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Nonlinear time series attracts the interests of scientists and engineers in both research and
applications in various fields, ranging from hydrology to computer science. It is a powerful
tool for revealing interesting phenomena in natural science and engineering regarding chal-
lenging issues in, for instances, fractal random functions, differential equations of fractional
order, fractional calculus, prediction of random functions, technologies in denoising for both
signals and images, pattern recognition, wavelets, and so forth. The aim of this special issue
is to collect high quality papers with respect to nonlinear time series, its computations, and
applications. There are 28 papers collected in this special issue in the related topics. We
introduce them by six paragraphs below.

A.-J. Shi and J.-G. Lin’s paper entitled “Tail dependence for reqularly varying time series”
studies regularly varying time series to describe heavy-tailed phenomena from a view
of tail dependence by introducing a dependence function and establishing a relationship
between the dependence function and the intensity measure with discussions of their present
expressions about dependence parameters. J. Xue et al.’s paper “Bound maxima as a traffic
feature under DDOS flood attacks” provides a novel method to characterize the traffic features
with and without attacking packets. The paper entitled “A novel fractional-discrete-cosine-
transform-based reversible watermarking for healthcare information management systems” by L.-T.
Ko et al. presents a new method of watermarking to reconstruct host images by using the
technique of discrete cosine transform of fractional order. 1. Cherif et al.’s paper “Nonlinear
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blind identification with three-dimensional tensor analysis” deals with the blind identification of
a second-order Volterra-Hammerstein series using the analysis of three-dimensional tensor.
The paper “Online health management for complex nonlinear systems based on hidden semi-markov
model using sequential Monte Carlo methods” by Q. Liu and M. Dong introduces a new approach
of multisteps ahead health recognition based on joint probability distribution for health
management of a complex nonlinear system with the technique combining hidden semi-
Markov model with sequential Monte Carlo methods. H. Bayiroglu et al.’s paper “Nonlinear
response of vibrational conveyers with nonideal vibration exciter: superharmonic and subharmonic
resonance” gives the theoretical and numerical analysis of the working ranges of oscillating
shaking conveyers with nonideal vibration exciter for superharmonic and subharmonic
resonances in multiple scales.

Wavelets remain a powerful tool in nonlinear time series. The paper entitled “A
new texture synthesis algorithm based on wavelet packet tree” by H. C. Hsin et al. presents an
efficient method of texture synthesis with wavelet packet tree, providing a useful technique
for investigating the issue of multiresolution representation for fractal images. Y. Huang et
al.’s paper “Minimum-energy multiwavelet frames with arbitrary integer dilation factor” explains
the research of the minimum-energy multiwavelet frame.

J. Yang et al. presented their study in the construction of affine invariant functions
in the paper entitled “Construction of affine invariant functions in spatial domain”, which is
satisfactorily used for pattern recognition of Chinese words. The paper “Adaptive binary arith-
metic coder-based image feature and segmentation in the compressed domain” by H. C. Hsin et al.
gives a modification of the compression-based texture merging algorithm to alleviate the
influence of overmerging problem by making use of the rate distortion information so that the
computational cost because of the segmentation of an image may be reduced considerably.
R. Wang and B. Fang’s paper “A combined approach on RBC image segmentation through shape
feature extraction” proposes a combined approach for complex surface segmentation of red
blood cell based on the techniques of shape-from-shading and multiscale surface fitting,
which is promising for the pattern recognition of red blood cell in the sense of 3-dimensional
modeling by taking into account multiscale surface features of red blood cell segments. S.
Hu et al. in their paper “Reducing noises and artifacts simultaneously of low-dosed X-ray computed
tomography using bilateral filter weighted by Gaussian filtered sinogram” proposed an efficient
method to obtain satisfied denoising results for sinogram restoration of low-dosed X-ray
computed tomography by weighing the similarity using Gaussian smoothed sinogram. The
paper entitled “Image denoising based on dilated singularity prior” by S. Hu et al. gives an
approach to preserve edges and textures in image denoising by adding dilated singularity
prior to noisy images. Y.-Y. Zhu et al.’s paper “Detection and recognition of abnormal running
behavior in surveillance video” gives a method of identifying abnormal running behavior based
on spatiotemporal parameters by taking into account real-time systems and multitarget
tracking in surveillance videos. The paper entitled “Data matrix code location based on finder
pattern detection and bar code border fitting” by Q. Huang et al. presents an algorithm for
locating data matrix code based on finder pattern detection and bar code border fitting, which
has applications to locating a 2D bar code quickly and precisely in an image with complex
background, such as poor illumination. B. Chen et al.’s paper “A multiplicative noise removal
approach based on partial differential equation model” contributes a method of removing speckle
noise by introducing a four-order partial differential equation, which may obtain better edge-
preserve performance.

Packet-delay analysis gains interests of scientists in computer-network engineering
from the point of view of real-time systems in particular as well as applied statistics with
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respect to queuing systems driven by fractal arrival time series. D. Pan et al.’s paper entitle
“Buffer management and hybrid probability choice routing for packet delivery in opportunistic
networks” contributes a hybrid probability choice routing protocol with buffer management
for opportunistic networks. The authors developed a delivery probability function based on
continuous encounter duration time, which is used for selecting a better node to relay packets.
By combining the buffer management utility and the delivery probability, they attained a
total utility that is used to decide whether the packet should be kept in the buffer or be
directly transmitted to the encountering node. H. Wu et al.’s paper “Location updating schemes
for high-speed railway cellular communication systems” proposes two useful methods regarding
location updating, namely, “clustering location management” and “mobile group location
management,” towards solving the problems caused by the existing location updating
schemes in high speed railway cellular private network without occupying more frequency
resources and impacting the mobile subscribers’ paging. In addition, the paper gives analysis
of useful specifications, such as channel request number of stand-alone dedicated control
channel, average waiting time of location updating, cost of location updating, and paging.
The paper “Applying semigroup property of enhanced Chebyshev polynomials to anonymous
authentication protocol” by H. Lai et al. presents an anonymous authentication protocol that
is efficient in low computational complexity and cost in the initialization phase by using
semigroup property of enhanced Chebyshev polynomials. H.-Y. Lin et al. presented a paper
entitled “An adaptive test sheet generation mechanism using genetic algorithm”, where an adaptive
test sheet generation is given from a view of time series. That may be the first paper noticing
that there may be fractal phenomena, such as statistical self-similarity of genetic algorithm’s
fitness scores, in the assessment of information provided by computerized testing systems.

The paper entitled “Hypothesis testing in generalized linear models with functional coeffi-
cient autoregressive processes” by L. Song et al. studies the hypothesis testing in generalized
linear models with functional coefficient autoregressive processes by introducing quasi-
maximum likelihood estimators. T.-S. Tsay’s paper “Automatic regulation time series for
industry processes” proposes a nonlinear digital control scheme for analyses and designs
of stable industry processes, which can be applied to servo systems, time delay systems, and
so on. D. Xiang et al.’s paper “Degenerate-generalized likelihood ratio test for one-sided composite
hypotheses” gives a method with respect to the degenerate-generalized likelihood ratio test
for one-sided composite hypotheses in cases of independent and dependent observations.
Their method has less overall expected sample sizes and less relative mean index values in
comparison with the sequential probability ratio test and double sequential probability ratio
test.

Research of theory and tools of time series prediction is encouraged. The paper by
X.-H. Yang and Y.-Q. Li, which is entitled “DNA optimization threshold autoregressive prediction
model and its application in ice condition time series”, presents a new DNA (deoxyribonucleic
acid) optimization threshold autoregressive prediction model (DNAOTARPM) by combining
threshold autoregressive method with DNA optimization. It may be useful for the calibration
of the threshold autoregressive prediction model for nonlinear time series with prediction
precision improving and prediction uncertainty reducing. The paper entitled “Design of deep
belief networks for short-term prediction of drought index using data in the Huaihe River Basin” by J.
Chen et al. contributes a short-term drought prediction model based on deep belief networks
for predicting the time series at different time scales. Their prediction model has applied
to predict the real drought time series in the Huaihe River Basin, China. J.-L. Wu and P-C.
Chang’s paper “A trend-based segmentation method and the support vector regression for financial
time series forecasting” presents a trend-based segmentation method and the support vector
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regression for financial time series forecasting. S.-S. Yang et al. in their paper entitled “New
optimal weight combination model for forecasting precipitation” introduced a new optimal weight
combination model to increase accuracies in precipitation forecasting. The present model,
which consists of three forecast submodels, namely, rank set pair analysis model, radical basis
function model, and autoregressive one, may significantly improve the forecast accuracy of
precipitation in terms of the error sum of squares in comparison with the single model of
rank set pair analysis, or radical basis function, or autoregressive system.
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We apply semigroup property of enhanced Chebyshev polynomials to present an anonymous
authentication protocol. This paper aims at improving security and reducing computational and
storage overhead. The proposed scheme not only has much lower computational complexity and
cost in the initialization phase but also allows the users to choose their passwords freely. Moreover,
it can provide revocation of lost or stolen smart card, which can resist man-in-the-middle attack
and off-line dictionary attack together with various known attacks.

1. Introduction

With rapid developments in limits and possibilities of communications and information
transmissions, there is a growing demand of authentication protocol, which has greatly
spurred research activities in authentication protocols” study. In general, the server authen-
ticates the users by matching the user’s identity and password after establishing a secure
channel [1]. Since the server establishes a secure channel before asking identity /password
information, an attacker can open a connection to a server that does not respond when
identity /password information is inquired by the server, which results in the consumption
of the resources of the server. Moreover, the attacker can set up many connections and
consume all the resources of the server. However, this method is vulnerable to denial of
service (DoS) attack and cannot discriminate an impostor who fraudulently obtains access
privileges (e.g., user’s identity and password) from the real user. Later, Li and Hwang [2]
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proposed a biometrics-based remote user authentication scheme using smart cards. Soon,
Li et al. [3, 4] improved Li and Hwang’s scheme. There is no doubt that most existing
authentication protocols only achieve “heuristic” security, that is, the underlying hardness
assumptions of these protocols are not perfect. However, we discover the references [5-9],
which contain the detection of the DDOS attacks by consuming all, or mostly, the resources
of the server can be assured, providing a more hopeful line of investigation for us to future
study.

Later, Bellovin and Merritt [10] firstly presented a two-party password authenticated
key exchange (2PAKE) protocol which permits a user and a server to establish a session key
over an insecure channel to address the problem mentioned above. In their protocol, each
user just shares an easy-to-remember password with the trusted server. Regretfully, Patel [11]
pointed out that it was easy for an adversary to guess the passwords used for authentication
in Bellovin and Merritt’s protocol. In order to avoid these attacks, many 2PAKE protocols with
weak passwords for authentication have been presented by the researchers [12-18]. However,
in these 2PAKE protocols, every user has to share a different password with his/her peer. It
is usually rather inconvenient for applications in large-scale communication environments.
To surmount this weakness, three-party PAKE (3PAKE) protocols have been proposed in
[19-22]. Unlike 2PAKE protocols, 3PAKE protocol is a very practical mechanism to establish
secure session key through authenticating each other with a trusted server’s help. There are
two common weaknesses in these schemes as follows. (1) They needs more communications
rounds to reduce computational load. However, as early as in 1995, Gong pointed out that
the number of rounds is a key standard for weighing against the performance of a protocol.
(2) The sensitive table that stores the shared secret between the server and the designed
users will be an attractive target leading to potential server compromise. In 2008, Chen et
al. [23] proposed a round and computation-efficient three-party authenticated key exchange
protocol, which addressed the above mentioned problems. However, we find that their
scheme still exist following four drawbacks. (1) It has computational efficiency problems
in initialization phase. (2) User has no choice in choosing his password. (3) It cannot protect
user anonymity. (4) There is no provision for revocation of lost or stolen smart card, which is
susceptible to man-in-the-middle attack.

Therefore, in this paper, password-based anonymous authentication protocol defined
over enhanced Chebyshev polynomials is proposed. A number of outstanding mathemati-
cians and numerical analysts have said that Chebyshev polynomials are everywhere dense
in numerical analysis. There is scarcely any area of numerical analysis where Chebyshev
polynomials do not drop in like surprise visitors, and indeed there are now a number of
subjects in which these polynomials take a significant position in modern developments
[24]. One is taken on a journey which leads into all areas of numerical analysis by studying
Chebyshev polynomials. Moreover, due to the semigroup property of enhanced Chebyshev
polynomials, the well-known discrete logarithm problem and the Diffie-Hellman problem
are proved to hold in enhanced Chebyshev polynomials [25]. Thus, we apply semigroup
property of enhanced Chebyshev polynomials to present an anonymous authentication
protocol. Moreover, our proposed protocol has the following features.

(1) It has much lower computational complexity and cost in the initialization phase.
(2) It allows the users to choose their passwords freely.

(3) It can provide revocation of lost or stolen smart card, which can resist man-in-the-
middle attack.

(4) There is no need to find primitive elements, large prime, and even large number.
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The rest of this paper is organized as follows. Section 2 gives description of enhanced
Chebyshev polynomials and some hard problems based on them. Section 3 briefly reviews
Chen et al.’s protocol and describes its disadvantages. In Section 4, we apply semigroup
property of enhanced Chebyshev polynomials to design an anonymous authentication
protocol. We analyze the security of proposed scheme in Section 5, and computational
efficiency analysis is made in Section 6. Finally, we conclude this paper in Section 7.

2. Preliminaries

In this section, we review some basic definitions concerning enhanced Chebyshev polynomi-
als and some hard problems based on the enhanced Chebyshev polynomials [26].

Definition 2.1 (Chebyshev polynomials). The Chebyshev polynomials of degree n are defined
as

T, (x) = cos(n x arccos(x)), {x|-1<x<1}, (2.1)

The recurrent formulas are
Tu(x) =2xT,-1(x) = T2 (x), (2.2)

where n > 2, To(x) =1, and Ty (x) = x.
The first few Chebyshev polynomials are

To(x) =2x* -1,

T3(x) = 4x° - 3x, (2.3)

Ta(x) = 8x* —8x% + 1.

It can be identified that Chebyshev polynomial has the following properties:

(1) semigroup property as
T, (Ts(x))=cosr * arc cos(cos(s * arc cos(x))) =cos rs * arc cos(x) =T (Tr(x))=Trs(x), (2.4)

(2) chaotic property,

When n > 1, Chebyshev polynomials map T, (x) : [-1,1] — [-1,1] of degree n is a
chaotic map with its invariant density as

fr(x) =
a

ﬁ/ (2.5)

for Lyapunov exponent A = In n > 0.
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Table 1: Some of the notations used in Chen et al.’s protocol.

Symbol Definition

ID4,IDg Identities of users A and B, respectively

IDs Identity of the authentication server S

vq8 The large primes p and g, a generator g of group G with the order g
X,y The long-term key of S, and y = g* mod p

64,68 Components of authentication information V4 and Vg

ab Random number privately chosen by A and B, respectively

R4, Rp Components of session key, where Ry = g* mod p and Rp = gb mod p
h() Collision-free one-way hash function

Cxy Evidence generated by user X for user Y

Definition 2.2 (enhanced Chebyshev polynomials). In order to enhance the property of
the Chebyshev chaotic map, Zhang [27] proved that the semigroup property holds for
Chebyshev polynomials defined on interval (-oo,+c0). This paper uses the following
enhanced Chebyshev polynomials:

Ty(x) =2xT,-1(x) — Tj—2(x) (mod N), (2.6)

wheren > 2, x € (—oo0,+m), and N is a large prime number. Obviously,
T, (Ts(x)) = Ts(Tr (x)) = Trs(x). (2.7)

So the semigroup property still holds and the enhanced Chebyshev polynomials also
commute under composition.

Definition 2.3 (the discrete logarithm problem (DLP)). DLP is explained by the following.
Given an element a, find the integer r, such that T (x) = a.

Definition 2.4 (the Diffie-Hellman problem (DHP)). DHP is explained by the following. Given
an element x, and the values of T, (x), Ts(x), what is the value of T,¢(x)?

3. Review of Chen et al.’s Protocol

This section reviews Chen et al.’s protocol (showed in Figure 1). Some of the notations used
in this protocol are defined in Table 1.

3.1. Initialization Phase

In this phase, A and B ought to register with S to be legal participants, and S should choose
issue secret keys, which will be used in the subsequent phase. Through taking A for an
example, S executes the following steps to authorize A:

(1) Randomly choose 1 < 64 < g and calculate V4 = h(ID4, 64).

(2) Generate signature (e4,54) as A’s self-verified token, where r4 = gﬁA mod p, e4 =
h(ra,ID4), and s4 = (64 — xe4) mod q.
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UserA V, UserB Vg Trusted server S
Round 1
A =g®*modp
Cas =h(IDa ,IDg,Ta ,Ra ,Va)
Wa = (Cas,Ta ,Ra,Azn)
IDa,1Dg W
IDA ITA IRA
Round 2 B = g° mod p
Cps = h(IDg,IDx , T ,Rp , Vi)
Kag =Tp (RA )
Cpa =h(Ra ,Ta ,Rs,Kas)
Wg = (Cps,Ts Re,Az)
Round 3 1D Con To R 1D ,IDa W 5
o =(sa —x-ex)(mod q)
Kaz = Ta(Ra) L = (s - es)(mod )
Verify Caa v, =h(IDs, }),v] =h(IDs, 1)
Cas =h(Cpa,Ts Kag) Verify Cxs
Verify Cgs
Csa =h(Cas,Ts Rp,V,)
Cen Csp = h(Cps ,Ta ,Ra ,Vy)
Verify Cen Cas Verify Csp Ces
Verify Ty
Verify Ta Verify Cas

Figure 1: Authenticated key exchange phase in Chen et al.’s protocol.

(3) Store the authentication information (V4,(ea,s4)) into a smart card and then
deliver it to A in a secure way.

To test whether (e, s4) is authorized by S, A retrieves r/; as 7, = g% -y mod p, and

then verifies h(r),, 1D 4) z ea.

Similarly, after B obtains the authorization information (Vj, (e, sp)) stored in the
smart card from S, he can ensure that whether (ep,sg) is valid by using the method
mentioned above.

3.2. Authentication key Exchange Phase

This phase aims to establish the session key SK with S’s help. It just needs three rounds to
achieve this goal.

Round 1:

A — S: (IDx,IDg, Wj),
(3.1)
A—B: (IDA,TA, RA)
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(1) Randomly choose an integer a and compute R4 = g* mod p, Cas =
h(ID4,1Dg,Ta, R4, V4), then transmits ID4, IDg and W4 = (Cyus,Ta, Ra, (€4,54))
to S; where T, is the time stamp obtained by A from the local clock to ensure the
freshness of the message.

(2) A transmits ID4, T4 and Ry to B.

Round 2:

B — S: (IDg,ID4, Wp),

(3.2)
B— A: (IDB, TB, RB, CBA)-
After receiving the message from A, B does the following steps.
(1) Randomly choose an integer b and compute Ry = g’mod p, Cps =

h(IDB,IDA,TB,RB,VB), and send WB = (CBS/TB/RB/ (eB,sB)) to S, where TB is
the time stamp obtained by B from the local clock to ensure the freshness of the
message.

(2) Calculate the session key SK = (Ra)? mod p and then transmit Cpsa =
h(TA, RA, RB, SK) to A.

Round 3:

S—>A:CSA,
S—B: CSB/ (33)
A— B: CAB~

In this round, S does the following steps.

(1) Verify whether Ty is fresher than the one received in the last request. If so, apply
X to computing 6/, = (sa + xea) mod g and V), = h(ID4,6,), and then compute
Csy = h(ID4,1Dg,Ta, Ra, V). In the following, test C', z C 45 to authenticate the
identity of A; if it holds, S calculates Css = h(Cas, Tp, Rp, V;) and transmits it to A.

(2) Test whether Tg is fresher than the one received in the last request. If so, S
calculates V; = h(IDg,6%) and computes Cis = H(IDg4,IDg, Tg, Rp, Vj). Then,
check Cjg lc Bs to authenticate the identity of B; if it holds, S calculates Csp =
h(Cgs,Ta, Ra, Vi) and transmits it to B.

(3) Independently, A tests whether (I' — T4) is in a valid period, where T is the time
when the message transmitted from B after Round 2 was received. If so, A uses
the received Rp to compute the session key SK' = (Rp)®* mod p. Then, it computes
Css = h(Ta,Ra, Rp,SK') and checks Cj, , z Cpa to authenticate B; if it holds, A
computes Cap = h(Cpa, Tp, SK’) and sends it to B.
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After this round, A tests whether (T’ — T,) is in a valid period, where T’ is the time

when Cs4 was received. If so, A calculates C’SA = h(Cgs, T, Rp, V4) and tests C’SA z Csa to
verify the correctness of Csa. If it holds, A finishes this protocol.
Similarly, B tests if (T” — Tg) is in a valid period, where T” is the time when Cgsp

was received. If so, B calculates Cg, = h(Cps,Ta, Ra, V) and tests Cp z Csp to verify the
correctness of Cgp. If it holds, B completes this protocol.

3.3. Disadvantages of Chen et al.’s Protocol

In this section, we argue that Chen et al.’s scheme still has four disadvantages. The detailed
description of the weaknesses is as follows.

3.3.1. Computational E ciency Problem

In the initialization phase of Chen et al.’s protocol, S has to compute all the authenticated
information (64,74,€e4,54) for A and (63, 7B, e, sg) for B. Server has to perform two modular
exponentiation operations, which are more expensive than other operations in Chen et al.’s
protocol. Hence, it has low efficiency in this phase.

3.3.2. Lack of User Friendliness

In Chen et al.’s scheme, the password is chosen by the server S without the consent of
A/B, thus, A/B can only passively accept the password from S. It is not practical for real
life applications, such as on-line banking and e-mail subscription. Moreover, 64/65 € [1, 4]
chosen by the server could be long and random (e.g., 160 bits), which might be difficult for a
registered user A/B to remember easily, and it is most likely that A/B may forget this long
and random password if he is not frequently using the system. Hence, Chen et al.’s scheme
has lack of user friendliness.

3.3.3. No Protecting User Anonymity

In authenticated key exchange phase of Chen et al.’s scheme, ID4,IDp are sent to S over
insecure channel in the authentication message: (ID4,IDg, Wa4), (IDp,ID4, Wg). In certain
authentication scenarios, such as e-voting and secret online-order placement, it is fairly
crucial to protect the privacy of a user. Once an attacker sniffs the communication parties
involved in the authentication process, he can easily analyze the transaction being performed
by users. Hence, Chen et al.’s scheme fails to provide the user anonymity in the authentication
phase.

3.3.4. No Provision for Revocation of Lost or Stolen Smart Card

In case the smart card is lost or stolen, the attacker may impersonate the legal user using
the lost or stolen smart card, so there should be a mechanism to ensure that the system can
revoke the lost or stolen smart card to avoid the possible attacks. Providing for revocation
is also one of the requirements of smart card-based authentication protocols. By keeping
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A M B S
Round 1
IDa,IDg W
1D, ,Ta R
__TRRCRA S
IDg ,Ta Ry N
Round 2 IDg ,IDA W 5
%
IDg,Ts,Cen Re
IDg,T5,Cam /Ru
Round 3 é_________________SEA__-
e o .
Csp
€mmm
_____E:_SB___9
CAM
TS (EM_E__>

Figure 2: Man-in-the-middle attack in Chen et al.’s protocol.

record of valid card identifier of every registered user, the authentication system can tell
the valid card from the invalid one. Regretfully, Chen et al.’s scheme ignored this feature
and there is no mechanism to revoke the lost smart card. Moreover, the drawback would
become catastrophic if an attacker has got the lost smart card by accident and has revealed the
authentication message of a legal user by any means to login into the system for performing
secure transaction, such as on-line banking and e-commerce. Thus, Chen et al.’s scheme failed
to provide the important feature of smart card-based authentication for revoking the lost
smart cards without changing the user’s identities.

3.3.5. Man-in-the-Middle Attack

Due to Section 3.3.4, unqualified users can easily launch a man-in-the-middle attack when the
smart card is stolen. The steps of the attack is outlined in Figure 2 and explained as follows.

Suppose an adversary M had stolen the smart card from the legal user, then he can
obtain the authenticated values V4 and Vg. Let Ry = g mod p be M’s ephemeral public
key,and m € z; is chosen by M. Then, he replaces Cs4 and Csp with Cy , and Ci; in Round 3.
The notation “--»" denotes the transmitted message that is manipulated by M. The purpose
of M is to share a session key with A by posing as B and to share a session key with B by
posing as A. The specific process is as follows.

Round 1:
A — S:(ID4, 1D, W,),

A --» M(B): (ID4,Ta, Ra), (3.4)
M(A) --s> B: (IDA,TA,RM).
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Round 2:

B—S: (IDB,IDA,WB),
B --» M(A) : (IDg, T, Rg, Cpm)- (3.5)
M(B) --+ A: (IDp,Tp, Rm, Cma)-

When receiving the message from M(A), B calculates the session key with M(A), as
SKmp = gbm mod p, Cgm = h(Ta, Rm, R, SKpp), then M calculates the session key with
A as SKAM = gam mod P, CAM = h(TA, RM,RB, SKAM)

Round 3:

S - M(A) . CSA/
M(S) --» A:Cy,,

S--» M(B) : CSB; (3 6)
M(S) --» B: Cly, '

A --> M(B): Cam,
M(A) --» B: CMB-

In this round, because M obtains the value V4, he can compute C’S 4 =
h(Cas, T, Rp, Va) for mutual authentication with A; similarly, M can also use V3 to calculate
C'SB = h(Cgs, T4, Ry, Vi) for mutual authentication with B.

When receiving the values C; , and Cj, A and B authenticate the server using their
own parameters. Then A computes Cpyp = h(Cpam, Tp, SKam) for M(B), it confirms if Cpsp
is valid from its own knowledge. M calculates Cpp = h(Cpra, Ts, SKpp) and sends it to B to
achieve session key agreement.

Finally, M has shared the session key SKan = ¢ p with A and SKpp = ¢ mod p

with B. In this case, the authenticate mechanism of the Chen et al.’s protocol does not help.

4. An Anonymous Authentication Protocol Using
Semiproperty of Enhanced Chebyshev Polynomials

To surmount serious latency security problems in the Chen et al.’s protocol, we apply
semigroup property of enhanced Chebyshev polynomials to designing a new anonymous
authentication protocol.

4.1. Notations

In the section, we describe some of the notations used in our protocol (Table 2).
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Table 2: Some of the notations used in our paper.

Symbol Definition

ID4,IDg Identities of users A and B, respectively

IDs Identity of the authentication server S

N The large prime N

X1,Y,n The long-term key of S, and y = Ty, (x)

x x is the seed of the enhanced Chebyshev polynomial

Py, Pg Passwords of A and B, respectively

ab Random large integer number chosen by A and B, respectively
R4, Rp Components of session key, where R4 = T,(x) and Rp = Tp(x)
H() Collision resistant secure one-way chaotic hash function

Cxy Evidence generated by user X for user Y

4.2, Initialization Phase

In this phase, the users and the server need some intercommunication for user’s registration.
We take A for an example. To register with S to become a valid user A, A and S will
do the following steps.

(1) A — 5:(Da,IDa)
A freely chooses an easy-to-remember password P, and identity ID,4, then

computes Dy = Tp, (x) and sends (D4,ID4) to S.

(2) When receiving D4 from A, S first tests if D4 z D;. If D4 = Dy, S should ask A to
submit a different password.
() S — A: (As H())

Then, S computes Ay = E,(Tp, (x)|ID4), for convenience, S stores (A4, H(-)) into
a smart card and then delivers it to A face to face.

Of course, B registers with S in the same way.

4.3. Authentication Key Exchange Phase

This phase aims to establish a session key SK. To achieve this goal, A and B first compute
V4 = H(Tp,(y)) and Vg = H(Tp,(y)) using their own passwords and the public key of S
as their authentication information respectively. Note that V4, Vg can be precomputed. This
phase also includes three rounds (shown phase in Figure 3) and the detailed descriptions are
as follows.

Round 1:

A— S:(IDy, Ax, Wy)
(4.1)
A— B: (AA,TA,RA).
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Usera Va UserB Vg Trusted server S

Round 1
Rp = Ta(X)

Cas =H (Aa,Ta Ra Va)

Wa =(Cas,Ta Ra,An) IDs ,Ap W A

Ap ,Ta Ra

Round 2 Rp = Tp(X),Cps =H (Ap,Ts ,Rp,Vs)
Kas = Tb(RA)ICBA =H (RA /Ta Rp IKAE)

Wg = (Ces,Ts Re,Az)

Ag ,Csa ,Ts Rz 1Dz, Ag,Ap W 5
Round 3 Kap = Ta(Rs) D;1(Ax) =D4lID, ,D;'(As) = D3|[IDs
Verify Cga V, =H (T (Da)),V) =H (T, (D))
Cas =H (Cpa ,Ts ,Kas) Verify Ca s Verify Cgg

Cen =H (Cas,Ts Rz ,V,)

Cen Css =H (Cgs,Ta ,Ra ,Vy)
Verify Cga Cas Verify Cgp Cen
Verify Ta Verify Ta
Verify Cag

Figure 3: Authenticated key exchange phase in our proposed protocol.

(1) Calculates Cqs = H(A4,Ta, R4, Va) and Wy = (Cys,Ta, Ra, Ay), then transmits
A4 and Wy to S; where the meaning of T4 is the same as that in the Chen et al.’s
protocol.

(2) A transmits A4, T4 and Ry4 to B.

Round 2:

B— S:(IDg, A4, Ap, Wp)
(4.2)
B— A: (AB/TBI RBICBA)'

On receiving the request transmitted from A, B does the following steps.

(1) B calculates Cgs = H(Ap,Tg, Rp, Vg) and sends Wg = (Cgs,Tp, Rg, Ag) to S; the
meaning of T is the same as that in the Chen et al.’s protocol.

(2) B calculates the session key SK = T,(R4) and transmits Cpa = H(T4, Ra, Rp, SK)
to A.
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Round 3:
S— A:Csa,
S — B:Csp, (4.3)
A — B:Cyp.

In this round, S does the following steps.

(1) Verity if T4 is in a valid time interval. If so, S decrypts A 4, A with his private key
n to reveal Tp, (x)|[ID4 and Tp,(x)|[IDp. Then, S calculates V), = H(Ty,(D4)) and

computes Cg, = H(A4,Ta, Ra, V). Finally, test C', lc as, if it holds, S calculates
Csa = H(Cas, Tp, Rp, V},) and transmits it to A.

(2) Test whether T is in a valid time interval. If so, S calculates V = H(T,(Dp)) and

computes C,o = H(Ap, Tp, Rp, V). Then, he tests Cj;4 z Cps, if it holds, S calculates
Csp = H(Cgs, Ta, Ra, Vg), and transmits it to B.

(3) Independently, A tests if (T — T4) is in a valid period, where T is the time
when B received the message from S. If so, A calculates SK' = T,(Rp) and

Cs4 = H(Ta,Ra, Rp, SK'); then, tests Cj;, Z Cpa; if it holds, A calculates Cap =
H(Cpa,Tp, SK') and sends it to B.

After this round, A tests if (" —T4) is in a valid period, where T’ is the time when Cgx

was received. If so, A calculates Cg, = H(Cas, T, Rp, Va) and tests Cj , z Csa to verify the
correctness of Csg. If it holds, A finishes this protocol.
Similarly, B tests if (T” — Tg) is in a valid period, where T” is the time when Cgsp

was received. If so, B calculates Cg; = H(Cps,Ta, Ra, V) and tests Cip Z Csp to verify
the correctness of Csp. If it holds, B finishes this protocol.

5. Security Analysis

The enhanced scheme is a modified form of the Chen et al.’s scheme. Hence, we just discuss
the enhanced and some important security features of the proposed scheme instead of
discussing the security analysis that has been already shown in [23]. Before analyzing the
security properties, we stress the following two facts to prove security that authenticated
key agreement protocol should meet. (1) It is widely believed that there is no polynomial-
time algorithm to solve DLP and DHP based on enhanced Chebyshev polynomials with
nonnegligible probability. (2) The chaotic hash function has collision-free and irreversible
properties.

5.1. Securely Chosen and Update Password

In our proposed scheme, A/B is able to freely choose and change his password without
any hassle of contacting the server S. Any users except A/B cannot change or update the
password without knowing the corresponding valid ID4/IDp and P4/ Pp of the smart card
holder.
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5.2. Revocation of Smart Card

In our proposed scheme, if (A/B)’s smart card is stolen or lost, he can request the server S
to revoke his smart card for future use. S can revoke the smart card directly. If an adversary
who steals (A/B)’s smart card wants to derive Py from Ay = E,(Tp,(x)||ID,), this will be
impossible, because just S knows the secret key 7, and he is faced with the discrete logarithm
problem (DLP) too. Hence, the old smart card becomes useless for future use.

5.3. The Proposed Protocol Can Resist Man-in-the-Middle Attack

Due to Vo = H(Tp,(y)) = H(Tx,(Dya)), if the adversary attempts to login to S, it needs
to derive x1/Ps from y/A . However, it is widely believed that there is no polynomial-
time algorithm to solve DLP based on enhanced Chebyshev polynomials with nonnegligible
probability. Moreover, because just S knows the secret key 1, he even cannot obtain D 4. So
the adversary cannot compute V4. Due to the same reason, the adversary cannot calculate Vp
either, that is, our protocol can resist man-in-the-middle attack.

5.4. Protection of User Anonymity

The anonymity feature of users is that the real identity of user should be protected from being
revealed by any other entity except S. Our protocol can preserve the identity anonymity for
any user which can be explained as follows.

IDy4 is hiddenin A4 = E,(Tp, (x)||[ID4). Because just S knows the secret key n, even if
adversary can obtain A 4 from the stolen smart card, he still cannot decrypt A 4.

5.5. The Proposed Protocol Can Provide Mutual Authentication

Similarly to Chen et al.’s scheme, we analyze this property from three aspects: authentications
among A, B, and S.

Case 1. A and B To authenticate A, S needs to suppose that they own the same session
key. In this protocol, S is responsible for confirming both the origin and integrity of the
received message in step (2) to help them authenticate each other. S ensures that the received
messages Ta,Ra, Va and T, Rp, Vg are truly sent from A and B, respectively, and that no
modification has occurred. Meanwhile, S sends the respective evidence Cs4 and Csp for the
origin and the integrity of (T4, R4) and (T, Rg). Based on the premise that S is trustworthy;,
A/ B is convinced that the origin of (Tp, Rg)/(Ta, Ra) is B/ A when the validity of Cs4/Cgsp is
verified. As only A/B knows the secret a/b of R4/ Rp, the common session key is generated
by A/BasT,(Rg)/Ty(R4). Because the session key is only known by A/ B, no one can forge a
valid Cgs = H(T4, Ra, Rp, SK) or Cap = H(Cpa,Ts, SK'). Therefore, mutual authentication
between A and B is achieved while the session key confirmation is guaranteed.

