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A carbon nanotubes/graphene composite is grown on nickel foil without additional catalysts by one-step ambient pressure
chemical vapor deposition (CVD). Next, the carbon nanotubes/graphene composite is modified by radio frequency (RF)
nitrogen plasma. Finally, to improve its initial coulombic efficiency/electrochemical stability, lower potential during the charge
process (coin cell), and boost potential during the discharge process (lithium-ion battery), alumina is deposited onto the N-
doped carbon nanotubes/graphene composite by RF magnetron sputtering at different power levels and periods of time. The
charge specific capacity (597mAh/g) and initial coulombic efficiency (81.44% > 75.02% for N-doped carbon
nanotubes/graphene) of Al2O3/N-doped CNTs/graphene for the coin cell reached a maximum at the best sputtering condition
(power = 65W and time = 30 min). Al2O3/N-doped CNTs/graphene (the best sputtering condition) exhibits higher initial
coulombic efficiency (79.8%) compared with N-doped CNTs/graphene (initial coulombic efficiency: 74.3%) for the lithium-ion
battery. Furthermore, the achievement fraction (about 70%) of full charge capacity (coin cell) for Al2O3/N-doped carbon
nanotubes/graphene (the best sputtering condition) is higher than that (about 30%) for N-doped carbon nanotubes/graphene at
a voltage lower than about 0.25V. Moreover, it also shows a little higher electrochemical stability (coin cell) of charge capacity
for Al2O3/N-doped carbon nanotubes/graphene (the best sputtering condition) in comparison with N-doped carbon
nanotubes/graphene and Al2O3/N-doped CNTs/graphene (the best sputtering condition) exhibits better cyclic stability (lithium-
ion battery) of discharge capacity compared with N-doped CNTs/graphene.

1. Introduction

The applications of lithium-ion batteries include portable
electronic devices, electric vehicles, and hybrid electric vehi-
cles. In comparison with other batteries, lithium-ion batteries
have higher energy densities, higher voltage, and lower main-
tenance [1]. The performance of lithium-ion batteries mainly
depends on the properties of anode and cathode materials. In
this research, we focused on anode materials of lithium-ion
batteries.

In our previous study [2], one-step ambient pressure
CVD was used to simultaneously synthesize carbon nano-

tubes (CNTs) as well as graphene on nickel foam without
additional catalysts at 800°C and then the carbon nanotu-
bes/graphene composite was modified by RF nitrogen plasma
treatment. However, it still possessed lower initial coulombic
efficiency/electrochemical stability and mainly occurred
higher potential during the charge process of the coin cell
as well as lower potential during the discharge process of
the lithium-ion battery for the N-doped carbon nanotubes/-
graphene composite. Therefore, to improve its initial cou-
lombic efficiency/electrochemical stability, lower potential
during the charge process of the coin cell, and enhance
potential during the discharge process of the lithium-ion
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Figure 1: Schematic illustration of the fabrication process of Al2O3/N-doped CNTs/graphene.
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Figure 2: Raman spectra of Al2O3/N-doped CNTs/graphene.
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battery, the N-doped carbon nanotubes/graphene composite
was modified by oxides in this research.

An alumina layer was deposited on silicon by atomic
layer deposition (ALD) to prevent some side reactions
between the silicon and the electrolyte, and then the

coulombic efficiency and electrochemical stability were
improved [3]. A smooth alumina protective layer was
deposited on Al-doped (enhancing the electronic conduc-
tivity of insulating alumina) porous C/SiO2 composites,
and alumina could act as a preformed solid electrolyte

1 2
Full scale 12490 cts cursor: 0.000

3 4 5 6 7 8
keV

N Ka1_2AI Ka1

C Ka1_2 O Ka1

Electron image 12𝜇m

Sum spectrum

C
O

AI

Figure 3: The FESEM image and EDX elemental mappings as well as intensities of C, O, Al, and N in Al2O3/N-doped CNTs/graphene (the
best sputtering condition).
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interface (SEI) film to decrease lithium ions consumption
in the regeneration of SEI films as well as then increase
the coulombic efficiency as well as electrochemical stability

[4]. Alumina artificial SEI layers with different thickness
which suppressed the growth of SEI films were deposited
on the SnO2/CNTs composite by ALD at different cycles,
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Figure 4: The effects of power levels and time periods for sputtering alumina onto N-doped carbon nanotubes/graphene composites on the
charge specific capacity (0.1 C) of alumina/N-doped carbon nanotubes/graphene for the coin cell.

