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1 Departamento de Matemática Aplicada, E.T.S. Ingenieŕıa de Edificación, Universidad de Granada, 18071 Granada, Spain
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From its early stages, the intensive development of functional
analysis and the remarkable advances of its methods cannot
be explained without its link with other areas of mathematics
and, above all, its role as an essential framework for numerical
analysis and computer simulation, PDEs, modeling real-
world phenomena, variational inequalities, or optimization,
just to name a few.

In this special issue we highlight some aspects of func-
tional analysis which are used in connection with other
branches of mathematics or science, either as a direct appli-
cation or as a theoretical result which is essential for such an
application.

Although it is not possible to collect here the huge
production of the research activity on this vast field of
modern mathematics, the selected works gather together a
range of topics which reflect some of the current research on
applied functional analysis: bases in Banach spaces, wavelet
transforms, fixed point theory, and applications to ODEs,
electronic circuit simulation, or numerical solution of PDEs,
integral equations, or problems on option pricing in math-
ematical finance. In this way, we have achieved one of our
purposes, which is the exchange of ideas among researchers
working both in abstract and applied functional analysis.
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We develop an accurate finite difference scheme for pricing two-asset American put options. We use the central difference method
for space derivatives and the implicit Euler method for the time derivative. Under certain mesh step size limitations, the matrix
associated with the discrete operator is an M-matrix, which ensures that the solutions are oscillation-free. We apply the maximum
principle to the discrete linear complementarity problem in twomesh sets and derive the error estimates. It is shown that the scheme
is second-order convergent with respect to the spatial variables. Numerical results support the theoretical results.

1. Introduction

An option is a financial instrument that gives the holder the
right, but not the obligation, to buy (call option) or to sell
(put option) an agreed quantity of a specified asset at a fixed
price (exercise or strike price) on (European option) or before
(American option) a given date (expiry date). It was shown
by Black-Scholes [1] that the value of a European option
is governed by a second-order parabolic partial differential
equation with respect to the time and the underlying asset
price. The value of an American option is determined by a
linear complementarity problem involving the Black-Scholes
operator [2, 3]. Since this complementarity problem is, in
general, not analytically solvable, numerical approximation
to the solution is normally sought in practice.

Various numerical methods have been proposed for the
valuation of single-factor American options. Among them,
the lattice method [4], theMonte Carlo method [5], the finite
difference method [6–8], the finite element method [9, 10],
and the finite volume method [11–13] are the most popular
ones in both practice and research.

Finite difference methods applied to the multifactor
American option valuation have also been developed. S.
O’Sullivan and C. O’Sullivan [14] presented explicit finite
difference methods with an acceleration technique for option
pricing. Clarke and Parrott [15] and Oosterlee [16] used

finite difference schemes along with a projected full approx-
imation scheme (PFAS) multigrid for pricing American
options under stochastic volatility. Ikonen and Toivanen [17–
19] proposed finite difference methods with componentwise
splitting methods on nonuniform grids for pricing American
options under stochastic volatility. Hout and Foulon [20]
and Zhu and Chen [21] applied finite difference schemes
based on the ADI method to price American options under
stochastic volatility. Le et al. [22] presented an upwind
difference scheme for the valuation of perpetual American
put options under stochastic volatility. Yousuf [23] developed
an exponential time differencing scheme with a splitting
technique for pricing American options under stochastic
volatility. Nielsen et al. [24] and Zhang et al. [25] analyzed
finite difference schemes with penalty methods for pricing
American two-asset options, but their differencemethods are
first-order convergent.

In part of the domain, the differential operator of the two-
asset American option pricing model becomes a convection-
dominated operator. The differential operator also contains
a second-order mixed derivative term. The classical finite
difference methods lead to some off-diagonal elements in
the coefficient matrix of the discrete operator due to the
dominating first-order derivatives and the mixed deriva-
tive. These elements can lead to nonphysical oscillations in
the computed solution [17, 18]. In this paper, we present
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an accurate finite difference scheme for pricing two-asset
American options. We use the central difference method
for space derivatives and the implicit Euler method for the
time derivative. Under certain mesh step size limitations, we
obtain a coefficient matrix with anM-matrix property, which
ensures that the solutions are oscillation-free. We apply the
maximum principle to the discrete linear complementarity
problem in two mesh sets and derive the error estimates. We
will show that the scheme is second-order convergent with
respect to the spatial variables.

The rest of the paper is organized as follows. In the next
section, we describe some theoretical results on the contin-
uous complementarity problem for the two-asset American
put option pricing model. In Section 3, the discretization
method is described. In Section 4, we present a stability and
error analysis for the finite difference scheme. In Section 5,
numerical experiments are provided to support these theo-
retical results.

2. The Continuous Problem

We consider the following two-asset American put option
pricing model [24, 25]:
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where ℓ denotes the two-dimensional Black-Scholes operator
defined by
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and 𝜙(𝑆
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) is the final (payoff) condition defined by
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Here, 𝑃 is the value of the option, 𝑆
𝑖
is the value of the 𝑖th

underlying asset, 𝜌 ∈ [−1, 0) ∪ (0, 1] is the correlation of two

underlying assets, 𝑟 is the risk-free interest rate, and 𝑔
𝑖
(⋅, ⋅)

is a given function providing suitable boundary conditions.
Typically, 𝑔

𝑖
(⋅, ⋅) is determined by solving the associated one-

dimensional American put option problem
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Introducing the logarithmic prices 𝑥 = ln 𝑆
1
and 𝑦 =
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2
, the linear complementarity problem (1) is transformed

as
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For applying the numerical method, we truncate the
infinite domain into Ω ≡ (𝑥min, 𝑥max) × (𝑦min, 𝑦max), where
the boundaries 𝑥min, 𝑥max, 𝑦min, and 𝑦max are chosen so as
not to introduce huge errors in the value of the option [26].
Based onWillmott et al.’s estimate [3] that the upper bound of
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the asset price is typically three or four times the strike price,
it is reasonable for us to set 𝑥max = ln(4𝐸) and 𝑦max = ln(4𝐸).
The artificial boundary conditions at 𝑥 = 𝑥min and 𝑥 = 𝑥max
are chosen to be 𝑢(𝑥min, 𝑦, 𝑡) = 𝑔
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3. Discretization

The operator 𝐿 contains a second-order mixed derivative
term. Usual finite difference approximations lead to some
positive off-diagonal elements in the matrix associated with
the discrete operator due to the mixed derivative, which may
lead to nonphysical oscillations in the computed solution.
Hence, it is not easy to construct a discretization with good
properties and accuracy for problems withmixed derivatives.
There are some works dealing with stable difference approx-
imations of mixed derivatives [27, 28]. In this paper, we
present an accurate finite difference scheme to discretize the
operator 𝐿. We use the technique of [22] to give themesh step
size limitation, which guarantees that the coefficient matrix
corresponding to the discrete operator is an𝑀-matrix.

The discretization is performed using a uniform mesh
Ω
𝑁,𝑀,𝐾 for the computational domain Ω × [0, 𝑇]. The mesh
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denoted by Δ𝑥 = (𝑥max − 𝑥min)/𝑁, Δ𝑦 = (𝑦max − 𝑦min)/𝑀,
and Δ𝑡 = 𝑇/𝐾. The mesh point values of the finite difference
approximation are denoted by
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𝑦
𝑈
𝑘

𝑖,𝑗
=

𝐷
+

𝑦
− 𝐷
−

𝑦

Δ𝑦
𝑈
𝑘

𝑖,𝑗
,

𝛿
+

𝑥𝑦
𝑈
𝑘

𝑖,𝑗
=

𝐷
+

𝑥
𝐷
+

𝑦
+ 𝐷
−

𝑥
𝐷
−

𝑦

2
𝑈
𝑘

𝑖,𝑗
,

𝛿
−

𝑥𝑦
𝑈
𝑘

𝑖,𝑗
=

𝐷
+

𝑥
𝐷
−

𝑦
+ 𝐷
−

𝑥
𝐷
+

𝑦

2
𝑈
𝑘

𝑖,𝑗
,

𝐷
+

𝑥
𝑈
𝑘

𝑖,𝑗
=

𝑈
𝑘

𝑖+1,𝑗
− 𝑈
𝑘

𝑖,𝑗

Δ𝑥
, 𝐷

+

𝑦
𝑈
𝑘

𝑖,𝑗
=

𝑈
𝑘

𝑖,𝑗+1
− 𝑈
𝑘

𝑖,𝑗

Δ𝑦
,

𝐷
−

𝑥
𝑈
𝑘

𝑖,𝑗
=

𝑈
𝑘

𝑖,𝑗
− 𝑈
𝑘

𝑖−1,𝑗

Δ𝑥
, 𝐷

−

𝑦
𝑈
𝑘

𝑖,𝑗
=

𝑈
𝑘

𝑖,𝑗
− 𝑈
𝑘

𝑖,𝑗−1

Δ𝑦
,

𝐷
𝑥
𝑈
𝑘

𝑖,𝑗
=

𝑈
𝑘

𝑖+1,𝑗
− 𝑈
𝑘

𝑖−1,𝑗

2Δ𝑥
, 𝐷

𝑦
𝑈
𝑘

𝑖,𝑗
=

𝑈
𝑘

𝑖,𝑗+1
− 𝑈
𝑘

𝑖,𝑗−1

2Δ𝑦
,

𝐷
+

𝑡
𝑈
𝑘

𝑖,𝑗
=

𝑈
𝑘+1

𝑖,𝑗
− 𝑈
𝑘

𝑖,𝑗

Δ𝑡
, 𝜌

±
=

1

2
[𝜌 ±

𝜌
] .

(11)

Denote

Ω
ℎ
= {(𝑖, 𝑗, 𝑘) | 0 ≤ 𝑖 ≤ 𝑁, 0 ≤ 𝑗 ≤ 𝑀, 0 ≤ 𝑘 ≤ 𝐾} ,

Ω̃
ℎ
= {(𝑖, 𝑗, 𝑘) | 1 ≤ 𝑖 ≤ 𝑁 − 1, 1 ≤ 𝑗 ≤ 𝑀 − 1,

1 ≤ 𝑘 ≤ 𝐾 − 1} ,

𝜕Ω
ℎ
= Ω
ℎ
\ Ω̃
ℎ
.

(12)

Thus, we apply the central difference scheme on the
uniformmesh to approximate the parabolic complementarity
problem (8) as follows:

𝐿
𝑁,𝑀,𝐾

𝑈
𝑘

𝑖,𝑗
≥ 0, (𝑖, 𝑗, 𝑘) ∈ Ω̃

ℎ
,

𝑈
𝑘

𝑖,𝑗
− 𝜑
𝑖,𝑗

≥ 0, (𝑖, 𝑗, 𝑘) ∈ Ω̃
ℎ
,

𝐿
𝑁,𝑀,𝐾

𝑈
𝑘

𝑖,𝑗
⋅ [𝑈
𝑘

𝑖,𝑗
− 𝜑
𝑖,𝑗
] = 0, (𝑖, 𝑗, 𝑘) ∈ Ω̃

ℎ
,

𝑈
𝐾

𝑖,𝑗
= 𝜑
𝑖,𝑗
, 0 ≤ 𝑖 ≤ 𝑁, 0 ≤ 𝑗 ≤ 𝑀,

𝑈
𝑘

0,𝑗
= (𝑔
2
)
𝑘

𝑗
, 𝑈
𝑘

𝑁,𝑗
= 0, 0 ≤ 𝑗 ≤ 𝑀, 0 ≤ 𝑘 < 𝐾,

𝑈
𝑘

𝑖,0
= (𝑔
1
)
𝑘

𝑖
, 𝑈
𝑘

𝑖,𝑀
= 0, 0 < 𝑖 < 𝑁, 0 ≤ 𝑘 < 𝐾.

(13)
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Here, (𝑔
1
)
𝑘

𝑖
and (𝑔

2
)
𝑘

𝑗
are discrete approximates of 𝑔

1
(𝑒
𝑥
,

𝑡) and 𝑔
2
(𝑒
𝑦
, 𝑡), respectively. Hence, (𝑔

1
)
𝑘

𝑖
and (𝑔

2
)
𝑘

𝑗
can

be obtained by solving the corresponding one-dimensional
Black-Scholes equations [29]. In the next section, we will
prove that the system matrix corresponding to the discrete
operator 𝐿𝑁,𝑀,𝐾 is an M-matrix. Hence, from the uniqueness
theorem of Goeleven [30], we can obtain that there exists a
unique solution 𝑈 for the previous linear complementarity
problem (13).

4. Analysis of the Method

First, we give the stability analysis for the difference scheme
(13).

Lemma 1. If mesh steps satisfy the inequalities

Δ𝑥 ≤
𝜎
2

1

2𝑟 − 𝜎
2

1



, Δ𝑦 ≤
𝜎
2

2

2𝑟 − 𝜎
2

2



, (14)

2
𝜌
 𝜎1

𝜎
2

≤
Δ𝑥

Δ𝑦
≤

2𝜎
1

𝜌
 𝜎2

, (15)

then the system matrix corresponding to the discrete operator
𝐿
𝑁,𝑀,𝐾 is an 𝑀-matrix.

Proof. The difference operator 𝐿
𝑁,𝑀,𝐾 can be written as

follows:

𝐿
𝑁,𝑀,𝐾

𝑈
𝑘

𝑖,𝑗

= −
𝜌
+
𝜎
1
𝜎
2

2Δ𝑥Δ𝑦
𝑈
𝑘

𝑖−1,𝑗−1

+ [𝜎
1
𝜎
2

𝜌
+
− 𝜌
−

2Δ𝑥Δ𝑦
−

𝜎
2

2

2(Δ𝑦)
2
+

𝑟 − (1/2) 𝜎
2

2

2Δ𝑦
]𝑈
𝑘

𝑖,𝑗−1

+
𝜌
−
𝜎
1
𝜎
2

2Δ𝑥Δ𝑦
𝑈
𝑘

𝑖+1,𝑗−1

+ [𝜎
1
𝜎
2

𝜌
+
− 𝜌
−

2Δ𝑥Δ𝑦
−

𝜎
2

1

2(Δ𝑥)
2
+

𝑟 − (1/2) 𝜎
2

1

2Δ𝑥
]𝑈
𝑘

𝑖−1,𝑗

+ [
1

Δ𝑡
+

𝜎
2

1

(Δ𝑥)
2
− 𝜎
1
𝜎
2

𝜌
+
− 𝜌
−

Δ𝑥Δ𝑦
+

𝜎
2

2

(Δ𝑦)
2
+ 𝑟]𝑈

𝑘

𝑖,𝑗

+ [−
𝜎
2

1

2(Δ𝑥)
2
+ 𝜎
1
𝜎
2

𝜌
+
− 𝜌
−

2Δ𝑥Δ𝑦
−

𝑟 − (1/2) 𝜎
2

1

2Δ𝑥
]𝑈
𝑘

𝑖+1,𝑗

+
𝜌
−
𝜎
1
𝜎
2

2Δ𝑥Δ𝑦
𝑈
𝑘

𝑖−1,𝑗+1

+ [𝜎
1
𝜎
2

𝜌
+
− 𝜌
−

2Δ𝑥Δ𝑦
−

𝜎
2

2

2(Δ𝑦)
2
−

𝑟 − (1/2) 𝜎
2

2

2Δ𝑦
]𝑈
𝑘

𝑖,𝑗+1

−
𝜌
+
𝜎
1
𝜎
2

2Δ𝑥Δ𝑦
𝑈
𝑘

𝑖+1,𝑗+1
−

1

Δ𝑡
𝑈
𝑘+1

𝑖,𝑗
.

(16)

The coefficient of 𝑈
𝑖,𝑗

in the previous expression (which
corresponds to the diagonal of the system matrix) is positive
since

𝜎
2

1

(Δ𝑥)
2
− 𝜎
1
𝜎
2

𝜌
+
− 𝜌
−

Δ𝑥Δ𝑦
+

𝜎
2

2

(Δ𝑦)
2
≥ 0. (17)

All the coefficients of the other 𝑈 in the previous expression
(which correspond to off-diagonal elements in the system
matrix)will be nonpositive once the following inequalities are
satisfied:

𝜎
2

1

4(Δ𝑥)
2
−


𝑟−(1/2) 𝜎

2

1



2Δ𝑥
≥0,

𝜎
2

2

4(Δ𝑦)
2
−


𝑟−(1/2) 𝜎

2

2



2Δ𝑦
≥0,

𝜎
1
𝜎
2

𝜌
+
−𝜌
−

2Δ𝑥Δ𝑦
−

𝜎
2

2

4(Δ𝑦)
2
≤0, 𝜎

1
𝜎
2

𝜌
+
−𝜌
−

2Δ𝑥Δ𝑦
−

𝜎
2

1

4(Δ𝑥)
2
≤0.

(18)

Together, they require that the following inequalities hold:

Δ𝑥 ≤
𝜎
2

1

2𝑟 − 𝜎
2

1



, Δ𝑦 ≤
𝜎
2

2

2𝑟 − 𝜎
2

2



,

2𝜎
1
(𝜌
+
− 𝜌
−
)

𝜎
2

≤
Δ𝑥

Δ𝑦
≤

2𝜎
1

𝜎
2
(𝜌+ − 𝜌−)

,

(19)

which are (14) and (15), respectively. Thus, we have shown
that the systemmatrix, corresponding to the discrete operator
𝐿
𝑁,𝑀,𝐾 is an𝑀-matrix and the result follows.

There are only few error estimates for the direct appli-
cation of finite difference method to linear complementarity
problems. Here, we apply the maximum principle to the
linear complementarity problem (13) in two mesh sets and
derive the error estimates [29, 31].

By using Taylor’s formula, we can easily obtain the
following truncation error estimate.

Lemma 2. Let 𝑢(𝑥, 𝑦, 𝑡) be a smooth function defined on
Ω
𝑁,𝑀,𝐾.Then the truncation error of the difference scheme (10)

satisfies

𝐿
𝑁,𝑀,𝐾

𝑢
𝑘

𝑖,𝑗
− 𝐿𝑢
𝑘

𝑖,𝑗


= 𝑂 ((Δ𝑥)

2
+ (Δ𝑦)

2

+ Δ𝑥Δ𝑦 + Δ𝑡) ,

(20)

for all (𝑖, 𝑗, 𝑘) ∈ Ω̃
ℎ
.

Now we can derive our main result for the difference
scheme.

Theorem 3. Let 𝑢(𝑥, 𝑦, 𝑡) be the solution of the problem (8)
and let 𝑈𝑘

𝑖,𝑗
be the solution of the problem (13). If mesh steps

satisfy conditions (14) and (15), the difference scheme (13)
satisfies the following error estimate:

max
(𝑖,𝑗,𝑘)∈Ω

ℎ


𝑢 (𝑥
𝑖
, 𝑦
𝑗
, 𝑡
𝑘
)−𝑈
𝑘

𝑖,𝑗


≤𝐶 [(Δ𝑥)

2
+(Δ𝑦)

2

+Δ𝑥Δ𝑦+Δ𝑡] ,

(21)

where 𝐶 is a constant independent of Δ𝑥, Δ𝑦, and Δ𝑡.
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Proof. Denote

Ω
(1)

= {(𝑖, 𝑗, 𝑘) ∈ Ω̃
ℎ
| 𝑢 (𝑥

𝑖
, 𝑦
𝑗
, 𝑡
𝑘
) = 𝜑 (𝑥

𝑖
, 𝑦
𝑗
)} ,

Ω
(2)

= Ω̃
ℎ
\ Ω
(1)

.

(22)

From (8), we have the result

𝐿𝑢 (𝑥
𝑖
, 𝑦
𝑗
, 𝑡
𝑘
) ≥ 0, (𝑖, 𝑗, 𝑘) ∈ Ω

(1)
,

𝐿𝑢 (𝑥
𝑖
, 𝑦
𝑗
, 𝑡
𝑘
) = 0, (𝑖, 𝑗, 𝑘) ∈ Ω

(2)
.

(23)

Denote

Ω
(1)

ℎ
= {(𝑖, 𝑗) ∈ Ω̃

ℎ
| 𝑈
𝑘

𝑖,𝑗
= 𝜑 (𝑥

𝑖
, 𝑦
𝑗
)} ,

Ω
(2)

ℎ
= Ω̃
ℎ
\ Ω
(1)

ℎ
.

(24)

Obviously,

𝐿
𝑁,𝑀,𝐾

𝑈
𝑘

𝑖,𝑗
= 0, (𝑖, 𝑗, 𝑘) ∈ Ω

(2)

ℎ
. (25)

Define the function on Ω̃
ℎ
by

𝑊
𝑘

𝑖,𝑗
= 𝐶 [(Δ𝑥)

2
+ (Δ𝑦)

2

+ Δ𝑥Δ𝑦 + Δ𝑡] > 0, (26)

where 𝐶 is a sufficiently large constant.
For (𝑖, 𝑗, 𝑘) ∈ Ω

(2)

ℎ
, by the fact that 𝐿𝑢(𝑥

𝑖
, 𝑦
𝑗
, 𝑡
𝑘
) ≥ 0, (25),

(26), and Lemma 2, we obtain

𝐿
𝑁,𝑀,𝐾

(𝑢 (𝑥
𝑖
, 𝑦
𝑗
, 𝑡
𝑘
) − 𝑈
𝑘

𝑖,𝑗
+ 𝑊
𝑘

𝑖,𝑗
)

= 𝐿
𝑁,𝑀,𝐾

𝑢 (𝑥
𝑖
, 𝑦
𝑗
, 𝑡
𝑘
) + 𝐿
𝑁,𝑀,𝐾

𝑊
𝑘

𝑖,𝑗

= [𝐿
𝑁,𝑀,𝐾

𝑢 (𝑥
𝑖
, 𝑦
𝑗
, 𝑡
𝑘
) − 𝐿𝑢 (𝑥

𝑖
, 𝑦
𝑗
, 𝑡
𝑘
) + 𝐿
𝑁,𝑀,𝐾

𝑊
𝑘

𝑖,𝑗
]

+ 𝐿𝑢 (𝑥
𝑖
, 𝑦
𝑗
, 𝑡
𝑘
) ≥ 0.

(27)

On the “boundary” ofΩ(2)
ℎ
, the nodes (𝑖, 𝑗, 𝑘) ∈ Ω

(1)

ℎ
, so𝑈
𝑘

𝑖,𝑗
=

𝜑(𝑥
𝑖
, 𝑦
𝑗
), but 𝑢(𝑥

𝑖
, 𝑦
𝑗
, 𝑡
𝑘
) ≥ 𝜑(𝑥

𝑖
, 𝑦
𝑗
), therefore

𝑢 (𝑥
𝑖
, 𝑦
𝑗
, 𝑡
𝑘
)−𝑈
𝑘

𝑖,𝑗
+𝑊
𝑘

𝑖,𝑗
= 𝑢 (𝑥

𝑖
, 𝑦
𝑗
, 𝑡
𝑘
)−𝜑 (𝑥

𝑖
, 𝑦
𝑗
)+𝑊
𝑘

𝑖,𝑗
≥0,

(28)

and the nodes (𝑖, 𝑗, 𝑘) ∈ 𝜕Ω
ℎ
,

𝑢 (𝑥
𝑖
, 𝑦
𝑗
, 𝑡
𝑘
) − 𝑈
𝑘

𝑖,𝑗
+ 𝑊
𝑘

𝑖,𝑗
= 𝑊
𝑘

𝑖,𝑗
≥ 0. (29)

Applying the maximum principle toΩ
(2)

ℎ
, we get

𝑢 (𝑥
𝑖
, 𝑦
𝑗
, 𝑡
𝑘
) − 𝑈
𝑘

𝑖,𝑗
+ 𝑊
𝑘

𝑖,𝑗
≥ 0, (𝑖, 𝑗, 𝑘) ∈ Ω

(2)

ℎ
. (30)

Thus,

𝑢 (𝑥
𝑖
, 𝑦
𝑗
, 𝑡
𝑘
) − 𝑈
𝑘

𝑖,𝑗
+ 𝑊
𝑘

𝑖,𝑗
≥ 0, (𝑖, 𝑗, 𝑘) ∈ Ω

ℎ
. (31)

For (𝑖, 𝑗, 𝑘) ∈ Ω
(2)

, 𝐿𝑢(𝑥
𝑖
, 𝑦
𝑗
, 𝑡
𝑘
) = 0, but 𝐿𝑁,𝑀,𝐾𝑈𝑘

𝑖,𝑗
≥ 0,

thus,

𝐿
𝑁,𝑀,𝐾

(𝑢 (𝑥
𝑖
, 𝑦
𝑗
, 𝑡
𝑘
) − 𝑈
𝑘

𝑖,𝑗
− 𝑊
𝑘

𝑖,𝑗
)

= [𝐿
𝑁,𝑀,𝐾

𝑢 (𝑥
𝑖
, 𝑦
𝑗
, 𝑡
𝑘
) − 𝐿𝑢 (𝑥

𝑖
, 𝑦
𝑗
, 𝑡
𝑘
) − 𝐿
𝑁,𝑀,𝐾

𝑊
𝑘

𝑖,𝑗
]

− 𝐿
𝑁,𝑀,𝐾

𝑈
𝑘

𝑖,𝑗
≤ 0.

(32)

On the “boundary” of Ω
(2), the nodes (𝑖, 𝑗, 𝑘) ∈ Ω

(1), so
𝑢(𝑥
𝑖
, 𝑦
𝑗
, 𝑡
𝑘
) = 𝜑(𝑥

𝑖
, 𝑦
𝑗
), but 𝑈𝑘

𝑖,𝑗
≥ 𝜑(𝑥

𝑖
, 𝑦
𝑗
), therefore

𝑢 (𝑥
𝑖
, 𝑦
𝑗
, 𝑡
𝑘
) − 𝑈
𝑘

𝑖,𝑗
− 𝑊
𝑘

𝑖,𝑗
= 𝜑 (𝑥

𝑖
, 𝑦
𝑗
) − 𝑈
𝑘

𝑖,𝑗
− 𝑊
𝑘

𝑖,𝑗
≤ 0,

(33)

and the nodes (𝑖, 𝑗, 𝑘) ∈ 𝜕Ω
ℎ
,

𝑢 (𝑥
𝑖
, 𝑦
𝑗
, 𝑡
𝑘
) − 𝑈
𝑘

𝑖,𝑗
− 𝑊
𝑘

𝑖,𝑗
= −𝑊

𝑘

𝑖,𝑗
≤ 0. (34)

Applying the maximum principle toΩ
(2), we get

𝑢 (𝑥
𝑖
, 𝑦
𝑗
, 𝑡
𝑘
) − 𝑈
𝑘

𝑖,𝑗
− 𝑊
𝑘

𝑖,𝑗
≤ 0, (𝑖, 𝑗, 𝑘) ∈ Ω

(2)
. (35)

Thus,

𝑢 (𝑥
𝑖
, 𝑦
𝑗
, 𝑡
𝑘
) − 𝑈
𝑘

𝑖,𝑗
− 𝑊
𝑘

𝑖,𝑗
≤ 0, (𝑖, 𝑗, 𝑘) ∈ Ω

ℎ
. (36)

From (31) and (36), we obtain

max
(𝑖,𝑗,𝑘)∈Ωℎ


𝑢 (𝑥
𝑖
, 𝑦
𝑗
, 𝑡
𝑘
) − 𝑈
𝑘

𝑖,𝑗



≤ max
(𝑖,𝑗,𝑘)∈Ωℎ

𝑊
𝑘

𝑖,𝑗
≤ 𝐶 [(Δ𝑥)

2
+ (Δ𝑦)

2

+ Δ𝑥Δ𝑦 + Δ𝑡] ,

(37)

where𝐶 is a sufficiently large constant. From this we complete
the proof.

5. Numerical Experiments

In this section, we verify experimentally the theoretical
results obtained in the preceding section. Errors and conver-
gence rates for the second-order finite difference scheme are
presented for two test problems.

Test 1. American put option with parameters: 𝑇 = 1, 𝑟 = 0.1,
𝜎
1
= 0.4, 𝜎

2
= 0.5, 𝜌 = 0.5, 𝑥min = − ln(30), 𝑥max = ln(30),

𝑦min = − ln(40), 𝑦max = ln(40), 𝛼
1
= 0.3, 𝛼

2
= 0.7, and 𝐸 =

10.

Test 2. American put option with parameters: 𝑇 = 1, 𝑟 =

0.08, 𝜎
1
= 0.3, 𝜎

2
= 0.4, 𝜌 = −0.6, 𝑥min = − ln(30), 𝑥max =

ln(30), 𝑦min = − ln(40), 𝑦max = ln(40), 𝛼
1
= 0.3, 𝛼

2
= 0.7, and

𝐸 = 10.
To solve the linear inequality system (13), we use the

projection scheme used in [32, page 433]. Since mesh steps
need to satisfy conditions (14) and (15), we choose the number
of mesh steps in the 𝑦 direction

𝑀 = [
(2

𝜌
 𝜎1/𝜎2 + 2𝜎

1
/
𝜌
 𝜎2)𝑁

2 (𝑥max − 𝑥min)
] , (38)
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Table 1: Numerical results for Test 1.

K N Error Rate

128

6 1.8124𝑒 − 1 —
12 5.1852𝑒 − 2 1.805
24 1.4761𝑒 − 2 1.813
48 4.1312𝑒 − 3 1.837

Table 2: Numerical results for Test 2.

K N Error Rate

128

6 1.2256𝑒 − 1 —
12 3.3776𝑒 − 2 1.859
24 9.2571𝑒 − 3 1.867
48 2.5124𝑒 − 3 1.882

where 𝑁 is the number of mesh steps in the 𝑥 direction.
The exact solutions of the test problems are not available.
Therefore, we use the double mesh principle to estimate the
errors and compute the experiment convergence rates in our
computed solution. We measure the accuracy in the discrete
maximum norm

𝑒
𝑁,𝑀,𝐾

= max
𝑖,𝑗,𝑘


𝑈
𝑁,𝑀,𝐾

𝑖,𝑗,𝑘
− 𝑈
2𝑁,2𝑀,𝐾

𝑖,𝑗,𝑘


, (39)

and the convergence rate

𝑅
𝑁,𝑀,𝐾

= log
2
(

𝑒
𝑁,𝑀,𝐾

𝑒2𝑁,2𝑀,𝐾
) . (40)

The error estimates and convergence rates in our com-
puted solutions of Tests 1 and 2 are listed in Tables 1 and 2,
respectively. From Tables 1 and 2, we see that 𝑒𝑁,𝑀,𝐾/𝑒2𝑁,2𝑀,𝐾
is close to 4 for sufficiently large 𝐾, which supports the
convergence estimate of Theorem 3. However, the numerical
results of Nielsen et al. [24] and Zhang et al. [25] verify that
their schemes are only first-order convergent. Hence, our
scheme is more accurate.
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This paper reviews some of the promising doors that functional analysis techniques have recently opened in the field of electronic
circuit simulation. Because of the modulated nature of radio frequency (RF) signals, the corresponding electronic circuits seem
to operate in a slow time scale for the aperiodic information and another, much faster, time scale for the periodic carrier. This
apparentmultirate behavior can be appropriately described using partial differential equations (PDEs)within a bivariate framework,
which can be solved in an efficient way using hybrid time-frequency techniques. With these techniques, the aperiodic information
dimension is treated in the discrete time domain, while the periodic carrier dimension is processed in the frequency domain, in
which the solution is evaluated within a space of harmonically related sinusoidal functions. The objective of this paper is thus to
provide a general overview on the most important hybrid time-frequency techniques, as the ones found in commercial tools or the
ones recently published in the literature.

1. Introduction

Numerical simulation plays an important role in electronics,
helping engineers to verify correctness and debug circuits
during their design, and so avoiding breadboarding and phys-
ical prototyping. The advantages of numerical simulation
are especially significant in integrated circuits design, where
manufacturing is expensive and probing internal nodes is
difficult or prohibitive.

Circuit simulation has emerged in the early 1970’s,
and many numerical techniques have been developed and
improved along the years. Radio frequency (RF) and
microwave system design is a field that was an important
driver for numerical simulation development, and continues
to be so nowadays. Indeed, computing the solution of some
current electronic circuits, as is the case of modern wireless
communication systems, is still today a hot topic. In effect,
serious difficulties arise when these nonlinear systems are
highly heterogeneous circuits operating in multiple time
scales. Current examples of these are wireless RF integrated

circuits (RFICs), or systems-on-a-chip (SoC), combining RF,
baseband analog, and digital blocks in the same the circuit.

Signals handed by wireless communication systems can
usually be described by a high frequency RF carrier modu-
lated by some kind of slowly varying baseband information
signal. Hence, the analysis of any statistically relevant infor-
mation time frame requires the processing of thousands or
millions of time points of the composite modulated signal,
turning any conventional numerical integration of the cir-
cuit’s system of ordinary differential equations (ODEs) highly
inefficient, or even impractical. However, if the waveforms
produced by the circuit are not excessively demanding on
the number of harmonics for a convenient frequency-domain
representation, this class of problems can be efficiently
simulated with hybrid time-frequency techniques. Handling
the response to the slowly varying baseband information
signal in the conventional time step by time-step basis,
but representing the reaction to the periodic RF carrier
as a small set of Fourier components (a harmonic balance
algorithm for computing the steady-state response to the
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carrier) new circuit simulators are taking an enormous profit
from functional analysis techniques. But, beyond overcoming
the signals’ time-scale disparity, one of the recently proposed
hybrid time-frequency techniques is also able to deal with
highly heterogeneous RF circuits in an efficient way, by
applying different numerical strategies to state variables in
different parts (blocks) of the circuits.

2. Theoretical Background Material

2.1. Mathematical Model of an Electronic Circuit. The behav-
ior of an electronic circuit can be described with a system
of equations involving voltages, currents, charges, and fluxes.
This system of equations can be constructed from a circuit
description using, for example, nodal analysis, which involves
applying the Kirchhoff current law to each node in the circuit,
and applying the constitutive or branch equations to each
circuit element. Systems generated this way have, in general,
the following form

p (y (𝑡)) +
𝑑q (y (𝑡))

𝑑𝑡
= x (𝑡) , (1)

where x(𝑡) ∈ R𝑛 and y(𝑡) ∈ R𝑛 stand for the excitation
(independent voltage or current sources) and state variable
(node voltages and branch currents) vectors, respectively. p :

R𝑛 → R𝑛 stands for all linear or nonlinear elements, as
resistors, nonlinear voltage-controlled current sources, and
so forth, while q : R𝑛 → R𝑛 models dynamic linear or
nonlinear elements, as capacitors (represented as linear or
nonlinear voltage-dependent electric charges), or inductors
(represented as linear or nonlinear current-dependent mag-
netic fluxes).

The system of (1) is, in general, a differential alge-
braic equations’ (DAE) system, which represents the general
mathematical formulation of lumped problems. However,
as reviewed in [1], this DAE circuit model formulation
could even be extended to include linear distributed ele-
ments. For that, these are substituted, one-by-one, by their
lumped-element equivalent circuit models or are replaced,
as whole sub-circuits, by reduced order models derived
from their frequency-domain characteristics whenever larger
distributed linear networks are dealt with.

The substitution of distributed devices by lumped-
equivalent models is especially reasonable when the size of
the circuit elements is small in comparison to the wave-
lengths, as is the case of most emerging RF technologies (e.g.,
new systems on chip (SoCs), or systems in package (SiPs),
integrating digital high-speed CMOS baseband processing
and RFCMOS hardware).

2.2. Steady-State Simulation. The most natural way of sim-
ulating an electronic circuit is to numerically time-step
integrate, in time domain, the ordinary differential system
describing its operation. This straightforward technique was
used in the first digital computer programs of circuit analysis
and is still widely used nowadays. It is the core of all
SPICE (which means simulation program with integrated
circuit emphasis) [2] or SPICE-like computer programs.

The dilemma is that these tools focus on transient analysis,
and sometimes electronics designers, as is the case of RF
and microwave designers, are not interested in the circuits’
transient response, but, instead, in their steady-state regimes.
This is because certain aspects of circuits’ performance are
better characterized, or simply only defined, in steady-state
(e.g., distortion, noise, power, gain, impedance, etc.). Time-
step integration engines, as linear multistep methods, or
Runge-Kutta methods, which were tailored for finding the
circuit’s transient response, are not adequate for computing
the steady-state because they have to pass through the lengthy
process of integrating all transients and expecting them
to vanish. In circuits presenting extremely different time
constants, or high Q resonances, as is typically the case of
RF and microwave circuits, time-step integration can be very
inefficient. Indeed, in such cases, frequencies in steady-state
response are much higher than the rate at which the circuit
approaches steady-state or the ratio between the highest and
the lowest frequency is very large. Thus, the number of
discretization time steps used by the numerical integration
scheme will be enormous because the time interval over
which the differential equations must be numerically inte-
grated is set by the lowest frequency or by how long the circuit
takes to achieve steady-state, while the size of the time steps
is constrained by the highest frequency component.

It must be noted that there are several different kinds of
steady-state behavior that may be of interest. The first one is
DC steady-state. Here, the solution does not vary with time.
Stable linear circuits driven by sinusoidal sourcesmay exhibit
a sinusoidal steady-state regime, which is characterized as
being purely sinusoidal except, possibly, for some DC offset.
If the steady-state response of a circuit consists of generic
waveforms presenting a common period, then the circuit is
said to be in a periodic steady-state. Directly computing the
periodic steady-state response of an electronic circuit, with-
out having to first integrate its transient response, involves
finding the initial condition, y(𝑡

0
), for the differential system

that describe the circuit’s operation, such that the solution at
the end of one period matches the initial condition, that is,
y(𝑡
0
) = y(𝑡

0
+ 𝑇), where 𝑇 is the period. Problems of this

form, those of finding the solution to a system of ordinary
differential equations that satisfies constraints at two or more
distinct points in time, are referred to as boundary value
problems. In this particular case, we have a periodic boundary
value problem that can be formulated as

p (y (𝑡)) +
𝑑q (y (𝑡))

𝑑𝑡
= x (𝑡) , y (𝑡

0
) = y (𝑡

0
+ 𝑇) ,

𝑡
0

≤ 𝑡 ≤ 𝑡
0

+ 𝑇, y (𝑡) ∈ R
𝑛
,

(2)

where the condition y(𝑡
0
) = y(𝑡

0
+𝑇) is known as the periodic

boundary condition.
In the following, we will focus our attention to the most

widely used technique for computing the periodic steady-
state solution of RF and microwave electronic circuits: the
harmonic balance method [3–5].

2.3. Harmonic Balance. Harmonic balance (HB) is a mature
computer steady-state simulation tool that operates in the
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frequency domain [3]. Frequency-domain methods differ
from time-domain steady-state techniques in the way that,
instead of representingwaveforms as a collection of time sam-
ples, they represent them using coefficients of sinusoids in
trigonometric series. The main advantage of the trigonomet-
ric series approach is that the steady-state solution can often
be represented accurately with a small number of terms. For
example, if the circuit is linear and its inputs are all sinusoidal
of the same frequency, only two terms (magnitude and phase)
of the trigonometric series will represent the solution exactly,
whereas an approximate time-domain solutionwould require
a much larger number of sample points.

Another advantage of operating directly in the frequency-
domain is that linear dynamic operations, like differentiation
or integration, are converted into simple algebraic operations,
such as multiplying or dividing by frequency, respectively.
For example, when analyzing linear time-invariant circuit
devices, the coefficients of the response are easily evaluated
by exploiting superposition within phasor analysis [6]. Com-
puting the response of nonlinear devices is obviously more
difficult than for linear devices, in part because superposition
no longer applies, and also because, in general, the coefficients
of the response cannot be computed directly from the coeffi-
cients of the stimulus. Nevertheless, in the case of moderate
nonlinearities, the steady-state solution is typically achieved
muchmore easily in frequency-domain than in time-domain
simulators.

HB handles the circuit, its excitation and its state variables
in the frequency domain, which is the format normally
adopted by RF designers. Because of that, it also benefits
from allowing the direct inclusion of distributed devices
(like dispersive transmission lines) or other circuit ele-
ments described by frequency-domain measurement data,
for which we cannot find an exact time-domain representa-
tion.