Case 2. A and S To achieve the mutual authentication between A and S, on the one hand, S
has to verify the validity of the evidence C4s = H(A 4, T4, Ra, V4). On the other hand, A must
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test the validity of Cs4 = H(Cas, T, Rp, V),) to authenticate S. These evidences are computed
with the common secret key. Because only A and S know the common secret key V4, where
Va equals V), no one can counterfeit the evidence. When validity of C4s and Csa is tested
by S and A, respectively, the integrity of the transmitted message from S that contains T4, R4
is confirmed by S and the integrity of evidence Cs, from S is confirmed by A. Thus, mutual
authentication between A and S is achieved.

Case 3. B and S The analysis of the mutual authentication between B and S is done likewise.
Except B and S, no one knows the secret key Vp. Therefore, mutual authentication between
B and S is achieved by verifying the validity of Cgs = H(Ap,Tp,Rp, Vp) and Csp =
H(Cpgs, Ta, Ra, V), respectively.

5.6. The Proposed Protocol Can Resist Bergamo et al.’s Attack

In addition, because our protocol is based on semigroup property of enhanced Chebyshev
polynomials, we should consider Bergamo et al.’s attack [20]. Bergamo et al.’s attack is based
on the condition that an adversary can obtain the related elements x, N, T,(x) and T,(x). In
the proposed protocol, an attacker could get x and N easily, but they cannot obtain T, (x)
and T (x), even though the attacker is a legal user. Besides, the proposed protocol utilizes the
enhanced Chebyshev polynomials, in which the periodicity of the cosine function is avoided
by extending the interval of x from (-1, +1) to (-0, +o0). Therefore, the attacker have no way
to perform a successful attack using Bergamo et al.’s method.

5.7. The Proposed Protocol Can Resist Off-Line Dictionary Attack

In the off-line dictionary attack, the adversary can recode all transmitted messages in the
initialization phase and attempt to guess using A’s/B'’s identities ID4 /IDg and passwords
P,/Pp from the recorded massages. An attacker tries to obtain identity and password
verification information from A,, he must guess n, P4, ID4 correctly at the same time.
However, the probability of guessing the three numbers correctly in the same attempt is
nearly zero. Furthermore, even if the attacker guesses one parameter correctly, he or she
cannot verify it with any password verifier information. Hence, the proposed protocol is
secure against off-line dictionary attack.

According to the above analysis, we list the security properties’ comparison of Chen
et al.’s protocol and our protocol in Table 3.

6. Computational Efficiency Analysis

The proposed protocol is achieved through DLP and DHP problems based on enhanced
Chebyshev polynomials. It enjoys the following advantages. (1) In the initial phase, we take

A for example, S only needs to test Dx 2 Dy, where D; denotes the users” component
of authentication information and computes A4. However, in Chen et al.’s protocol, S
has to compute (Va,74,€4,54). In a word, our protocol greatly reduces the computational
complexity and computational cost. Hence, our scheme is more efficient and practical. (2)
V,, Vg can be precomputed off-line in our protocol, which improves the computational
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Table 3: Comparison of security properties.

Security properties Chen et al.’s protocol Our protocol
Anonymity No Yes
Man-in-the-middle attack No Yes
DoS attack Yes Yes
Mutual authentication among three parties Yes Yes
Perfect forward secrecy Yes Yes
Provision for revocation of lost or stolen smart card No Yes
Insider attack Yes Yes
User friendliness No Yes
Replay attack Yes Yes

Table 4: Comparison of computation overhead in initialization phase.

Chen et al.’s protocol Our protocol
Random number (A/B/S) 0/0/0 1/1/0
Symmetric encryption/decryption (A/B/S) 0/0/0 0/0/2
Modular exponentiation (A/B/S) 1/1/2 0/0/0
Hash operation (A/B/S) 1/1/4 1/1/2
Chebyshev polynomial computing (A/B/S) 0/0/0 1/1/0

efficiency and saves communication bandwidth. The detailed comparison is shown in
Table 4.

7. Conclusion

In this paper, we have applied semigroup property of enhanced Chebyshev polynomials
to present a novel authenticated key exchange protocol. To the best of our knowledge, it
is the first time to realize three-party authenticated key exchange protocol preserving user
anonymity with semigroup property of enhanced Chebyshev polynomials. First, we argued
that Chen et al.’s protocol has computational efficiency problem in initialization phase and
cannot protect user anonymity, user has no choice in choosing his password, and there
is no provision for revocation of lost or stolen smart card leading to man-in-the-middle
attack. To surmount these identified drawbacks, we have proposed an enhanced protocol to
reduce computational complexity and computational cost in initialization phase and improve
security. Hence, our proposed protocol is more efficient and practical. Furthermore, analysis
shows that our protocol can resist various kinds of attacks.
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In order to organically combine the minimum-energy frame with the significant properties
of multiwavelets, minimum-energy multiwavelet frames with arbitrary integer dilation factor
are studied. Firstly, we define the concept of minimum-energy multiwavelet frame with
arbitrary dilation factor and present its equivalent characterizations. Secondly, some necessary
conditions and sufficient conditions for minimum-energy multiwavelet frame are given. Thirdly,
the decomposition and reconstruction formulas of minimum-energy multiwavelet frame with
arbitrary integer dilation factor are deduced. Finally, we give several numerical examples based
on B-spline functions.

1. Introduction

Wavelets transform has been widely applied to information processing, image processing,
computer science, mathematical physics, engineering, and so on. As you all know, it is not
possible for any orthogonal scaling wavelet function with compact support to be symmetric,
except for the Haar wavelets. In 1993, Goodman and Lee [1] established the multiwavelet
theory by introducing the multiresolution analysis (MRA) with multiplicity r, and gave the
spline multiwavelet examples. Using the fractal interpolation technology, Geronimo et al. [2]
constructed the GHM multiwavelet which have short support, (anti)symmetry, orthogonality
and vanishing moment with order 2 in 1994. From then on, multiwavelet has been a hot
research area. In 1996, Chui and Lian [3] reconstructed the GHM multiwavelet without
using the fractal interpolation technology, and they gave the general method on constructing
the multiwavelet with short support, (anti)symmetry, and orthogonality. After that, Plonka
and Strela [4] used two-scale similarity transforms (TSTs) to raise the approximation order
of multiwavelet and gave the important conclusions of the two-scale matrix symbol’s
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factorizations and so on. And, by Lawton et al. [5], the construction of multiwavelet has been
transformed into matrix extension problem in 1996. The construction theory of multiwavelet
had a great development after Jiang [6, 7] putting forward a series of effective methods.
Whether wavelets or multiwavelet, they require that the integer shifts of the scaling function
form Riesz bases, orthogonal basis, or biorthogonal basis for its span space. And this will
cause some defects: (1) the computational complexity can be increased during the course
of decomposition and reconstruction; (2) the numerical instability can be caused during the
procedure of reconstructing original signal (3) in the biorthogonal case, the analysis filter
bank can not replaced by the synthetic filter bank, and vice verse.

Fortunately, besides orthogonal wavelets and multiwavelet minimum-energy frames
can effectively avoid the difficulty which is caused by different bases functions during the
course of decomposition and reconstruction, still use the same wavelets both for analysis
and synthesis. The theory of frames comes from signal processing firstly. It was introduced
by Duffin and Schaffer to deal with problems in nonharmonic Fourier series. But in a
long time after that, people did not pay enough attention to it. After Daubechies et al. [8]
defined affine frames (wavelets frames) by combining the theory of continuous wavelets
transforms and frames while wavelets theory was booming, people start to research frames
and its application again. Benedetto and Li [9] gave the definition of frame multiresolution
analysis (FMRA), and their work laid the foundation for other people’s further investigation.
Frames cannot only overcome the disadvantages of wavelets and multiwavelet, but also
increase redundancy properly, then the numerical computation become much more stable
using frames to reconstruct signal. With well time-frequency localization and shift invariance,
frames can be designed more easily than wavelets or multiwavelet. Nowadays frames have
been used widely in theoretical and applied domain [10-22], such as signal analysis, image
processing, numerical calculation, Banach space theory, Besov space theory, and so on.

In 2000, Chui and He [11] proposed the concept of minimum-energy wavelets frames.
The minimum-energy wavelets frames reduce the computational complexity, maintain the
numerical stability, and do not need to search dual frames in the decomposition and
reconstruction of functions (or signals). Therefore, many people pay a lot of attention
to the study of minimum-energy wavelets frames. Huang and Cheng [15] studied the
construction and characterizations of the minimum-energy with arbitrary integer dilation
factor. Gao and Cao [18] researched the structure of the minimum-energy wavelets frames
on the interval and its application on signal denoising systematically. Liang and Zhao [23]
studied the minimum-energy multiwavelet frames with dilation factor 2 and multiplicity
2 and gave a characterization and a necessary condition of minimum-energy multiwavelet
frames. Unfortunately, the authors did not give the sufficient conditions of minimum-energy
multiwavelet frames. In fact, people need to pay close attention to the existence of sufficient
conditions of minimum-energy wavelet frames in most cases. On the other hand B-spline
functions which are the convolution of Shannon wavelets [24-26]. It can be seen that also
Shannon wavelets are minimum-energy wavelets. In this paper, in order to organically
combine the minimum-energy frame with the significant properties of multiwavelet,
minimum-energy multiwavelet frames with arbitrary integer dilation factor are studied.
Firstly, we define the concept of minimum-energy multiwavelet frame with arbitrary dilation
factor and present its equivalent characterizations. Secondly, some necessary conditions
and sufficient conditions for minimum-energy multiwavelet frame are given; Thirdly, the
decomposition and reconstruction formulas of minimum-energy multiwavelet frame with
arbitrary integer dilation factor and the multiplicity r are deduced. Finally, we give several
numerical examples based on B-spline functions.
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Let us now describe the organization of the material that as follows. Section 2
is preliminaries and basic definitions. Section 3 is main result. In Section4, we give
the decomposition and reconstruction formulas of minimum-energy multiwavelet frame.
Section 5 is numerical examples.

2. Preliminaries and Basic Definitions
Throughout this paper, let Z, R, and C denote the set of integers, real numbers, and complex

numbers respectively; a € Z with a > 2, w; = cos(2jr/a) +i sin(2jor/a), j=0,1,...,a-1.
A multiscaling function vector (refinable function vector) is a vector-valued function:

©=($1(x),. 4 (x)', @) ELR), 1=1,...7, (21)
which satisfies a two-scale matrix refinement equation of the form:

®(x) = Y P®(ax-k), x€R, (2.2)
keZ

r is called the multiplicity of ®, the integer a is said to be dilation factor. The recursion
coefficients { Py }c; are r x r matrices.
The Fourier transform of the formula (2.2) is

D(w) = p(z)ci)(%’), z=eiwla (2.3)
where
P(z) = %Zszk. (2.4)
keZ

P(z) is the symbol of the matrix sequence { Py };cz-
The multiresolution analysis (MRA) with multiplicity r and dilation factor a generated
by @(x) is defined as

{Vi} =span{¢.jx:1<7 <7, keZ, jeZ}, (2.5)

where ¢,k = a//*¢p-(a/x—k), and the sequence of closed subspace of L*(R) has the following
properties:

(2) UjeZVj = LZ(R)r ﬂjeZVj ={0};

() f(x) € V; & f(ax) € Vjyq, forall j € Z;

“4) f(x)eVie f(x- a’k) e V;, forallk,jeZ;

(5) {¢prok : 1 < T <1,k € Z} forms a Riesz basis of Vj;
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Definition 2.1. A finite family vector-valued function ¥’ = (¢}, ..., qfﬁ)T, i=1,...,N generates
a multiwavelet frames for L?(R), if there exist constants 0 < A < B < oo such that for any
f(x) € LA(R)

r

AP <33 S (v, )f <

i=1 7=1 jkeZ

(2.6)

where (pi].k = al?¢i(alx - k).

Definition 2.2. A nested subspace generated by a multiscaling vector-valued function
@(x) satisfies formula (2.5) and its additional conditions, then finite family vector-valued
function {¥!,...,¥N} generates a frame multiresolution analysis associated the vector-
valued function ®(x), if the finite family pio= (qxi,...,qxﬁ)T, i = 1,...,N satisfies the
formulation (2.6) with ¢l e V4,i=1,... N;7=1,...,r.

Definition 2.3. Let ®( x) (P1(x),.. (])r(x))T, with $T € L°R)NL*R), T = 1,...,7, @
continuous at 0 and (D(O) #0, be a multiscaling vector-valued function that generates the

nested subspace {Vj}]. <z in the sense of (2.5). Then a finite family vector-valued function
{¥!,..., %N} C V; is called a minimum-energy multiwavelet frames associated with @(x), if
for for all f € L%(R)

r

NI TSRS DN (I HISIEED 3939 [(X I (27)

7=1 k€Z 7=1 k€Z i=1 7=1 keZ

Remark 2.4. By the Parseval identity, minimum-energy multiwavelet frames {¥!,..., ¥N}
must be tight frames for L?(R) with frames bound equal to 1.

Remark 2.5. The formula (2.7) is equivalent to the following formulas:

ZZU Pr1k)Pr ik —ZZ frrok) ¢r0k+Z§r: (f 9hox )ik (2.8)

7=1 k€Z 7=1 k€Z i=1 7=1 keZ

The interpretation of minimum energy will be clarified later.

3. Main Result

In this section, we will give a complete characterization of minimum-energy multiwavelet
frames associated with some given multiscaling vector-valued function in term of their two-
scale symbols. Let ®(x) = (¢1(x),..., ¢, (x))" with ¢, € L*(R) N L2(R), 7 = 1,...,7, D
continuous at 0, and ®(0) #0 be a multiscaling vector-valued function which satisfies (2.2)—
(2.5). Consider {¥',...,¥N} c Vi, then

¥ (x) = > QP(ax — k), (3.1)

keZ
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where {Q;{ beezs 1 = 1,..., N are r x r matrices. Using Fourier transform on (3.1), we can get
their symbols as follows:

Ql(z) ZQ I= 1/"'/N' (32)

keZ
With P(z), Qi(z),l=1,..., N, we formulate the (N + 1)r x ar block matrix as follows:

P(z) P(wz) -+ Pwa-12)
Qi(z) Qi(wiz) -+ Qi(wa-12)
R(z)=1] . : : , (3.3)

Qn(2) Qn(@iz) - Qn(warz)

and the R*(z) denotes the complex conjugate of the transpose of R(z).
The following theorem presents the equivalent characterizations of the minimum-
energy multiwavelet frames with arbitrary integer dilation factor.

Theorem 3.1. Suppose that every element of the symbols, P(z), Qi(z), l = 1,...,N, in (2.4) and
(3.2) is a Laurent polynomial, and the multiscaling vector-valued function ®(x) associated with P(z)
generates a nested subspace {V; }i <z Then the following statements are equivalent:

(1) {¥1,..., ¥N} is a minimum-enerqy multiwavelet frames associated with ®(x):

2)

R*(2)R(z) =1, forV|z| =1, (3.4)

®)

am,ij =0, VYm,dl€Z;ij=1,...,r1, (3.5)

where

r
L Ti% T] t,Tix tTj _ .
Amlij = ZZ<PI ak Pon-arc + ZQI k- ak> abmi,ij,

keZr=1

1, m=1Ii=j,
6ml,ij:{ J

(3.6)

0, else.

Proof. By using the two-scale relations (2.2) and (3.1) and notation a,,;j for for all f € L*(R),
(2.8) can be written as

T v

> 2 i (f, pi(ax —m))p;(ax 1) = (3.7)

1eZ meZ i=1 j=1
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On the other hand, (3.4) can be reformulated as

N
P*(2)P(2) + D Qi (2)Qi(2) = I,
t=1

. N (3.8)
P*(z)P(wjz) + ZQt (2)Q¢(wjz) =0y,
=1
ji=12,...,a-1, V|z|=1,
and it is equivalent to
a-1 N a-1
S P wz)P(2) + 3. 3 QHw2)Qi(z) = I,
k=0 t=1k=0
N a-1
<P*(Z) ZP* (wk2)> P(z)+ ), <Qt (2)- DO (sz)> Qi(z) = I,
t=1 k=1
a-1 a-1
<ZP* (wiz) —2P* (wlz)> P(z) + Z ( Q; (wkz) - 2Q; (wlz)> Qi(z) =1,
k=0 k=0
1=1,2,...,a-1;, V|z|=1
(3.9)
With |z| = 1, Z¢F = z7F, wf = wh =w, and
a-1 a-1
Wk =S wl = {0 we#l (3.10)
1=0 1=0 a wp=1,
the formulation (3.9) is equivalent to
N
> Pz P(z) + 3> Q% 2 Qu(z) = I,
keZ t=1keZ
N
<ZZ]DI* akZ )P(Z) + Z <ZZQ1 akz >Qt (Z) (Cl - 1)Ir/
I=1keZ I=1keZ (3.11)

<Ze‘(251”/“>’ZPI* - )P(Z) + Z (Ze_(zsm/u)lZQz akZ" >Qf(z)

keZ keZ

s=1,2,...,a-1, V|z|=1.



Mathematical Problems in Engineering 7

Using the properties of roots of unity, the Vandermonde matrix and Cramer’s rule, the
above equation is equivalent to

N
> Pz P(z) + D 0" 2% Qi(z) = I,

kezZ t=1keZ

N
Pz P(2) + D Y Lz T Q=) = 1,
keZ t=1keZ (3_12)

N
ZP;_l_akZak—m—l P(Z) + ZZij_l_akZak—aHQt(Z) =1,.

keZ t=1keZ

We multiply the identities in (3.12) by &)(w/ a)z,1=0,1,...,a-1, respectively, where
z = e W/ to get

Z {Pf_akzakp(z)&)<%)> + iQ;ﬁakzqut(z)&)(%J> } - &)(£>Zl, 1=0,...,a-1. (3.13)

k t=1

Hence, (3.12) is equivalent to

N
Z{P,*_ 2D (w) + ZQ;iukzak@f(w)} = &n(%’)aﬂw/a, 1=0,...,a-1 (3.14)

k ti=1

or

N
> {P,*_ a2 O(x k) + D QI Lz W (x - k)} =a®(ax-1), 1=0,...,a-1, (3.15)
k t=1

which can be reformulated as

N
Z {P,*_ KZFD(x — k) + ZQfﬁakzakqﬂ(x - k)} = a®(ax - 1). (3.16)
t=1

k

By using the two-scaling relations (2.2) and (3.1), we can rewrite (3.16) as

ZZaml’ij(;bj(ax -m)=0, i=1,...,r; VIEZ. (3.17)
m j=1

In conclusion, the proof of Theorem 3.1 reduces to the proof of the equivalence of (3.5),
(3.7), and (3.17).
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It is obvious that (3.5)=(3.17)=(3.7). To show (3.7)=(3.5), let f € L*(R) be any
compactly supported function. By using the properties that for every fixed m, a,,;; = 0 expect
for finitely many 1,1, j, then the functional

Bii(f) = Ziaml,ij<f/ pi(ax —m)) (3.18)

m =1

just has finite nonzero forl € Z,j =1,...,r.
Using the property of Fourier transform, we obtain

Ziﬁw (f)j(w)e ™/ = 0. (3.19)
1

1 j=

Since (}Tl(a)) is nontrivial function, then f;;(f) =0,1 €Z, j = 1,...,r, in other words, we have

<frzzr:fxmz,ij¢i(ux - m)> =0, lez j=1,...,r (3.20)

m i=1

Then the series in the above equation is a finite sum and hence represents a compactly
supported function in L?(R). By choosing f to be this function, it follows that

Ziaml,ijd’i(ax -m) =0, (3.21)

m i=1

which implies that the trigonometric polynomial ¥, 3| @pij <i;i(w)e’i’”“’ is identically equal
to 0 so that a,;; =0, forallm,l€Z; i,j=1,...,r.

We complete the proof of Theorem 3.1 because the set of compactly supported
functions is dense in L?(R). O

Theorem 3.1 characterizes the necessary and sufficient condition for the existence of
the minimum-energy multiwavelet frames associated with ®. However it is not a good choice
to use this theorem to construct the minimum-energy multiwavelet frames. For convenience,
we need to present some sufficient conditions in terms of the symbols.

In this paper, we just discuss the minimum-energy frames with compact support, that
is, every element of symbols is Laurent polynomial.

Theorem 3.2. A compactly supported refinable vector-valued function ®(x) = (¢1(x),..., ¢, ()7,
with ® continuous at 0 and D(0) #0. Let {W!,..., WN} be the minimum-energy multiwavelet frames
associated with it, then

r
Npij@z)]* <1 Vz1=1,1<j<r, 0<I<a-1, (3.22)
i=1

a-1r ’

1=0 j=1
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Proof. Using Theorem 3.1, it is clear to show that the [>norm of every row vector of the
symbol for @ is less than 1, in other words, (3.22) is valid. In order to prove (3.23), leti = 1.

First, we set

f(Z) = [Pll(z) Plr(Z) Pll(wa—lz) plr(wa—lz)]/

and the rest of R(z) removed f(z) as F(z). Then we can reformulate (3.4) as

f@)f(2) + F(2)'F(2) = Lr,

(3.24)

(3.25)

or equivalently, F(z)"F(z) = I.,—f(z)" f (z), which is a nonnegative definite Hermitian matrix

for |z| = 1 so that
det(Ior ~ f(2)'f(2)) 20 Yzl =1,

and this gives

Ipj(@iz)]* <1 Vz|=1.

a-1r

—

=0 j=1

In fact, we have

<fl(ar> f(iz)*>< J{“(f) —f§z>*) _ <Iar—f(2)*f(z) 0
z —f(z

derl (g T9N) = ae(( 11 E))
det((_}a(rz) g Y)*)) = det<<1(a)r 1 —}{Sj‘(@))

then
det(Lor = f(2)" f(2)) (1~ f()f(2)") = (1~ f(2)f(2)")’,
and it gives 1 — f(z) f(z)* > 0, for all |z| = 1, that is,

a-1r

|pi]-(wlz)|2 <1 Vz|]=1,1<i<r.

=0 j=1

The proof of Theorem 3.2 is completed.

0 1-f(2)f(@)°

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)

O

Remark 3.3. By the proof of Theorem 3.2, we know that the restriction in Theorem 3.2 on the
two-scale symbol P(z) of a refinable vector-valued function @(x) is a necessary condition for
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the existence of a minimum-energy frames associated with ®(x) via the rectangular unitary
matrix extension approach, even if @(x) is not compactly supported.

Remark 3.4. For a certain compactly supported refinable vector-valued function, it cannot

exist in minimum-energy frames.
We write P(z), Qj(z),j =1,..., N in their polyphase forms:

P(z) = */75 (Pl(z“) + 2Py (2% + -+ z“‘lPa(z“)>, (3.31)

Qi(2) ﬁ(Qﬂ(zﬂ) +2Qp (2% + - + z“*lgja(za)), j=1,...,N, (3.32)

a

where Pi(z), Qij(z),i=1,...,a;j = 1,...,N are r x r matrices and their every element is
Laurent polynomial. Observe that

I, z ', zi-ag, Pi(z%) Pz - Pu(z%
va |Ir (@iz) ', - (w12)L Qu(z?) Qun(z?) - Q1a(z)

R(Z)7a : : : = . . . (3.33)
I, (Wa12) 'L -+ (wao12)I, On1(z%) On2(2%) -+ OQna(z?)
Therefore, we have
Pi(z%) Py(z%) - Pu(z%) 1°[ Pi(z%) Pz --- Pa(z9
. Qu(z?) Qun(z?) - Q1a(z) Qn(z%) Qun(z) - Qua(z)
Oni(z) Ona(z®) - Ona(z) LOni(z") Qna(z®) - Qnalz®)
I, z', -z 10 Iz, ... oz
L (wz)'L - (w0i2)™ L (wz) 'L - (w12)I,
=|. : : R(2)*R(z) ) ,
I'r (Wa—l.z)_llr (Wa—lz)l_alr I, (waflz)_llr (waflz)l_ﬂlr
(3.34)
and it follows from (3.4), that
Pi(z%) Pz - Pa(z) 1[ Pi(z")  Pa(z") - Pa(z%
Qu(z?) Qn(z?) - Qua(z) Qu(z?) Qn(z?) - Q1a(z)
: : : : : : =Lar, V2| =1
Qn1(z%) On2(2%) -+ Ona(z9)] LON1(2%) On2(2) -+ OnNa(z?)
(3.35)

And it is easy to obtain (3.35) from (3.4).
For convenience, we denote z% = u. Next, we present some theorems to give several

sufficient conditions for existence of minimum-energy multiwavelet frames.
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Theorem 3.5. A compactly supported vector-valued function ®(x) = (¢1(x),... ,d),(x))T with ®
continuous at 0 and @(0) #0, its symbol P(z) satisfies

a-1r

> lpijwiz)| <1, Vz|=1. (3.36)

T
i=1 1=0 j=1

Then there exist minimum-energy multiwavelet frames associated with @.

Proof. Let Pj(z), j=1,...,abe the polynomial components of P(z), that is,

Ja

P(z) = *= (pl(zﬂ) + 2Py (%) + -+ zu-lpa(zu)). (3.37)

Using (3.34) and (3.35), we can get

S>> <1 (3.38)

i=11=1 j=1

Then we can find r real numbers x1, x5, ..., x,, with

r a r
ISEERD
i=1

ij 2 .
> plw| <x, 1<i<r (3.39)
=1 j=

By the Riesz lemma [27, Lemma 6.13], we can find Laurent polynomials P; a2, i=1,..r
satisfying

N

iih’?(u)r * PZ+1(u)|2 =x, 1<i

I=1 j=1

r. (3.40)

Foreveryi € {1,...,r}, using the method in the reference [15, Theorem 3] on the unit
vector

\/Lx,i(Pi'l(z) Plir(z) Pél(z) p;r(z) p;H(z)), (3.41)

we can get a matrix

Pl'(z) - P(z) -+ Pg(z) - Pi(z) Pi,(2)
Ri(z) = ! 1) - Q@ - QL - QU2 Qa2 |, (3.42)

i

(@) Qi) - Q) - Ql(z) QL (2)

which satisfies Ri(z)*Ri(z) = Iups1.
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Therefor, the block matrix

VIR (z)

VIR (2)

R(z) = (3.43)

VER(2)

satisfies R(z)*R(z) = Lops.

We can get matrix R(z) which satisfies R(z)*R(z) = I, after adjusting the rows of
R(z) and removing the last column of it, and the r rows in the front of matrix R(z) are the
polynomial components of the symbol P(z).

Then we complete proof of Theorem 3.5 using the formulas (3.34), (3.32), and
Theorem 3.1. O

Theorem 3.5 requests the sum of >-norm for every row in the matrix symbol
P(z) associated with the vector-valued function ®. Then we can find a minimum-energy
multiwavelet frames associated with the function using the theorem. The condition in
Theorem 3.5 is too stringent compared with the sufficient conditions in Theorem 3.2. We can
get the following theorem by strengthening the structure of the matrix symbol P(z).

Theorem 3.6. Let ®(x) = (p1(x),..., P, ()T with @ continuous at 0 and ®(0) #0 a compactly
supported multiscaling vector-valued function. If the block matrix

[P(z) P(wiz) -+ P(wa-1z)] (3.44)

satisfies standard orthogonal by row, then there exist a minimum-energy multiwavelet frames associ-
ated with the function ©.

Proof. Let Pj(z), j =1,..., a are the polynomial components of P(z), that is,
P(z) = \/TE (P +2Po(2) + -+ 27 Pu(2%), (3.45)
with (3.34) and (3.35), we can know that the block matrix
N(u) = [Pi(u) Px(u) -+ Pa(u)],, .. (3.46)

satisfies standard orthogonal by row.

Now, we use the method in the reference [15, Theorem 3] to deal with the first unit
row vector Ni(u) in the matrix N(u). And, we can find a paraunitary matrix H;(u) which
satisties Ny (u)H;(u) =e; = (1,0,...,0), and

N () Hi (1) = <1 N(u))’ (3.47)

with N (1) also a matrix standard orthogonal by row.
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By mathematical induction, there are r paraunitary matrices H;(u),..., H,(u) satis-
fying

1---00 ---0
N@)Hy(u)---Ha(u)= | : - 1 - , (3.48)

then the matrix N(u) is equivalent to the front r rows in the paraunitary matrix
Hi(u)"Ha(u)" -+ Ha(u)".

Using the formulation (3.34), (3.35), and Theorem 3.1, we completed the proof of this
theorem. O

Theorem 3.6 requests that the multiscaling vector-valued function’s symbol P(z)
satisfies standard orthogonal by row. This means the [*norm of every row in P(z) is 1. If
the I>-norm of every row in P(z) is less than 1 strictly, and we can find a matrix P,.1(u) to
make the block matrix

[Pu() Pa() - Pa(u) Ppor(u)] (3.49)

satisfy standard orthogonal by row, then there exist minimum-energy multiwavelet frames
associated with the function @.

Corollary 3.7. Let ®(x) = (¢1(x),... ,gbr(x))T with @ continuous at 0 and ®(0) #0 a compactly
supported multiscaling vector-valued function. If the 1*-norm of every row in P(z) is less than 1
strictly, that is,

a-1r
|Pij(wlz)|2 <1, V|z[=1,1<i<r, (3.50)
1=0 j=1

and there exists a matrix P,.1(u) to make (3.49) satisfy standard orthogonal by row, then there exist
minimum-energy multiwavelet frames associated with the function ®.

By Theorem 3.1, if we can find some row vectors a;(z),...,a,(z) with multiplicity
ar and the matrix in (3.3) formed by the vectors and the symbol of @ satisfies standard
orthogonal by column, there exist a minimum-energy multiwavelet frames associated with
@, and vice versa. However, the number of columns in the symbol of @ is so larger, that it
is not easy to find the frames using Theorem 3.1. Corollary 3.7 requests some column vectors
pr1(u),..., Pm(u) with multiplicity r and the matrix in (3.49) formed by the vectors and the
polynomial components of P(z) satisfies standard orthogonal by row, then we can find a
minimum-energy frames associated with ®@. Obviously, the problem is vastly simplified.

For some multiscaling vector-valued function with small multiplicity which satisfies
the conditions in Theorem 3.2, the matrix P,,1(u) that makes the block matrix in (3.49)
satisfied standard orthogonal by column can be found using the method of undetermined
coefficients. We will give some examples later.
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4. Decomposition and Reconstruction Formulas of
Minimum-Energy Multiwavelet Frames

Suppose the multiscaling vector-valued function @ has an associated minimum-energy
multiwavelet frames {¥?,..., ¥N}. Now, we consider the projection operators P; of L?(R)
onto the nested subspace V; defined by

Pif = > > (f rjik)Prjk- (4.1)

T=1k€Z

Then the formula (2.8) can be rewritten as

N r
Prorf = Bif = 333 f 00 )0 (42)

i=1 T=1keZ

In other words, the error term g; = Pj,1f — P; f between consecutive projections is given by
the frame expansion:

8 = iiz <f' (/fi-,j,k >‘I’;]’,k- (4.3)

i=1 7=1keZ

N,

Suppose that the error term g; has other expansion in terms of the frames {¥!,..., ¥
that is,

N r
EDIPIPICTL e (4.4)

i=1 7=1keZ

Then by using both (4.3) and (4.4), we have

(8i f) = i ZTIZKf, wi,j,k>|2 = iiZ%k@ Y (4.5)

i=1 7=1k€eZ i=17=1keZ

and this derives

0 < iiz CT,j,k - <f/ (Fi-,j,k>|2

i=11=1keZ
N r ) N r - N ) )

= 33 Dol 22 Seniu(foyd ) + 22D (fo v )| (46)
i=11=1keZ i=1 7=1keZ i=1 T=1k€eZ

=SS Sl - XSSt

i=11=1keZ i=1 7=1keZ



Mathematical Problems in Engineering 15

This inequality means that the coefficients of the error term g; in (4.3) have minimal
I>-norm among all sequences {cr,;x } which satisfy (4.4).

We next discuss minimum-energy multiwavelet frames decomposition and recon-
struction. For any f € L?(R), define the vector coefficients as follows:

k= (fO),  di=(f¥,) =1 N (4.7)

The inner product of f with vector-valued ®;, ‘P;. w1 =1,...,N is a vector, its every

component is the inner product of f with the corresponding component of @;, ‘P;k, i=
1,...,N.
(1) Decomposition Algorithm

suppose the vector coefficients {cj;1, : [ € Z} are known. By the two-scale relations (2.2) and
(3.1), we have

1 . 1w _
Dji(x) = —= D Peear®juii(x), ¥ (x)= —aZQL-azlp}u,k(x)r i=1,...,N. (48)

\/E kezZ " keZ

Then, the decomposition algorithm is given as

1 . 1 . : .
il = — E —alCj+1ks = —Z k—at 91 =4, N .
Cl—ﬁ Pr_aicjiik d _\/E Qr_ad i=1 N (4.9)
kezZ kezZ

(2) Reconstruction Algorithm
from (3.16), it follow that
1 N )
Dji(x) = —= D24 P @i (x) + ZQ;ﬁak‘P}’k (x) }. (4.10)
va‘y o
Taking the inner products on both sides of this equality, we get

1 ) N
BV —ﬁZ {Pz_akcj,k + Q7 iy } (4.11)
k i=1

5. Numerical Examples

By Theorem 3.6, the orthogonal multiwavelet always have minimum-energy multiwavelet
frames associated with them, for example, DGHM multiwavelet and Chui-Lian multiwavelet.
These examples are trivial. In this section, we will construct some minimum-energy
multiwavelet frames in general sense.
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It is well known that the mth-order cardinal B-spline N} (x) with dilation factor a has
the two-scale relation as follows:

— _ a-1\ ™ .
Ni (@) = P(2)N; (), p;(z>=<““%>, z=e@a (51)

In addition, if a scale wavelet ¢(x) satisfies the refinable function

k1
$(x) = D prdp(ax —k), (5.2)

k=ko

and let ®(x) = (p(x), p(x-1),...,p(x -1+ 1))7, then the vector-valued function @ satisfies
(2.2) with some matrixes {Py}.

