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Advanced sensor technologies in geospatial sciences and
engineering research have contributed to (1) geographic
mapping and (2) understanding the geological, ecological,
hydrological, and environmental characteristics of Earth sur-
faces. Various studies on recent advances in sensor technol-
ogy in geospatial sciences and engineering have been found
in several special issues. In this special issue, a total of 19 orig-
inal research articles addressing the advanced sensor technol-
ogies in the geospatial sciences and engineering have been
published. The papers published in this special issue can be
summarized as follows:

R. Han et al. in their paper entitled “Advantage of Com-
bining OBIA and Classifier Ensemble Method for Very High-
Resolution Satellite Imagery Classification” tested the feasi-
bility of GF-1 and GF-2 very high-resolution imagery in
urban land use and land cover classification using the ran-
dom forest ensemble classifier with the object-based image
analysis (OBIA) method.

Y. Shi et al. in their paper entitled “On Time-Series
InSAR by SA-SVR Algorithm: Prediction and Analysis of
Mining Subsidence” integrated the small baseline subset
SAR interferometry (SBAS-InSAR) method into the simu-
lated annealing support vector regression (SA-SVR) algo-
rithm for mining subsidence prediction.

Y. Song et al. in their paper entitled “Hybrid PSO and
Evolutionary Game Theory Protocol for Clustering and
Routing in Wireless Sensor Network” proposed an efficient

method to optimize the selection and formation of clusters
at the initial stage by using an improved protocol.

W. Zhu et al. in their paper entitled “Spatiotemporal
Characterization of Land Subsidence in Guandu (China)
Revealed by Multisensor InSAR Observations” investigated
the time-series two-dimensional ground deformation in
Guandu using the multisensor InSAR observation.

Y. O. Ouma et al. in their paper entitled “Modelling Res-
ervoir Chlorophyll-a, TSS, and Turbidity Using Sentinel-2A
MSI and Landsat-8 OLI Satellite Sensors with Empirical Mul-
tivariate Regression” demonstrated the effectiveness of Senti-
nel-2A/MSI (S2A) and Landsat-8/OLI (L8) satellite sensors
for the estimation of Chl-a, turbidity, and TSS water quality
parameters in a large reservoir (case 2 water body).

D. Ahn et al. in their paper entitled “Integrating Image
and Network-Based Topological Data through Spatial Data
Fusion for Indoor Location-Based Services” proposed a
methodology for the data fusion of image and network-
based topological data without undertaking data conversion,
using a separate data model, or reference data.

M. Seo et al. in their paper entitled “Characteristics of the
Reanalysis and Satellite-Based Surface Net Radiation Data in
the Arctic” assessed the net radiation products over the Arc-
tic using validation and intercomparison analyses.

D. G. Lee et al. in their paper entitled “Land Cover Clas-
sification Using SegNet with Slope, Aspect, and Multidirec-
tional Shaded Relief Images Derived from Digital Surface
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Model” proposed an efficient way to classify terrain features
using a convolutional neural network- (CNN-) based SegNet
model by utilizing 3D geospatial data including infrared (IR)
orthoimages, digital surface model (DSM), and derived
information.

W. Zhu et al. in their paper entitled “Pre- and Postcol-
lapse Ground Deformation Revealed by SAR Interferometry:
A Case Study of Foshan (China) Ground Collapse” investi-
gated the ground deformation in the vicinity of the collapsed
sinkhole in the Foshan collapse event using multitemporal
SAR interferometry. A total of 55 C-band Sentinel-1A images
were used for the study.

S. Lee and T. Kim in their paper entitled “Search Space
Reduction for Determination of Earthquake Source Parame-
ters Using PCA and k-Means Clustering” presented a new
search space reduction algorithm based on machine learning
techniques to determine the earthquake source parameters.

L. Fan et al. in their paper entitled “Adaptive Magnetic
Anomaly Detection Method with Ensemble Empirical Mode
Decomposition and Minimum Entropy Feature” proposed
an adaptive method of magnetic anomaly detection (MAD)
with ensemble empirical mode decomposition andminimum
entropy (EEMD-ME) feature to improve the detection per-
formance in the case of low SNR and the complex magnetic
environment.

A. Chang et al. in their paper entitled “Measurement of
Cotton Canopy Temperature Using Radiometric Thermal
Sensor Mounted on the Unmanned Aerial Vehicle (UAV)”
developed a UAV-based thermal system using a quadcopter
platform and a radiometric thermal sensor.

F. Cui et al. in their paper entitled “Prediction Model of
Thermal Thawing Sensibility and Thaw Depth for Perma-
frost Embankment along the Qinghai-Tibet Engineering
Corridor Using MODIS Data” developed prediction models
of permafrost thermal thawing sensibility and thaw depth
by incorporating the MODIS and in situ soil temperature
observation data to reveal the distribution law of perma-
frost thermal thawing sensibility and thaw depth caused
by road construction in Qinghai-Tibet engineering corridor
(QTEC).

A. R. Claridades and J. Lee in their paper entitled “Devel-
oping a Data Model of Indoor Points of Interest to Support
Location-Based Services” proposed a spatial-temporal
Indoor POI data model to provide direction for the establish-
ment of indoor POI data and to address limitations in cur-
rently available data specifications.

S. Lee et al. in their paper entitled “Priority Analysis of
Remote Sensing and Geospatial Information Techniques to
Water-Related Disaster Damage Reduction for Inter-Korean
Cooperation” identified remote sensing and GIS techniques
that could be useful in reducing the damage caused by
water-related disasters while considering inter-Korean rela-
tions and the disasters that occur in Democratic People's
Republic of Korea.

J. Ning et al. in their paper entitled “An Improved Full-
Aperture ScanSAR Imaging Method Integrating the MIAA
Based Aperture Interpolation” proposed an improved algo-
rithm based on the missing-data iterative adaptive approach
(MIAA) effectively to suppress the spikes, which adversely

affect the ScanSAR-related applications, such as target detec-
tion and interferometry.

P. Liu et al. in their paper entitled “RS and GIS Supported
Urban LULC and UHI Change Simulation and Assessment”
designed a remote sensing-based framework that investigates
and analyzes how the land use and land cover changes
(LULCC) in the process of urbanization affected the thermal
environment.

X. Wang and X. Wang in their paper entitled “Spatiotem-
poral Fusion of Remote Sensing Image Based on Deep Learn-
ing” proposed a residual convolution neural network to
improve the accuracy of spatiotemporal fusion.

X. Zhu et al. in their paper entitled “Regional Patch
Detection of Road Traffic Network” proposed a regional
patch detection (RPD) analysis for the road traffic network
(RTN) structure.
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Accurate and timely collection of urban land use and land cover information is crucial for many aspects of urban development and
environment protection. Very high-resolution (VHR) remote sensing images have made it possible to detect and distinguish
detailed information on the ground. While abundant texture information and limited spectral channels of VHR images will lead
to the increase of intraclass variance and the decrease of the interclass variance. Substantial studies on pixel-based classification
algorithms revealed that there were some limitations on land cover information extraction with VHR remote sensing imagery
when applying the conventional pixel-based classifiers. Aiming at evaluating the advantages of classifier ensemble strategies and
object-based image analysis (OBIA) method for VHR satellite data classification under complex urban area, we present an
approach-integrated multiscale segmentation OBIA and a mature classifier ensemble method named random forest. The
framework was tested on Chinese GaoFen-1 (GF-1), and GF-2 VHR remotely sensed data over the central business district
(CBD) of Zhengzhou metropolitan. Process flow of the proposed framework including data fusion, multiscale image
segmentation, best optimal segmentation scale evaluation, multivariance texture feature extraction, random forest ensemble
learning classifier construction, accuracy assessment, and time consumption. Advantages of the proposed framework were
compared and discussed with several mature state-of-art machine learning algorithms such as the k-nearest neighbor (KNN),
support vector machine (SVM), and decision tree classifier (DTC). Experimental results showed that the OA of the proposed
method is up to 99.29% and 98.98% for the GF-1 dataset and GF-2 dataset, respectively. And the OA is increased by 26.89%,
11.79%, 11.89%, and 4.26% compared with the traditional machine learning algorithms such as the decision tree classifier
(DTC), support vector machine (SVM), k-nearest neighbor (KNN), and random forest (RF) on the test of the GF-1 dataset; OA
increased by 32.31%, 13.48%, 9.77%, and 7.72% for the GF-2 dataset. In terms of time consuming, by rough statistic, OBIA-RF
spends 223.55 s, SVM spends 403.57 s, KNN spends 86.93 s, and DT spends 0.61 s on average of the GF-1 and GF-2 datasets.
Taking the account classification accuracy and running time, the proposed method has good ability of generalization and
robustness for complex urban surface classification with high-resolution remotely sensed data.

1. Introduction

The classification accuracy of remotely sensed data and its
sensitivity to classification algorithms have a critical impor-
tance for the geospatial community, as classified images pro-
vide the base layers for many applications and models [1].

Recent availability of submeter resolution imagery from
advanced satellite sensors, such asWorldView-3 and Chinese
GaoFen series, can provide new opportunities for detailed
urban land cover mapping at the object level [2]. Applica-
tions such as environmental monitoring, natural resource
management, and change detection require more accurate,
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detailed, and constantly updated land cover-type mapping
[3]. Detailed urban land cover information is not only essential
for understanding the urban environment changes and moni-
toring and managing the urban ecological environment but
also for supporting the government to make a decision on
urban expansion, urban planning, and management [4–6]. In
the last few decades, it has become an effective and convenient
mean to obtain this information from remotely sensed
imagery, because of its unique advantages of frequent and wide
coverage, by machine learning classification technology [7].

Most of land use and land cover classification research
are traditionally based on low- and medium-resolution
remotely sensed imagery, such as MODIS [6, 8, 9], Landsat
[10–12], and SPOT1/4 [13]. However, urban surface
coverage presents high-frequency heterogeneity, resulting in
a large number of mixed pixels in medium- and low-
resolution images. With the rapid development of sensor
technology, a large number of high-resolution remotely
sensed imagery (IKONOS, Quickbird, GeoEye-1, World-
View-1-4, GF-1/2, etc.) in meters or submeters are becoming
more and more popular [14]. With the characteristics of high
definition and abundant spatial information, high-resolution
satellite image can compensate the shortcomings of mixing
pixels in low- and medium-resolution images in urban land
cover classification [15, 16]. And high spatial resolution
images, where spatial resolution is equal or a little equal to
4 meters, could make it possible to map complex urban
surface. A major challenge in using high spatial resolution
for detailed urban mapping comes from the high level of
intraclass spectral variability, such as building roof and road,
and low level of interclass spectral variability, such as water
body and shadow. In this condition, traditional pixel-based
classification algorithms such as the maximum likelihood
classification (MLC) can easily make missclass error and
generate the salt-and-pepper effect which may reduce classi-
fication accuracy for very high-resolution imagery.

There are currently various classification algorithms, each
with its own advantages and limitations [17]. And that, com-
mon mature statistical-based machine learning algorithms,
such as MLC, requires hypothesis that training data follows a
normal distribution, but high-resolution images cannot meet
this requirement. Many previous studies revealed a bunch of
machine learning algorithms such as support vector machines
(SVM) [1], artificial neural networks (ANN) [18], and
decision tree [19] have been popular for land cover classifica-
tion. These classifiers always have limitations in practical
applications in areas such as volatile and complex urban area,
due to the enhanced complex of spatial relationship between
pixels and the complex earth’s surface phenomenon [21, 22].
Recently, ensemble methods have been introduced to integrate
multiple single classifiers to improve classification perfor-
mances. The combination of multisource remote sensing and
geographic data is believed to offer improved accuracies in
land cover classification [23]. In general, there are two steps
to build the ensemble, namely, generating base learners and
combining base learners. In order to obtain a good ensemble,
the base learner should be as accurate as possible and as
diverse as possible. Due to its high potential and superior
performance, ensemble methods have been employed in a

remote sensing community. Existing theoretical and empirical
studies have reported that ensemble classifiers can obtain
more accuracy prediction and outperform individual classi-
fiers [3, 17, 23–25]. The random forest (RF) classifier, as one
of the more popular ensemble learning algorithms in recent
years, is composed of multiple decision trees in that each tree
is trained using bootstrap sampling and employing the major-
ity vote for the final prediction [26, 27]. It has received increas-
ing attention due to its excellent classification result, the ability
to avoid overfitting, and the rapid speed to process [28–31].

In order to overcome limitations of pixel-based classifica-
tion, object-based image analysis (OBIA) or geospatial object-
based image analysis (GEOBIA) has been introduced to
improve the quality of information extraction from high-
resolution imagery. Image segmentation is a critical and
important step in (geographic) object-based image analysis
(GEOBIA or OBIA). The final feature extraction and classifi-
cation in OBIA are highly dependent on the quality of image
segmentation [32]. There are two main steps, containing
segmentation and classification in OBIA. The processed object
of OBIA is not a pixel, but an object composed of multiple
adjacent homogenous pixels through segmentation, which
containing not only the spectral information but also the
textual and contextual information from imagery [32, 33].
Due to its advantages, OBIA has been more popular in the
remote sensing community and successfully applied in land
cover classification [34–36]. Many previous studies have
showed that the OBIA method had outperformed the pixel-
based classification [32, 37–40]. However, the number of input
features used for classification has grown exponentially, some
of which are irrelevant and redundant features, affecting the
performance of the classifier, especially, when the purpose of
segmentation has been changed from helping pixel labeling
to object identification at present era [32].

In this paper, we verify the ability of GF-1 and GF-2 very
high-resolution imagery in urban land use and land cover
classification. For this purpose, we combined the random
forest ensemble classifier with the OBIA method. We test
the method on two selected complex urban areas of a
metropolis city. And the proposed strategy was also com-
pared with the pixel-based random forest and the state-of-
art mature machine learning algorithm including the SVM,
KNN, and DT classifiers from classification accuracy and
operational efficiency aspects.

The rest of this paper is organized as follows: a brief
introduction about the study area and dataset and prepro-
cessing are given in Section 2. The framework and details of
the proposed methodology strategy based on object-
oriented analysis and random forest are drawn in Section 3.
The results and discussion are shown in Section 4. Finally,
the conclusions are drawn in Section 5.

2. Study Area and Data Preprocess

The study site is a central business district (CBD) of Zheng-
dong new district which is located in the eastern part of
Zhengzhou city, capital of Henan province, and is a new
urban area invested and developed by Zhengzhou Municipal
Committee, municipal government in accordance with the
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State Council approved the City of Zhengzhou city master
plan in order to implement the megacity framework, expand
the size of the city, and accelerate urbanization and urban
modernization strategy. Based on the National Economic
and Technological Development Zone, the original area of
CBD is about 25 km2, west from 107 national road, east to
Jingzhu Expressway, south to the airport highway, north to
Lianhuo Expressway, and the long-term planning area of
CBD is about 150 km2. The study area is focused on Ruyihu,
the center of CBD (see Figure 1), which is surrounded by
three landmarks of the CBD-Zhengzhou International
Convention and Exhibition Center, Henan Arts Center,
Zhengzhou Convention and Exhibition Hotel. The land
surface is dominated by human-made material, which is a
challenging task to identify different land use and land cover
types. According to the planning and construction situation,
the types of surface cover are mainly divided into the urban
building areas (UB), urban commercial area (UC), urban
green areas (UG), urban road areas (UR), urban water area
(UW), and high building shadow (HS) (see Table 1). Data
availability statement stated that the very high-resolution
remotely sensed data used in this research is provided by
Henan Data and Application Center of the High Resolution
Earth Observation System through signing a contract with
National Defense Science and Technology Bureau of Henan.

Unfortunately, we do not have the priority to share the
high-resolution satellite remote sensed data. Anyway, we
can share our code used in this research. Researchers can
test algorithms using these codes with their own datasets
and repeat experiments to obtain similar research conclu-
sions. Researchers who are interested in this code can
download it from hyperlink https://pan. http://baidu.com/
s/19nXD7oHwq0FnpZJ7T6p5HQ, using password 6xae,
or contact with the corresponding author to obtain source
data to conduct secondary analysis.

2.1. Remote Sensing Data and Preprocessing. Under the
background of “Chinese high-resolution earth observation”
major project, a series of high-resolution satellites have been
launched, involving GF-1 (2m res. panchromatic cam-
era/8m res., multispectral camera/16m res., and wide-angle
multispectral camera), GF-2 (1m res., panchromatic cam-
era/4m res., and multispectral camera), GF-3 (1m res., C-
band synthetic aptitude radar), GF-4 (50m res., fixed-point
camera in geostationary orbit), GF-5 (VNIR hyperspectral
camera), GF-6 (2m res., wide-angle multispectral camera),
and GF-7 (stereographic cartography cameras). GF-1 satellite
is the first low earth orbit remote sensing satellite of China’s
high-resolution earth observation system, which breaks
through the key technologies of optical remote sensing for

Henan

N

China

Kilometers

0 5 10 20 30 40

Ruyihu of CBD

Figure 1: The study area location and corresponding GF-2 imagery.

Table 1: The classification scheme of land cover in the study area.

Category Symbols Description

Urban building areas (UB) 1 Residential area, campus, low density building

Urban commercial areas (UC) 2 Commercial area, high density building

Urban green areas (UG) 3 Grassland, tree group, oasis in the lake, artificial grass

Urban road areas (UR) 4 Cement and asphalt pavement

Urban water area (UW) 5 River, lake

High building shadow (HS) 6 Shadow of high buildings
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high spatial resolution and multispectral and wide coverage. It
can meet the needs of research data support in the fields of
resources and environment, precision agriculture, and disaster
measurement, which has become an important means of
information services and other aspects. It is of great strategic
significance to improve the level of satellite engineering in
China and the self-sufficiency rate of high-resolution data.

The selected remotely sensed data is GF-1 and GF-2 very
high-resolution satellite images, which was acquired on July
14, 2015 and July 30, 2015, respectively. The specific param-
eters are shown in Table 2.

The preprocess of selected dataset includes radiation
calibration, atmospheric correction, geometric registration,
orthorectification, image fusion (NNDiffuse pan-sharpening
algorithm), and image resize. Radiation calibration is the
process of converting DN values of image data into apparent
reflectivity using atmospheric correction techniques. Equa-
tion (1) can be used to convert the channel observation DN
value to equivalent brightness value.

Lε λεð Þ = Gain ∗DN + Bias, ð1Þ

where Gain is the calibration slope, DN is satellite
observation value, Bias is calibration intercept, and these
parameters can be obtained from meta file with satellite data.
Then, the apparent reflectivity can be calculated based on the
brightness value using

ρ = πLλd
2

ESUNλ cos θ
, ð2Þ

where ESUN is solar spectral radiation, d is solar-earth
distance, and cos θ is the zenith angle of sun.

The selected atmospheric correction is based on a 6S
radiative transfer model, which is a package included in Pixel
Information Export (http://www.piesat.cn/en/index.html).
The purpose of atmospheric correction is to eliminate the
absorption and dispersion from the sun and target.

Geometric correction includes image registration and
orthorectification. The purpose of geometric correction is to
correct image deformation caused by system and nonsystemic
factors. In this research, the image-to-image registration
method was selected to correct multispectral data based on
panchromatic data of GF-1 and GF-2 sensors, respectively.

Orthorectification is the process of correcting image
space and geometric distortion to generate a multicenter pro-
jection plane orthographic image. In addition to correcting
geometric distortions caused by general system factors, it
can also eliminate geometric distortion caused by terrain.

Image fusion is the process of generating new images
under the prescribed geographical coordinate system accord-
ing to a certain algorithm. This study combines multispectral
data with high spatial resolution and single-band images with
high spatial resolution, making the fused images have both
high spatial resolution and rich spectral resolution.

3. Methodology

The proposed methodology in this research (shown in
Figure 2) includes three main stages: (1) multiscale segmen-
tation and multifeature extraction; (2) construction of the
state-of-art machine learning algorithms such as decision

Table 2: Sensor parameters of GF-1 and GF-2 satellites.

Parameters PAN/multispectral

GF1 GF2

Satellite

Orbit type Sun synchronization Sun synchronization

Orbit altitude 646 km 631 km

Repeat time 41 days 69 days

Spectral range

Panchromatic 0.45–0.90 μm 0.45–0.90 μm

Multispectral

Blue 0.45–0.52 μm 0.45–0.52 μm

Green 0.52–0.59 μm 0.52–0.59 μm

Red 0.63–0.69 μm 0.63–0.69 μm

NIR 0.77–0.89 μm 0.77–0.89 μm

Spatial resolution
Panchromatic 2m 1m

Multispectral 8m 4m

Width 60 km 45 km

Receive time 2015-07-14 2015-7-3

Orbit ID 11937 5113

Product type Standard Standard

Product level Level 1A Level 1A

(Path, row) (3, 97) (3,152)

(Width, height) (4548, 4544), (18192, 18164) (29200, 27620)

Cloud 0% 5%

Solar(azimuth, zenith) (141.278, 73.7496) (134.537, 21.6698)

Satellite(azimuth, zenith) (297.354, 88.3146) (283.342, 83.754)
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tree classifier (DTC), random forest (RF), support vector
machine (SVM), k-nearest neighbor (KNN), and object-
based image analysis random forest (OBIA-RF); and (3)
accuracy assessment and comparison analysis and discus-
sion; more details can be found in Figure 2.

3.1. Multiscale Segmentation and Feature Extraction. Very
high-resolution (VHR) remote sensing images have a limita-
tion in spectral information which means there are 4 spectral
bands including green, blue, red, and near infrared in general.
While the VHR remote sensing images are always rich in
detailed characters, more specific details of land surface will
be presented on the images. In order to overcome this short-
coming, we conquer the disadvantage and make full use of

advantages of these data. After data preprocessing, we
performed multiscale segmentation and employed feature
extraction based on the segmented results to obtain multifea-
ture image sets as inputs of image classification models.

Quality of segmentation has a direct effect on the perfor-
mance of classification, which is related to the segmentation
parameters selected by an analyst. Most of the segmentation
algorithms are regarded as a subjective task with the trial-
and-error strategy. The multiscale segmentation algorithm,
the most popular method currently, employed in this exper-
iment is merging pixels of the original image into small object
patches from bottom to top, and then merging the small
patches into large patches to complete the merging of the
regional objects [41–43]. Three major parameters for the

GF-1 satellite image GF-2 satellite image Labeled samples

Preprocessing

Radiaiton calibration Image fusion Orthorectification

Multiscale
segmentation Texture features Spatial features Spectral features

K-nearest
neighbor

Pixel-based Pixel-based Pixel-based Pixel-based

Support vector
machine

Desicion tree
method

Random forest
method

Object-based Object-based Object-based Object-based

Comparison and analysis

Figure 2: Framework of urban land cover classification using GF-1 and GF-2 remotely sensed data.
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multiscale segmentation algorithm are scale, shape, and
compactness, defining within-object homogeneity. Here, we
select the appropriate scale parameters and heterogeneity
standard specifications to ensure the highest homogeneity
within the generated object and the heterogeneity between
adjacent objects and other objects. Scale parameter is consid-
ered the most effective parameter affecting the segmentation
quality [44–46]. In this study, shape parameter was set as 0.1.
The optimal segmentation scale parameter of GF-1 image is
quantitatively evaluated by ESP-2 (estimation of scale
parameter), of which the principle is to select the optimal
scales based on the rate of change (ROC) curve for the local
variance (LV)of object heterogeneity at a corresponding scale
[44, 47]. Peaks value of ROC-LV curves were considered the
most appropriate segmentation scales at which the image can
be segmented in the most optimal levels. Methodology model
of ROC can be described as

ROC = LVL − LVL−1
LVL−1

× 100, ð3Þ

where LVL is mean standard deviation of the object in the
L layer and LVL−1 is mean standard deviation in the next
lower layer. When ROC was obtained, the optimal segmenta-
tion scale parameter is selected by visually interpreting based
on segmentation result and the boundary matching effect of
the actual feature [47].

On the basis of the best segmentation result, a total of 24
spectral features, texture features, and spatial geometric fea-
tures were extracted. The extracted spectral, textural, and
spatial features from segmented VHR remotely sensed data
can be summarized as shown in Table 3.

In detail, the selected spectral features are mean value of
all four bands (which means average value of all image
objects). The brightness feature is that the sum of the average
values of the layers containing spectral information divided
by the number of layers of the image object, which can be
calculated by

B = 1
Nband

〠
n

i=1
Ci, ð4Þ

where B is the brightness value of the object, Nband is the
total number of bands contained in the object, and Ci is the
average gray value of the object.

In the high-resolution image, since the reflectivity of the
water body in the near-infrared band is significantly lower
than that of other ground objects, the shadows are very
similar in many features with water body so that they are
difficult to separate. In order to highlight the water, the ratio

and standard deviation of the fourth band and NDWI were
additionally extracted. The ratio of the fourth band is the
average gray value of all pixels in the fourth band divided
by the average gray value of all pixels in all 4 bands of the
image. In addition, only layers containing spectral informa-
tion can be used to obtain reasonable results. The standard
deviation of band 4 is calculated from all the pixel values
contained in an object in band 4.

The NDWI refers to the normalized ratio index between
the green band and the near-infrared band in the image.
Using NDWI can better distinguish the water in the image
from other features. It can be calculated by

NDWI =
Bgreen − Bnir
Bgreen + Bnir

, ð5Þ

where Bgreen is the value of object in the green band and
Bnir is the value of object in the near-infrared band.

NDVI is a vegetation index proposed based on the reflec-
tion characteristics of vegetation in the visible and infrared
bands. It is the ratio of the difference between the reflection
intensity value in the visible red band and the reflection
intensity value in the near-infrared band to the sum of the
two. The formula can be described as

NDVI = Bnir − Bred
Bnir + Bred

, ð6Þ

where Bnir is the value of object in the near-infrared band
and Bred is the value of object in the red band.

Although limited to spectral information, high-resolution
remote sensing images contain rich geometric and structural
information, which can reflect the spatial distribution and
geometric forms of ground objects. The selected texture
features contain eight features unit extracted based on the gray
level cooccurrence. The selected eight textural features
extracted from GLCM include entropy, mean, variance,
homogeneity, contrast, dissimilarity, correlation, and angular
second moment. Gray-level cooccurrence matrix (GLCM),
which is calculated based on statistic method, is also known
as gray-level spatial dependence matrix considered one of
the most popular techniques used for texture analysis. GLCM
has strong ability to assess texture features by considering
spatial relationship of pixels and its surrounding. GLCMmean
value is not simply the average of all original pixel values; pixel
value is weighted by its frequency of its occurrence in combi-
nation with a certain neighbor pixel value. Variance in GLCM
texture performs the same task as does the common descrip-
tive statistic called variance.

Table 3: Overview of extracted features based on segmentation.

Feature type Quantity Feature name

Spectral feature 9 Spectral bands 1-4, brightness, ratio band, standard deviation band4, NDVI, NDWI

Texture feature 8 Entropy, mean, variance, homogeneity, contrast, dissimilarity, correlation, angular second moment

Spatial feature 7 Area, border index, compactness, density, length/width, length, shape index
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Entropy measures the complexity of a given image, which
reflects the sharpness of the image and the depth of the
texture; entropy can be calculated using

Entropy = − log Pi,j 〠
N−1

i,j=0
Pi,j, ð7Þ

where i and j standards position of pixels of GLCM and
Pi,j is probability of presence of pixel pairs at certain distance
and angle.

Contrast measures local variations and texture of shadow
depth in GLCM. The larger the contrast, the deeper groove of
texture and clearer effect of the image will be shown. Contrast
can be calculated by

Contrast =〠〠 i − jð Þ2Pi,j: ð8Þ

Homogeneity represents values by the inverse of the
contrast weight, with weights decreasing exponentially away
from the diagonal, which can be calculated using

Homogeneity = 〠
N−1

i,j=0

Pi,j

1 + i − jð Þ2 : ð9Þ

Correlation coefficient concludes that the degree of two
variable’s activities is associated and can be calculated by

CC = 〠
N−1

i,j=0
i −�i
� �

j −�j
� � Pi,j

δxδy
: ð10Þ

Angular second moment (ASM) uses Pi,j as weight for
itself; high values of ASM occurs when the window is very
orderly, so it measures the homogeneousness of a given
image, and ASM can be calculated using

ASM = 〠
N−1

i,j=0
P2
i,j: ð11Þ

In addition to spectral and texture features, combining
the geometric characteristics of high-resolution remote sens-
ing images are extremely significant for detailed land cover
information extraction. In this article, the article seven spatial
geometric features include area, border index, compactness,
density, length, length/width, and shape index were selected.
Area of an image can be obtained through multiplying num-
ber of pixels constituting the image object and the covered
area of the object. The boundary index can be calculated as
the ratio between the boundary length of the image object
and the smallest enclosing rectangle. The tighter the image
object, the smaller its border. The density describes the distri-
bution in the pixel space of the image object, that is, how tight
the image object is. Density is based on the covariance
matrix, which is calculated by dividing the number of pixels
constituting the image object by its approximate radius.
Length-width ratio can be used as one of the features for road

extraction. It is calculated by the length and the width of the
objects. In addition, the length-width ratio can be used to
calculate the length of the image object. Shape index was
selected to describe the smoothness of the surface of an
object. The smoother the surface of the image object, the
lower its shape index. The more fragmented the image object,
the larger its shape index. It can be calculated by dividing the
frame length of an object by the volume of the object.

3.2. Classification Algorithms. In this research, an OBIA-RF
method, also known as a combination of OBIA and classifier
ensemble method which can take advantage of OBIA and
classifier ensemble was constructed, and four state-of-art
classification algorithms named KNN, SVM, and DTC were
selected for performance comparison. Performance evaluation
was carried out by quantitative indicators such as overall
accuracy, kappa coefficient, and execution time consumption.

3.2.1. Random Forest. Random forest algorithm is an ensem-
ble learning method proposed by Leo Breiman in 2001 [48],
and is one of the most well-known ensemble learning meth-
odology and has advantages of, i.e., performing out-of-
sample prediction rapidly, requiring only slight parameter
tuning, having capable ranking of the importance of features
[28]. Decision trees in RF are generated by randomly select-
ing sample (bootstrap sampling) subsets in the training
sample set and randomly selecting the feature variables to
achieve optimal splitting. The obtained decision trees do
not need pruning, and the final classification result is
obtained by the majority vote method from the classification
results of all decision trees in the integration. Gini index
which measures the impurity of a given element with respect
to the result of the classes is selected as a measure for the best
split selection for RF [49]. There are two key parameters in
the process of constructing a random forest pattern: the
number of spanning trees and the number of randomly
selected features. By literature review, the number of selected
features is more important than the number of how many
trees are trained; especially, generally, each split number of
randomly selected features is set as the square root of the
number of input characters [50–52]. This parameter can be
optimized based on the out-of-bag error estimate. In this
research, the number of trees is set as 100 and number of
random attribute selection is log2d, where d is the total
number of features. And then, the number of trees for RF
was tuning from 50 to 500 with a step of 10.

3.2.2. Support Vector Machine. SVM is one of the most
appealing algorithms for remotely sensed data classification
due to their advantages of generalization even with limited
training samples which is common in remote sensing data
processing [53]. And, as a supervised nonparametric statisti-
cal learning method, SVM does not need a training set strictly
conforming to the standard independent and identical
distribution. The advantages of SVM come from two aspects,
transforming original space training set into a very high-
dimensional new space and finding a large margin linear
boundary in the new space. SVM is a classifier based on the-
ory of structural risk minimization, which tries to lower the
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generalization error by maximizing the margins on the
training data. Thus, SVM looks for an ideal margin by solving
optimization problem as

minω,b
1
2 ωj jj j2,

s:t:yi ω
Txi + b

� �
≥ 1, i = 1, 2,⋯,m:

ð12Þ

Furthermore, for classes that are nonseparable, the
optimization can be solved by the so-called ‘kernel stick.’
The optimization procedure seeks to find coefficients ai and
w0 in Equatuion (13), where Kð:, :Þ is kernel function. By
default, the kernel function is set as the Gaussian kernel,
kernel scale is 8, and box constraint is 1 standardized. And
then, the scale of kernels for SVM was tuning from 0.1 to 8
with a step of 0.4

f xð Þ = 〠
N

i=1
αiK x, zið Þ + ω0: ð13Þ

3.2.3. k-Nearest Neighbor. The k-nearest neighbor classifier
(k-NN) is a kind of nonparametric and memory-based

learning, as well as instance-based learning or lazy learning
used for classification and regression [26]. In the classification
procedure, a given pixel will be classified by plurality vote of its
neighbors in the feature space. The most intuitive k-NN
classifier is 1-NN classifier; in this case, a given pixel will be
assigned to the class of its closest neighbor in the feature space,
which can be described as C1NN

n ðxÞ = Yð1Þ. The useful tech-
nique which can help nearer neighbors contribute more than
the more distant one is assigning different weights to the
neighbors. A commonweighting scheme is setting each neigh-
bor a weight of 1/d, where d is the distance to the neighbor.
Classification performance of k-NN can be significantly
improved by metric learning, and diversity can be introduced
to k-NN classifier by using different subsets of features,
different distance metrics, different values of k, etc. In the
experiment part, Euclidean distance is selected and number
of neighbors is 100, distance weight is setting as equal to
evaluate algorithm performance, and the number of neighbors
for KNN was tuning from 1 to 300 with step of 10.

3.3. Comparisons and Assessment. Classification accuracy
was evaluated by the confusion matrix as well as overall
accuracy and the Kappa coefficient [54]. With the help of
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Figure 3: Cluster topology of high-performance computing.
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the confusion matrix, overall accuracy and kappa coefficient
can be calculated using

OA = ∑q
i=1nii
n

× 100%, ð14Þ

Kappa = n∑q
i=1nii −∑q

i=1ni+n+i
n2 −∑q

i=1ni+n+i
× 100%, ð15Þ

where q is the number of classes, n represents the total
number of considered pixel, nii are the diagonal elements of
the confusion matrix, ni+ represents the marginal sum of
the rows in the confusion matrix, and n+i represents the
marginal sum of the columns in the confusion matrix [55].

All experiments are performed on high-performance
computing system using a portable bash system (PBS), as
shown in Figure 3. Each algorithm is programmed as a job
which can be submitted to cluster. Finally, time consumption
of all algorithms is compared.

4. Results and Discussion

4.1. LULC Mapping. On the basis of segmentation results,
spectral features and texture features are integrated and fused
to generate multifeature images as inputs to all classifiers. In
this research, the best segmentation scale is setting to 105 for
GF-1 dataset and 210 for GF-2 dataset through estimation of
scale parameter analysis. Land cover types in the study area
include 6 categories named UB, UC, UR, UG, UW, and HS,
more details can be found in Table 1. Training and testing
samples are labeled by an expert of remote sensing with the

assistance of Google Earth. Labeled samples for training
and testing are shown in Table 4. In order to test the sample
sensitivity of the proposed process chain, limited and suffi-
cient samples were selected from the GF-1 and GF-2 datasets,
respectively. And 3-hold out validation method was selected
for accuracy assessment.

During the research procedure, the same labeled training
and testing samples are used as inputs of the DT, SVM, KNN,
and RF classifiers. The default parameters of the constructed
DT, RF, SVM, and KNN classifier models are selected for GF-
1 and GF-2 image processing. Overall accuracy, kappa coeffi-
cient of all experiments, and the best classification results for
GF-1 and GF-2 are shown in Table 5 and Figures 4 and 5.

It can be seen that the OBIA-RF algorithm has best
classification results with an overall accuracy of 99.43% and
98.98% for GF-1 and GF-2, respectively (Table 5 and
Figures 4 and 5). In general, the correct classification accuracy
of all categories covered by urban land surface reached 91%.
The overall accuracy of the original RF classification is
94.67% for GF-1 and 91.26% for GF-2, and the Kappa coeffi-
cient is 0.93 and 0.89, respectively. The overall accuracy of
the SVM classification method is 87.5% and 85.5%, and Kappa
coefficient is 0.85, 0.83 for the GF-1 and GF-2 datasets, respec-
tively. The overall accuracy of the DTC classification is the
lowest, only 72.4% and 66.67% for GF-1 and GF-2.

By analyzing the single-class accuracy of original RF and
OBIA-RF classification results, the accuracy of corrected
classification of UB, UR, and UC is relative lower than other
classes, that is, 91.4%, 90.4%, and 92.2% for the GF-1 dataset,
while the lowest single accuracy land use type of the GF-2
dataset is UR and UC for 85.4% and 86.7%, respectively.
When the OBIAmethod is combined with RF accuracy, these
difficult identified classes are improved to 91.4%, 90.4%, and
92.2% for GF-1 data and 99.2% and 99.5% for GF-2 data.

When pixel-based approach and object-based approach
are compared, research results demonstrate that object-
based approach outstands pixel-based approach, which is
also demonstrated by other research [37, 38]. While our
research further demonstrates that among the selected algo-
rithms, OBIA is more suitable for the classifier ensemble
method when compared with stand-of-art single classifier,
especially for higher spatial resolution satellite data, GF-2
instead of GF-1.

4.2. General Discussion. Based on Table 5, the best accuracies
are achieved by the OBIA-RF model for both GF-1 and GF-2
datasets. Obviously, these experiments showed the superior-
ity of OBIA-RF over the selected state-of-art method in terms
of classification accuracy. By statistics, the OBIA-RF method
lets 4.62%, 11.89%, 11.79%, and 26.89% better accuracy than
RF, KNN, SVM, and DTC for the GF-1 dataset and lets
7.72%, 9.77%, 13.48%, and 32.31% better accuracy than RF,
KNN, SVM, and DTC for the GF-2 dataset.

The DTC achieved the worst overall accuracy. SVM
model improves classification accuracy by 15.1% and
18.83% at pixel level and improves classification accuracy
by 21.95% and 30.21% at object level for GF-1 and GF-2,
respectively. The RF model led to further improvement in
classification accuracy by 22.27% and 24.59% at pixel level

Table 5: Overall accuracy and kappa coefficient of selected
algorithms.

DTC SVM KNN RF

GF-1

P
OA (%) 72.4 87.5 87.4 94.67

Kappa 0.68 0.85 0.85 0.93

Time used (s) 0.032 0.57 0.05 27.13

O
OA (%) 82.86 90.86 89.71 99.43

Kappa 0.79 0.89 0.87 0.99

Time used (s) 0.034 0.71 0.1 15.53

GF-2

P
OA (%) 66.67 85.5 89.21 91.26

Kappa 0.63 0.83 0.87 0.89

Time used (s) 0.36 589.31 1.89 251.32

O
OA (%) 64.76 94.97 96.69 98.98

Kappa 0.6 0.94 0.96 0.98

Time used (s) 0.58 402.86 86.83 208.02

Table 4: Labeled samples.

UB
(pixels)

UC
(pixels)

UR
(pixels)

UG
(pixels)

UW
(pixels)

HS
(pixels)

GF-1 628 524 846 1085 427 1246

GF-2 30620 58059 34323 48874 39996 27412
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for GF-1 and GF-2. RF reduces the correlation between trees
through random sampling of observations and features. This
can demonstrate the advantage of the classifier ensemble for
classification of VHR remotely sensed data. The OBIA
method led to final improvement in classification accuracy
by 4.62% and 7.72% in this study. This advantage is especially
valuable for the relative high benchmark of random forest
performance. When the OBIA method was combined with
traditional machine learning model, especially classifier
ensemble which takes advantage of textual, spatial structure
information, and spectral information, classification results
will be improved undoubtedly.

Furthermore, we investigate the sensitivity of the
proposed model as well as the selected state-of-art machine
learning model including DT, SVM, and KNN to parameter
choice. Figures 6 and 7 plot the OA as a function of parame-
ter for the corresponding machine learning model selected.
The sensitivity of models to parameter choice for the GF-1
and GF-2 datasets (Figures 6 and 7) shows that (a) OA of
the DTC model increased with the maximum number of
splits, the peak value appears when number of split, GF-1
dataset equals to (290, 430) and GF-2 dataset equals to
(480, 250), for pixel and OBIA training, respectively; (b)
OA of SVMmodel increased to peak value when scale of ker-
nels, GF-1 dataset equals to (0.5, 2.5) and GF-2 dataset equals
to (0.1, 4.1), for pixel and OBIA and then significantly
declines; (c) OA of KNN model appears when neighbors,
GF-1 dataset equals to (291, 71) and GF-2 dataset equals to
(221, 171), for pixel and OBIA training, respectively; (d)
accuracy of RF fluctuates continuously with parameters
changes, peak value appears when the number of trees
reached, GF-1 dataset equals to (70, 240) and GF-2 dataset

equals to (230, 450), for pixel and OBIA training, respec-
tively; and (e) the OBIA method performed better than
pixel-based method for all selected model including the GF-
1 dataset and GF-2 dataset.

Sensitivity test of models to parameter choice of GF-1
and GF-2 shows that rank of OA for selected model is RF,
DTC, SVM, and KNN. Furthermore, we also wonder which
features are most important in the procedure of prediction.
With the help of out-of-bag estimation, feature importance
in the RF ensemble learning are calculated and shown in
Figure 8 for the GF-1 dataset and Figure 9 for the GF-2 data-
set. This feature importance rank shows the contribution
weight of different features for complex urban surface
classification. Figure 8 demonstrates that the most important
features for GF-1 remotely sensed data interpretation is
texture information (mean value calculated using gray-level
cooccurrence matrix(GLCM)) and the second important
feature is standard deviation calculated using GLCM, and
followed by the important spatial feature calculated by ratio,
and then spatial feature of length/width. And, for the GF-2
dataset, the first five rank features for complex urban surface
interpretation belongs to spatial feature (length, ratio) and
spectral feature (NDVI, NDWI, mean2). By a comprehensive
consideration of the processing results of the selected two
datasets, a preliminary conclusion can be drawn as that
spatial and texture features play an important role for
complex urban surface classification with high- and very
high-resolution remotely sensed data.

The quality of segmentation directly affects the effect of
subsequent classification. In this research, the multiscale
segmentation method was selected, which has three user-
defined parameters: scale, shape, and compactness. And the

Figure 4: The classification map derived from GF-1 using the OBIA-RF method.

Figure 5: The classification map derived from GF-2 using the OBIA-RF method.
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scale parameter that defines the average size of the image
object is considered to be the most effective parameter that
affects the segmentation quality, while there is no universal
rule for this scale determination. By literature review [46],
the ESP2 (estimation of scale parameter) scale parameter
estimation tool is introduced and combined with visual
interpretation to evaluate the optimal scale value and
segmentation effect of GF-1 and GF-2 remote sensing images
in this research. Based on statistic results (Figure 10), the
appearance of first peaks are 105 and 220 for GF-1 and GF-
2, respectively, which are the optimal segmentation scales
of GF-1 and GF-2 images in this study. The shape and
compactness parameters have limited influence on the
performance of OBIA, and they were setconstant at 0.1 and

0.5, respectively. Therefore, in this research, we chose 0.1
and 0.5 to participate in the segmentation to get the final
segmentation map (Figure 10).

Finally, to more explicitly evaluate the practical speed of
proposed image classification chain compared to RF, SVM,
and KNN, we consider empirical run times. In terms of
image performance speed test, to ensure fair comparison,
all methods shared the same code. The algorithms were
deployed in the Henan Polytech High Performance Comput-
ing Center server, shown in Figure 3 (here, node is 1, and
thread number of per CPU core per node is 24). Through
rough statistic, OBIA-RF spent 223.55 s, SVM spent
403.57 s, KNN spent 86.93 s, and DTC spent 0.64 s for the
GF-1 and GF-2 datasets in average. The model with the most
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time consumption is SVM, followed by KNN. The most time
saving model is DTC, which got less than 70% classification
accuracy.

5. Conclusion and Future Work

In this paper, we have proposed a novel urban mapping pro-
cess chain which can take advantage of both the OBIA and
classifier ensemble methods. The novelty in this paper is in
the direction of successful evaluation of OBIA-RF on Chinese
high-resolution satellite images GF-1 and GF-2 datasets. The
performance of the OBIA-RF method has been compared
with the state-of-art model such as DTC, SVM, and KNN,
and performance of proposed OBIA-RF method has also
been examined from urban mapping accuracy, the sensitivity
to parametric selection, and time consumption. As the
proposed process chain considered only spectral and GLCM
texture features for image semantic, other features which
might be useful to urban mapping such as local indicator of
spatial association, mathematical morphology profiles, and
decomposition characteristics of full polarized SAR features
will be considered for future research.

Data Availability
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research is provided by Henan Data and Application Center
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Given the increasingly serious geological disasters caused by underground mining in the Hancheng mining area in China and the
existing problems with mining subsidence prediction models, this article uses the small baseline subset interferometric synthetic
aperture radar (SBAS-InSAR) technology to process 109 Sentinel-1A images of this mining area from December 2015 to
February 2020. The results show that there are three subsidences: one in Donganshang, one in south of Zhuyuan village, and
one in Shandizhaizi village. In the basin, the maximum annual average subsidence rate is 300mm/a, and the maximum
cumulative subsidence is 1000mm. The SBAS-InSAR results are compared with Global Positioning System (GPS) observation
results, and the correlation coefficient is 74%. Finally, a simulated annealing (SA) algorithm is used to estimate the optimal
parameters of a support vector regression (SVR) prediction model, which is applied for mining subsidence prediction. The
prediction results are compared with the results of SVR and the GM (1, 1). The minimum value of the coefficient of
determination for prediction with SA-SVR model is 0.57, which is significantly better than that those of the other two prediction
methods. The results indicate that the proposed prediction model offers high subsidence prediction accuracy and fully meets the
requirements of engineering applications.

1. Introduction

Ground subsidence in a mining area is a type of vertical
deformation of the ground, which is prone to slow regional
changes due to the destruction of the structure of the rock
mass caused by mining. Long-term underground mining
results in movement and deformation of the overlying rock
layer and the ground surface and can cause continuous or
discontinuous sinking, tilting, curvature, stretching, com-
pression, etc., of buildings and other structures located
within the mining area. Deformation, cracks, collapses, col-
lapse pits, landslides (movement), and similar types of dam-
age degrade the land resources and ecological environment in
a mining area, significantly impacting the productivity and
daily lives of residents and also affect future engineering con-
struction in the area [1]. In a word, the ground subsidence
caused by mining is a very complicated process. To effectively

control the ground subsidence in mining areas caused by
mining and to reduce losses, it is necessary to accurately
understand the causes of mining subsidence and its develop-
ment process over time.

Traditional levelling and Global Positioning System
(GPS) measurements have the disadvantages of sparse mea-
surement points, a small range, and a high cost for monitor-
ing surface subsidence. As an alternative, differential
interferometric synthetic aperture radar (D-InSAR) has been
proven to be able to probe small surface deformations [2]; it
is widely used in the monitoring of landslides [3], urban areas
[4], mining area ground subsidence [5], and other geological
disasters, but it is susceptible to limitations such as decoher-
ence and atmospheric delay, and it cannot provide continu-
ous time-series deformation information. As a sequential
InSAR technology, small baseline subset InSAR (SBAS-
InSAR) mitigates the shortcomings of D-InSAR technology
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by adopting a short time-space baseline [6–8]. Zhang et al. [9,
10], Hu et al. [11], and Jiang et al. [12] have used time-series
InSAR technology to investigate land subsidence in Los
Angeles, California, USA; Ningbo, China; and the Lost Hills
Oil Field in California. Yin et al. [13], Yang et al. [14], Saygin
et al. [15], and Mark et al. [16] have applied time-series
InSAR technology for mining area monitoring in Lengshui-
jiang, China; Datong, China; Zonguldak Province, Turkey;
and Springfield, Illinois, USA, and have shown the applicabil-
ity of SBAS-InSAR technology in mining surface subsidence
monitoring applications. He et al. [17] used ALOS-1 data to
identify large-scale surface deformations near China’s
Hancheng coal mine. Through a literature review, it can be
found that most applications of InSAR technology in mining
subsidence monitoring have focused on data monitoring and
analysis, and the research time span has been relatively short.
However, for mining subsidence monitoring, it is necessary
to combine monitoring and prediction methods to establish
a complete mining subsidence prediction model with long
time-series capabilities.

The current mining subsidence prediction methods can
be divided into four categories: influence function methods,
empirical methods, theoretical methods, and other methods
[18, 19]. The most commonly used influence function
methods are the probability integral method in China and
the Budryk-Knothe method elsewhere. The formulas for
these two methods are the same. By adjusting the prediction
parameters, this method can be applied for prediction under
different geological and mining conditions, but the expected
values of the parameters must be known and are difficult to
obtain. Empirical methods include method based on typical
curves, profile functions, and other approaches. A large
amount of measured data is used to determine the laws gov-
erning the observed deformation. The prediction formulas
are simple, but this approach is suitable only for areas with
similar geological mining conditions, so its applicability is
poor. Theoretical methods rely on complex mechanical
parameters and calculations. Previous studies have shown
that such methods are very difficult to apply. With the rapid
development of computer technology, a large number of
complex calculations have become possible, but it is still dif-
ficult to obtain mechanical parameters on a large scale. Other
methods include neural network backpropagation (BP) [20],
grey system theory (GM) [21], and support vector regression
(SVR) [22, 23]. Researchers use computer algorithms to
establish prediction models to predict mining subsidence in
mining areas. Various new ideas are emerging in the field
of mining subsidence prediction, but they are still in the
exploration stage. Although the BP algorithm considers the
nonlinearity of ground subsidence, when few training sam-
ples are available, the prediction results obtained are unreli-
able. The GM algorithm transforms messy original data
into regular time-series data in a prescribed way. It is suitable
only for medium- and short-term forecasts, and some data
fitting results are far from the original data. In this paper,
SBAS-InSAR technology is combined with the SA-SVR
algorithm to predict mining subsidence for the first time.
The SA-SVR algorithm combines SA and SVR. The SVR
algorithm can handle any nonlinear situation, has a strong

generalization ability and good theoretical support, and has
been widely used in research on the regression fitting of non-
linear functions [24].

This article is organized into five parts. The first part
summarizes the current research progress and shortcomings
of mining subsidence monitoring and prediction. The second
part briefly describes the basic idea of the combined SA-SVR
algorithm. The third part presents the extraction of the 4-
year average annual deformation rate and the time-series
cumulative deformation of a mining area in Hancheng based
on SBAS-InSAR technology, analyses the overall deforma-
tion behaviour in the mining area before and after mining,
provides a decision basis for the subsequent mining manage-
ment of the mining area, and verifies the SBAS-InSAR mon-
itoring results against GPS data. The fourth part reports the
prediction results achieved by using the SBAS-InSAR moni-
toring results as the training and test sets for the SA-SVR
algorithm and finally compares the SA-SVR prediction
results with those of SVR and GM. The fifth part summarizes
the whole paper and discusses the advantages and disadvan-
tages of the SA-SVR algorithm.

2. Basic Idea of the SA-SVR Algorithm

The SVR algorithm performs parameter regression estima-
tion on the basis of a support vector machine (SVM). This
algorithm is suitable for low-information, linear and nonlin-
ear models and for the recognition of high-dimensional spa-
tial patterns from small samples. Research has shown that the
SVR algorithm enables stable time-series analysis and statis-
tical forecasting [25]. The basic principle of the method is to
find the optimal division plane in a high-dimensional space
and to minimize the sum of the energy of the regression coef-
ficients under the constraint that the error of the given sam-
ple data with respect to the division boundary is within a
certain value. The original SVR algorithm can also be used
as a regularization method to balance the error when fitting
sample data and the energy of the regression coefficients.

Time-series InSAR technology is used to obtain time-
series data on mining area settlement, denoted
byfðx1, y1Þ, ðx2, y2Þ⋯ ðxn, ynÞg, xi ∈ X = Rn, yi ∈ Y = R: To
study the time-space relationship of settlement in a mining
area and use it to make settlement predictions, we need to
analyse ðxi, yiÞ ði = 1, 2,⋯, nÞ quantitatively. More specifi-
cally, we hope to find a suitable mapping Φ to describe the
relationship between xi and yi and use SVR for data learning
and prediction. Under the assumption that the mapping Φ
between ðx, yÞ follows an approximately linear relationship,
we use the following formula:

y = ω, xh i + b ð1Þ

whereh·, · i represents the vector dot product, x is the value of
the input variable, and y is the corresponding output value.
According to Smola and Scholkopf [26], the SVR algorithm
can be applied to solve the following optimization problem:
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min :
1
2 ωk k2 + C〠

n

i=1
ξi + ξ∗i
� �

s:t:

yi − ω, xih i − b ≤ εi + ξi

ω, xih i + b − yi ≤ εi + ξ∗i

ξi, ξ∗i ≥ 0

ð2Þ

where C is a penalty or equilibrium factor and ξi, ξ∗i are the
upper and lower bounds of the regression line, respectively,
where an excess violation of εi is allowed.

The parameters of the SVR model include the accuracy
εi describing the regression model and the data column,
the penalty factor C, and the mapping Φ. The kernel func-
tion Kðx, x′Þ = hΦðxÞ,Φðx′Þi can be obtained from this
model. These parameters and the kernel function together
determine the overall performance of the prediction model.
From the constraint conditions of the optimization model
given in (2), it can be seen that when the difference
between the theoretical value and the actual observed set-
tlement value is less than εi, SVR will not penalize such a
violation; that is, the corresponding values of ξi, ξ∗i are
zero. Therefore, SVR is also called ε-insensitive regression
parameter estimation. Generally, if the observed settlement
values are the same in terms of accuracy, all εi have the
same value ε. If the accuracy value εi is too small, that is,
the accuracy of the data column is too high, then under-
fitting or over-fitting can easily occur. Smola and Scholkopf
[26] defined the allowable kernel function and presented a
detailed discussion of the structure of the allowable kernel
function problem. For details, please see Smola and
Scholkopf [26].

In the literature on SVR, to solve for the optimal param-
eters of the optimization problem defined in (2), the original
problem is generally converted into the corresponding dual
problem using the Lagrange multiplier method, namely,

min :
1
2 α − α∗ð ÞTXTX α − α∗ð Þ + 〠

n

i=1
εi αi + α∗ið Þ − 〠

n

i=1
yi αi − α∗ið Þ

s:t:
α − α∗ð Þ, εh i = 0

αi, α∗i ∈ 0, C½ �
ð3Þ

In SVMs, sequential algorithms are usually used to solve
for the optimal coefficients bα and α∧∗ of such a dual problem
(see [26]). bα and α∧∗ essentially correspond to the
Lagrangian coefficients of the first and second constraints,
respectively, of the optimization problem given in (2). It
can be proven (Smola and Scholkopf [26]) that the estimate
bω of the unknown parameter in the original regression
model defined in (1) is uniquely determined by the
Lagrangian multiplication coefficients bα and α∧∗:

bω = X bα − α∧∗ð Þ ð4Þ

The unknown parameter b is then given by the Karush-
Kuhn-Tucker condition [27, 28]. Thus, the optimal predic-
tion model is

ŷ = 〠
n

i=1
bαι − bα∗

ι

� �
xi, xh i + b̂ ð5Þ

In fact, by comparing the original optimization problem
(2) and its corresponding dual problem (3), it can be seen
that the original optimization problem (2) has more param-
eters (ω and b) than the dual problem (3). Nevertheless, if
the number of unknown parameters in the original regres-
sion model (1) is low, then the number of calculations will
not be very different between the original optimization prob-
lem (2) and its dual problem (3).

In this paper, an algorithm that combines SA with SVR is
adopted to achieve the best prediction effect for mining sub-
sidence. The SA algorithm was proposed by Metropolis et al.
in 1953 [27] and started to be widely used after the publica-
tion of an article in Science by Kirkpatrick et al. in 1983. In
the SA algorithm, random factors are introduced into the
search process. In the iterative update process, a solution that
is worse than the current solution may be accepted with a
certain small probability, allowing the algorithm to jump
out of locally optimal solutions to reach a better optimal solu-
tion. In this paper, an SA optimization algorithm is used in
combination with SVR to estimate the parameters of the
time-series forecasting model.

The basic principle of the SA algorithm is to imitate the
ideal crystal generation process in physics. It is assumed that
at a high temperature, solid matter will be in a liquid state, in
which the order of the molecules is free and random.
Through a careful cooling process, the molecules in this ran-
dom state will be arranged in an orderly manner to generate
crystals in the ideal state. To use an optimized mathematical
language to describe the process of forming an ideal crystal
state through physical cooling, we need to formulate the ideal
crystal state and the physical cooling process in terms of an
optimized objective function and an optimization process,
respectively. Specifically, the ideal crystal state is the
minimum-energy state, that is, the state with the global opti-
mal value of the objective function, and the physical cooling
process is equivalent to the iterative process of optimizing the
objective function, thus completing the mathematical simu-
lation ideal crystal generation. In particular, Metropolis
et al.’s original text from 1953 proposes random sampling
from a uniform probability distribution as an iterative pro-
cess for optimization. If the objective function is fully under-
stood, random sampling from the corresponding probability
distribution can instead be performed for optimization (see
Peiliang Xu’s private message from February 2020) [29].

The basic step of the optimization process in the SA algo-
rithm is to compare the objective function value at a sampled
point to the current optimal value. If the former is better than
the latter, then the objective function value of the sampled
point replaces the current optimal value, and the algorithm
enters the next iteration. If the objective function value at
the sampled point is worse than the current optimal value,
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to prevent the SA algorithm from converging to a locally
optimal value too quickly, Metropolis and others have sug-
gested that this worse solution should nevertheless be
accepted with a certain probability during the optimization
process. For an optimization function f ðxÞ, if the current
solution is denoted by x0 and the search point for the next
round is denoted byx′, Metropolis and others suggest using
the following probability:

P x0 ⇒ x′
� �

=

1, f x′
� �

< f x0ð Þ

exp −
f x′
� �

− f x0ð Þ
T

0
@

1
A, f x′

� �
≥ f x0ð Þ

8>>>><
>>>>:

ð6Þ

Accordingly, we decide whether to accept x′ as the new
solution. In formula (6), T represents the temperature vari-
able, and ⇒ represents a state transition.

The SA algorithm obtains the optimal solution through
repeated iterations of the above process. However, if T
changes too quickly, then the SA algorithm will quickly
converge to a locally optimal solution. To ensure that the
algorithm will converge in a limited time, it is necessary to
adjust the temperature parameter T . The steps of the adjust-
ment process are as follows:

(i) The initial temperature T (0) is set high enough that
all states are acceptable

(ii) The annealing rate generally decreases exponentially

T nð Þ = λT nð Þ, n = 1, 2, 3⋯ ð7Þ

Here, λ takes a value in the range [0.8, 0.99] so that each
temperature will have a certain probability to be tried.

(iii) A termination temperature is specified. Once the
temperature reaches this preset threshold during
the iterative process, annealing is completed

The flow chart of the SA-SVR algorithm is shown in
Figure 1.

3. Time-Series InSAR Monitoring and Analysis

3.1. Research Background. The study area is a mine in the
southwest of the Hancheng mining area, which is located
on the southeastern edge of the Weibei Uplift in the Ordos
Basin. The formation is generally a monoclinic structure
inclined to the northwest. The geographical location is
110°17′–110°36′ east in longitude and 35°21′–35°51′ north
in latitude. The mine is adjacent to the Dongze village struc-
tural belt and the Long-ting structural belt in the west and to
the Huaxian fault zone in Hancheng and the Yellow River in
the east. The geographical location of the mine is shown in
Figure 2 [30, 31]. The main coal-bearing strata in the mining
area belong to the Shanxi Formation and the Taiyuan Forma-

tion; coal seam No. 3 belongs to the Shanxi Formation, and
coal seam No. 5 belongs to the Taiyuan Formation. The
long-arm comprehensive mechanized coal mining method
or the caving mining method has been adopted at all working
faces, and the caving method is used to manage the roof. The
mining thickness of each working face is 1.5–2.2m, and the
coal seam inclination is 1–3°, being nearly horizontal. This
article mainly studies data taken from the 21308 working face
of the No. 3 coal seam from December 2015 to February
2020. The strike length is 930m, and the incline length is
210m.

An investigation performed in May 2017 showed that
only the Donganshang group exhibited multiple cracks in
houses and 3 cracks in the road pavement, with a crack
length of approximately 3m, a crack width of approximately
0.05–0.1m, and an angle between the crack and the road sur-
face of approximately 90°, which caused the ground to form a
bulge of 0.1–0.2m. There were 3 large-scale cracks in the
ground, which were approximately 500m long and 0.2–
0.6m wide, and 3 small-scale cracks, which were approxi-
mately 40~80m long and 0.1–0.3m wide. In the village, there
were 7 landslides, with lengths of 8–15m, widths of 5–12m,
and drops of 2–5m.

As research data, 109 scenes of Sentinel-1A radar satel-
lite data in the study area were selected, which cover a
time span from December 24, 2015, to February 25,
2020. The Sentinel-1A data are in the C-band, with a
wavelength of 5.66mm; the orbit revisit period is 12 days,
the polarization mode is VV, the incidence angle is
approximately 33.7°, the resolution of these data is 5 × 20
m, and the width of a single image is 250 km. The data
used in this experiment are all products of the interfero-
metric wide-width mode (IW) and are single-view complex
data with slant distance information [32].

Enter the initial optimization parameters and
select the initial temperature and solution

Perform random sampling to obtain the
objective function value at the current

temperature

Compare the value of the objective function
to the optimal value to determine the new,

current optimal value

Is the convergence
condition met? Cool down

Output the optimal solution

Use the optimal SVR model for prediction

Yes

No

Figure 1: SA-SVR algorithm flow chart.
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The SRTM1 digital elevation model (DEM) was chosen as
a source of external DEM data; its ground resolution is 30 ×
30m. For the precise orbital parameters, the precise orbit
determination ephemeris data provided by the European
Space Agency (ESA) (https://qc.sentinel1.eo.esa.int/) were
adopted, which can be downloaded 21 days after acquisition
of the Sentinel-1A data and have a positioning accuracy of
within 5mm [33]. External DEM and orbital data can be used
to remove the levelling effect and orbital errors.

3.2. Data Processing. The SBAS-InSAR data process was real-
ized based on the GAMMA Software. The main steps were as
follows: extracting public bursts from the 109 Sentinel-1A
scenes to improve the subsequent processing speed and effi-
ciency, performing precise registration with an accuracy of
0.001 pixels, and setting a short time baseline (three consec-
utive scene images). The research area was cropped out based
on the corresponding row and column numbers, and multi-
view interference processing was performed at a visual num-
ber ratio of 5 : 1 (range: azimuth). Differential interference,
filtering (Goldstein), and unwinding (minimum cost flow
method) were performed based on the initial baseline and
the precise baseline. The high coherence coefficient method
was used to extract points with high coherence, and elevation
and atmospheric errors were removed through regression
analysis of the high-coherence points. Finally, complete and
accurate deformation rate and time-series cumulative shape
variables were obtained [34–36].

3.3. SBAS-InSAR Results and Analysis. Following the above
data processing method, the annual average subsidence rate
(Figure 3) and the time-series cumulative subsidence map
(Figure 4) along the line-of-sight (LOS) direction were
obtained for the mining area of Hancheng from December
2015 to February 2020. Figure 4 shows the timing accumula-

tion of 11 scenes selected from among all 109 scenes at equal
intervals. Figure 3 shows that the entire study area contains
three relatively large subsidence areas: the Donganshang sub-
sidence area, Zhuyuan village south subsidence area, and the
Shandizhaizi subsidence area. A field investigation showed
that there is good consistency between the subsidence area
on the Donganshang and the distribution of the working face
in the south No. 1 mining area in Hancheng. Both the
subsidence area to the south of Zhuyuan village and the
Shandizhaizi subsidence area have undergone coal seam
mining, and mountain slippage, road cracks, and house
cracks have occurred.

The results presented in Figures 3 and 4 show that the
maximum annual average settlement rate in the study area
is 300mm/a and the maximum cumulative settlement is
1000mm from December 2015 to February 2020. The area
on the Donganshang presents the most serious subsidence,
with a subsidence area of approximately 3.66 km2 and a
cumulative subsidence of approximately 150–1000mm. All
of the working faces in this mining area show different
degrees of subsidence. The 21506, 21307, and 21308 working
faces stopped being mined in February 2017, and their subsi-
dence rates are approximately 40–295mm/a. The 21309
working face corresponds to the area with the most severe
deformation during the study period. As of February 2020,
the settlement rate of the 21309 mining face is the highest.
The settlement area to the south of Zhuyuan village is
approximately 2.56 km2, the settlement rate is approximately
40–257mm/a, and the cumulative settlement is approxi-
mately 100~1000mm. The Shandizhaizi settlement area is
approximately 0.68 km2, the settlement rate is approximately
40–129mm/a, and the cumulative settlement is approxi-
mately 100–570mm.

It can be seen from Figure 4 that each mining face in the
mining area shows a different degree of nonlinear settlement.
Let the first image (December 24, 2015) be considered the
initial image, in which the settlement amount is 0. The three
settlement areas had formed by February 16, 2017. Over time
and with the mining of the working faces, the subsidence area
and the cumulative subsidence continued to increase. As of
November 2, 2018, the subsidence area had gradually
expanded westward, forming three obvious subsidence
basins. As of February 25, 2020, the cumulative settlement
had reached its maximum; the impact of the settlement had
continued to expand from east to west, and the settlement
area and cumulative settlement had gradually increased,
indicating that the settlement area had not reached a stable
state by that time.

To further analyse the settlement information of the
study area, the 21308 working face in the settlement area
on the Donganshang is taken as the object of investigation,
and profile lines A1A2 and B1B2 are established along the
direction and inclination (the position of the section line is
shown in Figure 4). The working face trend is advancing
along the direction from A2 to A1, and the working face ten-
dency is advancing along the direction from B2 to B1. For
image readability, the data from 10 scene images correspond-
ing to some of the time-series cumulative settlement figures
were selected to draw the corresponding strike and
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Figure 2: Geographical location of the study area.
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longitudinal time-series profile lines using the Origin soft-
ware (Figure 5). Figure 5 shows that the main settlement
areas are between points 11 and 41, while the maximum
sinking position is always at point 26. The maximum accu-
mulated settlement amounts to 748mm and 880mm. In
general, over time, the settlement of each point along the
direction and inclination of the working surface is gradually
increasing, and an obvious settlement funnel is forming on
the spatial scale, which is consistent with the surface mining
subsidence in the mining area.

Because this certain mining area in Hancheng has been
repeatedly mined at multiple coal seams, to better analyse
the pattern of the mining subsidence, four characteristic
points (the positions of these characteristic points are shown
in Figure 3) on the Donganshang were selected for time-
series cumulative settlement analysis, as shown in Figure 6.
P1 and P2 are located at the edge of the deformation area
on the Donganshang. They are affected by the mining of
the 21504 and 21506 working faces, respectively. The cumu-
lative settlement at points P1 and P2 from December 24,
2015, to February 25, 2020, amounted to 255mm and
392mm, respectively. P3 and P4 are located in the centre of

the settlement area and are mainly affected by mining at
the 21308 working face. The cumulative settlement at these
points from December 24, 2015, to February 25, 2020, was
relatively large, reaching 888mm at P3 and 838mm at P4.
In general, the cumulative settlement at these four character-
istic points has increased over time. As of February 25, 2020,
the settlement had not stabilized.

3.4. Result Verification and Analysis. To quantitatively verify
the ground subsidence monitoring results for the mining area
as obtained via SBAS-InSAR technology, GPS observation
points established in the subsidence area on the
Donganshang were used to obtain ground displacement
monitoring data, and the monitoring results were compared
and analysed. GPS observation data collected from Decem-
ber 24, 2015, to January 12, 2017, at 8 observation points
were selected. Because the surface deformation data obtained
via SBAS-InSAR were obtained along the radar LOS direc-
tion, the three-dimensional deformation data obtained from
the GPS observations were obtained in the vertical, east-west,
and north-south directions. To compare the results of these
two methods, three steps were required. First, it was
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necessary to project the vertical, east-west, and north-south
deformations observed from the GPS data to the LOS direc-
tion. The projection formula is

LOS = cos θð Þ − sin θð Þ cos αð Þ sin θð Þ sin αð Þ½ �
dv

dE

dN

2
664

3
775

ð8Þ

where θ is the local incidence angle of the satellite; ɑ is the
azimuth of the satellite’s base; and dv , dE , and dN are the ver-
tical, east-west, and north-south deformations, respectively,
obtained from the GPS observations.

The above formula was used to convert the GPS-observed
deformations into deformations in the LOS direction. Then,
the coordinates of the GPS observation points were con-
verted into InSAR data coordinates through Gaussian projec-
tion to make the two sets of data consistent in their spatial
dimensions. Finally, the extracted values were used via the
Point tool of the ArcGIS software to extract the InSAR data
deformation points corresponding to the GPS observation
points in accordance with the neighbouring pixel values
using bilinear interpolation to make the GPS results corre-
spond to the InSAR results. Then, the two sets of results were
compared and analysed. As shown in Figure 7, the overall
trends of the deformation values obtained from the SBAS-
InSAR and GPS observations in the LOS direction are rela-
tively consistent. Only the GPS results and SBAS-InSAR
results of 8 observation points at point 4 are abnormal.
Because these results were obtained through a combination

of multiple SBAS-InSAR processing experiments, this abnor-
mality may have been caused by human error transmission in
the GPS measurements. The smallest deviation of 0.1 cm is
observed at point 3. The average absolute error of the 8 points
is 1.11 cm, which is within the acceptable range. A correlation
analysis of the two sets of data shows that the correlation
coefficient is 86%, indicating that they are highly correlated.
On the whole, the two sets of results are basically consistent,
indicating that SBAS-InSAR technology is reliable for the
monitoring of ground subsidence in mining areas and can
accurately reflect the corresponding information.

4. Mining Subsidence Prediction

4.1. Model Building. For this experiment, the time-series set-
tlement data based on SBAS-InSAR technology were selected
as the training and test samples, and the combined SA-SVR
algorithm introduced in the second part of this article was
applied to construct a mining area subsidence prediction
model and predict the time-series settlement in the mining
area. Finally, the SA-SVR prediction results were compared
with the prediction results of SVR and GM. To better predict
the mining subsidence, a total of 109 sets of data from the
Donganshang subsidence area collected from December 24,
2015, to February 25, 2020, were used as the research object
in this experiment, and characteristic points were selected
along the 21308 working face: points A17 and A25 were
selected for the strike section line, and points B30 and B45
were selected for the inclined profile line. Thus, a total of four
feature points were used to establish the mining subsidence
prediction model.
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First, the parameters of the SVR model were optimally
estimated based on the SA algorithm, and then, the optimal
estimated parameters were substituted into the SVR model
for settlement prediction. The settlement values at each point
selected for the experiment constitute a nonlinear time series
ðxi, yiÞ ði = 1, 2,⋯, 104Þ. The first 104 sets of monitoring data
(from December 24, 2015, to December 15, 2019) were used
as SVR training samples, and the last five sets of monitoring
data (from December 27, 2019, to February 25, 2020) were
used as the prediction verification sample. To distinguish
between these datasets, they are denoted by

xI , yIð Þ =

x1, y1
x2, y2
⋮

x104, y104

2
666664

3
777775
, xII , yIIð Þ =

x105, y105
x106, y106
x107, y107
x108, y108
x109, y109

2
666666664

3
777777775

ð9Þ

The first set of data ðxI , yIÞ was used to determine the
unknown parameters in equation (8), namely, bω and b̂. The
parameter estimates were then reused in the SVR model for
settlement prediction using formula (8):

ŷII = bω , xIIh i + b̂ ð10Þ

where ŷII is the predicted value of yII . The prediction results
are listed in Table 1, along with the correlation coefficients.
Meanwhile, the displacement map of training, test, and pre-
diction results is shown in Figure 8.

4.2. Model Verification and Analysis. It can be seen from
Table 1 and Figure 8 that the prediction model based on
the settlement information from the settlement area on the

Donganshang is consistent with the SBAS-InSAR monitor-
ing results. According to Table 1, the maximum absolute
error between the predicted and measured values is
5.6mm, and the maximum root mean square error is
4.1mm. The maximum average absolute error is 3.8mm,
indicating that the prediction accuracy meets the engineer-
ing requirements. For the predictions generated by the
mining subsidence prediction model established using the
SA-SVR algorithm, the minimum value of the coefficient of
determination reaches 0.51. The left side of the dotted line
in Figure 8 is the original values and training results of the
first 104 sets of training samples (December 24, 2015, to
December 15, 2019), and the right side of the dotted line is
the original values and prediction results of the last five sets
of test samples (2019 from December 7, 2020, to February
25, 2020). It can be seen that the model trend is consistent
with the training sample trend as a whole, the prediction
error of the test sample is small, and the prediction result
is good. It indicates that the subsidence prediction model
constructed in this paper has high accuracy, fully meets the
requirements of engineering applications, and provides a
reliable theoretical basis for mining subsidence monitoring
and prediction.

To verify the superiority of the SA-SVR algorithm for the
prediction of mining subsidence in the Hancheng mining
area in the absence of mining parameter information for this
area, characteristic points in time and space were selected to
be used in a statistical analysis method for comparing the
accuracy of the deformation prediction results of different
algorithms. Figure 9 presents a diagram comparing the pre-
diction results for each feature point in the spatial dimension.
It can be seen from Figure 9 that the values predicted with
the SA-SVR algorithm based on the SBAS-InSAR results
show the best fit; the prediction effect at all four feature
points is obviously better than that of SVR and GM (1,1),
mainly because of the parameter settings of the algorithm.
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In addition, as shown in Figure 10, the prediction accuracy
at each selected feature point was analysed in the time
dimension. It can be seen that although the SA-SVR predic-
tions for feature points A17 and B45, with smaller settle-
ment values, are very good, the prediction effect is

obviously degraded for feature points A25 and B30, where
the values are larger. These findings indicate that the pre-
diction accuracy is affected by the settlement value, with
the prediction error being larger when the settlement value
is larger.
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Table 1: Prediction results and correlation coefficients R2 (unit: mm).

Point
20191227 SBAS
predict deviation

20200108 SBAS
predict deviation

20200201 SBAS
predict deviation

20200213 SBAS
predict deviation

20200225 SBAS
predict deviation

RMSE MAE R2

A17

-623.7 -632.6 -634.4 -637.3 -640.1

-623.3 -627.1 -634.9 -638.8 642.7 2.8 2.1 0.75

-0.5 -5.5 0.5 1.5 2.5

A25

-768.1 -772.0 -772.7 -781.8 -783.1

-763.0 -767.8 -777.5 -782.3 -787.2 4.1 3.8 0.51

-5.2 -4.2 4.8 0.6 4.1

B30

-740.6 -744.7 -748.0 -756.0 -759.2

-735.0 -740.6 -751.7 -757.3 -762.8 3.9 3.7 0.68

-5.6 -4.2 3.7 1.3 3.6

B45

-521.2 -523.9 -526.2 -528.0 -528.1

-522.8 -523.8 -525.8 -526.8 -527.8 0.9 0.7 0.88

1.6 -0.1 -0.4 -1.2 -0.3

Note: RMSE (root mean square error) denotes the square root of the ratio of the sum of the squares of the deviations of the observations from their true values to
the number of observations; MAE (mean absolute error) denotes the average value of the absolute error and is used to measure the deviation between the
observed and true values.
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Figure 9: Continued.
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5. Conclusion

This paper has combined SBAS-InSAR technology with the
SA-SVR algorithm for the first time for long-term mining
subsidence monitoring and prediction for a mining area in
Hancheng, China. The surface deformation information of
the mining area was extracted based on SBAS-InSAR tech-
nology, GPS data were used to verify the monitoring results,
and the SBAS-InSAR monitoring results were used as train-
ing samples to develop a SA-SVR model for predicting
mining subsidence. The SVR and GM algorithms were also
used to generate predictions for use as a baseline to compare
and analyse the SA-SVR results. The conclusions of this
study are as follows:

(i) The SBAS-InSAR monitoring results are found to be
basically consistent with the GPS observations. The
minimum deviation is 0.1 cm. The correlation coeffi-
cient between the two is 86%, indicating high corre-
lation. This finding illustrates the reliability of the
long-term sequence of SBAS-InSAR monitoring
data for the surface subsidence in the mining area
and reduces cross-validation error

(ii) The SVR algorithm represents the application of the
SVM concept for function approximation and
regression estimation. The SVMmodel is an optimi-
zation model proposed by Vaprik [37] in 1995 for
regression estimation. To solve the SVM problem,
a variety of algorithms have been developed. In
2011, Chang and Lin [38] systematically introduced
various mathematical optimization models for
solving the SVM problem. The SVM algorithm
essentially transforms the original model to be
solved into a quadratic mathematical programming
optimization model with equality and inequality
constraints. Essentially, the original model is
expanded; the number of variables changes from
the number of unknowns in the regression model
to the total number of observations. If there are more
observations than unknown parameters of the
model, the amount of calculation will increase
accordingly. In this paper, the SA algorithm has been
directly applied to the original SVM model. By opti-
mizing the parameters of the original model, it
becomes more convenient to directly optimize
problems with fewer parameters than the number
of observations, which may have advantages in
terms of convenient programming and ease of calcu-
lation. However, in essence, the SA-SVR algorithm
obtains an improved solution that is better than the
local optimal solution, also called an approximate
global optimal solution, at the cost of a large number
of calculations

(iii) The method adopted in this paper improves the
accuracy of mining subsidence prediction, indicat-
ing that the combination of SBAS-InSAR and SA-
SVR can be effectively used for mining subsidence
monitoring and prediction
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Compared with traditional networks, WSNs have more limited resources such as energy, communication, computing, and storage.
The problem of how to achieve energy saving, extend network life cycle, and improve network performance under these limited
resources has always been an issue of great interest in WSN research. However, existing protocols do not consider that sensor
nodes within the BS threshold may not be clustered. These nodes can directly transmit data to the BS. This simplifies the cluster
routing process of the entire WSN and saves more energy. This paper introduces an efficient, and energy-efficient, clustering
and equalization routing protocol called the PSOLB-EGT protocol. This protocol introduces a new approach by combining
improved particle swarm optimization (PSO) and evolutionary game theory (EGT) algorithms to address the problem of
maximizing the network lifetime. The operation of the wireless sensor network is divided into an initialization phase and a data
transmission phase. In the initialization phase of the wireless sensor network, the improved PSO algorithm is used to establish
clusters and select CHs in areas other than the BS threshold. Entering the data transmission phase, we analyze this problem
from the perspective of game theory. We use improved noncooperative evolutionary game theory to build models to solve the
problem of the energy waste caused by routing congestion. The proposed PSOLB-EGT protocol is intensively experimented with
a number of topologies in various network scenarios, and the results are compared with the well-known cluster-based routing
protocols that include the swarm intelligence-based protocols. The obtained results prove that the proposed protocol has
increased 9%, 8%, and 5% compared with the ABC-SD protocol in terms of network life, network coverage, and amount of data
transmitted, respectively.

1. Introduction

Awireless sensor network (WSN) consists of a large number of
microscale, low-power-consumption, and energy-constrained
sensor nodes with information sensing, data processing, and
wireless communication functions. With the continuous
development of network technology and wireless communica-
tion technology, WSNs have been widely used in many fields
such as the military, environmental monitoring, medical care,
and industry.

WSNs are often deployed in hostile environments and
need to continuously sense and transmit data unattended.
Because a WSN has characteristics such as a large number
of nodes, a wide geographical distribution, and a complex

working environment, it is often not realistic to replace the
battery to supplement energy after the completion of the
layout. Therefore, one of the main challenges in WSNs is
the energy consumption problem [1]. Usually, there are two
ways to reduce network power consumption: One is to design
the hardware equipment of the sensor network to have lower
energy consumption, such as a low-power CPU or transmit-
ter. The other is to use more reasonable energy-saving proto-
cols such as a low-energy adaptive clustering hierarchy
(LEACH) and the threshold-sensitive energy efficient sensor
network protocol (TEEN) [2].

The main task of our study is to optimize the selection and
formation of clusters at the initial stage by using an improved
protocol. In the data transmission stage, we analyze this
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problem from the perspective of game theory and use the
improved noncooperative evolutionary game theory (EGT)
to solve the routing problem of WSNs [3]. Our proposed
method is based on a more reasonable network topology
framework with a two-layer cluster structure. Before each
round of communication, the improved particle swarm
optimization (PSO) algorithm is adopted to reselect cluster-
head nodes instead of randomly selecting cluster head (CH)
patterns. The PSO algorithm is optimized to avoid local
optimization and accelerate global convergence. Compared
with previous protocols, this clustering protocol has the
following advantages:

(i) It enables data aggregation at the CH to discard
redundant and uncorrelated data. Thereby, it saves
energy in the sensor nodes

(ii) Routing can be more easily managed because only
the CH needs to maintain the local route setup of
other CHs and thus requires little routing informa-
tion. This in turn greatly increases the scalability of
the network

(iii) It also saves communication bandwidth because the
sensor nodes only communicate with their CH, thus
avoiding redundant message exchanges between
them

The purpose of the routing algorithm is to select the
optimal path to reduce communication delays and energy
consumption. Once the optimal set of CHs is elected in the
clustering phase, the next step is to find the optimal routing
tree from the CHs to the BS while minimizing the total cost.
Calculating a desirable route is a challenging problem.
Assuming that one path is better than any other path, this
path may be used more frequently, which may cause nodes
on this path to run out of energy faster [4].

1.1. Related Works. Previous studies have shown that the use
of cluster-based layered protocols has broad application
prospects for improving the energy efficiency of sensor
nodes. In hierarchical routing, when sensor nodes perform
multihop communication and data aggregation or fusion in
the cluster area, the energy consumption of the sensor nodes
is greatly reduced, thereby reducing the amount of informa-
tion sent to the cluster [5].

LEACH was the first hierarchical routing protocol
proposed for WSNs. Many subsequent hierarchical routing
protocols are based on LEACH. The LEACH core algorithm
consists of three steps [6]. First, CH nodes are randomly
selected so that the energy load of the whole network is
evenly distributed to each sensor node. Then, data fusion
technology is used to reduce the amount of data sent. Finally,
the goal of reducing network energy consumption and
improving the overall network lifetime is achieved.

T nð Þ =
p

1 − p × r mod 1/pð Þ½ � , if n ∈ G,

0, otherwise,

8<
: ð1Þ

where p is the probability that the current node becomes
the cluster head, r is the current number of rounds, n repre-
sents a node, and G is the set of CH nodes that have not been
elected in the past 1/p rounds. When r = 0, each node has the
same probability p as the CH. Once a node is elected as the
CH, it will not be elected as the CH node in the next 1/p
round. After 1/p rounds, all nodes will be elected as the CH.