In order to provide a brief and illustrative explanation of
the conventional HB theory, let us start by considering again
the boundary value problem of (2), describing the periodic
steady-state regime of an electronic circuit. For simplicity,
let us momentarily suppose that we are dealing with a scalar
problem, that is, that we have a simple circuit described with
a unique state variable 𝑦(𝑡), and that this circuit is driven by
a single source 𝑥(𝑡), verifying the periodic condition 𝑥(𝑡) =

𝑥(𝑡 + 𝑇). Since the steady-state response of the circuit will
be also periodic with period 𝑇, both the excitation and the
steady-state solution can be expressed as the Fourier series

𝑥 (𝑡) =

+∞

∑

𝑘=−∞

𝑋
𝑘
𝑒
𝑗𝑘𝜔
0
𝑡
, 𝑦 (𝑡) =

+∞

∑

𝑘=−∞

𝑌
𝑘
𝑒
𝑗𝑘𝜔
0
𝑡
, (3)

where 𝜔
0

= 2𝜋/𝑇 is the fundamental frequency. By
substituting (3) into (2), and adopting a convenient harmonic
truncation at some order 𝑘 = 𝐾, we will obtain

𝑝 (

+𝐾

∑

𝑘=−𝐾

𝑌
𝑘
𝑒
𝑗𝑘𝜔
0
𝑡
) +

𝑑

𝑑𝑡
[𝑞 (

+𝐾

∑

𝑘=−𝐾

𝑌
𝑘
𝑒
𝑗𝑘𝜔
0
𝑡
)]=

+𝐾

∑

𝑘=−𝐾

𝑋
𝑘
𝑒
𝑗𝑘𝜔
0
𝑡
.

(4)

The HB method consists in converting this differen-
tial system into the frequency domain, in way to obtain

an algebraic system of 2𝐾 + 1 equations, in which the
unknowns are the Fourier coefficients 𝑌

𝑘
. It must be noted

that since 𝑝 and 𝑞 are, in general, nonlinear functions, it
is not possible to directly compute the Fourier coefficients
𝑌
𝑘
in this system. In fact, we only know a priori the trivial

solution 𝑦(𝑡) = 0 for 𝑥(𝑡) = 0. So, we can possibly guess an
initial estimate to 𝑦(𝑡) and then adopt an iterative procedure
to compute the steady-state response of the circuit. For that,
we use a first-order Taylor-series expansion, in which each
initial expansion point corresponds to the previous iterated
solution. Indeed, we expand the left hand side of the DAE
system in (2) to obtain

𝑝 (𝑦
[𝑟]

(𝑡)) +

𝑑𝑞 (𝑦
[𝑟]

(𝑡))

𝑑𝑡

+
𝑑𝑝 (𝑦)

𝑑𝑦

𝑦=𝑦[𝑟]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑔(𝑦[𝑟])

[𝑦
[𝑟+1]

(𝑡) − 𝑦
[𝑟]

(𝑡)]

+
𝑑

𝑑𝑡

𝑑𝑞 (𝑦)

𝑑𝑦

𝑦=𝑦[𝑟]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑐(𝑦[𝑟])

[𝑦
[𝑟+1]

(𝑡) − 𝑦
[𝑟]

(𝑡)] = 𝑥 (𝑡) ,

(5)

which results in

𝑝 (

𝐾

∑

𝑘=−𝐾

𝑌
[𝑟]

𝑘
𝑒
𝑗𝑘𝜔
0
𝑡
) +

𝑑

𝑑𝑡
[𝑞 (

𝐾

∑

𝑘=−𝐾

𝑌
[𝑟]

𝑘
𝑒
𝑗𝑘𝜔
0
𝑡
)]

+ 𝑔 (

𝐾

∑

𝑘=−𝐾

𝑌
[𝑟]

𝑘
𝑒
𝑗𝑘𝜔
0
𝑡
) [

𝐾

∑

𝑘=−𝐾

(𝑌
[𝑟+1]

𝑘
− 𝑌
[𝑟]

𝑘
) 𝑒
𝑗𝑘𝜔
0
𝑡
]

+
𝑑

𝑑𝑡
[𝑐 (

𝐾

∑

𝑘=−𝐾

𝑌
[𝑟]

𝑘
𝑒
𝑗𝑘𝜔
0
𝑡
) [

𝐾

∑

𝑘=−𝐾

(𝑌
[𝑟+1]

𝑘
− 𝑌
[𝑟]

𝑘
) 𝑒
𝑗𝑘𝜔
0
𝑡
]]

=

𝐾

∑

𝑘=−𝐾

𝑋
𝑘
𝑒
𝑗𝑘𝜔
0
𝑡
.

(6)

The difficulty now arising in solving (6) is that we
want to transform this system entirely into the frequency
domain, but we do not know how to compute the Fourier
coefficients of 𝑝(⋅), 𝑞(⋅), 𝑔(⋅), and 𝑐(⋅) at each iteration 𝑟.
So, one possible way to do that consists of computing each
of these nonlinear functions in the time domain and then
calculate their Fourier coefficients. Therefore, according to
the properties of the Fourier transform, the time-domain
products 𝑔(𝑦

[𝑟]
) ⋅ [𝑦
[𝑟+1]

(𝑡) − 𝑦
[𝑟]

(𝑡)] and 𝑐(𝑦
[𝑟]

) ⋅ [𝑦
[𝑟+1]

(𝑡) −

𝑦
[𝑟]

(𝑡)] will become spectral convolutions, which can be
represented as matrix-vector products using the conversion
matrix formulation [5, 7]. This way, and because of the
orthogonality of the Fourier series, (6) can be expressed in
the form

P[𝑟] + 𝑗ΩQ[𝑟] + G[𝑟] [Y[𝑟+1] − Y[𝑟]]

+ 𝑗ΩC[𝑟] [Y[𝑟+1] − Y[𝑟]] = X,

(7)
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where

Y =

[
[
[
[
[
[
[

[

𝑌
−𝐾

...
𝑌
0

...
𝑌
𝐾

]
]
]
]
]
]
]

]

, X =

[
[
[
[
[
[
[

[

𝑋
−𝐾

...
𝑋
0

...
𝑋
𝐾

]
]
]
]
]
]
]

]

,

𝑗Ω = diag (−𝑗𝐾𝜔
0
, . . . , 0, . . . , 𝑗𝐾𝜔

0
) .

(8)

In (7), P and Q are vectors containing the Fourier
coefficients of 𝑝(𝑦(𝑡)) and 𝑞(𝑦(𝑡)), respectively, and G and C
denote the (2𝐾+1)× (2𝐾+1) conversion matrices (Toeplitz)
[5, 7] corresponding to 𝑔(𝑦(𝑡)) and 𝑐(𝑦(𝑡)). If we rewrite (7)
as

P[𝑟] + 𝑗ΩQ[𝑟] − X⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

F(Y[𝑟])

+
[
[

[

G[𝑟] + 𝑗ΩC[𝑟]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

J(Y[𝑟])

]
]

]

[Y[𝑟+1] − Y[𝑟]] = 0,

(9)

we can obtain

F (Y[𝑟]) +
𝑑F (Y)

𝑑Y

Y=Y[𝑟]
[Y[𝑟+1] − Y[𝑟]] = 0, (10)

in which

F (Y) = P (Y) + 𝑗ΩQ (Y) − X = 0 (11)

is known as the harmonic balance equation, and the (2𝐾+1)×

(2𝐾 + 1) composite conversion matrix

J (Y) =
𝑑F (Y)

𝑑Y
= G (Y) + 𝑗ΩC (Y) (12)

is known as the Jacobian matrix of the error function F(Y).
The iterative procedure of (5)–(12) is the so-called

harmonic-Newton algorithm. In order to achieve the final
solution of the problem, we have to do the following
operations at each iteration 𝑟: (i) perform inverse Fourier
transformation to obtain 𝑦

[𝑟]
(𝑡) from Y[𝑟]; (ii) evaluate

𝑝(𝑦
[𝑟]

(𝑡)), 𝑞(𝑦
[𝑟]

(𝑡)), 𝑔(𝑦
[𝑟]

(𝑡)), and 𝑐(𝑦
[𝑟]

(𝑡)) in time domain;
(iii) calculate their Fourier coefficients to obtain P(Y[𝑟]),
Q(Y[𝑟]),G(Y[𝑟]), andC(Y[𝑟]), and thusF(Y[𝑟]) and J(Y[𝑟]); (iv)
solve the linear system of (2𝐾 + 1) algebraic equations of (10)
to compute the next estimate Y[𝑟+1]. Consecutive iterations
will be conducted until a final solution Y[𝑓] satisfies the HB
equation of (11) with a desired accuracy, that is, until


F (Y[𝑓]) =


P (Y[𝑓]) + 𝑗ΩQ (Y[𝑓]) − X

< tol, (13)

where tol is an allowed error ceiling and ‖F(⋅)‖ stands for
some norm of the error function F(⋅).

Since in a digital computer, both time and frequency
domains are represented by discrete quantities, the
mathematical tools used to perform Fourier and inverse
Fourier transformations are, respectively, the discrete
Fourier transform (DFT) and the inverse discrete Fourier

transform (IDFT) or their fast algorithms, the fast Fourier
transform (FFT) and the inverse fast Fourier transform
(IFFT).

The system of (10) is typically a sparse linear system in the
case of a generic circuit with 𝑛 state variables. In general, sev-
eral methods can be used to solve this system, such as direct
solvers, sparse solvers, or iterative solvers. However, for very
large systems, iterative solvers are usually preferred. Krylov
subspace techniques [8] are a class of iterative methods for
solving sparse linear systems of equations. An advantage
of Krylov techniques is that (10) does not need to be fully
solved in each iteration. The iterative process needs only to
proceed until Y[𝑟+1] − Y[𝑟] is such that Y[𝑟+1] decreases the
error function. This approach to the solution, called inexact
Newton, can provide significantly improved efficiency. Today,
there is a general consensus that a technique called the
generalized minimum residual (GMRES) [9] is the preferred
one among the many available Krylov subspace techniques,
for harmonic-balance analysis [10–12].

The generalization of the above described harmonic-
Newton algorithm to the case of a generic electronic circuit
with 𝑛 state variables is obviously straightforward. Indeed, in
such case we will simply have

Y = [Y
1

𝑇
,Y
2

𝑇
, . . . ,Y

𝑛

𝑇
]
𝑇

, (14)

where each one of the Y
𝑣
, 𝑣 = 1, . . . , 𝑛, is a (2𝐾+1)× 1 vector

containing the Fourier coefficients of the corresponding state
variable 𝑦

𝑣
(𝑡). The 𝑗Ωmatrix will be defined as

𝑗Ω = diag(−𝑗𝐾𝜔
0
, . . . , 𝑗𝐾𝜔

0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑣=1

,

−𝑗𝐾𝜔
0
, . . . , 𝑗𝐾𝜔

0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑣=2

, . . . , −𝑗𝐾𝜔
0
, . . . , 𝑗𝐾𝜔

0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑣=𝑛

) ,

(15)

and the Jacobian matrix J(Y) = 𝑑F(Y)/𝑑Y will have a
block structure, consisting of an 𝑛 × 𝑛 matrix of square
submatrices (blocks), each of one with dimension (2𝐾 + 1).
Each block contains information on the sensitivity of changes
in a component of the error function F(Y), resulting from
changes in a component ofY.The general block of row𝑚 and
column 𝑙 can be expressed as

𝑑F
𝑚

(Y)

𝑑Y
𝑙

=
𝑑P
𝑚

(Y)

𝑑Y
𝑙

+ 𝑗Ω
𝑑Q
𝑚

(Y)

𝑑Y
𝑙

, (16)

where 𝑑P
𝑚

(Y)/𝑑Y
𝑙
and 𝑑Q

𝑚
(Y)/𝑑Y

𝑙
denote, respectively, the

Toeplitz conversionmatrices [7] of the vectors containing the
Fourier coefficients of𝑑𝑝

𝑚
(𝑦(𝑡))/𝑑𝑦

𝑙
(𝑡) and𝑑𝑞

𝑚
(𝑦(𝑡))/𝑑𝑦

𝑙
(𝑡).

3. Hybrid Time-Frequency Simulation

3.1. Modulated Signals. Signals containing components that
vary at two ormorewidely separated rates are usually referred
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to as multirate signals and have a special incidence in RF
and microwave applications, such as mixers (up/down con-
verters), modulators, demodulators, power amplifiers, and so
forth. Multirate signals can appear in RF systems due to the
existence of excitation regimes of widely separated time scales
(e.g., baseband stimuli and high frequency local oscillators)
or because the stimuli can be, themselves, multirate signals
(e.g., circuits driven by modulated signals). The general form
of an amplitude and phase-modulated signal can be defined
as

𝑥 (𝑡) = 𝑒 (𝑡) cos (𝜔
𝐶
𝑡 + 𝜙 (𝑡)) , (17)

where 𝑒(𝑡) and 𝜙(𝑡) are, respectively, the amplitude, or enve-
lope, and phase slowly varying baseband signals, modulating
the cos(𝜔

𝐶
𝑡) fast-varying carrier. Circuits driven by this

kind of signals, or presenting themselves state variables of
this type, are common in RF and microwave applications.
Since the baseband signals have a spectral content of much
lower frequency than the carrier, that is, because they are
typically slowly varying signals while the carrier is a fast-
varying entity, simulating nonlinear circuits containing this
kind of signals is often a very challenging issue. Because
the aperiodic nature of the signals obviates the use of any
steady-state technique, one might think that conventional
time-step integration would be the natural method for
simulating such circuits. However, the large time constants
of the bias networks determine long transient regimes and,
as a result, the obligation of simulating a large number
of carrier periods. In addition, computing the RF carrier
oscillations long enough to obtain information about its
envelope and phase properties is, itself, a colossal task.
Time-step integration is thus inadequate for simulating this
kind of problems because it is computationally expensive or
prohibitive.

3.2. Hybrid Time-Frequency ETHB Technique. The envelope
transient harmonic balance (ETHB) [13–16] is a hybrid time-
frequency technique thatwas conceived to overcome the inef-
ficiency revealed by SPICE-like engines (time-step integra-
tion schemes) when simulating circuits driven by modulated
signals or presenting state variables of this type. It consists in
calculating the response of the circuit to the baseband and the
carrier by treating the envelope and phase in the time domain
and the carrier in the frequency domain. For that, it assumes
that the envelope and phase baseband signals are extremely
slow when compared to the carrier, so that they can be con-
sidered as practically constant during many carrier periods.
Taking this into account, ETHB samples the baseband signals
in an appropriately slow time rate and assumes a staircase
version of both amplitude and phase, which will conduct to
a new modulated version of these signals. The steady-state
response of the circuit to this new modulated version is then
computed at each time step with the frequency-domain HB
engine.

In order to provide a very brief theoretical description of
the ETHB technique, let us suppose that we have a circuit

driven by a single source of the form of 𝑥(𝑡) in (17). If we
rewrite 𝑥(𝑡) as

𝑥 (𝑡) = 𝑒 (𝑡)

1

∑

𝑘=−1

𝐴
𝑘
𝑒
𝑗𝑘[𝜔
𝐶
𝑡+𝜙(𝑡)]

=

1

∑

𝑘=−1

𝑒 (𝑡) 𝐴
𝑘
𝑒
𝑗𝑘𝜙(𝑡)

𝑒
𝑗𝑘𝜔
𝐶
𝑡

=

1

∑

𝑘=−1

𝑋
𝑘
(𝑡) 𝑒
𝑗𝑘𝜔
𝐶
𝑡

(18)

and assume that the circuit is stable, then all its state variables
can be expressed as time-varying Fourier series

𝑦 (𝑡) = ∑

𝑘

𝑌
𝑘
(𝑡) 𝑒
𝑗𝑘𝜔
𝐶
𝑡
, (19)

where 𝑌
𝑘
(𝑡) represents the time-varying Fourier coefficients

of 𝑦(𝑡), which are slowly varying in the baseband time scale.
Now, if we take into consideration the disparity between the
baseband and the carrier time scales and assume that they are
also uncorrelated, which is normally the case, then we can
rewrite (17) and (19) as

𝑥 (𝑡
𝐸
, 𝑡
𝐶
) = 𝑒 (𝑡

𝐸
) cos (𝜔

𝐶
𝑡
𝐶

+ 𝜙 (𝑡
𝐸
)) , (20)

𝑦 (𝑡
𝐸
, 𝑡
𝐶
) = ∑

𝑘

𝑌
𝑘
(𝑡
𝐸
) 𝑒
𝑗𝑘𝜔
𝐶
𝑡
𝐶 , (21)

where 𝑡
𝐸
is the slow baseband time scale and 𝑡

𝐶
is the fast

carrier time scale. Then, if we discretize the slow baseband
time scale using a grid of successive time instants 𝑡

𝐸,𝑖
and

adopt a convenient harmonic truncation at some order 𝑘 =

𝐾, we will obtain for each 𝑡
𝐸,𝑖

a periodic boundary value
problem that can be solved in the frequency domain withHB.
In order to compute the whole response of the circuit, a set of
successive HB equations of the form

F (Y (𝑡
𝐸,𝑖

)) = P (Y (𝑡
𝐸,𝑖

)) + 𝑗ΩQ (Y (𝑡
𝐸,𝑖

)) − X (𝑡
𝐸,𝑖

) = 0

(22)

has to be solved, in which X(𝑡
𝐸,𝑖

) and Y(𝑡
𝐸,𝑖

) represent the
vectors containing the time-varying Fourier coefficients of
the excitation and the solution, respectively.

Two different ways can be conceived to evidence the
system’s dynamics to the time-varying envelope, depending
on whether the circuit’s elements’ constitutive relations are
described in the frequency domain or they can be formulated
in the time domain.

In one possibility, we rely on the frequency-domain
description of each of the constitutive elements, and so of the
entire system represented in (22). Assuming that the envelope
time evolution is much slower than that of the carrier, we
no longer consider that each harmonic component of the
carrier occupies a single frequency (constant amplitude and
phase carrier) but spreads through its vicinity (slowly varying
amplitude and phasemodulation). For example, any dynamic
linear component whose frequency-domain representation is

𝑄 (𝑌 (𝜔)) = 𝐻 (𝜔) 𝑌 (𝜔) (23)
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can be approximated by a Taylor series (or any other polyno-
mial or rational function) in the vicinity of each of the carrier
harmonics, 𝑘𝜔

𝐶
, that is, 𝜔 = 𝑘𝜔

𝐶
+ 𝜛, where 𝜛 is a slight

frequency perturbation, as

𝐻 (𝜔) − 𝐻 (𝑘𝜔
𝐶
)

≃
𝑑𝐻 (𝜔)

𝑑𝜔

𝜔=𝑘𝜔
𝐶

𝜛

+
1

2!

𝑑𝐻
2
(𝜔)

𝑑𝜔2

𝜔=𝑘𝜔
𝐶

𝜛
2

+
1

3!

𝑑𝐻
3
(𝜔)

𝑑𝜔3

𝜔=𝑘𝜔
𝐶

𝜛
3

+ ⋅ ⋅ ⋅

= 𝐻
1
(𝑘𝜔
𝐶
) 𝜛 + 𝐻

2
(𝑘𝜔
𝐶
) 𝜛
2

+ 𝐻
3
(𝑘𝜔
𝐶
) 𝜛
3

+ ⋅ ⋅ ⋅

= �̃�
𝑘
(𝜛) ,

(24)

which leads to

𝑄 (�̃�
𝑘
(𝜛 = 𝜔 − 𝑘𝜔

𝐶
))

= �̃�
𝑘
(𝜛) �̃�
𝑘
(𝜛)

≃ 𝐻
1
(𝑘𝜔
𝐶
) 𝜛�̃�
𝑘
(𝜛) + 𝐻

2
(𝑘𝜔
𝐶
) 𝜛
2
�̃�
𝑘
(𝜛)

+ 𝐻
3
(𝑘𝜔
𝐶
) 𝜛
3
�̃�
𝑘
(𝜛) + ⋅ ⋅ ⋅

≃
1

𝑗
𝑗𝜛𝐻
1
(𝑘𝜔
𝐶
) �̃�
𝑘
(𝜛) +

1

𝑗2
(𝑗𝜛)
2

𝐻
2
(𝑘𝜔
𝐶
) �̃�
𝑘
(𝜛)

+
1

𝑗3
(𝑗𝜛)
3

𝐻
3
(𝑘𝜔
𝐶
) �̃�
𝑘
(𝜛) + ⋅ ⋅ ⋅ ,

(25)

with �̃� and �̃� being the low-pass equivalent of𝐻 and𝑌. Since
𝐻
𝑚

(𝑘𝜔
𝐶
)/𝑗
𝑚 is a constant, and (𝑗𝜛)

𝑚
�̃�
𝑘
(𝜛) can be interpreted

as the m’th order derivative of the time-domain 𝑌
𝑘
(𝑡
𝐸
) with

respect to time 𝑡
𝐸
, (25) can be rewriten as

𝑄 (𝑌
𝑘
(𝑡
𝐸
)) ≃

𝐻
1
(𝑘𝜔
𝐶
)

𝑗

𝑑𝑌
𝑘
(𝑡
𝐸
)

𝑑𝑡
𝐸

+
𝐻
2
(𝑘𝜔
𝐶
)

𝑗2

𝑑
2
𝑌
𝑘
(𝑡
𝐸
)

𝑑𝑡
2

𝐸

+
𝐻
3
(𝑘𝜔
𝐶
)

𝑗3

𝑑
3
𝑌
𝑘
(𝑡
𝐸
)

𝑑𝑡
3

𝐸

+ ⋅ ⋅ ⋅ ,

(26)

which, substituted in (22), would evidence the desired sys-
tem’s dynamics to the amplitude and phase modulations.
Therefore, the ETHB technique consists in the transient
simulation, in an envelope time-step by time step basis,
𝑡
𝐸,𝑖

, 𝑡
𝐸,𝑖+1

, . . ., of the harmonic balance equation of (22).
This formulation of ETHB is, nowadays, a mature tech-

nique in the RF simulation community. However, its basic
assumption constitutes also its major drawback. By requiring
the envelope and phase to be extremely slowly varying
signals when compared to the carrier frequency, this mixed
frequency-time technique becomes restricted to circuits
whose stimuli occupy only a small fraction of the available
bandwidth.

In an alternative ETHB formulation,we assume that every
element can be described in the time domain. Hence, we

can substitute the time-varying Fourier description of (21)
into (1) and then treat the carrier time, 𝑡

𝐶
, in the frequency

domain—converting the DAE system into an algebraic one—
but keeping the envelope time, 𝑡

𝐸
, in the time domain. This

way, we obtain another hybrid time-frequency description of
the system that no longer suffers from the narrow bandwidth
restriction just mentioned and whose formulation and solu-
tion will be discussed in more detail in Section 3.4.

3.3. Multivariate Formulation. We will now introduce a
powerful strategy for analyzing nonlinear circuits handling
amplitude and/or phase modulated signals, as with any other
kind of multirate signals. This strategy consists in using
multiple time variables to describe the multirate behavior,
and it is based on the fact that multirate signals can be repre-
sented much more efficiently if they are defined as functions
of two or more time variables, that is, if they are defined
as multivariate functions [17, 18]. With this multivariate
formulation, circuits will be no longer described by ordinary
differential algebraic equations in the one-dimensional time
𝑡 but, instead, by partial differential algebraic systems.

Let us consider the amplitude and phase-modulated
signal of (17), and let us define its bivariate form as

𝑥 (𝑡
1
, 𝑡
2
) = 𝑒 (𝑡

1
) cos (𝜔

𝐶
𝑡
2

+ 𝜙 (𝑡
1
)) , (27)

where 𝑡
1
is the slow envelope time scale and 𝑡

2
is the fast

carrier time scale. As can be seen, 𝑥(𝑡
1
, 𝑡
2
) is a periodic

function with respect to 𝑡
2
but not to 𝑡

1
, that is,

𝑥 (𝑡
1
, 𝑡
2
) = 𝑥 (𝑡

1
, 𝑡
2

+ 𝑇
2
) , 𝑇

2
=

2𝜋

𝜔
𝐶

, (28)

and, in general, this bivariate form requires far fewer points
to represent numerically the original signal, especially when
the 𝑡
1
and 𝑡
2
time scales are widely separated [17, 18].

Let us now consider the differential algebraic equations’
(DAEs) system of (1), describing the behavior of a generic
RF circuit driven by the envelope-modulated signal of (17).
Taking the above considerations into account, we will adopt
the following procedure: for the slowly varying parts (enve-
lope time scale) of the expressions of vectors x(𝑡) and y(𝑡), 𝑡
is replaced by 𝑡

1
; for the fast-varying parts (RF carrier time

scale), 𝑡 is replaced by 𝑡
2
. The application of this bivariate

strategy to theDAE systemof (1) converts it into the following
multirate partial differential algebraic equations’ (MPDAEs)
system [17, 18]:

p (ŷ (𝑡
1
, 𝑡
2
)) +

𝜕q (ŷ (𝑡
1
, 𝑡
2
))

𝜕𝑡
1

+
𝜕q (ŷ (𝑡

1
, 𝑡
2
))

𝜕𝑡
2

= x̂ (𝑡
1
, 𝑡
2
) .

(29)

The mathematical relation between (1) and (29) establishes
that if x̂(𝑡

1
, 𝑡
2
) and ŷ(𝑡

1
, 𝑡
2
) satisfy (29), then the univariate

forms x(𝑡) = x̂(𝑡, 𝑡) and y(𝑡) = ŷ(𝑡, 𝑡) satisfy (1) [18].Therefore,
the univariate solutions of (1) are available on diagonal lines
𝑡
1

= 𝑡, 𝑡
2

= 𝑡, along the bivariate solutions of (29), that is, y(𝑡)
may be retrieved from its bivariate form ŷ(𝑡

1
, 𝑡
2
), by simply

setting 𝑡
1

= 𝑡
2

= 𝑡. Consequently, if one wants to obtain the
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univariate solution in a generic [0, 𝑡Final] interval due to the
periodicity of the problem in the 𝑡

2
dimension we will have

y (𝑡) = ŷ (𝑡, 𝑡 mod 𝑇
2
) (30)

on the rectangular domain [0, 𝑡Final] × [0, 𝑇
2
], where 𝑡 mod

𝑇
2
represents the remainder of division of 𝑡 by 𝑇

2
. The

main advantage of this MPDAE approach is that it can
result in significant improvements in simulation speed when
compared to DAE-based alternatives [17–20].

Envelope-modulated responses to excitations of the form
of (17) correspond to a combination of initial and periodic
boundary conditions for the MPDAE. This means that the
bivariate forms of these solutions can be obtained by numer-
ically solving the following initial-boundary value problem
[18]

p (ŷ (𝑡
1
, 𝑡
2
)) +

𝜕q (ŷ (𝑡
1
, 𝑡
2
))

𝜕𝑡
1

+
𝜕q (ŷ (𝑡

1
, 𝑡
2
))

𝜕𝑡
2

= x̂ (𝑡
1
, 𝑡
2
) ,

ŷ (0, 𝑡
2
) = g (𝑡

2
) ,

ŷ (𝑡
1
, 0) = ŷ (𝑡

1
, 𝑇
2
) ,

(31)

on the rectangle [0, 𝑡Final] × [0, 𝑇
2
]. g(⋅) is a given initial-

condition function defined on [0, 𝑇
2
], satisfying g(0) =

g(𝑇
2
) = y(0), and the periodic boundary condition ŷ(𝑡

1
, 0) =

ŷ(𝑡
1
, 𝑇
2
) is due to the periodicity of the problem in the 𝑡

2

fast carrier time scale. The reason why bivariate envelope-
modulated solutions do not need to be evaluated on the entire
[0, 𝑡Final] × [0, 𝑡Final] domain (which would be computation-
ally very expensive and would turn the multivariate strategy
useless), and are restricted to the rectangle [0, 𝑡Final] × [0, 𝑇

2
],

is because the solutions repeat along the 𝑡
2
time axis.

3.4. Multitime Envelope Transient Harmonic Balance. Mul-
titime envelope transient harmonic balance is an improved
version of the previously described ETHB technique, which is
based on the multivariate formulation [21, 22]. For achieving
an intuitive explanation of the multitime envelope transient
harmonic balance let us consider the initial-boundary value
problem of (31), and let us also consider the semidiscretiza-
tion of the rectangular domain [0, 𝑡Final]×[0, 𝑇

2
] in the 𝑡

1
slow

time dimension defined by the grid

0 = 𝑡
1,0

< 𝑡
1,1

< ⋅ ⋅ ⋅ < 𝑡
1,𝑖−1

< 𝑡
1,𝑖

< ⋅ ⋅ ⋅ < 𝑡
1,𝐾
1

= 𝑡Final,

ℎ
1,𝑖

= 𝑡
1,𝑖

− 𝑡
1,𝑖−1

,

(32)

where 𝐾
1
is the total number of steps in 𝑡

1
. If we replace

the derivatives of the MPDAE in 𝑡
1
with a finite-differences

approximation (e.g., the Backward Euler rule), thenwe obtain
for each slow time instant 𝑡

1,𝑖
, from 𝑖 = 1 to 𝑖 = 𝐾

1
, the

periodic boundary value problem defined by

p (ŷ
𝑖
(𝑡
2
)) +

q (ŷ
𝑖
(𝑡
2
)) − q (ŷ

𝑖−1
(𝑡
2
))

ℎ
1,𝑖

+
𝑑q (ŷ
𝑖
(𝑡
2
))

𝑑𝑡
2

= x̂ (𝑡
1,𝑖

, 𝑡
2
) ,

ŷ
𝑖
(0) = ŷ

𝑖
(𝑇
2
) ,

(33)

where ŷ
𝑖
(𝑡
2
) ≃ ŷ(𝑡

1,𝑖
, 𝑡
2
). This means that, once ŷ

𝑖−1
(𝑡
2
) is

known, the solution on the next slow time instant, ŷ
𝑖
(𝑡
2
),

is obtained by solving (33). Thus, for obtaining the whole
solution ŷ in the entire domain [0, 𝑡Final] × [0, 𝑇

2
], a total

of 𝐾
1
boundary value problems have to be solved. With

multitime ETHB, each one of these periodic boundary value
problems is solved using the harmonic balance method. The
correspondingHB system for each slow time instant 𝑡

1,𝑖
is the

𝑛 × (2𝐾 + 1) algebraic equations set given by

P (Ŷ (𝑡
1,𝑖

)) +

Q (Ŷ (𝑡
1,𝑖

)) − Q (Ŷ (𝑡
1,𝑖−1

))

ℎ
1,𝑖

+ 𝑗ΩQ (Ŷ (𝑡
1,𝑖

))

= X̂ (𝑡
1,𝑖

) ,

(34)

where X̂(𝑡
1,𝑖

) and Ŷ(𝑡
1,𝑖

) are the vectors containing the Fourier
coefficients of the excitation sources and of the solution (the
state variables), respectively, at 𝑡

1
= 𝑡
1,𝑖
. P(⋅) and Q(⋅) are

unknown functions, 𝑗Ω is the diagonal matrix (15), and the
Ŷ(𝑡
1,𝑖

) vector can be expressed as

Ŷ (𝑡
1,𝑖

) = [Ŷ
1
(𝑡
1,𝑖

)
𝑇

, Ŷ
2
(𝑡
1,𝑖

)
𝑇

, . . . , Ŷ
𝑛
(𝑡
1,𝑖

)
𝑇

]
𝑇

, (35)

where each one of the state variable frequency components,
Ŷ
𝑣
(𝑡
1,𝑖

), 𝑣 = 1, . . . , 𝑛, is a (2𝐾 + 1) × 1 vector defined as

Ŷ
𝑣
(𝑡
1,𝑖

) = [𝑌
𝑣,−𝐾

(𝑡
1,𝑖

) , . . . , 𝑌
𝑣,0

(𝑡
1,𝑖

) , . . . , 𝑌
𝑣,𝐾

(𝑡
1,𝑖

)]
𝑇

. (36)

As seen in Section 2.3, since p(⋅) and q(⋅) are in general
nonlinear functions, one possible way to compute P(⋅) and
Q(⋅) in (34) consists in evaluating p(⋅) and q(⋅) in the time
domain and then calculate its Fourier coefficients. The HB
system of (34) can be rewriten as

F (Ŷ (𝑡
1,𝑖

)) = P (Ŷ (𝑡
1,𝑖

)) +

Q (Ŷ (𝑡
1,𝑖

)) − Q (Ŷ (𝑡
1,𝑖−1

))

ℎ
1,𝑖

+ 𝑗ΩQ (Ŷ (𝑡
1,𝑖

)) − X̂ (𝑡
1,𝑖

) = 0,

(37)

or, in its simplified form, as

F (Ŷ (𝑡
1,𝑖

)) = 0, (38)

in which F(Ŷ(𝑡
1,𝑖

)) is the error function at 𝑡
1

= 𝑡
1,𝑖
. In order

to solve the nonlinear algebraic system of (38) a Newton-
Raphson iterative solver is usually used. In this case, the
Newton-Raphson algorithm conducts us to

F (Ŷ[𝑟] (𝑡
1,𝑖

))

+

𝑑F (Ŷ (𝑡
1,𝑖

))

𝑑Ŷ (𝑡
1,𝑖

)

Ŷ(𝑡
1,𝑖
)=Ŷ[𝑟](𝑡

1,𝑖
)

[Ŷ[𝑟+1] (𝑡
1,𝑖

) − Ŷ[𝑟] (𝑡
1,𝑖

)]=0,

(39)
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which means that at each iteration 𝑟, we have to solve a
linear system of 𝑛 × (2𝐾 + 1) equations to compute the
new estimate Ŷ[𝑟+1](𝑡

1,𝑖
). Consecutive Newton iterations will

be computed until a desired accuracy is achieved, that is,
until ‖F(Ŷ(𝑡

1,𝑖
))‖ < tol, where tol is the allowed error

ceiling.
The system of (39) involves the derivative of the vector

F(Ŷ(𝑡
1,𝑖

)), with respect to the vector Ŷ(𝑡
1,𝑖

). The result is a
matrix, the so-called Jacobian of F(Ŷ(𝑡

1,𝑖
)),

J (Ŷ (𝑡
1,𝑖

))

=

𝑑F (Ŷ (𝑡
1,𝑖

))

𝑑Ŷ (𝑡
1,𝑖

)

=

[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝑑F
1
(Ŷ (𝑡
1,𝑖

))

𝑑Ŷ
1
(𝑡
1,𝑖

)

𝑑F
1
(Ŷ (𝑡
1,𝑖

))

𝑑Ŷ
2
(𝑡
1,𝑖

)
⋅ ⋅ ⋅

𝑑F
1
(Ŷ (𝑡
1,𝑖

))

𝑑Ŷ
𝑛
(𝑡
1,𝑖

)

𝑑F
2
(Ŷ (𝑡
1,𝑖

))

𝑑Ŷ
1
(𝑡
1,𝑖

)

𝑑F
2
(Ŷ (𝑡
1,𝑖

))

𝑑Ŷ
2
(𝑡
1,𝑖

)
⋅ ⋅ ⋅

𝑑F
2
(Ŷ (𝑡
1,𝑖

))

𝑑Ŷ
𝑛
(𝑡
1,𝑖

)

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

𝑑F
𝑛
(Ŷ (𝑡
1,𝑖

))

𝑑Ŷ
1
(𝑡
1,𝑖

)

𝑑F
𝑛
(Ŷ (𝑡
1,𝑖

))

𝑑Ŷ
2
(𝑡
1,𝑖

)
⋅ ⋅ ⋅

𝑑F
𝑛
(Ŷ (𝑡
1,𝑖

))

𝑑Ŷ
𝑛
(𝑡
1,𝑖

)

]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

.

(40)

In the same way as in Section 2.3, this matrix has a block
structure, consisting of an 𝑛 × 𝑛 matrix of square subma-
trices (blocks), each one with dimension (2𝐾 + 1). The
general block of row 𝑚 and column 𝑙 can now be expressed
as

𝑑F
𝑚

(Ŷ (𝑡
1,𝑖

))

𝑑Ŷ
𝑙
(𝑡
1,𝑖

)
=

𝑑P
𝑚

(Ŷ (𝑡
1,𝑖

))

𝑑Ŷ
𝑙
(𝑡
1,𝑖

)
+

1

ℎ
1.𝑖

𝑑Q
𝑚

(Ŷ (𝑡
1,𝑖

))

𝑑Ŷ
𝑙
(𝑡
1,𝑖

)

+ 𝑗Ω

𝑑Q
𝑚

(Ŷ (𝑡
1,𝑖

))

𝑑Ŷ
𝑙
(𝑡
1,𝑖

)
.

(41)

In summary, multitime ETHB handles the solution
dependence on 𝑡

2
in frequency domain, while treating the

course of the solution to 𝑡
1
in time domain. So, it is a

hybrid time-frequency technique which is similar to the
ETHB engine previously reported in Section 3.2. However,
an important advantage of multitime ETHB over conven-
tional ETHB is that it does not suffer from bandwidth
limitations [21]. For example, in circuits driven by enve-
lope modulated signals, the only restriction that has to
be imposed is that the modulating signal and the carrier
must not be correlated in time (which is typically the
case).

4. Advanced Hybrid Time-Frequency
Simulation

One limitation of the ETHB and multitime ETHB engines
is that they do not perform any distinction between nodes
or blocks within the circuit, that is to say that they treat
all the circuit’s state variables in the same way. Thus, if
the circuit evidences some heterogeneity, as is the case of
modern wireless architectures combining radio frequency,
baseband analog, and digital blocks in the same circuit,
these tools cannot benefit from such feature. To overcome
this difficulty an innovative mixed mode time-frequency
technique was recently proposed by the authors [23, 24].
This technique splits the circuit’s state variables (node
voltages and mesh currents) into fast and slowly varying
subsets, treating the former with multitime ETHB and
the later with a SPICE-like engine (a time-step integration
scheme). This way, the strong nonlinearities of the circuit
are appropriately evaluated in the time domain, while the
moderate ones are computed in the frequency domain [23,
24].

4.1. Time-Domain Latency within the Multivariate Formu-
lation. In order to provide an illustrative explanation of
the issues under discussion in this section, let us start by
considering an RF circuit in which some of its state variables
(node voltages and branch currents) are fast carrier envelope-
modulated waveforms, while the remaining state variables
are slowly varying aperiodic signals. For concreteness, let us
suppose that the signals

𝑦
1
(𝑡) =

𝐾

∑

𝑘=−𝐾

𝑌
𝑘
(𝑡) 𝑒
𝑗𝑘𝜔
𝐶
𝑡
,

𝑦
2
(𝑡) = 𝑒 (𝑡)

(42)

are two distinct state variables in different parts of the
circuit. 𝑌

𝑘
(𝑡) represents the Fourier coefficients of 𝑦

1
(𝑡),

which are slowly varying in the baseband time scale, 𝜔
𝐶
is

the carrier frequency, and 𝑒(𝑡) is a slowly varying aperiodic
baseband function. We will denote signals of the form of
𝑦
1
(𝑡) as active and signals of the form of 𝑦

2
(𝑡) as latent.

The latency revealed by 𝑦
2
(𝑡) indicates that this variable

belongs to a circuit block where there are no fluctuations
dictated by the fast carrier. Consequently, due to its slowness,
it can be represented efficiently with much less sample points
than 𝑦

1
(𝑡). On the other hand, since it does not evidence

any periodicity, it cannot be processed with harmonic bal-
ance. On the contrary, if the number of harmonics K is
not too large, the fast carrier oscillation components of
𝑦
1
(𝑡) can be efficiently computed in the frequency domain.

Therefore, it is straightforward to conclude that if we want
to simulate circuits having such signal format disparities
in an efficient way, distinct numerical strategies will be
required.
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Figure 1: Simplified resistive FET mixer used in wireless transmit-
ters.