Below, upon these conclusions, using Theorem 3.5 and Corollary 3.7 in Section 3, the
minimum-energy multiwavelet frames be presented with the dilation factors a = 2, a = 3,
a = 4, respectively.

51.a=2

Example 5.1. With a = 2, the symbol of the B-spline N3 (x) is
1 1 1
2(z) = = 4+ —z + —Z2. 5.3
Pi(z) = 7+ 52+ 4% (5.3)
Take ¢(x) = N. 22(x), and the support of this function is [0, 2]. The function satisfies

P(x) = }L¢(2x) + %gb(Zx -1)+ }L¢(2x -2). (5.4)

Let ®(x) = (¢(x), p(x —1))", and

11 11
53 53 00 00
D(x) = D(2x) + Ox-1)+( 1 1 )JP2x-2)+| 1 1 J®(2x-3).
00 00 2 2 2 2
(5.5)
The coefficient matrixes in (5.5) are not unique.
And the symbol of @ has polyphase components as follows:
11 00
2 - -
Py(u) = Py(u) = % 22 ) +ul 4 4 (5.6)
00 5 3
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Take
V2 V2 0 0
Ps(u) = ? 2 2 |+u sl (5.7)
0 0 2 2
which satisfies
Py (u)Py(u)* + Po(u)Po(u)* + P3(u)P3(u)* = L. (5.8)

Using Theorem 3.5, we can get matrix the following:

1 1 1 1
( 2 2 2 E\
wononu
2 2 2 2
-1 0 1 0
2
C(u) = % , (5.9)
0 -1 0 1
11 11
2 22
U u U u
22 232/
which satisfy the formula (3.35). Then we take symbols as
1//-1 0 10
2e=3((0 5)+=0 1))
& 11 0 0 0 0 (5.10)
== 2 2 22 2 3
Qz(z)—2 +z +z 11 +z 11
0 0 0 0 5 )

The graphs of @ and its minimum-energy frames are shown in Figure 1.
We may discover from Figure 1 that every component of minimum-energy frames is
(anti)symmetrical.

Example 5.2. With a = 2, the symbol of the B-spline NZ(x) is

Pg(z) = 1 + §z + §22 + 1z3. (5.11)
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0.8
0.6
0.4

0.2

Take ¢(x) = N32(x), and the support of this function is [0, 3].

The symbol of ® has polyphase components as follows:

Take

Mathematical Problems in Engineering

D(x) =

Pi(u) = >

Py(u) =

Ps(u) =

S =
O Wl

N —
N~

™IS,

(1) Let @(x) = (¢(x), p(x 1)), and

0.5
0
-0.5
Figure 1
11 11
2 2 |o@x-1)+ ‘11 ‘11
00 11
4 4 (5.12)
00
d(2x -3) + 11 d(2x - 4).
4 4
11 11 00
24 ) eul* ) u
11 11
00 - Z 11
4.4 (5.13)
11 00
2 2
+u 11
00 5 5
V2 V2 1 u
P R 514
V2., V2 u 19
4 2 272



Mathematical Problems in Engineering 19

which satisfies Py (1) Py (u)* + Po(u) Pa(u)" + Ps(u)Ps(u)" = I,. Using Theorem 3.5, we can get
the following symbols:

1 -1 00
[/ v2 V2 v2 V2 0 0
Qz(z)=¥ 44 | 422 4 +z* Vi 3 ,
- vy | L2
\ 4 4 4 4
/71 1 11 11 0 0 00
Q3(z)=¥ 4 4|z 22)42 14 14 +23 1 1 +z4 11
\ 00 11 272 i1
(5.15)

Then, we get the minimum-wavelet frames associated with @. The graphs of them are shown
in Figure 2.

We can discover from Figure 2 that every component of the minimum-energy frames
is (anti)symmetrical and smooth.

(2) Take D(x) = (p(x), p(x — 1), P(x — 2))", which satisfies

1
1 1
(003 031 311
(I)(x)=1 000 |P@x+2)+] (o o o |P@x+1)+ 001 D(2x)
000 000 008
1
11% 130
+1 o 1 1 |@@x-1)+ 11 1 |®(2x-2)
3 3
000 00 3
(5.16)
%00 000
1
11 % oex-3)+| 1 30 [o@x-1)
1
1 11
S
0 3 3
(1) 0 000 000
+| 3 ? d2x-5)+ | 0 ‘1) 0 lo@x-6)+ ?00 D2x - 7)
11 s 130 500



20 Mathematical Problems in Engineering

(a) (b)

0.4 ?3

0.2

Figure 2

and the symbol of this multiscaling vector-valued function has the following polyphase
components:

1
1
1 11 130
5 005 3 . 13 )
Pl(u):? 000 |t 005 u+ 511 u
000 000 00 +
3
000 000
+ 1%014:“r 000 |0
1 7
1 10
-~ 11
3 3
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1
1
1 11 1 - 00
L 3
V2 0 3 1 3 1 ,
Pz(u):? 0o0o0 |+ %1u+ 11§u
000 0 0 0 X
3
? 00 000
+| 3 00 [+ (1) 0 u
1 ~00
(5.17)
Let
V2
P3(u)=?
\@+?u 0 —<\@+?u> Véu -+/6 0 0
X 7
—(4) A 0 0 V6u? - /6u 0
0 -(B) B 0 0 Véu® - /6u?
(5.18)

where o/ denotes v6u + (v/6/3)u?, and B denotes /6u> + (v/6/3)u®, which satisfies
Py(u)Py(u)" + Py (u) Py(u)* + P3(u) Ps(u)* = I3. Using Theorem 3.5, we can get

Qi(z)
V2 < <—0.23547806816473105 —-0.1969247665800399 —0.14891401559609693>

0.08212785057744523  —0.18555493781122898 -0.19106026688126101
0.027375950192481735 —-0.061851645937076295 —0.07928888488639749

0.9033589710742332  —0.07112938093948917 —-0.016506887733618497
+z| -0.0608286139211068 0.905683150972805  —0.03808257781757404
—0.020276204640368934 —0.04704107893504214  0.9404994196162103

—-0.20402395049705468 —0.05175658881673616 0.01828281901756732
—0.2489115696557434  —0.0979600599918386 —0.016863228869914655

—-0.0700638169224561 —0.12222299444169772 —0.11122693740098887

—-0.05175658881673616  0.01828281901756732  0.006094273005855774
—-0.0979600599918386 —0.016863228869914655 -0.005621076289971551

—0.12222299444169776 —0.11122693740098887 —0.03707564580032962

+z2<
0.018282819017567314 0.0060942730058557715 0
+ 24 -0.016863228869914648 —0.005621076289971549 0
-0.11122693740098877 —0.03707564580032959 0

0.0060942730058557715 0 0O
—-0.005621076289971549 0 0 ,
—0.03707564580032959 0 0
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Q2(2)
\/§<<—0.099863Z5103103813 0.31589881995517033 0.0052538925646165024>

0.0854124922234307 —-0.26079578287935323  0.2998893006031239
0.014450758807607454 —0.05510303707581709 -0.30514319316774036

<—0.016309066862055847 0.005908379170891813 0.019381713326762175>
+z

0.0045583062090611155 —0.010950091637853966 —0.0031215427310982043
0.011750760652994713  0.005041712466962157 —-0.016260170595664

—0.20916114471771918 —-0.051515547612800944  0.02048043820474356
—0.023639974479628924 —0.01950964138878848 —0.013083356132526147
0.23280111919734814  0.07102518900158937 —0.007397082072217509

-0.051515547612800944 0.02048043820474356 0.0068268127349145336
-0.019509641388788437 -0.013083356132526147 -0.00436111871084204
0.07102518900158936 -0.007397082072217509 -0.0024656940240724914

0.020480438204743462  0.006826812734914494 0
—-0.013083356132526154 —-0.004361118710842047 0
—-0.0073970820722173754 —-0.002465694024072461 0

+ Z?
+2°
+z*
0.006826812734914494 0 0
+2°( -0.004361118710842047 0 0 ,
—-0.002465694024072461 0 0

Qs(z)

V2 -0.04725690064321836  0.21949688473386203 0.1639130739275549
=7 0.2523328524498961  -0.7281995751316489 0.15918487102463674
—0.003904624220396051 0.054187773506410915 -0.7337722255518694

—0.02879898221803944 -0.07331833791750912 0.008051002298630018

—-0.0777261828042069 —0.06662667519576504 0.0330957179061223
+z
—0.042473900845222755 —0.03375725777108183 0.037548046190520684

—-0.0287070169546376 0.06098379400257172  0.07937189961088224

—-0.6930584034579804 —0.08791155686974436 0.16099639981828018
2
+z
0.06463681665260418 0.11607547646429853 0.10634610477760928

0.06098379400257172  0.07937189961088224 0.026457299870294076

—-0.08791155686974436 0.16099639981828018 0.053665466606093386
3
+z
0.11607547646429858 0.10634610477760928 0.03544870159253642

0.07937189961088217 0.026457299870294056 0

0.16099639981828012 0.05366546660609337 0
4
+z
0.10634610477760917 0.035448701592536394 0

0.05366546660609337 0 0
+2°( 0.026457299870294056 0 0 | ).
0.035448701592536394 0 0
(5.19)

They are the symbols of the minimum-energy multiwavelet frames associated with @.
The graphs of them are shown in Figure 3.
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0.8

() (d)
Figure 3

We can discover from Figure 3 that every component of the minimum-energy frames is
smooth. When r = 3, it is very difficult to construct the minimum-energy multiwavelet frames
with symmetry.

5.2.a=3

Example 5.3. With a = 3, the symbol of the B-spline ¢(x) = N3(x) is
1+3z+62>+72% +62* +32° + 2°

- (5.20)

Pj(z) =

Take ¢(x) = Ng’(x), and the support of this function is [0, 4].
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(1) Let d(x) = (¢p(x), p(x - 1))7, and this vector-valued function satisfies

D(x) =

The symbol of ®(x) is

P(z) = % <1

o

Pi(u) =

Py(u) =

Ps(u) =

then

Pr(u) Py (u)" + Po(u) Po(u)" + Ps(u) P3(u)" =

3 3
<<1 §>¢>(3x)+ <§
00 0

27

3) OBx-1)+ <3
0 0

7
§> D (3x - 2)
0

3 3
3 = -1
DBx-3)+| 5 2 |DBx-4)+| 2 , |®Bx-5) (5.21)
2 3 >3
00 00
D(Bx - 6) + 3 Jo@x-7)+( 3 . )oBx-8) ).
3 = -1
2 2
7 3
3 7 3 3 =
z(23)+22(332)+22] 2 5 | +24 5 2
00 00 12 o 3
2 2 (5.22)
1 00 00 00
7+zéz3+z73§+28§1 ,
7 2 2 2
7
3 3 00
g <1 §>+ 2 4 u+<7 3>u2 ,
3
3 3 = 00
\2/—75 (E 3>+ 3 2 u+<3 3>u2 , (5.23)
00 5 3 2
3
7 1 00
v3f (s 2 )+ 2 5 Jur3 )]
27\ \o 0 3 = 5 1
2
1 @+143+50u 2+§+50
L u u u
486 50 + 143u + 501> %+143+50u
(5.24)
(i) This example satisfies the conditions in Theorem 3.5. Let
V3 /[ 5-5u
Py(u) = <5u B 5u2)' (5.25)
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The sum of I>-norm for every row in the matrix in (3.34) formed by P, (u), P»(u), P3(u), and
Py (u) is equivalent to 1. Using Theorem 3.5, we can get the symbols of the minimum-energy
frames associated with @ the following:

-1 -2 -2 -3 -3 -= Z 03
Ql(z):% 2 14z 2 + 27 2+ 2 54
0 0 0 0 0 0 -1 -5
5 2 >
+z4 3 +2z° ;
-5 -3 -3 -5
00 00 00
6 7 8
+z Z3 +z 3§ +z §1 ,
2 2 2
. 9v3 9f30 0 0 0 0
= — 2 2 3 4
Qs (2) 7 +z +z 93 +z 93 ,
00 00 0 2’
0 0
(28 503 _3v3 23 3
Q3(z)=ﬁ 2 +Zz 2 +z 9\/?:
0 0 0 0 - -3V3

0 0 0 0 0 0
0 0 0 0 0 0
+z 2 i R i +z . 3 _E i +z . i . ,
2V35 °V3s 35 2 V35 V35
2 45 45 2 2
454 = — 45\ — 454/ —= 0
Qs(z) = %7 133 266 | +z| /266 133 | + 22 133
0 0 0 0 0 0
0 0 0 0 0 0

4 5
POVIERE - R Ty I T e WY I
133 /266 /266 133 133
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0.2

0.1

-0.1

-0.2

0 2 4
(®)
Figure 4
. 14 33 33 24 24 NG
Qo(2) = o V95 295 | +z| 2v95 V95 | +zZ*| V95
0 0 0 0 0 0
0 0 0 0 0 0
+2° +z* +2°
14 33 33 24 24 95
V95 24/95 295 V95 V95
(5.26)

The graphs of ® and the minimum-energy frames associated with it are shown in Figure 4.
From this figure, we can discover that every component of the minimum-energy

frames is smooth. The first vector-valued function of frames is antisymmetry and the second
function vanishes.

(ii) In fact, this example also satisfies the conditions of Corollary 3.7. Take

43
V3 5+5u = 52 —5v2u 0

Py(u) = o= (5.27)
27 43
—5u — 5u? -/ S U 0 5+v2u — 5v/2u2
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and with P;(u), P>(u), and P;(u) to form matrix (3.49), which satisfies standard orthogonal
by row. By Theorem 3.6, we can get minimum-energy multiwavelet frames associated with

®.
(2) Let D(x) = (¢p(x), p(x - 1), Pp(x - 2))T. This vector-valued function satisfies
1 1
00 3 031 T
_ 3
D(x) = = 00 0 DOBx+2)+ 000 OBx+1)+| 5 o o [PGx)
000 000 000
7 7 7
12 2 2 2 2) 2 1)
oo L |oGx-1+] 41 |0Gx-2)+| 1 |, |®Ex-3)
3 3 3
00 O/ 00 O/ 00 O/
1 1 1
(21 3 /1 3 0 /5 00
7 7 1
#1123 |OBx-4+]2 32 |OBx-5+| 2 21 |O(Bx-6)
1 1 1
\0 03/ \0 31/ \3 12/
/000\ /OOO\ /000\
1 1 1
+121 3 [PGx-7)+ 1 3 0 |[®Bx-8)+ 3 00 |®3Bx-9)
7 7 7
\1 2 3 \2 3 2 321/
000 00O 000
+[ 00 ‘1) ®(Bx-10)+ | 0 (1) 0 loGx-11) + ? 00 loEx-12) |,
21 = 1 = -
3 3 0 3 00
1
Py (1) Py ()" + Pa (1) Pa ()" + Py a0) P ()" = =
l+®+141+50u+u 50+g 50+ l4+52+% 50 +1
U2 u ut ud u
X 1+50+141u+50u2+u3 +@+14l+50u+u %+2+E+50+u
u u ub u ou

1+50u+14112 +5003 +u*

Let
<x<u> 0 —x) yw
Py(u) = —x(u)u  x(u) 0 0
0 —x(wu x(uwu?> 0

1
Z+50+141u+50u2+u3

lz+ 0 +141+50u+u?
u
(5.28)
0 0
y(u)u 0 , (5.29)
0 yuu?
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where

x(u) = 0.4067366251768559 + 0.167241087848479521 + 0.00337255616429033612,
(5.30)
y(u) = 0.46250686620877374 — 0.45360921162651374u — 0.00889765458225859512,

then

Py(u) Py (u)" + Py(u) Pa(u)™ + P3(u)Ps(u)* + Py(u)Py(u)* = I. (5.31)

By Corollary 3.7 and Theorem 3.6, we know that the existence of the minimum-energy
multiwavelet frames is associated with ©.

5.3.a=4

With a = 4, the symbol of the B-spline ¢(x) = Ni(x) is

_ 1+4z+102% +202° + 31z* + 402° + 442° + 4027 + 3128 + 202° + 1020 + 42! + 212

4
(5.32)
Take ¢(x) = Nj(x), and the support of this function is [0, 5], the symbol is
31
1 12 25 »(5 10 510 5
P(z) = 756 (0 0>+z<0 0>+z (O 0>+z
0 0
31
31 20 ==
Yy 20 L 5(20 22\, (22 20\ ; 2
2 5 5 10 31
1 2 10 —
2 (5.33)
31
il 2 1
28 2 . 2(10 5N, 0> 2 on
31 20 22 22 20 31
=~ 20 20 —
2
0 0
00 00 00
12 13 14 15
(3 0) (0 D=9 9)
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The polynomial components of P(z) A = xr?

31
31 3l 0 0
1 12 - 20 o 2 10 5
Pl(u)zm 00) Y 2 i +u’| 4 ,
1 2 > 20 > 10
1 //25 20 22\ . ,/10 5\ . 5/0 0
Pa(u) = @((0 0) +”<2 5) T <20 22) T <1o 5))
(5.34)
1 //510 2220\ ,/5 2\ . /00
Ps(u) = @((0 0) +”<5 10) T <22 20) T <5 2))
31
31 20 == 2 1
1 10 = > 5 <0 o>
Py(u) = — 2 ) +u +u 31 )| +u ,
()28 2 4)
2
and they satisfy the conditions in Theorem 3.5. If we take
1 [/ a+bu+cu?
Ps(u) = 128 <au +bu? + cu3>’ (5:35)
where
(~4467 + /19539353 ) \/4467 + /19539353
4= 1288 ’
(~3823 + /19539353 ) /4467 + /19539353 (5.36)
b= , :
1288
__ V4467 + V19539353

2

then the sum of I>norm for every row of matrix in (3.49) formed by P; (), P> (1), Ps(u), Ps(u),
and Ps(u) is equivalent to 1. Using the method in Theorem 3.5, we can get

0.02144655154326434 0.04289310308652868
Ql (u) = 0 0

Z(0.04289310308652868 0.1072327577163217>
0 0

42 <O.1072327577163217 0.2144655154326434>
0 0
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+2°

0. 2144655154326434 0. 3324215489205973)
0

_ 0.19702904865778179  0.15557470886671548 )
-0.

02144655154326434 —0.04289310308652868

5

. 0.15557470886671548 0. 11193838675771434)

0.04289310308652868 —0.1072327577163217

T %\ -0.1072327577163217 —0.2144655154326434

7

. 0.07664965153915186 0. 053977382251572635)

—0.2144655154326434 —0.3324215489205973

8

. 0.044111750085627274 0.0284591936036305 )

0.19702904865778179 0.15557470886671548

9

6 <O 11193838675771434 0. 07664965153915186>
=

0.0284591936036305 0.01422959680181525
0.15557470886671548 0.11193838675771434

_ _10(0.01422959680181525 0.0056918387207261
0.11193838675771434 0.07664965153915186

0.0056918387207261  0.00284591936036305
0.07664965153915186 0.053977382251572635

z12

0
0. 044111750085627274 0. 0284591936036305>

0
13
mF (0 0284591936036305 0. 01422959680181525>

Zl4

0
0. 01422959680181525 0. 0056918387207261>

0 0
15
z (0.0056918387207261 0.00284591936036305>’

0.1477957934872654 0.10094712082354547
Q= - ( . . )

. (—0.6597141432730713 0.05159613960533249>
0 0

_ 2 <0.05159613960533249 0.06585963320155815>
0 0

_ 3 <0.06585963320155815 0.08467934092975693>
0 0
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__4(0.028047431831489087 0.01809511731063812
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6

_ 0.00904755865531906 0. 003619023462127624)
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9
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0
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1 0
o (0 003619023462127624 0.001809511731063812
0
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Q3(u) - = 0 0
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0 0

2
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0

3
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0
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8
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=

0
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0 0
9
z <0.009739369553444507 0.004869684776722253)
ET 0 0
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. 0 0
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(5.37)

they are the symbols of the minimum-energy multiwavelet frames associated with ®. The
graphs of the vector-valued functions are shown in Figure 5.

From Figure 5, we can find that every component of the minimum-energy frames is
smooth, but not (anti)symmetrical.

6. Conclusions

In this paper, minimum-energy multiwavelet frames with arbitrary integer dilation factor are
studied. Firstly, we define the concept of minimum-energy multiwavelet frame with arbitrary
dilation factor and present its equivalent characterizations. Secondly, some necessary
conditions and sufficient conditions for minimum-energy multiwavelet frame are given,
then the decomposition and reconstruction formulas of minimum-energy multiwavelet
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Figure 5

frame with arbitrary integer dilation factor are deduced. Finally, we give several numerical
examples based on B-spline.
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We present a new economic hybrid analytical orbit propagator program based on SARIMA
models, which approximates to a 4 x 4 tesseral analytical theory for a Quasi-Spot satellite. The
J» perturbation is described by a first-order closed-form analytical theory, whereas the effects
produced by the higher orders of ], and the perturbation of the rest of zonal and tesseral harmonic
coefficients are modelled by SARIMA models. Time series analysis is a useful statistical prediction
tool, which allows building a model for making future predictions based on the study of past
observations. The combination of the analytical techniques and time series analysis allows an
increase in accuracy without significant loss in efficiency of the new propagators, as a consequence
of modelling higher-order terms and other perturbations are not taken into account in the
analytical theory.

1. Introduction

An analytical orbit propagator program (AOPP) is an application which collects and arranges
all mathematical expressions involved in an approximate analytical solution of the satellite
equations of motion. The analytical solutions are known as General Perturbation Theories.
It is noteworthy that the perturbation force model used and the order of the analytical
approximation are closely related to the accuracy and computational efficiency of an AOPP.
In many situations, in order to improve the accuracy of the solution, it may be
necessary to consider a more precise perturbation force model. The solution provided by
the General Perturbation Theories may not be the best approach, because the calculating
process generates unmanageably large mathematical expressions and, therefore, reduces
the computational efficiency of its corresponding AOPP. Other alternatives, although
computationally more expensive than an economic analytical approximation, are the Special
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Perturbation Theories, which directly integrate the equations of motion using numerical
techniques, or by means of semi-analytical theories, which are a combination of General and
Special Perturbation Theories.

In this paper we present a new methodology, which we will call Hybrid Perturbation
Theories, to carry out new families of hybrid orbit propagator programs which combine
a simplified analytical orbit propagator [1-4] with statistical time series models [5]. This
combination allows an increase in accuracy for predicting the position of a satellite without
significant loss in computational efficiency in the new hybrid propagators, as well as
modelling higher-order terms and other perturbations not considered in the analytical theory.

Mathematically, the problem consists of estimating the satellite’s position and velocity
x; for which an approximate analytical solution is known:

x7 = F(t,xs,), (1.1)

where x;, is the satellite’s initial time position and velocity. Moreover, at any moment £;, a
precise observation x;, can be obtained. This observation is related to x;" by the following
linear relation:

£ =Xy, — x;’fl, (1.2)

where ¢, represents the errors produced by the perturbation forces not considered in the
analytical theory and by the selfsame approximate analytical solution. In order to predict the
future values of the &, series, we apply statistical techniques in time series analysis.

The first n values of ¢, are used to estimate a model by means of these techniques.
From this model a forecast of the &, error can be calculated. Finally these estimations are
used to obtain the forecast of the satellite’s position and velocity by the relation

iti = X;id + gti' (13)

In this paper, the orbit propagator Z2DN1 derived from a first-order closed-form
analytical integration of the main problem of the artificial satellite theory and the SARIMA time
series models are described. Secondly, using the univariate Box-Jenkins time series analysis,
a specific Z2DN1-SARIMA model is developed for a Quasi-Spot satellite so as to model the
effects of some zonal and tesseral harmonics by means of the statistical part, where these
influences have not been taken into consideration in the analytical part. The simulated data
are obtained from the numerical integration for an Earth orbiter, which has only taken into
account the perturbation due to the nonsymmetrical Earth gravity field up to the fourth
degree and order. Finally, we compare the simulation with both the analytical propagator
alone and the analytical-statistical hybrid propagator.

2. Z2DN1 Analytical Orbit Propagator Program

This AOPP has been derived from a first-order closed-form analytical theory of the main
problem of the artificial satellite theory.
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The main problem is defined as a Kepler problem perturbed by Earth’s oblateness. The
Hamiltonian of this dynamical system can be written in a cartesian coordinate system (x, X) as

= %(X.X)—‘;[l—]z(g)sz(;)], 2.1)

where r = ||x|| = 1/x% + y? + 22, u is the gravitational constant, a the equatorial radius of the
Earth, ], the oblateness coefficient, and P, the second degree Legendre polynomial.

The first step to carry out the analytical theory consists of expressing the Hamiltonian
(2.1) in terms of the Delaunay variables (I, g, h, L, G, H). This set of canonical action-angle
variables can be defined in terms of the orbital elements suchas ! = M, g =w, h = Q, L =

VHa, G =\/ua(l-e?), H = \/pa(l — e?) cosi, where M, w, Q, g, e, i are the mean anomaly,
argument of the perigee, longitude of the ascending node, semimajor axis, eccentricity, and
inclination, respectively. Then the transformed Hamiltonian is given as

Jz—zﬂ—;—§é<g>2(1—35251n2(f+g)>, (2.2)

r

where € = J; is a small parameter, s = sini, and f is the true anomaly.

Next, we normalize the Hamiltonian (2.2) by applying the Lie transform ¢
(g hL,GH) - (Ig,W,L',G,H'), the so-called Delaunay Normalization [6], which up
to first order reads

Ko = Ho, (2.3)
2
K= - %%—lk/). (2.4)

The Lie method solves (2.4) by choosing the form of the transformed Hamiltonian; the
Delaunay Normalization takes the Hamiltonian as the average over the fastest angle I:

2,42 2,4
3au*s ap

Ky = - , 25
EPTI ERT I (29
and then 70; is computed as
L®
¥ = iz (H1 - Ky)dl
ura? <3s'2 - 2><,‘b’ ey NEE ’
= P + T sin f
(2.6)
3ulate's? o 3ula’s? L
- 8LI—371,3 Sln(f +2g) - SL’—31'ZI3 sm(Zf +2g)
2,202
_ % sin(3f' +2¢'),

where 7 = V1-e?and ¢' = f' - I'.
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Hence, up to the first order, the transformed Hamiltonian is given by

2 3 2, 4.2 2,4
Y ) (U i § (27)
2L 4LS> 2Ly

We must remark that the Hamiltonian (2.7) is integrable. This Hamiltonian only
depends on the momenta L', G/, and H’, and so therefore the equations of motion are obtained
as

dI' oK . 3a2ut 9atuts”?
dt oL 3 ’

T3 2L/7rl/3 - 4L,77’l,3

dg'  oxX 3a2ut  15a%uts?

—_— = — =€ —_

dt oG L7y*  4L7y*
dn' oK 3alu'c

At TG T oyt

(2.8)

dL'_dG _dH'_
de  dt  dr

By integrating (2.8) we can directly obtain that the values of the momenta L', G/, and
H' are constants, whereas the variables I', ¢’, and I’ yield

2 2,4 2,42
| H Batp”  9aty’s .
I'=|—=+¢ - t—1to) + 1,
[L/3 <2Ll771l3 4L171,l/3 >]( 0) 0

. 3a?ut  15a%uts”
&= I:e < L/711/4 h 4L/711/4 (t B to) + g(,)’ (29)
3 2,4
W= [—efﬂ—fﬂi] (t - to) + hp,

where [, g, by, Ly, G, H;, are the transformed initial conditions Iy, go, ho, Lo, Go, Hy at the
epoch t.

Finally, from (2.6) the first-order explicit equations of the direct and inverse
transformations [7] are calculated.

From the above analytical theory an AOPP was derived, which has to evaluate 93
terms. This AOPP has been called Z2DN1. The algebraic manipulations required to carry
out this analytical theory and its corresponding AOPP were built using a set of Mathematica
packages called MathATESAT [8]. Figure 1 shows the flowchart of the Z2DNT1 analytical orbit
propagator program.

Z2DN1 begins by initializing the physical parameters and the initial conditions
at epoch fy. Next, it transforms the initial conditions into the Delaunay variables
(lo, 80, ho, Lo, Go, Hp) and transports them across the inverse transformation of the Delaunay
normalization ([, g, hy, Ly, Gy, H)). Then, the program provides Delaunay’s variables at
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Input:p, , ,%.%.% .80, ,90h0,%,b

\J

(0,390 ho,Lo,Go . Ho)
(t0,1,9) 05, Ly Gy H )
1.dg 0,16 H")

(Lg,h,L,G H)

\J

Output: t,a,e,g.h,iLx.y,z,%x,y,2

Figure 1: Flowchart of the Z2DN1 orbit propagator program.
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Figure 2: Distance, along-track, cross-track, and radial errors for a Quasi-Spot satellite.

epoch t; from integrated Hamilton equations (I', g, h', L', G', H'). Finally, the direct transfor-
mation of the Delaunay normalization is applied, and therefore the osculating Keplerian
elements (a, e, g, h,i,1) and the state vector (x, y, z, X, , 2) can be calculated.

This model has been compared with the numerical integration (8th-order Runge-Kutta
method) of the equation of motion of a model, which includes the Earth’s zonal and tesseral
harmonic coefficients of fourth degree and order in the case of a Quasi-Spot satellite (a = 7148,
e =0.001,i=98).

Figure 2 shows the distance, along-track, cross-track, and radial errors in a time span
interval of 30 days, which is about 430 satellite cycles. As can be observed, the distance error
of the first-order ], analytical theory when compared with a more complex perturbation
model is about 360 km.

Figure 3 shows the relative errors of the orbital elements for a Quasi-Spot satellite.
The mean anomaly and argument of the perigee are the variables which present the worst
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Figure 3: Relative errors of the orbital elements for a Quasi-Spot satellite.

performance. The maximum absolute errors in a time span interval of 30 days are about 12.4°
and 9.5°, respectively.

3. Statistical Time Series Analysis: SARIMA Model

Introduced by Box and Jenkins [5], the autoregressive integrated moving average (ARIMA)
model has been one of the most popular approaches for time series forecasting. Let ¢; be
a discrete time series, in an ARIMA(p, d, q) model, in which the future value of a series is
assumed to be a linear combination of its own past values and past residuals, expressed as
follows:

¢(B)(1 - B)& = 0(B)v, (3.1)

where & = ¢ — p, p is the mean of the original time series, and v; is a white noise residual.
B is the backward shift, such that Bs; = &_1, whilst d is the number of times that & needs
to be differentiated to ensure its conversion to a stationary time series, that is, a time series
in which the mean, variance, and autocorrelation functions of & are time invariants. ¢(B)
represents the autoregressive (AR) part, where each & is made up of a linear combination from
prior observations p, which can be expressed as a polynomial in B of degree p in the following
form:

$(B)=1-¢1B— B> —--- - ¢, B, (3.2)
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Stage 1
Identification

Stage 2
Estimation

] No
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Figure 4: 3-stage Box-Jenkins methodology.

where ¢;, i = 1,...,p, are the AR parameters. 6(B) represents the moving average (MA)
part, which describes the relation of & with past residuals and can also be expressed as a
polynomial in B of degree g in the following form:

6(B)=1-6:B-0,B*>—---—0,B, (3.3)

where 0;,i =1,...,p, are the MA parameters.

In the case that &; series shows seasonal behaviour, it can be included in (3.1). The
extended model is known as a Seasonal ARIMA model or SARIMA (p, d, q) (P, D, Q) and takes
the following form:

@(B*)p(B)(1 - B°)" (1 - B)"& = ©(B*)0(B), (3.4)
where
®(B%) =1-®B° - ®,B* — ... - ®pB,
(3.5)
O(B%) =1-0;B° -©,B* —--- - ©,BY,

represent the seasonal part with periodicity s.

To determine a suitable SARIMA model for a given series, we use the 3-stage Box-
Jenkins methodology. This procedure is illustrated in Figure 4. At the identification stage, a
preliminary SARIMA model is proposed from the analysis of the estimated autocorrelation
function (ACF) and partial autocorrelation function (PACF), allowing us to determine the
parameters d, D, p, q, P, and Q. Then, the seasonal and nonseasonal AR and MA parameters
are estimated at the second stage. The last stage, diagnostic checking, determines whether
the proposed model is adequate or not. If the model is considered adequate, it can be used
for forecasting future values; otherwise the process is repeated until a satisfactory model is
found.
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4. Time Series Analysis

In order to carry out the statistical part of the hybrid propagator, we consider a simulated
data set, that is, position and velocity, taken from the numerical integration of the Quasi-Spot
equations of motion during 10 satellite cycles. This number of cycles was experimentally
calculated; however the models obtained from fewer than 10 cycles were less accurate, but
from above 10 cycles the increase in accuracy was not significant either. The force model used
to generate the simulated data is a 4 x 4 EGM-96 gravity field, whereas for the numerical
integration a high-order Runge-Kutta method [9] is used.

It is noteworthy to mention that different sets of canonical and noncanonical variables
can be used to develop the statistical part, such as cartesian variables, orbital elements,
Delaunay variables, and polar-nodal variables. In this work, we will only take into account
the Delaunay variables, which allow a direct visualization of the geometry of the orbit.

4.1. Previous Statistical Analysis

The time series analysis begins calculating the linear relations:
e =x - x7, (4.1)

where x represents each of the Delaunay variables (I, g, h, L, G, H), x; is the simulated data at
epoch t, and x{/ is the data from the analytical theory at the same epoch. Therefore, these six
time series (ei, etg , ef‘, etL, etG, etH ) allocate all the information related to the perturbation forces
not considered in the analytical theory (tesseral terms of fourth degree and order and the
zonal coefficients J3 and J4), as well as the higher orders of the analytical solution, that is, the
error of the analytical theory O(JZ), during 10 cycles (and 10 data points per cycle).

Then, the periodogram, a mathematical tool for examining cyclical behaviour in time
series, and the autocorrelation functions, a measure of how a time series is correlated with
itself at different time delays, are used to identify the time series models (see [5], for further
details).

The study of the periodogram and autocorrelation functions of each ¢} reveals that
all variables show cyclical patterns or periodicities and, moreover, there is very similar
behaviour between the time series ! and ¢° and e and £°. For example, this study for ¢! and
g¥ can be seen in Figure 5. However &/ and e/ do not show any similar behaviour between
them or with the rest of the time series.

On the other hand, the correlation matrix of the & series is shown in Table 1. This
matrix presents a strong relationship between ¢! and &}, as their correlation coefficient is near
~1 (-0.9607), as well as between their respective conjugate momenta time series errors, -
and &, where their correlation coefficient is near 1 (0.9982).

