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Oxidative stress plays a major role in metabolic disorders and
a wide range of chronic diseases such as diabetes mellitus,
obesity, metabolic syndrome, aging, cancer, osteoporosis,
rheumatoid arthritis, cardiovascular diseases, and neurode-
generative disorders. In addition, drug-induced organ injury
is well known to be associated with oxidative stress and
inflammation. Considerable evidence indicates that oxidative
stress and inflammation are the key pathophysiological pro-
cesses underpinning these disorders. Therefore, modulation
of oxidative stress represents an important strategy for the
treatment of multiple human diseases.

The transcription factor nuclear factor erythroid 2 related
factor 2 (Nrf2) is the master regulator of the basal and induc-
ible expression of a large network of cytoprotective and anti-
oxidant genes [1]. Under basal conditions, Nrf2 is bound to
Kelch-like ECH-associated protein 1 (Keap1) which functions
as a sensor protein against electrophiles and reactive oxygen
species (ROS). Upon cell stimulation, Nrf2 dissociates from
Keap1 and activated Nrf2 is translocated into the nucleus
where it binds to the antioxidant response element (ARE)
and leads to expression of target genes including heme oxy-
genase-1, NAD(P)H:quinone oxidoreductase 1, superoxide
dismutase, catalase, glutathione peroxidase, and glutathione-

S-transferase [2]. Thus, Nrf2 plays a role as a multiorgan pro-
tector against oxidative stress via inducing target genes. In
recent years, Nrf2 has shown promise as a novel therapeutic
target in diseases with underlying oxidative and inflammatory
stress components [3–6].

Peroxisome proliferator-activated receptors (PPARs) are
proteins that belong to the nuclear receptor family of
ligand-activated transcription factors. The three main forms
of peroxisome proliferator-activated receptors (PPARα,
PPARβ/δ, and PPARγ) belong to a superfamily of nuclear
receptors that function as transcription factors regulating
the expression of multiple genes. Upon ligand binding, they
form heterodimers with retinoid X receptor (RXR) and result
in modulation of gene transcription [7]. PPARs regulate a
variety of biological processes in various tissues. Among their
effects, PPARα controls lipid metabolism and inflammatory
processes [8], PPARβ/δ regulates glucose utilization, cell
differentiation, and inflammation [9], and PPARγ is involved
in adipocyte differentiation, glucose metabolism, and inflam-
matory pathways [10]. Upon activation, PPARs are known to
exert anti-inflammatory and antioxidant properties via
suppressing nuclear factor-κB, decreasing ROS production,
and upregulating the expression of antioxidant enzymes [11].
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Recent reports point to coactivation and possible
interaction between PPARs and Nrf2 through multiple
mechanisms. Coactivation of PPARγ and Nrf2 has been
shown to protect against oxidative stress, inflammation,
and carcinogenesis [4, 5, 12–14]. Ongoing and future
research will probably provide efficient PPARs and Nrf2
modulating agents for preventing and treating metabolic
and other common disorders.

This special issue encompasses cutting edge research and
review articles focusing on the role of Nrf2 and PPARs in
modulating oxidative stress and inflammation. It includes 8
novel research articles and 3 reviews describing the role of
Nrf2 and PPARs in various pathological conditions, summa-
rized as follows:

(1) Drug-induced oxidative stress and hepatotoxicity

Research article: “Gamma-Glutamylcysteine Ethyl Ester
Protects against Cyclophosphamide-Induced Liver Injury
and Hematologic Alterations via Upregulation of PPARγ
and Attenuation of Oxidative Stress, Inflammation, and
Apoptosis.” In this article, S. Alqahtani and A. M. Mahmoud
introduced evidence demonstrating the involvement of
PPARγ in mediating the hepatoprotective effect of the syn-
thetic glutathione precursor gamma-glutamylcysteine ethyl
ester. Activation of PPARγ resulted in enhancement of
antioxidant defenses and attenuation of cyclophosphamide-
induced oxidative stress, inflammation, and apoptosis.

Review article: “Collaborative Power of Nrf2 and
PPARγ Activators against Metabolic and Drug-Induced
Oxidative Injury.” C. Lee reviewed the general features
of PPARγ and Nrf2 signaling pathways in the context
of oxidative stress conditions. One of the main sections
of this review was the role of natural and synthetic
Nrf2 and PPARγ activators and the crosstalk between Nrf2
and PPARγ in alleviating drug-related oxidative stress
and damage.

(2) Endocrine system and diabetes

Research article: “NRF2 Plays a Critical Role in Both
Self and EGCG Protection against Diabetic Testicular
Damage.” This study by C. Pan et al. aimed to evaluate
the protective role of epigallocatechin gallate (EGCG)
against diabetic testicular damage and addressed the
requirement of Nrf2. Eight-week-old normal and diabetic
male C57BL/6 wild-type and Nrf2 knockout mice were
treated with EGCG for 24 weeks. Nrf2 knockout abrogated
both self and EGCG protection against diabetes-induced
testicular weight loss, reduction in spermatozoa count,
apoptotic cell death, endoplasmic reticulum (ER) stress,
inflammation, and oxidative damage. Therefore, this study
provides evidence that Nrf2 plays a central role in mediat-
ing the protective effect of EGCG against diabetic-induced
testicular damage.

Research article: “Activation of the Nrf2-Keap 1
Pathway in Short-Term Iodide Excess in Thyroid in Rats.”
The effect of normal and high iodide intake on the antiox-
idative action of sulfredoxin (Srx) and peroxiredoxin 3

(Prx 3) via Nrf2-Keap 1 pathway has been investigated
in the thyroid of rats. The expression of Srx and Prx 3
are known to be regulated via Nrf2. Srx is a member of
the oxidoreductase family that contributes to cellular redox
balance, and Prx 3 is a critical scavenger for mitochon-
drial ROS. The results showed that the activation of
Nrf2 signaling, Srx, and Prx 3 may play a key role in pro-
tecting the thyroid gland from excess iodide-induced
oxidative stress.

Research article: “Antioxidant Treatment Induces Hyper-
activation of the HPA Axis by Upregulating ACTH Receptor
in the Adrenal and Downregulating Glucocorticoid Recep-
tors in the Pituitary.” J. P. Prevatto et al. tested the hypothesis
that an imbalance in the redox system not only increases ROS
production but also alters the homeostasis of the
hypothalamus-pituitary-adrenal (HPA) axis culminating in
its hyperactivation. The results showed activated HPA axis,
increased levels of systemic glucocorticoids, decreased
expression of Nrf2 and HO-1 in the pituitary, upregulated
adrenocorticotropic hormone (ACTH) receptors in the adre-
nal gland, and downregulated glucocorticoid receptors in the
pituitary. Therefore, the indiscriminate use of antioxidants
may represent a risk to develop several morbidities related
to persistent hypercorticoidism.

(3) Nonalcoholic steatohepatitis

Research article: “Genetic Nrf2 Overactivation Inhibits
the Deleterious Effects Induced by Hepatocyte-Specific c-
met Deletion during the Progression of NASH.” Based
on the previous findings that overexpression of Nrf2 was
able to reduce triglyceride accumulation and ROS produc-
tion and suppress the levels of liver steatosis and fibrosis
in c-met-deficient hepatocytes, P. Ramadori et al. provided
in vivo evidence for the role of Nrf2 in preventing the
deleterious effects induced by hepatocyte-specific c-met
deletion during the progression of nonalcoholic steatohe-
patitis (NASH). In c-met/Keap1 knockout mice fed a
methionine-choline-deficient (MCD) diet, Nrf2 overex-
pression reduced triglycerides accumulation, dampened
the exacerbation of oxidative stress, drastically reduced
the number of apoptotic cells, decreased the influx of infil-
trating inflammatory cells, and attenuated the enhanced
development of fibrosis.

(4) Hepatic encephalopathy

Research article: “Commiphora molmol Modulates
Glutamate-Nitric Oxide-cGMP and Nrf2/ARE/HO-1 Path-
ways and Attenuates Oxidative Stress and Hematological
Alterations in Hyperammonemic Rats.” In a rat model of
hyperammonemia, a serious complication of liver disease
whichmay lead to encephalopathy and death, A.M.Mahmoud
et al. investigated the effect of Commiphora molmol resin
extract on the glutamate-NO-cGMP and Nrf2/ARE/HO-1
signaling pathways. Activation of Nrf2 by C. molmol resin
extract protected against excess ammonia via attenuation
of oxidative stress and inflammation and modulation of
the glutamate-NO-cGMP signaling pathway. In addition,
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C. molmol prevented hematological alterations and amelio-
rated both the activity and the expression of cerebral
Na+/K+-ATPase and therefore might be a promising protec-
tive agent against hyperammonemia.

(5) Chronic kidney disease

Research article: “Expression of the NRF2 Target Gene
NQO1 Is Enhanced inMononuclear Cells in Human Chronic
Kidney Disease.” Reduced Nrf2 activity has been reported in
models of chronic kidney disease (CKD). In this study, J.
Shen et al. quantified the NQO1 gene expression as a readout
parameter for Nrf2 signaling in monocytes of patients with
CKD with and without dialysis therapy. When compared to
healthy control subjects, CKD patients showed an upregu-
lated gene expression of Nrf2 and NQO1 and a slight increase
in the NQO1 protein content in monocytes from these
patients. The study concluded that Nrf2 activation in mono-
cytes of CKD patients is modulated through an influence on
both gene expression and protein content of Nrf2 targets in a
complex way.

(6) Cardiovascular function and disease

Review article: “The Role of Nrf2 in Cardiovascular
Function and Disease.” In this review article, S. Satta et al.
summarized the mechanisms regulating the activity of
Nrf2 and the role of Nrf2 in preventing mitochondrial dys-
function in cardiovascular disease. The authors highlight
the central role of Nrf2 signaling in endothelial dysfunction,
atherosclerosis, vascular calcification, hypertension, diabetic
cardiomyopathy, and in the aging heart. In the last section
of this review, the authors provide a summary of the role of
Nrf2 activators in the treatment of cardiovascular disease.

Research article: “Probucol Protects Rats from Cardiac
Dysfunction Induced by Oxidative Stress Following Cardio-
pulmonary Resuscitation.” The objective of this study was
to investigate the protective effect of the lipid-lowering agent
probucol on cardiac injury induced by cardiac arrest (CA) in
rats. CA is one of the most critical cardiovascular phenom-
ena. Probucol protected against CA in rats as evidenced by
the improved restoration of spontaneous circulation (ROSC)
rate, alleviated oxidative stress, prolonged survival time, and
improved hemodynamic parameters, and cardiac function.
These protective effects of probucol are mediated through
activating Nrf2 signaling.

(7) Pregnancy disorders

Review article: “Modulatory Mechanism of Polyphenols
and Nrf2 Signaling Pathway in LPS Challenged Pregnancy
Disorders.” In this review article, T. Hussain et al. focused
on the modulatory activity of flavonoids on oxidative
stress-mediated pregnancy insults. They describe the role of
Nrf2 activation in cases of pregnancy disorders.

The editors anticipate this special issue to be of inter-
est to the readers and expect researchers to benefit in
making further progress in the understanding of Nrf2 and
PPARs activators.
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Objective. To investigate the protective effect of probucol on induced cardiac arrest (CA) rats and possible mechanisms.
Methods. Sprague Dawley rats were orally administrated with probucol at different dosage or vehicle for 5 days and
subjected to a CA model by electrical stimulation, followed by cardiopulmonary resuscitation (CPR). The return of
spontaneous circulation (ROSC) rate, antioxidant enzyme activities, and lipid oxidation markers were measured in serum and
myocardium. Hemodynamic parameters and myocardial functions of animals were analyzed. Expression of erythroid-derived
2-like 2 (NFE2L2) and Kelch-like ECH-associated protein 1 (KEAP1) in the myocardium were examined with
immunohistochemistry. Results. Probucol treatment significantly increased the ROSC rate and survival time of CA-induced
rats. After ROSC, levels of oxidation-specific markers were decreased, while activities of antioxidant enzymes were increased
significantly in probucol treatment groups. The probucol treatment improves hemodynamic parameters and myocardial
functions. These parameter changes were in a dose-dependent manner. In the probucol treatment groups, the expression of
KEAP1 was downregulated, while that of NFE2L2 was upregulated significantly. Conclusion. In the CA-induced rat model,
probucol dose dependently improved the ROSC rate, prolonged survival time, alleviated oxidative stress, and improved cardiac
function. Such protective effects are possibly through regulations of the KEAP1-NFE2L2 system.

1. Introduction

Cardiac arrest (CA) is one of the most critical cardiovascular
phenomena. It is also the major cause of sudden cardiac
death [1, 2]. During CA, the heart fails to pump blood
around the body, and this results in ischemic damage. If the
blood supply is not restored quickly, irreversible alterations
to the endocrine system and the neural and/or humoral
mechanisms will take place [3]; this leads to organ dysfunc-
tion and even failure of vital organs such as the heart, kidney,
and brain. The severity of organ damage is related to the
duration of ischemia and hypoxia and the time to restoration
of spontaneous circulation (ROSC) [4]. Cardiopulmonary
resuscitation (CPR) is the most effective first-aid measure
for CA. However, significant improvements in resuscitation

success rates, as well as in the long-term survival and quality
of life of patients, have not been observed. In addition, fol-
lowing successful CPR, ROSC occurs, and large amounts of
oxygen reactive species (ROS) are generated by mitochondria
in ischemic neuronal tissues resulting in oxidative stress and
extensive reperfusion injury [5]. Therefore, adequate post-
ROSC reperfusion of vital organs is crucial to improving
resuscitation success rates and injury reduction [6]. To date,
treatments that can positively improve organ function and
patient prognosis remain unavailable [7] Over recent years,
many studies have focused on using drugs to alleviate oxida-
tive stress and ischemic reperfusion injury. In particular,
drugs used against oxidative stress play an important role
in improving the success rate of CPR. Probucol is a lipid-
lowering agent usually used to treat hypercholesterolemia.
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It also exhibits a potent action against oxidative stress [8, 9].
It is still unclear whether probucol affects post-CA ROSC and
CA-related injury. In the present study, we observed how
probucol treatment changed oxidative stress, hemodynamics,
myocardial function, and short-term survival rate in rats
following ROSC and analyzed the protective role of probucol
in oxidative stress-induced cardiac dysfunction and the
mechanisms involved.

2. Materials and Methods

2.1. Ethics Statement. This project was approved by the
Ethics Committee of the Hospital of the University of
Electronic Science and Technology of China and Sichuan
Provincial People’s Hospital, Chengdu, Sichuan, China.
The animal study was approved by Animal Experimenta-
tion Ethics Committee. All rats were first acclimatized and
housed at the research animal laboratory during the exper-
imental period. All experiments were performed in accor-
dance with relevant guidelines and regulations, including
any relevant details.

2.2. Animals. Fifty Sprague Dawley, specific-pathogen-free
rats weighing 300± 20 g (25 males and 25 females) were
provided by the Shanghai Laboratory Animal Center of the
Chinese Academy of Sciences (Shanghai, People’s Republic
of China). All diet used met the National Research Council
(NRC) nutrient specifications. The rats were fed a standard
granulated feed and allowed to drink purified water ad
libitum. Before the experiments, all the rats were fed with dif-
ferent dosage of probucol or vehicle through gastric gavage
for 5 days. The night before an experiment, the rats were
fasted but allowed to drink water ad libitum.

For each set of experiments, rats were divided into five
groups: sham-operated (n = 10); animal model (n = 10);
low-dose probucol (4mg/kg) (n = 10); medium-dose pro-
bucol (8mg/kg) (n = 10); and high-dose probucol (16mg/kg)
(n = 10). In the sham-operated group, the procedure used
was the same as with the other groups, but CA was not
triggered. Unlike the three treatment groups (low-, medium-,
and high-dose probucol), the rats in the CA model group
were not treated with probucol.

2.3. Materials and Equipment. Probucol (0.125 g tablets) was
obtained from Qilu Pharmaceutical Co. Ltd. (Shandong
Sheng, People’s Republic of China). Before feeding, probucol
was suspended in 2ml of 0.5% carboxymethyl cellulose
sodium salt (CMC-Na) solution. The assay kits for MDA,
catalase (CAT), glutathione peroxidase (GPx), glutathione
(GSH), and superoxide dismutase (SOD) were obtained from
Nanjing Jiancheng Bioengineering Institute (Nanjing,
People’s Republic of China). The rabbit anti-murine KEAP1
(primary antibody), the rabbit anti-murine NFE2L2
(primary antibody) antibodies, and the rabbit two-step kit
(secondary antibody) were purchased from Bioss (Beijing,
People’s Republic of China). Other reagents used had a
known high standard of purity (analytical grade). The
TKR-200C small animal ventilator was provided by Beijing
Yatai Kelong Instrument Technology Co. Ltd. (Beijing,

People’s Republic of China). An automatic biochemistry
analyzer was obtained from Shenzhen iCubio Biomedical
Technology Co. Ltd. (Shenzhen, People’s Republic of China),
and the BL-420F Data Acquisition & Analysis System was
obtained from Chengdu Techman Software Co. Ltd.
(Chengdu, People’s Republic of China).

2.4. Methods

2.4.1. Animal Model of Cardiac Arrest (CA). The animal
model of CA was established with electrical stimulation of
the esophagus. In brief, each rat was anesthetized with an
intraperitoneal injection of pentobarbital (60mg/kg). Then,
the rat was placed on a small animal ventilator (tidal volume:
7.5ml/kg; breathing rate: 80 breaths/min) and underwent a
tracheotomy. A catheter was inserted into the right femoral
artery to monitor blood pressure, and a probe was inserted
into each of the upper limbs to record the standard lead II
electrocardiogram. Once the typical left ventricular pressure
waveform appeared, a bipolar pacing electrode lead was
inserted into the rat’s mouth and then the esophagus. The
rat rested for 10min; this rest period was followed by electri-
cal stimulation of the esophagus (frequency: 50Hz; pulse
width: 15ms; amplitude: 6mA; duration: 120 s). CA lasted
for 5min, and CPR was initiated when the systolic arterial
pressure dropped to 20mmHg. During CPR, cardiac com-
pression was performed, and pure oxygen was given. If a
spontaneous cardiac rhythm was not restored within 1min,
epinephrine was injected. ROSC was defined as the restora-
tion of a spontaneous cardiac rhythm, the presence of a
supraventricular rhythm, and a mean arterial pressure
(MAP)≥ 60mmHg persisting for 10min. If ROSC was not
achieved after 10min of CPR, the rat was considered dead
and was excluded from the study. The rate of ROSC was
calculated as follows:

ROSC rate  % = n
N

× 100%, 1

where n= the number of rats with ROSC and N= the total
number of rats with CA.

2.4.2. Determination of Biochemistry Parameters. All rats
were sacrificed 12 hours after ROSC. The serum samples
were collected from right ventricle blood immediately after
animal death. Then, the rat hearts were harvested, and the left
ventricular myocardial tissue was collected. For each sample,
half of the myocardial tissue was homogenized and filtered to
collect fluid for biochemistry assay following manufacturer’s
protocols. The remainder of the tissue was fixed in 4% para-
formaldehyde and used for immunohistochemistry analysis.

Ten [10] of random serum and myocardial tissue extract
samples from each experimental group were used to measure
a panel of major antioxidant enzymes including catalase
(CAT), glutathione peroxidase (GPx), and superoxide
dismutase (SOD) for the antioxidant actions of probucol.
We also measured the malondialdehyde (MDA) levels.
All the biochemistry assay kits were purchased from
Nanjing Jiancheng Bioengineering Institute (Nanjing,
People’s Republic of China).

2 Oxidative Medicine and Cellular Longevity



2.4.3. Hemodynamic Monitoring. Twelve hours after ROSC,
hemodynamic monitoring for heart rate (HR), MAP, maxi-
mal rate of rising of left ventricular pressure (+dP/dtmax),
and maximal rate of fall of left ventricle pressure (−dP/dtmax)
was conducted.

2.4.4. Myocardial Function Monitoring. Twelve hours after
ROSC, the following parameters were measured with ultraso-
nography: left ventricular end-diastolic diameter (LVEDD),
left ventricular end-systolic diameter (LVESD), left ventricu-
lar ejection fraction (LVEF), and short-axis shortening.

2.4.5. Immunohistochemistry Assay of KEAP1 and NFE2L2
Expression. Streptavidin-biotin-peroxidase immunohisto-
chemistry was used to assay KEAP1 and NFE2L2; immuno-
reactive cells were defined as those with light brown or
brown granules present in the cytoplasm. Immunoreactive
cells were counted in five visual fields (×200 magnification)
randomly selected in each slide. The staining intensity of
slides was determined as follows: 0—immunoreactive cell
count≤ 10%; 1 point—immunoreactive cell count = 11–30%;
2 points—immunoreactive cell count = 31–50%; 3 points—
immunoreactive cell count = 51–70%; and 4 points—
immunoreactive cell count> 71%. The staining intensity
of immunoreactive cells was determined as follows:
0—same color as the background or no stain; 1 point—
light brown; 2 points—pale brown; and 3 points—brown.

2.4.6. Western Blot. Experimental rats were sacrificed 12
hours after ROSC. Then, the rat hearts were harvested
and the left ventricular myocardial tissue was collected,
homogenized, and lysed with lysis buffer (Cell Signaling
Technology, Boston, MA, USA) containing 0.5mM of phe-
nylmethanesulfonyl fluoride (PMSF) (Sigma-Aldrich, St.
Louis, MO, USA). Protein concentration was determined
by BCA protein assay (Thermo Fisher Scientific, Grand
Island, NY, USA). Samples of 25μg protein were fractionated
by SDS-PAGE in 4–20% gradient Tris-glycine precast gels
(Invitrogen) and transferred to a polyvinylidene difluoride
(PVDF) membrane (Millipore, Billerica, MA, USA). The
membrane was incubated for 1 hour in blocking solution
containing 5% nonfat milk powder and 0.1% Tween-20,
pH 7.6. This was followed by an overnight incubation at
4°C in blocking solution containing rabbit primary anti-
bodies against KEAP1 (D6B12, Cell Signaling Technology,
Boston, MA, USA). Subsequently, the labeled proteins
were visualized by incubation with a horseradish peroxi-
dase- (HRP-) conjugated anti-goat or rabbit IgG (1 : 2000;
Santa Cruz Biotechnology) followed by development with
a chemiluminescence substrate for HRP (Thermo Fisher
Scientific). The images of Western blots were captured by
GE imageQuant.

2.5. Data Analysis. Measurement data are expressed as
mean± standard deviation (x ± s); enumeration data are
expressed as percentages. All data were analyzed using SPSS
20.0 software (IBM Corporation, Armonk, New York,
USA). Differences among groups were analyzed with a one-
way ANOVA; differences between groups were analyzed with

a t-test. Enumeration data were analyzed with a Chi-square
test. P < 0 05 was deemed statistically significant.

3. Results

3.1. Effect of Probucol on ROSC Rate. The average of success
rate of CA was 80% (40/50). As shown in Figure 1, ROSC
rates after CPR in CA-induced rats were 60%, 60%, and
80% in the three probucol treatment groups. In the CAmodel
group without probucol treatment, the ROSC rate was 50%.
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Figure 1: Effect of different dosage of probucol on the return of
spontaneous circulation (ROSC) rate in rats after induced cardiac
arrest (CA) and cardiopulmonary resuscitation (CPR). Data are
from three sets of experiments and expressed in relative percentage
ROSC rate and as mean± SD. ∗∗P < 0 001. n.s.: not significant.
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Figure 2: Effect of different dosage of probucol on survival time
following ROSC of CA model-induced rats. Data use death as an
end point and are expressed as Kaplan–Meier plot with the time
(days) against relative percentage survival rate.
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The ROSC rate differed significantly between the high-dose
group and the animal model group (P = 0 001).

3.2. Effect of Probucol on Short-Term Survival Rate. As shown
in Figure 2, the median survival time differed significantly
between the probucol treatment groups (3.3, 5.5, and
6.5 d, resp.) and the animal model group (2.1 d) (P = 0 01
with one-way ANOVA). Survival was significantly more
prolonged in the high-dose group than in the other two
treatment groups.

3.3. Effect of Probucol on Plasma MDA Level and Antioxidant
Enzymes Post-CA ROSC

3.3.1. Effect of Probucol on Systemic Oxidative Parameters.
Twelve hours after ROSC, compared with the sham-
operated group, the animalmodel groupsdisplayed significant
increase in serum MDA levels (P < 0 01) but significant
decreases in the activity of antioxidant enzymes: CAT,

GPx, GSH, and SOD (P < 0 01) (Table 1). Compared to
the untreated animal CA model group, the probucol
treatment group, especially the medium- and high-dose
groups, displayed significant decrease in serum MDA levels
(P < 0 01). In contrast, compared to the untreated CA model
group, the probucol treatment groups displayed significant
increases in the activity of CAT, GPx, GSH, and SOD
(P < 0 05 or P < 0 01). These changes followed a dose-
dependent pattern across the probucol treatment groups,
that is, some parameters differed significantly between the
medium- and high-dose and low-dose groups (P < 0 05 or
P < 0 01) and between the high-dose and medium-dose
groups (P < 0 05).

3.3.2. Effect of Probucol on Myocardial Oxidative Stress
Parameters. Twelve hours after ROSC, compared with
the sham-operated group, the animal model groups
displayed significant increases in myocardial MDA levels

Table 1: Effect of probucol on serum MDA and antioxidant enzyme activities 12 hours after ROSC (x ± s; n = 10).

Group MDA (mmol/l) CAT (U/l) GPx (U/l) GSH (U/l) SOD (U/l)

Sham operated 1.16± 0.12 2.32± 0.76 1.62± 0.47 1.47± 0.45 1.80± 0.43
CA model 3.07± 0.67∗∗ 0.97± 0.32∗∗ 0.75± 0.23∗∗ 0.65± 0.10∗∗ 0.75± 0.21∗∗

CA+ low dose 2.98± 0.93 1.04± 0.43 1.11± 0.61† 0.83± 0.25 1.03± 0.31†

CA+medium dose 1.94± 0.45‡§ 1.77± 0.55‡§ 1.42± 0.40‡ 1.04± 0.52†§ 1.33± 0.53†

CA+high dose 1.45± 0.46‡¶†† 2.02± 0.74‡¶†† 1.50± 0.35‡§ 1.28± 0.40‡§ 1.49± 0.35‡§
∗∗P < 0 01 versus the sham-operated group; †P < 0 05 and ‡P < 0 01 versus the animal CA model group; §P < 0 05 and ¶P < 0 01 versus the low-dose
group; ††P < 0 05 versus the medium-dose group. CAT: catalase; GPx: glutathione peroxidase; GSH: glutathione; MAD: malondialdehyde; ROSC:
return of spontaneous circulation; SOD: superoxide dismutase.

Table 2: Effect of probucol on myocardial MDA and antioxidant enzyme activities 12 hour after ROSC (x ± s; n = 10).

Group MDA (mmol/l) CAT (U/l) GPx (U/l) GSH (U/l) SOD (U/l)

Sham operated 3.18± 0.33 3.75± 0.82 26.06± 3.47 23.53± 2.54 1.94± 0.61
CA model 5.55± 1.07∗∗ 1.82± 0.40∗∗ 15.76± 3.02∗∗ 13.65± 2.11∗∗ 0.84± 0.34∗∗

CA+ low dose 4.80± 0.76 1.99± 0.34 19.56± 2.64† 17.43± 2.91† 1.21± 0.42†

CA+medium dose 3.43± 0.83†§ 2.54± 0.82‡§ 19.34± 2.79‡ 19.98± 3.02†§ 1.47± 0.60‡

CA+high dose 3.29± 0.46‡¶ 3.21± 0.75‡¶†† 22.00± 2.35‡§†† 19.28± 1.45‡§ 1.71± 0.63‡§
∗∗P < 0 01 versus the sham-operated group; †P < 0 05 and ‡P < 0 01 versus the animal model group; §P < 0 05 and ¶P < 0 01 versus the low-dose group;
††P < 0 05 versus the medium-dose group. CAT: catalase; GPx: glutathione peroxidase; GSH: glutathione; MAD: malondialdehyde; ROSC: return of
spontaneous circulation; SOD: superoxide dismutase.

Table 3: Effect of probucol on hemodynamic parameters 12 hours after ROSC (x ± s; n = 10).

Group HR/min MAP (mmHg) +dP/dtmax −dP/dtmax

Sham operated 420.31± 17.41 134.44± 4.91 6145.63± 348.09 4903.41± 278.45

CA model 336.63± 20.31∗∗ 94.62± 7.64∗∗ 3533.01± 135.81∗∗ 2698.25± 199.32∗∗

CA+ low dose 391.34± 18.76‡ 103.71± 4.92 3865.41± 219.76† 2937.49± 301.76†

CA+medium dose 394.20± 17.76‡ 105.29± 6.29 3904.03± 178.62‡§ 3231.01± 210.93‡§

CA+high dose 408.54± 16.29‡ 114.94± 7.09‡§†† 4376.29± 185.73‡¶‡‡ 3813.13± 108.82‡¶‡‡
∗∗P < 0 01 versus the sham-operated group; †P < 0 05 and ‡P < 0 01 versus the animal model group; §P < 0 05 and ¶P < 0 01 versus the low-dose group;
††P < 0 05 and ‡‡P < 0 01 versus the medium-dose group. +dP/dtmax: maximal rate of rise of left ventricular pressure; −dP/dtmax: maximal rate of fall of
left ventricular pressure HR: heart rate; MAP: mean arterial pressure; ROSC: return of spontaneous circulation.
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Table 4: Effect of probucol on myocardial function 12 hours after ROSC (x ± s; n = 10).

Group LVESD/mm LVEDD/mm LVEF (%) Short-axis shortening (%)

Sham operated 3.31± 0.31 4.57± 0.54 83.23± 3.80 50.54± 3.14
CA model 5.27± 1.01∗∗ 7.98± 0.64∗∗ 62.78± 4.30∗∗ 36.25± 2.42∗∗

CA+ low dose 5.02± 0.78 6.76± 0.13† 65.74± 4.21 37.59± 2.51
CA+medium dose 4.50± 0.21† 5.89± 0.59‡ 68.43± 2.96† 41.45± 3.49†§

CA+high dose 3.27± 0.56‡¶†† 4.94± 0.70‡§†† 73.29± 2.08‡¶†† 48.81± 3.45‡¶††
∗∗P < 0 01 versus the sham-operated group; †P < 0 05 and ‡P < 0 01 versus the animal model group; §P < 0 05 and ¶P < 0 01 versus the low-dose group;
††P < 0 05 versus the medium-dose group. LVEDD: left ventricular end-diastolic diameter; LVEF: left ventricular ejection fraction; LVESD: left
ventricular end-systolic diameter; ROSC: return of spontaneous circulation.

(a) (b)

(c) (d)

(e)

Figure 3: Effect of different dosage of probucol on myocardial KEAP1 expression in CPR model rats. Representative pictures of
immunohistochemistry with anti-KEAP1 as shown as: (a) sham-operated group, (b) animal model group, (c, d, e) low-, medium-, and
high-dose probucol groups, respectively. CPR= cardiopulmonary resuscitation; KEAP1 =Kelch-like ECH-associated protein 1.
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and significant decreases in the myocardial activity of CAT,
GPx, GSH, and SOD (P < 0 01) (Table 2). Among the animal
model groups, myocardial MDA levels decreased signifi-
cantly, but the myocardial activity of CAT, GPx, GSH,
and SOD increased significantly (P < 0 05 or P < 0 01)
in the probucol treatment groups. These changes
followed a dose-dependent pattern across the probucol
treatment groups.

3.4. Effect of Probucol on Hemodynamics. The hemodynamic
parameters at baseline did not differ significantly between
the study groups before the CA model was established.

Twelve hours after ROSC, compared with the sham-
operated group, the animal model groups displayed
significant decreases in HR, MAP, +dP/dtmax, and −dP/
dtmax (P < 0 01) (Table 3). Compared to the untreated
CA model group, the probucol treatment groups
displayed significant improvements in HR, MAP, +dP/
dtmax, and −dP/dtmax. These indicators showed an
upward trend, and the difference was statistically signifi-
cant (P < 0 05 or P < 0 01). In particular, +dP/dtmax and
−dP/dtmax changed more significantly and in a dose-
dependent manner across the treatment groups (P < 0 05
or P < 0 01).

(a) (b)

(c) (d)

(e)

Figure 4: Effect of different dosage of probucol on myocardial KEAP1 and NFE2L2 expression in CPR model rats. Representative pictures of
immunohistochemistry with anti-KEAP1 as shown as: (a) sham-operated group, (b) animal model group, (c, d, e) low-, medium-, and high-
dose probucol groups, respectively. CPR= cardiopulmonary resuscitation; NFE2L2 = nuclear factor, erythroid-derived 2-like 2.
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3.5. Effect of Probucol on Myocardial Function. Twelve hours
after ROSC, compared with the sham-operated group, the
animal model groups displayed significant increases in
LVESD and LVEDD (P < 0 01) and significant decreases in
LVEF and short-axis shortening (P < 0 01) in the animal
model group (Table 4). Compared to the untreated CA
model group, the high-dose group displayed significant
decreases in LVESD and LVEDD (P < 0 05 or P < 0 01)
and significant increases in LVEF and short-axis shortening
(P < 0 05 or P < 0 01). In addition, these parameters
changed in a dose-dependent manner across the probucol
treatment groups.

3.6. Effect of Probucol on the Myocardial Expression of KEAP1
and NFE2L2. As shown in Figures 3 and 4, KEAP1 and
NFE2L2 protein expression tended to show an opposite
trend in each group. Compared to the sham-operated
group, the KEAP1 expression was upregulated significantly;
but NFE2L2 expression was downregulated significantly in
the animal model groups (P < 0 01) (Table 5). Compared
to untreated CA model group, KEAP1 expression was
downregulated significantly, but NFE2L2 expression was
upregulated significantly in the probucol treatment groups
(P < 0 05 or P < 0 01) and more significantly so in the
high-dose group (P < 0 01). Such an effect followed a dose-
dependent pattern.

To confirm on Table 5, we performed Western blotting
analysis using myocardial tissue lysates from the experimen-
tal rats. Figure 5 showed that comparing to the sham control
(lane b), the CA rat model myocardial tissue contains
relatively much more KEAP1 protein level (lane c). The treat-
ment with probucol has dose-dependent reduction of the
KEAP1 level 12 hours after ROSC (lanes d–f). Furthermore,
the KEAP1 activity is primarily in the cytosolic fraction of the
myocardial tissue (lanes g and h). These data are in
agreement with the immunohistochemistry results.

4. Discussion

Cardia arrest (CA) is a serious threat to health and a major
social and economic burdens. With continuous improve-
ment in CPR techniques, ROSC rates continue to increase;

nevertheless, the overall post-ROSC mortality rate remains
at around 70% [10]. In the clinical setting, it is difficult to
increase the postresuscitation survival rate and improve the
long-term prognosis of patients affected by CA. CA usually
results from malignant arrhythmias secondary to heart dis-
ease [11]. Therefore, early control of arrhythmias, especially
ventricular fibrillation, is critical to the management of CA.
Postcardiac arrest syndrome (PCAS) describes the spectrum
of organ dysfunction following ROSC in patients suffering
CA; it is the most dangerous consequence of CA. PCAS
involves important pathological processes, such as oxidative
stress, cardiac dysfunction, hemodynamic changes, and
reperfusion injury; these processes are closely associated with
the low survival rate after ROSC [12–14]. In clinical settings,
epinephrine is the most potent vasoconstrictor agent, and it
can increase mean arterial pressure (MAP), promote blood
redistribution, and maintain blood supply to vital organs
during CPR [15]. Epinephrine has been shown to increase
the success rate of CPR significantly, although it has an
adverse effect on microcirculation perfusion and the long-
term survival rate of patients [16]. Hence, finding drugs that
alleviate disturbances in microcirculation after ROSC and
improve patient prognosis is key to the prevention and
management of PCAS. Here, we tested probucol, an effective
lipid-lowering agent that possesses potential antioxidative
action and may help the body fight against high levels of
reactive oxygen species [17].

In the present study, we established a rat model of CA by
electrically stimulating the esophagus. This model was able to
achieve more than 80% of success rate in rats. Among those
CA-induced rats, the ROSC rate increased in all the probucol
treatment groups, and it differed significantly between the
high-dose group and the untreated CA model group. Previ-
ously, some antioxidative agents have been shown to alleviate
post-ROSC injury significantly, although they failed to affect
the ROSC rate significantly [18, 19]. Treatment with probu-
col was also thought to bring bigger benefits to CA patients
[20]. The present study found that the survival time of rats
after CPR was prolonged significantly in all the probucol
treatment groups, compared to the untreated CA model
group. This demonstrated that probucol provides a potential
benefit in patient care especially following CPR treatment.

We also tested the systemic oxidative stress level by
examination of serum malondialdehyde (MDA). When sys-
temic oxidative stress level is high, it will generate more
products of lipid peroxidation, including MDA. The MDA
epitopes on LDL particles are now widely accepted as the
measurement of systemic oxidative stress markers [21–24].
To test the antioxidant actions of probucol, we also measured
a panel of major antioxidant enzymes including catalase
(CAT), glutathione peroxidase (GPx), and superoxide dis-
mutase (SOD) [25–28] Due to their antioxidation functions,
levels of these enzymes are usually inversely correlated with
oxidative stress status of the host. In our results, compared
to the sham-operated group, the levels of MDA increased sig-
nificantly in both serum and myocardium of CA-induced
rats, while the activity of CAT, GPx, GSH, and SOD
decreased significantly in these CA-induced rats, suggesting
oxidative stress following CA induction and ROSC, as

Table 5: Effect of probucol on myocardial KEAP1 and NRF2
expression 12 h after ROSC (x ± s; n = 10).

Group
Protein expression level

KEAP1 NFE2L2

Sham operated 2.18± 0.67 5.67± 0.09
CA model 11.53± 2.48∗∗ 4.28± 0.11∗∗

CA+ low dose 7.36± 1.83‡ 4.46± 0.10†

CA+medium dose 7.03± 1.38‡ 5.13± 0.09‡

CA+high dose 5.43± 1.44‡¶†† 5.35± 0.16‡§
∗∗P < 0 01 versus the sham-operated group; †P < 0 05 and ‡P < 0 01 versus
the CA model group; §P < 0 05 and ¶P < 0 01 versus the low-dose group;
††P < 0 01 versus the medium-dose group. KEAP1: Kelch-like ECH-
associated protein 1; NFE2L2: nuclear factor, erythroid-derived 2-like 2;
ROSC: return of spontaneous circulation.
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described in the literature [29] We also found that with the
administration of probucol, the serum and myocardial
MDA levels were reduced significantly comparing to the
untreated CAmodel rats. At meantime, the activity of antiox-
idant enzymes CAT, GPx, GSH, and SOD increased signifi-
cantly in the probucol treatment groups. These changes in
oxidative stress parameters were in a dose-dependent man-
ner, suggesting that probucol treatment significantly coun-
teracted oxidative stress following ROSC. In addition, the
results of this study showed that probucol treatment signifi-
cantly improved HR, MAP, +dP/dtmax, and −dP/dtmax 12
hours after ROSC. Also, LVESD and LVEDD decreased sig-
nificantly, and LVEF and short-axis shortening increased sig-
nificantly in the high-dose group, suggesting that probucol
significantly improved hemodynamic parameters and heart
function after ROSC. Taken together, the results suggested
that probucol treatment significantly relieved CA-induced
oxidative stress and ameliorated hemodynamic parameters
and heart function after ROSC in CA-affected rats. This
may be associated with the increase in ROSC rate and the
prolongation of survival time in CA-affected rats after CPR.

NFE2L2 is an important transcription factor, and KEAP1
is an upstream regulator of NFE2L2. In organisms, the
KEAP1-NFE2L2 system is closely associated with the antiox-
idant response [30]. Physiologically, NFE2L2 and KEAP1
form inactive complexes. Under oxidative stress, NFE2L2
becomes dissociated from KEAP1 andmigrates into the cyto-
nucleus and becomes an active antioxidative factor [31, 32].
The findings of this study indicated that KEAP1 expression
was downregulated significantly and NFE2L2 expression
was upregulated significantly, in the probucol treatment
groups compared to the animal model group (P < 0 05
or P < 0 01), and especially so in the high-dose group
(P < 0 01); such an effect followed a dose-dependent pattern.
Probucol may have also regulated the expression of the

KEAP1-NFE2L2 system, thereby relieving oxidative stress
in CA-affected rats after CPR. There are many reports that
previously analyzed the influence of promoter activity of
downstream genes including HO-1 and NQO-1 during
NFE2L2 activation [33–36]. We notice that further study of
these downstream genes activities in our experimental setting
would provide more mechanistic insights for the protective
action of probucol treatment. We will explore these experi-
ments in our future study to add strength to the notion that
protection of probucol on CA occurs via KEAP1-NFE2L2
pathway system.

5. Conclusion

Treatment with probucol significantly increased ROSC rate
and survival time. It also relieved CA-induced oxidative
stress and ameliorated hemodynamic parameters and heart
function in a dose-dependent manner in rats after CPR,
possibly by regulating the expression of the KEAP1-
NFE2L2 system.
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Free radicals, reactive oxygen/nitrogen species (ROS/RNS), hydrogen sulphide, and hydrogen peroxide play an important role in
both intracellular and intercellular signaling; however, their production and quenching need to be closely regulated to prevent
cellular damage. An imbalance, due to exogenous sources of free radicals and chronic upregulation of endogenous production,
contributes to many pathological conditions including cardiovascular disease and also more general processes involved in aging.
Nuclear factor erythroid 2-like 2 (NFE2L2; commonly known as Nrf2) is a transcription factor that plays a major role in the
dynamic regulation of a network of antioxidant and cytoprotective genes, through binding to and activating expression of
promoters containing the antioxidant response element (ARE). Nrf2 activity is regulated by many mechanisms, suggesting that
tight control is necessary for normal cell function and both hypoactivation and hyperactivation of Nrf2 are indicated in playing
a role in different aspects of cardiovascular disease. Targeted activation of Nrf2 or downstream genes may prove to be a useful
avenue in developing therapeutics to reduce the impact of cardiovascular disease. We will review the current status of Nrf2 and
related signaling in cardiovascular disease and its relevance to current and potential treatment strategies.

1. Introduction

The vascular endothelium modulates vascular structure,
thrombolysis, vasoconstriction, and vasodilation and main-
tains internal homeostasis through synthesizing and releas-
ing several active biomolecules [1]. A loss of function of the
endothelium represents a key risk factor for cardiovascular
disease (CVD) and initiates the development of atherosclero-
sis [2]. Endothelial dysfunction is associated with functional
changes that diminish nitric oxide (NO) bioavailability and
consequently leads to CVD [1]. Sustained failure to counter-
act the excessive production of reactive oxygen species (ROS)
and dysregulation of the antioxidant defence system in the
endothelium elicits cellular damage and dysfunction [2].
However, the original concept that all free radicals are
damaging disease-causing entities have, over recent years,
been replaced by an understanding of the important signal-
ing role they play within and between cells. The production
and control of free radicals need to be tightly regulated to

prevent cytotoxicity, and the imbalance, caused by exoge-
nous sources of free radicals with chronic upregulation and
endogenous production, contributes to many pathological
conditions and also to more general processes involved in
aging [3–5]. There are multiple cellular defence strategies to
prevent free radical toxicity, which are dynamically regulated
to protect from oxidative insults and preserve cell function
[6]. Nuclear factor erythroid 2-like 2 (NFE2L2; commonly
known as Nrf2 [7]) has been identified as a major regulator
of the oxidant/antioxidant balance.

The Nrf2 was first discovered in 1994 by Moi et al. during
studies on regulation of the β-globin gene [7]. It was subse-
quently identified to be profoundly involved in the regulation
of oxidant and antioxidant gene expression, through binding
to the antioxidant response element (ARE) [8, 9]. Nrf2/ARE
signaling is highly conserved in all species and controls a
wide panel of genes that include cytoprotective and detoxify-
ing phase II enzymes [10]. Nrf2 coordinates the cellular
response to oxidative insults, preventing damage to cellular
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components sensitive to redox changes (i.e., proteins, lipids,
and DNA).

2. Regulation of Nrf2 Activity

Nrf2 activity is highly regulated, suggesting that either
hypoactivation or hyperactivation of Nrf2 may be detrimen-
tal to the cell, for example, unrestricted Nrf2 activity, elicited
by knockout of Kelch-like ECH-associated protein 1
(KEAP1) in the mouse, results in postnatal lethality [11],
while Nrf2 knockouts are viable but hypersensitive to oxida-
tive stressors. The regulation of Nrf2 has been extensively
reviewed elsewhere [12–14] but is briefly summarized here
and in Figure 1 and Table 1. Nrf2-regulated gene expression
is primarily controlled by KEAP1. In a situation without oxi-
dative stimuli, Nrf2 is mostly sequestered in the cytosol
through binding to the Kelch domain of KEAP1 [15]. KEAP1
acts as an adapter molecule for CUL-E3 ligase and mediates
the ubiquitination and degradation of Nrf2 protein. Exposure
of oxidative/electrophilic stress causes a modification of the
cysteine groups on KEAP1 (particularly C151), relaxing the
structure of KEAP1 causing dissociation of KEAP1 from
CUL-E3 ligase [16–18]. It is unclear if Nrf2 protein

dissociates from KEAP1 or if modification of C151 simply
blocks further processing of Nrf2 [18]. De novo synthesized
Nrf2, or protein released from KEAP1, is then free to translo-
cate to the nucleus. In addition, p21, p62, and the tumor sup-
pressor WTX also potentiate Nrf2 activation through
sequestration of KEAP1 or binding to Nrf2 to prevent associ-
ation with KEAP1 [19–21]. Upon entry into the nucleus,
Nrf2 heterodimerizes with a number of transcription factors,
including small Maf proteins (allowing formation of full
basic zipper, summarized in Figure 1 and Table 1), and binds
to the ARE (core sequence RTGACnnnGCA) to induce gene
transcription [22, 23].

