘.

3. Modelling and Equations

Packaged products can be potentially damaged by dropping
[11, 12], and it is very important to investigate the oscillation
process of the packaging system. Most products, especially
mechanical and electronic products, are composed of large
numbers of elements, and the damage generally occurs at
the so-called critical component [13]. In order to prevent any
damage, a critical component and a cushioning packaging
are always included in a packaging system [14], as shown in
Figure 1. Here the coefficients𝑚

1
and𝑚

2
denote, respectively,

the mass of the critical component and main part of product,
while 𝑘

1
and 𝑘
2
are, respectively, the coupling stiffness of the

critical component and that of cushioning pad.
The oscillation in the packaging system is of inherent

nonlinearity. The governing equations of cubic nonlinear
cushioning packaging systemwith the critical component can
be expressed as [14]

𝑚
1
𝑥


+ 𝑘
1
(𝑥 − 𝑦) = 0,

𝑚
2
𝑦


+ 𝑘
2
𝑦 + 𝑟
2
𝑦
3

− 𝑘
1
(𝑥 − 𝑦) = 0,

(4)

where

𝑥 (0) = 0, 𝑦 (0) = 0,

𝑥


(0) = √2𝑔ℎ, 𝑦


(0) = √2𝑔ℎ.

(5)

Here 𝑟
2
is the incremental rate of linear elastic coefficient

for cushioning pad, and h is the dropping height. Equation
(4) can be equivalently written in the following forms:

𝑋 + 𝜔
2

1
(𝑋 − 𝑌) = 0,
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(6)
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𝑋 (0) = 0, (12)

𝑌 (0) = 0, (13)
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4. Application of He’s Max-Min Approach

From (6), we can easily obtain
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+ 3𝑌
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Rewrite (16) in the following form:
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According to the Max-Min method, we choose a trial
function in the following form:

𝑌 = 𝐴 sin (Ω𝜏) (18)

which meets the initial conditions as described in (13) and
(15).

By simple analysis, from (17)-(18) we know that
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The maximal and minimal value of sin2Ω𝜏 are, respec-
tively, 1 and 0. So we can immediately obtain
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According to He Chengtian’s interpolation [6], we obtain
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+ 𝑘𝑀, (21)
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Figure 2: Comparison of the approximate solution by the Max-Min approach with the numerical simulation solution solved by the Runge-
Kutta algorithm. (Asterisk: solution by the Max-Min approach; continuous line: solution by the Runge-Kutta method).

where 𝑚 and 𝑛 are weighting factors, 𝑘 = 𝑚/(𝑚 + 𝑛), 𝑀 =

(3Ω
2
− 𝜔
2

1
)𝐴
2.

Then, the approximate solution of (16) can be written as

𝑌 = 𝐴 sin [(𝜔2
1
+ 𝜔
2

2
)Ω
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− 𝜔
2

1
+ 𝑘𝑀]

1/4

𝜏. (22)

To determine the value of k, substituting (22) into (16)
results in the following residual [4]:

𝑅 (𝜏, 𝑘) = (3Ω
2

− 𝜔
2

1
) 𝑌
3

− 𝑘𝑀𝑌. (23)

And by setting

∫

𝑇/4

0

𝑅 (𝜏, 𝑘) sinΩ𝜏𝑑𝜏 = 0, (24)

where 𝑇 = 2𝜋/Ω, we obtain the 𝑘 value as

𝑘 =
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. (25)

Substituting (25) into (21) yields
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From (26), we can easily obtain the frequency value Ω,
which can be used to obtain the approximate solution of
(16). Figure 2 shows the approximate solution, (22), agrees
well with the numerical solution by the Runge-Kutta method
for various different values of 𝜔

1
and 𝜔

2
, where the initial

velocity is assumed as 𝑋(0) = 𝑌(0) = 0, and 𝑋(0) =

̇𝑌(0) = 𝐴Ω = 1, as illustrated in (14) and (15). The parameter
𝜔
1
for typical packaging system ranges from 3 to 5, and

𝜔
2
from 1 to 3. As shown in Figure 2, the deviation of the

solution by the Max-Min approach from that by the Runge-
Kutta method is very small, taking Figure 2(a), for example,
the whole deviation ∑

120

𝑖=1
(|Δ𝑌
𝑖
/𝑌
𝑖
|) = 1.72%, where Δ𝑌

𝑖
/𝑌
𝑖

represents the relating error of the solution by the Max-Min
approach from that by the Runge-Kutta method.
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5. Conclusion

The Max-Min method, which has been widely applied to
many kinds of strong nonlinear equations such as pendulum
and Duffing equations, is applied to study the nonlinear
response of coupled cubic nonlinear packaging system in
this study for the first time. The method is a well-established
method for analyzing nonlinear systems and can be easily
extended to many kinds of nonlinear equation. We demon-
strated the accuracy and efficiency of the method in solving
the coupled equations, showing that thismethod can be easily
used in engineering application with high accuracy without
cumbersome calculation.
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The simplest equation method is employed to construct some new exact closed-form solutions of the general Prandtl’s boundary
layer equation for two-dimensional flow with vanishing or uniformmainstream velocity. We obtain solutions for the case when the
simplest equation is the Bernoulli equation or the Riccati equation. Prandtl’s boundary layer equation arises in the study of various
physical models of fluid dynamics. Thus finding the exact solutions of this equation is of great importance and interest.

1. Introduction

Many scientific and engineering problems and phenomena
are modeled by nonlinear differential equations. Therefore,
the study of nonlinear differential equations has been an
active area of research from the past few decades. Consider-
able attention has been devoted to the construction of exact
solutions of nonlinear equations because of their important
role in the study of nonlinear physical models. For nonlinear
differential equations, we donot have the freedom to compute
exact (closed-form) solutions and for analytical work we
have to rely on some approximate analytical or numerical
techniques which may be helpful for us to understand the
complex physical phenomena involved.The exact solutions of
the nonlinear differential equations are of great interest and
physically more important.These exact solutions, if reported,
facilitate the verification of complex numerical codes and
are also helpful in a stability analysis for solving special
nonlinear problems. In recent years, much attention has been
devoted to the development of several powerful and useful
methods for finding exact analytical solutions of nonlinear
differential equations. These methods include the powerful
Lie group method [1], the sine-cosine method [2], the tanh
method [3, 4], the extended tanh-function method [5],

the Backlund transformation method [6], the transformed
rational function method [7], the (𝐺/𝐺)-expansion method
[8], the exponential function rational expansion method [9],
and the Adomian’s decomposition method [10].

Prandtl [11] introduced boundary layer theory in 1904 to
understand the flow behavior of a viscous fluid near a solid
boundary. Prandtl gave the concept of a boundary layer in
large Reynolds number flows and derived the boundary layer
equations by simplifying the Navier-Stokes equations to yield
approximate solutions. Prandtl’s boundary layer equations
arise in various physical models of fluid mechanics. The
equations of the boundary layer theory have been the subject
of considerable interest, since they represent an important
simplification of the original Navier-Stokes equations. These
equations arise in the study of steady flows produced by
wall jets, free jets, and liquid jets, the flow past a stretching
plate/surface, flow induced due to a shrinking sheet, and
so on. These boundary layer equations are usually solved
subject to certain boundary conditions depending upon the
specific physical model considered. Blasius [12] solved the
Prandtl’s boundary layer equations for a flat moving plate
problem and gave a power series solution of the problem.
Falkner and Skan [13] generalized the Blasius boundary layer
problem by considering the boundary layer flow over a wedge
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inclined at a certain angle. Sakiadis [14] initiated the study
of the boundary layer flow over a continuously moving rigid
surface with a uniform speed. Crane [15] was the first one
who studied the boundary layer flow due to a stretching
surface and developed the exact solutions of boundary layer
equations with parameter 𝛾 = 0. P. S. Gupta and A. S.
Gupta [16] extended the Crane’s work and for the first time
introduced the concept of heat transfer with the stretching
sheet boundary layer flow. The numerical solution for a
free two-dimensional jet was obtained by Schlichting [17]
and later an analytic study was made by Bickley [18]. Riley
[19] derived the solution for a radial liquid jet. Recently,
the similarity solution of axisymmetric non-Newtonian wall
jet with swirl effects was investigated by Kolář [20]. Naz
et al. [21] and Mason [22] have investigated the general
boundary layer equations for two-dimensional and radial
flows by using the classical Lie group approach and very
recently Naz et al. [23] have provided the similarity solutions
of the Prandtl’s boundary layer equations by implementing
the nonclassical/conditional symmetry method.

The simplest equation method is a powerful mathemat-
ical tool for finding exact solutions of nonlinear ordinary
differential equations. It has been developed by Kudryashov
[24, 25] and used successfully bymany researchers for finding
exact solutions of nonlinear ordinary differential equations
[26–28]. The purpose of the present work is to find the exact
closed-form solutions of Prandtl’s boundary layer equation
for two-dimensional flow with constant or uniform main
stream velocity by the use of simplest equation method.

Prandtl’s boundary layer equation for the stream function
𝜓(𝑥, 𝑦) for an incompressible, steady two-dimensional flow
with uniform or vanishing mainstream velocity is [29]

𝜕𝜓

𝜕𝑦

𝜕
2
𝜓

𝜕𝑥𝜕𝑦

−

𝜕𝜓
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2
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𝜕𝑦
2
− ]

𝜕
3
𝜓

𝜕𝑦
3
= 0. (1)

Here (𝑥, 𝑦) denote the Cartesian coordinates parallel and
perpendicular to the boundary 𝑦 = 0 and ] is the kinematic
viscosity.The velocity components 𝑢 (𝑥, 𝑦) and V (𝑥, 𝑦), in the
𝑥 and 𝑦 directions, are related to stream function 𝜓 (𝑥, 𝑦) as

𝑢 (𝑥, 𝑦) =

𝜕𝜓

𝜕𝑦

, V (𝑥, 𝑦) = −

𝜕𝜓

𝜕𝑥

. (2)

By the use of Lie group theoretic method of infinitesimal
transformations [1], the general formof similarity solution for
(1) is

𝜓 (𝑥, 𝑦) = 𝑥
1−𝛾

𝐹 (𝜂) , 𝜂 =

𝑦

𝑥
𝛾
, (3)

where 𝛾 is the constant determined from the further condi-
tions and 𝜂 is the similarity variable. By the substitution of
(3) into (1), the third-order nonlinear ordinary differential
equation in 𝐹(𝜂) results, namely, in

]
𝑑
3
𝐹

𝑑𝜂
3
+ (1 − 𝛾) 𝐹

𝑑
2
𝐹

𝑑𝜂
2
+ (2𝛾 − 1) (

𝑑𝐹

𝑑𝜂

)

2

= 0. (4)

Equation (4) gives the general form of Prandtl’s boundary
layer equation for two-dimensional flow of a viscous incom-
pressible fluid. The boundary layer equation (4) is usually

solved subject to certain boundary conditions depending
upon the particular physical model considered. Here, we
present the exact closed-form solutions of (4) using the
simplest equation method. We organize the paper as fol-
lows. In Section 2, we describe briefly the simplest equation
method. In Section 3, we apply thismethod to solve nonlinear
Prandtl’s boundary layer equation for two-dimensional flow.
Finally, some closing remarks are presented in Section 4.

2. A Description of the Simplest
Equation Method

Here we present a brief description of the simplest equation
method for solving nonlinear ordinary differential equations.

Step 1. We first consider a general form of a nonlinear ordi-
nary differential equation:

𝐸[𝐹,

𝑑𝐹

𝑑𝜂

,

𝑑
2
𝐹

𝑑𝜂
2
,

𝑑
3
𝐹

𝑑𝜂
3
, . . .] = 0, (5)

where 𝐹 is the dependent variable and 𝜂 is the independent
variable.

Step 2. The basic idea of the simplest equation method
consists in expanding the solutions of the previous ordinary
differential equation in a finite series:

𝐹 (𝜂) =

𝑀

∑

𝑖=0

𝐴
𝑖
(𝐺 (𝜂))

𝑖

, (6)

where 𝐺(𝜂) is a solution of some ordinary differential equa-
tions. These ordinary differential equations are called the
simplest equations. The main property of the simplest equa-
tion is that we know the general solution of the simplest
equation or we at least know the exact analytical solutions of
the simplest equation. The parameters 𝐴

0
, 𝐴
1
, . . . , 𝐴

𝑀
are to

be determined from the further conditions.

In this paper we use the Bernoulli and Riccati equations
as the simplest equations. These equations are well-known
nonlinear ODEs whose solutions can be expressed in terms
of elementary functions.

For the Bernoulli equation

𝑑𝐺

𝑑𝜂

= 𝑑𝐺 (𝜂) + 𝑒𝐺
2

(𝜂) , (7)

where 𝑑 and 𝑒 are constants independent of 𝜂.The solution of
(7) is

𝐺 (𝜂) = 𝑑 [

cosh [𝑑 (𝜂 + 𝐶)] + sinh [𝑑 (𝜂 + 𝐶)]

1 − 𝑒 cosh [𝑑 (𝜂 + 𝐶)] − 𝑒 sinh [𝑑 (𝜂 + 𝐶)]

] ,

(8)

where 𝐶 is a constant of integration.
For the Riccati equation

𝑑𝐺

𝑑𝜂

= 𝑑𝐺 (𝜂) + 𝑒𝐺
2

(𝜂) + 𝑓, (9)
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where 𝑑, 𝑒, and 𝑓 are constants, we will use the solutions

𝐺 (𝜂) = −

𝑑

2𝑒

−

𝜃

2𝑒

tanh [

1

2

𝜃 (𝜂 + 𝐶)] ,

𝐺 (𝜂) = −

𝑑

2𝑒

−

𝜃

2𝑒

tanh(

1

2

𝜃𝜂)

+

sech (𝜃𝜂/2)

𝐶 cosh (𝜃𝜂/2) − (2𝑒/𝜃) sinh (𝜃𝜂/2)

,

(10)

where

𝜃
2

= 𝑑
2

− 4𝑒𝑓 > 0, (11)

and 𝐶 is a constant of integration.

Step 3. One of the main steps in using the simplest equation
method is to determine the positive number 𝑀 in (6). The
positive number 𝑀 can be determined by considering the
homogeneous balance between the highest order derivatives
and nonlinear terms appearing in (5).

Step 4. By the substitution of (6) into (5) and with (7) or
(9), the left hand side of (5) is converted into a polynomial
in 𝐺(𝜂). Equating each coefficient of the polynomial to zero
yields a set of algebraic equations for 𝐴

𝑖
, 𝑑, 𝑒, 𝑓.

Step 5. By solving the algebraic equations obtained in Step 4
and substituting the results into (6), we obtain the exact
solutions of ODE (5).

3. Application of the Simplest
Equation Method

In this section, we employ the simplest equation method
and obtain exact closed-form solutions of Prandtl’s boundary
layer equation (4).

3.1. Solutions of Boundary Layer Equation Using the Equation
of Bernoulli as the Simplest Equation. The balancing proce-
dure yields𝑀 = 1. Thus we search for a solution of (4) of the
form

𝐹 (𝜂) = 𝐴
0
+ 𝐴
1
𝐺 (𝜂) , (12)

where 𝐺(𝜂) satisfies the Bernoulli equation and 𝐴
0
and 𝐴

1

are the parameters to be determined.
By the substitution of (12) into (4) and making use of

the Bernoulli equation (7) and then equating all coefficients
of the functions 𝐺

𝑖 to zero, we obtain an algebraic system
of equations in terms of 𝐴

0
and 𝐴

1
. Solving this system of

algebraic equations, we obtain the values of the constants 𝐴
0

and 𝐴
1
. Therefore the solution of Prandtl’s boundary layer

equation (4) with 𝛾 = 2/3 is given by

𝐹 (𝜂) = −3]𝑑

− 6]𝑒𝑑 [

cosh [𝑑 (𝜂+𝐶)] + sinh [𝑑 (𝜂+𝐶)]

1−𝑒 cosh [𝑑 (𝜂 + 𝐶)]−𝑒 sinh [𝑑 (𝜂+𝐶)]

] ,

(13)

and hence the corresponding stream function becomes

𝜓 (𝑥, 𝑦)

= −3]𝑑𝑥1/3 − 6]𝑒𝑑𝑥1/3

× [ (cosh [𝑑 (𝑥
−2/3

𝑦 + 𝐶)] + sinh [𝑑 (𝑥
−2/3

𝑦 + 𝐶)])

× (1−𝑒 cosh [𝑑 (𝑥
−2/3

𝑦+𝐶)]

−𝑒 sinh [𝑑 (𝑥
−2/3

𝑦+𝐶)])

−1

] .

(14)

Special Cases. By taking 𝑑 = −1 and 𝑒 = 1 in the previous
solution, we obtain a special solution given by

𝜓 (𝑥, 𝑦) = 3]𝑥1/3 coth [

1

2

(𝑥
−2/3

𝑦 + 𝐶)] . (15)

Likewise, if we take 𝑑 = −1 and 𝑒 = −1, we deduce

𝜓 (𝑥, 𝑦) = 3]𝑥1/3 tanh [

1

2

(𝑥
−2/3

𝑦 + 𝐶)] . (16)

3.2. Solutions of Boundary Layer Equation Using the Equation
of Riccati as the Simplest Equation. The balancing procedure
yields𝑀 = 1. Thus the solution of (4) is written in the form

𝐹 (𝜂) = 𝐴
0
+ 𝐴
1
𝐺 (𝜂) . (17)

By the insertion of (17) into (4) andmaking use of the Riccati
equation (9) and proceeding as above, we obtain algebraic
system of equations in terms of 𝐴

0
and 𝐴

1
. Solving this

system, we obtain the solutions of Prandtl’s boundary layer
equation (4) for 𝛾 = 2/3 as

𝐹 (𝜂) = −3]𝑑 − 6]𝑒 [−
𝑑

2𝑒

−

𝜃

2𝑒

tanh(

1

2

𝜃 (𝜂 + 𝐶))] ,

𝐹 (𝜂) = −3]𝑑−6]𝑒 [−
𝑑

2𝑒

−

𝜃

2𝑒

tanh(

𝜂𝜃

2

)

+

sech (𝜃𝜂/2)

𝐶 cosh (𝜃𝜂/2) − (2𝑒/𝜃) sinh (𝜃𝜂/2)

] ,

(18)

and the solutions for corresponding stream functions are

𝜓 (𝑥, 𝑦) = − 3]𝑑𝑥1/3

− 6]𝑒𝑥1/3 [−
𝑑

2𝑒

−

𝜃

2𝑒

tanh(

1

2

𝜃 (𝑥
−2/3

𝑦+𝐶))] ,

(19)
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𝜓 (𝑥, 𝑦) = −3]𝑑𝑥1/3

− 6]𝑒𝑥1/3 [ −

𝑑

2𝑒

−

𝜃

2𝑒

tanh(

𝜃𝑥
−2/3

𝑦

2

)

+ (sech(

𝜃𝑥
−2/3

𝑦

2

))

× (𝐶 cosh(

𝜃𝑥
−2/3

𝑦

2

) −

2𝑒

𝜃

× sinh(

𝜃𝑥
−2/3

𝑦

2

))

−1

] ,

(20)

where 𝜃2 = 𝑑
2
− 4𝑒𝑓 and 𝐶 is a constant of integration.