It is noteworthy to mention that although the intrinsic nature of the mean anomaly and
the argument of the perigee is different, as mean anomaly is related to short-periodic terms
and the argument of the perigee is related to long-periodic terms, the similar behaviours
detected in the above statistical studies can be explained, because the Quasi-Spot satellite
is near a repeat ground track orbit, in which the argument of the perigee and eccentricity

1
tr

be observed, ¢! and & are almost symmetric with respect to the x-axis, which explains the
negative sign and the near -1 value in the correlation coefficient, whilst e and £ are almost
the same, and therefore the sign in the correlation coefficient is positive with a near 1 value.

(e =\1-(G/ L)?) are almost constant. Figure 6 shows ¢ Etg and etL, th time series. As can
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Figure 5: Periodograms and autocorrelation functions of ¢! (left) and £ (right).
Table 1: Correlation matrix of the & series.
£ & e e e i
el 1.0000
e -0.9607 1.0000
el —-0.0575 -0.1713 1.0000
ek -0.1037 0.0934 0.0451 1.0000
8 -0.1128 0.1168 -0.0070 0.9982 1.0000
el 0.4033 -0.4114 0.0420 0.0066 0.0005 1.0000
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Figure 6: Blue represents ¢!, and ¢! errors. Dashed red represents ° and € errors.

Finally, this preliminary study can be completed by analyzing the results obtained
when the & time series are combined with the data obtained from the analytical theory
(I, ¢, 1, LY, G, H) during the first 10 satellite cycles. This test allows us to consider
several possibilities. The first consists of considering each series separately, for instance,
(I + ¢, g7, b, L, G, H). In all these cases the accuracy is not as good as the approach
given by the Z2DN1 AOPP. After considering other possibilities we show the relations
obtained in previous statistical analyses:

~ ] g

() (I +€, g’ +e 0, LY, G, HY),

N (1 oh ped T L A, G Iy

(i) (7, g’ hy, LY +¢;,GY +¢7, HY),

! g L G

(iil) (I+ €, g’ + & b, LY + €L, G + ¢, HY),

Gv) (¢, g b + el LY, GY, HY + el).

Figure 7 shows the distance errors between the simulated data and analytical theory
for the first ten cycles, and the simulated data and the above corrected analytical theories
with the exact error added. The strong influence of £ and &f can be seen in the first plot; the
distance error is reduced to 0.63 km after ten satellite cycles, whereas el and ¢ only remove
part of the short-period variations, as can be seen in the second plot. The third case collects
the corrections due to Ef, s‘tg , gtL, and th, which produce a distance error similar to the first
case. Finally, the corrections due to /' and e/ do not have any effect on the distance error, as
can be observed in the last plot.

Next we focus our attention on carrying out a hybrid-AOPP from (I + ¢!, g7 +
e, h?,LY,G, H). The following step in the process of looking for the most suitable
SARIMA models using the Box-Jenkins methodology is described below.

4.2. Time Series Estimation of ¢ and &}

To estimate the model of the & time series, we use the Box-Jenkins methodology. In the
first step, the stationary behaviour of the time series is analyzed. Figure 6 suggests that the
variance is time-invariant, whereas for the mean value the plot is not conclusive. On the
other hand, Figure 5 shows that the autocorrelation function (ACF) decreases slowly and the
augmented Dickey-Fuller test [10] allows accepting the null hypothesis that the time series
has a unit root (P value 0.6921 > 0.05). Moreover, its periodogram (see Figure 5) shows
high peaks at low frequencies (f = 0.01 and 0.02). Therefore, the time series does not seem
stationary; thus differentiating the time series data may be necessary.

The second step analyzes the periodicity. The ACF shows a pronounced cyclical
fluctuation with a strong correlation at lag 10. Besides, its periodogram shows a peak at



Mathematical Problems in Engineering 11

tand ¢ time series Land € time series
= 10 10 -
£ g ~r’
- — >
o o) =
& g —~
H 0 N N L r Ll S| 0
0 10 0 10
Number of cycles Number of cycles
(a) (b)
L 9, Land © time series Band * time series
B 10 ~ 10
) £
- -
E E
=0 — B0
0 10 0 10
Number of cycles Number of cycles

() (d)

Figure 7: Blue represents the distance error between x;, and x;f, whereas dashed red is the distance error
between x;, and the corrected x;f from the exact ¢}

the frequency of 0.2, which corresponds to a periodicity of 10. These patterns agree with
the satellite cycle. This suggests that a seasonal model might be adequate to estimate
g¥. Consequently, the tentative models should incorporate both seasonal and nonseasonal
parameters.

We analyzed different SARIMA(p,d, q) (P, D, Q),, models in order to approximate
the etg time series, where the maximum likelihood method was used to estimate model
parameters, as can be seen in Table 2. Finally, the diagnostic stage showed a good fit for
the SARIMA(6,1,7)(3,1,3),, model, in which the Jarque-Bera and Ljung-Box tests [11, 12]
do not reject the null hypothesis of normality nor the no autocorrelation of residuals, with P
values 0.182 and 0.993, respectively.

We must note that the model used to approximate the ¢! time series is also a
SARIMA(6,1,7)(3,1,3),o, which confirms the similar behaviour previously detected to £,
although the model parameters are slightly different, as can be seen in Table 2.

The GNU software R (version 2.14) [13] was the statistical tool used to perform all
statistical analyses. In particular, the R packages TSA [14], forecast [15], and tseries [16] were
used for all time series analyses.

5. Z2DN1-SARIMA Hybrid-AOPP

Figure 8 shows the flowchart of the Z2DN1-SARIMA hybrid-AOPP. We find the difference to
the pure Z2DN1 AOPP (Figure 1) after applying the direct transformation of the Delaunay
normalization. At this point, the Delaunay variables are combined with the new forecast
(éﬁ,?‘tg ) and the osculating Keplerian elements (a, e, g, h,1,1) and state vector (x,y, z, x,7, Z)
are calculated.

At this point, it is noteworthy that a pure analytical theory which takes into account
the perturbation of the fourth degree and order harmonic coefficients of the gravity field,
considering the dimensionless parameter w/n, where n is the mean motion of the satellite,
and the usual Garfinkel assumptions [17] with a precision of about one kilometer after
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Table 2: SARIMA(6,1,7)(3,1,3),, models.

Coefficients si Etg
1 —0.8167142581776827 —0.8312754102958296
¢ 0.5740668630692614 0.5649950239467217
3 1.1200190576112987 1.1322145773449677
o —-0.3087269639691513 —0.2946598587646277
s —0.8631472597887673 —0.8663595825987899
6 —-0.4970128310547080 —-0.5012076262623468
01 0.8789635328932761 0.8901438163231377
6, —0.9965719584754135 —0.9834775736328421
0s —1.6921042908035564 —1.7044561386678760
04 0.5206249360614155 0.4906661687944900
05 1.5190020299259381 1.5136974115875366
06 0.3606298858846529 0.3820758183271771
67 —0.4721289483358399 —-0.4568107050477830
@, 1.4676902604680244 1.4557054355067451
@, —-1.3618276394078148 —1.3525881149216927
@, 0.7076454044934742 0.7023619159769664
(SH 0.8412748367694940 0.8370722835862818
O, —0.8240640881053386 —0.8282527898256336
(CH) 0.9939014392344844 0.9966285211365780
Iput:p, , ,J2,%,t% ,20,€0,Jo.ho,d0 b
\J
(to,%,90.h0,Lo,Go,H o)
\J
(f0. %190 /Ho Ly ,Gy H )
!
(1,90, 1,6" H'
!
1+ Lo+ YhL,cH)
l

Output:t,a,e,g/h,i1x,y,z,%X,¥,2

Figure 8: Flowchart of the Z2DN1-SARIMA hybrid orbit propagator program.

30 days, involves several mathematical expressions of more than 10000 terms, whereas the
whole Z2DNT1 analytical theory only needs to evaluate 93 terms. The technical details of the
tesseral analytical theory have been developed in [18, 19].
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Figure 9: Z2DN1-SARIMA hybrid-AOPP. Relative errors of the mean anomaly and argument of the perigee
for a Quasi-Spot satellite.
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Figure 10: Z2DN1-SARIMA hybrid-AOPP. Distance, along-track, cross-track, and radial errors for a Quasi-
Spot satellite.

5.1. Numerical Validations

Finally we analyze the behaviour of Z2DN1-SARIMA hybrid-AOPP designed for a Quasi-
Spot satellite versus the numerical integration for an Earth orbiter, which has only taken
into account the perturbation due to the nonsymmetrical Earth gravity field up to the fourth
degree and order. The first 10 cycles are considered for the estimation stage, whilst from
the 10th and up to approximately the 430th cycle, which is about 30 days, are used in the
forecasting stage.

Figure 9 shows the relative errors of the mean anomaly and argument of the perigee
for a Quasi-Spot satellite. The maximum absolute errors of mean anomaly and argument of
the perigee in a time span interval of 30 days are about 9.4° and 8.2°, respectively. These errors
have been reduced to 3° in the case of the mean anomaly and to 1.3° in the argument of the
perigee, with respect to the Z2DN1 AOPP.

Figure 10 shows the distance, along-track, cross-track, and radial errors. The maximum
distance error obtained from Z2DN1 AOPP is 352.076 km while for Z2DN1-SARIMA it
is only 23.7489 km. We must remark that the accuracy obtained by the described hybrid-
AOPP is only comparable to a higher-order analytical theory, which includes a more precise
perturbation model.
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6. Conclusions and Future Works

A new methodology to carry out hybrid-AOPP families, based on the combination of an
analytical orbit propagator program and statistical time series models, is presented. To
illustrate this methodology, a hybrid-AOPP, named Z2DN1-SARIMA, has been developed,
which combines an economic first-order closed-form analytical orbit propagator and two
SARIMA time series models fitted to the case of the Quasi-Spot satellite. Although the
increment in the computational time cost is not significant with respect to the pure analytical
theory, the error of our theory is reduced in comparison to the pure Z2DN1 AOPP. The
accuracy reached by our new hybrid model is similar to that obtained by a more complex
zonal and tesseral analytical theory, but without the inconvenience of losing computational
efficiency.

To calculate the SARIMA models, 10 satellite cycles are considered and the univariate
Box-Jenkins time series analysis is used to model the & time series, using statistical software
packages for R. Two of the six components were modelled, whilst, at present, we are working
on the study of the bivariate SARIMA models in order to collect the similar behaviour found
between the mean anomaly and the argument of the perigee. In the study of the argument of
the node and the third component of angular momentum behaviour, we are performing an
economic analytical theory, which includes tesseral coefficients.

The behaviour of the Z2DN1-SARIMA hybrid-AOPP with respect to other initial
conditions near the Quasi-Spot conditions, as well as the adapted hybrid-AOPP, when other
perturbations, like atmospheric drag, third body, and so on, are taken into account, is future
works to be investigated.
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Due to the features of long connection delays, frequent network partitions, and topology
unsteadiness, the design of opportunistic networks faces the challenge of how to effectively deliver
data based only on occasional encountering of nodes, where the conventional routing schemes
do not work properly. This paper proposes a hybrid probability choice routing protocol with
buffer management for opportunistic networks. A delivery probability function is set up based
on continuous encounter duration time, which is used for selecting a better node to relay packets.
By combining the buffer management utility and the delivery probability, a total utility is used
to decide whether the packet should be kept in the buffer or be directly transmitted to the
encountering node. Simulation results show that the proposed routing outperforms the existing
one in terms of the delivery rate and the average delay.

1. Introduction

Opportunistic networks [1-4] are one of the most emerging communication paradigms
in wireless mobile communications where most of the time the path from a source to
a destination is unstable and may break and be discovered from time to time [5, 6]. In
this case, how to effectively deliver data based only on occasional encountering of nodes
becomes a challenge, since the conventional cannot be adopted straightforwardly. To deal
with the unpredictability in connections and network partitions, many routing protocols
adopt flooding-based and store-carry-forward routing schemes, such as Epidemic Routing
(ER) [7], Spray and Waiting [8-10], PRoPHET [11], and MaxPROP [12], to improve the
message delivery, where a node receives packets, stores them in their buffers, carries
them while moving, and forwards them to other nodes when they encounter each other.
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Epidemic is one of the first routing schemes, adopting the store-carry-forward paradigm.
In Epidemic Routing, packets are disseminated in broadcast mode as infectious diseases
spread. This packet-spread will continue until all the nodes have a copy of the packet or
its TTL (time-to-live) expires. Although, Epidemic Routing achieves eventual delivery of
100% of messages, but it makes no attempt to eliminate replication, and the high delivery
rate is at the expense of the network resource consumption, such as storage of buffer
space and transmission bandwidth [13, 14]. Performance of ER will get worse when the
network traffics congest. Spray and Wait [8, 9, 15] combines the speed of ER with the
simplicity and thriftiness and reliability of direct transmission and makes an effort to
perform fewer transmissions by controlling the number of packet copies in spray phase
and utilizing direct transmission in wait phase. While in scenarios of a high mobility model
(like community-based mobility), the direct transmission based wait phase in Spray and
Wait routing has low efficiency in delivery delay and probability. ProPHET [11] presents
an estimation-based forwarding scheme to direct the messages to the destination node.
The basic operation of ProPHET is similar to that of Epidemic. When two nodes meet
each other, each node exchanges its summary vectors and delivery predictability to each
other. The delivery predictability in the summary vector is used to make a forwarding
decision for the packets’ delivery. ProPHET is a single-copy forwarding-based scheme,
and the limited copy may result in the performance limitation of the initial probability
distribution.

Most of the studies on opportunistic networks have been investigated in the design
of efficient routing, but few literature focused on buffer management, which is important
for the store-carry-forward paradigm, for example, Epidemic Routing has minimum delivery
delay under no buffer constrains, but performs worse than other routings when buffer sizes
are limited. Most of the routings use the simple drop-tail policy without taking the buffer
management into account. However, how to utilize spatial, temporal, and buffer information
to make an optimal decision for delivering the packets is an open issue.

In this paper, we propose a hybrid probability choice routing protocol with buffer
management. The main work of the proposed method is (1) to set up a delivery probabilities
function based on the continuous encounter duration time and buffer information, (2) to let
nodes decide how many copies will be transmitted to the encountering nodes according to
their delivery probabilities to the destination in the spray phase, and (3) to combine the buffer
utility and delivery probability to construct a total utility and to directly deliver the last copy
to the encountering node according to the total utility in the wait phase.

The rest of the paper is organized as follows. We give an overview and detailed
information of our algorithm in Section 2. We evaluate our scheme through simulation in
Section 3 and draw a conclusion in Section 4.

2. Design of Probability Choice Routing Protocol with
Buffer Management

2.1. Network Model

This paper considers the probabilistically contacted opportunistic networks where the
networks consist of nodes representing portable wireless devices held by moving elements
such as people or vehicles in a community. We model an opportunistic network as a dynamic
set of mobile nodes. Nodes may join and leave the network at any time. In our opportunistic
scenario, there are three groups of moving elements: pedestrian, bicycles, and vehicles. Each
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group of moving elements follows the map-based movement model with different speed.
We use 30 vehicles following predefined routes, 60 nodes are pedestrians, and 30 nodes
are bicycles. The vehicles and bicycles choose random destinations in their reach on the
map. The number of different moving elements can be changed, which does not affect the
characteristics of basic communication.

Communications are based on pairwise contacts [10, 16, 17]. Through the pairwise
encountering of mobile elements, data stored in devices are opportunistically forwarded over
the network. Nodes are assumed to have homogeneous capability in terms of computation,
communication, and storage. Opportunistic forwarding decisions are made without the help
of the localization services. Their communication capacity is limited by specific wireless
techniques. For example, through Bluetooth, node can contact with each other when each of
two nodes enters the other’s communication range. Two nodes in the network are neighbors
and can transfer data packets bidirectional if they are within the communication range. Data
is forwarded in a store-and-forward manner, which allows nodes to store data temporarily
until running into a more competent node to further forward them. We consider a multicopy
scenario. The network model can be presented concretely as follows. The topology of the
networks is modeled as a graph G = (V, E), V is the set of nodes, and E is the set of hyperarcs.
Each node in the network can be a source or destination of traffic.

2.2. Motivation of the Protocol

The core of the processing is how to rank the relay nodes based on the measurement of the
delivery predictability and buffer utility. Addressing the above issue, each node records its
location and context to a historical information database. Nodes renew their routing passively
and share their location and moving information. When a node encounters another node,
each node exchanges its location and historical moving information and decides whether
it delivers its packets to the encountering node by calculating the delivery predictability,
which is based on the historical encounter duration time and buffer situation. Based on this
prediction, the node will make a wise decision to deliver the packets or not in both the spray
phase and wait phase. In the wait phase of the original Spray and Wait, a node with the last
copy has to wait until it encounters the destination, the node will not hand over the last copy
to any nodes that might have more chances to encounter the destination, so it might waste
some opportunity and keep the buffer out of space. In this scheme, we make an effort to let
nodes exchange SV (Summary Vector) once a node with the last one copy encounters a node.
We calculate the total utility according to the buffer utility and delivery probability. If the
total utility is higher than a given threshold, the node will hand over the last copy to it.

2.3. Delivery Predictability Calculation

In the spray phase of original Spray and Wait routing, for each message originating at a source
node, L message copies are initially sprayed and relayed by nodes. An optimal Spray and
Wait scheme-Binary Spray and Wait (BSW) is proposed in [8] to speed up the spray phase
and improve the routing performance, where any node with n > 1 copies hands over half
copies to the encountered node until n = 1. However, if the relay is a very inactive node,
which does not contact with other nodes, handing over half the copies to such a node means
half of the relay chances will be wasted. In order to overcome this problem, we introduce a
novel scheme to the spray phase, where we set up a delivery probability to the destinations

for each node as the ProPHET routing [11] does, and nodes exchange different numbers of
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copies to each other according to their delivery probabilities P, ) € [0, 1], that is, when P, )
is larger than a threshold value Piyreshold, node a will hand over half its copies to node b,
otherwise, it will only hand over one copy to node b. The delivery probabilities are updated
as follows.

(1) Whenever a node is encountered, the delivery predictability is updated as (2.1),
where Py is an initialization constant. It is recommended in [18] that the referential
value of Py is 0.75:

P(a,b) = P(a,b),q+ (1 -P(a,b)yq) X Prit- (2.1)

(2) The aging equal is shown in (2.2), where y € (0, 1] is the aging constant and k is the
number of time units that has elapsed since the last time the metric was aged:

P(a,b) = P(a,b) 4 x y~. (2.2)

(3) Transitive affection is shown in (2.3), where f is a scaling constant that decides
how large impact the transitivity should have on the delivery predictability. It is
recommended in [18] that the referential value of f is 0.25:

P(a,c) =P(a,c)yq+ (1 -P(a,c),q) x P(a,b) x P(b,c) x p. (2.3)

In real opportunistic networks, the communication range of nodes, moving speed, and
bandwidth may be different. When the network is in an unstable situation, such that the
nodes” moving speeds are too fast and have different communication ranges, the links will
interrupt frequently. In this case, the nodes encounter each other from time to time according
to the link’s situation. The number of nodes encountering cannot reflect the real ability of
communication between nodes anymore. Based on this observation, we revise (2.1) and (2.2)
using the continuous time ¢ to calculate the delivery as that of [19], where 7 is a constant, and
t is the time that has elapsed since the last encounter time:

Pt = Pold X e_”. (24)
Compared with (2.2) and (2.4), let
t=ku, Pi(a,b)=P(a,b), (2.5)

then

(@) = <Y1/u>t _ <e(1/u)lny>t | Pya £0,
(2.6)
1
T=-- Iny,
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and then (2.1) can be rewritten as follows:

P(a,b) =1-¢e"(1-P(a,b),y), (2.7)

c= —% In(1 = Pinie).- (2.8)

In this way, the discrete-time signal is changed into the continuous-time signal.
Therefore, the noise, which is introduced by different encounter communication range and
moving speeds, can be removed by certain filter.

2.4. Optimal Node Selection with Buffer Management

In this subsection, we try to maximize the average delivery rate by using a buffer
management. In opportunistic networks, nodes have finite buffer space, so they must
eventually discard old copies to make room for new requests. Normally, copies will be
discarded when the Time to Live (TTL) is elapsed. If the TTL elapsed before the nodes
encounter any nodes, the copies will be dropped; otherwise, a decision of which copies
should be dropped must be made when the buffer is filled up. Thus, the encountering
interval of nodes should be considered. The encountering interval between nodes depends
on the value of the mobility model. We assume that there is enough time to exchange their
packets. The encountering time (T) between nodes is defined as the time it takes them to
first come within transmission rang (R = min(r,,7)). Based on the experimental study, it
has been shown that the meeting time of some random-based mobility models like Random
Walk, Random Waypoint, and Random Direction is exponentially distributed or has at least
an exponential tail, with parameter A = 1/E(T), where E(T) denotes the expectation of a
random variable T. We use these mobility models for our test scenarios. And, then, the
probability that a copy of a message j will not be delivered is equal to the probability
that the next encountering time with the destination node is greater than the remaining
Time to Live R;(TTL) for message j. That is exp(-AR;(TTL)). Based on this model, it has
been proved that in order to maximize the average delivery rate, the optimal policy of
buffer management should drop the message with the lowest probability to delivery [14].
The optimal policy of buffer management uses the Epidemic Routing, whose number of
message copies is uncontrolled. Different from that, we employ a fixed number L of copies
for messages. The probability that the message will not be delivered can be derived as
follows:

Pj(undelivered) = exp(-An;R;(TTL)). (2.9)

Here, n; is the total number of copies of message j in network. And the probability of
a message being delivered is:

mj
N-1’

Pj(delivered) = (2.10)
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where N is the number of nodes in the network and m; is the number of nodes that have ever

stored message j. Then, the probability of message that will be delivered can be derived as
follows:

P; = Pj(delivered) (1 — exp(—An;R;(TTL))) + Pj(delivered), (2.11)

P = (1 - Nm_f 1)(1 —exp(—An;R;(TTL))) + (2.12)

j
N-1
Hence, the maximum of average delivery rate is achieved by maximizing P;, then we can
maximize the average delivery rate. Taking the derivation of (2.12) with respect to n;:

OB _(1__™_\)r An;R;(TTL)) A 213
a—n],—< —m) jexp(=An;R;(TTL)) An;. (2.13)

From (2.13), the best drop decision is to drop the message j satisfying:

. . m;
jmin = arg jmm [(1 - m))LRj exp(—An;R;(TTL))|. (2.14)

Since we are using the fixed number L of the copies, when the proposed routing comes
to waiting phase, it means that the nodes have only one copy of the message j. For the worst
case, none of them contacts destination node. Replacing n; with the total number of copies L
for (2.14), we get

. . n;
Jmin = arg imm [(1 - m)ARj exp(-ALR;(TTL))]|. (2.15)

We define the buffer utility as follows:

mj

where value of m; is a global state of the message in the network. We can calculate it by using
the local information. Suppose that

m; =7, = E(M(T)), (2.17)

where M(T) is a random variable, which follows the approximated of a Gaussian
distribution.

In the fixed number copies’ routing, the success delivery rate depends on the threshold
of the number of copies and the spray strategy. Multiple-copy routing utilizes multiple paths
to transfer packets. Therefore, the node with larger delivery predictability should have more
copies of the packet. While the source spray and binary spray strategies used in Spray and
Wait routing do not consider the different utilities of the nodes. They spray the packets
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Figure 1: Flow chart of the proposed routing.

equally for each node. According to the analysis in Section 2.3, we apply a simple spray
strategy based on mean delivery predictability to the routing. Set B as the sum of average
contact and intercontact time between encounters of node pairs. We calculate the mean
delivery predictability P as follows:

_ 1 (B B
Py = B fo Pinit(ap) x € Mdt, (2.18)

when P > P, half copies (L/2) will be transferred to the encountering node. When P < P,
only one copy will be transferred to the encountering node.
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Table 1: Simulation environment parameters.

Simulation parameters Simulation values
Map size 4500 m x 3400 m
Packet transmission speed 250 kBps (2 Mbps)
Number of nodes
Pedestrian 60
Bicycles 30
Vehicles 30
Node movement Shortest Path Map Based Movement
Speed
Pedestrian 0.5-1.5m/s
Bicycles 1.4-4m/s
Vehicles 2.7-139m/s
Transmission range 10m
Packet size 500kB-1MB
Message generation interval 255,355

In the wait phase, the original Spray and Wait store message in the buffer until the
destination is reached. Sometimes, however, the encountering node may have more chance
to encounter the destination, we consider delivering the last copy to the encountering node
with a larger delivery probability. Since this policy may lead to no convergence (none of the
nodes reach the destination before TTL), we consider the following process.

By combining (2.7) and (2.16), we construct a total utility of buffer utility and delivery
probability as follows:

Uiotal = 6U; + ¢sP(a,b) = §[1 - e (1 - P(a,b)yq)] + w(l - %)ARJ exp(=ALR;(TTL)),
(2.19)

where 6 and ¢ are the weighted factors that represent the impact of buffer utility and delivery
probability on the total utility, respectively.

If the total utility Uyota is larger than a given threshold Ureshold, the last copy will be
sent to the encountering node, otherwise it will be kept in the buffer until the TTL expires.
The flow of the scheme is shown in Figure 1.

3. Simulation and Analysis

This section evaluates the performance of the proposed routing by modifying and developing
the traditional Spray and Wait routing in the ONE [15, 20] simulator. We consider a scenario
with three classes of nodes, pedestrians, bicycles, and vehicles. The details of the simulation
parameters are listed in Table 1.

In the performance evaluation, we compare the proposed protocol with three
representative routing protocols: Epidemic Routing (ER), original Spray and Wait (SNW),
and ProPHET routing (PRO), respectively. We run all these routings in the same scenario with
the above parameters and compare their performance with regard to the success delivery
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Figure 3: Average delay with different buffer size.

rate and delivery delay under different buffer size, TTL, and total number of messages,

respectively.

Figures 2 and 3 show the delivery rate and average delay with variant buffer size
for ER, SNW, and PRO in comparison with the proposed optimal probability choice routing
protocol with buffer management. Among these routing protocols, the bigger buffer size
show the better performance of all protocols, and the performances of SNW and the proposed
protocol are better than PRO and ER. This result is due to the use of the limited number of
copies among these routings. Note that the proposed protocol provides a higher delivery rate
than SNW when the buffer size is larger than 12 M. This result validates the effectiveness of
the proposed buffer management policy in Section 2.4.
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Figures 4 and 5 show the performance under different TTL. The figures show that the
proposed protocol outperforms the other three routing algorithms. Along with the increase of
TTL, the delivery rates and the average delivery delays of all the four routings rise gradually.
The proposed protocol achieves the largest delivery rate and the shortest delay for all TLL
scenarios. This is reasonable because large TTL brings more time for the copies to stay in the
relay nodes without discarding, and this helps to increase the success delivery rate, while the
long-time staying in nodes will lead to lack of buffer spaces and large average delivery delay,
when buffer spaces run out, copies will be discarded again, which will lead to a reduction in
success delivery rate. That is, tradeoff is offered in terms of the TTL and buffer space.
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Although both the proposed protocol and the SNW require more copies than the other
schemes, our protocol outperforms the latter as the buffer size is increased. This is because
we use directly delivering in the wait phase to transmit the last one copy to the node with a
higher delivery probability to destination.

Figures 6, 7, 8, and 9 describe the average delivery rate, average buffer time, the
delivery delay, and overhead versus the total number of message. As the traffic increases,
the delivery rates and overhead of all the routing protocols decrease, while the average
buffer time and delivery delay increase eventually. Overall, the delivery rate of the proposed
protocol is the highest one and it is more robust than the other routing protocols, and the
average buffer time and overhead of the proposed protocol is kept in a very low level. The



12

reason is as follows. Firstly, we use continuous encounter time to describe the encounter
opportunity, which makes it more precisely to describe the encounter opportunity. Secondly,
we provide different numbers of exchanging copies to the nodes according to their delivery
probabilities to the destination in the spray phase, the node transfers more copies to the
node with higher delivery predictability. It takes full advantage of the knowledge about the
historical encountering, and the delivery predictability reflects the node’s real mobility and
transfer ability more precisely and thus yields a faster transfer for the packet to the destination
node. Finally, taking the buffer management and the delivery probability into account in final
waiting phase will gain more buffer space the buffer and thus reduce the average buffer time
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and increase the opportunity of finding the destination.
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4. Conclusion

Opportunistic networks aim to provide reliable communications in an intermittently
connected environment. The major challenge here is to route messages without an end-to-
end connection. To deal with the unpredictability in connections and network partitions, we
propose the probability choice routing protocol with buffer management for opportunistic
networks in this paper. In the proposed protocol, a delivery probability based on continuous
encountering duration time is set up such that each node can choose a better node as
its relay in spray phase, and a total utility of buffer management utility and delivery
probability is taken into consideration for delivering the last copy to the encountering node.
Extensive results are provided to evaluate the proposed routing protocol with ONE simulator.
Simulation experiments indicate that the proposed routing protocol outperforms the existing
routing solutions thanks to its ability to maximize the delivery rate and minimize the delivery
delay. Future research topic includes the extension to the real-life mobility.
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We propose the degenerate-generalized likelihood ratio test (DGLRT) for one-sided composite
hypotheses in cases of independent and dependent observations. The theoretical results show
that the DGLRT has controlled error probabilities and stops sampling with probability 1 under
some regularity conditions. Moreover, its stopping boundaries are constants and can be easily
determined using the provided searching algorithm. According to the simulation studies, the
DGLRT has less overall expected sample sizes and less relative mean index (RMI) values in
comparison with the sequential probability ratio test (SPRT) and double sequential probability
ratio test (2-SPRT). To illustrate the application of it, a real manufacturing data are analyzed.

1. Introduction

Consider the following hypotheses test problem:

Hj: 0< 90 versus Hj : 0> 91 (Go < 61) (11)

with the error constraints

Py{acceptH1} < a for 0 <6,
(1.2)
Py{acceptHy} < p for 6 > 6.

Here, 6y, 601 € O, and O is the parameter space. Sequential tests for the problem (1.1) with
independently and identically distributed (i.i.d.) observations have been widely studied.
In cases of the one parameter exponential family with monotone likelihood ratio, the
sequential probability ratio test (SPRT) proposed by Wald [1] provided an optimal solution to
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the problem (1.1), in the sense of minimizing the expected sample sizes (ESSs) at 8 = 8, and
0 = 0, among all tests satisfying the constraints (1.2).

However, its ESSs at other parameter points are even larger than that of the test
methods with fixed sample sizes. This led Weiss [2], Lai [3], and Lorden [4] to consider the
problem (1.1) from the minimax perspective. Subsequently, Huffman [5] extended Lorden’s
[4] results to show that the 2-SPRT provides an asymptotically optimal solution to the
minimax sequential test problem (1.1). Instead of the minimax approach, Wang et al. [6]
proposed a test minimizing weighted ESS based on mixture likelihood ratio (MLR). Since the
ESSs over [0y, 61] are hard to control and are usually focused on applications, Wang et al. [6]
paid much attention to investigate the performance of the ESS over [0y, 6;1]. Many tests for
the problem (1.1) under independent observations are developed from other perspectives,
including [7-11] and so forth.

It is true that in many practical cases the independence is justified, and hence these
tests have been widely used. However, such tests may not be effective in cases when
the observations are dependent, for example, Cauchy-class process for sea level (cf. [12]),
fractional Gaussian noise with long-range dependence (cf. [13, 14]) and the power law
type data in cyber-physical networking systems [15]. Especially for the power law data, the
sequential tests for dependent observations are particularly desired. This need is not limited
to these cases.

So far, many researchers studied sequential tests for various dependent scenarios.
Phatarfod [16] extended the SPRT to test two simple hypotheses Hy : 6 = 6 versus
Hi : 8 = 8; when observations constitute a Markov chain. Tartakovsky [17] showed that cer-
tain combinations of one-sided SPRT still own the asymptotical optimality in the ESS under
fairly general conditions for a finite simple hypotheses. Novikov [18] proposed an optimal
sequential test for a general problem of testing two simple hypotheses about the distribution
of a discrete-time stochastic process. Niu and Varshney [19] proposed the optimal parametric
SPRT with correlated data from a system design point of view. To our best knowledge,
however, there are few references available for considering the problem (1.1) with dependent
observations from the perspective of minimizing the ESS over [0y, 6]. Similar to Wang et al.
[6], one can extend the MLR to the dependent case. However, unlike the i.i.d. case, the MLR
under the dependent case may not be available because of the complexity of its computation.
Besides, its test needs to divide [6p, 61] into two disjoint parts by inserting a point. In ii.d.
cases, this point can be selected following Huffman’s [5] suggestion. But, in the dependent
case, this suggestion may not be effective. One also can use the generalized likelihood ratio
(GLR) instead of the MLR. Unfortunately, as opposite to the MLR, the GLR does not preserve
the martingale properties which allow one to choose two constant stopping boundaries in
a way to control two types of error. Moreover, the computation of the GLR is hard to be
obtained in cases when the maximum likelihood estimator should be searched. This usually
happens in the dependent case.

In this paper, we propose a test method for both dependent and independent observa-
tions. It has the following features: (1) it has good performances over [0y, 0:] in the sense of
less overall expected sample sizes; (2) its computation is reasonably simple; (3) its stopping
boundaries can be determined conveniently. The rest of the paper is organized as follows. In
Section 2, we describe the construction of the proposed test in details and present its basic
theoretical properties. Based on these theoretical results, we provide a searching algorithm
to compute stopping boundaries for our proposed test. In Section 3, we conduct some
simulation studies to show the performance of the proposed test. Some concluding remarks
are given in Section 4. Some technical details are provided in the appendix.
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2. The Proposed Test

Let x' =: (x1,x2,...,%;),i=1,2,...and suppose that the conditional probability distribution
of each x;|x'™!, f(x;|x""!,0) has an explicit form. Here, x1|x? =: x; and f(x1]x°,0) =: f(x1,6).
Thus, likelihood ratio can be defined as

I f(xl | xl ! 6) ’
R,(6,0) Hf<x RN 0,0 co. (2.1)

Lai [20] introduced this model to construct a sequential test for many simple hypotheses
when the observations are dependent. It is very general and also includes the i.i.d. cases.

Example 2.1. Consider, for instance, a simple nonlinear time series model:
xi=0xi,+¢&, &~N(Q,1). (2.2)

In this case, R,(6,0') = [T ¢(xi — 0x2 )/ P(xi — 6'x% ), xo = 0, and ¢(-) is the probability
density function of the standard normal distribution.

