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Nonlinear time series attracts the interests of scientists and engineers in both research and

applications in various fields, ranging from hydrology to computer science. It is a powerful

tool for revealing interesting phenomena in natural science and engineering regarding chal-

lenging issues in, for instances, fractal random functions, differential equations of fractional

order, fractional calculus, prediction of random functions, technologies in denoising for both

signals and images, pattern recognition, wavelets, and so forth. The aim of this special issue

is to collect high quality papers with respect to nonlinear time series, its computations, and

applications. There are 28 papers collected in this special issue in the related topics. We

introduce them by six paragraphs below.

A.-J. Shi and J.-G. Lin’s paper entitled “Tail dependence for regularly varying time series”

studies regularly varying time series to describe heavy-tailed phenomena from a view

of tail dependence by introducing a dependence function and establishing a relationship

between the dependence function and the intensity measure with discussions of their present

expressions about dependence parameters. J. Xue et al.’s paper “Bound maxima as a traffic
feature under DDOS flood attacks” provides a novel method to characterize the traffic features

with and without attacking packets. The paper entitled “A novel fractional-discrete-cosine-
transform-based reversible watermarking for healthcare information management systems” by L.-T.

Ko et al. presents a new method of watermarking to reconstruct host images by using the

technique of discrete cosine transform of fractional order. I. Cherif et al.’s paper “Nonlinear
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blind identification with three-dimensional tensor analysis” deals with the blind identification of

a second-order Volterra-Hammerstein series using the analysis of three-dimensional tensor.

The paper “Online health management for complex nonlinear systems based on hidden semi-markov
model using sequential Monte Carlo methods” by Q. Liu and M. Dong introduces a new approach

of multisteps ahead health recognition based on joint probability distribution for health

management of a complex nonlinear system with the technique combining hidden semi-

Markov model with sequential Monte Carlo methods. H. Bayiroğlu et al.’s paper “Nonlinear
response of vibrational conveyers with nonideal vibration exciter: superharmonic and subharmonic
resonance” gives the theoretical and numerical analysis of the working ranges of oscillating

shaking conveyers with nonideal vibration exciter for superharmonic and subharmonic

resonances in multiple scales.

Wavelets remain a powerful tool in nonlinear time series. The paper entitled “A
new texture synthesis algorithm based on wavelet packet tree” by H. C. Hsin et al. presents an

efficient method of texture synthesis with wavelet packet tree, providing a useful technique

for investigating the issue of multiresolution representation for fractal images. Y. Huang et

al.’s paper “Minimum-energy multiwavelet frames with arbitrary integer dilation factor” explains

the research of the minimum-energy multiwavelet frame.

J. Yang et al. presented their study in the construction of affine invariant functions

in the paper entitled “Construction of affine invariant functions in spatial domain”, which is

satisfactorily used for pattern recognition of Chinese words. The paper “Adaptive binary arith-
metic coder-based image feature and segmentation in the compressed domain” by H. C. Hsin et al.

gives a modification of the compression-based texture merging algorithm to alleviate the

influence of overmerging problem by making use of the rate distortion information so that the

computational cost because of the segmentation of an image may be reduced considerably.

R. Wang and B. Fang’s paper “A combined approach on RBC image segmentation through shape
feature extraction” proposes a combined approach for complex surface segmentation of red

blood cell based on the techniques of shape-from-shading and multiscale surface fitting,

which is promising for the pattern recognition of red blood cell in the sense of 3-dimensional

modeling by taking into account multiscale surface features of red blood cell segments. S.

Hu et al. in their paper “Reducing noises and artifacts simultaneously of low-dosed X-ray computed
tomography using bilateral filter weighted by Gaussian filtered sinogram” proposed an efficient

method to obtain satisfied denoising results for sinogram restoration of low-dosed X-ray

computed tomography by weighing the similarity using Gaussian smoothed sinogram. The

paper entitled “Image denoising based on dilated singularity prior” by S. Hu et al. gives an

approach to preserve edges and textures in image denoising by adding dilated singularity

prior to noisy images. Y.-Y. Zhu et al.’s paper “Detection and recognition of abnormal running
behavior in surveillance video” gives a method of identifying abnormal running behavior based

on spatiotemporal parameters by taking into account real-time systems and multitarget

tracking in surveillance videos. The paper entitled “Data matrix code location based on finder
pattern detection and bar code border fitting” by Q. Huang et al. presents an algorithm for

locating data matrix code based on finder pattern detection and bar code border fitting, which

has applications to locating a 2D bar code quickly and precisely in an image with complex

background, such as poor illumination. B. Chen et al.’s paper “A multiplicative noise removal
approach based on partial differential equation model” contributes a method of removing speckle

noise by introducing a four-order partial differential equation, which may obtain better edge-

preserve performance.

Packet-delay analysis gains interests of scientists in computer-network engineering

from the point of view of real-time systems in particular as well as applied statistics with



Mathematical Problems in Engineering 3

respect to queuing systems driven by fractal arrival time series. D. Pan et al.’s paper entitle

“Buffer management and hybrid probability choice routing for packet delivery in opportunistic
networks” contributes a hybrid probability choice routing protocol with buffer management

for opportunistic networks. The authors developed a delivery probability function based on

continuous encounter duration time, which is used for selecting a better node to relay packets.

By combining the buffer management utility and the delivery probability, they attained a

total utility that is used to decide whether the packet should be kept in the buffer or be

directly transmitted to the encountering node. H. Wu et al.’s paper “Location updating schemes
for high-speed railway cellular communication systems” proposes two useful methods regarding

location updating, namely, “clustering location management” and “mobile group location

management,” towards solving the problems caused by the existing location updating

schemes in high speed railway cellular private network without occupying more frequency

resources and impacting the mobile subscribers’ paging. In addition, the paper gives analysis

of useful specifications, such as channel request number of stand-alone dedicated control

channel, average waiting time of location updating, cost of location updating, and paging.

The paper “Applying semigroup property of enhanced Chebyshev polynomials to anonymous
authentication protocol” by H. Lai et al. presents an anonymous authentication protocol that

is efficient in low computational complexity and cost in the initialization phase by using

semigroup property of enhanced Chebyshev polynomials. H.-Y. Lin et al. presented a paper

entitled “An adaptive test sheet generation mechanism using genetic algorithm”, where an adaptive

test sheet generation is given from a view of time series. That may be the first paper noticing

that there may be fractal phenomena, such as statistical self-similarity of genetic algorithm’s

fitness scores, in the assessment of information provided by computerized testing systems.

The paper entitled “Hypothesis testing in generalized linear models with functional coeffi-
cient autoregressive processes” by L. Song et al. studies the hypothesis testing in generalized

linear models with functional coefficient autoregressive processes by introducing quasi-

maximum likelihood estimators. T.-S. Tsay’s paper “Automatic regulation time series for

industry processes” proposes a nonlinear digital control scheme for analyses and designs

of stable industry processes, which can be applied to servo systems, time delay systems, and

so on. D. Xiang et al.’s paper “Degenerate-generalized likelihood ratio test for one-sided composite
hypotheses” gives a method with respect to the degenerate-generalized likelihood ratio test

for one-sided composite hypotheses in cases of independent and dependent observations.

Their method has less overall expected sample sizes and less relative mean index values in

comparison with the sequential probability ratio test and double sequential probability ratio

test.

Research of theory and tools of time series prediction is encouraged. The paper by

X.-H. Yang and Y.-Q. Li, which is entitled “DNA optimization threshold autoregressive prediction
model and its application in ice condition time series”, presents a new DNA (deoxyribonucleic

acid) optimization threshold autoregressive prediction model (DNAOTARPM) by combining

threshold autoregressive method with DNA optimization. It may be useful for the calibration

of the threshold autoregressive prediction model for nonlinear time series with prediction

precision improving and prediction uncertainty reducing. The paper entitled “Design of deep
belief networks for short-term prediction of drought index using data in the Huaihe River Basin” by J.

Chen et al. contributes a short-term drought prediction model based on deep belief networks

for predicting the time series at different time scales. Their prediction model has applied

to predict the real drought time series in the Huaihe River Basin, China. J.-L. Wu and P.-C.

Chang’s paper “A trend-based segmentation method and the support vector regression for financial
time series forecasting” presents a trend-based segmentation method and the support vector
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regression for financial time series forecasting. S.-S. Yang et al. in their paper entitled “New
optimal weight combination model for forecasting precipitation” introduced a new optimal weight

combination model to increase accuracies in precipitation forecasting. The present model,

which consists of three forecast submodels, namely, rank set pair analysis model, radical basis

function model, and autoregressive one, may significantly improve the forecast accuracy of

precipitation in terms of the error sum of squares in comparison with the single model of

rank set pair analysis, or radical basis function, or autoregressive system.
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We apply semigroup property of enhanced Chebyshev polynomials to present an anonymous
authentication protocol. This paper aims at improving security and reducing computational and
storage overhead. The proposed scheme not only has much lower computational complexity and
cost in the initialization phase but also allows the users to choose their passwords freely. Moreover,
it can provide revocation of lost or stolen smart card, which can resist man-in-the-middle attack
and off-line dictionary attack together with various known attacks.

1. Introduction

With rapid developments in limits and possibilities of communications and information

transmissions, there is a growing demand of authentication protocol, which has greatly

spurred research activities in authentication protocols’ study. In general, the server authen-

ticates the users by matching the user’s identity and password after establishing a secure

channel [1]. Since the server establishes a secure channel before asking identity/password

information, an attacker can open a connection to a server that does not respond when

identity/password information is inquired by the server, which results in the consumption

of the resources of the server. Moreover, the attacker can set up many connections and

consume all the resources of the server. However, this method is vulnerable to denial of

service (DoS) attack and cannot discriminate an impostor who fraudulently obtains access

privileges (e.g., user’s identity and password) from the real user. Later, Li and Hwang [2]
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proposed a biometrics-based remote user authentication scheme using smart cards. Soon,

Li et al. [3, 4] improved Li and Hwang’s scheme. There is no doubt that most existing

authentication protocols only achieve “heuristic” security, that is, the underlying hardness

assumptions of these protocols are not perfect. However, we discover the references [5–9],
which contain the detection of the DDOS attacks by consuming all, or mostly, the resources

of the server can be assured, providing a more hopeful line of investigation for us to future

study.

Later, Bellovin and Merritt [10] firstly presented a two-party password authenticated

key exchange (2PAKE) protocol which permits a user and a server to establish a session key

over an insecure channel to address the problem mentioned above. In their protocol, each

user just shares an easy-to-remember password with the trusted server. Regretfully, Patel [11]
pointed out that it was easy for an adversary to guess the passwords used for authentication

in Bellovin and Merritt’s protocol. In order to avoid these attacks, many 2PAKE protocols with

weak passwords for authentication have been presented by the researchers [12–18]. However,

in these 2PAKE protocols, every user has to share a different password with his/her peer. It

is usually rather inconvenient for applications in large-scale communication environments.

To surmount this weakness, three-party PAKE (3PAKE) protocols have been proposed in

[19–22]. Unlike 2PAKE protocols, 3PAKE protocol is a very practical mechanism to establish

secure session key through authenticating each other with a trusted server’s help. There are

two common weaknesses in these schemes as follows. (1) They needs more communications

rounds to reduce computational load. However, as early as in 1995, Gong pointed out that

the number of rounds is a key standard for weighing against the performance of a protocol.

(2) The sensitive table that stores the shared secret between the server and the designed

users will be an attractive target leading to potential server compromise. In 2008, Chen et

al. [23] proposed a round and computation-efficient three-party authenticated key exchange

protocol, which addressed the above mentioned problems. However, we find that their

scheme still exist following four drawbacks. (1) It has computational efficiency problems

in initialization phase. (2) User has no choice in choosing his password. (3) It cannot protect

user anonymity. (4) There is no provision for revocation of lost or stolen smart card, which is

susceptible to man-in-the-middle attack.

Therefore, in this paper, password-based anonymous authentication protocol defined

over enhanced Chebyshev polynomials is proposed. A number of outstanding mathemati-

cians and numerical analysts have said that Chebyshev polynomials are everywhere dense

in numerical analysis. There is scarcely any area of numerical analysis where Chebyshev

polynomials do not drop in like surprise visitors, and indeed there are now a number of

subjects in which these polynomials take a significant position in modern developments

[24]. One is taken on a journey which leads into all areas of numerical analysis by studying

Chebyshev polynomials. Moreover, due to the semigroup property of enhanced Chebyshev

polynomials, the well-known discrete logarithm problem and the Diffie-Hellman problem

are proved to hold in enhanced Chebyshev polynomials [25]. Thus, we apply semigroup

property of enhanced Chebyshev polynomials to present an anonymous authentication

protocol. Moreover, our proposed protocol has the following features.

(1) It has much lower computational complexity and cost in the initialization phase.

(2) It allows the users to choose their passwords freely.

(3) It can provide revocation of lost or stolen smart card, which can resist man-in-the-

middle attack.

(4) There is no need to find primitive elements, large prime, and even large number.
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The rest of this paper is organized as follows. Section 2 gives description of enhanced

Chebyshev polynomials and some hard problems based on them. Section 3 briefly reviews

Chen et al.’s protocol and describes its disadvantages. In Section 4, we apply semigroup

property of enhanced Chebyshev polynomials to design an anonymous authentication

protocol. We analyze the security of proposed scheme in Section 5, and computational

efficiency analysis is made in Section 6. Finally, we conclude this paper in Section 7.

2. Preliminaries

In this section, we review some basic definitions concerning enhanced Chebyshev polynomi-

als and some hard problems based on the enhanced Chebyshev polynomials [26].

Definition 2.1 (Chebyshev polynomials). The Chebyshev polynomials of degree n are defined

as

Tn(x) = cos(n × arc cos(x)), {x | −1 ≤ x ≤ 1}, (2.1)

The recurrent formulas are

Tn(x) = 2xTn−1(x) − Tn−2(x), (2.2)

where n ≥ 2, T0(x) = 1, and T1(x) = x.

The first few Chebyshev polynomials are

T2(x) = 2x2 − 1,

T3(x) = 4x3 − 3x,

T4(x) = 8x4 − 8x2 + 1.

(2.3)

It can be identified that Chebyshev polynomial has the following properties:

(1) semigroup property as

Tr(Ts(x))=cos r ∗ arc cos(cos(s ∗ arc cos(x)))=cos rs ∗ arc cos(x)=Ts(Tr(x))=Trs(x), (2.4)

(2) chaotic property,

When n > 1, Chebyshev polynomials map Tn(x) : [−1, 1] → [−1, 1] of degree n is a

chaotic map with its invariant density as

f∗(x) =
1

π
√

1 − x2
, (2.5)

for Lyapunov exponent λ = ln n > 0.
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Table 1: Some of the notations used in Chen et al.’s protocol.

Symbol Definition

IDA, IDB Identities of users A and B, respectively

IDS Identity of the authentication server S

p, q, g The large primes p and q, a generator g of group G with the order q

x, y The long-term key of S, and y = gx mod p

δA, δB Components of authentication information VA and VB

a, b Random number privately chosen by A and B, respectively

RA,RB Components of session key, where RA = ga mod p and RB = gb mod p

h(·) Collision-free one-way hash function

CXY Evidence generated by user X for user Y

Definition 2.2 (enhanced Chebyshev polynomials). In order to enhance the property of

the Chebyshev chaotic map, Zhang [27] proved that the semigroup property holds for

Chebyshev polynomials defined on interval (−∞,+∞). This paper uses the following

enhanced Chebyshev polynomials:

Tn(x) = 2xTn−1(x) − Tn−2(x) (mod N), (2.6)

where n ≥ 2, x ∈ (−∞,+∞), and N is a large prime number. Obviously,

Tr(Ts(x)) = Ts(Tr(x)) = Trs(x). (2.7)

So the semigroup property still holds and the enhanced Chebyshev polynomials also

commute under composition.

Definition 2.3 (the discrete logarithm problem (DLP)). DLP is explained by the following.

Given an element α, find the integer r, such that Tr(x) = α.

Definition 2.4 (the Diffie-Hellman problem (DHP)). DHP is explained by the following. Given

an element x, and the values of Tr(x), Ts(x), what is the value of Trs(x)?

3. Review of Chen et al.’s Protocol

This section reviews Chen et al.’s protocol (showed in Figure 1). Some of the notations used

in this protocol are defined in Table 1.

3.1. Initialization Phase

In this phase, A and B ought to register with S to be legal participants, and S should choose

issue secret keys, which will be used in the subsequent phase. Through taking A for an

example, S executes the following steps to authorize A:

(1) Randomly choose 1 ≤ δA < q and calculate VA = h(IDA, δA).

(2) Generate signature (eA, sA) as A’s self-verified token, where rA = gδA mod p, eA =
h(rA, IDA), and sA = (δA − xeA) mod q.
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User A User BVA VB Trusted serverS

Round 2

Round 1

Round 3

CA S = h(I DA ,I DB,TA ,RA ,VA )

W A = (CA S,TA ,RA ,∆A )
I DA , I DB,W A

I DA ,TA ,RA

CBS = h(I DB , I DA ,TB,RB,VB)
K A B = Tb(RA )
CBA = h(RA ,TA ,RB,K A B)
W B = (CBS,TB,RB,∆B)

I DB,CBA ,TB,RB I DB,I DA ,W B

K A B = Ta(RB)

Verify CBA

CA B = h(CBA ,TB,K A B)

Verify TB

V ′
A = h(I DA , ′

A ),V
′
B = h(I DB, ′

B)

Verify CA S

Verify CBS

CSA = h(CA S,TB,RB,V ′
A )

CSB = h(CBS,TA ,RA ,V ′
B)

VerifyCSA

VerifyTA

VerifyCSB

VerifyCA B

CSB

CSA

CA B

A = ga mod p

B = gb mod p

′
A = (sA − x · eA )(mod q)
′
B = (sB − x · eB)(mod q)

Figure 1: Authenticated key exchange phase in Chen et al.’s protocol.

(3) Store the authentication information (VA, (eA, sA)) into a smart card and then

deliver it to A in a secure way.

To test whether (eA, sA) is authorized by S, A retrieves r ′A as r ′A = gsA ·yeA mod p, and

then verifies h(r ′A, IDA)
?= eA.

Similarly, after B obtains the authorization information (VB, (eB, sB)) stored in the

smart card from S, he can ensure that whether (eB, sB) is valid by using the method

mentioned above.

3.2. Authentication key Exchange Phase

This phase aims to establish the session key SK with S’s help. It just needs three rounds to

achieve this goal.

Round 1:

A −→ S : (IDA, IDB,WA),

A −→ B : (IDA, TA, RA).
(3.1)
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(1) Randomly choose an integer a and compute RA = ga mod p, CAS =
h(IDA, IDB, TA, RA, VA), then transmits IDA, IDB and WA = (CAS, TA, RA, (eA, sA))
to S; where TA is the time stamp obtained by A from the local clock to ensure the

freshness of the message.

(2) A transmits IDA, TA and RA to B.

Round 2:

B −→ S : (IDB, IDA,WB),

B −→ A : (IDB, TB, RB, CBA).
(3.2)

After receiving the message from A, B does the following steps.

(1) Randomly choose an integer b and compute RB = gb mod p, CBS =
h(IDB, IDA, TB, RB, VB), and send WB = (CBS, TB, RB, (eB, sB)) to S, where TB is

the time stamp obtained by B from the local clock to ensure the freshness of the

message.

(2) Calculate the session key SK = (RA)
b mod p and then transmit CBA =

h(TA, RA, RB, SK) to A.

Round 3:

S −→ A : CSA,

S −→ B : CSB,

A −→ B : CAB.

(3.3)

In this round, S does the following steps.