By taking 𝑑 = 3, 𝑒 = 1, and 𝑓 = 1 in (19), we deduce a
special solution of stream function 𝜓, given by

𝜓 (𝑥, 𝑦) = − 9]𝑥1/3

+ 3]𝑥1/3 [3 + √5 tanh(

√5

2

(𝑥
−2/3

𝑦 + 𝐶))] .

(21)

4. Concluding Remarks

In this study, we have utilized the method of simplest equa-
tion for obtaining exact closed-form solutions of the well-
known Prandtl’s boundary layer equation for two-dim-
ensional flow with uniform mainstream velocity. As the
simplest equations, we have used the Bernoulli and Riccati
equations. Prandtl’s boundary layer equations arise in var-
ious physical models of fluid dynamics and thus the exact
solutions obtained may be very useful and significant for the
explanation of some practical physical models dealing with
Prandtl’s boundary layer theory.We have also verified that the
solutions obtained here are indeed the solutions of Prandtl’s
boundary layer equation.
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A new collocation method is developed for solving BVPs which arise from the problems in calculus of variation.These BVPs result
from the Euler-Lagrange equations, which are the necessary conditions of the extremums of problems in calculus of variation. The
proposedmethod is based upon the Bernoulli polynomials approximation together with their operational matrix of differentiation.
After imposing the collocation nodes to themain BVPs, we reduce the variational problems to the solution of algebraic equations. It
should be noted that the robustness of operational matrices of differentiation with respect to the integration ones is shown through
illustrative examples. Complete comparisons with other methods and superior results confirm the validity and applicability of the
presented method.

1. Introduction

In a large number of applied sciences problems such as analy-
sis, mechanics, and geometry, it is necessary to determine the
maximal and minimal of a certain function. Because of the
important role of this subject in sciences and engineering,
considerable attention has been provided on this kind of
problems. Such problems are called variational problems.The
various applications of variational problems such as indust-
rial and biological are introduced in [1]. Since a huge size of
such equations cannot be solved explicitly, it is often neces-
sary to resort to the approximation and numerical techni-
ques.

In the recent years, the studies on variational problems
were developed very rapidly and intensively. For instance, one
can point out to the methods that based upon operational
matrices of integration of a huge size of polynomials and
functions. In the last four decades, numerical methods
which are based on the operational matrices of integration
(especially for orthogonal polynomials and functions) have
received considerable attention for dealing with variational

problems. The key idea of these methods is based on the
integral expression

∫

𝑥

0

Φ (𝜏) 𝑑𝜏 ≈ Φ (𝑥) 𝑃, (1)

where Φ(𝑡) = [Φ
1
(𝑥), Φ

2
(𝑥), . . . , Φ

𝑁
(𝑥)] is an arbitrary basis

vector and 𝑃 is the (𝑁 + 1) × (𝑁 + 1) constant matrix
called the operational matrix of integration. The matrix 𝑃
has already been determined for many types of orthogonal
(or nonorthogonal) bases such as the Walsh functions [2],
the Laguerre polynomials [3], the Chebyshev polynomials
[4], the Legendre polynomials [5], and the Fourier series [6].
However, methods that are based on the high-order Gauss
quadrature rules [7, 8] could be applied for variational prob-
lems, but the need to more CPU times and ill-conditioning
of the associated algebraic systems are some disadvantages of
these approaches.

On the other hand, since the beginning of 1994, the
Laguerre, Chebyshev, Taylor, Legendre,Hermite, Fourier, and
Bessel (matrix and collocation) methods have been used in
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the works [9–16] to solve the high-order linear and the non-
linear differential (including hyperbolic partial differential
equations) Fredholm-Volterra integrodifferential difference
delay equations and their systems. Also, the Bernoulli matrix
method has been used to find the approximate solutions
of differential and integrodifferential equations [17–20]. The
main characteristic of these approaches is based on the
operational matrices of differentiation instead of integration.
The best advantage of these techniques with respect to
the integration methods is that, in the fundamental matrix
relations, there is not any approximation symbol; meanwhile,
in the integration forms such as (1), the approximation
symbol could be seen obviously. In other words,

Φ


(𝑥) = Φ (𝑥) 𝐵, (2)

where 𝐵 is the operational matrix of differentiation for any
selected basis such as the above-mentioned polynomials,
functions, and truncated series. The readers can see that
there is no approximation symbol in (2); meanwhile, this can
be seen in (1) by using operational matrices of integration.
For justifying this expression, one can refer to this subject
that after differentiating an 𝑁th degree polynomial, we
usually reach to a polynomial which has less than 𝑁th
degree. However, in the integration processes, the degree of
polynomials would be increased.

In this paper, in the light of the above-mentioned
methods and by means of the matrix relations between the
Bernoulli polynomials and their derivatives, we develop a
new method called the Bernoulli collocation method (BCM)
for finding the extremum of the functional

𝐽 [𝑦
1
(𝑥) , 𝑦

2
(𝑥) , . . . , 𝑦

𝑛
(𝑥)]

= ∫

1

0

𝐺(𝑥, 𝑦
1
(𝑥) , 𝑦

2
(𝑥) , . . . , 𝑦

𝑛
(𝑥) ,

𝑦


1
(𝑥) , 𝑦



2
(𝑥) , . . . , 𝑦



𝑛
(𝑥)) 𝑑𝑥.

(3)

To find the extreme value of 𝐽, the boundary points of the
admissible curves are known in the following form:

𝑦
𝑖
(0) = 𝛾

𝑖
, 𝑖 = 1, 2, . . . , 𝑛,

𝑦
𝑖
(1) = 𝛿

𝑖
, 𝑖 = 1, 2, . . . , 𝑛.

(4)

The necessary condition to extremize 𝐽[𝑦
1
(𝑥), 𝑦
2
(𝑥), . . . ,

𝑦
𝑛
(𝑥)] is that it should satisfy the Euler-Lagrange equations

𝜕𝐺

𝜕𝑦
𝑖

−

𝑑

𝑑𝑥

(

𝜕𝐺

𝜕𝑦


𝑖

) = 0, 𝑖 = 1, 2, . . . , 𝑛, (5)

with boundary conditions given in (4).The system of bound-
ary value problems (5) does not always have a solution, and
if the solution exists, it may not be unique. Note that in many
variational problems, the existence of a solution is obvious
from the physical or geometricalmeaning of the problem, and
if the solution of the Euler equation satisfies the boundary
conditions, it is unique. Also, this unique extremal will be
the solution of the given variational problem. Thus, another

approach for solving the variational problem (3) is finding the
solution of the system of ordinary differential equations (5)
which satisfies the boundary conditions (4) whichwere called
systems of boundary value problems (BVPs). The simplest
form of the variational problem (3) is

𝐽 [𝑦 (𝑥)] = ∫

1

0

𝐺(𝑥, 𝑦 (𝑥) , 𝑦


(𝑥)) 𝑑𝑥, (6)

with the given boundary conditions

𝑦 (0) = 𝛾, 𝑦 (1) = 𝛿. (7)

Here, the necessary condition for the extremum of the func-
tional (6) is to satisfy the following second-order differential
equation:

𝜕𝐺

𝜕𝑦

−

𝑑

𝑑𝑥

(

𝜕𝐺

𝜕𝑦

) = 0, (8)

with boundary conditions given in (7).
We again emphasize that our aim is to solve BVPs such as

(5) and (8) by using our method which has superior results
with respect to several methods in the literature. It should
be noted that the handeling of BVPs needs more accuracy
with respect to the initial value problems (IVPs). For instance,
see [21–23] and the references therein. To the best of our
knowledge, this is the first work concerning the Bernoulli
collocationmethod for solving nonlinear BVPs.This partially
motivated our interest in such method.

The rest of this paper is organized as follows. In Section
2, we review several properties of the Bernoulli polynomials.
Section 3 is devoted to the basic idea of this paper (i.e., the
Bernoulli collocation method). Error analysis and accuracy
of the approximate solution is given in Section 4. Several
illustrative examples are provided in Section 5 for confirming
the effectiveness of the presented method. Section 6 contains
some conclusions and notations about the future works.

2. The Bernoulli Polynomials and
Their Operational Matrix

TheBernoulli polynomials play an important role in different
areas of mathematics, including number theory and the
theory of finite differences. The classical Bernoulli polyno-
mials 𝐵

𝑛
(𝑥) are usually defined by means of the exponential

generating functions (see [18]):

𝑤𝑒
𝑥𝑤

𝑒
𝑤
− 1

=

∞

∑

𝑘=0

𝐵
𝑘
(𝑥)

𝑤
𝑘

𝑘!

, (|𝑤| < 2𝜋) . (9)

The following familiar expansion (see [17]):

𝑛

∑

𝑘=0

(

𝑛 + 1

𝑘
)𝐵
𝑘
(𝑥) = (𝑛 + 1) 𝑥

𝑛

, (10)
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is the most primary property of the Bernoulli polynomials.
The first few Bernoulli polynomials are

𝐵
0
(𝑥) = 1,

𝐵
1
(𝑥) = 𝑥 −

1

2

,

𝐵
2
(𝑥) = 𝑥

2

− 𝑥 +

1

6

,

𝐵
3
(𝑥) = 𝑥

3

−

3

2

𝑥
2

+

1

2

𝑥,

𝐵
4
(𝑥) = 𝑥

4

− 2𝑥
3

+ 𝑥
2

−

1

30

.

(11)

The Bernoulli polynomials satisfy the well-known relations
(see [18]):

𝑑𝐵
𝑛
(𝑥)

𝑑𝑥

= 𝑛𝐵
𝑛−1

(𝑥) , (𝑛 ≥ 1) ,

∫

1

0

𝐵
𝑛
(𝑥) 𝑑𝑥 = 0, (𝑛 ≥ 1) .

(12)

If we introduce the Bernoulli vector 𝐵(𝑥) in the form 𝐵(𝑥) =

[𝐵
0
(𝑥), 𝐵

1
(𝑥), . . . , 𝐵

𝑁
(𝑥)], then the derivative of the 𝐵(𝑥),

with the aid of the first property of (12), can be expressed in
the matrix form by

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

𝐵


0
(𝑥)

𝐵


1
(𝑥)

𝐵


2
(𝑥)

...
𝐵


𝑁−1
(𝑥)

𝐵


𝑁
(𝑥)

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐵

(𝑥)
𝑇

=

[

[

[

[

[

[

[

[

[

0 0 0 ⋅ ⋅ ⋅ 0 0 0

1 0 0 ⋅ ⋅ ⋅ 0 0 0

0 2 0 ⋅ ⋅ ⋅ 0 0 0

...
...

... d
...

...
...

0 0 0 ⋅ ⋅ ⋅ 𝑁 − 1 0 0

0 0 0 ⋅ ⋅ ⋅ 0 𝑁 0

]

]

]

]

]

]

]

]

]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑀

[

[

[

[

[

[

[

[

[

𝐵
0
(𝑥)

𝐵
1
(𝑥)

𝐵
2
(𝑥)

...
𝐵
𝑁−1

(𝑥)

𝐵
𝑁
(𝑥)

]

]

]

]

]

]

]

]

]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐵
𝑇
(𝑥)

,

(13)

where 𝑀 is the (𝑁 + 1) × (𝑁 + 1) operational matrix of
differentiation.

Accordingly, the 𝑘th derivative of 𝐵(𝑥) can be given by

𝐵


(𝑥)
𝑇

= 𝑀𝐵(𝑥)
𝑇

⇒ 𝐵
(1)

(𝑥) = 𝐵 (𝑥)𝑀
𝑇

,

𝐵
(2)

(𝑥) = 𝐵
(1)

(𝑥)𝑀
𝑇

= 𝐵 (𝑥) (𝑀
𝑇

)

2

,

𝐵
(3)

(𝑥) = 𝐵
(1)

(𝑥) (𝑀
𝑇

)

2

= 𝐵 (𝑥) (𝑀
𝑇

)

3

,

...

𝐵
(𝑘)

(𝑥) = 𝐵 (𝑥) (𝑀
𝑇

)

𝑘

,

(14)

where𝑀 is defined in (13).

3. Basic Idea

Now, we consider the general form of the variational prob-
lem (3). Finding the solution of the problem (3) needs
to solve the corresponding BVP (5) with boundary con-
ditions (4). We assume that (𝑦

1
(𝑥), 𝑦
2
(𝑥), . . . , 𝑦

𝑛
(𝑥)) is the

exact solution of the BVP (5). Our aim is to approximate
(𝑦
1
(𝑥), 𝑦
2
(𝑥), . . . , 𝑦

𝑛
(𝑥)) over the interval [0, 1] by the follow-

ing linear combinations of the Bernoulli polynomials:

𝑦
1
(𝑥) ≈ 𝑦

1,𝑁
(𝑥) =

𝑁

∑

𝑖=0

𝑦
1,𝑖
𝐵
𝑖
(𝑥) = 𝐵 (𝑥) 𝑌

1
,

𝑦
2
(𝑥) ≈ 𝑦

2,𝑁
(𝑥) =

𝑁

∑

𝑖=0

𝑦
2,𝑖
𝐵
𝑖
(𝑥) = 𝐵 (𝑥) 𝑌

2
,

...

𝑦
𝑛
(𝑥) ≈ 𝑦

𝑛,𝑁
(𝑥) =

𝑁

∑

𝑖=0

𝑦
𝑛,𝑖
𝐵
𝑖
(𝑥) = 𝐵 (𝑥) 𝑌

𝑛
,

(15)

where 𝐵(𝑥) = [𝐵
0
(𝑥), 𝐵

1
(𝑥), . . . , 𝐵

𝑁
(𝑥)], 𝑌

𝑘
= [𝑦
𝑘,0
, 𝑦
𝑘,1
, . . . ,

𝑦
𝑘,𝑁
]
𝑇 in which 𝑦

𝑘,𝑖
for 𝑖 = 0, 1, . . . , 𝑁 and 𝑘 = 1, 2, . . . , 𝑛 are

the unknown coefficients and 𝐵
𝑖
(𝑥) are the Bernoulli poly-

nomials which are defined in the previous section. For con-
venience, consider the second-order BVP (5) as follows:

𝐹 (𝑦
1
(𝑥) , 𝑦

2
(𝑥) , . . . , 𝑦

𝑛
(𝑥) , 𝑦



1
(𝑥) , 𝑦



2
(𝑥) , . . . ,

𝑦


𝑛
(𝑥) , 𝑦



1
(𝑥) , 𝑦



2
(𝑥) , . . . , 𝑦



𝑛
(𝑥)) = 0.

(16)

By using (14), for 𝑘 = 1 and 𝑘 = 2, we have

𝑦


1
(𝑥) ≈ 𝑦



1,𝑁
(𝑥) = 𝐵 (𝑥)𝑀

𝑇

𝑌
1
,

𝑦


1
(𝑥) ≈ 𝑦



1,𝑁
(𝑥) = 𝐵 (𝑥) (𝑀

𝑇

)

2

𝑌
1
,

𝑦


2
(𝑥) ≈ 𝑦



2,𝑁
(𝑥) = 𝐵 (𝑥)𝑀

𝑇

𝑌
2
,

𝑦


2
(𝑥) ≈ 𝑦



2,𝑁
(𝑥) = 𝐵 (𝑥) (𝑀

𝑇

)

2

𝑌
2
,

...

𝑦


𝑛
(𝑥) ≈ 𝑦



𝑛,𝑁
(𝑥) = 𝐵 (𝑥)𝑀

𝑇

𝑌
𝑛
,

𝑦


𝑛
(𝑥) ≈ 𝑦



𝑛,𝑁
(𝑥) = 𝐵 (𝑥) (𝑀

𝑇

)

2

𝑌
𝑛
.

(17)
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We consider the matrix vector forms of 𝑦
𝑘
(𝑥), 𝑦

𝑘
(𝑥), and

𝑦


𝑘
(𝑥) for 𝑘 = 1, 2, . . . , 𝑛 which have been shown in (15) and

(17) and then replace in (16) as follows:

𝐹 (𝐵 (𝑥) 𝑌
1
, . . . , 𝐵 (𝑥) 𝑌

𝑛
, 𝐵 (𝑥)𝑀

𝑇

𝑌
1
, . . . ,

𝐵 (𝑥)𝑀
𝑇

𝑌
𝑛
, 𝐵 (𝑥) (𝑀

𝑇

)

2

𝑌
1
, . . . , 𝐵 (𝑥) (𝑀

𝑇

)

2

𝑌
𝑛
) = 0.

(18)

Because of stability properties of the Gaussian points [7], we
collocate the above BVP at the nodes𝑥

𝑗
for 𝑗 = 1, 2, . . . , 𝑛(𝑁−

1) as the roots of the 𝑛(𝑁 − 1)th degree shifted Legendre
polynomial 𝑃∗

𝑛(𝑁−1)
(𝑥) = 𝑃

𝑛(𝑁−1)
(2𝑥 − 1) as follows:

𝐹 (𝐵 (𝑥
𝑗
) 𝑌
1
, . . . , 𝐵 (𝑥

𝑗
) 𝑌
𝑛
, 𝐵 (𝑥
𝑗
)𝑀
𝑇

𝑌
1
, . . . ,

𝐵 (𝑥
𝑗
)𝑀
𝑇

𝑌
𝑛
, 𝐵 (𝑥
𝑗
) (𝑀
𝑇

)

2

𝑌
1
, . . . , 𝐵 (𝑥

𝑗
) (𝑀
𝑇

)

2

𝑌
𝑛
) = 0,

(19)

where 1 ≤ 𝑗 ≤ 𝑛(𝑁−1). Note that according to the properties
of Gaussian points we have 0 < 𝑥

𝑗
< 1 for all values of 𝑗. The

above system consists of 𝑛(𝑁 − 1) equations with 𝑛(𝑁 + 1)

unknowns. Now, consider the 2𝑛 equations from boundary
conditions as follows

𝑦
1
(0) ≈ 𝑦

1,𝑁
(0) = 𝐵 (0) 𝑌

1
= 𝛾
1
,

𝑦
1
(1) ≈ 𝑦

1,𝑁
(1) = 𝐵 (1) 𝑌

1
= 𝛿
1
,

𝑦
2
(0) ≈ 𝑦

2,𝑁
(0) = 𝐵 (0) 𝑌

2
= 𝛾
2
,

𝑦
2
(1) ≈ 𝑦

2,𝑁
(1) = 𝐵 (1) 𝑌

2
= 𝛿
2
,

...

𝑦
𝑛
(0) ≈ 𝑦

𝑛,𝑁
(0) = 𝐵 (0) 𝑌

𝑛
= 𝛾
𝑛
,

𝑦
𝑛
(1) ≈ 𝑦

𝑛,𝑁
(1) = 𝐵 (1) 𝑌

𝑛
= 𝛿
𝑛
.

(20)

The above equations together with (19) form a nonlinear
algebraic system with 𝑛(𝑁 + 1) equations and 𝑛(𝑁 + 1)

unknowns 𝑦
𝑘,𝑖

for 𝑖 = 0, 1, . . . , 𝑁 and 𝑘 = 1, 2, . . . , 𝑛. After
solving this algebraic system, we obtain the approximated
solutions of (3).