Dissociation of KEAP1 from the CUL-E3 ligase complex
can be induced by a large range of compounds, including oxi-
dized phospholipids [24], nitric oxide (NO), zinc, alkenals
[25], and cigarette smoke, or fresh aqueous extracts of
cigarette smoke [26–28]. However, not all forms of ROS
appear to be able to modify KEAP-1/Nrf2 interactions, with
data suggesting this is both cell type and context specific.
Of particular relevance to CVD, laminar shear stress causes
the activation of Nrf2 in endothelial cells [29], through lipid
peroxide and COX2-derived 15-deoxy-12,14-prostaglandin
J2 (15d-PGJ2) intermediates, enhanced by phosphoinositol

Neh1 Neh3Neh2 Neh4 Neh5 Neh7 Neh6NH2 COOH

KEAP1 binding site

Transactivation domain
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DNA binding domain 
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1 2 3 64 5NH2 COOH
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Figure 1: Nrf2 and KEAP1 structure. Nrf2 is a cap‘n’collar-basic region leucine zipper (CNC-bZIP), and its human sequence contains 605
amino acids, divided into seven domains: Neh1 to Neh7. Neh1 contains a CNC-bZIP motif, allowing heterodimerization with Maf
proteins and DNA binding [54]. The Neh2 domain contains the Keap1 binding site (DLG and ETGE motifs), necessary for its cytoplasmic
retention and degradation [55]. The Neh3 domain is fundamental for Nrf2 transcriptional activation through binding with chromo-
ATPase/helicase DNA-binding protein 6 (CHD6) [56]. Neh4 and Neh5 provide an interaction site for nuclear cofactor RAC3/AIB1/SRC-3
[57] and CREB-binding protein (CBP) [58] which enhances the Nrf2/ARE activation pathways, partially by promoting acetylation of Nrf2
[59]. Additionally, Nrf2 possesses a redox-sensitive nuclear exporting signal within the Neh5 transactivation domain able to regulate its
cellular localization [60]. The serine-rich Neh6 domain contains two motifs (DSGIS and DSAPGS) involved in the negative regulation of
Nrf2. Glycogen synthase kinase 3 (GSK-3) phosphorylates serine residues within Neh6 enabling the interaction with the β-transducin
repeat-containing protein (β-TrCP) which acts as a substrate receptor for Skp1–Cul1–Rbx1/Roc1 ubiquitin ligase complex, leading to
KEAP1-independent degradation [41]. Neh7 domain interacts with retinoid X receptor alpha (RXRα), responsible for Nrf2/ARE signaling
inhibition [61]. Human Kelch-like ECH-associated protein 1 (KEAP1) is a 69 kD protein, containing 27 cysteine residues. It is a substrate
adaptor for cullin (Cul3) which contains E3 ubiquitin ligase (E3). KEAP1 is composed of five domains starting from the N-terminal
region, a BTB dimerization domain (Broad-Complex, Tramtrack, and Bric-à-brac) which contains the Cys151 residue, a cysteine-rich
intervening region (IVR) domain with two cysteine domain residues Cys273 and Cys288, critical for stress sensing. A Kelch domain/
double glycine repeat (DGR) domain possessing 6 Kelch repeats and ending with a C-terminal region [62]. KEAP1 needs a domain
capable to homodimerize and interact with Cul3, forming the Nrf2 inhibitor complex (iNrf2), and this is the BTB domain [63]. The
Cys151 in the same domain plays an important role on Nrf2 activation in response to oxidative stress [64]. Furthermore, the IVR domain
is highly sensitive to oxidation and contains three cysteines, 273, 288, and 297 which regulate Nrf2 activation and repression [16, 65]. The
DGR domain acts as an Nrf2 repressor; it contains six repetitive Kelch structures that specifically bind to the Neh2 domain on Nrf2 [15].
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3-kinase/Akt signaling, but is surprisingly independent of
endothelial nitric oxide synthase (eNOS) activity [30–33].
In addition, laminar shear stress increases the nuclear locali-
zation of Nrf2 via a KLF2-dependent mechanism [34].
Finally, tumor necrosis factor alpha (TNF-α) increases the
activation of Nrf2 in human endothelial cells [28] and mono-
cytes [35]. A number of naturally occurring compounds have
been shown to release Nrf2 from KEAP1 [36], for example,
sulforaphane [37], sulfuretin [38], 2-trifluoromethyl-2-meth-
oxychalone [39], and isoliquiritigenin [40], suggesting that
dietary modulation of ARE-dependent gene expression could
play a potential role in modulating disease.

3. Additional Regulatory Systems

In addition to KEAP1-mediated sequestration and degrada-
tion of Nrf2 within the cytoplasm, there are a number of
additional layers of regulation on Nrf2-dependent gene
expression. Degradation of Nrf2 can also be induced by
β-TrCP–Skp1–Cul1–Rbx1 E3 ubiquitin ligase complex
[41, 42], triggered by phosphorylation of Nrf2 within the
Neh2 domain. Subsequently, the E3 ligase complex ubiqui-
tinates Nrf2 and causes its destruction by the proteasome.
Mitra et al. also observed that the inhibition of P38
mitogen-activated protein kinase (MAPK) highly decreased
Nrf2 nuclear translocation, with a corresponding reduction
of Nrf2-dependent gene expression [43]. While the majority
of KEAP1 is normally present in the cytoplasm, 10–15% has
localized to the nucleus [44]; prothymosin-alpha (ProTα)
binds KEAP1, shuttling it into the nucleus, where it can bind

Nrf2 and promote its degradation [45]. Within the nucleus,
B-zip proteins BACH1 and BACH2 can form dimers with
Maf proteins through their BTB domain and compete for
binding to the ARE, preventing Nrf2 binding and activation
of transcription [46–48]. BACH1 is universally expressed,
while BACH2 expression is predominantly limited to
monocytes and in neural cells. Phosphorylation of BACH1
on Y486 provokes nuclear export of BACH1 increasing
Nrf2-dependent gene expression [49, 50]. Nuclear export of
Nrf2 is controlled through a GSK-3β-controlled phosphory-
lation cascade. GSK-3β phosphorylates Src family kinases
(Src, YES, and Fyn), in turn phosphorylating Nrf2 on Y568
triggering nuclear export and degradation [51–53].

4. Nrf2 and Mitochondrial Dynamics in
Cardiovascular Disease

Cardiovascular disease is the main cause of death worldwide
[78], and it covers a wide array of disorders. The most com-
mon causes of CVD morbidity and mortality are stroke,
ischemic heart disease (IHD), and congestive heart failure
(CHF). Several risk profiles are involved in CVD where
ROS is a central mediator and a common denominator,
upregulated by multiple risk factors such as diabetes, inflam-
mation, and smoking [79–81]. ROS can cause EC apoptosis
and activate nuclear factor kappa-B (NF-κB), increasing
adhesion molecules and cytokines that enhance monocyte
adhesion [82, 83]. Oxidative stress is involved in mitochon-
drial dysfunction, which is related to bioenergetic defects
and an alteration in mitochondrial dynamics. This provokes

Table 1: List of proteins that bind to and modulate the activity of Nrf2.

Gene Function Reference

KEAP1 Retention in cytoplasm and degradation [15]

CDH1/CTNNB1 Enhances KEAP1 interaction [66]

CRF1 Ubiquitination and degradation [67]

ATF4 Activation of gene expression [68]

BRG1 Selective activation of gene expression [69]

CBP Activation of gene expression [58]

CHD6 Activation of gene expression [56]

JUN Activation of gene expression [9]

MAFF Heterodimer activates gene expression [70]

MAFG Heterodimer activates gene expression [71]

MAFK Heterodimer activates gene expression [71]

PMF1 Activation of gene expression [72]

RAC3/AIB1/SRC-3 Activation of gene expression [57]

PKC Phosphorylation increases nuclear translocation [73, 74]

HDAC1/2/3 Repression of gene expression [75]

MYC Repression of gene expression [76]

PPARG Repression of gene expression [77]

RXRα Repression of gene expression [61]

FYN Phosphorylation and nuclear export [52]

SRC Phosphorylation and nuclear export [53]

YES Phosphorylation and nuclear export [53]
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transcription impairment and cell damage. Blockage of the
mitochondrial electron transfer in complex III in diabetes
leads to the release of electrons which reduce molecular
oxygen to superoxide (O2•) and increases intracellular ROS
production [84]. Furthermore, ROS can activate membrane
oxidases with a subsequent increase in the levels of asymmet-
ric dimethylarginine that competes for the L-arginine
transporters and active sites on eNOS [85]. Nrf2 modulates
the activity of the mitochondrial respiration chain [86], with
pharmacological activation of Nrf2 protecting against toxic-
ity and maintaining mitochondrial homeostasis possibly via
ablation of Akt2 signaling [87]. Liu and colleagues discovered
acrolein, a component of cigarette combustion, inactivated
the KEAP1/Nrf2 pathway, and decreased mitochondrial
membrane potential [88], while Zou et al. demonstrated the
ability of Nrf2 to prevent mitochondrial dysfunction, using
hydroxytyrosol to activate Nrf2 [89].

5. Nrf2 in Endothelial Dysfunction

The vascular endothelium modulates vascular homeostasis
through synthesizing and releasing several active biomole-
cules [1]. A loss of endothelium integrity represents a key
risk factor for CVD, initiating atherosclerosis [2] and is
associated with functional changes that diminish NO bio-
availability and, consequently, lead to CVD [1]. Hypoxia,
flow disturbances, and oxidative stress are important
contributors to endothelial dysfunction [90]. Failure to
counteract excessive production of ROS and modulation
of the anti-oxidant defence system in the endothelium
elicits cellular damage and dysfunction [2].

Normal vascular endothelial physiology is dependent
on NO production via coupling of the eNOS heme group
with L-arginine using tetrahydrobiopterin (BH4) as a
cofactor [91]. Excess ROS induce the conversion of BH4
to 7,8-dihydrobiopterin (BH2) with subsequent eNOS
uncoupling and synthesis of O2• instead of NO [91]
(Figure 2). O2• can react with NO to produce the versatile
oxidant peroxynitrite (ONOO−) [92]. The upregulation of
iNOS and uncoupling of eNOS under hyperglycemic con-
ditions are now well established [93, 94]. L-arginine is also
a substrate for arginase [95] which is upregulated in the
endothelium of coronary arterioles in hypertension and
contributes to the impaired NO-mediated dilation [96].

In addition, ONOO− and hydrogen peroxide (H2O2) were
reported to increase the activity/expression of arginase in
endothelial cells [97], thus exacerbating the defects in
myogenic tone. Therefore, ROS can trigger eNOS uncou-
pling through depletion of the substrate L-arginine. This
notion has been supported by the study of Romero et al.
[98] where increased arginase activity elicited L-arginine
depletion and contributed to endothelial dysfunction in
diabetes. ONOO− can also activate NADPH oxidases and
influences further generation of ROS [99]. Additionally,
blockage of the mitochondrial electron transfer in complex
III in diabetes leads to the release of electrons, which
reduce molecular oxygen to O2• and increase intracellular
ROS production [84]. Furthermore, ROS can activate
membrane oxidases with a subsequent increase in the
levels of asymmetric dimethylarginine that competes for
the L-arginine transporters and active sites on eNOS [85].

Nrf2 in the endothelium can be activated via increased
ROS production and PI3K-Akt signaling triggered by lam-
inar shear stress [32]. In human arterial endothelial cells,
Nrf2 activation resulted in increased intracellular HMOX1,
GPx, GSH, GCLM, SRXN1, NQO1, PAR4, and OSGIN1
[27, 28, 100]. Adenoviral overexpression of Nrf2 in
endothelial cells infected showed decreased expression of
TNF-α, IL-1β, MCP1, and VCAM1, pointing to the anti-
inflammatory potential of Nrf2 [28, 101]. When shear
stress is disturbed at bifurcations, curved sections of
arteries or distal to regions of stenosis, NO bioavailability
decreases, O2• generation increases [102], and Nrf2-
activated genes are diminished, causing the endothelium
to become predisposed to atherogenesis [103]. Our recent
studies have demonstrated that free fatty acid- (FFA-)
induced excessive ROS production diminished both the
gene and protein expression of Nrf2, NQO1, and HO-1
in endothelial cells [104]. In addition, upregulation of
Nrf2/ARE/HMOX1 signaling protected the human endo-
thelial cells against TNF-α activation [105]. It could be
that mitochondrial ROS may trigger a protective response
via Nrf2 activation in endothelial cells. The study of Lo
and Hannink [106] suggested that Nrf2–KEAP1 complex
binds to the mitochondria through interaction with mito-
chondrial outer membrane protein PGAM5 and directly
senses mitochondrial ROS production.

Another possibility through which Nrf2 can protect the
endothelium against the cytotoxic ROS involves regulating
the catalytic subunit of GCLC which reduces GSH biosynthe-
sis [107]. In this context, impaired Nrf2–KEAP1–GCLC has
been demonstrated in high glucose-induced retinal endothe-
lial cells from diabetic donors [108]. In the human brain
microvascular endothelial cells (HBVEC), GSH conferred
protection against FFA-induced oxidative stress and apopto-
sis by activating the Akt pathway [109]. Human umbilical
vein endothelial cells (HUVECs), human coronary artery
endothelial cells (HCAECs), and endothelial progenitor cells
exposed to cytotoxic ROS showed apoptosis and cell death
accompanied by diminished nuclear localization and tran-
scriptional activity of Nrf2 [2]. These findings highlight the
crucial role of Nrf2 activation in protecting endothelial cells
against oxidative stress-induced dysfunction.

BH4
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Figure 2: ROS-induced uncoupling of eNOS and the generation
of O2•. Excess ROS induce the conversion of BH4 to BH2
with subsequent eNOS uncoupling and synthesis of O2• instead
of NO. eNOS: endothelial nitric oxide synthase; ROS: reactive
oxygen species; NO: nitric oxide; O2•: superoxide; BH4:
tetrahydrobiopterin; BH2: dihydrobiopterin.
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6. Nrf2 in Atherosclerosis

Atherosclerosis is a focal inflammatory disease of the arterial
system involving a number of different cell types. The focal
nature of atherosclerosis highlights the involvement of local
haemodynamics factors acting on the endothelium in the ini-
tiation and progression of atherosclerosis, which develops in
regions that experience disturbed flow at bifurcations and
curved sections of artery [110–113]. Straight sections of
artery that experience normal laminar blood flow are rela-
tively spared from disease through a coordinated modulation
of gene expression, predominantly controlled by the tran-
scription factors KLF2 and KLF4 and activation of Nrf2
[29, 32, 114–116]. By contrast, endothelial cells exposed to
disturbed flow adopt a phenotype that amplifies endothelial
dysfunction and increases permeability. While ROS are
essential signaling molecules regulating vascular homeosta-
sis, excessive ROS, elevated by many of the risk factors asso-
ciated with the development of atherosclerosis, promote
endothelial dysfunction and decrease NO availability. Thus,
Nrf2-regulated antioxidant gene expression may play an
atheroprotective role in endothelial cells.

Consistent with this hypothesis, the Nrf2-regulated gene,
heme oxygenase 1 (HMOX1), demonstrates significant cyto-
protective and anti-inflammatory effects that result in a
reduction of atherosclerosis in mouse models [117], possibly
through production of low levels of carbon monoxide.
Hypercholesterolemic mice, deficient in both HMOX1 and
ApoE (HMOX1−/−/ApoE−/−), demonstrated enhanced devel-
opment of atherosclerosis compared to ApoE−/− single
knockout mice [118]. HMOX1 expression in macrophages
plays a protective role in atherosclerosis [119] with macro-
phages from HMOX1−/− mice displaying increased ROS
generation, production of inflammatory cytokines, and
increased foam cell formation when treated with oxLDL,
attributable in part to increased expression of scavenger
receptor A (SR-A). Smooth muscle cells from HMOX1−/−

mice not only displayed increase neointimal formation but
also enhanced cell death potentially due to greater suscepti-
bility to oxidant stress [118]. Pharmacological modulation
of HMOX1 expression also demonstrates a protective role
of HMOX1 in atherogenesis [120, 121]. In addition to the
anti-inflammatory effects of carbon monoxide, hydrogen sul-
phide also elicits an anti-inflammatory antiatherogenic effect
[122]. Hydrogen sulfide activates the release of Nrf2 from
KEAP1, increasing Nrf2-dependent gene expression [122].

Despite the antioxidant function of Nrf2 and the anti-
atherogenic function of the key Nrf2 target gene HMOX1,
the global knockout of Nrf2 (Nrf2−/−) developed less rather
than more atherosclerosis [123, 124]. Barajas et al. attributed
this to an effect of Nrf2 in lipid metabolism, lowering plasma
cholesterol and reducing foam cell formation [123], while
Sussan et al. did not find a difference in serum cholesterol
but attributed the effect to a reduction in scavenger receptor
CD36 reducing foam cell formation [124]. The role of Nrf2 in
NLRP3 inflammasome induction by cholesterol crystals
within the atherosclerotic plaque may also be a contributing
factor that explains the counterintuitive net detrimental
effect of Nrf2 in hypercholesterolemic mouse models of

atherosclerosis [125]. It might also explain why the expres-
sion of the Nrf2-regulated gene HMOX1 is highest in human
plaques with the highest markers of plaque instability [121].

7. Nrf2 in Vascular Calcification

The presence of vascular calcification is often detected in
atherosclerotic plaques and in patients with end-stage renal
disease. Both of these pathologies have been targeted for
prevention using pharmacological and genetic approaches
by modulation of Nrf2 antioxidant pathways. For example,
studies in vitro using rodent vascular smooth muscle cells
show that dimethyfumarate or resveratrol could attenuate
the deposition of a mineralised matrix and suggest protection
against oxidative stress-induced mitochondrial damage, via
activation of Nrf2 and SIRT1 signaling and downregulation
of osteogenic transcription factors [126, 127]. In contrast,
glucose-induced oxidative stress enhances the osteogenic
differentiation and mineralisation of human embryonic stem
(ES) cells, by the upregulation of runt-related transcription
factor 2 (Runx2), Nrf2, and HMOX1, which was inhibited
by Nrf2 knockdown [128] highlighting a context-specific
regulation of the calcification process. Given the links
between Nrf2 and bone homeostasis, it is not surprising to
have an association between Nrf2 signaling and vascular
calcification. Whether these initial in vitro studies can trans-
late into the in vivo situation needs further study.

8. Nrf2 in Hypertension

Angiotensin II and associated renin-angiotensin system
(RAS) are involved in the regulation of blood pressure, vaso-
constriction, sodium intake, and potassium excretion [129].
Inappropriate activation of the RAS is the main cause of
profound hypertension and cardiovascular morbidity.
Angiotensin II increases the expression of NADPH oxidase
and the generation of ROS potentially mediating some of
the effects in renin-angiotensin-induced hypertension
[130, 131]. It has been suggested that hypertension could be
one of the causes of Nrf2 misregulation and not vice versa
[132] through enhanced oxidative stress and vascular
dysfunction in a hypertensive rat model [133]. This would
suggest that the Nrf2 anti-oxidant defence system is insuffi-
cient to counteract the effects of oxidative stress, possibly
due to elevated levels of Nrf2 repressors in hypertensive
animals. Research is now moving from the adaptive and pro-
tective changes in the Nrf2 antioxidant response to focusing
on the alternative mechanisms intrinsic to upstream and
downstream molecules associated with a defective Nrf2
signaling system. Enhancing Nrf2 activity may have a thera-
peutic potential for a meliorating hypertension.

9. Nrf2 in Diabetic Cardiomyopathy

The heart is particularly vulnerable to oxidative damage
compared to other organs, due to its low basal levels of anti-
oxidant defences [134]. Diabetic cardiomyopathy (DCM)
and other cardiovascular complications account for more
than 80% of deaths among patients with diabetes [135].
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DCM is characterized by impaired diastolic function, hyper-
trophy, apoptosis, and fibrosis of cardiomyocytes [136] and
involves several mechanisms and pathogenic factors, with
oxidative stress thought to be the common link [137–140].
Hyperglycemia generates excess ROS/RNS from activation
of NADPH oxidases, PKC, leakage of the mitochondrial
electron transport chain, eNOS uncoupling, AGE/RAGE
signaling, xanthine oxidase, and 12/15-lipoxygenase (LOX)
[141], impairing antioxidant defences in the diabetic heart
[138, 140] (Figure 3).

Studies have established the importance of Nrf2/ARE
signaling in the prevention of diabetic complications
[142–144] and oxidative stress-induced cardiomyocyte injury
[145, 146]. Significantly reduced Nrf2 expression has been
observed in the left ventricle of diabetic patient heart by histo-
logical analysis [147], which has also been observed in a dia-
betic mouse model after 5 months [147]. These findings
suggest adaptiveoverexpressionofNrf2 tocombat earlyoxida-
tive damage in diabetes, which is overcome by sustained ROS
production and exhaustion of the antioxidant defences [148].
This concept is supported by our findings in palmitate-
treated endothelial cells, where reduced Nrf2 expression and
antioxidant defences are observed with surplus ROS [104].

Furthermore, it has been demonstrated that Nrf2 and
its downstream target genes are downregulated in cardio-
myocytes from diabetic (db/db) mice [146, 147], which
may occur via extracellular signal-regulated protein kinase
(ERK) 1/2 activity [149, 150]. Isoproterenol-stimulated
contraction of primary cardiomyocytes from adult diabetic
mice was also shown to be dependent on Nrf2 [151].
Hence, hyperglycemia-induced loss of Nrf2 function exac-
erbates oxidative stress and leads to severe myocardial
damage [151]. Nrf2 knockout mice exhibit structural and
functional abnormalities under conditions of pathological
stress [152], and cardiomyocytes from Nrf2-knockout mice

showed significantly increased apoptosis following incuba-
tion with high glucose [151]. These findings highlight the
importance of the Nrf2 protective mechanisms, and thus,
novel therapeutics to enhance Nrf2 could be beneficial in
this scenario. The proteasome inhibitor MG-132, which
increases Nrf2 signaling, was reported to decrease left ven-
tricle hypertrophy by reducing inflammation and lowering
the risk of cardiomyopathy [153]. In addition, in a mouse
model of type I diabetes mellitus, Nrf2 activation by sulfo-
raphane reduced heart weight and decreased diabetes-
induced atrial natriuretic peptide (ANP) expression, thought
to be related to induction of DCM [154]. Therefore, enhanc-
ing endogenous Nrf2 and subsequent antioxidant pathways
in the heart is a potential strategy to prevent DCM [138, 155].

10. Nrf2 in the Aging Heart

Aging, a progressive decline of cellular functions, is related to
the loss of homeostasis via a combination of epigenetic alter-
ations and genetically programmed processes resulting in
death [156, 157]. Heart capacity declines with age, with a
concomitant increased CVD risk [158]. Herman’s free radi-
cal theory proposes that the accumulation of damaged
biomolecules by ROS/RNS plays a central role in aging
[159–161]. In turn, this leads to activation of NF-κB [162],
eliciting an inflammatory response via TNF-α, IL-6, and C
reactive protein (CRP), reported to be associated with aging
[163], and further stimulation of ROS production through
activation of NADPH oxidase [164, 165] and NF-κB [166].
In support of this, elderly patients demonstrate an impaired
endothelial-dependent dilation, associated with excess ROS,
activated NADPH oxidase, and increased NF-κB [167].

Elevated ROS also increase the rate of apoptosis and
necrosis in cardiomyocytes [168], resulting in functional
and phenotypic changes, including decreased remodelling

Mitochondrial ETC leakage & MPTP formation

NADPH oxidase

Activation of PKC eNOS uncoupling

Xanthine oxidase

AGE/RAGE axis

12/15-Lipoxygenase

Cardiomyopathy

Hyperglycemia

ROS Nrf2

Figure 3: Hyperglycemia-induced ROS generation in the heart. A schematic model showing the potential pathways involved in
cardiomyopathy and how Nrf2 could be targeted to reduce ROS and prevent the development of this pathology. AGEs: advanced
glycation end products; NADPH: nicotinamide adenine dinucleotide phosphate; PKC: protein kinase C; eNOS: endothelial nitric oxide
synthase; ETC: electron transport chain; MPTP: mitochondrial permeability transition pore.
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Table 2: The effect of Nrf2 activation on CVD.

Activator Animal model/cell line Effects Reference

Bardoxolone methyl
derivative dh404

Male Akita mice at 26 weeks of
age & human aortic endothelial

cells (HAECs)

Attenuation of endothelial dysfunction
Downregulation of inflammatory and

prooxidant genes
Reduction in systemic and vascular

oxidative stress

[188]

Streptozotocin- (STZ-) induced
diabetic ApoE−/− mice

Prevention of atherosclerosis [189]

Sulforaphane

Vascular smooth muscle cells
(VSMCs)

Suppression of VSMC proliferation [190]

HUVECs
Protection against oxidized low-density

lipoprotein- (oxLDL-) induced
endothelial damage

[191]

High-fat diet- (HFD-) induced
type 2 diabetic mice

Prevention of aortic damage [192]

Low-dose STZ diabetic mice
Prevention of diabetic

cardiomyopathy
[154]

Multiple low dose STZ-induced
type 1 diabetic mice

Prevents aortic oxidative damage,
fibrosis, and inflammation

[193]

Miltirone EA.hy926 endothelial cells
Protects against oxLDL-derived

oxidative stress
[194]

Epigallocatechin-3-gallate HUVECs
Protects against PM2.5-induced

oxidative stress
[195]

Barleria lupulina alkyl
catechols (4-ethylcatechol,
4-vinylcatechol, and
4-methylcatechol)

Human dermal microvascular
endothelial cells

Improves organization of the
cytoskeleton

Organizes tight cell junctions
Reduces inflammation and vascular leakage

[196]

Small molecule glycomimetics HUVECs
Attenuates palmitate-induced oxidative stress

and endothelial dysfunction.
Increases NO production.

[104]

Rutin HUVECs
Prevents hydrogen peroxide- (H2O2-)

induced oxidative stress
[197]

1,25-Dihydroxycholecalciferol HUVECs
Prevents leptin-induced oxidative

stress and inflammation
[198]

Willow bark extract
HUVECs and Caenorhabditis

elegans
Prevents ROS-induced cytotoxicity of
HUVECs and death of C. elegans

[199]

Aged garlic extract HUVECs
Enhances HO-1 and glutamate-cysteine ligase

modifier subunit expression (GCLM)
[200]

Celastrol HUVECs
Attenuates angiotensin II mediated

endothelial damage
[201]

Paeotang HUVECs Prevents TNF-α-induced vascular inflammation [202]

Cyanidin-3-O-glucoside
HUVECs

Ameliorates palmitate-induced insulin resistance
and endothelial derived vasoactive factors

[203]

Attenuates palmitate-induced inflammation [204]

EA.hy926 endothelial cells
Attenuates angiotensin II-induced oxidative stress and

inflammation
[205]

Piceatannol HUVECs
Attenuates homocysteine-induced endoplasmic

reticulum stress and cell damage
[206]

Equol
ApoE−/− mice

Attenuates atherosclerosis and inhibits
endoplasmic reticulum stress [207]

HUVECs Abrogates apoptosis induced by t-BHP

Sheep/goat whey protein EA.hy926 endothelial cells Increases antioxidant defences [208]

Quercetin HAECs
Inhibits LPS-induced adhesion molecule

expression and ROS production
[209]
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Table 2: Continued.

Activator Animal model/cell line Effects Reference

Panax notoginseng
saponins and Ginsenoside
Rb1

HUVECs Suppresses monocyte adhesion and inhibits ROS [210]

Bortezomib
Human microvascular

endothelial cells (HMECs)
Induces expression of HO-1 [211]

Sofalcone HUVECs Suppresses endothelial dysfunction [212]

Salidroside HUVECs Suppresses ROS-induced damage [213]

Caffeic acid HUVECs
Attenuates high glucose-induced

endothelial dysfunction
[214]

Myricitrin

H9c2 cardiomyocytes Attenuates high glucose-induced apoptosis [215]

STZ-induced diabetic mice &
AGE-induced H9c2
cardiomyocytes

Alleviates oxidative stress-induced
inflammation, apoptosis, and cardiomyopathy

[216]

Andrographolide EA.hy926 endothelial cells
Inhibits hypoxia-induced HIF-1α-driven

endothelin 1 secretion
[217]

Tanshinone IIA HUVECs
Inhibits cyclic strain-induced expression

of interleukin 8
[218]

Lycopene HUVECs
Inhibits cyclic strain-induced endothelin-1

expression
and oxidative stress

[219]

Withaferin A
EA.hy926 endothelial cells &

HUVECs
Induces HO-1 expression [220]

Copper
diethyldithiocarbamate

Bovine aortic endothelial cells
Inhibits proteasome and Nrf2 binding to
Kelch-like ECH-associated protein 1

[221]

Clopidogrel HAECs Hinders TNF-α-induced VCAM-1 expression [222]

Hericium erinaceus EA.hy926 endothelial cells
Inhibits TNF-α-induced angiogenesis

and ROS generation
[223]

Andrographolide Primary cerebral endothelial cells
Prevents middle cerebral artery

occlusion- (MCAO-) induced ischemic stroke
[224]

Butin C57/BL6J diabetic mice
Prevents ischemia/reperfusion-induced

myocardial injury
[225]

Aspalathin
H9c2 cardiomyocytes and

diabetic db/db mice
Protects against hyperglycemia-induced

oxidative damage and apoptosis
[146]

Broccoli sprout Diabetic db/db mice Prevents diabetic cardiomyopathy [226]

Oleuropein Spontaneously hypertensive rats
Attenuates oxidative stress and improves

mitochondrial function in the hypothalamic
paraventricular nucleus

[227]

Aralia taibaiensis H9c2 cardiomyocytes
Protects against high glucose-induced

oxidative stress and apoptosis
[228]

Compound C66 STZ-induced diabetic mice aorta
Prevents oxidative and nitrative stress,

inflammation, apoptosis, cell
proliferation, and fibrosis

[229]

Dimethyl fumarate VSMCs Attenuates vascular calcification [127]

Gemigliptin VSMCs Prevents proliferation and migration of VSMCs [230]

L6H9 (chalcone) H9c2 cardiomyocytes
Prevents hyperglycemia-induced oxidative

stress and inflammation
[231]

Magnesium
lithospermate B

VSMCs Prevents proliferation and migration of VSMCs [232]

4-O-methylhonokiol HFD-induced obese mice Prevents cardiac pathogenesis [233]
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[169], cardiac hypertrophy [170], and increased systolic
pressure [171, 172]. NADPH oxidase-2, its activator RAC1,
and several profibrotic factors are elevated in hypertrophic
hearts in aged rats [158], pointing to the important role of
NADPH oxidase in aging-associated cardiomyocyte remod-
elling. Ischemia and reperfusion are characterized by
increased accumulation of intracellular Ca2+, altered sub-
strate utilization, and elevated ROS production in the heart
[173], which can damage ionic pumps and induce mito-
chondrial dysfunction via lipid peroxidation [174]. This
damage can lead to necrotic cell death [175] and is exacer-
bated with aging [160, 176], as shown in mitochondria from
aged rats [177].

Diminished activity of Nrf2 resulting in oxidative stress,
apoptosis, and/or necrosis in the myocardium has been
reported [178–180], thus predisposing the heart to disease
[180]. Studies in mouse models have supported the notion
that Nrf2 is involved in counteracting aging-associated
cardiac effects via ARE signaling and expression of
antioxidant enzymes. Bailey-Downs et al. [181] reported
increased sensitivity of blood vessels to stress-induced
damage along with impaired activity of Nrf2 in insulin-
like growth factor 1 (Igf1) knockout mice, promoting an
aging phenotype. Nrf2-knockout mice showed exaggerated
cardiac hypertrophy, heart failure, increased mortality
[152], and oxidative stress [182]. Aged rhesus macaques
have shown increased ROS and decreased nuclear translo-
cation of Nrf2 and protein expression of NQO1 and HO-1
in their carotid arteries [183]. Vascular smooth muscle
cells (VSMCs) derived from old monkeys have exhibited
diminished Nrf2 activation following incubation with high
glucose as compared with those derived from younger
monkeys [183]. Additionally, El Assar et al. [165] have
reported a decreased expression of Nrf2-regulated antioxi-
dants in aged vessels.

These data demonstrate clearly that decreasing levels of
Nrf2 are age-dependent but may be reversed by exercising.
Muthusamy et al. [184] demonstrated an increased nuclear
translocation of Nrf2 in the hearts of mice following acute
exercise training. They attributed their findings to the
induction of an exercise-induced mild oxidative state.
Endurance exercise training was reported to promote
Nrf2 signaling and enhance antioxidant capacity in the
hearts of 6-month-old mice [185], which might offset
the reduced signaling observed in aged mice and men
[171, 185–187].

11. Role of Nrf2 Activation in the
Treatment of CVD

The role of activators of Nrf2 in attenuating oxidative stress-
mediated cardiovascular disorders has been identified. In
Table 2, we present a summary of the recently studied activa-
tors of Nrf2 and their beneficial effects in CVD.

12. Conclusions

The Nrf2 antioxidant system plays a significant role in
cellular defence against free radical damage, while insuffi-
ciency of Nrf2-dependent gene expression is clearly impli-
cated in multiple aspects and stages of CVD. Enhancing
Nrf2 activity may be beneficial in diabetic cardiomyopa-
thy, mitochondrial dysfunction, and reducing the effects
of aging in the heart; however, the potential exacerbation
of atherosclerosis by Nrf2-mediated inflammasome activa-
tion in plaque macrophages, along with the lethality of
KEAP1 knockout mice, raises a cautionary note to phar-
macological activation of Nrf2 as a therapeutic strategy.
Selective upregulation of Nrf2 target genes such as
HMOX1 may provide a more amenable therapeutic strat-
egy. Modest activation of Nrf2 by dietary factors, such as
sulforaphane, found in brassicas like broccoli, may high-
light mild activation of Nrf2 as part of the protective role
played in eating a healthy balanced diet, which may be
sufficient to maximise the therapeutic benefit offered
through the control of this gene expression network.
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Mammalian cells have evolved a unique strategy to protect themselves against oxidative damage induced by reactive oxygen species
(ROS). Especially, two transcription factors, nuclear factor erythroid 2p45-related factor 2 (Nrf2) and peroxisome proliferator-
activated receptor γ (PPARγ), have been shown to play key roles in establishing this cellular antioxidative defense system.
Recently, several researchers reported ameliorating effects of pharmacological activators for these Nrf2 and PPARγ pathways on
the progression of various metabolic disorders and drug-induced organ injuries by oxidative stress. In this review, general
features of Nrf2 and PPARγ pathways in the context of oxidative protection will be summarized first. Then, a number of
successful applications of natural and synthetic Nrf2 and PPARγ activators to the alleviation of pathological and drug-related
oxidative damage will be discussed later.

1. Reactive Oxygen Species and Human Diseases

Mammalian cells have evolved to utilize oxygen as a final
electron acceptor to support their energy metabolism in the
mitochondria. As a consequence, they need to deal with a
group of unwanted oxygenated byproducts, which are gener-
ated during this oxygen-dependent metabolic process. In
some cases, environmental stress such as UV or heat expo-
sure also has been attributed to their production. Due to their
detrimental nature, these oxygenated byproducts are collec-
tively referred to as highly reactive oxygen species (ROS).
Their typical examples include superoxide (O2

−), hydrogen
peroxide (H2O2), hydroxyl radical (OH

−), and singlet oxygen
[1]. A number of cellular metabolic enzymes, such as nicotin-
amide adenine dinucleotide phosphate (NADPH) oxidase,
xanthine oxidase, and nitric oxide synthase (NOS), have been
shown to be directly involved in ROS production [2].
Although a certain level of ROS is thought to be necessary
for efficient signaling in various cellular pathways [3, 4], most
of ROS are generally considered to be harmful due to their
damaging effects on essential building blocks of cellular
metabolism. For this reason, mammalian cells have devel-
oped multiple defense systems to work against this ROS-

mediated oxidative stress. One of these antioxidative defense
mechanisms is to create a highly reducing intracellular
environment to neutralize ROS reactivity before their attack
to cellular macromolecules [5].

A growing body of evidence strongly suggests an etiolog-
ical role of oxidative stress-associated inflammation and cell
death in the development of many human diseases [6–11].
Especially, oxidative damage has been intimately linked with
the pathogenesis of several chronic metabolic disorders such
diabetes, atherosclerosis, and hypercholesterolemia [12–14].
In addition, insufficient cellular protection against oxidative
stress also has been ascribed as another contributing factor
for developing various liver, kidney, brain, and skin diseases
[15–17]. On top of this, oxidative stress was even demon-
strated to play a major role in exhibiting many clinically
relevant side effects of various pharmacological agents.
Therefore, efficient reduction of oxidative stress through
activation of multiple antioxidative defense systems was
envisaged as a promising strategy to improve a wide range
of ROS-induced pathological conditions. Recently, several
research groups have published a series of encouraging data
suggesting effectiveness of combined use of pharmacological
activators for two critical antioxidative pathways. They
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involve two nuclear transcription factors, which are
nuclear factor erythroid 2p45-related factor 2 (Nrf2) and
peroxisome proliferator-activated receptor γ (PPARγ).
Stimulation of these two antioxidative pathways by various
pharmacological agents turned out to be extremely benefi-
cial for alleviating a variety of ROS-induced metabolic dis-
orders and drug-induced injuries. In this review, general
characteristics of Nrf2 and PPARγ pathways in the context
of oxidative protection will be summarized first. Then, a
number of successful applications of combined or separate
use of Nrf2 and PPARγ activators for amelioration of
pathological and drug-induced oxidative injuries will be
discussed later.

2. Nrf2 Pathway against Oxidative Stress

Nrf2 is by far the best characterized transcription factor with
an oxidant/electrophile-sensing capability [18]. It is a basic
leucine zipper protein with six conserved Nrf2-ECH homol-
ogy (Neh) domains [5]. Especially, ETGE and DLG motifs
located in the second Neh2 domain were shown to play a
critical role in its complex formation with another essential
component of this pathway, Kelch-like ECH-associated pro-
tein 1 (KEAP1) [19]. This Nrf2/KEAP1 complex formation
was demonstrated to be necessary for restraining the tran-
scriptional activity of Nrf2 [20]. In regard to its sensing
mechanism, KEAP1 acts as a main sensor molecule for oxi-
dative stress in this pathway. It is an adaptor protein for

cullin-3-based E3 ubiquitin ligase complex. Redox-sensitive
twenty-five cysteine residues of KEAP1 in its linker region
function as essential determinants for regulating its ubiquitin
ligase activity [21]. Conjugation of a variety of ROS-inducing
agents with these cysteine residues leads to inhibition of
KEAP1-mediated ubiquitination [22], resulting in stabiliza-
tion and nuclear translocation of Nrf2. Once transported
inside the nucleus, Nrf2 associates with one of small Maf
proteins and other coactivators to form a trimetric protein
complex. Then, this complex binds to the antioxidant
response elements (AREs) in the upstream promoter
regions of many cytoprotective and detoxifying genes for
their transcriptional activation (Figure 1). Typical examples
of Nrf2-regulated genes include γ-glutamyl cysteine ligase
(γ-GCL), NAD(P)H quinone oxidoreductase-1 (NQO-1),
glutathione S-transferase (GST), heme oxygenase-1 (HO-1),
uridine diphosphate (UDP) glucuronosyl transferase, super-
oxide dismutase (SOD), catalase (CAT), and glutathione
peroxidase-1 (GPX-1) [5, 23–28]. In addition to this
KEAP1-dependent mechanism, Nrf2 has been reported to
be regulated via a number of KEAP1-independent mecha-
nisms. They include transcriptional activation of Nrf2 gene
through aryl hydrocarbon receptor (AHR) and its nuclear
translocator (ARNT) binding to xenobiotic response ele-
ment (XRE) [29], transcriptional activation of Nrf2 target
genes through association of NF-κB with ARE, post tran-
scriptional regulation of Nrf2 mRNA with host micro-
RNAs [30, 31], post translational modification of Nrf2
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protein by phosphorylation [32, 33], acetylation [34, 35],
and ubiquitination [36], and association of Nrf2 protein
with novel binding partners [37, 38]. This seemingly com-
plicated transcriptional, epigenetic, and posttranslational
control of Nrf2 seems to be designed to fine-tune its anti-
oxidative activity upon redox perturbation in order to
minimize damaging effects of oxidative stress on cellular
metabolism [39].

3. PPARγ Pathway against Oxidative Stress

PPARs are the members of a subfamily of the nuclear
receptors and transcription factors. In general, they are
involved in the regulation of a wide range of cellular pro-
cesses such as differentiation, development, metabolism,
and even oncogenesis [40–43]. Originally, peroxisome pro-
liferators were found as genotoxic rodent carcinogens due
to their proliferative effects on peroxisomes in rats [2, 44,
45]. Interestingly, their peroxisome proliferative activity
turned out to be due to their oxidative DNA damage,
which was caused by leakage of H2O2 from peroxisomes
[44]. PPAR family genes comprise of three isoforms
including PPARα, PPARβ/δ, and PPARγ [46]. All three
subtypes of this PPAR subfamily were found to be highly
expressed in mammalian tissues, which were necessary
for energy homeostasis [47]. In regard to their signaling
mechanisms, once ligand-bound PPARs enter the nucleus,
they form a heterodimer with the retinoid X receptor
(RXR). Then, they bind to specific PPAR response elements
(PPREs) within the promoter region of PPAR-regulated
genes [48–50]. Depending on isoforms of PPARs, this
PPAR/RXR heterodimer recruits a large protein complex of
coactivators to activate the transcription of different sets of
PPAR target genes, ultimately leading to a unique physiolog-
ical outcome (Figure 1) [45].

From the pharmacological point of view, PPARγ has
been most extensively characterized as an antidiabetic target
[45, 51]. For this reason, it is often called “a glitazone recep-
tor.” In general, PPARγmodulates fatty acid storage and glu-
cose metabolism through stimulation of lipid uptake and
adipogenesis by PPARγ-regulated gene expression in fat cells
[51]. This was supported by an observation of very limited
generation of adipose tissue in PPARγ knockout mice [52].
In addition, PPARγ also has been responsible for pathogene-
sis of several metabolic and vascular diseases including
obesity, diabetes, and atherosclerosis [53–55]. Thanks to
their regulatory roles in lipid and carbohydrate metabolism,
PPARγ agonists have been widely used in the treatment
of hyperlipidemia and hyperglycemia [56, 57]. Although
PPARγ was initially regarded as a master regulator of
transcription in adipogenesis [58], it was also shown to play
additional roles in other biologically relevant processes such
as infection and inflammation. In particular, many literatures
identified PPARγ as a negative regulator of oxidative stress-
induced inflammation under either infectious or pathological
conditions [51, 59]. Detailed mechanistic studies also
revealed that PPARγ was indeed able to suppress inflamma-
tion by transcriptional repression of many well-characterized
proinflammatory transcription factors and enzymes such as

nuclear factor kappa B (NF-κB), signal transducer and acti-
vator of trancription-6 (STAT-6), and activator protein 1
(AP-1), cyclooxygenase-2 (COX-2), and induced nitric oxide
synthase (iNOS) [2, 48, 60–62]. Antioxidative function of
PPARγ was also reported to be mediated by transcriptional
activation of a number of several antioxidant genes such as
HO-1, CAT, GPX-3, and manganese superoxide dismutase
(MnSOD) through its direct association with PPREs of
their promoter regions [48, 49, 63]. For this reason, PPARγ
has emerged as a new target for anti-inflammatory and
antioxidative pharmacotherapy in many diseases, which
are adversely affected by oxidative stress and subsequent
inflammation [48, 51, 59].

4. Crosstalk between Nrf2 and PPARγ
Pathways against Oxidative Stress

Several studies have strongly suggested existence of recipro-
cal regulation of Nrf2 and PPARγ pathways to reinforce the
expression of one another [48, 61, 64]. In this sense, Nrf2
and PPARγ pathways seem to be connected by a positive
feedback loop, which maintains the expression of both tran-
scription factors and their target antioxidant genes in a
simultaneous manner. Then, what are known about molecu-
lar mechanisms for PPARγ regulation by Nrf2? Huang et al.
provided insight into this question by identifying PPARγ as a
direct target gene induced by Nrf2 transcriptional activation
[64]. In line with this finding, several other researchers also
reported direct binding of Nrf2 to newly identified AREs in
the regions of the PPARγ promoter by using gel shift and
coimmunoprecipitation assays (Figure 1) [48, 61, 64, 65]. In
their studies, ARE sequences located at −784/−764 and
−916 regions of the PPARγ promoter were found to be nec-
essary for Nrf2-regulated PPARγ expression. As supporting
evidence to this direct regulation of PPARγ by Nrf2 in vivo,
PPARγ expression was also found to be markedly lower in
Nrf2 knockout mice [64]. Other two studies also reported
severely compromised expression of PPARγ in Nrf2 null
mice and significantly reduced basal levels of PPARγ by
Nrf2 deletion [48, 61]. Then, what is the biological signifi-
cance of this positive regulation of PPARγ by Nrf2? It was
found that Nrf2-regulated PPARγ expression was required
for protection against acute lung injury in mice [65]. In this
report, PPARγ induction was found to be suppressed in
Nrf2-deficient mice in hyperoxia-susceptible manner [65].
This piece of evidence strongly suggests the requirement of
positive induction of PAPRγ by Nrf2 for the amelioration
of acute lung injury induced by hyperoxia. In addition,
RXR, another critical component of PPARγ pathway, also
turned out to be induced by activation of Nrf2 pathway by
using chromatin immunoprecipitation and sequencing
experiments [66]. These data further imply the presence of
another layer of positive regulation of PPARγ pathway by
Nrf2 (Figure 1).

Then, what is known about the opposite pattern of regu-
lation, which is the PPARγ action on Nrf2 pathway? So far,
several lines of evidence have raised the possibility of direct
involvement of PPARγ in the activation of Nrf2 pathway.
Chorley et al. found that PPARγ agonists were able to induce
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transcription of a set of antioxidative defense genes such as
GST, HO-1, and CD36 (Figure 1) [66]. Since these PPARγ-
regulated genes belong to a group of Nrf2-regulated genes,
this observation strongly suggests direct regulation of Nrf2
pathway by PPARγ. In support of this hypothesis, expression
of Nrf2 was also shown to be reduced by knockdown of
PPARγ in a mouse model [39]. Kvandova et al. even reported
the presence of putative PPREs in the promoter regions of
Nrf2 gene [2] (Figure 1). This finding further implies pos-
sibility of direct binding of PPARγ on Nrf2 promoter for
positive regulation of Nrf2 pathway. On the other hand,
collaborative action of both Nrf2 and PPARγ transcription
factors on a single target gene also seems to be plausible
since GST promoter was found to possess both ARE and
PPRE sequences to allow for simultaneous stimulation of its
transcription [2]. Therefore, concurrent activation of both
Nrf2 and PPARγ pathways by different combinations of
pharmacological agonists seems to be possible to achieve
the maximum levels of antioxidative state for full protection
against the harmful effects of ROS (Figure 1).

