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Mathematical methods for signal and image processing
present the mathematical methodology for generic image
and signal analysis tasks. The existing literature on image
methodology is rather scattered. This special issue brings
together some seemingly different points of view to stress
their conceptual relations and analogies. In this issue, some
papers focus on specific applications, while some other papers
discuss the methodological frameworks on which specific
applications are built. Covering many topics at the forefront
of current research, this issue will be of particular interest to
researchers in the fields of computer vision, image process-
ing, signal processing, medical imaging, visual perception,
pattern recognition, and so on.

Among the 16 exciting papers compiled in this special
issue, two papers discuss fundamental mathematical con-
cepts. J.-J. Yao and Z.-L. Jiang consider the skew circulant and
skew left circulant matrices with continuous Lucas numbers.
They discuss the invertibility of the skew circulant matrices
and present the determinant and the inverse matrices by con-
structing the transformation matrices. H.-B. Tu et al. focus
on the problem of self-occlusion in the field of human action
recognition. In their paper, a new adaptive occlusion state
behavior recognition approach is presented based on Markov
random field and probabilistic latent semantic analysis.

Two papers present the specific applications of mathemat-
ical methods in image and signal processing. W. Liu et al.
propose a new vibration signal analysis approach to detect the

coal-gangue interface based on singular value decomposition
(SVD) techniques and support vector machines (SVMs).
The empirical mode decomposition (EMD) is also used in
their work. G. Hua and D. Jiang propose a new self-adaptive
method for image denoising based on visual characteristics.

One paper deals with high speed video images. T. Kog
and T. Ciloglu propose an automatic method for segmenting
glottis in high speed endoscopic video (HSV) images of vocal
folds. Their method is based on image histogram modeling.

In the area of image encryption and image coding, S.
Zhang et al. propose a joint encryption and reversible data
hiding scheme. R. Gomathi and A. Vincent Antony Kumar
introduce a new framework for image coding that uses image
inpainting method. In the proposed algorithm, the input
image is subjected to image analysis to remove some of the
portions purposefully.

There are two papers in the area of communication signal
processing. J. Wang et al. discuss 60 GHz wireless commu-
nications over the additive white Gaussian noise channel.
Channel capacity with quadrature amplitude modulation
(QAM) is investigated for the unlicensed 59-64 GHz radio
spectrum set aside by FCC. Their results prove that QAM is
an attractive scheme for 60 GHz wireless communications.
D. Yumin and X. Shufen propose quantum random walk
optimization model and algorithm in network cluster server
traffic control and task scheduling.


http://dx.doi.org/10.1155/2014/245067

Two papers deal with image retrieval and image match-
ing. M. Xiao et al. propose new optimization strategies on
vocabulary tree building, retrieval, and matching methods. E
Nayyeri and M. E. Nasrudin study image matching by using
dimensionally reduced embedded earth mover’s distance.

In the area of image recognition and image reconstruc-
tion, M. A. Shayegan et al. propose a new two-stage approach
for dimensionality reduction. Their method is based on one-
dimensional and two-dimensional spectrum diagrams of
standard deviation and minimum to maximum distributions
for initial feature vector elements. Y. Luo et al. study exact CS
reconstruction condition of undersampled spectrum-sparse
signals. They mathematically prove that, in certain cases, the
exact CS reconstruction of a spectrum-sparse signal from
undersampled data is impossible.

Three papers focus on classical mathematical methods of
image processing. B. Subramanian et al. discuss the properties
of wavelets and multiwavelets with regard to the denoising
capability compared to conventional filtering techniques. L.
Xu et al. propose a novel algorithm for image sequence
fusion and denoising simultaneously in 3D shearlet transform
domain. C. Chi and E Gao propose an algorithm based on
fractional difference for the edge extraction of thenar palm
print image.

By compiling these papers, we hope to enrich our readers
and researchers with respect to the advances in mathematical
methods for image and signal processing.

Feng Gao
Gongzhu Hu
Wenying Feng
Tokuro Matsuo
Vangalur Alagar
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An automatic method for segmenting glottis in high speed endoscopic video (HSV) images of vocal folds is proposed. The
method is based on image histogram modeling. Three fundamental problems in automatic histogram based processing of HSV
images, which are automatic localization of vocal folds, deformation of the intensity distribution by nonuniform illumination, and
ambiguous segmentation when glottal gap is small, are addressed. The problems are solved by using novel masking, illumination,
and reflectance modeling methods. The overall algorithm has three stages: masking, illumination modeling, and segmentation.
Firstly, a mask is determined based on total variation norm for the region of interest in HSV images. Secondly, a planar illumination
model is estimated from consecutive HSV images and reflectance image is obtained. Reflectance images of the masked HSV are used
to form a vertical slice image whose reflectance distribution is modeled by a Gaussian mixture model (GMM). Finally, estimated
GMM is used to isolate the glottis from the background. Results show that proposed method provides about 94% improvements
with respect to manually segmented data in contrast to conventional method which uses Rayleigh intensity distribution in extracting

the glottal areas.

1. Introduction

Vocal system monitoring is essential for clinical analysis
of voicing and investigation of speech production models.
Today, high speed endoscopic video (HSV) of vocal folds is
a state-of-the-art method to investigate vocal fold vibration.
With the development of high speed video cameras, the vibra-
tion of vocal folds can be captured at 4000 fps with an image
resolution of 256 x 256 pixels. Such a system can provide 20
frames in a glottal cycle of 200 Hz vibration. Reduction of the
dimensionality of spatiotemporal information and represen-
tation of high speed video data in a simple, convenient, and
lossless manner is a challenge. By means of HSV, some of the
characteristics of vocal fold vibrations, such as asymmetric
vibration, glottal area, and glottal width, are measured for
clinical and engineering applications. Quantification of the
difference between vibration patterns of left and right vocal
folds in both spatial and temporal domains is required for
objective analysis of voice disorders [1-4]. The time variation
of glottal area is of particular interest in HSV based analysis

[2, 5-9]. It is used as a reference signal in estimating the
parameters of biomechanical models of vocal folds [5, 6].
These models are used for functional analysis of vocal folds
vibrations as well as articulatory speech synthesis.

Currently, glottal area extraction from HSV images is
based on histogram thresholding [1, 10], region-growing
[7, 11], and active contours [12]. Histogram thresholding
method uses the difference between intensity distributions
of the object and background. In HSV images, pixels corre-
sponding to vocal folds and tissue around them have large
intensity values compared to the pixels corresponding to the
opening between the vocal folds, that is, glottis. The aim
in the histogram based methods is to find a threshold to
discriminate the low intensity pixels corresponding to glottis
from the high intensity pixels. The intensity distributions are
usually modeled by parametric functions. First, distributions
of the glottis and background intensities are estimated and a
threshold is determined. Glottal area can be estimated quite
accurately provided that the intensity distribution is bimodal.
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However, intensity distribution is very sensitive to illumi-
nation. Nonuniform illumination can ruin the modality of
intensity distributions. Thus, it is a significant problem in
the histogram based segmentation methods. The advantages
of the method are its suitability for real-time applications
due to little computational requirement, and under uniform
illumination it is very effective for glottal area extraction.

Region-growing based methods use the histogram
thresholding as a first step of the algorithm. After applying
thresholding, a binary image is obtained for further
processing. In the next step, one of the connected regions is
used as an initial seed; then the seed points are propagated
up to a state at which the difference in the intensity of the
boundary pixels and intensities of their neighbours reaches a
certain limit. Region-growing methods require an intelligent
algorithm to select multiple seeds in video frames, since
vocal folds can have partial contacts during glottal opening
and closing phases. Therefore, their performances depend
on the combination of histogram thresholding and accurate
selection of seed points.

In the active contour based methods, an initial contour
for glottis is found by using edge detection operation; then
it is shrunk and expanded iteratively to minimize an energy
function. One disadvantage is that the convergence requires
significant amount of time due to computational burden.
Another disadvantage is that the final boundary is affected by
the selection of initial contour and noise in the HSV images
[8, 12]. It is not suitable for applications requiring processing
large number of video frames in a small fraction of time
or real-time, such as clinical evaluation. However, segmen-
tation of HSV in an automatic manner is indispensable for
applications requiring analysis of large number of frames,
such as vocal fold vibration functional analysis and speech
production analysis.

Currently, the major challenge is automatic extraction of
glottal area [7, 8, 12]. Most of the existing image processing
algorithms in the literature are not completely automatic and
require user intervention. In [7], the intensity distribution
of an HSV image is modeled by Rayleigh distribution and
a binary image is obtained by using histogram thresholding
according to Bayess decision rule. After selection of single
seed, a region-growing operation is applied to find the
final boundaries. However, as it is shown later in this
study, modeling the intensity distribution of HSV without
considering the region of interest is unreliable and finding an
accurate threshold may involve ambiguities. In addition, the
results may get worse due to the nonuniform illumination.
The automatic algorithms used in [8, 12] are based on active
contour method. However, analysis of a single image can take
about several minutes with these methods. To extract glottal
area in an automatic and eflicient way, a histogram based
method is suitable due to its computational efficiency. In this
paper, three fundamental problems in automatic histogram
based HSV processing, which are automatic localization
of vocal folds, deformation of the bimodality of intensity
distribution by nonuniform illumination, and ambiguous
segmentation when glottal gap is small, are addressed. The
problems are solved by a novel approach which involves
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automatic TV-Norm based masking, illumination, and
reflectance modeling.

The intensity histogram depends on the region of interest
in the image. To obtain a bimodal intensity distribution for
segmentation, region of interest must contain glottis and
tissue in its proximity. Automatic calculation of region of
interest is the first step of automatic vocal fold segmentation
system. It is required not only in histogram based algorithms
but also in other automatic HSV segmentation algorithms
to reduce the amount of processed data to minimize com-
putational complexity and to avoid the possibility of false
region determination. In the literature, to the best of our
knowledge, automatic vocal fold localization is performed in
[9, 12]. In [12], first, the darkest image is determined as a
representative HSV image; then an edge detection operation
followed by connected component analysis is applied on it.
At the final stage, a rectangular mask corresponding to the
largest vertical connected region is used as a region of interest
in the image. However, it is quite sensitive to noise due to
the fact that even little noise in the image can degrade the
edges and connected components in the image. In [9], an
image sequence related to a glottal cycle is used to determine
the glottis. It is assumed that the lowest intensity value is in
the glottis. The row-wise and column-wise intensity minima
are calculated from each frame in the image sequence. Then,
their averages form vertical profile, V,,, and horizontal profile,
H,, vectors. They expected that V, and H,, have a minimum
value between the locations of vocal folds margins. The two
neighboring maxima on each side of the minimum are used
to locate the margins. It is our experience that V, and H,, are
highly sensitive to illumination and tissue structures in the
image. Usually it is not possible to locate glottis clearly with
the use of these profiles. The proposed solution is based on the
intensity variation caused by the vibratory motion of vocal
folds. The intensities of vocal fold edges and glottis change
almost periodically during the vibration of vocal folds. It is
realized that the largest intensity variation in HSV is observed
at the glottis. In this study, a novel masking algorithm is
proposed which uses the total variation norm (TV-norm)
of HSV image at the automatic mask determination stage.
It can be used as a preprocessing step in many vocal fold
segmentation systems.

The second problem which is addressed here is the
deformation of the modality of the intensity distribution due
to the nonuniform illumination. Nonuniform illumination
over a scene can be reduced by modeling reflectance and
illumination. Intensity can be considered as the product of
reflectance and illumination [13]. One solution is to model the
illumination and then recover the reflectance of the object by
removing the effect of illumination. The estimated reflectance
image can be used in segmentation. In this paper, a planar
illumination model is proposed for vocal fold monitoring
systems. By means of the proposed model, bimodal HSV
reflectance image histograms can be acquired from complex
multimodal HSV intensity histograms.

In HSV image segmentation systems, images are pro-
cessed consecutively; each frame is first analyzed and then
segmented. However, the vibration of vocal folds brings
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FIGURE 2: Four snapshots from HSV and corresponding histograms.

some difficulties in histogram based segmentation. The vocal
folds’ edges approach each other and make a partial or
full contact at each glottal period. At the beginning of the
glottal opening phase and at the end of the glottal closing
phase, a small portion of the image pixels belongs to glottal
opening or gap. It causes the intensity histogram of the
image to be unimodal which makes finding an accurate and
reliable threshold for segmentation difficult. In this study,
to remove the uncertainty in threshold determination, a
threshold determination algorithm which uses the intensity
variation provided by the vibratory motion of vocal folds
from an image frame sequence is proposed.

The main steps of the developed algorithm are shown in
Figure 1. First, using the TV-norm of an image sequence, a
mask is determined to crop a portion of an original frame
that contains vocal folds. Then, an illumination model is
estimated from the mean temporal intensity variation of the
HSV. A reflectance image is estimated after the illumination
modeling phase. In the next step, reflectance histogram along
central longitudinal cross sections of glottis over a sequence
of masked frames is used to determine the threshold for
glottal boundary detection. The reflectance distribution is
modeled by using Gaussian mixture model (GMM). Finally,
in the segmentation step, a reflectance threshold is deter-
mined by a Bayesian approach.

This paper is organized as follows. Section 2 describes
the automatic vocal fold localization problem and then
presents automatic masking algorithm. The degradation of

intensity distribution due to the nonuniform illumination
and proposed planar illumination model is presented in
Section 3. Constructing vertical slice image from masked
frames and GMM based reflectance modeling for segmen-
tation are presented in Section 4. Segmentation results and
comparison of proposed algorithm with Yan’s method [7] on
manually marked HSV images are presented in Section 5.
Finally, conclusion is given in Section 6.

2. Masking

The accurate determination of region of interest in a HSV
image is necessary for intensity histogram processing. Some
HSV image frames and corresponding intensity histograms
are shown in Figure 2. The vocal folds are located in the
middle of the consecutive image frames. The dark region
between the folds is called glottis. As the folds come together,
the area of the glottis decreases as seen in the images.
Despite the considerable change in the glottal area in
each image shown in Figure 2, the intensity histograms are
identical and almost unimodal. The intensity distribution is
insensitive to the change in the glottal area if the whole HSV
image is chosen as a region of interest. By visual inspection of
the histograms, it is not easy to decide whether the vocal folds
are open or close. Furthermore, due to the almost unimodal
intensity distribution, it is hard to determine a reliable
threshold value to discriminate the intensity values of pixels
of the glottis from the intensity values of its neighbouring
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FI1GURE 3: Four snapshots from masked HSV and corresponding histograms.

pixels in the intensity histograms. However, by reducing
the region of interest as shown in Figure 3, the intensity
histograms can be made bimodal and sensitive to the changes
in the glottal area.

The intensity histograms of the masked image frames
shown in Figure 3 are either unimodal or bimodal depending
on the state of the vocal folds. When the folds are closed
or almost closed as shown in Figures 3(c) and 3(d), the
small intensity values corresponding to the dark region at the
glottis are replaced by the high intensity values of vocal folds
edges; hence background intensity distribution is dominant
in the corresponding histograms. As a result, the intensity
distributions turn out to be unimodal. On the other hand,
when the vocal folds are open as shown in Figures 3(a)
and 3(b), the small intensity values due to the darkness in
the glottis yield the distributions have a stronger bimodal
character because of the reduced size of data collection
region (by masking). A reliable threshold estimation from
an intensity histogram is possible when the opening between
the vocal folds is sufficiently large in the masked HSV
image. An intensity value at the left edge of the background
intensity distribution can be chosen as a threshold [13]. For
automatic processing of HSV images, an automatic algorithm
that determines the location of the glottis is required. A
novel automatic HSV masking algorithm is presented in the
following subsection.

2.1. Automatic Masking Algorithm. The algorithm yields a
rectangular mask from consecutive HSV images in which
vocal folds vibrate. It uses the total variation of the intensity
values of each pixel. Total variation norm is used in image
restoration and noise reduction [14-16]. In this paper, it is
used in the opposite direction. In HSV images, the most

active structures are vocal folds. Their vibration produces
large intensity changes at pixels corresponding to the glottis
(later demonstrated in Section 3). Hence, a large frame to
frame intensity variation is a significant indication of a pixel
corresponding to glottis.

TV-norm is computed over a sequence of frames as

N-1

TV (x,y) = Z [I(x,y,n+1)=I(x,y,n)| Vx,y€l,
n=1
@

where x and y are the spatial variables and n denotes frame
index. I(x, y,n) is the intensity function and N is the number
of frames in the sequence. It should be emphasized that
TV-norm is used in time, not in space. TV(x, y) produces
larger values at the locations of high intensity variation. TV
obtained from 300 HSV image frames is shown in Figure 4.

The largest TV values (red color) are accumulated at the
glottal region while the smaller values are distributed over the
background. This is used for the determination of a mask to
locate the glottis in HSV frames automatically.

In placing the mask, horizontal and vertical maxima
statistics are used. Let M, and M, be two sets whose elements
are determined by

M, (y) =max(TV(x,y)), y=12...,N,

2
My(x)=m;ix(TV(x,y)), x=12,...,N @

M, and M, calculated over TV-image in Figure 4 can
be seen in Figure5. The largest M, values are located
between values about 90 and 120. This interval points out the
horizontal interval of the most active region, glottis, in the
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TV-image. The largest M, values are between about 150 and
200 and they indicate the minimum and maximum vertical
axis points of the location of the glottis in TV image.

To extract the glottis region from TV-image, a threshold
can be determined using M, and M,. Let u and o be
the mean and standard deviation, respectively, of the union
of the values of M, and M,. TV-image is converted to a
binary image by using T = p + o as a threshold. Resulting
binary images may have nonzero regions, R;, other than
the glottal region, R,. Figure 6(a) shows the results of the
thresholding for the TV-image shown in Figure 4. One large
region corresponding to the glottis and several small regions
due to noise are seen in the figure. To get rid of these small
regions, average TV values inside the regions can be used. Let
E, be the average of the TV values in R;; that is,

1

Ei=— ) TV(xy), 3)

ix,y€R;

where A, is the area of the region R;. By choosing the region
having the largest E; as glottis region the nonzero regions
can be eliminated. The index of the glottal region, R, is
determined as

g = argmax (E;). (4)

(b)

FIGURE 6: (a) Boundary of the glottal activity region, (b) a masked
HSV image.

To locate the mask, the boundary, B, of the largest
TV-norm region, R_, is determined by an edge detection
algorithm. B , is a set of (x, y) pairs (coordinate values). To
construct the mask, the extrema of the elements of B , are
defined as

Xpmin = argmin (x,y) € B, Vimin = arg myin (x,y) € B,
Xmax = argmax (x, y) € B, Yinax = arg max (x,) € B,
(5)

Then the mask is defined as follows:

1’ Xmin Sxs Xmax> Vmin < Y < Ymax> (6)

mask (x, y) = {

0, elsewhere.

Masked image is obtained by the product of the original
image and the mask Iy s sxpp (%, ¥, 1) = I(x, y,n)-mask(x, y).
An example of a glottal boundary and the corresponding
masked image are shown in Figure 6. The vocal folds are
cropped from the HSV image; thus the masked image
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FIGURE 7: Application of the proposed method without 2D median filtering when glottis is separated into two regions.

contains only glottis and its neighbours as desired. This mask
is used for processing all 300 frames. The size and location
of the mask can be updated for long HSV recordings by
processing sliding HSV image blocks containing a number of
consecutive frames.

2.1.1. Special Cases

Case 1 (finding ROI when glottis has more than one area).
A special case in vocal fold vibration is separation of glottis
into more than one vibrating region. An example from
the IRCAM database is seen in Figure 7(a). The glottis is
separated into two regions. In this special case, the movement
of the middle part of vocal folds is limited. The TV-image
obtained from Figure 7(a) is shown in Figure 7(b). The total
variation is high at both glottal regions but quite small at the
connection of the regions. It is also seen in the maxima curves
calculated from the TV-image plotted in Figure 7(c). M,
curve has a sharp minimum approximately at y = 90 (row =
145, note that y is different than row number and equal to y =
255-row) which corresponds to the location of the connected

edges of vocal folds. This causes the separation of the glottis
into two disjoint regions if the TV-image is thresholded by
the sum of the mean and the standard deviation of the union
of maxima curves. Since in the region selection step one of
the regions is selected, calculated mask does not cover the
glottis completely as shown in Figure 7(d). This problem can
be solved by applying either one or both of the following
methods:

(1) thresholding TV-image by a smaller threshold, for
example, 4+0.50, or an adaptive method for selection
of threshold from a set of candidates, that is, choosing
athreshold from the set T; = {¢+0.10, u+0.20, ..., u+
0.90,u+0.};

(2) 2D median filtering of TV-image.

2D median filtering of TV-images is chosen as a general
solution and used in the masking method. The TV-image
obtained by 9 x 9 2D median filtering is shown in Figure 8(a).
The TV of the glottal region is distributed over the location
of the glottis after median filtering. Furthermore, some of
the small regions having large T'V resulting from shining of
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FIGURE 9: A low contrast HSV and its TV-image.
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FIGURE 10: Application to a low contrast HSV.

tissues are diminished by the filtering (e.g., region around
x = 200). Therefore, TV-image is enhanced by 2D median
filtering. The maxima curves obtained from median filtered
TV-image are plotted in Figure 8(b). Median filtering of the
TV-image smooths the minimum in M,, (around y = 90)
corresponding to the location of the connection of the two

regions at the glottis. The contour of TV-image obtained
after thresholding is shown in Figure 8(c). Now, both glottal
regions are covered by the contour. The final constructed
mask is shown in Figure 8(d). Without using 2D median
filter, the masked HSV is erroneous as seen in Figure 7(d).
However, by the use of median filtering on TV, the mask



Journal of Applied Mathematics

100 - ;
90
80
70 +
60 -
50
40 +

30 +

20 +

10 +

80 100

120 140 160 180 200 220 240 260

Intensity

FIGURE 11: (a) Masked HSV image and its histogram. (b) Boundary of the vocal folds in the masked image obtained by thresholding with 110,

140, 170, and 210, respectively.

is corrected and the glottis is completely covered by the
mask as plotted in Figure 8(d). In general, using 2D median
filter enhances TV-images; hence, it is used in the automatic
masking method.

Case 2 (enhancing low contrast images). Low contrast brings
some difficulties in automatic masking HSV images. It
requires a special approach which is described here. One
low contrast HSV image is shown in Figure 9(a). The
contrast of the image is relatively less than the previous
HSV image examples. When the contrast of consecutive
images is reduced, the total variation of intensity of pixels
corresponding to moving objects decreases. Therefore, low
contrast reduces TV values at the glottal activity region. The
TV-image obtained from the image is shown in Figure 9(b).
Note that there are two regions having significantly large
TV value above the vocal folds. These regions result from
the shining points above the vocal folds. The TV values
of the glottis are high but distributed in an area about the
location of the vocal folds. One solution is to use contrast
transformation. The contrast of the HSV is transformed by
the following nonlinear transformation:

1.8
s 1 < Tgigns
High ) Fligh (7)
255, 1> Iiygy,

255 I
T(I) = "\ 1

where [ is the intensity and Iy, is the top 10% of all pixel
values [13].

The transformation and transformed HSV are plotted
in Figures 10(a) and 10(b). The transformation not only
increases the contrast but also reduces the temporal intensity
variations at the bright regions. The TV-image obtained
after contrast transformation is shown in Figure 10(c). The
transformation enhances the T'V-image by reducing the effect
of shining tissues due to illumination and increases the TV
values of the active glottal region. The estimated contour and
maxima curves obtained from the TV-image and resulting
mask are shown in Figures 10(d) and 10(f), respectively. The
method successtfully locates the vocal folds.

3. Modeling Nonuniform Illumination

Histogram based image segmentation relies on the lighting
conditions on the scene [13]. Under uniform lighting, or
illumination, glottis and background in an HSV image can
be separated using a single threshold determined by intensity
histogram. However, the intensity distribution of the glottis
and background is deformed under nonuniform illumi-
nation. It results in such a complex intensity distribution
that separation of the glottis and background may not be
achieved via simple thresholding. For instance, an HSV image
distorted by nonuniform illumination and its histogram
are shown in Figure 11(a). Note that, despite the successful



10

Vertical line (y)

Time (n)

(a)
240

220

200

180

160

Intensity value

140

120

100

5 10 15 20 25

Time
— y=143
— y=130
— y =100

—e- y=70
- y=10
- y:l

(®)

FIGURE 12: (a) Vertical slice image (VSI), intensity variation along
the vertical slice of masked image. (b) Intensity variations of VSI
image for different vertical lines.

masking over the image, the intensity distribution is far from
having a bimodal character as indicated earlier in Section 2.
A reliable and accurate threshold cannot be determined from
the intensity histogram. For instance, the boundary of the
vocal folds obtained by 4 different thresholds corresponding
to the local minima of the histogram is shown in Figure 11(b).
It is seen that the estimated boundaries are erroneous due
to the deformation of the glottis and background intensity
distributions.

In this section, we present a novel illumination model
for HSV images and a method to estimate the parameters
of the model. The method is based on the mean intensity
distribution along the longitudinal cross section at the center
of the glottis. Vertical slices of masked video frames are
used to form, VSI(n, ¥) = Iyaskep(Xcenters V> 1)> Where X oo,
is the horizontal center of the glottis when it is aligned
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vertically. The vertical slice image, VSI(n, y), obtained from
HSV frames plotted in Figure 11(a), is shown in Figure 12(a).
It shows temporal intensity variation on the central vertical
line of the glottis. The intensity on the vertical slice is low
during the glottal opening and high when the folds are closed.
Intensity variations for different y values of VSI are shown
in Figure 12(b). For y = 143 (top line), the intensity is high
and has a small variation in time with a small amplitude,
and it has high periodicity. The largest variation is observed
on y = 100 (VSI(n, 100)). It is the best representation of
the periodic movement of the vocal fold edges. The variation
is almost constant and exhibits nonperiodical movement on
y = L. This is due to the fact that the variation on y = 1
line does not contain information from the glottis region.
The variation on the lines, y = 130 and y = 70, is also
periodic with considerably large amplitudes. For y = 10,
the amplitude variation is small. Note that the mean intensity
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values on the lines presented in the figure are different and
depend on y. The temporal mean of the intensity variation
on each horizontal line in the VSI image can be a measure of
the illumination on that particular line. The temporal mean
of the VSI as a function of y is plotted in Figure 13(a). Note
that the mean intensity increases almost linearly from bottom
(y = 20) to the top (y = 143) in the VSL

The intensity of an image, I(x, y), can be considered as a
product of the illumination, L(x, y), and reflectance, R(x, y),
the amount of illumination reflected from the objects in the
scene (I(x,y) = R(x,y) - L(x, y)) [13]. The illumination
depends on the energy provided by the light source. The
reflectance, R(x, y), is the characteristic of the imaged objects
and it is between 0 (total absorption) and 1 (total reflection).
To extract the reflectance component, an estimate of the
illumination function, L(x, y), can be used.

Under uniform illumination (L(x,y) = L), intensity
is expressed by reflectance times a constant (I(x,y) =
L - R(x, y)). Furthermore, if a uniformly reflective object
(R(x, y) is a constant, R) is imaged under uniform illumi-
nation, the intensity, I(x, y), will be a constant. Similarly,
if an image sequence is formed by periodic placement and
removal of the object at the same location, the mean intensity

1

variation along the image sequence at each point of the region
covered by the object will be the same. As illustrated in this
section, the intensities on vertical center line in the glottis
are periodic. It is assumed that the vertical center line in the
glottis is uniformly reflective (R(y) = R). It implies that,
under uniform illumination, the mean intensity is the same
at each point on the vertical center line. However, under
nonuniform illumination, for the vertical center line, the
mean intensity is the product of a constant reflectance, R,
and the illumination function, L(y). If R is chosen as 1 (for
the sake of simplicity), the nonuniform illumination, L(y),
will be the same as the mean intensity on the vertical center
line. In the same way, the illumination function, L(x, y), can
be estimated by temporally averaging the intensity for each
pixel location in the glottis. To reduce the computational
complexity, we assume that L(x, y) changes only vertically
and is the same on each horizontal line (L(x, y) = L(y)).
The mean intensity is modeled by using a line as shown in
Figure 13(a). The nonuniform illumination estimate, L(x, ),
is obtained by extending the line horizontally as shown in
Figure 13(b). The reflectance component of the masked HSV
image, R(x, y), can be obtained by dividing the intensity of
the masked image, I(x, y), into the illumination estimate,
L(x, ). To represent the reflectance as a grayscaled image,
its values are scaled to be confined to the interval [0-255] by
multiplying 255. The estimated reflectance and its histogram
are plotted in Figure 14.

The distinction between the glottis and background
reflectance distribution can be observed from the clear
bimodal structure in Figure 14(a). For discriminating the
glottis from the background a reflectance threshold can be
selected by visually inspecting the histogram. The reflectance
value corresponding to the middle point between the peaks
is found to be 150. It is used to convert the reflectance image
into binary image and edge detection operation is applied
on the binary image to extract the boundary of the vocal
folds. Estimated boundary is illustrated in Figure 14(b). The
vocal folds edges are accurately determined by reflectance
thresholding. Another nonuniform illumination modeling
and reflectance based thresholding example is shown in
Figure 15. The intensities of the image are distributed between
values 120 and 255. Note that, due to high illumination, a
large amount of intensity values is saturated around the upper
intensity limit, 255. In this case, the classification of the glottis
pixels based on the intensity distribution is problematic. A
reliable threshold cannot be found even by visual inspection.
However, the reflectance histogram obtained by using the
proposed illumination model exhibits bimodal distribution.
The result of the segmentation by using the reflectance value
corresponding to the minimum between the two highest
peaks in the reflectance histogram, R = 130, is shown in the
upper right panel of the figure. The vocal folds’ edges are accu-
rately determined by using reflectance based thresholding.

4. GMM Based VSI Reflectance Modeling

One of the problems in the histogram based HSV processing
is segmentation of small glottis regions appearing at the
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beginning of the glottal opening and at the end of the
closing phases of vocal folds vibration. As illustrated in
the introduction section, the intensity histograms of the
images captured during the glottal closing or opening can be
unimodal. It is not possible to estimate a reliable threshold
even by manual intervention in those cases.

In this section, a novel automatic threshold determina-
tion method from consecutive HSV frames is presented. It is
shown in the previous section that the reflectance histograms
have better modality than the intensity histograms, due to
the reduction of the effect of the nonuniform illumination.
Therefore, reflectance based image segmentation is preferred
in HSV segmentation. The VSI image based on reflectance
represents reflectance distribution of the pixels belonging
to the glottis and vocal fold edges. A reflection based VSI
image is shown in Figure 16(a). The reflectance distribution
provided by the vertical slice image is more reliable than
that of the original unmasked image in distinguishing the
boundary of glottal opening. The reflectance histograms
of the unmasked, masked, and VSI images are shown in
Figure 16(b). The unmasked image histogram is almost uni-
modal. Similarly, there is no clear boundary in the masked
image histogram and it is not possible to separate the
background and glottis easily. However, the histogram of the
VSlimage has clearly separated two peaks thatlead to a robust
threshold determination to separate glottis and background.

The VSI reflectance can be represented by a mixture
of two Gaussian densities (GMM) [17]. The reflectance
distributions at the glottal opening, Pygo(r | GO), and
at other locations, Pyo(r | O), form the two components.
Prico(r | GO), Ppo(r | O), and P(R) can be written as
follows:

1 _ _ 2
Prco (r | GO) = N (r | py,0y) = 2 C=)/o)
270,?
1 _ _ 2
Ppo (r10) =N (r | gy, 0,) = MR
2710,2

2
P(R) = ZwiN (r | u>07),
i=1

(8)

where w;’s are weights of the Gaussian components. The
parameters of the GMM, y;, 0;, and w;, are estimated by
EM (expectation and maximization) algorithm [18]. The
posterior probabilities, P;or(GO | r) and Py (O | 1), are
written as follows:

w;N (R | y;, 0;)
Y wieN (R | oy 0)

P@i|R) = 9
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13

where i = 1,2 denotes glottal opening (GO) and others
(O), respectively. A VSI histogram and corresponding GMM
are shown in Figure 17. Estimated GMM fits the reflectance
distribution well.

The estimated densities are used to segment each HSV
frame in the image sequence as

|1, P(GO|R(x,y,n))>P(O|R(x,y,n)),
9 (6 yom)= {0, otherwise.
(10)

In the last step of the algorithm, the glottal area variation in
HSV is determined. The glottal area in terms of the number
of pixels is calculated as

ay[n] = Z g(x,y.n). (11)

x,y€Mask
The steps of the algorithm are given as follows.
(1) Get N images from HSV.
(2) Start automatic mask determination.
(3) Calculate TV-image (see (1)).

(4) Apply KxK 2D median filter to TV-image (the
smaller K, the sharper TV-image).

(5) Calculate M, and M, (see (2)).

(6) Threshold for segmentation of TV-image is deter-
mined by the union of M, and M y statistics, +0.

(7) Segment TV-image and find the regions inside it
using connected component method.

(8) Select the region having largest E (see (3) and (4)) as
glottis and determine the boundary of the region by
edge detection.

(9) Construct a mask by using the extrema of the bound-
ary (see (6)).
(10) End masking.
(11) Start illumination modeling.

(12) Apply masking to image sequence and form VSI
image (VSI(n, y) = Iyaskep (Xcenters ¥>1))-

(13) Calculate the mean intensity at each row in VSI and
estimate illumination function L(x, ¥).

(14) Estimate reflectance images from masked images by
using R(x, y) = I(x, y)/f(x, y).

(15) End illumination modeling.

(16) Start density estimation.

(17) Form VSI image of the reflectance image sequence.

(18) Estimate GMM parameters by EM method and cal-
culate the posterior probabilities, P z(GO | r) and
Pojr(O | 7) (see (8)-(9)).

(19) End density estimation.

(20) Start segmentation.

(21) Segment each image by using the posterior probabil-
ities (see (10)).

(22) Calculate glottal area (see (11)).

(23) End segmentation.
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FIGURE 18: Segmentation results. (a) Proposed method. (b) The method of [7].

5. Results

Proposed algorithm is compared with the method of [7]
on IRCAM HSV database [19]. In [7], intensities in HSV
frames are modeled by Rayleigh distribution; then a threshold
is determined by a Bayesian approach. After thresholding,
region-growing operation is applied. In this study, region
growing is omitted, because it is optional and its success
depends on the accurate determination of the glottis region.
The core function of [7] is Rayleigh based intensity modeling
and thresholding is used in the comparison. However, it
is our experience that the application of the method of
[7] on unmasked frames frequently produces undesirable
segmentation results. It is expected since unmasked images
usually have unimodal intensity distribution. Therefore, the
method of [7] is applied on the masked images obtained from
the first stage of our algorithm. Examples of segmentation
results by the proposed method and the method of [7] are
shown in Figure 18. Segmented regions other than glottis are
observed in the result obtained by the method of [7]. On
the other hand, the use of masking and VSI image improves
the success of classification significantly. For comparison,
3000 images are segmented from 10 different HSV videos
(300 for each) manually to produce a reference data set.
Segmentation results for three different cases are shown in
Figures 19-21. The glottal area waveforms obtained by manual
segmentation, by the method of [7] and the proposed method
are shown in Figure 22. Mean square error (MSE) values
of the glottal area waveforms obtained by applying the two
methods are given in Table L.

According to the results presented in Table 1, the MSE
of the proposed algorithm is smaller than the MSE of the
method of [7] by about 94%. The accuracy in the glottal area
and vocal fold boundary estimates is increased significantly.

TABLE 1: MSEs over 3000 frames of the estimated glottal area
waveforms.

The method of [7]
93573

Decrease in MSE (%)
93.60

Proposed
MSE 5969.9

6. Conclusion

Automatic segmentation of HSV images is necessary for
investigation of vocal folds’ functions in clinical and speech
production studies. In this study, an automatic method
is introduced for extracting glottal area waveform from
HSV images. The first novelty in the method is that the
region of interest is determined automatically by a robust
masking algorithm using TV-norm of consecutive images
which produces a strong indication for moving vocal folds.
Using a sliding HSV block, it can be updated easily for
processing long sequence of frames. A planar illumination
model for HSV images is the second unique feature of
the method. By means of the proposed planar illumination
model, reflectance images can be obtained and used in the
vocal fold segmentation. The other novelty is, by intro-
ducing vertical slice image, the use of reflectance variation
information in the glottis from multiple images instead of
using a single image to model the reflectance distribution.
Modeling the reflectance distribution of vertical slice images
by GMM is easy, computationally efficient and produces more
accurate glottal area waveforms. For long image sequences,
the mean and variance of GMM can be recursively updated
by forming a sliding frame sequence framework in con-
structing the VSI image. The proposed approach can be
used in any histogram based automatic image segmentation
systems.
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(a) (b)
FIGURE 19: Case 1: Segmented HSV image sequence by the method of [7] (a), the proposed method (b).

(a) (b)

FIGURE 20: Case 2: Segmented HSV image sequence by the method of [7] (a), the proposed method (b).

(a) (b)

FIGURE 21: Case 3: Segmented HSV image sequence by the method of [7] (a), the proposed method (b).
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1. Introduction

Copyright © 2014 Mohammad Amin Shayegan et al. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Dimensionality reduction (feature selection) is an important step in pattern recognition systems. Although there are different
conventional approaches for feature selection, such as Principal Component Analysis, Random Projection, and Linear Discriminant
Analysis, selecting optimal, effective, and robust features is usually a difficult task. In this paper, a new two-stage approach for
dimensionality reduction is proposed. This method is based on one-dimensional and two-dimensional spectrum diagrams of
standard deviation and minimum to maximum distributions for initial feature vector elements. The proposed algorithm is validated
in an OCR application, by using two big standard benchmark handwritten OCR datasets, MNIST and Hoda. In the beginning, a
133-element feature vector was selected from the most used features, proposed in the literature. Finally, the size of initial feature
vector was reduced from 100% to 59.40% (79 elements) for the MNIST dataset, and to 43.61% (58 elements) for the Hoda dataset, in
order. Meanwhile, the accuracies of OCR systems are enhanced 2.95% for the MNIST dataset, and 4.71% for the Hoda dataset. The
achieved results show an improvement in the precision of the system in comparison to the rival approaches, Principal Component
Analysis and Random Projection. The proposed technique can also be useful for generating decision rules in a pattern recognition
system using rule-based classifiers.

dimensionality reduction to save time and memory usage.
In addition, the demand for employing various applications

Pattern recognition (PR) is one of the most attractive branch-
es in the artificial intelligence field. In all PR systems, the
quantity, quality, and diversity of training data in the learning
process directly affect the final result. The training dataset size
has double importance in this regard, because the training
phase—related to large datasets—is often a time-consuming
process.

Nowadays, the emergence of the big-data issue has
resulted in specific attention on size reduction and also

running on limited-speed and limited-memory devices, such
as mobile phones and mobile scanners, is growing dramat-
ically [1]. Hence, the necessity to find efficient techniques
for reducing the volume of data in order to decrease the
overall processing time and also the memory requirements
is considered more important than in the past.

Two general approaches are utilized for the dataset
volume reduction in the literature: size reduction and dimen-
sionality reduction.
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The available size reduction techniques try to reduce the
number of objects or observations in a dataset. They find
and remove two groups of samples from a dataset: samples
far from a class centroid (outlier samples or support vector
samples) [2-5] and samples close to each class centroid (e.g.,
using k-means clustering technique) [6]. However, the outlier
and support vector samples are necessary to evaluate system
efficiency and system functionality. In addition, the samples
close to a class centroid include important information about
the various characteristics of a class and are necessary to make
a system model.

The dimensionality reduction techniques have been used
to identify and remove the less important features, extracted
from the dataset samples. They are widely employed in
different areas, such as biological data clustering [7], EMG
signal feature reduction [8], face recognition [9], blog visual-
ization reduction [10], and gene expression databases reduc-
tion [11]. Principal Component Analysis (PCA), Singular
Value Decomposition (SVD), and Random Projection (RP)
are some of the well-known methods in this part [12].
Concerning the dimensionality reduction in the Optical
Character Recognition (OCR) applications, PCA has been
used to compress the features space in the numeral part of
the CEDAR database [13], MNIST database [14], and also
the Tamil handwritten character classes [15]. Nevertheless,
finding an optimal, effective, and robust feature set out of a
large initial extracted feature is usually a heuristic and hard
task [16].

This paper contributes to the corpus of knowledge in
dimensionality reduction as follows: (1) introducing a new
preprocessing method to stick disconnected parts of an image
and (2) proposing a novel two-stage spectrum-based method
to reduce the number of features in the feature space. The
mentioned method is based on analysing one-dimensional
and two-dimensional spectrum diagrams for standard devia-
tion and minimum to maximum distribution corresponding
to the existing features in the initial feature vector. Unlike
the other available techniques for dimensionality reduction,
such as PCA, the proposed method can keep every feature
in the final feature vector, based on some characteristics of a
specific feature or even based on user opinion. To investigate
the efficiency of the proposed dimensionality reduction
technique, two large standard benchmark handwritten OCR
datasets—MNIST and Hoda—are employed. The empirical
results have shown the effectiveness of the proposed method.
Although the results have been reported for OCR application
databases, the salient point of the proposed approach is that
it can also be used for other datasets with numerical feature
vectors.

The rest of the paper is organized as follows. Section 2
discusses the background of the research topic and introduces
the related works for dimensionality reduction operation.
Thereafter, Section 3 presents the proposed dimensionality
reduction technique, including the definition of one- and
two-dimensional standard deviations and also minimum
to maximum spectrum diagrams. Section 4 presents the
research method and the experimental results and compar-
isons, and, finally, Section 5 presents the conclusion of the

paper.
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2. Background and Related Works

2.1. Feature Extraction in OCR Application. Among the vari-
ous stages in PR systems, feature extraction plays a vital role in
building system models, the recognition process, and system
accuracy [17]. Feature extraction is a task to detect/extract
the maximum amount of various desired attributes and
characteristics from the input data. The features are the
information that is fed to the recognizer to build a system
model [18]. They should be insensitive to irrelevant variability
in the input as much as possible, limited in number to
permit for effective computation of discriminant functions
and should not be similar, redundant, or repetitive. Various
kinds of features can be found and/or calculated for an
object in a PR system. Usually, features are categorized into
global transformations [19], structural [20], statistical [21],
and template-based matching [22].

The structural features describe the geometrical and
topological characteristics of patterns using their global and
local properties [23]. They are the most popular features
investigated by researchers in OCR systems, because they
are intuitive aspects of writing [24]. Structural features are
less influenced by sources of distortion, but they are highly
dependent on the style of writing. They may be extracted from
each row, column, skeleton, or contour of an image. However,
extracting this kind of features from the pattern images is not
usually an easy task.

The statistical features are derived from the statistical dis-
tribution of the image’s pixels and describe the characteristic
measurements of a pattern. They include numerical values
computed from a part or a whole of an image. Although these
features are easy to extract, they can lead the system to the
wrong way, because most of them are very sensitive to noise,
scale, rotation, and other changes in the patterns.

Transformation features are derived from the trans-
formed representation of an image in a new space by
transformation operators. The transformation process maps
an image from one space to another space, and it usually
reduces the dimensionality and order of computing in the
new space. They provide features that are invariant to global
deformation like translation, dilation, and rotation [24].

Template-based features are usually created by matching
predefined templates on graphical input data. However, they
are completely data dependent, and they cannot transfer from
a PR system to another.

Some of the most used structural features [14, 17, 20, 25,
26], statistical features [18, 21, 27, 28], and transformation
features in OCR applications are shown in Table 1.

2.2. Dimensionality Reduction in OCR Application. Various
features are computed and/or extracted in the feature extrac-
tion block of an OCR system. However, it is possible that
some of the extracted features correspond to very small
details of the patterns or that some of them are a com-
bination of other features (nonorthogonal features), while
others might not have any efficacy in the recognition stage.
Irrelevant or redundant features may degrade the recogni-
tion results, reduce the speed of learning algorithms, and
significantly increase the time complexity of the recognition
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TABLE 1: Some of the most used features in OCR applications.

Type of features

Some of the most used features

Structural

(i) Simple, double, and complex loops

(ii) Loops positions, their types, and their relative locations

(iii) Hills and valleys

(iv) Open curves in different directions

(v) Ascenders and descenders

(vi) Numbers and locations of dots in each character

(vii) Location of dots relevant to baselines

(viii) Starting, ending, branching, crossing, turning, and corner points in image skeleton
(ix) Curvature and length of the image’s segments

(x) Length of a character segment relative to other segments

(xi) Location of a character segment relative to center of mass image’s skeleton

Statistical

(i) Normalized central, Zernike, pseudo Zernike, fast Zernike, Legendre, orthogonal Fourier-Mellin, rotational,
and complex moments extracted from the whole body, only from the main body, or only from the secondary
parts of an image

(ii) Fourier and gradient descriptors

(iii) Image area and image perimeter

(iv) Pixels distribution in left, right, up, and down halves of the image

(v) Image density

(vi) Aspect Ratio

(vii) Mean, mode, variance, and 2D standard deviation

(viii) Average and variance of X and Y changes in portions of the image skeleton
(ix) Local maxima points in horizontal and vertical projection histograms
(x) Ratio of horizontal variance histogram to vertical variance histogram
(xi) Ratio of upper half variance to lower half variance of an image

(xii) Thinness ratio

(xiii) The ratio of pixel distribution between two or more parts of the image
(xiv) Center of mass (COM) (center of gravity)

(xv) Centroid distance

(xvi) Radial coding

(xvii) Top, bottom, left, and right profile histograms

(xviii) Number of horizontal (row) and vertical (column) transitions

(xix) Number of modified horizontal and vertical transitions

(xx) Outer and inner contour directional chain code histograms

(xxi) Normalized contour chain code descriptors

(xxii) Modified contour chain code descriptors

(xxiii) Fractal, shadow code descriptors

(xxiv) Energy of original image

(xxv) Number of specific points such as end, branch, and cross points
(xxvi) Number of connected components

(xxvii) Relative location of start and end points of an image skeleton
(xxviii) Pen width and line height

(xxix) Baselines positions

(xxx) Histogram of slopes along contour

(xxxi) Skeleton-based N-degree directional descriptors

Transformation

(i) M-band packet wavelet coefficients
(ii) Fourier, DCT, and radon coeflicients

process [29]. Hence, following the feature extraction process,
the issue of dimensionality reduction (feature selection)
arises.