0 10 20 30 40 50 60 70
70

72

74

76

78

80

82

84

In
iti

al
 co

ul
om

bi
c e

ffi
ci

en
cy

 (%
)

Time (min)

50 W
65 W
80 W

Figure 5: The effects of power levels and time periods for sputtering alumina onto N-doped carbon nanotubes/graphene composites on the
initial coulombic efficiency of alumina/N-doped carbon nanotubes/graphene for the coin cell.
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and electrochemical stability, rate capability, and coulom-
bic efficiency were improved [5]. An alumina passive layer
which blocked the interaction between Fe3O4 and the elec-
trolyte to prevent the formation of SEI films was deposited
on Fe3O4-reduced graphene oxide composite by ALD, and
electrochemical stability was improved [6]. Alumina coat-
ing was deposited on the MnO2/CNTs composites by
ALD, and the initial coulombic efficiency was increased
with the increase of the coating thickness; however, a thick
alumina film decreased the electrochemical performances
by inhibiting lithium-ion intercalation [7]. To improve
the initial coulombic efficiency, electrochemical stability,
and high-rate performance, alumina was coated on natural
graphite powder by a sol-gel method and the alumina
coating could act as a preformed SEI film to allow
lithium-ion transport, prevent electron transfer, and
reduce the regeneration of SEI films as well as lithium
ion consumption during subsequent cycling [8]. Multi-
walled carbon nanotubes (MWCNTs) were directly grown
on the Cu current collector by CVD, then alumina was
deposited on the MWCNTs by ALD, and alumina could
enhance electrochemical stability and lithium-ion interca-
lation capacity [9]. Alumina with different thickness was
deposited on lithium metal by RF magnetron sputtering
at a fixed power level (80W) as well as different time
periods (10min-60min), and lithium metal coated with a
20 nm thick alumina possessed better electrochemical sta-
bility than lithium metal [10]. So, alumina was deposited
onto the N-doped carbon nanotubes/graphene composite
by RF magnetron sputtering at different power levels and
periods of time in this study.

2. Materials and Methods

We followed the methods of Lin et al. (2018) [11] and Lin
et al. (2020) [12] to prepare a carbon nanotubes/graphene
composite. Next, the carbon nanotubes/graphene composite
was modified by nitrogen plasma according to the method
of Lin et al. (2020) [12]. Finally, alumina was deposited onto
the N-doped carbon nanotubes/graphene composite by RF
magnetron sputtering from a 3 inch disk Al target (purity:
99.7%, purchased from Solar Applied Materials Technology
Corporation, Taiwan) in a vacuum chamber with a back-
ground pressure of 7 × 10−6 torr. The distance between the
target and the substrate was 8 cm. The pressure and volume
flow rates of argon as well as oxygen were maintained at
20mtorr and 25 sccm as well as 10 sccm, respectively. The
power levels (50, 65, and 80W) and time periods (5, 10, 30,
50, and 70min) were varied.

A solution of 1M LiPF6 dissolved in 1 : 1 : 1 (wt%) ethyl-
ene carbonate-ethyl methyl carbonate-dimethyl carbonate
fromUbiq Technology was used as the electrolyte. The anode
electrode (π × 0:65 × 0:65 cm2, Li metal: 99.9%, 0.3mm
thick, Ubiq Technology) was assembled with the cathode
electrode (π × 0:65 × 0:65 cm2, N-doped CNTs/graphene or
Al2O3/N-doped CNTs/graphene) into a coin cell with the
0.1-0.15ml electrolyte (1M LiPF6) and the PP/PE/PP separa-
tor (Celgard 2325, Celgard, USA) at room temperatures
(about 293-303K) by using a coin cell manual crimping
machine (CR2032, Taiwan) in an Ar-filled glove box. Fur-
thermore, the cathode electrode (π × 0:65 × 0:65 cm2,
LiCoO2: 92% of purity, Ubiq Technology) was assembled
with the anode electrode (π × 0:65 × 0:65 cm2, Al2O3/N-
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Figure 6: The effects of power levels and time periods for sputtering alumina onto N-doped carbon nanotubes/graphene composites on the
roughness of alumina/N-doped carbon nanotubes/graphene.
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doped carbon nanotubes/graphene composites (the best
sputtering condition)) into a lithium-ion battery (full cell)
with the same procedure as the coin cell. The electrochemical
cycling tests were performed at 0.1-2C with a potential range
of 0.01V to 3V (vs. Li+/Li) for the coin cell (a potential range
of 1-4.5V for the full cell) using a cycler (PFX 2011, Kikusui,
Japan).