4. Error Analysis and Accuracy of the Solution

This section is devoted to provide an error bound for the
approximated solution which was presented in the previous
section. Before presenting the main theorem of this section,
we need to recall some useful corollaries and theorems.Then,
we transform the basic equation (8) (or (5)) together with the
boundary conditions (7) (or (4)) to a nonlinear Fredholm-
Volterra integral equation (or system of nonlinear Fredholm-
Volterra integral equations). Therefore, the main theorem
could be stated which guarantees the convergence of the
truncated Bernoulli series to the exact solution under several
mild conditions.

Now, suppose that 𝐻 = 𝐿
2
[0, 1] and {𝐵

0
(𝑥), 𝐵

1
(𝑥), . . . ,

𝐵
𝑁
(𝑥)} ⊂ 𝐻 is the set of the Bernoulli polynomials and

𝑌 = span {𝐵
0
(𝑥) , 𝐵

1
(𝑥) , . . . , 𝐵

𝑁
(𝑥)} , (21)

and 𝑔 is an arbitrary element in𝐻. Since 𝑌 is a finite dimen-
sional vector space, 𝑔 has the unique best approximation
belongs to 𝑌 such as 𝑔 ∈ 𝑌, that is,

∀𝑦 ∈ 𝑌,




𝑔 − 𝑔





≤




𝑔 − 𝑦





. (22)

Since 𝑔 ∈ 𝑌, there exist the unique coefficients 𝑔
0
, 𝑔
1
, . . . , 𝑔

𝑁

such that

𝑔 ≈ 𝑔 =

𝑁

∑

𝑛=0

𝑔
𝑛
𝐵
𝑛
(𝑥) = 𝐵 (𝑥) 𝐺

𝑇

,

𝐵 (𝑥) = [𝐵
0
(𝑥) , 𝐵

1
(𝑥) , . . . , 𝐵

𝑁
(𝑥)] ,

𝐺 = [𝑔
0
, 𝑔
1
, . . . , 𝑔

𝑁
] .

(23)

Corollary 1. Assume that 𝑔 ∈ 𝐻 = 𝐿
2
[0, 1] is an arbitrary

function and also is approximated by the truncated Bernoulli
serie ∑

∞

𝑛=0
𝑔
𝑛
𝐵
𝑛
(𝑥), then the coefficients 𝑔

𝑛
for all 𝑛 =

0, 1, . . . ,∞ can be calculated from the following relation:

𝑔
𝑛
=

1

𝑛!

∫

1

0

𝑔
(𝑛)

(𝑥) 𝑑𝑥. (24)

Proof. (See [18]).

Corollary 2. Assume that one approximates the function 𝑔 on
the interval [0, 1] by the Bernoulli polynomials as discussed in
Corollary 1. Then, the coefficients 𝑔

𝑛
decay as follows:

𝑔
𝑛
≤

𝐺
𝑛

𝑛!

, (25)

where 𝐺
𝑛
denotes the maximum of 𝑔(𝑛) in the interval [0, 1].

Proof. Since it is trivial, we omit the proof.

The above corollary implies that the Bernoulli coefficients
are decayed rapidly as the increasing of 𝑛.

Consider Corollary 1 again. We will provide the error of
the associated approximation.

Theorem 3 (see [17]). Suppose that 𝑔(𝑥) is an enough smooth
function in the interval [0, 1] and is approximated by the
Bernoulli polynomials as done in Corollary 1. With more
details, assume that 𝑃

𝑁
[𝑔](𝑥) is the approximate polynomial

of 𝑔(𝑥) in terms of the Bernoulli polynomials and 𝑅
𝑁
[𝑔](𝑥) is

the remainder term. Then, the associated formulas are stated
as follows:

𝑔 (𝑥) = 𝑃
𝑁
[𝑔] (𝑥) + 𝑅

𝑁
[𝑔] (𝑥) , 𝑥 ∈ [0, 1] ,

𝑃
𝑁
[𝑔] (𝑥) = ∫

1

0

𝑔 (𝑥) 𝑑𝑥

+

𝑁

∑

𝑗=1

𝐵
𝑗
(𝑥)

𝑗!

(𝑔
(𝑗−1)

(1) − 𝑔
(𝑗−1)

(0)) ,

𝑅
𝑁
[𝑔] (𝑥) = −

1

𝑁!

∫

1

0

𝐵
∗

𝑁
(𝑥 − 𝑡) 𝑔

(𝑁)

(𝑡) 𝑑𝑡,

(26)
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where 𝐵∗
𝑁
(𝑥) = 𝐵

𝑁
(𝑥 − [𝑥]) and [𝑥] denotes the largest integer

not greater than 𝑥.

Proof. See [17].

Trivially, the algebraic degree of exactness of the operator
𝑃
𝑁
[⋅] is𝑁.

Theorem 4. Suppose that 𝑔(𝑥) ∈ 𝐶
∞
[0, 1] and 𝑃

𝑁
[𝑔](𝑥) is

the approximate polynomial using the Bernoulli polynomials.
Then, the error bound would be obtained as follows:





𝑒𝑟𝑟𝑜𝑟 (𝑔 (𝑥))




∞

≤

1

𝑁!

𝐵
𝑁
𝐺
𝑁
, (27)

where 𝐵
𝑁
and 𝐺

𝑁
denote the maximum value of 𝐵

𝑁
(𝑥) and

𝑔
(𝑁)
(𝑥) in the interval [0, 1], respectively.

Proof. By considering 𝑅
𝑁
[𝑔](𝑥) = −(1/𝑁!) ∫

1

0
𝐵
∗

𝑁
(𝑥 −

𝑡)𝑔
(𝑁)
(𝑡)𝑑𝑡, the proof is clear.

Corollary 5. Assume that𝐾(𝑥, 𝑡) ∈ 𝐻 ×𝐻 = 𝐿
2
[0, 1] × 𝐿

2
[0,

1] is an arbitrary function and also is approximated by the two
variable truncated Bernoulli series∑𝑁

𝑚=0
∑
𝑁

𝑛=0
𝑘
𝑚,𝑛
𝐵
𝑚
(𝑥)𝐵
𝑛
(𝑡),

then the coefficients 𝑘
𝑚,𝑛

for all 𝑚, 𝑛 = 0, 1, . . . , 𝑁 can be
calculated from the following relation:

𝑘
𝑚,𝑛

=

1

𝑚!𝑛!

∬

1

0

𝜕
𝑚+𝑛

𝐾 (𝑥, 𝑡)

𝜕𝑥
𝑚
𝜕𝑡
𝑛

𝑑𝑥 𝑑𝑡, 𝑚, 𝑛 = 0, 1, . . . , 𝑁.

(28)

Proof. See [18].

Theorem 6. Suppose that𝐾(𝑥, 𝑡) is a smooth enough function
and 𝑃

𝑁
[𝐾](𝑥, 𝑡) is the approximate polynomial using the

Bernoulli method. Then, the error bound would be obtained as
follows:

‖𝑒𝑟𝑟𝑜𝑟 (𝐾 (𝑥, 𝑡))‖
∞
≤

1

𝑁!

𝐵
2

𝑁
𝐾
𝑁,𝑁

, (29)

where𝐵
𝑁
and𝐾

𝑗,𝑁,𝑁
denote themaximum value of𝐵

𝑁
(𝑥) and

𝐾
(𝑁,𝑁)

𝑗
(𝑥, 𝑡) in the interval [0, 1], respectively.

Proof. See [20].

For the clarity of presentation, we only consider the
equation (8) in the following simple form

𝑦


(𝑥) = 𝑓 (𝑥, 𝑦 (𝑥) , 𝑦


(𝑥)) , 𝑦 (0) = 𝑦
0
, 𝑦 (1) = 𝑦

1
,

(30)

where𝑓 is a continuously differentiable function with respect
to its arguments.Our aim is to transform the aboveBVP into a
nonlinear Fredholm-Volterra equation.Therefore, we assume
that𝑦(𝑥) = 𝑢(𝑥). By integrating both sides of thementioned
relation in the interval [0, 𝑥], we have

𝑦


(𝑥) = 𝑦


(0) + ∫

𝑥

0

𝑢 (𝑡) 𝑑𝑡. (31)

Again, one can integrate the above integral equation in the
interval [0, 𝑥] as follows:

𝑦 (𝑥) = 𝑦
0
+ 𝑥𝑦


(0) + ∫

𝑥

0

∫

𝑡

0

𝑢 (𝜏) 𝑑𝜏 𝑑𝑡

= 𝑦
0
+ 𝑥𝑦


(0) + ∫

𝑥

0

(𝑥 − 𝑡) 𝑢 (𝑡) 𝑑𝑡.

(32)

Taking 𝑥 = 1 in (32) yields

𝑦


(0) = 𝑦
1
− 𝑦
0
− ∫

1

0

(1 − 𝑡) 𝑢 (𝑡) 𝑑𝑡. (33)

According to (31) and (32) we should have

𝑦 (𝑥) = 𝑦
0
+ 𝑥(𝑦

1
− 𝑦
0
− ∫

1

0

(1 − 𝑡) 𝑢 (𝑡) 𝑑𝑡)

+ ∫

𝑥

0

(𝑥 − 𝑡) 𝑢 (𝑡) 𝑑𝑡,

𝑦


(𝑥) = 𝑦
1
− 𝑦
0
− ∫

1

0

(1 − 𝑡) 𝑢 (𝑡) 𝑑𝑡 + ∫

𝑥

0

𝑢 (𝑡) 𝑑𝑡.

(34)

Therefore, the nonlinear BVP (30) transformed into the
following nonlinear Fredholm-Volterra integral equation:

𝑢 (𝑥) = 𝑔(𝑥, ∫

1

0

𝐾
1
(𝑥, 𝑡) 𝑢 (𝑡) 𝑑𝑡, ∫

𝑥

0

𝐾
2
(𝑥, 𝑡) 𝑢 (𝑡) 𝑑𝑡) ,

(35)

where 𝑔,𝐾
1
, and𝐾

2
are continuously differentiable functions

with respect to their arguments.

Theorem 7. Assume that (35) has a uniqe solution 𝑢(𝑥). Also,
suppose that the kernels𝐾

1
(𝑥, 𝑡) and𝐾

2
(𝑥, 𝑡) are approximated

by the Bernoulli truncated series as shown in Corollary 5,
and, hence, by these approximations the equation (35) has the
numerical solution 𝑢

𝑁
(𝑥) (in terms of the Bernoulli polynomi-

als). Then, lim
𝑁→∞

𝑢
𝑁
(𝑥) = 𝑢(𝑥) provided by the conditions

||𝑢(𝑥)||
∞
≤ 𝑈, ||𝐾

1,𝑁
(𝑥, 𝑡)||

∞
≤ �̂�
1
, ||𝐾
2,𝑁
(𝑥, 𝑡)||

∞
≤ �̂�
2
and

𝐿
𝑔
(�̂�
1
+ �̂�
2
) ≪ 1.

Proof. According to the assumption, we should have

𝑢
𝑁
(𝑥) = 𝑔(𝑥, ∫

1

0

𝐾
1,𝑁

(𝑥, 𝑡) 𝑢 (𝑡) 𝑑𝑡, ∫

𝑥

0

𝐾
2,𝑁

(𝑥, 𝑡) 𝑢 (𝑡) 𝑑𝑡) .

(36)

Subtracting (36) from (35) yields

𝑢 (𝑥) − 𝑢
𝑁
(𝑥)

= 𝑔(𝑥, ∫

1

0

𝐾
1
(𝑥, 𝑡) 𝑢 (𝑡) 𝑑𝑡, ∫

𝑥

0

𝐾
2
(𝑥, 𝑡) 𝑢 (𝑡) 𝑑𝑡)

− 𝑔(𝑥,∫

1

0

𝐾
1,𝑁

(𝑥, 𝑡) 𝑢
𝑁
(𝑡) 𝑑𝑡, ∫

𝑥

0

𝐾
2,𝑁

(𝑥, 𝑡) 𝑢
𝑁
(𝑡) 𝑑𝑡) .

(37)
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Since 𝑔 is a continuously differentiable function, it is jointly
Lipschitz with respect to its second and third arguments, in
other words,





𝑢(𝑥) − 𝑢

𝑁
(𝑥)




∞

≤ 𝐿
𝑔
(











∫

1

0

𝐾
1
(𝑥, 𝑡) 𝑢 (𝑡) 𝑑𝑡

−∫

1

0

𝐾
1,𝑁

(𝑥, 𝑡) 𝑢
𝑁
(𝑡) 𝑑𝑡









∞

+










∫

𝑥

0

𝐾
2
(𝑥, 𝑡) 𝑢 (𝑡) 𝑑𝑡

−∫

𝑥

0

𝐾
2,𝑁

(𝑥, 𝑡) 𝑢
𝑁
(𝑡) 𝑑𝑡








∞

)

≤ 𝐿
𝑔
(




𝐾
1
(𝑥, 𝑡) − 𝐾

1,𝑁
(𝑥, 𝑡)




∞

‖𝑢 (𝑥)‖
∞

+




𝐾
1,𝑁

(𝑥, 𝑡)



∞





𝑢 (𝑥) − 𝑢

𝑁
(𝑥)




∞

+




𝐾
2
(𝑥, 𝑡) − 𝐾

2,𝑁
(𝑥, 𝑡)




∞

‖𝑢 (𝑥)‖
∞

+




𝐾
2,𝑁

(𝑥, 𝑡)



∞





𝑢 (𝑥) − 𝑢

𝑁
(𝑥)




∞

)

= 𝐿
𝑔
(𝐸 (𝐾

1
) 𝑈 + �̂�

1





𝑢 (𝑥) − 𝑢

𝑁
(𝑥)




∞

+𝐸 (𝐾
1
) 𝑈 + �̂�

2





𝑢 (𝑥) − 𝑢

𝑁
(𝑥)




∞

) ,

(38)

where ||𝑢(𝑥)||
∞
≤ 𝑈, ||𝐾

1,𝑁
(𝑥, 𝑡)||

∞
≤ �̂�
1
, ||𝐾
2,𝑁
(𝑥, 𝑡)||

∞
≤

�̂�
2
, 𝐸(𝐾
1
) = ||𝐾

1
(𝑥, 𝑡) − 𝐾

1,𝑁
(𝑥, 𝑡)||

∞
and 𝐸(𝐾

2
) = ||𝐾

2
(𝑥,

𝑡) − 𝐾
2,𝑁
(𝑥, 𝑡)||

∞
. By factorizing the coefficients of ||𝑢(𝑥) −

𝑢
𝑁
(𝑥)||
∞
, we have

(1 − 𝐿
𝑔
(�̂�
1
+ �̂�
2
))




𝑢 (𝑥) − 𝑢

𝑁
(𝑥)




∞

≤ 𝑈𝐿
𝑔
(𝐸 (𝐾

1
) + 𝐸 (𝐾

2
)) .

(39)

More precisely,





𝑢 (𝑥) − 𝑢

𝑁
(𝑥)




∞

≤

𝑈𝐿
𝑔
(𝐸 (𝐾

1
) + 𝐸 (𝐾

2
))

1 − 𝐿
𝑔
(�̂�
1
+ �̂�
2
)

. (40)

Since 𝐾
1
and 𝐾

2
are enough differentiable, we can use

Theorem 6, and hence lim
𝑁→∞

𝐸(𝐾
1
) = lim

𝑁→∞
𝐸(𝐾
2
) = 0.

On the other hand, because of 𝐿
𝑔
(�̂�
1
+ �̂�
2
) ≪ 1, one can

deduce that lim
𝑁→∞

||𝑢(𝑥) − 𝑢
𝑁
(𝑥)||
∞

= 0, and this com-
pletes the proof.

5. Numerical Examples

In this section, several numerical examples are given to illust-
rate the accuracy and effectiveness of the proposed method,
and all of them are performed on a computer using programs
written in MAPLE 13. In this regard, we have reported in
tables and figures the values of the exact solution 𝑦(𝑥), the
polynomial approximate solution 𝑦

𝑁
(𝑥), and the absolute

error function 𝑒
𝑁
(𝑥) = |𝑦(𝑥) − 𝑦

𝑁
(𝑥)| at any selected points

of the given interval [0, 1]. It should be noted that, in the
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Figure 1: Comparisons of the presentedmethod (PM) and Laguerre
method (LM) of Example 8.

second example, we provide an interesting example in which
our results are superior with respect to an integral operational
matrix method which was based on the Legendre polynomi-
als [5]. Moreover, our method obtains more accurate results
with regard to the differentiation of operational matrix which
were based on Laguerre, Hermite, and Bessel polynomials
and series [3, 14, 15].

Example 8 (see [3]). As the first example, we consider
the following variational problem with the exact solution
𝑦(𝑥) = exp(3𝑥)

Min∫
1

0

(𝑦 (𝑥) + 𝑦


(𝑥) − 4 exp (3𝑥))
2

𝑑𝑥, (41)

subject to the boundary conditions
𝑦 (0) = 1, 𝑦 (1) = exp (3) . (42)

According to (8), the associated Euler Lagrange equation is
as follows:

𝑦


(𝑥) − 𝑦 (𝑥) − 8 exp (3𝑥) = 0. (43)

We solve this problemby considering notations in the Section
3 by taking𝑁 = 8, 10, 11, and 13. In the first figure (i.e., Figure
1), we compare our absolute errors with the Laguerre method
[3] (LM) by taking 𝑁 = 8 and 10. Also, in the second figure
(i.e., Figure 2), we compare our absolute errors with the Her-
mite method [14] (HM) by taking𝑁 = 11 and 13. We should
recall that the Laguerre method [3] is a matrix method which
has less accuracy with respect to any global polynomial collo-
cation method. This fact is obvious from Figure 1. Moreover,
the Hermite method [14] is a collocation method which has
low stability property with regard to our method. The inter-
ested author can refer to the reference [18] and see the asso-
ciated ill-conditioned matrix related to the Hermite method.

Example 9 (see [5]). As the second example, we consider
the following interesting variational problem with the exact
solution 𝑦(𝑥) = (exp(−𝑥) − 1)(exp(1) − 2 exp(2) − 2 exp(𝑥) +
exp(𝑥 + 1))/4(exp(2) − 1)

Min∫
1

0

((𝑦


(𝑥))

2

+ 𝑥𝑦


(𝑥) + (𝑦 (𝑥))
2

) 𝑑𝑥, (44)
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Hermite method (HM) of Example 8.

subject to the boundary conditions

𝑦 (0) = 0, 𝑦 (1) =

1

4

. (45)

According to (8), the associated Euler Lagrange equation is as
follows:

𝑦 (𝑥) − 𝑦


(𝑥) −

1

2

= 0. (46)

Again, by using the basic idea of this paper, we solve this
problem by taking𝑁 = 3 and 7. In the third figure (i.e., Figure
3), we compare our absolute errors with the Legendremethod
[5] (LGM) by taking 𝑁 = 3 and 7. From this figure, one can
see the robustness of collocation methods (for instance, the
proposed method) with regard to integral operational matri-
ces methods. One of the disadvantages of matrix methods
is approximating the known functions by the selected bases
(e.g., Legendre), and this may affect the numerical solution
seriously and surely the errors increased. However, colloca-
tionmethods do not approximate the known functions in the
basic problem, and the corresponding errors do not increase,
and by using a suitable choice of collocation (interpolation)
nodes, we can reach to a stable numerical solution.

