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Research Article
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This study was aimed at examining the role of the NOS/NO/sGC signaling pathway in the vasoactive control of the thoracic aorta
(TA) from the early to late ontogenetic stages (7 weeks, 20 weeks, and 52 weeks old) of normotensive Wistar-Kyoto (WKY) rats
and spontaneously hypertensive rats (SHRs). Systolic blood pressure (SBP) and heart rate (HR) were significantly increased in
SHRs compared to age-matched WKYs, which was associated with left heart ventricle hypertrophy in all age groups of rats.
The plasma urea level was increased in 20-week-old and 52-week-old SHRs compared with WKYs without increasing
creatinine and uric acid. The total cholesterol levels were lower in 20-week-old and 52-week-old SHRs than in WKYs, but
triglycerides were higher in 7-week-old SHRs. The fructosamine level was increased in 52-week-old SHRs compared with age-
matched WKYs and unchanged in other age groups. Superoxide production was increased only in 7-week-old SHRs compared
to age-matched WKYs. The endothelium-dependent relaxation (EDR) of the TA deteriorated in both rat strains during aging;
however, endothelial dysfunction already occurred in 20-week-old SHRs and was even more enhanced in 52-week-old rats.
Our results also demonstrated increased activity of NOS in 52-week-old WKYs. Moreover, 7-week-old and 52-week-old WKY
rats displayed an enhanced residual EDR after L-NMMA (NOS inhibitor) incubation compared with 20-week-old rats. Our
results showed that in 7-week-old SHRs, the residual EDR after L-NMMA incubation was increased compared to that in other
age groups. The activity of NOS in the TA was comparable in 7-week-old and 20-week-old SHRs, but it was reduced in 52-
week-old SHRs compared to younger SHRs and 52-week-old WKYs. Thus, it seems that, in contrast to SHRs, the NOS/NO
system in WKYs is probably able to respond to age-related pathologies to maintain endothelial functions and thus optimal BP
levels even in later periods of life.

1. Introduction

Aging and age-related processes have become important
issues in recent cardiovascular studies since they signifi-
cantly deteriorate the quality of life of older populations
[1]. There is an obvious correlation between cardiovascular
outcomes and aging. Several structural, functional, and
molecular changes in the cardiovascular system have been
reported in aged individuals. The process of aging involves,
among others, an increased production of free radicals and
fluid shear stress, endothelial dysfunction, and vascular
remodeling. These pathological mechanisms lead to

enhanced vasoconstriction, reduced vasorelaxation, vascular
hypertrophy, and rigidity of the vessel wall [2].

Alterations similar to aging were confirmed under con-
ditions of elevated arterial blood pressure (BP)—hyperten-
sion. Previous studies using an animal model of arterial
hypertension, spontaneously hypertensive rats (SHRs), dem-
onstrated an increased contractile response after stimulation
of adrenergic receptors in both conduit and resistant arteries
[3] mainly as a consequence of hyperactivity of the sympa-
thetic nervous system [4]. Moreover, morphological studies
revealed that along with BP elevation, the arterial wall area
increased and was hypertrophied in all parts of the arterial
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tree, in the thoracic aorta (TA), carotid artery, and iliac
artery in adult SHRs [5].

Endothelial dysfunction is a common hallmark of age-
and hypertension-related pathologies. This is a term that
covers the imbalance between the vasoconstrictor and vasor-
elaxant agents produced by endothelial cells [6]; moreover, it
is associated with reduction of their anticoagulant and anti-
thrombotic properties, acceleration of vascular growth, and
remodeling [7]. Nitric oxide (NO) is a crucial molecule of
the arterial wall with a significant vasorelaxant effect. It has
also been shown that NO represents the dominant mediator
of endothelium-dependent vasorelaxation in TA [8]. Endo-
thelial NO rapidly diffuses to vascular smooth muscle cells
(VSMCs) and initiates the production of cyclic guanosine
monophosphate (cGMP) due to the activity of soluble gua-
nylate cyclase (sGC). Recently, sGC has proven to be a key
enzyme in the treatment of various cardiovascular patholo-
gies since sGC stimulators and activators are in preclinical
and clinical development for the treatment of pulmonary
hypertension, which has been reported as a new and prom-
ising milestone in the field of NO/sGC/cGMP pharmacol-
ogy [9].

Our previously performed studies related to the partici-
pation of endogenous NO in the vasoregulatory mechanism
in the early stage of SHR ontogenesis revealed that the NO-
dependent vasorelaxant component of the TA in 4-week-old
SHRs was enhanced compared with that in age-matched
normotensive controls. We also speculated that TA could
be endowed with a unique predisposition to decreased con-
tractility and strengthened endothelium-regulated vasore-
laxant mechanisms that serve as adaptive mechanisms
during the fully developed phase of hypertension [10]. On
the other hand, in 7-week-old SHRs, we showed reduced
endothelium-dependent relaxation associated with a reduc-
tion in NO-independent mechanisms in femoral arteries
accompanied by increased systolic BP. However, the contri-
bution of NO to vasorelaxation was significant and compa-
rable to that in normotensive rats [11]. In young adult
SHRs (18-week-old), we found reduced maximal
endothelium-dependent vasorelaxation and NO synthase
(NOS) activity in the aorta compared with 4-week-old SHRs
[12]. Similar findings of NOS activity were seen in 22-week-
old SHR aortae compared with 7-week-old SHRs [10].

Based on this, it seems that the endogenous NOS/NO/
sGC system and its involvement in the regulation of arterial
tone are highly influenced by age. Therefore, the main aim of
this study was to investigate the importance of NO and its
participation in the vasomotor control of TA during aging
and BP increase. The paper may offer a complex overview
of the position of NO in endothelium-derived vasorelaxation
and pathophysiology of essential hypertension focusing on
three different age groups: young juvenile (7-week-old),
young adult (20-week-old), and old (52-week-old) normo-
tensive Wistar-Kyoto (WKY) rats and SHRs. In addition,
we evaluated the levels of selected plasma parameters that
could affect the function of vessels and superoxide produc-
tion in TA as an important scavenger of vascular NO. We
hypothesized that the reduced NO synthesis and/or bioavail-
ability with altered oxidative status would produce reduced

endothelium-dependent vasorelaxation and BP increases in
the course of aging.

2. Materials and Methods

2.1. Guide for the Use and Care of Laboratory Animals. Pro-
cedures were performed in accordance with institutional
guidelines and were approved by the State Veterinary and
Food Administration of the Slovak Republic (decision no.
Ro-3095/14-221 and decision no. Ro-1087/17-221) and by
the Ethics Committee (project code EK/vekhyp/2014,
approved 24 June 2014, and EK/1/17, approved 6 February
2017) according to the European Convention for the Protec-
tion of Vertebrate Animals Used for Experimental and
Other Scientific Purposes, Directive 2010/63/EU of the
European Parliament. All rats used in the study were born
in an accredited breeding establishment of the Institute of
Normal and Pathological Physiology, Centre of Experimen-
tal Medicine Slovak Academy of Sciences (INPP CEM SAS),
and were housed in groups of 2 to 4 animals, each strain sep-
arately, under a 12 h light-12 h dark cycle (06:00–18:00 light
phase), at a constant humidity (45-60%) and temperature
(22-24°C), with free access to standard laboratory rat chow
and drinking water. INPP CEM SAS provided veterinary
care. 7-week-old (young juvenile rats), 20-week-old (young
adult rats), and 52-week-old (old rats) males of normoten-
sive Wistar-Kyoto (WKY, sublines WKY/NHsd, HARLAN
UK) and spontaneously hypertensive rats (SHR, sublines
SHR/NHsd, HARLAN UK) were included in the present
study. Every phenotype was divided into three groups: 7-
week-old (WKY-7, n = 10; SHR-7, n = 11), 20-week-old
(WKY-20, n = 9; SHR-20, n = 10), and 52-week-old (WKY-
52, n = 9; SHR-52, n = 14). The rats were killed by decapita-
tion after brief CO2 anesthesia.

2.2. General Biometric and Cardiovascular Parameters. The
systolic blood pressure (SBP) and heart rate (HR) were mea-
sured in prewarmed rats by noninvasive plethysmography
on rat tail arteries before the beginning of the in vitro study
(except handling); the body weight (BW) of the animal was
also measured [13]. The weight of the left heart ventricle
(free wall) (LV) and the length of the tibia (TL) were mea-
sured to evaluate organ hypertrophy [14, 15].

2.3. Basic Plasma Parameters. Trunk blood was collected just
after decapitation in heparinized test tubes, and blood was
immediately centrifuged (850 g, 10min, 4°C). Plasma sam-
ples were frozen in aliquots for biochemical determinations
and stored at -80°C until analysis. The basic levels of urea,
creatinine, uric acid, total cholesterol, triglycerides (TAG),
and fructosamines were commercially determined in the
accredited veterinary laboratory Laboklin GMBH (Brati-
slava, Slovakia) using standard laboratory methods.

2.4. Measurement of Superoxide Production in Aortic Tissue.
The assay was performed as described previously [16] with
some modifications. The aortic rings were cut (10–15 mg),
cleaned of connective tissue, and placed into cold modified
physiological salt solution (PSS, in mmol/L: NaCl 118.99,
KCl 4.69, NaHCO3 25, MgSO4·7H2O 1.17, KH2PO4 1.18,
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CaCl2·2H2O 2.5, Na2EDTA 0.03, and glucose 5.5, pH7.4).
Lucigenin (50μmol/L), as well as tissue samples alone, was
added to PSS bubbled with pneumoxide (5% CO2 and 95%
O2) at pH7.4 and 37°C and preincubated in the dark for
20min. After preincubation, either background chemilumi-
nescence or chemiluminescence produced by the aortic rings
was measured for 6min using a TriCarb 2910TR liquid scin-
tillation analyzer (PerkinElmer, Waltham, USA). Back-
ground counts were subtracted from values obtained from
the samples. The results are expressed as counts per minute
per mg of tissue (cpm/mg).

2.5. Functional Study. The isolated TA was cleaned of con-
nective tissue using a microscope and cut into 5mm length
rings. The rings were vertically fixed between 2 stainless wire
triangles and immersed in a 20mL incubation organ bath
with PSS. This solution was oxygenated with a mixture of
95% O2 and 5% CO2 and kept at 37°C. The upper triangles
were connected to sensors of isometric tension (FSG-01,
MDE, Budapest, Hungary), the changes in tension were reg-
istered by an AD converter NI USB-6221 (National Instru-
ments, Austin, USA, MDE, Budapest, Hungary), and the
changes in isometric tension were registered by using
DEWEsoft (Dewetron, Prague, Czech Republic) and SPEL
Advanced Kymograph (MDE, Budapest, Hungary) software.
A resting tension of 1 g was applied to each ring and main-
tained throughout a 45- to 60min equilibration period until
stress relaxation no longer occurred.

The relaxant responses were followed on rings precon-
tracted with phenylephrine (Phe; 10-6mol/L) after achieving
a stable plateau of contraction. The isolated TA rings were
then exposed to cumulative concentrations of acetylcholine
(ACh; 10-9− 3×10-5mol/L). The rate of relaxation was
expressed as a percentage of the Phe-induced contraction.

The participation of the endogenous NO system in the
vasomotor responses of TAwas followed before and 30minutes
after pretreatment with a nonspecific inhibitor of NOS, NG-
methyl-L-arginine acetate salt (L-NMMA; 10-4mol/L), to block
basal and receptor-induced endogenous NO production. To
confirm the involvement of the soluble guanylate cyclase
(sGC) signaling pathway in ACh-induced relaxation, a sGC
inhibitor, 1H-[1,2,4]oxadiazole[4,3-a]quinoxalin-1-one (ODQ,
10-5mol/L), was applied 30min before the addition of the con-
tractile agonist.

All drugs were dissolved in distilled water, except ODQ,
which was dissolved in dimethylsulfoxide. All concentra-
tions are expressed as the final concentrations in the organ
chamber.

The effect of the age and hypertension on the
endothelium-dependent relaxation (EDR) is expressed sepa-
rately using the same concentration-dependent ACh curves
from all animals in each group, before and after application
of inhibitors, respectively.

2.6. Nitric Oxide Synthase Activity. The aortae were carefully
dissected, and connective tissue was removed. NOS activity
was determined in 20% fresh tissue homogenates (w : v) as
described in detail previously [17]. Briefly, the aortic tissue
was immersed in ice-cold buffer (0.05mol/L Tris-HCl,

pH7.4) containing 1% protease inhibitor cocktail. After
homogenization at 4°C (Ultra-Turrax homogenizer) and
centrifugation of homogenates (4°C, 10min, 3000 g), NOS
activity was determined in the supernatants by the conver-
sion of [3H]-L-arginine (specific activity 5GBq/mmoL,
~100,000 dpm, ARC, St. Louis, USA) to [3H]-L-citrulline
in the presence of 50mmol/L Tris/HCl (pH7.4), containing
NOS cofactors in a total volume of 100μL. The reaction was
stopped after 20min of incubation by adding 1mL of ice-
cold stop solution containing 20 mmoL 4-(2-hydro-
xyethyl)-1-piperazineethanesulfonic acid (pH5.5) and NOS
inhibitors. One milliliter of the final mixture was applied
to Dowex 50 WX-8 columns (Na+-form), and [3H]-L-citrul-
line was eluted by adding deionized water. The results were
determined by liquid scintillation counting (TriCarb
2910TR, PerkinElmer, Waltham, USA). NOS activity was
expressed as pkat per gram of protein. The protein concen-
tration was determined using the Lowry method [18].

2.7. Statistical Analysis. The data were expressed as means
± SEM. For the statistical evaluation of differences between
groups, a two- and three-way analysis of variance (ANOVA)
with the Bonferroni post hoc test was used. The differences
between means were considered significant at p < 0:05. Ori-
ginPro2019b (OriginLab, Northampton, USA), GraphPad
Prism 5.0 (GraphPad Software; San Diego, USA), and Statis-
tica 13.5 (StatSoft; Hamburg, Germany) were used for the
statistical analyses.

2.8. Drugs. All drugs were purchased from Sigma-Aldrich
(Bratislava, Slovakia) unless otherwise stated.

3. Results

3.1. General Biometric and Cardiovascular Parameters.
Table 1 summarizes the differences in SBP and other basic
biometric and cardiovascular parameters among the experi-
mental groups. The BW of the animals increased with age in
both WKYs and SHRs; however, the 52-week-old SHRs had
a significantly lower BW than the age-matched WKYs. On
the other hand, SHRs revealed an elevated SBP compared
to WKYs in all ontogenetic stages. In SHRs, the SBP was
comparable between the young adult and old rats, but it
was significantly higher compared to young juvenile 7-
week-old animals. There was also an age-dependent increase
in SBP in WKY rats; in 52-week-old rats, we observed signif-
icantly higher SBP than the other age groups of this strain.
The HR of SHRs was higher than that of WKYs in all age
groups, but there were no changes in this parameter during
ontogenesis in either SHRs or WKYs. By age, the weight of
LV was increased in both strains; moreover, in SHRs, the
weight of LV was higher than that in age-matched WKY
rats, except in the 7-week groups. An age-dependent
increase was also observed in TL in both WKYs and SHRs.
The length of the tibia was decreased in 20-week-old SHRs
compared to WKYs of the same age; in 52-week-old rats,
there were no differences between the strains in TL. Gener-
ally, in SHRs, the LV/BW ratio and LV/TL were increased
compared to those in WKYs.
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3.2. Selected Plasma Parameters. In WKY rats, the highest
urea level was measured in 20-week-old rats, which
decreased with age. The plasma levels of creatinine were
similarly increased from the 20th week of age, and there
was a significant reduction in uric acid in 52-week-old
WKY rats compared with 20-week-old rats. The total cho-
lesterol in plasma was increased only in 52-week-old WKY
rats, and the levels of fructosamines were also increased in
young adult and old normotensive rats compared to young
juvenile rats. In SHRs, the plasma level of urea was
increased in 20-week-old rats compared to young juve-
niles, and it was reduced in 52-week-old rats compared
with young adults but not with young juvenile rats. Creat-
inine in plasma increased with age, and uric acid was
reduced in 20-week-old and 52-week-old SHRs. The
results demonstrated significantly reduced plasma levels
of total cholesterol and TAG in young adult and old
SHRs, and the levels of fructosamines increased with the
age of the animals (Figure 1).

Our results revealed a significantly increased urea level
in 20-week-old and 52-week-old SHRs compared with age-
matched WKYs; on the other hand, there were no differ-
ences between the strains in terms of plasma levels of creat-
inine and uric acid (Figure 1). Moreover, the levels of total
cholesterol were significantly lower in 20-week-old and 52-
week-old SHRs than in WKYs; however, we recorded an
increased TAG level in 7-week-old SHRs. The fructosamine
level was increased in 52-week-old SHRs compared with
age-matched WKYs and unchanged in other age groups.

3.3. Superoxide Production in the Aortic Tissue. While the
production of superoxide in WKY rats was unchanged by
age, in SHRs, the superoxide levels were decreased in 20-
and 52-week-old rats. Superoxide production was increased
in 7-week-old SHRs compared to age-matched WKYs, and
there was no significant difference in the other age groups
(Figure 2).

3.4. Vasoactive Responses of Isolated Aortic Rings

3.4.1. Age-Related Differences in Endothelium-Dependent
Vasorelaxation in WKYs and SHRs. The EDR amplitude
was significantly age-dependent in both strains (WKY:
Fð2,268Þ = 149:77, p < 0:0001, SHR: Fð2,288Þ = 449:56, p <
0:0001). The EDR was comparable between the 7-week
and 20-week WKYs. In 52-week-old WKYs, the EDR was
significantly reduced compared to the other age groups
(Figure 3(a)). On the other hand, reduced vasorelaxation of
the TA in SHRs was observed in 20-week-old rats (com-
pared to 7-week-old SHRs), which was more pronounced
in 52-week-old SHRs than in both 7-week-old and 20-
week-old SHRs (Figure 3(b)).

3.4.2. Hypertension-Related Differences in Endothelium-
Dependent Vasorelaxation between Age-Matched WKYs
and SHRs. In 7-week-old SHRs, the EDR was significantly
enhanced (Fð1,218Þ = 52:37, p < 0:0001; Figure 4(a)) com-
pared with that in the WKY. However, a deterioration of
the vasorelaxant ability of the TA in SHRs already appeared
in 20-week-old rats (Fð1,138Þ = 23:69, p < 0:0001;
Figure 4(b)), and we also observed significant endothelial
dysfunction in 52-week-old SHRs (Fð1,198Þ = 18:95, p <
0:0001; Figure 4(c)).

3.4.3. Age-Related Changes in NO Synthase and Soluble
Guanylate Cyclase Participation in Endothelium-Dependent
Vasorelaxation in WKYs and SHRs. To test the participation
of the NO/NOS and sGC systems in EDR, we incubated the
aortic rings with L-NMMA and ODQ. In normotensive rats,
acute NOS inhibition reduced the EDR to the greatest extent
in 20-week-old rats compared to 7-week-old and 52-week-
old rats; however, there were no differences in the EDR after
L-NMMA incubation between young (7-week-old) and old
(52-week-old) rats (Fð2,138Þ = 77:69, p < 0:0001;
Figure 5(a)). The inhibition of sGC significantly blocked
the EDR, similarly in every age group (Figure 5(b)). Our
results demonstrated that the participation of the NO/NOS
system in the EDR was affected by the age of SHRs. While

Table 1: General biometric and cardiovascular parameters.

WKY-7 SHR-7 WKY-20 SHR-20 WKY-52 SHR-52

BW (g) 144 ± 4 145 ± 5 359 ± 5+ 350 ± 6+ 447 ± 8+x 426 ± 3+x∗

SBP (mmHg) 117 ± 1 160 ± 3∗ 119 ± 3 204 ± 6+∗ 126 ± 1+x 198 ± 3+∗

HR (bpm) 479 ± 14 547 ± 9∗ 463 ± 16 561 ± 13∗ 483 ± 12 559 ± 17∗

LV (mg) 265 ± 11 308 ± 15 596 ± 16+ 745 ± 25+∗ 691 ± 16+x 883 ± 19+x∗

TL (mm) 25:88 ± 0:24 25:81 ± 0:23 37:06 ± 0:16+ 36:46 ± 0:14+∗ 39:44 ± 0:20+x 39:06 ± 0:09+x

LV/TL (mg/mm) 10:21 ± 0:39 11:91 ± 0:50∗ 16:09 ± 0:45+ 20:42 ± 0:62+∗ 17:52 ± 0:38+x 22:60 ± 0:50+x∗

LV/BW (mg/g) 1:84 ± 0:08 2:08 ± 0:08∗ 1:66 ± 0:05 2:13 ± 0:07∗ 1:55 ± 0:05+ 2:07 ± 0:05∗

BW: body weight; SBP: systolic blood pressure; HR: heart rate; LV: weight of the left heart ventricle; TL: tibia length; LV/TL: ratio of weight of the left heart
ventricle to tibia length; LV/BW: ratio of weight of the left heart ventricle to body weight; WKY-7, WKY-20, and WKY-52: 7-week-old, 20-week-old, and 52-
week-old Wistar-Kyoto rats; SHR-7, SHR-20, and SHR-52: 7-week-old, 20-week-old, and 52-week-old spontaneously hypertensive rats. The results are
presented as the mean ± SEM of n = 9–14 rats, and differences between groups were analyzed by two-way analysis of variance (ANOVA) with the
Bonferroni post hoc test on ranks. ∗p < 0:05 vs. WKY at the same age (WKY-7 vs. SHR-7, WKY-20 vs. SHR-20, and WKY-52 vs. SHR-52), +p < 0:05 vs.
7-week group of the same phenotype (WKY-20 vs. WKY-7, SHR-20 vs. SHR-7, WKY-52 vs. WKY-7, and SHR-52 vs. SHR-7), xp < 0:05 vs. 20-week group
of the same phenotype (WKY-52 vs. WKY-20 and SHR-52 vs. SHR-20).
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Figure 1: The effect of the age and phenotype on selected plasma parameters. WKY: Wistar-Kyoto rats; SHR: spontaneously hypertensive
rats. The results are presented as the mean ± SEM of n = 5–10 rats, and differences between groups were analyzed by two-way analysis of
variance (ANOVA) with the Bonferroni post hoc test on ranks. ∗p < 0:05 vs. WKY at the same age (WKY-7 vs. SHR-7, WKY-20 vs.
SHR-20, and WKY-52 vs. SHR-52), +p < 0:05 vs. 7-week group of the same phenotype (WKY-20 vs. WKY-7, SHR-20 vs. SHR-7, WKY-
52 vs. WKY-7, and SHR-52 vs. SHR-7), xp < 0:05 vs. 20-week group of the same phenotype (WKY-52 vs. WKY-20 and SHR-52 vs. SHR-20).
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in young adults and old SHRs, L-NMMA incubation signif-
icantly inhibited the EDR, in young juvenile rats, we
observed a significant residual EDR despite NOS inhibition
(Fð2,148Þ = 114:62, p < 0:0001; Figure 5(c)). Incubation with
ODQ significantly inhibited the EDR regardless of age
(Figure 5(d)).

3.4.4. Hypertension-Related Differences in NO Synthase and
Soluble Guanylate Cyclase Participation in Endothelium-
Dependent Vasorelaxation between Age-Matched WKYs
and SHRs. We observed a relatively well-preserved EDR in
7-week-old rats after L-NMMA incubation in both strains;
however, in SHRs, this residual relaxation was significantly
larger than in age-matched WKYs (phenotype: Fð1,228Þ =
57:28, p = 0:0001; inhibition: Fð1,228Þ = 1934:32, p < 0:0001;
concentration × phenotype × inhibition: Fð9,228Þ = 3:26, p =
0:001; Figure 6(a)). Although endothelial dysfunction
appeared in 20-week-old rats, the effect of acute NOS inhibi-
tion on the EDR was comparable between the two pheno-
types (Figure 6(b)). In 52-week-old rats, there was a
significant effect of the phenotype × inhibition interaction
on the EDR (Fð1,118Þ = 6:79, p = 0:01); in old SHRs, the resid-
ual EDR after acute L-NMMA application was smaller than
that in WKYs (Figure 6(c)). Our results demonstrated that
sGC is significantly involved in the EDR regardless of the
phenotype and age (Figures 7(a)–7(c)).

3.4.5. Nitric Oxide Synthase Activity. The activity of NOS in
the aorta was comparable between the 7-week-old and 20-
week-old WKY rats, but it was significantly increased in
52-week-old normotensive rats. On the other hand, in SHRs,

NOS activity was decreased in 52-week-old rats compared
with the other age groups. In 7-week-old and 20-week-old
SHRs, NOS activity was significantly increased compared
with that in WKYs; however, in 52-week-old rats, reduced
NOS activity was observed (Figure 8).

4. Discussion

The present study provides an overview of the vasoactive
manifestation of the NOS/NO/sGC signaling pathway in
the TA from the early to late ontogenetic stages of normo-
tensive WKYs and SHRs. Moreover, the effect of aging and
increased blood pressure on selected plasma parameters
and superoxide production in these rat strains was investi-
gated. The main limitation of the present study is the lack
of the morphological confirmation of the physiological/bio-
chemical analyses. There is clear evidence that the structural
remodeling of the arterial wall significantly modifies the
vasoactive properties of the vessels, including their vasore-
laxant abilities [12], which has to be kept in mind.

SHRs are a widely used experimental model of human
arterial hypertension. According to the literature, BP in
SHRs starts to increase from 6 weeks of age, and the contin-
ual increase in SBP stops at approximately 36 weeks of age
[19]. Our results are in agreement with these data, since we
observed a significantly increased SBP in all investigated
age groups of SHRs compared with age-matched WKYs;
nevertheless, the SBP values were comparable in 20- and
52-week-old SHRs. The increased SBP in SHRs was also
associated with increased HR and left heart ventricle hyper-
trophy in all age groups investigated. The main morpholog-
ical alterations in SHRs, such as changes in the heart and
arterial wall trophicity, start from approximately the 5th

week of life. Our previous morphological analysis revealed
hypotrophy of the TA wall in 4-week-old SHRs compared
to Wistar rats. On the other hand, in adulthood, together
with a rapid BP increase, the TA was hypertrophied com-
pared to normotensive rats [12].