5. Pharmacological Targeting of Nrf2
and PPARγ Pathways

Many endeavors to pharmacologically manipulate Nrf2
and PPARγ pathways have been shown to be successful
in different kinds of in vitro as well as in vivo disease
models. In order to take full advantage of the collaborative
action of these two critical antioxidant pathways for allevia-
tion of ROS-induced damages in various metabolic diseases
and drug-induced injury, many researchers have tried to
apply several Nrf2 and PPARγ activators to various disease
models. So far, several metabolic diseases including athero-
sclerosis, diabetes mellitus, and hepatic and renal diseases
have been studied in order to test any beneficial effects of
these Nrf2 and PPARγ activators on their disease progres-
sion. From now on, therapeutic efficacies and toxicities of
various Nrf2 and PPARγ activators studied in these meta-
bolic disorders and some drug-induced organ injuries will
be summarized first (Table 1). In order to describe Nrf2
and PPARγ activators in a more systematic manner, they
were categorized as Nrf2 activator, PPARγ activators, and
dual Nrf2 and PPARγ activators based on their target
specificities. Additionally, PPARγ activators were further
classified as endogenous, synthetic, and natural PPARγ
activators based on their origins of synthesis.

5.1. Nrf2 Activator

5.1.1. Bardoxolone Methyl. Bardoxolone methyl (BARD) is
an orally available semisynthetic triterpenoid [67]. Its chem-
ical structure is based on the scaffold of oleanolic acid, a
naturally occurring pentacyclic triterpenoid. According to
preclinical studies, BARD was shown to activate Nrf2 path-
way for its antioxidant effect. It was also reported to inhibit
NF-κB pathway for its anti-inflammatory effect [68]. Wu
et al. found that BARD was able to ameliorate ischemic acute
kidney injury (AKI) through increased expression of Nrf2,
PPARγ, and HO-1 in the mouse model [69]. In this study,

BARD was able to exert its positive effect on PPARγ pathway
by enhancing the amount of PPARγmRNA and protein [69].
In regard to its mechanism of action, they found that BARD
was able to transcriptionally activate HO-1 gene during
ischemic AKI via Nrf2-independent manner. This finding
suggests that direct upregulation of HO-1 by PPARγ could
be the main mechanism of action for the reduction of AKI
by BARD. In spite of its impressive antioxidant activity,
BARD failed to pass the third phase clinical trial for the
treatment of chronic kidney disease due to a higher rate
of heart-related adverse events, including heart failure,
hospitalizations, and deaths [70].

5.1.2. Curcumin. Curcumin is a bright yellow plant-derived
chemical used as a food additive and supplement. It is a
well-known natural Nrf2 activator [71]. Olagnier et al. dis-
covered that several Nrf2 activators were able to upregulate
one of scavenger receptors, CD36, leading to the stimulation
of phagocytosis of Plasmodium falciparum, a causative path-
ogen for malaria, on human monocyte-derived macrophages
in inflammatory conditions [72]. In accordance with this
finding, curcumin was also able to increase phagocytosis of
Plasmodium falciparum through upregulation of CD36 sur-
face expression on monocytes/macrophages [73]. In this
study, seven putative AREs were identified in the promoter
region of CD36 gene, which explained mode of the tran-
scriptional activation of CD36 gene by curcumin. Inhibition
of curcumin-induced Nrf2 protein expression by a general
antioxidant molecule, N-acetyl cysteine treatment, resulted
in the loss of upregulation of CD36 by curcumin. This further
suggested direct involvement of ROS in the activation of
Nrf2 pathway by curcumin [73]. Interestingly, curcumin
was also able to increase the expression of PPARγ at tran-
scriptional and translational level [73]. This implies that
simultaneous activation of both Nrf2 and PPARγ pathways
by curcumin may play a role in upregulation of CD36, which
can lead to increased phagocytosis of Plasmodium falciparum
by macrophages.

5.2. Endogenous PPARγ Activators

5.2.1. 15-Deoxy-Δ12, 14-Prostaglandin J2. 15-Deoxy-Δ12, 14-
prostaglandin J2 (15d-PGJ2) is an electrophilic cyclopentene
prostaglandin. It was shown to act as an endogenous ligand
for PPARγ [74, 75]. Its highly reactive α, β-unsaturated car-
bonyl groups were shown to readily interact and make a
covalent bonding with cysteine thiol groups in the ligand-
binding domain of PPARγ [74]. 15d-PGJ2 was also demon-
strated to be able to increase Nrf2 expression via a PPARγ-
dependent manner [48]. Interestingly, cysteines of the linker
region of KEAP1 were also shown to be engaged in direct
binding of 15d-PGJ2 to KEAP1 [74]. In regard to mechanism
for its antioxidative activity, 15d-PGJ2 was shown to protect
neurons from homocysteic acid-induced oxidative death via
Nrf2-dependent and PPARγ-independent mechanisms
[75]. In this study, Nrf2 knockdown in astrocytes abrogated
15d-PGJ2’s neuroprotective effect. Under this Nrf2 knock-
down condition, 15d-PGJ2 was not able to facilitate induc-
tion of Nrf2 target genes. In contrast, knockdown of the
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PPARγ did not alter the neuroprotective activity of 15d-
PGJ2 [75]. Among many Nrf2-regulated genes, HO-1
turned out to play the most critical role in mediating the
antioxidative effect of 15d-PGJ2 [75]. Gong et al. also
reported protective activity of 15d-PGJ2 against oxidative
stress in RAW264.7 mouse macrophages. In this study,
they showed that attenuation of cell death by 15d-PGJ2
was due to its positive induction of the mouse HO-1 gene
[76]. More specifically, they found that 15d-PGJ2-induced
stabilization of Nrf2 was able to mediate transcriptional
activation of the mouse HO-1 through Nrf2 binding on
its enhancer region. However, this induction of mouse
HO-1 expression by 15d-PGJ2 again turned out to be
independent of PPARγ pathway [76].

5.2.2. Nitroalkene Fatty Acids. Nitroalkene fatty acids (NAs)
are naturally occurring electrophilic derivatives of unsatu-
rated fatty acids. NAs are formed via nitric oxide-
dependent oxidative reactions [77]. Bates et al. found that
NAs were able to form direct adduct with KEAP1, leading
to the activation of Nrf2 pathway. In this report, they
reported that NAs were able to display differential transacti-
vation activities toward Nrf2 and PPARγ pathways in a dose-
dependent manner [78]. Briefly, activation of PPARγ path-
way occurred at nanomolar concentrations of NAs in
MCF7 breast cancer cells. However, activation of Nrf2 path-
way occurred at much higher concentrations of NAs (≥3 μM)
[78]. Based on these results, they concluded that direct acti-
vation of PPARγ transcription by NAs would dominate over
their electrophilic activation of Nrf2 during antioxidant/pro-
tective responses [78]. Of note, both phosphatide 3-kinase
(PI3K) and protein kinase C (PKC) activations were also
shown to be required for transcriptional activation of Nrf2
and PPARγ pathways by NAs in this study [78].

5.2.3. Nitrated Fatty Acids. Endogenous nitrated fatty acids
(NFAs) are produced by nonenzymatic reaction of nitric
oxide or its inorganic reaction products with naturally pres-
ent unsaturated fatty acids [79]. NFAs can act as activating
ligands for all three PPARs, particularly with the greatest
potency as PPARγ agonists [80]. Reddy et al. found that a
nitro-oleic acid, one of the most potent NFAs, was able to
diminish severity of lipopolysaccharide- (LPS-) induced
acute lung injury in mice [80]. In regard to its mechanism
of action, they found that its protective effect against LPS-
induced inflammation was mediated by increased transcrip-
tional activity of PPARγ. They also showed that this upregu-
lation of PPARγ by a nitro-oleic acid led to subsequent
induction of Nrf2 and decreased transcription of the proin-
flammatory gene, NF-κB [80].

5.3. Synthetic PPARγ Activators. Thiazolidinedione (TZDs)
drugs are cognate ligands for PPARγ. They are frequently
used for the treatment of type 2 diabetes [45, 49]. TZDs drugs
are known to facilitate insulin-mediated adipocyte differenti-
ation by counteracting the negative effects of inflammatory
cytokines [81]. In general, TZDs drug treatment was shown
to decrease ROS production in vascular smooth muscle cells
[2]. Effects of three kinds of synthetic PPARγ activators on

oxidative stress-induced disease models have been examined
so far [50, 82–84]. They include rosiglitazone (RSG), troglita-
zone (TG) in combination with cyanidin, and arylidene-
thiazolidinedione. Here, their activities against oxidative
stress and mechanisms of action for these antioxidative activ-
ities will be discussed briefly.

5.3.1. Rosiglitazone. RSG is a member of the TDZs family and
a ligand for the PPARγ. Wang et al. found that RSG was able
to protect hepatocytes from high glucose-induced toxicity via
both PPARγ-dependent and PPARγ-independent manners
[50]. In this study, they found that RSG increased the expres-
sion of Nrf2 and HO-1 in a PPARγ-dependent manner, lead-
ing to the elimination of excessive ROS [50]. In addition, they
also found that the inhibitory effect of RSG on ROS genera-
tion was related with PKC inactivation. In line with this pos-
itive role of RSG in reduction of oxidative stress, Liu et al. also
reported that RSG was able to inhibit paraquat- (PQ-)
induced acute lung injury in rats [83]. In this study, they
found that protection of rats against PQ-induced acute lung
injury by RSG was mediated by activating both Nrf2 and
PPARγ pathways. They also showed that inhibition of NF-
κB activation by RSG was required for the alleviation of
PQ-induced acute lung injury [83].

5.3.2. Troglitazone with Cyanidin. Cyanidin is a natural
organic pigment found in many red berries. Shih et al.
reported that cyanidin in combination with TG was able to
prevent H2O2-induced cytotoxicity in human hepatoblas-
toma HepG2 and rat normal hepatocyte cells [84]. In this
study, they found that antioxidative activities of cyaniding
and TG were mediated through activation of mitogen-
activated protein kinase (MAPK) and Nrf2 pathways [84].
They also reported that cotreatment of cyanidin and TG
was able to transcriptionally upregulate expression of antiox-
idant and detoxifying genes through activation of ARE-
mediated Nrf2 pathway [84]. Based on these results, they
suggested simultaneous administration of cyanidin and
PPARγ agonists to reverse the metabolic dysfunction-
related oxidative damage [84].

5.3.3. Arylidene-Thiazolidinedione. Fair amount of efforts has
been devoted to the modification of chemical structures of
TZDs in order to reduce their endogenous side effects such
as water retention, weight gain, and eyesight problems. Faine
et al. found that one of their chemically modified TZDs, the
arylidene-thiazolidinedione 5-(4-methanesulfonyl-benzyli-
dene)-3-(4-nitrobenzyl)-thiazolidine-2,4-dione (SF23), pos-
sessed a weaker affinity for PPARγ [82]. However, SF23
turned out to have impressive anti-inflammatory and antiox-
idant properties, which were evidenced by efficient blockage
of LPS-induced inflammation and oxidative stress in RAW
267.4 macrophages [82]. SF23 was also able to enhance the
mRNA expression of CD36 and suppress the mRNA expres-
sion of both iNOS and COX-2. They also reported that SF23
was able to display better antioxidant effects on the LPS-
stimulated macrophages than RSG. Interestingly, this antiox-
idant activity of SF23 was shown to be exerted via an Nrf2-
independent manner [82].

7Oxidative Medicine and Cellular Longevity



5.4. Natural PPARγ Activators

5.4.1. Carotenoids. Carotenoids are organic plant pigments
with a tetraterpenoid structure. Zhang et al. found that
carotenoids were able to inhibit proliferation of K562 cancer
cells through induction of cell apoptosis and blockage of
cycle progression [85]. Especially, this carotenoid-induced
cell cycle arrest was shown to be mediated by increased
expression of a cell cycle blocker, p21, and decreased
expression of cyclin D1. This antiproliferative effect of
carotenoids was shown to be dependent on upregulation
of both Nrf2 and PPARγ expression [85]. Based on these
results, they concluded that Nrf2 and PPARγ pathways
could be activated in order to induce the growth inhibitory
effects on cancer cells [85].

5.4.2. Monascin. Monascin is a natural compound obtained
fromMonascus-fermented products. Beisswenger found that
monascin was able to attenuate the hyperglycemic toxicity
induced by methylglyoxal (MG). MG is a major precursor
of advanced glycation end products, which were well known
for their diabetes-inducing activities through impairment of
an insulin transcription factor, pancreatic and duodenal
homeobox-1 (PDX-1) [86]. The protective activity of monas-
cin against MG-induced diabetes was shown to be mediated
through positive modulation of both Nrf2 and PPARγ
pathways [87]. In this report, Hsu et al. identified monas-
cin as novel natural Nrf2 and PPARγ agonists by using
Nrf2 and PPARγ promoter reporter assays in HepG2 cells.
Activation of Nrf2 pathway by monascin also resulted in
downregulation of hyperinsulinemia in an oral glucose toler-
ance test [87]. In their related studies, they also reported that
cotreatment of monascin with another Nrf2 activator, allyl
isothiocyanate, was able to attenuate MG-Induced PPARγ
phosphorylation and degradation through inhibition of the
oxidative stress via a PKC-dependent manner [88].

5.4.3. Ankaflavin. Ankaflavin (AK) is a natural pigment iso-
lated from Monascus-fermented products. It was found to
possess the PPARγ agonist activity [89]. Lee et al. reported
that AK was able to upregulate Nrf2 pathway to attenuate
MG-induced diabetes in vivo [90]. Although AK failed to
alter hepatic Nrf2 mRNA or protein expression, it signifi-
cantly increased Nrf2 phosphorylation at serine 40. This led
to increased transcriptional activation of HO-1 gene. They
also found that protective effects of AK against diabetes were
mediated by the upregulation of Nrf2 pathway, resulting in
induction of glyoxalase and HO-1 [89, 90]. In addition, AK
also was able to increase Maf-A and PDX-1 expression
through activation of PPARγ pathway. They suggested that
this could be one potential mechanism for elevating pancre-
atic insulin synthesis and improving hyperglycemia by AK
in MG-treated rats [89].

5.5. Dual Nrf2 and PPARγ Activators

5.5.1. Genistein. Genistein is a primary isoflavone from soy-
beans [91]. Zhang et al. found that genistein was able to
induce activation of both Nrf2 and PPARγ pathways and that
this led to attenuation of H2O2-induced cell injury in

transformed human umbilical vein endothelial cells [92]. In
this report, dual activation of Nrf2 and PPARγ pathways by
genistein was demonstrated by enhanced promoter activity
of both Nrf2 and PPARγ reporters by genistein [92]. In
regard to its mechanism of action, induction of HO-1 by
genistein seemed to mediate its protective effect against oxi-
dative stress [92].

5.5.2. Vitamin E. Vitamin E is a group of compounds
including both tocopherols and tocotrienols. Their antioxi-
dant activities have been extensively characterized by many
researchers [93]. Bozaykut et al. reported that vitamin E
was able to afford protection against hypercholesterolemia-
induced atherosclerosis in the rabbit aorta model. In this
study, they found that vitamin E was able to show this
protective effect through decreased expression of matrix
metalloproteinase-1 (MMP-1) and increased expression of
PPARγ, GST-α, and ATP-binding cassette transporter 1
(ABCA1) in the aortae of cholesterol-fed rabbits [94]. Protein
expression of Nrf2 was also increased in both the cholesterol-
fed and the vitamin E-supplemented groups. Vitamin E
appeared to afford this protection through activation of both
Nrf2 and PPARγ pathways, resulting in induction of several
antioxidant genes [94].

5.5.3. Olmesartan.Daunorubicin is a chemotherapeutic med-
ication used to treat various kinds of cancer. Oxidative injury
has been suspected to play a major role for daunorubicin in
inducing chronic nephrotoxicity [95]. Gounder et al. found
that olmesartan, an angiotensin II receptor antagonist, which
was used for the treatment of high blood pressure, was able to
protect against this daunorubicin-induced nephrotoxicity in
rats [96]. In this study, they found that olmesartan treatment
downregulated phosphorylation of several key signaling mol-
ecules such as mitogen-activated protein kinase-activated
protein kinase (MAPKAPK), caspase-12, p47, and p67.
Olmesartan was also able to upregulate renal expression of
PPARγ, B-cell lymphoma-extra large (Bcl-xL), GPX, and
Nrf2 [96]. Based on these results, they concluded that posi-
tive regulation of both Nrf2 and PPARγ pathways seemed
to mediate protective effects of olmesartan against
daunorubicin-induced nephrotoxicity.

5.5.4. α-Methylene-γ-Lactones. Protolichesterinic acid is a
lichen paraconic acid with an α, β-unsaturated lactone
moiety. Le Lamer et al. found that protolichesterinic acid
derivatives, α-methylene-γ-lactones, were able to induce
expression of Nrf2 target genes such as NQO-1 and HO-1
and PPARγ target genes such as Dectin-1 and CD36 in
macrophages. Based on these results, they concluded that
α-methylene-γ-lactones were potent dual activators of both
Nrf2 and PPARγ pathways [97]. In regard to more detailed
mechanism of action for activation of PPARγ pathway
by α-methylene-γ-lactones, they suggested that α-methy-
lene-γ-lactones may act as covalent ligands through a
Michael addition with a cysteine residue in the PPARγ
ligand-binding domain [97].

5.5.5. 18β-Glycyrrhetinic Acid. Methotrexate (MTX) is a
dihydrofolate reductase inhibitor used for several human
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malignancies and autoimmune disorders. Due to its prooxi-
dant and nonspecific action, MTX has been reported to
induce a variety of adverse effects [98, 99]. 18β-Glycyrrheti-
nic acid (18β-GA) is one of the active ingredients of Glycyr-
rhiza glabra (Liquorice). Abd El-Twab et al. reported that
18b-GA supplementation was able to significantly upregulate
the mRNA abundance of both Nrf2 and HO-1 in the kidney
of MTX-treated rats [100]. 18b-GA administration was also
able to downregulate levels of circulating kidney function
markers, tumor necrosis factor-α (TNF-α), kidney lipid per-
oxidation, and nitric oxide. This protective activity of 18b-
GA against MTX-induced kidney injury appeared to depend
solely on activation of Nrf2 with no participation of PPARγ
pathway [100].

Cyclophosphamide (CP) is a chemotherapeutic agent
used to suppress the immune system and cancer. CP-
induced ROS generation and oxidative stress have been
implicated in its hepatotoxic effects [101]. Mahmoud and
Al Dera found that 18β-GA acid was able to exert protective
effects against CP-induced hepatotoxicity. They also showed
that this hepatoprotective activity of 18β-GA was mediated
through activation of both Nrf2 and PPARγ pathways and
suppression of NF-κB pathway [102]. More specifically,
18β-GA decreased expression levels of malondialdehyde
(MDA), NF-κB, and iNOS and increased expression levels
of GSH, GPX, SOD, and CAT [102].

5.5.6. (−)-Epigallocatechin-3-Gallate. (−)-Epigallocatechin-3-
gallate (EGCG) is a well-known green tea polyphenolic com-
pound with an antioxidant activity. Ye et al. found that
EGCG was able to ameliorate crescentic glomerulonephritis
through activation of Nrf2 pathway [103]. In this study, they
induced crescentic glomerulonephritis by administration of a
rabbit anti-mouse glomerular basement membrane antibody.
Under this condition, EGCG-treated mice showed significant
reduction in phosphorylation levels of several signaling
molecules such as AKT, c-Jun N-terminal kinase (JNK),
extracellular signal-regulated kinase (ERK), and p38. EGCG
administration also induced a marked increase in the levels
of Nrf2, GCL, GPX-1, NQO-1, PPARγ, and silent informa-
tion regulator 2 (Sir2) protein 1 (SIRT1) in the kidney tissue
[103]. All these transcriptional changes induced by activation
of both Nrf2 and PPARγ pathways seemed to contribute to
amelioration of crescentic glomerulonephritis induced by a
glomerular basement membrane antibody.

5.5.7. Mangiferin. Mangiferin is a naturally occurring gluco-
sylxanthone xanthonoid from Mangifera indica. Mahmoud-
Awny et al. found that mangiferin was able to mitigate gastric
ulcer in ischemia/reperfused rats. They also found that man-
giferin was able to exert its gastroprotective effect via induc-
ing the expression of Nrf2, HO-1, and PPARγ along with
downregulating that of NF-κB [104]. The effect of mangi-
ferin, especially at the high dose, exceeded that was mediated
by omeprazole, a proton pump inhibitor [104].

5.5.8. 3-O-Laurylglyceryl Ascorbate. Ascorbic acid is a
water-soluble vitamin with an antioxidant activity. A newly
synthesized amphipathic derivative of ascorbic acid, 3-O-

laurylglyceryl ascorbate, was shown to activate both
Nrf2 and PPAR-γ pathways [105]. Specifically, 3-O-
laurylglyceryl ascorbate was shown to be able to upregulate
the expression of mRNAs encoding PPAR-γ and Nrf2 and
their target genes including γ-GCS, HO-1, and NQO-1
[105]. Downregulation of Nrf2 mRNA level in siPPARγ-
treated cells further supported the reciprocal positive modu-
lation of Nrf2 and PPARγ pathways. In addition, the effects
of 3-O-laurylglyceryl ascorbate on PPARγ and Nrf2 mRNA
levels were reduced by PPARγ knock down in normal human
epidermal keratinocytes [105]. This suggested that PPARγ
played a major role for 3-O-laurylglyceryl ascorbate in induc-
ing transcription of antioxidant genes.

5.5.9. Umbelliferone. Umbelliferone is a natural product of
the coumarin family used in sunscreens. Mahmoud et al.
reported that umbelliferone was able to confer a protective
effect against hepatotoxicity induced by cyclophosphamide
(CP), which is an anticancer and immunosuppressive drug
[106]. This hepatoprotective activity of umbelliferone was
shown to be mediated by upregulation of Nrf2 and PPARγ
pathways. In this report, CP-treated rats showed significant
downregulation of Nrf2, HO-1, and PPARγ. However, this
effect was markedly reversed by umbelliferone treatment
[106]. Activation of PPARγ also appeared to inhibit the
fibrogenic response to hepatic injury and protect against
CP-induced inflammation [106].

5.5.10. Graptopetalum paraguayense and Resveratrol. As pre-
viously mentioned, advanced glycation end products were
generated by nonenzymatic reactions between carbohydrates
and proteins and found to cause pancreatic damage and oxi-
dative stress in hyperglycemic patients [107, 108]. Lee et al.
used carboxymethyllysine (CML) to induce pancreas dys-
function and hyperglycemia through formation of advanced
glycation end products. Using this model, they found that
cotreatment of Graptopetalum paraguayense (GP) and res-
veratrol was able to ameliorate CML-induced pancreas dam-
age and hyperglycemia. Especially, resveratrol and ethanol
extracts of GP increased insulin synthesis via upregulation
of pancreatic PPARγ and PDX-1. Resveratrol and ethanol
extracts of GP also strongly activated Nrf2 pathway including
GSH and γ-GCL to attenuate oxidative stress and improve
insulin sensitivity [109].

5.5.11. Cyanidin-3-Glucose and Resveratrol. Cyanidin-3-glu-
cose (C3G) is a natural plant pigment with an anthocyanin
structure. Serra et al. found that cotreatment of C3G and res-
veratrol was able to induce Nrf2 activation leading to
increased HO-1 and γ-GCL mRNA expression in human
colon cancer cells [110]. Resveratrol was also able to increase
nuclear levels of PPARγ in cytokine-stimulated cells. Based
on these results, they suggested the use of polyphenols as
nutraceuticals to lessen intestinal inflammation in patients
with inflammatory bowel disease [110].

6. Concluding Remarks

In this paper, we have reviewed roles of oxidative stress in the
development of human diseases, two major antioxidant
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signaling cascades such as Nrf2 and PPARγ pathways, their
potential crosstalk against oxidative stress, and pharmacolog-
ical targeting of these two pathways by various Nrf2 and
PPARγ activators. Since a growing body of evidence strongly
suggests existence of the intimate relationship between oxi-
dative stress and the development of various metabolic disor-
ders and drug-induced organ injuries, discovery of the best
combination of Nrf2 and PPARγ activators to achieve the
maximal protection against this oxidative stress will be
greatly beneficial for alleviating burden of numerous patients
suffering from many oxidative stress-induced diseases and
side effects of anticancer drugs.
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Early embryonic loss and adverse birth outcomes are the major reproductive disorders that affect both human and animals. The
LPS induces inflammation by interacting with robust cellular mechanism which was considered as a plethora of numerous
reproductive disorders such as fetal resorption, preterm birth, teratogenicity, intrauterine growth restriction, abortion, neural
tube defects, fetal demise, and skeletal development retardation. LPS-triggered overproduction of free radicals leads to oxidative
stress which mediates inflammation via stimulation of NF-κB and PPARγ transcription factors. Flavonoids, which exist in
copious amounts in nature, possess a wide array of functions; their supplementation during pregnancy activates Nrf2 signaling
pathway which encounters pregnancy disorders. It was further presumed that the development of strong antioxidant uterine
environment during gestation can alleviate diseases which appear at adult stages. The purpose of this review is to focus on
modulatory properties of flavonoids on oxidative stress-mediated pregnancy insult and abnormal outcomes and role of
Nrf2 activation in pregnancy disorders. These findings would be helpful for providing new insights in ameliorating oxidative
stress-induced pregnancy disorders.

1. LPS Overview and Its Drawbacks

Early pregnancy failure is a main obstacle that leads to signif-
icant effects on pregnancy outcomes in humans and animals
[1]. Approximately 15–20% clinical pregnancies experience
abortion [2], and about 30–50% conception resulted in early
embryonic loss in mammals [3]. Moreover, assisted repro-
ductive techniques enhance pregnancy rate in infertile
women without avoiding early embryonic loss [4]. Humans
get constant exposure of LPS at minimum levels in

gastrointestinal inflammatory diseases [5]. Lipopolysaccha-
ride (LPS) is derived from G-negative bacteria; maternal
exposure to pregnant rodents causes placental inflammation
contributing in embryonic resorption, fetal growth restric-
tion (FGR), preeclampsia fetal brain injury, and miscarriages
which develops by alternation in cytokine productions [6, 7].
These cytokines were released by trophoblastic, decidual, and
chorioamnionitic cells and other cell types [8]. In humans,
LPS infection provokes fetal loss and preterm labor [9] and
is thought to be regulated by LPS-induced ROS-mediated
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teratogenesis [10]. In addition, basal amount of ROS is
necessary in early embryonic growth and metabolism; exces-
sive generation of uterine ROS is detrimental to oxidative
DNA damage of the embryo [11, 12]. In pregnant mice,
LPS exposure at late gestation leads to preterm delivery and
fetal demise [13, 14], and in later gestational stages, maternal
LPS infection causes intrauterine fetal growth restriction
[15]. The signaling molecule, nitric oxide (NO), displays an
essential role in implantation, decidualization, vasodilation,
myometrial relaxation, and overactivation possibly induced
by free radical-mediated pathology. Enhanced production
of LPS-induced nitric oxide has been reported in embry-
onic resorption and abortion [16]. LPS-triggered abortion
mechanism has been depicted in Figure 1. Nrf2 proteins
display a key role in the elimination of oxidative stress
through Nrf2-ARE signaling pathway [17, 18] as reported
in preeclampsia conditions [19]. Nrf2 is very sensitive to
maternal immune status and is responsible for fetal growth
and survival through maintaining fetus desirable placental
environment; later, Nrf2 protein expression of the placenta
was decreased following delivery [20] suggesting its impor-
tant function in fetal survival. Thus, any inappropriate func-
tion could lead to inducing numerous pregnancy disorders.
The flavonoids of the polyphenol group are well-recognized
natural compounds, which elicit strong antioxidant and
anti-inflammatory activities that would be helpful in the

elimination of LPS-potentiated pregnancy disorders. The
polyphenols such as curcumin possess strong anti-
inflammatory activity through influencing diverse pathways
to modulate cellular functions. It can also decrease inflam-
mation by inhibiting NF-κB pathway via inactivation of
IKK complexes [21, 22]. A study reported that curcumin
polyphenols suppress methylglyoxal-induced apoptosis in
mouse ESC-B5 cells and blastocysts by inhibiting reactive
oxygen species (ROS) [23]. The anti-inflammatory strategy
would be helpful in alleviating pregnancy-related compli-
cations [24]. This review emphasizes LPS-mediated preg-
nancy disorders and adverse birth outcomes, modulatory
activities of polyphenols, and the role of Nrf2 signaling
pathway. We have given detailed description below on
the previous reports of polyphenol supplementations such
as epigallocatechin gallate, curcumin, baicalin, and tricin
which attenuate LPS-induced reproductive disorders, while
genistein and quercetin develop strong antioxidant preg-
nant uterine environment that encounters disease in extra-
uterine life. These findings would be helpful in improving
animal productions.

1.1. Disruption Pregnant Uterine Environment by
Inflammatory Cytokines. The LPS binds with Toll-like recep-
tor 4 (TLR4) with the facilitation of cluster of differentiation
14 (CD14) on cell surface of macrophages and monocytes.
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Figure 1: LPS-induced abortion by regulating strong cellular network. After induction of LPS, binding protein interacts with Toll-like
receptor 4 (TLR4) and activates downstream adaptor proteins MYD-88, which subsequently stimulate IKK complex, resulting in
ubiquitination and phosphorylation of IkBα proteins that translocate NF-κB into the nucleus for production of several proinflammatory
cytokines such as TNF-α, IL-β, IL-6, and PGF2E which causes microvascular damage leading to thrombosis, ischemia, necrosis of decidual
cells, and finally abortion. On the other hand, flavonoids prevent abortion by inhibition of IKK complex proteins and bring NF-κB into its
inactivated form in cytoplasm. These beneficial effects of flavonoids are mediated by activation of PI3K/Akt pathway; hence, it prevents
development of free radicals by supplementation of flavonoids during pregnancy.
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Upon activation of TLR4, it disseminates LPS signals to mye-
loid differentiation factor (MYD88) adaptor molecules; thus,
its stimulation is known to be regulated by several signaling
molecules including NF-κB proteins [25]. NF-κB exerts an
important role in the development of inflammation while
its activation occurs by degradation and phosphorylation of
IκB kinases such as IKKα and IKKβ which results in the
translocation of NF-κB into the nucleus where it induces
the formation of inflammatory cytokines, tumor necrosis
factor-α (TNF-α), interleukin-beta (IL-1β), interleukin-6
(IL-6), and interleukin-8 (IL-8), and inducible inflammatory
enzymes, nitric oxide (NO) and reactive oxygen species
(ROS) [26, 27]. As mentioned above, that LPS persuades
inflammation which triggered various pregnancy disorders
in mid and late gestation [28]. The inflammatory mediators,
such as TNF-α, interrupt placental blood supply and its
function [29] resulting in fetal injury [30]. Studies on
mice report that inflammation mediated by TNF-α and
interferon-gamma (IFNγ) in macrophages and uterine
natural killer (uNK) cells causes vascular injury and placental
ischemia in uterine endothelial cells [31]. It was further
noted that LPS mediates IFNγ and TNF-α through activa-
tion of Toll-like receptors and is responsible for activation
of cytokine-induced abortion [32] by possibly downregu-
lating expression of cyclooxygenase-2 enzyme (COX-2)
protein that encounters fibrinogen-like protein-2 (Fgl2)
in the fetomaternal site [33]. The abortogenic effect varies
according to the nature of LPS, source, time length, and
dose regimen [32]. The interleukin-10 (IL-10) is an anti-
inflammatory cytokine which minimizes pregnancy-related
inflammation through regulation of TNF-α and other
cytokines and chemokines [34]. The growing body of tex-
ture revealed that maternal LPS induced uterine inflam-
mation by cytokines through transplacental transmission
that enhances the risk of brain diseases at the adult stage
of life [35].

The peroxisome proliferator-activated receptor (PPAR)
is a nuclear protein stimulated by multiple ways such as
activations of prostaglandins (PGs) and leukotrienes
(LTs). After activation, it stimulates transcription factors
and mediates various cellular functions including cell
differentiation, apoptosis, lipid metabolism, peroxisome
proliferation, and inflammation response. In pregnancy,
PPAR signals regulate trophoblast invasion and differenti-
ation [36], placentation [37], and maternal metabolism
[38]. The improper regulation of PPAR receptors causes
complications including preeclampsia (PE), intrauterine
growth restriction (IUGR), and preterm birth [39]. In vitro
studies on knockout mice propose that stimulation of
PPAR suppresses proinflammatory cytokines and distin-
guishes immune cells from anti-inflammatory phenotypes
[40]. Naturally occurring compounds polyphenols exert
ability to stimulate PPAR nuclear receptors and exert
fruitful impact on pregnancy. It has been noted that
PPARγ was considered as a potential target for therapeutic
intervention against preeclampsia [41]. Limited research
on PPAR signals in pregnancy disorders have been
observed; therefore, more studies are needed to explore
further insights.

2. Positive Effects of Cytokines in
Pregnancy Development

Naturally, the immune system protects uterine environment
from invading pathogens to full-term birth [42]. Excessive
levels of endometrial cytokines, prostaglandins, and leuko-
cytes are released during inflammatory condition [43]. The
endometrial mediated cytokine and chemokine productions
give directions to the blastocyst to connect with endometrial
walls. When invasion and lysis of trophoblast exist, conver-
sion from epithelial cells to stromal cells repairs endometrial
tissue which replaces cells in the placenta. This structure is
mediated by Th1 cellular responses where an ample amount
of proinflammatory molecules such as IL-6, LIF, IL-8, and
TNF-α was contributed [44] and these also recruit immune
cells towards the decidua. In human and mouse, a huge pop-
ulation of decidual leukocytes has been witnessed at the site of
implantation. Of note, these cells are comprised of 65–70%
uterine natural killer (uNK) cells and 10–20%, based on mac-
rophages and dendritic cells (DCs) [45]. The macrophages
and DCs localize in the decidua during the entire pregnancy
and exhibit a key role at maternal-fetal interface [46]. The
macrophages and DCs have the capability to secrete a variety
of anti-inflammatory molecules (IL-4, IL-10, and IL-13) and
enzymes, which are mainly involved in structural modifica-
tion and angiogenesis [47].Moreover, it was documented that
macrophages mediate trophoblast invasion and might exert
main function in eliminating debris which comes from tro-
phoblastic apoptosis at different phases of gestation [44].
The presence of DCs in maternal tissue during implantation
has been observed [48], and it was further illustrated that
DCs have the ability to alter Th1 proinflammatory cytokines
to Th2 anti-inflammatory cytokines at latter stages of gesta-
tion [49]. Near to parturition, anti-inflammatory response
converted into pro-inflammatory response in order to induce
uterine contractions initiates to parturition [50]. Overall,
observation indicates the key functions of anti- to pro-
inflammatory cytokine response during the entire pregnancy.
Of note, limited evidences of inflammatory response have
been documented before implantation of the embryo.

3. Interruption in Redox Balance

In normal homeostasis, ROS are neutralized by antioxidant
defense in vivo. This balance is encountered by overpowering
of ROS production and incompetency of antioxidant system
to eliminate them. Growing evidences show that early expo-
sure of oxidative stress in pregnancy might have long-term
complications [51]. The antioxidant defense against locally
produced NO by inducible nitric oxide synthase enzyme
downregulates NO signals in the placenta which are crucially
important for normal vascular development. In the first tri-
mester of pregnancy, fetal growth was subjected to hypoxia
[52], while in the prenatal period, it was documented that
the fetus is highly vulnerable to oxidative damage whereas
antioxidant supplementation during pregnancy ameliorates
reproductive disorders such as implantation failure and fetal
anomalies [53]. It has been reported that enhanced sodium
dismutase-1 (SOD1) in mice suppresses fetal anomalies and
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protects against diabetes-related embryopathy [54]. In
pregnancy, having intrauterine growth restriction (IUGR),
preeclampsia (PE), and gestational diabetes mellitus (GDM)
has been recorded to have higher chances of fetal hypoxia
(markers of oxidative stress). Moreover, a deficient supply
of oxygen has been observed in pathogenesis of IUGR and
PE conditions [55]; on the other hand, preterm delivery
arises from ischemia-reperfusion injury which decreased
body weight.

4. LPS-Driven Inflammatory Pathways

LPS activates inflammation through multifaceted mecha-
nism [56, 57] Maternal LPS triggers embryonic resorption
through strong cellular network which is responsible for
increased excessive placental TNF-α, IL-1β, and IL-6 expres-
sions that subsequently reduced phosphorylated Akt protein
(serine/threonine-specific protein kinase) thereby causing
decreased number of live pups, fetal weight, and placental
weight [6, 58, 59]. Moreover, LPS also stimulates both tran-
scription factors such as MAP kinases (MAPKs) and nuclear
factor-κB (NF-κB) [60]. Prevalence of uterine inflammation
is a major outcome of infection and idiopathic preterm birth
[61] caused by alleviation of cytokine activity before preterm
labor, cervix and fetal membranes by neutrophils and macro-
phages [62]. Several studies reported that proinflammatory
cytokines such as IL-1β, IL-6, and TNF-α may activate
contraction-associated proteins (CAPs) comprising oxytocin
receptor (OTR), connexin 43 (CX43), prostaglandin H
synthase- (PGHS-) 2, and prostaglandin receptors, in the
myometrium, which exert uterotonic factors such as PGs that
induce subsequently labor and inflammatory signals, sug-
gesting a potential target in attenuating preterm birth [63].
In addition, normal labor in mouse associates with subse-
quent stimulation of NF-κB and AP-1 within the uterus,
whereas LPS-induced preterm labor (PTL) in two mouse
models has been reported to have activated NF-κB and Jun
N-terminal kinase (JNK) transcription factors [64].

5. Pregnancy-Related Disorders and Adverse
Birth Outcomes

5.1. Effects of LPS on Decidual Cells. The vast literature has
been published on decidual cells, which focuses on pregnancy
recognition, fetal growth, and survival. Decidual cells are the
maternal tissue which acts under the influence of progester-
one and testosterone in circulation in order to maintain
growth following implantation of blastocyst with the endo-
metrium. Later on, decidual and trophoblastic cells form
the placenta of maternal portion [65]. Crosstalk between
LPS and Toll-like receptor 4 (TLR4) resulted in harmful
effects on pregnancy through releasing a variety of inflamma-
tory cytokines in murine models [66]. Certain cytokines such
as IL-4, IL-6, and IL-10 elicit beneficial effects on pregnancy
[67]. Wang et al. [68] demonstrated that baicalin treatment at
4μg/mL to uterine decidual cells which was cultured with
LPS on day 6 of pregnancy. Meanwhile, in in vivo exper-
iment, LPS was inducted at day 6 of pregnancy and subjected
on oral doses of baicalin at day 7 and day 8 of pregnancy.

The results documented that baicalin prevents damage to
decidual cells and reduces TNF-α activity, hence produc-
ing fruitful effects on pregnant mice.

5.2. Maternal LPS-Mediated Teratogenicity. Some studies
have found that LPS induces teratogenicity by overriding of
free radicals. The subcut induction of LPS causes fetal mal-
formation such as anencephaly and eye deformities [69]
and developmental toxicity regulated by maternal side [70].
Uprising of tumor necrosis factor-alpha (TNF-α) in fetal
liver and brain-induced fetal death occurs through either
maternal circulation or amniotic fluid which mediated LPS
induction [71]. In addition, LPS also induced lipid peroxida-
tion and GSH depletion in maternal liver and placenta and
increases expression of HO-1 in fetal liver that was counter-
acted by radical trapping agent N-tertiary-butylnitrone
(PBN), a compound used for spin trapping. It has been well
characterized that ROS are unstable reactive species which
could not be eliminated successfully during organogenesis
process and transfer from maternal to fetal tissues, irrespec-
tive of avoiding antioxidant defense. Hence, lacking of GSH
proclaimed to develop ROS within fetal tissues. ROS develop-
ments in fetal tissues are not well clarified [72] though TNF-α
can cross maternal serum and amniotic fluid to fetuses [71].

5.3. Oxidative Stress and Preterm Birth. Premature birth
frequently occurs prior to normal delivery, when antioxi-
dants could not be so active to alleviate oxidative stress
resulting in preterm birth. It develops due to hindrance in
uteroplacental transfer of nutrients which keeps newborns
more sensitive against increasing ROS insults [73]. The
MnSODmRNA seems to be present in fetal membranes after
labor and show its existence in chorioamnionitis [74]. It has
been revealed that inflammation might be involved in
placental antioxidant system which depends upon the con-
cept development. Recently, studies rectified that [75, 76]
cytokines are the main regulators for premature birth; hence,
expression of NF-κB induced cytokines as a novel target
for alternative therapeutic options. NF-κB is recognized
in the induction of proinflammatory genes and mediates
the expression of adhesion molecule, chemotactic factors,
and acute phase proteins. The activation of NF-κB signaling
pathway may enhance synthesis of proinflammatory cyto-
kines that induce infected preterm birth [77, 78]. The current
study has shown that polyphenols particularly curcumin
exert beneficial effects on inhibition of NF-κB-linked preg-
nant tissue-infected premature birth in mice, suppress
TNF-α and IL-8, and mitigate oxidative insult in mothers
and fetuses [79].

5.4. Preeclampsia and Oxidative Stress. Preeclampsia seems
to be reported after 20 weeks of gestation in humans [80].
Some literatures build up strong relations between maternal
inflammation and oxidative stress. Researchers stated that
increased maternal inflammation through a variety of
signaling pathways and presence of oxidative stress might
be the possible factors for inducing preeclampsia condition
[81, 82]. In preeclampsia, reactive oxygen species initiates
apoptosis of syncytiotrophoblast in placentation mechanism
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and affects anterior remodeling [83]; hence, it mediates
inflammation. In addition, oxidative stress has been pre-
sumed to stimulate maternal endothelial cells as an inducer
of preeclampsia condition [84].

5.5. Oxidative Stress-Induced IUGR Complications. Liu et al.
[85] revealed that LPS induced intrauterine growth restric-
tion in late gestation mice. It is stated that fetal IUGR is more
susceptible in late gestation to increased risk of metabolic
disorders such as insulin resistance, diabetes mellitus, obe-
sity, hypertension, and cardiovascular diseases in model
animals [86, 87]. Moreover, maternal protein restriction
during pregnancy triggers fetal IUGR after prompt growth
and alters gene expression in adipose tissue which is more
prone to obesity in adult mice [88]. Numerous literatures
established links of IUGR with oxidative stress. In IUGR
pregnancies, oxidative stress markers such as MDA and pro-
tein oxidation of mother and fetus erythrocytes confirmed
the strong relations [89]. In addition, oxidative/antioxidant
markers were elevated in IUGR pregnancies, suggesting that
neonates with IUGR elicited low level of antioxidant defense
lipid peroxidation [90].

6. Significant Impact of Nrf2 Pathway
on Pregnancy

Nrf2 is a leucine-based zipped transcription factor which
displays a key role against oxidative stress by induction of
phase II antioxidant enzymes [91]. Activation of Nrf2 is
crucial for ameliorating oxidative stress-mediated cellular
damage via protection through 20S proteasome or [92] by
p62-dependent autophagy [93]. Normally, Nrf2 is located
in Kelch-like ECH-associated protein-1 (Keap1) [94]. Keap1
functions as sensors for oxidative stress [95]; upon activa-
tion, Nrf2 binds with Maf recognition/antioxidant response
element and electrophilic response element (ARE/EpRE) in

promoter target genes encompassing NAD(P)H:quinone
oxireductase 1 (NQO1) [96], heme oxygenase1 (HO-1) [97],
glutamate cysteine ligase(GCL) [98], and the light chain of
the amino acid cystine-glutamate exchanger (xCT) [99]
involved in glutathione biosynthesis. Notably, more than
hundred genes have been identified; many of them are
redox-sensitive transcription factors [100].

Numerous reports were described the protective effects
of Nrf2 on the embryo against adverse effects of oxidative
stress in utero (Table 1). Nrf2 knockout mice were con-
sidered as indicators of placental oxidative stress which
suppress fetal growth [101]. Nrf2-deficient mice are vul-
nerable to methamphetamine-induced fetal DNA insult
and neurological deficits [102], whereas polyphenols such
as hydroxytyrosol-induced Nrf2 stimulation ameliorate
oxidative stress-mediated effects in cognitive function and
neurogenesis in offspring [103]. Activation of Nrf2 has
exhibited to reduce Et-OH-induced neural crest apoptotic
cells in a fetus [104], and trophoblastic triggered apoptosis
by inflammation [105]. At the same time, aforementioned
studies indicated that Nrf2 exerts protective effects towards
oxidative insult during early-pregnancy development (i.e.,
neutral crest formation), while some other studies docu-
mented significant effects of Nrf2 in redox mechanism in
later-developmental phases. The in utero Keap1/Nrf2 sig-
nals have been demonstrated in response to amniotic fluid
through increased expressions of genes contributed in
epidermal development [106]. The Nrf2 is very sensitive
to the maternal immune system to mediate the function
of fetal membranes to birth. Importantly, Nrf2 protein
expression was decreased in fetal membranes during preg-
nancy due to amniotic infection. The pitfalls in Nrf2 regula-
tion can facilitate preterm delivery; knockdown of Nrf2 in
amniotic cells causes upregulations of proinflammatory
cytokines which causes rupturing fetal membranes. More-
over, a beneficial effect of Nrf2 on antioxidant mechanism

Table 1: Some enlisted Nrf2 gene regulation in maternofetal tissues.

