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Antifriction lubrication is an important research hotspot in the manufacturing field. A high-performance lubricating additive is of
great significance for condition monitoring in the metal cutting process system. To improve cutting conditions in manufacturing
process, we study the dispersion stability and tribological properties of fullerene nanoparticles in HM32 antiwear lubricating fluid.
Fullerene nanoparticles are fully integrated into HM32 antiwear lubricating fluid by electromagnetic stirring and ultrasonic
oscillation. ,e dispersion stability of fullerene nanoparticles in HM32 antiwear lubricating fluid was comprehensively studied by
microscope scanning experiment, static sedimentation experiment, and absorption experiment. ,e four-ball friction experiment
was operated to investigate the extreme pressure property and tribological property of lubricating fluids with fullerene con-
centration ranging from 100 ppm to 1000 ppm.,e results show that fullerene nanoparticle can significantly improve the extreme
pressure property and wear resistance of HM32 basic lubricating fluid. Meanwhile, we found that an excessively high con-
centration of fullerene nanoparticles will increase the friction and wear of the four-ball friction pair. ,e best concentration of
fullerene nanoparticles is 200 ppm. When the fullerene concentration reaches 200 ppm, the maximum nonsintering load is
significantly increased, and the friction coefficient and the steel ball wear scar diameter are significantly reduced.

1. Introduction

With the development of modern industry, the require-
ments for precision, efficiency, and reliability of mechanical
equipment have become increasingly strict. ,e lubrication
technology is of significant importance in the mechanical
equipment field. ,e energy waste caused by friction and
wear has seriously hindered the rapid development of the
industry. ,e economic losses caused by the failure of
mechanical parts due to friction and wear account for a
large proportion of the GDP [1]. Meanwhile, high-per-
formance lubricating additives can promote the stable
operation of the cutting process system. It is of great
significance to the condition monitoring in the metal
cutting process [2]. ,erefore, reducing the friction and

wear in mechanical equipment is a subject of great social
significance.

In recent years, domestic and foreign scholars have
conducted extensive researches on the friction reduction and
operational stability of the manufacturing process. Based on
learning machine methods [3–6], signal processing algo-
rithms [7–9], and simulation modelling technologies
[10, 11], scholars have explored tool wear condition de-
tection [12–16], bearing condition monitoring [17–21], ball
screw detection [22, 23], mechanical signature analysis
[24, 25], nanoparticle cutting fluid [26, 27], and so on in the
cutting process system. In particular, improving lubrication
technology is the most effective way to reduce the friction
and wear in the manufacturing process. Countries all over
the world attach great importance to the research of antiwear
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and antifriction technologies. For most mechanical equip-
ment, adding lubricant between friction surfaces is the main
method to reduce friction and wear. Lubricants can not only
reduce the friction coefficient and slow down wear, but also
continuously absorb heat from the friction surface to prevent
damage to parts and tools. In addition, lubricants can wash
away metal chips and dust generated by friction and wear.
However, the effectiveness of traditional lubricants is lim-
ited. It is necessary to add various additives in the lubricant
to enhance the lubricity [28]. In the metal cutting process,
nanomicrosphere lubricating additives can be applied in the
cutting fluid to enhance the lubrication and antiwear
properties of the cutting fluid [29]. By fully mixing the
nanomicrosphere lubricating additives and the cutting fluid,
the cutting fluid containing the nanoparticles is added to the
cutting fluid circulation system. Nanoparticles infiltrate into
the contact surface between the cutting tool and the
workpiece or chips with the cutting fluid, turning the sliding
friction between the tool and the workpiece into rolling/
sliding mixed friction. Meanwhile, it can reduce the direct
contact between the tool-chip peak points, decrease the tool-
chip bonding friction and chip fibrosis, and reduce the
cutting force and cutting heat in the manufacturing process.
,erefore, the application of nanomicrosphere lubricating
additives can reduce cutting tool wear, delay tool life, and
improve production efficiency in the mechanical
manufacturing process. Nowadays, using nanoparticles as
lubricant additives has become a research hotspot in the
lubrication field.

Nanomaterial lies in the transition zone between mac-
roscopic matter and microscopic atoms and molecules,
which make it exhibit many distinctive properties [30].
Nanoparticle has the characteristics of surface effect, small
size effect, quantum size effect, and macroscopic quantum
tunneling effect. Nanoparticles are mainly used as friction
reducers, antiwear agents, and extreme pressure agents in
lubrication [31–35]. ,ey have the potential to replace
traditional lubricant additives.

Some lubricationmechanisms have been proposed in the
literature. When nanoparticles are used as lubricant addi-
tives, it led to the following effects:

(1) Rolling effect: nanoparticles are easy to roll when
doing relative movement between friction pairs. It
turns the sliding friction into rolling friction between
the surfaces of the friction pair. ,e generated heat is
reduced by reducing the contact area. Meanwhile,
the nanoparticles play a supporting role and improve
the carrying capacity [36].

(2) Protective film: the nanoparticles are adsorbed to the
surface of the friction pair in the friction and wear
process due to the high ratio of surface area-to-volume.
,e exchange ofmaterialmolecules occurs between the
friction pair and the lubricating material under the
tribochemical reaction [37]. ,erefore, a reaction film
with low shear strength and high hardness is formed.
,e reaction film prevents direct contact between the
friction pairs and improves the wear resistance.

(3) Mending effect: there are some scratches and holes
on the surface of the friction pair. Nanoparticles
enter these holes due to their small size. Conse-
quently, it provides a flat surface that reduces friction
and cutting temperature [38]. ,e mending effect is
beneficial to the release of stress and the improve-
ment of tribological properties.

(4) Polishing effect: some hard nanoparticles are pol-
ishing materials. ,ey can process ultrasmooth
surfaces with root mean square roughness (RMS)
ranging from 0.1 to 1.0 nm [39]. Nanoparticles will
also produce mechanical polishing on the surface of
the friction pair during the friction process. ,e
friction coefficient and the contact pressure of the
contact surfaces are reduced after nanoparticle
polishing [40].

(5) Chemical reaction: nanoparticles may also chemi-
cally react with the friction pair surface to form a
lubricating film. For example, a lubricant containing
Cu nanoadditives reacts with the steel surface to
form a lubricating film composed of Cu, FeS, and
FeSO4 [41].

Nanolubricants show many advantages compared to tra-
ditional lubricants [42–44]. ,e oil film strength of nano-
particle additives is higher than that of traditional additives
[45]. ,e suspension density and uniformity of nanoparticle
additives are also much higher than those of traditional ad-
ditives [46]. In addition, nanoparticle additives are more en-
vironmentally friendly than traditional additives [47].

Nowadays, using nanoparticles as lubricant additives has
become a research hotspot in the lubrication field. ,e re-
search and application of nanoparticle lubricating additives
in lubricating systems provide new ideas for advanced lu-
bricating materials. In recent years, many scholars and
experts have conducted a lot of research work on the dis-
persion stability and lubrication mechanism of nano-
lubricants. Imene et al. [48] used a transmission
nanoindenter to observe that spherical MoS2 nanoparticles
exhibit a rolling effect when the positive pressure is less than
100MPa. It significantly improves the lubricant carrying
capacity and reduces the friction coefficient and wear. Peng
et al. [49] prepared SiO2 nanoparticles and diamond
nanoparticles with good dispersion in lubricants and dis-
cussed their tribological properties. It is found that SiO2
nanoparticles and diamond nanoparticles are filled in the
more severely worn microregions to repair the friction
surface. Xia et al. [50] found that inorganic nanoparticles can
form a boundary lubricant film on the friction surface under
high temperature and high pressure. In addition, the
nanoparticles deposited between the friction surfaces can fill
the surface pits and damaged parts to reduce friction and
wear. Xu et al. [51] prepared a water-soluble nano-Cu ad-
ditive with an average particle size of 3.5 nm using in situ
surface modification. Using nano-Cu particles as a water-
based lubricant additive can reduce the friction coefficient
and wear rate of pure water by about 50%. It shows that the
nanocopper particles have excellent antifriction and
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antiwear properties. Zhao et al. [52] modified graphene with
Span-80 as a dispersant to make it uniformly and stably
dispersed in the base oil. It is found that graphene can
improve the friction and wear performance of CGr15/
bronze friction pair. Graphene has the most obvious anti-
wear effect at 60°C and 100°C, and the friction coefficient and
wear rate are reduced by 78% and 95%, respectively. GUPTA
[53] used three nanofluids of aluminum oxide (Al2O3),
molybdenum disulfide (MoS2), and nanographite to opti-
mize the cutting force, tool wear, cutting temperature, and
surface finish during MQL turning of titanium alloys.
PADMINI [54] studied the effect of vegetable oil-based
nMoS2 nanofluid in the steel turning process. It was found
that nMoS2 nanofluid can effectively reduce cutting force,
temperature, tool wear, and surface roughness. Sharma et al.
[55] studied the effect of Al2O3/graphene hybrid nano-
particle additives in the AISI 304 steel turning process to
improve the tribological properties of lubricants. ,e de-
veloped hybrid nanolubricant significantly reduces tool side
wear and cutting temperature. Cetin and Kilincarslan [56]
used the suspension of borax-ethylene glycol and colloidal
suspension of borax-ethylene glycol-nanosilver particles as
cutting fluid for milling of AA7075-T6 material. It is found
that borax and nanosilver additives can improve the lu-
brication function and heat transfer properties.

,e research on the tribological properties of fullerene
C60, which has a unique spherical shape and high hardness,
is attracting increasing attention. Fullerene C60 is a molecule
with a hollow cage structure composed of 60C atoms
connected by C-C bonds. It consists of twelve five-member
rings and twenty six-member rings. Its appearance resem-
bles a football. Its molecular diameter is about 0.71 nm and
the inner cavity diameter is about 0.3 nm [57]. ,e unique
spherical structure of fullerene (C60) gives it strong pressure
resistance. Its pressure resistance is higher than that of di-
amond, and its microstrength is as high as 18GPa. ,e
hardness of C60 crystal increases with the increase of
pressure, and its structure transforms to diamond structure.
Under low pressure, fullerene molecules can roll on the
graphite surface. Its strong intramolecular force, weak in-
termolecular force, and low surface energy make it prom-
ising as a high-grade lubricant for molecular rolling balls.
,erefore, whether under low pressure or high pressure,
fullerene C60 may become an excellent lubricant [58–60].
Hirata et al. [61] used diamond to prepare fullerene under
high temperature conditions and tested the friction prop-
erties on the surface of the friction pair composed of steel
balls and silicon wafers.,e results show that the addition of
fullerene on the surface of the friction pair exhibits good
antifriction performance and antiwear performance, which
is significantly better than oil-free lubrication and graphite.
Yao et al. [62] used a four-ball machine to investigate the
tribological properties of onion-like fullerenes. ,e results
show that fullerenes have good antifriction properties. Its
antifriction performance is better than that of carbon
nanotubes, and the wear scar on the surface is lighter and
more regular. Yan et al. [63] prepared the C60/C70 mixture
by arc method and dispersed C60/C70 in paraffin oil by
solvent evaporationmethod.,e research results on the SRV

testing machine show that C60/C70 nanoparticles can in-
crease the extreme pressure load of paraffin oil by 3 times
and reduce its friction coefficient by 1/3, which can sig-
nificantly reduce the wear of the friction pair. Hong et al.
[64] synthesized a fullerene-styrene-maleic anhydride ter-
polymer and dissolved it in ethanolamine aqueous solution.
,e results of the four-ball friction tester show that the
terpolymer lubricant additive significantly improves the
load-bearing capacity and antifriction ability of the base
fluid. According to the test results, it is speculated that the
fullerene copolymer nanospheres not only effectively isolate
the surfaces of the two friction pairs to improve the bearing
capacity and reduce wear, but also generate microelastic
rolling lubrication to reduce the friction coefficient. Li et al.
[65] used a four-ball machine to investigate the extreme
pressure and antiwear properties of C60 additives in liquid
paraffin. ,e results show that C60 additive has good ex-
treme pressure and antiwear performance under higher load
and higher speed, and it has high chemical stability.

It can be seen from the above literature that fullerene
shows good tribological properties between the friction pairs
due to the super molecular structure and good chemical
inertness. In addition, fullerene has a certain aromaticity and
can be well dissolved in organic solvents.,e diameter of the
C60 nanospherical particles dissolved in the cutting fluid is
very small. Its molecule is a hollow spherical structure. ,e
density of C60 nanoparticles is 1.65 g/cm3, which is closer to
the density of water (density: 1.00 g/cm3) and that of raw
cutting oil (density: 0.869 g/cm3). So it is easy to be sus-
pended in the HM32 antiwear lubricating fluid by the
dispersion method, and the cutting oil penetrates into the
contact surface between the tool and the workpiece or the
chip. Meanwhile, the C60 nanoparticles have high com-
pressive strength, and the C60 nanospherical particles have
high thermal stability. ,e melting point is above 3000°C.
,erefore, it has innate advantages as a lubricant additive.
However, the research on its lubrication performance,
mechanism, and application is not comprehensive enough.

In this paper, fullerene nanoparticles are used as the ad-
ditive of HM32 antiwear lubricating fluid to study the dis-
persion stability and tribological properties. Firstly, the
fullerene particles and the Group III base oil are electro-
magnetically stirred under normal temperature condition to
prepare fullerene additives. ,en, the fullerene additive and
HM32 antiwear lubricating fluid are electromagnetically
stirred at room temperature. Finally, the fullerene nano-
microsphere lubricating fluid is ultrasonically oscillated for
long time to make the fullerene nanoparticles uniformly
dispersed.,e dispersion stability of fullerene nanoparticles in
HM32 antiwear lubricating fluid was characterized by mi-
croscope scanning, precipitation tests, and ultraviolet spec-
troscopy. ,en a four-ball friction tester was used to carry out
the friction and wear test. ,e friction characteristics and
extreme pressure performance of 7 kinds of lubricating fluids
with fullerene concentration ranging from 100 ppm to
1000 ppm were measured. ,e experimental results show that
fullerene nanoparticle can significantly improve the extreme
pressure property and wear resistance of HM32 basic lubri-
cating fluid. ,e best concentration of fullerene nanoparticles
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is 200 ppm. When the fullerene concentration reaches
200ppm, the maximum nonsintering load increases by
36.01%, the sintering load increases by 100.81%, the friction
coefficient decreases by 41.28%, and the wearmark diameter of
the steel ball decreases by 10.40%. Meanwhile, we found that
an excessively high concentration of fullerene nanoparticles
will increase the friction and wear of the four-ball friction pair.
It may be that toomany fullerene nanoparticles aremore likely
to agglomerate to produce macromolecular fullerenes. It in-
creases the internal friction of lubricating oil molecules and
deteriorates the tribological properties of lubricating fluid.

2. Materials and Methods

2.1. Fullerene Characterization and Lubricant Additives’
Preparation. ,e fullerene nanoparticles used in this paper
are from Xiamen Funa New Material Technology Co., Ltd.
,e purity of the fullerene solid particles is analyzed and
calculated by liquid chromatography. ,e purity of C60 is
calculated to be 99.950%. ,e equipment used is Shimadzu
liquid chromatography SPD-16 by integrating the peak area
of HPLC (High-Performance Liquid Chromatography). ,e
chromatogram data of the C60 product and the purity
calculation table is shown in Table 1.

,e microscopic morphology of fullerene C60 nano-
particles is shown in Figure 1.,e photographing equipment
used is the ZEISS Gemini SEM 500 field emission scanning
electron microscope. It can be seen from the micrograph
image that the fullerene solid particles are composed of
several spherical fullerene molecular clusters.

We choose Total HM32 construction machinery anti-
wear hydraulic oil as the base fluid. ,e HM32 antiwear
hydraulic oil has excellent antiwear properties and hydraulic
stability. It is widely used in mechanical hydraulic systems
and metal cutting systems. Firstly, the fullerene particles and
Group III base oil are electromagnetically stirred under
normal temperature conditions to prepare fullerene addi-
tives. ,e electromagnetic stirring lasts up to 4 hours to fully
disperse the fullerene particles. ,en, the fullerene additive
and the HM32 antiwear lubricating fluid were continuously
electromagnetically stirred at room temperature for 4 hours.
Finally, the fullerene nanomicrosphere lubricating fluid was
ultrasonically oscillated for 2 hours to make the fullerene
nanoparticles uniformly dispersed in the base fluid. We have
prepared a total of 6 suspensions with fullerene mass
fractions: 100 ppm, 200 ppm, 300 ppm, 400 ppm, 500 ppm,
and 1000 ppm.

2.2. Dispersibility and Stability Test of Fullerene
Nanoparticles. We characterized the dispersion stability of
fullerene nanoparticles in the HM32 antiwear lubricating
fluid through microscope scanning experiment, static sed-
imentation experiment, and absorption experiment.

2.2.1. Microscope Scanning Experiment. We scan and pho-
tograph the nanofullerene particle suspension after elec-
tromagnetic stirring and ultrasonic oscillation. ,e
nanofullerene particle suspension is dropped on a clean

silicon wafer. ,e silicon wafers used are ultrasonically
shaken and cleaned in an ethanol/acetonemixed solution for
one hour, and they are dried in a drying box. We put the
silicon wafer dripped with the fullerene suspension on the
heating table for a constant temperature heating treatment at
300 degrees Celsius for 2 hours to ensure that the liquid in
the suspension evaporates away and the fullerene nano-
particles remain on the silicon wafer. Finally, the dried
silicon wafer with fullerene nanoparticles was microscopi-
cally photographed. ,e photographing equipment used is a
ZEISS Gemini SEM 500 field emission scanning electron
microscope. ,e actual instrument is shown in Figure 2. By
observing the distribution of fullerene nanoparticles, we can
analyze the distribution of fullerene nanoparticles in the
suspension.

2.2.2. 1e Static Sedimentation Experiment. ,e static
sedimentation experiment refers to letting the fullerene
nanoparticle suspension solution stand still and settle under
gravity. ,e static precipitation method mainly evaluates the
stability of the fullerene additive in the lubricating fluid by
visually observing the change process of the supernatant
liquid height and the precipitation volume. ,e lower the
supernatant height the smaller the volume of the sedi-
mentation. It indicates that the stability of the fullerene
additive in the lubricating fluid is better. Conversely, the
higher the supernatant height the larger the precipitation
volume. It indicates that the stability of the fullerene additive
in the lubricating fluid is worse.

,e prepared fullerene nanoparticle suspension is placed
in a ventilated and dry place. We take pictures of the ful-
lerene nanoparticle suspensions at regular intervals. After-
wards, we observe the precipitation of the suspension with
different storage time to analyze the dispersion stability of
the fullerene nanoparticles in the suspension.

2.2.3. 1e Absorption Experiment. ,e absorption experi-
ment is to measure the absorbance of the fullerene nano-
particle suspension supernatant with an ultraviolet
spectrophotometer. ,e absorbance value is proportional to
the number of fullerene nanoparticles in the suspension.
Absorbance is defined as

absorbance � lg
I0

I
 , (1)

where I0 stands for the incident light intensity and I stands
for the transmitted light intensity.

,e higher the absorbance value is, the more the ful-
lerene nanoparticles are contained in the upper solution per
unit volume. It means that the dispersion of particles in the
suspension is better. ,erefore, we use the absorption
spectrophotometric method to evaluate the dispersibility of
the fullerene additives in the lubricating fluid. ,e prepared
fullerene nanoparticle suspension is placed in an ultraviolet-
visible spectrometer for spectrum measurement. ,e in-
strument used is Shimadzu UV-Vis spectrophotometer-
2600. ,e actual instrument is shown in Figure 3.
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We put the fullerene nanoparticle suspension into a
clean spectroscopic dish. ,e spectrometer was cleaned by
ultrasonic shaking in a mixed solution of ethanol/acetone for
one hour. ,en the spectroscopic dish containing the ful-
lerene nanoparticle suspension was placed into the UV-2600
to obtain the spectrum corresponding to the fullerene
nanoparticle suspension. We measure the spectrum of each
fullerene nanoparticle suspension in an ultraviolet-visible
spectrometer at regular intervals. We observe the change
process of the suspension spectrum for different storage time
to analyze the dispersion stability of the fullerene nano-
particles in the suspension.

2.3. Friction and Wear Test of Fullerene Nanoparticles.
We use the Xiamen Tianji MS-10J four-ball friction testing
machine to carry out the friction and wear test of the C60
nanoparticle suspension. ,e four-ball friction machine is a
point contact tester, which can accurately measure the wear
value in a short time and requires only a small sample
amount. ,e four-ball machine can measure the friction
properties of lubricating oils, as well as extreme pressure and
wear properties, including lubrication properties that pro-
tect the friction pair from scratches, seizures, sintering, or
other wear phenomena under heavy loads. ,erefore, the
four-ball friction tester is widely used in the determination of
the antiwear performance and load-bearing capacity of
lubricants.

,e physical map of the equipment is shown in Figure 4.
,e testing machine adopts the load control mode of au-
tomatic loading and realizes stepless speed regulation
through the servo motor.,e friction pair used in this article
is a four-ball friction pair, and the main structure diagram is
shown in Figure 5.

Figure 2: ZEISS Gemini SEM 500 field emission scanning electron
microscope.

Table 1: ,e chromatogram data of the C60 product and the purity calculation.

Peak no. Time Area Peak start time Peak end time Area (%) Remark
1 5.110 1046 4.908 5.383 0.008
2 8.178 13453835 7.700 10.408 99.950 C60
3 9.272 892 9.117 9.400 0.007 C60 oxides
4 16.708 4757 16.092 17.325 0.035
Total 13460529 100.000

Figure 1: Microscopic morphology of fullerene C60 nanoparticles.

Figure 3: Shimadzu UV-Vis spectrophotometer-2600.
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,e three steel balls in the lower oil box are in contact
with each other, and the steel balls in the upper clamp are in
point contact with the three steel balls. ,e friction pair is
made of GCr15, the diameter is 12.70mm, and the hardness
is HRC60. Before starting the experiment, the fullerene
nanoparticle suspension was poured into the oil box below.
,erefore, the steel balls can be completely immersed in the
test solution. We operated the numerical control system to
control the loading load of the lower fixture and the loading
speed of the upper fixture when all four steel balls are in
contact. In this way, friction can be generated between the
friction pairs and wear spots can be obtained on the three
steel balls. ,e steel ball wear and sintering tests were carried
out by the four-ball friction tester to evaluate the largest
nonseizure load PB, sintering load PD, and wear scar

diameter of the steel ball friction pair under the fullerene
suspension lubrication.

3. Results and Discussion

3.1. Study on Dispersion Stability of Fullerene Nanomicro-
sphere Lubricating Additives. ,e microscopic morphology
of 300 ppm fullerene nanoparticle suspension is shown in
Figure 6. From the microscopic morphology of the fullerene
nanoparticle suspension, it can be seen that the fullerene
nanoparticles are relatively uniformly distributed on the
silicon wafer. ,e fullerene nanoparticles present agglom-
erated spherical shape. ,e oil molecules show ring shape
structure. What is more, the molecular film formed by the
fullerene nanomolecules and oil molecules is uniformly
mixed together. It preliminarily shows that the fullerene
nanoparticles are uniformly dispersed in the HM32 base
fluid.

We place the prepared fullerene nanoparticle suspension
in a ventilated and dry environment for static sedimentation.
,e lubricating fluids with seven fullerene concentrations
after standing for 10 days and 20 days are shown in Figure 7.
It can be seen from Figure 7 that there is still no clear liquid
in the upper region of the fullerene nanoparticle suspension
and no precipitation in the lower region after standing for 20
days. Each bottle of fullerene nanoparticle suspension
maintains a uniform color. It preliminarily shows that the
prepared fullerene nanoparticle suspension can maintain a
uniform distribution of fullerene nanoparticles over time
and has excellent dispersion stability.

Figure 8 shows the UV spectrum of 7 kinds of lubricating
fluids with fullerene concentration ranging from 100 ppm to
1000 ppm. It can be seen from Figure 8 that the UV spectrum
of the fullerene nanoparticle suspension after standing for 20
days is very similar to the original UV spectrum. It shows
that the concentration of fullerene nanoparticles in the
upper region of the fullerene nanoparticle suspension does
not change significantly. It indicates that the prepared ful-
lerene nanoparticle suspension can maintain a uniform
distribution of fullerene nanoparticles for a long time and
has excellent dispersion stability.

3.2. Study on FrictionCharacteristics of C60Nanomicrosphere
Lubricating Additives

3.2.1. Extreme Pressure Performance of Fullerene Nano-
particles in HM32 Base Fluid. In order to comprehensively
investigate the extreme pressure performance of fullerene
nanoparticles in the HM32 base fluid, we measured the
maximum seizure-free load and sintering load of seven kinds
of lubricating fluids with different fullerene concentrations
ranging from 100ppm to 1000 ppm. ,e results are shown in
Table 2. It can be seen fromTable 2 that fullerene nanoparticles
have a significant impact on the extreme pressure performance
of the HM32 base fluid. When the fullerene concentration
reached 200 ppm, the maximum nonseize load increased by
36.01% and the sintering load increased by 100.81%. But when
the concentration is increased to more than 200 ppm, the
maximum nonjamming load is basically maintained at the

Rotation direction

Loading direction

F

Wear scar

Figure 5: Schematic diagram of four-ball friction and wear tester
device.

Figure 4: Four-ball friction testing machine MS-10J (produced by
Xiamen Tianji Automation Co., Ltd.).
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(a) (b)

(c) (d)

Figure 6: Microscopic morphology of 300 ppm fullerene nanoparticle suspension.

(a) (b)

Figure 7: Fullerene nanoparticle suspension: (a) left for 10 days and (b) left for 20 days.
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Figure 8: Continued.

Mathematical Problems in Engineering 7



same level, and the increase rate of the sintering load is sig-
nificantly reduced. As the concentration increases, the extreme
pressure performance has not been further improved. It in-
dicates fullerene nanoparticles can significantly improve the
extreme pressure performance of lubricants. However, it is
difficult to further improve the extreme pressure performance
of lubricating base fluid when the fullerene nanoparticles
concentration exceeds a certain amount.

3.2.2. Friction Properties of Fullerene Nanoparticles in HM32
Base Fluid. In order to comprehensively investigate the
extreme pressure performance of fullerenes in the HM32
base fluid, the friction coefficient and steel ball wear scar
diameter (WSD) of seven fullerene lubricating fluids after a
four-ball long grinding test under a 200N normal load were
measured. ,e results are shown in Table 3. It can be seen

from Table 3 that fullerenes show significant antiwear and
antiwear properties. Especially when the concentration is
200 ppm, the friction coefficient and the diameter of the wear
scar of the steel ball are significantly improved. When the
fullerene concentration reached 200 ppm, the friction co-
efficient decreased by 41.28% and the wear scar diameter of
the steel ball decreased by 10.40%. However, when the
concentration increased to more than 200 ppm, the friction
coefficient and steel ball wear scar diameter did not continue
to significantly decrease or even fluctuate, and the antiwear
and antiwear performance were not further improved. It
indicates that a proper concentration of fullerene nano-
particles can significantly improve the antiwear and antiwear
properties of the HM32 base fluid, but an excessively high
concentration of fullerene nanoparticles will increase fric-
tion and wear. It may be that too many fullerene nano-
particles are more likely to agglomerate to produce
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Figure 8: ,e UV spectrum of fullerene nanoparticles lubricating fluids.

Table 2: Extreme pressure properties of fullerene nanoparticles in the HM32 base oil.

Lubricating fluid ,e largest nonseizure load (PB) (N) ,e sintering load (PD) (N)
HM32 647 1235
HM32+ 100 ppm C60 nanoparticle 765 1782
HM32+ 200 ppm C60 nanoparticle 880 2480
HM32+ 300 ppm C60 nanoparticle 892 2504
HM32+ 400 ppm C60 nanoparticle 901 2513
HM32+ 500 ppm C60 nanoparticle 900 2528
HM32+ 1000 ppm C60 nanoparticle 912 2550
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macromolecular fullerenes, which cannot form an adsorp-
tion film on the friction surface. It will also increase the
internal friction of the lubricating oil molecules, making the
tribological properties of the lubricating oil worse.