(1) Verify whether TA is fresher than the one received in the last request. If so, apply

x to computing δ′A = (sA + xeA) mod q and V ′
A = h(IDA, δ

′
A), and then compute

C′
SA = h(IDA, IDB, TA, RA, V

′
A). In the following, test C′

AS

?= CAS to authenticate the

identity of A; if it holds, S calculates CSA = h(CAS, TB, RB, V
′
A) and transmits it to A.

(2) Test whether TB is fresher than the one received in the last request. If so, S

calculates V ′
B = h(IDB, δ

′
B) and computes C′

BS = H(IDA, IDB, TB, RB, V
′
B). Then,

check C′
BS

?= CBS to authenticate the identity of B; if it holds, S calculates CSB =
h(CBS, TA, RA, V

′
B) and transmits it to B.

(3) Independently, A tests whether (T − TA) is in a valid period, where T is the time

when the message transmitted from B after Round 2 was received. If so, A uses

the received RB to compute the session key SK′ = (RB)
a mod p. Then, it computes

C′
BA = h(TA, RA, RB, SK

′) and checks C′
BA

?= CBA to authenticate B; if it holds, A

computes CAB = h(CBA, TB, SK
′) and sends it to B.
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After this round, A tests whether (T ′ − TA) is in a valid period, where T ′ is the time

when CSA was received. If so, A calculates C′
SA = h(CAS, TB, RB, VA) and tests C′

SA

?= CSA to

verify the correctness of CSA. If it holds, A finishes this protocol.

Similarly, B tests if (T ′′ − TB) is in a valid period, where T ′′ is the time when CSB

was received. If so, B calculates C′
SB = h(CBS, TA, RA, VB) and tests C′

SB

?= CSB to verify the

correctness of CSB. If it holds, B completes this protocol.

3.3. Disadvantages of Chen et al.’s Protocol

In this section, we argue that Chen et al.’s scheme still has four disadvantages. The detailed

description of the weaknesses is as follows.

3.3.1. Computational E ciency Problem

In the initialization phase of Chen et al.’s protocol, S has to compute all the authenticated

information (δA, rA, eA, sA) forA and (δB, rB, eB, sB) for B. Server has to perform two modular

exponentiation operations, which are more expensive than other operations in Chen et al.’s

protocol. Hence, it has low efficiency in this phase.

3.3.2. Lack of User Friendliness

In Chen et al.’s scheme, the password is chosen by the server S without the consent of

A/B, thus, A/B can only passively accept the password from S. It is not practical for real

life applications, such as on-line banking and e-mail subscription. Moreover, δA/δB ∈ [1, q]
chosen by the server could be long and random (e.g., 160 bits), which might be difficult for a

registered user A/B to remember easily, and it is most likely that A/B may forget this long

and random password if he is not frequently using the system. Hence, Chen et al.’s scheme

has lack of user friendliness.

3.3.3. No Protecting User Anonymity

In authenticated key exchange phase of Chen et al.’s scheme, IDA, IDB are sent to S over

insecure channel in the authentication message: (IDA, IDB,WA), (IDB, IDA,WB). In certain

authentication scenarios, such as e-voting and secret online-order placement, it is fairly

crucial to protect the privacy of a user. Once an attacker sniffs the communication parties

involved in the authentication process, he can easily analyze the transaction being performed

by users. Hence, Chen et al.’s scheme fails to provide the user anonymity in the authentication

phase.

3.3.4. No Provision for Revocation of Lost or Stolen Smart Card

In case the smart card is lost or stolen, the attacker may impersonate the legal user using

the lost or stolen smart card, so there should be a mechanism to ensure that the system can

revoke the lost or stolen smart card to avoid the possible attacks. Providing for revocation

is also one of the requirements of smart card-based authentication protocols. By keeping
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A M B S

I DA ,TA ,RA

I DA , I DB,W A

I DA ,TA ,RM

I DB,I DA ,W B

I DB,TB,CBM ,RB

I DB,TB,CA M ,RM

C ′
SA

CA M

CM B

C ′
SB

CSA

CSB

Round 2

Round 1

Round 3

Figure 2: Man-in-the-middle attack in Chen et al.’s protocol.

record of valid card identifier of every registered user, the authentication system can tell

the valid card from the invalid one. Regretfully, Chen et al.’s scheme ignored this feature

and there is no mechanism to revoke the lost smart card. Moreover, the drawback would

become catastrophic if an attacker has got the lost smart card by accident and has revealed the

authentication message of a legal user by any means to login into the system for performing

secure transaction, such as on-line banking and e-commerce. Thus, Chen et al.’s scheme failed

to provide the important feature of smart card-based authentication for revoking the lost

smart cards without changing the user’s identities.

3.3.5. Man-in-the-Middle Attack

Due to Section 3.3.4, unqualified users can easily launch a man-in-the-middle attack when the

smart card is stolen. The steps of the attack is outlined in Figure 2 and explained as follows.

Suppose an adversary M had stolen the smart card from the legal user, then he can

obtain the authenticated values VA and VB. Let RM = gm mod p be M’s ephemeral public

key, andm ∈ z∗p is chosen byM. Then, he replacesCSA andCSB withC′
SA andC′

SB in Round 3.

The notation “���” denotes the transmitted message that is manipulated by M. The purpose

of M is to share a session key with A by posing as B and to share a session key with B by

posing as A. The specific process is as follows.

Round 1:

A −→ S : (IDA, IDB,WA),

A ��� M(B) : (IDA, TA, RA),

M(A) ��� B : (IDA, TA, RM).

(3.4)
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Round 2:

B −→ S : (IDB, IDA,WB),

B ��� M(A) : (IDB, TB, RB, CBM).

M(B) ��� A : (IDB, TB, RM,CMA).

(3.5)

When receiving the message from M(A), B calculates the session key with M(A), as

SKMB = gbm mod p, CBM = h(TA, RM,RB, SKMB), then M calculates the session key with

A as SKAM = gam mod p, CAM = h(TA, RM,RB, SKAM).

Round 3:

S ��� M(A) : CSA,

M(S) ��� A : C′
SA,

S ��� M(B) : CSB,

M(S) ��� B : C′
SB,

A ��� M(B) : CAM,

M(A) ��� B : CMB.

(3.6)

In this round, because M obtains the value VA, he can compute C′
SA =

h(CAS, TB, RM, VA) for mutual authentication withA; similarly,M can also use VB to calculate

C′
SB = h(CBS, TA, RM, VB) for mutual authentication with B.

When receiving the values C′
SA and C′

SB, A and B authenticate the server using their

own parameters. Then A computes CMB = h(CBM, TB, SKAM) for M(B), it confirms if CMB

is valid from its own knowledge. M calculates CMB = h(CMA, TB, SKMB) and sends it to B to

achieve session key agreement.

Finally, M has shared the session key SKAM = gam p with A and SKBM = gbm mod p

with B. In this case, the authenticate mechanism of the Chen et al.’s protocol does not help.

4. An Anonymous Authentication Protocol Using
Semiproperty of Enhanced Chebyshev Polynomials

To surmount serious latency security problems in the Chen et al.’s protocol, we apply

semigroup property of enhanced Chebyshev polynomials to designing a new anonymous

authentication protocol.

4.1. Notations

In the section, we describe some of the notations used in our protocol (Table 2).
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Table 2: Some of the notations used in our paper.

Symbol Definition

IDA, IDB Identities of users A and B, respectively

IDS Identity of the authentication server S

N The large prime N

x1, y, n The long-term key of S, and y = Tx1
(x)

x x is the seed of the enhanced Chebyshev polynomial

PA, PB Passwords of A and B, respectively

a, b Random large integer number chosen by A and B, respectively

RA,RB Components of session key, where RA = Ta(x) and RB = Tb(x)
H(·) Collision resistant secure one-way chaotic hash function

CXY Evidence generated by user X for user Y

4.2. Initialization Phase

In this phase, the users and the server need some intercommunication for user’s registration.

We take A for an example. To register with S to become a valid user A, A and S will

do the following steps.

(1) A → S: (DA, IDA)

A freely chooses an easy-to-remember password PA and identity IDA, then

computes DA = TPA(x) and sends (DA, IDA) to S.

(2) When receiving DA from A, S first tests if DA
?= DI . If DA = DI , S should ask A to

submit a different password.

(3) S → A: (ΔA,H(·))
Then, S computes ΔA = En(TPA(x)‖IDA), for convenience, S stores (ΔA,H(·)) into

a smart card and then delivers it to A face to face.

Of course, B registers with S in the same way.

4.3. Authentication Key Exchange Phase

This phase aims to establish a session key SK. To achieve this goal, A and B first compute

VA = H(TPA(y)) and VB = H(TPB(y)) using their own passwords and the public key of S

as their authentication information respectively. Note that VA, VB can be precomputed. This

phase also includes three rounds (shown phase in Figure 3) and the detailed descriptions are

as follows.

Round 1:

A −→ S : (IDA,ΔA,WA)

A −→ B : (ΔA, TA, RA).
(4.1)
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Round 2

Round 1

Round 3

User A User BVA VB

RA = Ta(X )

CA S = H (∆A ,TA ,RA ,VA )

W A = (CA S,TA ,RA ,∆A ) I DA ,∆A ,W A

Trusted serverS

∆A ,TA ,RA

RB = Tb(X ),CBS = H (∆B,TB,RB,VB)

K A B = Tb(RA ),CBA = H (RA ,TA ,RB,K A B)

W B = (CBS,TB,RB,∆B)

∆B,CBA ,TB,RB I DB,∆B,∆A ,W B

K A B = Ta(RB)

VerifyCBA

CA B = H (CBA ,TB,K A B) VerifyCA S VerifyCBS

CSA = H (CA S,TB,RB,V ′
A )

CSB = H (CBS,TA ,RA ,V ′
B)

VerifyCSA

VerifyTA

CA B
VerifyCSB

VerifyTA

VerifyCA B

CSB

CSA

D −1
n (∆A ) = D A 㐙IDA ,D −1

n (∆B) = D B㐙IDB

V ′
A = H (Tx1

(D A )),V ′
B = H (Tx1

(D B))

Figure 3: Authenticated key exchange phase in our proposed protocol.

(1) Calculates CAS = H(ΔA, TA, RA, VA) and WA = (CAS, TA, RA,ΔA), then transmits

ΔA and WA to S; where the meaning of TA is the same as that in the Chen et al.’s

protocol.

(2) A transmits ΔA, TA and RA to B.

Round 2:

B −→ S : (IDB,ΔA,ΔB,WB)

B −→ A : (ΔB, TB, RB, CBA).
(4.2)

On receiving the request transmitted from A, B does the following steps.

(1) B calculates CBS = H(ΔB, TB, RB, VB) and sends WB = (CBS, TB, RB,ΔB) to S; the

meaning of TB is the same as that in the Chen et al.’s protocol.

(2) B calculates the session key SK = Tb(RA) and transmits CBA = H(TA, RA, RB, SK)
to A.
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Round 3:

S −→ A : CSA,

S −→ B : CSB,

A −→ B : CAB.

(4.3)

In this round, S does the following steps.

(1) Verify if TA is in a valid time interval. If so, S decrypts ΔA,ΔB with his private key

n to reveal TPA(x)‖IDA and TPB(x)‖IDB. Then, S calculates V ′
A = H(Tx1

(DA)) and

computes C′
SA = H(ΔA, TA, RA, V

′
A). Finally, test C′

AS

?= CAS, if it holds, S calculates

CSA = H(CAS, TB, RB, V
′
A) and transmits it to A.

(2) Test whether TB is in a valid time interval. If so, S calculates V ′
B = H(Tx1

(DB)) and

computes C′
BS = H(ΔB, TB, RB, V

′
B). Then, he tests C′

BS

?= CBS, if it holds, S calculates

CSB = H(CBS, TA, RA, V
′
B), and transmits it to B.

(3) Independently, A tests if (T − TA) is in a valid period, where T is the time

when B received the message from S. If so, A calculates SK′ = Ta(RB) and

C′
BA = H(TA, RA, RB, SK

′); then, tests C′
BA

?= CBA; if it holds, A calculates CAB =
H(CBA, TB, SK

′) and sends it to B.

After this round, A tests if (T ′ − TA) is in a valid period, where T ′ is the time when CSA

was received. If so, A calculates C′
SA = H(CAS, TB, RB, VA) and tests C′

SA

?= CSA to verify the

correctness of CSA. If it holds, A finishes this protocol.

Similarly, B tests if (T ′′ − TB) is in a valid period, where T ′′ is the time when CSB

was received. If so, B calculates C′
SB = H(CBS, TA, RA, VB) and tests C′

SB

?= CSB to verify

the correctness of CSB. If it holds, B finishes this protocol.

5. Security Analysis

The enhanced scheme is a modified form of the Chen et al.’s scheme. Hence, we just discuss

the enhanced and some important security features of the proposed scheme instead of

discussing the security analysis that has been already shown in [23]. Before analyzing the

security properties, we stress the following two facts to prove security that authenticated

key agreement protocol should meet. (1) It is widely believed that there is no polynomial-

time algorithm to solve DLP and DHP based on enhanced Chebyshev polynomials with

nonnegligible probability. (2) The chaotic hash function has collision-free and irreversible

properties.

5.1. Securely Chosen and Update Password

In our proposed scheme, A/B is able to freely choose and change his password without

any hassle of contacting the server S. Any users except A/B cannot change or update the

password without knowing the corresponding valid IDA/IDB and PA/PB of the smart card

holder.
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5.2. Revocation of Smart Card

In our proposed scheme, if (A/B)’s smart card is stolen or lost, he can request the server S

to revoke his smart card for future use. S can revoke the smart card directly. If an adversary

who steals (A/B)’s smart card wants to derive PA from ΔA = En(TPA(x)‖IDA), this will be

impossible, because just S knows the secret key n, and he is faced with the discrete logarithm

problem (DLP) too. Hence, the old smart card becomes useless for future use.

5.3. The Proposed Protocol Can Resist Man-in-the-Middle Attack

Due to VA = H(TPA(y)) = H(Tx1
(DA)), if the adversary attempts to login to S, it needs

to derive x1/PA from y/ΔA. However, it is widely believed that there is no polynomial-

time algorithm to solve DLP based on enhanced Chebyshev polynomials with nonnegligible

probability. Moreover, because just S knows the secret key n, he even cannot obtain DA. So

the adversary cannot compute VA. Due to the same reason, the adversary cannot calculate VB
either, that is, our protocol can resist man-in-the-middle attack.

5.4. Protection of User Anonymity

The anonymity feature of users is that the real identity of user should be protected from being

revealed by any other entity except S. Our protocol can preserve the identity anonymity for

any user which can be explained as follows.

IDA is hidden in ΔA = En(TPA(x)‖IDA). Because just S knows the secret key n, even if

adversary can obtain ΔA from the stolen smart card, he still cannot decrypt ΔA.

5.5. The Proposed Protocol Can Provide Mutual Authentication

Similarly to Chen et al.’s scheme, we analyze this property from three aspects: authentications

among A, B, and S.

Case 1. A and B To authenticate A, S needs to suppose that they own the same session

key. In this protocol, S is responsible for confirming both the origin and integrity of the

received message in step (2) to help them authenticate each other. S ensures that the received

messages TA, RA, VA and TB, RB, VB are truly sent from A and B, respectively, and that no

modification has occurred. Meanwhile, S sends the respective evidence CSA and CSB for the

origin and the integrity of (TA, RA) and (TB, RB). Based on the premise that S is trustworthy,

A/B is convinced that the origin of (TB, RB)/(TA, RA) is B/A when the validity of CSA/CSB is

verified. As only A/B knows the secret a/b of RA/RB, the common session key is generated

by A/B as Ta(RB)/Tb(RA). Because the session key is only known by A/B, no one can forge a

valid CBA = H(TA, RA, RB, SK) or CAB = H(CBA, TB, SK
′). Therefore, mutual authentication

between A and B is achieved while the session key confirmation is guaranteed.

Case 2. A and S To achieve the mutual authentication between A and S, on the one hand, S

has to verify the validity of the evidenceCAS = H(ΔA, TA, RA, VA). On the other hand,Amust
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test the validity ofCSA = H(CAS, TB, RB, V
′
A) to authenticate S. These evidences are computed

with the common secret key. Because only A and S know the common secret key VA, where

VA equals V ′
A, no one can counterfeit the evidence. When validity of CAS and CSA is tested

by S and A, respectively, the integrity of the transmitted message from S that contains TA, RA

is confirmed by S and the integrity of evidence CSA from S is confirmed by A. Thus, mutual

authentication between A and S is achieved.

Case 3. B and S The analysis of the mutual authentication between B and S is done likewise.

Except B and S, no one knows the secret key VB. Therefore, mutual authentication between

B and S is achieved by verifying the validity of CBS = H(ΔB, TB, RB, VB) and CSB =
H(CBS, TA, RA, V

′
B), respectively.

5.6. The Proposed Protocol Can Resist Bergamo et al.’s Attack

In addition, because our protocol is based on semigroup property of enhanced Chebyshev

polynomials, we should consider Bergamo et al.’s attack [20]. Bergamo et al.’s attack is based

on the condition that an adversary can obtain the related elements x,N, Ta(x) and Tb(x). In

the proposed protocol, an attacker could get x and N easily, but they cannot obtain Ta(x)
and Tb(x), even though the attacker is a legal user. Besides, the proposed protocol utilizes the

enhanced Chebyshev polynomials, in which the periodicity of the cosine function is avoided

by extending the interval of x from (−1,+1) to (−∞,+∞). Therefore, the attacker have no way

to perform a successful attack using Bergamo et al.’s method.

5.7. The Proposed Protocol Can Resist Off-Line Dictionary Attack

In the off-line dictionary attack, the adversary can recode all transmitted messages in the

initialization phase and attempt to guess using A′s/B′s identities IDA/IDB and passwords

PA/PB from the recorded massages. An attacker tries to obtain identity and password

verification information from ΔA, he must guess n, PA, IDA correctly at the same time.

However, the probability of guessing the three numbers correctly in the same attempt is

nearly zero. Furthermore, even if the attacker guesses one parameter correctly, he or she

cannot verify it with any password verifier information. Hence, the proposed protocol is

secure against off-line dictionary attack.

According to the above analysis, we list the security properties’ comparison of Chen

et al.’s protocol and our protocol in Table 3.

6. Computational Efficiency Analysis

The proposed protocol is achieved through DLP and DHP problems based on enhanced

Chebyshev polynomials. It enjoys the following advantages. (1) In the initial phase, we take

A for example, S only needs to test DA
?= DI , where DI denotes the users’ component

of authentication information and computes ΔA. However, in Chen et al.’s protocol, S

has to compute (VA, rA, eA, sA). In a word, our protocol greatly reduces the computational

complexity and computational cost. Hence, our scheme is more efficient and practical. (2)
V ′
A, V

′
B can be precomputed off-line in our protocol, which improves the computational
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Table 3: Comparison of security properties.

Security properties Chen et al.’s protocol Our protocol

Anonymity No Yes

Man-in-the-middle attack No Yes

DoS attack Yes Yes

Mutual authentication among three parties Yes Yes

Perfect forward secrecy Yes Yes

Provision for revocation of lost or stolen smart card No Yes

Insider attack Yes Yes

User friendliness No Yes

Replay attack Yes Yes

Table 4: Comparison of computation overhead in initialization phase.

Chen et al.’s protocol Our protocol

Random number (A/B/S) 0/0/0 1/1/0

Symmetric encryption/decryption (A/B/S) 0/0/0 0/0/2

Modular exponentiation (A/B/S) 1/1/2 0/0/0

Hash operation (A/B/S) 1/1/4 1/1/2

Chebyshev polynomial computing (A/B/S) 0/0/0 1/1/0

efficiency and saves communication bandwidth. The detailed comparison is shown in

Table 4.