Let us now consider the bivariate forms of 𝑦
1
(𝑡) and 𝑦

2
(𝑡)

denoted by 𝑦
1
(𝑡
1
, 𝑡
2
) and 𝑦

2
(𝑡
1
, 𝑡
2
) and defined as

𝑦
1
(𝑡
1
, 𝑡
2
) =

𝐾

∑

𝑘=−𝐾

𝑌
𝑘
(𝑡
1
) 𝑒
𝑗𝑘𝜔
𝐶
𝑡
2 ,

𝑦
2
(𝑡
1
, 𝑡
2
) = 𝑒 (𝑡

1
) ,

(43)

where 𝑡
1
and 𝑡

2
are, respectively, the slow envelope time

dimension and the fast carrier time dimension. As we can see,
𝑦
2
(𝑡
1
, 𝑡
2
) has no dependence on 𝑡

2
, so it has no fluctuations

in the fast time axis. In fact, it is so because 𝑦
2
(𝑡) does

not oscillate at the carrier frequency. Consequently, for each
slow time instant 𝑡

1,𝑖
defined on the grid of (32), while

𝑦
1
(𝑡
1,𝑖

, 𝑡
2
) is a waveform that has to be represented by a

certain quantity 𝑘 = −𝐾, . . . , 𝐾 of harmonic components,
𝑦
2
(𝑡
1,𝑖

, 𝑡
2
) is merely a constant (DC) signal that can be simply

represented by the 𝑘 = 0 component. Therefore, there is
no necessity to perform the conversion between time and
frequency domains for 𝑦

2
(𝑡
1,𝑖

, 𝑡
2
), which means that this

state variable can be processed in a purely time-domain
scheme.

4.2.MixedMode Time-Frequency Technique. In the above, we
illustrated that bivariate forms of latent state variables have
no undulations in the 𝑡

2
fast time scale. So, while active state

variables have to be represented by a set of (2𝐾+1) harmonic
components arranged in vectors of the form of (36), latent
state variables can be represented as scalar quantities, that
is,

Ŷ
𝑣
(𝑡
1,𝑖

) = 𝑌
𝑣,0

(𝑡
1,𝑖

) = 𝑦
𝑣
(𝑡
1,𝑖

) . (44)

By considering this, it is straightforward to conclude
that the size of the Ŷ(𝑡

1,𝑖
) vector defined by (35) can be

considerably reduced, as can be the total number of equations
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Figure 2: RFpolar transmitterwith a hybrid envelope amplifier [23].

in the HB system of (37). An additional and crucial detail is
that there is no longer obligation to perform the conversion
between time and frequency domains for the latent state
variables expressed in the form of (44), as well as for the
components of F(Ŷ(𝑡

1,𝑖
)) corresponding to latent blocks of

the circuit. Since the 𝑘 = 0 order Fourier coefficient 𝑌
𝑣,0

(𝑡
1,𝑖

)

is exactly the same as the constant 𝑡
2
time value 𝑦

𝑣
(𝑡
1,𝑖

), the
use of the discrete Fourier transform (DFT) and the inverse
discrete Fourier transform (IDFT)—or their fast algorithms,
that is, the fast Fourier transform (FFT) and the inverse
fast Fourier transform (IFFT)—will be required only for
components in the HB system of (37) having dependence
on active state variables. Significant Jacobian matrix size
reductions will be achieved, too. In effect, by taking into
consideration this multirate characteristic (the subset circuit
latency), some of the blocks of (40) will be merely 1×1 scalar
elements that contain dc information on the sensitivity of
changes in components of F(Ŷ(𝑡

1,𝑖
)) resulting from changes

in latent components of Ŷ(𝑡
1,𝑖

).
With this strategy of partitioning the circuit into active

and latent subcircuits (blocks), significant computation and
memory savings can be achieved when finding the solution
of (37). Indeed, with the state variable Ŷ(𝑡

1,𝑖
) and the error

function F(Ŷ(𝑡
1,𝑖

)) vector size reductions, as also the resulting
Jacobian J(Ŷ(𝑡

1,𝑖
))matrix size reduction, it is possible to avoid

dealing with large linear systems in the iterations of (39).
Thus, a less computationally expensive Newton-Raphson
iterative solver is required.
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Table 1: Computation times—resistive FET mixer.

Simulation time interval Mixed mode time-frequency
technique Multitime ETHB Speedup (approx.)

[0, 0.5𝜇s] 2.1 s 4.6 s 2.2
[0, 5.0𝜇s] 19.3 s 42.5 s 2.2

Table 2: Computation times—RF polar transmitter.

Simulation time interval Mixed mode time-frequency
technique Multitime ETHB Speedup (approx.)

[0, 0.5𝜇s] 3.2 s 51.5 s 16.1
[0, 5.0𝜇s] 25.3 s 484.6 s 19.2

5. Performance of the Methods

The performance and the efficiency of the ETHB and mul-
titime ETHB techniques were already attested and recog-
nized by the RF and microwave community. In the same
way, the performance and the efficiency of the advanced
hybrid technique described in the previous section (the
mixed mode time-frequency simulation technique) were
also already demonstrated through its application to several
illustrative examples of practical relevance. Indeed, electronic
circuits with distinct configurations and levels of complexity
were especially selected to illustrate the significant gains in
computational speed that can be achieved when simulating
the circuits with this method [23, 24]. Nevertheless, in order
to provide the reader with a realistic idea of the potential of
this recently proposed technique, we included in this section
a brief comparison between this method and the previous
state-of-the-artmultitime ETHB. For that, we considered two
distinct circuits: the resistive FET mixer depicted in Figure 1
and the RF polar transmitter described in [23] and depicted
in Figure 2.

The circuits were simulated in MATLAB with the mixed
mode time-frequency simulation technique versus the mul-
titime ETHB. In our experiments a dynamic step size control
tool was used in the 𝑡

1
slow time scale, andwe considered𝐾 =

9 as the maximum harmonic order for the HB evaluations.
Numerical computation times (in seconds) for simulations in
the [0, 0.5𝜇s] and [0, 5.0 𝜇s] intervals are presented in Tables
1 and 2.

As we can see, speedups of approximately 2 times were
obtained for the simulation of the resistive FET mixer, and
speedups ofmore than one order ofmagnitude were obtained
for the RF polar transmitter. These efficiency gains were
achieved without compromising accuracy. Indeed, for both
cases, the maximum discrepancy between solutions (for all
the circuits’ state variables) was on the order of 10−8.

The choice of these two circuits, which have different
levels of complexity, was to illustrate how the computational
efficiency is more evident as the ratio between the number
of active and latent state variables is increased. In the first
example, this ratio is 1, whereas in the second one this ratio is
4.5.

6. Conclusion

Although significant advancement has been made in RF and
microwave circuit simulation along the years, the use of
more elaborate functional analysis techniques has kept this
subject a hot topic of scientific and practical engineering
interest. Indeed, emergingwireless communication technolo-
gies continuously bring new challenges to this scientific field,
as is now the case of heterogeneous RF circuits containing
state variables of distinct formats and running on widely
separated time scales. Taking into account the popularity of
HB, but mostly ETHB, in the RF and microwave community,
in this paper we have briefly reviewed the use of some
functional analysis methods to address numerical simulation
challenges using hybrid time-frequency techniques. A com-
parison between two state-of-the-art hybrid techniques in
terms of computational speed is also included to evidence
the efficiency gains that can be achieved by partitioning
heterogeneous circuits into blocks, treating latent blocks in
a one-dimensional space, and active ones in a bidimensional
space.
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We present a stable �nite difference scheme on a piecewise uniform mesh along with a penalty method for pricing American put
options under Kou’s jump-diffusion model. By adding a penalty term, the partial integrodifferential complementarity problem
arising from pricing American put options under Kou’s jump-diffusion model is transformed into a nonlinear parabolic integro-
differential equation.en a�nite difference scheme is proposed to solve the penalized integrodifferential equation,which combines
a central difference scheme on a piecewise uniformmesh with respect to the spatial variable with an implicit-explicit time stepping
technique. is leads to the solution of problems with a tridiagonal M-matrix. It is proved that the difference scheme satis�es the
early exercise constraint. Furthermore, it is proved that the scheme is oscillation-free and is second-order convergent with respect
to the spatial variable. e numerical results support the theoretical results.

1. Introduction

It is widely recognized that the assumption of log-normal
stock diffusion with constant volatility in the standard Black-
Scholes model [1] of option pricing is not ideally consistent
with that of the market price movement. In particular, the
probability distribution of realized asset returns oen exhibits
features that are not taken into account by the standard Black-
Scholes model: heavy tails, volatility clustering, and volatility
smile [2]. In order to explain these phenomena, extensions
of the Black-Scholes model have been proposed. Generally
speaking, two different classes of models have been studied
in the �nance literature: the stochastic volatility models [3,
4] and the jump-diffusion models [2, 5]. Contrary to the
Black-Scholes model, the jump diffusion models allow for a
more realistic representation of price dynamics and greater
�exibility in modeling. During the last twenty years, research
on models with jumps has become very active. Most of such
models have been proposed; see [2] and references therein.
Here we focus on a jump-diffusion model with �nite jump
activity proposed by Kou in [6].

Unlike the standard Black-Scholes equation, the valua-
tion of options under jump-diffusionmodels requires solving

a partial integrodifferential equation. A fully implicit scheme
would lead to full matrices due to the integral term, which
makesmanymethods computationally too expensive. Several
numerical methods based on the �nite difference method
have been proposed for pricing options under jump-diffusion
models. Amin [7] gave amultinomial treemethod for pricing
options under jump-diffusion models, which is actually an
explicit type �nite difference approach. Zhang [8] and Cont
and Voltchkova [9] used implicit-explicit �nite difference
methods for pricing options under jump-diffusion models.
Andersen and Andreasen [10] and Almendral and Oosterlee
[11] proposed operator splitting methods coupled with a fast
Fourier transformation (FFT) technique for pricing options
with jump diffusion processes. d’Halluin et al. [12, 13]
developed a second-order accurate numerical method with a
�xed-point iteration method and an implicit �nite difference
scheme along with a penalty method for pricing American
options under jump diffusion processes. Toivanen et al. [14–
16] introduced a high-order front-�xing �nite difference
method and an arti�cial volatility scheme along with an
iterative method for pricing American options under jump-
diffusion models. Zhang and Wang [17, 18] proposed �tted
�nite volume schemes coupled with the Crank-�icolson time
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stepping method for pricing options under jump diffusion
processes.

It is well known that the Black-Scholes partial differ-
ential operator at 𝑥𝑥 𝑥 𝑥 is degenerative. e Black-
Scholes partial differential operator becomes a convection-
dominated operator when the volatility or the asset price
is small. Hence, numerical difficulty can be caused when
the standard methods such as the central difference and
piecewise linear �nite element methods are used to solve
those problems. A common and widely used approach by
many authors dealing with �nite difference�volume�element
methods for the Black-Scholes partial differential equaion is
to apply an Euler transformation to remove the singularity of
the differential operator when the parameters of the Black-
Scholes equation are constant or space-independent; see for
example, [2, 19]. As a result of the Euler transformation,
the transformed interval becomes (−∞,∞). However, the
truncation on the le�-hand side of the domain to arti�cially
remove the degeneracy may cause computational errors.
Furthermore, the uniform mesh on the transformed interval
will lead to the originally grid points concentrating around
𝑥𝑥 𝑥 𝑥 inappropriately. Moreover, when a problem is space-
dependent, this transformation is impossible, and thus the
Black-Scholes equation in the original form needs to be
solved [20]. e same problem also appears in the partial
integral-differential equations resulting from jump-diffusion
models [9, 11, 18].Wang [21] andAngermann andWang [22]
applied a stable �tted �nite volume method to deal with the
degeneracy and singularity of the Black-Scholes operator. In
this paper, we will present a stable �nite difference method
with a second-order convergency with respect to the spatial
variable for solving the partial integrodifferential equation
de�ned on (𝑥, +∞) for arbitrary volatility and arbitrary
interest rate.

e penaltymethodwas introduced by Zvan et al. [23] for
pricing American options with stochastic volatility by adding
a source term to the discrete equation. Nielsen et al. [24]
presented a re�nement of their work by adding a penalty term
to the continuous equation and illustrated the performance
of various numerical schemes. By adding a penalty term, the
linear complementarity problem for pricing the American
options can be transformed into a nonlinear parabolic partial
differential equation. As the solution approaches the pay-off
function at expiry, the penalty term forces the solution to stay
above it. When the solution is far from the barrier, the term is
small and thus the Black-Scholes equation is approximatively
satis�ed in this region.

In [25] we have presented a robust difference scheme
for the penalized Black-Scholes equation governing Amer-
ican put option pricing. In this paper we present a stable
�nite difference scheme on a piecewise uniform mesh along
with a power penalty method for pricing American put
options under Kou’s jump-diffusion model. By adding a
penalty term the partial integrodifferential complementarity
problem arising from pricing American put options under
Kou’s jump-diffusion model is transformed into a nonlinear
parabolic integrodifferential equation. en a �nite differ-
ence scheme is proposed to solve the penalized integrodiffer-
ential equation, which combines a central difference scheme

on a piecewise uniform mesh with respect to the spatial
variable with an implicit-explicit time stepping technique.
is leads to the solution of problems with a tridiagonal𝑀𝑀-
matrix. It is proved that the difference scheme satis�es the
early exercise constraint. Furthermore, it is proved that the
scheme is oscillation-free and is second-order convergent
with respect to the spatial variable. Numerical results support
the theoretical results.

e rest of the paper is organized as follows. In the
next section, we describe some theoretical results on the
continuous problem for pricing American put options under
Kou’s jump-diffusion model. e discretization method is
described in Section 3. In Section 4 we prove that the
difference scheme satis�es the early exercise constraint. In
Section 5, we present a stability and error analysis for the
�nite difference scheme. In Section 6, numerical experiments
are provided to support these theoretical results. Finally, a
discussion is indicated in Section 7.

2. The Continuous Problem

Let 𝑣𝑣 denote the value of an American put option with strike
price 𝐸𝐸 on the underlying asset 𝑥𝑥 and time 𝑡𝑡. It is known that
the price 𝑣𝑣 under a jump-diffusion model satis�es the follow-
ing partial integrodifferential complementarity problem [14–
17]:

𝐿𝐿𝑣𝑣 (x, 𝑡𝑡) ≥ 𝑥, 𝑥𝑥 𝑥 𝑥, 𝑡𝑡 𝑥 [𝑥, 𝑇𝑇) , (1)

𝑣𝑣 (𝑥𝑥, 𝑡𝑡) − 𝑉𝑉∗ (𝑥𝑥) ≥ 𝑥, 𝑥𝑥 𝑥 𝑥, 𝑡𝑡 𝑥 [𝑥, 𝑇𝑇] , (2)

𝐿𝐿𝑣𝑣 (𝑥𝑥, 𝑡𝑡) ⋅ 𝑣𝑣 (𝑥𝑥, 𝑡𝑡) − 𝑉𝑉∗ (𝑥𝑥) 𝑥 𝑥, 𝑥𝑥 𝑥 𝑥, 𝑡𝑡 𝑥 [𝑥, 𝑇𝑇) , (3)

𝑣𝑣 (𝑥𝑥, 𝑇𝑇) 𝑥 𝑉𝑉∗ (𝑥𝑥) , 𝑥𝑥 ≥ 𝑥, 𝑡𝑡 𝑥 𝑇𝑇, (4)

𝑣𝑣 (𝑥, 𝑡𝑡) 𝑥 𝐸𝐸, 𝑥𝑥 𝑥 𝑥, 𝑡𝑡 𝑥 [𝑥, 𝑇𝑇] , (5)

𝑣𝑣 (𝑥𝑥, 𝑡𝑡)⟶ 𝑥, 𝑥𝑥⟶ +∞, 𝑡𝑡 𝑥 [𝑥, 𝑇𝑇] , (6)

where 𝐿𝐿 denotes the partial integrodifferential operator
de�ned by

𝐿𝐿𝑣𝑣 (𝑥𝑥, 𝑡𝑡) ≡ −
𝜕𝜕𝑣𝑣
𝜕𝜕𝑡𝑡

−
1
2
𝜎𝜎2𝑥𝑥2

𝜕𝜕2𝑣𝑣
𝜕𝜕𝑥𝑥2

− (𝑟𝑟 − 𝑟𝑟𝑟𝑟) 𝑥𝑥
𝜕𝜕𝑣𝑣
𝜕𝜕𝑥𝑥

+ (𝑟𝑟 + 𝑟𝑟) 𝑣𝑣 − 𝑟𝑟𝑣𝑣
∞

𝑥
𝑣𝑣 𝑥𝑥𝑥𝑥, 𝑡𝑡 𝑓𝑓 𝑥𝑥 d𝑥𝑥,

(7)

𝑉𝑉∗(𝑥𝑥) is the �nal (payoff) condition de�ned by

𝑉𝑉∗ (𝑥𝑥) 𝑥 max {𝐸𝐸 − 𝑥𝑥, 𝑥} , (8)

𝜎𝜎 is the volatility of the underlying asset, 𝑟𝑟 is the risk free
interest rate, 𝑡𝑡 is the current time, 𝑇𝑇 is the maturity date,
and 𝑓𝑓(𝑥𝑥) is the probability function of the jump amplitude
𝑥𝑥 with the obvious properties that for all 𝑥𝑥, 𝑓𝑓(𝑥𝑥) ≥ 𝑥 and
∫∞𝑥 𝑓𝑓(𝑥𝑥)d𝑥𝑥 𝑥 1, the constant 𝑟𝑟 is given by 𝑟𝑟 𝑥 ∫∞𝑥 (𝑥𝑥 −
1)𝑓𝑓(𝑥𝑥)d𝑥𝑥. In Kou’s model, 𝑓𝑓(𝑥𝑥) is the following log-double-
exponential density

𝑓𝑓 𝑥𝑥 𝑥 
𝑞𝑞𝑞𝑞2𝑥𝑥

𝑞𝑞2−1, 𝑥𝑥 𝑦 1,
𝑝𝑝𝑞𝑞1𝑥𝑥

−𝑞𝑞1−1, 𝑥𝑥 ≥ 1,
(9)
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where 𝑝𝑝𝑝 𝑝𝑝𝑝 𝑝𝑝1 > 1 and 𝑝𝑝2 are positive constants such that
𝑝𝑝 𝑝 𝑝𝑝 𝑝 1. It can be shown that, in this case, 𝜁𝜁 𝑝 𝑝𝑝𝑝𝑝1/(𝑝𝑝1 −
1)𝑝𝑝𝑝𝑝𝑝2/(𝑝𝑝2 𝑝1)−1. When the jump rate 𝜆𝜆 is zero, the partial
integrodifferential operator reduces to the standard Black-
Scholes operator [1]. In this paper, we assume that 𝑟𝑟 − 𝜆𝜆𝜁𝜁 𝑟 𝑟.

e above linear complementarity problem (1)–(6) can
be solved by a penalty approach. Let 𝑟 < 𝜀𝜀 𝜀 1 be a small
regularization parameter and consider the following initial-
boundary value problem,

𝐿𝐿𝐿𝐿 (𝑥𝑥𝑝 𝑥𝑥) −
𝐶𝐶𝜀𝜀

𝐿𝐿 (𝑥𝑥𝑝 𝑥𝑥) 𝑝 𝜀𝜀 − 𝑝𝑝 (𝑥𝑥)
𝑝 𝑟𝑝 𝑥𝑥 > 𝑟𝑝 𝑥𝑥 𝑥 [𝑟𝑝 𝑇𝑇) 𝑝

𝐿𝐿 (𝑥𝑥𝑝 𝑇𝑇) 𝑝 𝑉𝑉∗ (𝑥𝑥) 𝑝 𝑥𝑥 𝑥 𝑟𝑝 𝑥𝑥 𝑝 𝑇𝑇𝑝

𝐿𝐿 (𝑟𝑝 𝑥𝑥) 𝑝 𝐸𝐸𝑝 𝑥𝑥 𝑝 𝑟𝑝 𝑥𝑥 𝑥 [𝑟𝑝 𝑇𝑇] 𝑝

𝐿𝐿 (𝑥𝑥𝑝 𝑥𝑥)⟶ 𝑟𝑝 𝑥𝑥⟶ 𝑝𝑥𝑝 𝑥𝑥 𝑥 [𝑟𝑝 𝑇𝑇] 𝑝
(10)

where𝐶𝐶 𝑥 𝑟𝑟𝐸𝐸𝑝𝜆𝜆𝐶𝐶max is a positive constant and 𝑝𝑝(𝑥𝑥) 𝑝 𝐸𝐸−𝑥𝑥.
By adding a penalty term

𝐶𝐶𝜀𝜀
𝐿𝐿 (𝑥𝑥𝑝 𝑥𝑥) 𝑝 𝜀𝜀 − 𝑝𝑝 (𝑥𝑥)

𝑝 (11)

the linear complementarity problem for pricing American
options can be transformed into a nonlinear parabolic
integrodifferential equation. Essentially, it is of order 𝜀𝜀
in regions where 𝐿𝐿(𝑥𝑥𝑝 𝑥𝑥) 𝑣 𝑝𝑝(𝑥𝑥), and hence the partial
integrodifferential equation is approximately satis�ed. When
𝐿𝐿(𝑥𝑥𝑝 𝑥𝑥) approaches 𝑝𝑝(𝑥𝑥), this term is approximately equal to
𝐶𝐶 assuring that the early exercise constraint is not violated.
For the continuous case, the convergence and the positivity
constraint of the penalty method have been proved in [26].
In this paper, we consider a second-order �nite difference
scheme to discretize the semilinear partial integrodifferential
equation (10) and prove that the approximate option values
generated by the scheme satis�es a discrete version of (2).

For applying the numerical method, we truncate the
domain (𝑟𝑝 𝑝𝑥) into (𝑟𝑝 𝐶𝐶max). Based on Wilmott et al.’s
estimate [19] that the upper bound of the asset price is
typically three or four times the strike price, it is reasonable
for us to set 𝐶𝐶max 𝑝 4𝐸𝐸.e boundary condition at 𝑥𝑥 𝑝 𝐶𝐶max is
chosen to be 𝐿𝐿(𝐶𝐶max𝑝 𝑥𝑥) 𝑝 𝑟. Normally, this truncation of the
domain leads to a negligible error in the value of the option
[27].

erefore, in the remaining of this paper, we will consider
the following nonlinear parabolic integrodifferential equa-
tion:

𝐿𝐿𝐿𝐿 (𝑥𝑥𝑝 𝑥𝑥) −
𝐶𝐶𝜀𝜀

𝐿𝐿 (𝑥𝑥𝑝 𝑥𝑥) 𝑝 𝜀𝜀 − 𝑝𝑝 (𝑥𝑥)
𝑝 𝑟𝑝

(𝑥𝑥𝑝 𝑥𝑥) 𝑥 𝑟𝑝 𝐶𝐶max × (𝑟𝑝 𝑇𝑇) 𝑝
(12)

𝐿𝐿 (𝑥𝑥𝑝 𝑇𝑇) 𝑝 𝑉𝑉∗ (𝑥𝑥) 𝑝 𝑥𝑥 𝑥 𝑟𝑝 𝐶𝐶max 𝑝 (13)

𝐿𝐿 (𝑟𝑝 𝑥𝑥) 𝑝 𝐸𝐸𝑝 𝐿𝐿 𝐶𝐶max𝑝 𝑥𝑥 𝑝 𝑟𝑝 𝑥𝑥 𝑥 [𝑟𝑝 𝑇𝑇] . (14)

3. Discretization

We now consider the approximation of the solution to the
semilinear partial integrodifferential equation (12)–(14) by a
central difference scheme for the spatial derivatives.

e use of central difference scheme on a uniform
mesh may produce nonphysical oscillations in the computed
solution. To overcome this oscillation, we use a piecewise
uniform meshΩ𝑁𝑁 on the space interval [𝑟𝑝 𝐶𝐶max]:

𝑥𝑥𝑖𝑖 𝑝




ℎ𝑝 𝑖𝑖 𝑝 1𝑝

ℎ 1 𝑝
𝜎𝜎2

𝑟𝑟 − 𝜆𝜆𝜁𝜁
(𝑖𝑖 − 1) 𝑝 𝑖𝑖 𝑝 2𝑝𝑖 𝑝𝑁𝑁𝑝

(15)

where

ℎ 𝑝
𝐶𝐶max

1 𝑝 𝜎𝜎2/ 𝑟𝑟 − 𝜆𝜆𝜁𝜁 (𝑁𝑁 − 1)
. (16)

For the time discretization, we use a uniform mesh Ω𝐾𝐾 on
[𝑟𝑝 𝑇𝑇] with 𝐾𝐾 mesh elements. en the piecewise uniform
mesh Ω𝑁𝑁×𝐾𝐾 on Ω 𝑝 (𝑟𝑝 𝐶𝐶max) × (𝑟𝑝 𝑇𝑇) is de�ned to be the
tensor product Ω𝑁𝑁×𝐾𝐾 𝑝 Ω𝑁𝑁 × Ω𝐾𝐾. It is easy to see that the
mesh sizes ℎ𝑖𝑖 𝑝 𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖−1 and 𝜏𝜏𝑗𝑗 𝑝 𝑥𝑥𝑗𝑗 − 𝑥𝑥𝑗𝑗−1 satisfy

ℎ𝑖𝑖 𝑝




ℎ𝑝 𝑖𝑖 𝑝 1𝑝
𝜎𝜎2

𝑟𝑟 − 𝜆𝜆𝜁𝜁
ℎ𝑝 𝑖𝑖 𝑝 2𝑝𝑖 𝑝𝑁𝑁𝑝

(17)

𝜏𝜏 𝑝 𝜏𝜏𝑗𝑗 𝑝
𝑇𝑇
𝐾𝐾
𝑝 𝑗𝑗 𝑝 1𝑝𝑖 𝑝𝐾𝐾𝑝 (18)

respectively.
e space derivatives of (12) are approximated with

central differences on the above piecewise-uniform mesh:

𝜕𝜕𝐿𝐿
𝜕𝜕𝑥𝑥

𝑥𝑥𝑖𝑖𝑝 𝑥𝑥 ≈
𝐿𝐿𝑖𝑖𝑝1 (𝑥𝑥) − 𝐿𝐿𝑖𝑖−1 (𝑥𝑥)

ℎ𝑖𝑖 𝑝 ℎ𝑖𝑖𝑝1
𝑝

𝜕𝜕2𝐿𝐿
𝜕𝜕𝑥𝑥2

𝑥𝑥𝑖𝑖𝑝 𝑥𝑥 ≈
2

ℎ𝑖𝑖 𝑝 ℎ𝑖𝑖𝑝1

𝐿𝐿𝑖𝑖𝑝1 (𝑥𝑥) − 𝐿𝐿𝑖𝑖 (𝑥𝑥)

ℎ𝑖𝑖𝑝1
−
𝐿𝐿𝑖𝑖 (𝑥𝑥) − 𝐿𝐿𝑖𝑖−1 (𝑥𝑥)

ℎ𝑖𝑖
 .

(19)

e integral term

𝐼𝐼 𝑝 
𝑥

𝑟
𝐿𝐿 𝑥𝑥𝑥𝑥𝑝 𝑥𝑥 𝑓𝑓 𝑥𝑥 d𝑥𝑥 (20)

of (12) can be approximated by a fast method as in [14–16].
By making the change of variable 𝑥𝑥 𝑝 𝑦𝑦/𝑥𝑥, we have

𝐼𝐼 𝑝 
𝑥

𝑟
𝐿𝐿 𝑥𝑥𝑥𝑥𝑝 𝑥𝑥 𝑓𝑓 𝑥𝑥 d𝑥𝑥 𝑝 

𝑥

𝑟

𝐿𝐿 (𝑦𝑦𝑝 𝑥𝑥) 𝑓𝑓 (𝑦𝑦/𝑥𝑥)
𝑥𝑥

d𝑦𝑦. (21)
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By using the linear interpolation, we can obtain an approxi-
mation

𝐼𝐼𝑖𝑖 ≈ 𝐴𝐴𝑖𝑖 (𝑡𝑡) =
𝑁𝑁𝑁𝑁

𝑛𝑛=𝑛


𝑥𝑥𝑛𝑛𝑛𝑁

𝑥𝑥𝑛𝑛

𝑥𝑥𝑛𝑛𝑛𝑁 𝑁 𝑠𝑠
ℎ𝑛𝑛𝑛𝑁

𝑣𝑣 𝑥𝑥𝑛𝑛, 𝑡𝑡

𝑛
𝑠𝑠 𝑁 𝑥𝑥𝑛𝑛
ℎ𝑛𝑛𝑛𝑁

𝑣𝑣 𝑥𝑥𝑛𝑛𝑛𝑁, 𝑡𝑡
𝑓𝑓 𝑠𝑠𝑠𝑥𝑥𝑖𝑖

𝑥𝑥𝑖𝑖
d𝑠𝑠

(22)

of 𝐼𝐼 at each mesh point 𝑥𝑥𝑖𝑖 for 𝑖𝑖 = 𝑁, 𝑖,𝑖 ,𝑁𝑁 𝑁 𝑁.
A fully implicit scheme would lead to full matrices due

to the integral term, which makes many methods compu-
tationally too expensive. Our technique is similar in some
respects to Zhang [8], though less constrained in terms of
stability restrictions. e integral term is treated explicitly
in time, while the differential terms are treated implicitly.
is leads to the solution of problems with a tridiagonal𝑀𝑀-
matrix.Wewill prove that the resulting time steppingmethod
is unconditionally stable.

Our implicit-explicit scheme to discretize the integrodif-
ferential equation (12)–(14) is

𝐿𝐿𝑁𝑁,𝑁𝑁𝑉𝑉𝑗𝑗
𝑖𝑖 𝑁

𝐶𝐶𝐶𝐶
𝑉𝑉𝑗𝑗
𝑖𝑖 𝑛 𝐶𝐶 𝑁 𝜀𝜀𝑖𝑖

= 𝑛, 𝑁 ≤ 𝑖𝑖 𝑖 𝑁𝑁, 𝑛 ≤ 𝑗𝑗 𝑖 𝑁𝑁,

(23)

𝑉𝑉𝑁𝑁
𝑖𝑖 = 𝑉𝑉∗ 𝑥𝑥𝑖𝑖 , 𝑛 ≤ 𝑖𝑖 ≤ 𝑁𝑁, (24)

𝑉𝑉𝑗𝑗
𝑛 = 𝐸𝐸, 𝑉𝑉𝑗𝑗

𝑁𝑁 = 𝑛, 𝑛 ≤ 𝑗𝑗 𝑖 𝑁𝑁, (25)

where

𝐿𝐿𝑁𝑁,𝑁𝑁𝑉𝑉𝑗𝑗
𝑖𝑖 ≡ 𝑁

𝑉𝑉𝑗𝑗𝑛𝑁
𝑖𝑖 𝑁 𝑉𝑉𝑗𝑗

𝑖𝑖
𝜏𝜏

𝑁
𝜎𝜎𝑖𝑥𝑥𝑖𝑖𝑖

ℎ𝑖𝑖 𝑛 ℎ𝑖𝑖𝑛𝑁

𝑉𝑉𝑗𝑗
𝑖𝑖𝑛𝑁 𝑁 𝑉𝑉

𝑗𝑗
𝑖𝑖

ℎ𝑖𝑖𝑛𝑁
𝑁
𝑉𝑉𝑗𝑗
𝑖𝑖 𝑁 𝑉𝑉

𝑗𝑗
𝑖𝑖𝑁𝑁

ℎ𝑖𝑖


𝑁 (𝑟𝑟 𝑁 𝑟𝑟𝑟𝑟) 𝑥𝑥𝑖𝑖
𝑉𝑉𝑗𝑗
𝑖𝑖𝑛𝑁 𝑁 𝑉𝑉

𝑗𝑗
𝑖𝑖𝑁𝑁

ℎ𝑖𝑖 𝑛 ℎ𝑖𝑖𝑛𝑁
𝑛 (𝑟𝑟 𝑛 𝑟𝑟)𝑉𝑉𝑗𝑗

𝑖𝑖 𝑁 𝑟𝑟𝐴𝐴
𝑗𝑗𝑛𝑁
𝑖𝑖 ,

𝐴𝐴𝑗𝑗𝑛𝑁
𝑖𝑖 =

𝑁𝑁𝑁𝑁

𝑛𝑛=𝑛

𝑉𝑉𝑗𝑗𝑛𝑁
𝑛𝑛 ⋅ 

𝑥𝑥𝑛𝑛𝑛𝑁

𝑥𝑥𝑛𝑛

𝑥𝑥𝑛𝑛𝑛𝑁 𝑁 𝑠𝑠
ℎ𝑛𝑛𝑛𝑁

⋅
𝑓𝑓 𝑠𝑠𝑠𝑥𝑥𝑖𝑖

𝑥𝑥𝑖𝑖
d𝑠𝑠

𝑛
𝑁𝑁𝑁𝑁

𝑛𝑛=𝑛

𝑉𝑉𝑗𝑗𝑛𝑁
𝑛𝑛𝑛𝑁 ⋅ 

𝑥𝑥𝑛𝑛𝑛𝑁

𝑥𝑥𝑛𝑛

𝑠𝑠 𝑁 𝑥𝑥𝑛𝑛
ℎ𝑛𝑛𝑛𝑁

⋅
𝑓𝑓 𝑠𝑠𝑠𝑥𝑥𝑖𝑖

𝑥𝑥𝑖𝑖
d𝑠𝑠𝑠

(26)

en from the above solution 𝑉𝑉𝑗𝑗
𝑖𝑖 , we can obtain the optimal

stopping price which is the maximum asset price such that
𝑉𝑉𝑗𝑗
𝑖𝑖 = 𝑉𝑉

∗
𝑖𝑖 for each 𝑡𝑡𝑗𝑗.

Remark. Our method can be extended to the more general
case of an in�nite-activity process, like that of the Lévy-type
models such as VG model [28] or CGMY model [29]. For
example, theAmerican put option price 𝑣𝑣 under a generalized

VG process satis�es the following partial integrodifferential
complementarity problem [30, 31]:

𝐿𝐿𝑣𝑣 (𝑥𝑥, 𝑡𝑡) ≥ 𝑛, 𝑥𝑥 𝑥 𝑛, 𝑡𝑡 𝑥 [𝑛, 𝑇𝑇) ,

𝑣𝑣 (𝑥𝑥, 𝑡𝑡) 𝑁 𝑉𝑉∗ (𝑥𝑥) ≥ 𝑛, 𝑥𝑥 𝑥 𝑛, 𝑡𝑡 𝑥 [𝑛, 𝑇𝑇] ,

𝐿𝐿𝑣𝑣 (𝑥𝑥, 𝑡𝑡) ⋅ 𝑣𝑣 (𝑥𝑥, 𝑡𝑡) 𝑁 𝑉𝑉∗ (𝑥𝑥) = 𝑛, 𝑥𝑥 𝑥 𝑛, 𝑡𝑡 𝑥 [𝑛, 𝑇𝑇) ,

𝑣𝑣 (𝑥𝑥, 𝑇𝑇) = 𝑉𝑉∗ (𝑥𝑥) , 𝑥𝑥 ≥ 𝑛, 𝑡𝑡 = 𝑇𝑇,

𝑣𝑣 (𝑛, 𝑡𝑡) = 𝐸𝐸, 𝑥𝑥 = 𝑛, 𝑡𝑡 𝑥 [𝑛, 𝑇𝑇] ,

𝑣𝑣 (𝑥𝑥, 𝑡𝑡) → 𝑛, 𝑥𝑥 → 𝑛𝑥, 𝑡𝑡 𝑥 [𝑛, 𝑇𝑇] ,
(27)

where 𝐿𝐿 denotes the partial integrodifferential operator
de�ned by

𝐿𝐿𝑣𝑣 (𝑥𝑥, 𝑡𝑡) ≡ 𝑁
𝜕𝜕𝑣𝑣
𝜕𝜕𝑡𝑡

𝑁
𝑁
𝑖
𝜎𝜎𝑖𝑥𝑥𝑖

𝜕𝜕𝑖𝑣𝑣
𝜕𝜕𝑥𝑥𝑖

𝑁 (𝑟𝑟 𝑛 𝑟𝑟) 𝑥𝑥
𝜕𝜕𝑣𝑣
𝜕𝜕𝑥𝑥

𝑛 𝑟𝑟𝑣𝑣 𝑁 
ℝ
𝑣𝑣 𝑥𝑥𝑥𝑥𝑦𝑦, 𝑡𝑡 𝑁 𝑣𝑣 (𝑥𝑥, 𝑡𝑡) 𝑔𝑔 𝑦𝑦 d𝑦𝑦,

(28)

𝑟𝑟 is some “compensation constant” given by

𝑟𝑟 = 
ℝ
𝑁 𝑁 𝑥𝑥𝑦𝑦 𝑔𝑔 𝑦𝑦 d𝑦𝑦, (29)

𝑔𝑔(𝑦𝑦) is known as the Lévy density. It is noted in Cont
and Tankov [2] and Cont and Voltchkova [9] that for the
Lévy densities (in the usual case where the density decays
exponentially for large jumps) an in�nite-activity process
can be arbitrarily well approximated by a �nite-activity
process and an adjusted volatility. Having done this, our
numerical method for the �nite-activity process can be used
to value options under in�nite-activity processes. However,
the matrix associated with a discrete operator may not be an
𝑀𝑀-matrix.

4. Positivity Constraint

In this section, we will prove that our scheme satis�es the
early exercise constraint.

Let

𝑎𝑎𝑖𝑖 =
𝜎𝜎𝑖𝑥𝑥𝑖𝑖𝑖

ℎ𝑖𝑖 𝑛 ℎ𝑖𝑖𝑛𝑁 ℎ𝑖𝑖
𝑁
(𝑟𝑟 𝑁 𝑟𝑟𝑟𝑟) 𝑥𝑥𝑖𝑖
ℎ𝑖𝑖 𝑛 ℎ𝑖𝑖𝑛𝑁

, 𝑏𝑏𝑖𝑖 =
𝜎𝜎𝑖𝑥𝑥𝑖𝑖𝑖
ℎ𝑖𝑖ℎ𝑖𝑖𝑛𝑁

,

𝑐𝑐𝑖𝑖 =
𝜎𝜎𝑖𝑥𝑥𝑖𝑖𝑖

ℎ𝑖𝑖 𝑛 ℎ𝑖𝑖𝑛𝑁 ℎ𝑖𝑖𝑛𝑁
𝑛
(𝑟𝑟 𝑁 𝑟𝑟𝑟𝑟) 𝑥𝑥𝑖𝑖
ℎ𝑖𝑖 𝑛 ℎ𝑖𝑖𝑛𝑁

, 𝑖𝑖 = 𝑁,𝑖 ,𝑁𝑁 𝑁 𝑁𝑠

(30)
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We can obtain

𝑎𝑎𝑖𝑖 >
𝜎𝜎2𝑥𝑥1𝑥𝑥𝑖𝑖

ℎ𝑖𝑖 + ℎ𝑖𝑖+1 ℎ𝑖𝑖
−
(𝑟𝑟 − 𝑟𝑟𝑟𝑟) 𝑥𝑥𝑖𝑖
ℎ𝑖𝑖 + ℎ𝑖𝑖+1

=
𝜎𝜎2𝑥𝑥1 − (𝑟𝑟 − 𝑟𝑟𝑟𝑟) ℎ𝑖𝑖
ℎ𝑖𝑖 + ℎ𝑖𝑖+1 ℎ𝑖𝑖

𝑥𝑥𝑖𝑖

=
𝜎𝜎2ℎ − (𝑟𝑟 − 𝑟𝑟𝑟𝑟) 𝜎𝜎2/ 𝑟𝑟 − 𝑟𝑟𝑟𝑟 ℎ

ℎ𝑖𝑖 + ℎ𝑖𝑖+1 ℎ𝑖𝑖
𝑥𝑥𝑖𝑖 ≥ 0, 1 < 𝑖𝑖 𝑖 𝑖𝑖 − 1,

𝑐𝑐𝑖𝑖 >
𝜎𝜎2𝑥𝑥1𝑥𝑥𝑖𝑖

ℎ𝑖𝑖 + ℎ𝑖𝑖+1 ℎ𝑖𝑖+1
+
(𝑟𝑟 − 𝑟𝑟𝑟𝑟) 𝑥𝑥𝑖𝑖
ℎ𝑖𝑖 + ℎ𝑖𝑖+1

=
𝜎𝜎2𝑥𝑥1 + (𝑟𝑟 − 𝑟𝑟𝑟𝑟) ℎ𝑖𝑖+1
ℎ𝑖𝑖 + ℎ𝑖𝑖+1 ℎ𝑖𝑖+1

𝑥𝑥𝑖𝑖

=
𝜎𝜎2ℎ + (𝑟𝑟 − 𝑟𝑟𝑟𝑟) 𝜎𝜎2/ 𝑟𝑟 − 𝑟𝑟𝑟𝑟 ℎ

ℎ𝑖𝑖 + ℎ𝑖𝑖+1 ℎ𝑖𝑖+1
𝑥𝑥𝑖𝑖 ≥ 0, 1 𝑖 𝑖𝑖 < 𝑖𝑖 − 1𝑖

(31)

eorem 1. e approximate option values generated by the
implicit-explicit difference scheme (23)–(25) satisfy

𝑉𝑉𝑗𝑗
𝑖𝑖 ≥ 𝑉𝑉

∗ 𝑥𝑥𝑖𝑖 , 𝑖𝑖, 𝑗𝑗 ∈ Ω𝑖𝑖𝑁𝑁𝑁, (32)

provided that 𝐶𝐶 ≥ 𝑟𝑟𝐶𝐶 + 𝑟𝑟𝐶𝐶max.