To overcome the difficulty stated in Section 1, we propose a test statistic which
minimizes the likelihood ratio with restriction to a finite parameter points in [0y, 61]. First, we
insert k (>3) points into [0y, 6] uniformly, denoted as 6; with 6; = 6y + (i—1)(61 - 6)/ (k- 1),
i=1,..., k. Next, we define the test statistic as maxj<j<k Rn(Gl, 0). It can be checked that this
test statistic not only preserves the martingale properties, but also inherits the merit of the
GLR. As long as k is not very large (e.g., k > 100), its computation will be very simple. Thus,
it has all the three features stated in Section 1. Since this maximization is restricted to some
finite points, we refer to it as degenerate-generalized likelihood ratio (DGLR).

Based on the DGLR, we define a stopping rule T for the problem (1.1) by

T= inf{n >1,max R, <§,~,90> > A or max R, <§i, 91> > B}, (2.3)

1<i<k 1<i<k

with the terminal decision rule

accept Hy, {rsliaSiR <9,,60> A,
A = 4 accept Hy, max Rr <9,~, 61> B, (2.4)
1<i<k

continue sampling, else,

where 0 < A, B < o are two stopping boundaries. Hereafter, the sequential test method
with (2.3) and (2.4) is called the degenerate-generalized likelihood ratio test (DGLRT). It has
some theoretical properties which are stated as follows. These theoretical properties provide
a guide to the design of the DGLRT, whose proofs are provided in the appendix.
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Let

1<i<k

2(0,A,B) = Pe{max RT<§,~, 90) > A}, 6 €Oy,
(2.5)

p(6,A,B) = Pe{grﬁler(ei,el) > B}, 6co

be the real error probabilities, where @) and ©; represent the parameter subsets under Hy
and H, respectively.

Proposition 2.2. Suppose

f(xi | xi‘l, 9”)

. i-1 .
CIERED f(x, | x ,6>dx1 <1, (2.6)

for any positive integer n and every triple @ < 6 < 0". For the DGLRT defined by (2.3) and (2.4), one
has &' (6, A, B) < k/A forall 8 € ©y and p'(0) < k/B for all 6 € ©;.

Remark 2.3. The assumption (2.6) given in Proposition 2.2 is not restrictive. This holds for the
general one parameter exponential family and many others (cf. Robbins and Siegmund [21]).

Proposition 2.4. Suppose that there exists a constant € > 0 such that Eg[log{ f (xi|x"1;0')} -
log{ f(xi|x"1;0)}] > € for all i and every triple 6 < 6' < 0". Under the assumptions stated in

Proposition 2.2, one has Po{T < oo} =1 forall 6 € ©.

Remark 2.5. For 8" > 0', we have

o1 0)] e e < 0))
e (o 12°50)] -t 1250) |

ool Eo f(xi | x7;0)
- g{Ee [—f(Xi = 9,)]}

> 0.

(2.7)

The last inequality follows from (2.6). Eg[log{ f (xi|x""1;0")} — log{ f (xi|x'~};6)}] is positive
with probability 1 if 6 # 6. Heuristically, the requirement that the difference be greater than
the constant € > 0 for all i amounts to assuming that the sequence of data cumulatively adds
information about all the 8” > 8', which is generally true in sequential studies.

From Proposition 2.2, we conclude that the DGLRT satisfies the error constraints (1.2)
if A =k/aand B = k/p. From Proposition 2.4, it is easy to find that we absolutely stop
sampling after finite observations. These results imply that the DGLRT can be useful in a
sequential study for testing the problem (1.1).

In the DGLRT (2.3) and (2.4), the value of the parameter k should be large but finite.
In practice, we suggest that k = 10 (cf. Section 3). Regarding A and B, we can compute them
by simulation. Proposition 2.2 shows A < k/a and B < k/f. Thus, we can search (A, B) over



Mathematical Problems in Engineering 5

Table 1: The ESSs at 6 = -0.8 (0.1) 0 for -6y = 6; = 0.5 and « = § = 0.01.

0 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0

k=3 6.293 7.121 8.181 9.545 11.241 13.156 15.136 16.600 17.141
k=5 6.355 7173 8.254 9.557 11.172 13.073 14.958 16.396 16.974
k=10 6.380 7.228 8.264 9.577 11.138 13.039 14.897 16.344 16.889
k =50 6.394 7.231 8.265 9.578 11.113 13.070 14.872 16.321 16.862

[1,k/a] x [1, k/pB] with the real error probabilities being computed by simulations. One may
consider a density grid searching on [1,k/a] x [1, k/p]. But this is a time consuming job. To
reduce the computation, we introduce an efficient approach as follows. In the first step, we
can use bisection searching to find A; (€ [1,k/a]) such that a’(6y, A1, k/p) = a. Then, fix Ay
to find B; (€ [1, k/p]) such that (61, A1, B1) = p. Since a’ (6, x, y) and 1 - p' (64, x, y) increase
in x and decrease in y, we conclude that (A, B) € [1, A1] x [1, B1]. Hence, we repeat the above
step over [1, A1] x [1, B1]. In this way, we generate a sequence of pairs (A1, B1), (A2, By), .. ..
Following the above program, we have

A2 Ay > 21, Bi>By>--->1. (2.8)

It can be checked that these pairs converge to the exact stopping boundaries. In practice, we
repeat the above process and stop at step 1 if |a'(6y, A;, By) — a| < toly and |f' (61, A;, Br) — | <
tol,. Here, tol; = 2%a and tol, = 2%p. Computation involved in finding A and B is not
difficult partly due to the rapid developments in information technology. For example, in the
nonlinear time series model (2.2), setting -6y = 6; = 0.25, « = 0.01, § = 0.05, and k = 10,
it requires 15 minutes to obtain the stopping boundaries A and B for the DGLRT based on
100,000 simulations, using Intel-Core i7-2.80 GHz CPU. Since this is a one-time computation
before testing, it is convenient to accomplish.

3. Numerical Studies

In this section, we present some simulation results regarding the numerical performance of
the proposed DGLRT. In the DGLRT, the parameter k needs to be chosen. We first investigate
the effect of k on the performance of the DGLRT according to i.i.d. observations from the
normal distribution N(6,1). Setting -6y = 6; = 0.5 and a = f = 0.01, we compare the
DGLRTs with k = 3,5,10,50. The corresponding stopping boundaries (A, B) are (69.3,69.3),
(74.3,74.3), (75.7,75.7), and (76.7,76.7), respectively. The ESSs at 8 = —0.8 (0.1) 0.8 (i.e., 6
takes values from —0.8 to 0.8 with step 0.1) are computed based on 100,000 simulated data
and are provided in Table 1.

Because of the symmetry, we only include results for 6 € [-0.8,0]. Table 1 shows that
the ESSs under a larger k are smaller than those under a smaller k if 6 € (6o, 61). Meanwhile,
it can be seen that a smaller k has a better performance outside (6, 61). In order to assess
the overall performance of the tests, we compute their relative mean index (RMI) values.
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The RMI is introduced by Han and Tsung [22] for comparing the performance of several
control charts. It is defined as

N ESS(6;) - MESS(6;)
MESS(6;) ’

1
RMI = — 1
MI= & (3.1)

=1

where N is the total numbers of parameter points (i.e., 6;’s) we considered, ESS(6;) denotes
the ESS at 6;, and MESS(6;) is the smallest one among all the three ESS(6;). So, (ESS(6;) —
MESS(6;)) /MESS(6;) can be considered as a relative difference of the given test, compared
to the best test, at 6;, and RMI is the average of all such difference values. By this index, a
test with smaller RMI value is considered better in its overall performance. Since we focus on
the performance over the parameter interval [6y,0:], 0, = -0.5+0.1(i—1),i=1,...,10 in this
illustration. The resulting RMIs for the DGLRT under k = 3,5, 10, 50 are 0.0116, 0.0042, 0.0017,
and 0.0011, respectively, which shows that the DGLRT under a larger k is more efficient than
the one under a smaller k. The improvement is minor when k is large enough. Considering
the complexity of computation, we select k = 10 for practical purposes. From now on, the
DGLRT is always the DGLRT under k = 10 unless otherwise stated.

Next, we investigate the performance of the DGLRT in controlling the ESSs over
[60,641]. In the ii.d. case, we know the 2-SPRT has a better performance in controlling the
maximum ESS. For the ESSs over the neighborhoods of 6y and 61, the SPRT provides a closely
approximation. Based on extensive simulations, we conclude that these features still preserve
in the dependent case. Therefore, the SPRT and the 2-SPRT are compared with the DGLRT in
this paper. The following three cases are considered.

Case 1. Observations collected from normal distributions with mean 6 and variance 1. Set
-0y = 01 =0.5and a = f = 0.01 for the test problem (1.1).

Case 2. Observations collected from exponential distributions with mean 1/6. The problem
(1.1) is set with 6p = 0.5, 0; =2, and a = = 0.01.

Case 3. Consider the test problem (1.1) for the simple nonlinear time series model (2.2) with
60p=0,0 =1and a = =0.01.

In each case, the inserted point for the 2-SPRT is searched over [0, 61]. The stopping
boundaries are also computed following the searching algorithm stated in Section 2. These
stopping boundaries (A, B) are listed in the order of the SPRT, 2-SPRT, and DGLRT: Case 1:
(56.4,56.4), (37.4,37.4), and (75.7,75.7); Case 2: (63.8,25.5), (42.5,23.5), and (79.5,39.5); and
Case 3: (14.5,25.5), (8.2,26.8), and (22.5,36.5). Figures 1-3 display the ESS curves over [0y —
0.5,0;1 + 0.5] under the three tests for Cases 1-3 with the dashed line for the SPRT, the dotted
line for the 2-SPRT, and the solid line for the DGLRT. Figure 1 shows that the DGLRT is
comparable to the 2-SPRT in the middle of the parameter range and performs as well as the
SPRT in the two tails. It implies that the DGLRT controls both the maximum ESS and the
ESSs under Hy and H; very well. The same conclusions can also be obtained from Figures 2
and 3. The RMIs for the SPRT, 2-SPRT, and DGLRT under the three cases are also computed.
The results are listed in Table 2. It can be seen that the RMI for the DGLRT is the smallest one
among the three tests under all three cases. Thus, the DGLRT performs the best, compared
with the SPRT and the 2-SPRT over [0y, 61].
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Figure 1: Comparison of ESS curves under the SPRT, the 2-SPRT, and the DGLRT for Case 1: -6y = 8; = 0.5
for the normal distribution with mean 6 and variance 1.
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Figure 2: Comparison of ESS curves under the SPRT, the 2-SPRT, and the DGLRT for Case 2: 8y = 0.5 and
61 = 2 for the exponential distribution with mean 1/6.
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Table 2: The RMI for the SPRT, 2-SPRT, and DGLRT under Cases 1-3.

Case The SPRT The 2-SPRT The DGLRT
1 0.1194 0.0402 0.0103
2 0.1148 0.0263 0.0135
3 0.0370 0.0105 0.0059
10

Expected sample size

Figure 3: Comparison of ESS curves under the SPRT, the 2-SPRT, and the DGLRT for Case 3: 6y = 0 and
6;1 =1 for the nonlinear time series (2.2).

To illustrate the DGLRT, we apply it to a real manufacturing data (cf. Chou et al. [23]).
A customer specifies an average breaking strength of a strapping tape as 200 psi, and the
standard deviation is 12 psi. The data are the breaking strength of different strapping tapes,
so the random errors mainly stem from the measurement errors. Thus, the observations can
be assumed to be independent. The Shapiro and Wilk [24] test shows that the data are taken
from a normal distribution. Consider the test problem (1.1) with 6 = 200 and 6; = 212 and
standardize the observations by using a transformation X; — (X;-206)/12,i=1,2,.... Then
the resulting test problem is equivalent to Hy : 6 < —0.5 versus H; : 6 > 0.5. Under a =
p = 0.01, the corresponding stopping boundaries for the DGLRT are (75.7,75.7). Based on the
first 20 real observations, we compute the test statistics of the DGLRT, which are displayed in
Table 3. In Table3, standardized X; indicates (X; —~206) /12. Table3 shows that
maxi<jc<k Ri(6;,01) increases in i rapidly, while maxi<j<x R;(0;,6p) keeps constant for i = 1,2,
...,20 under the real data. Since maxi<j< Ri(éj, 0,) crosses its stopping boundary at the 11th

observation, we should accept the null hypothesis according to the terminal decision rule
(2.4).
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Table 3: Implementation of the DGLRT with the first 20 observations of breaking strength of a strapping
tape.

Standardized The DGLRT
i Xi Xi maxlSjSkRi(Gj, 90) maxlSjSkRi(Gj, 91)
1 191 -1.250 1 3.490
2 193 -1.083 1 10.309
3 204 -0.167 1 12.182
4 215 0.750 1 5.755
5 182 -2.000 1 42.521
6 223 1.417 1 10.309
7 194 -1.000 1 28.022
8 202 -0.333 1 39.095
9 214 0.667 1 20.065
10 210 0.333 1 14.382
11 186 -1.667 1 76.172
12 211 0.417 1 50.199
13 202 -0.333 1 70.035
14 201 -0.417 1 106.272
15 191 -1.250 1 370.925
16 193 -1.083 1 1095.537
17 196 -0.833 1 2519.964
18 189 -1.417 1 10394.166
19 194 -1.000 1 28254.274
20 209 0.250 1 22004.450

4. Concluding Remarks

In this paper, we have proposed the DGLRT test in cases where the conditional density func-
tion has an explicit form. It has been shown that the properties of the DGLRT can guarantee
bounding two error probabilities. To make our method be more applicable, we further discuss
the selection of the parameter k and the searching algorithm for its stopping boundaries.
From our numerical results, we conclude that the DGLRT has several merits: (1) in contrast
to the SPRT, the DGLRT has much smaller ESS for 0 in the middle of the parameter range and
nearly has the same performance for 6 outside the interval (6, 61). It is not surprising that the
2-SPRT performs the best in minimizing the maximum ESS because it is designed to be opti-
mal in the minimax sense. However, the relative difference of the maximum ESS between the
DGLRT and the 2-SPRT is minor. Moreover, for 0 outside (6, 01), the ESSs of the DGLRT are
much smaller than those of the 2-SPRT. That is to say, the DGLRT controls the maximum ESS
and the ESSs under two hypotheses; (2) under the RMI criteria, the DGLRT performs more
efficiently than the SPRT and the 2-SPRT over [6), 61]; (3) its implementation is very simple.

While our focus in this paper is on methodological development, there are still some
related questions unanswered yet. For instance, at this moment, we do not know how to
determine the critical stopping boundaries for the DGLRT in an analytical way instead of the
Monte Carlo method. Besides, our method controls the ESS in pointwise, so it can be used to
construct control chart for detecting the small shifts. These questions will be addressed in our
future research.
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Appendix
Proof of Proposition 2.2. Let

T, = inf{n >1, maxR, (éi, 90>

1<i<k

AV
>
——

(A1)

v

T, = inf{n >1, maxR, <é,-, 61>

1<i<k

B}.
So,

a' (6, A, B) = Pplaccept H} = PQ{T < oo,{n_a;:RT<§,~, 90> > A}
<i<
- P@{:r1 <T,T< oo,maxRT(é,-,eo) > A}
1<i<k
1 -
< Py{T; < 0} < ’[ —max Rr, <95, Qo)dpe (A2)

{Ty<oo} 1<i<k

1

<24 J‘{Tl«n} Rr, <§i/ 90>d1’9

Mw

1

1]
_

IN
i

The last inequality follows from (2.6). Till now, we prove that the result a’(6, A, B) < k/A for
all 0 € ©y. The other result can also be proven in a similar way. O

Proof of Proposition 2.4. Since we insert k (>3) points in [6y,0:], we can find a point 6,
which belongs to (6y,6;). Thus, there exists a ¢ > 0 such that Ep[log{f(xi|x'"};60.)} -
log{ f (xi|x"1;60)}] > e. It implies that Eg[R,(62,00)] — oo for 6 > 6,. So,

lim Pe{{nmlg Rn<§i, 90) > A} > lim Po{Rn(62,00) > A} = 1. (A.3)
n— oo <i< n— o

Thus, we have the result that Po{T < oo} = 1 for all 6 > 6. In a similar way, we can
obtain Py{T < oo} =1 for all 0 < 6,. Combining the two results, we complete this proof. [
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This paper deals with the analysis of a third-order tensor composed of a fourth-order output
cumulants used for blind identification of a second-order Volterra-Hammerstein series. It is
demonstrated that this nonlinear identification problem can be converted in a multivariable system
with multiequations having the form of Ax + By = c. The system may be solved using several
methods. Simulation results with the Iterative Alternating Least Squares (IALS) algorithm provide
good performances for different signal-to-noise ratio (SNR) levels. Convergence issues using the
reversibility analysis of matrices A and B are addressed. Comparison results with other existing
algorithms are carried out to show the efficiency of the proposed algorithm.

1. Introduction

Nonlinear system modeling based on real-world input/output measurements is so far
used in many applications. The appropriate model and the determination of corresponding
parameters using the input/output data are owned to apply a suitable and efficient
identification method [1-7].

Hammerstein models are special classes of second-order Volterra systems where
the second-order homogenous Volterra kernel is diagonal [8]. These systems have been
successfully used to model nonlinear systems in a number of practical applications in several
areas such as chemical process, biological process, signal processing, and communications [9-
12], where, for example, in digital communication systems, the communication channels are
usually impaired by a nonlinear intersymbol interference (ISI). Channel identification allows
compensating the ISI effects at the receivers.

In [13], a penalty transformation method is developed. Indeed a penalty function is
formed by equations relating the unknown parameters of the model with the autocorrelations
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of the signal. This function is then included in the cost function yielding to an augmented
Lagrangian function. It has been demonstrated that this approach gives good identification
results for a nonlinear systems. However, this approach is still sensitive to additive Gaussian
noise because the 2nd-order moment is used as a constraint. Authors, in [7], overcame this
sensitivity by using 4th-order cumulants as a constraint instead of 2nd-order moments in
order to smooth out the additive Gaussian noise. But the proposed approach which is based
on a simplex-genetic algorithm becomes so long and computationally complex.

The main drawback of identification with Volterra series lies on the parametric
complexity and the need to estimate a very big number of parameters. In many cases, Volterra
series identification problem may be well simplified using the tensor formulation [10-12, 14].

Authors, in [10], used a parallel factor (PARAFAC) decomposition of the kernels to
derive Volterra-PARAFAC models yielding an important parametric complexity reduction
for Volterra kernels of order higher than two. They proved that these models are equivalent
to a set of parallel Wiener models. Consequently, they proposed three adaptive algorithms
for identifying these proposed Volterra-PARAFAC models for complex-valued input/output
signals, namely, the extended complex Kalman filter, the complex least mean square (CLMS)
algorithm, and the normalized CLMS algorithm.

In this paper, the algorithm derived in [14] is extended to be applied to blind
identification of a general second-order Volterra-Hammerstein system. The main idea is to
develop a general expression for each direction slices of a cubic tensor and then express
the tensor slices in an unfolded representation. The three-dimensional tensor elements
are formed by the fourth-order output cumulants. This yields to an Iterative Alternating
Least Square (IALS) algorithm which has the benefit over the original Volterra filters
in terms of implementation and complexity reduction. A convergence analysis based on
matrices reversibility study is given showing that the proposed IALS algorithm converges
to optimal solutions in the least mean squares sense. Furthermore, some simulation results
and comparisons with different existing algorithms are provided.

The present work is organized as follows; in Section 2, a brief study of the three-
dimensional tensor is presented. In Section 3, the model under study and the related output
cumulants are then proposed, whereas, in Section 4 the decomposition analysis of the
cumulant tensor is developed. In Sections 5 to 8, we give, respectively, the proposed blind
identification algorithm, the convergence study, some simulation results, and at the end some
main conclusions are drawn.

2. Three-Dimensional Tensor and Different Slice Expressions

(CMxMxM

A three-dimensional tensor C € can be expressed by

Shul M) M) S (M)
C=3>>Cike;  oe; " oe”, (2.1)
i=1 j=1k=1

where Cjjx is the tensor value in the position (i, j, k) of the cube with dimension M, e;,M)

denotes the pth canonical basis vector with dimension M, and the symbol o stands for the
outer product (Figure 1).
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Figure 1: Cubic tensor representation.

A cubic tensor can be always sliced along three possible directions (horizontal, vertical,
and frontal) as depicted in Figure 2. This yields, in each case, to M matrices of M x M
dimensions.

The expression of the ith slice in the horizontal direction is given by

e (M) (M) g Md (M) (M)T
Ci.- = E E Ci]-ke]. oek = E E C,-]-ke]. ek . (2.2)
j=1k=1 =1k=1

In the same manner, the other matrix expressions along with the vertical and frontal
directions are expressed, respectively, by

& (M) (M)T Wpd (M) _(M)T
Cejo = ZZCiikei e, Coek = ZZCiikei ej . (2.3)
i=1 k=1 i=1 j=1

It is important to express the tensor slices in an unfolded representation, obtained by
stacking up the 2D matrices. Hence, three unfolded representations of C are obtained. For the
horizontal, the vertical, and the frontal directions, we get, respectively,

C1_. Cil. C..l
Co. Ca. C.

Cpy = ) ; Cpy = ) ; Cpz = ) . (2.4)
Cwm. Cm. C.m

We note that each matrix Cpp : p = 1,2,3 is an (M x M, M) one.
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(c) frontal slices

Figure 2: Different direction slices of a cubic tensor.

3. Nonlinear System Model and Output Cumulants Analysis

We focus on the identification of a second-order Volterra-Hammerstein model with finite
memory as it is given in [14]:

M M
y(n) = Yiku(n-k) + Yo -k); b)) =1 h©) =1, k(M)#0,  (3.1)
k=0 k=0

where u(n) is the input of the system, assumed to be a stationary zero mean Gaussian white
random process with E(u?(n)) = y,. M stands for the model order.
The Hammerstein coefficients vectors hl and h2 are defined by

hp = [1,(0), h,(1),..., h,(M)]"; p=1;2. (3.2)

As we evoked in the Introduction, identification algorithms based on the computation
of 2nd-order output cumulants are sensitive to additive Gaussian noise because 2nd-order
cumulants of this latter are in general different to zero. Since the 4th-order cumulants of
additive Gaussian noise is null, it will be interesting to use the 4th-order output cumulants
to derive identification algorithms. But this will introduce another problem which is the
computation complexity. In this paper, we will overcome this shortcoming by using a tensor
analysis.
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To determine the kernels of this model, we will generate the fourth-order output
cumulants. For this purpose, we need to use the standard properties of cumulants and the
Leonov-Shiryaev formula for manipulating products of random variables.

The fourth-order output cumulant is given by [15]:

cay(ir iz, i3) = cum[y(n +i1), y(n +iz), y(n + iz), y (n)]
= 8y3{¢o(i1, iz, i3,0) + ¢o (i1, i3, 12, 0)

+ ¢po(iz,13,11,0) + ¢o(i1, 0,12, 13)

(3.3)
+¢o(i2, 0,11, 13) + Po(i3, 0,11, 12) }
M
+ 48}’;21’12(1 + ll)hz(l + lz)hz(l + i3)h2(l),
1=0
where
M
(,bO(il/iZ/ 13, 14) = Zhl (l + il)hl (l + lz)hz(l + l3)h2(l + 14) (34)

1=0

It is easy to verify that ¢y, (i1, i2,13) = 0 for all |i1], iz, |i3| > M.

All the nonzero terms of cy,(i1,12,13) are obtained for (i, iy,i3) € [-M, M]3. Such a
choice allows us to construct a maximal redundant information, in which the fourth-order
cumulants are taken for time lags i1, i, and i3 within the range [-M, M].

In the sequel we shall present an analysis of a 3rd-order tensor composed of the 4th-
order output cumulants.

4. Formulation and Analysis of a Cumulant Cubic Tensor

Let us define the three-dimensional tensor C¥) € C@M+Dx@M+1)x2M+1) iy which the element
in position (i, j, k) corresponds to c4 (i1, 12,i3), withi =iy + M+1;j =i + M+ 1, k =i3+ M +1.
Asiy, iy, iz € [-M, M], we get i, j, k € [1,2M +1]. Thus,

Cijk=cay(i-M-1,j-M-1,k-M-1)
=813 {o(i-M—1,j— M -1,k - M—1,0)
+¢o(i-M-1,k-M-1,j—-M-1,0)
+¢o(j-M-1,k-M-1,i-M-1,0)
+¢o(i-M-1,0,j-M-1,k-M-1)
+¢o(j-M-1,0i-M-1,k-M-1)
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+o(k-M=1,0,i-M-1,j - M-1)}

M
+48y; > ho(l+i-M—1)hy(1+j—-M-1)
1=0

x ho(1+k — M = 1)hy(l),

(4.1)
¢o(:,-,, ) is given by (3.4). It follows that
M
Cijk = 8y23{2h1(l +i—-M-1Dh(I+j-M-1)hy(l+k-M-1)ha(l)
1=0
M
+ 3l +i-M-1h(I+k-M-1)hy(I+j-M-1)hy()
1=0
M
+ D m(l+j-M=-1)h(l+k-M-1hy(l+i-M-1)hy(])
1=0
M
+ D (l+i-M-1)h(Dhy(I+j-M-1)h(l+k-M-1) (4.2)
1=0

M
+ D (l+j - M=)k (Dhy(I+i-M-1)hy(l+k-M-1)
1=0

+§h1(l+k—M—1)h1(l)h2(l+i—M—1)h2(l+j—M—1)}
1=0

M
4873 Y (I +i = M= D)hy(1+j — M~ D ho(I+ k- M = 1) (D).
1=0

Then, expression of the tensor C will be given by

C=8 > > > Adm+i-M-1h(l+j—-M-1)hy(I+k-M-1)hy(l)

2M+12M+12M+1 { M
i=1  j=1 k=1 LI=0

M
+ >l +i-M-1Dh(+k-M-1)hy(I1+j—-M-1)hy()
1=0

M
+ S (I +j - M=)+ k=M - 1)h(+i~ M~ 1)ha(l)
1=0

M
+ S +i-M-Dh(ho(l+j-M-1)hy(l+k-M-1)
1=0
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M
+ D (l+j-M=-1)h(Dhy(I+i-M-1)hy(l+k - M-1)
1=0

+§h1(l+k—M—1)h1(l)h2(l+i—M—1)h2(l+j—M—l)}
1=0

eF2M+1) ° e<2M+1) (2M+1)

x e; oe; + 48Y£1

2M+12M+12M+1 M
x D> D ha(l+i-M=1)-hy(l+j—-M-1)hy(I+k-M-1)hy(])

i=1  j=1 k=1 I=0

@M+1) _ @M+1) _ _(2M+1) (4.3)
x e; oe; oe; )

The mathematical development of the expression (4.3) yields to

M M
C=8y {th(l)hl.l o hly o h2u + D hy(l)hle 0 h24 0 bl
1=0 1=0

M M
+ > ha(l)h2e 0 hly 0 ke + D hy(I)hle 0 h24 0 h24
1=0 =0

(4.4)
M M
+Zh1 (l)h24; 0 hle 0 W24 + Zhl ()h24 0 h24 © hl.l}
1=0 1=0
M
+ 4873 S ha(1)h2e) 0 h24y 0 W24y,
1=0
where
2M+1
hpa= Y hy(l+m=-M=Dex""", p=1,2. (4.5)
m=1

2M+1)x

This notation leads to define two channel matrices Hy; H, € C( (M+1) 35 follows:

/0 0 ()

0 hy(0) - hy(M—1)
H, (k) =[hpe,hper,... hpen] = | hp(0)  hy(1) - k(M) |, (46)
hy(M =1) hy(M) - 0
hy (M) 0 .- 0o/

with p = 1,2, and J(:) is the operator that builds a special Hankel matrix from the vector
argument as shown above.
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Let us compute now the different slices of the proposed tensor.

4.1. Horizontal Slices Expressions

From (2.2) and (4.3), we get

M
Cies =875 {th(l)hl(l +i- M —1)hl,h2],
=0

M
+ D o (hy(1+i— M - 1)h24h1]]
1=0

M
+ > h(Dhy(l+i— M —1)hlah1],
1=0

M
+ > hi(Dhy(I+i— M —1)h24h2]; (4.7)
1=0

M
+ D (Dhy(I+i— M - 1)h14h2],
1=0

M
+Zh1(1)h2(l +i-M- 1)h2.lh1fl}
1=0

M
+48y5 > ha(Yho (I +i — M - 1)h2h2]),
1=0

which can be written as

Cian = 813 { Hudiag,(Fh)X] + Sodiag, (Hh) Hi
+ Hydiag, (%) H] + Hodiag, (1) H;
(4.8)
+3diag, (Hy) HY + H2diagi(H2)21T}
+ 48y, Hodiag, (%) H;,
where Xy = H; diag(hy); 2, = H, diag(hy); diag, (-) is the diagonal matrix formed by the nth

line of its argument.

It can easily be demonstrated that

Cmoo = Como = Coom = Cm (49)
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It follows that

C = 8y§{H1diagm(H1)z§ + Spdiag, (Hy)HT

+ Hydiag, (%) HY + Hydiag,, (21)H}

(4.10)
+3ydiag, (H,)HI + sziagm(Hz)z{}
+ 48y, Hodiag, (S,)Ha,
withm=1,...,2M +1.
The expression of the unfolded tensor representation is given by
Cl f Hldiagl (Hl)Zg A
C2 Hldiagz (Hl)Zg
C[u] = = 8}’; 9 + 4
Comn [\ \Hidiag, ., (H1)Z; J
the 6th terms with r;gpect to Cp, in (4.10) (411)
sziagl (Zz)Hg
sziagz (ZQ)H;
+48y; 4
( \Hadiag,,;(%2)H,

To develop this expression, we need the following property.

Property 1. Let A be the matrix with dimensions (M, N) and B the matrix with dimensions
(M',N), then

Adiag, (B)
Adiag, (B)
=Bo A, (4.12)

Adiag,, (B)

where ¢ stands for the Khatri-Rao product.



10 Mathematical Problems in Engineering

It becomes that

(Hi o Hy) diag(h,)HY + (Hy ¢ H,) diag(ho)H{

Cuuy = SYS +(H; ¢ Hy) diag(hz)HlT + (Hy o Hp) diag(hl)HzT

+(H, o Hy) diag(hy) HT + (H, o Hy) diag(h) HT (4.13)

+ 48y§((H2 o Hy) diag(hy) HY )

5. Blind Identification System with Cumulant Tensor

To estimate the Volterra-Hammerstein kernels and to avoid the computation of H, : p =
1,2, we will use the following Khatri-Rao property to propose an Iterative Alternating Least
Square (IALS) procedure.

Property 2. If matrices A € C™" and B € C™ and vector d € C" are such that X =
Adiag(d)B, then it holds that vec(X) = (BT ¢ A)d, where vec(:) stands for the vectorizing
operator.

Applying this property to (4.13), it is straightforward to write

(Hz < H1 <o H1)h2 + (H1 < Hl i Hz)hz
vec(Cpuy) =8y; 4 +(Hi o Hy o Hy)hy + (Ha o Hy 0 Hy)ly
+(H2 o Hy o Hl)hl + (H1 o Hjyo Hz)hl

+ 48y ((Hy o Hy o Hy)hy) (5.1)
= 8Y§{(H2<>H1 <>H2) + (H20H20H1) + (H10H2<>H2)}h1

812 ((Hy o Hy o Hy) + (Hy o Hy o Hy) + (Hy o Hy o Hy)) ,
+ .
+48y3((Hy o Hy o Hy)) ?

Let A and B be

A =8y;{(Hz o Hi o Hy) + (Hy o Hy o H1) + (H1 o Hy 0 Hp)},

(5.2)
B = 8Y23((H2 < H1 < Hl) + (H1 < H1 < Hz) + (H1 < H2 < Hl)) + 48Y§((H2 < H2 < Hz))
The problem of the blind nonlinear identification will be expressed as
Ah1 + Bhy = vec(Cy). (5.3)

This system can be solved using several methods. We propose to resolve it using the
Iterative Alternating Least Square algorithm (IALS).
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6. Cost Functions and Iterative Alternating Least Square Algorithm

To apply the IALS algorithm, we suppose alternatively that Ah; or Bh; is a constant vector.
Then, we get two cost functions to be minimized. Assuming that the vector Bh, is constant,
the first cost function will be expressed by

E(hy) = [|(vec(Cu) - Bhy) — Ay ||*. (6.1)
For the second cost function, we assume that Ah; is constant; thus

Ex(hy) = ||(vec(Cu) - Ahy) - Bhy ™. (6.2)

The application of the least mean squares algorithm to these two functions leads to the
following solutions:

hy = A*(vec(Cy) - Bhy),
6.3)
hy = B*(vec(Cy) — Ahy),

where the subscript # denotes the Moore-Penrose pseudoinverse of the corresponding matrix.
Finally, the different steps of the proposed IALS algorithm are summarized in
Algorithm 1.
The notation x stands for the estimates of the parameter x.

7. Convergence Analysis

Equation (6.3) shows that the ALS algorithm converges to optimal solutions if and only if the
Moore-Penroze pseudoinverse matrices A* and B* exist, which implies that matrices A and B
must be full rank [14, 16]. To do this, we start by affirming that, due to the Hankel structure
and the assumption that h;(M) #0 (3.1), each of the matrices H; and H, is full rank. Then

rank(Hy) = rank(H,) = M + 1. (7.1)

Let us now find out the rank of matrices H; o H; ¢ Hy; i,j,k € {1,2} obtained from
Khatri-Rao product (5.1). We will make use of the following definition and property defining
the k-rank of a matrix and the rank of a Khatri-Rao product of two matrices [17].

Definition 7.1. The rank of a matrix A € CE*F' (denoted by k,) is equal to k if and only if every
k columns of A are linearly independent. Note that k4 < min(E, F), for all A.

This means that the rank of the matrix A is the largest integer k for which every set
containing k columns of A is independent.