Feature selection is typically a search problem to find an
optimal subset with m features out of the original M features,
to exclude irrelevant and redundant features from the initial
feature vector. It reduces problem dimensionality, reduces
system complexity and processing time, and increases the
system accuracy [30]. In this respect, some feature subset

selection algorithms have been proposed. According to the
criterion function used for finding one m member subset out
of 2M possible subsets (M is the number of initial features),
two general categories are introduced for this important
task: Wrapper algorithm and Filtering algorithm. In the
Wrapper algorithm, the classifier performance is used to
evaluate the performance of a feature subset. In the Filtering
algorithm, the features evaluation function is used rather than
optimizing the classifier performance. In this category, by



using a special feature evaluation function, the best individual
features are found one by one. However, the m best features
are not the best m features [31]. Usually, the Wrapper methods
are slower but perform better than the Filtering methods [32].

Based on the removing strategies, the feature selection
methods are categorized into three groups. The first category
is the Sequential Backward Selection (SBS) technique [33].
In this approach, the features are deleted one by one and
the systems’ performance is measured to determine feature
performance. However, finding the correct sequence to delete
the features one by one is also very important. This means
that a system’s derived efficiency after deleting features A, B,
and C is not equal to the same system’s derived efficiency after
deleting the features in order A, C, and B or B, C, and A, and
so on. Due to their nature, some features are relevant to others
from different points of view. In this case, the SBS technique
does not help to find the best subset of features. El-Glaly and
Quek [33] extracted 4 set features Sy, S,, S; and S, to use
them in an OCR application. They trained an OCR system
with those 4 feature sets separately. After that, sets S, to S,
were delivered to a Principal Component Analysis (PCA)
algorithm, which rearranged the features in each set, based
on their importance in the recognition system. The results
showed that a feature (e.g., X) in rank 23 in set S; (23rd feature
in feature vector S; after applying PCA) took rank 7 in set S,
(7th feature in feature vector S, after applying PCA), and so
on. This experiment indicates that if feature X is deleted for
the sake of feature reduction, it may cause a large error in the
final results.

The second group of feature selection methods comprises
the random search methods, such as Genetic Algorithms
(GA), which keep a set of the best answers in a population.
Bahmani et al. [34] used GA in a handwritten OCR system.
The initial number of features in their proposed system was
81 and the accuracy was 77%. After applying GA, the number
of features was reduced to 55 and the accuracy increased
from 77% to 80%. Soryani and Rafat [35] employed GA
to carry out feature subset selection in a typical printed
OCR system. They tested the proposed method to identify
5 fonts and 5 sizes of printed alphabet characters, achieved
a reduction in the number of features from the initial 256
loci features to 146, and enhanced the system accuracy by
4.07% as well. The GA methods always select chromosomes
one by one with the best recognition percentage and move
those chromosomes (features) to the next stage. However,
it is possible that when a good characteristic feature gets
combined with another feature, the overall performance is
not as good as the individual performances.

The third method for feature selection operation is a
group of methods that have been applied to find important
patterns in high-dimensional input data such as Principal
Component Analysis (PCA) [12] and Random Projection
(RP) [36]. PCA is a statistical method that tries to convert
a correlated features space into a new noncorrelated features
space. In the new space, features are reordered in decreas-
ing variance value such that the first transformed feature
accounts for the most variability in the data. Hence, PCA
overcomes the problem of high dimensionality and colin-
earity [37]. RA technique is a simple powerful dimension
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reduction technique that uses Random Projection matrices
to map the data from a huge-dimensional space to a lower
space one [36]. To achieve this aim, a mapping matrix R is
used, where the columns of R are realizations of independent
zero-mean normal variables, scaled to have unit length.

Some researchers employed PCA for various applications
in PR systems. Gesualdi and Seixas [38] used PCA for data
compression in the feature extraction part of a licence plate
recognition system. They reduced the number of features
from 30 to 4. The reported results showed that the achieved
accuracy for digits recognition was acceptable but that the
accuracy for characters recognition was degraded signifi-
cantly. Ziaratban et al. [39] extracted a set of feature points
including terminal, two-way, and three-way branch points
from the skeletons of the characters in an OCR application.
Finally, each skeleton was decomposed into some primitives,
which are curved lines between any two successive feature
points. Since the number of primitives varies from character
to character, they used PCA algorithm to reduce and equalize
the lengths of the feature vector. Using a postprocessing stage,
they achieved 93.15% accuracy on a dataset with 7647 test
samples. To recognize isolated handwritten Arabic letters,
Abandah et al. [16] extracted 95 features from all feature
categories. After that, only the first 40 features were selected
from the PCA process result. Finally, five different classifiers
were employed and, on average, 87% accuracy was achieved
in the best case. Although PCA has been widely utilized in
different PR applications, it suffers from high computational
cost. In addition, after applying PCA, finding the order of the
most effective to least effective features in the initial feature
vector is not possible.

3. The Proposed Model

Figure 1 depicts the overall structure of the proposed dimen-
sionality reduction model. First of all, some common pre-
processing operations were carried out on the input images
to enhance the quality of the input patterns. Then, the most
used features—in the literature—were extracted as the initial
feature vector denoted by Initial_S. Dimension reduction was
taken in two stages. In the first stage, using the proposed tools,
One-Dimensional Standard Deviation (1D_SD) and One-
Dimensional Minimum to Maximum (1ID_MM) spectrums,
the number of features was decreased from 7 in the Initial S
to k in the first reduced version of feature vector S;. Then,
in the second stage, and by employing the proposed tools
Two-Dimensional Standard Deviation (2D_SD) and Two-
Dimensional Minimum to Maximum (2D_MM) spectrums,
the number of features was decreased again from k in feature
vector S, to p in the final reduced version of feature vector S,.
The operations mentioned are demonstrated in the following
subsections.

3.1 Preprocessing. The performance of an OCR system
depends very much upon the quality of the original data. In
this context, we took into consideration that the proposed
algorithm should be nonsensitive with respect to the scal-
ing, rotation, and transformation of patterns. Hence, some
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important preprocessing operations, such as noise removal,
dimension normalization, and slant correction using com-
mon powerful techniques, are first performed on the samples.

We applied a median filter with a 3 x 3 window and also
morphological opening and closing operators using dilation
and erosion techniques for high-frequency noise removal
[23]. The image size was normalized without making any
changes to the image Aspect Ratio, and, as a result, the width
or height (or both) was changed to 50 pixels and the image
was located in the center of a 50 x 50 pixels bounding box.

The body of every English and Arabic/Farsi digit is
constructed using only one component. Thus, after the
preprocessing operations, if it is found that there is still more
than one group of connected pixels in the image of the
digit, the extra blocks are considered as noise or separate
components of the initial image. To find and remove the rest
of the noise, the pen width is estimated using three different
methods, and then the average of those values is considered
to be the final pen width. To achieve this, we compute

(a) the mode of image vertical projection;

(b) (the value of image density)/(the number of image
skeleton pixels);

(c) {(the value of image density)/(the number of image
outer profile pixels)} = 2.

The results of the experiments showed that the average of
three values is a more accurate estimate of the pen width than
each of the values alone. After finding the pen width, all small
components with a pixel density that is less than two times
of the pen width can be considered to be noise and can be
deleted from the input image. The threshold of 2 was obtained
experimentally. The rest of the connected components are
considered as broken parts of the digit image.

In order to connect the broken image segments together,
we used a new approach. By using connected component
analysis, we named the biggest available part as the main
part M of the image. The outer contour of the main part
M was then extracted and the coordinates of its pixels were
saved in array MAIN. Thereafter, for all of the rest secondary
components S; (which are smaller than the main part M),
we found the outer contour and saved the pixels coordinate
of those outer contours in another array SEC. Then, we
computed the Euclidean distance between all elements of
array MAIN with all elements of array SEC. The smallest value
of the computed distance indicates the shortest path between
contour M and one of the secondary contours S;. Finally, we
drew a line with thickness equal to the estimated pen width
along the shortest path between M and ;. As a result, the
main part M is connected to a secondary part S;. This process
was repeated until there is not another secondary component.
A new version of main part M is used in each iteration of
the algorithm, because, in each iteration, one secondary part
is connected to the old version of main part. Algorithm 1
demonstrates the pseudocode for this process.

The images in the Hoda dataset are in binary format,
while the images in MNIST are in grey level format. Hence,
by analysing the grey level histogram for the image and using
the standard global Otsu’s method [23], the MNIST samples

Dataset

l

Preprocessing

l

Feature extraction

creating initial feature vector

Initial S = {f1, f5, .. > fu}

l

Dimensionality reduction—stage 1

Applying 1D_SD and 1D_MM techniques on initial S
to create first reduced version of feature vector

S =191,92---

l

Dimensionality reduction—stage 2

gk <n

Applying 2D_SD and 2D_MM techniques on S;
to create final reduced version of feature vector

Sy = {hyhye.hylip<n

FIGURE 1: The 2-stage proposed model for dimensionality reduction
(feature selection).

were also changed to bilevel images. The method proposed by
Hanmandlu et al. [40] was used to correct the slant angle of
each image. First, an image is divided into upper and lower
halves. Afterwards, the centres of mass points for these two
parts are calculated. The slope of a line which connects these
two mass point centres is considered to be the slant angle and
the image is rotated in the reverse direction of this value.

We applied the proposed method on the digits part
of the MNIST dataset [41] and the Hoda dataset [42] to
connect the broken parts of the digit images. The results
were encouraging as we were able to achieve 95.11% and
97.16% successful connections for the MNIST and the Hoda
datasets, respectively. Figures 2(a) and 2(b) show examples of
the above-mentioned preprocessing operations on two sets of
training digits from the Hoda and MNIST datasets, in order.

3.2. Feature Extraction. Due to the vast diversity in writ-
ing style, handwritten characters are placed in the high-
dimensional dataset category. Hence, finding an optimal,
effective, and robust feature set to utilize in the recognition
phase of an OCR system is usually a complex task. In this
research, based on the literature, an initial feature vector,
Initial S, including 133 of the most used features for both
English and Arabic/Farsi digits, was extracted from the input
images. Some of the extracted features are

(i) Aspect Ratio;

(ii) image area, perimeter, diameter, extent, eccentricity,
and solidity;
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{

repeat

{

}
}

while (there is another secondary component in input image) do

find outer contour of the main part M;
save the pixels coordinate of M in array MAIN;;

find outer contour of an image secondary part S;
save the pixels coordinate of S in array SEC;
} until (there is not another secondary parts in image);
for (each pixel A in array MAIN)

for (each pixel B in array SEC)

compute the distance d between pixels A and B;
save (d, coordinate of pixel A, coordinate of pixel B) in array D;

d_min = smallest value d in array D;

A_min = coordinate of pixel A, corresponding to d_min;

B_min = coordinate of pixel B, corresponding to d_min;

draw (a straight line with pen_width thickness from A_min to B_min);

ALGoRITHM 1: The proposed procedure to connect the broken image segments.
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FIGURE 2: Applying proposed connecting procedure on input
images.

(iii) Euler’s number;
(iv) centre of mass (COM) and centroid distance;

(v) pixel distribution density in up, down, left, and right
halves of the normalized image;

(vi) pixel distribution density in upper and lower main
diagonals of the normalized image;

(vii) ratio of pixel distribution in different quarters of the
normalized image to each other;

(viii) ratio of horizontal variance histogram to vertical
variance histogram;

(ix) ratio of upper half variance to lower half variance of
an image;
(x) normalized horizontal and vertical transitions;
(xi) maximum horizontal and vertical crossing counts;

(xii) average of multiplication distances X and Y from
COM;

(xiii) average of distances X and Y from boundary;
(xiv) ratio of major to minor axes lengths;
(xv) convex area;

(xvi) number and location of start, end, branch, corner, and
crossing points in image skeleton;

(xvii) normalized invariant moments to order 7;

(xviii) discrete cosine transform coefficients related to the
main image to order 9;

(xix) top, down, left, and right concavities in the image
skeleton;

(xx) number of modified horizontal and vertical transi-
tions;

(xxi) average distance and average angular distance of each
foreground pixel in a subimage from a virtual origin.
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FIGURE 3: 1D_SD spectrum distribution diagrams for the English digits set.

3.3. Dimensionality Reduction (Feature Selection). In our
approach, we proposed one-dimensional and two-dimen-
sional spectrum diagrams for standard deviation and mini-
mum to maximum distribution.

3.3.1. Stage 1: Reduction Using ID_SD and 1D_MM. In this
stage, some candidate features were selected through 1D_SD
and 1ID_MM spectrums. In digit recognition domain, there
are 10 classes corresponding to 10 digits, 0 to 9. Hence, for
each feature from the initial feature set, a 1D_SD diagram is
plotted with 10 spectrum lines corresponding to digits 0 to 9.
In the 1D_SD plot, a spectrum line, corresponding to a specific
feature, is drawn from the mean —SD to the mean +SD for
each class. Figures 3(a) and 3(b) show the 1D_SD distribution
diagrams corresponding to the “X Coordinate Centre of
Mass” and “Normalized Vertical Transition” features for
English digits, respectively. In Figure 3(a), the majority of
spectrum lines are in an overlapping range [20, 25], meaning
that the “X Coordinate Centre of Mass” feature alone cannot
discriminate existing classes from each other in the feature
space. In Figure 3(b), the spectrum line corresponding to
class (digit) 1 is completely separate from the other spectrum
lines, indicating that the “Normalized Vertical Transition”
feature can completely discriminate digit 1 (class 1) from
other English digit sets (other classes). Therefore, it can be
considered as a candidate feature in the final features vector.

Similar to Figure 3, Figures 4(a) and 4(b) show the 1D_SD
distribution diagrams corresponding to the “Maximum Ver-
tical Crossing Count” and “Aspect Ratio” feature for the
Arabic/Farsi digits, respectively. In Figure 4(a), the majority
of the spectrum lines are in an overlapping range [3.5,7],
meaning that the “Maximum Vertical Crossing Count” fea-
ture alone cannot discriminate the existing classes from each

other in the feature space. In Figure 4(b), the spectrum
line corresponding to class (digit) 1 is completely separate
from other spectrum lines, indicating that the “Aspect Ratio”
feature can completely discriminate digit 1 (class 1) from other
Arabic/Farsi digits set (other classes). Therefore, it can be
considered as a candidate feature in the final features vector.

Finding a set of separated spectrum lines using only
1D_SD distribution diagrams is not enough to create an
optimum feature vector, because the outlier samples in
each class are not placed in the range of 1D_SD spectrum
lines. Indeed they are put in One-Dimensional Minimum to
Maximum (1D_-MM) spectrums.

In the ID_MM plot, a spectrum line corresponding to a
specific feature is drawn from the minimum to the maximum
value of that specific feature for each class. A shorter spectrum
line corresponding to a specific feature indicates that the
existing samples in a particular class have more similarity
(less diversity) to each other in respect to that feature. Hence,
a shorter spectrum line is better than a longer one. In
addition, a distribution diagram with class centres (locations
of the means of the classes) further apart is better than one
with closer class centres. In this case, a classifier separates the
existing clusters better.

Figures 5(a) and 5(b) illustrate 1D_MM spectrum lines
for the same features, “Normalized Vertical Transition” (Fig-
ure 3(b)) and “Aspect Ratio” (Figure 4(b)), for the English
and Arabic/Farsi digit sets, respectively. It is obvious that,
in Figure 5(a), some samples of class 1 overlap with some
samples in all the rest of the classes. This means that, in
the recognition phase, these samples may be misclassified
as belonging to other classes and vice versa, if only the
“Normalized Vertical Transition” feature is employed. In
addition, in Figure 5(b), some samples of class 1 overlap
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FIGURE 4: 1D_SD spectrum distribution diagrams for the Arabic/Farsi digits set.
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FIGURE 5: ID_MM spectrum distribution diagrams.

with some samples in classes 2 or 9. In other words, in the
recognition phase, it is possible that some samples of class 1
are misclassified into classes 2 or 9 and vice versa, if only the
“Aspect Ratio” feature is utilized.

In our proposed dimensionality reduction method,
1ID_MM is utilized to find the maximum allowable overlap-
ping threshold T, to create the first reduced feature vector
S, from the initial features set, Initial_S. By investigating
the overlapping values of the spectrum lines in the ID_-MM

diagram for each feature in Initial_S, the value of threshold
T, is selected. In this study, the T; threshold was set to 30%,
experimentally.

3.3.2. Stage 2: Reduction Using 2D_SD and 2D_MM. Sim-
ilar to the 1D_SD and 1D_-MM distribution diagrams, the
Two-Dimensional Standard Deviation (2D_SD) distribution
diagram and the Two-Dimensional Minimum to Maximum
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(2D_MM) spectrum for two features are made by mapping
one feature on the X-axis and another feature on the Y-axis.
In these cases, an ellipse (or rectangular) is plotted for each
couple of features.

In 2D_SD, the main ellipse diagonals (or the length and
width in the rectangular case) are plotted from the mean —SD
to the mean +SD for two features. In 2D_MM, the main ellipse
diagonals (or the length and width in the rectangular case)
are plotted from the minimum value to the maximum value
for these two features. As such, the [n * (n + 1)/2] 2D_SD
(or 2D_MM) distribution diagram can be generated for n
independent features.

Figure 6 shows a 2D_SD distribution diagram for two
features, namely, “X Coordinate Centre of Mass” and “Num-
ber of Foreground Pixels in Upper Half of Image,” for the
Arabic/Farsi digits set. As can be seen, the ellipse for class
(digit) 0 is completely distinct from the other ellipses. Hence,
the feature pair (X Coordinate Centre of Mass and Number
of Foreground Pixels in Upper Half of Image) is a good choice
for membership in the final features vector (to distinguish
class (digit) 0 from other classes (digits)).

Figure 7 shows another 2D_SD distribution for two
features, “Y Coordinate Centre of Mass” and “Number of

Foreground Pixels in Upper Half of Image,” of the Ara-
bic/Farsi digits set. It is completely clear that in this case the
mentioned features are highly correlated, and, therefore, they
are not a suitable feature pair for membership in the final
features vector.

In our proposed dimensionality reduction method,
2D_MM is utilized to find a maximum allowable overlapping
threshold T, to create the final reduced feature vector S,
from the first reduced feature vector S,. By investigating the
overlapping values of the spectrum ellipse (rectangular) in the
2D_MM diagram for the pair features in §;, the value of the
threshold T;, is selected. In this study, the T', threshold was set
to 20%, experimentally.

3.3.3. Creating Final Feature Vector. For the dimensionality
reduction process, we defined the value of a specific feature as
fx(S; ;), where f is the value of the kth feature from the initial
feature vector, Initial S, and S, ; represents the jth sample of
class i. Subsequently, using all samples in the training part
of each class, the values of the minimum, maximum, mean,
and standard deviation for all the features in the initial feature
vector were computed.

To find the first reduced subset of feature vector, the
1ID_SD distribution diagram along with the 1D_MM spec-
trums was generated for all 133 features in initial features
set, Initial_S. The system selected every feature for which its
1D_SD spectrum line had a maximum of 30% overlapping
(threshold T;) with the other 1D_SD spectrum lines of the
other classes. The output of this stage was the first reduced
version of the feature vector S;, which satisfied the criteria
necessary for membership in the final feature vector.

Finally, by using the 2D_SD distribution diagrams and
also the 2D_MM spectrums on the first reduced version of the
feature set S}, the final reduced versions of feature vectors S,
were selected. In this stage, a couple of features were selected,
if the 2D_SD had a maximum of 20% overlapping (threshold
T.,) with the other 2D_SD distribution diagrams. In stage 2, it
was possible that a feature was added to S, more than once.
Hence, in the final step, the repetitive features in S, were
removed to create the smallest size of S,.

In our proposed method, the 1D_SD and 2D_SD spec-
trums were utilized to decide whether or not a feature was
suitable for including in the final feature vector. ID_MM and
2D_MM were used to find the best value for thresholds T
and T,. It is completely clear that these threshold values
are dependent on characteristics of training dataset samples.
Algorithm 2 explains the proposed method for the dimen-
sionality reduction operation.

The mentioned operations created feature vectors Ini-
tial S, E-S,, and E-S, for the English dataset MNIST and fea-
ture vectors Initial_S, A/F-S,, and A/F-S, for the Arabic/Farsi
dataset Hoda. Table 2 shows the number of features in each
stage for these datasets.

The following are among the selected features in the final
feature vectors E-S, and A/F-S,:

(i) X Coordinate Centre of Mass;

(ii) Number of Foreground Pixels in Upper Half;
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Extract most-used features (in literature) from input dataset, and Create initial features set Initial_S;
n := Number of features in initial features set Initial _S;
first reduced version of feature vector S, := null;

Stage 1:
Choosing threshold T, by investigating 1D_MM spectrum diagrams.
for (k=1:n)
{

Compute the coordinate of all ID_SD spectrum lines corresponding to feature f;
for (c = 1:number of classes)

{

If (overlapping of spectrum line of class ¢ with all the rest spectrum lines has the value less than threshold T ) then

Insert feature f; to S;;
goto L1;
}
}
L1: continue;
}
m := Number of features in first reduced version of features vector S;;
final reduced versions of feature vectors S, := null

Stage 2:
Choosing threshold T, by investigating 2D_MM spectrum diagrams.
for (k=1:m)
for (h=1:m)
{
Compute the coordinate of all 2D_SD spectrum ellipses corresponding to features pair ( f;, f,);
for (c = 1: number of classes)
{
if (overlapping of spectrum ellipses of class ¢ with all the rest spectrum ellipses has the value less than
threshold T,) then
{
Insert feature pair f; and f, to S,;
goto L2;
}
}
}
L2: continue;
}

delete the repetitive features from S,;

ALGORITHM 2: Two-stage dimensionality reduction procedure.

TABLE 2: Number of features in initial feature vector, first reduced version of feature vector, and final reduced version of feature vector.

Initial feature vector First reduced versions of feature vectors S;  Final reduced versions of feature vectors S,

English dataset MNIST 133 E-S,;:103 E-S,:79
Arabic/Farsi dataset Hoda 133 A/F-8;:94 A/F-S,: 58
(iii) Number of Foreground Pixels in Lower Half; (x) variance for vertical histogram;
(iv) ratio of foreground pixels to area of bounding box; (xi) solidity;
(v) ratio of number of foreground pixels upper main (xii) perimeter;
gizgonai to number of foreground pixels under main (xiii) ratio of major to minor axes lengths;,
gonal;

(xiv) convex area;

(vi) Aspect Ratio; (xv) number of end points;

(vii) normalized horizontal transition; (xvi) number of end points in different zones of image

(viii) maximum horizontal crossing count; bounding box;

(ix) Normalized Vertical Transition; (xvii) number of branch points;
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TaBLE 3: Distribution of digits in the MNIST and Hoda datasets.

Digit MNIST Hoda
Train Test Train Test

0 5,923 980 6,000 2,000
1 6,742 1,135 6,000 2,000
2 5,958 1,032 6,000 2,000
3 6,131 1,010 6,000 2,000
4 5,842 982 6,000 2,000
5 5,421 892 6,000 2,000
6 5,918 958 6,000 2,000
7 6,265 1,028 6,000 2,000
8 5,851 974 6,000 2,000
9 5,949 1,009 6,000 2,000
Total 60,000 10,000 60,000 20,000

O|Z|A % 4|51 % 9
OLH2H Y5 4SS
2 AV SEIR e AR NP,

FIGURE 8: Some sample digits in the MNIST dataset.

(xviii) some discrete cosine transform coefficients, such as
(1Y), (1,2), (1,4), (1,5), and (2,1);

(xix) some discrete cosine transform coefficients of image
profile, such as (1,4), (2,3), (2,5), and (3,3);

(xx) some discrete cosine transform coefficients of outer
boundary, such as (2,1), (2,7), (3,3), and (3,4).

4. Experimental Results and Comparison

4.1. Datasets. In recent years, researchers have produced
some standard benchmark datasets in order to encourage
other researchers to follow their investigation in the PR field
and also to compare the functionality of PR systems in the
same conditions.

This research has been specifically conducted on hand-
written digit OCR datasets. Some of English handwritten
standard datasets, including the numeral part, are MNIST,
CEDAR, CENPRMI, and IRONOFE and some of Ara-
bic/Farsi handwritten standard datasets, including numeral
parts, are Al-Isra, ARABASE, IFHCDB, CENPARMI, Hadaf,
LMCA, and Hoda.

In order to test the effectiveness of the proposed method,
the digit parts of two big handwritten standard benchmark
datasets were utilized, namely, MNIST, for English numerals,
and Hoda, for Arabic/Farsi numerals. The following subsec-
tions demonstrate these datasets briefly.

4.1.1. MNIST Dataset. The Modified National Institute of
Standards and Technology (MNIST) dataset contains 60,000
training and 10,000 test samples [41]. This dataset is an
unbalanced dataset. This means that the sample frequencies

1

for different classes in training—and also the testing part—
are not equal (Table 3). All the digits have been stored in 28 x
28 image pixels, with intensities from 0 to 255. Figure 8 shows
some sample digits from this dataset.

4.1.2. Hoda Dataset. The Hoda dataset is a very large corpus
of Arabic/Farsi handwritten alphanumeric characters [42].
It has two parts: digits and characters. The digit section of
the Hoda dataset was prepared in 2007 by extracting the
images of the digits from 11,942 registration forms related
to university entrance forms. Those forms were scanned at
200dpi in 24-bit colour format. The digits were extracted
from the postal code, national code, record number, identity
certificate number, and phone number fields of each form.
The digit section of the Hoda dataset has 80,000 samples and
has been divided into two parts, namely, training (60,000
samples) and testing (20,000 samples). This dataset is a
balanced dataset. It includes 6,000 and 2,000 samples for each
digit in the training and testing parts, respectively. Figure 9
shows some sample digits from this dataset.

Table 3 includes the distribution of digits in training and
testing parts of MNIST and Hoda datasets.

4.2. Proposed Method. In this research, the same operations
were carried out in the preprocessing step on the training and
testing samples. The outputs were noise filtered, reslanted,
relocated, and dimension normalized.

Several experiments were carried out to test the effective-
ness of the proposed method for dimensionality reduction.

In the first part, we applied the proposed approach
for the recognition of handwritten English digits. In all
experiments, a multilayer perceptron neural network with
backpropagation was trained with 103 (or 79) neurons in the
input layer (corresponding to the number of features in sets
E-S, and E-S,), 30 neurons (found experimentally) in the
hidden layer, and 10 neurons (corresponding to 10 different
classes of digits 0 to 9) in the output layer, respectively.

In the first experiment, a neural network was employed
with 103 (number of features in set E-S, ) neurons in the input
layer. The network was trained with all 60,000 samples from
the training part of the MNIST dataset and was then tested
with all 10,000 samples from the testing part of the MNIST
dataset. This operation was repeated 10 times, and, finally,
93.17% accuracy was achieved on average in this stage.

To compare the performance of the proposed method
against other well-known feature selection techniques, a
general Principal Component Analysis (PCA) technique and
a Random Projection (RP) technique [36] were applied on
the initial reduced feature set E-S; with 103 features. PCA
changed the order of the features in the new orthogonal
feature space—based on the derived eigenvectors—and gen-
erated a new reordered feature set E-S; with the same 103
features. The complete reordered feature set E-S; was fed
into the same MLP-NN and a final accuracy of 93.82%
was achieved. This result was 0.65% higher than the 93.17%
result, portraying the superiority of the PCA technique for
feature selection. Similarly, we employed RP dimensionality
reduction technique to create a new smaller feature space
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TABLE 4: Recognition rate corresponding to different feature vectors for the English dataset MNIST and Arabic/Farsi dataset Hoda.
Feature set Number of features in feature vector Feature selection method Accuracy %

Proposed method PCA method RP method

Initial S 133 — — — 91.93

E-S, 103 * 93.17

E-S, 79 x 94.88

English dataset MNIST E-S, 103 * 93.82

E-S, 79 x 90.71

E-S, 103 * 93.51

E-S, 79 x 88.39

Initial S 133 — — — 90.41

A/F-§, 94 * 92.60

A/E-S, 58 « 95.12

Arabic/Farsi dataset Hoda A/ F-S, 94 * 94.04

AJF-S, 58 x 89.00

AJF-S, 94 * 91.07

AJF-S, 58 * 83.66

s TPV [Yaly [ VIAIR
I\ Y[XflaY|V[1]A
VKDV IA Y
vl Y A9
.Y V2D s VA1

FIGURE 9: Some sample digits in the Hoda dataset.

(with 103 features) from the initial feature set, Initial_S.
The output of this stage was the new feature set E-S;. The
feature set E-S; was fed into the same MLP-NN, too. In this
experiment, a final accuracy of 93.51% was achieved that it is
0.31% lower than the achieved result by using PCA.

In the second experiment, the system was trained with
the proposed final version of feature set E-S, with only 79
features. On average, the correct recognition rate increases
from 93.17% to 94.88%, clearly indicating the superiority of
the reduced feature set E-S, of the proposed method against
the initial reduced feature set E-S; with 103 features. To
find the superiority of the our proposed feature set, E-S,,
compared to the other subsets of Initial_S, which have 79
members, we made set E-S, with the first 79 members of set
E-S; (generated by PCA) and set E-Sg with 79 members using
RP technique. The recognition rate declined dramatically
from 93.82% to 90.71% by using set E-S, and from 93.51% to
88.39% by using set E-Sq. These results obviously show the
effectiveness and superiority of our proposed technique in
comparison with PCA and RP as two of the popular tech-
niques for feature selection operation. The obtained results
also show the superiority of PCA technique compared to RP

technique for dimensionality reduction purpose. However,
it is worth mentioning that some researchers have shown
the superiority of RP against PCA—for dimension reduction
purpose—in high-dimensional feature space condition [43,
44]. The outcome results are reported in rows 2 to 8 of Table 4.

In the second part, we repeated all the experiments in
the first part, for the Arabic/Farsi digits, using the Hoda
dataset. A/F-S,, A/F-S,, A/F-S;, A/F-S,, A/F-S;, and A/F-S
were the first reduced feature vectors with 94 members, the
final reduced feature vector created by our proposed method
including 58 features, the reordered initial reduced feature
vector by PCA including 94 features, the first 58 features from
the A/F-S;, the smaller version of feature space with 94 fea-
tures created by using RP technique, and also another smaller
version of feature space with 58 features created by using
RP technique, in order. It is worth mentioning that not only
the trend was completely similar to previous experiments for
the English digits dataset, but also the achieved results for
the Arabic/Farsi dataset Hoda were better than the achieved
results for the English dataset MNIST. In this case, using the
proposed feature selection method, the number of features
was reduced from 113 to 58; meanwhile, the final accuracy was
increased from 90.41% to 95.12%. In this experiment, when
we used the PCA technique for feature selection, the accuracy
was decreased significantly from 94.04% to 89.00%, and when
we employed the RP technique for feature selection, the
accuracy was decreased from 91.07% to 83.66%. Here, we
only employed 1/2 of training and testing samples from Hoda
dataset. The corresponding results are shown in the last seven
rows of Table 4.

5. Conclusion

In this paper, a new method for dimensionality reduction
(feature selection) in pattern recognition systems was intro-
duced. To begin with, an initial set of the most used features
was extracted from the training patterns of two handwritten
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digit standard datasets: MNIST for the English digits and
Hoda for the Arabic/Farsi digits. Then, by using the proposed
ID_SD and 1D_MM distribution diagrams methods, the
initial feature vector was reduced to a smaller version based
on the maximum allowable overlap between the spectrum
lines using the threshold T} . Thereafter, by using the proposed
2D_SD and 2D_MM spectrums, a final reduced feature vector
was selected. In this stage, another threshold, T, was used to
guarantee that the overlaps between the spectrum diagrams
were not more than the maximum threshold.

The mentioned algorithm was implemented in an OCR
application system to reduce the dimension of the initial
feature vector. For English MNIST dataset, the feature vector
was decreased from 100% (133 elements) to 59.40% (79
elements); meanwhile, the accuracy was increased 2.95%
(from 91.93% to 94.88%). The accuracy was 4.17% more than
the outcome results in a similar experiment that used PCA
(90.71%) and 6.49% more than outcome results in a similar
experiment that used RP (88.39%) as two of the common
techniques for the feature selection operation. All of the
60,000 training samples and 10,000 testing samples were used
in the operation.

Utilizing Arabic/Farsi dataset Hoda, the feature vector
was decreased from 100% (133 elements) to 43.61% (58
elements); meanwhile, the accuracy was increased 4.71%
(from 90.41% to 95.12%). The accuracy was 6.12% more
than the outcome results in a similar experiment that used
PCA (89.00%) and 11.46% more than outcome results in
a similar experiment that used RP (83.66%) as two of the
common techniques for the feature selection operation. For
this experiment, we only employed 1/2 of the training
samples (30,000 samples) and 1/2 of the testing samples
(10,000 samples).

The results clearly indicate the superiority of the proposed
method for dimensionality reduction (feature selection).
According to the results, the proposed technique is com-
pletely effective for OCR application as a subcategory of PR
systems. Nevertheless, the proposed new method can be used
for other PR systems with different database types.

Along with proposing a new method for dimensionality
reduction, this paper introduced a new method to connect
the broken parts of an image in the preprocessing stage of
an OCR system. This technique estimates the pen width in
three different ways. By utilizing the connected component
analysis, it traverses the outer contour of the separated blocks
in an image and connects them together.

The proposed feature selection method can be considered
as an approach to infer the appropriate rules for creating a
decision tree classifier in a PR system. In other words, using
the ID_MM and 2D_MM spectrum diagrams, the necessary
rules in a decision tree classifier are found more accurate and
faster. This is a salient feature of our proposed approach.
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The increase in the occurrence of cardiovascular diseases in the world has made electrocardiogram an important tool to diagnose
the various arrhythmias of the heart. But the recorded electrocardiogram often contains artefacts like power line noise, baseline
noise, and muscle artefacts. Hence denoising of electrocardiogram signals is very important for accurate diagnosis of heart diseases.
The properties of wavelets and multiwavelets have better denoising capability compared to conventional filtering techniques. The
electrocardiogram signals have been taken from the MIT-BIH arrhythmia database. The simulation results prove that there is a
29.7% increase in the performance of multiwavelets over the performance of wavelets in terms of signal to noise ratio (SNR).

1. Introduction

In modern medicine, there are many methods to diagnose
heart disease such as electrocardiogram (ECG), ultrasound,
magnetic resonance imaging (MRI), and computer tomog-
raphy (CT). Among these methods, diagnosis using elec-
trocardiogram has the advantages of convenience and low
cost so that it can be used in a wide area. However, certain
arrhythmia (a fast, slow, or irregular heartbeat) which can
cause abnormal symptoms may occur only sporadically or
may occur only under certain conditions such as stress.
Arrhythmia of this type is difficult to obtain on an electro-
cardiogram tracing that runs only for a few minutes. The
electrocardiogram is the record of variation of bioelectric
potential with respect to time as the human heart beats. Due
to its ease of use and noninvasiveness, electrocardiogram
plays an important role in patient monitoring and diagnosis.

The change in solar activity including electrocardio-
graphic data with variations in galactic cosmic rays, geomag-
netic activity, and atmospheric pressure suggests the possi-
bility of links among these physical environmental variations
and health risks, such as myocardial infarctions and ischemic
strokes. An increase in the incidence of myocardial infarction

in association with magnetic storms has been reported by
Cornélissen et al. [1].

Magnetic storms are found to decrease heart rate variabil-
ity (HRV) indicating a possible mechanism since a reduced
HRYV is an important factor for coronary artery disease and
myocardial infarction. An increase of 5% in mortality during
years of maximal solar activity is found when compared with
years of minimal solar activity. These chronodiagnostics are
particularly important for those venturing into regions away
from hospitals.

Goudarzi et al. [2] made an effort to find the optimum
multiwavelet for compression of ECG signals to be used
along with SPIHT codec. This work examined different
multiwavelets on 24 sets of ECG data with entirely different
characteristics selected from MIT-BIH database and assessed
the functionality of the different multiwavelets in compress-
ing electrocardiogram signals and their simulation results
showed the cardinal balanced multiwavelet (cardbal2) by the
means of identity (Id) prefiltering method to be the best
effective transformation and the most efficient multiwavelet
was applied for SPIHT coding algorithm on the transformed
signal by this multiwavelet.
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Kania et al. [3] studied the application of wavelet denois-
ing in noise reduction of multichannel high resolution ECG
signals. The influence of the selection of wavelet function
and the choice of decomposition level on efficiency of
denoising process was considered and whole procedures of
noise reduction were implemented in MATLAB environment
using the fast wavelet transform. The denoising method was
found to be advantageous since noise level was decreased
in ECG signals, in which noise reduction by averaging had
limited application, that is, in case of arrhythmia.

Helenprabha and Natarajan [4] proposed a technique
used for measuring electrical signals generated by foetal heart
as measured from multichannel potential recordings on the
mother’s body surface. They proposed a new class of adaptive
filter that combines the attractive properties of finite impulse
response (FIR) filter with infinite impulse response (IIR)
filter. The maternal ECG and foetal signals were simulated
using MATLAB. The gamma filter design was implemented
in FPGA Spartan 2E which was programmed using VHDL.
Their results have solved the complex situations more reliably
than normal adaptive methods used earlier for recovering
foetal signals.

Chang et al. [5] proposed measures to make the optimal
filter design under different constraints possible for ECG
signal processing. Experiments have been conducted by them
with artificially and practically corrupted ECG signals for
PLI adaptive filtering technique. The assessments included
the convergence time, the frequency tracking efficiency,
the execution time, and the relative statistics in time and
frequency domain. The results demonstrated that there is no
universal optimum approach for this application thus far.

Alfaouri and Dagrouq [6] performed wavelet transform
thresholding technique for ECG signal denoising. They
decomposed the signal into five levels of wavelet transform
using the Daubechies wavelet (db4) and determined a thresh-
old through a loop to find the value where minimum error
was achieved between the detailed coefficients of threshold
noisy signal and the original signal. The threshold value was
accomplished experimentally after using a loop of calculating
a minimum error between the denoised wavelet subsignals
and the original free of noise subsignals. The experimental
application of the threshold result was better than Donoho’s
threshold particularly in ECG signal denoising.

Zhidong and Chan [7] proposed a novel method for the
removal of power line frequency from ECG signals based
on empirical mode decomposition (EMD) and adaptive
filter. A data-driven adaptive technique called EMD was
used to decompose ECG signal into a series of intrinsic
mode functions (IMFs). The adaptive power line cancellation
filter was designed to remove the power line interference,
the reference signal of which was produced by selective
reconstruction of IMFs. Clinic ECG signals were used to
evaluate the performance of the filter. Results indicated that
the power line interference of ECG was removed effectively
by the new method.

Kaur and Singh [8] proposed a combination method
for power line interference reduction in ECG. The methods
were moving average method and using the IIR notch
characteristics. Their results showed reduction in the power
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line noise in the ECG signal using the proposed filter that has
fewer coefficients and hence lesser computation time for real
time processing.

Haque et al. [9] used wavelet method to detect the small
variations of ECG features. They simulated standard ECG
signals as well as the simulated noise corrupted signal using
FFT and wavelet for proper feature extraction. They found
wavelet to be superior to the conventional FFT method in
finding the small abnormalities in electrocardiogram signals.

Tan and Lei [10] used wavelet transform to filter out
noise interferences of electrocardiogram signals for the fil-
tering of the myoelectric interference, the power frequency
interference, and the baseline drift. Firstly Coif4 wavelet was
adapted to decompose electrocardiogram signals containing
noises. Secondly, the soft and hard threshold value quantified
high-frequency coefficients of every scale and finally the
electrocardiogram were reconstructed using high-frequency
coeflicients of every scale which were quantified by the
threshold value. Experiments showed that wavelet transform
had good real time filtering effect and it had more advantages
than traditional methods.

2. Materials and Methods

2.1. Wavelet Method. A wavelet is simply a small wave which
has energy concentrated in time. It is compactly supported
and has finite energy function. It can satisfy admissibil-
ity condition and could be amendable for multiresolution
analysis. The wavelet transform is a mathematical tool for
decomposing a signal into a set of orthogonal waveforms
localized both in time and frequency domains. The wavelet
transform is a suitable tool to analyse the electrocardiogram
signal, which is characterized by a cyclic occurrence of
patterns with different frequency content (P wave, QRS
complex, and T wave). It is a decomposition of the signal
as a combination of a set of basic functions, obtained by
means of dilation (a) and translation (b) of a single prototype
wavelet; there are several wavelet functions (mother wavelet
with different properties) like the Morlet or Mexican Hat
wavelets or complex frequency B spline wavelets that are used
in study.

Wavelet analysis is done by the breaking up of a signal
into a shifted and scaled version of the original wavelet. A
continuous wavelet transform can be defined as the sum of
overall time of the signal multiplied by a scaled and shifted
version of the wavelet function. The greater the scale factor
“a” is, the wider the basis function is and, consequently,
the corresponding coeflicient gives information about lower
frequency components of the signal and vice versa.

The wavelet transform is designed to address the problem
of nonstationary signals such as electrocardiogram signals.
It involves representing a time function in terms of simple,
fixed building blocks, and termed wavelets. The next step
is the selection of number of decomposition levels of signal
x;(t); see Figure 1. First decomposition level is obtained by
using two complementary high- and low-pass filters and
then half of the samples are eliminated. The filters cut
frequency is equal to half of the bandwidth of analysed signal.
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FIGURE 1: Diagram of multiresolution analysis of signal x;(t).

Such algorithm, which is amplification of discrete wavelet
transform, is known as fast wavelet transform.
For analysis the following mother wavelet was used:

¥, (t) =272 (27" — ), 1)

where 7 is coefficient of time translation and m is coeflicient
of scale (compression).

In the first step threshold values for detail coeflicients at
every level of decomposition are determined according to the
following relationship:

THR; = y/2log ”cDj". (2)

The next step is the modification of values of the jth level
detail coeflicients basis of appointed threshold. This method
is called soft thresholding procedure as follows:

D, ) = {sgn (CDJ- (t)) (|x| - THR]-); cD; (t) > THR;,
0; cD; (t) < THR;.
3)

The final step of the analysis is reconstruction of signal
x;(t) based of approximation coefficients chosen ith level of
decomposition (cA;) and modified detail coefficients from ith
(cD;) as well as higher levels of decomposition

X (£) = Y A, (27"t - 1)

(4)

+ Z ZCDMVI mn

m=my n

Mt —n),

where @, (t) is scaling function from kth level of decompo-
sition and \¥,,, , (t) are wavelet functions for m = my,...,m
levels of decomposition.

The advantages of wavelet methods are possibility of
receiving good quality signal for beat to beat analysis and

possibility of having high quality signal while averaging
technique is impossible, as causing morphology distortion
of electrocardiogram signals, it provides a way for analysing
waveforms bounded in both frequency and duration, it allows
signals to be stored more efficiently than by the Fourier
transform, it can lead to better approximate real-world signals
and it is well-suited for approximating data with sharp
discontinuities. The disadvantage of wavelet method is that
the wavelet transforms ignore polynomial components of the
signal up to the approximation order of the basis.

2.2. Equation for Continuous Wavelet Transform. The wavelet
transform equation is given by

\/15_ Jx(t)\P (=

t

CWTE (1,8) =¥ (1,9) =

)dt (5)

where x(t) = given signal, T = translation parameter, s =
scaling parameter = 1/ f, and W(¢) = mother wavelet.

2.3. Multiwavelet Method. Multiwavelets constitute a new
chapter which has been added to wavelet theory in recent
years. Recently, much interest has been generated in the study
of the multiwavelets where more than one scaling functions
and mother wavelet are used to represent a given signal. The
first construction for polynomial multiwavelets was given by
Albert, who used them as a basis for the representation of
certain operators. Later, Geronimo, Hardin, and Massopust
constructed a multiscaling function with 2 components using
fractal interpolation.

In spite of many theoretical results on multiwavelet,
their successful applications to various problems in signal
processing are still limited. Unlike scalar wavelets in which
Mallet’s pyramid algorithm have provided a solution for good
signal decomposition and reconstruction, a good framework
for the application of the multiwavelet is still not available.
Nevertheless, several researchers have proposed method of



how to apply a given multiwavelet filter to signal and image
decomposition.

2.4. Multiscaling Functions and Multiwavelets. The concept
of multiresolution analysis can be extended from the scalar
case to general dimension r N. A vector valued function
¢ = [¢,0,,...,9,]" belonging to L*(R)" and r N is called a
multiscaling function if the sequence of closed spaces

V,=span{2/?g,(2/ -k):1<i<r, kez}. (o)

j € Z constitute a multiresolution analysis (MRA) of
multiplicity » for L*(R). The multiscaling function must
satisfy the two-scale dilation equation

(1) = V2) G (2t - k). 7
k

Now let W; denote a complementary space of V; in V.. The

vector valued function ¥ = [¥,¥,,...,¥,]” such that

W, =span{2/%g, (2/ - k):1<i<r, kez}. (8)

j € Zis called a multiwavelet. The multiscaling function must
satisfy the two-scale equation

¥ () = V2) Hyp (2t k). )
k

H, € L*(Z)”" is an r x r matrix of coefficients. The two-
scale equations (2) and (4) can be realized as a multifilter bank
operating on r input data streams and filtering them in two
2r output data streams, each of which is downsampled by a
factor of two. If x(t) is the given signal and it is assumed that
x(t) € V,, then

x(t) = V2) Voo (t ). (10)
k

And the scaling coefficient VE . of the first level can be consid-
ered as a result of low-pass multifiltering and downsampling
as follows:

Vik = ZGm—ZkVO,m' (11)
m

Analogously, the first level multiwavelet coefficients W, ; are
obtained using high-pass multifiltering and downsampling as
follows:

Wl,k = ZHm—ZkVO,m' (12)

Full multiwavelet decomposition of the signal x(t) can be
found by iterative filtering of the scaling coeflicient as follows:

ij,k = ZGm—Zk‘/j—l,m’
m
(13)
Wj,k = ZHm—Zij—l,m'
m

Note that V;; and W} are r x 1 column vectors.
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2.5. Advantages of Wavelets and Multiwavelets Compared to
Conventional Filtering Techniques

(i) The Fourier transform fails to analyze the nonsta-
tionary signal, whereas wavelet transform allows the
components of a nonstationary signal to be analyzed.

(ii) Wavelet transform holds the property of multires-
olution to give both time and frequency domain
information in a simultaneous manner.

(iii) A set of wavelets which are complementary can
decompose the given data without gaps or overlap so
that the decomposition process becomes mathemati-
cally reversible.

2.6. Comparison between Wavelet and Multiwavelet. Multi-
wavelets contain multiple scaling functions, whereas scalar
wavelets contain one scaling function and one wavelet.
This leads to more degrees of freedom in constructing
wavelets. Therefore, opposed to scalar wavelets, properties
such as compact support, orthogonality, symmetry, vanishing
moments, and short support can be gathered simultaneously
in multiwavelets which are fundamental in signal processing.