Although LEACH can effectively reduce the energy
consumption of the entire network, it also has many defects.
The most obvious shortcomings are as follows: (i) Each CH
communicates with the BS in a single-hop mode. A CH node
that is far away from the BS consumes a large amount of
energy. (ii) The residual energy of the current node is not
considered when selecting the CH. If the energy of the
randomly selected CH is too low, it may accelerate node
death and reduce network lifetime. (iii) The number of CH
nodes in LEACH is usually 5% of the number of nodes.
When the distribution density of the sensors varies, a fixed
number of CHs cannot optimize the network overhead [7].

It is precisely because of the obvious defects of the
LEACH protocol that many scholars are trying to optimize
it. Some experts have achieved good results using fuzzy logic
methods [8].

WSN routing protocols can be classified into active and
reactive types according to different application modes.
Active sensor networks continuously monitor surrounding
physical phenomena and send monitoring data at a constant
rate, while responsive sensor networks only transmit data
when observed variables change.

TEEN, which is also based on the LEACH protocol, is the
first hierarchical WSN routing protocol for responsive net-
works. TEEN works in the same way as LEACH, except that
it only sends data after the sensor node detects relevant data [9].

After TEEN recluses each cluster area, the CH node
needs to broadcast the following three parameters to the
members of the cluster: (i) Feature value: this is the physical
parameter of the data that the user cares about. (ii) Hard
threshold (HT): this is the absolute threshold of the
monitored data eigenvalue. When the characteristic value
monitored by the node exceeds this threshold, the transmit-
ter is started and reports this value to the CH node. (iii) Soft
threshold (ST): this monitors the small range change thresh-
old of the feature value to trigger the node to start the
transmitter to report data to the CH.

By setting hard and soft thresholds, TEEN effectively
reduces the amount of data sent and is more energy efficient
than LEACH. It is suitable for environments that require
real-time monitoring of changes. Monitors can also balance
the accuracy and requirements of the system of monitoring
data by setting different soft thresholds [10].

Although the TEEN protocol is more energy efficient
than the LEACH protocol, TEEN still has the following
disadvantages: (i) When the threshold has not been reached,
the user will not be able to obtain information. (ii) The
receiver of the CH node is always active. To receive data from
member nodes at any time, the receiver increases the burden
on the CH nodes to some extent.

Swarm intelligence optimization originates from a spe-
cific phenomenon of group movement in nature. By studying
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the group behavior of these real creatures, human beings seek
the rules governing them through simulation and imitation,
and we build artificial intelligence models to solve complex
problems that cannot be solved by conventional methods in
daily life and new problems that have not yet been solved.
In recent years, some intelligent algorithms, such as ACO,
PSO, and GA, have been studied to solve NP-hard optimiza-
tion problems in WSNs. In 1995, Kennedy and Eberhart
proposed and designed a general method for solving practical
optimization problems, namely, the particle swarm optimiza-
tion (PSO) algorithm [11]. By sharing and conveying
information about the location information of a food source
among groups, the speed of finding food can be accelerated,
and the final goal can be achieved through joint effort. The
PSO algorithm is easy to realize with high accuracy and is
faster and more efficient than other algorithms [11, 12].

People often refer to two important kinds of information
in their decision-making process. The first is their own
experience, and the second is the experience of others in
the group. Similarly, in the process of foraging in birds, each
bird’s initial state is in a random position, and the direction
of flight is also random. However, over time, these initially
random birds spontaneously organize into a colony by learn-
ing from each other, sharing information, and accumulating
foraging experiences. Each bird remembers the best location
it finds, which is called a local optimum. In addition, it can
also remember that the optimal location searched so far in
the flock is the global extreme value, which is called the global
optimum. The foraging centers of the whole flock move
toward the global optimum.

In the PSO model, each individual can be regarded as a
particle, and the flock of birds as a swarm of particles. In a
D-dimensional target space, for a group of M particles, the
position of the i-th particle is expressed as xid . In other words,
the position of each particle is a potential solution. By
substituting xid into the objective function, its adaptive value
can be calculated and evaluated according to the size of the
adaptive value. The best position experienced by individual
particles is denoted as pbestðtÞ, and the best position experi-
enced by all particles in the whole population is denoted as
gbestðtÞ. The velocity of the i-th particle is expressed asvid .
Standard PSO (SPSO) can be expressed with

vid t + 1ð Þ =w × vid tð Þ + c1 × r1 × pbest tð Þ − xid tð Þð Þ
+ c2 × r2 × gbest tð Þ − xid tð Þð Þ,xid t + 1ð Þ

= xid tð Þ + vid t + 1ð Þ,
ð2Þ

where w is the inertia weight factor and parameters c1 and c2
are collectively referred to as learning factors and are, respec-
tively, referred to as cognitive parameters and social parame-
ters. r1 and r2 are random numbers in the range ½0, 1�.

We usually use a linearly decreasing inertia weighting
factor w to improve performance. At each update iteration,
the value of w decreases linearly from approximately 0.9 to
0.4. Choosing the appropriate inertia weight w can provide
a balance between global and local search, and it can result
in finding a sufficiently optimal solution with fewer average
iterations. Its value is set as follows:

wc =wmax − wmax −wminð Þ t
Tmax

� �
, ð3Þ

where Tmax is the total number of iterations, t is the
current iteration, wmax = 0:9, and wmin = 0:4. wc is a linearly
decreasing value. It decreases with the increase in the number
of search rounds, which indicates that the effect of the inertial
velocity of particles decreases gradually.

Traditional PSO algorithms do not have genetic and
crossover operations, relying on the pbestðtÞ and gbestðtÞ of
the particles to complete the search. It has the advantages
of fewer parameters, simple structure, fast search speed, and
easy convergence. However, due to the lack of dynamic
adjustment of parameters, it can easily fall into a local
optimum, resulting in low convergence precision.

Wireless sensor network routing is a challenging area of
research. In general, when we try to optimize routing prob-
lems, there are many metrics that should be considered, for
example, the distance between nodes, data delay, residual
energy of nodes, transmission rate of each link, and distrib-
uted characteristics of wireless sensor networks.

In the past, game theory focused on the field of econom-
ics, and it was used to study the decision-making process of
economic activities so that people could optimize outcomes
for their economic interests. Since the 1980s, game theory
has been improved and applied more widely. In addition to
its applications in economics, it is also widely used in biology,
computer science, public policy, and other disciplines and
has had an important impact.

Biologists Maynard Smith and Price in 1973 introduced
classical game theory into biological evolution analysis and
put forward the basic equilibrium concept of EGT, the evolu-
tionary stable strategies (ESSs). In 1978, Taylor and Jonker dis-
covered the relationship between evolutionary stable strategies
and replication dynamics, marking the birth of EGT.

In classical game theory, it is assumed that the players in
the game are completely rational and the decisions they make
are optimal. These players are known to be rational and fully
aware of the game. However, in the actual maximum lifetime
problem ofWSNs, not all nodes participating in the game are
completely rational, so the assumptions of classical game
theory are not applicable to this problem.

Compared with classical game theory, EGT does not
require participants to be completely rational and have suffi-
cient information but only requires participants with limited
rationality to learn from each other step by step to make the
whole group composed of participants reach equilibrium. It
studies the entire group of participants [12]. Therefore,
EGT is selected in this paper to study the routing problem
of improved protocol in WSNs.

There are two basic concepts in evolutionary game
theory, i.e., ESSs and replication dynamic models. The ESS
is defined as follows:

If there is a real number α greater than 0, for all the policy
sets mðm ≠ nÞ such that

U n, βm + 1 − βð Þnð Þ >U m, βm + 1 − βð Þnð Þ, ð4Þ

3Journal of Sensors



for any β ∈ ð0, αÞ, then n is called an ESS factor and α is the
invasion bound, which is a constant associated with policy
m. βm + ð1 − βÞn is determined from groups that choose
the ESS and groups that adopt a mutation strategy, and it
belongs to a mixed group [13].

Replication dynamic theory analyzes the behavior of the
whole group based on the principle of “survival of the fittest”
in the theory of evolution and changes in the group behavior
in the evolutionary game with this method. The expression
that determines group behavior is as follows:

X tð Þ = dx
dt

= Xi tð Þ Uið tð Þ − �U tð Þ� �
, ð5Þ

where XiðtÞ represents the proportion of the number of
individuals in the group choosing strategy i at time t in the
whole group. UiðtÞ represents the benefit for individuals in
the group who select strategy i at time t. �UðtÞ is the average
benefit received by each individual in the group at time t [14].

In this section, we review the game theory used to
enhance energy conservation and extend the network life-
time. If the individuals who select strategy i in the group
obtain more benefits than the average utility of each individ-
ual in the group, then the proportion of individuals who
select pure strategy i will increase. Conversely, if the utility
obtained by the individuals in the group choosing pure
strategy i is smaller than the average utility obtained by each
individual in the group, the individuals will change their
choice to other strategies accordingly [15, 16].

For a better solution, there must be a balance between the
WSN energy consumption and the stability of the system. This
motivated us to combine PSO and EGT into a new improved
protocol. The reasons for the superior performance of the
proposed hybrid PSO-EGT protocol over existing protocols
are given in what follows.

1.2. Contributions. This paper proposes a CH selection
algorithm for WSNs based on improved PSO search and
finds the best data transfer path between CHs and the BS
through EGT. The main contributions of this paper include
the following:

(i) In clustering, the node within the distance threshold
D0 directly transmits data to the BS, which greatly
reduces the energy consumption of the clustering
and routing of these nodes

(ii) A model for calculating the optimal CH number is
proposed. Instead of determining the number of
CHs as the percentage of the total number of nodes
in the past, the model determines the optimal cluster
head number according to the actual parameters in
the WSN working environment

(iii) In terms of routing, the working area of the WSN is
sorted and planned into different concentric circles
according to the threshold value D0, and the routing
is layered

(iv) When selecting the transmission path, the shortest
path is changed from the previous simple choice to
the path jointly determined by the shortest path,
the residual power of the relay node, and congestion
penalty factors

1.3. Organization. The rest of the paper is organized as
follows: In Section 2, the energy and systemmodels are intro-
duced. Section 3 provides two algorithms (i.e., hybrid PSOLB
and EGT) for the analysis and design of clustering and rout-
ing. The simulation results are presented in Section 4. Finally,
Section 5 concludes this paper.

2. Energy and System Model

2.1. Energy Model. Generally, a wireless sensor network node
is composed of four modules, i.e., an information sensing
module, an information processing module, an information
communication module, and an energy supply module. The
information sensing module is responsible for collecting
and transforming information about the perceived object.
The information processing module is responsible for
controlling the operation of the entire node and storing and
processing the data it collects itself and the data sent by other
nodes. The information communication module is responsi-
ble for communicating with other nodes, communicating via
interactive control messages, and receiving and transmitting
service data. The energy supply module is responsible for
providing the sensor nodes with the energy required for oper-
ation, typically via a large capacity microbattery. It can be seen
that each module needs to consume energy. Therefore, it is
necessary to establish an energy model, also called an energy
consumption model. In contrast to previous studies, we con-
sider the energy consumption of each functional module of
the wireless sensor node. The energy consumption model is
shown in Figure 1. It can be seen that the energy consumption
of the wireless sensor node is mainly determined by three
modules. In this section, we will build an information sensing
energy consumption model, an information processing energy
consumption model, and an information communication
energy consumption model. It is necessary to analyze the
energy consumption of each module to establish the total
energy consumption model of the node [17].

The energy consumption of the information sensing
module is related to the power, sensing time, and sensing
data quantity of the sensor. Generally, the sensing energy
consumption Es for a node can be expressed as follows:

Es = Is +Vs + Ls + Ts, ð6Þ

where Is and Vs represent the current and voltage when
sensing, respectively; Ls denotes the number of bits in the
sensing data; and Ts represents the sensing time.

The information processing energy consumption is
mainly determined by the energy consumption per unit byte
of information processing and the total amount of data to be
processed. The calculation is shown in
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Ep = l × Eda,
Eda = Iread × V read × Tread + Iwrite ×Vwrite × Twrite,

ð7Þ

where l is the total amount of data to be processed and
Eda represents the energy required for processing one bit of
data information. Iread, V read, andTread, respectively, repre-
sent the current, voltage, and time for reading data when
the sensor processes data. In the same way Iwrite, Vwrite, and
Twrite, respectively, represent the current, voltage, and time
for writing data when the sensor processes data.

The energy consumption of sensor nodes during the
process of data communication is mainly composed of two
parts, i.e., the energy consumption of receiving information
and the energy consumption of sending information sending
[18].

Energy consumed by data transmission is

Etx l, dð Þ = Etx−elec lð Þ + Etx−amp l, dð Þ =
l × Eelec + l × εf s × d2, d < dth,

l × Eelec + l × εmp × d4, d ≥ dth,

8<
:

ð8Þ

and the energy consumed by data reception is

Erx lð Þ = Erx−elec lð Þ = l × Eelec,

dth =
ffiffiffiffiffiffiffi
εf s
εmp

s
,

ð9Þ

where l is the total amount of data to be transmitted or
received. Eelec is the energy consumed to send one bit of data.
The amplifier power consumptions εf s and εmp are determined
by the transmission distance and the received bit error rate. d
is the distance between two sensor nodes. The signal energy
consumption model is divided into two categories according
to distance (i.e., a free space model and a multipath attenua-
tion model). When the transmission distance is less than the
distance threshold dth, the free space energy consumption
model is adopted in the communication mode; otherwise,
the multipath attenuation model is adopted. dth is a constant,
and the value depends on the network environment.

Thus, we can determine the total energy consumed by
each sensor [19].

Etotal = Es + Ep + Etx + Erx: ð10Þ

2.2. System Model. In this section, we assume a WSN consists
of N nodes (H CH nodes and N‐H non-CH nodes) and one
BS. There is a set of sensors that are randomly distributed in a
designated area. Once the deployment is complete, all sensor
nodes become static nodes. In the model we propose, each
sensor node can only be assigned to one cluster, and each
CH node acts as the CH of exactly one cluster. Each node
has local information, including its own unique ID, the CH
node ID, the information collection and transmission round,
the residual energy level, and the distance to its neighbors,
etc. As discussed above, the entire operation of the WSN is
divided into T rounds by time. In each round, a normal
sensor node sends the monitored data to its cluster head.
After receiving the data, the cluster head fuses the data to
discard the redundant data and either sends the fused data
directly to the BS or forwards it to the BS in multiple hops
through other nodes (CH or member nodes) [20].

As shown in Figure 2, according to the general working
principle of the WSN, this paper analyzes the initialization
stage and data transmission stage. The focus is on optimizing
the election of CHs and data transfer [21].

In this paper, the proposed PSO-EGT protocol is based
on the classical LEACH protocol. The protocol uses a round
as a unit; each round consists of an initialization phase and a
data transmission phase for the purpose of reducing unnec-
essary energy consumption. The specific process of the two
phases of each round is shown in Figure 2. The initialization
phase is for calculating the optimal number of clusters,
electing the CHs, and forming clusters. In the data transmis-
sion phase, the WSN performs data aggregation and data
transmission and reception [22].

The proposed scheme, called the hybrid PSO-EGT proto-
col, is based on the common characteristics of both the PSO
and EGT algorithms. In this paper, a centralized two-tier
PSOLB-EGM protocol is proposed to solve the problem of
clustering and routing in WSNs [23]. To implement the
hybrid PSO-EGT protocol, the flows to be followed are
shown in Figure 3.

Energy supply module

Voltage
conversionBattery

Network

Information communication module

RAM
AD/DCSensor

Information sensing module
Information processing module

ROM
Network
protocol

Operating
system TransceiverMAC

Microprocessor

Figure 1: Composition of wireless sensor node energy consumption.
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The main task of the protocol in the initialization phase is
to select the cluster head.

First, a node must satisfy two conditions at the same time
to become a candidate cluster head: the distance from the
node to the BS is greater than the threshold. The residual
energy of the node is greater than the average residual energy
of all nodes.

The cluster head is selected using our improved PSOLB
algorithm for candidate cluster head.

In the data transmission phase, nodes within the BS
threshold directly transmit data to the BS. Nodes outside
the BS threshold use the improved EGT algorithm to trans-
mit data to the BS.

3. Algorithm Design and Implementation

3.1. The PSOLB Algorithm and Parameter Setting. According
to the energy consumption model of WSN, the energy con-
sumption of nodes is affected by sensor data volume, sensor

time, node distance, and other factors. Among these
influencing factors, the first to be considered is the distance
between sensors after clustering, that is, the compactness of
clusters [24].

In many existing clustering algorithms, the number of
CHs is usually fixed. The algorithm proposed in this paper
takes into account that in an actual working environment,
sensor node power, cluster number, and other factors are
usually related to the size of the monitoring area, BS location,
and number of sensor nodes. If there are too many CHs in
the network, redundant CH nodes will consume more energy
in the network. If the number of CH nodes in the network is
too small, remote nodes will not be able to find suitable CHs
to join, resulting in the loss of monitoring data and excessive
network delay [25].

It is assumed thatN sensor nodes are randomly arranged in
a monitoring area of size M ×M. Since the work of the CH
node is mainly divided into receiving information, processing
information, and sending information, the energy consumption

Calculating the optimal
number of clusters

Election of the CHs

Cluster formation

Data aggregation

Data transmission

Data reception

Data transmission phaseInitialization phase

Figure 2: Structure of the WSN general working principle.
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Distance between sensor node
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Distance between sensor node
and BS>threshold distance?

After the relay node is
found using the EGT
algorithm, the data is

transmitted
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End
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Figure 3: Flows of the PSOLB-EGT protocol.
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of a single CH node is the sum of the energy consumptions of
the above three tasks. In the initial condition, we assume that
the CH node is far from the BS. According to equations (8)
and (12), we can determine the total energy consumption of
the i-th CH node as follows:

ECHi
= Etx + Erx + Edx = a × l × Eelecð Þ

+ l × Eelec + l × εmp × d4to BS
� �

+ a × l × Edað Þ,
ð11Þ

where a =N/H represents the total number of nodes in the
cluster (including one CH node and a − 1 non-CH nodes), l
represents the total amount of transmitted data, Eda is the
energy consumption of data aggregation, and dto BS is the
distance from the CH node to the BS [26].

Then, according to the Euclidean theorem, the distance
between a CH and the BS can be expressed as follows:

dto BS =
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 + y21

q
: ð12Þ

The function of a non-CH node is to send perceived
information. We assume that the distance between all non-
CH nodes and CH nodes is within the threshold dth. The
total energy consumption of the j-th non-CH node in the i
-th cluster can be calculated by

Enon‐CH ji
= l × Eelec + l × εf s × d2to CH ji

: ð13Þ

Similarly, the distance between the j-th non-CH node
and the i-th CH can be expressed as follows:

dto CH ji
=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x22 + y22

q
: ð14Þ

The expected distance from the CH node to the sink node
is

Ε d4to BS
� �

=
ðM
0

ðM
0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 + y21

q� �4
ρ x1, y1ð Þdx1dy1

=
ðM
0

ðM
0

x21 + y21
� �2

ρ x1, y1ð Þdx1dy1,
ð15Þ

where ρðx1, y1Þ is the network node density function.
Similarly, we can determine the mathematical expectation
of d2to CH ji

.

Ε d2toCH ji

	 

=
ðM
0

ðM
0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x22 + y22

q� �2
ρ x2, y2ð Þdx2dy2

=
ðM
0

ðM
0

x22 + y22
� �

ρ x2, y2ð Þdx2dy2:
ð16Þ

The total energy consumption of the entire WSN can be
obtained from equation (16).

Etotal = 〠
H

i=1
ECHi

+ 〠
a−1

j=1
Enon‐CH ji

 !
: ð17Þ

According to equations (15) and (16), the expected value
of the total energy consumption is

Ε Etotalð Þ =H × Ε ECHi

� �
+ N −Hð Þ × Ε Enon‐CH ji

	 

=H × a × l × Eelecð Þ + l × Eelec + l × εmp × d4to BS

� �
+ a × l × Edað Þ� �

+ N −Hð Þ × l × Eelec + l × εf s × d2to CH ji

	 

=H × a × l × Eelecð Þ + l × Eelec + l × εmp × Ε d4to BS

� �� �
+ a × l × Edað Þ� �

+ N −Hð Þ × l × Eelec + l × εf s × Ε d2to CH ji

	 
	 

:

ð18Þ

We take the derivative of equation (18) with respect to H
and set its derivative equal to zero, so that we can determine
the optimal number of clusters containing the maximum life-
time of all nodes.

dΕ Etotalð Þ
dH

= 0: ð19Þ

In contrast to the traditional PSO algorithm, we first
propose that the best result of the last round particle search
should be learned; this result is denoted as lbest, and we assign
the learning weight c3 to it [27].

vid t + 1ð Þ =w × vid tð Þ + c1 × r1 × pbest tð Þ − xid tð Þð Þ
+ c2 × r2 × gbest tð Þ − xid tð Þð Þ
+ c3 × r3 ×Ω × lbest t − 1ð Þ − xid tð Þð Þ,

Ω =
1, otherwise,

0, lbest t − 1ð Þ = pbest tð Þ or lbest t − 1ð Þ = gbest tð Þ,

(

xid t + 1ð Þ = xid tð Þ + vid t + 1ð Þ,
ð20Þ

where parameters c1 and c2 are collectively referred to as
learning factors and are, respectively, referred to as cognitive
parameters and social parameters. c3 is the learning factor of
lbest. r1 and r2 are the intelligent learning factor in this paper.
Similarly, r3 is the intelligent learning factor of lbest. Ω is a
control parameter. When lbest coincides with pbest orgbest, Ω
= 0, and c3 × r3 ×Ω × ðlbestðt − 1Þ − xidðtÞÞ fails to prevent
repeated learning of particles.

The PSOLB algorithm allows particles to learn from the
best particles in the previous round of searching to avoid falling
into a local optimization and to find the global optimization
faster. Therefore, PSOLB can meet the requirements of the
exploration and development of high-dimensional problems.

In each round, the particle updates its position through
three extreme values (i.e., pbest, the individual historical
optimal solution; gbest, the global historical optimal solution;
and lbest, the global optimal solution in the last round). The
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position of the particle is the optimal solution of the distance
and is the only criterion for evaluating the particle.

Another improvement to the standard PSO algorithm is to
change the learning factors c1, c2 from fixed values to dynamic
adaptive learning factors. In the basic PSO algorithm, c1, c2
have the ability of self-learning and learning from excellent
individuals, so that these particles are close to the best points
in the group or field. c1 and c2 regulate the maximum stride
length of particles flying in the optimal direction of individuals
or groups, respectively. When the learning factor is small, a
particle may wander in a region far away from the target
region.When the learning factor is large, the particle canmove
rapidly to the target region or even beyond the target region.
Therefore, the values of c1 and c2 will affect the performance
of the PSO algorithm [28]. The specific improvement methods
are as given in Figure 4.

From Figure 4, we can see that in the proposed method,
the learning factors c1 and c2 are no longer fixed values of at
2 but are dynamically estimated by the fitness function of
the particles. We divide them into four levels. When the
particle fitness is greater than gbest, this indicates that the
particle is close to the optimal solution. At this point, we
reduce the value of the particle learning factor ½0, 1� and
improve the local search ability in order to search for the opti-
mal solution faster. When the fitness of a particle is low, the
distance between the particle and the optimal solution is very
far. We force particles to take steps out of the local area (c1 and
c2 take larger values) to search for the best solution faster.

To overcome the shortcomings of the typical linear
decrease strategy, the inertia weighting factor in this paper
adopts the linear differential decrement method, and its
expression is as follows:

dw
dt

= −
2 wmax −wminð Þ

Tmax
× t,

wc =wmax −
wmax −wminð Þ

Tmax
2 × t2,

ð21Þ

where t is the current number of search rounds, Tmax is
the maximum number of search rounds, wmax is the initial

inertia weight value, and wmin is the inertia weight value at
the maximum number of search rounds. In this paper,
wmax and wmin take values of 0.9 and 0.4, respectively. In
the previous linear decrement strategy, the rate of decline of
wc is linear. That is, the presearch and postsearch decline
speeds of wc are the same. When wc adopts the differential
decrement method, the trend of decreasing this value in the
PSO algorithm in the early search is slower, and the global
search ability is stronger. The downward trend in the search
period accelerates, and the local search ability is strength-
ened. To some extent, the differential decrement method
overcomes the limitations of the typical linear decrement
strategy and accelerates the convergence of the PSO
algorithm. The specific optimization results will be analyzed
with the simulation experiment results.

After the optimal number of CHs is determined, the
optimization protocol will take the CHs as the core and
optimize the minimum energy consumption of the overall
network and the maximum life cycle of the nodes.

To achieve the goal of saving energy, the following three
values are minimized: the residual energy of non-CH nodes,
the distance between non-CH nodes and CH nodes, and the
number of hops from a CH to the BS in multihop mode.

The fitness function of the CH node can be expressed as

Ft = μ1 × Eresidual‐non‐CH + μ2 ×Dto CHi
+ μ3 ×Ηto BS,

μ1 + μ2 + μ3 = 1,
ð22Þ

where μ1, μ2, and μ3 are the control parameters of the three
parts of the fitness function. In this protocol, the equivalent
values of the three control parameters represent the same effect
of the three influencing factors. Eresidual‐non‐CH is the sum resid-
ual energy of the non-CH nodes, and its expression is

Eresidual‐non‐CH tð Þ = Eresidual‐non‐CH t − 1ð Þ − 〠
H

i=1
〠
a−1

j=1
Enon‐CH ji

tð Þ,

ð23Þ

Switch: begin

Case 1 : Ft > gbest

Case 2 : gbest > Ft > pbest

Case 3 : pbest > Ft > Ft

–

Case 4 : Ft > Ft

–

0 ≤ (c1 = c2) ≤ 1; break

1 ≤ (c1 = c2) ≤ 2; break

2 ≤ (c1 = c2) ≤ 3; break

3 ≤ (c1 = c2) ≤ 4; break

Figure 4: Specific improvement methods.

8 Journal of Sensors



where Enon‐CH ji
is the energy consumption of the j-th non-CH

node in the i-th cluster at time t.

Dto CHi
= 〠

a−1

j=1
dto CH ji

, ð24Þ

where dto CH ji
is the distance from the j-th non-CH node to the

i-th CH node.

Ηto BS = 〠
H

i=1
Ηto BSi , ð25Þ

whereΗto BSi represents the number of hops from the i-th CH
node to the BS in multihop mode. If the distance from the CH
node to the BS is beyond the threshold Ηth, the information
should be transmitted in multihop mode. Multihop mode is
more energy consuming than the single-hop mode, so the
number of such CH nodes should be minimized.

Because the CH node needs to undertake more work, the
node with more residual energy has a greater chance of being
selected as the CH node [29].

Moreover, in order to better complete the following tasks,
the optimization protocol stipulates that only nodes with
residual energy larger than the average residual energy have
the opportunity to be selected as CH nodes. Before selecting
CHs, we put the nodes with a residual energy greater than
the average residual energy into a set Φ = fEresidual ≥ �Eresidualg.

Then, the clustering results of each round are calculated
by using the proposed PSOLB algorithm [30].

The BS will select the best CH node. Before each round,
the WSN will complete the following steps:

(i) First, neighbor nodes are discovered: each node in
the network broadcasts its own ID, residual energy,
distance from the neighbor node, distance from the
BS, and other information to neighbor nodes

(ii) Second, neighbor node information is updated
according to received data packets

(iii) Third, the cluster configuration is broadcast: after
the BS completes the network configuration, the BS
uses flood broadcast again to transmit the configura-
tion to all nodes. It broadcasts the packet containing
the configuration. Each node that receives the packet
changes its state to the CH node

3.2. The EGT Algorithm. In a WSN, the choice of ideal
routing is very challenging. If one path is better than the
others, this may cause unbalanced competition between the
paths. A well-behaved path may be used more frequently than
other paths, resulting in a more crowded path and faster
power consumption. Because of the limited energy resources,
each node saves energy for its own benefit. Unbalanced
competition between paths can lead to path congestion, higher
latency, additional packet collisions, and shorter network life-
times [31].

In this section, we analyze the unbalanced competition
problem for paths from the perspective of EGT, and we
model the routing in aWSN as an evolutionary anticoordina-
tion routing game. Compared with classical game theory,
EGT pays more attention to dynamic strategic changes. The
decision-making process can be seen as a strategic evolution
over time. The EGT algorithm can be divided into three steps
for routing. The specific steps are as follows.

As shown in Figure 5, we simulate the layout of a WSN as
a concentric circle. The innermost radius of the concentric
circle is R, where R = dth =

ffiffiffiffiffiffiffiffiffiffiffiffiffi
εf s/εmp

p
. Therefore, all nodes

within this circular range can directly transmit data to the
BS in the single-hop mode. No clustering is carried out in this
region. Thus, the overall energy consumption of the WSN is
saved. In the concentric circle with a radius of 2R, the nodes
transmit data to the mounting head. The CH transmits data
to the innermost concentric circle node through multiple
hops and then transmits the data to the BS. Similarly, nodes
in the outer concentric circle area first transfer data to the
CH in the region, and then the CH in turn transfers the data
to nodes in the inner concentric circle, up to the BS [32].

The method of choosing a reasonable route in multihop
mode is very important. First, the node establishes a list of
all the neighbor nodes, which are arranged from near to far
according to the distance from the node. Each node stores five
pieces of information: the node ID, the distance from the node
to the neighbor node, the distance from the neighbor node to
the BS, the residual energy, and the bonus value.

In general, the most efficient way for a CH to transmit
data in multihop mode is to find the shortest relay node. To
ensure that the global shortest path can be found every time,
we use the Α∗ algorithm to select the relay node. The Α∗ (A
-star) algorithm is the most effective direct search method to
solve the shortest path in a static road network, and it is also a
common heuristic algorithm for many other problems [33].

f nð Þ = g nð Þ + h nð Þ, ð26Þ

where f ðnÞ is the cost estimation from the initial state to the
target state via the state n, gðnÞ is the actual cost from the
initial state to the state n in the state space, and hðnÞ is the
cost estimation of the optimal path from the state n to the
target state.

Now that we know the distance from the node to the
neighbor and the distance from the neighbor to the BS, we
can calculate the shortest path from the current node to the
BS.

As shown in Figure 6, in many cases, we will face the
problem of routing, that is, two CH nodes will transmit data
through the same relay node. The relay node will transfer a
large amount of data. When a node is a relay node of multiple
CH nodes at the same time, it may easily die because of
excessive energy consumption, which is not conducive to a
good lifetime for the entire WSN.

EGT is a powerful mathematical tool that models
strategic interaction and analysis of competition, conflict,
and cooperation with multiple entities.
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In this section, EGT is selected to study routing conges-
tion in the WSN. An evolutionary game does not require
game participants to have complete rationality, but partici-
pants with limited rationality can make the whole group they
compose reach equilibrium step by step through learning
from each other [34].

It can be seen from the previous derivation that the differ-
ence form of the EGT replication dynamic process can be

expressed by equation (5). In this paper, X1ðtÞ represents
the proportion of CH nodes in the second concentric circle
region that have node 1 selected as the relay node at the same
time [35].

XA
1 tð Þ = Nnode 1 as relay

NA located
, ð27Þ

where Nnode 1 as relay represents the number of nodes that
select node 1 as the relay node.N is the total number of nodes
in the concentric circle area where node A is located.

XN
i tð Þ = NnodeN as relay

NA located
, ð28Þ

where Nnodei as relay represents the number of nodes that
selects node i as their relay node.

The utility function of node i at time t being selected as a
relay node is expressed as

UN
i tð Þ = q1 ×

1
Etxi

+ q2 ×
Eresidual‐non‐CHi

Einitial
− q3 ×

Nnodei as relay − 1
Nnodei as relay

,

ð29Þ

where Etxi
represents the energy of data transmission

through node i: the shorter the transmission distance, the
higher the benefit. Eresidual‐non‐CHi

/Einitial is the percentage
of the residual energy of relay nodei. Einitial is the initial
energy of the node. The higher the percentage of residual
energy, the higher the benefit. We encourage CH nodes to
select nodes with high residual energy as the relay nodes.
ðNnodei as relay − 1Þ/Nnodei as relay is the penalty parameter. It
can be seen from equation (27) that when more nodes select
the same relay node at the same time, the penalty parameter
increases exponentially. q1, q2, and q3 are three weight values
that can be adjusted according to actual conditions. In this
section, we set the three weight values as follows:

q1 = q2 = q3 ≈ 0:33, ð30Þ

XN
i = dx

dt
=
Nnode 1 as relay
Ni located

× UN
i tð Þ − �U tð Þ� �

=
Nnode 1 as relay
Ni located

× q1 ×
1
Etxi

+ q2 ×
Eresidual‐non‐CHi

Einitial
− q3 ×

Nnodei as relay − 1
Nnodei as relay

 !
− �U tð Þ

 !
,

ð31Þ
where �UðtÞ is the average utility function, and it is expressed
by

�U tð Þ = 〠
Nrelay=i

Nrelay=1

XN
i tð Þ ×UN

i tð Þ: ð32Þ

As seen from Figure 6, when the CH nodeA selects node 1
as the relay node, the revenue of the CH node is relatively
large. When the utility value is greater than the average utility,
the CH node A will not change its policy but will continue to

BS

R

2R

3R

1
2

3

n

A B

CH
Non-CH

Figure 5: Combination of single hop and multihop.
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n

A B
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Figure 6: Two nodes find the same relay node.

10 Journal of Sensors



select node 1 as the relay node. When the CH node B also
selects node 1 as the relay node, the utility values of CHs A
and B are reduced. Therefore, CH A or B will change its policy
and select another node as the relay node.

After several evolutions, the game will eventually
converge to the evolutionary stable strategy ESS determined
by the following equation.

XN
i = 0: ð33Þ

3.3. Algorithm Convergence Analysis. After all CHs select a
node as the relay node to transmit data, each CH evaluates
its own utility according to its own utility function and then
compares the obtained utility with the average utility of the
group: if its own utility is smaller than the average utility of
the group, it randomly chooses to access other relay nodes
according to a certain probability; if not, it will keep the
previous access network unchanged. See the appendix for a
detailed description.

3.4. Analysis of Algorithm Time Complexity. Two important
indicators to measure the performance of the optimization
algorithm are the accuracy and the speed of the algorithm
in solving the problem. The accuracy analysis of the
PSOLB-EG protocol has been given in the previous sections.
The speed of the algorithm is affected by the time complexity
of the algorithm. Therefore, we will focus on the time
complexity of each algorithm and give the overall time
complexity of each algorithm.

Standard PSO algorithms include processes such as parti-
cle swarm initialization, search updates, and particle swarm
updates. The computational complexity of the algorithm is O
ðN × I ×DÞ, where N is the number of particles, I is the
maximum update algebra, and D is the target dimension.
However, the protocol we propose is to cluster at nodes other
than the BS threshold. The fixed learning factor value is chan-
ged to the adaptive value, which increases the comparison
time OðNBS × I ×D +NBS × CtÞ of the fitness function and
the target value; NBS represents nodes other than the BS
threshold and Ct represents the comparison time. In the same
way, all the particles in the process of each round of search
have learned the best results of the last round, so the total
PSOLB time complexity isOðNBS × I ×D +NBS × ðCt + LtÞÞ
, where Lt is the learning time of each particle. Because NBS
is less than N , the proposed protocol is less complex than
the standard PSO algorithm.

In terms of data transmission routing, the time complexity
of the general exhaustion algorithm is OðNCH ×NCH‐neighbor
×NmultihopÞ, where NCH represents the number of cluster
heads, NCH‐neighbor represents the number of neighbors of the
cluster head, andNmultihop represents the number of hops from
the cluster head to the BS. The proposed EGT algorithm estab-
lishes a cluster head route, and its time complexity becomes
OðNBSCH ×Nupper ×NmultihopÞ, where NBSCH represents the
number of cluster heads outside the BS threshold, and Nupper
represents the number of nodes in the upper layer. Because
NBSCH <NCH and Nupper <NCH‐neighbor, the time complexity

of the EGT algorithm is less than that of the general exhaustive
algorithm.

Through the above analysis, the PSOLB algorithm takes
slightly more time than the standard PSO algorithm, but it
is better in terms of search accuracy, so the PSOLB algorithm
is more energy efficient than the standard PSO algorithm.
Regarding the routing algorithm, the EGT algorithm is
superior to other search methods in solving accuracy and
time. The overall PSOLB-EGT time complexity is superior
to that of the standard PSO algorithm as well as the greedy
routing algorithm and some other cluster routing algorithms.
The above conclusions will be specifically analyzed in the
simulation experiment.

3.5. Analysis of Algorithm Space Complexity. Space complex-
ity is mainly used to measure the storage space occupied by
the algorithm. We analyze the space complexity of the hybrid
algorithm from two aspects: PSOLB algorithm and EGT
algorithm. We assume that each population has N particles,
the search space is D-dimensional, and there are a total of
M populations. For the standard particle swarm algorithm,
the storage space required to store the particle position and
velocity is Oð2NDMÞ, and the space occupied by the Pbest
of each particle is OðNDMÞ, so the space complexity of the
standard particle swarm algorithm is Oð3NDMÞ. For the
PSOLB algorithm, in addition to the particle position,
velocity, and storage space required, each particle needs to
store the optimal position of the previous round, so the
position space of OðNDMÞ needs to be increased. In addi-
tion, consider that the space for storing the dynamic learning
step length is OðNDÞ. Therefore, the total space complexity
of the LB-PSO algorithm is O = ð4NDM +NDÞ.

In the WSN data transmission stage, the space complex-
ity of the EGT algorithm is as follows: assuming that the
number of nodes within the BS threshold is V , this part of
the nodes directly transmits data to the BS, and its space
complexity does not need to be calculated compared to the
original algorithm. The current node uses the EGT algorithm
to calculate the storage space of the fitness function value of
each neighbor node as A, the storage space for the average
fitness of the remaining nodes is B, and the storage space
for the temporary variables of the improved EGT algorithm
is C. Then, the worst space complexity of the improved
EGT algorithm is OððN −VÞ × ðA + BÞ + CÞ. This has lower
space complexity than the standard EGT algorithm.

Thus, it is the LB-PSO algorithm space rather than the
standard PSO complexity that increases, but the EGT-
improved algorithm reduces the complexity of the algorithm
rather than the original space. Therefore, the space complex-
ity of the hybrid algorithm is basically equivalent to the
original standard algorithm.

4. System Simulation Analysis

In this section, we use numerical simulation to evaluate the
performance of our algorithm PSOLB-EGT. Assume that
the network coverage is 200m × 200m, where the BS coordi-
nates are located at (100, 100), and 100 to 400 sensor nodes
are randomly distributed. The simulation parameters used
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in this paper, which accord with those in references [14, 16,
22], are shown in Table 1, and all simulation models and
algorithms are coded in MATLAB 2015b.

To evaluate the performance of the algorithm, we
compare the clustering and routing of the PSOLB-EGT
protocol with those of PSO-C, ABC-SD, TPSO-CR, and
JCR. TPSO-CR is a two-tier PSO algorithm which is
proposed to solve the problem of clustering and routing in
WSN [36]. The ABC-SD algorithm exploits the biologically
inspired fast and efficient searching features of the Artificial
Bee Colony metaheuristic to build low-power clusters [37].
JCR in terms of energy consumption is the clustered routing
protocol proposed in 2016 [30, 31]. Since PSO-C does not
include a multihop routing protocol, it adopts a greedy
routing algorithm. In the greedy routing algorithm, every
node is assumed to know its distance to neighbor nodes.
CH selects its nearest neighbor node as a relay node [38].

In addition, we use energy consumption, lifetime, residual
energy (number of surviving nodes), packet loss rate, and node
capacity (throughput) as indicators in simulating and compar-
ing the four protocols. The throughput capacity of the WSN
refers to the total data rate (or the total number of data) sent
on the network, that is, the data rate (or the number of data)
sent by the CHs to the BS and the data rate (or the number
of data) sent from the nodes to the CHs. The size of the
throughput is often used in network protocols to indicate the
performance of the network. Therefore, throughput is often
used as one of the evaluation criteria for routing protocols [39].

In the scenario where the network model is uniformly
distributed for N sensor nodes, Michael and Martin in [40]
have deduced the upper and lower bounds of the capacity
in the application case. When the number of nodes N in
the network tends to infinity, the upper and lower boundaries
coincide and the conclusion is that the capacity isΘðlog ðNÞÞ
. The throughput capacity of a single node is Θðlog ðNÞ/NÞ.
For wireless sensor networks with limited node energy,
throughput capacity and available throughput for a single
node are important performance metrics [34, 35]. We will
prove its importance in later simulations.

On the other hand, the node capacity of a WSN also
refers to the ability of the node to forward the amount of data.
An important cause of node congestion in WSNs is that the
load is greater than the maximum capacity of the node.
Usually the WSN node load refers to the amount of informa-
tion that a node needs to forward at a certain moment. Since
theWSN node is limited by hardware resources, the node has
a fixed capacity, and if the load exceeds its capacity at a cer-
tain time, congestion will occur [41].

ϖ = 1, if Co > Li = 〠
k

1
lki,

0, otherwise,

8><
>: ð34Þ

η = Li
Co

, ð35Þ

where Co represents the capacity of node i, Li represents the
load of node i, kirepresents the number of all neighbor nodes

of the node, lki indicates the amount of data transmitted by
the neighbor node k to node i, and η indicates the node
capacity occupancy. In the subsequent simulation experi-
ments, we will analyze node capacity in detail [42].

In the PSOLB-EGT protocol, congestion is solved by the
following steps: establishing a list of next-hop spare relay
nodes, detecting node congestion, establishing an alternate
data transmission path, and restoring the original transmis-
sion path after congestion is released.

In the PSOLB-EGT protocol, congestion is solved by the
following steps: establishing a list of next-hop spare relay
nodes, node congestion detection, establishing an alternate
data transmission path, and restoring the original transmis-
sion path after congestion is released.

As shown in Figure 6, we use equation (29) to calculate
the utility function values for each possible relay node of
the node and sort them accordingly. For example, the utility
function values of the next-hop relay nodes of node A are
arranged in the order of node 1 > node 2 > node

Table 1: Relay node status list.

Node Relay node list η Relay node status

A 1 65% Live

A 2 70% Live

A 3 50% Live

Table 2: Relay node status list.

Node Relay node list η Relay node status

A 1 0 Dead

A 2 70% Live

A 3 50% Live

Table 3: Simulation input parameters.

Parameters Value

Sensor field region (m2) 200 ∗ 200
BS location 100, 100

Number of sensors 100, 200, 300, 400

Optimal number of clusters 5, 10, 15, 20

Initial energy of the node (J) 200

Data packet length (bits) 4096

Energy data aggregation (nJ) 5

Number of rounds 2000

Swarm size 25

Particle position [0, 200]

Node capacity (kbits) 0.1

Eelec (nJ/bit) 50

Eamp (pJ/bit) 0.0012

Efs (pJ/bit) 10

dth (m) 30
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We establish a list of the next-hop relay node statuses for
node A. As shown in Table 1, the utility function values of
each possible successor node in the next hop of node A are
sequentially sorted, and information about their node capac-
ity occupancy, survival, etc. is displayed

According to equations (33) and (35), it is judged whether
the relay node in the list is congested. For example, node 1 is
not congested and continues to be used as a relay node

If node 1 is congested, node A will automatically elect
node 2 as the relay node [43]

In the next round of data transmission, if node 1 conges-
tion is removed, node 1 continues to be used as the relay
node. If a node consumes too much energy and dies, the node
state changes from live to dead. As shown in Table 2, when
relay node 1 dies, node A selects node 2 as the relay node [44]

To test our algorithm, we considered an initial popula-
tion of 50 particles and let them evolve 2000 times. The
parameters required for the experiment are shown in Table 3.

The comparison of the energy consumption of various
protocols under the same running cycle is shown in
Figure 7. Clearly, the PSOLB-EGT protocol shows the best
energy optimization results for the WSN.

We changed the position of the BS in the sensor layout
area, as shown in Figure 8. When the BS was in different
locations, the total energy consumption of the WSN was com-
pared after running various protocols at the same time for 100
rounds. It can be observed that the PSOLB-EGT protocol is
superior to existing protocols in all network scenarios. This
is because the PSOLB-EGT protocol uses a more suitable path
to transfer aggregate data from the CH to the BS.

We ran five protocols and found that the PSOLB-EGT
protocol is superior to the other four protocols when
comparing the change in the number of alive nodes in each
protocol from 100 to 0. As shown in Figure 9, the PSOLB-
EGT protocol is later than other protocols in terms of the first
and last node death times. This shows that the protocol can
effectively extend the life cycle of WSN.

For the same layout area, with an increase in the number
of sensors, each protocol runs for 500 rounds, and we observe
that the total residual energy also increases with the increase
in the number of sensors. The comparison of residual energy
of various protocols is shown in Figure 10.

Through the above simulation experiment, we can
observe the following:

(1) As shown in Figure 7, all other conditions being equal,
the PSOLB-EGT protocol consumes less energy than
the other four protocols when running the same
rounds. It can be inferred that when WSN first started
100 rounds, the energy consumption gap of several pro-
tocols was small. As time goes by, the PSOLB-EGT pro-
tocol consumes less energy than other protocols

(2) The results in Figure 8 show that, by changing the
location of the BS, the PSOLB-EGT protocol has
better scalability than the other protocols

(3) The PSOLB-EGT protocol has greater advantages
than the other four protocols in terms of the first
death of nodes. Figure 9 shows that after WSN runs
the PSOLB-EGT protocol, its first dead node appears
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Figure 7: Comparison of node energy consumption after running the same cycle for each protocol.
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later than other protocols. As the running time of
WSN goes by, the node mortality and total running
time of the entire WSN are better than those of other
protocols

(4) As the runtime increases, the data transmitted by the
WSN continues to increase. Under the same condi-
tions, the WSN uses the traditional algorithm and
the improved PSOLB-EGT protocol to perform the
node capacity experiment. From the perspective of
the average occupancy rate of node capacity, accord-
ing to the analysis of the experimental results in
Figure 11, the other four algorithms increase the
average occupancy rate of node capacity as the
amount of communication data per unit time
increases. The average occupancy rate of the node
capacity of the PSOLB-EGT protocol changes slightly

(5) Figure 12 shows the network throughput comparison
between PSOLB-EGT and the other protocols.
Throughput is defined here as the number of data
packets successfully received at the BS during simula-
tion time. The results represent an average of three
different runs for each network size, and it is
observed that PSOLB-EGT is superior to the other
protocols in network throughput

We implement all protocols to evaluate the rate of packet
loss. It is clear from Figure 13 that in all the network scenar-
ios considered, the packet loss rate of the PSOLB-EGT proto-
col is much lower than that of other protocols. These
protocols generate high rates of data loss. This is due to the
absence of hybrid-hop communication.

Simulation results in different environments show that
the PSOLB-EGT protocol is superior to the existing network
protocols in terms of data transmission energy.

We evaluated the number of unclustered sensors per
round in each network protocol. The chart in Figure 14
shows the average number of unclustered sensors per round.

As shown in Figure 15, we analyze the node capacity
congestion rates of the five protocols for increasing runtimes.
In this paper, the total number of nodes successfully trans-
mitting data to the aggregation point is used to describe the
node capacity congestion rate of the network as the number
of rounds changes. It only makes sense for the WSN to
successfully transmit the data generated by the node to the
aggregation point. The amount of data successfully delivered
reflects the smoothness of the network to some extent. There-
fore, the goal pursued by WSN routing is to consume as little
energy as possible and transmit as much data as possible to
the aggregation point. As seen from Figure 15, the algorithm
we proposed has better node throughput capacity.

To verify the energy-saving effectiveness of the PSOLB
clustering algorithm separately, we unified all five clustering
algorithms (including PSOLB) with the greedy routing
algorithm. The operating conditions of the five clustering
algorithms are exactly the same. It can be seen from
Figure 16 that after the same number of rounds of PSOLB,
the remaining energy of the entire WSN is better than it is
with any of the other four clustering algorithms. The main
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effect is that we use adaptive learning factors and optimiza-
tion measures for the last round of optimal results. However,
it can be seen that when the clustering algorithms of JCR and
PSOLB use the greedy routing algorithm, the energy
consumption of the entire WSN is accelerated.

5. Conclusion

In this paper, we use the improved PSO algorithm and EGT,
respectively, to solve two well-known optimization problems
of WSN, namely, selection of CHs and routing between the
CHs and the receiver. Then, we propose a clustering and
routing protocol called PSOLB-EGT. The protocol incorpo-
rates an improved CH selection algorithm based on PSO
search, which has a better fitness function. Next, an improved
routing algorithm based on EGT is proposed to transmit
aggregate data from CHs to the receiver for large-scale
WSNs. This algorithm uses a novel routing function. The
simulation results show that the proposed protocol is
superior to existing protocols in the network life cycle,
network coverage, and packet transmission capacity [45].

The existing research still has many shortcomings to be
further addressed. The prospects for follow-up work include
the following:

The routing protocols and positioning techniques studied
in this paper are limited to two-dimensional plane space, but
three-dimensional space is more in line with the actual
application environments. It is important to study the rout-
ing and positioning technology of 3D wireless sensors.
Therefore, it is necessary to extend the scope of research from
two-dimensional space to three-dimensional space and
perform further research on clustering routing technology
for 3D WSNs.

In addition, a node needs to obtain its own global
geographic information when clustering. Therefore, the
proposed protocol requires the node to be equipped with a
positioning device such as GPS, which increases the hard-
ware requirements of the node to some extent.

The clustering routing algorithm proposed in this paper
only assumes that the nodes in the cluster can synchronously
send and receive data after receiving the cluster head broad-
cast and sending data packets to the CH. The corresponding
synchronization mechanism is not designed. Therefore, the
problem of how to design a reliable and practical mechanism
that can synchronize communication between nodes and
reduce the communication overhead is a subject that needs
to be further studied in sensor network applications.

In the future, we will further optimize the PSOLB-EGT
protocol according to the experimental results to improve
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the energy saving effect of the protocol. We will study the
energy saving optimization of data fusion, another important
part of WSNs.

Appendix

Proof of Convergence

When the dynamic process of node routing replication con-
tinues, there will be a certain moment when the net utility
of each cluster in the same group is the same, and the net util-
ity at this moment is the average net utility of each individual
in the group. That is, individual players no longer adjust their
strategies to improve their net utility. To calculate the infor-
mation of each participant and obtain the average utility of
the group, it is necessary to set up a central control entity
to maintain the information of the participants in the system
and inform the participants of the average utility of their
group at that time.

According to formulas (29) and (30), XN
i = 0, that is, the

equilibrium point of the evolutionary game.

q1
1

E Sið Þ
+ q2

Eresidual‐non‐CHi

Einitial
− q3 nr − 1ð Þnr−1σ

" #
= 〠

nr

1

nto node nr × δnr
Nall

 !
:

ðA:1Þ

According to this equation (A.1), at this time, the fitness
value of a single node is the average fitness value of all nodes
in the WSN. That is, a single node no longer adjusts its own
strategy to improve the fitness value, that is, the equilibrium
point of the evolutionary game.
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Excessive groundwater exploitation has brought about severe ground subsidence in Guandu (China), threatening the stability of
urban infrastructure. Mapping of the spatiotemporal variations of ground deformation is urgently needed for disaster
prevention and mitigation. In this study, multisensor interferometric synthetic aperture radar (InSAR) observations were
applied to Guandu to derive the time series deformation from 2007 to 2019. The annual deformation velocity revealed three
severe subsiding regions in Guandu. Based on the ascending and descending Sentinel-1 images with overlapping temporal and
spatial coverage, two-dimensional vertical and horizontal east–west deformation was calculated and indicated that the
deformation in Guandu was dominated by vertical direction. After connecting the multisensor results, long-term ground
deformation spanning from January 9, 2007, to September 1, 2019, was produced and showed that the north subsiding region
experienced fast followed by slow subsidence, whereas the south subsiding region experienced slow followed by fast subsidence.
This difference was due to the changes of groundwater pumping centers and rates. The cumulative maximum subsidence
reached 400mm during the period of 2007–2019. The similar variations in temporal domain between the change of
groundwater level and ground deformation suggested that groundwater exploitation accounted for the severe subsidence in
Guandu. Our results may provide scientific evidence regarding the sound management of groundwater exploitation to mitigate
potential damage to infrastructure and the environment.

1. Introduction

Guandu is located at a longitude of 102°38′–103°03′ east and
a latitude of 24°54′–25°17′ north [1]. Situated in the mideast-
ern Yunnan–Guizhou plateau in Southwest China, Guandu
is a typical lacustrine sediment basin with altitude from
1886 to 2731m [2]. Since the launch of China’s reform pro-
gram in 1978, the population and economics of Guandu have
experienced rapid development. Accordingly, the demands
of water for domestic and industrial consumption increased
rapidly over the past forty years. In this context, phenome-
non of groundwater exploitation was serious in Guandu.
The related document showed that groundwater level of
Guandu had declined about 40.3m between 1984 and 1998

[3]. As many pioneer studies indicated, groundwater exploi-
tation certainly resulted in ground subsidence [4, 5]. There-
fore, severe subsidence was observed in Guandu and caused
substantial damage to homes, roads, canals, pipelines, and
other infrastructure [6]. To prevent and mitigate the disas-
ters, it is urgent to characterize and monitor the spatiotempo-
ral variations of ground deformation in Guandu [7].

Early studies initiated a few years ago using leveling obser-
vation recorded the extent of subsidence in Guandu and
showed that the subsidence reached 240mm between 1987
and 1998 [7, 8]. Although these observations provided useful
information, they had low spatial resolution, and therefore,
more detailed and comprehensive ground deformation was
difficult to see [9]. Interferometric synthetic aperture radar
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(InSAR) has demonstrated its potential for high-density spatial
mapping of ground deformation associated with earthquakes
[10], volcanoes [11], and other geologic processes [12]. Recent
advanced InSAR techniques have improved our understanding
of the process of ground deformation, such as the deep learning
approach [13], artificial intelligence technique [14], optimal
phase unwrapping algorithm [15], signal retrieval for decorre-
lating targets [16], four-dimensional filtering approach [17],
improved synthetic aperture radar (SAR) image coregistration
algorithm [18], atmospheric delay correction method [19],
and coherent point selection algorithm [20]. Additionally, an
increasing amount of SAR satellites have provided a large set
of multisensor SAR images, which have been employed to
reconstruct the spatiotemporal evolution of ground deforma-
tion [21]. These advanced techniques have facilitated land sub-
sidence monitoring in many urban areas, such as in Beijing
[22], Xian [23], Shenzhen [24], Taiyuan [25], Mexico [26], Italy
[27], and Turkey [28]. Regarding Guandu, existing research
focused on the whole city and there was no information avail-
able for spatiotemporal characterization analysis of ground
deformation so far [7–9].

To better understand the spatiotemporal evolution of
ground deformation in Guandu, the multisensor InSAR
observation was utilized to obtain the long-term and two-
dimensional time series deformation. For this, 20 ALOS-1
images, 40 COSMO-SkyMed (CSK) images, 24 ALOS-2
images, and 91 Sentinel-1A images were collected in this
study. The annual deformation velocity was estimated to
characterize the spatial pattern of subsidence in Guandu.
Subsequently, two-dimensional and long-term time series
deformation was obtained to analyze the temporal evolution
of subsidence. Finally, the correlation between subsidence
and groundwater changes was discussed.

2. Study Area and Datasets

2.1. History and Geologic Setting of Study Area. Guandu,
situated in the eastern part of Kunming (China)
(Figure 1(a)), has one of the mildest climates in China, char-
acterized by short, cool, dry winters with mild days and crisp
nights and long, warm, humid summers [1]. The annual
average precipitation is about 1,002mm, of which 86%-90%
concentrates in the summer and autumn (May to October).
The annual average evaporation is about 1,900mm, which
is greater than the annual average precipitation [3]. Ground-
water is the main water supply in Guandu, where the annual
average groundwater exploitation is more than 20,000m3,
among which 90% is used as domestic water consumption
and 10% is used as industrial water consumption [8]. Due
to the pollution of shallow pore water, exploitation of
groundwater is mainly from the karst water in the study area.
Figure 1(b) shows the stratigraphic profile along the line PP′
in Figure 1(a), where clay, sand, and dolomite are widespread
in the study area. It is observed from Figure 1(b) that the con-
tact layer between soil and bedrock is not the water storage
layer, indicating that the soil aquifer is directly connected to
the bedrock aquifer. In this context, the groundwater level
of soil aquifer rapidly declines with the decline of groundwa-
ter level of bedrock aquifer. This decline causes the water-

release compression and soil consolidation, resulting in the
ground subsidence. Thus, groundwater exploitation of karst
water leads to the several subsidence over the study area.
Early studies showed that groundwater level of Guandu had
declined about 40.3m between 1984 and 1998, which caused
the cumulative subsidence of 250mm [8], as shown in
Figure 1(c).

2.2. SAR Datasets. 175 SAR images in total, including 20
ALOS-1 images, 40 COSMO-SkyMed (CSK) images, 24
ALOS-2 images, and 91 Sentinel-1A images, were collected
to derive the deformation time series over the study area.
Table 1 and Figure 1(a) show the parameters and coverage
of these SAR images, respectively. The collected multisensor
SAR datasets with different imaging parameters, e.g., azi-
muth and incidence angle, spatial and temporal resolution,
orbit direction, and wavelength, allow us to comprehensively
analyze the observed surface deformation [29]. Meanwhile,
two-dimensional ground deformation was calculated by inte-
grating of the multisensor SAR datasets with overlapping
temporal and spatial coverage [30]. After setting the spatial
and temporal baseline thresholds, a total of 624 interfero-
grams was generated from the collected multisensor SAR
images. Based on the generated interferograms, the ground
deformation between January 2007 and September 2019
was estimated over the study area. Light detection and rang-
ing (LIDAR) digital elevation model (DEM), which had a
spatial resolution of 3m and centimeter-level height preci-
sion, was acquired as an external DEM to remove the
topographic phase from the differential interferograms.

3. Methodology

Using the collected 175 multisensor SAR images, ground
deformation was estimated by multitemporal SAR interfer-
ometry technique. The interferometric pairs were gener-
ated by setting small temporal and spatial baselines,
which limited the noise effects and preserved the temporal
and spatial coherence characteristics of the interferograms.
As a result, totally 624 interferometric pairs were pro-
duced, among which 59 pairs were from ALOS-1 images,
88 pairs were from COSMO-SkyMed images, 71 and 15
pairs were, respectively, from ALOS-2 ascending and
descending images, and 91 and 300 pairs were, respec-
tively, from Sentinel-1 ascending and descending images.
The topographic and orbital phases were simulated and
subsequently removed from the differential interferometric
phase by using the collected LIDAR DEM and SAR orbital
data. Then, the process of adaptive spectral filtering with a
window size of 32 was executed to suppress the interfero-
metric noise [31]. After that, phase unwrapping using the
Minimum Cost Flow (MCF) method was carried out to
retrieve the absolute phase [32]. Finally, the atmospheric
delay errors were reduced through the cascade of a low-
pass filtering implemented in the two-dimensional spatial
domain, followed by a temporal high-pass filtering [33].
After these processes, the unwrapped interferograms from
multisensor datasets were resampled to a common study
area (red rectangle in Figure1(a)) and used to estimate
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Figure 1: Continued.
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the vertical deformation velocities, two-dimensional ground
deformation, and long-term vertical deformation time series.

3.1. Vertical Deformation Velocities. The vertical deformation
velocities of multisensor SAR datasets with different imaging
parameters were calculated to characterize the spatial pattern
of ground deformation over the study area. Using the pro-
duced unwrapped interferometric pairs, the vertical defor-
mation velocities were estimated by [34]

Phrate =
∑N

j=1Δt jφj

∑N
j=1Δt

2 , ð1Þ

where Phrate was the deformation velocities, N was the num-
ber of interferograms involved in the estimation, Δt j was the
time interval between master and slave pair, and φj was the
unwrapped interferograms. Meanwhile, the standard devia-
tion of Phrate was estimated by [35]
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Figure 1: (a) Study area and synthetic aperture radar (SAR) data coverage used in this study; corresponding data are superimposed on the
digital elevation model (DEM); (b) stratigraphic profile along the line PP′ in (a); (c) ground subsidence due to groundwater exploitation
between 1984 and 1998.

Table 1: Parameters of SAR data in this study.

Satellite
ALOS-1

(ascending)
COSMO-SkyMed
(descending)

ALOS-2
(ascending)

ALOS-2
(descending)

Sentinel-1
(ascending)

Sentinel-1
(descending)

Azimuth angle (°) −10 -170 -10 -169 -12 -169

Incidence angle (°) 38 29 31 40 39 39

Number of SAR
images

20 40 18 6 31 60

Number of
interferograms

59 88 71 15 91 300

Data period
09/01/2007-
07/03/2011

13/06/2011-
06/01/2016

26/09/2014-
11/01/2019

06/06/2015-
26/08/2017

23/01/2015-
17/02/2017

25/05/2015-
01/09/2019
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Figure 2: Deformation velocities from (a) ALOS-1, (b) ALOS-2, and (c) Sentinel-1 datasets with ascending orbit and (d) COSMO-SkyMed,
(e) ALOS-2, and (f) Sentinel-1 datasets with descending orbit.
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Var Phrateð Þ = 〠
N

j=1

φj − 4π/lð Þ · Phrate · Δt j
� �2

Δt j2
, ð2Þ

where l was the radar wavelength and VarðPhrateÞ was the
standard deviation of Phrate. In this case, six vertical deforma-
tion velocities from ALOS-1, COSMO-SkyMed, ascending
and descending ALOS-2, and ascending and descending
Sentinel-1 datasets were produced over the study area, which
allowed us to compare the observed deformation.

3.2. Two-Dimensional Ground Deformation. In areas with
overlapping spatiotemporal coverage, it is possible to map
the two-dimensional vertical and horizontal east–west
ground deformation through combing of multisensor SAR
datasets. In this case, the Sentinel-1 datasets in ascending
and descending orbits were used to derive the two-
dimensional ground deformation. It is worth noting that
the ALOS-2 datasets were not involved in the two-
dimensional deformation estimation due to the limited
acquisitions in descending orbit. The multidimensional small
baseline subset (MSBAS) method was adopted to calculate
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Figure 3: (a) Vertical and (b) horizontal deformation rate maps. The red cross shows the reference point; the cross circle shows the location of
time series deformation point P1; the brown solid line shows the location of profile line of AA′.
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Figure 4: (a) Deformation rate along the line AA′ and (b) time series deformation at point P1 in vertical and horizontal east–west directions.

6 Journal of Sensors



the two-dimensional ground deformation [36]:

Â

λL

 !
VE

VU

 !
=

bΦ
0

 !
,

Â = −A cos θ sin ϕ, A cos ϕf g,
ð3Þ

where matrix A consisted of time intervals between consecu-
tive SAR acquisition, θ was the azimuth angle, ϕ was the inci-

dence angles; VE and VU represented unknown horizontal
east–west and vertical velocities that were to be determined,bΦ represented the unwrapped, geocoded, and resampled
interferometric phase, λ was a regularization parameters,
and L was a zero-, first-, or second-order difference operator.
The unknown parameters VE and VU for each pixel were
solved by applying the singular value decomposition (SVD),
and deformation time series were reconstructed from the
computed deformation rates by numerical integration. In
this case, the first order regularization with λ equal to 0.1

24°56′24′′N

24°57′36′′N

24°58′48′′N

25°00′00′′N

25°01′12′′N

20071012 20081014 20091017 20100904

20111019 20120920 20130923 20140929

20151018

20190901

20160916 20170908 20181012

24°56′24′′N

24°57′36′′N

24°58′48′′N

25°00′00′′N

25°01′12′′N

24°56′24′′N

24°57′36′′N

24°58′48′′N

25°00′00′′N

25°01′12′′N

24°56′24′′N

24°57′36′′N

24°58′48′′N

25°00′00′′N

25°01′12′′N

102°49′12′′E102°48′00′′E102°44′24′′E 102°45′36′′E 102°46′48′′E 102°49′12′′E102°48′00′′E102°44′24′′E 102°45′36′′E 102°46′48′′E 102°49′12′′E102°48′00′′E102°44′24′′E 102°45′36′′E 102°46′48′′E

102°49′12′′E102°48′00′′E102°44′24′′E 102°45′36′′E 102°46′48′′E

10 2 3
(km) mm

–400 –300 –200 –100 0 100 200

10 2 3
(km) mm

–400 –300 –200 –100 0 100 200 10 2 3
(km) mm

–400 –300 –200 –100 0 100 200 10 2 3
(km) mm

–400 –300 –200 –100 0 100 200

Figure 5: Time series deformation in September or October from 2007 to 2019.
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was chosen to be involved in the calculation based on the
repeated experiments. Finally, two-dimensional vertical and
horizontal east–west ground deformation from May 23,
2015, to September 16, 2016, was produced over the study
area, which allowed us to analyze the ground deformation
both in vertical and east–west direction.

4. Results and Analysis

4.1. Vertical Deformation Velocities with Different SAR
Datasets. Figure 2 shows the vertical deformation velocities,
which were derived from ALOS-1, ALOS-2, and Sentinel-1
datasets with ascending orbit and COSMO-SkyMed, ALOS-
2, and Sentinel-1 datasets with descending orbit. It is worth
noting that all measurement values were relative to a com-
mon reference point (red cross in Figure 2) that was consid-
ered to be stable over the entire time period. Positive and
negative values represented uplift and subsidence. Three
prominent deformation regions were observed from
Figure 2. The first deformation region named as Guanshang
was located at the center of deformation maps and presented
the shape of approximate pear. The second deformation
region with the shape of approximate oval was named as
Yangfeng and located at the lower center of deformation
maps, which was considered as the extension of Guanshang
deformation region. The third deformation region was
located at the lower left of deformation maps and named as

Harbor. For these three deformation regions, it was found
that they showed the different deformation magnitudes with
respect to the different datasets. The Guanshang deformation
region displayed the severe subsidence in ALOS-1 and
COSMO-SkyMed datasets, while it was not prominent in
ALOS-2 and Sentinel-1 datasets. As for the Yangfeng defor-
mation region, the severe subsidence was observed in
COSMO-SkyMed, ALOS-2, and Sentinel-1 datasets, while it
was not prominent in ALOS-1 datasets. Compared to the
Guanshang deformation region, the Harbor deformation
region presented the opposite deformation magnitude: severe
subsidence appeared in ALOS-2 and Sentinel-1 datasets,
while insignificant deformation was observed in ALOS-1
and COSMO-SkyMed datasets. This phenomenon was due
to the different imaging time regarding to the different SAR
datasets. As shown in the introduction, the subsidence in
Guandu was highly correlated with groundwater extraction,
meaning that the degree of groundwater extraction with
respect to the different times may have led to the different
deformation magnitudes. The relevant information was
investigated, and the degree of groundwater extraction was
found to be extremely intensive in Guanshang in early
acquired ALOS-1 and COSMO-SkyMed datasets. Therefore,
the Guanshang deformation region showed the significant
signal in ALOS-1 and COSMO-SkyMed datasets, while it
was not significant in ALOS-2 and Sentinel-1 datasets. The
Yangfeng and Harbor deformation regions experienced the
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slow followed by fast subsidence in temporal domain and
therefore showed the significant signal in later acquired
ALOS-2 and Sentinel-1 datasets. Further inspection indi-
cated that there were subtle differences in deformation
shapes between descending and ascending orbits, particularly
for the Yangfeng deformation region, where the deformation
shape presented in descending orbit was elongated in ascend-
ing orbit. Through analyzing the vertical deformation veloc-
ities from different SAR datasets, it was summarized that
three prominent subsiding regions were observed over the
study area.

4.2. Two-Dimensional Vertical and Horizontal Deformation.
The difference in deformation shape between descending

and ascending orbits indicated the existence of horizontal
deformation. In order to investigate this deformation, the
deformation velocities and time series deformation maps
along the vertical and horizontal east–west directions were
derived from the ascending and descending Sentinel-1 images,
which were acquired from May 23, 2015, to September 16,
2016. The positive and negative values in vertical direction,
respectively, represent uplift and subsidence, while positive
and negative values in east–west direction, respectively, repre-
sent eastward and westward movement. The vertical and east–
west deformation velocities are presented in Figure 3. Com-
pared to Figure 2, the Yangfeng and Harbor deformation
regions were retained in Figure 3, while the deformation in
Guanshang region was not obvious. As analyzed in Section
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Figure 7: The relationship between groundwater level changes and ground deformation in Guanshang (a) and Yangfeng (b) over the study
area.
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4.1, this phenomenon was due to the temporal variations of
deformation. The statistics showed that the maximum subsi-
dence and eastward movement rates were 38mm/year and
11mm/year for Yangfeng region, respectively. For Harbor

deformation region, the maximum subsidence rate was up to
25mm/year, and the maximum eastward movement rate
was 12mm/year. Compared with the Yangfeng deformation
region, the phenomenon of decorrelation was relatively severe
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Figure 8: Long-term vertical deformation time series spanning from 9 January 2007 to 1 September 2019 by combing of the collected multi-
sensor SAR datasets.
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at Harbor deformation region. This decorrelation was due to
the ongoing constructions according to the filed investigation.
The cause of observed deformation in Figure 3 was attributed
to the groundwater exploitation considering the history and
geologic setting of study area. The pioneering researches sug-
gested that this aquifer deformation occurred in both the ver-
tical and horizontal directions in response to fluid withdrawal
from confined aquifer system [37–39]. In the vertical direc-
tion, the decline of groundwater level led to the water-release
compression and soil consolidation with the result of ground
subsidence. In the horizontal direction, the eastward move-
ment was related with a fault located at the east of the study
area (as shown in Figure 1(b)), which impeded the horizontal
propagation of fluid-pressure changes. The magnitude of
aquifer deformation was a function of the distance from the
center of pumping, the pumping rate, the time since the initi-
ation of pumping, the hydraulic diffusivity of the aquifer, and
the presence of heterogeneous barriers or boundaries that may
impede flow and/or displacement [39]. Unfortunately, it was
difficult to evaluate the observed vertical and horizontal defor-
mation because of the lack of relevant supporting data. How-
ever, the standard deviations of two-dimensional deformation
velocities were below 3mm for most regions, suggesting the
reliability of our observed deformation.

To characterize the spatiotemporal variation of deforma-
tion over the study area, the deformation rates along the pro-
file line AA′ and time series deformation at point P1, both of
which are marked in Figure 3, are displayed in Figure 4. It
was observed in Figure 4(a) that the vertical deformation pre-
sented the shape of a funnel, while east–west deformation
presents the shape of approximate parabola. As for the tem-
poral variations in Figure 4(b), both vertical and horizontal
east–west deformation showed an approximately linear vari-
ation with time, where the cumulative deformation between
May 23, 2015, and September 16, 2016, was -55mm and
12mm in vertical and east–west directions, respectively.

4.3. Long-Term Vertical Deformation Time Series. To investi-
gate the temporal variation of ground deformation over the
study area, the collected multisensor SAR datasets were com-
bined to produce the long-term vertical deformation time
series. During this procedure, the line-of-slight (LOS) defor-
mation was directly converted to the vertical direction since it
was dominated by the vertical deformation in this case,
which has been proved in the last section. The final time
series deformation was from January 9, 2007, to September
1, 2019, as shown in Figure 5. For saving the page space, we
only showed the results in September or October from 2007
to 2019, as shown in Figure 6. The prominent subsiding
region was detected, where the cumulative maximum subsi-
dence reached 400mm. Further observations suggested that
the subsidence experienced two different stages of develop-
ment. In the first stage spanning from 2007 to 2014, the rapid
subsidence was observed at the north subsiding region, while
the subsidence was relative slow for the south subsiding
region. However, this phenomenon was changed in the sec-
ond stage, which spans from 2014 to 2019. The accelerated
subsidence appeared at the south subsiding region, while
the decelerated subsidence was observed at the north subsid-

ing region. We think this phenomenon may be related with
the changes of groundwater pumping centers and rates.

Figure 7 displays the time series deformation along the
line BB′ marked in Figure 6. It was found that the subsiding
region was composed of two different subsiding funnels,
where the cumulative maximum subsidence was 330mm
and 370mm, respectively. Meanwhile, two subsiding funnels
presented the different developing processes: the north
region showed the fast followed by slow subsidence, while
the south region showed the slow followed by fast subsidence.

5. Correlation between Ground Deformation
and Groundwater Exploration

Groundwater is the main water supply in Guandu, where the
annual average groundwater exploitation is more than
20,000m3. To investigate the changes of groundwater, the
groundwater observations at Guanshang and Yangfeng sta-
tions were collected in this study, as shown by the blue rect-
angles in Figure 8. It is observed in Figure 8(a) that there is a
rapid decline between 2008 and 2010 followed by a slow
decline between 2010 and 2014 for Guanshang groundwater
level. It is different with Guanshang that Yangfeng station
(Figure 8(b)) presents a gradual decline between 2008 and
2012 followed by a rapid decline between 2012 and 2014.
The cumulative declines of groundwater at Guanshang and
Yangfeng stations between 2008 and 2014 are, respectively,
12.2 and 13.8m. Considering the presented stratigraphic
structure in Figure 1(b), the subsidence easily occurred in
the presence of groundwater exploitation, which caused the
water-release compression and soil consolidation. The red
circles in Figure 8 present the similar variations in temporal
domain, particularly for Yangfeng station. However, there
is a subtle inconsistent variation between the change of
groundwater level and ground deformation from 2008 to
2011 for Guanshang station; the groundwater level illustrates
the accelerated decline while ground deformation shows the
steady decline. This inconsistency may have been caused by
the inaccurate groundwater observation in 2010 since Guan-
shang groundwater gauging station was temporarily dam-
aged during the building construction between 2010 and
2011 [7]. Based on the analyses of ground deformation and
groundwater changes, groundwater exploitation accounts
for the severe subsidence in Guandu.

6. Conclusion

With the rapid development of population and economics in
Guandu, ground subsidence has caused substantial damage
to homes, roads, canals, pipelines, and other types of infra-
structure. In this context, time series deformation of Guandu
was derived from multisensor InSAR observations to charac-
terize and monitor its spatiotemporal variations. This obser-
vation may provide scientific evidence regarding the sound
management of groundwater exploitation. Based on this
study, the following conclusions were made.

(1) Severe subsiding regions were detected through mul-
tisensor InSAR observations. Using 20 ALOS-1
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images, 40 COSMO-SkyMed (CSK) images, 24
ALOS-2 images, and 91 Sentinel-1A images, the
annual deformation velocity and time series defor-
mation maps of Guandu were retrieved through mul-
tisensor InSAR processing. The results showed that
three severe subsiding regions were observed, where
the cumulative subsidence reached 400mm during
the period of 2007–2019. The deformation of
Guandu was dominated by the vertical direction
through analyzing the two-dimensional time series
deformation

(2) Groundwater exploitation accounted for the subsi-
dence in Guandu. Comparison between the change
of groundwater level and ground deformation indi-
cated that they presented the similar variations in
temporal domain, suggesting that groundwater
exploitation caused the severe subsidence in Guandu
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Sentinel-2A/MSI (S2A) and Landsat-8/OLI (L8) data products present a new frontier for the assessment and retrieval of optically
active water quality parameters including chlorophyll-a (Chl-a), suspended particulate matter (TSS), and turbidity in reservoirs.
However, because of their differences in spatial and spectral samplings, it is critical to evaluate how well the sensors are suited
for the seamless generation of the water quality parameters (WQPs). This study presents results from the retrieval of the WQP
in a reservoir from L8 and S2A optical sensors, after atmospheric correction and standardization through band adjustment. An
empirical multivariate regression model (EMRM) algorithmic approach is proposed for the estimation of the water quality
parameters in correlation with in situ laboratory measurements. From the results, both sensors estimated Chl-a concentrations
with R2 of greater than 70% from the visible green band for L8 and a combination of green and SWIR-1 bands for S2A. While
the NMSE% was nearly the same for both sensors in Chl-a estimation, the RMSE was <10μg/L and >10 μg/L for L8 and S2A
estimations of Chl-a, respectively. For TSS retrieval, L8 outperformed S2A by 31% in accuracy with R2 > 0:9 from L8’s red, blue,
and green bands, as compared to 0:47 ≤ R2 ≥ 0:61 from S2A’s red and NIR bands. The RMSE were the same as for Chl-a, and
the NMSE% were both in the same range. Both sensors retrieved turbidity with high and nearly equal accuracy of R2 > 70%
from the visible and NIR bands, with equal RMSE at <10% NTU and NMAE% from S2A being higher by more than 30% as
compared to L8’s NMAE% at 15%. The study concluded that the higher performance accuracy of L8 is attributed to its higher
SNR and spectral bandwidth placement as compared to S2A bands. Comparatively, S2A overestimated Chl-a and turbidity but
performed equally well compared to OLI in the estimation of TSS. The results show that while absolute accuracy of retrieval of
the WQPs still requires improvements, the developed algorithms are broadly able to discern the biooptical water quality in
reservoirs.

1. Introduction

Despite the fact that there is an increase in the availability of
safe drinking water globally, it is still estimated that approx-
imately an eighth of the global population does not have
access to potable water [1]. According to [2], nearly half of
the world’s population will face water shortages by 2030 as
the water demand in certain countries will likely to exceed

supply by over 50%. Most of the water sources are within
the river and reservoir catchments which are continuously
affected by anthropogenic pressure and climate change.

Within a catchment system, the anthropogenic water uses
for domestic purposes, agricultural and industrial production,
mining, power generation, and forestry practices all result in
the deterioration of water quality and water supply. This in
effect impacts the aquatic ecosystem and compromises the
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access to safe water supply for human consumption. Water
quality and water supply are thus linked, although they are
often not measured simultaneously. The results of water
quality monitoring are important in determining the spatio-
temporal trends in surface water and groundwater variabil-
ities. For reservoirs and dams, as the key source of water
for cities and rural communities, the a priori understanding
of the quality of water before treatment is critical not only
in understanding the environmental health within the
catchment area but also in the minimization of the cost
of treatment of the water supply.

To monitor the water quality in natural and artificial res-
ervoirs, the conventional water quality assessment through
sampling and laboratory measurement is often employed.
The sampling point-based laboratory methods are costly,
labor-intensive, and time-consuming and are not able to ade-
quately assess the entire water body [3]. To overcome the
limitations in in situwater quality monitoring methods, there
is a need for regular near real-time [4–7], inexpensive, auto-
mated, and noninvasive approaches, with adequate spatial-
temporal coverage.

Several studies have investigated the use of different satel-
lite sensors for the assessment of water quality. Particularly,
the Landsat sensors have been widely used in the estimation
of water quality parameters such as total suspended matter,
chlorophyll-a, turbidity, Secchi disk depth, total phosphorus,
dissolved oxygen, chemical oxygen demand (COD), and bio-
chemical oxygen demand (BOD) as reviewed in [8, 9]. For
specific case studies and for the retrieval of water quality
parameters (WQPs), the previous studies have developed dif-
ferent correlational algorithms that are based on empirical
models, semianalytical models, and matrix inversion models.
For semianalytical models, both the biooptical and empirical
data are required to describe the relationships between the
constituents of a water body and the equivalent surface
reflectance that defines the upwelling radiance above the
water surface and in the water surface. Based on the same
modelling scheme as the semianalytical models, the matrix
inversion models require a priori information on the water
constituents, including the absorption coefficients or absorp-
tion slopes [10]. The lack of specific parameters makes the
matrix inversion methods more complex and difficult to cal-
ibrate. Because of these drawbacks, empirical algorithms are
often used for the retrieval and estimation of water quality
parameters [3, 11–14].

Though popular, in the use of empirical algorithms,
large water quality sample sizes are required and the models
are sensitive to local environmental conditions and are
therefore not automatically replicable to other case studies
or regions. In addition to being case study or region based,
the empirical models have been developed more for open
sea waters as compared to inland water bodies, due in part
to the fact that remote sensing measurements of freshwater
resources are far more complex, in terms of surface water
spectral reflectivity [15–17].

With the potential of higher temporal resolution of about
2-3 days derived from the synergistic constellation of
Landsat-8 and Sentinel-2 [18], it is now possible to synchro-
nize the products from the two satellites’ higher temporal

monitoring of aquatic systems [19]. Such frequent revisits
are essential for the capture of the dynamics of reservoir
water bodies, in terms of surface water quality assessments,
considering the effects of seasonal variabilities and atmo-
spheric attenuations. In using Landsat-8/OLI and Sentinel-
2A/MSI data for water resource monitoring, recent studies
have presented different approaches and results for different
case study areas. [20] used Sentinel-2A to study the influence
of variations in the concentration of total suspended solids
(TSS) and chlorophyll-a (Chl-a) on the physiological
response of oysters and highlighted the use of Sentinel-2A
near-infrared (NIR) bands to quantify the total suspended
solids. [11] developed empirical-based methods for the
retrieval of Chl-a in a hypereutrophic reservoir in Brazil
and concluded that the Sentinel-2A near-infrared (NIR)
bands were significant in Chl-a retrieval. Similar studies by
[13] presented empirical algorithms using Sentinel-2A data
for water quality assessment [21] or bottom mapping [22].
Nonetheless, no attempts have been made to compare and
demonstrate the suitability of Sentinel-2A/MSI and Land-
sat-8/OLI imagery for the retrieval of Chl-a, TSS, and turbid-
ity water quality parameters within inland water reservoirs.

In this study, the effectiveness of Sentinel-2A/MSI (S2A)
and Landsat-8/OLI (L8) satellite sensors is demonstrated for
the estimation of Chl-a, turbidity, and TSS water quality
parameters in a large reservoir (case 2 water body). Arguably,
the medium-spatial resolution satellite sensors, Operational
Land Imager (OLI) on board Landsat-8 and Multispectral
Imager (MSI) on board Sentinel-2, will be capable of promot-
ing more precise mapping of biooptically active water quality
parameters in recent times [11, 19]. However, because of
their differences in the spectral and spatial samplings, it is
critical to evaluate how well the datasets are suited for the
seamless retrieval of water quality parameters. The accuracy
of the biooptically active parameters as mapped from differ-
ent remote sensors is largely dependent on the biooptical
equation developed for its retrieval. As observed in the liter-
ature review, different case 2 water bodies respond differently
to the spectral wavelengths.