Property 3. Consider the Khatri-Rao product A o B, where A is E x F and B is G x F. If neither
A nor B contains a zero column (and hence k4 > 1, kg > 1), then ks, > min(ks + kg — 1, F).
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Initialize h; and h; as random variables (estimates fzio) ; flgo) ).
Forn>1,
(i) build Hankel matrices using (4.5), for p = 1,2,
H" = ®”),  H"=Mm"),
(ii) compute matrices estimate A and B as
AW = 83 ((Fy o Fy o F) + (Fa o Fy o Hy) + (Fy o Fp 0 Fin)}
B™ = {8y,% (Ha o Hy o Hi) + (Hi o Hy ¢ Hy) +(Hy o Hy o Hy)) + 48y2((Ha o Hy o Hy))}
(iii) minimize cost functions (6.1) and (6.2) so that
R = AW# (vee(Cy) - B®WRYY),
Ry = B®W# (vec(Cy) - A™R™),
(iv) reiterate until parametric error convergence
[ vec((h"™™ ") —(b" WD _

” VeC(]jlYH—l) ”;l;nﬂ))”

(m)

Algorithm 1: Different steps of the new blind identification algorithm-based cumulant tensor analysis.

It follows that
kior; > min(2M +1, M +1), Vi, je (1,2}, (7.2)
which is equivalent to
kiorr; > M + 1. (7.3)

Due to the definition of the Khatri-Rao product and the structure of the Hankel
matrices H;; i € {1,2}, we conclude that

kion, = M +1 = rank(H; ¢ H;). (7.4)
Consequently,
k(H,-on)on =M+1 :rank(HioH]-on), Vl,],k € {1,2}, (75)

which means that each matrix H; ¢ H;j o Hy is full rank whatever the values taken by i and j
in the set {1,2}.

Let us now find out the rank of matrices A and B. For this purpose, we will study
the structure of the matrix H; o H; ¢ Hi. Recall that H; is a (2M + 1, M + 1) matrix. Let
©;=[0 0 --- 0]" be the zero column vector of dimension 2M +1);i=1,..., M.
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Then, for the matrix H; o H; ¢ Hy, we will have the following form:

/@1 O O] XM\
©, : Xm-1 ©4
HieHjoHi=| : @, ... © ©, | (7.6)
O Xi

\Xo Oum Onm-1 @M/

where X; stands for the column vector of dimension (2M + 1)*(M + 1) which is constituted
by products of the kernels model arising from computation of the Khatri-Rao matrix product.
We have seen that H; ¢ H; o Hy is full rank. The sum of different matrices H; ¢ H; o Hy has
the same form of H; ¢ H; o Hy whatever the system order and the values taken by i, j and k.
Consequently, matrices A and B are full rank and then their pseudoinverse exist. We conclude
that the IALS converges to an optimal solution in least mean squares sense.

8. Simulation Results

In this section, simulation results will be given to illustrate the performance of the proposed
algorithm. Two identification Volterra-Hammerstein systems are considered:
(z(n) = u(n) - 0.25u(n - 1) + 0.9u(n - 2)
System 1:4 +u?(n) +0.5u*(n - 1) - 0.35u%(n - 2),
Ly (n) = z(n) +e(n),
(8.1)
z(n) = u(n) - 04u(n —1) + 0.5u(n - 2) + 0.95u(n - 3)
System 2:4 +u?(n) +02u?(n - 1) — 0.7u?(n - 2) + 0.6u*(n - 3),

Ly(n) = z(n) +e(n).

The input sequence u(n) is assumed to be stationary, zero mean, white Gaussian noise
with variance y, = 1. The noise signal e(n) is also assumed to be white Gaussian sequence
and independent of the input. The parameter estimation was performed for two different
signal-to-noise ratio (SNR) levels: 20 dB and 3 dB.

The SNR is computed with the following expression:

- E(z*(n))

SNR - W.

(8.2)

Fourth-order cumulants were estimated from different lengths of output sequences
(N = 4096 and N = 16384) assuming perfect knowledge of the system model. To reduce
the realization dependency, parameters were averaged over 500 Monte-Carlo runs. For each
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Figure 3: Estimates of the parameters of System 1 with the IALS algorithm for N = 4096 and SNR = 3dB.

simulation, we give the curves representing the variation of the estimates along with the
Monte-Carlo runs, and we resume exclusive results in different tables.

System 1

Figures 3 and 4 show the estimates of the different kernels of the proposed model, with the
IALS algorithm, for N = 4096 and for different SNR levels (3 dB and 20 dB).

The mean and the standard deviation of the estimated kernels against the true ones
are shown in Table 1.

Likewise, Figures 5 and 6 show the estimates of the different kernels of System 1 for
N = 16384 and for SNR levels equal to 3dB and 20 dB, while, in Table 2, the mean and the
standard deviation of the estimated kernels against the true ones are shown.

From these results, we observe that the proposed IALS algorithm performs well
generating estimates for a large variation of the SNR (from 20dB to 3dB). We also note
that the standard deviation is relatively large and decreases with the number of the system
observations.

System 2

Figures 7 and 8 show the estimates of the different kernels of the second proposed model for
N = 4096 and for different SNR (20 dB and 3 dB).

The mean and the standard deviation of the estimated kernels against the true ones
are shown in Table 3.

Figures 9 and 10 show the estimates of the different kernels of System 2 for N = 16384
and for different SNR (20 dB and 3 dB), while, in Table 4, the mean and the standard deviation
of the estimated kernels against the true ones are shown. The mean and the standard
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Figure 4: Estimates of the parameters of System 1 with the IALS algorithm for N = 4096 and SNR = 20dB.

Table 1: True and estimated values of the kernels of System 1 for N = 4096 (500 Monte-Carlo runs).

True parameters 3dB 20dB

Mean St. Dev. Mean St. Dev.
-0.25 -0.2401 0.3242 -0.2456 0.1778
0.9 0.9985 0.3773 0.8837 0.2143
0.5 0.5128 0.0945 0.4815 0.0589
-0.35 -0.3411 0.1046 -0.3521 0.0655

Table 2: True and estimated values of the kernels of System 2 for N = 16384 (500 Monte-Carlo runs).

True parameters 3dB 20dB

Mean St. Dev. Mean St. Dev.
-0.25 —0.2464 0.2520 —0.2589 0.1576
0.9 0.9238 0.2947 0.8884 0.1976
0.5 0.4900 0.0679 0.5028 0.0482
-0.35 —-0.3665 0.0753 0.3478 0.0508

deviation of the estimated kernels against the true ones, for the second system, are shown
in Table 4.

From these results, we note also that the proposed algorithm provides good estimates
for the proposed system. The number of observations N affects the range of variation of the
standard deviation values. Indeed, for important values of N, this range becomes so small.
The method provides good estimates even for low levels of SNR. Furthermore, we note that
the larger the Monte-Carlo runs number, the smaller the standard deviations are.
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Figure 5: Estimates of the parameters of System 1 with the IALS algorithm for N = 16384 and SNR = 3 dB.

Table 3: True and estimated values of the kernels of System 2 for N = 4096 (500 Monte-Carlo runs).

True parameters 3dB 20dB

Mean St. Dev. Mean St. Dev.
-0.4 -0.4512 0.6550 -0.4293 0.1594
0.5 0.5074 0.7632 0.5173 0.1968
0.95 1.1556 0.5329 0.9390 0.1545
0.2 0.2358 0.2525 0.2157 0.0958
-0.7 -0.6794 0.2855 -0.6814 0.1260
0.6 0.5872 0.2268 0.5962 0.0986

8.1. Comparison with Existing Methods

The performance of the previous algorithm was compared with two works: the algorithm
proposed in [9] (will be noted as BIL to blind identification with linearization) and the
Lagrange Programming Neural Network (LPNN) proposed in [13].

(i) In [14], the problem of blind identification was converted into a linear multivariable
form using Kronecker product of the output cumulants. This can be described by
the following equations:

Cy(a ™) = b (Tw) b (@), 83)

where C]l;(ﬂ, Ty, ..., Tk-1) denotes the output cumulants sequence of order k, i, is
the intensity (zero lag cumulant) of order k of the vector W which is formed in its
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Figure 7: Estimates of the parameters of System 2 with the IALS algorithm for N = 4096 and SNR = 3dB.

turn by the different powers of input, and b is the kernel vector.
For 7 = 0, this becomes

6;(61,0) =b(0) <fkw>pprT(Q) = <fkw>pprT(q). (8.4)
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Figure 9: Estimates of the parameters of System 2 with the IALS algorithm for N = 16384 and SNR = 3 dB.

Different important scenarios were discussed and successfully resolved. Here, we
are interested in the case of Gaussian input when the input statistics are known.
Despite the efficiency of the proposed method, the resulting algorithms are in
general cumbersome especially for the high series order (As confirmed by authors).
For more details, see [14].
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Figure 10: Estimates of the parameters of System 2 with the IALS algorithm for N = 16384 and SNR =

20dB.

Table 4: True and estimated values of the kernels of System 2 for N = 16384 (500 Monte-Carlo runs).

True parameters 3dB 20dB

Mean St. Dev. Mean St. Dev.
-04 -0.4378 0.3824 -0.4121 0.1258
0.5 0.5116 0.5346 0.5122 0.1432
0.95 0.9450 0.4614 0.9507 0.1073
0.2 0.1847 0.1120 0.2143 0.0750
-0.7 —-0.6877 0.1796 —-0.6941 0.0772
0.6 0.6014 0.1323 0.5983 0.0604

(ii) In their work [13], authors tried to determine the different Volterra kernels

and the variance of the input from the autocorrelation estimates p[k] and the
third-order moments estimates p[k,[] of the system output, using the Lagrange
Programming Neural Network (LPNN). As the LPNN is essentially designed
for general nonlinear programming, they expressed the identification problem as
follows:

Minimize: L(f) = ZZ(# [i, j] - M[i,j, f] )2/
5 (8.5)
Subject to:  p[i] =R[i,j],

where R[i, j] is the autocorrelation function of the real process y[n] and M[i, j] is its
third order moment sequence. f is the vector formed by the unknown parameters
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of the Volterra model and the unknown variance of the driving noise.
So the Lagrangian function will be written as

L(f,\) =L(f)+ZAi(p[i]—R[i,f]). (8.6)

To improve the convergence and the precision of the algorithm, authors extended the
preceding function by defining the Augmented Lagrangian Function such as

L(f,A) = L(f) + T hi(plil - R[i, £]) + B (plil - R, 1), 57)

where {fi} is a penalty parameter sequence satisfying 0 < fx < Pis+1 for all k, pr — oo. So
the back-propagation algorithm can be established using the Lagrange multiplier.

The performance of the new proposed algorithm was compared with these two
algorithms. Each of these algorithms was used to identify the two models presented above
(8.1), for the case of Gaussian excitation, N = 16384 samples, and for the tow proposed SNR
levels 3 dB and 20 dB.

Figures 11 and 12 show a comparison of the standard deviations given by each
algorithm. We note that these results may vary considerably depending on the number of the
output observations. These results show that the new proposed algorithm performs well. For
a small number of unknown parameters, we note that all algorithms give in general the same
STD values and these values decrease by increasing the SNR values. We note furthermore
that BIL algorithm is so complex for programming in comparison with the LPNN and the new
one. For big number of unknown parameters, the BIL algorithm becomes very computational
complex and even the LPNN, while the new algorithm keeps its simplicity and provides good
parameters with very competitive STD values.

9. Conclusion

In this paper, a new approach for blind nonlinear identification problem of a second-order
Hammerstein-Volterra system is developed. Thanks to a matrix analysis of a cubic tensor
composed of the fourth-order output cumulants, the nonlinear identification problem is
reduced to a system having the following general form: Ax + By = c. This system is
solved using the Iterative Alternating Least Square. A convergence analysis shows that
matrices A and B are full rank which means that the IALS algorithm converges to optimal
solutions in the least mean squares sense. Simulation results on two different systems show
good performance of the proposed algorithm. It is noted also that the different values of
the estimates improve with the number of the system observation even for small values
of SNR. Comparison results with two algorithms show that the new proposed algorithm
performs well and especially in the case of great number of unknown parameters. Extending
the proposed algorithm for more input classes and for more general Volterra-Hammerstein
systems remains an open problem, and it is now the subject matter of current works.
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Figure 11: Comparison of the standard deviations (STDs) of the new algorithm against those of the LPNN
and the BIL algorithms: System 1.
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Figure 12: Comparison of the standard deviations (STDs) of the new algorithm against those of the LPNN
and the BIL algorithms: System 2.
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Existing sinogram restoration methods cannot handle noises and nonstationary artifacts simul-
taneously. Although bilateral filter provides an efficient way to preserve image details while
denoising, its performance in sinogram restoration for low-dosed X-ray computed tomography
(LDCT) is unsatisfied. The main reason for this situation is that the range filter of the bilateral filter
measures similarity by sinogram values, which are polluted seriously by noises and nonstationary
artifacts of LDCT. In this paper, we propose a simple method to obtain satisfied restoration results
for sinogram of LDCT. That is, the range filter weighs the similarity by Gaussian smoothed sino-
gram. Since smoothed sinogram can reduce the influence of both noises and nonstationary artifacts
for similarity measurement greatly, our new method can provide more satisfied denoising results
for sinogram restoration of LDCT. Experimental results show that our method has good visual
quality and can preserve anatomy details in sinogram restoration even in both noises and non-
stationary artifacts.

1. Introduction

Radiation exposure and associated risk of cancer for patients receiving CT examination
have been an increasing concern in recent years. Thus, minimizing the radiation exposure
to patients has been one of the major efforts in modern clinical X-ray CT radiology [1-8].
However, the presentation of strong noises and non-stationary artifacts degrades the quality
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of low-dose CT images dramatically and decreases the accuracy of diagnosis dose. Many
strategies have been proposed to reduce the noise, for example, by nonlinear noise filters
[8-19] and statistics-based iterative image reconstructions (SIIRs) [20-28].

The SIIRs utilize the statistical information of the measured data to obtain good
denoising results but are limited for their excessive computational demands for the large CT
image size. Moreover, the mottled noise and non-stationary artifacts in LDCT images cannot
be accurately modeled into one specific distribution, which makes it a difficult task to differ-
entiate between noise/artifact and informative anatomical /pathological features [29].

Although the nonlinear filters show effectiveness in reducing noise both in sinogram
space and image space, they cannot handle the noise-induced streak artifacts. Since existing
methods cannot handle noises and artifacts simultaneously, designing a method to reduce
noise and non-stationary artifacts simultaneously becomes an open problem in sinogram res-
toration of LDCT.

Recently, many new nonlinear filters are presented and show promising denoising
performance on space domain [29-44]. Bilateral filter (BF), which integrates range filter (gray
level) and domain filter (space) together, is a well-known one [35, 36]. However, BF cannot
obtain satisfied results in sinogram restoration of LDCT because of polluted sinogram values
for the range filter. To obtain satisfied denoising results in serious noises, some efforts on
image space are proposed [37-41].

Wong suggests that two parameters, 02 and o2, the variances of Gaussian functions
in domain and range filters, should be modulated according to local phase coherence of the
image pixels [37]. But it blurs edges or leaves uncleaned noises.

Ming and Bahadir improve the performance of BF by multiresolution method [38].
That is, filtering LL subband uses BF while smoothing wavelet subbands uses SURE shrink-
age. It also leads to blur edges while denoising.

van Boomgaard and van de Weijer argue that the main reason for unsatisfied denoising
results is the polluted center pixel of BF [40]. Thus, the satisfied results can be obtained by
replacing polluted center pixel with an estimate of its true gray levels.

Following [40], median bilateral filter (MBF) is proposed in [41]. MBF replaces the
center pixel with the median of a 3 x 3 window. However, only replacing the center pixel also
cannot obtain satisfied denoising results.

Although BF and its improvements can obtain satisfied results in general image de-
noising, all these methods cannot handle sinogram restoration with noises and non-stationary
artifacts simultaneously. We think that the key to handle noises and artifacts simultaneously
is how to reduce the influence of both the noises and artifacts of sinogram of LDCT.

In this paper, we propose a new method to reduce the influence of the noises and
artifacts of sinogram simultaneously, named bilateral filter weighted by Gaussian filtered
sinogram (BFWGES), which carried on BF on Gaussian smoothed sinogram. Note that,
proposed method is different to the method proposed in [40]. The proposed method in [40]
only replaces the gray levels of the center point with the median of a 3 x 3 square centered at
the center point, while our method replaces both the center point and all considering points
with their Gaussian smoothed sinogram values.

Since the smoothed sinogram can reduce the influence of both the noises and artifacts
of sinogram, the weight of the range filter defined on BFWGFS can measure the similarities
more precisely comparing to the original sinogram values in BE. Thus, the proposed method
can obtain satisfied results in noises and non-stationary artifacts simultaneously.

In the reminder of this paper, Section2 will introduce the noise models; then in
Section 3, we will discuss the measurement of similarity and discussed the difference between
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the proposed method and method in [40]. Section 4 describes the denoising framework.
Section 5 is the experimental results and discussion. Section 6 gives conclusions and finally,
the acknowledgment part.

2. Noise Models

Based on repeated phantom experiments, low-mA (or low-dose) CT calibrated projection
data after logarithm transform were found to follow approximately a Gaussian distribution
with an analytical formula between the sample mean and sample variance, that is, the noise
is a signal-dependent Gaussian distribution [19].

In this section, we will introduce signal-independent Gaussian noise (SIGN), Poisson
noise, and signal-dependent Gaussian noise.

2.1. Signal-Independent Gaussian Noise (SIGN)

SIGN is a common noise for the imaging system. Let the original projection data be {x;},
i =1,...,m, where i is the index of the ith bin. The signal has been corrupted by additive
noise {n;},i=1,...,m and one noisy observation

Yi =X +n, (2-1)

where y;, x;, n; are observations for the random variables Y;, X;, and N; where the upper-case
and letters denote the random variables and the lower-cased letters denote the observations
for respective variables. X; is normal N (0, 0')2(), and N; is normal N (0, 012\,) and independent
of the Gaussian random variable X;. Thus, Y; is normal N (0, 0)2( + 012\]).

2.2, Poisson Model and Signal-Dependent Gaussian Model

The photon noise is due to the limited number of photons collected by the detector [30]. For
a given attenuating path in the imaged subject, No(i, «) and N (i, «) denote the incident and
the penetrated photon numbers, respectively. Here, i denotes the index of detector channel or
bin, and « is the index of projection angle. In the presence of noises, the sinogram should be
considered as a random process, and the attenuating path is given by

_ N(i, a)
U )G (22)

where Ny (i, a) is a constant, and N (i, a) is Poisson distribution with mean N.
Thus, we have

N(i,a) = No(i, @) exp(-r7). (2.3)

Both its mean value and variance are N.
Gaussian distributions of ployenergetic systems were assumed based on limited
theorem for high-flux levels, and following many repeated experiments in [19], we have

o (ui) = fiexp (”7) (2.4)
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where ; is the mean, and o? is the variance of the projection data at detector channel or bin
i, y is a scaling parameter, and f; is a parameter adaptive to different detector bins.

The most common conclusion for the relation between Poisson distribution and
Gaussian distribution is that the photon count will obey Gaussian distribution for the case
with large incident intensity and Poisson distribution with feeble intensity [19]. In addition,
in [30], the authors deduce the equivalency between Poisson model and Gaussian model.
Therefore, both theories indicate that these two noises have similar statistical properties and
can be unified into a whole framework.

3. Measure Similarity

The formula of bilateral filter is
1 *® ..
Bi) = o || e, (1) s(wa yi)ds @1
(vij) ) ) -

where (s,t) and (i, j) are two pixels of sinogram. Here, sinogram is the observations of pro-
jection data, that is, the noisy projection data of LDCT. y; and y;; are sinogram values of (s, t)
and (i, j), respectively. k(y;;) is a normalized constant for two weighs and is defined as

k) = [ et n, G sty asat, 62

where c((s,t), (i,j)) and s(ys, yij) are measures of the spatial and range similarity between
the center pixel y;; and its neighbor y.;, respectively. Usually, these two measures are defined
as two Gaussian Kernel functions

c((s,1), (i, 1)) = eV/2UEH-GiI/o0*, (3.3)
s(yat, vij) = "1/ (lyst=vijll/ov)* (3.4)

Since the (i, j) value filtered by BF is the weighted average of nearby points weighted
by product of spatial distance and gray level difference, it was named by bilateral filter (BF)
to distinguish the general filter weighted only by spatial distance.

From (3.1)-(3.4), we can conclude that a pair of pixels ys, yij with both small
spatial distance and small sinogram value difference have high similarity and large-weighed
coefficients. It is plausible in slightly noisy projection data. For sinograms with serious noise
and non-stationary artifacts, it is unreal! That is, polluted sinogram values lead to incorrect
similarity measurement in the range filter of the bilateral filter. Thus, finding a measure of
similarity, which can measure similarity correctly in noise and non-stationary artifacts, is a
key problem in denoising using BF.

3.1. Gaussian Filter

Gaussian filter is defined as

1

G(yij) =
(v ]) ”i}e(—1/2)(Hybf—yull/o)st At

joe]
J J yope /20yl o) g . (3.5)
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Since yst ~ N (uij, 01.2].) fors =-oo,...,c0and t = ~o0, ..., 00, noisy sinogram value Y;; ~
N (uij, O'iz].) and the Gaussian-dependent noise (GWN) N;; ~ N (0, 0'1.2].), the distribution of the
pixel (i, j) filtered by the low-passed filter defined in (3.5) is

1/(-20%
Yij+ e/ ) (Yo + Yijoa + Yo+ Yija + -+ )

14 (43”“"2))2 N <4ez/<—202>>2 o

_2g2 252 27ij
(1+(4el/(2 ))+(4e2/(2 ))+...) (36)

~N| pij,

~N( 1+ <4e(—1>/02>/<1 _ e(—l)/gz> .

(1 + (43(—1)/202>/(1 _ e(—l)/202)>2 ij

Thus,

(el/"z + 3> <el/2"2 - 1>2

G(Yyj) ~N| pij, 20ij (3.7)
(el/o" - 1) <e1/202 + 3)
For example, in image denoising, generally, o is set to 2; thus,
G(Y;j) ~ N(pui;,0.01570%). (3.8)

From the above equation, the variance of the smoothed sinogram value becomes very
small (smaller than original variance 0.0157 times). It means that the Gaussian filter makes
smoothed sinogram value closer to real projection data than the noisy sinogram value. Since
most of non-stationary artifacts in image space are the high-light points in noisy sinogram,
most of non-stationary artifacts can be suppressed by Gaussian filter.

In the same way, the distribution of the median in an s x s window centered at the
pixel (i, j) is

2
. Gij
median(Y;j) ~ N</4i]-, m> (3.9)

Just as the above discussion, if the median filter has similar estimate precision to
Gaussian filter in image denoising, s should at least be 8, which is estimated by 1/1/0.0157 =
Vv63.6943 = 8. However, so large window of median filter will delete some real lines in
sinogram, which will lead to many artifacts in denoising sinogram.

3.2. Similarity Discussion

From the second equation of (3.4), the similarity between the sinogram values of two
pixels (i, j) and (s, t) is defined as a Gaussian function of the difference to their sinogram
values. Thus, large difference has small similarity, while small difference has large similarity.
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Following this conclusion, similarity discussion can be accomplished by discussing the
difference for each pair of pixels of sinogram. In this subsection, we will discuss the dif-
ferences by variances of three denoising schemes for BE.

Assume that Y; and Yj; are iid Gaussian random variables corresponding to a pair of
pixels with the same real gray levels, Yi; ~ N (p;j, 01.2].), Yot ~ N (pij, O'iz].), and their difference

Yij - Yo ~ N (pij, 202). (3.10)
In the same way, since median(Yj;) ~ N (pj, oizj /s x s), we can conclude that

. 1+s% ,
median(Yj;) - Yo ~ N pij, — % ) (3.11)

Since G(Y;) ~ N (i, (€7 +3)(eV/> = 1)) /(€7 = 1)(e"/**" +3)")o?), thus

G Gl P J

O -6 =N w2

Just as discussed in the last subsection, if we set o to 2,
G(Y;j) = G(Y) ~ N (puis,0.03140% ). (3.13)
It is obvious that the variance of the first scheme is the biggest in all three schemes,

while the variance of the last scheme is the smallest in all three schemes. Since s > 3, we have

s2+1

g2

2> >1>0.0314. (3.14)

The first scheme corresponds to the bilateral, which measures difference by the
sinogram values of (i,j) and (s,t) directly. The second scheme corresponds to the mean
bilateral proposed in [41] whose similarity is measured between the median of the center
pixel (i, j) and the sinogram value of its neighbor (s, t). The third scheme corresponds to the
scheme of measuring the difference on the Gaussian filtered sinogram value.

It is well-known that smallest variance corresponds to the best estimate of real
projection data value. According to this rule, our proposed method can provide the best
estimate of real projection data value. Thus, BEFWGFS can reduce both the influence of noises
and non-stationary artifacts.

4. The Algorithm

Just as the above discussion, satisfied denoising results can be got by weighed range filter on
Gaussian filtered sinogram. The steps of the algorithm are as follows:
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(1) compute the Gaussian filtered sinogram value G(y;;) for all sinogram pixels using
(3.5),

(2) give 04 and o,

(3) for each of pixel,

(i) compute c((s,t), (i, j)) using the first equation of (3.4) and s(G(yst), G(vij))
using

s(G(yst),G(vij)) = e(—1/2><\|c<yst>—c<y,-j>H/or)Z, (4.1)

(ii) compute k(y;;) using
k) = [[ (s, 1))5(G ), Gl ds 42
(iii) compute GB(y;;) using

GBws) = s [ o€, ()G wa) Gl s, 43

(4) repeat step 3 until all sinogram pixels have been proceeded.

5. Experiments and Discussion

The main objective for smoothing L-CT images is to delete the noise and non-stationary
artifacts while to preserve anatomy details for the images. Thus, the image visual quality
can be improved, and the denoised image can help doctors make correct medical diagnosis
more easily.

5.1. Data

Four groups of CT images with different doses were scanned from a 16 multidetector row
CT unit (Somatom Sensation 16; Siemens Medical Solutions) using 120 kVp and 5 mm slice
thickness: a 58-year-old man, two groups of 62-year-old women with different reduced dose,
and a 60-year-old man. Other remaining scanning parameters are gantry rotation time, 0.5
second; detector configuration (number of detector rows section thickness), 16 x 1.5 mm; table
feed per gantry rotation, 24 mm; pitch, 1:1; reconstruction method, filtered back projection
(FBP) algorithm with the soft-tissue convolution kernel “B30f.” Different CT doses were
controlled by using two different fixed tube currents 30 mAs and 150 mAs (60 mA or 300
mAs) for LDCT and standard-dose CT (SDCT) protocols, resp.. The CT dose index volume
(CTDIvol) for LDCT images and SDCT images are in positive linear correlation to the tube
current and is calculated to be approximately ranged between 15.32 mGy and 3.16 mGy [29].
For additional visually illustration, we also put two groups of abdominal CT images of a
same woman with 60 mAs, and two groups of shoulder CT images with low dose 35 mAs
and standard dose 135 mAs (see Figure 2).
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5.2, Compared Methods

Bilateral filter (BF) is introduced at the beginning of Section 3. The main motivation for BF
is that the noisy image should be weighted not only by the position distance (spatial filter)
but also by the difference of sinogram values (range filter) [35]. The parameters of BF are
Gaussian Kernel for spatial filter o, = 1.8, Gaussian Kernel for range filter o, = 20/3, and
iteration time is 3.

Context is a term imported from image coding. The context of a pixel x;; is always
defined as a vector used for describing the relationship between this pixels and other image
pixels. In this paper, in order to suppress the influence of noises, the context is defined as

1 s=i+1 t=j+1

Vi=g 2 2. Y (5.1)

s=i-1 t=j-1

The context filter estimates real sinogram values from the points with similar context value.
In this paper, the threshold value for similar context is 10, that is,

xij and xg are similar points if |yi; — ¥«| < 10,
(5.2)
xjj and x4 are not similar points otherwise,

where y;; is defined on (5.1). Although context filter can provide more samples for real value
estimate, it will produce some artifacts for losing the spatial relationship of sinogram.

Median bilateral filter (MBF) replaces the center pixel with the median of an s x s win-
dow [41]. However, just as analysis in Section 3, only replacing the center pixel also cannot
obtain satisfied denoising results. Here, when s set to 5 has the best performance, o, = 20/3
and o; = 1.8.

Multiresolution bilateral filter (MRBF) filtering LL subband uses BF while smoothing
wavelet subbands uses SURE shrinkage [38]. The wavelet used in the experiment is 1-level
symlets with support 4. The noisy variance Gy is estimated using median of HH band of the
wavelet [45] and o, = 36N and o, = 2. Although authors report that MRBF can obtain good
denoising results, it also leads to blur some important details.

Weighted intensity averaging over large-scale neighborhoods (WIA-LNSs) is a state-of-the-art
method for sinogram reconstruction [29]. The motivation for WIA-LN is that the two pixels
of the same organ or tissue should have surrounding patches with higher similarities than the
two pixels of different organs or tissues. Thus, the real sinogram value of f; can be estimated
as

ﬁ=Z—£ﬂL- (5.3)

7
jENi ZjENi wl]

i =15,
wjj = exp <_—ﬂ|ni| 2 . (5.4)

where
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Here, f; denotes the intensities of the neighboring pixels in the search neighborhood
N centered at pixel index i. The weight of WIA-LN is built by using a similarity criterion
between the two comparing patches n; and n;. This similarity metrics is calculated using
(5.4), in which a denotes the two-dimensional standard deviation of Gaussian kernel. |n;]
is the total pixel number in patch n;.  is a superparameter. In this paper, f is set to be
0.8, and the sizes n; are set to 11 x 11. Although better vision and quantitative performance
are reported, the authors also indicate that WIA-LN cannot handle noise and non-stationary
artifacts simultaneously (see Figure 3(g)).

Proposed method (BFWGFS) replaces all sinogram values used in range filter of BF by the
Gaussian filtered sinogram values. Just as discussed in Section 3, smoothed sinogram values
can reduce the influence of both noise and non-stationary artifacts greatly, and BFWGFS can
provide good visual results and preserve more anatomy details. The parameters are o, =
20/3, o5 = 1.8, iteration number is set to 1, and Gaussian smoothed kernel is set to 1.8.

5.3. Visual Comparison

Three groups of SDCT images, LDCT images, and the processed LDCT images for the clinical
abdominal examinations are shown in Figures 1-3. The parameters for compared methods
have been given in the last subsection. In Figure 1, the original and processed abdominal CT
images of a 58-year-old man are illustrated. Figures 1(a) and 1(b) are one SDCT image and
one LDCT image acquired at tube current time product 150 mAs and 30 mAs, respectively.
Figures 1(c), 1(d), 1(e), 1(f), 1(g), and 1(h) show BEF context, MBF, MRBF, WIA-LN, and
proposed method processed LDCT images, respectively. Figure 2 illustrates the original
and processed abdominal CT images of a 62-year-old woman. Figure 2(a) is one SDCT
image acquired at tube current time product 150 mAs. Figures 2(b) and 2(c) are two LDCT
images acquired at reduced tube current time products 60 mAs and 30 mAs, respectively.
Figures 2(d), 2(e), 2(f), 2(j), 2(k), 2(1), 2(g), 2(h), 2(i), 2(m), 2(n), and 2(o) illustrate the two
groups of processed LDCT images of Figures 2(b) and 2(c) by using compared methods.
Figure 3 illustrates the original and processed images for one shoulder scan of a 60-year-
old man, from which we found that WIA-LN tends to smooth both the streak artifacts and
informative human tissues, while proposed method can reduce the noise and artifacts with
preservation of anatomy details.

Comparing all the original SDCT images and LDCT images in Figures 1-3, we found
that the LDCT images were severely degraded by noise and streak artifacts. In Figures 1(c)—
1(f), just as the discussion in Section 3, there are so many noises left in processed images
using BF, context, MBE, and MRBF. WIA-LN shown in Figure 1(g) also makes some obvious
artifacts, while we can observe better noise/artifacts suppression and edge preservation
for proposed methods in Figure 1(h). Both WIA-LN and proposed method have good
performance in noises. Especially, compared to corresponding original SDCT images, the fine
features representing the intrahepatic bile duct dilatation and the hepatic cyst (pointed by
the white circles in the images of Figures 1 and 2, resp.) were well restored by using WIA-LN
and proposed method. The fine anatomical/pathological features (the exemplary structures
pointed by circles in Figures 1 and 2) can be well preserved compared to the original SDCT
images (Figures 1(a) and 2(a)) under-standard dose conditions. In Figures 3(g) and 3(h), it
indicates that although WIA-LN cannot handle noises and artifacts simultaneously, proposed
method can obtain satisfied results in this complex situation. Especially, proposed method
not only can suppress noises and artifacts in original LDCT image (Figure 3(a)) but also
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Figure 1: Abdominal CT images of a 58-year-old man. (a) Original SDCT image with tube current time
product 150 mAs. (b) Original LDCT image with tube current time product 30 mAs. (c, d, e, f) BE, context,
MBEF, and MRBF processed LDCT images, respectively. (g) WIA-LN processed LDCT image. (h) Proposed
method (BFWGES) processed LDCT image. Note the obvious improvement of noise suppression and
preservation of the intrahepatic bile duct dilatation (white circles) for the WIA-LN and proposed method
processed LDCT images (g, h) compared to the original LDCT image in (b).

can preserve tiny anatomy details of subscapular arteries indicated by the white circles in
Figure 3(h) compared to the original SDCT image (Figure 3(b)).

6. Conclusions

In this paper, in order to improve the performance of LDCT imaging, we propose a new
method, named bilateral filter weighted by Gaussian filtered sinogram (BFWGEFS) which
replaces the sinogram values of range filter of BF to the Gaussian filtered sinogram values.
Since carefully chosen parameters of Gaussian filter can reduce the influence both of noises
and non-stationary artifacts greatly, BFWGEFS can provide a more reliable estimate sinogram
values for the range filter to improve the performance of classical BF in noises. Restoration
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Figure 2: Abdominal CT images of a 62-year-old woman. (a) Original SDCT image with tube current time
product 150 mAs. (b) Original LDCT image with tube current time product 60 mAs. (c) Original LDCT
image with tube current time product 30 mAs. (d, e, f) LDCT images (60 mAs) processed by BF, context,
and MBE, respectively. (g, h, i) LDCT images (30 mAs) processed by BF, context, and MBF, respectively. (j,
k, 1) LDCT images (60 mAs) processed by MRBF, WIA-LN and proposed method, respectively. (m, n, o)
LDCT images (30 mAs) processed by MRBF, WIA-LN, and proposed method, respectively. Compared to
the original LDCT images in (b) and (c), the improvement of preservation of the hepatic cyst (white circles)
for the WIA-LN, and proposed method in processed LDCT image (k), (1), and (n), (o) can be observed.

results for three real sinograms show that proposed method with suitable parameters can
obtain satisfied results even in both the noises and artifacts situation.