In SHRs, the total cholesterol and TAG levels decreased
with age; moreover, in 20- and 52-week-old SHRs, the level
of total cholesterol was significantly lower than that in age-
matched WKYs. In SHRs, an enhanced lipolysis has been
suggested as a result of increased sympathetic outflow;
moreover, an increased secretion of cholesterol combined
with deficiencies in enteric capture and molecular transport
of cholesterol was also demonstrated [20, 21]. In addition, it
has been shown that the levels of cholesterol-related steroid
hormones, such as corticosterone, were elevated already in
7-week-old female SHRs compared to age-matched WKYs,
and in 10-week-old SHRs, the serum levels of progesterone,
corticosterone, and cortisol were significantly elevated com-
pared to those in 5-week-old SHRs and 10-week-old WKYs
[16, 22], which may also contribute to the reduction in total
cholesterol in our experimental group.

Indeed, it is known that a high plasmatic uric acid level is
associated with an increased risk of cardiovascular diseases
(CVDs), and endothelial dysfunction has been suggested as
a potential mechanism involved in hyperuricemia-induced
CVDs. In this study, we did not find increased uric acid
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Figure 2: The effect of the age and phenotype on the production of
superoxide in the aorta. WKY: Wistar-Kyoto rats; SHR:
spontaneously hypertensive rats. The results are presented as the
mean ± SEM of n = 5–9 rats, and differences between groups were
analyzed by two-way analysis of variance (ANOVA) with the
Bonferroni post hoc test on ranks. ∗p < 0:05 vs. WKY at the same
age (WKY-7 vs. SHR-7), +p < 0:05 vs. 7-week group of the same
phenotype (SHR-20 vs. SHR-7 and SHR-52 vs. SHR-7).
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levels in SHRs compared to age-matched WKYs. In our pre-
vious study, acute exposure of resistant mesenteric arteries,
femoral arteries, and aortae isolated from aged WKY rats
to a high concentration of uric acid did not provoke changes
in endothelial function in these arteries [23]. We observed a
decreasing uric acid concentration and EDR with age. Thus,
the role of hyperuricemia in endothelial dysfunction in aged
rats is not supported by our data.

Fructosamine concentration is often used as a marker of
carbonyl stress. In our recent study, we reported that the
plasma concentration of advanced glycation end-products
(AGEs) was stably decreased in 20- and 52-week-old WKYs
compared to 7-week-old WKYs; however, in SHRs, it was
decreased only in 20-week-old SHRs, and there was no dif-
ference between the strains. We also reported that fructosa-
mine concentrations were not significantly different between
these individual age groups when expressed in molar con-
centration to gram of proteins [24]. On the other hand, we
found a decreased superoxide production with age in SHRs,
while in WKYs, superoxide production was comparable
between the age groups. We surprisingly recorded signifi-
cantly enhanced superoxide production only in young juve-
nile SHRs. Gomes et al. [25] reported increased H2O2
production in the renal cortex, although no differences were
detected in urinary lipid peroxidation in 12-week-old SHRs.
This finding was associated with an upregulation of NADPH
oxidase and downregulation of antioxidant superoxide dis-
mutase (SOD) 1 and SOD3 enzymes. However, 48-week-
old WKYs and SHRs displayed comparable oxidant and
antioxidant profiles. The authors suggested that this conflict
with the current view that hypertension is a state of oxidative
stress might arise from the fact that normotensive WKY

developed obesity with aging, which could operate as a con-
founding factor of oxidative stress. In agreement, in our
study, 52-week-old SHRs had a significantly lower BW
(and comparable TL) than age-matched WKYs.

In the other part of our experiment, we examined the
impact of age and hypertension on the EDR of TA. We incu-
bated the aortic rings with a nonselective NOS inhibitor (L-
NMMA) to assess the participation of NO in EDR during
aging. The degree of EDR inhibition after L-NMMA is in
agreement with the degree of NO participation in EDR; in
general, the more enhanced inhibition is, the more signifi-
cant NO participation. The vasorelaxant abilities of the TA
deteriorated in both rat strains during aging; however, endo-
thelial dysfunction already occurred in 20-week-old SHRs
and was even more enhanced in 52-week-old rats. Similar
results were reported by Matz et al. [26] in Wistar rats,
who demonstrated an unchanged EDR between 12- to 14-
old and 32-week-old normotensive rats, but a significant
reduction was reported at 70-100 weeks of age. They also
found increased endothelial NOS protein expression and a
significant involvement of endothelial NO in the EDR, since
NG-nitro-L-arginine (L-NA) abolished the response to ACh
in the aorta. Our results also demonstrated a significantly
increased total activity of NOS in 52-week-old WKYs com-
pared to the other age groups. The increased NOS activity
and the unchanged superoxide production during the aging
indicated a high NO bioavailability in old WKY which was
not, however, manifested in the vasoactive responses of
TA, since we observed a reduced EDR in these rats. We
assume that this fact could be associated with the prevalence
of other negative impacts such as enhanced production of
contractile agents, advanced structural remodeling that
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Figure 3: The effect of the age on the endothelium-dependent vasorelaxation of the thoracic aorta in Wistar-Kyoto (WKY) (a) and
spontaneously hypertensive rats (SHR) (b). The results are presented as the mean ± SEM of n = 8–10 rats, and differences between
groups were analyzed by two-way analysis of variance (ANOVA) with the Bonferroni post hoc test on ranks. +p < 0:05 vs. 7-week-old
rats, xp < 0:05 vs. 20-week-old rats.
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could eliminate the vasoactive manifestation of the pre-
served NO sources. Moreover, we showed that 7-week-old
and 52-week-old WKY rats displayed an enhanced residual
EDR after L-NMMA incubation compared with 20-week-
old rats. Our results suggested that the greatest L-NMMA-
sensitive component of EDR was present in 20-week-old
WKY rats and the smallest in 52-week-old WKY rats.
Incomplete inhibition of EDR after L-NMMA could be
caused by a concentration of L-NMMA that only partly
inhibited NOS and therefore was not maximally effective
in reducing the total NO-dependent vasorelaxation or due
to compensatory increased NO-independent vasodilator
mechanisms [27]. On the other hand, the inhibition of
sGC significantly blocked the EDR in all age groups, indicat-
ing important sGC involvement in these vasoactive

responses. Recent studies implicated nitroxyl (HNO) as
another possible activator of sGC whose action is indepen-
dent of NO formation [28, 29]. Andrews et al. [30] demon-
strated that HNO is produced endogenously and serves as an
endothelium-derived relaxing and hyperpolarizing factor in
both mouse and rat isolated small mesenteric resistance-
like arteries. However, information about the age-related
changes in HNO production and its vasoactive properties
is limited. According to this, we assume that aging in the
WKY could probably be associated with enhanced NO pro-
duction (increased NOS activity in the old WKY) and bio-
availability (comparable superoxide concentrations among
age groups); indeed, the smallest L-NMMA-sensitive com-
ponent of EDR was confirmed in aged WKY; in order to pre-
vent the additional deterioration of EDR and SBP increase.
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Figure 4: The effect of hypertension on the endothelium-dependent vasorelaxation of the thoracic aorta in 7-week-old (a), 20-week-old (b),
and 52-week-old (c) rats. WKY: Wistar-Kyoto rats; SHR: spontaneously hypertensive rats. The results are presented as the mean ± SEM of
n = 8–10 rats, and differences between groups were analyzed by two-way analysis of variance (ANOVA) with the Bonferroni post hoc test on
ranks. ∗p < 0:05 vs. WKY.
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Interestingly, in the young SHRs, the EDR was increased
compared to the age-matched WKYs, while in the other age
groups, a significantly reduced EDR was observed. Since
endothelial dysfunction resulted in a shift of endothelium-
derived vasoactive agents toward vasoconstrictors, our pre-
vious studies were aimed at testing the effect of cyclooxygen-
ase (COX) inhibition on EDR in SHRs. We confirmed that
specific COX-2 inhibition recovered the reduced EDR in
20-week-old and 52-week-old SHRs [31, 32]. Thus, COX-
2-derived vasoconstrictor prostaglandins are significantly
involved in the development of endothelial dysfunction in
SHRs. Apart from this, a reduced bioavailability of NO has
often been reported as a main factor of impaired EDR in

SHRs. Our present results showed that in 7-week-old SHRs,
the residual EDR after L-NMMA incubation was increased
compared to that of rats in other age groups, but rats at 20
weeks and 52 weeks had similar residual EDRs. The activity
of NOS in the TA was comparable in 7-week-old and 20-
week-old SHRs, but it was significantly reduced in 52-
week-old hypertensive rats compared to younger animals
and 52-week-old WKYs. According to these data, it seems
that in SHRs, the lowest aortic NO bioavailability was in
the 52-week-old group.

A comparison of these responses between the strains
revealed that the 7-week-old SHRs had significantly
enhanced residual relaxation after L-NMMA incubation
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Figure 5: The effect of the age on participation of NO synthase (a, c) and soluble guanylate cyclase (b, d) in the endothelium-dependent
vasorelaxation of the thoracic aorta in Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHR). The results are presented as the
mean ± SEM of n = 8–10 rats, and differences between groups were analyzed by two-way analysis of variance (ANOVA) with the
Bonferroni post hoc test on ranks. +p < 0:05 vs. 7-week-old, xp < 0:05 vs. 20-week-old rats.
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compared with the age-matched WKYs, indicating a
decreased L-NMMA-sensitive component of the EDR in
SHRs. On the other hand, NOS activity and superoxide pro-
duction were significantly increased in the 7-week-old SHRs
compared to age-matched WKY rats. In our previous study,
we confirmed that maximal acetylcholine-induced vasore-
laxation was inhibited by a nonspecific NOS inhibitor (L-
NAME) to a higher extent in 4-week-old SHRs than in
age-matched normotensive rats. Moreover, a higher concen-
tration of L-NAME induced a significant increase in TA

basal tone in SHRs, which was comparable with submaximal
noradrenaline-induced vasoconstriction [10]. These findings
indicate the prevalent participation of NO in vasoactive con-
trol of prehypertensive and early hypertensive stages of
SHRs and support the existence of adaptation mechanisms
involving abundant endogenous vascular NO production
[12]. This was also observed previously in the femoral arter-
ies, in which endothelial dysfunction in SHRs was NO-inde-
pendent, while there was a significant negative correlation
between BP and the L-NAME-resistant component of
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Figure 6: The effect of hypertension on NO synthase participation in endothelium-dependent vasorelaxation of the thoracic aorta in 7-
week-old (a), 20-week-old (b), and 52-week-old (c) rats. WKY: Wistar-Kyoto rats; SHR: spontaneously hypertensive rats. The results are
presented as the mean ± SEM of n = 8–10 rats, and differences between groups were analyzed by three-way analysis of variance
(ANOVA) with the Bonferroni post hoc test on ranks. ∗p < 0:05 vs. WKY, #p < 0:05 vs. EDR without L-NMMA.
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ACh-induced relaxation in young adult rats with various
genetic predispositions to hypertension [33]. These adapta-
tion mechanisms are functional in 7-week-old SHRs, since
we also found enhanced NOS activity in the aorta compared
to 7-week-old male WKYs in this study and previously in
age-matched female SHRs [16]. In the present study, the
increased NOS activity persisted in 20-week-old SHRs; how-

ever, the EDR was reduced, and the residual EDR after L-
NMMA was the same as that in age-matched WKYs. There-
fore, it seems that in young adult SHR there is a sufficient
amount of vasoactively relevant NO in TA. However, in
aged SHRs, the activity of the L-arginine/NO pathway in
TA decreased, which was not observed in WKY rats. Thus,
it seems that in contrast to SHRs, in WKYs, the NOS/NO

9 3⨯9 8 3⨯8 7 3⨯7 6 3⨯6 5 3⨯5

100

80

60

40

20

0
Re

la
xa

tio
n 

(%
)

Acetylcholine (–log mol/L)

7-week-old WKY ODQ–

7-week-old WKY ODQ+
7-week-old SHR ODQ–

7-weel-old SHR ODQ+

# # # #
# # # # ## # #
#

# # # #

⁎

⁎

(a)

9 3⨯9 8 3⨯8 7 3⨯7 6 3⨯6 5 3⨯5

100

80

60

40

20

0

######## ######

Re
la

xa
tio

n 
(%

)

Acetylcholine (–log mol/L)

#

20-week-old WKY ODQ–

20-week-old WKY ODQ+
20-week-old SHR ODQ–

20-week-old SHR ODQ+

⁎⁎

(b)

9 3⨯9 8 3⨯8 7 3⨯7 6 3⨯6 5 3⨯5

100

80

60

40

20

0

#
###

####
######

Re
la

xa
tio

n 
(%

)

Acetylcholine (–log mol/L)

52-week-old WKY ODQ–

52-week-old WKY ODQ+
52-week-old SHR ODQ–

52-week-old SHR ODQ+

#

⁎ ⁎
⁎

(c)

Figure 7: The effect of hypertension on sGC participation in endothelium-dependent vasorelaxation of the thoracic aorta in 7-week-old (a),
20-week-old (b), and 52-week-old (c) rats. WKY: Wistar-Kyoto rats; SHR: spontaneously hypertensive rats. The results are presented as the
mean ± SEM of n = 8–10 rats, and differences between groups were analyzed by three-way analysis of variance (ANOVA) with the
Bonferroni post hoc test on ranks. ∗p < 0:05 vs. WKY, #p < 0:05 vs. EDR without ODQ.
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system is probably able to respond to age-related pathologies
to maintain endothelial functions and thus optimal BP levels
even in later periods of life.

5. Conclusions

In summary, our results demonstrated that sGC is the
dominant target of endogenous NO in both normotensive
and hypertensive conditions and that age did not alter its
importance in the EDR of TA. However, the production
and participation of vascular NO in EDR is clearly affected
not only by hypertension but also by age. While young
juvenile SHRs revealed enhanced NOS activity and vaso-
motor manifestations of NO compared with age-matched
WKYs, these benefits partially disappeared in young adult
rats (enhanced NOS activity but EDR reduction). More-
over, in old SHRs, there was an obvious reduction in the
activity of the L-arginine/NO pathway in the TA, which
was not found in the WKY rats. We can conclude that
in WKYs, the NOS/NO system is probably able to respond
to age-related pathologies in an effort to maintain endo-
thelial functions and normotension, which is missing in
aged hypertensive rats.
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Fibrosis is defined as the pathological progress of excessive extracellular matrix (ECM), such as collagen, fibronectin, and elastin
deposition, as the regenerative capacity of cells cannot satisfy the dynamic repair of chronic damage. The well-known features of
tissue fibrosis are characterized as the presence of excessive activated and proliferated fibroblasts and the differentiation of
fibroblasts into myofibroblasts, and epithelial cells undergo the epithelial-mesenchymal transition (EMT) to expand the
number of fibroblasts and myofibroblasts thereby driving fibrogenesis. In terms of mechanism, during the process of fibrosis,
the activations of the TGF-β signaling pathway, oxidative stress, cellular senescence, and inflammatory response play crucial
roles in the activation and proliferation of fibroblasts to generate ECM. The deaths due to severe fibrosis account for almost
half of the total deaths from various diseases, and few treatment strategies are available for the prevention of fibrosis as yet.
Recently, numerous studies demonstrated that three well-defined bioactive gasotransmitters, including nitric oxide (NO),
carbon monoxide (CO), and hydrogen sulfide (H2S), generally exhibited anti-inflammatory, antioxidative, antiapoptotic, and
antiproliferative properties. Besides these effects, a number of studies have reported that low-dose exogenous and endogenous
gasotransmitters can delay and interfere with the occurrence and development of fibrotic diseases, including myocardial
fibrosis, idiopathic pulmonary fibrosis, liver fibrosis, renal fibrosis, diabetic diaphragm fibrosis, and peritoneal fibrosis.
Furthermore, in animal and clinical experiments, the inhalation of low-dose exogenous gas and intraperitoneal injection of
gaseous donors, such as SNAP, CINOD, CORM, SAC, and NaHS, showed a significant therapeutic effect on the inhibition of
fibrosis through modulating the TGF-β signaling pathway, attenuating oxidative stress and inflammatory response, and
delaying the cellular senescence, while promoting the process of autophagy. In this review, we first demonstrate and
summarize the therapeutic effects of gasotransmitters on diverse fibrotic diseases and highlight their molecular mechanisms in
the process and development of fibrosis.

1. Introduction

Fibrosis is a well-known pathological process in which several
extracellular matrixes (ECMs), such as collagen, fibronectin,

and elastin, accumulate abnormally in chronic inflamed and
damaged tissues. Excessive fibrosis, in chronic inflammation,
can cause permanent scars, multiple organ sclerosis, and dys-
function [1]. Tissue fibrosis will be the main cause of disability
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and death in many diseases and which affects various organs
such as the cardiovascular, lung, liver, and kidney [2].

Although the mechanisms of various fibrotic diseases are
different, the common feature of tissues affected by fibrosis is
the presence of excessive activated fibroblasts and transformed
myofibroblasts [3]. These cells have unique biological func-
tions, including the secretion of fibrous type I and type III col-
lagen and the expression of α-smooth muscle actin (α-SMA)
[3]. In the occurrence and development of fibrosis, the activa-
tion of fibroblast and transformation into myofibroblasts are
two very important factors. Once fibroblasts are activated by
tissue damage and chronic inflammation, it will secrete a vari-
ety of ECM and promote the conversion of fibroblasts to myo-
fibroblasts. The critical molecules and signaling pathways
involved in fibrosis mainly consist of transforming growth fac-
tor β (TGF-β), connective tissue growth factor (CTGF/CCN2),
platelet-derived growth factor (PDGF), endothelin 1 (ET-1),
and the Wnt, Hedgehog, and Notch signaling pathways
[4–10]. Therefore, the strategies for the treatment of fibrosis,
to date, mainly include the inhibition of fibroblast activity
and the myofibroblast transformation, interfering TGF-β
expression and its signaling pathways, decreasing the homing
of fibroblasts into the tissues, and the inhibition of other profi-
brosis signaling pathways [11].

Gasotransmitters are small molecules with a short half-
life and play crucial roles in cellular homeostasis [12]. Nitro-
gen monoxide (NO), carbon monoxide (CO), and hydrogen
sulfide (H2S) are three best-known gasotransmitters, and all
these three gases have been demonstrated to possess antiox-
idative, anti-inflammatory, antiapoptotic, and antiprolifera-
tive properties [12]. Besides that, these gasotransmitters are
gradually being known by many researchers for exploring
their molecular mechanisms in fibrotic diseases. In this
review, we first try to discuss and summarize the therapeutic
mechanisms of gasotransmitters in diverse fibrotic diseases.

2. Molecular and Cellular
Mechanisms of Fibrosis

2.1. TGF-β and Fibrosis. TGF-β has a dimeric structure and is
expressed in all cells. It is important for regulating cell growth,
migration, immunosuppression, and endothelial- mesenchy-
mal transition (EMT) [13]. TGF-β1 is the most abundant
subtype of the TGF-β family. It plays a critical role in promot-
ing fibrotic cell proliferation, collagen secretion, protease inhib-
itor production, and extracellular matrix (ECM) deposition in
tissues [13]. After its receptors are bound, the signal can be
further transmitted to the downstream Smads protein family
[13, 14]. First, TGF-β1 recognizes and combines with TGF-
βRII dimer and then forms a heterotetraploid with the TGF-
βRI dimer successively, so that the glycine-serine- (GS-) rich
region of TGF-βRI starts to phosphorylate and activate TGF-
βRI kinase. Then, the activated Smad2/3 components bind
with Smad4 to form oligomeric complex and which translocate
into the nucleus and participate in the transcription of target
genes associated with the process of cell apoptosis, prolifera-
tion, and differentiation [15]. Besides that, Smad2/3 phosphor-
ylation can increase the expression of fibrosis relative genes and
enhances the activity of fibroblasts to facilitate the progression

of fibrosis [15]. However, Smad7, as an inhibitory Smad (I-Smad),
may block the TGF-β1/Smads signaling pathway by interfering
with the activated TGF-βRI. This also means that the phos-
phorylation of Smad2/3 is hindered from the root cause,
thereby delaying or improving the process of fibrosis [16, 17].
Moreover, the screening of targets related to the TGF-β signal-
ing pathway has become a novel method to provide theoretical
support for the development of therapeutic drugs of fibrotic
diseases [13–15, 18].

More recently, several studies have found that galectin-3
is a key signal molecule in the TGF-β pathway and which
mediates fibroblast activation to provoke TGF-β expression
and to activate its downstream profibrosis-related pathways
[18]. Galectin-3 is expressed and secreted by inflammatory
cells and that can bind to glycoproteins and glycolipids on
cell surface to participate in a variety of physiological and
pathological processes [19]. Galectin-3 has the function of
accelerating the proliferation and differentiation of cardiac
fibroblasts and which plays an important role in the patho-
physiological process such as cardiac fibrosis. It is also an
emerging marker used to diagnose and predict congenital
hepatic fibrosis (CHF) in recent years [19].

2.2. Oxidative Stress and Fibrosis. Oxidative stress is referred
as the excessive free radicals that are produced under the
stimulation of harmful factors in vitro and in vivo. The
excessive accumulation of oxygen free radicals and related
metabolites can cause the cell to produce a variety of toxic
effects [20]. Glutathione (GSH) and superoxide dismutase
(SOD) are the main players in antioxidant defense system,
which can eliminate harmful peroxidation metabolites, block
lipid peroxidation, and protect the integrity of cellular mem-
brane [21].

NADPH oxidase (NOX) is a transmembrane complex
composing multiple protein subunits which are the main
regulators of reactive oxygen species (ROS) production in
cells. There are 7 subtypes of NOX, namely, NOX1, NOX2,
NOX3, NOX4, NOX5, DUOX1, and DUOX2 [22]. Hepatic
stellate cells (HSCs) and Kupffer cells are the key effectors
for liver NOX expression. Kupffer cells mainly participate
in the generation of ROS in the early stage of liver fibrosis
by expressing NOX2 [23]. The increase of NOX2 can induce
HSC activation by releasing ROS to mediate liver damage
and fibrosis through activating the platelet-derived growth
factor (PDGF) signal pathway [24].

Oxidative stress and the antioxidant system appear to be
crucial modulators in regulating the TGF-β1 signaling, met-
abolic homeostasis, and chronic inflammation, all of which
are associated with the development and persistence of
fibrosis [25]. The TGF-β1/p38 MAPK signaling pathway is
activated in response to various inflammations, oxidative
stress, and other stimuli. Inhibiting the activity of this path-
way can slow down the progression of fibrosis [26]. TGF-β1
is activated after receiving various stimuli, including oxida-
tive stress, which further affects the activation of the down-
stream factor apoptosis signal-regulating kinase 1 (ASK-1).
Overexpression of ASK-1 can promote MKK3/6 phosphory-
lation and which subsequently activate p38 MAPK and
phosphorylation of cyclic AMP-dependent transcription
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factor 2 (ATF2), thereby producing a series of biological
reactions [27]. ATF2 is a member of the leucine zipper fam-
ily of DNA-binding proteins. It is mainly involved in the
regulation of cellular stress response. Phosphorylated ATF2
plays a key role in inflammation, apoptosis, and fibrosis
[28–31]. JNK-dependent phosphorylation of ATF2/c-Jun
transcription factors can result in TGF-β transcription to
promote oral submucous fibrosis [30]. In addition, anti-
ATF2 antibody, as a novel autoantibody, can serve as a sero-
logical marker for inflammation and lung involvement in
systemic sclerosis [31].

ROS production can activate the p38 MAPK pathway and
that in turn aggravates the oxidative stress state, resulting in
oxidative damage and tissue fibrosis [32]. Moreover, oxidative
stress interacts with other pathophysiological mechanisms to
promote the occurrence and development of fibrosis [33].
Therefore, the role of oxidative stress in fibrotic diseases has
been attracted more attention by researchers. Only clarifying
the complex mechanism can we discover the effective antiox-
idative stress drugs to treat fibrosis.

2.3. Cellular Senescence and Fibrosis. Numerous studies have
strongly suggested that the progression of fibrotic diseases is
highly correlated with age. The accumulation of senescent
cells caused by aging is proved as a key factor to the develop-
ment of fibrosis [34]. With the aging of the body, the
increase of damaged cells and the decline in immune moni-
toring capabilities can reduce the clearance rate of senescent
cells and which subsequently result in the secretion of vari-
ous senescence-associated secretory phenotypes (SASPs),
such as proinflammatory cytokines, chemokines, and metal-
loproteinases (MMPs), to accelerate the development of
fibrosis [35, 36].

The activation of p53, after the senescence occurred in
type II alveolar epithelial cells, can participate in the devel-
opment of pulmonary fibrosis by upregulating miR-34 and
downregulating key target genes of the cell cycle [37]. More-
over, p21 can maintain the survival of senescent HSCs by
inhibiting caspase and c-Jun N-terminal kinase (JNK) sig-
nals [38]. Lehmann et al. proved that the type II alveolar epi-
thelial cells from mice with pulmonary fibrosis could secrete
higher levels of SASP, especially insulin-like growth factor-
binding protein- (IGFBP-) 3, 4, 7 and matrix metallopro-
teinase- (MMP-) 3, 12, 14 [39]. Therefore, prevention of cel-
lular senescence is of great significance for attenuating the
pathogenesis of fibrosis and which can provide novel antifi-
brotic treatment strategies.

Recent studies have found that the TGF-β pathway is
also involved in the aging process. Tasanarong et al. sug-
gested that TGF-β could trigger stress-induced senescence
via the p16INK4a and Smad3 pathways, and the loss of Smad3
will reduce the formation of senescent cells [40, 41]. Further-
more, in the process of cellular senescence, senescent cells
are resistant to cell apoptosis, and whose accumulation over
time can secrete a variety of SASP and which subsequently
stimulate fibroblasts into damaged tissues, as well as acceler-
ate the activation of fibroblasts [40]. Fang et al. demon-
strated that advanced glycation end-products (AGE) are an
important factor for cardiac aging and fibrosis, and AGE-

induced cardiac aging might be the crucial factor for TGF-
β-mediated fibrosis [42].

