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*e car-sharing system is a popular rental model for cars in shared use. It has become particularly attractive due to its flexibility;
that is, the car can be rented and returned anywhere within one of the authorized parking slots.*emain objective of this research
work is to predict the car usage in parking stations and to investigate the factors that help to improve the prediction. *us, new
strategies can be designed to make more cars on the road and fewer in the parking stations. To achieve that, various machine
learning models, namely vector autoregression (VAR), support vector regression (SVR), eXtreme gradient boosting (XGBoost),
k-nearest neighbors (kNN), and deep learning models specifically long short-time memory (LSTM), gated recurrent unit (GRU),
convolutional neural network (CNN), CNN-LSTM, and multilayer perceptron (MLP), were performed on different kinds of
features. *ese features include the past usage levels, Chongqing’s environmental conditions, and temporal information. After
comparing the obtained results using different metrics, we found that CNN-LSTM outperformed other methods to predict the
future car usage. Meanwhile, the model using all the different feature categories results in the most precise prediction than any of
the models using one feature category at a time

1. Introduction

Predicting the future is considered as one of the most
challenging tasks in applied sciences. Computational and
statistical methods are used for deducting dependencies
between past and future observed values in order to build
effective predictors from historical data. Transport answers
to people’s desire to participate in different activities in
different places [1]. Cars have become a part of the mobility
ecosystem owing to the flexibility and freedom that they
provide [2]. People are more dependent on cars for both
intercity and intracity transit, causing traffic congestion and
parking difficulties [3]. “Looking for a parking space creates
additional delays and impairs local circulation. In central
areas of large cities, cruising may account for more than 10%
of the local circulation as drivers can spend 20 minutes
looking for a parking spot”, said by Dr. Jean-Paul Rodrigue
Department of Global Studies and Geography of Hofstra
University. Many rental models are emerged to solve these

parking problems as one of them is the car-sharing model,
which aims to distribute cars within a city for use at a low
cost. In this fashion, individuals can exploit all the benefits of
a private vehicle without the hassles of lease payments,
maintenance, or parking. *e program comprises one-way
or round-trip, depending on whether the pick-up and the
drop-off stations are the same or not [4].

*e car-sharing system provides an option to numerous
people who opt not to own a vehicle, and they use this system
whenever a private vehicle is needed. *is system usually
fixes the cost on the price per minute that includes a quote of
variables such as fuel, price per kilometre, and the share of
fixed costs for the operator like maintenance, rebalancing,
insurance, and parking [5]. Besides helping in decreasing the
level of congestion and managing the lack of parking lots,
car-sharing systems have many other advantages such as the
reduction of vehicle ownership that leads to efficient use of
road and infrastructure, economical savings for the users,
and diminution of air and noise pollution [5].
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However, this program is facing many issues [6], one of
them is the nonsuitable distribution of vehicles within car-
sharing systems. As a result, cars tend to be easily accessible
in low-demand parking lots in excess whereas an insufficient
number of vehicles are available in high-demand parking
lots [6]. For car-sharing companies, this problem causes a
major financial loss. To improve the car usage rate, the
companies employ a variety of techniques that hold great
promises in car-sharing predictions.

Over the last few years, machine learning and deep
learning have proved their efficiency and got recognition in
different fields. Machine learning approaches make use of
learning algorithms that make inferences from data to learn
new tasks [7] and are widely adopted in a number of massive
and complex data-intensive fields such as medicine, as-
tronomy, and biology [8–11]. Deep learning models yield
good results in the fields of computer vision and natural
language processing [12–15] where it can automatically
extract multidimensional features and effectively extract the
data patterns for classification or regression [16].

In our work, a multivariate time series approach is
presented, and it aims to predict the car usage in the short
term and to investigate the factors that help to improve its
prediction accuracy. Multiple machine learning models and
deep learning models have already fulfilled their promises
for multivariate time series prediction approaches and also
have proved their ability in extracting meaningful under-
standings that are hard for humans to analyze and infer [5].
*ose models were performed with different features set
including the past usage levels, Chongqing’s environmental
conditions, and the temporal information.

*e rest of the paper is organized as follows. Section 2
presents a literature review of current studies on times series
models. Section 3 gives a description of the studied problem.
A time series analysis is presented in Section 4. Section 5
demonstrates the framework of our approach. Section 6
describes the experimental framework used to evaluate the
performance of used models for the multivariate time series
approach. Finally, Section 7 concludes the paper and out-
lines future work directions.

2. Literature Review

Car-sharing has become one of the most popular research
subjects in transportation. Many studies have been con-
ducted, but to the best of our knowledge, no work has been
done in the scientific literature that compares different
machine learning and deep learningmodels in predicting the
future usage of the car-sharing system and in investigating
the factors that help improve its prediction accuracy. In-
teresting works are instead the following:

Studies related to this topic can be categorized into
numerous subgroups including the followings [5, 17]: (i)
user characteristics: it investigates the ways the users interact
with the service [18, 19]; (ii) characterizing the shaping
service in charge of the provisions and distribution of the
cars around the city [20, 21]; (iii) car demands prediction
level [22, 23].

Car demands prediction levels for car-sharing systems
can be formulated as a time series prediction problem. Time
series uses many approaches, such as the autoregressive
integrated moving average (ARIMA) model that focuses on
extracting the temporal variation patterns of the traffic flow
and uses them for prediction; support vector regression
(SVR) model, that captures complex nonlinearities, [20]
demonstrated that this approach generally performs better
on traffic flow time series; extreme gradient boosting
(XGBoost), [21] showed that this model improves the
prediction’s precision and efficiency. Before starting the
calculation, XGBoost sorts the traffic data according to the
feature values and also realizes parallel computing on feature
enumerations.

Recently, machine learning methods have been chal-
lenged by deep learning methods on traffic prediction. Deep
learning approaches have a strong ability to express mul-
timodal patterns in data, in order to reduce the overfitting
problem and to obtain high prediction accuracy. In addition,
as a traffic flow process is complicated in nature, deep
learning algorithms can represent traffic features without
prior knowledge, which has good performance for traffic
flow prediction.

Xu and Lim [22] used an evolutionary neural network to
prove the effectiveness of this algorithm and its possible
usage as a tool for forecasting the net flow of a car-sharing
system in order to offer the vehicle in the shortest time
possible with the best accuracy; [23] attempted using the
deep belief network (DBN) to define a deep architecture for
traffic flow prediction that learns features with limited prior
knowledge.

*e abovementioned models require the input length to
be predefined and static, and they cannot automatically
determine the optimal time lags. To remedy these problems,
many works have been done such as [24] used a model called
long short-term memory recurrent neural network (LSTM
RNN) that capture the nonlinearity and randomness of
traffic flow more effectively and automatically determine the
optimal time lags; [25] presented a novel long short-term
memory neural network to predict travel speed using mi-
crowave detector data, where the future traffic condition is
commonly relevant to the previous events with long time
spans; Mo et al. [26] predicted the future trajectory of a
surrounding vehicle in congested traffic by using the CNN-
LSTM. To the best of our knowledge, no work is found in the
literature on car-sharing time series prediction using CNN-
LSTM.

Regarding the investigation of factors improving the
prediction, [6] conducted the study about the effect of
seasonal factors on the bookings of cars in Montreal, and
after analysing the results, it was concluded that the usage
outcomes scored better in summer season.

With respect to the above works, our approach presents
the following highlights:

(i) Comparison of various machine learning and deep
learning models to predict the future number of
bookings made by car-sharing users using different
metrics
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(ii) Investigation of the factors that help predicting the
car-sharing usage by estimating the relationship
between data features and model performances

3. Problem Description

*e aim of this study is to predict the number of vehicles that
are going to be used in the parking stations at a given
moment and to investigate the factors that improve the
accuracy of predictions.

*e number of vehicle usage at a given time tx is likely to
be correlated with a set of features [6], which are as follows:

(i) *e past usage (Fx
usage): the history usage is tracked

to build prediction models. It comprises of the
number of car-sharing transactions based on the
data from a car-sharing operator located in
Chongqing, China.

(ii) Temporal information (Fx
time): the time at which the

past usages have been acquired. Since the car de-
mands may vary over time, we partition the time
period into segments to capture different temporal
trends (e.g., holidays/working days, 1 h timeslots)
[6].

(iii) *e environmental conditions (Fx
weather) at that

time: the user transportation habits are usually af-
fected by the weather conditions.

Table 1 summarizes the description of the feature cat-
egories of the car rental time series.

3.1. Car Rental Prediction Problem. Hereafter, we formulate
the multivariate regression problem addressed in this paper
[6]. It consists of predicting the car usage based on the values
of features belonging to categories Fx

usage, Fx
time, and Fx

weather.
LetT be the historical time period considered for training, t1,
. . ., tk−1 be the past time points in T, and tk be the current
sampling time. We will denote usage (tj) [1≤ j≤ k] the usage
level at time tj. We will give 1 h timeslots as a prediction
horizon [6].

Since the future car usage is related to multiple features,
the multivariate regressor R is expressed as follows:

usage tk+1( 􏼁 � R F
x
usage, F

x
time, F

x
weather, 1 ≤ x ≤ k􏼐 􏼑, (1)

where Fx
usage is the usage levels of cars, Fx

time is the temporal
information at tx, and Fx

weather is the weather conditions in
the area at time tx [6].

3.2. Factors Investigation Problem. Another objective of this
research is to determine the factors that help to predict
vehicle usage. *e features considered in this study are
classified into different categories, namely, the past usage,
temporal information, and the environmental conditions.
We studied numerous machine learning and deep learning
models, merging the different feature categories or using
them separately one by one, aiming to find features that
improve the prediction accuracy of the models.

4. Time Series Analysis

Time series is a sequential collection of recorded observa-
tions in consecutive time periods, and they can be univariate
ormultivariate [27, 28].Wemay perform time series analysis
with the aim of either predicting future values or under-
standing the processes driving them [29].

To address the problems stated in the previous section,
multiple machine learning and deep learning models were
performed.

4.1. Machine Learning Models

4.1.1. Vector Autoregression (VAR). Vector autoregression is
a forecasting algorithm used when two or more time series
influence each other. It is considered as an autoregressive
model because the predictors are not only lags of the series
but also past lags of itself [30]. Suppose we measure three
different time series variables, denoted by xt,1, xt,2, xt,3. *e
vector autoregression model of order 1 denoted as VAR(1) is
as follows [30]:

xt,1 � a1 +Φ11xt−1,1 +Φ12xt−1,2 +Φ13xt−1,3 + wt,1, (2)

xt,2 � a2 +Φ21xt−1,1 +Φ22xt−1,2 +Φ23xt−1,3 + wt,2, (3)

xt,3 � a3 +Φ31xt−1,1 +Φ32xt−1,2 +Φ33xt−1,3 + wt,3. (4)

*e variable ai is a k-vector of constants serving as the
intercept of the model.Φij is a time-invariant (k× k)-matrix,
and Wti is a k-vector of error terms.

Each variable is a linear function of the lag 1 values for all
variables in the set. In general, for a VAR(p) model, the first p
lags of each variable in the system would be used as re-
gression predictors for each variable [31, 32].

4.1.2. eXtreme Gradient Boosting (XGBoost). XGBoost is an
efficient and scalable implementation of gradient boosting
framework by Friedman et al. [33] and Friedman et al. [34]
*e package includes an efficient linear model solver and
tree learning algorithm [35]. XGBoost fits the new model to
new residuals of the previous prediction and then minimizes
the loss while adding the latest prediction [36]. What makes
it unique is that it uses “a more regularized model for-
malization to control overfitting, which gives it better
performance”—Tianqi Chen. XGBoost is used for super-
vised learning problems, where we use the training data xi to
predict a target variable yi. After choosing the target variable
yi, we need to define the objective function to measure how
well the model fits the training data, and it consists of two
parts, training loss and regularization term, as follows:

obj(θ) � L(θ) +Ω(θ), (5)

where θ denotes the parameters that we need to learn from
data, L is the training loss function, and Ω is the regulari-
zation term. A common choice of L is the mean-squared
error, which is given by:
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L(θ) � 􏽘
i

yi − yi( 􏼁
2
. (6)

And the regularization term controls the complexity of
the model, which helps us to avoid overfitting [27].

4.1.3. Support Vector Regression (SVR). *e foundations of
support vector machines (SVM) have been laid by Vapnik
and Chervonenkis, and the methodology is gaining in
popularity. *e foundations of SVM that deal with classi-
fication problems are called support vector classification
(SVC) and those of SVM that deal with modelling and
prediction are called support vector regression (SVR)) [28].

Most real-world problems cannot be modelled by using
linear forms [31]. SVR methodology allows to handle real-
world problems. Here are some common kernels used in the
SVR modelling [25]:

(1) Linear kernel: x∗ y
(2) Polynomial kernel: [(x∗ xi) + 1]d
(3) Radial basis function (RBF): exp{-&Upsi; |x− xi|2}

4.1.4. K-Nearest Neighbors (kNN). K-nearest neighbors
(kNN) is an efficient and intuitive method that has been used
extensively for classification in pattern recognition [32]. It is
a distance-based classifier, which implies that it implicitly
presumes that the smaller the distance between two points is,
the more similar they would be [37]. KNN classification
algorithm is by far more popular than KNN regression [37].
In the KNN regression model, the derived information from
the observed data is applied to forecast the amount of
predicted variable in real time [38]. In other words, it es-
timates the response of a testing point Xt as an average of the
responses of the k closest training points, X(1), X(2), . . ., X(k),
in the neighborhood of Xt [32]. Let X� {X1, X2,..., XM} be a
training data-set consisting of M training points, each of
which possesses N features [32]. *e Euclidean distance is
used to calculate how close each training point Xi is to the
testing point Xt using

d xt, xi( 􏼁 �

�������������

􏽘

N

n�1
xt,n − xi,n􏼐 􏼑

2

􏽶
􏽴

, (7)

where N is the number of features, xt,n is the nth feature
values of the testing pointXt, and xi,n is the nth feature values
of the training point Xi. Some other methods are Manhattan,
Minkowski, and Hamming distance methods.

4.2. Deep Learning Models

4.2.1. Long Short-Term Memory (LSTM). Long short-term
memory neural network (LSTM NN) was initially intro-
duced by Hochreiter and Schmidhuber (1997) [21]. *e
primary objectives of LSTM NN are to overcome the van-
ishing gradients problem of the standard recurrent neural
network (RNN) when dealing with long-term dependencies
[39]. Its features are especially desirable for traffic prediction

in the transportation domain [40]. Figure 1 shows the ar-
chitecture of long short-term memory cell. *e core concept
of LSTM is to be composed of recurrently connected
memory blocks, each of which contains one or more
memory cells, along with three multiplicative “gate” units:
One input gate it with corresponding weight matrix Wxi,
Whi , Wci , bi; one forget gate ft with corresponding weight
matrix Wxf, Whf , Wcf , bf; one output gate ot with cor-
responding weight matrix Wxo, Who , Wco, bo. All of those
gates are set to generate some degrees, by using current input
xi, the state ht−1 that the previous step generated, and the
current state of this cell ct−1, for the decisions whether to take
the inputs, forget the memory stored before, and output the
state generated later. Just as these following equations
demonstrate [39]:

it � σ Wxixt + Whi ht−1 + Wci ct−1 + bi( 􏼁, (8)

ft � σ Wxfxt + Whf ht−1 + Wcf ct−1 + bf􏼐 􏼑, (9)

gt � tanh Wxcxt + Whc ht−1 + Wcc ct−1 + bc( 􏼁, (10)

ct � itgt + ftct−1, (11)

ot � σ Wxoxt + Who ht−1 + Wcoct + bo( 􏼁, (12)

ht � ottanh ct( 􏼁. (13)

*e network controls the flowing information by its
sigmoid layer which outputs numbers between zero and one
(S(t)� 1/(1 + e−t)).

4.2.2. Gated Recurrent Unit (GRU). *e gated recurrent unit
(GRU) architecture contains two gates: an update gate zt
decides how much the unit updates its activation or content
and a reset gate rt allows to forget the previously computed
state [41]. *e model is defined by the following:

zt � σ Wzxt + Uz ht−1 + bz( 􏼁, (14)

rt � σ Wrxr + Ur ht−1 + br( 􏼁, (15)

Ht � tanh WHxt + UH ht−1rt( 􏼁 + bH( 􏼁, (16)

ht � ztHt + 1 − zt( 􏼁ht−1, (17)

where ht represents the output state vector at time t, whileHt
is the candidate state obtained with a hyperbolic tangent, xt

represents the input vector at time t, and the parameters of
the model are Wz, Wr, WH (the feed-forward connections),
Uz , Ur , UH (the recurrent weights), and the bias vectors bz,
br, bH [42].

4.2.3. Convolutional Neural Network (CNN).
Convolutional neural networks (CNNs) are analogous to
traditional artificial neural networks (ANNs) as they are
comprised of neurons that self-optimize through learning
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[43].*ey were initially developed for computer vision tasks;
nevertheless, there have been a few recent studies ap-
plying them to time series forecasting tasks. CNNs are
comprised of three types of layers including convolu-
tional layers, pooling layers, and fully connected layers as
shown in Figure 2.

*e convolutional layer will determine the output of
neurons connected to local regions of the input through
the calculation of the scalar product between their
weights and the region connected to the input volume
[43]. *ere are two important techniques used in the
convolutional layers to accelerate the training process:
local connectivity and weight sharing. *e two tech-
niques are implemented using a filter with a specific
kernel size which defines the number of nodes that share
weights. *eir usage decreases significantly the number
of learned and stored weights and allows the network to
grow deeper with fewer parameters. *e pooling layer is
usually incorporated between two successive convolu-
tional layers [44].

*e main idea of pooling is to reduce the complexity for
further layers by down-sampling [45]. Max-pooling is one of
the most common types of pooling methods as it performs
better [44]. It consists in partitioning the image to subregion
rectangles and only returning the maximum value of the
inside of that subregion [45].

*e fully connected layers are simply, feed-forward
neural networks. *ey form the last few layers in the
network [46]. *e input to the fully connected layer is the
output from the final pooling or convolutional layer,
which is flattened and then fed into the fully connected

layer in order to perform the same duties found in
standard ANNs [43, 46].

4.2.4. CNN-LSTM Model. CNN-LSTM is a hybrid model
built by combining CNN with LSTM for improving the
accuracy of forecasting [47]. Figure 3 shows the architecture
of the CNN-LSTMmodel.*emodel comprises of twomain
components: the first component consists of convolu-
tional and pooling layers in which complicated math-
ematical operations are performed to filter the input
data and extract the useful information. More specifi-
cally, the convolutional layers apply convolution op-
eration between the raw input data and the convolution
kernels, producing new feature values [48]. *e con-
volution kernel can be considered as a window that
contains coefficient values in a matrix form. *is
window slides all over the input matrix applying con-
volution operation on each subregion of it. *e result of
all these operations is a convolved matrix that repre-
sents a feature value.

*e convolutional layers are usually followed by a
nonlinear activation function and then a pooling layer. A
pooling layer is a subsampling technique that extracts certain
values from the convolved features and produces new
matrices (i.e., summarized versions of the convolved features
that are produced by the convolutional layer).

*e second component exploits the generated features
by LSTM which possesses the ability to learn long-term and
short-term dependencies through the utilization of feedback
connections and dense layers [48].

Table 1: Categories of features.

Feature category (abbrv.) Feature description

Usage level (Fx
usage)

#Rented-cars shows the hourly variation in the number of car rentals in Chongqing between 2017
and 2019

Time (Fx
time)

Take-date: car-sharing rental date
Take-hour: car-sharing rental hour

Take-month: month of the year for sharing rental
Season: the seasons of the year (winter, spring, summer, autumn)

Weather (Fx
weather) Temperature, precipitation, humidity, wind speed, etc.

σ σtanh

tanh

X +

X
X

σ

Ct-1 

ht-1 

ht 

ht 

Ct 

xt 

ft it Ćt ot

Figure 1: *e architecture of long short-term memory cell.
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4.2.5. Multilayer Perceptron (MLP). Multilayer perceptrons
(MLPs) are deep artificial neural networks and are often
applied to supervised learning problems [49]. As we can see
from Figure 4, a multilayer perceptron consists of three types
of layers: An input layer to receive the signal, an output layer
that performs the required tasks to make a decision or
prediction about the input, and an arbitrary number of

hidden layers that are the true computational engine
[49, 50]. In MLP, the data flow in the forward direction from
the input to output layer, and the neurons are trained with
the backpropagation learning algorithm on a set of input-
output pairs. *e training involves adjusting the parameters,
or the weights and biases, of the model in order to minimize
errors [49].

Convolution
Layer

Pooling
Layer

Flattening Fully
Connected

Layer

OutputIn
pu

t S
er

ie
s

Figure 2: A simple architecture of convolutional neural network.
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Figure 3: Architecture of CNN-LSTM.
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4.3.VanishingGradients Problem. Artificial neural networks
often experience training problems due to vanishing and
exploding gradients. *e training problem is amplified ex-
ponentially especially in deep learning due to its complex
artificial neural network architecture [51]. *e vanishing
gradient is one example of unstable behavior that may be
encountered during the training with gradient-based
methods (e.g., back propagation) [52]. *e neural network’s
weights receive an update proportional to the partial de-
rivative of the error function with respect to the current
weight in each iteration of training. In some cases, the
gradient tends to get smaller as we move backward through
the hidden layers. *is means that neurons in the earlier
layers learn much more slowly than neurons in later layers
preventing the weight from changing its value [52].

Several approaches exist to reduce this effect in practice,
for example, through careful initialization, hidden layer
supervision, and batch normalization [53]. In our work,
batch normalization has been used, as it was effective in
augmenting the performance of the deep neural network.

5. Framework of the Approach

Figure 5 shows the process of car-sharing usage prediction
and factors investigation approach based on machine and
deep learning models.

5.1. Collecting Chongqing’s Car-Sharing Operator Data.
Chongqing car-sharing operators’ data set contains more
than 1M records of car-sharing usage over 860 parking lots,
from January 1st, 2017, 00:00:00 to January 31st, 2019, 23:00:
00. *e initial records were obtained at different time in-
tervals, and for study purposes, the data are aggregated by
hours, days, and weeks, for the whole network.

5.2. Collecting Chongqing’sWeather Data. *e web crawling
technology with selenium was used to extract the hourly
Chongqing’s weather conditions data from January 1st,
2017, 00:00:00 to January 31st, 2019, 23:00:00 [54].