Further, for case 2 waters, the concentrations of the water
constituents and the corresponding water color are consid-
ered to be nonlinear. This implies that for effective measure-
ments in these highly reflective waters, remote sensors with
high dynamic spectral ranges and high signal-to-noise ratio
(SNR) are needed [17]. It is therefore necessary to develop
optimal algorithm(s) for the accurate estimation of biooptical
water quality parameters in regional case 2 waters. The cur-
rent study has two objectives: (1) to identify the most suitable
spectral bands (position and width) from the Sentinel-
2A/MSI and Landsat-8/OLI sensors for accurate retrieval
and estimations of the concentrations of Chl-a, TSS, and tur-
bidity and (2) develop, test, and validate empirical multivar-
iate regression model (EMRM) algorithms for the estimation
of the water quality parameters in case 2 waters, in correla-
tion with in situ laboratory measurements.

To determine the distribution and variability of water
quality parameters, ordinary Kriging is used for the spatial
mapping and comparison of the distributions of the WQP
in the case study reservoir. The rest of the paper is organized
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as follows: in Section 2, the study area and the details of the
data provided are described. The research methods are out-
lined in Section 3, and Section 4 presents the study results
and discussions which elaborate on the comparison and anal-
yses of the regression modelling and estimation of the WQPs
from the compared satellite sensors. The study conclusions
and insights are presented in Section 5.

2. Study Area and Data

2.1. Study Site Characterization. The case study reservoir is
the Chebara Dam which is located between longitudes
35°29′45.6″E and 35°30′7.2″E and latitudes 0°52′55.2″S
and 0°53′56.4″S and was constructed in the 1990s to supply
water to Eldoret Town, which is situated 31 km away. The
2.1 km long dam has a capacity of 6.24 million cubic meters
and is served by River Moiben and other small rivers and
streams within the Chebara basin (Figure 1). Most of the riv-
ers and streams flowing into the dam are permanent and flow
throughout the year, with least flows experienced during
the dry seasons. The climate in the Chebara Dam catch-
ment is warm and temperate, and the area receives signif-
icant rainfall even in the driest month, with an annual
precipitation average of approximately 1172mm. Sparsely
settled, agriculture is the main economic activity within
the basin, with the rest of the land cover being forest,
grass, and shrubs (Figures 1(a) and 1(b)). The dam also
serves as a source of water to the resident population for
domestic use and agricultural irrigation, especially during
the dry season or periods.

The sampling stations were selected as shown in Figure 1,
with the location and concentration of the sampling stations
being based on the depth variations of the dam. Eighteen (18)
spatially distributed sampling stations were selected: ten (10)
for the calibration of the EMRM algorithm, five (5) for vali-
dation, and three (3) for off-season algorithm validation.

2.2. Optical Satellite Sensors

2.2.1. Sentinel-2/MSI Sensor. The Sentinel-2 mission com-
prises twin polar-orbiting satellites, Sentinel-2A and Senti-
nel-2B, which were, respectively, launched on 23 June 2015
and 7 March 2017. The sensors are in the same orbit and
phased at 180° to each other. The orbit is sun-synchronous
at 786 km altitude with an orbit inclination of 98.62°, and
the mean local solar time at the descending node is at 10:30
AM. Both the orbit inclination and timing ensure minimum
cloud cover and optimal sun illumination. The Sentinel-2
satellites are also aligned with similar satellites, including
Landsat and SPOT-5.

Each Sentinel-2 satellite carries a multispectral instru-
ment (MSI), with a swath width of approximately 290 km
and spatial high resolutions of 10m, 20m, and 60m, with a
revisit time of 10 days with one satellite and 5 days with
two satellites at the equator. The Sentinel MSI has 13 spectral
bands (430 nm to 2320 nm) in the visible, red-edge, near-
infrared, and shortwave infrared regions of the spectrum.
With high-temporal resolution and 12-bit radiometric reso-
lution, like the Landsat-8 sensor, the MSI sensor provides

high radiometric dynamics for the observed areas of both
the very dark, e.g., water surfaces, and the very bright areas,
e.g., ice and snow. It is further observed that the locationing
and bandwidth of Landsat OLI are slightly wider than those
of the MSI sensor spectral bands, as also indicated in
Table 1 for the bandwidth and their spectral locations.

For comparison with the Sentinel-2A MSI, only the sim-
ilar spectral bands in Landsat OLI are analyzed as presented
in Table 1.

2.2.2. Landsat-8/OLI Sensor. The Landsat-8 mission carries
the Operational Land Imager (OLI) and the Thermal Infra-
red Sensor (TIRS). OLI collects image data for nine short-
wave bands with spatial sampling or resolution of 30
meters (bands 1-7) and the panchromatic band with pixel
size of 15 meters (band 8). TIRS collects data for two long-
wave thermal bands at 100 meters (band 9) every 16 days
which are resampled to 30 meters to match OLI multispectral
bands. The OLI sensor is compatible with the earlier Landsat
sensors and presents improved measurement capabilities.
Compared to the Landsat-7/ETM+, the Landsat-8/OLI has
improved radiometric resolution with reduced image noise
and spectral heterogeneity. This is observed to be particularly
significant in precise water surface extraction and water qual-
ity retrieval [23].

This study utilized the Landsat OLI data acquired on 22
January 2019 and the Sentinel-2A satellite image acquired
on 25 January 2019. The fieldwork was carried out during
the dry season and coincided with the sensor acquisitions
from 23 to 24 January 2019. For the Sentinel-2A, the level
1C is corrected for atmospheric errors using the Sentinel’s
SNAP algorithm, resulting in the level 2A product of
Sentinel-2 from the Sen2Cor processor, which includes scene
classification and atmospheric correction.

3. Methods

The level 1 data of the Landsat-8 OLI sensor consists of
scaled digital number values that are quantized and cali-
brated. The equivalent level 1 data from Sentinel-2 MSI com-
prises the top of atmosphere (TOA) reflectance. In this study,
the retrieval of the water quality parameters from the satellite
sensors over the study region involves the following four
steps: (i) deriving the absolute TOA reflectance from scaled
DN values for Landsat OLI and scaled TOA reflectance for
Sentinel-2 MSI, respectively, for the homologue bands in
Table 1; (ii) conversion of TOA reflectance to surface reflec-
tance, which is the actual reflectance originating from the
water surface; (iii) conversion of the surface reflectance to
the corresponding remote sensing reflectance (Rrs) at these
bands; and (iv) the retrieval of the water quality parameters
from Rrs utilizing the proposed empirical multivariate regres-
sion model (EMRM).

3.1. Preprocessing of Sentinel-2A and Landsat OLI Datasets

3.1.1. TOA Reflectance Derivation and Signal-to-Noise Ratio
Analysis. To derive and compare the TOA from the optical
sensors, for Landsat-8 level 1, the digital numbers from each
band (BL8) are converted to TOA reflectance using the

3Journal of Sensors



Landsat-8 metadata scaling factors and divided by the cosine
of the solar zenith angle (see processing steps in [3]). In
addition, Landsat per-pixel solar and viewing angles were

calculated using the Landsat-8 Angles Creation Tool pro-
vided by USGS (https://landsat.usgs.gov/solar-illumination-
and-sensor-viewing-anglecoefficient-file) and the angle

(a)

Land use
Forest

Water body

Agricultural land

Chebara Dam

Sampling stations

Miles864210

T1

T2T16

3

T17

T4

T6

T5

T12T11

T9 T7
T8

T18 T10

T13
T14

T15

N

(b)

Figure 1: (a) Sentinel-2 near-true color composite of the study dam and surrounding areas and (b) land use/land cover in the Chebara basin
and the sampling points (Ti).
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coefficient file available with each Collection 1 L1TP file. For
the Sentinel-2 MSI, the TOA reflectance and solar view
geometry are stored in the metadata for every 5 km.

3.1.2. Surface Reflectance from Sentinel MSI and Landsat OLI.
For the TOA reflectance derivation, the datasets from the
sensors were converted to the equivalent surface reflectance
using the same algorithm in order to minimize any biases
in the derivation of the water quality parameters due to der-
ivation of the reflectance. The LaSRC (Land Surface Reflec-
tance Code) algorithm developed for Landsat and based on
the 6S radiative transfer code was used and adopted for
Sentinel-2A for TOA-to-surface reflectance conversion [24–
26]. As validated by [27], the LaSRC has higher accuracy than
the original Landsat Ecosystem Disturbance Adaptive Pro-
cessing System (LEDAPS) algorithm when applied to
Landsat-8 OLI data [24, 26].

From the multisensor bandwidth comparisons in Table 1,
it is observed that MSI and OLI have variable spatial and
spectral sampling resolutions which may result in variabil-
ities in their spectral sensitivities and responses to the same
water surface. To determine the significance of the spectral
responses, the uniformly corrected sensor bands are com-
pared for the signal-to-noise ratio (SNR) and top of atmo-
sphere (TOA) reflectance over a spatially uniform and clear
water body area.

3.1.3. Lambertian BRDF-Adjusted Reflectance. Because most
land surfaces do not have a Lambertian Bidirectional Reflec-
tance Distribution Function (LBRDF), the reflectance may
vary simply due to factors such as the variations in the solar
radiation and viewing angle geometry. Because of BRDF
effects, the Landsat and Sentinel-2A swath across the red
and near-infrared band reflectances can vary by 0.02-0.06
and 0.06-0.08, respectively [28]. These differences and var-
iations can result in significant noise effects as they are
comparable and greater than the sensor calibration errors
[29]. For the LBRDF reflectance adjustment, the semiphy-
sical approach developed for Landsat application and dem-
onstrated to also work for Sentinel-2A by [28] was used
for the adjustment of the surface reflectance for each com-
parable band to a 0° nadir view and the observed solar
zenith angle [23].

3.1.4. Multisensor Crossband Adjustment. For compatibility
and comparability of the Landsat OLI and Sentinel-2A
bands, the observed differences in the homologue bands
(Table 1) are crossadjusted as discussed in [30, 31]. The need
for band adjustment is to minimize the effects of the band-
width differences as depicted in Table 1. From Table 2, the
six bands (blue, green, red, NIR, SWIR-1, and SWIR-2) were
adjusted using the crosssensor transformation coefficients
(Table 2) as derived from the results by [31]. Approximately
the same crosssensor adjustment coefficients were obtained
[32] in the harmonization of Landsat OLI and Sentinel-2A
MSI sensor data bands.

3.2. Empirical Regression Modelling for Retrieval of Water
Quality Parameters. As presented in the introductory and lit-
erature review sections, this study proposes the use of
EMRM, which follows also from an earlier approach as pre-
sented in [3]. Using EMRM, simulations are carried out to
establish the multivariate correlations between the sensor
band reflectances and the measured in situ water quality var-
iables. Table 3 presents the remote sensing reflectance band
combination(s) considered for the EMRM analysis of the
Sentinel-2A and Landsat OLI data in the estimation of the
water quality parameters. In Table 3, i, j, and k refer to the
sensor bands from the Landsat OLI and Sentinel-2A datasets
(BL8 and BS2A), before conversion to remote sensing reflec-
tance RrsðλÞ and multiband adjustment using the crosssensor
band transformations.

The multivariate regression model for estimating the
water quality parameters in the reservoir is developed by
determining the quantitative relationships between the mea-
sured in situ water quality parameter and the remote sensing
reflectance from the satellite spectral data. The empirical
models used in the regression of the in situ measurements
to the sensor band combinations were comprised of the fol-
lowing model equations [3], where RrsðλÞ is the correspond-
ing remote sensing reflectance for BL8 and BS2A bands and a,
b, and c are the regression model constants.

(a) Linear. a ∗ RrsðλÞ + b.

(b) Polynomial. a ∗ RrsðλÞ2 + b ∗ RrsðλÞ + c.

Table 1: Spectral and spatial samplings of the visible, NIR, and SWIR bands in Landsat OLI and Sentinel-2A.

Landsat-8 OLI Sentinel-2A MSI
Band # and
spectral range

Spectral
resolution (nm)

Bandwidth
(nm)

Spatial
resolution (m)

Band # and
spectral range

Spectral
resolution (nm)

Bandwidth
(nm)

Spatial
resolution (m)

B1-coastal aerosol 435–451 16 30 B1-coastal aerosol 433–453 21 60

B2-blue 452–512 60 30 B2-blue 458–523 66 10

B3-green 533–590 57 30 B3-green 543–578 36 10

B4-red 636–673 37 30 B4-red 650–680 31 10

B5-NIR 851–879 28 30 B8-NIR 785–900 106 10

B9-NIR narrow 855–875 21 20

B6-SWIR-1 1566–1651 85 30 B11-SWIR-1 1566–1655 91 20

B7-SWIR-2 2107–2294 187 30 B12-SWIR-2 2100–2280 175 20
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(c) Logarithmic. a ∗ log10RrsðλÞ + b.

(d) Power. a ∗ Rb
rsðλÞ.

(e) Exponential. a ∗ eb∗RrsðλÞ.

In the development of the EMRM, ten (10) of the sam-
pling point data were used in the regression modelling in
model calibration and five (5) remaining data points (T2,
T5, T7, T8, and T13) were used in the validation of the
model. Surface water samples from T1 to T15 were sampled
in January 2019 during the dry season and those from T16
to T18 were sampled in May after the onset of the raining
season. To determine the best-fit model, the correlation of
determination R2 between the predicted model and
laboratory-measured water quality parameter is ranked, and
the model fit is tested at the entry significance level of p =
0:05 and the removal significance level of 0.10. The t-test
at the confidence level of 95% is used to accept the deter-
mined regressive model. The sampling point-based
retrieved WQPs are also spatially mapped to determine
the spatial distribution of the concentrations of the WQP
using ordinary Kriging [3].

3.3. WQP Retrieval Performance Analysis Metrics. To deter-
mine and compare the performance between the sensor-
based empirical models in the retrieval of water quality
parameter, the regression results were compared with the in
situ laboratory measurements using the following error
matrices: Pearson correlation coefficient R, coefficient of
determination R2, mean absolute error (MAE), root mean
square error (RMSE), and mean absolute percent error
(MAPE%) in Table 4. In Table 4, xi and yi are, respectively,
the laboratory-measured (observed) and the regression
model-predicted water quality parameter concentrations at
each sample point i and for the n samples.

Figure 2 presents a summary of the methodological
approach in the retrieval of the water quality parameters.

4. Results and Discussions

4.1. Signal-to-Noise Ratio (SNR) on Clear Water Bodies. As
proposed in Section 3.1.2, the sensors are compared in terms
of their responsive SNR indices at specific spectral band-
widths. From spatially uniform and clear water bodies, the
Sentinel-2A and Landsat OLI SNR radiometric performances
were determined using L1C images for the visible and NIR
bands. Notably, for land targets, [33] provided the SNR
requirements for the typical radiance. Figure 3 shows the
SNR computed from the average of the local window area
from the ratio of the area mean to standard deviation
(SNR = μ/σ). The SNR is determined using a 3 × 3 pixel ker-
nel on the mean TOA. The selected water body areas are out-
lined in Figure 4 (spatial areas A and B).

In the three visible bands blue (490 nm), green (560 nm),
and red (665 nm), the Landsat OLI bands exhibit SNR values
of 2-3 times higher than the corresponding MSI bands. In the
coastal aerosol bands (443 nm), MSI is at approximately 30%
higher than OLI in SNR. Theoretically therefore, it can be
inferred that since SNR is proportional to the square root
of the area of a pixel [34], then the aggregated 20m-30m spa-
tial resolution of theMSI bands should be able to offer similar
or better radiometric quality in the visible bands as compared
to the OLI bands for the clear water areas. The same argu-
ment can be applied to the aggregated 60m OLI coastal aero-
sol band with 30% higher SNR in the corresponding MSI
band. With band adjustment and scaling, the overall radio-
metric quality of MSI and OLI products can be deduced to
be comparable over aquatic systems [35]. The multisensor
band adjustment and scaling are presented further in the
methodology section.

Table 2: Crosssensor band transformation coefficients for Landsat-8 [31].

Bands
Landsat-8 OLI sensor

Multisensor adjustment equation
Intercept Slope

Blue -0.0107 1.0946

BS2A = slope ∗ BL8 + intercept,
where BS2A is the Sentinel-2A band and BL8 is the Landsat OLI band

Green +0.0026 1.0043

Red -0.0015 1.0524

NIR +0.0033 0.8954

SWIR-1 +0.0065 1.0049

SWIR-2 +0.0046 1.0002

Table 3: Sentinel-2A MSI and Landsat-8 OLI band combination(s) for water quality parameter retrieval using the proposed EMRM.

Band combination(s) Sentinel-2A bands Landsat OLI bands

Single bands BS2A1 = BS2Ai BL81 = BL8i

Linear band combination BS2A2 = BS2Ai + BS2Aj BL82 = BL8i + BL8j

Band ratios B2A3 = BS2Ai/BS2Aj BL83 = BL8i/BL8j

Mixed band combinations BS2A = BS2Ai/BS2Aj

� �
+ BS2Ak BL84 = BL8i/BL8j

� �
+ BL8k

BL8 and BS2A are, respectively, the Landsat OLI and Sentinel-2A bands, and BL81‐4 and BS2A1‐4 are the four band combination models 1-4.
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Table 4: Water quality estimation performance analysis metrics.

Error estimator Error equation

Pearson correlation coefficient and coefficient of determination R =∑n
i=1 yi − �yð Þ ⋅ xi − �xð Þ/

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i=1 yi − �yð Þ2 ⋅ ∑n
i=1 xi − �xð Þ2

q
, R2

Mean absolute error MAE = 1/n〠n

i=1 xi − yij j

Root mean square error RMSE =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1/n〠n

i=1 xi − yið Þ2
q

Normalized mean absolute error percent NMAE% = 1/n〠n

i=1 xi − yij j/xið Þ
h i

∗ 100

Sentinel-2A MSI
and

Landsat-8 OLI 

Remote sensing
reflectance Rrs(𝜆) [3]

Atmospheric Correction using
LaSRC algorithm [29]

Surface reflectance and
image data standardization

and comparison: SNR and TOA

Chl-a
Lambertian BDRF adjustment
using semiphysical model [33]

Crossband adjustment [36]

Biooptical modelling of
water quality parameters

Turbidity TSS

Regression modelling for WQP estimation
and validation: EMRM algorithm

In situ field sampling and laboratory testing
of WQPs: Chl-a, turbidity, and TSS

Multisensor homologue
band comparisons

Reservoir WQP prediction equations

Chl-a Turbidity TSS

Figure 2: Schematic workflow of the approach for the retrieval of water quality parameters from Landsat OLI and Sentinel-2A MSI. WQPs
are the water quality parameters, EMRM is empirical multivariate regression modelling algorithmic approach, SNR is the signal-to-noise
ratio, and TOA is the top of atmosphere reflectance.
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4.2. Sentinel-2 MSI and Landsat-8 OLI TOA Reflectance
Comparison. When comparing the TOA and surface reflec-
tance from the two sensors, the spatial subsets (A and B) for
the selected water bodies are shown in Figure 4. In terms of
the interband spectral responses for the selected water body
areas, the scatterplots between the Landsat OLI and Sentinel-
2A spectral bands showed a high correlation of R2 > 0:876,
for all the seven homologue bands in Table 1. The regression
plots in Figure 4 present sample results from the correlations
between the red and NIR bands from the spatial subset of
the two water body scenes A and B. The red and NIR bands
represent the reflectance in the visible and NIR bands, which
are commonly used in water quality modelling [3, 36–38].
The regression results indicate that the two sensors contain
nearly similar spectral radiance information, despite the mar-
ginal difference in the SNR (Figure 3).

Figure 4 shows that for the same scene water body, the
sensors have a close crosscorrelation in the red and NIR
bands, which is also observed in the TOA reflectance plot
in Figure 5 with the TOA from Landsat OLI wavelengths
being slightly higher than that from Sentinel-2A bands. In
Figure 5, the TOA reflectance values are scaled by a factor
of 10,000 and the 10m Sentinel-2A bands were resampled
to the 30m spatial resolution to match the Landsat OLI.

The moderately higher TOA reflectance in Landsat OLI con-
firms the higher SNR. The results in Figure 5 show that the
Landsat OLI bands present a slightly higher TOA reflectance
than the Sentinel-2A bands.

4.3. Comparisons of Sensor Remote Sensing Reflectance RrsðλÞ.
A comparison of the remote sensing reflectance from the 15
sampling points from the Sentinal-2A and Landsat OLI is pre-
sented in Figure 6, indicating that after sensor band adjust-
ment, the reflectance in the sensor bands ranges from 0.003
to 0.009Sr-1. For both sensors, the visible and NIR bands show
characteristically higher reflectance as compared with the
SWIR bands over the reservoir. The sampling stations T2,
T6, T9, and T11 depict characteristically higher reflectance
than the other sampling points. These sampling points,
respectively, represent regions within the dam where there is
inflow, the edge of the dam, the deepest and most shallow sec-
tions of the dam. In general, the reflectance pattern within the
dam follows the same pattern from T1 to T15 especially in
Sentinel-2A data, with the deepest point having the highest
reflectance of 0.25Sr-1 in Landsat OLI and 0.087 in Sentinel-
2A MSI NIR and blue bands, respectively. In Figure 6, OLI
shows the highest reflectance in the visible bands (B2-B4)
and NIR (B5) bands, while Sentinel-2A shows relatively higher
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Figure 4: The TOA reflectance correlation scatterplots from Landsat OLI and Sentinel-2A reflectance in red and near-infrared bands for clear
water surfaces (A and B).
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TOA reflectance in all the bands at above 0.003Sr-1. This
observation is similar to the observed SNR results in
Figure 3, and the near-uniform reflectance from the two
sensors can be attributed to the band adjustment using
the LaSRC algorithm [27].

4.4. Water Quality Estimations from Sentinel-2A and
Landsat OLI

4.4.1. Retrieval of Chlorophyll-a. The in situ test results deter-
mined the concentrations of chlorophyll-a to vary consider-
ably within the reservoir with values between 6.23μg/L and
113μg/L and an average of 29.91μg/L. Since the reservoir is
protected from public use, the observed Chl-a concentrations
are attributed to the inflow of fertilizer leachate into the res-
ervoir from the surrounding farms. The leachate process
carries nutrients which encourage the growth of algae in

the reservoir. This is likely to cause severe eutrophication if
not monitored on a continual basis.

From the empirical regression modelling, Figures 7 and 8,
respectively, present the best regression models for the esti-
mation of the concentration of Chl-a from Sentinel-2A and
Landsat OLI. For Senstinel-2A (Figure 7), a second-order
polynomial fit was found to be suitable for the retrieval of
Chl-a using RrsðλÞ from the difference between the green
(B3) and the SWIR-1 (B11) band, with R2 = 0:7015. This
was approximately 15% lower in accuracy as compared to
the linear model derived from the prediction of Chl-a from
Landsat OLI with R2 = 0:8581 from the green band (B3)
(Figure 8). While the green band is observed to be signifi-
cant in the detection of Chl-a from both sensors, the
advantage of Landsat OLI could be because of its wider
spectral bandwidth in the green band, i.e., approximately
57 nm as compared to 35 nm in Sentinal-2A (Table 2),
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and therefore, the placement of the green band and the
SNR in the Landsat OLI is suitable for Chl-a retrieval.

The estimated Chl-a from Sentine-2 and Landsat-8 both
have a lower RMSE value compared to the mean in situ-mea-
sured Chl-a (29.91μg/L). This confirms the appropriateness
of the developed regression model for estimating Chl-a in
the case study dam at the given acquisition.

A summary of the performance of the two sensors is
given in Tables 5 and 6 for the best five fit EMRM results.
The results show that Landsat OLI is able to detect the pres-
ence of Chl-a with R2 of up to 0.86, as compared to Sentinel-
2A with R2 of up to 0.70. Similarly, the statistical trends from
MAE, NMAE%, and RMSE are the same at p value = 0.055,

with lower MAE and RMSE in Landsat OLI, but relatively
the same NMAE% error magnitudes for Chl-a retrieval from
both sensors. The inference from the results is that both the
sensors are suitable for the retrieval of Chl-a, specifically
using the green and blue bands, and thus, as opposed to the
results from [39], the red and NIR bands are not informative
in the retrieval of water quality in the inland waters in this
case study. The green and blue wavelengths are suitable for
the detection of algal bloom due to the high reflectance of
green algal matter, which is in the bluish color waters.

Compared to previous study results on the estimation of
Chl-a, [38] compared Landsat-8 L1T and Sentinel-2A L1C
with in situ measurements for chlorophyll-a predictions in
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y = 395763x2 – 44991x + 1288.2
R2 = 0.7015

RMSE = 12.8408 𝜇g/L MAE (bias) = 2.8672 𝜇g/L MAPE = 44.74%
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Table 5: Regression model for the retrieval of chlorophyll-a from Sentinel-2A bands.

Sentinel-2A regression model equation for Chl-a estimation Band combination for deriving Rrs = xð Þ R2 MAE NMAE% RMSE

y = 466683x2 − 39497x + 835:87 B3 + B12‐B11ð Þ 0.6915 0.1613 8.7155 3.0357

y = 378524:04x2 − 30345:60x + 616:37 B3 0.6300 3.4864 73.1354 27.3437

y = 395763x2 − 44991x + 1288:2 B2-B11 0.7015 2.8672 44.7386 12.8408

y = 246622x2 − 38346x + 1497:6 B2 + B12ð Þ/2 0.6291 6.0437 67.4678 23.2026

y = 1748431:97x2 − 126132:79x + 2289:87 B2‐B11ð Þ/2 0.6500 10.2352 73.3885 18.6211

Table 6: Regression models for the estimation of chlorophyll-a from Landsat OLI bands.

Landsat-8 OLI regression model equation for Chl-a estimation Band combination for deriving Rrs = xð Þ R2 MAE NMSE% RMSE

y = 3188:9x − 349:09 B2 + B3 0.8505 1.4128 59.5924 8.2940

y = 4050:2x − 170:43 B3 0.8581 2.5596 54.0317 5.9591

y = 2749:1x − 539:88 B2 + B3 + B5 0.8568 0.4808 60.9354 9.9056

y = 402:73 ln xð Þ + 888:88 B2 + B3 0.8522 1.9835 60.1054 7.7013

y = 593:38 ln xð Þ + 964:48 B2 + B3 + B4 0.8507 0.8458 61.4433 9.4775
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the Cassaffousth Reservoir in Argentina. For Landsat, the
model with the combination of the blue band and blue/NIR
and green/NIR band ratios produced the best results with
R2 > 0:89. The best Sentinel MSI model was a two-variable
model using both the blue band and the (green/NIR band ratio
with R2 = 0:880. [13] also estimated chlorophyll-a for Lake
Peipsi and Lake Võrtsjärv using Sentinel MSI with R2 = 0:83,
using blue and green bands. In attempts to estimate chloro-
phyll-a, [40] showed that Landsat OLI produced average but
better results for chlorophyll-a estimations for the case study
of Lake Trichonis in Greece, as compared to its predecessors
in the Landsat series, using the visible and NIR bands. [41]
investigated the potential of deriving chlorophyll-a and tur-
bidity using Secchi disk depth in six (6) natural and five
(5) artificial lakes in Greece, using Landsat-8’s blue, red,
and SWIR-2 bands. The regression validation indicated suc-
cessful correlations with R2 of 0.75 for chlorophyll-a estima-
tions. [11, 39] derived the chlorophyll-a for Barra Bonita
tropical reservoir using Landsat OLI. The results showed that
the NIR-red, NIR-green, and NIR-blue band ratios yielded
the best results with R2 greater than 0.70 for the estimation
of Chl-a concentrations.

In conclusion and compared to previous studies, the cur-
rent study further confirms the suitability of the visible and
NIR bands in the prediction of chlorophyll-a in inland water
bodies. The detection of the concentration of chlorophyll-a
using the developed empirical equations can be an indicator
for monitoring the abundance of algae in inland water bod-
ies, since it presents active optical properties in the visible
and near-infrared wavelengths.

4.4.2. Estimation of TSS Concentration. The concentrations
of suspended particulate matter from the laboratory mea-
surements were low and within acceptable limits ranging
between 39mg/L and 711mg/L, with a reservoir average of
187mg/L. The highest concentrations were in the same
regions as for Chl-a and are attributed to the inflow of water
from a river at an area of low depth which leads to the agita-
tion of the sediments from the bottom of the reservoir.

Because the reservoir is deep, the sediments tend to settle fas-
ter leading to generally low concentrations of particulate
matter. However, the high presence of particulate matter at
a given time and region propagates the concentration of algal
bloom and hence the observed high concentrations of Chl-a
in the same reservoir region.

Using the EMRM algorithmic approach, the best
results for the estimation of TSS concentration from
Sentinel-2A were obtained using a second-order polyno-
mial function relating the red band (B4) and the NIR
band (B8) with R2 of 0.6113 (Figure 9), as compared to
R2 = 0:9249 from the Landsat OLI band ratio between
the green band (B3) and the blue band (B2) using linear
regression modelling (Figure 10). While the mean concen-
tration of TSS from the in situ measurements is at
187mg/L, the RMSE and bias are averaged and less than
10mg/L. This confirms the validity of the developed model
in estimating TSS within the reservoir.

The overall performance of the satellite sensors in the
retrieval of TSS within the reservoir is summarized in
Tables 7 and 8 for the best five results. As in the retrieval of
Chl-a, the visible and NIR bands are the optimal bands in
the estimation of TSS. The accuracy of estimation of TSS
from Landsat OLI (Table 8) is notably higher than that from
Sentinel-2A by at least 30% as measured in terms of R2. The
MAE, NMAE%, and RMSE are also observed to follow the R2

trend of higher values from Sentinel-2A predictions as com-
pared to the predictions from Landsat OLI. The results in
Tables 7 and 8 show that the placement of the visible bands
in Landsat is significant in TSS estimation.

The significance of OLI band 3 and band 2 in TSS estima-
tion is noted and is attributed to the fact that the deeper the
water, the more blue light it reflects and hence the higher
the reflectance in blue and green bands. It is also known that
the particle settlement is higher in deep quiescent water.
Therefore, by relation, the higher the blue light detected,
the lower the concentration of particles in the water. In the
case of the green band, most of the suspended matter in the
water was in the form of algae. Therefore, the higher the

y = 93011x2 – 82773x + 18442
R2 = 0.6133

RMSE = 8.3845 mg/L MAE (bias) = 5.50 mg/L MAPE=4.3%
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amount of light reflected in the green wavelength, the higher
the concentration of algae and thus the higher the amount of
suspended matter.

Compared to previous studies on TSS estimations using
satellite data, [36] utilized Landsat OLI for retrieval of sus-
pended sediment concentrations in the Orinoco River in
Venezuela. The best performance for TSS estimations was
from the red and near-infrared wavelengths, which is similar
to the results from Sentinel-2 MSI in this study. [21] also
found that for suspended particulate matter predictions for
Poyang Lake in China using empirical models, Sentinel-2A
MSI band 7 was suitable for sediment-laden waters while
Sentinel-2A MSI band 4 was suitable for clear waters. In
Playa Colorada Bay, Mexico, [42] generated empirical
models for TSS and turbidity estimations using the Landsat
imagery. The correlation results between the Landsat reflec-

tance and the in situmeasurements indicated that both water
quality parameters could be estimated with R2 of between
0.637 and 0.955, which is comparable with current results
using Landsat OLI. [37] also estimated TSS and turbidity
for Wular Lake in Kashmir. The parameters were correlated
with single Landsat OLI bands and produced R2 greater than
0.5, while [43] estimated TSS with R2 of 0.709 using visible
bands for Poteran Island waters in East Java, Indonesia.

The results from the current study show the significance
of the green, red, and near-infrared wavelengths in the esti-
mations of TSS in inland reservoir water bodies, with spe-
cially higher accuracy using Landsat-8 OLI wavelengths.
For TSS retrieval from Sentinel-2 MSI, however, the marginal
performance could be attributed to interactions of the optical
electromagnetic radiations with the atmosphere and result-
ing low water surface reflectance into the sensor (glint). Thus,

Table 7: Regression model for the estimation of TSS from Sentinel-2A MSI.

Sentinel-2A regression model equation for estimation of TSS
Band combination for deriving Rrs

= xð Þ R2 MAE NMAE% RMSE

y = 93011x2 − 82773x + 18442 B4 + B8/B4ð Þð Þ/2 0.6133 5.4969 4.3039 8.3845

y = 89013x2 − 78936x + 17526 B8A + B8/B4ð Þð Þ/2 0.5940 9.5691 6.8105 13.4793

y = 83708x2 − 73811x + 16299 B8 + B8/B4ð Þð Þ/2 0.5998 6.6792 7.5058 12.9244

y = 19420x2 − 26272x + 8945:4 B4/B3 0.4846 23.7299 15.7569 24.8370

y = 46042x2 − 32585x + 5822:6 B3 + B4/B3ð Þð Þ/2 0.4722 13.9118 12.9250 21.7248

y = 2454.1x – 1584.4 
R2 = 0.9249

RMSE = 0.0349 mg/L MAE (bias) = 0.5473 mg/L MAPE = 0.70%
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Figure 10: Landsat band remote sensing reflectance and in situ-measured TSS concentration.

Table 8: Regression model for the estimation of TSS from Landsat-8 OLI.

Landsat OLI regression model equation for estimation of TSS Band combination for deriving Rrs = xð Þ R2 MAE NMAE% RMSE

y = 2781:9x − 1393:5 B2 0.9240 4.7391 12.3842 3.3185

y = 27176x − 1184:6 B3 0.9245 6.8510 29.896 12.8425

y = 2454:1x − 1584:4 B3/B2 0.9249 0.5473 0.7000 0.0349

y = 1714:7 ln xð Þ + 1171 B3/B4 0.9161 2.3885 9.3736 2.1329

y = 1905:3 ln xð Þ + 821:01 B3/B2 0.9159 3.7496 12.1181 4.5714
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further correction of the Sentinel MSI Rrs signal is proposed
to improve the accuracy in modelling TSS using Sentinel-2
data [13, 38].

4.4.3. Estimation of Turbidity Concentration in Reservoir
Waters. With in situ turbidity varying from 1.36NTU to
7.42NTU and averaging at 2.83NTU, the reservoir is charac-
terized by low turbid waters. The low turbidities could be
attributed to low flows into the reservoir, especially during
the period in which the water samples were collected. With
minimum inflow of sediment-laden rainwater discharge and
the slow velocities of the river water, the concentrations of sed-
iments that would cause reservoir turbidity were low. Further,
at a maximum depth of approximately 150m, the reservoir
depth enables the settlement of sediments at the bottom of
the reservoir with minimal potential of resuspension by water
currents and waves. The higher degree of settling of sediments
therefore leads to low turbidity in the reservoir.

From the empirical multivariate regression modelling
comparing the satellite reflectance data and the laboratory-
measured water quality factor, the study results show that
the turbidity was estimated from the two sensors with the
same accuracy of R2 > 0:7 (Figures 11 and 12). For both the
sensors, the visible bands (blue, green, and red) are observed
to be predominant in the retrieval of turbidity within the res-
ervoir. In Figure 11, the best estimate of turbidity using
Sentinel-2A is at R2 = 0:8004, which is comparable to turbid-
ity estimates using Landsat OLI with R2 = 0:8134. The
models accurately predicted the concentrations of turbidity
from both sensors as the RMSE and bias error measures were
less than the minimum and average in situ turbidity.

Tables 9 and 10 give a summary of the best regression
models for the retrieval of turbidity, showing significant con-
tributions from the visible bands from both sensors. The
error metrics MAE, NMAE%, and RMSE are, respectively,
in the same magnitude range for both sensors. Like in the

y = 367.82x2 – 976.42x + 649.13
R2 = 0.8004

RMSE = 0.3272 NTU MAE (bias) = 0.0691NTU MAPE = 10.71%
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estimation of Chl-a and TSS, the linear and polynomial
regression models are the best for the retrieval of the WQP.
The turbidity estimation results are particularly important
since turbidity is considered one of the most significant water
quality parameters [44].

In the estimation of turbidity, the visible and NIR bands
are observed to yield the best results. Comparatively, the
accuracy of turbidity estimations is nearly equal for the two
optical sensors indicating that the reflectance of suspended
particulates is much higher in the lower wavelengths, irre-
spective of the band and or the bandwidth.

For the assessment of the extraction of turbidity as the
significant water quality parameter that relates directly to
the underwater light penetration that affects productivity,
[44] showed from several band combinations that Landsat
OLI band 4 (red) has the best correlation with the in situ-
measured turbidity with a coefficient of determination R2 of
0.84, scatter index of 0.22, and RMSE of 0.28NTU. [45] also

recently demonstrated using the multivariate regression
model and gene expression programming (GEP) that reser-
voir turbidity could be extracted with R2 of greater than
90%, using the combination of visible and NIR bands. While
high accuracy has been observed in turbidity estimation, in
all the studies, atmospheric correction was found to be a fac-
tor in the accuracy of the WQP modelling [13, 22, 38].

4.5. Validation of Water Quality Prediction with In Situ
Measurements. The validation of the developed regression
models in Section 4.4 was carried out using the five (5)
sampling stations (T2, T5, T7, T8, and T13). The valida-
tion results are presented in Table 11, including the statis-
tics from the stations which were used in the model
calibration. TSS is observed to have the highest variation
in concentration, followed by Chl-a and turbidity (least).
From the SD, CV, and SE metrics, Landsat OLI tended
to underestimate the concentrations of the water quality

Table 9: Regression model for the estimation of turbidity from the Sentinel-2A MSI sensor.

Sentinel-2A regression model equation for estimation of
turbidity

Band combination for deriving Rrs
= xð Þ R2 MAE NMAE% RMSE

y = 367:82x2 − 976:42x + 649:13 B2/B3 0.8004 0.0691 10.7144 0.3272

y = 971:47x2 − 1468x + 555:84 B3/B2 0.7990 0.0746 10.4636 0.3290

y = 725:32x2 − 858:52x + 255:91 B4/B3 0.7353 0.7609 47.9432 1.5866

y = 118:8x2 − 401:92x + 341:62 B2/B4 0.7372 0.7656 45.71415 1.5877

y = 387:41x2 − 1103x + 786:37 B1 + B1/B2ð Þ 0.7592 0.0035 6.9895 0.2192

Table 10: Regression model for the estimation of turbidity from the Landsat-8 OLI sensor.

Sentinel-2A regression model equation for estimation of
turbidity

Band combination for deriving Rrs
= xð Þ R2 MAE NMAE% RMSE

y = 20:981x − 8:901 B3/B2 0.8134 0.1475 14.7203 0.4024

y = 102:56x − 5:5003 B3 + B4 0.8125 0.1066 9.4289 0.7341

y = 90:319x − 10:775 B2 + B3 + B4 0.8123 0.1175 9.9483 0.7836

y = 20:254 ln xð Þ + 46:009 B2 + B3 0.7978 0.0489 14.5470 0.6069

y = 14:735 ln xð Þ + 30:802 B2 + B3 + B4 0.7954 0.0865 10.5043 0.7350

Table 11: Descriptive statistics of the laboratory-measured and predicted water quality parameters (SD= standard deviation; CV= coefficient
of variation; SE = standard error).

Water quality parameter and estimation and data
source

Sample (n) Min Max Median Average SD CV (%) SE

Chl-a (μg/L)

In situ WQP measurements 15 6.24 113.73 15.16 29.91 31.65 105.82 8.17

Landsat-8 OLI 15 13.29 110.26 15.44 30.77 28.42 92.39 7.34

Sentinel-2A MSI 15 11.38 221.80 23.04 40.82 56.19 137.65 14.51

Turbidity (NTU)

In situ WQP measurements 15 1.36 7.42 1.97 2.83 1.69 59.64 0.42

Landsat-8 OLI 15 1.94 6.92 2.05 2.88 1.46 50.77 0.38

Sentinel-2A MSI 15 1.23 26.25 2.48 4.99 6.51 130.52 1.68

TSS (mg/L)

In situ WQP measurements 15 39.00 711.00 95.00 187.00 197.88 102.23 49.36

Landsat-8 OLI 15 38.12 702.60 60.23 169.68 195.70 115.34 50.53

Sentinel-2A MSI 15 35.51 573.74 127.78 177.06 157.98 89.22 40.79
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parameters, while Sentinel-2A-based models tended to
overestimate the same WQP, thus predicting the parame-
ters with a higher coefficient of variation.

The graphical assessment of the validation results in
Figure 13 for Chl-a, turbidity, and TSS shows that for the five
(5) validation sampling stations, the retrieval of Chl-a and
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turbidity matched the observed measurements for both
Sentinel-2A and Landsat OLI, except for sampling station
T2, where Sentinel-2A grossly overestimated the Chl-a and
turbidity concentrations by approximately 4 times. For TSS
estimation, Table 9 and Figure 13 show lower coincidence
between the measured and validated results with standard
error at above 40% for both sensors.

The marginally lower performance of the Sentinel-2A in
the prediction of the selected WQP may be attributed to the
two factors, namely: (i) the sensor’s low spectral resolution
in terms of the bandwidths and (ii) the lower signal-to-
noise ratio (SNR) as compared to Landsat OLI visible and
NIR bands. However, in the four visible channels and the
NIR bands, the results of the study show that with adequate
radiometric corrections or band adjustments, the OLI and
MSI are both capable of monitoring the optically active water
quality indicators. In synergy with the Landsat-9, the multi-
sensor integration of the Sentinel-2A MSI and Landsat-8 will

result in a temporal revisit time of 2–3 days, making it possi-
ble to accurately capture the dynamics of the inland water
body characteristics for continuous assessments.

In summary, the results for the prediction of chlorophyll-
a, TSS, and turbidity demonstrate the potential for cost-effec-
tive, large-scale, and high-frequency use of optical satellite
remote sensing reflectance data in monitoring optically
active water elements. However, it is observed that the effec-
tiveness and accuracy of water quality element determination
are dependent on the satellite sensor used, the methodology
followed, and also the nature of the waters studied.

4.6. Spatial Distribution of Optically Active Water
Quality Parameters

4.6.1. Chlorophyll-a Distribution. Using ordinary Kriging as
suggested in [3], the spatial interpolation of the concentra-
tions of Chl-a observed and estimated from Sentinel-2A
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and Landsat OLI datasets is presented in Figure 14. It is
observed that the chlorophyll distribution trend from the in
situ measurements and Landsat OLI (Figures 14(a) and
14(b), respectively) is closely correlated with a good coinci-
dence between the high and low chlorophyll-a concentration
regions. The highest concentrations are observed around the
deepest region of the dam at T9, with Landsat-8 OLI
slightly underestimating the chlorophyll-a concentration
(99.43-110.20μg/L), as compared to the laboratory-measured
concentrations ranging from 102.00 to 114.00μg/L. On the
contrary, for high Chl-a concentration regions, Sentinel-2A
retrieval does not coincide with that measured and estimated
using Landsat OLI as evident in Figure 14(c) with gross over-
estimation and shift in the spatial location. This difference
provides satisfactory evidence as shown in Table 11 and
Figure 13, whereby at T2 and T12-T14, the estimation errors
of Chl-a from Sentinel-2A are marginally higher.

The predominately green band-based Chl-a algorithms
derived in this study are considered to be suitable for inland

water body systems whereby Chl-a is the dominant absorber.
For optically complex waters like rivers and polluted lakes,
combinations of other water components may result in false
Chl-a derivations. This can be the case in terrestrially influ-
enced water bodies, where CDOM and nonalgal particles
are able to absorb shorter wavelengths in the visible spec-
trum, thus changing the green reflectance value which may
lead to the overestimation of Chl-a [46]. For the establish-
ment of the differences between water body systems, the
uncertainties and absolute accuracy of the developed algo-
rithms should be considered for Chl-a, TSS, and turbidity.

4.6.2. Distribution of TSS Concentration. The results in
Figure 15 show that the distribution of TSS in the dam was
fairly similar between the in situ laboratory measurements
and the estimations by the Landsat OLI and Sentinel-2A sen-
sors. In the case of TSS and as observed for Chl-a, Sentinel-
2A tended to slightly overestimate the TSS concentration;
however, the peak locations of high and low concentrations

Total suspended solid distribution

6

TSS (mg/L)
39 – 114
114 – 188
188 – 263
263 – 338
338 – 412
412 – 487
487 – 561
561 – 636
636 – 711

(a)

Total suspended solid distributions (Landsat-8)

6

38.27 – 112.04

TSS (mg/L)
<Value>

112.04 – 185.80
185.80 – 259.57
259.57 – 333.34
333.34 – 407.11
407.11 – 480.87
480.87 – 554.64
554.64 – 628.41
628.41 – 702.17

(b)

Total suspended solid distributions (Sentinel-2)

6

TSS (mg/L)
<Value>

35.50 – 95.31
95.31 – 155.11
155.11 – 214.91
214.91 – 274.72
274.72 – 334.52
334.52 – 394.32
394.32 – 454.12
454.12 – 513.93
513.93 – 573.73

(c)

Figure 15: Spatial distribution of TSS concentration from (a) in situ measurements and (b) Landsat OLI and (c) Sentinel-2A.
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of TSS are in fair coincidence between the satellite-based
model estimates and the measured values.

Compared to the statistical analysis results in Section 4.5,
for validation, it is observed that the spatial interpolation
results depict a better TSS concentration distribution than
the discrete analysis in Table 9 and Figure 13. Thus, despite
the low statistical accuracy of indications, the two sensors
are reliable for the prediction of the general distribution of
the TSS within the inland water body.

4.6.3. Distribution of Turbidity Concentration. The distribu-
tion of turbidity in Figure 16 is observed to be in coincidence
with the trend in Chl-a (Figure 14), with Sentinel-2A
(Figure 16(c)) overestimating the turbidity concentration,
while Landsat OLI estimations (Figure 16(b)) are closely cor-
related with spatial location and areal distribution with the
laboratory-measured turbidity (Figure 16(a)). Notably,
though the statistical analysis shows that both sensors

detected the turbidity with accuracy of more than 70%, the
spatial distribution maps do not however exhibit the same
high accuracy, especially because the Sentinel-2A tended to
grossly overestimate turbidity (Figure 16(c)).

The algorithmic models in the current study could be
applied to map Chl-a, TSS, and turbidity in the Chebara
Dam system (Figures 14–16) or in other reservoirs within
the same geographic locations. However, the specific coeffi-
cients of the algorithm equations should be revised to match
the biooptical characteristics of the WQPs present in the tar-
get reservoir waters. For replication, the algorithms should be
recalibrated to suit the different climatic conditions and sea-
sons and the unique hydrologic characteristics for specific
reservoirs. Our future focus is on improving the models
and on collecting in situ data across a larger extent of the res-
ervoir at multiple seasons for spatial-temporal mapping of
WQPs and developing model transfer function models for
applications in dams within the same region.

Turbidity (NTUz)

6

Turbidity (NTUz)
<Value>

1.00 - 2.00
2.00 - 2.70
2.70 - 3.40
3.40 - 4.10
4.10 - 4.70
4.70 - 5.40
5.40 - 6.10
6.10 - 6.70
6.70 - 7.50

(a)

Turbidity distribution (Landsat-8)

6

Turbidity (NTUz)
<Value>

1.94 - 2.49
2.49 - 3.04
3.04 - 3.59
3.59 - 4.15
4.15 - 4.70
4.70 - 5.25
5.25 - 5.80
5.80 - 6.36
6.36 - 6.91

(b)

Turbidity distribution (Sentinel-2)

6

Turbidity (NTUz)
<Value>

1.22 - 4.00
4.00 - 6.78
6.78 - 9.56
9.56 - 12.34
12.34 - 15.12
15.12 - 17.91
17.91 - 20.69
20.69 - 23.47
23.47 - 26.25

(c)

Figure 16: Spatial distribution of turbidity concentration from (a) in situ measurements and (b) Landsat OLI and (c) Sentinel-2A.
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5. Conclusions

This study compared Landsat-8 OLI and Sentinel-2A MSI
satellite sensors for the retrieval of chlorophyll-a, TSS, and
turbidity in an inland water reservoir. For clear water sur-
faces, Landsat-8 exhibited a higher signal-to-noise ratio
(SNR) in the visible bands and marginally higher water sur-
face reflectance in the visible and NIR bands as compared
to the corresponding Sentinel-2A bands. Using the visible
and NIR bands with the empirical multivariate regression
model, the presence of Chl-a was retrieved from Sentinel-
2A with accuracy of 62-70%, which was 15-25% less than
the Chl-a estimations from Landsat-8. Using the same multi-
spectral bands, TSS was estimated from Sentinel-2A with
accuracy of between 47 and 62% as compared to Landsat-
8’s accuracy of more than 90%. For turbidity estimations,
the performance of both sensors was nearly equal with accu-
racy of more than 75%. The results show the potentials of
using both sensors in reservoir water quality retrieval, with
Landsat-8 performing better in estimating the tested param-
eters. To improve the accuracy of water quality estimations in
inland water bodies, the study recommends the radiometric
calibration and synergistic use of Landsat-8/9 and Sentinel-
2A/2B for frequent water quality assessments.
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Nowadays, the importance and utilization of spatial information are recognized. Particularly in urban areas, the demand for indoor
spatial information draws attention and most commonly requires high-precision 3D data. However accurate, most methodologies
present problems in construction cost and ease of updating. Images are accessible and are useful to express indoor space, but pixel
data cannot be applied directly to provide indoor services. A network-based topological data gives information about the spatial
relationships of the spaces depicted by the image, as well as enables recognition of these spaces and the objects contained within.
In this paper, we present a data fusion methodology between image data and a network-based topological data, without the need
for data conversion, use of a reference data, or a separate data model. Using the concept of a Spatial Extended Point (SEP), we
implement this methodology to establish a correspondence between omnidirectional images and IndoorGML data to provide an
indoor spatial service. The proposed algorithm used position information identified by a user in the image to define a 3D region
to be used to distinguish correspondence with the IndoorGML and indoor POI data. We experiment with a corridor-type
indoor space and construct an indoor navigation platform.

1. Introduction

Most services involving spatial data are available for out-
doors, compared to the indoors [1], despite being more cru-
cial in urban areas, where people generally spend more time
in a structure [2] or where navigation in cases of evacuation
is experiencing more delay [3]. As this concern gains atten-
tion, various approaches in representation have been
attempted across applications, particularly as this depends
on the field and intent of service [4]. Mobile devices have also
been increasingly popular and integrated with the daily lives
of humans [5].

Multiple studies have shown efforts to represent the
indoor environment, such as Light Detection and Ranging
(LiDAR) or through Building Information Modeling (BIM)
data [6], which require either cumbersome data collection
or expensive equipment. The dynamic characteristic of
indoor spaces, especially in urban areas, needs constant
updating of datasets, and these methodologies pose problems
in cost and time. Omnidirectional images taken with a 360°

point of view [7] present an alternative, as this provides
cheaper and faster avenues in depicting indoor space. How-
ever, these images present difficulty when used in providing
services more than visualization, such as identifying spaces
or objects within indoor space, which are crucial in applica-
tions such as navigation and facility management because
they only contain pixel data. For example, we cannot distin-
guish directly if a room is directly accessible from the hall-
way, or if it is adjacent to another room from the images
alone. In the same way, we can visually see facilities such as
fire extinguishers or CCTV cameras. Still, their exact loca-
tions are unidentifiable due to a lack of geometric
information.

Indoor network-based topological data may provide the
information lacking in these omnidirectional images, such
as spatial relationships of connectivity between spaces or
containment of objects within the spaces. IndoorGML is
the standard established by the Open Geospatial Consortium
(OGC) for indoor spatial data, geared primarily for repre-
senting space for navigation applications [8]. Using
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topological data, such as IndoorGML, enables services utiliz-
ing query-based analysis on omnidirectional images that
alone give only visualization. With this, there is a need to link
omnidirectional images that display the spaces and the
indoor topological data, which represents the relationships
between said spaces, as well as objects contained within.

Different types of data represent various aspects of indoor
space, and this variety may be a source of problems in utiliza-
tion because of compatibility issues [9]. Data fusion is for
datasets coming from various sources or formats to produce
the same quality of output information or increase under-
standing of the underlying phenomena represented differ-
ently by these datasets to address this problem of variety. In
this study, we aim to propose a methodology for the data
fusion of image and a network-based topological data with-
out undertaking data conversion, using a separate data
model, or reference data. We demonstrate a procedure to
establish a relationship between omnidirectional images
and IndoorGML data for providing indoor space
applications.

This paper is structured as follows. The next section dis-
cusses studies on efforts on indoor space expression and
methodologies in data fusion. The third section presents the
proposed methods for image and topology data fusion. By
understanding the relationship between the omnidirectional
images and IndoorGML data, we lay out the data require-
ments that must be satisfied before establishing the fusion.
In the following section, we conduct an experimental imple-
mentation of the proposed methodology by developing an
indoor space service based on navigation, as well as indoor
POI display. Finally, the last section concludes with implica-
tions and limitations derived from this study and future
studies.

2. Related Research

In this section, we review how topological data and data
fusion play a role in indoor space representation. We explore
various studies regarding methods of expressing indoor
space, as well as efforts for data fusion methods to produce
indoor spatial data, in the aim to provide various indoor
space services.

Typical means of expressing indoor space include the use
of two-dimensional (2D) or three-dimensional (3D) data. 2D
methods include the least amount of information that repre-
sents the indoor space [10], such as CAD floor plan drawings.
However, if indoor space is in 3D, it is possible to analyze
indoor space differently compared when it is in 2D [11] as
specific characteristics may seem more apparent. These
methods may use existing 3D CAD models or high-
precision LiDAR measurement that can accurately represent
indoor space but can entail high cost and large file size. These
methods may be practical in military applications, in gaming,
or in other cases where service is feasible only when indoor
space is represented very accurately [4]. On the other hand,
it is possible to support various functions such as attribute
search and viewing if the data supports the expression of
topological relationships of indoor spaces [12]. In the context
of indoor navigation and LBS, network-based topological

models are emphasized as necessary [13], especially in the
context of the visualization and analysis of the internal com-
position of as-built structures [14]. Reference [15] has also
demonstrated that these types of topological data are more
efficient in performing spatial queries.

A typical method of expressing topological relationships
among spaces is the Combinatorial Data Model (CDM)
based on the Node-Relation Structure (NRS) [16]. The NRS
transforms a 3D object into a node, and an edge represents
the respective shared boundaries among the rooms, based
on the Poincare duality. Hence, in the topological model,
the nodes represent the indoor spaces, and the edges repre-
sent the topological relationships among connected nodes.
Based on the CDM, the Open Geospatial Consortium
(OGC), an international standards organization for spatial
information, established IndoorGML as a framework to rep-
resent topological relationships for indoor spaces and data
exchange. Similarly, indoor spaces are defined as nodes (also
called states), while edges (or referred to as transitions)
express topological relationships [8].

As IndoorGML is capable of representing the indoor
spaces, its primary utilization is for the investigation of the
usage of indoor space, such as indoor LBS, or indoor route
analysis. Architectural components, fixtures, or objects found
within the spaces are beyond the scope of this standard.
However, to provide indoor spatial services successfully,
these objects contained within these spaces, the targets of
indoor navigation, must also be represented. Indoor points
of interest (indoor POI) expressed geometrically as points
represent positions of objects and are used to link their
respective attribute information. As this IndoorGML does
not directly have specifications about these objects, Jung
and Lee [4] utilized the multilayered space model (MLSM)
to simultaneously represent indoor topological information
through the IndoorGML NRS and the indoor features via
indoor POI in an indoor patrol service application. Similarly,
Claridades et al. discussed this concept in integrating
IndoorGML and indoor POI. In both studies, layers that
make up the MLSM divide the space into nonoverlapping
layers, and those nodes exist in each layer independently. In
turn, interlayer relationships define the relationships among
the layers. This definition emphasized an implementation-
oriented expression of topological relationships between a
node representing a space (for example, a room) and nodes
representing objects within said spaces, illustrated in
Figure 1 [17].

In many cases, multiple datasets may exist to represent
the same geographic features existing in the real world [18].
These may represent various aspects of the feature they rep-
resent, or each of them is a representation using different data
models that are accordingly suited to each application. This
ambiguity may pose problems in data compatibility, in dupli-
cation, and in the process of integration. Data fusion is
defined as a combination of two or more data sources to pro-
vide less expensive, more relevant, or higher quality of infor-
mation [19]. In this manner, performing data fusion enables
overcoming this predicament by linking data from separate
sources, collected through different methods, or observing
various standards. This approach may also resolve
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ambiguities caused by selecting an appropriate data model
for an application, since one may be more specific over
another in implementing a certain task [20].

Data fusion is especially helpful in GIS because even
though geographic datasets are readily accessible across
applications, it assists in the combination of features, each
having their suitable aspects, to empower geospatial analysis
[21, 22]. In the case of spatial datasets accessible through the
web through Spatial Data Infrastructures (SDI) of both pri-
vate and government organizations, data fusion is possible
through the concept of linked data, using unique identifiers
and standardized web formats to resolve conflicts in data
[23, 24]. This technique is aimed at assisting the generation
and updating of spatial data [25], as well as the construction
of location-aware systems to provide services to record
human movement and deliver visual feedback [26].

Stankute and Asche defined their approach by extracting
the best-fit geometric data, and the most suitable semantic
data from datasets through coordinate matching [21], while
other approaches used attribute mapping to achieve feature
correspondence [27]. For earth observation data, [28] has
applied data fusion to combine multisource data using lin-
guistic quantifiers for environmental status assessment.

As IndoorGML primarily presents topological informa-
tion, topology-based data fusion approaches are most suit-
able. This approach is aimed primarily at enriching the
dataset, since it contains only the minimum requirements
to enable basic indoor spatial modeling. In one of its main
application aims of indoor routing, IndoorGML’s propo-
nents have suggested extensions for common application
domains to be applied to increase utilization [29]. To aug-
ment both standards’ limitations in representing indoor
space [30], an Indoor Spatial Data Model (ISDM) referring
to CityGML for the feature model and IndoorGML for the
topology model was proposed, by defining additional feature
classes. On the other hand, Topological Relation Model
(TRM) [20] essentially establishes connections between data
through matching geometric data generated from respective
models. Since not all datasets may be a source of geometric
information, the Topological Relation-based Data Fusion
Model approached the problem by generating topological
data from surface, network, and volume-based data to estab-

lish matching [18]. Commonly, these approaches determine
a correspondence between the features in the data as an
approach to data fusion. However, a match among features
is not possible in all datasets, such as in the case of images.

Several methodologies have utilized omnidirectional
images to create a recreation of a room layout using omnidi-
rectional images, such as RoomNet [31] and LayoutNet [32],
which extract predicted room layouts from a single subunit
of an interior, so the topological relationships between said
subunit and other subunits are indistinguishable. Jung and
Lee [4] examined the case for utilizing omnidirectional
images and topological information in an indoor patrol
application. Online web mapping services such as Google
Street View [33] and Kakao Storeview [34] use these images
to present a snapshot of the indoor space at the moment of
image capture. Also, the method of collection along a
corridor-type space was described by determining shooting
points or locations where these images may be collected effi-
ciently [35]. In establishing the indoor patrol application, the
IndoorGML CellSpace class has an association relationship
with the omnidirectional image denoting that each image
represents a space situated in each shooting point, which in
turn is a node in the IndoorGML NRG. The definition of
IndoorGML relationships was extended by defining a within
relationship for the objects contained in the spaces. Here,
however, the connection between the image and topology
data was implemented through the use of a reference data.
The algorithm performs a spatial query on polygons, and
the coordinate was calculated from a pixel location in the
image to identify the containing space and attribute informa-
tion. Besides, since pixels present in the images only present
objects visually and not discretely as in vector data, using
exact positions to define topological relationships in this
manner may be difficult [4]. Semantically separating an
image into different objects has been regarded as a chicken
and egg problem—an object’s type and shape are essential
to determine if a pixel belongs to the object or not, but this
object must first be isolated to understand which objects are
present in an image [36]. Furthermore, using connectivity
relationships, images are loaded discretely in implementing
space to space navigation. In effect, this gives the impression
of discontinuity in indoor space, especially in the corridors.
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Figure 1: Conceptualization of the relationships of spaces and objects.
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The concept of spatially extended topology, based on the
9-intersection model [37], is intended to define topological
properties of moving objects to provide a concierge service
application [38] through defining regions of around points
reflecting respective ranges of influence. This concept
describes that for an object in a location, a scope of influence
of a certain range describes a conceptual area of potential
interaction with the said object. It is conceptual, not a phys-
ical region, such as the transmission footprint of an antenna
or a broadcast range of a WiFi router. This possibility of
defining a range of distance provides opportunities for vari-
ous spatial reasonings about an object.

3. Methodology

In this section, we describe the framework to perform image
and topological data fusion. Then, we describe the necessary
algorithms to perform a match between locations identified
in the image and the nodes that represent the spaces in the
topological data. These methods are necessary to perform
functionalities to demonstrate how the link of image data
and topological data enables spatial analysis in the indoor
space.

3.1. Framework for Image and Topology Data Fusion.We uti-
lize the concept of data fusion on spatial data representing
the same indoor space, to produce more information than
when they are separate. By directly combining information
from topological data and image data, this methodology is
aimed at providing more relevant information in indoor
space, which is especially useful in the context of indoor nav-
igation and visualization.

Because of the high visual content, ease of updating, and
relatively small file size, image data is a suitable representa-
tion of the indoor environment. However, to provide LBS
in indoor space, it must be supplemented by a network-
based topological data, in which spaces and their respective
relationships are represented directly through nodes and
edges, respectively. Images only provide information through

individual pixels, which do not contain enough spatial infor-
mation that may be further helpful to the LBS. In this data
fusion approach, we aim to establish a relationship between
the image pixel data and the nodes of the topological dataset.
Within the LBS, a user can visualize a space (or object) in the
image through the pixels. This pixel’s position is the key to
perform a query to search for the corresponding node in
the topological data. This node represents either the space
that contains the position represented by the pixel or an
object contained in that space. We illustrate the framework
for this approach in Figure 2.

3.2. Establishing the Relationship between the Image and
Topological Data. With the method of representing indoor
space and objects in these spaces, it is difficult to establish a
direct matching to the topology data. Images contain only
pixels and do not have geometry, making it difficult to obtain
attributes of features or identify the features themselves intu-
itively. With 3D coordinates, it is possible to establish a 1 : 1
match towards the nodes of the topological data. Still, a sep-
arate method is necessary to recognize the spaces or objects
even though they are displayed visually.

Figure 3illustrates the general method of establishing a
relationship between the data. Since a user can visually see an
object, the process of space or object identification begins with
the user selection of a position in the image. The user only
selects a single pixel at this point in the image, and this calcu-
lated position defines the relationship with the topological
data. We use the image heading (where north is equal to zero),
image radius, and horizontal angle of the selected pixel, as well
as the vertical angle to calculate X and Y coordinates and
image capture height for the Z coordinate. Moving forward,
since coordinates of the user-selected pixel are present for the
matching, coordinates of the nodes representing either indoor
spaces or indoor objects are derived similarly. The function of
the node, whether as an indoor space or as an object within the
space, is also noted, since this differentiates the topological
relationships, say connectivity from space (click) to space
(node) or inclusion from space (click) to POI (node).

Image data
User identifies pixel in the 
image through cursor to try 

to identify an object

3D network-based
topological data 

Search which space
contains the user-identified

position

Express topological
relationships

through image data 

Establish relationship
between cursor position and

indoor spaces

Figure 2: Framework of image and topological data fusion.
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In the LBS, the pixel’s position defines the link to the
topological data by knowing which nodes are in this posi-
tion’s vicinity. With this, a 3D space around the nodes’ loca-
tion can describe vicinities, to investigate which among them
contains the pixel. Depending on the type of space or object
that the node represents, the size of the region may vary.
Table 1 enumerates the differentiation among the objects
and space.

The processes described above calculates the position of
the user click and the node closest to that click. Their corre-
sponding relationships are determined using the Spatial
Extended Point (SEP) approach based on the calculated
coordinates, adopted from Lee [38]. In this study, we define
the SEP as a region around each of the nodes to represent
the area of potential influence or behaviors around the node’s
point location. Using the SEP, we determine if the user-

selected point is on the exterior, interior, or boundary of this
region, easing on the limitation of the lack of geometric infor-
mation in both image and topology datasets. It follows from
this definition that the SEP’s interior defines in the region in
which the node’s influence is present. The SEP’s exterior is
where there is no influence anymore, and the boundary
quantifies the limit of influence and the start of the nonin-
fluencing area. Figure 4 illustrates this procedure.

The interactions between an area and a point described in
Figure 4, extended in 3D for a point and region, are repre-
senting topological relationships for those entities in 3D
space quantitatively as a matrix, referred to as the SEP
matrix, as shown in Equation (1). This matrix may take up
values of either 1 (satisfied) or 0 (not satisfied) for each ele-
ment, depending on the conditions. This matrix simplifies
the calculation for the topological relationships for two

Table 1: Types of spaces differentiated for allowable ranges.

Topological data Represented space Approximate range

Indoor space
Room Spaces connected with corridors Average room dimensions

Hallway Continuous space along a corridor Corridor width

POI
Door Objects that separate between rooms and nonroom spaces Average door height and width

Object Facilities, objects in the room except doors Average object height and width

Image data

In-image object selection

Objects in imageRoom

In-image object selection

Node from network-
based topological data

Network-based topological data

Objects in image
Rooms

Room
Other 
rooms

Other 
rooms

Indoor POI space

Indoor space

Figure 3: Method of linking the nodes and user-identified spaces in image.

[p· ∩ R° p· ∩ 𝜕R p· ∩ R–]

Point

Region

Point

PointRegion RegionSelected position in image

Node’s SEP

Object is inside the
region of the node

[1 0 0 ] [0 1 0 ] [0 0 1 ]

Object is present on
the boundary

Object is inside the
region of the node

Relationship between object (P) and node ( R)

inside RR° :
𝜕R :

p· : 

boundary of R
outside RR–:

point P

Figure 4: Determining topological relationships using the SEP.
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entities. A generalized expression defines for each observa-
tion in each projection of the 3D space in the three Cartesian
planes.

Po ∩ Rxy
° Po ∩ ∂Rxy Po ∩ Rxy

−

Po ∩ Ryz
° Po ∩ ∂Ryz Po ∩ Ryz

−

Po ∩ Rxz
° Po ∩ ∂Rxz Po ∩ Rxz

−

2
664

3
775 ð1Þ

where Pois the selected position in image; Rxy
∘ is inside the

boundary along the XY plane; Ryz
∘ is Inside the boundary

along the YZ plane; Rxz
∘ is inside the boundary along the X

Z plane; ∂Rxy lies on the boundary along the XY plane; ∂
Ryz lies on the boundary along the YZ plane; ∂Rxz lies on
the boundary along the XZ plane; Rxy

− is outside the bound-
ary along the XY plane; Ryz

− is outside the boundary along
the YZ plane; and Rxz

− is outside the boundary along the X
Z plane.

The SEP results from calculating the distance between
nodes and a user-selected position in the image. These coor-
dinates are calculated along three orthogonal planes in 3D
space, to establish values in the matrix given by Equation
(1). In this process, there is a smaller threshold value if the
node represents an indoor POI compared to when it is repre-
senting a space. First, the distance to the user-identified posi-
tion in the image is calculated along the three orthogonal
planes, to determine if there exists an IndoorGML node
within the allowable ranges from that point and its type, if
this nearby node exists. If the clicked point has a smaller dis-
tance, i.e., closer to an IndoorGML node representing a
space, the SEP matrix comes from a more significant thresh-
old value. Depending on the type of space of the identified
nearby node, the SEP matrix is populated with appropriate
values to denote the topological relationship of the user-
identified point and the corresponding IndoorGML node.

Moreover, the size of the region defining the SEP is a fac-
tor to be considered when linking images describing indoor
space and objects to IndoorGML data. Various definitions
of this region based on Table 1 defined the allowable ranges
when determining the topological relationships using the
SEP. This permissible value must be adjusted accordingly,
depending on what the IndoorGML node represents. For
example, nodes that represent indoor space must have a
broader range, compared to nodes that represent objects such
as doors. Pseudocode 1 shows the simplified pseudocode.

4. Experimental Implementation

In this section, we demonstrate the proposed methodology
for image and topological data fusion using omnidirectional
images and IndoorGML, respectively, by building the visual-
ization platform and implementing the algorithms and pro-
cesses described earlier.

4.1. Datasets for Implementing Image and Topology Data
Fusion. In this implementation, omnidirectional images rep-
resent and visualize the indoor space and the objects con-
tained in these spaces. Also, IndoorGML is used to describe

topological relationships between spaces. Figure 5 shows
the schematic diagram to generate these datasets before data
fusion. First, if the omnidirectional images represent indoor
space, at the shooting points to be exact, a 360° view of a place
is made. This manner of shooting subdivides one continuous
space into subspaces [35]. The image headings (or where the
image direction is numerically set to zero and referred to)
vary from image to image because of inconsistencies in cap-
ture. The irregularity in image capture may cause inconsis-
tencies when calculating positions of spaces in the images,
so this must be corrected.

In this study, we express the spatial relationships through
IndoorGML as with Jung and Lee [4]. The NRS is the basis of
expression of topological relationships of adjacency and con-
nectivity among indoor spaces, and the relationships of
objects represented as POI are expressed similarly through
a within relationship. Since connectivity relationships of
spaces allow the use of an image-based topology authoring
tool that produces an XML file structure, indexing each
image into a scene is possible [4, 35]. We construct the
IndoorGML data as an XML database integrated into the
image XML file. For each scene in the XML data representing
an image, IndoorGML topological relationships such as con-
nected and adjacent spaces or even POI are contained in that
particular space.

4.2. Study Area and Experimental Environment. The target
area for this study is the 6th floor of the 21st Century Build-
ing, University of Seoul. Image capture was carried out in this
location using a DLSR camera and Ricoh Theta S, equipped
with a rotary rotator. We matched the captured images using
PTGui 10.0.12 to generate the omnidirectional images.
Table 2 summarizes these tools.

Based on the IndoorGML data, these images were con-
nected using PanoTour Pro 2.5, an image-based topology
authoring tool, to establish the connectivity relationships of
each image and to build HTML and XML files used in the
service. As PanoTour indexes the image data in XML format
and links each to a scene, Krpano scene call scripts display
the images. Accordingly, the topology data based on
IndoorGML was constructed as an XML database and inte-
grated into the image XML files.

Bitnami was used to build the server to handle the image
and network-based topology data. We used web-based lan-
guages such as HTML, XML, and JavaScript to implement
the algorithms discussed in the previous section. Functions
used in the pseudocode described in Pseudocode 1 were
assisted by Krpano JavaScript functions, particularly in
obtaining coordinates from the images using getCoordinate.
The output is a web browser-operated platform where the
user can pan, zoom, and use scroll around a single point
defined omnidirectional image capture location, correspond-
ing to an IndoorGML node. The following section discusses
the implementation of the algorithms within this platform
to demonstrate the data fusion between omnidirectional
images and IndoorGML.

4.3. Applying Data Fusion to Omnidirectional Images and
IndoorGML Data. The integration of the image and
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topological data defined using algorithms described in the
previous section demonstrates understanding the relation-
ship between the nodes of the IndoorGML data and the
omnidirectional images. In this section, we build an interface
upon actions utilizing these algorithms through user-
initiated actions, such as double-clicking and long-pressing.

First, when a user double-clicks on an omnidirectional
image, the previously calculated SEP matrices of the location
of the selected pixel is used to determine if an image or an
object is present. In either case, a double-click would link
the image’s or object’s information to the current image,
and if it is an image, it would eventually load it into display.
Figure 6 illustrates this process.

To further demonstrate the relationship between the
IndoorGML data and omnidirectional image, a long click

calculateSEP (xi, yi, zi, xj, yj, zj,Node_part, Tolerance)
Step 0. Initialize constants

r ⟵ image radius
offset ⟵ camera height
Node_part ⟵ role of Node in scene (type of space)
Tolerance ⟵ allowable range of the SEP

Step 1. Check click_mouse if FALSE
Step 1.1 Read topological data and obtain node parameters

Node_ath, Node_atv ⟵ position of Node in scene
Node_part ⟵ part of Node in scene

Step 2. Define function to obtain coordinates from user input
getCoordinate (mouse_ath, mouse_atv, r, offset) {

If camera direction is North, set Hd ⟵0, increasing clockwise
Angle_H ⟵ (Hd + mouse_ath) ∗ PI/180
Angle_V ⟵ mouse_atv ∗ PI/180
xi⟵ r ∗ cos (Angle_H)
yi⟵ r ∗ sin (Angle_H)
zi⟵ offset + r∗sin (Angle_V)}

Step 3. Set click_mouse as TRUE
Step 3.1 Obtain mouse_ath, mouse_atv from click
Step 3.2 Calculate coordinates

Step 3.3.1 Obtain coordinate of user identified point
xi, yi, zi ⟵ getCoordinate (mouse_ath, mouse_atv, r, offset)

Step 3.3.2 If Node_part is Indoor Space
xj, yj, zj ⟵ getCoordinate (mouse_ath, mouse_atv, r, offset)

Step 3.3.3 If Node_part is Indoor Object
xj, yj, zj ⟵ getCoordinate (mouse_ath, mouse_atv, r, offset)

Step 4. Calculate SEP matrix
Step 4.1 Initialize: blank 3 x 3 SEP Matrix ⟵ 0
Step 4.2 Set Tolerance depending on type of space or type of object

Step 4.2.1 Calculate SEP Matrix values along XY plane
IF XY distance is less than Tolerance, SEP_Matrix [0][0] ⟵ 1
IF XY distance is same as Tolerance, SEP_Matrix [0][1] ⟵ 1
IF XY distance is greater than Tolerance, SEP_Matrix [0][2] ⟵ 1

Step 4.2.2 Calculate SEP Matrix values along YZ plane
IF YZ distance is less than Tolerance, SEP_Matrix [1][0] ⟵ 1
IF YZ distance is same as Tolerance, SEP_Matrix [1][1] ⟵ 1
IF YZ distance is greater than Tolerance, SEP_Matrix [1][2] ⟵ 1

Step 4.2.3 Calculate SEP Matrix values along XZ plane
IF XZ distance is less than Tolerance, SEP_Matrix [2][0] ⟵ 1
IF XZ distance is same as Tolerance, SEP_Matrix [2][1] ⟵ 1
IF XZ distance is greater than Tolerance, SEP Matrix [2][2] ⟵ 1

Pseudocode 1 Identifying objects or spaces in images using the SEP matrix.

Raw omnidirectional images

Setting the heading

IndoorGML and indoor POI data

XML structure

Data fusion-ready
image and topology data

XML-reconfigured
IndoorGML and indoor POI data

Georeferenced
omnidirectional image

Figure 5: Schematic diagram for the method of building
omnidirectional image and indoor topological data.
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on a pixel expresses attributes of objects. In a similar process
of identifying objects in the image, the algorithm checks the
SEP if it contains doors and objects, and attribute data is only
displayed if the object is present in or on the boundary of this
SEP. This algorithm presents a method to display informa-
tion about rooms and facilities, using the properties of the
IndoorGML nodes. In other words, the user can see attributes
of these items, visible as pixels but not as discrete objects in
the images through a long click, which triggers the calcula-
tion of the SEP matrix to indicate the topological relationship
of the identified position and the positions of each node in
the interior space. Figure 7 illustrates this process.

The above operations derive information about the fea-
tures and spaces using existing attributes present in the
IndoorGML data, linked to the omnidirectional images that
provide the visual interface to the user. To further illustrate
the ability to portray spatial information through the omni-
directional image, we implement an image-based indoor nav-
igation. The user inputs then names of the origin and
destination locations, and these names are located within
the list of the names of all omnidirectional images. The algo-
rithm identifies the path from the start location towards the
entered destination using the IndoorGML data. For a partic-
ular image, it draws the path by identifying the linked image

Table 2: The experimental environment.

Imaging equipment

35mm DSLR camera (36.4 million pixels)

180° fisheye lens

Rotary rotator

Ricoh Theta S (12 million pixels)

Omnidirectional image-matching program PTGui 10.0.12

Image-based topology authoring program Kolor PanoTour Pro 2.5

Webserver Bitnami (Apache)

Server script XML, HTML, JavaScript

JavaScript plug-in Krpano

Create temporary array as reference for loading images 
Node name Role (space, POI) Image name Linked image name

Calculate SEP matrix
SEPMatrix1 = click and indoor space node SEPMatrix1 = click and indoor object node

If SEPMatrix1 < SEPMatrix2

Load linked image to display

If SEPMatrix2 < SEPMatrix1

User performs double-click

Assign currently-loaded image as
linked image

Identify click location and assign image
in that location as linked image

Figure 6: Using user double-clicks to identify objects and display image scenes.

Check if click time > 1.3 seconds
Check if SEP matrix of closest node is POI

Display object attributes

Figure 7: Using user long clicks to display object attributes.
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attribute, which represents the successive image for that path,
repetitively, until the destination. The sequence of images is
loaded with appropriate delays and transitions to visualize a
smooth and realistic visualization of navigating through the
spaces represented by the images. Figure 8 illustrates this
procedure.

4.4. Resulting Platform for Omnidirectional Images and
IndoorGML Data Fusion. We implemented the process of
identifying objects and spaces in the omnidirectional images
using the SEP matrix, which defined the relationships of the

objects in the indoor space and the nodes from the indoor
topological data, as shown in Figure 9. When a user
double-clicks on the image, the algorithm identifies the node
which SEP contains the click position, and the corresponding
linked image to that node is displayed. This linked image is
present in the location represented by that node. This
double-clicking action is an implementation of moving from
one position to another, as visualized by successive display-
ing of omnidirectional images, and demonstrates that topo-
logical information, connectivity relationship, for instance,
can be obtained directly from the images.

Image-based 
visualization of 

indoor navigation

Demo platform

Input

Output

Starting point and
destination point

Extract information on
start and destination

points

Search information
linked to start and
destination points

Arrange the sequence
of omnidirectional

images from start to
end of path

Omnidirectional image and
indoorGML data

Figure 8: Implementation of image-based visualization of indoor navigation.

Double-click position in image

Node’s SEP

Figure 9: Recognition of space in an omnidirectional image using SEP.
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Similarly, by using the established relationship of the
omnidirectional images and IndoorGML data, users can dis-
play attributes of objects using a long click. As shown in
Figure 10, the long click identifies the node in which SEP
contains the click position, and information about the node
is only displayed if that node is representing an object or
facility located indoors and not an indoor space. Similar to
the previously demonstrated function, this shows that topo-
logical information can be obtained directly from the images
and, in this case, attributes of the IndoorGML nodes.

In this application, the link between the image and topol-
ogy data is also used by visualizing the navigation from a
starting location to a destination location, even if the starting
location is not the currently loaded scene. The user is made to
enter names of the desired start and endpoints, and these

names are searched in the image data attributes, after which
the path between these points is established using the topol-
ogy data. Each omnidirectional image along the established
path is arranged from start to end, and each one is loaded
with appropriate directions of turn, transitions, and delays
to achieve a smooth visualization of navigation. The result
of this process is illustrated in Figure 11.

Figure 11 illustrates a sample result of the visualization of
navigation from one room to another, including the spaces
along the path of movement. The user is prompted to input
the names of the rooms, in this case from a starting point,
Room 605 to the destination Room 607. The visualization
of navigation commences with the image displaying that
Room 605 is loaded, then rotates towards the direction of
the closest door to the destination, loads the next image

Long click position in image

Node’s SEP

Figure 10: Showing object attributes in an omnidirectional image using SEP.

Input starting point

Input destination point

Figure 11: Result of image-based visualization of indoor navigation.
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displaying the corridor, transitions to the next image near the
door of Room 607, then transitions to the image displaying
the interior of the destination. The continuous visualization
of the path from one location to another demonstrates the
continuity of indoor space, despite being represented dis-
cretely with subspaced nodes in the topological data and sep-
arate omnidirectional images in each image capture location.

5. Conclusions and Future Studies

Indoor space has been expressed in various ways in previous
studies, with each method differing in method of collection
and generation, emphasized aspect of space, and applica-
tions. Geometric datasets such as LiDAR provide realistic
and accurate visualizations, but omnidirectional images pro-
vide comparable results in this aspect despite it being easier
and much cheaper to collect, process, and update. In addi-
tion, while it is important to visualize indoor space in three
dimensions, studies show that the capability for spatial anal-
ysis provided by topological datasets is necessary in provid-
ing indoor spatial services such as in the case of LBS—an
aspect where omnidirectional images lack. With this, this
study proposes a data fusion method between image data
and topological data, implemented with omnidirectional
images and IndoorGML.

Indoor spaces are expressed using topological data given
by IndoorGML, an international standard established by
OGC, where they are abstracted through a zero-
dimensional node, and the respective spatial relationships
are expressed as one-dimensional edges. Currently,
IndoorGML does not explicitly support the representation
of objects or facilities in these spaces, so the concept of the
Point of Interest (POI) was implemented to expand
IndoorGML’s definitions of topological relationships from
defining those of between spaces, towards the objects con-
tained in these spaces as well.

The image and topological data are used in this study
together to recognize objects and spaces in the images
through the concept of the SEP, where user-identified pixels
are related to the nodes of the IndoorGML data. The SEP sig-
nifies a region of influence for each node, and it enables a
simplified solution to represent topological relationships
between positions in the image and the nodes that represent
spaces. In our experimental implementation, we collected
omnidirectional images in the interior of a building, and var-
ious functions are implemented based on this established
relationship, from an image-to-image movement visualiza-
tion to the visualization of continuous indoor navigation.
Also, using the expanded conceptualizations of the topologi-
cal relationships in IndoorGML, objects within the indoor
space are portrayed as indoor POI, also represented as nodes.
These indoor POI are not just visualized through the images,
but the data fusion method through the SEP has also enabled
spatial analysis such displaying attributes of facilities.