7. Conclusion

In this paper, we have applied semigroup property of enhanced Chebyshev polynomials

to present a novel authenticated key exchange protocol. To the best of our knowledge, it

is the first time to realize three-party authenticated key exchange protocol preserving user

anonymity with semigroup property of enhanced Chebyshev polynomials. First, we argued

that Chen et al.’s protocol has computational efficiency problem in initialization phase and

cannot protect user anonymity, user has no choice in choosing his password, and there

is no provision for revocation of lost or stolen smart card leading to man-in-the-middle

attack. To surmount these identified drawbacks, we have proposed an enhanced protocol to

reduce computational complexity and computational cost in initialization phase and improve

security. Hence, our proposed protocol is more efficient and practical. Furthermore, analysis

shows that our protocol can resist various kinds of attacks.
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In order to organically combine the minimum-energy frame with the significant properties
of multiwavelets, minimum-energy multiwavelet frames with arbitrary integer dilation factor
are studied. Firstly, we define the concept of minimum-energy multiwavelet frame with
arbitrary dilation factor and present its equivalent characterizations. Secondly, some necessary
conditions and sufficient conditions for minimum-energy multiwavelet frame are given. Thirdly,
the decomposition and reconstruction formulas of minimum-energy multiwavelet frame with
arbitrary integer dilation factor are deduced. Finally, we give several numerical examples based
on B-spline functions.

1. Introduction

Wavelets transform has been widely applied to information processing, image processing,

computer science, mathematical physics, engineering, and so on. As you all know, it is not

possible for any orthogonal scaling wavelet function with compact support to be symmetric,

except for the Haar wavelets. In 1993, Goodman and Lee [1] established the multiwavelet

theory by introducing the multiresolution analysis (MRA) with multiplicity r, and gave the

spline multiwavelet examples. Using the fractal interpolation technology, Geronimo et al. [2]
constructed the GHM multiwavelet which have short support, (anti)symmetry, orthogonality

and vanishing moment with order 2 in 1994. From then on, multiwavelet has been a hot

research area. In 1996, Chui and Lian [3] reconstructed the GHM multiwavelet without

using the fractal interpolation technology, and they gave the general method on constructing

the multiwavelet with short support, (anti)symmetry, and orthogonality. After that, Plonka

and Strela [4] used two-scale similarity transforms (TSTs) to raise the approximation order

of multiwavelet and gave the important conclusions of the two-scale matrix symbol’s
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factorizations and so on. And, by Lawton et al. [5], the construction of multiwavelet has been

transformed into matrix extension problem in 1996. The construction theory of multiwavelet

had a great development after Jiang [6, 7] putting forward a series of effective methods.

Whether wavelets or multiwavelet, they require that the integer shifts of the scaling function

form Riesz bases, orthogonal basis, or biorthogonal basis for its span space. And this will

cause some defects: (1) the computational complexity can be increased during the course

of decomposition and reconstruction; (2) the numerical instability can be caused during the

procedure of reconstructing original signal (3) in the biorthogonal case, the analysis filter

bank can not replaced by the synthetic filter bank, and vice verse.

Fortunately, besides orthogonal wavelets and multiwavelet minimum-energy frames

can effectively avoid the difficulty which is caused by different bases functions during the

course of decomposition and reconstruction, still use the same wavelets both for analysis

and synthesis. The theory of frames comes from signal processing firstly. It was introduced

by Duffin and Schaffer to deal with problems in nonharmonic Fourier series. But in a

long time after that, people did not pay enough attention to it. After Daubechies et al. [8]
defined affine frames (wavelets frames) by combining the theory of continuous wavelets

transforms and frames while wavelets theory was booming, people start to research frames

and its application again. Benedetto and Li [9] gave the definition of frame multiresolution

analysis (FMRA), and their work laid the foundation for other people’s further investigation.

Frames cannot only overcome the disadvantages of wavelets and multiwavelet, but also

increase redundancy properly, then the numerical computation become much more stable

using frames to reconstruct signal. With well time-frequency localization and shift invariance,

frames can be designed more easily than wavelets or multiwavelet. Nowadays frames have

been used widely in theoretical and applied domain [10–22], such as signal analysis, image

processing, numerical calculation, Banach space theory, Besov space theory, and so on.

In 2000, Chui and He [11] proposed the concept of minimum-energy wavelets frames.

The minimum-energy wavelets frames reduce the computational complexity, maintain the

numerical stability, and do not need to search dual frames in the decomposition and

reconstruction of functions (or signals). Therefore, many people pay a lot of attention

to the study of minimum-energy wavelets frames. Huang and Cheng [15] studied the

construction and characterizations of the minimum-energy with arbitrary integer dilation

factor. Gao and Cao [18] researched the structure of the minimum-energy wavelets frames

on the interval and its application on signal denoising systematically. Liang and Zhao [23]
studied the minimum-energy multiwavelet frames with dilation factor 2 and multiplicity

2 and gave a characterization and a necessary condition of minimum-energy multiwavelet

frames. Unfortunately, the authors did not give the sufficient conditions of minimum-energy

multiwavelet frames. In fact, people need to pay close attention to the existence of sufficient

conditions of minimum-energy wavelet frames in most cases. On the other hand B-spline

functions which are the convolution of Shannon wavelets [24–26]. It can be seen that also

Shannon wavelets are minimum-energy wavelets. In this paper, in order to organically

combine the minimum-energy frame with the significant properties of multiwavelet,

minimum-energy multiwavelet frames with arbitrary integer dilation factor are studied.

Firstly, we define the concept of minimum-energy multiwavelet frame with arbitrary dilation

factor and present its equivalent characterizations. Secondly, some necessary conditions

and sufficient conditions for minimum-energy multiwavelet frame are given; Thirdly, the

decomposition and reconstruction formulas of minimum-energy multiwavelet frame with

arbitrary integer dilation factor and the multiplicity r are deduced. Finally, we give several

numerical examples based on B-spline functions.



Mathematical Problems in Engineering 3

Let us now describe the organization of the material that as follows. Section 2

is preliminaries and basic definitions. Section 3 is main result. In Section 4, we give

the decomposition and reconstruction formulas of minimum-energy multiwavelet frame.

Section 5 is numerical examples.

2. Preliminaries and Basic Definitions

Throughout this paper, let Z, R, and C denote the set of integers, real numbers, and complex

numbers respectively; a ∈ Z with a � 2, ωj = cos(2jπ/a) + i sin(2jπ/a), j = 0, 1, . . . , a − 1.

A multiscaling function vector (refinable function vector) is a vector-valued function:

Φ =
(
φ1(x), . . . , φr(x)

)T
, φl(x) ∈ L2(R), l = 1, . . . , r, (2.1)

which satisfies a two-scale matrix refinement equation of the form:

Φ(x) =
∑
k∈Z

PkΦ(ax − k), x ∈ R, (2.2)

r is called the multiplicity of Φ, the integer a is said to be dilation factor. The recursion

coefficients {Pk}k∈Z
are r × r matrices.

The Fourier transform of the formula (2.2) is

Φ̂(ω) = P(z)Φ̂
(ω
a

)
, z = e−iω/a, (2.3)

where

P(z) =
1

a

∑
k∈Z

Pkz
k. (2.4)

P(z) is the symbol of the matrix sequence {Pk}k∈Z
.

The multiresolution analysis (MRA) with multiplicity r and dilation factor a generated

by Φ(x) is defined as

{
Vj

}
= span

{
φτ,j,k : 1 � τ � r, k ∈ Z, j ∈ Z

}
, (2.5)

where φτ,j,k = aj/2φτ(ajx−k), and the sequence of closed subspace of L2(R) has the following

properties:

(1) Vj ⊂ Vj+1, j ∈ Z.

(2)
⋃
j∈Z

Vj = L2(R),
⋂
j∈Z

Vj = {0};

(3) f(x) ∈ Vj ⇔ f(ax) ∈ Vj+1, for all j ∈ Z;

(4) f(x) ∈ Vj ⇔ f(x − a−jk) ∈ Vj , for all k, j ∈ Z;

(5) {φτ,0,k : 1 � τ � r, k ∈ Z} forms a Riesz basis of V0;
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Definition 2.1. A finite family vector-valued function Ψi = (ψi1, . . . , ψ
i
r)
T

, i = 1, . . . ,N generates

a multiwavelet frames for L2(R), if there exist constants 0 < A � B < ∞ such that for any

f(x) ∈ L2(R)

A
∥∥f∥∥2 �

N∑
i=1

r∑
τ=1

∑
j,k∈Z

∣∣∣〈f, ψiτ,j,k〉∣∣∣2
� B

∥∥f∥∥2
, (2.6)

where ψi
τ,j,k

= aj/2ψiτ(a
jx − k).

Definition 2.2. A nested subspace generated by a multiscaling vector-valued function

Φ(x) satisfies formula (2.5) and its additional conditions, then finite family vector-valued

function {Ψ1, . . . ,ΨN} generates a frame multiresolution analysis associated the vector-

valued function Φ(x), if the finite family Ψi = (ψi1, . . . , ψ
i
r)
T

, i = 1, . . . ,N satisfies the

formulation (2.6) with ψiτ ∈ V1, i = 1, . . . ,N; τ = 1, . . . , r.

Definition 2.3. Let Φ(x) = (φ1(x), . . . , φr(x))
T , with φ̂τ ∈ L∞(R) ∩ L2(R), τ = 1, . . . , r, Φ̂

continuous at 0 and Φ̂(0)/= 0, be a multiscaling vector-valued function that generates the

nested subspace {Vj}j∈Z in the sense of (2.5). Then a finite family vector-valued function

{Ψ1, . . . ,ΨN} ⊂ V1 is called a minimum-energy multiwavelet frames associated with Φ(x), if

for for all f ∈ L2(R)

r∑
τ=1

∑
k∈Z

∣∣〈f, φτ,1,k〉∣∣2 =
r∑
τ=1

∑
k∈Z

∣∣〈f, φτ,0,k〉∣∣2 +
N∑
i=1

r∑
τ=1

∑
k∈Z

∣∣∣〈f, ψiτ,0,k〉∣∣∣2
. (2.7)

Remark 2.4. By the Parseval identity, minimum-energy multiwavelet frames {Ψ1, . . . ,ΨN}
must be tight frames for L2(R) with frames bound equal to 1.

Remark 2.5. The formula (2.7) is equivalent to the following formulas:

r∑
τ=1

∑
k∈Z

〈
f, φτ,1,k

〉
φτ,1,k =

r∑
τ=1

∑
k∈Z

〈
f, φτ,0,k

〉
φτ,0,k +

N∑
i=1

r∑
τ=1

∑
k∈Z

〈
f, ψiτ,0,k

〉
ψiτ,0,k. (2.8)

The interpretation of minimum energy will be clarified later.

3. Main Result

In this section, we will give a complete characterization of minimum-energy multiwavelet

frames associated with some given multiscaling vector-valued function in term of their two-

scale symbols. Let Φ(x) = (φ1(x), . . . , φr(x))
T with φ̂τ ∈ L∞(R) ∩ L2(R), τ = 1, . . . , r, Φ̂

continuous at 0, and Φ̂(0)/= 0 be a multiscaling vector-valued function which satisfies (2.2)–
(2.5). Consider {Ψ1, . . . ,ΨN} ⊂ V1, then

Ψl(x) =
∑
k∈Z

Ql
kΦ(ax − k), (3.1)
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where {Ql
k
}
k∈Z

, l = 1, . . . ,N are r × r matrices. Using Fourier transform on (3.1), we can get

their symbols as follows:

Ql(z) =
1

a

∑
k∈Z

Ql
kz

k, l = 1, . . . ,N. (3.2)

With P(z), Ql(z), l = 1, . . . ,N, we formulate the (N + 1)r × ar block matrix as follows:

R(z) =

⎡⎢⎢⎢⎣
P(z) P(ω1z) · · · P(ωa−1z)
Q1(z) Q1(ω1z) · · · Q1(ωa−1z)

...
...

...

QN(z) QN(ω1z) · · · QN(ωa−1z)

⎤⎥⎥⎥⎦, (3.3)

and the R∗(z) denotes the complex conjugate of the transpose of R(z).
The following theorem presents the equivalent characterizations of the minimum-

energy multiwavelet frames with arbitrary integer dilation factor.

Theorem 3.1. Suppose that every element of the symbols, P(z), Ql(z), l = 1, . . . ,N, in (2.4) and
(3.2) is a Laurent polynomial, and the multiscaling vector-valued function Φ(x) associated with P(z)
generates a nested subspace {Vj}j∈Z. Then the following statements are equivalent:

(1) {Ψ1, . . . ,ΨN} is a minimum-energy multiwavelet frames associated with Φ(x):

(2)

R∗(z)R(z) = Iar for ∀|z| = 1; (3.4)

(3)

αml,ij = 0, ∀m, l ∈ Z; i, j = 1, . . . , r, (3.5)

where

αml,ij =
∑
k∈Z

r∑
τ=1

(
Pτi∗l−akP

τj

m−ak +
N∑
t=1

Qt,τi∗
l−akQ

t,τj

m−ak

)
− aδml,ij ,

δml,ij =

{
1, m = l, i = j,
0, else.

(3.6)

Proof. By using the two-scale relations (2.2) and (3.1) and notation αml,ij for for all f ∈ L2(R),
(2.8) can be written as

∑
l∈Z

∑
m∈Z

r∑
i=1

r∑
j=1

αml,ij
〈
f, φi(ax −m)

〉
φj(ax − l) = 0. (3.7)
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On the other hand, (3.4) can be reformulated as

P ∗(z)P(z) +
N∑
t=1

Q∗
t (z)Qt(z) = Ir ,

P ∗(z)P
(
ωjz

)
+

N∑
t=1

Q∗
t (z)Qt

(
ωjz

)
= 0r ,

j = 1, 2, . . . , a − 1; ∀|z| = 1,

(3.8)

and it is equivalent to

a−1∑
k=0

P ∗(ωkz)P(z) +
N∑
t=1

a−1∑
k=0

Q∗
t (ωkz)Qt(z) = Ir ,

(
P ∗(z) −

a−1∑
k=1

P ∗(ωkz)

)
P(z) +

N∑
t=1

(
Q∗
t (z) −

a−1∑
k=1

Q∗
t (ωkz)

)
Qt(z) = Ir ,(

a−1∑
k=0

P ∗(ωkz) − 2P ∗(ωlz)

)
P(z) +

N∑
t=1

(
a−1∑
k=0

Q∗
t (ωkz) − 2Q∗

t (ωlz)

)
Qt(z) = Ir ,

l = 1, 2, . . . , a − 1; ∀|z| = 1.

(3.9)

With |z| = 1, zk = z−k, ωk
l
= ωl

k
= ωkl, and

a−1∑
l=0

ωk
l =

a−1∑
l=0

ωl
k =

{
0 ωk /= 1

a ωk = 1,
(3.10)

the formulation (3.9) is equivalent to

∑
k∈Z

P ∗
−akz

akP(z) +
N∑
t=1

∑
k∈Z

Qt∗
−akz

akQt(z) = Ir ,

(
a−1∑
l=1

∑
k∈Z

P ∗
l−akz

ak−l
)
P(z) +

N∑
t=1

(
a−1∑
l=1

∑
k∈Z

Qt∗
l−akz

ak−l
)
Qt(z) = (a − 1)Ir ,

(
a−1∑
l=1

e−(2slπ/a)i
∑
k∈Z

P ∗
l−akz

ak−l
)
P(z) +

N∑
t=1

(
a−1∑
l=1

e−(2slπ/a)i
∑
k∈Z

Qt∗
l−akz

ak−l
)
Qt(z) = −Ir ,

s = 1, 2, . . . , a − 1; ∀|z| = 1.

(3.11)
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Using the properties of roots of unity, the Vandermonde matrix and Cramer’s rule, the

above equation is equivalent to

∑
k∈Z

P ∗
−akz

akP(z) +
N∑
t=1

∑
k∈Z

Qt∗
−akz

akQt(z) = Ir ,

∑
k∈Z

P ∗
1−akz

ak−1P(z) +
N∑
t=1

∑
k∈Z

Qt∗
1−akz

ak−1Qt(z) = Ir ,

...

∑
k∈Z

P ∗
a−1−akz

ak−a+1P(z) +
N∑
t=1

∑
k∈Z

Qt∗
a−1−akz

ak−a+1Qt(z) = Ir .

(3.12)

We multiply the identities in (3.12) by Φ̂(ω/a)zl, l = 0, 1, . . . , a − 1, respectively, where

z = e−iω/a, to get

∑
k

{
P ∗
l−akz

akP(z)Φ̂
(ω
a

)
+

N∑
t=1

Qt∗
l−akz

akQt(z)Φ̂
(ω
a

)}
= Φ̂

(ω
a

)
zl, l = 0, . . . , a − 1. (3.13)

Hence, (3.12) is equivalent to

∑
k

{
P ∗
l−akz

akΦ̂(ω) +
N∑
ti=1

Qt∗
l−akz

akΨ̂t(ω)

}
= Φ̂

(ω
a

)
e−ilω/a, l = 0, . . . , a − 1 (3.14)

or

∑
k

{
P ∗
l−akz

akΦ(x − k) +
N∑
t=1

Qt∗
l−akz

akΨt(x − k)
}

= aΦ(ax − l), l = 0, . . . , a − 1, (3.15)

which can be reformulated as

∑
k

{
P ∗
l−akz

akΦ(x − k) +
N∑
t=1

Qt∗
l−akz

akΨt(x − k)
}

= aΦ(ax − l). (3.16)

By using the two-scaling relations (2.2) and (3.1), we can rewrite (3.16) as

∑
m

a∑
j=1

αml,ijφj(ax −m) = 0, i = 1, . . . , r; ∀l ∈ Z. (3.17)

In conclusion, the proof of Theorem 3.1 reduces to the proof of the equivalence of (3.5),
(3.7), and (3.17).
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It is obvious that (3.5)⇒(3.17)⇒(3.7). To show (3.7)⇒(3.5), let f ∈ L2(R) be any

compactly supported function. By using the properties that for every fixedm, αml,ij = 0 expect

for finitely many l, i, j, then the functional

βlj
(
f
)
=

∑
m

r∑
i=1

αml,ij
〈
f, φi(ax −m)

〉
(3.18)

just has finite nonzero for l ∈ Z, j = 1, . . . , r.

Using the property of Fourier transform, we obtain

∑
l

r∑
j=1

βlj
(
f
)
φ̂j(ω)e−ilω/a = 0. (3.19)

Since φ̂l(ω) is nontrivial function, then βlj(f) = 0, l ∈ Z, j = 1, . . . , r, in other words, we have

〈
f,

∑
m

r∑
i=1

αml,ijφi(ax −m)

〉
= 0, l ∈ Z, j = 1, . . . , r. (3.20)

Then the series in the above equation is a finite sum and hence represents a compactly

supported function in L2(R). By choosing f to be this function, it follows that

∑
m

r∑
i=1

αml,ijφi(ax −m) = 0, (3.21)

which implies that the trigonometric polynomial
∑

m

∑r
i=1 αml,ij φ̂i(ω)e

−imω is identically equal

to 0 so that αml,ij = 0, for all m, l ∈ Z; i, j = 1, . . . , r.

We complete the proof of Theorem 3.1 because the set of compactly supported

functions is dense in L2(R).

Theorem 3.1 characterizes the necessary and sufficient condition for the existence of

the minimum-energy multiwavelet frames associated with Φ. However it is not a good choice

to use this theorem to construct the minimum-energy multiwavelet frames. For convenience,

we need to present some sufficient conditions in terms of the symbols.