5.3. Data Preprocessing. A data preprocessing is performed
on the data set to improve the performance [55].

5.3.1. Processing Missing Values. Some values were missing
in the data set from Chongqing’s car-sharing operator. Due
to its numerical meaning, we replaced the missing values by
the mean of the previous and next hour number of car-
sharing usage. *is method yields better results compared to
the removal of rows. *e detailed calculation is shown as
follows:

C
i
j,k �

C
i
j,k−1 + C

i
j,k+1􏼐 􏼑

2
, (18)

where Ci
j,k represents station i’s missing value on the kth

hour of jth day of the year. After handling the missing values
of Chongqing’s car-rental operator data set, we merged it
with Chongqing’s weather conditions data set based upon
dates and time.

5.3.2. Encoding the Categorical Data. Since the final data set,
combining Chongqing’s car-sharing operator and weather
data, contains some categorical data such as weather con-
dition and season, we converted the categorical data to
numerical data using one-hot encoding method. It consists
of representing each categorical variable with a binary vector
that has one element for each unique label and marking the
class label with a 1 and all other elements 0 [56].

5.3.3. Clustering Car-Sharing Parking Stations. To identify
and understand the car-rental behaviors across stations and
reveal the relationships between the time of a day and usage
[57], we organized the parking stations with similar patterns
into five distinct classes as follows:

(i) Class A: daily rented cars
(ii) Class B: frequently used cars
(iii) Class C: sometimes used cars
(iv) Class D: occasionally used cars

b
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Figure 4: Multilayer perceptron architecture.
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(v) Class E: unlike other parking stations, cars of this
class are cars rarely used

where Class A, B, C, D, and E have different parking stations’
IDs such as 16, 104, 6, 28, and 25, respectively. To simplify
the large set of data and make it understandable, we used the
grouped frequency table to cluster the 860 parking stations
into five classes [58].

First, the usage frequencies of the parking stations were
put in order, and then, the range was calculated as
below [59]:

range � largestfrequency value – smallest frequency value.

(19)

Second, an approximate class width was calculated by
dividing the range by the number of classes:

class width �
range

number of classes
. (20)

*e lowest usage frequency represents the first mini-
mum data value.
*ird, the next lower class value was calculated by
adding the class width to the lowest usage frequency.

lower class value � lowest usage frequency + class width.

(21)

*is step was repeated for the other minimum data
values until the chosen classes number was created.
Fourth, the upper class limits (that are the highest
values possible in the class) were calculated by sub-
tracting 1 from the class width and adding that to the
minimum data value.

upper class limit � lowest usage frequency +(Class width − 1).

(22)

Finally, the list of classes is obtained by including in
each class the usage frequencies that are greater than
the lower class value and smaller than the upper class
limit.

5.4. Deseasonalization. Stationarity is an important concept
for time series analysis. Some experts believe that neural
networks are able to model seasonality directly and that no
prior deseasonalization is required, whereas others believe
the contrary. *e results in [60] show that a prior data
processing is required to construct a forecasting model. To
test our time series, Augmented Dickey-Fuller Test (ADF
Test) was conducted with machine learning and deep
learning models to make predictions more accurate [61]. We
employed differencing to remove seasonality from the
nonstationary time series after the ADF Test [61, 62].
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Figure 5: *e framework of the proposed approach.
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5.5. Scaling. *e scaling phase is crucial to move the time
series into a reasonable range. In our work, MinMaxScaler
was used to scale each feature to a given range.

5.6. Splitting the Data Set. After handling the previously
mentioned steps, we prepared our data set properly. We split
the data between training and test sets.*e training set starts
from January 1st, 2017, to December 31st, 2018, and the test
set from January 01st, 2019, to January 31st, 2019. Nested
cross-validation with an outer loop equal to ten and an inner
loop equal to five is used to calculate and to compare each
model error. All models had to use the same validation
procedure for consistency matters.

6. Experiments

6.1. Data Set. *e experiments were performed on the
preprocessed Chongqing’s car-sharing operator data set
combined with Chongqing’s weather data set, to extract
features that help to predict car usage, and to demonstrate
the effectiveness of deep learning, more precisely the CNN-
LSTM comparing to other models.

We have implemented the proposed models using a PC
with an i7 Intel (R) Core™i7-7500U CPU running at
3.00GHz and 8GB RAM with the Windows 10 operating
system, under the Python 3.7 development environment.
*e following packages were installed: TensorFlow 1.14.0;
Keras 2.2.4-tf; Pandas 0.23.4; Sklearn 0.21.1; Numpy 1.18.1;
Matplotlib 3.1.0; Statsmodels 0.10.1.

*e hourly weather observations include time, tem-
perature, humidity, wind speed, pressure, precipitation, and
weather conditions. To have a basic idea about what weather
conditions are typically associated with the city of
Chongqing, we calculated the normalized frequency dis-
tributions of every weather condition (Table 2).

From Table 2, fair is the most prevalent meteorological
condition in Chongqing, closely followed by fog, light rain,
partly cloudy, and cloudy.

From Table 3, July and August are the hottest months of
the year with an average temperature of 28°C, and January is
the coldest month of the year with the temperature of 7°C.

6.2. Evaluation Metrics. *e evaluation metrics are the
measure that reflects how close the prediction matches the
historical data. *ey are useful in comparing prediction
methods on the same set of data [63].

6.2.1. Mean Absolute Error (MAE). MAE is calculated as the
mean of the absolute predicted error values. *e MAE is
popular as it is easy to both understand and compute.

MAE � mean absolute expectedvalue− predictedvalue( 􏼁( 􏼁.

(23)

6.2.2. Mean Square Error (MSE). MSE is known for putting
more weight on large errors. It is calculated as the average of
the squared predicted error values.

MSE � mean expectedvalue− predictedvalue( 􏼁
2

􏼐 􏼑. (24)

6.2.3. Root Square Mean Error (RMSE). *e mean-squared
error described above is in the squared units of the pre-
dictions. It can be transformed back into the original units of
the predictions by taking the square root of the mean-
squared error score [64]:

RMSE � sqrt(MSE). (25)

*e RMSE is chosen as an evaluation metrics because it
penalizes large prediction errors more compared with mean
absolute error (MAE).

6.2.4. Mean Absolute Percentage Error (MAPE). Mean ab-
solute percentage error (MAPE) is one of the most widely
used measures of forecast accuracy, due to its advantages of
scale independence and interpretability [65]. It is calculated
using the absolute error in each period divided by the ob-
served values that are evident for that period and conse-
quently averaging those fixed percentages [66]. MAPE
indicates howmuch error in prediction is compared with the
real value. *e MAPE can be defined by the following
formula:

MAPE �
100
n

􏽘

n

t�1

At − Ft

At

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
, (26)

where At is the actual value, Ft is the forecast value, and n

denotes the number of fitted points.

6.2.5. Root-Mean-Squared Log Error (RMSLE). *e root-
mean-squared log error (RMSLE) is the RMSE of the log-
transformed predicted and target values [54]. RMSLE only
considers the relative error between predicted and actual
values, and the scale of the error is nullified by the log-
transformation [67]. *e formula for RMSLE is represented
as follows:

RMSLE �

����������������������������

1
n

􏽘

n

i�1
log pi + 1( 􏼁 − log ai + 1( 􏼁( 􏼁

2

􏽶
􏽴

, (27)

where n is the total number of observations in the data set, pi

is the prediction of target, ai is the actual target for i, and
log(x) is the natural logarithm of x, loge(x).

6.3. Experiments and Analysis. Many experiments were
conducted on parking stations of different classes to extract
which features improved the prediction and to predict the
demands accordingly. Before applying the different models,
some tests were performed on our time series.

6.3.1. Granger Causality Tests. *eGranger causality test is a
statistical hypothesis test for determining whether one time
series is useful for predicting another [68]. In other words, it
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is an approach that analyses the causal relationships between
different variables of the time series.

After analysing the results shown in Table 4, we observed
that all the given p value were smaller than the significance
level (0.05). For example, the value of 0.0003 at (row 4)
represents the p value of the Grangers causality test for
temperature_x causing number_rented_cars_y (p value
(0.0003)< significance level of 0.05).

From the results, we can infer that all the variables are
good candidates to help predicting the number of rented cars.

6.3.2. Machine Learning Configuration

(1) eXtreme Gradient Boosting. A grid search was created for
XGBoost model in order to locate the most optimal
hyperparameters for the data set.

(2) Vector Autoregression. To select the right order of the
VAR model, we iteratively fit increasing orders of the VAR
model and picked the order that gave a model with the least
AIC [29]. In our work, we have chosen the lag 4 model.
Before predicting the future values of the target variable with
VAR, we used serial correlation of residuals to check if our
model is able to explain the patterns in the time series. *e
obtained scores in Table 5 show that our model is able to
capture all the patterns without leftover.

(3) Support Vector Regression. *e RBF kernel was chosen in
this study for its good performance and advantages in time
series prediction problem that has been proved in past re-
searches [69, 70]. *e penalty parameters are all tuned for
the best using of a grid search method. Predictions are
computed with optimal combination of cost and gamma
parameters.

(4) K-Nearest Neighbors. *e most important hyper-pa-
rameters for KNN are as follows: the number of neighbors
(K) and the distance metric, and they determine the way in
which the nearest neighbors are chosen.

To choose the number of neighbors (K), a grid search
was performed. Moreover, the distance metric plays a crucial
role in the nearest neighbor algorithm. Most of the papers in
the references used the Euclidean distance. Reference [71]
did a comparison between the Euclidean and Manhattan
distance and found that statistically, no distance metric is
significantly better than the other. *e Euclidean distance
has been selected since it is the most used in time series
forecasting with KNN regression works.

6.3.3. Deep Learning Configuration

(1) Long Short-Term Memory and Gated Recurrent Unit
Models. In this study, LSTM and GRU models have one
neuron in the output layer. Both neural network models
were designed with only one hidden layer, a number of 50
epochs were chosen, and the learning rate was set to 0.01.
*e input and hidden neurons for the GRU model were the
same as those for the LSTMmodel and were set to 41 and 50,
respectively [56].

(2) Convolutional Neural Network. CNN is one of the most
successful deep learning methods, and its network structures
include 1DCNN, 2DCNN, and 3DCNN.1DCNN is used in
this paper, and it can be well applied to time series analysis.
*e detailed process of the 1D CNN is described as follows:

In our experiment, we used various layers including one
convolutional layer with a kernel size of 2 and 64 filters, a
max-pooling layer, along with that a rectified linear unit

Table 2: Chongqing’s weather conditions normalized frequency distributions.

Weather condition Frequency Weather condition Frequency
Fair 0.42962 Light drizzle 0.00135
Fog 0.13210 T-storm 0.00130
Light rain 0.12954 Partial fog 0.00055
Partly cloudy 0.12487 Heavy T-storm 0.00050
Cloudy 0.10191 Wintry mix 0.00025
Mostly cloudy 0.02330 Fair/windy 0.00020
Haze 0.01707 *under in vicinity 0.00015
Mist 0.01285 Heavy T-storm/windy 0.00010
Light rain shower 0.01155 Heavy rain 0.00010
Rain 0.00341 T-storm/windy 0.00010
Patches of fog 0.00236 Shallow fog 0.00005
Light rain with thunders 0.00236 Heavy rain shower/windy 0.00005
*under 0.00226 Showers in the vicinity 0.00005
Rain shower 0.00190 Light rain/windy 0.00005

Table 3: Chongqing’s monthly temperature records.

Month average Average temperature Max/min average
January 7 5/10
February 9 7/12
March 14 11/17
April 19 15/23
May 22 18/25
June 25 21/29
July 28 24/33
August 28 24/33
September 24 20/27
October 18 16/21
November 14 11/16
December 9 7/11
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(ReLU) activation function is applied in the convolutional
and output layers. To minimize the mean-squared error, the
gradient descent backpropagation algorithm and Adam
optimizer were used; following that, a dropout rate of 0.5 was
employed to avoid the overfitting [72], and a number of 70
epochs were used for training the model.

(3) CNN-LSTM. In our implementation, we utilized a ver-
sion of the CNN-LSTM model that consists of two one-
dimensional convolutional layers with a kernel size equal to
5, 32, and 64 filters, respectively, followed by a max-pooling
layer, a LSTM layer with 50 units, and a dense layer of 32
neurons [48], In order to avoid overfitting during training,
the dropout was adjusted to 0.2. A number of 100 epochs
were chosen to train the model.

(4) Multilayer Perceptron Regressor. MLP was applied on our
multivariate time series, with ReLU as an activation function
to train the regression model. *ree hidden layers were used
with a number of 50, 35, and 10 hidden neurons, respec-
tively. *e training was performed for 50 epochs for MLP
with a learning rate of 0.01.

6.4. Prediction Result. For the good organization of the
paper, and not being redundant in our explanations, we only
discussed the result analysis of the class “A” as other classes
exhibit the same behavior and lead to the same conclusion.

To perform the comparison while fitting the models with
different features, the results of only CNN-LSTM for deep
learning models and XGBoost for machine learning models

are described in our analysis. In the same way, each of the
applied models had the analysis of the same results.

In our investigation, metrics such as MAE, MSE, RMSE,
MAPE, and RMSLE are used in respective order to make the
comparison. Note that the smallest errors are shown in bold
text in Tables 6–13.

6.4.1. Univariate Time Series

(1) Machine Learning Models. As shown in Table 6, XGBoost
reduced the error by (93.14%, 99.14%, 93.36%, 69.17%,
93.76%) against VAR; (93.69%, 99.48%, 94.17%, 83.09%,
94.70%) against SVM; and (93.93%, 99.65%, 94.44%, 84.17%,
95.05%) against KNN.

(2) Deep Learning Models. As it can be seen from Table 7,
CNN-LSTM yielded the best results and had smaller eval-
uation error compared to all other models. CNN-LSTM
decreased the evaluation error by (44.19%, 48.37%, 34.44%,
1.03%, 24.14%) against LSTM; (51.91%, 57.97%, 35.15%,
11.71%, 40.21%) against GRU; (61.15%, 58.58%, 79.38%,
37.38%, 38.76%) against CNN; and (67.43%, 95.75%, 69%,
88.24%, 61.37%) against MLP.

6.4.2. Be Effect of Weekends Information. We might not
forget or underestimate the impact of weekends on the
prediction while building prediction models with time series
data. *ey are significant since they can add peculiarity to
the outcomes.

(1) Machine LearningModels. From Table 8, it can be noticed
that using the XGBoost model with weekend features en-
hanced the improvement rate of (1.14%, 0.62%, 1.08%,
0.42%, 0.24%) compared to univariate time series.

XGBoost outperformed VAR, SVM, and KNN. It re-
duced evaluation error at the rate of (93.20%, 99.19%,
93.34%, 69.04%, 93.76%) contrary to VAR; (93.74%, 99.47%,
94.14%, 82.98%, 94.46) contrary to SVM; and (94.00%,
99.65%, 94.37%, 84.04%, 95.04%) contrary to KNN.

(2) Deep Learning Models. *e addition of weekend features
improved prediction accuracy as it can be observed from
Table 9, where adding the weekend feature to the univariate
time series of class “A” improved the results with a rate of
(2.4%, 4.95%, 2.54%, 4.23%, 0.43%) for CNN-LSTM.

Regarding models’ comparison, CNN-LSTM achieved
the best results with an improvement rate of (43.75%,
46.52%, 28, 50%, 0.88%, 37.98%) against LSTM; (46.47%,
57.96%, 35.16%, 4.87%, 35.45%) against GRU; (40.38%,
59.34%, 67.17%, 48.70%, 40.56%) against CNN; and (65.92%,
89.22%, 67.79%, 75.46%, 60.88%) against MLP.

6.4.3.Be Effect ofWeather Information. In addition to rental
information in the city of Chongqing, we can leverage weather
data to improve prediction at different times of the day.

Table 4: Granger causality test results.

Variables Number_rented_cars
Day_of_week 0.0004
Take_month 0.0289
Season 0.0001
Temperature 0.0003
Humidity 0.0000
Wind_speed 0.0000
Pressure 0.0000
Precipitation 0.0000
Weather_condition 0.0004
Weekdays_weekend_x 0.0003

Table 5: Check for serial correlation of residuals.

Columns Value
Number_rented_cars 2.03
Day_of_week_x 2.0
Take_month_x 2.0
Season_x 2.0
Temperature_x 2.03
Humidity_x 2.01
Wind_speed_x 2.0
Pressure_x 2.03
Precipitation_x 2.0
Weather_condition_x 2.01
Weekdays_weekend_x 2.0
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(1) Machine Learning Models. Table 10 shows that applying
XGBoost reduced the MAE by 2.68%; the MSE by 3.18%; the
RMSE by 0.25%; the MAPE by 6.84%; and the RMSLE by
1.56% compared to the univariate time series results. Cor-
respondingly, it reduced the MAE by 1.56%; the MSE by
2.58%; the RMSE by 0.33%; the MAPE by 6.98%; and the
RMSLE by 1.32% relative to the weekend results.

XGBoost outperformed the other models as it decreased
the error values by (93.28%, 99.21%, 93.35%, 76.26%,
93.72%) compared to VAR; (93.49%, 99.41%, 94.15%,
94.20%, 94.05%) compared SVM; and (94.08%, 99.56%,
94.26%, 94.54%, 95.10%) compared to KNN.

(2) Deep Learning Models. From Table 11, our findings show
that the CNN-LSTM model was (37.97%, 37.59%, 35.82%,
5.49%, 23.42%) more accurate than LSTM; (39.82%, 57.73%,
34.93%, 2.62%, 38.70%) more accurate than GRU; (40.21%,
58.84%, 58.46%, 43.80%, 40.76%) more accurate than CNN;
and (65.25%, 82.77%, 52.96%, 76.67%, 60.67%) more ac-
curate than MLP.

Moreover, it was observed after a thorough examination
that integrating weather data as a feature improved the
prediction accuracy. When the CNN-LSTM model was
applied to class “A” data with weather features, it reduced the
MAE by 2.67%; the MSE by 6.04%; the RMSE by 3.03%; the
MAPE by 11.10%; and the RMSLE by 5.02% compared to the

univariate time series results. Similarly, it also reduced the
MAE by 0.28%; the MSE by 1.16%; the RMSE by 0.51%; the
MAPE by 7.17%; and the RMSLE by 5.43% compared to the
weekend’s results.

6.4.4. Combined Effect of Historical, Weekends, and Weather
Information

(1) Machine Learning Models. *e evaluation error of
XGBoost was lower as shown in Table 12. It reduced the
error by (93.35%, 99.28%, 93.76%, 73.71%, 80.32%) relative
to VAR; by (93.57%, 99.47%, 94.47%, 94.21%, 93.81%)
relative to SVM; and by (94.12%, 99.59%, 94.62%, 94.54%,
95.16%) relative to KNN.

Our findings show that when all features were used
together, XGBoost performed better with rate of (3.96%,
12.92%, 6.65%, 6%, 2.85%). Similarly, it also performed
(2.85%, 12.38%, 6.72%, 6.14%, 2.62%) better than when
history combined with weekend features were used and
(1.31%, 10.6%, 6.41%, 5.48%, 1.31%) better than when his-
tory combined with weather features were used.

Table 6: Machine learning for univariate time series evaluation
results.

MAE MSE RMSE MAPE RMSLE
XGBoost 0.07272 0.00975 0.09868 0.30398 0.07189
VAR 1.06025 1.20552 1.4851 0.98598 1.15297
SVM 1.15297 1.86949 1.69395 1.7977 1.3575
KNN 1.19834 2.77452 1.77467 1.91974 1.45087

(a) Class A
MAE MSE RMSE MAPE RMSLE

XGBoost 0.09125 0.02252 0.14942 0.18352 0.06025
VAR 0.45087 0.36788 0.60653 0.14527 0.09057
SVM 0.72289 1.04231 1.01927 1.14777 0.960432
KNN 0.76353 1.48786 1.18645 1.25337 0.72234

(b) Class B
MAE MSE RMSE MAPE RMSLE

XGBoost 0.1179 0.03489 0.18489 0.29007 0.1179
VAR 0.43931 0.34352 0.5861 0.50319 0.43931
SVM 0.81499 0.99441 0.99721 1.1251 0.59046
KNN 0.83915 1.86306 1.36483 1.22767 1.30815

(c) Class C
MAE MSE RMSE MAPE RMSLE

XGBoost 0.03654 0.00314 0.05391 0.04028 0.03299
VAR 0.43459 0.34597 0.58819 0.18361 0.43459
SVM 0.54589 0.69401 0.83355 1.16683 0.54795
KNN 0.61745 1.14995 1.07216 1.18775 0.90985

(d) Class D
MAE MSE RMSE MAPE RMSLE

XGBoost 0.04051 0.00285 0.05338 0.00683 0.04051
VAR 0.08543 0.08782 0.29143 0.14278 0.08659
SVM 0.14529 0.11864 0.34444 0.53728 0.08543
KNN 0.27331 0.13296 0.56446 1.9495 0.47325

(e) Class E

Table 7: Deep learning for univariate time series evaluation results.