In our paper, the indoor topological data and the images
are representing corridor types of indoor space. Because of
this, there may be differences in the manner of generating
IndoorGML data for other indoor environments. In addition,
there may be differences in how the acceptable ranges for

using the SEP will be applied. Considering these factors, how-
ever, it can still be expected that indoor topological data can
be linked to omnidirectional images to achieve similar
results. Also, there no officially established data model on
how to represent indoor POI yet, and if such is created, this
may help formalize how objects and facilities are to be repre-
sented along the spaces they are contained in.
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In this study, we compared four net radiation products: the fifth generation of European Centre for Medium-Range Weather
Forecasts atmospheric reanalysis of the global climate (ERA5), National Centers for Environmental Prediction (NCEP), Clouds
and the Earth’s Radiant Energy System Energy Balanced and Filled (EBAF), and Global Energy and Water Exchanges
(GEWEX), based on ground observation data and intercomparison data. ERA5 showed the highest accuracy, followed by EBAF,
GEWEX, and NCEP. When analyzing the validation grid, ERA5 showed the most similar data distribution to ground
observation data. Different characteristics were observed between the reanalysis data and satellite data. In the case of satellite-
based data, the net radiation value tended to increase at high latitudes. Compared with the reanalysis data, Greenland and the
central Arctic appeared to be overestimated. All data were highly correlated, with a difference of 6–21W/m2 among the
products examined in this study. Error was attributed mainly to difficulties in predicting long-term climate change and having
to combine net radiation data from several sources. This study highlights criteria that may be helpful in selecting data for future
climate research models of this region.

1. Introduction

The Arctic has a complex climate system with atmosphere–
ocean–land interactions and lower-latitude forcing that
occur on various temporal and spatial scales [1]; thus, this
area is particularly vulnerable to climate change [2, 3]. The
surface radiation budget (SRB) is a key parameter for under-
standing the polar regions, which have a high albedo and
emissivity [4–7]. SRB can be used to characterize the net radi-
ation, specifically, the balance between downward and
upward shortwave solar radiation and longwave thermal
radiation from the atmosphere and various surfaces [8]. It
is effectively the remainder of the radiative energy on the
Earth’s surface. Surface net radiation plays an important role
in not only the energy cycle but also the ecosystem and car-
bon and water cycles [8–11]. Remote sensing of the radiative

flux can provide information on a global scale, as well as
point-scale data from ground observations [12]. Due to these
advantages, numerous radiative flux products have been
derived from satellite and multispectral sensor data over the
last decade [12]. Recently, various radiative flux products of
the Arctic from satellite data and reanalysis data have been
made available.

Satellite-based data, such as Clouds and the Earth’s Radi-
ant Energy System (CERES) [13], Global Energy and Water
Exchanges Project (GEWEX) SRB [14], CloudSat [15], and
Climate Monitoring Satellite Application Facility cLoud,
Albedo and surface RAdiation dataset from Advanced Very
High Resolution Radiometer (AVHRR) data-Edition 2
(CMSAF CLARA-A2) [16], provide information on radiative
flux and radiative surface exchange processes. Reanalysis-
based data, provided as absorbed solar radiation, includes
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the European Centre for Medium-Range Weather Forecasts
(ECMWF) interim reanalysis (ERA-Interim) [17]; fifth-
generation ERA (ERA5) [18]; National Centers for Environ-
mental Prediction/National Center for Atmospheric
Research (NCEP/NCAR) [19]; Modern-Era Retrospective
Analysis for Research and Applications, version 2
(MERRA-2) [20, 21]; and the Japan Meteorological Agency’s
Japanese 55-Year Reanalysis (JRA-55) [22].

Numerous studies have attempted to evaluate these radi-
ation products; however, most were conducted at low to mid-
latitudes and only a few focused on the Arctic [23–29].
Riihelä et al. performed an intercomparison of radiative com-
ponents on the Arctic during the spring and summer of 2007
[29]. Seo et al. compared CERES synoptic TOA and surface
fluxes and clouds (SYN) and GEWEX SRB Arctic data from
March 2003 to December 2007 [30]. Both of these studies
analyzed only satellite data. Research has been conducted to
develop the Arctic Observation and Reanalysis Integrated
System (ArORIS) that combines satellite, reanalysis, and in
situ products in the Arctic [28]. Studies evaluating the Arc-
tic’s net radiation have mostly been short term, on the order
of 3 years or less, or are based on single-source data (satellite-
based, reanalysis, or model data). Despite the many radiative
products produced, comparative analysis by data type is lack-
ing or has been carried out on accumulated data from the
past. The analysis of recently updated data is still in progress.

In this study, we used data from the Arctic that has fre-
quently been used in past research with recently updated
radiation products. Among several reanalyzed data, ERA5
and NCEP data were used in this study. NCEP is a traditional
reanalysis data developed in the 1990s, and the rest of the
reanalysis data have been developed after the 2000s. ERA5
was selected because it is the most recently produced data
and is calculated using various observation-based products
as input data compared to past reanalysis data.

The purpose of this study was to assess the net radiation
products over the Arctic using validation and intercompari-
son analyses. This paper is divided into two parts for valida-
tion and intercomparison analysis. The intercomparison
analysis used four net radiation products: two reanalysis
products, ERA5 and NCEP/NCAR, and two satellite-based
products, CERES and GEWEX, for diversity. ERA5 and
CERES Energy Balanced and Filled (EBAF) Edition 4.0 have
been updated recently; NCEP/NCAR and GEWEX have been
used for a longer period of time. This research is expected to
provide some clarity regarding the accuracy of net radiation
products and the relationship between product characteris-
tics and comparative data from the Arctic for future
modeling.

2. Materials and Methods

2.1. Data

2.1.1. ERA5. ERA5 is the fifth-generation ECMWF atmo-
spheric reanalysis product of the global climate. ERA5 data
are produced by Copernicus Climate Change Service (C3S)
and provide the most recent atmospheric reanalysis of
ECMWF. ERA5 is based on the new numerical weather

product (IFS Cycle 41r2, 2016 version) [18]. Compared to
ERA-Interim, ERA5 offers improved spatial resolution, from
79 km to 31 km, and a higher output frequency, from every 6
hours (h) to hourly sampling from 1979 [31]. Therefore,
ERA5 is a higher-resolution model, as a replacement for
ERA-Interim [32, 33]. Atmospheric data assimilation has
been upgraded to a 12-hour 4D-Var ensemble, and advanced
climate data are used for model input [33]. Observation data
such as satellite data, weather station, buoy, and radiosonde
have been used on an average of 0.75 million per day in
1979, when data assimilation begins, and 24 million in recent
years.

C3S provides ERA5 products with a spatial resolution of
0:25° × 0:25° in spherical coordinates. We used the monthly
averaged EAR5 radiative flux data to match the temporal res-
olution provided by EBAF. Monthly average data refers to
the entire month and is generated from all hourly data for
the month. ERA5 is provided in joule per square meter, not
in a common unit; it is necessary to convert the unit for com-
paring with other radiation products. In the case of monthly
mean data, it is converted into watt per square meter by
dividing 86400 seconds (24 hours).

2.1.2. NCEP. The NCEP/NCAR is a reanalysis product [19].
The spatial resolution of NCEP comprises a T62 Gaussian
grid (~1.91°), and temporal resolution is available at several
levels, e.g., daily and monthly [34]. We selected monthly
mean data to match the temporal resolution of EBAF data
for the comparison. Radiative transfer schemes are based
on the method of Lacis and Hansen [35] in the shortwave
range and that of Schwarzkopf and Fels [36] in the longwave
range [37].

2.1.3. EBAF. CERES EBAF is an all-sky surface flux product.
Monthly data are presented as the monthly mean, with a spa-
tial resolution of 1° on a uniform grid. The EBAF data used in
this study were acquired over the coverage period from
March 2000 to March 2018, using the Surface Radiation Edi-
tion 4.0 data product (May 2017 release). The EBAF product
is calculated using EBAF top-of-atmosphere (TOA) flux,
temperature/humidity profiles based on CERES SYN1deg-
Month/SYN1deg-3hour, and cloud vertical profiles obtained
from CALIPSO/CloudSat [38]. The EBAF product includes
monthly surface upward/downward shortwave and longwave
irradiances constrained by CERES-derived TOA irradiance
[39]. CERES EBAF TOA Edition 4.0 was computed by Loeb
et al. [40]. Kato et al. [39] determined the uncertainty in
downward and upward shortwave irradiances of the North
Pole to be 14 and 16W/m2, respectively, using this product;
both downward and upward longwave irradiances were
12W/m2.

2.1.4. GEWEX. GEWEX SRB data provide several temporal
resolutions of 1-hour, 3-hour, daily, and the monthly mean.
We used monthly mean data to better coincide with the tem-
poral resolution of EBAF for the comparison. The spatial res-
olution is 1° for uniform grid data. The coverage period of the
data was from July 1983 to December 2007. The satellite-
based data are calculated from readings obtained from the
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AVHRR sensor mounted on the National Oceanic and
Atmospheric Administration satellite [41]. Radiative transfer
schemes use the Pinker and Laszlo [42] method in the short-
wave range and that of Fu et al. [43] in the longwave range.
Commonly used cloud information was obtained from the
International Satellite Cloud Climatology Project [29].
GEWEX monthly mean data for shortwave irradiance shows
a root mean square (RMS) accuracy of 23.34W/m2 and a bias
of −5.22W/m2. In the longwave range, the RMS accuracy was
11.1W/m2, with a bias of 0.9W/m2 from 1998 to 2007 [44,
45]. All accuracy values were calculated on a global scale.

Table 1 provides a summary of the spatial radiative flux
data used in this study.

2.1.5. Ground Observation Data.Data from six ground obser-
vation sites monitored by three institutions were selected for
this study, as discussed below. These data are used by the
National Aeronautics and Space Administration for valida-
tion of CERES surface Edition 4.0 data and are provided by
“EBAF Surface Ed4.0 Validation Subsetting and Browsing”
and “CERES/ARM Validation Experiment (CAVE)” [46].
We used monthly averaged data with the lowest temporal
resolution. The data provided by CAVE averages 1min data
into 15min data; if there are any gaps, then the gaps are filled

via interpolation of the 15min data. Hourly, daily, and
monthly averaging was performed using interpolated data.

The sources for the ground observation data included the
following institutions: the Baseline Surface Radiation Network
(BSRN), the Swiss Federal Institute, and the United States
Department of Energy Atmospheric Research Measurement
(ARM) Program. The six ground data location sites
(Figure 1) are as follows: ALE, NYA, TIK, BAR, SMT, and
NSA. BSRN provided Alert (ALE), Ny Alesund (NYA), Tiksi
(TIK), and Barrow (BAR) data. BSRN, initiated in 1992
through the World Climate Research Programme (WCRP),
was designed in 2004 to be a global baseline network of surface
radiant energy for the Global Climate Observing System
(GCOS). It also contributes to the Global Atmosphere Watch
program by providing high-quality data from a variety of cli-
matic zones [47–49]. The Swiss Federal Institute of Technol-
ogy (ETH) sources ETH/Greenland Summit (SMT) data that
belongs to the Integrated Characterization of Energy, Clouds,
Atmospheric State, and Precipitation at Summit (ICECAPS)
project. ETH maintains the data, consisting of broadband
radiative flux measurements at Summit Station [50]. North
Slope of Alaska (NSA) data on the physical conditions of the
Arctic atmosphere are provided by ARM [51]. Table 2 shows
a detailed information on the six ground observation sites.

2.2. Method. This research is divided into two parts: (1) vali-
dation of the net radiation products using ground observa-
tion data and (2) an intercomparison among the products
in an attempt to better understand the characteristics of the
data (Figure 2). In the research flow chart, the yellow square
box is the validation part and the green box is the intercom-
parison part. Validation is performed through three analyses
after collocation with measured data using spatial data. And
it analyzes the characteristics of the differences of each data
through five intercomparison analyses.

In the validation part of the study, the four net radiation
products were compared using ground observation data.
Collocation of the spatial data was carried out using a mini-
mum distance method. The method of the minimum dis-
tance found the nearest location using the great-circle
distance. The distance between each point is obtained
through

d = r Δσ

Δσ = 2 arcsin
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sin Δlat
2
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Table 1: Summary of radiative flux products used in this study.

Dataset Coverage Temporal resolution Spatial resolution Based on Version

ERA5 1979.01-2019.03 Monthly mean 0:25° × 0:25° Reanalysis Monthly averaged reanalysis

NCEP 1948.01-2018.12 Monthly mean T62 Gaussian grid Reanalysis Mean monthly NMC reanalysis

GEWEX 1983.07-2007.12 Monthly mean 1° × 1° Satellite
LW: rel3.1
SW: rel3.0

EBAF 2000.03-2018.03 Monthly mean 1° × 1° Satellite Surface Ed4.0

180°
150°E150°W

120°E120°W

90°E

TIK

ALE

NSA&BAR

SMT
NYA

90°W

60°E

30°E

0°E
30°W

60°W

Figure 1: Locations of the six ground observation sites: Alert (ALE),
Ny Alesund (NYA), Tiksi (TIK), Barrow (BAR), ETH/Greenland
Summit (SMT), and North Slope of Alaska (NSA). The red circle
indicates the Arctic Circle (poleward 65°N).
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d refers the distance between ground observation data
and spatial product. Find and compare the point where this
distance is the minimum. r refers to the radius of sphere, Δ
σ refers to the central angle, and lat1 and lat2 refer to the lat-
itude at ground observation and net radiation products to be
compared. The absolute difference between longitude and
latitude between two points is denoted by Δlat and Δlon.

Three common statistical methods were used for the val-
idation [11, 52]: the correlation coefficient (R), root mean
square error/difference (RMSE/RMSD), and mean bias error
(MBE). The R-value here indicates the correlation between
observation data and spatial data of the net radiation prod-
ucts: closer to 1 (−1) indicates a strong positive (negative)
relationship with ground observation or comparison data. R
> 0 indicates that there is a positive correlation, R < 0 indi-
cates a negative correlation, and R =0 indicates that the data
being compared are uncorrelated. RMSE is associated with
the weight of the maximum error [53]; this is sometimes
referred to as RMSD between values being modeled. MBE
indicates systematic differences [52]. Positive (negative)
MBE represents an overestimation (underestimation). The
statistical characteristics of ground observation data were
analyzed. In addition, the validation grid of net radiation data
was analyzed using a box plot owing to the different spatial
resolutions. The plot represents the information as a univar-
iate distribution with the advantages of an approximate range
and the ability to accommodate greater variability.

The second part of the study involved an intercompari-
son of the spatial net radiation products over the Arctic Cir-
cle, to analyze the differences among products used in actual
research in the area. The study period was designated as
March 2000 to December 2007, where all four datasets
existed, thus over an approximately 8-year period. The inter-
comparison part of the study was further divided into four
parts. First, the entire Arctic Circle was compared and ana-
lyzed as a large region from 65°N poleward. Second, a corre-
lation analysis was conducted among the products. Third, the
R-value, MBE, and RMSDwere calculated. Finally, the results
were configured in matrix form to intuitively analyze the cor-
relation relationships among the radiation products for the
Arctic Circle region. Individual data points were compared
using the average net radiation in the Arctic Circle.

In the second part, the meridional distribution and sea-
sonal cycle parts were analyzed separately. For analysis of
the meridional distribution, we calculated the zonal mean
at 2° intervals, as this corresponds to the spatial resolution
of NCEP (with a resolution greater than 1°). The distribution
of net radiation for each datum was analyzed by averaging
every 2° from 60°N to 90°N. We also examined the seasonal
cycle. In the third part, the distributions of actual pixel values
were analyzed using histogram data and scatter density plots
of the Arctic Circle region. Histogram analysis was con-
ducted to confirm the data distribution over the comparison
period by analyzing the maximum and minimum peak

Table 2: Overview of the ground observation data.

Site Location (latitude, longitude) Observation site data source Data periods

TIK 71.59, 128.92, Elev: 48m WCRP/GEWEX Baseline Surface Radiation Network (BSRN) 2011.04–2016.12

SMT 72.60, 321.58, Elev: 3216m Swiss Federal Institute, ETH broadband radiometer measurements 2011.01–2014.06

NYA 78.93, 11.93, Elev: 11m WCRP/GEWEX Baseline Surface Radiation Network (BSRN) 2000.03–2018.03

NSA 71.32, 203.39, Elev: 8m DOE Atmospheric Research Measurement (ARM) Program 2000.03–2018.03

ALE 82.45, 297.49, Elev: 200m WCRP/GEWEX Baseline Surface Radiation Network (BSRN) 2004.07–2014.03

BAR 71.32, 203.39, Elev: 8m WCRP/GEWEX Baseline Surface Radiation Network (BSRN) 2000.03–2017.08

Spatial data
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CollocationGround observation

Validation Inter-comparison
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Meridional distribution
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Figure 2: Flow chart to analyze the characteristics of the Arctic net radiation.
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distributions and the range of values. Scatter density plot
analysis was performed with high accuracy, in connection
with the validation part. Finally, we analyzed the differences
in spatial distributions in matrix form to identify the charac-
teristics of the products with respect to the Arctic region.

3. Results and Discussion

3.1. Validation with Ground Observation Data

3.1.1. Overview of the Validation. Figure 3 shows histogram
plots of the differences between ground observation data
and individual net radiation products. ERA5 data were more
accurate than the other products, with a coefficient of deter-
mination (R2) of 0.88, an RMSE of 19.02W/m2, and a low
MBE of −0.26W/m2. Compared to the other products, the
difference was concentrated at 0, indicating a low variance.

In contrast, NCEP was observed to have the lowest accuracy
among the products, with an R2 value of 0.64, an RMSE of
45.49W/m2, and an MBE of −8.14W/m2; in this case, the
data appeared to be widely scattered, as evidenced by the high
MBE and variance (standard deviation: 44.76W/m2). EBAF
showed an R2 of 0.86, an RMSE of 23.96W/m2, and an
MBE of −2.37W/m2, with a standard deviation of
23.81W/m2 as the second most accurate product. GEWEX
was only available until 2007. Thus, the number of samples
was small compared to the other data. Only the mean of
the difference was observed in GEWEX, with an R2 value of
0.78, an RMSE of 32.01W/m2, an MBE of 10.92W/m2, and
a standard deviation of 30.09W/m2. Overall, the most accu-
rate model was ERA5, followed by EBAF, GEWEX, and
NCEP.

The validation results for ground observation data are
shown as Table 3. TIK and SMT locations have data going
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Figure 3: Histograms showing the difference between ground observation data and net radiation data from (a) the fifth generation of
European Centre for Medium-Range Weather Forecasts atmospheric reanalysis of the global climate (ERA5), (b) National Centers for
Environmental Prediction (NCEP), (c) Earth’s Radiant Energy System Energy Balanced and Filled (EBAF), and (d) Global Energy and
Water Exchanges (GEWEX) products.
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back to 2007, preventing a comparison with GEWEX. EBAF
showed a significantly lower correlation at SMT than other
sites. ERA5 indicated high accuracy with a strong correlation,
low RMSE, and an MBE approaching 0.

3.1.2. Analysis of the Net Radiation Distribution. The valida-
tion pixel of each data point was analyzed due to the different
grid sizes of each product. The statistical distribution of the
grid used for validation was confirmed, as shown in
Figure 4; observation data are represented by a black box in
the figure. Overall, ERA5 showed a denser distribution than
NCEP, for which the distribution was scattered considerably.
However, the interquartile range (IQR) for the two products
was similar. Thus, the values of the net radiation were simi-
larly distributed. In addition, all data exhibited a negative
skewness with respect to their distributions, as the mean
was higher than the median value. The distribution of data
was observed differently depending on the surface condi-
tions. In SMT, which is a homogeneous surface, the IQR of
most data was observed to be small. However, in the case of
heterogeneous surface condition as NYA, the IQR was deter-
mined according to the grid to validation. The NCEP with
the lowest spatial resolution was observed to have the largest
IQR, and the IQR of ERA5 with the high spatial resolution
was observed to be small.

The statistical characteristics of each observation site are
as follows. SMT showed an average net radiation of
−12.45W/m2 (standard deviation: 11.73 (25.72%) W/m2).
This site had a short-duration coverage of just 3 years. SMT
is located in the center of Greenland, and it has a homoge-
neous surface compared with the other sites. The data varia-

tion was also smaller at SMT compared with the other sites.
BAR showed an average net radiation of 21.58W/m2 (stan-
dard deviation: 60.72 (25.57%) W/m2). Therefore, the data
variation was larger than in other regions. The other ground
observation sites, TIK, NYA, NSA, and ALE, showed average
net radiation values of 19.34, 5.41, 16.16, and−1.99, W/m2,
respectively, with standard deviations of 51.58 (30.09%),
48.28 (26.38%), 56.87 (24.29%), and 46.53 (25.43%) W/m2.

3.2. Intercomparison of Net Radiation Products

3.2.1. Comparison Matrix of the Arctic Circle. In the inter-
comparison of four net radiation products, a confusion
matrix was used to highlight the differences among data
expressed in terms of the R-value, RMSD, and MBE
(Figure 5). All products showed strong relationships with
the other three products, with correlation coefficients exceed-
ing 0.9. The MBE was positive, based on x-axis data. GEWEX
appeared to overestimate the net radiation compared with
the other products. The RMSD varied over a wide range,
from 6.16 to 21.19W/m2. The lowest RMSD corresponded
to a comparison between EBAF and ERA5 but was highest
between GEWES and NCEP. In the reanalysis data, the sec-
ondary low in the RMSD was 9.60W/m2; the difference from
the largest to the smallest was in the following order:
EBAF/NCEP, GEWEX/EBAF, and GEWEX/ERA5. GEWEX
showed the largest difference in comparison with satellite-
derived data, such as EBAF. Thus, all data showed a high cor-
relation; however, the MBE and RMSD indicated high varia-
tion, despite similar patterns in the data. Thus, the differences
associated with the variation in data and the range of

Table 3: Validation of the four net radiation products by ground observation site (six sites total).

Site ERA5 NCEP EBAF GEWEX

TIK

R 0.96 0.86 0.97 —

RMSE (W/m2) 14.92 36.77 22.22 —

MBE (W/m2) 5.22 5.05 −4.41 —

SMT

R 0.94 0.88 0.63 —

RMSE (W/m2) 8.45 23.25 20.78 —

MBE (W/m2) −5.76 −10.47 18.61 —

NYA

R 0.94 0.91 0.93 0.91

RMSE (W/m2) 26.95 65.62 35.99 46.64

MBE (W/m2) −18.52 −4.03 −7.11 12.27

NSA

R 0.97 0.83 0.96 0.94

RMSE (W/m2) 14.39 37.59 16.30 22.21

MBE (W/m2) 6.61 −10.15 −2.51 10.73

ALE

R 0.94 0.84 0.96 0.92

RMSE (W/m2) 21.41 28.94 17.64 21.63

MBE (W/m2) 13.79 −9.34 4.79 10.09

BAR

R 0.97 0.81 0.96 0.93

RMSE (W/m2) 14.52 41.29 19.1 25.07

MBE (W/m2) 2.83 −13.59 −6.13 10.10
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observing values appeared to strongly affect the agreement
among radiation products.

3.2.2. Comparisons of Meridional Distribution and Seasonal
Cycle. To understand the characteristics of net radiation data
for latitude, we analyzed the 2° zonal mean for each of the
four products; this was chosen based on the spatial resolution

of NCEP data. In a previous study, the same method was
used to analyze meridional characteristics [54]. Figure 6(a)
shows the net radiation distribution according to latitude.
GEWEX data were 5~10W/m2 higher than other data. Net
radiation was highest in the order of GEWEX, EBAF,
ERA5, and NCEP. All data showed a decreasing pattern
between latitudes 60°N and 78°N. However, above 78°N,
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differences among the distributions emerged. ERA5 showed
a poleward decrease in net radiation. In NCEP net radiation
data, a decreasing pattern was observed initially closer to 60°;
however, an increasing pattern developed at latitude 80°N.
The net radiation distribution of EBAF data by latitude was
divided into three ranges. In first range from 60°N to 78°N,
the net radiation of EBAF showed a decreasing trend, similar
to ERA5 and NCEP. However, the EBAF distribution rose
from latitude 78°N to 86°N. Above 86°N, the EBAF net radi-
ation pattern again showed a reduction. Similarly, the
GEWEX net radiation exhibited a decreasing pattern up to
latitude 78°N. From 78°N to 84°N, the net radiation for
GEWEX remained relatively the same, regardless of latitude.

Figure 6(b) shows the seasonal cycle distribution. Except
for summer, GEWEX indicate overestimation compared to
for net radiation products, , which was consistent with
MBE in the confusion matrix and the 2° zonal mean by lati-
tude. In all data, the maximum value of net radiation corre-
sponded to summer in July, and the minimum value
coincided with winter in December. This pattern is similar
to the variation in temperature and the number of hours of
daylight [55]; thus, this characteristic is caused by the polar
night, because incoming solar radiation is weak or nonexis-
tent in the autumn and winter seasons. Thus, the seasonal
variation of the net radiation can be divided into two periods:
from April to September and from October to March. The
period from April to September includes the melting season
and summer. During this time, differences in the data were
reduced. Notably, EBAF and ERA5 distributions were simi-
lar. The second period from October to March included the
freezing season and winter. During this period, the differ-
ences among the radiation products increased and the net

radiation recorded increased in the order from the largest
to the smallest of GEWEX, EBAF, ERA5, and NCEP.

3.2.3. Comparison with Distribution of Data per Grid. The
confusion matrix analysis was performed by averaging the
Arctic Circle region as one region. The Arctic has a highly
seasonal cycle, as indicated in all four radiation products.
However, using the 2° zonal mean, we confirmed differences
in latitude patterns within the Arctic Circle. Figure 7 shows a
histogram of the four net radiation products. ERA5 showed
an average of 4.74W/m2 and a standard deviation of
51.39W/m2 for a total of 13,392,000 samples. In this case,
the standard deviation accounted for 14.68% of the total
value. NCEP had an average of 1.77W/m2 and a standard
deviation of 58.58W/m2 for a total of 214,272 samples; here,
the standard deviation accounted for 14.44% of the total
value. EBAF produced an average of 10.07W/m2 and a stan-
dard deviation of 50.51W/m2 for a total of 837,000 samples,
with the standard deviation accounting for 14.68% of the
total value. ERA5 produced an average of 20.01W/m2 and
a standard deviation of 51.08W/m2 for a total of 837,000
samples; in this case, the standard deviation accounted for
15.04% of the total value. The NCEP product had the widest
data distribution, whereas GEWEX was more concentrated.
Satellite data also indicated a higher mean compared to that
of reanalysis data.

Figure 8 shows the monthly density scatter of net radia-
tion for NCEP, EBAF, and GEWEX based on ERA5; here,
the x-axis represents ERA5 and the y-axis represents com-
parative data in the figure. Most of the net radiation values
were distributed over a low range (<30W/m2). All data had
a R2 above 0.9, indicating a strong relationship with ERA5.
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With respect to ERA5, the differences among NCEP, EBAF,
and GEWEX data were −1:40 ± 20:43, 2:98 ± 17:21, and
13:80 ± 22:10W/m2, respectively. NCEP data were lower
than the 1 : 1 line in range, where values below zero were dis-
tributed. In addition, the data indicated a more widespread
distribution of net radiation. EBAF data were similar to
ERA5 data, as indicated by the regression line fit. The regres-

sion line of GEWEX was generally higher than the 1 : 1 line;
thus, GEWEX data tended to show higher values than
ERA5. The density scatter distribution of GEWEX-ERA5
was more similar to EBAF data than NCEP.

3.2.4. Differences in Spatial Distribution. We analyzed the
spatial differences in net radiation between NCEP, EBAF,
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Figure 7: Histogram of net radiation in the Arctic Circle from March 2000 to December 2007: (a) ERA5, (b) NCEP, (c) EBAF, and (d)
GEWEX.

Bias: –1.3991
Slope: 1.105
Intercept: –2.394

RMS Diff: 20.434
R-square: 0.9088

200

100

0

–100

–200

–200 –100 0 100 200

ERA5 (W/m2)

N
CE

P 
(W

/m
2 )

200

100

0

–100

–200

EB
A

F 
(W

/m
2 )

–200 –100 0 100 200

ERA5 (W/m2)

200

100

0

–100

–200

G
EW

EX
 (W

/m
2 )

–200 –100 0 100 200

ERA5 (W/m2)

R-square: 0.9092
RMS Diff: 17.2137
Bias: 2.9829
Slope: 0.9466
Intercept: 3.4891

R-square: 0.905
RMS Diff: 22.103
Bias: 13.7959
Slope: 0.9313
Intercept: 14.4464

500

400

300

200

100

0

C
ou

nt

Figure 8: Density scatter between ERA5 and the other net radiation products. The x-axis represents ERA5 data, and the y-axis corresponds to
(a) NCEP, (b) EBAF, and (c) GEWEX data.

9Journal of Sensors



and GEWEX in the Arctic Circle, based on ERA5 data, as
shown in Figure 9; the red shading indicates an overestima-
tion of the corresponding data, and the blue shading indi-
cates underestimation. In the case of NCEP, a mixture of
overestimation and underestimation is shown in the figure.
The net radiation differences were smaller over oceans than
continents, with overestimation in the east and underestima-
tion in the west. Regarding land areas, Canada and North
Greenland showed a strong underestimation in net radiation,
whereas South Greenland was overestimated. In the case of
EBAF, less of a difference was observed compared with the
other two datasets. Thus, substantial discrepancies were evi-
dent among the radiation products in Greenland. Also, the
central Arctic area exhibited an overestimation of the net
radiation, which was consistent with the 2° zonal mean by
latitude. EBAF data indicated an increase in net radiation
from 78°N to 86°N, whereas in the ocean adjoining the Cen-
tral Arctic, a small underestimation was evident. In the case
of GEWEX, the entire area was overestimated, with the
exception of a few areas. The north coastline of Greenland
and East Greenland Sea showed an underestimation in net
radiation. These areas were underestimated in all compari-
sons; thus, ERA5 always estimated a high net radiation value
in the area. These regional characteristics should be noted
when using ERA5 data. Different regional characteristics
were observed in GEWEX and EBAF. The two products are
the same satellite-based data, but there is a difference in the
radiative transfer scheme between the two products. The dif-

ference in the net radiated energy of the two data may occur
primarily due to the difference in the method of calculating
the radiation data. There are also differences in the cloud data
used. CERES EBAF uses MODIS data and SAR-based CALIP-
SO/CloudSat data, and GEWEX uses ISCCP DX data. In
Figures 9(b) and 9(c), both EBAF and GEWEX data are over-
estimated compared to ERA5 data in the area above about
80°N, which is the area where CALIPSO/CloudSat observa-
tions are missing. The two satellite-based data show the same
characteristics in the region where CALIPSO/CloudSat data is
excluded. Therefore, differences in satellite-based net radiation
may occur due to differences in input cloud data.

4. Summary and Conclusions

In this study, we evaluated the surface net radiation from
reanalysis (ERA5 and NCEP) and satellite-based (EBAF
and GEWEX) products in the Arctic region. The maximum
validation period was from March 2000 to March 2018, and
the product comparison period was from March 2000 to
December 2007, during which all data overlapped. The over-
all results for the validation process indicated ERA5 as having
the highest accuracy of the four products. The quantitative
accuracies of the four products were as follows: ERA5, −
0:26 ± 19:02; EBAF, −2:37 ± 23:96; GEWEX, 10:92 ± 32:01;
and NCEP, −8:14 ± 45:49W/m2. ERA5 and EBAF showed
similar accuracies with respect to CERES EBAF (RMSE:
20.93, MBE: 2.40), with higher uncertainty at higher latitudes
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Figure 9: Distribution of spatial differences in net radiation based on ERA5 from March 2000 to December 2007. The red shading indicates
an overestimation of the compared net radiation product, and blue shading indicates an underestimation. (a) NCEP–ERA5, (b) EBAF–ERA5,
and (c) GEWEX–ERA5.
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[11]. The difference in accuracy may be due to spatial resolu-
tion. ERA5, the smallest valid grid, showed a distribution of
values similar to the observation data. In the case of NYA,
this particular observation site is located on an island (Sval-
bard, a Norwegian island); here, the grid size was larger,
resulting in a larger IQR. The reason for the lower accuracy
in EBAF than ERA5 can be attributed to the low accuracy
of the CERES inversion for the snow surface and the uncer-
tainty in the matchup near the coastal line due to the low spa-
tial resolution [56].

The reason for focusing on these differences is that the
Arctic is covered in ice; thus, the ice albedo effect is impor-
tant. In particular, net radiation is connected to the ice–
albedo feedback mechanism, making this feedback a key
parameter of climate change in the Arctic [6, 57]. When ana-
lyzing climate change, differences in model accuracy and pat-
terns of change are due to differences in the net radiation.
Thus, it is essential to monitor and improve the assessments
of surface energy budgets to better understand and predict
climate change [28]. Continuous research in this area is
essential for a process-level connection between the model
and observations [58].

The purpose of this study was to attempt to better under-
stand the accuracy of net radiation products in high-latitude
areas and the differences among products. This helps when
selecting a product for climate change modeling. Based on
the results from this study, it is possible to analyze long-
term energy changes in the Arctic by selecting the optimized
net radiation energy.

The validation results were limited to ground observa-
tion sites covered with ice. Since the Arctic Circle is
mainly composed of oceans, validation in sea ice is an
essential part. Therefore, it is necessary to add the net
radiation validation of sea ice using drift data in the
future. In this study, differences occurred between net
radiated products and the characteristics of the differences
were analyzed. However, it was not possible to find out
what factors caused such differences. Therefore, future
research will need to consider the factors responsible for
creating differences in the net radiation products. There
are many different things that cause differences in net
radiation. It is necessary to study what factors cause the
difference in net radiation from the results of this study.

The radiative energy component is expected to play a key
role in projecting accurate representations and climate
change trends for the Arctic region. Changes in net radiation
can help predict variables that cause physical processes in the
Arctic such as Arctic sea ice. Based on the results of this
study, it can be extended and utilized in long-term energy
change observation, sea ice prediction model, and climate
change modeling.

It is necessary to analyze which data is most appropriate for
analyzing climate change and how the difference between the
radiative products has an impact on climate change analysis.
A radiative flux such as net radiation can be used as a key
parameter to determine the energy balance of the Arctic. These
results will enable accurate observation and prediction of Arctic
climate and help to identify the causes of recent abnormal cli-
mates in connection with the Arctic midlatitude region.
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Most object detection, recognition, and classification are performed using optical imagery. Images are unable to fully represent the
real-world due to the limited range of the visible light spectrum reflected light from the surfaces of the objects. In this regard,
physical and geometrical information from other data sources would compensate for the limitation of the optical imagery and
bring a synergistic effect for training deep learning (DL) models. In this paper, we propose to classify terrain features using
convolutional neural network (CNN) based SegNet model by utilizing 3D geospatial data including infrared (IR) orthoimages,
digital surface model (DSM), and derived information. The slope, aspect, and shaded relief images (SRIs) were derived from the
DSM and were used as training data for the DL model. The experiments were carried out using the Vaihingen and Potsdam
dataset provided by the German Society for Photogrammetry, Remote Sensing and Geoinformation (DGPF) through the
International Society for Photogrammetry and Remote Sensing (ISPRS). The dataset includes IR orthoimages, DSM, airborne
LiDAR data, and label data. The motivation of utilizing 3D data and derived information for training the DL model is that real-
world objects are 3D features. The experimental results demonstrate that the proposed approach of utilizing and integrating
various informative feature data could improve the performance of the DL for semantic segmentation. In particular, the
accuracy of building classification is higher compared with other natural objects because derived information could provide
geometric characteristics. Intersection-of-union (IoU) of the buildings for the test data and the new unseen data with combining
all derived data were 84.90% and 52.45%, respectively.

1. Introduction

The field of DL has grown significantly over the past decade
coupled with rapid improvements in computer performance.
Since McCulloch and Pitts introduced artificial neuron that is
a computational model of the neural networks to mimic the
human brain in 1943 [1], DL as a branch of machine learning
has evolved steadily to this day. In recent years, advances in
image processing computer vision, information and commu-
nication technology, and geoinformatics have accelerated the
development and use of the DL. Many DL tasks involve
visual information processing such as object recognition
and identification from imagery [2–4]. It is true that the opti-
cal images provide rich, diverse, and explicit information.

“Seeing is believing,” i.e., human beings have been relying
on the visual information to understand the real world than
through any other media. Images obtained from optical sen-
sors are formed by recording reflected light, in the visible
spectral range, from the surfaces of the terrain objects. In this
aspect, it is not sufficient to reveal real-world features by uti-
lizing image alone.

Performance of the DL depends on the training data that
sometimes leads to the issue of overfitting. Various schemes
have been suggested to avoid overfitting such as drop-out,
early-stopping, regularization, cross-validation, and hyper-
parameter tuning. However, such efforts might not be the
fundamental solutions to prevent overfitting. Extracting
intrinsic and characteristic information from the original
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data to utilize training data would make DL more robust.
Recent deep learning researches with a similar concept are
found. Maltezos et al. proposed building detection method
by training the CNN model with multidimensional features
that include entropy, height variation, intensity, normalized
height, planarity, and standard deviation extracted from light
detection and ranging (LiDAR) data. Each feature reflects the
unique physical property of the objects [5]. Audebert et al.
introduced the SegNet DL model with multimodal and mul-
tiscale data for semantic labeling. Optical IR images, DSM
created from LiDAR data, normalized DSM (nDSM), and
normalized difference vegetation index (NDVI) derived from
multispectral data are used to train the DL model [6]. Zhou
et al. proposed a CNN-based AlexNet DL model with fusion
of point cloud data and high-resolution images for land cover
classification. Specifically, a stratified segmentation scheme
with grey-level cooccurrence matrix (GLCM) [7, 8] was
introduced to improve segmentation efficiency for increasing
classification accuracy. Mean, variance, homogeneity, dis-
similarity, and entropy from GLCM features were DL model
training process [9]. Alidoost and Arefi applied LeNet-5 [10]
for automatic recognition of various roof types by training
features extracted from both LiDAR data and orthoimages
[11]. Pibre et al. presented multiple source data fusion strat-
egies to detection trees [12]. Two different modes were
applied to integrate heterogeneous data for training DL
models that is a similar idea to [6]. In the study, early fusion
and late fusion of the IR aerial images and NDVI and DSM
created from LiDAR data were performed. Better results were
obtained with early fusion when both NDVI and DSM were
used [12, 13].

The recent researches of DL have focused on efforts to
improve training performance by utilizing multisource data
and/or creating information from the raw data. In the field
of geoinformatics and remote sensing, the major data sources
are optical and laser sensors. Point cloud data that consists of
3D coordinates can be obtained directly from laser sensors
(i.e., LiDAR data) or indirectly by stereo image matching.
In addition, derived information from the original raw data
are utilized. Examples of the derived information are NDVI
and DSM created from multispectral imagery and LiDAR
data, respectively. Combining multisource data (e.g., optical
and multispectral imagery, point cloud data, and DSM) with
derived information from original raw data (e.g., NDVI,
cooccurrence features, and surface orientation) provide more
reliable results.

As for the DLmodels, CNN is one of the most extensively
used models and has been successfully applied to high-level
image processing (or late-vision in computer vision) tasks
such as image recognition, scene analysis and description,
classification, and medical image computing. Well-known
CNN models are LeNet, AlexNet, GoogLeNet, VGGNet,
ResNet, Mask R-CNN, SegNet, etc. Most of them are winners
of the Image Net Large Scale Visual Recognition Challenge
(ILSVCR) [14]. One of the major applications of DL is object
classification from images [15, 16]. The goal of this paper is
to perform semantic segmentation for land cover classifica-
tion using CNN based SegNet model. The training datasets
are composed of IR images and DSM with derived informa-

tion from the DSM. The derived information includes sur-
face orientation (i.e., slope and aspect of each DSM grid
cell) and multidirectional SRIs. DSM is a 3D representation
of the terrain surface features, including natural and man-
made objects, that are formed with dense point clouds of
the 3D coordinates (X, Y , Z). In the field of geoinformatics,
the point clouds with 3D coordinates can be obtained directly
from laser sensors (i.e., LiDAR data) or indirectly by stereo
image matching. Since images are 2D data and provide
reflected light from the terrain surfaces, images lack 3D infor-
mation about the real-world objects. On the other hand,
DSM could provide richer 3D geometric information of the
objects than the imagery [17].

Feature is a primitive characteristic or attribute of the
data. Thus, it is important to extract or derive unique features
from the various data, then use those features for DL model
training for semantic segmentation. Segmentation entails
division or separation of the data into regions of similar char-
acteristics or attributes. Therefore, the purpose of the seg-
mentation is to form meaningful regions by grouping
features that have common properties distinct from their
neighboring regions [18]. In general, segmentation does not
involve classifying each segment but rather subdivides
regions without attempting to recognize the individual
regions. On the other hand, semantic segmentation or classi-
fication involves identification and labeling of the regions or
individual objects according to the category [15]. There is no
theory or standard method available for the segmentation
yet. Most of the existing methods are based on the hoc
approach; therefore, DL is expected to be a promising inno-
vative method to solve such a challenging task that requires
human intelligence.

The experiments for this paper were carried out using the
ISPRS benchmark dataset for terrain feature classification.
The land cover of the study site is categorized into six classes;
building, tree, low vegetation (grass), impervious surface
(road), car, water, and clutter/background in the label data.
The main intent of this paper is to classify terrain objects
by training the DL model using multisource data; optical IR
images, DSM, and DSM-derived data including slope, aspect,
and multidirectional SRIs. The experiments were carried out
as follows: (1) training with each type of data independently,
and (2) training with combining all data. Each data collected
from a specific sensor could not convey sufficient informa-
tion about the real-world. In this aspect, multisource data
would be complementary in the training process. The results
were analyzed based on evaluation metrics and visual inspec-
tion. In conclusion, training by combining multisource data
could provide a synergistic effect and multidirectional SRI
plays an important role.

2. Materials and Proposed Methods

2.1. Description of Datasets. The ISPRS benchmark dataset
[19, 20] was used for training, evaluation, and test of the Seg-
Net model. Table 1 shows the description of the datasets, and
Figure 1 presents the configuration of Vaihingen datasets.
The datasets consist of IR true orthoimages, DSM, airborne
LiDAR data, and label data. True orthoimages are
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geometrically corrected, occlusion-free, and georeferenced
images. 60%, 20%, and 20% of the datasets were used as
training, evaluation, and test data, respectively. Figure 2
is another dataset from the Potsdam area that was used
as “new unseen” data to apply to the trained DL model
that was trained with the Vaihingen datasets. Four datasets
that are 3_12, 4_10, 4_11, and 7_08 area were selected as
new unseen data for the experiments. It is notable to mention
that LiDAR data was not used in the experiment; instead,
DSM was used to derive slope and aspect and to create multi-

directional SRIs. DSM could be generated using LiDAR data.
However, some significant preprocessing is required such as
noise removing and interpolation because of the irregularly
distributed point clouds with low point density of the LiDAR
data. The high-resolution DSM in the ISPRS dataset was
created using INPHO MATCH-DSM software with sequen-
tial multiimage matching and finite element interpolation
[21]. In this regard, we decided that utilizing DSM is more
appropriate than LiDAR data to perform the proposed
approach.

Table 1: Description of ISPRS benchmark dataset for the Vaihingen area.

Data type GSD (m) Data collection Comment

Color IR (IR-R-G) true orthoimage 0.09 Intergraph DMC (altitude: 900m) 33 patches with georeferenced TIFF format

DSM 0.09 Point clouds created by image matching 16 patches with georeferenced TIFF format

LiDAR data 0.50 (4 pts/m2) Leica ALS50 (altitude: 500m) 10 strips with LAS format

Label data 0.09 Manually digitized ground truth
Land cover classification of
6 classes with TIFF format

Label data

Land cover classes

(A) (B) (C)

(I)(J)(K)

(P)

(O)

(N)

(M)

(L)

(D)

(E)

(F)

(G)

(H)

DSM

Training and
validation data
(60% and 20%)

Test data
(20%)

IR orthoiamge

Impervious surface

Building

Low vegetation

Car
Low vegetation

Clutter/background

Figure 1: Vaihingen dataset is composed with IR images, DSM, and label data for training, validation, and test.
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2.2. Slope and Aspect. The slope and aspect (i.e., surface ori-
entation) of the surface elements (i.e., DSM grid cells) can
be computed from the coordinates of the 3 × 3 grid window
of the DSM (see Figure 3).

Slope and aspect of each surface element is computed by
Equations (1)–(10).

dX1 =
Z X + 1, Y + 1ð Þ − Z X − 1, Y + 1ð Þ

2∙ΔX
, ð1Þ

dX2 =
Z X + 1, Yð Þ − Z X − 1, Yð Þ

2∙ΔX
, ð2Þ

dX3 =
Z X + 1, Y − 1ð Þ − Z X − 1, Y − 1ð Þ

2∙ΔX
: ð3Þ

The average slope in X-direction is

SX =
dX1 + dX2 + dX3

3
: ð4Þ

Slopes in Y-direction are computed by

dY1 =
Z X − 1, Y + 1ð Þ − Z X − 1, Y − 1ð Þ

2∙ΔY
, ð5Þ

dY2 =
Z X, Y + 1ð Þ − Z X, Y − 1ð Þ

2∙ΔY
, ð6Þ

dY3 =
Z X + 1, Y + 1ð Þ − Z X + 1, Y − 1ð Þ

2∙ΔY
: ð7Þ

The average slope in Y-direction is

SY =
dY1 + dY2 + dY3

3
, ð8Þ

where ΔX and ΔY are ground sampling distance (GSD) of
DSM in X- and Y-direction, respectively. Finally, slope (S)
and aspect (A) at the center of the 3 × 3 DSM grid window
are computed as follows [22]:

S = tan−1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SX
2 + SY

2
q

� �

, ð9Þ

A = tan−1
SY
SX

� �

: ð10Þ

Figure 4 illustrates examples of DSM, slope, and aspect
using Vaihingen test data.

2.3. Multidirectional Shaded Relief Images. Shading is an
important visual cue (i.e., shape-from-shading) to recognize

New unseen data

Figure 2: New unseen dataset from the Potsdam area.
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the shape of the objects because each surface patch of the
objects appears in different brightness depending on the ori-
entation of the surfaces [23–25]. The SRIs can be created
using surface orientation (i.e., slope and aspect) of the DSM
and virtual light source. The amount of the reflected light
from each surface element is recorded in the corresponding
pixel of the SRIs and computed by Equation (11).

R = cos 90° – βð Þ cos Sð Þ + sin 90° – βð Þ sin Sð Þ cos α – Að Þ,
ð11Þ

where R is the magnitude of the reflected light, α and β are
azimuth and elevation angle of the light source, respectively,
and S and A are slope and aspect of the surface element,
respectively. Each value of R is converted to an 8-bit image

with range from 0 to 255. The multidirectional SRIs are gen-
erated by changing the location of the light source [26]. Four
SRIs were generated with light sources of NW, NE, SE, and
SW direction (see Figure 5).

2.4. Preparation of Dataset for Training, Evaluation, and
Label Data. Each region of the dataset, including training,
evaluation, and label data, is partitioned with a 50% overlap
along both X and Y directions, and the partitioned tile size
is 150 × 250 as shown in Figure 6. Data partitioning, espe-
cially with overlapping, could provide significant benefits:
(1) increasing amount of the training data because DL
requires a large number of data, and (2) improving DL per-
formance by training the same object (or area) in various
situations.

Z (X+1, Y+1)

Z (X+1, Y)

Z (X, Y+1)

Z (X, Y)

Z (X, Y–1)

∆X

∆Y

Z (X–1, Y–1)

Z (X–1, Y)

Z (X–1, Y+1)

Z (X+1, Y–1)

Figure 3: 3 × 3 grid window of DSM for computing slope and aspect.

(a) (b) (c)

Figure 4: DSM and derived data. (a) DSM. (b) Slope. (c) Aspect.
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2.5. SegNet Model. DL using the CNN has been proved to be
successful and effective on semantic segmentation (or called
semantic labeling) [15]. The SegNet model is a deep fully
CNN for multiclass pixel-wise semantic segmentation. Seg-
Net, by Computer Vision and Robotics Group at the Univer-
sity of Cambridge, was designed to be efficient in memory
and computational time. It is also significantly smaller in
the number of the trainable parameters than other network
models. The SegNet is composed of encoder and decoder
with symmetrical architecture, and the encoder is based on
the convolutional layers from VGG16 that has 13 convolu-
tional and 3 fully-connected layers. VGG16 has been devel-
oped by Visual Geometry Group of the University of
Oxford and 1st runner-up of the ImageNet Large Scale Visual
Recognition Challenge (ILSVRC) with an error rate of under
10% in 2014 [27].

On the other hand, the fully-connected layers in VGG16
are replaced by convolutional layers in SegNet. The SegNet
uses a bottleneck architecture in which the feature maps are
upsampled to match the original input resolution, and there-
fore it is possible to perform pixel-wise segmentation with
one-to-one resolution. This is beneficial to label data with
the same resolution of the original input data [6]. As with
most of the CNN models, the encoder network of the SegNet

performs convolution with a filter bank to produce feature
maps, batch normalization to increase the stability of the net-
work, and accelerate training [28]. Then, rectified linear unit
(ReLU) is applied as an activation function, and max-pooling
with a 2 × 2 window and stride 2 is performed.

The number of convolutional kernels (i.e., filters) is from
64 to 512 with a size of 3 × 3. The decoder network upsam-
ples the feature maps using max-pooling indices from the
corresponding encoder feature maps. The feature maps are
convolved with a trainable decoder filter bank to produce
dense feature maps. Then, batch normalization is applied to
each feature map and then fed to the softmax classifier at
the output layer of the decoder (see Figure 7). Softmax is used
to map the nonnormalized output of the network to a prob-
ability distribution over predicted classes [29].

2.6. SegNet Model Training. Partitioned patches (or tiles) of
the multisource dataset (i.e., IR orthoimage, DSM, slope,
aspect, and multidirectional SRIs) generated by partitioning
are fed into the SegNet model for training and evaluation.
The numbers of the input patches of each data are 4870,
1730, and 1390 for training, evaluation, and test, respectively.
Most of the current DL models require a trial-and-error
method to achieve optimal solutions. This approach is not

E

NW

NE

SW

SE

N

W

S

Z

DSM

β

α

A

S

NW

NE

SE

SW

Figure 5: Multidirectional shaded relied images created from different locations of the light source.

6 Journal of Sensors



trivial and takes ample training time because diverse param-
eters are involved in the DL model. The combination of dif-
ferent parameter setting leads to tremendous numbers of
cases. Therefore, transfer learning was adopted to determine
the hyper-parameters including learning rate, mini-batch
size, and number of the epochs. Another consideration is
normalized DSM (nDSM). The nDSM is obtained by sub-
tracting bare-ground height (i.e., digital terrain model
(DTM)) from the DSM as Equation (12):

nDSM =DSM –DTM: ð12Þ

Many DL models utilize nDSM instead of DSM [6, 9, 30].
The main reason to use nDSM is that the nDSM only reflects
relative heights of the objects regardless of the terrain eleva-
tion. In other words, differences among objects in elevation
are taken into account in nDSM [31]. DTM has to be avail-
able to create nDSM (e.g., contours from topographic maps)
or complicated filtering process to separate ground and

Pooling indices

Softmax

Encoder network Decoder networkInput data
Training/evaluation/test

Output
Semantic segmentation

Convolution layer

Convolution
with filter bank

Feature
maps

Batch
normalization

Activation
function (ReLU)

Convolution
with filter bank

Dense
feature maps

Batch
normalization

Activation
function (ReLU)

Pooling layer
2×2 max-pooling

w/o overlap &
subsampling by 2

Upsampling
using max -

pooling indices

Convolution layer

Figure 7: SegNet model architecture. Series of dots represent convolutional layer groups.

50% overlap

50% overlap

50% overlap

50% overlap

Training and evaluation dataset

Label data

Multi-directional SRIs

IR orthoimage
DSM

Slope
Aspect

Tile (i.e., partitioned patch)

Figure 6: Preparation of training, evaluation, and label dataset by partitioning with 50% overlap.
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nonground features (e.g., morphological filtering, progressive
densification, surface-based method, and segment-based
method) is required [32]. However, the robust DL has to
require less preprocessing such as generating nDSM. There
might be some controversial issues about using nDSM for
object recognition or classification. The ultimate goal of DL
is to resemble human intelligence. Human beings are able

to recognize objects regardless of their location in 3D space.
Namely, it would be invariant with respect to geometric
transformation including shift, rotation, and scale.

nDSM might be a controversial issue in DL. The concept
of nDSM is that all objects have to be vertically relocated onto
the reference datum before training DL models that utilize
DSM. However, nDSM might distort the shape of the objects

DSM-DTM

DTMDatum
ZT1 ZT2

ZS1 ZS2

DSM

ZnDSM2

ZnDSM1

Flat roof
(a) (b)

Sloped roof

Datum

ZS2–ZT2

ZS1–ZT1

nDSM

Figure 8: nDSM changes the original shape of object. (a) DSM. (b) nDSM. ZT and ZS denote terrain and object height from datum,
respectively.
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in some cases. For example, a building with flat roof on a
sloped surface is to be a building with a sloped roof if nDSM
is applied as shown in Figure 8.

Another issue of the nDSM is for DSM obtained from
terrestrial LiDAR data or images of the street scene. If nDSM
should be used, then objects have to be moved horizontally to
the reference plane. In this case, the horizontal reference
plane must be defined. Since DL attempts to resemble human
recognition ability, it is much better and robust models that
nDSM is not required because human beings recognize
objects regardless of objects’ location. nDSM should not
affect the computation of slope and aspect and creating SRI.
In this matter, we did not use nDSM as training but the orig-
inal DSM. DSM and DSM-derived data (i.e., slope, aspect,
and SRI) could provide 3D spatial geometric characteristics
that are important information to identify and distinguish
different types of objects while images provide only 2D visual
information. In this regard, we propose utilizing various data
for training the DL model to obtain reliable results. Figure 9
shows the workflow of our proposed method.

2.7. EvaluationMetrics for Performance Measures. Evaluating
performance is one of the fundamental tasks in DL. Classifi-
cation accuracy, in general, can be described as the number of
the correct predictions from the total predictions performed.
Classification accuracy alone is not sufficient to evaluate the
performance of the DL model. Since the ultimate goal of
DL is to expand the trained model to other datasets (i.e.,
new unseen data) that is not involved with training, it is an
important issue to evaluate the robustness of a DL model
for the new unseen data. The test data has similar character-
istics to the training data since the test data, in most cases,
belongs to the same region of the training data (i.e., Vaihin-
gen dataset), while the new unseen data has somewhat differ-
ent characteristics because the new unseen data is selected
from a different place (i.e., Potsdam dataset).

Different evaluation criteria have been proposed to assess
the quality of the semantic segmentation. Commonly used
evaluation metrics for classification are accuracy, precision,
recall, F1 score, and intersection-of-union (IoU) [33]. Usu-
ally, variations on pixel accuracy and IoU have been used fre-
quently [34]. We applied overall accuracy (Equation (13))
and IoU (Equation (14)) to evaluate semantic segmentation
results:

Accuracy = TP + TN
TP + TN + FP + FN

, ð13Þ

IoU =
Area of overlap
Area of union

=
Predicted areað Þ ∩ Actual areað Þ
Predicted areað Þ ∪ Actual areað Þ

=
TP

TP + FP + FN
,

ð14Þ

where TP is true positive, TN is true negative, FP is false pos-
itive, and FN is false negative.

Accuracy might lead to misinterpretation when the class
representation is small within the image, as the measure is
biased in mainly reporting on how well in identifying nega-
tive cases. On the other hand, IoU is calculated for each class
separately, then averaged over all classes to provide mean
IoU score of semantic segmentation prediction. The criterion
to be correct or not to be is 0.5. If IoU is larger than 0.5 (i.e.,
50%), it is normally considered a good prediction. IoU has
been used in numerous papers and popular object detection
challenges such as ImageNet ILSVRC, Microsoft COCO,
and PASCAL VOC.

3. Experimental Results and Discussion

Semantic segmentation results of three test datasets from
Vaihingen data (i.e., areas I, K, and O in Figure 1) and four
new unseen datasets from Potsdam data (i.e., areas 3_12, 4_
10, 4_11, and 7_08 in Figure 2) are presented. The major
hyper-parameters for experiments were set as shown in
Table 2.

Figures 10 and 11 are IR image and label data of Vaihin-
gen and Potsdam datasets, respectively. Figures 12 and 13
show the classification results of Vaihingen and Potsdam
datasets, respectively. Results of the Potsdam data were
obtained by using trained model with the Vaihingen dataset.
It is obvious that the accuracy of the test data is higher than
that of the new unseen data.

Classification accuracies of the training, evaluation, test,
and new unseen data are listed in Tables 3 and 4 (Note:
evaluation metrics are expressed in percent (%)). The
result from combining all data (IoU = 84:90%) for the test
data was improved compared with the results from indi-
vidually trained data. However, multidirectional SRI pro-
vided better results (IoU = 66:27%) than combining all data
(IoU = 52:45%) for new unseen data. We expect that multidi-
rectional SRI has a relatively larger contribution to the model.
Even though IoU from combining all data is lower than that
from multidirectional SRI, in general, IoU with higher than
0.5 (i.e., 50%) is considered a successful classification. Since
man-made features such as buildings have distinctive geo-
metric characteristics compared to natural features, training
DL model using DSM-derived data is particularly effective
to buildings. Therefore, the proposed approach might be
feasible to identify and extract buildings for the further appli-
cation of 3D building modeling.

The evaluation metrics could not provide information on
how well ground truth and predicted classes for individual

Table 2: Hyper-parameter values for experiments.

Parameter Value

Learning rate 0.001

Training cycle (iteration) 334,675

Maximum iteration 608,500

Iteration/epoch 1217/275

Validation frequency 1217

Mini-batch size 4

Shuffle Every epoch
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(a)

(b)

Figure 10: Vaihingen test area. (a) IR images. (b) Label data (ground truth).

(a)

(b)

Figure 11: Potsdam new unseen data. (a) IR images. (b) Label data (ground truth).
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(a)

(b)

(c)

Figure 12: Continued.
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objects matched. In this matter, differences between each
result and label data were depicted for visual evaluation.
White and black indicate correctly classified and misclassi-
fied pixels, respectively (see Figures 14 and 15). Interpolation
of the DSM might cause delocalization and zagging effect,
especially on the objects’ boundaries. Thus, most of the mis-
classified pixels are found along the boundaries of the objects.

For the Vaihingen test data, some of the low vegetation
areas were classified as impervious surfaces (i.e., roads) with
DSM and DSM-derived data (i.e., slope, aspect, and SRI).
However, training the DLmodel using all data could improve
classification results (see Figure 14(f)). As for the Potsdam
new unseen data, more misclassified regions were found
except for the case of buildings. Similar to the Vaihingen test

(d)

(e)

(f)

Figure 12: Classification results of Vaihingen test data. (a) IR images. (b) DSM. (c) Slope. (d) Aspect. (e) Multidirectional SRI. (f) Combining
all data.
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(b)

(c)

(d)

(e)

Figure 13: Continued.
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data, a training model using a combination of all data pro-
vided better results (see Figure 15(f)). Test data might be
insufficient to evaluate the performance of the trained DL
models particularly to investigate the possibility of universal
use. For this reason, we applied not only test data but also
new unseen data to the trained model; as a result, some
meaningful results were confirmed. Utilizing multisource
data and derived information that are appropriate to repre-
sent characteristics of the objects could improve semantic
segmentation. DSM and DSM-derived information could
play an important role in recognizing buildings.

Classification results from training all data (i.e., IR image,
DSM, slope, aspect, and SRI) are better than results from
training individual data. The experiments show that DSM
and its derived information could be appropriate to recog-
nize man-made objects including buildings because DSM

and DSM-derived information have explicit geometric char-
acteristics. In consequence, the classification accuracy of the
building is much higher than that of other objects.
Figures 16–18 show buildings of the label data and corre-
sponding classification results from using all data of Vaihin-
gen and Potsdam areas, respectively. It is noticeable that
buildings in the test data were well identified, while buildings
in the new unseen data were less accurately identified. A con-
siderable number of cars of the Potsdam data were identified
as buildings; however, most of the major buildings are cor-
rectly classified.

Some conventional image processing technique (e.g.,
morphological filtering with erosion and dilation [35]) might
improve the results. Figure 18 illustrates an example of apply-
ing morphological filtering to the building class from Pots-
dam data. Therefore, it is recommendable to consider
postprocessing if necessary.

4. Conclusions

Human beings have the ability to integrate various visual
cues (i.e., shape, size, color, tone, texture, depth, stereopsis,
and motion) based on knowledge, experience, and innate
cognition for visual perception. Semantic segmentation or
classification involves object detection, recognition, and
identification by utilizing various information. In conse-
quence, it is not sufficient to successfully carry out the seman-
tic segmentation of real-world objects by one type of sensory
data. Every object has its own unique physical and geometri-
cal characteristics. Such intrinsic characteristics could be
obtained partially from imagery, 3D data, and derived

(f)

Figure 13: Classification results of Potsdam new unseen data. (a) IR images. (b) DSM. (c) Slope. (d) Aspect. (e) Multidirectional SRI. (f)
Combining all data.

Table 3: Classification evaluation of Vaihingen dataset for training, evaluation, and test.

Dataset Training accuracy (%) Evaluation accuracy (%)
Test data (%)

Overall Building
Accuracy IoU Accuracy IoU

IR image 97.74 91.49 83.71 57.98 89.34 84.08

DSM 91.97 85.25 69.90 41.32 83.88 77.66

Slope 94.42 88.41 67.93 40.31 78.59 71.28

Aspect 95.87 89.07 64.55 35.90 79.01 70.58

SRI 93.50 89.37 70.00 42.59 83.74 75.90

All data 91.36 90.61 83.56 55.75 89.45 84.90

Table 4: Classification evaluation of Potsdam dataset for new
unseen data.

Dataset
New unseen data (%)

Overall Building
Accuracy IoU Accuracy IoU

IR image 45.56 23.34 94.24 35.95

DSM 43.86 17.66 82.71 44.89

Slope 41.09 18.11 77.68 37.68

Aspect 32.97 11.68 61.80 34.24

SRI 52.53 28.28 77.92 66.27

All data 58.86 30.75 89.37 52.45
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(a)

(b)

(c)

Figure 14: Continued.
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information from various sources. Therefore, one of the key
tasks is to utilize multisource data for complementary effects
to extract characteristics of the objects from the data.

In this paper, we proposed a DL model that utilizes mul-
tisource data including optical IR image, DSM, and DSM-
derived slope, aspect, and multidirectional SRIs for semantic

(d)

(e)

(f)

Figure 14: Differences between classification results and label data of Vaihingen test data. (a) IR image. (b) DSM. (c) Slope. (d) Aspect.
(e) Multidirectional SRI. (f) Combining all data.
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(d)

(e)

Figure 15: Continued.
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segmentation to classify land cover features. The dataset
used for training the DL model are based on the DSM
that has distinct 3D geometric characteristics. Therefore,
specific objects (i.e., buildings) are identified well domi-
nantly. Nevertheless, overall results from the new unseen
data were not quite satisfied; buildings were adequately
identified compared to the other objects due to the DSM

with derived information. Each object has its own unique
characteristics with various aspects. The key task of DL
is to reveal representative features from the objects during
training. Therefore, training by utilizing various types of
data that are suitable to specific objects could improve
the performance of DL. In particular, DSM-derived data
would be helpful to identify buildings.

(f)

Figure 15: Differences between classification results and label data of Potsdam new unseen data. (a) IR image. (b) DSM. (c) Slope. (d) Aspect.
(e) Multidirectional SRI. (f) Combining all data.

(a)

(b)

Figure 16: Building class of Vaihingen test data. (a) Label data. (b) Results from combining all data.
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(a)

(b)

Figure 17: Building class of Potsdam new unseen data. (a) Label data. (b) Results from combining all data.

(a) (b)

(c)

Figure 18: Comparison of (a) classification result, (b) morphological filtering, and (c) label data of Potsdam new unseen data.
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In general, the scalability of the trained DL models is
evaluated using test data. The problem of using the test data
is that, in most cases, the test data belongs to the same area
with similar properties as the training data. Therefore, we
evaluated the model using a dataset from different areas,
i.e., test data from the Vaihingen area, and new unseen data
from the Potsdam area. We found some meaningful results
from the test data and new unseen data. Combining all data
yielded the highest IoU of the building for the test data (i.e.,
84.90%). On the other hand, multidirectional SRI provided
the highest IoU of the building (i.e., 66.27%) while combining
all data yielded IoU of 52.45%, but it was higher than individ-
ually trained data. We expect that multidirectional SRI plays
an important role for training DL model.

The ultimate goal of DL is to expand trained models for
universal use. However, the major problem of DL is data
dependency. Geospatial data has a variety of regional proper-
ties; hence, it is a valuable task to provide pretrained models
suitable for the specific regions (e.g., urban, residential,
mountainous, and agricultural areas). In addition, flexible
transfer learning that could avoid training DL models from
scratch would make DL a more powerful tool in various
fields. In addition, the integration strategy of various combi-
nations of the multisource dataset might maximize the syner-
gistic effect, for example, applying different priorities or
weights for each dataset.
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On the evening of 7 February 2018, a deadly collapse of a metro tunnel under construction in the Southern China city of Foshan
caused 11 deaths, 8 injuries, and 1 missing person. For disaster prevention and mitigation, the spatiotemporal ground deformations
before and after the collapse event were derived from 55 Sentinel-1A synthetic aperture radar (SAR) images spanning from March
2017 to January 2019. The results showed that prominent ground subsidence in the shape of a funnel with a maximum rate of
42mm/year was observed in the vicinity of the collapse area before the accident. After the accident, the area and magnitude of
subsidence decreased compared with precollapse subsidence. This decrease is related to the progress of tunnel excavation and
groundwater changes. In the temporal domain, continuous subsidence was observed over a year before and after the accident,
and accelerated subsidence appeared one month before the collapse accident. Soft soil consolidation and tunnel-induced soil
losses were the main reasons for the subsidence over the study area. The leakage of groundwater accounted for the collapse
event. The leaked groundwater eroded the soil, resulting in the formation of an arched hole. The connection between the arched
hole and the tunnel reduced the bearing capacity of the soil layer above the arched hole, triggering the collapse event. The
findings provide scientific evidence for future collapse monitoring and early warning due to tunnel excavation.

1. Introduction

As an advanced space observation technique, synthetic aper-
ture radar (SAR) interferometry has demonstrated advan-
tages for monitoring the ground deformation for collapse
sinkholes compared with some ground-based instruments
and techniques, such as high-precision leveling [1], robotic
total stations [2], global positioning systems [3], and terres-
trial laser scanner [4]. The sinkholes along the Dead Sea coast
in Israel and Jordan have been successfully identified and
monitored by SAR interferometry since 2002, providing rich
references and experiences for studying the deformation of
collapse sinkholes [5–11]. The continuous subsidence of
sinkholes in Wink, Texas, USA, was observed from time-
series SAR interferometry, suggesting that continuous moni-
toring of subsidence in the vicinity of sinkholes could help
prevent and mitigate catastrophic outcomes [12–14]. A dra-
matic increase in vertical deformation in the last few years
preceding the sinkhole formation at a shopping mall in Heer-

len, the Netherlands, was recorded in SAR data between 1992
and 2011, showing the feasibility of using satellite radar inter-
ferometry to detect a migrating cavity [15]. Similar tech-
niques were applied to the collapse sinkhole in the Ebro
Valley, Spain [16]; South Africa [17]; Poland [18]; and Ari-
zona, USA [19].

On the evening of 7 February 2018, a deadly ground col-
lapse of a metro tunnel under construction occurred in
Foshan, Guangdong Province, China. The accident caused
11 deaths, 8 injuries, 1 missing person, and a direct economic
loss of more than 53 million yuan (USA $7.8 million) [20].
The metro construction is an east–west line including 12
underground stations and 5 elevated stations. The project
has 5 shield tunnel intervals, and some of the intervals are
constructed in strata that feature rich underground water
and complex geological conditions. The collapse area is part
of the shield tunnel interval between Huchong Station and
Lvdaohu Station, which is 1804m long and 17.2–34.4m deep
[20]. After the collapse event, a sinkhole 81m long, 65m
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wide, and 8m deep was formed, as shown in Figure 1. Since
the collapse area was under metro construction, the event
was attributed to the underground tunnel excavation. The
results of a field investigation indicated that the accident
was due to the groundwater leakage, which let the water pour
into the tunnel and triggered the collapse [21]. Based on this
investigation, the leakage of groundwater was the crucial fac-
tor causing the collapse event. Accordingly, several
researchers analyzed the reasons for the groundwater leak-
age, such as complex geological strata [21], surface loading
[22], and the leakage at the tail of the shield machine [23].
For the ground deformation, existing research focused on
the whole city and there was no information available for
deformation monitoring and analysis regarding to the col-
lapse area [22, 24, 25].

To better understand the Foshan collapse event, multi-
temporal SAR interferometry was used in this study to obtain
the spatiotemporally evolution of the ground deformation in
the vicinity of the collapse sinkhole. For this, 55 C-band
Sentinel-1A images were acquired in an ascending orbit.
The annual deformation velocity was estimated to character-
ize the spatial pattern of deformation over the collapse area.
Subsequently, the time-series deformation was interpreted
in detail. Finally, the cause of the accident was discussed
based on the observed deformation.

2. Study Area and Data Collection

2.1. Geological Setting of the Study Area. The study area is
located at Foshan, which lies in the northern part of the Pearl
River, in Southern China. Crossed by the Tanzhou, Dongp-
ing, and Jili Rivers, the collapse area is a large alluvial delta,
where it is mostly flat with few hills and has an altitude from
1.3 to 4.6m above sea level [21]. Belonging to the subtropical
maritime monsoon climate, the study area is characterized by
short spring and autumn, long summer, warm winter, abun-
dant sunshine, and plentiful rainfall [26].

Quaternary strata, with unconsolidated sediments from 0
to 60m thick, are widespread in the study area. Figure 2(a)
shows that the thickness of quaternary strata decreases from

west to east. Figure 2(b), displaying the vertical stratigraphic
structure around the constructed tunnel, shows that the stra-
tum from top to bottom is artificial filling soil, silty clay,
mucky soil, powdered fine sand, medium sand, gravel, sand-
stone, silty mudstone, and siltstone [21]. The artificial filling
soil with a thickness of 0-5m is distributed along the road
and mainly from the weathered residual soil, weathered rock,
and gravel. Below the artificial filling soil, it is distributed by
the silty clay characterized by high water content and high
compressibility. The experiment indicates that the water con-
tent is about 10%-48% and compression modulus is about 3-
13MPa for silty clay over the study area [26]. The mucky soil,
distributed below the silty clay, is mainly from the sea alluvial
silt and mucky soil, which has properties of high water con-
tent, high compressibility, high void ratio, and low strength.
For the study area, the mucky soil has the water content of
24.3%-68.8%, compression modulus of 1.6-2.4MPa, and void
ratio of 0.8-2.0 [26]. Powdered fine sand and medium sand
belong to the sandy soil, which is characterized by high per-
meability and distributed below the mucky soil. Gravel, sand-
stone, silty mudstone, and siltstone are classified as sandstone
soil, which is distributed at the bottom of quaternary and has
the properties of high permeability, macropores, and high
shear strength.

Groundwater of the study area is mainly sourced from
quaternary pore water and bedrock fissure water, where the
pore water is further divided into unconfined and confined
water. The unconfined water mainly lies in the soft soil layer,
while the confined water is mainly found in the sandy and
sandstone soil layers [21]. The changes of groundwater are
affected by the precipitation and anthropogenic activities
[23]. The annual average precipitation is about 1,690mm,
of which 50% concentrates in summer, 40% concentrates in
spring and autumn, and 10% concentrates in winter [21].
Therefore, changes of groundwater due to the precipitation
present the long-term periodical variations: high groundwa-
ter level in summer, middle groundwater level in spring
and autumn, and low groundwater level in winter. Changes
of groundwater due to the anthropogenic activities show
the short-term fluctuations with domestic and industrial

Metro excavation construction

Date: 07/02/2018

(a)

Date: 07/02/2018

(b)

Figure 1: Foshan collapse view: aerial (a) and terrestrial (b).

2 Journal of Sensors



30

20

0 0.3
km

Huchong Lvdaohu
Collapse sinkhole

CB166
CB166

Thickness of quaternary strata
Bed rock
0~5 m
5~10 m
10~15 m

15~20 m

20~25 m
25~30 m
30~35 m
35~40 m

40~45 m
45~50 m
50~55 m
55~60 m
>60 m

Collapse sinkhole

Planned metro line

Fault

(a)

Silty mudstone

Mucky soil

Siltstone

Powdered fine sand

Sandstone

Gravel

Artificial filling soil

CB166
10

5
0

–5
–10
–15
–20
–25
–30
–35
–40
–45
–50
–55

Height (m)
Huchong LvdaohuCB228 CB125 CB113

Tunnel

Sinkhole

CB083 CB043 CB073

Medium sand

Groundwater level

Silty caly

(b)
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water consumptions, as well as underground construction.
The domestic and industrial water consumptions are not
dominated over the study area due to the rich surface water
[26]. The operations of pumping and discharging groundwa-
ter during the underground construction, such as excava-
tions of a metro tunnel, may cause the significant
groundwater changes.

2.2. Data Collection. A total of 55 C-band Sentinel-1A images
were collected to derive the ground deformation over the
Foshan collapse area. Table 1 and Figure 3 provide the
parameters and coverage of these SAR images, respectively.
The Sentinel-1A images in the ascending orbit were acquired
between March 2017 and January 2019, which allowed us to
obtain the ground deformation over one year before and after
the formation of the collapse sinkhole. A TerraSAR-X add-
on for Digital Elevation Measurements (TanDEM-X) with a
spatial resolution of 90m was acquired as an external digital

elevation model (DEM) to remove the topographic phase
from the differential interferograms.

3. Methodology

Using the collected 55 C-band Sentinel-1A images, the
annual deformation velocity and time-series deformation
were calculated using the multitemporal SAR interferometry
technique. During this procedure, we followed the methods
of Chen et al. [27]. Interferometric pairs were generated by
setting small temporal and spatial baselines. On the basis of
the experiment, a spatial baseline below 100m and a tempo-
ral baseline less than 30 days were designed to generate the
interferograms. A total of 96 interferograms were produced,
among which 42 interferograms were used for precollapse
deformation estimation and 54 interferograms were used
for postcollapse deformation estimation, as shown in
Figure 4. The topographic and orbital phases were simulated

Table 1: SAR parameters in this study.

Satellite Orbit direction Azimuth angle (°) Incidence angle (°) Number of SAR images Data period

Sentinel-1A Ascending –10 40 55 12/03/2017–25/01/2019

0.1 0.3
km

N

Water area

Sentinel-1A

Study area

Collapse area

Main town

Figure 3: Synthetic aperture radar (SAR) data coverage used in this study; corresponding data are superimposed on the digital elevation
model (DEM).
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and subsequently removed from the differential interfero-
metric phase using the collected TanDEM-X DEM and
SAR orbital data [27]. Then, adaptive spectral filtering with
a window size of 32 was executed to suppress the interfero-
metric noise [28]. After that, phase unwrapping using the
minimum cost flow (MCF) method was conducted to
retrieve the absolute phase [29]. Finally, the atmospheric
delay errors were reduced through the cascade of a low-
pass filtering implemented in the two-dimensional spatial
domain, followed by a temporal high-pass filtering [30].
After these processes, the unwrapped interferograms were
used to estimate the annual deformation velocity and time-
series deformation before and after the formation of the col-
lapse sinkhole.

The annual deformation velocity, which allowed the
characterization of the spatial pattern of ground deformation
over the study area, was estimated by the method in [31]:

Phrate =
∑N

j=1Δt jφj

∑N
j=1Δt

2 , ð1Þ

where Phrate is the annual deformation velocity, N is the
number of interferograms involved in the estimation, Δt j is
the time interval between the master and slave pair, and φj

is the unwrapped interferograms. The standard deviation of
Phrate was estimated by the method in [32]:

Var Phrateð Þ = 〠
N

j=1
φj −

4π
λ

· Phrate · Δt j
� �2

/Δt j2, ð2Þ

where λ is the radar wavelength and VarðPhrateÞ is the stan-
dard deviation of Phrate. VarðPhrateÞ was used to validate
our observed annual deformation velocity due to lack of

additional observations, such as ground-based leveling
measurements.

The time-series deformation demonstrates the temporal
variations in ground deformation and can be estimated by
the method in [33]:

A · cos θ · Vu = φ, ð3Þ

where matrix A consists of time intervals between consecu-
tive SAR acquisition, θ is the incidence angle, Vu represents
the unknown vertical velocities that are to be determined,
and φ represents the unwrapped interferometric phase. The
unknown parameters Vu for each pixel are solved by apply-
ing the singular value decomposition (SVD) [34]. Once Vu
was estimated, the time-series deformation d =
d1d2 ⋯ dM−1 dM½ � was reconstructed from the com-
puted deformation rates by numerical integration, where M
is the number of SAR images involved in calculation.

4. Results

4.1. Precollapse Ground Deformation. The annual deforma-
tion velocity was estimated by Equation (1) using 26
Sentinel-1A images acquired between 12 March 2017 and
30 January 2018, which revealed the spatial pattern of ground
deformation over the year prior to the collapse accident, as
shown in Figure 5(a). All measurement values are relative
to a common reference point that was considered to be stable
over the entire time period, and positive and negative values
represent uplift and subsidence, respectively. The promi-
nently subsiding region was detected in the vicinity of the
collapse sinkholes, as indicated by the black outline polygon
in Figure 5(a). This subsiding region was further divided into
three subregions. The first subregion contained the collapse
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region and showed the maximum subsiding rate of
42mm/year. The second subregion, with a maximum subsid-
ing rate of 38mm/year, was located at about 600m north of
the collapse sinkhole. The third subregion was located at
about 900m northwest of the collapse sinkhole, where the
maximum subsiding rate was up to 34mm/year. To evaluate
the observed result, the error distribution of deformation
velocity was estimated using Equation (2), as shown in
Figure 5(b). It was observed that the errors were below
3mm for most regions and up to 5mm for the severe subsid-
ing area, suggesting the reliability of our observed subsidence.

Based on this observation, it was summarized that prominent
ground subsidence with a maximum rate of 42mm/year
appeared in the vicinity of the sinkhole before the collapse.

To investigate the temporal variation of precollapse
deformation, the time-series deformation was estimated
using multitemporal SAR interferometry processing.
Figure 6 shows the time-series deformation from 12 March
2017 to 30 January 2018, which was derived from 26
Sentinel-1A images acquired before the formation of the col-
lapse sinkhole. Continuous subsidence was observed in the
vicinity of the collapse, where the cumulative maximum

Reference point

Pre-collapse deformation velocity
N

Lvdaohu

–40

–20

0

20
mm

Collapse sinkholeMetro line

0 250 500 750 1000
(m)

Huchong

Deformation region

(a)

Post-collapse deformation velocity error

Reference point

Lvdaohu

Collapse sinkhole
Metro line

0 250 500 750 1000
(m)

Huchong

Deformation region

–5

0

5
mm

N

(b)

Figure 5: (a) Annual deformation velocity map and (b) its error distribution before the formation of the collapse sinkhole. The red cross
indicates the reference point, the red star denotes the location of the collapse sinkhole, the white circles show the metro station locations,
the blue double line shows the metro line, and the red triangles show three subregions.
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subsidence reached 40mm. Figure 7 displays the time-series
deformation at points P1 (blue rectangle) and P2 (red circle),
both of which are marked in the last image of Figure 6. Point
P1, which is about 100m away from the center of collapse,
showed a cumulative subsidence of 35mm between 12March
2017 and 30 January 2018. Further observation indicated a
fluctuation in time-series deformation: alternative subsi-

dence and uplift from 17 April to 5 August 2017 and subse-
quent continuous subsidence until 30 January 2018. The
metro construction started from Huchong Station on 10
May 2017. Connecting this information with the observed
deformation at point P1, it was found that the clear fluctua-
tion of deformation appeared during this stage, suggesting
the relationship between subsidence and metro construction.

Figure 6: Time-series deformation before the formation of the collapse sinkhole observed from Sentinel-1A images. The time-series
deformation at points P1 and P2 was extracted for further analysis.

7Journal of Sensors



Point P2, which is about 900m away from the center of the
collapse sinkhole, showed similar variations in time-series
deformation as point P1. The cumulative subsidence was
about 28mm for point 2, which is less than at point P1. As
for the deformation in the month prior to the collapse event
on 7 February 2018, accelerated subsidence was observed at
both points: the deformation decreased by 7mm and 8mm
between 6 January and 30 January 2018 for P1 and P2,
respectively. In summary, continuous subsidence occurred
in the vicinity of the collapse before the accident, and acceler-
ated subsidence was observed when metro construction
started and one month before the formation of the sinkhole.

4.2. Postcollapse Ground Deformation. Figure 8 shows the
annual deformation velocity and its error distribution after
the formation of the collapse sinkhole, which was derived
from 29 Sentinel-1A images acquired between 11 February
2018 and 25 January 2019. Similar to the precollapse defor-
mation velocity map in Figure 5(a), the subsiding region
occurred in the vicinity of the collapse, as shown by the black
outline in Figure 8(a). However, the area and magnitude of
subsidence are smaller compared with Figure 5(a). The statis-
tics showed that the maximum subsiding rates were about 30,
31, and 32mm/year for the first, second, and third subsiding
subregions, respectively. Meanwhile, it was observed that the
subsidence started to extend to the east, where subsidence
area and magnitude increased. The lower subsiding rates
were due to the completion of the metro construction over
the study area, and the construction continuing to the east
extended the subsidence. This is similar to the precollapse
deformation where the deformation velocity errors were
below 3mm for most regions and up to 5mm for the severely
subsiding area, as shown in Figure 8(b). Based on this obser-
vation, we found decreases in the area and magnitude of sub-
sidence after the collapse, which may be related with the
groundwater level changes.

Figure 9 shows the time-series deformation from 11 Feb-
ruary 2018 to 25 January 2019, which was derived from 29
Sentinel-1A images after the collapse of the sinkhole. Like
the precollapse time-series deformation in Figure 6, continu-
ous subsidence was observed in the vicinity of the collapse
sinkholes, where the cumulative maximum subsidence
reached 30mm. However, the area and magnitude of subsi-
dence are smaller compared with Figure 6. Figure 10 displays
the time-series deformation at P1 (blue rectangle) and P2
(red circle), both of which are marked in the last image of
Figure 9. Point P1 experienced a cumulative subsidence of
20mm between 11 February 2018 and 25 January 2019,
which is a decrease of 15mm compared with the precollapse
subsidence. Although the wave-shaped deformation varia-
tion was retained, the amplitude of variation was lower when
compared with Figure 7(a). Point 2 experienced a cumulative
subsidence of 28mm, which was the same as the precollapse
subsidence. In summary, continuous but decelerated subsi-
dence was observed after the incident, and accelerated subsi-
dence was observed over 48 days after the formation of the
sinkhole.