Proof. We apply the similar technique of [24] to give the
proof.

e schemes (23) can be written as


1
𝜏𝜏
+ 𝑏𝑏𝑖𝑖 + 𝑟𝑟 + 𝑟𝑟𝑉𝑉

𝑗𝑗
𝑖𝑖 =

1
𝜏𝜏
𝑉𝑉𝑗𝑗+1
𝑖𝑖 + 𝑎𝑎𝑖𝑖𝑉𝑉

𝑗𝑗
𝑖𝑖−1 + 𝑐𝑐𝑖𝑖𝑉𝑉

𝑗𝑗
𝑖𝑖+1

+ 𝑟𝑟𝜆𝜆𝑗𝑗+1
𝑖𝑖 +

𝐶𝐶𝐶𝐶
𝑉𝑉𝑗𝑗
𝑖𝑖 + 𝐶𝐶 − 𝜀𝜀𝑖𝑖

𝑖
(33)

e difference

𝑢𝑢𝑗𝑗𝑖𝑖 = 𝑉𝑉
𝑗𝑗
𝑖𝑖 − 𝜀𝜀𝑖𝑖 (34)

satis�es the following equation�


1
𝜏𝜏
+ 𝑏𝑏𝑖𝑖 + 𝑟𝑟 + 𝑟𝑟 𝑢𝑢

𝑗𝑗
𝑖𝑖

=
1
𝜏𝜏
𝑢𝑢𝑗𝑗+1𝑖𝑖 + 𝑎𝑎𝑖𝑖𝑢𝑢

𝑗𝑗
𝑖𝑖−1 + 𝑐𝑐𝑖𝑖𝑢𝑢

𝑗𝑗
𝑖𝑖+1 +

𝐶𝐶𝐶𝐶
𝑢𝑢𝑗𝑗𝑖𝑖 + 𝐶𝐶

+ 𝑟𝑟 (𝑟𝑟 + 1) 𝑥𝑥𝑖𝑖

− (𝑟𝑟 + 𝑟𝑟) 𝐶𝐶 + 𝑟𝑟
𝑖𝑖−1

𝑛𝑛=0

𝑢𝑢𝑗𝑗+1𝑛𝑛 ⋅ 
𝑥𝑥𝑛𝑛+1

𝑥𝑥𝑛𝑛

𝑥𝑥𝑛𝑛+1 − 𝑠𝑠
ℎ𝑛𝑛+1

⋅
𝑓𝑓 𝑠𝑠/𝑥𝑥𝑖𝑖

𝑥𝑥𝑖𝑖
d𝑠𝑠

+
𝑖𝑖−1

𝑛𝑛=0

𝑢𝑢𝑗𝑗+1𝑛𝑛+1 ⋅ 
𝑥𝑥𝑛𝑛+1

𝑥𝑥𝑛𝑛

𝑠𝑠−𝑥𝑥𝑛𝑛
ℎ𝑛𝑛+1

⋅
𝑓𝑓 𝑠𝑠/𝑥𝑥𝑖𝑖

𝑥𝑥𝑖𝑖
d𝑠𝑠

+ 𝑟𝑟
𝑖𝑖−1

𝑛𝑛=0

𝜀𝜀𝑛𝑛 ⋅ 
𝑥𝑥𝑛𝑛+1

𝑥𝑥𝑛𝑛

𝑥𝑥𝑛𝑛+1 − 𝑠𝑠
ℎ𝑛𝑛+1

⋅
𝑓𝑓 s/𝑥𝑥𝑖𝑖

𝑥𝑥𝑖𝑖
d𝑠𝑠

+
𝑖𝑖−1

𝑛𝑛=0

𝜀𝜀𝑛𝑛+1 ⋅ 
𝑥𝑥𝑛𝑛+1

𝑥𝑥𝑛𝑛

𝑠𝑠 − 𝑥𝑥𝑛𝑛
ℎ𝑛𝑛+1

⋅
𝑓𝑓 𝑠𝑠/𝑥𝑥𝑖𝑖

𝑥𝑥𝑖𝑖
d𝑠𝑠 𝑖

(35)

�ext, by de�ning

𝑢𝑢𝑗𝑗 = min
𝑖𝑖
𝑢𝑢𝑗𝑗𝑖𝑖 , (36)

let 𝑘𝑘 be an index such that

𝑢𝑢𝑗𝑗𝑘𝑘 = 𝑢𝑢
𝑗𝑗𝑖 (37)

For 𝑖𝑖 = 𝑘𝑘, it follows from (35) that


1
𝜏𝜏
+ 𝑏𝑏𝑘𝑘 + 𝑟𝑟 + 𝑟𝑟 𝑢𝑢

𝑗𝑗

≥
1
𝜏𝜏
𝑢𝑢𝑗𝑗+1𝑘𝑘 + 𝑎𝑎𝑘𝑘 + 𝑐𝑐𝑘𝑘 𝑢𝑢

𝑗𝑗 +
𝐶𝐶𝐶𝐶

𝑢𝑢𝑗𝑗 + 𝐶𝐶
+ 𝑟𝑟 (𝑟𝑟 + 1) 𝑥𝑥𝑘𝑘

− (𝑟𝑟 + 𝑟𝑟) 𝐶𝐶 + 𝑟𝑟
𝑖𝑖−1

𝑛𝑛=0

𝑢𝑢𝑗𝑗+1𝑛𝑛 ⋅ 
𝑥𝑥𝑛𝑛+1

𝑥𝑥𝑛𝑛

𝑥𝑥𝑛𝑛+1 − 𝑠𝑠
ℎ𝑛𝑛+1

⋅
𝑓𝑓 𝑠𝑠/𝑥𝑥𝑘𝑘

𝑥𝑥𝑘𝑘
d𝑠𝑠

+
𝑖𝑖−1

𝑛𝑛=0

𝑢𝑢𝑗𝑗+1𝑛𝑛+1 ⋅ 
𝑥𝑥𝑛𝑛+1

𝑥𝑥𝑛𝑛

𝑠𝑠 − 𝑥𝑥𝑛𝑛
ℎ𝑛𝑛+1

⋅
𝑓𝑓 𝑠𝑠/𝑥𝑥𝑘𝑘

𝑥𝑥𝑘𝑘
d𝑠𝑠

+ 𝑟𝑟
𝑖𝑖−1

𝑛𝑛=0

𝜀𝜀𝑛𝑛 ⋅ 
𝑥𝑥n+1

𝑥𝑥𝑛𝑛

𝑥𝑥𝑛𝑛+1 − 𝑠𝑠
ℎ𝑛𝑛+1

⋅
𝑓𝑓 𝑠𝑠/𝑥𝑥𝑘𝑘

𝑥𝑥𝑘𝑘
d𝑠𝑠

+
𝑖𝑖−1

𝑛𝑛=0

𝜀𝜀𝑛𝑛+1 ⋅ 
𝑥𝑥𝑛𝑛+1

𝑥𝑥𝑛𝑛

𝑠𝑠 − 𝑥𝑥𝑛𝑛
ℎ𝑛𝑛+1

⋅
𝑓𝑓 𝑠𝑠/𝑥𝑥𝑘𝑘

𝑥𝑥𝑘𝑘
d𝑠𝑠 ,

(38)

where we have used (31). Since

𝑖𝑖−1

𝑛𝑛=0

𝜀𝜀𝑛𝑛 ⋅ 
𝑥𝑥𝑛𝑛+1

𝑥𝑥𝑛𝑛

𝑥𝑥𝑛𝑛+1 − 𝑠𝑠
ℎ𝑛𝑛+1

⋅
𝑓𝑓 𝑠𝑠/𝑥𝑥𝑘𝑘

𝑥𝑥𝑘𝑘
d𝑠𝑠

+
𝑖𝑖−1

𝑛𝑛=0

𝜀𝜀𝑛𝑛+1 ⋅ 
𝑥𝑥𝑛𝑛+1

𝑥𝑥𝑛𝑛

𝑠𝑠 − 𝑥𝑥𝑛𝑛
ℎ𝑛𝑛+1

⋅
𝑓𝑓 𝑠𝑠/𝑥𝑥𝑘𝑘

𝑥𝑥𝑘𝑘
d𝑠𝑠

> 𝐶𝐶 − 𝐶𝐶max ⋅ 
𝑥𝑥𝑖𝑖

0

𝑓𝑓 𝑠𝑠/𝑥𝑥𝑘𝑘
𝑥𝑥𝑘𝑘

d𝑠𝑠

= 𝐶𝐶 − 𝐶𝐶max ⋅ 
𝑥𝑥𝑖𝑖/𝑥𝑥𝑘𝑘

0
𝑓𝑓 𝑦𝑦 d𝑦𝑦

≥ 𝐶𝐶 − 𝐶𝐶max,

𝑟𝑟 + 1 = 
∞

0
𝑦𝑦 − 1 𝑓𝑓 𝑦𝑦 d𝑦𝑦 + 1

= 
∞

0
𝑦𝑦𝑓𝑓 𝑦𝑦 d𝑦𝑦 > 0,

(39)
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we conclude that


1
𝜏𝜏
+ 𝑟𝑟 + 𝑟𝑟 𝑢𝑢𝑗𝑗 −

𝐶𝐶𝐶𝐶
𝑢𝑢𝑗𝑗 + 𝐶𝐶

+ 𝑟𝑟𝑟𝑟 + 𝑟𝑟𝑟𝑟max

≥
1
𝜏𝜏
𝑢𝑢𝑗𝑗+1𝑘𝑘 + 𝑟𝑟

𝑁𝑁−1

𝑛𝑛𝑛1

𝑢𝑢𝑗𝑗+1𝑛𝑛 ⋅ 
𝑥𝑥𝑛𝑛+1

𝑥𝑥𝑛𝑛

𝑥𝑥𝑛𝑛+1 − 𝑠𝑠
ℎ𝑛𝑛+1

⋅
𝑓𝑓 𝑠𝑠𝑠𝑥𝑥𝑘𝑘

𝑥𝑥𝑘𝑘
d𝑠𝑠

+
𝑁𝑁−1

𝑛𝑛𝑛1

𝑢𝑢𝑗𝑗+1𝑛𝑛+1 ⋅ 
𝑥𝑥𝑛𝑛+1

𝑥𝑥𝑛𝑛

𝑠𝑠 − 𝑥𝑥𝑛𝑛
ℎ𝑛𝑛+1

⋅
𝑓𝑓 𝑠𝑠𝑠𝑥𝑥𝑘𝑘

𝑥𝑥𝑘𝑘
d𝑠𝑠

≥
1
𝜏𝜏
𝑢𝑢𝑗𝑗+1 + 𝑟𝑟𝑢𝑢𝑗𝑗+1 

𝑁𝑁−1

𝑛𝑛𝑛1


𝑥𝑥𝑛𝑛+1

𝑥𝑥𝑛𝑛

𝑥𝑥𝑛𝑛+1 − 𝑠𝑠
ℎ𝑛𝑛+1

⋅
𝑓𝑓 𝑠𝑠𝑠𝑥𝑥𝑘𝑘

𝑥𝑥𝑘𝑘
d𝑠𝑠

+
𝑁𝑁−1

𝑛𝑛𝑛1


𝑥𝑥𝑛𝑛+1

𝑥𝑥𝑛𝑛

𝑠𝑠 − 𝑥𝑥𝑛𝑛
ℎ𝑛𝑛+1

⋅
𝑓𝑓 𝑠𝑠𝑠𝑥𝑥𝑘𝑘

𝑥𝑥𝑘𝑘
d𝑠𝑠 .

(40)

If we assume that

𝑢𝑢𝑗𝑗+1 ≥ 0, (41)

from (40) we can get

𝐹𝐹 𝑢𝑢𝑗𝑗 ≥ 0, (42)

where

𝐹𝐹 (𝑢𝑢) 𝑛 
1
𝜏𝜏
+ 𝑟𝑟 + 𝑟𝑟 𝑢𝑢 −

𝐶𝐶𝐶𝐶
𝑢𝑢 + 𝐶𝐶

+ 𝑟𝑟𝑟𝑟 + 𝑟𝑟𝑟𝑟max . (43)

Obviously,

𝐹𝐹′ (𝑢𝑢) 𝑛 
1
𝜏𝜏
+ 𝑟𝑟 + 𝑟𝑟 +

𝐶𝐶𝐶𝐶
(𝑢𝑢 + 𝐶𝐶)2

≥ 0,

𝐹𝐹 (0) 𝑛 − 𝐶𝐶 + 𝑟𝑟𝑟𝑟 + 𝑟𝑟𝑟𝑟max ≤ 0,
(44)

where we have used the assumption𝐶𝐶 ≥ (𝑟𝑟𝑟𝑟+𝑟𝑟𝑟𝑟max). Hence,
from (42) we can obtain

𝑢𝑢𝑗𝑗 ≥ 0. (45)

Consequently, by induction on 𝑗𝑗, it follows from (34) that

𝑉𝑉𝑗𝑗
𝑖𝑖 ≥ 𝑞𝑞𝑖𝑖, 0 ≤ 𝑖𝑖 ≤ 𝑁𝑁, (46)

for 𝑗𝑗 𝑛 𝑗𝑗,𝑗 , 1, 0.
Next we prove that 𝑉𝑉𝑗𝑗

𝑖𝑖 ≥ 0. As above, we de�ne

𝑉𝑉𝑗𝑗 𝑛 min
𝑖𝑖
𝑉𝑉𝑗𝑗
𝑖𝑖 , (47)

and let 𝑘𝑘 be an index such that

𝑉𝑉𝑗𝑗
𝑘𝑘 𝑛 𝑉𝑉

𝑗𝑗. (48)

For 𝑖𝑖 𝑛 𝑘𝑘, from (33) we obtain


1
𝜏𝜏
+ 𝑏𝑏𝑘𝑘 + 𝑟𝑟 + 𝑟𝑟𝑉𝑉

𝑗𝑗
𝑘𝑘 ≥

1
𝜏𝜏
𝑉𝑉𝑗𝑗+1 + 𝑎𝑎𝑘𝑘 + 𝑐𝑐𝑘𝑘𝑉𝑉

𝑗𝑗

+ 𝑟𝑟𝜆𝜆𝑗𝑗+1
𝑘𝑘 +

𝐶𝐶𝐶𝐶
𝑉𝑉𝑗𝑗
𝑘𝑘 + 𝐶𝐶 − 𝑞𝑞𝑘𝑘

.
(49)

Hence, we have


1
𝜏𝜏
+ 𝑟𝑟 + 𝑟𝑟𝑉𝑉𝑗𝑗

𝑘𝑘 ≥
1
𝜏𝜏
𝑉𝑉𝑗𝑗+1 + 𝑟𝑟𝜆𝜆𝑗𝑗+1

𝑘𝑘 +
𝐶𝐶𝐶𝐶

𝑉𝑉𝑗𝑗
𝑘𝑘 + 𝐶𝐶 − 𝑞𝑞𝑘𝑘

. (50)

Since we have proved that 𝑉𝑉𝑗𝑗
𝑖𝑖 ≥ 𝑞𝑞𝑖𝑖, we get


1
𝜏𝜏
+ 𝑟𝑟 + 𝑟𝑟𝑉𝑉𝑗𝑗

𝑘𝑘

≥
1
𝜏𝜏
𝑉𝑉𝑗𝑗+1 + 𝑟𝑟

𝑁𝑁−1

𝑛𝑛𝑛0

𝑉𝑉𝑗𝑗+1
𝑛𝑛 ⋅ 

𝑥𝑥𝑛𝑛+1

𝑥𝑥𝑛𝑛

𝑥𝑥𝑛𝑛+1 − 𝑠𝑠
ℎ𝑛𝑛+1

⋅
𝑓𝑓 𝑠𝑠𝑠𝑥𝑥𝑘𝑘

𝑥𝑥𝑘𝑘
d𝑠𝑠

+
𝑁𝑁−1

𝑛𝑛𝑛0

𝑉𝑉𝑗𝑗+1
𝑛𝑛+1 ⋅ 

𝑥𝑥𝑛𝑛+1

𝑥𝑥𝑛𝑛

𝑠𝑠 − 𝑥𝑥𝑛𝑛
ℎ𝑛𝑛+1

⋅
𝑓𝑓 𝑠𝑠𝑠𝑥𝑥𝑘𝑘

𝑥𝑥𝑘𝑘
d𝑠𝑠 .

(51)

By the above inequality. Hence, by induction on 𝑗𝑗, we can
obtain

𝑉𝑉𝑗𝑗
𝑖𝑖 ≥ 0, 𝑖𝑖, 𝑗𝑗 ∈ Ω𝑁𝑁𝑁𝑗𝑗, (52)

for 𝑗𝑗 𝑛 𝑗𝑗,𝑗 , 1, 0.
Combine (46) with (52) to complete the proof.

5. Error Estimates

To investigate the convergence of the method, note that the
error functions 𝑧𝑧𝑗𝑗𝑖𝑖 𝑛 𝑉𝑉𝑗𝑗

𝑖𝑖 − 𝑣𝑣
𝑗𝑗
𝑖𝑖 (0 ≤ 𝑖𝑖 ≤ 𝑁𝑁, 0 ≤ 𝑗𝑗 ≤ 𝑗𝑗) are the

solutions of the discrete problem

−
𝑧𝑧𝑗𝑗+1𝑖𝑖 − 𝑧𝑧𝑗𝑗𝑖𝑖

𝜏𝜏
−

𝜎𝜎2𝑥𝑥2𝑖𝑖
ℎ𝑖𝑖 + ℎ𝑖𝑖+1


𝑧𝑧𝑗𝑗𝑖𝑖+1 − 𝑧𝑧

𝑗𝑗
𝑖𝑖

ℎ𝑖𝑖+1
−
𝑧𝑧𝑗𝑗𝑖𝑖 − 𝑧𝑧

𝑗𝑗
𝑖𝑖−1

ℎ𝑖𝑖


− (𝑟𝑟 − 𝑟𝑟𝑟𝑟) 𝑥𝑥𝑖𝑖
𝑧𝑧𝑗𝑗𝑖𝑖+1 − 𝑧𝑧

𝑗𝑗
𝑖𝑖−1

ℎ𝑖𝑖 + ℎ𝑖𝑖+1

+ (𝑟𝑟 + 𝑟𝑟) 𝑧𝑧𝑗𝑗𝑖𝑖 +
𝐶𝐶𝐶𝐶

𝜉𝜉𝑗𝑗𝑖𝑖 + 𝐶𝐶 − 𝑞𝑞𝑖𝑖
2 𝑧𝑧

𝑗𝑗
𝑖𝑖

− 𝑟𝑟
𝑁𝑁−1

𝑛𝑛𝑛0

𝑧𝑧𝑗𝑗+1𝑛𝑛 ⋅ 
𝑥𝑥𝑛𝑛+1

𝑥𝑥𝑛𝑛

𝑥𝑥𝑛𝑛+1 − 𝑠𝑠
ℎ𝑛𝑛+1

⋅
𝑓𝑓 𝑠𝑠𝑠𝑥𝑥𝑖𝑖

𝑥𝑥𝑖𝑖
d𝑠𝑠

+
𝑁𝑁−1

𝑛𝑛𝑛0

𝑧𝑧𝑗𝑗+1𝑛𝑛+1 ⋅ 
𝑥𝑥𝑛𝑛+1

𝑥𝑥𝑛𝑛

𝑠𝑠 − 𝑥𝑥𝑛𝑛
ℎ𝑛𝑛+1

⋅
𝑓𝑓 𝑠𝑠𝑠𝑥𝑥𝑖𝑖

𝑥𝑥𝑖𝑖
d𝑠𝑠

𝑛 𝑅𝑅𝑗𝑗𝑖𝑖 , 1 ≤ 𝑖𝑖 𝑖 𝑁𝑁, 0 ≤ 𝑗𝑗 𝑖 𝑗𝑗,

𝑧𝑧𝑗𝑗𝑖𝑖 𝑛 0, 0 ≤ 𝑖𝑖 ≤ 𝑁𝑁,

𝑧𝑧𝑗𝑗0 𝑛 𝑧𝑧
𝑗𝑗
𝑁𝑁 𝑛 0, 0 ≤ 𝑗𝑗 𝑖 𝑗𝑗,

(53)
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where 𝜉𝜉𝑗𝑗𝑖𝑖 = 𝑣𝑣
𝑗𝑗
𝑖𝑖 + 𝜅𝜅𝜅𝜅

𝑗𝑗
𝑖𝑖 , 0 < 𝜅𝜅 < 𝜅, and

𝑅𝑅𝑗𝑗𝑖𝑖 ≡ 
𝑣𝑣𝑗𝑗+𝜅𝑖𝑖 − 𝑣𝑣𝑗𝑗𝑖𝑖

𝜏𝜏
−
𝜕𝜕𝑣𝑣
𝜕𝜕𝜕𝜕

𝑥𝑥𝑖𝑖, 𝜕𝜕𝑗𝑗

+
𝜅
2
𝜎𝜎2𝑥𝑥2𝑖𝑖 

2
ℎ𝑖𝑖 + ℎ𝑖𝑖+𝜅


𝑣𝑣𝑗𝑗𝑖𝑖+𝜅 − 𝑣𝑣

𝑗𝑗
𝑖𝑖

ℎ𝑖𝑖+𝜅
−
𝑣𝑣𝑗𝑗𝑖𝑖 − 𝑣𝑣

𝑗𝑗
𝑖𝑖−𝜅

ℎ𝑖𝑖


−
𝜕𝜕2𝑣𝑣
𝜕𝜕𝑥𝑥2

𝑥𝑥𝑖𝑖, 𝜕𝜕𝑗𝑗

+ (𝑟𝑟 − 𝑟𝑟𝑟𝑟) 𝑥𝑥𝑖𝑖 
𝑣𝑣𝑗𝑗𝑖𝑖+𝜅 − 𝑣𝑣

𝑗𝑗
𝑖𝑖−𝜅

ℎ𝑖𝑖 + ℎ𝑖𝑖+𝜅
−
𝜕𝜕𝑣𝑣
𝜕𝜕𝑥𝑥

𝑥𝑥𝑖𝑖, 𝜕𝜕𝑗𝑗

+ 𝑟𝑟
𝑁𝑁−𝜅

𝑛𝑛=0

𝑣𝑣 𝑥𝑥𝑛𝑛, 𝜕𝜕𝑗𝑗+𝜅 ⋅ 
𝑥𝑥𝑛𝑛+𝜅

𝑥𝑥𝑛𝑛

𝑥𝑥𝑛𝑛+𝜅 − 𝑠𝑠
ℎ𝑛𝑛+𝜅

⋅
𝑓𝑓 𝑠𝑠𝑠𝑥𝑥𝑖𝑖

𝑥𝑥𝑖𝑖
d𝑠𝑠

+
𝑁𝑁−𝜅

𝑛𝑛=0

𝑣𝑣 𝑥𝑥𝑛𝑛+𝜅, 𝜕𝜕𝑗𝑗+𝜅 ⋅ 
𝑥𝑥𝑛𝑛+𝜅

𝑥𝑥𝑛𝑛

𝑠𝑠 − 𝑥𝑥𝑛𝑛
ℎ𝑛𝑛+𝜅

⋅
𝑓𝑓 𝑠𝑠𝑠𝑥𝑥𝑖𝑖

𝑥𝑥𝑖𝑖
d𝑠𝑠

−
𝑆𝑆max

0
𝑣𝑣 𝑠𝑠, 𝜕𝜕𝑗𝑗

𝑓𝑓 𝑠𝑠𝑠𝑥𝑥𝑖𝑖
𝑥𝑥𝑖𝑖

d𝑠𝑠 .

(54)
Let

𝐿𝐿𝑁𝑁,𝑁𝑁𝜀𝜀 𝜅𝜅𝑗𝑗𝑖𝑖 ≡ −
𝜅𝜅𝑗𝑗+𝜅𝑖𝑖 − 𝜅𝜅𝑗𝑗𝑖𝑖

𝜏𝜏

−
𝜎𝜎2𝑥𝑥2𝑖𝑖

ℎ𝑖𝑖 + ℎ𝑖𝑖+𝜅

𝜅𝜅𝑗𝑗𝑖𝑖+𝜅 − 𝜅𝜅

𝑗𝑗
𝑖𝑖

ℎ𝑖𝑖+𝜅
−
𝜅𝜅𝑗𝑗𝑖𝑖 − 𝜅𝜅

𝑗𝑗
𝑖𝑖−𝜅

ℎ𝑖𝑖


− (𝑟𝑟 − 𝑟𝑟𝑟𝑟) 𝑥𝑥𝑖𝑖
𝜅𝜅𝑗𝑗𝑖𝑖+𝜅 − 𝜅𝜅

𝑗𝑗
𝑖𝑖−𝜅

ℎ𝑖𝑖 + ℎ𝑖𝑖+𝜅
+ (𝑟𝑟 + 𝑟𝑟) 𝜅𝜅𝑗𝑗𝑖𝑖

+
𝐶𝐶𝜀𝜀

𝜉𝜉𝑗𝑗𝑖𝑖 + 𝜀𝜀 − 𝜀𝜀𝑖𝑖
2 𝜅𝜅

𝑗𝑗
𝑖𝑖

− 𝑟𝑟
𝑁𝑁−𝜅

𝑛𝑛=0

𝜅𝜅𝑗𝑗+𝜅𝑛𝑛 ⋅ 
𝑥𝑥𝑛𝑛+𝜅

𝑥𝑥𝑛𝑛

𝑥𝑥𝑛𝑛+𝜅 − 𝑠𝑠
ℎ𝑛𝑛+𝜅

⋅
𝑓𝑓 𝑠𝑠𝑠𝑥𝑥𝑖𝑖

𝑥𝑥𝑖𝑖
d𝑠𝑠

+
𝑁𝑁−𝜅

𝑛𝑛=0

𝜅𝜅𝑗𝑗+𝜅𝑛𝑛+𝜅 ⋅ 
𝑥𝑥𝑛𝑛+𝜅

𝑥𝑥𝑛𝑛

𝑠𝑠 − 𝑥𝑥𝑛𝑛
ℎ𝑛𝑛+𝜅

⋅
𝑓𝑓 𝑠𝑠𝑠𝑥𝑥𝑖𝑖

𝑥𝑥𝑖𝑖
d𝑠𝑠 .

(55)

e operator 𝐿𝐿𝑁𝑁,𝑁𝑁𝜀𝜀 satis�es the following discrete maxi-
mum principle. Hence, the difference scheme is stable and
oscillation-free for arbitrary volatility and arbitrary interest
rate.

Lemma 2 (discrete maximum principle). e operator 𝐿𝐿𝑁𝑁,𝑁𝑁𝜀𝜀
de�ned by (55) on the piecewise uniform mesh Ω𝑁𝑁𝑁𝑁𝑁 satis�es
a discrete maximum principle; that is, if 𝑢𝑢𝑗𝑗𝑖𝑖 and 𝑤𝑤

𝑗𝑗
𝑖𝑖 are mesh

functions that satisfy 𝑢𝑢𝑗𝑗0 ≥ 𝑤𝑤𝑗𝑗
0, 𝑢𝑢

𝑗𝑗
𝑁𝑁 ≥ 𝑤𝑤𝑗𝑗

𝑁𝑁 (0 ≤ 𝑗𝑗 < 𝑁𝑁), 𝑢𝑢𝑁𝑁𝑖𝑖 ≥
𝑤𝑤𝑁𝑁
𝑖𝑖 (0 ≤ 𝑖𝑖 ≤ 𝑁𝑁), and 𝐿𝐿𝑁𝑁,𝑁𝑁𝜀𝜀 𝑢𝑢𝑗𝑗𝑖𝑖 ≥ 𝐿𝐿𝑁𝑁,𝑁𝑁𝜀𝜀 𝑤𝑤𝑗𝑗

𝑖𝑖 (𝜅 ≤ 𝑖𝑖 < 𝑁𝑁, 0 ≤ 𝑗𝑗 <
𝑁𝑁), then 𝑢𝑢𝑗𝑗𝑖𝑖 ≥ 𝑤𝑤

𝑗𝑗
𝑖𝑖 for all 𝑖𝑖, 𝑗𝑗.

Proof. e discrete operator 𝐿𝐿𝑁𝑁,𝑁𝑁𝜀𝜀 can be written as follows:

𝐿𝐿𝑁𝑁,𝑁𝑁𝜀𝜀 𝜅𝜅𝑗𝑗𝑖𝑖 = −
𝜅𝜅𝑗𝑗+𝜅𝑖𝑖 − 𝜅𝜅𝑗𝑗𝑖𝑖
𝜏𝜏𝑗𝑗+𝜅

− 𝑎𝑎𝑖𝑖𝜅𝜅
𝑗𝑗
𝑖𝑖−𝜅

+ 



𝑏𝑏𝑖𝑖 + 𝑟𝑟 + 𝑟𝑟 +
𝐶𝐶𝜀𝜀

𝜉𝜉𝑗𝑗𝑖𝑖 + 𝜀𝜀 − 𝜀𝜀𝑖𝑖
2




𝜅𝜅𝑗𝑗𝑖𝑖 − 𝑐𝑐𝑖𝑖𝜅𝜅
𝑗𝑗
𝑖𝑖+𝜅

− 𝑟𝑟
𝑁𝑁−𝜅

𝑛𝑛=0

𝜅𝜅𝑗𝑗+𝜅𝑛𝑛 ⋅ 
𝑥𝑥𝑛𝑛+𝜅

𝑥𝑥𝑛𝑛

𝑥𝑥𝑛𝑛+𝜅 − 𝑠𝑠
ℎ𝑛𝑛+𝜅

⋅
𝑓𝑓 𝑠𝑠𝑠𝑥𝑥𝑖𝑖

𝑥𝑥𝑖𝑖
d𝑠𝑠

+
𝑁𝑁−𝜅

𝑛𝑛=0

𝜅𝜅𝑗𝑗+𝜅𝑛𝑛+𝜅 ⋅ 
𝑥𝑥𝑛𝑛+𝜅

𝑥𝑥𝑛𝑛

𝑠𝑠 − 𝑥𝑥𝑛𝑛
ℎ𝑛𝑛+𝜅

⋅
𝑓𝑓 𝑠𝑠𝑠𝑥𝑥𝑖𝑖

𝑥𝑥𝑖𝑖
d𝑠𝑠 ,

(56)

where 𝑎𝑎𝑖𝑖, 𝑏𝑏𝑖𝑖, and 𝑐𝑐𝑖𝑖 are de�ned in Section 4. From (31)we have

𝑎𝑎𝑖𝑖 > 0 for 𝜅 < 𝑖𝑖 ≤ 𝑁𝑁 − 𝜅,

𝑐𝑐𝑖𝑖 > 0 for 𝜅 ≤ 𝑖𝑖 < 𝑁𝑁 − 𝜅.
(57)

Clearly,

𝑏𝑏𝑖𝑖 + 𝑟𝑟 + 𝑟𝑟 +
𝐶𝐶𝜀𝜀

𝜉𝜉𝑗𝑗𝑖𝑖 + 𝜀𝜀 − 𝜀𝜀𝑖𝑖
2 > 0 for 𝜅 ≤ 𝑖𝑖 ≤ 𝑁𝑁 − 𝜅,

𝑏𝑏𝜅 + 𝑐𝑐𝜅 > 0,

𝑎𝑎𝑖𝑖 + 𝑏𝑏𝑖𝑖 + 𝑐𝑐𝑖𝑖 > 0, 2 ≤ 𝑖𝑖 ≤ 𝑁𝑁 − 2,

𝑎𝑎𝑁𝑁−𝜅 + 𝑏𝑏𝑁𝑁−𝜅 > 0.

(58)

Furthermore, we have

𝑟𝑟 − 𝑟𝑟
𝑁𝑁−𝜅

𝑛𝑛=0


𝑥𝑥𝑛𝑛+𝜅

𝑥𝑥𝑛𝑛

𝑥𝑥𝑛𝑛+𝜅 − 𝑠𝑠
ℎ𝑛𝑛+𝜅

⋅
𝑓𝑓 𝑠𝑠𝑠𝑥𝑥𝑖𝑖

𝑥𝑥𝑖𝑖
d𝑠𝑠

+
𝑁𝑁−𝜅

𝑛𝑛=0


𝑥𝑥𝑛𝑛+𝜅

𝑥𝑥𝑛𝑛

𝑠𝑠 − 𝑥𝑥𝑛𝑛
ℎ𝑛𝑛+𝜅

⋅
𝑓𝑓 𝑠𝑠𝑠𝑥𝑥𝑖𝑖

𝑥𝑥𝑖𝑖
d𝑠𝑠

= 𝑟𝑟𝜅 − 
𝑥𝑥𝑁𝑁

0

𝑓𝑓 𝑠𝑠𝑠𝑥𝑥𝑖𝑖
𝑥𝑥𝑖𝑖

d𝑠𝑠

= 𝑟𝑟𝜅 − 
𝑥𝑥𝑁𝑁𝑠𝑥𝑥𝑖𝑖

0
𝑓𝑓 𝑦𝑦 d𝑦𝑦 > 0.

(59)

Hence, we verify that the matrix associated with 𝐿𝐿𝑁𝑁,𝑁𝑁𝜀𝜀
is an 𝑀𝑀-matrix; see for example [32]. us, by the same
argument as [33, Lemma 3.1] the result follows.

Now we can get the following error estimates.

eorem 3. Let 𝑣𝑣 be the solution of (12)–(14) and 𝑉𝑉 the
solution of the �nite di�erence scheme (23)–(25). en one has
the following error estimates,

𝑉𝑉𝑗𝑗
𝑖𝑖 − 𝑣𝑣 𝑥𝑥𝑖𝑖, 𝜕𝜕𝑗𝑗 ≤ 𝐶𝐶𝜅 𝜏𝜏 + 𝑁𝑁

−2 , 0 ≤ 𝑖𝑖 ≤ 𝑁𝑁, 0 ≤ 𝑗𝑗 ≤ 𝑁𝑁,
(60)

where 𝐶𝐶𝜅 is a positive constant independent of 𝜏𝜏 and𝑁𝑁.
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Proof. Under the regularity assumption on 𝑣𝑣, the linear
interpolation error for any 𝑠𝑠 𝑠 𝑠𝑠𝑠𝑖𝑖, 𝑠𝑠𝑖𝑖𝑖𝑖] is

𝑣𝑣 (𝑠𝑠, 𝑠𝑠) − 
𝑠𝑠𝑖𝑖𝑖𝑖 − 𝑠𝑠
ℎ𝑖𝑖𝑖𝑖

𝑣𝑣 𝑠𝑠𝑖𝑖, 𝑠𝑠 𝑖
𝑠𝑠 − 𝑠𝑠𝑖𝑖
ℎ𝑖𝑖𝑖𝑖

𝑣𝑣 𝑠𝑠𝑖𝑖𝑖𝑖, 𝑠𝑠

=
𝑖
2
𝜕𝜕2𝑣𝑣
𝜕𝜕𝑠𝑠2

𝜂𝜂, 𝑠𝑠 𝑠𝑠 − 𝑠𝑠𝑖𝑖 𝑠𝑠 − 𝑠𝑠𝑖𝑖𝑖𝑖

(61)

for some 𝜂𝜂 𝑠 𝑠𝑠𝑠𝑖𝑖, 𝑠𝑠𝑖𝑖𝑖𝑖]. us, we get

𝑣𝑣 (𝑠𝑠, 𝑠𝑠) − 
𝑠𝑠𝑖𝑖𝑖𝑖 − 𝑠𝑠
ℎ𝑖𝑖𝑖𝑖

𝑣𝑣 𝑠𝑠𝑖𝑖, 𝑠𝑠 𝑖
𝑠𝑠 − 𝑠𝑠𝑖𝑖
ℎ𝑖𝑖𝑖𝑖

𝑣𝑣 𝑠𝑠𝑖𝑖𝑖𝑖, 𝑠𝑠 ≤ 𝐶𝐶2𝑁𝑁
−2,

(62)

where𝐶𝐶2 is a positive constant independent of 𝜏𝜏 and𝑁𝑁. Using
this, we have


𝑁𝑁−𝑖

𝑛𝑛=𝑛

𝑣𝑣 𝑠𝑠𝑛𝑛, 𝑠𝑠𝑗𝑗𝑖𝑖 ⋅ 
𝑠𝑠𝑛𝑛𝑖𝑖

𝑠𝑠𝑛𝑛

𝑠𝑠𝑛𝑛𝑖𝑖 − 𝑠𝑠
ℎ𝑛𝑛𝑖𝑖

⋅
𝑓𝑓 𝑠𝑠𝑠𝑠𝑠𝑖𝑖

𝑠𝑠𝑖𝑖
d𝑠𝑠

𝑖
𝑁𝑁−𝑖

𝑛𝑛=𝑛

𝑣𝑣 𝑠𝑠𝑛𝑛𝑖𝑖, 𝑠𝑠𝑗𝑗𝑖𝑖 ⋅ 
𝑠𝑠𝑛𝑛𝑖𝑖

𝑠𝑠𝑛𝑛

𝑠𝑠 − 𝑠𝑠𝑛𝑛
ℎ𝑛𝑛𝑖𝑖

⋅
𝑓𝑓 𝑠𝑠𝑠𝑠𝑠𝑖𝑖

𝑠𝑠𝑖𝑖
d𝑠𝑠 − 

𝑆𝑆max

𝑛
𝑣𝑣 𝑠𝑠, 𝑠𝑠𝑗𝑗

𝑓𝑓 𝑠𝑠𝑠𝑠𝑠𝑖𝑖
𝑠𝑠𝑖𝑖

d𝑠𝑠

≤ 
𝑁𝑁−𝑖

𝑛𝑛=𝑛

𝑣𝑣 𝑠𝑠𝑛𝑛, 𝑠𝑠𝑗𝑗𝑖𝑖 ⋅ 
𝑠𝑠𝑛𝑛𝑖𝑖

𝑠𝑠𝑛𝑛

𝑠𝑠𝑛𝑛𝑖𝑖 − 𝑠𝑠
ℎ𝑛𝑛𝑖𝑖

⋅
𝑓𝑓 𝑠𝑠𝑠𝑠𝑠𝑖𝑖

𝑠𝑠𝑖𝑖
d𝑠𝑠

𝑖
𝑁𝑁−𝑖

𝑛𝑛=𝑛

𝑣𝑣 𝑠𝑠𝑛𝑛𝑖𝑖, 𝑠𝑠𝑗𝑗𝑖𝑖 ⋅ 
𝑠𝑠𝑛𝑛𝑖𝑖

𝑠𝑠𝑛𝑛

𝑠𝑠 − 𝑠𝑠𝑛𝑛
ℎ𝑛𝑛𝑖𝑖

⋅
𝑓𝑓 𝑠𝑠𝑠𝑠𝑠𝑖𝑖

𝑠𝑠𝑖𝑖
d𝑠𝑠 − 

𝑆𝑆max

𝑛
𝑣𝑣 𝑠𝑠, 𝑠𝑠𝑗𝑗𝑖𝑖

𝑓𝑓 𝑠𝑠𝑠𝑠𝑠𝑖𝑖
𝑠𝑠𝑖𝑖

d𝑠𝑠

𝑖 
𝑆𝑆max

𝑛
𝑣𝑣 𝑠𝑠, 𝑠𝑠𝑗𝑗𝑖𝑖 − 𝑣𝑣 𝑠𝑠, 𝑠𝑠𝑗𝑗

𝑓𝑓 𝑠𝑠𝑠𝑠𝑠𝑖𝑖
𝑠𝑠𝑖𝑖

d𝑠𝑠

≤ 𝐶𝐶2𝑁𝑁
−2 

𝑆𝑆max

𝑛

𝑓𝑓 𝑠𝑠𝑠𝑠𝑠𝑖𝑖
𝑠𝑠𝑖𝑖

d𝑠𝑠 𝑖 𝐶𝐶3𝜏𝜏
𝑆𝑆max

𝑛

𝑓𝑓 𝑠𝑠𝑠𝑠𝑠𝑖𝑖
𝑠𝑠𝑖𝑖

d𝑠𝑠

≤ 𝐶𝐶4 𝜏𝜏 𝑖 𝑁𝑁
−2

𝑆𝑆max𝑠𝑠𝑠𝑖𝑖

𝑛
𝑓𝑓 𝑦𝑦 d𝑦𝑦 ≤ 𝐶𝐶4 𝜏𝜏 𝑖 𝑁𝑁

−2 ,

(63)

where𝐶𝐶3 and𝐶𝐶4 are positive constants independent of 𝜏𝜏 and
𝑁𝑁. Hence, we use the Taylor expansion to obtain

𝑅𝑅𝑗𝑗𝑖𝑖  ≤ 𝐶𝐶5 
𝑠𝑠𝑗𝑗𝑖𝑖

𝑠𝑠𝑗𝑗

𝜕𝜕2𝑣𝑣
𝜕𝜕𝑠𝑠2

𝑠𝑠𝑖𝑖, 𝑠𝑠 d𝑠𝑠

𝑖 𝐶𝐶6ℎ
𝑠𝑠𝑖𝑖𝑖𝑖

𝑠𝑠𝑖𝑖−𝑖
𝑠𝑠2𝑖𝑖 

𝜕𝜕4𝑣𝑣
𝜕𝜕𝑠𝑠4

𝑠𝑠, 𝑠𝑠𝑗𝑗 𝑖 𝑠𝑠𝑖𝑖 
𝜕𝜕3𝑣𝑣
𝜕𝜕𝑠𝑠3

𝑠𝑠, 𝑠𝑠𝑗𝑗 d𝑠𝑠

𝑖 𝐶𝐶4 𝜏𝜏 𝑖 𝑁𝑁
−2

≤ 𝐶𝐶6 𝜏𝜏 𝑖 𝑁𝑁
−2 ,

(64)

for 𝑛 < 𝑖𝑖 < 𝑁𝑁, 𝑛 ≤ 𝑗𝑗 < 𝑗𝑗, where 𝐶𝐶5 and 𝐶𝐶6 are also
positive constants independent of 𝜏𝜏 and𝑁𝑁. erefore, using
the barrier function𝑊𝑊𝑗𝑗

𝑖𝑖 = 𝐶𝐶𝑖(𝜏𝜏𝑖𝑁𝑁
−2) (with the constant𝐶𝐶𝑖

sufficiently large), Lemma 2 implies that

𝑉𝑉𝑗𝑗
𝑖𝑖 − 𝑣𝑣 𝑠𝑠𝑖𝑖, 𝑠𝑠𝑗𝑗 ≤ 𝐶𝐶𝑖 𝜏𝜏 𝑖 𝑁𝑁

−2 , 𝑛 ≤ 𝑖𝑖 ≤ 𝑁𝑁, 𝑛 ≤ 𝑗𝑗 ≤ 𝑗𝑗,
(65)

which completes the proof.