The D peak, G peak, 2D peak, and Al2O3 peak for the
Al2O3/N-doped carbon nanotubes/graphene composite
(the best sputtering condition) were investigated by micro-
scopic Raman spectrometer (633 nm of wavelength; in Via,
Renishaw, England). Furthermore, the structure or
chemical composition of Al2O3/N-doped CNTs/graphene

for sputtering alumina onto N-doped CNTs/graphene
composites at 65W and different time periods were con-
ducted by field emission scanning electron microscope
(FE-SEM) combined with energy-dispersive X-ray (EDX)
(JEOL JSM-6700F, Japan). Additional information on the
surface roughness (root-mean-square (rms) got by running
NanoScope Analysis using original AFM data as input) of
Al2O3/N-doped CNTs/graphene for sputtering alumina
onto N-doped CNTs/graphene composites at different
power levels and time periods was obtained by atomic
force microscope (AFM, Dimension ICON Bruker, Ger-
many). Moreover, cyclic voltammetry tests of the coil cell
for Al2O3/N-doped CNTs/graphene (the best sputtering
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Figure 7: (a) The correlation between the charge specific capacity and the roughness and (b) the correlation between the initial coulombic
efficiency and the roughness.
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condition) were performed using an electrochemical
analyzer (CH Instruments CHI 608B, USA) with the
CR2032 coin cell over a potential range of 0.01-3.0V at
a scan rate of 0.1mVs-1.

3. Results and Discussion

Figure 1 shows alumina fabricated by sputtering Al2O3 onto
the N-doped CNTs/graphene composite grown on nickel
foam by CVD and treated with N2 plasma. The Raman spec-
tra (see Figure 2) for the Al2O3/N-doped carbon nanotubes/-
graphene composite (the best sputtering condition), the
peaks positioned at 1350 cm-1 (D), 1550 cm-1 (G), and
2665 cm-1 (2D), can be assigned to CNTs as well as graphene
which also are confirmed by the FESEM images of CNTs as
well as graphene sheets being simultaneously synthesized at
800°C in our previous paper [2]; the peaks located at 372.7
1/cm, 415.7 1/cm, 423.5 1/cm, 454.6 1/cm, 574.1 1/cm, and
755.5 1/cm corresponding to the Eg(TO), A1g(LO), Eg(TO),
Eg(LO), Eg(LO), and Eg(LO), respectively, can be attributed
to Al2O3 as well as are in good agreement with the previous
literature [13], and the sharp peaks at about 500 1/cm and
700 1/cm are spinel γ-Al2O3 as well as the sharp peak at
about 620 1/cm is nonspinel γ-Al2O3 [14]. Furthermore, alu-

mina coated onto the N-doped CNTs/graphene composite
was also verified from the EDX element mappings and inten-
sities in Figure 3 which exhibited Al and O for Al2O3/N-
doped CNTs/graphene.

Figures 4 and 5 show the effects of power levels and time
periods for sputtering alumina onto N-doped carbon nano-
tubes/graphene composites on the charge specific capacity
(0.1C) and initial coulombic efficiency of alumina/N-doped
carbon nanotubes/graphene for the coin cell, respectively.
The charge specific capacity (597mAh/g) and initial coulom-
bic efficiency (81.44%) reached a maximum at the best sput-
tering condition (power = 65W and time = 30 min). The
higher the surface roughness, the lower the charge specific
capacity (see Figures 4 and 6) and nearly the lower the initial
coulombic efficiency (see Figures 5 and 6) since a higher
rough surface leads to probably increasing electrolyte decom-
position, then forming more SEI, and also consuming more
lithium ions during predischarging [8]. They also show that
the charge specific capacity is obviously proportional to the
surface roughness (R2 = 0:96; see Figure 7(a)), and initial
coulombic efficiency is nearly proportional to the surface
roughness (R2 = 0:66; see Figure 7(b)). Furthermore, the
charge specific capacity increased with time periods in the
range 10-30min for 65W of the power level. This picture

(a) (b)

(c)