5. Discussion

5.1. Subsidence due to Soft Soil Consolidation. Located on a
large alluvial delta, unconsolidated sediments are widespread
in the study area (Figure 2(a)). The stratum from top to bot-
tom is artificial filling soil, silty clay, mucky soil, powdered
fine sand, medium sand, gravel, sandstone, silty mudstone,
and siltstone (Figure 2(b)). Considering the presented char-
acteristics of high water content and high compressibility,
the upper silty clay and mucky soil are classified as soft soil,
which has many properties that are unfavorable for their
use in projects [26]. The lower soil layers, including pow-
dered fine sand, medium sand, gravel, sandstone, silty mud-
stone, and siltstone, are classified as sandy and sandstone
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soils, which are characterized by high permeability, low com-
pressibility, and high shear strength. In this context, pore
water in soft soils is easily discharged along the sandy and
sandstone soils in the presence of natural and human load-
ings, resulting in the decrease of pore fluid volume, compres-
sion of soft soils, and subsequent ground subsidence. The
relevant materials show that the magnitude of subsidence is
related to the thickness of soft soils [27, 34]. Thus, the rela-
tionship between ground deformation and soft soil thickness
was investigated and analyzed over the study area.
Figure 11(a) displays the thickness of soft soils over the study

area, where the thickness between Huchong Station and
Lvdaohu Station is from 20 to 30m. Figure 11(b) shows the
relationship between ground deformation and soft soil thick-
ness. The green circle in Figure 11(b) represents the ground
deformation between Huchong Station and Lvdaohu Station,
which is extracted from Figure 5(a). The red and blue lines
are, respectively, the fitting deformation and soft soil thick-
ness between Huchong Station and Lvdaohu Station. The
comparison results show the approximate consistency
between the ground deformation and the soft soil thickness
in the spatial distribution; the greater the subsidence, the
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Figure 9: Time-series deformation after the formation of the collapse sinkhole observed from Sentinel-1A images. The time-series
deformation at points P1 and P2 was extracted for further analysis.
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thicker the soft soils, particularly in the vicinity of the col-
lapse sinkhole, where the maximum subsidence and soft soil
thickness are observed.

The literature indicates that the subsidence is due to the
soft soil consolidation mainly from the surface loadings
[22] and groundwater exploitation [25]. With respect to the
collapse area, surface loadings come from the vehicle load-
ings and some buildings and infrastructure. Groundwater
exploitation to meet the needs of domestic and industrial
water consumption was rare over the study area due to the
rich surface water [26]. However, this process occurs during
the tunnel excavation, where the operations of pumping
and discharging groundwater are needed to reduce the exter-
nal water pressure [35].

5.2. Subsidence due to Soil Losses. The studies indicate that
the soil losses during the tunnel excavation may cause the
subsidence, which is located at the center of the tunnel [36,
37]. This subsidence occurs when a difference exists in the
volumes of the excavated soil and tunnel. In this case, soil
losses contributed to the subsidence according to the adopted
shield tunnel excavating method and the local geological
conditions [37]. Figure 12 shows the annual deformation
velocity along the planned metro line. It is observed that
prominent subsidence appears along the completed metro
line, which is caused by the tunnel-induced soft soil consoli-
dation and soil losses. However, the deformation is not sig-
nificant for the region where the tunnel excavation has not
started. This observation suggests the effect of tunnel excava-
tion on ground subsidence.

In order to further show the ground subsidence induced
by soil loss, Peck model, an empirical model to calculate the
deformation, was used in this study [36]. A schematic dia-
gram of the Peck model is shown in Figure 13, where point
O is the center of the tunnel, R is the tunnel radius, H is the
depth of the tunnel centerline, Smax is the maximum subsi-
dence, SðxÞ is the deformation due to soil loss, and i is the
width coefficient of the subsiding trough, which can be

empirically estimated as a function of the depth of the tunnel
centerline H, and the horizontal direction of the tunnel cross
section is the x axis. The model is expressed as [36]

S xð Þ = Smax exp
−x2

2i2
� �

, ð4Þ

Smax = −
V s

i
ffiffiffiffiffiffi
2π

p = −
V s
2:5i , ð5Þ

V s = V l × πR2, ð6Þ
where V s and V l are the soil loss and soil loss rate, respec-
tively, both of which are difficult to accurately estimate since
they are related to many factors, such as stratigraphic condi-
tion, hydrogeology, geotechnical parameters, rock/soil
porosity, water content, granulometry, construction tech-
nique, and excavating method. In this study, R and H in
Equations (4), (5), and (6) were directly derived from [21]
and parameters V l = 3% and i = 0:76 ∗H were derived from
[37]. Based on these parameters, the ground subsidence due
to soil loss was estimated, as shown in Figure 14. It was found
that the subsidence due to soil losses was in the shape of a
funnel, with the subsiding center was located at the center
of the tunnel. Compared with the deformation map in
Figure 6, the three detected subsiding subregions were
approximately shaped as funnels, suggesting consistency in
the deformation shape. For the subsiding center, the first sub-
siding subregion showed a center along the metro line. How-
ever, the other two subregions did not overlap the metro line.
This phenomenon was due to the reduction in the subsiding
area after the tunnel excavation, which was identified in the
time-series deformation map. In terms of magnitude of sub-
sidence, the modeled maximum subsidence due to soil losses
in this case was about 25mm. The observed subsidence due
to soil losses at point P1 in Figure 7 was about 28mm when
considering 80% of total subsidence from soil loss [37]. The
modeled and observed subsidence at point P1 is comparable
in magnitude. Based on the discussion, it was summarized
that the observed subsidence in this case was due to soft soil
consolidation and soil losses. Subsidence due to soft soil con-
solidation occurred before and after tunnel excavation,
whereas subsidence due to soil losses occurred during tunnel
excavation.

5.3. Collapse due to Groundwater Leakage. The result from an
investigation report showed that the Foshan collapse
occurred due to leakage of groundwater above the tunnel
[21]. The groundwater poured into the tunnel, causing the
tunnel structure damage and triggering the collapse. In view
of filed investigation, the damage of underground pipelines is
considered to be related with the leakage of groundwater.
Here, three aspects are shown to support this point. The first
is the aging of underground pipelines over the study area.
Like most other cities, there are more than 30-year-old
underground pipelines in Foshan region [38]. This aging of
underground pipelines is easily damaged in the case of
ever-increasing urbanization and the continuous construc-
tion, development, and expansion of urban areas, such as

2019.0 2019.22018.0
–40

–30

–20

–10

G
ro

un
d 

de
fo

rm
at

io
n 

(m
m

) 0

10

2018.2 2018.4 2018.6 2018.8
Date (yyyy.m)

Post-collapse deformation at P1
Post-collapse deformation at P2

Figure 10: Time-series deformation at points P1 (a) and P2 (b).

11Journal of Sensors



the abrupt collapse due to a 44-year-old sewer pipeline in
Fraser, USA [39]. The second is the observed inhomogeneous
ground subsidence over the study area. The filed investiga-
tion suggests that some infrastructures have been affected
by ground subsidence in the vicinity of the collapse area, such

as ground crack, wall crack, and pipeline rupture, as shown in
Figures 15(a)–15(d). Although there is no direct evidence to
show this effect on the underground pipelines, plenty of
research has proved that the inhomogeneous ground subsi-
dence can cause the underground pipeline leakage [40–42].
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The leakage in underground pipelines mainly refers to the
leakages, bursts, or blockages in sewer, drain, and/or water
pipelines [43, 44]. The third is the similar collapse event in
the vicinity of the collapse area. On November 5, 2017, a
small ground collapse event was observed near the station
of Huchong, which caused the formation of a collapse sink-
hole with an area of 60 m2 [2]. It is confirmed that the col-
lapse is caused by the underground pipeline leakage, as
shown in Figures 15(e) and 15(f). Based on these three
aspects, it is the damage of underground pipelines causing
the leakage of groundwater. Therefore, the detection of
underground pipeline leakage should be conducted to pre-
vent the collapse events, particularly for subsiding areas.

Related studies investigated the mechanisms and neces-
sary conditions for collapse sinkhole formation due to the
leakage of groundwater [6, 16, 45–47]. Based on these stud-
ies, the widely accepted process of collapse sinkhole forma-
tion is shown in Figure 16. Firstly, the leakage of
groundwater erodes the soil, forming an arched hole. This
arched hole is generally related to the size and location of
the later formed collapse sinkhole and is therefore prerequi-
site to the formation of a collapse sinkhole [48, 49]. Anthro-
pogenic influences and the presence of urban infrastructure

can significantly expedite the process of arched hole forma-
tion [50, 51]. With the excavation of the tunnel, the arched
hole and the tunnel are connected. This connection reduces
the bearing capacity of the soil layer above the arched hole;
hence, a ground collapse sinkhole forms. Thus, the collapse
event occurred in this region due to groundwater leakage
and arched hole formation.

6. Conclusions

On the evening of 7 February 2018, a deadly collapse of a
metro tunnel under construction in the Southern China city
of Foshan caused 11 deaths, 8 injuries, and 1 missing person.
To better understand this event, the ground deformations
before and after the collapse was derived using a multitem-
poral InSAR technique. The driving factors for the ground
deformation and the collapse were discussed based on the
investigation report, local geological conditions, and
observed deformation. The findings provide scientific evi-
dence for future collapse monitoring and early warning due
to tunnel excavation. Based on this study, the following con-
clusions were made:

(1) Precursory subsidence was observed in the vicinity of
collapse sinkhole. Using 55 C-band Sentinel-1A
images, the annual deformation velocity and time-
series deformation maps before and after the event
were retrieved through multitemporal SAR interfer-
ometry processing. The results showed that promi-
nent ground subsidence with a maximum rate of
42mm/year occurred in the vicinity of the collapse
before the formation of the sinkhole. Compared with
precollapse deformation, the area and magnitude of
subsidence decreased during postcollapse deforma-
tion. In the temporal domain, accelerated subsidence
was observed during metro construction and one
month before the formation of the collapsed sink-
hole. These observations indicated the presence of
precursory subsidence for collapse sinkhole, which
allowed us to forecast the collapses and thus reduce
the risk for people and property

(2) Soft soil consolidation and soil losses were the main
factors affecting the subsidence over the study area.
The quaternary stratum from top to bottom was soft,
sandy, and sandstone soils. In this context, the
ground subsidence easily occurred due to soft soil
consolidation and tunnel excavation. The time-
series deformation maps showed the continuous sub-
sidence before and after the metro construction. This
subsidence was mainly from the soft soil consolida-
tion due to surface loadings and groundwater exploi-
tation. The modeled and observed subsidence is
comparable in magnitude, suggesting the subsidence
due to soil losses during tunnel excavation

(3) The leakage of groundwater accounted for the col-
lapse event. The result from an investigation report
showed that the collapse occurred due to the leakage
of groundwater above the tunnel. Considering the
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Figure 15: The effects of ground deformation in the vicinity of the collapse area, such as surface subsidence (a), ground crack (b), wall crack
(c, d), and leakage of groundwater (e, f).
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mechanisms and necessary conditions for collapse
sinkhole formation, the process of collapse was
retrieved. The leaked groundwater eroded the soil,
forming an arched hole. The connection between
the arched hole and the tunnel reduced the bearing
capacity of the soil layer above the arched hole,
thereby triggering the collapse event

These findings contribute to the understanding of the
spatial–temporal evolution of ground deformation before
and after the collapse event. However, clearly describing the
reasons for collapse is challenging due to a lack of related
data, such as continuous ground-based deformation moni-
toring data. Therefore, sufficient in situ measurements will
be collected in the future to analyze the reasons for the
collapse.
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The characteristics of an earthquake can be derived by estimating the source geometries of the earthquake using parameter
inversion that minimizes the L2 norm of residuals between the measured and the synthetic displacement calculated from a
dislocation model. Estimating source geometries in a dislocation model has been regarded as solving a nonlinear inverse
problem. To avoid local minima and describe uncertainties, the Monte-Carlo restarts are often used to solve the problem,
assuming the initial parameter search space provided by seismological studies. Since search space size significantly affects the
accuracy and execution time of this procedure, faulty initial search space from seismological studies may adversely affect the
accuracy of the results and the computation time. Besides, many source parameters describing physical faults lead to bad data
visualization. In this paper, we propose a new machine learning-based search space reduction algorithm to overcome these
challenges. This paper assumes a rectangular dislocation model, i.e., the Okada model, to calculate the surface deformation
mathematically. As for the geodetic measurement of three-dimensional (3D) surface deformation, we used the stacking
interferometric synthetic aperture radar (InSAR) and the multiple-aperture SAR interferometry (MAI). We define a wide initial
search space and perform the Monte-Carlo restarts to collect the data points with root-mean-square error (RMSE) between
measured and modeled displacement. Then, the principal component analysis (PCA) and the k-means clustering are used to
project data points with low RMSE in the 2D latent space preserving the variance of original data as much as possible and
extract k clusters of data with similar locations and RMSE to each other. Finally, we reduce the parameter search space using
the cluster with the lowest mean RMSE. The evaluation results illustrate that our approach achieves 55.1~98.1% reductions in
search space size and 60~80.5% reductions in 95% confidence interval size for all source parameters compared with the
conventional method. It was also observed that the reduced search space significantly saves the computational burden of solving
the nonlinear least square problem.

1. Introduction

In the past decades, interferometric synthetic aperture radar
(InSAR) has been a powerful method to acquire geophysical
features such as surface deformation or topography by com-
paring the phases of at least two complex-valued SAR images
obtained from different location or time. Since SAR provides
high-resolution images, InSAR can measure the surface
deformation with centimetric or even millimetric accuracy.
This accurate deformation map enables the observation of
ocean and ground surface changes, the measurement of ice

drift and glacier elevations, and the analysis of seismic defor-
mation or volcanic activities [1].

Surface deformation acquired from InSAR measure-
ments provides essential information for studying earth-
quakes and volcanic activities. To derive the characteristics
of an earthquake, we can estimate the source geometries of
an earthquake by performing parameter inversion that min-
imizes the L2 norm of residuals between measured and mod-
eled displacement calculated from a dislocation model [2]. In
many cases, the root-mean-square error (RMSE) values of
residuals are used for the evaluation of the inversion result.
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A dislocation model provides the mathematically calcu-
lated coseismic displacement of the earth’s surface. The most
popular dislocation model is a rectangular dislocation model
(Okada model) [3] that assumes isotropic homogeneous
half-space and finite rectangular source. Other dislocation
models that provide closed analytical expression include the
prolate spheroid model (Yang model) [4] and the spherical
source model (Mogi model) [5].

In general, since the dislocation model cannot express the
surface displacement linearly, estimating source geometries
is a nonlinear inverse problem that can be solved by a nonlin-
ear least square method. The nonlinear least square method
iteratively searches local minima based on the partial deriva-
tives of the objective function that indicates the misfit
between observed and synthetic data. Hence, the solution
may vary according to the starting point of parameters, and
thus, we cannot assure that the solution is a global minimum
[6]. To avoid local minima and describe uncertainties, the
Monte-Carlo restarts are often used to solve the problem [7].

In solving a nonlinear least square problem with the
Monte-Carlo restarts, we should designate a search space
by setting boundary conditions of each parameter to pick
random starting points. Since a nonlinear least square
method iteratively explores the parameter search space, the
search space size significantly affects the accuracy and execu-
tion time of the algorithm. Previous studies [8, 9] used the
initial range of search space relying on the focal mechanism
from seismologists. However, the accuracy of seismological
studies can influence the result of an inverse problem.
Besides, a dislocation model with many source parameters
describing fault leads to bad data visualization and thus
analyzing the distribution of the results becomes quite tricky.

This paper presents a new search space reduction
algorithm based on machine learning techniques to come
up with the challenges mentioned above. Our proposed
method proceeds as follows:

(1) Initially, assume a wide range of search space and
perform the Monte-Carlo restarts of five thousand
iterations with randomly initialized starting points

(2) Then, choose the samples that preserve maximum
variance and have a low RMSE and project them to
the two-dimensional (2D) space using PCA

(3) Decide hyperparameter k based on the distribution of
data on the 2D space and cluster samples using k
-means clustering

(4) Choose the cluster with the lowest mean RMSE and
reduce the search space using the cluster

(5) Perform additional Monte-Carlo restarts of five
thousand iterations in the reduced search space and
determine the final source parameters

Our search space reduction algorithm was compared
with the conventional approach that uses geological studies
to define the search space in the same study area, the 2017
Pohang earthquake. The evaluation was performed in terms
of the size of search space, RMSE calculated from determined

source parameters, a 95% confidence interval of each source
parameter, and the average iteration number of a nonlinear
least square.

This paper is organized as follows. Section 2 introduces
the related work and background of our approach. In Section
3, our machine learning-based search space reduction algo-
rithm is described in detail. Section 4 presents the results
and discussion of our approach in the study area, Pohang,
Korea. Finally, Section 5 concludes the paper.

2. Related Work

2.1. Interferometric SAR and Earthquake Source Parameter
Determination. InSAR is the method that extracts geophysi-
cal features such as surface topography and deformation by
comparing the phase offsets of at least two complex-valued
SAR images [1]. Comparing SAR images measured at differ-
ent time instants, InSAR can retrieve the surface displace-
ment at specific time instants, e.g., the surface deformation
induced from earthquakes or volcanic activities, landslides
[10], thaw-derived slope failure [11], and glacier elevations
and changes [12]. However, conventional InSAR has a limi-
tation that it can measure only the line-of-sight (LOS) com-
ponent of displacement [13]. To overcome the limitation
and measure 3D surface displacement accurately, the offset
tracking method [14] and stacking InSAR and multiple
aperture interferometry (MAI) [15] were proposed.

The source geometries of an earthquake can also be esti-
mated by performing parameter inversion that finds the best
approximate source parameters having the minimum misfit
between the measured displacement and the synthetic 3D
surface displacement of a theoretical dislocation model. Typ-
ical dislocation models are as follows. Mogi’s model [5] cre-
ates a 2D displacement map in radial and tangential
direction with four input parameters assuming ideal semi-
infinite elastic crust and spherical source. The Yang model
[4] generates a 3D displacement map in east, north, and ver-
tical directions with eight source parameters assuming finite
prolate spheroid source in an elastic half-space. Okada’s
model [3] builds a 3D displacement map similar to the Yang
model, but it assumes a finite rectangular source and uses ten
source parameters. All these dislocation models are nonlin-
ear because the relation between the source parameters and
surface displacement cannot be expressed as linear equations.

To estimate the source parameters using a nonlinear dis-
location model, we can use the nonlinear least square method
that minimizes the Euclidean norm of residuals between the
measured and the modeled displacement. Let us denote the
dislocation model as G, source parameters as m, and
observed displacement as d, respectively. Then, the objective
function of the nonlinear least square method is formulated
as Equation (1) [6].

f mð Þ = G mð Þ − dk k2: ð1Þ

Source parameters m can have boundary constraints. As
for the parameter indicating an angle, the range of parame-
ters is physically limited. For example, the parameter Strike
that means the horizontal angle of the fault should be on
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Figure 1: Schematic workflow of our approach. (a) is a big workflow that estimates earthquake source parameters. (b) shows our machine
learning approach, included in (a), to reduce search space.

Table 1: Source parameters of the Okada model.

Parameter Unit Description

E km Distance from the reference point to the east

N km Distance from the reference point to the north

Depth km Depth of source

Strike Degree Angle of fault relative north

Dip Degree Angle between the fault and a horizontal plane

Length km Length of fault

Width km Width of fault

Rake Degree Angle of slip relative to the Width direction

Slip mm Dislocation in rake direction

Open km Dislocation in tensile component

Strike (deg.)

Dip (deg.)

Rake

(deg.)

Sl
ip

 (m
m

)

N (km)
E (km)

Width (km)
Length (km)

U

East
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Figure 2: Fault geometry of the Okada model.
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the range ½0°, +360°�. Also, seismological studies such as the
focal mechanism can be used to establish additional bound-
ary conditions. Equation (2) shows the objective function of
a nonlinear least square with lower bound l and upper bound
u.

f mð Þ = G mð Þ − dk k2,  l ≤m ≤ u: ð2Þ

The nonlinear least square method iteratively explores
the search space from a specific starting point to local min-
ima, so the method cannot derive global minima. To avoid
local minima and describe uncertainties of parameters, we
can use the Monte-Carlo restarts that generate many initial
starting points and then solve the nonlinear least square
problem for each starting point. Obtaining results from mul-
tiple starting points helps to find the global minimum and
show the probabilistic descriptions such as standard devia-
tion and histogram. Many studies employed the Monte-
Carlo restarts to obtain the best-fit source parameters of
earthquakes or volcanic activities [8, 9, 16–18]. Besides,

Bayesian estimation of source parameters can be used to
determine the source parameters [19, 20].

Our approach used stacking InSAR and multiaperture
InSAR (MAI) [15] and assumed a wide initial search space.
Then, we performed Monte-Carlo restarts for randomly ini-
tialized starting points to get data that includes the evidence
of the initial search space.

2.2. Machine Learning Applications for Remote Sensing.
Machine learning has been used widely in remote sensing
[21]. It can be classified into supervised learning and unsu-
pervised learning by whether a given set of training data
includes the desired solution called labels, or not. In super-
vised learning, the label y corresponding to the data x exists,
and the problem that the data x is provided without the label
is called unsupervised learning. Typical supervised learning
algorithms include the support vector machine (SVM), ran-
dom forest (RF), artificial neural network (ANN), and k
-nearest neighbor (KNN). In remote sensing, these algo-
rithms have been used for estimating PM2.5 concentrations
[22], modeling aboveground biomass of maize [23], and
land cover classification [24].

Unsupervised learning techniques have also been used
broadly in remote sensing. Principal component analysis
(PCA), one of the representatives among them, reduces the
dimension of the given dataset. PCA finds a lower dimen-
sional hyperplane that preserves the maximum variance to
maintain the maximum amount of original information
[25]. In remote sensing, PCA has been used to process hyper-
spectral images acquired from airborne or spaceborne

Table 2: Initial search space of source parameters.

E (km) N (km) Depth (km) Strike (deg.) Dip (deg.) Length (km) Width (km) Rake (deg.) Slip (mm)

LB -40 -40 1 0 0 0.01 0.01 0 -10000

UB 40 40 60 360 90 120 120 180 10000

Measured
deformation

data 𝐝

Randomly
subsample
20% of data

Solve nonlinear
least square

problem

Write ith
result

i = 1,
iter = 5000

i ! = iter?

Subsampled
deformation

data 𝐝samp

Yes

Iter # ParamRMSE

… ……

… ……

i 𝐦i
⁎0.147

1 𝐦1
⁎0.145

Increment i No

Random
starting point

𝐦i
(0)

Deformation
model G

Figure 3: Data acquisition in the initial search space using the Monte-Carlo restarts.

Table 3: Options of MATLAB lsqnonlin() function.

Option Value

Algorithm Trust-region-reflective

MaxIter 500

TolX 0.01

TolFun 0.01
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vehicles [26–28] and applied in various fields dealing with
parameter inversion [29, 30].

k-means clustering is another popular unsupervised
learning algorithm that groups data into the k clusters. The
parameter k is a hyperparameter that should be defined man-
ually, and data are grouped by minimizing the sum of the
squared error of distances between the centroid of the cluster
and the data points in the cluster [31]. In this paper, we used
PCA to project the data in the initial search space to 2D latent
space and performed k-means clustering to cluster the data.

3. Proposed Approach

This paper is aimed at reducing the parameter search space
for the determination of earthquake source parameters with
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Figure 4: PCA procedure for dimensionality reduction of Monte-Carlo results.
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Table 4: Principal components of each parameter.

Parameters PC 1 PC 2

E -0.16955 -0.94018

N -0.34902 0.14051

Depth 0.35540 0.01463

Strike 0.35263 0.05568

Dip 0.34854 -0.01957

Length -0.35430 0.03954

Width -0.33501 0.27958

Rake 0.35549 0.04171

Slip 0.33640 -0.10564

−2
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−1

0

0

PC
 2

RM
SE

PC 1

0.1495

0.1490

0.1485

0.1480

1
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3

Figure 6: Samples projected into 2D space.
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better computation time efficiency and data visualization.
Figure 1 outlines our proposed search space reduction algo-
rithm. Figure 1(a) illustrates the workflow that determines
the source parameters using the Monte-Carlo restarts, and
Figure 1(b) presents the proposed method that reduces the
parameter search space included in Figure 1(a).

As the first step of our approach, we set a wide initial
search space. Second, we perform the Monte-Carlo restarts
of five thousand iterations to associate the RMSE and source
parameters in the initial search space. In performing Monte-
Carlo restarts, we randomly subsample measured deforma-
tion to reduce computation time. Third, we reduce the
parameter search space using the PCA and the k-means clus-
tering. In doing so, we first apply PCA to choose the samples
that preserve the maximum variance of the original informa-
tion with a low RMSE and perform the k-means clustering
with varying k ranging from 2 to 5. Finally, we reduce the
search space based on the data in the cluster having the low-
est mean RMSE.

3.1. Datasets and Dislocation Model. Our approach is applied
to the 2017 Pohang earthquake [32]. To acquire an accurate
3D surface deformation, we applied the stacking InSAR and

the MAI methods [15] to four SAR images obtained from
the CSK and ALOS2. The size of the measured displacement
is 18:84 × 15:54 km, and the pixel size is 30m2.

Our study used the Okada model [3] as the dislocation
model G. The Okada model assumes a finite rectangular
source and isotropic homogeneous half-space. Table 1
describes the physical source parameters defining a rectangu-
lar source, and Figure 2 shows the fault geometry of the
Okada model, respectively. The parameter E indicates the
horizontal, i.e., E-W direction, distance of the upper-left
point of the satellite image and fault, and N indicates the ver-
tical one. The upper-left point of the measured deformation
map is located at 36°10′57″N, 129°17′03 ″E. We fix the value
of parameter Open, i.e., tensile component, to 0 and optimize
the other nine parameters to determine the source parameter
values.

3.2. Monte-Carlo Restarts in the Initial Search Space. As the
first step, our algorithm conducts the Monte-Carlo restarts
for a wide initial search space described in Table 2. Since
the parameters Strike, Dip, and Rake represent angles, the
lower and upper bounds for them are defined as the whole
range physically available. Other parameters illustrating the
length unit of the fault geometry are defined as large enough
to cover the maximum movement of the fault possible in the
study area.

Then, the Monte-Carlo restarts of five thousand itera-
tions are performed to extract the ½data point, RMSE� pairs
that will be used in the next machine learning step. Figure 3
shows the procedure of the Monte-Carlo step. We randomly
subsample 20% of measured deformation data dsamp and
define loose termination tolerance of the nonlinear least
method to save the computational burden. In solving the
nonlinear least square problem, we aim to minimize the
objective function kGðmÞsamp − dsampk2 to retrieve the best-
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Figure 7: Results of k-means clustering for varying k.

Table 5: Statistics of each cluster.

Cluster
no.

Mean of
RMSE (cm)

Standard deviation of
RMSE (cm)

Number of
samples

1 0.14767 6:08458∗10−5 151

2 0.14934 2:13527∗10−4 32

3 0.14867 4:96763∗10−4 10
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fit parameters with minimum residuals. As a result, optimi-
zation result m∗

i and corresponding RMSE are calculated in
each iteration. The nonlinear least square problem is solved
by using the lsqnonlin() function of the MATLAB R2019a
with the trust-region-reflective algorithm [33]. Table 3
specifies the option parameters used in the function. Option
parameters not specified are set to the default values.

3.3. Search Space Reduction Using Machine Learning
Approach. This study uses the PCA and the k-means cluster-
ing to reduce the search space. At first, we perform the PCA
to reduce the dimensionality of the Monte-Carlo results, as
described in Figure 4. Before the PCA fitting, the results
obtained from theMonte-Carlo step are sorted in the ascend-
ing order of the RMSE value to select well-optimized

Table 7: Reduced search space of three clusters.

Parameters
Cluster 1 Cluster 2 Cluster 3

LB UB LB UB LB UB

E (km) 6.26911 6.41034 6.27024 6.37718 6.22817 6.3297

N (km) -7.9826 -7.87204 -8.2007 -8.06074 -8.10795 -7.98743

Depth (km) 4.83734 5.19459 5.28377 5.54763 5.18088 5.49678

Strike (deg.) 224.9835 231.7157 232.4768 236.8167 231.5858 236.5544

Dip (deg.) 42.61413 44.68897 44.99918 46.47305 44.35434 46.34576

Length (km) 4.19294 4.92414 1.13009 3.04056 1.7581 4.19284

Width (km) 5.7689 6.45088 4.67679 5.51209 5.34835 6.08954

Rake (deg.) 127.4311 131.1753 132.5249 135.0445 131.1863 135.0024

Slip (mm) 170 230 330 950 220 520

4.8
E (km)

6.5

10.0

4.5
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5.0
5.5

220
Strike (deg.)

230
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Figure 8: Comparison of search spaces between conventional approach and our approach.

Table 8: Search space size derived from conventional seismological
studies and our proposed algorithm.

Parameters
Conventional
approach

Our
approach

Reduction
ratio (%)

E (km) 5.2 0.1412 97.3

N (km) 6.0 0.1106 98.2

Depth (km) 1.6 0.3573 77.7

Strike (deg.) 15.0 6.7322 55.1

Dip (deg.) 22.0 2.0748 90.6

Length (km) 2.5 0.7312 70.8

Width (km) 2.7 0.6820 74.7

Rake (deg.) 30.0 3.7442 87.5

Slip (mm) 290 60 79.3

Table 6: Search space determined from seismological approaches.

Parameters E (km) N (km) Depth (km) Strike (deg.) Dip (deg.) Length (km) Width (km) Rake (deg.) Slip (mm)

LB 4.8 -12.0 4.1 220.0 33.0 4.0 4.0 120.0 10

UB 10.0 -6.0 5.7 235.0 55.0 6.5 6.7 150.0 300
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samples. Then, we perform the PCA fitting iteration for the
sorted data in the index range of ½1, i� where 1 ≤ i ≤ 5000
and calculate the explained variance ratio for the PCA results.
The explained variance ratio is the ratio of the variance of
projected data on the reduced dimensions to the total vari-
ance of the original information. Also, the explained variance
ratio is regarded as a metric to evaluate the usefulness of the
principal components extracted by the PCA, and thus a
higher explained variance ratio means the information loss
is kept smaller. For this reason, our algorithm chooses the
samples showing the highest explained variance ratio for
further processing.

PCA enables visualization of high-dimensional data in
the low-dimensional space while preserving information of
the original data as much as possible. In general, a 2D scatter
matrix is used to visualize high-dimensional data, but each
element of the scatter matrix represents only partial informa-
tion. Furthermore, since the number of two-dimensional

scatter plots of p-dimensional parameters is
p

2

 !
= pðp − 1

Þ/2, visualizing high-dimensional data using a scatter matrix
is cumbersome [34]. For example, visualizing the results of
Monte-Carlo restarts by a scatter matrix requires 36 plots
for the Okada model with nine parameters. To overcome this
problem, this paper uses the PCA visualizing the nine-
dimensional data on the 2D hyperplane preserving the orig-
inal information so that we can analyze the ½data, RMSE�
pairs with just one 2D scatter plot.

For the data projected to the 2D space, we cluster the data
using the k-means clustering. k-means clustering identifies k
number of centroids and allocates data points to the nearest
cluster, where k is a hyperparameter that a user should define
manually. Our algorithm applies k-means clustering to the
data on the 2D plane for varying k to find themost appropriate
k that well divides projected samples with similar RMSE and
position to each other. Once deciding the parameter k, we
reduce the search space for each source parameter using the
data cluster showing the lowest mean RMSE for the given k.

If the PCA preserves most of the variance of the Monte-
Carlo results and all source parameters are on the same scale,

the distances between original data points in the latent 2D
space can be directly assessed [35]. It means that the k
-means clustering using the projected data can group the data
in the adjacent location of the original nine-dimensional
space because this algorithm minimizes the squared error
between the centroid of the cluster and data points in the
cluster. In summary, by using the PCA and the k-means clus-
tering, we can extract the similarity of the nine-dimensional
data on the 2D space with better data visualization.

Before the PCA fitting, each parameter is scaled to have a
standard normal distribution Nð0, 1Þ. PCA finds the princi-
pal components maximizing the variance. If parameters are
unscaled, the principal component loading vector will be
biased to a parameter showing a large variance. For example,
the PCA fitting for the unscaled Monte-Carlo results may
lead the principal component to have a significant loading
for the Strike parameter that has the largest parameter search
space among the source parameters of the Okada model. Fur-
thermore, the distances between data points in the 2D space
cannot be assessed. In this paper, we implemented our
machine learning-based algorithm using the Scikit-learn
package [36] in Python.

4. Experimental Results and Discussion

To evaluate the effectiveness of our machine learning-based
search space reduction algorithm, this paper applied the pro-
posed machine learning-based algorithm to the 2017 Pohang
earthquake case [32]. The evaluation was performed in terms
of the size of search space, RMSE values derived from deter-
mined source parameters, a 95% confidence interval of each
source parameter, and the number of iterations for each non-
linear least square of the Monte-Carlo restarts. The results
were compared with those of the conventional approach,
which refers to the seismological studies.

4.1. Principal Component Analysis and k-Means Clustering.
As mentioned in Section 3, we first conducted dimensionality
reduction using PCA from nine-dimensional source parame-
ters of the Okada model to the 2D space. Figure 5 illustrates
the explained variance ratio for the number of samples used
for PCA fitting. As described in Section 3, the data samples
were presorted in the ascending order of the RMSE values.
The result presents that the samples with high RMSE values
interfere with the dimensionality reduction. The result also
shows that the number of samples equals 193 produces the
highest explained variance ratio, i.e., 96.3%. It means that
the projection results with only 193 samples maintain most
of the variance of the original data while keeping a low RMSE
value, so the relation between those samples in the 2D space
can be directly evaluated.

Table 4 shows the principal components (PCs) of each
parameter, and Figure 6 presents the data projected into 2D
space, respectively. With PCA, we can easily visualize the dis-
tribution of samples with only one 2D scatter plot. As shown
in Figure 6, the samples with low RMSE values are clustered
to the left side, while samples with high RMSE values are dis-
tributed from the center of the plot to the right side.

Table 9: Determined parameters and RMSE of conventional
approach and our approach with a 95% confidence interval.

Parameters Conventional approach Our ML approach

E (km) 6:346 ± 0:098 6:341 ± 0:034
N (km) −7:904 ± 0:107 −7:922 ± 0:029
Depth (km) 4:921 ± 0:172 4:901 ± 0:052
Strike (deg.) 226:563 ± 3:276 226:364 ± 1:059
Dip (deg.) 43:162 ± 0:985 43:04 ± 0:394
Length (km) 4:825 ± 0:465 4:786 ± 0:123
Width (km) 6:288 ± 0:724 6:21 ± 0:141
Rake (deg.) 128:424 ± 2:35 128:373 ± 0:65
Slip (mm) 175:243 ± 36:221 177:618 ± 7:417
RMSE (cm) 0.147637 0.147634
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Then, we performed k-means clustering for k = 2 ~ 5 on
the 2D hyperplane. Figures 7(a)–7(d) illustrate the k-means
clustering results for each k, respectively. It was observed that
the result for k = 2 could not distinguish the samples in the
upper center with medium RMSE from those in the bottom
right side with high RMSE. The results for k = 4, 5 also divide
low-RMSE samples in the left corner. As a result, in our test
case, data samples are best partitioned when k = 3. Table 5
also shows the mean RMSE and standard deviation of each
cluster obtained for k = 3.

4.2. Search Space Reduction. We then reduced the search
space using the minimum and maximum values of data in
each cluster. Tables 6 and 7 show the search space derived
from the seismological studies [37] and three reduced search
spaces determined from our proposed algorithm for each
source parameter. Figure 8 illustrates the results that com-
pare the reduced search spaces derived from our approach
with the empirically defined search space referring to seismo-
logical approaches. In Figure 8, the red bar shows empirically
defined search space, and the others illustrate the search
spaces determined by the three clusters. The blue horizontal
line denotes the determined best-fit source parameters
acquired by Monte-Carlo restarts of ten thousand iterations
in the empirically defined search space. Figure 8 shows that,
for all the parameters, the reduced search spaces for Cluster
1 include the source parameters determined from the
Monte-Carlo restarts on the empirical parameter search. In
other words, the reduced search space having the lowest
mean RMSE is in good agreement with the conventional

research results based on seismological studies while effec-
tively reducing the search space. For this reason, the rest of
the experiments were conducted using the search space from
Cluster 1.

Table 8 summarizes the reduction of search space for
each source parameter after applying the proposed approach.
From the results, the search space size for each parameter
decreased by about 55.1~98.1%, compared with the search
space from the conventional approach.

4.3. Determination of Source Parameters. As the final step, we
conducted additional five thousand iterations of Monte-
Carlo restarts in the reduced search space based on Cluster
1 and determined the source parameters as the best-fit
parameter of the results of the Monte-Carlo restarts with a
95% confidence interval. Table 9 summarizes the source
parameters determined and RMSE of our approach and the
conventional approach. The results from two approaches
seem similar to each other. However, it can be remarked that
our machine learning approach produces more reliable
results than the conventional one because a 95% confidence
interval of our approach is much smaller than the conven-
tional approach. The interval size reduction was about
60~80.5% for each parameter.

Figure 9 illustrates the distribution of the Monte-Carlo
results derived from reduced search space using our machine
learning-based approach. Two blue vertical lines of each his-
togram represent the lower and upper bounds of each param-
eter, and the red vertical line indicates the best-fit source
parameter. In the reduced search space, all parameters
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Figure 9: Histogram of determined parameters.
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feature a unimodal histogram fit in the search space appro-
priately with small standard deviations.

Figure 10 compares the synthetic model’s deformation
maps using the parameters acquired from our approach with
those obtained from InSAR measurements. Each row of
Figure 10 describes the deformation of E-W, N-S, and depth

direction component. The first column and the second col-
umn in Figure 10 show the measured surface deformation
map for each direction component using InSAR and mod-
eled deformation map from the Okada model. The third col-
umn shows a residual between the measured displacements
and the modeled displacements. It can be concluded that
the determination of source parameters using the Okada
model and our reduced search space fit the measured dis-
placement correctly because RMSE values for E-W, N-S,
and depth components were 0.1863, 0.1544, and 0.0829 cm.

4.4. Computational Efficiency. For the computational effi-
ciency validation, the average iterations of a nonlinear least
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Figure 10: Final results of source modeling.

Table 10: Average number of iterations for nonlinear least square
from the Monte-Carlo restarts.

Conventional approach Our approach

4.93 2.25
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square from the Monte-Carlo restarts were also compared.
As shown in Table 10, the average iterations of a nonlinear
square for the reduced search space produced by our
approach are much smaller than that of the conventional
approach.

5. Conclusions and Future Works

This paper presented a new search space reduction algorithm
using machine learning techniques for the earthquake source
parameter determination. Our algorithm proceeded in the
order of the Monte-Carlo restarts, PCA, k-means clustering,
and search space reduction. PCA leads to better visualization
of the Monte-Carlo results using only one 2D scatter plot, so
we can find the hyperparameter k of the k-means clustering
that groups data for them to have similar RMSE and close
location to each other.

We compared the proposed approach with the conven-
tional approach that defines the parameter search space by
referring to seismological studies in terms of size of the
search space, RMSE, a 95% confidence interval of Monte-
Carlo results, and the average iteration number of nonlinear
least square from theMonte-Carlo restarts. The experimental
results for the 2017 Pohang earthquake test case showed that
our approach achieves significant reductions in search space
size and a 95% confidence interval size for all source param-
eters, i.e., about 55.1~98.1% and 60~80.5%, respectively.
Also, the average iteration number of a nonlinear least square
from our reduced search space was much smaller than that of
a conventionally defined search space. Consequently, the
results demonstrated that the proposed approach effectively
reduces the parameter search space size and the computa-
tional burden.

Our future challenge is to develop the automatic search
space reduction algorithm that uses the hierarchical cluster-
ing algorithm for determining the number of clusters.
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Due to the fast attenuation of the magnetic field along with the distance, the magnetic anomaly generated by the remote magnetic
target is usually buried in the magnetic noise. In order to improve the performance of magnetic anomaly detection (MAD) with
low SNR, we propose an adaptive method of MAD with ensemble empirical mode decomposition (EEMD) and minimum
entropy (ME) feature. The magnetic data is decomposed into the multiple intrinsic modal functions (IMFs) with different scales
by EEMD. According to a defined criterion, the magnetic noise and magnetic signal are reconstructed based on IMFs,
respectively. Entropy feature of reconstructed magnetic signal is extracted based on the probability density function (PDF) of the
noise which is updated by the reconstructed magnetic noise. Compared to the traditional minimum entropy method, the entropy
feature extracted by the proposed method is more obvious. The magnetic anomaly is detected whenever the entropy feature drops
below the threshold. Thus, it is effective for revealing the weak magnetic anomaly by the proposed method. The measured
magnetic noise is used to validate the performance of the proposed method. The results show that the detection probability of the
proposed method is higher with low input SNR.

1. Introduction

The magnetic field generated by a magnetic target, which
changes the distribution of the ambient magnetic field
around it, is called the magnetic anomaly. Magnetic anomaly
detection is a passive method of detecting the ferromagnetic
objects. It has been used in many areas, such as unexploded
ordnance detection [1–3], underwater pipeline or cable
detection [4, 5], and human medical investigation [6, 7].
Due to fast attenuation of the magnetic field along with the
distance, the magnetic anomaly generated by the remote
target is usually buried in the magnetic noise [8, 9]. Thus,
we need the effective method to improve the performance
of magnetic anomaly detection.

Recently, researchers have proposed several methods of
magnetic anomaly detection [10–19]. These methods can
be divided into two categories. One category is to improve
the SNR of the anomaly signal by the noise suppression
[20–23]. Zhou et al. [20] proposed a trend filtering based
on empirical mode decomposition for MAD. Wavelet
denoising and the Karhunen-Loeve expansion have been
proposed to detect the magnetic anomaly. Liu et al. [8] pro-
posed an adaptive coherent noise suppression method using
coherence. However, those methods are not sufficient for
magnetic anomaly detection when SNR < 1. For this situa-
tion, Ginzburg et al. [22] proposed a method of MAD using
three orthonormal basis functions (OBF), which relies on
the matched filtering. Fan et al. [24] proposed an improved
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method using four orthonormal basis functions, which can
not only detect magnetic anomaly but also determine the
orientation of the target. These methods are optimal for
detecting the magnetic anomaly buried in the Gaussian white
noise. In some situations, the geomagnetic noise is consid-
ered the noise with a power spectral density (PSD) of 1/f α,
where 0 < α < 2. In order to handle the noise with PSD
of 1/f α, Sheinker et al. [25] designed a whitening filter, which
improved the performance of MAD. This method can be
considered an autoregressive (AR) process and work effec-
tively with a high order of filter. The other category is to
reveal the magnetic anomaly by the transformation. The
minimum entropy method transforms the measured data
into entropy value to detect the anomaly [12]. Because the
most common-mode geomagnetic noise can be removed by
the differential signal, the method based on the information
entropy of the differential signal was more appropriate for
the target detection in the complex environment [17]. The
above methods need the PDF of the magnetic noise. The
high-order crossing method is an alternative method for
spectral analysis using zero-crossing count [14]. The advan-
tages of these methods are easy to implement and low com-
putational complexity. However, the detection performance
of these methods may be limited by low SNR of input signal.
In addition, some methods based on machine learning are
proposed for magnetic anomaly detection [26–30].

In order to improve the detection performance in the
case of low SNR and the complex magnetic environment,
we propose an adaptive method of MAD with ensemble
empirical mode decomposition and minimum entropy
(EEMD-ME) feature in this paper. Meanwhile, the similar
methods with empirical mode decomposition and minimum
entropy (EMD-ME) feature and complete ensemble empiri-
cal mode decomposition with adaptive noise and minimum
entropy (CEEMDAN-ME) feature are also implemented. In
the methods, the measured magnetic data is decomposed
into multiple IMFs with different scales. According to the
characteristics of the IMFs, the parameters of PDF of
magnetic noise are updated in real time using the recon-
structed magnetic noise. Then, the entropy feature of the
reconstructed magnetic signal is calculated in a moving
window with the updated PDF of the noise. Finally, the
magnetic anomaly is detected whenever the entropy feature
drops below the threshold. In brief, there are three advan-
tages of the proposed method: (1) the parameters of PDF of
the noise are updated in real time; (2) SNR of input signal
is improved; and (3) low computational complexity is
implemented in the detection. Thus, the proposed method
has better robustness, higher detection probability in the
weak magnetic anomaly detection.

2. Detection Theory

2.1. EMD, Ensemble EMD, and Complete Ensemble EMD
with Adaptive Noise. Empirical mode decomposition is pio-
neered by Huang for adaptively processing the nonlinear
and nonstationary signals [31]. It decomposes the signal into
a series of IMFs with different time scales, which must satisfy
two conditions: (1) the number of extreme points in IMF is

equal to or not more than that of one zero-crossing point;
(2) the mean of the envelope determined by the maximum
and minimum values is zero. The algorithm can be described
as follows:

Step 1. Set k = 0 and find all the maxima (minima)
points of the original signal r0 = xðtÞ. Interpolate between
maxima (minima) points to obtain the upper (lower) enve-
lope r+k ðtÞ (r−k ðtÞ)

Step 2. Calculate the mean envelope mkðtÞ = ðr+0 ðtÞ + r−0
ðtÞÞ/2

Step 3. Obtain the IMF candidate ckðtÞ = rkðtÞ −mkðtÞ
Step 4. Determine whether the candidate ckðtÞ satisfy two

conditions:

(i) Yes, save dk+1ðtÞ as an IMF and calculate the residual
rk+1ðtÞ = xðtÞ −∑k

i=1ci. Do k = k + 1 and treat rk+1ðtÞ
as the input signal in Step 2

(ii) No, treat dk+1ðtÞ as the input signal in Step 2.

Step 5. Repeat Steps 2-4 until the residual rk+1ðtÞ satisfies
the stopping criterion.

In order to alleviate the “mode mixing” phenomenon in
EMD, noise-assisted versions have been proposed, such as
EEMD [32, 33] and complete ensemble empirical mode
decomposition with adaptive noise (CEEMDAN) [34–36].
The main idea of the noise-assisted versions is that the differ-
ent finite variance white noise naðtÞ plus the original signal
and the average of the corresponding IMFs is calculated as
the final IMFs.

The algorithm of EEMD is described as follows:
Step 1. Add the finite variance white noise niðtÞ ði = 1,

⋯,IÞ to the original signal with I times and obtain the
noise-added signal: xiðtÞ = xðtÞ + εniaðtÞ, where ε denotes
the standard deviation of added noise amplitude and ε > 0

Step 2. Decompose the noise-added signal xiðtÞ into
IMFs cikðtÞ and a residual riðtÞ by EMD

Step 3. Calculate the average of each IMF and the
residual as the final IMF and residual: ckðtÞ = 1/I∑I

i−1c
i
kðtÞ

and rðtÞ = 1/I∑I
i−1r

iðtÞ.
For CEEMDAN, let Ekð•Þ be the kth mode of a given sig-

nal decomposed by EMD. The algorithm of CEEMDAN [36]
is given as follows:

Step 1. Add the finite variance white noise niaðtÞ ði = 1,
⋯,IÞ to the original signal with I times and obtain the
noise-added signal: xiðtÞ = xðtÞ + ε0n

i
aðtÞ

Step 2. Decompose the noise-added signal xiðtÞ by EMD
and obtain the first IMF modes and residual: c1ðtÞ = 1/I∑I

i−1
ci1ðtÞ and r1ðtÞ = xðtÞ − c1ðtÞ

Step 3. Decompose the signal r1ðtÞ + ε1E1ðniaðtÞÞ by
EMD to obtain the first IMF mode. Define the second IMF
modes as c2ðtÞ = 1/I∑I

i−1E1ðr1ðtÞ + ε1E1ðniaðtÞÞÞ
Step 4. For k = 2,⋯, K , calculate the residual as rkðtÞ =

rk−1ðtÞ − ckðtÞ
Step 5. Decompose the signal rkðtÞ + εkEkðniaðtÞÞ by

EMD to obtain the first IMF mode. Define the (k + 1)th
modes as: ck+1ðtÞ = 1/I∑I

i−1EkðrkðtÞ + εkEkðniaðtÞÞÞ
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Step 6. Repeat Steps 4-5 until the residual rk+1ðtÞ satisfies
the stopping criterion.

Thus, the signal xðtÞ can be described by the IMF compo-
nents and a residual component as follows:

x tð Þ = 〠
K

k=1
ck tð Þ + r tð Þ ð1Þ

where ckðtÞ denotes the kth IMF component and rðtÞ denotes
the residual component.

Generally, the IMF components are sorted from high
frequency to low frequency. Therefore, there will be a com-
ponent indexed by h, which can be considered the division
of energy distribution from noise to signal. After the hth
IMF component, the dominant energy of the magnetic
anomaly signal is distributed among these IMF components.
The criterion based on continuous mean square error
(CMSE) [34] is proposed to find the dividing point. The
CMSE is defined as

CMSE =
1
N
〠
N

j=1
ck jð Þ − ck+1 jð Þð Þ2, k = 1,⋯, K − 1, ð2Þ

where N is the length of each IMF components and K is the
number of IMF components.

If the first significant change of CMSE is (h − 1)th IMF
component, the dividing point is h. It means that the energy
components of adjacent IMF components are significantly
different. Thus, the dividing point can be used to split the
raw signal. In the magnetic data, the components before ch
are considered the main energy of the noise. The components
after ch contain the main energy of the magnetic signal.

2.2. Minimum Entropy Feature of Magnetic Anomaly.Amag-
netic target can be considered a magnetic dipole when the
distance between the target and the magnetometer is more
than three times the target largest dimension. For detecting

a magnetic target, the MAD model is shown in Figure 1.
The magnetic field generated by the target can be expressed
as [37]

Ba =
μ0
4π

3 M•Rð ÞR
R5 −

M
R3

� �
, ð3Þ

where μ0 = 4π × 10‐7H/m is the permeability of free space M
is the magnetic moment of the target, and R is the distance
between the target and the magnetic sensor.

In practice, the magnetic field B measured by the mag-
netic sensor is consisted of the ambient magnetic field Be
and magnetic field Ba generated by the target when the target
is present. When the target is far from the sensor, jBaj is
much less than jBej. When using the total field magnetome-
ters to detect the target, we can obtain the scalar value of the
measurement as [13, 16]

Bm ≈ Be 1 +
Be•Ba
B2
e

� �
= Be + u•Ba, ð4Þ

where u denotes the unit vector of the ambient field.
In the measurement, the magnetic anomaly generated by

the target can change the magnetic noise pattern. In the
information theory, entropy is used as a measurement of
information. In Ref. [12], entropy is used to detect the
changes in the magnetic noise pattern. It means that the
entropy feature of the magnetic field will dramatically change
when the ambient magnetic field contains the magnetic
anomaly. Thus, entropy value can be considered a feature
of the magnetic anomaly. The value of entropy can be calcu-
lated in a moving window of L samples. The expression is
given as follows:

Fen xið Þ = − 〠
i

n=i−L+1
p xnð Þ log p xnð Þ, ð5Þ

Z

M

Y

X

Magnetic
target R = (x, y, z)

= (xm–x0, ym–y0, zm–z0)
(x0, y0, z0)

(xm , ym, zm)
Magnetic

sensor

Figure 1: Magnetic anomaly detection model.
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where pðxnÞ denotes the probability density function of
ambient magnetic field. The detection occurs whenever the
entropy value drops below a threshold value.

In the ME method, a priori condition of PDF of mag-
netic noise is needed when using the entropy feature for
the target detection. The PDF is acquired by using statistical
methods based on the measured magnetic noise. However,
when the environmental conditions change, it is necessary
to update the PDF by the new data [17]. It is hard to
acquire the new background noise in real time when the
magnetometers mounted on the platform are moving. Thus,
the detection performance of ME method will be affected in
this situation.

2.3. Magnetic Anomaly Detection with EMD and Minimum
Entropy Feature. In order to overcome the problems in the
ME method in Ref. [12], we propose an adaptive MAD
method with ensemble empirical mode decomposition and
minimum entropy feature in this paper. Based on EEMD,
the SNR of the reconstructed signal can be improved accord-
ing to the dividing point. Meanwhile, the reconstructed noise
can be approximated as magnetic background noise which is
considered the Gaussian distribution [12]. The reconstructed
noise can be used to update the parameters of the PDF of the
noise in real time. Thus, the proposed method not only over-
comes the problem of updating the PDF of the ambient mag-
netic noise in theMEmethod but also improves the detection

CS-L
Optical pumped
magnetometer

1 m

Figure 2: One-dimensional sensor array with two magnetometers.
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Figure 4: Continued.
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probability of the weak magnetic anomaly. Similarly, the
EMD-ME and CEEMDAN-ME methods are also imple-
mented. The steps of the proposed method are as follows:

Step 1. Decompose the original signal into a series of
IMFs components and a. residual component

Step 2. Reconstruct the signal and noise according to the
dividing point

Step 3. Update the parameters of PDF of noise based on
the reconstructed noise

Step 4. Calculate the entropy feature of the reconstructed
signal with the PDF.

Step 5. According to the threshold, determine whether
the detection occurs.

3. Experiment

3.1. Experiment Design. In order to reduce the influence of
temporal magnetic variations on magnetic anomaly detec-
tion, we designed a one-dimensional sensor array (shown
in Figure 2) to collect the magnetic background noise. The
magnetic sensor was the optically pumped magnetometer
with high sensitivity, of which the intrinsic noise was about
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Figure 4: IMFs obtained from synthetic magnetic signal. (a) IMF decomposed by EMD. (b) IMF decomposed by EEMD. (c) IMF
decomposed by CEEMDAN.
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0:6pT/
ffiffiffiffiffiffi
Hz

p
@1Hz. We acquired the real magnetic noise sam-

ples in the Jinshatan Wetland Park in Harbin city, China,
where the ambient magnetic activity was very low. The local
inclination and declination of the geomagnetic field were
63.3° and -10.1°, respectively. The amplitude of the geomag-
netic field was about 55,200 nT.

The typical magnetic anomaly signal was generated by a
simulated target. The target was moving in parallel to the x
-axis with a constant velocity of 2m/s, starting from (-200,
-35, -3)m and ending at (200, -35, -3)m. The magnetic
moment of the target was unchanged during the movement.
The magnitude of the moment was 30Am2, and the unit
direction vector was (-0.65, -0.71, -0.26). The typical mag-
netic anomaly can be obtained by the simulation. Then, the
real magnetic noise measured by sensor array was added to
the simulated signal. Finally, the synthetic magnetic signal
with real-word noise and the simulated anomaly signal can
be obtained.

3.2. Results. The synthetic signal of magnetic field was
obtained, shown in Figure 3. It can be seen that the magnetic
anomaly signal was completely buried by the noise. The SNR
of the synthetic signal was about -10.47 dB. The EEMD-ME
method was applied to the synthetic signal, in which the

parameters of EEMD were set as follows: the standard devia-
tion of added noise amplitude ε = 0:1, and the ensemble
member I = 100. By the EEMD, the synthetic signal was
decomposed into a set of IMFs, shown in Figure 4(b). Simi-
larly, the EMD-ME and CEEMDAN-ME methods were also
applied to the synthetic signal. In the CEEMDAN-ME
method, the parameters were the same as that of the
EEMD-ME method. The decomposition results by EMD
and CEEMDAN were shown in Figures 4(a) and 4(c). From
Figure 4, we can see that different IMFs reveal the different
time scales of the magnetic field signal. According to formula
(2), the dividing point was calculated as h = 5. Thus, IMF1-
IMF5 represented the high-frequency components, in which
the main energy of the noise was contained. IMF6-Residual
represented the low-frequency components, in which the
main energy of the signal was contained. Based on the IMFs,
the reconstructed magnetic anomaly signal and the recon-
structed magnetic nosie were obtained, shown in Figure 5.

After the reconstruction, an approximated PDF of mag-
netic noise was obtained by the reconstructed magnetic
noise. The parameters of PDF of the noise were updated
based on the reconstructed noise. The entropy feature of
the reconstructed signal can be calculated with the PDF of
the noise. The outputs of the methods are shown in
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Figure 5: Reconstruction based on the IMFs. (a) Reconstructed signal using IMFs of EMD. (b) Reconstructed noise using IMFs of EMD. (c)
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Figures 6(b)–6(d). It can be seen that the magnetic anomaly
was obviously revealed by the proposed methods. In addi-
tion, the traditional ME method was also applied to the syn-
thetic signal. The output of the ME method is shown in
Figure 6(a). From the results, the detection performance of
the proposed method was better than that of the ME method
in low input SNR.

Compared to the traditional ME method, there are two
advantages of the proposed method in weak magnetic anom-
aly detection. (1) The approximated PDF of the noise can be
updated in real time by the reconstructed magnetic noise. It
overcomes the problem that the PDF of magnetic noise is
difficult to update in the changing movement. (2) The
input SNR can be improved by the reconstruction signal
based on IMFs. Compared to the SNR of the original sig-
nal with -10.47 dB, the SNR of the reconstructed signal is

improved to 9.37 dB in the EEMD-ME method, 8.16 dB in
the EMD-ME method, and 7.14 dB in the CEEMDAN-ME
method, respectively. In addition, the execution time of
updating the parameters of PDF of the noise is about 0.87 s
in the EEMD-ME method, 0.07 s in the EMD-ME method
and 2.51 s in the CEEMDAN-ME method, respectively. It
can be considered the update of PDF in real time, especially
in the EMD-ME and EEMD-ME methods.

The mentioned SNR is calculated by the following
equation:

SNR = 20 log10
max x 1 : Nð Þð Þ
std n 1 : Nð Þð Þ , ð6Þ

where x denotes the signal, n denotes the noise, and N is the
length of the signal.
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Table 1: Detection performance of the proposed methods.

CPA
Py = 20m, Pz = 3m Py = 25m, Pz = 3m Py = 30m, Pz = 3m Py = 35m, Pz = 3m

ACC (%) time (s) ACC (%) time (s) ACC (%) time (s) ACC (%) time (s)

Method

EMD-ME 100 0.17 100 0.13 91.0 0.12 57.4 0.11

EEMD-ME 100 1.44 100 1.12 99.5 0.98 90.0 0.90

CEEMDAN-ME 100 3.56 100 3.01 97.7 2.78 79.6 2.64
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In order to evaluate the effectiveness of the proposed
method, the Monte Carlo simulation was carried out. In the
simulation, the simulated target was moving in parallel to
the x-axis with a constant velocity of 2/m, the range of X
position in (-200, 200)m. The magnitude of magnetic
moment of the target was 30Am2. The orientation (inclina-
tion and declination of the moment) of the target was ran-
domly varied. According to the Neyman–Pearson criterion
[21], the threshold values of EEMD-ME, EMD-ME, and
CEEMDAN-ME were set to 0.9991, 0.9955, and 0.9984 with
the false alarm rate 3.4% based on the real magnetic noise.
The closest proximity approach (CPA) from the magnetic
sensors to the moving track of the target was changed to
evaluate the performances of the methods. Table 1 shows
the detection performance versus with different CPA.

From Table 1, the magnetic anomaly generated by the
target can be detected by the EMD-ME, EEMD-ME, and
CEEMDAN-ME methods, and the detection accuracy was

100% when CPA was less than 25.18 (
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
y + P2

z

q
). As the

CPA increased, the detection accuracy decreased. When
CPA was 30.14, the detection accuracy of EEMD-ME was
99.5%, which was higher than that of the CEEMDAN-ME
and EMD-ME methods. Similarly, when the CPA was
increased to 35.12, the detection accuracy of EEMD-ME
dropped to 90.5%. Under the same condition, the detection
accuracy of CEEMDAN-ME and EMD-ME methods
dropped to 79.6% and 57.4%, respectively. From the result,
it is noted that the detection performance of EEMD-ME is
better than of EMD-ME and CEENDAN-ME methods in
weak magnetic anomaly detection. Meanwhile, the execu-
tion time of the EEMD-ME method is about 1 s. Thus,
the EEMD-ME method is better in the weak magnetic
anomaly detection.

4. Conclusions

In this paper, we propose the adaptive method with ensemble
empirical mode decomposition and minimum entropy fea-
ture, which can improve the performance of magnetic anom-
aly detection with low SNR. In the method, the raw magnetic
data is processed by EEMD, and IMFs are obtained. Accord-
ing to the properties of IMFs, the reconstructed magnetic
noise is used to update the parameters of PDF of it. The
reconstructed magnetic signal is used to extract the entropy
feature of the magnetic anomaly using the updated PDF.
Whenever the entropy feature drops below the threshold,
the magnetic anomaly is detected. Compared to the
traditional ME method, the entropy feature extracted by the
proposedmethod ismore obvious and useful to reveal the weak
magnetic anomaly. The execution time of EEMD-ME method
is about 1 s. Meanwhile, the EMD-ME and CEEMDAN-ME
methods are implemented and used to detect the weak mag-
netic anomaly signal. The results show that when the CPA is
increased from 30.14 to 35.12, the detection accuracy of
EEMD-ME method drops from 99.5% to 90.5%. However,
the detection accuracy of EMD-ME and CEEMDAN-ME
methods drops from 91.0% and 97.7% to 57.4% and 79.6%,

respectively. Therefore, the detection performance of EEMD-
ME method is better in the weak magnetic anomaly detection.
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Canopy temperature is an important variable directly linked to a plant’s water status. Recent advances in Unmanned Aerial Vehicle
(UAV) and sensor technology provides a great opportunity to obtain high-quality imagery for crop monitoring and high-
throughput phenotyping (HTP) applications. In this study, a UAV-based thermal system was developed to directly measure
canopy temperature, skipping the traditional radiometric calibration process which is time-consuming and complicates data
processing. Raw thermal imagery collected over a cotton field was converted to surface temperature using the Software
Development Kit (SDK) provided by the sensor company. Canopy temperature map was generated using Structure from
Motion (SfM), and Thermal Stress Index (TSI) was calculated for the test site. UAV temperature measurements were compared
to ground measurements acquired by net radiometers and thermocouples. Temperature differences between UAV and ground
measurements were less than 5%, and UAV measurements proved to be more stable. The proposed UAV system was successful
in showing temperature differences between the cotton genotype. In conclusion, the system described in this study could
possibly be used to monitor crop water status in a field setting, which should prove helpful for precision agriculture and crop
research.

1. Introduction

Canopy temperature is an important indicator of water avail-
ability, water stress, and irrigation status in agriculture [1].
Measuring crop canopy temperature can help establishing
relationships with harvest yield, as well as support water
management decisions [2]. Remotely sensed data, which are
acquired by sensors on space-borne, air-borne, or ground-
based platforms, have been widely used in agriculture to esti-
mate crop parameters such as vegetation indices and Leaf
Area Index (LAI) [3, 4]. However, limitations of traditional
remote sensing technologies include low spatial and tempo-
ral resolutions for time-series analysis, as well as high cost
and low efficiency [5, 6].

Unmanned Aerial Vehicle (UAV) and sensor technology
are quickly evolving and offering a great opportunity for the
development of precision agriculture and high-throughput
phenotyping (HTP) systems for a variety of applications.
Most studies using UAV for agriculture have focused on
red-green-blue (RGB) and/or multispectral sensors to calcu-
late vegetation indices and monitor crop development for
yield forecasting. Advanced UAV systems can provide fine
spatial and high temporal resolution data at relatively low
cost so that crop traits such as height, canopy morphology,
and greenness can be estimated [2, 6–8]. Vegetation indices
were calculated by remotely sensed data from a multispectral
sensor mounted on a UAV to estimate LAI, which is one of
the key parameters determining photosynthesis, respiration,
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and transpiration of vegetation [2, 9]. Chang et al. [6] pro-
posed a method to monitor the growth of sorghum using a
commercially-available UAV, while Anthony et al. [7] used
a Micro-UAV system with a laser scanner to measure crop
height. Furthermore, Patrick and Li [8] generated 3D models
of blueberry bushes from UAV data to extract morphological
traits for genotype selection and found a strong relationship
between traditional growth indices and image-derived bush
volume. The UAV platforms with hyperspectral sensors have
used to extract phenotypes and to predict biomass for sor-
ghum [10–12]. Ramanurthy et al. [10] extracted features
from hyperspectral and RGB images for predictive modeling
of sorghum plants. Zhang et al. [11] developed nonlinear
regression models to predict sorghum biomass from multi-
temporal UAV-based hyperspectral and RGB data, while
Ali et al. [12] adopted hyperspectral, LiDAR, and RGB data
for sorghum biomass prediction.

Although canopy temperature may be used to detect crop
stress [13], there are challenges associated with the ability to
accurately measure canopy temperature using thermal cam-
eras, whether mounted on a ground-based platform [13],
manned and unmanned aerial platforms [14–17] or satellite
[18]. Data from each platform could be useful for different
purposes, however, as long as their different spatial resolu-
tion output is accounted for. Postharvest and quality evalua-
tion operations of fruits and vegetables have been conducted
using sensors and ground-based platforms [19–21]. Bulanon
et al. [22] studied fruit recognition using thermal imaging to
enhance the robotic harvesting of citrus. Berni et al. [14],
Zarco-Tejada et al. [15], and Gonzalez-Dugo et al. [16] used
a UAV platform to collect multispectral, hyperspectral, and
thermal data to calculate vegetation indices, water stress,
and canopy temperature of fruit tree species. Remotely
acquired thermal images from aerial platform have also been
used to derive the Crop Water Stress Index (CWSI) and map
canopy conductance in olive orchards [17]. Thermal imagery
collected from fixed-wing platforms at altitudes of 150m or
higher to cover large agricultural areas complicates image
preprocessing methods including radiometric calibration
and atmospheric correction [14, 15]. Ribeiro-Gomes et al.
[23] proposed an uncooled calibration algorithm for thermal
camera used in UAV applications for agriculture, while Berni
et al. [14] performed laboratory calibration using a blackbody
source to estimate stabilization procedure and absolute tem-
perature shifts for the radiometric sensor calibration. Atmo-
spheric correction methods have been applied to thermal
imagery based on the MODTRAN radiative transfer model
to calculate surface temperatures [15, 16]. Single-layer atmo-
sphere (uniform conditions including air temperature, rela-
tive humidity, and barometric pressure) corrections of
thermal imagery for fixed-wing UAV have been proposed
[14]. Additionally, thermal sensors can be affected by camera
tilt angles caused by the platform’s orientation, viewing
angle, and directional effects [17]. Rotary-wing UAV sys-
tems, on the other hand, could be a good alternative to over-
come limitations of fixed-wing platforms. Although rotary-
wing UAVs cover smaller areas at lower altitudes (<100m)
usually, these platforms tend to be more stable and provide
reliable data with higher spatial resolution (<10 cm) [6]. In

recent days, a multirotor UAV with a thermal camera used
to estimate the adaptive CWSI for precision agriculture
[24]. UAV-based thermal system provided relevant instanta-
neous and seasonal variations of water status [25].

In this study, we developed a UAV-based thermal system
using a quad-copter platform and a radiometric thermal sen-
sor. The framework of data collection and processing is pro-
posed to directly measure crop canopy temperatures without
the traditional radiometric calibration and/or atmospheric
correction as well as field-based measurement. Thermal
images can be collected over a cotton field to generate a can-
opy temperature and the crop stress index map. Canopy tem-
perature measured by the UAV-mounted sensor was
compared with ground-based measurements to evaluate the
performance of the proposed system.

2. Materials and Methods

2.1. Study Area and Data Acquisition. The test site was
located at the Texas A&M AgriLife Research and Extension
Center in Corpus Christi, Texas, USA (-97°33′E, 27°47′N)
(see Figure 1). Two genotypes of cotton (Gossypium hirsu-
tum L.) contrasting in leaf pigmentation were used. The line
TAMU4920 (Red leaves) has a marked presence of anthocy-
anins, whereas DP1044 (Green leaves) do not. Plot size for
each line was limited to 20 rows that were 12.2m long, spaced
0.96m apart, and followed East-West orientation. The mate-
rials were planted on June 20, 2016. Irrigation tapes were
installed on July 3, 2016, and plots were irrigated as needed
throughout the season, to promote adequate vegetative
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Figure 1: Image of study area taken by a Phantom 4 Pro on
September 8th, 2016. The coordinate system is WGS84 UTM 14N.
The red rectangle indicates the placement of ground sensors
(net radiometer and thermocouples), in the 11th row from
North. Meteorological data were collected at the study site by a
weather station located in the middle of the field between the
two cotton genotypes.
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growth. The crop height between red and green cotton was
similar at UAV data collection.

Ground-based leaf temperature measurements were col-
lected in each plot using ten type-T thermocouples (OMEGA
Engineering, Bridgeport, NJ), placed on row 11 (Figure 1).
The average of ten measurements was used to estimate the
leaf temperature of the plots. The sensors were installed at
the centre of the abaxial surface of sunlit main-stem leaves
using clear surgical tape with the sensor wires secured around
the leaf petioles by zip ties. Two 4-channel net radiometers
(model CNR1, Kipp & Zonen, Delft, Netherlands) were used
to measure net radiation (Rn) over the plots. The instruments
were installed at the centre of each field at a height of 2m
above the soil surface. The radiometer measured four com-
ponents of the surface radiation balance separately: direct
incoming shortwave radiation (SWin), reflected shortwave
radiation (SWout), longwave radiation from sky (LWin), and
longwave radiation emitted by the surface (LWout). LWout
was converted to surface temperature [26, 27] as

Tc =
LWout − 1 − εð ÞLWin

εσ

� �0:25
− 273:15, ð1Þ

where ε is the emissivity of the crop, assumed to be
0.96 [28], and σ is the Stefan-Boltzmann constant
(5:67 × 10 − 8Wm − 2K − 4).

The sensors were controlled by dedicated data-loggers
(model CR1000, Campbell Scientific, Logan, UT). The ther-
mocouples were multiplexed. For TAMU4920, an AM25T
(Campbell Scientific, Logan, UT) multiplexer was used, while
for DP1044, an AM16/32B (Campbell Scientific, Logan, UT)
multiplexer was used. The data-loggers were programmed to
scan the sensors every 30 seconds and compute 10-minute
averages.

The UAV system and thermal sensor used in this study
were a 3DR X8 octocopter system, (3D Robotics, Berkeley,
USA), and FLIR Vue Pro R 640 radiometric thermal camera
(FLIR, Wilsonville, USA), respectively (Figure 2). A PixHawk
flight controller (3DR, Berkeley, USA) was used for platform
and sensor integration; the sensor was mounted to the plat-
form using a custom 3D-printed mount. The thermal sensor
was equipped with a 9mm lens, producing images with
640 × 512 pixels and a spectral response in the range of
7.5-13.5μm. The detectable temperature range of the sensor

is -20-50°C. The raw images were saved as uncompressed
14-bit radiometric images with telemetry in standard meta-
data fields. The camera was factory-calibrated to calculate
temperatures with 5% measurement accuracy. The sensor
manufacturer, FLIR, provides a Matlab library for conversion
of pixel values in the raw image output to surface temper-
atures using radiometric metadata information and param-
eters such as emissivity, atmosphere temperature, relative
humidity, reflective temperature, and distance of the sen-
sor to target. Raw images were converted to canopy tem-
perature before applying the Structure from Motion
(SfM) algorithm to generate the orthomosaic image and
canopy temperature map.

The UAV flight parameters were determined based on
the field size and sensor specification (see Table 1). We
adopted a grid-style flight pattern and nadir view for data
collection, as described by Chang et al. [6]. A total of 89
geo-tagged thermal images were collected for the study site.

2.2. Conversion of Thermal Imagery and Image Mosaicking.A
Matlab Software Development Kit (SDK) is currently being
offered by FLIR as an “Add on Tool” to support the use of
FLIR thermal sensors. Although it is not open-source, the
user can install it for free and use the tools to view, analyze,
and capture data from FLIR thermal sensors directly in
Matlab. Five parameters, including emissivity, atmosphere
temperature, relative humidity, reflective temperature, and
sensor distance to target, have to be entered in order to con-
vert raw imagery to surface temperatures. Emissivity is
defined as the ratio of infrared energy emitted by the object,
compared to that emitted by an ideal blackbody. We used
an emissivity value of 0.96 for cotton [29]. Reflective temper-
ature is any thermal radiation originating from other objects
that reflects off the target [30]. We used the temperature
measured by a weather station in the field as a reflective tem-
perature. Atmosphere temperature and relative humidity
were selected in the National Centers for Environmental
Information (NCEI) provided by NOAA [31]. Flight altitude

GPS antenna

Flight
controller

Mount

Thermal

Figure 2: The integrated UAV platform, radiometric thermal sensor, and other components such as GPS and 3D printed mount.

Table 1: The summary of flight plan and data collection.

Flight parameters Value

Altitude 40m above ground

Overlap 75%

Date and time September 8, 2016 11 : 10~20 AM
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was used as the sensor’s distance to target. The digital num-
ber (DN) of each pixel in raw thermal images was input to
the function of the SDK with the parameters to calculate sur-
face temperatures. Figures 3(a) and 3(b) show individual raw
(digital number) and converted surface temperature images,
respectively.

After image conversion, surface temperature images were
processed using the Agisoft Photoscan Pro software to gener-
ate an orthomosaic image of the study area. Photoscan Pro
adopts the Structure from Motion (SfM) algorithm, which
is a photogrammetric imaging technique to estimate 3D
structures from 2D images [2, 6, 32, 33]. Generally, UAV
images can be stitched using tie-points between the images
for alignment and geo-referenced with GPS coordinate of
image location determined by GPS module equipped in the
UAV platform. In this study, the flight controller, PixHaw,
recorded GPS coordinates (X, Y, Z) when a trigger signal
was sent to the thermal sensors to capture images. Although
the single GPS module was used, all images included a GPS
coordinate in its metadata. Geo-tagged information was
input into Photoscan Pro to generate a geo-referenced ortho-
mosaic canopy temperature map. Image alignment to gener-
ate a sparse point cloud, the point optimization, dense point
cloud generation, and DSM/Orthomosaic generation were
conducted sequentially.

2.3. Thermal Stress Index (TSI). Canopy temperature has
been considered as a proxy for monitoring crop water status
[16]. Although CWSI can be calculated from thermal images,
upper and lower baseline temperature of air and canopy
should be measured over the whole growing season. How-
ever, Thermal Stress Index, which was optimized for cotton,
was defined as Equation (2) as below.

TSI =
max T f , Tb

� �
− Tb

Tb
, ð2Þ

whereT f is foliage temperature and Tb is the biochemically
determined baseline temperature. The crop-specific bio-
chemical temperature optimum was suggested as baseline
temperature. In the literature, The 27.5°Cmidpoint tempera-
ture of the Thermal Kinetic Window, which means the tem-
perature range for which the value of the apparent Michaelis

constant remained within 200% of the minimum observed
value, for cotton was examined as a baseline temperature
(Tb) for the TSI [34]. The values of TSI range from zero
to some positive limit. The biochemical-based TSI and
the physically based CWSI were highly correlated for cot-
ton across a range of environmental conditions. In this
study, the temperature value in the orthomosaic tempera-
ture map was considered as the foliage temperature (T f )
to calculate TSI.

3. Results and Discussion

3.1. Canopy Temperature & TSI Map. A canopy temperature
map was created from thermal images collected with the
UAV-based system using the SfM algorithm and geo-
tagged temperature images (see Figure 4(a)). The final can-
opy temperature map had a 7 cm spatial resolution. In this
study, an orthomosaic image with finer spatial resolution
could be generated since rotary-wing UAVs can fly at lower
altitude with fairly stable orientation, when compared to a
fixed-wing system. The temperature of bare soil and road
was higher than those of vegetation. Temperature differences
were also visible between green and red cotton, with the
green genotype exhibiting lower canopy temperatures.

A TSI map was computed using Equation (2) and ther-
mal data (see Figure 4(b)). As expected, similar to what was
seen for the surface temperatures, TSI values for the green
cotton genotype were lower and ranged from 0.2 to 0.3, while
the red cotton genotype exhibited TSI values approximately
0.1 higher. In the TSI map, it was found crops in the northern
area had more pressure of water. It could be supposed that
water was not enough due to the irrigation system, terrain
slope, or vegetation cover.

3.2. Evaluation of Canopy Temperature. The canopy temper-
ature from UAV and ground-based sensors was compared
(see Figure 5). The average of pixels on 11 rows in orthomo-
saic temperature map was adopted as UAVmeasurement. As
indicated by ground and UAV measurements, the red plants
were warmer than the green ones. The temperature of the red
cotton measured by the net radiometer, thermocouples, and
UAV was 33.69, 33.77, and 34.65°C, respectively. For the
green cotton, the net radiometer, thermocouples, and UAV

4700

3600

(a)

50°C

28°C

(b)

Figure 3: Examples of (a) raw image and (b) temperature-converted result.
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measured 31.96, 33.60, and 33.22°C, respectively. For both
plots, the UAV measurements slightly overestimated the
temperature of the plants. For the red cotton, the UAV over-
estimated the temperature with respect to the net radiometer
and thermocouples by 2.85% and 2.60%, respectively, while
for the green cotton, it overestimated by 3.94% and underes-
timated by 1.1%. The trend can be explained by the measur-
ing location of temperature and atmosphere effect. The
temperature at the top of the plant canopy should be higher
than at the middle layer of the plant. Since UAV measures
of the canopy surface, especially the top area, UAV overesti-
mated the temperature. Although UAV thermal imagery was
collected at the lower altitude (40m) than the conventional
platform, the higher atmosphere temperature (34.11°C) than
canopy affected the thermal camera capturing the energy in
the wavelength range. The leaf level measurements showed
a greater variability than the canopy temperature derived by
the UAV as shown by the standard deviations in Table 1. It
is well known that leaf temperature measurements tend to
be rather variable, since they are strongly influenced by the

angle of incidence of SWin [35]. Although the temperature
measured by the thermocouple was closer to it of the net
radiometer, the UAV measurements were in agreement with
the ground sensors and were successful in showing tempera-
ture differences between the plots (see Table 2).

4. Conclusions

In this study, a UAV-based thermal sensor system was
developed to measure canopy temperature using a radio-
metric calibrated thermal camera. Geo-tagged thermal
imagery was collected over a cotton field including two
different cotton genotypes exhibiting red and green leaves.
Raw thermal data was converted to surface temperature
using Matlab SDK provided by the sensor manufacturer.
Radiometric calibration was performed using environmen-
tal parameters such as emissivity and weather conditions.
Canopy temperature from UAV measurements was com-
pared with that of net radiometer and thermocouples.
The results show that the UAV system slightly overesti-
mated canopy temperature when compared to the ground
sensors. However, the errors did not exceed 5%, thus
showing that the deviations were small and not significant
for practical purposes. Additionally, the UAV system was
successful in showing temperature differences between
the plots. The proposed method showed the advantages
of measuring canopy temperature and generating crop
stress index map without field-based measurement. In
the future, UAV and ground-based multiple thermal data-
sets will be collected for a newly designed plot to verify
the proposed UAV-based thermal system for precision
agriculture.

The proposed methodology could be applied to various
agriculture fields to monitor crops for water stress and possi-
bly the development of precision irrigation management
applications in the future. However, there are a number of
challenges that need to be addressed in order to make UAV
technology practical for large commercial operations. One
of the current limitations is the difficulty to generate precise
geo-referenced orthomosaic thermal image without ground
control points. Timely processing of a large volume of UAV
data is also an issue that needs attention. Especially for crop
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Figure 5: Canopy and leaf temperatures of green and red cotton
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Figure 4: Orthomosaic image of (a) canopy temperature and (b) Thermal Stress Index (TSI) for the study area.
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precision management applications, the time between data
collection and the output of actionable information needs
to be drastically reduced.

Data Availability
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The aim of this paper was to reveal the distribution law of permafrost thermal thawing sensibility and thaw depth caused by road
construction in Qinghai-Tibet engineering corridor (QTEC). The prediction models of permafrost thermal thawing sensibility and
thaw depth have been developed by incorporating the MODIS and in situ soil temperature observation data. The comprehensive
earth-atmosphere-coupled numerical models of different embankment structures have been utilized to calculate the thaw depth
of the underlying permafrost foundation. Finally, using the given data and above developed prediction models, the distribution
maps of permafrost thermal thawing sensibility and thaw depth in QTEC are obtained by grid calculation. The results show the
following: (1) Insensitive permafrost of QTEC mainly distributes in the large-scale mountain and high latitude area, and highly
sensitive permafrost is located in the perennial river bed, flood plain, and terrace regions. (2) Road construction has a strong
thermal disturbance to underlying permafrost, and the proportion of large thaw depth area of separate embankment is
obviously smaller than that of 26m full-width embankment. (3) Increase of subgrade interval reduces the proportion of large
thaw depth areas, and the application of separate embankment structure is an effective engineering means for the Qinghai-Tibet
expressway.

1. Introduction

With the construction of the Qinghai-Tibet Railway, a series
of communication pipelines, oil and gas pipelines, and power
grid transmission projects have plan to build in QTEC [1].
The construction of the Qinghai-Tibet expressway has also
been put on the agenda, which is included in the “National
Highway Network Planning” and “National Highway Net-
work Planning (2013~2030).” Therefore, ensuring the safety
of major projects, avoiding engineering instability and reduc-
ing the occurrence of geological disasters will be the major
issues that need be solved in the engineering construction
of the Qinghai-Tibet plateau permafrost regions [2–4]. Per-

mafrost is a special natural and ecological product of the
Qinghai-Tibet Plateau, and its spatial distribution character-
istics directly affect the safety and stability of engineering
constructions [5–7]. Influenced by human activities or engi-
neering structures, the frozen soil at the permafrost table will
melt. The different ground temperature, surface characteris-
tics, and ice-containing conditions will cause different ther-
mal respond sensibility to external thermal disturbance and
make the difference of thaw depth. The thermal thawing sen-
sibility (Se) can be used as the indicator of frozen soil thermal
responds speed [8], and it is also one of the key influencing
factors of permafrost characteristics. Thus, the research on
the permafrost thermal thawing sensibility and thaw depth
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distribution in QTEC is not only a prerequisite for environ-
mental monitoring, management, and protection but also a
necessary requirement for the engineering structures design
and construction [9–12].