6. Numerical Experiments

In this section, we verify experimentally the theoretical
results obtained in the preceding section. Errors and conver-
gence rates for the �nite difference scheme are presented for
two test problems.

Test 1. American put option under Kou’s jump-diffusion
model with parameters:

𝜎𝜎 = 𝑛𝜎𝑖5, 𝜎𝜎 = 𝑛𝜎𝑛6, 𝜎𝜎 = 𝑖,

𝐸𝐸 = 25, 𝑆𝑆max = 𝑖𝑛𝑛, 𝜆𝜆 = 𝑛𝜎𝑖,

𝛼𝛼𝑖 = 2𝜎𝑛465, 𝛼𝛼2 = 3𝜎𝑛775, 𝑝𝑝 = 𝑛𝜎3445𝜎

(66)

Test 2. American put option under Kou’s jump-diffusion
model with parameters:

𝜎𝜎 = 𝑛𝜎4, 𝜎𝜎 = 𝑛𝜎𝑛6, 𝜎𝜎 = 𝑖,

𝐸𝐸 = 25, 𝑆𝑆max = 𝑖𝑛𝑛, 𝜆𝜆 = 𝑛𝜎𝑖,

𝛼𝛼𝑖 = 2𝜎𝑛465, 𝛼𝛼2 = 3𝜎𝑛775, 𝑝𝑝 = 𝑛𝜎3445𝜎

(67)

To solve the nonlinear problem (23)–(25), we useNewton
iterativemethod.e initial guesses for Tests 1 and 2 are taken
as 𝑠𝑉𝑉𝑗𝑗

𝑖𝑖 ]
(𝑛) = 𝑉𝑉𝑗𝑗𝑖𝑖

𝑖𝑖 for time mesh point 𝑗𝑗 and the stoping
criterion is

max
𝑖𝑖
𝑉𝑉𝑗𝑗

𝑖𝑖 
(𝑚𝑚)

− 𝑉𝑉𝑗𝑗
𝑖𝑖 
(𝑚𝑚−𝑖)

 ≤ 𝑖𝑛−5𝜎 (68)

For Tests 1 and 2 we choose 𝜀𝜀 = 𝑛𝜎𝑛𝑛𝑛𝑖,C = 𝜎𝜎𝐸𝐸 𝑖 𝜆𝜆Smax.
e computed option value𝑉𝑉 and the constraint𝑉𝑉−𝑉𝑉∗ with
𝑁𝑁 = 𝑖2𝑁 and𝑗𝑗 = 64 for Test 1 are depicted in Figures 1 and 2,
respectively.e computed option value𝑉𝑉 and the constraint
𝑉𝑉 − 𝑉𝑉∗ with𝑁𝑁 = 𝑖2𝑁 and 𝑗𝑗 = 64 for Test 2 are depicted in
Figures 3 and 4, respectively.

e exact solutions of our test problems are not available.
We use the approximated solution of 𝑁𝑁 = 𝑖𝑛24 and
𝑗𝑗 = 4𝑛𝐾6 as the exact solution. We present the error
estimates for different 𝑁𝑁 and 𝑗𝑗 at 𝑠𝑠 = 𝑛. Because we
only know “the exact solution” on mesh points, we use the
linear interpolation to get solutions at other points. In this
paper 𝑉𝑉(𝑠𝑠, 𝑠𝑠) denotes “the exact solution” which is a linear
interpolation of the approximated solution 𝑉𝑉𝑖𝑛24,4𝑛𝐾6. We
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F 1: Computed option value 𝑉𝑉 for Test 1.

0
20

40
60

80 100 0
0.2

0.4
0.6

0.8
1

0

0.5

1

1.5

Tim
e t 

Asset price x

F 2: e constraint 𝑉𝑉 𝑉 𝑉𝑉∗ for Test 1.

measure the accuracy in the discrete maximum norm

𝑒𝑒𝑁𝑁𝑁𝑁𝑁 = max
𝑖𝑖
𝑉𝑉𝑁𝑁𝑁𝑁𝑁

𝑖𝑖𝑁𝑖 𝑉 𝑉𝑉 𝑥𝑥𝑖𝑖𝑁 𝑖 𝑁 (69)

and the convergence rate

𝑅𝑅𝑁𝑁𝑁𝑁𝑁 = log2 
𝑒𝑒𝑁𝑁𝑁𝑁𝑁

𝑒𝑒2𝑁𝑁𝑁𝑁𝑁𝑁
 . (70)

e error estimates and the convergence rates in our com-
puted solutions of Tests 1 and 2 are listed in Tables 1 and 2,
respectively.

From the �gures, it is seen that the numerical solutions by
our method are nonoscillatory. From Tables 1 and 2, we see
that 𝑒𝑒𝑁𝑁𝑁𝑁𝑁/𝑒𝑒2𝑁𝑁𝑁𝑁𝑁𝑁 is close to 4, which supports the convergence
estimate of eorem 3. e numerical results of Zhang and
Wang [17, 18] verify that their schemes are also second-order
convergent. However, their penalty term is nonsmooth and
a smoothing technique is needed for solving the nonlinear
discretization system.

F 3: Computed option value 𝑉𝑉 for Test 2.
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F 4: e constraint 𝑉𝑉 𝑉 𝑉𝑉∗ for Test 2.

7. Discussion

7.1. e Crank-Nicolson Scheme. For the time discretization,
we can use the Crank-Nicolson scheme to improve the
accuracy of the scheme. en the implicit �nite difference
scheme on the above piecewise-uniform mesh for the inte-
grodifferential equation (12)–(14) is

𝐿𝐿𝑁𝑁𝑁𝑁𝑁𝑉𝑉𝑗𝑗
𝑖𝑖 𝑉

1/2𝐶𝐶𝐶𝐶
𝑉𝑉𝑗𝑗
𝑖𝑖 + 𝐶𝐶 𝑉 𝜀𝜀𝑖𝑖

𝑉
1/2𝐶𝐶𝐶𝐶

𝑉𝑉𝑗𝑗+1
𝑖𝑖 + 𝐶𝐶 𝑉 𝜀𝜀𝑖𝑖

= 𝑖𝑁

1 ≤ 𝑖𝑖 𝑖 𝑁𝑁𝑁 𝑖 ≤ 𝑗𝑗 𝑖 𝑁𝑁𝑁

𝑉𝑉𝑁𝑁
𝑖𝑖 = 𝑉𝑉∗ 𝑥𝑥𝑖𝑖 𝑁 𝑖 ≤ 𝑖𝑖 ≤ 𝑁𝑁𝑁

𝑉𝑉𝑗𝑗
𝑖 = 𝐸𝐸𝑁 𝑉𝑉𝑗𝑗

𝑁𝑁 = 𝑖𝑁 𝑖 ≤ 𝑗𝑗 𝑖 𝑁𝑁𝑁

(71)
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T 1: Numerical results for Test 1.

𝑁𝑁 𝐾𝐾 error rate
64 16 2.8859𝑒𝑒 𝑒 2 —
128 64 8.3456𝑒𝑒 𝑒 3 1.780
256 256 2.1187𝑒𝑒 𝑒 3 1.978
512 1024 5.5979𝑒𝑒 𝑒 4 1.920

T 2: Numerical results for Test 2.

𝑁𝑁 𝐾𝐾 error rate
64 16 4.8818𝑒𝑒 𝑒 2 —
128 64 1.3125𝑒𝑒 𝑒 2 1.895
256 256 3.3288𝑒𝑒 𝑒 3 1.979
512 1024 7.2756𝑒𝑒 𝑒 4 2.194

where

𝐿𝐿𝑁𝑁𝑁𝐾𝐾𝑉𝑉𝑗𝑗
𝑖𝑖 ≡ 𝑒

𝑉𝑉𝑗𝑗𝑗1
𝑖𝑖 𝑒 𝑉𝑉𝑗𝑗

𝑖𝑖
𝜏𝜏

𝑒
𝜎𝜎2𝑥𝑥2𝑖𝑖

ℎ𝑖𝑖 𝑗 ℎ𝑖𝑖𝑗1

1
2

𝑉𝑉𝑗𝑗
𝑖𝑖𝑗1 𝑒 𝑉𝑉

𝑗𝑗
𝑖𝑖

ℎ𝑖𝑖𝑗1
𝑗
𝑉𝑉𝑗𝑗𝑗1
𝑖𝑖𝑗1 𝑒 𝑉𝑉

𝑗𝑗𝑗1
𝑖𝑖

ℎ𝑖𝑖𝑗1


𝑒
1
2

𝑉𝑉𝑗𝑗
𝑖𝑖 𝑒 𝑉𝑉

𝑗𝑗
𝑖𝑖𝑒1

ℎ𝑖𝑖
𝑗
𝑉𝑉𝑗𝑗𝑗1
𝑖𝑖 𝑒 𝑉𝑉𝑗𝑗𝑗1

𝑖𝑖𝑒1
ℎ𝑖𝑖



𝑒
1
2
(𝑟𝑟 𝑒 𝑟𝑟𝑟𝑟) 𝑥𝑥𝑖𝑖 

𝑉𝑉𝑗𝑗
𝑖𝑖𝑗1 𝑒 𝑉𝑉

𝑗𝑗
𝑖𝑖𝑒1

ℎ𝑖𝑖 𝑗 ℎ𝑖𝑖𝑗1
𝑗
𝑉𝑉𝑗𝑗𝑗1
𝑖𝑖𝑗1 𝑒 𝑉𝑉

𝑗𝑗𝑗1
𝑖𝑖𝑒1

ℎ𝑖𝑖 𝑗 ℎ𝑖𝑖𝑗1


𝑗 (𝑟𝑟 𝑗 𝑟𝑟)
𝑉𝑉𝑗𝑗
𝑖𝑖 𝑗 𝑉𝑉

𝑗𝑗𝑗1
𝑖𝑖

2
𝑒 𝑟𝑟

𝐴𝐴𝑗𝑗
𝑖𝑖 𝑗 𝐴𝐴

𝑗𝑗𝑗1
𝑖𝑖

2
𝑁

𝐴𝐴𝑗𝑗
𝑖𝑖 =

𝑁𝑁𝑒1

𝑛𝑛=𝑛

𝑉𝑉𝑗𝑗
𝑛𝑛 ⋅ 

𝑥𝑥𝑛𝑛𝑗1

𝑥𝑥𝑛𝑛

𝑥𝑥𝑛𝑛𝑗1 𝑒 𝑠𝑠
ℎ𝑛𝑛𝑗1

⋅
𝑓𝑓 𝑠𝑠𝑠𝑥𝑥𝑖𝑖

𝑥𝑥𝑖𝑖
d𝑠𝑠

𝑗
𝑁𝑁𝑒1

𝑛𝑛=𝑛

𝑉𝑉𝑗𝑗
𝑛𝑛𝑗1 ⋅ 

𝑥𝑥𝑛𝑛𝑗1

𝑥𝑥𝑛𝑛

𝑠𝑠 𝑒 𝑥𝑥𝑛𝑛
ℎ𝑛𝑛𝑗1

⋅
𝑓𝑓 𝑠𝑠𝑠𝑥𝑥𝑖𝑖

𝑥𝑥𝑖𝑖
d𝑠𝑠.

(72)

e implicit scheme would lead to full matrices due to the
integral term, which makes many methods computationally
expensive. Furthermore, in order to satisfy the positivity
constraint and to avoid spurious oscillations in the Crank-
Nicolson method [34–36], the time mesh size should satisfy
the following constraint condition [24, 35]

𝜏𝜏 𝜏
2ℎ2𝑖𝑖

𝜎𝜎2𝑆𝑆2max 𝑗 𝑟𝑟𝑆𝑆maxℎ𝑖𝑖 𝑗 𝑟𝑟ℎ
2
𝑖𝑖 𝑗 (2𝑟𝑟𝑟𝑟𝑠𝑟𝑟) ℎ

2
𝑖𝑖
. (73)

7.2. Power Penalty Methods. Some papers [12, 22, 37] have
used power penalty methods to the linear complementarity
problem arising from pricing American options. Wang et
al. [37] prove that the solution to their penalized equation
converges to that of the variational inequality problem with
an arbitrary order. e power penalty methods [12, 22, 37]

can also be applied to valuate American options under Kou’s
jump-diffusion model. e discretization method can be
same as that of Section 3. erefore, our difference scheme
for the power penalty equation is

𝐿𝐿𝑁𝑁𝑁𝐾𝐾𝑉𝑉𝑗𝑗
𝑖𝑖 𝑗 𝑟𝑟max 𝑉𝑉

∗ 𝑥𝑥𝑖𝑖 𝑒 𝑉𝑉
𝑗𝑗
𝑖𝑖 𝑁 𝑛

1𝑠𝑠𝑠
= 𝑛𝑁

1 𝜏 𝑖𝑖 𝑖 𝑁𝑁𝑁 𝑛 𝜏 𝑗𝑗 𝑖 𝐾𝐾𝑁

𝑉𝑉𝐾𝐾
𝑖𝑖 = 𝑉𝑉∗ 𝑥𝑥𝑖𝑖 𝑁 𝑛 𝜏 𝑖𝑖 𝜏 𝑁𝑁𝑁

𝑉𝑉𝑗𝑗
𝑛 = 𝑟𝑟𝑁 𝑉𝑉𝑗𝑗

𝑁𝑁 = 𝑛𝑁 𝑛 𝜏 𝑗𝑗 𝑖 𝐾𝐾𝑁

(74)

where

𝐿𝐿𝑁𝑁𝑁𝐾𝐾𝑉𝑉𝑗𝑗
𝑖𝑖 ≡ 𝑒

𝑉𝑉𝑗𝑗𝑗1
𝑖𝑖 𝑒 V𝑗𝑗

𝑖𝑖
𝜏𝜏

𝑒
𝜎𝜎2𝑥𝑥2𝑖𝑖

ℎ𝑖𝑖 𝑗 ℎ𝑖𝑖𝑗1

𝑉𝑉𝑗𝑗
𝑖𝑖𝑗1 𝑒 𝑉𝑉

𝑗𝑗
𝑖𝑖

ℎ𝑖𝑖𝑗1
𝑒
𝑉𝑉𝑗𝑗
𝑖𝑖 𝑒 𝑉𝑉

𝑗𝑗
𝑖𝑖𝑒1

ℎ𝑖𝑖


𝑒 (𝑟𝑟 𝑒 𝑟𝑟𝑟𝑟) 𝑥𝑥𝑖𝑖
𝑉𝑉𝑗𝑗
𝑖𝑖𝑗1 𝑒 𝑉𝑉

𝑗𝑗
𝑖𝑖𝑒1

ℎ𝑖𝑖 𝑗 ℎ𝑖𝑖𝑗1

𝑗 (𝑟𝑟 𝑗 𝑟𝑟)𝑉𝑉𝑗𝑗
𝑖𝑖 𝑒 𝑟𝑟𝐴𝐴

𝑗𝑗𝑗1
𝑖𝑖 𝑁

𝐴𝐴𝑗𝑗𝑗1
𝑖𝑖 =

𝑁𝑁𝑒1

𝑛𝑛=𝑛

𝑉𝑉𝑗𝑗𝑗1
𝑛𝑛 ⋅ 

𝑥𝑥𝑛𝑛𝑗1

𝑥𝑥𝑛𝑛

𝑥𝑥𝑛𝑛𝑗1 𝑒 𝑠𝑠
ℎ𝑛𝑛𝑗1

⋅
𝑓𝑓 𝑠𝑠𝑠𝑥𝑥𝑖𝑖

𝑥𝑥𝑖𝑖
d𝑠𝑠

𝑗
𝑁𝑁𝑒1

𝑛𝑛=𝑛

𝑉𝑉𝑗𝑗𝑗1
𝑛𝑛𝑗1 ⋅ 

𝑥𝑥𝑛𝑛𝑗1

𝑥𝑥𝑛𝑛

𝑠𝑠 𝑒 𝑥𝑥𝑛𝑛
ℎ𝑛𝑛𝑗1

⋅
𝑓𝑓 𝑠𝑠𝑠𝑥𝑥𝑖𝑖

𝑥𝑥𝑖𝑖
d𝑠𝑠𝑁

(75)

𝑟𝑟 and 𝑠𝑠 are the penalty parameters. Since the power penalty
term is nonsmooth, a smoothing technique is needed for
solving the nonlinear discretization system.
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Received 19 October 2012; Accepted 27 November 2012

Academic Editor: Manuel Ruiz Galan
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This work presents an analysis of the error that is committed upon having obtained the
approximate solution of the nonlinear Fredholm-Volterra-Hammerstein integral equation by
means of a method for its numerical resolution. The main tools used in the study of the error
are the properties of Schauder bases in a Banach space.

1. Introduction

In this paper we consider the following nonlinear mixed Fredholm-Volterra-Hammerstein
integral equation:

x(t) = y0(t) +
∫α+β
α

k1(t, s)g1(s, x(s))ds +
∫ t
α

k2(t, s)g2(s, x(s))ds, t ∈ [α, α + β
]
, (1.1)

where y0 : [α, α+β] → R, g1, g2 : [α, α+β]×R → R and the kernels k1, k2 : [α, α+β]2 → R are
assumed to be known continuous functions, and x : [α, α + β] → R is the unknown function
to be determined.

Equation (1.1) arises in a variety of applications in many fields, including continuum
mechanics, potential theory, electricity and magnetism, three-dimensional contact problems,
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and fluid mechanics, and so forth (see, e.g., [1–4]). Several numerical methods for approxi-
mating the solution of integral, and integrodifferential equations are known (see, e.g., [5–8]).
For Fredholm-Volterra-Hammerstein integral equations, the classical method of successive
approximations was introduced in [9]. An optimal control problem method was presented
in [10], and a collocation-type method was developed in [11–13]. Computational methods
based on Bernstein operational matrices and the Chebyshev approximation method were
presented in [14, 15], respectively.

The use of fixed point techniques and Schauder bases, in the field of numerical resolu-
tion of differential, integral and integro-differential equations, allows for the development of
new methods providing significant improvements upon other known methods (see [16–23]).

In this work we make an analysis of the error committed upon having obtained the
approximate solution of the nonlinear Fredholm-Volterra-Hammerstein integral equation,
using the theorem of Banach fixed point and Schauder bases (see [21], for a detailed
description of the numerical method used in a more general equation).

In order to recall the aforementioned numerical method, let C([α, α+ β]) and C([α, α+
β]2) be the Banach spaces of all continuous and real-valued functions on [α, α+ β] and [α, α+
β]2 endowed with their usual supnorms. Throughout this paper we will make the following
assumptions on ki and gi for i ∈ {1, 2}.

(i) Since ki ∈ C([α, α + β]2), there exists Mki ≥ 0 such that |ki(t, s)| ≤ Mki for all (t, s) ∈
[α, α + β]2.

(ii) gi : [α, α+β]×R → R are functions such that there exists Lgi > 0 such that |gi(s, y)−
gi(s, z)| ≤ Lgi |y − z| for s ∈ [α, α + β] and for all y, z ∈ R.

(iii) β
∑2

i=1 MkiLgi < 1.

We organize this paper as follows. In Section 2, we reformulate (1.1) in terms of a
convenient integral operator T and we describe the numerical method used. The study of the
error is described in Section 3. Finally, in Section 4 we show some illustrative examples.

2. Analytical Preliminaries

In this section we recall, in a summarized form, the concepts and results relative to the
numerical method used for the study of the error that we carried out.

Let us start by observing that (1.1) is equivalent to the problem of finding fixed points
of the operator T : C([α, α + β]) → C([α, α + β]) defined by

(Tx)(t) := y0(t) +
∫α+β
α

k1(t, s)g1(s, x(s))ds

+
∫ t
α

k2(t, s)g2(s, x(s))ds, t ∈ [α, α + β
]
, x ∈ C([α, α + β

])
.

(2.1)

A direct calculation over T leads to
∥∥Ty1 − Ty2

∥∥ ≤M∥∥y1 − y2
∥∥ (2.2)

for all y1, y2 ∈ C([α, α+β]), where we denoteM := β
∑2

i=1 MkiLgi . As the operator T defined in
(2.1) satisfies (2.2), under condition (iii) and from the Banach fixed-point theorem, it follows
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that there exists a unique fixed point x ∈ C([α, α+β]) for T that is the unique solution of (1.1).
In addition, for each x̃ ∈ C([α, α + β]), we have

‖Tmx̃ − x‖ ≤ Mm

1 −M‖Tx̃ − x̃‖ (2.3)

and in particular x = limmT
mx̃.

But it is not possible, in an explicit way, to calculate the sequence of iterations {Tm}m≥1,
to obtain the unique sequence x of (1.1), for which reason a numerical method is needed in
order to approximate the fixed point of T .

Now we recall the concrete Schauder bases in the spacesC([α, α+β]) andC([α, α+β]2).
Let {tn}n≥1 be a dense sequence of distinct points in [α, α + β] such that t1 = α and t2 =
α + β. We set b1(t) := 1 for t ∈ [α, α + β], and for n ≥ 1, and we let bn be a piecewise linear
continuous function on [α, α + β] with nodes at {tj : 1 ≤ j ≤ n}, uniquely determined by
the relations bn(tn) = 1 and bn(tk) = 0 for k < n. We denote by {Pn}n≥1 the sequence of
associated projections and {b∗n}n≥1 the coordinate functionals. It is easy to check that {bn}n≥1
is a Schauder basis in C([α, α + β]) (see [24]).

From the Schauder basis {bn}n≥1 in C([α, α + β]), we can build another Schauder basis
{Bn}n≥1 of C([α, α + β]2) (see [25, 26]). It is sufficient to consider Bn(t, s) := bi(t)bj(s) for all
t, s ∈ [α, α + β], with τ(n) = (i, j), where for a real number p, [p] will denote its integer part
and τ = (τ1, τ2) : N → N × N is the bijective mapping defined by

τ(n) :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(√
n,

√
n
)
, if

[√
n
]
=
√
n,(

n − [√n]2, [√n] + 1
)
, if 0 < n − [√n]2 ≤ [√n],([√

n
]
+ 1, n − [√n]2 − [√n]), if

[√
n
]
< n − [√n]2.

(2.4)

We denote by {Qn}n≥1 the sequence of associated projections and by {B∗
n}n≥1 the co-

ordinate functionals. The Schauder basis {Bn}n≥1 of C([α, α + β]2) has similar properties to
the ones for the one-dimensional case. See Table 1 and note under some weak conditions
(see the last row, which is derived easily from the third row of Table 1, resp., and the Mean-
Value theorems for one and two variables) we can estimate the rate of the convergence of the
sequence of projections in the one and two-dimensional cases, where we consider the dense
subset {ti}i≥1 of distinct points in [α, α + β], Tn as the set {t1, . . . , tn} ordered in an increasing
way for n ≥ 2, and ΔTn denotes the maximum distance between two consecutive points of
Tn.

Let us consider the continuous integral operator T : C([α, α + β]) → C([α, α + β])
defined in (2.1). Let x̃ ∈ C([α, α + β]), and the functions φ1, φ2 ∈ C([α, α + β]2), defined
for φ1(t, s) = k1(t, s)g1(s, x̃(s)), φ2(t, s) = k2(t, s)g2(s, x̃(s)). Let {λn}n≥1 and {μn}n≥1 be the
sequences of scalars satisfying φ1 =

∑
n≥1 λnBn, φ2 =

∑
n≥1 μnBn. Then for all t ∈ [α, α + β], we

have that

(Tx̃)(t) = y0(t) +
∑
n≥1

λn

∫α+β
α

Bn(t, s)ds +
∑
n≥1

μn

∫ t
α

Bn(t, s)ds. (2.5)
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The equality (2.5) enables us to determine, in an elemental way, the image of any
continuous function under the operator T . However, it does not seem to be a usable expres-
sion due to the two infinite sums appearing in it. For this reason, the aforementioned sums
are truncated.

3. Study of the Error

In this section we realize a new study of the error, obtaining one bound of it. Supposing
conditions of regularity in the functions data, we improve and complete the study realized in
[21].

Let x̃ ∈ C([α, α + β]) and consider

x0(t) := x̃(t) ∈ C([α, α + β
])
, (3.1)

and for m ∈ N, define inductively for r ∈ {1, . . . , m} the following functions:

σr−1(t, s) := k1(t, s)g1(s, xr−1(s)), (3.2)

ψr−1(t, s) := k2(t, s)g2(s, xr−1(s)), (3.3)

xr(t) := y0(t) +
∫α+β
α

Qn2
r
(σr−1(t, s))ds +

∫ t
α

Qn2
r

(
ψr−1(t, s)

)
ds, (3.4)

where t, s ∈ [α, α + β] and nr ∈ N.

Proposition 3.1. The sequence {xr}r≥1 is uniformly bounded.

Proof. Let R = max{|g1(s, 0)| : s ∈ [α, α + β]}, S = max{|g2(s, 0)| : s ∈ [α, α + β]}, and we have
for all r ≥ 1 and (t, s) ∈ [α, α + β]2

|σr−1(t, s)| = |k1(t, s)|
∣∣g1(s, xr−1(s))

∣∣
≤Mk1

(∣∣g1(s, xr−1(s)) − g1(s, 0)
∣∣ + ∣∣g1(s, 0)

∣∣)

≤Mk1

(
Lg1 |xr−1(s)| + R

)
,

∣∣ψr−1(t, s)
∣∣ = |k2(t, s)|

∣∣g2(s, xr−1(s))
∣∣

≤Mk2

(∣∣g2(s, xr−1(s)) − g2(s, 0)
∣∣ + ∣∣g2(s, 0)

∣∣)

≤Mk2

(
Lg2 |xr−1(s)| + S

)
.

(3.5)
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For the monotonicity of the Schauder basis, we have

|xr(t)| ≤
∣∣y0(t)

∣∣ +
∫α+β
α

∣∣Qn2
r
(σr−1(t, s))

∣∣ds +
∫ t
α

∣∣Qn2
r

(
ψr−1(t, s)

)∣∣ds

≤ ∣∣y0(t)
∣∣ +
∫α+β
α

‖σr−1‖ds +
∫ t
α

∥∥ψr−1
∥∥ds

≤ ∣∣y0(t)
∣∣ + β(Mk1R +Mk2S) +Mk1Lg1

∫α+β
α

‖xr−1‖ds +Mk2Lg2

∫ t
α

‖xr−1‖ds.

(3.6)

Therefore,

‖xr‖ ≤ ∥∥y0
∥∥ + β(Mk1R +Mk2S) +M‖xr−1‖. (3.7)

Applying recursively this process we get

‖xr‖ ≤ (∥∥y0
∥∥ + β(Mk1R +Mk2S)

)(
1 +M + · · · +Mr−1

)
+Mr‖x0‖

≤ (∥∥y0
∥∥ + β(Mk1R +Mk2S)

)1 −Mr

1 −M +Mr‖x0‖
(3.8)

for all r ≥ 1. Then {xr}r≥1 is uniformly bounded.

Remark 3.2. For i ∈ {1, 2}, the sequence {gi(·, xr(·)}r≥1 is uniformly bounded, as it follows
Proposition 3.1 and the fact that gi for i ∈ {1, 2} is Lipschitz in its second variable.

Proposition 3.3. Let y0 ∈ C1([α, α + β]), and for i ∈ {1, 2}, ki ∈ C1([α, α + β]2), gi ∈ C1([α, α +
β] × R) such that ∂gi/∂s and ∂gi/∂x satisfy a global Lipschitz condition in the last variable. Let
x0(t) := x̃(t) ∈ C1([α, α + β]), and define inductively as in (3.2), (3.3), and (3.4) the functions σr−1,
ψr−1 and xr , respectively. Then

{
∂σr−1

∂t

}
r≥1
,

{
∂σr−1

∂s

}
r≥1
,

{
∂ψr−1

∂t

}
r≥1
,

{
∂ψr−1

∂s

}
r≥1

(3.9)

are uniformly bounded.

Proof. From (3.2) and (3.3), we have, respectively, that for all r ≥ 1, (∂σr−1/∂t)(t, s) =
(∂k1/∂t)(t, s)g1(s, xr−1(s)), (∂ψr−1/∂t)(t, s) = (∂k2/∂t)(t, s)g2(s, xr−1(s)), and therefore by the
conditions over k1, k2, and Remark 3.2, {∂σr−1/∂t}r≥1, {∂ψr−1/∂t}r≥1 are uniformly bounded.

Observe that

∣∣x′
r(t)
∣∣ ≤ ∣∣y′

0(t)
∣∣ +
∫α+β
α

∣∣∣∣ ∂∂tQn2
r
(σr−1(t, s))

∣∣∣∣ds

+
∣∣Qn2

r

(
ψr−1(t, t)

)∣∣ +
∫ t
α

∣∣∣∣ ∂∂tQn2
r

(
ψr−1(t, s)

)∣∣∣∣ds.
(3.10)
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In view of the monotonicity of the Schauder basis, we have

∥∥x′
r

∥∥ ≤ ∥∥y′
0

∥∥ + ∥∥ψr−1
∥∥ + β

(∥∥∥∥∂σr−1

∂t

∥∥∥∥ +
∥∥∥∥∂ψr−1

∂t

∥∥∥∥
)
, (3.11)

and hence the sequence {x′
r}r≥1 is uniformly bounded.

On the other hand from (3.2) and (3.3), respectively, we have

∂σr−1

∂s
(t, s) =

∂k1

∂s
(t, s)g1(s, xr−1(s))

+ k1(t, s)
(
∂g1

∂s
(s, xr−1(s)) +

∂g1

∂x
(s, xr−1(s))x′

r−1(s)
)
,

∂ψr−1

∂s
(t, s) =

∂k2

∂s
(t, s)g2(s, xr−1(s))

+ k2(t, s)
(
∂g2

∂s
(s, xr−1(s)) +

∂g2

∂x
(s, xr−1(s))x′

r−1(s)
)
.

(3.12)

For i ∈ {1, 2}, let U = max{|(∂gi/∂s)(s, 0)| : s ∈ [α, α + β]}, and we have for all r ≥ 1
and s ∈ [α, α + β]

∣∣∣∣∂gi∂s
(s, xr−1(s))

∣∣∣∣ ≤
∣∣∣∣∂gi∂s

(s, xr−1(s)) −
∂gi
∂s

(s, 0)
∣∣∣∣ +
∣∣∣∣∂gi∂s

(s, 0)
∣∣∣∣ ≤ lgi |xr−1(s)| +U (3.13)

with lgi as the Lipschitz constant of ∂gi/∂s in the last variable.
By repeating the previous argument, we have

∣∣∣∣∂gi∂x
(s, xr−1(s))

∣∣∣∣ ≤ qgi |xr−1(s)| + V, (3.14)

where V = max{|(∂gi/∂x)(s, 0)| : s ∈ [α, α + β]}, and qgi is the Lipschitz constant of ∂gi/∂x in
the last variable.

Therefore by the conditions over k1, k2, Proposition 3.1, Remark 3.2, and (3.11),

{
∂σr−1

∂s

}
r≥1
,

{
∂ψr−1

∂s

}
r≥1

(3.15)

are uniformly bounded.

Proposition 3.4. With the previous notation and the same hypothesis as in Proposition 3.3, there is
ρ1, ρ2 > 0 such that for all r ≥ 1 and nr ≥ 2, we have

∥∥σr−1 −Qn2
r
(σr−1)

∥∥ ≤ ρ1ΔTnr ,∥∥ψr−1 −Qn2
r

(
ψr−1
)∥∥ ≤ ρ2ΔTnr .

(3.16)
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Table 1: Properties of the univariate and bivariate Schauder bases.

b1(t) = 1 B1(t, s) = 1

n ≥ 2 ⇒ bn(tk) =

⎧⎨
⎩

1, if k = n

0, if k < n
n ≥ 2 ⇒ Bn(ti, tj) =

⎧⎨
⎩

1, if τ(n) = (i, j)

0, if τ−1(i, j) < n

y ∈ C([α, α + β]) z ∈ C([α, α + β]2)
⇓ ⇓

b∗1(y) = y(t1) B∗
1(z) = z(t1, t1)

n ≥ 2 ⇒ b∗n(y) = y(tn) −
∑n−1

k=1 b
∗
k
(y)bk(tn)

n ≥ 2
τ(n) = (i, j)

}
⇒ B∗

n(z) = z(ti, tj) −
∑n−1

k=1 B
∗
k
(z)Bk(ti, tj)

y ∈ C([α, α + β]) z ∈ C([α, α + β]2)
⇓ ⇓

k ≤ n⇒ Pn(y)(tk) = y(tk) τ−1(i, j) ≤ n⇒ Qn(z)(ti, tj) = z(ti, tj)

{bn}n≥1 is monotone, that is, supn≥1‖Pn‖ = 1 {Bn}n≥1 is monotone, that is, supn≥1‖Qn‖ = 1

y ∈ C1([α, α + β]), n ≥ 2 z ∈ C1([α, α + β]2), n ≥ 2
⇓ ⇓

‖y − Pn(y)‖ ≤ 2‖y′‖ΔTn ‖z −Qn2(z)‖ ≤ 4 max
{∥∥∥∥∂z∂t

∥∥∥∥,
∥∥∥∥∂z∂s

∥∥∥∥
}
ΔTn

Proof. In the last property in Table 1, take ρ1 = 4 max {‖∂σr−1/∂t‖, ‖∂σr−1/∂s‖}r≥1 and ρ2 =
4 max {‖∂ψr−1/∂t‖, ‖∂ψr−1/∂s‖}r≥1.

In the result below we show that the sequence defined in (3.4) approximates the exact
solution of (1.1) as well as giving an upper bound of the error committed.

Theorem 3.5. With the previous notation and the same hypothesis as in Proposition 3.3, let m ∈ N,
nr ∈ N, nr ≥ 2, and {ε1, . . . , εm} be a set of positive numbers such that for all r ∈ {1, . . . , m} we have

ΔTnr ≤
εr

β
(
ρ1 + ρ2

) . (3.17)

Then,

‖Txr−1 − xr‖ ≤ εr . (3.18)

Moreover, if x is the exact solution of the integral equation (1.1), then the error ‖x − xm‖ is given by

‖x − xm‖ ≤ Mm

1 −M‖Tx̃ − x̃‖ +
m∑
r=1

Mm−rεr . (3.19)
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Proof. First we deal with proving (3.18). For all r ∈ {1, . . . , m} and t ∈ [α, α+β], Proposition 3.4
gives

|Txr−1(t) − xr(t)| ≤
∫α+β
α

∣∣σr−1(t, s) −Qn2
r
(σr−1(t, s))

∣∣ds

+
∫ t
α

∣∣ψr−1(t, s) −Qn2
r

(
ψr−1(t, s)

)∣∣ds
≤ ρ1ΔTnrβ + ρ2ΔTnrβ = ΔTnrβ

(
ρ1 + ρ2

) ≤ εr .

(3.20)

To conclude the proof, we derive (3.19). From (2.3), we have

‖x − Tmx̃‖ ≤ Mm

1 −M‖Tx̃ − x̃‖, (3.21)

and in addition, on the other hand, applying recursively (2.2) and (3.18), we obtain

‖Tmx̃ − xm‖ ≤
m∑
r=1

∥∥∥Tm−r+1xr−1 − Tm−rxr
∥∥∥

=
m∑
r=1

∥∥Tm−rTxr−1 − Tm−rxr
∥∥

≤
m∑
r=1

Mm−r‖Txr−1 − xr‖ ≤
m∑
r=1

Mm−rεr .

(3.22)

Then we use the triangular inequality

‖x − xm‖ ≤ ‖x − Tmx̃‖ + ‖Tmx̃ − xm‖, (3.23)

and the proof is complete in view of (3.21) and (3.22).

Remark 3.6. Under the hypotheses of Theorem 3.5, let us observe that by the inequality (3.19)
we have

‖x − xm‖ ≤ Mm

1 −M‖Tx̃ − x̃‖ + 1 −Mm

1 −M maxr≥1{εr}. (3.24)

The first sumand on the right hand side approximates zero when m increases; with
respect to the second sumand, since the points of the partition can be chosen in such a way
that ΔTnr becomes so close to zero as we desire, the ε′rs can become so small as we desire,
arriving in this way at an explicit control of the error committed.

Therefore, given ε > 0, there exists m ≥ 1 such that ‖x − xm‖ < ε when choosing εr
sufficiently small.
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Figure 1: The plot of absolute errors for Example 4.1.
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Figure 2: The plot of absolute errors for Example 4.2.

4. Numerical Examples

In this last section we illustrate the results previously developed, stressing the significance of
inequality (3.19) in Theorem 3.5, as mentioned in Remark 3.6.