Conversely, studies have shown that after knocking out
p53, HSCs could continuously promote the expression of
ECM and α-SMA to accelerate the process of liver fibrosis
[43]. This indicated that the senescent HSCs could interfere
with the development of liver fibrosis [43]. In addition,
insulin-like growth factors (IGF-I) can induce HSC senes-
cence. IGF-I can increase the expression of senescence-
associated proteins, such as p21 and p53, to reduce ECM
deposition and prevent liver fibrosis [43, 44]. Kong et al.
found that IL-22 can induce HSC senescence through the
p53 pathway and which can eventually reverse liver fibrosis
in mice [45]. These studies indicate that senescent HSCs
can inhibit the development of liver fibrosis through activat-
ing the p53 signaling pathway and which are expected to
realize the reversal of liver fibrosis [43–45].

2.4. Inflammation and Fibrosis. In most chronic inflammatory
diseases, fibrosis has increasingly become the main cause of
morbidity andmortality [46]. Many immune-related elements
are involved in the occurrence and development of fibrotic
diseases [47, 48].

Nuclear factor-κB (NF-κB) is a transcriptional regulatory
factor that has been studied extensively in recent years [49].
Translocation of activated NF-κB into the nucleus can pro-
mote the expression of related genes, such as TNF-α, IL-6,
IL1β, and NLRP3 [49]. These substances are reported to play
an important role in the occurrence and development of
fibrosis [50–55]. Research showed that Krüppel-like factor
4 (KLF4), a zinc finger transcription factor, can ameliorate
chronic kidney disease through mitigating TNF-mediated
tissue injury and fibrosis [50]. Moreover, TNF-α can stimu-
late IL-33 secretion via interaction with TNFR2 and which
promotes myofibroblast development to accelerate the pro-
cess of myocardial fibrosis [51]. NOD-like receptor protein
3 (NLRP3) inflammasome inhibitor, MCC950, is first dem-
onstrated to ameliorate nonalcoholic fatty liver disease
(NAFLD) and fibrosis in obese diabetic mice, and the target-
ing of NLRP3 is a logical direction in pharmacotherapy for
liver fibrosis [54].

Signal transducers and activators of transcription 6
(STAT6) is mainly activated by IL-4 and IL-13 and plays
an important role in immune regulation, involving the
development of fibrosis [56, 57]. STAT6 is mainly activated
by cytokines, including IL-4 and IL-13, which are secreted
by Th2 cells (Figure 1). IL-13 is an important fibrotic factor.
The profibrosis effect of IL-13 may be closely related to the
upregulation of many fibrosis-related proteins in HSC and
HSC activation. IL-13 can regulate liver fibrosis by activating
macrophages. Both the upregulation of miR-142-5p and the
downregulation of miR-130a-3p in macrophages can pro-
mote fibrosis [56]. The upregulated miR-142-5p promotes
the phosphorylation of STAT6 by targeting SOCS1, and
the downregulated miR-130a-3p reduces its inhibition of
peroxisome proliferator-activated receptor γ (PPAR γ) to
promote fibrosis [56]. In the bleomycin-induced mouse
pulmonary fibrosis model, IL-4 and IL-13 levels were signif-
icantly increased, but after blocking the IL-4/IL-13 signaling
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Figure 1: Molecular and cellular mechanisms of fibrosis. TGF-β recognizes and combines with TGF-βR II and TGF-βR I successively, and
then, the glycine-serine- (GS-) rich region of TGF-βR I phosphorylates Smad2/3 to facilitate the formation of oligomeric complex with
Smad4 and which translocates into the nucleus and participates in the transcription of fibrotic genes, such as galectin 3, collagen I,
collagen III, α-SMA, and TGF-β. Besides that, the TGF-β signaling pathway can be activated by oxidative stress and cellular senescence,
which further affects the activation of the downstream factors ASK-1. ASK-1 can promote MKK3/6 phosphorylation and which
subsequently activates p38 MAPK and phosphorylates ATF2, thereby promoting the transcription of fibrosis-associated genes. NOX2/4
can stimulate ROS production and provoke the NF-κB signaling pathway to upregulate inflammatory-associated genes, such as NLRP3,
IL-6, IL-1β, TNF-α, and MMPs, to promote the development of fibrosis. IL-4 and IL-13 secreted by Th2 cells can activate STAT6 and
which can promote the expression of fibrotic genes and inflammatory cytokines to accelerate the process of fibrosis. Autophagy exerts a
protective role in fibrotic diseases by downregulating the TGF-β/Smad4 pathway and NLRP3 inflammasome.
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pathway, the activation of STAT6 was reduced and which
could significantly ameliorate pulmonary fibrosis [57].

Autophagy is a highly conservative cell degradation and
recycling process that can regulate cell death and prolifera-
tion. Previous studies have shown that autophagy has an
inhibitory effect in fibrosis (Figure 1) [58]. Conditionally
knocking out the autophagy-related protein 7 (Atg7) gene
in the distal renal tubular epithelial cells from unilateral
ureteral obstruction (UUO) mouse model can promote the
activation of the TGF-β/Smad4 pathway and the NLRP3
inflammasome, as well as aggravate renal interstitial fibrosis
[58]. This suggests that autophagy can play a protective role
in renal interstitial fibrosis by regulating the TGF-β/Smad4
pathway and NLRP3 inflammasome.

Hypoxia can induce an increase of NLRP3 inflammasome.
NLRP3 gene knockout renal tubular cells can reduce the pro-
duction of ROS under hypoxic conditions. ROS scavengers
can downregulate the expression of NLRP3 and reduce renal
fibrosis [59]. Although the NLRP3 inflammasome has been
reported to associate with the process of fibrosis, the exact
mechanisms have not been fully clarified, and further studies
are required to identify and provide novel possibilities for
the treatment of fibrosis.

The abnormal expression of various inflammatory com-
ponents in fibrotic diseases suggests that the inflammation is
an important link in the occurrence and development of
fibrosis in various organs. Therefore, the increasing under-
standing of inflammation-related signaling pathways will
provide new therapeutic ideas and support more direct and
effective drug targets for the treatment of fibrotic diseases.

3. Protective Effects of Gasotransmitters in
Fibrotic Diseases

3.1. The Interference Role of NO in Fibrotic Diseases. Nitric
oxide has been studied in many medical areas and which is
defined as an important player in most physiological systems,
such as nervous, cardiovascular, and conventional outflow
physiology [60–63]. Endogenous NO is mainly produced
intracellularly by the enzymatic action of NO synthase
(NOS) from amino acid L-arginine. The three different types
of NOS mainly include neuronal NOS (nNOS or NOS1),
inducible NOS (iNOS or NOS2), and endothelial NOS (eNOS
or NOS3) [64]. NO has a short half-life and is rapidly trans-
formed into stable final products in the body, such as nitrate
(NO3) and nitrite (NO2) [64]. NO has a variety of biological
functions, including relaxing smooth muscle, lowering blood
pressure, inhibiting the proliferation of vascular smooth mus-
cle cells, preventing the aggregation of platelets, and enhanc-
ing nonspecific immune defense [65]. Recently, increasing
studies demonstrated that the endogenous and exogenous of
NO showed protective effects on diverse fibrotic diseases via
multiple antifibrotic mechanisms (Figure 2) [66–75].

3.1.1. NO and Liver Fibrosis. Liver fibrosis is a dynamic
response process to various stimuli, such as alcoholism, viral
infection, and toxins, which can lead to the destruction of
liver parenchymal structure and excessive deposition of the
extracellular matrix, thereby promoting the formation of

liver fibrosis [76]. Long-term lack of treatment can further
cause liver cirrhosis and hepatocellular carcinoma. Liver
fibrosis is characterized by sustained activation of hepatic
stellate cells (HSCs) and the excessive accumulation of
ECM [76].

ROS is widely known to play a critical role in the devel-
opment of liver fibrosis, and NO can react with ROS to pro-
duce peroxynitrite, which is normally recognized as a very
reactive, toxic, and strongly oxidizing compound [66]. How-
ever, the relative amounts of peroxynitrite can act as a scav-
enger of ROS and which depend on the exact conditions of
the local microenvironment. Svegliati-Baroni et al. [66] have
demonstrated that the supplementation of exogenous NO
donor, S-nitroso-N-acetylpenicillamine (SNAP), could pre-
vent liver cirrhosis by scavenging the production of ROS,
thus inhibiting HSCs activation and proliferation.

NO derived from eNOS in liver sinusoidal endothelial
cells (LSECs) is demonstrated to possess a protective effect
on the development of fibrotic disease. In pathological con-
ditions, LSECs become dysfunctional, and the level of NO
produced by eNOS showed a significant decrease followed
by the activation of quiescent HSCs, and leading to the
deposition of the ECM, fibrogenesis, and further cirrhosis
[67, 77]. Simvastatin, one kind of lipid-lowering medication,
was reported to provoke a conversion of activated HSCs into
quiescent cells via enhancement of eNOS mediated by tran-
scription factor Krüppel-like factor 2 (KLF2) [78]. Langer
DA suggested that NO could limit the activation of HSCs
by promoting the apoptosis of HSCs and which was con-
ferred by mitochondrial membrane depolarization but not
the caspase-dependent pathway [79].

As opposed to the protective effect of eNOS on fibrogen-
esis, iNOS exerts an inducing effect in the occurrence and
development of liver fibrosis [68, 69]. The deletion or muta-
tion of the iNOS can reduce the development of liver fibrosis
[68]. Anavi et al. showed that as iNOS gene knockout mice
were fed with a high-cholesterol diet for 6 weeks, the liver
fibrosis was significantly attenuated compared with that in
wild-type mice, and the expressions of inflammatory cyto-
kines and fibrogenic genes were all remarkably decreased.
However, the paradoxical mechanisms of NOS in liver fibro-
sis remain unclear [68].

3.1.2. NO and Renal Fibrosis. Renal fibrosis is the buildup of
scar within renal parenchyma and which commonly occurs
in all chronic and progressive nephropathies, including
glomerular hyperfiltration, hyperperfusion, high pressure,
and ischemia-reperfusion injury [80]. The basic pathological
features of renal fibrosis are composed of the injury and
death of renal parenchymal cells, the infiltration of intersti-
tial inflammatory cells, the proliferation of fibroblasts, the
transformation of myofibroblasts, the excessive deposition
of the ECM, and the formation of interstitial fibrosis [80].

Glomerulonephritis is a type of kidney disease in which
there is inflammation of the glomeruli and progresses through
the accumulation of ECM and results in loss of the glomerular
architecture and scarring [81]. The pathogenesis of glomerulo-
nephritis is incompletely understood; however, increasing
studies indicated that the immunological injuries of resident
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cells in glomeruli, such as mesangial cells and podocytes, were
associated with the focal glomerulosclerosis [82]. In the pro-
cess of cultured rat glomerular mesangial cells (MCs), the
administration of NO donors, such as spermine NONOate,
NOC-18, and SNAP, can suppress the expression of fibrogenic
genes at the transcriptional level [70]. This study revealed a
complex role of NO in regulating gene expression inmesangial
cells and suggests an antifibrotic potential of NO. Addition-
ally, Peters et al. revealed that the supplementation of L-

arginine can reduce the fibrotic disease in antithymocyte
serum- (ATS-) glomerulonephritis animal model and which
is mediated by multiple pathways, including the suppression
of TGF-β expression, while further studies are required to
reveal the therapeutic potential of L-arginine supplementation
in humans [72, 73].

MMP-9 is an essential matrix metalloproteinase
involved in the process of renal fibrosis, which can be regu-
lated in different levels, and finally, the endogenous MMP-9
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Figure 2: The interference mechanisms of NO in fibrotic diseases. NO can reduce the amount of ROS by peroxynitrite formation and which
subsequently attenuates the activation of the NF-κB signaling pathway to inhibit the expression of fibrosis and inflammatory-related genes.
Moreover, NO can also downregulate the expression of TGF-β to attenuate its downstream signaling pathway.
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inhibitor TIMP-1 inhibits the enzyme activity. In the kidney,
glomerular mesangial cells are themain source for the synthesis
of MMP-9 and its endogenous inhibitor TIMP-1. In renal
MCs, NO can modulate the expression of several ECM-
degrading proteases and intrinsic inhibitors, including MMP-
9, MMP-13, plasminogen activator inhibitor-1 (PAI-1), and
TIMP-1 [83, 84]. In addition, NO donor SNAP can amplify
the expression of TIMP-1 in a TGF-β-dependent manner
and thereby may play a critical role in the regulation of the
proteinase-antiproteinase homeostasis in renal MCs [71].

3.1.3. NO and Idiopathic Pulmonary Fibrosis. Idiopathic
pulmonary fibrosis (IPF) is a chronic and progressive
interstitial lung disease, which can be triggered by various
harmful factors like toxic chemicals, radiation, inorganic
particles, and microbial infections. Its basic pathological
process is the activation of lung fibroblasts and the trans-
formation into myofibroblasts and which can cause the
excessive deposition of ECM and ultimately destruct the
lung parenchymal structure. The typical pathological fea-
tures of idiopathic pulmonary fibrosis are the proliferation
and accumulation of lung parenchymal fibers and their
structural destruction [85].

Patients with pulmonary fibrosis showed a significant
enhancement of NOS expression and plasma nitrite and
nitrate (NOx) levels, indicating that NO might play an
important role in the process of lung fibrosis [86–88]. The
use of bleomycin can induce pulmonary fibrosis in mice.
In the lack of all three NOS isoforms, including iNOS,
eNOS, and nNOS, bleomycin-treated mice showed a deteri-
oration of pulmonary fibrosis, suggesting the entire endoge-
nous NO and NOS systems exert an important protective
role in the pathogenesis of pulmonary fibrosis [74].

Cyclooxygenase-inhibiting NO donors (CINODs) are
designed to inhibit COX1 and COX2 while releasing NO,
which exhibits anti-inflammatory, pain-relieving, and antiox-
idant effects [75]. In bleomycin-induced lung fibrosis model,
one prototype CINOD compound, (S)-(5S)-5,6-bis(nitrooxy)-
hexyl)2-(6-methoxynaphthalen-2-yl) propanoate (NCX466),
has shown a significant efficacy in reducing lung inflamma-
tion, the TGF-β signaling pathway, and the collagen accu-
mulation, suggesting that COX inhibition along with NO
donation may exhibit therapeutic potential in pulmonary
fibrosis [75].

3.1.4. NO and Peyronie’s Disease. In normal condition, myo-
fibroblasts share both phenotypic characteristics of fibro-
blasts and smooth muscle cells. It plays a key role in
collagen deposition and wound healing and disappears
through apoptosis when the wound is healed. However, its
abnormal persistence can be observed in the fibrotic plaque
of the tunica albuginea (TA) of the penis in men with Peyro-
nie’s disease (PD) [89, 90]. Vernet demonstrated that the
enhancement of iNOS via the administration of cytokine
cocktail plus NO donor, SNAP, can inhibit the process of
fibrosis by the reduction of myofibroblast abundance and
lead to a reduction in collagen 1 synthesis and the inhibition
of ROS production [91].

3.2. The Interference Role of CO in Fibrotic Diseases. Carbon
monoxide (CO) is generated by the action of heme oxygenase
(HO), which is involved in the degradation of heme [92].
Although the toxic effects of CO are well documented, it was
only discovered in the last decade that low concentration of
CO can exert numerous biological effects, such as anti-inflam-
mation, antiapoptosis, and antioxidation [93] As the sudden
surge in research of CO and its beneficial biological effects,
several novel compounds termed carbon monoxide-releasing
molecules (CORMs) have been developed, and their biochem-
ical properties have been characterized [94, 95]. The two most
recently developed CORM are tricarbonylchoro(glycinato)r-
uthenium (II) (CORM-3) and sodium boranocarbonate
(CORM-A1), both of which are fully water-soluble and thus
easy to handle. Upon incubation in a physiological medium,
both CORM-3 and CORM-A1 can liberate CO gas [95].

Aki et al. demonstrated that the application of 1mM
CORM3 to mouse embryonic fibroblasts (MEFs) resulted
in the reduction of collagen I and III within 24 h, which con-
firmed an antifibrotic effect of CO [96] CORM3 also caused
a rapid dissociation of cell-associated plasma fibronectin
(FN) from MEFs within 1 h, and which is associated with
the formation of a reduction-resistant oligomer of plasma
FN, suggesting FN is a CORM-3-interactive plasma protein,
and the CORM-3-FN interaction is involved in the death of
fibroblasts [96].

3.2.1. CO and Idiopathic Pulmonary Fibrosis. Zhou et al.
reported that in bleomycin-induced IPF mouse model,
inhaling low-dose exogenous 250 ppm CO gas into mice
showed a significant therapeutic effect on the development
of lung fibrosis [97]. This study revealed that CO could
inhibit the formation of pulmonary fibrosis by inhibiting
the synthesis and the deposition of extracellular matrix, as
well as the proliferation of fibroblasts through increasing
p21Cip1 expression while decreasing cyclin A and D levels.
Furthermore, CO-exposed cells significantly downregulated
fibronectin (FN) and collagen-1 via the regulation of tran-
scriptional regulator, an inhibitor of DNA binding 1 (Id1)
[97]. Besides that, one recent study also demonstrated that
a nanotechnology-based CO donor, CO-bound hemoglobin
vesicles (CO-HbV), showed a therapeutic effect on IPF and
which was attributed to a decrease in ROS production by
the NOX4 signaling pathway, as well as the production of
inflammatory cytokines and TGF-β in the lung [98]. Rosas
et al. have demonstrated that inhaled low-dose CO gas was
well tolerated and can be safely administered to patients with
IPF in phase II clinical trials [99]. Overall, exogenous and
endogenous CO exert an antifibrotic effect in the lung, and
this effect can ameliorate bleomycin-mediated IPF.

3.2.2. CO and Renal Fibrosis. Wang and his colleagues
reported that the exogenous administration of CO can
ameliorate UUO-induced renal fibrosis and protect against
kidney injury [100]. As mice were exposed to CO, the depo-
sition of ECM and the expression of α-SMA, type I collagen,
and FN in the kidneys were significantly decreased. In addi-
tion, the beneficial effect of CO is mainly associated with the
MKK3 pathway. These findings suggest that low-dose CO

7Oxidative Medicine and Cellular Longevity



exerts protective effects on inhibition of renal fibrosis in
obstructive nephropathy [99].

3.2.3. CO and Myocardial Fibrosis. Myocardial fibrosis refers
to the pathological process in which various harmful stimuli,
such as myocardial injury, mechanical stretching, and myo-
cardial inflammation, trigger the proliferation of fibroblasts
in heart tissue. This process leads to excessive ECM deposition
and disorganization of cardiac structure and function, such as
cardiac hypertrophy, heart failure, and arrhythmia [101].

Human immunodeficiency virus (HIV) protease inhibitor-
induced cardiac dysfunction is characterized as a pathologic
fibrosis related to the activation of TGF-β1 [102, 103]. Laurence
et al. have demonstrated that inhalation of low-dose CO
(250ppm) can suppress ritonavir-induced cardiac fibrosis
and which is modulated by the canonical (Smad2) and nonca-
nonical TGF-β1 signaling pathways. In addition, CO treatment
can also suppress the M1 proinflammatory subset of macro-
phages, while increaseM2c subset of macrophages in the hearts
of ritonavir-treated mice and which is also associated with CO-
induced autophagy [104]. Taken together, the antifibrotic
effects of CO are linked to the inhibition of the TGF-β signaling
and the stimulation of autophagy as shown in Figure 3.

3.3. The Interference Role of H2S in Fibrotic Diseases. Hydro-
gen sulfide is a widely known gas with a malodorous smell
and which is the most recently recognized member of gaseous
signaling molecules, as well as exhibits remarkable therapeutic
characteristics in several pathologies [105]. H2S is produced
endogenously in the cytoplasm and mitochondria of mamma-
lian cells by utilizing L-cysteine and D-cysteine as substrates
catalyzed cystathionine-β-synthase (CBS), cystathionine-γ-
lyase (CSE), 3-mercaptopyruvate sulfurtransferase (3-MST),
and D-amino acid oxidase (DAO) [106–108]. Besides its
endogenous production, H2S can also be produced via its
exogenous sources such as sodium hydrosulfide (NaHS),
sodium sulfide (Na2S), S-allyl-cysteine (SAC), GYY4137,
AP39, and AP123, SG1002, S-propargyl-cysteine, sodium
thiosulfate, sulfurous mineral water, garlic-derived polysulfide,
diallyl disulfide, and diallyl sulfide [109]. Numerous studies
have shown that low-dose exogenous and endogenous H2S
have therapeutic and protective effects on common organ
fibroproliferative diseases and syndromes and which are
mainly due to its anti-inflammatory, antioxidant, and antifi-
brotic properties (Figure 4) [110]. Furthermore, the deficiency
in endogenous CBS/H2S or CSE/H2S system is involved in the
development of fibrosis [111], while the supplementation of
exogenous H2S can significantly inhibit the progression of
fibrosis [112–115].

3.3.1. H2S and Renal Fibrosis. In normal condition, the
expression of CBS is predominantly located in proximal
renal tubules, while a small amount of CSE is expressed in
the renal glomeruli, interstitium, and interlobular arterioles.
Moreover, MST is mainly expressed in the proximal tubular
epithelium in the kidney [116, 117].

In unilateral ureteral obstruction- (UUO-) induced renal
injury and fibrosis mouse model, treatment with H2S donor
NaHS can significantly reduce kidney damage and fibrosis

through the inhibition of M1 and M2 macrophages’ infiltra-
tion and downregulation of fibrogenic genes [118]. These ben-
eficial effects of NaHSmight be contributed to the inactivation
of NLRP3, as well as to its downstream signaling pathways and
the phosphorylation of the NF-κB and IL-4/STAT6 signaling
pathways [118]. Additionally, in the recovery of the kidney
following ischemia/reperfusion (I/R) injury, the levels of
CSE, CBS, and H2S were significantly decreased and which
did not recover in eight days as fibrotic lesions were observed.
However, the administration of NaHS can accelerate tubular
cell proliferation and delay the progression of renal fibrosis
by attenuating oxidative stress and inflammation in a mouse
model with ureteral obstruction [119].

Angiotensin II (Ang II) and TGF-β can induce renal
tubular epithelial-to-mesenchymal (EMT), and the abnor-
mal activation of EMT can lead to the tubular interstitial
fibrosis. In the presence of H2S donor NaHS, the TGF-β
signaling pathway and the EMT-promoting effect of Ang II
were all decreased and which were contributed to the reduc-
tion of TGF-β activity [120]. NaHS can cleave the disulfide
bond in the dimeric active TGF-β1 and subsequently pro-
mote to form inactive TGF-β monomer form [120]. This
study provides a novel antifibrotic mechanism of H2S and
suggests that H2S can be used to treat renal sclerotic diseases
(Figure 4) [120]. Besides that, NaHS can also affect TGF-β1-
induced EMT in renal tubular epithelial (HK-2) cells and
which might be associated with suppression of both the
ERK- and β-catenin-dependent signaling pathways to ame-
liorate renal fibrosis [121].

3.3.2. H2S and Myocardial Fibrosis. In mammals, CSE is
abundant in the heart, vascular smooth muscle, and vascular
endothelial cells. It is the most relevant enzyme in the car-
diovascular system to produce H2S. Increasing evidence
demonstrates that endogenous H2S can participate in atten-
uating the development of myocardial fibrosis [122]. The
decline of H2S content in heart tissues was significantly cor-
related with the severity of myocardial fibrosis [122–124].
Ma et al. have demonstrated that chronic aerobic exercise
training can upregulate CSE and 3-MST expression. Fur-
thermore, as aged rats were given moderate-intensity exer-
cise or treated with NaHS (intraperitoneal injection of
0.1mL/kg per day of 0.28mol/L NaHS), the myocardial
hydroxyproline level and fibrotic area in the heart could be
declined dramatically, suggesting that exercise could restore
bioavailability of H2S in the heart of aged rats and which
partly explained the benefits of exercise against myocardial
fibrosis of aged population [125].

Nicotinamide adenine dinucleotide phosphate II (NADPH)
oxidase 2 (NOX2) andNADPHoxidase 4 (NOX4) are themain
sources of reactive oxygen species (ROS), which play a key role
in the fibrotic reaction of cardiac fibroblasts and ischemic
myocardium. The exogenous treatment of NaHS and sodium
thiosulfate (STS) can remarkably decrease NOX2/4, phosphor-
ylation of ERK1/2, and the generation of ROS to ameliorate
oxidative stress-mediated myocardial fibrosis [115, 122]. More-
over, the slow-releasing water-soluble H2S donor, GYY4137,
can reduce adverse remodeling and play postischemic cardio-
protective effects through the enhancement of early
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postischemic endogenous natriuretic peptide activation [123].
Similarly, the administration of GYY4137 can also prevent
myocardial infarction-induced adverse cardiac remodeling in
both wild type- and CSE-deficient mice [126]. One recent study

reported that after the administration of NaHS, the area ofmyo-
cardial fibrosis in myocardial infarction (MI) rats is reduced,
and the level of type I collagen, type III collagen, and MMP-9
is reduced, and the heart function is improved. This study
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Figure 3: The interference mechanisms of CO in fibrotic diseases. Low-dose exogenous and endogenous CO can interfere with the TGF-β
and NF-κB signaling pathway via reducing the expression of fibrosis and inflammatory-related genes. In addition, CO can also inhibit the
TGF-β signaling by the stimulation of autophagy.
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demonstrated that exogenous H2S potentially prevents heart
remodeling by inhibition of extracellular matrix accumulation
and increasing blood vessel density [124].