Origin Regulation of Nrf2 protein/gene Functional significance References

Human umbilical
endothelial cells

NQO1, GCLM, Nrf2, GSK3β
GDM ↑ oxidative stress and ↓ Nrf2 activity and

overexpression of antioxidant expression
[112]

Rat Nrf2, HO-1, SOD2
Hydroxytyrosol (HT) and moderate

Restraint stress (GD14-20) ↑ Nrf2-dependent
gene expression

[113]

Rat liver GSTP, Nrf2
Maternal perfluorooctane sulfonate ↑ methylation of Nrf2-

dependent GSTP gene promoter
[114]

Nrf2−/− and WT mice
Nrf2, GSTA3, MGST1, GSTA4

Gpx2, AKR1B1, AKR1B10, NQO1
Postnatal hyperoxia ↑ Nrf2-dependent gene expression,

abolished in Nrf2−/− mice
[115]

Mouse embryos
Nrf2, SOD1, SOD2, SOD3, CAT,

Trx, Gpx1, Gpx2, Gpx3, GR
Maternal ethanol or D3T exposure ↑ Nrf2-dependent

gene expression
[116]

Mouse embryos
GSH, NQO1, HO-1, GCLC, GST, Prx1

Trx1, Trx2
Maternal D3T administration ↑ Nrf2-dependent gene

and ↓ H2O2-induced Trx1 and Trx2 oxidation
[117]

AKR1B1: aldo-keto reductase family-1 member B1 (aldose reductase); AKR1B10: aldo-keto reductase family-10 member B10 (aldose reductase); CAT:
Catalase); GCLC: glutamate-cysteine ligase catalytic subunit enzyme; GCLM: glutamate-cysteine ligase regulatory subunit enzyme; GDM: gestational diabetes
mellitus; GR: glutathione reductase; GSK3β: glycogen synthase kinase 3 beta; GSH: glutathione peroxidase; GSTA3: glutathione S-transferase alpha-4;
GSTA4: glutathione S-transferase alpha-4; Gpx1, 2, and 3: glutathione peroxidase 1, 2, and 3; GST: glutathione S-transferase; GSTP: glutathione reductase;
GPO: glutathione peroxidase; HO-1: heme oxygenase; MGST1: microsomal glutathione S-transferase 1; NQO1: (NAD(P)H:quinone dehydrogenase 1;
Nrf2: NF-E2-related factor 2; Prx1: peroxiredoxin 1; SOD1, 2, and 3: sodium dismutase 1, 2, and 3; Trx1 and 2: thioredoxin-1 and 2).
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is more obvious in alleviating adverse developmental out-
comes. In neural crest cells, where excessive glucose declines,
CuZnSOD, MnSOD, catalase, GPx1, Nrf2, and Pax3 expres-
sions induce vulnerability to these cells which leads to oxida-
tive damage [107]. Importantly, overexpression of catalase
enhances Nrf2 and its downstream HO-1 expression, thus
showing a protecting role in obesity-induced diabetes fetal
renal damage [108]. The Nrf2 expression is also decreased
in IUGR placenta [109]. In preeclampsia pregnancies, the
role of Nrf2 has been reported to be somehow controversial,
whereas reduced expression of Nrf2 was noted in placental
oxidative stress-induced preeclampsia [110]. Inappropriate
regulation of Nrf2-based HO-1 expression mediates soluble
fms-like typrsine kinase-1 (sFlt-1) [111]. Increased level of
sFtl-1 has been recorded in the pathogenesis of PE and
development of maternal hypertensive condition during
pregnancy. Overall, Nrf2 function in normal pregnancy
is incomplete although it is providing protection during
uterofetal life against a variety of stressors.

Cheng et al. [112] have demonstrated that protein levels
were significantly affected during redox status of GDM due
to overproduction of superoxide radicals, protein oxidation,
DNA damage, and reduced GSH synthesis. Moreover, in
GDM cells, lipid peroxidation did not show Nrf2 genes and
protein levels to its targeted genes NAD(P)H:quinone oxido-
reductase 1 (NQO1), Bach1, cystine/glutamate transporter,
and glutamate cysteine ligase. Lipid peroxidation triggered
GSH and NQO1 activity which was revoked by Nrf2 in
normal cells, and overexpression of Nrf2 in GDM cells partly
restored NQO1 induction. Improper functions of Nrf2 in
fetal endothelium increased the risk of inducing T2DM and
CVD diseases to offspring. Zheng et al. [113] revealed the
alternation in spontaneous activity and impair in learning
and memory levels in prenatal stress male and female
offspring. The stress was found to be due to downregulating
of neuronal proteins and glucocorticoid levels. Similarly,
alteration in protein oxidation, SOD, and mitochondrial
activity was also declined, whereas hydroxytyrosol (HT)
enhanced FOXO1 and FOXO3, Nrf2, and HO1 proteins
and restored mitochondrial functions. It indicates that HT
is a potential maternal nutritive compound that provides
protection towards neurogenesis and cognitive offspring. In
a study documented by Wan et al. [114], exhibiting the
overexpressions of GSTP was contributed with transcription
factors Keap1-Nrf2/MafK. Therefore, early induced alterna-
tions in cytosines within GSTP gene were referred as a
biomarker of hepatic PFOS, whereas the direct role of
PFOS-induced hepatotoxicity needs to be further elucidated.
In another findings demonstrated by [115], it was shown that
hyperoxia induced alveolar growth in neonatal lung by
induction of p21/p53 pathways, a potential risk for develop-
ing bronchopulmonary dysplasia (BPD) in preterm infants.
Results indicate that activation of Nrf2 pathway promoted
antioxidant response genes which were declined by hyper-
oxia. Dong et al. [116] reported that exposure of maternal
ethanol induces fetal alcohol syndrome that enhanced
expression of Nrf2 and Nrf2-ARE protein levels in mouse
embryos. Hence, it increases the response of proteins and
antioxidant enzymes. In addition, dithiole-3-thione (D3T)

treatment minimizes ethanol-mediated reactive oxygen
species productions and inhibits apoptosis in mouse
embryos. The results reported that simulation of Nrf2 was
involved in releasing antioxidant response against exposure
of ethanol embryos. In other investigation, it was docu-
mented that H2O2 decreased glutathione peroxidase (GSH),
thioredoxin-1 (Trx1), and mitochondrial thioredoxin-2
(Trx2) in a whole cultured embryo with 10μM dithiole-3-
thione (D3T). D3T enhanced Nrf2 responsive genes. These
findings showed that stimulation of Nrf2 provides protection
against chemically mediated oxidative stress by maintaining
intracellular redox mechanism, thereby stabilizing normal
embryo development [117].

7. Dietary Supplementation of
Polyphenols during Pregnancy

Flavonoids, the compounds of polyphenols, have received
worldwide recognition due to their enormous existence in
nature, and more than 10000 diverse molecular components
have been identified so far [118]. Foods, vegetables, fruits,
and herbs are rich sources of flavonoids [119]. It has come
into central position due to presenting several functions
encompassing antioxidant, anti-inflammatory, and antiabor-
togenic properties [120, 121]. LPS mediates inflammation
through numerous series of cellular events that subsequently
stimulates NF-κB pathway which encodes genes for inducing
inflammation such as iNOS, NO, and COXs that synthesize
prostaglandins and cytokines. Moreover, Toll-like receptors
are responsible for the production of reactive oxygen species
[122, 123]. As described above, LPS mediates pregnancy
disorders and adverse birth outcomes through the regulation
of proinflammatory cytokines such as TNF-α and IL-8 in
maternal sera, amniotic fluid, fetal liver and fetal brain
[124] and induced fetal IUGR, fetal resorption, and preterm
delivery which was reversed by TNF-α inhibitor and che-
mokine inhibitor, respectively. Flavonoids suppress chemo-
kine production comprising TNF-α, IL-1β, and monocyte
chemoattractant protein-1 [125]; some protective effects
of polyphenols are illustrated in Table 2.

The uptake of enriched polyphenol food has been docu-
mented to enhance plasma antioxidant status in humans
[126] and reduce incidences of oxidative insult in vitro
and in vivo studies in a human placenta and trophoblasts,
respectively [127]. The flavonoids ameliorate oxidative
stress-mediated inflammatory response by suppression of
inflammatory mediators (reactive oxygen species (ROS)
and nitric oxide (NO)), decreased inflammatory enzymes
such as cyclooxygenases (COXs) and inducible nitric oxide
synthase (iNOS) modulating NF-κB and activating protein-
1 (AP-1) signals [26, 128] decreasing cytokine expressions,
and activation of phase II enzymes glutathione S-transferase
(GST) [129]. Supplementation of polyphenols has shown
beneficial effects on pregnancy and was referred as therapeu-
tic intervention to encounter pregnancy disorders and
adverse birth outcomes [130]. Lack of antioxidant defense
creates hindrances in homeostasis due to the exceeding
amount of ROS, while their supplementation may show
protective effects [130].
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Vanhees et al. [131] exhibited that exposure to intrauter-
ine flavonoids such as quercetin and genistein at lower level
inhibited oxidative stress and DNA damage in the liver of
adult mice that subsequently develops antioxidant environ-
ment through regulation of Nrf2 signaling pathway. It
indicates that dietary antioxidant supplementation during
gestation develops long lasting antioxidant defense that elim-
inate oxidative stress at adulthood, where oxidative stress was
assumed to be involved in chronic diseases. Importantly,
LPS-mediated inflammation plays a key role in embryonic
resorption, fetal growth restriction, and preeclampsia [132].
The polyphenols like curcumin ameliorate abnormal preg-
nancy outcomes by suppressed LPS-triggered inflammation
in mice. The anti-inflammation activity of curcumin was
achieved by upregulation of phosphorylated Akt pathway
which was decreased by LPS induction [59]. Tricin, a
polyphenol-derived compound, encountered inflammation
by activation of Akt signals and cellular proliferation. This
anti-inflammatory effect of Akt pathway was obtained by
inhibition of IKK protein activity which brings NF-κB back
into the cytoplasm in its normal physiological position
[133]. Several compounds like the flavonoid group of poly-
phenols induced stimulation of Nrf2 signals. This evidence
was proved by [134] who revealed the neuroprotective prop-
erties of polyphenols by activation of Nrf2/HO-1, thereby
exerting therapeutic insights of polyphenolic compounds.
Another example of epigallocatechin gallate (EGCG) treat-
ment enhanced nuclear accumulation, anti-oxidant response
element (ARE) binding with Nrf2.These results indicated
that ECGC regulated Nrf2-mediated expression of few
antioxidant enzymes particularly stimulation of Akt and
ERK1/2 signaling; hence, it supports antioxidant system in
attenuating oxidative stress [135]. Some polyphenols and
their chemical structure are depicted in Figure 2. Literature
has shown a less number of studies on antioxidant supple-
mentation such as flavonoids during pregnancy, as it was
known as strong antioxidative compounds proven from

other evidence, whereas some report exhibited ambiguous
results that might be due to timing of supplementation,
improper dose regimen, and lack of antioxidant-targeted
compounds. More research should be warranted to explore
methods for minimizing uterine oxidative stress and mimic
ROS-mediated diseases from mothers to newborns.

8. Concluding Remarks and Future Perspectives

We have clearly defined that stimulation of Toll-like recep-
tors by LPS-induced generation of free radicals and their
excessive amount leads to fetal resorption, preterm birth,
teratogenicity, intrauterine growth restriction, abortion,
neural tube defects, fetal demise, and skeletal development
retardation. Moreover, oxidative stress also activates NF-κB,
PPAR-γ, AP-1, and JNK pathways which accounts for path-
ological conditions in aforementioned pregnancy disorders.
In addition, NF-κB is responsible for transcription of several
proinflammatory cytokines which are known to induce preg-
nancy disorders and adverse outcomes such as TNF-α, IL-1β,
IL-6, and PGF2E. Importantly, stimulation of Nrf2 signals
plays a crucial role in ameliorating pregnancy insults. It was
further counted that oxidative stress is the major contribut-
ing factor, whereas polyphenols are the novel compounds
for treating oxidative stress-related disorders. Limited studies
have been documented on polyphenol supplementation
during pregnancy and its outcomes. It was presumed that
intrauterine fetal life decides the future of a wide array of
complications which appear at later stages of life. Nutrition
and antioxidant supplement are the main players for fetal
reprogramming. Any impairment in this system might have
disturbance in extrauterine life. Studies reported that strong
maternal uterine antioxidant environment could prevent
pregnancy disorders and abnormal birth outcomes and could
also prevent other complications later in life which might
initiate from embryonic stage. More molecular evidences
are required for antioxidant/inflammatory events from

Table 2: Beneficial effects of polyphenols in LPS-induced pregnancy disorders.

LPS doses
Gestation stages

(days)
Pregnancy disorders Flavonoids/protective effects References

LPS 0.2mL/0.2 μg/mouse 4–7 Abortion
Quercetin indicates antiabortive effects through

influence on CD4+/CD8+ T lymphocytes
and IFN and IL-4

[136]

LPS 0.1 μg per mouse 6.7 Fetal resorption

Polyphenolic compounds of Radix Scutellariae and
Rhizoma Atractylodis (baicalein, wogonin, oroxylin,
baicalin, wogonoside, oroxylin A-7-glucuronide
reduced fetal resorption and including IL-10

Pharmacological effects and pharmacokinetic properties
of Radix Scutellariae and its bioactive flavones

[137, 138]

LPS, 0.1mL/10 g
in vitro/in vivo

6
6 & 7

Injury of decidual cells
Baicalin, 4μg/mL in vitro and in vivo at different doses
prevents decidual cell injury by inhibition of TNF-α

[68]

LPS at 0.2ml,
murine model

7
Abortion and
reabsorption

Bao Tai Wu You, Tai Shan Pan Shi, or Bai Zhu San
at 0.5ml oral medication for 7 days ameliorates
INF-γ and increases IL-10 and IL-4 thus showing

beneficial effects

[139]

CD4 and 8: cluster of differentiation 4 and 8; IFN: interferon; IL-4: interleukine-4; IL-10: interleukine-10; INF-γ: interferon gamma; TNF-α: tumor necrosis
factor-alpha.
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fertilization to parturition during pregnancy. We assume that
these findings would be helpful in understanding oxidative
stress-induced pregnancy insults and might give new road-
map to researchers for therapeutic intervention which could
subsequently improve human and animal fertility.
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Reduced nuclear factor erythroid 2-related factor 2 (NRF2) pathway activity was reported in models of chronic kidney disease
(CKD). Pharmacological activation of NRF2 is supposed to improve renal function, but data concerning the NRF2 activity in
human CKD are lacking. We investigated the NRF2 target NAD(P)H:quinone oxidoreductase 1 (NQO1) as a readout parameter
for NRF2 activity in monocytes of CKD patients (n = 63) compared to those of healthy controls (n = 16). The NQO1 gene
expression was quantified using real-time PCR and the protein content by in-cell Western assays. We found a 3-4-fold increase
in NQO1 gene expression in CKD 1–5 (n = 29; 3.5 for NQO1/ribosomal protein L41; p < 0 001). This was accompanied by a
1.1-fold increase in NQO1 protein (p = 0 06). Cardiovascular disease prevalence was higher in CKD 1–5 patients with higher
compared to those with lower NQO1 gene expression (p = 0 02). In advanced uremia, in dialysis patients (n = 34), NQO1
gene expression was less robustly upregulated than that in CKD 1–5, while NQO1 protein was not upregulated. We conclude
that in mononuclear cells of CKD patients, the NRF2 pathway is activated by coexisting pathogenic mechanisms, but in
advanced uremia, the effectiveness of this upregulation is reduced. Both processes could interfere with pharmacological
NRF2 activation.

1. Introduction

The transcription factor NRF2 is a master transcriptional
regulator of cellular response to oxidative and electrophilic
stress. It activates a multitude of cellular defense processes
through induction of its target genes, including drug-
metabolizing and antioxidant enzyme genes [1]. Oxidative
or electrophilic stress can activate the NRF2 pathway by
an interaction with the cytoplasmic complex between
Kelch-like ECH-associated protein 1 (KEAP1) and NRF2.
As a result, NRF2 can escape ubiquitination and proteasomal
degradation, accumulate, and translocate to the nucleus. It
forms heterodimers with small Maf proteins, binds to anti-
oxidant/electrophilic response elements, and thereby finally
induces target gene expression [1, 2].

Cytosolic NQO1 is a conserved target gene of NRF2 and
can serve to monitor the activity of the NRF2 pathway [2].
During its clinical development, the NRF2 activator bardox-
olone methyl was investigated in a phase 1 clinical trial, in
patients with advanced malignancies. In this trial, the
NQO1 gene expression levels in peripheral blood mononu-
clear cells (PBMCs) were shown to be indicative of NRF2
pathway activation by the substance [3].

In animal models of renal diseases, impaired activity of
the NRF2 pathway and downregulation of the NQO1 gene
expression are major findings, both in renal and in nonre-
nal cells [2, 4, 5]. Furthermore, it was shown in animal
models that activation of the NRF2 pathway and increased
gene transcription, including those of NQO1, attenuated
kidney injury [6–8]. Therefore, there is a strong interest
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in the therapeutic potential of NRF2 activators in kidney
disease [9]. A phase 2b clinical trial with the NRF2 activator
bardoxolone methyl in CKD stages 3b and 4 demonstrated
an improvement in estimated glomerular filtration rate
(eGFR) but suggested adverse effects, for example, on liver
tissue [10]. A phase 3 clinical trial in CKD stage 4 patients
(BEACON) with the same substance also showed an
increased eGFR but had to be terminated because of a
higher rate of cardiovascular events in the treatment group
[11]. Currently, one more phase 2 clinical trial with bar-
doxolone methyl in CKD patients is recruiting participants
(NCT02316821). In the publication of the so far largest
clinical trial of bardoxolone methyl, the authors refer to
the impairment of NRF2 activity-dependent gene tran-
scription that was reported in animal models of CKD as
one rational for the clinical application of the substance
in CKD [11]. Accordingly, in our study, we investigated
the gene expression of NQO1 as a parameter of NRF2-
dependent gene transcription in human CKD. We present
a systematic analysis of this drug target on the level of
gene expression and protein content in CKD patients with
and without renal replacement therapy. The BEACON
trial was terminated because of a higher rate of cardiovas-
cular events in the intervention group [11]. A post hoc
analysis by the manufacturer of the substance identified
prior hospitalization for heart failure as a risk factor for heart
failure experienced during bardoxolone treatment [12].
Therefore, we investigated a relation between theNQO1 gene
expression as a measure for NRF2 pathway activity and car-
diovascular disease (CVD) prevalence in patients with non-
dialysis-dependent CKD.

Since systemic NRF2 activators target the NRF2 path-
way systemically and nonrenal adverse events were
reported, both nonrenal and renal cells of CKD patients
require investigation.

We therefore quantified the NQO1 gene expression as
a readout parameter for NRF2 pathway activity in mono-
cytes of patients with CKD with and without dialysis ther-
apy and compared it to those of healthy control subjects.
In parallel, NQO1 protein content was quantified in cells
of the same subjects.

2. Subjects and Methods

2.1. Study Subjects.We prospectively enrolled 63 consecutive
patients with CKD from the outpatient clinics of the Depart-
ment of Nephrology, Odense University Hospital, and 16
healthy control subjects. Among the group of CKD patients,
34 were undergoing dialysis therapy (hemodialysis, n = 33;
peritoneal dialysis, n = 1). The study was approved by the
regional ethics committee and written informed consent
was obtained. Hemodialysis patients were dialyzed with bio-
compatible membranes, three times per week, for 4-4.5
hours. Healthy control subjects were free from chronic or
acute disease. Study participants were 30 years or older.
CKD patients had verified CKD according to the 2012
Clinical Practice Guideline for the Evaluation and Manage-
ment of Chronic Kidney Disease, and patients with dialysis
therapy had been in dialysis treatment for at least 3 months

[13]. Exclusion criteria included pregnancy or breastfeeding,
acute illness leading to hospital admission, and functioning
renal allograft.

2.2. Collection of Clinical Data and Blood Samples. Clinical
data were obtained by physical examination, medical history
taking, and electronic medical records. This included the
record of age, sex, height, weight, smoking status, medical
history, and use of medications. Venous blood samples were
drawn in the morning from study participants. Samples from
hemodialysis patients were obtained before the start of
hemodialysis sessions. Plasma and serum were separated
and stored at −80°C. The eGFR was calculated using the
2009 CKD-EPI creatinine equation, and CKD stages were
determined based on eGFR categories according to the
KDIGO 2012 guideline [13].

2.3. Isolation of Circulating Monocytes. We isolated PBMCs
by density gradient centrifugation (Histopaque-1077,
Sigma-Aldrich, Denmark). Monocytes then were isolated
from PBMCs using anti-CD14-coated superparamagnetic
polystyrene beads (Fisher Scientific, Denmark) according to
the manufacturer’s protocol.

2.4. RNA Isolation, Reverse Transcription, and Quantitative
Real-Time PCR (RT-qPCR). Total RNA was isolated from
monocytes using an RNeasy Mini kit (Qiagen, Denmark)
according to the protocol described by the manufacturer.
cDNA was synthesized from 200ng of total RNA by reverse
transcription using a Transcriptor First-Strand cDNA Syn-
thesis Kit (Roche, Denmark). The amplification of genes
was performed by quantitative real-time PCR using SYBR
Green (FastStart Essential DNA Green Master, Roche,
Denmark). The PCR conditions using a LightCycler96
Instrument (Roche, Denmark) were as follows: 95°C for
600 s and 50 cycles of 95°C for 10 s, 64°C (for NQO1, beta-
actin (ACTB), and ribosomal protein L41 (RPL41)) or 60°C
(for TATA-box binding protein (TBP)) for 10 s, and 72°C
for 10 s. The primers used were in Table 1.

To ensure a high reliability of the gene expression
results in our study, we tested a group of available refer-
ence genes in the cellular material of our study. We then
employed the “NormFinder” algorithm (http://moma.dk/
normfinder-software; [14]). The reference genes with the
highest expression stability in our sample material were
RPL41, ACTB, and TBP with stability values (SE) of 0.12
(0.06), 0.18 (0.06), and 0.22 (0.05), respectively. We there-
fore used these three genes for the relative quantification
ofNQO1 gene expression. The ratio was calculated as follows:
ratio = 2(Cq reference gene)/2(Cq NQO1).

PCR products were size-fractionated on agarose gels for
product length control.

In the PCRs, water controls, no-template controls, and
no-RT controls were included. A melting curve analysis was
performed for each sample to ensure product homogeneity.
All measurements were performed in duplicate.

2.5. SDS-PAGE and Western Blotting. Protein was extracted
from monocytes using an extraction reagent for mammalian
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cells including a protease inhibitor cocktail (cOmplete
Lysis-M, pH7.6, Roche, Denmark). Proteins were separated
by 10% sodium-dodecyl-sulfate polyacrylamide gel electro-
phoresis (10% RunBlue SDS gel, Expedeon, UK) at 120V
for 45 minutes and transferred to polyvinylidendifluoride
membranes at 100V for 75 minutes (Immun-Blot LF PVDF,
Bio-Rad, USA). Membranes were blocked with blocking
buffer (Superblock, Thermo Fisher Scientific, USA) for 1
hour at room temperature and incubated with the primary
antibodies rabbit anti-human NQO1 (ab34173, Abcam,
UK) or rabbit anti-human ACTB (sc-130656, Santa Cruz
Biotechnology, Germany). After washing with tris(hydrox-
ymethyl)aminomethane-buffered saline, the membranes
were incubated with the fluorescence-labeled secondary
antibody F(ab′)2-goat anti-rabbit IgG (H+L) Alexa Fluor
488 (Fisher Scientific, Denmark). Imaging was performed
using a Carestream Imager 4000pro (Fisher Scientific,
Denmark) at 535 nm emission with an excitation wave-
length of 470nm.

2.6. Quantitative In-Cell Western Assay. To quantify the
NQO1 protein content in circulating monocytes, in-cell
Western assays were performed as recently described by
our group [15, 16]. For that purpose, monocytes were fixed
with formaldehyde and permeabilized using Triton X-100
in 96-well plates. Cells were blocked using 1% bovine serum
albumin overnight at 4°C, then incubated with the primary
antibodies rabbit anti-human NQO1 (ab34173, Abcam,
UK) or rabbit anti-human ACTB (sc-130656, Santa Cruz
Biotechnology, Germany). After washing, cells were incu-
bated with the fluorescence-labeled secondary antibody
F(ab′)2-goat anti-rabbit IgG (H+L) Alexa Fluor 488 (Fisher
Scientific, Denmark). All measurements were performed in
triplicate, and the NQO1 protein content was analyzed rel-
ative to the ACTB protein content as an internal reference.
Imaging was performed using an EnSpire Multimode Plate
Reader (PerkinElmer, Denmark) at 520 nm emission with
an excitation wavelength of 490nm.

3. Statistics

Continuous variables are given as median and interquartile
range, and categorical variables are given as counts and per-
centages. Groups were compared using Kruskal-Wallis test
with Dunn’s posttest or Mann–Whitney test. Differences in

categorical variables between groups were analyzed by Χ2

test (GraphPad prism software, version 5.0, GraphPad
Software, San Diego, CA). All statistical tests were two-
sided and a two-sided value of p < 0 05 was considered
statistically significant.

4. Results

Population characteristics of study subjects are shown in
Table 2.

The NQO1 gene expression was significantly higher in
monocytes from patients with CKD 1–5 (Kruskal-Wallis,
p = 0 004 for NQO1/ACTB; p < 0 001 for NQO1/RPL41; and
p < 0 001 for NQO1/TBP; Figures 1(a) and 1 (b)). Compared
to healthy controls, patients with CKD 1–5 showed a 3-4-fold
increase in the NQO1 gene expression (3.1 for NQO1/ACTB,
3.5 for NQO1/RPL41, and 4.2 for NQO1/TBP). In CKD 5
patients undergoing dialysis therapy (CKD 5D), median
NQO1 gene expression was numerically higher than that in
healthy controls but this was significant only for the NQO1/
TBP ratio (a 2.6-fold increase for NQO1/TBP, p < 0 05,
Figure 1(b)). The relation between theNQO1 gene expression
level and CKD stage followed approximately a bell shape.
This is shown in the Supplementary Figure 1 available online
at https://doi.org/10.1155/2017/9091879 representing the
distribution of the NQO1 gene expression at the different
CKD stages including advanced CKD with hemodialysis
therapy (Kruskal-Wallis, p = 0 005).

We also quantified the NQO1 protein content in cells of
the identical blood samples used for the gene expression
analyses described above. First, we proved that in the cell
material used for our study, the antibodies effectively detected
NQO1 and ACTB proteins. Immunoblot analyses showed
staining of protein bands at the expected sizes (Figure 2(a)).
Figure 2(b) shows a representative example of an in-cell
Western assay used for the relative quantification of the
NQO1 protein content in monocytes. Measurements were
performed in triplicate for each subject. Figure 2(c) depicts
the summary data for all in-cell Western analyses. The
NOQ1 protein content showed a 1.1-fold increase in CKD
1–5 patients compared to healthy controls (Mann–Whitney,
p = 0 06). In CKD 5D, the NQO1 protein content was not
different from control subjects (Mann–Whitney, p = 0 72).

Furthermore, since cardiovascular events led to the
early termination of a large NRF2 activator trial in

Table 1

Name of gene product
Forward primer

Expected PCR product length (bp)
Reverse primer

NQO1
NM_000903.2

5′-CTGCCATCATGCCTGACTAA-3′
5′-TGCAGATGTACGGTGTGGAT-3′ 216

ACTB
NM_001101.3

5′-GGACTTCGAGCAAGAGATGG-3′
5′-AGCACTGTGTTGGCGTACAG-3′ 234

RPL41
NM_021104.1

5′-AAGATGAGGCAGAGGTCC-3′
5′-TCCAGAATGTCACAGGTCCA-3′ 248

TBP
NM_003194.4

5′-TGCACAGGAGCCAAGAGTGAA-3′
5′-CACATCACAGCTCCCCACCA-3′ 132
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non-hemodialysis-dependent CKD, we investigated the
prevalence of CVD in our study. For the analysis of the
NQO1 expression and prevalence of CVD in non-
hemodialysis-dependent CKD stages 1–5, we grouped the
patients according to their NQO1 gene expression below
or above the median and compared the frequency of
CVD between them. When we analyzed the overall preva-
lence of CVD (myocardial infarction/coronary artery dis-
ease, heart failure, cerebrovascular disease, and peripheral
artery disease), it was 2 out of 14 in the patient group
below median gene expression whereas in the group above
median NQO1 gene expression, the prevalence of CVD
was 8 out of 14 (Χ2 test, p = 0 02). The only common
underlying single disease type in our patient group was
cardiac insufficiency (1 out of 14 in the below median
group versus 7 out of 14 in the above median group; Χ2

test, p = 0 18).

5. Discussion

This study showed for mononuclear cells of CKD patients (i)
increased gene expression of the NRF2 target NQO1 in CKD
1–5, (ii) compared to CKD 1–5 a less robust increase in the
NQO1 gene expression in CKD 5D, (iii) slightly increased
NQO1 protein content in CKD 1–5, and (iv) higher preva-
lence of CVD among CKD 1–5 patients with a higher
NQO1 gene expression.

In our study, we investigated monocytes from periph-
eral blood of CKD patients. The monocyte-macrophage
lineage is of special importance in CKD. On the one hand,
they are involved in kidney injury and fibrosis [17, 18].
On the other hand, monocytes and monocyte-derived
macrophages are involved in the pathogenesis of athero-
sclerosis and vascular disease in CKD [19–22]. The latter
is important with respect to our finding of higher CVD

Table 2: Clinical and demographical population characteristics.

Healthy (n = 16) CKD 1–5 (n = 29) CKD 5D (n = 34)
Age, years 38 (33–48) 68 (58–77) 67 (55–76)

Men, n (%) 9 (56) 19 (66) 23 (68)

BMI, kg/m2 24 (22–26) 30 (24–37)a 24 (22–28)b

Smoking, n (%) 2 (13) 3 (10) 6 (18)

Kidney disease, underlying cause, n (%) None

Glomerulonephritis 8 (28) 5 (15)

Hypertensive nephropathy 3 (10) 5 (15)

Interstitial nephritis 2 (7) 4 (12)

Diabetic nephropathy 1 (3) 2 (6)

Hereditary kidney disease 1 (3) 2 (6)

Other/unknown 14 (48) 16 (47)

Comorbidities, n (%) None

Hypertension 28 (97) 26 (76)

Diabetes 8 (28) 8 (24)

CVD

Myocardial infarction, coronary artery disease 6 (21) 10 (29)

Heart failure 8 (28) 16 (47)

Cerebrovascular disease 4 (14) 6 (18)

Peripheral artery disease 1 (3) 9 (26)

Medications None

AT receptor antagonist, ACE inhibitor 22 (76) 16 (47)

Beta blocker 9 (31) 15 (44)

Calcium channel inhibitors 13 (45) 9 (26)

Platelet aggregation inhibitor 6 (21) 6 (18)

Diuretic 19 (66) 11 (32)

Erythropoietin analog 6 (21) 29 (85)

Coumarin derivatives 5 (17) 6 (18)

eGFR, mL/min/1.73m2 n.d. 28 (17–43) n.a.

Time on dialysis, months n.a. n.a. 22 (11–49)

CRP, mg/L n.d. 5.3 (2.3–10.8)c 3.0 (1.4–10.5)d

Albumin, g/L n.d. 38 (35–41)e 38 (36–40)

Values are given as median (25%–75% percentile) or number (percentage). BMI: body mass index; AT: angiotensin; ACE: angiotensin converting enzyme; CRP:
C-reactive protein; n.d.: not done; n.a.: not applicable. an = 27; bn = 33; cn = 28; dn = 33; en = 28.
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prevalence in CKD patients with an NQO1 gene expres-
sion above the median in monocytes.

Why did we choose NQO1 and in particular the NQO1
gene expression as a readout parameter for NRF2 pathway
activity and activation in kidney disease? Several lines of evi-
dence support our approach. First, NQO1 belongs to the con-
served NRF2 target genes, and in a recent integrated
transcriptomic and proteomic analysis of NRF2 function,
NQO1 was confirmed as a robust marker for NRF2 activity
[2, 23]. Second, reduced expression of NQO1 was shown in
several kidney disease models, also in nonrenal cells, and
upregulation of NQO1 was repeatedly shown in NRF2-
dependent kidney protection, again including nonrenal cells
[4–8, 24]. Third, it has been shown that theNQO1 expression
is stimulated by the NRF2 activators CDDO (1-[2-cyano-
3-,12-dioxooleana-1,9(11)-dien-28-oyl]imidazolide), dh404
(2-cyano-3,12-dioxooleana-1,9-dien-28-oic acid-9,11-dihy-
dro-trifluoroethyl amide), and bardoxolone methyl and that
this effect is abrogated in NRF2−/− mice [5, 8, 23]. Notably,
bardoxolone methyl stimulates the NQO1 gene expression
also in PBMCs [3].

Some consideration should be given to the effect size of
the NQO1 increase in our study. With respect to the gene
expression of NQO1, we confirmed a 3-4-fold increase in
NQO1 mRNA in CKD 1–5 patients compared to healthy
control subjects using three different housekeeping genes

for the relative quantification. A 5.6-fold increase in NQO1
mRNA was reported to be present in PBMCs from cancer
patients after 3 weeks of treatment with bardoxolone methyl
[3]. In T cell-specific KEAP1-deficient mice, T cells showed
an 8-fold relative change in NQO1 mRNA [7]. In a mouse
model of ischemia-reperfusion injury- (IRI-) induced kidney
damage, the maximal response of NQO1 mRNA to IRI was
an ~1.8-fold increase in wild-type mice and a 5-fold increase
in KEAP1-knockdown mice [8]. We therefore conclude that
the difference in NQO1 mRNA level that we observed in
our study is of relevant magnitude and points to an activation
of the NRF2 pathway in CKD patients per se.

On the protein level, the NQO1 protein content in CKD
1–5 patients was not significantly increased to 1.1-fold com-
pared to that in control subjects in our study. Similarly, the
treatment of mice with bardoxolone methyl resulted in an
~1.3-fold increase in NQO1 protein level [23]. Treatment of
5/6 nephrectomy rats with dh404 resulted in an ~3.3-fold
increase in NQO1 protein in the colon [5]. However, the
increase in the NQO1 protein content that we observed in
CKD 1–5 needs further investigation.

Effects on gene expression and protein content in
CKD are mediated by a multitude of mechanisms. The
observed increase in the NQO1 gene expression in our
study might be a response to NRF2-stimulating conditions
prevalent in patients with CKD, like oxidative stress or
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Figure 1: NQO1 gene expression. (a) Amplification curves and melting curves for NQO1 in monocytes from a patient with CKD 4
(CKD, orange), a hemodialysis patient (CKD 5D, black), and a healthy subject (red). (b) Box and whisker plots (whiskers,
minimum to maximum) showing summary data of the NQO1 gene expression in healthy subjects (n = 16), CKD 1–5 patients (n = 29),
and CKD 5D patients (n = 34) normalized to ACTB, RPL41, and TBP. Comparison by Dunn’s posttest. ∗p < 0 05; ∗∗p < 0 01;
∗∗∗p < 0 001.
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lipopolysaccharide-induced inflammation [25, 26]. Patients
with coexisting CVD, which is also associated with oxida-
tive stress, might be especially affected [27]. This is
supported by the higher CVD prevalence in CKD 1–5
patients with a higher NQO1 gene expression that we
observed. In addition, low concentrations of the uremic toxin
methylglyoxal were shown to increase the NQO1 mRNA
concentration [28].

We also observed that the increase in the NQO1 gene
expression in CKD 5D patients was less pronounced com-
pared to that in CKD 1–5 patients. This is in line with a
depressive effect of high concentrations of uremic toxins on
the NRF2 pathway. This effect might be more pronounced
in this patient group with advanced uremia. For example,
the uremic toxin indoxyl sulfate was shown to downregulate
NRF2 mRNA and NRF2 protein content [24].

The protein content of NQO1 appeared slightly upregu-
lated in CKD 1–5 patients and not upregulated in long-term
uremic CKD 5D patients. Such discrepancy between gene
expression and protein content was already demonstrated

by our group for another cytosolic antioxidant protein that
also is under the transcriptional regulation of an antioxidant
response element—superoxide dismutase type 1 [15].

Our study adds important information to the discussion
about the putative use ofNRF2 activators in CKD.NRF2 acti-
vators serve to upregulate the expression of NRF2 target
genes like NQO1. However, our study showed that the
NQO1 gene expression was already significantly upregulated
in monocytes, which points to a relevant stimulation of the
NRF2 pathway in these cells in CKD patients. Therefore, as
the systemic application of NRF2 activators affects different
cell and tissue types, the NRF2 pathway in kidney disease
needs to be investigated in different human cells and tissues.
This is of relevance as the overactivation of a potent tran-
scription factor like NRF2 was suggested as potentially dele-
terious for the cardiovascular system [27]. Therefore, a
preexisting activation of the NRF2 system in CKD patients
especially with CVD, as suggested by our results, could
be seen in line with the increased rate of cardiovascular
events in the BEACON trial [11]. Moreover, an additional
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Figure 2:NQO1 protein content. (a) To show the effective detection ofNQO1 and ACTB protein by antibodies in the cell material used in our
study, we performed immunoblot analyses with cells obtained from healthy control subjects. Immunoblots ofNQO1 (expected size 26/27 kDa
and 31 kDa) and ACTB (expected size 42 kDa) in monocytes are shown. (b) Pseudocolored fluorescence intensities of in-cell Western assays
for the quantification of the NQO1 protein content relative to the ACTB protein content in monocytes from a healthy subject, a patient with
CKD, and a patient with CKD 5D. Measurements were always performed in triplicate. (c) Box and whisker plots (whiskers, minimum to
maximum) showing summary data of NQO1 protein in healthy subjects (n = 13), CKD 1–5 patients (n = 23), and CKD 5D patients
(n = 29) normalized to ACTB. p = 0 07 by Kruskal-Wallis test.
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depressive effect of CKD on antioxidant enzymes, especially
in advanced uremic conditions, could reduce effectiveness
of NRF2 activation.

Taken together, we showed a relevant upregulation in
gene expression of the NRF2 target NQO1 in patients with
CKD 1–5 together with a slight increase in the NQO1 protein
content in monocytes from these patients. Moreover, we
found that in more pronounced uremia (CKD 5D), the
NQO1 gene expression was less upregulated than that in
CKD 1–5 and NQO1 protein content was not increased.
We conclude that in CKD patients, NRF2 activation is
modulated through influence on both gene expression and
protein content of NRF2 targets in a complex way.
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Hyperammonemia is a serious complication of liver disease and may lead to encephalopathy and death. This study investigated the
effects of Commiphora molmol resin on oxidative stress, inflammation, and hematological alterations in ammonium chloride-
(NH4Cl-) induced hyperammonemic rats, with an emphasis on the glutamate-NO-cGMP and Nrf2/ARE/HO-1 signaling
pathways. Rats received NH4Cl and C. molmol for 8 weeks. NH4Cl-induced rats showed significant increase in blood ammonia,
liver function markers, and tumor necrosis factor-alpha (TNF-α). Concurrent supplementation of C. molmol significantly
decreased circulating ammonia, liver function markers, and TNF-α in hyperammonemic rats. C. molmol suppressed lipid
peroxidation and nitric oxide and enhanced the antioxidant defenses in the liver, kidney, and cerebrum of hyperammonemic rats.
C. molmol significantly upregulated Nrf2 and HO-1 and decreased glutamine and nitric oxide synthase, soluble guanylate cyclase,
and Na+/K+-ATPase expression in the cerebrum of NH4Cl-induced hyperammonemic rats. Hyperammonemia was also associated
with hematological and coagulation system alterations. These alterations were reversed by C. molmol. Our findings demonstrated
that C. molmol attenuates ammonia-induced liver injury, oxidative stress, inflammation, and hematological alterations. This study
points to the modulatory effect of C. molmol on glutamate-NO-cGMP and Nrf2/ARE/HO-1 pathways in hyperammonemia.
Therefore, C. molmolmight be a promising protective agent against hyperammonemia.

1. Introduction

Hepatic encephalopathy (HE) is a serious complication of
both acute and chronic liver diseases [1, 2]. HE has been esti-
mated to occur in 10–50% of patients with transjugular intra-
hepatic portosystemic shunt and 30–45% of patients with

cirrhosis, whereas minimal HE affects 20–60% of patients
with liver disease [3]. Although the pathological mechanism
of HE is not fully understood, ammonia is known to play a
key role in HE [4]. Ammonia is a known neurotoxin and
induces harmful effects to the central nervous system [5].
Blood ammonia level is strongly correlated with the
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increased risk of HE and is therefore used as a diagnostic
marker for encephalopathy [6]. Ammonia is normally detox-
ified in the liver via urea cycle, and if does not proceed prop-
erly, as in cases of liver failure or congenital defect of the urea
cycle enzymes, ammonia increases and lead to HE [7].

The brain removes ammonia through glutamine synthe-
sis driven by glutamine synthetase (GS). Therefore, high
ammonia levels can increase glutamine synthesis and cause
swelling of astrocytes and brain edema [8]. In addition,
hyperammonemia can alter the mitochondrial function and
neurotransmission and induce oxidative/nitrosative stress
[9–11]. Hyperammonemia has been demonstrated to
increase the activity of nitric oxide synthase (NOS) and
subsequently nitric oxide (NO) production in the brain
[12]. High levels of NO were associated with HE, hyperam-
monemic syndromes, and other disorders without significant
neuronal damage [13, 14]. Moreover, ammonia-induced oxi-
dative stress occurs due to increased production of reactive
oxygen species (ROS) and subsequent damage of proteins,
lipids, and DNA [15]. Previous studies have demonstrated
increased ROS production and oxidative stress in hyperam-
monemia [10, 11, 16]. Hence, counteracting oxidative/nitro-
sative stress may represent a protective strategy against
hyperammonemia-induced brain injury. In this context,
several in vitro and in vivo studies have demonstrated the
role of nuclear factor erythroid 2-related factor 2 (Nrf2)/anti-
oxidant response element (ARE) signaling pathway as a con-
tributor to the cellular responses to neuronal injury [17–20].
Through binding to the promoter sequence ARE, Nrf2
controls the expression of antioxidant, defensive, and detox-
ification genes to remove ROS and reactive nitrogen species
(RNS) [21]. However, its role in hyperammonemia is still
not fully understood.

Excess ammonia reduces glutamate uptake and increases
extracellular glutamate levels [22], leading to activation of the
N-methyl-D-aspartic acid (NMDA) glutamate receptor in
the brain cortex [23]. Consequently, intracellular calcium
(Ca2+) increases followed by increased NO production and
activation of soluble guanylate cyclase (sGC) and subse-
quently increases cyclic guanosine monophosphate (cGMP)
production [24]. Excess ammonia also increases the activity
of Na+/K+-ATPase in the brain [25]; however, the underlying
mechanism remains unclear. Increased activity of the brain
Na+/K+-ATPase in hyperammonemia has been demon-
strated in multiple previous studies [16, 26].

Current treatments used to reduce ammonia levels are of
limited value, and therefore new psychopharmacological
agents acting on cellular molecular targets involved in brain
neurological alterations are required [27]. Medicinal plants
and their derived bioactive phytochemicals have been gain-
ing recognition in the treatment of neurological diseases.
Commiphora molmol (family Burseraceae) is a shrub resem-
bling tropical tree grows in dry forest and produces a resin-
ous exudate called myrrh or oleo-gum resin [28]. Myrrh
has been used traditionally for several centuries for the treat-
ment of various diseases and has showed multiple beneficial
effects, including antibacterial [29], hypoglycemic [30],
anti-inflammatory [31], antioxidant [32], and hepatoprotec-
tive efficacies [33]. To the best of our knowledge, nothing has

yet been reported on the possible protective effect of C.
molmol resin against hyperammonemia. Therefore, the pres-
ent study aimed to investigate the effects of C. molmol resin
extract against ammonium chloride- (NH4Cl-) induced
hyperammonemia in rats, pointing to the role of oxidative
stress and inflammation, and the glutamate-NO-cGMP and
Nrf2/ARE signaling pathways.

2. Materials and Methods

2.1. Preparation of C. molmol Extract and Assay of Radical
Scavenging Activity. C. molmol resin was purchased from a
local herbalist (Harraz Medicinal Plants Co., Cairo, Egypt)
and was ground into fine powder. The resin powder was
soaked in 90% ethanol for 24h, filtered, and concentrated
using a rotary evaporator at a temperature not exceeding 45°C.

The scavenging activity of C. molmol extract against 2,2-
diphenyl-1-picrylhydrazyl (DPPH) radicals was assayed
according to the method of Kamel et al. [34] using vitamin
C as antioxidant reference.

2.2. Experimental Animals and Treatments. Eight-week-old
male albino Wistar rats (Rattus norvegicus) purchased from
the Institute of Ophthalmology (Giza, Egypt) were used in
the present investigation. The animals were housed in stan-
dard cages at 23± 2°C with a 12 h dark/light cycle. All animal
procedures were approved by the Institutional Animal Ethics
Committee of Beni-Suef University (Egypt).

The experimental rats were divided randomly into 4
groups as following:

Group I (control): rats received intraperitoneal (i.p.)
injection of 0.9% sodium chloride (NaCl) (3 times/week)
and orally administered 0.5% carboxymethyl cellulose
(CMC) daily for 8 weeks.

Group II (C. molmol): rats received 0.9% NaCl
(3 times/week) and orally administered 125mg/kg body
weight C. molmol extract [35] suspended in 0.5% CMC daily
for 8 weeks.

Group III (NH4Cl): rats received 100mg/kg NH4Cl
(Sisco Research Laboratories, Mumbai, India) dissolved in
0.9% NaCl (i.p., 3 times/week) [10] and orally administered
0.5% CMC daily for 8 weeks.

Group IV (NH4Cl+C. molmol): rats received 100mg/kg
NH4Cl (i.p., 3 times/week) and orally administered 125mg/
kg body weight C. molmol extract suspended in 0.5% CMC
daily for 8 weeks.

The doses were adjusted in accordance with changes in
the body weight.

2.3. Samples Collection and Preparation. By the end of 8
weeks, the animals were fasted overnight and were then sacri-
ficed, and samples were collected for analysis. Whole blood
was collected for the assay of ammonia and hematological
parameters. Citrated blood samples were used to assay pro-
thrombin time (PT) and activated partial thromboplastin
time (aPTT). Other blood samples were left to coagulate for
serum preparation.

The liver, kidney, and cerebrum were immediately
excised, washed in cold phosphate-buffered saline (PBS),
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and weighed. Samples from the liver, kidney, and cerebrum
were homogenized in cold PBS, centrifuged, and kept frozen
for the determination of lipid peroxidation, NO, and antiox-
idants. Homogenized cerebrum samples were also used to
assay glutamine and Na+/K+-ATPase. Other samples from
the cerebrum were collected and kept at −80°C for RNA
isolation and Western blot analysis.

2.4. Biochemical Assays

2.4.1. Determination of Ammonia, Urea, Liver Function
Markers, and TNF-α. Blood ammonia was estimated using
reagent kit purchased from Spinreact (Spain), according to
the method of da Fonseca-Wollheim [36].

Circulating levels of ALT and AST were determined fol-
lowing the method of Schumann and Klauke [37] whereas
ALP was assayed according to the method of Wenger et al.
[38]. The assay kits were purchased from Spinreact (Spain).

Serum TNF-α levels were estimated using specific
ELISA kits (R&D Systems, USA), according to the manu-
facturer’s instructions.

2.4.2. Assay of Oxidative Stress and Antioxidant Defenses.
Samples from the liver, kidney, and cerebrum were used to
assays lipid peroxidation following the method of Preuss
et al. [39] and NO using Griess reagent. Reduced glutathi-
one (GSH) [40] and activity of superoxide dismutase
(SOD) [41], catalase (CAT) [42], and glutathione peroxi-
dase (GPx) [43] were also determined in the liver, kidney,
and cerebrum homogenates.

2.4.3. Assay of Glutamine Level and Na+/K+-ATPase Activity.
Glutamine concentration in the cerebrum of control and
experimental rats was determined according to the method
of Lund [44]. Na+/K+-ATPase activity was determined spec-
trophotometrically through determination of the inorganic
phosphate (Pi) liberated from ATP [45]. The concentration
of Pi was estimated using reagent kit purchased from
Spinreact (Spain), according to the method of Fiske and
Subbarow [46].