Figure 8: The FESEM images of Al2O3/N-doped CNTs/graphene with the power level (65W) and different time periods (a) 10min, (b)
30min, and (c) 50min for sputtering Al2O3 onto N-doped CNTs/graphene composites.
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may be explained as follows. A shorter time period (10min)
leads to less Al2O3 deposited and forming a thinner Al2O3

coating (see Figure 8(a)), which might not be insulating as

well as strong enough to act as a proper preformed SEI as well
as reduce SEI formation during predischarging; then, charge
specific capacity is lower (see Figure 4), and thus, initial
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Figure 9: The discharge-charge profiles (between 0.01V and 3V at 0.1 C) with different charge-discharge cycles of the coin cell for (a) the N-
doped CNTs/graphene composite [2] and (b) Al2O3/N-doped CNTs/graphene (the best sputtering condition).
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coulombic efficiency is lower (see Figure 5). A longer time
period (30min) leads to more Al2O3 homogeneously depos-
ited and forming a uniform Al2O3 coating layer with proper
thickness (see Figure 8(b)) that could act as a preformed SEI
to reduce SEI formation during predischarging; then, charge

specific capacity is higher (see Figure 4), and thus, initial cou-
lombic efficiency is higher (see Figure 5). However, the
charge specific capacity decreased with time periods in the
range 30-50min for 65W of the power level. The reason
behind this may be that an overly long time period leads to
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Figure 10: Cyclic voltammograms (between 0.01V and 3V from the 1st cycle to the 3rd cycle) of the coin cell for (a) the N-doped
CNTs/graphene composite and (b) Al2O3/N-doped CNTs/graphene (the best sputtering condition).
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an overly much Al2O3 deposited and forming a Al2O3 coat-
ing layer with over thickness (see Figure 8(c)), which could
decrease lithium-ion to diffuse through it, then decreasing
charge specific capacity (see Figure 4), and thus decreasing

initial coulombic efficiency (see Figure 5). The above behav-
ior is similar to the previous literature [7].

Figures 9(a) and 9(b) show the discharge-charge profiles
(0.1C) of the coin cell for N-doped CNTs/graphene and

0 100 200 300 400 500 600 700 800
1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Po
te

nt
ia

l v
s. 

(L
i+ /L

i) 
(V

)

Specific capacity (mAh/g)

1st charge
1st discharge
2nd charge

2nd discharge
3rd charge
3rd discharge

(a)

0 100 200 300 400 500 600 700
1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Po
te

nt
ia

l v
s. 

(L
i+ /L

i) 
(V

)

Specific capacity (mAh/g)

1st charge
1st discharge
2nd charge

2nd discharge
3rd charge
3rd discharge

(b)

Figure 11: The discharge-charge profiles (between 1V and 4.5V at 0.1 C) with different charge-discharge cycles of the lithium-ion battery
(full cell) for (a) the N-doped CNTs/graphene composite and (b) Al2O3/N-doped CNTs/graphene (the best sputtering condition).
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Al2O3/N-doped CNTs/graphene (the best sputtering condi-
tion). The appearance of the plateaus in the predischarge
curve can be assigned to forming the SEI film on the surface
of electrodes as well as the degrading electrolyte [15], and the
predischarge plateaus rapidly disappear in the following
cycles (see Figures 9(a) and 9(b)) which also are verified by

the cathode peaks (about 0.6V-0.7V) happening during the
1st (predischarge) cycle and disappearing in the subsequent
cycles (see Figures 10(a) and 10(b)). The cathode peak (about
0.7V) in the 1st (predischarge) cycle of Al2O3/N-doped
CNTs/graphene (the best sputtering condition) is not
sharper than the cathode peak (about 0.6V) in the 1st
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Figure 12: The effects of the N-doped CNTs/graphene composite [2], Al2O3/N-doped CNTs/graphene (the best sputtering condition), and
different charge-discharge cycles on the charge specific capacity (0.1 C) for the coin cell.
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Figure 13: The effects of different charge-discharge cycles on the coulombic efficiency of Al2O3/N-doped CNTs/graphene (the best sputtering
condition) for the coin cell.
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(predischarge) cycle of N-doped CNTs/graphene (see
Figures 10(a) and 10(b)) since Al2O3 coating layer could act
as a preformed SEI to block the electrolyte, then suppress
undesired side reactions with the electrolyte, and thus reduce
SEI formation during predischarging. Therefore, the poten-
tial plateau in the predischarge curve of Al2O3/N-doped
CNTs/graphene (the best sputtering condition) is not more
obvious than that of N-doped CNTs/graphene and is
extended over wider voltage ranges (about 1V-0.5V) that
may be related to initial breakdown of the oxide [9]. Further-
more, an important feature of the discharge-charge profiles
for Al2O3/N-doped CNTs/graphene (the best sputtering con-
dition) is availability of the good fraction (about 70%) of full
charge capacity at a voltage lower than about 0.25V which is
the potential plateau in the charge curves of Figure 9(b) that
can be attributed to the Li+ deintercalation from the carbon
(see Figure 10(b)) [2]. However, the fraction (about 30%) of
full charge capacity at a voltage lower than about 0.25V for
N-doped CNTs/graphene is bad (see Figure 9(b)). If charge
specific capacity (about 400mAh/g) is the same, it occurs at
lower potential (about 0.25V) for Al2O3/N-doped
CNTs/graphene (the best sputtering condition) and at higher
potential (about 1.1V) for N-doped CNTs/graphene (see
Figures 9(a) and 9(b)). Therefore, the cathode electrode
(LiCoO2) was assembled with the anode electrode
(Al2O3/N-doped carbon nanotubes/graphene (the best sput-
tering condition)) into the full cell and the achievement frac-
tion (about 56%) of full discharge capacity for Al2O3/N-
doped CNTs/graphene (the best sputtering condition) is
higher than that (about 48%) for N-doped CNTs/graphene
at a voltage higher than about 0.4V (see Figures 11(a) and