MAE MSE RMSE MAPE RMSLE
CNN-LSTM 0.04083 0.00364 0.06035 0.08108 0.04843
LSTM 0.07316 0.00705 0.09206 0.08192 0.06384
GRU 0.08491 0.00866 0.09306 0.09151 0.081
CNN 0.10512 0.00879 0.2927 0.14614 0.07909
MLP 0.12537 0.08568 0.19468 0.77838 0.12537

(a) Class A
MAE MSE RMSE MAPE RMSLE

CNN-LSTM 0.00616 0.00714 0.0074 0.05434 0.00616
LSTM 0.04043 0.04718 0.04977 0.08423 0.00404
GRU 0.04404 0.05247 0.04989 0.18194 0.03956
CNN 0.03939 0.08383 0.09927 0.77724 0.13109
MLP 0.1261 0.05533 0.28953 0.88942 0.1261

(b) Class B
MAE MSE RMSE MAPE RMSLE

CNN-LSTM 0.02172 0.00126 0.03547 0.09764 0.02864
LSTM 0.03332 0.00243 0.06397 0.07606 0.03059
GRU 0.0338 0.00252 0.04974 0.65142 0.03546
CNN 0.12709 0.00983 0.14989 0.73808 0.06779
MLP 0.13366 0.0851 0.29171 0.91345 0.12709

(c) Class C
MAE MSE RMSE MAPE RMSLE

CNN-LSTM 0.00913 0.00852 0.01545 0.54338 0.00927
LSTM 0.01596 0.00621 0.02222 0.49018 0.01717
GRU 0.01663 0.08175 0.02151 0.74992 0.01612
CNN 0.12113 0.08763 0.28592 0.53462 0.12113
MLP 0.12187 0.15624 0.29603 0.80945 0.12187

(d) Class D
MAE MSE RMSE MAPE RMSLE

CNN-LSTM 0.01213 0.00198 0.04331 0.00727 0.02345
LSTM 0.02244 0.00466 0.13236 0.02329 0.02687
GRU 0.03553 0.00475 0.06827 0.33448 0.03836
CNN 0.03746 0.08376 0.06893 0.67174 0.0418
MLP 0.1227 0.08708 0.28941 0.71862 0.1227

(e) Class E
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(2) Deep LearningModels. From Table 13, our findings reveal
that when CNN-LSTMwas fitted with all features together, it
performed better with rate of (1.41%, 2.34%, 1.28%, 8.82%,
7.98%) than when only history features were used; likewise,
it was (4.04%, 8.24%, 4.28%, 8.17%, 12.60%) better than
when history combined with weekend features were used,
and (1.68%, 3.47%, 1.79%, 8.33%, 12.97%) better than when
history combined with weather features were used.

In comparison to all other models, CNN-LSTM has
much lower evaluation error. It decreased the error by
(36.80%, 23.39%, 31.18%, 46.46%, 29.66%) against LSTM, by
(37.03%, 53.09%, 35.41%, 74.91%, 37.21%) against GRU, by
(36.939%, 58.25%, 31.52%, 88.65%, 42.98%) against CNN, by
(38.79%, 59.17%, 36.02%, 88.52%, 31.97%) when compared
to MLP.

6.5. Comparison of the Results. One of our objectives is to
compare the accuracy of various machine learning and deep
learning models in predicting the future number of car-
sharing transactions. After analysing the results obtained in
our study, the following are our findings:

6.5.1. Machine Learning. First, with regard to the results
obtained with the machine learning models and after the
comparison based on the evaluation metrics, it shows that
XGBoost gave the best results, followed by VAR, SVR, and

KNN. *e XGBoost model had several advantages in model
prediction such as complete feature extraction, good fitting
effect, and high prediction accuracy.

Second, the SVR prediction series failed to capture
random and nonlinear patterns. Hence, it failed to perform
well, while XGBoost and VAR forecast series were able to
capture random walk patterns.

*ird, KNN performed the worse compared to the other
machine learning models because of the high number of
inputs.

6.5.2. Deep Learning. After comparison of results, we can
deduce that CNN-LSTM generated better outcomes fol-
lowed by LSTM, GRU, CNN, and MLP.

*e hybrid CNN-LSTM model yielded better perfor-
mance on the strength of its capability in supporting very
long input sequences that can be read as subsequences by
the CNN model and then formed together by the LSTM
model.

Besides the CNN-LSTM model, the long short-term
memory model achieved good results on account of its
ability to learn patterns from sequenced data more
effectively.

*e key difference between the gated recurrent unit
model and the long short-term memory model is that GRU
is less complex than LSTM, as it only has two gates (i.e.,
reset and update) while LSTM has three gates (including

Table 8: Machine learning for historical data with weekends data evaluation results.

MAE MSE RMSE MAPE RMSLE
XGBoost 0.07189 0.00969 0.09876 0.30527 0.07172
VAR 1.05771 1.19652 1.482066 0.98598 1.14989
SVM 1.14782 1.83432 1.68569 1.79397 1.2942
KNN 1.19799 2.77371 1.75573 1.91257 1.44645

(a) Class A
MAE MSE RMSE MAPE RMSLE

XGBoost 0.09057 0.02244 0.15007 0.18352 0.05771
VAR 0.44645 0.36339 0.60281 0.13388 0.09025
SVM 0.72168 1.03896 1.01929 1.14777 0.78527
KNN 0.76351 1.40766 1.18639 1.24379 0.7216

(b) Class B
MAE MSE RMSE MAPE RMSLE

XGBoost 0.1175 0.03476 0.18457 0.28931 0.1175
VAR 0.43805 0.34159 0.58445 0.50319 0.43805
SVM 0.81479 0.99398 0.99698 1.1251 0.57837
KNN 0.83915 1.86244 1.36463 1.22597 0.93895

(c) Class C
MAE MSE RMSE MAPE RMSLE

XGBoost 0.03299 0.00314 0.05544 0.03984 0.02959
VAR 0.43452 0.34574 0.588 0.18361 0.43452
SVM 0.54589 0.69409 0.83352 1.16626 0.54589
KNN 0.61696 1.14954 1.07216 1.18884 0.89971

(d) Class D
MAE MSE RMSE MAPE RMSLE

XGBoost 0.01878 0.00222 0.04717 0.00583 0.01878
VAR 0.08543 0.08481 0.29123 0.14278 0.08527
SVM 0.14422 0.11862 0.34426 0.53462 0.08543
KNN 0.27324 0.13282 0.36444 1.94985 0.37284

(e) Class E
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input, output, and forget). By comparing the two models
using the different evaluation metrics, it can be concluded
that the LSTM model had good memory for longer se-
quences as compared to the GRU model, and it out-
performed in the tasks requiring modelling the long-
distance relations.

*e CNN produced quite impressive results because of
the ability of its convolutional layer in identifying patterns
between the time steps. Contrary to the LSTM model, the
CNN model is not recurrent, and it can only train the data
that are inputted by the model at a particular time step.

Unlike the other models, the multilayers perceptron
model performed worse. *e model received inputs and
didn’t treat them as sequence data, which led to temporal
dependencies and sequence patterns loss.

6.5.3. Comparison between Machine Learning and Deep
Learning Models. It can be inferred from the obtained
results that the deep learning models outperformed all the
machine learning time series prediction models. From the

different results of the different models, we noticed that
CNN-LSTM gave the best performance measures and
achieved the most accurate prediction results. Further-
more, Figure 6 shows that the dashed line of predicted
values almost coincides with the one of real values, which
proves that the hybrid CNN-LSTM model generated good
results.

Figure 7 shows a comparison between the two best
machine learning and deep learning models of Class A, and
it can be noticed that CNN-LSTM slightly outperformed the
XGBoost model.

6.5.4. Be Computational Time. *e computational time of
various machine and deep learning models can be found in
the following tables:

Table 14 shows that XGBoost has faster computational
time while SVM is the more demanding. For deep learning
models, Table 15 shows that the computational time of
CNN-LSTM is bigger than the LSTM, GRU, CNN, andMLP
models.

Machine learning models exhibit faster computational
time, while deep learning models take a longer time because
of their high number of parameters and their complex
mathematical formulas.

Table 9: Deep learning for historical data with weekends data
evaluation results.

MAE MSE RMSE MAPE RMSLE
CNN-LSTM 0.03985 0.00346 0.05882 0.07765 0.04864
LSTM 0.07084 0.00647 0.08226 0.07834 0.07843
GRU 0.07445 0.00823 0.09072 0.08235 0.07535
CNN 0.06685 0.00851 0.17917 0.16054 0.08183
MLP 0.11695 0.0321 0.18264 0.31643 0.12436

(a) Class A
MAE MSE RMSE MAPE RMSLE

CNN-LSTM 0.00549 0.00712 0.0062 0.02987 0.00549
LSTM 0.03908 0.0343 0.01044 0.03156 0.02043
GRU 0.03774 0.01249 0.04989 0.32077 0.03437
CNN 0.03362 0.03393 0.09543 0.41409 0.07012
MLP 0.11776 0.01509 0.18421 0.74706 0.11776

(b) Class B
MAE MSE RMSE MAPE RMSLE

CNN-LSTM 0.02107 0.00126 0.03544 0.07989 0.0274
LSTM 0.02945 0.00229 0.05796 0.09897 0.02942
GRU 0.03309 0.00249 0.04929 0.56722 0.03524
CNN 0.11495 0.00257 0.13197 0.31063 0.03386
MLP 0.12668 0.03283 0.18118 0.6956 0.11495

(c) Class C
MAE MSE RMSE MAPE RMSLE

CNN-LSTM 0.00841 0.00543 0.01444 0.32857 0.00848
LSTM 0.00947 0.00524 0.02185 0.16148 0.0155
GRU 0.01529 0.0302 0.02081 0.28902 0.00966
CNN 0.10715 0.03437 0.17378 0.67375 0.10715
MLP 0.11859 0.03674 0.18727 0.8023 0.11859

(d) Class D
MAE MSE RMSE MAPE RMSLE

CNN-LSTM 0.00943 0.00188 0.04145 0.00517 0.01213
LSTM 0.02032 0.00464 0.05192 0.01976 0.02659
GRU 0.03531 0.00471 0.06658 0.32383 0.03742
CNN 0.03576 0.03396 0.06862 0.49758 0.03509
MLP 0.11089 0.03635 0.18428 0.70503 0.11089

(e) Class E

Table 10: Machine learning for historical data with weather data
evaluation results.

MAE MSE RMSE MAPE RMSLE
XGBoost 0.07077 0.00944 0.09843 0.10385 0.07077
VAR 1.05296 1.192 1.480543 0.43748 1.12674
SVM 1.08711 1.60693 1.68354 1.79101 1.1896
KNN 1.19562 2.14944 1.7146 1.90031 1.44379

(a) Class A
MAE MSE RMSE MAPE RMSLE

XGBoost 0.09003 0.02233 0.1498 0.14143 0.05296
VAR 0.44379 0.36095 0.60079 0.13328 0.09003
SVM 0.72164 1.03892 1.02093 1.14312 0.69041
KNN 0.76347 1.4106 1.18769 1.23748 0.72168

(b) Class B
MAE MSE RMSE MAPE RMSLE

XGBoost 0.11705 0.03418 0.18679 0.27058 0.11705
VAR 0.43726 0.34063 0.58364 0.41371 0.43726
SVM 0.80968 0.98371 0.99181 1.12363 0.54982
KNN 0.83909 1.86221 1.36451 1.22429 0.83915

(c) Class C
MAE MSE RMSE MAPE RMSLE

XGBoost 0.02945 0.00307 0.05401 0.03076 0.02951
VAR 0.43389 0.34523 0.58756 0.1595 0.43389
SVM 0.54583 0.69474 0.83312 1.16663 0.54594
KNN 0.61329 1.14941 1.07194 1.18616 0.81517

(d) Class D
MAE MSE RMSE MAPE RMSLE

XGBoost 0.01711 0.00215 0.04635 0.00462 0.01711
VAR 0.08469 0.08491 0.29139 0.1393 0.08519
SVM 0.13407 0.11862 0.34422 0.52147 0.08471
KNN 0.2732 0.13283 0.36446 1.94885 0.37281

(e) Class E
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Table 11: Deep learning for historical data with weather data evaluation results.

MAE MSE RMSE MAPE RMSLE
CNN-LSTM 0.03974 0.00342 0.05852 0.07208 0.046
LSTM 0.06407 0.00548 0.09118 0.07627 0.06007
GRU 0.06604 0.00809 0.08993 0.07832 0.07504
CNN 0.06647 0.00831 0.14089 0.13935 0.07765
MLP 0.11436 0.01985 0.12441 0.30888 0.11695

(a) Class A
MAE MSE RMSE MAPE RMSLE

CNN-LSTM 0.00449 0.00505 0.00639 0.02946 0.00449
LSTM 0.03302 0.01164 0.00767 0.02954 0.03342
GRU 0.00712 0.01249 0.04986 0.10656 0.03386
CNN 0.03309 0.01212 0.0738 0.27765 0.04365
MLP 0.08257 0.01421 0.1101 0.32499 0.08257

(b) Class B
MAE MSE RMSE MAPE RMSLE

CNN-LSTM 0.02061 0.00111 0.03333 0.06524 0.02502
LSTM 0.0248 0.00206 0.04984 0.07459 0.02668
GRU 0.02939 0.00247 0.04974 0.28738 0.03112
CNN 0.09692 0.00248 0.04984 0.22379 0.034
MLP 0.12534 0.01729 0.1315 0.94313 0.09692

(c) Class C
MAE MSE RMSE MAPE RMSLE

CNN-LSTM 0.0076 0.00354 0.0142 0.20089 0.00822
LSTM 0.01172 0.00418 0.02168 0.27274 0.01112
GRU 0.01203 0.01016 0.02078 0.17646 0.0118
CNN 0.06987 0.01151 0.10078 0.45685 0.06987
MLP 0.07914 0.02542 0.10539 0.5951 0.07914

(d) Class D
MAE MSE RMSE MAPE RMSLE

CNN-LSTM 0.00598 0.00172 0.04102 0.00427 0.00943
LSTM 0.01912 0.00461 0.04713 0.01093 0.03641
GRU 0.0316 0.00468 0.06813 0.19444 0.03412
CNN 0.03492 0.01408 0.06839 0.29567 0.03855
MLP 0.09834 0.01498 0.11865 0.62538 0.09834

(e) Class E

Table 12: Machine learning for combined features evaluation results.

MAE MSE RMSE MAPE RMSLE
XGBoost 0.06984 0.00849 0.09212 0.10335 0.06984
VAR 1.0498 1.17777 1.47572 0.39307 0.3548
SVM 1.08607 1.59434 1.66544 1.78393 1.12886
KNN 1.18772 2.08258 1.7107 1.89279 1.44327

(a) Class A
MAE MSE RMSE MAPE RMSLE

XGBoost 0.08978 0.0223 0.14396 0.11954 0.0498
VAR 0.44327 0.36056 0.60046 0.13314 0.08978
SVM 0.7216 1.03716 1.01919 1.14185 0.61201
KNN 0.76191 1.41458 1.18536 1.23693 0.72143

(b) Class B
MAE MSE RMSE MAPE RMSLE

XGBoost 0.11671 0.03406 0.18643 0.25127 0.11671
VAR 0.43631 0.33916 0.58238 0.38869 0.43631
SVM 0.80446 0.97407 0.98695 1.12311 0.27791
KNN 0.839 1.86212 1.36414 1.22258 0.53914

Complexity 15



6.6. Features Investigations. All the used time series pre-
diction models showed that the prediction results were more
accurate when we used the different features categories,
namely, the past usage levels feature (e.g., number of car-
sharing transactions), temporal information features (e.g.,

season, weekdays/weekend), and environmental condition
features (e.g., temperature, humidity, wind speed, pressure,
precipitation, weather conditions) together.

It also showed that the environmental condition features
dominated other features, and it was followed by the

Table 12: Continued.

MAE MSE RMSE MAPE RMSLE
(c) Class C

MAE MSE RMSE MAPE RMSLE
XGBoost 0.01955 0.00291 0.05102 0.02952 0.0295
VAR 0.43306 0.34416 0.58665 0.15809 0.43306
SVM 0.54572 0.69482 0.83307 1.16535 0.54581
KNN 0.61314 1.14905 1.071 1.18552 0.43926

(d) Class D
MAE MSE RMSE MAPE RMSLE

XGBoost 0.01691 0.00204 0.04636 0.00572 0.01591
VAR 0.08465 0.08488 0.29134 0.13918 0.07416
SVM 0.1173 0.11817 0.34376 0.52012 0.0847
KNN 0.27281 0.13251 0.16539 1.94874 0.17384

(e) Class E

Table 13: Deep learning for combined features evaluation results.

MAE MSE RMSE MAPE RMSLE
CNN-LSTM 0.03918 0.00334 0.05777 0.01527 0.13296
LSTM 0.06199 0.00436 0.08394 0.02852 0.04233
GRU 0.06222 0.00712 0.08944 0.06087 0.06018
CNN 0.06213 0.008 0.08436 0.13451 0.06741
MLP 0.06401 0.00818 0.09029 0.13296 0.07424

(a) Class A
MAE MSE RMSE MAPE RMSLE

CNN-LSTM 0.00237 0.00101 0.00315 0.01554 0.0029
LSTM 0.0029 0.00151 0.00364 0.02853 0.03108
GRU 0.00365 0.00245 0.04954 0.10156 0.03227
CNN 0.03153 0.00894 0.05426 0.18847 0.00337
MLP 0.06972 0.00401 0.09456 0.18756 0.06972

(b) Class B
MAE MSE RMSE MAPE RMSLE

CNN-LSTM 0.01766 0.00108 0.03282 0.01725 0.02415
LSTM 0.00252 0.00142 0.04932 0.07215 0.02534
GRU 0.02914 0.00232 0.09914 0.151 0.02541
CNN 0.07412 0.00243 0.05017 0.17203 0.02956
MLP 0.06779 0.01018 0.10765 0.42891 0.07412

(c) Class C
MAE MSE RMSE MAPE RMSLE

CNN-LSTM 0.00701 0.00147 0.01351 0.14796 0.00818
LSTM 0.01175 0.0042 0.02069 0.28051 0.00795
GRU 0.00783 0.00443 0.02069 0.15548 0.01206
CNN 0.0584 0.00519 0.0783 0.28875 0.0584
MLP 0.04972 0.00613 0.07204 0.59483 0.04972

(d) Class D
MAE MSE RMSE MAPE RMSLE

CNN-LSTM 0.0027 0.0016 0.04046 0.0009 0.0027
LSTM 0.01707 0.00454 0.03545 0.0059 0.02613
GRU 0.03159 0.00443 0.06789 0.19402 0.03386
CNN 0.0314 0.00412 0.06813 0.28588 0.03419
MLP 0.04576 0.00488 0.06422 0.426525 0.04576

(e) Class E
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temporal information features. We got the worst results
when using only the number of car-sharing transactions
based on the data from a Chongqing’s car-sharing operator.

7. Conclusions

*is research paper, through applying different machine
learning and deep learning models to multivariate time
series, aims to predict the car usage and to investigate the
factors that help to improve the predictions’ accuracy.

*e evaluation of the different machine learning and
deep learning models with MAE, MSE, RMSE, MAPE, and
RMSLE reveals that the hybrid model (CNN-LSTM) gives
substantially smaller errors as compared to the standalone
used models. *e experimental results show that the
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Figure 6: Comparison of the predicted value and the real value for CNN-LSTM.
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Figure 7: Comparison between best machine learning and deep learning models.

Table 14: Computational time for machine learning models.

Deep learning Time (s)
XGBoost 10.2203
VAR 34.5798
SVM 65.2421
KNN 20.4125

Table 15: Computational time for deep learning models.

Deep learning Time (s)
CNN-LSTM 872.2856
LSTM 543.7666
GRU 542.7666
CNN 395.3688
MLP 262.8907
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utilization of the CNN-LSTM model on the number of car-
sharing transactions, along with environmental conditions
and temporal information features together, yields the
highest prediction accuracy. *e principal idea of the hybrid
model is to efficiently amalgamate the advantages of two
deep learning techniques. It exploits the ability of con-
volutional layers for extracting useful knowledge and
learning the internal representation of time series data as
well as the effectiveness of long short-term memory (LSTM)
layers for remembering events for short and very long time.

Furthermore, through our experimental analysis, we
conclude that even though LSTM models constitute an
efficient choice for car-sharing time series prediction, their
usage along with additional convolutional layers provides a
significant boost in enhancing the forecasting performance.
Although CNN-LSTM requires high search time due to its
sensitivity to various hyperparameters and its high com-
plexity, it shows the highest forecasting accuracy and the best
performance.

All the results of the used models confirm that the car-
rental usage is more sensitive to environmental conditions
than temporal information that means the impact of weather
on car-rental transportation deserves more attention at
research. However, our work is limited to temporal features.
Future studies can extend on adding more features such as
the time span of data, spatiotemporal variables, and expand
the model to consumers’ habits [73–76].
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For decades, from design theory to urban planning and management, from social sciences to urban environmental science, cities
have been probed and analyzed from the partial perspective of single disciplines. ,e digital era, with its unprecedented data
availability, is allowing for testing old theories and developing new ones, ultimately challenging relatively partial models. Our
community has been in the last years providing more and more compelling evidence that cities are complex systems with
emergent phenomena characterized by the collective behavior of their citizens who are themselves complex systems. However,
more recently, it has also been shown that such multiscale complexity alone is not enough to describe some salient features of
urban systems. Multilayer network modeling, accounting for both multiplexity of relationships and interdependencies among the
city’s subsystems, is indeed providing a novel integrated framework to study urban backbones, their resilience to unexpected
perturbations due to internal or external factors, and their human flows. In this paper, we first offer an overview of the
transdisciplinary efforts made to cope with the three dimensions of complexity of the city: the complexity of the urban envi-
ronment, the complexity of human cognition about the city, and the complexity of city planning. In particular, we discuss how the
most recent findings, for example, relating the health and wellbeing of communities to urban structure and function, from traffic
congestion to distinct types of pollution, can be better understood considering a city as a multiscale and multilayer complex
system. ,e new challenges posed by the postpandemic scenario give to this perspective an unprecedented relevance, with the
necessity to address issues of reconstruction of the social fabric, recovery from prolonged psychological, social and economic
stress with the ensuing mental health and wellbeing issues, and repurposing of urban organization as a consequence of new
emerging practices such as massive remote working. By rethinking cities as large-scale active matter systems far from equilibrium
which consume energy, process information, and adapt to the environment, we argue that enhancing social engagement, for
example, involving citizens in codesigning the city and its changes in this critical postpandemic phase, can trigger widespread
adoption of good practices leading to emergent effects with collective benefits which can be directly measured.

1. Introduction

Cities offer one of the most challenging test beds for any
complexity-oriented modeling approach. ,e reason is
simple: they present a multiscale structure integrating a
multitude of social and technological subsystems. While
being large enough to be amenable to macromodeling, at the
same time, they are not large enough to be exclusively
approached at that scale, thus raising ambition for detailed
microstructural analysis and understanding. For these

reasons, the modeling and analysis of cities sit naturally at
the mesoscale, at the edge between micro and macro, and
offer an ideal environment for the development of “statistical
mechanics” of human interaction.