The coupled heat transfer processes between permafrost
and the external environment are quite complex and are
affected by many factors such as latitude, longitude, eleva-
tion, vegetation coverage, soil characteristics, and climate
environment [13, 14]. So distribution characteristics of ther-
mal thawing sensibility are very regional and special [6, 8,
15]. Wu et al. [8] proposed that the permafrost thermal thaw-
ing sensitivity has a strong correlation with frozen soil tem-
perature and is also related to the seasonal thaw depth
(active layer thickness) of frozen soil. It is essential to obtain
the distribution of above two influence factors for thermal
thawing sensibility determination. Earlier studies on the
regionalization of permafrost temperature mainly used artifi-
cial drilling and monitoring methods [16]. But the vast area
of Qinghai-Tibet Plateau and harsh natural climatic condi-
tions prevented the researchers from obtaining complete,
accurate, and timely geothermal observation data, which
can usually only be determined the permafrost temperature
distribution in a certain area. In recent years, with the devel-
opment of remote sensing technology and the access to
related data, the quantitative studies on the permafrost
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Figure 1: Soil temperature monitoring sections along the QTEC.

Table 1: Parameter estimation and test of each variable in
regression equation.

Model wi αi S.E. Wals Sig

Sunny slope

Constant -218.244 105.897 4.247 0.039

Latitude 4.009 1.612 6.187 0.013

Elevation 18.814 11.759 2.560 0.110

LST -3.821 1.606 5.659 0.017

Shady slope

Constant -455.593 176.390 6.671 0.010

Latitude 9.036 3.342 7.312 0.007

Elevation 43.661 17.419 6.282 0.012

Equivalent
latitude

-1.769 0.739 5.735 0.017

NDVI 83.510 33.750 6.123 0.013
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distribution, soil temperature, thermal thawing sensibility
distribution based on digital elevation model (DEM), and
MODIS data have been rapidly developed [17, 18]. Mean-
while, an automatic permafrost temperature monitoring sys-
tem based on the integrated Global System for Mobile
Communications-Railway (GSM-R) and General Packet

Radio Service technology (GPRS) has also been applied con-
tinuously, thereby realizing permafrost temperature’s real-
time monitoring and analyzing [16, 19, 20].

For the permafrost thaw depth research, Nelson and
Shiklomanov and Nelson [21, 22] used the Stefan method
to map the high-precision distribution of active layer in the
Kuparuk watershed of northern Alaska. Klene et al. [23] con-
sidered the thermal performance and topography of the melt
index, soil, water, and surface coverage characteristics of the
study area, used the Stefan formula to calculate the active
layer thickness of the urbanized area of arctic, and developed
a regional probability stochastic model of active layer thick-
ness. Pang et al. [24] considered the influence of vegetation
and soil properties on the active layer thickness and obtained
active layer thickness distribution map of Qinghai-Tibet Pla-
teau using the Kudryavtsev formula. Wu et al. [25] analyzed
the ground temperature data of 10 field observation sites in
the Beiluhe region from 2002 to 2012, and the results showed
that the average increase of active layer thickness was
4.26 cm/year, and the main reason was the increased rainfall
in summer. Chaves et al. [26] monitored the soil temperature
of the Keller peninsula in Antarctica, obtained the character-
istics of the interannual variability of active layer thickness
and near-surface soil heat flow under the climate warming
condition, and proved that the thermal regime of patterned

Table 2: Comparison of permafrost logistic identification model and measured data.

Model Area category Observation number
Permafrost
judgment Prediction accuracy, %

Yes No

Sunny slope
Permafrost 65 61 4 93.8

Talik 9 1 8 88.9

Shady slope
Permafrost 39 36 3 92.3

Talik 8 1 7 87.5

Table 3: Estimation and statistical test of the coefficients of MAGT
prediction model.

Parameters Coefficient values t Sig
Collinear
statistics

Tolerance VIF

Constant 56.871 10.930 0 — —

φ -0.952 -9.928 0 0.307 3.259

H -4.736 -9.233 0 0.469 2.134

φ′ -0.067 -3.574 0.001 0.843 1.186

N -5.425 -2.322 0.022 0.611 1.636

Table 4: Estimation and statistical test of the coefficients of ALD
prediction model.

Model Parameters
Coefficient
values

S.E. t Sig

Tg < −1oC

Constant 14.142 6.000 2.357 0.020

Tg 0.157 0.035 4.544 0

φ -0.140 0.064 -2.192 0.03

N -0.970 0.602 -1.612 0.109

Tg ≥ −1oC

Constant 11.617 5.300 2.192 0.03

Tg 0.579 0.089 6.522 0

φ -0.108 0.057 -1.908 0.058

N -1.195 0.606 -1.972 0.05

Table 5: Partial correlation analysis between the permafrost
thermal thawing sensitivity and the MAGT and ALD.

Parameters Analysis type MAGT ALD Se

MAGT
Pearson correlation

(0.01 level)
1.0 0.733 0.952

Significance — 0 0

ALD
Pearson’s correlation

(0.01 level)
0.733 1.0 0.811

Significance 0 — 0
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Figure 2: Comparison of the thermal thawing sensibility calculation
results between the prediction model and the empirical formula.
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ground soils was sensitive to air temperatures and atmo-
spheric variations.

With the climate warming, the degradation of the under-
lying permafrost and the increasing thaw depth caused by
engineering construction in QTEC are becoming more seri-
ous, and the accompanying engineering risks are also
increasing. Therefore, the distribution law of thermal thaw-
ing sensibility and thaw depth are the important research
topics for permafrost engineering. However, in most of
recent studies on the thermal thawing sensibility and thaw
depth, the research works are based on the long-term soil
temperature monitoring and required a relatively complex

mathematical calculation process to obtain the permafrost
thermal thawing sensibility [8]. Furthermore, restricted by
environmental and economic factors, it cannot arrange a suf-
ficient soil temperature monitoring site along the QTEC,
which makes it impossible to obtain the distribution map of
permafrost thermal thawing sensibility and thaw depth in
the entire corridor. In the present work, to reveal the distri-
bution law of permafrost thermal thawing sensibility and
thaw depth caused by road construction in QTEC, the cor-
responding prediction models have been developed by
incorporating the MODIS and in situ soil temperature
observation data. The comprehensive earth-atmosphere-
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coupled numerical models of 26m full-width and 13m sep-
arate embankment are used to calculate the thaw depth of
the underlying permafrost foundation since road construc-
tion. Finally, using the given data and above developed pre-
diction models, the distribution maps of permafrost thermal
thawing sensibility and thaw depth in QTEC are obtained.
The research results of this paper can contribute to the ther-
mal design and maintenance of engineering structure in
permafrost regions.

2. Methodology

2.1. Data and Data Processing

2.1.1. Remote Sensing Data. The Qinghai-Tibet engineering
corridor is chosen as study area in this study, which is
located in the hinterland of the Qinghai-Tibet plateau, and
permafrost and frozen ground are widely distributed there.
Three types of remote sensing data are collected: (1)
Moderate-resolution Imaging Spectrometer (MODIS) Land
Surface Temperature (LST) data with a spatial resolution
of 1000 × 1000m and a temporal resolution of 8 days that
covered the period from 2000 to 2016; (2) MODIS Normal-
ized Difference Vegetation Index (NDVI) data with a spatial
resolution of 250 × 250m and a temporal resolution of 16
days that covered the period from 2000 to 2016; and (3)
Shuttle Radar Topography mission (SRTM) Digital Eleva-
tion Model (DEM) data with a spatial resolution of 90 ×
90m. The MODIS LST and NDVI datasets (MOD11A2,
MOD13Q1) were downloaded from the Land Processes Dis-
tributed Active Archive Center (LPDAAC) of NASA (avail-
able at https://lpdaac.usgs.gov/), and the DEM SRTM3
dataset was downloaded from the Consortium for Spatial
Information (CSI) of CGIAR (available at http://srtm.csi
.cgiar.org/) [27, 28].

The daily LST is calculated by the average value of the
11:30 am and 11:30 pm MODIS LST data product. As the
cloud, snow, or sensors sometimes induce outliers, NASA

adopts the mask processing or outlier identification for the
daily LST data during product distribution. The average
LST is obtained by the band calculation method using the
effective value of daily LST.

The vegetation index (VI) reflects the difference between
the reflection of vegetation in visible light, near-infrared
band, and soil background, which is widely utilized for indi-
cating the status of vegetation growth [19]. In our study, we
calculated the annual NDVI values to analyze the trends in
vegetation change. The NDVI is expressed on a scale of -1
to +1. The spatial distribution characteristics of surface vege-
tation and nonvegetation can be determined by reasonable
selection of thresholds. In the present study, the average veg-
etation index, N , is calculated by the arithmetic mean of
NDVI which is greater than 0.

Slope is an important index to describe terrain informa-
tion, and it mainly indicates the inclination of the ground
surface. Using the SRTM3-DEM data, surface analysis has
been carried out in the ARCGIS 10.2 Software to generate
the slope and aspect distribution of the study area. And the
equivalent latitude is calculated and applied for determining
the sunny or shady of slope direction [29].

φ′ = sin−1 sin k cos l cos φ + cos k sin φð Þ, ð1Þ

where φ is the latitude, k is the slope of location, φ′ is the
equivalent latitude, and l is the aspect of location. When the
equivalent latitude is less than or equal to the latitude, it is
the sunny slope, and vice is shady.

2.1.2. In Situ Observation Data. To investigate the long-term
changes of permafrost along the QTEC, a series of soil tem-
peratures monitoring sections are built along the Qinghai-
Tibet railway and highway, which is of 127 mean annual
ground temperature (MAGT) monitoring points and 371
active layer depth (ALD) monitoring points. As shown in
Figure 1, the monitoring sections are located from Xidatan
to the southern foot of Tanggula Mountain, which is also
the main permafrost distribution region in QTEC. Soil tem-
peratures are measured at depths of 0.5m to 30.0m using
thermal probes with a precision of ±0.02°C, and these mea-
surements are made twice a month. The ALD of a certain
year is defined as the maximum depth at which the ground
temperature is zero in this year. The MAGT is defined as
the soil temperature of certain depth basically does not
change with time. Thus, the ALD andMAGT of 2016 are cal-
culated from the ground temperature observations.

2.2. Prediction Model of Thermal Thawing Sensibility

2.2.1. Logistic Probability Identification of Permafrost. Identi-
fying the permafrost distribution in QTEC is the primary
work for the research of the permafrost thermal thawing sen-
sitivity. The logistic probability identification model of per-
mafrost has been utilized in the identification of
permafrost distribution. Considering the environment
and terrain factors related to the permafrost distribution,
the calculation formula of the probability of permafrost

Table 6: Computation cases considering for the distribution pattern
of top layer permafrost and external environment conditions in
QTEC.

Case
indicator

Permafrost
type

Moisture
content

Air temperature,
°C

1 Clay 0.2 -4.5

2 Clay 0.15 -5.5

3 Clay 0.25 -3.5

4 Clay 0.3 -3.0

5 Gravel 0.07 -4.5

6 Gravel 0.13 -5.5

7 Gravel 0.17 -3.0

8 Gravel 0.22 -3.5

9 Mudstone 0.2 -4.5

10 Mudstone 0.06 -3.5

11 Mudstone 0.1 -3.0

12 Mudstone 0.14 -5.5
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identification is

P = ew0+∑n
i=1αiwi

1 + ew0+∑n
i=1αiwi

, ð2Þ

where w0 is the constant of fitting formula, ðw1,w2,⋯,
wnÞ are the quantitative indicators of environment, terrain,
and other factors related to the permafrost distribution, and
ðα1, α2,⋯, αnÞ are the coefficients for corresponding multiple
regression equation. To achieve better fitting goodness, the
prediction accuracy of different combinations of fitting
parameters of sunny and shady slope models has been com-
pared. It is found that the influence of LST is significantly
greater than equivalent latitude and NDVI for the sunny slope
model, and vice versa. Therefore, the optimal parameter com-
binations of sunny and shady slope models are given in
Table 1. Furthermore, statistical test on parameters in the
regression model has also been done. It can be seen that the

Wals value of every parameters are large and the Sig value is
almost less than 0.05, which means each variable in the equa-
tion has a high significance and the regression model is con-
sidered to pass the test.

According to filed survey data of the ratio of permafrost
and talik region in QTEC and comparative analysis of predic-
tion accuracy of different identification probability, a fixed
value of 0.7 is determined as the identification probability
of permafrost:

Mark =
1 if P ≥ 0:7
0 if P < 0:7:

(
ð3Þ

Table 2 is the comparison results of permafrost logistic
identification model and measured data. It can be inferred
that for the sunny and shady slopes, the corresponding pre-
diction accuracy of permafrost is 93.8% and 92.3%,
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respectively, and the prediction accuracy of talik is 88.9% and
87.5%, which validates accuracy of probability model.

2.2.2. Multiple Linear Regression Models of MAGT and ALD.
The prediction of MAGT adopts the stepwise regression
analysis strategy. The parameters are incorporated into mul-
tiple regression models one by one. The selected parameters
are tested for significance and partial regression square value.
During the fitting process, the significance level value of F is
used as the criterion of the stepwise regression method, and
the probability of selecting and excluding independent
parameters are set to 0.05 and 0.01, respectively. Taking
MAGT as the dependent variable and remote sensing data
as the independent variables, the stepwise regression analysis
is performed to obtain the multiple linear regression model
of MAGT (Tg):

Tg = 56:871‐0:952φ‐4:736H‐0:067φ′‐5:425N , ð4Þ

where φ is the latitude, H is the elevation, φ′ is the equivalent
latitude, and N is the arithmetic mean of vegetation index

greater than 0. The statistical test of MAGT prediction model
is shown in Table 3. It shows that the Sig values of all fitting
parameters are less than 0.05, which satisfy the significance
requirements. From the perspective of collinearity, the
parameters’ tolerance value of prediction model is relatively
large, and the VIF value is small, which can be concluded that
the collinearity among various fitting parameters is excluded.

Considering the ALD is mainly influenced by MAGT,
geographical location, surface characteristics, slope, etc., the
above multiple regression method is used to obtain the
ALD prediction model either. Using a total of 371 in situ
observation data along QTEC, the multiple linear regression
model of ALD (h) is calculated as follows:

h = B‐〠
n

i=1
βixi, ð5Þ

where B is the constant of fitting formula, ðx1, x2,⋯, xnÞ are
the multivariate fitting parameters, and ðβ1, β2,⋯, βnÞ are
the coefficients for corresponding multiple regression equa-
tion. The specific values of the coefficients of regression equa-
tion under different MAGT conditions are given in Table 4.
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Table 7: Classification criteria of permafrost thermal thawing
sensibility.

Type Insensitive
Weakly
sensitive

Sensitive
Extremely
sensitive

Range ≤0.54 0.54~0.66 0.66~0.8 >0.8

Table 8: Prediction of the proportion of different permafrost
thermal thawing sensibility regions in QTEC.

Type Insensitive
Weakly
sensitive

Sensitive
Extremely
sensitive

Proportion 22.2% 13.8% 21.1% 16.5%
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Figure 6: Simulated yearly thaw depth for the embankment with
different thermal thawing sensibility.
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2.2.3. Fitting Formula of Thermal Thawing Sensibility. The
partial correlation analysis between the permafrost thermal
thawing sensitivity and the MAGT and ALD is shown in
Table 5.

It can be seen from Table 5 that the permafrost thermal
thawing sensitivity is significantly correlated with the MAGT
and ALD. Through linear regression, the multiple linear
regression model of the permafrost thermal thawing sensitiv-
ity is obtained as follows:

Se = 0:806 + 0:107Tg + 0:036h: ð6Þ

Figure 2 is the comparison of thermal thawing sensibility
calculation results using the prediction model and the empir-
ical formula. It can be seen that the predicted values agrees
well with the calculated results of the Kudryavtsev formula
using the soil temperature monitoring data [8, 15]
(R2 = 0:935), which testifies reasonableness and reliability of
the model.

2.3. Prediction Model of Thaw Depth for
Permafrost Embankment

2.3.1. Numerical Calculation Model of Thaw Depth for
Permafrost Embankment. The numerical method is used to
calculate the time variation of thaw depth of the underlying
permafrost foundation after road construction. Based on
the analysis of the complex heat transfer processes among
the surrounding environment, embankment, and underlying
permafrost, the earth-atmosphere-coupled open numerical
model is developed [30, 31], and two corresponding physical
models for numerical calculation are built: (i) the 26m width
expressway subgrade model with adjacent natural permafrost
and air environment and (ii) the separate 13m width sub-
grade model with different intervals and comprehensive
earth-atmosphere coupled system. The schematic of the
above two numerical models are shown in Figure 3.

Considering the distribution pattern of top layer perma-
frost and external environment conditions in QTEC, 12 com-
putation cases for the above two models have been built to
investigate the thaw depth of different soil types, moisture
content, and yearly average air temperature [27] (see in
Table 6). A 2D unsteady model has been developed in this
work to predict the spatial and temporal thermal exchange

processes between the earth-atmosphere-coupled system.
The standard κ‐ε model is used for the air region turbulence
simulation. The complex boundary conditions of air regions
and source term of ground surface are imported into the
FLUENT by the UDF program. The air temperature, wind
speed, wind direction, solar radiation intensity, and other
data are taken from the meteorological monitoring data,
and the annually temperature ascending speed is defined as
0.022°C/year. The thermal thawing sensitivity of the above
cases can be calculated from the temperature field computa-
tion results of the nonroadbed model in 100th year.

2.3.2. Fitting Formula of Thaw Depth. Using the developed
numerical model, the underlying permafrost thaw depth of
the 26m full-length and separate embankment in 20th year
of different thermal thawing sensitivity conditions is calcu-
lated (as shown in Figure 4). It can be seen that as the sensi-
tivity of thermal ablation increases, the thaw depth, Δh
(amount of the artificial permafrost table to natural per-
mafrost table), increases as well, and the growth trend fol-
lows the exponential law. It infers that the thaw depth of
permafrost embankment can be predicted with thermal
thawing sensitivity.

For the formula of the fitting thaw depth and thermal
thawing sensitivity of 26m full-length and separate embank-
ments, the results are as follows:

Δhw−26m = 0:3167e3:8404Se,

Δhs−0m = −1:5119 + 1:0657eSe−0:4530:1981 ,

Δhs−9m = −1:7182 + 0:4755eSe−0:32450:2096 ,

ð7Þ

where Δhw−26m, Δhs−0m, and Δhs−9m are the thawing depth of
26m full-width embankment, 0m interval separate embank-
ment, and 9m interval separate embankment in 20th year,
respectively. The determined coefficients (R2) of three fitting
formulas are 0.979, 0.838, and 0.886, which exhibit relative
better fitness of the calculation formula.

3. Results

3.1. Permafrost Thermal Thawing Sensibility Distribution.
Importing the LST, NDVI, and SRTM3-DEM data into
ARCGIS 10.2 Software, the grid calculation has been done
based on the thermal thawing sensibility prediction model
(Eqs. (2)–(6)), and the permafrost thermal thawing sensibil-
ity distribution map can be obtained (as shown in
Figure 5). The criteria for classification the thermal ablation
sensitivity are shown in Table 7 [8, 15].

The results show that the present insensitive permafrost
mainly distributes in the large-scale mountain and high lati-
tude area, such as the Kunlun mountain, Fenghuo mountain,
and Tanggula mountain. The highly sensitive permafrost is
located in the perennial river bed, flood plain, and terrace
regions, such as the Chumaer river, Tuotuohe river, and
Tongtian river. Meanwhile, as shown in Table 8, sensitive
and extremely sensitive permafrost account for 38% for the
entire QTEC region based on the current data, and weakly
sensitive and insensitive account for 13.8% and 22.2%,

Table 9: Prediction of the proportion distribution of thaw depth for
different embankment structures in QTEC.

Thaw
depth, m

Embankment structure
26m full
width, %

13m separate 0m
interval, %

13m separate 9m
interval, %

<1 16.1 19.3 27.8

1~2 5.2 7.8 11.0

2~3 6.4 8.1 11.3

3~5 17.9 16.5 14.7

5~7 15.8 11.1 3.4

>7 7.2 5.7 0.3

Talik 31.4 31.5 31.5
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respectively. It can be expected that permafrost in the QTEC
will become more fragile, and the proportion of sensitive-
type permafrost will also upsurge with global warming and
intensified human engineering activities.

3.2. Thaw Depth Distribution of Wide and Separate
Embankment. Figure 6 is the interannual variation of thaw
depth of 26m full-width embankment with different thermal
thawing sensibility within 20 years. It can be seen that the
thaw depth of the underlying permafrost foundation has a
strong correlation with its thermal thawing sensitivity. With
the increase of the thermal thawing sensitivity, the perma-
frost is more sensitive to the external thermal disturbance.
Under the same thermal disturbance (3m height embank-
ment), permafrost thaw depth increases with thermal thaw-
ing sensitivity and time. It also should be noticed that speed
of thawing becomes slower in the later period (>10 years),
indicating that the external thermal disturbance has gradu-
ally penetrated into the interior of permafrost foundation,
and the whole heat-exchange process gradually tends to a
new dynamic equilibrium.

In order to further clear the thermal impact of separated
roadbed and full width embankment on underlying perma-
frost in QTEC, the thaw depth distribution maps of different
embankment structures have been calculated with the above
proposed thaw depth prediction model (see in Figure 7). The
figure shows that road construction has a strong thermal dis-
turbance to the underlying permafrost. Similar to thermal
thawing sensitivity distribution, the relatively small thaw
depth areas are mainly distributed in the large-scale mountain
and high latitude area, such as the Kunlunmountain, Fenghuo
mountain, and Tanggula mountain. Their thaw depth is
roughly less than 3m, and some are even below 1m. The large
thaw depth area is mainly distributed in the perennial river
bed, floodplain, and river terrace area of the Chumal River,
Tuotuo River, or Tongtian River. The thaw depth is generally
between 5 and 10m. Furthermore, it also can be seen that the
large thaw depth area of separate embankment is obviously
smaller than that of 26m full-width embankment, especially
in the Chumar River, Beilu River, and Buqu River Valley
regions. Therefore, it can be concluded that the heat distur-
bance of separate embankment to the underlying permafrost
is weaker than that of the full-width embankment.

Table 9 shows the proportion distribution of thaw depth
for different embankment structures in QTEC. It can be seen
that the proportion of the talik zone in QTEC is basically
unchanged (about 31%) for all three kinds of adopted
embankment structure. However, the proportions of thaw
depth between 5~7m and >7m of separate embankment are
much less than that of 26m full-width embankment, and the
range of 0~2m, vise versa, especially for the separate embank-
ment with 9m interval (best spacing). For the 26m full-width
embankment, the area ratio of large thaw depth (>5m) is
22.9%, and the small thaw depth (<3m) area proportion is
21.3%. Comparatively, large and small area proportion of sep-
arate embankment with 9m interval is only 3.7% and 38.8%,
respectively. The increase of subgrade interval also reduces
the proportion of large thaw depth areas. In summary, the

use of separate embankment structure is an effective engineer-
ing means for the Qinghai-Tibet expressway.

4. Conclusion

The distribution law of permafrost thermal thawing sensibil-
ity along QTEC, the degradation of the underlying perma-
frost, and the increasing thaw depth caused by road
construction are the important research topics of road engi-
neering in permafrost regions. In the present work, the pre-
diction models of permafrost thermal thawing sensibility
and thaw depth have been developed by incorporating the
remote sensing and in situ observation data. The comprehen-
sive earth-atmosphere-coupled numerical models of 26m
full-width and 13m separate embankment are used to calcu-
late the thaw depth of the underlying permafrost foundation
since road construction. Distribution maps of permafrost
thermal thawing sensibility and thaw depth in QTEC are
obtained by grid calculation in the ARCGIS 10.2 Software.
The research results show that

(1) The insensitive permafrost mainly distributes in the
large-scale mountain and high latitude area, and
highly sensitive permafrost is located in the perennial
river bed, flood plain, and terrace regions. With cli-
mate warming and intensified human engineering
activities, the permafrost in the QTEC will become
more fragile, and the proportion of sensitive-type
permafrost will also increase

(2) The road construction has a strong thermal distur-
bance to the underlying permafrost, and the propor-
tion of a large thaw depth area of separate
embankment is obviously smaller than that of 26m
full-width embankment

(3) The increase of subgrade interval reduces the propor-
tion of large thaw depth areas. Therefore, the applica-
tion of separate embankment structure is an effective
engineering means for the Qinghai-Tibet expressway.

Data Availability

The raw LST, NDVI, and SRTM3 data used to support the
findings of this study were downloaded from the Land Pro-
cesses Distributed Active Archive Center of NASA and
Consortium for Spatial Information of CGIAR, which are
freely available at https://lpdaac.usgs.gov/ and http://srtm.
csi.cgiar.org/ respectively.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This research was supported by the National Science Founda-
tion of China (Grant Nos. 41502292, 51574037), the Natural
Science Basic Research Plan in Shaanxi Province of China
(2018JQ4031), the Fundamental Research Funds for the

10 Journal of Sensors

https://lpdaac.usgs.gov/
http://srtm.csi.cgiar.org/
http://srtm.csi.cgiar.org/


Central Universities, CHD (Nos. 300102269207,
300102269303), and the Applied Fundamental Research Pro-
ject of China Communications Construction Co, Ltd (Nos.
2018-ZJKJ-PTJS03, 2016-ZJKJ-02). We are grateful to the
anonymous reviewers for their constructive comments to
improve this manuscript.

References

[1] F. Han, W. Yu, X. Yi, D. Hu, and Y. Lu, “Thermal regime of
paved embankment in permafrost regions along the Qinghai-
Tibet Engineering Corridor,” Applied Thermal Engineering,
vol. 108, pp. 330–338, 2016.

[2] F. Yu, J. Qi, X. Yao, and Y. Liu, “Degradation process of per-
mafrost underneath embankments along Qinghai-Tibet High-
way: an engineering view,” Cold Regions Science and
Technology, vol. 85, pp. 150–156, 2013.

[3] W. Yu, T. Zhang, Y. Lu, F. Han, Y. Zhou, and D. Hu, “Engi-
neering risk analysis in cold regions: State of the art and per-
spectives,” Cold Regions Science and Technology, vol. 171,
article 102963, 2020.

[4] Y. Lai, X. Xu, Y. Dong, and S. Li, “Present situation and pros-
pect of mechanical research on frozen soils in China,” Cold
Regions Science and Technology, vol. 87, pp. 6–18, 2013.

[5] C. Ya-ling, Y. Sheng, and W. Ma, “Study on the effect of the
thermal regime differences in roadbed slopes on their thawing
features in permafrost regions of Qinghai-Tibetan plateau,”
Cold Regions Science and Technology, vol. 53, no. 3, pp. 334–
345, 2008.

[6] Y. M. Lai, M. Y. Zhang, and S. Y. Li, Theory and Application of
Cold Regions Engineering, Science Press, Beijing, 2009.

[7] Q. Wu, X. Dong, Y. Liu, and H. Jin, “Responses of permafrost
on the Qinghai-Tibet Plateau, China, to climate change and
engineering construction,” Arctic, Antarctic and Alpine
Research, vol. 39, no. 4, pp. 682–687, 2007.

[8] W. Qingbai, Z. Yuanlin, and L. Yonzhi, “Evaluation model of
permafrost thermal stability and thawing sensibility under
engineering activity,” Cold Regions Science and Technology,
vol. 34, no. 1, pp. 19–30, 2002.

[9] P. P. Overduin, D. L. Kane, andW. K. P. van Loon, “Measuring
thermal conductivity in freezing and thawing soil using the soil
temperature response to heating,” Cold Regions Science and
Technology, vol. 45, no. 1, pp. 8–22, 2006.

[10] M. Zhang, W. Pei, X. Zhang, and J. Lu, “Lateral thermal distur-
bance of embankments in the permafrost regions of the
Qinghai-Tibet engineering corridor,” Natural Hazards,
vol. 78, no. 3, pp. 2121–2142, 2015.

[11] Q. Yu, K. Fan, Y. You, L. Guo, and C. Yuan, “Comparative
analysis of temperature variation characteristics of permafrost
roadbeds with different widths,” Cold Regions Science and
Technology, vol. 117, pp. 12–18, 2015.

[12] W. Pei, L. Jin, M. Zhang, S. Li, and Y. Lai, “Study of the time-
dependent thermal behavior of the multilayer asphalt concrete
pavement in permafrost regions,” Construction and Building
Materials, vol. 193, no. 30, pp. 162–172, 2018.

[13] F. Niu, J. Luo, Z. Lin, W. Ma, and J. Lu, “Development and
thermal regime of a thaw slump in the Qinghai-Tibet plateau,”
Cold Regions Science and Technology, vol. 83-84, pp. 131–138,
2012.

[14] F. Ling and T. Zhang, “A numerical model for surface energy
balance and thermal regime of the active layer and permafrost

containing unfrozen water,” Cold Regions Science and Technol-
ogy, vol. 38, no. 1, pp. 1–15, 2004.

[15] Q. B. Wu, Y. L. Zhu, and Y. Z. Liu, “Evaluation model of envi-
ronmental change of frozen soil under human engineering
activities,” Science China: Earth Science, vol. 32, no. 2,
pp. 141–148, 2002.

[16] J. Yang, Q. H. Jiang, and P. Zhi, “Qinghai-Tibet railway perma-
frost regions ground temperature data transformation by
GSM-R/GPRS,” Railway computer application, vol. 17, no. 2,
pp. 25–27, 2008.

[17] S. Hachem,M. Allard, and C. Duguay, “Using theMODIS land
surface temperature product for mapping permafrost: an
application to Northern Québec and Labrador, Canada,” Per-
mafrost and Periglacial Processes, vol. 20, no. 4, pp. 407–416,
2009.

[18] M. Langer, S. Westermann, and J. Boike, “Spatial and temporal
variations of summer surface temperatures of wet polygonal
tundra in Siberia - implications for MODIS LST based perma-
frost monitoring,” Remote Sensing of Environment, vol. 114,
no. 9, pp. 2059–2069, 2010.

[19] A. G. Rike, K. B. Haugen, M. Børresen, B. Engene, and
P. Kolstad, “In situ biodegradation of petroleum hydrocarbons
in frozen arctic soils,” Cold Regions Science and Technology,
vol. 37, no. 2, pp. 97–120, 2003.

[20] R. Xing, S. Jiang, and P. Xu, “Long-term temperature monitor-
ing of tunnel in high-cold and high-altitude area using distrib-
uted temperature monitoring system,” Measurement, vol. 95,
pp. 456–464, 2017.

[21] N. Shiklomanov and F. E. Nelson, “Active-layer mapping at
regional scales: a 13-year spatial time series for the Kuparuk
region, north-central Alaska,” Permafrost and Periglacial Pro-
cesses, vol. 13, no. 3, pp. 219–230, 2002.

[22] N. I. Shiklomanov and F. E. Nelson, “Climatic variability in the
Kuparuk Region, North-central Alaska: optimizing spatial and
temporal interpolation in a sparse observation network,” Arc-
tic, vol. 56, no. 2, pp. 136–146, 2003.

[23] A. E. Klene, F. E. Nelson, and N. I. Shiklomanov, “The N-factor
in natural landscapes: variability of air and soil-surface temper-
atures, Kuparuk River Basin, Alaska, U.S.A,” Arctic Antarctic
and Alpine Research, vol. 33, no. 2, pp. 140–148, 2001.

[24] Q. Pang, L. Zhao, S. Li, and Y. Ding, “Active layer thickness
variations on the Qinghai–Tibet Plateau under the scenarios
of climate change,” Environmental Earth Sciences, vol. 66,
no. 3, pp. 849–857, 2012.

[25] Q. Wu, Y. Hou, H. Yun, and Y. Liu, “Changes in active-layer
thickness and near-surface permafrost between 2002 and 2012
in alpine ecosystems, Qinghai-Xizang (Tibet) Plateau, China,”
Global and Planetary Change, vol. 124, pp. 149–155, 2015.

[26] D. A. Chaves, G. B. Lyra, M. R. Francelino, L. D. B. Silva,
A. Thomazini, and C. E. G. R. Schaefer, “Active layer and per-
mafrost thermal regime in a patterned ground soil in Maritime
Antarctica, and relationship with climate variability models,”
Science of the Total Environment, vol. 584, pp. 572–585, 2017.

[27] Y. Song, L. Jin, and H. Wang, “Vegetation changes along the
Qinghai-Tibet Plateau Engineering Corridor since 2000
induced by climate change and human activities,” Remote
Sensing, vol. 10, no. 2, p. 95, 2018.

[28] H. Frey and F. Paul, “On the suitability of the SRTMDEM and
ASTER GDEM for the compilation of topographic parameters
in glacier inventories,” International Journal of Applied Earth
Observation and Geoinformation, vol. 18, pp. 480–490, 2012.

11Journal of Sensors



[29] I. R. Whitson, “Equivalent latitude for prediction of soil devel-
opment in a complex mapunit,” Canadian Journal of Soil Sci-
ence, vol. 95, no. 2, pp. 125–137, 2015.

[30] Z. Y. Liu, J. B. Chen, L. Jin, Y. J. Zhang, and C. Lei, “Roadbed
temperature study based on earth-atmosphere coupled system
in permafrost regions of the Qinghai-Tibet plateau,” Cold
Regions Science and Technology, vol. 86, pp. 167–176, 2013.

[31] Z.-Y. Liu, F.-Q. Cui, J.-B. Chen, L. Jin, W. Wang, and
W. Zhang, “Study on the permafrost heat transfer mechanism
and reasonable interval of separate embankment for the
Qinghai-Tibet expressway,” Cold Regions science and Technol-
ogy, vol. 170, article 102952, 2019.

12 Journal of Sensors



Research Article
Developing a Data Model of Indoor Points of Interest to Support
Location-Based Services

Alexis Richard C. Claridades 1,2 and Jiyeong Lee 1

1Department of Geoinformatics, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, Seoul 02504, Republic of Korea
2Department of Geodetic Engineering, University of the Philippines Diliman, Quezon City 1101, Philippines

Correspondence should be addressed to Jiyeong Lee; jlee@uos.ac.kr

Received 21 April 2020; Revised 4 June 2020; Accepted 8 June 2020; Published 1 August 2020

Academic Editor: Sang-Hoon Hong

Copyright © 2020 Alexis Richard C. Claridades and Jiyeong Lee. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

Focus on indoor spatial applications has been rising with the growing interest in indoor spaces. Along with the widespread use of
mobile devices and the internet, it has increased demands for indoor location-based services (LBS), demanding more efficient
representation and management of indoor spatial data. Indoor points of interest (Indoor POI) data, representing both spaces
and facilities located indoors, provide the infrastructure for these services. These datasets are vital in delivering timely and
accurate information to users, such as in cases of managing indoor facilities. However, even though there are studies that
explore its use across applications and efforts exerted towards the standardization of the data model, most POI development
studies have focused on the outdoors and remain underdeveloped in the indoors. In this paper, we propose a spatial-temporal
Indoor POI data model to provide direction for the establishment of indoor POI data and to address limitations in currently
available data specifications. By exploring how different Indoor POIs are from its outdoor counterparts, particularly on
extending its outdoor counterparts’ functions on searching, sharing, and labeling, we describe the data model and its
components using the Unified Modeling Language (UML). We perform an SQL-based query experiment to demonstrate the
potential use of the data model using sample data.

1. Introduction

Nowadays, day-to-day human activities have been closely
tied with the use of mobile devices and gadgets, most
equipped with GPS receivers and cameras, and are continu-
ously improving in terms of features and speeds while
decreasing in size [1, 2]. With this, the demand for informa-
tion arose through location-based services (LBS), which aim
to give users relevant and timely information based on their
positions [1, 3], and augmented reality (AR) applications that
combine images from the real-world to virtual images in
three-dimensions [4]. These services form part of the core
requirement of Smart Cities, as localities around the world
aim to establish seamless integration of technology to the
daily life of its citizens.

Now, as interest in indoor space continues to rise [5], the
demand for spatial applications and services also increases.
These technologies that signal that we are now living in a

digital world spark interest in digitizing real-world indoor
scenes [6].

Indoor POI is a location in indoor space where informa-
tion regarding a particular place, service, facility, or event is
available, in contrast to traditional POIs located in outdoor
environments. A reliable Indoor POI dataset is vital to
provide the fundamental infrastructure to LBS, to provide
successful services to users. This approach, however, is faced
with several difficulties. First, Indoor POIs are not always
identified by a proper name, as most features that they repre-
sent in indoor space consists of facilities, such as ticket
machines, CCTV cameras, or fire extinguishers. Second,
Indoor POIs are more appropriately referred to by their type,
or classification, shifting the general POI idea of a location
that is identified by a unique name. The basic definitions of
POI from W3C [2] and OGC [7] have stated that a name is
a primary component, together with ID and location. Third,
most indoor LBS are still providing viewer-level service [8],
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due to existing data models being underdeveloped in the
indoor aspect and not differentiated with its outdoor counter-
parts. Established standards regarding primarily dealing with
indoor data have dealt more with navigation, such as Open
Geospatial Consortium (OGC) standard Indoor Geography
Markup Language (IndoorGML) [9], not on representing
features and spaces for LBS, and they have no precise specifi-
cations regarding Indoor POI in their respective models.

This paper is motivated by the requirement for the
formalization of Indoor POI, to expand services such as in
facilities management, simulation, and monitoring. As
current applications demand further classification of POIs
into levels—named objects with ID and location as Level 1,
locations that include unnamed real objects such as indoor
or outdoor facilities as Level 2, and intangible assets or events
as Level 3 [2]. Indoor POIs, for instance, take prime impor-
tance in Level 2, as this has gained interest in the increasing
demand for indoor applications, including indoor LBS,
indoor facility management, increase in accessibility for
disabled persons, evacuation for emergencies, and even
commercial or robotic applications.

In response to the difficulties faced in dealing with Indoor
POI stated above, this study proposes a data model that char-
acterizes its vital aspects as essential elements in providing
spatial services. Identifying these aspects and formalizing this
model is key for assuring data quality, provide prospects for
validation, encourage analysis, and at the same time, promot-
ing data sharing and integration. Furthermore, we intend to
demonstrate the potential and usability of the proposed data
model through an implementation.

This paper is structured as follows. The next section
discusses studies on efforts on POI standardization and data
model, as well as notable utilization across application
domains. The third section presents the characteristics of the
Indoor POI data model, followed by the proposed spatial-
temporal indoor data model. We conduct an experimental
implementation of the data model through a use case involv-
ing facility management to demonstrate its various aspects
through a small sample dataset, and the last section focuses
on conclusions and limitations of this study to be addressed
by future work.

2. Related Research

The rapid growth of mobile devices and internet technology
has led to the acceleration of LBS applications, with a special
interest in the indoors [10–12] due to its strong influence in
people’s daily lives [13], and recognition that these spaces
are even as dynamic as its outdoor counterparts [14]. In
recent years, the indoor environment has been a target of a
wide area of research ranging from data acquisition, 3D data
modeling, and indoor navigation [15].

Though the progress in outdoor mapping and navigation
applications encourage the interest of its indoor counterpart,
the indoor case postulates problems in the direct application
of technologies as they exhibit different characteristics [16].
These problems include the lack of cheap and convenient
positioning systems and the availability and complexity of
maps [17]. However, as the key enabler for Indoor LBS

[18], Indoor POI can help augment these shortcomings,
together with other datasets. Indoor POI is essential in
positioning indoors as much as how GPS has enabled this
outdoors [19].

To date, organizationally agreed-upon models regarding
Indoor POI are still, and a standard is yet to be acknowledged
[2]. One major problem that having an Indoor POI data stan-
dard would resolve is having separate sets of POIs for every
application or infrastructure. In a study for the development
of a participatory collection of Indoor POI, despite crowd-
sourcing having the advantage of a large volume of data,
there is a necessity for data quality control and assurance
due to the massive number of users and variety of devices.
As such, a data model would prove useful in performing data
integrity checks.

Tracing the timeline of POI standard development would
begin with nodes in OpenStreetMap (OSM), KML, and
Places Library of Google Maps but individually lacks in
aspects that are essential to the direction of applications
where POIs are going [3, 20] place identifiers in ISO 19112
[21] and ISO 19155 [22]. Specifically, the World Wide Web
Consortium (W3C) POI Special Working Group (SWG)
has become the first step towards the standardization for
the definition and exchange with a focus on web architecture
and in AR applications. SWG has published the Point of
Interest Core (POI Core), describing eight categories to
describe POI with attributes and various location types [1, 3].

Commercial GIS providers have also observed the emerg-
ing need for Indoor POI. ArcGIS Pro by ESRI has also
included a provision for Indoor POIs through ArcGIS
Indoors. In this application module, Indoor POIs can repre-
sent features on an indoor map. These Indoor POIs have two
levels of classification, the first one being broader classes of
people, places, events, and objects [23].

In parallel, industry stakeholders, including car industry
specialists and experts in mobile technology, navigation sys-
tems, and digital maps, formulated a general-purpose specifi-
cation called point of interest exchange language (POIX) and
submitted this as a preliminary proposal to W3C. However,
this lacked in categorical, descriptive, and temporal aspects
and seemed inclined towards car navigation [20]. In Korea,
the Telecommunications Technology Association (TTA)
established a data model and other private companies,
including Naver and Daum, to establish portal and navigation
services. Government agencies also partner with research and
development institutions to study POIs in the context of
positioning and human-oriented geographic information [2].

A spatial-temporal model based on the W3C data model
was proposed by [2], based on the W3C data model, extend-
ing certain aspects to the goal of expanding the utilization of
POI. This model emphasized the three major roles and
characteristics of POIs in providing LBS—in searching, in
display, and in sharing—and is subsequently formulated
according to each of these individual functions. Time series
management is also enabled by expanding definitions for
temporal aspects of POI in terms of changes in location over
time for a POI (feature-based) and change in the POI over a
period time for a location (location-based) [24]. However,
this standard tackles the first level of POI, where a unique
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name refers to each feature and suggests that expansion
towards the higher levels is necessary in future studies.

The concept of Indoor POIs has been used by [8] to
represent facilities for an indoor LBS. Spatial relationships
between the Indoor POI and the indoor spaces abstracted
with topological data provided by IndoorGML are defined
to provide an indoor patrol service. Also, in an indoor setting,
[25] proposed a location-aware POI recommender system
based on user preferences mined from social networking
data. Indoor POIs have also been used to build an indoor
facility information and visualization system [26], annotators
to denote user visits in urban areas [27], generating large
scale maps [28] and in labeling objects and spaces in AR
platforms [29] and navigation systems [30–32]. These
applications, however, focused on utilizing Indoor POI as a
marker for objects in indoor space, rather than differentiating
its identity from POIs in the outdoors.

In literature, indoor navigation is one of the major uses
for Indoor POIs, such as in determining best routes for a
context-aware systems for navigation [17], ubiquitous indoor
navigation [33], web-based navigators [18], WiFi-assisted
path planning [34], and point planning for robotic naviga-
tions [35, 36]. It is also interesting to note that studies cite
Indoor POI data as an environmentally crucial component,
especially in cases where navigation is critical. Several studies
use them as navigation guides in indoor wayfinding systems
for visually impaired situation awareness [37–40] or those
physicallyimpaired [41] as path determinants or as indicators
for hazards. Most importantly, Indoor POI integration with
datasets based on international data standards, such as
IndoorGML, is possible to more accurately portray and
perform applications in indoor space [42].

Indoor POIs also play a key role in the indoors as
landmarks, not only objects to denote the location of objects
or spaces but also as guides for users to form mental spatial
representations of their surroundings. Especially in situations
where users are unfamiliar with the surroundings, these POIs
aid route decision-making and orientation [43], as well as ref-
erence points that assist in recreating physical layouts of build-
ings [34]. These features are highlighted as important elements
of the user line of sight and as background knowledge that
moderates how users perceive the indoor environment [44].

Studies have also explored the localization of and using
Indoor POIs. Since these objects are distinguishable from
their surroundings, they are ideal for localization. Referred
to as beacons, range-only SLAM (simultaneous localization
and mapping) was able to identify positions of POIs using
only distances with the assistance of the strength of radio
frequency signals [45]. Similarly, WiFi signals which are
readily available indoors plus radio FM (frequency
modulation) signals permit indoor localization of POIs by
similar principles [19]. Conversely, these POIs have assisted
pedestrian dead-reckoning [46] and applications on indoor
look-up services [47]. On a related note on the Indoor POIs
as landmarks, it is possible to achieve adequate indoor local-
ization using only these objects through a fingerprinting-
based approach [48].

Various motivations have sought the extension of POI’s
nature as being an entity with a location and some attributes.

OGC defines POIs as “a location (with a fixed position) where
one can find a place, product or service, typically identified by
name rather than by address and characterized by type, which
serves as a reference or a target in an LBS request, e.g., as the
destination of a route” [7]. [4] pointed out that the term itself
distinguishes between what is “interesting” and what is not,
depending on the available context, but the OGC definition
does not consider this subjective component [20].

A resolution to this gap is providing context in the usage.
In 3D environments, especially indoors, apart from being key
features that are essential for specific user tasks, these data
also provide insight for visualization and navigation. In this
case, however, Indoor POI visualization would have to deal
with issues that are not usually present in 2D, such as occlu-
sion, perspective, and scene complexity. An approach using a
cloud of interest (COI), was proposed maximizing the infor-
mation that the user is receiving without context distortion,
too much cluttering, and additional cognitive task of looking
through multiple views at the same time and still be suitable
for small viewing spaces, hence bridging the challenge of cre-
ating models for mobile 3D geovirtual environments [4]. As
3D visualization of POI in the indoor environment repre-
senting both objects and spaces are emphasized [49], this
emphasizes the need for a formalized data model that enables
linking with other data.

On a related note, studies have shown that semantic
models based on international standards such as CityGML
and IFC (Industry Foundation Classes) have enriched the-
matic information of each other [50–52] or of other datasets
like 3D mesh data used in solar potential analysis [53]. In
contrast, while studies have also shown that application flexi-
bility is enhanced utilizing semantically enriched POIs [54],
this enrichment may come from the semantic models. In both
outdoors [1] and indoors, POI data is essential for ontology-
based recommender systems in different applications. Studies
have used Indoor POIs in recommender systems utilizing
shopping trajectories to model user behavior and preferences
[25, 27]. Literature also cites that having an alias database
management systemwould increase the efficiency of POI data,
that is, obtaining the same level of richness of information
even with a significantly smaller size of dataset [55].

Semantic hierarchies in the indoor environment have
been demonstrated by [56–59] through describing how
indoor spaces are related to its subunits and how this
relationship plays a role in various aspects. The concept of
space subdivision and aggregation enhances how space is
perceived cognitively, particularly in as an essential in pro-
viding descriptive information on location, determining
functional areas within indoor space, and determining which
parts are suitable for navigation. The BOT (building topology
ontology) is an effort to evolve existing IFC-specified stan-
dards towards Linked Data practices for modern web-based
applications. Similarly, in the context of building and con-
struction field, BOT presents spatial 3D volumes as zones
that may contain other zones in a hierarchical manner—sites
that may contain buildings, buildings that may contain build-
ing levels, and building levels that may contain spaces.
Furthermore, this specification also defines tangible elements
that either comprise or contained within these zones [60, 61].
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The lack of support for temporal data for available
models has also been raised [1, 20]. Data such as opening/-
closing times of establishments, the amount of time that
people spent, or real-time data about services enrich the
attribute content of POIs, which may be crucial to many
applications. Some characteristics and even the location
may change over time. From tracking datasets, novel query
methods of two types—snapshot (on a given time point) or
interval (over a given period)—have determined frequently
visited Indoor POIs [62]. Keeping multiple versions of the
Indoor POI has also been suggested to maintain information
content [63]. To maximize this information in studying
change and patterns, the data model must incorporate these.

For most cases, a name has been an identifier for an
outdoor POI. However, this identifier would not mean that
an Indoor POI corresponds to one and only one exact string
of text. Users may vary in keyword use, and typographical
errors are not impossible, so more than one keyword may
exist, called an alias. This case is especially true for Indoor
POI that may be referred to with similar characters, due to
it not being identified by name. In a crowdsourcing-based
collection method for Indoor POI, multiple names may refer
to a single location [10]. To develop a system for managing
aliases, [55] classified POI alias attributes and used word
similarity measurements to input and retrain an alias data-
base containing nonofficial names for POI.

Based on the developmental direction from POI towards
Indoor POI data models, as well as primary usage domains
for Indoor POI evident from previous studies, namely,
searching, data labeling, and sharing, and identified areas of
improvement and development, we propose the spatial-
temporal indoor POI data model in the next section.

3. Proposed Spatial-Temporal Indoor POI
Data Model

In Section 3, we consider the considerations for the spatial-
temporal data model proposed in this study. We investigate
the attributes of the Indoor POI in terms of its main usage
and identify critical points that the data model must define.

3.1. Characteristics of Indoor POI. Indoor POIs may repre-
sent indoor spaces such as a room, corridor, lobby, or
stairwells, as well as facilities, movable or immovable, located
in those spaces such as furniture, installations, or equipment.
Previous studies discussed in the preceding chapter have
shown extensive use of Indoor POIs across a wide range of
application domains. These features are present in navigation
as either targets (e.g., what is the route from my current
position going to Indoor POI 1?), guides (e.g., in calculating
a route from point A to point B, avoid Indoor POI 1 and pass
through Indoor POI 2), or both. In terms of localization, they
have been vital in both finding positions of other objects (e.g.,
given the coordinates of visible Indoor POI 1, 2, and 3, what
is the coordinates of the user), or the targets of localization
using various measurements (e.g., given the WiFi signal
strength from routers A, B, and C, what is the position of
Indoor POI?). Indoor POIs are essential in 3D indoor visual-
ization as landmarks to improve users’mental recognition of

their surroundings or even as merely labeling features to
increase information content. Furthermore, these features
provide rich content that enables spatial and temporal
queries in LBS applications.

The Indoor POI data model proposed in this paper
considers the same aspects as the previous data model [2],
with particular consideration to the specific cases of indoor
space, as compared to outdoor space. This proposed data
model does not restrict a generic set of objects to be repre-
sented as Indoor POIs. Instead, any indoor facility (in the
spatial range of a room), as well as the room containing these
facilities (in a corridor’s spatial range), may be represented.
In this regard, inclusion relationships may also form between
the former and the latter. Moreover, in the indoor environ-
ment, the difference in spatial range is more apparent, the
presence of Indoor POIs in say, a corridor would have a
difference in contrast to those present inside a room in differ-
ent aspects. Moreover, facilities and other objects represented
by Indoor POIs are more mobile, i.e., movable and can
change location over time, and conversely, a location may
have various Indoor POIs over a specified period.

Figure 1 improves upon the developmental direction of
the outdoor POI proposed in [2]. The essential POI purposes
of sharing, labeling, and searching remain to be the motivation
of the development of the Indoor POI data model; however,
specific key characteristics shared between these purposes
are differentiated according to the importance and vital differ-
ences with the case of outdoors. Between the three primary
purposes are the corresponding aspects of Indoor POI that
are imperative in developing the data model. First, the data
model’s management of aliases level of detail is critical for
purposes of search and labeling. These aspects are crucial in
datasets to improve searching and managing the amount of
information that the screen presents to the user, respectively.
More importantly, information about spatial hierarchy, which
corresponds to the spatial relationships of indoor space with
either other indoor spaces or objects found indoors, is critical
since this is more apparent in the case of indoors. In relation to
Indoor POI sharing and searching functions, the aspects of
maintaining a classification scheme and handling of multitem-
poral information are crucial driving points. Finally, as an
identifier for places to their specific location, this aspect of
Indoor POI is more crucial in its role in data sharing. These
characteristics are elaborated in the sections to follow.

3.2. Indoor POI Nomenclature. Even if a feature does not have
a unique name, Indoor POIs can still serve its purpose as an
identifier, since it still connects an “indirect” geographic
reference to a specific location. Intuitively, this classification
aspect would more often be the more practical or in some
cases the only existing nomenclature to identify a particular
Indoor POI, as most objects found that indoors, despite being
tangible objects, do not have a specific name. We can only
refer to them through their generic names, such as a fire
extinguisher, a CCTV, or an ATM. Providing a classification
scheme for Indoor POIs would provide not only a uniform
method of defining and differentiating features but also an
opportunity for faster queries by narrowing down POI results
depending on the purpose of the user. It also improves
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efficiency in query-based implementations, as classifications
would also enable grouping and subgrouping of similar
features. In the data sharing aspect, classification provides
an identifier for linking data from external sources, such as
the code list from CityGML, for example.

Hence, a classification scheme to categorize Indoor POI
is necessary to encourage utilization, increase query
efficiency, and avoid duplications in datasets. A scheme also
supports the Indoor POI functionalities of sharing and
searching. In Table 1, we illustrate a sample of a classifica-
tion of Indoor POIs, created based on the ESRI POI classifi-
cation scheme [23], categorizing each feature in three levels
of increasing specificity, and each category would corre-
spond to a 6-character category code as an attribute for the
Indoor POI.

This classification scheme does not intend to provide an
exhaustive list of all possible types of objects and spaces but
rather as an illustration of possible varieties of what an
Indoor POI can represent. For example, “Vending Machine”
and “Drug Store”may both be represented even though they
are differentiated by [42] as nonnavigable facilities and navi-
gable facilities, respectively. The previous examples are actual
objects located indoors, while the latter represents the spaces
that may contain the former.

In developing LBS applications, and even though conven-
tional models only require a name alongside a location to
define a POI even outdoors, aliases are existing because of
the nonniformity of the keywords that users key-in for
searching, and typographical errors are not impossible to
occur. Even if an Indoor POI has an official identifier, be it

Table 1: Sample conceptual Indoor POI classification scheme.

Level 1 Level 2 Level 3

Place

Pedestrian stairs, slope way, lobby

Private common room

Relaxation
relaxation room, smoking area, men’s toilet,

women’s toilet, disabled toilet, bench, rubbish bin

Things

Access Facility door, ticket gate, access control units

Conveyor transport
up escalator, down escalator, up moving sidewalk,

down moving sidewalk, horizontal moving sidewalk, elevator, wheelchair lift

Retail & Services

Services
nursery, drug store, vending machine, ticket machine, information, lounge, guest room,

covered car park, bank, cash office, cash machine or ATM, post office, billboard

Retail
restaurant, coffee shop, clothing store, hair shop, ticket office,

aquarium, bowling alley, swimming-pool, store

Safety & Security

Fire-fighting supplies fire protection appliance, fire extinguishing system, fire extinguisher, fire alarm

Emergency relief supplies automated external defibrillator, life-saving trolley

Evacuation facility shelter, emergency call center, exit, emergency escape device, relief goods

Search

Sharing Labeling

INDOOR 
POI

Identifier

LoD

Alias

Hist
or

ica
l

in
fo

rm
ati

on

Cl
as

sifi
ca

tio
n

Spatial hierarchy

Figure 1: Developmental direction of the Indoor POI data model.
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a name or its classification, the data model should be able to
incorporate aliases. Having an alias database would improve
searching while ensuring a practical and flexible, yet efficient
delivery of information to users.

Managing descriptive information of the Indoor POI is
also essential to maintain data integrity and quality. As data
sharing is encouraged by a standardized data model, the
author of the dataset must also be included to ensure efficient
management, accountability, and facilitation of data reuse
and updating. Similarly, successful LBS is possible if the
Indoor POI can carry attributes apart from its name, classifi-
cation, and location. Other descriptive information that may
widely vary in data type, length, and value should be
managed by the data model so rich information may be
maintained and furnished to users.

3.3. Spatial Hierarchy and Spatial Relations. For Indoor POIs,
spatial relationships may exist in two ways. First, a spatial
hierarchical relationship may exist between an Indoor POI
and another Indoor POI, as expressed in the previous research
for outdoor POI [2], say, for example, an Indoor POI repre-
senting a floor level, and the Indoor POI representing the
rooms in that level. This case represents the aggregation of
smaller spatial units in one hierarchical level (the rooms, in

this case) towards a larger spatial unit in a higher hierarchical
level (floor). Second, an inclusion relationship exists between
Indoor POIs that represent space and those that represent
objects located inside those spaces, say for an Indoor POI
representing a library, and for Indoor POIs inside representing
shelves. These relationships must be maintained in the data
model to facilitate query analysis and extend into applications
such as navigation, facilities management, or patrol services to
fulfill its roles in searching and feature labeling properly. Also,
this provides an opportunity for the improvement of data
integration with other standards dealing with indoor spatial
information such as IndoorGML.

We express these relationships in the data model as a self
aggregation of the IndoorPOI_Basic class. Each POI instance
has a 0~1 parent or a 0~n child, as shown in Figure 2(a). This
multiplicity specifies that an Indoor POI may not have a
parent class, but if it does, it cannot havemore than one parent
having a higher spatial hierarchy. A child class for an Indoor-
POI_Basic instance may not be present, but should it be, this
instance may have one or more child classes having a lower
spatial hierarchy. For example, a space-based hierarchical
structure exists between a POI representing a floor level of a
building, and the corresponding POIs representing the rooms
and facilities existing within that floor level, as in Figure 2(b).

<<Feature>>
IndoorPOI_Basic

+ InPOI_SpatialDepth: int
+ InPOI_UpdateInfo: UpdateInfoType

+ parent

0..1

+ child
0..⁎

(a) UML

Main library 2nd floor POI

Reading room2 POI

Restroom2 POIElevator POI

Reading room1 POI

Restroom1 POI

Storage room POI

Spatial hierarchy

Child

Parent

(b) Spatial hierarchy instance

Figure 2: Self-aggregation for spatial hierarchy.
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3.4. Spatial Depth. In the display of spatial data to users, the
scale plays an important factor in how much information is
visible and intelligible. As with any conventional or digital
map, at varying spatial scales, Indoor POI must be expressed
efficiently in a proper level of detail. Hence, a different set of
Indoor POIs must be visible in larger scales compared to
smaller scales. This aspect is crucial in order for it to achieve
its role in feature labeling.

One of the main challenges in creating LBS platforms is
screen size, due to the limitation of the devices where they
run on [4]. As POIs and Indoor POIs are mainly geared
towards providing LBS and as trends point toward more
portable and handheld devices, the display restricts the relay
of the richness of information to the users. Smaller screen
size, as well as the size limitation in the indoor space them-
selves, command methods for efficient expression of Indoor
POIs and their respective attributes.

Although closely related, spatial depth does not directly
equate to spatial hierarchy. The self-aggregation for the latter
refers to the relationship of an Indoor POI parent node con-
taining another smaller spatial unit represented by an Indoor
POI child node, for example, the cases of between a building
(parent) and floors (child), and between the floors (parent)
and rooms (child). Differently, this may also refer to the
inclusion relationship between a space represented by an
Indoor POI (room) and the objects inside the room (desks).

On the other hand, two Indoor POIs having the same
spatial depth may belong in different hierarchical levels,

say, for example, Indoor POIs for a cinema lobby and a ticket
machine. Both may be displayed at the same time (same spa-
tial depth) even though the lobby has an inclusion relationship
with the ticket machine (different spatial hierarchies). Indoor
POIs at the same hierarchical levels may also belong in differ-
ent display levels, for example, Indoor POIs representing a
shelf and books. Both are at the same hierarchical levels below
a room Indoor POI, but in an application, displaying all books
might be illegible for display, unless a larger scale is visible.

POI display on the application is expressed for each
scale level through the definition of spatial depth, through
a user-defined InPOI_SpatialDepth attribute. Indoor POIs
having the same integer value for this attribute would be
displayed together at the same scale level. Additionally, an
aggregation relationship, shown in Figure 3(a), between
the IndoorPOI_Basic class and the IndoorPOI_DisplayInfo
class having the expression level as the attribute, allows
users to display Indoor POI descriptions in levels indepen-
dent of the spatial depth, depending to the user’s intent, or
the importance of a POI in a particular context. It has a
1~n child multiplicity, expressed as an Indoor POI on
multiple levels, say an important facility such as an elevator
used to transport between floor levels. Figure 3(b) shows an
example of Indoor POIs having different spatial depths. An
entire building is expressed as a single Indoor POI at spatial
depth 0, while individual rooms may be expressed distinctly
at Spatial Level 1. Further, Spatial Level 2 shows objects
found inside the rooms at Spatial Level 2. Expanding to

<<Feature>>
IndoorPOI_Basic

+ InPOI_SpatialDepth: int
+ InPOI_UpdateInfo: UpdateInfoType

<<Feature>>
IndoorPOI_DisplayInfo

+ descriptionForMultiLine: char [1..120]
+ descriptionForSingleLine: char [1..40]
+ level: int

+ parent

0..1

+ child
0..⁎

DisplayInfo

1

1..⁎

(a) Aggregation relationship for display

21st Century Building
Projector

Air conditioner

Water dispenser

Printer

Room 609

Room 605

Air conditioner

Building level → spatial depth 0 Floor level → spatial depth 1 Room level → spatial depth 2

(b) Spatial depths

Figure 3: Spatial depth of indoor POI.
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further spatial depths is possible, if necessary, depending on
the datasets and the application.

3.5. Spatial-Temporal Information.Despite being indoors, we
cannot expect entities that are represented by Indoor POIs to
be stationary, as most objects existing in those locations are
mobile. For example, equipment transferred from one area
of a room to another, or an entirely new location within the
same building. Similarly, descriptive information (such as
usage, schedule) regarding a space (such as a room) may be
dynamic due to relocations, reconstructions, or maintenance.
For instance, an ordinary classroom transformed into a com-
puter laboratory, in the case of a school. These changes, that
is, the change history of either the locations or the features
themselves, may be permanent or temporary. Regardless,
keeping track of this information must be maintained in
the data model so Indoor POIs can improve its functions in
information query or searching.

This proposed model introduces two ways of time series
management for Indoor POI, feature-based and location-
based. Feature-based management means management of
the locational changes that a single Indoor POI undergoes

over periods, as shown in Figure 4(a). A certain POI object
named “Student Lounge” in Room 714 of the 21st Century
Building from 13 September 2001 to 14 April 2003 was
moved to Room 104 of the same building from 15 April
2003 to 13 August 2015.

Time series management of Indoor POIs based on loca-
tion means monitoring the Indoor POI located at that fixed
position over periods, as shown in Figure 4(b). For example,
on the location of Room 104 of the 21st Century Building, a
specific Indoor POI for a Photocopy Room exists from, 13
September 2001 to 14 April 2003 but was changed to the
Student Lounge starting 15 April 2003 to 13 August 2015.
If applications manage temporal information like this, both
management of feature changes and locational changes for
Indoor POI and positions are possible, enabling historical
search in various forms and implementations.

An association class SpatialTemporalHistory was added
in the association relationship of IndoorPOI_Basic class
and IndoorPOI_Location_Basic class to accommodate these
time series management concepts to the Indoor POI data
model. Figure 5 illustrates this relationship. In the generic
data model from [2], these classes had a one-to-one

Rm. 714

Rm. 104

InPOI_FHistory

+ InPOI_ID: AA1314181943

+ jibun_base1: Rm. 714, 21C Bldg
+ vaildperiod: 13.09.01-14.04.03

+ jibun_base2: Rm. 104, 21C Bldg
+ vaildperiod: 15.04.03-13.08.15

(a) Feature-based

POID: AB… POID: AA…

InPOI_LHistory

+ jibun_base: Rm. 104, 21C Bldg.

+ InPOI_ID: AB1419843122
+ validperiod: 13.09.01–14.04.03

+ InPOI_ID: AA1314181943
+ validperiod: 15.04.03–13.08.15

. . . . . . .

(b) Location-based

Figure 4: Two ways to describe Indoor POI temporal information.

<<Feature>>
IndoorPOI_Basic

+ InPOI_SpatialDepth: int
+ InPOI_UpdateInfo: UpdateInfoType

<<Feature>>
IndoorPOI_Location_Basic

+ accuracy: IndoorLocationAccuracyType
+ linkInfo: LinkInfoType [0..⁎]

<<Feature>>
SpatialTemporalHistory

+ dateStart: date
+ dateEnd: date
+ InPOI_ID: char [12]
+ InLocationID: IndoorLocationIDType

+ described

1..⁎ 1..⁎

+ isLocated

Figure 5: Association class for spatial-temporal Indoor POI history management.

8 Journal of Sensors



association, but considering a feature-based time series man-
agement, the IndoorPOI_Basic now has a one-to-many asso-
ciation relationship with the IndoorPOI_Location_Basic
class through the SpatialTemporalHistory Association class.
On the other hand, a one-to-many association from Indoor-
POI_Location_Basic class to the IndoorPOI_Basic class
through the SpatialTemporalHistory class corresponds to
the location-based management approach.

3.6. Spatial-Temporal Indoor POI Data Model. In this chap-
ter, we discuss the structure of the spatial-temporal Indoor
POI data model, from the considered characteristics in the
previous section based on primary Indoor POI functions of
searching, sharing, and labeling and is built upon the generic
POI data model by [2]. The classes reflected in the data
model represent the essential aspects of an Indoor POI based
on the discussions in the preceding sections, as guided by
previously proposed models for conventional POI models
and considering the case of the indoors. We designed this
data model to align implementations towards establishing
actual Indoor POI data, while addressing current limitations
of available data models.

The data model consists of 9 classes, namely, IndoorPOI
and IndoorPOI_Location abstract classes, IndoorPOI_Basic
class, IndoorPOI_Location_Basic class, IndoorPOI_Authority
class, IndoorPOI_Alias class, IndoorPOI_Properties class,
IndoorPOI_DisplayInfo class, and the SpatialTemporalHistory
Association classes. The UML Diagram in Figure 6 describes
each of these classes and their respective relationships.

The IndoorPOI_Basic class is the class that expresses the
Indoor POI object, which may represent facilities or indoor
spaces, which characterizes spatial hierarchy through its
self-aggregation and multiple expressions across varying spa-
tial depths through the one-to-many aggregation with child
class IndoorPOI_Basic. The IndoorPOI_Basic class has a
one-to-one relationship with the IndoorPOI_Location_Basic
class, a one-to-many relationship with attribute information
through the IndoorPOI_Properties class, and copyright
information with its one-to-one association with the Indoor-
POI_Authority class. To increase effectiveness and efficiency
in managing the Indoor POI information, it implements alias
management through the IndoorPOI_Alias class.

The IndoorPOI_Basic class and the IndoorPOI_Location_
Basic classes inherit from the abstract classes IndoorPOI, and
IndoorPOI_Location, respectively, thus obtaining their attri-
butes for each instantiation. First, the IndoorPOI_Basic class
has an ID, Name, CategoryCode, UpdateInfo, spatial depth,
and child (parent) as attributes. The ID is a unique 12-digit
character combining the information from the linked autho-
rized agency and the serial number of the object. The attri-
butes include a name, as an InPOI_NameType, official or
not, that may include English, Korean, or alphanumeric char-
acters. We reflect the classification discussed in Section 3.1 in
the CategoryCode, UpdateInfo contains data on the creation
and updating of other attributes, and the SpatialDepth for
expressing display and hierarchical aspects.

The IndoorPOI_Location_Basic class inherits the Indoor-
POI_Location abstract class. It has the unique ID, as an Indoor-
Location_ID Type, position expressed a 3-dimensional

<<Abstract>>
IndoorPOI

+ InPOI_CategoryCode: char[6]
+ InPOI_ID: char [12] {id}
+ InPOI_Name: InPOI_NameType

<<Feature>>
IndoorPOI_Basic

+ InPOI_SpatialDepth: int
+ InPOI_UpdateInfo: UpdateInfoType

<<Feature>>
IndoorPOI_Authority

+ author: char [1…0]
+ linkInfo: LinkInfoType [0..⁎]

<<Abstract>>
IndoorPOI_Location

+ address: LocationAddressType
+ InLocationID: IndoorLocationIDType {id}
+ InPosition: IndoorLocationPointType

<<Feature>>
IndoorPOI_Location_Basic

+ accuracy: IndoorLocationAccuracyType
+ linkInfo: LinkInfoType [0..⁎]

<<Feature>>
SpatialTemporalHistory

+ dateStart: date
+ dateEnd: date
+ InPOI_ID: char [12]
+ InLocationID: IndoorLocationIDType

+ described

1..⁎ 1..⁎

Authority
+ parent

0..1

+ child
0..⁎

1 1

+ isLocated

<<Feature>>
IndoorPOI_DisplayInfo

+ descriptionForMultiLine: char [1..120]
+ descriptionForSingleLine: char [1..40]
+ level: int

<<Feature>>
IndoorPOI_Properties

+ attributeCode: char
+ attributeValue: anyType
+ serialNumber: long {id}
+ updateInfo: UpdateInfoType

<<Feature>>
IndoorPOI_Alias

+ create: date
+ delete: date
+ name: char [0..120]

Alias DisplayInfo Hasattributes

0..⁎

1

0..⁎1..⁎

1 1

Figure 6: UML diagram of spatial-temporal Indoor POI data model.
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IndoorLocationPointType, address as a LocationAddressType
similar to the POI data model [2], accuracy information
depending on location data collection method such as survey,
grant of address position, and drawing, and the LinkInfo as a
LinkInfoType for other linked location information.

IndoorPOI_Properties class has attributes of serialNumber,
attributeCode, attributeValue, andUpdateInfo. The serialNum-
ber is the serial number of the object, the attributeCode is a
predefined attribute value according to the type, attributeValue
may take any value in various types (anyType), and the
UpdateInfo contains information on the update of the attribute.

The IndoorPOI_Alias class is the critical feature for alias
management in Indoor POI, which helps significantly to
manage the data efficiently. This class includes information
on the alias name, as well as create and delete, which
corresponds to the alias creation and deletion dates from
the alias database, respectively. The IndoorPOI_Basic class
is for how the POI is displayed visually to the user, according
to user specifications. It contains attributes on level of detail
(LOD) in level, supporting multiline or single-line descrip-
tions in descriptionForMultiLine and descriptionForSingle-
Line. Finally, the IndoorPOI_Authority class expresses the
author of the Indoor POI, which is responsible for the infor-
mation in the feature, indicating the attribute author for the
name of the author and LinkInfo for the corresponding
agency or organization where the author is affiliated.

The association class SpatialTemporalHistory described
in the preceding section represents the time series manage-
ment for both feature-based and location-based management
in the data model, having association relationships with the
IndoorPOI_Basic and IndoorPOI_Location_Basic class. This

class contains attributes dateStart and dateEnd to describe
the period and the respective linked InPOI_ID and InLoca-
tionID. This period denotes the validity of the existence of
the Indoor POI in a particular location, whether it is a
feature-based or location-based approach. It also neither
refers to the actual creation and deletion dates of the POI in
the dataset nor the existence or removal of the real-world fea-
ture or space it represents.

We incorporate these measures to the Indoor POI data
model, resulting in the spatial-temporal Indoor POI data
model shown in Figure 6. We add the SpatialTemporalHis-
tory association class and the multiplicity of the association
relationships between IndoorPOI_Basic and IndoorPOI_
Location_Basic classes. This approach presents a more com-
pact approach to the one applied to the spatial-temporal POI
data model presented in [2], which used four more classes—
separate ones for the location and history information for
each of the two time series management methods.

4. Experimental Implementation

The described Indoor POI data model describes spatial rela-
tionships between Indoor POI entities having a hierarchical
structure and considers time series management in mind.
To demonstrate this, we conduct an experiment considering
a use case for the management of facilities located in the inte-
rior of a building. We do this for sample Indoor POI objects
through spatial hierarchy and historical attribute query in
this section using a sample set of 10 Indoor POI objects listed
in Figure 7(a). For simplicity, these points represent selected
locations in the 21st Century Building of the University of

1 21st Century Building
2 3rd floor
3 6th floor
4 Room 605
5 Room 609
6 Airconditioner
7 Projector
8 Water dispenser
9 Airconditioner

10 Printer

(a) List of Indoor POIs

21st Century Building

3rd Floor

6th Floor

Room 609

Room 605
Projector

Airconditioner

Airconditioner

Water dispenser

Printer

(b) Spatial relationship of Indoor POIs

Figure 7: Sample Indoor POI data for Experiment.
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Seoul campus. At the topmost spatial depth, an Indoor POI
representing the whole building exists, followed by an Indoor
POI for the 3rd- and 6th-floor levels, respectively, of the
whole building. Within the 6th-floor level, in the next spatial
depth are Indoor POIs representing two rooms on that floor,
and the final spatial depth contains objects each contained
respective rooms, as illustrated in Figure 7(b).

To evaluate the potential benefits of the data model, we
show to demonstrate the key characteristics of Indoor POI
by constructing a relational database and implementing
SQL-based queries. For simplicity, we mapped each concrete
class as a single table in the database schema to more clearly

see how each UML class works. This mapping is also an ideal
strategy since class hierarchies in the model are shallow.
Since the classes specify IDs explicitly, we were able to use
these as keys in order to map the respective relationships
directly. We entered the sample data as features in Post-
greSQL, a free and open-source relational database manage-
ment system, through the devised database schema shown
in Figure 8, based on the UML model Figure 6.

For instance, the facilitymanager would like to knowwhich
facilities are present inside a room. To do this, we attempt to
search Indoor POI that exhibits the self-aggregation relation-
ship for expressing spatial hierarchy. Figure 9(a) illustrates

IndoorPOI_Alias

InPOI_ID ID
Create DATE
Name CHAR(120)
Name CHAR(12)

IndoorPOI_Authority

InPOI_ID ID
Author VARCHAR
LinkInfo VARCHAR

IndoorPOI_Basic

InPOI_ID ID
InPOI_CategoryCode CHAR(12)
InPOI_Name VARCHAR
InPOI_SpatialDepth INT
InPOI_UpdateInfo VARCHAR
Parent CHAR

IndoorPOI_DisplayInfo

InPOI_ID ID
DescriptionForMultiLine CHAR(120)
DescriptionForSingleLine CHAR(40)
Level INT

IndoorPOI_Location_Basic

InLocationID ID
InPosition VARCHAR
Address VARCHAR
Accuracy VARCHAR
LinkInfo VARCHAR

IndoorPOI_Properties

OID ID
InPOI_ID ID
AttributeCode VARCHAR
AttributeValue VARCHAR
SerialNumber CHAR(12)
UpdateInfo VARCHAR

SpatialTemporalHistory

InPOI_ID ID
DateStart DATE
DateEnd DATE
InLocationID CHAR(12)

Figure 8: Database schema for the experimental implementation.

1

2 3

4 5

7 86 9 10

(a) Illustration of Indoor POI hierarchy

(b) Spatial hierarchy Indoor POI query

Figure 9: Experimental implementation of indoor POI spatial hierarchy.
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the hierarchical relationships among Indoor POIs based on
information illustrated in Figure 7. We perform an SQL query
on the IndoorPOI_Basic class to identify child nodes lying
within a node (in this case, a parent), as shown in
Figure 9(b). The result of the query for Indoor POI for “Room
609” as a parent node shows a list of all Indoor POIs inside that
entity, i.e., its child nodes, namely, “Water Dispenser”, “Air
Conditioner”, and “Printer”.

On the other hand, time series management measures of
the proposed data model enable search of historical attributes
of both features and locations having this information, say
the facility manager wants to identify locations where a
facility presently and previously exists, so to demonstrate a
feature-based history such as a facility being moved in differ-
ent locations on different times, as shown in Figure 10(a).
Figure 10(b) shows the result of the location history of the
“Printer” Indoor POI from the SQL query on the Spatial-
TemporalHistory attribute, enumerating the various loca-
tions that it has existed at and each corresponding period.

Similarly, historical attribute search also enables manage-
ment of the POI history of a particular location, if the facility
manager wants to know which locations a facility has been
used and transferred to across time, requiring the data model
to handle location-basedmanagement, such as in Figure 11(a).
Figure 11(b) shows the result of the POI history of a location

names “Table Number 2”, having two Indoor POIs existing
in history, namely, “Printer” and “Water Dispenser”, as well
as their corresponding validity periods. Experimental results
from this section show that the data model can express spatial
and temporal information management through hierarchical
and historical queries, respectively.

5. Conclusions and Future Studies

POI is an essential element in providing LBS across a wide
array of application domains. While there have been numer-
ous efforts and studies regarding its expansion, utilization,
and standardization, there is still a limited outlook on how
this concept extends towards the indoor environment. Con-
sidering important characteristics of Indoor POI in several
aspects, in contrast to conventional POIs used in outdoor
space, there is a need to specify a data model to assure data
quality, provide means of validation, and enable analysis.

This paper proposes an Indoor POI data model consider-
ing various spatial aspects and time series management. Based
on the three roles of POI, searching, sharing, and labeling, we
improved upon a previous generic POI data model, to formu-
late the spatial-temporal Indoor POI data model with compo-
nents for temporal information management. This data model
enables alias management, expression of spatial hierarchy,

Table 3Table 1

Table 2

IndoorPOI_SpatialTemporalHistory

+ InPOI_ID: 000000000010
+ address: Table Number 3
+ dateStart: 2017–01–01
+ date End: 2017–12–31

+ address: Table Number 2
+ dateStart: 2018–01–01
+ date End: 2018–12–31

+ address: Table Number 1
+ dateStart: 2019–01–01
+ date End: 2019–12–31

(a) History of Indoor POI location

(b) Feature-based spatial-temporal Indoor POI query

Figure 10: Experimental implementation of feature-based spatial-temporal POI.
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display across various levels, uniform categorization, unique
type identification, and management of historical information
for efficiency, user-friendly and directed display, and cross-
platform and cross-application sharing. This data model
enables the extension of creating POIs to POI Level 2—for
unnamed facilities such as CCTVs, restrooms, or other
features or spaces that exist indoors. In addition, this paper
has demonstrated the data model’s support for hierarchical
and historical information management through querying.

There are some limitations of this paper that the authors
would like to address in future studies. First, this data model
presents only the data model of the Indoor POIs themselves.
Its implementation in more LBS-specific cases and applica-
tions, such as user location-based queries or pathfinding,
would necessitate methodologies for integration with other
datasets, for instance, IndoorGML in cases of use cases in
indoor navigation platforms. Furthermore, avenues for
visualization, such as with omnidirectional images, which
have been demonstrated in the literature to provide effective
and efficient visualization indoors, may be explored. We
demonstrated that the use of the data model using a sample
dataset, as no extensive yet compatible Indoor POI dataset,
is obtainable. Should it be made available, investigations on
the storage efficiency and more detailed comparisons with
the traditional POI model are possible. This small size of

the sample dataset, although successfully demonstrating the
features of the proposed model, enabled us to perform a
simple approach in designing the database schema. Hence,
the MDA (model-driven architecture) approach may be suit-
able for more massive datasets aimed for more sophisticated
applications. Finally, since Indoor POIs deal with the second
level of POIs, extending into the third level, i.e., intangible
assets or historical levels, should be incorporated.
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IndoorPOI_SpatialTemporalHistory

+ InLocationID: 000000000002
+ address: Table Number 2

+ InPOI_Name: Printer
+ dateStart: 2018–01–01
+ date End: 2018–12–31

+ InPOI_Name: Water Dispenser
+ dateStart: 2019–01–01
+ date End: 2019–12–31

Printer Water Dispenser

(a) Feature history on a location

(b) Location-based spatial-temporal Indoor POI query

Figure 11: Experimental implementation of location-based spatial-temporal POI.
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The social and economic harm to North Korea caused by water-related disasters is increasing with the increase in the disasters
worldwide. Despite the improvement of inter-Korean relations in recent years, the issue of water-related disasters, which can
directly affect the lives of people, has not been discussed. With consideration of inter-Korean relations, a government-wide
technical plan should be established to reduce the damage caused by water-related disasters. Therefore, the purpose of this study
was to identify remote sensing and GIS techniques that could be useful in reducing the damage caused by water-related disasters
while considering inter-Korean relations and the disasters that occur in North Korea. To this end, based on the definitions of
disasters in South and North Korea, water-related disasters that occurred during a 17-year period from 2001 to 2017 in North
Korea were first summarized and reclassified into six types: typhoons, downpours, floods, landslides, heavy snowfalls, and
droughts. In addition, remote sensing- and GIS-based techniques in South Korea that could be applied to water-related disasters
in North Korea were investigated and reclassified according to applicability to the six disaster types. The results showed that
remote sensing and other monitoring techniques using spatial information, GIS-based database construction, and integrated
water-related disaster management have high priorities. Especially, the use of radar images, such as C band images, has proven
essential. Moreover, case studies were analyzed within remote sensing- and GIS-based techniques that could be applicable to the
water-related disasters that occur frequently in North Korea. Water disaster satellites with high-resolution C band synthetic
aperture radar are scheduled to be launched by South Korea. These results provide basic data to support techniques and
establish countermeasures to reduce the damage from water-related disasters in North Korea in the medium to long term.

1. Introduction

After the first Inter-Korean Summit that took place on April
27, 2018, additional summits were held to discuss inter-
Korean issues. These summits mainly discussed economic
and cultural exchanges. However, natural disasters are
important because North and South Korea are geographically
close and can affect each other. Furthermore, for the first
time, North Korea–United States summits were held in
Singapore on June 12, 2018, and February 27–28, 2019, and
issues related to North Korea were discussed internationally.
During discussions at the summit, the United States and

North Korea agreed to resolve a variety of issues, including
complete denuclearization, a peace regime, normalization
of United States–North Korea relations, and the repatriation
of a corpse from the Korean War. However, as with the
inter-Korean summit, no issues pertaining to North Korea’s
safety from natural disasters have been discussed, despite the
severe current situation with regard to natural disasters in
North Korea.

Water-related disasters are increasing in North Korea as
unusual climate problems emerge worldwide. Correspond-
ingly, disaster safety problems are receiving more attention
[1]. According to the 2018 Global Risk Index, North Korea
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has the 41st highest risk index among 191 countries [2]. In
comparison, South Korea ranked relatively low at 166th.
For geographical reasons, the occurrence of disasters at the
inter-Korean border directly affects the entire Korean
Peninsula, especially South Korea, because the water systems
flow into South Korea. For example, in September 2009,
six South Koreans were killed by the discharge of the
Hwanggang Dam upstream on the Imjin River. Therefore,
to reduce the damage caused by water-related disasters in
North Korea, it is necessary to develop technical measures
at the national level.