First of all, we show how the numerical method works, because we use it later in the
estimation of the error. For solving the numerical example, Mathematica 7 is used, and to
construct the Schauder basis in C([0, 1]2), we considered the particular choice t1 = 0, t2 = 1
and for n ∈ N ∪ {0}, ti+1 = (2k + 1)/2n+1 if i = 2n + k + 1 where 0 ≤ k < 2n are integers. To
define the sequence {xr}r≥1, we take x0(t) = y0(t) and nr = j (for all r ≥ 1). In Tables 2 and 3,
we exhibit, for j = 9, 17, and 33, the absolute errors committed in eight representative points
of [0, 1] when we approximate the exact solution x by the iteration x4. Its numerical results
are also given in Figures 1 and 2, respectively.
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Table 2: Absolute errors for Example 4.1.

t
j = 9 j = 17 j = 33

|x4(t) − x(t)| |x4(t) − x(t)| |x4(t) − x(t)|
0.0 0.0 0.0 0.0

0.125 7.64 × 10−6 2.13 × 10−6 7.49 × 10−7

0.250 3.40 × 10−5 8.93 × 10−6 2.65 × 10−6

0.375 8.03 × 10−5 2.07 × 10−5 5.79 × 10−6

0.5 1.47 × 10−4 3.75 × 10−5 1.02 × 10−5

0.625 2.34 × 10−4 5.95 × 10−5 1.59 × 10−5

0.750 3.40 × 10−4 8.63 × 10−5 2.29 × 10−5

0.875 4.63 × 10−4 1.17 × 10−4 3.10 × 10−5

1 5.99 × 10−4 1.52 × 10−4 4.04 × 10−5

Table 3: Absolute errors for Example 4.2.

t
j = 9 j = 17 j = 33

|x4(t) − x(t)| |x4(t) − x(t)| |x4(t) − x(t)|
0. 1.91 × 10−4 6.05 × 10−5 2.78 × 10−5

0.125 1.32 × 10−4 4.31 × 10−5 2.08 × 10−5

0.250 8.83 × 10−5 3.00 × 10−5 1.55 × 10−5

0.375 5.65 × 10−5 2.08 × 10−5 1.19 × 10−5

0.5 3.54 × 10−5 1.48 × 10−5 9.77 × 10−6

0.625 2.30 × 10−5 1.16 × 10−5 8.82 × 10−6

0.750 1.71 × 10−5 1.05 × 10−5 8.86 × 10−6

0.875 1.58 × 10−5 1.08 × 10−5 9.64 × 10−6

1 1.69 × 10−5 1.20 × 10−5 1.08 × 10−5

Example 4.1. We solve (1.1) with k1(t, s) = ts/5, g1(s, x(s)) = cos(x(s)), k2(t, s) = s/3,
g2(s, x(s)) = sin(x(s)), and y0(t) = 1 + t − (t/5)(cos(2) − cos(1) + sin(2)) + (1/3)(t cos(1 +
t) − sin(1 + t) + sin(1)) with the exact solution x(t) = 1 + t.

Example 4.2. We solve (1.1) with k1(t, s) = (1/4)(1 − t)3, g1(s, x(s)) = arctan(x(s)), k2(t, s) =
1/8, g2(s, x(s)) = x(s), and y0(t) = t− (t2/16)− ((π − ln(4))/16)(t−1)3 with the exact solution
x(t) = t.

Now we realize that the choice of a particular j, determining the dyadic partition of
the interval [0, 1] from the first 2j + 1 nodes, and in such a way that the error is less than
a fixed positive ε, that is, ‖x − xm‖ < ε, can be easily determined practically: it suffices to
compute, once again by means of Mathematica 7, the error. To this end, since it is measured
in terms of the supnorm, we consider the nodes 0, 0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 0.875,
1 and maximum of the absolute values of the differences between the values of the exact
solution and the approximation obtained for the third iteration (m = 3). The numerical tests
are given in Table 4 and correspond to the nonlinear mixed Fredhol-Volterra-Hammerstein
equations considered in Examples 4.1 and 4.2, respectively.
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Table 4: Number of nodes (j) from error (ε) and for m = 3.

ε Example 4.1 Example 4.2
10−2 j = 5 j = 5
10−3 j = 9 j = 9
10−4 j = 33 j = 33
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We propose a reproducing kernel method for solving the telegraph equation with initial conditions
based on the reproducing kernel theory. The exact solution is represented in the form of series, and
some numerical examples have been studied in order to demonstrate the validity and applicability
of the technique. The method shows that the implement seems easy and produces accurate results.

1. Introduction

In this paper, we consider the telegraph equation of the following form:

∂2u

∂t2
+
(
α + β

)∂u
∂t

+ αβu = c2 ∂
2u

∂x2
+ f(x, t), (1.1)

over a region Ω = {(x, t) : 0 < x < 1 and 0 < t < T} and α, β are known constant coefficients
with initial conditions as

u(x, 0) = φ(x),
∂u(x, 0)

∂t
= ψ(x), (1.2)
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where u(x, t) can be voltage or current through the wire at position x and time t. In (1.1), we
have

α =
G

C
, β =

R

L
, c2 =

1
LC

, (1.3)

where G is conductance of resistor, R is resistance of resistor, L is inductance of capacitor, C
is capacitance of capacitor, and u(x, t) can be considered as a function depending on distance
x and time t, and constants are depending on a given problem and f, φ, and ψ are known
continuous functions.

The hyperbolic partial differential equations model the vibrations of structures (e.g.,
buildings, beams, and machines) and are the basis for fundamental equations of atomic
physics. Equation (1.1), referred to as the second-order telegraph equation with constant
coefficients, models a mixture between diffusion and wave propagation by introducing a
term that accounts for effects of finite velocity to the standard heat or mass transport equation
[1]. However, (1.1) is commonly used in signal analysis for transmission and propagation of
electrical signals [2, 3].

In recent years, much attention has been given in the literature to the development,
analysis, and implementation of stable methods for the numerical solution of second-order
hyperbolic equations, see, for example, [4–11]. These methods are conditionally stable. In
[12], Mohanty carried over a new technique to solve (1.1), which is unconditionally stable
and is of second-order accuracy in both the time and space components. Mohebbi and
Dehghan [13] presented a high-order accurate method for solving one-space-dimensional
linear hyperbolic equations and proved the high-order accuracy due to the fourth-order
discretization of spatial derivative and unconditional stability. A compact finite difference
approximation was presented in [14] by using the fourth order discretizing spatial
derivatives of the linear hyperbolic equation and collocation method for the time component.
Another solution is approximated by suing a polynomial at each grid point such that
its coefficients were determined by solving a linear system of equations [15]. By using
collocation points and approximating the solution by using a thin plate splines radial basis
function was presented in [16].

In [17], the author used the Chebyshev cardinal functions. Lakestani and Saray [18]
used interpolating scaling function. Ding et al. [19] constructed a class of new difference
scheme based on a new nonpolynomial spline method to solve (1.1) and (1.2). Lakoud and
Belakroum [20] studied the existence and uniqueness of the solution with integral condition
by using the Ro the time discretization method. Dehghan et al. [21] used to compute the
solution for the linear, variable coefficient, fractional derivative, and multispace telegraph
equations by using the variational iteration method. Further, Biazar et al. [22] obtained
an approximate solution by using the variational iteration method. Recently, Yao and Lin
[23] investigated a nonlinear hyperbolic telegraph equation with an integral condition by
reproducing kernel space at α = β = 0 in (1.1). In [24], Yousefi presented a numerical method
by using Legendre multiwavelet Galerkin method.

In this paper, the RKHSM [25–47] will be used to investigate the telegraph equation
(1.1). Several researches have been devoted to the application of RKHSM to a wide
class of stochastic and deterministic problems involving fractional differential equation,
nonlinear oscillator with discontinuity, singular nonlinear two-point periodic boundary
value problems, integral equations, and nonlinear partial differential equations [27–41]. The
method is well suited to physical problems.
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The efficiency of the method was used by many authors to investigate several scientific
applications. Geng and Cui [27] applied the RKHSM to handle the second-order boundary
value problems. Yao and Cui [28] and Wang et al. [29] investigated a class of singular
boundary value problems by this method and the obtained results were good. Zhou et
al. [30] used the RKHSM effectively to solve second-order boundary value problems. In
[31], the method was used to solve nonlinear infinite-delay-differential equations. Wang and
Chao [32], Li and Cui [33], and Zhou and Cui [34] independently employed the RKHSM
to variable-coefficient partial differential equations. Geng and Cui [35] and Du and Cui
[36] investigated to the approximate solution of the forced Duffing equation with integral
boundary conditions by combining the homotopy perturbation method and the RKHSM. Lv
and Cui [37] presented a new algorithm to solve linear fifth-order boundary value problems.
In [38, 39], authors developed a new existence proof of solutions for nonlinear boundary
value problems. Cui and Du [40] obtained the representation of the exact solution for the
nonlinear Volterra-Fredholm integral equations by using the reproducing kernel space. Wu
and Li [41] applied iterative reproducing kernel method to obtain the analytical approximate
solution of a nonlinear oscillator with discontinuities. Recently, the method was applied the
fractional partial differential equations and the multipoint boundary value problems [42–45].
For more details about RKHSM and the modified forms and their effectiveness, see [25–47].

In the present work, we use the following equation:

v(x, t) = u(x, t) + h(x) + tg(x); (1.4)

by transformation for homogeneous initial conditions of (1.1) and (1.2), we get as follows
(1.5):

∂2v

∂t2
− c2 ∂

2v

∂x2
+
(
α + β

)∂v
∂t

+ αβv = f(x, t) +M(x, t),

v(x, 0) = 0,
∂v(x, 0)

∂t
= 0,

(1.5)

where

M(x, t) =
(
α + β

)
g(x) + αβh(x) + αβtg(x) − c2h′′(x) − c2tg ′′(x). (1.6)

The paper is organized as follows. Section 2 is devoted to several reproducing kernel
spaces and a linear operator is introduced. The solution representation in W(Ω) has been
presented in Section 3. We prove that the approximate solution converges to the exact
solution uniformly. Some numerical examples are illustrated in Section 4. We provide some
conclusions in the last sections.

2. Preliminaries

Hilbert spaces can be completely classified: there is a unique Hilbert space up to isomorphism
for every cardinality of the base. Since finite-dimensional Hilbert spaces are fully understood
in linear algebra, and since morphisms of Hilbert spaces can always be divided into
morphisms of spaces with Aleph-null (κ0) dimensionality, functional analysis of Hilbert
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spaces mostly deals with the unique Hilbert space of dimensionality Aleph-null and its
morphisms. One of the open problems in functional analysis is to prove that every bounded
linear operator on a Hilbert space has a proper invariant subspace. Many special cases of this
invariant subspace problem have already been proven [48].

2.1. Reproducing Kernel Spaces

In this section, we define some useful reproducing kernel spaces.

Definition 2.1 (reproducing kernel). Let E be a nonempty set. A function K : E × E → C is
called a reproducing kernel of the Hilbert space H if and only if

(a) K(·, t) ∈ H for all t ∈ E,

(b) 〈ϕ,K(·, t)〉 = ϕ(t) for all t ∈ E and all ϕ ∈ H.

The last condition is called “the reproducing property” as the value of the function ϕ
at the point t is reproduced by the inner product of ϕ with K(·, t).

Then we need some notation that we use in the development of the paper. In the next
we define several spaces with inner product over those spaces. Thus the space defined as

W3
2 [0, 1] =

{
v | v, v′, v′′ : [0, 1] −→ R are absolutely continuous, v(3) ∈ L2[0, 1]

}
(2.1)

is a Hilbert space. The inner product and the norm in W3
2 [0, 1] are defined by

〈
v, g

〉
W3

2
=

2∑
i=0

v(i)(0)g(i)(0) +
∫1

0
v(3)(x)g(3)(x)dx, v, g ∈W3

2 [0, 1],

‖v‖W3
2
=
√
〈v, v〉W3

2
, v ∈W3

2 [0, 1],

(2.2)

respectively. Thus the space W3
2 [0, 1] is a reproducing kernel space, that is, for each fixed

y ∈ [0, 1] and any v ∈W3
2 [0, 1], there exists a function Ry such that

v
(
y
)
=
〈
v(x), Ry(x)

〉
W3

2
, (2.3)

and similarly we define the space

T3
2 [[0, 1] =

{
v | v, v′, v′′ : [0, 1] −→ R are absolutely continuous,

v′′ ∈ L2[0, 1], v(0) = 0, v′(0) = 0

}
. (2.4)

The inner product and the norm in T3
2 [0, 1] are defined by

〈
v, g

〉
T3

2
=

2∑
i=0

v(i)(0)g(i)(0) +
∫1

0
v′′′(t)g ′′′(t)dt, v, g ∈ T3

2 [0, 1],

‖v‖T3
2
=
√
〈v, v〉T3

2
, v ∈ T3

2 [0, 1],

(2.5)
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respectively. The space T3
2 [0, 1] is a reproducing kernel Hilbert space and its reproducing

kernel function rs is given by [26] as

rs =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
4
s2t2 +

1
12
s2t3 − 1

24
st4 +

1
120

t5, t ≤ s,

1
4
s2t2 +

1
12
s3t2 − 1

24
ts4 +

1
120

s5, t > s,

(2.6)

and the space

G1
2[0, 1] =

{
v | v : [0, 1] −→ R is absolutely continuous, v′(x) ∈ L2[0, 1]

}
, (2.7)

is a Hilbert space where the inner product and the norm in G1
2[0, 1] are defined by

〈
v, g

〉
G1

2
= v(i)(0)g(i)(0) +

∫1

0
v′(x)g ′(x)dx, v, g ∈ G1

2[0, 1],

‖v‖G1
2
=
√
〈v, v〉G1

2
, v ∈ G1

2[0, 1],

(2.8)

respectively. The space G1
2[0, 1] is a reproducing kernel space and its reproducing kernel

function Qy is given by [26] as

Qy =

{
1 + x, x ≤ y,
1 + y, x > y.

(2.9)

Similarly, the space H1
2[0, 1] defined by

H1
2[0, 1] =

{
v | v : [0, 1] −→ R is absolutely continuous, v(t) ∈ L2[0, 1]

}
(2.10)

is a Hilbert space and then inner product and the norm in T1
2 [0, 1] are defined by

〈
v, g

〉
H1

2
= v(0)g(0) +

∫1

0
v′(t)g ′(t)dt, v, g ∈ H1

2[0, 1],

‖v‖H1
2
=
√
〈v, v〉T1

2
, v ∈ H1

2[0, 1],

(2.11)

respectively. The space H1
2[0, 1] is a reproducing kernel space and its reproducing kernel

function qs is given by [26] as

qs =

{
1 + t, t ≤ s,
1 + s, t > s.

(2.12)
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Now we have the following theorem.

Theorem 2.2. The space W3
2 [0, 1] is a complete reproducing kernel space whose reproducing kernel

Ry is given by

Ry(x) =

⎧⎪⎪⎨
⎪⎪⎩

6∑
i=1
ci
(
y
)
xi−1, x ≤ y,

6∑
i=1
di
(
y
)
xi−1, x > y,

(2.13)

where

c1
(
y
)
= 1, c2

(
y
)
= y, c3

(
y
)
=
y2

4
, c4

(
y
)
=
y2

12
, c5

(
y
)
= − 1

24
y, c6

(
y
)
=

1
120

,

d1
(
y
)
= 1 +

y5

120
, d2

(
y
)
= −y

4

24
+ y, d3

(
y
)
=
y2

4
+
y3

12
, d4

(
y
)
= d5

(
y
)
= d6

(
y
)
= 0.

(2.14)

Proof. Since

〈
v,Ry

〉
W3

2
=

2∑
i=0

v(i)(0)R(i)
y (0) +

∫1

0
v(3)(x)R(3)

y (x)dx,
(
v,Ry ∈W3

2 [0, 1]
)

(2.15)

through iterative integrations by parts for (2.15), we have

〈
v(x), Ry(x)

〉
W4

2
=

2∑
i=0

v(i)(0)
[
R

(i)
y (0) − (−1)(2−i)R(5−i)

y (0)
]

+
2∑
i=0

(−1)(2−i)v(i)(1)R(5−i)
y (1) +

∫1

0
v(x)R(6)

y (x)dx.

(2.16)

Note the property of the reproducing kernel as

〈
v(x), Ry(x)

〉
W3

2
= v

(
y
)
. (2.17)
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If

Ry(0) − R(5)
y (0) = 0,

R′
y(0) + R

(4)
y (0) = 0,

R′′
y(0) − R′′′

y (0) = 0,

R
(3)
y (1) = 0,

R
(4)
y (1) = 0,

R
(5)
y (1) = 0,

(2.18)

Then by (2.16) we obtain

R
(6)
y (x) = δ

(
x − y), (2.19)

when x /=y,

R
(6)
y (x) = 0, (2.20)

therefore

Ry(x) =

⎧⎪⎪⎨
⎪⎪⎩

6∑
i=1
ci
(
y
)
xi−1, x ≤ y,

6∑
i=1
di
(
y
)
xi−1, x > y.

(2.21)

Since

R
(6)
y (x) = δ

(
x − y), (2.22)

we have

∂kRy+
(
y
)
= ∂kRy−

(
y
)
, k = 0, 1, 2, 3, 4,

∂5Ry+
(
y
) − ∂5Ry−

(
y
)
= −1.

(2.23)

From (2.18) and (2.23), the unknown coefficients ci(y) and di(y) (i = 1, 2, . . . , 6) can be
obtained. Thus Ry is given by

Ry =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 + yx +
1
4
y2x2 +

1
12
y2x3 − 1

24
yx4 +

1
120

x5, x ≤ y

1 + yx +
1
4
y2x2 +

1
12
y3x2 − 1

24
xy4 +

1
120

y5, x > y.

(2.24)
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Now we note that the space given in [26] as

W(Ω) =

⎧⎪⎪⎨
⎪⎪⎩
v(x, t) | ∂4v

∂x2∂t2
, is completely continuous in Ω = [0, 1] × [0, 1],

∂6v

∂x3∂t3
∈ L2(Ω), v(x, 0) = 0,

∂v(x, 0)
∂t

= 0

⎫⎪⎪⎬
⎪⎪⎭
, (2.25)

is a binary reproducing kernel Hilbert space. The inner product and the norm in W(Ω) are
defined by

〈
v(x, t), g(x, t)

〉
W =

2∑
i=0

∫1

0

[
∂3

∂t3
∂i

∂xi
v(0, t)

∂3

∂t3
∂i

∂xi
g(0, t)

]
dt

+
2∑
j=0

〈
∂j

∂tj
v(x, 0),

∂j

∂tj
g(x, 0)

〉
W3

2

+
∫1

0

∫1

0

[
∂3

∂x3

∂3

∂t3
v(x, t)

∂3

∂x3

∂3

∂t3
g(x, t)

]
dx dt,

‖v‖W =
√
〈v, v〉W, v ∈W(Ω),

(2.26)

respectively.

Theorem 2.3. TheW(Ω) is a reproducing kernel space and its reproducing kernel function is

K(y,s) = Ryrs, (2.27)

such that for any v ∈W(Ω),

v
(
y, s

)
=
〈
v(x, t), K(y,s)(x, t)

〉
W
,

K(y,s)(x, t) = K(x,t)
(
y, s

)
.

(2.28)

Similarly, the space

Ŵ(Ω) =

{
v(x, t) | v(x, t) is completely continuous in Ω = [0, 1] × [0, 1],

∂2v

∂x∂t
∈ L2(Ω)

}

(2.29)
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is a binary reproducing kernel Hilbert space. The inner product and the norm in Ŵ(Ω) are
defined by [26] as

〈
v(x, t), g(x, t)

〉
Ŵ =

∫1

0

[
∂

∂t
v(0, t)

∂

∂t
g(0, t)

]
dt +

〈
v(x, 0), g(x, 0)

〉
W1

2

+
∫1

0

∫1

0

[
∂

∂x

∂

∂t
v(x, t)

∂

∂x

∂

∂t
g(x, t)

]
dxdt,

‖v‖Ŵ =
√
〈v, v〉Ŵ , v ∈ Ŵ(Ω),

(2.30)

respectively. Ŵ(Ω) is a reproducing kernel space and its reproducing kernel function G(y,s) is

G(y,s) = Qyqs. (2.31)

3. Solution Representation in W(Ω)

In this section, the solution of (1.1) is given in the reproducing kernel space W(Ω). We define
the linear operator L : W(Ω) → Ŵ(Ω) as

Lv =
∂2v

∂t2
− c2 ∂

2v

∂x2
+
(
α + β

)∂v
∂t

+ αβv. (3.1)

Model problem (1.1) changes to the following problem:

Lv = f(x, t) +M(x, t), x, t ∈ [0, 1],

v(x, 0) = 0,
∂v(x, 0)

∂t
= 0.

(3.2)

Lemma 3.1. The operator L is a bounded linear operator.

Proof. Since

‖Lv‖2
Ŵ

=
∫1

0

[
∂

∂t
Lv(0, t)

]2

dt + 〈Lv(x, 0), Lv(x, 0)〉W1
2

+
∫1

0

∫1

0

[
∂

∂x

∂

∂t
Lv(x, t)

]2

dx dt

=
∫1

0

[
∂

∂t
Lv(0, t)

]2

dt + [Lv(0, 0)]2

+
∫1

0

[
∂

∂x
Lv(x, 0)

]2

+
∫1

0

∫1

0

[
∂

∂x

∂

∂t
Lv(x, t)

]2

dx dt,

v(x, t) =
〈
v
(
ξ, η

)
, K(x,t)

(
ξ, η

)〉
W, Lv(x, t) =

〈
v
(
ξ, η

)
, LK(x,t)

(
ξ, η

)〉
W,

(3.3)
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by continuity of K(x,t)(ξ, η), we have

|Lv(x, t)| ≤ ‖v‖W
∥∥LK(x,t)

(
ξ, η

)∥∥
W ≤ a0‖v‖W. (3.4)

Now similarly for i = 0, 1, we obtain

∂i

∂xi
Lv(x, t) =

〈
v
(
ξ, η

)
,
∂i

∂xi
LK(x,t)

(
ξ, η

)〉
W

,

∂

∂t

∂i

∂xi
Lv(x, t) =

〈
v
(
ξ, η

)
,
∂

∂t

∂i

∂xi
LK(x,t)

(
ξ, η

)〉
W

,

(3.5)

and then

∣∣∣∣∣
∂i

∂xi
Lv(x, t)

∣∣∣∣∣ ≤ ei‖v‖W,
∣∣∣∣∣
∂

∂t

∂i

∂xi
Lv(x, t)

∣∣∣∣∣ ≤ fi‖v‖W.
(3.6)

Therefore we conclude

‖Lv(x, t)‖2
Ŵ

≤
1∑
i=0

(
e2
i + f

2
i

)
‖v‖2

W ≤ a2‖v‖2
W. (3.7)

Now, if we choose a countable dense subset {(x1, t1), (x2, t2), . . .} in Ω = [0, 1] × [0, 1]
and define

Φi(x, t) = G(xi,ti)(x, t), Ψi(x, t) = L∗Φi(x, t), (3.8)

where L∗ is the adjoint operator of L, then the orthonormal system {Ψ̂i(x, t)}
∞
i=1 of W(Ω) can

be derived from the process of Gram-Schmidt orthogonalization of {Ψi(x, t)}∞i=1 as

Ψ̂i(x, t) =
i∑

k=1

βikΨk(x, t). (3.9)

Then we have the following theorem.

Theorem 3.2. Suppose that {(xi, ti)}∞i=1 is dense inΩ, then {Ψi(x, t)}∞i=1 is complete system inW(Ω)
and

Ψi(x, t) = L(y,s)K(y,s)(x, t)
∣∣
(y,s)=(xi,ti)

. (3.10)
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Proof. We have

Ψi(x, t) = (L∗Φi)(x, t) =
〈
(L∗Φi)

(
y, s

)
, K(x,t)

(
y, s

)〉
W

=
〈
Φi

(
y, s

)
, L(y,s)K(x,t)

(
y, s

)〉
Ŵ

= L(y,s)K(x,t)
(
y, s

)∣∣
(y,s)=(xi,ti)

= L(y,s)K(y,s)(x, t)
∣∣
(y,s)=(xi,ti)

.

(3.11)

That is clearly Ψi(x, t) ∈W(Ω). For each fixed v(x, t) ∈W(Ω), if

〈v(x, t),Ψi(x, t)〉W = 0, i = 1, 2, . . . (3.12)

then

〈v(x, t), (L∗Φi)(x, t)〉W = 〈Lv(x, t),Φi(x, t)〉Ŵ
= (Lv)(xi, ti) = 0, i = 1, 2, . . . .

(3.13)

Note that {(xi, ti)}∞i=1 is dense in Ω, hence, (Lv)(x, t) = 0. It follows that v = 0 from the
existence of L−1. So the proof is complete.

Theorem 3.3. If {(xi, ti)}∞i=1 is dense in Ω, then the solution of (1.5) is given as

v(x, t) =
∞∑
i=1

i∑
k=1

βik
[
f(xk, tk) +M(xk, tk)

]
Ψ̂i(x, t). (3.14)

Proof. Since {Ψi(x, t)}∞i=1 is complete system in Ω, we have

v(x, t) =
∞∑
i=1

〈
v(x, t), Ψ̂i(x, t)

〉
W
Ψ̂i(x, t)

=
∞∑
i=1

i∑
k=1

βik〈v(x, t),Ψk(x, t)〉WΨ̂i(x, t)
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=
∞∑
i=1

i∑
k=1

βik〈v(x, t), L∗Φk(x, t)〉WΨ̂i(x, t)

=
∞∑
i=1

i∑
k=1

βik〈Lv(x, t),Φk(x, t)〉ŴΨ̂i(x, t)

=
∞∑
i=1

i∑
k=1

βik
〈
Lv(x, t), G(xk,tk)(x, t)

〉
ŴΨ̂i(x, t)

=
∞∑
i=1

i∑
k=1

βikLv(xk, tk)Ψ̂i(x, t)

=
∞∑
i=1

i∑
k=1

βik
[
f(xk, tk) +M(xk, tk)

]
Ψ̂i(x, t).

(3.15)

Now the approximate solution vn(x, t) can be obtained from the n-term intercept of
the exact solution v(x, t) and

vn(x, t) =
n∑
i=1

i∑
k=1

βik
[
f(xk, tk) +M(xk, tk)

]
Ψ̂i(x, t). (3.16)

Of course it is also easy to show that

‖vn(x, t) − v(x, t)‖ −→ 0, (n −→ ∞). (3.17)

3.1. Convergence Analysis

We assume that {xi, ti}∞i=1 is dense in Ω = [0, 1] × [0, 1]. We discuss the convergence of the
approximate solutions constructed in Section 3. Let v be the exact solution of (1.1) and vn the
n-term approximation solution of (1.1). Then we have the following theorem.

Theorem 3.4. If v ∈W(Ω), then

‖v − vn‖W(Ω) −→ 0, n −→ ∞. (3.18)

Moreover a sequence ‖v − vn‖W(Ω) is monotonically decreasing in n.

Proof. From (3.14) and (3.16), it follows that

‖v − vn‖W(Ω) = ‖v − vn‖W(Ω) =

∥∥∥∥∥
∞∑

i=n+1

i∑
k=1

βik
[
f(xk, tk) +M(xk, tk)

]
ψi(x, t)

∥∥∥∥∥
W(Ω)

. (3.19)
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Figure 1: The compared results of the analytical and numerical solutions of Example 4.1 for t = 0.5.
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Figure 2: The compared results of the analytical and numerical solutions of Example 4.1 for t = 1.0.

Thus

‖v − vn‖W(Ω) −→ 0, n −→ ∞. (3.20)

In addition,

‖v − vn‖2
W(Ω) =

∥∥∥∥∥
∞∑

i=n+1

i∑
k=1

βik
[
f(xk, tk) +M(xk, tk)

]
ψi(x, t)

∥∥∥∥∥
2

W(Ω)

=
∞∑

i=n+1

(
i∑

k=1

βik
[
f(xk, tk) +M(xk, tk)

])2

.

(3.21)

Then clearly, ‖v − vn‖W(Ω) is monotonically decreasing in n.
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Table 1: The exact solution, approximate solution, absolute error, and relative error of Example 4.1 for
initial conditions at t = 0.5.

x Exact solution Approximate solution Absolute error Relative error
0.2 0.5877852524 0.5877852576 5.21 × 10−9 8.846768405 × 10−9

0.4 0.9510565165 0.951056525 8.52 × 10−9 8.937428904 × 10−9

0.6 0.9510565163 0.95105657 5.37 × 10−8 5.646352144 × 10−8

0.8 0.5877852522 0.587785294 4.18 × 10−8 7.111440759 × 10−8

Table 2: The absolute error ofExample 7 for difference schemes and our scheme at t = 0.5.

x Difference scheme [13] Difference scheme [21] Present scheme
0.2 5.859 × 10−1 1.167 × 10−5 5.21 × 10−9

0.4 9.480 × 10−1 1.889 × 10−5 8.52 × 10−9

0.6 9.480 × 10−1 1.889 × 10−5 5.37 × 10−8

0.8 5.859 × 10−1 1.167 × 10−5 4.18 × 10−8

Table 3: The exact solution, approximate solution, absolute error, and relative error of Example 4.2 for
initial conditions at t = 0.8.

x Exact solution Approximate solution Absolute error Relative error
0.2 0.04761212907 0.047612168 3.8931 × 10−8 8.176487958 × 10−7

0.4 0.07703804312 0.07703791 1.3312 × 10−7 0.000001727977433
0.6 0.07703804310 0.077037983 6.0101 × 10−8 7.801340426 × 10−7

0.8 0.04761212906 0.04761256075 4.3169 × 10−7 0.000009066807314

Table 4: The absolute error of Example 4.2 for difference schemes and our scheme at t = 0.8.

x Difference scheme [13] Difference scheme [21] Our scheme
0.2 5.119 × 10−2 2.334 × 10−6 3.8931 × 10−8

0.4 8.283 × 10−1 3.776 × 10−6 1.3312 × 10−7

0.6 8.283 × 10−1 3.776 × 10−6 6.0101 × 10−8

0.8 5.119 × 10−2 2.334 × 10−6 4.3169 × 10−7

Table 5: The exact solution, approximate solution, absolute error, and relative error of Example 4.3 for
initial conditions at t = 1.

x Exact solution Approximate solution Absolute error Relative error
0.2 0.004842491805 0.00484215485 3.36955 × 10−7 0.00006958297785
0.4 0.02451511476 0.024515542 4.2724 × 10−7 0.00001742761575
0.6 0.02451511476 0.02451574136 6.2660 × 10−7 0.00002555974166
0.8 0.004842491805 0.004843445 9.53195 × 10−7 0.0001968397756

Table 6: The absolute error of Example 4.3 for difference schemes and our scheme at t = 1.0.

x Difference scheme [13] Difference scheme [21] Our scheme
0.2 4.956 × 10−3 5.138 × 10−7 3.36955 × 10−7

0.4 2.392 × 10−2 3.550 × 10−7 4.27242 × 10−7

0.6 2.392 × 10−2 3.550 × 10−7 6.26601 × 10−7

0.8 4.956 × 10−3 5.138 × 10−7 9.53195 × 10−7



Journal of Function Spaces and Applications 15

0 1 2 3

0

0.5

1

AS
ES

−1

−0.5

−3 −2 −1

x
u
(x
)

Figure 3: The compared results of the analytical and numerical solutions of Example 4.1 for t = 1.5.
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Figure 4: The compared results of the analytical and numerical solutions of Example 4.2 for t = 0.5.

4. Experimental Results for the Telegraph Equation

In this section, three numerical examples are provided to show the accuracy of the present
method. All the computations were performed by Maple 13. Since, the RKHSM does not
require discretization of the variables, that is, time and space, it is also not effected by
computation round-off errors and no need to face with necessity of large computer memory
and time. The accuracy of the RKHSM for the problem (1.1) is controllable and absolute errors
are small with present choice of x and t (see Tables 1, 2, 3, 4, 5, and 6). Thus the numerical
results which we obtain justify the advantage of this methodology.

Note that the solutions are very rapidly convergent by utilizing the RKHSM. Further,
the series solution methodology can be applied to various types of linear or nonlinear system
of partial differential equations and single partial differential equations, see, for example,
[25–30].

Using our method we choose 100 points in [0, 1]×[0, 1]. In Tables 2, 4 and 6 we compute
the absolute errors |u(x, t) − un(x, t)| at the following points:

{(xi, ti) : xi = 2i, i = 0.1, 0.2, 0.3, 0.4; t = 0.5, 0.8, 1.0}. (4.1)
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Table 7: The relative errors and computational times for Examples 4.1–4.3 at different values of x and t.

x t Example 5.1 Time Example 5.2 Time Example 5.3 Time
0.1 0.1 5.57 × 10−9 1.685 5.20963 × 10−5 1.809 5.13216 × 10−6 1.716
0.2 0.2 3.02 × 10−8 1.857 2.07422 × 10−5 1.732 6.82234 × 10−7 1.872
0.3 0.3 3.250 × 10−7 1.841 7.17823 × 10−4 1.934 6.74863 × 10−7 1.669
0.4 0.4 5.56 × 10−8 1.857 6.44910 × 10−4 1.872 5.73933 × 10−6 1.716
0.5 0.5 3. × 10−6 1.622 2.481 × 10−7 1.841 3.93839 × 10−6 1.716
0.6 0.6 1.632 × 10−7 1.826 4.54 × 10−8 1.654 5.35112 × 10−6 1.701
0.7 0.7 2.01 × 10−8 1.731 9.19 × 10−9 1.560 9.26055 × 10−6 1.638
0.8 0.8 2.9613 × 10−6 1.747 4.3169 × 10−7 1.591 9.6449 × 10−9 1.763
0.9 0.9 4.9767 × 10−7 1.701 1.781 × 10−8 1.653 6.3701 × 10−9 1.669
1.0 1.0 4.2964 × 10−5 1.623 1.61644 × 10−10 1.513 2.75453 × 10−4 1.732
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Figure 5: The compared results of the analytical and numerical solutions of Example 4.2 for t = 1.0.

In Table 7, we compute the following relative errors:

|u(x, t) − un(x, t)|
|u(x, t)| (4.2)

at the points {(xi, ti) : xi = ti = i, i = 0.1, . . . , 1.0}. It is possible to refine the result by increasing
the intensive points.

We constructed the figures for different values of x and t. It can be concluded by figures
that the speed of convergence is decreasing by increasing the values of x and t.

Example 4.1. Consider the following telegraph equation with initial conditions:

∂2u

∂t2
+ 2π

∂u

∂t
+ π2u =

∂2u

∂x2
+ π2 sinπx(sinπt + 2 cosπt),

0 ≤ x ≤ 1, 0 ≤ t ≤ 1,

u(x, 0) = 0,
∂u(x, 0)

∂t
= π sinπx.

(4.3)



Journal of Function Spaces and Applications 17

0 2 4

0

0.005

−4 −2

−0.005

AS
ES

x
u
(x
)

Figure 6: The compared results of the analytical and numerical solutions of Example 4.2 for t = 1.5.

Then the exact solution is given as

u(x, t) = sin(πx) sin(πt). (4.4)

If we apply v(x, t) = u(x, t) − t sin(πx) to (4.3), then we obtain the following equation:

∂2v

∂t2
− ∂2v

∂x2
+ 2π

∂v

∂t
+ π2v = −2π2 sinπx − 2tπ3 sinπx + π2 sinπx(sinπt + 2 cosπt),

0 ≤ x ≤ 1, 0 ≤ t ≤ 1

v(x, 0) = 0,
∂v(x, 0)

∂t
= 0.

(4.5)

Then we have the estimation in Table 1.

Now if we compare [13, 21] and the present scheme we have Table 2.
We have Figures 1, 2, and 3 for this example, where ES = exact solution and AS =

approximate solution.

Example 4.2. Consider the following telegraph equation with initial conditions:

∂2u

∂t2
+ 4π

∂u

∂t
+ 3π2u = 4

∂2u

∂x2
+ 4π2e−πt sinπx, 0 ≤ x ≤ 1, 0 ≤ t ≤ 1,

u(x, 0) = sinπx,
∂u(x, 0)
∂t

= −π sinπx.

(4.6)
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Figure 7: The compared results of the analytical and numerical solutions of Example 4.3 for t = 0.5.
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Figure 8: The compared results of the analytical and numerical solutions of Example 4.3 for t = 1.0.

The exact solution u(x, t) = e−πt sinπx. If we apply v(x, t) = u(x, t) − sinπx + tπ sinπx to
(4.6), then we obtain

∂2v

∂t2
− ∂2v

∂x2
+ 4π

∂v

∂t
+ 3π2v = 4tπ3 sinπx + 4π2e−πt sinπx, 0 ≤ x ≤ 1, 0 ≤ t ≤ 1,

v(x, 0) = 0,
∂v(x, 0)

∂t
= 0,

(4.7)

then similarly, in Table 3 we have the estimation among the exact and approximate solutions
and the error terms.

Then the comparison yields in Table 4.
We have Figures 4, 5, and 6 for this example.
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Figure 9: The compared results of the analytical and numerical solutions of Example 4.3 for t = 1.5.
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Figure 10: The compared results of the analytical and numerical solutions of Examples 4.1–4.3.

Example 4.3. Consider the following telegraph equation with initial conditions:

∂2u

∂t2
+ 10

∂u

∂t
+ 24u =

∂2u

∂x2
+ 4x2(x − 1)2

(
12x4 − 24x3 − 2x2 + 14x − 3

)
e2t,

0 ≤ x ≤ 1, 0 ≤ t ≤ 1,

u(x, 0) = x4(x − 1)4,
∂u(x, 0)

∂t
= 2x4(x − 1)4.

(4.8)

The exact solution u(x, t) = e2tx4(x − 1)4. If we apply

v(x, t) = u(x, t) − x4(x − 1)4 − 2tx4(x − 1)4 (4.9)
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Figure 11: The compared results of the relative errors for Examples 4.1–4.3.

to (4.8) then (4.10) is obtained as

∂2v

∂t2
− ∂2v

∂x2
+ 10

∂v

∂t
+ 3π2v = 4tπ3 sinπx + 4π2e−πt sinπx,

0 ≤ x ≤ 1, 0 ≤ t ≤ 1,

v(x, 0) = 0,
∂v(x, 0)

∂t
= 0.

(4.10)

We have Figures 7, 8, 9, 10, and 11 for this example.

Remark 4.4. Ding et al. [19] has solved Examples 4.1–4.3 by using new polynomial spline
methods. In our method the numerical solutions are in good agreement with analytical
solutions (see Figures 1–11). In addition, the figure of the relative error is drawn for the value
of x, t and also for three examples (see Figure 11).

One may view Tables 1, 2, 3, 4, 5 and 6 for the confidence of the method and the
comparison with the other methods. In Table 7, computing time with relative error is also
given for each example.

5. Conclusion

In this paper, the RKHSM was used for the telegraph equation with initial conditions. The
approximate solutions to the equations have been calculated by using the RKHSM without
any need to transformation techniques and linearization or perturbation of the equations. In
closing, the RKHSM avoids the difficulties and massive computational work by determining
the analytic solutions. We compare our solutions with the exact solutions and the results of
[19].



Journal of Function Spaces and Applications 21

A clear conclusion can be drawn from the numerical results as the RKHSM algorithm
provides highly accurate numerical solutions without spatial discretizations for the nonlinear
partial differential equations. It is also worth noting that the advantage of this methodology
displays a fast convergence of the solutions. The illustrations show the dependence of the
rapid convergence depends on the character and behavior of the solutions just as in a closed
form solutions.
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We extend the Fresnel-wavelet transform to the context of generalized functions, namely,
Boehmians. At first, we study the Fresnel-wavelet transform in the sense of distributions of
compact support. Based on this concept, we introduce two new spaces of Boehmians and proving
certain related results. Further, we show that the extended transform establishes a linear and an
isomorphic mapping between the Boehmian spaces. Moreover, conditions of continuity of the
extended transform and its inverse with respect to δ and Δ convergence are discussed in some
details.