4. Conclusions

In order to explore the application prospects of fullerene
lubricating additives, this paper thoroughly studies the
dispersion stability and tribological property of fullerene
nanoparticles in lubricating fluids. In this paper, a fullerene
nanoparticle suspension was prepared by a combination of
electrolytic stirring and ultrasonic dispersion.,e dispersion
stability of fullerene nanoparticles in HM32 antiwear lu-
bricating fluid was comprehensively studied by microscope
scanning experiment, static sedimentation experiment, and
absorption experiment. Finally, the reliability of the prep-
aration method for fullerene nanoparticle suspension was
verified. ,e four-ball friction experiment method was used
to investigate the extreme pressure and tribological prop-
erties of 7 kinds of lubricating fluids with fullerene con-
centration ranging from 100 ppm to 1000 ppm. ,e results
show that fullerene nanoparticle can significantly improve
the extreme pressure performance and wear resistance of
HM32 basic lubricating fluid.

,rough the research of this paper, the following con-
clusions can be drawn:

(1) ,e combination of electromagnetic stirring and
ultrasonic dispersion is a very effective process to
maintain the dispersion stability of fullerene nano-
particles in the lubricating base liquid. It can keep the
fullerene nanoparticle suspension in a stable state for
a long time without precipitation.

(2) Fullerene nanoparticles have a significant improve-
ment effect on the extreme pressure performance of
HM32 base fluid. ,e maximum nonsintering load
increases by 36.01% and the sintering load increases
by 100.81%when the fullerene concentration reaches
200 ppm. However, it is difficult to further improve
the extreme pressure performance of the HM32
lubricating base fluid when the fullerene nano-
particles concentration exceeds 200 ppm.

(3) Fullerene has significant antiwear property. ,e
friction coefficient decreases by 41.28% and the steel
ball wear scar diameter decreases by 10.40% when
the fullerene concentration reaches 200 ppm.
However, an excessively high concentration of

fullerene nanoparticles will increase friction and
wear. It may be that toomany fullerene nanoparticles
are more likely to agglomerate to produce macro-
molecular fullerenes. It increases the internal friction
of lubricating oil molecules and deteriorates the
tribological properties of lubricating oil.

Data Availability

,e data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

,e authors declare that the research was conducted in the
absence of any commercial or financial relationships that
could be construed as a potential conflict of interest.

Authors’ Contributions

Jingshan Huang and Bin Yao conceived the lubricating
additives; Jingshan Huang and Hao Sun performed the
experiment; Jingshan Huang preprocessed and analyzed the
data; Jingshan Huang wrote the paper; Xi Wang and Bin-
qiang Chen reviewed and edited the manuscript; all authors
read and approved the manuscript.

References

[1] J. Luo and J. Li, “,e progress and future of tribology,” Lu-
brication & Sealing, vol. 12, pp. 1–12, 2010.

[2] I. El-,alji and E. Jantunen, “A summary of fault modelling
and predictive health monitoring of rolling element bearings,”
Mechanical Systems and Signal Processing, vol. 60-61,
pp. 252–272, 2015.

[3] L. Jing, M. Zhao, P. Li, and X. Xu, “A convolutional neural
network based feature learning and fault diagnosis method for
the condition monitoring of gearbox,”Measurement, vol. 111,
pp. 1–10, 2017.

[4] J. Ou, H. Li, G. Huang, and G. Yang, “Intelligent analysis of
tool wear state using stacked denoising autoencoder with
online sequential-extreme learning machine,” Measurement,
vol. 167, Article ID 108153, 2020.

[5] Q. Nazir and C. Shao, “Online tool condition monitoring for
ultrasonic metal welding via sensor fusion and machine
learning,” Journal of Manufacturing Processes, vol. 62, no. 5,
pp. 806–816, 2021.

[6] P. D. Deshpande, B. P. Gautham, A. Cecen, S. Kalidindi,
A. Agrawal, and A. Choudhary, “Application of statistical and
machine learning techniques for correlating properties to
composition and manufacturing processes of steels,” in

Table 3: Frication properties of fullerene nanoparticles in the HM32 base oil (normal load 200N).

Lubricating fluid Frication coefficient ,e wear scar diameter (mm)
HM32 0.109 0.519
HM32+ 100 ppm C60 nanoparticle 0.086 0.498
HM32+ 200 ppm C60 nanoparticle 0.064 0.465
HM32+ 300 ppm C60 nanoparticle 0.069 0.447
HM32+ 400 ppm C60 nanoparticle 0.078 0.487
HM32+ 500 ppm C60 nanoparticle 0.067 0.509
HM32+ 1000 ppm C60 nanoparticle 0.071 0.513

Mathematical Problems in Engineering 9



Proceedings of the 2nd World Congress on Integrated Com-
putational Materials Engineering (ICME), 2013.

[7] B.-q. Chen, B.-x. Zheng, C.-q. Wang, and W.-f. Sun,
“Adaptive sparse detector for suppressing powerline com-
ponent in EEG measurements,” Frontiers in Public Health,
vol. 9, Article ID 669190, 2021.

[8] B. Chen, B. Zheng, and W. Sun, “Ultra-resolution spectral
correction based on adaptive linear neuron for biomedical
signal processing,” Frontiers in Public Health, vol. 9, Article ID
682377, 2021.

[9] B. Chen, Y. Li, W. Sun, and W. He, “Removal of power line
interference from ECG signals using adaptive notch filters of
sharp resolution,” IEEE Access, vol. 7, pp. 150667–150676,
2019.

[10] A. M. Khorasani and A. Kootsookos, “Modeling and opti-
mization of the cutting fluid flow and parameters for in-
creasing tool life in slot milling on st52,” International Journal
of Modeling Simulation & Scientific Computing, vol. 4, no. 2,
pp. 270–326, 2013.

[11] F. Wei, K. Zhang, S. Cai, C. Sun, W. Sun, and B. Liu, “A force
model for face grinding using digital graphic scanning (DGS)
method,” International Journal of Advanced Manufacturing
Technology, vol. 113, pp. 3261–3270, 2021.

[12] F. J. Alonso and D. R. Salgado, “Analysis of the structure of
vibration signals for tool wear detection,”Mechanical Systems
and Signal Processing, vol. 22, no. 3, pp. 735–748, 2008.

[13] W. Song, S. Deng, J. Yang, and Q. Cheng, “Tool wear detection
based on duffing-holmes oscillator,” Mathematical Problems
in Engineering, vol. 2008, Article ID 510406, 15 pages, 2008.

[14] S. Dutta, A. Datta, N. D. Chakladar, S. K. Pal,
S. Mukhopadhyay, and R. Sen, “Detection of tool condition
from the turned surface images using an accurate grey level
co-occurrence technique,” Precision Engineering, vol. 36,
no. 3, pp. 458–466, 2012.

[15] A. Siddhpura and R. Paurobally, “A review of flank wear
prediction methods for tool condition monitoring in a
turning process,” International Journal of Advanced
Manufacturing Technology, vol. 65, no. 1–4, pp. 371–393, 2013.

[16] W. Sun, H. Gao, S. Tan, Z. Wang, and L. Duan, “Wear de-
tection of WC-Cu based impregnated diamond bit matrix
based on SEM image and deep learning,” International
Journal of Refractory Metals and Hard Materials, vol. 98,
Article ID 105530, 2021.

[17] P. Junior, D’Addona, M. Doriana, and P. R. Aguiar, “Dressing
tool condition monitoring through impedance-based sensors:
Part 1—PZTdiaphragm transducer response and EMI sensing
technique,” Sensors, vol. 18, no. 12, 2018.

[18] M. D. Prieto, G. Cirrincione, A. G. Espinosa, J. A. Ortega, and
H. Henao, “Bearing fault detection by a novel condition-
monitoring scheme based on statistical-time features and
neural networks,” IEEE Transactions on Industrial Electronics,
vol. 60, no. 8, pp. 3398–3407, 2013.

[19] A. Fatemeh, T. Antoine, and T. Marc, “Tool condition
monitoring using spectral subtraction and convolutional
neural networks in milling process,” International Journal of
Advanced Manufacturing Technology, vol. 98, pp. 3217–3227,
2018.

[20] D. Azad and K. Ramji, “Identification of bearing assembly
defects using finite element analysis and condition moni-
toring techniques,” International Journal of Engineering Re-
search & Technology, vol. 1, pp. 1–5, 2012.

[21] H. O. A. Ahmed, M. L. D.Wong, and A. K. Nandi, “Intelligent
condition monitoring method for bearing faults from highly
compressed measurements using sparse over-complete

features,” Mechanical Systems and Signal Processing, vol. 99,
pp. 459–477, 2018.

[22] Y. Huang and Y. Shin, “Method of intelligent fault diagnosis
of preload loss for single nut ball screws through the sensed
vibration signals,” International Journal of Mechanical and
Mechatronics Engineering, vol. 6, no. 5, 2012.

[23] P. C. Tsai, C. C. Cheng, and Y. C. Hwang, “Ball screw preload
loss detection using ball pass frequency,” Mechanical Systems
and Signal Processing, vol. 48, no. 1-2, pp. 77–91, 2014.

[24] T. R. Lin, E. Kim, and A. C. C. Tan, “A practical signal
processing approach for condition monitoring of low speed
machinery using peak-hold-down-sample algorithm,” Me-
chanical Systems and Signal Processing, vol. 36, no. 2,
pp. 256–270, 2013.

[25] J. Huang, B. Chen, L. Yang, and W. Sun, “Fractal geometry of
wavelet decomposition in mechanical signature analysis,”
Measurement, vol. 173, no. 5, Article ID 108571, 2020.

[26] A. K. Sharma, R. K. Singh, A. R. Dixit, and A. K. Tiwari,
“Novel uses of alumina-MoS2 hybrid nanoparticle enriched
cutting fluid in hard turning of AISI 304 steel,” Journal of
Manufacturing Processes, vol. 30, pp. 467–482, 2017.

[27] S. E. Mustafa, M. Ali, A. Iqbal, M. B. N. Shaikh, and R. Hassan,
“Formulation and analysis of cost-effective environment-
friendly metal cutting nanofluids using zinc oxide on turning
of AISI 52100 steel usingMQL,” Engineering Research Express,
vol. 3, 2020.

[28] X. Sun, 1e Influence of Graphene and Carbon Nanotubes on
the Friction Properties of Lubricants, Harbin Institute of
Technology, Harbin, China, 2017.

[29] V. Vasu and K. Kumar, “Analysis of nanofluids as cutting fluid
in grinding EN-31 steel,” Nano-Micro Letters, vol. 3, no. 4,
pp. 209–214, 2011.

[30] S. Wen, Nanotribology, Tsinghua University Press, Beijing,
China, 1998.

[31] G. Duursma, K. Sefiane, and A. Kennedy, “Experimental
studies of nanofluid droplets in spray cooling,” Heat Transfer
Engineering, vol. 30, no. 13, pp. 1108–1120, 2009.

[32] E. G. Zadoshenko, V. E. Burlakova, and A. A. Novikova,
“Effect of nickel nanopowder on lubrication behaviour of low-
temperature grease in steel-steel tribosystem,” Tribology:
Materials, Surfaces & Interfaces, vol. 14, no. 1, pp. 1–8, 2019.

[33] G.-Z. Zhu, Y.-Z. Gao, S.-Y. Liu, and H.-C. Zhang, “Antiwear
and self-repairing mechanisms of magnesium hydroxysilicate
composite powder as a lubricating oil additive for steel-steel
pair,” Journal of Tribology, vol. 32, no. 2, pp. 183–188, 2012.

[34] Q. Wan, Yi Jin, P. Sun, and Y. Ding, “Rheological and tri-
bological behaviour of lubricating oils containing platelet
MoS2 nanoparticles,” Journal of Nanoparticle Research,
vol. 16, no. 5, pp. 1–9, 2014.

[35] S. Kwon, J.-H. Ko, K.-J. Jeon, Y.-H. Kim, and J. Y. Park,
“Enhanced nanoscale friction on fluorinated graphene,”Nano
Letters, vol. 12, no. 12, pp. 6043–6048, 2012.

[36] X. Yan, Study on Dispersion Stability and Tribological Prop-
erties of Nano-Serpentine/GO in Base Lubricating Oil, Yan-
shan University, Qinhuangdao, China, 2019.

[37] H. Liu, S.-M. Zhang, P.-Y. Zhang, and Y.-J. Zhang, “Prepa-
ration of bismuth nanoparticles via a thermal decomposition
process and evaluation of their tribological properties in
synthetic ester oils,” in Proceedings of the 14th IFToMMWorld
Congress, pp. 547–555, Taipei, Taiwan, 2015.

[38] S. H. Musavi, B. Davoodi, and S. A. Niknam, “Effects of
reinforced nanofluid with nanoparticles on cutting tool wear
morphology,” Journal of Central South University, vol. 26,
no. 5, pp. 1050–1064, 2019.

10 Mathematical Problems in Engineering



[39] H. Xie, Study on the Tribological Properties and Lubricant
Mechanisms of Nanolubricants for Magnesium Alloys Rolling,
Chongqing University, Chongqing, China, 2016.

[40] F. Jian and Y. Zhao, “Wear self-compensating tribological
effects of lubricating additives,” Materials Protection, vol. 39,
pp. 34–36, 2006.

[41] C. Zhang, S. Zhang, S. Song et al., “Preparation and tribo-
logical properties of surface-capped copper nanoparticle as a
water-based lubricant additivee,” Tribology Letters, vol. 54,
no. 1, pp. 25–33, 2014.

[42] S. Ingole, A. Charanpahari, K. Amol, S. S. Umareb, D. V. Bhat,
and J. Menghani, “Tribological behavior of nano TiO2 as an
additive in base oil,” Wear, vol. 301, no. 1-2, pp. 776–785,
2013.

[43] T. Luo, X. Wei, L. Huang, and F. Yang, “Tribological prop-
erties of Al2O3 nanoparticles as lubricating oil additives,”
Ceramics International, vol. 40, no. 5, pp. 7143–7149, 2014.

[44] M. Gulzar, H.Masjuki, M. Varman et al., “Improving the AW/
EP ability of chemically modified palm oil by adding CuO and
MoS2 nanoparticles,” Tribology International, vol. 88,
pp. 271–279, 2015.

[45] R. Chou, A. H. Battez, J. J. Cabello, J. L. Viesca, A. Osorio, and
A. Sagastume, “Tribological behavior of polyalphaolefin with
the addition of nickel nanoparticles,” Tribology International,
vol. 43, no. 12, pp. 2327–2332, 2010.

[46] S. Yang, X.-J. Wang, X.-F. Li, and X. Li, “Influence of pH and
SDBS on the stability and thermal conductivity of nanofluids,”
Energy & Fuels, vol. 23, no. 5, pp. 270–278, 2009.

[47] Z. Jia, P. Wang, Y. Xia, H.-b. Zhang, X. Pang, and B. Li,
“Tribological behaviors of diamond-like carbon coatings on
plasma nitrided steel using three BN-containing lubricants,”
Applied Surface Science, vol. 255, no. 13-14, pp. 6666–6674,
2009.

[48] L. Imene, D. Fabrice, V. Beatrice, and M. Jean-Michel, “Real
time TEM imaging of compression and shear of single ful-
lerene-like MoS2 nanoparticle,” Tribology Letters, vol. 45,
pp. 131–141, 2011.

[49] D. X. Peng, Y. Kang, R. M. Hwang, S. S. Shyr, and Y. P. Chang,
“Tribological properties of diamond and SiO2 nanoparticles
added in paraffin,” Tribology International, vol. 42, no. 6,
pp. 911–917, 2009.

[50] Y. Xia, W. Yang, X. Ma et al., “Research on the improvement
of anti-wear properties of lubricating oil by nanometer copper
powder,” Lubrication and Sealing, vol. 5, pp. 43-44, 1998.

[51] Y.-H. Xu, G.-B. Yang, S.-M. Zhang, and P.-Y. Zhang,
“Preparation of water-soluble nano-copper and its tribolog-
ical properties,” Acta Tribology, vol. 32, no. 2, pp. 165–170,
2012.

[52] L. Zhao, Z. Cai, Z. Zhang, and X. Zhang, “Tribological
properties of graphene as effective lubricant additive in oil on
textured bronze surface,” Chinese Journal of Materials Re-
search, vol. 30, no. 1, pp. 57–62, 2016.

[53] M. K. Gupta, P. K. Sood, and V. S. Sharma, “Optimization of
machining parameters and cutting fluids during nano-fluid
basedminimum quantity lubrication turning of titanium alloy
by using evolutionary techniques,” Journal of Cleaner Pro-
duction, vol. 135, pp. 1276–1288, 2016.

[54] R. Padmini, P. V. Krishna, and G. K. M. Rao, “Effectiveness of
vegetable oil based nanofluids as potential cutting fluids in
turning AISI 1040 steel,” Tribology International, vol. 94,
pp. 490–501, 2016.

[55] A. K. Sharma, A. K. Tiwari, A. R. Dixit, R. K. Singh, and
M. Singh, “Novel uses of alumina/graphene hybrid nano-
particle additives for improved tribological properties of

lubricant in turning operation,” Tribology International,
vol. 119, pp. 99–111, 2018.

[56] M. H. Cetin and S. K. Kilincarslan, “Effects of cutting fluids
with nano-silver and borax additives on milling performance
of aluminium alloys,” Journal of Manufacturing Processes,
vol. 50, pp. 170–182, 2020.

[57] L. Hong, Study on the Synthesis and Tribological Properties of
Water-Soluble Fullerene Copolymer Nano-Microsphere Lu-
bricating additives, Huazhong University of Science and
Technology, Wuhan, China, 2001.

[58] L. Hong, J. Luo, and X. Hu, “Tribological research progress of
fullerene (C60),” Lubrication and Sealing, vol. 27, no. 1,
pp. 31–33, 2002.

[59] D. G. Tochil’nikov, “Effect of fullerene black additives on
boundary sliding friction of steel counterbodies lubricated
with mineral oil,” Journal of Friction and Wear, vol. 33, no. 2,
pp. 94–100, 2012.

[60] J. Lee, “Enhancement of lubrication properties of nano-oil by
controlling the amount of fullerene nanoparticle additives,”
Tribology Letters, vol. 28, pp. 203–208, 2007.

[61] A. Hirata, M. Igarashi, and T. Kaito, “Study on solid lubricant
properties of carbon onions produced by heat treatment of
diamond clusters or particles,” Tribology International,
vol. 37, no. 11-12, pp. 899–905, 2004.

[62] Y. Yao, X. Wang, and J. Guo, “Tribological property of onion-
like fullerenes as lubricant additive,”Materials Letters, vol. 62,
pp. 2524–2527, 2008.

[63] F. Yan, Z. Jin, and X. Zhang, “Study on the tribological
properties of C60/C70 as lubricant additives,” Tribology
Journal, vol. 13, no. 1, pp. 59–62, 1993.

[64] L. Hong, W. Guan, and D. Liao, “Tribological behavior of
fullerene-styrene-maleic anhydride terpolymer,” Applied
Chemistry, vol. 17, no. 2, pp. 180–182, 2000.

[65] J. Li, Li Han, and W. Sun, “Research on the tribological
properties of C60,” Chinese Journal of Tribology, vol. 20, no. 4,
pp. 307–309, 2000.

Mathematical Problems in Engineering 11



Research Article
A Potential Failure Mode and Effect Analysis Method of
Electromagnet Based on Intuitionistic Fuzzy Number in
Manufacturing Systems

Jihong Pang,1,2 Jinkun Dai,2 and Faqun Qi 2

1College of Business, Shaoxing University, Shaoxing 312000, China
2College of Mechanical and Electrical Engineering, Wenzhou University, Wenzhou 325035, China

Correspondence should be addressed to Faqun Qi; qifaqunqq@163.com

Received 15 May 2021; Accepted 5 August 2021; Published 23 August 2021

Academic Editor: Francesco Tornabene

Copyright © 2021 Jihong Pang et al. +is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Failure mode and effect analysis (FMEA) is a systematic activity in the stage of product design and process design. However, the
traditional FMEA has some shortcomings in practical application, such as too many evaluation languages, uncertain weights of
influencing factors, and uncertain weights of evaluation members. +is paper presents an FMEA evaluation method in
manufacturing system based on similarity measure, nonlinear programming model, and intuitionistic fuzzy number (IFN).
Firstly, the IFN is used to evaluate failure mode, which overcomes the defect of traditional FMEA evaluation value. Secondly, the
weight of failure evaluation team members is solved according to the concept of similarity measure to make up for the blank of
evaluation members’ weight aiming at the shortage of unknown weight. +en, the definition of consensus measure is introduced
to make the evaluators reach a consensus, and the weights of influencing factors of failure modes (FMs) are calculated. Finally, the
weights of evaluators and influencing factors are calculated by IFN algorithm and score function, and the score value of each FM is
obtained to rank instead of risk priority number (RPN). +e objectivity and practicability of the new method are verified by the
example of failure mode for an attractive electromagnet manufacturing system.

1. Introduction

FMEA is a systematic activity in product design stage and
process design stage. +e subsystems and parts of FMEA are
analyzed one by one to identify all potential FMs and their
possible consequences, so as to take necessary measures in
advance to improve the quality and reliability of products.
FMEAwas originally carried out in the product design phase
of the aerospace industry in the 1960s to help improve safety
and reliability [1]. In addition, FMEA enables an organi-
zation to proactively prevent failure, not just respond to it
[2]. FMEA is also a simple method to solve the complex
failure mode evaluation process [3]. Because of its simple
and easy operation, FMEA is widely used in transportation,
energy, medical, and supply chain transportation [4, 5].

On the other hand, the traditional FMEA process is used
to evaluate the FMs of products or systems by team

members. +e severity, occurrence, and detection (S, O, D)
of FMs according to their own professional knowledge are
calculated by the scores of each failure mode [6]. Although
FMEA is widely used, it has some inherent defects. To ensure
the objectivity of FMEA, we must ensure that the evaluation
language of failure mode should conform to the actual
situation, so as to make a more comprehensive and specific
description of failure mode. However, the traditional FMEA
uses natural language to carry out evaluation, which does not
conform to the psychological changes of the evaluation
members in reality [7]. Secondly, the weight of factors is also
the key to affect the final evaluation results [8]. For example,
the weights of influencing factors are evenly distributed by
traditional FMEA, which will lead to great difference be-
tween the calculation results and the actual situation [9]. In
the actual production, the evaluation members in different
working positions have different understanding of the
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definition and importance of failure; it is necessary to ac-
curately calculate the weight of each evaluation member in
the evaluation team to determine the failure mode se-
quencing [10, 11].

In order to improve the shortcomings of the traditional
FMEA,many scholars and researchers have carried out more
rigorous research on this method andmade it more objective
and true to reflect the impact of failure. So, further research
in this area would be needed. A comprehensive risk ranking
method to improve the performance of FMEA was devel-
oped by using interval-valued intuitionistic fuzzy sets
(IVIFSs) and multiattribute boundary approximation area
comparison (MABAC). In addition, a linear programming
model to obtain the optimal weight of risk factors was
established under the condition of incomplete prior
knowledge of weight information [12]. A new integrated
fuzzy intelligent FMEA framework was proposed. +e
framework adopts the combination of fuzzy set theory,
analytic hierarchy process (AHP), and data envelopment
analysis (DEA) to deal with uncertainty and improve the
reliability of risk assessment. All of these are achieved by
employing a heterogeneous expert group. RPN, time, and
cost are used as indicators to determine the efficiency of
FMEA mode and determine the appropriate priority and
corrective measures [13]. An interactive method to deal with
the possible uncertainties in the evaluation process was
proposed by using the fuzzy set theory. In order to deal with
the weight of subjective and objective uncertainties, the AHP
and entropy weight method were adopted [14]. A new
method combining evidence theory, intuitive fuzzy set (IFS),
and belief entropy has been proposed to determine the
weight of team members to analyze FMs [15]. A hybrid
FMEA framework has been developed which integrates the
Portuguese abbreviation for interactive and multicriteria
decision method with the Choquet integration method.
Under this framework, the uncertainty in risk assessment is
described by generalized trap type fuzzy numbers [16]. A
consensus-based FMEA group decision-making framework
was proposed. +e purpose of this framework is to classify
FMs into several ordinal risk classes. Assuming that FMEA
participants provide their preferences in a linguistic manner
using the possibility hesitant fuzzy linguistic information, a
consensus driven method is proposed to generate the weight
of risk factors in the FMEA framework. On this basis, the
consensus rules based on optimization guided by the
minimum adjustment distance strategy are calculated, and
an interaction model for consensus is developed to generate
consensus failure mode risk classes [17]. A triangular dis-
tribution-based basic probability assignment (TDBPA)
method based on triangular distribution was presented
within the framework of Dempster–Shafer evidence theory,
the conflict risk levels assessed by different experts. +e
modified RPN model based on fusion assessment could
calculate the ranking of FMs [18]. A new comprehensive
multicriteria decision-making (MCDM) method and fuzzy
multiattribute ideal real comparative analysis (FMAIRCA)
were proposed. It combines the first method to calculate the
fuzzy relative importance between risk factors by using
quantitative method [19]. In order to improve the

performance of classical FMEA, the weights of influencing
factors are determined by using the fuzzy optimization
method, and a fuzzy VIKOR approach was to evaluate the
security policies and analyze the content of five press
agencies in expert decision making [20].

In this paper, the concept of similarity measurement is
used to solve the weights of evaluation members and makes
up for the blank of obtaining weights of evaluation
members on the basis of existing research further to im-
prove the FMEA. In the same time, the definition of
consensus measurement is introduced to reach consensus
on the evaluation of the evaluators, and the weights of
influencing factors are solved by using the approved
method. +e remainder of this paper is arranged as follows:
in Section 2, a decision process of electromagnet FMEA is
presented. Section 3 describes the IFN evaluation of failure
mode with a form of influencing factors. In Section 4, the
weight of evaluation members and influencing factors is
determined by comprehensive calculation, and the IFN of
FMs is obtained. +e scores of each failure mode are ob-
tained and sorted according to the score function. An il-
lustrative example of FMEA of electromagnet is shown in
Section 5. +e last chapter summarizes the work done in
this paper.

2. Flow Chart of FMEA of Electromagnet

FMEA methodically breaks down the analysis of complex
manufacturing processes of electromagnet into manageable
steps. FMEA can be used to identify potential failure modes
for electromagnet and determine their impacts during
production and fabrication. +e flow chart of FMEA of
electromagnet is shown in Figure 1.

To achieve the desired effect of this paper, the following
key steps are taken. Step 1: determine the target and risk level
of the electromagnet product risk analysis, collect the po-
tential failure mode and failure impact, and the evaluation
team evaluates the failure mode by using the IFN. Step 2:
according to the incomplete weight information in FMEA,
the similarity measure is used to determine the weight of
evaluation team members. Step 3: for the influencing factors
of failure, the evaluation members use IFNs for comparative
evaluation and form a comparison matrix. In order to find
the optimal solution of the influencing factors, the exact
weight of the influencing factors is derived from the pref-
erence relation of the comparison matrix. Step 4: after the
weight information in FMEA is all determined, simple
intuitionistic fuzzy weighted geometry (SIFWG) is used to
aggregate the evaluation information and weight informa-
tion, and the score of each failure mode is calculated
according to the definition of intuitionistic fuzzy score
function, and the order is made.

3. Evaluation of IFNs on FMs and
Influencing Factors

In 1965, Zadeh defined the mathematical meaning of IFSs
for the first time [21] and opened a new chapter of fuzzy
mathematics. In 1986, Atanassov popularized fuzzy sets, and
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it was also the first time to express the relationship between
an element and a specific set with the three indexes of
membership degree, nonmembership degree, and hesitation,
and he put forward the concept of IFSs [22]. Let the set X be
a universe of discourse, the fuzzy set F onX is represented by
membership degree μF, μF:X ⟶ [0, 1], and then the
membership degree of x in the set F is denoted by μF(x). IFS
is an object that has the following form:

A � x, μA(x), ]A(x)|x ∈ X , (1)

where μA(x), ]A(x) means the membership degree and
nonmembership degree of the element x ∈ X to A, re-
spectively, with the condition that for all x ∈ X, then

0≤ μA(x)≤ 1,

0≤ ]A(x)≤ 1,

0≤ ]A(x) + μA(x)≤ 1.