In this study, the frequency of water-related disasters in
North Korea to identify applicable techniques was analyzed
to ensure safety through inter-Korean cooperation. This plan
reflects recent changes in North Korea’s diplomatic relations
in terms of humanitarian issues, which may foster responses
to water-related disasters. Based on statistics regarding
water-related disasters in North Korea, this study investi-
gated the applicability of science and technology employed
in South Korea, which has similar geographic characteristics,
and established priorities for techniques that could support
inter-Korean cooperation. To this end, the trend of water-
related disasters in North Korea is first summarized and
analyzed. Then, forms of science and technology used to
respond to water-related disasters in South Korea are sur-
veyed, and a ranking of the types of science and technology
that would be applicable to North Korea is determined.
Finally, case studies of remote sensing data of water-related
disasters are analyzed. As a result of these processes, science
and technology could be employed to reduce the damage
caused by the disasters.

Due to the secretive nature of North Korea, data on the
damage caused by disasters are difficult to obtain. Therefore,
this study summarized data on the occurrence of water-
related disasters in North Korea based on information
released by the international community and data published
by the North Korean government during a 17-year period
from 2001 to 2017. The water-related disasters were catego-
rized into six types based on the definitions of disasters in
North and South Korea and the current status in North
Korea. Through this process, water-related disaster-related
techniques used in South Korea were investigated and classi-
fied into whether they could reduce damage from disasters
occurring in North Korea. South Korean techniques for
water-related disaster damage reduction could be applied to
adjacent areas of North Korea. Against this backdrop, the
use of remote sensing technique is essential. In addition,
the priorities among South Korean techniques were evalu-
ated by considering the water-related disasters that occur in
North Korea; focus group interviews were conducted to
assess the technical aspects and impacts of disasters. Through
this effort, the techniques most applicable to the problems
resulting from water-related disasters all over North Korea
were evaluated. Based on the evaluation results, the priorities
of various techniques for application were calculated in
North Korea through quadrant analysis. Finally, an addi-
tional analysis of application of these techniques was
conducted for water-related disasters, which continue to
cause significant damage in North Korea.

As the incidence of water-related disasters has
increased, monitoring techniques using various types of
data have been developed around the world, including in
Korea. In particular, remote sensing technique is essential
in low-access areas such as North Korea as it makes peri-
odic monitoring of large areas possible. As shown in previ-
ous research, various types of disasters are currently being
monitored using satellite images. In addition, various spa-
tial analyses are performed based on monitoring data,
allowing for the establishment of integrated water-related
disaster management. Especially for water-related disasters,
the use of SAR satellite imagery with clear water reflectivity
is known to be very effective [3, 4].

This study sought to clarify which South Korean disaster
damage reduction techniques using remote sensing and spa-
tial information could be used for reducing damage in North
Korea. The study first summarized the current situation of
water-related disasters in North Korea through a review of
the literature, websites, and related reports [5]. The status
of water-related disasters in North Korea was aggregated by
year and cause. Then, damage reduction techniques for
water-related disasters used in South Korea were investigated
and their applicability to North Korea was evaluated. Third,
the methodologies and data (remote sensing and GIS data)
used in South Korea were organized and analyzed. Fourth,
the use of C band synthetic aperture radar satellites by South
Korea, which can directly monitor North Korean water-
related disasters in the future, was presented. Finally, the
study summarized the approaches to reduce the damage in
North Korea. The detailed workflow is shown in Figure 1.

2. Data and Methodology

2.1. Investigation of Natural Disasters Occurring in North
Korea. To identify applicable techniques based on the occur-
rence of disasters in North Korea, North Korea’s natural
disaster occurrence data were collected. Due to the isolation-
ist policy of the North Korean government, comprehensive
published statistical data on natural disasters in North Korea
are difficult to gather. Therefore, this study was based mainly
on newspapers and press releases, which represent the official
media of North Korea. In addition, data on North Korea pub-
lished by disaster-related international organizations were
reviewed to improve the credibility of the dataset. An interim
report published by the International Federation of Red
Cross and Red Crescent Societies (IFRC) provided informa-
tion about North Korea’s response to and recovery from
natural disasters. In addition, data published in South Korea
were compared and analyzed to minimize missing data. This
process led to a summary of data on the frequency of natural
disasters in North Korea as previously investigated [5].

By comparing data from various sources, systematic
investigation and summarization of the status of disasters
in North Korea were conducted [5]. Due to insufficient data
on recent occurrences, the survey period was set as January
2001 to December 2017 (Table 1). Based on data from a
previous study of disasters in North Korea [6], additional
investigations and reviews were conducted and the results
reclassified using the classification system presented in this
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study. North Korea is a very secretive country; as a result, it is
difficult to acquire quantitative data on North Korea. Our
results were obtained by reviewing previous research on
natural disasters [5, 6], focusing on water-related disasters.

According to the integrated data [5, 6], 114 earthquakes
occurred in North Korea, and more than one third of all
natural disaster occurrences were caused by earthquakes.
However, the magnitudes of the earthquakes were relatively
low compared to the number of occurrences, so the damage
was not significant. The earthquakes that occurred, most of

which were artificially induced, generally ranged in magni-
tude from 2.0 to 4.0. Natural disasters related to water are
important among the results in [5, 6] because although earth-
quakes are reported frequently, the degree of damage is not
directly proportional [5]. Other natural disasters, such as
heat waves, are less frequent, which indicates that the most
damaging natural disasters are water-related. According to
Figure 2, where the number of natural disasters is compared,
it can be seen that the occurrence of water-related disasters
are relatively higher than other natural disasters. In addition
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Figure 1: Detailed workflow for this study.

Table 1: Water-related disaster occurrence rates in North Korea between 2001 and 2017 [5].

Typhoon Downpour Flood Landslide Heavy snowfall Drought Total of water-related disasters

2001 1 2 1 2 2 2 10

2002 5 3 1 1 0 0 10

2003 0 1 0 1 0 0 2

2004 1 5 2 1 0 0 9

2005 2 4 1 1 0 0 8

2006 1 3 2 2 0 0 8

2007 2 2 1 0 0 0 5

2008 2 1 1 0 0 0 4

2009 0 1 0 1 0 0 2

2010 3 4 4 0 0 0 11

2011 4 5 2 1 2 1 15

2012 3 5 5 2 0 1 16

2013 0 1 1 1 0 0 3

2014 0 0 0 0 0 1 1

2015 1 2 2 0 0 1 6

2016 1 2 1 2 0 0 6

2017 0 0 0 3 0 1 4

Total 26 41 24 18 4 7 120
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to the frequency of occurrence, the actual damage from
water-related disasters is higher than others [6, 7]; other
disasters include cold wave, heat wave, and sandy dust.

Therefore, this study analyzed disasters that have a great
impact on people due to the actual damage caused [6, 8]. This
study classified water-related disasters into six categories
according to the classification systems of South and North
Korea: typhoons, downpours, floods, landslides, heavy snow-
falls, and droughts.

Among the types of water-related disaster classified in
this study, the disasters, including typhoons, strong winds,
downpours, and floods, were relatively frequent and also
resulted in large losses of life and property. The cumulative
frequency of downpour in North Korea for the 17 years
was highest after an earthquake. Thirteen downpours, about
30 percent of the total, were occurred together due to
typhoons [6]. The occurrence of downpours was associated
with floods, landslides, and tsunamis, which caused greater
and wider damage. According to a report by a UN coordina-
tor currently residing in North Korea, 231 people died and
212,000 were adversely affected by downpours in North
Pyongan Province and South Pyongan Province in 2012
[9]. In 2013, the following year, 189 people died and
800,000 people were affected in the area. In 2014, the region
suffered 18 months of drought. In 2015, Typhoon Goni
caused severe damage in South Hwanghae Province, North
and South Hamgyong Province, and the city of Naseon.
The typhoon left 22,000 victims of dead, injured, and dis-
placed in Naseon. In a typical case of downpour in North
Hamgyong Province, which occurred between August 29
and September 2, 2016, 138 people died and 680,000 people
were displaced, as reported by the Chosun Central Broad-
casting Corporation (Figure 3(a)).

North Korea, which is mostly mountainous and has high
average altitude, experiences cold weather and heavy snow
damage during the winter season between December and
February. Heavy snowfall in Gangwon-do caused heavy dam-
age and economic loss in February 2011. Droughts, on the
other hand, occurred mostly between March and June and
throughout all regions of North Korea. The number of
droughts was higher in Hwanghae Province than in other
regions. A drought lasting from March to August, 2015 was
among the worst (Figure 3(b)). In 2017, a drought occurred
in the granary areas of Hwanghae and Pyongan Provinces,
and a state of emergency was declared in June. According to
the report by the UN coordinator, in recent years, North
Korea has suffered fromwater-related disasters every year [9].

2.2. Investigation and Classification of Techniques for Water-
Related Disasters in South Korea. This section examined the
current state of science and technology related to water-
related disasters in South Korea to suggest an appropriate
direction for North Korea’s disaster response technique.
The National Science and Technology Information Service
(NTIS), a national science and technology knowledge informa-
tion portal operated by South Korea’s Ministry of Science and
Technology, was used to collect information on projects per-
taining to water-related disaster reduction techniques in Korea
[12]. NTIS provides a range of information about the projects,
including content, research equipment, and researchers. Based
on the NTIS service, projects in science and technology under-
taken through the last decade (2008–2017) were collected to
serve as basic data for analysis.

To investigate science and technology projects related to
water-related disasters, research and development projects
were identified using related keywords and were then

40
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Figure 2: The number of natural disasters of water-related disasters, landslides, and other natural disasters.
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classified into the six types (typhoon, downpour, flood, land-
slide, heavy snowfall, and drought) determined previously.
To reduce the damage in North Korea, South Korean tech-
niques using remote sensing and spatial information were
searched for and the resulting reduction in damage from
water-related disasters was examined. Finally, 22 projects
classified by the type of disaster were collected. The projects
were examined with the aim of identifying a maximum of
ten of each technique. These were then categorized according
to the six types. By analyzing the technical elements of each
technique, the importance of using radar satellite data for
water-related disasters was also analyzed.

3. Results

3.1. Element Technique Analysis of Water-Related Disaster
Reduction Techniques. To analyze the overall priority of
water-related disaster-reduction techniques, the technique
was analyzed based on the investigation and classification
results of techniques in South Korea. Total 22 research and
development technologies were determined to be reduction
techniques for water-related disasters. Then, the elements
of each technique for water-related disasters were derived
based on the results. The basic data essential to each tech-
nique are also listed.

The final result showed high priorities in three categories:
water-related disaster monitoring using spatial information
technique, research infrastructure and database construction
based on a geographic information system data (GIS),
and complex disaster integrated management. Especially,
research database construction based on water-related disas-
ter monitoring technique in the form of spatial information
for the whole of North Korea for integrated disaster
management can be used as a fundamental technique for
reducing damage.

Representative techniques are summarized in Table 2.
Sixteen projects, 84.21% of the total, applied spatial
information-related techniques. Synthetic aperture radar
(SAR) remote sensing was also related to 12 techniques

(63.16%), and optical and meteorological methods were
related to 3 and 10 techniques, respectively, for a total of
68.42%. In particular, the C band, such as from RADAR-
SAT-1, RADARSAT-2, and Sentinel-1, was used for the main
applications of SAR remote sensing for water-related disasters.

In addition to the high use of radar satellite images for
water-related disasters, such as the use of C band data, a tech-
nique using additional data elements was also represented.
Various national thematic maps such as soil, land use, land
cover, and forest maps, which are based on satellite images,
have been used. These fundamental data could be also
constructed for North Korea based on satellite images. Due
to the occurrence of disasters in North Korea, the utilization
of a technique that employs climate change scenarios to
predict rainfall pattern variability in the future is important
because the damage caused by typhoons or downpours is
high [13, 14].

3.2. Case Studies of the Application of Satellite Images to
Water-Related Disasters. Water-related disasters have been
increasing all over the world, but especially in North Korea,
where the damage caused by the disasters such as floods
and typhoons is severe; the disasters are widespread in
inaccessible areas and are the most destructive. As a result
of research, the importance of accurate and continuous mon-
itoring using remote sensing satellite imagery is increasing
with the research on water-related disasters. By comparing
before and after data of various water-related disasters or
by tracking the progress of disasters, research aims to obtain
a variety of information for selecting indicators, e.g., topogra-
phy and vegetation characteristics, and effective response to
disasters. This study organized disaster-related projects in
South Korea and analyzed the data used and the techniques
developed in each project that might be applicable for
water-related disaster damage reduction in North Korea.
Due to the secretive nature of North Korea, it is difficult to
obtain actual data; however, data were derived by reviewing
the available techniques to identify potential inter-Korean
cooperative measures.

(a) (b)

Figure 3: Damage from water-related disasters in North Korea: (a) flood of Hwanghae Province in 2015 [10] and (b) flood of North
Hamgyong Province in 2016 [11].
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Table 2: Results from priority analysis of techniques required in North Korea.

Water-related
disaster class
of project

Project Element technique Main data

Flood
Development of system for vulnerability

analysis of natural disaster

(1) SAR remote sensing (1)RADARSAT-1, RADARSAT-2

(2) GIS

(2) Land use and cover

(3) DEM

(4) Forest map

Flood
Development of system for flood of stream

and risk analysis

(1) GIS (1) DEM

(2) SAR remote sensing
(2) Land use and cover

(3) Location of flood

Flood
Development of flash flood damage prediction

method in mountainous areas

(1) SAR remote sensing (1) RADARSAT-1, RADARSAT-2

(2) GIS

(2) Land use and cover

(3) DEM

(4) Forest map

Flood
Pilot development and operation of urban flood

forecasting project based radar-rainfall -

(1) SAR remote sensing (1) Sentinel-1

(2) Optic remote sensing
(2) COSMO-SkyMed

(3) WorldView-2, WorldView-3

Flood

Development of the evaluation technology for
complex causes of inundation vulnerability
and the response plans in coastal urban areas

for adaptation to climate change

(1) GIS

(1) Land use and cover

(2) Climatic change scenario
(RCP 4.8, 8.5)

Flood
Development of flood forecasting technology

for catching golden time
(1) GIS

(1) Climatic change scenario
(RCP 4.8, 8.5)

Flood
Establishment of city flood response system

by region

(1) SAR remote sensing (1) RADARSAT-2

(2) GIS

(2) Sentinel-1

(3) Land use and cover

(4) DEM etc.

Flood
Urban flood analysis and flood safety

improvement technology

(1) SAR remote sensing (1) RADARSAT-2

(2) GIS
(2) Sentinel-1

(3) Land use and cover

Flood
Development of hydrological model for decision

making to flood response

(1) SAR remote sensing (1) RADARSAT-2

(2) GIS
(2) Sentinel-1

(3) Land use and cover

Flood Intelligent flood prediction and warning system

(1) SAR remote sensing (1) RADARSAT-2

(2) GIS

(2) Sentinel-1

(3) COSMO-SkyMed

(4) Land use and cover

Typhoon
Implementation of typhoon related disaster

information database using remote
sensing data

(1) SAR remote sensing
(1) RADARSAT-1, RADARSAT-2

(2) Sentinel-1

Typhoon
Developing detection/prediction technique for tropical

cyclone
formation based on satellite and numerical model

(1) Meteorological satellite
remote sensing

(1) Chollian 1, Chollian 2

(2) Meteorological data

Typhoon
A research for typhoon track prediction using

end-to-end deep learning technique
(1) Meteorological satellite
remote sensing

(1) Chollian 1, Chollian 2

Typhoon
Developing typhoon prediction system by

multi-model ensemble technique

(1) Meteorological satellite
remote sensing

(1) Chollian 1, Chollian 2

(2) SAR remote sensing

(2) RADARSAT-1, RADARSAT-2

(3) Sentinel-1

(4) COSMO-SkyMed

Typhoon
Prediction of medium- and long-range tropical cyclone
activity using the statistical-dynamical forecast system

(1) Meteorological satellite
remote sensing

(1) Chollian 1, Chollian 2

(2) Meteorological data
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Various satellite images were used to analyze cases of
flood disaster-related hazards (downpour, flood, typhoon,
drought, landslide, etc.). Representatively, there was one case
of massive flood mapping using optical satellite images [15].
Landsat satellite images, which are medium- to low-
resolution satellite images, were used to evaluate the flood
surface [16], and methodologies for mapping the inundation
site were compared [17]. On the other hand, high-resolution
satellite images have been used to monitor dam reservoirs
[18] and to analyze spatial changes in floods over time [19].
Precise mapping of flooding in plain basin boundaries was
studied [20]. In relation to typhoons, studies have been car-
ried out to establish early warning systems for sea hurricanes
[21] and information on sea-level environments [22].

Unlike optical satellite images, SAR images can be used to
monitor floods irrespective of weather conditions and during
both day and night. Accordingly, SAR is advantageous when
estimating urban and agricultural damage from river flood-
ing; and flood mapping techniques using SAR images have
been studied continuously [23, 24]. In particular, studies to
observe floods with the data obtained immediately after the
flood have been actively conducted [25, 26]. A flood risk
mapping study using 16 years of rainfall and historical satel-
lite data was also carried out employing the advantages of
satellite images, which can be monitored periodically [27]. In
addition, flood depth was estimated using high-resolution
SAR images [28], and filter comparison analysis was per-
formed to interpret radar images for flood mapping [29].

In recent years, research has been conducted to solve
additional environmental problems (landslides, slope stabil-
ity, etc.) by applying GIS and machine learning technique
to the monitoring of information constructed through satel-
lite images. Typically, hydrological modeling for flood fore-
casting based on GIS [30], spatial modeling using GIS for

flooding in urban areas [31], and flood risk assessment in
hazardous areas [32] have been performed. Recently,
machine learning has been used to analyze the risk of floods
[33], and multiple risks for complex disasters have been
mapped [34]. In addition, in one case, disasters were
evaluated by applying deep learning to satellite imagery
[35]. There are also cases of employing various GIS-based
techniques that use remote sensing data for vulnerability
analysis of water-related disasters [36–38]. Satellite imagery
is also being used actively to assess technological develop-
ments related to landslides, which have high frequency and
cause large damage in North Korea [39, 40]. Various studies
have been conducted to map landslides, including studies on
soil moisture [41] for landslide risk assessment [42, 43].

Despite the low priority in the results from priority anal-
ysis of this study, satellite images are also used in studies
related to drought and heavy snow, which need to be
expanded in the long term. Satellite images are especially
used for drought monitoring [44]. In addition, in some cases,
the risk of drought has been assessed by geospatial methods
[45]; for example, the impact of land destruction due to
drought has been assessed in Brazil [46]. Examples of esti-
mating snow depth due to snowfall based on MODIS images
[47] and surface modeling [48] have also been reported.

The use of satellite images for water-related disasters and
global disaster monitoring in the Korean Peninsula and other
inaccessible areas will help prevent the occurrence of and
mitigate the damage caused by the disasters [15, 49–51]. In
this regard, South Korea is planning to launch the Compact
Advanced Satellite 500-5 (CAS500-5) to reduce the damage
caused by water-related disasters occurring in South and
North Korea through inter-Korean cooperation. In particu-
lar, water disaster satellites with high-resolution C band
SAR, which will be directly applicable to water-related

Table 2: Continued.

Water-related
disaster class
of project

Project Element technique Main data

Typhoon
Study on methods to track northwestern Pacific

typhoons paths using seismic array data
(1) Meteorological satellite
remote sensing

(1) Chollian 1, Chollian 2

Typhoon Disastrous weather/climate analysis and prediction (1) GIS
(1) Meteorological data

(2) Climatic change scenario
(RCP 4.5 and 8.5)

Downpour

Improvement of understanding and prediction
capability

for high-impact heavy precipitation systems over the
Korean peninsula

(1) Meteorological satellite
remote sensing

(1) Chollian 1, Chollian 2

(2) SAR remote sensing (2) RADARSAT-1, RADARSAT-2

Downpour
Development of a prediction system for heavy rainfalls
caused by cloud clusters over the Korean peninsula

(1) GIS (1) Meteorological data

(2) SAR remote sensing
(2) Sentinel-1

(3) COSMO-SkyMed

Drought
Development of the software module in response to
drought events based on satellite imagery in Korea

(1) Optic remote sensing (1) Landsat 5, Landsat 6, Landsat 7

Drought
Development of a drought monitoring system through

integrated modeling of multi-sensor data
(1) Meteorological satellite
remote sensing

(1) Chollian 1, RADARSAT-2

(2) Meteorological data

Heavy snowfall
Development of a prompt action technique

using remote sensing
(1) Optic remote sensing (1) Landsat 5, Landsat 6, Landsat 7
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disasters, are scheduled to be launched by the Ministry of
Environment and K-water. The C band radar satellite images
will continuously monitor the disasters in South and North
Korea, and integrated disaster management on the Korean
Peninsula will finally be performed using a database con-
structed from the accumulated satellite images.

4. Discussion and Conclusions

There is a need for technological measures to reduce the
damage caused by disasters at the levels of international
relations and government development in North Korea. In
particular, it is necessary to reinforce the basic capacity of
North Korea’s disaster response. However, North Korea’s
closed attitude allows only one-time assistance rather than
fundamental technological improvements. Due to social
and economic conditions in North Korea, the quality of life
of North Korean citizens is lower than that in neighboring
countries, and needs that affect daily life are therefore more
important. Thus, it is necessary to lay the foundation for joint
research and development with North Korea. Therefore, this
study is aimed at providing a scientific support system for
responding to water-related disasters. In particular, tech-
niques related to water-related disasters, such as downpours
and typhoons, which cause serious damage are shown as a
high priority. In the case of earthquakes, on the other hand,
although the frequency of occurrence is high, the importance
is low because losses from earthquakes are not great.

Research already conducted and techniques already
employed in South Korea are similar to those needed in
North Korea [15, 52, 53]. The research and development
technologies which have the highest priority among the
investigated techniques should be developed first because
they can provide accurate water-related disaster information
for North Korea over the long term. Finally, based on the
disasters investigated in this study that are currently occur-
ring in North Korea, the techniques to be applied to North
Korea can be classified into three categories in terms of their
priority for development against water-related disasters:
techniques for disaster monitoring using remote sensing
and spatial information, those for geoinformation system
and GIS-based database construction, and those for inte-
grated water-related disaster management.

In conclusion, an integrated response system for water-
related disasters on the Korean Peninsula could be estab-
lished by comprehensively managing information pertaining
to water-related disasters occurring in North Korea. The
application of spatial analysis is essential for reducing
damage caused by the disasters in spatially adjacent areas.
Therefore, the construction of a spatial database, which is
not currently available for North Korea, and the infrastruc-
ture for basic research are fundamental to all future disaster
management efforts. Research and development technologies
of low priority must also be developed continuously over the
mid to long term.

The characteristics of North Korea make it difficult to
manage spatial data for water-related disaster techniques.
Therefore, it is necessary to establish a basic infrastructure
for research based on GIS to integrate data from various

types of water-related disasters. Recent water-related disas-
ters have tended to evolve from a single disaster into a more
complex form, so an integrated disaster response system
must be established through monitoring and cumulative
analysis of the spatial distribution of disasters through con-
tinuous remote sensing data. Furthermore, information on
water-related disasters should be integrated and managed
systematically through joint development and international
cooperation. The results of priority analyses of technological
developments can enhance the application of scientific and
technological products to practical situations. In addition, it
will be possible to lay the groundwork for coping with
water-related disasters and for reducing damage through
the systematic sharing of the technique.

Conflicts of Interest

The authors declare that there is no conflict of interest
regarding the publication of this paper.

Acknowledgments

This research was conducted at the Korea Environment
Institute (KEI) with support from the Basic Science
Research Program through the National Research Founda-
tion of Korea (NRF) funded by the Ministry of Education
(NRF-2018R1D1A1B07041203) and support from the Korea
Environment Industry & Technology Institute (KEITI) from
‘The Application technology and system of satellite image
radar in the environmental’ and funded by the Korea
Ministry of Environment (MOE) (2019002650001).

References

[1] D. Alexander, Natural Disasters, Routledge, 2017.
[2] T. Andrew, V. Luca, M. F. Montserrat, and D. Brian, Inform

Global Risk Index Results 2018, Inform, Ed., Inform, EU, 2017.
[3] S. Hakdaoui and A. Emran, “Extraction of water information

based on SAR RADAR and Optical image processing: case of
flood disaster in Southern Morocco,” in Geospatial Technol-
ogy, pp. 15–29, Springer, 2020.

[4] N. Kussul, A. Shelestov, and S. Skakun, “Flood monitoring
from SAR data,” inUse of Satellite and In-Situ Data to Improve
Sustainability, pp. 19–29, Springer, 2011.

[5] S. Lee, T. Song, and M.-j. Lee, “A study on the inter-Korean
cooperation for natural disaster damage reduction using spa-
tial information,” Korean Journal of Remote Sensing, vol. 35,
no. 1, pp. 163–177, 2019.

[6] T. G. Kang, J. Hoon, J. S. Lee et al., “Data collection for natural
disaster management in the Democratic People’s Republic of
Korea and cooperation between the two Koreas,” Korea Envi-
ronment Institute, Sejong, 2016.

[7] M.-J. Lee, S. J. Myung, T. G. Kang, T. H. Kim, S. Lee, and
N.-W. Jo, “Disaster safety R & D project planning research
for inter-Korean exchange and cooperation,” Korea Envi-
ronment Institute, Sejong, 2018.

[8] S. J. Myung, H. J. Hong, H. I. Choi, and J. C. Jung, “Estimation
of flood vulnerable areas in North Korea and collaboration
strategies between South Korea and North Korea,” Korea
Environment Institute, Sejong, 2008.

8 Journal of Sensors



[9] OCHA, Needs and Priorities DPR Korea, H. P. Cycle, Ed., The
United Nations Office for the Coordination of Humanitarian
Affairs, 2016.

[10] TRUST ORG, North Korea – food aid reaches 140,000 hit by
floods says WFP, FloodList, 2016.

[11] UN DPRK, North Hamgyong floods 2016, N. H. F. 2016, 2016.
[12] NTIS, National science & technology information service, Min-

istry of Science and ICT, 2019.

[13] S. Kim, Y. Tachikawa, and K. Takara, Recent flood disasters
and progress of disaster management system in Korea, 2007.

[14] S.-Y. Park, B.-J. Kim, and S.-H. J. J. O. K. S. O. H. M. Ahn,
“Characteristics of natural disaster in North Korea,” Journal
of the Korean Society of Hazard Mitigation, vol. 10, no. 3,
pp. 21–29, 2010.

[15] Y. Piao, H.-S. Lee, K.-T. Kim, and K.-S. Lee, “Methodology to
apply low spatial resolution optical satellite images for large-
scale flood mapping,” Korean Journal of Remote Sensing,
vol. 34, no. 5, pp. 787–799, 2018.

[16] A. Maxim, R. Adrian, G. Lucian, M. Gabriel, and R. Bogdan,
“Assessing flooded surface area using Landsat satellite data
on the Siret river downstream of the Lower Danube,” Annals
of the University Dunarea de Jos of Galati: Fascicle II, Mathe-
matics, Physics, Theoretical Mechanics, vol. 41, 2018.

[17] D.Munasinghe, S. Cohen, Y. F. Huang, Y. P. Tsang, J. Zhang, and
Z. Fang, “Intercomparison of satellite remote sensing-based flood
inundation mapping techniques,” Journal of the AmericanWater
Resources Association, vol. 54, no. 4, pp. 834–846, 2018.

[18] S. Yoon, S. Lee, K. Park, S. Jang, and J. Rhee, “Development of
a storage level and capacity monitoring and forecasting tech-
niques in Yongdam Dam Basin using high resolution satellite
image,” Korean Journal of Remote Sensing, vol. 34, no. 6_1,
pp. 1041–1053, 2018.

[19] N. M. de Musso, D. Capolongo, A. Refice, F. P. Lovergine,
A. D’Addabbo, and L. Pennetta, “Spatial evolution of the
December 2013 Metaponto plain (Basilicata, Italy) flood event
using multi-source and high-resolution remotely sensed data,”
Journal of Maps, vol. 14, no. 2, pp. 219–229, 2018.

[20] M. Mishra, V. Dugesar, K. N. Prudhviraju, S. B. Patel, and
K. Mohan, “Precision mapping of boundaries of flood plain
river basins using high-resolution satellite imagery: a case
study of the Varuna river basin in Uttar Pradesh, India,” Jour-
nal of Earth System Science, vol. 128, no. 4, p. 105, 2019.

[21] Y. Yu, H. Shi, and Y. Wang, “Early warning method for sea
typhoons using remote-sensing imagery based on improved
support vector machines (SVMs),” Journal of Coastal
Research, vol. 82, no. sp1, pp. 180–185, 2018.

[22] D. Song, L. Guo, Z. Duan, and L. Xiang, Impact of major
typhoons on sea surface environment in the northwestern
Pacific derived from satellite remote sensing, 2018.

[23] M. A. Clement, C. G. Kilsby, and P. Moore, “Multi-temporal
synthetic aperture radar flood mapping using change detec-
tion,” Journal of Flood Risk Management, vol. 11, no. 2,
pp. 152–168, 2018.

[24] Y. T. Jung, S.-E. Park, C.-S. Baek, and D.-H. Kim, “Evaluation
of polarimetric parameters for flood detection using PALSAR-
2 quad-pol data,” Korean Journal of Remote Sensing, vol. 34,
no. 1, pp. 117–126, 2018.

[25] R. Hostache, M. Chini, L. Giustarini et al., “Near-real-time
assimilation of SAR-derived flood maps for improving
flood forecasts,” Water Resources Research, vol. 54, no. 8,
pp. 5516–5535, 2018.

[26] X. Huang, C. Wang, and Z. Li, “A near real-time flood-
mapping approach by integrating social media and post-
event satellite imagery,” Annals of GIS, vol. 24, no. 2,
pp. 113–123, 2018.

[27] N. Alahacoon, K. Matheswaran, P. Pani, and G. Amarnath, “A
decadal historical satellite data and rainfall trend analysis
(2001–2016) for flood hazard mapping in Sri Lanka,” Remote
Sensing, vol. 10, no. 3, p. 448, 2018.

[28] F. Cian, M. Marconcini, P. Ceccato, and C. Giupponi, “Flood
depth estimation by means of high-resolution SAR images
and lidar data,” Natural Hazards and Earth System Sciences,
vol. 18, no. 11, pp. 3063–3084, 2018.

[29] D. Kim, H.-S. Jung, and W. Baek, “Comparative analysis
among radar image filters for flood mapping,” Journal of the
Korean Society of Surveying, Geodesy, Photogrammetry and
Cartography, vol. 34, no. 1, pp. 43–52, 2016.

[30] S. Zafar, H. M. S. Azhar, and A. Tahir, “A GIS based hydrolog-
ical model for river water level detection & flood prediction
featuring morphological operations,” Proceedings of Interna-
tional Conference on Artificial Life and Robotics, vol. 23,
pp. 191–195, 2018.

[31] S. A. Mohamed, “Application of satellite image processing and
GIS-spatial modeling for mapping urban areas prone to flash
floods in Qena governorate, Egypt,” Journal of African Earth
Sciences, vol. 158, p. 103507, 2019.

[32] V. A. Chinaiwala, T. S. Dalia, D. P. Dave, J. R. Gaekwad, Y. D.
Jariwala, and N. Soni, “Flood hazard assessment and identifi-
cation of danger zones using GIS,” METHODOLOGY, vol. 4,
no. 4, 2018.

[33] M. Ma, C. Liu, G. Zhao et al., “Flash flood risk analysis based
on machine learning techniques in the Yunnan Province,
China,” Remote Sensing, vol. 11, no. 2, p. 170, 2019.

[34] O. Rahmati, S. Yousefi, Z. Kalantari et al., “Multi-hazard expo-
sure mapping using machine learning techniques: a case study
from Iran,” Remote Sensing, vol. 11, no. 16, p. 1943, 2019.

[35] L. Yang and G. Cervone, “Analysis of remote sensing imagery
for disaster assessment using deep learning: a case study of
flooding event,” Soft Computing, vol. 23, no. 24, pp. 13393–
13408, 2019.

[36] S. Lee, S. Lee, M.-J. Lee, and H.-S. Jung, “Spatial assessment of
urban flood susceptibility using data mining and geographic
information system (GIS) tools,” Sustainability, vol. 10, no. 3,
p. 648, 2018.

[37] J. Lim and K.-s. Lee, “Flood mapping using multi-source
remotely sensed data and logistic regression in the heteroge-
neous mountainous regions in north korea,” Remote Sensing,
vol. 10, no. 7, p. 1036, 2018.

[38] S. Samanta, D. K. Pal, and B. Palsamanta, “Flood susceptibility
analysis through remote sensing, GIS and frequency ratio
model,” Applied Water Science, vol. 8, no. 2, p. 66, 2018.

[39] Francioni, Calamita, Coggan et al., “A multi-disciplinary
approach to the study of large rock avalanches combining
remote sensing, GIS and field surveys: the case of the Scanno
Landslide, Italy,” Remote Sensing, vol. 11, no. 13, p. 1570, 2019.

[40] C. Zhao and Z. Lu, “Remote sensing of landslides—a review,”
Remote Sensing, vol. 10, no. 2, p. 279, 2018.

[41] L. Zhuo, Q. Dai, D. Han, N. Chen, B. Zhao, and M. Berti,
“Evaluation of remotely sensed soil moisture for landslide haz-
ard assessment,” IEEE Journal of Selected Topics in Applied
Earth Observations and Remote Sensing, vol. 12, no. 1,
pp. 162–173, 2019.

9Journal of Sensors



[42] F. Fiorucci, D. Giordan, M. Santangelo, F. Dutto, M. Rossi, and
F. Guzzetti, “Criteria for the optimal selection of remote sens-
ing optical images to map event landslides,” Natural Hazards
and Earth System Sciences, vol. 18, no. 1, pp. 405–417, 2018.

[43] P. Lu, Y. Qin, Z. Li, A. C. Mondini, and N. Casagli, “Landslide
mapping from multi-sensor data through improved change
detection-based Markov random field,” Remote Sensing of
Environment, vol. 231, p. 111235, 2019.

[44] B. R. Rushi, V. Mishra, W. L. Ellenburg, F. M. Qamer, A. S.
Limaye, and D. Irwin, “Application of satellite remote sensing
in drought monitoring in Bangladesh using a user-friendly
tool,” AGU Fall Meeting Abstracts, 2018.

[45] M. K. Abuzar, M. Shafiq, S. A. Mahmood et al., “Drought risk
assessment in the Khushab region of Pakistan using satellite
remote sensing and geospatial methods,” International Journal
of Economic Environmental Geology, vol. 10, no. 1, pp. 48–56,
2019.

[46] D. A. Mariano, C. A. C. d. Santos, B. D. Wardlow et al., “Use of
remote sensing indicators to assess effects of drought and
human- induced land degradation on ecosystem health in
Northeastern Brazil,” Remote Sensing of Environment,
vol. 213, pp. 129–143, 2018.

[47] D. Kim, H.-S. Jung, and J.-C. Kim, “Comparison of snow cover
fraction functions to estimate snow depth of South Korea from
MODIS imagery,” Korean Journal of Remote Sensing, vol. 33,
no. 4, pp. 401–410, 2017.

[48] G. De Lannoy, A. Vanrykel, H. Lievens, E. Kim, and
L. Brucker, “Snow estimation under a vegetation gradient
using satellite remote sensing data and land surface modeling
during SnowEx 2017,” IGARSS 2018-2018 IEEE International
Geoscience and Remote Sensing Symposium, pp. 6294–6297,
2018.

[49] J. Kim, H. Ho, M.-J. Um, and Y. Kim, “Spatial and temporal
variations in the water use efficiency and its drought signal
on the Korean peninsula using MODIS-derived products,”
Korean Journal of Remote Sensing, vol. 34, no. 3, pp. 553–564,
2018.

[50] J. Park, I. Jung, and K. Park, “Evolution of bias-corrected satel-
lite rainfall estimation for drought monitoring system in South
Korea,” Korean Journal of Remote Sensing, vol. 34, no. 6_1,
pp. 997–1007, 2018.

[51] S.-J. Park and C.-W. Lee, “Simulation of the flood damage area
of the Imjin River basin in the case of North Korea's Hwang-
gang Dam discharge,” Korean Journal of Remote Sensing,
vol. 34, no. 6_1, pp. 1033–1039, 2018.

[52] W.-K. Baek, S.-H. Park, N.-K. Jeong, S. Kwon, W.-J. Jin, and
H.-S. Jung, “A study for the techniques and applications of
NIR remote sensing based on statical analyses of NIR-related
papers,” Korean Journal of Remote Sensing, vol. 33, no. 5_3,
pp. 889–900, 2017.

[53] S. Lee and M.-J. Lee, “Susceptibility mapping of Umyeonsan
using logistic regression (LR) model and post-validation
through field investigation,”Korean Journal of Remote Sensing,
vol. 33, no. 6_2, pp. 1047–1060, 2017.

10 Journal of Sensors



Research Article
An Improved Full-Aperture ScanSAR Imaging Method Integrating
the MIAA Based Aperture Interpolation

Jiaqi Ning,1,2 Dacheng Liu,1 Kaiyu Liu,1 Heng Zhang ,1 and Yingjie Wang1

1Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China 100190
2University of Chinese Academy of Sciences, School of Electronic, Electrical and Communication Engineering, Beijing, China 100049

Correspondence should be addressed to Heng Zhang; caszhmail@163.com

Received 4 February 2020; Revised 25 May 2020; Accepted 8 June 2020; Published 17 July 2020

Academic Editor: Sang-Hoon Hong

Copyright © 2020 Jiaqi Ning et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In the scanning synthetic aperture radar (ScanSAR) mode, the radar antenna sweeps through different range subswaths to image a
wide swath. The full-aperture imaging algorithm for ScanSAR data has been widely used because it can be realized by exploiting the
existing standard high-precision Stripmap SAR processor and does not require stitch processing in the azimuth. However, both the
focused image and the interferogram achieved by full-aperture processing suffer from spikes. The spikes adversely affect the
ScanSAR-related applications, such as target detection and interferometry. To effectively suppress the spikes, an improved
algorithm based on the missing-data iterative adaptive approach (MIAA) is proposed in this manuscript. Besides, the proposed
method can also improve the azimuth resolution of ScanSAR images. Simulation and experimental results demonstrate that this
algorithm has better performance when processing ScanSAR data compared with existing methods.

1. Introduction

Scanning synthetic aperture radar (ScanSAR) is a kind of
operation widely used mode in the modern SAR system [1,
2]. By periodically sweeping the antenna beam through dif-
ferent range subswaths, ScanSAR can obtain a wide swath
at the expense of sacrificing azimuth resolution [3–6]. In
each subswath, the received data are blocked into bursts of
radar echoes in the azimuth direction. In general, burst-by-
burst [7–9] and full-aperture [10, 11] approaches can be
used to process ScanSAR data and these two kinds of
approaches have different processing flows. Among them,
the burst-by-burst approach is the standard approach, which
is computationally efficient. However, the full-aperture
approach has also been used a lot by the SAR community
now because it can make use of existing standard Stripmap
SAR processing programs [10, 12]. The ScanSAR image
focused by the full-aperture approach has been successfully
used for lots of applications [13–21]. Particularly, for the
ScanSAR data of the ALOS-2 satellite, only the image proc-
essed by the full-aperture approach can be used for interfer-
ometric applications [13].

In the full-aperture approach, gaps between bursts are
filled with zeros and then all the bursts of a subswath can
be coherently processed as Stripmap data. However, the
coherently processed multiple bursts result in strong inter-
ference modulations of the azimuth impulse response func-
tion, which are called “spikes” [5, 10, 11, 22, 23]. These
spikes can contaminate ScanSAR image and influence the
interpretation. Furthermore, spikes also exist in the phase
of the processed ScanSAR images. Thus, the spikes also
occur in the ScanSAR interferogram, introducing additional
noise to interferogram and degrading the interferogram
quality [5, 11, 22, 23]. Spike contamination of full-aperture
ScanSAR image limits ScanSAR-related applications, such
as target detection and interferometry. Therefore, the devel-
opment of effective techniques to suppress the spikes is very
useful. Although the spikes can be reduced by a low-pass fil-
tering operation [10], the residual effect is enough to cause
image visual disturbances [22], and the originally rough
azimuth resolution will get worse by this approach [10].
As the azimuth resolution of the full-aperture result is con-
trolled by the envelope of the spikes [10], the spike suppres-
sion can enhance the azimuth resolution at the same time.
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The algorithms of suppressing the spikes while improving
azimuth resolution are very beneficial to the ScanSAR-
related applications.

In [22], an algorithm referred to as the linear prediction
model aperture interpolation technique (LPM-AIT) was pro-
posed to suppress spikes when the full-aperture imaging
algorithm is used to process ScanSAR data. In the LPM-
AIT, the gaps between bursts are recovered by the linear pre-
diction model (LPM), and the coefficient of the LPM is esti-
mated by the Burg algorithm [24]. A similar method is also
used in the data infilling part of the algorithm in [8] to
enhance the azimuth resolution when ScanSAR data imaged
by a burst-by-burst approach. However, when using the
LPM, the missing-data proportion should be no more than
50% [25], and the data recovery capability of the LPM
decreases significantly as the proportion of missing data
increases, which makes this algorithm only suitable for the
ScanSAR system with no more than 2 subswaths. The num-
ber of subswaths in the ScanSAR mode is typically 2-5 [10],
which means that the missing-data proportion will reach
50% to 80%. Thus, the spike suppression performance of
the LPM-AIT is limited when the ScanSAR data are proc-
essed by the full-aperture imaging algorithm.

In this manuscript, an improved full-aperture ScanSAR
imaging algorithm integrating the missing-data iterative adap-
tive approach (MIAA) based aperture interpolation technique
(MIAA-AIT) is proposed. The remainder of this manuscript is
organized as follows. The problem we studied is described in
Section 2. Section 3 is a description of the proposed method.
The results and discussions of the method are given in Section
4, and the conclusions are drawn in Section 5.

2. Problem Statement

ScanSAR obtains a wide-swath image by periodically sweep-
ing the antenna beam through different range subswaths, as

shown in Figure 1(a). In each subswath, the received signal
in the range direction is the same as those in the Stripmap
mode. In the azimuth direction, however, the received signal
is blocked into bursts and is equivalent to data truncated
from the Stripmapmode data which causes incomplete signal
phase history. Two adjacent bursts and zeros between them
as a whole is called a subaperture, as shown in Figure 1(b).

With TB as the burst duration and TC as the burst cycle
period, NB = TB × PRF is the number of samples per burst,
and NC = TC × PRF is the number of samples in a burst cycle
period, where PRF is the sampling frequency in the azimuth
direction. Setting the number of subswaths in the ScanSAR
system to NS, then TC =NS × TB [7, 26, 27]. The gaps
between bursts can be treated as missing samples. The miss-
ing proportion γ can be expressed as (1)

γ = TC − TB

TC
= NC −NB

NC
= 1 − 1

NS
#: ð1Þ

In the following, we focus only on the azimuth direction
of one subswath. For ScanSAR mode, a point-target azimuth
signal before azimuth compression is

Sraw ηð Þ =〠
n

A0 · rect
η − ηnc
TB

� �
exp jπKaη

2� �
#, ð2Þ

where η is the azimuth time, A0 is an arbitrary complex con-
stant, Ka is the azimuth chirp rate, n is the burst number, ηc
is the burst center, and the zero Doppler moment of the target
ηd is set as zero. After padding zeros in the burst intervals,
ScanSAR mode data can be coherently processed by standard
Stripmap processors, referred to as the full-aperture approach.
A point response of ScanSAR using the full-aperture imaging
algorithm is equivalent to coherently adding the compression
results of each burst.

Burst 2
Burst 1

Burst 3

Subswaths

Flight path

Azimuth

V

Range

(a)

2th subaperture

1th subaperture

0 0 0

Azimuth

Ra
ng

e T
B

T
C

(b)

Figure 1: (a) The ScanSAR operation mode. (b) Acquired signal of a ScanSAR subswath.
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When several such pulses are added together, different
phase slopes give spikes in the summation output. As shown
in Figure 2(b), the main lobe and side lobe of the two-

dimensional focus result of one point target are split into
several parts along the azimuth direction, which is called
“spike” phenomenon. Compared to the point target of the
Stripmap mode, shown in Figure 2(a), the focus result of the
point target is strongly deteriorated due to the existence of
spikes. The upper right corner of Figures 2(a) and 2(b) are
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Figure 2: Schematic facade in two dimensions of a point target in Stripmap mode and ScanSAR mode. The upper right corner shows a real
SAR scene. (a) Stripmap mode. (b) ScanSAR mode.
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the images of strip and ScanSAR mode in the same real SAR
scence, respectively. We can see that the spikes seriously con-
taminate the ScanSAR image and influence the interpretation
and applications [22].

Infilling the gaps between bursts with valid data is an
effective strategy to suppress spikes and improve the azimuth
resolution at the same time. Li et. al [22] used the LPM for
data infilling between the burst. However, the number of
samples that can be effectively predicted by the LPM is lim-
ited, and the missing-data proportion should be no more
than 50% [25]. The number of subswaths in the ScanSAR
mode is typically 2-5 [10], which means that the missing-
data proportion will reach 50% to 80%. The performance of
the LPM degrades significantly, and the effect of spike sup-
pression is limited at such a high missing-data proportion.
Therefore, a spike suppression approach that is more suitable
for the ScanSAR data should be proposed.

3. Proposed MIAA-AIT Algorithm

After range compression and range cell migration correction
(RCMC), we aim at recovering the gaps of the azimuth
uncompressed ScanSAR data by the MIAA-AIT algorithm.
Recovering missing data caused by incomplete phase history
from available data is widely used in [24, 25]. To make the
recovered result more reliable, the quadratic phase term is
usually removed by the dechirp operation and retained the
linear phase term [22]. Because the phase history in ScanSAR
mode is limited to the short span of the image by the antenna
beam width, performing dechirp operation on the entire data
will cause a large number of targets located at the same dis-
tance bin to have the same frequency, which will cause target
confusion [9]. Thus, the proposed MIAA-AIT is performed
for each subaperture to obtain nongapped subswath data.

Figure 3 shows the diagram of the processing flow chart
and schematic signal format of one target in each step. The
green boxes represent signal formats at different steps. The

proposed MIAA-AIT includes three steps which are dechirp
operation, MIAA for missing data prediction, and postproces-
sing. Among them, the red square is the key step of the man-
uscript, which will be explained in detail in the following.
Finally, the azimuth compression is applied to the nongapped
subswath data to acquire the final focused ScanSAR image.

3.1. Dechirp Preprocessing. The phase of each target is qua-
dratic, as shown in (2), which is inconvenient for the applica-
tion of MIAA. Dechirp preprocessing in the azimuth is
performed by multiplying the conjugate of the azimuth chirp
for each subaperture. After the dechirp processing, the target
phase is linear with the azimuth, which is suitable for apply-
ing the MIAA.

3.2. Gap Recovery by the MIAA. The detailed data recovery
process for each subaperture is shown in the black box of
Figure 4. Let us take the n-th single subaperture as an exam-
ple. Supposing that (4) is the azimuth signal of a subaperture
after dechirp preprocessing,

Ss = Sburst1 1×NB½ � Sgap 1× NC−NBð Þ½ � Sburst2 1×NB½ �
h iT

#, ð4Þ

where ½·�T denotes the transpose, Sburst1 and Sburst2 are the
samples of two bursts in a subaperture which are available
samples, and Sgap is the missing samples between two bursts
that need to be estimated. The MIAA uses iterative adaptive
approach (IAA) spectrum estimate [28] to retrieve the
missing data. First, the MIAA uses the IAA to obtain an accu-
rate spectral estimation from the given samples. Then, the
missing-data recovery step is performed using the IAA spec-
trum estimates by a linear minimum mean-squared error
(MMSE) estimator with a negligible additional computa-
tional burden [29]. In the implementation of the proposed
MIAA-AIT, the missing samples are recovered by the
weighted average of the estimated results by Sburst1 and
Sburst2 for robustness and efficiency.
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Figure 4: Processing flow of the MIAA-AIT.
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Let us take the estimation by Sburst1 as an example. Let
Sb = Sburst1, Sg = Sgap and S = ½Sb Sg�T . Let ωk = 2πðk/KÞ , k =
0, 1, 2⋯ K − 1 be the frequency points in the frequency
domain. K should be much larger than NB [28, 29], and K
is set to 8 times of NB in our experiments. Let

ab ωkð Þ = 1 ejωk ⋯ ej NB−1ð Þωk

h iT
; ag ωkð Þ

= ejNBωk ej NB+1ð Þωk ⋯ ej NC−1ð Þωk

h iT
#,

ð5Þ

where abðωkÞ and agðωkÞ are the Fourier vectors correspond-
ing to Sb and Sg at frequency ωk.

First, the spectral of the available data Sb at the frequency
ωk is estimated by the IAA, referred to as F̂b1ðωkÞ. The IAA
makes use of an adaptive weighting matrix to get the spectral
of the available data in an iterative manner until convergence.

F̂b1 ωkð Þ = aHb ωkð ÞR−1Sb
aHb ωkð ÞR−1ab ωkð Þ#, ð6Þ

where ð·ÞH denotes the conjugate transpose and R is the
covariance matrix of the given data, i.e.,

R = 〠
K−1

k=0
F∧b1 ωkð Þj j2ab ωkð ÞaHb ωkð Þ#: ð7Þ

The initialization of the IAA can be completed by setting
R to the identity matrix I. Instead of computing R, we can
directly get the inverse of R in each iteration. By taking
advantage of the Toeplitz structure of the covariance matrix,
the inversion of the covariance matrix can be converted to
matrix multiplication operations with a much lower calcula-
tion amount [30, 31]. Typically, no more than 10 to 15 itera-
tions are required for (6) reaching convergence [28, 29].
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Figure 5: Comparison of the effectiveness of missing-data recovery. (a) Missing data recovery results for one random trial when the missing-
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Once the estimated spectrum F̂b1ðωkÞ has been com-
puted, the missing samples in the time domain can be esti-
mated by an MMSE estimator as shown in (8), which is the
second step of the MIAA [29].

Ŝg1 = 〠
K−1

k=0
F∧b1 ωkð Þj j2aHb ωkð ÞR−1Sb

� �
ag ωkð Þ#, ð8Þ

Note that F̂b1ðωkÞ can be obtained from (6), and aHb ðωkÞ
R−1Sb is the numerator on the right side of (6), which sug-
gests that the computation cost of the missing data estima-
tion after the IAA is very low. The whole missing samples
estimation processing is parameter free. Similarly, the pro-
cessing of obtaining Ŝg2 with Sburst2 is similar to obtaining

Ŝg1 with Sburst1 in the same way. Then, the missing samples

are recovered by the weighted average of the Ŝg1 and Ŝg2 as
shown in Figure 4.

3.3. Postprocessing. The inverse operation of dechirp process-
ing in step 3.1 is applied to recover the subaperture signal for-
mat corresponding to the standard ScanSAR mode. Figure 4
shows how to use the proposed MIAA-AIT to recover the
gaps between the bursts. After all the gaps are recovered,
subapertures are stitched together along the azimuth direc-
tion to obtain nongapped full-aperture data. Finally, azimuth
compression is completed for nongapped full-aperture data,
and the enhanced ScanSAR image can be obtained as shown
in Figure 3.
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Figure 6: Comparison of target amplitude estimation results with (a) complete samples. (b) Available samples. (c) Available samples and
LPM-AIT-estimated gap samples. (d) Available samples and MIAA-AIT-estimated gap samples.
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Figure 7: Two representative scenes imaged by the proposed algorithm. (a) Urban areas. (b) Rural areas.
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4. Result

4.1. Simulation Results.Here, one-dimensional (1-D) simula-
tion results are presented to demonstrate the performance of
the proposed MIAA-AIT in two aspects: missing data recov-
ery and spike suppression.

4.1.1. Accuracy of Missing Sample Estimation. The signal we
consider consists of seven complex-valued sinusoidal com-
ponents located at normalized frequencies f1 = 0:1, f2 =
0:17, f3 = 0:19, f4 = 0:2, f5 = 0:23, f6 = 0:24, and f7 = 0:3 with
complex amplitudes A1 = 0:8, A2 = 0:5, A3 = A4 = 1, A5 = A6
= 0:3, and A7 = 1. The phases of this seven targets are set as
α1 = 0:5, α2 = 0:3, α3 = 0:8, α4 = 0:5, α5 = 0:6, α6 = 0, and α7
= 0:8. The signal is corrupted by Gaussian white noise with
a zero mean and a standard deviation of 0.1. We first illus-
trate the missing-data recovery ability of the proposed algo-
rithm for the case of an 80% missing-data proportion,
which represents five subswaths. The burst length NB is 100
in the simulations, and therefore, the number of missing data
points between two bursts in a subaperture is 400. The recov-
ery result of the 400 missing samples for one random trial
among 100 Monte Carlo trials is presented in Figure 5(a). It
can be concluded from Figure 5(a) that all the missing sam-
ples can be estimated with high accuracy by the proposed
MIAA-AIT algorithm. With the LPM-AIT, however, only

missing samples that are close to the available data can be
estimated with a relatively high accuracy, while the estimates
in the middle exhibit a large deviation.

Next, we fix the burst length NB = 100 and change the
missing-data proportion from 50% to 83.3%, which repre-
sents 2 to 6 subswaths. The standard deviation of the
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Figure 8: Magnified area shown in Figure 7(a). (a) Stripmapmode. (b) ScanSAR data imaged by the full-aperture approach. (c) ScanSAR data
imaged by the LPM-AIT. (d) ScanSAR data imaged by the MIAA-AIT.
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Gaussian white noise is fixed at 0.1. For each case, 100 Monte
Carlo trials are performed. The average mean squared error
(AMSE) of the MIAA-AIT and the LPM-AIT for different
missing-data proportions are shown in Figure 5(b). It can
be concluded that the effect of the proposed algorithm is
better than the LPM-AIT as the missing-data proportion
increases. And the effect of the LPM-AIT deteriorates signif-
icantly when the missing-data proportion exceeds 50%. The
average AMSE of MIAA-AIT is -20.5185 dB. The average
AMSE of LPM-AIT is -7.6171 dB, which is 12.9014 dB higher
than that of MIAA-AIT. These results demonstrate that the
MIAA-AIT can predict missing data more accurately than
the LPM-AIT. As a result, the proposed algorithm is more
practical in the ScanSAR mode.

4.1.2. Performance in Spike Suppression. The effect of sup-
pressing spikes caused by coherently processed multiple
bursts is evaluated in this section. In this simulation, ten sub-
apertures are used and the signal and noise settings are the
same as that in part 4.1.1. The focused amplitude results of
the complete samples, the available samples, the available
samples with LPM-AIT-estimated samples, and the available
samples with MIAA-AIT-estimated samples are shown in
Figures 6(a)–6(d), respectively. The result of processing with
gapped samples shows obvious spikes, as shown in
Figure 6(b). In comparison, the LPM-AIT has some effect
in alleviating the spikes, however, spikes still exist as shown
in Figure 6(c). In Figure 6(d), spikes are almost completely
suppressed, and the amplitudes are more accurate. Taking
the targets amplitude estimation results with complete sam-
ples (Figure 6(a)) as reference, we calculate the difference
between the other three estimation results and the reference,
respectively. The sum of the difference between the ampli-
tude estimation result from available samples (Figure 6(b))
and the reference is 72.898. The sum of the difference
between the amplitude estimation result from LPM-AIT-
estimated samples (Figure 6(c)) and the reference is 14.027.
The sum of the difference between the amplitude estimation
result from MIAA-estimated samples (Figure 6(d)) with the
reference is 1.472. It can be seen from the numerical compar-
ison that the amplitude estimated results by MIAA-AIT are

more similar to the reference, which means the MIAA-AIT
is more effective than the LPM-AIT. It is obvious that the
MIAA-AIT has a better performance than the LPM-AIT in
spike suppression.

4.2. Experimental Results. To demonstrate the performance
of the proposed algorithm in spike suppression, experimental
results on real SAR data are provided. As described in Section
2 and Figure 2(b), in the range direction, the received raw sig-
nal of ScanSAR are the same as those in the Stripmap mode;
in the azimuth direction, the raw ScanSAR data are equiva-
lent to the periodically truncated Stripmap mode data.
Therefore, obtaining raw data of the ScanSAR mode is equiv-
alent to introducing periodic gaps into raw stripmap data. In
addition, to verify the effectiveness of the proposed algorithm
in the real SAR scene, we need to utilize the imaging result of
the Stripmap mode as a reference. Thus, in our experiment,
we obtain ScanSAR mode raw data by introducing periodic
gaps into raw stripmap data.

The raw data were collected with an experimental inter-
ferometric airborne SAR system developed by the Institute
of Electronics, Chinese Academy of Science. The system
operates at the C-band (5.4GHz); the PRF is 750Hz; the
average flight speed is 68m/s, and the size of the antenna is
0.9m. First, the spike suppression performance of the pro-
posed algorithm is demonstrated. Then, interferograms
acquired with the MIAA-AIT are given.

4.2.1. The Results of Spike Suppression. In the experiment, the
ScanSAR system has five subswaths with a missing-data pro-
portion of 80%, which is generally used in the ScanSAR sys-
tem. The length of the synthetic aperture time is about 5000
samples, the length of one burst is set as 300 samples, and the
length of the burst cycle is 1500 samples. Two representative
scenes, shown in Figure 7, are selected to demonstrate the
advantages of the proposed algorithm. Both two scenes are
corresponding to 11 bursts with an area of 1485 meters in
azimuth direction and 1100 meters in range direction. The
pixel spacing in the azimuth is about one-fifth of the pixel
spacing in range; thus, the images are multilooked 5 times
in azimuth when displaying. The overall ScanSAR images
are well focused, and no obvious spike phenomena exist.
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Figure 10: (a) Imaging result using only the data recovered by the LPM-AIT. (b) Imaging result using only the data recovered by the proposed
algorithm.
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The area shown in Figure 7(a) is primarily composed of
man-made structures, representing an urban area. The local
scene highlighted in Figure 7(a) by a red rectangle is magni-
fied for a comparison with the other algorithms as shown in
Figure 8. Based on a visual comparison of Figures 8(b)–8(d),
the LPM-AIT can reduce the spikes to some extent com-
pared to the full-aperture approach. The proposed algo-
rithm has a better performance in spike suppression. The
outlines of the artificial buildings are clearer in Figure 8(d)
because the spikes are suppressed more thoroughly by the
proposed algorithm.

To illustrate the advantage of the proposed method in
radiometry performance, we integrate pixels of the amplitude
image of Figures 8(a)–8(d) across range direction as shown in
Figure 9. In the area of buildings where most of the scatterers
are bright scatterers, the performance of both MIAA-AIT
and LPM-AIT is close to that of the Stripmap and the perfor-
mance of the MIAA-AIT is slightly better than the LPM-AIT.
This shows that both MIAA-AIT and LPM-AIT have a good
processing effect on bright scatterers, but MIAA-AIT is bet-
ter than LPM-AIT. In the area near the buildings, where
few strong scatterers represent, the difference in radiometry
performance is relatively large. The radiometry performance
in these areas reflects the spike suppression performance of
the algorithms. The lower the value, the better the spike sup-
pression performance. Overall, the value of MIAA-AIT is
lower than that of the LPM-AIT and closer to the value of
the Stripmap. Thus, the MIAA-AIT has better suppression
performance than the LPM-AIT. This further demonstrates
the image quality improvement of the proposed algorithm.

We want to verify whether this improvement comes from
the improvement of the quality of the recovered missing data
by the proposed algorithm compared to the LPM-AIT. By
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Table 1: IC comparison of two representative scenes (Figures 8
and 10).

IC value of Figure 8 IC value of Figure 10

Full-aperture 2.2061 1.0281

LPM-AIT 2.8176 1.2505

MIAA-AIT 3.1959 1.5731
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Figure 11: Magnified area shown in Figure 7(b). (a) Stripmap mode. (b) ScanSAR data imaged by a full-aperture approach. (c) ScanSAR data
imaged by the LPM-AIT. (d) ScanSAR data imaged by the MIAA-AIT.
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simulation experiments, as shown in Figure 5, we have shown
that the missing data recovered by the proposed algorithm
has better quality than the missing data recovered by the

LPM-AIT. Due to the complexity of real SAR data, it is
meaningless to directly compare the recovered data. There-
fore, we can verify the effectiveness of the recovered data by
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Figure 13: Interferograms of Scene in Figure 7(a). (a) Stripmap mode. (b) ScanSAR data processed by full-aperture approach. (c) ScanSAR
data processed by the IPM-AIT. (d) ScanSAR data processed by the MIAA-AIT.
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Figure 14: Interferograms of Scene in Figure 7(b). (a) Stripmap mode. (b) ScanSAR data processed by a full-aperture approach. (c) ScanSAR
data processed by the LPM-AIT. (d) ScanSAR data processed by the MIAA-AIT.
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comparing the imaging results using only the recovered data.
To compare the validity of the recovered data, we replace
the available data (the burst) with zero and complete the
imaging process using only the predicted data by LPM-
AIT and MIAA-AIT method, respectively. The imaging
results are given in Figure 10. Obviously, the MIAA-AIT
retains more details of the scene. The local scene marked by
the yellow rectangle is enlarged and displayed in the lower
right corner. We can see that in Figure 10(b) many relatively
weak targets such as flat ground and low-rise houses are
clearer than that in Figure 10(a). It shows that the signals of
these relatively weak targets are not effectively recovered by
the LPM-AIT, but can be better recovered by the proposed
algorithm. More useful information can be remained in the
data predicted by the proposed algorithm, so the final image
processed by the proposed algorithm is better than that proc-
essed by the LPM-AIT.

In addition to an urban area, the results of the pro-
posed algorithm applied to a rural area are presented in
Figure 7(b). The results of the local scene marked by the
red rectangle in Figure 7(b) are shown in Figure 11. The pro-
posed algorithm also has a better performance in suppressing
spikes in rural areas. Compared with Figure 11(b) and 11(c),
the shadows are more properly defined, and the contours of
the mountains are more distinguishable in Figure 11(d). The
spikes neighboring the strong scatterers are almost all elim-
inated in Figure 11(d). Azimuth profiles of the point-like
target marked by a red circle in Figure 11(a) are plotted in
Figure 12, where a green line, a red line, and a blue line
represent the azimuth profiles using the full-aperture algo-

rithm, the LPM-AIT, and the MIAA-AIT, respectively. It
can be seen that spikes are more thoroughly eliminated by
the proposed algorithm, and the azimuth resolution of the
target significantly increased compared with the result proc-
essed by the full-aperture approach.
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Figure 15: Difference maps of interferograms in Figure 13 processed by full-aperture, LPM-AIT, andMIAA-AIT, against Stripmap mode. (a)
full-aperture against Stripmap; (b) LPM-AIT against Stripmap; (c) MIAA-AIT against Stripmap.
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Image contrast (IC) value can be used to evaluate the
quality of the SAR image [32]. Here, we use the standard
deviation amplitude contrast function in reference [32] to
calculate the IC value of each image as shown in (9).

IC =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E A − E Af gð Þ2� �q

E Af g #, ð9Þ

where A is the amplitude of the image, Ef∙g means aver-
aging operation, thusEfAg is the mean of the image ampli-
tude. Table 1 shows the IC value comparison of the imaging
results by three different methods on the urban scene shown
in Figure 8, and the nonurban sensen shown in Figure 11.
The IC value of the image processed by the proposed algo-
rithm is higher than that processed by the LPM-AIT in both
two scenes, which means the image quality obtained by the
proposed method is better. This further illustrates the effec-
tiveness of the processed algorithm.

4.2.2. The Results of Interferometry Application. Section 4.2.1
has thoroughly demonstrated the spike suppression ability of
the proposed algorithm over the ScanSAR images. Interfero-
metric application can also benefit from the remarkable spike
suppression performance to improve the ScanSAR interfero-
gram quality. In this section, interferograms obtained using
the proposed algorithm are presented to show the ability of
the method in interferometry application. Interferograms of
the two representative scenes in Figure 7 processed using
the Stripmap mode, the full-aperture approach, the LPM-
AIT, and the proposed approach are shown in Figures 13
and 14.

Interferograms are contaminated due to phase informa-
tion in the spikes when they are processed with only the
gapped data, as shown in Figure 13(b). Sites A and B in
Figure 13 are buildings. The shape of the building at site A
processed by the MIAA-AIT is narrower than that processed
by the LPM-AIT and more similar to that processed by the
Stripmap mode. In site B, although it has been improved
compared to Figure 13(b), the outlines of the buildings proc-

essed by the LPM-AIT is blurred due to the phase informa-
tion in spikes. The outlines of the buildings processed by
the MIAA-AIT are clearer than the LPM-AIT and more sim-
ilar to that processed by the Stripmap mode. Figure 15 shows
three-phase difference maps of interferograms in Figure 13
processed by full-aperture, LPM-AIT, and MIAA-AIT,
against Stripmap mode. It can be seen that on both sides of
buildings, the phase difference of MIAA-AIT is much smaller
than the LPM-AIT. Figure 16 shows the statistical curve of
the absolute value of the phase difference. To show the results
more clearly, the phase difference is displayed in logarithmic
format. And the display range is only to π, because the differ-
ences are almost within π. Table 2(a) shows the numerical
statistics results. It can be seen that the point number of
MIAA-AIT with very small phase difference are larger than
that of the LPM-AIT and full-aperture. And the point num-
ber of MIAA-AIT with large phase difference is smaller than
that of the full-aperture and LPM-AIT. Therefore, we can
conclude the MIAA-AIT has better spike performance in
interferometric application in urban areas.

In the rural scene, the interferogram processed by the
proposed algorithm also has good performance in spike sup-
pression, as shown in Figure 14. The interferogram processed
by the full-aperture approach exists spikes, introducing addi-
tional noise to the interferogram. It can be seen that the spike
phenomenon in the interferogram processed by the MIAA-
AIT is less than that of LPM-AIT, but it is not so obvious.
The reason is that there are fewer bright points in the rural
area than in the urban area. Figure 17 shows three-phase dif-
ference maps of interferograms in Figure 14 processed by
full-aperture, LPM-AIT, and MIAA-AIT, against Stripmap
mode. The corresponding statistical results are shown in
Figure 18. Same as Figure 16, the phase difference is displayed
in logarithmic format and the display range is only to π.
Table 2(b) shows the numerical statistics. In the range where
the phase difference is close to 0, the point number of MIAA-
AIT is much higher than the number of full-aperture and
LPM-AIT. And the point number of the MIAA-AIT with
large phase difference is smaller than that of full-aperture
and LPM-AIT. Therefore, it can be concluded that the effect

Table 2: Statistical results of difference maps of interferograms processed by full-aperture, LPM-AIT, and MIAA-AIT, against Stripmap
mode. (a) Interferograms in Figure 12. (b) Interferograms in Figure 13.

(a)

Phase diff :<0:1 rad 0:1 rad ≤ phase diff :≤0:5 rad Phase diff :>0:5 rad
Full-aperture 49.49% 35.84% 14.67%

LPM-AIT 52.37% 33.29% 14.34%

MIAA-AIT 55.08% 31.83% 13.09%

(b)

Phase diff :<0:1 rad 0:1 rad ≤ phase diff :≤0:5 rad Phase diff :>0:5 rad
Full-aperture 43.44% 41.56% 15.00%

LPM-AIT 44.83% 42.41% 12.76%

MIAA-AIT 45.96% 44.24% 9.80%
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of MIAA-AIT in rural area is still better than that of LPM-
AIT, but compared with urban areas, the advantages are
not so prominent.

Based on the above analysis, the proposed algorithm can
be used in interferometry application to improve interfero-
grams in the ScanSAR mode.

5. Conclusions

This manuscript studies the spike contamination problems
of ScanSAR mode data. When ScanSAR data are processed
using the full-aperture approach, images are contaminated
by spikes, and additional noise is introduced to the interfer-
ograms. Spike contamination of full-aperture ScanSAR
image limits ScanSAR-related applications, such as target
detection and interferometry. To solve this problem, an
improved algorithm named the MIAA-AIT is proposed in
this manuscript. In the MIAA-AIT, the gaps between bursts
are recovered by the MIAA, which is a nonparametric
missing-data recovery methodology. Compared with the
existing LPM based algorithm, the proposed algorithm has
a better performance on spike suppression and can improve
the azimuth resolution of the full-aperture ScanSAR images.
Experiment results show that more useful information can
be remained in the data predicted by the proposed algo-
rithm, therefore the final image processed by the proposed
algorithm is better than that processed by the existing
LPM based algorithm. The proposed MIAA-AIT algorithm
has better applicability than the LPM-AIT for spike suppres-
sion and azimuth resolution enhancement when processing

ScanSAR data by the full-aperture imaging algorithm. The
proposed algorithm can also be used in interferometry to
improve the quality of interferograms.

The results of this study show that by infilling the gaps
between bursts with valid samples, the ScanSAR images
processed by full-aperture approach can be significantly
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Figure 18: Statistical curve of the absolute value of the phase
difference shown in Figure 16.
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Figure 17: Difference maps of interferograms in Figure 14 processed by full-aperture, LPM-AIT, andMIAA-AIT, against Stripmap mode. (a)
Full-aperture against Stripmap; (b) LPM-AIT against Stripmap; (c) MIAA-AIT against Stripmap.
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improved. The spikes can be suppressed effectively, and the
azimuth resolution can be improved at the same time. This
is very beneficial to ScanSAR-related applications. Therefore,
it is worth further study.
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Rapid urbanization has become a major urban sustainability concern due to environmental impacts, such as the development of
urban heat island (UHI) and the reduction of urban security states. To date, most research on urban sustainability development
has focused on dynamic change monitoring or UHI state characterization, while there is little literature on UHI change analysis.
In addition, there has been little research on the impact of land use and land cover changes (LULCCs) on UHI, especially
simulates future trends of LULCCs, UHI change, and dynamic relationship of LULCCs and UHI. The purpose of this research is
to design a remote sensing-based framework that investigates and analyzes how the LULCCs in the process of urbanization
affected thermal environment. In order to assess and predict the impact of LULCCs on urban heat environment, multitemporal
remotely sensed data from 1986 to 2016 were selected as source data, and Geographic Information System (GIS) methods such
as the CA-Markov model were employed to construct the proposed framework. The results showed that (1) there has been a
substantial strength of urban expansion during the 40-year study period, (2) the farthest distance urban center of gravity moves
from north-northeast (NEE) to west-southwest (WSW) direction, (3) the dominate temperature was middle level, sub-high
level, and high level in the research area, (4) there was a higher changing frequency and range from east to west, and (5) there
was a significant negative correlation between land surface temperature and vegetation and significant positive correlation
between temperature and human settlement.

1. Introduction

Land use and land cover changes (LULCCs), as one of the
most significant processes related to earth ecological environ-
ment problems and social progress issues [1–5], related to
global and regional changes [6, 7], have largely affected earth
biochemical cycle [8, 9], sustainable use of resources [10],
biodiversity [11], and urban planning and policymaking
[12]. As a specific type of LULCCs, urban sprawl which plays
an important role in urban intelligent growth and moderni-
zation is a sign of development and progress of human
civilization and urbanization [13]. By prediction, more than

60% of the human population will live in cities by 2030
[14] which results in increasing replacement of natural land-
scape by the human-made landscape and will cause the
temperature in the urban area to be higher than that in the
suburban surrounding or rural area [15], which is also
known as UHI. UHI phenomenon will not only accelerate
urban environmental temperature and air pollution but also
significantly increase energy consumption, increase urban
temperature, and reduce quality of life. UHI is realized as a
significant factor leading to global warming, heat-related
mortality, and nonforecast climate change. A comprehensive
study of the influencing factors of the UHI effect is critical for
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formulating reasonable urban planning policies and mitigat-
ing the effects of UHI [16–18].

The urban sustainability development which can compre-
hensively consider the ecological environment and human
environment at the natural, economic, and social levels in
the process of urban growth, and reflect the integrity of human
settlement environment and health status of the ecosystem as
a whole, is regarded as the basis for regional urban environ-
mental system governance and prevention policy formulation
[19, 20]. The urban expansion was found to have a significant
impact on local temperatures, in Chapman et al.’s review arti-
cle which found that in some cases by up to 5 degrees [16].
UHI is closely associated with urban structure and will further
increase by urban sprawl [21]. In the past decades, most
researchers examined LULCCs and UHI in isolation, with
few considering their combined effect.

Furthermore, existing satellite-based studies have typically
evaluated and assessed the status of UHI at any given time
but have limitations for studying the dynamic progress of
LULCCs and UHI. Most research focused on evaluating the
current or past status of LULCCs or UHI, while there has been
little attempt to simulate or predict future change even though
this information is crucial to inform effective sustainable urban
development policy. Change simulation can provide valuable
information for future prediction, as well as can indicate
anthropogenic impact and identify degradation and deforesta-
tion which is useful for urban development planning. Various
dynamic prediction models, including empirical-statistical
models, optimizationmodels, agent-basedmodels, and Cellular
Automata-Markov (CA-Markov) models, have been used for
LULCC simulation [22], while they are seldom used for UHI
change trend prediction.

In this research, we proposed a strategy to assess and
analyze the impact of LULCCs on UHIs, as well as to simulate,
predict, and explore the relationship and interaction between
LULCCs and thermal environment trend in the future. For this
purpose, we employed multitemporal remotely sensed data
captured in 1986, 1996, 2006, and 2016, GIS spatial analysis
methods, and CA-Markov trend simulation model. We test
the method on Zhengzhou city, one of the fastest-growing
metropolitan cities. Outputs are expected to contribute to
urban planning, urban security assessment, and sustainable
development in urban environments.

The rest part of the paper is organized as follows: a brief
introduction about the research area, preliminary work, and
preprocessing of datasets is given in Section 2. The proposed
research framework based on remote sensing (RS) is drawn
and applied to the research area in Section 3. The results
are shown in Section 4; analysis and discussion are given in
Section 5. Finally, the conclusions are drawn in Section 6.

2. Study Area and Datasets

The study site is located in Zhengzhou city (Figure 1), the
capital of Henan Province in the central part of the P.R.
China, with a total area of 7507 km2 as well as a population
of 9 878 000 inhabitants. Zhengzhou is one of the National
Central Cities in China and serves as the political, economic,
technological, and educational center of the province, as well

as a major transportation hub in China (http://en.wikipedia
.org/wiki/Zhengzhou). The annual average temperature of
the city is 14.5°C, and the general terrain trend is tilt from
southwest to northeast. The study area is undergoing the
accelerating of Chinese agglomeration, economic develop-
ment, and urban expansion.

The primary dataset in this study ismultitemporal Landsat
remotely sensed data, with data covering the period from 1986
to 2016, which were acquired from USGS (https://
earthexplorer.usgs.gov/). As a crucial instrument aboard
Landsat satellites to collect imagery, the spatial resolution of
TM/ETM+ is 30m for the VIR-NIR band and 60m/120m
for the TIR band. Landsat data have been widely used for
LULCCs or UHI monitoring, while few of the research
attempted to track and combine the long-term dynamic of
LULCCs and UHI for environment security assessment. The
second major dataset used is GlobelLand30, which we utilized
as a reference source (http://www.globallandcover.com). The
vector data, demographic data, and simulated data in the future
are also collected for future stats analysis. A more detailed
description about datasets, including captured date, sensor
types, and resolution, can be found in Table 1. The data avail-
ability statement: all datasets used in this paper including the
primary remotely sensed data, boundary vector data, and proc-
essed results can be obtained from hyperlink: https://pan.baidu
.com/s/1d9GwkEpwryWYgHU_78qV5g, with password: c8rp.
Researchers who are interested in this topic can download the
data from the above hyperlink or contact the corresponding
author to obtain source data to conduct secondary analysis.

The selected remotely sensed data were preprocessed to
overcome geometric and atmospheric conditions, distortion,
and errors through atmospheric and radiometric correction.
To reduce the geometric distortion and radiometric differ-
ence, the selected remotely sensed data were preprocessed
through geometric and radiometric correction. Specifically,
following the previous works in [23], the radiometric calibra-
tion procedure is finished using the commercial software
(ENVI). In addition, the FLAASH module of ENVI software
was used to complete the atmospheric correction.

3. Methodology

The methodology employed in this research includes three
main stages: (1) LULC and UST maps depicted from 1986
to 2026 with the help of SVM, MWA algorithms, and CA-
Markov model; (2) analyzing and discussing of spatial distri-
bution and temporal change of LULC and UST with respect
to expansion intensity, buffer zone analysis, human settle-
ment transfer, etc.; (3) quantitative and qualitative evaluation
relationship between LULC and UST, more details can be
found in Figure 2.

3.1. Land Use and Land Cover Classification. Land use and
land cover (LULC) maps were retrieved from four-time
nodes remotely sensed dataset over the metropolitan city of
Zhengzhou. In this image classification processing, one of
the most state-of-art machine learning algorithm, support
vector machine (SVM), was selected to classify research area
into five different categories (agricultural land, vegetation,
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waterbody, bare land, and building land) according to the
Classification Criteria for Land Use Status/GB-T21010-
2015 and GlobeLand30 standard products [24]. The process
for LULC classification using the SVM classifier includes
training samples selection, SVM kernel determination,
feature vectors inputs, and SVM classifier application. About
100 training samples of each class are selected by an expert in
the field of RS; the most robust radial basis function (RBF)
was selected as the SVM classifier:

K xi, xj
� �

= exp −γ xi − xj
�� ��2� �

, γ > 0, ð1Þ

where γ is the bias term in kernel function for polynomial
and sigmoid kernels, and Landsat spectral bands except
thermal infrared are selected as inputs.

Classification accuracy will affect subsequent change
analysis; in this research, overall accuracy (OA) and kappa
coefficient (KC) were chosen as the evaluation criterion.
OA and KC are a nonparametric test which can reflect the
consistency of labelled value and predicted value [12]. The
mathematical model of OA and KC can be expressed as

OA = ∑q
i=1nii
n

∗ 100, ð2Þ

Kappa = n∑q
i=1nii − ∑q

i=1ni+n+i
n2 − ∑q

i=1ni+n+i
, ð3Þ

where q is the number of classes, n represents the total
number of considered pixel, nii is the diagonal element of
the confusion matrix, ni+ represents the marginal sum of
the rows in the confusion matrix, and n+i represents the mar-
ginal sum of the columns in the confusion matrix.

3.2. Retrieval of Urban Surface Temperature. By literature
review, there are three algorithms, including single-channel
algorithm, monowindow algorithms, and radiative transfer
equation algorithm, which are widely used for urban surface
temperature retrieval from a single-band Landsat thermal band
[25]. In this research, Qin et al.’s monowindow algorithm
(MWA) was selected for retrieval urban surface temperature
from Landsat TM/ETM+ image. The mathematical model of
MWA can be expressed as

0 10 20 30 405

Kilometers

China

Henan

ZhengzhouN

Zhengzhou

Henan

Figure 1: Location of Zhengzhou, Henan Province, China. Cropped image (1996, false-color composite Landsat TM image courtesy of the
U.S. Geological Survey, https://usgs.gov) shows the full extent of the study area.

Table 1: Selected RS and GIS datasets.

Data type Date Satellite/sensor Band Resolution/scale/person Source

RS data 1986.08.12 Landsat 5 1, 2, 3, 4, 5, 6, 7 30m/120m https://www.usgs.gov

RS data 1996.04.15 Landsat 5 1, 2, 3, 4, 5, 6, 7 30m/120m https://www.usgs.gov

RS data 2006.04.09 Landsat 5 1, 2, 3, 4, 5, 6, 7 30m/120m https://www.usgs.gov

RS data 2016.04.23 Landsat 8 1, 2, 3, 4, 5, 7, 10, 11 30m/100m https://www.usgs.gov

GlobeLand30 2010 HJ, BJ, Landsat Classification map 30m http://www.globallandcover.com

Vector data 2018 GIS shape file 1 1 : 4 000 000 https://www.gadm.org
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Ts =
a6 1 − C6 −D6ð Þ + b6 1 − C6 −D6ð Þ + C6 +D6½ �Tsensor −D6Ta

C6
,

ð4Þ

C6 = ετ6, ð5Þ
D6 = 1 − τ6ð Þ 1 + 1 − εð Þτ6½ �, ð6Þ

UHI = 16:0110 + 0:92621T0, ð7Þ
where UHI is the urban surface temperature; T sensor is the

brightness temperature, in a normal case, constant a6 = −
67:355351 and constant b6 = 0:458606; ε is the ground surface
emissivity; τ6 is the atmospheric transmittance; Ta is the effec-
tive mean atmospheric temperature; and T0 is the near-surface
air temperature. While like many other urban heat island
analysis studies [15, 26], we chose a method to obtain TOA
spectral radiance and focus on the dynamic evolution of urban
surface temperature in spatial and temporal. The standardized
method used in this research is as follows:

Ni =
UHIi −UHImin
UHImax −UHImin

, ð8Þ

where Ni is normalization temperature value of the ith

pixel position; UHIi means the urban heat temperature value
of the ith pixel position; UHImax and UHImin represent the
maximum and minimum value of UHI before normalization.

Considering the actual situation of the research area, the
statistical mean-standard deviation method is selected to
divide the thermal field into different levels. According to the
statistics of temperature, the average and standard deviation
of UHI are used as the demarcation point of the division
interval. The mean values of average and standard deviation
of UHI maps obtained in 1986, 1996, 2006, and 2016, where
T = 0:512, Ts = 0:162 were taken as the demarcation point of
the thermal interval. The divided interval results are shown
in Table 2.

3.3. CA-Markov Model. The CA model [27] has a capacity for
spatial and temporal change simulation which can be defined as

Si+1 = f Si,  Nð Þ, ð9Þ

where f is the local transition rule of the cell, S is a set of
cellular states, N is the cellular field, and t + 1 and t represent
the start and end time. The Markov model [28] that has been
widely used for trend simulation at various scenarios can be
expressed as

1986 RSD 1996 RSD 2006 RSD 2016 RSD

Expansion
intensity

Gravity
movement

Human
settlement transfer

UST grade
distribution

UST spatio-
temporal changes

UST profile
distribution

UST buffer
zone distribution

SVM MWA

Ratio relationship 
between LULC&UST

Relationship between UST
and NDVI, NDBI, NDWI

Conclusions

CA-Markov
LULC maps
1986–2026

UHI maps
1986–2026

Figure 2: Flow chart.
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Si+1 = Pij + Si, ð10Þ

where St+1 and St are statuses at time t + 1 and t, respectively,

Pij = :
P11 ⋯ P1n

Pn1 ⋯ Pnn

:

" #
, ð0 ≤ Pij ≤ 1,∑N

i=1Pij = 1, 2,⋯,n Þ;

Pij is the transition probability matrix in a state. The CA-
Markov model is a combination of the CA model and the
Markov model, both of which are dynamic models with
discrete states [29]. And when combined with the CA model,
the CA-Markov model can overcome the limitation that the
Markov model failed to catch the spatial distribution in the
future and can be used to simulate spatial-temporal changes.
In this research, LULC and UST maps in 2006 and 2016 were
selected as the study years to calculate the transition area
matrix using the Markov model. And a standard 5 by 5
contiguity filter was selected for the CA model which means
the condition of the future pixel is not only decided by
information from the previous state but also considered by
corresponding surrounding pixels.