Example 10 (see [5]). In this example, we consider the fol-
lowing variational problem with the exact solution 𝑦(𝑥) =

sinh(−0.4812118250𝑥):

Min∫
1

0

1 + (𝑦 (𝑥))
2

(𝑦

(𝑥))
2
𝑑𝑥, (47)

subject to the boundary conditions

𝑦 (0) = 0, 𝑦 (1) =

1

2

. (48)

In this case, the Euler-Lagrange equation is written in the fol-
lowing form:

𝑦


(𝑥) + 𝑦


(𝑥) (𝑦 (𝑥))
2

− 𝑦 (𝑥) (𝑦


(𝑥))

2

= 0. (49)
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The above BVP seems to be more hard with respect to the
other examples of this section. We also solve this BVP by
our method and reach to high accurate results with regard
to other collocation methods such as the Bessel collocation
method [15] and the Taylor collocation method [11]. The
absolute error comparisons with the Bessel method (BM)
have been depicted in Figure 4, and the absolute error com-
parisons with the Laguerre method (LM) and Taylor method
(TM) have been illustrated in Figure 5. Again, we can see that
our results are superior even in comparison with collocation
methods.

6. Conclusions

This paper described an efficient method for finding the
extremum of a function over the specified domain.The main
goal is to find the solution of an ordinary differential equation
(in the BVP form) which arises from the variational problem.
Our approach was based on the Bernoulli polynomials and
their operational matrix of differentiation together with a set
of suitable collocation nodes. The approximation of the solu-
tion together with imposing the collocation nodes is utilized
to reduce the computation of this problem to some algebraic
equations. The method is computationally attractive, and
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applications are demonstrated through illustrative examples.
The obtained results showed that this approach can solve the
problem effectively. Moreover, the proposed method could
be applied for fractional variational problems [24] with some
modifications.
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The standard version of acoustic wave equation is modified using the concept of the generalized Riemann-Liouville fractional
order derivative. Some properties of the generalized Riemann-Liouville fractional derivative approximation are presented. Some
theorems are generalized. The modified equation is approximately solved by using the variational iteration method and the Green
function technique.The numerical simulation of solution of the modified equation gives a better prediction than the standard one.

1. Introduction

Acoustics was in the beginning the study of small pressure
waves in air which can be detected by the human ear: sound.
The possibility of acoustics has been extended to higher
and lower frequencies: ultrasound and infrasound. Structural
vibrations are now often included in acoustics. Also the
perception of sound is an area of acoustical research. In our
present paper we will limit ourselves to the original definition
and to the propagation in fluids like air and water. In such a
case acoustics is a part of fluid dynamics. Amajor problem of
fluid dynamics is that the equations of motion are nonlinear.
This implies that an exact general solution of these equations
is not available. Acoustics is a first-order approximation in
which nonlinear effects are neglected. The corresponding
relative density fluctuations 𝜌


/𝜌
0
are considered very small

[1]. The acoustic wave equation governs the propagation of
acoustic waves through a material medium. The form of the
equation is a second-order partial differential equation. The
equation describes the evolution of acoustic pressure 𝑃 or
particle velocity 𝑢 as a function of position 𝑟 and time 𝑡. A
simplified form of the equation that describes acoustic waves
in only one spatial dimension is considered in this paper

𝜕
2
𝑃

𝜕𝑥
2

−

1

𝑐
2

𝜕
2
𝑃

𝜕𝑡
2

= 0. (1)

A derivation of general linearized wave equations is
discussed by Pierce and Goldstein [1, 2]. However, neglecting
the nonlinear effects in this equation, may lead to inaccurate
prediction of the propagation of acoustic wave through
the medium. Therefore in order to include explicitly the
effect of corresponding relative density fluctuations in the
mathematical formulation, one needs to insert it in the
partial differential equation that governs the propagation
of the acoustic wave. Recently, the acoustic equation was
extended to the concept of fractional order derivative in [3].
Therefore in this paper, our concern is the modification of
the previous equation by perturbing the order of the first
derivative by replacing the first order of the derivative with
1 + 𝜀 where 𝜀 is a positive small parameter. Also, when we
consider diffusion process in porous medium, if the medium
structure or external field changes with time, in this situation,
the ordinary integer order and constant-order fractional
diffusion equation model cannot be used to well characterize
such phenomenon (see [3–9]).

2. Definitions and Approximation

To describe the propagation of acoustic waves through
a material medium with coordinate and time-dependent
perturbed dimension, one must use Riemann-Liouville
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fractional order derivative that was introduced and used in
a number of works (see [3, 6–8, 10]). These derivatives are
defined as (see [3, 6–8])

𝐷
1+𝜀
𝑡
= 𝐷
𝜇
𝑡

+,𝑡
𝑓

= (

𝑑

𝑑𝑡

)

𝑛

∫

𝑡

0

[

𝑓 (𝜏)

Γ (𝑛 − 𝜇
𝜏
(𝜏) (𝑡 − 𝜏)

𝜇
𝜏
−𝑛+1

)

] 𝑑𝜏,

𝐷
1+𝜀
𝑥
= 𝐷
𝜇
𝑥

+,𝑥
𝑓

= (

𝑑

𝑑𝑥

)

𝑛

∫

𝑥

0

[

𝑓 (𝜏)

Γ (𝑛 − 𝜇
𝜏
(𝜏) (𝑡 − 𝜏)

𝜇
𝜏
−𝑛+1

)

] 𝑑𝜏.

(2)

Here, Γ is the Euler gamma function; 𝑛 = {𝜇} + 1, where
{𝜇} is the integer part of 𝜇 for 𝜇 ≥ 0, that is, 𝑛 − 1 ≤ 𝜇 < 𝑛

and 𝑛 = 0 for 𝜇 < 𝑛. Following (2) we have that 𝜇
𝑡
= 1 + 𝜀

𝑡

and 𝜇
𝑥

= 1 + 𝜀
𝑥
. The integral operator defined previously

for fractional exponents 𝜇
𝑥
and 𝜇

𝑡
depending on coordinates

and time can be expressed in terms of ordinary derivative
and integral [11] for |𝜀| ≪ 1. Here 𝜀

𝑡
and 𝜀
𝑥
are considered

as the corresponding relative density fluctuations 𝜌

/𝜌
0
that

vary slightly in time and space, respectively. For this matter,
generalized Riemann-Liouville fractional derivatives satisfy
the approximate relations:

𝐷
1+𝜀
𝑡
𝑓 ≅ (1 + 𝜀

𝑡
)

𝜕𝑓

𝜕𝑡

+

𝜕𝜀
𝑡

𝜕𝑡

𝑓,

𝐷
1+𝜀
𝑥
𝑓 ≅ (1 + 𝜀

𝑥
)

𝜕𝑓

𝜕𝑥

+

𝜕𝜀
𝑥

𝜕𝑥

𝑓.

(3)

The previous relations make it possible to describe the
dynamic system, including the effect of the corresponding
relative density fluctuations, by means of partial differential
and integral equations.

3. Some Properties of the Approximation

Let us examine some properties of the previous derivative
operator.

(i) Addition
If 𝑢
𝑥
, 𝑓(𝑥), and 𝑔(𝑥) are differentiable in the opened

interval I then,

𝐷
1+𝑢
𝑥
[𝑓 (𝑥) + 𝑔 (𝑥)] ≅ 𝐷

1+𝑢
𝑥
[𝑓 (𝑥)] + 𝐷

1+𝑢
𝑥
[𝑔 (𝑥)] . (4)

Proof. We have

𝐷
1+𝑢
𝑥
[𝑓 (𝑥) + 𝑔 (𝑥)]

≅ (1 + 𝑢
𝑥
)

𝜕 [𝑓 (𝑥) + 𝑔 (𝑥)]

𝜕𝑥

+

𝜕𝑢
𝑥

𝜕𝑥

[𝑓 (𝑥) + 𝑔 (𝑥)] (1 + 𝑢
𝑥
)

𝜕 [𝑓 (𝑥)]

𝜕𝑥

+

𝜕𝑢
𝑥

𝜕𝑥

[𝑓 (𝑥)] + (1 + 𝑢
𝑥
)

𝜕 [𝑔 (𝑥)]

𝜕𝑥

+

𝜕𝑢
𝑥

𝜕𝑥

[𝑔 (𝑥)]

≅ 𝐷
1+𝑢
𝑥
[𝑓 (𝑥)] + 𝐷

1+𝑢
𝑥
[𝑓 (𝑥)] .

(5)

(ii) Division
If 𝑢
𝑥
and 1/𝑓(𝑥) are differentiable on the open interval

I then

𝐷
1+𝑢
𝑥
[

1

𝑓 (𝑥)

] ≅

[− (1 + 𝑢
𝑥
) 𝑓


(𝑥) + 𝑢


𝑥
𝑓 (𝑥)]

𝑓
2
(𝑥)

=

−𝑓


(𝑥)

𝑓
2
(𝑥)

−

𝑢
𝑥
𝑓


(𝑥)

𝑓
2
(𝑥)

+

𝑢


𝑥
𝑓 (𝑥)

𝑓
2
(𝑥)

.

(6)

(iii)Multiplication
If 𝑢
𝑥
,𝑓(𝑥) and 𝑔(𝑥) are differentiable in the open interval

I then
𝐷
1+𝑢
𝑥
[𝑓 (𝑥) ⋅ 𝑔 (𝑥)] ≅ 𝑔 (𝑥) 𝑓



(𝑥) + 𝑓 (𝑥) 𝑔


(𝑥)

+ (𝑔𝑓


+ 𝑓𝑔


) (𝑥) 𝑢
𝑥

+ 𝑢


𝑥
(𝑓 (𝑥) 𝑔 (𝑥)) .

(7)

(iv) Power
If𝑢
𝑥
and𝑓(𝑥) are differentiable in the open interval I then

𝐷
1+𝑢
𝑥
[(𝑓 (𝑥))

𝑛

] ≅ 𝑛𝑓


𝑓
𝑛−1

+ 𝑢
𝑥
𝑛𝑓


𝑓
𝑛−1

+ 𝑢


𝑥
𝑓
𝑛

, 𝑛 ≥ 1.

(8)

If 𝑢
𝑥
and 𝑓(𝑥) are two times differentiable in the open

interval I then

𝐷
1+𝑢
𝑥
[𝐷
1+𝑢
𝑥
[𝑓 (𝑥)]] ≅ (1 + 𝑢

𝑥
)

× [(1 + 𝑢
𝑥
)

𝜕
2
𝑓

𝜕𝑥
2

+ 3

𝜕𝑓

𝜕𝑥

𝜕𝑢
𝑥

𝜕𝑥

+

𝜕
2
𝑢
𝑥

𝜕𝑥
2
𝑓] +

𝜕𝑢
𝑥

𝜕𝑥

𝑓.

(9)

3.1. Clairaut’s Theorem for the Approximation. Assume that
𝑓(𝑥, 𝑦), 𝑢

𝑥
, and 𝑢

𝑦
are functions for which 𝜕

2
𝑓/𝜕𝑥𝜕𝑦,

𝜕
2
𝑓/𝜕𝑦𝜕𝑥, 𝜕

2
𝜀
𝑥
/𝜕𝑥𝜕𝑦, and 𝜕

2
𝜀
𝑦
/𝜕𝑥𝜕𝑦 exist and are contin-

uous over a domain𝐷 ⊂ R2 then,𝐷1+𝑢𝑥[𝐷1+𝑢𝑦[𝑓(𝑥, 𝑦)]] and
𝐷
1+𝑢
𝑦
[𝐷
1+𝑢
𝑥
[𝑓(𝑥, 𝑦)]] exist and are continuous over the

domain D. If in addition 𝑢
𝑥
= 𝑢
𝑦
then

𝐷
1+𝑢
𝑦
[𝐷
1+𝑢
𝑥
[𝑓 (𝑥, 𝑦)]]

= 𝐷
1+𝑢
𝑥
[𝐷
1+𝑢
𝑦
[𝑓 (𝑥, 𝑦)]] .

(10)

Proof. If 𝑓(𝑥, 𝑦), 𝑢
𝑥
, and 𝑢

𝑦
are functions for which

𝜕
2
𝑓/𝜕𝑥𝜕𝑦, 𝜕

2
𝑓/𝜕𝑦𝜕𝑥, 𝜕2𝜀

𝑥
/𝜕𝑥𝜕𝑦, and 𝜕

2
𝜀
𝑦
/𝜕𝑥𝜕𝑦 exist and

are continuous over a domain 𝐷 ⊂ R2 then

𝐷
1+𝑢
𝑦
[𝐷
1+𝑢
𝑥
[𝑓 (𝑥, 𝑦)]]

≅ (1 + 𝑢
𝑦
) [

𝜕𝑢
𝑥

𝜕𝑦

𝜕𝑓

𝜕𝑥

+

𝜕
2
𝑓

𝜕𝑦𝜕𝑥

+

𝜕
2
𝑢
𝑥

𝜕𝑦𝜕𝑥

𝑓 (𝑥, 𝑦) +

𝜕𝑢
𝑥

𝜕𝑥

𝜕𝑓

𝜕𝑦

]

+ (1 + 𝑢
𝑥
)

𝜕𝑢
𝑦

𝜕𝑦

𝜕𝑓

𝜕𝑥

+

𝜕𝑢
𝑦

𝜕𝑦

𝜕𝑢
𝑥

𝜕𝑥

𝑓 (𝑥, 𝑦) .

(11)

Now interchanging 𝑥 by 𝑦 we obtain 𝐷
1+𝑢
𝑥
[𝐷
1+𝑢
𝑦
[𝑓(𝑥, 𝑦)]].
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If 𝑢
𝑥
= 𝑢
𝑦
then 𝜕

2
𝑓/𝜕𝑦𝜕𝑥 = 𝜕

2
𝑓/𝜕𝑥𝜕𝑦 according to Cla-

iraut’s theorem; thus replacing 𝜕
2
𝑓/𝜕𝑥𝜕𝑦 by 𝜕

2
𝑓/𝜕𝑦𝜕𝑥 in

𝐷
1+𝑢
𝑦
[𝐷
1+𝑢
𝑥
[𝑓(𝑥, 𝑦)]], we obtain that

𝐷
1+𝑢
𝑦
[𝐷
1+𝑢
𝑥
[𝑓 (𝑥, 𝑦)]] = 𝐷

1+𝑢
𝑥
[𝐷
1+𝑢
𝑦
[𝑓 (𝑥, 𝑦)]] . (12)

3.2. Chain-Rule for the Approximation. We have

𝐷
1+𝑢
𝑥
(𝑓 ∘ 𝑔) ≅ (1 + 𝑢

𝑥
) 𝑔


(𝑥) 𝑓


[𝑔 (𝑥)] +

𝜕𝜀
𝑥

𝜕𝑥

(𝑓 ∘ 𝑔)

= 𝑔


(𝑥) 𝑓


[𝑔 (𝑥)] + 𝑢
𝑥
𝑔


(𝑥) 𝑓


[𝑔 (𝑥)]

+

𝜕𝜀
𝑥

𝜕𝑥

(𝑓 ∘ 𝑔) .

(13)

3.3. Rolle’s Theorem for the Approximation. If a real-valued
functions 𝑓 and 𝑢

𝑥
are continuous on a closed interval [a, b],

differentiable on the open interval (𝑎, 𝑏), and 𝑓(𝑎) = 𝑓(𝑏),
then there exist a 𝑐 in the open interval (𝑎, 𝑏) and a small
parameter 𝜇 such that

𝐷
1+𝑢
𝑥
𝑓 (𝑐) = 𝜇𝑓 (𝑐) . (14)

Proof. Following Rolle’s theorem, there exists a c in the open
interval (𝑎, 𝑏) such that 𝑓(𝑐) = 0. For this 𝑐 we have that

𝐷
1+𝑢
𝑥
𝑓 (𝑐) = (1 + 𝑢

𝑥
(𝑐)) 𝑓



(𝑐) + 𝑢


𝑥
(𝑐) 𝑓 (𝑐)

= 𝑢


𝑥
(𝑐) 𝑓 (𝑐)

= 𝜇𝑓 (𝑐) .

(15)

If 𝑔(𝑥), 𝑓(𝑥), and 𝑢
𝑥
are differentiable in an open interval

I, then there exist 2 > 𝛼 > 1 and 𝛽 > 0 such that





𝐷
1+𝑢
𝑥
𝑓 (𝑥) − 𝐷

1+𝑢
𝑥
𝑔 (𝑥)






≤ 𝛼






𝑓


(𝑥) − 𝑔


(𝑥)







+ 𝛽




𝑓 (𝑥) − 𝑔 (𝑥)





, ∀𝑥𝜖𝐼.

(16)

Proof. Let 𝑥 ∈ 𝐼; then





𝐷
1+𝑢
𝑥
𝑓 (𝑥) − 𝐷

1+𝑢
𝑥
𝑔 (𝑥)







=






(1 + 𝑢

𝑥
(𝑥)) 𝑓



(𝑥) + 𝑢


𝑥
(𝑥) 𝑓 (𝑥)

− (1 + 𝑢
𝑥
(𝑥)) 𝑔



(𝑥) − 𝑢


𝑥
(𝑥) 𝑔 (𝑥)







=




1 + 𝑢
𝑥
(𝑥)











𝑓


(𝑥) −𝑔


(𝑥)






+






𝑢


𝑥
(𝑥)











𝑓 (𝑥) − 𝑔 (𝑥)





.

(17)

But 𝑢
𝑥
(𝑥) is very small such that |1+𝑢

𝑥
(𝑥)| < 2 and |𝑢



𝑥
(𝑥)| >

0; it follows that




1 + 𝑢
𝑥
(𝑥)











𝑓


(𝑥) −𝑔


(𝑥)






+






𝑢


𝑥
(𝑥)











𝑓 (𝑥) − 𝑔 (𝑥)






≤ 𝛼






𝑓


(𝑥) −𝑔


(𝑥)






+ 𝛽





𝑓 (𝑥) − 𝑔 (𝑥)





.

(18)

It is important to observe that if 𝑢 = 0, we recover the
properties of normal derivatives.

4. Modification of the Equation

In order to include explicitly the possible effect of the corre-
sponding relative density fluctuations into the mathematical
formulation, in this paper, we replace the classical version
of the derivative of (1) by the modified Riemann-Liouville
fractional derivative approximation (3) to obtain

𝐷
1+𝜀
𝑥
[𝐷
1+𝜀
𝑥
𝑃] =

1

𝑐
2
𝐷
1+𝜀
𝑡
[𝐷
1+𝜀
𝑡
𝑃] . (19)

Making use of (3) and relation (8), the previous equation can
be transformed to the following partial differential equation
for 𝜀 ≪ 1:

(1 + 𝜀
𝑥
) [(1 + 𝜀

𝑥
)

𝜕
2
𝑃

𝜕𝑥
2

+ 3

𝜕𝑃

𝜕𝑥

𝜕𝜀
𝑥

𝜕𝑥

+

𝜕
2
𝜀
𝑥

𝜕𝑥
2
𝑃] +

𝜕𝜀
𝑥

𝜕𝑥

𝑃

=

1

𝑐
2
{(1 + 𝜀

𝑡
) [(1 + 𝜀

𝑡
)

𝜕
2
𝑃

𝜕𝑡
2

+3

𝜕𝑃

𝜕𝑡

𝜕𝜀
𝑡

𝜕𝑡

+

𝜕
2
𝜀
𝑡

𝜕𝑡
2
𝑃] +

𝜕𝜀
𝑡

𝜕𝑡

𝑃} .