Acknowledgments

This paper is supported by the National Natural Science Foundation of China (no. 60873102),
Major State Basic Research Development Program (no. 2010CB732501), and Open Foundation



12 Mathematical Problems in Engineering

Figure 3: Shoulder CT images of a 60-year-old man. (a) Original SDCT image acquired at a standard
tube current-time product 135mAs. (b) Original LDCT image acquired at a reduced tube current-time
product 35mAs. (¢, £, g, h) LDCT images processed by BE, context, MBF, and MRBF, respectively. (d) LDCT
image processed by WIA-LN. Note that both the streak artifacts and informative human tissues tend to be
smoothed. (e) LDCT image processed by the proposed method. Compared to the original LDCT images in
(a), the obvious improvement of noise suppression in the improvement of preservation of the subscapular
arteries (white circles) for the proposed method can be observed.

of Visual Computing and Virtual Reality Key Laboratory of Sichuan Province (no. J2010N03).
This work was supported by a Grant from the National High Technology Research and
Development Program of China (no. 2009AA127140).

References

[1] D.J. Brenner and E. J. Hall, “Computed tomography—an increasing source of radiation exposure,”
New England Journal of Medicine, vol. 357, no. 22, pp. 2277-2284, 2007.

[2] J. Hansen and A. G. Jurik, “Survival and radiation risk in patients obtaining more than six CT
examinations during one year,” Acta Oncologica, vol. 48, no. 2, pp. 302-307, 2009.



Mathematical Problems in Engineering 13

[3] H.]J. Brisse, J. Brenot, N. Pierrat et al., “The relevance of image quality indices for dose optimization
in abdominal multi-detector row CT in children: experimental assessment with pediatric phantoms,”
Physics in Medicine and Biology, vol. 54, no. 7, pp. 1871-1892, 2009.

[4] L.Yu, “Radiation dose reduction in computed tomography: techniques and future perspective,” Imag-
ing in Medicine, vol. 1, no. 1, pp. 65-84, 2009.

[5] J. Weidemann, G. Stamm, M. Galanski, and M. Keberle, “Comparison of the image quality of various
fixed and dose modulated protocols for soft tissue neck CT on a GE Lightspeed scanner,” European
Journal of Radiology, vol. 69, no. 3, pp. 473-477, 2009.

[6] W.Qj,]J.Li, and X. Du, “Method for automatic tube current selection for obtaining a consistent image
quality and dose optimization in a cardiac multidetector CT,” Korean Journal of Radiology, vol. 10, no.
6, pp. 568-574, 2009.

[7] A.Kuettner, B. Gehann, J. Spolnik et al., “Strategies for dose-optimized imaging in pediatric cardiac
dual source CT,” Fortschr. Rontgenstr, vol. 181, no. 4, pp. 339-348, 2009.

[8] P.Kropil, R. S. Lanzman, C. Walther et al., “Dose reduction and image quality in MDCT of the upper
abdomen: potential of an adaptive post-processing filter,” Fortschr. Rontgenstr, vol. 182, no. 3, pp. 284—
253, 2009.

[9] M. K. Kalra, M. M. Maher, M. A. Blake et al., “Detection and characterization of lesions on low-
radiation-dose abdominal CT images postprocessed with noise reduction filters,” Radiology, vol. 232,
no. 3, pp. 791-797, 2004.

[10] H.B.Lu, X. Li, L. H. Li et al., “Adaptive noise reduction toward low-dose computed tomography,” in
Proceedings of the Medical Imaging 2003: Physics of Medical Imaging, vol. 5030, parts 1 and 2, pp. 759-766,
San Diego, Calif, USA, February 2003.

[11] M. K. Kalra, C. Wittram, M. M. Maher et al., “Can noise reduction filters improve low-radiation-dose
chest CT images? Pilot study,” Radiology, vol. 228, no. 1, pp. 257-264, 2003.

[12] M. K. Kalra, M. M. Maher, D. V. Sahani et al., “Low-dose CT of the abdomen: evaluation of image
improvement with use of noise reduction filters pilot study,” Radiology, vol. 228, no. 1, pp. 251-256,
2003.

[13] J. C. Giraldo, Z. S. Kelm, L. S. Guimaraes et al., “Comparative study of two image space noise
reduction methods for computed tomography: bilateral filter and nonlocal means,” in Proceedings
of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society:
Engineering the Future of Biomedicine (EMBC "09), pp. 3529-3532, Minneapolis, Minn, USA, September
2009.

[14] A. Manduca, L. Yu, J. D. Trzasko et al., “Projection space denoising with bilateral filtering and CT
noise modeling for dose reduction in CT,” Medical Physics, vol. 36, no. 11, pp. 4911-4919, 2009.

[15] N. Mail, D. J. Moseley, J. H. Siewerdsen, and D. A. Jaffray, “The influence of bowtie filtration on
cone-beam CT image quality,” Medical Physics, vol. 36, no. 1, pp. 22-32, 2009.

[16] M. Kachelrie, O. Watzke, and W. A. Kalender, “Generalized multi-dimensional adaptive filtering for
conventional and spiral single-slice, multi-slice, and cone-beam CT,” Medical Physics, vol. 28, no. 4,
pp- 475-490, 2001.

[17] G. E Rust, V. Aurich, and M. Reiser, “Noise/dose reduction and image improvements in screening
virtual colonoscopy with tube currents of 20 mAs with nonlinear Gaussian filter chains,” in Medical
Imaging 2002: Physiology and Function from Multidimensional Images, vol. 4683 of Proceedings of SPIE,
pp- 186-197, San Diego, Calif, USA, February 2002.

[18] Z.Liao, S. Hu, and W. Chen, “Determining neighborhoods of image pixels automatically for adaptive
image denoising using nonlinear time series analysis,” Mathematical Problems in Engineering, vol. 2010,
Article ID 914564, 14 pages, 2010.

[19] H. Lu, I. T. Hsiao, X. Li, and Z. G. Liang, “Noise properties of low-dose CT projections and noise
treatment by scale transformations,” in Proceedings of the IEEE Nuclear Science Symposium Conference
Record, vol. 1-4, pp. 1662-1666, November 2001.

[20] J. Xu and B. M. W. Tsui, “Electronic noise modeling in statistical iterative reconstruction,” IEEE
Transactions on Image Processing, vol. 18, no. 6, pp. 1228-1238, 2009.

[21] I. A. Elbakri and J. A. Fessler, “Statistical image reconstruction for polyenergetic X-ray computed
tomography,” IEEE Transactions on Medical Imaging, vol. 21, no. 2, pp. 89-99, 2002.

[22] P.J. la Rivire and D. M. Billmire, “Reduction of noise-induced streak artifacts in X-ray computed
tomography through spline-based penalized-likelihood sinogram smoothing,” IEEE Transactions on
Medical Imaging, vol. 24, no. 1, pp. 105-111, 2005.

[23] P.]. la Rivire, “Penalized-likelihood sinogram smoothing for low-dose CT,” Medical Physics, vol. 32,
no. 6, pp. 1676-1683, 2005.



14 Mathematical Problems in Engineering

[24] ]J. Wang, H. Lu, J. Wen, and Z. G. Liang, “Multiscale penalized weighted least-squares sinogram
restoration for low-dose X-ray computed tomography,” IEEE Transactions on Biomedical Engineering,
vol. 55, no. 3, pp. 1022-1031, 2008.

[25] P. Forthmann, T. Kohler, P. G. Begemann, and M. Defrise, “Penalized maximum-likelihood sinogram
restoration for dual focal spot computed tomography,” Physics in Medicine and Biology, vol. 52, no. 15,
pp. 45134523, 2007.

[26] J. Wang, T. Li, H. Lu, and Z. G. Liang, “Penalized weighted least-squares approach to sinogram noise
reduction and image reconstruction for low-dose X-ray computed tomography,” IEEE Transactions on
Medical Imaging, vol. 25, no. 10, pp. 1272-1283, 2006.

[27] Z. Liao, S. Hu, M. Li, and W. Chen, “Noise estimation for single-slice sinogram of low-dose X-ray
computed tomography using homogenous patch,” Mathematical Problems in Engineering, vol. 2012,
Article ID 696212, 16 pages, 2012.

[28] H. B. Lu, X. Li, I. T. Hsiao, and Z. G. Liang, “Analytical noise treatment for low-dose CT projection
data by penalized weighted least-square smoothing in the K-L domain,” in Proceedings of the Medical
Imaging 2002: Physics of Medical Imaging, vol. 4682, pp. 146-152, May 2002.

[29] C.Yang, C. Wufan, Y. Xindao et al., “Improving low-dose abdominal CT images by weighted intensity
averaging over large-scale neighborhoods,” European Journal of Radiology, vol. 80, no. 2, pp. e42—e49,
2011.

[30] T.Li, X. Li, J. Wang et al., “Nonlinear sinogram smoothing for low-dose X-ray CT,” IEEE Transactions
on Nuclear Science, vol. 51, no. 5, pp. 25052513, 2004.

[31] S. Hu, Z. Liao, D. Sun, and W. Chen, “A numerical method for preserving curve edges in nonlinear
anisotropic smoothing,” Mathematical Problems in Engineering, vol. 2011, Article ID 186507, 14 pages,
2011.

[32] M. Li and W. Zhao, “Visiting power laws in cyber-physical networking systems,” Mathematical
Problems in Engineering, vol. 2012, Article ID 302786, 13 pages, 2012.

[33] M. Li, C. Cattani, and S. Y. Chen, “Viewing sea level by a one-dimensional random function with long
memory,” Mathematical Problems in Engineering, vol. 2011, Article ID 654284, 13 pages, 2011.

[34] M. Li, “Fractal time series: a tutorial review,” Mathematical Problems in Engineering, vol. 2010, Article
ID 157264, 26 pages, 2010.

[35] C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color images,” in Proceedings of the IEEE
International Conference on Computer Vision, pp. 836-846, Bombay, India, January 1998.

[36] D. Barash, “A fundamental relationship between bilateral filtering, adaptive smoothing, and the
nonlinear diffusion equation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24,
no. 6, pp. 844-847, 2002.

[37] A. Wong, “Adaptive bilateral filtering of image signals using local phase characteristics,” Signal
Processing, vol. 88, no. 6, pp. 1615-1619, 2008.

[38] Z. Ming and G. Bahadir, “Multiresolution bilateral filtering for image denoising,” IEEE Transactions
on Image Processing, vol. 17, no. 12, pp. 2324-2333, 2008.

[39] H.Yu, L. Zhao, and H. Wang, “Image denoising using trivariate shrinkage filter in the wavelet domain
and joint bilateral filter in the spatial domain,” IEEE Transactions on Image Processing, vol. 18, no. 10,
pp- 2364-2369, 2009.

[40] R. van Boomgaard and J. van de Weijer, “On the equivalence of local-mode finding,robust estimation
and mean-shift analysis as used in early vision tasks,” in Proceedings of the 16th International Conference
on Pattern Recognition, vol. 3, pp. 972-930, Quebec, Canada, August 2002.

[41] J. ]J. Francis and G. de Jager, “The bilateral median filter,” Transactions of the South African Institute of
Electrical Engineers, vol. 96, no. 2, pp. 106-111, 2005.

[42] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising by sparse 3D transform-domain
collaborative filtering,” IEEE Transactions on Image Processing, vol. 16, no. 8, pp. 2080-2095, 2007.

[43] J. Portilla, V. Strela, M. J. Wainwright, and E. P. Simoncelli, “Image denoising using scale mixtures of
Gaussians in the wavelet domain,” IEEE Transactions on Image Processing, vol. 12, no. 11, pp. 1338-1351,
2003.

[44] A. Buades, B. Coll, and J.-M. Morel, “Nonlocal image and movie denoising,” International Journal of
Computer Vision, vol. 76, no. 2, pp. 123-139, 2008, Special section: selection of papers for CVPR 2005,
guest editors: C. Schmid, S. Soatto and C. Tomasi.

[45] D. L. Donoho and I. M. Johnstone, “Ideal spatial adaptation by wavelet shrinkage,” Biometrika, vol.
81, no. 3, pp. 425-455, 1994.



Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2012, Article ID 280869, 14 pages
doi:10.1155/2012/280869

Research Article
Tail Dependence for Regularly Varying Time Series

Ai-Ju Shi''2? and Jin-Guan Lin

I Department of Mathematics, Southeast University, Nanjing 210096, China
2 College of Science, Nanjing University of Posts and Telecommunications, Nanjing 210003, China

Correspondence should be addressed to Jin-Guan Lin, jglin@seu.edu.cn
Received 9 January 2012; Accepted 14 March 2012
Academic Editor: Ming Li

Copyright g 2012 A.-J. Shi and J.-G. Lin. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

We use tail dependence functions to study tail dependence for regularly varying (RV) time
series. First, tail dependence functions about RV time series are deduced through the intensity
measure. Then, the relation between the tail dependence function and the intensity measure
is established: they are biuniquely determined. Finally, we obtain the expressions of the tail
dependence parameters based on the expectation of the RV components of the time series. These
expressions are coincided with those obtained by the conditional probability. Some simulation
examples are demonstrated to verify the results we established in this paper.

1. Introduction

Copula is a useful tool for handling multivariate distributions with given univariate margins.
A copula C is a distribution function, defined on the unit cube [0,1]d, with uniform one-
dimensional margins U;. For any (u,...,u,) € [0,1]d, Cluy,...,ug) = P{Uy < uq,..., Uy <
uy}; the survival copula is C’(ul, oo ug) =P{Ur >21-uy,..., Uz >1—-uy}, the joint survival
function of copula C is E(ul, e Ug) = C(l —ui,...,1—uy). Given a copula C, let

F(ti,...,t5) = C(Fi(t1),..., Fa(ts)), where (t,...,t5) € RY, (1.1)

then F is a multivariate distribution with univariate margins Fy, ..., F;. On the other hand,
given a distribution F with margins Fy, ..., F4, there exists a copula C such that (1.1) holds.
And copula C is unique if Fy, ..., F; are all continuous (Sklar [1], Nelsen [2]).

In generally, copula forms a natural way to describe the dependence between series
when making abstraction of their marginal distributions. Overviews of the probabilistic and
statistical properties of copula are to be found in [1-6].
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Tail dependence plays an important role among dependence measures due to its
ability to describe dependence among extreme values (Frahm et al. [7], Resnick [8, 9], and
Nikoloulopoulos et al. [10]) which is introduced by Joe [4]. The issue of tail dependence
is mainly for heavy tailed phenomena, heavy tailed phenomenon in fractal time series. It
is extensively studied and applied in insurance, risk management, traffic management and
engineering management, and so forth. [11-27].

Researchers find various multivariate distributions with heavy tails to describe the
extremal or tail dependence, see, Pisarenko and Rodkin [13], Hult and Lindskog [28], and
Fang et al. [29]. Many interesting tail quantities have been derived via standard methods:
coefficients of tail dependence [30-37] and tail dependence copulas (Charpentier and Segers
[38]).

In this paper, we are interested in the tail behavior of the time series Xy, ..., X; which
have the form:

X=(Xi,...,Xs) = (RZ,,...,RZy), (1.2)

where the scale variable R is independent of random vector (Z, ..., Z;). And X is multivariate
regularly varying with distribution function F having copula C.

This distribution is a generalized class, including, for example, multivariate Pareto and
multivariate elliptical distribution as special ones. Especially, the multivariate ¢ distribution
is included in it. As an example, we will justify the results through multivariate ¢ copula.

In order to analyze the tail dependence behavior of (1.2), we first study the tail
dependence functions via intensity measure. Then using the relation between tail dependence
parameter and the tail dependence functions, we explore the explicit representations of the
tail dependence parameters.

The outline of this paper is as follows. After some preliminaries about multivariate
regularly varying series and dependence functions in Section 2, detailed results for the
tail dependence functions are discussed in Section 3, the expressions of tail dependence
parameters for RV time series are demonstrated in Section 4, and multivariate ¢ distribution
is demonstrated as an example in Section 5.

Throughout, (Xj,...,X;) is a random vector with joint distribution function F and
copula C. Minima and maxima will be denoted by A and V, respectively. The Cartesian

product [T, [a;, bi] is denoted by [a,b] for any a,b € R.

2. Preliminaries

Definition 2.1. The t-dimensional random vector X is said to be regularly varying with index
a > 0 if there exists a random vector © with values in S a.s., where S! denotes the unit
sphere in R? with respect to the norm | - |, such that, for all u > 0,

P{X| > ux,X/|X| € -}

PN > 2] 2w P{@ce-), 2.1)

as x — oo. The symbol % stands for vague convergence on S'!; vague convergence of
measures is treated in detail in Kallenberg [39]. The distribution of © is referred to as the
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spectral measure of X. For further information on multivariate regular variation we refer to

Resnick [8, 9].
In fact, (2.1) is equivalent to the following expression

nP{a;lx e } 2 u(), (2.2)

where p is an intensity measure or Radon measure on R/{0} and a, is a sequence an of
nonnegative numbers.

From the Definition 2.1, we can see that the regularly varying distribution is connected with
intensity measure p. The following lemma yields the explicit relation between them which
can be found in [8].

Lemma 2.2. Let random vector X be regularly varying with index a > 0 and distribution function F,
then it is equivalent to the following.

(1) There exists an intensity measure p on R'/{0}, such that for every Borel set B C R'/{0}
bounded away from the origin that satisfies u(0B) = 0,

. P{XeuB} _
,}gf;om = u(B), (2.3)

with the homogeneous condition u(uB) = u™*u(B).

(2) There exists an intensity measure p on R'/{0}, such that

. 1=F(uxy,uxy,...,ux;) P{X/ue[0,x]°}
lim =
u—ow 1-F(u,u,...,u) P{X/u € [0,1]°}

= pu([0,x]%), (24)

for all continuous points x of u. According to Lemma 2.2, one notices that for any
nonnegative multivariate reqularly varying random vector X, its nondegenerate univariate
margins X; have reqularly varying right tails and with the same index of X also, that is,

Fi(x) = P{X; > x} = x“Li(x), x>0, (2.5)

where Li(x) is a slowly varying function.

Lemma 2.3 (Breiman [40]). Let ¢ and 1 be two independent nonnegative random variables, 1 be
regularly varying with index a. If there exists a y > a, such that EZY < oo, then

P{¢n > x} ~ E(¢")P{n > x}. (2.6)
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The multivariate version of the Lemma belongs to Basrak et al. [41]. It is said that, if X is reqularly
varying in the sense of (2.2), A is a random t x t matrix, independent of X, with 0 < E||A||" < oo for
some y > a, then

np{a,;lAX € } 2 i) = E(,l o A-l(-)>, 2.7)

where > denotes vague convergence on R*/{0}.

Definition 2.4 (Kluppelberg et al. [42]). Let F be the distribution function of random vector X
with continuous margins F;, 1 < i < t and copula C. For any w = (wy, ws,...,w;) € R, the
lower dependence function is defined as

I(w;C) = lim C(xwy, xwo, ..., xW;)

1
—0* X

, (2.8)

and the upper dependence function is defined as

u(w:C) = lim C(1 - xw1,1-xw,,...,1 —xwt). (2.9)

x—0* X

The upper exponent function is defined as

ww;C) = > (-1 us(ws; Cs), (2.10)
0+Scl

where ug(ws; Cs) = limx_>0+€(1 - xw;,Vj €S)/x.

From the definition, we can verify the elementary properties listed in Proposition 2.5 of
the tail dependence function. We denote 77 = lim, - P{F;(X;) > x,Vj € J | F;(X;) > x,Vi € J}
and ¢; = lim, o P{F;j(X;) < x,Vj € J | Fi(X;) < x,Vi € J} are the upper tail and lower
dependence parameters of X, respectively, where | is a nonempty subset of I = {1,...,t}. C;
is the margin of C with component indexes in J.

Proposition 2.5. (1) Forany1<i,j <t,
i =u(1,1;,Cy); & =1(1,1;Cy), (2.11)

where Cij is the margin copula of X;, X;.

(2) For any nonempty J C I,

u(1,1,...,1,C)

B ;- ML, 10)
Tu(L,.,1c) Y

T TI1(L,1,.., 1))

(2.12)
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®)

1w(w; C) = lim CXWL X0, XWr) =1(w;C). (2.13)
x—0* X

Proof. (1) According to the definition of 7;;, we get

P{F](X]) >1 —x,Fi(Xi) >1 —.’X'}

Tij - xh—>Ir11-P{F](X]) =X | FI(XI) > x} - xlg%* P{Fz(Xz) >1 —X}

_ (2.14)
. Cij(l—x,l—x)
= lim ——— =u(1,1;Cyj);
x—0* X
similarly,
. . P{F](X]) <x,F1-(X,-) < x}
ij = Jim P{F) (X)) <x | Fi(X0) <x) = lim ——— 5 e (2.15)
1 Cij(x, x) _111.C .
_XEI(}+T - ( [atd l])
(2) Note that
P{F;(X;) >x,Vjel Cl-x,...,1-
7 = lim {Fi(X)) jel} lim Cl-x,...,1-x)/x (2.16)

x=1 P{Fi(X;) >x,Vi€]} x=0C/1-x,...,1-x)/x

combined with (2.9), the first part is determined. The second part can be verified similarly.

(3) We can obtained the proof only paying attention to C(uy, ..., 1) = C(1-uy,...,1 -
ut).

From the proposition, the upper tail dependence function of copula C is the lower one
of its survival copula C. And in most fractal time series, from the point of view of either
theory or applications, people only need to understand the right tail of the data, so we focus
on the upper tail function u(w; C) and coefficient 7; in the following.

We first study the upper tail dependence function of multivariate regularly varying
time series in (1.2) using the intensity measure. O

3. The Upper Tail Dependence Function for RV Time Series

Theorem 3.1. Let Xy, ..., X; be RV time series with reqularly varying index a, distribution function
F, copula C, and the stochastic representation as (1.2). If the margins are tail equivalent as x — oo,
then the upper tail dependence function can be written as

()

u(w;C) = #<[1, 0] x Et—1>

, (3.1)
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and the upper exponent function can be written as

(o))
[i<<[0,1] y Et‘l)c>

u*(w;C) =

Proof. For any w = (wy, ..., w;) € R,

P{Fi(X)) < xw;, Viel) P{x; >1_3;1(xwi),VieI}
u(w;C) = lim — = lim p—
x—0" P{Fl(X1) Sx} x=0° P{X1 >F, (x)}

Since every margin F; is regularly varying with the same index &, we obtain that

= Li(y)
Fi(y)=7, y>0,

where L;(y) is slowing varying function. So for any w; > 0, as x — 07,

L) 1 () L )
Fi(w!""y) = % “a <sz<y)y> A Loy )

where h;(w;,y) = Li(wil/“y)/Li(y) — lasy — oo. So the equation becomes
Fiw!"y) = o (i) - Fily)

i i w; i ir i ’

in other words,
Vay ZF (LF (g i (oo

wy =F (- Fi(y)hi(wiy) ).

Now we let F; (y) = xw;, then
wil/"‘l_:i_1 (xw;) = F_il (xhi (w,-,l_si_1 (xwi)>>,

S0, l_Jfl(xw,») = w._l/“l_:il(Xhi(wi,l_:il(xwi)))-
i i i i

Asx — 0F, hi(wi,l_fl(xw,-)) — 1, s0 we get that

—1 1 /a=1
F, (xw;) =w;"F; (x).

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)
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And since the margins are equivalent, that is, F;(y)/Fi(y) — 1asy — co. We have
F, ' (x)/F, (x) — lasx — 0% (Resnick [8]). So for sufficient small x, F, (x) = F, (x), and

z = l_ﬂl (x), combining (3.3) and (2.3), we obtain that

w;C)  lim P{X,» > wi—l/“f:;l(x),\ﬁ € I} . p{Xi > w2, Vi e I}
, = P{X1 > F{l(x)} zooo P{X; >z}
(I [ <))

W(It el <R )

(3.10)

In order to calculate u*(w; C), we recall the inclusion-exclusion formula, it says that

P{nierAi} = >, (-1)PP{UjesAj} 3.11)
0+#Scl

is valid for any finite set I and arbitrary events A;, wherei € I.
Using this formula, (2.10) becomes

P{F;(X)) >1-xw;,3jel P{Fi(X;) <xwj,3j el
w*(w;C) = lim {Fi(X)) Xwj, =] }= im { / ]_ 7 }
x—0* X x—0* P{Fl(Xl) < x}
. (3.12)
P{X;>F; (xw;),3j eI}
= lim —
=0 P{Xl > F, (x)}
By using the same method of (3.3), the following equation holds:
P{Xi>wz 31} u((ITa[ow]))
u*(w; C) = lim PIX = — . (3.13)
i {Xq >z} #<[1,oo]><R >
0
Corollary 3.2. Under the same conditions as Theorem 3.1, the following result holds
(11, 00] EH> ! 3.14
X = . .
PALL w(,...,1,0) (3.14)

Proof. By (2.4), one can see that p([0,1]°) = 1. So we can get the result immediately by letting
allw; =1, 1<i<tin (3.2).

According to Theorem 3.1 and Corollary 3.2, we can represent the intensity measure
through the tail dependence function as the following Corollary. O
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Corollary 3.3. Under the same conditions as Theorem 3.1, one has

~ u(wi®, ..., w;%;C)
wlw o) = —a 10
u*(wi®, ..., w;*%;C)
u*(1,...,1;,C)

(3.15)

pu([0,w]) =

4. The Upper Tail Dependence Parameters for Regularly
Varying Time Series

According to Proposition 2.5 and Theorem 3.1, we can express the tail dependence
parameters by their tail dependence functions. In this section, we will deduce the upper tail
dependence parameters of time series with multivariate varying distribution in (1.2) by this
method. Hereafter, we let p be the intensity measure of R = (R, R, ..., R) with copula CR.
Where R is regularly varying at oo with index &, with survival function Fr(r) = L(r)/r%, and
L(-) is a slowly varying function. So for any nonnegative vector w = (wj, ..., w;), we have

P{R>rAl_ w;} I R<7‘/\lt':1wi>
¢ CR) = i e = hale ! =Nl _ 4.1
‘u<[0,w] ;C > = rhm PIR> 7] rhm - , (4.1)

by inserting fR(r/\lewi) = L(r/\lewi)/ (r/\lewi)u and Fg(r) = L(r)/r* into the representa-
tion, then,

1 N
w10, W] CR) = ——— = (_\/wi> : (42)
Similarly, we have,
y([w,oo];CR> = /\wi‘“. (4.3)

Consequently, we get the main result as follows.

Theorem 4.1. Let X, ..., X; be regularly varying time series with the same regularly varying index
a and the stochastic representation given in (1.2), the margins are tail equivalent as x — oo. If there
exists a’y > a holds for 0 < E(Z),) < oo, then the upper tail dependence parameter of X1, ..., X; is

E(Na (25 /E(20))
E(Niey (Z2/E(Z2)))

Tr = (4.4)
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Proof. We first calculate the tail dependence function of X = (RZ;, ..., RZ;). In the following,
let CX and CY be the copula of X and Y, respectively. Denote

Y1,..., )T =A(R,...,R)T, (4.5)

where

. Zl Zt+
A:dlag<<fs<z N e >>”“> o

Note that Y; = (Z;./(E(Z], ))1/ )R is strictly increasing transformation of X; > 0,
for all i € I, and the tail dependence function and the parameter are all copula properties.
Hence Y and X have the same tail dependence functions. By Lemma 2.3, one can see that
the marginal variables Y; of vector Y are tail equivalent and regularly varying with the same
index as X as x — oo. Denote the intensity measures of Y and R by ji(-) and p(-), respectively.
According to (2.7),

i) =E(u(a™)). (47)

Now by (4.6), we see that,

. :diag<<E<Z N EE >>”“> ws)

Zl+ Zt+

combining this with (4.3), for any nonnegative w, we obtain the intensity measure given by

1/a
fi([w, 0]) = E(p(A7 [w,00])) = E(y <H [(E(ZZ)) i,oo];cR>>
= " (4.9)

Hence, we have

Substituting this measure into (3.1), we get the upper tail dependence function of vector Y as
follows:

u(w,- CY> - E</t\E(ZZia; w,->. (4.11)

i=1
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Since Y and X have the same tail dependence functions, we have

u(w;CX> =E</\E(ZZ?}+) wi>. (4.12)

i=1

By (2) in Proposition 2.5, we obtain the upper tail dependence parameters of vector X. O

5. Examples

Let Z in (1.2) be Z = A(Uy,...,U,), where A is a t x n matrix with AAT = %, and X is a
t x t semidefinite matrix, U = (U3, ..., U,) is uniformly distributed on the unit sphere (with
respect to Euclidean distance) in R". We know that X conforms to an elliptical contoured
distribution (Fang et al. [43]). The tail dependence of the elliptical contoured distribution has
been discussed in Schmidt [33]. Here we select the t distribution to display our results in
Theorem 4.1 as a special case.

If X ~ t,(p, X, v), then X has the stochastic representation ([43]):

NG

X=p+—
“* s

Z, (5.1)

where S ~ xﬁ and Z ~ N, (0, X) are independent, p € R".

Let R = \/v/S. Then R? ~ IG(v/2,v/2) and R is regularly varying with index v at oo.
So the vector (X, ..., X,) is regularly varying according to Schmidt [33].

For the upper tail dependence that only relies on the tail behavior of the random vector,
we can focus, without loss of generality, on the random vector X with zero mean vector.
Furthermore, since the strictly increasing transformation of (Xj, ..., X,) does not change the
copula, A™1/2X has the same copula as X, where X = (0j;) and A = diag(o11,02,...,0m)-
Thus A™/2X ~ t,(0, A"V/22A1/2 p). Tt is evident that A~1/2XA~1/2 becomes the correlation
matrix of the random vector. Consequently, we may assume that the covariance matrix X is
the correlation matrix. In this situation, all Z;s have the same margins as N(0,1). So E(Z?,)
are all equal for any 1 < i < n. Under these assumptions, using (4.4), we get the upper tail
dependence parameter of t,(0, %, v) as

= E(/\:lzlz:}+) ) 52
! E(/\ie]ZzPJr) >

This is coincided to the one obtained in Shi and Lin [34].

6. Simulations

In Section 4, we obtain the expressions of the tail dependence indexes about RV time series in
(1.2). In Section 5, we display our result in the multivariate ¢ distribution as example. In this
Section, we will illustrate these results by some Monte Carlo simulated numerical examples.
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(a) (b)

Figure 1: The estimation of 7, 71, under AR(1) (the left one) and EX (the right one) correlation structure.

Given that y(l), y(2), e, y("’) be generated from the multivariate normal distribution N, (0, p),
then the upper tail dependence indices of t, (i, Z, v) can be estimated by

~ Zzl:l (/\7:1 y;k)D I{y(k) >0 or y(k) < O}

7 = (6.1)
S (A

yl.(k)|> I{y® >0 or y® <0}

We estimate the upper tail dependence parameter of 3-dimensional ¢ distribution
under autoregressive of order 1 (AR(1)), exchangeable(EX), Toeplitz(TOEP), and unstruc-
tured(UN) correlation structure, respectively. For each correlation matrix, we first generate
80,000 pseudorandom vectors, then use (5.2) to estimate tail dependence parameter for
different v. Specifically, we do the following simulations.

1 -03 0.09 1 -03 -03
>=1-03 1 -03), Y=(-03 1 -03). (6.2)
1 0.09 -03 1 2 -03 -03 1

LetJ = {2} and {1, 2}, respectively. The corresponding upper tail dependence param-
eters are denoted by 7 and 7j,. X; and X, are under AR(1) and EX correlation structure,
respectively, the simulated values of 7, 71, about different v are computed and plotted in
Figure 1. 3 and X4 are under TOEP and UN correlation structure, the corresponding results
are demonstrated in Figure 2.

From the two figures, in spite of the correlation structure, 7; decreased and approached
0 quickly as v increased to oo, which is the tail dependence index for multivariate normal
copula.

Many researchers try to discuss the monotonicity of the tail dependence parameter
about the regular varying index. Embrechts et al. [11] proved that the tail dependence of the
bivariate t distribution is decreasing about the regular varying index v, and demonstrated
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Figure 2: The estimation of 7>, 71, under TOEP (the left one) and UN (the right one) correlation structure.

that the tail dependence parameter 77 is decreasing in v by numerical results. But From the
right graph in Figure 2., these conclusions are not always correct when ¢ > 3.

1 -03 05 1 0305
>=1-03 1 -03), >Y=(03107). (6.3)
3 05 -03 1 © \05 07 1

7. Conclusion

In the paper, we mainly study tail dependence of RV time series in (1.2). We use tail
dependence function and intensity measure to express tail dependence parameters. Using tail
dependence function, we do not need to consider the explicit representation of the copula. We
first discuss the tail dependence function of the RV time series due to the propositions of the
regularly varying function, connecting the biuniquely determined property between the tail
dependence function and the intensity measure. Then we calculate the explicit formula of the
upper tail dependence parameter about the RV time series under some conditions. In fact,
we can obtain the extreme upper tail dependence index (Shi and Lin [34]) very similarly to
Theorem 4.1, for concise, we omit it here.

Copula of continuous variables is invariant under strictly increasing transformation
(Nelsen [2]). In order to obtain the tail dependence function of random vector X, we shift to
solve that of Y in (4.5), which is just a strictly increasing transformation of X.

At last, we select the t distribution as a special case to display our result, they are
coincided to the one given in [34]. The monotonicity of the tail dependence parameters
about the regular varying index is still an open problem. Under what constraints the tail
dependence parameters will be deceasing in the variation index? We are still interested in the
problem. We will discuss it in the following work in details. In engineering application, when
we confront fractal time series and seasonal data, we can model the tail dependence property
via the tail dependence function if the data is consistent with the constraint conditions in our
work.
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For test-sheet composition systems, it is important to adaptively compose test sheets with
diverse conceptual scopes, discrimination and difficulty degrees to meet various assessment
requirements during real learning situations. Computation time and item exposure rate also
influence performance and item bank security. Therefore, this study proposes an Adaptive Test
Sheet Generation (ATSG) mechanism, where a Candidate Item Selection Strategy adaptively
determines candidate test items and conceptual granularities according to desired conceptual
scopes, and an Aggregate Objective Function applies Genetic Algorithm (GA) to figure out the
approximate solution of mixed integer programming problem for the test-sheet composition.
Experimental results show that the ATSG mechanism can efficiently, precisely generate test
sheets to meet the various assessment requirements than existing ones. Furthermore, according
to experimental finding, Fractal Time Series approach can be applied to analyze the self-similarity
characteristics of GA’s fitness scores for improving the quality of the test-sheet composition in the
near future.