The increase in degree of freedom in multiwavelets is
obtained at the expense of replacing scalars with matrices,
scalar functions with vector functions, and single matrices
with block of matrices. However, prefiltering is an essential
task which should be performed for any use of multiwavelet
in signal processing.

3. Results and Discussions

3.1. Data Collection

3.1.1. MIT-BIH Arrhythmia Database. MIT-BIH arrhythmia
database consists of 48-half-hour electrocardiogram record-
ings. The recordings were digitized at 360 Hz (samples per
second per channel) with 11-bit resolution over 10 mV. The
simulations were carried out in MATLAB environment
R2010b. Various benchmark records from the MIT-BIH
database were considered for this study.

(A) Performance Analysis of Wavelet Based Denoising Method
for Electrocardiogram

Wavelet Denoising Using Biorthogonal 1D Wavelet. Figure 2
shows the wavelet denoising for the record 103 m in which
level 1 approximation coeflicient d, for Biorthogonal wavelet
shows that there is maximum noise in it. Hence reconstruc-
tion of the original signal to obtain the denoised electrocar-
diogram from d, coeflicients will also contain the maximum
noise. The level 4 decomposition contains the least noise and
hence reconstruction is done using d,.

Original and Denoised Signals Using Biorthogonal Wavelet.
Figure 3 shows the comparison of the original signal and
the denoised signal using Biorthogonal wavelet at level 4
decomposition for the record 103m. In this the signal to
noise ratio obtained is 32.2094 dB and the power line noise
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FIGURE 2: Wavelet denoising for ECG record no 103 m using Biorthogonal 1D wavelet.
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FIGURE 3: Original and denoised signals for ECG record no 103 m using Biorthogonal wavelet.

is reduced for this record. Figure 4 shows the approximation
and coefficient details after the signal in record 114 m has
been subjected to the Biorthogonal wavelet transform and
Figure 5 shows the original and denoised electrocardiogram
in the record 114 m. The signal to noise ratio obtained is
9.184 dB. This shows that the noise has to be removed further
to enhance the quality of the obtained electrocardiogram.

(B) Performance Analysis of Multiwavelet Based Denoising
Method for Electrocardiogram

Biothogonal Based Multiwavelet Denoising. The multiwavelet
denoising for the record 103m shown in Figure 6 yields
a signal to noise ratio of 35.5220dB in which the power

line noise gets removed. Figure 7 shows the multiwavelet
denoising for the record 114 m and the signal to noise ratio
obtained is 13.4022 dB because of the removalof power line
noise.

3.2. Performance Comparison of Wavelet and Multiwavelet
Methods. Comparison of signal to noise ratio for wavelet
and multiwavelet based denoising techniques for various
electrocardiogram records.

4. Conclusion

The inference from Tables 1, 2, 3, and 4 is that the output signal
to noise ratio value of multiwavelet denoising functions is



Journal of Applied Mathematics

Decomposition at level 4: s = ay + dy +d3 +d, +d;

LLLLL

ay

dy

Dizpisy mace

[ |

attert

—!

=
—pr

——

—

I Show Bmiwsie S

L 3

il

500 1000 1500 2000

2500

3000 3500

o | - e rie x T v ] w | e
< | - s B L

‘ sy _!_‘ ‘

i |

FIGURE 4: Wavelet denoising for ECG record no 114 m using Biorthogonal 1D wavelet.

1450 ' '
1400
1350 +
1300
1250
1200 +
1150
1100 +

1050 ﬁ

1000

-

e

o

Denoised signal

liaa

Denoised Signal

I ariginal signal

A

500 1000 1500

2000

2500 3000 3500

|

‘ o

x

=] - -]

—— Original ECG signal
—— Denoised ECG signal

FIGURE 5: Original and denoised signals for ECG record no 114 m using Biorthogonal wavelet.

TaBLE 1: Performance comparison of wavelet and multiwavelet for
record 100 m.

TABLE 2: Performance comparison of wavelet and multiwavelet for
record 103 m.

SNR (dB) SNR (dB)
Wavelet family Record no 100 m Wavelet family Record no 103 m
Wavelet Multiwavelet Wavelet Multiwavelet

Bio 6.8 11.5708 29.8328 Bio 6.8 32.2094 35.5220
Db 3 2.7306 21.7829 Db 3 15.827 27.7849
Db10 0.561 7.3489 Db10 19.1099 33.1183
Coif 4 2.466 3.6112 Coif 4 24.1340 29.7007
Sym 4 9.0630 21.956 Sym 4 24.6220 36.0964

greater than the signal to noise value of wavelet functions. The
table also indicates that the Daubechies wavelet 10 has better
denoising capability than when compared to corresponding
values of the wavelet denoising as the shape of this wavelet

is more close to the shape of electrocardiogram. The increase
in signal to noise ratio value indicates that there is no loss in
the information contained in the original electrocardiogram
signal and multiwavelet has better denoising capability to
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TABLE 4: Performance comparison of wavelet and multiwavelet for
record 201 m.

SNR (dB) SNR (dB)
Wavelet family Record no 114 m Wavelet family Record no 201 m
Wavelet Multiwavelet Wavelet Multiwavelet

Bio 6.8 9.184 13.4022 Bio 6.8 11.5636 32.3220
Db 3 28.6913 31.0045 Db 3 20.1344 29.3001
Dbli0 18.2315 28.5193 Dbl0 21.2696 33.7040
Coif 4 19.3813 36.6501 Coif 4 17.8031 21.2874
Sym 4 29.6574 30.8971 Sym 4 24.0735 25.1638




remove the power line noise in the various electrocardiogram
records.
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With apparent advantages of the several GHz license-free spectrums, 10 W maximum transmit power, and so forth, 60 GHz wireless
communication technology has become the first choice for Gbps level short-range wireless communications. This paper researches
60 GHz wireless communications over the additive white Gaussian noise channel. Channel capacity with quadrature amplitude
modulation (QAM) is investigated for the unlicensed 59-64 GHz radio spectrum set aside by FCC. Moreover, the capacity with
QAM is compared to that with phase shift keying (PSK). It is shown that QAM is capable of providing Gbps data rate and
outperforms PSK especially when the modulation order is large. The results prove that QAM is an attractive scheme for 60 GHz

wireless communications.

1. Introduction

The growth of wireless communications is spurred by the
consumer desire for untethered access to information and
entertainment. While contemporary unlicensed systems sup-
port light and moderate levels of wireless data traffic, as
seen in Bluetooth and wireless local area networks (WLANS),
current technology is unable to supply data rates compa-
rable to wired standards like gigabit Ethernet and High-
Definition Multimedia Interface (HDMI) [1]. An abundance
of unlicensed spectrum surrounding the 60 GHz operating
frequency has the ability to support these high-rate commu-
nications.

The 60 GHz band is an excellent choice for high-speed
Internet, data, and voice communications since it offers
benefits such as several GHz license-free spectrums, 10 W
maximum transmit power, virtually interference-free opera-
tion, high level of frequency reuse enabled, and highly secure
operation [2]. However, the 60 G wireless channel shows
20 to 40dB increased free space path loss and suffers from
15 (up to 30) dB/km atmospheric absorption depending on

the atmospheric conditions. Multipath effects, except for
indoor reflections, are vastly reduced at 60 G making non-
line-of-sight (NLOS) communication very difficult [1, 3].
While the high path loss seems to be disadvantage at 60 GHz,
it, however, confines the 60 GHz operation to within a room
in an indoor environment. Hence, the effective interference
levels for 60 GHz are less severe than those systems located
in the congested 2-2.5 GHz and 5-5.8 GHz regions [2]. The
oxygen absorption also enables higher “frequency reuse”
since radiation from one particular 60 GHz radio link is
quickly reduced to a level that will not interfere with other
60 GHz links operating in the same geographic vicinity [3].
Federal Communications Commission (FCC) set aside the
59-64 GHz frequency band for general unlicensed applica-
tions [4]. The effect of the antenna directionality to 60 GHz
channel capacity is studied in [5]. The throughput of wireless
mobile ad hoc networks with directional antennas at 60 GHz
unlicensed band is investigated in [6]. The capacity analysis of
60 GHz wireless communications based on PSK modulation
is given in [7, 8]. Quadrature amplitude modulation (QAM)
is widely used for the high-speed data transmission [9-11].
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Compared with other digital modulation techniques like PSK
or PAM, QAM modulation has better anti-noise performance
and could make full use of the bandwidth.

In this paper, we investigate the capacity of 60 GHz wire-
less communication system over AGWN channel under the
FCC rules. The major modulation method used here is QAM,
and capacity comparison between QAM and PSK is also sim-
ply illustrated. The rest of the paper is organized as follows.
Section 2 presents the general used QAM constellations and
makes a comparison between two different constellations for
8-QAM. Section 3 calculates channel capacity over AWGN
channel in 60 GHz wireless communication system. Section 4
conducts Monte Carlo simulations to illustrate the channel
capacity. And Section 5 gives a conclusion.

2. QAM Constellations

QAM can be viewed as combined amplitude and phase
modulation. When the requirement of data transfer rate
exceeds the upper limit 8-PSK can provide, QAM is generally
used. Because the QAM constellation points are much more
disperse than PSK constellation points and the distances
between the constellation points are much bigger with the
same ary. So QAM modulation could provide a better
transmission performance.
QAM signal waveforms may be expressed as [10]

S () =A,, g(t)cos2nft— A, g(t)sin2aft, (1)

where A,,. and A, are the information-bearing signal
amplitudes of the quadrature carriers and g(t) is the signal
pulse. The vector representation of these waveforms is

) T T
Sm = [AmC\/Esg Ams\/zsg] > (2)

where ¢, is the energy of the basic signal pulse g(¢).

M-QAM constellations can be constructed in many
different ways, and they have different capacity and error
characteristics. Although rectangular, circle, and star signal
constellations are common in practice, a certain kind of con-
stellation can be designed to achieve the best communication
performance, under some specific premises [12, 13].

Figures 1 and 2 present two 8-QAM constellations.
Figure1 is a rectangular 8-QAM constellation and Figure 2
is a circular 8-QAM constellation.

Assuming that the signal points are equally probable, the
average transmitted signal power is [4]

DACRTREEHCRTS
P,=— Al +A ) =— a +a,), (3
av M = mc ms M = mc ms
where (a,,.a,,) are the coordinates of the signal points,

normalized by A.
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FIGURE 1: Rectangular 8-QAM constellation.

(0,1 + sqrt(3)),

(-1 - sqrt(3),0) (1 + sqrt(3),0)

0,-1- sqrt(3))
F1GURE 2: Circle 8-QAM constellation.
As can be seen from the above figures, the minimum

distances between the constellation points for (a) and (b) are,
respectively,

(4)

Comparing both,

. d, 6
Ratio= — = =~ 1.126,
dy  \3+3 5)
Ratiog; = 20log (1.126) = 1.03.

Minimum distance of signal set shown in Figurel is
approximately 1dB less than that shown in Figure 4 with
the same average transmitted power. The more the distance
between the constellations, the less the chance of a constel-
lation point getting decoded incorrectly. Actually, the second
signal constellation is the optimal one for 8-QAM because it
has the largest minimum Euclidean distance between signal
points for a given transmitted power. At the same time, as
shown in Figure 5, signal set with the circle constellation for
8-QAM provides a higher data rate.

Rectangular QAM signal constellations have distinct
advantage of being easily generated and transmitted as
two PAM signals impressed on phase-quadrature carriers.
In addition, they are easily demodulated. Although, it is
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FIGURE 4: Relations between capacities of M-ary PSK and QAM
with the same average power.

generally a sub-optimal modulation scheme, compared to
other M-QAM constellations, in the sense that they do not
maximally space the constellation points for a given energy.
For M > 16, the minimum distance required to achieve
a given average transmitted power is only slightly smaller
than the minimum distance required for the optimal M-ary

C (bps/Hz)

SNR per bit (dB)

—— Rectangular 8-QAM
—+— Circular 8-QAM

FIGURE 5: Capacity comparison between two different 8-QAM
signal constellations.

QAM signal constellation. For these reasons, rectangular M-
ary QAM signals are most frequently used in practice [10].
And they are also adopted in this paper.

3. Channel Capacity

In general, the channel capacity is a function of the channel
realization, transmitted signal power and noise. For AWGN
channel, the shannon capacity is normalized with respect to
the bandwidth and expressed in bps, that is, normalized with
respect to the bandwidth, is

C = Wlog, (1 + SNR), (6)

where W is the system band width and SNR is the receive
signal to noise ratio, defined by ¢,/N,,, where ¢, is the energy
per bit [9].

The Shannon capacity predicts the channel capacity C
for an AWGN channel with continuous-valued inputs and
outputs. However, a channel employing multilevel/phase
modulation, for example, PAM, PSK, or QAM modulation,
has discrete-valued inputs and continuous-valued outputs,
which impose an additional constraint on the capacity cal-
culation [10].

We consider the modulation channels with discrete-input
X and continuous-output Y, which is defined as [7, 9]

Y=X+W, (7)

where W is a zero-mean Gaussian random variable with
variance ¢® and X = X k = 0,...,9 — 1. For a given X,
it follows that Y is Gaussian with mean x; and variance o°.

That is,

(1)

275 2
e‘()’_xk) /20 . (8)



The capacity of this channel in bits per channel use is the
maximum average mutual information between the discrete
input X = {x¢,x;,...,%,_;} and the output Y’ = {-00, co}.
That is,

-1 oo
C = max Z L)O p(y1x)p(x;)log, o0 dy, (9)
q-1
P(}/):ZP(y|xk)p(xk)_ (10)
k=0

Assuming an equal a priori probability real or complex
signal constellation, that is, p(x;) = 1/q, the channel capacity
of an AWGN channel with g-ary modulation is then [10]

1< Yo p(ylx)
C =log, (q) - a Eyx, <|10g20—
0

k= p(ylx)
= log, (q)
1< (= |x +w - x| - [w]?
- akZOEylxk {logzi; exp | - 752 ,

(11)

where E[-] is the expected value operator and w is the complex
white Gaussian noise, modeled as a Gaussian distributed
random variable with zero mean and variance o in each real
dimension. Equation (11) is a universal formula applied to g-
ary PAM/PSK/QAM and can be evaluated by Monte Carlo
simulation. With normalized signal energy, the relationships
between channel capacity and SNR can be evaluated by (11).

4. Experimental Results and Analysis

In this paper, Monte Carlo simulations are conducted to
present the channel capacity of 60 GHz over AWGN channels
under FCC regulations.

Figure 3 shows the normalized channel capacity for M-
ary QAM system over AGWN channels. It is shown that the
achievable data rate is 8.42 Gbps for a 60 GHz with 5 GHz
bandwidth at a SNR of 0dB for 8-QAM system. And for
16-QAM and 64-QAM, the data rate can be 11.14 Gbps and
13.19 Gbps. Hence QAM has potential to support Gbps data
transmission in the 60 GHz system.

Figure 4 shows comparison of channel capacities for M-
ary PSK and QAM systems with the same average transmitted
power. It shows that the data rate for M-QAM is higher
than that for M-PSK, especially when M > 8. For 16-QAM,
the data rate can improve 6.8% at a SNR of 0dB and for
64-QAM the improvement can reach 14.1%. That is to say,
QAM can achieve a higher data rate even at a lower SNR.
We can conclude from this figure that when M > 8, capacity
performance of the QAM system is better than that of the PSK
system. The superiority of QAM is obvious because it has the
largest minimum Euclidean distance between signal points
for a given transmitted power.
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Figure 5 demonstrates the difference among channel
capacities for different M-QAM constellations. It shows that,
for 8-QAM, the circle constellation provides a higher data
rate. This confirms our analysis in Section 2. Moreover, the
capacity advantage of QAM with circle constellation over
that with rectangular constellation is quite small, whereas
the latter is much easier to implement in practice. Hence
rectangular QAM modulation is more preferable for 60 GHz
wireless communications.

5. Conclusions

PSK is the common used modulation for 60 GHz currently,
because of its advantages in bandwidth and SNR. However,
the data rate for M-PSK is obviously lower than that of M-
QAM, with the same average transmitted power. Moreover,
as M increases, the distance between the adjacent phases
gradually decreases, which reduces the noise tolerance and
makes it difficult to guarantee the error rate, while QAM can
improve the noise tolerance and provide a lower error rate.

For M-QAM, many different signal constellations can be
designed and conducted, from which we can select an optimal
one to meet our specific requirements in 60 GHz wireless
communication.
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We consider the skew circulant and skew left circulant matrices with any continuous Lucas numbers. Firstly, we discuss the
invertibility of the skew circulant matrices and present the determinant and the inverse matrices by constructing the transformation
matrices. Furthermore, the invertibility of the skew left circulant matrices is also discussed. We obtain the determinants and the
inverse matrices of the skew left circulant matrices by utilizing the relationship between skew left circulant matrices and skew
circulant matrix, respectively. Finally, the four kinds of norms and bounds for the spread of these matrices are given, respectively.

1. Introduction

Circulant and skew-circulant matrices are appearing increas-
ingly often in scientific and engineering applications. Briefly,
scanning the recent literature, one can see their utility
is appreciated in the design of digital filters [1-3], image
processing [4-6], communications [7], signal processing [8],
and encoding [9]. They have been put on firm basis with the
work of Davis [10] and Jiang and Zhou [11].

The skew circulant matrices as preconditioners for lin-
ear multistep formulae- (LMF-) based ordinary differential
equations (ODEs) codes. Hermitian and skew-Hermitian
Toeplitz systems are considered in [12-15]. Lyness and
Serevik employed a skew circulant matrix to construct s-
dimensional lattice rules in [16]. Spectral decompositions of
skew circulant and skew left circulant matrices were discussed
n [17]. Compared with cyclic convolution algorithm, the
skew cyclic convolution algorithm [8] is able to perform
filtering procedure in approximate half of computational cost
for real signals. In [2] two new normal-form realizations are
presented which utilize circulant and skew circulant matrices
as their state transition matrices. The well-known second-
order coupled form is a special case of the skew circulant
form. Li et al. [18] gave the style spectral decomposition

of skew circulant matrix firstly and then dealt with the
optimal backward perturbation analysis for the linear system
with skew circulant coefficient matrix. In [3], a new fast
algorithm for optimal design of block digital filters (BDFs)
was proposed based on skew circulant matrix.

Besides, some scholars have given various algorithms for
the determinants and inverses of nonsingular circulant matri-
ces [10, 11]. Unfortunately, the computational complexity of
these algorithms is very amazing with the order of matrix
increasing. However, some authors gave the explicit determi-
nants and inverse of circulant and skew circulant involving
some famous numbers. For example, Jaiswal evaluated some
determinants of circulant whose elements are the generalized
Fibonacci numbers [19]. Lind presented the determinants
of circulant and skew circulant involving the Fibonacci
numbers [20]. Dazheng [21] gave the determinant of the
Fibonacci-Lucas quasicyclic matrices. Shen et al. considered
circulant matrices with the Fibonacci and Lucas numbers
and presented their explicit determinants and inverses by
constructing the transformation matrices [22]. Gao et al. [23]
gave explicit determinants and inverses of skew circulant and
skew left circulant matrices with the Fibonacci and Lucas
numbers. Jiang et al. [24, 25] considered the skew circulant
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and skew left circulant matrices with the k-Fibonacci num-
bers and the k-Lucas numbers and discussed the invertibility
of the these matrices and presented their determinant and the
inverse matrix by constructing the transformation matrices,
respectively.

Recently, there are several papers on the norms of some
special matrices. Solak [26] established the lower and upper
bounds for the spectral norms of circulant matrices with
the classical Fibonacci and Lucas numbers entries. Ipek [27]
investigated an improved estimation for spectral norms of
these matrices. Shen and Cen [28] gave upper and lower
bounds for the spectral norms of r-circulant matrices in the
forms of A = C,(Fy, F,,...,F,_;),B=C,(Ly,Ly,...,L, 1),
and they also obtained some bounds for the spectral norms of
Kronecker and Hadamard products of matrix A and matrix
B. Akbulak and Bozkurt [29] found upper and lower bounds
for the spectral norms of Toeplitz matrices such that a;; =
Fi_jand b; = L, ;. The convergence in probability and in
distribution of the spectral norm of scaled Toeplitz, circulant,
reverse circulant, symmetric circulant, and a class of k-
circulant matrices is discussed in [30].

Beginning with Mirsky [31], several authors [32-38] have
obtained bounds for the spread of a matrix.

The purpose of this paper is to obtain the explicit deter-
minants, explicit inverses, norm, and spread of skew circulant
type matrices involving any continuous Lucas numbers. And
we generalize the result [23]. In passing, the norm and spread
of skew circulant type matrices have not been researched. It
is hoped that this paper will help in changing this. More work
continuing the present paper is forthcoming.

In the following, let r be a nonnegative integer. We adopt
the following two conventions 0° = 1, and, for any sequence
{a,}, Y. @ = 0 in the case i > n.

The Lucas sequences are defined by the following recur-
rence relations [21-23, 27-29]:

L,,=L,+L,,, whereL,=2, L, =1, (1)

for n > 0. The first few values of the sequences are given by
the following table:

n|012345 6 7 8 9 2)
L,J2 1347111829 47 76°

The {L,} is given by the formula
L,=d"+p", (3)
where o and 3 are the roots of the characteristic equation x* -

x—1=0.

Definition 1 (see [17]). A skew circulant matrix over C with
the first row (a,,a,,...,4a,) is meant a square matrix of the

form
a a, ...a,, a,
-a, a, a, ... d,,
-a, ap . , (4)
_a3 : -. -. a2
-a, —a; ... —a, a xn

denoted by SCirc(a,, a,, ..., a,).
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Definition 2 (see [17]). A skew left circulant matrix over C
with the first row (a;,a,,...,a,) is meant a square matrix of

the form
a, a as - a,
a az - 4y !
as . o - : ’ (5)
an —al DY —an_z
a, —a; - —A4y o, —0,

nxn
denoted by SLCirc(a;, a,, .. ., a,).

Lemma 3 (see [10, 17]). Let A = SCirc(ay, ay, ...
circulant matrix; then

,a,) be skew

(i) A is invertible if and only if the eigenvalues of A

M= f (') #0, (k=0,1,2,...,n-1),  (6)

where f(x) = 27:1 a]-xjfl, w = exp(2ni/n), and n =
exp(mi/n);

(ii) if Aisinvertible, then the inverse of A is a skew circulant
matrix.

Lemma 4 (see [17]). Let A = SLCirc(a,, a,,. ..
left circulant matrix and let n be odd; then

n—1
C (j=12... )
(4 2

7)

,a,) be skew

n
Zakw(l_(l/Z))(k—l)
k=1

/\j:i

n
Az = ). 'ak(—l)k_l|s
k=1

where Aj,j =1,2,...,(n—-1)/2, (n+ 1)/2 are the eigenvalues
of A.

Lemma 5 (see [23]). With the orthogonal skew left circulant
matrix

1 0 0 0
00 0 -1
@l 00 -1 0 | ®)
0o-1--0 0/
it holds that
SCirc(ay, ay, ...,a,) = @ SLCirc(a;, ay,...,a,). (9)

Lemma 6 (see [23]). If

[SCirc(ay,a,...,a,)]”" = SCirc(by,by,...,b,),  (10)

then

[SLCirc(ay, ay,...,a,)]”" = SLCirc(by,~b,,...,~b,). (1)
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Lemma 7 (see [27, 28]). Let {L,} be the Lucas numbers; then

n—1
() Y Li=Ly-1, (12)
i=0
n—1
(i) Y Li=L,L,  +2, (13)
i=0
n-1
(iti) Y il;=(n—=1)L,y; — Ly, +4. (14)
i=0

Definition 8 (see [29]). Let A = (a;;) be an n x n matrix. The
maximum column sum matrix norm, the spectral norm, the
Euclidean (or Frobenius) norm, and the maximum row sum
matrix norm of matrix A are, respectively,

n
A :maxZ|a--|
AL 1<jen & 1717
i=1

1/2
IAll, = ({ggghi (A A)) >

N
IAlF = <Z 'aij| > s

i,j=1

(15)

n
A, = max a.l,
1Alco l<isn Z ' 'J|
j=1
where A denotes the conjugate transpose of A.

Lemma 9 (see [30]). If A is an nx n real symmetric or normal
matrix, then one has

IAll, = max [4,], (16)

where A; (i = 1,2,...,n) are the eigenvalues of A.

Definition 10 (see [31, 32]). Let A = (a;;) be an n X n matrix
with eigenvalues A;, i = 1,2,...n. The spread of A is defined
as

s(A) = n}gx |A,- - /\j| . (17)

Beginning with Mirsky [31], several authors [32-38] have
obtained bounds for the spread of a matrix.

Lemma 11. Let A = (a;;) be an n x n matrix. An upper bound
for the spread due to Mirsky [31] states that

2
s(A) < \/znAni - ;|trA|2, (18)

where ||Allp denotes the Frobenius norm of A and tr A is trace
of A.

Lemma 12 (see [38]). Let A = (aij) be an n X n matrix; then

(i) if A is real and normal, then

Z aij

ij

1

s(A) > —

> 19)

(ii) and if A is Hermitian, then

s(A) > 211;1#&];( |aij" (20)

2. Determinant and Inverse of Skew Circulant
Matrix with the Lucas Numbers

In this section, let A, = SCirc(L,,y,...,L,,,) be skew
circulant matrix. Firstly, we give a determinant explicit
formula for the matrix A, . Afterwards, we prove that A,
is an invertible matrix for n > 2, and then we find the inverse
of the matrix A, .

In the following,let x = —((L,+L,,,,)/(Lys1+Lyspi1)) t =
Lr+2/Lr+1’ c= Lr+1 +Lr+n+1’ d = Lr+Lr+n’ ln = Lr+1 +tLr+n+

n-2 n—(k+1) I _ yon-l n—(k+1)
k:1(tLr+k+l _Lr+k+2) X and ln = Lk=1 Lr+k+1 X .

Theorem 13. Let A, = SCirc(L,,;,...
lant matrix; then

,L,.,) be skew circu-

detA,, =L,y | Ly, +tL

r+1 r+n

n-2
+Z (tLysivt = Lrsiva) X

i1
(21)

where L, is the (r +n)th Lucas number. Specially, whenr = 0,
one gets the result of [23].

Proof. Obviously,det A, | = L,,, satisfies the equation. In the
casen > 1, let

1
t 1
1 1 -1
0 0 1 -1 -1
Z: . b
0 1
0 1 -1 0
01 -1 -1 (22)
1 0 0--00
0 x"2 0 01
0 x"3 0 10
Q, = .
0 x 1:-00
0 1 -+ 00
be two n X n matrices; then we have
Loy Iy as Cn-1 Cn
0 ln O3 C On-1 On
0 0 ¢
z"Ar,no‘l - 0 0 d > (23)
: c
0 0 d c
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where
Gj = Lr+n+2—j’ Qj = tLr+n+2—j - Lr+n+3—j>
(24)
(j=3.4,...,n).
So it holds that
detZdetA,, detQ)
= Lr+1 Lr+1 + tLr+n
(25)
= —(i+1)
+ Z (tLr+k+1 - Lr+k+2) x"
k=1
n-2
. (Lr+1 + Lr+n+1)
While taking det X = det Q) = (-1 V=22 e have
detA,
= Lr+1 Lr+1 + tLrJrn
(26)
n-2 )
1
+Z (tLr+k+1 - r+k+2) xn o
k=1
n-2
: (Lr+1 + Lr+n+1)
This completes the proof. O

Theorem 14. Let A, , = SCirc(L,,y,...,L,,,) be skew circu-
lant matrix; then A, is an invertible matrix. Specially, when
r = 0, one gets the result of [23].

Proof Taking = 2 in, Theorem 13, we have det A, , = L2, +

L2,,+0. Hence A,, is invertible. In the case n > 2, since
L,,=a™+p™ wherea+ f=1,af = -1, we have

£ () = Y1)

j=1

.

j—1

((xr+j i /3r+j) (ka)J

I
M=

-.
I
—_

r+1 (

1+a") B (1+p) 27)
+
“n 1 - B’y
— Lr+1 + Lr+n+1 + (L + Lr+n) wkr]
w n- wzknz

(k=1,2,...

1-aw

,n—1),

where w = exp(2mi/n), § = exp(mi/n). If there exists wlq (1=
1,2,...,n—1) such that f(wln) =0,weobtainL, ;+L, .4+
(L,+L,,,)a'n = 0, for 1 —w'n—w”#? #0, and hence it follows
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that w'y =
Since

—((L,yy + L,pyi))/ (L, + L,,,)) is a real number.

I QI+ 1)mi
wn=exp-———
(28)
Q@l+1)n Ql+1)n
0s —— +isin ——,

n

it yields that sin((2I + 1)7/n) = 0, so we have w'y = -1 for
0 < (21 + )r/n < 2m. Since x = -1 is not the root of the
equationL, ., +L,,,,; +(L,+L,,,)x =0 (n>2). We obtain

f(w*n) 0, for any *n (k = 1,2,...,n— 1), while
n i1
_ =
! (29)
— Lr+1 + Lr+n+1 + (L + Lr+n)’7 0
l-n-n
It follows from Lemma 3 that the conclusion holds. O
Lemma 15. Let the matrix # = [th], =1 be of the form
Lr+1 +Lr+n+1 =6 i:j)
hj=4L,+L,,,=d, i=j+1, (30)
0, otherwise.

Then the inverse %" = [h' "2 of the matrix I is equal to

1] 1
G
Wy={ g 20 (31)
0, i<j.

Specially, when r = 0, one gets the result of [23].

Proof. Lete;;

casei = j, we obtame = hyh, = (Lyyy + Lysner) - (U(Lypy +

L,,.1))=1Fori>j + 1, we obtain

" _1 hychyj. Obviously, e;; = 0 fori < j. In the

thkhkj i,i— 1 i— 1] + hzzht]
(32)
_ i1 ]
O S
ci-J ct j+1

Hence, we get # %' = I, ,, where I_, is (n — 2) x (n — 2)
identity matrix. Similarly, we can verify that #7'% = I,,_,.
Thus, the proof is completed. O

Theorem 16. Let A, ,
lant matrix; then

= SCire(L,,y,...,L,,,) be skew circu-

11 .
(Ap) " = SCire (y1, o5 20) (33)
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where
, d)n 3
= 1- (Lr+3 tLr+2) 2
n-3 i-1
(=d)
+Z (Lr+n+2—i - tLr+n+1—i) ' c i
i=1
n-2 i-1
, (-d)
VY, = -t - Z (Lr+n+1—i - tLr+n—i) : d o’
i=1
1 (34)
== (Lr+3 - tLr+2) ’ ;’
2 i-1
) (-d)
Vs = _Z (Lysrei = tLyyi) - R
i=1
2 k—5+i
, (=d)
Vi = _Z (Lysrei = tLysi) - ck—4+i
i=1
(k=5,6,...,n).
Specially, when r = 0, one gets the result of [23].
Proof. Let
L,
_Lr+1 W3 Wiy Wiy
0 1 (wy wy W
a,=| 0o o 1 o0 o |, ()
0 0 0 1 0
0 0 0 0 1
where
1 [
Wy = L l_n (tL””’fz‘f - Lf+n+3—j) ~Liinia-
r+l1 n
(36)
1 .
Wy = l_‘(Lr+n+3—j_tLr+n+2—j) (123’4""’")'
n
Then, we have
L, 0000
0 1,00 -0
0 0 coO---0
SA,,0,Q, = 0 0dc--0 | 37

S
(=)
(=]
o

so XA, 0,0, = D & X, where D = diag(L,,,1,) is a
diagonal matrix and @ @ # is the direct sum of & and . If
we denote Q = Q,,, then we obtain A;ln =2 'exr ™)z,

Since the last row elements of the matrix Q are

(0,1, wy3, wyy, - -

n+l-k

(d)ll
Ty = szkm'—i

d)l 1

(=
Ty = szzﬂ T

i >

(k=34,...,

. Wy, 1,W,,), then the last row elements of

the matrix Q(@ 'e# ™) are (0, 1/1,, 53, Thy, - . ., Ty, ), Where

(38)

n).

Hence, it follows from Lemmal15 that letting A;In =

SCirc(y;, ¥ ---» ¥,), then its last row elements are (-y,,
—¥3,..., =¥, ¥1) which are given by the following equations:
2T + T3
¢ 1 n-2 (_d)i—l
=+ (Lrn —i_tLrn—i)' i >
Zn Zn P +n+1 +i Cl
1
y3=T,= T (Lyps —tLya) " =
~Vs=T 1~ Ty
1 2 (_d)i—l
= _Z (Lr+1+i - tLr+i) ’ N
ni=1
Y5 =Ty g = Touy =Ty
1y ay
Z_Z r+1+i tLr+z) ,+1 >
i=1
V= Tonkis = Tonkea = Topgas
1 2 (_d)k—5+i
= EZ;, (Lyorsi = tLysi) - =T
i=
=V =T =Ty = Tys
n-2 i-1 n-3 i-1
(=) d) (=d)
= Z“-’z,zﬂ‘ ) Z‘Uz TG
i=1
( d)l 1
- sz 4+i " i
1 2 (_d)n—5+i

= Z_Z (Lr+1+i - tLr+i) :

nij=1

Cn—4+i

>



6
1
=TTy
n
1o (- d)" ’
= l_ I_ (Lr+3 tLr+2)
n n
n-3 i1
(-d)
+ (Lr+n+2—z tLr+n+1 1) i
i=1 ¢
(39)
Hence, we obtain
) 1 (_d)n—3
Y = Z — Z (Lr+3 - tLr+2) : o2
3 i-1
(-d)
+Z (Lr+n+2—i - tLr+n+1—i) Ci ’
i=1
(=)'
V) = —l_ - _Z (Lr+n+1 -i r+n—i) ' o’
n nl 1
1 1
V3 = _E (Lr+3 - tLr+2) ’ Z’
] 2 ( d)z 1
V4= _Z_Z (Lr+1+1 tLi“rl) cd
0 (40)
12 (-d)’
Y5 = _Z_Z (Lpsiei = tLyss) - o
nij=1
(_d)k*S‘Fl‘
Z;(LH.HI - r+i) : W’
n1
(_d)n—5+i
Z (Lr+1+1 - 7‘+i) ’ W)
nz 1
1 1 . 1o /
Am = T - SCirc (yl;yzv-"yn)’
n
where
d)n 3
y{ =1- (LH.:; tLr+2) 2
n-3 i1
(=d)
+Z (Lr+n+27i - tLr+n+1—i) ’ ci ?
i=1
-2 i—1
’ (-d)
Yy =—t— Z (Lr+n+1—i - tLrJrnfi) o’
i=1

!

1
V3= (Lyys —tL,,,) - .
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2 i-1
(=)
y‘i = _Z (LH-I-H tLr+1) C 4
i=1
2 k—5+i
(=d)
yi= =) (Lysrsi = tLoys) - Ep=r (k=5,6,...,n).
i=1
(41)
This completes the proof. O

3. Norm and Spread of Skew Circulant Matrix
with the Lucas Numbers

Theorem 17. Let A,, = SCirc(L,,y,...,L,,,) be skew

circulant matrix; then three kinds of norms of A, are given
by
”Ar,nul = "Ar,n”oo = Lr+n+2 - Lr+2’ (42)
”Ar,n“ \/ (Lr+n r+n+l LrLr+1)' (43)

Proof. By Definition 8 and (12), we have

n

© ZLf+i =Ly =Ly (44)

i=1

"Ar,nnl = "Ar,n"

By Definition 8 and (13), we have

2 e 2
("Ar,n"F) = ZZ|%‘|
i=1j=1
o 2
=n)lL
Zl w5
r+n r
_ ( Y- sz)
i=0 i=0
=n (Lr+nLr+n+1 - LrLr+1) .
Thus
“Ar,n“ \/ (Lr+n r+n+l — rLr+1)' (46E)]

Theorem 18. Let
A:*,n = SCirc (L r+1> _Lr+2’ LR _Lr+n—1’ Lr+n) (47)

be an odd-order alternative skew circulant matrix and let n be
odd. Then

n
"A;,nuz = ZLrﬂ' =L, nir = Lo (48)
i=1
Proof. By Lemma 3, we have
2 (A7) = Y L(wh) L @)

i=1
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So
u i-1
! i—1 j -
P (a5l = X1 Ll (@)
i=1
(50)
n
= ZLT‘H"
i=1
forallj=0,1,...,n— L.
Sincenisodd, Y., L,,; is an eigenvalue of Arn, that is,
1
Lr+1 _Lr+2 Lr+n -1
_Lr+n Lr+1 _Lr+n—1 1
Liiny =Ly Liina -1
Lr+2 _Lr+3 Lr+1 1
(51)
1
-1
n 1
= ZLrJri ’ -1
i=1 .
1
To sum up, we have
, n
max |A;(A},)| =YL, (52)

0<j<n-1

Since all skew circulant matrices are normal, by Lemma 9
and (12), and (52), we have

n
“A’r,n 5= erﬂ' = Lr+n+2 - Lr+2’ (53)
i=1
which completes the proof. O

Theorem 19. Let A, = SCirc(L,,y,...,L,,,) be skew circu-
lant matrix; then the bounds for the spread of A, a

\/21’[ (Lr+n r+n+l Lr+1Lr+2)’

s(4,,) >

- 2Lr+4 I .
(54)

r+n+3 (n - 2) Lr+n+2 - nLr+3

Proof. Thetraceof A, ,tr A, =mnL, . By (18) and (43), we
have

\/21’1 (Lr+n r+n+l Lr+1Lr+2)' (55)

Since

Y= Y (1 (k= 1) Loy - Z(k—l)L

itj k=2

ST YT

k=2

7
=(n+2) (Lr+n+2 - Lr+3)
=2 Y (r+R) L~ YL,y
k=2 k=2
(56)
by (12) and (14),
Zaij = 2Lr+n+3 -(n-2) Lr+n+2 - nLr+3 - 2Lr+4‘ (57)
itj
By (19), we have
S (Ar,n) = r+n+3 (l’l - 2) Lr+n+2
(58)
_nLr+3 - 2Lr+4| .
O
4. Determinant and Inverse of Skew Left
Circulant Matrix with the Lucas Numbers
In this section, let A'r(n = SLCirc(L,,;-..,L,,,) be skew

left circulant matrix. By using the obtained conclusions in
Section 2, e give a determinant exphat formula for the
matrix A .- Afterwards, we prove that A , is an invertible
matrix for ¢ any positive interger n. The i inverse of the matrix
Al is also presented.

According to Lemmas 5 and 6 and Theorems 13, 14, and
16, we can obtain the following theorems.

Theorem 20. Let A',',n = SLCirc(L,,1,...>L,,,) be skew left
circulant matrix; then
detA” = (-1)""VPL
n-2 -
ye1—
X | Lpyy +tL,,, + Z (tLr+1+i - Lr+2+i) X 1
k=1
n-2
- C s

(59)
where L,,,, is the (r + n)th Lucas number.

Theorem 21. Let A, =
circulant matrix; then A',"n

SLCirc(L,,15--.>L,,,) be skew left
is an invertible matrix.

Theorem 22. Let A", = SLCirc(L,,y,...,L,,,) be skew left
circulant matrix; then
(A'r')n)_1 = llSLCirc (y{’, Yy e y,'j) , (60)
where
y=1=| (L3 —tL,,) ﬂ
n=3 (=d)™!

+ Z (Lyinir—i = tLyipnar—i) e
i=1



n !
Ve = " Voks2
(_d)n7k73+i

=2 (e = tLoi) - k2

r+1+i

™Mo

i=1

(k=2,3,...,n-2).

"

1
Y- __y3 ( r+3_tLr+2)' Z’

"

Yo = _J’z
(_d)i—l

ct

r+n—i) :

n-2
=1+ Z (Lr+n+1—i —tL
i=1
(61)
5. Norm and Spread of Skew Left Circulant
Matrix with the Lucas Numbers

Theorem 23. Let A'r')n = SLCirc(L,pq5--- ) be skew left
circulant matrix. Then three kinds of norms of Al
by

r+n
are glVEI’Z

”A ” = "A " = Lr+n+2 - Lr+2,

(62)

”A \/ (Lr+n rntl T r+1)'

Proof. Using the method in Theorem 17 similarly, the conclu-
sion is obtained. O

Theorem 24. Let
A" = SLCirc (L, 1>=Lyygreeos—Lyppy 1o Lyy,)  (63)

be an odd-order alternative skew left circulant matrix; then

47, = ZLm -

Proof. According to Lemma 4,

( HI) -+ Z( 1)1 I ] (1/2))(k-1) , (65)

,(n—1)/2,and

- Lr+2' (64)

r+n+2

forj=1,2,...

n

Awr1y2 (A’r"n) = ZLr+i' (66)
i1
So

n

|/\j(Am | Z|( 1)11 H’( 1)1 1|

i=1
. n+1
L, <]:1,2,..., : )

(67)

s

Il
—_

1

By (66) and (67), we have

ogg(lﬁi)/J i( m)l ZLW (68)
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Since all skew left circulant matrices are symmetrical, by
Lemma 9 and (12) and (68), we obtain

||A”I rint2 = Lrga- (69)
O
Theorem 25. Let A'r')n = SLCirc(L,,15-..,L,,,) be skew left

circulant matrix; the bounds for the spread of Al are

\/M - —N2 if nisodd,

2L, <s(A”) < (70)
VM, if niseven,
where
M =2n (Lr+nLr+n+1 - Lr+1Lr) >
(71)
N=L,, +L_.
Proof. Since A'r')n is a symmetric matrix, by (20),
n
s (Ar’n) > 2max |alj| =2L,.,. (72)
The trace of A", is, if n is odd,
"
tr (Am)
= Lr+1 - Lr+2 + Lr+3 -t Lr+n
=L, +L,, +Lr+3 +oo+ L, (73)
=2L,+L+ Lyt 4L,
n-3
=2L,4 + ZLHi'
i=1
By (12), we have
tr(AY)=L, +L,,=N. (74)
Let M =2n(L,,,L,,,.;—L,.,L,); then, by (18), (62),and (74),
we obtain

) < \/M 2N, (75)
n

If n is even, then

tr (A,rl,n) = Lr+1 - Lr+1 + Lr+3
(76)
- Lr+3 T Lr+n—1 =0.
By (18), (62), and (76), we have
s(A},) < VM. 77)
So the result follows. O
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6. Conclusion

We discuss the invertibility of the skew circulant type
matrices with any continuous Lucas numbers and present
the determinant and the inverse matrices by constructing
the transformation matrices. The four kinds of norms and
bounds for the spread of these matrices are given, respec-
tively. In [3], a new fast algorithm for optimal design of block
digital filters (BDFs) is proposed based on skew circulant
matrix. The reason why we focus our attention on skew
circulant is to explore the application of skew circulant in the
related field in medicine image, image encryption, and real-
time tracking. On the basis of existing application situation
[4], we conjecture that SVD decomposition of skew circulant
matrix will play an important role in CT-perfusion imaging
of human brain. On the basis method of [8] and ideas of
[5], we will exploit real-time tracking with kernel matrix of
skew circulant structure. A novel chaotic image encryption
scheme based on the time-delay Lorenz system is presented
in [6] with the description of circulant matrix. We will exploit
chaotic image encryption algorithm based on skew circulant
operation.
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Coal-gangue interface detection during top-coal caving mining is a challenging problem. This paper proposes a new vibration
signal analysis approach to detecting the coal-gangue interface based on singular value decomposition (SVD) techniques and
support vector machines (SVMs). Due to the nonstationary characteristics in vibration signals of the tail boom support of the
longwall mining machine in this complicated environment, the empirical mode decomposition (EMD) is used to decompose the
raw vibration signals into a number of intrinsic mode functions (IMFs) by which the initial feature vector matrices can be formed
automatically. By applying the SVD algorithm to the initial feature vector matrices, the singular values of matrices can be obtained
and used as the input feature vectors of SVMs classifier. The analysis results of vibration signals from the tail boom support of a
longwall mining machine show that the method based on EMD, SVD, and SVM is effective for coal-gangue interface detection

even when the number of samples is small.

1. Introduction

Today a major problem facing the mining industry is how
to develop an automated top-coal caving system that can
maximize the ratio of coal to gangue. The working proce-
dure of top-coal caving is automatically controlled by an
electrohydraulic system, which determines the recovery ratio
of top-coal to gangue. In order to improve the recovery
ratio of top-coal, a lot of work has been done on coal-
gangue interface detection (CID) [1-3]. This paper proposes
anew CID method based on the analysis of vibration signals
due to the collapse of coal and gangue onto the tail boom
of a longwall mining machine. Some significant features
that differ between coal and gangue can be extracted by
analyzing these vibration signals. The acquired vibration
signals are usually nonlinear and nonstationary, so it is
difficult to effectively extract features. Recently, the time-
frequency analysis methods are widely used in the feature
extraction of vibration signals [4, 5]. Among all available
time-frequency analysis methods, the wavelet transform may
be the best one [6, 7]. However, wavelet transform is not a self-
adaptive signal processing method. Also, energy leakage will
occur when wavelet transform is used to process signals, due

to the fact that it is an adjustable windowed Fourier transform
in nature [8]. The empirical mode decomposition (EMD)
decomposes any time-varying signal into its fundamental
intrinsic oscillatory modes [9]. The EMD is a self-adaptive
time-frequency analysis method that is perfectly applicable
to nonlinear and nonstationary processing (10, 11].

Recently, singular value decomposition (SVD) of matrix
has been widely applied to signal processing, statistical
analysis, automatic control, and so forth [12]. According to
the matrix theory, singular values have good stability and
represent the inherent characteristics of the matrix. That is,
when a slight change of matrix elements occurs, the change
of matrix singular values is small.

In practice, a large number of samples are usually not
available. Support vector machine (SVM) is a new machine
learning method developed on the basis of statistical learning
theory [13]. SVM can solve the learning problem of a smaller
number of samples. Meanwhile, SVM has better generaliza-
tion than artificial neural network (ANN) and guarantees that
the local and global optimal solutions are exactly the same.

In this paper, the SVD technique based on EMD is
applied to the feature extraction of vibration signals from
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FIGURE 1: Hydraulic support and installation position of sensors (1:
coal, 2: coal-gangue, 3: gangue, and 4: sensor).

coal and gangue collapse during top-coal caving. The SVM
is introduced into the CID due to its high accuracy and good
generalizatio n for a smaller sample number.