(20)

Omitting the terms of 𝜀2 in the previous equation, we obtain
the following:

(1 + 2𝜀
𝑥
)

𝜕
2
𝑃

𝜕𝑥
2

+ 3

𝜕𝑃

𝜕𝑥

𝜕𝜀
𝑥

𝜕𝑥

+

𝜕
2
𝜀
𝑥

𝜕𝑥
2
𝑃

=

1

𝑐
2
{(1 + 2𝜀

𝑡
)

𝜕
2
𝑃

𝜕𝑡
2

+ 3

𝜕𝑃

𝜕𝑡

𝜕𝜀
𝑡

𝜕𝑡

+

𝜕
2
𝜀
𝑡

𝜕𝑡
2
𝑃} .

(21)

Now since the small parameters representing the pertur-
bation additions to unity are small, the right- and left-hand
sides of (21) can be divided by 1 + 2𝜀

𝑥
. In this case, we obtain

𝑐 (𝑥, 𝑡)

𝜕
2
𝑃

𝜕𝑡
2

=

𝜕
2
𝑃

𝜕𝑥
2

+ 𝐹 (𝑥, 𝑡) + 𝐵 (𝑥, 𝑡) 𝑃. (22)

Here, We have,

𝑐 (𝑥, 𝑡) =

1

𝑐
2
(1 + 2𝜀

𝑡
− 2𝜀
𝑥
) ,

𝐹 (𝑥, 𝑡) = 3 (

𝜕𝑃

𝜕𝑥

𝜕𝜀
𝑥

𝜕𝑥

−

1

𝑐
2

𝜕𝑃

𝜕𝑡

𝜕𝜀
𝑡

𝜕𝑡

) ,

𝐵 (𝑥, 𝑡) = (

𝜕
2
𝜀
𝑥

𝜕𝑥
2

−

1

𝑐
2

𝜕
2
𝜀
𝑡

𝜕𝑡
2
) .

(23)

It is easy to observe that (22) differs from (1) in three
properties.

First the velocity of the sound in this case depends on time
and coordinates due to the effect of the corresponding relative
density fluctuations. Secondly the force

𝐹 (𝑥, 𝑡) = 3 (

𝜕𝑃

𝜕𝑥

𝜕𝜀
𝑥

𝜕𝑥

−

1

𝑐
2

𝜕𝑃

𝜕𝑡

𝜕𝜀
𝑡

𝜕𝑡

) (24)

appears due to the coordinate and time dependence of
the corresponding relative density fluctuations, and such
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force was considered in [12]. Third there is a derivative-
free term that depends on both time and space, and it is
proportional to 𝑃 and characterizes, depending on the coef-
ficient sign, the retardation or enhancement propagation of
acoustic waves through a material medium. Therefore, even
weak memory, which is taken into account by generalized
Riemann-Liouville fractional derivatives and presents the
characteristics of a corresponding relative density fluctua-
tions, transforms constant-coefficient velocity to varying-
coefficient velocity. Moreover, this memory is responsible
for a force with which the corresponding relative density
fluctuations act on a propagation of acoustic waves through a
material medium. This force appears only if the propagating
acoustic wave has memory depending on coordinates and
time; that it “remembers” its trajectories and time. Those
terms in (22) that involve the corresponding relative density
fluctuations additions (𝐹 and 𝐵) to the time and space
dimensions are very small. Also the exact analytical solution
of this modified equation is not easy to be determined.
Therefore, this equation can be solved approximately by
changing the function 𝑃(𝑟, 𝑡) to 𝑃

0
(𝑟, 𝑡), which satisfies (1).

5. Solutions of the Modified Equation

Themodified equation can be reformulated as follows:

−

1

𝑐
2

𝜕
2
𝑃

𝜕𝑡
2

+

𝜕
2
𝑃

𝜕𝑥
2

= 𝐻 (𝜀
𝑥
, 𝜀
𝑡
, 𝑃
0
(𝑟, 𝑡)) . (25)

To solve (25) we need to give explicitly 𝜀
𝑥
and 𝜀

𝑡
. For

example if one consider these functions to be

𝜀
𝑥
= 𝜀
𝑜𝑥
sin 𝜃
𝑥
𝑥, 𝜀

𝑡
= 𝜀
𝑜𝑡
sin 𝜃
𝑡
𝑡, (26)

where 𝜀
𝑜𝑥
and 𝜀
𝑜𝑡
are very significantly small such that |𝜀| ≪ 1.

Since these parameters are very small then the solution of (25)
can be sought in the form 𝑃 = 𝑃

1
+𝑃
0
where 𝑃

0
is the solution

of (1) and 𝑃
1

≪ 𝑃
0
is proportional to 𝜀

𝑥
and 𝜀
𝑡
. Here 𝜃

𝑥
and

𝜃
𝑡
are frequencies characterizing variation in corresponding

relative density fluctuations.
To solve (25) together with (26) we make use of two

techniques including the Green function techniques and the
variational iterative decomposition technique. Here we will
start with the variational iteration techniques.

5.1. Variational Iteration Method. Variational iteration met-
hod has been favourably applied to various kinds of nonlinear
problems.Themain property of themethod is in its flexibility
and ability to solve nonlinear equations accurately and con-
veniently. Very recently it was recognized that the variational
iteration method [11, 13–20] can be an effective procedure
for solution of various nonlinear problems without usual
restrictive assumptions. In this paper we will make use of this
iterative decomposition technique to solve themodified wave
(26) together with (25). To solve (25) by means of variational
iteration method, we put (25) in the form of

(𝑃
1
(𝑥, 𝑡))

2𝑥
−

1

𝑐
2
(𝑃
1
(𝑥, 𝑡))

2𝑡
− 𝐻 (𝑥, 𝑡) = 0. (27)

The correction functional for (5) can be approximately
expressed for this matter as follows:

𝑃
𝑛+1

(𝑥, 𝑡) = 𝑃
𝑛
(𝑥, 𝑡)

−∫

𝑥

0

𝜆 (𝜁) [

𝜕
𝑚
𝑃 (𝜁, 𝑡)

𝜕𝜁
𝑚

−

1

𝑐
2

̃
(𝑃(𝜁, 𝑡))

2𝑡
−

̃
𝐻(𝜁, 𝑡)] 𝑑𝜁,

(28)

where𝜆 is a general Lagrangemultiplier [21, 22], which can be
recognized optimally by means of variation assumption [21,
22]; here ̃

(𝑃(𝜁, 𝑡))
2𝑡
, and ̃

𝐻(𝑟, 𝜏) are considered as constrained
variations. Making the previous functional stationary, we
obtain

𝛿𝑃
𝑛+1

(𝑥, 𝑡) = 𝛿𝑃
𝑛
(𝑥, 𝑡)

− 𝛿∫

𝑥

0

𝜆 (𝜁) [

𝜕
𝑚
𝑃 (𝜁, 𝑡)

𝜕𝜁
𝑚

] 𝑑𝜁.

(29)

Capitulates the next Lagrangemultipliers, giving up to the
following Lagrangemultipliers 𝜆 = −1 for the case where𝑚 =

1 and 𝜆 = 𝑥−𝜁 for𝑚 = 2. For these matters𝑚 = 2, we obtain
the following iteration formula:

𝑃
𝑛+1

(𝑥, 𝑡) = 𝑃
𝑛
(𝑥, 𝑡) − ∫

𝑥

0

(𝑥 − 𝜁)

× [

𝜕
2
𝑃
𝑛
(𝜁, 𝑡)

𝜕𝜁
2

−

1

𝑐
2

𝜕
2
𝑃
𝑛
(𝜁, 𝑡)

𝜕𝑡
2

− 𝐻 (𝜁, 𝑡)] 𝑑𝜁.

(30)

It is worth noting that if the zeroth component 𝑃
0
(𝑥, 𝑡)

is defined, then the remaining components 𝑛 ≥ 1 can be
completely determined such that each term is determined
by using the previous terms, and the series solutions are
thus entirely determined. Finally, the solution 𝑃(𝑟, 𝑡) is
approximated by the truncated series

𝑃
𝑁

(𝑥, 𝑡) =

𝑁−1

∑

𝑛=0

𝑃
𝑛
(𝑥, 𝑡) ,

lim
𝑁→∞

𝑃
𝑁

(𝑟, 𝑡) = 𝑃
1
(𝑥, 𝑡) .

(31)

Here we choose the first term to be zero meaning
𝑃
0
(𝑥, 𝑡) = 𝑃(0, 𝑡) = 0 and the second term can be determined

as

𝑃
1
(𝑥, 𝑡) = −∫

𝑥

0

(𝑥 − 𝜁) [−𝐻 (𝜁, 𝑡)] 𝑑𝜁. (32)

Our next concern is to define 𝐻(𝑥, 𝑡); that is, we first
need to provide the solution of (1) which is found in the
literatures [23]. The following solutions are obtained by
separation of variables in different coordinate systems. They
are phasor solutions,meaning that they have an implicit time-
dependence factor of exp(𝑖𝜔𝑡) where 𝜔 = 2𝜋𝑓 is the angular
frequency. The explicit time dependence is given by (33)

𝑃 (𝑥, 𝑘, 𝑡) = Real [𝑝 (𝑘, 𝑥) exp [𝑖𝜔 𝑡]] , 𝑘 =

𝜔

𝑐

. (33)
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Figure 1: Topographic map of the solution of the modified acoustic
equation for 𝑐 = 4, 𝑓 = 0.001.

Introducing the previous expression in𝐻(𝑥, 𝑡), we obtain
the second expression. In this matter two components of
the decomposition series were obtained of which 𝑃(𝑥, 𝑡) was
evaluated to have the following expansion:

𝑃
1
(𝑥, 𝑡) = 𝑃

1
(𝑥, 𝑡) + 𝑃

0
(𝑥, 𝑡) + ⋅ ⋅ ⋅ (34)

The next figures show the graphical representation of
the approximated solution of the modified acoustic wave
equation and the exact solution of the standard version
of acoustic wave equation as function of space and time
(contour plot and density plot of both solution). A contour
plot gives essentially a topographic map of a solution and the
density plot shows the values of the function at a regular erray
of points and lighter region of the contour plot is higher.

From the next Figures 1, 2, 3, and 4, respectively, one can
see that there are more details with the solution of the mod-
ified acoustic wave equation than in the standard solution,
meaning that the details left out by neglecting the small effect
of the correspondent relative density fluctuations are very
important when one needs to observe the propagation of the
acoustic wave through thematerialmedium.The approximate
solution of (25) has been depicted in Figures 1 and 3 and the
exact solution in Figures 2 and 4.

5.2. Green Function Method. To solve (25) together with (26)
by means of Green function technique, one needs first to
construct a suitable green function.

If G is the green function to be constructed, then G must
satisfy the following equation:

𝜕
2
𝐺 (𝑥, 𝑡 | 𝑥

0
, 𝑡
0
)

𝜕𝑥
2

−

1

𝑐
2

𝜕
2
𝐺 (𝑥, 𝑡 | 𝑥

0
, 𝑡
0
)

𝜕𝑡
2

= −4𝜋𝛿 (𝑥 − 𝑥
0
) 𝛿 (𝑡 − 𝑡

0
) .

(35)

We are lucky enough, because the Green function to be
constructed here is the green function of the wave equation
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Figure 2: Topographic map of solution of acoustic wave equation
for 𝑐 = 4 and 𝑓 = 0.001.
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Figure 3: Density plot of the solution of the modified acoustic wave
equation.

and is given later in the case of the closed forms for the Green
function for the infinite one-dimensional domain [23]:

𝐺 (𝑥, 𝑡 | 𝑥
0
, 𝑡
0
) = 2𝜋𝑐𝑢 ((𝑡 − 𝑡

0
) − (





𝑥 − 𝑥
0





)) , (36)

where

𝑢 (𝑥) = 0 if 𝑥 < 0, 𝑢 (𝑥) = 1 if 𝑥 > 0. (37)

Following theGreen function technique, the general solu-
tion of the modified acoustic wave equation is given later as

𝑃
1
(𝑥, 𝑡) = ∫

𝑡

0

∫

𝑥

0

𝐺 (𝑥
1
, 𝑡
1
| 𝑥
0
, 𝑡
0
)𝐻 (𝑥

1
, 𝑡
1
) 𝑑𝑡
1
𝑑𝑥
1
, (38)

where 𝐻(𝑥
1
, 𝑡
1
) remains the same as defined earlier in

Section 5.1.

6. Conclusion

In this paper, an acoustic wave equation was extended to
the concept of the modified Riemann-Liouville fractional
order derivative. We presented in detail some properties of
the generalizedRiemann-Liouville fractional order derivative
approximation. We presented the analysis of the generalized
equation. We highlighted the three differences between the
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Figure 4: Density plot of the solution of the acoustic wave equation.

generalized equation and the standard one. First the velocity
of the sound in this case depends on time and coordinates due
to the effect of the corresponding relative density fluctuations.
Second the force appears due to the coordinate and time
dependence of the corresponding relative density fluctua-
tions. Third there is a derivative-free term that depends on
both time and space which is proportional to 𝑃 and char-
acterizes, depending on the coefficient sign, the retardation
or enhancement propagation of acoustic waves through a
material medium. The modified equation is approximately
solved by using the variational iteration method and the
Green function technique. The solution of the modified
equation gives better prediction than the standard one.
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Fractional advection-dispersion equations are used in groundwater hydrology to model the transport of passive tracers carried by
fluid flow in porous medium. A space-time fractional advection-dispersion equation (FADE) is a generalization of the classical
ADE in which the first-order space derivative is replaced with Caputo or Riemann-Liouville derivative of order 0 < 𝛽 ≤ 1, and the
second-order space derivative is replaced with the Caputo or the Riemann-Liouville fractional derivative of order 1 < 𝛼 ≤ 2. We
derive the solution of the new equation in terms ofMittag-Leffler functions using Laplace transfrom. Some examples are given.The
results from comparison let no doubt that the FADE is better in prediction than ADE.

1. Introduction

The description of transport is closely related to the terms
convection, diffusion, dispersion, and retardation as well as
decomposition. First, it is assumed that there are no inter-
actions between the species dissolved in water and the sur-
rounding solid phase [1]. The primary mechanism for the
transport of improperly discarded hazardous waste through
the environment is by the movement of water through the
subsurface and surface waterways. Studying this movement
requires that one must be able to measure the quantity of
waste present at a particular point in space time. The mea-
sure universally for chemical pollution is the concentration.
Analytical methods that handle solute transport in porous
media are relatively easy to use [1]. However, because of
complexity of the equations involved, the analytical solu-
tions are generally available restricted to either radial flow
problems or to cases where velocity is uniform over the area
of interest. Numerous analytical solutions are available for
time-dependent solute transport within media having steady
state and uniform flow. This work is devoted to the discus-
sion underpinning the derivation of the analytical solution

of space-time fractional derivative of advection-dispersion
equation.

2. Governing Equations

A relatively complete set of one-dimensional analytical solu-
tions for convective-dispersive solute equations has been
recently published by Van Genuchten and Alves in 1982 [2].
Here we shall review a case having a practical application.

Let us consider a one-dimensional model consisting of
infinitely ling homogenous isotropic porous media with
steady state uniform flow with seepage velocity V. We inject
a particular chemical from one end of the model for a period
of time 𝑡

0
such that the input concentration varies as an

exponential function of time [3]. The value of that chemical
concentration at any time 𝑡 and at a distance 𝑥 from the
injection boundary, allowing for the decay and adsorption,
may be obtained from the solution of the following set of
equations [3]:

𝐷

𝜕
2
𝑐 (𝑥, 𝑡)

𝜕𝑥
2

− V
𝜕𝑐 (𝑥, 𝑡)

𝜕𝑥

− 𝜆𝑅𝑐 = 𝑅

𝜕𝑐 (𝑥, 𝑡)

𝜕𝑡

, (1)
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where 𝐷 is the dispersion coefficient and 𝑅 the retardation
factor, subject to the initial condition:

𝑐 (𝑥, 𝑡) = 0 𝑡 = 0,

𝑐 (0, 𝑡) = 𝑐
0
exp (−𝛾𝑡) 0 < 𝑡 ≤ 𝑡

0
,

(2)

which means that the system is initially free of that chemical,
𝛾 and 𝑐

0
are constants and boundaries conditions

𝜕𝑐 (𝑥, 𝑡)

𝜕𝑥

= 0 𝑥 → ∞. (3)

This indicates that the concentration of the gradient at the
other end of the model remains unchanged. Note that the
standard version of advection-dispersion equation does not
allow for predicting the mass transform through the geolog-
ical formation accurately; it is then important to investigate
a possible analytical partial differential equation that can
describe better this problem. In this work this possibility
is further investigated for a rectangular symmetric form of
(1), by replacing the classical first-order derivative of the
concentration by a fractional derivative. Because the concepts
of fractional (or noninteger) order derivatives may not be
widely known, the concept is first briefly discussed below.

3. Fractional Calculus

Fractional calculus has been used to model physical and
engineering processes, which are found to be best described
by fractional differential equations. It is worth noting that the
standard mathematical models of integer-order derivatives,
including nonlinear models, do not work adequately in many
cases. In the recent years, fractional calculus has played a
very important role in various fields such as mechanics,
electricity, chemistry, biology, economics, notably control
theory, and signal and image processing. In the past several
decades, the investigation of travelling-wave solutions for
nonlinear equations has played an important role in the study
of nonlinear physical phenomena [4–12]. The concept of
fractional order derivatives for a function, say 𝑓(𝑥), is based
on a generalization of the Abel integral:

𝐷
−𝑛

𝑓 (𝑥) =∭𝑓(𝑥) 𝑑𝑥
𝑛
=

1

Γ (𝑛)

∫

𝑥

0

(𝑥 − 𝑡)
𝑛−1

𝑓 (𝑡) 𝑑𝑡,

(4)

where 𝑛 is a nonzero positive integer and Γ(⋅) is the Gamma
function [13].

This represents an integral of order 𝑛 for the continuous
function𝑓(𝑥), whenever𝑓 and all its derivatives vanish at the
origin, 𝑥 = 0.This result can be extended to the concept of an
integral of arbitrary order 𝑐, defined as

𝐷
−𝑐

𝑓 (𝑥) = 𝐷
−𝑗−𝑠

𝑓 (𝑥) =

1

Γ (𝑐)

∫

𝑥

0

(𝑥 − 𝑡)
𝑐−1

𝑓 (𝑡) 𝑑𝑡, (5)

where 𝑐 is a positive real number, 𝑗 an integer such that 0 <
𝑠 ≤ 1.

Let 𝑝 now be the least positive integer larger than 𝛼 such
that 𝛼 = 𝑚 − 𝜌; 0 < 𝜌 ≤ 1. Equation (4) can then be used to

define the derivative of (positive) fractional order, say 𝛼, of a
function 𝑓(𝑥) as

𝐷
𝑐

𝑓 (𝑥) = 𝐷
𝑝−𝜌

𝑓 (𝑥) =

1

Γ (𝜌)

∫

𝑥

0

(𝑥 − 𝑡)
𝜌−1
𝑑
𝑝
𝑓 (𝑡)

𝑑𝑡
𝑝

𝑑𝑡. (6)

Note that these results, like Abel’s integral, are only valid
subject to the condition that 𝑓(𝑘)(𝑥) | 𝑥 = 0 for 𝑘 = 0, 1,

2, . . . , 𝑝.