(2)

3.1.BasicOperationLawof IFN. Let a � (μa, va) be IFN, then
the basic operation law of IFN is displayed as follows [23]:

λa � 1 − 1 − μa( 
λ
, ]λa , (3)

a
λ

� μλa, 1 − 1 − ]a( 
λ

 , (4)

Determine the goal and risk level of risk
analysis 

Evaluation members use natural language
to evaluate failure modes 

Clear evaluation level of failure mode for
evaluation members 

Get the weight of each evaluation member
according to similarity measurement 

Assessment members use natural language
to assess risk factors 

Clarify the evaluation level of evaluation
members on Influencing Factors 

Precise priority number of failure factors
exported by LINGO software 

The precise priority number is the weight
of the influencing factors 

Aggregation of evaluation matrix based on the
weight of evaluation members and risk factors 

The score function calculates and sorts the
score function values of each failure mode 

Collect all failure modes of products or
systems 

Calculating the evaluation matrix of failure
mode for ideal evaluation members 

Calculating the similarity between evaluation
matrix and ideal evaluation matrix 

Construction of evaluation member
consistency matrix based on evaluation matrix 

Determine consistency matrix and evaluation
member weight for aggregation preparation 

Y

N

Determine the consequences and influencing
factors corresponding to failure mode 

Make the corresponding table of natural
language and intuitionistic fuzzy number 

Determine evaluation members
participating in evaluation failure mode 

Step 1 Step 3

Step 2

End

Through the aggregation of SIFWGoperators,
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risk factors of evaluation members

Step 4
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Start

Figure 1: Flow chart of FMEA of electromagnet.
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aj � 1 − Π
j�1
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1 − μa( , Π
j�1

n

]aj

⎛⎜⎝ ⎞⎟⎠, (5)

⊕
j�1

n

aj � Π
j�1

n

μaj
, 1 − Π

j�1
n

1 − ]a( ⎛⎜⎝ ⎞⎟⎠. (6)

3.2. Ranking Rules of IFNs. Leta � (μa, va) be IFN; its score
functionS(a) and accuracy function H(a) are expressed,
respectively, by the following formulas:

S(a) � μa − va


, (7)

H(a) � μa + va. (8)

Let ai � (μai
, ]ai

) and aj � (μaj
, ]aj

) be two IFNs, then
the procedure of comparing the magnitude of two IFNs is
introduced as follows:

if S ai( < S aj , then ai < aj. (9)

If S(ai) � S(aj), then we can get the following
conclusions:

If H ai( <H aj  , then ai < aj. (10)

If H ai(  � H aj , then ai � aj. (11)

Because the similarity function is improved on the basis
of score function, all similarity functions L(a) conform to
the rules of score function.

4. Failure Mode and Effect Analysis

FMEA is a comprehensive calculation of decision infor-
mation of failure mode by comprehensive decision per-
sonnel. +e total proportion of influencing factors by each
evaluation member can directly affect the ranking of final
failure mode. +erefore, the weights of objective evaluation
members and influencing factors are determined before the
final comprehensive calculation.

4.1. Determination of the Weight of Evaluation Members.
Considering all possible options, we select the risk assess-
ment
matricesXk � [xk

ij]m×n � [μk
ij, ]k

ij]m×n, where k � 1, . . . , l,

and adopt many ways to estimate the evaluation model.
Next, the ideal assessment of the failure mode can be the
average of a single risk assessment matrix, and the ex-
pression of ideal matrix is shown as follows [24]:

X
∗

� x
∗
ij 

m×n
� μ∗ij, ]

∗
ij 

m×n
, (12)

wherex∗ � 1/lxk
ij,k � 1, . . . , l, and μ∗ij � 1 − 

l
k�1

(1 − μk
ij)

1/l, ]∗ij � 
l
k�1 (]k

ij)
1/l, i � 1, . . . , m, j � 1, . . . , n.

Let a1 � (μa1
, ]a1

) and a2 � (μa2
, ]a2

) be two IFNs, then
the interval-valued intuitionistic fuzzy Euclidean distance is
calculated as

d a1, a2(  �

���������������������
1
2

μ1 − μ2( 
2

+ ]1 − ]2( 
2

 



. (13)

Let X1 � (x1
ij)m×n � (μ1ij, ]1ij), X2 � (x2

ij)m×n � (μ2ij, ]2ij)
be two interval-valued intuitionistic fuzzy matrixes,
then the similarity measure of the two matrixes is defined
as

sim X
1
, X

2
  �


m
i�1 

n
j�1 d x

1
ij, x

2c
ij 


m
i�1 

n
j�1 d x

1
ij, x

2c
ij  + d x

1
ij, x

2
ij  

, (14)

where d is the Euclidean distance, x2c
ij � (]2ij, μ2ij),

0≤ sim(X1, X2)≤ 1,whenX1 � X2,sim(X1, X2) � 1.
Next, the similarity between the evaluation results

of each evaluator and the ideal evaluation results is
obtained

sim Xk, X
∗

(  �


m
i�1 

n
j�1 d x

k
ij, x
∗c
ij 


m
i�1 

n
j�1 d x

k
ij, x
∗c
ij  + d x

k
ij, x
∗
ij  

, (15)

where X∗c � [x∗cij ]m×n � []∗ij, μ∗ij]m×n.
At last, the weights of the FMEA team members are

determined as follows:

λk �
sim Xk, X

∗
( 


l
k�1 sim Xk, X

∗
( 

. (16)

4.2. Determination of the Weight of Influencing Factors

4.2.1. Construction of Perfect Product Consistency Matrix.
In the traditional AHP, the consistency ratio (CR) is used
to measure the consistency of the product relation. In
this paper, the intuitionistic fuzzy matrix of R � (rik)m×m �

(μik, ]ik) is constructed into a perfect product consistent
intuitionistic fuzzy matrix Rp � (r

p

ik)m×m by using the fol-
lowing algorithm:

(1) If k> i + 1, r
p

ik � (μp

ik, ]p

ik), where

μp
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(17)
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 . (18)

(2) If

k � i + 1, r
p

ik � rik. (19)

(3) If

k< i + 1, r
p

ik � ]p

ik, μp

ik . (20)
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4.2.2. Determination and Iterative Modification of Consis-
tencyMeasure. Generally, the level of evaluationmembers is
basically the same, and the evaluation results obtained
should coincide. However, the inconsistency of evaluation
results cannot be avoided in real life. +e process of group
consensus is to find the final solution accepted by the
evaluated personnel. +e following gives an algorithm to
reach consensus.

Step 1: calculating the consensus degree of evaluation
members,

Cl � 1 −


m
1≤ i≤ j≤m μp

ij − μ∗ij


 + ]p
ij − ]∗ij



 + πp
ij − π∗ij



 

(m − 1)(m − 2)
.

(21)

If the consensus degree reaches the critical value c of
group consensus, the result of SIFWG will be output;
otherwise, turn to step 2.
Step 2: revising according to the formula,

μlp′
ij � μlp

ij 
ξ

× μ∗ij 
1− ξ

, ]lp′
ij � ]lp

ij 
ξ

× ]∗ij 
1− ξ

, (22)

whereRlp � (r
lp

ik )m×n � (μlp
ij , ]lp

ij )m×n is the perfect
product consistent intuitionistic fuzzy matrix of eval-
uator l.
Step 3: calculating the consensus degree.

In this paper, we use the new modified perfect product
consistent intuitionistic fuzzy matrix to calculate the con-
sensus degree. If it meets the critical value, the new modified
perfect product consistent intuitionistic fuzzy matrix is
aggregated with SIFWG operator to form a new aggregation
matrix. If it does not meet the critical value, turn to Step 2
until it meets the critical value.

4.2.3. Aggregation of Evaluation Information and Derivation
of Influencing Factors’ Weight. According to above-
mentioned algorithm, the perfect product consistency
intuitionistic fuzzy matrix Rp � (r

p

ik)m×n is obtained. For
information aggregation, there are many operators that can
be used. +is paper uses SIFWG operator, because the
matrix before aggregation has consistency, and because the
after aggregation through SIFWG operator has the same
consistency. +en, the matrix R∗ � (r∗ij)m×n � (μ∗ij, ]∗ij) of
SIFWG aggregation is obtained, which is shown in the
following:

μ∗ij � 
l

k�1
μp

ij 
λk

, ]∗ij � 
l

k�1
]p

ij 
λk

, i � 1, . . . , m, j � 1, . . . , n.

(23)

According to the accurate priority derivation method of
IFNs, the nonlinear programming model is solved by
LINGO software, and the weight of influencing factors is
obtained directly [25]. Based on the standard operation of
LINGO software, we take the matrix as an example to show
the nonlinear programming model:

minf � 
m−1

i�1


m

k�i+1
ρik + δik( ,

s.t

ωi

ωi + ωk

+ ρik − μik ≥ 0,

ωi

ωi + ωk

− δik + ]ik ≥ 0,



m

i�1
ωi � 1,ωi ∈ [0, 1],

ρik ≥ 0, δik ≥ 0, ρik ∗ δik � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(24)

Exportω � (ωs,ωo,ωd), where
i � 1, . . . , m − 1; k � i + 1, . . . , m, ρik, δik is the relaxation
variable,μik − ρik ≤ωi/ωi + ωk ≤ 1 − ]ik + δik.

4.3. Potential FailureMode Score and Ranking. In this paper,
we present the integrate evaluator and influence factor
weights with evaluation information, which is shown as

FMi � 
l

k�1
λk μk

ij, μ
k
ij ωS + 

l

k�1
λk μk

ij, μ
k
ij ωO + 

l

k�1
λk μk

ij, μ
k
ij ωd,

(25)

where the evaluation information of k assessor is
(μk

ij, μk
ij)i � 1, . . . , m, j � 1, . . . , n.

Finally, the IFN (μFM, ]FM) of failure mode is obtained.
According to the score function formula of IFN, the score of
each failure mode is sorted.

5. An Example

+is chapter is divided into two sections. Section 5.1 shows
the calculation process and precautions of each part of the
new method through an evaluation example of the attractive
electromagnet. Section 5.2 illustrates the objectivity and
practicability of this method by comparing with the other
three methods.

5.1. An Example in Manufacturing Systems. +e attractive
electromagnet itself has a plunger. When the coil is ener-
gized, it will attract the plunger to a certain distance and
transmit the movement to other loads requiring mechanical
action. +e structure is shown in Figure 2. +ey are widely
used in electromagnetic relays, solenoid valves, and other
products. When the suction electromagnet works, it not only
needs to complete the specified movement but also needs to
be in the position. +e iron reaches the load area, so the
consequence of its failure mode is very serious. +is paper
takes the FMEA of suction electromagnet in the early stage
of production as an example to verify the practicability and
objectivity of this paper. Since the evaluation information of
evaluation members in this paper is in natural language, it is
necessary to convert natural language into IFN for
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calculation.+e corresponding table of natural language and
IFN is shown as Table 1, and the main FMs are shown in
Table 2.

+e company organized three evaluators to evaluate the
S, O, and D of the fault in natural language mode according
to the evaluation criteria of influencing factors in Tables 3–5.

Also, the results of the computations are shown in
Table 6.

+en, according to the corresponding table of natural
language and IFN in Table 1, the evaluation table in natural
language is transformed into the form of IFN; calculated
results are given in Table 7.

According to formulas (14)–(20), the weight of evalu-
ation members is determined, λ1 � 0.316, λ2 � 0.34, and
λ3 � 0.344.

+e comparison matrix is obtained by comparing the
influence factors of the evaluation members, as shown in
Table 8.

+e natural language in Table 8 is transformed into IFN
according to the corresponding table of natural language and
IFN, and then according to algorithm 1, the perfect product
consistent intuitionistic fuzzy matrix is constructed, as
shown in Table 9.

According to the SIFWG aggregation operator of for-
mula (23), the weight of all evaluators, λ, has been obtained,
λ1 � 0.316, λ2 � 0.34, and λ3 � 0.344, for example, the ag-
gregation result of membership degree of influencing
factor S compared with that of influencing factor O
� 0.70.316 ∗ 0.80.34 ∗ 0.80.344 � 0.7669. +e aggregation result
of nonmembership degree � 0.20.316 ∗ 0.10.34 ∗ 0.10.344 �

0.1245. Similarly, other polymerization results are shown in
Table 10.

According to formula (21), the consensus degree of each
evaluator is C1 � 0.5722, C2 � 0.7422, C3 � 0.8537. If the
critical value of consensus degreeC is set to 0.5, then all three
evaluators meet the critical value, and it is generally con-
sidered that consensus can be reached only when the
critical value C � 0.85. +en, it is modified according
to formula (22), where the iterative operation is taken
as ξ � 0.5. After three iterations, the consensus reached is

C1′ � 0.8682, C2′ � 0.8528, C3′ � 0.9544. When consensus is
reached, the matrix aggregated by SIFWG operators is
shown in Table 11.

According to algorithm 3, the nonlinear programming
model is constructed as follows:

minf � ρ12 + δ12 + ρ13 + δ13 + ρ23 + δ23, (26)

s.t

ω1

ω1 + ω2
+ ρ12 − 0.79≥ 0,

ω1

ω1 + ω3
+ ρ13 − 0.667≥ 0,

ω2

ω2 + ω3
+ ρ23 − 0.575≥ 0,

ω1

ω1 + ω2
− δ12 + 0.107≥ 0,

ω1

ω1 + ω3
− δ13 + 0.25≥ 0,

ω2

ω2 + ω3
− δ23 + 0.323≥ 0,

ω1 + ω2 + ω3 � 1,

0≤ω1 ≤ 1, 0≤ω2 ≤ 1, 0≤ω3 ≤ 1,

ρ12 ≥ 0, ρ13 ≥ 0, ρ23 ≥ 0,

δ12 ≥ 0, δ13 ≥ 0, δ23 ≥ 0,

ρ12 ∗ δ12 � 0, ρ13 ∗ δ13 � 0, ρ23 ∗ δ23 � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(27)

In this paper, we use LINGO software to solve formulas
(26) and (27) and then derive the weight of each influencing
factor in Figure 3.

From Figure 3, we can see ω1 � 0.684, ω2 � 0.182, and
ω3 � 0.134; in turn, the corresponding is ωS � 0.684,
ωO � 0.182, and ωd � 0.134.

According to formula (25) and the operation rules of
IFNs, such as the final score calculation in FM1, the score
after the weight of comprehensive influencing factors
is calculated first, and the calculation formula is as
follows:

1

2

3

4

5

6

Figure 2: Schematic diagram of suction electromagnet structure.

Table 1: Table of natural language and IFNs for failure mode
assessment.

Natural language IFN
Extremely low (EL) (0.10, 0.90)
Very low (VL) (0.10, 0.75)
Low (L) (0.25, 0.60)
Medium low (ML) (0.40, 0.50)
Medium (M) (0.50, 0.50)
Medium high (MH) (0.60, 0.30)
High (H) (0.70, 0.20)
Very high (VH) (0.80, 0.10)
Extremely high (EH) (0.90, 0.10)
Definitely high (DH) (1.00, 0.00)
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Table 2: Failure mode analysis table.

No. Failure mode Failure effect Failure reason
F1 Poor insulation Product leakage Insufficient insulation level of material

F2
+e strength of the spool is not

enough, and the product splits after
winding

Magnetic flux leakage products
(i)Low strength of plastic materials
(ii)Improper design of spool
(iii)Excessive tension design

F3 Short circuit/open circuit of product
after power on and heating

Cannot drive the action of customer
organization, customer cannot use it Insufficient temperature resistance of materials

F4 Insufficient strength of end foot Affect customer installation Improper soldering and assembly design
F5 Poor surface roughness Affect product life Improper design of dimensional tolerance

F6 Poor concentricity Customer unable to install or not
suitable for installation Improper design of dimensional tolerance

F7 +e magnetic force of the product is
insufficient after being electrified

Unable to drive customer
organization action

(i)+e magnetic permeability of the material is
insufficient, and the attraction is insufficient after
being electrified
(ii)Improper design

F8 Residual magnetic field after power on Unable to drive customer
organization action

(i)+e magnetic permeability of the material is
insufficient, and the attraction is insufficient after
being electrified
(ii)+e thickness of the lower wall is thin

F9 Appearance corrosion and rust Poor appearance, customer
dissatisfied

+e antirust layer is too thin and the process is
improper

Table 3: S assessment criteria.

Influence Assessment criteria: severity of consequences (customer impact) Grade

Failure of laws and regulations affecting safety or
government

Work safety is affected or government regulations are not met without any
warning DH

In case of warning, it will affect work safety or not comply with government
regulations EH

Loss or reduction of expected function
Loss of basic function (electromagnet does not work and does not affect safety) VH
Expected function reduction (electromagnet can work, performance level is

reduced) H

Loss or reduction of secondary function Loss of secondary function (failure of comfort and convenience function) MH
Lower secondary function (lower comfort and convenience function level) M

Customer feedback

Electromagnets work, and most customers (>75%) perceive noise and
appearance ML

Electromagnets work, and some customers (50%) perceive noise and appearance L
+e electromagnet works, and a small number of customers (<25%) are aware of

noise and appearance VL

No impact No detectable impact EL

Table 4: O assessment criteria.

Possibility of failure Evaluation criteria: the possibility of causes Grade
Very high New technology and new design without corresponding history DH

High
Inevitable failure due to new design, new application, or change of operating conditions EH
New design, new application, or change of operating conditions may lead to failure VH

Uncertain failures due to new design, new application, or change of operating conditions H

Medium
Failure of similar design and design test MH
Occasional failures in design and testing M

Isolated failures in similar designs and design tests ML

Low Almost identical designs and isolated failures in design testing L
Almost the same design and undetected failure in design testing VL

Very low By preventing controllable failures EL
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Table 5: D assessment criteria.

Opportunity
discovery Evaluation criteria: possibility of discovery through design control Grade

Very very low +ere is no current design control that cannot be found or analyzed EL
Very low Design analysis has weak discovery ability VL

Low Verification of a product that has passed testing (subsystem or system testing, e.g., noise and shipping) prior
to release L

Medium low Verification of products using fault testing before product release (testing of subsystem or system failure) ML

Medium Verification of products using failure testing before product release (durability testing subsystem or system,
such as function check) M

Medium high Product validation by testing before design freezing MH
High Product confirmation by fault test before design freezing H
Very high Use old test to confirm products before design freezing VH
Very very high Design data analysis has strong ability of discovery EH
Extremely high FMs cannot occur because of a fully preventive design DH

Table 6: Evaluation table of evaluators in natural language.

Failure mode
Evaluators

E1 E2 E3
S O D S O D S O D

F1 VH EL VL VH L VL VH VL EL
F2 VH L EL H L VL H EL VL
F3 MH VL ML VH EL VL VH VL VL
F4 MH L EL VH VL M VH L EL
F5 M VL ML MH L EL MH L L
F6 EH EL VL EH L M EH EL EL
F7 VH L VL MH M L MH L L
F8 MH M L VH EL EL H VL VL
F9 M VL VL M VL VL M VVL VL

Table 7: Evaluation table under IFN.

Failure mode
Evaluators

E1 E2 E3
S O D S O D S O D

F1 0.8 0.1 0.1 0.75 0.1 0.75 0.8 0.1 0.25 0.6 0.1 0.75 0.8 0.1 0.1 0.75 0.1 0.9
F2 0.8 0.1 0.25 0.6 0.1 0.9 0.7 0.2 0.25 0.6 0.1 0.75 0.7 0.2 0.1 0.75 0.1 0.75
F3 0.6 0.3 0.1 0.75 0.5 0.5 0.8 0.1 0.1 0.9 0.1 0.75 0.8 0.1 0.1 0.75 0.1 0.75
F4 0.6 0.3 0.25 0.6 0.1 0.9 0.8 0.1 0.1 0.75 0.5 0.5 0.8 0.1 0.25 0.6 0.1 0.9
F5 0.5 0.5 0.1 0.75 0.4 0.5 0.6 0.3 0.25 0.6 0.1 0.9 0.6 0.3 0.25 0.6 0.25 0.6
F6 0.9 0.1 0.1 0.9 0.1 0.75 0.9 0.1 0.5 0.5 0.5 0.5 0.9 0.1 0.1 0.9 0.1 0.9
F7 0.8 0.1 0.25 0.6 0.1 0.75 0.6 0.3 0.25 0.6 0.25 0.6 0.6 0.3 0.25 0.6 0.25 0.6
F8 0.6 0.3 0.5 0.5 0.1 0.9 0.8 0.1 0.1 0.9 0.1 0.9 0.7 0.2 0.1 0.75 0.1 0.75
F9 0.5 0.5 0.1 0.75 0.1 0.75 0.5 0.5 0.1 0.75 0.1 0.75 0.5 0.5 0.1 0.9 0.1 0.75

Table 8: Comparison of influencing factors.

Evaluator E1 Evaluator E2 Evaluator E3
O S O D O S O D O S O D
S M H MH S M VH M S M VH H
O H′ M ML O VH′ M M O VH′ M H
D MH′ ML′ M D M′ M′ M D H′ H′ M
Here, H′ is the complement of H natural language. For example, the IFN corresponding to H natural language is (0.70, 0.20), and then the IFN corresponding
to H´ natural language is (0.20, 0.70).
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Table 9: Perfect product consistency intuitionistic fuzzy matrix for every evaluator.

Evaluator E1
S O D

S 0.5 0.5 0.7 0.2 0.667 0.25
O 0.2 0.7 0.5 0.5 0.4 0.5
D 0.25 0.667 0.5 0.4 0.5 0.5

Evaluator E2
S O D

S 0.5 0.5 0.8 0.1 0.667 0.25
O 0.1 0.8 0.5 0.5 0.5 0.5
D 0.25 0.667 0.5 0.5 0.5 0.5

Evaluator E3
S O D

S 0.5 0.5 0.8 0.1 0.667 0.25
O 0.1 0.8 0.5 0.5 0.7 0.2
D 0.25 0.667 0.2 0.7 0.5 0.5

Table 10: Evaluation information of influencing factors after aggregation.

S O D
S 0.5000 0.5000 0.7669 0.1245 0.6670 0.2500
O 0.1245 0.7669 0.5000 0.5000 0.5231 0.3648
D 0.2500 0.6670 0.3648 0.5231 0.5000 0.5000

Table 11: Aggregation matrix after iterative operation.

S O D
S 0.500 0.500 0.790 0.107 0.667 0.250
O 0.107 0.790 0.500 0.500 0.575 0.323
D 0.250 0.667 0.323 0.575 0.500 0.500

Local optimal solution found.
Objective value:
Infeasibilities:
Total solver iterations:
Elapsed runtime seconds:

Model Class:

Total variables:
Nonlinear variables:
Integer variables:

Total constraints:
Nonlinear constraints: 

Total nonzeros:
Nonlinear nonzeros: 

9
3
0

11
6

30
12

Variable Value Reduced Cost
A12
B12
A13
B13
A23
B23
W1
W2
W3

1.000000
0.1727102

1.000000

1.000000

0.000000
0.000000

0.000000

0.000000

0.000000
0.000000

0.000000

0.000000
0.000000

0.6838540
0.1817840
0.1343621

0.8578657E–01
0.4383739

0.8578657E–01

NLP
1.93

7
0.000000

Figure 3: Influencing factor weight derivation chart.
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0.684∗ (0.9, 0.1) + 0.684∗ (0.8, 0.1) + 0.684∗ (0.8, 0.1) + 0.182∗ (0.1, 0.8) + 0.182∗ (0.1, 0.9) + 0.182∗ (0.1, 0.8)

+ 0.134∗ (0.1, 0.9) + 0.134∗ (0.1, 0.8) + 0.134∗ (0.1, 0.9) � 6.658.
(28)

Similarly, the final scores for other FMs are calculated
and ranked according to the final scores, as shown in
Table 12.

5.2. Discussions. +is approved method is compared with
the other three methods in terms of final scores. +e three
methods for comparison are traditional FMEA, only cal-
culating the weight of influencing factors, and only calcu-
lating the weight of evaluating personnel. Except for the
weight, the other steps are the same as the new method. +e
score table is shown in Figure 4.

It is obvious from the two tables that there is a big
difference between the traditional FMEA ranking and the
score of this new method. +is is because the traditional
FMEA does not specify the weight of influencing factors and
the weight of evaluation members; so, when the score
function is used to calculate the score, the value of evaluation
content is all involved in the calculation. However, from the
above calculation, the result is ωS � 0.684, ωO � 0.182,

ωd � 0.134,ωE1 � 0.316, ωE2 � 0.34,ωE3 � 0.344. Accord-
ing to the operation rules of IFNs, the rule calculation is
carried out twice, and the proportion of each calculation is
the weight. On the other hand, the calculated results are
quite different from the default weight, especially the weight
of influencing factors, so there will be a lot of differences in
scores. If we evaluate according to the 10-point system, the
final score difference may be more crucial.

6. Conclusions

To avoid the disadvantages of traditional FMEA, this paper
presents IFN to reflect the final ranking of evaluation team
for electromagnet in manufacturing systems. +e failure
evaluation mode is a general and comprehensive decision of
the consequences and effects of failure. Based on the dis-
tinguishing features of subordination degree and non-
subordination degree of IFN, the error of final calculation
failure mode score can be reduced to a more manageable

Table 12: Summary of final results.

Failure mode Score Sort
F1 6.658 9
F2 6.812 8
F3 7.018 6
F4 7.299 5
F5 7.664 2
F6 6.943 7
F7 7.482 4
F8 7.497 3
F9 8.011 1

0

5

10
F1

F2

F3

F4

F5F6

F7

F8

F9

Score Comparison Table

Method 1
Method 2

Method 3
Method 4

Figure 4: Comparison score table.
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level. In addition, this paper supplements the incomplete
determination of weight information with traditional FMEA
and calculates the best evaluation information by using the
concept of similarity measure.

On the other hand, in view of the unknown weight of
influencing factors, this paper compares and evaluates
influencing factors by many evaluators forming a contrast
matrix. A nonlinear programming model based on the
contrast matrix of influencing factors was built to simulate
the evaluation results of the weight of influencing factors.
+en, the absolute distance between each evaluator’s deci-
sion information and the best decision information are
calculated in two different ways. +e contributions of this
paper lie in that we put forward a potential FMEAmethod of
electromagnet based on IFN in empirical study. +is paper
also discusses the further improving measures of IFN and
presents future research directions for other mechanical and
electrical products.
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A valve mechanism supports the working process of an engine cylinder, and a camshaft is a key component required to open and
close a valve. When a camshaft loosens, the balance of the engine disrupts. In the meanwhile, the generalised force at its centre of
gravity (CG) alters.)is study proposed a novel technique to detect camshaft loosening based on recognising the generalised force
at the CG of the engine. We conducted Hanning windowed interpolation of discrete spectra to extract the precise phase and
amplitude by utilising the acceleration signals at the engine cylinder and mounts and cylinder head.We then accurately computed
the generalised force at the CG. Finally, we accurately extracted the camshaft loosening features by analysing the main harmonic
orders for the generalised force. As indicated by simulations, ourmethod can be used to effectively detect combustion engine faults
involving camshaft loosening.

1. Introduction

A camshaft is a key component required to open and close the
valve in an engine valve distribution mechanism. Camshaft
projections are in contact with a tappet. Excessive stress due to
contact between the camshaft projection and the tappet roller
may cause wear failure [1]. Additionally, under long service
time, a camshaft is subject to alternating load torque, bending
moment, and impact load. It possibly operates with an angular
vibration along with a bending vibration. Bearing and bush
wear and camshaft loosening can lead to overall wear and
unpleasant noise. )e efficiency and reliability of camshafts
decrease because of inaccurate movement, eventually resulting
in force variations at the centre of gravity (CG). An injection
pump camshaft of a truck diesel engine failed after a mere
13,000km run because fatigue cracks were initiated at the
keyway root through circumferential tangential stress because
the stationary frictional force between the camshaft cone and
timer working on keyway edges was inadequate [2]. A diesel
engine camshaft underwent instantaneous circumferential
cracking that propagated brittlely due to tensile stress generated
at the site of camshaft straightening [3].