This paper is organized as follows: in the next section,
the feature extraction algorithm based on SVD and EMD
is discussed. Section 3 briefly reviews the SVM theory. In
Section 4, the basic principle of the vibration-based CID
experimental system is introduced. The application of the
SVM to classification of the caving states is then discussed
and the results from a CID validation study are reported. The
conclusions are given in the last section.

2. The SVD Technique Based on EMD

The EMD is a nonlinear and nonstationary signal analysis
method proposed by Huang et al. EMD can decompose
any time-varying signal into its fundamental intrinsic mode
functions (IMFs), which must satisfy two conditions [9] as
follows.

(1) In the whole data set of each intrinsic mode function
component, the number of extreme values and the
number of zero-crossings must be equal to or differ
at most by one.

(2) At any point, the mean value of the envelope defined
by local maxima and that defined by the local minima
is zero.

With the definition, any time series signal X(t) can be
expressed as the sum of the IMF components and the residue

X(®) =Y C/(H)+R, (), (1)
i=1

where C;(t) are the IMF components. Here R, () is the
residue. The IMF includes different frequencies ranging from
high to low. Acting as an adaptive data-driven filter bank, the
EMD extracts the signal features of disturbances dynamically
according to their different physical characteristics.

Journal of Applied Mathematics

The IMFs (C,,C,,...,C,,) are chosen to construct the
initial feature vector matrix A as follows:

A= eC™, m<n. (2)

Due to the orthogonality of the EMD method, all IMFs
are pairwise orthogonal. Therefore, the matrix A must be full
rank. By applying the SVD to matrix A, then there exists

A =USV, (3)

where U € R, UU' = LV € R™,VV' = L;§ =
diag{A;, A, .. AL AL 2 A, = oo > A, The values of A;
are the singular values of matrix A.

As singular values can reflect the nature characteristic
of the matrix, the characteristic of vibration signals of coal
and gangue can be described effectively by singular values of
the initial feature vector matrix. Thus, the singular values of
matrix could be used as feature vectors. The SVM could be
chosen as the pattern classifier to classify the caving states
after the vibration feature vector has been extracted.

3. Support Vector Machine (SVM)

As a new generation learning system, SVM enables the
nonlinear mapping of an n-dimensional input space into
a high dimensional feature space. SVM uses a nonlinear
mapping to transform an input space to a high-dimension
space based on a kernel function and then looks for a
nonlinear relation between inputs and outputs in the high-
dimension space.

Suppose that there is a given training sample set G =
{(x;, y;),i=1,...,n}, with each sample x; € Rd,y,- € {+1,-1}
The classification boundary can be described as follows:

w - x+b=0, (4)
where w is a weight vector and b is a bias. Therefore, the

following decision function can be used to classify any data
set in two classes:

f(x) :sgn(w"x+b). (5)
In order to correctly classify two-class samples, the

optimal hyperplane separating the samples can be obtained as
a solution to the following constrained optimization problem:

minimize

w W w 6

subject to

yi[wa,-+b]—120, i=1,...,n (7)
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FIGURE 2: EMD results for top-coal caving.
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Defining Lagrange multipliers o; > 0, the optimization subject to
problem can be converted to the following:
n
o; 20, Z“z‘)’i =0. ©))
i=1
maximize l
So the decision function can be expressed as follows:
n 18 & n
P(a) = gai - 52 Zla,-ajy,-yj (x;-x;) (8) F=sgn( Yaly(x-x)+b" ). (10)
i= i=1 j= i=1
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TaBLE 1: Comparison of singular values of selected IMFs for each caving state.

M Ay Ay Ay As As A
Top-coal caving 5.8913 5.0226 4.7560 3.5182 2.7658 2.6858 1.0905
Coal-gangue caving 19.3695 13.7673 12.2830 6.8331 6.5870 4.2883 3.0371
IMF component (0N C, C, Cs C, Cs C,

TABLE 2: Samples for singular values of IMFs.

Number A A, Ay Ay Asg As A, Expected output
1 6.8036 5.1018 3.8767 2.8366 2.1208 1.8678 1.0817 (1,0)
2 6.1150 4.8672 4.5894 3.3310 2.8880 2.3330 1.2493 (1,0)
3 6.2398 5.8762 4.1749 3.0470 2.4142 1.9705 0.8274 (1,0)
4 5.7488 5.2618 3.9826 31724 2.6175 2.1648 1.4194 (1,0)
5 6.9123 5.8563 4.6258 3.2843 2.2754 21075 0.9596 (1,0)
6 6.3855 5.2633 3.6245 3.2700 2.4509 2.1743 0.8024 (1,0)
7 8.9377 8.6310 4.5831 4.5361 3.1545 1.8105 0.9570 (0,1)
8 15.2788 11.2140 7.2233 5.1752 3.4570 1.7460 1.0975 (0,1)
9 19.2038 13.6730 12.1804 6.7688 6.5208 4.1607 2.5960 (0,1)
10 14.5418 12.4612 8.7011 6.1077 5.0121 3.2906 1.6954 (0,1)
11 22.5342 14.4046 9.4929 5.9841 5.3480 3.6622 2.2097 (0,1)
12 12.0520 10.0045 9.6424 4.9427 4.4479 3.5481 1.3674 (0,1)

TaBLE 3: Classification results of SVM.

Caving states Test samples Error Classification accuracy

Top-coal caving 18 0 100%
Coal-gangue caving 18 0 100%
4. Applications

In order to investigate the EMD-based SVD technique and
SVM as a means of distinguishing between top-coal and
gangue caving impacts on the tail boom of a mining machine,
an experiment has been carried out on number 2303 working
face, Zhangcun Mine, Shanxi, China. The CID experimental
system is composed of a data acquisition device, an embedded
signal analysis platform, and vibration acceleration sensors,
as shown in Figure 1. When coal and gangue fall down and
shock the tail boom, the acceleration sensors, which are
installed on the hydraulic support, acquire vibration signals
from the steel plate [14].

4.1. Feature Extraction of Coal-Gangue Vibration Signals. As
an example, two different vibration signals of top-coal caving
and coal-gangue caving are chosen for further analysis. The
sampling frequency of these signals is 8000 Hz and the
sampling time is one second. Firstly, the EMD is applied
to the analysis of separate vibration signals of pure coal
and coal-gangue. As shown in Figures 2 and 3, the EMD
decomposes the two original signals S into eleven IMFs,
which contains important information correlated with the
vibration signals of coal and gangue impacts. Obviously, IMFs
C,,C,,C;, and C, have much higher frequencies than other
IMFs. IMFs from Cg to C,; oscillate so slowly that they only
contain very low frequencies, which are composed of clutter

or noise, for example, vibration signals caused by mechanical
devices themselves. As shown in Figure 3, there are two
shock characteristics at the time from 0.1s to 0.2's and from
0.8s to 0.9s, which correspond with gangue falling events.
Meanwhile, the frequency and the amplitude of the first seven
IMFs are greater than those of other IMFs during coal-gangue
caving. Therefore, the first seven IMFs are selected for further
study, and the other IMFs are the resuide accordingly.

For each vibration signal of each caving state, the initial
feature vector matrix A can be constructed according to (2).
Then SVD is applied to the initial feature vector matrix A;
namely, A = USV, where A ¢ R"**° U ¢ R"*7,S ¢
R7* 8000y ¢ RB000X8000 The gingular values A; can be
obtained, which are shown in Table 1

Ai=[Ap Ay Ay (11)

It can be seen from Table1 that the singular values of
matrix are arranged in descending order of significance. The
correspondence between the singular values and IMFs is also
given. Especially for the coal-gangue caving, the singular
values A, A,, and A; are much bigger than the others, so the
singular values could be regarded as the feature vectors to be
input to the SVM classifier.

4.2. CID Based on SVM. Actually, the CID is to distinguish
two caving states, that is, to solve a two-class pattern classi-
fication problem. SVM has the advantage of solving a two-
class problem on the basis of searching for structural risk
minimization, even in the case of few learning samples [15].
The new CID method based on SVD, EMD, and SVM is given
as follows.

Step 1. Acquire N signals at the sample frequency f, under
the condition of top-coal caving and coal-gangue caving,
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TABLE 4: Classification results of SVM under few samples.

Testing sample number Real caving state Distance to optimal hyperplane H Results
(from Table 2) 126 training samples 8 training samples

5 Top-coal caving 0.9473 0.6561 +1 (right)
6 Top-coal caving 1.0137 0.9807 +1 (right)
n Coal-gangue caving -1.0223 -0.4178 —1 (right)
12 Coal-gangue caving -1.0004 -0.4182 —1 (right)

< Start >

Acquire 2N samples

EMD and IMFs selection

Construct feature vector matrix A

SVD and get the singular values

Design SVM classifiers

Coal-gangue interface detection

End

FI1GURE 4: The flowchart of EMD-based SVD and SVM.

respectively. The 2N samples are divided into two subsets, the
training samples sets and the testing samples set.

Step 2. Each signal is decomposed by EMD. Choose the
first seven IMFs and construct feature vector matrix A. The
singular values can be got by applying SVD to matrix A.

Step 3. Design SVM classifiers. When the feature input vector
is a sample with known state of top-coal caving, the output of
SVM classifier is set to 1, otherwise to —1. The singular values
of the training samples are used as the input to train the SVM
classifier. Then the state of caving can be distinguished after
the testing samples have been input into the trained SVM
classifier.

The flowchart of the proposed method is presented in
Figure 4.

4.3. Validation Study. The caving state detection method
based on SVD, EMD, and SVM is applied to a vibration
sample set of both pure coal and coal-gangue caving. At first,
a total of 126 vibration signals are acquired with a sample
frequency of 8000 Hz, 63 signals for each caving state. In
addition, the testing data sets consisting of 18 signals for each
caving are used for validation of this detection method. Then
the singular values of each signal are obtained after applying
SVD based on EMD, parts of which are listed in Table 2.

Choose RBF kernel function and set 1/0% = 0.5,C = 10.1t
takes about 0.003 s to establish the SVM classification model.
The number of support vectors is twelve, which accounts for
9.52% of the total of the training samples. The classification
results are shown in Table 3. Obviously, the results are totally
consistent with the real caving state.

In order for further study of the classification perfor-
mance of SVM in the case of a small sample, the number
of training samples decreases to eight (number 1 to number
4 and number 7 to number 10 from Table 2 and the rest
as testing samples). The classification results are shown in
Table 4. Table 4 shows that the SVM classifier can classify the
two caving states accurately even in the case of decreasing
the training samples. By comparing the distances between
testing samples and the optimal hyperplane H, it is found that
the overall performance of the SVM classifier weakens as the
samples reduce.

5. Conclusions

The problem of coal-gangue interface detection (CID) on a
fully mechanized mining face has been addressed by applying
the SVD technique and EMD to extracting longwall mining
machine tail boom support vibration features that can be
used for top-coal and coal-gangue caving state classification.
EMD is a self-adaptive analysis method that can decompose
the signal into a number of IMFs. These functions provide a
compact natural representation of nonstationary, nonlinear
signals such as those detected by the vibration monitoring of
the tail boom support of a longwall mining machine. Singular
values were obtained by the application of SVD to the first
seven IMFs of the example raw vibration signals (those IMFs
containing key feature information), which could be used
as the feature input vectors of the classifier. Based on these
results, the SVM applied to the singular value vector is
proposed as the classification tool for top-coal or coal-gangue
caving state. The validation test had a 100% classification
accuracy rate, providing strong support for the robustness of
this method. Therefore, the analysis based on SVD, EMD, and



SVM for longwall mining machine tail boom vibrations offers
a new method for CID.
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Algorithm based on fractional difference was used for the edge extraction of thenar palm print image. Based on fractional order
difference function which was deduced from classical fractional differential G-L definition, three filter templates were constructed
to extract thenar palm print edge. The experiment results showed that this algorithm can reduce noise and detect rich edge details

and has higher SNR than traditional methods.

1. Introduction

Thenar area refers to the uplift muscle which is the joint of
one’s wrist and thumb. Everyone has his or her unique thenar
palm print patterns. But the palm print texture structure
changes with age and disease. For example, roughness and
thickness appear in the palm print with disease. According
to the Traditional Chinese Medicine theory, one’s thenar
palm print image is closely related to certain diseases such
as asthma. For some patients, lattice distribution and rough
texture appear in their thenar palm print. Doctors tend to
think that the shape of on€’s palm print is closely related to his
or her kidney deficiency and could be an indicator of asthma
and can be used for the diagnosis of some allergic disease.
In the medical practice of Traditional Chinese Medicine,
by observing the patient’s thenar palm print direction, the
distance between palm print lines, groove depth, grain
interaction, and pattern characteristic, doctors usually divide
the thenar palm print into 4 levels. Class A: thenar skin
is moist and soft with delicate texture and furrow is very
shallow; no distribution characteristic pattern can be seen.
Class B: thenar skin is moist and soft, texture is clear, and
lattice type distribution can be found, but the gap is narrow.
Class C: thenar skin is smooth but less moist, texture is clear

and visible, lattice type distribution can be found, and the
gap is wider. Class D: thenar skin is dry and rough, texture is
clear and visible, large lattice type distribution can be found,
and texture space is significantly widened compared with the
Class C level. So far, the classification of thenar palm print
of patients relies on the subjective observation of the doctors’
naked eyes. In addition to medical treatment, palm print is
also studied for other purposes [1-4].

In order to make the observation more objective and
more accurate, we should conduct preprocessing, feature
extraction and classification of the thenar palm print by using
image processing technology. The computing is particularly
important in order to realize the quantitative identification
of thenar palm print. Thenar palm print image edge mainly
refers to the texture features, such as lines, the distance
between the lines, and the pattern characteristic, which is
the main basis to carry out further classification. So effective
edge detection plays an important role in feature extraction
and quantitative identification. Edge detection (see [5-14])
method can detect the image edge to the precise location
of thenar palm print and can also inhibit irrelevant details
and noise. The classic methods of image edge detection
like gradient method, conventional first-order differential
and two-order differential method, and Laplace differential
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algorithm are sensitive to noise. Their performance for the
thenar palm print image edge extraction is not accurate and
could not obtain the edge localization and achieve noise
filtering. Generally speaking, the low frequency part of the
image corresponds to the smooth area, namely, the image
of the nonedge region, while the middle frequency part of
the image corresponds to texture information and the high
frequency part corresponds to the image edge area and noise.

With regard to the thenar palm print image processing,
if an integer order differential method is employed, texture
details with little gray changes in the palm print image will
decay greatly. If fractional differential algorithm is employed,
this information can be retained to some extent. So com-
pared with integer order differential method, the fractional
differential method is in a better position to deal with the
high frequency texture image. As for the thenar palm print
image, texture information is what the doctors are really
interested in. So the edge detection algorithm using fractional
order differential characteristics of palm print is preferred.
In this paper, first, the fractional difference equation is
obtained according to G-L fractional differential definition.
Second, we construct some filter templates to extract the palm
print image edge. The experiments show that the fractional
differential edge detection algorithm is better than integer
order differential methods and also has higher signal-to-noise
ratio.

2. Fractional Differential Operators

2.1. Fractional Calculus. Fractional calculus should really
be called noninteger order calculus. As early as nineteenth
century, the concept of fractional calculus appeared together
with integer order calculus. In the past two hundred years,
fractional calculus has gradually developed into a system as
a pure mathematical branch. But not until recent decades,
and with the development of engineering technology, has
fractional calculus caused the attention of both scientists
and engineers. It was found that the fractional differential
operator has many advantages over integer order ones in
many engineering problems. Many scholars have developed
different definitions of fractional calculus, among which
the most well-known definitions are Riemann-Liouville’s
definition and Caputo’s definition [15, 16]. These definitions
are equivalent to each other in most cases. But Grunwald-
Letnikov’s definition is easier to be applied in numerical
analysis. In this paper, we use Grunwald-Letnikov’s definition
to construct fractional order differential filter for image
filtering and edge extraction of thenar palm print.

2.2. Fractional Difference. Fractional differential definition
is a kind of generalization of the classical integer order
derivative definition for continuous function. Usually, the nth
derivative of a continuous function is defined as

d”f(x) . 1 L i[n .
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The above differential operator does not need to be con-
strained only to integers. For example, the (1 +i)th derivative
of the (1 —i)th derivative yields the 2nd derivative.

For a general function f(x) and 0 < « < 1, the complete
fractional derivative is

D'f (x) =

1 d J £

T(1-a)dx Jo (x—1)*

For arbitrary «, because the gamma function is undefined for
arguments whose real part is a negative integer, it is necessary
to apply the fractional derivative after the integer derivative
has been performed. For example,

2)

12 d
dxf (x). (3)

Generally, we have Riemann-Liouville fractional derivative
ﬂ

DEF( = S D= St e, @

The corresponding derivative is calculated using Lagrange’s
rule for differential operators. Computing nth order deriva-
tive over the integral of order n — «, the « order derivative is
obtained. It is important to remark that  is the nearest integer
bigger than .

D*?f (x) = D"’D'f (x) = D

Caputo Fractional Derivative. There is another way for defin-
ing fractional derivatives, the Caputo fractional derivative
which was introduced by M. Caputo. In contrast to the
Riemann Liouville fractional derivative, when solving differ-
ential equations using Caputo’s definition, it is not necessary
to define the fractional order initial conditions. Caputo’s

definition is as follows:
X (n)
! J 7O 4 )
a (x

T (l’l _ (X) _ t)oc+1—n

Besides the above two definitions, we have also Grun-
wald-Letnikov’s fractional derivative definition as shown
below by using I' function:

d*f(x) . 1S (x+1) .
o oh“z(_)mf( —ih),  (6)

°Df f (x) =

where
I (1) = JOO et = (n— 1)) )
0

and « can be noninteger. The ath difference of f(x) can be
expressed as follows:

fr @ = f @+ (e f -+ COEEED
f(x_z) + (_(X) (_(x +3'1) (—(X+2)f(x_3)
I(-a+1)
At arnen) 7
(8)

The ath difference is actually the approximation of the ath
derivative. Fractional calculus has been applied to many areas
[15-20].
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FIGURE 1: The original image.

FIGURE 2: Image got by Sobel operator.

2.3. Fractional Order Filter. In general, the M x N image filter
template for a gray image is given as follows:

a b
g(x,y):z Zw(s,t)f(x+s,y+t), (9)

$=—a t=-ph

wherea=(m-1)/2andb=(n-1)/2.

In order to get a complete picture of the filtered image,
the filter template must be appliedto X = 0,1,..., M — 1 and
Y = 0,1,...,N — 1. Thus, we guarantee that all the pixels
in the image are filtered. For digital images, the fractional
order differential filter can be equal to the image itself in size.
In order to realize the filtering and minimize the error, we
can select the first three terms in the fractional difference to
construct isotropic filter. We construct the below fractional
order differential filter template 1, filter template 2, and filter
template 3. In the structure of filter 3, we first consider the X
direction and Y direction around the upper and lower side.
So there are two f(x, y) terms in the two directions; therefore,
there are four f(x, y) terms. Considering the effect of oblique
direction of 45 degrees above the pixels, we add 4 oblique

FIGURE 4: Image got by Laplace operator.

TaBLE 1: Filter template 1.

-« - -
- 8 -
-« - -

directions. Because each oblique above contains one f(x, y)
term, there are 8 f(x, y) terms for all the different directions.

All the fractional order differential filter templates have
the same direction of rotation (see Tables 1, 2, and 3).

3. Image Edge Extraction Experiments

Experiments were carried out by using MATLAB. The thenar
palm print image was taken by the digital camera in high
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FIGURE 6: Edge extracted by Prewitt operator.
TaBLE 3: Filter template 3.
aEa— axa—« aEa—«
2 2 2
-« -« -«
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light background. The digital cameras shooting angle is
perpendicular to the palm thenar area and the palm is in
the natural state of relaxation. Firstly, we carry out the palm
print image segmentation to identify the thenar palm print
region by using palm print positioning point segmentation
method based on the segmentation of the thenar palm print
image. Second, we use the three-edge detection method to
process the thenar palm print image. The test results are
shown in Figures 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
and 15. For comparison, we also use the traditional integer
order differential operator Sobel, Roberts, Prewitt, LOG, and
Laplace operator to construct filter templates to process the
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FIGURE 8: Image got by 0.9th template 1.

thenar palm print image. The traditional edge detection is
mainly to estimate the direction gradient of gray image by
scale change detector of gradient operator or derivative based
on these changes. We enhance the area in the image and
then carry out the threshold operation on the gradient. If the
gradient value is greater than a given threshold, then there is
edge. Test effect is shown below. It can be seen from Figure 1
that different filter templates yield different palm print edge
intensities.

3.1. Analysis of Fractional Order on the Processing Results.
The experiment analyses of filter template 1, filter template 2,
and filter template 3 show that when the fractional order is
0.5, the palm print image is clear and with least noise. With
the elevation of fractional order, palm print texture details
become clear and rich gradually. As the filter size increases,
the edge becomes clear, but not very obvious.

3.2. Comparison of Fractional Differential Algorithm with
Other Edge Extract Operators. The image in Figure 5 is the
classical first-order Sobel operator, Prewitt operator, and the
second-order Laplacian operator and fractional order (0.5
order) comparison diagram edge extraction operator. The
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FIGURE 9: Image got by 0.8th template 1.

FIGURE 10: Image got by 0.7th template 1.

diagram shows that fractional templates detect edge detail
and localization accurately.

3.3. The Peak Signal-to-Noise Ratio for Different Algorithms.
We add random noise to palm print image and compare
the peak signal-to-noise ratio (PSNR) for various algorithms
to extract edge information. The peak signal-to-noise ratio
(PSNR) formula is

N x M x 2552
Y SR Ga) - fo G )

psnr (f0>f) = 10log,,
(10)

The higher the peak signal-to-noise ratio (PSN) is, the
better the effect to extract texture information is. We adopt
the following evaluation method. We first do image edge
extraction with adding random noise and without noise
by using different methods. Then we analyze the difference
between the two methods. In the above equation, f(x,y)
represents image edge extracted from the noise added image.

In Table 1, the peak signal-to-noise ratio of different order
differential extractions based on edge information is listed
where the stochastic noise with mean value 0 and variance
0.003 was added. And from the result we can see that the

FIGURE 11: Image got by 0.6th template 1.

FIGURE 12: Image got by 0.1th template 2.

TABLE 4: PSNR of edge information extracted by different order
differential.

Method
Number of iter. Fractional order
Sob Lap
0.6 0.4 0.2 0.1
1 22,55 2240 2315 2336 23,55 2274
2 23.7 23.81 24.47 2456 24.63 2415

antinoise performance of differential algorithm is good and
can be used to extract the edge of thenar palm print image.

In Table 4, we list the peak signal-to-noise ratio for
different methods to extract the edge of image.

From Table 4, it can be seen that although the impact
of the two added noises is different, the signal-to-noise ratio
of the differential algorithm is higher than that of Sobel
method and Laplace method. And the peak signal-to-noise
ratio decreases with the increase of differential order. The
order of peak signal-to-noise ratio and the maximum value
appeared in the 0.2 order. When the order is less than 0.2, the
peak signal-to-noise ratio began to decrease. If the differential
order is very small, the fractional algorithm has no significant
effect on the enhancement of palm print texture; meanwhile,
the image texture information has an effect on extraction of
the edge. We also notice that the noise has different effects on
different parts of the image. As shown in Table 1, for the mean
value 0 and variance 0.003 random noise, the effect on the



FIGURE 13: Image got by 0.9th template 3.

FIGURE 14: Image got by 0.8th template 3.

extraction of edge information is different. At the same time
filter templates 1-3 are only an approximation of fractional
order differential template, so we can only conclude that the
optimal fractional order of differential template number is
0.2.

4. Conclusion

Simulation results show that the ability of fractional differen-
tial edge detection algorithm to extract the image edge infor-
mation varies from different fractional orders. In general,
the ability gradually increases with the increasing of order.
The ability also increases with the template size but not in a
positive proportional manner. Compared with the traditional
first-order and second-order differential operators, the edge
detection based on fractional differential method has higher
signal-to-noise ratio. In this paper, the template itself is actu-
ally the approximate representation of a fractional differential
method. So how to find the fractional order differential
operators to achieve higher accurate edge extraction is a
problem for further study.
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FIGURE 15: Image got by 0.7th template 3.
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A joint encryption and reversible data hiding (joint encryption-RDH) scheme is proposed in this paper. The cover image is
transformed to the frequency domain with integer discrete wavelet transform (integer DWT) for the encryption and data hiding.
Additional data is hidden into the permuted middle (LH, HL) and high (HH) frequency subbands of integer DWT coefficients
with a histogram modification based method. A combination of permutations both in the frequency domain and in the spatial
domain is imposed for the encryption. In the receiving end, the encrypted image with hidden data can be decrypted to the image
with hidden data, which is similar to the original image without hidden data, by only using the encryption key; if someone has
both the data hiding key and the encryption key, he can both extract the hidden data and reversibly recover the original image.
Experimental results demonstrate that, compared with existing joint encryption-RDH schemes, the proposed scheme has gained
larger embedding capacity, and the distribution of the encrypted image with data hidden has a random like behavior. It can also

achieve the lossless restoration of the cover image.

1. Introduction

Compared with traditional watermarking and data hiding
schemes, reversible data hiding schemes can be applied in a
larger field of secure communication and watermarking due
to its reversibility. Many reversible data hiding schemes have
been proposed in recent years, which can be classified into
three main catalogues: the first one is compression based
scheme [1], the second one is difference expansion based
scheme [2-5], and the third one is histogram modification
based scheme [6-10]. Reversible data hiding based on com-
pression makes use of the redundancy of cover images, so the
characters of the cover images limit the capacity and quality
of data hiding. Difference expansion based scheme was firstly
proposed by Tian [5], which hid one-bit data by extending
the difference between two neighbor pixels. Alattar [2-4]
improved the hiding capacity by extending #n — 1 pairs of nei-
ghbor pixels’ differences to hide n — 1 bitsdata. However, the
quality of the cover image drops quickly, while the hiding
capacity increases. Schemes based on histogram modification
cause less distortion to the cover image. However, the peak
points of the histogram limit the hiding capacity [11]. There

are two measures to increase the hiding capacity in histogram
modification based data hiding schemes: raising the peak
points” height or increasing the number of peak points. Many
schemes based on the two ways have been proposed. Lin et al.
[6] proposed a multilevel embedding strategy to increase the
number of peak points. Some schemes increased the height of
the peak points through generating the histogram of the
difference image. For example, Tsai et al. [8] constructed the
difference image by a prediction model that makes full use
of the similarity between neighbor pixels. Kim et al. [12] sam-
pled the original image to construct the difference images. A
predicted image based on the sampled images was con-
structed. Then the histograms of difference images between
the predicted image and these sampled images were gener-
ated for data hiding.

As is well known, encryption is an old and efficient
way in secure communication. If combined with encryption,
reversible data hiding will achieve greater security. Besides,
there are also scenarios that data hiding needs to be done in
the encrypted domain or combined with the encryption,
especially in the age of big data and cloud computing. A con-
tent owner does not trust the processing service provider, and
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the ability to manipulate the encrypted data while keeping
the plain content unrevealed is desired [13]. Suppose that
there are sensitive images uploaded to the cloud storage in the
encrypted form and some additional data needs to be hidden
into these images to mark their ownership. However, the data
hiding process has to be done in the encrypted domain
because the data administrator does not have the right and the
key to decrypt the image.

In the past few years, some schemes that combine encryp-
tion and data hiding have been proposed [13-18]. From the
data hider’s point of view, data can be hidden into the spatial
domain, the encrypted domain [13, 14, 16-18], or both of the
two domains [15]. Although high image quality after data
hiding has been achieved in [15], the scheme is not reversible.
Reversible data hiding schemes in encrypted images are
proposed in [13, 14]. In [14], an improved measurement of
smoothness is proposed to make full use of all the pixels in the
image, and a side match scheme is proposed to further
decrease the error rate of extracted bits, both of which have
improved the embedding capacity of the basic data hiding
scheme in the encrypted image proposed in [13]. In [16], a
reversible data hiding scheme in encrypted images by reserv-
ing room before encryption is proposed. The self-embedding
of LSB planes guarantees the reversibility of LSB substitution
embedding. However, the embedding capacity is limited by
the embedding capacity of the reversible data hiding scheme
in the selected area. In [17], some pixels are selected and esti-
mated before encryption, and additional data is embedded
into the estimated errors with a histogram modification
method. In the receiving end, one can either decrypt the
image with hidden data first or extract the hidden data first.
Scheme proposed in [18] separates the data extraction and the
recovery of original image. The image is encrypted with the
encryption key. Then the encrypted image is passed to the
data hider, and additional data is embedded into the
encrypted image with the data hiding key. In the receiving
end, the hidden data can be extracted with only the data hid-
ing key; and only similar (not reversible) image can be recov-
ered with the encryption key; both the hidden data can be
extracted and original image can be reversibly recovered with
both keys.

Different from all the joint encryption and data hiding
schemes mentioned above, a joint encryption and reversible
data hiding scheme based on integer DWT and Arnold map
permutation is proposed. Not in the spatial domain, the data
hiding is imposed in the integer DWT domain, which is
more secure compared with those schemes in the spatial
domain. The cover image is firstly transformed to the fre-
quency domain with discrete integer wavelet transform (inte-
ger DWT). Then coefficients of the four subbands are permu-
tated with Arnold map transform, respectively, for the first
time. After that, additional data is embedded into the per-
muted middle (LH, HL) and high (HH) frequency subbands
through a histogram modification based method. Finally,
inverse integer DW'T is imposed to get the primary encrypted
image with hidden data. Another Arnold permutation based
on sampling, which is related to the permutation in the
frequency domain, is imposed on the primary encrypted
image with hidden data in the spatial domain. In the receiving
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end, one can decrypt the image to get the image with
hidden data, which is similar to the original image without
hidden data, by only using the encryption key that includes
permutation times of the twice permutations. If someone has
both the encryption key and the data hiding key, he can both
extract the hidden data and reversibly recover the original
image. Note that the processing procedures in the sending
end and in the receiving end described here are asymmetric,
which can achieve many applications, such as scenarios
mentioned above.

2. Preliminaries

2.1. Integer DWT. To achieve the reversible data hiding, rev-
ersible lifting integer DW'T is applied. Integer DWT is imple-
mented with the addition and subtraction of integers. Sup-
pose that I(x, ), 1 < x < M, 1 < y < N, is the pixel of the
image size of M x N; then 2D integer DWT is conducted as
follows.

(A) Row Transformation

(1) Let f1 = I(2%i—-1,:)and f2 = I(2 % i,:),i =
1,2,...,M/2, which are odd rows and even rows of
I, respectively.

(2) Acquire the high frequency coeflicients by calculating
the difference of the two: h_r(i,:) = f1(i,:) — f2(,).

(3) Acquire the low frequency coefficients by calculating
the average of the two: [_r(i,:) = f2(i,:) +floor(h(i, :)).

(4) Then coefhicients after 1D transformation are C_row =
[l_r; hr].

(B) Column Transformation

(1) Let f1 = I(;,2 *i—1)and f2 = C_row(;,2 * i),
i =1,2,...,N/2, which are odd columns and even
columns of C_row, respectively.

(2) Acquire the high frequency coeflicients by calculating
the difference of the two: h_c(:,i) = f1(:,i) — f2(:,9).

(3) Acquire the low frequency coefficients by calculating
the average of the two: [_c(:, i) = f2(:, i) +floor(h(:, i)).

(4) Finally, the coefficients of 2D integer DWT are C =
[l-c h].

2.2. Reversible Data Hiding and Data Extraction Based on
Histogram Expansion. Nietal. [19] firstly proposed reversible
data hiding based on histogram modification. It generates the
histogram of an image; then a pair of peak point and zero
point is found out in the histogram, and the histogram bet-
ween peak point and zero point is shifted to the zero point
side to produce the gap for data hiding. Very little distortion
will be caused by such schemes, and Ni et al. [19] have pointed
out that the peak signal-to-noise ratio (PSNR) between the
original image and the image with hidden data is above 48. As
mentioned in the beginning part of the paper, the drawback is
the rare capacity of data hiding. A novel histogram modifi-
cation based reversible data hiding scheme in integer DWT
domain, which increases the capacity of data hiding greatly,
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FIGURE 1: An example of histogram modification (HH subband of integer DWT of Lena).

is described here. Histograms of middle and high frequency
subbands of integer DWT of images are Laplacian like dis-
tribution. Thus, they are suitable for histogram modification
based data hiding method. Histograms are shifted to generate
the gap for data hiding. A demo of histogram modification
based data hiding method, which embeds data into the HH
subbands of Lena image, is presented in Figure 1.

2.2.1. Reversible Data Embedding. The generated histogram
of subband HH is depicted in Figure 1(b). Then the histogram
is shifted to both sides by an embedding strength T (Fig-
ure 1(c)). At last, data is embedded by expanding histogram
between T and —T, and the histogram after embedding is as
Figure 1(d).

The histograms of LH, HL, and HH subbands are gener-
ated and data is embedded into the coefficients by histogram
modification. For every coefficient C of LH, HL, and HH
subbands, given an embedding strength parameter g,

(1) if C > g, then C is shifted to C + g;
(2) else if C < —g, then C is shifted to C — g + 1;

(3) else C « 2xC+ B, and B is the data to be embedded.

2.2.2. Data Extraction and Reversible Recovery of Matrix
before Embedding. Generate the histograms of middle and
high frequency subbands and shift these histograms to extract
the hidden data, and the original coefficient matrices are
reversibly recovered through the following steps. For every
coefficient C of LH, HL, and HH subbands, given an embed-
ding strength parameter g,

(1) if C > 2 x g, then C is shifted to C — g;
(2) elseif C < =2 x g + 1, then Cis shifted to C + g — 1;

(3) else C « floor(C/2), and data is extracted: B = mod
(C,2).



Now, every coeflicient C of subbands LH, HL, and HH is
reversibly recovered and the extracted B is the data embedded
before.

2.3. Arnold Permutation [20]. Russian mathematician Vladi-
mir I. Arnold discovered Arnold’s cat map using an image
of cat. An image, not necessarily a cat, of course, can be
transformed to a random noise like image by rearranging the
position of original pixels. However, if iterated for moderate
times (denoted by permutation periods as presented in
Table 1), the original image will reappear. The permutation
periods differ as the sizes of images differ. The permutation
periods of images with different sizes of the traditional
Arnold permutation are presented in Table 1.

Let I(x, y) be the pixel of an image matrix with size NxNj;
then [} ] represents the position of the pixel. The Arnold

[ x+y

43y ]modn,

transform I' can be explained as T'[ 7]
where mod is the modulo-operation.
To better explain the theory, the transform can be decom-

posed into three elemental steps: in the x-direction: [} ] —
[*}” ], in the y-direction: [} ] — [, ], and in the modulo-

operation: [ ] — [} ] mod n.

2.4. Permutation in the Frequency Domain and Sample Per-
mutation in the Spatial Domain. Through permutation in the
frequency domain, nice encryption results will be achieved. A
novel encryption scheme based on the cooperation of permu-
tation in the frequency domain and sample permutation in
the spatial domain is proposed to accommodate the joint
encryption-RDH scheme in this paper. It is found out
through experiments that the proposed permutation in the
integer DWT domain can achieve the same results as the
proposed sample permutation scheme in the spatial domain.
Such features are applied in the design of joint encryption-
RDH scheme. Suppose that there is an image matrix M with
size N x N, and the permutation in the integer DWT domain
and sample permutation in the spatial domain are described,
respectively, in the followings.

(A) Permutation in the Integer DW'T Domain

(1) Decompose the original image matrix M with integer
DWT to obtain the four subbands (1 low frequency
subband LL, 2 middle frequency subbands LH and
HL, and 1 high frequency subband HH) as depicted in
Figure 1(a).

(2) Permute the four subbands after integer DWT with
Arnold map permutation that is presented in Sec-
tion 2.1, and the different permutation times are P1_T,
P2_T, P3_T, and P4_T, respectively:

LL' = Arnold (LL, P1.T),
LH' = Arnold (LH, P2.T),

1)
HL' = Arnold (HL, P3.T),

HH' = Arnold (HH, P4.T).
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(3) Impose invers integer DWT on the coefficients after
permutation to get the encrypted matrix M’.

(B) Sample Permutation in the Spatial Domain

(1) Sample matrix M into four submatrices:
Saml=M1:2:N-1,1:2:N-1),

Sam2=M2:2:N,1:2: N-1),

(2)
Sam3=M(1:2:N-1,2:2:N),

Sam4=M2:2:N—-1,2:2:N).

(2) Permute the four sampled submatrices with Arnold
map with different permutation times S1.T, S2_T,
S3_T,and S4_T

Sam1’ = Arnold (Sam1,S1.T),

Sam2’ = Arnold (Sam2, S2.T),
3)
Sam3’ = Arnold (Sam3, S3.T),

Sam4’ = Arnold (Sam4, $4.T).

(3) Compose the permuted sampled submatrix to get the
encrypted matrix M’

M (1:2:N-1,1:2:N-1)=Saml’,

M (2:2:N,1:2:N-1) = Sam2’,
(4)
M (1:2:N-1,2:2:N)=Sam3’,

M (2:2:N-1,2:2:N) = Sam4’.

If the permutation times are equal to the corresponding
permutation times in the two permutation schemes, which
mean that P1.T = S1.T, P2.T = S2.T, P3.T = S3_.T, and
P4_T = $4_T, the encryption results are equivalent.

3. Proposed Scheme

Different from existing joint encryption-RDH schemes [13-
18], which are based on the spatial domain, the proposed
scheme is based on the integer DWT domain. The detailed
joint encryption-RDH scheme is presented in this section.
The scheme is composed of two parts. One part is data hiding
and image encryption, as presented in Figure 2; the other part
is data extraction and original image recovery, which is pre-
sented in Figure 3. Note that the two parts are not symmetric.
The encryption is achieved with permutation before data
hiding and after data hiding in Figure 2, while the data extrac-
tion is after decryption in Figure 3. The asymmetric design
can be applied in such a scenario. When someone only has the
encryption key, he can decrypt the image and get the
decrypted image with hidden information, which is very sim-
ilar to the original image. The decrypted image can be utilized
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TABLE 1: Arnold permutation periods of images with different sizes.
Image size 512 x 512 256 x 256 128 x 128 64 x 64 32x32 16 x 16 8x8 4x4
Period 384 192 96 48 24 12 6 3
| o
Permutation on
low frequency
subband (LL) . Overhead information
Integer DWT : Inverse integer Samplg
s decomposing Permutation on 2 DWT permutation | ted i ith
Original image middle (LH, HL) Information hiding n Cfryp ¢ .lm;gzgvl
and Thigh L5 in high frequency T ST information hidden
frequency (HH) subbands -
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T PT InformationTstrength

FIGURE 2: Data hiding and image encryption.
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FIGURE 3: Data extraction and image recovery.

in a variety of applications. However, he cannot get rid of the
hidden data, which may work as the watermark for the
copyright or authentication.

In the sending end, the data hiding and image encryption
process are achieved alternately. Original image I is firstly
decomposed with the integer DWT proposed in Section 2.1.
Then, the Arnold permutation is imposed on the four
subbands for the first time encryption. Data is embedded into
the permuted middle and high frequency subbands with a
reversible data hiding scheme based on histogram modifica-
tion. After that inverse integer DWT is imposed to acquire the
primary permuted image with hidden data I'. Finally, a
sample-permutation scheme is imposed on I' to get the final
encrypted image with hidden data I". Because the reversible
data hiding is based on histogram modification, overflow/
underflow is hard to avoid. Therefore, a location map for
recording the positions and values of the underflow and over-
flow pixels in the spatial domain is constructed. The location
map is compressed and encrypted as the key for data extrac-
tion. The flow chart is presented in Figure 2.

In the receiving end, there are two cases. One is simple
decryption, and the other one is data extraction and original
image recovery. In the former case, the image with hidden
data that is similar to the original image I is decrypted. In the
latter case, the hidden data is extracted and the original image
I is reversibly recovered. The received encrypted image with
hidden data I" is firstly revised according to the location map.
Then it is decrypted into the image with hidden data. Note
that, the encryption based on the two permutations in the
sending end can be decrypted by one permutation based on
the sample-permutation method. The permutation based on
sample permutation in the spatial domain can achieve the

same results as the permutation in the integer DWT domain
as presented in Section 2.4. Besides, the data hiding scheme
based on histogram modification in the integer DWT domain
can be implemented either before or after the permutation in
the integer DWT domain. Both of the features guarantee the
asymmetric decryption and data extraction. The total per-
mutation times are calculated according to the Arnold per-
mutation periods of image with different sizes (Table 1), the
permutation time P_T in the integer DWT domain per-
mutation, and the permutation time S_T' of the sample
permutation in the spatial domain. Through the delicate
design of the two permutations, decryption can be done with-
out integer DWT and inverse integer DWT. Although addi-
tional data is hidden in the permutated integer DW'T domain,
the proposed histogram modification based data hiding
scheme in the integer DWT domain guarantees the integrity
of the hidden data and the reversibility of the original cover
image. The flow chart is presented in Figure 3.

3.1. Data Hiding and Image Encryption

(1) Decompose the original image I (with size N x N)
with integer DWT (proposed in Section 2.1) to obtain
the four subbands (one low frequency subband LL,
two middle frequency subbands LH and HL, and
one high frequency subband HH) as depicted in
Figure 1(a).

(2) Permute the four subbands (LL, LH, HL, and HH)
with Arnold map permutation (proposed in



Section 2.3) synchronously. Note that, the per-
mutation times are the same, denoted by P_T":

LL = Arnold (LL, P_T), LH = Arnold (LH, P_T),

HL = Arnold (HL, P_T), HH = Arnold (HH, P_T).

©)

(3) Embed the preprocessed data into the middle and
high frequency subbands (LH, HL, and HH) with his-
togram modification based method (proposed in
Section 2.2.1).

(4) Impose invers integer DWT on the coefficients after
permutation and data hiding to get the primary per-
muted image with hidden data, denoted by I'.

(5) Sample I to four subimages:
Saml=I'"(1:2:N-1,1:2:N-1),
Sam2=1'(2:2:N,1:2:N-1),
Sam3=I1'(1:2:N-1,2:2:N),
Sam4=1'(2:2:N-1,2:2:N).
(6) Permute the four sampled submatrices with Arnold

map with different permutation times S1.T, S2_T,
S3.T,and S4_T

Sam1’ = Arnold (Sam1, S1.T),

Sam?2’ = Arnold (Sam2,82.T),
(7)
Sam3’ = Arnold (Sam3, $3.T),

Sam4’ = Arnold (Sam4, $4.T)..

(7) Compose the permuted sampled submatrix to get the
postprocessed matrix I":

I"1:2:N-1,1:2:N-1) = Saml/,

I"(2:2:N,1:2: N-1) = Sam2/,
1 ! (8)
I'(1:2:N-1,2:2:N)=Sam3,

I"(2:2:N-1,2:2:N) = Sam4’.

(8) Construct the location map L of overflow and under
flow pixels according to I", and for those few over-
flow/underflow pixels, change their values with ran-
dom integer value in the range of (0,255).

These permutation times are encoded and encrypted as
the encryption key. The location map and embedding
strength parameters are compressed and encrypted as the
data hiding key.
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3.2. Data Extraction and Original Image Recovery

(1) Revise the received image matrix according to loca-
tion map to get image I".

(2) Sample image I"" with size N x N into four submatri-
ces:

Samlr=1"(1:2:N-1,1:2:N-1),

Sam2r=1"(2:2:N,1:2:N-1),

)
am3_r = 1:2: N-1,2:2: N
Sam3r=1"(1:2:N-1,2:2:N)

Sam4r=1"(2:2:N-1,2:2:N).

(3) Permute the four sampled submatrices with Arnold
map with different permutation times S1.T", S2_T",
S3.T', and S4_T', respectively:

Saml_r' = Arnold (Saer,SLT') ,

Sam2_r’ = Arnold (Sam2, SZ,T') ,
(10)
Sam3_r' = Arnold (Sam,r, S3,T’) R

Sam4_r' = Arnold (Sam4,r, S4,T') ,

where S1.T' = T-P_T-S1.T,S2.T' = T-P_T-S2.T,
S3.T' =T-P.T-S3.T,andS4.T' =T-P.T-S4.T.
T is the permutation period of the sample images, and
for the sample images with size 256 x 256, T = 192,
just as presented in Table 1.

(4) Compose the permuted sampled submatrix to get the
similar image with hidden data M _s:

Ms(1:2:N-1,1:2:N—-1) = Saml_r,

Ms(2:2:N,1:2:N-1)=Sam2.r,
(1)
M.s(1:2:N-1,2:2:N) = Sam3.r,

Ms(2:2:N-1,2:2:N)=Sam4_r.

Until now, the decryption process has been com-
pleted, and the similar image with hidden data is M _s.
The hidden data can be extracted and the original
image I can be reversibly recovered through the
following steps.

(5) Impose integer DWT on image M_s to get the four
subbands LL, LH, HL, and HH.

(6) Generate the histograms of the middle (LH, HL) and
high (HH) frequency subbands and shift these his-
tograms to extract the hidden data and reversibly
recover the original subbands. The detailed steps are
depicted in Section 2.2.2.
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(b)

FIGURE 4: Images before and after disposing.

(7) Impose inverse integer DWT with the coefficients of
the subbands after histogram shifting to recover the
original image.

4. Experimental Results and Analysis

To testify the efficiency and validity of the proposed scheme,
images (with size 512 x 512) from Miscellaneous gray level
images [21] and USC-SIPI image database [22] are selected for
the experiments. Random binary bits are embedded into
these images as the hidden data. All of these experiments are
performed on the MATLAB 2012a platform running on a
personal computer with CPU of AMD Phenom (tm) I1X4 810
Processor at 2.6 GHz, memory of 4 GB, and operating system
of Windows 7 x64 Ultimate Edition.

In Figure 4, standard image “Lena” is adopted to demon-
strate the feasibility of the proposed scheme. The subfigure (a)
is the original Lena, (b) is encrypted image with embedding
rate 0.0827 bpp, (¢) is decrypted image with data embedded
(PSNR =50.7279), and (d) is the reversibly recovered image.

The hiding capacity with different embedding strength
parameters, the corresponding PSNRs after data hiding, and
the overhead data needed to dispose for the reversible
recovery of the original image are presented in Tables 2 and
3.