On the basis of these premises, it is paradoxically not
surprising that the most authoritative and celebrated ac-
count of how cities “work,” which has informed a countless
number of different approaches and analysis of all sorts, is
Jane Jacobs’ book “,e Death and Life of Great American
Cities” [1], which is essentially an autoethnography of the
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experience of the city par excellence, New York City, that is,
an approach that could not be farther away from conven-
tional scientific standards: subjective observations about a
single city through time. Despite its lack of “hard scientific”
method, the book has been so influential and was celebrated
to become a sort of conceptual map for all scientists aiming
at building solid scientific explanations and analyses of the
urban dynamics. Such influence stems from its unique ca-
pacity of summing up, through the author’s gaze, so many
different, subtly related aspects of the essence of cities’
functioning and living. Not incidentally, one of its major
insights among many is that cities thrive only if they are able
to maintain their own form of highly idiosyncratic com-
plexity. If they fall for structural oversimplification and loss
of diversity, they decay and possibly eventually die. Tradi-
tional top-down planning practices have not successfully
passed the urban complexity test, due to their inability to
credibly address the mutability of social interactions in
urban settings through their rigid schemes and their con-
sequent tendency to micromanage environmental com-
plexity rather than enable its generative potential [2].
Moreover, Jacobs’ lesson reminds us that the complexity of
the city is not only about the manifold aspects of the urban
environment and their interrelations but also about the
complexity of our own mental representation of the city.
Jacobs’ insights are also about what planning means for the
city and about the subtle balance between self-organization
and intelligent design, and here too there is enormous in-
spiration for readers who are accustomed to think in
complexity science terms. ,ere are, therefore, at least three
different dimensions of complexity that one should keep in
mind thinking of the city: the complexity of the urban
environment, the complexity of human cognition about the
city, and the complexity of city planning. A comprehensive
approach to urban complexity should be able to encompass
all three and even more so in the complex postpandemic
scenario with which all cities will have to cope in the coming
years.

2. Modeling Urban Complexity

Research on the complexity of urban environments has a
long tradition, and although its roots are difficult to trace
back, a fundamental text is Christopher Alexander’s “A
City Is Not a Tree” [3]. In this short, insightful essay, later
developed into a book [4], Alexander makes use of bio-
logical analogies to explore the inherent geometrical
properties of urban organization, largely prefiguring the
complexity science of the next two decades. As shown in
his later book [5], Alexander clearly understands the re-
lationship between the emergent macrostructures of the
city and the microlevel of building construction patterns
and their compositional space grammar, thus character-
izing architectural building rules as subject to adaptive
pressures. Alexander then goes further on [6] to identify
vernacular architecture as a self-organizing system of space
organization which reflects an extremely complex system
of socioenvironmental cognition and constitutes an ideal
bridge between the complexity science of urban

environments and that of their mental representations.
Finally, in the monumental 4-book series, “,e Nature of
Order” [7–10], Alexander arrives at an all-encompassing
evolutionary synthesis of human and biological organi-
zation structures, where he finally investigates issues such
as why certain human settlements have more “life” in them
than others. One might think of a city’s “liveliness” in
terms of an ensemble of emergent structural properties that
result from the coevolution of built environments and
human interaction, following a logic that closely resembles
that of biological design.

It is from these bases that the literatures on shape
grammars [11], space syntax [12], and their inevitable
confluences [13] take off, building the premises of a com-
putational approach to urban form and function. ,e
marriage with the concurrently upcoming complexity sci-
ence would not only be inevitable [14, 15] but necessary, with
the urban dimension becoming one of the natural testing
grounds for fractal [16], agent-based [17], and cellular
automata modeling [18] of the emergent order properties of
multiscale systems, once again naturally coalescing into a
unified theory of urban complexity [19].

Complexity-based approaches to urban issues have since
then proliferated to practically every sphere of city life
[20, 21]: transportation systems [22], utilities and infra-
structure [23, 24], pollution [25], and crime [26], just to limit
ourselves to a few examples. ,ese approaches have allowed
the development of much deeper insights into the nature and
effects of structural interdependencies across urban envi-
ronments [27], also deriving from the unique tension be-
tween the general nonlinear effects typical of all urban
environments with local, specific factors and dynamics
[28, 29].,e rapidly increasing availability of large databases
and the big data revolution in social and urban sciences has
further boosted this tendency, leading to a new wave of
complexity-oriented urban science which is likely still in its
early phase [30], and it is consequently challenged by the
need of developing proper analytical methods for the ex-
traction of reliable behavioral information [31, 32]. ,ere is
therefore room to expect that the application of complexity
science to the modeling, analysis, and understanding of
urban systems is a long-term scientific endeavor rather than
a transitory phase and that this will have profound effects on
many dimensions of science, society, and the economy.

From a complexity science perspective, cities cannot be
simply viewed as structures in space but also as functional
systems of flows and networks [33]. In 1961, Gilbert used a
special class of networks, namely, random geometric graphs,
to model the structure of spatially embedded networks and
the effects of spatial constraints on the system [34]. ,e core
idea is to consider spatially distributed nodes representing,
for instance, geographic areas which are connected to each
other if their distance is within some spatial scale used as a
reference. ,is class of models is desirable for studying the
structure and the function of complex systems like a city,
consisting of areas connected by transportation infrastruc-
tures [35].

Nowadays, network modeling and analysis of urban
ecosystems is a widely adopted framework to cope with the
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complexity of cities and of their societies at different scales
[36]. ,e analysis of the Boston underground transportation
system through the lens of global and local efficiency in
information flows revealed that its underlying logic of
construction is, in fact, a small-world principle [37].
Complex networks have been used for geographical mod-
eling and, by means of combined cellular models of land and
behavior, it has been shown that they provide a compelling
framework for growth dynamic that is consistent with large-
scale regularities, such as fractality or power-law scaling
relations [38]. ,e analysis of the dual graph representation,
where roads and junctions are mapped into nodes and edges,
respectively, of six urban street networks characterized by
different patterns and historical roots revealed their unique
connectivity patterns with respect to nongeographic systems
[39]. Network science has been used for spatial analysis of
the topology of Singapore inferred from human-generated
data, by identifying city hubs, centers, and other elements
which are essential to characterize urban interactions. Re-
sults from longitudinal analysis suggest that Singapore is
rapidly developing towards the designed polycentric urban
form [40]. An example of network analysis in action is
shown in Figure 1.

Models and analytical tools borrowed from or inspired
by complexity science are proliferating, providing con-
vincing evidences of their application to real cities [42–46],
from humanmobility [47–50] and traffic congestion [51–55]
to energy consumption [56], air quality [57, 58], climate
[59], and health and wellbeing [60–63], as well as accessi-
bility to important facilities like hospitals [64]. ,e city is
seen as a huge complex system which grows and expands
[65, 66] and whose spatial organization [67, 68] dynamically
experiences a transition from monocentric to polycentric
[69, 70].

,e relevance of complexity modeling tools to under-
stand urban ecosystems ignited an unprecedented deluge of
open and crowdsourced information about the topology of
the city and its fundamental constituents [71, 72], as well as
about its function, directly related to the behavior of its
inhabitants inferred from the data they generate, such as
phone call detail records [47, 73–77], transactions [78–83],
GPS trajectories [49, 84–88], and geo-tagged social media
[89–101].

2.1.)eMultilayer Structure of the City. Very recently, it has
been suggested that a new level of complexity characterizes
cities. In fact, accounting for multiplexity [102, 103] of
transportation, that is, multimodality [104] (see Figure 2),
and interdependencies [105, 106], that is, structural and
functional relationships with other systems (see Figure 3),
allows, on the one hand, to gain new insights about the
functioning of a city and the complex society it hosts. On the
other hand, it allows to better understand its resilience to
targeted policies, such as infrastructural interventions, or to
random perturbations, such as unexpected failures in
transportation or energy networks, as well as catastrophic
events.

Multilayer models for transportation infrastructures
[104, 107, 108] group together connections from the same
transportation mode, assign them to a layer, and sometimes
couple layers with each other, the last one depending on
whether information about time or economic cost to move
across layers is available or not [109].

Different perspectives can be adopted. For instance, one
might assign different submodes (e.g., distinct lines of the
tube) to different layers [110, 111] or group them together
within the same layer encoding a unique means of trans-
portation [104]. ,e two approaches, applied to the back-
bone of 9 different cities in Europe, from small towns to
megacities, highlighted different vulnerabilities and pro-
vided a framework for testing improvements [112]. ,e
analysis of topological pathways across layers revealed, for
instance, that London’s public transportation is designed to
minimize redundancies [113]. ,e London underground
network exhibits patterns that are not observed in other
systems, like social networks. ,e calculation of clustering,
that is, the tendency to triadic closure, revealed mechanisms
to avoid redundant connections, with 3-mode triangles
more frequent than 2-mode triangles which, in turn, are
more frequent than single-mode triangles [114].,e analysis
of the interdependence between the street network and the
subways of London and New York City unraveled similar
mechanisms, with the underground network acting as a
decentralizing force which pushes congestion towards the
end of its lines. It has been found that uneven spatial dis-
tributions of accessibility might emerge if the speed of
subways is increased without a systemic view of the city
[115].

While transportation networks with their multiplexity
and interdependency are fundamental to enhance our un-
derstanding of the city, it is similarly of utmost importance
to include other systems, for example, sociotechnical and
ecological ones, which are in turn shaped by urban activities,
in the integrated picture required to maintain some control
on city sustainability and resilience.

2.2. )e Multilayer Dynamics of the City. Tightly related to
the modeling of the urban backbone is the analysis of its
flows. In fact, the city is a complex system consisting of
geographic areas which integrate local flows of goods and
people within the overall urban ecosystem. It is not sur-
prising that modeling and understanding both individual
and collective human mobility patterns [47, 49, 75, 116] play
an important role in our understanding of the city: the
identification and quantification of functional patterns, for
example, daily mobility motifs [117], can be used to drive the
development of transportation systems and enhance urban
infrastructures [118].

,e abundance of available urban data is already being
used to better understand one of the most important urban
problems: traffic congestion. Only recently the traditional
assumption that people follow the minimum cost path
[121] has been challenged [122], showing that routing
mechanisms accounting for the complexity of the city have
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huge potential in mitigating traffic [53], especially in hy-
pothetical smart cities [123]. Stochastic theories of urban
growth, validated on US and OECD empirical data, show
that congestion shapes cities, revealing intriguing

relationships between mobility patterns and scaling laws,
such as the dependence on population size of the total
number of miles driven daily, the total length of the road
network, the total traffic delay, the total consumption of
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Figure 1: Analysis of an urban network. ,e road network of Cambridge & Somerville (MA) as seen through the lens of network science.
Nodes represent buildings and color encodes different descriptors quantifying the relevance of each node with respect to different criteria:
(a) betweenness, (b) closeness, and (c) straightness centrality, respectively. Figure reproduced with permission from [41], all rights reserved.
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Figure 2: Multiplex urban transportation networks. Multimodal transportation network of London, consisting of three layers encoding
different types of infrastructural connections: bus, tube, and rail. Figure reproduced with permission from [107], all rights reserved.
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gasoline, the quantity of CO2 emitted, and the relation
between area and population of cities [70]. Remarkably,
those results highlight the unsustainability of cities whose
transportation infrastructure mostly relies upon traffic-
sensitive modes, despite polycentrism [70]. ,e feedback
between the urban backbone and routing systems is re-
sponsible for the emergence of congestion which tempo-
rarily degrades the functionality of the city, reminiscent of
the slower-is-faster effect [124] and of the Braess’s paradox
[125], further supporting the hypothesis that a complexity
science perspective, at the crossroads of multiple disci-
plines, is required. Despite its emergent nature, multilayer
modeling [126] and analysis [127, 128] are enhancing our
ability to anticipate congestion phenomena, at least from a
theoretical perspective.

As for structure, also urban and interurban dynamics
can be understood in terms of interdependent processes.
,is is the case, for instance, of human movements and
epidemics spreading, with integrated models proposed for
large-scale mobility [131] between cities, based on different
sources of human-generated information, from commuting
flows [132, 133] to mobile phone data [134–136] and geo-
referenced social media [137]. Similarly, mobile phone data
[138] and credit transactions [78] have been used to model
and predict human mobility within a city, showing that
predictive performances improve when information about
social patterns is accounted for [139–141]. Social multi-
plexity inferred from the intersection of popular online
platforms revealed that users connected on both platforms
tend to have more similar neighborhoods, as well as more
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Figure 3: Interdependent urban networks. Illustration of complex relationships among different subsystems and infrastructures [119].
Connectivity patterns include feedback and feedforward paths, as well as branching topologies, whose structure and dynamics are better
understood within the framework of multilayer systems [102, 103, 105, 106]. Figure reproduced with permission from [120], all rights
reserved.
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similar social and spatial properties on both platforms with
respect to users connected on just one layer [142]. Recently,
human flows with recurrent mobility patterns within the city
of Medelĺın in Colombia have been stratified by socioeco-
nomic classes characterizing the city, to unveil the geo-
graphic location of patches triggering the epidemic state at
the critical point of the process. Remarkably, those patches
depend on the social mixing between classes and mobility
[129] (see Figure 4). ,is result is extremely relevant for
policy and decision-making, which cannot overlook the
knowledge of the conditions under which such types of
critical regimes are expected [130].

,e analysis of critical properties provides the meth-
odological baseline for understanding and quantifying the
resilience of the city. ,e multiplex structure of London’s
public transportation network enhances its robustness to
random failures of single stations and of entire routes.
Analysis of the empirical distribution of check-ins and
checks-out shows that passengers travel along fastest paths
in a network affected by real disruptions, offering a basis for
data-driven policies to enhance the navigability of the city
[109]. ,e spatial constraints play a crucial role for critical
properties: in contrast to other systems which are not
embedded in space, interdependent urban networks are
rather sensitive to failures, and abrupt collapse can be driven
by any small fraction of interdependent nodes [143].

Multilayer modeling is therefore fundamental for better
understanding city resilience and its complex, interdepen-
dent structures and dynamics. Urban ecosystems are, in fact,
the result of growing networks which are interconnected and
coevolving, inducing strong correlations across layers that
can alter their response to social, economic, and environ-
mental processes [144].

3. An Integrated View of Complex
Urban Systems

3.1. )e Cognitive Challenges of Urban Complexity. As al-
ready remarked, urban environments are defying not only
from the viewpoint of the modeling of urban environments
and of their structural interdependencies but also in terms of
the challenges they pose to human cognitive systems [145].
For them to be useful, we need to integrate the insights
deriving from the analysis of urban dynamics into mental
models that enable us to represent, enact, and assess our
strategies of navigation, utilization, and governance of the
urban space. Such a feature of modeling creates a fascinating
parallel with literary fiction [146] and contributes to
explaining why narratives have always traditionally been a
key tool to conceptualize, represent, and communicate the
complexity of urban environments [147]. ,is is true not
only for urban designers and policy-makers but also for local
communities and citizens alike. ,is is why urban cognition
is a key frontier of knowledge transmission and application
of our findings from research on city complexity.

It has indeed long been recognized that humans have
intrinsic cognitive limits in processing information [148].
Given the increasing complexity of highly urbanized cities,
such limits have now become a challenge in the interaction

of citizens with the urban environment [149]. ,e concept
linking individual experiences to the increasingly complex
circumstances of urban life is that of cognitive load [150]. A
person’s brain can be overloaded when there are too many
inputs to reckon with or when sequences of inputs hit so fast
that a new input is still being processed when the new one
arrives. Under overload, individuals adapt their behavior by
changing priorities and recurring to simplifying choice
heuristics.

Redefining traditional tools such as maps to deal with the
complexity of urban environments is a key step in this
process. Recent studies on visual search strategies [151–153]
have demonstrated that the time needed to find a route in a
transportation network grows with the complexity of its
map, with a transition in search strategies from following
metro lines to the scattering of eye focus all over the map
[152]. A similar transition from directional to isotropic
random search has been observed for visual search of hidden
objects when one increases the number of distractors [151].
,e ability to manage complex “mental maps” is thus
limited, and only extensive training on spatial navigation can
push this limit with morphological changes in the hippo-
campus [154]. ,erefore, transportation network structures
may be too confusing, requiring to wade through too much
detail to figure out whether the service is useful [155]. To
measure the cognitive load associated with the visual search
of a route in transportation networks, an information
perspective has been proposed [111] to quantify the difficulty
to navigate them. Using a measure of “information search”
associated with a trip that goes from one route to another
[156], it has been possible to characterize our difficulty to
navigate in a public transit map to identify and measure the
cognitive limit. To overcome such limits, a “fractal” ap-
proach to cartography is in a sense an obvious move, but
what is less obvious is the “just in time” adaptive attitude that
it commands upon planners, interest groups, and citizens
[157].

Transferring these kind of ideas from specialists to
nonspecialists is difficult and calls for a profound revision of
individual mindsets, not to speak of mental models, and
especially so if such knowledge has to become useful and
applicable in specific problem-solving contexts [158]. ,is is
an especially burning issue in view of the deliberation
processes that support public decision-making in modern
democracies. ,e appeal to oversimplified, and outright
incorrect, solutions to complex urban challenges may be
especially tempting for politicians and policy-makers when
citizens are basically unable to grasp the subtleties of urban
policy dilemmas and their implications for their own in-
terests [159]. ,is can only be balanced by integrating such
knowledge into the practical experience and local capability
building processes of citizens [160]. But this “pedagogical”
change cannot happen without a substantial redefinition of
the professional culture of planners and urban experts of all
sorts [161].

,e ultimate sense of the challenges posed by applying a
complexity science perspective to urban systems is that a city
is a complex system emerging from the collective behavior of
individuals who are themselves complex systems. ,is
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multiscale complexity feeds back in terms of cognitive
constructs into the minds of the very individuals that make it
exist [162]. Multiscale complexity is common to all large-
scale social phenomena, from markets to States to online
communities. However, the fact that the city is the socio-
spatial context that mediates most human experiences
makes it especially sensitive and to some extent fundamental
to most other forms of social phenomena. Not incidentally,
as noted by Portugali [162], Prigogine in his Nobel lecture
indicated the city as the natural metaphor of social com-
plexity. In a sense, then, the city’s capacity of functioning as a
complex system also depends on how the mental repre-
sentations of the city, elaborated by its inhabitants, influence
their own choices and behaviors and how this in turn reflects
into certain spatial and behavioral patterns at the macro-
scale. It is therefore fundamental to think of the city in terms
of systems ecology and to develop new ecologically informed
models of sociospatial cognition that mediate between the
subjective and objective levels of urban experience. ,is is,
for instance, the intuition behind the notion of cognitive
affordances as the basis of a complexity-driven urban
epistemology: the individual and social capacity to use the
city is the result of a contextual negotiation built on previous
experience but also sensitive to local variations of the urban
codes of meaning [163]. As previous experience with
pushing buttons in various different circumstances can
guide our choice when we face a button to be possibly
pushed in a certain new, unfamiliar circumstance, indi-
viduals and communities are getting increasingly familiar
with maintaining a style of open-ended adaptive learning
[164]. ,is cognitive fluidity becomes a necessity for citizens
facing a constantly shifting and evolving urban environment
that can, often unpredictably, challenge their assumptions,
play with their perceptions, and put pressure upon their
consolidated behavioral repertoires [165]. An affordances-
based approach to urban epistemology can also be usefully
tested on the basis of experimental trials with animal

cognition, such as in the case of rats [166].,inking in terms
of affordances creates a natural setting for closing the at-
titude-action gap that is at the root of the failure of effective
collective action in urban environments [167], by repur-
posing them as “playable” spaces, both individually and
collectively [168]. It is by regaining a shared sense of col-
lective intentionality in the urban space that urban self-
organization can be both better understood and more ef-
fectively governed [169]. But this increased need of a col-
lective awareness calls for a substantial upgrading of our
ambition in enabling participative, inclusive practices in the
urban space. It is therefore necessary that these goals become
a relevant item in the urban policy agenda.

3.2. Planning and Complexity: Adaptive Urban Policy-
Making. From the point of view of planning theory, the
main takeaway of a couple of decades’ experience of dealing
with cities from a complexity-focused perspective is the
necessity of a radical redefinition of planning practices as an
interplay between institutionally driven design and urban
self-organization principles [170]. ,e stakes are high.
Planning practices are mainly justified to secure fair and
inclusive access to urban resources. At the same time, cities
may look very different when seen from different vantage
points corresponding to different levels of benefit and
privilege [171]. ,e consequent danger is that the man-
agement of urban complexity may also function as a con-
venient smokescreen to decline political responsibility and
accommodate certain vested interests at the expense of
others [172], irrespective of the declared intentions. How-
ever, to the contrary, it is also possible that seriously ac-
counting for the self-organization dimension of urban
processes into planning practices may function as an enabler
of community initiative and active participation [173]. In
essence, taking advantage of the lesson of complexity in
planning means creating the context for decentralized,
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Figure 4: Multilayer urban dynamics. (a) Empirical mobility flows among different geographic areas in the city of Cali (Colombia). Each
area is modeled as a metapopulation, that is, a node with population dynamics. (b),e city of Medelĺın (Colombia) stratified with respect to
socioeconomic classes. Each class allows to build a layer of a multilayer model of the city, where each metapopulation network encodes
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collaborative action at least as much as prescribing cen-
tralized, top-down forms of planning [174], thus laying the
premises for a reflexive approach to planning [175].

,e real issue from the planning perspective is therefore
how to empower citizens and local communities to play an
active role in this cocreative process and to be able to
conceptualize, promote, and assess collective action in the
pursuit of common interests [176] and in the exercise of
their right to the city [177]. One possible solution is
rediscovering rituals of collective pleasure in public spaces as
a foundation for a common social intentionality [178], in the
spirit of a repurposed collective action aimed at social
change along the lines of Gramscian thinking, consequently
turning the urban environment into a “playable” public
domain [179]. Many collective practices of public art in the
public domain are exploring possibilities and breaking new
ground in this direction, by engaging local communities to
take an active, propositional attitude towards urban com-
plexity in terms of shared agency and not of passive dele-
gation to planners and high-level stakeholders [180]. In this
perspective, we look with great interest at gamification-
based approaches insofar as they are intended not as do-
mesticating formats for passive engagement and manipu-
lative conditioning but rather as a smart deployment of
collective resources and talent [181, 182] and of self-
empowering behavioral change [183], which appeals to
expressive rather than to instrumental motives [184]. In this
sense, gamification has shown promise as a surprisingly
practical and flexible tool to pursue complex technical and
sociopolitical collective goals [185], due to two main char-
acteristics: its intrinsic narrative potential and appeal, which
as already remarked may effectively function in conveying
detailed contextual information in complex urban envi-
ronments [186], and its endogenous scoring metrics that,
while providing direct feedback as to the efficacy of certain
individual or collective actions, also build motivation and
engagement [187].