Du and Yu [4] developed an engine power assembly and
accompanying valve train. )ey compared the vibration
acceleration signals of the engine cylinder head in normal
and fault states to determine the loosening fault features of
camshaft bearings. Diagnosis using mechanical systems is a
key subject in modern industry. In recent years, intelligent
methods have been widely used in structural diagnosis to
detect faults in 3D printers. Li et al. introduced an extreme-
learning-machine-based intelligent solution for fault diag-
nosis that used a low-cost and precise attitude sensor and
helped diagnostic measure studies for determining faults in
delta 3D printers [5, 6]. Kumar et al. developed a diagnostic
technique based on deep learning to recognise defects in
two-wheeler vehicle engines [7]. Ting et al. [8] determined
the cluster centre in a radial basis function neural network by
using the K-means clustering algorithm to study faults in
camshaft grinders. Fault samples are critical to initiate an
artificial intelligence (AI) mode. However, achieving con-
venient and thorough sampling in actual applications is
difficult because mostly mechanical systems are healthy and
normal.)us, it becomes difficult to attain AImodel training
even with sufficient fault samples [9].

Hindawi
Mathematical Problems in Engineering
Volume 2021, Article ID 1908329, 8 pages
https://doi.org/10.1155/2021/1908329

mailto:254883652@qq.com
https://orcid.org/0000-0001-8367-3654
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/1908329


)e diagnosis of camshaft faults must be effectual and
accurate to ensure that the engine operates as usual [10].
Vibration signals, containing a large amount of fault in-
formation, are extensively utilised to diagnose faults [11–14].
)e vibration pattern of an engine can offer diverse infor-
mation about its state. In most cases, engine faults are
manifested directly as the fluctuation of generalised force at
the engine CG, achieved by utilising the acceleration signals
at the engine mounts. Xu et al. computed generalised force at
the engine CG and extracted features to detect single and
continuous/intermittent double cylinder misfires [15]. )e
primary vertical force for a four-cylinder four-stroke motor
refers to the second-order force, and the half- and first-order
forces are nearly zero [16]. However, the force at the CG
varies with camshaft faults.

Our study proposes a novel technique to detect camshaft
loosening based on recognising the generalised force at the
engine CG. We extracted the precise phase, frequency, and
amplitude through Hanning windowed interpolation. Two
prime advantages of our detection method are its high fault
sensitivity and less subjectivity to external factors and ex-
perimental conditions.

)e following presents the organization of the rest of the
paper. Section 2 introduces the identification principles for
generalised force at the CG. Section 3 describes the diag-
nostic procedure for camshaft loosening based on the
computed generalised force and illustrates the simulation
results. )e conclusions are made in Section 4.

2. Theoretical Fundaments

2.1. Generalised Force Estimation Method. As shown in
Figure 1, a powertrain mounting system is simplified into a
six-degree-of-freedom vibration model to calculate the
engine excitation force.

Assuming a slight movement of the engine mount
system, the kinematic equation for the power assembly
mounting system is

M €Q (t) + C _Q(t) + KQ(t) � F(t), (1)

where M denotes the 6 × 6 rigid mass matrix of the engine, C
denotes the 6 × 6 damping matrix, K denotes the 6 × 6
stiffness matrix, and Q and F are the generalised displace-
ments at the engine CG and 6 × 1 generalised force vector,
respectively.

M
6×6

�

m 0 0 0 mzc −myc

0 m 0 −mzc 0 mxc

0 0 m myc −mxc 0

0 −mzc myc Jxxo −Jxyo −Jxzo

mzc 0 −mxc −Jxyo Jyyo −Jyzo

−myc mxc 0 −Jxzo −Jyzo Jzzo

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (2)

where m is the engine mass; xc, yc, and zc are the CG co-
ordinates in the OXYZ reference system; Jxxo, Jyyo, and Jzzo

are the inertial moments for X, Y, Z coordinates, separately;
and Jxyo, Jyzo, and Jxzo are the cross inertial moments.

K
6×6

�

kxx kxy kxz kxα kxβ kxc

kyx kyy kyz kyα kyβ kyc

kzx kzy kzz kzα kzβ kzc

kαx kαy kαz kαα kαβ kαc

kβx kβy kβz kβα kββ kβc

kcx kcy kcz kcα kcβ kcc

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3)

where kxx, kyy, and kzz are the total reciprocating stiffnesses
of elastic support; kxy, kxz, and kzy are the coupling stiff-
nesses of elastic support; and kαα, kββ, and kcc are the rotary
stiffnesses about the coordinate axis.

F
6×1

�

Fx

Fy

Fz

Mx

My

Mz

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

Q
6×1

�

Xo

Yo

Zo

α

β

c

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

(4)

where Fx, Fy, andFz represent transitional applied forces;
Mx, My, andMz represent the applied moments about
point O; Xo, Yo, andZo are point O′s transitional dis-
placements; and α, β, and c are point O′s rotational
displacements.

Using Fourier transformation on the two sides of
equation (1), we derive

M −
K

(2πf)
2 −

jC

2πf
  €Q (f) � F(f). (5)

Considering s points at which acceleration can be de-
termined, where the coordinates of the i th point
(i � 1, . . . , s) for the CG are xi yi zi , the following
equation can be derived under a “slight” motion hypothesis:

Z

X

u1

v1
l1

w1
O

(x1,y1,z1)

α

β
Y

γ

Figure 1: Simplified model of a powertrain.
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A � E €Q . (6)

Accordingly, €Q can be computed using the least-squares
method:

€Q � E
T
E 

−1
E

T
A, (7)

where E is the transpose matrix and A denotes the accel-
eration vectors in three orthogonal directions for all the
points.

E �

1 0 0 0 z1 −y1

0 1 0 −z1 0 x1

0 0 1 y1 −x1 0

· · ·

1 0 0 0 zs −ys

0 1 0 −zs 0 xs

0 0 1 ys −xs 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

A � Ax1(f) Ay1(f) Az1(f) · · · Axs(f) Ays(f) Azs(f) .

(8)

We can precisely extract the acceleration signal phases
and amplitudes by exploiting the engine acceleration signals
at the mounts and block by using discrete spectrum inter-
polation. )e generalised force at the CG [17] is given by

F(f) � M −
1
ω2K
∗

  E
T
E 

−1
E

T
A. (9)

At local coordinates, the mount complex stiffnesses in
the three directions are given as

K
∗

� K + jωc

� K + jK′,
(10)

where j �
���
−1

√
and K′ � ωC � 2πfC are the loss stiffnesses.

)e phase difference of the gas-pressure torque for each
cylinder of an i-cylinder engine is 4π/i, which varies with the
engine ignition order. )e highest amplitude of the first
harmonic order k� i/2 appears in the resultant torque
spectrum. )e primary harmonic orders of a 4-cylinder 4-
stroke 4-cylinder 4-cylinder engine include k� i/2, i, 3i/2.
Figure 2 shows the phase angle graphs for a typical 4-cyl-
inder 4-stroke 4-cylinder 4-cylinder engine, the firing order
of which is1-3-4-2.

Considering the same contribution by each cylinder to
the engine torque, primary orders in the torque’s structure
are merely present due to gas forces, which are multiples of
half the cylinder quantity for the 4-cylinder 4-stroke engine
(Figure 2). Besides, the primary harmonic orders for the
torque are the 2nd, 4th, and 6th orders, when the engine runs
as usual. Primary harmonic orders change in the event of a
fault.

2.2. InterpolationMethod forDiscreteSpectrum. Equation (9)
requires accurate extraction of the amplitudes, frequencies,
and phases of the engine mounts and block. However, actual
test signals contain noise. In discrete spectral analyses, no-

integer period sampling leads to erroneous amplitude,
frequency, and phase [18–21]. Conventional FFT extracts a
highly errored generalised force, especially for the phase.
Before the correction, the first harmonic of the acceleration
shows similar errors to those for absolute phases. )us,
attaining accurate relative phases between acceleration re-
sponses leads to a decrease in the error estimates of the
generalised force. However, in the 2nd harmonic, phase
errors vary, provided the failure of maximum spectral lines is
within different frequencies, and alterations are present in
the relative phases [17]. )e interpolation method is used to
estimate frequency bias based on the amplitude ratio of the
first two maximum spectral lines. Consider x(t) as a single
sequence of the harmonic signal and its amplitude, fre-
quency, and phase as f0, A, and θ0, respectively. )en,

x(t) � A cos 2πf0t + θ0( . (11)

)rough equispaced sampling using N sampling points
at sampling frequency f0, we get a new sampling sequence:

x(n) � A cos 2πf0
n

N
+ θ0 . (12)

Applying Fourier transformation to equation (12), it
becomes

Xw(k) �
1
N



N−1

k�0
w(n)x(n)e

−j2πnk/N
, (13)

where w(n) is the window function.
After correction, the amplitude and phase are given by

A �
Xw(k)

W ∇f1
 

,

θ0 � arctan
Ik

Rk

  + π∇f1
,

(14)

where Xw(k) is the amplitude of the maximum spectral line
of the discrete spectrum of harmonic signals, that is, the
greatest amplitude in the major lobe, and W(∇f1) is the
spectral mode function.

)e rectangle window is expressed as

W ∇f1
  �

sin π∇f1
 

π∇f1 . (15)

)e Hanning window is expressed as

W ∇f1
  �

sin c ∇f1
 

1 − ∇f1 . (16)

Highly accurate amplitudes can be attained even at a
considerably low sound-to-noise ratio (SNR) of −2.33 dB.
)e maximum error rates for the rectangle and Hanning
windows are 4.5% and 6%, respectively. )e phase precision
for the Hanning window is <10°; however, due to an im-
proper interpolation direction in the interpolation technique
that is multiplied with the rectangular window when
SNR� 2.33 dB and ∇f1 ≤ 0.25, the resulting error is
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relatively large.)e Hanning window is twice in width as the
rectangle window, leading to a significant reduction in the
possibility of interpolation direction error, and there is no
arch exception [18]. Hence, we applied Hanning windowed
interpolation discrete spectrum in order to extract the phase,
amplitude, and frequency of the engine acceleration signals.

3. Camshaft Loosening Diagnosis Based on
Generalised Force Recognition

3.1. Simulation Models. )e engine valve mechanism
comprises a cam, a lifter, valves, valve springs, and a
camshaft. Each component has a certain mass and elasticity
to produce an elastic deformation during motion. )e valve
train produces high acceleration when running at a high
speed and is subject to a specific dynamic load. In the dy-
namic analysis, the components of the valve mechanism are
simplified into an equivalent lumpedmass and an equivalent
spring, respectively. )us, the lumped mass-spring vibration
model can be applied to perform the dynamic analysis of the
valve mechanism. )e dynamic model of the valve train has
been designed based on AVL Excite Timing Drive and in-
cludes double overhead camshafts for a 4-cylinder 4-stroke
engine. )e component unit of the valve train contains parts
such as a valve stem, valve seat, camshaft bearing, cam, lifter,
and spring and phase units, in sync with the composition of
the valve mechanism. Figure 3 presents the logic schematic
diagram of the component connections of the valve train.

We performed a high-quality FEA using AVL Excite and
multibody dynamics modelling for an in-line 4-cylinder 4-
stroke engine installed with mounts (Figure 4). First, an
engine crankshaft and powertrain finite element model is
established. )e finite element has an enormous degree of
freedom; thus, its matrix is simplified using MSC Nastran to
improve the computational efficiency. Next, the coupled
multibody dynamics model is set up based on the AVL
Excite. )e excitation force includes the force of a gas ex-
plosion and the inertial forces of reciprocation and rotation.
All excitation forces are included in our model to ensure that
the vibration is similar to that of an actual engine. )e
explosion pressure for each cylinder is set based on the

cylinder pressure plot. )e cylinder pressure curve of an
engine running at a speed of 2000 rpm at full load condition
is shown in Figure 5. )e piston load of each cylinder at
regular intervals, the pressure load of each cylinder wall, and
the load torque at the flywheel output are generated auto-
matically by the software as per the firing order. )e same is
applied to the corresponding nodes. )e valve mechanism
force can be considered an extended load of the powertrain,
which contains valve seat force, valve spring force, and
camshaft support force. )e other force is the piston striking
force produced due to the gap between the piston and the
cylinder liner.

For determining the valve train excitation force, we used
the valve train model based on the Excite Timing Drive and
loaded the calculated force into the Power Unit model. )e
data connection interface is preferred for both models. )e
piston striking force is calculated using excited Piston and
Rings, and the dynamic striking force of five nodes is dis-
tributed in the height direction of the main and vice thrust
side of the cylinder liner. )e calculated piston striking force
is also considered an extended force loaded into the cor-
responding nodes of the powertrain model.

Table 1 presents the CG of the power assembly and the
mount locations. Table 2 presents the power assembly’s
inertia parameters excluding those of the piston, connecting
rod, and crankshaft. )e three mounts have a stiffness of
3×105N/m and damping of 200N s/m.

3.2. Camshaft Bearing Loosening Fault Setting. )e simula-
tion of loosening bearing faults is created by removing the
SRBS unit from the model, provided that fixation of intake
and exhaust camshafts at the cylinder head is achieved using
five sliding bearings. No effect is exerted by the loosening
bearing on the pressing camshaft. In the present simulation,
the bearing of the intake camshaft of cylinder-3 (SRBS int4)
is removed so that bearing-4 has a zero acting force
throughout the work cycle, and the dynamic driving force of
cylinder-3’s intake and exhaust valves is transmitted to the
cylinder through the adjacent bearings 3 and 5 only. Fig-
ures 6 and 7 display the bearing forces of bearing 3 and 5,
respectively, at 2,000 rpm under normal and faulty scenarios.
When the bearing of cylinder-3 loosens, the supporting force
of the adjacent bearing changes to a large extent.

)e excitation force of the valve mechanism is taken as
the input force for the engine powertrain.)e acting force of
the camshaft on the cylinder head is mainly transmitted
through the bearing. )e valve train excitation force is
calculated based on the valve train model, followed by in-
troducing force into the Power Unit model through the
loading points as shown in Figure 8.

3.3. Camshaft Loose Diagnosis. )e loosening of the cam-
shaft bearing changes the generalised force at the CG. )us,
the fault features of camshaft bearing loosening can be
determined by calculating the generalised force based on the
vibration signals of the engine system. )e Hanning win-
dowed interpolation, as mentioned in Section 2.2, is used for
the precise phase, frequency, and amplitude extraction of the
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4 3
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1 4 2 3
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Figure 2: Phase angle graphs of gas-pressure torques for the 4-
cylinder 4-stroke engine.
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three engine acceleration signals at the cylinder block, head,
andmounts, respectively.)e generalised force computation
at the CG is determined using equation (9).

)e engine has a firing order of 1-3-4-2. )e frequency of
the excitation signal of the 4-cylinder 4-stroke engine is twice
that of the engine RPM. )e vibration signals produced by the
engine are the superposition of the fundamental frequency
signal and its higher frequency signal, based on the harmonic
signal characteristics. Under normal conditions, the primary
harmonic orders of engine vibration signal are the 2nd, 4th, and
6th orders, respectively, whereas the 0.5th order is nearly zero.
)e highest amplitude of the 2nd harmonic appears on the
resultant torque spectrum. Additionally, the signal of the engine
block vibration conforms to the same law.

)e vertically generalised force, identified under
normal conditions, is shown in Figure 9. )e amplitude of
the 2nd harmonic is the highest, whereas the amplitude of
the 0.5th harmonic is closer to zero, which is consistent
with the theoretical analysis. Camshaft loosening was
induced in cylinder-3 by removing the intake camshaft
bearing SRBS int4 (Figure 1). In this case, a large impact is
observed after each alternate revolution by the engine,
and its frequency is half of the engine RPM.)e loosening
of the camshaft leads to the formation of another exci-
tation force cycle, and the crankshaft rotates twice per
cycle. It also leads to an increase in the amplitude of the
0.5th harmonic and its multiples increases considerably
(Figure 10).

Figure 3: Valve train logic of component connections.

Figure 4: Engine logic of component connections.
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Figure 5: Pressure curve of the cylinder at 2000 rpm.

Table 1: Engine CG and mount positions.

X Y Z
Engine c.g. 139.3mm 9.8mm 91.9mm
Mount 1 0 285.2mm 122mm
Mount 2 73mm −254mm −45.5mm
Mount 3 554.5mm −80.4mm −148.1mm

Table 2: Engine inertia variables.

Mass Moment of inertia Product of inertia
m Jxx Jyy Jzz Jxy Jyz Jxz

111 kg 4.13 kg m2 9.67 kg m2 8.13 kg m2 0.16 kg m2 −0.16 kg m2 1.12 kg m2
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Figure 6: Camshaft force under normal condition.
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Figure 7: Camshaft force in faulty state.
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4. Conclusions

)is study proposed a novel technique for detecting cam-
shaft loosening, which was used for analysing the order of
the harmonics of the generalised force at the CG. Precise
phase, frequency, and amplitude extraction were conducted
using the Hanning windowed interpolation, thereby
achieving the generalised force accurately at the CG.

)e proposed method is effective in diagnosing the fault
induced due to camshaft loosening as demonstrated by the
simulation results based on the AVL software.)e loosening
of the camshaft changes the generalised force at the CG. )e
amplitude of the 0.5th harmonic and its multiples increase
sharply because the crankshaft rotates twice per cycle. )e
0.5th harmonic and its multiples increase when the rate of
change reaches half of the engine speed.
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An in situ method is presented to identify ten engine inertia parameters and system dynamic stiffness from the frequency response
functions. +e ten engine inertia parameters and system dynamic stiffness are estimated from two distinct steps. +e accuracy of
the proposed technique is verified by finite element simulation, and then the generality is validated using an engine supported by a
specially designed curved bar spring. +e locations of the measure points on the results are also carefully investigated. +e
identification of system dynamic stiffness is validated comparing with the engine with an auxiliary plate, which shows good
consistency with the results identified from the study.

1. Introduction

+e identification of engine inertia parameters is important
in the analysis of dynamic behaviour, suspension system
optimization design, vibration attenuation and isolation,
and engine fault diagnosis. During the dynamic structure
design, the inertia parameters are regarded as known pa-
rameters, for example, when analysing the vehicle vibration
noise due to the unbalance forces and moments caused by
the engine, the engine is commonly simplified as a three-
dimensional model by setting inertia parameters. +e inertia
parameters of a rigid body directly affect the dynamic be-
haviour of the system; when there are errors in the iden-
tification of the inertia parameter, the dynamic
characteristics of the structure will be affected inevitably; and
a 5% error of the inertial parameters identification can lead
to some order modal frequency reaches more than 1Hz [1].
+erefore, the accurate identification of inertia parameters is
of great significance to engineering practice. Engines on the
test bench and the actual vehicle are mounted by rubber
suspension, from a practical application point of view; work
efficiency is no less important than the accuracy of the test. It
is quite necessary to develop a method to identify inertial
parameters and system dynamic stiffness simultaneously for
the engine mounting system.

+e conventional techniques for parameters identification
of the rigid body can be divided into two categories, i.e., time
domain methods [2–7] and frequency domain methods. +e
frequency domain methods may be further subdivided into
three categories: modal model method [8–10], residual inertia
method [11–15], and direct system identification method
[16, 17].+e classical domain pendulummethod is often time-
consuming due to repetitive configuration adjustments of a
heavy target and complicated body such as an automotive
powertrain. +e classical residual inertia method must over-
hang the test rigid body and consider mass as a known pa-
rameter; in actual application, the mass is often unknown, and
large structure weighing is difficult to achieve. +e modal
method and direct system identification methods are based on
the orthogonality relationship between themassmatrix and six
rigid bodymodes. In order to get the idealm rigid bodymodes,
ideal spring constraints must be artificially added [18]. Un-
fortunately, in actual test, ideal boundary conditions are almost
impossible to achieve.+us, it has usually difficulty exciting all
six rigid body modes at the same time due to the coupling of
rigid bodymodes [19, 20]; the identification accuracy is hard to
guarantee. Vahid et al. [21] and Jeffrey et al. [22] provided
methods to estimate the vehicle engine rigid body inertia
properties based on in situ measurements. However, a qua-
dratic integral is applied to calculate themount reaction forces;
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when the second integral is executed, the unknown primitive
value of the velocity and displacement must be set at zero,
which can lead to greater identification errors. In addition, the
maximum error in the literature [23] reaches 30%. In recent
years, the intelligent method is widely used in structural pa-
rameter analysis and diagnosis [24–26], and the firefly algo-
rithm is used to identify inertial parameters of the powertrain
mounting system from simulation. However, such a method
requires experiments to verify its effectiveness [27].

Stiffness and damping characteristics are the most im-
portant parameters for predicting the dynamic character-
istics of the structural system and isolating the vibration and
noise of sources to reduce fatigue failure or damage caused
by vibration [28, 29]. Normally, the identification of the
engine suspension system dynamic behaviour requires
special experiments and special facilities [30]. In this paper,
we provide a method to identify the dynamic stiffness of the
suspension system in situ without a special experiment.

+e main contributions of the paper are as follows. (1)
An in situ identification method for engine inertia pa-
rameters and system dynamic stiffness is proposed. +e
method does not need to calculate the mount reaction force
and avoid the error caused by the quadratic integral of
acceleration. (2) +e effects on the results due to the shaker
location and response location are investigated.

2. Identification Method

2.1. Identification of the Inertia Properties. Since the natural
frequency of a powertrain mounting system is commonly
within 30Hz, the engine support system vibration model can
be viewed as six degrees of freedom of vibration [19]. +e
equations of motion for the engine can be expressed as follows:

M €Q (t) + C _Q(t) + KQ(t) � F(t), (1)

where M is the mass matrix whose elements are the inertia
parameters to be determined, C is the damping matrix, K is
the stiffness matrix, Q is the generalized displacement
vector, and F is the generalized force vector of origin O.

M
6×6

�

m 0 0 0 mzc −myc

0 m 0 −mzc 0 mxc

0 0 m myc −mxc 0
0 −mzc myc Jxxo −Jxyo −Jxzo

mzc 0 −mxc −Jxyo Jyyo −Jyzo

−myc mxc 0 −Jxzo −Jyzo Jzzo

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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�
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kyx kyy kyz kyα kyβ kyc

kzx kzy kzz kzα kzβ kzc

kαx kαy kαz kαα kαβ kαc

kβx kβy kβz kβα kββ kβc

kcx kcy kcz kcα kcβ kcc
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⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(2)

where kxx, kyy, and kzz are the total reciprocating stiffness of
elastic support; kxy, kxz, and kzy are the coupling stiffness of

elastic support; and kαα, kββ, and kcc are the rotary stiffness
about the coordinate axis.
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.

(3)

Both sides take Fourier transformation as follows:

M −
K
ω2 −

jC
ω

  €Q (f) � F(f). (4)

According to the coordinate transformation of the re-
sponse and excitation points [14], the vibration equation of
the engine due to n excitation forces and s measurement
points can be obtained as follows:

M −
1
ω2K
∗

 X � T, (5)

where

X � ETE 
− 1
ETH, (6)

where H is the transfer function matrix, which can be ob-
tained from the experiment test; E is the transpose matrix for
response points; and T is the transpose matrix for excitation
points. +e number of response points s≥ 2 is required (in
three directions), so that the rank of matrix E is above 6, and
€Q can be determined in a least-square sense. +e number of
excitation points must be equal to or greater than 6, so
matrix M can be calculated in a least-square sense. +e
locations of the sensors should have sufficient rigidity.

Transposing equation (5) and rearranging yield

XTM � TT
+

1
ω2X

T K∗( 
T
. (7)

Equation (7) consists of 6 equations and 10 unknowns.
In the frequency domain, the force and acceleration are
generally complex quantities, so the real and imaginary parts
can be separated to yield 12 equations with 10 unknowns

Re XT
 

Im XT
 

⎡⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎦M �

Re TT
+

1
ω2X

T K∗( 
T

 

Im
1
ω2X

T K∗( 
T

 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (8)
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+ese 12 equations are not linearly independent, so
additional equations must be generated to solve for M.
Although the frequency response function is a function of
the frequency, with different values at each frequency line,
the inertia parameters are constant. In addition, the fre-
quency response function values of adjacent frequency lines
are nearly identical, which implies that frequency lines must
be selected sufficiently far apart to ensure linearly inde-
pendent equations. +e expanded equation is shown as
follows:

AM � B, (9)

where

A �

Re XT
1 

Im XT
1 

⋮

Re XT
r 

Im XT
r 
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⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

B �

Re XT
1 +

1
ω2
1
XT
1 K∗( 

T
 

Im
1
ω2
1
XT
1 K∗( 

T
 

⋮

Re XT
r +

1
ω2

r

XT
r K∗( 

T
 

Im
1
ω2

r

XT
r K∗( 

T
 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(10)

+en, matrix M can be calculated in a least-square sense
as follows:

M � ATA 
− 1
ATB. (11)

After mass matrixM has been determined, the ten inertia
parameters can be obtained.

2.2. Identification of the System Dynamic Stiffness. Based on
the identified mass matrix M and frequency response
functions (FRFs) in the low-rigid-frequency domain, the
system dynamic stiffness can be easily estimated.

Assuming that

Ho � ETE 
− 1
ETH. (12)

+en,

K∗Ho � ω2 MHo − T( . (13)

Once mass matrix M is available, matrix K∗ can be
estimated using the pseudoinverse as follows:

K∗ � ω2 MHo − T( HT
o HoH

T
o 

− 1
. (14)

An iterative computation method is used to improve the
inertia parameters identification accuracy. Consider the
system dynamic stiffness identified by equation (14) as
known parameters, we substitute equation (14) into equation
(7), calculate the inertia parameters, and repeat this step
until the identified inertia parameters converge. +us, the
effect of the rigid body modes on the identification of inertia
parameters decreases.

3. Numerical Study

Mounts greatly vary in stiffness due to the manufacturing
variability, temperature, and displacement. +us, the iden-
tification of inertia parameters of a certain frequency line is
not representative. To verify the generality of the method, a
specially designed curved bar spring in Figure 1 is used to
support a standard block (the mass is 160.6 kg, and the
density is 7.85×106/m3) simulated the engine (Figure 2).
One end of the spring is attached to the standard block, while
the other end is fixed by six degrees of freedom. +e
characteristics of the curved bar spring are as follows: (1)
linearly elastic: the three directions of its local coordinate
system are linear, and the coupling directions are also linear
and (2) small damp: the damp of the spring is negligible.

+e 4 response measurement points and 9 applied forces
were selected for testing points. +e FRFs of the block were
measured with the sampling frequency of 2048Hz and 512
sampling points by the structural Nastran FRF case module.
+e modulus of the FRFs is shown in Figure 3.

Figure 3 shows that the rigid body modes of the engine
lie below 35Hz, and there is no coupling phenomenon. +e
first elastic resonance frequency is about 177Hz with little
amplitude; it is available to estimate the mass line from the
measured FRFs. In addition, the dynamic stiffness of the
support system has little effect on the mass line; it is neg-
ligible from engineering practice.

In general, more testing points than required are selected
to ensure a good result. By equation (12), Ho can be cal-
culated; then the FRFs of the jth frequency line Hj can be
derived by inverse operation Hj

′. +e difference between Hj

and Hj
′ can be used to determine the error of the results,

which can be expressed as follows:

errj � Ηj − Hj
′



. (15)

+e total error can be calculated as follows:

err �
1

3 × N × P


3×N×P

j�1
Ηj − Hj

′


. (16)

To improve the inertia parameters identification accu-
racy, the error should remain in a certain range, that is,
errj < err × level (level, the initial value), or Hj should be
eliminated. Since equation (11) uses a least-square method,
the rank of matrix T should be full, and the condition
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number con of matrix T should be lower than 20 [20]. In
conclusion, there are three conditions to select the frequency
lines of the FRFs: (1) errj < err × level, (2) rank(T) � 6, and
(3) Cond(T)< con. +e response points are selected in
similar manners.

+e frequency bands from 90Hz up to 150Hz were
selected to identify the ten inertia parameters by equation
(11). +e identified standard block inertia parameters are
presented in Table 1 with a comparison to the finite element
simulation results, and the stiffness of the curve bar spring is
shown in Table 2. +e maximum inertia parameters error is
1.74% for xc; the element error of the matrix K is within 2%;
and the identified results are consistent with the theory
values. In addition, the linear characteristics of the curve bar
spring verify the generality of the method.