3.1. Properties. Properties of the operator can be found in [14,
15]; we mention only the following.

For 𝑓 ∈ 𝐶
𝜇
, 𝜇 ≥ −1, 𝛼, 𝛽 ≥ 0 and 𝛾 > −1:

𝐷
−𝛼

𝐷
−𝛽

𝑓 (𝑥) = 𝐷
−𝛼−𝛽

𝑓 (𝑥) ,

𝐷
−𝛼

𝐷
−𝛽

𝑓 (𝑥) = 𝐷
−𝛽

𝐷
−𝛼

𝑓 (𝑥) ,

𝐷
−𝛼

𝑥

𝛾

=

Γ (𝛾 + 1)

Γ (𝛼 + 𝛾 + 1)

𝑥
𝛼+𝛾

.

(7)

3.2. Formulation of Space-Time Fractional Derivative of
Hydrodynamic Advection-Dispersion Equation. In order to
include explicitly the possible effect of flow geometry into the
mathematical model, the Cartesian component of the gradi-
ent of concentration, 𝜕

𝑥
𝑐(𝑥, 𝑡) is replaced by the Riemann-

Liouville fractional derivatives of order 𝛽, 𝜕𝛽
𝑥
𝑐(𝑥, 𝑡) and

𝜕
2

𝑥
𝑐(𝑥, 𝑡) is replaced by 𝜕𝛼

𝑥
𝑐(𝑥, 𝑡) with 0 < 𝛽 ≤ 1 < 𝛼 < 𝑙,

as follows:

𝐷

𝜕
𝛼
𝑐 (𝑥, 𝑡)

𝜕𝑥
𝛼

− V
𝜕
𝛽
𝑐 (𝑥, 𝑡)

𝜕𝑥
𝛽

− 𝜆𝑅𝑐 = 𝑅

𝜕𝑐 (𝑥, 𝑡)

𝜕𝑡

. (8)

This provides a generalized form of the classical equation
governing the transport of the solute (1): this integrodiffer-
ential equation does contain the additional parameter 𝛼 and
𝛽, which can be viewed as new physical parameters that
characterize the transport through the geological formations.
The same transformation generates also a more general form
for the boundary condition at the other end of the model:

𝜕
𝛽
𝑐 (𝑥, 𝑡)

𝜕𝑥
𝛽

= 0 𝑥 → ∞. (9)

Relations (8) and (9), together with the initial condition
described in (2), represent a complete set of equations for
which a solution exists. The integrodifferential character of
the relations makes the search for analytical solutions for the
problem very difficult however. In this work an analytical
solution in series form will be discussed in the next section.

4. Analytical Solution

4.1.The Riemann-Liouville Derivative. Themethod here con-
sists of applying the Laplace transform on both sides of (8) to
have

𝐷

𝜕
𝛼
𝑐 (𝑥, 𝑠)

𝜕𝑥
𝛼

− V
𝜕
𝛽
𝑐 (𝑥, 𝑠)

𝜕𝑥
𝛽

− 𝑅 (𝜆 + 𝑠) 𝑐 (𝑥, 𝑠) = 𝑅𝑐 (𝑥, 0)

(10)
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with the initial condition (2) and further transformation; the
above equation can then be in the following form:

𝜕
𝛼
𝑐 (𝑥, 𝑠)

𝜕𝑥
𝛼

− 𝜇

𝜕
𝛽
𝑐 (𝑥, 𝑠)

𝜕𝑥
𝛽

− 𝜏𝑐 (𝑥, 𝑠) , (11)

where 𝑠 is the variable of Laplace for the time-component,
𝜇 = V/𝐷, and 𝜏 = 𝑅(𝜆 + 𝑠)/𝐷. Let 𝑐(𝑥, 𝑠) = 𝑦(𝑥); then (11)
becomes

𝜕
𝛼
𝑦 (𝑥)

𝜕𝑥
𝛼

− 𝜇

𝜕
𝛽
𝑦 (𝑥)

𝜕𝑥
𝛽

− 𝜏𝑦 (𝑥) = 0. (12)

Applying the Laplace operator on both sides of (11), on the
space component and replacing, we have the following equa-
tion [14]:

L (𝑦) (𝑝) =

𝑙

∑

𝑖=1

ℎ
𝑖

𝑝
𝑖−1

𝑝
𝛼
− 𝜇𝑝
𝛽
− 𝜏

, (13)

where 𝑝 is the Laplace variable for the space component and
ℎ
𝑖
= 𝜕
𝛼−𝑖

𝑥
𝑐(0
+
).

For 𝑝 ∈ C and |𝜏𝑝−𝛽/(𝑝𝛼−𝛽 − 𝜇)| < 1, we have the follow-
ing expression 1/(𝑝𝛼 − 𝜇𝑝𝛽 − 𝜏) which can be written in the
form of series as follows [14]:

𝑝
𝑖−1

𝑝
𝛼
− 𝜇𝑝
𝛽
− 𝜏

= 𝑝
𝑖−1

∞

∑

𝑗=0

𝜏
𝑛
𝑝
−𝛽−𝛽𝑛

(𝑝
𝛼−𝛽

− 𝜇)
𝑛+1
. (14)

And hence replacing the above expression in (13) yields the
following representation:

(L𝑦) (𝑝) =
2

∑

𝑖=1

ℎ
𝑖

∞

∑

𝑗=0

𝜏
𝑛
𝑝
−𝛽−𝛽𝑛+𝑖−1

(𝑝
𝛼−𝛽

− 𝜇)
𝑛+1
. (15)

The above expression is then simplified further, for𝑝 ∈ C and
|𝜇𝑝
𝛽−𝛼
| < 1, we have first

𝜏
𝑛
𝑝
−𝛽−𝛽𝑛+𝑖−1

(𝑝
𝛼−𝛽

− 𝜇)
𝑛+1

=

𝜏
𝑛
𝑝
(𝛼−𝛽)−(𝛼+𝛽𝑛−𝑖+1)

(𝑝
𝛼−𝛽

− 𝜇)
𝑛+1

. (16)

And secondly the above equation can now be expressed as
follows:

=

1

𝑛!

L{𝑥
𝛼𝑛+𝛼−𝑖

(

𝜕

𝜕𝑥

)

𝑛

𝐸
𝛼−𝛽,𝛼+𝑛𝛽+1−𝑖

(𝜇𝑥
𝛼−𝛽

)} , (17)

where

(

𝜕

𝜕𝑥

)

𝑛

𝐸
𝛼,𝛽
(𝑥) =

∞

∑

𝑗=0

Γ (𝑛 + 𝑗 + 1)

Γ (𝑛𝛼 + 𝛽 + 𝛼𝑗)

𝑥
𝑗

𝑗!

. (18)

Hence the solutions of (12) can be given as follows:

𝑦
𝑖
(𝑥) =

∞

∑

𝑛=0

𝜏
𝑛

𝑛!

𝑥
𝛼𝑛+𝛼−𝑖

(

𝜕

𝜕𝑥

)

𝑛

𝐸
𝛼−𝛽,𝛼+𝛽𝑛+1−𝑖

(𝜇𝑥
𝛼−𝛽

) . (19)

Thus it follows that the solution of (12) is given as

𝑦 (𝑥) =

2

∑

𝑖=1

ℎ
𝑖
𝑦
𝑖
(𝑥) , (20)

so that

𝑐 (𝑥, 𝑠) =

2

∑

𝑖=1

ℎ
𝑖
𝑐
𝑖
(𝑥, 𝑠) . (21)

Thus the series solution of (8) can be now given by applying
the inverse Laplace operator on 𝑐(𝑥, 𝑠) to have

𝑐
𝑖
(𝑥, 𝑡)

=L
−1

(

∞

∑

𝑛=0

𝜏
𝑛

𝑛!

𝑥
𝛼𝑛+𝛼−𝑖

(

𝜕

𝜕𝑥

)

𝑛

𝐸
𝛼−𝛽,𝛼+𝛽𝑛+1−𝑖

(𝜇𝑥
𝛼−𝛽

)) .

(22)

Since the inverse Laplace operator is a linear operator, it
follows that

𝑐
𝑖
(𝑥, 𝑡)

=

∞

∑

𝑛=0

L−1 (𝜏𝑛)

𝑛!

𝑥
𝛼𝑛+𝛼−𝑖

(

𝜕

𝜕𝑥

)

𝑛

𝐸
𝛼−𝛽,𝛼+𝛽𝑛+1−𝑖

(𝜇𝑥
𝛼−𝛽

) .

(23)

Replacing 𝜏𝑛 = (𝑅(𝜆 + 𝑠)/𝐷)𝑛 = (𝑅/𝐷)𝑛(𝜆 + 𝑠)𝑛 so that

L
−1

{𝜏
𝑛

} = (

𝑅

𝐷

)

𝑛

L
−1

{(𝜆 + 𝑠)
𝑛

} = (

𝑅

𝐷

)

𝑛 exp [−𝜆𝑡] 𝑡−1−𝑛

Γ (−𝑛)

,

𝑐
𝑖
(𝑥, 𝑡) =

∞

∑

𝑛=0

(𝑅/𝐷)
𝑛 exp [−𝜆𝑡] 𝑡−1−𝑛/Γ (−𝑛)

𝑛!

𝑥
𝛼𝑛+𝛼−𝑖

× (

𝜕

𝜕𝑥

)

𝑛

𝐸
𝛼−𝛽,𝛼+𝛽𝑛+1−𝑖

(𝜇𝑥
𝛼−𝛽

) ,

𝑐 (𝑥, 𝑡) =

2

∑

𝑖=1

ℎ
𝑖
𝑐
𝑖
(𝑥, 𝑡) ,

𝑐
1
(𝑥, 𝑡) =

∞

∑

𝑛=0

(𝑅/𝐷)
𝑛 exp [−𝜆𝑡] 𝑡−1−𝑛/Γ (−𝑛)

𝑛!

𝑥
𝛼𝑛+𝛼−1

× (

𝜕

𝜕𝑥

)

𝑛

𝐸
𝛼−𝛽,𝛼+𝛽𝑛

(𝜇𝑥
𝛼−𝛽

) ,

𝑐
2
(𝑥, 𝑡) =

∞

∑

𝑛=0

(𝑅/𝐷)
𝑛 exp [−𝜆𝑡] 𝑡−1−𝑛/Γ (−𝑛)

𝑛!

𝑥
𝛼𝑛+𝛼−2

× (

𝜕

𝜕𝑥

)

𝑛

𝐸
𝛼−𝛽,𝛼+𝛼𝑛−1

(𝜇𝑥
𝛼−𝛽

) .

(24)

To find the coefficient ℎ
𝑖
, 𝑖 = 1, 2, we need to apply the

boundaries and initial condition on 𝑐(𝑥, 𝑡) which yields to

ℎ
𝑖
=

𝑐
0

2

. (25)

Example 1. Our concern here is to consider (8) when 𝛼 = 2
and 0 < 𝛽 ≤ 1. Following the discursion presented earlier,
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the analytical solution of space-time fractional derivative
of hydrodynamic advection-dispersion equation has its two
solutions given by

𝑐
1
(𝑥, 𝑡) =

∞

∑

𝑛=0

(

𝑅

𝐷

)

𝑛 exp [−𝜆𝑡] 𝑡−1−𝑛

Γ (−𝑛) 𝑛!

𝑥
2𝑛+1

× (

𝜕

𝜕𝑥

)

𝑛

𝐸
2−𝛽,𝑛𝛽+1

(

𝑅

𝐷

𝑥
2−𝛽

) ,

𝑐
2
(𝑥, 𝑡) =

∞

∑

𝑛=0

(

𝑅

𝐷

)

𝑛 exp [−𝜆𝑡] 𝑡−1−𝑛

Γ (−𝑛) 𝑛!

𝑥
2𝑛

× (

𝜕

𝜕𝑥

)

𝑛

𝐸
2−𝛽,𝑛𝛽+1

(

𝑅

𝐷

𝑥
2−𝛽

) .

(26)

The above solutions form the fundamental system of solution
when 𝛽 < 1.

4.2. The Caputo Derivative. The Riemann-Liouville deriva-
tive has certain disadvantages when trying to model real-
world phenomena with fractional differential equations [16–
19]. Therefore, we investigate the solution of space-time
Caputo fractional derivative of hydrodynamic advection-
dispersion equation.

For the Caputo derivative, the Laplace transform is based
on the formula

(L𝑐𝐷
𝛼

𝑦) (𝑠) = 𝑠
𝛼

(L𝑦) (𝑠) −
1

∑

𝑖=0

ℎ
𝑖
𝑠
𝛼−𝑖−1 (27)

with

ℎ
𝑖
= 𝑦
𝑖

(0) (𝑖 = 0, 1) . (28)

Thus applying the Laplace transform in both sides of (8)
on the component of time and applying again the Laplace
transform on the component of space yield

L (𝑦) (𝑝) =

2−1

∑

𝑖=0

ℎ
𝑖

𝑝
𝛼−𝑖−1

𝑝
𝛼
− 𝜇𝑝
𝛽
− 𝜏

− 𝜇

1−1

∑

𝑖=0

ℎ
𝑖

𝑝
𝛽−𝑖−1

𝑝
𝛼
− 𝜇𝑝
𝛽
− 𝜏

.

(29)

For 𝑝 ∈ C and |𝜏𝑝
−𝛽
/(𝑝
𝛼−𝛽

− 𝜇)| < 1, in analogy of
the discursion presented earlier for the case of Riemann-
Liouville, we have the following:

L (𝑦) (𝑝) =

2−1

∑

𝑖=0

ℎ
𝑖

∞

∑

𝑛=0

𝜏
𝑛
𝑝
(𝛼−𝛽)−(𝛽𝑛+𝑖+1)

(𝑝
𝛼−𝛽

− 𝜇)
𝑛+1

− 𝜇

1−1

∑

𝑖=0

𝜏
𝑛
𝑝
(𝛼−𝛽)−(𝛽𝑛+𝑖+1+𝛼−𝛽)

(𝑝
𝛼−𝛽

− 𝜇)
𝑛+1

.

(30)

Hence for 𝑝 ∈ C and |𝜇𝑝𝛽−𝛼| < 1, we have that

𝑝
(𝛼−𝛽)−(𝛽𝑛+𝑗+1)

(𝑝
𝛼−𝛽

− 𝜇)
𝑛+1

=

1

𝑛!

(L [𝑥
𝑛𝛼+𝑖

(

𝜕

𝜕𝑥

)

𝑛

𝐸
𝛼−𝛽,𝛽𝑛+𝑖+1

(𝜇𝑥
𝛼−𝛽

)]) ,

𝑝
(𝛼−𝛽)−(𝛽𝑛+𝑗+1+𝛼−𝛽)

(𝑝
𝛼−𝛽

− 𝜇)
𝑛+1

=

1

𝑛!

L [𝑥
𝑛𝛼+𝑖+𝛼−𝛽

(

𝜕

𝜕𝑥

)

𝑛

𝐸
𝛼−𝛽,𝛽𝑛+𝑖+1+𝛼−𝛽

(𝜇𝑥
𝛼−𝛽

)] .

(31)

Thus from the above expression we derive the following
solution to the space-time Caputo fractional derivative of
hydrodynamic advection-dispersion equation (8):

𝑐 (𝑥, 𝑡) =

2−1

∑

𝑖=0

ℎ
𝑖
𝑐
𝑖
(𝑥, 𝑡) − 𝜇

1−1

∑

𝑖=0

ℎ
𝑖
𝑐
𝑖
(𝑥, 𝑡) , (32)

where for 𝑖 = 0

𝑐
𝑖
(𝑥, 𝑡) =

∞

∑

𝑛=0

(

𝑅

𝐷

)

𝑛 exp [−𝜆𝑡] 𝑡−1−𝑛

Γ (−𝑛) 𝑛!

𝑥
𝑛𝛼+𝑖

× (

𝜕

𝜕𝑥

)

𝑛

𝐸
𝛼−𝛽,𝛽𝑛+𝑖+1

(𝜇𝑥
𝛼−𝛽

)

− 𝜇

∞

∑

𝑛=0

(

𝑅

𝐷

)

𝑛 exp [−𝜆𝑡] 𝑡−1−𝑛

Γ (−𝑛) 𝑛!

𝑥
𝑛𝛼+𝑖+𝛼−𝛽

× (

𝜕

𝜕𝑥

)

𝑛

𝐸
𝛼−𝛽,𝛽𝑛+𝑖+1+𝛼−𝛽

(𝜇𝑥
𝛼−𝛽

)

(33)

and for 𝑖 = 1

𝑐
𝑖
(𝑥, 𝑡) =

∞

∑

𝑛=0

(

𝑅

𝐷

)

𝑛 exp [−𝜆𝑡] 𝑡−1−𝑛

Γ (−𝑛) 𝑛!

𝑥
𝑛𝛼+𝑖

× (

𝜕

𝜕𝑥

)

𝑛

𝐸
𝛼−𝛽,𝛽𝑛+𝑖+1

(𝜇𝑥
𝛼−𝛽

) .

(34)

And the coefficients ℎ
𝑖
are found by applying the initial and

boundary conditions on 𝑐(𝑥, 𝑡).

Example 2. Our concern here is to consider (8) when 𝛼 = 2
and 0 < 𝛽 ≤ 1. Following the discursion presented earlier, the
analytical solution of space-time fractional derivative of
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hydrodynamic advection-dispersion equation has its two
solutions given by

𝑐
1
(𝑥, 𝑡) =

∞

∑

𝑛=0

(

𝑅

𝐷

)

𝑛 exp [−𝜆𝑡] 𝑡−1−𝑛

Γ (−𝑛) 𝑛!

𝑥
2𝑛

× (

𝜕

𝜕𝑥

)

𝑛

𝐸
2−𝛽,𝛽𝑛+1

(𝜇𝑥
2−𝛽

)

− 𝜇

∞

∑

𝑛=0

(

𝑅

𝐷

)

𝑛 exp [−𝜆𝑡] 𝑡−1−𝑛

Γ (−𝑛) 𝑛!

𝑥
2𝑛+2−𝛽

× (

𝜕

𝜕𝑥

)

𝑛

𝐸
2−𝛽,𝛽𝑛+3−𝛽

(𝜇𝑥
2−𝛽

) ,

𝑐
2
(𝑥, 𝑡) =

∞

∑

𝑛=0

(

𝑅

𝐷

)

𝑛 exp [−𝜆𝑡] 𝑡−1−𝑛

Γ (−𝑛) 𝑛!

𝑥
2𝑛+1

× (

𝜕

𝜕𝑥

)

𝑛

𝐸
2−𝛽,𝛽𝑛+2

(𝜇𝑥
2−𝛽

) .

(35)

These solutions are linearly independent and they provide
the fundamental system of solutions to space-time Caputo
fractional derivative of hydrodynamic advection-dispersion
equation. An approximation of this series is given below for
possible simulation. Some other analytical methods and their
recent development for solving nonlinear fractional partial
differential equation can found in the work done by [15–26]
and the excellent book for analytical and numerical methods.