In this regard, the pandemic crisis and the consequent
necessity to rely upon contact tracing apps to mitigate the
spreading of the contagion can be regarded as a missed
opportunity. In countries whose local culture is character-
ized by a strong civic sense and on the emphasis on collective
responsibility and duty as well as by a mature stage of the
digital transition, such as many Far-Eastern societies
[188, 189], contract tracing apps have been massively
adopted and have functioned well despite the inevitable
concerns on privacy [190], keeping the level of contagion
and human losses remarkably low [191] if compared to that
of more individualistic societies [192] where contract tracing
has been implemented relatively late and dedicated apps
have been adopted by a minority [192]. Even in a situation of
high personal risk, reliance on responsibility and fear as
incentives to app adoption has not proven effective in
mobilizing citizens to behave prosocially, despite a gener-
alized declared willingness to download contact tracing apps
across most countries [193]. On the other hand, the apps
themselves were merely designed, following a purely
functional logic, as carriers of information and control
devices in a moment in which people felt a sudden, heavy

burden from the almost complete disruption of their pre-
vious social life. Maybe considering social incentives to
communication and exchange that were put particularly
under stress during the pandemic crisis could have been a
key to a stronger motivation to adopt the app by choosing
suitable, motivationally salient cues. For instance, people
could be shown how the probability of lifting up social
restrictions would be affected by the rate of adoption of the
app and consequently how that probability could change for
every extra thousand people adopting it, inviting them to
contribute by adopting the app themselves and convincing
their acquaintances to do the same. Or, alternatively, in
terms of appeal to responsibility, people could receive a
constantly updated estimate of the probability to be infec-
tious given their history of social contacts, so as to dis-
courage risky behavior through appeal to regret [194].

4. Outlooks

Most applications of complexity science to urban issues tend
to focus, for understandable reasons, on specific dimensions
of the urban environment. Clearly, studying the structure
and the dynamical evolution of urban utilities networks,
transportation systems, or resource flows is already more
than enough to challenge our modeling abilities. However, if
we want to fully acknowledge the implications of the pre-
vious analysis and in particular the necessity of integrating
the three dimensions of modeling, cognition, and gover-
nance, we need to look at urban environments not from a
sector-specific but from a system-wide perspective that cuts
across different sectors and dimensions of the urban fabric.
Such an integrated framework to understand cities through
data-powered tools sits at the edge between many different
disciplines such as statistical physics, social sciences, eco-
nomics, digital health and wellbeing, and engineering, to
name only a few ones. ,e state-of-the-art applications
reviewed above provide us with a promising benchmark by
characterizing urban complexity in terms of multiplex
networks and possibly point to the multiplex city as a
computationally appropriate and conceptually scalable [195]
representation of urban complexity [196], which will allow
the development and deployment of new urban governance
strategies, as well as the redesign of old ones [54].

Urban environments clearly raise specific health issues,
which are becoming of increasing relevance once we are
reminded that, according to recent estimations, up to 70% of
the world’s population will be living in urban areas by 2050
[197], and even if in the postpandemic scenario this trend
could be subject to changes in the medium-long term, cities
will inevitably keep on playing a pivotal role in future
economies and societies [198]. ,is extraordinary scale of
urbanization is affecting both the environmental impact of
human activities and the nature and scope of human health
and wellbeing issues by posing new adaptive challenges
[199]. ,e Ottawa global health milestones agreement
Charter puts the concept of the promotion of healthy
practices and lifestyles at the center of a socially and fi-
nancially sustainable approach to public health [200], where,
as formalized by the salutogenesis [215] paradigm [201], the
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focus shifts from the causes and reinforcing conditions of
diseases to those that favor and preserve health. ,e crucial
step that enables individuals to successfully adapt to the
stressful conditions of the urban environments of socio-
economically advanced societies is to enhance their capacity
to cope with such critical factors by improving resilience at
all social scales [202]. ,e urban dimension of salutogenesis
clearly becomes all the more central in the postpandemic
scenario and will likely leave a deep trace in future urban
policies [203].

Although these principles are today widely recognized,
finding viable approaches to their implementation in urban
environments is not easy task. However, a clever use of the
incentive systems connected to digital participation may
provide, as discussed above, an innovative platform to
motivate people to pursue healthy habits and lifestyles while
promoting other public interest goals at the same time. To
address this issue, it is crucial to devise data-driven solutions
for the promotion of innovative practices of urban health
and wellbeing to promote a salutogenic approach to urban
space through proactive access to, and use of, the varied mix
of wellbeing-enhancing assets in the public domain. Such
promotion may be accomplished by means of gamified
participatory practices which deeply engage people in the
active pursuit of integrated salutogenic goals [204, 205].

Strategies to encourage citizens to pursue health pro-
motion goals by actively engaging with their urban envi-
ronment include the following:

(i) Fostering inclusiveness and relationship building
instead of social stratification and segregation [206]

(ii) Promoting cultural participation by arousing curi-
osity about, and involvement with, urban cultural
heritage and poorly known landmarks [207]

(iii) Creating new opportunities to adopt healthy habits,
including increased mobility, while reducing de-
pletion of natural capital [208, 209]

To understand to what extent an integrated approach
that takes culture as a driver of urban change may become a
powerful basis for a systemic view of urban functioning and
change which invites citizens to be proactive in the pursuit of
their own quality of life and wellbeing, two aspects of special
importance are sociability and cultural experience. Socia-
bility is an issue of increasing relevance in the public health
agenda, as loneliness is now recognized as a serious public
health problem [210]. Cultural experience is increasingly
connected to health and wellbeing issues by a rapidly
growing literature [211, 212]. ,e eudaimonic [216] ap-
proach to wellbeing provides a conceptual framework
encompassing all three dimensions within the overarching
salutogenic framework, as it postulates that a harmonic
integration of different spheres of human existence best fits
human sociopsychological development [213] and promotes
health more effectively than narrower approaches [214]. In
an eudaimonic perspective, the urban environment becomes
an extremely rich and potentially stimulating playground on
multiple dimensions: as a natural context for urbanmobility,
as an elective space of sociability, and as a theater of cultural

experiences. Breathing new life into the postpandemic urban
fabric will be not only a problem of technical efficiency and
of provision of adequate services tailored to the new social
demands and needs but also an exercise of collective sense-
making. In the forthcoming scenario, it will therefore be
crucial to directly involve citizens in collective problem-
solving processes to codesign the postpandemic city, both to
build upon collective intelligence and to rebuild social co-
hesion after a long, critical period of isolation and social
alienation and as a powerful driver of widespread adoption
of prosocial practices, attitudes, and new habits without
which the cities of the future might become less and less
livable.,is is in particular true in view of the strong call that
urban life in postpandemic cities will make for widespread
citizens’ responsibility and attention to safety concerns and
public health norms compliance. Taking this forced start of a
new urban cycle as an opportunity to bring urban sociability
at the core of urban policies through the active contribution
of citizens may lead to new, emergent forms of social co-
operation whose collective benefits may be directly mea-
sured and, consequently, may further reinforce individual
and social motivations to pursue a more sustainable, co-
hesive route to urban development. It is unlikely that the
new challenges will be effectively tackled through business-
as-usual policy approaches [2], and there will be the need to
refresh what looked like the “default” conviction only one
year ago, namely, that cities are the undisputed, trend-set-
ting centers of gravity of social, economic, and cultural life.
With the increasing diffusion of remote smart working, the
choice to live in a city will be less instrumental and will have
to be motivated by the intrinsic richness of opportunity of
the urban environment as to the promotion of socially re-
warding encounters and mind-opening, stimulating expe-
riences. In the postpandemic scenario, sociability habits and
patterns in the urban space will have to be rebuilt almost
from scratch, and new demands for social connection and
meaningful interaction will inevitably arise. Likewise, the
postpandemic city will have to rethink and repurpose its
public space as a theater of collective expression and in-
spiration. We need to be ready to tackle these challenges
through a clear vision of the multilayered complexity of
urban dynamics, with a strong focus on the livability and
liveliness of urban environments. However important, these
dimensions of sense-making have beenmarginally dealt with
by complexity models and analyses. ,e time has come to
integrate them into a full-fledged approach to urban systems.
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congested travel in urban areas,” Nature Communications,
vol. 7, 2016.
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Nowadays, around half of the global population lives in urban areas. *is rate is expected to increase up to two-thirds by the year
2050. Most studies analyze urban dynamics in wide geographic ranges, focusing mainly on cities. According to them, the global
population is spatially distributed (and polarized) in two extremes: large urban agglomerations and rural deserts. However, this
remark is excessively general and imprecise. For this reason, it remains essential to analyze these dynamics at other spatial scales. A
close-up look in thinly populated regions shows how urban dynamics are also noticeable. In this paper, we analyze spatiotemporal
patterns of population distribution in a predominantly rural area by applying a local-scale approach. *ese patterns are rep-
resented by using spatial networks with nodes representing the human settlements and links showing hierarchies between nodes.
*is case study is conducted in a small municipality located in northwestern Spain. It is a predominantly rural area with a very
particular spatial pattern of population distribution.

1. Introduction

*e global population is increasingly concentrated in urban
areas. According to United Nations (UN), more than 4
billion people live nowadays in urban areas, which represent
55.2 percent of the global population [1]. *e most eye-
catching aspect related to urbanization is the continuous
growth in recent decades. In 1960, only 33.6 percent of the
global population was living in cities, 21.6 percent less than
today.*is same trend towards urbanization will continue in
the upcoming years. Recent UN projections forecast that the
rate of urban population is expected to be more than two-
thirds by 2050.

*e spatial pattern of the global population is increas-
ingly polarized. Large megalopolises with millions of in-
habitants coexist with immense empty spaces. *ese spatial
inequalities are apparent from different perspectives. Ter-
ritorially, around 50 percent of the global population is
currently concentrated in just around one percent of the
planet’s surface [2]. Over time, developing countries are
under a more strong urbanization process compared to

developed countries in the past. It favors the emergence of
overurbanization processes in these countries showing rates
of urban population considerably larger than expected for
their levels of economic development and wealth concen-
tration [3, 4].

In the past, people have mostly lived in very low-density
rural settings. In 2007, the rate of urban population at a
global scale exceeded 50 percent by showing how the major
relevance of urban dynamics is relatively recent. It is par-
ticularly notorious in the last two centuries with the
emergence of the industrial revolution. Over time, the ur-
banization process experienced by western countries was
relatively slow in line with the emergence of industrial ac-
tivities and wealth concentration in cities. In consequence,
people from rural areas migrated to cities where the most of
labor opportunities were concentrated. Nowadays, devel-
oping countries located in East Asia and Africa experience a
very rapid increase in urbanization rates [5]. Conversely, the
generalized lack of future job opportunities in rural areas
explains the massive migration to cities. *us, the pop-
ulation flows that developed countries experienced in the
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last two centuries are being replicated nowadays in devel-
oping countries, but more rapidly. It explains the expo-
nential growth rates experienced in large cities located in
developing countries without adequate infrastructures to
support their urban growth. *e emergence of pseu-
dourbanization or false-urbanization processes [6, 7] helps
to understand the majority of negative dynamics related to
these areas in terms of poverty, marginality, social depri-
vation, and increasing violence rates. At a global scale, traces
drawn by the centers of gravity related to relevant socio-
demographic indicators show this trend. In Balsa-Barreiro
et al. [8], it is observed how the global wealth is moving
towards the global East, while traces related to the increase of
population and urbanization rates are shifting to the global
South.

Cities concentrate people, goods, means of production,
and services. *ese offer great benefits due to the proximity
between labor opportunities and potential workforce, which
allow them to reduce transportation costs and to reach a
more efficient use of resources, among other benefits. Urban
regions favor a larger and more flexible labor market, where
companies find a vast reservoir of the workforce and where
workers can find a great number of employment opportu-
nities. *e proximity between both agents within urban
areas allows to increase labor productivity and to boost the
potential exchange of knowledge and ideas [9]. For these
reasons, population and wealth are likely to grow at once
within cities [10], which helps to understand why the richest
countries are urban economies [11]. However, the rela-
tionship between urban population and wealth is not strictly
linear. Dobbs and Remes [12] analyzed the quantitative
weight of the 2,600 largest global cities. *ese cities con-
centrated 38 percent of the global population, but 72 percent
of global GDP. *is study evidences the emergence of
enormous inequalities between cities and regions on a global
scale [13].

*e attractiveness of cities and rapid urbanization step
up conflicts related to aspects such as gentrification, social
segregation and polarization, pollution, and mobility. An
example related to their environmental impact is as follows:
cities account nowadays for more than 70 percent of global
greenhouse-gas emissions and city dwellers generate more
than 2 billion tons of waste per year, a rate that is expected to
increase to 3.40 billion tons by 2050 [14]. In this sense,
experts warn about the emergence of the so-called urban
diseconomies which refer to a bunch of negative externalities
derived from constrained mobility, the poor accessibility
between districts in terms of travel-times, the predatory
living costs, and/or the excessive employment competi-
tiveness in cities, among other factors [15–17].

Positive and negative externalities related to urbaniza-
tion are distributed across the territory in an unbalanced
way. Although the vast majority of the world is nonurban, it
becomes more dependent on cities than ever. Cities are
always dependent on external resources in terms of land,
water, energy, and food, among others. *ese demands
increase the pressure on agrarian and forestry lands sur-
rounding cities, overloading natural landscapes and leading
to forced changes in land uses. A well-established example is

shown in the repeated emergence of intentional wildfires in
areas surrounding many south European cities [18, 19].

In response to this, experts and policy authorities must
offer solutions according to the principles of sustainable
development, territorial convergence, and social cohesion.
*us, all people should have access to the same labor op-
portunities, irrespective of their place of origin. Strongly
encouraged by this statement, the New Urban Agenda
adopted by the UN at the Habitat III conference [20] was
exclusively focused on the power of cities as driving forces
for sustainable development at a global scale.

On this basis, a comprehensive perspective of the entire
territory beyond the cities is still lacking. One essential issue
refers to the multiscalability of urbanization processes, an
aspect that is addressed in this paper. Our objective here is to
identify urban patterns in territories that are not properly
cities by using a local-based approach. For this purpose, we
analyze the spatial variability in population flows in a small
Spanish municipality in a dataset covering an extensive time
period, starting in the late 19th century.

*e remainder of this paper is organized as follows. In
Section 2, we contextualize the study area presenting its main
geographical aspects. In Section 3, we explain the method-
ology used for mapping spatial networks. In Section 4, we
conduct a multiscale analysis of the population change in our
study area since the late 19th century. Results are shown in
charts and spatial networks depending on the spatial scale and
data aggregation. *ese results are discussed subsequently in
Section 5. Finally, we close with the conclusions of the study
where the most relevant aspects are summarized.

2. Study Area

*e study area corresponds to a small municipality located
in Galicia, in northwestern Spain (Figure 1). *e munici-
pality of Santa Comba has 9,635 inhabitants distributed in
203 square kilometers [21]. Its population density is 47.5
inhabitants per square kilometer, which is around half
compared to its region (92 inhabitants). Its main town,
named identically as the municipality, is the most populated
settlement counting 28.3 percent of the total population
(2,731 inhabitants in 2015). According to Goerlich et al.
[22, 23], it would be an eminently rural municipality,
without a single human settlement exceeding 5,000 inhab-
itants. *is accords with the methodology employed by
Eurostat, which considers eminently rural municipalities
with a population density lower than 100 inhabitants per
square kilometer [24]. On the one hand, according to Zoido
and Arroyo [25], this municipality is at the intermediate
interval between rural and urban, with a population lower
than 10,000 inhabitants.

*e region of Galicia, where the study area is located,
presents a particular spatial pattern of population distribu-
tion. Traditionally, this spatial pattern was characterized by
high fragmentation and dissemination across the entire ter-
ritory. *is region concentrates nearly 50 percent of all the
singular population entities located in Spain. In comparison,
this rate is about 10 times larger than its demographic weight
at a national level [21]. *e municipality of Santa Comba is
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located next to the so-called Atlantic Axis, the area where the
major and most thriving cities within the whole region are
located. However, despite its geographical closeness, this
municipality decreases its population over a long period
showing a similar behavior like the surrounding area located
on the west side: the so-called Costa da Morte [26, 27].

Like the entire region, the internal distribution in par-
ishes within our particular study area presents a great sig-
nificance to fully understand its territorial structure
nowadays (Figure 1). *e parish is a territorial figure with an
ecclesiastic origin and without any official administrative
competence. However, it constitutes an essential figure for
understanding social and power relationships between
people, especially in rural areas. *is figure is the key to
understand the topology and evolution of the spatial pattern
of population distribution within this region.

Within our particular study area, a total of 175 human
settlements distributed across 17 parishes were registered by
official population censuses published since the late 19th
century. Some of these settlements were eventual because
they emerged and/or faded away sporadically in just some of
the censuses.

Population data were collected for the period from 1888
to 2015. *ese data were extracted from the Nomenclator de
Población, an official census published by the Spanish Sta-
tistical Office [28]. Albeit with some exceptions, this dataset
is published every ten years.

3. Methodology

In this paper, we analyze the internal population flows in a
rural area covering an extensive time period, starting from
the late 19th century. Spatial networks are implemented for

mapping these flows.*ese spatial networks consist of nodes
and links. *e nodes represent human settlements and these
are located according to their spatial coordinates. *e links
connect the nodes according to a two-folded hierarchical
criterion: territorial dependence and total population.

*e implementation of these spatial networks is shown
graphically in Figure 2. *e most populated human settlement
of the entire municipality determines the main node, which is
shown in Figure 2(a). *is node is the central hub for a first-
order network, where this main node connects with the most
populated settlement in each parish. In total, 17 nodes and 16
links compose this first-order network, which is shown in
Figure 2(b). A second-order network is implemented for each
parish.*is network connects themost populated settlement in
each parish with all the other settlements within this same
parish. *us, a bunch of 17 individual minor networks is
implemented. *ese second-order networks are shown in
Figure 2(c). Finally, the entire spatial network results from
merging the first-order network and all the independent
second-order networks (Figure 2(d)). All the human settle-
ments officially reported since the late 19th century are in-
cluded in this comprehensive spatial network.

*e topology of the spatial network shown in Figure 2 is
adapted to one particular year, that is, in this case, 2015. *is
topology varies depending on the population data in each
census year. *us, the most populated settlement in the
whole municipality determines the topology of the first-
order network.*emost populated settlement in each parish
not only determines the topology of the different second-
order networks but also defines partially the topology of the
first-order network at its edges. Similarly, the number of
nodes depends on the total number of settlements officially
reported in one particular census year.

N N

75km 5,000m

(a) (b)

Figure 1: Location of the study area. *e municipality of Santa Comba is located in the northwestern sector of the region of Galicia, Spain.
In the box (A), the black-labeled nodes correspond to the most populated cities, whereas the indicated lines show the most important road
infrastructures. High-capacity roads are displayed in red color and railways in yellow. In box (B), the distribution in parishes within the
study area is shown. (a) Zoom A. (b) Zoom B.
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*e historical population flows among settlements
within our study area are shown in Section 4. *ere we
compare population data for the whole network in two
different years. *e size of nodes represents the population
in the most recent year.*e hierarchy of links is based on the
population data in the most recent year. *e color of nodes
refers to relative variations in the number of inhabitants
between both years. We use a simple color legend where only
three colors depict quantitative variations in the number of
inhabitants for each node. *ree additional colors are used
for mapping the emergence or demise of any settlement in a
concrete census year. In case of settlements not officially
reported for one of the census years, these are represented,
but not connected to the network. Finally, the color of nodes
designates the color of links. In the case of a link connecting

two differently colored nodes, it will show a color gradation
between edges. To gain a detailed view, we present graph-
ically this methodology in Figure 3.

4. Results

Our study area counted 9,635 inhabitants in 2015, 563 in-
habitants more than in 1888. However, this growth was not
constant over time. Data show two oppositional trends
separated by a clear turning point in 1960 when this mu-
nicipality peaked at 13,951 inhabitants (Figure 4). Since then,
this municipality had lost nearly one-third of its population.
*e reason behind this is the collapse of traditional agrarian
societies, which forced a large number of people to emigrate.
Before the 1960s, most of these people migrated to South

N

4,000m

(a)

N

4,000m

(b)

N

4,000m

(c)

N

4,000m

(d)

Figure 2: Implementation of the spatial network according to 2015 census data. (a) *e most populated settlement for the whole study area
is represented by a red node.*is node is the central hub of the whole network. (b) A first-order network is established by linking this central
hub with the most populated settlement in each parish. (c) A bunch of second-order networks is established by linking the most populated
settlement in each parish with all the settlements within this same parish. (d) *e final network results from merging the first-order and
second-order spatial networks.
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American countries and later on there was a trend towards
Central European countries. In the last decades, the majority
of new migrants decided to move to the most important
cities nearby [29].

A more comprehensive analysis of data allows us to
observe important changes in the spatial pattern of pop-
ulation distribution. Figure 5 gives a synthetic view of an
acute internal redistribution of the population at different
scales over time. *e size of boxes represents the relative
population for all the parishes and settlements. Each minor

box represents a single settlement. *e aggregation of minor
boxes with the same color refers to those which are part of
the same parish.*ree different years were considered: 1888,
1960, and 2015. 1880 and 2015 correspond to the first and the
last census years, respectively. *e 1960 census is relevant
because it is the peak and the turning point in the whole time
series. *e complete dataset for each year is organized hi-
erarchically in these treemaps. Boxes sharing color are
spatially distributed according to their areas. *e minor
boxes are located close to the bottom-right corner and the

20XX–20YY 
N

Node color

5001,0002,0002,800

Node size is according to population in the 2nd year, that is 20YY
Node size

Times series

1st year

2nd year

1st order 2 nd order

Hierarchies

Node color is according to the relative difference of population between
the 1st (20XX) and the 2nd year (20YY)

Population increases more than 5 percent

Population decreases more than 5 percent

Human settlement emerges in the most recent census year

Human settlement disappears in the most recent census year

Human settlement exists in none of both census years (but exists in any other census year)

Similar population (variation ranges between +5 and –5 percent)

3,500 m

Figure 3: Methodology for mapping population dynamics using spatial networks. *is methodology is applied in Section 4.
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Figure 4: Population in the study area between 1888 and 2015.
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Figure 5: Continued.
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major ones close to the top-left corner. *e color legend for
the same parish is kept for all the years.