3.3.3. H2S and Liver Fibrosis. In the combination of carbon tet-
rachloride (CCl4) and olive oil-induced liver fibrosis model,
the treatment of S-allyl-cysteine (SAC, 50mg/kg/day), one
endogenous donor of H2S, could significantly reduce the

mRNA expression of inflammatory and fibrotic cytokines, as
well as increased the levels of antioxidant relative genes,
including superoxide dismutase, catalase, and glutathione
peroxidase [127]. Moreover, the treatment of SAC can also
decrease the phosphorylation of Smad3 and STAT3, as well
as further inhibit their ability to bind to transcription pro-
moters. Therefore, the exogenous donor of H2S, SAC, can
reduce CCl4 and olive oil-induced liver fibrosis through its
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the NF-κB, TGF-β, and IL-4/STAT6 signaling pathways, as well as attenuating the production of ROS via downregulation of NOX2/4.
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antioxidant and anti-inflammatory features, as well as the
inhibition of the STAT3/SMAD3 signaling pathway to control
fibrotic gene expression [127].

Several studies indicated that plasma levels of H2S exhib-
ited a dramatic decline during the progression of hepatic fibro-
sis [128, 129], and the expression of H2S produced by CBS and
CSE was significantly decreased in patients with cirrhosis-
induced portal hypertension [130]. These reports suggested
that the inhibition of endogenous H2S might be associated
with the development of human and animal liver fibrosis.
For that, the supplementation of NaHS could significantly ele-
vate serum H2S level, prevent portal pressure, decrease hya-
luronic acid and hepatic hydroxyproline levels, and reduce
the number of activated HSCs by induction of G1 phase cell
cycle arrest [131–133]. Conversely, one recent study found
that the exogenous and endogenous H2S can increase the
proliferation and activation of HSCs, and inhibitors of H2S
can decrease the proliferation and fibrotic marks of HSCs,
and which is mediated by the cellular bioenergetics [134].
These paradoxical reports suggested that the protective effect
and the molecular mechanisms of H2S in hepatic fibrosis
should be proved in further animal and cellular studies.

3.3.4. H2S and Idiopathic Pulmonary Fibrosis. In one recent
study, bleomycin-induced IPF mouse model revealed that
the plasma concentration of H2S and CSE activity in lung
tissues was significantly downregulated on day 7, while the
injection of sodium hydrosulfide (NaHS, 1.4 and 7μmol/kg
body weight) could significantly decrease the collagen depo-
sition and the severity of pulmonary fibrosis [113]. The ther-
apeutic effect of H2S in bleomycin-induced IPF could be
attributed to the inhibition of NF-κB p65 expression and
downregulation of Th2 cells [135]. Conversely, a high level
of H2S (50~500 ppm) can lead to bronchiolitis obliterans
and pulmonary edema, ultimately leading to chronic inflam-
mation and idiopathic pulmonary fibrosis [136]. These stud-
ies clearly suggested that H2S exhibits two faces of the same
coin and the mechanisms by which the excessive administra-
tion of H2S in the promotion of IPF is still not uncovered.

3.3.5. H2S and Diabetic Diaphragm Fibrosis. Diabetes is
related to the failure of multiple organs and can lead to
respiratory dysfunction by reducing the endurance of respi-
ratory muscles and lung capacity. The diaphragm is an

important skeletal muscle in the mammalian breathing pro-
cess [137]. Excessive inflammation of diabetes often leads to
collagen deposition and muscle fibrosis. However, one recent
study demonstrated that administration of NaHS could ame-
liorate hyperglycemia-induced diaphragm muscle fibrosis and
improved the diaphragmatic biomechanical properties in dia-
betes mellitus, which might be associated with the alleviation
of collagen deposition through the suppression of NLRP3
inflammasome-mediated inflammatory reaction [137]. This
report confirmed that the therapeutic strategies aimed at
inhibiting NLRP3 inflammasome-mediated fibrosis by utiliz-
ing exogenous H2S might serve as efficient targeted therapy
in diabetes mellitus.

3.3.6. H2S and Peritoneal Fibrosis. Peritoneal fibrosis is one
of the long-term complications of peritoneal dialysis (PD)
patients [138]. Peritoneal fibrosis model was constructed in
Sprague-Dawley rats through intraperitoneally injecting
4.25% glucose PD fluids and lipopolysaccharide. After daily
injection of 56μg/kg NaHS, this can significantly decrease
the biomarkers of inflammation, fibrosis, and angiogenesis
in the peritoneum, although the exact molecular mecha-
nisms have not been discovered [139]. The evidence suggests
again that the exogenous H2S possess a strong antifibrotic
property and which can be a potential therapy against peri-
toneal fibrosis during chronic PD.

4. Conclusion and Perspectives

According to these reports, many stress responses and molec-
ular targets are involved in the formation and development of
fibrosis. Among them, the activations of the TGF-β signaling
pathway, oxidative stress, chronic inflammation, and aging
are considered as key regulatory targets (Figure 1). Three
well-known gasotransmitters, NO, CO, and H2S, are demon-
strated to regulate the development of fibrotic diseases mainly
through anti-inflammation, antioxidation, antiapoptosis, and
the induction of autophagy (Table 1). To date, although a great
number of animal experiments have reported that these gaso-
transmitters exhibited various beneficial effects (Figure 5) on
delaying the process of fibrotic disease, more clinical trials
are necessary to be applied for proving their therapeutic effects
on fibrotic diseases. In addition, to support more evidence
about their preventive effects, the detailed molecular and

TGF-𝛽
Signaling pathway

Oxidative stress

Autophagy

Aging

Inflammation
C O

N O

H2S

Fibrosis
ECM

Figure 5: Three gasotransmitters, NO, CO, and H2S, can prevent the development of organ fibrosis through interfering with the TGF-β
signaling pathway, oxidative stress, inflammation, and aging and provoking autophagy.
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cellular mechanisms are also needed to be further clarified. In
the future study, given the synergistic effect of these gasotrans-
mitters on fibrotic diseases, the combinatorial treatment of
exogenous NO, CO, and H2S donors can be applied for delay-
ing the process of fibrosis. Moreover, it is necessary to develop
and utilize more effective gas donors as important compo-
nents of health products for the prevention and treatment of
fibrotic diseases.
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Persistently unrepaired DNA damage has been identified as a causative factor for vascular ageing. We have previously shown that
a defect in the function or expression of the DNA repair endonuclease ERCC1 (excision repair cross complement 1) in mice leads
to accelerated, nonatherosclerotic ageing of the vascular system from as early as 8 weeks after birth. Removal of ERCC1 from
endothelial alone partly explains this ageing, as shown in endothelial-specific Ercc1 knockout mice. In this study, we
determined vascular ageing due to DNA damage in vascular smooth muscle cells, as achieved by smooth muscle-selective
genetic removal of ERCC1 DNA repair in mice (SMC-KO: SM22αCre+ Ercc1fl/-). Vascular ageing features in SMC-KO and
their wild-type littermates (WT: SM22αCre+ Ercc1fl/+) were examined at the age of 14 weeks and 25 weeks. Both SMC-KO
and WT mice were normotensive. Compared to WT, SMC-KO showed a reduced heart rate, fractional shortening, and cardiac
output. SMC-KO showed progressive features of nonatherosclerotic vascular ageing as they aged from 14 to 25 weeks.
Decreased subcutaneous microvascular dilatation and increased carotid artery stiffness were observed. Vasodilator responses
measured in aortic rings in organ baths showed decreased endothelium-dependent and endothelium-independent responses,
mostly due to decreased NO-cGMP signaling. NADPH oxidase 2 and phosphodiesterase 1 inhibition improved dilations.
SMC-KO mice showed elevated levels of various cytokines that indicate a balance shift in pro- and anti-inflammatory
pathways. In conclusion, SMC-KO mice showed a progressive vascular ageing phenotype in resistant and conduit arteries that
is associated with cardiac remodeling and contractile dysfunction. The changes induced by DNA damage might be limited to
VSMC but eventually affect EC-mediated responses. The fact that NADPH oxidase 2 as wells as phosphodiesterase 1 inhibition
restores vasodilation suggests that both decreased NO bioavailability and cGMP degradation play a role in local vascular
smooth muscle cell ageing induced by DNA damage.

1. Introduction

Cardiovascular disease (CVD) remains a leading cause of
morbidity and mortality worldwide and has an enormous
economic burden on healthcare systems [1]. Even with
developments controlling the classical risk factors, such as

smoking, high cholesterol, diabetes, or hypertension, cardio-
vascular problems remain a chief health issue. Ageing
remains the largest risk factor for cardiovascular disease [2].
Ageing is defined as a time-dependent functional deteriora-
tion that affects most living organisms and causes advanced
loss of physiological integrity, impaired organ function, and
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larger risk of premature death [3]. There are different factors
that are associated with ageing or accelerate ageing of which
accumulating DNA damage is a major one [1, 4, 5]. DNA
damage can be induced by different sources like endogenous
(e.g., generation of reactive oxygen species (ROS) and other
oxidative reactions) or exogenous (e.g., UV and ionizing
radiations) reactive agents that may cause hundred thou-
sands of DNA lesions per cell per day [3, 6]. Because of the
intricate network of DNA repair systems in our body, most
of those lesions will be eliminated. However, some lesions
are not repaired, and these persistent lesions can induce
transcription problems, metabolic and signaling changes,
and cellular senescence that cumulate with age. Depending
on the mediator, extent of exposure, target cell, and individ-
ual differences in repair capacity, ageing shows different
interindividual and organ-specific (segmental) rates of devel-
opment, as observed in daily human life and animal models
of ageing [7, 8].

Several genetically modified mouse strains have been
generated that model accelerated ageing. These are based
on a specific deficiency in DNA repair. Different DNA repair
systems and components can be targeted to accelerate ageing,
and among them, excision repair cross-complementation
group 1 (ERCC1) is a protein that, when defective, affects sev-
eral main DNA repair systems [9]. ERCC1-xeroderma pig-
mentosum (XP) F is a structure-specific protein complex
which acts as an endonuclease enzyme involved in the repair
of several types of DNA lesions, mainly bulky, helix-
distorting lesions that are repaired by the nucleotide excision
repair pathway, but also double-strand breaks and interstrand
cross-links [10–12]. Ercc1-deficient mice have been used
repeatedly by diverse groups to study human-like ageing fea-
tures [13–16]. The Ercc1Δ/- mouse is a convenient model to
study vascular ageing and potential therapies. The Δ allele
is a truncation of the Ercc1 gene by 7 amino acids of
its C-terminus that disrupts the interaction between
ERCC1 and XPF proteins and subsequently causes accu-
mulation of DNA lesions in a progressive manner [7].

Ercc1Δ/- mice have a short life span of around 24-28
weeks and display many human-like ageing features like
neurodegeneration, osteoporosis, and liver, kidney, heart,
and muscle dysfunctions that mostly start from the age of
about 12 weeks [15, 17]. With regard to cardiovascular
ageing, Ercc1Δ/- mice show increased vascular stiffness and
vascular wall thickness, increased blood pressure, and
diminished macro- and microvascular relaxation that is
mainly explained by reduced NO-cGMP pathway signaling,
a major player in dysfunction of the aged cardiovascular
system [17]. Ercc1Δ/- mice display segmental progeria [18],
which suggests that affected organs could be influenced by
a local DNA damage process rather than a systemic one.
Indeed, we have demonstrated that Ercc1 knockout specifically
in vascular endothelial cells (EC-KO) selectively affects
endothelium-derived nitric oxide (NO) and leads to decreased
end-organ perfusion, vascular leakage, and increased wall
thickness [7]. However, vascular smooth muscle cells (VSMC)
in Ercc1Δ/- mice displayed an additional hyporesponsiveness
to NO as compared to EC-KO mice [17]. Moreover, there is
a rapid development of carotid artery stiffness in Ercc1Δ/-mice

which is absent in EC-KO [17]. These differences suggest that
some of the ageing features in the Ercc1Δ/-mice can be induced
by DNA damage in VSMC [7, 17]. To address the question if a
local VSMC DNA repair defect is critical for the specific
changes in vascular function as observed in Ercc1Δ/- mice, we
investigated cardiovascular function in a mouse model with
specific loss of Ercc1 function in smooth muscle cells (SMCs).
We focused on changes of NO-cGMP responsiveness since
this is a major hallmark of ageing and DNA damage-related
vascular dysfunction.

2. Methods

2.1. Animals. We evaluated the effect of SMC genomic
instability on cardiovascular function in a mouse model
with SMC-targeted deletion of Ercc1, based on crossbreed-
ing of mice with floxed Ercc1 gene with the B6.129S6-
Taglntm2(cre)Yec/J strain (SM22αcreKI, Jackson Labs USA,
stock no. 006878) [19]. SM22αcreKI harbours a Cre
recombinase-coding sequence under control of the endoge-
nous transgelin, or smooth muscle 22 α-actin, promoter,
which is the best-studied smooth muscle promoter. Expres-
sion of Cre recombinase in embryonal SMC and cardiac
myocytes, a drawback of other SM22αCre strains, is absent
in this model [19, 20]. Apart from expression in vascular
smooth muscle cells, there are reports suggesting promoter
activation in platelets, adipocytes, and myeloid cells, and fully
specific promoters for smooth muscle have hitherto not been
identified [20]. To target the smooth muscle cells, various Cre
recombinase models can be used. SM22Cre models have
been used in this study. SM22α is an actin-binding regulatory
protein involved in SMC contraction and serves as a marker
to study a SMC-specific expression model [20].

As the Ercc1flox strain, we have used the FVB/N
background-based transgenic mice generated by Melton
et al. (Edinburgh, United Kingdom) [21]. SM22αCre+/-
female mice were crossed with Ercc1+/- male mice to
generate SM22αCre+/-::Ercc1+/- mice in a pure C57BL/6J
background. This offspring was then crossed with Ercc1fl/fl
mice in a pure FVB/N background to produce SM22αCre+
Ercc1fl/- mice knockout mice (SMC-KO) in a C57BL6/FVB
F1 hybrid background [22]. Thus, the Ercc1 gene is fully inac-
tivated for both alleles. Littermates (genotypes: SM22αCre+
Ercc1fl/+) were used as controls. We also selected SM22αCre-
mice to exclude potential effects of Cre on vascular function.

Male and female mice were housed in individually venti-
lated cages, in a 12 h light/dark cycle, and fed normal chow
and water ad libitum. SMC-KO developed weight difference
compared with WT controls that at 6 months reached the
threshold for termination of experiments on ethical require-
ments of the EU directive. Consequently, we decided to
measure cardiac and vascular phenotyping features at 12-
13 (early time-point: ET) and 22-23 weeks of age (late
time-point: LT), when no visible clinical signs (except for
the body weight loss) were evident. At the end of the exper-
iment, mice were euthanized under deep anesthesia by
exsanguination from the portal vein. We sacrificed the mice
at the age of 14 and 25 weeks. Mice that were sacrificed at
the age of 14 and 25 weeks old are referred to as earlier
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time-point (ET) and later time-point (LT), respectively,
throughout this article. In total, for ET, 14 SMC-KO and
14 WT and for LT, 16 SMC-KO and 21 WT were included
into the study. For each group, both genders were included
with quite equal number and all the methods were per-
formed with both genders. All animal procedures were per-
formed at the Erasmus MC facility for animal experiments
following the guidelines from Directive 2010/63/EU of the
European Parliament on the protection of animals used for
scientific purposes. All animal studies were approved by
the National Animal Care Committee and the local
administration within Erasmus University Medical Center
Rotterdam.

2.2. Blood Pressure Measurement. Blood pressure (BP) was
measured with a noninvasive method in conscious mice at
both time-points using the tail cuff technique (CODA
High-Throughput device, Kent Scientific). BP was measured
on 5 consecutive days, and each session consisted of 30
measurement cycles per mouse. Acclimatization sessions
were performed on the first 4 days, and the 5th day was
used as the main measurement for each mouse. BP values
are reported as the average of all valid cycles recorded at
day 5 [17].

2.3. Microvascular Vasodilator Function In Vivo. We
assessed in vivo vasodilator function using Laser Doppler
perfusion imaging (LDPI, Perimed, PeriScan PIM 3 System).
Reactive hyperemia, defined as the hindleg perfusion that
increases after temporary occlusion of the blood flow, was
calculated. One day prior to LDPI in the left hindleg, hair
was removed by hair-removal cream. The hindleg was kept
still with the aid of a fixation device. After recording baseline
perfusion for 5 minutes, blood flow was occluded for 2
minutes with a tourniquet. After releasing the tourniquet,
blood flow was monitored for 10 minutes to observe its
return to the postocclusion baseline and to record hyper-
emia. During all measurements, mice were under 2.8%
isoflurane anesthesia, and body temperature was kept at
36.4-37.0°C by means of a heating pad with rectal tempera-
ture probe feedback. For each mouse, the maximum
response to occlusion and the area under the curve (AUC)
relative to the postocclusion baseline were calculated. Only
the area above the baseline was considered, and values below
the baseline were set to 0.

2.4. Mechanical Properties and Dimensions of the Vascular
Wall. After removing the surrounding tissues, carotid arter-
ies explanted from ET and LT mice were mounted in a pres-
sure myograph (Danish Myograph Technology (DMT),
Aarhus, Denmark) in calcium-free buffer (in mmol/L: NaCl
120, KCl 5.9, EGTA 2, MgCl2 3.6, NaH2PO4 1.2, glucose
11.4, and NaHCO3 26.3; pH7.4), thus excluding measure-
ments of both strain-induced contraction and an acute effect
of PDE1 inhibition (PDE1 is relatively inactive in the
absence of Ca2+). The intraluminal pressure of the carotid
artery was increased stepwise by 10mmHg starting at
0mmHg and reaching 120mmHg. Following each step, the
vessels were allowed to equilibrate and then lumen and ves-

sel diameters were measured and used to calculate strain and
stress [23].

2.5. Cardiac Function.Mice were sedated with 4% isoflurane,
intubated, and connected to a pressure-controlled ventilator.
Anesthesia was maintained with 2.5% isoflurane, and body
temperature was kept at 37°C [24]. Cardiac geometry and
function were evaluated by performing 2-D-guided short-
axis M-mode transthoracic echocardiography (Vevo 770
High-Resolution Imaging System, VisualSonics) equipped
with a 35MHz probe. Left ventricular (LV) external and
internal diameters were traced, and subsequently, heart rate,
fractional shortening, cardiac output, LV mass, and LV wall
thickness were calculated using the Visual Sonics Cardiac
Measurements Package. Cardiac volume was calculated from
the measured diameters assuming a spheric shape. Echocar-
diography was performed at 13 and 24 weeks of age in mice
that were sacrificed at LT, allowing us to obtain echocardio-
graphic parameters for the same animal at two different
time-points (corresponding to ET and LT). After completing
echocardiography, mice were sacrificed and hearts were
quickly excised and rinsed in ice-cold saline. Subsequently,
LV was dissected from the right ventricle and atria and LV
was weighed and stored for further analyses.

2.6. Histology in the Heart. Paraffin-embedded LV samples
were cut into 4μm sections, deparaffinized, and stained to
determine free wall myocardial collagen content and cardio-
myocyte size. Collagen content was measured using picrosir-
ius red staining according to the standard protocol. Images
were analyzed using a quantitative image analysis system
(BioPix iQ software, BioPix AB). Cardiomyocyte size was
quantified by performing Gomori staining using the stan-
dard protocol. Images were analyzed using a quantitative
image analysis software (Leica Qwin Plus V3).

2.7. Ex Vivo Vascular Function Assessment. Immediately
after sacrificing the mice, the thoracic aorta and iliac arteries
were carefully isolated from mice and kept in cold Krebs-
Henseleit buffer (in mmol/L: NaCl 118, KCl 4.7, CaCl2 2.5,
MgSO4 1.2, KH2PO4 1.2, NaHCO3 25, and glucose 8.3 in
distilled water; pH7.4). After removing the surrounding
tissues, vessel segments of 1.5-2mm length were mounted
in small wire myograph organ baths (Danish Myograph
Technology, Aarhus, Denmark) containing 6mL of Krebs-
Henseleit buffer oxygenated with 95% O2 and 5% CO2 at
37°C. The tension was normalized by stretching the vessels
in steps until 90% of the estimated diameter at which the
effective transmural pressure of 100mmHg is reached [25].
Thereafter, the viability of the vessels was checked by induc-
ing contractions with 30 and 100mmol/L KCl. After reach-
ing the maximum contraction induced by KCl, vessels were
washed 4 times with a 5-minute interval. To evaluate vasodi-
latory responses, aortic and iliac segments were precon-
stricted with either 30nmol/L of U46619 (a thromboxane
A2 analogue) or 30mmol/L KCl, resulting in a precon-
striction corresponding with 50-100% of the response to
100mmol/L KCl.
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After reaching a contraction plateau on U46619,
concentration-response curves (CRCs) were constructed
with the endothelium-dependent vasodilator acetylcholine
(ACh) at cumulative doses (10-9-10-5 mol/L). When the
CRC of ACh was completed, the endothelium-independent
vasodilator sodium nitroprusside (SNP, 0.1mmol/L) was
added. To evaluate the involvement of the NO-cGMP
pathway, one segment was preincubated with NG-nitro-L-
arginine methyl ester salt (L-NAME, 10-4 mol/L), an endo-
thelial nitric oxide synthase inhibitor. To investigate the role
of endothelium-dependent hyperpolarization (EDH), the
small conductance Ca2+-activated K+ (SKCa) channel inhib-
itor apamin (100 nmol/L) and the intermediate conductance
Ca2+-activated K+ (IKCa) channel inhibitor TRAM34
(10μmol/L) were added on top of L-NAME. We also evalu-
ated the role of NADPH oxidase- (Nox-) dependent reactive
oxygen species generation, in parallel rings, preincubated
either with no inhibitor, apocynin (a broad spectrum Nox
inhibitor, 10-4 mol/L), or GSK279503 (a selective Nox2
inhibitor, 6μmol/L). Inhibitors were given 10 minutes before
U46619 except for apocynin (30 minutes) and GSK279503
(60 minutes).

In parallel rings, CRCs to NO-donor SNP (10-11-
10-4mol/L) were constructed. Rings were preconstricted with
30mmol/L KCl to avoid bias of NO-cGMP responses by
EDH. To avoid bias by intrinsic release of NO, segments were
preincubated with L-NAME 10-4mol/L added 20 minutes
before preconstriction. To explore the contribution of

PDE1 and PDE5, the most abundant cGMP-degrading PDEs
in VSMC [1], segments were preincubated either with
sildenafil 100 nmol/L (a selective PDE5 inhibitor) [16] or
lenrispodun 100nmol/L (a selective PDE1 inhibitor) [26]
on top of L-NAME. Inhibitors were given 10 minutes before
inducing preconstriction.

2.8. Molecular Analysis: Analysis of Plasma Cytokine Levels.
For mouse plasma, protein levels of IL-1β, IL-2, IL-4, IL-6,
IL-10, TNF-α, and IFN-γ were measured using a V-Plex
Meso Scale Discovery (MSD) multiplex spot assay mouse
neuroinflammation 1 panel. All samples were diluted at a
ratio of 1 : 4 with diluent 41—provided in the MSD kit.
Samples and standards were run in duplicate or triplicate
according to manufacturer’s instructions and analyzed with
MSD Discovery Workbench software (Meso Scale Discov-
ery, Gaithersburg, MD) at ITCI.

2.9. Quantitative Real-Time PCR. Total RNA was isolated
from the abdominal aorta, heart, and kidney of LT mice
using the RNeasy Mini Kit (Qiagen). The cDNA was synthe-
sized from the total RNA using SuperScript IV First-Strand
Synthesis System (ThermoFisher Scientific) according to
the manufacturer’s protocol. The cDNA was then amplified
by quantitative real-time PCR on a QuantStudio 7 Flex Real-
time PCR system (Applied Biosystems). Each reaction was
performed in duplicate with TaqMan Universal Master
Mix II (Applied Biosystems). The TaqMan Assay IDs and
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Figure 1: Systolic BP (a) and diastolic BP (b) and functional differences between skin reperfusion after 2 minutes of occlusion in the
calculated area under the curve (c) and average maximum response (d) between WT and SMC-KO at ET and LT. The number in each
column represents the number of animals in the corresponding group. Statistical differences were analyzed two-way ANOVA followed
by Bonferroni’s post hoc test (∗p < 0:05).
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context probe sequences used for Pde1a, Il-6, and Gapdh are
mentioned in Table S1. PCR cycling conditions were 50°C
for 2min, 95°C for 10min, followed by 40 cycles of 95°C
for 15 s and 60°C for 1min.

To measure mRNA expression of Ercc1, p16, and p21 in
the abdominal aorta, each reaction was performed in
duplicate with SYBR Green PCR Master Mix (UK, Applied
Biosystems). PCR cycling conditions were 50°C for 2min,
95°C for 2min, followed by 40 cycles of 95°C for 15 s and
60°C for 1min. β-Actin and Hprt1 were used as household
genes. Results from unreliable duplicates or melting
curves were discarded. The relative amount of genomic
DNA in DNA samples was determined as follows: relative
quantification = 2ð−ΔΔCtÞ. The sense and antisense mouse
primer sequences are mentioned in Table S2.

2.10. Statistical Methods. Data are presented as mean and
standard error of the mean, unless otherwise indicated.
Statistical analysis between the groups of single values was
performed by unpaired, two-tailed t-test. Differences among
the groups, depending on the number of variables, were ana-
lyzed by either one-way or two-way or three-way ANOVA
followed by Bonferroni’s post hoc test. Differences between
CRCs were tested by general linear model for repeated mea-
sures (sphericity assumed). p values below 0.05 were consid-
ered as significant. Initial analysis was performed separately
in male and female mice. However, since alterations, if pres-
ent, occurred in a gender-independent manner (not shown),
it was decided to pool all data in male and female mice.

3. Results

3.1. General Health Features. There were no visible signs of
decline in SMC-KO mice until the age of 20 to 22 weeks.
At 23 to 25 weeks, the mice exhibited a mean body weight
decrease of 20% compared to WT mice (Supplemental
Table S3) and were sacrificed according to the ethical
requirements of the EU directive.

3.2. Blood Pressure. Blood pressure measurements showed
no significant difference between WT and SMC-KO mice
for both ET and LT, neither within the groups of WT and
SMC-KO mice nor at different time-points (Figures 1(a)
and 1(b)).