1. Introduction

Optical integral transforms have been studied in several works, for example, [1–8]. However,
is the Fresnel transform among all the great importance [5, 9] where for which the kernel
takes the form of a complex exponential function exp[(i/2c)(ax2

1 + bx
2
2)], for some constants

a, b and c. The generalization of the Fresnel transform called the linear canonical transform
was introduced in [10] and has recently attracted considerable attention in optics, see [4,
11]. One of the very well-known linear transform is the wavelet transform, see [12, 13] we
have

Ωf

(
μ, λ
)
=

1√
μ

∫
R
f(x)ψ∗

(
x − λ
μ

)
dx, (1.1)
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where ψ(x) is named as the mother wavelet such that

∫
R
dxψ(x) = 0, (1.2)

μ ∈ R+ and λ ∈ R are the transform dilate and translate of the wavelet ψ and ψ∗ being
the complex conjugate of ψ. The optical diffraction transform is described by the Fresnel
integration in [5, 9] as follows:

fw(x2) =
1√

2πiγ1

∫
R

exp
[
i

2γ1

(
α1x

2
1 − 2x1x2 + α2x

2
2

)]
f(x1)dx1. (1.3)

The parameters (α1, γ1, γ2, and α2) are elements of more ray transfer Matrix M describing
optical systems, α1α2 − γ1γ2 = 1. For a details of Fresnel integrals, see [14, 15].

Note that many familiar transforms can be considered as special cases of the diffraction
Fresnel transform. For example, if the parameters α1, γ1, γ2, and α2 are written in the
following matrix form:

(
α1 γ1

γ2 α2

)
=
(

cos θ sin θ
− sin θ cos θ

)
(1.4)

then the diffraction Fresnel transform, the generalized Fresnel Transform becomes a fractional
Fourier transform, see [11, 16, 17].

In the present work, we consider a combined optical transform of Fresnel and wavelet
transforms, namely, the optical Fresnel-wavelet transform defined by [9]

fw(x2) =
1√

2πiγ1

∫
R
Kλ,μ,x2(x1)f(x1)dx. (1.5)

with kernel

Kλ,μ,x2(x1) = exp

(
i

2γ1

(
α1(x1 − λ)2

μ2
− 2x2(x1 − λ)

μ
+ α2x

2
2

))
. (1.6)

The parameters α1, γ1, γ2, and α2 appearing in (1.5) are elements of 2 × 2 matrix with unit
determinant.

As the general single-mode squeezing operator of the generalized Fresnel transform
is in wave optics, further its applications are having a faithful representation in the optical
Fresnel-wavelet transform, see [9]. Therefore the combined optical Fresnel-wavelet transform
can be more conveniently studied by the general single-mode squeezed operation.

However, our discussion is somewhat different and making more interesting. Since
the theory of the optical Fresnel-wavelet transform of generalized functions has not been
reported in the literature. Thus, we extend the optical Fresnel-wavelet transform to a specific
space of generalized functions, namely, known as Boehmian space. In Section 2, we observe
that the kernel function of the Fresnel-wavelet transform is a smooth function, and therefore
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the optical Fresnel-wavelet transform is defined as an adjoint operator in the space of
distributions. In a concrete way, Section 3 builds an appropriate space of Boehmians, whereas
Section 4 constructs a new space of all images of Boehmians from Section 3. In Section 5, we
define the optical Fresnel-wavelet transform of a Boehmian and study some of its general
properties.

2. Optical Fresnel-Wavelet Transforms of Distributions

Let E(R) be the space of all test functions φ(x) of arbitrary support and E
′(R) be its dual

of distributions of bounded support, see, for example [12, 18–20]. Then, E(R) is a complete
multinormed space with the set of norms as follows:

ξk
(
φ
)
(x) = sup

x∈K

∣∣∣Dk
xφ(x)

∣∣∣, (2.1)

where K run through compact subsets of R and φ ∈ E(R). It is clear that the kernel function
of the optical Fresnel-wavelet transform

Kλ,μ,x2(x1) = exp
i

2γ1

(
α1(x1 − λ)2

μ2
− 2x2(x1 − λ)

μ
+ α2x

2
2

)
(2.2)

for each x2, λ ∈ R, μ ∈ R+ is an element of E(R). This describes the distributional optical
Fresnel-wavelet transform of bounded support as an adjoint operator as follows:

fw(x2) = Tf(x2) =

〈
f(x1), exp

i

2γ1

(
α1(x1 − λ)2

μ2
− 2x2(x1 − λ)

μ
+ α2x

2
2

)〉
. (2.3)

For convenience we sometimes write Tf(x2) instead of fw(x2). Moreover, from (2.3), we
observe that Tf(x2) is an analytic function satisfying the expression as follows:

Dk
x2
Tf(x2) =

〈
f(x1), Dk

x2
Kλ,μ,x2(x1)

〉
. (2.4)

Further, Dk
x2
Tf(x2) is well defined since Dk

x2
Kλ,μ,x2(x1) ∈ E(R), Kλ,μ,x2(x1) has its usual

meaning where denoted by ∗ to be the usual convolution product [18, 20, 21]. Then we have
the following lemma.

Lemma 2.1. Let f, g ∈ E
′(R) and Tf = fw(f(x))(x2), Tg = fw(g(τ))(x2) be their respective optical

Fresnel-wavelet transforms and λ2 = 2xτ for all x and τ , then

Tf∗g(x2) = exp
i

2γ1

(
−2x2λ

μ
− α2x

2
2

)
Tf(x2)Tg(x2), (2.5)

where Tf∗g(x2) = fw((f ∗ g)(x))(x2).
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Proof. Let f, g ∈ E
′(R), Tf = fw(f(x))(x2), and Tg = fw(g(τ))(x2), and then

Tf∗g(x2) =

〈(
f ∗ g)(x), exp

i

2γ1

(
α1(x − λ)2

μ2
− 2x2

(x − λ)
μ

+ α2x
2
2

)〉

i.e., =

〈
f(x),

〈
g(τ), exp

i

2γ1

(
α1(x + τ − λ)2

μ2
− 2x2

(x + τ − λ)
μ

+ α2x
2
2

)〉〉
.

(2.6)

Hence, using properties of distributions and simple calculations we get

Tf∗g(x2) = exp
i

2γ1

(
−2x2λ

μ
− α2x

2
2

)
Tf(x2)Tg(x2). (2.7)

The above theorem is known as the convolution theorem of the Fresnel-wavelet transform.

Let δ be the dirac delta function. Then the Fresnel-wavelet transform of δ is described
as follows:

Tδ = fw(δ(x))(x2) = exp

(
i

2γ1

(
α1
λ2

μ2
+

2x2λ

μ
+ α2x

2
2

))
, (2.8)

Now e can easily deduce a corollary for the Lemma 2.1 as follows.

Corollary 2.2. Let f, g ∈ E
′(R) and δ be the dirac delta function, and then

Tf∗δ(x2) = exp
i

2γ1

(
α1

4λ2 + 2xτ
μ2

)
Tf(x2),

Tδ∗g(x2) = exp
i

2γ1

(
α1

4λ2 + 2xτ
μ2

)
Tg(x2).

(2.9)

Proof. It is a straightforward result of Lemma 2.1.

Theorem 2.3. The distributional optical Fresnel-wavelet transform fw is linear.

Proof. It is obvious.

Lemma 2.4. Let f, g ∈ E
′(R), Tg(x2) = fw(g(x))(x2), Tf(x2) = fw(f(τ))(x2), and then one has

(1) T(f∗g)(k) (x2) = exp
i

2γ1

(
−2x2λ

μ
− α2x

2
2

)
Tf (k) (x2)Tg(x2)

(2) T(f∗g)(k) (x2) = exp
i

2γ1

(
−2x2λ

μ
− α2x

2
2

)
Tf(x2)Tg(k) (x2).
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Proof. It is a straightforward conclusion of the fact [20]. Consider

(
f ∗ g)(k) = f (k) ∗ g = f ∗ g(k). (2.10)

3. The Boehmian Space B1

In this section, we assume that the reader is acquainted with the general construction of
Boehmian spaces [6, 22–27]. Let D(R) be the Schwartz space of test functions of bounded
support see [12, 20, 28]. The operation • between a distribution f ∈ E

′(R) and a test function
φ ∈ D(R) is defined by

(
f • g)ψ(x) = f(g � τxψ

)
, (3.1)

where τxψ(y) = ψ(x + y) and

(
g � τxψ

)(
y
)
=
∫
R
g
(
y
)
τxψ
(
y
)
dy. (3.2)

A sequence (φn) of functions in D(R) is said to be a delta sequence if it satisfies Conditions
(3.3)–(3.5). Consider

∫
R
φn(x)dx = 1 (3.3)

∫
R
φn(x)dx ≤M, ∃M > 0, (3.4)

suppφn ⊂ (−εn, εn) −→ 0 as n −→ ∞. (3.5)

The set of all such sequences is denoted by Δ. To see the extension to certain integral
transform, see [29–31].

Lemma 3.1. Given φ ∈ D(R) and ϕ ∈ E(R) then

dk

dxk
(
φ � τxϕ

)
= φ � dk

dxk
τxϕ, (3.6)

for each k ∈ N.

Proof. We prove the lemma by induction on k. Let k = 1 and φ ∈ D(R) with suppφ ⊂ K, and
then

d

dx

(
φ � τxϕ

)
= lim

x→h

φ � τxϕ − φ � τhϕ
x − h = φ � lim

x→h

τxϕ − τhϕ
x − h . (3.7)
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Hence (3.7) reduces to

d

dx

(
φ � τxϕ

)
= φ � d

dx
τxϕ. (3.8)

Next, assume that the lemma satisfies for kth derivatives, then certainly we get

dk+1

dxk+1

(
φ � τxϕ

)
=

d

dx

(
dk

dxk
(
φ � τxϕ

))
= φ � dk+1

dxk+1
τxϕ, (3.9)

by (3.7). Hence the lemmais as follows.

Lemma 3.2. Let φ ∈ D(R) and ϕ ∈ E(R), and then φ � τxϕ ∈ E(R).

Proof. Let K be a compact subset of R. Then using Lemma 3.1 we get

ξk
(
φ � τxϕ

) ≤ sup
x∈K

∣∣∣∣∣
dk+1

dxk+1
τxϕ

∣∣∣∣∣. (3.10)

The inequality (3.10) can be explicitly expressed as

ξk
(
φ � τxϕ

) ≤ ξk(ϕ), (3.11)

where ξk is the norm in the topology equipped with E(R). Hence, the lemma follows from
(3.11). This completes the proof.

Lemma 3.3. Let f ∈ E
′(R) and φ ∈ D(R), and then f • φ ∈ E

′(R).

Proof. In view of Lemma 3.2 we get

f � τxφ ∈ E(R). (3.12)

Therefore, the righthand side of (3.1) is meaningful. To show that f • φ ∈ E
′(R) we are

requested to show that f • φ is continuous and linear. To establish continuity, let (ψn) → 0 in
E(R), then from (3.11) we get

ξk
(
f � τxψn

) ≤ ξk(ψn) −→ 0 as n −→ ∞. (3.13)

Hence we have

(
f • φ)ψn(x) = f(φ � τxψn

) −→ 0 (3.14)

as n → ∞. Linearity condition is obvious. Hence the lemma is completely proved.
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Lemma 3.4. Let φ1, φ2 ∈ D(R) and ψ ∈ E(R) be given, and then

(
φ1 ∗ φ2

) � τxψ = φ1 •
(
φ2 � τxψ

)
(3.15)

Proof. It is a straightforward consequence of definitions and change of variables.

Lemma 3.5. Let φ1, φ2 ∈ D(R) and f ∈ E
′(R), and then

f • (φ1 ∗ φ2
)
=
(
f • φ1

) • φ2. (3.16)

Proof. Using (3.1) and Lemma 3.4. we get

(
f • (φ1 ∗ φ2

))
ψ(x) = f

((
φ1 ∗ φ2

) � τxψ)
= f
(
φ1 •

(
φ2 � τxψ

))
=
(
f • φ1

) • φ2.

(3.17)

Hence the lemma is as follows.

Lemma 3.6. Let f1, f2 ∈ E
′(R) and φ ∈ D(R), and then one has

(1) αf • φ = α(f • φ), α ∈ C

(2) (f1 + f2) • φ = f1 • φ + f2 • φ.

Proof. It is a straightforward result of definitions.

Lemma 3.7. Let fn → f in E
′(R) and φ ∈ D(R) be given then

fn • φ −→ f • φ in E
′(R) (3.18)

as n → ∞.

Proof. By virtue of Lemma 3.2, φ � τxψ ∈ E(R). Hence, using (3.1) we get

(
fn • φ − f • φ)ψ(x) = ((fn − f) • φ)ψ(x)

=
(
fn − f

)(
φ � τxψ

)
.

(3.19)

Allowing n → ∞ completes the proof of the lemma.

Lemma 3.8. Let f ∈ E
′(R) and (φn) ∈ Δ, and then f • φ → f ∈ E

′(R).

Proof. Considering a compact subset K of R and a sequence (φn) ∈ Δ such that suppφn ⊂
(−εn, εn) for each n ∈ N, we show that φ � τxψ → ψ(x) as n → ∞ in the sense of E(R). By
Lemma 3.1 we have

∣∣∣∣∣
dk

dxk
(
φ � τxψ − ψ(x))

∣∣∣∣∣ ≤
∫ εn
−εn

∣∣∣∣∣
dk

dxk
(
ψ
(
x + y

) − ψ(x))
∣∣∣∣∣
∣∣φn(y)∣∣dy, (3.20)
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and by applying (3.4) we get

∣∣∣∣∣
dk

dxk
(
φ � τxψ − ψ(x))

∣∣∣∣∣ ≤
∫ εn
−εn

M

∣∣∣∣∣
dk

dxk
(
ψ
(
x + y

) − ψ(x))
∣∣∣∣∣dx. (3.21)

Then the mean value theorem implies that

∣∣∣∣∣
dk

dxk
(
φ � τxψ − ψ(x))

∣∣∣∣∣ ≤
∫ εn
−εn

M
∣∣y∣∣
∣∣∣∣∣
dk+1

dxk+1
ψ(x + ξ)

∣∣∣∣∣dy (3.22)

for some ξ ∈ (0, y). Let A = sub
s∈K

|(dk+1/dsk)ψ(s)| then considering supremum over all x ∈ K

with the fact that |y| ≤ εn yields

ξk
(
φ � τxψ − ψ(x)) ≤ AMεn. (3.23)

Now allowing n → ∞ in (3.23) yields ξk(φ � τxψ − ψ(x)) → 0. Hence we have established
that

φ � τxψ −→ ψ(x). (3.24)

On using (3.24) can be observed as

(
f • φn

)
ψ(x) = f

(
φ � τxψ

) −→ f
(
ψ
)
(x) as n −→ ∞. (3.25)

This implies that f • φn → f as n → ∞. The proof is therefore completed.

Finally, by virtue of the above sequence of results (Lemma 3.1–3.8), our desired
Boehmian space B1 is well defined.

4. The Boehmian Space BFw

In this section we construct the space of all Fresnel-wavelet transforms of Boehmians from
the space B1 as follows.

Let Fw(R) be the space of all analytic functions which are Fresnel-wavelet transforms
of distributions in E

′(R). Then, we define convergence as follows. We say Tn → T in Fw(R) if
and only if there are fn, f ∈ E

′(R) such that fn → f in E
′(R), where Tn = fwfn and T = fwf .

Let T ∈ Fw(R) and φ ∈ D(R) be given, and then define

(
T � φ

)
(x2) = φ � τx2T. (4.1)

Theorem 4.1. Let f ∈ E
′(R) and φ ∈ D(R), and then fw(f • φ) = T � φ, where T = fwf .
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Proof. By the aid of (2.3) we write

fw
(
f • φ)(x2) =

〈
f • φ,Kλ,μ,x2(x1)

〉
. (4.2)

By using (3.1) we get

fw
(
f • φ)(x2) = f

(
φ � τx2Kλ,μ,x2(x1)

)
= φ
(
f � τx2Kλ,μ,x2(x1)

)
. (4.3)

That is fw(f • φ)(x2) = φ � τx2T . Employing (4.1) yields fw(f • φ)(x2) = (T � φ)(x2), where
T = fwf . This proves the theorem.

Lemma 4.2. Let T ∈ Fw(R) and φ ∈ D(R), and then T � φ ∈ Fw(R).

Proof. Let f ∈ E
′(R) be such that T = fwf , and that then Theorem 4.1 implies

T � φ = fw
(
f • φ). (4.4)

Thus T � φ ∈ Fw(R) by Lemma 3.3. Hence the lemma.

Lemma 4.3. Let T ∈ Fw(R) and φ ∈ D(R), and then f−1
w (T � φ) = f • φ.

Proof. Theorem 4.1 implies that f−1
w (T � φ) = f−1

w (fw(f • φ)) = f • φ. This completes the proof
of the lemma.

Lemma 4.4. Let T1, T2 ∈ Fw(R) and φ1, φ2 ∈ D(R), then

(1) (αT1 + βT2) � φ = αT1 � φ + βT2 � φ,

(2) T � (φ1 � φ2) = (T � φ1) � φ2.

Proof. It is obvious.

Lemma 4.5. (i) Let Tn → T as n → ∞ and φ ∈ D(R), and then Tn � φ → T � φ as n → ∞ in
Fw(R).

(ii) Let Tn → T as n → ∞ and (φn) ∈ Δ, and then Tn � φn → T as n → ∞ in Fw(R).

Proof. (i) Let Tn, T ∈ Fw(R) then T = fwf and Tn = fwfn for some f, fn ∈ E
′(R). Hence, using

Theorem 4.1, we have

Tn � φ = fwfn � φ = fw
(
fn • φ

)
. (4.5)

By Lemma 3.7 we get

Tn � φ −→ fw
(
f • φ). (4.6)

Once again Theorem 4.1 implies that

Tn � φ −→ fwf � φ. (4.7)
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Thus we ahve

Tn � φ −→ T � φ. (4.8)

This proves part (i) of the Lemma.
(ii) can be proved similarly by using Lemma 3.8 and Theorem 4.1. The space BFw is

therefore established.

The sum of two Boehmians and multiplication by a scalar in BFw is defined in a natural
way as follows:

[
fn
φn

]
+
[
gn
ψn

]
=

[(
fn � ψn

)
+
(
gn � φn

)
φn � ψn

]
,

α

[
fn
φn

]
=
[
α
fn
φn

]
, α ∈ C.

(4.9)

The operation � and the differentiation are defined by

[
fn
φn

]
�

[
gn
ψn

]
=
[
fn � gn
φn � ψn

]
, Dα

[
fn
φn

]
=
[
Dαfn
φn

]
. (4.10)

5. Optical Fresnel-Wavelet Transforms of Boehmians

In view of the analysis obtained in Sections 4 and 5 and Theorem 4.1 we are led to state the
following definition.

Definition 5.1. Let [fn/φn ] ∈ B1, and then

F−1
w

[
Tfn
φn

]
=

⎡
⎣T

−1
fn

φn

⎤
⎦, Fw

[
fn
φn

]
=
[
Tfn
φn

]
, (5.1)

for each (φn) ∈ Δ, where Tfn = fwfn.

Lemma 5.2. The optical Fresnel-wavelet transform Fw : B1 → BFw is well defined.

Proof. It is a straightforward.

Lemma 5.3. The optical Fresnel-wavelet transform Fw : B1 → BFw is linear.

Proof. It is straightforward by using Definition 5.1.

Lemma 5.4. The optical Fresnel-wavelet transform Fw : B1 → BFw is an isomorphism.

Proof. Assume that Fw[fn/φn] = Fw[gn/ψn], and then using (5.1) and the concept of
quotients we get Tfn �ψm = Tgm �φn, where Tfn = fwfn and Tgm = fwgm. Therefore, Theorem 4.1
implies that fw(fn•ψm) = fw(gm•φn). Properties of fw imply that fn•ψm = gm•φn. Therefore,
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[fn/φn] = [gn/ψn]. To establish fw is surjective, and let [Tfn/φn] ∈ BFw . Then Tfn�φm = Tfm�φn
for everym,n ∈ N. Hence fn, fm ∈ E

′(R) are such that Tfn = fwfn and Tfm = fwfm. Theorem 4.1
implies that fw(fn•φm) = fw(fm•φn). Hence [fn/φn] ∈ B1 is such that Fw[fn/φn] = [Tfn/φn ].
This completes the proof of the lemma.

Now, Let [fn/φn] ∈ B1, and then we define the inverse optical Fresnel-wavelet
transform of [fn/φn] as

F−1
w

[
fn
φn

]
=

⎡
⎣T

−1
fn

φn

⎤
⎦, (5.2)

where T−1
fn

= f−1
w fn.

Lemma 5.5. Let [Tfn/φn] ∈ BFw , Tfn = fwfn, and φ ∈ D(R) then

F−1
w

([
Tfn
φn

]
� φ

)
=

⎡
⎣T

−1
fn

φn

⎤
⎦ • φ, Fw

([
fn
φn

]
• φ
)

=
[
Tfn
φn

]
� φ. (5.3)

Proof. Applying Definition 5.1 yields

F−1
w

([
Tfn
φn

]
� φ

)
= F−1

w

([
Tfn � φ

φn

])
=

[
f−1
w

(
Tfn � φ

)
φn

]
. (5.4)

Using Lemma 4.3 we obtain

F−1
w

([
Tfn
φn

]
� φ

)
=

[
f−1
w Tfn
φn

]
• φ =

⎡
⎣T

−1
fn

φn

⎤
⎦ • φ. (5.5)

This completes the proof of the Lemma.

Theorem 5.6. Fw : B1 → BFw and F−1
w : BFw → B1 are continuous with respect to δ and Δ

convergences.

Proof. First of all, we show that Fw : B1 → BFw and F−1
w : BFw → B1 are continuous with

respect to δ convergence.

Let βn
δ−→ β in B1 as n → ∞, and then we show that Fwβn → Fwβ as n → ∞. By virtue

of [25] we can find fn,k and fk in E
′(R) such that

βn =
[
fn,k
φk

]
, β =

[
fk
φk

]
(5.6)

such that fn,k → fk as n → ∞ for every k ∈ N. Employing the continuity condition of
the optical Fresnel-wavelet transform implies that Tfn,k → Tfk as n → ∞ in the space Fw(R).
Thus, [Tfn,k/φk] → [Tfk/φk] as n → ∞ in BFw .
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To prove the second part, let gn
δ−→ g in BFw as n → ∞. Then, once again, by [4],

gn = [Tfn,k/φk] and g = [Tfk/φk] for some Tfn,k , Tfk ∈ Fw(R) and Tfn,k → Tfk as n → ∞. Hence
f−1
w Tfn,k → f−1

w Tfk in B1 as n → ∞. Or, [T−1
fn,k
/φk] → [T−1

fk
/φk] as n → ∞. Using Definition 5.1

we get F−1
w [Tfn,k/φk] → F−1

w [Tfk/φk] as n → ∞.

Now, we establish continuity of Fw and F−1
w with respect to Δ convergence. Let βn

Δ−→ β
in B1 as n → ∞. Then, there exist fn ∈ E

′(R) and φn ∈ Δ such that (βn−β)•φn = [(fn•φk)/φk]
and fn → 0 as n → ∞. Employing Definition 5.1 we get

Fw
((
βn − β

) • φn) =
[
fw
(
fn • φk

)
φk

]
. (5.7)

Hence, from Lemma 4.2 we have Fw((βn − β) • φn) = [(Tfn � φk)/φk] = Tfn → 0 as
n → ∞ in Fw. Therefore consider

Fw
((
βn − β

) • φn) = (Fwβn − Fwβ
)
� φn −→ 0 as n −→ ∞. (5.8)

Hence, Fwβn
Δ−→ Fwβ as n → ∞. Finally, let gn

Δ−→ g in BFw as n → ∞, and then we
find Tfk ∈ Fw(R) such that (gn − g) � φn = [(Tfk � φk)/φk] and Tfk → 0 as n → ∞ for some
(φn) ∈ Δ and Tfk = fwfn. Now, using Definition 5.1, we obtain that

F−1
w

((
gn − g

)
� φn
)
=

[
f−1
w

(
Tfk � φk

)
φk

]
. (5.9)

Lemma 5.5 implies that

F−1
w

((
gn − g

)
� φn
)
=
[
fn • φk
φk

]
= fn −→ 0 as n −→ ∞ in E

′(R). (5.10)

Thus we have

F−1
w

((
gn − g

)
� φn
)
=
(
F−1
w gn − F−1

w g
)
• φn −→ 0 as n −→ ∞. (5.11)

From this we find that F−1
w gn

Δ−→ F−1
w g as n → ∞ in B1. This completes the proof of the

theorem.
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The existence results of positive ω-periodic solutions are obtained for the second-order ordinary
differential equation u′′(t) = f(t, u(t), u′(t)), t ∈ R where, f : R × (0,∞) × R → R is a continuous
function, which is ω-periodic in t and f(t, u, v) may be singular at u = 0. The discussion is based
on the fixed point index theory in cones.

1. Introduction

In this paper, we discuss the existence of positive ω-periodic solutions of the second-order
ordinary differential equation with first-order derivative term in the nonlinearity

u′′(t) = f
(
t, u(t), u′(t)

)
, t ∈ R, (1.1)

where the nonlinearity f : R × (0,∞) × R → R is a continuous function, which is ω-periodic
in t and f(t, u, v) may be singular at u = 0.

The existence problems of periodic solutions for nonlinear second-order ordinary
differential equations have attracted many authors’ attention and concern, and most works
are on the special equation

u′′(t) = f(t, u(t)), t ∈ R, (1.2)

that does not contain explicitly first-order derivative term in nonlinearity. Many theorems
and methods of nonlinear functional analysis have been applied to the periodic problems of
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(1.2). These theorems and methods are mainly the upper and lower solutions method and
monotone iterative technique [1–4], the continuation method of topological degree [5–7],
variational method and critical point theory, [8–10] and so forth.

In recent years, the fixed point theorems of cone mapping, especially the fixed point
theorem of Krasnoselskii’s cone expansion or compression type, have been extensively
applied to two-point boundary value problems of second-order ordinary differential
equations, and some results of existence and multiplicity of positive solutions have been
obtained, see [11–15]. Lately, the authors of [16–18] have also applied the Krasnoselskii’s
fixed point theorem to periodic problems of second-order nonlinear ordinary differential
equations, and obtained existence results of positive periodic solutions. In these works,
the new discovered positivity of Green function of the corresponding linear second-order
periodic boundary value problems plays an important role. The positivity guarantees that
the integral operators of the second-order periodic problems are cone-preserving in the cone

K0 = {u ∈ C[0, ω] | u(t) ≥ σ‖u‖, t ∈ [0, ω]} (1.3)

in the Banach space C[0, ω], where σ > 0 is a constant. Hence the fixed point theorems of
cone mapping can be applied to the second-order periodic problems. For more precise results
using the theory of the fixed point index in cones to discuss the existence of positive periodic
solutions of second-order ordinary differential equation, see [19–22]. However, all of these
works are on the special second-order equation (1.2), and few people consider the existence
of the positive periodic solutions for the general second-order equation (1.1) that explicitly
contains the first order derivative term.

The purpose of this paper is to extend the results of [16–22] to the general second-
order equation (1.1). We will use the theory of the fixed point index in cones to discuss the
existence of positive periodic solutions of (1.1). For the periodic problem of (1.1), since the
corresponding integral operator has no definition on the cone K0 in C[0, ω], the argument
methods used in [16–22] are not applicable. We will use a completely different method to
treat (1.1). Our main results will be given in Section 3. Some preliminaries to discuss (1.1) are
presented in Section 2.

2. Preliminaries

Let Cω(R) denote the Banach space of all continuous ω-periodic function u(t) with norm
‖u‖C = max0≤t≤ω|u(t)|. Let C1

ω(R) be the Banach space of all continuous differentiable ω-
periodic function u(t) with the norm

‖u‖C1 = ‖u‖C +
∥∥u′∥∥C. (2.1)

Generally, Cn
ω(R) denotes the nth-order continuous differentiable ω-periodic function space

for n ∈ N. Let C+
ω(R) be the cone of all nonnegative functions in Cω(R).

Let M ∈ (0, π2/ω2) be a constant. For h ∈ Cω(R), we consider the linear second-order
differential equation

u′′(t) +Mu(t) = h(t), t ∈ R. (2.2)
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The ω-periodic solutions of (2.2) are closely related with the linear second-order boundary
value problem

u′′(t) +Mu(t) = 0, 0 ≤ t ≤ ω,
u(0) − u(ω) = 0, u′(0) − u′(ω) = 1,

(2.3)

see [19]. It is easy to see that Problem (2.3) has a unique solution, which is explicitly given by

U(t) =
cos β(t −ω/2)
2β sin

(
βω/2

) , 0 ≤ t ≤ ω, (2.4)

where β =
√
M. We have the following Lemma.

Lemma 2.1. LetM ∈ (0, π2/ω2). Then for every h ∈ Cω(R), the linear equation (2.2) has a unique
ω-periodic solution u(t), which is given by

u(t) =
∫ t

t−ω
U(t − s)h(s)ds := Sh(t), t ∈ R. (2.5)

Moreover, S : Cω(R) → C1
ω(R) is a completely continuous linear operator.

Proof. Taking the derivative in (2.5) and using the boundary condition of U(t), we obtain
that

u′′(t) =
(
U′(0) −U′(ω)

)
h(t) +

∫ t

t−ω
U′′(t − s)h(s)ds

= h(t) −M
∫ t

t−ω
U(t − s)h(s)ds

= h(t) −Mu(t).

(2.6)

Therefore, u(t) satisfies (2.2). Let τ = s +ω; it follows from (2.5) that

u(t) =
∫ t+ω

t

U(t +ω − τ)h(τ −ω)dτ

=
∫ t+ω

t

U(t +ω − τ)h(τ)dτ = u(t +ω).

(2.7)

Hence, u(t) is an ω-periodic solution of (2.2). From the maximum principle for second-order
periodic boundary value problems [4], it is easy to see that u(t) is the unique ω-periodic
solution of (2.2).

From (2.5) and (2.6), we easily see that S : Cω(R) → C2
ω(R) is a linear bounded

operator. By the compactness of the embedding C2
ω(R) ↪→ C1

ω(R), S : Cω(R) → C1
ω(R) is a

completely continuous operator.
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Since U(t) > 0 for every t ∈ [0, ω], by (2.5), if h ∈ C+
ω(R) and h(t)/≡ 0, then the ω-

periodic solution of (2.2) u(t) > 0 for every t ∈ R, and we term it the positive ω-periodic
solution. Let

U = max
0≤t≤ω

U(t) =
1

2β sin
(
βω/2

) , U = min
0≤t≤ω

U(t) =
cos

(
βω/2

)
2β sin

(
βω/2

) ,

U1 = max
0≤t≤ω

∣∣U′(t)
∣∣ = max

0≤t≤ω

∣∣sin β(t −ω/2)
∣∣

2 sin
(
βω/2

) =
1
2
,

σ =
U

U
= cos

βω

2
, C0 =

U1

U
= β tan

βω

2
.

(2.8)

Define the cone K in C1
ω(R) by

K =
{
u ∈ C1

ω(R) | u(t) ≥ σ‖u‖C,
∣∣u′(t)∣∣ ≤ C0|u(t)|, t ∈ R

}
. (2.9)

We have the following Lemma.

Lemma 2.2. Let M ∈ (0, π2/ω2). Then for every h ∈ C+
ω(R), the positive ω-periodic solution of

(2.2) u = Sh ∈ K. Namely, S(C+
ω(R)) ⊂ K.

Proof. Let h ∈ C+
ω(R), u = Sh. For every t ∈ R, from (2.5) it follows that

u(t) =
∫ t

t−ω
U(t − s)h(s)ds ≤ U

∫ t

t−ω
h(s)ds = U

∫ω

0
h(s)ds, (2.10)

and therefore,

‖u‖C ≤ U

∫ω

0
h(s)ds. (2.11)

Using (2.5), we obtain that

u(t) =
∫ t

t−ω
U(t − s)h(s)ds ≥ U

∫ t

t−ω
h(s)ds = U

∫ω

0
h(s)ds ≥ σ‖u‖C. (2.12)

For every t ∈ R, since

u′(t) =
∫ t

t−ω
U′(t − s)h(s)ds, (2.13)
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we have

∣∣u′(t)∣∣ ≤
∫ t

t−ω

∣∣U′(t − s)∣∣h(s)ds ≤ U1

∫ t

t−ω
h(s)ds

= U1

∫ω

0
h(s)ds = C0 U

∫ω

0
h(s)ds ≤ C0u(t).

(2.14)

Hence, u ∈ K.

Now we consider the nonlinear equation (1.1). Hereafter, we assume that the
nonlinearity f satisfies the following condition.

(F0) There exists M ∈ (0, π2/ω2) such that

f
(
t, x, y

)
+Mx ≥ 0, x > 0, t, y ∈ R. (2.15)

Let f1(t, x, y) = f(t, x, y) +Mx, then f1(t, x, y) ≥ 0 for x > 0, t, y ∈ R, and (1.1) is rewritten to

u′′(t) +Mu(t) = f1
(
t, u(t), u′(t)

)
, t ∈ R. (2.16)

For u ∈ K, if u/= 0, then ‖u‖C > 0 and by the definition of K, u(t) ≥ σ‖u‖C > 0 for every t ∈ R.
Hence

F(u)(t) := f1
(
t, u(t), u′(t)

)
, t ∈ R (2.17)

is well defined, and we can define the integral operator A : K \ {0} → C1
ω(R) by

Au(t) =
∫ t

t−ω
U(t − s)f1

(
s, u(s), u′(s)

)
ds = (S ◦ F)(t). (2.18)

By the definition of operator S, the positive ω-periodic solution of (1.1) is equivalent to the
nontrivial fixed point of A. From Assumption (F0), Lemmas 2.1 and 2.2, we easily see the
following Lemma.

Lemma 2.3. A(K \ {0}) ⊂ K, and A : K \ {0} → K is completely continuous.

We will find the nonzero fixed point of A by using the fixed point index theory in
cones. Since the singularity of f at x = 0 implies that A has no definition at u = 0, the fixed
point index theory in the cone K cannot be directly applied to A. We need to make some
Preliminaries.

We recall some concepts and conclusions on the fixed point index in [23, 24]. Let E be a
Banach space and K ⊂ E a closed convex cone in E. Assume Ω is a bounded open subset of E
with boundary ∂Ω, and K ∩Ω/= ∅. Let A : K ∩Ω → K be a completely continuous mapping.
If Au/=u for any u ∈ K ∩ ∂Ω, then the fixed point index i(A,K ∩Ω, K) has a definition. One
important fact is that if i(A,K ∩ Ω, K)/= 0, then A has a fixed point in K ∩ Ω. The following
two lemmas are needed in our argument.
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Lemma 2.4 (see [24]). Let Ω be a bounded open subset of E with θ ∈ Ω and A : K ∩ Ω → K
a completely continuous mapping. If λAu/=u for every u ∈ K ∩ ∂Ω and 0 < λ ≤ 1, then i(A,K ∩
Ω, K) = 1.

Lemma 2.5 (see [24]). Let Ω be a bounded open subset of E and A : K ∩ Ω → K a completely
continuous mapping. If there exists an e ∈ K \ {θ} such that u −Au/= τe for every u ∈ K ∩ ∂Ω and
τ ≥ 0, then i(A,K ∩Ω, K) = 0.

We use Lemmas 2.4 and 2.5 to show the following fixed-point theorem in cones which
is applicable to the operator A defined by (2.18).

Theorem 2.6. Let E be a Banach space and K ⊂ E a closed convex cone. Assume Ω1 and Ω2 are
bounded open subsets of E with θ ∈ Ω1, Ω1 ⊂ Ω2. Let A : K ∩ (Ω2 \ Ω1) → K be a completely
continuous mapping. If A satisfies the following conditions:

(1) λAu/=u for u ∈ K ∩ ∂Ω1, 0 < λ ≤ 1;

(2) there exists e ∈ K \ {θ} such that u − Au/= τe for u ∈ K ∩ ∂Ω2, τ ≥ 0, or the following
conditions:

(3) there exists e ∈ K \ {θ} such that u −Au/= τe for u ∈ K ∩ ∂Ω1, τ ≥ 0;

(4) λAu/=u for u ∈ K ∩ ∂Ω2, 0 < λ ≤ 1,

then A has a fixed-point in K ∩ (Ω2 \Ω1).

Proof. By Dugundji’s extension theorem, the operator A : K∩(Ω2 \Ω1) → K can be extended
into a completely continuous operator from K ∩Ω2 to K, says Ã : K ∩Ω2 → K.

If A satisfies conditions (1) and (2) of Theorem 2.6, then Ã also satisfies them. By
Lemmas 2.4 and 2.5, respectively, we have

i
(
Ã,K ∩Ω1, K

)
= 1, i

(
Ã,K ∩Ω2, K

)
= 0. (2.19)

By the additivity of the fixed point index, we have

i
(
Ã,K ∩

(
Ω2 \Ω1

)
, K

)
= i

(
Ã,K ∩Ω2, K

)
− i

(
Ã,K ∩Ω1, K

)
= −1. (2.20)

Hence Ã has a fixed-point in K ∩ (Ω2 \Ω1). Since Ã is an extension of A, it follows that A has
a fixed-point in K ∩ (Ω2 \Ω1).

If A satisfies conditions (3) and (4) of Theorem 2.6, with a similar count, we obtain
that

i
(
Ã,K ∩

(
Ω2 \Ω1

)
, K

)
= 1. (2.21)

This means that Ã has a fixed-point in K ∩ (Ω2 \Ω1). Hence, A has a fixed-point in K ∩ (Ω2 \
Ω1).
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Theorem 2.6 is an improvement of the fixed point theorem of Krasnoselskii’s cone
expansion or compression. We will use it to discuss the existence of positive ω-periodic
solutions of (1.1) in the next section.

3. Main Results

We consider the the existence of positiveω-periodic solutions of (1.1). Let f ∈ C(R×(0,∞)×R)
satisfy Assumption (F0) and f(t, x, y) be ω-periodic in t. Let C0 be the constant defined by
(2.8) and I = [0, ω]. To be convenient, we introduce the notations

f0 = lim inf
x→ 0+

min
|y|≤C0|x|,t∈I

(
f
(
t, x, y

)
x

)
,

f0 = lim sup
x→ 0+

max
|y|≤C0|x|,t∈I

(
f
(
t, x, y

)
x

)
,

f∞ = lim inf
x→+∞

min
|y|≤C0|x|,t∈I

(
f
(
t, x, y

)
x

)
,

f∞ = lim sup
x→+∞

max
|y|≤C0|x|,t∈I

(
f
(
t, x, y

)
x

)
.

(3.1)

Our main results are as follows.

Theorem 3.1. Let f : R × (0,∞) × R → R be continuous and f(t, x, y) be ω-periodic in t. If f
satisfies Assumption (F0) and the condition

(F1) f0 < 0, f∞ > 0,

then (1.1) has at least one positive ω-periodic solution.

Theorem 3.2. Let f : R × (0,∞) × R → R be continuous and f(t, x, y) be ω-periodic in t. If f
satisfies Assumption (F0) and the conditions

(F2) f0 > 0, f∞ < 0,

then (1.1) has at least one positive ω-periodic solution.

Noting that 0 is an eigenvalue of the associated linear eigenvalue problems of (1.1)
with periodic boundary condition, if one inequality concerning comparison with 0 in (F1)
or (F2) of Theorem 3.1 or Theorem 3.2 is not true, the existence of periodic solution to (1.1)
cannot be guaranteed. Hence, the 0 is the optimal value in condition (F1) and (F2).

In Theorem 3.1, the condition (F1) allows f(t, x, y) to have superlinear growth on x
and y. For example,

f
(
t, x, y

)
= x2 + y2 − 1

4
π2

ω2

(
2 + sin

πt

ω

)
x (3.2)

satisfies (F0) with M = (3/4)(π2/ω2) and (F1) with f0 = −(1/4)(π2/ω2) and f∞ = +∞.
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In Theorem 3.2, the condition (F2) allows that f(t, x, y) has singularity at x = 0. For
example,

f
(
t, x, y

)
=

xy2 + 2 + sin(πt/ω)
x3

− π2

2ω2
x (3.3)

satisfies (F0) with M = π2/2ω2, and (F2) with f0 = +∞ and f∞ = −π2/2ω2. The existence of
periodic solutions for singular ordinary differential equations has been studied by several
authors, see [20, 25, 26]. But the equations considered by these authors do not contain
derivative term u′(t).