5. Numerical Simulation

Up to this section we expressed the solution of the fractional
advection-dispersion equation in terms of Mittag-Leffler
function. This function is cumbersome to be used in real
world problem, especially when the users of this solution are
from the field of geohydrology. Since the solution is in series
form, one will need first to know how many terms of the
series expansion can be used to simulate real world problem.
Therefore to accommodate the users of this solution, we
propose the approximate solution of the fractional advection-
dispersion equation to be in the form of

𝑐 (𝑥, 𝑡) =

𝑐
0
exp (−𝛾𝑡)
2

× [exp(
𝑥
𝛼
(𝑞
𝑟
− 𝑢
𝑟
)

2𝐷
𝑟

) erfc(
𝑥
𝛼
− 𝑢
𝑟
𝑡

2(𝐷
𝑟
𝑡)
1/𝛽
)

+ exp(
𝑥
𝛼
(𝑞
𝑟
+ 𝑢
𝑟
)

2𝐷
𝑟

) erfc(
𝑥
𝛼
+ 𝑢
𝑟
𝑡

2(𝐷
𝑟
𝑡)
1/𝛽
)] .

(36)

The above solutions take into account the effect of the
fractional derivative order. Now notice that if one set 𝛼 = 1
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Figure 1: Comparison of FADE and ADE for 𝛼 = 0.95 and 𝛽 = 1.9.
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Figure 2: Comparison of FADE and ADE for 𝛼 = 1 and 𝛽 = 1.98.

and 𝛽 = 2, we recover the solution of the advection-disper-
sion equation

𝑐 (𝑥, 𝑡) =

𝑐
0
exp (−𝛾𝑡)
2

× [exp
𝑥 (𝑞
𝑟
− 𝑢
𝑟
)

2𝐷
𝑟

erfc
𝑥 − 𝑢
𝑟
𝑡

2√𝐷
𝑟
𝑡

+ exp
𝑥 (𝑞
𝑟
+ 𝑢
𝑟
)

2𝐷
𝑟

erfc
𝑥 + 𝑢
𝑟
𝑡

2√𝐷
𝑟
𝑡

] .

(37)

To access the effect of the fractional order derivative into the
solution of the advection-dispersion equation, we compare
both solutions (36) and (37) with the theoretical values firstly
and secondly we compare both solutions with experimental
data obtained from one of the experimental sites of the
Institute for Groundwater Studies (IGS). We shall start with
the theoretical values.

Figures 1 and 2 show the numerical simulation of the
plume first as a function of time and second as a function of
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Figure 3: Simulation of the FADE (𝑐
0
= 100, 𝛼 = 0.45, 𝛽 = 2, 𝐷 =

2; 𝑞 = 1, 𝛾 = 0.25, and 𝜆 = 1).
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Figure 4: Simulation of the ADE (𝑐
0
= 100, 𝛼 = 1, 𝛽 = 2, 𝐷 = 2;

𝑞 = 1, 𝛾 = 0.25, and 𝜆 = 1).

time and spacewith the FADEandADE for theoretical values.
Figures 1 and 2 show the comparison of the approximate and
exact solutions of FADE and ADE, respectively, as function
of time for a fixed distance 𝑥. These figures are plotted via
Mathematica.

Figures 3–7 show the density plots of the theoretical
simulation of the plume by the FADE as function of time
and fractional order derivative. The figures are simulated via
MATLAB. Here, Figure 3 is the simulation of the concentra-
tion for FADE through the geological formation, for 𝑐

0
=

100, 𝛼 = 0.45, 𝛽 = 2, 𝐷 = 2; 𝑞 = 1, 𝛾 = 0.25, and 𝜆 = 1.
Figure 4 is the simulation of FADE for 𝑐

0
= 100, 𝛼 = 1, 𝛽 = 2,

𝐷 = 2; 𝑞 = 1, 𝛾 = 0.25, and 𝜆 = 1. Figure 5 is the simulation
of FADE for 𝑐

0
= 100, 𝛼 = 0.55, 𝛽 = 1.55, 𝐷 = 2; 𝑞 = 1,

𝛾 = 0.25, and 𝜆 = 1. And finally Figure 6 is the simulation
of FADE for 𝑐

0
= 100, 𝛼 = 0.25, 𝛽 = 1.55, 𝐷 = 2; 𝑞 = 1,

𝛾 = 0.25, and 𝜆 = 1. Figure 7 is the simulation of FADE for
𝑐
0
= 100, 𝛼 = 0.25, 𝛽 = 1.95, 𝐷 = 2; 𝑞 = 1, 𝛾 = 0.25, and

𝜆 = 1.
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0
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Figure 6: Simulation of the FADE (𝑐
0
= 100, 𝛼 = 0.25, 𝛽 = 1.55,

𝐷 = 2; 𝑞 = 1, 𝛾 = 0.25, and 𝜆 = 1).

From Figures 3–7 one can see that the solutions of FADE
are not only a function of time and space but also a function
of the order of the derivative. If these orders are integer, we
recover the standard ADE. Figures 3 and 5 show that the
order of the derivative can be used to simulate the real-world
problem and this makes the fractional version of ADE better
than the ADE.

To test the accuracy and efficiency of FADE, we compare
the solution of FADE, ADE, and the experimental data from
field observation. Figures 8 and 9 show the comparison be-
tween FADE, ADE, and measured data for different values of
𝛼 and 𝜇.

The numerical simulation in Figures 8 and 9 lead us to
believe that the order of the derivative plays an important role
while simulation of the plume of the pollution in the aquifer.
The comparison revealed that the fractional advection-
dispersion equation is compatible with observations of the
plume in the laboratory and the field. It predicts power
law, faster than the apparent plume variance. It is shown
that the traditional 2nd-order advection equation does not
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real world;𝐷
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= 0.51.

adequately describe the movement of solute trace in the
aquifer. On the basis of this assertion we conclude that the
fractional advection-dispersion equation is better than the
classical version of advection-dispersion equation. Plumes
observed in natural systems are used in this section to
distinguish further the time and space nonlocalities. Realistic
data fromnatural systems provide themost important criteria
for distinguishing the space- and time-nonlocal processes
and evaluating the applicability of the FADE models. Anal-
ysis, comparison, and application of various FADEs in this
study are intended to provide a general guidance for model
selection. Natural geological deposits with highly contrasting
permeabilitymay formmobile and relatively immobile zones,
where the potential mass exchange between mobile and
immobile zones results in a wide time distribution for solute
“trapping”.The transport process, combined with the distinct
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particle status, can be characterized efficiently by the time-
nonlocal model, including the time FADE. If the high-
permeable material tends to form preferential flow paths,
such as the interconnected paleochannels observed in alluvial
depositional systems, then the solute transport may show a
heavy leading edge, which can be described by the space
FADE with maximally positive skewness as shown in Figures
3, 5, 6, 7, and 8. Development of partial differential equations
such as the advection-dispersion equation (ADE) begins with
assumptions about the random behavior of a single particle:
possible velocities it may experience in a flow field and the
length of time it may be immobilized. When assumptions
underlying the ADE are relaxed, a fractional ADE (FADE)
can arise, with a noninteger-order derivative on time or space
terms. Fractional ADEs are nonlocal; they describe transport
affected by hydraulic conditions at a distance. Space fractional
ADEs arise when velocity variations are heavy tailed and
describe particle motion that accounts for variation in the
flow field over the entire system. Time fractional ADEs arise
as a result of power law particle residence time distributions
anddescribe particlemotionwithmemory in time.As shown,
the best fitting curve from the classical radial flow model
greatly underestimated early arrival. We also remark that this
solute flow model and its numerical solution match the test
data closely only up to the peak.

An excellent literature review revealed that the fractional
advection-dispersion equation has proven to be useful in
modeling contaminant flow in heterogeneous porous media
[26–34]. The fractional advection-dispersion equation is
known to be a special case of a general transport equation
with convolution flux [28] and a limit case of the continuous
time random walk with power-law particle jumps [26–34].
It is a simple matter to derive the fractional advection-
dispersion equation from the fractional conservation of mass
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equation using a moving coordinate system at the plume
centre of mass, in exactly the same way that the usual
advection-dispersion equation follows from the traditional
conservation of mass equation. This approach validates the
utility of the fractional advection-dispersion equation and
related theories, by highlighting the scaling factor that ren-
ders the fractional equation scale invariant. We believe that
this scaling captures the fractal nature of the porousmedium.

6. Conclusion

The classical hydrodynamic advection-dispersion equation
has been generalized using the concept of fractional order
derivatives. This leads to the formulation of a new (gen-
eralized) form of the hydrodynamic advection-dispersion
equation. A general solution of the new equation was given
in terms of Mittag-Leffler functions for two general cases
including Riemann-Liouville fractional derivative and the
Caputo fractional derivative. The solutions of FADE are not
only function of time and space but also a function of the
order of the derivative. If these orders are integer, we recover
the standard ADE. Figures 3–8 show that the order of the
derivative can be used to simulate the real-world problem and
thismakes the fractional version ofADEbetter than theADE.
The comparison of FADE,ADE, and experimental data shows
that the FADE is better in prediction than ADE.
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The variational iteration method was applied to the time fractional telegraph equation and some variational iteration formulae
were suggested in (Sevimlican, 2010).Those formulae are improved by Laplace transform from which the approximate solutions of
higher accuracies can be obtained.

Sevimlican [1] considered the application of the variational
iterationmethod [2, 3] to find approximate solutions of space
and time fractional telegraph equations.The author suggested
the following variational iteration formula for (5.1) in [1]

𝑢
𝑛+1
= 𝑢
𝑛
+ ∫

𝑥

0

𝜆 (𝑠, 𝑥) (

𝜕
𝛼
𝑢 (𝑠, 𝑡)

𝜕𝑠
𝛼
−

𝜕
2
𝑢 (𝑠, 𝑡)

𝜕𝑡
2

−

𝜕𝑢 (𝑠, 𝑡)

𝜕𝑡

− 𝑢 (𝑠, 𝑡)) 𝑑𝑠,

1 < 𝛼 < 2,

𝜆 (𝑠, 𝑥) = 𝑠 − 𝑥.

(1)

However, in this comment, it is pointed out that the identifi-
cation of the Lagrange multiplier 𝜆(𝑠, 𝑥) = 𝑠 − 𝑥 from (4.1) to
(4.9) can be improved.

According to the technique of determination of the
Lagrange multipliers [4, 5], firstly, construct a correctional
functional as
𝑢
𝑛+1
(𝑥, 𝑡)

= 𝑢
𝑛
(𝑥, 𝑡)

+ ∫

𝑥

0

𝜆 (𝑠, 𝑥) (

𝜕
𝛼
𝑢
𝑛
(𝑠, 𝑡)

𝜕𝑠
𝛼
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𝜕
2
𝑢
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𝜕𝑡

− 𝑢
𝑛
(𝑠, 𝑡)) 𝑑𝑠, 𝛼 > 0.

(2)

Assuming the Lagrange multiplier 𝜆(𝑠, 𝑥) = 𝜆(𝑥− 𝑠), take
the Laplace transform to both sides of (2)

𝑢
𝑛+1
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(3)

where 𝑢
𝑛
(𝑆, 𝑡) is the Laplace transform of 𝑢

𝑛
(𝑥, 𝑡).

Taking the variation 𝛿 with respect to 𝑢
𝑛
(𝑆, 𝑡), one can

obtain
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Then, the Lagrange multiplier can be determined as

𝜆 (𝑠, 𝑥) =

(−1)
𝛼

(𝑠 − 𝑥)
𝛼−1

Γ (𝛼)

. (5)

Instead 𝜆(𝑠, 𝑥) = 𝑠 − 𝑥 (see (4.9) in [1]).
As a result, the variational iteration formula is obtained

as

𝑢
𝑛+1
= 𝑢
𝑛
+ ∫
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0
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𝛼
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− 𝑢 (𝑠, 𝑡)) 𝑑𝑠,

0 < 𝛼.

(6)

The variational iteration formulae (5.10) and (5.17) are not
right which also should be corrected, respectively.

Equation (5.10) in [1] should be
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(7)

Equation (5.17) in [1] should be
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(8)

Conclusions

As is well known, the VIM became an efficient analytical tool
in nonlinear science since it was proposed and the method
was often used in fractional differential equations. This study
illustrates the method in fractional calculus can be improved
by the Laplace tranform method with which the Lagrange
mutipliers can be identified explicitly.

Recently, there are also other new applications of the
variation iteration method to various nonlinear problems,
that is, fuzzy equations [6, 7] and 𝑞-fractional differential
equations [8]. Readers are referred to the recent review article
[9].
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The Korteweg-de Vries (KdV) equation considered in this work contains a forcing term and is referred to as forced KdV equation
in the sequel. This equation has been investigated recently as a mathematical model for waves on shallow water surfaces under the
influence of external forcing. We employ the Lie group analysis approach to specify the time-dependent forcing term.

1. Introduction

Many studies in mathematical physics, engineering, life
sciences, and in all other sciences use mathematical models
to describe certain phenomenon. Such models are repre-
sented by the nonlinear evolution equations. The existence
of analytical solutions to these equations becomes a basis for
a better understanding of the dynamics involved. The KdV
equation [1] being a nonlinear evolution equationmodels the
nonlinear wave phenomena on the shallow water surfaces,
and its various forms have been proposed depending upon
the applications in diverse fields of science and engineering.
To date, a lot of solution procedures, both analytical and
numerical, have been developed to solve these types of
differential equations. However, some of these approaches
may involve approximation of solutions. The current work
is based upon the Lie group theory approach as a solution
procedure.

The Lie point or higher-order symmetries of a differential
equation enable one to obtain the solutions invariant under a
particular symmetry or a linear combination of symmetries.
The invariant solutions are a basis to finding exact solutions
or numerical solutions. In most real-life applications, the
differential equations, which are used to model a certain
situation, contain arbitrary functions of dependent variable
or its derivatives and independent variables. Instead of
assuming the forms of these model parameters, the method

of group classification can be employed to systematically
specify their forms. There are various approaches to solving
a group classification problem, namely, the direct analysis or
the approach based upon the equivalence transformations.

We consider the forced KdV equation

𝑢
𝑡
+ 𝑐𝑢
𝑥
+ 𝛼𝑢𝑢

𝑥
+ 𝛽𝑢
𝑥𝑥𝑥

= 𝐹 (𝑡) , (1)

where 𝑢 represents the elevation of free water surface and
𝛼 and 𝛽 are arbitrary constants which depend upon the
long wave speed, 𝑐. The arbitrary smooth function 𝐹(𝑡) is
the forcing term. The variables 𝑡 and 𝑥 represent time and
space, respectively. This equation was proposed in [2] and
the Hirota’s bilinear approach was used to obtain themultiple
soliton solutions. However, it is worth mentioning that 𝐹(𝑡)
remained unspecified. In [3] the generalized wave transfor-
mation was used to transform a forced KdV equation with
time-dependent coefficients into a homogeneous equation,
and the soliton solutions were obtained by making use of
the solitary wave ansatz. Likewise, the time-dependent coef-
ficients remained arbitrary.The symmetry-based approach is
given in [4–6]; the investigations in these references include
approximate symmetry classification, derivation of some
conservation laws, and the construction of the solutions. As
mentioned earlier, the arbitrary functions assume their forms
in a systematic fashion via themethod of group classification.
This approach has been utilized on similar equations [7, 8] to
the underlying equation.
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Table 1: Classification results.

No. 𝐹 Condition on consts. Extension of principal Lie algebra
1. 𝐹

0
(𝑛 + 𝑡)

−5/3

+

𝑝

5𝛼

𝛼, 𝐹
0
, 𝑝 ̸=0 𝑋

3
= 6𝛼 (𝑛 + 𝑡) 𝜕

𝑡
+ 𝛼 (𝑝𝑡

2

+ 2𝑥) 𝜕
𝑥
+ 2 [𝑝𝑡 − 2 (𝑐 + 𝛼𝑢)] 𝜕

𝑢

2. 𝐹
0
+

𝑞𝑡

3𝛼

𝛼, 𝑞 ̸= 0 𝑋
3
= 6𝛼𝜕

𝑡
+ 𝛼𝑞𝑡

2

𝜕
𝑥
+ 2𝑞𝑡𝜕

𝑢

3. 𝐹
0
(𝑛 + 𝑡)

−5/3

𝐹
0

̸=0 𝑋
3
= 3𝛼 (𝑛 + 𝑡) 𝜕

𝑡
+ 𝛼𝑥𝜕

𝑥
− 2 (𝑐 + 𝛼𝑢) 𝜕

𝑢

4. 𝐹
0

𝐹
0

̸=0

𝑋
3
= 𝜕
𝑡
,

𝑋
4
= 6𝛼𝜕

𝑡
+ 𝛼 (5𝛼𝐹

0
𝑡
2

+ 2𝑥) 𝜕
𝑥
+ 2 [5𝛼𝐹

0
𝑡 − 2 (𝑐 + 𝛼𝑢)] 𝜕

𝑢

Here 𝐹
0
, 𝑛, 𝑝 and 𝑞 are arbitrary constants.

This work is organized as follows. The next section deals
with the generation of the determining equations for Lie
point symmetries and includes the classifying relation for the
forcing term. The functional forms of the forcing term are
specified via the direct analysis of the classifying relation. In
Section 3, some results of the Lie group analysis are utilized
for symmetry reductions and exact solutions. Finally, we
summarize our investigations in Section 4.

2. Lie Group Analysis

In Lie’s algorithm (see [9–11] for more details), a vector field

𝑋 = 𝜉
1

(𝑡, 𝑥, 𝑢) 𝜕
𝑡
+ 𝜉
2

(𝑡, 𝑥, 𝑢) 𝜕
𝑥
+ 𝜂 (𝑡, 𝑥, 𝑢) 𝜕

𝑢
(2)

is a generator of Lie point symmetries of (1) if and only if

𝑋
[3]

(𝑢
𝑡
+ 𝑐𝑢
𝑥
+ 𝛼𝑢𝑢

𝑥
+ 𝛽𝑢
𝑥𝑥𝑥

− 𝐹 (𝑡)) |
(1)

= 0, (3)

where

𝑋
[3]

= 𝑋 + 𝜁
𝑡
𝜕
𝑢
𝑡

+ 𝜁
𝑥
𝜕
𝑢
𝑥

+ 𝜁
𝑥𝑥𝑥

𝜕
𝑢
𝑥𝑥𝑥

(4)

is the third prolongation of the vector field 𝑋. The variables
𝜁’s are given by the formulae

𝜁
𝑡
= 𝐷
𝑡
(𝜂) − 𝑢

𝑡
𝐷
𝑡
(𝜉
1

) − 𝑢
𝑥
𝐷
𝑡
(𝜉
2

) ,

𝜁
𝑥
= 𝐷
𝑥
(𝜂) − 𝑢

𝑡
𝐷
𝑥
(𝜉
1

) − 𝑢
𝑥
𝐷
𝑥
(𝜉
2

) ,

𝜁
𝑥𝑥𝑥

= 𝐷
𝑥
(𝜁
𝑥𝑥
) − 𝑢
𝑥𝑥𝑡
𝐷
𝑥
(𝜉
1

) − 𝑢
𝑥𝑥𝑥

𝐷
𝑥
(𝜉
2

) ,

(5)

where

𝐷
𝑡
= 𝜕
𝑡
+ 𝑢
𝑡
𝜕
𝑢
+ ⋅ ⋅ ⋅ , 𝐷

𝑥
= 𝜕
𝑥
+ 𝑢
𝑥
𝜕
𝑢
+ ⋅ ⋅ ⋅ (6)

are the total derivative operators [10].
The invariance conditions (3) are separated with respect

to the powers of the derivatives of 𝑢, and this yields the
determining equations, which are a system of linear partial
differential equations of homogeneous type in 𝜉

1, 𝜉2, and 𝜂.
It is easy but tedious to generate the determining equations
manually. Nowadays there aremany computer software pack-
ages for symbolic computation, which have been developed
to find symmetries interactively or automatically. However,
we are yet to develop the software package which solves
the group classification problem whether complete or partial
group classification.