In this paper, we just discuss the minimum-energy frames with compact support, that

is, every element of symbols is Laurent polynomial.

Theorem 3.2. A compactly supported refinable vector-valued function Φ(x) = (φ1(x), . . . , φr(x))
T ,

with Φ̂ continuous at 0 and Φ̂(0)/= 0. Let {Ψ1, . . . ,ΨN} be the minimum-energy multiwavelet frames
associated with it, then

r∑
i=1

∣∣pij(ωlz)
∣∣2 � 1 ∀|z| = 1, 1 � j � r, 0 � l � a − 1, (3.22)

a−1∑
l=0

r∑
j=1

∣∣pij(ωlz)
∣∣2 � 1 ∀|z| = 1, 1 � i � r. (3.23)
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Proof. Using Theorem 3.1, it is clear to show that the l2-norm of every row vector of the

symbol for Φ is less than 1, in other words, (3.22) is valid. In order to prove (3.23), let i = 1.

First, we set

f(z) =
[
p11(z) · · · p1r(z) · · · p11(ωa−1z) · · · p1r(ωa−1z)

]
, (3.24)

and the rest of R(z) removed f(z) as F(z). Then we can reformulate (3.4) as

f(z)∗f(z) + F(z)∗F(z) = Iar , (3.25)

or equivalently, F(z)∗F(z) = Iar−f(z)∗f(z), which is a nonnegative definite Hermitian matrix

for |z| = 1 so that

det
(
Iar − f(z)∗f(z)

)
� 0 ∀|z| = 1, (3.26)

and this gives

a−1∑
l=0

r∑
j=1

∣∣p1j(ωlz)
∣∣2 � 1 ∀|z| = 1. (3.27)

In fact, we have

(
Iar f(z)∗

f(z) 1

)(
Iar −f(z)∗

−f(z) 1

)
=

(
Iar − f(z)∗f(z) 0

0 1 − f(z)f(z)∗
)
,

det

((
Iar f(z)∗

f(z) 1

))
= det

((
Iar f(z)∗

0 1 − f(z)f(z)∗
))

,

det

((
Iar −f(z)∗

−f(z) 1

))
= det

((
Iar −f(z)∗
0 1 − f(z)f(z)∗

))
,

(3.28)

then

det
(
Iar − f(z)∗f(z)

)(
1 − f(z)f(z)∗) =

(
1 − f(z)f(z)∗)2

, (3.29)

and it gives 1 − f(z)f(z)∗ � 0, for all |z| = 1, that is,

a−1∑
l=0

r∑
j=1

∣∣pij(ωlz)
∣∣2 � 1 ∀|z| = 1, 1 � i � r. (3.30)

The proof of Theorem 3.2 is completed.

Remark 3.3. By the proof of Theorem 3.2, we know that the restriction in Theorem 3.2 on the

two-scale symbol P(z) of a refinable vector-valued function Φ(x) is a necessary condition for
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the existence of a minimum-energy frames associated with Φ(x) via the rectangular unitary

matrix extension approach, even if Φ(x) is not compactly supported.

Remark 3.4. For a certain compactly supported refinable vector-valued function, it cannot

exist in minimum-energy frames.

We write P(z), Qj(z), j = 1, . . . ,N in their polyphase forms:

P(z) =
√
a

a

(
P1(za) + zP2(za) + · · · + za−1Pa(za)

)
, (3.31)

Qj(z) =
√
a

a

(
Qj1(za) + zQj2(za) + · · · + za−1Qja(za)

)
, j = 1, . . . ,N, (3.32)

where Pi(z), Qij(z), i = 1, . . . , a; j = 1, . . . ,N are r × r matrices and their every element is

Laurent polynomial. Observe that

R(z)
√
a

a

⎡⎢⎢⎢⎢⎣
Ir z−1Ir · · · z1−aIr
Ir (ω1z)−1Ir · · · (ω1z)1−aIr
...

...
...

Ir (ωa−1z)−1Ir · · · (ωa−1z)1−aIr

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
P1(za) P2(za) · · · Pa(za)
Q11(za) Q12(za) · · · Q1a(za)

...
...

...

QN1(za) QN2(za) · · · QNa(za)

⎤⎥⎥⎥⎦. (3.33)

Therefore, we have

a

⎡⎢⎢⎢⎣
P1(za) P2(za) · · · Pa(za)
Q11(za) Q12(za) · · · Q1a(za)

...
...

...

QN1(za) QN2(za) · · · QNa(za)

⎤⎥⎥⎥⎦
∗⎡⎢⎢⎢⎣

P1(za) P2(za) · · · Pa(za)
Q11(za) Q12(za) · · · Q1a(za)

...
...

...

QN1(za) QN2(za) · · · QNa(za)

⎤⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎣
Ir z−1Ir · · · z1−aIr
Ir (ω1z)−1Ir · · · (ω1z)1−aIr
...

...
...

Ir (ωa−1z)−1Ir · · · (ωa−1z)1−aIr

⎤⎥⎥⎥⎥⎦
∗

R(z)∗R(z)

⎡⎢⎢⎢⎢⎣
Ir z−1Ir · · · z1−aIr
Ir (ω1z)−1Ir · · · (ω1z)1−aIr
...

...
...

Ir (ωa−1z)−1Ir · · · (ωa−1z)1−aIr

⎤⎥⎥⎥⎥⎦,
(3.34)

and it follows from (3.4), that

⎡⎢⎢⎢⎣
P1(za) P2(za) · · · Pa(za)
Q11(za) Q12(za) · · · Q1a(za)

...
...

...

QN1(za) QN2(za) · · · QNa(za)

⎤⎥⎥⎥⎦
∗⎡⎢⎢⎢⎣

P1(za) P2(za) · · · Pa(za)
Q11(za) Q12(za) · · · Q1a(za)

...
...

...

QN1(za) QN2(za) · · · QNa(za)

⎤⎥⎥⎥⎦ = Iar , ∀|z| = 1.

(3.35)

And it is easy to obtain (3.35) from (3.4).
For convenience, we denote za = u. Next, we present some theorems to give several

sufficient conditions for existence of minimum-energy multiwavelet frames.



Mathematical Problems in Engineering 11

Theorem 3.5. A compactly supported vector-valued function Φ(x) = (φ1(x), . . . , φr(x))
T with Φ̂

continuous at 0 and Φ̂(0)/= 0, its symbol P(z) satisfies

r∑
i=1

a−1∑
l=0

r∑
j=1

∣∣pij(ωlz)
∣∣ < 1, ∀|z| = 1. (3.36)

Then there exist minimum-energy multiwavelet frames associated with Φ.

Proof. Let Pj(z), j = 1, . . . , a be the polynomial components of P(z), that is,

P(z) =
√
a

a

(
P1(za) + zP2(za) + · · · + za−1Pa(za)

)
. (3.37)

Using (3.34) and (3.35), we can get

r∑
i=1

a∑
l=1

r∑
j=1

∣∣∣pijl (u)∣∣∣2
< 1. (3.38)

Then we can find r real numbers x1, x2, . . . , xr , with

r∑
i=1

xi = 1,
a∑
l=1

r∑
j=1

∣∣∣pijl (u)∣∣∣2
< xi, 1 � i � r. (3.39)

By the Riesz lemma [27, Lemma 6.13], we can find Laurent polynomials Pia+1(z), i = 1, . . . , r

satisfying

a∑
l=1

r∑
j=1

∣∣∣pijl (u)∣∣∣2
+
∣∣∣pia+1(u)

∣∣∣2
= xi, 1 � i � r. (3.40)

For every i ∈ {1, . . . , r}, using the method in the reference [15, Theorem 3] on the unit

vector

1√
xi

(
Pi11 (z) · · · Pir1 (z) · · · Pi1a (z) · · · Pira (z) Pia+1(z)

)
, (3.41)

we can get a matrix

R̃i(z) =
1√
xi

⎛⎜⎜⎜⎜⎝
Pi11 (z) · · · Pir1 (z) · · · Pi1a (z) · · · Pira (z) Pia+1(z)

Qi1
11(z) · · · Qir

11(z) · · · Qi1
1a(z) · · · Qir

1a(z) Qi
1,a+1(z)

· · · · · · · · · · · ·
Qi1
a1(z) · · · Qar

11(z) · · · Qi1
aa(z) · · · Qir

aa(z) Qi
a,a+1(z)

⎞⎟⎟⎟⎟⎠, (3.42)

which satisfies R̃i(z)∗R̃i(z) = Iar+1.
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Therefor, the block matrix

R̃(z) =

⎛⎜⎜⎜⎜⎝
√
x1R̃

1(z)√
x2R̃

2(z)
...√

xaR̃
a(z)

⎞⎟⎟⎟⎟⎠ (3.43)

satisfies R̃(z)∗R̃(z) = Iar+1.

We can get matrix R(z) which satisfies R(z)∗R(z) = Iar , after adjusting the rows of

R̃(z) and removing the last column of it, and the r rows in the front of matrix R(z) are the

polynomial components of the symbol P(z).
Then we complete proof of Theorem 3.5 using the formulas (3.34), (3.32), and

Theorem 3.1.

Theorem 3.5 requests the sum of l2-norm for every row in the matrix symbol

P(z) associated with the vector-valued function Φ. Then we can find a minimum-energy

multiwavelet frames associated with the function using the theorem. The condition in

Theorem 3.5 is too stringent compared with the sufficient conditions in Theorem 3.2. We can

get the following theorem by strengthening the structure of the matrix symbol P(z).

Theorem 3.6. Let Φ(x) = (φ1(x), . . . , φr(x))
T with Φ̂ continuous at 0 and Φ̂(0)/= 0 a compactly

supported multiscaling vector-valued function. If the block matrix

[
P(z) P(ω1z) · · · P(ωa−1z)

]
(3.44)

satisfies standard orthogonal by row, then there exist a minimum-energy multiwavelet frames associ-
ated with the function Φ.

Proof. Let Pj(z), j = 1, . . . , a are the polynomial components of P(z), that is,

P(z) =
√
a

a

(
P1(za) + zP2(za) + · · · + za−1Pa(za)

)
, (3.45)

with (3.34) and (3.35), we can know that the block matrix

N(u) =
[
P1(u) P2(u) · · · Pa(u)

]
r×ar (3.46)

satisfies standard orthogonal by row.

Now, we use the method in the reference [15, Theorem 3] to deal with the first unit

row vector N1(u) in the matrix N(u). And, we can find a paraunitary matrix H1(u) which

satisfies N1(u)H1(u) = e1 = (1, 0, . . . , 0)ar and

N(u)H1(u) =

(
1

Ñ(u)

)
, (3.47)

with Ñ(u) also a matrix standard orthogonal by row.
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By mathematical induction, there are r paraunitary matrices H1(u), . . . ,Hr(u) satis-

fying

N(u)H1(u) · · ·Ha(u) =

⎛⎜⎝1 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...

0 · · · 1 0 · · · 0

⎞⎟⎠
r×ar

, (3.48)

then the matrix N(u) is equivalent to the front r rows in the paraunitary matrix

H1(u)
∗H2(u)

∗ · · ·Ha(u)
∗.

Using the formulation (3.34), (3.35), and Theorem 3.1, we completed the proof of this

theorem.

Theorem 3.6 requests that the multiscaling vector-valued function’s symbol P(z)
satisfies standard orthogonal by row. This means the l2-norm of every row in P(z) is 1. If

the l2-norm of every row in P(z) is less than 1 strictly, and we can find a matrix Pa+1(u) to

make the block matrix

[
P1(u) P2(u) · · · Pa(u) Pa+1(u)

]
(3.49)

satisfy standard orthogonal by row, then there exist minimum-energy multiwavelet frames

associated with the function Φ.

Corollary 3.7. Let Φ(x) = (φ1(x), . . . , φr(x))
T with Φ̂ continuous at 0 and Φ̂(0)/= 0 a compactly

supported multiscaling vector-valued function. If the l2-norm of every row in P(z) is less than 1
strictly, that is,

a−1∑
l=0

r∑
j=1

∣∣pij(ωlz)
∣∣2
< 1, ∀|z| = 1, 1 � i � r, (3.50)

and there exists a matrix Pa+1(u) to make (3.49) satisfy standard orthogonal by row, then there exist
minimum-energy multiwavelet frames associated with the function Φ.

By Theorem 3.1, if we can find some row vectors α1(z), . . . , αn(z) with multiplicity

ar and the matrix in (3.3) formed by the vectors and the symbol of Φ satisfies standard

orthogonal by column, there exist a minimum-energy multiwavelet frames associated with

Φ, and vice versa. However, the number of columns in the symbol of Φ is so larger, that it

is not easy to find the frames using Theorem 3.1. Corollary 3.7 requests some column vectors

β1(u), . . . , βm(u) with multiplicity r and the matrix in (3.49) formed by the vectors and the

polynomial components of P(z) satisfies standard orthogonal by row, then we can find a

minimum-energy frames associated with Φ. Obviously, the problem is vastly simplified.

For some multiscaling vector-valued function with small multiplicity which satisfies

the conditions in Theorem 3.2, the matrix Pa+1(u) that makes the block matrix in (3.49)
satisfied standard orthogonal by column can be found using the method of undetermined

coefficients. We will give some examples later.
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4. Decomposition and Reconstruction Formulas of
Minimum-Energy Multiwavelet Frames

Suppose the multiscaling vector-valued function Φ has an associated minimum-energy

multiwavelet frames {Ψ1, . . . ,ΨN}. Now, we consider the projection operators Pj of L2(R)
onto the nested subspace Vj defined by

Pjf :=
r∑
τ=1

∑
k∈Z

〈
f, φτ,j,k

〉
φτ,j,k. (4.1)

Then the formula (2.8) can be rewritten as

Pj+1f − Pjf :=
N∑
i=1

r∑
τ=1

∑
k∈Z

〈
f, ψiτ,j,k

〉
ψiτ,j,k. (4.2)

In other words, the error term gj = Pj+1f − Pjf between consecutive projections is given by

the frame expansion:

gj =
N∑
i=1

r∑
τ=1

∑
k∈Z

〈
f, ψiτ,j,k

〉
ψiτ,j,k. (4.3)

Suppose that the error term gj has other expansion in terms of the frames {Ψ1, . . . ,ΨN},

that is,

gj =
N∑
i=1

r∑
τ=1

∑
k∈Z

cτ,j,kψ
i
τ,j,k. (4.4)

Then by using both (4.3) and (4.4), we have

〈
gj , f

〉
=

N∑
i=1

r∑
τ=1

∑
k∈Z

∣∣∣〈f, ψiτ,j,k〉∣∣∣2
=

N∑
i=1

r∑
τ=1

∑
k∈Z

cτ,j,k
〈
f, ψi

τ,j,k

〉
, (4.5)

and this derives

0 �
N∑
i=1

r∑
τ=1

∑
k∈Z

∣∣∣cτ,j,k − 〈
f, ψiτ,j,k

〉∣∣∣2

=
N∑
i=1

r∑
τ=1

∑
k∈Z

∣∣cτ,j,k∣∣2 − 2
N∑
i=1

r∑
τ=1

∑
k∈Z

cτ,j,k
〈
f, ψi

τ,j,k

〉
+

N∑
i=1

r∑
τ=1

∑
k∈Z

∣∣∣〈f, ψiτ,j,k〉∣∣∣2

=
N∑
i=1

r∑
τ=1

∑
k∈Z

∣∣cτ,j,k∣∣2 −
N∑
i=1

r∑
τ=1

∑
k∈Z

∣∣∣〈f, ψiτ,j,k〉∣∣∣2
.

(4.6)
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This inequality means that the coefficients of the error term gj in (4.3) have minimal

l2-norm among all sequences {cτ,j,k} which satisfy (4.4).
We next discuss minimum-energy multiwavelet frames decomposition and recon-

struction. For any f ∈ L2(R), define the vector coefficients as follows:

cj,k :=
〈
f,Φj,k

〉
, dj,k :=

〈
f,Ψi

j,k

〉
i = 1, . . . ,N. (4.7)

The inner product of f with vector-valued Φj,k, Ψi
j,k

, i = 1, . . . ,N is a vector, its every

component is the inner product of f with the corresponding component of Φj,k, Ψi
j,k

, i =
1, . . . ,N.

(1) Decomposition Algorithm

suppose the vector coefficients {cj+1,l : l ∈ Z} are known. By the two-scale relations (2.2) and

(3.1), we have

Φj,l(x) =
1√
a

∑
k∈Z

Pk−alΦj+1,k(x), Ψi
j,l(x) =

1√
a

∑
k∈Z

Qi
k−alΨ

i
j+1,k(x), i = 1, . . . ,N. (4.8)

Then, the decomposition algorithm is given as

cj,l =
1√
a

∑
k∈Z

Pk−alcj+1,k, dij,l =
1√
a

∑
k∈Z

Qi
k−ald

i
j+1,k, i = 1, . . . ,N. (4.9)

(2) Reconstruction Algorithm

from (3.16), it follow that

Φj+1,l(x) =
1√
a

∑
k

{
P ∗
l−akΦj,k(x) +

N∑
i=1

Qi∗
l−akΨ

i
j,k(x)

}
. (4.10)

Taking the inner products on both sides of this equality, we get

cj+1,l =
1√
a

∑
k

{
P ∗
l−akcj,k +

N∑
i=1

Qi∗
l−akd

i
j,k

}
. (4.11)

5. Numerical Examples

By Theorem 3.6, the orthogonal multiwavelet always have minimum-energy multiwavelet

frames associated with them, for example, DGHM multiwavelet and Chui-Lian multiwavelet.

These examples are trivial. In this section, we will construct some minimum-energy

multiwavelet frames in general sense.
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It is well known that the mth-order cardinal B-spline Na
m(x) with dilation factor a has

the two-scale relation as follows:

N̂a
m(ω) = P

a
m(z)N̂

a
m

(ω
a

)
, Pam(z) =

(
1 + z + · · · + za−1

a

)m

, z = e−iω/a. (5.1)

In addition, if a scale wavelet φ(x) satisfies the refinable function

φ(x) =
k1∑
k=k0

pkφ(ax − k), (5.2)

and let Φ(x) = (φ(x), φ(x − 1), . . . , φ(x − r + 1))T , then the vector-valued function Φ satisfies

(2.2) with some matrixes {Pk}.

Below, upon these conclusions, using Theorem 3.5 and Corollary 3.7 in Section 3, the

minimum-energy multiwavelet frames be presented with the dilation factors a = 2, a = 3,

a = 4, respectively.

5.1. a = 2

Example 5.1. With a = 2, the symbol of the B-spline N2
2(x) is

P 2
2 (z) =

1

4
+

1

2
z +

1

4
z2. (5.3)

Take φ(x) =N2
2(x), and the support of this function is [0, 2]. The function satisfies

φ(x) =
1

4
φ(2x) +

1

2
φ(2x − 1) +

1

4
φ(2x − 2). (5.4)

Let Φ(x) = (φ(x), φ(x − 1))T , and

Φ(x) =

⎛⎜⎜⎝
1

2

1

2

0 0

⎞⎟⎟⎠Φ(2x) +

⎛⎜⎜⎝
1

2

1

2

0 0

⎞⎟⎟⎠Φ(2x − 1) +

⎛⎝0 0
1

2

1

2

⎞⎠Φ(2x − 2) +

⎛⎝0 0
1

2

1

2

⎞⎠Φ(2x − 3).

(5.5)

The coefficient matrixes in (5.5) are not unique.