11(b)). Al2O3/N-doped CNTs/graphene (the best sputtering
condition) possessed better cyclic stability of discharge
capacity and higher initial coulombic efficiency (79.8%) in
comparison with N-doped CNTs/graphene (initial coulom-
bic efficiency: 74.3%) (see Figures 11(a) and 11(b)) for the full
cell since Al2O3 improved bonding of SEI with carbon and
reduced SEI formation during predischarging [7, 9]. So, the
full cell for Al2O3/N-doped CNTs/graphene is a little higher
potential for the benefit of merchantable lithium-ion
batteries.

Figure 12 shows the effects of Al2O3/N-doped CNTs/gra-
phene (the best sputtering condition), N-doped CNTs/gra-
phene, and different charge-discharge cycles on the charge
specific capacity (0.1C) for the coin cell. The charge specific
capacity fading for Al2O3/N-doped CNTs/graphene is a little
smaller than that for N-doped CNTs/graphene (see
Figure 12) which also is verified by the discharge-charge pro-
files of N-doped CNTs/graphene and Al2O3/N-doped
CNTs/graphene (the best sputtering condition) (see
Figures 9(a) and 9(b)). Because Al2O3 improved bonding of
SEI with carbon and then stabilized the electrode [7, 9],
Al2O3/N-doped CNTs/graphene possessed a little better
cycling performance (charge specific capacity only decreased
2.6% from the 1st cycle to the 20th cycle in Figure 12) com-
pared with N-doped CNTs/graphene (charge specific capac-
ity decreased 5.7% from the 1st cycle to the 19th cycle in
Figure 12). Furthermore, Figure 13 shows the effects of differ-
ent charge-discharge cycles on the coulombic efficiency of
Al2O3/N-doped CNTs/graphene (the best sputtering condi-
tion) for the coin cell. Al2O3/N-doped CNTs/graphene
possessed higher initial coulombic efficiency (81.44%) (see
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Figure 13) in comparison with the N-doped CNTs/graphene
composite (initial coulombic efficiency: 75.02%) [2] for the
coin cell because Al2O3 reduced SEI formation during predis-
charging [7, 9]. The more the cycle number, the more the sta-
ble SEI film, then the smaller the differences of the coulombic
efficiency between cycles (see Figure 13). Moreover, since a
uniform Al2O3 coating layer with proper thickness could
act as a preformed SEI to reduce regeneration of SEI (lith-
ium-ion consumption) as well as then produce less SEI frag-
ments during cycling and improved bonding of SEI with
carbon as well as then stabilized the electrode [7, 9],
Al2O3/N-doped CNTs/graphene (the best sputtering condi-
tion) compared with N-doped CNTs/graphene exhibited bet-
ter rate performance at relatively high current density (0.5C-
2C) for the coin cell (see Figure 14) which is similar to the
previous literature [8].

4. Conclusions

The longer the time period in the range 10-30min for 65W
of the power level, the higher the charge specific capacity (coil
cell). However, the longer the time period in the range 30-
50min for 65W of the power level, the lower the charge spe-
cific capacity (coil cell). Furthermore, at a voltage higher than
about 0.4V, the achievement fraction (about 56%) of full dis-
charge capacity (lithium-ion battery) for Al2O3/N-doped
CNTs/graphene (the best sputtering condition) is higher
than that (about 48%) for N-doped CNTs/graphene. More-
over, Al2O3/N-doped CNTs/graphene (the best sputtering
condition) compared with N-doped CNTs/graphene pos-
sessed better rate performance at relatively high current den-
sity (0.5C-2C) for the coin cell.
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