+e six rigid mode shapes have a relatively large mag-
nitude; it is necessary to study their effect on the identifi-
cation of inertia parameters, so as to see the dynamic
behaviour of the engine support system. To ignore the effect
of rigid mode shapes, the inertia parameters can be com-
puted using the method in the literature [14], that is, the
swing method. +e residual inertia method was used to
estimate the inertia parameters. To consider the effect of
rigid mode shapes, substitute the FEM system stiffness into
equation (5); the frequency bands from 90Hz up to 150Hz
were used to identify the ten inertia parameters. +e results
are shown in Table 3. +e rigid mode shapes have little effect
on the estimation of inertia parameters. Since the first elastic
mode shapes have a very small magnitude, the inertia pa-
rameters are basically unchanged. Both the six rigid and first

Figure 1: Curve bar spring.

Figure 2: Standard block supported by curve bar springs.
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Figure 3: Modulus of the FRFs.
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elastic mode shapes can be ignored from a practical ap-
plication point of view.

4. Errors of the Testing Point Location Effect

Since the testing point locations are essential input pa-
rameters for the algorithm, random errors were added to
understand the sensibility of the method to location errors in
this step. One hundred simulation runs were performed for
each random error. +e errors introduced into the inertia

parameters are shown in Figure 4, and the excitation and
response location errors introduced into the system stiffness
are presented in Tables 4 and 5, respectively.

+e errors in the locations of test points have almost no
influence on the estimated mass. Both errors in other
properties increase with the increase in the testing error.
Approximately 4% error is introduced by an error in the
excitation locations, and approximately 9% error is intro-
duced by an error in the response locations. From Tables 4
and 5, we can see that the error has a relatively larger effect

Table 2: Identified system stiffness of the curve bar spring.

Direction x y z α β c

FEM system stiffness (N/m)

x 2695193 0 536118.7 0 44461.07 0
y 0 275302 0 9247.395 0 −69097.7
z 536118.7 0 1416128 0 85055.21 0
α 0 9247.395 0 22965.87 0 −13059.3
β 44461.07 0 85055.21 0 37323.23 0
c 0 −69097.7 0 −13059.3 0 41700.41

Estimated system stiffness (N/m)

x 2686950.3 −67.8 536001.9 80395.7 313059.6 −403005.1
y 61.9 272706.3 63.0 −18142.7 15.7 −68023.4
z 539171.3 −36.3 1419722.6 212926.3 139301.4 −80845.6
α 80788.2 −18181.8 212693.0 55748.0 20843.2 −18336.2
β 313161.1 4.2 138468.0 20756.3 73034.6 −46970.4
c −403015.0 −68262.8 −80467.7 −18264.8 −46967.9 101906.0

Error (%)

x 0.31 — 0.02 0.03 0.29 0.32
y — 0.94 — 0.77 — 1.55
z −0.57 — −0.25 −0.24 −0.46 −0.53
α −0.46 0.55 −0.13 −0.03 −0.21 −0.68
β 0.26 — 0.14 0.21 0.18 0.27
c 0.31 1.21 −0.06 −0.29 0.27 0.43

Table 3: Effects of rigid shapes on the identification of inertia parameters.

+eory Ignore rigid shapes Error (%) Consider rigid shapes Error (%)
Mass (kg) m 160.6 161.3 −0.44 163.7 −0.44

Centre of gravity (mm)
xc 147.0 147.0 0.00 144.8 0.00
yc 152.3 151.1 0.79 148.4 0.79
zc 112.9 112.9 0.00 111 0.00

Moment of inertia (kg·m2)
Jx 7.74 7.79 −0.65 7.78 −0.65
Jy 7.71 7.70 0.13 7.68 0.13
Jz 9.86 9.89 −0.30 9.87 −0.30

Product (kg·m2)
Jxy 3.64 3.65 −0.27 3.65 −0.27
Jxz 2.75 2.72 1.09 2.71 1.09
Jyz 2.42 2.38 1.65 2.38 1.65

Table 1: Standard block inertia parameters.

FEM Proposed method Error (%)
Mass (kg) m 161.2 163.3 −1.28

Centre of gravity (mm)
xc 147.0 144.4 1.74
yc 152.3 152.3 0.03
zc 112.9 112.7 0.15

Moment of inertia (kg·m2)
Jx 7.77 7.87 −1.31
Jy 7.74 7.82 −0.99
Jz 9.90 10.02 −1.22

Product (kg·m2)
Jxy 3.66 3.64 0.44
Jxz 2.76 2.79 −1.11
Jyz 2.43 2.41 0.59
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±5.32 ±14.4 ±23.3 ±34.8 ±59.95 ±80.2 ±120
–4
–3
–2
–1

0
1
2
3

Excitation points coordinate error (mm)

In
er

tia
 p

ar
am

et
er

s e
rr

or
 (%

)

m
xc
yc
zc

Jx
Jy
Jz

Jxy
Jxz
Jyz

(a)

m
xc
yc
zc

Jx
Jy
Jz

Jxy
Jxz
Jyz

±5.32 ±14.4 ±23.3 ±34.8 ±59.95 ±80.2 ±120
–4

–2

0

2

4

6

Response points coordinate error (mm)

In
er

tia
 p

ar
am

et
er

s e
rr

or
 (%

)

(b)

Figure 4: Sensitivity of inertia parameter to location errors: (a) excitation locations and (b) response locations.

Table 4: Sensitivity of the method to system stiffness errors at excitation locations.

Direction x y z α β c

Estimated stiffness (K/m) with error±34.8mm

x 2688379.0 308.4 537109.7 80584.8 313371.1 −403403.0
y −260.8 272125.0 −652.6 −18363.7 −124.8 −67640.9
z 538223.5 53.0 1417243.0 212655.4 138738.3 −80782.5
α 80499.8 −18736.8 211808.6 55768.4 20651.1 −18095.9
β 314727.8 −155.5 142674.1 21328.5 73933.7 −47109.5
c −403446.0 −66291.1 −80384.6 −17941.4 −46977.6 100948.6

Estimated error (%)

x −0.25 — 0.18 0.21 −0.19 −0.22
y — −1.15 — 0.44 — −2.11
z 0.39 — 0.08 0.11 0.05 0.45
α 0.10 2.48 −0.29 0.06 −0.72 −0.64
β 0.24 — 2.89 2.54 1.05 0.03
c −0.21 −4.06 −0.04 −1.49 −0.25 −1.36

Estimated stiffness (K/m) with error±120mm

x 2688603.0 274.3 536987.3 80564.2 313366.7 −403420.0
y −269.8 272111.2 −674.7 −18353.5 −128.6 −67632.9
z 538230.5 42.9 1417220.0 212642.0 138718.0 −80775.2
α 81008.9 −17557.0 212938.1 55060.5 20849.3 −18396.5
β 314197.9 1176.8 140636.6 21094.4 73510.2 −47674.7
c −404670.0 −68378.2 −84502.7 −19264.0 −47828.2 102362.8
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on the estimated system dynamic stiffness, especially on the
coupling stiffness; when the random error is in the range of
[–120, 120], the estimated error on the coupling stiffness is
30.44%. As shown, care must be taken in measuring ge-
ometry to avoid incorrect results. +e units of the elements
of the stiffness matrix are the corresponding generalized
force divided by the generalized displacement.

5. Experiments

5.1. Curve Bar Spring Engine System. +e test engine was
supported by 3 specially designed curve bar springs shown in
Figure 5. Here, 4 response points and 18 excitation points
were taken into account. +e coordinates of test points were
measured by the 3D coordinate measuring apparatus.

+e FRFs were measured with the sampling frequency of
1024Hz and 1024 sampling points.+emodulus of the FRFs
for 4 response points and 3 of 18 excitation points are
presented in Figure 6. We can see that all six rigid body
modes are excited within 30Hz, and the first elastic reso-
nance frequency is approximately 118.5Hz. +e FRFs and
the corresponding coherence functions for response point 1

are shown in Figure 7.+e values of the coherent coefficients
for the three directions are all greater than 0.8, which verifies
the reliability of the experiment.

+e coordinate transformation of the test points [14] is
valid only when the rigidity condition is satisfied. In this
section, the measured and calculated FRFs were compared at
the fourth accelerometer to check the rigidity of the engine.
According to coordinate transformation, the FRFs of the
fourth accelerometer can be calculated by the other three
accelerometers, that is, Acc1, Acc2, and Acc3. As shown in
Figure 8, the calculated FRFs agree well with the measured
FRFs within 100Hz, which verified the rigidity of the engine.

+e frequency bands from 60Hz to 85Hz were used to
identify the 10 inertia parameters by equation (11) (Table 6).
+en, the FRFs from 3Hz to 35Hz were used to identify the
curve bar spring stiffness in Table 7. +e inertia parameters
of the engine were also computed by the swing method [16],
for comparison. +e proposed method can identify the
engine inertia method under normal installation conditions
(in situ), while the swing method must remove the engine
from the support infrastructure to ensure free-free boundary
conditions.

Table 4: Continued.

Direction x y z α β c

Estimated error (%)

x −0.24 — 0.16 0.18 −0.20 −0.21
y — −1.16 — 0.39 — −2.12
z 0.39 — 0.08 0.10 0.04 0.44
α 0.74 −3.97 0.24 −1.21 0.24 1.01
β 0.07 — 1.42 1.41 0.47 1.23
c 0.10 −1.04 5.08 5.78 1.55 0.02

Table 5: Sensitivity of the method to system stiffness errors in response locations.

Direction x y z α β c

Random error±34.8mm

x 2687089.0 −49.4 534515.0 79808.6 312370.9 −400879.0
y −460.3 272380.3 −820.9 −17882.0 −362.8 −68551.1
z 538707.6 555.9 1419494.0 211825.7 141596.3 −80095.5
α 80841.6 −17496.1 213273.3 55795.1 21209.0 −18439.5
β 311702.6 −33.8 138302.0 20606.6 73283.5 −46386.5
c −400960.0 −68279.8 −79754.0 −18304.2 −46517.9 101827.6
x −0.3 — −0.3 −0.76 −0.51 −0.84
y — −1.06 — −2.19 — −0.79
z 0.48 — 0.24 −0.28 2.11 −0.40
α 0.53 −4.30 0.40 0.11 1.97 1.25
β −0.73 — −0.26 −0.93 0.16 −1.51
c −0.82 −1.18 −0.83 0.50 −1.23 −0.50

Random error±120mm

x 2687577.0 −863.8 533317.9 80772.6 326156.1 −411843.0
y −1342.0 269013.3 955.6 −16104.3 −366.2 −79734.5
z 535032.0 −4586.7 1405268.0 211346.6 177723.6 −88411.0
α 81899.9 −18308.2 214197.9 61077.6 27131.7 −21016.2
β 312780.1 −1596.4 135979.4 20503.2 82414.3 −48248.2
c −407703.0 −69072.3 −81083.1 −20979.8 −48705.7 113786.3

Estimated error (%)

x −0.28 — −0.52 0.44 3.88 1.87
y — −2.28 — −11.92 — 15.39
z −0.20 — −0.77 −0.50 28.17 9.94
α 1.84 0.14 0.84 9.59 30.44 15.40
β −0.38 — −1.94 −1.43 12.64 2.44
c 0.85 −0.04 0.83 15.20 3.42 11.18
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Figure 5: Test engine supported by curve bar springs.
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Figure 7: Continued.
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Figure 7: Example of the test FRFs (excitation: F17; response: Acc3): (a) FRF and (b) coherence.
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Figure 8: Rigidity check of the engine: (a) amplitude and (b) phase.

Table 6: Identified inertia parameters of the engine curve bar spring system.

Inertia parameters Proposed method Swing method
Mass (kg) m 115.2 109.3

Centre of gravity (mm)
xc 16.7 33.4
yc 206.8 216.3
zc 119.1 135.5
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Since the engine and curve bar springs were connected
through 3 switchover pieces (0.81 kg× 3) and an auxiliary
plate (Figure 5), the identified engine mass was somewhat
larger than the swing method estimated. In addition, the
centre of gravity should reduce in value due to the effect of
the switchover pieces (0.81 kg× 3) and an auxiliary plate

compared with the swing method, and the results are
consistent with the trend. +e identified results of the
proposed method are close to the results from the swing
method. +e stiffness values estimated from the presented
method and extracted by the finite element simulation have a
bias because: (1) there is machining error, (2) the three curve

Table 6: Continued.

Inertia parameters Proposed method Swing method

Moment of inertia (kg·m2)
Jx 11.52 11.62
Jy 5.50 5.42
Jz 8.80 8.46

Product (kg·m2)
Jxy 0.27 0.03
Jxz 3.25 3.31
Jyz 0.23 0.12

Table 7: Identified system stiffness of the engine supported by curve bar springs.

Direction x y z α β c

Identified system stiffness (N/m)

x 290120.7 48337.8 386771.5 116531.3 −22822.5 −52696.2
y 70933.0 395010.3 137520.8 −10216.1 −16877.2 20108.6
z 553817.9 77824.8 1160978.8 268614.3 16786.5 −124765.4
α 150337.5 −14657.5 278525.7 133840.1 15069.3 −44197.4
β −57322.6 −10786.8 −35724.6 11531.1 64754.8 9857.5
c −47982.5 20608.0 −89536.5 −38565.4 −1114.0 31575.3
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Figure 9: Modulus of the measured and calculated FRFs.

Figure 10: Test engine supported by the mount.
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bar springs do not have exactly identical stiffness, and (3) the
spring stiffness has a certain degree of nonlinearity.

Once the inertia parameters and system dynamic stiff-
ness are known, the FRFs corresponding to the measured
FRFs can be calculated. Comparing the sum of all calculated
FRFs with the measured values, we find that the two FRFs
have consistent moduli, as shown in Figure 9, which verifies
the consistency of the identified results. Hereafter, if there is
no specific declaration, the same method is utilized.

5.2.MountEngineSystem. Here, the engine was supported by
three mounts as shown in Figure 10. +e engine and mea-
suring points are identical to those in Figure 5. Similar steps to
estimate the inertia parameters and system dynamic stiffness

are applied in this section. +e signals were collected with the
sampling frequency of 256Hz and 1024 points.+emoduli of
the calculated FRFs for all points are shown in Figure 11.

+e coherent coefficients are greater than 0.8, and the
rigidity condition of the engine holds within 100Hz. +e
identified inertia parameters and system dynamic stiffness
are presented in Tables 8 and 9, respectively. From Table 8,
we can see that the identified inertia parameters agree well
with those from the swing method.

+e change in system dynamic stiffness with frequency
in the three directions of its local coordinate system is shown
in Figure 12. +e modulus of the calculated and the mea-
sured FRFs is shown in Figure 13 and verifies the consistency
of the identified results.
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Figure 11: FRFs for all measurement points of the engine supported by the mount.

Table 8: Identified inertia parameters of the powertrain mount system.

Inertia parameters Proposed method Swing method
Mass (kg) m 110.8 109.3

Centre of gravity (mm)
xc 19.5 33.4
yc 208.1 216.3
zc 134.2 135.5

Moment of inertia (kg·m2)
Jx 11.56 11.62
Jy 5.61 5.42
Jz 8.01 8.46

Product (kg·m2)
Jxy 0.34 0.56
Jxz 3.36 3.31
Jyz 0.26 0.15

Table 9: Identified system dynamic stiffness of the powertrain mount system.

Direction x y z α β c

System stiffness (N/m)

x 1490171.8 −62047.3 −363210.4 −101692.6 −245141.7 −341731.1
y 254.8 1910981.1 −776855.1 199150.6 241490.1 259257.6
z −547878.2 −781461.8 4635226.6 1067626.9 −694916.0 −11255.6
α −119562.5 378584.3 1195191.6 436581.8 −175183.9 90437.8
β −265289.7 223319.6 −697592.1 −143398.3 222587.3 92242.3
c −369934.7 273163.7 −63350.4 37893.5 86895.9 174911.2

System damp (N·s/m)

x 121371.1 −19433.4 32809.8 19086.0 18288.5 −24051.3
y −58827.4 189173.6 −95132.9 −4759.9 18617.5 48450.6
z 171024.9 −213459.0 651576.1 158276.4 −101082.1 −91967.9
α 72740.8 −44961.6 232898.8 57961.3 −25358.0 −34826.9
β −39033.1 59188.1 −88440.0 −13369.6 31634.4 14076.3
c −37373.0 31182.6 −30948.1 −9501.8 −4297.2 16228.2
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5.3. Mount Engine with an Auxiliary Plate. Since the mount
stiffness is not available, to verify the accuracy of the
identified stiffness in Section 5.2, an auxiliary plate (14.9 kg)
was rigidly connected to the engine as shown in Figure 14;

then, the same steps were applied to calculate the system
dynamic stiffness. If the identified stiffness agrees well with
that identified in Section 5.2, the identified results are re-
liable. +e sampling frequency and engine attitude are
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Figure 12: Estimated system dynamic stiffness.
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Figure 13: Modulus of the measured and calculated FRFs of the engine mount system.
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Figure 14: Engine with an auxiliary plate.
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identical to those in Section 5.2. +e measured FRFs cal-
culated for points are presented in Figure 15.

+e inertia parameters and system dynamic stiffness
identified results are presented in Tables 10 and 11, re-
spectively. Differences between the identified main stiffness
are shown in Table 12. In Table 12, the system equivalent

stiffness is close, although there is a difference due to the
preload. +e changes in Kx, Ky, and Kz with frequency for
the engine with and without the auxiliary plate are shown in
Figure 16. +e two curves are basically identical in each
direction, which verify the accuracy of the identified
stiffness.
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Figure 15: FRFs for all measurement points of the engine plate mount system.

Table 10: Identified inertia parameters of the engine plate.

Inertia parameters Engine plate Engine Differences
Mass (kg) m 126.2 110.8 15.4

Centre of gravity (mm)
xc 22.4 19.5 2.9
yc 180.2 208.1 −27.9
zc 98.1 134.2 −36.1

Moment of inertia (kg·m2)
Jx 11.46 11.56 −0.1
Jy 6.57 5.61 0.96
Jz 7.97 8.01 −0.04

Product (kg·m2)
Jxy 0.97 0.34 0.63
Jxz 3.08 3.36 −0.28
Jyz 0.46 0.26 0.2

Table 11: Identified system dynamic stiffness of the powertrain mount system.

Direction x y z α β c

System stiffness (N/m)

x 1395591.8 −30449.8 −942324.2 −281524.7 −163269.4 −374485.9
y −113718.0 1334671.3 −681578.8 141792.6 8774.2 210950.1
z −525103.2 −319732.4 4847951.0 1226340.0 −643756.5 136427.0
α −96400.5 187465.1 1490075.0 489962.4 −255752.3 62305.0
β −342200.5 49534.8 −1123473.9 −291110.9 334301.8 83100.4
c −398453.2 219841.2 73853.7 83061.1 51541.5 187883.5

System damp (N·s/m)

x 48323.9 −1701.9 −107602.7 −37387.4 21710.4 −18127.0
y −95842.9 147080.1 44298.3 40013.9 −36403.2 35169.6
z 109125.4 −50897.6 515109.4 138443.2 −24243.4 −23883.1
α 10866.7 21260.1 180011.5 59125.0 −7614.7 1522.5
β −83656.9 40028.1 −63065.6 1426.8 21217.1 24798.1
c −41526.3 25703.9 −1744.1 7179.4 −7047.3 16897.5

Table 12: Differences in identified main stiffness between the engine plate and the engine.

Stiffness (N/m) kxx kyy kzz kαα kββ kcc

Engine plate 1395592 1334671 4847951 489962.4 234301.8 187883.5
Engine 1490172 1910981 4635227 436581.8 222587.3 174911.2
Differences (%) −6.34692 −30.1578 4.589299 12.22694 5.262879 7.416506
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Table 10 also shows that the identified mass of the
engine with the auxiliary plate is 15.4 kg heavier than that of
the engine without an auxiliary plate. +e difference in
quality is due to the quality of the auxiliary plate (14.9 kg).
Under the effect of the auxiliary plate, the value of the
centre of mass of yc and zc should be smaller than that of the

engine without an auxiliary plate, and the trend of the
identified results is consistent, which verifies the accuracy
of the method.

Similar to Section 5.1, the modulus of the calculated FRF
is consistent with the measured one in Figure 17, which
verifies the consistency of the identified results.
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Figure 16: Change in (a) Kx, (b) Ky, and (c) Kz with frequency.
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6. Conclusions and Discussion

An in situ method for identifying ten inertia parameters and
system dynamic stiffness of an engine was presented in this
paper. Further investigation of the errors of the testing point
location effect shows that the coordinates of measuring
points should be carefully measured since errors in coor-
dinates lead to errors in results.

+e results from the test on the engine supported by the
curve bar spring verify the generality of the method, while
the results from the test on the engine supported by the
mount are comparable to those of a swing test, which in-
dicates the accuracy of the estimation inertia parameter
method. +e consistency of the identified dynamic stiffness
of the engine with and without an auxiliary plate shows that
the estimation of the system dynamic stiffness is reliable. In
addition, for each experiment, the modulus of all FRFs
calculated from the inertia parameters and system dynamic
stiffness has high consistent with the measured value, which
further verifies the accuracy of the identified results.

However, the system dynamic stiffness identification
method can only identify the stiffness at the origin of the
coordinates. +is method cannot identify the stiffness of
each mount. In future research, we will study more ap-
propriate methods to overcome this deficiency.
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Timely and effective identification andmonitoring of tool wear is important for the milling process. However, traditional methods
of tool wear estimation have run into difficulties due to under small samples with less prior knowledge. /is article addresses this
issue by employing a multisensor tool wear estimation method based on blind source separation technology. Stationary subspace
analysis (SSA) technology is applied to transform multisensor signals to stationary and nonstationary sources without prior
information of signals. Ten dimensionless time-frequency indices of the nonstationary signal are extracted to train least squares
support vector regression (LS-SVR) to obtain a tool wear estimation model for small samples. /e analysis and comparison of one
benchmark tool wear dataset and tool wear experiments verify the feasibility and effectiveness of the proposed method and
outperform other two current methods.

1. Introduction

/e computerized numerical control (CNC) milling ma-
chine provides an important source of power for hard
machining. With the advantages of high automation and
good precision, it is widely used in modern manufacturing.
/e cutter tool is the primary factor that affects the quality of
the machine; its wear and damage can directly affect the
surface quality of the workpiece as well as the machining
efficiency. Tool wear accounts for 20–30% of the total
downtime of a milling machine [1, 2], and tools and tool
changes account for 3–12% of the total machining cost [3].
/erefore, online tool wear estimation has become an im-
portant research area in intelligent milling machining [4].

As shown in Figure 1, a typical online tool wear esti-
mation method has three steps: (1) sensor signal acquisition,
i.e., acquisition of physical field signals in the milling process
by one or more sensors; (2) feature extraction, i.e., acqui-
sition of received signals, such as by fast Fourier transform
or wavelet analysis, to obtain information related to tool
wear; and (3) monitoring, i.e., use of pattern recognition,

neural networks, or regression analysis to classify or estimate
tool failure.

In online tool wear estimation, many sensors have been
used to obtain process signals [5], such as cutting force [6, 7],
acoustic emission (AE) [8, 9], vibration [10, 11], and current
[12, 13]. However, a single physical field signal has several
shortcomings; for example, the cutting force is most sen-
sitive to changes of tool wear, but commercial dynamom-
eters are expensive and can increase manufacturing costs.
An AE signal is measured at a high sampling rate, which
leads to a large dataset and difficult processing and storage
[14]. A vibration signal is difficult to filter, and it can be
affected by the installation position. A current signal con-
tains much noise, which makes it difficult to detect small
fluctuations [15]. Due to the uncertainty and limitations of a
single sensor, multisensor monitoring has become common
due to its good performance and robustness [16]. Zhao et al.
[17] applied a multisensor signal with a three-component
dynamometer and three accelerometers to estimate tool
wear using local feature-based gated recurrent unit net-
works. Zhou et al. [18] collected multisensor signals in a
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milling process and proposed a method to search for optimal
feature parameter combinations in multisensor signals. Zhu
et al. [19] proposed a smart tool condition monitoring
system through several deep learning models with sensors,
including cutting force, vibration, AE, CNC process data,
and tool wear image. Multisensor methods can enhance the
richness of information that contains potential tool wear
levels and reduce the overall uncertainty of the measure-
ment. In addition, several researchers determine the cutting
tool life through mathematical methods. For example,
Krolczyk et al. developed a mathematical model to predict
the tool life by examining the influence of cutting param-
eters, namely, cutting speed, feed, and depth of cut onto tool
life [20], researched the coated carbides tool life and the tool
point surface topography [21], and analyzed the wear of
milling cutters made of sintered carbide and of boron nitride
[22], which provide a good theoretical basis for tool wear
estimation. Moreover, hybrid intelligent methods have
attracted considerable interest for tool fault diagnosis, e.g.,
wavelet transform (WT) and artificial neural network
(ANN). /e growth of deep learning (DL) in recent years
has led to increasing interest in DL-based tool wear esti-
mation methods [23, 24]. However, these hybrid intelligent
methods require the signal analyzed to satisfy certain
conditions, such as huge number of training samples, in-
dependent and identical distribution, white Gaussian noise,
or prior information of data. For example, WT-based
feature extraction lies in selecting a wavelet basis function
that matches the fault characteristic waveform. However, it
is difficult to select the appropriate wavelet basis function
for the recognition of an unknown milling cutter tool fault
[3]. DL-based methods require large amounts of training
sample data, which are costly and time-consuming for
machining processes [25]. Accordingly, these above con-
ditions are difficult to meet in practical situation [26, 27],
especially in time-varying and nonstationary nature of the
NC machine complex cutting process. Moreover, there is
little prior knowledge that can be available to detect and
diagnose tool faults in NC machine currently [28]. /e
study of time-varying and nonstationary processes with less
prior information is therefore well motivated. /erefore,
obtaining good accuracy of tool wear estimation under
small sample is currently a hot topic.

/e main contributions of this article are as follows:

(1) A tool wear estimation method for a milling process
based on a multisensor blind source separation

method is proposed, using small training sample
sizes and not presetting model parameters

(2) /e proposed method based on SSA and LS-SVR
significantly outperforms PCA according to milling
tool wear experiments

(3) Experiments with different cutting conditions verify
that the proposed method is robust and promising
for milling tool condition monitoring

/e remainder of this study is organized as follows.
Section 2 describes the theoretical framework and proposed
tool wear estimation method. Sections 3 and 4 verify the
performance of the method with the benchmark PHM-2020
milling dataset and our tool wear experiments. Conclusions
are given in Section 5.

2. Proposed Method

2.1. Framework. /e proposed online milling tool wear
estimation method includes the phases of model training
and online tool wear estimation (Figure 2). During model
training, multidimensional signals are collected for different
tool wear and divided into several stationary sources and one
nonstationary source by SSA technology (Section 2.2).
Statistical parameters in the time and frequency domains
(Section 2.3) of the nonstationary source are calculated to
train the LS-SVR model (Section 2.4). In online tool wear
estimation, for a new tool to be tested in milling operation,
multidimensional signals are collected by multiple sensors
and then extracted the nonstationary source by SSA. Sta-
tistical parameters in the time and frequency domains of the
nonstationary source are calculated and input to the LS-SVR
to estimate the wear value.

2.2. Stationary Subspace Analysis. SSA is a blind source
separation algorithm proposed by von Bunau et al. [29]. In
SSA, if two first-order parameters of a time series do not
change with time, then it is stationary. SSA assumes that an
observed multidimensional time series is a linear super-
position of stationary sources that are constant over time
and nonstationary sources that change with time [30]. An
observed multidimensional time series X ∈RD×N is defined
as

X � ASt � A
s
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Figure 1: Process diagram of tool condition monitoring.
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where D and N are the dimension and number of data
points, respectively; A ∈RD×D is an unknown independent
time matrix that is the linear superposition of the coefficient
matrices of stationary and nonstationary sources; and Ss

t and
Sn

t denote the d-dimensional stationary and (D− d)-di-
mensional nonstationary sources, respectively.

If d-dimensional stationary and (D− d)-dimensional
nonstationary sources exist, then an inverse matrix A−1 can
be constructed for the observation data X, such that
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To determine whether two first-order parameters of a
time series change with time, the observed X is divided into
continuous time segments, and each is compared with the
whole time series through Kullback–Leibler (KL) diver-
gence./emean μi and covariancematrix Σi of each segment
Xi are calculated, and KL divergence is employed to compare
the changes of their mean and covariance, Xi(μi, Σi) and
X(μ0, Σ0), respectively./e stationary index can be defined as

L μ1, . . . , μn,Σ1, . . . ,Σn(  � 
n

i�1
DKL N μi,Σi( ‖N(μ,Σ) .