3.3. Microvascular Vasodilator Function In Vivo. At ET,
there was no significant difference in reactive hyperemia
(indicated by AUC and maximum response) in the hind
limb skin between SMC-KO and WT mice (Figures 1(c)
and 1(d)). At LT, SMC-KO mice showed significant
decreased reactive hyperemia compared to WT mice
(Figures 1(c) and 1(d)). When passing from ET to LT, reac-
tive hyperemia tended to increase in WT mice, whereas it
tended to decrease in SMC-KO mice.

3.4. Mechanical Properties and Dimensions of the Vascular
Wall. At LT, SMC-KO mice displayed significantly
declined media strain versus WT mice (Figure 2(b)) at
comparable media stress (Figures 2(c) and 2(d)), indicat-

ing higher stiffness. This was not observed at ET
(Figure 2(a)).

3.5. Cardiac Function. Heart rate was lower in SMC-KO
mice, both at ET and LT (Figure 3(a)). This was also true
for cardiac output (Figure 3(c)). Fractional shortening was
significantly lower at LT in SMC-KO mice (Figure 3(b)).
At LT, LV wall thickness in SMC-KO mice was significantly
smaller compared to WT mice (Figure 3(d)), and the same
was true for LV mass (Figure 3(e)). Yet, there were no signif-
icant differences for LV mass (Figure 3(e)) and wall thick-
ness at ET (Figure 3(d)) between WT and SMC-KO mice.
There were no significant gender differences between males
and females in terms of the abovementioned parameters
using three-way ANOVA.

Echocardiographic software predicted SMC-KO mice to
have a different heart volume and weight as compared to
WT. This was confirmed when measuring relative LV weight
(=LVweight/body weight) at the age of 25 weeks (Figure 3(f)).
Sirius red and Gomori staining (Supplemental Figure S1 A–D)
revealed elevated interstitial collagen levels and an increased
cardiomyocyte size, respectively, at LT in SMC-KO vs. WT
mice (Figures 3(g) and 3(h)). There were no gender
differences in both collagen content and cardiomyocyte size
using two-way ANOVA.

3.6. Ex Vivo Vascular Function Assessment

3.6.1. Endothelium-Dependent and Endothelium-Independent
Response in SMC-KO Mice versus WT. Iliac U46619 precon-
striction values in WT vs. SMC-KO for ET and LT were
3:67 ± 0:25 vs. 3:01 ± 0:31 and 3:28 ± 0:3 vs. 2:32 ± 0:2,
respectively. Aortic U46619 preconstriction values in WT vs.
SMC-KO for ET and LT were 5:58 ± 1:12 vs. 6:87 ± 0:61
and 7:71 ± 0:85 vs. 7:27 ± 0:86, respectively. Aortic KCl
30mmol/L preconstriction values in WT vs. SMC-KO for
ET and LT were 3:25 ± 0:65 vs. 3:76 ± 0:27 and 3:99 ± 0:45
vs. 3:20 ± 0:22, respectively. All the preconstriction values
are in millinewton.

Cre recombinase expression alone did not alter aortic
responses to ACh and SNP (Supplemental Figures S2A and
S2B). In contrast, the aortic ACh response showed a
decline in SMC-KO mice for both time-points, and at LT,
a major part of this response was lost compared to WT
littermates (Figure 4(a)). In iliac arteries, a similar decline
was observed at LT but not at ET (Supplemental
Figure S3A). Inhibition of NOS and EDH in aortic
segments revealed that the majority of the response to ACh
in WT mice is mediated by NO, while the contribution of
EDH was modest (Figures 4(b) and 4(c)). In the SMC-KO
mice, EDH was absent at ET already, while the NO-
cGMP response showed a less robust decline (Figures 4(d)
and 4(e)).

There was a reduction in SNP response for the SMC-KO
mice at ET which was further decreased at LT compared
with the corresponding WT littermates (Figure 4(f)). When
studying the relaxation to a single SNP dose after the
ACh CRC, both in aortic (Figure 4(g)) and iliac rings
(Figure S3B), the same observation was made.
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To explore whether the decline in vasorelaxation is
VSMC-dependent, we corrected the ACh results in nonpre-
treated rings for the response to SNP (0.1mmol/L) adminis-
tered after the ACh CRC. In both the aorta and iliac artery,
the ACh response in SMC-KO mice was decreased only at
LT when correcting for SNP (Figure 4(h) and Figure S3C).

Apocynin and GSK279503 comparably improved ACh and
SNP aortic responses in LT SMC-KO mice (Figures 5(a), 5(c),
and 5(d)). There was no effect on aortic responses in LT WT
mouse rings (Figures 5(b)–5(d)).

After preincubation with lenrispodun in aortic rings, the
difference in SNP responses in SMC-KO control vs. lenris-
podun at ET and LT was at the borderline to be significant
(ET: p = 0:1, LT: p = 0:08). Moreover, the SNP responses in
SMC-KO were identical to those in WT, both in ET and
LT mice (Figures 5(e) and 5(f)). No such effects were
observed for sildenafil (Figures 5(e) and 5(f)). Neither PDE
inhibitor affected SNP responses in WT mice at any time-
point (data not shown).

3.7. Molecular Analysis. One of the major changes that occur
during ageing is the dysregulation in inflammatory status of

cells; thus, we measured certain pro- and anti-inflammatory
cytokines in LT SMC-KO mice and the corresponding WT
[27]. The plasma protein levels of IL-6 and IL-10 at LT were
increased in SMC-KO versus LT mice, and the opposite was
true for IFN-γ (Figures 6(a)–6(c)). No changes were
observed in plasma IL-1β, TNF-α, IL-2, and IL-4 (data not
shown; n = 12 for both WT and SMC-KO mice). Il-6 mRNA
expression was upregulated in both the heart (Figure 6(d))
and kidney (Figure 6(e)), and the same was true for Pde1a
in the aorta (Figure 6(f)). Pde1a mRNA expression in the
heart and kidney was unaltered (data not shown; n = 12 for
both WT and SMC-KO mice). Ercc1 mRNA expression
was significantly lower in the abdominal aorta of SMC-KO
vs. WT at LT (Figure S4A). DNA damage response and
senescent marker p16 and p21 expressions were significantly
higher in the abdominal aorta of SMC-KO vs. WT at LT
(Figures S4B and S4C).

4. Discussion

We investigated the role of smooth muscle cell-specific DNA
repair deficiency on cardiovascular function in a mouse
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Figure 2: Strain difference at ET (a) and LT (b) and stress differences at ET (c) and LT (d) of the carotid arteries of SMC-KO vs. WT.
Statistical difference was analyzed by general linear model repeated measures (∗p < 0:05).
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model with specific loss of Ercc1 in smooth muscle cells. We
found that there was no BP differences between SMC-KO
and WT mice nor within SMC-KO mice tested at different
time-points. However, LDPI microvascular perfusion imag-
ing showed a progressive decline in reactive hyperemia
between ET and LT in SMC-KO mice. Moreover, we evalu-
ated the mechanical properties of carotid arteries and found

a significantly diminished compliance between these two
groups. Another well-known vascular ageing feature of
SMC-KO mice was decreased NO-mediated vasodilation.
The latter appeared to be due, at least in part, to upregula-
tion of Pde1 and Nox2. The fact that these vascular alter-
ations did not result in a rise in blood pressure is
suggestive of an adaptive response, most likely at the level
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Figure 3: Cardiac function comparison between WT and SMC-KO at ET and LT for heart rate (a), fractional shortening (b), cardiac output
(c), LV wall thickness (d), LV mass (e), relative LV weight to body weight at LT (f), LV free wall collagen content (g), and LT free wall
cardiomyocyte size (h). The number in each column represents the number of animals in the corresponding group. Statistical differences
were analyzed by two-way ANOVA followed by Bonferroni’s post hoc test for (a–e) and two-tailed t-test for (f–h) (∗p < 0:05).
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Figure 4: Continued.
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of the heart. Indeed, at ET, heart rate and cardiac output
are lower in the absence of contractile cardiac dysfunction,
suggesting an adaptation in autonomic regulation. At LT,
however, fractional shortening is reduced, and this was
associated with aberrant cardiac remodeling, characterized
by an increased collagen content and cardiomyocyte size.
Such changes rather point at a malignant cardiac remodel-
ing. This ageing-like phenotype was accompanied by an
altered inflammatory status. No gender-specific effects
were detected in any of the variables.

As we found a markedly diminished vascular function
in vivo by LDPI, we suspected impaired vasodilator
responses. We demonstrated this in ex vivo organ bath
experiments and explored the underlying mechanisms. NO
signaling was found to be decreased, evidenced by a reduced
response to the NO donor SNP. This reduction was already
maximal at ET, and no further decrease was observed there-
after (Figure 4). Importantly, correction of the ACh response
to SNP did not normalize the disturbed endothelium-
dependent responses in SMC-KO mice to the level of WT
(Figure 4; Figure S3). This is indicative of a residual loss of
endothelial function. Indeed, no IKCa/SKCa-mediated
EDH-dependent response could be observed at both ET
and LT in the SMC-KO mice (Figure 4), while the
endothelial NO-mediated response additionally diminished
over time. Taken together, SMC-KO mice display EDH
loss and reduced responsiveness to NO released by the
endothelium at ET and LT. Other EDH mechanisms, like
BKCa or connexin-mediated effects [28], might also play a
role. Therefore, the further unraveling of EDH changes in
this accelerated SMC ageing model is warranted.

Decreased NO signaling is a commonly observed feature
of mouse models of accelerated ageing caused by reduced
functioning of DNA repair proteins [1]. Whole body
Ercc1Δ/- mice are characterized by a combination of a
reduced ageing vasodilator response to NO and endothelial
dysfunction [29], while in endothelium-specific Ercc1 KO
mice (EC-KO), only the latter was the case [7]. We observed
a reduced vasodilator response of VSMC to exogenous NO
and to endothelium-derived NO in SMC-KO mice.

The lost NO responsiveness in SMC-KO mice in all like-
lihood indicates that DNA damage in VSMC leads to
decreased bioavailability of NO. The observation that the
PDE1 inhibitor, lenrispodun, fully restored the SNP
responses in the aorta (Figures 5) suggests that lost NO
responsiveness involves Pde1 upregulation. The aortic
Pde1A mRNA expression data confirms this view, while a
similar Pde1A upregulation was observed earlier in whole
body Ercc1Δ/- mice and ageing human VSMC [30]. PDE5
inhibition with sildenafil was without effect in SMC-KO
mouse vessels, arguing against a role for Pde5 upregulation.
The reduced endothelial NO release might be explained on
the basis of NO inactivation by oxygen radicals, given our
finding that Nox inhibition additionally restored the effects
of NO. Since selective Nox2 inhibition and nonselective
Nox inhibition yielded the same effect, the most likely con-
tributor to the NO-inactivating radicals is Nox2. Nox2
upregulation is a well-known consequence of cytokine dys-
regulation [31], evidenced in this model by Il-6 upregulation
that may induce Nox2 upregulation and ROS production.
This process would be expected to eventually lead to reduced
NO availability [32]. More general in cardiovascular ageing,
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Figure 4: Vasorelaxation in aortic rings of SMC-KO and WT mice for both time-points in response to ACh (10-9 to 10-5mol/L) (a). The
contribution of NO-cGMP and EDH pathway in WT ET (b), WT LT (c), SMC-KO ET (d), and SMC-KO LT (e). Vasorelaxation in
aortic rings of SMC-KO and WT mice for both time-points in response to SNP (10-11 to 10-4mol/L) (f), SNP (0.1mmol/L) after ACh
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animals in the corresponding group. Statistical differences were analyzed by general linear model repeated measures for (a–f) and (h)
and two-way ANOVA followed by Bonferroni’s post hoc test for (g) (∗p < 0:05).
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Figure 5: Vasorelaxation response to ACh (10-9 to 10-5mol/L) in aortic rings either without inhibitor or with apocynin or GSK279503
preincubation in WT LT (a), SMC-KO LT (b), ACh (10 μmol/L) Emax (c), and SNP (0.1mmol/L) Emax (d) at LT. Vasorelaxation
response to SNP (10-11 to 10-4mol/L) in aortic rings either without inhibitor or with sildenafil or lenrispodun preincubation at ET (e)
and LT (f). The number in each column represents the number of animals in the corresponding group. Statistical differences were
analyzed by general linear model repeated measures for (a), (b), (e), and (f) and one-way ANOVA followed by Bonferroni’s post hoc test
for (c) and (d) (∗p < 0:05).
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Song et al. measured the inflammatory response in cultured
aortic vascular smooth muscle cells of aged (16-18 month)
vs. young (2-4 months) mice in a nonstimulatory condition
and found that aged mice exhibited elevation of basal IL-6.
Elevated IL-6 functions in an autocrine manner to further
accelerate inflammatory responses in VSMC, thereby mak-
ing the vasculature prone to atherosclerosis and a less con-
tractile phenotype [33, 34].

Cytokines are known to be altered in Ercc1-mutant mice,
with specificity for the target cell in which the DNA repair
was affected [13, 35, 36]. In SMC-KO mice, circulating IL-
10 was found to be increased, while circulating IFN-γ was
decreased. This might reflect an anti-inflammatory feedback
response to the increased plasma IL-6 levels. The IFN-γ
reduction is in agreement with changes in aged VSMC of
Macaca mulatta [37], although IL-10 was also reduced in
this model. An intricate shift in inflammatory factors has
been observed in Ercc1-mutant mice and other DNA repair
mutants. Therefore, the specific meaning of cytokine shifts
is to be interpreted with caution, although a general assump-
tion is that Ercc1-mutant mice display primarily a proinflam-
matory phenotype [38]. In conclusion, the inflammatory
status in SMC-KO might be involved in the vascular dysfunc-
tion that was observed, and our current observations warrant
further inspection in future studies, which would require the
development of proper tools for this purpose.

Blood pressure was normal in SMC-KO mice, and at first
glance, this is in contradiction with the reduced vasodilation

capacity. However, there was a decrease in heart rate and
fractional shortening, and cardiac output was decreased by
20% on average in SMC-KO vs. WT mice. At an equal level
of vascular resistance in the two mouse strains, this should
translate to a 20% lower blood pressure in the SMC-KO
mice (blood pressure = cardiac output × vascular resistance).
Yet, the blood pressure was identical in both strains. Reason-
ing backward to how this translates to vascular resistance,
the Hagen-Poiseuille equation can be applied. It states that
pressure or flow is changed with blood vessel length, blood
viscosity, and radius4. Vessel length and blood viscosity
being similar and with blood flow (=cardiac output) being
reduced by 20%, the vascular diameter of SMC-KO should
on average be 0.95x that of WT mice. Since this requires a
state of vasoconstriction relative to WT, SMC-KO might
be able to sustain a normal blood pressure despite the
strongly reduced vasodilation capacity, e.g., by reducing
sympathetic neurohormonal input. The reduced cardiac out-
put, if due to such regulation (or due to pathological remod-
eling or a combination of both), therefore accommodates
normalization of blood pressure in SMC-KO mice. Like in
the vasculature, the IL-6 increase might be involved in car-
diac changes. Interestingly, Meléndez et al. showed in rats
that IL-6 infusion resulted in concentric LV remodeling, a
significant increase in collagen volume fraction and relative
increases in cardiomyocyte width and length that all were
independent of blood pressure changes [39]. Despite the
remodeling, no overt heart failure was observed in SMC-
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Figure 6: MSD analysis of plasma samples in LT WT and SMC-KO for IL-6 (a), IFN-γ (b), and IL-10 (c). qPCR analysis in WT and
SMC-KO for Il-6 in LV (d), Il-6 in kidney (e), and Pde1a in the abdominal aorta (f). The number in each column represents the
number of animals in the corresponding group. Statistical differences were analyzed by two-tailed t-test (∗p < 0:05).

11Oxidative Medicine and Cellular Longevity



KO mice. It seems likely that apart from pathological
remodeling, adaptation of hemodynamic function by neu-
rohormonal mechanisms accounts for the observed hemo-
dynamic changes. However, the possibility of heart failure
like phenotype cannot be excluded and needs further
investigation.

In conclusion, SMC-KO mice show a progressive ageing
phenotype in resistant and conduit arteries. The changes
induced by DNA damage might be limited to VSMC,
although it seems that dysfunction in VSMC eventually has
an impact on EC function as well, affecting the bioavailabil-
ity of endothelium-derived NO through Nox2-mediated
ROS production. PDE1 inhibition restores vasodilator func-
tion, whereas PDE5 seems to play a minor role in progressed
VSMC dysfunction. As a future perspective, it might be of
interest to study the effect of chronic treatment with PDE1
specific inhibitors on progression of vascular dysfunction,
inflammation, and cardiac remodeling. Currently, lenrispo-
dun is under clinical development for treatment of neuro-
degenerative disease and has been shown to be a safe and
well-tolerated drug in heart failure patients [40].
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Cellular senescence is recognized as a phenomenon wherein a proliferative cell undergoes a permanent growth arrest. The
accumulation of senescent cells over time can become harmful and result in diseases and physiological decline. Plasminogen
activator inhibitor (PAI-1) is considered as a critical marker and mediator of cellular senescence. The formation of stress
granules (SGs) could prevent senescence through the sequestration of PAI-1, and we previously suggested that exogenous
carbon monoxide (CO) could induce SG assembly via integrated stress response (ISR). Although CO is known to possess
anti-inflammatory, antioxidative, and antiapoptotic properties, whether it exerts antisenescent effect is still not well defined.
Here, to address whether CO-induced SGs could protect against cellular senescence, we first treated lung fibroblasts with
bleomycin (BLM) to establish DNA damage-induced cellular senescence, and observed a significant increase of several
hallmarks of senescence through SA-β-gal staining, immunofluorescence, qRT-PCR, and Western blot assay. However, pre- and
posttreatment of CO could remarkably attenuate these senescent phenotypes. According to our immunofluorescence results,
CO-induced SGs could inhibit BLM-induced cellular senescence via sequestration of PAI-1, while it was abolished after the
cotreatment of ISR inhibitor (ISRIB) due to the inhibition of SG assembly. Overall, our results proposed a novel role of CO in
suppressing bleomycin-induced lung fibroblast senescence through the assembly of SGs.

1. Introduction

Cellular senescence is a process of permanent cell cycle arrest
in response to various physiological and environmental
stresses, including radiation (ionizing and UV), multiple
anticancer drugs (bleomycin and etoposide), and oxidative
stress [1]. Several studies have reported that the accumula-
tion of senescent cells in tissues has both positive and nega-
tive consequences. The positive effects of senescent cells
include tumor suppression, muscle regeneration, and skin
wound healing in young organisms. Conversely, the detri-
mental effects of senescent cells have been observed in the
context of age-related conditions, including cancer, cardio-
vascular diseases, neurodegeneration, diabetes, sarcopenia,
and declining immune function in the elderly [2–4]. Senes-

cent cells typically appear flattened and enlarged and show
increased cytoplasmic granularity [1]. In addition, senescent
cells also display several other differences from proliferative
cells. These differences include the increase of senescence-
associated β-galactosidase (SA-β-gal) activity, phosphory-
lated H2A histone family member X (γ-H2AX) foci, cyclin-
dependent kinase inhibitors (CDKIs), such as p21CIP1 and
p16INK4a, and senescence-associated secretory phenotype
(SASP) which consists of growth hormones, proinflamma-
tory cytokines, chemokines, angiogenic factors, and extracel-
lular matrix remodeling proteases [5, 6]. Recent observations
have supported that the increased secretion of serine protease
inhibitor plasminogen activator inhibitor 1 (PAI-1), a com-
ponent of SASP, can accelerate the aging in mice, and which
is not only a marker but also a critical mediator of cellular
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senescence [7]. Furthermore, senescence-inducing signals
such as DNA damage response (DDR) and oxidative stress
usually enhance the activation of tumor suppressor p53,
and which trigger the expression of PAI-1 to interfere cyclin
D1-dependent phosphorylation of Rb resulting in the
irreversible cell cycle arrest [8].

Due to the role of cellular senescence in diseases such as
neurodegeneration, cancer, and aging-related fibrosis, it has
been reported to be an attractive therapeutic target. There
are mainly two strategies that are under current development
[9]. The first approach focuses on identifying compounds
that can specifically induce senescent cells to die, and which
is termed as senolytics. Given that senescent cells are resistant
to apoptosis, the mechanism involved in this resistance is a
preferential target of senolytics. The second approach is
aimed at reducing the negative effect of SASP. Rapamycin,
resveratrol, and metformin have been shown to effectively
reduce the expression of SASP through inhibition of the
NF-κB and mTOR signaling pathways [9, 10]. Besides these
strategies, more recent studies have showed that hydrogen
sulfide (H2S) and nitric oxide (NO), two kinds of gasotrans-
mitters, can, respectively, delay nicotinamide-induced pre-
mature senescence and oxidative stress-induced epithelial
cell senescence via reducing ROS production and enhancing
SIRT1 activity [11, 12]. However, it is still unclear whether
carbon monoxide (CO), one another gasotransmitter, can
protect cells against stress-induced premature senescence.

CO is endogenously synthesized by heme oxygenase
(HO), which can be induced by various circumstances
(HO-1) or constitutively expressed in several organs (HO-2)
[13]. Either applying a low concentration of exogenous CO
or induction of the endogenous CO by HO-1 activation
can exhibit cyto- and tissue-protective effects in various
models of cellular and tissue injuries involving anti-inflam-
matory, antioxidant, and antiapoptotic effects [14]. Our
numerous studies have demonstrated that long-term treat-
ment of low-dose CO can protect various pathological con-
ditions, including hepatic ischemia/reperfusion injury [15],
acute lung injury [16], sepsis [17], Alzheimer’s disease [18],
and acetaminophen-induced liver injury [19]. Accumula-
tive studies have reported that CO can generate low levels
of mitochondrial reactive oxygen species (mtROS) via
inhibition of cytochrome c oxidase, which in turn mediates
integrated stress response (ISR) [20, 21]. Recently, we also
proved that low levels of mtROS generated by CO could
specifically induce the protein kinase R-like endoplasmic
reticulum kinase (PERK)/eukaryotic translation initiation
factor 2A (eIF2α) signaling pathway and upregulated sestrin
2 (SESN2) [22], fibroblast growth factor 21 (FGF21) [23],
and parkin [19] expression to promote redox homeostasis
and enhance cellular survival.

In response to diverse environmental stresses, including
heat, hyperosmolarity, and oxidative stresses, eukaryotic cells
temporarily turn off the protein synthesis to control energy
expenditure for the repair of stress-induced damage [24].
One of the main mechanisms is the formation of stress gran-
ule (SG) in the cytoplasm, and the nonmembrane-bounded
SGs can arrest mRNAs and several harmful proteins to pro-
tect cells from apoptosis [24, 25]. SG biogenesis is recognized

as a conserved stress response and that can be initiated by the
oligomerization of Ras GTPase-activating protein-binding
protein 1 (G3BP1) and aggregation of RNA-binding pro-
teins, including T cell intracytoplasmic antigen (TIA-1) and
TIA1-related protein (TIAR) [26]. Accumulative evidence
has depicted that the assembly of SGs can protect cells from
apoptosis via minimizing energy expenditure, controlling
proteostasis and ribostasis, and improving cell survival under
damaging conditions [27]. Furthermore, SG formation can
inhibit cellular senescence via the sequestration of PAI-1 into
SGs and subsequently enhances the pathway of cyclin D1 to
remove cell cycle arrest and delay the senescent state [28].
Intriguingly, our recent study has clearly suggested that exog-
enous CO can induce the formation of SGs through the induc-
tion of ISR, especially through the PERK-eIF2α signaling
pathway [29]. However, whether CO-induced SGs can prevent
stress-induced premature senescence is still not well defined.

In this study, to construct DNA damage-induced senes-
cence, we treated human and mouse fibroblasts with bleomy-
cin (BLM) that can cause chromosomal instability, and we
found that the administration of CO-releasing molecular
(CORM-A1) and exogenous CO gas could effectively inhibit
the cellular senescence, and the induction of SGs could
sequestrate PAI-1 to recover the cyclin D1 signaling pathway
to ameliorate cell cycle arrest. Moreover, we showed that ISR
inhibitor (ISRIB) could abolish the protective effect of CO on
BLM-induced premature senescence via suppressing the
formation of SGs and enhancing the secretion of PAI-1.
Our data indicated a novel mechanism whereby CO could
protect against DNA damage-mediated cellular senescence
through the induction of SG assembly and sequestration of
PAI-1, in the cytoplasm, to delay the process of cellular
senescence.

2. Materials and Methods

2.1. Reagents and Chemicals. CO-releasing molecular-A1
(CORM-A1), thapsigargin (Tg), PAI-1 inhibitor (TM5441),
and ISR inhibitor (ISRIB) were purchased from Sigma-
Aldrich (St. Louis, MO, USA). Bleomycin (BLM) was pur-
chased from MedChemExpress LLC (MCE, Monmouth
Junction, NJ).

2.2. Cell Culture. Human Caucasian fibroblast-like fetal lung
cells (WI-38 cells) were cultured in Minimum Essential
Medium (MEM, Thermo Fisher Scientific, Waltham, MA,
USA) with 10% fetal bovine serum (FBS, BI, USA) and 1%
penicillin-streptomycin (Gibco, USA) solution at 37°C in a
humidified incubator with 5% CO2. We isolated primary
mouse embryonic fibroblasts (MEFs) from 8-week female
pregnant C57BL/6 mice and cultured in DMEM (Gibco,
Grand Island, NY) medium with 10% fetal bovine serum,
1% penicillin-streptomycin solution, and 1% MEM nones-
sential amino acid solution (N1250, Solarbio, Beijing, China).