And the symbol of Φ has polyphase components as follows:

P1(u) = P2(u) =
√

2

2

⎛⎜⎝
⎛⎜⎝1

2

1

2

0 0

⎞⎟⎠ + u

⎛⎜⎝0 0

1

2

1

2

⎞⎟⎠
⎞⎟⎠. (5.6)
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Take

P3(u) =
√

2

2

⎛⎜⎜⎝
⎛⎜⎝
√

2

2

√
2

2

0 0

⎞⎟⎠ + u

⎛⎜⎜⎝
0 0

−
√

2

2
−
√

2

2

⎞⎟⎟⎠
⎞⎟⎟⎠, (5.7)

which satisfies

P1(u)P1(u)∗ + P2(u)P2(u)∗ + P3(u)P3(u)∗ = I2. (5.8)

Using Theorem 3.5, we can get matrix the following:

C(u) =
√

2

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

2

1

2

1

2

1

2

u

2

u

2

u

2

u

2

−1 0 1 0

0 −1 0 1

−1

2

1

2
−1

2

1

2

−u
2

u

2
−u

2

u

2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (5.9)

which satisfy the formula (3.35). Then we take symbols as

Q1(z) =
1

2

((−1 0

0 −1

)
+ z

(
1 0

0 1

))
,

Q2(z) =
1

2

⎛⎜⎝
⎛⎜⎝−1

2

1

2

0 0

⎞⎟⎠ + z

⎛⎜⎝−1

2

1

2

0 0

⎞⎟⎠ + z2

⎛⎜⎝ 0 0

−1

2

1

2

⎞⎟⎠ + z3

⎛⎜⎝ 0 0

−1

2

1

2

⎞⎟⎠
⎞⎟⎠.

(5.10)

The graphs of Φ and its minimum-energy frames are shown in Figure 1.

We may discover from Figure 1 that every component of minimum-energy frames is

(anti)symmetrical.

Example 5.2. With a = 2, the symbol of the B-spline N2
3(x) is

P 2
3 (z) =

1

8
+

3

8
z +

3

8
z2 +

1

8
z3. (5.11)
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Take φ(x) =N2
3(x), and the support of this function is [0, 3].

(1) Let Φ(x) = (φ(x), φ(x − 1))T , and

Φ(x) =

⎛⎜⎝1

4

1

4

0 0

⎞⎟⎠Φ(2x) +

⎛⎜⎝1

2

1

2

0 0

⎞⎟⎠Φ(2x − 1) +

⎛⎜⎜⎝
1

4

1

4

1

4

1

4

⎞⎟⎟⎠Φ(2x − 2)

+

⎛⎜⎝0 0

1

2

1

2

⎞⎟⎠Φ(2x − 3) +

⎛⎜⎝0 0

1

4

1

4

⎞⎟⎠Φ(2x − 4).

(5.12)

The symbol of Φ has polyphase components as follows:

P1(u) =

√
2

2

⎛⎜⎜⎝
⎛⎜⎝1

4

1

4

0 0

⎞⎟⎠ + u

⎛⎜⎜⎝
1

4

1

4

1

4

1

4

⎞⎟⎟⎠ + u2

⎛⎜⎝0 0

1

4

1

4

⎞⎟⎠
⎞⎟⎟⎠,

P2(u) =
√

2

2

⎛⎜⎝
⎛⎜⎝1

2

1

2

0 0

⎞⎟⎠ + u

⎛⎜⎝0 0

1

2

1

2

⎞⎟⎠
⎞⎟⎠.

(5.13)

Take

P3(u) =

⎛⎜⎜⎝ −
√

2

4
−
√

2

4
u −

√
2

2
−1

2
+
u

2
0√

2

4
u +

√
2

4
u2

√
2

2
u 0 −u

2
+
u2

2

⎞⎟⎟⎠, (5.14)
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which satisfies P1(u)P1(u)
∗ + P2(u)P2(u)

∗ + P3(u)P3(u)
∗ = I2. Using Theorem 3.5, we can get

the following symbols:

Q1(z) =

√
2

2

⎛⎝⎛⎝1 −1

0 0

⎞⎠ + z

⎛⎝ 0 0

−1 1

⎞⎠⎞⎠,

Q2(z) =
√

2

2

⎛⎜⎜⎜⎝
⎛⎜⎝−

√
2

4
−
√

2

4

0 0

⎞⎟⎠ + z2

⎛⎜⎜⎜⎝
√

2

4

√
2

4√
2

4

√
2

4

⎞⎟⎟⎟⎠ + z4

⎛⎜⎜⎝
0 0

−
√

2

4
−
√

2

4

⎞⎟⎟⎠
⎞⎟⎟⎟⎠,

Q3(z) =

√
2

2

⎛⎜⎜⎝
⎛⎜⎝−1

4
−1

4

0 0

⎞⎟⎠ + z

⎛⎜⎝1

2

1

2

0 0

⎞⎟⎠ + z2

⎛⎜⎜⎝−1

4
−1

4

1

4

1

4

⎞⎟⎟⎠ + z3

⎛⎜⎝ 0 0

−1

2
−1

2

⎞⎟⎠ + z4

⎛⎜⎝0 0

1

4

1

4

⎞⎟⎠
⎞⎟⎟⎠.

(5.15)

Then, we get the minimum-wavelet frames associated with Φ. The graphs of them are shown

in Figure 2.

We can discover from Figure 2 that every component of the minimum-energy frames

is (anti)symmetrical and smooth.

(2) Take Φ(x) = (φ(x), φ(x − 1), φ(x − 2))T , which satisfies

Φ(x) =
1

4

⎛⎜⎜⎜⎝
⎛⎜⎜⎝0 0

1

3
0 0 0

0 0 0

⎞⎟⎟⎠Φ(2x + 2) +

⎛⎜⎜⎝0
1

3
1

0 0 0

0 0 0

⎞⎟⎟⎠Φ(2x + 1) +

⎛⎜⎜⎜⎝
1

3
1 1

0 0
1

3
0 0 0

⎞⎟⎟⎟⎠Φ(2x)

+

⎛⎜⎜⎜⎝
1 1

1

3

0
1

3
1

0 0 0

⎞⎟⎟⎟⎠Φ(2x − 1) +

⎛⎜⎜⎜⎜⎜⎝
1

1

3
0

1

3
1 1

0 0
1

3

⎞⎟⎟⎟⎟⎟⎠Φ(2x − 2)

+

⎛⎜⎜⎜⎜⎜⎝
1

3
0 0

1 1
1

3

0
1

3
1

⎞⎟⎟⎟⎟⎟⎠Φ(2x − 3) +

⎛⎜⎜⎜⎝
0 0 0

1
1

3
0

1

3
1 1

⎞⎟⎟⎟⎠Φ(2x − 4)

+

⎛⎜⎜⎜⎝
0 0 0
1

3
0 0

1 1
1

3

⎞⎟⎟⎟⎠Φ(2x − 5) +

⎛⎜⎜⎝
0 0 0

0 0 0

1
1

3
0

⎞⎟⎟⎠Φ(2x − 6) +

⎛⎜⎜⎝
0 0 0

0 0 0
1

3
0 0

⎞⎟⎟⎠Φ(2x − 7)

⎞⎟⎟⎟⎠

(5.16)
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and the symbol of this multiscaling vector-valued function has the following polyphase

components:

P1(u) =
√

2

8

⎛⎜⎜⎜⎜⎜⎝
⎛⎜⎜⎝0 0

1

3
0 0 0

0 0 0

⎞⎟⎟⎠ +

⎛⎜⎜⎜⎝
1

3
1 1

0 0
1

3
0 0 0

⎞⎟⎟⎟⎠u +

⎛⎜⎜⎜⎜⎜⎝
1

1

3
0

1

3
1 1

0 0
1

3

⎞⎟⎟⎟⎟⎟⎠u2

+

⎛⎜⎜⎜⎝
0 0 0

1
1

3
0

1

3
1 1

⎞⎟⎟⎟⎠u3 +

⎛⎜⎜⎝
0 0 0

0 0 0

1
1

3
0

⎞⎟⎟⎠u4

⎞⎟⎟⎟⎠,
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P2(u) =
√

2

8

⎛⎜⎜⎜⎜⎜⎝
⎛⎜⎜⎝0

1

3
1

0 0 0

0 0 0

⎞⎟⎟⎠ +

⎛⎜⎜⎜⎝
1 1

1

3

0
1

3
1

0 0 0

⎞⎟⎟⎟⎠u +

⎛⎜⎜⎜⎜⎜⎝
1

3
0 0

1 1
1

3

0
1

3
1

⎞⎟⎟⎟⎟⎟⎠u2

+

⎛⎜⎜⎜⎝
0 0 0
1

3
0 0

1 1
1

3

⎞⎟⎟⎟⎠u3 +

⎛⎜⎜⎝
0 0 0

0 0 0
1

3
0 0

⎞⎟⎟⎠u4

⎞⎟⎟⎟⎠.

(5.17)

Let

P3(u) =

√
2

8

×

⎛⎜⎜⎜⎝
√

6 +
√

6

3
u 0 −

(√
6 +

√
6

3
u

) √
6u − √6 0 0

−(A) A 0 0
√

6u2 − √6u 0

0 −(B) B 0 0
√

6u3 − √6u2

⎞⎟⎟⎟⎠,

(5.18)

where A denotes
√

6u + (
√

6/3)u2, and B denotes
√

6u2 + (
√

6/3)u3, which satisfies

P1(u)P1(u)
∗ + P2(u)P2(u)

∗ + P3(u)P3(u)
∗ = I3. Using Theorem 3.5, we can get

Q1(z)

=
√

2

2

⎛⎝⎛⎝−0.23547806816473105 −0.1969247665800399 −0.14891401559609693

0.08212785057744523 −0.18555493781122898 −0.19106026688126101

0.027375950192481735 −0.061851645937076295 −0.07928888488639749

⎞⎠

+ z

⎛⎝ 0.9033589710742332 −0.07112938093948917 −0.016506887733618497

−0.0608286139211068 0.905683150972805 −0.03808257781757404

−0.020276204640368934 −0.04704107893504214 0.9404994196162103

⎞⎠

+ z2

⎛⎝−0.20402395049705468 −0.05175658881673616 0.01828281901756732

−0.2489115696557434 −0.0979600599918386 −0.016863228869914655

−0.0700638169224561 −0.12222299444169772 −0.11122693740098887

⎞⎠

+ z3

⎛⎝−0.05175658881673616 0.01828281901756732 0.006094273005855774

−0.0979600599918386 −0.016863228869914655 −0.005621076289971551

−0.12222299444169776 −0.11122693740098887 −0.03707564580032962

⎞⎠

+ z4

⎛⎝ 0.018282819017567314 0.0060942730058557715 0

−0.016863228869914648 −0.005621076289971549 0

−0.11122693740098877 −0.03707564580032959 0

⎞⎠

+z5

⎛⎝0.0060942730058557715 0 0

−0.005621076289971549 0 0

−0.03707564580032959 0 0

⎞⎠⎞⎠,
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Q2(z)

=
√

2

2

⎛⎝⎛⎝−0.09986325103103813 0.31589881995517033 0.0052538925646165024

0.0854124922234307 −0.26079578287935323 0.2998893006031239

0.014450758807607454 −0.05510303707581709 −0.30514319316774036

⎞⎠
+ z

⎛⎝−0.016309066862055847 0.005908379170891813 0.019381713326762175

0.0045583062090611155 −0.010950091637853966 −0.0031215427310982043

0.011750760652994713 0.005041712466962157 −0.016260170595664

⎞⎠
+ z2

⎛⎝ −0.20916114471771918 −0.051515547612800944 0.02048043820474356

−0.023639974479628924 −0.01950964138878848 −0.013083356132526147

0.23280111919734814 0.07102518900158937 −0.007397082072217509

⎞⎠
+ z3

⎛⎝−0.051515547612800944 0.02048043820474356 0.0068268127349145336

−0.019509641388788437 −0.013083356132526147 −0.00436111871084204

0.07102518900158936 −0.007397082072217509 −0.0024656940240724914

⎞⎠
+ z4

⎛⎝ 0.020480438204743462 0.006826812734914494 0

−0.013083356132526154 −0.004361118710842047 0

−0.0073970820722173754 −0.002465694024072461 0

⎞⎠
+z5

⎛⎝ 0.006826812734914494 0 0

−0.004361118710842047 0 0

−0.002465694024072461 0 0

⎞⎠⎞⎠,

Q3(z)

=

√
2

2

⎛⎝⎛⎝−0.04725690064321836 0.21949688473386203 0.1639130739275549

0.2523328524498961 −0.7281995751316489 0.15918487102463674

−0.003904624220396051 0.054187773506410915 −0.7337722255518694

⎞⎠

+z

⎛⎝ −0.0777261828042069 −0.06662667519576504 0.0330957179061223

−0.02879898221803944 −0.07331833791750912 0.008051002298630018

−0.042473900845222755 −0.03375725777108183 0.037548046190520684

⎞⎠

+z2

⎛⎝−0.6930584034579804 −0.08791155686974436 0.16099639981828018

−0.0287070169546376 0.06098379400257172 0.07937189961088224

0.06463681665260418 0.11607547646429853 0.10634610477760928

⎞⎠

+z3

⎛⎝−0.08791155686974436 0.16099639981828018 0.053665466606093386

0.06098379400257172 0.07937189961088224 0.026457299870294076

0.11607547646429858 0.10634610477760928 0.03544870159253642

⎞⎠

+z4

⎛⎝0.16099639981828012 0.05366546660609337 0

0.07937189961088217 0.026457299870294056 0

0.10634610477760917 0.035448701592536394 0

⎞⎠

+z5

⎛⎝ 0.05366546660609337 0 0

0.026457299870294056 0 0

0.035448701592536394 0 0

⎞⎠⎞⎠.

(5.19)

They are the symbols of the minimum-energy multiwavelet frames associated with Φ.

The graphs of them are shown in Figure 3.



Mathematical Problems in Engineering 23

0 2 4
0

0.2

0.4

0.6

0.8
Φ

(a)

0

−0.4

−0.2

0.2

0.4

0.6

0 1 2 3−1

Ψ1

(b)

0

0 1 2 3−1

−0.2

−0.1

0.1

0.2

0.3
Ψ2

(c)

0

0.6

0 1 2 3−1

0.3

−0.6

−0.3

Ψ3

(d)

Figure 3

We can discover from Figure 3 that every component of the minimum-energy frames is

smooth. When r = 3, it is very difficult to construct the minimum-energy multiwavelet frames

with symmetry.

5.2. a = 3

Example 5.3. With a = 3, the symbol of the B-spline φ(x) =N3
3(x) is

P 3
3 (z) =

1 + 3z + 6z2 + 7z3 + 6z4 + 3z5 + z6

27
. (5.20)

Take φ(x) =N3
3(x), and the support of this function is [0, 4].



24 Mathematical Problems in Engineering

(1) Let Φ(x) = (φ(x), φ(x − 1))T , and this vector-valued function satisfies

Φ(x) =
1

9

⎛⎝⎛⎝1
3

2
0 0

⎞⎠Φ(3x) +

⎛⎝3

2
3

0 0

⎞⎠Φ(3x − 1) +

⎛⎝3
7

2
0 0

⎞⎠Φ(3x − 2)

+

⎛⎜⎝7

2
3

1
3

2

⎞⎟⎠Φ(3x − 3) +

⎛⎜⎝3
3

2
3

2
3

⎞⎟⎠Φ(3x − 4) +

⎛⎜⎝3

2
1

3
7

2

⎞⎟⎠Φ(3x − 5)

+

⎛⎝0 0
7

2
3

⎞⎠Φ(3x − 6) +

⎛⎝0 0

3
3

2

⎞⎠Φ(3x − 7) +

⎛⎝0 0
3

2
1

⎞⎠Φ(3x − 8)

⎞⎠.

(5.21)

The symbol of Φ(x) is

P(z) =
1

27

⎛⎜⎝
⎛⎝1

3

2
0 0

⎞⎠ + z

⎛⎝3

2
3

0 0

⎞⎠ + z2

⎛⎝3
7

2
0 0

⎞⎠ + z3

⎛⎜⎝7

2
3

1
3

2

⎞⎟⎠ + z4

⎛⎜⎝3
3

2
3

2
3

⎞⎟⎠

+z5

⎛⎜⎝3

2
1

3
7

2

⎞⎟⎠ + z6

⎛⎝0 0
7

2
3

⎞⎠ + z7

⎛⎝0 0

3
3

2

⎞⎠ + z8

⎛⎝0 0
3

2
1

⎞⎠
⎞⎟⎠,

(5.22)

and its polynomial components are

P1(u) =
√

3

27

⎛⎜⎝
⎛⎝1

3

2
0 0

⎞⎠ +

⎛⎜⎝7

2
3

1
3

2

⎞⎟⎠u +

⎛⎝0 0
7

2
3

⎞⎠u2

⎞⎟⎠,

P2(u) =
√

3

27

⎛⎜⎝
⎛⎝3

2
3

0 0

⎞⎠ +

⎛⎜⎝3
3

2
3

2
3

⎞⎟⎠u +

⎛⎝0 0

3
3

2

⎞⎠u2

⎞⎟⎠,

P3(u) =
√

3

27

⎛⎜⎝
⎛⎝3

7

2
0 0

⎞⎠ +

⎛⎜⎝3

2
1

3
7

2

⎞⎟⎠u +

⎛⎝0 0
3

2
1

⎞⎠u2

⎞⎟⎠,

(5.23)

then

P1(u)P1(u)∗ + P2(u)P2(u)∗ + P3(u)P3(u)∗ =
1

486

⎛⎜⎜⎝
50

u
+ 143 + 50u

50

u2
+

143

u
+ 50

50 + 143u + 50u2 50

u
+ 143 + 50u

⎞⎟⎟⎠.