*e most evident difference is the utmost importance of
the capital town, whose box is labeled. According to data, it
is the most populated node since 1940. In 1888, it was only
the ninth most populated settlement in this municipality,
with only 1.7 percent of the total population. In 2015, its
population was 28.3 percent, a relative weight 16 times
larger. In Figure 6, we represent the relative growth over
time of the capital town in comparison to the rest of the
municipality before and after 1960 and the time when the
maximum population is reached.

As we can observe, both lines tend to diverge after 1960.
*is means that the population is increasingly concentrated
in one single node: the capital town. Although this node
counted in 2015 with only 2,731 inhabitants, it can be
equated to a child-size city. *us, this capital town ag-
glomerates a relevant number of urban activities that are
proper central places such as business activities, commercial
stores, public endowments, and office services, among
others. Meanwhile, the rest of the settlements endures a
growing crisis in terms of population.

*erefore, despite this study area being predominantly
rural and thinly populated, we observe an acute internal
redistribution of population. In this way, it demonstrates
how urban dynamics result to be scale-independent,
emerging even in thinly populated regions. In our study area,
this is more evident after 1960, when the capital town only
represented 4.7 percent of the total population. Half a
century later, its population represents over six times more
(28.3 percent), showing average growth rates of around 4
percent in relative terms in the last few decades (Figure 7).

Amore comprehensive analysis for better understanding
the actual population dynamics within this municipality is
using spatial networks and fine-grained data over the whole
time series. *e following figures show a cross-census
comparison for all the settlements officially reported. *is is

done using spatial networks, where nodes represent human
settlements and links show hierarchies among nodes. *e
methodology for data mapping was previously introduced in
Section 3.

Figure 8 shows the population dynamics for the periods
running from 1888 to 1960, and from 1960 to 2015. In the
left figure, the spatial network presents a very balanced
configuration related to their nodes. Many nodes presented a
similar size and the green color was predominant. *is
means that the population was evenly distributed across the
territory, in a face of population growth numbers. In the
right figure, the main node adopts an extreme significance in
terms of size and color. *us, most of the network show
negative population dynamics, which is the exact opposite of
what is happening with the main node.

*ese same population dynamics are represented in
Figure 9 for the periods in between successive censuses,
which is around ten years for most of the cases. Among other
important aspects, we can observe a clear and progressive
variation of the predominant colors over time, shifting from
mostly green to red tones in the most recent decades.
Furthermore, some very significant modifications in the
topology of the whole network are shown. *e clearest
change emerges after 1940 when the current capital town
became the most populated node, which is located in the
center of the whole network.

5. Discussion

Geographic science analyzes the relationships among natural
and social systems by considering all their interdependences
over the territory. Although many of these relationships
were already addressed in the past, their spatial dynamics
seem to be very diverse and complex. For this reason, it is
strongly recommended to implement a multiscale approach
for checking the spatial behavior of these dynamics at dif-
ferent spatial scales. *e analytical geography proposes the

2015

STC capital town

(c)

Figure 5: Cross-census comparison between (a) 1888, (b) 1960, and (c) 2015.*e size of the complete chart for each year represents the total
population in the whole municipality. Each settlement corresponds to a minor box, whose size depends on its relative population.*e boxes
with the same color are part of the same parish.
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use of cartographic models based on networks, flows, and
graphs to measure this complexity across the territory.

In this paper, we show how dynamics only related to
urban spaces emerge also in thinly populated regions. For
years, dynamics related to urbanization were only analyzed
in large cities and metropolises. However, these dynamics
and related mechanisms do not only emerge in populated
cities, but these are also evident in predominantly rural
regions. Our study area is a good sample. In population
terms, this area is facing a very regressive trend for the last
half-century, losing nearly a third of the population.
However, it has experienced a very acute process of internal
redistribution of the population, where people have moved
from the vast majority of rural settlements to the capital
town. According to the spatial networks, the settlements
located at the edges have reduced their importance, while the
centrally located node is taking up more weight.

In broad terms, the segregation between urban and rural
spaces is increasingly reinforced over time. Spatial networks

show how this process is progressive, being the smallest
nodes the first ones to disappear. It seems to be a factor more
relevant than the geographical distance of nodes concerning
the most populated town, which only counts with 2,731
inhabitants. However, this town has the power to attract
people from the whole network, behaving like a child-size
city at a local scale.

Depopulation in rural areas is more than a purely quan-
titative process. Beyond losing population, rural areas present
increasingly weaker structures from a qualitative perspective.
*e young people of working ages are precisely the most
expelled group, while elderly people are multiplying. *is
explains why rural areas experience a progressive weakening of
their demographic structure and, in consequence, the pop-
ulation decline tends to be more severe over time.

*e use of spatial networks for mapping population
dynamics is very adequate for simplifying their complexity.
*is mapping strategy presents some advantages compared
to choropleth maps, thanks to the structure based on nodes
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Figure 6: Relative growth of the capital town (red line) in comparison to the rest of the municipality excluding the capital town (blue line)
before and after 1960.
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Figure 7: Population in the capital town (red line) and the whole municipality excluding the capital town (blue line) between 1888 and 2015.
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and links. We can represent not only fine-grained pop-
ulation data by nodes but also the changing hierarchies
between nodes by links. It is important to note that links do
not represent actual population flows in real-time, but these
can be a proxy indicator. We also must emphasize that the
spatial networks are not a closed system. Migration abroad
was a very important factor for understanding the pop-
ulation dynamics in this municipality. Many people mi-
grated to Brazil until 1960 and Central Europe afterward.
Each of these migration flows presented its particularities.
*e migration to Brazil was mainly permanent with a great
number of migrants that never returned. *e migration to
Central European countries was mainly temporary with
most of these migrants returning after some years. However,
most of them did not return to their hometowns but instead
they settled down in the capital town where many of them
opened new businesses. *eir investments contributed de-
cisively to the rapid growth of the capital town [29, 30].

Wemust carefully consider some limitations in this study.
First, our study area belongs to a region with specific par-
ticularities from a demographic perspective. On the one hand,
the spatial pattern of population distribution diverges sub-
stantially from the rest of Spain. In 2015, an average mu-
nicipality in Spain counted with 5,716 inhabitants distributed
in 7.6 settlements, whereas in Galicia it counted with 8,709
inhabitants distributed in 96.3 settlements. *erefore, an

average settlement in Spain had approximately 752 inhabi-
tants, eight times more population than one located in the
region of Galicia [28]. *e most outstanding aspect behind
this spatial pattern is the fragmentation and dissemination of
population across the region. Another relevant aspect refers to
major changes in the topology in some of the spatial networks
shown. In this study, the most significant change is visible
after 1940 with the shift from an agrarian society to the
prevailing one, dominated by an urban economy that is
mostly concentrated in the capital town. Traditional econo-
mies in this region were based on small farms for family
survival. *e familiar structure counted with many children
who were expected to contribute like major labor forces.
Spatially, this demographicmodel was traditionally based on a
balance between population and resources. In the event of any
temporary imbalance, migration abroad turned into the main
alternative for many families [31–33]. *e transition to a new
model was evident after the 1960s with the end of subsistence
farming, the attraction of industrial cities, and the subsequent
development of service-based economies. In our study area,
the number of dwellers in the main node was exponentially
increased since 1960 (+313.8 percent). *e capital town is
nowadays the most important trading center for an extensive
region beyond the administrative borders of thismunicipality.
Also, the major changes in our spatial network, after 1940,
show how the parish, a territorial figure with great relevance
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Population decreases more than 5 percent

Human settlement emerges in the 2nd census year

Human settlement disappears in the 2nd census year

Human settlement exists in none of both census years
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Figure 8: Population change from 1888 to 1960 (left figure) and from 1960 to 2015 (right figure). Node size refers to the total population in
the most recent year. Node color shows the relative variation between the first and the second year in each figure.
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Figure 9: Continued.
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in the past, had lost most of its influence due to the secu-
larization process and the decline of social power by the
Church.

Another relevant aspect is the spatial relationship be-
tween population and resources nowadays. Population de-
cline results in losing competitiveness and job positions, and
vice versa. *is creates a downward spiral for adopting
unsustainable strategies for territorial management [26, 34].
*e ever-increasing concentration of people and wealth is
leading to a distorted vision of the territory based on purely
urban perspectives. It would explain why rural areas are
increasingly under pressure, which is observed in forced
changes of land uses in rural areas surrounding cities.
According to the science of complex networks, those systems
that concentrate an excessive number of interdependencies
in a small group of nodes are more vulnerable by presenting
more probabilities to fail [35, 36].

In response, policies for sustainable development must
be encouraged to achieving a real convergence between
urban and rural territories. *is is particularly important in
the context of the COVID-19 pandemic, which might lead to
major changes in the spatial pattern of population distri-
bution. In this sense, Kotkin [37] anticipates the end of the
so-called megacities and the coming age of dispersion, with
more people willing to live in less densely populated regions.

We have adopted a local-based approach in this study to
verify the multiscalability of population dynamics. It is now

crucial to adopt the right interventions to counterbalance the
negative externalities. Small case studies like the one pre-
sented might be field trials for the actual implementation of
policies and interventions. In this way, this can be an effi-
cient way to assess the results and to optimize the costs.

In short, we have identified the presence of urban dy-
namics in areas rarely addressed in the mainstream literature
on urban studies. Somehow, this paper lays the groundwork
for future research aiming to deepen the understanding of
urban dynamics at any spatial scale. Our findings can be
extrapolated to other different regions across the world and
these may contribute to adopting the right policies for
promoting resilience in territorial management. Our find-
ings are valuable for experts such as urban planners, policy-
makers, and other competent authorities with expertise in
territorial management and spatial planning.

6. Conclusions

*e objective of this paper is to demonstrate the multiscalar
nature of certain urban dynamics. For this, we analyze
population dynamics in a thinly populated region in decline
for a long time series. Spatial networks are implemented to
compare population data between two different years. *e
results show how only one of 175 nodes increases contin-
uously its size, exactly the opposite of what occurs in the rest
of the nodes.*e process of concentration of population and
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Population decreases more than 5 percent

Human settlement emerges in the 2nd census year

Human settlement disappears in the 2nd census year

Human settlement exists in none of both census years
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Figure 9: Population change for all the intercensal periods from 1888 to 2015. *e period represented in each figure is shown in the upper
right-hand corner. Node size refers to the total population in the most recent year. Node color shows the relative variation between the first
and the second year in each figure. (a) 1888–1900, (b) 1900–1910, (c) 1910–1920, (d) 1920–1930, (e) 1930–1940, (f ) 1940–1950, (g)
1950–1960, (h) 1960–1970, (i) 1970–1981, (j) 1981–1991, (k) 1991–2000, (l) 2000–2010, and (m) 2010–2015.
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the segregation between rural and urban spaces is visually
displayed.

A recurrent downward spiral of depopulation and
economic decline threatens the sustainability of the ma-
jority of rural regions. In response, policy-makers and
experts must implement the right policies to adopt inte-
grated territorial management without overemphasizing
urban territories.
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With the advent of big data, the use of network data to characterize travel has gradually become a trend. Tencent Migration big
data can fully, dynamically, immediately, and visually record the trajectories of population migrations with location-based service
technology. Here, the daily population flow data of 346 cities during the Spring Festival travel rush in China were combined with
different travel modes to measure the spatial structure and spatial patterns of an intercity trip network of Chinese residents. ,ese
data were then used for a comprehensive depiction of the complex relationships between the population flows of cities.,e results
showed that there were obvious differences in the characteristics of urban networks from the perspective of different modes of
travel. ,e intercity flow of aviation trips showed a core-periphery structure with national hub cities as the core distribution. Trips
by train showed a core-periphery structure with cities along the national railway artery as the core. ,is gradually decreased
toward hinterland cities. Moreover, the intercity flow of highway trips indicated a spatial pattern of strong local aggregation that
matched the population scale.

1. Introduction

By highlighting social and economic factors, networks of
population flow can be developed. For example, social
network analysis is an important interdisciplinary research
method in recent years from the perspective of the rela-
tionships between the behaviors of subjects. ,e migration
and flow of populations are regarded as activities with
production factors allocated in space. ,ese factors promote
the reagglomeration and diffusion of social and economic
factors [1]. Travel has a clear origin and destination, which,
together with population flows during certain periods,
constitute a population trip network. A population trip
network relies on an urban network, with cities as the
network nodes. ,e direction and intensity of population
flows represent the relationship between the nodes. ,e
emergence of a floating population not only changes the
spatial distribution of the population but also affects the
development of the regional economy [2]. It plays an im-
portant role in accelerating the development of the urban

and rural economy, and it promotes urbanization, upgrades
the industrial structure, and optimizes the regional alloca-
tion of labor resources [3]. ,e 2016 Report of China’s
Floating Population Development estimated that China’s
floating population reached 247 million in 2015, accounting
for 18% of the total population. In addition, the direction of
Chinese population flow has changed in recent years, with
the labor force, especially migrant workers, returning from
eastern coastal cities to central and western cities, and labor-
and resource-intensive industries transferring to central and
western regions [4].

,e phenomenon of population flow around the world
cannot be ignored in the development of today’s era. ,e
flow of population between cities is represented by a
particular type of network structure [5]. Wei et al. [6]
proposed that a population flow network is a typical di-
rected-weighted geographic network. Most existing re-
search on population flow in China is concentrated around
the Spring Festival [2, 7]. However, some scholars have
analyzed the characteristics of population flow on National

Hindawi
Complexity
Volume 2021, Article ID 1283012, 19 pages
https://doi.org/10.1155/2021/1283012

mailto:panjh_nwnu@nwnu.edu.cn
https://orcid.org/0000-0002-3079-8784
https://orcid.org/0000-0003-4594-9124
https://orcid.org/0000-0001-7216-9241
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/1283012


Day and the subsequent Mid-Autumn Festival [1]. When
selecting data, most researchers have traditionally used
provincial census data and sample survey data [8–10].
However, with the rapid advancement of globalization and
information technology, static data used in traditional
research have been unable to meet the requirements for
spatial analysis. It is more difficult to explore the in-
creasingly complex relationships between cities using such
data [11, 12]. A census cannot accurately grasp the scale of
daily flow between cities and the characteristics of inflow
and outflow, nor can it obtain the routes and direction of
population migration within a relatively continuous time
interval. ,is is because it only focuses on a specific time
period, or analyzes the macro-patterns of population flow
under laws of long-term evolution. ,us, it is impossible to
analyze the increasingly complex interactions between
cities from the perspective of flow space [13, 14].

As a direct representation of intercity interconnections
and interactions, population migration has been a hot issue
for geographers [15]. Current research focuses on long-
distance intercity trip networks represented by aviation [16],
daily intercity commuting networks represented by high-
speed railways [17], and the characteristics and travel modes
of intercity trip networks based on time-dependent
microblog “check-in” data and network attention data [18].
,e traffic routes that residents rely on for intercity trips are
important tools for urban internal and external connections,
and they reflect the ability and degree of urban connections
and communication [19]. To some extent, traffic routes can
be regarded as the basic support and key link of an urban
network spatial structure. With the development of the
social economy, the “spatiotemporal compression” effect
caused by high speed travel modes, such as high speed rail
and aviation, greatly improves the mobility of residents.
Intercity trips are networked, integrated, dynamic, and
personalized, and they are time- and mode-dependent. An
intercity trip network with different time scales and modes
can reflect complex geospatial connections.

Under the effect of globalization, urban space evolves
from local space to flow space. ,e connections between
cities form a hierarchical network; the horizontal con-
nection between nodes is the point of emphasis in such a
network model. In recent years, research on urban net-
works has emerged as a new paradigm of geography.
Geographers in this field seek to identify the importance
and characteristic attributes of urban nodes and analyze the
hierarchical structure and relevance of urban networks
[20]. Some geographers believe that global cities are the
centrality for commanding and controlling global capital.
,ey used a series of network analysis indicators, such as
the degree centrality, betweenness centrality, and closeness
centrality, to reveal the importance of network nodes [20].
In studies of global city networks based on the index of
degree centrality, the centrality and power are usually
equal. Boschken [21] and Alderson and Beckfield [22]
described the positions of global cities in a network.
However, “global cities are influential only insofar as they
can influence hinterland cities [23]. Cook et al. [24] pointed
out that when focusing on economic exchange, the

dominant exchanges (with stronger power) are easier to
control and influence exchange behavior, compared to
those with a large number of potential opportunities (with
higher centrality). ,en, Zachary proposed the concepts of
recursive centrality and recursive power in 2011 [25], and
renamed them, respectively, alter-based centrality and al-
ter-based power [26]. In addition, he thought that, in world
city networks, the agglomeration of resource elements such
as labor, capital, and information into world cities and the
outward diffusion of resource elements from world cities
are all a performance of centrality. Centrality is the uni-
fication of resource aggregation and diffusion. Power
represents the influence and dominance of a city in the
process of resource circulation. ,e power of a city is
determined by the location of the network and the role it
plays. Neal [25] drew two hypothetical world city network
structure diagrams. He thought that, in comparison, the
central node of the larger network is “central, but lack of
power,” and the central node of the smaller network is
“power, but relatively lack of center.” ,rough recursion,
Neal explained that city centrality and power not only
depend on the scale of network connections but also on the
capital capacity (such as economic, cultural, and other
similar representations) of its own and related branches
[27]. ,erefore, we selected these two indicators for a
comprehensive evaluation of the status of a city in the
network.

,e objectives of this study were as follows: (1) to
evaluate the intercity trip characteristics and intensity of
three trip networks during the Spring Festival travel rush
using population flow data, to simulate the path of the
population flow process in 346 cities in China; (2) to explore
spatial differences between the three trip networks, and
reveal the complex structural characteristics of the intercity
trip network; (3) to analyze the spatial structure of Chinese
urban networks and measure the urban network hierarchy
and aggregation spatial patterns under different travel
modes; and (4) to explore the differences of urban network
characteristics under different travel modes and discuss the
rationality and necessity of spatiotemporal big data in the
study of daily population flow.

2. Related Work

A network is composed of abstract nodes and edges of
connecting nodes, and it abstractly describes the complex
and intertwined objective world [28]. Cities are not isolated
in regional space. ,ey have a complex interaction with each
other, thus forming an urban network with a specific spatial
structure and functional organization [29]. ,rough the
exchange of materials, information, finance, and population
flow among cities, the interaction and complementary ad-
vantages among cities and regions are strengthened, forming
complex networks of different scales and levels [30]. ,is
kind of network takes the city as the center and the element
of circulation as the medium. It forms a spatial structure of
nodes, axes, and domains in a certain area. Under the
background of the acceleration of globalization, the urban
system of Western developed countries gradually presents a
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trend of transformation from a hierarchical-scale model to a
network model [31]. ,is prompted scholars to change their
perspective and reexamine the new spatial structure of cities.
,e focus of their attention also changed from the urban-
hierarchical scale, spatial form, and functional evolution to
the structure and relationships of urban networks [2, 6, 32].
Castells [33] proposed the concept of a “space of flows.”
Flows, networks, and network nodes are summarized as the
basic elements of “flow space.” Among them, information
flow, population flow, and capital flow are regarded as the
flow elements, and companies, enterprises, cities, and
countries are regarded as the network nodes. Different flow
elements produce different network nodes. ,e different
attributes of network nodes affect the movement of flow
elements, as well as the patterns of the entire network. ,e
transformation of an urban hierarchical system and func-
tional division system is jointly driven by the “flow space”
and the traditional “local space.” ,e emergence of “flow
space” makes the traditional centralized place model; based
on the theory of hierarchical scale, it gradually turns to an
open, flow-based, and polycentric network model [34]. Xu
et al. [2] used network analysis to reveal the relationships
between migration data and urban development.

With the development of Internet technology and in-
telligent terminals, the collection and analysis of resident trip
data have diversified. ,e era of big data makes it possible to
obtain resident movement patterns through massive spatial
and temporal trajectories of individual granularity. Mobile
computing devices with geo-positioning can be used to track
individual spatial movements and record spatial and tem-
poral data over a long time with high precision (bus swipe-
card records, social network “check-in” data, the movement
of taxis, etc.) [35, 36]. In China, many Internet companies
provide location-based services to users, such as Baidu,
Tencent, and Sina.,e data in this study were obtained from
the Tencent Migration big data platform (https://heat.qq.
com/qianxi.php), and were downloaded using Python.,ese
data were mainly obtained by third-party users using the
positioning data provided by the Tencent location service. It
covers most users’ complete long-distance and short-dis-
tance trip behavior by taking the day as the statistical unit.
Data on children, the elderly, and those who do not use
location-based services are not available. To a certain extent,
this avoids the underestimation and virtual increase of data
caused by short-distance and long-distance trips. At the
same time, the continuous development of geographic in-
formation technology facilitates data collection, storage,
analysis, and visualization, and provides greater support for
the study of the structural characteristics of trip networks
[37, 38].

Recently, many scholars have used population trip data
regarding aviation [39, 40], railways [41], and high speed rail
[42] to summarize the spatial connections of national
passenger traffic networks. Some scholars have conducted
comparative studies of high-speed railways and airline
networks in China and revealed laws of regional spatial
organization [27]. ,ese studies have enriched the research
of different scales of urban network systems to a certain

extent. However, they focused on spatial connections and
the interaction between the cities from the perspective of a
single type of traffic flow. In terms of intercity trip networks,
researchers mainly focus on the use of long-distance travel
surveys and commuting survey data to directly reveal the
characteristics of intercity trip networks. Limtanakool et al.
[43] revealed differences in behavior and network structure
heterogeneity under different types of travel based on survey
data regarding long distance interregional travel in Europe.
De Montis et al. [44] analyzed the structural characteristics
of intercity travel (commuting) in Italy using a complex
network method. Based on the data regarding American
aviation flow, Neal [45] systematically discussed the network
characteristics of different types of aviation flow (viz.,
business flow and tourism flow) and different seasons of
aviation flow (viz., summer and winter). High precision
spatiotemporal information regarding population flow from
location-based services provides sufficient and accurate
measured flow data for studying travel and population flow.
Li et al. [32] used Baidu migration data to analyze the
population flow characteristics during the Spring Festival in
China. Wei et al. [46] analyzed the characteristics of a
Chinese urban network in the transitional period. ,ese
studies used big data to analyze individual and group be-
havior, and to reflect the spatial behavior, spatial cognition,
and connection mode behind it. Such data can be used to
reflect the decision-making of individuals and groups with
regard to their spatiotemporal behavior, and is becoming a
hot research frontier for studying travel and population flow.