2.3. Transfection of siRNAs. Small interfering RNA (siRNA)
against human PA I-1 (siPAI-1, sc-36179) and negative con-
trol siRNA (scRNA, sc-37007) were purchased from Santa
Cruz Biotechnology, Inc. (Santa Cruz, CA, USA). WI-38 cells
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were seeded in a 6-well plate at a concentration of 3 × 105
cells per well, and cells were transfected with siPAI-1 and
scRNA, respectively, by utilizing Lipofectamine 2000 (Invi-
trogen, Carlsbad, USA) in accordance with the manufac-
turer’s protocol. In brief, dilute 100 pmol siRNA oligomer
in 250ml Opti-MEM (Gibco, USA) without serum and mix
gently. Dilute 5ml Lipofectamine 2000 in 250ml Opti-MEM
without serum and mix gently for 5min at room temperature.
After a 5-minute incubation, combine the diluted oligomer
with the diluted Lipofectamine 2000. Mix gently and incubate
for 20min at room temperature. Drop the 500ml oligomer-
Lipofectamine 2000 complexes to each well containing cells
and medium. Mix gently by rocking the plate back and forth.
After a 36-hour transfection, cells were additionally treated
with BLM for 96h. Then, the cells were collected for SA-β-
gal staining, qRT-PCR, and Western blot assay.

2.4. RNA Isolation and Quantitative Real-Time Polymerase
Chain Reaction (qRT-PCR). Total RNA was isolated from
WI-38 cells and MEFs by utilizing TRIzol reagent (Takara,
Otsu, Japan), according to the manufacturer’s instructions.
In brief, 2μg of total RNA was used to generate cDNA using
Prime Script™ RT Reagent kit with gDNA Eraser (Takara,
Otsu, Japan). The synthesized cDNA was subjected to PCR-
based amplification. To perform quantitative real-time PCR
(qRT-PCR), the synthesized cDNA was amplified with TB
Green Premix EX Taq™ II (Takara, Otsu, Japan) on Bio-
Rad CFX Connect™ Real-Time PCR Detection System
(Bio-Rad Laboratories). The following primers were human
GAPDH (forward 5′-CAA TGA CCC CTT CAT TGA
CCT C-3′, reverse 5′-AGC ATC GCC CCA CTT GAT T-
3′), human p21 (forward 5′-CGA TGG AAC TTC GAC
TTT GTC A-3′, reverse 5′-GCA CAA GGG TAC AAG
ACA GTG-3′), human IL-6 (forward 5′-ACT CAC CTC
TTC AGA ACG AAT TG-3′, reverse 5′-CCA TCT TTG
GAA GGT TCA GGT TG-3′), human TNF-α (forward 5′-
GCT GCA CTT TGG AGT GAT CG-3′, reverse 5′-GTT
TGC TAC AAC ATG GGC TAC AG-3′), human IL-1β (for-
ward 5′-TTA CAG TGGCAA TGAGGA TGA C-3′, reverse
5′-GTC GGA GAT TCG TAG CTG GAT-3′), human PAI-1
(forward 5′-TGA TGG CTC AGA CCA ACA AAG-3′,
reverse 5′-CAG CAA TGA ACA TGC TGA GG-3′), mouse
GAPDH (forward 5′-GGG AAG CCC ATC ACC ATC T-3′,
reverse 5′-CGG CCT CAC CCC ATT TG-3′), mouse p21
(forward 5′-GTG GCC TTG TCG CTG TCT T-3′, reverse
5′-GCG CTT GGA GTG ATA GAA ATC TG-3′), mouse
IL-6 (forward 5′-CCA GAG ATA CAA AGA AAT GAT
GG-4′, reverse 5′-ACT CCA GAA GAC CAG AGG AAA
T-3′), mouse TNF-α (forward 5′-AGA CCC TCA CAC
TCA GAT CAT CTT C-3′, reverse 5′-TTG CTA CGA
CGT GGG CTA CA-3′), and mouse IL-1β (forward 5′-
TCG CTC AGG GTC ACA AGA AA-3′, reverse 5′-ATC
AGA GGC AAG GAG GAA ACA C-3′).

2.5. Western Blot. Cell lysates were prepared using protein
extraction kit (Solarbio, Beijing, China) containing protease

inhibitor and phosphatase inhibitors. Total protein concen-
tration of the lysates was measured using a BCA protein assay
kit (Solarbio, Beijing, China). Proteins were resolved by SDS-
PAGE, transferred onto polyvinylidene difluoride (PVDF)
membrane (Millipore, Darmstadt, Germany), and probed
with appropriate dilutions of the following antibodies: cyclin
D1 (1 : 1000, 2922S, Cell Signaling), Lamin A/C (1 : 1000,
sc-6215, Santa Cruz), TERT (1 : 500, abs136649, Absin),
and β-actin (1 : 1000, 4967S, Cell Signaling). Then, the
membranes were incubated with secondary antibody in
the room temperature for 40min. Antibody binding was
visualized with an ECL chemiluminescence system (GE
Healthcare Bio-Sciences, Little Chalfont, UK), and chemilu-
minescence signal was read by Bio-Rad ChemiDoc XRS+
(Bio-Rad Laboratories, Hercules, CA). The relative band
density was analyzed by using ImageJ2x software (US
National Institutes of Health, Bethesda, USA).

2.6. Nuclear and Cytosolic Fractions. To check the nuclear
translocation of cyclin D1, the nuclear and cytoplasmic pro-
teins of cultured WI-38 cells were separated by Nuclear/
Cytosol Fraction Kit (BioVision, USA) according to the
manufacturer’s protocol. In brief, harvested cells were added
100μl of cytosol extraction buffer (CEB) contacting DTT and
protease inhibitors. After vortex and 10min incubation on
ice, the extracts were centrifuged at 16,000g for 5min at
4°C and the supernatant was immediately removed to sep-
arate the cytoplasmic fraction from the nuclei. The nuclei
pallets were then added 50μl nuclei extraction buffer
(NEB), vortexed briefly, and set on ice every 10min for
a total 40min. After centrifuging at 16,000g for 10min
at 4°C, the supernatant nuclear extracts were stored at
-80°C for future use.

2.7. SA-β-gal Staining. To observe the senescent cells, WI-38
and MEF cells were treated with bleomycin to construct
DNA damage-induced premature cellular senescence. Then,
senescence-associated- (SA-) β-galactosidase (gal) staining
was performed by utilizing a cellular senescence cell histo-
chemical stain kit (Sigma, CS0030) according to the manu-
facturer’s protocol. For lung tissue staining, the left part of
lung tissues was fixed at room temperature for 2 h, with a
solution containing 2% formaldehyde and 0.2% glutaralde-
hyde in PBS, and washed three times with PBS. Then, lung
tissues were incubated overnight at 37°C (in the absence of
CO2) with the staining solution containing X-gal in N,N-
dimethylformamide (pH 6.0).

2.8. Immunofluorescence. To observe the formation of SGs
and the sequestration of PAI-1 and the γ-H2AX foci, WI-
38 cells were plated on a 4-well Lab-Tek chambered cover
glass (Nunc, Thermo Scientific, Waltham, MA) and pre-
treated with CORM-A1 (40μM) for 6 h followed by the
administration of 25μg/ml bleomycin for 96 h to construct
DNA damage-induced premature cellular senescence. Then,
cells were washed in 1× PBS, fixed with 4% (v/v) paraformal-
dehyde in PBS at room temperature for 15min, and perme-
abilized with 0.1% (v/v) Triton X-100 in PBS for 5min.
Then, cells were washed three times with PBS before
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incubation for 2 h at room temperature with primary anti-
bodies (anti-TIA1, 1 : 500, ab140595, Abcam; anti-G3BP1, 1
: 200, sc-365338, Santa Cruz; anti-PAI-1, 1 : 200, sc-5297,
Santa Cruz; and anti-γ-H2AX, 1 : 200, ab81299, Abcam)
diluted in 1% (w/v) BSA in PBS. Cells were washed further
three times with 1× PBS before incubation for 1 h with sec-
ondary fluorophore-coupled antibodies (Alexa Fluor 594
goat anti-rabbit IgG, 1 : 500, Invitrogen and Alexa Fluor 488
rabbit anti-mouse IgG, 1 : 400, Invitrogen), respectively. Sec-
ondary antibodies were diluted in 1% (w/v) BSA in 1× PBS.
After incubation, cells were washed three times with 1×
PBS and were imaged with an Olympus FV1000 confocal
microscope (Olympus, Tokyo, Japan). Quantifications from
immunofluorescence images were done by counting cells
with TIA1 and G3BP1 colocalized SGs per total number of
cells in randomly selected field. Each field contained at least
30 cells, and three images per condition were analyzed.

2.9. Measurement of PAI-1 and Several SASP Secretions. WI-
38 cells were pretreated with 40μM CORM-A1 for 6 h
followed by the administration of 25μg/ml for 96h. During
the process of cellular senescence, WI-38 cells were post-
treated with 40μM CORM-A1 for 6 h every two days. After
a 4-day incubation, cultured supernatant was collected, and
the concentrations of PAI-1 and several SASPs, including
IL-6, TNF-α, and IL-1β, were measured by human PAI-1
(DuoSet ELISA DY9387-05, BD Biosciences), human IL-6
(Cusabio Biotech, Wuhan, China), human TNF-α (Cusabio
Biotech, Wuhan, China), and human IL-1β (Cusabio
Biotech, Wuhan, China) ELISA kit according to the manu-
facturer’s instructions.

2.10. Statistics. For statistical comparison, all values were
expressed as the mean ± SD. Statistical differences between
all experimental groups were applied by one-way ANOVA
with Tukey’s post hoc test, and all statistical analyses were
assessed by GraphPad Prism software version 5.03 (San
Diego, CA). The statistically significant changes among
groups were considered as probability values of p ≤ 0:05.

3. Results

3.1. CO Inhibits Bleomycin-Induced Cellular Senescence in
Human and Mouse Fibroblasts. Bleomycin, a widely used
antineoplastic drug, is well known for its side effects on
induction of severe interstitial pulmonary fibrosis (IPF).
Due to its combination with iron that reduces molecular oxy-
gen to superoxide and hydroxyl radicals, bleomycin can
induce DNA injury and further lead to single- and double-
stranded breaks [30]. Increasing studies have demonstrated
that bleomycin-mediated pulmonary fibrosis is mainly
caused by lung epithelial and fibroblast senescence via
activating DNA damage response (DDR) [30, 31]. To iden-
tify whether exogenous CO exerted inhibitory effect on
bleomycin-induced fibroblast senescence, we first checked
the cellular toxicity of CO-releasing molecular A1 (CORM-
A1) on human fibroblast-like fetal lung cells, WI-38 cells,
with various concentrations (0, 10, 20, 40, and 80μM) for 6
h. As we expected, low-dose CORM-A1 showed no toxicity

onWI-38 cells (Figure 1(a)). Then, cells were pretreated with
CORM-A1 in a dose-dependent manner (0, 20, 40, and 80
μM) for 6 h followed by the administration of bleomycin
(25μg/ml) for 96 h. During the challenge of bleomycin, cells
were posttreated with CORM-A1 for 6 h every two days.
After a 4-day incubation, we found that bleomycin alone sig-
nificantly increased the number of cells positive for the
expression of p21 (Figure 1(b)) and several SASPs, including
IL-6, TNF-α, and IL-1β (Figures 1(c)–1(e)). However, pre-
and posttreatment of CORM-A1 could significantly reduce
the levels of p21 and SASPs stimulated by bleomycin, indicat-
ing that CORM-A1 might possess antisenescent effect on
bleomycin-induced premature senescence. As a negative
control, herein, we treated cells with inactive CORM-A1
(iCORM-A1) that is incapable of releasing CO and found
that iCORM-A1 showed no interference in p21 and SASP
levels in the presence of bleomycin (Figures 1(b)–1(e)).
Given that 40μM CORM-A1 showed optimally to reduce
the levels of p21 and SASP, in the following studies, we chose
40μM as the appropriate dose to treat cells.

To further assess the antisenescent effect of CORM-A1,
we treated WI-38 cells (Figure 1) and primary mouse embry-
onic fibroblasts (MEFs) (Figure 2) with CORM-A1 in the
stimulation of bleomycin and found that the enhanced
markers of cellular senescence, including the percentage of
senescence-associated (SA)-β-gal-positive cells (Figures 1(f)
and 2(b)), γ-H2AX foci (Figures 1(g) and 2(c)), mRNA
expression of p21 (Figure 2(d)), IL-6 (Figure 2(e)), TNF-α
(Figure 2(f)), and IL-1β (Figure 2(g)), were all significantly
decreased. Due to p21 is a well-known target gene of p53,
and which plays a critical role in the process of cellular senes-
cence [1, 5, 6], we next checked the protein levels of p53 and
p21 in WI-38 cells. Consistent with the results obtained from
the regulation of senescent transcripts, the pretreatment of
CORM-A1 could remarkably decrease the protein levels of
p53 and p21 in the challenge of bleomycin (Figures S2A–
S2C). To further investigate whether exogenous CO gas
could also protect against cellular senescence, we next treated
WI-38 cells with 250ppm CO gas for 6h every two days in
the presence or absence of bleomycin (25μg/ml) for 96h.
Our results revealed that the exogenous CO gas could
remarkably inhibit the corresponding senescence markers
induced by bleomycin (Figure S1). According to these results,
we clearly demonstrated that low-dose administration of
CORM-A1 and CO gas could effectively prevent bleomycin-
induced premature senescence.

3.2. PAI-1 Is Involved in Bleomycin-Induced Premature
Senescence in WI-38 Cells. Plasminogen activator inhibitor
1 (PAI-1) is a primary inhibitor of tissue-type and
urokinase-type plasminogen activators, which can inhibit
the conversion of plasminogen into plasmin, and plays a
major role in fibrogenesis [32]. Accumulating evidences have
suggested that PAI-1 expression is significantly increased in
senescent cells, and which might be not only a marker but
also a key mediator of cellular senescence and organismal
aging [7]. To determine whether PAI-1 was essential for
bleomycin-incubated cellular senescence, we first checked
the mRNA expression of PAI-1 in WI-38 cells. Our results
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Figure 1: Continued.
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showed that bleomycin could induce a significant enhance-
ment of PAI-1 (Figures 3(a) and S2D). Next, to evaluate
whether increased PAI-1 expression was involved in the
bleomycin-induced premature senescence, we transfected
cells with siRNA against PAI-1 (Figures 3(b) and S2D), and
then cells were stimulated with bleomycin. We found that,
in the administration of bleomycin, silencing PAI-1 could
dramatically decreased the markers of senescence, including
the percentage of SA-β-gal stained cells (Figure 3(c)) and
the expression of p21 (Figures 3(d) and S2D), p53
(Figure S2D), IL-6 (Figure 3(e)), TNF-α (Figure 3(f)), and
IL-1β (Figure 3(g)) compared with cells transfected with
scramble RNA (scRNA). Furthermore, PAI-1 inhibitor, one
small molecule TM5441 [33], also exhibited a significant
inhibitory effect on bleomycin-induced cellular senescence.
Our data showed that the treatment of TM5441 (10μM) in
the presence of bleomycin (25μg/ml) could significantly
decrease SA-β-gal-positive cells (Figure 3(h)) and mRNA
expression of several SASPs (Figures 3(i)–3(l)). These
data strongly demonstrated that PAI-1 played a critical
role in bleomycin-induced premature senescence, and the
inhibition of PAI-1 could effectively ameliorate the process
of senescence.

3.3. CO-Induced SGs Participate in Reducing Bleomycin-
Induced Senescence by PAI-1 Sequestration. One previous
study has demonstrated that the assembly of SGs induced
by continuous mild oxidative stress can decrease the number

of senescent cells through the sequestration of PAI-1 and
subsequently activates the cyclin D1-dependent signaling
pathway to maintain proliferative state [28]. Our recent study
has reported that low-dose exogenous CO can stimulate SG
formation by selective induction of the PERK-eIF2α signal-
ing pathway, one branch of integrated stress response (ISR)
[29]. Based on these reports, we hypothesized that the antise-
nescent effect of CO might be mediated by SG formation.
Here, we first confirmed the beneficial effect of CO on SG
assembly by treating WI-38 cells with various concentrations
of CORM-A1 (0, 20, 40, and 80μM) for 6 h. Immunofluores-
cence was applied to check the amount of SGs by applying
anti-TIA-1 and anti-G3BP1 antibodies. According to our
results, 40μM and 80μMCORM-A1 (Figure 4(a)) could sig-
nificantly increase the assembly of TIA-1- and G3BP-1-
positive SGs in the cytoplasm, and iCORM-A1 revealed no
benefits on SG assembly (Figure 4(a)), suggesting again that
CORM-A1 exerted an inducible effect on SG formation. In
further study, we tried to check whether CO could stimulate
the sequestration of PAI-1 into SGs in the stimulation of
bleomycin. As we expected, the increased number of SGs
induced by CORM-A1 could effectively sequestrate PAI-1
through detecting the coaggregation of TIA-1 and PAI-1
(Figure 4(b)). Simultaneously, we evaluated the secretion
of PAI-1 by ELISA assay. Cells treated with bleomycin
alone significantly increased the secretion of PAI-1, while
CORM-A1 administration could dramatically attenuated
the level of PAI-1 in cultured medium (Figure 4(c)). To
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Figure 1: CORM-A1 inhibits BLM-induced cellular senescence in human diploid lung fibroblasts. (a) WI-38 cells were treated with various
concentrations of CORM-A1 (0, 10, 20, 40, and 80μM) for 6 h, and MTT assay was performed to assess the cell viability. (b–e) WI-38 cells
were pretreated with CORM-A1 (0, 20, 40, and 80 μM) and iCORM-A1 (40 μM) for 6 h followed by the challenge of bleomycin (BLM,
25μg/ml) for 96 h. During the process of senescence, cells were posttreated with CORM-A1 (0, 20, 40, and 80μM) for 6 h every other
day. After a 4-day incubation, the mRNA expressions of p21 (b), IL-6 (c), TNF-α (d), and IL-1β (e) were measured by quantitative
real-time- (qRT-) PCR. Quantitative data are expressed as the means ± SD; n = 3. ∗∗∗p < 0:001 vs. the vesicle control group. #p < 0:05,
##p < 0:01, and ###p < 0:001 vs. the BLM-alone treatment group. Then, senescence-associated- (SA-) β-gal staining (f) and
immunofluorescence for detecting γ-H2AX foci (g) were applied in the pre- and posttreatment of CORM-A1 (40 μM). Quantitative data
are expressed as the means ± SD (n = 3 determined in three independent experiments). ∗∗p < 0:01 and ∗∗∗p < 0:001. ns: not significant.
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Figure 2: Continued.
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define whether the decreased secretion of PAI-1 was associ-
ated with the transcription of PAI-1, we next assessed the
mRNA level of PAI-1, and our data showed that CORM-
A1 could slightly decreased the transcripts (Figure 4(d)),
indicating that the secretion of PAI-1 regulated by CORM-
A1 was mainly resulted from the induction of SGs rather
than the downregulation of PAI-1 transcription. It has been
reported that PAI-1 secretion correlates with the onset of
senescence via inhibition of cyclin D1 nuclear translocation
and hypophosphorylation of Rb [34]. To check the level of
cyclin D1 in the nucleus, we isolated cytosol and nuclear frac-
tions from WI-38 cells and found that the level of cyclin D1
was significantly decreased in bleomycin-treated cells, while
it was significantly increased in the fraction of the cytoplasm
(Figure 4(e)). In addition, CORM-A1 could positively regu-
late the nuclear translocation of cyclin D1 (Figure 4(e)),
and which is associated with the increase of Rb phosphoryla-
tion (Figure 4(f)). Moreover, we also observed that the
secretions of SASP, including IL-6 (Figure 4(g)), TNF-α
(Figure 4(h)), and IL-1β (Figure 4(i)), induced by bleomycin
were dramatically reduced in the administration of CORM-
A1. Our findings demonstrated that CO-mediated downreg-
ulation of PAI-1 secretion was associated with the SG forma-
tion, and which could enhance the activation of cyclin D1

and hyperphosphorylation of Rb to delay the process of
senescence and the secretion of SASP.

3.4. ISRIB Abolishes CO-Induced SG Assembly and Recovers
Bleomycin-Mediated Cellular Senescence. According to our
recent study, CO-induced SG assembly was dependent on
the ISR signaling pathway, and ISR inhibitor, ISRIB, could
decrease the formation of SGs in the administration of
CORM2 and CO gas [29]. To confirm these reported results,
we first cotreated WI-38 cells with CORM-A1 and ISRIB for
6 h and observed that ISRIB could significantly inhibit the
formation of SGs by visualizing the coaggregation of TIA-1
and G3BP1 in the cytoplasm (Figure 5(a)). Next, to analyze
whether the inhibition of SGs by ISRIB could negatively regu-
late the antisenescent effect of CORM-A1, we next performed
pre- and posttreatment of CORM-A1 in WI-38 cells with or
without ISRIB for 6h followed by the administration of
bleomycin for 96h. After a 4-day incubation, we checked the
percentage of SA-β-gal-positive cells (Figure 5(b)) and the
number of γ-H2AX foci per cell (Figure 5(c)). In bleomycin-
induced senescent cells, the enhanced activity of SA-β-gal
and γ-H2AX foci was significantly decreased by CORM-A1,
and which was reversed in the cotreatment of ISRIB
(Figures 5(b) and 5(c)). Moreover, we also observed that ISRIB
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Figure 2: CORM-A1 attenuates BLM-induced cellular senescence in mouse embryonic fibroblasts. (a) Mouse embryonic fibroblasts (MEFs)
were treated with CORM-A1 in a dose-dependent manner (0, 10, 20, 40, and 80 μM) for 6 h, and MTT assay was performed to assess the cell
viability. MEFs were pretreated with CORM-A1 (40 μM) for 6 h prior to the stimulation of BLM (25 μg/ml) for 48 h. Then, SA-β-gal staining
(b) and γ-H2AX foci (c) were detected, and the mRNA expressions of p21 (d), IL-6 (e), TNF-α (f), and IL-1β (g) were detected by qRT-PCR.
Quantitative data are expressed as the means ± SD (n = 3 determined in three independent experiments). ∗p < 0:05, ∗∗p < 0:01, and
∗∗∗p < 0:001. ns: not significant.
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Figure 3: PAI-1 is involved in BLM-induced fibroblast senescence. (a)WI-38 cells were treated with BLM (25 μg/ml) for 96 h, and the mRNA
expression of PAI-1 was detected by qRT-PCR. (b) WI-38 cells were transfected with scramble siRNA (scRNA) and siRNA against PAI-1
(siPAI-1) for 36 h, and then, PAI-1 mRNA level was assessed by qRT-PCR. Transfected cells were treated with BLM (25 μg/ml) for 96 h,
and cells were performed SA-β-gal staining (c), and the mRNA expressions of p21 (d), IL-6 (e), TNF-α (f), and IL-1β (g) were measured
by qRT-PCR. WI-38 cells were cotreated with PAI-1 inhibitor, TM5441 (10 μM), and BLM (25 μg/ml) for 96 h. Then, SA-β-gal staining
(h) and the mRNA expressions of p21 (i), IL-6 (j), TNF-α (k), and IL-1β (l) were measured by qRT-PCR. Quantitative data are expressed
as the means ± SD (n = 3 determined in three independent experiments). ∗p < 0:05, ∗∗p < 0:01, and ∗∗∗p < 0:001.
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strongly inhibits the sequestration of PAI-1 into CO-induced
SGs (Figure 5(d)), and for that reason, the inhibitory effect
of CORM-A1 on PAI-1 secretion was drastically abolished
(Figure 5(i)). Next, we also checked the mRNA expression
of p21 (Figure 5(e)), several SASPs (Figures 5(f)–5(h)), and
protein levels of p53 (Figure S2E) and p21 (Figure S2E). As
we expected, administration of ISRIB could robustly deplete
the inhibitory effect of CORM-A1 on downregulation of
p53, p21, and SASP expression. Additionally, ISRIB also
abrogated the inhibitory effect on the secretion of SASP
(Figures 5(i)–5(l)).

Telomere shortening is an important marker of cellular
senescence [1], and bleomycin has been reported to induce
telomere shortening and cellular senescence to provoke the
development of pulmonary fibrosis [35]. Moreover, several
studies have proved that telomerase is a ribonucleoprotein
that includes the telomerase reverse transcriptase (TERT)
and the telomerase RNA (TERC) [36, 37]. Telomerase inhibi-
tion by targeting TERT has been shown to induce cellular
senescence, shortening of telomere, and DNA damage [38].
Based on these studies, to verify whether exogenous CO
could regulate telomere shortening via induction of SGs, we
next checked the protein level of TERT (Figure S2E). Our
results showed that bleomycin-mediated cellular senescence
could interfere with the protein level of TERT, and CORM-
A1 could significantly reverse the change of TERT.
However, ISRIB cotreatment remarkably compromises the
enhancement of TERT induced by CORM-A1. These
results demonstrated that exogenous CO could upregulate
TERT expression to control telomere shortening, and
which might be associated with the formation of SGs, while
the detailed molecular mechanisms should be clarified in
further studies.

Taken together, our data clearly indicated that ISRIB
could interfere with the antisenescent effect of CO on
bleomycin-induced cellular senescence via diminishing SG
assembly and sequestration of PAI-1 and influencing telo-
mere shortening.

4. Discussion

Cellular senescence can induce both beneficial and deleteri-
ous outcomes in a context-dependent manner [4, 39], and
these opposing effects mediated by senescent cells are
strongly related to the upregulation of SASP, including
growth factors, cytokines, and extracellular matrix metallo-
proteinase [40]. Accumulating evidences have supported that
PAI-1, a member of SASP, is a critical marker of cellular
senescence associated with aging and aging-related patholo-
gies, such as metabolic syndrome, chronic kidney disease,
and multiorgan fibrosis [7, 41]. One previous study has dem-
onstrated that the formation of SGs induced by continuous
mild stress can prevent replicative senescence by promoting
the localization of PAI-1 into SGs, which can increase the
nuclear translocation of cyclin D1 to delay the process of
replicative senescence [28]. Recently, we have proved that
CO possesses a beneficial effect on SG formation through
the induction of ISR [29]. Based on these reports and our
results, herein, we demonstrated for the first time that the
assembly of SGs mediated by CO could sequestrate PAI-1,
which protects cells against bleomycin-induced premature
senescence.