(3)

To find the stationary mapping B, SSA minimizes the
nonstationarity of the stationary direction to be estimated,
and the optimal stationary mapping can be obtained by the
solution of

argmin
B ∈Rd×d

 DKL N Bμi, BΣiB
T

  N Bμ, BΣBT
 

����� . (4)

To solve this problem, SSA uses an iterative operator to find
B by updating an orthogonal matrix R. Starting from a random
orthogonal matrix R0, and in each step k, the steepest descent
direction U in a set of orthogonal transformations is found
using the standard gradient descent strategy, and the following
update is performed until the last step Q :Rk+1�URk; then,
we obtain Bs∗ � IdRQW, where W is the whitening matrix.

It can be seen that SSA does not need a large amount of
sample data for training nor does it require independent
dimension components. As long as the number of seg-
mentation time is not less (generally greater than the di-
mension of the observed time series), the blind source
analysis can be realized.

2.3. Statistical Parameters in Time and Frequency Domains.
To overcome the drawback of features in a single domain,
which lose some useful information related to the tool
condition, we extract a few dimensionless statistical pa-
rameters in the time and frequency domains based on the
literature [27, 31, 32] and our experimental studies [11, 33].
Table 1 lists 10 statistical feature parameters related to tool
wear from the time and frequency domains that were
extracted as feature parameters.

2.4. Least Squares Support Vector Regression. /e aim of LS-
SVR is to extract features from the original space and map
the samples to a vector in a high-dimensional feature space,
so as to solve the problem of linear indivisibility in the
original space [34, 35].

Given a training set D� {(Xk, yk) | k� 1, . . ., M},
Xk ∈RD×N, yk ∈R, Xk, and yk denote independent and re-
sponse variables, respectively. /e response function to be
estimated is

Min
ω,b,c

J(α, e) �
1
2
αTα + c 

N

k�1
e
2
k,

s.t. yk � αTφ xk(  + b + ek,

(5)

where ek is the error; α and b are the weight vector and bias,
respectively, to be estimated; and φ(·) is a mapping function
from low-dimensional space to high-dimensional feature
space. /e loss function J is the sum of squares due to error
(SSE) and regularization of α. According to the Lagrange
multiplier method, the following equation can be trans-
formed [36]

L(α, b, e; c) � J(α, e) − 
k

ck αTφ xk(  + b + ek − yk .

(6)

Let the partial derivatives of L to α, b, e, and c be equal to
0. Eliminating e and c, α and b to be estimated can be solved
by the following matrix equation:
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Figure 2: Framework of the proposed method.
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where 1v � [1, . . ., 1], and Ωkl � φ(xk)Tφ(xl), k, l � 1, . . . ,

N. LS-SVR employs a kernel function trick to overcome
complex high-dimensional mapping operations of φ(·), such
as a polynomial kernel, multilayer perceptual kernel, B-
spline kernel, or RBF kernel.

Ψ xk, xl(  � φ xk( 
Tφ xl( . (8)

/us, the response variable corresponding to a new
observed X’ can be determined as follows:

y X′(  �  α∗kΨ X′, Xk(  + b
∗
. (9)

In this study, the RBF kernel function is used, as given in
the following equation, and the hyperparameter h is opti-
mized by leave-one-out cross-validation (LOOCV) due to a
small training sample set [37].

ψh x, x′(  �
1
���
2π

√ exp −
x − x′( 

2

2h
2

⎛⎝ ⎞⎠. (10)

3. Benchmark Dataset Analysis

3.1.Description ofDataset. /e PHM-2010 challenge milling
dataset employed for validation testing of the proposed
method was obtained from a milling machine under dry
milling using a 2-flute ball nose cutter [38, 39]. Figure 3
shows the device and sensors used in this experiment, and
Table 2 lists the cutting parameters./ere were three types of
signals: cutting force from a three-component dynamom-
eter, vibration from three accelerometers, and AE from an
AE sensor. /erefore, each sample in the dataset included
seven sensor channels’ time series. /e tool’s flank wears
were measured offline using a microscope after finishing
each surface.

3.2. Analysis and Results. According to the data file, three
cutter records, C1, C4, and C6, could be used to verify the
performance of tool wear estimation. C4 and C6 were used
as the training set, and C1 as the testing set.

For each sample, a seven-dimensional signal was ob-
tained from six stationary and one nonstationary source, and
the 10 dimensionless statistical parameters listed in Table 1

were calculated as the input of the LS-SVR. /ere are two
reasons for selecting one nonstationary source: (1) it con-
tains a variety of feature information than the stationary
source to distinguish different tool wear; and (2) in the
proposed method, it is easy to calculate the statistical pa-
rameters for the single nonstationary source.

To test the effectiveness of different methods, LS-SVR
and principal component analysis (PCA) + LS-SVR were
compared with the proposed SSA + LS-SVR. Ten

Table 1: Ten statistical parameters.

Domain Index Formula

Time

Crest factor, Tcf Tcf � max xi /xrms

Shape factor, Tsf Tsf � xrms/( |xi|/n)

Kurtosis, Tku Tku � (
n
j�1 (xj − Tavg)4)/(n · T4

sd) − 3
Skewness, Tsk Tsk � (

n
j�1 (xj − Tavg)3)/(n · T3

sd)

Kurtosis factor, Tkf Tkf � Tku/xrms

Frequency

Stabilization ratio, Fsr Fsr � (
n
j�1 f2

jPi)/(
������


n
j�1 P

 ��������


n
j�1 f4

jP


)

Wave-height ratio, Fwr Fsr � max Pi /
�����������
(2/n) 

n/2
j�1 P2

i



Frequency high-low ratio, Ffr Ffr � 
n/2
i�n/4 Pi/

n/4
i�1 Pi

Average frequency, Faf Faf �
��������������������
(

n/2
j�n/4 fjPj)/(

n/2
j�1 Pj)



Modified equivalent bandwidth, Fmeb Fmeb �
������������������������
(

n
j�1 (fj − f)2Pj)/(

n
j�1 Pj)



Table 2: Operation parameters in the PHM-2010 challenge milling
dataset.

Operation parameter Value
CNC machine Roders Tech RFM 760
Workpiece material Inconel 718 (Jet engines)
Cutter 3-flute ball nose
Spindle speed 10400 rpm
Feed rate 1555mm/min
Y depth of cut (radial) 0.125mm
Z depth of cut (axial) 0.2mm
Number of sensors 5
Number of sensor channels 7
Sampling data 50 kHz

Cutter

Workpiece

Accelerometer

AE sensor

Cutter flute

Dynamometer

Figure 3: Experimental setup in the PHM-2010 challenge milling
dataset.
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dimensionless statistical parameters of each dimension
from the original multisensor signals were calculated
directly for every sample and used as the input of the LS-
SVR; there was no transformation of the original signal.
PCA + LS-SVR uses PCA instead of SSA for feature ex-
traction. Ten dimensionless statistical parameters of seven

channels in each sample were calculated as the input of the
PCA, and 10 principal components obtained by PCA were
selected as the input of the LS-SVR. Root mean square
error (RMSE) and the correlation coefficient (R) were
employed to quantify the estimation performance of these
methods.
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Figure 4: Comparison of three methods of tool wear estimation with testing set C1.

Table 3: Estimation error of three methods with testing set C1.

LS-SVM PCA+LS-SVM SSA+LS-SVM
RMSE 52.1077 22.5284 8.4653
R 0.2899 0.6961 0.9848

�ree-axis
accelerometer

Workpiece

Tool feed direction

Tool

Sound sensor
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Figure 5: Experimental setup.
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/e tool wear estimation results of tool C1 with three
methods are shown in Figure 4, from which it can be seen
that the estimation accuracy of the proposedmethod exceeds

that of the other two methods. /e error between the es-
timated and actual values of tool wear is presented in Table 3.
/e RMSE of the proposed SSA+LS-SVR method was
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Figure 6: Milling path in the experiments.

(a) (b)

Figure 7: Experimental measuring devices. (a) Data acquisition instrument. (b) Tool microscope.

Table 4: Cutting parameters in the experiment.

Tool Spindle speed (rpm) Depth of cut (mm) Feed rate (mm/tooth)
1 2300 0.4 0.058
2 2300 0.4 0.072
3 2300 0.5 0.065
4 2300 0.6 0.072
5 2300 0.6 0.058
6 2400 0.4 0.065
7 2400 0.5 0.072
8 2400 0.6 0.058
9 2500 0.4 0.072
10 2500 0.4 0.058
11 2500 0.5 0.058
12 2500 0.6 0.065
13 2500 0.6 0.072
14 2500 0.6 0.058
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8.4653, which was 83.7% and 62.4% less than that of the LS-
SVR and PCA+LS-SVR, respectively. R was 0.9848 for the
proposed method, which was 0.69 and 0.28 greater than that
of the LS-SVR and PCA+LS-SVR, respectively.

4. Experimental Investigation

4.1. Experimental Setup. Figure 5 shows the experimental
setup for milling tool wear estimation under various op-
erating conditions. /e workpiece was #45 steel with di-
mensions of 300mm× 100mm× 80mm, machined by a
vertical machining center using an uncoated three-tooth
tungsten steel end milling cutter under dry millings. Each
cutting was completed five times in finishing a surface, i.e.,
three times forward and two times back, as shown in
Figure 6. A three-axis accelerometer was mounted under
the workpiece with a magnetic base to measure its vibra-
tions in the X, Y, and Z directions, and accelerometers were
attached to the side of the spindle by strong glue to measure
the vibrations of the spindle in the X and Y directions.
/ree current sensors were clamped on the machine motor
wires to measure the three-phase current of the motor. A
sound sensor was fixed near the workpiece to measure
sound during the cutting process. /erefore, the sensory
data consisted of nine channels. /ese signals were col-
lected by a data acquisition instrument and stored on a

personal computer (Figure 7(a)), with a continuous sam-
pling frequency of 12 kHz during the tool wear test. /e
wear value of each individual flute was measured offline
using a tool microscope after machining a surface
(Figure 7(b)).

/ere were 14 cutting tools used in our experiment with
different cutting parameters, as given in Table 4. In each tool
cutting experiment, there were five group signals after
cutting a surface. /e first four group signals were taken as
training samples and the last as the test sample.

4.2. Analysis and Results. A nine-dimensional sensing
signal in each sample was transformed by SSA and
converted to eight stationary sources and one nonsta-
tionary source. /e reason is the same as discussed in
Section 3. Figures 8–10 show the transformation results
through the SSA of tool 1 for three wear values (corre-
sponding to the first, fifth, and tenth cutting). It can be
seen that the time sequence diagram of the nonstationary
source changes significantly after SSA transformation,
while the changes of eight stationary sources after SSA
transformation are not obvious. /erefore, we only used
the signal of the nonstationary source to estimate tool
wear. Here, as in Section 3, the RBF kernel was selected as
the kernel function of the LS-SVR, and the hyper-
parameter was optimized by LOOCV.
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Figure 10: Signal after SSA transformation (tool wear value is 2.05mm).
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Figures 11–13 show the tool wear estimation results of
the testing set with the three methods. /e estimation error
between the estimated and actual values of tool wear is given
in Table 5./e RMSE of the proposed SSA+LS-SVRmethod

was 0.0529, which is 77.1% and 51.6% less than that of the
LS-SVR and PCA+LS-SVR, respectively. R of the proposed
method was 0.8923, which is 0.55 and 0.22 higher than that
of the LS-SVR and PCA+LS-SVR, respectively.
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Figure 13: Tool wear estimation result with the PCA+LS-SVR method.
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Figure 12: Tool wear estimation result with the LS-SVR method.
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Figure 11: Tool wear estimation result with the proposed method.

Table 5: Estimation error of three methods in the experiment.

LS-SVM PCA+LS-SVM SSA+LS-SVM
RMSE 0.2309 0.1094 0.0529
R 0.3414 0.6701 0.8938
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5. Conclusion

In order to solve the problem of low performance of tra-
ditional methods for milling tool wear estimation under
small sample with less prior knowledge, a multisensor tool
wear estimation method based on SSA and LS-SVR was
proposed. Taking the advantage of SSA without prior in-
formation of signals and parameter presetting, the multi-
dimensional signals collected by sensors were decomposed
into stationary and nonstationary sources through SSA, and
10 dimensionless time-frequency statistical parameters from
the nonstationary source were extracted as the input pa-
rameters of the LS-SVR to obtain the tool wear estimation
model under small sample. /e proposed SSA+ LS-SVR
method was validated on the PHM-2010 challenge milling
benchmark dataset and our tool wear experiments. /e
results indicated that the root mean square error and cor-
relation coefficient of the proposed method were signifi-
cantly better than LS-SVR and PCA+LS-SVR on two
milling TCM experiments. Furthermore, the proposed
method could be improved to enhance its performance
under one-dimensional signal for tool wear estimation, in
which the number of subsources needs to be optimized.
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Tool wear is a key factor that dominates the surface quality and distinctly influences the generated workpiece surface texture. In
order to realize accurate evaluation of the tool wear from the generated workpiece surface after machining process, a new tool wear
monitoring method is developed by fractal dimension of the acquired workpiece surface digital image. A self-made simple
apparatus is employed to capture the local digital images around the region of interest. In addition, a skew correction method
based on local fast Fourier transformation energy is also proposed for the surface texture direction adjustment. Furthermore, the
tool wear quantitative evaluation was derived based on fractal dimension utilizing its high reliability for inherent irregularity
description. ,e proposed tool wear monitoring method has verified its feasibility as well as its effectiveness in actual milling
experiments using the material of AISI 1045 in a vertical machining center. Testing results demonstrate that the proposed method
was capable of tool wear condition evaluation.

1. Introduction

Machining tool is a major component in a manufacturing
system, and its failure (tool wear and breakage) attributes up
to 20% of the machine downtime [1], and the costs of tools
and tool changes account for 3–12% of the total processing
cost [2]. ,erefore, machining tool reliability becomes a
crucial important aspect in ubiquitous manufacturing which
directly influences the energy consumption and production
rate [3]. Conventional tool replacement strategies employ
uniform time periods determined by the subjective expe-
rience of operators. But such experiential strategies will
inevitably result in early replacement which leads to that
only 50–80% of the tool effective life is used [4]. To enhance
the manufacturing system reliability, many strategies are
proposed for the machining tool condition monitoring.
With ubiquitous computing, tool wear real-time monitoring
emerges as a heated research area.

Tool wear is considered to be a key factor that dominates
the surface quality and also a critical index to fulfill the
accuracy requirements during the machining process [5].
Tool wear monitoring or estimating is usually divided into
direct monitoring and indirect monitoring [6]. Direct
sensing techniques of a tool wear by using microscope or
charged-couple-device (CCD) camera is a traditional vision-
based tool wear measurement method [7]. But this method
has to stop machine and remove the tool from holder. So, it
prolongs the tact time and increases the production costs.
On the contrary, many tool indirect monitoring methods are
proposed by modern sensors. Indirect methods are ad-
vantageous because they do not directly affect the machining
process and offer high recognition accuracy under ideal
conditions.

Due to its manufacturing costs advantage and real-time
monitoring, indirect tool wear detection attracts the at-
tention of many scholars. Vibration signal is the most widely
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used method for machinery condition monitoring and fault
detection [8–10]. Besides, machine learning techniques also
identified a promising option in various engineering ap-
plication scenarios [11–13]. Recently, advances in sensing
technology have led to proposals for tool condition moni-
toring using various signals, such as temperature, acoustic
emission, cutting force, and sound. Kovac et al. developed a
novel method for predicting functional lifetime in tool parts
based on a tool-work thermocouple temperature with tool
wear experiment [14].Wang et al. proposed a nondestructive
tool wear evaluation method by clustering energy of acoustic
emission (AE) burst signals under minimal quantity lu-
brication cutting condition [15]. Kong et al. presented a real-
time tool wear predictive model (cutting force signal) based
on the integrated radial basic function-based kernel prin-
cipal component analysis (KPCA_IRBF) and relevance
vector machine (RVM) and verified by two different cutting
experiments [16]. Ravikumar and Ramachandran performed
a tool wear monitoring system using sound signals acquired
during milling of aluminum alloys [17]. Due to the inter-
ference of processing conditions and limited sensing
physical characteristics, multiple modalities of sensors are
instrumented to measure the different aspects of tool con-
ditions. Wang et al. presented a virtual tool wear sensing
technique based on multisensory data fusion and artificial
intelligence model for tool condition monitoring [18]. Rizal
et al. proposed a novel approach for tool wear classification
and detection in milling process using multisensor signals
and Mahalanobis-Taguchi system (MTS) [19]. However,
these indirect methods present a significant drawback: all
these signals could be seriously affected by the inherent noise
generated in industrial environments [20–23], which re-
duces their performance.

Milling is the process of machining using rotary cutters
to remove material by advancing a cutter into a workpiece.
Highly efficient milling processes are suitable for mass
production and have been widely used in manufacturing.
Compared with turning machines, it is difficult for mea-
suring rotating tools wear with multiple moving axes in
milling. According to related researches [24], a reliable tool
condition monitoring (TCM) can largely reduce the
manufacturing costs by 10–40% by reducing downtime and
maximizing the usable life of milling tools.

Machined surface topographies are the final product
after manufacturing and could probably be the carriers for
fabrication process and functional information. Compared
with conventional direct and indirect tool wear evaluation
method, machined surface topographies evaluation can be
performed without the need to stop the cutting process and
also enjoys the merit of free noise interference. Different
machined surface defects after machining with the worn
tools are investigated in the previous literatures and directly
affect the subsequent mechanical properties of the
manufacturing components. Machining parameters, tool
type, and geometry as well as workpiece properties are
among the most influential parameters in the tool wear
process [25]. A higher level of surface damage was generated
on machined surface under condition of worn tools than
new cutting tools without considering other cutting

conditions. Literature found that, apart from the cutting
conditions (the cutting speed, the feed rate, and the depth of
cut), tool wear has primary effects on the modification of
surface roughness and has drawn the attention of many
researchers [26]. However, some studies obtained the op-
posite results when evaluating the tool wear by surface
roughness. Li et al.’s study results showed that tool wear had
distinct deterioration influence on the surface roughness
[27]. However, in [28], authors found that the surface
roughness firstly increased and then declined when flank
wear varied from 0 to 0.3mm. ,erefore, a tool wear
evaluation method based on a more reliable surface to-
pography statistical indicator is indispensable.

Inspirited by these different topography parameters tool
wear condition monitoring methods, a new tool wear
evaluation method is developed by fractal dimension from
the acquired workpiece surface digital image. In this re-
search, local digital images are acquired by a self-made
simple apparatus. A skew correction method based on local
fast Fourier transformation (FFT) energy is also proposed
for the surface texture direction adjustment. ,e tool wear
quantitative evaluation was derived based on fractal di-
mension from the skew corrected digital image because of its
high reliability for inherent irregularity description.

,e rest of the paper is organized as follows: the tool
wear monitoring framework is briefly described in Section 2.
,e experiment studies are presented in Section 3, as well as
the model calibration. ,e application examples of the
developed method are explained in detail in Section 4. Some
concluding remarks are given in Section 5.

2. Tool Wear Monitoring Framework

2.1. +e Proposed Tool Wear Evaluation Method. ,is re-
search proposed a new tool wear monitoring method by
fractal dimension from the acquired workpiece surface
digital image. ,e flow chart of the proposed method is
presented in Figure 1. Relevant details are also described
below.

Step 1: place the self-made image acquisition system
(described in Section 3.1.2) on a machined workpiece
surface to capture the local surface images. Meanwhile,
the cutting tool is taken off to evaluate the tool wear by
traditional direct tool wear method (described in
Section 3.1.4).
Step 2: correct the texture skew of the raw image with
the proposed skew correction algorithm in Section 2.2.
Step 3: in this step, the estimating contour is deter-
mined by the similar criterion in [29]. ,en, the
extracted contour curve fractal dimension is calculated
(described in Section 2.2). Finally, a regression model is
fitted according to the fractal dimensions and the ac-
quired tool wear based on traditional direct tool wear
method (Section 3.3).

2.2. Skew Correction Algorithm. Hough transform, projec-
tion characteristics, Fourier transform, and shearlet trans-
form are the commonly used algorithms for skew correction
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[30–33].,ose skew detection and correction algorithms are
mainly aiming at detecting the deviation of the document
orientation angle from the horizontal or vertical direction. In
this research, the investigated subject has a focus on the
machined surface. Prior research shows that two-dimen-
sional signal may contain strong noises in the whole fre-
quency domain [34–36]. ,erefore, a new skew correction
algorithm is necessary.

2.2.1. Local Energy of the FFT. Figure 2 is a striped image
with noise interference where λ is the dominant wavelength,
λu and λv are the wavelength components in x and y di-
rections, respectively. u � 1/λu and v � 1/λv are the sampling
rates in the two directions, and they are also the period
components of the FFT spectrum F(u, v). As can be seen in
Figure 2, acquired surface image contains strong noises in
the whole frequency domain. ,erefore, the general used
Fourier transform in document scanning is not suitable in
this research. Notice that the wavelength of main direction
((a) in Figure 2) is slightly different from the x and y di-
rections ((b) and (c) in Figure 2); it could be possible to
correct the skewed images by local FFT energy distribution.
Define the local FFT energy as the energy in x positive half
axis of Fourier spectrum F(u, v). According to this defini-
tion, if the local energy reaches its maximum, the images
should be well skewed.

2.2.2. Skew Correction Algorithm. In this paper, a novel skew
correction algorithm based on local 2D FFT energy is
proposed to improve the skew correction accuracy. Flow
chart of the proposed method is presented in Figure 3 and
illustrated in the following steps:

Step 1: input the original image.

Step 2: use FFT to acquire the Fourier spectrum F(u, v).
Step 3: calculate the local energy Li from the Fourier
spectrum.
Step 4: rotate the image counterclockwise with 1°and go
to Step 2 until the rotate degree reach 360°.
Step 5: output the image which has the maximum
energy Li.

A typical captured image is shown in Figure 4(a). It can
be seen that the original image has an obvious skew. ,is
skew will strongly influence the tool wear evaluation. ,e
local FFT energy distribution is shown in Figure 4(c) where
horizon axis indicates the rotation angle and vertical axis
indicates the corresponding local FFT energy. Figure 4(c)
shows that the local FFT energy reaches its maximum when
the rotation angle is 22°. Rotate the image with 20°; the
rotated image is shown in Figure 4(b). ,e adjusted image
result shows that the proposed method has good skew
correction ability.

Input image

Skew correction by the proposed method

Skew correction

Machined surface

Acquire the workpiece local image

Data acquisition Tool wear direct measurement

Take off the cutting tool

Tool wear estimating method

Capture the tool-end plane image

Extract the wear zone boundary

Evaluate the tool wear

Find the 
estimating contour

Extract the contour
curve

Calculate the
fractal dimension

Modify the model
based on the direct

measuring result

Figure 1: Flow chart of the proposed tool wear monitoring method.
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Figure 2: Illustration for the parameters of the 2D FFT.
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2.3. Fractal Dimension. Many surface topography parame-
ters have been widely employed for the purpose of evaluating
the tool wear from the generated workpiece. In this research,
authors utilized fractal dimension as the tool wear evaluation
metric.

Multifractal analysis, which is a natural extension of the
fractal modeling, has aroused more attention and is applied
to characterize various physical phenomena in recent years.
Each geometric entity can be interpreted as a specific sort of
point group. ,e distribution of different points on the 2D
projection indicates different intrinsic structural topology.
Generally, the distributions of 2D point group can be cat-
egorized into three types: even distribution, random dis-
tribution, and collectively distribution.

Fractal dimension is reported as an effective tool for
describing the inherent irregularity of natural objects, as well
as the point group holistic morphological characteristics
[37]. ,e value of the fractal dimension reflects the filling
ability of the point group; it is greater than the topology
dimension and less than the spatial dimension [38]. ,e
analysis of fractal patters has aroused heated discussion
during the last years, mainly in the field of empirical ap-
plications [39]. ,e fractal dimension could be represented
by several types of dimensions, for instance, the similarity
dimension, Hausdorff dimension, and box-counting di-
mension (BCD) [40]. Among these methods, the BCD
method is the most well-accepted method to determine the
fractal dimension in various application fields due to its
relative simplicity and reliability [37, 41].

Mandelbrot [42] defined that a set in an Euclidean space
is said to be self-similar if it is the union of N (r) distinct
subsets, each of which is a copy of the original scaled down
by a ratio 1/r in each spatial direction. ,e fractal dimension
of an object is defined by

D � lim
r⟶0

log(N(r))

log(1/r)
, (1)

where N(r) is the least number of boxes of length r needed to
completely cover the object. Based on this definition, many
different dimension types are proposed. Introduced by
Gangepain and Roques-Carmes [43], BCD is found to be the
most simple and reliable method for approximate fractal
dimension estimation. ,e principle of BCD is shown in
Figure 5. Using a fixed rectangle to decompose the point
group, the number of filling unit element will be changed
with the changing of rectangle dimension w. By counting the
length of the unit element w and the filling element number
N(w), the fractal dimension can be approximately described
with

D ≈
log(N(w))

log(1/w)
. (2)

Hence, the overall procedure of the BCD method can be
summarized into the following steps (as can be seen in
Figure 6): (a) divide the point group by boxes under different
length w, (b) compute the number N of the boxes whose
number of pore pixels is bigger than 1, and (c) plot log(N(w))
vs. log(1/w) and use the linear correlation to fit the data; the
slop of the generated line denotes the BCD fractal dimension
[44].

As mentioned above, fractal dimension should be bigger
than the topology dimension while smaller than the spatial
dimension. ,erefore, for the 2D projection, the fractal
dimension is greater than 1 but less than 2. ,e fractal
dimension reflects the distribution evenness of the point
group; large fractal dimension means good distribution
evenness. Figure 5 shows three different point group

FFT Calculate Li

Image rotating Image output

Image input

Iteration

N Y

Figure 3: Proposed skew correction algorithm.
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Figure 4: Image skew correction. (a) Original image, (b) skewed image, and (c) local energy distribution.
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distribution situations. For the left blue rhombic point
group, the fractal dimension is 2, while the fractal dimension
of middle and right rhombic point groups is less than 2.

3. Experiment Studies

In order to investigate the proposed tool wear evaluation
method, a series of AISI 1045 steel milling cutting experi-
ments were carried out.

3.1. Experiment Setup

3.1.1. Workpiece and Cutting Tool. ,e workpiece used in
this test was AISI 1045 steel, rectangular block with the
dimensions of 230mm (L)× 90mm (W)× 90mm (H). A
cemented carbide endmilling cutter (the diameter is 10mm)
with three teeth is employed for the experiments.

3.1.2. Image Acquisition. Workpiece surface images are
collected by a self-made image acquisition system; the
structure sketch of the image acquisition system is shown in
Figure 7. ,e platform is constructed of mobile phone
(Xiaomi 8, produced by Xiaomi Corporation, Beijing,
China), coaxial light sources (blue light, VP-24, produced by
Vanch Photoelectric Technology Co., Ltd., Shanghai, China)
and other auxiliary mechanism. As can be seen in Figure 7,
coaxial light has a semireflective mirror to align the light
from the LED array to the same optical axis as the camera
lens. Mirror surface workpieces are uniformly illuminated
without unevenness. Focal length regulator is used to adjust
the focal length. Focal length regulator is used to ensure the
unity of focusing distance of different photos. After

machining, the image acquisition is placed on the machined
workpiece surface and captures the digital image. Details
about the capture parameters are available in Table 1.

3.1.3. Experimental Parameters. ,e milling cutting exper-
iments are conducted on a vertical machining center
(DMTG VDL850A, produced by General technology group
Dalian Machine Tool Co., Dalian, China). ,e experimental
setup for themilling test is shown in Figure 8.,emachining
parameters for the milling tests are selected as spindle speed
of 2000 rpm, feed rate of 600mm/min, cutting depth of
0.5mm, and cutting width of 8mm.

w

(a)

w

(b)

w

(c)

Figure 5: Point groups. (a) Even distribution, (b) random distribution, and (c) collective distribution.