Asisseenin the tables, the embedding strength parameter
qis1,2,4,8,16,and 32, respectively. The embedding rates (ER)
increase as the embedding strength parameters increase. In
Table 2, images from USC-SIPI image database are tested. In
Table 3, images from Miscellaneous gray level images are
tested. It is easily seen that the overhead data for reversible
recovery of the original image is rare and even zero for most
of the test images. However, it is necessary especially when
multilevel embedding is utilized. If the location map is trans-
ferred as a part of the payload, the pure embedding rates
(PER) that exclude the overhead are also given in the
table.

As can be seen in Tables 2 and 3, the embedding rates
increase as the embedding strength parameter g increases.
However, more overhead information is generated in accom-
pany with the increase of embedding rate and the embedding
strength parameter gq. More distortion will be caused by the

greater amount of data hiding. Different images have different
sensitivity to the embedding strength parameter g. Smooth
images, such as “Airplane,” “Lena,” and “Boat,” are less sensi-
tive to the parameter g than those complex images, such as
“Baboon” and “Peppers” That is because the histogram shift-
ing based data hiding scheme imposed in the integer DWT
domain depends largely on the similarity of adjacent pixels
in the images.

Given the fix embedding rate, the plots between PSNR
and embedding rate with different embedding strength para-
meters after decryption are demonstrated in Figure 5. The
test images are selected from Miscellaneous gray level images
database. The embedding strength of subfigure (a) is g = 32,
() g=16()q=8(d)g=4(q=2ad®q=1
respectively.

The security of the proposed scheme is testified. As is
known, there are similarities between adjacent pixels in nat-
ural images. One of the important things for the encryption
of image is to destroy the correlation between two adjacent
pixels. It can be calculated by the following formulas:

1 N
E(X) = Nin,
i=1

1Y 2
D@:N;m—mm,
(12)
LN
cov(x, y) = NZE (x-Ex)(y-E(»)))
i=1

cov(x, y)
,

- D (x)\/D(y).

We randomly select 4096 pairs of two adjacent horizontal
pixels, two adjacent vertical pixels, and two adjacent diago-
nally pixels in “Lena” image, respectively, for the demonstra-
tion. Figure 6 presents the correlation of adjacent pixels of
image “Lena” before encryption and after encryption. The
detail coefficients r,,, of selected images from Miscellaneous
gray level images are presented in Table 4.

Obviously, the similarities have been thoroughly des-
troyed after encryption. Through the delicate design of the
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TaBLE 2: Embedding rate and PSNR of different images (USC-SIPI).

Images qg=1 q=2 q=4 q=38 q=16 q=232
ER 0.1206 0.3101 0.5044 0.6311 0.6971 0.7317
Airplane PSNR 50.6962 46.8158 42.4294 38.5350 35.0636 32.1368
Overhead 0 0 0 0 0 0
PER 0.1206 0.3101 0.5044 0.6311 0.6971 0.7317
ER 0.0251 0.0756 0.1707 0.3210 0.4960 0.6421
Baboon PSNR 50.5884 46.0507 40.1912 34.7103 30.0639 26.4296
Overhead 14 26 53 118 231 405
PER 0.0250 0.0755 0.1705 0.3205 0.4951 0.6406
ER 0.0656 0.1882 0.3602 0.5124 0.6113 0.6887
Barbara PSNR 50.5979 46.3715 41.2511 36.5779 32.3365 28.7201
Overhead 0 0 0 0 0 23
PER 0.0656 0.1882 0.3602 0.5124 0.6113 0.6886
ER 0.0545 0.1577 0.3223 0.5162 0.6665 0.7287
Boat PSNR 50.5664 46.3085 41.0439 36.5185 33.1225 30.7374
Overhead 3 10 19 38 109 296
PER 0.0545 0.1576 0.3223 0.5161 0.6661 0.7276
ER 0.0827 0.2241 0.4310 0.6119 0.7032 0.7391
Lena PSNR 50.7257 46.5336 41.7441 37.8559 31.8851 32.7387
Overhead 0 0 0 0 0 5
PER 0.0827 0.2241 0.4310 0.6119 0.7032 0.7390
ER 0.0632 0.1844 0.3743 0.5716 0.6961 0.7385
Peppers PSNR 50.6754 46.4399 41.4909 37.5625 34.7859 32.8502
Overhead 1 5 27 79 213 526
PER 0.6632 0.1843 0.3472 0.5713 0.6953 0.7365

TaBLE 3: Embedding rate and PSNR of different images (Miscellaneous gray level images).

Images qg=1 q=2 q=4 q=238 q=16 q=32
ER 0.1227 0.3110 0.5071 0.6342 0.6988 0.7325
Airplane PSNR 50.6757 46.8180 42.4507 38.5947 35.1570 32.2588
Overhead 0 0 0 0 0 0
PER 0.1227 0.3110 0.5071 0.6342 0.6988 0.7325
ER 0.0252 0.0754 0.1702 0.3211 0.4961 0.6421
Baboon PSNR 50.5954 46.0404 40.1840 34.7072 30.0631 26.4306
Overhead 19 36 65 138 237 433
PER 0.0251 0.0753 0.1700 0.3206 0.4953 0.6405
ER 0.0604 0.1704 0.3350 0.4932 0.6047 0.6852
Barbara PSNR 50.6255 46.3325 41.0880 36.3009 32.0515 28.5263
Overhead 0 0 0 0 19 219
PER 0.0604 0.1704 0.3350 0.4932 0.6046 0.6484
ER 0.0857 0.2367 0.4296 0.5819 0.6791 0.7295
Boat PSNR 50.6239 46.5614 41.8009 37.5187 33.8471 31.0650
Overhead 1 1 1 1 2 38
PER 0.0857 0.2367 0.4296 0.5819 0.6791 0.7294
ER 0.0837 0.2239 0.4304 0.6117 0.7031 0.7390
Lena PSNR 50.7225 46.5535 41.7346 37.8432 34.8781 32.7376
Overhead 0 0 0 0 0 5
PER 0.0837 0.2239 0.4304 0.6117 0.7031 0.7390
ER 0.0673 0.1924 0.3838 0.5833 0.6995 0.7379
Peppers PSNR 50.6647 46.4457 41.5086 37.5847 34.8350 32.8801
Overhead 30 92 183 545 1119 1826

PER 0.0672 0.1921 0.3810 0.5812 0.6952 0.7371
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Correlation of cipher image of vertical adjacent pixels pairs
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FIGURE 6: Correlations of two adjacent pixels in the plain image and in the cipher image of Lena.
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TaBLE 4: Coefficients of different images.

Coefficients Plain image Cypher image
Horizontal Vertical Diagonal Horizontal Vertical Diagonal
Airplane 0.9728 0.9648 0.9416 —-0.0092 0.0008 —0.0054
Baboon 0.8407 0.7500 0.7160 0.0437 0.0101 0.0162
Barbara 0.9076 0.9648 0.8898 -0.0142 -0.0078 —-0.0222
Boat 0.9531 0.9827 0.9405 0.0320 -0.0088 -0.0090
Lena 0.9711 0.9851 0.9598 —-0.0022 —-0.0204 0.0215
Peppers 0.9779 0.9777 0.9665 -0.0400 0.00474 —0.0183
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FIGURE 7: Comparisons of embedding rate and PSNR with existing schemes.

permutation in both transformed domain and spatial dom-
ain, the simple Arnold permutation can achieve nice encryp-
tion results. Besides, the encryption scheme proposed in this
paper is efficient and timesaving due to the permutation only
scheme. The stream cipher based encryption [13-15, 18] is
more time-consuming because the encryptions are achieved
by the bitwise exclusive OR operation or even the RC4 and
AES encryption. Simulation results show that, for the images
with size 512 x 512, the average time for image encryption
and data hiding is 4.3012 s and the average time for decryption
and data extraction is 4.0013 s using the proposed scheme.
If the same amount of data is embedded in the images with
size 512 x 512, the average encryption and data hiding time
is more than 8.0332s, and the average decryption and data
extraction time is more than 7.8231s for the encryption
scheme with bitwise exclusive OR operation with hyper-
chaotic system.

The joint-RDH scheme proposed in [15] is applied in the
medical images. It is not reversible. The joint-RDH scheme
proposed in [14] increased the embedding capacity of the
scheme proposed in [13]. However, their embedding capacity
is rather low when the reversibility is achieved due to the
design of the data hiding. At least a 8 x 8 block is needed for

TaBLE 5: Embedding rate comparison with existing schemes.

ER (bpp) Baboon Lena Lake Man Splash
Reference [14]  0.0013 0.0069  0.0025 0.0024  0.0156
Reference [13]  0.0010 0.0039  0.0025  0.0025  0.0039
Proposed 0.6405 0.7390  0.6381  0.6659  0.7123

embedding one-bit information in their experiments. There-
fore, the embedding rate is no more than 1/(8 x 8) according
to their experiments. Detailed comparisons of the embedding
rate are presented in Table 5. Comparisons of the plot between
PSNR and embedding rate with scheme proposed in [17] and
in [18] are presented in Figure 7.

Obviously, the proposed scheme has been achieved better
performances compared with exiting schemes. The reason
why the PSNRs are higher at the same embedding rate is that,
in the proposed scheme, data is hidden in the transformed
domain through the difference histogram modification
method. Such reversible data hiding schemes can achieve
lager embedding capacity while keeping low distortion to the
cover image. The encryption is achieved through the corpora-
tion of permutation in the integer DWT domain and in the
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spatial domain. Moreover, the permutation in the integer
DWT domain will not affect the data hiding. Due to the
design of the existing joint encryption-RDH schemes [13, 14,
17, 18], a group of pixels is operated only for one bit data
hiding. Their embedding rates are rather low as can be seen in
Table 5 and Figure 7. The proposed scheme can provide a
much larger embedding capacity.

5. Conclusion

A joint encryption-RDH scheme based on integer DWT and
Arnold permutation is proposed. Data is hidden in the integer
DWT domain with histogram modification based method,
which guarantees the high embedding capacity and safety
of data hiding. Although data is embedded in the DWT
domain, reversible recovery of original images has been
achieved through the integer transform. Different from those
traditional encryption schemes such as bitwise XOR with
random streams, AES, RC4, and so forth, the encryption
scheme designed in this paper is based on Arnold permu-
tation and thus is less time consuming and more efficient.
Besides, permutation will not change the value of matrix, and
thus data embedded will not be lost during the decryption
process. Sufficient experiments demonstrate the efficiency
and validity of the proposed scheme. Adaptive embedding
can be adopted for better results. Multilevel integer DWT can
be adopted for an even higher embedding capacity.

Conflict of Interests

The authors declare that they have no conflict of interests
regarding the publication of this paper.

Acknowledgment

The work described in this paper was supported by the Key
program of National Science Fund of Tianjin, China (Grant
no. 11JCZDJC16000).

References

(1] J. Fridrich, M. Goljan, and R. Du, “Invertible authentication,” in
Security and Watermarking of Multimedia Contents III, pp. 197-
208, January 2001.

[2] A. M. Alattar, “Reversible watermark using difference expan-

sion of triplets,” in Proceedings of International Conference on
Image Processing (ICIP ’03), vol. 1, pp. 501-504, September 2003.

[3] A. M. Alattar, “Reversible watermark using difference expan-
sion of quads,” in Proceedings of IEEE International Conference
on Acoustics, Speech, and Signal Processing (ICASSP °04), vol. 3,
pp. 377-380, May 2004.

[4] A. M. Alattar, “Reversible watermark using the difference ex-
pansion of a generalized integer transform,” IEEE Transactions
on Image Processing, vol. 13, no. 8, pp. 1147-1156, 2004.

[5] J. Tian, “Reversible data embedding using a difference expan-
sion,” IEEE Transactions on Circuits and Systems for Video
Technology, vol. 13, no. 8, pp. 890-896, 2003.

Journal of Applied Mathematics

[6] C.-C. Lin, W.-L. Tai, and C.-C. Chang, “Multilevel reversible
data hiding based on histogram modification of difference
images,” Pattern Recognition, vol. 41, no. 12, pp. 3582-3591, 2008.

[7] W.-L. Tai, C.-M. Yeh, and C.-C. Chang, “Reversible data hiding
based on histogram modification of pixel differences,” IEEE
Transactions on Circuits and Systems for Video Technology, vol.
19, no. 6, pp. 906-910, 2009.

[8] P. Tsai, Y.-C. Hu, and H.-L. Yeh, “Reversible image hiding
scheme using predictive coding and histogram shifting,” Signal
Processing, vol. 89, no. 6, pp. 1129-1143, 2009.

[9] C.-H. Yang and M.-H. Tsai, “Improving histogram-based
reversible data hiding by interleaving predictions,” IET Image
Processing, vol. 4, no. 4, pp. 223-234, 2010.

[10] Z.Zhao, H.Luo, Z.-M. Lu, and J.-S. Pan, “Reversible data hiding
based on multilevel histogram modification and sequential
recovery, AEU-International Journal of Electronics and Com-
munications, vol. 65, no. 10, pp. 814-826, 2011.

[11] Z.Ni, Y. Q. Shi, N. Ansari, and W. Su, “Reversible data hiding,’
in Proceedings of the IEEE International Symposium on Circuits
and Systems, vol. 2, pp. 912-915, May 2003.

[12] K.-S. Kim, M.-]. Lee, H.-Y. Lee, and H.-K. Lee, “Reversible data
hiding exploiting spatial correlation between sub-sampled
images,” Pattern Recognition, vol. 42, no. 11, pp. 3083-3096,
20009.

[13] X. Zhang, “Reversible data hiding in encrypted image,” IEEE
Signal Processing Letters, vol. 18, no. 4, pp. 255-258, 2011.

[14] W. Hong, T.-S. Chen, and H.-Y. Wu, “An improved reversible
data hiding in encrypted images using side match,” IEEE Signal
Processing Letters, vol. 19, no. 4, pp. 199-202, 2012.

(15] D. Bouslimi, G. Coatrieux, and C. Roux, “A joint encryption/
watermarking algorithm for verifying the reliability of medical
images: application to echographic images,” Computer Methods
and Programs in Biomedicine, vol. 106, no. 1, pp. 47-54, 2012.

[16] K. Ma, W. Zhang, X. Zhao, N. Yu, and E Li, “Reversible data
hiding in encrypted images by reserving room before encryp-
tion,” IEEE Transactions on Data Forensics and Security, vol. 8,
pp. 553-562, 2013.

[17] W. Zhang, K. Ma, and N. Yu, “Reversibility improved data hid-
ing in encrypted images,” Signal Processing, vol. 94, pp. 118-127,
2014.

[18] X. Zhang, “Separable reversible data hiding in encrypted
image,” IEEE Transactions on Data Forensics and Security, vol.
7, pp. 826-832, 2012.

[19] Z.Ni, Y.-Q. Shi, N. Ansari, and W. Su, “Reversible data hiding,”
IEEE Transactions on Circuits and Systems for Video Technology,
vol. 16, no. 3, pp- 354-361, 2006.

[20] V.I. Arnold and A. Avez, Ergodic Problems of Classical Mechan-
ics, Mathematical Physics Monograph Series, Addison-Wesley,
1968.

[21] “Miscellaneous gray level images,” http://decsai.ugr.es/cvg/
dbimagenes/g512.php.

[22] USC-SIPI Image Database, http://sipi.usc.edu/database/data-
base.php?volume=textures.



Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2014, Article ID 818479, 8 pages
http://dx.doi.org/10.1155/2014/818479

Research Article

A Novel Algorithm of Quantum Random Walk in
Server Traffic Control and Task Scheduling

Dong Yumin' and Xiao Shufen’

! Network Center, Qingdao Technological University, Qingdao 266033, China
? College of Automobile and Transportation, Qingdao Technological University, Qingdao 266033, China

Correspondence should be addressed to Dong Yumin; dym1188@163.com

Received 18 January 2014; Accepted 19 February 2014; Published 7 April 2014

Academic Editor: Feng Gao

Copyright © 2014 D. Yumin and X. Shufen. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

A quantum random walk optimization model and algorithm in network cluster server traffic control and task scheduling is
proposed. In order to solve the problem of server load balancing, we research and discuss the distribution theory of energy
field in quantum mechanics and apply it to data clustering. We introduce the method of random walk and illuminate what the
quantum random walk is. Here, we mainly research the standard model of one-dimensional quantum random walk. For the
data clustering problem of high dimensional space, we can decompose one m-dimensional quantum random walk into 1 one-
dimensional quantum random walk. In the end of the paper, we compare the quantum random walk optimization method with
GA (genetic algorithm), ACO (ant colony optimization), and SAA (simulated annealing algorithm). In the same time, we prove its
validity and rationality by the experiment of analog and simulation.

1. Introduction

The server cluster technology may be connecting multiple
independent servers, and, in the same time, it must provide
services as a whole by a cluster. In the server cluster, how to
solve the problem of server traffic control and task scheduling
is very important.

In order to reduce the access time, optimize the overall
performance and achieve parallel program in a high effi-
ciency; the task request must be allocated to each on the
server. So, load balancing mechanism is the core of cluster
technologies.

In the literature [1], it expands the analogies employed
on the development of quantum evolutionary algorithms by
putting forward quantum-inspired Hadamard walks, called
QHW. In order to solve combinatorial optimization prob-
lems, a quantum evolutionary algorithm, abbreviated HQEA,
is proposed. From the results of the experiments carried
out on the knapsack problem, HQEA performs noticeably
better than a conventional genetic algorithm, in terms of
convergence speed and accuracy. The literature [2] explores
how a spectral technique suggested through coined quantum

walks can be used to differentiate between graphs which
are cospectral as for standard matrix representations. This
algorithm runs in polynomial time; it can differentiate many
graphs for there is no subexponential time algorithm which
is proven to be able to differentiate between them.

By the literature [3], they propose a quantum algorithm
to evaluate formulas by an extended gate set, including two-
and three-bit binary gates. This algorithm is more optimal on
read, once formulas for that each gate’s inputs are balanced in
a certain sense. It describes a very compact triaxial instru-
ment in the literature [4]. The triaxial instrument is based
on a rhombic dodecahedral geometry that can accommodate
three nonplanar ring light paths with orthogonal sensing
axes. Component count can be substantially reduced by a
discharge of layout to use a single cathode and two anodes
running all three axes in balanced plasma currents. Two
Monte Carlo-based approaches to assess parameter uncer-
tainty with complex hydrologic models are considered in
the literature [5]. The importance sampling has been carried
out in the generalized likelihood uncertainty estimation
framework by Beven and Binley. The metropolis algorithm
is different from importance sampling which uses a random
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walk that adapts to the real probability distribution describing
parameter uncertainty.

Because existing search protocols for unstructured peer-
to-peer systems to create huge burden on communications
or cause long response time and result in unreliable per-
formance. In the literature [6], in order to discover service
providers, it reports that an important function of a peer-to-
peer system is a distributed message relaying. They present
an incentive mechanism which not only relieves the free-
riding problem but also accomplishes good system efficiency
in message relaying for peer discovery. The passed along
message propagation process is promised rewards in the
mechanism.

In the literature [7], it analyzes the discrete-time quan-
tum walk by separating the quantum evolution equation
into Markovian and its interference terms. Because of this
separation, it is possible to show analytically which quadratic
increase in the variation of the position of quantum walker
with time is a direct aftermath of the coherence of the
quantum evolution. As expected, the variation is shown to
increase linearly with time, if the evolution is decoherent, as
in the classical case. Moreover, it shows that the system has an
evolving operator analogous to which of a resonant quantum
kicked rotor. At the same time, the rotator can be described
by evolution of the quantum walker.

Quantum random walks on a graph, which is analogous
to classical stochastic walk, form the basis for many of
the recent quantum algorithms that promise to obviously
outperform existing classical random walk algorithms. A
number of studies have been done on the many applications
of quantum random walk to some important computing
problems. There are two kinds of quantum random walk
algorithms: continuous-time and discrete-time. It is reported
that a quantum arithmetic is defined by a sequence of
the operations that runs on an actual model of quantum
computation in the literature [8]. It proposes quantum circuit
designs for both kinds of random walk algorithms which
operate on various graphs. It considers two important prob-
lems to which random walk arithmetic are applicable: the
triangle finding problem and binary tree problem. Because of
it a few research works that are related to quantum random
walk circuit design on graphs exist; the circuit designs they
present here are the first of their kind. At the same time, they
also provide an estimate of the quantum cost of the circuits of
quantum systems. And it is based on the number of execution
cycles and quantum operations.

In the literature [9], the natural random walk causing
Brownian motion occurs to be always biased in a very delicate
way: emphasizing some possibilities by only approximative
maximal uncertainty principle. It introduces a new method
of stochastic model, and they use the merely maximizing
entropy choice of transition probabilities.

Berry and Wang show numerically that a discrete time
quantum random walk of two irrelevant particles is able to
differentiate some nonisomorphic powerfully regular graphs
from the same household in the literature [10]. They analyt-
ically show how it is possible for the walks to differentiate
such graphs, while the continuous time quantum walks of two
irrelevant particles cannot.
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It is reported that the quantum walks are quantum
mechanical theory analog of random walks in the literature
[11]. By traversing the edges of a graph, a quantum “walker”
progresses between initial and final states. They present a
hybrid model for general quantum computing in which a
quantum walker gets discrete steps of continuous evolution.

Effective server traffic control can extend the “capacity”
of the server, and the task scheduling can improve system
throughput. In early research methods of it, such as Min-
Min algorithm, Max-Min algorithm, genetic algorithm (GA),
round robin (RR), simulated annealing algorithm (SAA),
dynamic feedback algorithm (DFA), and ant colony opti-
mization algorithm (ACO). These arithmetics have some
improvements in different degree on the task scheduling.

But these algorithms have this or that problem, such as
local premature problem and divergence problem.

In order to overcome the instability above the algorithms,
the quantum random walk algorithm is proposed, and it is
proved better than above GA, ACO, and SAA by simulation
experiments.

2. Quantum Random Walk

2.1. Random Walk. Random walk is a mathematical method
to study the formation of trajectory by a random sequence
of continuous; it is not only a means to study mathematics
but also a basic tool in the natural sciences. Any stage of the
random walk behavior is not limited to previous history of
migration; the process is also called Markov process. Random
walk can be simply described as follows.

Suppose in a straight line, there is a moving particle; it
is at the origin to move left or right one unit of distance;
the probability is p and g = 1 — p, respectively, each time
the particle in accordance with the probability to move a
unit distance to the left or right. Here we assume that the
probability of the particle is equal to the left or right; that is,
p = q = 1/2; random variable can be used to represent the
probability o;; its value is as follows:

1
2

o; = 1 1)
>

If the particles every moment in a straight line position
constitute an independent identical distribution of random
variables sequence, denoted d,,0,,...,0,,... is a sequence
of independent and identically distributed variables on meet
EX, = 0, Var(oy) = 1. §, = Zle 0; is its first n terms and
S = (Sp);er is called a random walk. After the particles move
n steps, the probability of it being found in position m is

n
n+m)/2 _(n-m)/2

n+m q( p . (2)
2

n —_—
pO,m -

Among them, (n + m)/2 take only integer, (n + m)/2 €
0,1,...,n; other cases were 0.
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Although the classical random walk has a broad applica-
tion, but compared with the quantum random walk, it feels
much ashamed of its inferiority.

Quantum random walk is a quantum computing model
proposed in recent years; scholars have also become increas-
ingly interested in research.

2.2. Quantum Random Walk. For discrete quantum random
walk, the system added an extra degree of freedom; some
literature defines it as chirality that can build an adaptation to
global local unitary process. This walk is also called quantum
Hadamard walk. The only possible remained unchanged in
the global process of unitary transformation is the only
mobile operator between adjacent lattice points to the left or
the right.

Significantly different between quantum Hadamard ran-
dom walk and classical quantum is the interference, the
diffusion rate of quantum walk square magnitude faster
than classical square. Due to the existence of quantum
superposition states, in quantum random walk, position
of the particle from the probability distribution may be
seen; particles may be in several locations simultaneously
with different probability. Quantum random walk process is
accomplished by a unitary matrix transformation [12].

2.2.1. One-Dimensional Quantum Random Walk. The ran-
dom walk model sets up corresponding quantum algorithms
and does quantum information processing. People com-
monly used coined quantum walks; it corresponds to Hilbert
space which can be expressed as follows:

H = HC ® Hv> (3)

where H, = span{lvi)}m is the random walk of grid space;
it corresponds to a classic case of d-degree regular graphs
G(V,E),H; = C?, which is a coin flip operator space (coin
space). The total unitary evolution matrix U is by the two
independent parts, namely, flipping a coin and conditional
replacement

U=S+(C®I). (4)

The first step of the quantum walk is to perform a rotation
operation C in coin space, equivalent to the classical random
walk in a coin toss, through this operation to get a coin
superposition state [13]. Then, the replacement operator S
makes the particles by a coin to decide an edge vertex adjacent
to move to the next. Starting from the initial state [y(0)),
repeat the walk after n steps and obtain the probability
distribution of each vertex as follows:

P(v,n)= (v| Nr.[|y(n) (y ®)|]]v),. (5)

Quantum random walks of a variety of ways common are
one-dimensional linear walk, ring walk, hypercube walk, and
so forth. For one-dimensional linear walk, H, = span{|x) :
x € Z}, H, = span{|R), |L)}, replacement operator applied to
the base is expressed as

SIR,x) =|R,x+1),S|L,x) =|L,x—1). (6)

Starting from the initial state |®;,) = | |)®|0), continuous
action U = Se(C®1I); after each step, the distribution of every
point is as follows:

u 1
@) = (D el -1 ®l-1)
u 1
=D el (D -11)el) o|-2)]
L e+ el +41) —211)
242

®[-1) —-|])®[-3)].

Not only is the distribution situation different with the
classical random walk, but one-dimensional linear walk is
also higher and faster than the classical random walk in the
diffusion velocity.

2.2.2. M-Dimensional Hypercube Quantum Random Walk.
For the M-dimensional hypercube quantum random walk,
it has 2 vertices each vertex can be marked by an m binary
string,

H, = span{|X):x € [0,2"]}. Each vertex is m degrees;
therefore, coin space H. = C°, using |d) to mark the coin
space basis vectors, d € [0, n]; it indicates the direction of the
next step; each |d) corresponds to a M-dimensional vector
[€4)

|€4) =
@ d

0-~010-~0>. (8)

|€;), the number of d bit is 1 and that of the other bits is 0. The
replacement operator walk on the hypercube is applied to the
base vectors and can be expressed as

S|d,%) = |d,%®&,) . 9)

It represents two points marked by M quantum bits; only
when they have only one bit is not the same when they
are connected directly via a side (e.g., 001101 and 011101 are
communicating). There are many ways to select hypercube
walking coin flip operators; however, the following form is
usually taken to maintain certain symmetry:

apBpB...B8B
Boap..pp

Cap = : . (10)
BBP ...ap
BBB..Pa

The operator of such forms has the characteristics that in
all directions are a permutation invariant; it retains hypercube
replacement invariance. Such a form is a commonly used
Grover diffusion operator selection

G=-I,+2|s) (5. (11)

Among them, [s°) = 1/+/m Y, |d) are equally weighted
superposition states in all directions. Grover operator is one



of the permutation invariant operators, which is the farthest
with unit transformation I; It will effectively mix all of the any
given initial state into the superposition of them. The total
random walk evolution operator can be expressed as

U=S-(GoI). 12)

Define the Hamming distance, starting from any point to
another point of the minimum number of edges experience
(i.e., the required number of steps), with d,, = 1. Marking
each vertex string the number of “1” is called Hamming
weights, for example, Hamming weight 010 to 1. Starting from
00---0, any Hamming weighing the same point total can
reach at the same number of steps. When the coins are formed
to the symmetry type such as (10), it has the same probability
starting from this point to reaching the point with the same
weight. This allows us to put all Hamming weight of the
same point “accumulation” to a point, thereby reducing the
symmetry of the random walk; the walk on the hypercube is
becoming walk in a straight line. It is noteworthy that this
walk difference on the straight is not unbiased; it differs from
the previously discussed one-dimensional linear walk. The
number of total vertices after walking on the variable linear is
m + 1; m is the hypercube dimension.

By putting a hypercube walk into walk on straight line,
many problems can be resolved to simplify and get results.
Moor and Russell found that when T' = 77 -m/4, random walk
is a balanced distribution. Kempe through the research on
the hitting time found hypercube quantum random walk to
reach vertical angles of time relative to the classic case which
is an exponential acceleration; this shows that the quantum
random walk has the potential to make quantum algorithm
acceleration.

3. The Model of Server Traffic Control and
Task Scheduling

In cluster services, the task scheduling can be described as
follows: N tasks need to be allocated to 7 nodes (these nodes
are the servers) with different handling capacity; the goal
is finding an optimization schedule to minimize the total
completion time. The system model is shown as follows.

We suppose there are m nodes (or servers) and » tasks.
Every task should be assigned to only one node. We use
P = {p), ps>-..> Py} denoting the nodes (or servers), in this
paper, where p; denotes one of the nodes (or servers); L =
{I,,L,,...,1,} expresses the current load, where I; expresses
the current load of node p;. For instance, [; = 0 means that the
node (server) p; has a current load of 0; in other words, the
nodeisidle. Here ntasks are expressed byX = {x, x,,...,x,},
where x; is one of the tasks. A m x n matrix is built between
servers and tasks: W,,,, where W; is one of the elements. So,
there are two states as follows:

mn>

W = 1 Task x; is assigned on node p; 13)
7710 Task x; is not assigned on node p;,

where,i € {1,2,...,m}, j € {1,2,...,n}.
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We use t;; to express the time of processing on one task;
in other words, the time of task x ; processed on node p;. The
processing time is denoted as follows:

_ It

where,i € {1,2,...,m}, j € {1,2,...,n}.
It is not difficult to see that T}; is also an m x n matrix.
Here, we define the optimal state occurring with these
conditions: (a) the total system has a relative short time of
processing; (b) the throughput of system is relatively larger
in unite time. We can describe this state using the following
equations:

Task x; is processed on node p; (14)
Task x; is not processed on node p;,

m
Yinax = Z w (x;, 13, g;)
w(xplq) = Cl((ZZtij + Z%’ti> -%le) >
i=1j=1 i=1 i=1
where X = {x1,x,,...,x,} is the new task, L = {l;,1,,...,1,,}

is the current total load at the node, g; is the length of ready
queue at node p;, t; is the average processing time at node p;,
1> ¢, are constant, w(x;, l;,q;) is a function which can show
the ability of node processing. The system is on the optimal
running state, when the capacity of processing tasks (or task
scheduling) reaches the maximal matching at one node.

4. The Method of Task Scheduling
Based on Quantum Random Walk (QRW)
Clustering Algorithm

In the paper, we mainly research the standard model of one-
dimensional quantum random walk. For the data clustering
problem of high dimensional space, we can decompose
one m-dimensional quantum random walk into m one-
dimensional quantum random walk.

4.1. Clustering Algorithm Based on One-Dimensional
Quantum Random Walk, Referred to as Quantum
Random Walk Clustering Algorithm (QRWA)

Step 1. Assume an unlabeled data set X = {X(l), X(z), o Xoh
where each data point with m features.

Step 2. Each data point in the data set can be considered
as a particle that transfers in the space according to the
probability.

Step 3. Establish clustering algorithm based on the one-
dimensional quantum random walk.

The clustering algorithm uses a distributed control strat-
egy, that is, each data point of the data set only affected by
its neighbor within the neighborhood. The neighbor of data
points available k-nearest neighbor method or the method of
default scope of R to determine and use I, (7) indicates the set
of neighbors of a data point X in ¢ time.
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Step 4. Calculate the probability for each data point transfer
to all neighbors in the neighborhood p,(i, j), j € T.(i); the
formula is as follows:

a; (i’ j )
Zjel“t(i) a, (i, j)
0 otherwise

N if j €T, ()
pe(ij) = '

a, (i, j)

_ ( ( _ Deg () ) (16)
Zjel“,(i) Deg, (])

% < Deg, (]) >>
Zjel“,(i) Deg, ()

. . . . —1
< ((d (%0 X7)) x (d (X0 X3)))

Among them, Deg,(-) and Deg(-), respectively, represent
the degree of current and initial data points; similarly,
d(Xi,Xi ) and d(X’ ,X(J)), respectively, represent the current
and initial data point distances between X’ and X".

Step 5. Find the maximum transition probability p, (i, h) and

the neighbors of greatest probability of metastasis X", h €
rt (i)) h ¢ i.

4.2. The Server Traffic Control Clustering Method of Quantum
Random Walk. As previously mentioned, m-dimensional
quantum random walk is decomposed into m one-
dimensional quantum random walk. For each dimension,
data points X, can only move a step left or right, I; or I.
Therefore, the maximum transition probability p,(i,h) is
mapped to the interval p = f(p,(i,h)) € [0.5,1], so, the
probability of transfer in the opposite direction is 1 — p. When
p = 0.5, and probability of metastasis in both directions is
equal, available aforementioned Hadamard transforms H
as a coin matrix. However, in normal conditions, p#1 — p,
therefore, the coin matrix C is used in the algorithm is

(% )

p= 1 (1) = f (max (5, . 1))).

17)

It is easy to verify that the matrix C is unitary matrix meeting
the reversibility requirements of quantum mechanics.

Since the quantum random walk clustering algorithm will
use r consecutive transformation U = S-(C®I) for initial state,
thus, every time it changes left and right transfer step /; and
Iy to the original 1/2, that is, [; /+ and Iz /r, Then, conditional
operator S will press type structure:

b+1
s=11 (Mo Y [7H8 ) @10 U
’ (18)
b-1,
®§ - >(b|.

As is known, in quantum mechanics, each one of
superposition states can be seen as a position of particle
and indicates the probability of finding the particle at this
location. If repeatedly used U transforms for initial state, then
the resulting superposition state |y) will contain more items;
this increases possible appearing position of the particle,
and this is not present in the classical random walk. It is
these possible positions that increase the searching range
of solution space and provide an opportunity for better
results. To calculate the probability of multiple locations of
particles and their appearance in the correspondinglocations,
a unitary operation is sufficient because of the quantum
parallelism, but in the classical world, you need multiple
operations to complete; it also reflects an aspect of quantum
computing to accelerate the classical computing.

If the initial state of the particle is |y,) = | T) ® |0), then,
after applying » = 2 times transform U, get superposition
state |y) which is

lvo) — vAID ®

%>+M|1>®]—%>

M>

Lpin oll) +\p(1-p)I1) ®

M>

—\p(l-p)ll) ®|-L) =|y).

+(1-p)IT) ®

(19)

From (19) particles can be found not only with probability
p® and p(1 — p) at the same time appear in the probability of
Ip and [} appearing in another new position (I —I;)/r could
be (1 — p). At this point, if projection measurement of the
superposition state |y), it will collapse to one of these three
positions according to the probability; then, the component
of particle in the j dimension is updated with the following
formula:

(X (j) + I
After the measurement, if the position

of the particle at I,
o (k=1)
X () +
After the measurement, if the position

(Ir 1)

of the particle at ——=

-
(lr—1)-1
After the measurement, if the position

X;+1 (]) =

of the particle at — I
ho. i :
Iilg=1=(X](j)-X;(j)), je{l2...,m}.
H:{IR=PX(X?(J')—XKJ')), je{l,2,...,m

L=01-p)x(XI(j)-Xi(j), je{l2....m}.
(20)
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FIGURE 1: The topological structure of the network servers.

As data points are random walk in the space, its position
and its nearest neighbor are constantly changing with time.
Therefore, in the process of walking, the distance of the data
points and the degree of it need to be recalculated. Repeat
the entire process above until the sum of moving length of all
the particles is less than some preset threshold €. At this time,
some separating section of the natural emergence in the space
can be observed; each section corresponds a separate cluster.

5. Analog and Simulation Experiments

5.1. The Experimental Environment. In order to compare
quantum random walk clustering algorithm (QRWA),
genetic algorithm (GA), ant colony optimization (ACO), and
simulated annealing algorithm (SAA), we select six servers
as nodes. In the experiments, we select the number of task
from 0 to 2500 (or 3000). We compare the results of these
schemes by Matlab. The correlation parameters of selected
servers for experiments are in Table 1.

In Table 1, OS represents operation system; NA represents
network adapter; MS represents memory size; SM represents
specifications and models.

The topological structure of the network servers is as
shown in Figure 1.

5.2. Results. Figure 2 shows the system flow control rate of
QRWA is better than GA, SAA, and ACO. And the more the

TABLE 1: Parameters of selected servers.

SM Model CPU MS NA 0S
lilrftljrf)}r)ﬁ? © Ul a?I;Aém 2 306 2+1000M  Solaris
T5120 '

11321;/; OS(Y;tem P()z\'/;lgés * 320G 4%1000M  Linux
S{i 610 intel it';“gum 230G 2%1000M  Unix

task quantity is, the closer the flow control rate is. The task
quantity is from 0 to 2500.

Figure 3 shows the server traffic of GA, SAA, ACO, and
QRWA. That is to say, the QRWA is bigger than GA, SAA, and
ACO.

The Figure 5 shows that the throughput of QRWA is
bigger than ACO, GA, and SAA.

The Figure 6 shows that the throughput of QRWA is
bigger than ACO, GA, and SAA.

Figures 4, 5, and 6 show the performances of QRWA are
better than GA, SAA, and ACO.

From the results, it is clear that quantum random walk
algorithm (QRWA) is better in server traffic control and
task scheduling than genetic algorithm (GA), simulated
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FIGURE 2: The flow control rate of SUN SPARC Enterprise T5120 in
GA, SAA, ACO, and QRWA.

1800

1600

1400

1200

1000

Time (s)

800

600

400

200

Server traffic (MB)

—— ACO
— QRWA

—>— GA
--- SAA

FIGURE 3: The server traffic of SUN SPARC Enterprise T5120 in GA,
SAA, ACO, and QRWA.

annealing algorithm (SAA), and ant colony optimization
(ACO). QRWA is more effective in task scheduling.

6. Conclusions

The paper gives a quantum random walk model and algo-
rithm on server traffic control and task scheduling. We
mainly research the standard model of one-dimensional
quantum random walk. For the data clustering problem
of high dimensional space, we can decompose one m-
dimensional quantum random walk into 71 one-dimensional
quantum random walk.
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F1GURE 4: In SUN SPARC Enterprise T5120, the relationship of the
flow control rate, task quantity and time. And the QRWA is better
than GA, SAA, and ACO.
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FIGURE 5: The throughput of HP rx4640 in ACO, GA, SAA, and
QRWA during one day.
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and QRWA during one week.



The simulation results demonstrate the effectiveness and
superiority of QRWA.

The model and algorithm increases the throughput and
efficiency of the system, and it had some merits than tradi-
tional model and arithmetics.

We will research the two directions in the future. The
first one is the effects of noise on the scheme and model;
the second one is the method of how to apply in the field of
intelligence.
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Affected by special underground circumstances of coal mine, the image clarity of most images captured in the mine is not very high,
and a large amount of image noise is mingled with the images, which brings further downhole images processing many difficulties.
Traditional image denoising method easily leads to blurred images, and the denoising effect is not very satisfactory. Aimed at
the image characteristics of low image illumination and large amount of noise and based on the characteristics of color detail
blindness and simultaneous contrast of human visual perception, this paper proposes a new method for image denoising based
on visual characteristics. The method uses CIELab uniform color space to dynamically and adaptively decide the filter weights,
thereby reducing the damage to the image contour edges and other details, so that the denoised image can have a higher clarity.
Experimental results show that this method has a brilliant denoising effect and can significantly improve the subjective and objective

picture quality of downhole images.

1. Introduction

The application environment in the coal industry is always
special, and downhole images are always mingled with large
amount of image noise interfered by complex underground
environment, mechanical vibration, and dust noise. This
brings many difficulties for the subsequent processing of the
image. Therefore, the denoising process on images captured
and transmitted from downhole becomes very necessary
so as to provide better image quality and better followup
processing.

There are many ways in terms of denoising, such as the
mean denoising, median denoising, and wavelet denoising.
A representative study is from Narendra, who raised the
row-column decomposition median filtering algorithm [1];
moreover, He et al. have put forward a multimedian filter
algorithm [2] which can effectively remove the image impulse
noise; additionally, Darsow and Olsen have proposed three
denoising methods based on phases of wavelet: local phase
variance threshold, edge tracking, and scale phase fluctuation
threshold method [3]. In order to overcome the weakness
that wavelet transform can only carry out point singularity

detection, Minh N. Do and Martin Vetterli proposed con-
tourlet transform in 2002 [4]. With the gradual deepening
of the various branches of mathematics in the theory and
applications, great progress in image denoising technology
has been achieved in terms of mathematical morphology,
partial differential equations, genetic algorithms, information
theory, and so forth, producing a number of new denoising
algorithms [5-8], including denoising algorithm based on
mathematical morphology [9-12], denoising algorithm based
on fuzzy theory [13, 14], denoising algorithm based on genetic
algorithms [15], neural network-based denoising algorithm
[16], and denoising algorithm based on information entropy.

Although, with the maturity and improvement of the
various theories, image denoising methods have gained a lot
of progress; these methods have their respective advantages,
disadvantages, and application areas. For example, the mean
denoising is suitable for removing grain noise in images, but
the images always easily become blur because this method
is too average; median denoising is good for removing
impulse noise in the image, but the denoising effect is
not very ideal when the noise area inside the window is
too large; Wiener filter is suitable for removing the white
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noise in the image; however, the calculation amount is too
large; wavelet denoising has a wide range of algorithms and
superior performances, but the realization is very difficult
and complex. Moreover, the effect of the above algorithms
will not be satisfactory when an image is simultaneously
interfered by a variety of noise; in other words, while the
image smoothens, the quality declines. Besides, denoising
research on specific areas with complex environment is also
very rare. The aforementioned are the current research status
of image denoising; therefore, with the combination of noise
characteristics of the coal mine, finding a method that can
preserve the image detail and textural features while at the
same time reducing image noise has become the research goal
of this paper.

2. CIELab Color Space

CIELab color space is defined by the International Commis-
sion on Illumination (CIE) in 1976, and it is currently one of
the most uniform color spaces with a set data of L, a, and
b representing one color, and one Lab values group formed
one corresponding relationship with one color. In the set, L
indicates the luminance value; a and b are the chromaticity
coordinates. Value a indicates the color change direction of
red-green, +a indicates the change towards the red direction,
and —a shows the change in the direction of green. b shows
the change in the yellow-blue direction, +b shows the change
in the direction of yellow, and —b shows the change in the blue
direction. As shown in Figure 1, a represents axis of red and
green and b represents axis of yellow and blue. Their values
range from 0 to 10. a = b = 0 means colorlessness, and L
represents scale factor from black to white.

3. Interconversion of RGB and CIELab Color
Space

The interconversion of RGB and CIELab color space needs to
convert RGB to CIEXYZ color space first and then to CIELab
color space [5].

The conversion formula of RGB color space to XYZ color
space is

Y 0.2219 0.7068 0.0713 | |G| . @)

X (0.4303 0.3416 0.1784) R
V4 0.0202 0.1296 0.9393 B

Then, convert XYZ color space to LAB color space, and the
conversion formula is

sl (2)- ()]
o-anls () (2]

Y
n

(2)
x1/3 — > 0.008856,

B

fx)=

Y,
7.787 X x + 16 r < 0.008856,
116 Y,
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F1Gure 1: CIELab color space.

where L = f(x), X,, = 95.04,Y, = 100.00, and Z, =
108.89 are white tristimulus values of Dy, the CIE standard
illuminant; X,Y, and Z are coordinate value of CIEXYZ
space.

The computational formula of aberration AE], between
two colors in CIEXYZ space is as follows:

AE, = [(AL*) + (aa®)? + (6" )], 3)
where
AL =L} - L},
Aa* =a) -a;, (4)
Ab* = b b

4. New Adaptive Image Denoising Method
Based on Visual Characteristic

The classic image denoising methods are done in the RGB
color space, while RGB color space is a nonuniform color
space, and it does not take into account important infor-
mation such as the image brightness and chroma. Due to
the fact that images captured from downhole are affected
by low light or uneven illumination, it is very hard to reach
satisfactory denoising effect by adopting the classic image
denoising method. In order to improve the image denoising
performance, a more uniform CIELab color space is needed.
In this color space, human visual sensitivity to the color
differences of different wavelengths is not the same; the
relevant data are shown in Tablel. Aimed at the special
downhole circumstances and based on CIELab uniform
color space, the characteristics of color detail blindness, and
simultaneous contrast of human visual perception, this paper
presents a new image denoising method to improve the
subjective and objective image quality.

4.1. Algorithm Thought. In uniform color space, the chro-
matism value of two human-eye distinguishable colors is
equal; that is, when the chromatism is smaller than a certain
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TABLE 1: Value of chromatism and sensitivity level to the color
differences.

Zﬁigreniism Sensitivity level to the color differences

0.0~0.50 (Tiny chromatic aberration) trivial feeling
0.5~1.51 (Small chromatic aberration) slight feeling

1.5~3 (Lesser chromatic aberration) noticeable feeling
3~6 (Larger chromatic aberration) appreciable feeling
Above 6 (Large chromatic aberration) strong feeling

threshold, human eyes consider them as the same color; but
when the chromatism is greater than a threshold, human eye
will be able to distinguish the two different colors. In CIELab
color space, the value of this threshold is generally 3. In view
of this, the paper will divide image noise into two types:
flat region noise and nonflat region noise. The algorithm
carries out different processing self-adaptively according to
the different region of the pixel.

In a region, let x;; represent the polluted pixel value of
point (4, j), and then let the CIELab median of the pixel in the
area with x;; being the center point and neighborhood being
(2N +1)x (2N +1) be

¥ij = median = {xi_NJ_n,...,xij,...,xHN’HN}. (5)

Let the CIELab chromatic aberration of current pixel point
and center point be d = |x” — y”|; preset a threshold ¢, and
compare it with d:

o = 1 d>t, ©)
7)o else.

If o of all pixels within the neighborhood of 2N +1) x (2N +
1) are 1, then, it is called flat region noise; the color of flat
region noise point can be affected by the rest of pixels within
the same neighborhood, and convolution denoising can be
conducted by using traditional Gaussian filter template. If
there are pixels within the neighborhood of (2N + 1) x (2N +
1) whose a;; are 0; then, this area is nonflat region. Noise
in nonflat region is not entirely affected by other pixels in
the neighborhood and is only related to pixels in the same
area; that is, the noise is only related to pixels whose CIELab
chromatic aberration is less than the relevant threshold; if
it is greater than the threshold, then it is considered that
the contribution of the pixel color value to the center point
remains conforming to Gaussian distribution; otherwise, the
pixel does not have any contribution to the center point.
Let the convolution weights be 0. Thus, the pixel color will
be more consistent within the same region, achieving the
purpose of preserving image detail.