The coefficients of the generator of Lie point symmetries
(2), namely, 𝜉1, 𝜉2, and 𝜂, satisfy the determining equations

𝜉
1

𝑢
= 0, 𝜉

2

𝑢
= 0, 𝜂

𝑢𝑢
= 0, 𝜉

1

𝑥
= 0,

𝜂
𝑥𝑢
− 𝜉
2

𝑥𝑥
= 0, 3𝜉

2

𝑥
− 𝜉
1

𝑡
= 0,

𝜉
1

𝐹


(𝑡) + (𝜉
1

𝑡
− 𝜂
𝑢
) 𝐹 (𝑡) − (𝑐 + 𝛼𝑢) 𝜂

𝑥
− 𝛽𝜂
𝑥𝑥𝑥

+ 𝜂
𝑡
= 0,

(𝑐 + 𝛼𝑢) (𝜉
2

𝑥
− 𝜉
1

𝑡
) − 𝜉
2

𝑡
+ 𝛽𝜉
2

𝑥𝑥𝑥
− 𝛼𝜂 − 3𝛽𝜂

𝑥𝑥𝑢
= 0,

(7)

where the subscripts denote partial differentiation with
respect to the indicated variables, and a “prime” represents
total derivative with respect to 𝑡.

The manipulation of (7) leads to the coefficients of Lie
point symmetry generator given by

𝜉
1

= 𝑘
1
𝑡 + 𝑘
2
,

𝜉
2

=

1

3

𝑘
1
𝑥 + 𝑎 (𝑡) ,

𝜂 =

1

3𝛼

[3𝑎


(𝑡) − 2𝑘
1
(𝑐 + 𝛼𝑢)] ,

(8)

where 𝑘
1
, 𝑘
2
are arbitrary constants, and 𝑎(𝑡) is an arbitrary

function which satisfies the classifying relation

5𝛼𝑘
1
𝐹 (𝑡) + 3𝛼 (𝑘

1
𝑡 + 𝑘
2
) 𝐹


(𝑡) = 3𝑎


(𝑡) . (9)

Assume that 𝐹(𝑡) is an arbitrary smooth function of 𝑡; then
from the classifying (9) we obtain

𝑘
1
= 0, 𝑘

2
= 0, 𝑎 (𝑡) = 𝑘

3
𝑡 + 𝑘
4
, (10)

where 𝑘
3
and 𝑘
4
are arbitrary constants.Thus, we have a two-

dimensional principal Lie algebra, which is spanned by the
operators

𝑋
1
= 𝜕
𝑥
, 𝑋

2
= 𝛼𝑡𝜕

𝑥
+ 𝜕
𝑢
. (11)

Our goal is to obtain the functional forms of the forcing term,
𝐹(𝑡), for which the principal Lie algebra is extended. There-
fore, the analysis of the classifying relation (9) considering
the cases 𝑎(𝑡) = 0 and 𝑎


(𝑡) ̸= 0 yields the various forms

of 𝐹(𝑡), and their corresponding extensions of the principal
Lie algebra are given in Table 1. It is worth mentioning that
some of the obtained symmetry classification results are
comparable with those found in [4, 5]. It is, however, noted
that in [6] a more general case is considered.
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Table 2: Table of commutators.

[𝑋
𝑖
, 𝑋
𝑗
] 𝑋

1
𝑋
2

𝑋
3

𝑋
1

0 0 𝛼𝑋
1

𝑋
2

0 0 −3𝑛𝛼
2

𝑋
1
− 2𝛼𝑋

2

𝑋
3

−𝛼𝑋
1

3𝑛𝛼
2

𝑋
1
+ 2𝛼𝑋

2
0

Here [𝑋
𝑖
, 𝑋
𝑗
] = 𝑋
𝑖
(𝑋
𝑗
)−𝑋
𝑗
(𝑋
𝑖
); 𝑖, 𝑗 = 1, 2, 3 is the commutator operation.

3. Symmetry Reductions and Exact Solutions

It can be seen from Table 1 that the symmetry Lie algebra
is three-dimensional for the first three cases and four-
dimensional in the last case. We consider Case 3 to illustrate
the procedure involved in performing similarity reductions.
Since the symmetry Lie algebra is three-dimensional, we look
for solutions invariant under the linear combination of the
operators

𝑋
1
= 𝜕
𝑥
, 𝑋

2
= 𝛼𝑡𝜕

𝑥
+ 𝜕
𝑢
,

𝑋
3
= 3𝛼 (𝑛 + 𝑡) 𝜕

𝑡
+ 𝛼𝑥𝜕

𝑥
− 2 (𝑐 + 𝛼𝑢) 𝜕

𝑢
,

(12)

which are the symmetries of the equation

𝑢
𝑡
+ 𝑐𝑢
𝑥
+ 𝛼𝑢𝑢

𝑥
+ 𝛽𝑢
𝑥𝑥𝑥

= 𝐹
0
(𝑛 + 𝑡)

−5/3

. (13)

In order to obtain all the possible invariant solutions, themost
systematic procedure is to determine the optimal system of
one-dimensional subalgebras [10, 11] for (13). We follow the
approach given in [10] by firstly computing the commutators
of the symmetry Lie algebra (12) and thereafter obtaining the
adjoint representations (the calculations are summarized in
Tables 2 and 3, resp.).

We use Table 3 to simplify the linear combination of
operators (12) given by

Γ = 𝑎
1
𝑋
1
+ 𝑎
2
𝑋
2
+ 𝑎
3
𝑋
3

(14)

for some constants 𝑎
1
, 𝑎
2
, and 𝑎

3
.

Firstly, we let 𝑎
3

̸=0 (take 𝑎
3
= 1). The operator (14)

becomes

Γ = 𝑎
1
𝑋
1
+ 𝑎
2
𝑋
2
+ 𝑋
3
. (15)

We eliminate 𝑎
2
𝑋
2
by acting Ad(𝑒𝑎2𝑋2) on (15) and obtain

Γ


= 𝑎


1
𝑋
1
+ 𝑋
3

(16)

for some constant 𝑎
1
. Likewise, in order to eliminate 𝑎

1
𝑋
1
, we

act on (16) by Ad(𝑒(𝑎


1
/𝛼)𝑋
1
) to get Γ = 𝑋

3
.

Next we let 𝑎
3
= 0 (𝑎

2
̸=0). We take 𝑎

2
= 1, and from (14)

we have

Γ = 𝑎
1
𝑋
1
+ 𝑋
2
. (17)

If 𝑎
1

̸=0 (i.e., 𝑎
1
> 0 or 𝑎

1
< 0 ), then we obtain Γ = 𝜆𝑋

1
+𝑋
2
,

where 𝜆 = ±1.
Finally, we let 𝑎

2
= 𝑎
3
= 0. The operator (14) reduces to

Γ = 𝑋
1
for 𝑎
1
= 1.

Therefore, an optimal system of one-dimensional subal-
gebras is given by {𝑋

1
, 𝑋
2
, 𝜆𝑋
1
+ 𝑋
2
, 𝑋
3
}.

Next we utilize the optimal system to construct the
invariant solutions of (13). However, the invariance under
space translation, that is, 𝑋

1
= 𝜕
𝑥
, is trivial hence, it is not

considered. The other cases are presented as follows.

Case 1. Invariance under 𝑋
2
: the corresponding characteris-

tic system is given by
𝑑𝑡

0

=

𝑑𝑥

𝛼𝑡

=

𝑑𝑢

1

, (18)

the solution of which leads to the invariants

𝐶
1
= 𝑡, 𝐶

2
= 𝑢 −

𝑥

𝛼𝑡

. (19)

Therefore, the invariant solution takes the form

𝑢 (𝑡, 𝑥) = 𝑓 (𝑡) +

𝑥

𝛼𝑡

, (20)

where 𝑓(𝑡) satisfies the reduced equation

𝑐

𝛼𝑡

−

𝐹
0

(𝑛 + 𝑡)
5/3

+

𝑓

𝑡

+

𝑑𝑓

𝑑𝑡

= 0. (21)

Now solving (21) for𝑓(𝑡) and substituting into (20), we obtain
the exact solution

𝑢 (𝑡, 𝑥) =

1

𝑡

[𝑓
0
+ 𝐹
0
{3 +

3𝑛

2 (𝑛 + 𝑡)

} (𝑛 + 𝑡)
1/3

+

𝑥 − 𝑐

𝛼

] ,

(22)

where 𝑓
0
is an arbitrary constant.

Case 2. The invariance under 𝜆𝑋
1
+ 𝑋
2
(𝜆 ̸= 0) yields the

invariant solution

𝑢 (𝑡, 𝑥) = 𝑓 (𝑡) −

𝑥

𝛼𝑡 + 𝜆

, (23)

where 𝑓(𝑡) is an arbitrary smooth function of its argument.
Upon substitution of (23) into (13) and solving the resulting
ordinary differential equation (ODE), we have

𝑓 (𝑡) =

1

𝛼𝑡 + 𝜆

{𝑓
0
− 𝑐𝑡 +

3𝐹
0
(𝜆 − 3𝑛𝛼 − 2𝑡𝛼)

2(𝑛 + 𝑡)
2/3

} , (24)

for an arbitrary contant 𝑓
0
. Therefore, we obtain the exact

solution

𝑢 (𝑡, 𝑥) =

1

𝛼𝑡 + 𝜆

{𝑓
0
− 𝑐𝑡 − 𝑥 +

3𝐹
0
(𝜆 − 3𝑛𝛼 − 2𝑡𝛼)

2(𝑛 + 𝑡)
2/3

} .

(25)

Case 3. Invariance under 𝑋
3
: in this case, the invariant

solution assumes the form

𝑢 (𝑡, 𝑥) =

𝑓 (𝑧)

(𝑛 + 𝑡)
2/3

−

𝑐

𝛼

, (26)

where 𝑧 = 𝑥(𝑛 + 𝑡)
−1/3 is the similarity variable. The function

𝑓(𝑧) is an arbitrary function which satisfies the third-order
ODE

3𝛽

𝑑
3
𝑓

𝑑𝑧
3
+ (3𝛼

𝑑𝑓

𝑑𝑧

+ 2)𝑓 + 𝑧

𝑑𝑓

𝑑𝑧

− 3𝐹
0
= 0. (27)
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Table 3: Table of adjoint representations.

Ad(𝑒𝜖𝑋𝑖 )𝑋
𝑗

𝑋
1

𝑋
2

𝑋
3

𝑋
1

𝑋
1

𝑋
2

𝑋
3
− 𝛼𝜖𝑋

1

𝑋
2

𝑋
1

𝑋
2

𝑋
3
+ 𝜖(3𝑛𝛼

2

𝑋
1
+ 2𝛼𝑋

2
)

𝑋
3

𝑒
𝜖𝛼

𝑋
1

𝑒
−2𝛼𝜖

𝑋
2
+ 3𝑛𝛼 (𝑒

−𝜖𝛼

− 1)𝑋
1

𝑋
3

Here Ad(𝑒𝜖𝑋𝑖 )𝑋
𝑗
= 𝑋
𝑗
− 𝜖[𝑋
𝑖
, 𝑋
𝑗
] + (1/2!)𝜖

2
[𝑋
𝑖
, [𝑋
𝑖
, 𝑋
𝑗
]] − ⋅ ⋅ ⋅ is the adjoint representation where 𝜖 is a real number.

4. Conclusion

In this work, the KdV equation with a forcing term was
investigated using the Lie symmetry approach. The direct
analysis of the classifying equation was employed to obtain
the functional forms of the forcing term,which include power
law and linear and constant time dependence. The three-
and four-dimensional symmetry Lie algebras were obtained,
respectively, for these forms of the forcing term. The optimal
system of one-dimensional subalgebras of the Lie algebra
of the invariant equation with the forcing term having the
power law nonlinearity was obtained. As a result, for the
same invariant equation, exact solutions were derived and the
symmetry reduction was performed in the case where exact
solutions were not obtained.
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The Laplace-Adomian-Pade method is used to find approximate solutions of differential equations with initial conditions. The
oscillation model of the ENSO is an important nonlinear differential equation which is solved analytically in this study. Compared
with the exact solution from other decomposition methods, the approximate solution shows the method’s high accuracy with
symbolic computation.

1. Introduction

In recent years, El Niño/La Niña-Southern Oscillation
(ENSO) is a quasiperiodic climate pattern that occurs across
the tropical Pacific Ocean every five years which has caught
more and more attention of researchers due to its great
destructions. It is coupled with two phases, the warm
oceanic phase, El Niño, and the cold phase, La Niña. Some
methods were applied to consider the numerical simulation,
amongwhich is the famous Adomian decompositionmethod
(ADOM) [1].

Generally speaking, two aspects affect the accuracy of the
ADOM: the calculation of theAdomian decomposition series
and the initial iteration value. In view of these points, various
modified versions are proposed to solve the nonlinear initial
value problems [2–7].

Recently, Tsai and Chen [8–10] suggested a Laplace-
Adomian-Pade method (LAPM) to approximately solve the
initial value problems of differential equations. The method
holds the followingmerits: (a) the Laplace transformation can
be used to “fully” determine the initial iteration value; (b) the
Adomian series is used to linearize the nonlinear terms; (c)
the Pade technique is used to accelerate the convergence and
enlarge the valid area of the approximate solution.

In this paper, we use the method to approximately solve
the ENSOmodel.The approximate solution is comparedwith
other nonlinear techniques in the high order iteration and the
result shows the method’s higher accuracy.

2. Approximate Solutions of the ENSO Model

The air-sea coupled dynamical system was used to describe
the oscillating physical mechanism of the ENSO [11]
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where 𝐶,𝐷, 𝐸, and 𝑅
ℎ
are physical constants, 𝑇 describes the

temperature of the eastern equatorial Pacific sea surface, and
ℎ is the thermo-cline depth anomaly. The model (1) shows
the variations of both eastern and western Pacific anomaly
patterns.

Case I. When 𝐷 = 0 and 0 < 𝜀 ≪ 1, then (1) can be reduced
to
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. (2)

In order to solve (2) with the LAPM, apply the Laplace
transform 𝐿 to both sided of (2) first and we can derive
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Apply the inverse of the Laplace transform 𝐿
−1 and

expand the nonlinear term as an Adomian series [1, 12]; then
(4) can be written as

∞

∑

𝑛=0

V
𝑛
(𝑡) = 𝐿

−1

[

𝑇 (0)

(𝑠 − 𝐶)

] − 𝐿
−1

[

𝜀𝐿 [∑
∞

𝑛=0
𝐴
𝑛
]

(𝑠 − 𝐶)

] , (5)
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Now the iteration formula can be determined for (2) as
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Assuming 𝑇(0) = 𝐶 = 1, the successive approximate
solutions 𝑇
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We can consider a Maple program for the approximation
and set the truncated order as 7 and 12, respectively. The 7th
term approximation and the 12th term approximation can be
obtained as
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Recall that (2) has an exact solution [13]

𝑇 = [

𝜀

𝐶

+ (

1

𝑇(0)
2
−

𝜀

𝐶

) exp (−2𝐶𝑡)]
−(1/2)

. (10)

Setting 𝜀 = 0.00001 in this paper, we apply the Pade-
technique to the approximate solution 𝑇

12
. In order to avoid

the tediousness, the detail expression of the result is omitted
here.

The approximate solutions from the ADOM and the
LAPM are compared using the high iteration solutions
𝑇
12th
[LAPM] and 𝑇

12th
[ADOM] in Table 1, respectively.

The exact solution (10), the approximate solutions
𝑇
12th
[ADOM], 𝑇

12th
[LAPM], and the solution 𝑇12th

[LAM] without the treat-
ment using the Pade-technique are compared in Figure 1.

The results in Table 1 and Figure 1 illustrate that the
LAPM has a higher accuracy, respectively.

Case II. For the coefficients 𝐶 = 𝐷 = 𝐸 = 𝑅
ℎ
= 1 and 𝜀 =

0.00001, (1) reduces to
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Setting the initial condition value 𝑇(0) = ℎ(0) = 1, we can
derive the following iteration formula:
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Table 1: Comparisons between 𝑇
[ADOM], 𝑇[LAPM], and the exact

solution.

𝑡 𝑇
12th
[ADOM] 𝑇

12th
[LAPM] Exact solution

0.0 1.00000000000 1.00000000000 1.00000000000
0.5 1.64870710600 1.64870710600 1.64870710600
1.0 2.71819499800 2.71819499800 2.71819499700
1.5 4.48126178100 4.48126146900 4.48126145500
2.0 7.38709279800 7.38707674000 7.38707669500
2.5 12.1738764100 12.1735250400 12.1735245800
3.0 20.0498629300 20.0452439400 20.0452435100
3.5 32.9785428200 32.9355166300 32.9355172400
4.0 54.1154755000 53.8024166600 53.8023905200
4.5 88.4548189000 86.5781681900 86.5781168700
5.0 143.748571000 134.353636200 134.352939400

where ℎ
0
+⋅ ⋅ ⋅+ℎ

𝑛
is the 𝑛th approximation of ℎ(𝑡). As a result,

for 𝑛 = 12, we can obtain the approximate solution by means
of the LAPM.
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The plotted functions 𝑓(𝑡) and 𝑔(𝑡) show that the iteration
formula is reliable (Figure 2). Now we can analytically inves-
tigate the relationship between the temperature 𝑇 and the
thermo-cline depth ℎ, which is shown in Figure 3.

Remarks. This study only concentrates on the applications
of the Adomian series in the linearization of the nonlinear
equations. For various calculations of the Adomian series,
readers are referred to the recent development of the method
in [3, 4, 14–16] and the applications in fractional different
equations in [17–19]. It is interesting to point out that the
results are the same as those of the one using the variational
iteration method [20].

In the classical ADOM, the inverse operator should be
used. For example, one can need to transform the differential
equation
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𝑚
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into the following equivalent integral equation
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Figure 1: The comparisons of the approximate solutions using
different methods.
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Figure 2: The residual functions: 𝑓(𝑡) and 𝑔(𝑡).

Here∫𝑡
0
⋅ ⋅ ⋅ ∫

𝑡

0
⋅ 𝑑𝑠 ⋅ ⋅ ⋅ 𝑑𝑠⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑚

is called the inverse operator in the
ADOM.

In Tsai and Chen’s method, the solution procedure shows
that the LAPM without using the inverse operator still keeps
approximate solutions of higher accuracies. Furthermore,
the initial iteration function can be readily determined.
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Figure 3: The temperature versus the thermo-cline depth ℎ.

The method also can be extended to fractional differential
equations [21] and 𝑞-difference equations.

3. Conclusions

With symbolic computation, the LAPM is used to approxi-
mately solve the ENSOmodel.We compared the approximate
solutions with those from the ADOM and the LAPM,
respectively. The results show that the LAPM has higher
efficiency which can accelerate the convergence and enlarge
the valid area of the approximate solution.
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