(5.24)

(i) This example satisfies the conditions in Theorem 3.5. Let

P4(u) =
√

3

27

(
5 − 5u

5u − 5u2

)
. (5.25)
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The sum of l2-norm for every row in the matrix in (3.34) formed by P1(u), P2(u), P3(u), and

P4(u) is equivalent to 1. Using Theorem 3.5, we can get the symbols of the minimum-energy

frames associated with Φ the following:

Q1(z) =
1

27

⎛⎜⎝
⎛⎜⎝−1 −3

2

0 0

⎞⎟⎠ + z

⎛⎜⎝−3

2
−3

0 0

⎞⎟⎠ + z2

⎛⎜⎝−3 −7

2

0 0

⎞⎟⎠ + z3

⎛⎜⎝ 7

2
3

−1 −3

2

⎞⎟⎠

+ z4

⎛⎜⎜⎝ 3
3

2

−3

2
−3

⎞⎟⎟⎠ + z5

⎛⎜⎜⎝
3

2
1

−3 −7

2

⎞⎟⎟⎠

+z6

⎛⎜⎝0 0

7

2
3

⎞⎟⎠ + z7

⎛⎜⎝0 0

3
3

2

⎞⎟⎠ + z8

⎛⎜⎝0 0

3

2
1

⎞⎟⎠
⎞⎟⎠,

Q2(z) =
1

27

⎛⎜⎜⎝
⎛⎜⎝0 −9

√
3

2

0 0

⎞⎟⎠ + z

⎛⎜⎝9
√

3

2
0

0 0

⎞⎟⎠ + z3

⎛⎜⎜⎝
0 0

0 −9
√

3

2

⎞⎟⎟⎠ + z4

⎛⎜⎜⎝
0 0

9
√

3

2
0

⎞⎟⎟⎠
⎞⎟⎟⎠,

Q3(z) =
1

27

⎛⎜⎜⎝
⎛⎜⎝9

√
3

2
−3
√

3

0 0

⎞⎟⎠ + z

⎛⎜⎝−3
√

3
3
√

3

2

0 0

⎞⎟⎠ + z3

⎛⎜⎜⎝
0 0

9
√

3

2
−3
√

3

⎞⎟⎟⎠

+z4

⎛⎜⎜⎝
0 0

−3
√

3
3
√

3

2

⎞⎟⎟⎠
⎞⎟⎟⎠,

Q4(z) =
1

27

⎛⎜⎝
⎛⎜⎝9

2

√
3

35
−3

√
3

35

0 0

⎞⎟⎠ + z

⎛⎜⎝−3

√
3

35
−51

2

√
3

35

0 0

⎞⎟⎠ + z2

⎛⎜⎝27

√
3

35
0

0 0

⎞⎟⎠

+z3

⎛⎜⎜⎝
0 0

9

2

√
3

35
−3

√
3

35

⎞⎟⎟⎠ + z4

⎛⎜⎜⎝
0 0

−3

√
3

35
−51

2

√
3

35

⎞⎟⎟⎠ + z5

⎛⎜⎜⎝
0 0

27

√
3

35
0

⎞⎟⎟⎠
⎞⎟⎟⎠,

Q5(z) =
1

27

⎛⎜⎝
⎛⎜⎝45

√
2

133

45√
266

0 0

⎞⎟⎠ + z

⎛⎜⎝ 45√
266

−45

√
2

133

0 0

⎞⎟⎠ + z2

⎛⎜⎝−45

√
2

133
0

0 0

⎞⎟⎠

+z3

⎛⎜⎜⎝
0 0

45

√
2

133

45√
266

⎞⎟⎟⎠ + z4

⎛⎜⎜⎝
0 0

45√
266

−45

√
2

133

⎞⎟⎟⎠ + z5

⎛⎜⎜⎝
0 0

−45

√
2

133
0

⎞⎟⎟⎠
⎞⎟⎟⎠,
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Figure 4

Q6(z) =
1

27

⎛⎜⎝
⎛⎜⎝ 14√

95

33

2
√

95

0 0

⎞⎟⎠ + z

⎛⎜⎝ 33

2
√

95

24√
95

0 0

⎞⎟⎠ + z2

⎛⎜⎝ 24√
95

−√95

0 0

⎞⎟⎠

+z3

⎛⎜⎜⎝
0 0

14√
95

33

2
√

95

⎞⎟⎟⎠ + z4

⎛⎜⎜⎝
0 0

33

2
√

95

24√
95

⎞⎟⎟⎠ + z5

⎛⎜⎜⎝
0 0

24√
95

−√95

⎞⎟⎟⎠
⎞⎟⎟⎠.

(5.26)

The graphs of Φ and the minimum-energy frames associated with it are shown in Figure 4.

From this figure, we can discover that every component of the minimum-energy

frames is smooth. The first vector-valued function of frames is antisymmetry and the second

function vanishes.

(ii) In fact, this example also satisfies the conditions of Corollary 3.7. Take

P4(u) =
√

3

27

⎛⎜⎜⎜⎝
5 + 5u

√
43

2
5
√

2 − 5
√

2u 0

−5u − 5u2 −
√

43

2
u 0 5

√
2u − 5

√
2u2

⎞⎟⎟⎟⎠ (5.27)
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and with P1(u), P2(u), and P3(u) to form matrix (3.49), which satisfies standard orthogonal

by row. By Theorem 3.6, we can get minimum-energy multiwavelet frames associated with

Φ.
(2) Let Φ(x) = (φ(x), φ(x − 1), φ(x − 2))T . This vector-valued function satisfies

Φ(x) =
1

9

⎛⎜⎜⎜⎝
⎛⎜⎜⎜⎝

0 0
1

3

0 0 0

0 0 0

⎞⎟⎟⎟⎠Φ(3x + 2) +

⎛⎜⎜⎜⎝
0

1

3
1

0 0 0

0 0 0

⎞⎟⎟⎟⎠Φ(3x + 1) +

⎛⎜⎜⎝
1

3
1 2

0 0 0

0 0 0

⎞⎟⎟⎠Φ(3x)

+

⎛⎜⎜⎜⎜⎜⎝
1 2

7

3

0 0
1

3

0 0 0

⎞⎟⎟⎟⎟⎟⎠Φ(3x − 1) +

⎛⎜⎜⎜⎜⎜⎝
2

7

3
2

0
1

3
1

0 0 0

⎞⎟⎟⎟⎟⎟⎠Φ(3x − 2) +

⎛⎜⎜⎜⎜⎜⎝
7

3
2 1

1

3
1 2

0 0 0

⎞⎟⎟⎟⎟⎟⎠Φ(3x − 3)

+

⎛⎜⎜⎜⎜⎜⎜⎜⎝
2 1

1

3

1 2
7

3

0 0
1

3

⎞⎟⎟⎟⎟⎟⎟⎟⎠Φ(3x − 4) +

⎛⎜⎜⎜⎜⎜⎜⎜⎝
1

1

3
0

2
7

3
2

0
1

3
1

⎞⎟⎟⎟⎟⎟⎟⎟⎠Φ(3x − 5) +

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1

3
0 0

1

3
2 1

1

3
1 2

⎞⎟⎟⎟⎟⎟⎟⎟⎠Φ(3x − 6)

+

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 0

2 1
1

3

1 2
7

3

⎞⎟⎟⎟⎟⎟⎟⎠Φ(3x − 7) +

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 0

1
1

3
0

2
7

3
2

⎞⎟⎟⎟⎟⎟⎟⎠Φ(3x − 8) +

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 0

1

3
0 0

7

3
2 1

⎞⎟⎟⎟⎟⎟⎟⎠Φ(3x − 9)

+

⎛⎜⎜⎝
0 0 0

0 0 0

2 1
1

3

⎞⎟⎟⎠Φ(3x − 10) +

⎛⎜⎜⎝
0 0 0

0 0 0

1
1

3
0

⎞⎟⎟⎠Φ(3x − 11) +

⎛⎜⎜⎝
0 0 0

0 0 0
1

3
0 0

⎞⎟⎟⎠Φ(3x − 12)

⎞⎟⎟⎠,

P1(u)P1(u)∗+P2(u)P2(u)∗+P3(u)P3(u)∗=
1

729

×

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1

u2
+

50

u
+141+50u+u2 1

u3
+

50

u2
+

141

u
+50+u

1

u4
+

50

u3
+

141

u2
+

50

u
+1

1

u
+50+141u+50u2+u3 1

u2
+

50

u
+141+50u+u2 1

u3
+

50

u2
+

141

u
+50+u

1+50u+141u2+50u3+u4 1

u
+50+141u+50u2+u3 1

u2
+

50

u
+141+50u+u2

⎞⎟⎟⎟⎟⎟⎟⎟⎠.

(5.28)

Let

P4(u) =

⎛⎝ x(u) 0 −x(u) y(u) 0 0

−x(u)u x(u) 0 0 y(u)u 0

0 −x(u)u x(u)u2 0 0 y(u)u2

⎞⎠, (5.29)
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where

x(u) = 0.4067366251768559 + 0.16724108784847952u + 0.003372556164290336u2,

y(u) = 0.46250686620877374 − 0.45360921162651374u − 0.008897654582258595u2,
(5.30)

then

P1(u)P1(u)∗ + P2(u)P2(u)∗ + P3(u)P3(u)∗ + P4(u)P4(u)∗ = I3. (5.31)

By Corollary 3.7 and Theorem 3.6, we know that the existence of the minimum-energy

multiwavelet frames is associated with Φ.

5.3. a = 4

With a = 4, the symbol of the B-spline φ(x) =N4
4(x) is

P 4
4 (z) =

1 + 4z + 10z2 + 20z3 + 31z4 + 40z5 + 44z6 + 40z7 + 31z8 + 20z9 + 10z10 + 4z11 + z12

256
.

(5.32)

Take φ(x) =N4
4(x), and the support of this function is [0, 5], the symbol is

P(z) =
1

256

⎛⎜⎝(
1 2

0 0

)
+ z

(
2 5

0 0

)
+ z2

(
5 10

0 0

)
+ z3

⎛⎜⎝10
31

2

0 0

⎞⎟⎠

+ z4

⎛⎜⎝31

2
20

1 2

⎞⎟⎠ + z5

(
20 22

2 5

)
+ z6

(
22 20

5 10

)
+ z7

⎛⎜⎜⎝20
31

2

10
31

2

⎞⎟⎟⎠

+ z8

⎛⎜⎜⎝
31

2
10

31

2
20

⎞⎟⎟⎠z9

(
10 5

20 22

)
+ z10

(
5 2

22 20

)
+ z11

⎛⎜⎝ 2 1

20
31

2

⎞⎟⎠

+z12

⎛⎝ 0 0
31

2
10

⎞⎠ + z13

(
0 0

10 5

)
+ z14

(
0 0

5 2

)
+ z15

(
0 0

2 1

)⎞⎠.

(5.33)
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The polynomial components of P(z)A = πr2

P1(u) =
1

128

⎛⎜⎜⎝(
1 2

0 0

)
+ u

⎛⎜⎝31

2
20

1 2

⎞⎟⎠ + u2

⎛⎜⎜⎝
31

2
10

31

2
20

⎞⎟⎟⎠ + u3

⎛⎜⎝ 0 0

31

2
10

⎞⎟⎠
⎞⎟⎟⎠,

P2(u) =
1

128

((
2 5

0 0

)
+ u

(
20 22

2 5

)
+ u2

(
10 5

20 22

)
+ u3

(
0 0

10 5

))
,

P3(u) =
1

128

((
5 10

0 0

)
+ u

(
22 20

5 10

)
+ u2

(
5 2

22 20

)
+ u3

(
0 0

5 2

))
,

P4(u) =
1

128

⎛⎜⎝
⎛⎝10

31

2
0 0

⎞⎠ + u

⎛⎜⎝20
31

2

10
31

2

⎞⎟⎠ + u2

⎛⎝ 2 1

20
31

2

⎞⎠ + u3

(
0 0

2 1

)⎞⎟⎠,

(5.34)

and they satisfy the conditions in Theorem 3.5. If we take

P5(u) =
1

128

(
a + bu + cu2

au + bu2 + cu3

)
, (5.35)

where

a =

(
−4467 +

√
19539353

)√
4467 +

√
19539353

1288
,

b =

(
−3823 +

√
19539353

)√
4467 +

√
19539353

1288
,

c =

√
4467 +

√
19539353

2
,

(5.36)

then the sum of l2-norm for every row of matrix in (3.49) formed by P1(u), P2(u), P3(u), P4(u),
and P5(u) is equivalent to 1. Using the method in Theorem 3.5, we can get

Q1(u) =
(

0.02144655154326434 0.04289310308652868

0 0

)

+ z
(

0.04289310308652868 0.1072327577163217

0 0

)

+ z2

(
0.1072327577163217 0.2144655154326434

0 0

)
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+ z3

(
0.2144655154326434 0.3324215489205973

0 0

)

− z4

(
0.19702904865778179 0.15557470886671548

−0.02144655154326434 −0.04289310308652868

)

− z5

(
0.15557470886671548 0.11193838675771434

−0.04289310308652868 −0.1072327577163217

)

− z6

(
0.11193838675771434 0.07664965153915186

−0.1072327577163217 −0.2144655154326434

)

− z7

(
0.07664965153915186 0.053977382251572635

−0.2144655154326434 −0.3324215489205973

)

− z8

(
0.044111750085627274 0.0284591936036305

0.19702904865778179 0.15557470886671548

)

− z9

(
0.0284591936036305 0.01422959680181525

0.15557470886671548 0.11193838675771434

)

− z10

(
0.01422959680181525 0.0056918387207261

0.11193838675771434 0.07664965153915186

)

− z11

(
0.0056918387207261 0.00284591936036305

0.07664965153915186 0.053977382251572635

)

− z12

(
0 0

0.044111750085627274 0.0284591936036305

)

− z13

(
0 0

0.0284591936036305 0.01422959680181525

)

− z14

(
0 0

0.01422959680181525 0.0056918387207261

)

− z15

(
0 0

0.0056918387207261 0.00284591936036305

)
,

Q2(u) = −
(

0.1477957934872654 0.10094712082354547

0 0

)

− z
(−0.6597141432730713 0.05159613960533249

0 0

)

− z2

(
0.05159613960533249 0.06585963320155815

0 0

)

− z3

(
0.06585963320155815 0.08467934092975693

0 0

)
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− z4

(
0.028047431831489087 0.01809511731063812

0.1477957934872654 0.10094712082354547

)

− z5

(
0.01809511731063812 0.00904755865531906

−0.6597141432730713 0.05159613960533249

)

− z6

(
0.00904755865531906 0.003619023462127624

0.05159613960533249 0.06585963320155815

)

− z7

(
0.003619023462127624 0.001809511731063812

0.06585963320155815 0.08467934092975693

)

− z8

(
0 0

0.028047431831489087 0.01809511731063812

)

− z9

(
0 0

0.01809511731063812 0.00904755865531906

)

− z10

(
0 0

0.00904755865531906 0.003619023462127624

)

− z11

(
0 0

0.003619023462127624 0.001809511731063812

)
,

Q3(u) = −
(

0.05761306818263398 0.17400836327560223

0 0

)

− z
(

0.031575865006210874 −0.6561977852588053

0 0

)

− z2

(
0.05090899592774225 0.0849120583693081

0 0

)

− z3

(
0.0849120583693081 0.12308355988310513

0 0

)

− z4

(
0.015096022807838986 0.009739369553444507

0.05761306818263398 0.17400836327560223

)

− z5

(
0.009739369553444507 0.004869684776722253

0.031575865006210874 −0.6561977852588053

)

− z6

(
0.004869684776722253 0.0019478739106889012

0.05090899592774225 0.0849120583693081

)

− z7

(
0.0019478739106889012 0.0009739369553444506

0.0849120583693081 0.12308355988310513

)

− z8

(
0 0

0.015096022807838986 0.009739369553444507

)
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− z9

(
0 0

0.009739369553444507 0.004869684776722253

)

− z10

(
0 0

0.004869684776722253 0.0019478739106889012

)

− z11

(
0 0

0.0019478739106889012 0.0009739369553444506

)
,

Q4(u) = −
(

0.05761306818263398 0.17400836327560223

0 0

)

− z
(

0.031575865006210874 0.05090899592774225

0 0

)

− z2

(−0.6561977852588053 0.0849120583693081

0 0

)

− z3

(
0.0849120583693081 0.12308355988310513

0 0

)

− z4

(
0.015096022807838986 0.009739369553444507

0.05761306818263398 0.17400836327560223

)

− z5

(
0.009739369553444507 0.004869684776722253

0.031575865006210874 0.05090899592774225

)

− z6

(
0.004869684776722253 0.0019478739106889012

−0.6561977852588053 0.0849120583693081

)

− z7

(
0.0019478739106889012 0.0009739369553444506

0.0849120583693081 0.12308355988310513

)

− z8

(
0 0

0.015096022807838986 0.009739369553444507

)

− z9

(
0 0

0.009739369553444507 0.004869684776722253

)

− z10

(
0 0

0.004869684776722253 0.0019478739106889012

)

− z11

(
0 0

0.0019478739106889012 0.0009739369553444506

)
,

Q5(u) =
(

0.02609191544172444 −0.2968153107875939

0 0

)

− z
(

0.00853179785112384 0.04550078040666619

0 0

)
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− z2

(
0.04550078040666619 −0.6008203844819463

0 0

)

− z3

(
0.10628639670460124 0.17279291544901831

0 0

)

+ z4

(
0.014890951803385767 0.00960706567960372

0.02609191544172444 −0.2968153107875939

)

+ z5

(
0.00960706567960372 0.00480353283980186

−0.00853179785112384 −0.04550078040666619

)

+ z6

(
0.00480353283980186 0.0019214131359207441

−0.04550078040666619 0.6008203844819463

)

+ z7

(
0.0019214131359207441 0.0009607065679603721

−0.10628639670460124 −0.17279291544901831

)

+ z8

(
0 0

0.014890951803385767 0.00960706567960372

)

+ z9

(
0 0

0.00960706567960372 0.00480353283980186

)

+ z10

(
0 0

0.00480353283980186 0.0019214131359207441

)

+ z11

(
0 0

0.0019214131359207441 0.0009607065679603721

)
,

Q6(u) =
(

0.02609191544172444 −0.2968153107875939

0 0

)

− z
(

0.00853179785112384 0.04550078040666619

0 0

)

− z2

(
0.04550078040666619 0.10628639670460124

0 0

)

− z3

(−0.6008203844819463 0.17279291544901831

0 0

)

+ z4

(
0.014890951803385767 0.00960706567960372

0.02609191544172444 −0.2968153107875939

)

+ z5

(
0.00960706567960372 0.00480353283980186

−0.00853179785112384 −0.04550078040666619

)

+ z6

(
0.00480353283980186 0.0019214131359207441

−0.04550078040666619 −0.10628639670460124

)
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+ z7

(
0.0019214131359207441 0.0009607065679603721

0.6008203844819463 −0.17279291544901831

)

+ z8

(
0 0

0.014890951803385767 0.00960706567960372

)

+ z9

(
0 0

0.00960706567960372 0.00480353283980186

)

+ z10

(
0 0

0.00480353283980186 0.0019214131359207441

)

+ z11

(
0 0

0.0019214131359207441 0.0009607065679603721

)
,

Q7(u) =
(

0.08944633780381946 −0.43235068115291514

0 0

)

+ z
(

0.01538612445300629 −0.03771333490828642

0 0

)

− z2

(
0.03771333490828642 0.12532192169119855

0 0

)

+ z3

(−0.12532192169119855 0.4857994473999439

0 0

)

+ z4

(
0.0514996814410752 0.033225600929725936

0.08944633780381946 −0.43235068115291514

)

+ z5

(
0.033225600929725936 0.016612800464862968

0.01538612445300629 −0.03771333490828642

)

+ z6

(
0.016612800464862968 0.006645120185945188

−0.03771333490828642 −0.12532192169119855

)

+ z7

(
0.006645120185945188 0.003322560092972594

−0.12532192169119855 0.4857994473999439

)

+ z8

(
0 0

0.0514996814410752 0.033225600929725936

)

+ z9

(
0 0

0.033225600929725936 0.016612800464862968

)

+ z10

(
0 0

0.016612800464862968 0.006645120185945188

)

+ z11

(
0 0

0.006645120185945188 0.003322560092972594

)
,

Q8(u) =
(−0.6202005681344304 0.0751156591403543

0 0

)
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+ z
(−0.043785112178583024 0.03234387705790018

0 0

)

+ z2

(
0.03234387705790018 0.1023493218758696

0 0

)

+ z3

(
0.1023493218758696 0.15482744823966293

0 0

)

+ z4

(
0.05053803393098198 0.032605183181278696

−0.6202005681344304 0.0751156591403543

)

+ z5

(
0.032605183181278696 0.016302591590639348

−0.043785112178583024 0.03234387705790018

)

+ z6

(
0.016612800464862968 0.006521036636255738

0.03234387705790018 0.1023493218758696

)

+ z7

(
0.006521036636255738 0.003260518318127869

0.1023493218758696 0.15482744823966293

)

+ z8

(
0 0

0.05053803393098198 0.032605183181278696

)

+ z9

(
0 0

0.032605183181278696 0.016302591590639348

)

+ z10

(
0 0

0.016612800464862968 0.006521036636255738

)

+ z11

(
0 0

0.006521036636255738 0.003260518318127869

)
(5.37)

they are the symbols of the minimum-energy multiwavelet frames associated with Φ. The

graphs of the vector-valued functions are shown in Figure 5.

From Figure 5, we can find that every component of the minimum-energy frames is

smooth, but not (anti)symmetrical.