Set w

w satisfies the
requirements?

Divide the point group by
boxes with side length of w

Update w

Count N (w)Plot log (N (w)) vs. log (1/w) 
and determine the slope

No

Yes

Figure 6: Flow chart of BCD method.
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Figure 7: Structure sketch of the image acquisition system.
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3.1.4. Direct Wear Area Evaluation Instrument. In this
experiment, the milling process is multitooth machining and
each tooth is independent of each other. ,e corresponding
average wear area is measured by an electron measuring
microscope via direct measurement method (GP-300C,
produced by Gaopin precision instruments Co., Ltd.,
Kunshan, China, as shown in Figure 9).

3.2. Evaluation Metrics. To quantitatively evaluate the per-
formance of the developed method, different metrics are
investigated including standard deviation, variance, skew-
ness, kurtosis, roughness, and fractal dimension.

Skewness is typically used to measure the asymmetry of
the probability distribution of a random variable. If skewness
S< 0, there is a negative skew which means the mass of the
distribution is concentrated on the right of the distribution
figure. If S> 0, there is a positive skew which means the mass
of the distribution is concentrated on the left of the dis-
tribution figure. ,e distribution is similar to a Gaussian
normal distribution when S � 0.

Kurtosis is a measure of whether the data are heavy-
tailed or light-tailed relative to a Gaussian normal distri-
bution. Data sets with high kurtosis tend to have heavy tails,
or outliers. Data sets with low kurtosis tend to have light
tails, or lack of outliers.

Surface roughness is a typical parameter which refers to
the amplitude information and high frequency irregularities.
,ere are many different roughness parameters in practice,
but Ra (the arithmetical mean of the deviations) is by far the
most commonly used one. Ra is defined as

Ra �
1
L


l

0
|z| dl, (3)

where L is the length and z denotes the height. According to
this definition, the surface roughness can quantify the de-
viations in the direction of the normal vector of a real surface
from its ideal form [39].

3.3. Model Calibration

3.3.1. Tool Wear Evaluation by Direct Method. Some mi-
croscopic images of the employed tool are shown in Fig-
ure 10. After tool wear calculation from the acquired images,
the tool wear progression with different processing layers is
shown in Table 2 (direction measurement method). It has
been found that the tool wear area deteriorates with the
increase of processing time. According to Table 3, the tool
wear process can be obviously divided into two stages, the
stable wear stage and the sharp wear stage. In the stable wear
stage, the mean tool wear area gradually increases from
0.023mm2 to 0.088mm2. In the sharp wear stage, the mean
tool wear area rapidly deteriorates from 0.088mm2 to
0.529mm2.

3.3.2. Tool Wear Evaluation by Different Metrics. Surface
images were collected from the milled AISI 1045 steel
workpiece surface via the self-made image acquisition sys-
tem. In the experiment, 3 images were acquired for each
layer. Some typical samples of images are displayed in
Figure 11. As can be seen in Figure 11, the image texture
becomes blurred with the worsening of tool wear. ,erefore,
we can further explore the relationship between tool wear
and surface image texture by appropriate statistics.

In this research, various metrics (standard deviation,
variance, skewness, kurtosis, and fractal dimension) are
investigated according to the acquired workpiece local
images. According to the instruction of ISO 4288, the
workpiece shall be properly positioned so that the direction
of the section corresponds to the maximum value of the
roughness. ,erefore, in this research, metrics are calculated
along the red dashed lines in Figure 11. Besides, a mobile
roughness measuring device (type: MarSurf PS10 (produced
by Mahr (Gottingen, Germany)), Figure 12) is engaged to
measure the machined surface roughness by averaging the
roughness values of repeated measurements. ,e roughness

Figure 8: Vertical machining center.

Figure 9: Direct tool wear detection.

Table 1: Capture parameters.

Property Information
Exposure time 1/250 s
Sensor sensitivity (ISO) 400
Equivalent focal length 12mm
White balance 3200
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Ra during different processing layers is shown in Table 4.
According to the recorded table, the new tool produces a
large roughness and decreases soon. However, with further
deterioration of tool wear, the corresponding surface
roughness also increases.

Figure 13 shows all the metrics change in different
processing layers. As can be seen in the figure, there is no
obvious correlation between all statistical parameters and
the number of cutting layers. It looks more like a random

walk. To measure their similarity quantitatively, authors use
the following correlation coefficient:

Corr〈Mi, wa〉 �
 Mi − Mi(  wa − wa( 

����������������������

 Mi − Mi( 
2
 wa − wa( 

2
 , (4)

whereMi is the i-th evaluation metric and wa is the tool wear
area.

Figure 10: Acquired microscopic images.

Table 2: Tool wear areas.

Processing layer Tooth 1# wear area Tooth 2# wear area Tooth 3# wear area Mean wear area
1 0.0266 0.0192 0.0237 0.023167
2 0.0533 0.0577 0.0533 0.054767
3 0.1109 0.0695 0.0843 0.088233
4 0.1598 0.1169 0.4423 0.239667
5 0.2604 0.3417 0.5044 0.368833
6 0.716 0.3698 0.5 0.5286

Table 3: Experimental parameters and results.

No. 1 2 3
Spindle speed 1600 rpm 1600 rpm 1600 rpm
Feed speed 400mm/min 500mm/min 600mm/min
Cutting depth 0.5mm 0.7mm 0.9mm
Cutting width 8mm 8mm 8mm
Evaluation layer 2 4 1
Fractal dimension 0.3374 0.3520 0.0286
Tool wear area (proposed method) 0.0234 0.1499 0.0217
Tool wear area (direct method) 0.019 0.148 0.019
Error 23.16% 1.28% 14.21%
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Figure 11: Typical samples of acquired images.

Figure 12: Typical samples of acquired images.

Table 4: Capture parameters.

Processing layer Ra 1# Ra 2# Ra 3# Mean Ra
1 5.031 4.761 5.634 5.142
2 2.217 2.359 1.962 2.179333
3 2.467 2.795 2.464 2.575333
4 2.882 2.293 1.838 2.337667
5 3.314 4.014 4.481 3.936333
6 5.097 5.139 5.169 5.135
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Figure 13: Continued.
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,e correlation coefficients between the metrics and the
measured tool wear areas are listed in Figure 14. It is inferred
from Figure 14 that the fractal dimension strongly correlated
to the tool wear area and their correlation coefficient is as
high as 0.96. Based on the results, it is consolidated to
conclude that fractal dimension is an effective utensil to
evaluate the tool wear area.

3.3.3. Model Calibration. As presented before, tool wear
area is strongly related to the fractal dimension of workpiece
local image and exhibit proportional relation. Applying
linear fitting to the fractal dimension (shown in Figure 15,
where x axis indicates the corresponding fractal dimension
and y axis indicates the tool wear area), the R square is 0.9247
with root mean squared error (RMSE) of 0.007394, which
means the linear fitting is highly significant.,e fitting linear
equation can be represented as

Fd � 0.1154wa + 0.3347, (5)

where wa is the tool wear area and Fd is the fractal
dimension.

As can be seen in Figure 15, it can be concluded that tool
wear areas are highly proportional to fractal dimensions. As
a consequence, linear fitting can efficiently reveal the rela-
tionship between tool wear area and fractal dimension,
which also demonstrates that tool wear can be accurately
evaluated by fractal dimension of workpiece local image.

4. Validation Experiments of the
Developed Method

To make a quantitative analysis of the results, the mea-
surements collected using the calibrated model are com-
pared to those from conventional direct tool wear evaluation
method in this section. ,e performance of the developed
method was tested on 3 different milling experiments.
According to the results, the values of these indicators are
highly consistent with those measured via direct method.
Considering the results from the direct method as the
theoretical value of tool wear, the relative errors were cal-
culated to be 23.16%, 1.28%, and 14.21% respectively. As can
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Figure 14: Correlation coefficients.
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be seen in Table 3, the proposed method offers exciting
opportunities for tool wear evaluation. However, uncer-
tainty still remains during the validation experiment, and
relative error is reported as 23.16% in the first experiment
and is worth further mechanistic research.

5. Conclusion

,is paper developed a new tool wear monitoring method by
fractal dimension from the acquired workpiece surface digital
image. In this research, a self-made simple apparatus is
employed to capture the local digital images. ,en, a skew
correction method based on local FFTenergy is also proposed
for the surface texture direction adjustment. Finally, tool wear
situations are accurately evaluated by fractal dimension of
workpiece local image. An actual milling experiment is
performed in a vertical machining center to verify the pro-
posed method. Testing results demonstrate the proposed
method has achieved high-precision tool wear estimation.,e
major findings of this work can be summarized as follows:

(1) A novel tool wear monitoring method is proposed in
this research where surface texture information is
employed for the tool wear estimation. Compared with
conventional methods, the proposed method can be
performed without the need to stop the cutting process
and also enjoys the merit of free noise interference.

(2) A skew correction method based on local FFTenergy is
also proposed for the surface texture direction adjust-
ment.,e test result shows that the proposed algorithm
can effectively correct the skew in strong noises.

(3) Fractal dimension is firstly utilized for the tool wear
estimation. Compared with other various metrics,
fractal dimension strongly correlated to the tool wear
area. ,e result demonstrates that tool wear can be
accurately evaluated by fractal dimension of work-
piece local image.

,e research demonstrated that workpiece surface tex-
ture contains much tool geometrical information which can
be utilized to extract the toll wear information based on the
surface digital information. However, the authors believed
that machined surface topographies carry far more fabri-
cation processes and functional information and are worth
further explorations.
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,is paper discusses the predictive maintenance (PM) problem of a single equipment system. It is assumed that the equipment has
deteriorating quality states as it operates, resulting in multiple yield levels represented as system observation states. We cast the
equipment deterioration as discrete-state and continuous-time semi-Markov decision process (SMDP) model and solve the
SMDP problem in reinforcement learning (RL) framework using the strategy-based method. In doing so, the goal is to maximize
the system average reward rate (SARR) and generate the optimal maintenance strategy for given observation states. Further, the
PM time is capable of being produced by a simulation method. In order to prove the advantage of our proposed method, we
introduce the standard sequential preventive maintenance algorithm with unequal time interval. Our proposed method is
compared with the sequential preventive maintenance algorithm in a test objective of SARR, and the results tell us that our
proposed method can outperform the sequential preventive maintenance algorithm. In the end, the sensitivity analysis of some
parameters on the PM time is given.

1. Introduction

In real production system, equipment deterioration is al-
most universal with use, age, and other causes. If the
maintenance is not performed, eventually the failure or
severe malfunction can occur. Operating the equipment in a
deteriorating state often brings about higher production cost
and lower product quality. ,erefore, an effective mainte-
nance policy is very essential in industrial practice. ,e
periodic or age-based preventive maintenance strategy often
leads to inadequate maintenance or over maintenance, in
which over maintenance will cause unnecessary interference
to production, resulting in the decreased production effi-
ciency and increased production cost. ,e aim of condition-
based maintenance is to see if the maintenance decision
should be performed according to the current system state
[1]. Nevertheless, the more valuable issue is to determine the
future maintenance time in the current system state, which is
called PM in this paper.

,ere are few theoretical and practical researches on PM
in a strict sense compared with condition-based mainte-
nance [2]. In some literature, condition-based maintenance
has been classified as PM, but the true “predictive” aspect of
condition-based maintenance decisions, such as anticipating
and predicting the future state of the equipment, has not
been reflected. ,ere are few true PM methods that can
conduct scheduled optimal future maintenance time by
considering the deteriorating equipment condition. Existing
methods of classifying equipment states are mainly divided
into two types, operational state or failure state, and the goal
of PM is only to predict the residual life [3–8]. For example,
Sikorska et al. review a large number of pieces of literature
related to prediction models, which are mainly utilized to
predict the residual equipment life [9]. Jan et al. can evaluate
the current states and predict the residual life for industrial
equipment by a hidden semi-Markov model [10].
Schwendemann et al. present the prediction of residual life
for bearings in grinding equipment under the premise of
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taking a more global view of the optimization problem
involved such as the costs and time [11].

Moreover, in real industrial systems, such as semicon-
ductor production and precision instruments, the deterio-
rating equipment states are closely related to the quality
levels of the products [2]. Based on the extensive industrial
practice, General Motors researchers have pointed out the
important potential of the correlation between operation
management including maintenance decisions and product
quality to improve the performance of manufacturing sys-
tems [12]. Before the equipment breaks down, the fact is that
when the equipment is in a deteriorating quality state, it can
still operate, but the probability of producing unqualified
products is increased [13]. For a long time, the issue of
maintenance and quality is considered to be two relatively
independent research fields, and the scholars and industrial
people have done a lot of research work in these two fields.
But the research on the correlation between equipment
maintenance and product quality is still a brand-new field. In
existing literature and industrial practices, it is usually as-
sumed that the product quality problems are the Bernoulli
and persistent quality problems [13, 14], while the multiple
yield quality problems have more realistic and general
significance, so it is more worthy of much deeper research.
,e multiple yield quality problems refer to the fact that the
product quality problems occur independently but with a
stage probability level. ,e reason for the stage probability
level is that the equipment states gradually deteriorate and
have multiple quality states. For multiple yield quality
problems, there needs a balance between production and
maintenance, and there is no simple and direct maintenance
decision. In addition, related researches on equipment
maintenance often assume that the production time and the
maintenance time are unit time, and strong assumptions are
also made about the equipment deteriorationmode [15].,e
maintenance decisions based on the above assumptions are
lack of realistic basis.

,erefore, we claim that it is of great significance tomake
maintenance decisions by taking quality inspection data into
account, which is able to keep the costs down and meet the
needs of industrial production management. ,ere are
relatively few studies on the factors of production, main-
tenance, and quality, and no effective methods have been
found to find a solution in the existing literature.We attempt
to solve the equipment maintenance problem in production
practice. Since the deteriorating equipment states cannot be
directly observed, a large amount of real-time quality in-
spection information can be used as the implicit informa-
tion. A discrete-state continuous-time SMDP with a large
number of yield stages is induced to describe the equipment
deterioration process. However, it is worth noting that the
production and maintenance time are random variables that
follow general distributions based on realistic consider-
ations. A strategy iteration-based RL method is put forward
to guarantee the optimal strategy solution to the model.
Furthermore, the future maintenance time corresponding to
each observed state can be produced by a simulation method
based on the fixed maintenance strategy, and the influences
of the main technical parameters on the optimization goal of

the system are analyzed. And finally, the advantages of our
proposed RL method for solving such a dynamic environ-
ment problem are revealed compared with the sequential
preventive maintenance algorithm with unequal time
interval.

2. Problem Description

,is paper investigates deteriorating equipment that has
multiple discrete states. Assume that the equipment con-
dition can be directly reflected by the condition monitoring
measures such as the yield levels. A single type of product is
produced, and each processed product is immediately
inspected to identify an unqualified product or a qualified
product. ,e inspection time and inspection cost are as-
sumed to be zero. Due to the fault of the inspection
equipment or the proficiency of the inspection workers and
other reasons, there are certain inspection errors in product
quality inspection. ,e inspection errors are mainly divided
into two types [16]:

(i) Type I error: that is the false detection with a
probability e1 and the cost Ce1. ,e parameter Ce1
includes the production cost per unit product and
other related costs.

(ii) Type II error: that is the missed detection with a
probability e2 and the cost Ce2. ,e parameter Ce2
includes the production cost per unit product and
other possible costs such as the costs arising from
quality and safety issues which is far beyond pro-
duction costs.

(iii) In addition, through the accurate inspection, the
profit of producing a qualified product is Rg and the
cost of producing an unqualified product is Rd.

3. System Model

,e sequential decision-making problem under uncertain
conditions can be solved by analyzing theMarkov process. A
large number of researches related to this issue can be found
in stochastic dynamic programming and other related lit-
erature [17–22]. However, in many of these studies, the
Markov chains cannot define the characteristic of basic
probability structure such as a general probability distri-
bution of the sojourn times in each quality state. ,en the
problems are often described as SMDP because the SMDP
represents a more realistic situation, and it is more suitable
to model the deteriorating process of the equipment.

We employ a discrete-state continuous-time SMDP
model to present the deteriorating process of the single
equipment system, as shown in Figure 1. Since the yield level
ykl cannot be obtained directly, the inspection information
s� (k, p, b) is used as the observed system state, in which k is
the number of subcycles in each production-maintenance
cycle, b is defined as the number of unqualified products, and
p is defined as the number of products produced from when
the equipment is last maintained or repaired. ,e action
space is denoted as A(s)� {0, 1, 2}, where a� 0 represents to
keep the equipment operating and produce new products;
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a� 1 means to stop the operation of the equipment and
perform an imperfect (minor) maintenance action (corre-
sponding to the MM in Figure 1); a� 2 represents the major
repair action to be performed in the event of a failure or
random failure of the equipment (corresponding to the MR
in Figure 1). In the deteriorating process of the equipment,
the decision point of the maintenance action is the time
point for production and inspection of new products. By
means of performing MM action, the yield level of the
equipment can be restored to a certain intermediate state
(e.g., y21), after which the k+ 1′th subcycle is initiated. ,e
subcycle continues until a certain yield level limit W appears
or a stochastic malfunction occurs. At this point, the major
repair is forced to be triggered to restore the yield level of the
equipment to the best state (e.g., y11), and then another
updating subcycle is initiated.

In general, the equipment in a production system de-
teriorates as its condition is getting worse, which will lead to
the result of the shorter sojourn time in each quality state.
,erefore, this paper assumes that the sojourn time λkl under
each yield level ykl follows a gamma distribution Γ (αkl, β),
and the of l can decrease λkl. ,at is, αk,l+1 � bsαkl (0< bs< 1).
Meanwhile, it is assumed that the stochastic malfunction
time interval also follows a gamma distribution under the
k′th subcycle, where the shape parameter in the gamma
distribution αk � 

L
l�1 αkl. Moreover, the random failure

time interval also decreases gradually, which is presented by
the following equation:

ak+1 � yk+1ak. (1)

4. Policy Iteration-Based PM Method

,emodel-free RL is divided into two algorithms, including
value iteration-based algorithm and strategy iteration-based
algorithm, respectively. Nevertheless, if it is used to solve
SMDP problems, the value iteration-based RL algorithm is
not suitable, mainly because this algorithm cannot guarantee
that the average reward SMDP problems produce the op-
timal solution [23]. On the contrary, the strategy iteration-
based RL algorithm can obtain accurate and satisfactory
results. ,erefore, this paper adopts the average reward
strategy iteration-based RL method for finding a solution to
our problem. ,e optimal maintenance strategy under the
premise of maximizing SARR is given.

4.1. Q-P LearningAlgorithm. ,e RL technology approaches
the optimal strategy in the SMDP model through strategy
iteration and learns the mapping from environment state to
behavior through trial and error, so as to maximize the
cumulative SARR Rt from the environment [23]; namely,

Rt � rt+1 + rt+2 + rt+3 + · · · � 
∞

k�1
rt+k. (2)

,e Q-P learning algorithm can accurately solve the
SMDP problems based on average cumulative rewards. In
each decision cycle, the current state s is transferred to state
s′ under the decision a, and the updating expression is as
follows [23]:

1, p1, b1

2, p1, b1 2, p2, b2

1, p2, b2
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Figure 1: ,e model for SMDP.
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Q(s, a)←(1 − α)Q(s, a) + r s, a, s′(  − ρt s, a, s′(  + Q s′, arg max
h∈A s′( )

P s′, h( ⎛⎝ ⎞⎠⎛⎝ ⎞⎠, (3)

where r (s, a, s’) is the total immediate reward with the action
aj (j� 1, 2) when the state s is transferred to state s′; t (s, a, s’)
is the interval time with the action aj (j� 1, 2) when the state
s is transferred to state s′; ρ is the reward rate, which can be
obtained by the following equation [24]:

ρ(s) � lim inf
T⟶∞

E 
T
k�1 r sk, π sk( , sk+1( |s1 � s 

E 
T
k�1 t sk, π sk( , sk+1( |s1 � s 

. (4)

α is defined as the learning rate, and the decreased rules
are as follows [23]:

α �
α0

1 + uV

,

uV �
V(s, a)

2

Nmax + V(s, a) − 1
,

(5)

where nmax is a large positive integer; α0 is the initial value of
α; and α0 � 0.1. It should be noted that the value of α0 will
have a certain influence on the final convergence of the RL
algorithm, which can be referred to [25] for details. ,e
parameter V(s, a) is the visit-factor representing visit times.
In addition, the immediate rewards r (s, a, s’) caused by state
transitions are as follows:

(i) r (s, a, s’)� Rg is defined as the profit of qualified
product produced

(ii) r (s, a, s’)� −Ce1 is defined as the loss of Type I error
(iii) r (s, a, s’)� −Rd is defined as the production cost per

unit
(iv) r (s, a, s’)� −Ce2 is defined as the loss of Type II error
(v) r (s, a, s’)� −CR is defined as the loss of major repair
(vi) r (s, a, s’)� −CM is defined as the loss of minor

maintenance

,e current strategy of Q-P learning algorithm is
π(s) � argmaxa∈A(s)P(s, a), and the value Q is updated with

the value P. ,e processes of strategy evaluation and strategy
improvement are executed repeatedly, and finally, the op-
timal maintenance strategy is obtained, which mainly in-
cludes three essential steps: exploration, strategy evaluation,
and strategy improvement. ,e detailed process is depicted
in Figure 2.

Step 1: Initialization

(i) Initialize the maintenance strategy P (s, a), a ran-
dom value; initialize the maximum updating times
of the strategy improving Emax and the maximum
updating times of the strategy evaluation Nmax;
initialize the learning rate parameters α0 and Kα
and the exploration rate parameters p0 and Kp; set
the increase times of the outer loop policy E� 1.

(ii) According to the known maintenance strategy P (s,
a), calculate the average reward rate ρ; initialize the
state-action value of the strategy evaluation process
Q (s, a)� 0; set the current strategy updating
number N� 1 and the visit times Vα(s, a) � 0 and
Vp(s) � 0.

Step 2: Strategy Evaluation

(i) Initialize the current state s� (1, 0, 0), the average
failure interval Tf, and the cumulative state tran-
sition time Tc.

(ii) Choose the greedy action a basing on the prob-
ability 1−pn; otherwise, the random action a is
selected based on the probability pn.

(iii) Simulate the decision action a in state s; the ob-
servation state is transformed to state s’. If a� 0, a
new observation state is obtained, and the tran-
sition time t (s, a, s’) and the reward r (s, a, s’)
between the state s and state s’ are directly pro-
duced. ,e action value Q is updated by using
equation (3):

Q(s, a)←(1 − α)Q(s, a) + r s, a, s′(  − ρt s, a, s′(  + Q s′, arg max
h∈A s′( )

P s′, h( ⎛⎝ ⎞⎠⎛⎝ ⎞⎠. (6)

Update state s←s′ and Tc � Tc + r(s, a, s′). If
Tc ≥Tf, jump to Step 2 (iv); otherwise, jump to
Step 2 (v); if a� 1, the imperfect maintenance is
performed, and the new observation state and
immediate reward are obtained. ,en the action
value Q is updated, k� k+ 1, and the program
jumps to the Step 2 (v).

(iv) When the major repair is performed, the corre-
sponding immediate reward and state transition

time are obtained, and the action value Q is
updated. If N>Nmax, jump to Step 3 (i); otherwise,
jump to Step 2 (ii).

(v) Update the visit factorsVα(s, a) � Vα(s, a) + 1 and
Vp(s) � Vp(s) + 1; update the learning rate α and
the exploration rate pn, and then jump to Step 2
(ii).

Step 3: Strategy Improvement
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(i) Let P�Q and E� E+ 1; if E� Emax, stop the
learning process; otherwise jump to i-b and con-
tinue learning.

(ii) According to the action value P, calculate the
optimal strategy π∗ by using the following
equation:

π∗(s) � argmaxa∈AP(s, a). (7)

4.2. Optimal PM Time. In Section 4.1, the optimal main-
tenance strategy π∗ of the deteriorating equipment can be
obtained by the proposed method. In this section, the
optimal maintenance strategy π∗ and the equipment de-
teriorating process model are used to estimate the future
maintenance time corresponding to different observation
states si. Firstly, one-dimensional vector Vd of unqualified
product state and one-dimensional vector Vt of produc-
tion time are defined. ,ese two vectors record the
accumulative quantity of unqualified product b and the
production time t per unit product respectively. During
the process from production to maintenance, the failure
interval is the sum of the sojourn times in different quality

states of the same deterioration mode. ,e initial action is
a � 0, and the new observation state can be produced after
the equipment goes through production and quality in-
spection. Based on the maintenance policy π∗, the actions
of a new state can be obtained until the equipment per-
forms maintenance action. ,e vector Vd records the state
from production to the maintenance process. ,e vector
Vt can directly calculate the maintenance point in time of
different states s, which is used as an effective PM time. In
the simulation process, the state transfer process is ran-
dom, the same state can be recorded for many times, and
the average value is taken as the PM time for the observed
state.

,e detailed process for obtaining the PM time is shown
in Figure 3. First, the parameters related to PM time are
initialized, and then the production process of the equip-
ment is simulated according to the known maintenance
strategy π∗. ,e quality state and the production process are
random in the simulation process.,emaintenance policy is
applied to the model of Figure 3, the PM time T

j
M(Si)

corresponding to the observation state si is produced, and
the mean value (1/n) 

n
j−1 T

j
M(Si) is formulated as the final

estimate.
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Figure 2: Block diagram of maintenance strategy.
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5. Simulation Study

,e maintenance action is imperfect; that is, after mainte-
nance, the quality state of the equipment will be improved,
and the yield level also will be improved, but the equipment
will not be restored to a new state. So, to what extent will the
equipment be restored after the maintenance? ,is section
mainly explains this process through the change of yield
level before maintenance and after maintenance. Referring
to the ideas of Zhu et al. [26], for two continuous deteri-
orating subcycles, the yield function relationship is as
follows:

Yieldk+1(t) � bkYieldk t + akDk( ,

t ∈ 0, Dk+1( .
(8)

t represents the time since the equipment is last main-
tained or repaired; bk is a degradation factor of equation (8),
which is a value between 0 and 1; ak is defined as an age
degradation factor, which is a value between 0 and 1; Dk
represents the time interval of the k’th subcycle. ,e discrete

yield levels can be determined by equation (9), where L is the
number of prespecified yield levels in each subcycle k.

yk+1,l � Yiledk+1(0)
l − 1
L − 1

 , where, l � 1, 2, . . . , L.

(9)

5.1. Numerical Experiments. According to the problem
description and the modeling description of the deterio-
rating equipment in this paper, the relevant parameters are
assumed and given in Table 1. Other relevant parameters are
explained as follows: the maximum updating times of the
strategy improving Emax � 15; the maximum updating times
of the strategy evaluation Nmax � 10000; the visit factor
V(s, a) is the visit times for a certain state, which is a
changing value. ,e yield level is a discretization for the
equipment states, and from the fuzzy point of view, it can be
divided into four levels: excellent, good, medium, and poor.
Each state corresponds to a certain interval time between
failures. If the discretization level of the equipment is too
high, the simulation state will jump frequently and cannot

MM or MR
No

No

Yes

Yes

MR

Yes

No

Initialize time vector Tm; initialize
visit-facors V, Umax, vd, vt, k, and U = 0

Simulate the production
process

Inspect the part quality immediately after the
production; record the number of defective parts

vd and state transfer time vt

Choose action a from the known policy π
basing on the current state si

Obtain the current observation state si

Calculate predictive maintenance time t (si);
record the visit-times V (si) and MM times

vector Tm (si)

k = 1, U = U + 1 k ← k + 1

U > Umax

Calculate the predictive maintenance time T ∗

for each observed state

Figure 3: Block diagram for PM.

6 Mathematical Problems in Engineering



reflect the continuous production process under a certain
condition. We assume that the critical yield level W � 0.6,
and Tc≥Tf or ykl ≤W is the condition for completion of a
single strategy evaluation. Due to the randomness of quality
inspection, the designed worst critical condition of the
equipment is 0.6 in order to ensure the correct jump in the
simulation process. Moreover, in the real simulation process,
this condition only plays a role accidentally.