Proof of Theorem 3.1. Choose the working space E = C1
ω(R). Let K ⊂ C1

ω(R) be the closed
convex cone in C1

ω(R) defined by (2.9) and A : K \ {0} → K the operator defined by (2.18).
Then the positive ω-periodic solution of (1.1) is equivalent to the nontrivial fixed point of A.
Let 0 < r < R < +∞ and set

Ω1 =
{
u ∈ C1

ω(R) | ‖u‖C1 < r
}
, Ω2 =

{
u ∈ C1

ω(R) | ‖u‖C1 < R
}
. (3.4)

We show that the operator A has a fixed point in K ∩ (Ω2 \ Ω1) by Theorem 2.6 when r is
small enough and R large enough.

By f0 < 0 and the definition of f0, there exist ε ∈ (0,M) and δ > 0, such that

f
(
t, x, y

) ≤ −εx, t ∈ [0, ω],
∣∣y∣∣ ≤ C0, 0 < x ≤ δ. (3.5)

Let r ∈ (0, δ). We now prove that A satisfies the Condition (1) of Theorem 2.6, namely,
λ Au/=u for every u ∈ K ∩ ∂Ω1 and 0 < λ ≤ 1. In fact, if there exist u0 ∈ K ∩ ∂Ω1 and
0 < λ0 ≤ 1 such that λ0 Au0 = u0, then by definition of A and Lemma 2.1, u0 ∈ C2

ω(R) satisfies
the differential equation

u′′0(t) +Mu0(t) = λ0f1
(
t, u0(t), u′0(t)

)
, t ∈ R. (3.6)

Since u0 ∈ K ∩ ∂Ω1, by the definitions of K and Ω1, we have

∣∣u′0(t)∣∣ ≤ C0u0(t), 0 < σ‖u0‖C ≤ u0(t) ≤ ‖u0‖C1 = r < δ, t ∈ R. (3.7)

Hence from (3.5) it follows that

f
(
t, u0(t), u′0(t)

) ≤ −εu0(t), t ∈ R. (3.8)

By this, (3.6), and the definition of f1 we have

u′′0(t) +Mu0(t) ≤ λ0(Mu0(t) − εu0(t)) ≤ (M − ε)u0(t), t ∈ R. (3.9)
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Integrating both sides of this inequality from 0 to ω and using the periodicity of u0, we obtain
that

M

∫ω

0
u0(t)dt ≤ (M − ε)

∫ω

0
u0(t)dt. (3.10)

Since
∫ω

0 u0(t)dt ≥ ω σ‖u0‖C > 0, it follows that M ≤ M − ε, which is a contradiction. Hence
the Condition (1) of Theorem 2.6 holds.

On the other hand, since f∞ > 0, by the definition of f∞, there exist ε1 > 0 and H > 0
such that

f
(
t, x, y

) ≥ ε1x, t ∈ [0, ω],
∣∣y∣∣ ≤ C0x, x ≥ H. (3.11)

Define a function g : (0,∞) → R
+ by

g(x) = max

{
f
(
t, x, y

)
+Mx

x
| t ∈ [0, ω],

∣∣y∣∣ ≤ x
}
. (3.12)

Then g : (0,∞) → R
+ is continuous. By (3.5) and Assumption (F0),

0 ≤ g(x) ≤ ε +M, 0 < x ≤ δ. (3.13)

This implies that

C1 := sup
{
xg(x) | 0 < x ≤ H}

< +∞. (3.14)

Hence for every t ∈ [0, ω], 0 < x ≤ H, and |y| ≤ C0x, we have

∣∣f(t, x, y) − ε1x
∣∣ ≤ ∣∣f(t, x, y) +Mx

∣∣ + |(M + ε1)x|
=
(
f
(
t, x, y

)
+Mx

)
+ (M + ε1)x

≤ xg(x) + (M + ε1)x

≤ C1 + (M + ε1)H := C2.

(3.15)

Combining this with (3.11), it follows that

f
(
t, x, y

) ≥ ε1x − C2, t ∈ [0, ω],
∣∣y∣∣ ≤ C0x, x > 0. (3.16)

Choose e(t) ≡ 1. Clearly, e ∈ K \ {θ}. We show that A satisfies the Condition (2) of
Theorem 2.6 if R is large enough, namely, u − Au/= τe for every u ∈ K ∩ ∂Ω2 and τ ≥ 0.
In fact, if there exist u1 ∈ K ∩ ∂Ω2 and τ1 ≥ 0 such that u1 −Au1 = τ1e, since u1 − τ1e = Au1, by
definition of A and Lemma 2.1, u1 ∈ C2

ω(R) satisfies the differential equation

u′′1(t) +M(u1(t) − τ1) = f1
(
t, u1(t), u′1(t)

)
, t ∈ R. (3.17)
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From (3.17) and (3.16), it follows that

u′′1(t) = f
(
t, u1(t), u′1(t)

)
+Mτ1

≥ f(t, u1(t), u′1(t)
) ≥ ε1u1(t) − C2, t ∈ R.

(3.18)

Integrating this inequality on [0, ω] and using the periodicity of u1, we get that

∫ω

0
u1(t)dt ≤ C2

ε1
. (3.19)

Since u1 ∈ K ∩ ∂Ω2, by the definition of K, we have

u1(t) ≥ σ‖u1‖C,
∣∣u′1(t)∣∣ ≤ C0u1(t), t ∈ R. (3.20)

By the first inequality of (3.20), we have

∫ω

0
u1(t)dt ≥ ωσ‖u1‖C. (3.21)

From this and (3.19), it follows that

‖u1‖C ≤ 1
ωσ

∫ω

0
u1(t)dt ≤ C2

ωσε1
. (3.22)

By this and the second inequality of (3.20), we have

‖u1‖C1 = ‖u1‖C +
∥∥u′1∥∥C ≤ ‖u1‖C + C0‖u1‖C ≤ (1 + C0)C2

ωσε1
:= R. (3.23)

Therefore, choose R > max{R, δ}, then A satisfies the Condition (2) of Theorem 2.6.
Now by the first part of Theorem 2.6, A has a fixed point in K ∩ (Ω2 \Ω1), which is a

positive ω-periodic solution of (1.1).

Proof of Theorem 3.2. Let Ω1,Ω2 ⊂ C1
ω(R) be defined by (3.4). We use Theorem 2.6 to prove

that the operator A has a fixed point in K∩ (Ω2 \Ω1) if r is small enough and R large enough.
By f0 > 0 and the definition of f0, there exist ε > 0 and δ > 0, such that

f
(
t, x, y

) ≥ εx, t ∈ [0, ω],
∣∣y∣∣ ≤ C0x, 0 < x ≤ δ. (3.24)

Let r ∈ (0, δ) and e(t) ≡ 1. We prove that A satisfies the Condition (3) of Theorem 2.6, namely,
u − Au/= τe for every u ∈ K ∩ ∂Ω1 and τ ≥ 0. In fact, if there exist u0 ∈ K ∩ ∂Ω1 and τ0 ≥ 0
such that u0 −Au0 = τ0e, since u0 − τ0e = Au0, by definition of A and Lemma 2.1, u0 ∈ C2

ω(R)
satisfies the differential equation

u′′0(t) +M(u0(t) − τ0) = f1
(
t, u0(t), u′0(t)

)
, t ∈ R. (3.25)
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Since u0 ∈ K ∩ ∂Ω1, by the definitions of K and Ω1, u0 satisfies (3.7). From (3.7), and (3.24) it
follows that

f
(
t, u0(t), u′0(t)

) ≥ εu0(t), t ∈ R. (3.26)

By this, (3.25), and the definition of f1, we have

u′′0(t) +Mu0(t) = f1
(
t, u0(t), u′′0(t)

)
+Mτ0 ≥ (M + ε)u0(t), t ∈ R. (3.27)

Integrating this inequality on [0, ω] and using the periodicity of u0(t), we obtain that

M

∫ω

0
u0(t)dt ≥ (M + ε)

∫ω

0
u0(t)dt. (3.28)

Since
∫ω

0 u0(t)dt ≥ ωσ‖u0‖C > 0, from this inequality it follows that M ≥ M + ε, which is a
contradiction. Hence A satisfies the Condition (3) of Theorem 2.6.

Since f∞ < 0, by the definition of f∞, there exist ε1 ∈ (0,M) and H > 0 such that

f
(
t, x, y

) ≤ − ε1x, t ∈ [0, ω],
∣∣y∣∣ ≤ C0x, x ≥ H. (3.29)

Choosing R > max{(1 + C0)H/σ, δ}, we show that A satisfies the Condition (4) of
Theorem 2.6, namely, λAu/=u for every u ∈ K ∩ ∂Ω2 and 0 < λ ≤ 1. In fact, if there exist
u1 ∈ K∩∂Ω2 and 0 < λ1 ≤ 1 such that λ1Au1 = u1, then by the definition of A and Lemma 2.1,
u1 ∈ C2

ω(Ω) satisfies the differential equation

u′′1(t) +Mu1(t) = λ1f1
(
t, u1(t), u′1(t)

)
, t ∈ R. (3.30)

Since u1 ∈ K ∩ ∂Ω2, by the definition of K, u1 satisfies (3.20). By the second inequality of
(3.20), we have

‖u1‖C1 = ‖u1‖C +
∥∥u′1∥∥C ≤ ‖u1‖C + C0‖u1‖C = (1 + C0)‖u1‖C. (3.31)

Consequently,

‖u1‖C ≥ 1
(1 + C0)

‖u1‖C1 . (3.32)

By (3.32) and the first inequality of (3.20), we have

u1(t) ≥ σ‖u1‖C ≥ σ

(1 + C0)
‖u1‖C1 =

σ

(1 + C0)
R > H, t ∈ R. (3.33)

From this, the second inequality of (3.20) and (3.29), it follows that

f
(
t, u1(t), u′1(t)

) ≤ −ε1u1(t), t ∈ R. (3.34)
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By this and (3.30), we have

u′′1(t) +Mu1(t) ≤ λ1(M u1(t) − ε1u1(t)) ≤ (M − ε1)u1(t), t ∈ R. (3.35)

Integrating this inequality on [0, ω] and using the periodicity of u1(t), we obtain that

M

∫ω

0
u1(t)dt ≤ (M − ε1)

∫ω

0
u1(t)dt. (3.36)

Since
∫ω

0 u1(t) dt ≥ ωσ‖u1‖C > 0, from this inequality it follows that M ≤ M − ε1, which is a
contradiction. This means that A satisfies the Condition (4) of Theorem 2.6.

By the second part of Theorem 2.6, A has a fixed point in K ∩ (Ω2 \ Ω1), which is a
positive ω-periodic solution of (1.1).

Example 3.3. Consider the second-order differential equation

u′′ = a1(t)u + a2(t)u2 + a3(t)
(
u′
)2
u, t ∈ R, (3.37)

where ai(t) ∈ Cω(R), i = 1, 2, 3. If −π2/ ω2 < a1(t) < 0 and a2(t), a3(t) > 0 for t ∈ [0, ω], then
f(t, x, y) = a1(t)x + a2(t)x2 + a3xy

2 satisfies the conditions (F0) and (F1). By Theorem 3.1,
(3.37) has at least one positive ω-periodic solution.

Example 3.4. Consider the singular differential equation:

u′′ = a(t)u +
b(t)u + c(t)(u′)2

u2
, t ∈ R, (3.38)

where a(t), b(t), c(t) ∈ Cω(R). If −π2/ω2 < a(t) < 0 and b(t), c(t) > 0 for t ∈ [0, ω], then
f(t, x, y) = a(t)x + (b(t)x + c(t)y2)/x2 satisfies the conditions (F0) and (F2). By Theorem 3.2,
the (3.38) has a positive ω-periodic solution.

4. Remarks

Our discussion on the existence of the positive ω-periodic solutions to (1.1) is applicable to
the following ordinary differential equation:

−u′′(t) = f(t, u(t), u′(t)), t ∈ R, (4.1)

where the nonlinearity f : R × (0,∞) × R → R is continuous and f(t, x, y) is ω-periodic in t.
For (4.1), we need the following assumption.

(F0)∗ There exists M > 0 such that

f
(
t, x, y

)
+Mx ≥ 0, x > 0, t, y ∈ R. (4.2)

Similarly to Lemma 2.1, we have the following conclusion.
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Lemma 4.1. LetM > 0 be a constant. Then for every h ∈ Cω(R), the linear second order differential
equation

−u′′(t) +Mu(t) = h(t), t ∈ R, (4.3)

has a unique ω-periodic solution u(t), which is given by

u(t) =
∫ t

t−ω
V (t − s)h(s)ds t ∈ R, (4.4)

where V (t) is the unique solution of the linear second-order boundary value problem

−u′′(t) +Mu(t) = 0, 0 ≤ t ≤ ω,
u(0) − u(ω) = 0, u′(0) − u′(ω) = −1,

(4.5)

which is explicitly given by

V (t) =
cosh β(t −ω/2)
2β sinh

(
βω/2

) , 0 ≤ t ≤ ω, (4.6)

with β =
√
M.

Since

V := max
0≤t≤ω

V (t) =
cosh

(
βω/2

)
2β sinh

(
βω/2

) , V := min
0≤t≤ω

V (t) =
1

2β sinh
(
βω/2

) ,

V 1 := max
0≤t≤ω

∣∣V ′(t)
∣∣ = max

0≤t≤ω

∣∣sinh β(t −ω/2)
∣∣

2 sinh
(
βω/2

) =
1
2
,

(4.7)

we renew to define σ and C0 by

σ =
V

V
=

1
cosh

(
βω/2

) , C0 =
V 1

V
= β sinh

βω

2
. (4.8)

Now, using the similar arguments to Theorems 3.1 and 3.2, we can obtain the following
results.

Theorem 4.2. Let f : R × (0,∞) × R → R be continuous and f(t, x, y) be ω-periodic in t. If f
satisfies Assumption (F0)∗ and the condition

(F1) f0 < 0, f∞ > 0,

then (4.1) has at least one positive ω-periodic solution.
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Theorem 4.3. Let f : R × (0,∞) × R → R be continuous and f(t, x, y) be ω-periodic in t. If f
satisfies Assumption (F0)∗ and the conditions

(F2) f0 > 0, f∞ < 0,

then (4.1) has at least one positive ω-periodic solution.

Theorems 4.2 and 4.3 improve and extend some results in References [18, 19, 22].
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Systems of sines with degenerate coefficients are considered in this paper. Frame properties of
these systems in Lebesgue spaces are studied.

1. Introduction

Basis properties of classical system of exponents {eint}n∈Z
(Z is the set of all integers) in

Lebesgue spaces Lp(−π,π), 1 ≤ p < +∞, are well studied in the literature (see [1–4]). Bari
in her fundamental work [5] raised the issue of the existence of normalized basis in L2 which
is not Riesz basis. The first example of this was given by Babenko [6]. He proved that the
degenerate system of exponents {|t|αeint}n∈Z

with |α| < (1/2) forms a basis for L2(−π,π) but
is not Riesz basis when α/= 0. This result has been extended by Gaposhkin [7]. In [8], the
condition on the weight ρ was found which make the system {eint}n∈Z

forms a basis for the
weight space Lp,ρ(−π,π) with a norm ‖f‖p,ρ = (

∫π
−π |f(t)|pρ(t)dt)(1/p). Basis properties of a

degenerate system of exponents are closely related to the similar properties of an ordinary
system of exponents in corresponding weight space. In all the mentioned works, the authors
consider the cases when the weight or the degenerate coefficient satisfies the Muckenhoupt
condition (see, e.g., [9]). It should be noted that the above stated is true for the systems of
sines and cosines, too.

Basis properties of the system of exponents and sines with the linear phase in weighted
Lebesgue spaces have been studied in [10–12]. Those of the systems of exponents with
degenerate coefficients have been studied in [13, 14]. Similar questions have previously been
considered in papers [15–18].
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In this work, we study the frame properties of the system of sines with degenerate coef-
ficient in Lebesgue spaces, when the degenerate coefficient, generally speaking, does not
satisfy the Muckenhoupt condition.

2. Needful Information

To obtain our main results, we will use some concepts and facts from the theory of bases.
We will use the standard notation. N will be the set of all positive integers; ∃ will mean

“there exist(s)”; ⇒ will mean “it follows”; ⇔ will mean “if and only if”; ∃! will mean “there
exists unique”;K ≡ R orK ≡ C will stand for the set of real or complex numbers, respectively;
δnk is Kronecker symbol, δk = {δkn}k∈N

.
Let X be some Banach space with a norm ‖ · ‖X . Then X∗ will denote its dual with a

norm ‖ · ‖X∗ . By L[M], we denote the linear span of the set M ⊂ X, and M will stand for the
closure of M.

System {xn}n∈N
⊂ X is said to be uniformly minimal in X if ∃δ > 0

inf
∀u∈L[{xn}n/= k]

‖xk − u‖X ≥ δ‖xk‖X, ∀k ∈ N. (2.1)

System {xn}n∈N
⊂ X is said to be complete in X if L[{xn}n∈N

] = X. It is called minimal
in X if xk /∈ L[{xn}n/= k], for all k ∈ N.

The following criteria of completeness and minimality are available.

Criterion 1 (Hahn-Banach theorem). System {xn}n∈N
⊂ X is complete in X if f(xn) = 0, for all

n ∈ N, f ∈ X∗ ⇒ f = 0.

Criterion 2 (see [19]). System {xn}n∈N
⊂ X is minimal in X ⇔ it has a biorthogonal system

{fn}n∈N
⊂ X∗, that is, fn(xk) = δnk, for all n, k ∈ N.

Criterion 3. Complete system {xn}n∈N
⊂ X is uniformly minimal in X ⇔ supn‖xn‖X‖yn‖X∗ <

+∞, where {yn}n∈N
⊂ X∗ is a system biorthogonal to it.

System {xn}n∈N
⊂ X is said to be a basis for X if for allx ∈ X, ∃!{λn}n∈N

⊂ K : x =∑∞
n=1 λnxn.

If system {xn}n∈N
⊂ X forms a basis for X, then it is uniformly minimal.

Definition 2.1 (see [20, 21]). Let X be a Banach space and K a Banach sequence space indexed
by N. Let {fk}k∈N

⊂ X, {gk}k∈N
⊂ X∗. Then ({gk}k∈N

, {fk}k∈N
) is an atomic decomposition of

X with respect to K if

(i) {gk(f)}k∈N
∈ K, for all f ∈ X;

(ii) ∃A,B > 0:

A
∥∥f∥∥X ≤ ∥∥{gk(f)}k∈N

∥∥
K ≤ B∥∥f∥∥X, ∀f ∈ X; (2.2)

(iii) f =
∑∞

k=1 gk(f)fk, for all f ∈ X.
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Definition 2.2 (see [20, 21]). Let X be a Banach space and K a Banach sequence space indexed
by N. Let {gk}k∈N

⊂ X∗ and S : K → X be a bounded operator. Then ({gk}k∈N
, S) is a Banach

frame for X with respect to K if

(i) {gk(f)}k∈N
∈ K, for allf ∈ X;

(ii) ∃A,B > 0:

A
∥∥f∥∥X ≤ ∥∥{gk(f)}k∈N

∥∥
K ≤ B∥∥f∥∥X, ∀f ∈ X; (2.3)

(iii) S[{gk(f)}k∈N
] = f , for all f ∈ X.

It is true the following.

Proposition 2.3 (see [20, 21]). Let X be a Banach space andK a Banach sequence space indexed by
N. Assume that the canonical unit vectors {δk}k∈N

constitute a basis forK and let {gk}k∈N
⊂ X∗ and

S : K → X be a bounded operator. Then the following statements are equivalent:

(i) ({gk}k∈N
, S) is a Banach frame for X with respect toK.

(ii) ({gk}k∈N
, {S(δk)}k∈N

) is an atomic decomposition of X with respect toK.

More details about these facts can be found in [20–23].

3. Completeness and Minimality

We consider a system of sines

{Sνn}n∈N
≡ {ν(t) sinnt}n∈N

, (3.1)

with a degenerate coefficient ν

ν(t) =
r∏
k=0

|t − tk|αk , (3.2)

where 0 = t0 < t1 < · · · < tr = π are points of degeneration and {αk}r0 ⊂ R.
The notation f ∼ g, t → a, means that the inequality 0 < δ ≤ |f(t)/g(t)| ≤ δ−1 < +∞

holds in sufficiently small neighborhood of the point t = a with respect to the functions f
and g. Thus, it is clear that sinnt ∼ t, t → 0 and sinnt ∼ π − t, t → π for alln ∈ N.
Proceeding from these relations, we immediately obtain that the inclusion {Sνn}n∈N

⊂ Lp(0, π),
1 ≤ p < +∞, is true if and only if the following relations hold

α0; αr ∈
(
−1
p
− 1,+∞

)
, {αk}r−1

1 ⊂
(
−1
p
,+∞

)
. (3.3)
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In what follows, we will always suppose that this condition is satisfied. Assume that the
function f ∈ Lq(0, π)((1/p) + (1/q) = 1) is otrhogonal to the system {Sνn}n∈N

, that is

∫π

0
ν(t) sinnt f(t)dt = 0, ∀n ∈ N, (3.4)

where ( · ) is a complex conjugate. By C0[0, π], we denote the Banach space of functions
which are continuous on [0, π] with a sup-norm and vanish at the ends of the interval [0, π].
It is absolutely clear that νf ∈ L1(0, π) ⊂ C∗

0[0, π]. As the system of sines {sinnt}n∈N
is

complete in C0[0, π], we obtain from the relations (3.4) that ν(t)f(t) = 0 a.e. on (0, π), and,
consequently, f(t) = 0 a.e. on (0, π). This proves the completeness of system (3.3) in Lp(0, π).

Now consider the minimality of system (3.3) in Lp(0, π). It is clear that {Sν−1

n }n∈N
⊂

Lq(0, π) if and only if

α0;αr ∈
(
−∞,

1
q
+ 1

)
, {αk}r−1

1 ⊂
(
−∞,

1
q

)
. (3.5)

It is easily seen that the system {
√
(2/π)Sν

−1

n }n∈N
is biorthogonal to {Sνn}n∈N

. So the following
theorem is true.

Theorem 3.1. System {Sνn}n∈N
is complete in Lp(0, π), 1 ≤ p < +∞, if the relations (3.3) hold.

Besides, it is minimal in Lp(0, π) if both (3.3) and (3.5) hold. Consequently, system {Sνn}n∈N
is

complete and minimal in Lp(0, π) if the following relations hold:

α0;αr ∈
(
−1
p
− 1,

1
q
+ 1

)
, {αk}r−1

1 ⊂
(
−1
p
,

1
q

)
. (3.6)

It is known that (see, e.g., [10, 11]) if {αk}r0 ⊂ (−(1/p), (1/q)), then system {Sn(ν)}n∈N

forms a basis for Lp(0, π), 1 < p < +∞. Let β ∈ [(1/q), (1/q)+1), where either β = α0 or β = αr .
In the sequel, we will suppose that the condition (3.6) is satisfied for {αk}r−1

1 . We have

‖Sνn‖pp =
∫π

0
|ν(t)|p|sinnt|pdt ≤

∫π

0
|ν(t)|pdt < +∞, ∀n ∈ N. (3.7)

On the other hand

‖Sνn‖pp ≥
∫δ

0
|ν(t)|p|sinnt|pdt ≥ c

∫δ

0
tα0p|sinnt|pdt = c

n1+α0p

∫nδ

0
tα0p|sin t|pdt, (3.8)

where c > 0 is some constant (in what follows c will denote constants that may be different
from each other), δ > 0 is such that [0, δ] does not contain the points {αk}r−1

1 . Let us show
that infn∈N‖Sνn‖p > 0. We have (α = α0p + 1)

‖Sνn‖pp ≥
c

nα

∑
k∈Mn

∫ (k+1)π−(π/4)

kπ+(π/4)
tα−1|sin t|pdt ≥ c

nα

∑
k∈Mn

∫ (k+1)π−(π/4)

kπ+(π/4)
tα−1dt, (3.9)
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where Mn ≡ {k ≥ 0 : (k + 1)π − (π/4) ≤ nδ}. Thus

‖Sνn‖pp ≥
c

nα

∑
k∈Mn

∫4k+3

4k+1
tα−1dt. (3.10)

It is absolutely clear that

∫4k+1

4k−1
tα−1dt ≤

∫4k+3

4k+1
tα−1dt, ∀k ∈Mn. (3.11)

Taking into account this relation, we obtain

‖Sνn‖pp ≥
c

nα

∑
k∈Mn

[∫4k+3

4k+1
tα−1dt +

∫4k+1

4k−1
tα−1dt

]
≥ c

nα

∫λn

0
tα−1dt = c

(
λn
n

)α

, (3.12)

where λn ≥ (nδ/π) − 2. Consequently

‖Sνn‖pp ≥ c
(
δ

π
− 2
n

)α

−→ c

(
δ

π

)α

> 0, n −→ ∞. (3.13)

It follows immediately that infn‖Sνn‖p > 0.
Regarding biorthogonal system we get

∥∥S−ν
n

∥∥q
q =

∫π

0
ν−q(t)|sinnt|qdt. (3.14)

Choose ε > 0 as small as the interval [0, ε] does not contain the points {αk}r−1
1 . Consequently

∥∥S−ν
n

∥∥q
q = m

∫ ε

0
t−α0q|sinnt|qdt, (3.15)

where m > 0 is some constant. We have

∥∥S−ν
n

∥∥q
q ≥ mnα0q−1

∫nε

0

|sin t|q
tα0q

dt. (3.16)

First we consider the case α0 ∈ ((1/q), (1/q) + 1). In this case, for sufficiently great n, we have

∥∥S−ν
n

∥∥q
q ≥ mnα0q−1

∫1

0

|sin t|q
tα0q

dt −→ ∞, n −→ ∞. (3.17)

Let α0 = (1/q). Consequently

∥∥S−ν
n

∥∥q
q ≥ m

∫nε

0

|sin t|q
t

dt, (3.18)
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and, as a result

sup
n

∥∥S−ν
n

∥∥q
q ≥ m

∫+∞

1

|sin t|q
t

dt ≥ m
∞∑
k=1

∫ (k+1)π−(π/4)

kπ+(π/4)

|sin t|q
t

dt

≥ mc1

∞∑
k=1

1
(k + 1)π − (π/4)

∫ (k+1)π−(π/4)

kπ+(π/4)
1dt = c2

∞∑
k=1

1
(k + 1)π − (π/4)

= +∞,

(3.19)

where ci are some constants. So we obtain that for β ∈ [(1/q), (1/q) + 1), supn‖S−ν
n ‖q = +∞.

Consequently, in this case we have

sup
n

‖Sνn‖p
∥∥S−ν

n

∥∥
q = +∞. (3.20)

Then it is known that (see, e.g., [22]) the system {Sn(ν)}n∈N
is not uniformly minimal and,

besides, does not form a basis for Lp.
Consider the case β ∈ (−(1/p) − 1,−(1/p)]. Without limiting the generality, we will

suppose that β = α0. In this case, with regard to the biorthogonal system we have

∥∥S−ν
n

∥∥q
q =

∫π

0
ν−q(t)|sinnt|qdt ≤

∫π

0
ν−q(t)dt < +∞, ∀n ∈ N. (3.21)

Taking sufficiently small δ > 0, we obtain

∥∥S−ν
n

∥∥q
q ≥

∫δ

0
ν−q(t)|sinnt|qdt ≥ c

∫δ

0
t−α0q|sinnt|qdt. (3.22)

As α0q < 0, then, in the absolutely same way as in the previous case, we get

inf
n

∥∥S−ν
n

∥∥
q > 0. (3.23)

On the other hand,

‖Sνn‖pp =
∫π

0
νp(t)|sinnt|pdt ≥ c

∫δ

0

|sinnt|p
t−α0p

dt, (3.24)

where α0p ≤ 1. Similarly to the previous case again, we get

∫δ

0
tα0p|sinnt|pdt −→ +∞, n −→ ∞. (3.25)

As a result we obtain

sup
n

‖Sνn‖p
∥∥S−ν

n

∥∥
q = +∞, for β ∈

(
−1
p
− 1,− 1

p

]
. (3.26)

Thus, the following theorem is true.
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Theorem 3.2. Let {α0; αr} ⊂ (−(1/p) − 1,−(1/p) + 2); {α0; αr}
⋂
M

(0)
p /= ∅, and Ar ⊂

(−(1/p), (1/q)), where M(0)
p ≡ (−(1/p) − 1,−(1/p)]⋃[−(1/p) + 1,−(1/p) + 2), Ar ≡ {αk}r−1

1 .
Then the system {Sνn}n∈N

is complete and minimal in Lp(0, π), 1 ≤ p < +∞, but does not form a
basis for it.

4. Defective Case

Here, we consider the defective system of sines {Sνn}n∈N(k0)
, where N(k0) ≡ N \ {k0}, k0 ∈ N is

some number. It follows directly from Theorem 3.2 that if the condition

{α0; αr}
⋂
M

(0)
p /= ∅; Ar ⊂

(
−1
p
,

1
q

)
, (4.1)

holds, then the system {Sνn}n∈N(k0)
is minimal but not complete in Lp(0, π), 1 ≤ p < +∞.

Assume M(1)
p ≡ [(1/q) + 1, (1/q) + 3). Let α0 ∈ M

(1)
p . Consider the completeness of system

{Sνn}n∈N(k0)
in Lp(0, π). Suppose that f ∈ Lq(0, π) is orthogonal to the system, that is,

∫π

0
ν(t) sinntf(t)dt = 0, ∀n ∈ N(k0). (4.2)

As νf ∈ L1 ⊂ C∗
0[0, π] and system {sinnt}n∈N

is complete and minimal in C0[0, π], from (4.2)
we get

ν(t)f(t) = c sin k0t =⇒ f(t) = c
sin k0t

ν(t)
. (4.3)

It is clear that ν−1(t) ∼ t−α0 , sin k0t ∼ t as t → 0. Consequently, f ∼ t−α0+1, t → 0. As
q(−α0 + 1) ≤ −1, then f ∈ Lq(0, π) if and only if c = 0, and, consequently, f = 0. The similar
result is true for αr ∈ M

(1)
p . Thus, if α0;αr > −(1/p) − 1, and max{α0;αr} ∈ M

(1)
p , then the

system {Sνn}n∈N(k0)
is complete in Lp(0, π). Now we consider the minimality of this system.

Let

ϑn(t) = ν−1(t)
[

sinnx
n

− sin k0x

k0

]
, n ∈ N(k0). (4.4)

We have

〈
Sνk, ϑn

〉
=
∫π

0
Sνk(t)ϑn(t)dt =

π

2n
δkn, ∀k, n ∈ N(k0). (4.5)
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Let us show that {ϑn}n∈N(k0)
⊂ Lq(0, π). In fact

sinnt
n

= t − n2t3

6
+ o

(
t3
)
, t −→ 0,

sin k0t

k0
= t − k2

0t
3

6
+ o

(
t3
)
, t −→ 0,

(4.6)

and, consequently

sinnt
n

− sin k0t

k0
=

1
6

(
k2

0 − n2
)
t3 + o

(
t3
)
, t −→ 0. (4.7)

From these relations, we immediately find that ϑn(t) ∼ t3−α0 , t → 0. As a result, {ϑn}n∈N(k0)
⊂

Lq(0, π). Then the relations (4.5) imply the minimality of system {Sνn}n∈N(k0)
in Lp(0, π).

Similar result is true for αr ∈ M
(1)
p . In the end, we obtain that if max{α0;αr} ∈ M

(1)
p , then

the system {Sνn}n∈N
has a defect equal to 1.

Consider the case when max{α0;αr} = α0 ∈ M(2)
p , where M(2)

p ≡ [(1/q) + 3, (1/q) + 5).
We look at the system {Sνn}n∈N(k1;k2)

, where N(k1;k2) ≡ N \ {k1; k2}, k1; k2 ∈ N, k1 /= k2, are some
numbers. Let f ∈ Lq(0, π) cancel this system out, that is,

〈
Sνn, f

〉
= 0, ∀n ∈ N(k1;k2). (4.8)

Using the previous reasoning, we find that for some constants c1, c2, the following is true:

f(t) = c1ν
−1(t) sin k1t + c2ν

−1(t) sin k2t. (4.9)

Using representations

sin kit = kit −
k3
i

6
t3 + o

(
t4
)
, t −→ 0, i = 1, 2, (4.10)

we obtain

f(t) ∼ ct−α0g1(t) + g2(t), t −→ 0, (4.11)

(c /= 0 is some constant), where it can be easily seen that g2 ∈ Lq and

g1(t) = (c1k1 + c2k2)t − 1
6

(
c1k

3
1 + c2k

3
2

)
t3. (4.12)

Thus, f ∈ Lq if and only if t−α0g1(t) ∈ Lq. Assume b1 = c1k1 +c2k2; b2 = −(1/6)(c1k
3
1 +c2k

3
2). As

(1 − α0)q ≤ −1(3 − α0)q ≤ −1, it is clear that t1−α0 /∈ Lq and t3−α0 /∈ Lq. Suppose b1 /= 0. We have

∣∣t−α0g1(t)
∣∣ = |b1|t1−α0

∣∣∣1 + b−1
1 b2t

2
∣∣∣. (4.13)
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It follows directly that for sufficiently small δ > 0, we have

∣∣t−α0g1(t)
∣∣ ≥ cδ|b1|t1−α0 , ∀t ∈ (0, δ), (4.14)

where cδ > 0 is some constant depending only on δ and b2. As a result, f /∈ Lq.
Consequently, b1 = 0. Moreover, it is not difficult to derive that b2 = 0. Thus, we obtain

the following system for c1 and c2:

c1k1 + c2k2 = 0,

c1k
3
1 + c2k

3
2 = 0.

(4.15)

It is clear that det
∣∣∣ k1 k2

k3
1 k3

2

∣∣∣/= 0. And, consequently, c1 = c2 = 0. As a result, f = 0, which,
in turn, implies that the system {Sνn}n∈N(k1;k2)

is complete in Lp. Let us show that it is also

minimal in Lp. Assume γ (k)n = (1/6)(k2 − n2). Consider the system ϑ
(k1;k2)
n (t) ≡ [a(k1;k2)

n sinnt −
(1/k1γ

(k1)
n ) sin k1t + (1/k2γ

(k2)
n ) sin k2t]ν−1(t), for alln ∈ N(k1;k2), where

a
(k1;k2)
n =

1
n

(
1

γ
(k1)
n

− 1

γ
(k2)
n

)
/= 0. (4.16)

Simple calculations give the following representation:

ϑ
(k1;k2)
n (t) ∼ cnt5, t −→ 0, (4.17)

where cn /= 0, for alln ∈ N(k1;k2) are some constants. We obtain directly from this representation
that {ϑ(k1;k2)

n }n∈N(k1;k2)
⊂ Lq. On the other hand,

〈
Sνn, ϑ

(k1;k2)
n

〉
= a(k1;k2)

n δnk =

{
/= 0, n /= k,
= 0, n = k,

∀n, k ∈ N(k1;k2). (4.18)

Thus, if α0 ∈ M
(2)
p , then the system {Sνn}n∈N(k1;k2)

is complete and minimal in Lp, and, as a
result, the system {Sνn}n∈N

has a defect equal to 2. It is easy to see that the similar result is true
if αr ∈M(2)

p with α0 ≤ αr . Continuing this way, we obtain that if β = max{α0;αr} = α0 ∈M(k)
p ,

where M(k)
p ≡ [−(1/p) + 2k,−(1/p) + 2(k + 1)), then the system {Sνn}n∈N{nk}

is complete and
minimal in Lp, where {nk} = {n1; . . . ;nk} ⊂ N, ni /=nj with i /= j.

Consider the basicity of system {Sνn}n∈N{n1}
(i.e., the case of k = 1) in Lp. Similar to the

case of M(0)
p , it can be proved that

0 < inf
n∈N{n1}

‖Sνn‖p ≤ sup
n∈N{n1}

‖Sνn‖p < +∞. (4.19)
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Concerning biorthogonal system, we have

∫π

0
ν−q(x)

∣∣∣∣sinnx
n

− sin k1x

k1

∣∣∣∣
q

dx ≥ c
∫ ε

0
x−qα0

∣∣∣∣sinnx
n

− sinn1x

n1

∣∣∣∣
q

dx, (4.20)

where the interval [0, ε] (ε > 0) does not contain the points {tk}r−1
1 . As (sinn1x/n1) − x ∼ x3,

for x → 0, it is clear that (−qα0 + 3 > −1)

∫ ε

0
x−qα0

∣∣∣∣sinn1x

n1
− x

∣∣∣∣
q

dx < +∞. (4.21)

Taking this circumstance into account, we have

∥∥S−ν
n

∥∥q
q ≥ c

[∫ ε

0
x−qα0

∣∣∣∣sinnx
n

− x
∣∣∣∣
q

dx −
∫ ε

0
x−qα0

∣∣∣∣sinn1x

n1
− x

∣∣∣∣
q

dx

]
. (4.22)

Consider the case of α0 ∈ ((1/q) + 1, (1/q) + 3):

∫ ε

0
x−qα0

∣∣∣∣sinnx
n

− x
∣∣∣∣
q

dx = n−q
∫ ε

0
x−qα0 |sinnx − nx|qdx

= n−α
∫nε

0
t−qα0 |sinnt − t|qdt

≥ cn−α
∫nε

0
t−qα0+qdt =

c

α

(
εα − n−α),

(4.23)

where α = −α0q + q + 1 < 0. Consequently, supn‖S−ν
n ‖q = +∞. Let α0 = (1/q) + 1. In this case

we have

∫ ε

0
x−qα0

∣∣∣∣sinnx
n

− x
∣∣∣∣
q

dx ≥ c
∫nε

1
t−1dt = c lnnε, (4.24)

and, consequently supn‖S−ν
n ‖q = +∞. As a result, we get that for α0 ∈ M

(1)
p , the system

{Sνn}n∈N{n1}
does not form a basis for Lp. Assume that in this case, the system {Sνn}n∈N

is a
frame in Lp, that is any function from Lp can be expanded with respect to this system. As it
does not form a basis for Lp, zero has a non trivial decomposition, that is,

0 =
∞∑
n=1

anS
ν
n, (4.25)

where ∃n0 ∈ N : an0 /= 0. As the system {Sνn}n∈N{n1}
is complete and minimal in Lp, it is clear that

an1 /= 0. Consequently, Sνn1
=

∑
n/=n1

(an/an1)S
ν
n. It follows directly that the arbitrary element

can be expanded with respect to the system {Sνn}n∈N{n1}
. But this is impossible. Similar result

is true for max{α0;αr} ∈M(1)
p .
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Proceeding in an absolutely similar way as we did in the previous case, we can prove
that for max{α0;αr} ∈M(k)

p , the system {Sνn}n∈N{nk}
is complete and minimal in Lp, but does not

form a basis for it. Consequently, system {Sνn}n∈N
has a defect equal to (k). The fact that it is

not a frame in Lp in this case too is proved as follows. Let k = 2 : {nk} ≡ {n1;n2}. Assume that
the system {Sn}n∈N

is a frame in Lp. Then zero has a non trivial decomposition: 0 =
∑∞

n=1 anS
ν
n.

It is clear that |an1 | + |an2 | > 0, and let an1 /= 0. It follows directly that the system {Sn}n/=n1
is a

frame in Lp. The further reasoning is absolutely similar to the case of k = 1. This scheme is
applicable for for all k ∈ N. Thus, we have proved the following main theorem.

Theorem 4.1. Let the following necessary condition be satisfied

α0;αr ∈
(
−1
p
− 1,+∞

)
, {αk}r−1

1 ⊂
(
−1
p

;
1
q

)
. (4.26)

Then the system {Sνn}n∈N
is a frame (basis) in Lp if and only if α0;αr ∈ (−(1/p), (1/q)).

Moreover, for max{α0;αr} ∈ M
(k)
p , k ∈ N, it has a defect equal to (k), where M(k)

p ≡ [(1/q) +
2k, (1/q) + 2(k + 1)).
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