6. Conclusions

In this paper, minimum-energy multiwavelet frames with arbitrary integer dilation factor are

studied. Firstly, we define the concept of minimum-energy multiwavelet frame with arbitrary

dilation factor and present its equivalent characterizations. Secondly, some necessary

conditions and sufficient conditions for minimum-energy multiwavelet frame are given,

then the decomposition and reconstruction formulas of minimum-energy multiwavelet
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frame with arbitrary integer dilation factor are deduced. Finally, we give several numerical

examples based on B-spline.
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We present a new economic hybrid analytical orbit propagator program based on SARIMA
models, which approximates to a 4 × 4 tesseral analytical theory for a Quasi-Spot satellite. The
J2 perturbation is described by a first-order closed-form analytical theory, whereas the effects
produced by the higher orders of J2 and the perturbation of the rest of zonal and tesseral harmonic
coefficients are modelled by SARIMA models. Time series analysis is a useful statistical prediction
tool, which allows building a model for making future predictions based on the study of past
observations. The combination of the analytical techniques and time series analysis allows an
increase in accuracy without significant loss in efficiency of the new propagators, as a consequence
of modelling higher-order terms and other perturbations are not taken into account in the
analytical theory.

1. Introduction

An analytical orbit propagator program (AOPP) is an application which collects and arranges

all mathematical expressions involved in an approximate analytical solution of the satellite

equations of motion. The analytical solutions are known as General Perturbation Theories.

It is noteworthy that the perturbation force model used and the order of the analytical

approximation are closely related to the accuracy and computational efficiency of an AOPP.

In many situations, in order to improve the accuracy of the solution, it may be

necessary to consider a more precise perturbation force model. The solution provided by

the General Perturbation Theories may not be the best approach, because the calculating

process generates unmanageably large mathematical expressions and, therefore, reduces

the computational efficiency of its corresponding AOPP. Other alternatives, although

computationally more expensive than an economic analytical approximation, are the Special
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Perturbation Theories, which directly integrate the equations of motion using numerical

techniques, or by means of semi-analytical theories, which are a combination of General and

Special Perturbation Theories.

In this paper we present a new methodology, which we will call Hybrid Perturbation
Theories, to carry out new families of hybrid orbit propagator programs which combine

a simplified analytical orbit propagator [1–4] with statistical time series models [5]. This

combination allows an increase in accuracy for predicting the position of a satellite without

significant loss in computational efficiency in the new hybrid propagators, as well as

modelling higher-order terms and other perturbations not considered in the analytical theory.

Mathematically, the problem consists of estimating the satellite’s position and velocity

xt for which an approximate analytical solution is known:

xAt = F(t, xt0), (1.1)

where xt0 is the satellite’s initial time position and velocity. Moreover, at any moment ti, a

precise observation xti can be obtained. This observation is related to xAti by the following

linear relation:

εti = xti − xAti , (1.2)

where εti represents the errors produced by the perturbation forces not considered in the

analytical theory and by the selfsame approximate analytical solution. In order to predict the

future values of the εti series, we apply statistical techniques in time series analysis.

The first n values of εti are used to estimate a model by means of these techniques.

From this model a forecast of the ε̂ti error can be calculated. Finally these estimations are

used to obtain the forecast of the satellite’s position and velocity by the relation

x̂ti = xAti + ε̂ti . (1.3)

In this paper, the orbit propagator Z2DN1 derived from a first-order closed-form

analytical integration of the main problem of the artificial satellite theory and the SARIMA time

series models are described. Secondly, using the univariate Box-Jenkins time series analysis,

a specific Z2DN1-SARIMA model is developed for a Quasi-Spot satellite so as to model the

effects of some zonal and tesseral harmonics by means of the statistical part, where these

influences have not been taken into consideration in the analytical part. The simulated data

are obtained from the numerical integration for an Earth orbiter, which has only taken into

account the perturbation due to the nonsymmetrical Earth gravity field up to the fourth

degree and order. Finally, we compare the simulation with both the analytical propagator

alone and the analytical-statistical hybrid propagator.

2. Z2DN1 Analytical Orbit Propagator Program

This AOPP has been derived from a first-order closed-form analytical theory of the main
problem of the artificial satellite theory.
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The main problem is defined as a Kepler problem perturbed by Earth’s oblateness. The

Hamiltonian of this dynamical system can be written in a cartesian coordinate system (x, X) as

H =
1

2
(X · X) − μ

r

[
1 − J2

(
α

r

)2

P2

(
z

r

)]
, (2.1)

where r = ‖x‖ =
√
x2 + y2 + z2, μ is the gravitational constant, α the equatorial radius of the

Earth, J2 the oblateness coefficient, and P2 the second degree Legendre polynomial.

The first step to carry out the analytical theory consists of expressing the Hamiltonian

(2.1) in terms of the Delaunay variables (l, g, h, L,G,H). This set of canonical action-angle

variables can be defined in terms of the orbital elements such as l = M, g = ω, h = Ω, L =
√
μa, G =

√
μa(1 − e2), H =

√
μa(1 − e2) cos i, where M, ω, Ω, a, e, i are the mean anomaly,

argument of the perigee, longitude of the ascending node, semimajor axis, eccentricity, and

inclination, respectively. Then the transformed Hamiltonian is given as

H = − μ2

2L2
− ε

2

μ

r

(
α

r

)2(
1 − 3s2sin2

(
f + g

))
, (2.2)

where ε = J2 is a small parameter, s = sin i, and f is the true anomaly.

Next, we normalize the Hamiltonian (2.2) by applying the Lie transform ϕ :

(l, g, h, L,G,H) → (l′, g ′, h′, L′, G′,H ′), the so-called Delaunay Normalization [6], which up

to first order reads

K0 = H0, (2.3)

K1 = H1 −
μ2

L
′3

∂W
∂l′

. (2.4)

The Lie method solves (2.4) by choosing the form of the transformed Hamiltonian; the

Delaunay Normalization takes the Hamiltonian as the average over the fastest angle l′:

K1 =
3α2μ4s′2

4L′6η′3
− α2μ4

2L′6η′3
, (2.5)

and then W1 is computed as

W1 =
L

′3

μ2

∫
(H1 −K1)dl

=
μ2α2

(
3s

′2 − 2
)
φ′

4L
′3η

′3
+
μ2α2e

′(3s
′2−2)

4L
′3η

′3
sin f ′

− 3μ2α2e′s
′2

8L
′3η

′3
sin

(
f ′ + 2g ′

) − 3μ2α2s
′2

8L
′3η

′3
sin

(
2f ′ + 2g ′

)
− μ2α2e′s

′2

8L′3η′3
sin

(
3f ′ + 2g ′

)
,

(2.6)

where η′ =
√

1 − e′2 and φ′ = f ′ − l′.
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Hence, up to the first order, the transformed Hamiltonian is given by

K = − μ2

2L′2
+ ε

(
3α2μ4s′2

4L′6η′3
− α2μ4

2L′6η′3

)
. (2.7)

We must remark that the Hamiltonian (2.7) is integrable. This Hamiltonian only

depends on the momenta L′,G′, andH ′, and so therefore the equations of motion are obtained

as

dl′

dt
=
∂K
∂L′

=
μ2

L′3
+ ε

(
3α2μ4

2L′7η′3
− 9α2μ4s′2

4L′7η′3

)
,

dg ′

dt
=
∂K
∂G′ = ε

(
3α2μ4

L′7η′4
− 15α2μ4s′2

4L′7η′4

)
,

dh′

dt
=
∂K
∂G′ = −ε3α2μ4c′

2L′7η′4
,

dL′

dt
=

dG′

dt
=

dH ′

dt
= 0.

(2.8)

By integrating (2.8) we can directly obtain that the values of the momenta L′, G′, and

H ′ are constants, whereas the variables l′, g ′, and h′ yield

l′ =

[
μ2

L′3
+ ε

(
3α2μ4

2L′7η′3
− 9α2μ4s′2

4L′7η′3

)]
(t − t0) + l′0,

g ′ =

[
ε

(
3α2μ4

L′7η′4
− 15α2μ4s′2

4L′7η′4

)]
(t − t0) + g ′0,

h′ =

[
−ε3α2μ4c′

2L′7η′4

]
(t − t0) + h′0,

(2.9)

where l′0, g ′0, h′0, L′0, G′
0, H ′

0 are the transformed initial conditions l0, g0, h0, L0, G0, H0 at the

epoch t0.

Finally, from (2.6) the first-order explicit equations of the direct and inverse

transformations [7] are calculated.

From the above analytical theory an AOPP was derived, which has to evaluate 93

terms. This AOPP has been called Z2DN1. The algebraic manipulations required to carry

out this analytical theory and its corresponding AOPP were built using a set of Mathematica
packages called MathATESAT [8]. Figure 1 shows the flowchart of the Z2DN1 analytical orbit

propagator program.

Z2DN1 begins by initializing the physical parameters and the initial conditions

at epoch t0. Next, it transforms the initial conditions into the Delaunay variables

(l0, g0, h0, L0, G0,H0) and transports them across the inverse transformation of the Delaunay

normalization (l′0, g
′
0, h

′
0, L

′
0, G

′
0,H

′
0). Then, the program provides Delaunay’s variables at
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(t0,l0,g0,h0,L0,G 0,H 0)

(t0,l′0,g
′
0,h

′
0,L

′
0,G

′
0,H

′
0)

(l′,g′,h′,L′,G ′,H ′)

(l,g,h,L,G,H )

Output: t,a,e,g,h,i,l,x,y,z,ẋ,ẏ,ż

Input: μ, , ,J2,t0,tf,a0,e0,g0,h0,i0,l0

Figure 1: Flowchart of the Z2DN1 orbit propagator program.
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Figure 2: Distance, along-track, cross-track, and radial errors for a Quasi-Spot satellite.

epoch tf from integrated Hamilton equations (l′, g ′, h′, L′, G′,H ′). Finally, the direct transfor-

mation of the Delaunay normalization is applied, and therefore the osculating Keplerian

elements (a, e, g, h, i, l) and the state vector (x, y, z, ẋ, ẏ, ż) can be calculated.

This model has been compared with the numerical integration (8th-order Runge-Kutta

method) of the equation of motion of a model, which includes the Earth’s zonal and tesseral

harmonic coefficients of fourth degree and order in the case of a Quasi-Spot satellite (a = 7148,

e = 0.001, i = 98◦).
Figure 2 shows the distance, along-track, cross-track, and radial errors in a time span

interval of 30 days, which is about 430 satellite cycles. As can be observed, the distance error

of the first-order J2 analytical theory when compared with a more complex perturbation

model is about 360 km.

Figure 3 shows the relative errors of the orbital elements for a Quasi-Spot satellite.

The mean anomaly and argument of the perigee are the variables which present the worst
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Figure 3: Relative errors of the orbital elements for a Quasi-Spot satellite.

performance. The maximum absolute errors in a time span interval of 30 days are about 12.4◦

and 9.5◦, respectively.

3. Statistical Time Series Analysis: SARIMA Model

Introduced by Box and Jenkins [5], the autoregressive integrated moving average (ARIMA)
model has been one of the most popular approaches for time series forecasting. Let εt be

a discrete time series, in an ARIMA(p, d, q) model, in which the future value of a series is

assumed to be a linear combination of its own past values and past residuals, expressed as

follows:

φ(B)(1 − B)dε̃t = θ(B)νt, (3.1)

where ε̃t = εt − μ, μ is the mean of the original time series, and νt is a white noise residual.

B is the backward shift, such that Bε̃t = ε̃t−1, whilst d is the number of times that ε̃t needs

to be differentiated to ensure its conversion to a stationary time series, that is, a time series

in which the mean, variance, and autocorrelation functions of ε̃t are time invariants. φ(B)
represents the autoregressive (AR) part, where each ε̃t is made up of a linear combination from

prior observations p, which can be expressed as a polynomial in B of degree p in the following

form:

φ(B) = 1 − φ1B − φ2B
2 − · · · − φpBp, (3.2)
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Figure 4: 3-stage Box-Jenkins methodology.

where φi, i = 1, . . . , p, are the AR parameters. θ(B) represents the moving average (MA)
part, which describes the relation of ε̃t with past residuals and can also be expressed as a

polynomial in B of degree q in the following form:

θ(B) = 1 − θ1B − θ2B
2 − · · · − θqBq, (3.3)

where θi, i = 1, . . . , p, are the MA parameters.

In the case that ε̃t series shows seasonal behaviour, it can be included in (3.1). The

extended model is known as a Seasonal ARIMA model or SARIMA(p, d, q)(P,D,Q)s and takes

the following form:

Φ(Bs)φ(B)(1 − Bs)D(1 − B)dε̃t = Θ(Bs)θ(B)νt, (3.4)

where

Φ(Bs) = 1 −Φ1B
s −Φ2B

2s − · · · −ΦPB
Ps,

Θ(Bs) = 1 −Θ1B
s −Θ2B

2s − · · · −ΘqB
Qs,

(3.5)

represent the seasonal part with periodicity s.

To determine a suitable SARIMA model for a given series, we use the 3-stage Box-

Jenkins methodology. This procedure is illustrated in Figure 4. At the identification stage, a

preliminary SARIMA model is proposed from the analysis of the estimated autocorrelation

function (ACF) and partial autocorrelation function (PACF), allowing us to determine the

parameters d, D, p, q, P , and Q. Then, the seasonal and nonseasonal AR and MA parameters

are estimated at the second stage. The last stage, diagnostic checking, determines whether

the proposed model is adequate or not. If the model is considered adequate, it can be used

for forecasting future values; otherwise the process is repeated until a satisfactory model is

found.
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4. Time Series Analysis

In order to carry out the statistical part of the hybrid propagator, we consider a simulated

data set, that is, position and velocity, taken from the numerical integration of the Quasi-Spot

equations of motion during 10 satellite cycles. This number of cycles was experimentally

calculated; however the models obtained from fewer than 10 cycles were less accurate, but

from above 10 cycles the increase in accuracy was not significant either. The force model used

to generate the simulated data is a 4 × 4 EGM-96 gravity field, whereas for the numerical

integration a high-order Runge-Kutta method [9] is used.

It is noteworthy to mention that different sets of canonical and noncanonical variables

can be used to develop the statistical part, such as cartesian variables, orbital elements,

Delaunay variables, and polar-nodal variables. In this work, we will only take into account

the Delaunay variables, which allow a direct visualization of the geometry of the orbit.

4.1. Previous Statistical Analysis

The time series analysis begins calculating the linear relations:

εxt = xt − xAt , (4.1)

where x represents each of the Delaunay variables (l, g, h, L,G,H), xt is the simulated data at

epoch t, and xAt is the data from the analytical theory at the same epoch. Therefore, these six

time series (εlt, ε
g

t , ε
h
t , ε

L
t , ε

G
t , ε

H
t ) allocate all the information related to the perturbation forces

not considered in the analytical theory (tesseral terms of fourth degree and order and the

zonal coefficients J3 and J4), as well as the higher orders of the analytical solution, that is, the

error of the analytical theory O(J2
2 ), during 10 cycles (and 10 data points per cycle).

Then, the periodogram, a mathematical tool for examining cyclical behaviour in time

series, and the autocorrelation functions, a measure of how a time series is correlated with

itself at different time delays, are used to identify the time series models (see [5], for further

details).
The study of the periodogram and autocorrelation functions of each εxt reveals that

all variables show cyclical patterns or periodicities and, moreover, there is very similar

behaviour between the time series εlt and ε
g

t and εLt and εGt . For example, this study for εlt and

ε
g

t can be seen in Figure 5. However εht and εHt do not show any similar behaviour between

them or with the rest of the time series.

On the other hand, the correlation matrix of the εxt series is shown in Table 1. This

matrix presents a strong relationship between εlt and ε
g

t , as their correlation coefficient is near

−1 (−0.9607), as well as between their respective conjugate momenta time series errors, εLt
and εGt , where their correlation coefficient is near 1 (0.9982).

It is noteworthy to mention that although the intrinsic nature of the mean anomaly and

the argument of the perigee is different, as mean anomaly is related to short-periodic terms

and the argument of the perigee is related to long-periodic terms, the similar behaviours

detected in the above statistical studies can be explained, because the Quasi-Spot satellite

is near a repeat ground track orbit, in which the argument of the perigee and eccentricity

(e =
√

1 − (G/L)2) are almost constant. Figure 6 shows εlt, ε
g

t and εLt , εGt time series. As can

be observed, εlt and ε
g

t are almost symmetric with respect to the x-axis, which explains the

negative sign and the near −1 value in the correlation coefficient, whilst εLt and εGt are almost

the same, and therefore the sign in the correlation coefficient is positive with a near 1 value.
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Figure 5: Periodograms and autocorrelation functions of εlt (left) and ε
g

t (right).

Table 1: Correlation matrix of the εxt series.

εlt ε
g

t εht εLt εGt εHt
εlt 1.0000

ε
g

t −0.9607 1.0000

εht −0.0575 −0.1713 1.0000

εLt −0.1037 0.0934 0.0451 1.0000

εGt −0.1128 0.1168 −0.0070 0.9982 1.0000

εHt 0.4033 −0.4114 0.0420 0.0066 0.0005 1.0000
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Figure 6: Blue represents εlt, and εLt errors. Dashed red represents ε
g

t and εGt errors.

Finally, this preliminary study can be completed by analyzing the results obtained

when the εxt time series are combined with the data obtained from the analytical theory

(lAt , g
A
t , h

A
t , L

A
t , G

A
t ,H

A
t ) during the first 10 satellite cycles. This test allows us to consider

several possibilities. The first consists of considering each series separately, for instance,

(lAt + εlt, g
A
t , h

A
t , L

A
t , G

A
t ,H

A
t ). In all these cases the accuracy is not as good as the approach

given by the Z2DN1 AOPP. After considering other possibilities we show the relations

obtained in previous statistical analyses:

(i) (lAt + εlt, g
A
t + εgt , h

A
t , L

A
t , G

A
t ,H

A
t ),

(ii) (lAt , g
A
t , h

A
t , L

A
t + εLt , G

A
t + εGt ,H

A
t ),

(iii) (l + εlt, g
A
t + εgt , h

A
t , L

A
t + εLt , G

A
t + εGt ,H

A
t ),

(iv) (lAt , g
A
t , h

A
t + εht , L

A
t , G

A
t ,H

A
t + εHt ).

Figure 7 shows the distance errors between the simulated data and analytical theory

for the first ten cycles, and the simulated data and the above corrected analytical theories

with the exact error added. The strong influence of εlt and ε
g

t can be seen in the first plot; the

distance error is reduced to 0.63 km after ten satellite cycles, whereas εLt and εGt only remove

part of the short-period variations, as can be seen in the second plot. The third case collects

the corrections due to εlt, ε
g

t , εLt , and εGt , which produce a distance error similar to the first

case. Finally, the corrections due to εht and εHt do not have any effect on the distance error, as

can be observed in the last plot.

Next we focus our attention on carrying out a hybrid-AOPP from (lAt + εlt, g
A
t +

ε
g

t , h
A
t , L

A
t , G

A
t ,H

A
t ). The following step in the process of looking for the most suitable

SARIMA models using the Box-Jenkins methodology is described below.

4.2. Time Series Estimation of εlt and ε
g

t

To estimate the model of the ε
g

t time series, we use the Box-Jenkins methodology. In the

first step, the stationary behaviour of the time series is analyzed. Figure 6 suggests that the

variance is time-invariant, whereas for the mean value the plot is not conclusive. On the

other hand, Figure 5 shows that the autocorrelation function (ACF) decreases slowly and the

augmented Dickey-Fuller test [10] allows accepting the null hypothesis that the time series

has a unit root (P value 0.6921 > 0.05). Moreover, its periodogram (see Figure 5) shows

high peaks at low frequencies (f = 0.01 and 0.02). Therefore, the time series does not seem

stationary; thus differentiating the time series data may be necessary.