,e method proposed in this paper is adopted for
learning and the learning results are shown in Figure 4,
which is compared with the sequential preventive mainte-
nance algorithm [27]. As can be seen from the figure that the
SARRs of the strategies learned by the methods are well
convergent, and the proposed method is clearly much better
than the sequential preventive maintenance algorithm according
to the SARRs. ,is situation arises in part from the fact that the
maintenance policy has not been coupled in the sequential
preventive maintenance algorithm to maximize the total SARR.

5.2. Sensitivity Analysis of the Parameters

5.2.1. Impact of Decrease Factor of Sojourn Time. ,e so-
journ time λkl for each state is related to the decrease factor
of sojourn time bs. ,e smaller bs is, the change of λkl will be
greater. Correspondingly, the PM time will also change. ,e
PM time increases when bs decreases, as shown in Figure 5.
,e reason is that the equipment will be maintained for a
considerable period of time to produce qualified products
with a high probability when bs is smaller, and the expected
SARR in the long run will increase. For example, when bs
decrease from 1 to 0.6, the expected SARR changes from 20.6
to 30.

5.2.2. Impact of Quality Detection Error. Figure 6 shows that
the PM time for each observed state shows slight declines as
the probability of Type II error e2 increases from 0 to 0.1.,e

Table 1: Numerical study parameters.
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time

Yield level
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Yield level L
of the k’th
subcycle
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Figure 4: ,e SARRs for single equipment learned by Q-P method versus the sequential preventive maintenance method.
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reason is that the increase of e2 can result in a reduction of
long-run expected SARR, and it decreases from 31.8 to 30.6.
At the same time, the PM time is not sensitive to the change
of Type II error e2; this is due to the fact that the cost Ce2 of
Type II error Ce2 �100 is comparatively small. Similarly, the
PM time shows slight declines when e1 continues to increase,
because Ce1 is comparatively small and the growth pa-
rameter e1 can result in a reduction of long-run expected
SARR.

5.2.3. Impact of the Cost or Profit. (1) Impact of the Cost Cf.
,e parameter Cf refers to the cost of wrongly identifying a
qualified product as an unqualified product. From Figure 7,
we can see that the PM time decreases as the cost Cf in-
creases; this is due to the fact that increase in Cf leads to a
decrease in the long-term expected SARR. Meanwhile,
Figure 7 shows that the PM time seems to be insensitive to
the change of Cf, which is caused by the assumption of a very
small false detection probability pf in this paper.

(2) Impact of the Cost Cn.,e parameter Cn is the cost of
wrongly identifying an unqualified product as a qualified
product. As shown in Figure 8, when the inspection cost Cn
increases, the PM time decreases; this is because the expected
SARR in the long run decreases as the cost Cn increases.
Figure 8 also shows that the PM time is not sensitive to the

change of Cn, which is caused by the assumption of a very
small probability of missed detection pn in this paper.

5.2.4. Impact of Initial Quality Deterioration Rate ky. ,e
coefficient ky describes the initial deterioration rate of the
equipment, as shown in Figure 9. ,e PM time is not
sensitive to the change of the coefficientky; this is due to the
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fact that the change of the coefficient ky in a certain extent
basically makes no difference to the SARR.

6. Conclusion

In this paper, we propose a PM method for single deteri-
orating equipment having multiple yield quality problems. It
is assumed that the yield stage is coupled with the equipment
quality state, and a stochastic breakdown can also occur
besides the quality failure. Moreover, the equipment cannot
return to normal operating condition without repair. We
assume that there are two decision actions including MM
and MR in each observation state. ,e preventive mainte-
nance is MM, which can be performed in a deteriorating
quality state, while the MR is forced to be implemented in a
failure state. A discrete-state continuous-time SMDP model
is proposed to present the deterioration process of the
equipment. ,e Q-P method in the RL framework is utilized
to solve the SMDP model. Given the product quality in-
spection data with certain detection errors, the optimal
maintenance strategy based on each observed state is pro-
duced by taking into account the goal of maximizing the
long-run expected SARR. ,e PM time is capable of being
achieved by a simulation method.

,rough the simulation examples, it is proved that the
proposed method adopted in this paper is capable of solving
the PM problems of the equipment under dynamic envi-
ronment. ,e experimental results also prove that the
proposed method can outperform the standard sequential
preventive maintenance method with unequal time interval.
,e change of maintenance action rules is further shown,
which is not progressive with the increase of maintenance
times and unqualified rate. It can also be observed that the
PM time depends on the observed state, and it decreases as
the total number of products produced increases and also
decreases monotonically as the number of unqualified
products increases for a given total number of products
produced. Moreover, an increase in the number of main-
tenance times will also cause a decrease in the PM time. In
addition, the influences of the main parameters on the
optimization goal are also investigated.

Data Availability

,e relevant data of calculation used to support the findings
of this study are included within the article.

Conflicts of Interest

,e authors declare that they have no conflicts of interest
regarding the publication of this paper.

Acknowledgments

,is work was supported by the Natural Science Foundation
of Liaoning Province under Grant 20180550746 and the
National Science Foundation of China under Grant
61901283.

References

[1] Y. Zhou, B. Sun, W. Sun, and Z. Lei, “Tool wear condition
monitoring based on a two-layer angle kernel extreme
learning machine using sound sensor for milling process,”
Journal of Intelligent Manufacturing, 2020.

[2] Y. Zhou, B. Sun, and W. Sun, “A tool condition monitoring
method based on two-layer angle kernel extreme learning
machine and binary differential evolution for milling,”
Measurement, vol. 166, 2020.

[3] S. Lu, Y.-C. Tu, and H. Lu, “Predictive condition-based
maintenance for continuously deteriorating systems,” Quality
and Reliability Engineering International, vol. 23, no. 1,
pp. 71–81, 2007.

[4] S.-J. Wu, N. Gebraeel, M. A. Lawley, and Y. Yih, “A neural
network integrated decision support system for condition-
based optimal predictive maintenance policy,” IEEE Trans-
actions on Systems, Man, and Cybernetics—Part A: Systems
and Humans, vol. 37, no. 2, pp. 226–236, 2007.

[5] K. A. Kaiser and N. Z. Gebraeel, “Predictive maintenance
management using sensor-based degradation models,” IEEE
Transactions on Systems, Man, and Cybernetics—Part A:
Systems and Humans, vol. 39, no. 4, pp. 840–849, 2009.

[6] M. Y. You, F. Liu, W. Wang, and G. Meng, “Statistically
planned and individually improved predictive maintenance
management for continuously monitored degrading systems,”
IEEE Transactions on Reliability, vol. 59, no. 4, pp. 744–753,
2012.

[7] X. Han, Z. Wang, M. Xie, Y. He, Y. Lia, and W. Wanga,
“Remaining useful life prediction and predictive maintenance
strategies for multi-state manufacturing systems considering
functional dependence,” Reliability Engineering and System
Safety, vol. 210, 2021.

[8] T. P. Carvalho, F. A. A. M. N. Soares, R. Vita,
R. D. P. Francisco, J. P. Basto, and S. G. S. Alcalá, “A sys-
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2e raw vibration signal carries a great deal of information representing the mechanical equipment’s health conditions. However,
in the working condition, the vibration response signals of faulty components are often characterized by the presence of different
kinds of impulses, and the corresponding fault features are always immersed in heavy noises. 2erefore, signal denoising is one of
the most important tasks in the fault detection of mechanical components. As a time-frequency signal processing technique
without the support of the strictly mathematical theory, empirical mode decomposition (EMD) has been widely applied to detect
faults in mechanical systems. Kernel regression (KR) is a well-known nonparametric mathematical tool to construct a prediction
model with good performance. Inspired by the basic idea of EMD, a new kernel regression residual decomposition (KRRD)
method is proposed. Nonparametric Nadaraya–Watson KR and a standard deviation (SD) criterion are employed to generate a
deep cascading framework including a series of high-frequency terms denoted by residual signals and a final low-frequency term
represented by kernel regression signal. 2e soft thresholding technique is then applied to each residual signal to suppress noises.
To illustrate the feasibility and the performance of the KRRD method, a numerical simulation and the faulty rolling element
bearings of well-known open access data as well as the experimental investigations of the machinery simulator are performed.2e
fault detection results show that the proposed method enables the recognition of faults in mechanical systems. It is expected that
the KRRD method might have a similar application prospect of EMD.

1. Introduction

2e device of rotating machinery is entirely dependent on
the health condition of the rolling element bearings, which
accounts for almost 40–50% of these equipment failures
[1, 2]. Such failures could be disastrous or could lead to the
shutdown of the entire production lines, potentially causing
huge losses [3].2erefore, fault detection of bearing has been
a great challenge in recent decades [4]. In order to obtain the
fault feature, the vibration signal is one of the most im-
portant sources of information for monitoring conditions of
rolling element bearing. However, the vibration signals are
often contaminated by various noises, and sometimes, it is

difficult to obtain high-fidelity signals. 2erefore, signal
denoising is one of the significant tasks to detect faults in
rolling element bearings [5].

In the past few decades, a lot of novelty approaches have
been proposed [6–8]. Time-frequency (TF) method tech-
niques have been developed to allow access to the time-
frequency energy behavior of nonstationary signals. TF
representations can give insight into the complex structure
of signals consisting of several components [9]. It maps a 1D
signal to a 2D function of time and frequency, so a TF
representation can be obtained to characterize the signal in
the time and frequency domains simultaneously [10]. Many
signal time-frequency methods were applied to machine
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diagnostics in the last few decades. 2e wavelet decompo-
sition method has been most commonly used [11–14], and
an arbitrary signal can be decomposed into a set of wavelet
coefficients. At each scale, the soft thresholding technique is
performed to suppress noises, and finally, the wavelet
reconstructed technique is employed to obtain the purified
signals. Lei et al. [15] presented a method based on wavelet
packets and Hilbert–Huang transform to improve pro-
ductivity and part quality in the machining process. A re-
markable advantage of the wavelet transform method is that
the wavelet transform is sensitive to defects for a longer
duration reflected by nonstationary signals [6]. However,
wavelet transform suffers from disadvantages, one limitation
worth noting that the usage of wavelet transforms to sup-
press noise will often lead to oscillation effects when dealing
with the low signal-to-noise ratio (SNR) scenarios [16]. And
another challenge is to select the appropriate wavelets
[17–19].

Empirical mode decomposition (EMD) is one of the
most powerful time-frequency analysis techniques proposed
by Huang [18], which has been widely applied to detect faults
in rotating machinery [19, 20]. EMD is a self-adaptive signal
processing method that could be used in nonlinear and
nonstationary process; it decomposes the complicated signal
into intrinsic mode functions (IMFs). Frequency compo-
nents contained in each IMF not only relate to the sampling
frequency but also change with the signal itself [21].
2erefore, using EMD combine with the Hilbert spectrum
analysis to reveal the faulty frequency information hidden in
vibration signals, the result shows good computational ef-
ficiency and resolution in nonlinear and nonstationary
process. Recently, ensemble empirical mode decomposition
(EEMD) is developed by Wu and Huang [22]. EEMD is a
noise-assisted data analysis method, and by adding finite
white noise to the investigated signal, the EEMDmethod can
eliminate the mode mixing problem in all cases automati-
cally [23]. Lei et al.[24, 25] used EEMD to enhance the
efficiency of the feature extraction of faulty signals as well as
decrease the mode mixing phenomenon. In working con-
ditions, the key issues are how the EMD worked with the
support of the strictly mathematical theory and how to
properly select the added noise amplitude [26, 27].

Kernel regression (KR) [28, 29] is a nonparametric
technique to construct a prediction model based on
Nadaraya–Watson kernel estimator [30, 31]. In recent years,
Wu et al.[32, 33] presented two hybrid approaches using the
KR technique and other methods to predict faults in car
assembly line, e.g., the fuzzy wavelet kernel support vector
classifier machine and modified genetic algorithm, and the
triangular fuzzy Gaussian wavelet kernel support vector
classifier machine and genetic algorithm. Baraldi et al. [34]
presented a modification of the traditional autoassociative
kernel regression (AAKR) method which enhances the
signal reconstruction robustness so as to monitor the ab-
normal conditions of industrial components. In [35], kernel
regression method is used in image denoising, and results
illustrate good performance in color estimates. Compared to
the EMD method without the support of the strictly
mathematical theory, KR is a nonparametric mathematical

tool based on statistical mathematical theory. However, the
above methods are only the usage of the prediction char-
acteristics of KR. 2erefore, it might be interesting to
generate a methodology like EMD to decompose vibration
signals, i.e., a new kernel regression residual decomposition
(KRRD) method. Besides, the standard deviation (SD) cri-
terion [18] can be applied to automatically determine the
decomposition level of the KRRD algorithm. 2e KRRD
algorithm is also reversible using kernel regression residual
reconstitution (KRRR) algorithm.

According to the multiscale signal decomposition
principle, the well-known soft threshold technique proposed
by Donoho [12, 36] can be applied to denoise signals at each
scale.

2e rest of the paper is organized as follows. Brief in-
troductions of the basic idea of the KRRD algorithm, SD
criterion, soft threshold technique, and KRRR algorithm are
given in Section 2. In Section 3, a numerical simulation and
an open-access faulty bearing data are carried out to validate
the effectiveness of the present method, and the experi-
mental investigations for three cases are further given in
Section 4. Conclusions and further work are drawn in
Section 5.

2. Kernel Regression Residual
Decomposition Methodology

Regression model-based methods will be applied to de-
compose signals, according to the basic idea of EMD. In the
present, KR is employed as a bridge to form an explicit
KRRD method. Figure 1 shows the three steps of the pro-
posed KRRD. Firstly, the residual signals of a raw signal are
obtained using KR repeatedly, which can be called KRRD.
Secondly, the soft thresholding technique and SD criterion
are applied to obtain noise-suppressed residual signals.
KRRR is then used to reconstruct the purified signal with
high SNR. Finally, to obtain demodulation frequencies, the
traditional Hilbert envelope spectrum analysis is applied in
the paper and the fault types will be given.

2.1. KRRD and KRRR. 2e procedure of KRRD is simply
listed as follows. 2e kernel regression method has been
most commonly used; a signal f(t) can be represented by
the summation of n residual signals as

f(t) � 
n

i�1
ri(t) � f , 1(t), (1)

where ri(t) (i� 1, 2,. . ., n) is a residual signal characterizing
the signal information at scale i and f , 1(t) is the sum-
mation of all residual signals at scale [1,n], i.e., the original/
raw signal f(t). In order to decompose the signal f(t) into a
number of residual signals, a deep framework can be re-
written by

f , 1(t) � f , 2(t) + r1(t) � s1, (2)

where f , 2(t) denote the summation of all residual signals
at scale [2,n]. In this step, estimating f , 2(t) by given
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f , 1(t) is the key to solve the problem. In the present, a KR
strategy is used in conditional expectation. 2erefore, the
estimation of f , 2(t) can be represented by f , 1(t) as

f , 2(t) � K1 f , 1(t) − f , 1 ti(   � s2, (3)

where the 2nd smooth term s2 � K1(f , 1(t) − f , 1(ti))

can be estimated by nonparametric Nadaraya–Watson KR
[29, 30] and K is a density function. In the present, a radial
basis function (RBF) kernel [37] K1 is employed and
f , 2(t) can be obtained by

f , 2(t) � K1 f , 1(t) − f , 1 ti(   � e

−
1
2λ21

f , 1(t) − f , 1 ti(  
2

,
(4)

where λ1 is the bandwidth of the f(t) and f , 1(t) is the
Gaussian kernel function center. It is worth pointing out that
the RBF has the characteristic of unique best approximation
to the unknown time series [37]. Since the residual signal at
scale n can be obtained by equation (4), a deep cascading
framework can be expressed as follows:

rj(t) � f , j(t) − f , j + 1(t) � sj − sj+1, (5)

in which the (j+1)th smooth term sj+1 � Kj(f , j + 1(t) −

f , j + 1(ti)) can also be estimated by nonparametric

Nadaraya–Watson KR. 2e last residual signal can be
expressed as follows:

rn(t) � sn. (6)

Finally, the signal decomposed realization of KRRD via
kernel regression at each scale is completed, and the KRRD is
simply the summation of all residual signals
r1(t), r2(t), . . . , rn(t) which is shown in Figure 2. Besides,
the residual signals at the lower scales contain great char-
acteristics of the signal, while the signal contained coarser
signal characteristics.

Step 1 A raw signal

Compute residual signals using 
KR repeatedly

Step 2

Step 3

Calculate hilbert envelope 
spectrum

Demodulation frequencies

Detect faults

Noise suppression based on soft 
thresholding technique

SD criterion and KRRR

Purified signal

Figure 1: Flowchart of the proposed KRRD method.
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2.2. Noise Suppression. In this paper, the work is to illustrate
the feasibility of utilizing the KRRD for processing fault
signals. However, at each scale, there is some low but not
useful information. 2e soft thresholding technique [12, 36]
is the commonly used tool to obtain greater content at each
scale.

Since residual signals at different scales are obtained.
Considering some unusual data in the signal, we use the
median absolute deviation function to estimate the noise
threshold θj at scale j, using adaptive noise estimate. 2e
threshold strategy can be expressed as follows:

θj �
MAD rj 

0.6745
, (7)

where MAD is the median absolute deviation and 0.4675 is
the normal inverse cumulative distribution function of 3/4
[38]. Based on soft thresholding, Cj(t) can be obtained by

Cj(t) �
0, if rj(t)



< θj,

rj(t)


 − θj, otherwise.

⎧⎪⎨

⎪⎩
(8)

2e sifting usually has to be implemented more times,
but to get the most useful information and improve the
computational efficiency of this method. In practice, we used
the standard deviation (SD) criterion [39] based on the EMD
method to determine whether or not Cj(t) well satisfies the
IMF properties; the SD can be expressed as follows:

SD(k) � 
T

t�0

Cj− 1(t) − Cj(t)



2

C
2
j−1(t)

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦, (9)

where T is the length of data. 2is procedure should be
repeatedly used for n times until the last residue Cn (t)
satisfies the formula. In KRRD, the process of calculation is
usually set to 0.2, and if SD is less than the threshold, the
process stops and the decomposition procedure is finished.

Since the circulated shift is invertible, the reverse shift is
simply the summation of all residual signals, which can be
represented by

f(t) � R
− 1

C1(t), C2(t), . . . , Cn(t)(  � 
n

i�1
Ci(t). (10)

2e framework of KRRR is shown in Figure 3. Finally,
the inverse KRRD called KRRR is used to reconstruct the
new purified signal.

2.3. Fault Detection. 2e traditional Hilbert envelope
spectrum analysis [18, 40] is then applied to determine
demodulation frequencies.

Compared the theoretical feature frequencies of faults in
bearings with demodulation frequencies, the type of bearing
faults could finally be determined.

3. Simulation Analysis

In this section, to validate the effectiveness of the proposed
method, a simulated signal which contains random noise is
constructed [41, 42]. 2e model of the signal is expressed as
follows:

f(t) � x(t) + R(t), (11)

where x(t) is the periodic impulse signal without noise, R(t)

is the random noise, and f(t) is the simulation signal.
Suppose the sampling frequency is 20k and the sampling
points are 8192, the impulse signal and the noise-contam-
inated signal are shown in Figures 4(a) and 4(b), respec-
tively. It is clear to see that the signal is immersed in heavy
noises.

2e decomposition signals using KRRD are shown in
Figures 4(c)–4(e). As shown in Figures 4(c)–4(e), the KRRD
method can effectively distinguish the narrow band impulses
(see Figures 4(c)–4(e)) from the purified signal (see
Figure 4(f)). It can also be observed that the noise process is
well characterized at the low scales and the structural
characteristics of the simulation signal are well characterized
as the scale j increases. It indicates that the proposed method
can be regarded as a promising method to decompose
signals. To further clarify the denoising process of the KRRD
method, the faulty bearing data of Case Western Reserve
University [43] are used in this paper. 2e proposed method
is applied to detect the bearing with inner race fault, the
sampling frequency fs is set to 25.6 kHz, the collected data
length is 12288 points, the shaft rotating frequency is
fr � 29.5Hz, and bearing pass frequency of inner race
(BPFI) is 159.93Hz. 2e bearing fault data are added with
Gaussian noises for SNR� 4 dB to illustrate the effectiveness
of this method and the results are shown in Figure 5.

From Figure 5(a), the raw signal S1 is divided into four
residual signals using kernel regression function. By com-
paring with Figure 5(b), it can be observed that in Figure
5(b), it is clear that each residual signal is decomposed using
noise suppression.

2e raw signal and the corresponding denoising signal
are shown in Figure 6. And the frequency spectrum of raw
signal and denoising signal can be seen in Figure 7. It is

K1 Kn–1
f (t) S2 Sn

rn (t)

r1 (t) rn–1 (t)

Figure 2: 2e framework of KRRD.

rn (t) rn–1 (t)

……

r1 (t)

f (t)

θn θ1θn–1

Figure 3: 2e framework of KRRR.
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worth noting that the fault frequency of 154.2Hz is shown in
Figure 7(b), which is more accurate than Figure 7(a) and the
fault frequency of 154.2Hz is matching with the theoretical
calculation value of 159.93Hz. Based on the above inves-
tigation, we conclude that the present approach can be
employed to determine the faults of bearings.

4. Experimental Evaluation

In this section, the proposed approach is evaluated by rolling
element bearings with inner race, outer race, and compound
fault [12, 44]. Generally, the vibration response of a bearing
with faults consists of a series of impulses, whereas the
frequencies in these impulses are the bearing characteristic
frequencies (BCFs). Figure 8 shows the defects at the outer
race, inner race, and ball. It is noted that a deep groove
bearing (ER-12K) is used in the experiment [45]. 2ree fault
types in the present experimental investigations are bearing
pass frequency of outer race (BPFO), bearing pass frequency
of inner race (BPFI), and ball spin frequency (BSF) [2],
which can be theoretically calculated by

BPFO �
nfr

2
1 −

d

D
cos ϕ , (12)

BPFI �
nfr

2
1 +

d

D
cosϕ ,

BSF �
Dfr

2d
1 −

d

D
cos ϕ  ,

(13)

in which fr is the shaft speed (Hz), n is the number of rolling
elements, ϕ is the angle of the load from the radial plane, d is
the ball diameter, and D is the pitch diameter.

2e fault simulator (MFS-MG, manufactured by Spec-
traquest Inc.) and the test system are shown in Figure 9. 2e
test system includes speed indicator, manual speed gover-
nor, acceleration sensors, speed sensor, motor, spindle,
bearings, etc. 2e bearing parameters are the number of
rolling elements n� 8, ball diameter d� 0.3125 inches, pitch
diameter D� 1.318 inches, and the contact angle ϕ � 0°.
During the experiment, the data are acquired by an accel-
erometer mounted on the top of the bearing holder on the
left side, and the sampling frequency fs is set to 25.6 kHz.

4.1.Outer Race FaultDetection. In this section, the proposed
method is applied to detect the bearing with outer race fault.
For the bearing with outer race fault, the collected data
length is 12288 points and the shaft rotating frequency is
fr � 29.87Hz. According to equation (12), BPFO can be
calculated as

BPFO �
nfr

2
1 −

d

D
cos ϕ  � 91.15Hz. (14)

From Figure 10(a), it can be seen that, due to the defect
present in the rolling bearing, the vibration signal presents
the impacts feature, but there exist very serious noises.
Applying the KRRD method to the raw signal, the denoised
signal is shown in Figure 10(b). By comparing with
Figure 10(a), the ambient noises are effectively suppressed.
2e fault characteristic frequency (87.5Hz) is clearly
revealed. 2e comparisons show that the above method
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Figure 4: 2e simulation signal. (a) Test signal. (b) Noisy input signal. (c–e) Decomposition signals. (f ) Purified signal.
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Figure 5: 2e KRRDmethod using Case Western Reserve University data. (a) Raw signal S1 is decomposed into four residual signals S2, S3,
S4, and S5. (b) Each residual signal is decomposed into C1, C2, C3, C4, and C5 using noise suppression.
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Figure 6: 2e KRRD method using Case Western Reserve University data. (a) Raw signal. (b) Denoising signal.
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proposed in this paper is more effective. 2erefore, the
bearing with outer race fault will be clearly detected.

4.2. Inner Race Fault Detection. For the bearing with inner
race fault, the total collected data are 12288 points; the shaft
rotating frequency is fr � 29.87Hz.2e ball pass frequency of
the outer race (BPFI) is given by

BPFI �
nfr

2
1 +

d

D
cos ϕ  � 147.8Hz. (15)

In this section, the proposedmethod is applied to detect the
bearing with inner race fault. By comparing Figures 11(a) and
11(b), we can see that the impact characteristic is not clearly
shown in the former graphic but clearly shown in the latter
graphic. And the fault frequency of the inner race in
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Figure 7:2e frequency spectrum of CaseWestern Reserve University data. (a)2e frequency spectrum of the raw signal. (b)2e frequency
spectrum of the denoising signal.
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Figure 8:2e faults in the bearing. (a)2e fault in the outer race of the bearing. (b)2e fault in the inner race of the bearing. (c)2e fault in
the ball of the bearing.
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Figure 9: 2e machinery fault simulator.

Mathematical Problems in Engineering 7



Figure 11(a) is not clearly identified, but in Figure 11(b), the
shaft rotating frequency is 29.87Hz, second harmonic fre-
quency is 59.26Hz, and its feature frequency of 147.9Hz is
matchingwith the theoretical calculation value of 147.8Hz, and
we conclude that there is a fault in inner race of the bearing.

4.3. Compound Fault Detection. For the bearing with
compound fault (the combination of BPFO and BPFI), the
total collected data are 12288 points, the shaft rotating
frequency is fr � 39.82Hz, and the corresponding BPFO is
given by

BPFO �
nfr

2
1 −

d

D
cos ϕ  � 121.5Hz. (16)

2e bearing pass frequency of inner race (BPFI) is given
by

BPFI �
nfr

2
1 +

d

D
cos ϕ  � 197.1Hz. (17)

2e ball spin frequency (BSF) is given by

BSF �
Dfr

2d
1 −

d

D
cos ϕ 

2
⎡⎣ ⎤⎦ � 79.3Hz. (18)

In this section, the proposedmethod is applied to detect the
bearing with compound fault. 2e original signal is illustrated
in Figure 12(a) and the denoised signal using the KRRD
method is shown in Figure 12(b). In Figure 12(a), only the
input shafting frequency of 40Hz is shown, while the other

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
–0.2

0

0.2

0 100 200 300 400 500 600 700 800 900 1000
0

0.005

0.01

A
m

pl
itu

de
A

m
pl

itu
de

t (s)

Hz

29.6

46.8

87.5

139.1

(a)

–0.2

0

0.2

0

0.005

0.01

A
m

pl
itu

de
A

m
pl

itu
de

29.8

87.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
t (s)

0 100 200 300 400 500 600 700 800 900 1000
Hz

(b)

Figure 10:2e outer race experiment signal. (a)2e raw signal and the frequency spectrum of the raw signal. (b)2e denoised signal and the
frequency spectrum of the denoised signal.
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harmonics are submerged by other unknown frequency
components; it is not clear what kind of fault is. From
Figure 12(b), the input shafting rotating frequency (40Hz) and
its inner race fault (202.5Hz), outer race fault (120Hz), and the
second harmonic frequency of ball fault (79.25Hz) are
matching with the theoretical calculation values. 2e results
demonstrate that the proposed approach can effectively extract
the fault features of defective bearings.

5. Conclusion

In this paper, aiming at the shortcoming of the conventional
denoising method for bearing fault signal under variation
conditions, a new KRRD method is proposed. Like the EMD
method, the KRRDmethod is used to decompose a signal into
a number of residual signals at different scales. It allows the
noise suppression method to get rid of the noise information
while preserving the important signal characteristics. 2e
method is verified by the feature extraction of the faulty bearing
of the outer race, inner race, and compound fault. From the
detection results of the numerical simulation and experiment
investigations from both open access data andmechanical fault
simulator, it can be observed that the presentmethod is suitable
to detect faults in the mechanical systems. Because KR is a
nonparametric mathematical tool with the support of the
strictlymathematical theory, KRRDmight be superior to EMD.
2e decomposition procedures are similar to EMD, and the
application area can be enlarged if more research works are
further performed.Moreover, it is expected that the procedures
of the present method are surely suitable to other regression
models.
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