In this study, we treated human diploid fibroblasts WI-38
cells and primary mouse embryonic fibroblasts with bleomy-
cin to establish DNA damage-induced premature senescence.
Bleomycin, one mixture of glycopeptide antitumor drug, is
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Figure 4: CO inhibits secretion of PAI-1 in senescent cells via SG formation. (a) WI-38 cells were treated with CORM-A1 in various
concentrations (0, 20, 40, and 80 μM) and iCORM-A1 (40 μM) for 6 h. As a positive control, WI-38 cells were treated with 200 nM
thapsigargin (Tg) for 45min, and then, immunofluorescence assay was performed to detect the formation of SGs by visualizing the
colocalization of TIA-1(red) and G3BP1 (green). (b) WI-38 cells were pretreated with CORM-A1 (40 μM) for 6 h prior to the
administration of bleomycin (25 μg/ml) for 96 h. After a 4-day treatment, immunofluorescence assay was performed to detect the TIA-1
(red) and PAI-1 (green) coaggregates. The secretion of PAI-1 was assessed by ELISA (c), and the mRNA expression of PAI-1 was assessed
by qRT-PCR (d). (e) Nuclear translocation of cyclin D1 was measured by Western blot assay in cytosol and nuclear fractions. (f) The
phosphorylated and total forms of Rb were analyzed by Western blot assay. The secretion of SASP, including IL-6 (g), TNF-α (h),
and IL-1β (i), was measured by ELISA. Quantitative data are expressed as the means ± SD (n = 3 determined in three independent
experiments). ∗∗p < 0:01 and ∗∗∗p < 0:001. ns: not significant.

13Oxidative Medicine and Cellular Longevity



DAPI G3BP1TIA-1 Merge

CON

CORM-A1

CORM-A1
+ISRIB

20 𝜇m

0

10

20

30

40

50

Ce
lls

 w
ith

str
es

s g
ra

nu
le

s (
%

)

CORM-A1 – + +
ISRIB – – +

⁎⁎ ⁎

(a)

BLM

BLM+CORM-A1CORM-A1

ISRIB BLM+CORM-A1+ISRIB

CON 20 𝜇m

0

20

40

60

80

100

SA
-𝛽

-g
al

 st
ai

ni
ng

 (%
)

BLM
CORM-A1

–
–

+
– +

+ +
+

ISRIB – – – +
+

+

–

–

–
–

⁎⁎⁎ ⁎⁎⁎ ⁎⁎

(b)

Figure 5: Continued.

14 Oxidative Medicine and Cellular Longevity



DAPI

𝛾-H2AX

Merge

CON BLM
BLM+

CORM-A1
BLM+CORM-A1

+ISRIB CORM-A1 ISRIB

20 𝜇m

0

20

40

60

80

𝛾
-H

2A
X 

fo
ci 

pe
r c

ell

BLM
CORM-A1

–
–

+
– +

+ +
+

ISRIB – – – +
+

+

–

–

–
–

⁎⁎⁎ ⁎⁎⁎⁎⁎⁎

(c)

DAPI

PAI-1

TIA-1

Merge

CON BLM
BLM+

CORM-A1
BLM+CORM-A1

+ISRIB CORM-A1 ISRIB

20 𝜇m

0

10

20

30

40

A
ve

ra
ge

 n
um

be
r o

f
TI

A
-1

-P
A

I1
co

-a
gg

re
ga

te
s p

er
 ce

ll

BLM
CORM-A1

–
–

+
– +

+ +
+

ISRIB – – – +
+

+

–

–

–
–

⁎⁎⁎⁎⁎⁎

(d)

Figure 5: Continued.

15Oxidative Medicine and Cellular Longevity



0

1

2

3

4

p2
1m

RN
A 

ex
pr

es
sio

n
(a

rb
itr

ar
y u

ni
ts

)

BLM
CORM-A1

–
–

+
– +

+ +
+

ISRIB – – – +
+

+

–

–

–
–

⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎

(e)

0

2

4

6

8

IL
-6

 m
RN

A 
ex

pr
es

sio
n

(a
rb

itr
ar

y u
ni

ts
)

BLM
CORM-A1

–
–

+
– +

+ +
+

ISRIB – – – +
+

+

–

–

–
–

⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎

(f)

0

2

4

6

8

TN
F-
𝛼

 m
RN

A 
ex

pr
es

sio
n

(a
rb

itr
ar

y u
ni

ts
)

BLM
CORM-A1

–
–

+
– +

+ +
+

ISRIB – – – +
+

+

–

–

–
–

⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎

(g)

0

5

10

15

20

IL
-1
𝛽

 m
RN

A 
ex

pr
es

sio
n

(a
rb

itr
ar

y u
ni

ts
)

BLM
CORM-A1

–
–

+
– +

+ +
+

ISRIB – – – +
+

+

–

–

–
–

⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎

(h)

0

500

1000

1500

PA
I-

1 
(p

g/
m

l)

BLM
CORM-A1

–
–

+
– +

+ +
+

ISRIB – – – +
+

+

–

–

–
–

⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎

(i)

0

50

100

150

200

250

BLM
CORM-A1

–
–

+
– +

+ +
+

ISRIB – – – +
+

+

–

–

–
–

⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎

IL
-6

 (p
g/

m
l)

(j)

Figure 5: Continued.

16 Oxidative Medicine and Cellular Longevity



widely used for treatment of squamous cell carcinomas,
testicular carcinoma, and Hodgkin’s and non-Hodgkin’s
lymphomas [42]. Bleomycin is also one of the most toxic
antineoplastic drugs for inducing lung fibrosis, due to
epithelial cell injury with reactive hyperplasia, epithelial-
mesenchymal transition, differentiation of fibroblasts to
myofibroblasts, and the basement membrane and alveolar
epithelium injuries [43]. Besides that, accumulating evidence
suggested that bleomycin can also induce apoptosis and
senescence in lung nonepithelial cells, such as lung fibro-
blasts, through oxidative stress-induced single- and double-
stranded breaks in DNA [30]. To ameliorate these side effects
on normal cells, here, we observed that the administration of
exogenous CO revealed a strong antisenescent effect on
bleomycin-mediated premature senescence. Our results
showed that the administration of low-dose CORM-A1 and
CO gas could significantly decrease multiple hallmarks of
senescence, including the percentage of SA-β-gal-positive
cells, DNA damage-associated γ-H2AX foci, cell cycle
arrest-associated protein p53, and CDK inhibitor p21, as well
as several SASPs (Figures 1 and 2 and S1 and S2). To validate
the optimal concentration of CORM-A1, we first pretreated
WI-38 cells with CORM-A1 in a dose-dependent manner
and found that 40μM CORM-A1 showed most effectively
to inhibit bleomycin-induced p21 and SASP (Figures 1(b)–
1(e)). Moreover, cells treated with CORM-A1 for 6 h showed
no cytotoxicity in WI-38 and MEF cells.

Given that PAI-1 is defined as a novel biomarker and a
critical mediator of cellular senescence [7, 33, 41], we next
evaluated whether PAI-1 was associated with bleomycin-
induced lung fibroblast senescence. Consistent with the
previous study that chemotherapeutic agent can induce
the mRNA expression of PAI-1 in a glioblastoma cell
strain [44], we also observed bleomycin-stimulated cells

exerted a significant enhancement of PAI-1 in WI-38 cells
(Figures 3(a) and S2D). Next, we silenced the expression
of PAI-1 or used PAI-1 inhibitor to explain the crucial
role of PAI-1 in bleomycin-induced premature senescence.
Our data clearly suggested that, as cells transfected with
siRNA against PAI-1 or cotreated with small molecular
inhibitor, TM5441, the senescence-associated markers were
all dramatically decreased. Consistent with the data reported
in previous study [45], PAI-1 could regulate the p53 down-
stream signaling pathway, and PAI-1 gene silencing could
significantly downregulate the protein levels of p53 and p21
to reduce the process of senescence (Figure S2D). These
data firmly indicated again that PAI-1 is not only a
mediator but also a therapeutic target for the bleomycin-
induced lung fibroblast senescence.

In response to diverse environmental stresses, eukaryotic
cells will activate defense mechanisms to control energy
expenditure for the repair of stress-induced damage, and
one of the important mechanisms to promote cell survival
is induction of the SG assembly in the cytoplasm [27].
Recently, it has been reported that cellular senescence can
interfere the formation of cytoplasmic SGs through the inhi-
bition of SG-nucleating proteins [46]. However, continuous
exposure to temperate oxidative stress can induce SG forma-
tion, which interferes the process of replicative senescence via
sequestration of PAI-1 and then activates the nuclear translo-
cation of cyclin D1 to attenuate cell cycle arrest [28]. CO has
been proved as a novel inducer of SG formation via induction
of the PERK-eIF2α signaling pathway, one of the three ISR
branches [29]. Based on these reports, herein, we tried to
evaluate the relationship between antisenescent effect of CO
and its beneficial effect on SG formation (Figure 4). Accord-
ing to our results, in the challenge of bleomycin, CORM-A1
could induce the localization of PAI-1 into SGs through the
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Figure 5: ISRIB abrogates CO-mediated SG formation and recovers BLM-induced cellular senescence. (a) WI-38 cells were treated with
40μM CORM-A1 in the presence or absence of ISRIB (200 nM) for 6 h. Immunofluorescence assay was performed to detect the
formation of SGs by visualizing the colocalization of TIA-1(red) and G3BP1 (green). WI-38 cells were pretreated with CORM-A1
(40 μM) with or without ISRIB (200 nM) for 6 h followed by the challenge of bleomycin (25 μg/ml) for 96 h. Then, SA-β-gal staining
(b) and γ-H2AX foci (c) were detected, and immunofluorescence assay (d) was performed to assess the coaggregates of TIA-1 (red)
and PAI-1 (green). The mRNA expressions of p21 (e), IL-6 (f), TNF-α (g), and IL-1β (h) by qRT-PCR. The secretions of PAI-1 (i),
IL-6 (j), TNF-α (k), and IL-1β (l) were detected by ELISA. Quantitative data are expressed as the means ± SD (n = 3 determined in
three independent experiments). ∗p < 0:05, ∗∗p < 0:01, and ∗∗∗p < 0:001.
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aggregation of TIA-1 and PAI-1, which also dramatically
reduced the secretion of PAI-1. In addition, our results
revealed that CORM-A1 showed a mild inhibitory effect on
PAI-1 transcription and that was not a main cause but
partially interfere the secretion of PAI-1. Next, to point out
the activity of PAI-1, we assessed its downstream signaling
pathway and found that CORM-A1 could significantly
induce the nuclear translocation of cyclin D1 (Figure 4(d))
and hyperphosphorylation of Rb (Figure 4(e)) in the stimula-
tion of bleomycin. These results are consistent with previous
study [28] that the increased formation of SGs by continuous
mild stress could sequestrate PAI-1 and subsequently acti-
vates cyclin D1 nuclear translocation and delay the process
of replicative senescence.

Integrated stress response (ISR) has been reported to trig-
ger the formation of SGs by the phosphorylation of eIF2α
and reduce the formation of 43S translation preinitiation
complexes. However, ISR inhibitor (ISRIB) can block the
phosphorylation of eIF2α and the formation of SGs [47].
To further assess whether ISRIB could abolish the antisenes-
cent effect of CO by compromising SG assembly, we
cotreated WI-38 cells with CORM-A1 and ISRIB followed
by the challenge of bleomycin and found that ISRIB could
significantly abrogate the antisenescent effect of CORM-A1
and recover the bleomycin-induced premature senescence
(Figure 5). Moreover, with previous study [28], ISRIB could
dramatically inhibit the sequestration of PAI-1 into CO-
induced SGs, and the secretion of PAI-1 was reversely
increased. All above data proved again that the formation
of SGs enhanced by CORM-A1 played a pivotal role in the
prevention of bleomycin-induced cellular senescence rather
than the control of PAI-1 transcripts and suggested that
ISR is important for CO-mediated antisenescent function.

Herein, we also observed that the administration of bleomy-
cin could decrease the protein level of TERT, one critical
component of telomerase [36, 37], and which might be
associated with telomere shortening during the process of
cellular senescence. Interestingly, as cells were pretreated
with CORM-A1, the level of TERT showed a significant
elevation, while the combinatorial treatment of ISRIB
drastically abrogated the beneficial effect of CORM-A1
on TERT expression, suggesting that CO could regulate
bleomycin-induced telomere shortening through upregula-
tion of TERT, and which might be related to ISR activa-
tion and the SG formation. For the further study, we
planned to determine that how CO enhances TERT and
what role of CO-induced SGs plays in TERT expression
and telomere shortening.

In conclusion, our work strongly demonstrated that the
gasotransmitter CO could protect lung fibroblasts against
bleomycin-induced premature senescence by inducing SG
formation, promoting the sequestration of PAI-1 into SGs,
as well as controlling the telomere shortening. These effects
could activate cyclin D1 and hyperphosphorylation of Rb to
delay the process of cellular senescence (Figure 6). We pro-
pose that the utilization of gaseous transmitter, CO, can be
a novel therapeutic strategy to prevent bleomycin-mediated
cellular senescence and its side effects associated with
pathogenesis.
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Hypoxic pulmonary vascular remodelling (PVR) is the major pathological basis of aging-related chronic obstructive pulmonary
disease and obstructive sleep apnea syndrome. The pulmonary artery endothelial cell (PAEC) inflammation, and pulmonary
artery smooth muscle cell (PASMC) proliferation, hypertrophy and collagen remodelling are the important pathophysiological
components of PVR. Endogenous sulfur dioxide (SO2) was found to be a novel gasotransmitter in the cardiovascular system
with its unique biological properties. The study was aimed to investigate the role of endothelial cell- (EC-) derived SO2 in the
progression of PAEC inflammation, PASMC proliferation, hypertrophy and collagen remodelling in PVR and the possible
mechanisms. EC-specific aspartic aminotransferase 1 transgenic (EC-AAT1-Tg) mice were constructed in vivo. Pulmonary
hypertension was induced by hypoxia. Right heart catheterization and echocardiography were used to detect mouse
hemodynamic changes. Pathologic analysis was performed in the pulmonary arteries. High-performance liquid chromatography
was employed to detect the SO2 content. Human PAECs (HPAECs) with lentiviruses containing AAT1 cDNA or shRNA and
cocultured human PASMCs (HPASMCs) were applied in vitro. SO2 probe and enzyme-linked immunosorbent assay were used
to detect the SO2 content and determine p50 activity, respectively. Hypoxia caused a significant reduction in SO2 content in the
mouse lung and HPAECs and increases in right ventricular systolic pressure, pulmonary artery wall thickness, muscularization,
and the expression of PAEC ICAM-1 and MCP-1 and of PASMC Ki-67, collagen I, and α-SMA (p < 0:05). However, EC-AAT1-
Tg with sufficient SO2 content prevented the above increases induced by hypoxia (p < 0:05). Mechanistically, EC-derived SO2
deficiency promoted HPAEC ICAM-1 and MCP-1 and the cocultured HPASMC Ki-67 and collagen I expression, which was
abolished by andrographolide, an inhibitor of p50 (p < 0:05). Meanwhile, EC-derived SO2 deficiency increased the expression of
cocultured HPASMC α-SMA (p < 0:05). Taken together, these findings revealed that EC-derived SO2 inhibited p50 activation to
control PAEC inflammation in an autocrine manner and PASMC proliferation, hypertrophy, and collagen synthesis in a
paracrine manner, thereby inhibiting hypoxic PVR.
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1. Introduction

Aging is an important risk factor for a variety of diseases [1–
3]. With the increase of the global elderly population, the
incidence of aging and age-related diseases such as chronic
obstructive pulmonary disease (COPD) and obstructive sleep
apnea syndrome (OSAS) has also been gradually increased
[4, 5]. Among them, hypoxic pulmonary hypertension (PH)
and pulmonary vascular remodelling (PVR) are the critical
pathological basis. PVR includes pulmonary artery endothe-
lial cell (PAEC) dysfunction, and pulmonary artery smooth
muscle cell (PASMC) proliferation, hypertrophy, and colla-
gen accumulation [6–9]. Previous studies reported that an
imbalance among small vasoactive molecules played a critical
role in the progression of PVR. The imbalance among
protein-derived bioactive molecules, active lipid mediators,
small nucleic acids, and gaseous signalling molecules is pre-
dominantly involved in the pulmonary artery structural
changes and the abnormal vasoconstriction and vasorelax-
ation [10–16]. However, the mechanisms underlying the
excessive PAEC inflammation, PASMC proliferation, hyper-
trophy, and collagen remodelling remain unclear.

Recent studies have shown that endothelial cells (ECs)
play a critical role in maintaining vascular homeostasis, while
EC dysfunction leads to various vascular diseases [17, 18].
For example, Xue et al. observed that the overexpression of
EC-derived cyclophilin A caused spontaneous PH by pro-
moting PAEC inflammation and PASMC proliferation [19].
Moreover, EC dysfunction and endothelial-to-mesenchymal
cell transition enhanced collagen accumulation in the patho-
genesis of human fibrotic diseases [20]. These results suggest
that ECs might affect the function of ECs and other neigh-
boring cells (primarily smooth muscle cells [SMCs]) in the
vascular walls in an autocrine/paracrine manner, by which
ECs play an important role in the development of PVR.
However, the mechanisms by which ECs affect the behavior
of PAECs and PASMCs to play a role in the development
of PVR are complex and have not yet been fully elucidated.

In 2008, the endogenous sulfur dioxide (SO2)/aspartate
aminotransferase (AAT) pathway was found to exist in the
vascular ECs of rats [21]. More recently, the production of
endogenous SO2 catalyzed by AAT1 has been identified in
human PAECs (HPAECs) [22]. As a gasotransmitter, SO2
has a series of important advantages, including sustained
production, rapid diffusion, and free passage through cell
membranes with a short half-life. It exerts a variety of biolog-
ical functions in the cardiovascular system. For example,
in vivo, the exogenous SO2 donor showed a protective role
in rat atherosclerosis and sepsis-induced cardiac dysfunction
via the inhibition of cellular inflammation [23, 24]. In vitro,
the deficiency of SO2 contributed to cellular proliferation
and collagen accumulation [25]. Moreover, the deficiency
of endogenous SO2 might be implicated in the pathogenesis
of myocardial hypertrophy [26]. These data strongly suggest
that EC-derived SO2 might play a regulatory role in PAEC
inflammation in an autocrine manner and in PASMC prolif-
eration, hypertrophy, and collagen deposition in a paracrine
manner. As such, in the present study, we further explored
whether EC-derived SO2 might control PAEC inflammation

in an autocrine manner and control PASMC proliferation,
hypertrophy, and collagen deposition in a paracrine manner
to reveal a new mechanism for PAEC inflammation and
PAEC-PASMC communication in the control of PASMC
proliferation, hypertrophy, and collagen remodelling by SO2.

Recent data have suggested that EC inflammation, SMC
proliferation, and collagen synthesis are under the control
of nuclear factor-κB (NF-κB) [27, 28]. Briefly, some stimuli,
such as tumor necrosis factor α (TNF-α), lead to the activa-
tion of the IκB kinase complex, allowing IκB to undergo
phosphorylation and degradation, and NF-κB dimers
(thought to be p50 heterodimers primarily) to translocate
to the nucleus to promote gene transcription [29]. The inhi-
bition of p50 evidently restricted E-selectin expression
induced by TNF-α in human umbilical vein ECs, and NF-
κB activation triggered bladder SMC collagen biosynthesis
and proliferation [30, 31]. But the regulatory mechanisms
for p50 are unclear so far. Intriguingly, endogenous SO2
exhibited a protective effect by repressing NF-κB activation
in adipocytes and macrophages.

Based on these evidences, in this study, we aimed to
determine the possible role of EC-derived SO2 in the progres-
sion of hypoxic PVR and its possible underlying mechanisms
in association with the PAEC inflammatory response,
PASMC proliferation, hypertrophy, and collagen production
to reveal a new mechanism for PAEC inflammation and
PAEC-PASMC communication in the control of PASMC
proliferation, hypertrophy, and collagen remodelling by SO2.

2. Materials and Methods

2.1. Animal Model. Endothelial cell-specific AAT1 transgenic
(EC-AAT1-Tg) and wild-type (WT) littermate mice
(C57BL/6J background) were purchased from Cyagen Biosci-
ences (Suzhou, China). Genotype was confirmed using poly-
merase chain reaction analysis in 10-day-old mice. Male mice
aged 10–12 weeks were randomly divided into WT, hypoxic
WT (WT+H), EC-AAT1-Tg, and hypoxic EC-AAT1-Tg
(EC-AAT1-Tg+H) groups. The mice of the WT and EC-
AAT1-Tg groups breathed in room air (21% O2), whereas
hypoxic mice were placed in a small animal hypoxic chamber
(9 ± 0:5% O2) (XBS-02B; Hangzhou Aipu Instrument Co.,
Ltd., China) 8 h daily for 5 weeks to induce hypoxic PH
[32]. All institutional and national guidelines for the care
and use of animals (fisheries) were followed. The animal
experiment was approved by the Laboratory Animal Ethics
Committee of Peking University First Hospital (Ethics No.
201526).

2.2. High-Performance Liquid Chromatography (HPLC)
Quantitative Detection of SO2 Content in Mouse Lung
Tissue. As mentioned earlier, HPLC (Agilent 1200 series;
Agilent Technologies, CA, USA) was used to detect the SO2
content in mouse lung tissue. Briefly, 100μL of the standard
sodium sulfite and a sample of mouse lung tissue homoge-
nate were mixed with 70μL of sodium borohydride
(0.212mol/L) in Tris-HCl (0.05mol/L, pH8.5). The mixture
was then incubated at room temperature for 30min. Next,
5μL of monobromobimane (70mmol/L) in acetonitrile was
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mixed with the 170μL mixture. After the above mixture was
incubated at 42°C for 10min, 40μL of perchloric acid
(1.5mol/L) was added. To remove the protein precipitates
and neutralize the mixture, the mixture was centrifuged
(12,400 g) at 25°C for 10min, and 10μL of Tris-HCl (2mol/L,
pH3.0) was added to the supernatant. Finally, the HPLC
operation and result analysis were performed as described
previously [33].

2.3. Detection of Mouse Right Ventricular Systolic Pressure
(RVSP) Changes by Right Heart Catheterization. The RVSP
of mice was directly measured by catheterization. The mice
were anesthetized by intraperitoneal injection of 0.5%
sodium pentobarbital (0.1ml/10 g). A catheter was inserted
through the external jugular vein to reach the right ventricle
of the mouse. The BL-420F Biological Function Experimental
System (Chengdu Taimeng Instrument Co. Ltd., China) was
used to measure the mouse RVSP to predict the changes in
pulmonary artery pressure [32].

2.4. Measurement of Mouse Pulmonary Acceleration Time
(PAT) and Pulmonary Ejection Time (PET) Using
Echocardiography. Echocardiography was performed using
the Vevo 2100 high-resolution imaging system (Visualonics,
Toronto, Canada). The mice were initially anesthetized by
intraperitoneal injection of 0.5% sodium pentobarbital
(0.1ml/10 g). Pulsed-wave Doppler recording of the pulmo-
nary blood flow was obtained from the parasternal short axis
view at the aortic valve level. Samples were positioned at the
tip of the pulmonary valve leaflets and aligned to maximize
laminar flow as described previously. PAT (defined as the
time from the onset of flow to peak velocity by pulsed-wave
Doppler recording) and PET (the time from the onset to
the termination of pulmonary flow) variables were deter-
mined. All measured variables were the average of 3–5 car-
diac cycles [34].

2.5. Preparation and Morphological Analysis of Mouse Lung
Tissue. The mice were killed by cervical dislocation. Their
lungs were removed and rinsed with 4°C phosphate-
buffered saline (PBS). The lungs were then fixed in 4% para-
formaldehyde solution for 24 h to prepare paraffin-
embedded sections or frozen sections of lung tissue. The sec-
tions were stained with hematoxylin and eosin (HE) and
Hart’s method for morphological analysis. As previously
reported [35], the degree of muscularization can be deter-
mined by the ratio of the number of nonmuscular vessels
(NMV), partial muscular arteries (PMA), and muscular
arteries (MA). PVR can be quantitatively analyzed by calcu-
lating the percentage of 15–50μm pulmonary arteriole
muscularization.

2.6. Immunofluorescence. Frozen sections of lung tissue and
cells were rinsed with PBS and fixed with 4% paraformalde-
hyde solution for 20min. Tissue sections and cells were
blocked with bovine serum albumin and incubated with the
primary antibodies at 4°C overnight (vWF: 1 : 200, Zhong-
shan Jinqiao Biotechnology Co., Ltd., China; AAT1 1 : 50,
Sigma-Aldrich, USA; p-p50 1 : 50 and ICAM-1 1 : 20, Santa
Cruz Biotechnology Company, USA; p50 1 : 100 and Ki-67

1 : 100, Cell Signaling Technology Company USA; F4/80
1 : 300, α-SMA 1 : 300, collagen 1 : 25 and MCP-1 1 : 100,
Abcam Company, UK). On the second day, the secondary
fluorescent antibodies were incubated in the dark. All sec-
tions were counterstained with nuclear 4,6-diamino-2-phe-
nylindole (DAPI; Zhongshan Jinqiao Biotechnology Co.,
Ltd., China). Immunofluorescence imaging was performed
using a confocal laser scanning microscope (Leica, Wetzlar,
Germany) for observation and comparison.

2.7. Primary HPAEC Culture. Primary HPAECs and primary
EC culture system were purchased from PriCells Biomedical
Technology Co., Ltd. (Wuhan, China); cells at 4-6 generation
were used for experiments. HPAECs were transfected with
lentivirus containing AAT1 shRNA or cDNA (Cyagen Bio-
sciences, Suzhou, China) for 2–3 days to induce AAT1
knockdown or overexpression. 1% O2 was used to induce a
hypoxic cell inflammation model.

2.8. Coculture of Primary Human PASMCs (HPASMCs) and
HPAECs. Primary HPASMCs and primary SMC culture sys-
tem were purchased from Lifeline Cell Technology (USA).
Transwell plates (Corning, China) were used for the cocul-
ture of HPASMCs and HPAECs. We seeded HPASMCs in
the lower compartment of the transwell plates by using the
SMC culture system. Infected HPAECs were planted in the
upper compartment with an EC culture system and were sep-
arated from the lower compartments by a microporous
membrane. An inhibitor of p50 andrographolide (4μM,
Andro, Selleck, USA) was used for experiments [30].