4.2. Gaussian Filter. Gaussian filter [7] is the linear smooth-
ing filter which determines weights according to the shape of
the Gaussian function. One-dimensional Gaussian function
is

gx)=e )

wherein ¢ determines the width of the Gaussian filter. The
greater ¢ becomes, the wider the band of the Gaussian filter
will be and the better the smoothness will be. Moreover, a
compromise can be obtained by adjusting the smoothness
degree parameter o, when the image features are too vague
and when excessive unwelcome break variables are caused by
noise and texture in smooth images. For image processing,
two-dimensional Gaussian function is commonly used as
smoothing filter. The function expression is

glijl=e (8
The convolution and denoising formula of the input image
fli, j] via Gaussian filter is

m—1n-1
glijl = fli.jl= gl fi-k j-1]
k=0 1=0
m—1n—1 -
e(k+l)/2¢7 [ —k,j—l]
k=0 1=0

m—1 n—1
=Yy e {Ze_l 20 f[i—k,j—l]]».

k=0 1=0
)

In order to reduce the time complexity of Gaussian fil-
ter convolution calculation, the two-dimensional Gaussian
function can be converted to the combination of two one-
dimensional convolution templates [8]. First, convolve the
input image f[i, j] and the Gaussian template in the horizon-
tal direction; set a temporary array; store the result in the
temporary array; then convolve the image and the Gaussian
template in the horizontal direction and transpose the result;
the final smooth image can be obtained.

Figure 2 is a schematic diagram of the separability of the
Gaussian function convolution. This method is completed
through the combination of two horizontal convolution tem-
plates. First, convolve the input image f[i, j] and the Gaussian
function in the horizontal direction, and then transpose and
store the result in the temporary array; after that, take the
temporary array as the input, and carry out the convolution
with the same Gaussian function to realize the purpose
of replacing the vertical convolution with the horizontal
convolution. Transpose the output information after the
second convolution, and then the final smoothed output
image can be obtained. Since the separability of the Gaussian
function is high, Gaussian filter can be effectively achieved.
Two-dimensional Gaussian function can be carried out in
two steps. First, convolve the image with the one-dimensional
Gaussian function; then, convolve the result with the same
one-dimensional Gaussian function perpendicular to the first
result. Therefore, the calculation amount of two-dimensional
Gaussian filter presents a linear growth along with the width
of the filter template rather than a square growth.

4.3. Algorithm Flow. Define the size of denoising template as
d x & and the distinguishable color threshold as T; traverse
any pixel (r, g, b) in the image; the specific realization steps
of this algorithm are as follows.
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(a) Longitudinal template convolution (b) Horizontal template convolution

FIGURE 2: Schematic diagram of the separability of Gaussian function convolution.

(1) Input the pending image f and initialize the Gaussian

Input image
convolution template whose size is § x 6.

(2) Use the chromatic aberration computational formula
of CIELab space color to calculate the value of chro-
matism between the center pixel and pixels within

neighborhood §; collect number »n which stands for L 1

the value of chromatism that is greater than the

threshold T. Noise point Nonnoise point
(3)Ifn = & x § — 1, then it indicates that except the

center pixel all the values of chromatism between

any two pixels in the region are greater than the

threshold T This is flat region noise; convolution and

denoising can be reached via traditional Gaussian J J No

filter template. Turn to Step (4).
Flat region noise | | Nonflat region noise

(4) If n+8 x § — 1, n#0, and if the value of chromatism

between center pixel and pixel (i, ) in the region

is greater. than threshold T, Fhen.tl}ls is nonﬂat e o Statistical based Keep the

region noise. Set the value of pixel (7, j) in Gaussian ray légrrllsisinausmﬂ Gaussian template original

convolution template to be 0. Turn to Step (5). | g denoising value

|

(5) If none of the above is satisfied, no operation is

required; keep the original value.

Processing all pixels

(6) Process the next pixel and turn to Step (2). No
(7) Judge whether all the pixels are processed; if yes, Yes

end the algorithm; otherwise, turn to Step (6) and
continue the processing. ( End of algorithm )

The algorithm flow is as shown in Figure 3. FiGure 3: Algorithm flow.

5. Experimental Performance and

Comparative Analysis . . o
Gaussian denoising, and the method proposed in this paper.

A noisy downhole image was selected and denoising process- ~ Image RMSE (root mean square error) and PSNR (peak
ing was carried out by, respectively, using methods of mean  signal to noise ratio) were calculated, so as to evaluate the
denoising, median denoising, hybrid denoising, traditional = performance of different algorithms.
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(e) Traditional Gaussian denoising

\\NPW

- A

(f) Paper-proposed denoising

FIGURE 4: Effect contrast of different denoising methods.

RMSE and PSNR are defined as follows [17, 18]:

If (% 9) =g ()

Mz
M=

RMSE = L
MN = ¢

1

-
Il

—
Il

—_

(10)

255" x M
PSNR = 1010g10< 05 X MxN >,

Y SN (f () - 9 f)

wherein g indicates source image, f stands for images which
goes through scales addressing first and then same multiple

processing second with the use of relevant algorithm, and M
and N represent the length and width of the image. RMSE
reflects the approximate extent of the scaled image to the
source image; the smaller the RMSE is, the more approximate
the scaled image is to the source image; PSNR reflects the
image magnification effect. The higher the PSNR is, the
clearer the scaled image will be.

The experimental hardware environment is Pentium 4
CPU (2.80 GHz), memory capacity 1.5GB, and resolution
1024 x 768; the software environment is Microsoft Windows
XP Professional SP3 operating systems. The effect contrast of



TABLE 2: Evaluation index of denoising effect of different denoising
algorithms.

Denoising method RMSE PSNR

Mean denoising 30714593 21.03142
Median denoising 259.65736 32.73148
Hybrid denoising 242.47657 33.45765
Traditional Gaussian denoising 210.32459 34.87167
Paper-proposed denoising 190.10174 36.91472

different denoising methods is as shown in Figure 4, and the
comparison of denoising experimental data is as shown in
Table 2.

It can be seen from Table 2 that RMSE of mean denoising
is the maximum, and that of the PSNR is minimum, which
means the denoising effect of this method is the most unsat-
isfactory. RMSE of median and hybrid denoising method is
greatly lower than that of mean denoising, and PSNR has
also been improved. Compared with traditional Gaussian
denoising and other methods, the algorithm proposed by
this paper has further improved the objective quality of the
image. Moreover, it can also be seen from Figure3 that
the contours of the image processed by mean denoising are
vague, and the image also contains a lot of noise; what is
worse, there is a serious loss of image detail information;
the performance of median and hybrid denoising is a little
bit better, but the processed image still contains residual
noise; traditional Gaussian denoising method did not manage
to eliminate the obvious noise within the visual range, and
the effect is not very ideal; the algorithm proposed in this
paper successfully improved the peak signal to noise ratio and
at the same time managed to reserve image detail features
and texture changing features well; more importantly, the
processed image has higher resolution and better visual
effects.

6. Conclusions

Denoising processing on underground images has been
conducted in this paper based on CIELab color space and
CIELab chromatism aberration computational formula. The
paper has proposed that weight should be determined by
visual chromatism aberration, which makes up the insuffi-
ciency of letting space coordinates distance decide weight in
RGB space; in the meantime, the characteristic that CIELab
color space is more uniform in visual perception is used,
taking fully into account the luminance and chrominance
information of the processed image, making the denoised
images and human vision maintain better correlation. The
experimental results have demonstrated the effectiveness of
the algorithm from aspects of the subjective quality and
the objective quality. This method is very helpful to further
processing and application of downhole images.
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This paper introduces a new framework for image coding that uses image inpainting method. In the proposed algorithm, the input
image is subjected to image analysis to remove some of the portions purposefully. At the same time, edges are extracted from the
input image and they are passed to the decoder in the compressed manner. The edges which are transmitted to decoder act as
assistant information and they help inpainting process fill the missing regions at the decoder. Textural synthesis and a new shearlet
inpainting scheme based on the theory of p-Laplacian operator are proposed for image restoration at the decoder. Shearlets have
been mathematically proven to represent distributed discontinuities such as edges better than traditional wavelets and are a suitable
tool for edge characterization. This novel shearlet p-Laplacian inpainting model can effectively reduce the staircase effect in Total
Variation (TV) inpainting model whereas it can still keep edges as well as TV model. In the proposed scheme, neural network
is employed to enhance the value of compression ratio for image coding. Test results are compared with JPEG 2000 and H.264

Intracoding algorithms. The results show that the proposed algorithm works well.

1. Introduction

Image inpainting [1-5] is a method for recovering regions
in images whose pixels are distorted or removed in some
way. Inpainting methods are commonly based on Partial
Differential Equations (PDEs) and Total Variation (TV)
models. In PDEs technique [6], pixel values around the
region to be inpainted are considered to be the boundary
condition for a boundary value problem. Then, a proper
equation for interpolating in that area will be solved. Image
inpainting has a variety of applications such as text and
object removal, denoising, superresolution, digital zooming,
filling-in, and compression. Gali¢ et al. [7] use an inpainting
technique directly for compression whereas, in previous
studies, image inpainting is treated only as a preprocessing
step to increase other existing image compression standards.
Bugeau et al. [8] offered a working algorithm for image
inpainting trying to approximate the global minimum of
an energy functional that combines the three fundamental
concepts of self-similarity, coherence, and propagation. In

this method, when the image does not have enough patches
to copy from, either because the mask is too spread and the
patch size is large or because the mask is placed on a singular
location on the image, then the results are poor and although
the presence of a geometry term seems to help, it is clearly not
enough. The authors did not solve these problems and they
did not optimize the search in the patch space.

Chan et al. [6] have proposed TV wavelet inpainting
models. The main benefit of TV model is that it can keep
the edges very well. But, the method has the drawback called
staircase effect. To overcome this defect, we analyze the
physical characteristics of TV model [9] and p-Laplacian
operator [10] in local coordinates. At the same time, the
traditional wavelets [11] are not very effective in dealing with
multidimensional signals containing distributed discontinu-
ities such as edges. To overcome this limitation, one has to use
basis elements with much higher directional sensitivity and of
various shapes to be able to capture the intrinsic geometrical
features of multidimensional phenomena.
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In this paper, a new discrete multiscale representation [12]
called the Discrete Shearlet Transform (DST) is introduced
to perform the inpainting based on p-Laplacian operator in
wavelet domain. This approach, which is based on the shearlet
transform, combines the power of multiscale methods with a
unique ability to capture the geometry of multidimensional
data and is optimally efficient in representing images contain-
ing edges. In the proposed algorithm, the correlated portions
are identified and they are removed at encoder and filled
by image inpainting at the decoder. A p-Laplacian based
inpainting method which employs a DST is presented which
can effectively reduce the staircase effect in TV model and
can be used to achieve less computing time. Gradient descent
back propagation [13] with adaptive learning rate is proposed
for compression.

This paper is arranged as follows. First, in Section 2,
the statement of the problem is described. In Section 3,
the framework of proposed coding scheme is discussed.
Specifically, Section 3 shows the ANNs based compression in
shearlet domain and the shearlet image inpainting based on
p-Laplacian operator. In Section 4, the experimental results
are presented. Section 5 describes conclusion.

2. Statement of the Problem
A standard image model [6] is defined as
z(x) = f(x) +n(x), ¢y

where f(x) is original noise free model; n(x) is Gaussian
white noise.
The standard wavelet transform of z(x) is given by

. 2
z (at, x) =jzk“j’k%’k (x), jez keZ’, D)

wherea = a; and is wavelet coefficients; y is mother wavelet
function.

Damages in the wavelet domain cause loss of wavelet
coeflicients of z(x) on the index region I, {ocj)k}’s with j, k €
I represent those wavelet components missing or damaged.
The task of inpainting is to restore the missing coefficients
in a proper manner, so that the image will have as much
information being restored as possible.

For inpainting when we used the traditional wavelets
[14-16], they do not deal with multidimensional discontinu-
ities such as edges. Recently, a theory for multidimensional
data called Multiscale Geometric Analysis (MGA) has been
developed. Many new MGA tools have been proposed such
as ridgelet, curvelet, bandlet, and contourlet, which provide
higher directional sensitivity than wavelets. Shearlets [17-19],
a new approach proposed in this paper, not only possess all
the above properties but also are equipped with a rich math-
ematical structure similar to wavelets, which are associated
with a multiresolution analysis. Shearlets form a tight frame
at various scales and directions and are optimally sparse in
representing image with edges.

The discrete shearlet transform of z(x) is given by

z(x) =2y jleZ keZ’ (3)
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and the corresponding image inpainting model in shearlet
domain is

. A 2
ming;;; T (fiz)= J |fo (s X)l dx + Z E(Cj,l,k - ‘Xj,l,k) >

ik
(4)
where,
fx)= ;(Cj,l,kV/j,l,k ()5 Gk (LK) €1,
i
jlez, keZz, 5)
A =0 if j,l,k €I, otherwise it is assigned with

positive constant.

When this model is solved, the use of TV norm can retain
sharp edges while reducing noise and other oscillations. But
the corresponding Euler-Lagrange equation is not trivial to
compute since it is highly nonlinear and ill-posed in strong
sense. Furthermore, this model has the drawback that is
called stair case effect. To overcome these deficiencies, a p-
Laplacian operator [20] is introduced in this new shearlet
inpainting model and is

1

ming;, T (f.z) = E J |V.f G x)lpdx

A
+) E(Cj,l,k - ‘xj,l,k)z’ 1<p<2,
ik
(6)

where p can be adaptively selected based on the local gradient
features of images. That is, away from edges, p will be
approached to 2 to overcome the staircase effect; on the
contrary, p will be approached to 1 to preserve edges. So this
new model can effectively reduce the staircase effect in TV
model whereas it can still retain the sharp edges as TV model.

The Euler-Lagrange equation of the above inpainting
model is

-V (|Axf (s x)|P_2 Vof G x)) + Aj,l,k (Cj,l,k - ‘Xj,l,k) =0.
(7)

The gradient descent flow of (7) is

(Cj,l,k)t =V- (A f @0 Vof (6.x))
~ X (Siak = @ik -

(8)

The above equation is solved by the simple explicit
finite difference algorithm. To simplify the formulation, we
introduce the standard finite difference notations, such as

the forward differences:

Drfk,l = fk+1,l - fk,l’

and the backward differences:

D feg = fii = feerp D, fig = frg = fri-1 (10)

D;fir=fa—fr (9
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into 64 x 1 column vector.

(1) Divide the original image in frequency domain into 8 x 8 pixel blocks and reshape each one

(2) Arrange the column vectors into a matrix of 64 x 1024.

(3) Let the target matrix equal to the matrix in step 2.

(4) Choose a Gradient Descent Back Propagation learning algorithm to start training.

(5) Simulate the network with the input matrix and the target matrix.

(6) Obtain the output matrices of the hidden layer and the output layer.

(7) Post-process them to obtain the compressed image, and the reconstructed image, respectively.

ALGORITHM I: Image compression and decompression using ANNS.

We note that it is important to evaluate the nonlinear
term, which we denote as

A|P2

V. f

Schrv =V ( Vx } (C) x)) (ll)

in (8). However, the p-Laplace operator is defined in the
pixel domain. In this paper, we calculate it straightforwardly
by transforming the shearlet domain to the pixel domain to
compute the p-Laplace operator and then transform back to
the shearlet domain. That is, we calculate the following:

f= 2

jlez, kez?

<C, Wj,z,k> Yilk (12)

For all (i, j), we compute the following:

D) fi,
o J
curv; ; = D, : ; A . EEYR
(Pt fil "+ D3 £l +e) )
. D; f;;
+D

2 (|folj’2 s 'D;fi,jr N s>(2_P)/2 >

where ¢ is a small positive number which is used to prevent
the numerical blow-up when

" =o0. (14)

+ 2 +
D1 fi| + (D5 1,
Then we compute the curvature projection on the wavelet
basis by

Schrv (]’ l’ k) = <curv, 1//j,l,k> . (15)

3. Framework of Proposed Scheme

The method proposed in this section is based on removing
redundancy at the encoder and restoring the removed infor-
mation using an inpainting method at the decoder. In this
algorithm, redundancy removal is performed through detect-
ing texture regions with similar statistical characteristics and
dividing the image into homogeneous regions. The overall
system with encoder and decoder diagrams is depicted in
Figures 1 and 2. In the following subsections, encoder and
decoder blocks are discussed separately.

3.1 Design of Encoder

3.1.1. Image Analysis. The input image is subjected to image
analysis by extracting edges from the images in order to
identify both the structural and textural regions. An input
image is divided into 8 x 8 blocks. Then they are identified
as textural or structural blocks based on their distance from
edges. The block is identified as a structural one when it
contains more numbers of pixels having very small distance
from edges. The remaining blocks are called textural blocks.

The important blocks from both textural regions and
structural regions are selected by using different algorithms
[21]. The remaining blocks are easily removed during encod-
ing. In this way, the blocks are identified and removed. After
the removal of specified blocks, in the original image, the
regions are filled with the corresponding DC value or filled
with pure red, or green, or blue component, in the case of
color images.

3.1.2. ANN Based Image Compression. Gradient descent back
propagation algorithm [13] is the widely used algorithm
in Artificial Neural Networks (ANNs). The feed-forward
neural network architecture is capable of approximating most
problems with high accuracy and generalization ability. This
algorithm mainly focuses on the error correction learning
rule. Error propagation consists of two passes through the
different layer of the network: a forward pass and a backward
pass. In the forward pass, the input vector is applied to
the sensory nodes of the network and its effect propagates
through the network layer by layer.

Finally, a set of outputs is produced as the actual response
of the network. During the forward pass, the synaptic weights
of the networks are all fixed. During the back pass, the
synaptic weights are all adjusted in accordance with an
error correction rule. The actual response of the network is
subtracted from the desired response to produce an error
signal. This error signal is then propagated through the
network against the direction of synaptic conditions. The
synaptic weights are adjusted to make the actual response of
the network move closer to the desired response. Procedure

for Image Compression. For experiment, feed-forward neural
network with three layers is selected. Input layer, hidden
layer with 16 neurons, and output layer with 64 neurons are
introduced in that network. Back propagation algorithm is
used for training process. For training the network, 256 x 256
Lena image is selected (see Algorithm 1).
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(1) Decompose f/7" into a low pass image f/ and a high pass image f; by
applying Laplacian Pyramid Scheme.

(2) Use pseudo polar grid to compute P - fé .

(3) Band pass filter the output matrix P - f

(4) Re-assemble the Cartesian sampled values

(5) Take the 2D IFFT.

ALGORITHM 2: Construction of discrete shearlet transform.

(1) Obtain a noisy image as input

z(x) = f(x) +n(x)
(2) Smooth the noisy image using

oz .

Foi div (g (IVzl) - Vz)
(3) Analyze the smoothed image by extracting edges through

72 5] = (@02 () + (2,2 (5. 9))’

0,2(x,
6 = arctan (M>
ayz(x, ¥)

(4) Identify the structural and textural regions based on the extracted edges.

(5) Skip the regions that are not selected as necessary information instead fill
the DC value and create a DC filled image

(6) Perform ANN Compression and Decompression using

1<j<K

N
in _
comp” = Z Vijzi,
i=1

K

in _ in .

zZ; —ZW}jcomp , 1<i<N,
j=1

where V;; & W;; are weights of compressor and decompressor respectively.
(7) Start the inpainting process with initial guess ¢7;} = ;11 X;1x-

j
Set q;?}fk = 0 and the initial error E = ||c“eW — o

2

1 (j,Lk)el

(8) Whilei < NorE < §,do
(a) Set Colcl — Cnew
(b) Calculate SH_,, using (12)-(15)
(c) For all j,1, k update
new old At

A

new old
IS —

(d) Compute error E = ¢

(e) End the while loop

2

Where y; . = { 0 (LK) ¢ I} and I is the inpainting region.

Sitk = Sjpk T 73— (Schrv -A ik (ﬁ ik T (Xj,l,k))’

X
where A, is the time step size & A . is the space grid size

AvLGoriTHM 3: Pseudocode of proposed framework with PDEs inpainting algorithm based on p Laplacian operator.

3.2. Design of Decoder. After performing the ANN based
compression at encoder, the decompression process is carried
out at decoder. Final reconstructed image is obtained through
p-Laplacian inpainting based on DST and texture synthesis.
The theory of shearlets is discussed in addition to the
two most important modules, namely, shearlet domain p-
Laplacian inpainting and texture synthesis.

3.2.1. Continuous Shearlet Transform. The continuous shear-
let transform [17, 18] is a nonisotropic version of the continu-
ous wavelet transform with a superior directional sensitivity.
Forn =2,

SHy £ (@,5,1) = (i Vass) (16)

Each analyzing element v, is termed shearlet. The
frequency tiling of shearlets is shown in Figure 3.

3.2.2. Discrete Shearlet Transform. By sampling the continu-
ous shearlet transform, we can get a discrete transform which
is shown in Figure 4 (see Algorithm 2).

3.2.3. Shearlet Domain p-Laplacian Inpainting. From the
pure inpainting perspective, the inpainting problem may
be stated as follows. Let I be the original image, which is
composed by a source area, denoted by ¢, whose pixel values
are known, and a target area, denoted by (), representing
the damaged region to be repaired or a region to be filled
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FIGURE 1: Block diagram of proposed image compression scheme-encoder.
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line. (b) Frequency support of shearlet satisfies parabolic scaling (j-decomposition level). The Figure shows only the support for &, > 0; the
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FIGURE 4: Succession of Laplacian pyramid and directional filtering.

in, and this means being inpainted. As shown in Figure 5,
these are nonoverlapping areas, that is, I = ¢ U Q) and 0Q
for the boundary between the source and target regions. The
simplified architecture for image coding with inpainting is
shown in Figure 5 and the pseudocode of proposed work is
described as follows: the pseudocode of proposed framework
with PDEs inpainting algorithm based on p-Laplacian oper-
ator (see Algorithm 3).

3.2.4. Texture Synthesis. 'The missing texture blocks are filled
in with the texture from its surrounding [2]. Let the region to
be filled be denoted by Q. The lost block will now be filled,
pixel by pixel, in a raster fashion. Let I, be a representative
template touching the left of a pixel p(i, j) € Q. We proceed
to find an estimate of I, from the available neighborhood,
such that a given distance d(I,,1,) is minimized. As per [2],
d is a normalized Sum of Squared Differences (SSD) metric.
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(a)

Image compression
using ANN

Image decompression
using ANN

Image inpainting in

shearlet domain

(b)

Inpainted image

FIGURE 5: (a) Illustration of the inpainting problem. (b) The simplified architecture for image coding with inpainting.

Once such an estimate of I, is found, we choose the pixel
to the immediate right of estimate of I, as our candidate for
p(i, j) € Q. For stochastic textures, the algorithm selects
at random one of the pixels neighboring estimate of I,. The
template I, can be a simple seed block of 3 x 3 pixels. Then,
of all possible 3 x 3 blocks in the 8 neighbourhoods, the one
with the minimum normalized SSD is found and a pixel to
its right is copied into the current pixel in the lost block. This
algorithm is considerably fast when using the improvements
in [21-25].

4. Performance Evaluation

We illustrate the performance of the proposed algorithm for
image compression with image inpainting in shearlet domain
using ANNs and compare it with the image inpainting
method proposed by Liu et al. [3], The codes are written in
MATLAB 2008a.

4.1. Test Conditions and Parameters. The proposed algorithm
is tested with color images from USC-SIPI and Kodak image
database. In all testes, we use shearlet base p-Laplacian
inpainting and we set the parameter values p = 1.2, A = 0
for noiseless images and A = 0.08 for noisy images.

4.2. Overall Performance. Figure 6 shows testimage Lena and
corresponding results of proposed system. In this test, edges
are extracted from the input image and shown in Figure 6(b)
and the image with removed blocks (25% removal) is shown
in Figure 6(c).

Based on the preserved blocks, the shearlet p-Laplacian
inpainting gives results in Figure 6(d). When comparing the
restored image in Figure 6(e) with JPEG 2000, proposed
scheme saves 36.15% of bits with QP = 75. The comparison
of standard images shows up to 50% bits saving which is
achieved by the proposed scheme compared to JPEG 2000
and up to 31.61% bit saving compared to edge based image
inpainting method proposed by Liu et al. [3]. The bit-saving
results are shown in Table 1.

Figure 7 shows the reconstructed images by the proposed
scheme with standard H.264/AVC Intracoding. The bit-rate
saving is also noticeable, shown in Table 2, but not as much
as the comparison with JPEG 2000. The proposed scheme can
acquire 48.07% bit-rate saving compared to the state-of-the-
art H.264 Intracoding with QP = 24 for an image KodimI9.
Bit-rate saving of 33.01% is achieved for an image Kodim11 by
the proposed scheme when compared with edge based image
inpainting method.

Figure 8 shows the comparison results with JPEG 2000.
The first row in Figure 8 shows results of the proposed
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(e)

FIGURE 6: Comparison with JPEG 2000 with QP = 75. (a) Input image. (b) Edges. (c) Image with 25% of portions removed. (d) Reconstructed
image after inpainting and texture synthesis. (e) Reconstructed image by JPEG 2000.
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(d)

FIGURE 7: Comparison with H.264/AVC with QP = 24. (a) Jet (25% removal); (b) peppers (32.5% removal); (c) kodim05 (23% removal);
(d) kodim02 (51% removal). The top row shows the reconstructed images by proposed scheme and the bottom row shows the reconstructed
images by H.264/AVC Intracoding.

TABLE 1: Bit-rate saving of proposed scheme compared to JPEG 2000 and edge based image inpainting method (QP = 75).

Bit-rate (bpp) Bit-rate saving (%)
Original Block Compared
pare
image removal (%) PSNR (dB) Edge based Proposed Compared with edge
JPEG 2000 image with JPEG
L scheme based Image
inpainting 2000 R
inpainting
Jet 25.0 45.67 1.156 0.919 0.780 32.53 15.13
Lena 25.0 37.23 1112 0.888 0.710 36.15 20.05
Peppers 32.5 39.87 1.217 0.965 0.812 33.28 15.85
Kodim02 51.0 35.78 1.058 0.709 0.529 50.00 25.39
Kodim03 42.8 36.45 0.895 0.608 0.485 45.81 20.23
Kodim07 32.8 39.34 1.079 0.802 0.622 42.35 22.44
Kodimil 35.0 38.00 1.368 1.047 0.716 47.66 3161
Kodim19 26.7 41.34 1.276 0.915 0.680 46.71 25.68
Kodim20 54.2 3311 0.897 0.638 0.522 41.81 18.18
Kodim23 53.0 34.12 0.821 0.567 0.492 40.07 13.23

TABLE 2: Bit rate savings of proposed scheme compared to H.264/AVC intra and edge based image inpainitng method (QP = 24).

Bit-rate (bpp) Bit-rate saving (%)
Qriginal Block PSNR (dB) Edee based Compared
image removal (%) ge base Proposed Compared with edge
H.264 | lmase scheme with H.264 based image
inpainting S
inpainting
Jet 25.0 42.56 0.985 0.880 0.727 26.16 17.35
Lena 40.0 35.67 0.993 0.869 0.772 22.26 11.16
Peppers 32.5 36.45 1.311 1.080 0.818 37.61 24.27
Mandrill 43.0 36.48 0.880 0.783 0.691 21.47 11.74
Kodim02 51.0 32.11 0.948 0.701 0.510 46.20 2725
Kodim03 42.8 34.23 0.710 0.562 0.495 30.28 11.92
Kodim07 32.8 35.00 0.876 0.751 0.671 23.38 10.63
Kodim11 35.0 36.78 1.354 1.098 0.736 45.68 33.01
Kodim13 42.0 37.02 0.900 0.872 0.714 20.66 18.12
Kodim19 26.7 39.36 1.246 0.956 0.647 48.07 32.32

Kodim20 54.2 30.00 0.823 0.636 0.473 42.49 25.58
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(d)

(e)

FIGURE 8: Comparison with JPEG 2000 with QP = 75. (a) Kodim07 (32.8% removal); (b) kodim23 (53% removal); (c) kodim03 (42.8%
removal); (d) kodim20 (54.2% removal); (e) kodim1l (35% removal). The first row shows the restored images by proposed algorithm and the

second row shows the restored images by JPEG 2000.

method and the second row presents JPEG 2000 results. The
bits saving of proposed system is indicated in Table 1. The
proposed scheme averagely saves 43.54% bits with QP =75 for
the five images shown in Figure 8. Peak Signal-to-Noise Ratio
(PSNR) is also used to measure the quality of the restored
images. It is defined as follows:

max?
PSNR = 1010g10 ﬁ > (17)

where max; is the maximum possible pixel value of the image.

Figure 9 gives objective quality comparisons between the
proposed scheme, JPEG 2000, and H.264/AVC Intracoding.
It can be observed that the objective quality of the proposed
scheme outperforms the two standard compression schemes

(JPEG 2000 and H.264/AVC Intra) and edge based inpainting
algorithm at both low and high bit rates. The proposed
algorithm is adapted for subjective quality, and PSNR is not
a good measure to evaluate the subjective quality, especially
for the resulting images of p-Laplacian inpainting in shearlet
domain.

The reconstructed images with same visual quality
regardless of large PSNR difference are shown in Figure 10.
Inpainting with edges produces the results which are difficult
to differentiate compared with H.264/AVC Intra. But the
inpainting method reduces the bit rate because much less
number of bits is required for coding edges. The proposed
algorithm averagely saves 21.07% bit rate for images having
high percentage of texture regions (mandrill and kodim13)
when QP = 24 and it is shown in Table 2.
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FIGURE 9: Objective quality comparison between proposed scheme, H.264/AVC Intra, and JPEG 2000 on some typical color images.

The recent no-reference quality assessment method is
adopted in this paper that is proposed in [26] to evaluate
the proposed scheme in comparison with JPEG 2000 and
H.264/AVC Intra. Note that in [26], blocking artifacts are
detected within a compressed image. From Figure 11, it can

be observed that the reconstructed images by the proposed
scheme contain less blocking than those by JPEG 2000 and
H.264/AVC Intra at similar compression ratios. The result
shows the better bit-rate reduction when compared with
previous methods as far as visual quality is concerned.
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FIGURE 10: Subjective quality comparison between the proposed scheme and H.264/AVC Intra. QP is 24 for high quality. From top to bottom:
mandrill (43% removal) and kodim13 (42% removal). From left to right: incomplete image with black blocks; reconstructed image by the
proposed scheme; reconstructed image by H.264/AVC Intra. Please note that the proposed scheme reconstructs both highly textured images
with 21.07% bit-rate saving. Please observe that in kodim13 (the first row) the mandrill eye can also be reconstructed on both sides.

Kodim11 (768 x 512)

0.7 4
0.7 Peppers (512 x 512) o
. 0.6 -
0.6 AN - .
\\1\;*. 0.5 \\\\
zé:n 0.5+ \\\\\\ éo 0.4 A\\ \‘\\‘\\ O
3 N R 1 e e
= N\, S T -
m 0.4+ ’:;:::::*53_\_::_““ 0.3 4 ‘—-—-~»<,‘_“< ¢
Pyl L T —— A
0.3 0.2 1
0.2 T T T T 0.1 T T T 1
0.2 0.7 1.2 1.7 2.2 0 0.2 0.4 0.6 0.8
Bit/pixel (bpp) Bit/pixel (bpp)
--@-- Proposed scheme —+- JPEG 2000 --@-- Proposed scheme ~4- JPEG 2000
—+—- H.264/AVC Intra —+— H.264/AVC Intra
(a) (b)
Kodim20 (768 x 512) Kodim23 (768 x 512)
0.17 - 29
e 2.7 P
0.12 - 2.5
’\ op ¢
1) N =] ~ .
£ AN g 231 SN
_3 \\\\"v 8 2 1 \\\
=} NN m 2.1 N .
= 0.07 A Y . D S o..
\\8 1.9 1 T~ T el g
~ i A - ———— T
‘*%‘é‘;;;‘; -------------------- ; 1.7 Ty *
oo A - __ A———______ o
" 0 05 X 15 > ' ' ' —* '
o 0 0.2 0.4 0.6 0.8
Bit/pixel (bpp) Bit/pixel (bpp)
--@-- Proposed scheme —4+- JPEG 2000 --@-- Proposed scheme ~4- JPEG 2000
—+— H.264/AVC Intra —+— H.264/AVC Intra
(c) (d)

FIGURE 11: Quality assessment (by measuring the blocking artifacts by the method in [26]) results that compare the proposed scheme with
JPEG 2000 and H.264/AVC Intra on some typical color images.
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4.3. Computational Complexity. For the experiment, Intel
2GHz CPU is used. The shearlet domain p-Laplacian
inpainting with the help of assistant information module
is realized in MATLAB 2008a. According to our empirical
results, the shearlet domain p-Laplacian inpainting process
at the decoder needs averagely 3-4 iterations to converge. We
found that the proposed scheme needs 1-3 s to decode a 768 x
512 image at 40% removal. The time complexity of inpainting
is in general proportional to the size of removed regions.

The proposed algorithm is simpler because of the pres-
ence of region removal and assistant information generation
based on Discrete Shearlet Transform (DST).

5. Conclusion

In this paper, we develop an ANNs based image compression
framework that adopts shearlet domain inpainting technique.
In this proposed algorithm, the correlated regions are iden-
tified and removed automatically at the encoder. Then they
are restored at the decoder by using inpainting scheme. The
key techniques used for coding are gradient descent back
propagation algorithm with adaptive learning rate and p-
Laplacian image inpainting in shearlet domain. Experimental
results show that the proposed scheme produces good results.
The proposed scheme produces up to 50% and 48.07% bits
saving when compared with JPEG 2000 and H.264/AVC
Intra, respectively.

Edge extraction can be flexible and adaptable for com-
pression. Finding the regions that can be eliminated is con-
sidered to be an open problem and it seems that solving this
problem will lead to increase in compression ratios and out-
put quality.
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We propose a novel algorithm for image sequence fusion and denoising simultaneously in 3D shearlet transform domain. In general,
the most existing image fusion methods only consider combining the important information of source images and do not deal with
the artifacts. If source images contain noises, the noises may be also transferred into the fusion image together with useful pixels.
In 3D shearlet transform domain, we propose that the recursive filter is first performed on the high-pass subbands to obtain the
denoised high-pass coeflicients. The high-pass subbands are then combined to employ the fusion rule of the selecting maximum
based on 3D pulse coupled neural network (PCNN), and the low-pass subband is fused to use the fusion rule of the weighted sum.
Experimental results demonstrate that the proposed algorithm yields the encouraging effects.

1. Introduction

Video sensors have been applied extensively to video monitor
and machine vision fields with the performance improvement
and the reduced cost. In real applications, because of the
effect of objects movement, occlusion, and illumination
variation factors, single video sensor may not satisfy the
requirements [1]. To get the complete information of a scene,
multiple different sensors are employed simultaneously to
capture the content of the same scene [2]. To utilize the
information captured from multiple sensors sufficiently and
efficiently, we need to combine the contents from different
video sensors into an image sequence. This can be easily
satisfied by the image sequence fusion methods, which can
merge multiple image sequences from different sensors into a
single image sequence containing all important information,
eliminating redundancy and improving the availability of the
information.

In the past decade, a variety of image fusion approaches
have been developed for different applications [3-5]. The
simplest fusion method is the weighted average of source
images. However, the method is brittle and easy to lead to
the contrast reduction and introduce artifacts. Now, fusion
methods based on multiscale decomposition in the transform

domain are increasingly popular because of better robustness
and reliability [6-8]. The most existing fusion methods are
designed for static images; however, the fusion methods
especially for image sequences and videos are seldom. The
fusion methods for static images can even ensure the quality
of single frame by the frame-by-frame fusion [9], but the
temporal consistency and stability of the image sequence is
hard to be preserved. So far, there are several fusion methods
for image sequences and videos. By utilizing the information
of temporal axis, in recent years, several state-of-the-art video
fusion approaches [10, 11] have been developed. Based on
the three-dimensional surfacelet transform, Zhang et al. [12]
propose a video fusion framework which fuses multiframe
images of input videos as a whole procedure. However, the
method is still insufficient in extracting the spatial-temporal
information from videos with dynamic background. Zhang
et al. [13] propose a multisensor video fusion method based
on three-dimensional uniform discrete curvelet transform
(3D-UDCT) and spatial-temporal structure tensor. However,
these schemes did not still obtain the satisfactory results
due to the insufficient capability of representing motion
information.

In addition, the most existing image fusion methods still
only pay attention to combine the useful pixels of source
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images and seldom consider dealing with the artifacts. The
noises are easily introduced into the fusion image together
with the useful pixels if the further processes are not
performed for eliminating noises. There are some fusion
methods that consider the enhancement and denoising when
the fusion procedure is performed. Piella [14] presents a
variational model to perform the fusion of input images while
preserving the salient information and enhancing the con-
trast. Yang and Li [15] propose a sparse representation-based
multifocus image fusion method which can simultaneously
carry out denoising and fusion of noised source images.

In the paper, we propose a novel image sequence fusion
algorithm which implements fusion and denoising simul-
taneously in 3D shearlet transform domain. Input image
sequences are first decomposed by 3D shearlet transform into
high- and low-pass subbands, and then the coefficients are
merged and denoised in frequency domain. Finally, inverse
3D shearlet transform is applied on the fused coeflicients to
reconstruct the image sequence. Multiple frame images can
be decomposed to different frequency scales once in 3D space
by 3D shearlet, which has certain direction selectivity and can
avoid aliasing and instability for the coefficients of neighbor
frames. 3D shearlet considers the motion feature in temporal
axis, such that the decomposed coefficients can approximate
sufficiently the spatial-temporal features of image sequences
in different scales. For merging coeflicients, to preserve the
consistency and stability of the interframe coefficients, we
propose a spatial-temporal fusion rule based on 3D PCNN
[16], which can extract the spatial-temporal information of
the corresponding subbands from the neighbor frames. In
addition, the most existing image fusion methods still only
pay attention to combine the pixels of source images and
seldom consider dealing with the noises. Here, we combine
the fusion and denoising together and directly deal with
noises on the coeflicients using the recursive filter. Superior
to the separate fusion and denoising based on multiscale
transforms, our method will reduce the error only due to the
need to perform the decomposition and reconstruction once.

The remainder of the paper is organized as follows.
Section 2 reviews basic 3D shearlet transform theory in
brief. Section 3 describes the proposed image sequence fusion
and denoising algorithm in detail. Section 4 presents and
discusses the experimental results. Section 5 concludes.

2. 3D Shearlet Transform

In this section, we briefly review theory and properties of 3D
shearlet transform, which will be used in the rest of this paper
(see [17] for details).

The shearlet approach inherits the general advantages of
curvelets and surfacelets. During the last decade, to overcome
the limitations of wavelets and other traditional methods,
a new class of multiscale methods is introduced through a
novel framework. The framework can effectively combine
the standard multiscale decomposition and efficiently capture
anisotropic features. The shearlet just belongs to part of the
new class of multiscale methods. The shearlet representation
is a multiscale pyramid of well-localized waveforms defined
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at various locations and orientations. This representation
can break through the limitations of traditional multiscale
systems in dealing with multidimensional data.

The 3D shearlet transform is constructed by a shearlet sys-
tem associated with the pyramidal regions. Three pyramidal
regions P, P,, and P; are obtained by partition of the Fourier
space R?, defined as follows (shown in Figure 1):

& &
AR AL }

Pzz{(fl’fz,%)GRS: g <1)§_z 51]’) 1)

P = {(51’52>E3) €R’:

P, = {(51,52,53) eRrR: il <1, b < 1]».
& &
The directionality of the shearlet systems is controlled
through the use of shearing matrices. The 3D shearlet systems
for L*(R®) are a Parseval frame, which is obtained by using
an appropriate combination of the systems of shearlets
associated with the pyramidal regions P; (d = 1,2,3,] =
(I,,1,) € Z%). In this way, the 3D shearlet systems are defined
as the collections consisting of the coarse-scale shearlets, the
interior shearlets, and the boundary shearlets:

g ke ZH U Fn i 20, Ll =227,k e Z°}

[Fpa iz 0L <2, || <2/, ke Z’,d=1,2,3},
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where the shearing parameters /; and [, control the orienta-
tions of the support regions in 3D shearlet systems. Figure 2
illustrates a typical support region. The orientation of the
support region is controlled by I = (I;,1,). It can be seen that
the support region is becoming more elongated as j increases.

A numerical implementation of the 3D discrete shearlet
transform takes advantage of the sparsity properties of the
corresponding continuous representation. The 3D digital
shearlet transform can preserve the discrete integer lattice
and enable a natural transition from the continuous to the
discrete setting due to the use of shearing matrices rather
than rotations. The 3D digital shearlet transform algorithm
is implemented through a cascade of a multiscale decom-
position and a directional filtering stage. The multiscale
decomposition is first implemented using the Laplacian
pyramid algorithm. And then the directional components are
obtained using shearing matrices to control orientations in
the pseudospherical domain.

3. Proposed Image Sequence Fusion and
Denoising Algorithm

In this section, the proposed image sequence fusion and
denoising algorithm is presented in detail. The main idea is
that image sequence fusion and denoising are implemented
simultaneously in 3D shearlet transform domain. The frame-
work of the proposed algorithm is shown in Figure 3. For the
clearness of the presentation, we assume that two registered
image sequences are combined.
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FIGURE I: ((a)-(c)) The pyramidal regions P,, P,, and P, in frequency domain R® are illustrated.

FIGURE 2: Frequency support of a representative shearlet function
¥; 14 inside the pyramidal region P;.

Two groups of image sequences Va and Vb are decom-
posed by 3D shearlet transform into two groups of high-
pass subbands and two groups of low-pass subbands for

several frames. Then, high-pass subbands are denoised by the
recursive filter (RF) [18]. Next, the fused subband coefficients
of all frames are obtained to employ a 3D PCNN-based
spatial-temporal saliency fusion rule. Finally, the fused image
sequence is reconstructed by inversing 3D shearlet transform
on the fused coefficients of all frames. The steps of the
proposed algorithm are presented as follows.

Step 1. Input image sequences are transformed using 3D
shearlet transformation to the frequency domain and
produce the low- and high-pass subbands {Cxa(x, Y1),
C}{?(x, y,t)} and {C};b(x, ¥, t), C}flb(x, y, 1)} for several frames,
where Cjy(x, y,t) denotes the low-pass subband coeflicients
at the coarsest scale of the tth frame and C(x, y,t) denotes

the high-pass subband coeflicients at the jth scale and in the
Ith direction and at the tth frame.

Step 2. For the high-pass subband coefficients, the recursive
filter is performed on the coeflicients of each frame for
eliminating noises. Then, 3D PCNN is used to compute
the spatial-temporal activity levels of the denoised high-
pass coeflicients to obtain the spatial-temporal activity maps,
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FIGURE 3: The diagram of the proposed image sequence fusion and denoising algorithm.

which are employed to merge the fused high-pass subband by
the selecting maximum.

Step 3. The low-pass subband coefficients are merged using
a spatial-temporal energy weighted fusion rule based on the
activity maps yielded by 3D PCNN.

Step 4. Apply the inverse 3D shearlet transform to the fused
coeflicients {Fjo(x, y, 1), Fj (x, y, 1)} for all frames and then
obtain the fused image sequence V.

3.1. 3D PCNN-Based Spatial-Temporal Fusion. This section
discusses the proposed 3D PCNN-Based Spatial-Temporal
Fusion in detail. Based on the experimental observations of
synchronous pulse bursts in cat and monkey visual cortex, a
novel biological neural network called PCNN is developed.
PCNN neuron consists of receptive field, modulation field,
and pulse generator [19, 20]. Different from the traditional
neural network, PCNN is a feedback network and does not
need to be trained. A secondary receptive field of PCNN,
known as the linking field, integrates inputs from adjacent
neurons to modulate the primary feeding field. In image
processing, 2D PCNN is a single layer and two-dimensional
connection neural network. Considering the spatial features
of 2D image plane, 2D PCNN utilizes the output of the spatial
neighborhood pixels as the inner input of next iteration. The
similar neurons in PCNN generate pulses simultaneously to

compensate effectively the spatial incoherence and the slight
amplitude changes, so that PCNN can measure the salient
object regions completely. It has been successfully used to deal
with the single static image. However, if 2D PCNN is applied
directly on an image sequence frame by frame, it may not
extract the temporal motion information.

To adapt PCNN to deal with image sequences, 2D PCNN
is extended to 3D PCNN utilizing the correlation of neighbor
frames. 3D PCNN has been used to the segmentation of
stereo images successfully [16]. Here, 3D PCNN is employed
to measure the activity energy of the coefficients from 3D
shearlet decomposition. Let C;,(x, y,t) indicate the coeffi-
cient located at (x, y) in the jth scale at the /th direction
and at tth frame. C;;(x, y,) in each subband is inputted
to 3D PCNN as the external feeding input. Both the last
output of the spatial neighbor pixels and the corresponding
output of the neighbor frames are used as the inner linking
input. In this way, 3D PCNN can extract the spatial-temporal
information sufficiently in an image sequence. The 3D PCNN
is defined as follows:

il
Fl, [n] = Cj; (x, 1)
il il
L]xyt [n] = exp (—ay) L]xyt (n-1]

Jil Ji
nyt,pqr nyt,pqr

+VLZ

par
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1, ifU” [n] > 67, [n]

Y] lt [n] Y 4
0, otherwise,
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where the coefficient C;,(x, y,t) is inputted to the feeding
- The linking input Lﬂ;ﬁ,t is equal to the sum of
neurons firing times in linking range, where «; indicates the
decay constants and V; is the amplitude gain. W, ... is the
weighted coefficient (p, g, r point out the size of 11nk1r1g range

in 3D PCNN). Y/

xyt

input P!

[n—1] is the output of the neuron from the

previous 1terat10n The 1nternal state signal U’ yt is obtained by

modulating F/ oyt ! and L7} > Where Bis the linking strength. Hi’yt

is the threshold, where «y is the decay constants and V@ is the

amplitude gain. » indicates the iteration times. If Y’ xyt = 1,

the neuron will generate a pulse, called one firing. If nyt = 0,
the neuron will not generate a pulse.

In the paper, the 3D PCNN can be used to measure
the spatial-temporal saliency of the coeflicients. Through
combining the coefficients of the corresponding scales and
directions from neighbor frames, we construct a 3D volume
whose size is M x N x T In this way, a neuron model of 3D
PCNN is constructed, where each of the coeflicients is the
external input of 3D PCNN. The neuron with the maximum
coefficient value is first fired. Following, the similar neurons
from the 3D space constructed by the internal linking
matrix W are motivated to produce synchronization pulse
through pulse propagation. The generated pulse sequence
Y[n] forms a 3D binary sequence, which contains the saliency
information of images, for example, regions, edges, textures,
and so forth.