2.5. Hematological Assays. Erythrocytes, hemoglobin
content, platelets, total leukocytes, PT, and aPTT were
determined using an automated analyzer.

2.6. Gene Expression Analysis. Reverse transcriptase polymer-
ase chain reaction (RT-PCR) was used to determine the effect
of C. molmol extract on the expression of NOS1, sGC, and
Na+/K+-ATPase in the cerebrum of rats. Briefly, total RNA
was isolated from the frozen cerebrum samples using TRIzol
reagent (Invitrogen, USA). The isolated RNA was quantified
and its integrity was checked using formaldehyde-agarose gel
electrophoresis. Two μg RNA was used to synthesize cDNA
by AMV reverse transcriptase. cDNA was then amplified by
Green Master Mix (Fermentas, USA) [47] and the primer
set listed in Table 1. The amplified PCR products were
loaded into agarose gel and visualized using UV transillu-
minator. The obtained gel images were scanned and
analyzed by ImageJ (version 1.32j, NIH, USA) using β-actin
as housekeeping gene.

2.7. Western Blotting. To test the effect of C. molmol on Nrf2
and HO-1 expression in the cerebrum, Western blotting was
used as we previously reported [48]. In brief, samples from
the cerebrum were homogenized in RIPA buffer with
proteinase inhibitors and centrifuged, and protein concentra-
tion was determined in the homogenates using Bradford
reagent [49]. To determine Nrf2, nuclear proteins were
extracted using a commercial kit purchased from Beyotime
(China). The samples were electrophoresed on SDS/PAGE,
transferred to PVDF membranes, blocked, and incubated
with primary antibodies for Nrf2, lamin B, HO-1, and
β-actin (Santa Cruz Biotechnology, USA). After washing,
the membranes were incubated with the secondary anti-
bodies, washed, and then developed using enhanced
chemiluminescence kit (Bio-Rad, USA). The intensity of
bands was determined and quantified using ImageJ
(version 1.32j, NIH, USA).

2.8. Statistical Analysis. Results were analyzed by means of
one-way ANOVA followed by Tukey’s post hoc analysis
using GraphPad Prism 5 (La Jolla, CA, USA). The data were
presented as means± standard error of the mean (SEM), and
a P value <0.05 was considered to be statistically significant.

3. Results

3.1. Effect of C. molmol on Body Weight Changes in
Hyperammonemic Rats. Initial body weight showed nonsig-
nificant (P > 0 05) changes between all experimental groups.
Rats received NH4Cl administration for 8 weeks which
showed a significant (P < 0 05) decrease in body weight when
compared with the control rats (Figure 1). Concurrent
administration of C. molmol significantly (P < 0 05)
improved body weight in NH4Cl-induced hyperammonemic
rats, while exerting nonsignificant effect when administered
to control rats.

3.2. Effect of C. molmol on Blood Ammonia and Liver
Function Markers in Hyperammonemic Rats. Hyperammo-
nemic rats showed a significant (P < 0 001) increase in blood
ammonia when compared with the control group of rats.
Oral administration of C. molmol extract to hyperammone-
mic rats significantly (P < 0 001) ameliorated circulating
levels of ammonia when compared with the hyperammone-
mic group (Table 2).

NH4Cl-induced hyperammonemia in rats produced a
significant (P < 0 001) increase in circulating levels of the
liver function markers, ALT, AST, and ALP. Treatment
of the hyperammonemic rats with C. molmol significantly
(P < 0 001) improved the circulating levels of ALT, AST,
and ALP (Table 2). Rats received C. molmol alone exhibited
nonsignificant changes in blood ammonia, ALT, AST, and
ALP when compared with the control rats.

3.3. C. molmol Decreases Circulating TNF-α Levels in
Hyperammonemic Rats. Serum levels of the proinflammatory
cytokine TNF-α showed a significant (P < 0 001) increase in
NH4Cl-induced hyperammonemic rats when compared with
the control group (Table 2). Oral supplementation of C.
molmol resin extract significantly (P < 0 01) decreased the
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circulating levels of TNF-α in hyperammonemic rats, with no
effect on normal rats.

3.4. Effect of C. molmol on Lipid Peroxidation, NO, and
Antioxidant Defenses in the Liver of Hyperammonemic Rats.
Hyperammonemic rats showed a significant (P < 0 001)
increase in lipid peroxidation (Figure 2(a)) and NO levels
(Figure 2(b)) in the liver of rats when compared with the
control group. Treatment of the hyperammonemic rats
with C. molmol markedly decreased liver lipid peroxida-
tion (P < 0 001) and NO (P < 0 001) levels.

On the other hand, hyperammonemic rats exhibited a
significant (P < 0 01) decrease in liver GSH content, an effect
that was significantly (P < 0 05) prevented by C. molmol
(Figure 2(c)). Similarly, hyperammonemia was associated
with significant decline in the activity of SOD (P < 0 01;
Figure 2(d)), CAT (P < 0 01; Figure 2(e)), and GPx
(P < 0 001; Figure 2(f)) in the liver of rats. Oral administration
of C. molmol significantly alleviated the activity of SOD
(P < 0 05), CAT (P < 0 01), and GPx (P < 0 001) in the
liver of hyperammonemic rats.

Oral administration of C. molmol to normal rats did not
affect liver lipid peroxidation, NO, and antioxidant defenses.

3.5. Effect of C. molmol on Lipid Peroxidation, NO, and
Antioxidant Defenses in the Kidney of Hyperammonemic
Rats.Lipid peroxidation and NO levels showed a significant
(P < 0 001) increase in the kidney of hyperammonemic rats

when compared with the control group. Treatment of
the hyperammonemic rats with C. molmol significantly
(P < 0 001) reduced both lipid peroxidation (Figure 3(a))
and NO (Figure 3(b)) in the kidney. C. molmol administra-
tion to normal rats exerted nonsignificant (P > 0 05) effect
on kidney lipid peroxidation and NO.

GSH levels showed a significant (P < 0 01) decrease in the
kidney of hyperammonemic rats when compared with the
control rats, an effect that was markedly (P < 0 01) prevented
by C. molmol extract as depicted in Figure 3(c). Similarly,
hyperammonemic rats exhibited significantly declined activ-
ity of kidney SOD (P < 0 001, Figure 3(d)), CAT (P < 0 01,
Figure 3(e)), andGPx (P < 0 001, Figure 3(f)) when compared
with the control group.C.molmol administration significantly
improved the activity of SOD (P < 0 05), CAT (P < 0 05), and
GPx (P < 0 01) in kidneys of hyperammonemic rats, with no
effect on normal rats.

3.6. Effect of C. molmol on Lipid Peroxidation, NO, and
Antioxidant Defenses in the Cerebrum of Hyperammonemic
Rats. NH4Cl administration induced a significant (P < 0 001)
increase in the levels of lipid peroxidation (Figure 4(a)) and
NO (Figure 4(b)) in the cerebrum of rats when compared with
the control group. In addition, hyperammonemic rats
exhibited marked decrease in the cerebral GSH levels
(P < 0 01; Figure 4(c)), and the activity of SOD (P < 0 01;
Figure 4(d)), CAT (P < 0 01; Figure 4(e)), and GPx (P < 0 001;
Figure 4(f)). Treatment of the hyperammonemic rats
with C. molmol significantly decreased lipid peroxidation
(P < 0 001) and NO (P < 0 01) and significantly improved
GSH (P < 0 01), SOD (P < 0 05), CAT (P < 0 05), and
GPx (P < 0 01) in the cerebrum. Oral supplementation
of C. molmol did not affect lipid peroxidation, NO, and
antioxidant defenses in the cerebrum of normal rats.

3.7. C. molmol Upregulates the Nrf2/ARE/HO-1 Pathway in
the Cerebrum of Hyperammonemic Rats. To investigate the
effect of C. molmol resin extract on the Nrf2/ARE/HO-1
pathway in hyperammonemic rats, the protein expression
of Nrf2 and HO-1 was determined in the cerebrum using
Western blotting assay.

NH4Cl-induced hyperammonemia in rats induced a
significant (P < 0 001) downregulation of cerebral Nrf2
expression when compared with the control group of rats
(Figure 5(a)). Concurrent administration of C. molmol resin
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Figure 1: Effect of C. molmol resin extract on body weight changes
in control and NH4Cl-induced hyperammonemic rats. Data are
expressed as mean± SEM (N = 6). ∗P < 0 05.

Table 1: Primers used for RT-PCR.

Gene
GenBank

Accession number
Sequence (5′-3′)

NOS1 XM_017598257
F: GGCCCTTTTAATGAGGGTTGC
R: TCTGTGCTAAGTAGCCGCTC

sGC M57405
F: TCACCCCCATACCCTTCTGT
R: GGTAGACTCTGTTGCGGCTT

Na+/K+-ATPase (Atp1a1) NM_012504
F: TGGCATCCGAAGTGCTACAG
R: CCAGATCACCAACGACGACA

β-Actin (Actb) NM_031144
F: CCGCGAGTACAACCTTCTTG
R: CAGTTGGTGACAATGCCGTG

4 Oxidative Medicine and Cellular Longevity



Table 2: Effect of C. molmol on ammonia, liver function marker enzymes, and TNF-α in control and hyperammonemic rats.

Control C. molmol NH4Cl NH4Cl +C. molmol

Ammonia (μmol/dL) 75.30± 6.23 72.69± 4.89 418.20± 18.48∗∗∗ 136.25± 8.79###

ALT (U/L) 28.78± 4.25 26.50± 2.48 64.81± 6.23∗∗∗ 36.12± 3.14###

AST (U/L) 53.45± 4.26 48.16± 3.89 132.71± 8.49∗∗∗ 68.51± 6.77###

ALP (U/L) 82.69± 6.13 84.26± 5.23 179.18± 10.26∗∗∗ 95.50± 7.56###

TNF-α (pg/mL) 32.60± 2.42 35.78± 3.88 78.59± 5.53∗∗∗ 48.36± 4.33##

Data are expressed as mean ± SEM (N = 6). ∗∗∗P < 0 001 versus control, and ##P < 0 01 and ###P < 0 001 versus NH4Cl.
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Figure 2: Effect of C. molmol resin extract on (a) lipid peroxidation, (b) nitric oxide, (c) GSH, (d) SOD, (e) CAT, and (f) GPx in the liver of
NH4Cl-induced hyperammonemic rats. Data are expressed as mean± SEM (N = 6). ∗P < 0 05, ∗∗P < 0 01, and ∗∗∗P < 0 001. MDA,
malondialdehyde; NO, nitric oxide; GSH, reduced glutathione; SOD, superoxide dismutase; CAT, catalase; GPx, glutathione peroxidase.

5Oxidative Medicine and Cellular Longevity



extract significantly (P < 0 001) increased Nrf2 expression in
the cerebrum of hyperammonemic rats.

Similarly, HO-1 expression showed a significant
(P < 0 001) downregulation in the cerebrum of NH4Cl-
induced hyperammonemic rats when compared with
the control rats as depicted in Figure 5(b). C. molmol
resin supplementation significantly (P < 0 001) amelio-
rated the expression of HO-1 in the cerebrum of hyper-
ammonemic rats. Oral supplementation of C. molmol did

not induce significant changes in cerebral Nrf2 and
HO-1 expression.

3.8. C. molmol Prevents Hyperammonemia-Associated
Hematological Alterations in Rats. To evaluate the effect of
C. molmol extract on hyperammonemia-associated hemato-
logical alteration, RBCs, Hb, WBCs, and platelets were
determined in the control and hyperammonemic rats.
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Figure 3: Effect of C. molmol resin extract on (a) lipid peroxidation, (b) nitric oxide, (c) GSH, (d) SOD, (e) CAT, and (f) GPx in the kidney of
NH4Cl-induced hyperammonemic rats. Data are expressed as mean± SEM (N = 6). ∗P < 0 05, ∗∗P < 0 01, and ∗∗∗P < 0 001. MDA,
malondialdehyde; NO, nitric oxide; GSH, reduced glutathione; SOD, superoxide dismutase; CAT, catalase; GPx, glutathione peroxidase.
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Hyperammonemic rats exhibited a significant (P < 0 01)
decrease in the number of erythrocytes (Figure 6(a)) and in the
Hb content (Figure 6(b)) when compared with the control rats.
On the other hand,NH4Cl-induced hyperammonemiawas asso-
ciated with significant (P < 0 001) leukocytosis (Figure 6(c)). C.
molmol administration markedly prevented hyperammonemia-
induced anemia (P < 0 05) and leukocytosis (P < 0 001).

Thrombocytopenia was a characteristic feature for
hyperammonemia where the NH4Cl-induced hyperam-
monemic rats showed significant (P < 0 05) decrease in

the number of thrombocytes as compared to the control
group (Figure 6(d)). Oral supplementation of C. molmol
extract to NH4Cl-induced hyperammonemic rats did not
affect significantly the thrombocytes count.

To examine hyperammonemia-induced changes in the
coagulation system and the effect of C. molmol, we
determined PT and aPTT. Hyperammonemic rats exhibited
a significant (P < 0 01) prolongation of PT (Figure 6(e))
and aPTT (Figure 6(f)), an effect that was markedly
(P < 0 01) reversed by C. molmol.
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Figure 4: Effect of C. molmol resin extract on (a) lipid peroxidation, (b) nitric oxide, (c) GSH, (d) SOD, (e) CAT, and (f) GPx in
the cerebrum of NH4Cl-induced hyperammonemic rats. Data are expressed as mean± SEM (N = 6). ∗P < 0 05, ∗∗P < 0 01, and
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Of note, C. molmol did not induce any significant
changes on hematological parameters of normal rats.

3.9. C. molmol Downregulates NOS1, sGC, and Na+/K+-
ATPase and Decreases Glutamine in the Cerebrum of
Hyperammonemic Rats. NOS1 mRNA expression showed a
significant (P < 0 001) increase in the cerebrum of NH4Cl-
induced hyperammonemic rats when compared with the
control group (Figure 7(a)). Concurrent supplementation of
C. molmol significantly (P < 0 001) improved the expression
of NOS1 mRNA in the cerebrum of hyperammonemic rats.

Hyperammonemic rats exhibited a significant (P < 0 001)
upregulation in the expression of sGC mRNA, an effect that
was significantly (P < 0 001) ameliorated by C. molmol
(Figure 7(b)). Glutamine levels as well showed a significant
(P < 0 001) increase in the cerebrum of NH4Cl-induced
hyperammonemic rats when compared with the control
rats (Figure 7(c)). Concurrent administration of C. molmol
significantly (P < 0 001) decreased cerebral glutamine levels
in NH4Cl-induced hyperammonemic rats.

NH4Cl-induced hyperammonemia induced a significant
(P < 0 001) increase in both the expression and activity
Na+/K+-ATPase in the cerebrum of rats. Oral supplementa-
tion of C. molmol to hyperammonemic rats significantly
improved the expression (P < 0 01) and activity (P < 0 001)
of the cerebral Na+/K+-ATPase as represented in
Figures 7(d) and 7(e), respectively.

Oral supplementation of C. molmol did not affect
the gene expression of NOS1, sGC, Na+/K+-ATPase, or
glutamine levels in the cerebrum of normal rats.

4. Discussion

C. molmol has showed multiple therapeutic effects; however,
nothing has yet been reported on its protective effect against
hyperammonemia. The present study shows for the first time

the protective effect of C. molmol resin extract against excess
ammonia-induced alterations, pointing to the role of Nrf2/
HO-1 pathway.

An initial objective of this study was to investigate the
protective activity of C. molmol resin extract against
NH4Cl-induced liver injury. The liver plays a central role in
detoxification of both endogenous and exogenous toxins.
This detoxification capacity is hampered upon liver injury,
and the body is exposed to the harmful effects of toxicants.
Hyperammonemia occurs as a consequence of liver failure
[7]. In the present investigation, increased circulating levels
of ammonia indicate liver damage induced by ammonia
intoxication in rats as we previously reported [10, 11]. Excess
ammonia-induced liver injury was confirmed by increased
circulating liver-specific marker enzymes ALT, AST, and
ALP. In NH4Cl-induced animal model, hyperammonemia
occurs as a consequence of liver damage induced by injection
of NH4Cl. Hyperammonemia induces liver damage which
may contribute to or exacerbate hyperammonemia and other
alterations resulting from liver damage. We have previously
reported increased circulating levels of ALT, AST, and ALP
in NH4Cl-induced hyperammonemic rats [10]. Elevated liver
marker enzymes in serum is an indicator for the assessment
of hepatocellular damage [50]. C. molmol resin extract signif-
icantly ameliorated body weight and decreased blood ammo-
nia levels and circulating levels of ALT, AST, and ALP in
hyperammonemic rats. These findings suggest hepatoprotec-
tive and membrane-stabilizing potentials of C. molmol.
Accordingly, C. molmol resin protected the liver against
ethanol-induced hepatotoxicity in rats and decreased the cir-
culating levels of ALT, AST, and ALP [51]. In addition, treat-
ment with C. molmol resin extract decreased circulating ALT
and AST in carbon tetrachloride- (CCl4-) [52] and D-GalN/
LPS-induced [53] liver injury in rats and in a rodent model of
chemically induced hepatocarcinogenesis [54]. The declined
body weight in NH4Cl-induced hyperammonemic rats could
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be explained by the decreased body fat content. Hyperammo-
nemia has been reported to alter lipid metabolism and signif-
icantly decrease body lipid content, leading to declined body
weight [55]. Alleviated body weight by C. molmol resin
extract in this study could be attributed to the ameliorated
lipid metabolism. However, further studies are required to

better explain the possible role of C. molmol in ameliorating
body weight in hyperammonemic rats.

Hyperammonemic rats in the present study exhibited a
marked increase in the circulating levels of TNF-α as we
recently reported [11]. Although the precise interaction
between inflammation and hyperammonemia is unclear,
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inflammation appears to play important role in the patho-
genesis of HE [56–58]. In this context, studies have showed
a strong positive correlation between inflammation and HE
[59, 60]. In patients with liver cirrhosis, elevated circulating

levels of the proinflammatory cytokine TNF-α were recorded
[59, 60]. Shawcross et al. [61] proposed the crucial role of
inflammation in hyperammonemia-associated neuropsycho-
logical alterations. Hence, attenuation of inflammation,
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particularly mediated by TNFα, may reduce or prevent
hyperammonemia. This notion is supported by the findings
of Chung et al. [62] who showed the ability of indomethacin,
a nonsteroidal anti-inflammatory drug (NSAID), to prevent
ammonia-induced brain edema after portacaval anastomosis
in rats. In addition, we have demonstrated that the amelio-
rated blood ammonia levels was associated with decreased
circulating levels of TNF-α in NH4Cl-induced hyperammo-
nemia in rats [11].

Here, C. molmol resin extract significantly decreased
serum levels of TNF-α, demonstrating that its anti-
inflammatory effect plays a role in attenuating hyperammo-
nemia. The anti-inflammatory efficacy of C. molmol has been
reported in different studies. In a rat model of formalin-
induced hind paw edema, Shalaby and Hammouda [35]
showed that C. molmol exerted a potent anti-inflammatory
effect. This effect has been attributed to the reduced produc-
tion of prostaglandins as reported by Su et al. [63]. Also,
Ahmad et al. [53] showed that myrrh attenuated inflamma-
tion in a rat model of D-GalN/LPS-induced hepatic injury.
Recently, Fatani et al. [64] showed the anti-inflammatory
efficacy of C. molmol in acetic acid-induced ulcerative colitis
in rats. We have recently demonstrated the potent anti-
inflammatory effect of C. molmol resin extract in a rat model
of chemically induced hepatocarcinogenesis [54]. These
studies support the idea that attenuation of inflammation
has a role in the protective mechanism of C. molmol against
hyperammonemia.

Attenuation of oxidative/nitrosative stress is another
mechanism we hypothesized to mediate the protective effect
of C. molmol resin extract against NH4Cl-induced hyperam-
monemia in rats. In animal models, excess ammonia pro-
vokes excessive production of ROS [15] which initiate lipid
peroxidation. Here, hyperammonemic rats exhibited marked
increase in lipid peroxidation levels in the liver, kidney, and
cerebrum. Previous research from our lab showed significant
increase in lipid peroxidation in the liver, brain, and kidney
of NH4Cl-induced hyperammonemic rats [10, 11]. Other
studies have reported increased lipid peroxidation in animal
models of hyperammonemia [16, 65, 66]. Moreover,
NH4Cl-induced hyperammonemic rats showed a marked
increase in NO levels in the liver, kidney, and cerebrum.
The increased NO production in the brain is a direct result
of the upregulated nNOS in hyperammonemic rats. Accord-
ingly, Ramakrishnan et al. [16] have reported increased
expression of nNOS in the brain of NH4Cl-induced rats.
Hyperammonemia is known to activate nNOS and increase
NO production in the brain. The excessive production of
NO can induce neuronal damage [12].

Interestingly, C. molmol resin significantly alleviated lipid
peroxidation in the liver, kidney, and cerebrum of hyperam-
monemic rats, demonstrating a radical scavenging efficacy.
In addition, C. molmol significantly decreased NO produc-
tion which is associated with the decreased nNOS expression.
In accordance, supplementation of C. molmol to rats with
ulcerative colitis [64], ethanol- [51] and lead-induced liver
injury [32], and hepatocarcinogenesis [54] significantly
decreased lipid peroxidation and NO levels. Moreover,
C. molmol significantly enhances both enzymatic and

nonenzymatic antioxidant defenses in the liver, kidney, and
cerebrum of hyperammonemic rats. These antioxidants play
key roles in protecting the body against free radicals. Previ-
ous studies have reported declined GSH, SOD, CAT, and
GPx in the liver, brain, and kidney of NH4Cl-induced hyper-
ammonemic rats [10, 11, 16]. Declined antioxidant defense
mechanisms in hyperammonemia can aggravate ROS-
induced tissue damage. Along with reducing lipid peroxida-
tion and NO, C. molmol has been reported to enhance the
antioxidant defenses in different tissues of rats [32, 51, 54, 64].

The in vivo antioxidant activity of C. molmol resin extract
is in positive correlation with the in vitro data. Our findings
showed a significant antioxidant and radical scavenging effi-
cacies of C. molmol resin extract evidenced by the DPPH
assay (Supplementary Figure I available online at https://doi.
org/10.1155/2017/7369671). The antioxidant activity of C.
molmol is due to its rich content of bioactive molecules. Phy-
tochemical analysis of C. molmol resin showed the presence
of active constituents with antioxidant activity. These bioac-
tive constituents include limonene, m-cresol, eugenol, com-
miphoric acids, furanosesquiterpenes, pinene, terpenoids,
and cuminic aldehyde [67, 68]. In addition, the study of
Mahboubi and Kazempour [69] showed the presence of phe-
nolic and flavonoid compounds in C. molmol resin ethanolic
extract. Phenolic compounds are well known for their potent
antioxidant and radical scavenging properties [10, 34, 70, 71].

In addition to its radical scavenging property, we hypoth-
esized that C. molmol resin extract can enhance antioxidant
defenses and abrogate oxidative stress through activation of
Nrf2/HO-1 signaling. The possible involvement of Nrf2 acti-
vation in mediating the protective activity of C. molmol resin
against hyperammonemia has not been previously investi-
gated. The current findings showed a significant decline in
Nrf2 expression in the cerebrum of hyperammonemic rats.
This downregulation has been markedly reversed following
treatment with C. molmol resin extract. The results also
showed that HO-1 gene expression was upregulated in the
cerebrum of hyperammonemic rats treated with C. molmol
resin extract. These findings highlight that activation of the
Nrf2/ARE/HO-1 signaling pathway participates in the neu-
roprotective effect of C. molmol resin extract against
hyperammonemia-induced injury. Nrf2 is known to be acti-
vated by ROS and then dissociates from Keap1 and translo-
cates to the nucleus where it binds to ARE and activates the
transcription of antioxidant and cytoprotective proteins
including HO-1, CAT, SOD, and GPx [21]. Although
activated by ROS, Nrf2 showed a significant decline in the
cerebrum of hyperammonemic rats exhibiting oxidative
stress. This was further confirmed by the declined HO-1
expression in the cerebrum of hyperammonemic rats. More-
over, the activity of antioxidant defenses in the cerebrum was
strongly correlated with these findings. An explanation for
this declined expression of Nrf2 could be the chronic and
surplus production of ROS. This notion is supported by our
recent findings where we demonstrated downregulation of
the Nrf2/ARE/HO-1 pathway in different conditions with
excessive production of ROS [34, 48, 72–74]. Furthermore,
the anti-inflammatory effect of C. molmol resin extract could
be attributed, at least in part, to the activation of Nrf2.
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Multiple studies have demonstrated the anti-inflammatory
role of Nrf2. Knockout of Nrf2 has been associated with
reduced anti-inflammatory efficacy of the antioxidant
curcumin [75]. In addition, activation of Nrf2 blocked the
transcription of IL-6 and IL-1β in macrophages [76].

The effect of C. molmol resin on hematological alterations
in hyperammonemia was one of our targets in this study;
however, reports about hematological alterations in hyper-
ammonemia are very few. Assessment of hematological
parameters represents a powerful tool and an earlier indica-
tor to evaluate the deleterious effects of drugs [77]. In the
present study, administration of C. molmol to normal rats
did not affect the hematological and coagulation system
parameters, whereas hyperammonemic rats exhibited ane-
mia, leukocytosis, thrombocytopenia, and prolonged PT
and aPTT. Hematological abnormalities occur frequently in
liver disease conditions [78]. In support of our findings,
Kalaitzakis et al. [79] have demonstrated that HE is related
to anemia in liver transplant candidates with cirrhosis. The
recorded anemia in hyperammonemic rats could also be a
consequence of the increased ROS production. ROS can
decrease cellular deformability and damage erythrocytes via
induction of membrane lipid peroxidation and rigidity [80].
In addition, liver disease is known to be associated with
defects of blood coagulation as a consequence of thrombocy-
topenia, endothelial dysfunction, and deficiencies of coagula-
tion factors. Low circulating levels of the coagulation factors
are associated with prolongation of PT and aPTT [81]. Here,
hyperammonemic rats exhibited thrombocytopenia and
prolonged PT and aPTT. Furthermore, hyperammonemic
rats showed leukocytosis. Accordingly, Choi et al. [82]
reported mild leukocytosis in hyperammonemic patients
with ornithine carbamoyltransferase deficiency and Aggar-
wal et al. [78] demonstrated a significant association of
leukocytosis with HE. Interestingly, C. molmol prevented all
hematological alterations in hyperammonemic rats. These
findings could be a direct result of the prevention of hyper-
ammonemia and attenuation of liver injury, oxidative stress,
and inflammation.

Glutamine is a neutral amino acid and functions
normally as ammonia carrier in the CNS [83]. Because the
brain does not convert ammonia into urea, ammonia is
exclusively removed by GS located in astrocytes. Thus, gluta-
mine synthesis is an essential process for the brain to detoxify
excess ammonia in liver failure [84]. In hyperammonemic
conditions, the metabolism of ammonia to glutamine is
followed by an osmotic disturbance, altered cerebral blood
flow, oxidative stress, and edema. Other factors including
systemic inflammation may contribute to the excess
ammonia-induced cerebral alterations [85]. NH4Cl-induced
hyperammonemic rats in the present investigation showed
a marked increase in cerebral glutamine levels and the
expression of sGC. Excess ammonia has been reported to
activate NMDA receptors in the brain cortex [23], followed
by increased intracellular Ca2+, increased NO production,
and activation of sGC [24]. Interestingly, C. molmol supple-
mented hyperammonemic rats showed a marked decrease
in cerebral glutamine levels and downregulated sGC. These
findings could be attributed to the ability of C. molmol to

decrease ammonia levels, oxidative stress, and nNOS
expression. Therefore, the protective effect of C. molmol resin
extract against hyperammonemia is illustrated, at least in
part, through inhibiting NMDA receptors and modulation
of the glutamate-NO-cGMP pathway.

Excess ammonia can also alter the ionic shifts and affect
the membrane potential of nerve cells. Here, NH4Cl-induced
hyperammonemic rats exhibited significantly increased
expression and activity of the cerebral Na+/K+-ATPase.
Previous studies have showed similar findings in hyperam-
monemic brain conditions [16, 25, 26]. The exact underlying
mechanism of the activated Na+/K+-ATPase in hyperammo-
nemia is not fully understood. Kosenko et al. [86] proposed
that the activation of Na+/K+-ATPase is a result of decreased
phosphorylation by protein kinase C (PKC). In addition, the
activity of Na+/K+-ATPase was increased in cerebral cortex
following exposure to millimolar concentrations of NH4Cl
[87]. C. molmol supplementation markedly ameliorated both
the expression and the activity of Na+/K+-ATPase in the
cerebrum of hyperammonemic rats. These findings added
support to the protective role of C. molmol resin against the
deleterious effects of hyperammonemia.

In conclusion, our study shows for the first time that C.
molmol resin extract protects against excess ammonia
through attenuation of oxidative stress and inflammation
and modulation of the glutamate-NO-cGMP pathway. This
investigation also confers information that C. molmol may
be an effective neuroprotective therapeutic agent with a
potential mechanism of upregulation Nrf2/ARE/HO-1
pathway and consequently enhances the antioxidant
defenses. C. molmol ameliorated both the activity and the
expression of Na+/K+-ATPase and prevented hematological
alterations in cases of hyperammonemia and hepatic failure.
Therefore, C. molmol resin may represent a promising
protective agent against hyperammonemia, pending further
detailed mechanistic studies. This study may serve as a base
for future investigations exploring Nrf2-activating agents as
therapeutics for hyperammonemia.
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Activation of nuclear factor erythroid 2-related factor 2 (NRF2) has been found to ameliorate diabetic testicular damage (DTD) in
rodents. However, it was unclear whether NRF2 is required for these approaches in DTD. Epigallocatechin gallate (EGCG) is a
potent activator of NRF2 and has shown beneficial effects on multiple diabetic complications. However, the effect of EGCG has
not been studied in DTD. The present study aims to explore the role of NRF2 in both self and EGCG protection against DTD.
Therefore, streptozotocin-induced diabetic C57BL/6 wild type (WT) and Nrf2 knockout (KO) mice were treated in the presence
or absence of EGCG, for 24 weeks. The Nrf2 KO mice exhibited more significant diabetes-induced loss in testicular weight
and spermatozoa count, and increase in testicular apoptotic cell death, as compared with the WT mice. EGCG activated
NRF2 expression and function, preserved testicular weight and spermatozoa count, and attenuated testicular apoptotic cell
death, endoplasmic reticulum stress, inflammation, and oxidative damage in the WT diabetic mice, but not the Nrf2 KO diabetic
mice. The present study demonstrated for the first time that NRF2 plays a critical role in both self and EGCG protection
against DTD.

1. Introduction

Diabetes causes damage to multiple organs, including testis
[1]. Decreased sperm cell count and velocity were found in
patients with diabetes [2]. Moreover, diabetics had increased
sperm nuclear and mitochondrial DNA damage [3], along
with increased level of advanced glycation end products
(AGEs) in the testis, epididymis, and sperm [4]. Diabetes-
induced excessive AGEs can cause oxidative stress, leading
to activation of mitochondria or endoplasmic reticulum

(ER) stress-related cell death pathways, the effect of which
may result in sperm loss [5–8]. Therefore, targeting
diabetes-induced oxidative stress is a promising strategy to
prevent male infertility in diabetic patients.

Nuclear factor erythroid 2-related factor 2 (NRF2) is a
master factor in the cellular antioxidant system [9, 10].
NRF2 activates the transcription of a cohort of antioxidant
genes, such as heme oxygenase-1 (Ho1) and NAD(P)H dehy-
drogenase quinone 1 (Nqo1) [11], the proteins of which work
as scavengers of diabetes-induced free radicals. Notably, the
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Nrf2 gene knockout (KO) male mice developed infertility in
an age-dependent manner [12]. NRF2 and its downstream
antioxidants were found to be expressed in the male
reproductive tract and played a critical role in defence
against oxidative stress [12, 13]. Furthermore, low Nrf2
mRNA was found to be associated with impaired sperm
function parameters in human individuals, including con-
centration, motility, vitality, and morphology [14]. All these
findings suggested that NRF2 plays a pivotal protective role
in male infertility. Approaches in activating NRF2, such as
administration of the NRF2 activator sulforaphane (SFN)
[5, 6], supplementation of zinc [15], and exposure to low-
dose X-irradiation [8], effectively ameliorated diabetes-
induced testicular inflammation, ER stress, and apoptotic cell
death, in rodent models of both type 1 and type 2 diabetes.
However, it was unclear whether NRF2 was required for
the protective effect of these approaches.

Epigallocatechin gallate (EGCG) is the most abundant
and effective green tea catechin and is known to be a potent
NRF2 activator [16–20]. Despite showing beneficial effects
in a variety of diseases [21–24], EGCG has not been studied
for its effect in diabetic testicular damage (DTD). It was also
not previously known whether NRF2 is required for this pos-
sible action of EGCG. Therefore, the present study aims to
answer the following questions: (1) whether or not EGCG
has a protective role in ameliorating DTD and (2) whether
or not NRF2 is required for self and EGCG protection against
DTD. To these ends, diabetes was induced in 8-week-old
male C57BL/6 wild-type (WT) and Nrf2 KOmice by strepto-
zotocin (STZ). Both the diabetic and nondiabetic mice were
treated in the presence or absence of EGCG, for a total period
of 24 weeks.

2. Methods

2.1. Animal Treatment. C57BL/6WT (Nrf2+/+) andNrf2 KO
(Nrf2−/−) mice were obtained through breeding of heterozy-
gotes (Nrf2+/−) [10, 25]. All mice were housed in the Animal
Center of Changchun University of Chinese Medicine at
22°C, on a 12 : 12-hour light-dark cycle with free access to
rodent feed and tap water. The Institutional Animal Care
and Use Committee at Changchun University of Chinese
Medicine approved all the experimental procedures, which
were consequently in accordance with the International
Guiding Principles for Biomedical Research Involving Ani-
mals, as issued by the Council for the International Organiza-
tions of Medical Sciences. Eight-week-old male mice received
either sodium citrate or STZ (Sigma-Aldrich, St. Louis, MO;
50mg/kg daily, dissolved in 0.1M sodium citrate, pH 4.5)
through intraperitoneal injection for 5 consecutive days.
Fasting glucose levels (4-hour fast) were measured a week
after the last injection of STZ. Mice with a fasting glucose
level higher than 250mg/dl were considered diabetic. In
order to observe the chronic effect of diabetes, the mice were
kept for 24 weeks post diabetes onset. Thus, the diabetic mice
and age-matched controls were treated daily by subcutane-
ously injected EGCG (100mg/kg [26], ≥98%, dissolved in
normal saline, PureOne Biotechnology, Shanghai, PRC)
or normal saline daily, for a total period of 24 weeks.

Blood glucose was recorded on days 0, 28, 56, 84, 112,
140, and 168, after diabetes onset. The mice were then
euthanized under anaesthesia by intraperitoneal injection
of chloral hydrate at 0.3mg/kg [27]. The testes and cauda
epididymides were harvested for analysis. Six mice in each
group were studied.

2.2. Sperm Density Assessment. The cauda epididymis from
each mouse was placed in 2ml Earle’s balanced salt solution
(Sigma-Aldrich) supplemented with 0.1% bovine serum
albumin (Sigma-Aldrich). The epididymis was gently teased
with a bent needle to release spermatozoa under observation
through a stereomicroscope (Olympus). Sperm density was
assessed with a haemocytometer and was presented by sper-
matozoa count per epididymis [28–30].

2.3. Hematoxylin and Eosin (H&E) Staining, Terminal
Deoxynucleotidyl Transferase-Mediated dUTP Nick End
Labeling (TUNEL) Assay, and Immunohistochemical (IHC)
Staining. Testes were fixed immediately in 10% buffered for-
malin solution after harvesting and were embedded in paraf-
fin and sectioned into 5μm thick sections onto glass slides.
The sections were processed for H&E staining and TUNEL
staining, as previously described [6]. For TUNEL staining,
apoptotic cells exhibited a brown nuclear stain as TUNEL
positive cells and were counted manually under a micro-
scope. Four sections from each testis were counted. On each
section, 30 seminiferous tubule’s cross sections from each
testis were selected in the same pattern, moving each slide
without repetitive counting in a blinded fashion [31].
Results were presented as TUNEL positive cells per 103

cells. For IHC staining, the sections were incubated with
anti-3-nitrotyrosine (3-NT, Millipore, Temecula, CA, USA,
1 : 100) overnight at 4°C. After washing with PBS, the sections
were incubated with horseradish peroxidase-conjugated
secondary antibody (Santa Cruz Biotechnology, Dallas, TX,
USA, 1 : 300 dilutions in PBS) for 2 hours at room tempera-
ture. The sections were then treated with peroxidase sub-
strate 3,3′-diaminobenzidine in the developing system
provided by Vector Laboratories (Burlingame, CA, USA)
and counterstained with hematoxylin.

2.4. Reactive Oxygen Species (ROS) Assay. Testicular ROS
generation was measured using a ROS assay kit provided
by Nanjing Jiancheng Bioengineering Institute (Nanjing,
Jiangsu, PRC), following the manufacturer’s instructions.

2.5. Isolation of Nuclei. Nuclei were isolated from testicular
tissue of each mouse using a nuclei isolation kit provided
by Sigma-Aldrich, following the manufacturer’s instructions,
as previously described [25, 30, 32].

2.6. Western Blot Analysis.Western blot was performed using
testicular tissue as described in our previous study [33]. The
primary antibodies included anti-activating transcription
factor 4 (ATF4, Cell Signaling Technology, Danvers, MA,
USA, 1 : 1000), anti-Bcl-2-associated X protein (Bax, Cell Sig-
naling Technology, 1 : 1000), anti-B-cell lymphoma 2 (Bcl-2,
Santa Cruz Biotechnology, 1 : 2000), anti-binding immuno-
globulin protein (BIP, Cell Signaling Technology, 1 : 1000),
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anti-caspase12 (Cell Signaling Technology, 1 : 1000), anti-
cleaved caspase3 (c-caspase3, Cell Signaling Technology,
1 : 1000), anti-C/EBP homologous protein (CHOP, Cell Sig-
naling Technology, 1 : 1000), anti-GAPDH (Santa Cruz Bio-
technology, 1 : 2000), anti-histone H3 (Santa Cruz
Biotechnology; 1 : 1000), anti-intercellular adhesion molecule
1 (ICAM-1, Santa Cruz Biotechnology, 1 : 500), anti-
inducible nitric oxide synthase (iNOS, Cell signaling Tech-
nology, 1 : 1000), anti-NRF2 (Santa Cruz Biotechnology,
1 : 1000), anti-pro-caspase3 (Cell Signaling Technology,
1 : 1000), and anti-vascular cell adhesion molecule 1
(VCAM-1, Santa Cruz Biotechnology, 1 : 500).

2.7. Quantitative Reverse Transcription PCR (qPCR). qPCR
was performed as previously described [34, 35]. Primers for

Ho1 (product number: Mm00516005_m1) and Nqo1 (prod-
uct number: Mm01253561_m1) were purchased from Life
Technologies (Grand Island, NY, USA). Thermal cycling
was carried out as the following: 95°C for 3 minutes (m) as
initial denaturing, 45 cycles at 94°C for 30 seconds (s), 60°C
for 30 s, and 72°C for 60 s, followed by a final extension at
72°C for 2m.

2.8. Quantitative Analysis of Lipid Peroxides. Testicular
malondialdehyde (MDA) concentration was measured using
a lipid peroxidation assay kit (Sigma-Aldrich), following the
manufacturer’s instructions, as previously described [6].

2.9. Statistical Analysis. Six mice in each group were
researched. Indices in each group were measured and
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Figure 1: Deletion of the Nrf2 gene completely abrogated both self and EGCG protection against diabetes-induced testicular weight loss and
reduction in spermatozoa count. Diabetes was induced in 8-week-old male C57BL/6 WT and Nrf2 KOmice by streptozotocin. Blood glucose
was monitored in both the (a) WT and (b) Nrf2 KO mice at the multiple time points 0, 4, 8, 12, 16, 20, and 24 weeks post diabetes onset. (c)
Testis weight to tibia length ratio and (d) spermatozoa count were calculated at the time, 24 weeks post diabetes onset, at which the mice were
killed. Data were presented as means± SD (n = 6). ∗p < 0 05 versus Ctrl; †p < 0 05 versus DM; ‡p < 0 05 versus WT DM. WT: wild type; KO:
knockout; Ctrl: control; DM: diabetes mellitus.
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summarized as means± SD. Image Quant 5.2 (GEHealthcare
Bio-Sciences, Pittsburgh, PA, USA) was used to analyse the
density of Western blot images. IHC positive area was

quantified by the Image-Pro Plus Version 6.0 software
(Media Cybernetics, Rockville, MD, USA). One-way
ANOVA was performed for comparisons among different
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Figure 2: NRF2 was required for both self and EGCG protection against diabetes-induced testicular apoptotic cell death. (a) H&E staining
was conducted for observation of morphological change. (b) Testicular apoptotic cell death was detected by TUNEL assay, from which (c)
TUNEL+ cells were calculated. Data were presented as means± SD (n = 6). ∗p < 0 05 versus Ctrl; †p < 0 05 versus DM; ‡p < 0 05 versus
WT DM. H&E: hematoxylin and eosin; TUNEL: terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling; +: positive;
other abbreviations are the same as those in Figure 1.
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groups, followed by post hoc pairwise comparisons using
Tukey’s test with Origin 8.6 data analysis and graphing soft-
ware Lab (OriginLab, Northampton, MA, USA). A test was
significant if p < 0 05.

3. Results

3.1. Deletion of the Nrf2 Gene Completely Abrogated Both Self
and EGCG Protection against Diabetes-Induced Testicular
Weight Loss and Reduction in Spermatozoa Count. Both the
WT and the Nrf2 KO diabetic mice developed significantly
higher blood glucose levels at 0, 4, 8, 12, 16, 20, and 24 weeks
post diabetes onset, as compared with respective controls

(Figures 1(a) and 1(b)). EGCG had no impact on blood glu-
cose levels in either type of the mice, under either diabetic or
nondiabetic conditions (Figures 1(a) and 1(b)). Diabetes
caused a significant decrease in the ratio of testis weight to
tibia length and spermatozoa count in either type of the mice
(Figures 1(c) and 1(d)). Notably, the Nrf2 KO diabetic mice
suffered from more marked decrease in the two indices,
as compared with the WT diabetic mice (Figures 1(c)
and 1(d)). The WT diabetic mice, but not the Nrf2 KO
diabetic mice, were protected by EGCG from diabetes-
induced reduction in testicular weight and spermatozoa
count (Figures 1(c) and 1(d)). These findings suggested that
NRF2 plays a critical role in both self-protection and EGCG
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Figure 3: EGCG prevented diabetes-induced activation of testicular apoptotic cell death signaling via NRF2. Testicular apoptotic signaling
was further evaluated by determining (a) the ratio of Bax protein level to Bcl2 protein level, along with the protein levels of (b) pro-
caspase3 and (c) c-caspase3. To further assess the activity of caspase3, (d) the ratio of c-caspase3 to pro-caspase3 was calculated. For (b)
and (c), the protein levels were normalized with GAPDH. Data were normalized as fold variation to Ctrl and were presented as means
± SD (n = 6). ∗p < 0 05 versus Ctrl; †p < 0 05 versus DM. Bax: Bcl-2-associated X protein; Bcl-2: B-cell lymphoma 2; c-caspase3: cleaved
caspase3; other abbreviations are the same as those in Figure 1.
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protection against diabetes-induced loss in testis weight and
spermatozoa count.

3.2. NRF2 Was Required for Both Self and EGCG Protection
against Diabetes-Induced Testicular Apoptotic Cell Death.
Diabetes did not lead to obvious testicular pathological
changes, as presented by H&E staining (Figure 2(a)). How-
ever, apoptotic cell death was prominent in the diabetic testes
of either type of the mice, as shown by TUNEL staining
(Figure 2(b)). Notably, diabetes-induced testicular apoptotic
cell death was more significant in the Nrf2 KO mice, as
compared to the WT mice (Figure 2(c)). EGCG significantly
decreased the number of testicular TUNEL positive cells
in the WT diabetic mice, but not the Nrf2 KO diabetic
mice (Figure 2(c)).

3.3. EGCG Prevented Diabetes-Induced Activation of
Testicular Apoptotic Cell Death Signaling via NRF2. The sta-
tus of testicular apoptotic cell death was further confirmed by
determining the ratio of Bax to Bcl2 (Bax/Bcl2, Figure 3(a))
and the protein levels of pro-caspase3 and c-caspase3
(Figures 3(b) and 3(c)). Bax/Bcl2 and the protein levels of
pro-caspase3 and c-caspase3 were all significantly elevated
in the testes of the diabetic mice (Figures 3(a), 3(b), and
3(c)), the effects of which were almost completely prevented
by EGCG in the WT mice (Figures 3(a), 3(b), and 3(c), left
panels). However, deletion of the Nrf2 gene completely abro-
gated these efficacies of EGCG (Figures 3(a), 3(b), and 3(c),
right panels). To further evaluate caspase3 activity, the ratio
of c-caspase3 to pro-caspase3 was calculated in all groups
and comparisons were constructed between the groups
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Figure 4: NRF2 mediated EGCG prevention of diabetes-induced testicular ER stress. The status of ER stress was determined by measuring
protein levels of (a) CHOP, (b) caspase12, (c) BIP, and (d) ATF4, using Western blot. The protein levels were normalized with GAPDH. Data
were normalized as fold variation to Ctrl and were presented as means± SD (n = 6). ∗p < 0 05 versus Ctrl; †p < 0 05 versus DM. ER:
endoplasmic reticulum; CHOP: C/EBP homologous protein; BIP: binding immunoglobulin protein; ATF4: activating transcription factor
4; other abbreviations are the same as those in Figure 1.
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Figure 5: Continued.
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(Figure 3(d)). As shown in Figure 3(d), EGCG prevented the
diabetes-elevated ratio of c-caspase3 to pro-caspase3
(Figure 3(d), left panel) in the WT mice, but not in the
Nrf2 KO mice (Figure 3(d), right panel).

3.4. NRF2 Mediated EGCG Prevention of Diabetes-Induced
Testicular ER Stress. ER stress was evaluated by determining
the protein levels of CHOP (Figure 4(a)), caspase12
(Figure 4(b)), BIP (Figure 4(c)), and ATF4 (Figure 4(d)), all
of which were elevated in the diabetic testes. EGCG decreased
these indices in the WT, but not the Nrf2 KO, diabetic mice
(Figures 4(a), 4(b), 4(c), and 4(d)). The results indicated
NRF2 to be the key factor through which EGCG prevented
diabetes-induced testicular ER stress.