2.9. SO2 Probe-Based In Situ Detection of SO2 Content in
HPAECs. The SO2 fluorescent probe was used to analyze
the SO2 content in HPAECs in situ as previously reported
[22]. After the unbound SO2 probe was removed and the
nuclei were stained with DAPI, we observed the red fluores-
cence intensity of the SO2 probe under a high-resolution con-
focal laser microscope.

2.10. Western Blot. Lung tissues or cells were lysed in lysis
buffer to obtain total protein. Denatured proteins were sepa-
rated by 10% sodium dodecyl sulfate-polyacrylamide gel
electrophoresis and transferred to nitrocellulose membranes
(Amerisco, USA). The membranes were incubated with spe-
cific primary antibodies (GAPDH 1 : 4000, β-actin 1 : 4000,
AAT1 1 : 1000, ICAM-1 1 : 400, MCP-1 : 1000, Ki-67 1 : 500,
collagen I 1 : 1000, α-SMA 1 : 1000 and p-p50 1 : 1000) and
secondary antibodies (1 : 2000) conjugated with horseradish
peroxidase. The FluorChem M MultiFluor System (Protein-
simple, USA) was used to scan the protein bands in grayscale.
The ImageJ software was used to quantitatively analyze each
band, and each protein band was corrected with its own
internal reference GAPDH or β-actin grayscale [33].

2.11. p50 DNA-Binding Activity Detected by Active Motif-
Enzyme-Linked Immunosorbent Assay (ELISA). Active
motif-ELISA (Active Motif, USA) was used to determine
the DNA-binding activity of p50 in HPAEC nuclear protein.
The nuclear protein extraction steps were initially performed
as described earlier [14]. The DNA-binding activity of p50
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was then evaluated according to manufacturer’s instructions.
In short, the binding buffer, the sample diluted with lysate, 1x
washing buffer, p50 primary antibody (1 : 1000, prepared
with 1x antibody binding buffer), secondary antibody, and
color developing solution were added in turn. We observed
the color change during the experiment. The experiment
was stopped when the color turned to moderate dark blue
by adding stop solution, and then, the color turned yellow.
Finally, we measured the absorbance value at 450 nm as soon
as possible.

2.12. Adhesion Test of THP-1 Monocyte Cell Line and
HPAECs.After inducing the HPAEC inflammatory response,
THP-1 mononuclear cells initially stained with the red fluo-
rescent Dil (Beyotime Biotechnology, China) were added to
the HPAECs. HPAECs and THP-1 cells were incubated at
37°C for 1 h. PBS was then used to remove unadhered
THP-1 cells. Subsequently, we fixed the cells with 4% para-
formaldehyde solution for 20min. Finally, the mounting
medium containing DAPI was added, and fluorescence was
observed under an immunofluorescence microscope.

2.13. Data Analysis. Statistical analyses were performed with
the SPSS 21.0 software (SPSS Inc., USA). Data were expressed
as mean ± SEM and analyzed using one-way ANOVA. p
values < 0.05 were considered statistically significant.

3. Results

3.1. Hypoxia Caused Reduction in EC-Derived SO2. Immuno-
fluorescence and HPLC showed decreased AAT1 protein
expression in PAECs and SO2 content in the lungs of WT
mice under hypoxia compared with control WT mice
(Figures 1(a) and 1(b)) (p < 0:05). By Western blot analysis
and SO2 fluorescent probe method, we further confirmed
that compared with the control vehicle group, the levels of
AAT1 protein and SO2 were downregulated in hypoxic
HPAECs, whereas overexpression of AAT1 significantly
improved the endogenous SO2 level in ECs and prevented
the decrease in EC-derived SO2 caused by hypoxia
(Figures 1(c) and 1(d)) (p < 0:05).

3.2. Increased EC-Derived SO2 Ameliorated Hypoxia-Induced
PVR and PH In Vivo. To reveal the role of EC-derived SO2 in
the pathogenesis of hypoxic PVR, we constructed EC-AAT1-
Tg mice to increase SO2 levels in mouse PAECs (Figure S1a).
We found an increased expression of AAT1 protein in
PAECs and SO2 content in the lung of EC-AAT1-Tg mice,
compared with the mice in the WT group (Figures 1(a) and
1(b)) (p < 0:05). After exposure to intermittent hypoxia for
5 weeks, both the RVSP detected by the right heart catheter
and the PAT/PET ratio in this experiment suggested that
hypoxic WT (WT+H) mice developed significant PH
compared with the control WT mice. We also observed that
markers of PVR, the thickness of pulmonary artery walls,
and the proportion of muscularized arteries were
dramatically enhanced in mice of the WT+H group by HE
and Hart’s methods. However, compared with mice in EC-
AAT1-Tg group with increased EC-SO2 content, hypoxia
did not induce significant PVR and PH in mice of EC-

AAT1-Tg+H group (Figures 1(e)–1(k)) (p < 0:05). The
above results suggested that the decrease in SO2 in ECs
resulted in increased vascular remodelling and hypoxic PH
in mice.

3.3. Increased EC-Derived SO2 Ameliorated Hypoxia-Induced
PAEC Inflammation, PASMC Proliferation, Hypertrophy,
and Collagen Production. We next sought to determine the
role of EC-derived SO2 in PAEC inflammatory reaction,
PASMC proliferation, hypertrophy, and collagen synthesis,
which dramatically contribute to PVR. In vivo, by immuno-
fluorescence in situ detection of ICAM-1 and MCP-1 expres-
sion and macrophage infiltration in pulmonary vasculature,
we found that compared with WT mice, hypoxia dramati-
cally increased the expression of ICAM-1 and MCP-1,
known markers of EC inflammatory process in mouse
PAECs, and macrophage infiltration in the pulmonary arter-
ies of WT+H mice. Moreover, Western blot quantitative
determination of ICAM-1 protein in mouse lung showed
similar results (Figures 2(a) and 2(b), Figure S2a and S2b)
(p < 0:05). But the treatment with EC-AAT1-Tg to increase
SO2 level successfully repressed hypoxia-induced increases
in the protein expression of ICAM-1 and MCP-1, and
macrophage infiltration in mouse lung tissue (Figures 2(a)
and 2(b), Figure S2a and S2b) (p < 0:05). Consistent with
the in vivo results, we found that AAT1 overexpression to
increase the content of EC-derived SO2 evidently inhibited
hypoxia-induced increases in ICAM-1 and MCP-1 in
HPAECs and THP-1 cell adhesion to HPAECs in vitro
(Figure S2c-S2f) (p < 0:05). These data suggested that the
increase in SO2 in ECs could inhibit hypoxic vascular
inflammation in an autocrine manner.

We then evaluated the effect of EC-derived SO2 on hyp-
oxic PASMC proliferation, hypertrophy, and collagen depo-
sition in vivo. Compared with the mice in the WT group,
immunofluorescence showed enhanced Ki-67 staining in
the pulmonary arteries of theWT+H group.While compared
with the mice of EC-AAT1-Tg group, no significant increase
was found in the expression of Ki-67 induced by hypoxia in
the mice of EC-AAT1-Tg+H group (Figure 2(c)). In addi-
tion, immunofluorescence showed an increased α-SMA
expression, a marker of SMC hypertrophy, in the pulmonary
arteries of WT mice under hypoxia compared with WT mice
under normoxia, while there was no significant difference in
α-SMA expression between EC-AAT1-Tg mice with and
without hypoxic exposure (Figures 2(c) and 2(d)). We also
observed that the increased collagen I in PASMCs of mice
under hypoxia was successfully repressed in EC-AAT1-Tg
mice with sufficient SO2 (Figure 2(d)). The above results
indicated that increased EC-derived SO2 ameliorated
hypoxia-induced PASMC proliferation, hypertrophy, and
collagen accumulation in a paracrine manner.

3.4. EC-Derived SO2 Deficiency Activated HPAEC
Inflammation, HPASMC Proliferation, Hypertrophy and
Collagen Synthesis In Vitro. To directly identify the role of
EC-derived SO2 in HPAEC inflammatory process, HPASMC
proliferation, hypertrophy, and collagen production, we
infected HPAECs with lentivirus containing AAT1 shRNA
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Figure 1: Continued.
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to reduce the expression of the key enzyme AAT1 for SO2
production. ByWestern blot analysis and the SO2 fluorescent
probe method, we confirmed that the AAT1 protein level and
SO2 probe staining significantly decreased in AAT1-
knockdown (AAT1 shRNA) HPAECs. However, treatment
with SO2 donor restored SO2 level in HPAECs (Figures 3(a)
and 3(b)) (p < 0:05).

Compared with the scramble control group, we further
verified that the protein expression of ICAM-1 and MCP-1
and the number of monocyte adhesion to HPAECs in the
AAT1 shRNA group all evidently increased. However, sup-
plementation with SO2 donor successfully inhibited these
increases in AAT1 shRNA HPAECs (Figures 3(c)–3(e))
(p < 0:05). In addition, HPASMCs cocultured with HPAECs
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Figure 1: Increased EC-derived SO2 ameliorates hypoxia-induced PH. (a) Immunofluorescence in situ detection of AAT1 protein expression
in mouse PAECs. Green fluorescence represents AAT1 protein, and red fluorescence represents vWF, a marker for ECs; the nuclei were
stained with DAPI. (b) HPLC method was performed to detect SO2 content in mouse lung tissue (n = 5 − 17). (c) Western blot analysis
was carried out to detect the expression level of AAT1 protein in HPAECs (n = 10). (d) Red SO2 fluorescent probe method was used to
determine the SO2 level in HPAECs, and the nuclei of HPAECs were stained with DAPI. (e, f) Catheter method was performed to detect
mouse right ventricular systolic pressure (RVSP) (n = 6 − 8). (g, h) The ratio of pulmonary acceleration time (PAT) to pulmonary ejection
time (PET) of the mouse pulmonary artery blood flow was measured using ultrasound (n = 8). (i, j) HE and Hart’s methods were used to
detect PVR in mice. (k) Hart’s method was conducted to analyze the degree of muscularization of small pulmonary vessels in mice (n = 8);
NMV: nonmuscular vessels; PMA: partial muscular arteries; MA: muscular arteries. The data were expressed as mean ± SEM, ∗p < 0:05,
scale bar: 20μm.
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of the AAT1 shRNA group showed increased expression of
Ki-67, collagen I, and α-SMA, which were also suppressed
by supplementation with SO2 donor in HPAECs
(Figures 3(f) and 3(g), Figure S3a and S3b) (p < 0:05). The
above studies directly suggested that SO2 derived from ECs
regulated the function of HPAECs and HPASMCs.
Moreover, the deficiency of EC-derived SO2 activated the
inflammatory reaction of HPAECs in an autocrine manner,
and the proliferation, collagen biosynthesis, and
hypertrophy of HPASMCs in a paracrine manner.

3.5. EC-Derived SO2 Inhibited p50 Activation to Repress
PAEC Inflammation, and PASMC Proliferation, and

Collagen Deposition. Considering that NF-κB (particularly
p50 heterodimers) plays a critical role in cell inflammation,
proliferation, and collagen metabolism, we further observed
p50 activation in HPAECs and HPASMCs to reveal the
mechanism by which EC-derived SO2 played a protective
effect. The nuclear translocation of p50 was significantly
enhanced in HPAECs of the AAT1 shRNA group compared
with the scramble group, but this effect was reversed by the
treatment with SO2 donor (Figure 4(a)).

Furthermore, in the hypoxia-induced HPAEC inflamma-
tory response, the phosphorylation, nuclear translocation,
and activity of p50 evidently increased in HPAECs of the
hypoxic vehicle (vehicle+H) group compared with the
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Figure 2: Increased EC-derived SO2 ameliorates hypoxia-induced PAEC inflammation, PASMC proliferation, hypertrophy, and collagen
production in vivo. (a) Immunofluorescence in situ detection of ICAM-1 protein expression in mouse PAECs; green fluorescence
represents ICAM-1 protein. (b) Western blot analysis was performed to detect the expression level of ICAM-1 protein in mouse lung
tissue (n = 10). (c, d) Immunofluorescence in situ detection of Ki-67, α-SMA, and collagen I protein expression in mouse PASMCs; green
fluorescence represents Ki-67 and collagen I protein, and red fluorescence represents α-SMA. The data were expressed as mean ± SEM, ∗p
< 0:05, scale bar: 20 μm.
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normoxic vehicle group. However, no significant differences
were found in AAT1-overexpressed HPAECs between the
normoxic and hypoxic treatment groups (Figure S4a-S4c)
(p < 0:05). Moreover, the in vivo EC-AAT1-Tg abolished
hypoxia-induced p50 activation (Figure S4d).

Meanwhile, we found that with inhibition of endogenous
SO2 generation in HPAECs, nuclear translocation of p50 in
HPASMCs cocultured with HPAECs was activated signifi-
cantly, which was repressed by the treatment with SO2 donor
as well (Figure 4(b)). These results suggested that p50 may be
the molecular target of SO2.

To investigate whether the inflammatory reaction of
HPAECs and the proliferation and collagen accumulation
of HPASMCs were mediated by p50, intervention with
Andro, an inhibitor of p50, demonstrated that Andro suc-
cessfully prevented nuclear translocation of p50 induced
by the decrease in EC-derived SO2 in HPAECs and
HPASMCs (Figures 4(a) and 4(b)). Meanwhile, the
enhanced expression levels of ICAM-1 and MCP-1 in
HPAECs of the AAT1shRNA group were significantly
inhibited by Andro treatment (Figure 4(c)) (p < 0:05). In
agreement with the results of HPAECs, the increased
expression of Ki-67 and collagen I in HPASMCs cocultured
with HPAECs of the AAT1shRNA group was also inhibited

by Andro (Figures 4(d) and 4(e)). The above results indi-
cated that Andro completely blocked the augmentation of
HPAEC inflammation, HPASMC proliferation, and colla-
gen production caused by the decrease in EC-derived SO2
and p50 was a key molecular target for the control of PAEC
inflammation, PASMC proliferation, and collagen remodel-
ling by SO2.

4. Discussion

We demonstrated that EC-derived SO2 was an important
endogenous controller of hypoxic PVR. It inhibited PAEC
inflammatory process in an autocrine manner and PASMC
proliferation, hypertrophy, and collagen accumulation in a
paracrine manner. NF-κB p50 signalling might mediate the
above effect of EC-derived SO2.

PVR is the main pathological feature of aging-related
COPD and OSAS [6, 7]. The key roles of PAEC inflamma-
tion, and PASMC proliferation, hypertrophy, and collagen
deposition in the pathogenesis of PVR have been suggested
by previous studies [8, 9, 11, 25, 36]. However, the mecha-
nisms underlying the endogenous control of PVR have not
been identified. Evidence supports that ECs play an impor-
tant role in the pathogenesis of PVR [18, 19]. However,
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Figure 3: EC-derived SO2 deficiency activates HPAEC inflammation, HPASMC proliferation, and collagen synthesis in vitro. (a) Western
blot analysis was performed to detect the expression level of AAT1 protein in HPAECs (n = 12). (b) The red SO2 fluorescent probe
method was used to detect the SO2 level in HPAECs; the nuclei were stained with DAPI. (c) Western blot analysis was used to detect the
expression level of ICAM-1 and MCP-1 protein in HPAECs (n = 12). (d) Immunofluorescence method was used to detect the expression
level of ICAM-1 protein in HPAECs in situ. Purple fluorescence represents ICAM-1 protein. (e) Fluorescence method was conducted to
detect the adhesion of THP-1 cells and HPAECs. The red Dil color marks the THP-1 cells, and the DAPI color marks the nuclei of
HPAECs. (f) Diagram of the transwell used for the coculture system in vitro. (g) Western blot analysis method to detect the expression
level of Ki-67 and collagen I protein in HPASMCs cocultured with HPAECs (n = 10). The data were expressed as mean ± SEM, ∗p < 0:05,
scale bar: 20μm.
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Figure 4: EC-derived SO2 inhibits p50 activation to repress PAEC inflammation, PASMC proliferation, and collagen deposition. (a)
Immunofluorescence in situ detection of p50 protein distribution in HPAECs. Red fluorescence represents p50 protein, and DAPI staining
labels HPAEC nuclei. (b) Immunofluorescence in situ detection of p50 protein distribution in HPASMCs cocultured with HPAECs. Green
fluorescence represents p50 protein, and DAPI staining labels HPASMC nuclei. (c) Western blot analysis was used to detect the
expression level of ICAM-1 and MCP-1 protein in HPAECs (n = 12). (d, e) Immunofluorescence in situ detection of Ki-67 and collagen I
protein expression in HPASMCs cocultured with HPAECs. Green fluorescence represents Ki-67 and collagen I protein. Andro:
andrographolide, an inhibitor of p50. Data were expressed as mean ± SEM, ∗p < 0:05, scale: 20μm.
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how PAEC inflammation is regulated and whether PASMC
proliferation, hypertrophy, and collagen synthesis are con-
trolled through PAEC-PASMC communication in PVR are
not completely clear.

Recently, the gasotransmitter SO2 with a range of proper-
ties, including sustained production, rapid diffusion, and
broad functions has been shown to be produced endoge-
nously in HPAECs [21, 22]. Previously, our laboratory and
others showed the critical roles of SO2 donor in controlling
cellular collagen metabolism, inflammation, proliferation,
and hypertrophy in the pathogenesis of cardiovascular dis-
eases [23–26]. In the present study, we found that the
decrease in endogenous SO2 in hypoxic PH mice with signif-
icant PVR and HPAECs, and hypoxic exposure caused the
downregulated expression of AAT1 protein in mouse PAECs
and HPAECs. This finding indicated that the endogenous
SO2/AAT1 pathway in ECs was probably associated with
hypoxic PH and PVR.

To investigate the regulatory effects of EC-derived SO2 on
the development of hypoxic PH and PVR, and the mecha-
nisms, EC-AAT1-Tg mice with forced expression of AAT1
in ECs were used in the in vivo experiment, and AAT1 cDNA
was transfected with a lentivirus vector to hold the AAT1
expression in in vitro experiment. Unlike WT mice, EC-
AAT1-Tg mice did not respond to hypoxic stimulation, dem-
onstrated by the results that hypoxic exposure induced an
increase in RVSP and PVR in WT mice, but normoxic EC-
AAT1-Tg mice exhibited similar RVSP and vascular struc-
ture to EC-AAT1-Tg mice exposed to hypoxia. Furthermore,
hypoxia-induced the expression of inflammatory factor
ICAM-1 and MCP-1 in the PAECs and macrophage infiltra-
tion in the pulmonary arteries were alleviated in EC-AAT1-
Tg mice. In accordance with the results in vivo, AAT1 over-
expression blocked the hypoxia-stimulated expression of
ICAM-1 and MCP-1 in HPAECs and monocyte adhesion
to HPAECs. It is known that PVR is mainly produced by a
thickening of the lamina media due to an increase in PASMC
proliferation, hypertrophy, and collagen deposition [8, 11,
25, 36]. Especially, cell hypertrophy is a well-known cell
senescence hallmark [2, 37]. Therefore, we observed the
effect of EC-derived SO2 on the PASMC behaviors in vivo.
The data showed that hypoxia stimulated the increased
expression of proliferative marker Ki-67, hypertrophy
marker α-SMA, and classical collagen I in PASMCs in WT
mice, but not in EC-AAT1-Tg mice. The abovementioned
results suggested an important role of EC-derived SO2 in
the regulation of hypoxic PVR.

Conversely, to directly investigate the effect of EC-derived
SO2 on the HPAEC inflammation, and HPASMC prolifera-
tion, hypertrophy, and collagen deposition, HPAECs were
transfected with human AAT1 shRNA lentivirus to decrease
the level of EC-derived SO2, and SO2 donor was used for res-
cuing the effect of AAT1 knockdown. As we expected, the
deficiency of endogenous SO2 in HPAECs caused spontane-
ous overexpression of ICAM-1 andMCP-1 in ECs and mono-
cyte adhesion to HPAECs. Recently, the insufficiency of
endogenous SO2 in adipocytes and macrophages has been
found to induce spontaneous inflammatory responses,
strengthening the protective role of endogenous SO2 in the

cardiovascular system [38, 39]. Interestingly, HPASMCs
cocultured with AAT1 shRNA HPAECs presented a PH phe-
notype characterized by increased Ki-67 and α-SMA expres-
sion, and accumulation of collagen I in association with the
decreased SO2 content in HPAECs. These results further sup-
ported that EC-derived SO2 was an important endogenous
controller of PVR. EC-derived SO2 inhibited the PAEC
inflammatory process in an autocrine manner, and the cocul-
ture of HPAECs and HPASMCs further verified that EC-
derived SO2 inhibited PASMC proliferation, hypertrophy,
and collagen accumulation in a paracrine manner.

To demonstrate the mechanism by which EC-derived
SO2 controls PAEC inflammation, PASMC proliferation,
and collagen accumulation, the treatment with gene knock-
down and SO2 donor in HPAECs showed that the deficiency
of EC-derived SO2 promoted nuclear translocation of p50 in
HPAECs and HPASMCs with significantly augmented
PAEC inflammation, PASMC proliferation, and collagen
remodelling. By contrast, the increase in EC-derived SO2 by
AAT1 overexpression obviously inhibited hypoxia-induced
activation of p50 in PAECs, thereby attenuating hypoxic
PAEC inflammation, PASMC proliferation, and collagen
remodelling in vitro and in vivo. More interestingly, the treat-
ment with Andro, a p50 inhibitor, markedly blocked nuclear
translocation of p50, and the subsequent PAEC inflamma-
tion, PASMC proliferation, and collagen accumulation
induced by the decrease in EC-derived SO2 in HPAECs and
HPASMCs. Therefore, these findings clarified that EC-
derived SO2 inhibited p50 activation to control the inflam-
mation of PAECs, and PASMC proliferation, and collagen
accumulation.

The mechanism by which SO2 inhibits p50 activation has
not yet been elucidated. The DNA-binding activity of p50 is
regulated by the redox reaction, and NO nitrosylates the cys-
teine sulfhydryl groups of p50 and significantly inhibits its
DNA-binding activity [40, 41]. Intriguingly, SO2 is also
implicated in oxidative and reductive modification of pro-
teins, such as AAT1 and p65, to modulate protein function
in association with the cysteine sulfhydryl groups [42, 43].
In addition, previous studies also indicated that TGF-
β/Smad, Raf-1/MEK-1/Erk/MAPK, AE2, and Dkk1/Wnt sig-
nalling pathways were implicated in the regulation of SO2 on
PASMC proliferation, hypertrophy, and collagen deposition
[35, 44–49]. In the future, further investigating the mecha-
nism by which SO2 regulates p50 and revealing the potential
clinical value of application of SO2 gas for the treatment of
hypoxic PH are necessary.

5. Conclusions

The obtained data elucidated that endogenous SO2 in ECs
exerted autocrine and paracrine effects to control PAEC
inflammation, and PASMC proliferation, hypertrophy and
collagen remodelling to inhibit PVR induced by hypoxia.
The findings revealed a novel PAEC-PASMC communica-
tion mechanism in the endogenous control of hypoxic PVR
by EC-derived SO2. Moreover, this study identified a poten-
tial target for the treatment of hypoxic PVR in aging-
related cardiopulmonary diseases.
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Supplementary Materials

Supplementary 1. Figure S1: Detection of mouse genotype. The
mice numbers are 1-9. Numbers 1, 3, and 7 represent wild-type
(WT) mice. Numbers 2, 4-6, and 8-9 represent endothelial cell-
specific AAT1 transgenic (EC-AAT1-Tg) mice.

Supplementary 2. Figure S2: Increased EC-derived SO2 ame-
liorates hypoxia-induced PAEC inflammation in vivo and
in vitro. (a) Immunofluorescence in situ detection of MCP-
1 protein expression in mouse PAECs. Red fluorescence rep-
resents MCP-1 protein and green fluorescence represents
endothelial cell marker CD31. (b) In situ detection of macro-
phage infiltration around the mouse pulmonary arteries by
immunofluorescence. Green fluorescence represents mouse
macrophage marker F4/80, and red fluorescence represents
vascular smooth muscle marker α-SMA. (c, d) Western blot
analysis (n = 9) and immunofluorescence methods were used
to detect the expression level of ICAM-1 protein in HPAECs.
Yellow fluorescence represents ICAM-1. (e) Western blot
analysis was used to detect the expression level of MCP-1
protein in HPAECs (n = 9). (f) Fluorescence method was
performed to detect the adhesion of THP-1 cells and
HPAECs. Red Dil staining marks THP-1 cells and DAPI
color marks the nuclei of HPAECs. The data were expressed
as mean ± SEM, ∗p < 0:05, scale: 20μm.

Supplementary 3. Figure S3: EC-derived SO2 deficiency stim-
ulatedHPASMC hypertrophy in vitro. (a) The expression level
of α-SMA protein, a marker of smooth muscle cell hypertro-
phy, in HPASMCs cocultured with HPAECs was detected by
Western blot method (n = 9). (b) The expression level of α-
SMA protein in HPASMCs cocultured with HPAECs in situ
was observed by immunofluorescence method. The red fluo-
rescence represents α-SMA protein and blue DAPI color
marks the nuclei of HPASMCs. The data were expressed as
mean ± SEM, ∗p < 0:05, scale bar: 20μm.

Supplementary 4. Figure S4: AAT1 overexpression inhibits
hypoxia-induced activation of p50 in PAECs. (a) Western

blot analysis was used to detect the phosphorylation level of
p50 protein in HPAECs (n = 9). (b) The distribution of p50
protein in HPAECs was detected by immunofluorescence
in situ. Green fluorescence represents p50 protein. (c) Active
motif-ELISA was performed to detect the DNA-binding
activity of p50 in HPAECs (n = 9). (d) Immunofluorescence
was used to in situ detect p-p50 protein expression in mouse
PAECs, green fluorescence represents p-p50 protein. The
data were expressed as mean ± SEM, ∗p < 0:05, scale: 20μm.
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