In applications, the firing times are generally employed
to represent image information. Firing times ActJ ye[n] canbe

computed by accumulating all pixels before and 1ncluding the
present iteration, written as follows:

gl
Acty), [n

[n] = Act?!

xyt

[n—1]+ YL, [n], (4)

where ActJ (1] is often used to indicate the total firing times
in n iteration. Here, the firing times indicate the activity
energy of the coefficients.

The high-pass subbands of 3D shearlet decomposition
contain abundant detail information, for example, lines,
edges, contours, and so forth. To preserve the detail compo-
nents in fused images, we propose a fusion rule of spatial-
temporal selecting maximum based on 3D PCNN for the
high-pass subbands. Coefficients with large firing times are
selected as the fused coeflicients. Consequently, the fused
high-pass subband coefficients located at (x, y) in the jth

scale at the [th direction and at tth frame denoted as
Fj)(x, y,t) are defined as

1
C}/,? (X, e t) 4 if ACt\]/a Xyt > ACt‘\’/b Xyt
MESE
Czlb (x,y,t), otherwise.

The low-pass subband of 3D shearlet decomposition in
the coarsest scale contains the main energy of source images
and denotes abundant structural information. The fusion
rule of the low-pass subband employs a spatial-temporal
weighted fusion rule based on firing times of 3D PCNN. The
fused coeflicients of low-pass subbands denoted as Fj, (x, y, t)
employ a weighted fusion rule based on firing times of 3D
PCNN on coeflicients C}’é’(x, y,t) and CVh(x y,t), which are
defined as

Fio (%, p.t) (x, 3,t),
(6)

=w*C;/g(x,y,t)+(1—w)*CX)b

where w is the weight of coefficients and Act «yt 18 computed
by (3) and (4):

- Act’? (7)

jo
w = [Act Vaxyt®

jo N
Vayt Act ]

Vb,xyt

Finally, apply the inverse 3D shearlet transform to the
fused coefficients of N frames {F;o(x, y,t), Fj;(x, y, 1)}, and
then obtain the fused image sequence V.

3.2. Recursive Filter Denoising. The previous section intro-
duces the fusion method of the decomposed coefficients.
When input images contain some noises, the fused image
will also introduce noise artifacts if the coefficients are only
directly merged. So we need first to deal with the coeflicients
for denoising. This section presents mainly the recursive
filter method [18] which is used as the denoising of the
coefficients. The recursive filter is a real-time edge-preserving
smoothing filter. Comparing with the separate fusion and
denoising based on multiscale transform, the fusion and
denoising simultaneously on the coefficients decomposed
by 3D shearlet transform will reduce the error caused by
the decomposition and reconstruction. In addition, the
denoising filter is run on the coefficients of different scales
and directions such that it enhances the robustness of the
algorithm.

The low-pass subband contains the main energy of
images and denotes the structural information. The high-pass
subbands contain the abundant details, for example, lines,
edges, and contours. In general, the noises appear in the high-
pass subbands, so here the recursive filter is only performed
on the high-pass subband coefficients to obtain the denoised
coefficients C j,» which are defined as follows:

C;i =RE(Cj), (8)

=

where RF indicates the recursive filter. When the noises are
eliminated, the details need to be preserved on the high-pass
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FIGURE 4: Comparisons of different fusion methods. (a) A frame of visible light image sequence; (b) corresponding frame of infrared image
sequence; and fused frame images using (c) DWT, (d) 3D DWT, (e) 3D DTCWT, and (f) proposed 3DShearlet-3DPCNN methods.

subbands. This can be easily satisfied by the edge-preserving
filter, called the recursive filter:

Jlnl = (1-a")I[n] +a’T [n-1], 9)

where a € [0,1] is a feedback coeflicient, I[n] is the value
of the nth coefficient of the input high-pass subband, J[n]
is the nth coeflicient of the filtered high-pass subband, and
d is the distance between neighborhood coefficients of the
high-pass subband. As d increases, a® goes to zero, stopping
the propagation chain and preserving details on high-pass
subbands. More details about the recursive filter can refer to
[18].

The recursive filter is performed in all N frame images
for obtaining the denoised high-pass coeflicients. Following,
the fused coefficients can be obtained through merging the
denoised coefficients.

4. Experiments and Analysis

In this section, the proposed image sequence fusion algo-
rithm based on 3D shearlet and 3D PCNN (named as
3DShearlet-3DPCNN) is tested on several groups of image
sequences. For comparison, besides the fusion scheme pro-
posed in this paper, another three fusion algorithms, the dis-
crete wavelet transform based (DWT), 3D DWT based, and

3D dual-tree complex wavelet transform based (3D DTCWT)
methods, are used to fuse the same image sequences. All of
these methods use the average sum and absolute maximum
selection schemes for merging low- and high-pass subband
coeflicients, respectively. The decomposition level of all of the
transforms is three. It is assumed that source image sequences
have been registered. The tested collections contain the clear
and the noised image sequences.

4.1. Fusion Results of Clear Image Sequences. The first exper-
iment is a pair of visible light and infrared image sequences
without noises. A pair of frames from input image sequences
and four fused images produced by DWT, 3D DWT, 3D
DTCWT, and proposed 3DShearlet-3DPCNN are shown in
Figure 4. Figure 4(a) is an infrared image frame from an input
image sequence, and Figure 4(b) is a visible light source image
frame from the corresponding visible light image sequence.
From Figure 4, we can observe that Figure 4(c) is the worst
result, which has the lower contrast, and the motion objects
tend to blur. Figures 4(d)-4(f), produced by 3D DWT, 3D
DTCWT, and proposed 3DShearlet-3DPCNN, present the
better results, which have higher contrast, clearer motion
objects. However, Figures 4(d) and 4(e) have some distortion
near the windows. The edges of the windows appear warp. The
middle wall between windows introduces the dark regions.
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(d)

®

FIGURE 5: One set of IFD images of input and fused image sequences corresponding to (a)-(f), IFD images between the current frame images
in Figures 4(a)-4(f), and their corresponding preframe images, respectively.

In contrast, the proposed method (Figure 4(f)) yields the
best result. This comparison reveals that the proposed fusion
approach effectively determines complementary or redun-
dant information between input image frames. It can preserve
all the useful information of the input image frames while
avoiding artifacts. In addition, to evaluate the performance
of image sequence fusion methods in temporal stability and
consistency, a clearer comparison is made by examining the
interframe-difference (IFD) between the current frame and
the preframe, shown in Figure 5. One set of IFD images
for source and fused frames between the current frames in
Figure 4 and their corresponding preframes are shown in
Figure 5. Obviously, the IFDs in Figure 5(c) introduce many
artifacts, which exist neither in Figure 5(a) nor in Figure 5(b).
In Figure 5(d), artifacts are greatly reduced. In Figures 5(e)
and 5(f), we cannot see nearly any artifacts. This further
demonstrates that 3D DTCWT and proposed fused image
frames have better temporal stability and consistency.

Figure 6 shows one pair of input image frames and the
corresponding fused results. Comparisons of different fused
results (Figures 6(c)-6(f)) and the frames fused using DWT,
3D DWT, and 3D DTCWT (Figures 6(c)-6(e)) are not
clear enough and have lower contrast. In particular, artifacts
around the man were also introduced in Figure 6(c). The
image frame fused using the proposed approach (Figure 6(f))
is obviously clearer and has stronger contrast. Experimental

results further demonstrate that the proposed algorithm can
effectively improve the quality of the fused image sequence.
For more accurate comparison, besides the visual anal-
ysis, the performance of fusion algorithms needs to be
further measured by objective quantitative analysis tools.
Here two metric tools were used: the spatial-temporal gra-
dient preservation based video fusion performance metric

(DQAB/ F) [21] and the mutual information of IFD images

(IFD_MI) [9]. DQ"?F indicates how much the spatial-
temporal information is extracted and transferred into the
fused image sequence. IFD_MI reflects the performance of
the image sequence fusion method in temporal stability and
consistency. The higher the values are for the two metrics, the
better are the fusion results.

The measurement results of the different fusion methods
for the image frames in Figure 4 and Figure 6 are shown in
Figure 7. The results show that the DWT method has the
lowest scores. Compared with the DWT, 3D DWT and 3D
DTCWT methods have the improved results. The proposed
method represents the highest performance in the listed
fusion approaches for DQ*** and IFD_MI metrics. The
quantitative results are consistent with the visual analysis,
illustrating that the proposed fusion method has the superior
performance while it can preserve the temporal stability and
consistency for image sequences.
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FIGURE 6: Comparisons of different fusion methods. (a) A frame of visible light image sequence; (b) corresponding frame of infrared image
sequence; and fused frame images using (c) DWT, (d) 3D DWT, (e) 3D DTCWT, and (f) proposed 3DShearlet-3DPCNN methods.
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FIGURE 7: Quality measures for the different fusion methods.

4.2. Fusion Results of Noised Image Sequences. In previous
discussion, the fusion results of different algorithms for the
clear image sequences have been analyzed by both visual
and objective metric tools. In the section, the denoising and
fusion results of different algorithms for the noised image
sequences are compared. Our method is compared to the 3D
DTCWT fusion method followed by 3D DTCWT denoising
[22], named as 3D DTCWT-FD.

Figure 8 presents the fusion and denoising results yielded
by our method and 3D DTCWT-FD method from a pair
of real world noise image sequences. Observing the source
image frames (Figures 8(a) and 8(b)), the visible light image
frame (Figure 8(a)) is clear and the infrared image frame

(Figure 8(b)) contaminated by noises. It can be seen that the
fusion image frames (Figures 8(c) and 8(d)) have eliminated
the noises. However, the 3D DTCWT-FD result (Figure 8(c))
becomes blurred due to over-smoothing. The proposed
denoising and fusion method yields the optimal result
which nearly removes all the noises and preserves the high
contrast.

In addition, to evaluate the performance of different
fusion and denoising schemes, DQ**¥, IFD_MI, and peak
signal to noise ratio (PSNR) metrics are used. Table 1 shows
the results of DQ**¥ and IFD_MI metrics for Figure 8. We
can see that the proposed method gets the higher scores in
both DQ**'F and IFD_MI. This indicates that the proposed
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FIGURE 8: Dublin source image frames and denoised and fused results: (a) a visible light image frame; (b) an infrared image frame; and fused
image frames using (c) 3D DTCWT-FD and (d) proposed 3DShearlet-3DPCNN.

fusion and denoising simultaneously method contains all the
useful information from source images, while eliminating the
noises. Figure 9 presents the PSNR results for 1000 frame
fusion images associated with Figure 8. Here, to get the
PSNR results, the clear visible light source image frames
are used as the reference images. From Figure 9, we can
observe that the results of the proposed method have higher
PSNR scores which indicate that our method yields better
the denoised images. Consequently, from the comparisons
of DQ*®F, IFD_MI, and PSNR metrics, the experiments
further demonstrate that the proposed image sequence fusion
and denoising simultaneously method yields the satisfactory
results, which merge the important complementary informa-
tion and remove the artifacts.

5. Conclusion

The paper proposes a novel algorithm for image sequence
fusion and denoising based on 3D shearlet transform. The
most existing image fusion methods do not deal with the

TABLE 1: Quality measures for the different fusion methods.

Data set Metric 3D DTCWT-FD Proposed
AB/F
Figure 8 DQ 0.1841 0.1903
IFD_MI 0.7294 1.4470

artifacts when the fusion procedure is performed. If source
images contain noises, the noises may be also transferred into
the fusion image together with useful pixels. Therefore, we
propose that the recursive filter is first performed on the high-
pass subbands to obtain the denoised high-pass coefficients
in 3D shearlet transform domain. The high-pass subbands
are then combined to employ the fusion rule of the selecting
maximum based on 3D PCNN, and the low-pass subband
is fused to use the fusion rule of the weighted sum. In this
way, the fusion and denoising simultaneously can be achieved
for the noised image sequences. Experiments demonstrate
that the proposed method improves greatly the quality of the
fused image sequence.
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Compressive sensing (CS) reconstruction of a spectrum-sparse signal from undersampled data is, in fact, an ill-posed problem.
In this paper, we mathematically prove that, in certain cases, the exact CS reconstruction of a spectrum-sparse signal from
undersampled data is impossible. Then we present the exact CS reconstruction condition of undersampled spectrum-sparse signals,

which is valuable for digital signal compression.

1. Introduction

In digital signal processing, the Nyquist sampling theorem
indicates that the sampling rate must be twice as large as
the bandwidth of the analog signal at least for acquiring the
intact information of the signal. Restricted by the theorem, it
is a challenge to digitize ultrawide bandwidth (UWB) signals
because of the unfeasible high sampling rate requirement
for the analog-to-digital converter (ADC). On the other
hand, the mass sampling data have to be compressed to save
the storage, which means that many data are abandoned in
the compression processing. Hence, why not to obtain the
compressed data of signals directly rather than to sample
signal with ultrahigh rate and then abandon most of the
samplings?

The emerging compressive sensing (CS) theory [1] pro-
vides an effective approach to solve this problem, which has
attracted much attention recently [2-7]. Consider a signal
x € CM and assume it is sparse on an orthogonal basis
¥ = {y,;} with K-sparse representation (K <« N) as x =
W0, where 6 is an N x 1 column vector with K nonzero
elements. Let ® denote a measurement matrix and let y be

the measurements vector of signal x; it can be expressed as
y = ®x = ®Y0, where ® is a M x N matrix, M denotes
the number of measurements, and K < M < N. Therefore,
the sampling rate is reduced significantly compared with
Nyquist rate. Generally, recovery of the signal x from the
measurements y is ill-posed because M « N [8]. However,
the CS theory demonstrates that if ®¥ has the Restricted
Isometry Property (RIP), then it is indeed possible to recover
the K largest 0,(i) when M is large enough [3, 9]. It is
difficult to validate if a measurement matrix satisfies the RIP
constraints given in [9] directly, but fortunately, the RIP is
closely related to an incoherency between ® and ¥, where
the rows of ® do not provide a sparse representation of the
columns of W and vice versa [4]. Furthermore, to ensure exact
reconstruction, two different K-sparse signals may not be
projected by a measurement matrix into the same sampling
ensemble [1, 2, 10].

When x is sparse in spectrum, the N-dimensional inverse
discrete Fourier transform (IDFT) matrix (D;\,l) can be
chosen as the sparse representation matrix (¥). In this case,
an easy way to obtain the compressed data of the signal is
to undersample the signal with lower sampling rate than



the Nyquist rate [2]. Therefore the measurement matrix is in
fact a partial unit matrix [11]. It is important to investigate the
mathematical properties of compressive sensing reconstruc-
tion for this kind of undersampled spectrum-sparse signal.
In the following, we mathematically prove that the exact CS
reconstruction of a spectrum-sparse signal from undersam-
pled data is impossible under certain conditions. In order
to reconstruct a spectrum-sparse signal from undersampled
data exactly, the corresponding exact CS reconstruction
condition is presented, which is valuable for digital signal
compression.

2. Inexact CS Reconstruction Cases

When a signal x is sparse in spectrum, the IDFT matrix Dy,
and partial unit matrix can be chosen as the sparse repre-
sentation matrix and the measurement matrix, respectively.
By defining the downsampling rate r to be the ratio between
the Nyquist rate and the undersampling rate, an inexact CS
reconstruction case can be depicted as the following theorem.
Theorem 1. Suppose x € CN*' with Nyquist sampling rate
[ is K-sparse in spectrum domain; y = {X,,,..,, | mr +b <
N, m > 0, m € N} is an arbitrary subset of x, where r is the
downsampling rate, r > 2, and r € N, b is a constant and
b € N, and N is the set of all natural numbers. x cannot be
exactly reconstructed fromy by CS.

Proof. According to the expression of y, we have

Ymxt = CoascnXnsa = Poarn ¥ nxnOnsrs ¢))
Column
. r+1
index
l l
10 -0 1 0
1 0 Wy
@ - |1 0 Wy
-M—-1
10 ...0 WMo

According to CS theory, if ®, Dy satisfies the RIP, 6 can be
exactly reconstructed. Let ¢, , be the ath row of @ ; we have

T -1 T -1 T
¢, =Dy Dynoy, =Dy (DN¢1u)

_ T
~ D—1 . 1- WIJ\\]/IT 1— W](\]N 1)Mr (5)
“HYN (Y 1—walwr’>"" 1 Wa—lW(N—l)r >
M N WM N
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where 0 is K-sparse; @ is the measurement matrix with size
M X N:

Column 1 r+1 2r+1 (M-1)r+1
index
1 ! ! !
[1 0 0]
0 0 0 1 0
@, =|0 0 0 0 0 0 1 ,
[0 0 0 1|
(11 1 1|
-1 -2 (N-1)
1 Wy Wy wi
_ 1 _ _ — _
¥yun = Dy = ~|1! WN2 WN4 . WNZ(N 2 ,
(N-1) 1,,-2(N-1) ~(N-1)?
1 Wy Wy Wy |
2
Wy = exp (ﬁﬁ)'
(2)
Equation (1) is equivalent to
-1
eg\/lxl = Dpyyauxa = Dy @Dy Onsts ©)

where D, is the M-dimensional DFT matrix. Because y is
isometrically downsampled from x, 8' is also sparse. In (3),
we define a new measurement matrix ®, = D,,®,,,  and it
can be expressed as

2r +1 (M-1r+1
! !
‘,\2@ 0 - g W]&_l W
Wy 0 0 Wi
-0 W;/I(M_l) 0 0 W}&/II\:/I—I)Z

where W), = exp(—j2m/M). Because Rank(D;\,l) = N,
according to Cramer’s Rule, the equation Dl_\,ltx = (/)1Ta has
unique solution; that is,

T
1-— WMr 1-— W(N—I)Mr
=107 Wa_hlfwr reies | - ©
RS N 1- WM WN
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FIGURE 1: The sparsity of o, when N = 1024, M = 64, r = 16, and a = 40. (a) {|e,|}; (b) {real(e,)}; (c) {imag(«,,)}.

Let «,, be the nth element of a; it can be obtained

1- W](\;l—l)Mr

] = Wi W )
3 1-cos((2/N) (n—1) Mr)
1-cosn((a-1)/M+ ((n-1)r)/N))’
It peaks at
(n—l)r:_a—1+l) lez, (8)
N M

where Z is set of all nonnegative integers. Because N = (M —

1)r + 1, we have

r-1(a-1)
Mr

and # is a natural number; hence

(r-1)(a-1) L1
Mr

+Z<M—1+l> 9)

r

n=-a+2+

n=|-a+2+

(M— 1+ %)] (10)

where [(+)] returns the round of (-). When n does not satisfy
(10), |a,| is relatively quite small. It indicates that {|e,|} is
sparse. Similarly, it can be proved that both {real(«,)} and
{imag(e,)} are also sparse. Therefore, ¢, can be sparsely
represented by the columns of Dy/; that is, ®; Dy does not
satisfy the RIP, and 0 cannot be exactly reconstructed. O

Figurel shows the values of {|w,|}, {real(e,)}, and
{imag(w,,)} when N = 1024, M = 64, r = 16, anda = 40.Itis
obvious that {|x,[}, {real(e,,)}, and {imag(«,)} are sparse and
the locations of peaks agree well with the theoretical values
determined by (10).

By Theorem 1and its proof, we can also obtain the follow-
ing corollary.

Corollary 2. Suppose x € CN*! with Nyquist sampling rate
f. is K-sparse in spectrum domain; X' = {x,,,.,, | mr +b <
N, m > 0, m € N} is an arbitrary subset of x, where r is the
downsampling rate, r > 2, and r € N and b is a constant and



b € N. Let y be an arbitrary subset of x'; then x cannot be
exactly reconstructed fromy by CS.

Proof. Assume the length of x' is M and we have
y = ®,x' = ®,0D0, (1)

where @, is a partial unit matrix. Assuming the size of @, is
LxM (L < M), the solution set of (1) is a subset of the solution
set of (11). According to Theorem 1, the solutions of (1) are not
determined; therefore, 0 in (11) cannot be determined and x
cannot be exactly reconstructed. 0

Corollary 2 indicates that, if the set of undersamplings is
only a subset of the set of signals’ samplings with sampling
rate lower than the Nyquist rate, the signal cannot be exactly
reconstructed from these undersamplings by CS. Therefore,
when designing the ADC with random sampling space, the
ADC should better possess the capability with the minimum
sampling space of 1/ f;, where f is the Nyquist rate. Taken
in this sense, the high sampling rate requirement for ADC is
indeed not suppressed even though the CS theory is utilized.

3. Exact CS Reconstruction Condition

In the following, we present the exact CS reconstruction
condition of undersampled spectrum-sparse signals.

Theorem 3. Suppose x € CN*' with Nyquist sampling rate
I, is K-sparse in spectrum domain; and the frequency indexes
of K nonzero points in spectrum are f, (h = 1,2,...,K).
Undersampling x with rate f [r|, f[ts ..., [/t o5 fol1]
(i=12,....,1,1; 22, and r; € N), respectively, all the samples
consist of Yprx1. The necessary and sufficient condition for x
exactly reconstructed from 'y by CS is

{fw%lhzl,z, Kk, € Zs|fy + 1fs %}
{fh 2fslh—lz JKsky € Z5 | f, + 2fs %}
n---

r1{J‘p,+¥|h=1,2, Ksk; € 25| £, + kffs _%}

={fulh=12,...,K}.
(12)

Proof. Reconstructing x fromy is in fact to solve the following
underdetermined equation system:
V=P x= CI)ID;\]iG,
V2 = Opx = q):ZDN 0, (13)
y; = ®x= Q;ID;\}B,

where ®@; is the measurement matrix according to the under-
sampling rate f,/r;;y; is composed of the undersamplings
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of x with rate f,/r;. Assume the frequency indexes of the

solution set of the ith equation are {f;}; because y; is the
isometric downsampling from x, we have

1o}

Q{fh+%|h=1,2, Kk € Zs | f, + ’fs_%],.
T
(14)
Hence, the solution set of (13) is
- k.
”{fhi} Q”{f;ﬁl—fs |h=12,---,K;k; € Z;
T
(15)

kifs

1

fot—

A }
S
Only if (12) holds true, under the constraint of K-sparse, it

yields ﬂ{fhi} = {f, | h = 1,2,...,K}; therefore, x is exactly
reconstructed. [

Theorem 3 indicates that it is possible to reconstruct a
spectrum-sparse signal exactly from its multirate downsam-
plings. It means that, when condition (12) is satisfied, the
multirate downsampling can be used to compress the data
of digital signals. The conclusion is valuable to the design of
the ADC when the analog signal is a priori known sparse in
spectrum.

In order to validate Theorem 3, an experiment is given
as follows. In the experiment, the signal x(t) with Nyquist
sampling rate f, = 1Hz is expressed as x(t) = exp(0.2 x
2mt) + 0.8 exp(0.45 x 27tt) + 0.6 exp(0.3 x 27t), t € [0, 1023].
The sparsity of x(t) in spectrum domain is 3 and f;, = {0.2,
0.45,0.3}. The spectrum of x(¢) is shown in Figure 2(a). Let
r; = 7 and r, = 10. Therefore, we have

4
2

fh lfs

%}

{fh 1f5|h_1z Kk, € Z;

+k—|k eZl
7

k,
03+_|k EZ‘O3+7

D

l}
<_
2
2
—,0.2—-,
7

e
foss 51k ez
{
{

0.2, 02+— 02+— 0.2 -

3

02--,02- A—I,O.4S, 0.45 - 1,
7 7 7

2 3 4 5
045--,045--,045--,045- —,
7 7 7 7

6 1 1 2
0.45--,03,03+-,03--,03- -,
7 7 7 7
0.3 - §,0.3 - A—L,0.3 - E}
7 7 7
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FIGURE 2: Experiment for validation of Theorem 3. (a) The spectrum of the signal x(t) with Nyquist sampling rate; (b) the spectrum of the
reconstructed signal by CS; (c) the comparison of x(¢) and the reconstructed signal in time domain.

2fs

{fh 2f5|h_12 JKsk, € Z; | f, +

k| 1
{02+—|k2€Z‘02+ s—}
10 2
1
{045+—|k eZI —}
2
ky| 1
{O3+—|k eZ|03+—<—}
101 2
={-0.5,-0.4,-0.3,-0.2,-0.1,0,0.1,0.2,0.3,

0.4,0.5,0.45,0.35,0.25,0.15,0.05, -0.05,

—-0.15,-0.25,-0.35,-0.45} .

4

(16)

Obviously, the intersection of (16) is f;, = {0.2,0.45,0.3}.
Hence, x(t) can be exactly reconstructed from the down-
samplings. In the experiment, we choose the orthogonal
matching pursuit (OMP) algorithm [12] to reconstruct x(t)
from the downsamplings. The spectrum of the reconstructed
signal by CS is shown in Figure 2(b), which is very close to
that in Figure 2(a). The comparison of the original signal x(t)
with Nyquist sampling rate and the reconstructed signal in
time domain is also given in Figure 2(c). From the figure,
it can be found that the reconstructed signal is close to the
original signal, which validates the correctness of Theorem 3.
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Content-based image retrieval is nowadays one of the possible and promising solutions to manage image databases effectively.
However, with the large number of images, there still exists a great discrepancy between the users” expectations (accuracy and
efficiency) and the real performance in image retrieval. In this work, new optimization strategies are proposed on vocabulary tree
building, retrieval, and matching methods. More precisely, a new clustering strategy combining classification and conventional
K-Means method is firstly redefined. Then a new matching technique is built to eliminate the error caused by large-scaled scale-
invariant feature transform (SIFT). Additionally, a new unit mechanism is proposed to reduce the cost of indexing time. Finally,
the numerical results show that excellent performances are obtained in both accuracy and efficiency based on the proposed

improvements for image retrieval.

1. Introduction

Nowadays, content-based image retrieval (CBIR) has more
and more applications and constitutes one of the core prob-
lems in computer vision. Its features were thoroughly dis-
cussed by Smeulders et al. [1]. One of the most popular meth-
ods that yield results of content-based image retrieval is based
on visual contents of an image. The visual features of images,
such as color 2], texture [3], and shape features [4] have been
extensively explored to represent and index image contents,
resulting in a collection of research prototypes and commer-
cial systems [5, 6]. Therefore, the performance of a CBIR sys-
tem mainly depends on the particular image representation
and similarity matching function employed [7]. Due to the
rapid development and improvement of the internet, image
capture devices and computer hardware cause the problem of
storage and manipulation of images [8]. That is the reason
that the relevant techniques developed by Google Inc. and
Baidu Inc. did not perform adequately. The main limitation
occurs on either retrieval accuracy or real-time or sometimes
both. In order to overcome this limitation, in this work a
novel optimization-based approach for content-based image

retrieval is proposed. The conventional procedure of image
retrieval is firstly introduced, as shown in Figure 1. It can be
divided into three parts: the vocabulary tree building, the
storage of test images, and their retrieval. The descriptions of
these three parts are briefly discussed as follows.

1.1. Building Vocabulary Tree. In state-of-art techniques, a
tree structure is usually built to store the image database. In
other words, a training set is needed to get a discriminative
and representative tree. The training set is a group of images,
which are first transformed into SIFT [9] (scale-invariant
feature transform) 128-dimensional descriptor vectors. SIFT
features are distinctive invariant features that are used to
robustly describe and match digital image content among
different views of a scene. While being invariant to scale
and rotation, and robust to other image transforms, the SIFT
feature description of an image is typically large and slow to be
computed [10] (curse of dimensionality). After that, a vocab-
ulary tree [11] must be built. The traditional classification
of the large features of image databases is often carried out
by the Hierarchical K-Means method (HKM). Assuming
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FIGURE 1: Content-based image retrieval procedure.

a priori N the number of branches and H the height of the
tree, the all descriptors can be clustered into N parts, and
N cluster centers can be obtained from N nodes at the first
level, and then each part eventually reclustered into N new
subparts to get all new N* nodes. This process is repeated
until converged to the defined height and obtention of a
complete tree.

1.2. Storage of Test Image and Database Information-Inverted
File. Once a well-organized data structure is built, the image
database can be stored. From the image database, the SIFT
descriptors must also be extracted [12, 13]. For each image in
the database, all its descriptors undergo the same classifica-
tion as follows: comparison with the children nodes of the
root node by Euclidean distance and then selection of the
nearest one as new root node. This process has to be repeated
until the leaf node is reached. In order to match and retrieve
the image at the next search, a shortest path to the leaf node
has to be constructed. This means an inverted file [11, 14, 15]
is needed to be built for identifying the relationship between
the image database and the test image. When a descriptor of
the test image reaches a leaf node, the relevant inverted-file
will record the corresponding information of this descriptor.

After all descriptors of a test image are stored in the
vocabulary tree, a weight of a leaf node is calculated based
on TF-IDF strategy so as to test the effectiveness of different
leat nodes accurately by the following formula:

o —tog— N
1 Y S (idy)
’ €]
. 1 id; >0,
Flid) =1y 70

where N is the number of images in the database and m is
the dimension of the vectors in the inverted-file. If there only

exist several images descriptors obtained by Y", f (id;;) and
its value is small, this means this leaf node is discriminative.
This means the leaf node is discriminative and has a good
retrieval feature. Otherwise, this value would be much bigger.

1.3. Retrieval and Rank. After organizing the information of
test images and database images, two vectors can be obtained
for the test image and the database images as follows.

For the test image,

S =(w; xny,w, xny,...,w, xn,). (2)
For the database images,
D; = (w; X L, w, XLy, ..cyw, x 1), 3)

where w; is the weight of leaf node and #; the number of test
image nodes reaching the ith leaf node, while ;; is the number
of the ith database image nodes found in the jth leaf node
during building image base.

Now, the ranking results can be obtained by the following
formula:

S D.
h(s,D,) =|— - —|.
(55 H il IDi] || @

| - | usually refers to L,-norm or L,-norm.

With the usual approach, accuracy issues often occur.
First, as numbers of the test images increase, more noises
and clutters are brought into the information database, which
undoubtedly results in decreasing the retrieval accuracy. Sec-
ondly, more information in the image database leads to more
time required to search the similar images from the database,
which usually cannot satisfy the real-time demands. Finally,
after dozens of trial-and-error tests, it is found that the norms
of calculating the match degree cannot remove the magni-
tude of different image SIFT numbers, which reveals a loss
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FIGURE 2: Traditional vocabulary tree (a) and new vocabulary tree (b).

of accuracy. That is what motivates to propose the improve-
ments detailed hereafter.

The paper is organized as follows: three improvements are
described in Section 2. Then, the image retrieval application
is tested in Section 3, followed by the discussion and conclu-
sion in Section 4.

2. Three Improvements

2.1. Improving the Vocabulary Tree Building. From the process
described above, it is known that the height and the branch
number of the tree are both predefined, namely, a complete
tree (see Figure 2(a)). After building each clustering, all the
descriptors will be divided equivalently into several parts.
Due to differences of distances, there may be different num-
bers of descriptors in different parts, and there may even hap-
pen that a part only includes a few descriptors. On the other
hand, it might also occur that the biggest distance is already
small in a certain part, but due to the limit of pre-defined
level and branch, this part has to be divided continuously.
These are not affordable.

In practical applications, the quantities of information in
different test sets are different, and different trees are therefore
needed. When the tree need not even be a complete tree, the
conventional method certainly leads to some errors. In order
to reduce or even eliminate these errors, the conventional K-
Means processes and classification are combined to make sure
that the height and branch number of vocabulary tree are
defined automatically.

The proposed technique called Hierarchical Classification
method (HCM) is done with two thresholds: one is for the
number of descriptors in a part and the other for the distance
inside a part. These two thresholds can determine when the
clustering operations terminate; thus we will not know how
many levels the tree has and will not know how many children
nodes a parent node owns. The structure of two different trees
can be shown as follows, respectively (Figure 2(b) improved
tree): this new model provides not only improvements of
efficiency but also in precision.

2.2. Shorter Time Spent on Retrieval. In previous works, a
classification was often obtained by Euclidean distance of the
children nodes of the root node, not the information of root
node directly in the left of Figure 3. Obviously, it took much
time for calculation. This distance was not bigger than the

sum of the distances between descriptor-root node and the
distance obtained from root node-relevant child node. It can
be written as follows:

IP=Qll <[P -R|+[R-Q, (5)

where P denotes a descriptor, Q is one child node of root
node, and R is root node.

As the distances between root node and its children nodes
are all calculated in advance and reserved in the root node
position, the proposed clustering technique consists in find-
ing the next children tree by using only the first term of (5).
The second part is used for next clustering rank shown in
Figure 3(b).

Define M as the height of vocabulary tree, and K is the
number of child nodes at each rank and T is computational
time for each clustering. The total time with the traditional
classification to find the nearest leaf node is about (M — 1) x
K xT, while the improved method only takes a time of M x T}
the later consumes about only M /((M—1)xK) of time needed
before, which significantly reduces the retrieval time.

2.3. Improvement on Scoring Mechanism. In the traditional
method, | - || usually is L,-norm or L,-norm. However, for
lots of practical experiments, it is found that the results are
not very reasonable because of the different memory requests.
When the image is more complex, it is more possible to match
with retrieval image as the large number of features (large
number of eigenvectors of dimension 128). On the contrary,
it is of poor effect for simple images. The third improvement
will concentrate on dealing with this problem. The following
unit norm is proposed to eliminate the weight of test image
and great different database image memory:

S D,
h(s,D;) = HN_VH’ 6)

where N stands for the number of test image vectors and N;
the number of the ith database image. This unit norm can
make sure that different images stay at the same level; a more
reasonable score will hence be produced. This new unit norm
is called unit norm.

Important notation: when programming, there may be
millions of pictures in the image resource, and there will be
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FIGURE 3: Traditional classification (a) and new clustering technique (b).

even more than 106 leaf nodes, while for indexing each image
in the database, there will be thousands of dimensions equal
to 0 in vectors. In order to save the memory space, assigning
storage dynamically is proposed.

3. Test Examples

Ukbench image database contains 2550 groups of images, and
every group includes 4 similar images. More precisely, these 4
images with a much similar characters are snapshots in a same
image but in different illumination intensity and orientation.
Analyzing the expectations of users, the following strategies
are taken: indexing one image from the database images, if
three of four similar images can be exhibited in the ranking

10 results, this image retrieval implementation is a successful
process. The index frequency is calculated by

1.
fi=p

where #; is the number of similar images shown in ranking 10
images and f; an index accuracy for ith test image.

The average of this accuracy is finally used to test the
effectiveness of different unit norm. Different quantities of
images retrieval are shown in Figure 4.

From Figure 4, it is observed that a more reasonable score
h will be obtained with unit norm (that means matching
degree is bigger between similar images and smaller between
irrelevant ones). The index accuracy is thence much better
with unit norm than with L,-norm and L,-norm.

n;, = 0) 1, 2) 3) 4a (7)
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TaBLE 1: Improvements on discarding invalid descriptors.

Discard Quantity

100 500 1000 10000
No 90.6% 82.3% 76.2% 53.9%
Yes 94.3% 86.3% 83.25% 70.2%

TaBLE 2: Comprehensive comparison of new and traditional mech-
anism.

Method Quantity

100 500 1000 10000
HKM 89.5% 84.4% 80.25% 62.3%
HCM 94.3% 86.3% 83.25% 70.2%

In building test image base, taking the strategy of discard-
ing into action, much better performance is achieved as listed
in Table 1.

Based on these two important improvements, the efficien-
cies of classification with the famous HKM method and HCM
(the proposed method) are compared. The results on Table 2
show that the proposed improvements are more feasible and
efficient.

4. Conclusions and Discussion

In this work, three improvements are proposed during the
content-based image retrieval: strategy in image classifi-
cation, mechanism to calculate the Euclidean distance of
eigenvectors between source images and research image, and
development of the inverse file. As a result, the index accuracy
can be greatly enhanced. Furthermore, we can get a faster
index procedure, which satisfies the real-time image retrieval
quite well. In the point of theoretical view, the proposed tech-
nique takes only about one-sixth time of traditional method

needed. In the future work, it is necessary to verify the
efficiency of proposed improvement in a practical situation
as the time is really very short in the above example.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

This work has been supported by the Basic Project Foun-
dation of Northwestern Polytechnical University (Grants no.
JC20120241) and by the National Natural Science Foundation
of China (Grants no. 11302173).

References

[1] A. W. M. Smeulders, M. Worring, S. Santini, A. Gupta, and
R. Jain, “Content-based image retrieval at the end of the early
years, IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 22, no. 12, pp. 1349-1380, 2000.

[2] R.O. Stehling, M. A. Nascimento, and A. X. Falcao, “On shapes
of colors for content-based image retrieval,” in Proceedings of
the ACM International Workshop on Multimedia Information
Retrieval (ACM MIR 00), pp. 171-174, 2000.

[3] M. Flickner, H. Sawhney, W. Niblack et al., “Query by image and
video content: the QBIC system,” Computer, vol. 28, no. 9, pp.
23-32,1995.

[4] D. S. Zhang and G. Lu, “Generic Fourier descriptors shape-
based image retrieval,” in Proceedings of IEEE International
Conference on Multimedia and Expo (ICME ’02), vol. 1, pp. 425-
428, 2002.

[5] E Jing, M. Li, H. Zhang, and B. Zhang, “An effective region-
based image retrieval framework;” in Proceedings of the 10th
ACM International Conference on Multimedia, pp. 456-465,
December 2002.

[6] A.Guptaand R. Jain, “Visual information retrieval,” Communi-
cations of the ACM, vol. 40, no. 5, pp. 71-79, 1997.

[7] H. B. Kekre, S. D. Thepade, A. Athawale, A. Shah, P. Verlekar,
and S. Shirke, “Energy compaction and image splitting for
image retrieval using kekre transform over row and column
feature vectors,” International Journal of Computer Science and
Network Security, vol. 10, no. 1, 2010.

[8] M. K. Mandal, E Idris, and S. Panchanathan, “Critical evalua-
tion of image and video indexing techniques in the compressed
domain,” Image and Vision Computing, vol. 17, no. 7, pp. 513-529,
1999.

[9] D. Lowe, “Distinctive image features from scale-invariant key
points,” International Journal of Computer Vision, vol. 60, no. 2,
pp. 91-110, 2004.

[10] D. Nister and H. Stewenius, “Scalable recognition with a

vocabulary tree,” in Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR

'06), pp. 2161-2168, 2006.

P. Indyk and R. Motwani, “Approximate nearest neighbors:

towards removing the curse of dimensionality,” in Proceedings

of the 30th Annual ACM Symposium on Theory of Computing

(STOC *98), pp. 604613, 1998.

[12] J. Sivic and A. Zisserman, “Video google: a text retrieval
approach to object matching in videos,” in Proceedings of the 9th

(11



IEEE International Conference on Computer Vision (ICCV "03),
pp. 1470-1477, Nice, France, October 2003.

J. S. Beis and D. G. Lowe, “Shape indexing using approximate
nearest-neighbour search in high-dimensional spaces,” in Pro-
ceedings of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR *97), pp. 1000-1006, June
1997.

J. Zobel, A. Moffat, and K. Ramamohanarao, “Inverted files
versus signature files for text indexing,” ACM Transactions on
Database Systems, vol. 23, no. 4, pp. 453-490, 1998.

A. C.Berg, T. L. Berg, and J. Malik, “Shape matching and object
recognition using low distortion correspondences,” in Proceed-
ings of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR ’05), pp. 26-33, June
2005.

Journal of Applied Mathematics



Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2013, Article ID 506752, 9 pages
http://dx.doi.org/10.1155/2013/506752

Research Article

Adaptive Self-Occlusion Behavior Recognition Based on pLSA

Hong-bin Tu, Li-min Xia, and Lun-zheng Tan

School of Information Science and Engineering, Central South University, ChangSha, HuNan 410075, China

Correspondence should be addressed to Li-min Xia; xlm@mail.csu.edu.cn

Received 31 July 2013; Accepted 24 October 2013

Academic Editor: Feng Gao

Copyright © 2013 Hong-bin Tu et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Human action recognition is an important area of human action recognition research. Focusing on the problem of self-occlusion
in the field of human action recognition, a new adaptive occlusion state behavior recognition approach was presented based on
Markov random field and probabilistic Latent Semantic Analysis (pLSA). Firstly, the Markov random field was used to represent the
occlusion relationship between human body parts in terms an occlusion state variable by phase space obtained. Then, we proposed
a hierarchical area variety model. Finally, we use the topic model of pLSA to recognize the human behavior. Experiments were
performed on the KTH, Weizmann, and Humaneva dataset to test and evaluate the proposed method. The compared experiment
results showed that what the proposed method can achieve was more effective than the compared methods.

1. Introduction

Automatic recognition of human actions from video is
a challenging problem that has attracted the attention of
researchers in the recent decades. It has applications in
many areas such as entertainment, virtual reality, motion
capture, sport training [1], medical biomechanical analysis,
ergonomic analysis, human-computer interaction, surveil-
lance and security, environmental control and monitoring,
and patient monitoring systems.

Occlusion state recognition has been traditionally tackled
by applying statistical prediction and inference methods.
Unfortunately, basic numerical methods have proved to be
insufficient when dealing with complex occlusion scenarios
that present interactions between objects (e.g., occlusions,
unions, or separations), modifications of the objects (e.g.,
deformations), and changes in the scene (e.g., illumination).
These events are hard to manage and frequently result in
tracking errors, such as track discontinuity, inconsistent track
labeling.

The Pictorial structure method [2], which represents the
human body as a set of linked rectangular regions, does not
take occlusion into account. Sigal et al. [3] argue that the self-
occlusion problem can be reduced by an occlusion-sensitive
likelihood model. This works well if the occlusionstates (i.e.,
the depth ordering of parts) is known; for example, if it

is specified at the start of the motion and then does not
change over time. But, in practice, the depth order of object
parts—for example, right arm, torso. Estimating 2D human
pose is difficult because of image noises (e.g., illumination
and background clutter), self-occlusion, and the varieties of
human appearances (i.e., clothing, gender, and body shape)
[3-5]. Estimating and tracking 3D human pose is even more
challenging because of the large state space of the human
body in 3D and our indirect knowledge of 3D depth [6]. In
contrast, our approach focuses on self-occlusion. While all
of the above methods are modeled to estimate poses from
still images, there exists only limited research on the same
task in videos. Guo et al. [7] applied the BOW model with
human action recognition in video sequence. Niebles et al. [8]
successfully applied this model to classify the video sequence
of the human action. Wang and Mori [9] assigned each
frame of an image sequence to a visual word by analyzing
the motion of the person it contains. Sy et al. [10] applied
the CRF with a hidden state structure to predict the label
of the whole sequence of human gestures. Sigal et al. [3]
modeled self-occlusion handling in the PS framework as a
set of constraints on the occluded parts, which are extracted
after performing background subtraction which renders it
unsuitable for dynamic background scenes.

Our work follows literatures [3, 7, 9, 11] by producing
a framework for articulated pose estimate-on robust to



cluttered backgrounds and self-occlusion without relying
on background subtraction models. The step of rectifying
occluded body parts via a GPR model is inspired by recent
work by Asthana et al. [12] who used GPR for modeling
parametric correspondences between face models of different
people. Our problem is more difficult because the human
body includes more parameters to be rectified and has more
degrees of freedom than faces.

In order to overcome the shortcomings mentioned above,
we propose an adaptive self-occlusion state recognition
method that estimates not only everybody configuration but
also the occlusion states of body parts.

Firstly, the Markov random field was used to represent the
occlusion relationship between human body parts in terms
of occlusion state variable by phase space obtained. Then,
we proposed a hierarchical area variety model. Finally, we
infered human behavior by pLSA. Experiments on Human
Eva data set were performed to test and evaluate the proposed
algorithm. The experiment results have shown that the
proposed method is effective in action recognition.

2. Human Trajectory Reconstruction

A tree structure movement of the human body skeleton
structure is used by creating visual invariant model [13], the
human body is divided into 15 key points; namely, 15 joint
point represents the human body structure, and the 15 joints
trajectory represents the human body behavior and then uses
Markov random field (MRF) by calculating the observation,
spatial relations, and the motion relationship and ultimately
determines the occlusion positions of the body joints and
restores the missing trajectory. Specific steps described below.

The Markov random field (MRF) was used with a state
variable representing the occlusion relationship between
body parts. Formally, the MRF was a graph G = (V, E), where
V was the set of nodes and E was the set of edges. The graph
nodes V represented the state of a human body part and
graph edges E model the relationships between the parts [11].
The probability distribution over this graph was specified by
the set of potentials defined over the set of edges. The MRF
structural parameters are defined as follows: X; = (x;, y;,2;):
The ith joint point coordinates; X = {X;,X,,...,X sk
extract the key points of the body 15; y(X;) (i < 15): the
ith joints visible parts, this parameter is used to determine
occlusion relation between nodes. When occlusion occurred,
trajectories intersected between

X; (X; (x5 y21)) 5 X; (Xj (xj’yj’zj)); @

A={A ij} (i €15, j < 15): the occlusion relation among the
15 body joints. When A, ; = 0, the ith and jthe joints do not
occluded. When A; ; =1, theith occluded jth. When A; ;= -1,
the jth occlude ith; A; = {A,..., A 5}: the ith occlude joints
node; then, potential of kinematic relationship is calculated
as follows:

w,»’f (X, X;) =N (d(x,x;) 10 ) £(6,6). ()

This function indicates the position of two adjacent joints,
and the angles among joints.
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d(x;, x;) is the Eucidean distance between two adjacent
joints. N() is the normal distribution with g4 = 0 and standard
deviation &.

Eqa: occlusion area belong to joints; W, = {w;}: If
i joint is occluded, w; = 1, if i joint is not occluded, wj;
= 0; I: input image; v;; Indicator for overlapping body
parts; ¢;(I, X;3A;): potential of observation; ¢<(I, Xis Nij):
potential of the color; ¢F(I, X;;A;): potential of the edge;
(piCV“‘b‘e (I, X;3 A;j): the motion state of X; (the ith body joint)
in the viewing area; ¢?"“‘“d°d (I, Xj; A;j): the motion state of
X; (the ith body joint) in the occluded area; ¢;: potential
of observation; 1//1.1;: potential of kinematic relationship; y/iT:

potential of temporal relationship. Defining a model, similar
to [12] for calculating three potential function as follows.
Firstly, we get the observation potential function:

¢ (LX) = 67 (L X A) + 67 (LX) - (3)
The potential of the color
¢,C (I’ Xi; /\ij) = ¢icvisible (I, Xi;/\ij) + ¢icoccluded (I, X,';/\i]') >
(4)

where the first term is X; of probability of occurrence of color
in the visible area and the second term is for the occluded
area. The visible term is formulated as

Cvisi e
¢ (1L, X35 )

PC (Iu)
ue(y(X)-(y(X) NP, (5)

P (1, | foreground)
yP (L background)’

ue(p(X)-(y(X) NX;

where P(I, | foreground) and P(I, | background) are the
distributions of the color of pixel u given the foreground and
background.