3. Methods and Data Sources

We used the method of complex network analysis to identify
and analyze the structural characteristics of the Chinese
residents in an intercity trip network by using indicators
such as the dominant flow, alter-based centrality, alter-based
power, clustering coefficient, and network cluster structure
analysis.

3.1. Dominant Flow. ,e dominant flow analysis method
was first proposed by Nystuen and Dacey [47] in 1961. It is a
mature method that simplifies the analysis of an urban
network [37]. Briefly, the method involves judging the
position of a city in an urban system based on the main
factor flow from one city to another, including themaximum
dominant flow, the second dominant flow, and other higher
dominant flows [48]. In this study, we used dominant flow
analysis to recognize the status of a city at the macroscale.
,e selection of the factor flow was the population flow
intensity under different travel modes during the Spring
Festival travel rush [20].

3.2. Alter-Based Centrality and Alter-Based Power.
Tencent population migration data provide the direction
and intensity of migration in various cities within a day
under different modes of travel. Based on it, we constructed a
bidirectional matrix L� (Lij) to characterize the population
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flow over the course of one day, where Lij is the population
flow intensity from city i to city j. ,ere are 346× 346 di-
rectional weighted asymmetric matrices.
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,e population flow weight Rij between city i and city j is
calculated, and is regarded as the index for calculating the
alter-based centrality and alter-based power:

Rij �
L

T
ij + Lij

2
. (2)

When measuring the urban alter-based centrality (alter-
based power), it is necessary to consider the impact of related
cities on themeasured city. For the data, there are a number of
population flows between certain cities and satellite cities. For
example, Langfang accounts for the majority of the pop-
ulation flow associated with Beijing. As a national economic
and cultural center, Beijing has a relatively high degree of
centrality, which leads to an indirect increase on the centrality
of Langfang. Adding the dependency parameter “dij” can
correct the phenomenon that the centrality result is difficult to
describe. ,e status of the urban network and the centrality
and power results of the entire network city tend to converge.
In comparison, the status of a city with a balanced resource
relationship will increase, while the status of a satellite city will
decline significantly. ,is is more in line with the actual
development of the city [20]. ,e formula is as follows:

dij �
Rij

WDCi

, (3)

whereWDCi is the weighted degree centrality of city i. Based
on the correction, the formulas for the alter-based centrality
and alter-based power are as follows:

ACi � 􏽘
j

1 − dij􏼐 􏼑 × Rij × DCj,

APi � 􏽘
j

1 − dij􏼐 􏼑 ×
Rij

DCj

.

(4)

3.3. Clustering Coefficient. ,e clustering coefficient is used
to describe the interconnection level of nodes [28]. When
certain nodes are closely connected, they can form a network
cluster. We calculated the clustering coefficient as follows:

Ci �
2Bi

mi mi − 1( 􏼁
, (5)

where Ci is the clustering coefficient, and Bi is the number of
paths between the node and the neighboring nodes of mi.

3.4. Data Sources. ,e data in this study were obtained from
the Tencent Migration big data platform (https://heat.qq.
com/qianxi.php). Tencent is one of the largest Internet-
integrated service providers and one of the Internet enter-
prises with the largest number of service users in China. It
mainly involves social networking, communication, games,
and other aspects. ,e representative services are WeChat,
QQ, and some Tencent software. In 2018, WeChat monthly
active users reached 1.15 billion, and QQ monthly active
users reached 650 million. With the ubiquity of smart de-
vices, the number of Tencent users is increasing in China, so
these data can cover most regions and users. ,is is also a
new research direction in the study of population mobility.

Tencent location-service data is a value-added service
whereby Tencent obtains the location information of mobile
terminal users through radio communication networks or
external positioning based on the location-based service.
Users are provided with corresponding services under the
support of a geographic information system platform. To-
day, mobile phones are widely used and have a positioning
function. ,us, the user’s trajectory can be recorded. In this
way, a large amount of personal mobile information can be
collected. Tencent location data were obtained on the
premise of protecting user privacy. ,ese data were updated
every 24 hours, and covered most of the trip routes. Of
course, the data also have the disadvantage that unfinished
trips over 24 hours were disassembled.,ese data are mainly
displayed by Excel tables, including the starting place,
destination, and the number of people traveling by air, train,
and car. In order to study the spatial structure of intercity
trip networks in China, we selected 346 cities above the
prefecture level as the research objects. We used data from
346 cities regarding trips taken by air, train, and road to
represent the spatial correlation intensity of Chinese cities
from the perspective of aviation, railways, and highways.
Other geographic data were obtained from the National
Geomatics Center of China. Figure 1 shows the location of
major cities in China. Figure 2 shows the population of
prefecture-level cities in China.

,e Spring Festival travel rush is a unique social and
economic phenomenon in China during the transition
period. It mainly refers to the high pressure of various traffic
modes caused by nationwide, large-scale population mi-
gration. ,e Chinese Spring Festival travel rush is not only a
protracted, large-scale population flow, but also has a variety
of purposes (e.g., college students and migrant workers
return home to visit parents and relatives, and to sightsee).
According to an official Chinese report, the floating pop-
ulation was nearly 3 billion during the Spring Festival travel
rush in 2018, accounting for one-third of the world’s
population. Considering the representativeness of the re-
search period and comparisons with similar research, we
chose 40-day intercity trip data of Chinese residents during
the Spring Festival travel rush as the basis for building the
network. ,e analysis period was from February 1 to March
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12, 2018. Behind a large number of resident trips is the
imbalance between the population and regional economic
development. In this study, based on the daily data of
population flow during the Spring Festival travel rush in
2018 obtained by Tencent location services, we established
the trip relationship network of residents under different
travel modes. We analyzed the spatial structure differences
of Chinese urban networks under different trip modes, and
provided a new perspective for the study of urban network
structures. By studying the spatial structure of the intercity
trip network of Chinese residents through different travel
modes, the multiple spatial characteristics of population
migration, resident trips, and urban networks could be

revealed from different perspectives. ,is makes up for the
one-sided conclusions drawn from the single-trip mode in
the existing research and enriches the regional cognition of
the spatial relationship between cities in China.

4. Results

4.1. Intercity Trip Pattern of Residents. We used ArcGIS to
visualize the population flow routes and intensity under
different travel modes. Figure 1 shows how the natural
breakpoint classification method was adopted according to
railway classification standards. In order to more clearly
show the characteristics of the level of population flow, the
first-level lines were not shown in the figure. As a whole, the
population flow routes under the three travel modes all
showed a pattern of sparseness in the west and density in the
east. High population flow routes were concentrated in the
east side of the “Huhuanyong Line.” From the perspective of
the China as a whole, there were different degrees of spatial
differentiation and spatial dependence in the spatial con-
nection intensity and spatial connection mode of travel in
prefecture-level cities, and their hierarchical characteristics
interact:

(1) From the perspective of aviation flow (Figure 3(a)),
resident travel formed a “diamond” structure with
Beijing, Shanghai, Guangzhou-Shenzhen, and
Chengdu-Chongqing as the core. ,e eastern in-
terregional interweaving phenomenon was signifi-
cant. ,ere are many long-distance routes, and most
of them are connected with cities with a developed
economic foundation, such as Shanghai-Chongqing,
Chongqing-Beijing, Shanghai-Beijing, and Shenz-
hen-Shanghai. ,e population flow of these routes is
more than 1.89 million people. In addition, there are
routes associated with Xi’an, Guiyang, Wuhan, and
Nanjing carrying 9.5 million to 1.89 million people,
expanding around the “diamond” structure.
Southwest, northwest, and northeast of China have
fewer aviation routes. Most of them associate be-
tween provincial capitals and economically devel-
oped cities in the east, and the number of passengers
is fewer than 950,000. ,e three northeastern
provinces are closely connected with Beijing.,e five
provinces of Inner Mongolia, Xinjiang, Tibet,
Qinghai, and Gansu have few connecting routes with
each other. In the aviation travel network, people are
most likely to choose aviation travel when traveling
distances between 1,000 and 1,500 km (Figure 4). It
has the characteristics of long distance and short
time. ,e aviation flow clearly reflects the spatial
connection and the core-periphery combination at
the national scale, which plays a significant role in
reflecting the national urban system structure at the
macro-scale.

(2) From the perspective of railway flow (Figure 3(b)),
in addition to the more obvious “diamond
structure,” the “three horizontal and one vertical”-
shaped skeleton inside the diamond was also

Beijing
Provincial capital
Cities

0 500 1,000

Provincial boundaries
No data

N

km

Figure 1: Locations of major cities in China.

7724521–17523984
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Boundaries of prefecture-level
cities

Population

0–1081908
1081909–2226914
2226915–3628474
3628475–7724520

N
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Figure 2: Population of prefecture-level cities in China.
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relatively clear. ,e routes at all levels increased,
covering a wide range and large density. Among
the three modes of travel, the number of trips
carried by rail was the largest, accounting for 49%
of the total number of residents traveling in China.
When the trip distance was less than 1,500 km,
residents chose to travel by rail. Rail travel in-
cluded long-distance routes like Kashgar to
Shanghai, medium- and long-distance routes
centered on Beijing, Chengdu, Guiyang, and
Zhengzhou, and even short distance routes of only
8 km between Zhuhai and Macao, which is the

most flexible way for residents to travel. ,e
number of railway routes in northwestern and
northeastern China is significantly more than that
in aviation. Railway flow mainly reflects the travel
patterns of residents in the hinterland cities along
the national railway arteries, such as Beijing-
Kowloon, Lanzhou-Xinjiang, Beijing-Shanghai,
Beijing-Guangzhou, Lanzhou-Lianyungang, Bei-
jing-Harbin, and Beijing-Baotou. ,e traffic in-
frastructure plays a significant role in guiding the
spatial connections of travel, especially the “along-
the-way effect” of areas covered by high speed rail.
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25.9–61.5
61.6–128.1

Population flow (10 thousand) >128.1
No data
Provincial boundaries

N

0 500 1,000 km

(a)
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25.9–61.5
61.6–128.1
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No data
Provincial boundaries

N
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(b)

7.3–25.8
25.9–61.5
61.6–128.1

Population flow (10 thousand) >128.1
No data
Provincial boundaries

N

0 500 1,000 km

(c)

Figure 3: Routes and intensity of population flow under different travel modes: (a) aviation; (b) rail; (c) highways. ,e color of the route
represents the intensity of population flow, and the change from gray to red represents an increase in the intensity.
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(3) From the perspective of highway flow (Figure 3(c)),
the distributions of routes and people showed a
pattern of outward divergence from the regional
central cities. Because the highway is constrained by
speed and facilities, the most connected cities are
close to cities. When the distance was less than
350 km, the highway was the preferred mode of
travel. Among them, the number of routes carrying
7.32–25.78 million people was the largest, reaching
1642, while there were only 32 routes with more than
1.812 million people. In comparison, the western
route was longer, and the eastern route was shorter.
Highway flows mainly reflected the spatial depen-
dence and core-peripheral combination of travel on
the inner levels of urban agglomerations. ,is clearly
showed the development of each urban agglomer-
ation. ,e Beijing-Tianjin-Hebei urban agglomera-
tion, Yangtze River Delta, Pearl River Delta,
Chengdu-Chongqing urban agglomeration, and the
Central Plains urban agglomerations had hierar-
chical relationships. ,e hierarchical relationships of
the urban agglomerations of Harbin-Changchun,
Shandong Peninsula, Guanzhong Plain, Wuhan, and
the Beibu Gulf had already appeared, while the
remaining urban agglomerations were weak.

In order to compare the population distribution scale of
different travel modes in each city, we drew a scatter plot. In
the scatter plot, the points represent cities, the x-axis and y-

axis represent highways and railways, respectively, and the
color represents aviation (Figure 5). ,e results showed the
following characteristics of resident travel: from the per-
spective of distribution scale, Shanghai, Beijing, Guangzhou,
Chongqing, Shenzhen, and Chengdu were all in the fore-
front in the three travel modes. ,ese six cities are national
trip distribution centers. Under the three travel modes, the
cities with a low value of the distribution scale accounted for
the majority, while the number of cities in medium- and
high-value areas was small. From the perspective of trip
routes (Table 1), during the Spring Festival travel rush, the
total number of passengers carried by aviation was 395.906
million people, and the top 10 routes carried 10% of these
passengers. ,e cities connected by these routes were exactly
at the four apexes of the “diamond”-shaped structure. Trains
carried the largest number of passengers during the Spring
Festival travel rush, up to 1151.46 million people. Among the
top 10 routes, except Wuhan, which is the central point of
the internal cross-skeleton crossing the “diamond” shape,
the “diamond”-shaped structure was still in the center of the
route, but the top 10 routes only accounted for 2.6% of the
total. During the Spring Festival travel rush, 802.237 million
people chose highways as their travel mode. ,e top 10
routes exactly represented the close connections between the
core cities and sub-core cities in the three urban agglom-
erations of Beijing-Tianjin-Hebei (Beijing and Langfang),
the Yangtze River Delta (Shanghai and Suzhou), and the
Pearl River Delta (Shenzhen, Dongguan, Huizhou,
Guangzhou, and Foshan). ,e two-way routes of Xi’an and
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Xianyang of the Guanzhong urban agglomeration in the
west entered the top 10, while the population flow between
Chengdu and Chongqing of the largest urban agglomeration
in the west did not enter the top 10 in China under the three
travel modes. ,is deserves further attention.

Figure 6 shows the distribution scale and type of pop-
ulation flow under different travel modes (where the natural
breakpoint classification method is adopted according to the
railway classification standard). ,e distribution scale of a
city is the sum of the inflow and outflow population, which
represents the capacity of a city to receive tourists. From the
distribution scale, it can be seen that there were four and six
cities in the highest distribution level (>45.674 million
people) in aviation and railway, respectively. ,ere was no
city in the first level in the highway mode. In the second level
(17.187–45.674 million people), the numbers of cities in
aviation, railway, and highway were 4, 16, and 10,

respectively. In the third level (5.544–17.187 million people),
there were 21 cities under the aviation mode. Most were
distributed in the eastern region, and most of them were
provincial capitals. ,ere were 81 cities on the railway,
mainly distributed along the railway route. ,ere were 85
cities on the highway, concentrated in the eastern region and
distributed in blocks. In contrast, the spatial differentiation
of the intercity population based on aviation trips was the
most obvious. It was characterized by high polarization and
discrete point embedding, reflecting a core-periphery
structure with national hub cities as the core distribution.
,e pattern of intercity population flow based on railway
trips basically showed a core-periphery structure that used
the cities along the national railway aorta as the core, and
gradually decreased to the hinterland cities. ,e intercity
population flow based on highway travel was a spatial
pattern with strong local aggregation that matched the

Table 1: Top 10 population flow routes and populations under different travel modes.

Travel
mode Top 10 flow routes and populations (10,000 people) Proportion

Aviation

From Shanghai to Chongqing (561.97), from Chongqing to Shanghai
(561.79), from Chongqing to Beijing (531.66), from Beijing to Chongqing
(495.89), from Shenzhen to Chengdu (391.39), from Chengdu to Shenzhen
(353.64), from Shanghai to Beijing (335.05), from Beijing to Shanghai
(330.75), from Shenzhen to Shanghai (326.07), and from Guangzhou to

Shanghai (286.53).

A total of 41.7476 million people, accounting for
10.54% of the total carrying capacity.

Railway

From Shanghai to Chongqing (398.96), from Chongqing to Shanghai
(384.79), from Foshan to Guangzhou (309.32), from Guangzhou to

Foshan (307.67), from Chongqing to Beijing (296.40), from Changsha to
Beijing (296.39), from Beijing to Chongqing (260.11), from Wuhan to
Beijing (246.53), from Beijing to Shanghai (244.27), and from Chengdu to

Nanjing (238.58).

A total of 29.8301 million people, accounting for
2.60% of the total carrying capacity.

Highway

From Shenzhen to Dongguan (377.45), from Dongguan to Shenzhen
(374.35), from Shanghai to Suzhou (270.93), from Suzhou to Shanghai
(263.99), from Foshan to Guangzhou (256.25), from Guangzhou to
Foshan (250.17), from Xianyang to Xi’an (203.18), from Beijing to

Langfang (202.05), fromXi’an to Xianyang (201.19), and from Shenzhen to
Huizhou (188.14).

A total of 25.8772 million people, accounting for
3.23% of the total carrying capacity.
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Figure 5: Population distribution scale under different travel modes.
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population scale. It formed three strong aggregation regions
in space: Beijing-Tianjin-Hebei-Yangtze River Delta-Central
Plains, the Sichuan Basin, and the Pearl River Delta.

,e type of population flow was obtained by subtracting
the inflow population from the outflow population of the
city. ,e gap between the outflow population and the inflow
population was displayed, so as to judge the urban pop-
ulation flow direction. Different travel modes presented
different types of urban inflow and outflow (Figure 6). (1) In
terms of aviation travel (Figure 6(a)), there were 118 cities
with the highest population inflow, among which cities with
a net inflow of more than 300,000 include Nanjing, Tianjin,
Jinan, Nanchang, Wuhan, Hong Kong, Changchun, and
other major regional center cities, as well as Sanya, Bijie,
Guilin, Lijiang, Nyingchi, and other tourist cities. ,e cities

with the highest population outflow were Shenzhen,
Chongqing, Chengdu, Guiyang, Guangzhou, Hangzhou, etc.
Except for Xianyang, the cities with a net outflow population
of 300,000 ormore were all provincial capitals and above. On
the whole, the number of cities with net population inflow
was large, while the number of cities with net population
outflow was relatively small. (2) In terms of railway travel
(Figure 6(b)), the highest population inflow cities were only
Beijing and Nanjing. ,e higher population outflow cities,
higher population inflow cities, cities with equal inflow and
outflow, and highest population outflow cities were cross-
distributed. Among them, the highest population outflow
cities were Chongqing, Guiyang, Kunming, Shenzhen, etc.
,e higher population outflow cities and the higher pop-
ulation inflow cities had the same number. Of the 16 cities
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Higher outflow

No data
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cities

Highest outflow

554.49–1718.71
1718.72–4567.47
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N

500 1,0000 km

(a)
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Figure 6: Distribution scale and type of population flow under different travel modes: (a) aviation; (b) rail; and (c) highway. Map spots of
different colors show the different types of population flow, and the points represent the distribution scale. ,e larger the point, the stronger
the distribution capacity of the cities.
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with a net outflow population of more than 600,000, nine
cities were located in the western region. Of the 23 cities with
a net inflow population of more than 600,000, only Urumqi
and Qiannan Prefecture were western cities. (3) In terms of
highway travel (Figure 6(c)), cities with equal inflow and
outflow were mostly distributed in the northwest and
northeast regions, and the number of outflow cities was
more than that of inflow cities. ,e cities with the largest
population outflow (over 400,000) were Zhoukou,
Shaoyang, Shangrao, Ganzhou, Yichun, Yulin, Handan,
Huaihua, and Zhaotong, all of which were major labor-
export cities in central and western China. Chongqing had a
higher population inflow under the highway travel mode.
From February 1 to February 14, the number of people
entering Chongqing every day was twice that at other times.
On February 11 alone, the population of Chongqing reached
761,800 by highway, while on March 1, only 250,000 people
entered Chongqing, and the number of inflow routes was
shortened from 163 to 102. However, in terms of com-
prehensive aviation and railway, Chongqing’s output of
passengers during the Spring Festival transportation was far
more than that by highway. Indeed, Chongqing is generally a
highly populated outflow city. ,e scale of urban inflow and
outflow was different under different travel modes. ,is was
mainly determined by the city grade and location.,e inflow
and outflow of high-grade cities such as Beijing and
Shanghai were not significantly different, while those of
Qingyang and Wuwei were mostly larger than the inflow.

Figure 7 shows the intercity trip network structure under
the maximum dominant flow. From the point of view of
dominant flow routes, the maximum dominant flow routes
of aviation, railway, and highways presented a spatial dis-
tribution pattern from long to short, and from complex to
simple. ,e rhombus structure network framework sup-
ported by the cross was prominent in the dominant aviation
flow (Figure 7(a)). It undertook the function of long-dis-
tance transportation, was little influenced by the constraints
of geographical space, and had the network characteristics of
a “hyperplane.” Moreover, the maximum dominant flow of
aviation was directly associated with first-tier cities in the
different regions of China, and had the function of building
the main network framework at a national and even global
level, as the main form of framework construction of China’s
urban association pattern. ,e maximum dominant flow of
railway mostly presented a typical pole axis spatial system
pattern (Figure 7(b)). ,e railway mainly undertook the
function of medium- and long-distance transportation. At
the macro-level, it served as an important axis belt for a
national development strategy. It directly associated and
drove the element flow within large regions, and promoted
the development of cities along the line to form an economic
axis belt. On the other hand, it provided a support axis belt
that connected central cities to the core framework. ,e
maximum dominant flow of highways was a star-shaped
divergent radiation pattern (Figure 7(c)), which effectively
filled in for the whole traffic skeleton and the supporting axis
belt. ,e highway mainly undertook the function of short-
distance transportation. Due to the influence of regional
divisions caused by the administrative forces of different

provinces, highway trips were mostly limited to adminis-
trative units within provinces or nearby provinces and re-
gions. ,e “localization” feature was significant, reflecting
the internal connections of the relatively complete regional
system. ,e urban network coverage areas covered by the
three maximum dominant flows of aviation, railway, and
highways overlapped, but each had its own emphasis. ,ey
respectively depicted the network characteristics of the
national, regional, and provincial spatial scales, forming
interregional interdependence, indispensable element as-
sociation, and a spatial relationship.