3.5. EGCG Completely Lost the Efficacy in Ameliorating
Diabetes-Induced Testicular Inflammation and Oxidative
Damage in the Absence of NRF2. Testicular inflammation
was evaluated by determining protein levels of ICAM-1
(Figure 5(a)) and VCAM-1 (Figure 5(b)). Testicular oxida-
tive damage was determined by measuring iNOS protein
level (Figure 5(c)), MDA level (Figure 5(d)), and ROS gener-
ation (Figure 5(e)). In the WT mice, EGCG markedly
decreased these diabetes-elevated indices (Figures 5(a), 5(b),
5(c), 5(d), and 5(e), left panels). These effects of EGCG were
completely lost in the absence of NRF2 (Figures 5(a), 5(b),
5(c), 5(d), and 5(e), right panels). The status of testicular oxi-
dative stress was further evaluated by immunohistochemical
staining of 3-NT (Figure 5(f)), an indicator of oxidative/
nitrosative damage. As shown in Figure 5(g), EGCG
completely lost the protective role in attenuating the diabetes
induction of 3-NT in the absence of NRF2.

3.6. EGCG Enhanced Testicular NRF2 Expression and
Function. Testicular whole cell NRF2 (total NRF2, t-NRF2)
and nuclear NRF2 (n-NRF2) were both increased by EGCG
in the WT mice, under either diabetic or nondiabetic condi-
tions (Figures 6(a) and 6(b), left panels). NRF2 protein was
not detectable in the testes of the Nrf2 KO mice
(Figures 6(a) and 6(b), right panels), the result of which con-
firmed the deletion of the Nrf2 gene. The ratio of n-NRF2/
Histone H3 to t-NRF2/GAPDH (Figure 6(c)) was calculated
to reflect the proportion of NRF2 that translocated to the
nucleus. This ratio was found to be increased by EGCG in
either diabetic or nondiabetic WT mice (Figure 6(c), left
panel). In order to evaluate NRF2 function, the expression
of Nqo1 (Figures 6(d) and 6(e)) and Ho1 (Figures 6(f) and
6(g)) was determined. As shown in Figures 6(d), 6(e), 6(f),
and 6(g), the mRNA and protein levels ofNqo1 andHo1were
all elevated by EGCG in theWTmice (Figures 6(d), 6(e), 6(f),
and 6(g), left panels), but not in the Nrf2 KO mice
(Figures 6(d), 6(e), 6(f), and 6(g), right panels). Moreover,
the Nrf2 KO mice had lower basal expression of Nqo1 and
Ho1, as compared with the WT mice (Figures 6(d), 6(e),
6(f), and 6(g)).

4. Discussion

The present study determined the effect of EGCG on the pre-
vention of DTD. The results showed that diabetes caused sig-
nificant testicular weight loss, decreased spermatozoa count,
and increased testicular apoptotic cell death, ER stress, and
oxidative damage, as compared with control. Notably, these
detrimental outcomes were more prominent in the Nrf2
KO mice, as compared with the WT mice. EGCG activated
NRF2 signaling and produced a significant attenuation of
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Figure 5: EGCG completely lost the efficacy in ameliorating diabetes-induced testicular inflammation and oxidative damage in the absence of
NRF2. Testicular inflammation was assessed by determining protein levels of (a) ICAM-1 and (b) VCAM-1, using Western blot. To
determine testicular oxidative stress, (c) iNOS protein was determined by Western blot. The protein levels were normalized with GAPDH.
Data were normalized as fold variation to Ctrl and were presented as means± SD (n = 6). To further evaluate testicular oxidative stress,
ELISAs were performed to detect (d) MDA and (e) ROS levels, and (f) IHC staining for 3-NT was also performed. Data were normalized
as fold variation to WT Ctrl and were presented as means± SD (n = 6). ∗p < 0 05 versus Ctrl; †p < 0 05 versus DM. ICAM-1: intercellular
adhesion molecule 1; VCAM-1: vascular cell adhesion molecule 1; iNOS: inducible nitric oxide synthase; MDA: malondialdehyde; ROS:
reactive oxygen species; IHC: immunohistochemical; 3-NT: 3-nitrotyrosine; other abbreviations are the same as those in Figure 1.

8 Oxidative Medicine and Cellular Longevity



aDk 73HDPAG

t-NRF2 98 kDa

0

1

2
t-N

RF
2/

G
A

PD
H

(fo
ld

 o
f W

T 
Ct

rl)

†

WT KO

⁎

⁎

Ctrl
Ctrl/EGCG DM/EGCG

DM

(a)

Histone H3 15 kDa

aDk 892FRN-n

0

1

2

3

n-
N

RF
2/

H
ist

on
e H

3
(fo

ld
 o

f W
T 

Ct
rl)

†

WT KO

⁎

⁎

Ctrl
Ctrl/EGCG DM/EGCG

DM

(b)

0

1

2

†

Ra
tio

 o
f n

-N
RF

2/
H

ist
on

e H
3

to
 t-

N
RF

2/
G

A
PD

H
(fo

ld
 o

f W
T 

Ct
rl)

⁎

WT KO

Ctrl
Ctrl/EGCG DM/EGCG

DM

(c)

0

1

2
N

Q
O

1/
G

A
PD

H
(fo

ld
 o

f W
T 

Ct
rl)

†

WT KO

⁎

⁎
⁎

Ctrl
Ctrl/EGCG DM/EGCG

DM

(d)

NQO1 31 kDa
GAPDH 37 kDa

0

1

2
†

N
Q

O
1/

G
A

PD
H

(fo
ld

 o
f W

T 
Ct

rl)

WT KO

⁎

⁎ ⁎

Ctrl
Ctrl/EGCG DM/EGCG

DM

(e)

0

1

2

H
O

1/
G

A
PD

H
(fo

ld
 o

f W
T 

Ct
rl)

†

WT KO

⁎

⁎ ⁎

Ctrl
Ctrl/EGCG DM/EGCG

DM

(f)

Figure 6: Continued.
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the testicular damage caused by diabetes in the WT mice.
However, deletion of the Nrf2 gene completely abolished
the protective effect of EGCG.

Oxidative stress is considered to be one of the main
mechanisms through which diabetes causes long-term com-
plications [36–38]. Significant oxidative damage was
observed in the testes of diabetic mice [5–8, 15]. Given that
NRF2 plays a critical role in cellular defence against
diabetes-induced oxidative stress, approaches to activate tes-
ticular NRF2 have been tested in diabetic mice, including
administration of the NRF2 activator SFN [5, 6], supplemen-
tation of zinc [15], and exposure to low-dose X-irradiation
[8]. Although the effects of the approaches were promising,
it was still unclear whether NRF2 activation is required for
the protective effect of the approaches. In the present study,
by using Nrf2 KO mice, NRF2 was found to be the key factor
through which EGCG ameliorated DTD. In addition,
enhanced oxidative stress status was observed in a rat model
of prediabetes [39, 40], and white tea consumption restored
sperm quality in the prediabetic rats by ameliorating testicu-
lar oxidative damage [40]. The present study supports the
previous report by Oliveira et al. [40], with an emphasis on
the long-term DTD.

One novel finding of the present study was the protective
role of NRF2 in self-prevention of the pathogenesis of DTD
(Figures 1(c), 1(d), 2(b), and 2(c)), in addition to the finding
that NRF2 was required for the protective effect of EGCG on
DTD. The self-protective role of NRF2 observed in the pres-
ent study is in accordance with the previous findings which
showed that NRF2 played a key preventive role in diabetic
cardiomyopathy [41] and nephropathy [32, 42, 43]. The ben-
eficial role of NRF2 in multiple organs or systems under

diabetic condition [38] may support the use of NRF2 activa-
tors, even though the activators may not be specific to an
organ, tissue, or cell type.

NRF2 activators have been developed based on different
regulatory mechanisms. Zinc was reported to upregulate
NRF2 protein in the testes of diabetic rats [15], although
the mechanism by which zinc increased NRF2 was not inves-
tigated. The finding that zinc enhanced NRF2 expression and
function via activating protein kinase B- (PKB- or AKT-)
mediated inhibition of Fyn function [44] might provide a
clue for the possible mechanism by which zinc activated
NRF2 in the testes of diabetic rats. Low-dose radiation was
also recently reported to attenuate testicular apoptosis in dia-
betic rats [8]. The study indicated that low-dose radiation
inhibited protein tyrosine phosphatase-1B and tribbles
homologue 3, the effect of which resulted in AKT-mediated
activation of testicular NRF2 signaling [8]. Therefore, zinc
and low-dose radiation shared the same AKT signaling path-
way to activate testicular NRF2. SFN is a potent NRF2 activa-
tor. Kelch-like ECH-associated protein 1 (KEAP1) is the key
negative cytoplasmic regulator of NRF2 [11, 45]. SFN acti-
vates NRF2 signaling by modulating the structure of KEAP1
protein, resulting in the release of NRF2 from the KEAP1-
NRF2 complex [11, 45]. Although previous studies showed
that SFN activated NRF2 and ameliorated diabetes-induced
testicular apoptotic cell death without knowing the expres-
sion of Keap1 [5, 6], we speculate that inhibition of KEAP1
function by SFN could be the mechanism through which
SFN activated NRF2 in these studies. Similar to SFN, EGCG
is also known to activate NRF2 by inactivating KEAP1
[46, 47]. EGCG is speculated to directly interact with the cys-
teine residues present in KEAP1, thereby stimulating NRF2
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Figure 6: EGCG enhanced testicular NRF2 expression and function. Testicular (a) t-NRF2 and (b) n-NRF2 protein were determined by
Western blot in all the mice. (c) The ratio of n-NRF2 to t-NRF2 was calculated to indicate NRF2 nuclear translocation. To evaluate NRF2
function, the expression of Nqo1 and Ho1 were further determined, by measuring Nqo1 (d) mRNA and (e) protein levels, as well as Ho1
(f) mRNA and (g) protein levels. t-NRF2 protein and the expression of Nqo1 and Ho1 were normalized to GAPDH. n-NRF2 was
normalized to Histone H3. Data were normalized as fold variation to WT Ctrl and were presented as means± SD (n = 6). ∗p < 0 05 versus
WT Ctrl; †p < 0 05 versus WT DM. t-NRF2: total NRF2; n-NRF2: nuclear NRF2; Nqo1: NAD(P)H dehydrogenase quinone 1; Ho1: heme
oxygenase-1; other abbreviations are the same as those in Figure 1.
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dissociation from KEAP1 [48]. However, another study indi-
cated that EGCG might induce NRF2 via activation of AKT
and ERK in human mammary epithelial cells [18]. Future
studies are needed to elucidate the exact mechanisms of
EGCG and other NRF2-activating approaches in the regula-
tion of NRF2 in DTD.

The NRF2 activator SFN has already been tested in
several clinical trials [49]. Furthermore, the approval of
dimethyl fumarate (BG-12), another NRF2 activator, for
use in the treatment of multiple sclerosis [50] is the con-
firmation of NRF2 being a viable drug target in disease.
However, to date, no NRF2 activator has been applied in
clinical trials for DTD or diabetes-induced male infertility.
Hence, attention should be paid to the critical role of
NRF2 in this diabetic complication.

Taken together, the present study demonstrates, for the
first time, that NRF2 plays a key role in self and EGCG pro-
tection against diabetic testicular damage. Therefore, this
study may provide a basis for potential application of EGCG
or other NRF2 activators in future clinical trials.
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We have recently shown that hepatocyte-specific c-met deficiency accelerates the progression of nonalcoholic steatohepatitis in
experimental murine models resulting in augmented production of reactive oxygen species and accelerated development of
fibrosis. The aim of this study focuses on the elucidation of the underlying cellular mechanisms driven by Nrf2 overactivation in
hepatocytes lacking c-met receptor characterized by a severe unbalance between pro-oxidant and antioxidant functions. Control
mice (c-metfx/fx), single c-met knockouts (c-metΔhepa), and double c-met/Keap1 knockouts (met/Keap1Δhepa) were then fed a
chow or a methionine-choline-deficient (MCD) diet, respectively, for 4 weeks to reproduce the features of nonalcoholic
steatohepatitis. Upon MCD feeding, met/Keap1Δhepa mice displayed increased liver mass albeit decreased triglyceride
accumulation. The marked increase of oxidative stress observed in c-metΔhepa was restored in the double mutants as assessed by
4-HNE immunostaining and by the expression of genes responsible for the generation of free radicals. Moreover, double
knockout mice presented a reduced amount of liver-infiltrating cells and the exacerbation of fibrosis progression observed
in c-metΔhepa livers was significantly inhibited in met/Keap1Δhepa. Therefore, genetic activation of the antioxidant transcription
factor Nrf2 improves liver damage and repair in hepatocyte-specific c-met-deficient mice mainly through restoring a balance in
the cellular redox homeostasis.

1. Introduction

Formation of reactive oxygen species (ROS) has been consid-
ered classically a pathophysiological phenomenon critically
involved in the progression from simple hepatic steatosis to
steatohepatitis. Upon triglyceride accumulation, cellular
compartments responsible for lipid catabolism such as mito-
chondria and lysosomes increase their activity with a conse-
quent generation of free radicals that trigger molecular
signals leading to cell death and release of proinflammatory

mediators. In this context, the use of antioxidant buffering
against the generation of ROS has been shown to partially
reduce the progression of nonalcoholic steatohepatitis. A
growing body of evidence indicates the HGF (hepatocyte
growth factor)/c-met axis as a molecular pathway linked to
the control of the cellular redox homeostasis. However, data
concerning the consequences of HGF stimulation on the
cellular generation of free radicals are still quite controversial.
Whereas in primary cell lines and tissues such as cardiomyo-
cytes [1] and neurons [2], stimulation with HGF was shown

Hindawi
Oxidative Medicine and Cellular Longevity
Volume 2017, Article ID 3420286, 15 pages
https://doi.org/10.1155/2017/3420286

https://doi.org/10.1155/2017/3420286


to dampen ROS production and to reduce oxidative stress-
dependent apoptosis; in cancer cell lines [3] and other
in vitro conditions [4], HGF treatment resulted in augmented
cell motility accompanied by increased ROS production. Our
group and others recently showed that disruption of c-met
functionality aggravates the onset of NASH through the
impairment of mechanisms regulating cell sensitivity to
lipotoxicity, ROS production, and cell proliferation [5, 6].
In particular, data emerging from genomic array analysis
clearly indicated an aberrant regulation of a pattern of
genes responsible for increased pro-oxidant environment,
amongst them the transcription factor Nrf2 (nuclear factor
erythroid-derived 2-like 2) [5].

Under conditions of oxidative or electrophilic stress,
Nrf2 degradation is inhibited through oxidant-dependent
modifications of specific cysteine residues within Keap1,
a protein that under quiescent conditions facilitates the
marking of Nrf2 for degradation via the proteasome [7].
It is now well established that stabilization and activation
of Nrf2 through pharmacological or genetic targeting
improves cellular redox homeostasis and survival through
transcriptional upregulation of antioxidant and detoxifying
genes [8]. In line with these studies, we recently showed
that activation of Nrf2 in hepatocytes afforded by genetic
deletion of Keap1 was able to reduce triglycerides accumula-
tion and ROS generation in mice subjected to experimental
models of NASH [9]. This former observation leads to the
generation of a double knockout mouse lacking simulta-
neously the receptor c-met and Keap1 specifically in hepato-
cytes to investigate the effects of Nrf2 overexpression in cells
displaying an impaired control of the redox functions. In fact,
the purpose of this study pointed towards uncovering a
bridge between the HGF/c-met axis and the Keap1/Nrf2 sys-
tem in the context of metabolic liver disturbances (schematic
overview in Suppl. Fig. 4 available online at https://doi.org/
10.1155/2017/3420286). The results emerging indicated that
overexpression of Nrf2 was able to suppress the levels of
liver steatosis and fibrosis in c-met-deficient hepatocytes to
the level of the control group, with a drastic reduction of tri-
glyceride (TG) accumulation and ROS production. Consid-
ering that preliminary clinical data indicate a reduction of
c-met expression in patients diagnosed with NASH, this
study provides further evidence for strategies for therapeutic
interventions in this field.

2. Materials and Methods

2.1. Animals and Experimental Model. Hepatocyte-specific
Keap1 knockout mice were generated by breeding Keap1-
floxed mice with albumin-Cre (Alb-Cre) C57BL/6 transgenic
mice as previously described [10]. Similarly, floxed wild type
(c-metfx/fx) and hepatocyte-specific conditional c-met knock-
out (c-metΔhepa) mice were generated under control of a
postnatal activated albumin promoter (C57BL/6), as indi-
cated elsewhere [11]. These two strains were then crossed
to generate double mutant c-met/Keap1 (met/Keap1Δhepa)
harboring the same genetic background. Male age-matched
wild type (c-metfx/fx) and littermate hepatocyte-specific con-
ditional c-met-knockout (c-metΔhepa) were then cohoused

with genetically derived met/Keap1Δhepa in 12-hour light/
dark cycle and allowed to free food and water. At the age of
8–10 weeks, the animals were split in three groups (N = 5)
and fed a chow and MCD diet (E15652-94, ssniff Spezialdiä-
ten GmbH), respectively, for a period of 4 weeks. Food intake
and body weights were measured weekly, and all animals
consumed similar amounts of diets. At the end of the indi-
cated time point, blood and liver samples were collected,
fixed in formalin, and cryopreserved for biochemical and his-
tological analyses. All animal experiments were carried out in
accordance with the regulations of the German legal require-
ments on laboratory animal care (LANUV).

2.2. Histological and Morphological Analyses. After explant,
liver tissues were fixed in formaldehyde-buffered solution
for 24 h and then embedded in paraffin. Blocks containing
preserved hepatic tissues were then cut into 5μm sections
and stained with hematoxylin and eosin (H&E) for micro-
scopic examination and morphological analyses. Similarly,
8μm thin liver sections were stained, upon deparaffinization,
with a Sirius red/picric acid (Sigma-Aldrich) solution for 1 h
as previously described [9]. Upon dehydration and mount-
ing, photomicrographs of stained sections were randomly
taken in a 200x magnification and positive areas were quan-
tified using the open source software ImageJ.

2.3. Serum and Liver Biochemical Measurements. Blood sam-
ples were collected and centrifuged in heparin-embedded
tubes, and serum transaminase levels (ALT/AST) were mea-
sured according to the standard procedures of the Central
Laboratory Facility of the University Hospital RWTH of
Aachen as index of liver damage. For the evaluation of intra-
hepatic triglyceride content, liver samples were homogenized
in a specific Tris buffer (10mM Tris, 2mM EDTA, 0.25M
sucrose, and pH 7.5) and successively processed according
to the manufacturer’s instructions of a commercial colori-
metric kit (10724600, Human Diagnostics). For biochemical
quantification of hepatic collagen deposition, 50mg of liver
samples were homogenized in 1ml of 6N HCl solution and
incubated o.n. at 110°C. Homogenates were then treated with
a chloramine-T solution and incubated with Ehrlich’s
reagent to measure hydroxyproline content by biochemical
photometric assay as indicated in previous publication [12].

2.4. RNA Isolation and qPCR Analysis. Total RNA from
hepatic tissue was isolated with peqGold RNAPure solution
(30–1020, PeqLab, VWR, Germany) according to the man-
ufacturer instructions. An amount of 500ng of isolated
RNA was transcribed into cDNA using the Omniscript
Reverse Transcription kit (205111, Qiagen). Quantitative
qPCR was performed by using a Real-time PCR System
7300 (Applied Biosystems) and Fast SYBR Green Master
Mix qPCR (Thermo Fisher Scientific). Relative gene expres-
sion was calculated using the 2−ΔΔCt quantification formula
normalizing each gene with the expression of the housekeep-
ing gene 18S (ribosomal subunit). The primers used in this
study are reported in Suppl. Table 1.

2.5. Western Blot Analyses. Total hepatic homogenates were
performed by lysing liver samples with an Ultra-Turrax
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homogenizer in Tris/HCl-lysis buffer containing inhibitors
of proteases and phosphatases as described before [9]. Fifty
to eighty micrograms of total lysates were denatured in
Laemmli sample buffer and separated in 10% and 12%
SDS-PAGE gel. Upon electrophoresis and transfer blotting,
Ponceau-Red staining was used to verify transfer efficiency
and equal protein loading. Membranes were then blocked
in blocking buffer and incubated overnight at 4°C with
primary antibodies (Suppl. Table 2). Therefore, secondary
antibodies were incubated on the membranes for one hour
at room temperature. The following secondary antibodies
have been used in this study: HRP-linked anti-rabbit immu-
noglobulin G (7074, Cell Signaling) and HRP-linked anti-
mouse immunoglobulin G (sc-2005, Santa Cruz). Enhanced
chemiluminescence (ECL) method was used to detect protein
bands and the software ImageJ was employed for densito-
metric analysis of band intensity.

2.6. FACS Analysis of Myeloid and Lymphoid Hepatic
Infiltrates. A nonparenchymal cell fraction from whole liver
extracts was isolated upon collagenase and mechanical
digestion followed by Percoll (GE Healthcare Life Sciences)
gradient centrifugation as previously described [5]. In par-
allel, blood samples were collected in EDTA-containing
tubes and treated with red blood cell lysis buffer (Pharm-
Lyse, BD Biosciences, Germany). Upon removal of red
bodies and centrifugation, immune cells were incubated
with fluorochrome-conjugated antibodies and characterized
according to two different panels, a myeloid panel: CD45-
BV510 (103138, BioLegend), 7AAD-PE-Cy5-YG (420404,
BioLegend), CD11b-BV711 (101242, BioLegend), F4/80-
APC (17-4801-82, eBiosciences), MHC2-Alexa700 (107622,
BioLegend), CD11c-PE-Cy7 (25-0114-81, eBiosciences),
and Ly6G-FITC (551460, BD Pharmingen) and a lymphoid
panel: CD45-BV510 (103138, BioLegend), 7AAD-PE-Cy5-YG
(420404, BioLegend), CD3-PE-Cy7 (25-0031-82, eBiosciences),
CD4-FITC (11-0041-85, eBiosciences), CD8-PerCpCy5.5
(126610, BioLegend), and NK1.1-BV711 (108745, BioLe-
gend). Labeled cells were then subjected to flow cytometry
using a BD Canto II (BD Biosciences) and relative cell num-
bers were analyzed using FlowJo software (Tree Star).

2.7. Immunohistochemistry and TUNEL Assay. For 4-HNE
immunostaining, paraffin-embedded sections were used.
Upon antigen retrieval in sodium citrate buffer, endogenous
peroxidases were inhibited through incubation with 3%
H2O2 in PBS buffer for 10 minutes. Blocking was performed
by incubating the sections with 5% goat serum in PBS buffer
for 1 hour. Sections were then incubated with primary
antibody in blocking solution overnight at 4°C and succes-
sively 1 hour at room temperature with secondary antibody
(anti-mouse biotinylated). Antigen was visualized using a
peroxidase substrate DAB kit (di-amino benzidine) (DAKO).
For immunofluorescence staining, hepatic 5μm cryosections
were fixed in 4% paraformaldehyde-buffered solution. Block-
ing was performed by incubating the sections with 0.2% BSA
in PBS buffer for 5 minutes. Then sections were incubated
with primary antibody for 1 h at RT in PBS buffer containing
1% mouse serum. After washing and further blocking, slides

were incubated with secondary antibody for one hour at RT.
DAPI (4′,6-diamidino-2-phenylindole) was used to visualize
cell nuclei. The secondary antibody used in this section is
anti-rat Alexa Fluor 594-conjugated antibody (Molecular
Probes/Invitrogen). Primary antibodies are indicated in
Suppl. Table 2.

For the detection of apoptotic cells, a TUNEL (terminal
deoxynucleotidyl transferase dUTP nick end labeling) assay
was performed by using the in situ cell death detection kit
(Fluorescein, 11684795910, Roche). Analysis of quantifica-
tion of positive cells was performed by using the open source
software ImageJ.

2.8. Statistical Analysis.All results are expressed as mean± SE
and represent data from 5 animals per group. All significant
p values were measured by one-way ANOVA test, followed
by Bonferrroni’s posttest for the comparison between groups.
A value of p < 0 05 was considered significant (∗p < 0 05,
∗∗p < 0 01).

3. Results

3.1. Nrf2 Overexpression in Hepatocytes Lacking c-met
Receptor Results in Reduced Triglycerides Accumulation
upon MCD Feeding. As previously described, deletion of
the exon 15 in c-metΔhepa mice operated by the cre-
recombinase under control of the albumin promoter resulted
in a defective intracellular activation of the receptor as indi-
cated by impaired phosphorylation of specific tyrosine resi-
dues (data not shown). The effective deletion of c-met exon
15 was confirmed by reverse transcriptase-PCR analysis
(Figure 1(a), upper graph). As expected, selective hepatic
deletion of Keap1 resulted in increased protein levels of the
transcription factor Nrf2 (Figure 1(a), lower graph). This
stabilization correlated with augmented transcriptional activ-
ity as assessed by expression of a well-known target gene
Nqo1 (Suppl. Fig. 1a). Displaying no differences of total body
weight, hepatocyte c-met deletion resulted in a slight reduc-
tion of the hepatic mass. Further, deletion of Keap1 induced
a moderate but significant increase of liver weight as
compared to control mice, under normal chow feeding,
only subtly depending on changes of the cell proliferation
rate (Suppl. Fig. 1b). However, microscopically, we could
not detect any obvious alteration as emerged from histo-
logical analysis of hematoxylin and eosin (H&E) staining
(Figure 1(b), left panels). After 4 weeks of MCD feeding,
met/Keap1Δhepa still displayed a significant increase of the
liver mass without significant alterations of body weight that
progressively declined in all groups (Figures 1(c) and 1(d)).
Interestingly, double knockouts showed decreased accu-
mulation of lipid droplets and a lower grade of steatosis
as confirmed by histological analyses of H&E staining
(Figure 1(b), right panels). Biochemical analyses revealed
that met/Keap1Δhepa accumulated about 50% less TG in the
liver as compared to other experimental groups
(Figure 1(e)). Accordingly, gene expression of the lipid
droplet associated protein, Plin2, showed an absolute
increase of steatohepatitis progression in c-metΔhepa mice.
In contrast, the same gene was significantly downregulated
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in met/Keap1Δhepa hepatocytes as compared with the single
mutants (Figure 2(a)). Furthermore, double knockout mice
displayed increased hepatic expression and phosphorylation
of AMPK and augmented expression of the transcription
factor PGC-1α compared to the other experimental groups
(Figures 2(b), 2(c), and 2(d)), indicating enhanced fatty
acid oxidation and mitochondrial biogenesis. These results
confirmed that Nrf2 overactivation is sufficient to enhance
hepatic lipid catabolism and mitochondrial functionality as
we recently illustrated in detail elsewhere [9].

3.2. Nrf2 Overexpression Dampens the Exacerbation of
Oxidative Stress Production in Hepatocytes Lacking c-met
Receptor upon MCD Feeding.Whereas under chow diet, oxi-
dative stress was barely detectable, and after 4 weeks of MCD

administration, hepatocyte-specific c-met deletion resulted
in increased production of oxidative stress compared to wild
type, as evidenced by immunostaining analysis of 4-HNE, a
bioproduct of lipid peroxidation (Figures 3(a), 3(b), 3(c),
3(d), and 3(e)). In contrast, overactivation of Nrf2 induced
by Keap1 deletion resulted in a strong decrease of 4-HNE-
positive cells at levels even lower than the control group
(c-metfx/fx) (Figure 3(f)). Of note, histological analyses
indicated that met/Keap1Δhepa livers not only showed a
decreased number of 4-HNE positive cells but the intensity
of the signal was also lower compared to c-metfx/fx and single
c-metΔhepa (Figures 3(d), 3(e), and 3(f)). More importantly,
as also observed in our previous microarray analyses [5],
c-met deletion resulted in derepression of pro-oxidant
enzymes directly responsible for the generation of cellular

Floxed c-met

Keap1

Nrf2

c-metfx/fx c-metΔhepa met/Keap1Δhepa

�훼-TUB

c-metΔ

c-
m

et
fx

/fx
c-

m
et

Δh
ep

a
m

et
/K

ea
p1

Δh
ep

a

Chow MCD

(a) (b)

0
0 w 1 w 2 w 3 w 4 w

10

20

30

c-metfx/fx

c-metΔhepa

met/Keap1Δhepa

g

Growth curve 

0.00
Chow MCD

0.04

0.06

0.08

c-metfx/fx

c-metΔhepa

met/Keap1Δhepa

⁎

Li
ve

r (
g)

/B
W

 (g
)

LW/BW

0.02

⁎

0

20

40

60

80

100

c-metfx/fx

c-metΔhepa

met/Keap1Δhepa

TG
 (m

g)
/li

ve
r (

g)

TG

⁎

Chow MCD

(c) (d) (e)

Figure 1: Genotyping of c-met gene performed on cDNA transcribed from hepatic RNA showing amplification of the floxed region of
the gene with and without cre-recombinase activation ((a), upper panel). Western blot panel for Keap1 and Nrf2 protein expression
analysis ((a), lower panels). Representative pictures of hematoxylin and eosin (H&E) staining on liver section of c-metfx/fx, c-metΔhepa, and
met/Keap1Δhepa mice after 4 weeks chow (left panels) and MCD (right panels) diet (b). Weekly growth curve of c-metfx/fx, c-metΔhepa, and
met/Keap1Δhepa mice during a 4-week course of MCD treatment. ∗Data are expressed as mean± SE, Student’s t-test with p < 0 05 (N = 5)
(c). Liver body weight ratio (d) and intrahepatic triglyceride content measurement (e) after 4-week chow and MCD diet feeding. ∗Data are
expressed as mean± SE, ANOVA test with p < 0 05 (N = 5).

4 Oxidative Medicine and Cellular Longevity



ROS, such as Cyp2e1, Cyp4a10, and the NADPH oxidase
NOX2 (Figures 4(a), 4(b), and 4(c)). Thus, hepatic induction
of these genes as well as the protein expression (Figures 4(g)
and 4(h)) was dramatically blunted by overexpression of
Nrf2 in met/Keap1Δhepa mice. These results seem to offer
further evidence for a role of HGF/c-met signaling in the
preservation of the cellular redox balance. Furthermore,
Nrf2 activation resulted in upregulation of gene expression
of enzymes involved in H2O2 and free radical scavenging,
such as catalase, thioredoxin-1, and the pentose phosphate
pathway intermediate enzyme 6-phosphogluconate dehy-
drogenase (PGD) (Figures 4(d), 4(e), and 4(f)).

3.3. Nrf2 Overexpression Drastically Reduces the Number of
Apoptotic Cells in Hepatocytes Lacking c-met Receptor upon
MCD Feeding. In association with increased ROS production,
TUNEL assay revealed that the number of apoptotic hepato-
cytes in c-metΔhepa livers was augmented as compared to the
other experimental groups (Figures 5(a), 5(b), 5(c), and
5(d)), as already observed in other experimental situations.
Concomitant Keap1 deletion in c-metΔhepa hepatocytes sig-
nificantly turned down programmed cell death to levels

comparable with the control group (Figure 5(d)) although no
significant differences in the serum transaminase levels were
detected (data not shown). As previously observed, Nrf2 acti-
vation correlated with a dramatic increase of the antiapoptotic
protein Bcl-2 (Figure 5(e)). Surprisingly, phosphorylation
levels of Akt were reduced in c-metΔhepa as well as met/
Keap1Δhepa hepatocytes, ruling out an involvement of this
pathway in Nrf2-mediated cell survival (Figure 5(e)). Interest-
ingly, met/Keap1Δhepa livers showed a significant increase of
phosphorylation of the JNKs—specifically JNK1—kinases
(Figures 5(e) and 5(f)) with no evident differences for other
MAPK kinases such as ERK1/2 (data not shown).

3.4. Hepatic Nrf2 Overexpression in Livers Lacking c-met
Receptor Decreases the Influx of Infiltrating Inflammatory
Cells upon MCD Feeding. FACS analysis performed on liver
lysates after 4 weeks of MCD treatment revealed that met/
Keap1Δhepa accumulate less proinflammatory neutrophils
compared to the other experimental groups, as indicated by
the number of Ly6G+ cells (Figures 6(a), 6(b), 6(c), and
6(d)). Interestingly, the number of circulating neutrophils
was also significantly reduced in these animals (Suppl. Fig.
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3b). Similarly, the number of activatedmacrophages, measured
as F4/80+/CD11b+ cells, was dramatically reduced in the livers
of met/Keap1Δhepa compared to the other groups. In line with
these findings, hepatic gene expression of proinflammatory
cytokines, Ccl-2 and TNF-α, was dramatically downregulated
in met/Keap1Δhepa mice (Suppl. Fig. 1c and data not shown).
These results were confirmed by immunofluorescence analyses
of CD11b-positive cells (Figures 7(a), 7(b), and 7(c)) and F4/
80-positive macrophages (Figures 7(d), 7(e), and 7(f)) sup-
ported by morphometric quantifications (Figures 7(g) and
7(h)). Importantly, these histological pictures pointed out
the dramatic reduction of the number of inflammatory cell
clusters in met/Keap1Δhepa livers after MCD administration.
Surprisingly, met/Keap1Δhepa mice showed a significant
increase of CD4+ lymphocytes infiltrating into the liver
whereas no changes in the CD8+ lymphocytes number were
observed (Suppl. Fig. 2 and Suppl. Fig. 3a).

3.5. Nrf2 Overexpression in Hepatocytes Attenuates the
Enhanced Development of Fibrosis Resulting from
Hepatocyte-Specific c-met Deletion upon MCD Feeding. As
also described in our previous report [5], c-met deletion in

hepatocytes accelerates appearance and progression of liver
fibrosis in several models of chronic liver injury as well as by
feeding a MCD diet. Single c-met knockout livers displayed
an increased deposition of collagen fibers as observed in the
Sirius red staining (Figures 8(a), 8(b), and 8(c)) and confirmed
by related morphometric analysis (Figure 8(d)). This observa-
tion was further confirmed by biochemical measurement of
intrahepatic hydroxyproline content indicating the highest
collagen accumulation in c-metΔhepa livers (Figure 8(e)). Inter-
estingly, fibrosis was strongly inhibited in the double mutants
where Nrf2 was overactivated. Thus, Sirius red staining and
hydroxyproline content were suppressed to the levels of the
control group (Figures 8(a), 8(b), 8(c), 8(d), and 8(e)). Concor-
dantly, deletion of Keap1 in hepatocytes lacking c-met also
restored the hepatic expression of profibrotic mediators as
Col1A1 and TGF-β1 to control levels (Figures 8(f) and 8(g)).

4. Discussion

The generation of reactive oxidative species associated with
mitochondrial alterations and the activation of pro-oxidant
enzymes still represents an unsolved issue in the context of
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nonalcoholic steatohepatitis in which it seems to play a piv-
otal role in the exacerbation of liver injury, inflammation,
and repair. Although the mitochondria represent the major
source of free radicals already under physiological condi-
tions, other cell compartments such as microsomes and lyso-
somes participate in ROS production via oxidative reactions
under stressful conditions. Increased activity of the cyto-
chrome p450, particularly of the isoform Cyp2e1, has
emerged as an important free radical generator during NASH
[13]. Indeed, a direct association between Cyp2e1 and
Cyp4a10 enzyme expression and the initiation of lipid per-
oxidation during the progression of NASH has been
clearly identified [14]. Moreover, a critical role for
NADPH oxidases (such as NOX2) in the development of
features related to aggravation of NASH and, in general,
of the metabolic syndrome has been convincingly demon-
strated by Garcia-Ruiz et al. [15]. Following these consid-
erations, many experimental and clinical studies based on
scavenging or buffering of free radicals have begun to
show promising results in a more relevant therapeutic
context [16, 17]. It is worth to mention that in the context
of NASH several therapeutic options targeting oxidative
stress via Nrf2 activation already achieved preclinical and
clinical phase trials [18]. In particular, beyond classical
natural antioxidant such as sulforaphane or resveratrol,
the synthetic electrophilic compound oltipraz (dithio-
lethione) revealed promising effects in the treatment of
liver metabolic diseases and is currently being analyzed
in a phase II clinical trial.

The role of HGF/c-met axis in liver pathophysiology
has been extensively investigated with a particular light
on aspects regarding liver regeneration, hepatocyte prolif-
eration, and apoptosis [19]. Moreover, activation of this
signaling pathway has been repeatedly reported to exert
hepatoprotective effects against experimental conditions
characterized by oxidative stress [20, 21]. In isolated hepato-
cytes, Clavijo-Cornejo et al. showed that HGF exerts a

biphasic regulation of the NADPH oxidases with a short-
time effect inducing the activation of the enzyme and a
long-time effect after which the persistence of a functional
HGF/c-met pathway results to be necessary for the suppres-
sion of the NADPH oxidases components in an Nrf2-
dependent manner [22]. In line with these findings, a recent
work from our group [5] demonstrated that c-met-deleted
hepatocytes displayed enhanced oxidative stress and
increased apoptotic cell death in association with overpro-
duction of superoxide anion in vivo. This led to enhanced
progression of hepatic inflammation and fibrosis. Recently,
Dominguez-Perez et al. showed that administration of HGF
reduces hepatocyte susceptibility to lipotoxicity through an
increase of antioxidant defenses such as ϒ-GCS and GSH
thereby attenuating ROS formation and damage [23]. The
generation of double mutant c-met/Keap1Δhepa mice further
demonstrated that re-establishing a functional antioxidant
activity completely reversed the accelerated pathological
conditions observed in single c-metΔhepa mice. In particular,
the reduction of oxidative stress was accompanied by a
decrease of the abovementioned pro-oxidant systems,
Cyp2e1, Cyp4a10, and NOX2 expression. Conversely,
expression of antioxidant cell weapons, such as catalase and
thioredoxin-1, in addition to the well-known activation of
the pentose phosphate pathway, was strongly upregulated.
It is interesting to note that the amelioration of the redox
balance occurred concomitantly with a reduced hepatic
accumulation of triglycerides related to the inhibition of
the LXR-dependent lipogenic program induced by Nrf2
as previously shown [9, 24]. These findings actually con-
solidate our former data set illustrating reduced TG accu-
mulation and oxidative stress in hepatocytes carrying a
genetic activation of Nrf2 in two experimental models of
diet-induced steatohepatitis [9]. Moreover, this aspect
coherently matches with the activation of the AMPK/
PGC-1α pathway observed in met/Keap1Δhepa hepatocytes.
Although a causal relation with Nrf2 activation remains
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poorly elucidated, Nrf2-dependent negative regulation of
the lipogenic gene SCD-1 could contribute to hepatic
AMPK activation as shown by Dobrzyn et al. [25]. Lastly,
it would be reasonable to connect AMPK activation with
maintenance of the NADPH production originating from
the pentose phosphate pathway as an antioxidant

mechanism in response to metabolic stress, as elegantly
proposed elsewhere [26].

In relation to this observation, TUNEL-positive hepato-
cytes in double knockouts were strongly diminished as com-
pared to those in control and single c-met knockouts.
Interestingly, independent of the degree of steatosis, the loss

c-
m
et
fx
/fx

MCD

c-
m

et
Δh

ep
a

MCD

m
et

/K
ea

p1
Δh

ep
a

MCD

(a) (b) (c)

0

10

20

30

40
⁎

Po
sit

iv
e c

el
ls/

O
F

TUNEL

c-metfx/fx c-metΔhepa met/Keap1Δhepa

(d)

pJNKs

pAKT

AKT

GAPDH

JNKs

BCL2

1
2

MCD

c-metfx/fx c-metΔhepa met/Keap1Δhepa

0
pjNK1/JNK1 pjNK2/JNK2

1

2

3

4

5
⁎

A
rb

itr
ar

y 
un

its

c-metfx/fx

c-metΔhepa

met/Keap1Δhepa

(e) (f)

Figure 5: TUNEL immunofluorescence of c-metfx/fx (a), c-metΔhepa (b), and met/Keap1Δhepa (c) liver sections (magnification 100x) after
4 weeks of MCD feeding, with relative morphometric analysis (d). ∗Data are expressed as mean± SE, ANOVA test with p < 0 05 (N = 5).
Hepatic protein expression levels from Western blot (e) and densitometric analysis of band intensities (f) performed on total liver lysates
of mice after 4w MCD administration.

9Oxidative Medicine and Cellular Longevity



F4/80

c-
m

et
fx

/fx

FSC-A

Ly
6G

CD
11

b
CD11c

CD
11

b

50K

0

 102

 103

 104

 105

0

0

 102

 102  103  104  105 0  103  104  105

 103

 104

 105

0

 102

 103

 104

 105

100K 150K

FSC-A, Ly6G+ subset
14.7% CD11c‒, CD11b+ subset

19.9%

F4/80+, CD11b subset
85.5%

F4/80‒, CD11b++ subset
8.23%

FSC-A, Ly6G‒ subset
77.6%

200K 250K

(a)

F4/80FSC-A

Ly
6G

CD
11

b

CD11c
CD

11
b

50K

0

 102

 103

 104

 105

0

0

 102

 102  103  104  105 0  103  104  105

 103

 104

 105

0

 102

 103

 104

 105

100K 150K

FSC-A, Ly6G+ subset
14.0%

CD11c‒, CD11b+ subset
7.02%

F4/80+, CD11b subset
87.8%

F4/80‒, CD11b++ subset
10.5%

FSC-A, Ly6G‒ subset
82.6%

200K 250K

c-
m

et
Δh

ep
a

(b)

F4/80FSC-A

Ly
6G

CD
11

b

CD11c

CD
11

b

50K

0

 102

 103

 104

 105

0

0

 102

 102  103  104  105 0  103  104  105

 103

 104

 105

0

 102

 103

 104

 105

100K 150K

FSC-A, Ly6G+ subset
7.45% CD11c‒, CD11b+ subset

4.17%

F4/80+, CD11b subset
78.3%

F4/80‒, CD11b++ subset
18.4%

FSC-A, Ly6G‒ subset
90.9%

200K 250K

m
et

/K
ea

p1
Δh

ep
a

(c)

Figure 6: Continued.

10 Oxidative Medicine and Cellular Longevity



of c-met impairs hepatocyte capacity to counteract oxidative
stress generated by fatty acid oxidation, thereby sensitizing
cells to apoptosis. This suggests that reducing oxidative stress
via Nrf2 activation might represent a key step in the protec-
tion from programmed cell death as we already observed in
hepatocyte-specific Keap1 knockout mice [10]. Curiously,
in the present work, cell protection was not associated with
enhanced activation of the PI3K/AKT survival pathway.
Thus, a significant increase of the stress-activated JNK phos-
phorylation was observed. Although the importance of this
point results unclear, JNKs have been recently shown to pro-
mote nuclear Nrf2 activation [27]. Moreover, it might be rel-
evant to underline that liver size was not significantly affected
by administration ofMCD diet in all the experimental groups
and the double knockouts already display hepatomegaly
under normal conditions. Analyses of immunofluorescence
for the proliferation marker Ki67 indicated that hepatocyte
proliferation seems to contribute only minimally to this phe-
notype. Thus, we reasonably believe that under normal chow
conditions hepatomegaly might be the result of a synergistic
effect of proliferation and cellular hypertrophy. Upon MCD
feeding, a compensative proliferation in response to liver
injury and hepatocyte cell death is commonly activated. Sin-
gle hepatocyte-specific c-met deletion constantly results in

diminished proliferation rate being partly responsible for
the impaired tissue repair as previously reported. Genetic
Nrf2 overactivation does not seem to have an impact on the
proliferation rate but the extent of cell death is indeed dra-
matically reduced. Therefore, in conditions of metabolic
stress, the increase in liver/body weight ratio observed in
double knockouts results to be maintained through reduced
cell death and increased cell functionality (hypertrophy).

In line with these findings, simultaneous deletion of c-
met and Keap1 resulted in a dramatic decrease of infiltrating
neutrophils (Ly6G+) and inflammatory monocytes (CD11b+/
F4/80+). This indicates a modulation of the immune response
possibly driven by reduced liver injury and through the
negative modulation of specific inflammatory mediators.
Although the reduction of neutrophils might be beneficial
in the context of NASH in terms of a decreased MPO release
[28], on the other hand, further studies are required in order
to identify the phenotype of monocyte subpopulations since
the cell polarization might differently influence the progres-
sion of the disease. In contrast, livers of c-met/Keap1Δhepa

mice display a significant increase of infiltrating CD3+ lym-
phocytes, characterized by a predominant CD4+ subtype.
These findings seem to be consistent with a recent study
showing that, in the context of NASH, CD4+ lymphocytes
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Figure 6: Representative gating strategy from flow cytometry analysis of intrahepatic neutrophils and monocyte/macrophage populations
performed on total liver lysates of c-metfx/fx (a), c-metΔhepa (b), and met/Keap1Δhepa (c) after 4 weeks of MCD feeding. Neutrophils
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F4/80+. Quantification of the gated populations reported on histogram (d, f). (e) ∗∗p values < 0 01. ∗Data are expressed as mean± SE,
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seem to be more susceptible to fatty acid-induced ROS cyto-
toxicity [29]. Consequently, a reduction of CD4+ population
results to be deleterious in the progression of fibrosis. This
aspect is going to emerge as a reproducible variable in several
experimental conditions associated with hepatic Nrf2 over-
expression. Further investigations are currently in progress
in order to shed light on the nature and functions of this
hepatic infiltrate.

Finally, loss of c-met in hepatocytes was previously
shown to accelerate the onset of fibrosis not only in several
experimental murine models [30] but also in NASH [5],
through multiple mechanisms involving increased hepato-
cyte cell death, altered release of inflammatory mediators,
oxidative stress, and cell proliferation. However, production
of ROS remains a central player in the pathogenesis of liver
fibrosis even if the causal relation in the context of cell
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death and repair is still an argument of intense investiga-
tion [31]. Curiously, whereas overexpression of Nrf2 in
c-met/Keap1Δhepa resulted in less TG accumulation, less
oxidative stress, and reduced number of inflammatory cells
as compared to controls and single knockouts, the degree
of fibrosis in these mice was only moderately dampened
to the degree of the control group. These data indicate
that genetic enhancement of Nrf2 signaling is sufficient
to repress MCD-dependent oxidative stress and cell dam-
age but the efficacy against fibrosis seems to be restricted
to a limited spectrum of transcriptional activation. To
this end, identification of immune mediators directly reg-
ulated through Nrf2 transcriptional activity could shed
light on the dark side of chronic overexpression of this
transcription factor.