3.4. Urban Expansion Intensity. The rate of urban expansion
(RUE) and the intensity of urban expansion (IUE) are the
most common methods for describing urban expansion.
The RUE describes the annual average area change of the
built-up area during the research period, while IUE refers
to the proportion of urban land use expansion area of a space
unit in the total urban area during the research period. The
RUE and IUE only study the quantitative change of urban
built-up area at the beginning and end of a certain period,
while ignoring the dynamic process of urban growth. In this
paper, based on urban growth intensity, the concept of urban
expansion intensity index (UEII) was proposed [30], which
describes the degree of differentiation of urban expansion
in different directions and denotes the growth of the urban
areas of a spatial unit as a percentage of the total area of the
land unit in the study period [31] and can be used to study
the urban growth process more reasonably and accurately.
The mathematical model of UEII is as

UEII = UAt+n −UAtð Þ/TA½ �
n

∗ 100, ð11Þ

where UEII is the urban expansion intensity index of the spa-
tial unit during periods between t and t + n; UAt+n and UAt
are the urban area in the spatial unit at time t and t + n,
respectively; TA is the total land area; n is the research period.

The UEII can be divided into different levels according to
relevant literature [31] and shown in Table 3.

3.5. Urban Gravity Center Movement. The gravity center
model reflects the direction of movement and distance to
the center of gravity over time [32, 33]. The city’s center of
gravity reflects the geometric equilibrium of urban space to
a certain extent, in which spatial position will be constantly
moving during the growth of the urban built-up area. The
movement direction of the gravity center reflects which
direction of urban growth. To make further analysis of the
city’s spatial expansion, the urban’s gravity center is intro-
duced in this research. The mathematic model of the gravity
center can be described as

Xt =
∑n

i=1 aii + xið Þ
∑n

i=1aii
, ð12Þ

Yt =
∑n

i=1 aii + yið Þ
∑n

i=1aii
, ð13Þ

where Xt and Yt are the horizontal and vertical coordinates
of the gravity center of the tth year, ati means the area of ith
polygon of the tth year, and xi and yi mean the horizontal
and vertical gravity center coordinates of the ith polygon.
The mathematical equation of gravity center distance can
be expressed as follows:

D =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xi − Xj

� �2 + Yi − Y j

� �2q
, ð14Þ

where D is the distance of the urban gravity center shifted
from the beginning to ending time point; Xi and Yi represent
the horizontal and vertical urban center gravity coordinates,
respectively, in the initial moment of research, while Xj and
Y j represent corresponding coordinates in the ending
moment.

4. Results

4.1. LULC Maps and Urban Expansion Intensity. There are a
total of 15538, 13829, 15991, and 13937 pixels that were
selected for training in remotely sensed data captured on 12
August 1986, 15 April 1996, 9 April 2006, and 23 April
2016, respectively. The number of selected test pixels (ground
truth points) is 5643 points. The classification maps from
1986 to 2016 are shown in Figure 3; overall accuracy and
kappa coefficient evaluation results are shown in Table 4.
On the basis of classification maps of 2006 and 2016, the
LULC map of 2026 predicted with the CA-Markov model is
shown in Figure 4.

According to the above-mentioned urban expansion
intensity model, the statistical results of building area classi-
fication and simulation in 1986, 1996, 2006, 2016, and 2026
(shown in Figures 3 and 4), and urban growth intensity
graded criteria, the level of urban growth intensity is obtained
(Table 5).

Table 2: Levels of divided thermal interval.

Levels Criteria Interval

Low T ≤ T − 2Ts T ≤ 0:188
Sub-low T − 2Ts < T ≤ T − Ts 0:188 < T ≤ 0:350
Medium T − Ts < T ≤ T + Ts 0:350 < T ≤ 0:674
Sub-high T + Ts < T ≤ T + 2Ts 0:674 < T ≤ 0:836
High T + 2Ts < T 0:836 < T
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4.2. Urban Gravity Center Changes. Based on the gravity
center model, the gravity center and changing footprint of
Zhengzhou’s urban built-up area from 1986 to 2026 were
calculated. The gravity centers and the trends of gravity
center development are shown in Table 6.

The results showed that the direction and distance of the
city’s center of gravity movement are quite different in a dif-
ferent period. The center of gravity movement of each period
during the study period has the following characteristics: (1)
The city center of Zhengzhou moved 9.65 km to the north-
west from 1986 to 1996. The dominant driving forces was
the rapid development of urban construction in Xingyang,
a country-level city now becomes as a district of the metrop-
olis of Zhengzhou, from 1986 to 1996. The development of
Jinshui District of Zhengzhou was earlier and faster than
other urban areas, which led to the gravity center movement
to Jinshui and Xingyang district. (2) The city center moved
15.69 km to the southeast from 1996 to 2006, mainly because
with the acceleration of urbanization, the Zhengzhou station
was expanded; the Xinzheng international airport, the city
around expressway, and some large-scale construction
project were gradually put into service, which expanded the
surface area of man-made land type in the southeast direc-
tion and causing the shift of gravity obviously. (3) The city
center moved 7.87 km to the north from 2006 to 2016, mainly
due to the large-scale construction of Zhengzhou High-tech
Industrial Zone and the operation of Zhengzhou East High-
Speed Rail Station operated in 2012, which resulted in a rapid
increase in the man-made surface in the north. Meanwhile,
the development of old district Erqi city of Zhengzhou has
been saturated. Therefore, the development speed of Erqi
District was lower than that of Jinshui District during 2006
to 2016, which made the gravity center move to the north
in the past 10 years. (4) According to the prediction result
of LULC using the CA-Markov model, the gravity center will
move 1.14 km westward from 2016 to 2026. With the contin-
uous urbanization process, the urbanization of Zhengzhou
has basically become saturated and the expansion speed has
slowed down.

4.3. Spatial Orientation of Urban Expansion. The vector data
of human settlement of the adjacent periods between 1986
and 1996, 1996 and 2006, 2006 and 2016, and 2016 and
2026 were overlapped and carried out urban intensity growth
analysis in NNE, NEE, SEE, SSE, SSW, SWW, NWW, and
NNW directions (Figure 5 and Table 7).

According to the above results, in general, the strongest
urban growth intensity was in the NEE and SWW directions
from 1986 to 2026, which is the dominant direction of urban
growth in the study area. Combined with the geographical
location of the administrative area of the study area, the stron-
gest urban growth intensity is concentrated in Jinshui District,
Erqi District, and Xinmi, mainly because the urbanization

Table 3: Levels of urban expansion intensity index.

Levels Slow speed Low speed Moderate speed Fast speed High speed

Range (0, 0.28] (0.28, 0.59] (0.59, 1.05] (1.05, 1.92] (1.92, +∞)

1986 1996

20162006

Building land
Vegetation Agricultural land
Waterbody Bare land

Figure 3: LULC classification maps over Zhengzhou city from 1986
to 2016.

Table 4: Classification accuracy.

1986 1996 2006 2016

OA 79.26% 84.01% 82.86% 85.13%

Kappa 0.78 0.82 0.81 0.83

Building land
Vegetation Agricultural land
Waterbody Bare land

Figure 4: Predicted LULC map of Zhengzhou city in 2026.
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process is accelerating with the rapid development of Zheng-
zhou city. As the core area of Zhengzhou city, Jinshui District
and Erqi District have become the center of urbanization and
have continued to expand to the outside. Xinmi is located in
the central part of Zhengzhou and adjacent to the Erqi
District, which is affected by the urbanization of the Erqi
District. Taking advantage of its superior development envi-
ronment and conditions, the urban growth intensity of Xinmi
has increased significantly.

Temporal dimension studies showed that the urban
growth intensity in NEE and NWW orientation was relatively
strong from 1986 to 1996, which is mainly due to the rapid
development of Erqi District and Xingyang District. Urban
growth was mainly in the direction of NEE, SWW, and SSW
from 1996 to 2006, and during this period, the urban growth
pattern was consistent, and the growth of other cities was
relatively slow, which made the city’s center of gravity move
to the southeast. From 2006 to 2016, the urban growth inten-
sity in the NEE, NWW, and SWW directions was relatively
strong. During this period, there was vigorously built activities
in transportation facilities and high-tech industries in Zheng-
zhou city, which further strengthened the land development
efforts and increased the intensity of urban growth. In the
meantime, the land use development status of prefecture-
level cities such as Gongyi and Xinmi was growing rapidly
because of an unsaturated state. According to the prediction
of LULC results, there will be a similar trend of urban growth
between the period of 2016 to 2026 and the period of 2006 to
2016. The urbanization construction of Zhengzhou city has
reached a new stage, and urban growth will be relatively stable
and mature at that time.

4.4. UHI Results and Statistical Features. The results of UHI
from 1986 to 2016 are retrieved using WMA, and the UHI
degree of 2026 is simulated using the CA-Markov model.
UHI distribution maps and UHI degrees from 1986 to 2026
are shown in Figure 6 and Table 8.

The spatial distribution maps of UHI (Figure 6) in the
study area showed that the low temperature and sub-low
temperature zone were mainly located in the Yellow River
basin in the northeast of the study area. And the high-

temperature zone is mostly located in the urban built-up
zone, north of the central part. Based on the statistical results
of Figure 7 and Table 8, the rank of different temperature
areas has characteristics as that the dominant areas by pro-
portion are medium temperature and sub-high temperature
level, followed by high temperature, sub-low temperature,
and low-temperature areas.

4.5. Spatial-TemporalChangesofUrbanThermalEnvironment.
According to the statistical results of the UHI degree, the
dynamic curve of the UHI level is obtained (Figure 8). The
changes and proportions of UHI in the study area between
1986 to 1996, 1996 to 2006, and 2006 to 2016 were calculated
(shown in Tables 9–12). The methodologies used for LULCC
analysis were adopted to analyze spatial-temporal changes of
the urban thermal environment (shown in Figures 7–9).

The dynamic curve of the UHI trend result (Figure 8)
showed that the area of the low-temperature zone and sub-
low temperature zone is shrunken during the period from
1986 to 2026. The dominated UHI zones during this period
are medium, sub-high, and high-temperature zone. The area
of the low-temperature zone has a downward trend, and the
area of the sub-low temperature zone experiences a slight
increase and then a continuous decline. The change trend
of the sub-high temperature zone is opposite to that of the
sub-low temperature zone. The middle-temperature zone
and the high-temperature zone are both in a wave-like rising
trend, while the trend of medium temperature zone is oppo-
site to that of the high-temperature zone.

Combined with the distribution map of the urban
thermal environment in the study area for the past 40 years,
a long-term UHI comparison was carried out (Figure 9).
Between 1986 and 1996, the thermal environment change
process of Zhengzhou city was complicated, with a large
change range, fast change dynamic. The area of sub-low
temperature and medium temperature zone increased; the
area of low-temperature, sub-high temperature, and high-
temperature zone decreased. The dynamic of the medium
temperature zone changed the most, that is, more than
10%. Between 1996 and 2006, the thermal environment of
Zhengzhou has a tendency to change to a high-temperature
area. The area of medium and low temperature decreased,
the area of sub-high temperature increased, and the high-
temperature area changed the most, that is, more than 85%.
While the change range of other degrade is relatively small,
in particular, the area of the low-temperature zone is almost
unchanged. From 2006 to 2016, the trend of the thermal
environment was similar to that between 1986 and 1996.
The area occupied by extreme temperature level decreased;
the area occupied by intermediate temperature level increased.
And the urban thermal environment had a tendency to con-
centrate to medium and high-temperature levels. According
to the prediction result, between 2016 and 2026, the overall
thermal environment of the city has a small change and is in
a state of dynamic equilibrium. It is predicted that by 2026,
urban surface temperature will further evolve into high-
temperature areas, and the problem of the UHI effect will
become more prominent.

Table 5: Levels of urban expansion intensity from 1986 to 2026.

Research period 1986-1996 1996-2006 2006-2016 2016-2026

UEII 0.665 1.235 1.182 0.916

Growth levels Medium Rapid Rapid Medium

Table 6: Gravity center from 1986 to 2026 in the WGS84 system.

Year
Horizontal
coordinate

Vertical
coordinate

Offset distance
(km)

1986 728213.496 3842411.355

1996 720616.338 3848368.364 9.65

2006 727688.303 3834364.776 15.69

2016 726145.678 3842084.841 7.87

2026 725018.082 3842235.005 1.14
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4.6. Spatial Character of UHI. In this study, spatial characters
of UHI are analyzed using profile distribution and buffer
zone methods. Profile analysis can intuitively describe the
spatial distribution pattern and overall evolution rule of the
urban thermal environment. Erqi Memorial Tower which
located in the core area of Zhengzhou city is selected as the
center of profile, and the section line was constructed in
east-west and north-south directions. The east-west section
line is based on the Jianshe road and passes through
important buildings such as Hongsen Building, Air Defense
Academy, Zhengzhou West Bus Station, Jianshe West Road,
Zhengzhou Vocational and Technical College, Zhengzhou
Confucian Temple, and Zhengzhou No. 96 Middle School.
The north-south direction section line is roughly along the
Erqi Road, passing important places such as Zhengzhou

N

Extending area
Overlapping area

0 35 70 140 210
Miles

(a) 1986 to 1996

N

Extending area
Overlapping area

0 35 70 140 210
Miles

(b) 1996 to 2006

N

Extending area
Overlapping area

0 35 70 140 210
Miles

(c) 2006 to 2016

N

Extending area
Overlapping area

0 35 70 140 210
Miles

(d) 2016 to 2026

Figure 5: The results of urban expansion.

Table 7: Urban growth intensity in various azimuth from 1986 to
2026.

Azimuth 1986-1996 1996-2006 2006-2016 2016-2026

NNE 0.404 0.351 0.726 0.476

NEE 3.267 4.770 4.610 3.093

SEE 0.234 1.569 1.731 1.120

SSE 0.072 0.813 0.274 0.385

SSW 0.328 2.641 0.257 0.786

SWW 0.887 4.187 2.129 2.694

NWW 2.264 0.593 2.540 1.376

NNW 0.380 0.079 0.964 0.573
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People’s Park, Henan Provincial Department of Commerce,
Zhengzhou People’s Hospital, Zhengzhou University, Henan
Agricultural University, and Dehua Street. The profiles of
LST in a different period were calculated (Figure 10).

Profiles of LST in a different period showed that (1) there
are significant jagged jumps in the EW and NS profiles of
LST in each period. The urban central area and the suburbs
are characterized by “upward convexity” and “depressed.”
This is mainly due to the complex structure of the underlying
surface of the urban surface, and the change of the underlying
surface characteristics in a small area makes the surface tem-
perature abrupt; (2) in this study, LST in the central area of
the city was generally higher, and there was obvious “bumps”
with uneven “peak” and “low valley”morphological features.
In the suburbs, the LST was low, while the “jumping” phe-
nomenon with a large jump and fast frequency of change is
more significant than that of the city center. The cause of that
related to the underlying surface of the central area is mainly

composed of steel, cement, and masonry, and the structure is
relatively simple, while the underlying of suburb mainly
consists of green land, water area, soil, cement, and masonry,
and the structure is relatively complicated; (3) the compari-
son of various characteristics of EW and NS LST profiles
showed that the EW direction changes rapidly and complex
than that of NS direction. This phenomenon showed that
the underlying surface of EW section of Zhengzhou has a
more diverse structure type than NS direction, and changes
are more complicated; (4) the perspective of the long-term
changes in the distribution pattern of LST, EW, and NS pro-
files showed that with the continuous development of urban-
ization construction, the overall average temperature of the
city was gradually increasing, while the frequency and jump
range of urban surface temperature profile had a decreasing
trend. This is mainly because the urbanization construction
of Zhengzhou city is gradually improved, the characteristic
structure of the underlying surface of the city tends to be sta-
ble, and the temperature field structure of the urban thermal
environment tends to be simplified.

Buffer analysis is an important spatial analysis method
used to determine the proximity of research elements in
GIS. In this research, the buffer analysis method was adopted
to study the urban thermal environment. With the support of
this methodology, the relationship between LST and the loca-
tion of the city center from 1986 to 2026 was discussed, the
spatial characteristics of LST distribution within a certain
distance were described, and the pattern of thermal environ-
ment space of Zhengzhou city was analyzed. Four circular

1986 1996

2006 2016

2026

Low High

Figure 6: Urban heat island distribution maps of Zhengzhou city.

Table 8: UHI grade levels of Zhengzhou from 1986 to 2026/ha.

Year Low Sub-low Medium Sub-high High

1986 83625.55 103911.49 147552.85 263781.08 153504.82

1996 16351.18 140410.92 295761.75 178092.00 121759.94

2006 16231.06 94541.95 219800.68 193058.52 228743.58

2016 4981.83 39214.67 269041.02 245564.53 193573.74

2026 3487.13 32674.59 253577.21 266035.92 196600.94
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Figure 7: Percentage of different UHI levels in a different year.
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Figure 8: Dynamic curve of UHI of Zhengzhou city.

Table 9: UHI change in different levels from 1986 to 1996.

Levels 1986 1996 Amount (ha) Amplitude (%) Degree (%)

Low 83625.55 16351.18 -67274.37 -80.45 -8.04

Sub-low 103911.49 140410.92 36499.43 35.13 3.51

Medium 147552.85 295761.75 148208.90 100.44 10.04

Sub-high 263781.08 178092.00 -85689.08 -32.48 -3.25

High 153504.82 121759.94 -31744.88 -20.68 -2.07

Table 10: UHI change in different levels from 1996 to 2006.

Levels 1986 1996 Amount (ha) Amplitude (%) Degree (%)

Low 16351.18 16231.06 -120.12 -0.73 -0.07

Sub-low 140410.92 94541.95 -45868.97 -32.67 -3.27

Medium 295761.75 219800.68 -75961.07 -25.68 -2.57

Sub-high 178092.00 193058.52 14966.52 8.40 0.84

High 121759.94 228743.58 106983.64 87.86 8.79
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buffers with a distance of 5 km with the Erqi Memorial Tower
taken as the center of the circle was drawn (Figure 11). The
LST grade vector data of 1986, 1996, 2006, 2016, and 2026
and buffer vector data were superimposed and analyzed to
obtain LST distribution results of five different distances
from the center of the circle (Figure 12).

The proportion area of different grades in the different
buffer zone (Figure 12) indicates that during the 40 years’
urbanization in Zhengzhou, the area of low-temperature
zone gradually decreased and the area of intermediate grade
temperature zone experienced a process of increasing first
and then decreasing; the area of higher temperature zone
increased continuously. Therefore, the pattern of urban
thermal environment in Zhengzhou city showed a trend of
agglomeration to an intermediate level firstly and then
change to the extremely high temperature.

By longitudinally comparing the temperature levels in the
buffer zone, the results showed that in the 0 km to 10 km
buffer zone, the temperature of each grade changes greatly,
the area of low-temperature zone gradually decreases, and

the area of high-temperature zone continues to increase rap-
idly. The area ratio of high temperature is more than 80% in
2016, and this number will close to 90% in 2026 by predic-
tion. In the buffer zone of 10 km to 20 km, the area of low-
temperature area is generally declining, the area of medium
temperature zone is stable, and the area of high-temperature
zone is changed from the least to the most. It is predicted
that by 2026, the area of the lower temperature zone will
be close to 10 km2. In the 20 km to 30 km buffer zone, the
area of low temperature and sub-low temperature continues
to decline, the area of medium temperature zone and sub-
high temperature zone is in a wave-like state, and the area
of high-temperature zone increases slightly. In the 30 km
to 40 km buffer zone, the medium and sub-high temperature
zones are the main temperature grades. The proportion of
high-temperature zone increased at the beginning and then
stabled at 20%; the proportion of low-temperature zone is
small and in a reduced state. The above phenomenon is
mainly due to the continuous acceleration of the urbaniza-
tion process in Zhengzhou city, the continuous expansion

Table 11: UHI change in different levels from 2006 to 2016.

Levels 1986 1996 Amount (ha) Amplitude (%) Degree (%)

Low 16231.06 4981.83 -11249.23 -69.31 -6.93

Sub-low 94541.95 39214.67 -55327.28 -58.52 -5.85

Medium 219800.68 269041.02 49240.34 22.40 2.24

Sub-high 193058.52 245564.53 52506.01 27.20 2.72

High 228743.58 193573.74 -35169.84 -15.38 -1.54

Table 12: UHI change in different levels from 2016 to 2026.

Levels 1986 1996 Amount (ha) Amplitude (%) Degree (%)

Low 4981.83 3487.13 -1494.70 -30.00 -3.00

Sub-low 39214.67 32674.59 -6540.08 -16.68 -1.67

Medium 269041.02 253577.21 -15463.81 -5.75 -0.57

Sub-high 245564.53 266035.92 20471.39 8.34 0.83

High 193573.74 196600.94 3027.20 1.56 0.16
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Figure 9: UHI change in percentage of different levels from 1986 to 2026.
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of the human-made area around Erqi Tower, and the increas-
ing surface area of artificial land, which lead to continuous
temperature rising in the high buffer zone, and the low-
temperature zone reduced gradually.

The horizontal comparison (in the 10 km, 20 km, 30 km,
and 40 km buffer zone) of the temperature levels showed that
the change trend of low-temperature zone increased and then

decreased, which displayed as a “n” shape change trend. The
area of sub-low temperature zone increased gradually during
the period of 2006 to 2026. The overall change range of
medium temperature zone during the period from 1986 to
1996 is small, while it is increasing gradually during the
period of 2006 to 2026. The sub-high temperature zone
occupied a larger proportion in the 10 km buffer zone than
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Figure 10: Profiles of UHI of Zhengzhou.
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other buffer zones from 1986 to 1996. From the period of
1996 to 2006, the proportion of sub-high temperature zones
was almost the same in each buffer zone, and from the period
of 2006 to 2016, the spatial distribution of sub-high temper-
ature had an opposite pattern of a period from 1986 to 1996.
The distribution characteristics of LST are mainly due to the
high degree of urbanization in the area closer to the Erqi
Tower where the urban underlying surface features are dom-
inated by steel, cement, and masonry which increase the
impact of UHI effect.

4.7. Relationship between LULC and UHI. In this subsection,
the relationship between LULC and UHI is analyzed using
three quantitative indices such as normalized difference
vegetation index (NDVI), normalized difference building
index (NDBI), and normalized difference waterbody index
(NDWI) which indicate relative important LULC types
vegetation, built-up area, and waterbody.

NDVI is a standardized way to measure vegetation,
which quantifies vegetation by measuring the difference
between red (R) and near-infrared (NIR) spectral reflectance
value from remotely sensed data. NDVI can be calculated in
its formula NDVI = ðNIR − RÞ/ðNIR + RÞ. NDBI is another
solution for easily calculating of the built-up area because it
is simple, rapid, and accurate in urban area mapping. NDBI
can be calculated using the formula asNDBI = ðSWIR −NIRÞ
/ ðSWIR + NIRÞ, where SWIR and NIR represent the spectral
reflectance value of shortwave infrared and NIR band. The
NDWI, which can be calculated using green and NIR spectral
reflectance value using its formula NDWI = ðGREEN −NIRÞ
/ðGREEN +NIRÞ, is most appropriate for waterbody map-
ping. In this research, there are 30 sets of NDVI, NDBI, and
MNDWI index and corresponding UST data were randomly

selected from the data of 1986, 1996, 2006, 2016, and 2026
for linear regression, and the results are shown as

T = −3:437 + NDVI + 29:835,
R2 = 0:835, ð15Þ

T = 11 + NDBI + 25:539,
R2 = 0:821, ð16Þ

T = −8:628 + NDWI + 31:481,
R2 = 0:868:

ð17Þ

The regression equations (15), (16), and (17) showed that
there was a significant negative correlation between NDVI,
NDWI, and LST; the correlation coefficients are 0.835 and
0.868, respectively. Waterbody has a more obvious effect on
relieving LST than vegetation. There was a significant positive
correlation between NDBI and LST, with a correlation coeffi-
cient of 0.821.

5. Analysis and Discussion

The urban expansion intensity level (Table 5) from 1986 to
2026 indicates that the urban growth intensity maintains an
increase during this period in general. There was a
medium-speed growth stage from 1986 to 1996 and a rapid
growth from 1996 to 2006. And according to the predicted
results of LULC maps, there will be a slight slow down to
some extent in the next 10 years, while the urban growth is
still at a medium speed.

What is the relationship between LULC type and UHI? In
order to discover this relationship and to effectively and

40 km 30 km 20 km 10 km
Erqi Tower

Figure 11: The buffer setting of UHI.
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reasonably analyze the impact and contribution of different
surface cover to urban thermal environment, the artificial
surface, vegetation, water, farmland, and bare land vector

data of 1986, 1996, 2006, 2016, and 2026 were sequentially
performed on vector data of low-temperature, sub-low tem-
perature, medium temperature, sub-high temperature, and
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Figure 12: Proportion of each UHI levels in each buffer zone. (a) 1986; (b) 1996; (c) 2006; (d) 2016; (e)2026.
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high-temperature zone. And the proportion of different
LULC types occupied in different temperature grades was
also calculated (Tables 13–17).

The spatial-temporal change of thermal environment
from 1986 to 2026 showed that the proportion of LULC types
in a temperature grade changed significantly. For example,
the built-up area in the high-temperature zone has rapidly
increased from less than 10% in 1986 to more than 45% in
2016. In the low-temperature zone, the proportion of water
has been close to 65% from the beginning of the study period
and has continued to drop to less than 30% in 2016, and it is
predicted that the proportion will further decrease signifi-
cantly by 2026. Priyankara et al.’s research [34] demonstrates
similar findings that mean LST has a strong significant posi-
tive relationship with a fraction of impervious surface and
persistent impervious surface, while a strong negative rela-
tionship with a fraction of forest surface and new added
impervious surface. Priyankara et al. suggested that more
vegetation areas are recommended in both horizontal and
vertical directions to reduce the UHI effect.

The change of proportion of the same LULC type in dif-
ferent temperature grades from 1986 to 2026 showed that the
changes of the built-up area and bare land area are similar,
that is, in the early stage of research, these two land cover
types are mainly concentrated in medium temperature zone.
With the expansion of the urban area, the proportion of the
high-temperature zone increased. When combining the spa-
tial distribution of built-up and bare land in the study area, it
fully demonstrates the significant positive impact and contri-
bution of these two LULC types on urban thermal environ-
ment. The distribution of vegetation is mainly in a medium
level of UHI grades, which indicates that vegetation plays
an important role in balancing surface temperature. Water-
body is distributed in a low-temperature zone, and propor-
tion was gradually decreased in the low-, medium-, and
high-temperature zone. With the acceleration of urbaniza-
tion process, the proportion of waterbody in a low-
temperature zone will be less than 8% in 2026 by prediction,
but it still has an obvious advantage over other land cover
types showing that the waterbody is indispensable for reduc-
ing UHI effect and maintaining the balance and stability of
urban thermal environment. LULC types of distribution on
all temperature grades were discussed here, while the contri-
bution of other factors might be differentiated. Ranagalage
et al.’s research [35] revealed that mean LST was positively
correlated with the increase of fraction ratio of building area
and forest area and with the decrease of fraction ratio of agri-
cultural and forest area. Building density is a crucial element
in increasing LST.

6. Conclusions

In this research, comprehensive research of LULCCs on urban
heat environment assessment was performed using the RS and
GIS spatial technique. The spatial and temporal changes of
urbanization of Zhengzhou city from 1986 to 2026 were
analyzed, and conclusions can be drawn as follows.

Land use and land cover changes of 40 years in Zheng-
zhou city have been studied and analyzed. In the past forty

Table 13: Area ratio of land cover type in each LST grade in 1986
(%).

Low Sub-low Medium Sub-high High

Building-up 0.23 8.19 52.27 31.23 8.08

Vegetation 0.45 34.61 48.73 12.81 3.40

Water 64.46 23.78 8.48 2.48 0.80

Farmland 0.04 1.96 23.08 36.38 38.54

Bare land 0.77 7.13 39.78 32.10 20.22

Table 14: Area ratio of land cover type in each LST grade in 1996
(%).

Low Sub-low Medium Sub-high High

Building-up 7.08 10.11 20.71 43.06 19.03

Vegetation 10.69 13.82 17.35 33.06 25.08

Water 58.24 20.20 12.38 6.45 2.73

Farmland 7.04 16.96 30.32 35.74 9.94

Bare land 11.71 13.23 19.47 38.78 16.82

Table 15: Area ratio of land cover type in each LST grade in 2006
(%).

Low Sub-low Medium Sub-high High

Building-up 0.37 1.59 15.42 39.19 43.42

Vegetation 0.00 6.95 49.21 31.72 12.12

Water 58.48 25.56 15.29 0.48 0.19

Farmland 0.00 0.26 4.73 27.10 67.91

Bare land 0.19 4.09 25.19 33.86 36.68

Table 16: Area ratio of land cover type in each LST grade in 2016
(%).

Low Sub-low Medium Sub-high High

Building-up 0.14 1.39 16.31 36.47 45.70

Vegetation 3.22 21.29 43.10 22.01 10.38

Water 29.70 53.06 14.04 2.17 1.04

Farmland 0.11 1.14 15.12 25.42 58.21

Bare land 0.32 8.81 23.03 24.36 43.48

Table 17: Area ratio of land cover type in each LST grade in 2026
(%).

Low Sub-low Medium Sub-high High

Building-up 0.23 1.13 17.78 35.18 45.69

Vegetation 0.14 6.73 46.28 34.38 12.47

Water 7.30 12.04 44.67 19.81 16.18

Farmland 0.42 2.41 28.23 38.24 30.69

Bare land 0.13 1.45 21.08 39.74 37.60
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years, the significant transform land cover type is the built-up
area. The LULC conversion relationship in the study area is
extremely complex. The strongest urban growth intensity
happened in 1996 to 2006. The study area generally
expanded in NEE and SWW orientation most notably from
1986 to 2026.

A combination analysis of natural and thermal environ-
mental has been yielded. During the period from 1986 to
2026, LST in the study area is distributed mainly in medium,
sub-high, and high-temperature zone. The thermal environ-
ment change process in Zhengzhou is relatively complicated,
and the dynamics of spatial-temporal change were dramati-
cal. In the early stage of the study period, the temperature
grade trends to medium zone, the middle trends to high-
temperature zone, and the later stage has a tendency to
change to the medium zone. The temperature changes in
the east-west direction were faster than that in the north-
south direction. There is a significant correlation between
vegetation, water and urban surface temperature, and LST,
and a positive correlation between the built-up area and LST.

The apparent drawback of the paper is that our study is
limited to daytime UHI due to the limit of the Landsat data-
set. Therefore, future works tend to integrate the advantages
of Landsat and nighttime light datasets and then extend our
study to nighttime.

Abbreviations

LULCCs: Land use and land cover changes
UHI: Urban heat island
NEE: North-northwest
WSW: West-southwest
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RS: Remote sensing
LULC: Land use and land cover
UST: Urban surface temperature.
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High spatial and temporal resolution remote sensing data play an important role in monitoring the rapid change of the earth
surface. However, there is an irreconcilable contradiction between the spatial and temporal resolutions of the remote sensing
image acquired from a same sensor. The spatiotemporal fusion technology for remote sensing data is an effective way to solve
the contradiction. In this paper, we will study the spatiotemporal fusion method based on the convolutional neural network,
which can fuse the Landsat data with high spatial but low temporal resolution and MODIS data with low spatial but high
temporal resolution, and generate time series data with high spatial resolution. In order to improve the accuracy of
spatiotemporal fusion, a residual convolution neural network is proposed. MODIS image is used as the input to predict the
residual image between MODIS and Landsat, and the sum of the predicted residual image and MODIS data is used as the
predicted Landsat-like image. In this paper, the residual network not only increases the depth of the superresolution network
but also avoids the problem of vanishing gradient due to the deep network structure. The experimental results show that the
prediction accuracy by our method is greater than that of several mainstream methods.

1. Introduction

Due to the limitation of the hardware technology of the
remote sensing satellite and the cost of satellite launching, it
is difficult for the same satellite to obtain the remote sensing
image with both high spatial and temporal resolutions. Land-
sat series satellites can obtain multispectral data with a spatial
resolution of 30m. While multispectral images reflect the
spectral information of ground features, when performing
classification and other processing, unlike hyperspectral,
which has rich dimensions, dimensionality reduction pro-
cessing is required. Although there are many dimensionality
reduction methods, it can achieve dimensionality reduction
of hyperspectral images [1]. But multispectral image imaging
is more convenient, making it widely used in many fields.
With this feature, Landsat data has been widely used in the
exploration of earth resources, management of agriculture,
forestry, animal husbandry, and natural disaster and envi-
ronmental pollution monitoring [2–4]. However, the 16-
day visit circle of the Landsat satellite and the impact of cloud

pollution limit their potential use in monitoring and
researching the land surface dynamic changes. On the other
hand, Moderate-resolution Imaging Spectroradiometer
(MODIS) on Terra/Aqua satellite has a visit circle per 1-2
days, which has a high temporal resolution and can be
applied in vegetation phenology [5, 6] and other fields. How-
ever, the spatial resolution of MODIS data is 250-1000m,
which has a poor representation of the details of the ground
objects and is not enough to observe the heterogeneous
landscape.

In 1995, Vignolles et al. [7] first proposed to generate
high spatiotemporal resolution data by using spatiotemporal
fusion technology. Since then, different types of spatiotempo-
ral fusion methods have been emerging. The spatiotemporal
fusion technology of remote sensing images is fused with the
spatial features of high spatial but low temporal resolution
images and the temporal features of low spatial but high tem-
poral resolution images to generate time series images with
high spatial resolution. According to the principle, the exist-
ing spatiotemporal fusion models can be divided into three
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types: reconstruction based, spatial unmixing based, and
learning based.

The basic principle of reconstruction-based methods is to
calculate the reflectance of the center fusion pixel through a
weighting function which takes full account of the spectral,
temporal, and spatial information in similar pixels. Gao
et al. [8] first proposed the spatiotemporal adaptive reflection
fusion model (STARFM), which uses a pair of MODIS and
ETM+ reflectance images at known time phase and MODIS
reflectance images at predicted time phase to generate 30m
spatial resolution image. Hilker et al. [9] proposed a spatio-
temporal fusion algorithm for mapping reflectance change
(STAARCH) based on tasseled cap change. The algorithm
can not only generate 30m spatial resolution ETM+ like
images but also detect highly detailed surface classes. How-
ever, the fusion accuracy of STARFM and STAARCH are
highly related to the surface landscape heterogeneity, result-
ing in low fusion accuracy for heterogeneous area. David
et al. [10] considered the influence of bidirectional reflec-
tance effect, proposing a semiphysical method to generate
fused Landsat ETM+ reflectance using MODIS and Landsat
ETM+ data. Zhu et al. [11] based on STARFM considering
the reflectivity difference between different sensor imaging
systems due to different orbital parameters, band bandwidth,
spectral response curve and other factors, the transfer coeffi-
cient between different sensor differences is increased, and
the enhanced STARFM (ESTARFM) model is proposed to
improve the fusion accuracy of complex surface area (hetero-
geneous area) to a certain extent. The model uses two sets of
MODIS and ETM+ reflectance images and MODIS reflec-
tance images to generate 30m spatial resolution ETM+ like
image. Wang and Atkinson [12] proposed a spatiotemporal
fusion algorithm consisting of three parts: regression model
fitting (RM Fitting), spatial filtering (SF), and residual com-
pensation (RC), referred to as Fit-FC; this method only uses
a pair of known high-low resolution image pair as input
and can better predict the spatial change between images in
different periods. Chiman et al. [13] proposed a simple and
intuitive method and has two steps. First, a mapping is
established between two MODIS images where one is at an
earlier time, t1, and the other one is at the time of prediction,
tp. Second, this mapping is applied to a known Landsat
image at t1 to generate a predicted Landsat image at tp.

Spatial-temporal fusion methods based on spatial unmix-
ing performs spatial unmixing of pixels in known low-
resolution images and applies the classification results to
high-resolution images at the unknown time to predict
high-resolution images. Zhukov et al. [14] proposed a spatio-
temporal fusion method that considers the spatial variability
of pixel reflectivity based on the assumption that the pixel
reflectivity does not change drastically between neighbor
pixels. This method introduces window technology to predict
the high-resolution reflectance of each type of feature. This
method is not ideal for the farmland area which changes
dramatically in a short time. Wu [15] proposed a spatial
and temporal data fusion approach (STDFA) based on the
assumption that the temporal variation characteristics of
the class reflectivity are consistent with the intraclass pixel
reflectivity. This method extracts the temporal change infor-

mation of ground features from time-series low spatial reso-
lution images and performs classification and density
segmentation on known two periods of high spatial resolu-
tion images to obtain classified images, so as to obtain class
average reflectance for image fusion. On the basis of [15],
Wu and Huang [16] comprehensively considered the spatial
variability and temporal variation of pixel reflectivity and
proposed an enhanced STDFA; the method solves the prob-
lem of missing remote sensing data. Hazaymeh and Hassan
[17] proposed a relatively simple and more efficient algo-
rithm; the Spatiotemporal Image-Fusion Model (STI-FM)
applies clustering to the images first, and, for each cluster,
performs a separate prediction. Zhu et al. [18] proposed a
flexible spatiotemporal data fusion (FSDAF) based on spec-
tral demixing analysis and thin-plate spline interpolation.
The algorithm uses less input data, which is suitable for het-
erogeneous areas and can effectively preserve the low-
resolution details of the image during the prediction period.

In remote sensing image processing, learning-based
methods are more commonly used for classification of
ground features [19]. In recent years, spatiotemporal fusion
methods based on learning have been widely concerned. In
2012, Huang and Song [20] first introduced sparse represen-
tation technology into the process of spatiotemporal fusion
and proposed a sparse representation based on a spatiotem-
poral reflectance fusion model (SPSTFM), which uses the
MODIS and ETM+ images of the front and back phases
at the predicted time phase. First, use high- and low-
resolution difference images to train a couple dictionary
representing high- and low-resolution features, and then
use a low-resolution image to predict high-resolution
image. Song and Huang [21] proposed a sparse representa-
tion of spatiotemporal reflectance fusion model using only
a pair of known high- and low-resolution image pair, which
first enhanced MODIS image by sparse representation to
obtain a transition image, then predicted image is generated
by combining known high-resolution image with transition
image through high-pass modulation. The model reduces
the number of known image pair that needs to be inputted,
so that the algorithm can be applied in the case of lack of
data and has more general applicability. Spatiotemporal
fusion method based on feature learning considers the spatial
information of changing image. However, there are some
limitations in previous methods based on sparse representa-
tion. First, the image features need to be designed, which
brings complexity and instability to performance. Secondly,
the method does not consider the large amount of actual
remote sensing data but only develops and validates the
algorithm for small-scale research areas.

The convolutional neural network (CNN) [22] model has
a simple structure and can be used to solve the problems of
target recognition [23] and image classification [24] in com-
puter vision. In recent years, CNN has also been used in the
field of superresolution. As the pioneer CNN model for SR,
superresolution convolutional neural network (SRCNN)
[25] predicts the nonlinear LR-HR mapping via a fully con-
volutional network and significantly outperforms classical
non-DL methods. In the field of remote sensing, Song et al.
[26] proposed a five-layer convolutional neural network
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(CNN) spatiotemporal fusion model. This model is similar to
[21] and is a two-stage model. It learns the CNN nonlinear
mapping betweenMODIS and Landsat images and combines
high-pass modulation with a weighting strategy to predict
Landsat-like images. Liu et al. [27] proposed a two-stream
convolutional neural network StfNet, which not only consid-
ered the temporal dependence of remote sensing images but
also introduced temporal constraint, the network takes a
coarse difference image with the neighboring fine image as
inputs and the corresponding fine difference image as output,
the method can restore spatial details greater. At present,
there are two main problems faced by learning-based spatio-
temporal fusion methods: first, the deep-seated network can
improve the prediction accuracy; however, the deep-seated
network will lead vanishing gradient or convergence diffi-
culty and second, it is difficult to obtain two pairs of suitable
prior image pairs as the input of network training. For exam-
ple, StfNet is a fusion method using two pairs of prior images
as input. Considering the above two points, we propose a
spatiotemporal fusion model based on residual convolution
neural network. The model can only uses a pair of prior
images as train input. The MODIS image is very similar to
the predicted Landsat image. In other words, the low-
frequency information of low-resolution image is similar to
that of high-resolution image. In fact, the low-resolution
image and the high-resolution image only lack the residual
of the high-frequency part. If only train the high-frequency
residual between the high resolution and the low resolution,
which does not need to spend too much time in the low-
frequency part. And can deepen the network structure to
avoid problems such as gradient disappearance. For this rea-
son, we introduce the idea of ResNet [28] and set up a spatio-
temporal fusion framework of remote sensing image suitable
for a small-sample training set for CNN. Considering the
time dependence between the image sequences, we use the
MODIS-Landsat image pairs of the front and back phases
of the prediction image to construct the prediction network,
respectively. The experimental results show that compared
with benchmark methods, the spectral color and spatial
details of our method are closer to the real Landsat image.

The rest of this paper is divided into three sections. In
Section 2, the principle of residual CNN is introduced.
Section 3 provides the experimental verification process and
results. Section 4 gives the conclusion.

2. Methods

In this paper, we use CNN and ResNet to construct a dual
stream network to predict Landsat-like images. The princi-
ples involved are briefly introduced as follows.

2.1. CNN. Convolutional neural network (CNN) is one of the
most representative network models in the deep learning
method [29]. With the continuous development of deep
learning techniques in recent years, it has achieved very good
results in the field of image processing. Compared with the
traditional data processing algorithm, CNN avoids the
complicated preprocessing work such as manually extracting
data from the data, so that it can be directly used in the orig-
inal data.

CNN is a nonfully connected multilayer neural network,
as shown in Figure 1. The main structure consists of a convo-
lutional layer, pooling layer, activation layer, and fully con-
nected layer [30]. The convolutional layer, pooling layer,
and activation layer are the feature extraction layers of
CNN, which are used to extract the signal features. The fully
connected layer is the CNN classifier. Since this paper mainly
uses the deep convolution network to extract the spatial char-
acteristics of the remote sensing image, the feature extraction
layer of deep convolutional neural networks is analyzed.

2.2. Residual Learning. If the input of a neural network is x,
and the expected output is HðxÞ; HðÞ is the expected map-
ping. If we want to learn such a model, the training difficulty
will be greater; if we have learned the more saturated accu-
racy (or when we find that the error in the lower layer
becomes larger), then the next learning goal will be trans-
formed into the learning of identity mapping, that is, to make
the input x an approximate output HðxÞ, which is in order to
keep in the later hierarchy without causing a drop in
accuracy.

As shown in the residual network structure diagram in
Figure 2, input x is directly transferred to the output as the
initial result through “shortcut connections,” and the output
result is HðxÞ = FðxÞ + x. When FðxÞ = 0, then HðxÞ = x,
which is the constant mapping mentioned above. Therefore,
ResNet is equivalent to changing the learning goal, not a
complete output of learning, but the difference between the
goal value HðxÞ and x, that is, the so-called residual FðxÞ =

Input

Convolutional
layer Pooling layer Convolutional

layer Pooling layer

Figure 1: Flowchart of CNN network structure.

Weight layer

Weight layer

ReLU

X

X
identity

ReLU
F(x)+x
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Figure 2: Residual learning unit.
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HðxÞ − x. Therefore, the later training goal is to approach the
residual result to 0, so that with the deepening of the network,
the accuracy does not decline.

2.3. Spatiotemporal Fusion Using Residual Learning in CNN.
In this paper, Landsat image is regarded as high spatial but
low temporal resolution data; MODIS image is regarded as
high temporal but low spatial resolution data. We express
the Landsat image and MODIS image at ti as Li and Mi,
respectively. If there are two pairs of prior images, the two-
stream residual CNN network uses the known Landsat-
MODIS image pair at t1 and t3, and MODIS image at t2 to
predict Landsat-like image.

2.3.1. Training Stage. In the training stage, in order to build
an nonlinear mapping model between MODIS and
Landsat-MODIS residual images, we first up sample the
spatial resolution of Mi to the same size as Li. Then, the
Landsat and MODIS images at the same time are differ-
enced to obtain a residual image Di. Thus, we expect to
learn a mapping function f ðxÞ which approximates Di.
Pixel value in Di are likely to be zero or small. We want
to predict this residual image. The loss function now
becomes 1/2ky − f ðxÞk2, where f ðxÞ is the network predic-
tion. We divide the high- and low-resolution images corre-
sponding on the same time into overlapping image patches.
Define the set of high- and low-resolution samples as X and
Y, where the corresponding samples are x and y. The over-
lapping segmentation is performed here to increase the
number of training samples. After predicting the residual
image, the ground truth Landsat image is obtained by the
sum of the input MODIS image and the predicted residual
image.

In the network, the loss layer has three inputs: residual
estimation, input MODIS image, and Landsat image. The
loss is calculated as the Euclidean distance between the
reconstructed image and the real Landsat image. In order to
achieve the purpose of high-precision spatiotemporal fusion,
we use a very deep convolutional network. We use 18 layers
where layers except the first and the last are of the same type:
64 filters of the size 3 × 3 × 64, where a filter operates on 3 × 3
spatial region across 64 channels (feature maps). The first
layer operates on the input image. The last layer, used for
image reconstruction, consists of a single filter of size 3 × 3
× 64. The process structure is shown in Figure 3.

Training was performed by using back-propagation-
based minibatch gradient descent to optimize regression
targets. We set the momentum parameter to 0.9. Training
is regularized by weight loss (l2 penalty multiplied by 0.0001).

2.3.2. Prediction Stage. There are two pairs of prior Landsat-
MODIS images and theMODIS image on prediction date, we
aim to fuse them to predict the Landsat-like image on predic-
tion date. Denote the prior dates as t1 and t3, the prediction
date as t2, we predict L2 based on the residual learning
CNN. Mi, Li, and Di are divided into patches, and their cor-
responding image patches are mk

i ,lki , and dk1 , respectively.
Taking mk

1 as the input of CNN, the label is lki , and the sum
of the residual image dk1 and mk

1 is used as the prediction.
In this paper, the number of network layers is set to 18. In
the process of reconstruction, input mk

2 into the trained net-
work and get the predicted l1k2 . Similarly, l3k2 can be predicted
by Landsat-MODIS image pair at t3. Considering the tempo-
ral correlation between the image at the predicted time and
the reference image, we use the corresponding temporal
weight when reconstructing each image patch. Finally, the
high spatial resolution image patch at the predicted time is
obtained:

lk2 = ωk
1 ∗ l1k2 + ωk

3 ∗ l3k2 , ð1Þ

where l1k2 and l3k2 are the kth predicted patch using L1 and L3
as the reference image, respectively, ωk

1 and ωk
3 are the corre-

sponding weight, and determined as follows:

ωk
i =

1/vki
1/vk1
� �

+ 1/vk3
� � i = 1, 3ð Þ: ð2Þ

The local weight is calculated by the sumU of normalized
difference vegetation index (NDVI) [31] and normalized dif-
ference built-up index (NDBI) [32], where vki is used to mea-
sure the change degree between MODIS images at two times,
and it is the absolute average change of U in mk

ij, where mk
ij

represents the MODIS image change at different times. After
each image patch is reconstructed one by one, it is restored to
the whole image. In order to ensure the continuity of the
reconstructed image, there is an overlap between adjacent
patches, and the pixel value of the overlapped part of the

Conv.1 ReLU.1

…

Conv.17 ReLU.17 Conv.18 (residual)
Mi Di Li

+

Figure 3: Flowchart illustrating the proposed scheme of two-stream residual learning in CNN.
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image patch is taken as the mean value when the whole image
is restored.

3. Experiments

Two datasets were used in the experiments. The first dataset
contains two pairs of MODIS-Landsat images, and the sec-
ond dataset contains three pairs of MODIS-Landsat images.
Both areas are located in Coleambally, New South Wales,
Australia. MODIS data uses the surface reflectance of
MOD09A1 (500m) and MOD09Q1 (250m) for 8-day syn-
thetic products. We up sampled all MODIS in the dataset
to the same resolution as the Landsat image of the corre-
sponding date. Compared with natural images, remote sens-
ing images have a large size and rich details. Therefore, the
remote sensing images are overlapped and divided into
patches to obtain the training set. In the paper, the images
of the two areas are overlapped divided into 33 × 33 image
patches. The above image patch set is used as the train set
and prediction set. We compare our method with the main-
stream and advanced methods (including STARFM, FSDAF,
Fit-FC, STDFA, STI-FM, HCM, ESTARFM, SPSTFM, and
StfNet), which will be described in detail in this section.

3.1. Experiment on the First Dataset. In order to verify the
applicability of our proposed spatial-temporal fusion method
based on residual convolutional neural network for one prior

Landsat-MODIS image pair, we use a single-stream network
to verify and compare the same data as the input of
STARFM, FSDAF, Fit-FC, STDFA, STI-FM, and HCM.

In this experiment, two pairs of Landsat and MODIS
surface reflectance images covering a 20 km × 20 km area in
Coleambally are used. The two pair images were acquired
on 2 July 2013 and 17 August 2013. Figure 4 shows the
30m Landsat images (upper row) and 500m MODIS images
(lower row) using green-red-NIR as RGB composite image.
Then, we use the bicubic interpolation method to downscale
the 500m MODIS image into 30m. Our experimental task
used the pair of Landsat-MODIS images on 2 July 2013 and
the MDOIS image on 17 August 2013 to predict the 30m
Landsat-like image on 17 August 2013. At the same time,
STARFM, FSDAF, Fit-FC, STDFA, STI-FM, and HCM are
tested with the same input in this experiment, and the true
30m Landsat image acquired on 17 August 2013 is used as
the reference to evaluate the accuracy of fusion results.

Figure 5 shows the fusion results by four methods
(STARFM, Fit-FC, FSDAF, STDFA, STI-FM, HCM, and
our method). Obviously, the prediction accuracy by our
method is greater. For example, the highlighted areas in the
bottom left part of subarea S, for Fit-FC, STDFA, FSDAF,
STI-FM, HCM, and STARFM, some dark green pixels are
incorrectly predicted as purple pixels. In addition, the
highlighted areas in the bottom right part of the subarea,
Fit-FC, STDFA, FSDAF, STI-FM, HCM, and STARFM

(a) (b)

(c) (d)

Figure 4: 30m Landsat 8 and 500m MODIS images for the first dataset (green, red, and NIR bands as RGB). (a) and (b) are 30 m Landsat
images on 2 July 2013 and 17 August 2013, respectively, (c) and (d) are the corresponding 500m MODIS images for (a) and (b).
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incorrectly predicted some red pixels as purple and blue
pixels. However, our method is closer to the reference image.
The main reason is that the Fit-FC method directly applies
the known linear coefficients of the low-resolution image to
fit the high-resolution image on the prediction period. There-
fore, when the spatial resolution difference between the high-
and low-resolution images is large, there will be obvious
“block effect,” for example, the spatial resolution difference
between Landsat image andMODIS image is nearly 17 times.
STDFA assumes that the temporal variation characteristics of
the same surface coverage class in coarse pixels are consis-
tent, but there may be inconsistencies in practical applica-
tions, so the fusion result is affected. The accuracy of the
FSDAF spatiotemporal fusion algorithm is low, which is
mainly caused by two aspects: The prediction accuracy of
FSDAF is worse, which is mainly caused by two aspects: at
first, the known high-resolution data needs to be classified,

and the classification accuracy by unsupervised classification
method (such as the K-means method) will have a certain
impact on the results; at second, when the spatial resolution
difference between high- and low-resolution data is large,
the endmember (that is, high-resolution pixel) represented
area will be more refined. When the number of categories is
small, the fusion result will be relatively smooth, and when
the number of categories is large, the fitting accuracy will also
be reduced (such as in low-resolution pixels, if the richness of
a certain category is low, the total prediction error will be
increase). STI-FM is susceptible to interference from outliers,
so when the spatial characteristics change significantly, the
prediction effect is not good. The method of using gradation
mapping is greatly affected by the heterogeneous region, so
HCM failed to show the best performance in this experiment.
STARFM considers the similarity of neighboring pixels, so
the prediction accuracy is relatively stable. However, the

(a1)

(b1) (c1) (d1)

(e1) (f1) (g1) (h1)

(a2)

(b2) (c2) (d2)

(e2) (f2) (g2) (h2)

Figure 5: 30m Landsat 8 results for the first dataset (green, red, and NIR bands as RGB). (a1) is the 30m true Landsat 8 image on 17 August,
2013. (b1) is the 30m Fit-FC-derived Landsat 8 images on 17 August, 2013. (c1) is the 30m STDFA-derived Landsat 8 images on 17 August,
2013. (d1) is the 30m FSDAF-derived Landsat 8 images on 17 August, 2013. (e1) is the 30m STI-FM-derived Landsat 8 images on 17 August,
2013. (f1) is the 30m HCM-derived Landsat 8 images on 17 August, 2013. (g1) is is the 30m STARFM-derived Landsat 8 images on 17
August, 2013. (h1) is the 30m our method-derived Landsat 8 images on 17 August, 2013. Row 1 shows the results for the whole area, and
Row 2 is the results for a heterogeneous subareas (S) marked in (a1).
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premise of STARFM is that the spectrum of similar pixels in
the neighborhood is constant and there is no land cover
change during the observation period, which makes the
model susceptible to environmental and phenological
changes, resulting in large prediction errors, especially for
heterogeneous areas. Our method uses deep convolutional
neural networks to more effectively extract the features of
low-resolution images and residual images and constructs a
mapping relationship between low-resolution images and
residual images through a residual learning network. This
mapping relationship is nonlinear mapping and is more in
line with the change of ground features. In addition, the
number of layers in the network is deepened through residual
learning, which strengthens the robustness of the network.
Therefore, the experimental results based on our method
have better visual effects.

Table 1 lists the objective evaluation results of four fusion
methods and uses three common fusion evaluation methods
of remote sensing image, including root mean square error
(RMSE) [33], correlation coefficient (CC) [34], and universal
image quality index (UIQI) [35]. The ideal values for RMSE,
CC, and UIQI are 0, 1, and 1, respectively. From Table 1, we
can see that for the six bands of all fusion results, the fusion
results of our method have smaller RMSE and larger CC
and UIQI. Our method is compared with other six methods
(STARFM, Fit-FC, FSDAF, STDFA, STI-FM, and HCM);
the gain of the mean CC is 0.0259, 0.0365 0.0168, 0.0253,
0.0620, and 0.0487, and the gain of the mean UIQI is
0.0261, 0.0368, 0.0175, 0.0254, 0.0620, and 0.0489, respec-

tively. The mean RMSE is reduced by 0.0018, 0.0024,
0.0012, 0.0021, 0.0040, and 0.0032, respectively. In addition,
the fusion result based on our method is better than
STATFM, and STARFM is better than Fit-FC, the rest of
the sequence is STDFA>FSDAF>HCM>STI-FM. The main
reason is when the spatial resolution difference between
high- and low-resolution images is large, Fit-FC directly
applies the fitting coefficients of low-resolution images into
high-resolution images, which causes large errors; FSDAF
also has similar fitting errors. STDFA assumes that the tem-
poral variation characteristics of the same surface coverage
class in coarse pixels are consistent, but there may be incon-
sistencies in practical applications, so the fusion result is
affected. Although STARFM considers the similarity of
neighboring pixels, the reconstruction method of each pixel
cannot consider the continuity of the image. STI-FM is sus-
ceptible to interference from outliers, so when the spatial
characteristics change significantly, the prediction effect is
not good. HCM using gradation mapping is greatly affected
by the heterogeneous region. Our method can better restore
the continuity of the image by reconstructing the image
patch.

3.2. Experiment on the Second Dataset. In this experiment,
three pairs of Landsat-MODIS images covering 30 km × 30
km area of Coleambally are used to verify the applicability
of our method for two pairs of prior images. The three pairs
of images were acquired on 6 April, 2012, 12 May, 2012, and
20 July, 2012, respectively. Figure 6 shows the 30m Landsat

Table 1: Quantitative assessment for the Coleambally dataset.

Bands Fit-FC STDFA FSDAF STI-FM HCM STARFM Our method

RMSE

Blue 0.0088 0.0089 0.0091 0.0098 0.0094 0.0086 0.0081

Green 0.0113 0.0115 0.0117 0.0124 0.0120 0.0110 0.0105

Red 0.0150 0.0152 0.0154 0.0164 0.0159 0.0146 0.0139

NIR 0.0240 0.0244 0.0248 0.0268 0.0258 0.0233 0.0219

SWIR1 0.0328 0.0331 0.0339 0.0363 0.0351 0.0318 0.0299

SWIR2 0.0308 0.0317 0.0319 0.0344 0.0331 0.0299 0.0279

Mean 0.0205 0.0208 0.0211 0.0227 0.0219 0.0199 0.0187

CC

Blue 0.8761 0.8773 0.8674 0.8463 0.8574 0.8833 0.8967

Green 0.8786 0.8928 0.8705 0.8510 0.8612 0.8853 0.8976

Red 0.8925 0.8931 0.8856 0.8687 0.8775 0.8982 0.9085

NIR 0.7713 0.7722 0.7550 0.7171 0.7367 0.7850 0.8098

SWIR1 0.8327 0.8331 0.8207 0.7925 0.8072 0.8429 0.8627

SWIR2 0.8393 0.8398 0.8269 0.7978 0.8130 0.8497 0.8697

Mean 0.8484 0.8489 0.8377 0.8122 0.8255 0.8574 0.8742

UIQI

Blue 0.8653 0.8662 0.8564 0.8350 0.8462 0.8728 0.8867

Green 0.8680 0.8687 0.8597 0.8400 0.8503 0.8750 0.8879

Red 0.8835 0.8841 0.8763 0.8591 0.8681 0.8895 0.9008

NIR 0.7644 0.7652 0.7488 0.7125 0.7313 0.7775 0.8011

SWIR1 0.8251 0.8259 0.8132 0.7855 0.7999 0.8352 0.8557

SWIR2 0.8313 0.8319 0.8190 0.7903 0.8053 0.8418 0.8622

Mean 0.8396 0.8403 0.8289 0.8037 0.8168 0.8486 0.8657
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image (upper row) and 500m MODIS image (lower row)
using green-red-NIR as RGB composite image. This experi-
ment is to verify the accuracy of our methods based on two
pairs of prior images, we use the two image pairs on 6 April,

2012 and 20 July, 2012, and MODIS image on 12 May, 2012
to predict the Landsat-like image on 12 May, 2012.

Figure 7 shows the 30m prediction results on August 12,
2012 based on the four methods (ESTARFM, SPSTFM,

(a) (b) (c)

(d) (e) (f)

Figure 6: 30m Landsat and 500m MODIS images for the second dataset (green, red, and NIR bands as RGB). (a), (b), and (c) are 30m
Landsat images on 6 April, 2012, 12 May, 2012, and 20 July, 2012, respectively, and (d–f) are the corresponding 500m MODIS images for
(a–c).

(a1) (b1) (c1) (d1) (e1)

(a2) (b2) (c2) (d2) (e2)

Figure 7: 30m Landsat results for the second dataset (green, red, and NIR bands as RGB). (a1) is the 30m true Landsat image on July 11,
2012. (b1) is the 30m ESTARFM-derived Landsat images on 12 May, 2012. (c1) is the 30m SPSTFM-derived Landsat images on 12 May,
2012. (d1) is the 30m StfNet-derived Landsat images on 12 May, 2012. (e1) is the 30m our method-derived Landsat images on 12 May,
2012. Row 1 shows the results for the whole area, and Row 2 is the results for the heterogeneous sub-areas (S1) marked in (a1).
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StfNet, and our method). It is worth noting that the
ESTARFM result is the worst, StfNet is better than SPSTFM,
and our method is better than StfNet. For example, the
highlighted areas in the bottom left of subarea S, ESTARFM,
and SPSTFM incorrectly predicted some light green pixels as
dark green pixels. Although the prediction by StfNet is sim-
ilar to the reference image, but there are some yellow pixels
which had been incorrectly predicted to be blue pixels.
However, for our method, the prediction is closer to the
true reference image. Compared with the three benchmark
methods, our method provides excellent performance. The
main reason is ESTARFM assumes that during the observa-
tion period, the conversion coefficients between high- and
low-resolution images remain unchanged, but in actual
conditions, land types and coverage will change, so this
assumption is not applicable in the areas with significant
changes. SPSTFM utilizes sparse representation and dictio-
nary learning approaches in the signal domain to increase
prediction accuracy for land cover change and heteroge-
neous region. Although the network structure, compared
with our method, SPSTFM only applicable for small-scale
regions and cannot extract sufficient image features.
Although StfNet can produce more accurate prediction
results by deep network, but the data contained in the
training process is too large and the network is hard to con-
vergent, which also has a certain impact on the prediction
accuracy. Our method using residual learning network
can only learn the difference information between high-
and low-resolution images. Since the low-frequency infor-
mation between high- and low-resolution images is similar,
if we directly learn mapping relationship between high- and
low-resolution images, it will increase the amount of calcula-
tion, which also introduces errors. Through residual learning,
not only the nonlinear mapping relationship between high-
and low-frequency information can be directly learned, but
also the network layers can be deepened, which enhances
the accuracy and stability of the network structure.

Table 2 shows the comparison results in RMSE, CC, and
UIQI. From Table 2, we can see that for six bands, the fusion
results by our method can obtain smaller average RMSE and
larger CC and UIQI. It is easy to find that our method is
better than StfNet, the StfNet is better than SPSTFM, and
ESTARFM is the worst among the four approaches. Specif-
ically, the CC gains of our method over ESTARFM,
SPSTFM, and StfNet are 0.0508, 0.0257, and 0.0134, and
the UIQI gains are 0.0467, 0.0238, and 0.0126, respectively.
The main reason is that ESTARFM assumes that the con-
version coefficients remain unchanged during the observa-
tion period, but there are land cover types in this area,
such as subregion S, so the conversion coefficients are not
consistent, so the prediction results are greatly biased.
SPSTFM takes the image patch as the reconstruction unit
and considers the continuity between adjacent pixels, so it
has strong robustness in dealing with complex surface
changes. However, due to the instability of forcing the same
sparse coefficient of high- and low-resolution dictionaries
to construct the mapping relationship, the performance in
this experiment is worse than our method. StfNet has a
deep network layers; however, it is difficult to converge

due to directly training the mapping relationship between
high- and low-resolution images, which also leads to network
instability. Our method through residual network not only
improves the stability of the network but also enhances the
accuracy of the fusion results.

4. Conclusion

In this paper, we propose a residual convolution neural net-
work to predict Landsat-like image, and the method can be
applied to the case where there is only a pair of prior images.
This methodmainly includes two steps: firstly, use the known
MODIS-Landsat image pair to train the residual convolu-
tional neural network and secondly, input MODIS image at
predicted phase to reconstruct Landsat-like image. Com-
pared with the several benchmark algorithms (STARFM,
FSDAF, Fit-FC, ESTARFM, SPSTFM, and SftNet), our
method has the advantages of learning algorithm, which
takes the image patch as the reconstruction unit and con-
siders the continuity between adjacent pixels. Training the
residual to construct the depth network not only enhances
the stability of the network but also improves the prediction
accuracy.

The spatiotemporal fusion methods based on learning
have greater prediction accuracy for heterogeneous regions.
In this paper, we use a multilayer convolution neural network
to extract spatial features. In the future work, we will try to
design more effective methods to extract spatial features to
improve the recognition ability of change information. In
recent years, deep learning has received extensive attention.

Table 2: Quantitative assessment for the second dataset.

Bands ESTARFM SPSTFM StfNet Our method

RMSE

Blue 0.0118 0.0112 0.0109 0.0104

Green 0.0139 0.0132 0.0128 0.0122

Red 0.0217 0.0208 0.0203 0.0196

NIR 0.0361 0.0332 0.0317 0.0301

SWIR1 0.0306 0.0288 0.0279 0.0268

SWIR2 0.0369 0.0356 0.0348 0.0340

Mean 0.0252 0.0238 0.0231 0.0222

CC

Blue 0.8512 0.8727 0.8837 0.8964

Green 0.8520 0.8729 0.8833 0.8951

Red 0.8537 0.8756 0.8864 0.8990

NIR 0.7131 0.7601 0.7824 0.8055

SWIR1 0.8519 0.8735 0.8843 0.8955

SWIR2 0.8725 0.8900 0.8987 0.9077

Mean 0.8324 0.8575 0.8698 0.8832

UIQI

Blue 0.8425 0.8622 0.8723 0.8847

Green 0.8431 0.8624 0.8719 0.8834

Red 0.8297 0.8483 0.8574 0.8688

NIR 0.7040 0.7500 0.7714 0.7940

SWIR1 0.8455 0.8655 0.8753 0.8858

SWIR2 0.8529 0.8667 0.8735 0.8810

Mean 0.8196 0.8425 0.8537 0.8663
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Deep learning needs a lot of data to train model. Because of
the characteristics of large amount of data and rich informa-
tion in remote sensing data, we can use the “big data” charac-
teristics of remote sensing data to train more effective
mapping relationship between MODIS and Landsat images
by deep learning training, so as to improve the prediction
accuracy. In addition, although the spatiotemporal fusion
models based on learning have outstanding performance,
but the calculation time is longer, which is also a “common
failure” based on the learning method. Therefore, our future
work will follow the idea of improving the accuracy of fusion
results and reducing computational complexity.
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Road traffic network (RTN) structure plays an important role in the field of complex network analysis. In this paper, we propose a
regional patch detection method from RTN via community detection of complex network. Firstly, the refined Adapted PageRank
algorithm, which combines with the influence factors of the location property weight, the geographic distance weight and the road
level weight, is used to calculate the candidate ranking results of key nodes in the RTN. Secondly, the ranking result and the shortest
path distance as two significant impact factors are used to select the key points of the RTN, and then the Adapted K-Means
algorithm is applied to regional patch detection of the RTN. Finally, based on the experimental data of Zhangwu road traffic
network, the analysis results are as follows: Zhangwu is divided into 9 functional structures with key node locations as the core.
Regional patch structure is divided according to key points, and the RTN is actually divided into nine small functional
communities. Nine functional regional patches constitute a new network structure, maintaining connectivity between the
regional patches can improve the overall efficiency of the RTN.

1. Introduction

Road traffic network is an important infrastructure to serve
the economy, society, and the public and is the backbone of
the comprehensive transportation system. China is a big
country in road traffic, with a total length of 4.8465 million
kilometers at all levels, which constitutes a complex network
system. The community is the dominant structure that
exhibits different features and multifold functions of complex
networks; accordingly, community detection is of critical
importance in network science. In recent years, Newman
[1] and Boccaletti [2] introduce the structure, dynamics,
and function of complex networks. Newman [3] introduces
the communities, modules, and large-scale structure in net-
works. Communities have intrinsic interest, they may corre-
spond to functional units within a networked system, an
example of the kind of link between structure and function
that drives much of the present excitement about networks.
Costa et al. [4] analyze and model real-world phenomena
with complex networks. Fortunato et al. [5] present that
community detection in networks is one of the most popular
topics of modern network science. Communities, or clusters,

are usually groups of vertices having higher probability of
being connected to each other than to members of other
groups, though other patterns are possible. Yang et al. [6, 7]
adapt the concept of community detection to the correlation
network of urban traffic state and propose a new perspective
to identify the spatial correlation patterns of traffic state. Real
networks exhibit heterogeneous nature with nodes playing
far different roles in structure and function, to identify vital
nodes is thus very significant [8]. Liao et al. [9] introduce
the problem of ranking the nodes and the edges in complex
networks that is critical for a broad range of real-world prob-
lems, because it affects how we access online information and
products, how success and talent are evaluated in human
activities, and how scarce resources are allocated by compa-
nies and policymakers, among others. Agryzkov et al. [10]
provide a method to establish a ranking of nodes in an urban
network, with the main characteristic that is able to consider
the importance of data obtained from the urban networks in
the process of computing the centrality of every node. Yu
et al. [11] say the identification of clusters or communities
in complex networks is a reappearing problem. Kim and
Kim [12] propose an algorithm that uses an interaction
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optimization process to detect community structures in com-
plex networks.

As community detection of complex network is one of
the research hotspots, we proposed a Regional patch detec-
tion (RPD) analysis. Based on the idea of community detec-
tion of complex network, the regional patch detection of
road traffic network (RTN) is put forward, which transcends
the restriction of administrative division on RTN and funda-
mentally identifies the special common regional patch struc-
ture of RTN. Regional patch detection is applied to the RTN,
the deep characteristic structure aggregation of the RTN is
analyzed, the restrictions of the administrative division on
the RTN are crossed, and the characteristic sharing area is
detected according to the trend of the road network, ancillary
facilities of the road network, service facilities, distance, and
other influencing factors. To evaluate the rationality of traffic
network planning, the rationality of road network structure
design and the maintenance and maintenance of traffic net-
work are theoretical and practical problems that need to be
solved urgently.

The remaining of this paper is organized as follows: Sec-
tion 2 constructs the road traffic network (RTN), considering
the influence factor of weight and the regional patch detec-
tion of road traffic network are introduced. Section 3 presents
the experimental results of a road traffic network (RTN) in
Zhangwu of China. Finally, conclusions are provided in the
Conclusion section.

2. Regional Patch Detection (RPD) from Road
Traffic Network (RTN)

2.1. The Construction of RTN. The structure of RTN is always
defined as followed due to its complexity. The RTN defined:

RTN = N , Eð Þ ð1Þ

whereas: N = fniji = 1, 2,⋯,Ng is the set of nodes in the
RTN, N = jNj is the number of nodes in RTN; E = feijji ≠ j,
i, j ∈ f1, 2,⋯,Ngg is the set of edges. eij = 1, if there is an
edge between nodes i and j, otherwise eij = 0; weight factor:
if each edge is given a corresponding weight, the network is
called a weighted network; otherwise, it is called an
unweighted network. An unweighted network can also be
regarded as an equal-weight network in which each edge
has a weight of 1.

2.2. The Weighting Factors. The influence of features, dis-
tance, and level of road traffic network play a key role in
the geographical characteristics and traffic operation of road
network. So we set the corresponding weight influence fac-
tors to analyze the core position distribution of the road traf-
fic network. There are three weighting factors for the RTN:

2.2.1. The Location Property. The location property is an
important factor in measuring the importance of a segment.
Location characteristics are often related to the presence of
facilities such as those in the hotel industry and the commer-
cial sector. Suppose vector v is of size N × 1, N is the number
of road nodes in the RTN. An element vi = 1ð1 ≤ i ≤NÞ that

represents the segment i is relatively important, and there
are important ground feature service facilities around it. Oth-
erwise, vi = 0. The property matrix F defined as:

F = v, v,⋯, vð Þ1×N ð2Þ

2.2.2. The Geographic Distance. For the geographical, a
distance-decay characteristic displays significantly in the
RTN. The correlation amplitude generally decreases with
the increase of the distance between two nodes. Assumption,
distance weight matrix W = ðwijÞNi,j=1, dij is the shortest path
length between segments i and j in RTN and the unit is km:

wij =
1
dij

 i ≠ j

0 i = j

8
><

>:
, 1 ≤ i, j ≤N ð3Þ

2.2.3. The Road Level. The traffic road network is classified to
five categories according to the road administrative level,
which is divided into national road (G), provincial road (S),
county road (X), rural road (Y), and village roads (C).
According to the traffic volume, task, and nature of China’s
highway engineering technical standards (JTG B01-2014),
different levels of traffic networks have different annual aver-
age daily traffic volume (ADT) [13]. Thus, the weights of dif-
ferent levels of traffic network are set as shown in Table 1.

Suppose, road level matrix L = ðlijÞNi,j=1, element lij refers

to the weighted value of road level in Table 1.

2.3. Regional Patch Detection (RPD). This community detec-
tion result is as a reference, we define the concept of geo-
graphic space road traffic network regional patch detection
(RPD):

The regional patch is a subset of the RTN in the range of
dividing the RTN at different levels. A regional patch con-
tains nodes and the sections between nodes. The nodes in
the regional patch are closely related to each other and have
strong topological structure similarity and feature facility
property similarity. The relation between regional patches is
relatively sparse, and the close regional patches differ greatly,
while the distant regional patches may have similar
characteristics.

2.4. RPD Method. Complex networks have scale-free, small-
world, and community characteristics. The characteristics
of RTN are generally scale-free and small-world. Therefore,
the community structure of RTN is analyzed based on the
complex network, and the aggregation of road network is
deeply explored.

Table 1: Road level weight distribution.

Road
level

National
road (G)

Provincial
road (S)

County
road (X)

Rural
road (Y)

Village
road (C)

Weight 0.6875 0.1875 0.075 0.025 0.025
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The Google matrix of PageRank, expressed in G, is
defined as:

G = αA∗ + 1‐αð Þ
N

IN×N ð4Þ

In the paper, the refined Adapted PageRank algorithm is
used to calculate the ranking results of key nodes of the RTN.
The matrix ð1 − α/NÞIN×N by adding a property matrix, a
distance weight matrix, and a road level matrix. The weight
influence factor set in Section 2.2 is applied to calculate the
candidate location distribution of key nodes in the RTN.

Then, with the property matrix F, the distance weight
matrix W, and the road level matrix L, a novel weighted

matrix K is defined, where kj is the jth column of matrix K :

K = k1, k2,⋯, kj,⋯, kN
� �

= F +W + L ð5Þ

In order to make matrix K have column irreducibility
and stochastically, every column vector kj of matrix K should
be normalized, Where kkjk is the norm of column vector kj.

A new matrix G∗ in Equation. (6), the term ð1 − α/NÞ
IN×N is replaced by ð1 − αÞKN . Calculate X∗

1 = fgð1Þ, gð2Þ,
⋯, gðNÞgðλ = 1Þ of G∗ are the rank of key nodes.

G∗ = αA∗ + 1‐αð ÞKN ð6Þ

The calculation rank of key nodes is described in Figure 1.
In this paper, the center points of regional patch detec-

tion are selected by the method of two-dimension decision
graph. Thus, the number of centers can be determined by
taking ρ and δ into consideration, ρ as the horizontal axis
and δ as the vertical axis:

γi = ρiδi, i ∈ IS ð7Þ

The ρi, which is the ith vector X∗
1 , the ranking value of

key nodes. δi represents the minimum shortest path length
of RTN. The large γ, it may be the regional patch center.
Therefore, it is necessary to arrange fγigNi=1 in descending
order, and then intercept a number of data points from front
to back as the regional patch centers. Therefore, C nodes dis-
tributed in the upper right of the graph were selected as the
regional patch centers.

In the RTN, based on the Adapted K-Means algorithm to
calculate the regional patches. The Adapted K-Means algo-
rithm process are shown in Table 2. The Adapted PageRank
algorithm uses the characteristic influence factor of RTN to
calculate the ranking results of key nodes. The influencing
factors include the location property, the geographic

Road traffic network

Property matrix F Distance weight matrix W Level weight matrix L

K = F+W+L to KN

G⁎ = 𝛼A⁎+(1-𝛼)KN

X1
⁎ = {g(1), g(2),…, g(N)}

Adjacent matrix A

Transition matric A⁎

Figure 1: The Adapted PageRank algorithm.

Table 2: The Adapted K-Means Algorithm process.

Input: Road traffic network N = n1, n2,⋯, nmf g;
Regional patch center (Decision Graph) k.

Process:
1: Select the regional patch center from the RTN as the initial value
n1, n2,⋯, nkf g

2: repeat

3: Ci =∅ 1 ≤ i ≤ kð Þ
4: for i = 1, 2,⋯, n do

5: arg min
Ck∈C

Ŝi − Ck

�� ��2, i = 1, 2,⋯,N

6: Ck = 1/ Zkj j∑Ŝi∈Zk
Ŝi, k = 1, 2,⋯, K

7: Divide the sample ni into corresponding regional patch Cλi
=

Cλi
∪ xif g

8: end for

Export: Regional patch detection C = C1, C2,⋯, Ckf g
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distance, and the road level. The method of two-dimension
decision graph include the ranking value of key nodes as
the horizontal axis and the minimum shortest path length
as the vertical axis. The Adapted K-Means algorithm selected
the center point of regional patch detection according to the
two-dimension decision graph, so as to implement the
regional patch detection of RTN. So, the RTN regional patch
detection procedure as:

Step 1: in the RTN, calculate the adjacent matrix A, the
property matrix F, the distance weight matrix W, and the
road level matrix L

Step 2: perform the Adapted PageRank algorithm to the
ranking value of key nodes

Step 3: draw a decision graph with ρi and δi, find the
number of regional patches C and corresponding initial
centroids

Step 4: perform the Adapted K-Means algorithm
(Table 2) to detection the regional patches

Important key node locations are selected as the central
point of regional patch aggregation in the RTN, and the
Adapted K-Means algorithm is used to calculate the regional
patch distribution. The key nodes of the RTN are taken as the
basis of regional patch detection to identify the key locations
of the overall RTN and divide the functional structure of the
RTN. In the regional patches, the edge intensity is defined to
quantify the relationship between each pair of connected

Figure 2: Zhangwu road traffic network.
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Figure 3: Initial cluster center selection results: (a) decision graph; (b) initial cluster center.
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nodes, and the vertical connected by the edges with higher
intensities are denoted as core nodes, while the others are
denoted as marginal nodes.

The regional patch can identify the key functional struc-
ture distribution of the RTN effectively and further under-
stand the structural characteristics of the RTN. Those key
nodes are as the center, the regional patch characteristics of
the whole network are extracted. From the perspective of
geographic space, the characteristic regional patches are
detected across the administrative boundaries. The regional
patch represents a novel research area and lays the founda-
tion for in-depth analysis of the RTN.

3. Experiments and Analysis

The RTN comprised of national road (G), provincial road
(S), county road (X), rural road (Y), and village road (C) in
Zhangwu. The total number of nodes is 1750 and the total
number of edges is 2053 in Zhuangwu road traffic network.
As shown in Figure 2, Zhangwu road traffic network.

In the RTN, the number of nodes representing the
national roads and provincial roads are only a small portion
of number of nodes of the entire network. And most nodes
representing the national roads and provincial roads have
relatively low values of degree, and the nodes with large
degree are mainly located on the county roads, rural roads,
and village roads. Use the RTN regional patch detection to
calculate the Zhangwu road traffic network. Get the location
information of Zhangwu, vi = 1 and vi = 0 to distinguish the
location of important and common features. After defining
the property matrix F, computing the distance weight matrix
W , and classification of the road level matrix L, we construct
a refined matrix G∗.

Then, a vector, which represents the importance of road
nodes in the RTN, is obtained. Figure 3 shows the result of
the selection of the regional patch center of the RTN.
Figure 3(a) shows that the center point of selection is shown
in the orange box on the upper right side of the decision
graph. The nine road nodes in Figure 3(b) are the number
of differentiated regional patches. After this process, the
number of regional patches were determined as the output
parameters of the Adapted K-Means algorithm.

It can be seen from the decision graph that we calculate
the classes of regional patch structures, the nodes with the
same color are grouped into the same regional patch, and
the number of regional patch structures in the RTN of
Zhangwu is 9. As shown in Figure 4, the blue area is the Label
1 regional patch structure; pale orange pink area is the label 2
regional patch structure, and so on. Road nodes within a
regional patch indicate that traffic state series on them have
relatively high correlation compared with other road nodes
in other regional patch. As shown in the results of regional
patch detection, road nodes within a regional patch are nec-
essarily connected to each other. The regional patch structure
of the RTN in Zhangwu is drawn by the blue border, and the
whole county is divided into nine regional patch structures.
The structure state of the RTN is analyzed from the charac-
teristics. From the figure, we can clearly find the central posi-
tion of the nine regional patch. As geographical space
structure, the connectivity and convenience of the nine
regional patch can greatly improve the RTN of Zhangwu.
The location of the center point in the connection diagram
highlights the connected critical route, providing theoretical
reference for the trend of improving the connectivity of the
RTN, and the location of the key maintenance and improve-
ment of the RTN can be determined on the road network

Figure 4: Zhangwu road traffic network regional patch detection.
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connected by regional patch structure. The RTN of Zhangwu
can be better improved and maintain the overall network
operating efficiency.

4. Conclusion

Based on the community detection of complex network, the
application of Zhangwu RTN is analyzed, the regional patch
structure of Zhangwu road traffic network is analyzed, the
common aggregation regional patch of key points is drawn,
and the functional structure of RTN is deeply analyzed. Key
points are identified and analyzed to identify the important
locations of the overall RTN. Based on the important loca-
tions, the common structure is drawn, and the network is
divided into multiple functional regional patch. In RTN,
the results of the regional patch detection of the road network
system are determined by the influence of the property of
ground object facilities, the distance between nodes, and the
level distribution of the road network. However, community
detection is rarely used in complex road traffic network. Road
traffic network (RTN) rely on communities to play multiple
roles and embody specific features, and different investiga-
tion levels may have different results and perspectives; hence,
community detection is of critical importance for a better
understanding of road traffic network.

Moreover, the modeling and analyzing methods are
applied to the road network in Zhangwu. The results show
that the method has a good regional patch detection effect
and has great potential in identifying the aggregation degree
of road network structure considering the special structural
complexity of RTN from the perspective of geographic space.
The analysis results can provide an effective theoretical basis
for traffic management and operation analysis. However, the
results can provide a basis for the regional patch identifica-
tion of RTN, and the traffic network system can be studied
according to the regional patch distribution trend. It provides
a theoretical basis for the maintenance and reconstruction of
traffic network in the future.

Data Availability

The Zhangwu County Traffic Network data used to support
the findings of this study have not been made available
because the original road network data is the traffic situation
of the real county location in China, and it is real and effec-
tive reality data. It can reflect the real data of China’s geo-
graphical location. Therefore, it cannot be made public.
However, the results of the later results can be referenced
and applied.
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