¢icoccluded (I’ Xl; A;)
(6)

=[] [a@)+0-2)P(1,)]
ue(y(X) Ny(X;)

and z;(I) is calculated as follows:

& (03 X (¢ (Lox;0:0,) @)

ue(PX)NyX j)): the occlusion area is determined by the
calculated overlapping region of X; and X, N is the sum of
all occlusion nodes.

When f(6,,0;) =1, Tigyer < 0; = 6; < T\pper> Where Ty,
and Ty, are the lower and upper bound of motion area
between X; and X; defined by kinesiology.

Finally, potential of temporal relationship is calculated as
follows:

v (XL X7) =p (Xf - X Z) - ®

i
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where y; is the dynamics of X; at the previous time step and
Y. is a diagonal matrix with a diagonal element is identical to
|4;1, which similar to a Gaussian distribution with the time.

In this paper, the posterior distribution of model X
conditioned on all input images up to the current joint s
stlructure, the current time step 7 and occlusion state variable
AT s

p(XT | Il:T;AI:T)

= %exp ‘|— Z ¢iC(I’Xi;Ai)_ Z ‘/’,’I]‘((Xi’Xj)

iext ijeELr )

-y %T(Xf,Xf‘l)}’

ieElT tel:

where Z is a normalization constant.
In a word, we put ¢, 1//1.1;, t//iT into (4), and get body
occluded joints positions,

X' = argmax p (Xt | Il:t;/A\t_l) > (10)
Xt

where X" is X joint location at ¢ time.
The occluded relation among joints can be obtained by
formula (2).

3t t ot
A;; = argmax ¢, (I ,Xi;/\l-j), ()
A #0

where )?f is X; position at t time.

The occluded joints can be calculated by MRF at the entire
time of motion. In this paper, we connect missing data in
order to restore missing coordinate position.

3. Feature Representation

The human action can be recognized in terms of hierarchical
area model, relative velocity, and relative acceleration.

3.1. Hierarchical Area Model. For describing the human
motion pose (e.g., jogging, running, and walking), we make
use of hierarchical area model and extract human facial area
SH, upper limbs area S”and leg area S*. To human facial area
S™ are extracted in the following way.

(1) According to Canny algorithm, each of the facial
contour point set is extracted, and denoted as Ck,
where k is the number of contour point.

(2) The face contour can be least square fitting by Ck,
which obtained in step 1.

(3) According to step 1 and step 2, if the body movement
to make the front, the face area is the largest, if

the human turned sideways, the face area will change.
Thus, face area in coordinate is

X 87 (¢ 0 2)

H p—
A5 02) = o S ()
Yo st (x, yi,z)
AST (x,2) = — AN (12)
y 00 = S S (57 (5 2)
Y, st (x, V> Zi)
AS) (x,y) =

XL 887 (x5 ,2)

where n is the frames, S (x', yi, Z') is the set of face
contour in all frames, (v(x’,y",2")) is the set of
contour in all frames.

(4) By Repeat Steps 1~3, the face area can be calculated in
all frames.

Calculating S”and S is similar to S™.

Figure 1 shows that the curve for some area features of
pedestrian walking. Figure 1(a) is the area variation curve of
s, Figure 1(b) is the area variation curve of sv. Figure 1(b) is
the area variation curve of S*.

3.2. Relative Velocity and Relative Acceleration. We can get the
relative velocity and relative acceleration by the trajectory of
each joint.

Each point’ weight can be considered as the same, and
build statistical model to calculate the relative velocity and
relative acceleration among relative motion joints (e.g., hands
and legs) in order to reason the initial state of motion.

L p(n®ex,0,)
Y p (a0, x0),)

where A, ; is the relative velocity among i and j.
The area-velocity goodness T} is obtained as follow.

(13)

T1:jogging, Av (the left knee, the right knee), Av (the left
foot, the right foot), Av (the right knee, the right foot),
Av (the left foot, the left ankle), Av (the right foot, the
right ankle) > t1, and A« (the left foot, the left knee)
> 12,

T2:running, Av (the left foot, the left knee), Av (the right
foot, the right knee), Av (the left foot, the left ankle),
Av (the right foot, the right ankle) > ¢3, and A« (the
left foot, the left knee), Aa (the left foot, the right
knee), and A« (the left foot, the right foot) > 4.

T3: walking, Av (the left foot, the left knee), Av (the right
foot, the right knee), Av (the left foot, the left ankle),
and Av (the right foot, the right ankle) > 5.

T4: jumping, Av (the left foot, the left knee), Av (the right
foot, the right knee), Av (the left foot, the left ankle),
Av (the right foot, the right ankle) > ¢6, and A« (the
left foot, the left ankle), and A« (the right foot, the
right ankle) > 7.
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FIGURE 1: The curve for some area features of pedestrian walking.

T5: boxing, Av (the left foot, the left knee), Av (the right
foot, the right knee), Av (the left foot, the left ankle),
Av (the right foot, the right ankle) > 8 and, A« (the
left hand, the left elbow), A« (the right hand, the right
elbow), A« (the left foot, the left ankle), and A« (the
right foot, the right ankle) > #9.

Thresholds (t1, £2,..., t9) are determined empirically as
1.5, 40, 5.5, 60, 3.5, 5.0, 40, 7.0, and 30.

We cluster the extract feature, which meet the threshold
requirement, and extract the typical behavior of the action
dataset as a standard action: jogging, running, walking,
jumping and boxing. Above 5 kinds of common action
decomposition, we get relative velocity among joints, when
some action occurred. For example, an jogging operation, the
relative velocity of the left leg and the right leg and the relative
velocity of the left leg and the left knee are more than others
joints.

3.3. Codebook Formulation. In order to construct the code-
book, we use the k-means algorithm based on the Euclidean

distance to cluster all the features (hierarchical area model,
relative velocity and relative acceleration) extracted from the
training frames. The center of each cluster is defined as a
codeword. All the centers clustered from the training frames
produce the codebook for the pLSA model. A frame in the
training videos or in the test videos is assigned to a specific
codeword in the codebook which has the minimal Euclidean
distance to the frame. In the end, a video is encoded in a bag-
of-words way, that is, a video is represented using a histogram
of codewords, removing the temporal information.

4. pLSA-Based Human Action Recognition

pLSA is a statistical generative model that associates docu-
ments and words via the latent topic variables, which repre-
sents each documents as a mixture of topics. Our approach
uses the bag of words representation as in papers [14-16].
What's difference is that we use the local spatial-temporal
maximum value of hierarchical area model, relative velocity
and relative acceleration as our features. We suppose that
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FIGURE 2: Graph model of pLSA.

the words are independent of the temporal order but related
to the spatial order, for the k-means clustering approach with
all of the features may lead to the mismatch of the words.
Similar local features appearing at different position may be
clustered together. When we calculate the frequency of the
words, the mismatch appears. And this phenomenon may
reduce the precision of the classify approach. In order to solve
the problem, we assign spatial information to each word. In
the classify approach, we use the pLSA models to learn and
recognize human action.

In the context of action categorization, the topic variable
z; correspond to action categories, and each video d; can
be treated as a collection of space-time words w;. The joint
probability of video d;, action category z; and space-time
word w; can be expressed as

p (di>zk>wj) =p (“’j | Zk) pzld)p(d), (14)

where p(wj | z,) is the probability of word w; occurring in
action category z;, p(z | d;) is the probability of topic z;
occurring in video d;, and p(d;) can be considered as the prior
probability of d;. The conditional probability of p(w; | d;) can
be obtained by marginalizing over all the topic variables z:

p(wjldi) =Y p(zc 1) p(w)l2). (15)

Denote n(d;, w;) as the occurrence of word w; in video d;, the

prior probability p(d;) can be modeled as
p(d;) o Zjn(di | wj) . (16)

A maximum likelihood estimation of p(w i | z) and
p(zy | d;) is obtained by maximizing the function using the
Expectation Maximization (EM) algorithm, which the graph
model is shown in Figure 2. The objective likelihood function
of the EM algorithm is:

L=TTTTp(e; 1) 1)
i

The EM algorithm consists of two steps: an expectation (E)
step computes the posterior probability of the latent variables,
and a maximization (M) step maximizes the completed data
likelihood computed based on the posterior probabilities
obtained from E-step. Both steps of the EM algorithm for
pLSA parameter estimate are listed below.

E-step: given p(wj | z;) and p(z; | d;) estimate p(z; |
d;, w;)

Pzl dow;) o p(w; | z) pla | dy). (18)

M-step: given the estimated p(z; | d;,w;) in E-step, and
n(d,-,wj), estimate p(wj | z) and p(z; | d;)

p(wj | zk) o< Zn (di,wj)p(zk | di,wj),
l 19)
p(aldi) oc Yon(dpwy) p(ai | dyw;).

For the task of human motion classification, our goal is
to classify a new video to a specific activity class. During
the inference stage, given a testing video test, the document
specific coefficients p(zy | dyeq)-

We can treat each aspect in the pLSA model as one class
of activity. So, the activity categorization is determined by the
aspect corresponding to the highest p(z; | d.y). The action
category k of d,. is determined as

k = argmaxp (2 | dicy) (20)

In this paper, we treat each frame in a video as a single word
and a video as a document. The probability distribution p(z; |
dst) can be regarded as the probability of each class label
for a new video. The parameter in the training step defines
the probability of a word w; drawing from an aspect z;. The
aforementioned standard EM training procedure for pLSA is
to replace

p(zk | di’wj) > P(wj | Zk) > (21)

with their optimal possible values at each iteration.

For action recognition with large amount of training data,
this would result in long training time. This paper presents
an incremental version of EM to speed up the training of
PLSA without sacrificing performance accuracy. Assuming
the observed data are independent of each other, we propose
an incremental EM algorithm presented in Algorithm 1.

Algorithm 1. Incremental EM Algorithm for PLSA Parameter
Estimation is as follows.

(1) Inputs;

(2) K—the number of action categories;

(3) D—the number of training videos;

(4) S—the number of videos in each subset;

(5) M—the size of the codebook of spatial-temporal
words;

(6) Outputs;
(7) U = {(p(zx | dbss
(8) V = {p(w; | )}y
(9) E-Step;
for all k and j, calculate

Mk

p(wilz) == (22)

e
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Torso(axis) | Head Sh%flhdter sh(I)ﬁleler Ségo}‘l,i eﬁ)ecftw I}iﬁ}g }{j:nffi R}f;l ' I}ﬁ}fat Ililnge}:et l%rfeffe ﬁilll; alﬁiflte I}_;golit %oe(g
Torso(axis) 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0
Head 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
@_ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Left shoulder 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Right elbow 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Left elbow 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
&- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Left hand 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Right hip 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Left hip 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Right knee 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Left knee 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Right ankle 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Left ankle 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Right foot 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
Left foot 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(0)

FIGURE 3: Process of restoring missing coordinate position Remarks: Figure 3 the original picture, Figure 3 Reconstruction of knee motion
used the method of least squares data fitting in order to restore missing coordinate position, Figure 3 the occlusion diagram. In the diagram,
occlusion part pairs, occlusion state value —1 (red cell for occluded one) and 1 (green cell for occluder), £1 (orange red cell for rigid body),
respectively. In this manner, every part pairs get corresponding occlusion state values.

For all (dey, w;) pairs and k € {1,..., K} calculate

p(w] | Zk)P(Zk | dtest)

p(zk | dtest’w') = 5 (23)
! Zfil P(wj | Zz‘)P(Zf | diest)
M-Step: calculate the following:
N
(o Wi ) P21 | diesp> W5
(| dg) = 22 (o)) et | s ts)

n (dtest) ’

(10) Repeat E-steps and M-step until the convergence
condition is met;

(11) Calculate activity class

k = argmaxp (2 | dicy) (25)

5. Experimental Result

5.1. Datasets. We test our algorithm on two datasets: the
Weizmann human motion dataset [17], the KTH human
action dataset [18, 19], and the HumanEva dataset 3, 20]. All
the experiments are conducted on a Pentium 4 machine with
2 GB of RAM, using the implementation on MATLAB. The
dataset and the related experimental results are presented in
the following sections.

KTH datasets is provided by Schuldt which contains 2391
video sequences with 25 actors showing six actions. Each
action is performed in 4 different scenarios.

The WEIZMANN datasets is provided by Blank which
contains 93 video sequences showing nine different peo-
ple, each performing ten actions, such as run, walk,
skip, jumping-jack, jump-forward-on-two-legs, jump-in-
place-on-two-legs, gallop sideways, wave-two-hands, wave-
one-hand and bend.
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The HumanEva dataset [3, 20] is used for evaluation. It
contains six different motions: Walking, Jogging, Gestures,
Boxing, and Combo.

In order to evaluate and fairly compare the performance,
we use the same experimental setting as in [21, 22]. For every
dataset, 12 video sequences taken by four subjects (out of the
five) are used for training, and the remaining three videos for
testing. The experiments are repeated five times.

The performance of different methods is shown using the
average recognition rate. We report the overall accuracy on
three datasets. In order to evaluate the performance of occlu-
sion state estimation and reconstruct missing coordinate
position, we hand-labeled the ground truth of the occlusion
states for test motions. Figure 3 shows how the ground truth
of occlusion state is specified.

5.2. Comparison. KTH Dataset. It contains six types of
human actions (walking, jogging, running, boxing, hand
waving, and hand clapping) performed several times by
25 subjects in four different scenarios: outdoors, outdoor-
swith scale variation, outdoors with different clothes, and
indoors. Representative frames of this dataset are shown in
Figure 4(a). After the process of restoring missing coordi-
nateposition, we use the proposed method, theclassification
results of KTH dataset obtained by this approach are shown
in Figure5 and indicate quite a small number of videos
are misclassified, particularly, the actions, “running” and
“handclapping,” are more tended to be confused.

The Weizmann Dataset. The Weizmann human action dataset
contains 83 video sequences showing nine different people,
andeach performing nine different actions: bending (al),
jumping jack (a2), juming forward on two legs (a3), jumping
in place on two legs (a4), running (a5), galloping sideways
(a6), walking (a7), waving one hand (a8), waving two hands
(29).

The figures were tracked and stabilized by using the
background subtraction masks that come with this data set.
Some sample frames are shown in Figure 4(b). The classified
results achieved by this approach are shown in Figure 6.

The HumanEva Dataset. The HumanEva dataset is used for
evaluation, which are shown in Figure 4(c). It contains five
different motions: Walking (al), Jogging (a2), Gestures (a3),
Boxing (a4), and Combo (a5). Each motion is performed by
four subjects and recorded by seven cameras (three RGB and
four gray scale cameras) with the ground truth data of human
joints. The classified results achieved by this approach are
shown in Figure 7.

In this paper, we identify jogging, running, walking and
boxing and compare the proposed method with the four
state-of-the-art methods in the literature: Blank et al. [18], Lu
et al. [19], Sigal et al. [3], Chang et al. [20] and Juan Carlos
Niebles [21] in three dataset. As shown in the Tables 1, 2 and
3, the existing methods, the low recognition accuracy because
these action are not only occlusion situation are complex,
but also the legs have complex beat, motion and other group
actions. The proposed method can overcome these problems,

Running

A

Hand clapping

Jogging

Hand waving

FIGURE 4: Sample frames from our datasets. The action labels
in each dataset are as follows (a) KTH data set: walking (al),
jogging (a2), running (a3), boxing (a4), and handclapping (a5);
(b) Weizmann data set: running, walking, jumping-jack, waving-
two-hands, waving-one-hand, and bending; (c) HumanEva dataset:
walking(al), jogging (a2), gestures (a3), boxing (a4), and combo (a5).
Each motion is performed by four subjects and recorded by seven
cameras (three RGB and four gray scale cameras) with the ground
truth data of human joints.

al

a2

a3 0.00
a4 0.00 0.00
a5 0.03 0.03

al a2

a3 a4 a5

F1GURE 5: Confusion matrix for KTH data set.
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0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00
0.75 0.00 0.31 0.00 0.00
0.05 | 0.92 0.04 0.00 0.00
041 0.00 1 095 0.00 0.00
0.00 0.00 0.00 | 1.00 | 0.00
0.00 0.00 0.00 0.00 | 1.00
a5 a6 a7 a8 a9

F1GURE 6: Confusion matrix for Weizmann data set.

8
al 1.00 | 0.00 0.03 0.00
a2 0.00 ' 1.00 0.00 0.00
a3 0.00 0.00 | 0.85 0.00
a4 0.00 0.00 0.00 [ 1.00
a5 0.03 0.03 0.00 0.01
a6 0.00 0.00 0.00 0.00
a7 0.00 0.00 0.00 0.00
a8 0.00 0.00 0.00 0.00
a9 0.00 0.00 0.00 0.00
al a2 a3 a4

al 0.92 0.00 0.03 0.00 0.00

a2 0.00 0.97 0.00 0.00 0.00

a3 0.00 0.00 0.85 0.00 0.00

a4 0.00 0.00 0.00 1.00 0.00

a5 0.03 0.03 0.00 0.01 0.86

al a2 a3 a4 a5
F1GURE 7: Confusion matrix for HumanEva data set.

TaBLE 1: Compared with other approaches on KTH dataset.
Method Average recognition rate (%)
The proposed method 92.50
Lu et al. [19] and Blank et al. [18] 81.50
Chang et al. [20] and Sigal et al. [3] 91.20
Niebles et al. [21] 87.04

TaBLE 2: Compared with other approaches on Weizmann dataset.

Method Average recognition rate (%)
The proposed method 90.10
Lu et al. [19] and Blank et al. [18] 89.30
Chang et al. [20] and Sigal et al. [3] 86.20
Niebles et al. [21] 88.6

and the recognition accuracy and average accuracy are higher
than the comparative method.

The experimental results show that the approach pro-
posed in the paper can get satisfactory results and signifi-
cantly performs better compared the average accuracy with
that in [3, 18-21], because of a practical method adopted in
the paper.

6. Conclusions and Future Work

In this paper, we proposed an adaptive occlusion state
estimation method for 3D human body movement.

Our method successfully recognize without assuming a
known and fixed depth order. The proposed method can infer

TaBLE 3: Compared with other approaches on HumanEva dataset.

Method Average recognition rate (%)
The proposed method 91.40
Lu et al. [19] and Blank et al. [18] 88.70
Chang et al. [20] and Sigal et al. [3] 90.20
Niebles et al. [21] 90.6

state variables efficiently because it separates the estimation
procedure into body configuration estimation and occlusion
state estimation. More specifically, in the occlusion state
estimation step, at first, we reconstruct human trajectory
reconstruction which representing the 3D human pose occlu-
sion relationship and detect body parts having an occlusion
relationship using the overlapping body parts by using a
Markov random field (MRF) with a state variable. Finally, we
use the topic model of pLSA to classify. Experimental results
showed that the proposed method successfully estimates the
occlusion states in the presence of self-occlusion and the
average accuracy is about 92.5%, 90.1%, and 91.4% on the
KTH dataset, Weizmann dataset, and HumanEva dataset
respectively, which is better than other approaches [3, 18-21].

We conjecture that the proposed method can be extended
for tracking poses from (two or more) interacting people.
Tracking poses of interacting people, however, will involve
more complex problems such as dealing with more variable
motion, inter-person occlusions, and possible appearance
similarity of different people.
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Finding similar images to a given query image can be computed by different distance measures. One of the general distance measures
is the Earth Mover’s Distance (EMD). Although EMD has proven its ability to retrieve similar images in an average precision of
around 95%, high execution time is its major drawback. Embedding EMD into L, is a solution that solves this problem by sacrificing
performance; however, it generates a heavily tailed image feature vector. We aimed to reduce the execution time of embedded
EMD and increase its performance using three dimension reduction methods: sampling, sketching, and Dimension Reduction in
Embedding by Adjustment in Tail (DREAT). Sampling is a method that randomly picks a small fraction of the image features. On
the other hand, sketching is a distance estimation method that is based on specific summary statistics. The last method, DREAT,
randomly selects an equally distributed fraction of the image features. We tested the methods on handwritten Persian digit images.
Our first proposed method, sampling, reduces execution time by sacrificing the recognition performance. The sketching method
outperforms sampling in the recognition, but it records higher execution time. The DREAT outperforms sampling and sketching

in both the execution time and performance.

1. Introduction

One of the interesting problems in database communities is
image retrieval from large databases. The fundamental issue is
how to design a similarity measure in a manner that shows the
concept of similarity between two images, because choosing
a proper measure has considerable effects on image retrieval
applications. Some of the similarity measures include the
Earth Mover’s Distance (EMD), Jeffrey’s divergence, and
Minkowski-form distance [1].

The EMD is a general and flexible metric that has desir-
able and striking properties for content-based image retrieval
[2, 3]. This similarity measure, which applies to weighted
point sets, measures the minimum amount of work needed to
transform one set into another set by weight transportation.
The most significant feature of EMD is that it quantifies
perceptual similarity better than other types of distances
used for image retrieval [2]. Although EMD can measure
the exact distance between images, and by this measure we
can retrieve the most similar images from a database, its

execution time is problematic, and this similarity measure is
very time consuming.

Another method, called embedded EMD to L;, was
proposed to solve the EMD problem. This method maps the
image matrix to an L, norm; therefore, instead of comparing
2-dimensional matrixes, we can compare 1-dimensional vec-
tors. Although this idea is less time consuming, it produces
distortion. Sometimes, an exact computation may be practi-
cally infeasible; in this situation, an approximation solution
is helpful to find the exact result with some distortion. Both
execution time and performance are important factors in
image retrieval, and we should attempt to reduce distortion
as much as possible. In this paper, we propose two methods
to improve the performance of embedded EMD. The first
method, sampling, reduces the time but decreases perfor-
mance. In the next proposed method, sketching, we improve
performance by sacrificing the time of execution. Finally,
in the last method, by solving the problem of sampling, we
improve the performance while reducing the execution time.



TABLE 1: Relationship between image’s size and array’s length.

G G, G G, G,

n’  n'l4 n’ll6 n’l64 n’/256
Number of elements in array 256 64 16 4 1
Side length 1 2 4 8 16

The remainder of this paper is organized as follows.
In Section 2 we discuss related previous work. In Section 3
we describe our proposed technique. Section 4 provides the
details of our proposed methods. Finally, we discuss the
results and our conclusion in Sections 5 and 6.

2. Previous Work

The concept of Earth Mover Distance (EMD) was first
explored in [4] to measure perceptual shape similarity. The
use of EMD for computing similarity between images was
later proposed in [5]. Since then, the EMD has become a
trendy similarity measure in computer vision; it has been
used effectively in various applications including color-based
image retrieval systems, texture signatures [6], shape match-
ing [7-9], and music score matching [10]. The EMD performs
quite well in comparison with other similarity measures, such
as the Jeftrey divergence and the Minkowski-form distance.
In addition, the EMD can be used to measure the differences
between vector fields [11].

Some authors in [2] have compared the EMD with other
similarity measures and evaluated the retrieval performance
of each. The results of the comparisons demonstrate that the
EMD is more robust than other measures for the purpose of
image retrieval because it matches similarity better than other
distances.

The main idea behind the EMD metric is as follows.
Suppose that each image is a set of colored points in 2-
dimensional space. The minimum amount of work needed to
transform one set into another set is defined as the distance
of two set points. In recent years, a low-distortion embedding
of EMD into L, has been developed [12]; although the empir-
ical results show that this distortion is much smaller than
what had been estimated previously, the embedding steps
themselves decrease the complexity of computing similarity
between two images. Other authors [9] have reported on
the complexities of querying the time and space of an exact
EMD versus an embedded EMD for shape similarity. In
this work, we demonstrate how to reduce the complexity of
the computing correspondence between two images that are
mapped to an L, norm by dimension reduction.

The most similar work in this area is that of Grauman
and Darrell [9], who show a contour matching algorithm that
quickly quantifies the minimum weight matching between
sets of descriptive local features using the embedding of
the Earth Movers Distance (EMD) into a normed space.
Their method achieves an increase in speed of four orders
of magnitude over the exact method at the cost of only a 4%
reduction in accuracy.

Journal of Applied Mathematics

3. Dimension Reductions in L,

In modern image retrieval applications, the data is sometimes
not only very large relative to the physical memory or even
to the disk, but also highly sparse. Accordingly, computing
the embedded L, on large-scale sparse data can be chal-
lenging and time consuming. Various projection methods
have been suggested for speeding up these computations.
Dimension reduction in the L, norm has many applications
in information retrieval. The authors of [13] show that
dimension reduction by sampling from L, does not produce
poor results. Additionally, by estimating distances in L, from
random samples, the original L, distances can be recovered.
Sampling methods become more important with increasingly
large collections [14] because we can use the same set of
random samples to estimate any L, pairwise distances [15],
whereas measuring exact pairwise distances is often too
time consuming or sometimes infeasible; however, random
sampling often performs poorly when most of the samples
are zeros [13]. Additionally, in strictly heavy-tailed data, the
estimation errors are sometimes very large.

As another choice of random projection, various sketch-
ing algorithms have become popular. In general, a sketching
algorithm outperforms random sampling, although random
sampling is much more flexible [15]. In the sketching method,
after scanning the data, we compute specific summary statis-
tics, and then repeat this step k times.

3.1. Procedures of Sampling and Sketching. Suppose we have
a database of n images and we want to compare a particular
image with this database. To do so, we need a measurement;
this is when we use EMD. Consider that we have 2 images
with high similarity, for example, in Figures 1 and 2 apples
with spots in different positions.

In this situation, the EMD of two spots in these images is
computed as follows.

Euclidean distance between

(i) st pixels: \/(8 —9)% + (12 - 8)* = V15,

(ii) 2nd pixels: \/(8 -9)*+(13-9)* = V15,

(iii) 3rd pixels: \/(9 -10)* + (12 - 8)* = V15,

(iv) 4th pixels: \/ (9-10)* + (13 - 9)* = V15.

Therefore, the EMD of two spots is V15+ V15+ VI5+ V15 =
4415 = 15.5.

In the EMD metric, Euclidean distances between all
weighted point sets are computed and then the minimum
distance between each pair of point sets can be found. There
are different methods to solve this type of weighted matching
problems; in our case we use the “Hungarian” method [16-
19]. This method finds the minimum distances between
each pair of points in two images with » points in o)
arithmetic operations; therefore, the typical EMD is very time
consuming, which is the biggest drawback for EMD. Another
drawback is that when two weighted point sets have unequal
total weights, EMD is not an appropriate metric; however,
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TaBLE 2: Number of vector elements in four methods.
In L,-vector (EEMD methods)
G, G, G; G, Gs G G,
! ! ! ! ! ! !
Elements: 4096 + 1024 + 256 + 64 + 16 + 4 + 1 = 5461
In sample and sketch vector
Elements: 10% of L, vector = 546
In DREAT vector
10% of G, 10% of G, 10% of G, 10% of G, 10% of G, 10% of G, 10% of G,
1 ! ! 1 1 ! !
Elements: 409 + 102 + 25 + 6 + 1 + 4 + 1 = 548
TABLE 3: Some samples of handwritten Persian digit images.
Class No. of images Digit Correct shape Samples
1 2 3 4 5
® e e © ™ -
Class 1 432 Zero
Class 2 1500 One \ \ ) \ \ \
Y \
Class 3 1067 Two Y A ’< X
¢ . '
Class 4 256 Three Y’ Y \} ‘T’ Yl
> "
Class 5 173 Four (1) f \ ‘C (L ‘K C
S - 4 <
Class 6 22 Four (2) i Z‘ < & = Z'
A
Class 7 180 Five O S & & S
S 4 v ol
Class 8 138 Six (1) P 5 ’ 7
A T
Class 9 31 Six (2) -L 1 “\ ﬁ(
/ f G
Class 10 713 Seven v ¥ L v v "
\ [
Class 11 150 Eight A A A A A
q ¢
Class 12 657 Nine c\ 0‘ \ q C\

it is desirable for robust matching to allow point sets with
different total weights and cardinalities [18]. On the other
hand, approximation is a good idea because usually exact
computation is practically infeasible and an approximate
solution can help to find the exact solution more efficiently.

In implementing EMD, in order to embed two sets of
contour features with different total weights, we simulate
equal weights by eliminating the appropriate number of
random points from the larger weight set. For example,
in Figure 2, when points are sampled uniformly from the
contours of two images of Persian number 3 with a size
of 64 x 64 pixels, the first image has 124 points, while the
second image has 131 points. Therefore, the first image has 13
more points than the second one, and 13 points are randomly
chosen from its contour to be eliminated.

The next part of the application is implementing embed-
ded EMD into L,. We formally show how to construct an

embedded EMD into L;,. A boundary of +/logn on any
L,embedding distortion has been defined [20], where 7 is the
number of pixels in the width or height of image (width and
height of image are equal). We embed the minimum weight
matching of contour features into L, via the EMD embedding
of [12, 21]. To embed EMD into L,, we put bitmap image in a
grid whose size is twice bigger than that of the original image
and shift grid randomly upon the image. Afterwards, we map
pixels of the new image (which are all 0 or 1) to elements of
an array in a special orientation starting from the first pixel
in the left-top bit of the image to its last pixel in the right-
bottom bit. The rest of the array should be set after some
computation. For example, in the embedding of a 16 x 16
image, G is the first grid and it includes 256 elements, each
of which has a side length equal to 1. The first 256 elements
of the array are set with these elements. In the next step, we
add each of the 4 neighbouring elements in G, and place the
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TABLE 4: Some samples of handwritten Persian letter images.

Letter Correct shape samples
1 2 3 4 5
‘ -
& < & & &
e ¢ ~
. cl 4 & < & &
& 0 = - = i
Zh 3 - ~ e S /
a
. -4 . o o &
- — > "~
. . e [ ' [ S L. [
a
- '._..-'.‘ ;:J ‘L/ 4 St
[
Sa
Fa
- ¢ p - - iy
Gha S b J > 3 <)

function Calculate_L, (image)
begin

Scale image to 64 x 64

Initialize an image matrix, original_img, of 64 x 64

Initialize an image matrix, imageMtrx, of (2 x 64) x (2 x 64)

Set imageMtrx to original_img

Initialize U}, a random number between 0 and 64

Initialize V}, a random number between 0 and 64

Shift each position in imageMtrx to position (U;, V;)

Set G, array to pixels of imageMtrx

/[Create L, _vector of image matrix including G, array followed by G, array,...,
followed by G,, array (as in Figure 3)

Initialize L, _vector to null

L, _vector =G,

fori=1t06
Set G;,, to sum of each 4-neighbour elements of G; multiplied by side length
L, vector = L, _vector + G;,;

end for

return L, vector

end
function Calculate_Embedded EMD(image 1, image 2)
begin

Initialize L, _vector 1

Initialize L, _vector 2

Initialize EEMD

Set L, _vector 1 to Calculate_L, (image 1)

Set L, _vector 2 to Calculate_L, (image 2)

Subtract each pair of corresponding elements of L, _vector 1 and L, _vector 2
Add all subtractions into EEMD and display it

end

PSEUDOCODE 1
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TABLE 5: Preprocessing of some test images.

1st
Original image st process
Crop white margin

2nd process

Resize image

3rd process 4th process

Get contour Remove spots randomly

Width: 77

Width: 64

Height: 95 Height: 64 Black spots Black spots: 150
o O =
© |§| Width: 20, height: 23 q . 284 or
S
\ Width:13, height: 35 246
! Width: 18, height: 39 i § 287
b i i Width: 34, height: 41 ‘ E 265 kS
€ Width: 22, height: 43 ? % 359
d Width: 33, height: 50 a d 438
7 Width: 29, height: 43 E % 334 bl
v Width: 36, height: 42 292
A @ Width: 29, height: 43 j\ 322
4 A 2
a Width: 28, height: 39 E 342
3 |g| Width: 25, height: 36 E E 350
" |j Width: 34, height: 43 E 272 i

results in the corresponding elements of G,, which will be the
next 64 elements in the array. In the 3rd step, we add each
of the 4 neighbouring elements in G, and place the results
in the corresponding elements of G, which will be the next
16 elements in the array. We continue this process until we
have just one element, G;, which will be the last element of
the array. In Figure 3, you can observe the embedding of an
image’s pixels to an array in L,.

The length of array is the sum of all the grids’ lengths.
So, in our example length of the array is 341 which is
approximately equal to 2 x 16%. As a result, length of the
embedding vector is 2A%. Table1 shows the relationship
between the size of an image, side length, and the number
of each grid’s elements in an array.

Pseudocode 1 describes the embedded EMD technique.

Finding the EMD of two images with this method has
a complexity of O(n?), because, for the mapping to L,, the
vectors are of length O(n”). Therefore, finding the L, of two
vectors, that is, vector A and B as in Figure 4, can be done
in O(n?), which is better than O(n’) in exact EMD. The L,
mapping is defined as

Ly (A,B)=|Ag—By|+|A, - B| +-

€))
+|Ai_Bi|+“'+|A22x_B§x .

Note that the exact EMD has a complexity of O( n),
which is the complexity of the Hungarian algorithm used
for its implementation, and that the embedding EMD to L,,
which computes an approximation instead of the exact EMD,
reduces the complexity to O(n”). We propose two techniques
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function Calculate_Sampling(image 1, image 2)
begin

Initialize L, _vector 1

Initialize L, vector 2

Initialize sampling_L,_Vector 1

Initialize sampling_L, _Vector 2

Initialize sampling EMD

Set L, _vector 1 to Calculate_ L, (image 1)

Set L, _vector 2 to Calculate_ L, (image 2)

Select 10% indexes of L, _vector 1 randomly

end

Put the elements of selected indexes of L, _vector 1 into sampling_L, Vector 1

Put the elements of selected indexes of L, _vector 2 into sampling_L, _Vector 2

Subtract each pair of corresponding elements in sampling_L, _Vector 1 and sampling_L, -Vector 2
Add all subtractions into sampling_ EMD and display it

PSEUDOCODE 2

begin
Initialize L, _vector 1
Initialize L, _vector 2

/] Sketching_Mtrx is as in Figure 6
Initialize sketching_Vector 1

Initialize sketching_Vector 2

Initialize sketching_ EMD

Set L, _vector 1 to Calculate_L , (image 1)
Set L, _vector 2 to Calculate_L, (image 2)
for i = 1 to Sketching Vector Length

end for

end

function Calculate_Sketching (image 1, image 1)

Initialize Sketching Vector Length as 10% of L, _vector 1length
Initilize Sketching_Mtrx as L, _vector 1 length x Sketching Vector Length randomly

Multiply each pair of corresponding elements in row i of Sketching_Mtrx and L, _vector 1
Put the sum of multiplications in sketching_Vector 1
Multiply each pair of corresponding elements in row i of Sketching_Mtrx and L, _vector 2
Put the sum of multiplications in sketching_Vector 2

Subtract each pair of corresponding elements in sketching_Vector 1 and sketching_Vector 2
Add all subtractions into sketching_ EMD and display it

PSEUDOCODE 3

to reduce the complexity of EMD to O(n) by using dimension
reduction in the L,, sampling, and sketching. Concept of
the dimension reduction technique from # to predetermined
N-dimensional space is based on linear transformation, for
example, elements of transformation 2-dimensional matrix A
to a 1-dimensional vector [22].

Sampling is an option for dimension reduction in any
norm (e.g., L, or L,). In fact, using this technique, distances
in L, or L,from random samples can be estimated by a simple
scaling [13, 22]. Although it is a simple and popular method to
approximate distances, it does not guarantee accuracy. In this
method, as it is shown in Figure 5, we randomly pick k (out of
D) columns from the image matrix A and image matrix B. We
subtract them and set the results as a corresponding element
in the sample vector. Finally, we sum all of the elements of

the sample vector and call the result the sampling EMD of
two images A and B.

In order to get the best or, at least, near to the EEMD
method, we tested different sampling rates, for example 5%,
20%, 30%, and above the whole vector. Finally, we found that
10% is the best sampling rate. Therefore, we randomly select
10% of elements from L, vector that will generate just 546
elements.

Sampling EMD is displayed in Pseudocode 2.

Sketching is another option for dimension reduction. In
this method, after scanning the data, we multiply the original
data of image matrix A and image matrix B by a random
matrix R which has either a 0 or 1 for each element, and the
subtraction of the resulting matrices forms one element of
the sketch vector. We repeat this step k times. The sum of all
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function Calculate DREAT (image 1, image 2)
begin
Initialize L, _vector 1
Initialize L, _vector 2
Initialize index Vector
Initialize DREAT _Vector 1
Initialize DREAT _Vector 2
Initialize DREAT_EMD
Set L, _vector 1 to Calculate_L , (image 1)
Set L, _vector 2 to Calculate_L, (image 2)
Fori=1to7
Select 10% indexes of G; randomly
Put the selected indexes in index Vector
end for
Select all elements of L, _vector 1 whose indexes are in index Vector
Put the elements in DREAT _Vector 1
Select all elements of L, _vector 2 whose indexes are in index Vector
Put the elements in DREAT _Vector 2
Subtract each pair of corresponding elements in DREAT _Vector 1 and DREAT _Vector 2
Add all subtractions into DREAT_EMD and display it
end

PSEUDOCODE 4

1213 8 9

3| N
e N\
\}\;\\ 9

10

FIGURE 1: Two figures with high similarity.

(a) Input images (b) EMD flow

FIGURE 2: Computation of dissimilarity between two input images in Euclidean space and their corresponding EMD flow.
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FIGURE 3: Mapping of a 16 X 16 image into a vector.
TaBLE 6: Example of average precision calculation. time is reduced. However, the problem is that all elements of
1 — - vector are sampled at the same rate.
n Doc no. Relevance Precision points When we go through the vector, most data in the initial
1 588 Yes P=11=1 sections, such as G, and G,, contain almost all zeros when
2 589 No compared with the latter sections, such as G5, G,, and G5. We
3 576 Yes P=2/3=0.667 considered this fact to be a heavy-tailed vector. As a result,
4 590 No when we apply the sampling method, the vector might by
5 986 Yes P=3/5=06 chance contain almost all zeros, which is meaningless. That
6 592 No is the reason why we need to create a method that will select
7 984 No an equal portion of samples from each part of the grid instead
8 988 Yes P-4/8=05 of randomly sampling from the whole. ‘ ’
9 578 Ves P=5/9=0556 We called the proposed method as the Dimension Reduc-
R tion in Embedding by Adjustment in Tail (DREAT), a method
10 985 No that hybrids both the sampling and sketching. For example,
suppose we want to select 10% of a vector as a sample
0 1 i 247 vector. In the original sampling method we randomly selected
VectorA| | | | | | | | | | ‘ elements of the vector, but, in the DREAT method, we
selected only 10% of the elements of each grid part, G,. In this
way, we can select the same portion of all parts of the vector,
not only among early elements that have many zeros but also
among latter elements with large numbers that are required
for recognition.
Table 2 shows the comparison between the number of
vector elements in sampling, sketching, and DREAT meth-
Vector B | | | | | | | | | | ‘ ods. In DREAT method, we select 10% elements from each
ector

FIGURE 4: Computing L, (A, B).

elements of the sketch vector is what we call the sketching
EMD. Sketching method is illustrated in Figure 6.
Pseudocode 3 shows sketching method.

3.2. Procedures of DREAT. Based on the sampling and sketch-
ing experiments, the images’ L, vectors are heavily tailed
where there are many zero elements in former grids and many
nonzero elements in latter grids. In the sampling method,
we choose samples of the L, vector and apply EMD to the
samples instead of the whole vector; therefore, the execution

grid part because it will produce a number of vector elements

that are near to the ones produced by the sampling and

sketching methods. Therefore, by using similar idea of adjust-

ing the heavy-tailed vector that we used in the sketching

method and combining it with the sampling method we can

improve the accuracy without increase of the running time.
This can be expressed in Pseudocode 4.

4. Experiments

In this work, we tested 5 methods: exact EMD, embedded
EMD, sampling, sketching, and DREAT. Our image dataset
includes bitmap images from Amirkabir University of Iran
[23]. The images are scanned from handwritten Persian letters
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TABLE 7: Results of 5 methods.

Percentage of first correct recognition

MAP Ist pos. 2nd pos. 3rd pos. 4th pos. 5th pos. 6th pos. >6th pos.
Exact EMD 0.97 0.99 0.01 — — — — —
Embedded EMD 0.85 0.90 0.01 0.02 0.03 0.01 0.01 0.02
Sampling 0.59 0.58 0.09 0.02 0.05 0.03 0.01 0.23
Sketching 0.87 0.89 0.04 0.02 0.01 — 0.01 0.03
DREAT 0.91 0.91 0.06 0.02 — — — 0.01

1234567 d the similarity measurement will produce a high distortion.

Vector A HENEEEEEE [ 1] Since that is not a focus of this work, we excluded all the

letters.
Vector B [TOTTTTTT [ ] ] We divided our dataset into two parts: reference images
1 23 4 U and test images. The reference set includes 100 images that

FIGURE 5: Sampling method on vector A and vector B.

1234567 d

VecorA | [ [ [ [T T[T ITTTTITTT]]

1234567 d

VeeorB[ [ [ | [ [ [T ][] ][] ][]TT]]

Random Matrix R

1234567 d

FIGURE 6: Sketching method on vector A and vector B.

and digits. The dataset includes 47 classes which are divided
into two parts. The first part of the dataset consists of 35
classes including letter images and the second part of the
dataset consists of 12 classes including digit images.

In the dataset, each image is named based on a combina-
tion of class number and running number. The first part of
image name is its class number as listed in Table 3. Similarity
is measured by comparing between the class number of a test
image and the queried image. In our work, we only use the
second part of the dataset that consists of 12 classes of 5319
handwritten Persian digit images. In Table 3, some of digit
images are shown.

We did not use the letter images because Persian letters
are very similar in handwritten shape even for a human
reader. As some samples are shown in Table 4, letters that
have two or three dots are similar to other handwritten letters
with a dot. For example in the first sample of Table 4, letter
“Cha” is very similar to letter “Ja” because the dots of letter
“Cha” stick to each other and they look like one dot. Similarly,
letter “Zha” is similar to letter “Za” in some cases. In this case,

we randomly selected from the dataset and tested them on
the rest of the dataset. In other terms, we remove these 100
reference images from test images part. So, we will only
find similar images to these reference images not exact ones.
For each reference image, we applied the 5 methods and
calculated EMD. We then computed the average precision
(AP) and placed the results in a table. Finally, we computed
the mean average precision (MAP) for all 100 reference
images for each method; the results are shown in Table 5.

In each method, some preprocessing steps should be
performed. The first step, which is common to all methods,
is cropping the white margin of the image. Then, in the next
step, the image should be resized to a particular size 64 x 64.
As a result of pre-processing, we have some images with the
same features.

In the first method, exact EMD, what we need is the
contour of the image as well as the same number of spots for
all of the images. Therefore, 2 additional steps are necessary in
this method: getting the contour of the image and removing
the additional spots randomly until the same number of spots
is achieved, which should be 150 spots.

However, for the methods of embedded EMD, sampling,
and sketching, we need the whole image not just its contour.
Therefore, preprocessing steps in these methods are only up
to the second step. Preprocessing of some of the images is
illustrated in Table 5.

5. Results

We computed the mean average precision (MAP) values for
the results of 5 different methods applied to 100 query images.
Average precision (AP) is the average of the precision values
at the points at which each relevant document is retrieved.
Precision is defined as

. number of relevant documents retrieved
Precision =

total number of documents retrieved @
2

For example in Table 6 it can be clearly seen that 5 out of
10 documents are relevant; thus, the AP is computed as

(1 +0.667 + 0.6 + 0.5 + 0.556)
' 5

AP = 0.665. (3)
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TaBLE 8: Time execution of 3 reference images and estimation for 100 images.
Image query 1: Image query 2: Image query 3:
s v A Average for 100 images Total for 100 images
mm: ss mm: ss mm: ss mm :ss hh:mm

Exact EMD 22:45 23:11 22:57 22:57 36:41
Embedded EMD 9:18 9:51 9:39 9:36 16:00
Sampling 9:10 9:13 9:11 9:11 15:18
Sketching 11: 06 11:20 11:14 11:13 18:41
DREAT 8:45 9:09 9:02 8:58 14:56

Information retrieval systems are frequently judged by
their mean average precision (MAP). MAP is the average
of the average precision values for a set of queries; it is a
performance evaluation measure of information retrieval.
Using this measure, we are able to retrieve top-ranked images
that are mostly relevant.

The results of all of our experiments are presented in
Tables 7 and 8. We compute the AP, which is the average
precision of relevant retrieved images among the 10 top-
ranked images of the test image sets. In Table 7, the average
AP of 100 test images for each method is in the second
column. In columns 3 to 8 the percentages of first correct
recognition in the first to sixth positions are shown. In the
last column, the percentages of first correct recognition in the
seventh position and beyond are shown.

In Table 8, the execution times of 5 methods for 3
randomly selected test images are shown. In the fifth column
we estimate an average execution time, and in the last column
we estimate the execution time for 100 test images for each
method. As can be seen in this table, exact EMD has the
highest execution time, and embedded EMD reduces this
time by half. We can reduce this time by using our proposed
methods. The last method, DREAT, achieves the lowest
execution time.

6. Conclusion

DREAT is a method that hybrids both the sampling and
sketching. In this paper, it shows its usefulness in dimension
reduction of sparse and heavy-tailed data. As can be seen in
the results, the exact EMD has a MAP value of 0.97; the MAP
value is the average of relevant retrieved images among the
10 top-ranked images of 100 images. Although this method
is excellent for measuring image similarity, its execution time
is very high. By using embedded EMD, a MAP value of 0.85
can be achieved in half the time of exact EMD. Our first
proposed method, sampling, reduces the time of execution,
but it achieves the poorest MAP value of 0.59. Our second
method, sketching, improves the MAP to 0.87 by sacrificing
the execution time. Our last method, DREAT, has the lowest
execution time and produces one of the best MAP values,
which is 0.91.

In general, the results show that dimension reduction
techniques like those in this paper, are useful for improv-
ing the processing time and matching. DREAT, especially,

combines sketching and sampling where it converts sketches
of the data into conditional random samples online in the
estimation stage, with the sample size being determined
retrospectively. The improvement to the EEMD is useful for
overcoming problems with heavily tailed feature vectors.
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