5. Conclusion

The results reported in this work offer further evidence for
Nrf2-mediated cytoprotection (partly illustrated also in
conference data set [32]). They pinpoint a key role for

HGF/c-met signaling in the regulation of redox homeostasis.
Actually, genetic Nrf2 overexpression revealed therapeutic
effects in c-met-deficient hepatocytes by counteracting oxi-
dative stress thereby attenuating the disease progression.
This work highlights critical aspects to be considered for
the development of novel therapeutic strategies in the man-
agement of NASH.
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Glucocorticoid (GC) production is physiologically regulated through a negative feedback loop mediated by the GC, which appear
disrupted in several pathological conditions. The inability to perform negative feedback of the hypothalamus-pituitary-adrenal
(HPA) axis in several diseases is associated with an overproduction of reactive oxygen species (ROS); however, nothing is
known about the effects of ROS on the functionality of the HPA axis during homeostasis. This study analyzed the putative
impact of antioxidants on the HPA axis activity and GC-mediated negative feedback upon the HPA cascade. Male Wistar rats
were orally treated with N-acetylcysteine (NAC) or vitamin E for 18 consecutive days. NAC-treated rats were then subjected to
a daily treatment with dexamethasone, which covered the last 5 days of the antioxidant therapy. We found that NAC and
vitamin E induced an increase in plasma corticosterone levels. NAC intensified MC2R and StAR expressions in the adrenal and
reduced GR and MR expressions in the pituitary. NAC also prevented the dexamethasone-induced reduction in plasma
corticosterone levels. Furthermore, NAC decreased HO-1 and Nrf2 expression in the pituitary. These findings show that
antioxidants induce hyperactivity of the HPA axis via upregulation of MC2R expression in the adrenal and downregulation of
GR and MR in the pituitary.

1. Introduction

Reactive oxygen species (ROS) are ions or small molecules
containing oxygen and an unpaired electron, and this free
electron confers high reactivity to oxygen. ROS production
in mammals is due to the activity of endogenous pro-oxidant
enzymes NADPH oxidase, xanthine oxidase, peroxisomes,
and cytochrome P-450. Their product is counterbalanced by
endogenous antioxidant enzymes including superoxide dis-
mutase, catalase, glutathione peroxidase, reduced glutathione,
and heme oxygenase- (HO-) 1 [1]. These antioxidant defense
systems are directly regulated by nuclear factor erythroid 2-
related factor 2 (Nrf2). Besides inducing the transcription of

endogenous antioxidant enzymes, Nrf2 affects the homeosta-
sis of ROS and reactive nitrogen species (RNS) through
regeneration of oxidized cofactors and proteins; synthesis of
reducing factors, as GSH and NADPH; and increasing redox
transport, including cysteine/glutamate transport by xCT
[2]. Redox imbalance is induced by disequilibrium between
the production and suppression of ROS. Furthermore, excess
of oxidative damage can be controlled by exogenous antioxi-
dants such as vitamins C and E, polyphenols, carotenes,
flavonoids, omega-3, and N-acetylcysteine (NAC) [3–5].
These exogenous antioxidants decrease the oxidative dam-
age through distinct mechanisms of action. For instance,
vitamin E, a nonenzymatic antioxidant, promotes a lipid
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peroxyl radical scavenger and maintains the integrity of
long-chain polyunsaturated fatty acids in the membrane
of cells [6, 7], while NAC, which is an acetylated cysteine
residue, stimulates glutathione synthesis and performs as a
scavenger of oxygen free radicals [8].

TheHPA axis is a neuroendocrine system regulated by the
circadian cycle [9, 10] and stress [11]. After being stimulated,
neurons of the paraventricular nucleus of the hypothalamus
release corticotropin-releasing hormone (CRH), which will
be transported by hypothalamic-pituitary portal circulation
and stimulate pituitary corticotroph cells to cleave proopio-
melanocortin (POMC) in adrenocorticotrophic hormone
(ACTH) [12]. ACTH is released into the bloodstream and acts
onmelanocortin receptor type 2 (MC2R), situated in the zona
fasciculata of adrenals, inducing an increase in expression
and/or activity of steroidogenic enzymes, including 11β-
hydroxysteroid dehydrogenase-type 1 (11β-HSD1) and
steroidogenic acute regulatory protein (StAR), and releasing
glucocorticoids to the bloodstream [13]. The basal activity of
the HPA axis is regulated by a negative feedback which is
mediated through activation of glucocorticoid receptor (GR)
and mineralocorticoid receptor (MR), located in the pituitary
and hypothalamus, by glucocorticoids [14, 15].

The HPA axis is the main neuroendocrine system that
regulates responses to stress. The production of high levels
of ROS into the glands that comprise the HPA axis is associ-
ated with the activation of a stress-response system in several
models of stress, including social isolation [16] and inflam-
matory and infectious diseases [17]. HPA axis hyperactivity
induced by redox imbalance may occur by a reduction in
negative feedback through a decrease in GR translocation to
the cellular nucleus in corticotroph cells of the pituitary [17].

Although the free radical theory and the oxidative dam-
age theory describe that accumulation of oxidative damage
in cellular macromolecules is immensely toxic, ROS products
by normal cell metabolism are vital to cell homeostasis main-
tenance, especially for its roles in immunocompetence and
activation of several signal transduction pathways [18, 19].
Indeed, the antioxidant therapy presents several side effects,
which is opposed to the anticipated properties of these sub-
stances [3]. Our hypothesis is that any imbalance in the redox
system alters the homeostasis of the HPA axis culminating in
its hyperactivation, and not just an increase in ROS produc-
tion as shown in several diseases. Here, we undertook this
study to evaluate the putative mechanism underlying the
antioxidant-induced hyperactivation of the HPA axis in
Wistar rats.

2. Materials and Methods

2.1. Animals and Treatments. Male Wistar rats (250–300 g)
were obtained from the Oswaldo Cruz Foundation breeding
colony and used in accordance with the guidelines of the
Committee on Use of Laboratory Animals of the Oswaldo
Cruz Foundation (CEUA-FIOCRUZ, license LW-23/11).
Rats were housed in groups of three in a temperature-,
humidity-, and light-controlled (12 h light : 12 h darkness
cycle) colony room. Rats were given ad libitum access to food
and water.

Twelve male rats were randomly assigned into 2 groups as
follows: control (n = 6) and treated with the antioxidant N-
acetyl L-cysteine (NAC) (n = 6). In another set of experi-
ments, twelvemale rats were randomly assigned into 2 groups
as follows: control (n = 6) and treated with the antioxidant
vitamin E (n = 6). In a third set of experiments, twenty male
rats were randomly divided into 4 experimental groups:
control (n = 5), treated with NAC (n = 5), treated with the
exogenous glucocorticoid dexamethasone (n = 5), and treated
with NAC (n = 5) plus dexamethasone. The rats were treated
with NAC (150mg/kg body weight) [20] or vitamin E (α-
tocopherol, 40mg/kg body weight) [21] by gavage once a
day, during 18 consecutive days. Control rats received an
equal volume of vehicle (sterile saline 0.9% and DMSO
0.1%, resp.). To analyze corticoid-induced negative
feedback sensitivity, a group of animals received dexa-
methasone (0.02mg/kg body weight, s.c.) daily, for 5
consecutive days [22], beginning 13 days after the starting
of antioxidant treatment.

2.2. Corticosterone Quantification. Animals were euthanized
in a CO2 chamber, during the nadir (08:00 h) of the circadian
rhythm as described previously [23], and the blood was
immediately collected from the abdominal aorta with hepa-
rinized (400U/ml) saline. Plasma was obtained after sample
centrifugation for 10min at 1000×g and stored at −20°C
until use. Plasma corticosterone levels were detected by
radioimmunoassay (RIA) following manufacturer’s guide-
lines (MP Biomedicals, Solon, OH, USA). Briefly, this is a
competitive assay between the hormone presented in the
sample and the hormone labelled with radioisotope (I125) to
bind to a specific antibody. Thereby, an increase in amount
of the hormone in the sample leads to a corresponding
decrease in the fraction of labelled hormone bound to the
antibody. Radioactivity quantification was carried out using
a gamma counter (ICN Isomedic 4/600 HE; ICN Biomedicals
Inc., Costa Mesa, CA, USA), and the amount of corticoste-
rone in samples was calculated by interpolation to a standard
curve performed in parallel.

2.3. Immunohistochemistry Staining. The adrenals and pitui-
tary glands were immediately dissected after perfusion of rats
with 0.9% sterile saline. Adrenals were quickly removed from
the rats and cleaned of surrounding fat, while the pituitary
glands were gently collected after the decapitation of rats
and removal of the brain [24, 25]. Instantly after dissection,
the glands were fixed in Milloning and embedded in paraffin.
Paraffin-embedded sections of 3μm of rat pituitary and adre-
nals were deparaffinized with xylene, rehydrated by a graded
series of ethanol washes, and boiled in sodium citrate buffer
(10mM, pH6.0) at the temperature of 95°C for 15min to
enhance antigen retrieval. Tissue sections were incubated
with 3% H2O2 in methanol for 20min to block endogenous
peroxidases. To prevent nonspecific binding, sections were
then incubated for 3 h with a solution containing 2.5% bovine
serum albumin (BSA), 8% fetal bovine serum (FBS), and 1%
of nonfat milk dissolved in Tris-buffered saline enriched with
0.1% Tween 20 (TBST). After blocking, sections were incu-
bated with primary specific antibody (polyclonal rabbit
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anti-rat StAR (1 : 50), GR (1 : 250), or MC2R (1 : 250) and
polyclonal goat anti-rat MR (1 : 50), HO-1 (1 : 100), or Nrf2
(1 : 100) from Santa Cruz Biotechnology, Santa Cruz, CA,
USA) diluted in TBST with 1% BSA overnight at 4°C.

Then, primary antibody binding was detected after incu-
bating sections with a horseradish peroxidase conjugated-
secondary antibody (polyclonal anti-goat or anti-rabbit IgG
HRP, R&D System, Minneapolis, MN, USA) for 2.5 h,
followed by a 20min exposure to the HRP substrate 3-
amino-9-ethylcarbazole (AEC). Sections were washed with
TBST between all steps and weakly counterstained with
hematoxylin for the easy identification of tissue structures.
Finally, tissue sections were mounted in aqueous medium
and images digitized via scanner microscope (Pannoramic
SCAN150, 3D Histech, Budapest, Hungary) using a 20x
objective lens. Images obtained from the anterior pituitary
or zona fasciculata of the adrenal cortex were analyzed with
Image Pro Plus 6.2 software (Media Cybernetics). Briefly,
red to brown colored pixels associated with a positive immu-
nohistochemistry stain were selected in a model image and
applied to the remaining fields. The number of positive pixels
was divided by the field area and expressed as pixels/μm2.

2.4. Chemicals. Sodium citrate, AEC, NAC, vitamin E, dexa-
methasone, and hydrogen peroxide were purchased from
Sigma Chemical Co. (Saint Louis, MO, USA); ethanol, meth-
anol, and xylene from Merck (Rio de Janeiro, RJ, Brazil); and
sodium heparin from Roche (São Paulo, SP, Brazil). All
solutions were freshly prepared immediately before use.

2.5. Statistical Analysis. The data are reported as the mean
± standard error of the mean (SEM). All data were evaluated
to ensure normal distribution. The assay of corticoid-
induced negative feedback sensitivity was analyzed by one-
way ANOVA followed by a Student-Newman-Keuls post
hoc test, while all the other results were statistically analyzed
by unpaired t-test, with Graphpad Prism 5.0. Probability
values (p) of 0.05 or less were considered significant.

3. Results

3.1. Antioxidant Therapy Increases Plasma Corticosterone
Levels in Wistar Rats. Initially, we investigated the impact of
antioxidant therapy on circulating corticosterone levels. We
observed that rats treated with either NAC (Figure 1(a)) or
vitamin E (Figure 1(b)), for 18 consecutive days, presented a
significant increase in plasma corticosterone levels compared
to controls (mean± SEM, n = 6; p < 0 01; two-tailed t-test).

3.2. NAC Induces Adrenal Hypertrophy and Upregulation of
ACTH Receptor and StAR in the Adrenal Cortex of Wistar
Rats. We hypothesized that the high corticosterone levels
were due to increased stimulation of the adrenal cortex. We
noted that NAC induced adrenal hypertrophy, as evidenced
by the ratio between adrenal weight (mg) and body weight
(g). The values of adrenal/body weight ratio increased from
0.066± 0.003 in control rats to 0.095± 0.008 (mean± SEM,
n = 6; p < 0 01; two-tailed t-test) in NAC-treated rats. The
absolute adrenal weights were 24± 1.8mg and 30± 1.5mg
(mean± SEM, n = 6; p < 0 05; two-tailed t-test) to control
and NAC-treated rats, respectively. In parallel, we showed
that treatment with NAC increased the expression of ACTH
receptor (MC2R) (Figures 2(b) and 2(e)) and steroidogenic
enzyme StAR (Figures 2(d) and 2(f)) in the zona fasciculata
of the adrenal cortex compared to that of control rats
(Figures 2(a) and 2(c), resp.) (mean± SEM, n = 6; p < 0 05
and p < 0 01, resp.; two-tailed t-test). The expression of
MC2R is located in the membrane and cytoplasm of cells
(Figures 2(a) and 2(b)), while StAR is expressed only in the
cytoplasm of the cells (Figures 2(c) and 2(d)).

3.3. NAC Decreases Nrf2 and HO-1 Expression in the Anterior
Pituitary of Wistar Rats. Our next approach was to deter-
mine if the treatment with NAC could interfere with the
expression of antioxidant arsenal in the anterior pituitary,
an important component of the HPA axis which regulates
corticosterone production by adrenals. Treatment with NAC
reduces the expression of transcription factor Nrf2
(Figures 3(b) and 3(e)) and the antioxidant enzyme HO-1
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Figure 1: Antioxidant treatment increases circulating levels of plasma corticosterone in Wistar rats. (a) NAC (150mg/kg, oral route)
and (b) vitamin E (40mg/kg, oral route) were given daily for 18 consecutive days. Untreated animals received an equal amount of
vehicle (saline 0.9% or DMSO 0.1%). Data are expressed as the mean± SEM of 6 animals. This result is a representative of two
independent assays. ∗∗p < 0 01.
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(Figures 3(d) and 3(f)) in the anterior pituitary compared to
that of control rats (Figures 3(a) and 3(c), resp.) (mean± SEM,
n = 6; p < 0 05 and p < 0 05, resp.; two-tailed t-test). The
expression of Nrf2 is located in the nucleus and cytoplasm
of cells (Figures 3(a) and 3(b)), while HO-1 is expressed only
in the cytoplasm of the cells (Figures 3(c) and 3(d)).

3.4. NAC Reduces Glucocorticoid Receptor Expression in the
Anterior Pituitary and Impaired Negative Feedback of the
HPA Axis in Wistar Rats. High levels of plasma corticoste-
rone induced by antioxidants can also be associated with a
failure in the negative feedback of the HPA axis. Treatment
with NAC decreases the expression of both glucocorticoid

receptors GR (Figures 4(b) and 4(e)) and MR (Figures 4(d)
and 4(f)) in the anterior pituitary compared to that of control
rats (Figures 4(a) and 4(c), resp.) (mean± SEM, n = 6;
p < 0 05 and p < 0 001, resp.; two-tailed t-test). The expres-
sions of GR (Figures 4(a) and 4(b)) and MR (Figures 4(c)
and 4(d)) are located in the nucleus and cytoplasm of cells.

Thus, we treated rats with a low dose of dexamethasone
(0.02mg/kg, s.c.) and analyzed the circulating levels of corti-
costerone. We showed that dexamethasone induced a strong
negative feedback response and reduced the plasma cortico-
sterone levels in control rats (mean±SEM, n = 6; p < 0 05;
one-way ANOVA followed by a Student-Newman-Keuls
post hoc test t-test); however, although treatment with
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Figure 2: NAC induces an upregulation of MC2R and StAR expression in the zona fasciculata of the adrenal of Wistar rats. NAC (150mg/kg,
oral route) was given daily for 18 consecutive days and the analysis was made by immunohistochemistry. The panels show representative
photomicrographs of adrenal expression of MC2R in the (a) control and (b) NAC-treated rats and StAR in (c) control and (d) NAC-
treated rats. The quantification of pixels associated with MC2R and StAR expression is shown in (e) and (f), respectively. Inserts represent
negative controls. Yellow arrows indicate immunolabelling of MC2R (a, b) and StAR (c, d) in the zona fasciculata of adrenals. Data are
expressed as the mean± SEM of 6 animals. This result is a representative of two independent assays. ∗p < 0 05 and ∗∗p < 0 01.
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NAC induced an increase in plasma corticosterone levels
compared to controls (mean± SEM, n = 6; p < 0 01; one-
way ANOVA followed by a Student-Newman-Keuls post
hoc test), dexamethasone did not alter the levels of
corticosterone in NAC-treated rats (Figure 5).

4. Discussion

This study investigated the role of antioxidants on the
modulation of endogenous glucocorticoid levels. We found
that treatment with antioxidants either NAC or vitamin E
increases the plasma levels of corticosterone in rats, in asso-
ciation with an overexpression of ACTH receptor and the

steroidogenic enzyme StAR in the adrenal glands. NAC also
induces a drop in HO-1 and Nrf2 expression in the pituitary
and blocked the ability of dexamethasone to perform nega-
tive feedback of the HPA axis by decreasing the expression
of glucocorticoid receptors in the pituitary. Our findings
suggest that antioxidants cause a hyperactivation of the
HPA axis with a clear dependency of upregulation of ACTH
receptor in adrenals and downregulation of glucocorticoid
receptors in the pituitary.

In this study, we showed that both NAC and vitamin E
increase circulating levels of corticosterone in rats. NAC
and vitamin E are antioxidants that act through distinct
mechanisms of action. While NAC provides cysteine, which
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Figure 3: NAC reduces Nrf2 and HO-1 expression in the anterior pituitary of Wistar rats. NAC (150mg/kg, oral route) was given daily for 18
consecutive days and analysis was made by immunohistochemistry. The panels show representative photomicrographs of pituitary
expression of Nrf2 in (a) control and (b) NAC-treated rats and HO-1 in (c) control and (d) NAC-treated rats. The quantification of pixels
associated with Nrf2 and HO-1 expression is shown in (e) and (f), respectively. Inserts represent negative controls. Yellow arrows indicate
immunolabelling of Nrf2 (a, b) and HO-1 (c, d) in the anterior pituitary. Data are expressed as the mean± SEM of 6 animals. This result
is a representative of two independent assays. ∗p < 0 05.
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is a precursor for reduced glutathione production, and scav-
enges oxidants directly, including hydroxyl radical, −OH, and
hypochlorous acid [8]; vitamin E is a peroxyl radical scaven-
ger and due to its lipid solubility plays an important role in
maintaining integrity of long-chain polyunsaturated fatty
acids in the membranes of cells [6, 7]. The fact that
prolonged treatment with two antioxidants with different
mechanisms of action can increase circulating levels of corti-
costerone indicates that this is not an epiphenomenon, but
suggests that inhibition of physiological levels of ROS in the
HPA axis is responsible for its hyperactivity.

The HPA axis is the main neuroendocrine system that
regulates responses to stress [8]. It is well known that the pro-
duction of high levels of ROS into the glands that comprise

the HPA axis is associated with the activation of a stress-
response system [13, 14]. Therewith, antioxidant treatment
reduces corticosterone levels in several models of diseases,
including brain oxidative stress induced by lipopolysaccha-
ride [26]. However, although accumulation of oxidative
damage in cellular macromolecules is immensely toxic, ROS
products by normal cellmetabolism are vital to cell homeosta-
sis maintenance [15, 16]. Our hypothesis is that physiological
levels of ROS have a fundamental role in maintaining the
homeostasis of the HPA axis. In fact, treatment with NAC in
normal rats effectively reduced ROS levels in chondrocytes
and Lin−CD45+AnV− marrow cells [27], suggesting that in
ourmodel, the antioxidant therapy probably reduces intracel-
lular ROS content in the adrenal and pituitary glands.
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Figure 4: NAC decreases GR and MR expression in the anterior pituitary of Wistar rats. NAC (150mg/kg, oral route) was given daily for 18
consecutive days and analysis was made by immunohistochemistry. The panels show representative photomicrographs of pituitary
expression of GR in (a) control and (b) NAC-treated rats and MR in (c) control and (d) NAC-treated rats. The quantification of pixels
associated with GR and MR expression is shown in (e) and (f), respectively. Inserts represent negative controls. Yellow arrows indicate
immunolabelling of GR (a, b) and MR (c, d) in the anterior pituitary. Data are expressed as the mean± SEM of 6 animals. This result is a
representative of two independent assays. ∗p < 0 05 and ∗∗∗p < 0 001.
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Thereby, we strongly suggest that any imbalance in the redox
system in glands which comprise the HPA axis culminates in
its hyperactivation.

In an attempt to elucidate how antioxidants induce the
production of glucocorticoids by the HPA axis, we analyzed
the expression of adrenal MC2R. Prolonged treatment with
NAC increases adrenal MC2R expression. This higher adre-
nal MC2R expression after treatment can explain, at least
partially, the capacity of NAC to increase circulating gluco-
corticoid levels. Increased expression of MC2R may lead to
high activation of this receptor by ACTH and induction of
the transcription of several key genes of enzymes involved
in steroidogenesis, including StAR [28]. In fact, we showed
that NAC induces an upregulation in the expression of StAR
into the adrenal glands. StAR rapidly transports cholesterol
to the inner mitochondrial membrane, where the conversion
of this steroid precursor into pregnenolone, a precursor of
steroid hormones, occurs [29]. This metabolic step is crucial
to rapid glucocorticoid production into the adrenals in a
stress stimulus, once steroidogenic cells store very little
amount of glucocorticoids [10].

Although the increased expression of MC2R and StAR
alone may explain the increase in glucocorticoids levels,
other molecular alterations can also participate in the HPA
axis hyperactivity noted after antioxidant treatment. Once
the HPA axis is finely regulated by a negative feedback
response on the hypothalamus and/or pituitary that normal-
izes circulating corticosterone levels, we hypothesized that
antioxidants could induce a defect in the negative feedback
regulation in the HPA axis. We observed that treatment with
NAC downregulated the expression of Nrf2 in the anterior
pituitary gland of rats. Nrf2 is a transcription factor that reg-
ulates expression of several antioxidant enzymes, including
superoxide dismutase, catalase, glutathione peroxidase, and
HO-1 [30]. Although NAC can induce upregulation of Nrf2
expression in phosgene-induced acute lung injury [31], our
data is in accordance with others which described that

NAC inhibited Nrf2 expression in lymphoid malignant cell
lines stimulated with honokiol [32], suggesting that the effect
of antioxidant NAC on Nrf2 expression depends on the cell
type and condition of the study. Furthermore, we noted that
NAC also decreased the expression of HO-1 in the anterior
pituitary of rats. The drop in HO-1 levels after treatment with
NAC indicates that the low content of Nrf2 is associated with
a reduced ability of this transcription factor to induce produc-
tion of antioxidant enzymes by pituitary cells. We suppose
that the downregulation of Nrf2 expression is a strategy of
the organism to maintain homeostasis in rats treated for
several days with NAC. In fact, it has been shown that exoge-
nous antioxidants can reduce the expression and/or activity
of endogenous antioxidant enzymes [33, 34]. These data indi-
cate that the pituitary as well as adrenals is also a direct target
of antioxidant drug effects.

Our next approach was to investigate the sensitivity of the
HPA axis to negative feedback induced by synthetic gluco-
corticoid in NAC-treated rats. Dexamethasone decreased
plasma corticosterone levels in control rats; however, it did
not alter circulating glucocorticoid amount in rats treated
with NAC, showing that antioxidants abolish the ability of
glucocorticoids to perform negative feedback of the HPA
axis. NAC treatment also decreased expression of both GR
and MR in the pituitary of rats, indicating that a reduction
in glucocorticoid receptor expression in the pituitary of rats
can explain the inability of dexamethasone to induce negative
feedback of the HPA axis in NAC-treated animals. Our data
confirmed the capacity of NAC in inhibiting GR expression,
once NAC decreases GR protein levels in the hypothalamus
of mice fed with a high-cholesterol diet [35].

Currently, many people consume dietary supplementa-
tion with antioxidants to combat diseases associated with
aging [36]; however, several clinical trials testing benefits
and harms of antioxidant supplements found that antioxi-
dants have been unable to demonstrate beneficial effects
and pointed that they seemed to cause an increase in all-
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cause mortality [37–40]. Once antioxidants induce a HPA
axis dysfunction with concomitant increased levels of circu-
lating glucocorticoids, this food supplement is shown as a
risk to human health. This occurs because the hyperactivation
of the HPA axis, and consequently the glucocorticoid signal-
ing system, may alter the epigenetic landscape and influence
genomic regulation and function conducting to the develop-
ment of aging-related diseases [41]. Some harmful effects of
hypercorticoidism, which can culminate with aging-related
diseases, are deleterious effects on the central nervous system
(CNS), including neuroinflammatory environment, loss of
neuronal function, and apoptosis of neuronal cells, causing
a decrease in hippocampal neurogenesis and an increase in
neuroinflammation and neurodegeneration [42–44]. These
deleterious effects of hypercorticoidism on the CNS can lead
to the development of a variety of progressive neurodegener-
ative and psychiatric diseases, including schizophrenia,
dementia, depression, Huntington’s disease, and Alzheimer’s
disease [45–49]. Although we showed that antioxidants can
induce high production of glucocorticoids, it is well known
that chronic stress promotes redox imbalance throughout
the body [50], as in blood of humans [51–53], such as in sev-
eral structures of the CNS of rats including the frontal cortex,
hypothalamus, and hippocampus [54]. These data suggest
that chronic stress accelerates cellular aging through inducing
increased levels of ROS [50]. These observations are conflict-
ing with ours, once we show that antioxidants decreased the
expression of Nrf2 and HO-1. However, the induction of
ROS production is not the only mechanism related to
stress-induced cellular aging. Chronic stress reduces brain-
derived neurotrophic factor (BDNF) in the hippocampus
and prefrontal cortex and increases neuroinflammation,
an alteration noted in the formation of depression [44].
Furthermore, chronic stress induces prolonged periods of
glutamate release in the hippocampus and decreases the
ability to clear extracellular glutamate. These alterations
in the glutamate transmission may be related to the impair-
ments in the spatial and contextual memory performance
and stress-associated psychiatric disorders, including mood
and anxiety [55].

In addition, hypercorticoidism can also increase sus-
ceptibility to cancer [56], one of the most important
aging-related diseases. Although ROS can cause oncogenic
mutations and activate oncogenic pathways [57], dietary
supplementation with antioxidants promotes increased
incidence and death from lung and prostate cancer [58].
Furthermore, antioxidants induce melanoma progression
by promoting metastasis [59]. One possibility is that the
high incidence of cancer in people which use dietary
supplementation with antioxidants can be related to
hyperactivation of the HPA axis.

In summary, our results indicate that antioxidant therapy
can induce an activation of the HPA axis, with an increase in
the levels of systemic glucocorticoids by upregulating ACTH
receptor in the adrenal and downregulating glucocorticoid
receptors in the pituitary. Thereby, indiscriminate use of
antioxidant supplements can be a risk to develop several
morbidities related to persistent hypercorticoidism, as
observed in Cushing’s disease.
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Wistar rats were randomly divided into groups of varying iodide intake: normal iodide; 10 times high iodide; and 100 times high
iodide onDays 7, 14, and 28. Insignificant changeswere observed in thyroid hormone levels (𝑝 > 0.05). Urinary iodine concentration
and iodine content in the thyroid glands increased after high consumption of iodide from NI to 100HI (𝑝 < 0.05). The urinary
iodine concentration of the 100HI group on Days 7, 14, and 28 was 60–80 times that of the NI group.Themitochondrial superoxide
production and expressions of Nrf2, Srx, and Prx 3 all significantly increased, while Keap 1 significantly decreased in the 100 HI
group when compared to the NI or 10HI group on Days 7, 14, and 28 (𝑝 < 0.05). Immunofluorescence staining results showed that
Nrf2 was localized in the cytoplasm in NI group. Although Nrf2 was detected in both cytoplasm and nucleus in 10HI and 100HI
groups, a stronger positive staining was found in the nucleus. We conclude that the activation of the Nrf2-Keap 1 antioxidative
defense mechanism may play a crucial role in protecting thyroid function from short-term iodide excess in rats.

1. Introduction

Iodine being a critical constituent of thyroid hormones is
essential for normal growth and development in all verte-
brates [1, 2]. During thyroid hormone synthesis, there is
a constant production of reactive oxygen species (ROS),
especially hydrogen peroxide (H2O2), which is subsequently
utilized for the oxidation of iodide [3]. Although the basal
level of ROS production is important for maintaining thy-
roid hormone biosynthesis, iodide excess may increase the
production of ROS in thyrocytes [4, 5]. Higher amounts of
ROS can cause oxidative stress by damaging the cellular com-
ponents and affecting organelle integrity [5]. The increased
generation of ROS triggered by iodide excess is responsible
for its cytotoxic effect on thyrocytes [6, 7].

Thomopoulos reported that hyperthyroidism may
develop in around 10% of patients with excess iodine and
that it may occur several years after the initiation of iodine

excess [8]. Wolff reported that chronic ingestion of more
than ten times the daily requirement of iodide or iodide-
generating organic compounds could lead to iodide goiter in
certain subjects [9]. In the thyroid slices of several species,
excess iodide is known to stimulate the generation of H2O2
[10]. This occurs when the latter is in the presence of either
300 𝜇M KI in dog thyroid slices or 100 𝜇M KI in bovine
thyroid slices [10].

Possible molecular mechanisms responsible for excess
iodide-induced ROS production are described as below.
When iodide is in excess as compared with tyrosine residues,
it reacts with the iodonium cation formed by iodide oxidation
to give molecular iodine. Excess molecular iodine induces
apoptosis through an increased generation of free radicals
[11]. Various types of iodolipids are produced when iodine
binds to membrane lipids, which is considered to be the
main mechanism of free radical-induced damage. The mito-
chondria contain specific receptors for the thyroid hormones,
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and much of the ROS production occurs here via oxidative
phosphorylation [3, 12]. ROS include free radicals, such as
superoxide anions, hydroxyl radicals, and H2O2.

Nuclear factor erythroid 2-related factor 2 (Nrf2) is a
transcription factor, which is vital in regulating the expression
of some antioxidative enzymes, such as hemeoxygenase-1,
thioredoxin, peroxiredoxins (Prxs), and Sulfiredoxin (Srx)
[13]. Nrf2 is released from the Nrf2-Keap 1 (Kelch-like
ECH-associated protein 1) complex and translocated to the
nucleus after the initiation of oxidative stress [14]. Srx, a
recently discovered member of the oxidoreductases family,
contributes to cellular redox balance. Previous studies have
shown Srx to be the only enzyme which catalyses ATP-
dependent reduction of the hyperoxidized form of Prxs [15,
16]. Prxs are important peroxidases that reduce peroxides
[17, 18]. Peroxiredoxin 3 (Prx 3) is a critical scavenger for
mitochondrial H2O2. Also, mitochondria contain 30 times
more Prx 3 than glutathione peroxidase [19].

In the present study, we aim to investigate the effect of
normal iodide intake (NI), 10 times high iodide intake (10
HI), and 100 times high iodide intake (100 HI) on Days 7, 14,
and 28 on the antioxidative action of Srx and Prx 3 via Nrf2-
Keap 1 pathway in the thyroid of rats.

2. Methods

2.1. Animals and Diet. A total of 216 Wistar rats (eight weeks
old) at SPF level, weighing 296.36 ± 8.53 g, were randomly
assigned to NI, 10 HI, and 100 HI groups. Along with the
normal diet, the NI group (with the addition of deionized
water), 10 HI and 100 HI groups received different dosages
of potassium iodide in the deionized water, resulting in the
following daily iodide intake: 7.5 𝜇g/d, 75 𝜇g/d, and 750𝜇g/d,
respectively [20]. The rats were sacrificed after iodide intake
for a week, two weeks, and four weeks at ages of 9, 10, and
12 weeks, respectively (they are collectively referred to as Day
7, Day 14, and Day 28). In this study, a total of two rats died
in the NI group, and none died in any other group. Animal
procedures were approved by the Institutional Animal Care
and Use Committee of Tianjin Medical University (the
number is SYXK (Jin): 2014-0004), which is in accordance
with the NIH Guide.

2.2. Reagent. Anti-Peroxiredoxin-3 antibody (ab16751)
and anti-Keap 1 antibody (ab66620) were purchased from
Abcam (Abcam, Cambridge, MA, USA). Nrf2 (H-300):
sc-13032, Sulfiredoxin (FL-137): sc-99076, goat anti-rabbit
IgG-HRP: sc-2004, goat anti-mouse IgG-HRP: sc-2005,
and goat anti-rabbit IgG-PE: sc-3739 were bought from
Santa Cruz (Santa Cruz Biotechnology, Inc., CA, USA).
MitoSOX Red (3,8-phenanthridinediamine,5-(6󸀠-triphenyl-
phosphoniumhexyl)-5,6-dihydro-6-phenyl) mitochondrial
superoxide indicator (M36008) was purchased from
Invitrogen (Invitrogen Life Technologies, CA, USA). 𝛽-Actin
(AA128) was purchased from Beyotime (Beyotime Institute
of Biotechnology, Jiangsu, China). RPMI-1640 and fetal
bovine serum (FBS) were purchased from GE Healthcare
Life Sciences (HyClone, UT, USA). Immobilon Western
Chemiluminescent HRP Substrate (WBKLS0100) was

purchased from Millipore (Merck Millipore, MA, USA). All
the other chemicals made in China were of analytic grade
[21].

2.3. Thyroid Weight Measurement. Following the intake of
NI, 10 HI, and 100HI, the body weight and the thyroid weight
were measured when the rats were sacrificed on Days 7, 14,
and 28. We calculated the ratio of the thyroid weight/body
weight (milligrams per 100 gram body) according to the
ratio of the viscera (viscera/body weight) [21, 22]. The rats
were anesthetized at appropriate concentrations (10% chloral
hydrate, 0.3mL/100 g). Skin, subcutaneous tissue, fascia, and
muscles of the anterior neck were removed and the thyroid
gland was exposed. In order to ensure the integrity of the
thyroid gland, it was removed carefully with a trachea ring.
The fascia covering thyroid gland was stripped and the
thyroid gland was collected under stereoscopic microscope
carefully.

2.4. Measurement of Urinary Iodine Concentration and Iodine
Content in the Thyroid Glands. Urine samples were collected
usingmetabolic cages for 24 hours the day before the ratswere
sacrificed. Thyroid tissue homogenates were prepared. Uri-
nary iodine concentration and iodine content in the thyroid
glands were measured by As-Ce catalytic spectrophotometry
in the Key Lab of Hormones and Development Ministry of
Health, Institute of Endocrinology, Tianjin Medical Univer-
sity [23]. The iodine standard solution and samples were
added to the test tubes (15mm × 150mm), respectively.
1mL ammonium persulfate was added and then mixed and
digested for 60 minutes at 100∘C. After the test tubes were
cooled down, 2.5mL of arsenious acid solution was added
andmixed. Consequently, 0.3mL cerium sulfate solution was
added and mixed every 30 s. The absorbance at 400 nm was
measured with a spectrophotometer.

2.5. Serum Thyroid Hormones Levels Measurement. Blood
samples were taken from the carotid artery and then cen-
trifuged for 10min at 2000 r/min to obtain the samples of
the serum. After that, the samples were stored at −80∘C
for further analysis. Levels of serum total thyroxine (TT4),
total triiodothyronine (TT3), free thyroxine (FT4), and free
triiodothyronine (FT3) were all determined using a chemi-
luminescent immunoassay technique. All kits for thyroid
function were purchased from Siemens (Siemens Healthcare
Diagnostics Products Limited, Llanberis, UK).

2.6. Flow Cytometry. MitoSOX Red was used to measure
mitochondrial superoxide production by flow cytometry.
The thyroid cell suspension of Wistar rats was prepared.
5 𝜇M of MitoSOX Red was added and the suspension was
incubated for 10min at 37∘C in the dark. Flow cytometry was
carried out using a FACSCalibur (BD Bioscience, San Jose,
CA). Collecting FL2 channel forward scattering (forward
scatter, FSC) and lateral scattering (side scatter, SSC) data,
10000 cells were collected for each sample.The control group
without MitoSOX was regarded as the blank zero group for
standardization [24].
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Table 1: Changes of the median urinary iodine concentration (𝜇g/L) of Wistar rats following the intake of NI, 10 HI, and 100 HI on Days 7,
14, and 28 (𝑁 = 6 for each group). All data is presented as the median (range).

Group The median urinary iodine concentration (𝜇g/L)
Day 7 Day 14 Day 28

NI 321.2 (150.0–351.7) 358.2 (300.2–373.8) 333.0 (188.6–413.5)
10 HI 3052.5∗ (1592.8–3798.0) 3532.5∗ (1487.0–4056.0) 2628.0∗ (1651.0–3404.5)
100 HI 26489.2∗# (5856.6–42170.4) 24461.0∗# (17607.5–29874.8) 22663.2∗# (8342.5–29816.2)
∗Compared to the NI group (𝑝 < 0.05).
#Compared to the 10 HI group (𝑝 < 0.05).

2.7. Western Blot Analysis. The bicinchoninic acid protein
assay kit (Beyotime Institute of Biotechnology, Jiangsu,
China) was used to detect the concentration of proteins.
50𝜇g proteins were separated by SDS-PAGE and transferred
to the PVDF membrane. Subsequently, the membrane was
blocked for 1 hour at room temperature using 5% nonfat
milk. Then the membrane was incubated overnight at 4∘C
with primary antibodies followed by horseradish peroxidase
conjugated secondary antibodies.The proteins were detected
by Immobilon Western Chemiluminescent HRP Substrate.
𝛽-Actin was used as a loading control. Blots were scanned
as gray scale images and quantified using Image J software
(NIH). All the blot intensities were normalized with that of
the loading control 𝛽-actin.

2.8. Immunofluorescence Staining. The thyroid tissues were
first embedded with an Optimal Cutting Temperature (OCT)
compound at −80∘C. Following which the tissues were frozen
in a cryostat machine and cut into frozen sections for 5 𝜇m at
−20∘C. The slices were incubated with 5% FBS for 60min at
room temperature. Subsequently, they were incubated with
a primary antibody [Nrf2 (1 : 100) or Srx (1 : 100)] at 4∘C,
overnight. After three washes with PBS, the second antibody
was linked to fluorophores (goat anti-rabbit IgG-PE). The
nucleus was stained for 5minwithHoechst 33258 (50𝜇L) and
washed 3 times with PBS. MitoSOX Red was used to measure
mitochondrial superoxide production. Using a Zeiss LSM
510 confocal microscope, fluorescent images of the prepared
slides were obtained.

2.9. Statistics. The data of urinary iodine concentration
(Table 1) showed a skewed distribution and were expressed
as the median. Differences between groups were evaluated by
nonparametric Kruskal–Wallis test. If the latter test showed
significant differences between groups, the individual groups
were compared with the control group by the Nemenyi
tests using SPSS 22.0. A 𝑝 value of <0.05 was considered
statistically significant [25].

The other data was expressed as mean ± SD. Differences
between groups were evaluated by one-way analysis of vari-
ance (ANOVA); if this test showed significant differences
between groups, the individual groups were compared with
the control group by Least Significant Difference (LSD)
test using SPSS 22.0. A 𝑝 value of <0.05 was considered
statistically significant.

3. Results

3.1. Effects of the Iodide Intake (NI, 10 HI, and 100 HI) on the
Ratio of Thyroid Weight/Body Weight on Days 7, 14, and 28.
The parameters body weight, thyroid weight, and the ratio of
the thyroid weight/body weight were not significantly altered
following the intake of NI, 10 HI, and 100 HI on Days 7, 14,
and 28 (𝑝 > 0.05) (Figure 1).

3.2. Effects of the Iodide Intake (NI, 10 HI, and 100 HI)
on Urinary Iodine Concentration and Iodine Content in the
Thyroid Glands on Days 7, 14, and 28. The median urinary
iodine concentration and their ranges for NI, 10 HI, and 100
HI on Days 7, 14, and 28 are illustrated in Table 1. In all
the different time periods, there was a significant increase in
the urinary iodine concentration among 10 HI and 100 HI
when compared to the NI group (𝑝 < 0.05). In addition,
the urinary iodine concentration of the 100 HI group also
increased significantly when compared to 10 HI (𝑝 < 0.05).
Between any of the iodide intake groups (NI, 10 HI, and
100 HI), there was no significant difference in the urinary
iodine concentration on Day 14 and Day 28 when compared
to Day 7 (𝑝 > 0.05). Furthermore, there was no significant
difference between Day 14 and Day 28 (𝑝 > 0.05). When
the intake of iodide was increased from NI to 10 HI and
further to 100 HI, a simultaneous increase in the urinary
iodine concentration was also observed on Days 7, 14, and
28. The urinary iodine concentration in the 10 HI group was
approximately 10 times that of the NI group, whereas the
urinary iodine concentration in the 100 HI group was about
60–80 times that of the NI group on Days 7, 14, and 28.

In our study, we demonstrated that the iodine content in
the thyroid glands was significantly increased in the 100 HI
group when compared to the NI group on Days 7, 14, and 28
(𝑝 < 0.05). Between any of the iodide intake groups (NI, 10
HI, and 100 HI), there was no significant difference found
in the iodine content in the thyroid glands on Days 7, 14,
and 28 (𝑝 > 0.05). When the intake of iodide was increased
from NI to 10 HI and further to 100 HI, the iodine content in
the thyroid glands increased gradually on Days 7, 14, and 28
(Table 2).

3.3. Effects of the Iodide Intake (NI, 10 HI, and 100 HI) on the
Changes of SerumThyroid Hormones Levels on Days 7, 14, and
28. There were no significant alterations in TT3, TT4, FT3,
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Figure 1: Effects of the iodide intake (NI, 10 HI, and 100 HI) on (a) the body weight; (b) the thyroid weight; and (c) the ratio of the thyroid
weight/body weight on Days 7, 14, and 28. All data is presented as mean ± SD (𝑁 = 6 for each group). Statistical analyses were performed by
one-way analysis of variance (ANOVA) with the Least Significant Difference (LSD) test.

and FT4 levels following the intake ofNI, 10HI, and 100HI on
Days 7, 14, and 28 (𝑝 > 0.05). Moreover, for all three dosages
of iodide intake, there were no significant differences in any
of the serum thyroid hormones levels on Day 14 and Day 28
when compared to Day 7 (𝑝 > 0.05). In addition, there were
no significant changes between Day 14 and Day 28 in serum
thyroid hormones levels (TT3, TT4, FT3, and FT4) (𝑝 > 0.05)
(Table 3).

3.4. Effects of the Iodide Intake (NI, 10 HI, and 100 HI) on the
Changes of Mitochondrial Superoxide Production on Days 7,

14, and 28. On Days 7, 14, and 28, when compared to the NI
group, the mitochondrial superoxide production in the 10 HI
group showed no significant increase (𝑝 > 0.05). However,
there was a significant increase in the mitochondrial super-
oxide production in the 100 HI group (𝑝 < 0.05). When
compared to the 10 HI, there was a significant increase in the
mitochondrial superoxide production in the 100 HI group
(𝑝 < 0.05). In the NI and 10 HI groups, the mitochondrial
superoxide production on Days 7, 14, and 28 showed no
significant difference (𝑝 > 0.05). However, in the 100 HI
group, compared to Day 7, there was a significant increase in
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Table 2: Changes of iodine content in the thyroid glands
(𝜇g/100mg) of Wistar rats following the intake of NI, 10 HI, and 100
HI onDays 7, 14, and 28 (𝑁 = 6 for each group). All data is presented
as the mean ± SD.

Group Iodine content in the thyroid glands (𝜇g/100mg)
Day 7 Day 14 Day 28

NI 62.19 ± 5.94 60.12 ± 8.13 63.37 ± 9.08
10 HI 121.25 ± 10.48 126.45 ± 8.93 152.33 ± 10.77
100 HI 133.53 ± 8.61∗ 136.36 ± 9.64∗ 178.45 ± 8.74∗
∗Compared with NI group (𝑝 < 0.05).

Table 3: Changes of serum thyroid hormones levels of Wistar rats
following the intake of NI, 10 HI, and 100 HI on Days 7, 14, and 28
(𝑁 = 6 for each group). All data is presented as the mean ± SD.

Group The levels of serum thyroid hormones
TT3

(nmol/L)
TT4

(nmol/L)
FT3

(pmol/L)
FT4

(pmol/L)
Day 7

NI 1.18 ± 0.15 90.77 ± 5.52 3.96 ± 0.10 22.03 ± 1.70
10 HI 1.19 ± 0.08 91.54 ± 7.74 3.77 ± 0.26 23.02 ± 2.06
100 HI 1.07 ± 0.11 89.17 ± 9.03 3.78 ± 0.11 20.08 ± 5.43

Day 14
NI 1.15 ± 0.07 95.83 ± 5.20 3.92 ± 0.16 22.34 ± 3.71
10 HI 1.12 ± 0.08 86.15 ± 2.52 3.63 ± 0.48 20.19 ± 1.92
100 HI 1.19 ± 0.04 91.54 ± 3.31 3.84 ± 0.46 20.98 ± 2.50

Day 28
NI 1.13 ± 0.06 94.17 ± 2.38 3.89 ± 0.13 20.25 ± 5.72
10 HI 1.18 ± 0.08 90.77 ± 3.78 3.98 ± 0.57 21.15 ± 5.34
100 HI 1.14 ± 0.22 87.69 ± 6.35 3.79 ± 0.46 21.17 ± 5.43

mitochondrial superoxide production on Day 28 (𝑝 < 0.05).
Similarly, compared to Day 14, there was also a significant
increase in mitochondrial superoxide production on Day 28
(𝑝 < 0.05). Accordingly, the fluorescent intensity ofMitoSOX
Red onDay 28 gradually increased after the increased dosages
of iodide intake fromNI to 100 HI, which was consistent with
our results of flow cytometry (Figure 2).

3.5. Effects of the Iodide Intake (NI, 10 HI, and 100 HI) on the
Changes of Nrf2, Keap 1, Srx, and Prx 3 Expressions on Days 7,
14, and 28. On Days 7, 14, and 28, when compared to the NI
group, the expressions of Nrf2, Keap 1, Srx and Prx 3 showed
no significant differences in the 10 HI group (𝑝 > 0.05);
the expressions of Nrf2, Srx, and Prx 3 were significantly
increased while Keap 1 was notably decreased in the 100 HI
group (𝑝 < 0.05). On Days 7, 14, and 28, when compared
to the 10 HI group, the expressions of Nrf2, Srx, and Prx 3
were significantly increased while Keap 1 was significantly
decreased in the 100 HI group (𝑝 < 0.05) (Figure 3).