From the number of cities associated with the maximum
dominant flow route, we could see that Beijing and Shanghai
were associated with 69 and 70 cities, respectively, under the
maximum dominant flow of aviation (Figure 7(a)), occu-
pying a dominant position. Shenzhen, Chengdu, and
Chongqing were respectively associated with 36, 36, and 27
cities with the maximum dominant flow, which are in the
second level. Guangzhou, Urumqi, Wuhan, Kunming,
Harbin, Xi’an, and Changsha had more than five related
cities. In the maximum dominant flow of the railway
(Figure 7(b)), Beijing and Chengdu were all associated with
21 cities of the maximum dominant flow, which was far less
than the number of cities associated with the first level of the
aviationmaximum dominant flow.,ere were 11 cities, such
asWuhan, Urumqi, Zhengzhou, and Guangzhou, with more
than 10 related cities. Chengdu ranked first in the maximum
dominant flow of highways (Figure 7(c)), which was related
to 15 cities, followed by Zhengzhou, Guangzhou, Xi’an, and
Changsha. Among the top 30 cities, except Foshan and
Dongguan, were all provincial capitals and above. In the
maximum dominant flow, the more dominant flow routes
connected by the city, the higher the dependence of that city.

4.2. Structural Characteristics of the Urban Trip Network

4.2.1. Alter-Based Centrality and Alter-Based Power. ,e
calculation results regarding the alter-based centrality (AC)
and alter-based power (AP) (Table 2) showed the following.
Beijing, Shanghai, Chongqing, Guangzhou, Shenzhen, and
Chengdu ranked in the top 10 in all three travel modes. As
far as the aviation mode was concerned, Chongqing had the
strongest centrality. Shanghai had the strongest alter-based
power, which proved that Shanghai had the largest domi-
nance and influence in the entire aviation passenger
transportation network. As far as the railway mode was
concerned, Beijing had the greatest alter-based centrality
and alter-based power. In the railway passenger network,
Beijing had an absolute advantage as a national adminis-
trative center. It not only connected many routes and had a
wide range but also had a strong influence on the routes it
connected. As far as the highway mode was concerned,
Shenzhen had the highest alter-based centrality. Its highway
transportation network was very dense, and migrant
workers from the south often traveled in Shenzhen. In
addition, Shenzhen was directly connected to Shanghai,
Chengdu, Beijing, and other cities through a number of
highway routes. It can be said that the distribution capacity
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Figure 7: Characteristics of urban-trip association based on the maximum dominant flow under different travel modes: (a) aviation; (b)
railway; (c) highway.

Table 2: Top 10 and bottom 10 cities of alter-based centrality (AC) and alter-based power (AP) under different trip modes.

Rank order Cities
Aviation

Cities
Railway

Cities
Highway

AC AP AC AP AC AP
1 Chongqing 1 0.808 Beijing 1 1 Shenzhen 1 0.932
2 Shanghai 0.938 1 Chongqing 0.941 0.481 Guangzhou 0.977 0.951
3 Beijing 0.656 0.778 Shanghai 0.801 0.559 Dongguan 0.96 0.644
4 Shenzhen 0.63 0.716 Guangzhou 0.72 0.643 Chongqing 0.812 0.891
5 Guangzhou 0.464 0.545 Shenzhen 0.645 0.564 Shanghai 0.774 0.733
6 Chengdu 0.443 0.741 Chengdu 0.633 0.564 Suzhou 0.717 0.68
7 Hangzhou 0.27 0.261 Wuhan 0.486 0.286 Beijing 0.697 0.856
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was very strong. In terms of alter-based power, Chengdu
occupied first place. In the road network, Chengdu was in
the middle of the network. ,e city served as an important
carrier of communication between the east and the west, and
occupied an important position in the highway network.

We used ArcGIS software to visualize the data (Figure 8).
Under different travel modes, city hierarchies are presented
by AC values as a pyramid. ,at is, the AC value was high
and the number of cities was small. In aviation mode, the
hierarchical structure was the most clear: the number of
high-level cities was the smallest and they were scattered,
e.g., Shanghai, Chongqing, and Shenzhen. As a high end way
of traveling, aviation has a high demand on the site cost.
Only cities with strong collection and distribution capacities
could support them, and the number was small. In highway

mode, the number of high-level cities increased significantly.
,e highway service distance was short, the number of
people traveling on highways was small, and most were
concentrated in the surrounding cities. ,erefore, the em-
bodiment of the distribution capacity was mostly connected
with the surrounding cities, and the gap between the cities
was small. In railway mode, the number of high-level cities
in terms of their AC values fell between those of highways
and aviation. Railways had a wide range of services, they
connected many cities, and the hierarchical structure of the
AC was between aviation and highways.

Figure 9 shows the AP map under different travel modes
of the Spring Festival travel. In aviation, six cities (viz.,
Shanghai, Chongqing, Beijing, Chengdu, Shenzhen, and
Guangzhou) were at the highest level. ,ey had strong
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Figure 8: Classification of alter-based centrality under different
travel modes.

Table 2: Continued.

Rank order Cities
Aviation

Cities
Railway

Cities
Highway

AC AP AC AP AC AP
8 Xi’an 0.241 0.118 Xi’an 0.441 0.273 Chengdu 0.597 1
9 Nanjing 0.203 0.163 Zhengzhou 0.329 0.261 Foshan 0.566 0.39
10 Xianyang 0.185 0.085 Hangzhou 0.324 0.209 Huizhou 0.419 0.155
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

337 Huaibei 0 0 Daxinganling 0.001 0.002 Guoluo 0.002 0.006
338 Chenzhou 0 0 Kezhou 0.001 0.004 Shannan 0.002 0.004
339 Yushuzhou 0 0 Nujiang 0.001 0.001 Yushuzhou 0.002 0.005
340 Yunfu 0 0 Hetian 0.001 0.002 Aletai 0.002 0.011
341 Shaoguan 0 0 Huangnanzhou 0.001 0.001 Qionghai 0.002 0.017
342 Hezhou 0 0 Shennongjia 0.001 0.001 Kezhou 0.002 0.013
343 Bozhou 0 0 Changdu 0.001 0 Daxinganling 0.001 0.002
344 Shennongjia 0 0 Aletai 0 0.001 Naqu 0.001 0.003
345 Guoluo 0 0 Guoluo 0 0.001 Rikaze 0.001 0.005
346 Wuzhou 0 0 Ali 0 0 Ali 0 0.002
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Highway

N

0 500 1,000 km

Figure 9: Classification of alter-based power under different travel
modes.
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control over the connected routes and surrounding cities.
On railways, the lowest-level cities were in Tibet, Qinghai,
Inner Mongolia, and Hainan. Other provinces appear with
high AP-value cities. On highways, Suzhou, Zhengzhou,
Foshan, Xi’an, Dongguan, Kunming, Nanjing, Nanning, and
Hangzhou were added to the highest level (0.287–1). As a
whole, the distribution of cities with high alter-based power
was relatively balanced. Unlike cities with a high alter-based
centrality, Yinchuan, Lanzhou, Urumqi, Xining, and other
cities were the hub nodes for population flow from west to
east, and the AP value was significantly higher than the AC
value. ,ese results confirmed that the intermediary and
distribution functions of some cities in the process of
population flow could be better reflected by alter-based
power.

When analyzing urban networks, the alter-based cen-
trality and alter-based power jointly determined the status of
a city. Generally speaking, there was a positive correlation
between the city’s AC and AP values. ,at is to say, a city
with a high AC value had a high AP value, and a city with a
strong ability to gather and spread resources had a stronger
ability to control those resources. Of course, there were
differences in some cities. Neal, by measuring the world
urban information network, divided quintessential cities
with high centrality and high power, hub cities with high
centrality and low power, and gateway cities with low
centrality and high power [22]. ,us, we could better
identify the status and attributes of cities [39]. ,e natural
breakpoint classification method was used to classify the
alter-based centrality and alter-based power of the aviation
network (Table 3), and the city type was divided based on the
matching relationship between cities at different levels. ,e
ratio of the number of cities at the first level, second level,
third level, and other levels was 5 : 8:24 : 309, and the ratio of
the number of quintessential, hub, gateway, and edge cities
was 23 : 7:7 : 309.

Using the same method to divide the urban hierarchy
structure of the railway network, the ratio of the number of
cities at the first level, second level, third level, and other
levels was 6 :16 : 63 : 261. ,e ratio of the number of quin-
tessential, hub, gateway, and edge cities was 33 : 37 :15 : 261.
Compared with aviation travel, the number of other-level
edge cities decreased significantly, and the number of
quintessential cities increased.

From the perspective of gateway cities, most second-level
cities were provincial capital cities with relatively good
geographic locations. ,ere were only eight gateway cities at
the third level. Based on the statistics of the urban hierar-
chical structure of the highway trip network, we found that
the ratio of the number of cities at the first level, second level,
third level, and other levels was 8 : 49 :118 :171. ,e ratio of
the number of quintessential, hub, gateway, and edge cities
was 73 : 80 : 22 :171. ,e number of quintessential cities and
hub cities increased significantly. ,e number of third-level
quintessential cities was the largest, and the number of
gateway cities was less. In view of the three types of trip
networks, the same city has different hierarchical structures
in different trip networks. For example, Tianjin is classified
as a quintessential city at the third level in the aviation

network; in the railway network, it is a gateway city at the
second level; and in the highway network, it is a hub city at
the second level. As a whole, the number of gateway cities
changed less. With the trip mode from aviation to railway to
highway, the number of edge cities decreased and the
number of third-level cities increased.

4.2.2. Cluster Structure of Urban Trip Network. ,e network
cluster structure refers to a complex system in which clusters
are interconnected with other clusters according to certain
rules. A network with a clustered structure features a high
average clustering coefficient. ,at is, the higher the average
clustering coefficient, the more obvious the clustered struc-
ture [3]. In this study, we used the fast-unfolding clustering
algorithm to divide the city types under different travel modes
during the China Spring Festival rush, so as to obtain small
groups with close internal connections and relatively few
regional connections. ,e principle of fast-unfolding clus-
tering is to repeatedly divide through iterative operations, so
that the overall modularity of the divided network continues
to increase until the network structure no longer changes [49].
Cluster analysis in Gephi software needs to ensure that the
value of themodularity reaches themaximum.,e greater the
modularity value, the better the cluster structure division
effect [50]. ,e statistical table for the urban cluster structure
under different travel modes during the Spring Festival rush
was obtained through calculation (Table 4). ,e number of
clusters divided under different travel modes was different.
,e number of urban clusters was the least in aviation mode,
at only seven. ,e difference in the number of cities included
in each cluster structure was also the largest. For example,
cluster 0 contained the largest number of cities, reaching 113,
while cluster 4 and cluster 6 contained only two cities. ,ere
were eight clusters divided by railway mode, and the gap in
the number of cities included in each cluster also narrowed.
,e number of clusters was the most under highway mode,
with 10 clusters, and the number of cities in each cluster was
the most balanced.

A spatial visualization of the cluster structure under
different travel modes is shown in Figure 10. ,e cluster
structure of different travel modes was obviously different,
among which the average clustering coefficient value was
represented as aviation< railway< highway. ,e cluster
structure was the most significant in highway mode, and the
aviation cluster structure was relatively weak. Under avia-
tion, it was characterized by fewer categories, discontinuous
clusters, a large spatial span, fewer geographical constraints,
and a jump distribution. ,e cluster structure under railway
mode had an aggregation state and high spatial connectivity,
but there were also discontinuous jump clusters, such as
cluster 2 (Jiangsu, Anhui, Zhejiang, Jiangxi, Chongqing, and
Guizhou). ,e cluster structure under highway mode
appeared as a block distribution. ,is was similar to the
cluster structure of the railway in general, although the
coincidence degree between the cluster boundary and the
provincial boundary was higher. In conclusion, due to the
limitation of geographical spatial effect, adjacent cities are
more likely to form a cluster. Some clusters from the
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Table 4: Statistical table of urban cluster structure and number of cities under different trip modes.

Aviation Railway Highway
Cluster type Number of cities Cluster type Number of cities Cluster type Number of cities
0 113 0 77 0 56
1 44 1 84 1 62
2 98 2 63 2 62
3 72 3 18 3 28
4 2 4 8 4 29
5 15 5 11 5 16
6 2 6 53 6 18

7 32 7 27
8 31
9 17

Table 3: City hierarchy in the aviation network.

Level Types Alter-based
centrality

Alter-based
power Cities included (and cities number)

Nationwide
level

Quintessential world
cities 0.464–1.000 0.261–1.000 Chongqing, Shanghai, Beijing, Shenzhen, Guangzhou

(5)

Regional level

Quintessential world
cities 0.203–0.463 0.118–0.260 Chengdu, Hangzhou, Nanjing (3)

Hub world cities 0.203–0.463 0–0.117 Xi’an (1)
Gateway world cities 0–0.202 0.118–0.260 Wuhan, Zhengzhou, Kunming, Guiyang (4)

Local level

Quintessential world
cities 0.056–0.202 0.034–0.117 Xianyang, Tianjin, Changsha, Wenzhou, Jinan,

Lanzhou, etc. (15)

Hub world cities 0.056–0.202 0–0.033 Changchun, Hongkong, Zhuhai, Hefei, Shijiazhuang,
Taiyuan (6)

Gateway world cities 0–0.055 0.034–0.117 Urumqi, Qingdao, Hohhot (3)

Other level Edge cities 0–0.055 0–0.033 Dalian, Foshan, Yinchuan, Guilin, Yangzhou, Ili, etc.
(309)
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Figure 10: Continued.
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highway network and aviation network were identical to the
railway network, so they showed a high degree of overlap
(red), in which the number of overlapping cities reached 16.
Eighty-five cities belong to the same cluster under any two
trafficmodes, shown in blue, and the remaining cities belong
to different clusters under the three traffic modes (Fig-
ure 11). Although similarities could be observed in the
networks representing three fundamentally different types of
interactions, the modular structure was inconsistent, which
indicated that there were strong differences in people’s
choice of travel mode [51].

5. Discussion

In the process of calculating the alter-based centrality and
alter-based power, we found that when the degree centrality
was the same, with the increase of the weighted degree
centrality, the status of city also improved [20]. For example,
Beijing, Shanghai, Guangzhou, and other cities were all
associated with high-intensity population flow, and their
alter-based centrality and alter-based power and ranks were
pushed up. ,e network status of Anqing, Qingdao, Nan-
chang, and other regional central cities improved due to
their high correlation and uniform flow distribution. When
the dependency parameter was added to equation (3), the
centrality with path dependence in a city tended to converge
[20]. For example, in the highway trip network, 71.9% of the
population flow in Xianyang was associated with Xi’an,
which caused its ranking to decrease by 60 relative to the
weighted degree centrality. ,e alter-based centrality and
alter-based power also showed a certain degree of reverse
nature. Under the same association weight, cities with more

association opportunities were more likely to be connected,
but cities with path dependence were easier to control. For
example, Lanzhou associates mostly with Tianshui, Xining,
Zhongwei, and some cities with low centrality. ,ese cities
lack communication opportunities and depended highly on
Lanzhou. ,us, the status of Lanzhou’s western gateway was
promoted. Gateway cities were often the hubs of regional
network resource allocation, and have high power over
neighboring cities, to some extent. ,is compressed the
opportunity and possibility of residents traveling in the
region, showing a monopoly of regional resource circula-
tion. ,is proved that a large number of small-scale cities
(network resources can only be exchanged through gateway
cities) had the disadvantages of lacking a path and path
dependence.

Chinese people have a strong and unique homeland
complex. In this sense, because of the Spring Festival in
China, there will be a Spring Festival travel rush in China.
,e main driving factor of population migration during the
Spring Festival travel rush is the imbalance of regional
economic development. After China’s reform and opening
up, the eastern region was given priority of development
[32, 52]. Driven by economic benefits, a large amount of
rural surplus labor began to move to the east and other
economically developed areas. In the study, we found that
the population flow routes were sparse in the west and dense
in the east, and the high population flow routes concentrated
on the east side of the “Huhuanyong Line,” which is con-
sistent with the conclusions of Wei et al. [46]. ,e economic
development of eastern China is relatively fast, with frequent
exchanges between cities, and priority given to trans-
portation infrastructure. ,e economic development of
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Figure 10: City network cluster structure in China under different travel modes: (a) aviation; (b) railway; and (c) highway.
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northwestern China is backward and construction is diffi-
cult. In view of this, the government should support and
improve northwestern transportation routes, improve the
convenience of travel, and reasonably plan and arrange the
routes. At the same time, it is also necessary to adapt to local
conditions and promote economic construction in the west
to reduce population outflow. In the analysis of alter-based
centrality and alter-based power, we know that although
Chengdu and Chongqing are in the western region, they are
ranked highly. Chongqing, in particular, is a province with a
large population output, which is consistent with the re-
search results of Lai and Pan [3], ,is phenomenon makes
the development of the urban network in this region appear
“faulty.” ,e development of surrounding cities is limited,
and resources and development opportunities are concen-
trated in Chengdu and Chongqing because of the lack of a
pivot point. In order to alleviate this phenomenon, it is
necessary to spread the functions of the cities (Chengdu and
Chongqing) to the surrounding region [46]. Population
migration brings not only economic development and re-
gional exchanges but also disease transmission, employ-
ment, and traffic pressure.,erefore, the government should
regularly detect population flows, predict their trends in the
next period, and make plans for the occurrence and pre-
vention of emergencies in advance [1]. In addition, pop-
ulation flow can reflect the development of urban
agglomerations. ,at is, the closer the connections between
cities, the better the development of urban agglomerations.
In future work, we can reduce the attention on individual
cities, and instead consider using population flow data to
measure the development of urban agglomerations and the
internal and external relations of urban agglomerations.

,is study compared and analyzed the structural char-
acteristics of intercity networks under multiple travel modes.
We improved the unilateral and attribute-oriented defects

caused by existing research relying on a single type of travel
mode. Tencent Migration data broke through the lag effect
brought by traditional statistical data and provided a new
data source for large-scale research on intercity travel by the
Chinese. Compared with other data, Tencent had more users
and higher accuracy. However, due to the generation and
acquisition of the data and the protection of personal pri-
vacy, it was impossible to obtain social attributes such as the
occupation, sex, age, and travel purposes of travelers. It was
impossible to further explore the willingness and group
effect of the population. In addition, some travel paths may
be disassembled, and the origin and destination cannot be
studied as network nodes. ,e status of a transit city was
overemphasized, the trip characteristics of users cannot be
identified completely, and the spatial characteristics of
multiple trips by residents cannot be identified. ,is will
inevitably cause errors in the research results. As a repre-
sentative period of holidays, the Spring Festival is special.
However, we cannot ignore the impact of population flow in
other periods on Chinese economic development. Pan and
Lai [1] used the same data to study the time series char-
acteristics and scale of population flow on National Day and
the subsequent Mid-Autumn Festival. It was concluded that
the performance of population flow in this period is quite
different from that in the Spring Festival travel rush. In
future work, it will be necessary to comprehensively analyze
the characteristics of Chinese population flow in combi-
nation with multiple time periods, and to clarify the dif-
ferences between other time periods and the Spring Festival
travel rush. In addition, on the basis of continuous time
series data, we will excavate the evolution process and
formation mechanism of the intercity trip network of
Chinese residents. In this study, we discussed the structure
of the population trip network based on the macro-char-
acteristics of the floating population under different travel
modes, and the spatial pattern of the urban network
structure. However, there was no fusion comparison of the
multisource data. With the rapid development of geographic
big data, it is necessary to use intelligent technology to
compare the differences in population flow under multi-
source data, and to explore more useful knowledge. ,is
study provided a new perspective for the perception of
human social activities, that is, big data, and points out a new
research idea for global scientific researchers to study human
social activity.

6. Conclusions

In this study, we used data from population migration
trajectories between cities provided by the Tencent Migra-
tion big data platform. Spatial analysis was used to explore
the characteristics of an intercity trip network of the Chinese
under different travel modes during the Spring Festival
travel rush. We determined the hierarchy of this urban
network and measured the agglomerated spatial patterns
under different travel modes with the help of two indicators:
the alter-based centrality and alter-based power. ,e main
conclusions were as follows:
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Figure 11: Similarity of cluster structure in the travel modes of
aviation, railway, and highway. ,e cell colors indicate the type of
overlap between the three cluster structures. Gray, blue, and red,
respectively, indicate that the three cluster structures completely
overlap, that two overlap, and that none overlap.
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(1) Among the three travel modes, the fewest routes
were connected by aviation (8451), followed by
highways (10,222) and railway (13,746). When a trip
involved traveling less than 350 km, travelers tended
to use highways. When trips covered distances less
than 1,500 km, railways were the most popular mode
of travel, and when the distance was 1,000–1,500 km,
aviation was the most popular. In terms of the
number of passengers, railways transport the most
people, followed by highways and aviation. Among
the maximum dominant flow, Beijing and Shanghai
played the most important role in controlling do-
mestic aviation trip connections, followed by
Chengdu and Chongqing. For railway trips, Beijing
and Chengdu occupied the absolute advantage,
whereas highways were mostly used for connections
between provincial administrative centers and the
surrounding cities.

(2) According to the indicators of alter-based centrality
and alter-based power, cities could be divided into
four types: quintessential cities, hub cities, gateway
cities, and edge cities. In the aviation city network,
the ratio of the number of cities among these four
types was 23 : 7 : 7 : 309, with the largest number of
other-level edge cities. In the railway network, the
ratio of the number of cities among these four types
was 33 : 37 :15 : 261. ,e number of other-level edge
cities decreased significantly, and the number of
quintessential cities increased significantly. ,e
number of quintessential cities at the local level was
the largest under the highway mode of travel. ,e
number of hub cities was 80, with a similar number
of gateway cities.

(3) During the Spring Festival travel rush, the number of
urban clusters under different travel modes was
different. Aviation, railway, and highway trips are
clustered into 7, 8, and 10 urban clusters in sequence.
In the space display, there were fewer categories,
discontinuous clusters, fewer geographical con-
straints, and jump distributions in the aviation travel
mode. ,e cluster structure in the railway travel
mode had an aggregation state and high spatial
connectivity. ,e cluster structure under the high-
way travel mode appeared as a block distribution,
and the coincidence degree between the cluster
boundary and the provincial boundary was higher.

(4) ,ere were differences in the characteristics of the
urban network from the perspective of the different
modes of travel. Intercity population flow based on
aviation trips was highly polarized with discrete
point embedding, reflecting a core-periphery
structure with nationwide-level hub cities as the core
distribution. ,e intercity population flow based on
railway trips had a core-periphery structure that took
cities along the national railway artery as the core
and gradually decreased to the hinterland cities. ,e

intercity population flow based on highway trips had
a spatial pattern of strong local aggregation that
matched with the population scale.
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