1. Introduction

With the rapid developments of information and assessment technology, the computerized
testing is generally used to assess, predict, and diagnose learners’ learning statuses because it
is able to effectively analyze examinees’ abilities and learning barriers. The test quality offered
by a computerized testing system depends on not only the quality of test items but also the
satisfied test sheets to meet the various requirements of assessment parameters, such as the
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difficulty degree, the discrimination degree, the associated concepts, and the expected testing
time. Thus, how to efficiently assist teachers in composing and generating an appropriate test
sheet to meet the diverse assessment requirements has become an important research issue.

Hwang [1] applied the dynamic programming technique to solve this issue, but the
solution is inefficient for a large-item bank because of the exponential growth of time and
space complexity. Su and Wang [2] developed an assistance system to provide teachers with
statistic information for assisting teachers in manually composing the desired test sheets, but
manually selecting appropriate test items in a large item bank is still inefficient and difficult
to ensure the qualities of test sheets. Therefore, the pressing problem of automatic test item
allocation is emerging and it can be regarded as a combinatorial optimization problem, which
is proven an NP-hard problem [3]. Therefore, Hwang et al. [4] formulated this problem
as a mixed integer programming model and proposed approximate solutions by using the
Genetic Algorithm (GA) approach [5]. The experimental results show that their proposed
approach can efficiently automatically compose a good enough test sheet for a large-scale
test.

However, the aforementioned studies mainly aim to automatically generate a test
sheet with a highest discrimination degree and to meet the constraints in terms of expected
testing time and concept relevance. These mechanisms are suitable for the large-scale test
only, but their natures are difficult to satisfy various purposes of assessments during the
real learning situation. In order to efficiently understand the students’ learning problems, it
is important to compose the test sheets with diverse conceptual scopes (C), discrimination
(D) and difficulty (P) degrees, such as displacement and summative assessments (with
normal distribution C and PP), and formative and diagnostic assessments (with various
or specific C and P) [6-9]. Moreover, the computation time of the test-sheet composition
process and the Item Exposure Rate are our concerns as well. A long computation time will
decrease the performance of test-sheet composition system and a high-item exposure rate
will decrease the qualities of test items and Item Bank Security [10, 11]. Accordingly, to
consider not only the various assessment requirements but also the computation time and
item exposure rate, this study defines a new problem of automatic test item allocation, called
an Adaptive Test Sheet Generation problem. To solve it, this research proposes Adaptive
Test Sheet Generation (ATSG) mechanism, consisting of a Candidate Item Selection Strategy
(CISS) and an Aggregate Objective Function (AOF). CISS process can adaptively determine
candidate test items set and the conceptual granularities according to the desired concept
scope, and AOF applies GA algorithms to solve the mixed integer programming problem.
The evaluation results show that the proposed approach can generate test sheets to meet the
various assessment requirements.

2. Related Work

The original issue of the test sheet generation problem is identified for the large-scale tests,
where these test items covering all required concepts and having the highest degree of
discrimination are selected from a test item bank. Hwang [1] proposed an algorithm based
on dynamic programming technique to find optimal test sheets, but the exponential time
complexity causes the efficiency issue for a large number of candidate test items. Therefore,
the researchers formulated this problem as a mixed integer programming model and applied
a genetic algorithm [4] to figure out the approximate solution. In this paper, assume that a
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set of test items, which are related to m concepts, should be selected from n items in the item
bank. Each test item Q; is defined as

Qi = (ti, di,1ij), (2.1)

where Q); is a test item in the item bank (IB) and has a set of parameters including the expected
time t; needed for answering, the degree of discrimination d;, and the degree of association
rij between Q; and a concept C;.

The assessment requirement of a Test Sheet (TS) includes the lower bound I and upper
bound u of the totally expected answering time, and the lower bound h; of the total relevance
of each concept C;. To formulate the problem, a decision variable x; is defined as a Kronecker
delta, that is,

1, ifQ;eTS,
Xi = (22)
0, ifQ; ¢ TS.

The goal of this problem is to maximize Z = (3, dix;)/ (3, xi)-

Subject to the concept range 1", ri;x; > h; for j = 1 to n and the testing time limitation
1< Z?:l tix; < u.

A Genetic Algorithm (GA) approach [5] is used to solve this problem, where a
chromosome is represented as an n-bit binary string [x1,x3,...,x,] and the fitness rank is
the summation of selected items’ discrimination degrees subtracted by the penalty scores.
The penalty scores are the degrees about the violation of expected time and concept ranges
constraints. The genetic algorithm iteratively generates new generation of chromosomes
by the Crossover and Mutation processes, as Random Functions, and finds the best
chromosomes according to their fitness ranks. In the Crossover, chromosomes of the next
iteration are generated by combining halves of two chromosomes, which are randomly
selected from the chromosomes in the current iteration. A chromosome can be more probably
selected because it has a higher fitness rank. Mutation is the other operation of changing
a chromosome, where the change of an arbitrary bit is randomly raised to a chromosome.
This kind of evolutionary algorithm can iteratively approach to the optimal solution and
use some random operations, such as the operations of Crossover and Mutation, to prevent
falling into the local optimal solutions. According to the evaluation, the test sheet generation
approach based on a GA can really provide good solutions among more than ten thousand
test items in an acceptable response time. Furthermore, the greedy algorithm approach [12],
the tabu search algorithm [13], and the discrete particle swarm optimization algorithm [14]
were subsequently applied to enhance the computation efficiency of test sheet generation
based on the aforementioned problem formulation.

Besides, the test sheet composition problem was extended to a parallel test sheets
composition problem, where multiple test sheets are generated at one time. These sheets must
have similar concept relevance, discrimination, and difficulty degrees but contain no common
test items. The problem was solved by extending the existing tabu search algorithm [15] and
the particle swarm optimization algorithm [16].
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Figure 1: Test sheet types to meet various assessment requirements.

3. Adaptive Test Sheet Generation Problem

In order to efficiently understand the students’ learning problems, the parameters of a
test sheet including conceptual scopes (C), discrimination (D), and difficulty (P) degrees
should be adaptively composed according to the various assessment purposes, such as
displacement and summative assessments (with normal distribution C and P), and formative
and diagnostic assessments (with various or specific C and P). As illustrated in Figure 1,
for the formative assessment, like a small-scale test, a test sheet with the specific and
detailed concepts, that is, low-level conceptual scope/fine-grained granularity, is required to
evaluate the students’ specific conceptual capabilities during the learning; for the diagnostic
assessment, like a specific-scale test, a test sheet with the diverse conceptual scopes and
granularities is used to diagnose the students’ learning problems; for the displacement and
summative assessments, like a large-scale test, a test sheet with the high-level conceptual
granularities is required to evaluate the students’ learning performance before and after the
learning, respectively.

However, as seen in Figure 2, the existing approaches did not take the adaptive
requirements, that is, C, P, and D into account, and only focus on the highest D. Consequently,
their composed test sheets may contain the miss- and error-included concept nodes and cannot
meet the adaptive requirements. Moreover, they also need to spend much more computation
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Figure 2: Issues for existing test sheet generation mechanisms.

time to select candidate test items in the item bank because they have no item selection
strategy to filter the irrelevant ones in advance. Besides, item exposure rate, which denotes
the number of a test item used in the test sheets, also needs to consider for enhancing the Item
Bank Security.

Therefore, three issues are required to be solved for satisfying the adaptive require-
ments of a test sheet:

(i) how to generate a test sheet to precisely meet the adaptive requirements in
terms of conceptual granularities, discrimination, difficulty, and expected test time
parameters;

(ii) how to speed up the test sheet generation process for reducing the computation
time;

(iii) how to consider the item exposure rate issue to enhance the Item Bank Security.

An Adaptive Test Sheet Generation Problem Is Defined as Follows

Assume that a set of test items should be selected from 7z items in the item bank Q =
{Q1,Q>,...,Qn}. All items should be related to the concepts in a concept hierarchy H, a tree
of concepts as shown in Figure 1. The tree H contains m concepts as the tree nodes C, namely,
C={Cy,Cy,...,C,}. 6is adescendent function, where 6(C;) C C is a set of descendent nodes
of C;, and 6'(C;) € C is a descendent leaf function, whereC; belongs to 6'(C;) if and only if C;
is a leaf concept of H and the descendent of C;.

Based on the Q; definition in Section 2, the item exposure times e; and the degree of difficulty
pi are taken in account in this study. Thus, each test item Q); is defined as follows.

Q; = (pi, ti, di,ri]-,ei), where 0 < d;, p;, i <1, t;, ei € N (Natural Number). (3.2)

An example is provided in Figure 3, where the concept hierarchy H is a tree of concept C;
and the test item set Q is a set of test items Q;. A weight r;; denotes relevance degree between
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the concept C; test item Q;, for example, the relevance of C, and Q; is r1» = 0.75. The 6(C;)
denotes the subtree of the concept C;, for example, C; and C; belong to the 6(Cs).
Therefore, in this study, a test sheet (TS) can be defined as follows:

TS = (Qs,t,p,C', 1), (3.3)

where TS includes the expected test time t' of the test sheet, target difficulty degree p’,
target concepts C' C C, and the lower bound of average concept relevance r'. Based on the
definitions of existing studies mentioned in Section 2, a decision variable X = [x1,x2,...,x,] is
defined where x; is 1 if the test item Q; is selected to the test sheet; 0, otherwise.

The goal of the adaptive test sheet generation problem is to generate a test sheet to

(i) approach all the target parameters p’ and ¢,
(ii) have the highest average discrimination degree,

(iii) have the balanced concept relevance weight sum of each required conceptual

granularity and its descents among the required concept range C’ and the average
relevance to be higher than 7/,

(iv) have the lowest average item exposure rate.

This is a multiobjective optimization problem, and the objective functions are defined
as follows.

The objective function of the discrimination degree is inversed to the average
discrimination degree of the test sheet:

(3.4)

D(X)=1- <M>

i Xi
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The objective function of the expected test time is the distance between the sum of expected
test time and the target expected time:

T(X) = ‘<i t,~x,~> -t|.
i=1

The objective function of the difficulty degree is the distance between the average difficulty
degree and the target difficulty degree:

(3.5)

P(X) = |—an'=1 P |, (3.6)
i1 Xi—p
Let 7(X) be the average sum of relevance degree of each concept in the test sheet:
Sty D TijXi
7(X) = % (3.7)

Let the generalized concept relevance R;; denote the maximum concept relevance of a test
item toward the concept C; or its descendent concepts:

9{,']‘ = Max(ri) | Cx € 5((:]) (3.8)

The objective function of concept relevance is the distance between the sum of generalized
concept relevance degrees and the average sum 7(X). This objective function shows the
imbalance degree of the concept relevance:

R(X) = DD Ryjxi - ?(X)‘. (3.9)
j=1li=1

The objective function of the item exposure rate is the average exposure times:

(3.10)

The multiobjective optimization problem is to find a test sheet X to minimize all the values of
objective functions and subject to the lower bound of average concept relevance ', as shown
in the following:

min  [D(X), T(X), P(X), R(X), E(X)]"
(3.11)
Subject to  7(X) > 7.
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Figure 4: The flowchart of the CISS process.

4. Methodology

To solve the Adaptive Test Sheet Generation Problem, an Adaptive Test Sheet Generation
(ATSG) mechanism has been proposed. ASTG mechanism consists of a Candidate Item
Selection Strategy (CISS) to adaptively determine candidate test items set and the conceptual
granularities according to the desired concept scope, and an Aggregate Objective Function
(AOF) to apply Genetic Algorithm (GA) to figure out the approximate solution of mixed
integer programming problem for the test-sheet composition. CISS process is illustrated in
Figure 4.

4.1. Candidate Item Selection Strategy (CISS)

CISS process includes two phases: (1) specifying Concept Granularity and (2) selecting Can-
didate Test Item Set.
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Phase 1: Specifying Concept Granularity

Concepts associated with a test sheet might be in various granularities for specific educational
situations, so the conceptual granularities should be determined before generating a test
sheet. Because the required concepts C; € C’ might be in various granularities, the most
specific required concepts should be selected as the target concept set to precisely express the

—
requirements. Let C denote the target concept set, where no concepts in the set are the other
—
concepts’ ancestors, and the goal of the first phase is determining the concepts in C:

Phase 2: Selecting Candidate Test Item Set

Let 0 be the candidate test item set, where the inner test items should be related to the target

concept set. In Phase 2, test items whose related concepts are out of C are filtered:
CieC iff (C;eC) A (-3j,Ci€8(C))). (4.1)

Besides, the generalized concept relevance degrees R of all test items toward all
concepts in C are calculated.

Qi €6 iff 3j, ((cj € E’) A (Rij > 0)) A -3k, <(ck ¢ E’) A Ry > 0)). (4.2)

After this phase, the search space can be reduced from Q to 6.

An example of CISS process is provided in Figure 5, where assume the required
concepts set C' = {Cy4,Cs,Cy,Cy}. In Phase 1, C4, Cy, and Cyg are selected into C for
expressing the most specific required concepts. In Phase 2, only the test items which are

associated with the subtrees of concepts in Elcan be selected to the candidate item set O,
so Q3 and Q) are filtered before solving the optimization problem.

4.2, Aggregate Objective Function

An aggregate objective function F(X) is defined to solve the multiobjective optimization
problem:

F(X)=Sp+(1-P)+(1-P)+(1-P)+(1-P.)+(1 - D). (4.3)

The aggregate objective function includes the discrimination score Sp and the penalty scores
of the expected time P, the difficulty degree P,, the concept relevance P,, the concept
relevance lower bound P, and the exposure times P,. All score and penalty score are
normalized to the range from 0 to 1.

The discrimination score Sp is inversed to the objective function D(X):

Sp=1-D(X). (4.4)
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Conceptual
granularity C’

Candidate item set

Figure 5: An example of the candidate item selection strategy (CISS) process.

The penalty score of the expected time is the percentage of the distance between the sum of
expected test time and the target expected time over the target expected time. If the penalty
score is greater than 1, 1 is assigned the penalty score:

p = min(@,l). (4.5)

The penalty score of the difficulty degree is the value generated by the objective function of
the difficulty degree:

P, = P(X). (4.6)

The penalty score of the concept relevance balance degree is the average distance between
the sum of relevance degrees and the average sum of a concept:

_ RX)
P, = or (4.7)

The penalty score of the concept relevance lower bound is greater than 0 if the average
concept relevance is lower than the concept relevance lower bound and the value the
percentage of the distance over the concept relevance lower bound. If the penalty score is
greater than 1, the penalty score will be set as 1:

P = min( [Max(r'(X) - 7’0”,1). (4.8)

rl
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The penalty score of the exposure times is the percentage of the average of exposure times
over the exposure times parameter ¢/, which denotes the maximum exposure times to be
considered. If the average of the exposure times is greater than ¢/, the penalty score will be
set as 1:

P, = min<@,1). (4.9)

el

Thus, a single aggregate objective function F(X) can be defined to integrate all the score and
penalty scores to a single objective score as (5.1).

The genetic algorithm (GA) can be applied to solve the Adaptive Test Sheet Generation
Problem by maximizing the aggregate objective function F(X). The overall process of the
GA algorithm is shown in Figure 4. The CISS process can adaptively determine the desired
concept scopes and granularities, and the out-of-scope test items, that is, error-included concept
nodes in Figure 2, can be adaptively filtered to reduce the problem space of the test sheet
generation. The candidate test items can be encoded into chromosomes, which is an N-bit
binary string [x1,x3,...,xn], where N is the amount of candidate test items and x; = 1 denotes
the test item i selected into the test sheet. In the beginning, a set of chromosomes, each whose
bit value is randomly set, are generated as the initial selection states. Then, each chromosome
is evaluated by the aggregate objective function F(X). The higher score the chromosome
gets, the more probability the chromosome can be reserved to generate the next generation.
In the Crossover step, the chromosomes with higher score of F(X) are selected to generate
new chromosomes. Two chromosomes are both broken into two segments in the randomly
selected segment lengths and the new chromosomes are generated by exchanging a segment
with each other. Further, in the Mutation step, a random bit of a random chromosome in the
new generation is inversed in order to prevent falling into the local optimal solutions. Then,
return to the Crossover step to further generate next generation until the iteration limitation is
achieved. Finally, the chromosome having the highest score of F(X) among the whole process
is the approximate solution.

5. Experiment and Evaluation

In order to evaluate the effectiveness of the proposed methodology in support of various
purposes of assessments during the real learning situation, three experiments have been
conducted. Firstly, various sizes of item banks are used to evaluate the efficiency and fitness
scores of the proposed ATSG mechanism. Secondly, various levels of target concepts C' are
used to evaluate the performance and the satisfaction degree of concepts in ATSG mechanism.
Thirdly, exposure times of selected test items are measured during the 50 times of use. The
exposure times of test items are accumulated and the experiment can evaluate whether ATSG
mechanism can prevent the generation of the test sheets with high exposure times. In the
three experiments, a system of the control group has also been developed based on Hwang’s
methodology [4], where the objective function shown in (5.1) was modified to meet the
experimental requirements:

F(X)=Sp+(1-P)+(1-PF,) +(1-P)+(1-P). (5.1)
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Some differences in the system of control group are listed as follows:

(1) It does not run the CISS; all test items are considered in the GA algorithm.
(2) It does not consider the exposure times of test items.

(3) It does not calculate the generalized concept relevance, so the required concepts for
control group are expended to all their descendent concepts.

The parameters of the GA algorithms used by the experimental and control systems were
determined to balance the effectiveness and efficiency. In the three experiments, the GA
algorithms were limited to 1,000 iterations and the mutation rate was 0.1. The population
size was 30 and all initial bits of chromosomes were assigned to 0 because the amount of all
test items was much larger than the amount of the selected test items.

5.1. Various Size of the Item Bank

The item banks having 1,000 to 20,000 test items are used to evaluate the systems’ efficiency
and effectiveness. In each item bank, 10 test sheets with randomly chosen parameters are
generated by the control and experimental systems. The effectiveness is measured by the
fitness score of the aggregate objective function F(X). The result of effectiveness is shown in
Figure 6, where the experimental system has more stable and generally higher fitness scores
than those of the control system.

The experimental result of efficiency is shown in Figure 7, where the response time
of the GA algorithm becomes higher if the size of item bank grows gradually. The reason is
that if there are more candidate test items, much longer chromosomes will be used and the
computing time dealing with all bits in chromosomes becomes much longer as well. Among
the two systems, experimental system, which applies CISS process to dramatically reduce the
size of candidate test items, can have much more efficient response time.
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5.2. Various Levels of Target Concepts

This experiment demonstrates the systems’ effectiveness of generating a test sheet for specific
level of target concepts. Target concepts in the most coarse-grained level, level 1, to the most
fine-grained level, level 6, are randomly chosen for the two systems. As shown in Figure 8, the
concept relevance scores of the control system are much lower than those of the experimental
system, especially when the concept level is fine grained. The reason is that without filtering
out-of-scope test items, the GA algorithm of the control system is difficult to precisely choose
the test items with accurate concepts. Figure 9 also shows that the test sheet generated by
the control system contains many out-of-scope test items, which will seriously affect the test
quality.

The result of response time in Figure 10 also reveals that the control system needs
more computation times to generate a test sheet because many out-of-scope test items are also
computed.

5.3. Exposure Times Measurement of Test Items

In the last experiment, 50 test sheets with similar target concept ranges are generated from
the item bank containing 2,000 test items and the used test items are recorded to calculate
the exposure times of each test item. Results of the average exposure times of test items are
shown in Figure 11, where the control system and the experimental system have no noticeable
difference. According to the analysis of each test sheet, although the experimental system
can prevent the test items with high exposure times, the average exposure times are still
accumulated due to the small range of target concepts. However, the out-of-scope test items
are usually used in the test sheet generated by the control system, so the exposure times of a
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single test item are accumulated slowly. That makes the exposure times of the experimental
system are not better than those of the control system.

6. Discussion

The proposed ATSG mechanism is able to solve Adaptive Test Sheet Generation Problem in
terms of the following aspects.
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6.1. The Control of the Concept Granularity of the Test Sheets and the
Prevention of the Irrelevant Problem Space

To simplify the discussion of this problem, assume that the concept tree is an L-level balanced
tree, and the amount of branches in each level is B. Let an adaptive requirement of the test
sheet contain 7 target concepts in level X. By applying the CISS mechanism, the problem
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space of the test sheet generation problem can be reduced to n/BX~! of the original problem
space.

Proof. Assume that m items are related to a concept. The amount of candidate test items in
the previous research is mBL~!. By using the candidate item selection strategy, the amount of

the candidate test items C is mnBLX. Thus, the percentage of the new problem space over the
previous problem space is mnBYX /mBL! = n/BX"1. O

6.2. The Generation of a Test Sheet to Precisely Fit the Target Concept Range,
Difficulty, and Expected Test Time

In the new objective functions, the distances toward the target thresholds are used instead of
the lower bound and upper bound in the previous studies. Thus, the difficulty and expected
test item can be precisely fitted. Moreover, the candidate item selection strategy and the
penalty score of the concept relevance balance degree can ensure that the test sheet contains
balanced target concepts. As shown in Section 5.2, the concept relevance scores of the test
sheets generated by the experimental system are also much higher than those of the control
system.

6.3. The Consideration of the Item Exposure Rate

The penalty score of the exposure times P, can prevent the high-exposure-rate items selected
to the test sheet.

6.4. The Extensibility of the ATSG Mechanism

Most approaches mentioned in the related work section applied more efficient evolutionary
algorithms, for example, the greedy algorithm approach [12], the tabu search algorithm [13],
and the discrete particle swarm optimization algorithm [14] to enhance the computation
efficiency of test sheet generation. However, these approaches did not yet take the conceptual
granularity, exposure rates, and test item filtering into account. Therefore, these enhanced
evolutionary approaches can thus be expected to replace the Hwang’s methodology [4] for
improving the efficiency of the Selecting Candidate Test Item Set phase (Figure 4) in the CISS
process of ATSG mechanism.

6.5. The Future Work of the ATSG Mechanism

According to our observation and finding of experimental results, the degree of fitness score
changes with the item bank sizes and the computation time (see Figure 6). Because the fitness
scores directly affect the quality of the generated test sheet, a new important issue will be how
to analyze the characteristics and predict the trends of fitness scores over times and item bank
sizes for improving the quality of test sheet composition. However, this kind of time series
problem may not be modeled by the conventional distribution model because the quality
of the GA selection strategy seems to have the characteristics of self-similarity. Therefore,
according to the study of Li [17], Fractal Time Series, which has the features of Long-Range
Dependence (LRD) and obeys the Power Law, are a suitable mathematical approach to model
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and analyze the features and phenomenon of self-similar series [18], for example, the data
series in the cyber-physical networking systems [19], the time series of sea level [20] and
molecular motion on the cell membrane [21], the DNA series [22], and the fractal lattice
geometry using Iterated Function System (IFS) on simplexes [23]. Accordingly, in the near
future, we are going to try to apply the fractal time series approach to analyze and model the
series of fitness score for figuring out the characteristics of self-similarity.

7. Conclusion

In this paper, an Adaptive Test Sheet Generation (ATSG) mechanism is proposed, where
the Candidate Item Selection Strategy (CISS) is come up to reduce the problem space of
test sheet composition and an Aggregate Objective Function (AOF) based on the Genetic
Algorithm (GA) is modeled to figure out the approximate solution. In this approach, the
adaptive conceptual scope and granularity and item exposure rates have been considered to
meet the various purposes of assessments during the real learning situation. Experimental
results show that ATSG mechanism is able to more efficiently, precisely, adaptively generate
the various test sheets than the existing approaches in terms of various conceptual scopes,
computation time, and item exposure rates. Furthermore, in the near future, the fractal time
series approach can be expected to be applied to analyze and model the series of GA’s fitness
score for figuring out the characteristics of self-similarity and improving the quality of test
sheet composition according to the experimental finding.
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This paper presents a novel trend-based segmentation method (TBSM) and the support vector
regression (SVR) for financial time series forecasting. The model is named as TBSM-SVR. Over
the last decade, SVR has been a popular forecasting model for nonlinear time series problem. The
general segmentation method, that is, the piecewise linear representation (PLR), has been applied
to locate a set of trading points within a financial time series data. However, owing to the dynamics
in stock trading, PLR cannot reflect the trend changes within a specific time period. Therefore, a
trend based segmentation method is developed in this research to overcome this issue. The model
is tested using various stocks from America stock market with different trend tendencies. The
experimental results show that the proposed model can generate more profits than other models.
The model is very practical for real-world application, and it can be implemented in a real-time
environment.

1. Introduction

Support vector machines (SVMs) have outperformed other forecasting models of machine
learning or soft computing (SC) tools such as decision tree, neural network (NN), bayes
classifier, fuzzy systems (FSs), evolutionary computation (EC), and chaos theory by many
researchers from historical nonlinear time series data applications in the last decade [1-5].
In these techniques, many researchers presented different forecasting models in dealing with
characteristics such as imprecision, uncertainty, partial truth, and approximation to achieve
practicability, robustness, and low solution cost in real applications [6-8]. However, the most
important issue in resolving the nonlinear time series problem is error revision. ANNSs use
the empirical risk minimization principle to minimize the generalization errors but SVRs
use the structural risk minimization principle because SVR is able to analyze with small
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samples and to overcome the local optimal solution problem, which surpasses to ANNs [9-
11]. Therefore, the SVRs forecasting model is applied to accomplish the forecasting task in this
research. Presently, support vector regression (SVR), which was evolved from support vector
machine (SVM) based on the statistical learning theory, is a powerful forecasting and machine
learning approach for numerical prediction [12-15]. Also, SVR has high toleration error rate
and high accuracy for learning solution knowledge in complex problems [16]. Although SVR
can be applied well in time series data, the input vector is a key successful factor. Despite
the volatile nature of the stock markets, researchers still can find certain correlations between
these factors and stock prices. An investor’s primary goal is to make profits. In order to help
investors achieve their financial objectives, researchers have studied the relationship between
financial markets and price variations over time from [17-20].

In the last few years, several representations of time series data have been proposed;
the most often used representation is piecewise linear representation (PLR) [21-23]. It can
decompose a time series data into a series of bottom and peak points [24, 25] in financial
market. But the traditional PLR does not consider the multiple trending characteristics in
time series. Moreover, the price movements of stocks are affected by many factors such as
government policies, economic environments, interest rates, and inflation rates. The share
prices of most listed companies also move up and down with other changing factors like
market capitalization, earnings per share (EPS), price- to -earnings ratio, demand and supply,
and market news. Moreover, there are more fractal properties of financial data, such as self-
similarity, heavy-tailed distributions, long memory, as well as power laws [26-29]. One of
fractal properties is long memory which is a common characteristic in financial data or other
fields [30-32]. The daily stock trading is a short-term return so in this paper these fractal prop-
erties were not considered in our framework, just focusing on the real stock price’s trends.

Therefore, there is a need to develop a new segmentation method which takes the
price moving trends into consideration. As a result, this research will consider the multiple
trends of stock price’s movements in TBSM segmentation approach to capture the embedded
knowledge of nonlinear time series. This research intends to improve the SVR forecasting
performance using a trend based decomposition method. The TBSM approach has captured
the tendency of stock price’s movement which can be inputted into SVR in learning the
historical knowledge of the time series data. Moreover, a more accurate forecasting result
can be achieved when applied in real-time stock trading decision.

The rest of this paper is organized as follows. In Section 2, we describe TBSM
segmentation principle. Forecasting model is discussed in Section 3. Section 4 explains
modeling for trading decisions including using historical data to make trading decisions
by the TBSM approach, selecting highly correlated technical indices by stepwise regression
analysis (SRA), forecasting trading signals by SVR, and evaluating trading strategies.
Section 5 explains how the TBSM with SVR for stock trading decisions and compares the
profits obtained from various forecasting approaches. Finally, conclusions and directions for
further research are discussed in Section 6.

2. A Trend Based Segmentation Method (TBSM)

In the time series database there are many approaches such as Fourier transform, wavelets,
and piecewise linear representation which can be applied to find the turning point on time
series data. According to the characteristics of sequential data, a piecewise linear represen-
tation of the data is more appropriate. A variety of algorithms to obtain a proper linear



Mathematical Problems in Engineering 3

Define: Threshold // cutting threshold
X_Thld // horizontal area
Y_Thid // vertical area
X // a time series
Y // stock price

1: Procedure TBSM(T)

2: LetT berepresented as X[1, 2,...,n],Y[1, 2,...,n]
33 n=0

4: Draw a line between (X3, Y1) and (X,,,Y},)

5:  Max d = maximum distance of (X;, Y;) to the line

6: If (Max d > Threshold)

7: Let (X;, Y;) be the point with maximum distance
8: Forj=X;: X,

9: If (IX; - Xi| <X_Thid) and (|Y; - Y;| < Y_Thid)
10: Then Point[n] = [X;,Y;], n=n+1

11: End If

12: End For

13: Select from Point[n | : Xp = Min(Xy), X = Max(X,)
14: Return: S1=T [X3, Xu]

15: S2 =T [Xn, Xa]

16: EndIf

Algorithm 1: A pseudocode for TBSM in time series data.

representation of segment data have been presented. As reported in [33-36], PLR is used to
support more tasks and provides an efficient and effective solution. In this paper we intend
to enhance the segmentation accuracy based on different trends in stock price’s movements.
The basic idea of TBSM is to modify the PLR segmentation using the trend tendency in
a specific time period. Three different trends such as uptrend, downtrend, and hold trend
will be considered when making the segmentation. Detailed procedures of TBSM include the
following. (1) PLR is applied to locate the turning points from the time series including up
or downtrends. (2) The points around each turning point will be double-checked if the
variations of the points are within the threshold. If yes, these points will have the same
buy/sell trading in this period. (3) These points are set to be in the same trend. The pseudo-
code of the TBSM is shown in Algorithm 1.

For example, a time series T = {t1, fp,...,t101} with 191 data is given to explain
the basic idea of the TBSM procedure. As shown in Figure 1(a), several trading points are
represented as buy (four red points) or sell (six green points) in this case. According to the
TBSM procedure, we can draw a line S; form the first point to the last point as shown in
Figure 1(b) and find the max distance to line S; which is point t». Then line S; is decomposed
into two segments including line S, from t; to tys and line Sz from t4 to t191. Based on point
tr6, we can locate point t14 to t5¢ which are varied within the threshold. These points are set as
hold trend and with the same state of point t»¢. Therefore line S, and line S; will be changed to
three different lines including line S4 from point ¢; to point ¢4, line Ss from point t;6 to point
tse, and line S is from point ts56 to point t19; as shown in Figure 1(c). Next step is repeating the
same process for the rest of segments as ts¢ to t19;. The final results are shown in Figure 1(d)
including two hold trend segments (dotted line), one uptrend segment, and two downtrend
segments (solid line) in this time series.
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Figure 1: An example for TBSM in time series data.

3. Support Vector Regressions (SVRs)

Support vector regression is a modification of machine-learning-theory-based classification
called support vector machine. Machine learning techniques have been applied for assigning
trading signal. Many studies used support vector machine for determining whether a case
contains particular class [37, 38]. But the shortcoming only deal with discrete class labels,
whereas trading signal continuum data type because a weight of signal can take a buy or
sell power. Grounded in statistical learning theory [1, 2], support vector regression is capable
to predict the continuous trading signal while still benefiting from the robustness of SVM.
SVM has been successfully employed to solve forecasting problems in many fields, such
as financial time series forecasting [39] and emotion computation [40]. For explaining the
concept of SVR, we have considered a standard regression problem. Let S = {X;, Y;},_; , be
the set of data where X; is input vector (selected technical index in this research), Y; (trading
signal ts) is an output vector, and 7 is the number of data points. In regression analysis, we
find a function f(X;) such that Y; = f(X;). This function can be used to find the output value
Y of any X. The standard regression function is as follows:

gi = f(xi) +6, (3.1)

where 6 denotes the random error and g; denotes the estimated output. There are two types of
regression problems, namely, linear and nonlinear. SVR is developed to tackle the nonlinear
regression problems because the nonlinear regression problems have high complexity as well
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as stock market trade. In SVR, at first the input vectors are nonlinearly mapped into a high-
dimensional feature space (F), where they are linearly correlated with the respective output
values.

SVR uses the following linear estimation function:

f(x) = (w-¢p(x)) +b, (3.2)

where w denotes the weight vector, b denotes a constant, ¢(x) denotes the mapping function
in the feature space, and (w - ¢(x)) denotes the dot product in the feature space F. SVR
transfers the nonlinear regression problem of the lower dimension input space (x) into a
linear regression problem of a high-dimension feature space. In other words, the optimization
problem involving a nonlinear regression is converted into finding the flattest function in the
feature space instead of input space.

Various cost functions like Laplacian, Huber’s Gaussian, and ¢-insensitive can be
used in the formulation of SVR. The cost function should be suitable for the problem and
should not be very complicated because a complicated cost function could lead to difficult
optimization problems. Thus, we have used robust e-sensitive cost function which is shown
below:

|f(x)-ql—e, if [f(x)-q] 20

] (3.3)
0, otherwise,

Le(f(x),q) = {

where ¢ denotes a precision parameter which represents the radius of the tube located around
the regression function f(x).

The {+¢,—¢} region is called ¢-insensitive zone. ¢ is determined by the user. If the
actual output value lies in this region, the forecasting error is considered to be zero.

The weight vector, w, and constant, b, in (3.2) are calculated by minimizing regularized
risk function which is shown in (3.4):

R(O) = =S (f (), 1) + el G4
i=1

where L.(f(x;),qi) denotes the e-insensitive loss function, lw|*/2 denotes the regularization
term, and C denotes the regularization constant. w decides the complexity and approximate
accuracy of the regression model. Value of C is selected by the user to ensure appropriate
value of w and low empirical risk.

The two positive slack variables §; and ¢’ are used to replace the e-insensitive loss
function of (3.3). ¢; is defined as the distance between the g; and higher boundary of the &-
insensitive zone, and ¢ is defined as the distance between the g; and lower boundary of the
e-insensitive zone. Equation (3.4) is transformed into (3.5) by using the slack variables:

Minimize : Ryeg(f) = %|w|2 + Ci (& +¢7) (3.5)
i=1
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