3.6. Effects of the Iodide Intake (NI, 10 HI, and 100 HI) on the
Changes of Immunofluorescence Staining onDays 7, 14, and 28.
Following the increased iodide intake from NI to 10 HI and

further to 100 HI, the expressions of Nrf2 and Srx intensified.
In the NI group, Nrf2 was localized in the cytoplasm on Days
7, 14, and 28. In the 10 HI group, the positive staining of
Nrf2 can be observed in both the nucleus and the cytoplasm.
Moreover, in the 100 HI group, a stronger positive staining
of Nrf2 can be detected in the nucleus on Days 7, 14, and 28
(Figure 4(a)). Srx positive staining was only located in the
cytoplasm on Days 7, 14, and 28 (Figure 4(b)).

4. Discussion

In our study, we found that there were no significant alter-
ations in TT3, TT4, FT3, and FT4 levels following the intake
ofNI, 10HI, and 100HI onDays 7, 14, and 28 (𝑝 > 0.05).There
are very efficient homeostatic mechanisms that resist changes
in circulating T3 and T4 levels in response to iodide excess.
Due to the compensatory mechanisms, such as the Wolff-
Chaikoff effect, the changes in T3 and T4 levels following an
increase in iodide intake are minimal and usually transient
in nature [26–28]. The Wolff-Chaikoff effect relies on a high
(≥10−3 molar) intracellular concentration of iodide. During
initial exposure, excess iodide is transported by the sodium-
iodide symporter (NIS) into the cells.When intracellular con-
centration reaches at least 10−3 molar, iodide organification
is blocked [27, 29]. Moreover, the regulatory mechanisms
include modulation of blood flow, enzyme activity, gene
expression, and transport proteins in signaling pathways [2,
30, 31]. In a study conducted by Eng et al., 16 Wistar rats
were given 2000𝜇g of iodide acutely; it was observed that
there was a significant decrease in serum T4 and T3 levels
on Day 1 of the study. Subsequently, on Day 6, both serum
T4 and T3 levels returned to normal ranges. However, in
both cases, the serum TSH levels remained unchanged [32].
Mooij et al. observed no significant changes in serum thyroid
hormones levels when female Wistar rats were given 100 𝜇g
iodide daily for 18 weeks [33]. Paul et al. demonstrated that
when normal volunteers received 1500𝜇g of supplemental
iodine daily for 14 days, a small decrease in serum T3 and
T4 concentrations with compensatory increase of TSH was
detected, although all values remained within the normal
ranges [34]. However, the presence of handicaps such as an
increased autoimmune susceptibility, fetal period, extremes
of age, pregnancy, lactation, or an active pathological entity
significantly impair these mechanisms [1, 35–37].

Our study demonstrated that both the urinary iodine
concentration and the iodide intake increased simultaneously
from NI to 10 HI and further to 100 HI. Interestingly, we
found that the urinary iodine concentration of the 10 HI
group was approximately 10 times that of the NI group,
whereas the urinary iodine concentration of the 100HI group
was about 60–80 times that of the NI group on Days 7, 14,
and 28. The urinary iodine concentration is regarded as a
sensitive indicator of iodine status because approximately
90% of ingested iodide is excreted in the urine [38, 39].There
is an increase for the maintenance of thyroid homeostasis
as well as the steady state of the internal environment of
the body. The thyroid gland has adaptation mechanisms that
reduce iodide metabolism when the supply is abundant, thus
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Figure 2: Continued.
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Figure 2: Effects of the iodide intake (NI, 10 HI, and 100 HI) on the changes of mitochondrial superoxide production on Days 7, 14, and
28. (a) There was a significant increase in the mitochondrial superoxide production in the 100 HI group on Days 7, 14, and 28 (𝑝 < 0.05).
The difference was more significant on Day 28 when compared to Day 7 or Day 14. (b) Histogram analysis was performed on the mean
fluorescence intensity of MitoSOX Red. All data is presented as the mean ± SD (𝑁 = 6 for each group). Statistical analyses were performed
by one-way analysis of variance (ANOVA) with the Least Significant Difference (LSD) test. ∗𝑝 < 0.05 versus the NI group on Days 7, 14, and
28, respectively. #𝑝 < 0.05 versus the 10 HI group on Days 7, 14, and 28, respectively. 󳵳𝑝 < 0.05 versus the Day 7 group in the 100 HI group.
△𝑝 < 0.05 versus the Day 14 in the 100 HI group. Experiments were repeated 3 times with similar results. (c) There was a significant increase
in the mitochondrial superoxide production in the 100 HI group on Day 28 and was observed by confocal microscopy. Scale bar: 20𝜇m.

avoiding thyrotoxicosis.There are several mechanisms which
include a direct inhibitory effect of iodide in the thyroid itself
and inhibition by iodide of its own organification (Wolff-
Chaikoff effect), its transport, thyroid hormones secretion,
cAMP formation in response to TSH, and several other
metabolic steps [40]. We suggest that all the protective
mechanisms may ensure the excessive iodide intake of the 10
HI group on Days 7, 14, and 28 be eliminated from urine.The
urinary iodine concentration of the 100 HI group on Days
7, 14, and 28 was about 60–80 times that of the NI group,
although the thyroid function was normal. This leads us to
propose the idea that excessive iodide accumulated in the
body may trigger the oxidative and antioxidative signaling
pathway to maintain the normal thyroid function.

We demonstrated that the production of mitochondrial
superoxide significantly increased on Days 7, 14, and 28 in
the 100 HI group. This is consistent with our previous study
on metallothionein-I/II knockout mice [24]. Joanta et al.
reported that the initiation of free radical production was
observed after giving a high dose of iodide [3]. Serrano-
Nascimento et al. demonstrated that an increased mitochon-
drial superoxide production was shown in response to NaI
(10−6M to 10−3M) treatment in PCCl3 thyroid cells by using
MitoSOX Red [41]. Mitochondria are potent producers of
superoxide, from complexes I and III of the electron transport
chain. Mitochondrial superoxide production is a major cause
of cellular oxidative damage [42]. Physiologically, ROS are
not necessarily harmful because they are continuously bal-
anced by the process of hormone synthesis and the endoge-
nous antioxidant system [1]. Excess ROS are generated during
the trapping, oxidation, and organification of excessive iodine
in thyrocytes, which could lead to increased oxidative stress
[1].

The Nrf2-Keap 1 pathway is the chief cytoprotective
mechanism in response to oxidative stress caused by ROS.
During normal and balanced redox homeostasis, the Nrf2
function is inhibited because of constant proteasomal degra-
dation after ubiquitination of the protein. This is regulated

through the binding of the inhibitor protein Keap 1 [13, 14].
It is reported that Srx activation via Nrf2 dependent pathway
protects fromoxidative liver injury throughPyrazole [43] and
alcohol in mice [44]. Similar findings in lung tissues have
shown that there is a marked increase in the expressions of
Srx and Prx 3 in human squamous cell carcinoma [45]. This
suggests that these proteins may play a protective role against
oxidative injury. Also, the pathway including Keap 1, Nrf2,
and ARE-mediated protein expression plays a very critical
role in protecting cells fromoxidative stress [46, 47]. Focusing
on the pathway, we demonstrated that the expression of Nrf2
was significantly increased, while Keap 1 was significantly
decreased in the 100 HI group when compared to the NI
or 10 HI group on Days 7, 14, and 28. Similarly, Ajiboye
et al. showed that rats treated with Chalcone dimers not
only increased the expression of Nrf2, but also suppressed
cytoplasmic Keap 1 expression [48]. Yang et al. also showed
that the downregulation of Keap 1 level may be responsible
for the overactivation of Nrf2 [49]. Pang et al. showed that
caffeic acid prevents acetaminophen-induced liver injury by
activating the Nrf2-Keap 1 antioxidative defense system [50].

In order to verify whether high levels of expression
of Nrf2 and its nuclear translocation can upregulate some
antioxidant enzymes in the thyroid gland, the expressions of
Prx 3 and Srx following the intake of NI, 10 HI, and 100 HI
on Days 7, 14, and 28 were measured. We demonstrated that
the expressions of Srx and Prx 3 in the 100 HI group were
significantly increased when compared to the NI group or 10
HI group on Days 7, 14, and 28. The possible explanations
are described as below. Firstly, Srx is a cytosolic protein
that is able to translocate to sites where hyperoxidized
(inactivated) Prx 3 is located. Therefore, it engages itself in
the reactivation of Prx 3 under oxidative conditions [51].
Secondly, Prx 3 is a typical 2-Cys Peroxiredoxin located
exclusively in the mitochondrial matrix; it is the principal
peroxidase responsible for protecting cells from oxidative
damage by reducing peroxides such as H2O2 [52]. Finally,
mitochondria contain 30 times more Prx 3 than glutathione
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Figure 3: Effects of the iodide intake (NI, 10 HI, and 100 HI) on the changes of (a) Nrf2; (b) Keap 1; (c) Srx; and (d) Prx 3 expressions on
Days 7, 14, and 28. Representative western blot and histograms of densitometric analyses normalized for the relative 𝛽-actin content. All data
is presented as the mean ± SD (𝑁 = 6 for each group). Statistical analyses were performed by one-way analysis of variance (ANOVA) with
the Least Significant Difference (LSD) test. ∗𝑝 < 0.05 versus the NI group on Days 7, 14, and 28, respectively. #𝑝 < 0.05 versus the 10 HI group
on Days 7, 14, and 28, respectively. Experiments were repeated 3 times with similar results.
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Figure 4: Effect of the iodide intake (NI, 10 HI, and 100 HI) on the changes of immunofluorescence staining on Days 7, 14, and 28. (a) In the
NI group, Nrf2 (red) was localized in the cytoplasm on Days 7, 14, and 28. In the 10 HI group, the positive staining of Nrf2 can be observed
in both the nucleus and the cytoplasm. Moreover, in the 100 HI group, a stronger positive staining of Nrf2 can be detected in the nucleus on
Days 7, 14, and 28; the nucleus was dyed with Hoechst (blue). (b) Srx (red) positive staining was located in the cytoplasm; the nucleus was
dyed with Hoechst (blue). Scale bar: 20𝜇m.

peroxidase; Prx 3 can be classified as an important regulator
of mitochondrial H2O2 [22]. The elevated expression of Prx
3 is associated with the blockage of apoptosis, increasing
cell proliferation, and is related to adaptive responses, which
are all required to maintain mitochondrial function [53, 54].
Bae et al. have suggested that Prx 3 and Srx jointly protect
mice from Pyrazole-induced oxidative liver injury in a Nrf2-
dependent manner [43].

The novelty we demonstrated in the present study is that
iodide excess induced both oxidative stress and antioxidative
defense increases throughNrf2-Keap 1 pathway in the thyroid
gland from rats. We extended our established mechanisms
by applying the Nrf2-Keap 1 pathway to set up a bridge
between oxidative stress and antioxidative defense induced
by iodide excess in the thyroid gland. In our previous study,
we have established that oxidative stress induced by acute
high concentrations of iodide in FRTL cells significantly
increases mitochondrial superoxide production [55]. The
inhibitors of themitochondrial respiratory chain complexes I

and III are involved inmitochondrial superoxide production.
We demonstrated that exposure to 100𝜇M KI for 2 hours
significantly increased mitochondrial superoxide produc-
tion, enhanced by either 0.5𝜇M Rotenone (an inhibitor
of mitochondrial complex I) or 10 𝜇M Antimycin A (an
inhibitor of complex III) [56]. We illustrated that 300 𝜇M
PTU (an inhibitor of TPO) attenuated the excessive iodide-
induced mitochondrial superoxide production. We showed
that 30 𝜇M KClO4 (a competitive inhibitor of iodide trans-
port) relieved the production the mitochondrial superoxide
induced by iodide excess. We displayed that 10mU/mL TSH
can inhibit excessive iodide-induced strong mitochondrial
superoxide production [55]. MT-I and MT-II are mainly
involved in the protection of tissue against oxidative stresses;
we indicated that metallothionein-I/II knockout mice aggra-
vated mitochondrial superoxide production in thyroid after
excessive iodide exposure [24]. In addition, we demonstrated
that both the oxidative stress and the antioxidative defense
increased simultaneously after high dosages of iodide intake.
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We suggested that the Nrf2-Keap 1 pathway is vital for the
balance between oxidative stress and antioxidative defense
induced by iodide excess in the thyroid gland.

Excessive iodide stimulated the Nrf2-Keap 1 pathway
and enhanced the antioxidative defense. We found that
the urinary iodine concentration of the 100 HI group was
about 60–80 times that of the NI group on Days 7, 14,
and 28; however the thyroid functions were normal. We
proposed that the excessive iodide accumulated in the body
may trigger the Nrf2-Keap 1 pathway to maintain a normal
thyroid function.We demonstrated that the Nrf2moves from
the cytoplasm to the nucleus under the microscope, with
significantly increased expressions of Nrf2, Srx, and Prx 3 and
notably decreased Keap 1 when exposed to high iodide. This
suggests that excessive iodide stimulates the disassociation of
Nrf2 from Keap 1 and assists Nrf2 to penetrate the nucleus.
Then, Nrf2 attaches to the antioxidant response element
(ARE) to activate the expression of the antioxidative genes,
Srx and Prx 3, resulting in an enhanced antioxidative defense
induced by high iodide. By activation of the Nrf2-Keap 1
pathway, there is a proportional increase in oxidative stress
and antioxidative defense in response to iodide excess. It is
to be noted that the thyroid function was normal in the 10
HI group and 100 HI in present study. Inspired by the report
by Poncin et al. [6], we proposed that there should be a
balance between oxidative stress and antioxidative defense in
response to iodide excess in the 10 HI and the 100 HI groups.

5. Conclusion

In conclusion, our results highlight that the activation of
Nrf2-Keap 1, Srx, and Prx 3 antioxidative defense mecha-
nisms may play a crucial role in protecting the thyroid from
iodide excess induced oxidative stress on Days 7, 14, and 28
(Figure 5).
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Gamma-glutamylcysteine ethyl ester (GCEE) is a precursor of glutathione (GSH) with promising hepatoprotective effects. This
investigation aimed to evaluate the hepatoprotective effects of GCEE against cyclophosphamide- (CP-) induced toxicity, pointing
to the possible role of peroxisome proliferator activated receptor gamma (PPAR𝛾). Wistar rats were given GCEE two weeks prior to
CP. Five days after CP administration, animals were sacrificed and samples were collected. Pretreatment with GCEE significantly
alleviated CP-induced liver injury by reducing serum aminotransferases, increasing albumin, and preventing histopathological
and hematological alterations. GCEE suppressed lipid peroxidation and nitric oxide production and restored GSH and enzymatic
antioxidants in the liver, which were associated with downregulation of COX-2, iNOS, and NF-𝜅B. In addition, CP administration
significantly increased serum proinflammatory cytokines and the expression of liver caspase-3 and BAX, an effect that was reversed
by GCEE. CP-induced rats showed significant downregulation of PPAR𝛾 which was markedly upregulated by GCEE treatment.
These data demonstrated that pretreatment with GCEE protected against CP-induced hepatotoxicity, possibly by activating PPAR𝛾,
preventing GSH depletion, and attenuating oxidative stress, inflammation, and apoptosis. Our findings point to the role of PPAR𝛾
and suggest that GCEE might be a promising agent for the prevention of CP-induced liver injury.

1. Introduction

Drug-induced liver injury (DILI) refers to abnormalities
in liver function tests related to the intake of medicinal
compounds [1]. DILI has been the single most frequent
reason for drug withdrawal from the market [2, 3]. The
potential of a drug to cause hepatotoxicity is often realized
after release onto themarket [2] and it has been estimated that
more than a thousand drugs have been associated with liver
injury and hepatotoxicity [4, 5]. Cyclophosphamide (CP) is
an alkylating agent commonly used in the treatment of differ-
ent cancers [6]. The therapeutic applications of CP have
been associated with different side effects and organ toxicity

[7, 8]. CP cytotoxicity has been attributed to the toxic meta-
bolites, acrolein, and phosphoramide produced during its
metabolism [9]. Acrolein can bind to reduced glutathione
(GSH) leading to increased production of reactive oxygen
species (ROS) and subsequently oxidative stress and lipid
peroxidation [10, 11]. Therefore, agents with free radical
scavenging and antioxidant properties can offer protection
against CP-induced oxidative stress and hepatotoxicity.

Peroxisome proliferator activated receptor gamma
(PPAR𝛾) is a ligand-inducible transcription factor known
to have roles in normal cell function [12]. When activated,
PPAR𝛾 heterodimerizes with retinoid X receptor (RXR),
binds to specific response elements (PPREs), and promotes
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the expression of target genes [13]. PPAR𝛾 is induced during
preadipocytes differentiation and plays a central role in lipid
metabolism, glucose homeostasis, inflammation, and cell
proliferation [14]. In the liver, disruption of PPARs has been
associated with different disorders [15]. On the other hand,
activation of PPAR𝛾 inhibited the fibrogenic response to liver
injury [16] and protected against drug-induced hepatotoxi-
city as we recently reported [3, 17, 18].

Attenuation of oxidative stress through restoring GSH
levels is a well-known strategy to combat drug-induced
toxicity. For example, administration of N-acetylcysteine
(NAC), a precursor ofGSH, protected the liver against carbon
tetrachloride [19] and methotrexate-induced toxicity [20].
Gamma-glutamylcysteine ethyl ester (GCEE), a synthetic
GSH precursor, has been demonstrated to boost endogenous
GSH levels and block oxidative stress in neurons [21, 22]
as well as cerebral endothelial cells [23]. We believe that
nothing has yet been reported on the possible protective
effects of GCEE against CP-induced hepatotoxicity. In the
present study, we asked whether GCEE can attenuate CP-
induced oxidative stress, apoptosis, and inflammation in the
liver of rats, pointing to the role of PPAR𝛾.

2. Materials and Methods

2.1. Chemicals. Gamma-glutamyl cysteine ethyl ester
(GCEE) and cyclophosphamide (CP; Endoxan) were pur-
chased fromBachem (Torrance, CA,USA) andBaxterOncol-
ogy (Dusseldorf, Germany), respectively. Alanine amin-
otransferase (ALT), aspartate aminotransferase (AST),
alkaline phosphatase (ALP), and albumin assay kits were
supplied by Spinreact (Spain). PPAR𝛾, nuclear factor-𝜅B
(NF-𝜅B), and Bcl-2-associated X protein (BAX) antibodies
were obtained from Santa Cruz Biotechnology (USA).
Cytokines assay kits were purchased from R&D Systems
(USA). All other chemicals were obtained from Sigma (USA)
and other standard commercial supplies.

2.2. Experimental Animals and Treatments. Male albinoWis-
tar rats (10 weeks old) from the Institute of Ophthalmology
(Giza, Egypt) were included in the present study. They were
maintained on a 12 h dark/light cycle at 22 ± 2∘C with ad
libitum access to standard laboratory diet and water. All
animal procedures related to care, treatments, and sampling
were in accordance with the guidelines of the Institutional
Animal Ethics Committee of Beni-Suef University (Egypt).

Twenty-four rats were divided randomly into three
groups of 8 rats each and allowed to adapt for 1 week prior
to the experiment. Group I (Control) received normal saline
solution for 16 days, Group II (CP) received saline for 15 days
and 150mg/kg b.wt. CPonday 16 [18], andGroup III (GCEE+
CP) received 100mg/kg b.wt. GCEE for 15 days and 150mg/kg
b.wt. CP on day 16.

The dose, route, and day of CP administration were
selected based on our previous studies [18, 24]. Since GCEE
has been proven to be effective in vivo at doses of 10mg/kg
[25] and 150mg/kg b.wt. [21], we selected a dose of 100mg/kg
to be tested in our study. All experimental solutions were
administered intraperitoneally.

At day 21, the animals were sacrificed by cervical dis-
location and various samples were collected. Blood samples
were either collected on heparinized tubes for hematologi-
cal analysis or left to coagulate for serum separation. Livers
were immediately excised, washed in cold phosphate buf-
fered saline (PBS), and weighed. Samples from the liver
were fixed in 10% neutral buffered formalin for histological
and immunohistochemical processing. Other samples were
homogenized (10%w/v) in cold PBS for biochemical assays or
kept frozen at−80∘C for gene and protein expression analysis.

2.3. Biochemical Assays

2.3.1. Determination of Liver FunctionMarkers. Serum amin-
otransferases were assayed using Spinreact (Spain) reagent
kits according to the method of Schumann and Klauke
[26]. Serum ALP activity and albumin concentration were
measured using Spinreact (Spain) reagent kit according to the
methods of Wenger et al. [27] andWebster [28], respectively.

2.3.2. Determination of Oxidative Stress and Antioxidant
Defenses. Liver malondialdehyde (MDA) and GSH levels
were determined according to the methods of Preuss et al.
[29] and Beutler et al. [30], respectively. Liver nitric oxide
(NO) was determined as nitrite using Griess reagent. Super-
oxide dismutase (SOD), glutathione peroxidase (GPx), and
catalase (CAT) were determined according to the methods of
S. Marklund and G. Marklund [31], Matkovics et al. [32], and
Cohen et al. [33], respectively.

2.3.3. Determination of Proinflammatory Cytokines. Tumor
necrosis factor alpha (TNF-𝛼) and interleukin-1beta (IL-1𝛽)
were determined in serum samples using specific rats ELISA
kits (R&D Systems, USA) according to the manufacturer’s
instructions.

2.3.4. Determination of Caspase-3 Activity. Liver caspase-
3 activity was measured using the CaspACE assay system
(Promega, Madison, WI, USA) following the manufacturer’s
instructions. The assay is based on the action of caspase-
3 on the substrate Ac-DEVD-pNA releasing yellow chro-
mophore p-nitroaniline.The activity of caspase-3 activity was
presented as percentage of corresponding control.

2.4. Determination of Hematological Parameters. Samples of
blood from all animals were collected into heparinized tubes
and red blood corpuscles (RBCs), total white blood cells
(WBCs), platelet count, and hemoglobin (Hb) content were
determined using an automated hematoanalyzer.

2.5. Histopathology and Immunohistochemistry. Samples
from the liver were immediately washed in cold PBS and
fixed for histological processing and hematoxylin and eosin
(H&E) staining.

Liver sections were immunohistochemically stained with
anti-BAX antibody. Briefly, the slides were deparaffinized,
rehydrated, and incubated in 3% hydrogen peroxide (H

2
O
2
)

for 5min.The slides were washed in Tris-buffered saline (pH
7.6), blocked with protein block (Novocastra), and incubated
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Table 1: Primers used for qRT-PCR.

Gene GenBank accession number Sequence (5󸀠-3󸀠)

Pparg NM 001145367 F: GGACGCTGAAGAAGAGACCTG
R: CCGGGTCCTGTCTGAGTATG

Casp3 NM 012922 F: GGAGCTTGGAACGCGAAGAA
R: ACACAAGCCCATTTCAGGGT

BAX NM 017059 F: AGGACGCATCCACCAAGAAG
R: CAGTTGAAGTTGCCGTCTGC

NF-𝜅B AF079314 F: TCTCAGCTGCGACCCCG
R: TGGGCTGCTCAATGATCTCC

COX2 NM 017232 F: TGATCTACCCTCCCCACGTC
R: ACACACTCTGTTGTGCTCCC

iNOS U03699 F: ATTCCCAGCCCAACAACACA
R: GCAGCTTGTCCAGGGATTCT

𝛽-Actin NM 031144 F: AGGAGTACGATGAGTCCGGC
R: CGCAGCTCAGTAACAGTCCG

with rabbit polyclonal anti-BAX.The sections were incubated
with the secondary antibody and then horseradish peroxidase
conjugated with streptavidin. Sections were then washed,
counterstained with hematoxylin, mounted in DPX, and
examined by light microscopy.

2.6. Gene Expression Study. To study the effect of GCEE on
the mRNA expression levels of caspase-3, BAX, inducible
nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2),
NF-𝜅B, and PPAR𝛾 in the liver of CP-induced rats, quan-
titative RT-PCR was used as we previously reported [3].
In brief, total RNA was isolated from liver tissue samples
using Invitrogen (USA) TrIzol reagent. RNA was treated
with RNase-free DNase, purified using RNeasy purification
kit (Qiagen, Germany), and quantified at 260 nm. RNA
integrity was further confirmed using formaldehyde-agarose
gel electrophoresis. 2 𝜇g RNA was reverse transcribed into
first strand cDNA using AMV reverse transcriptase. DNA
was amplified using SYBRGreenmaster mix purchased from
Fermentas. The primers used to specifically amplify caspase-
3, BAX, COX-2, iNOS, NF-𝜅B, PPAR𝛾, and 𝛽-actin are listed
in Table 1. The 2−ΔΔCt method [34] was used to analyze the
obtained amplification data and the results were normalized
to 𝛽-actin.

2.7. Western Blot. Total liver tissue protein was extracted
using RIPA buffer supplemented with proteinase inhibitors
and Bradford reagent was used to determine protein con-
centration. Aliquots of the lysate containing 50 𝜇g proteins
were separated on SDS-PAGE, electrotransferred onto PVDF
membranes followed by blocking. The membranes were
probed with PPAR𝛾, NF-𝜅B p65, and 𝛽-actin primary anti-
bodies, washed, and then incubated with the proper sec-
ondary antibodies. The blots were developed by enhanced
chemiluminescence kit (BIO-RAD, USA). The intensity of
obtained bands was quantified using ImageJ, normalized to
𝛽-actin, and presented as percent of control.

2.8. Statistical Analysis. Results were analyzed using Graph-
Pad Prism 5 (La Jolla, CA, USA) and were expressed as
means ± standard error of the mean (SEM). The statistical
comparisons were made using one-way analysis of variance
(ANOVA) followed by Tukey’s test post hoc analysis to judge
the difference between various groups. A 𝑃 value < 0.05 was
considered to be statistically significant.

3. Results

3.1. GCEE Protects against CP-Induced Liver Injury. To test
the protective effect of GCEE on CP-induced hepatocellular
injury, we assayed serum markers of liver function and
performed histological examination.

Administration of CP induced hepatotoxicity evidenced
by the significantly (𝑃 < 0.001) increased serum ALT (Fig-
ure 1(a)), AST (Figure 1(b)), and ALP (Figure 1(c)) activities
when compared with the control group. Pretreatment of the
CP-induced rats withGCEEproduced significant (𝑃 < 0.001)
reduction in serum aminotransferases andALP activities. On
the other hand, CP-administered rats showed a significant
(𝑃 < 0.01) decline in serum albumin levels when compared
with the corresponding control rats as depicted in Figure 1(d).
Supplementation of GCEE prior to CP produced a significant
(𝑃 < 0.01) amelioration of serum albumin levels in CP-
intoxicated rats.

Microscopic examination of the liver sections stained
with H&E revealed normal hepatic strands, hepatocytes, and
sinusoids in control rats (Figure 2(a)). CP administration
to rats produced several histological alterations in the liver
sections such as activated Kupffer cells and hepatic vac-
uolation of fat type as most of vacuoles were with clear
lumen and round borders, indicating hepatic steatosis (Fig-
ure 2(b)). In addition, CP induced periportal hepatic necrosis
with mononuclear inflammatory cells infiltration, mainly
macrophages and histiocytes (Figure 2(c)). Liver sections
fromGCEEpretreated rats showednoticeable amelioration of
the liver histological architecture as depicted in Figure 2(d).
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Figure 1: Effect of GCEE on serum (a) ALT, (b) AST, (c) ALP, and (d) albumin in CP-induced rats. Data are expressed as mean ± SEM
(𝑁 = 6). ∗∗𝑃 < 0.01 and ∗∗∗𝑃 < 0.001. CP, cyclophosphamide; GCEE, gamma-glutamylcysteine ethyl ester; ALT, alanine aminotransferase;
AST, aspartate aminotransferase; ALP, alkaline phosphatase.

3.2. GCEE Mitigates CP-Induced Hematological Alterations in
Rats. CP-induced rats showed significant (𝑃 < 0.01) de-
crease in RBCs number when compared with the control rats
as represented in Figure 3(a).This effectwas significantly (𝑃 <
0.05) reversed in CP-induced rats pretreated with GCEE. HB
content as well was significantly (𝑃 < 0.05) declined in
the blood of CP-induced rats (Figure 3(b)). Pretreatment of
the rats with GCEE significantly (𝑃 < 0.05) prevented CP-
induced Hb decline.

Concerning WBCs count, CP-induced rats showed sig-
nificant (𝑃 < 0.01) leukopenia when compared with the con-
trol rats. Platelets exhibited nearly similar pattern where their
number was significantly (𝑃 < 0.001) declined in the blood
of CP-induced rats. Pretreatment of the CP-induced rats with
GCEE significantly prevented leukopenia (𝑃 < 0.05) and
thrombocytopenia (𝑃 < 0.05) as depicted in Figures 3(c) and
3(d), respectively.

3.3. GCEE Attenuates CP-Induced Oxidative Stress in the
Liver of Rats. The protective effect of GCEE against CP-
induced oxidative stress was determined through assessment
of lipid peroxidation and NO as well as antioxidant defenses.
Intraperitoneal administration of CP produced a significant
(𝑃 < 0.001) increase in lipid peroxidation (Figure 4(a)) and

NO (Figure 4(b)) in the liver of rats when compared with
the control group. Pretreatment of the CP-induced rats with
GCEE significantly (𝑃 < 0.001) decreased lipid peroxidation
levels in the liver of rats. Similarly, GCEE pretreatment
produced a significant (𝑃 < 0.01) decline in liver NO levels.

On the other hand, CP-induced rats showed a significant
(𝑃 < 0.05) decline in liver GSH content when compared with
the corresponding control rats (Figure 4(c)). GCEE admin-
istration prior to CP produced a significant (𝑃 < 0.05) im-
provement in liver GSH content. The enzymatic antioxidants
exhibited a similar pattern where CP-induced rats exhibited
significant decrease in the activity of liver SOD (𝑃 < 0.01;
Figure 4(d)), GPx (𝑃 < 0.05 Figure 4(e)), and CAT (𝑃 <
0.01 Figure 4(f)) when compared with the control rats.
GCEE administration produced significant amelioration in
the activity of SOD (𝑃 < 0.05), GPx (𝑃 < 0.01), and CAT
(𝑃 < 0.05) in the liver of CP-induced rats.

3.4. GCEE Reduces CP-Induced Inflammation in the Liver
of Rats. Circulating levels of the proinflammatory cytokine
TNF-𝛼 showed significant (𝑃 < 0.001) increase in CP-
induced rats when compared with control rats (Figure 5(a)).
Pretreatment of the CP-induced rats with GCEE for 15
days produced significant (𝑃 < 0.001) decrease in serum
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Figure 2: Photomicrographs of H&E-stained liver sections of (a) control rats, (b, c) CP-induced rats revealing activated Kupffer cells (red
arrow), hepatic vacuolation of fat type (black arrow), and periportal hepatic necrosis associated with mononuclear inflammatory cells
infiltration, mainly macrophages and histiocytes (blue arrow), and (d) CP-administered rats pretreated with GCEE showing noticeable
amelioration of the liver histological architecture. CV, central vein; GCEE, gamma-glutamylcysteine ethyl ester.

TNF-𝛼 levels. IL-1𝛽 levels were significantly (𝑃 < 0.001)
increased in serum of CP-induced rats when compared with
the control group, an effect that was reversed by GCEE treat-
ment (Figure 5(b)).

To further confirm the anti-inflammatory effect of GCEE,
the expression of COX-2, iNOS, and NF-𝜅B was assayed
in the liver of CP-induced rats. COX-2 mRNA expression
showed a significant (𝑃 < 0.01) upregulation in the liver of
CP-induced rats when compared with the control rats (Fig-
ure 5(c)). Pretreatment of the CP-induced rats with GCEE
significantly (𝑃 < 0.01) downregulated liver COX-2 mRNA
expression.

iNOS mRNA expression revealed significant (𝑃 < 0.01)
upregulation in the liver of CP-induced rats when compared
with the control group as represented in Figure 5(d). GCEE
produced a significant (𝑃 < 0.01) downregulation of iNOS
mRNA expression in the liver of CP-induced rats.

Liver NF-𝜅B expression showed a significant upregula-
tion in CP-induced rats at both gene (𝑃 < 0.01; Figure 5(e))
and protein levels (𝑃 < 0.001; Figure 5(f)) when compared
with the control rats. GCEE administered prior to CP signi-
ficantly decreased NF-𝜅B bothmRNA (𝑃 < 0.05) and protein
(𝑃 < 0.01) expression.

3.5. GCEE Prevents CP-Induced Apoptosis in the Liver of Rats.
To study the effect of GCEE on CP-induced apoptosis, we
determined both gene and protein expression levels of the

proapoptotic factors caspase-3 and BAX. As represented in
Figure 6(a), the liver of CP-induced rats showed a significant
(𝑃 < 0.01) increase in mRNA abundance of caspase-3 when
compared with the control rats. Caspase-3 protein levels
showed a similar significant (𝑃 < 0.01) increase in liver of
CP-induced rats. Pretreatment of the CP-induced rats with
GCEE significantly decreased both caspase-3 mRNA expres-
sion (𝑃 < 0.01) and protein levels (𝑃 < 0.05).

Similarly, BAX mRNA expression levels showed signifi-
cant (𝑃 < 0.001) increase in the liver of CP-induced rats when
compared with the control group (Figure 6(c)). Pretreat-
ment with GCEE produced a marked (𝑃 < 0.01) decrease
in BAX mRNA expression levels in liver of the CP-induced
rats. BAX protein expression levels, determined by immuno-
histochemistry, showed a significant (𝑃 < 0.001) increase in
the liver of CP-induced rats when compared with the control
rats (Figure 6(d)). GCEE administered prior to CP produced
marked (𝑃 < 0.001) decrease in the expression of BAX pro-
tein in the liver of rats.

3.6. GCEEUpregulates PPAR𝛾 in the Liver of CP-Induced Rats.
PPAR𝛾mRNA abundance, determined by qRT-PCR, showed
a significant (𝑃 < 0.001) decrease in the liver of CP-induced
rats, as depicted in Figure 7(a). Conversely, GCEE sup-
plementation produced a significant (𝑃 < 0.01) upregulation
of PPAR𝛾 mRNA expression in the liver of CP-induced rats.
PPAR𝛾 protein expression followed a similar pattern where
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Figure 3: Effect of GCEE on hematopoietic parameters in CP-induced rats. Data are expressed as mean ± SEM (𝑁 = 6). ∗𝑃 < 0.05, ∗∗𝑃 <
0.01, and ∗∗∗𝑃 < 0.001. CP, cyclophosphamide; GCEE, gamma-glutamylcysteine ethyl ester; RBCs, erythrocytes; Hb, hemoglobin; WBCs,
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it was significantly (𝑃 < 0.001) downregulated in the liver
of CP-induced rats when compared with the control group
(Figure 7(b)). CP-induced rats pretreated with GCEE exhib-
ited marked (𝑃 < 0.01) upregulation of liver PPAR𝛾 pro-
tein expression.

4. Discussion

Gamma-glutamylcysteine is the limiting substrate in GSH
synthesis and thus encourages product formation when
present. In the present study, we showed for the first time
that the GSHmimetic GCEE can protect against CP-induced
hepatotoxicity. We assumed that this hepatoprotective activ-
ity of GCEE is mediated, at least in part, through its ability to
upregulate PPAR𝛾 expression.

CP is an alkylating agent used for treatment of several
types of cancer [6, 35]; however, its use has been limited
due to severe toxicity [7, 8]. Our studies have demonstrated
that hepatotoxicity is one of the major side effects of CP
[3, 18, 24, 36]. Here, CP administration induced liver injury
confirmed by increased circulating levels of liver function
marker enzymes, declined serum albumin levels, andmarked
histopathological changes of liver structures. Accordingly, we
have previously demonstrated increased serum ALT, AST,

and ALP in CP-intoxicated rats [3, 18, 24, 36].These enzymes
are used as reliable markers for the assessment of liver func-
tion [37]. Elevated circulating levels of these enzymes indicate
hepatocellular damage induced by CP as previously reported
[3, 18, 38]. In addition, CP-induced rats showed leukopenia,
anemia, and thrombocytopenia, indicating hematopoietic
dysfunction due to CP-induced bone marrow toxicity [39,
40]. Similar findings have been reported in mice received CP
at doses of 125mg/kg [41].

Interestingly, GCEE supplementation significantly alle-
viated circulating levels of hepatic enzymes suggesting its
membrane stabilizing potential. The hepatoprotective effect
of GCEE against CP was further confirmed by the improved
histological structures of the liver and increased serum levels
of albumin. Rats treated with CP developed liver dam-
age characterized histologically by activated Kupffer cells,
hepatic vacuolation of fat type, periportal hepatic necrosis,
and mononuclear cells infiltration, mainly macrophages and
histiocytes. These findings were consistent with our previous
study [18]. The decreased serum albumin in drug-induced
hepatotoxicity could be attributed to the provoked inflamma-
tion and oxidative stress [42]. During inflammation, declined
production of albumin has been linked to its function as a
negative acute phase protein [43]. GCEEmarkedly prevented
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Figure 4: Effect of GCEE on (a) lipid peroxidation, (b) nitric oxide, (c) GSH, (d) SOD, (e) GPx, and (f) CAT in liver of CP-induced rats. Data
are expressed as mean ± SEM (𝑁 = 6). ∗𝑃 < 0.05, ∗∗𝑃 < 0.01, and ∗∗∗𝑃 < 0.001. CP, cyclophosphamide; GCEE, gamma-glutamylcysteine
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peroxidase.

histological alterations and increased serum albumin levels,
confirming its hepatoprotective activity. In addition, GCEE
ameliorates the hematopoietic parameters and hence protects
the bone marrow against CP-induced suppression.

Oxidative stress has been implicated in the hepatotoxic
effect of CP [18, 24].Therefore, finding a strategy to attenuate
oxidative stress might grasp a key to alleviate the CP-
induced hepatotoxicity. The present study showed increased

levels of lipid peroxidation in the liver of CP-intoxicated
rats. Excessive ROS production induced by CP can attack
membrane lipids leading to lipid peroxidation [3, 7, 18, 24].
In addition, liver NOwas significantly increased as a result of
CP administration. NO has been reported to be involved in
CP-induced hepatotoxicity [44]. It can combine with super-
oxide anions producing the versatile oxidant peroxynitrite
(ONOO−) [45]. ONOO− activates NF-𝜅B in Kupffer cells and
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Figure 5: Effect of GCEE on serumTNF-𝛼 (a) and IL-1𝛽 (b),mRNAexpression levels of liver COX-2 (c), iNOS (d), andNF-𝜅B (e), and protein
expression of liver NF-𝜅B-p65 (f) in CP-induced rats. Data are expressed as mean ± SEM (𝑁 = 6). ∗𝑃 < 0.05, ∗∗𝑃 < 0.01, and ∗∗∗𝑃 < 0.001.
CP, cyclophosphamide; GCEE, gamma-glutamylcysteine ethyl ester; TNF𝛼, tumor necrosis factor alpha; IL-1𝛽, interleukin-1beta; NF-𝜅B,
nuclear factor-kappaB; iNOS, inducible nitric oxide synthase; COX-2, cyclooxygenase-2.

subsequently increased production of the proinflammatory
cytokines [46]. The increased production of liver NO is
a direct result of upregulated expression of iNOS as we
previously reported in CP-induced rats [18]. Moreover, CP-
induced rats exhibited declined liver GSH as well as activities
of the antioxidant enzymes. GSH depletion is a result of

its direct conjugation with CP metabolites [47], leading to
declined cellular defenses and necrotic cell death [48].

GCEE prevented the CP-induced lipid peroxidation, NO
production, depletion of GSH, and suppression of SOD,
CAT, and GPx activities in the liver of rats. These findings
indicate clearly that GCEE protected against CP-induced
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Figure 6: Effect of GCEE on (a) caspase-3 mRNA expression, (b) caspase-3 activity, (c) BAX mRNA expression, and (d) BAX
immunohistochemical staining in liver of CP-induced rats. Data are expressed as mean ± SEM (𝑁 = 6). ∗𝑃 < 0.05, ∗∗𝑃 < 0.01, and
∗∗∗
𝑃 < 0.001. CP, cyclophosphamide; GCEE, gamma-glutamylcysteine ethyl ester; BAX, BCL2-associated X protein.

oxidative stress through preventing GSH depletion and
enhancing the enzymatic antioxidants. In the same context,
Kobayashi et al. [49] reported that GCEE protects against
ischemia/reperfusion-induced liver injury through prevent-
ing GSH depletion. More recently, the study of Salama et

al. [50] showed similar findings in iron-overload rat model
supplemented with glutamyl cysteine dipeptide.

In conjunction with oxidative stress, increased produc-
tion of inflammatory cytokines has been reported in CP-
administered rats. Previous studies from our laboratory
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showed increased production and/or expression of inflam-
matory cytokines following CP administration [3, 18, 24,
36]. Akcay et al. [51] revealed that DILI is associated with
increased production of inflammatory mediators produced
by injured or immune cells-induced infiltration of leukocytes
into the site of injury. In addition, studies have demonstrated
that ROS augment gene expression of inflammatory media-
tors and NF-𝜅B [52, 53] and increase production of TNF-𝛼
from Kupffer cells [54]. Here, CP-induced rats showed sig-
nificant increase in serum TNF-𝛼 and IL-1𝛽 and liver COX-
2 and iNOS. This inflammatory response could be directly
connected to the CP-induced upregulation of NF-𝜅B expres-
sion. Similar findings were showed in our previous studies
[3, 18, 24, 36]. Oral administration of GCEE potentially
decreased serum proinflammatory cytokines and COX-2 and
iNOS mRNA expression in the liver of CP-induced rats. This
anti-inflammatory effect is a direct result of downregulated
NF-𝜅B expression and attenuated ROS production.

Oxidative stress together with inflammation induces
apoptotic cell death in the liver [53]. Under cell stress con-
ditions, hepatocytes become more susceptible to the lethal
effects of TNF𝛼 and Fas ligand (FasL) which bind to intra-
cellular death receptors and subsequently activate caspase-
8 [55]. Within the mitochondria, drugs or their metabolites
can cause ATP depletion, excessive ROS production, DNA
damage, and increase permeability of the mitochondrial
membrane. The resultant mitochondrial membrane perme-
abilization leads to the release of cytochromeC and activation
of procaspase-9. These events activate executioner caspase-3
resulting in apoptotic cell death [56, 57]. Here, CP-induced
rats showed significant increase in expression of the apoptotic
markers caspase-3 and BAX. A recent study by Germoush
[58] showed significant increase in liver BAX mRNA and

protein expression in CP-induced rats. These findings might
be explained in terms of the CP-induced inflammation and
oxidative stress in the liver of rats. GCEE supplementation
markedly prevented CP-induced apoptosis which is a direct
result of its ability to attenuate inflammation and oxidative
stress. In agreement with our findings, Salama et al. [50]
reported decreased caspase-3 activity in liver of iron-overload
rat model following treatment with glutamyl cysteine.

To further explore how GCEE prevented CP-induced
oxidative stress, inflammation, and apoptosis, expression lev-
els of PPAR𝛾 were determined. PPAR𝛾 is a nuclear receptor
we hypothesized to have a role in mediating the protective
effect of GCEE against CP-induced hepatotoxicity. Previous
work from our laboratory showed declined PPAR𝛾 expres-
sion in the liver of CP-induced rats [3, 18]. Interestingly, we
have found a marked upregulation of liver PPAR𝛾 expression
in GCEE-treated rats.

PPAR𝛾 is emerging as an important regulator of the
response to oxidative stress and inflammation. This notion
has been supported by the findings of several studies using
the PPAR𝛾-specific agonists thiazolidinediones (TZDs).
Together with other agonists, TZDs showed beneficial ther-
apeutic effects in oxidative stress-related diseases [59, 60].
As an example, rosiglitazone induces the antioxidant enzyme
heme oxygenase 1 (HO-1) in hepatocytes [61] and pioglita-
zone protects against CP-induced oxidative stress in rats [60].
In response to oxidative stress, activation of PPAR𝛾 has been
reported to directly modulate the expression of several anti-
oxidant genes. Human, mouse and rat CAT is transcrip-
tionally regulated by PPAR𝛾 through PPREs containing the
canonical direct repeat 1 [62] located 12kb far from the
transcription initiation site [63]. Furthermore, PPAR𝛾 activa-
tion promotes the expression of GPx3 [64], manganese SOD
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[65], the mitochondrial uncoupling protein 2 (UCP2) [66],
and HO-1 [61].

PPAR𝛾 has also been shown to induce anti-inflammatory
responses through inhibiting the activation of NF-𝜅B result-
ing in attenuation of proinflammatory cytokines production
[67]. PPAR𝛾 can transrepress NF-𝜅B activation via direct
binding or formation of a repressor complex in the promoter
of its target genes [68, 69]. Studies have also showed that
PPAR𝛾 downregulates COX-2 and iNOS [70].

Furthermore, new experimental evidences suggested the
possible interaction and/or coactivation of PPAR𝛾 and
nuclear factor (erythroid-derived 2)-like 2 (Nrf2) can protect
against CP-induced hepatotoxicity [18]. Upon activation,
Nrf2 translocates into the nucleus and promotes expression
of antioxidant and cytoprotective proteins [71]. In addition,
Nrf2 pathway has been regarded to have a central role in the
control of inflammation [72] and studies have shown several
anti-inflammatory agents which upregulate Nrf2 pathway
and suppress NF-𝜅B [18, 73]. Recently, we have reported
that simultaneous activation of PPAR𝛾 and Nrf2 in CP-
induced rats significantly enhanced antioxidant defenses,

downregulated NF-𝜅B and iNOS, and prevented the produc-
tion of proinflammatory cytokines [18]. Through preventing
oxidative stress and inflammation, PPAR𝛾 is therefore able to
protect against apoptosis. Our findings were supported by the
studies of Fuenzalida et al. [74] andRen et al. [75]who showed
that PPAR𝛾 has a prosurvival action and protects glial cells
and cardiomyocytes from oxidative stress-induced apoptosis.
These antiapoptotic effects were mediated by induction of
B-cell lymphoma 2 (Bcl-2) independently of the protein
kinase B and mitogen-activated protein kinase pathways [74,
75].

In conclusion, our study shows, for the first time that
GCEE, a GSH precursor, confers protection against CP-
induced hepatotoxicity in rats. The hepatoprotective mech-
anisms of GCEE are associated with activation of PPAR𝛾
resulting in enhancement of antioxidant defenses, prevention
of GSH depletion, and attenuation of excessive inflammatory
response and apoptosis (summarized mechanistic pathways
are represented in Figure 8). Therefore, GCEE has the poten-
tial to provide cellular protection against CP-induced hepa-
totoxicity.
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