The second step analyzes the periodicity. The ACF shows a pronounced cyclical

fluctuation with a strong correlation at lag 10. Besides, its periodogram shows a peak at
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Figure 7: Blue represents the distance error between xti and xAti , whereas dashed red is the distance error

between xti and the corrected xAti from the exact εxt .

the frequency of 0.2, which corresponds to a periodicity of 10. These patterns agree with

the satellite cycle. This suggests that a seasonal model might be adequate to estimate

ε
g

t . Consequently, the tentative models should incorporate both seasonal and nonseasonal

parameters.

We analyzed different SARIMA(p, d, q)(P,D,Q)10 models in order to approximate

the ε
g

t time series, where the maximum likelihood method was used to estimate model

parameters, as can be seen in Table 2. Finally, the diagnostic stage showed a good fit for

the SARIMA(6, 1, 7)(3, 1, 3)10 model, in which the Jarque-Bera and Ljung-Box tests [11, 12]
do not reject the null hypothesis of normality nor the no autocorrelation of residuals, with P
values 0.182 and 0.993, respectively.

We must note that the model used to approximate the εlt time series is also a

SARIMA(6, 1, 7)(3, 1, 3)10, which confirms the similar behaviour previously detected to ε
g

t ,

although the model parameters are slightly different, as can be seen in Table 2.

The GNU software R (version 2.14) [13] was the statistical tool used to perform all

statistical analyses. In particular, the R packages TSA [14], forecast [15], and tseries [16] were

used for all time series analyses.

5. Z2DN1-SARIMA Hybrid-AOPP

Figure 8 shows the flowchart of the Z2DN1-SARIMA hybrid-AOPP. We find the difference to

the pure Z2DN1 AOPP (Figure 1) after applying the direct transformation of the Delaunay

normalization. At this point, the Delaunay variables are combined with the new forecast

(ε̂lt, ε̂
g

t ) and the osculating Keplerian elements (a, e, g, h, i, l) and state vector (x, y, z, ẋ, ẏ, ż)
are calculated.

At this point, it is noteworthy that a pure analytical theory which takes into account

the perturbation of the fourth degree and order harmonic coefficients of the gravity field,

considering the dimensionless parameter ω/n, where n is the mean motion of the satellite,

and the usual Garfinkel assumptions [17] with a precision of about one kilometer after
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Table 2: SARIMA(6, 1, 7)(3, 1, 3)10 models.

Coefficients εlt ε
g

t

φ1 −0.8167142581776827 −0.8312754102958296

φ2 0.5740668630692614 0.5649950239467217

φ3 1.1200190576112987 1.1322145773449677

φ4 −0.3087269639691513 −0.2946598587646277

φ5 −0.8631472597887673 −0.8663595825987899

φ6 −0.4970128310547080 −0.5012076262623468

θ1 0.8789635328932761 0.8901438163231377

θ2 −0.9965719584754135 −0.9834775736328421

θ3 −1.6921042908035564 −1.7044561386678760

θ4 0.5206249360614155 0.4906661687944900

θ5 1.5190020299259381 1.5136974115875366

θ6 0.3606298858846529 0.3820758183271771

θ7 −0.4721289483358399 −0.4568107050477830

Φ1 1.4676902604680244 1.4557054355067451

Φ2 −1.3618276394078148 −1.3525881149216927

Φ3 0.7076454044934742 0.7023619159769664

Θ1 0.8412748367694940 0.8370722835862818

Θ2 −0.8240640881053386 −0.8282527898256336

Θ3 0.9939014392344844 0.9966285211365780

Input:μ, , ,J2,t0,tf,a0,e0,g0,h0,i0,l0

(t0,l0,g0,h0,L0,G 0,H 0)

(t0,l′0,g
′
0,h

′
0,L

′
0,G

′
0,H

′
0)

(l′,g′,h′,L′,G ′,H ′)

(l+ ˆlt,g + ˆ
g
t,h,L,G,H )

O utput:t,a,e,g,h,i,l,x,y,z,ẋ,ẏ,ż

Figure 8: Flowchart of the Z2DN1-SARIMA hybrid orbit propagator program.

30 days, involves several mathematical expressions of more than 10000 terms, whereas the

whole Z2DN1 analytical theory only needs to evaluate 93 terms. The technical details of the

tesseral analytical theory have been developed in [18, 19].
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Figure 10: Z2DN1-SARIMA hybrid-AOPP. Distance, along-track, cross-track, and radial errors for a Quasi-
Spot satellite.

5.1. Numerical Validations

Finally we analyze the behaviour of Z2DN1-SARIMA hybrid-AOPP designed for a Quasi-

Spot satellite versus the numerical integration for an Earth orbiter, which has only taken

into account the perturbation due to the nonsymmetrical Earth gravity field up to the fourth

degree and order. The first 10 cycles are considered for the estimation stage, whilst from

the 10th and up to approximately the 430th cycle, which is about 30 days, are used in the

forecasting stage.

Figure 9 shows the relative errors of the mean anomaly and argument of the perigee

for a Quasi-Spot satellite. The maximum absolute errors of mean anomaly and argument of

the perigee in a time span interval of 30 days are about 9.4◦ and 8.2◦, respectively. These errors

have been reduced to 3◦ in the case of the mean anomaly and to 1.3◦ in the argument of the

perigee, with respect to the Z2DN1 AOPP.

Figure 10 shows the distance, along-track, cross-track, and radial errors. The maximum

distance error obtained from Z2DN1 AOPP is 352.076 km while for Z2DN1-SARIMA it

is only 23.7489 km. We must remark that the accuracy obtained by the described hybrid-

AOPP is only comparable to a higher-order analytical theory, which includes a more precise

perturbation model.
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6. Conclusions and Future Works

A new methodology to carry out hybrid-AOPP families, based on the combination of an

analytical orbit propagator program and statistical time series models, is presented. To

illustrate this methodology, a hybrid-AOPP, named Z2DN1-SARIMA, has been developed,

which combines an economic first-order closed-form analytical orbit propagator and two

SARIMA time series models fitted to the case of the Quasi-Spot satellite. Although the

increment in the computational time cost is not significant with respect to the pure analytical

theory, the error of our theory is reduced in comparison to the pure Z2DN1 AOPP. The

accuracy reached by our new hybrid model is similar to that obtained by a more complex

zonal and tesseral analytical theory, but without the inconvenience of losing computational

efficiency.

To calculate the SARIMA models, 10 satellite cycles are considered and the univariate

Box-Jenkins time series analysis is used to model the εxt time series, using statistical software

packages for R. Two of the six components were modelled, whilst, at present, we are working

on the study of the bivariate SARIMA models in order to collect the similar behaviour found

between the mean anomaly and the argument of the perigee. In the study of the argument of

the node and the third component of angular momentum behaviour, we are performing an

economic analytical theory, which includes tesseral coefficients.

The behaviour of the Z2DN1-SARIMA hybrid-AOPP with respect to other initial

conditions near the Quasi-Spot conditions, as well as the adapted hybrid-AOPP, when other

perturbations, like atmospheric drag, third body, and so on, are taken into account, is future

works to be investigated.
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unsteadiness, the design of opportunistic networks faces the challenge of how to effectively deliver
data based only on occasional encountering of nodes, where the conventional routing schemes
do not work properly. This paper proposes a hybrid probability choice routing protocol with
buffer management for opportunistic networks. A delivery probability function is set up based
on continuous encounter duration time, which is used for selecting a better node to relay packets.
By combining the buffer management utility and the delivery probability, a total utility is used
to decide whether the packet should be kept in the buffer or be directly transmitted to the
encountering node. Simulation results show that the proposed routing outperforms the existing
one in terms of the delivery rate and the average delay.

1. Introduction

Opportunistic networks [1–4] are one of the most emerging communication paradigms

in wireless mobile communications where most of the time the path from a source to

a destination is unstable and may break and be discovered from time to time [5, 6]. In

this case, how to effectively deliver data based only on occasional encountering of nodes

becomes a challenge, since the conventional cannot be adopted straightforwardly. To deal

with the unpredictability in connections and network partitions, many routing protocols

adopt flooding-based and store-carry-forward routing schemes, such as Epidemic Routing

(ER) [7], Spray and Waiting [8–10], PRoPHET [11], and MaxPROP [12], to improve the

message delivery, where a node receives packets, stores them in their buffers, carries

them while moving, and forwards them to other nodes when they encounter each other.
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Epidemic is one of the first routing schemes, adopting the store-carry-forward paradigm.

In Epidemic Routing, packets are disseminated in broadcast mode as infectious diseases

spread. This packet-spread will continue until all the nodes have a copy of the packet or

its TTL (time-to-live) expires. Although, Epidemic Routing achieves eventual delivery of

100% of messages, but it makes no attempt to eliminate replication, and the high delivery

rate is at the expense of the network resource consumption, such as storage of buffer

space and transmission bandwidth [13, 14]. Performance of ER will get worse when the

network traffics congest. Spray and Wait [8, 9, 15] combines the speed of ER with the

simplicity and thriftiness and reliability of direct transmission and makes an effort to

perform fewer transmissions by controlling the number of packet copies in spray phase

and utilizing direct transmission in wait phase. While in scenarios of a high mobility model

(like community-based mobility), the direct transmission based wait phase in Spray and

Wait routing has low efficiency in delivery delay and probability. ProPHET [11] presents

an estimation-based forwarding scheme to direct the messages to the destination node.

The basic operation of ProPHET is similar to that of Epidemic. When two nodes meet

each other, each node exchanges its summary vectors and delivery predictability to each

other. The delivery predictability in the summary vector is used to make a forwarding

decision for the packets’ delivery. ProPHET is a single-copy forwarding-based scheme,

and the limited copy may result in the performance limitation of the initial probability

distribution.

Most of the studies on opportunistic networks have been investigated in the design

of efficient routing, but few literature focused on buffer management, which is important

for the store-carry-forward paradigm, for example, Epidemic Routing has minimum delivery

delay under no buffer constrains, but performs worse than other routings when buffer sizes

are limited. Most of the routings use the simple drop-tail policy without taking the buffer

management into account. However, how to utilize spatial, temporal, and buffer information

to make an optimal decision for delivering the packets is an open issue.

In this paper, we propose a hybrid probability choice routing protocol with buffer

management. The main work of the proposed method is (1) to set up a delivery probabilities

function based on the continuous encounter duration time and buffer information, (2) to let

nodes decide how many copies will be transmitted to the encountering nodes according to

their delivery probabilities to the destination in the spray phase, and (3) to combine the buffer

utility and delivery probability to construct a total utility and to directly deliver the last copy

to the encountering node according to the total utility in the wait phase.

The rest of the paper is organized as follows. We give an overview and detailed

information of our algorithm in Section 2. We evaluate our scheme through simulation in

Section 3 and draw a conclusion in Section 4.

2. Design of Probability Choice Routing Protocol with
Buffer Management

2.1. Network Model

This paper considers the probabilistically contacted opportunistic networks where the

networks consist of nodes representing portable wireless devices held by moving elements

such as people or vehicles in a community. We model an opportunistic network as a dynamic

set of mobile nodes. Nodes may join and leave the network at any time. In our opportunistic

scenario, there are three groups of moving elements: pedestrian, bicycles, and vehicles. Each
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group of moving elements follows the map-based movement model with different speed.

We use 30 vehicles following predefined routes, 60 nodes are pedestrians, and 30 nodes

are bicycles. The vehicles and bicycles choose random destinations in their reach on the

map. The number of different moving elements can be changed, which does not affect the

characteristics of basic communication.

Communications are based on pairwise contacts [10, 16, 17]. Through the pairwise

encountering of mobile elements, data stored in devices are opportunistically forwarded over

the network. Nodes are assumed to have homogeneous capability in terms of computation,

communication, and storage. Opportunistic forwarding decisions are made without the help

of the localization services. Their communication capacity is limited by specific wireless

techniques. For example, through Bluetooth, node can contact with each other when each of

two nodes enters the other’s communication range. Two nodes in the network are neighbors

and can transfer data packets bidirectional if they are within the communication range. Data

is forwarded in a store-and-forward manner, which allows nodes to store data temporarily

until running into a more competent node to further forward them. We consider a multicopy

scenario. The network model can be presented concretely as follows. The topology of the

networks is modeled as a graph G = (V, E), V is the set of nodes, and E is the set of hyperarcs.

Each node in the network can be a source or destination of traffic.

2.2. Motivation of the Protocol

The core of the processing is how to rank the relay nodes based on the measurement of the

delivery predictability and buffer utility. Addressing the above issue, each node records its

location and context to a historical information database. Nodes renew their routing passively

and share their location and moving information. When a node encounters another node,

each node exchanges its location and historical moving information and decides whether

it delivers its packets to the encountering node by calculating the delivery predictability,

which is based on the historical encounter duration time and buffer situation. Based on this

prediction, the node will make a wise decision to deliver the packets or not in both the spray

phase and wait phase. In the wait phase of the original Spray and Wait, a node with the last

copy has to wait until it encounters the destination, the node will not hand over the last copy

to any nodes that might have more chances to encounter the destination, so it might waste

some opportunity and keep the buffer out of space. In this scheme, we make an effort to let

nodes exchange SV (Summary Vector) once a node with the last one copy encounters a node.

We calculate the total utility according to the buffer utility and delivery probability. If the

total utility is higher than a given threshold, the node will hand over the last copy to it.

2.3. Delivery Predictability Calculation

In the spray phase of original Spray and Wait routing, for each message originating at a source

node, L message copies are initially sprayed and relayed by nodes. An optimal Spray and

Wait scheme-Binary Spray and Wait (BSW) is proposed in [8] to speed up the spray phase

and improve the routing performance, where any node with n ≥ 1 copies hands over half

copies to the encountered node until n = 1. However, if the relay is a very inactive node,

which does not contact with other nodes, handing over half the copies to such a node means

half of the relay chances will be wasted. In order to overcome this problem, we introduce a

novel scheme to the spray phase, where we set up a delivery probability to the destinations

for each node as the ProPHET routing [11] does, and nodes exchange different numbers of
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copies to each other according to their delivery probabilities P(a,b) ∈ [0, 1], that is, when P(a,b)
is larger than a threshold value Pthreshold, node a will hand over half its copies to node b,

otherwise, it will only hand over one copy to node b. The delivery probabilities are updated

as follows.

(1) Whenever a node is encountered, the delivery predictability is updated as (2.1),
where Pinit is an initialization constant. It is recommended in [18] that the referential

value of Pinit is 0.75:

P(a, b) = P(a, b)old + (1 − P(a, b)old) × Pinit. (2.1)

(2) The aging equal is shown in (2.2), where γ ∈ (0, 1] is the aging constant and k is the

number of time units that has elapsed since the last time the metric was aged:

P(a, b) = P(a, b)old × γk. (2.2)

(3) Transitive affection is shown in (2.3), where β is a scaling constant that decides

how large impact the transitivity should have on the delivery predictability. It is

recommended in [18] that the referential value of β is 0.25:

P(a, c) = P(a, c)old + (1 − P(a, c)old) × P(a, b) × P(b, c) × β. (2.3)

In real opportunistic networks, the communication range of nodes, moving speed, and

bandwidth may be different. When the network is in an unstable situation, such that the

nodes’ moving speeds are too fast and have different communication ranges, the links will

interrupt frequently. In this case, the nodes encounter each other from time to time according

to the link’s situation. The number of nodes encountering cannot reflect the real ability of

communication between nodes anymore. Based on this observation, we revise (2.1) and (2.2)
using the continuous time t to calculate the delivery as that of [19], where τ is a constant, and

t is the time that has elapsed since the last encounter time:

Pt = Pold × e−τt. (2.4)

Compared with (2.2) and (2.4), let

t = ku, Pt(a, b) = P(a, b), (2.5)

then

(
e−τ

)t = (
γ1/u

)t
=

(
e(1/u) ln γ

)t | Pold /= 0,

τ = − 1

u
ln γ,

(2.6)
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and then (2.1) can be rewritten as follows:

P(a, b) = 1 − e−ctup(1 − P(a, b)old), (2.7)

c = − 1

u′
ln(1 − Pinit). (2.8)

In this way, the discrete-time signal is changed into the continuous-time signal.

Therefore, the noise, which is introduced by different encounter communication range and

moving speeds, can be removed by certain filter.

2.4. Optimal Node Selection with Buffer Management

In this subsection, we try to maximize the average delivery rate by using a buffer

management. In opportunistic networks, nodes have finite buffer space, so they must

eventually discard old copies to make room for new requests. Normally, copies will be

discarded when the Time to Live (TTL) is elapsed. If the TTL elapsed before the nodes

encounter any nodes, the copies will be dropped; otherwise, a decision of which copies

should be dropped must be made when the buffer is filled up. Thus, the encountering

interval of nodes should be considered. The encountering interval between nodes depends

on the value of the mobility model. We assume that there is enough time to exchange their

packets. The encountering time (T) between nodes is defined as the time it takes them to

first come within transmission rang (R = min(ra, rb)). Based on the experimental study, it

has been shown that the meeting time of some random-based mobility models like Random

Walk, Random Waypoint, and Random Direction is exponentially distributed or has at least

an exponential tail, with parameter λ = 1/E(T), where E(T) denotes the expectation of a

random variable T . We use these mobility models for our test scenarios. And, then, the

probability that a copy of a message j will not be delivered is equal to the probability

that the next encountering time with the destination node is greater than the remaining

Time to Live Rj(TTL) for message j. That is exp(−λRj(TTL)). Based on this model, it has

been proved that in order to maximize the average delivery rate, the optimal policy of

buffer management should drop the message with the lowest probability to delivery [14].
The optimal policy of buffer management uses the Epidemic Routing, whose number of

message copies is uncontrolled. Different from that, we employ a fixed number L of copies

for messages. The probability that the message will not be delivered can be derived as

follows:

Pj(undelivered) = exp
(−λnjRj(TTL)

)
. (2.9)

Here, nj is the total number of copies of message j in network. And the probability of

a message being delivered is:

Pj(delivered) =
mj

N − 1
, (2.10)
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where N is the number of nodes in the network and mj is the number of nodes that have ever

stored message j. Then, the probability of message that will be delivered can be derived as

follows:

Pj = Pj(delivered)
(
1 − exp

(−λnjRj(TTL)
))

+ Pj(delivered), (2.11)

Pj =
(

1 − mj

N − 1

)(
1 − exp

(−λnjRj(TTL)
))

+
mj

N − 1
. (2.12)

Hence, the maximum of average delivery rate is achieved by maximizing Pj , then we can

maximize the average delivery rate. Taking the derivation of (2.12) with respect to nj :

∂Pj

∂nj
=

(
1 − mj

N − 1

)
λRj exp

(−λnjRj(TTL)
)
Δnj . (2.13)

From (2.13), the best drop decision is to drop the message j satisfying:

jmin = arg min
j

[(
1 − mj

N − 1

)
λRj exp

(−λnjRj(TTL)
)]
. (2.14)

Since we are using the fixed number L of the copies, when the proposed routing comes

to waiting phase, it means that the nodes have only one copy of the message j. For the worst

case, none of them contacts destination node. Replacing nj with the total number of copies L

for (2.14), we get

jmin = arg min
j

[(
1 − mj

N − 1

)
λRj exp

(−λLRj(TTL)
)]
. (2.15)

We define the buffer utility as follows:

Uj =
(

1 − mj

N − 1

)
λRj exp

(−λLRj(TTL)
)
, (2.16)

where value of mj is a global state of the message in the network. We can calculate it by using

the local information. Suppose that

mj = mj = E(M(T)), (2.17)

where M(T) is a random variable, which follows the approximated of a Gaussian

distribution.

In the fixed number copies’ routing, the success delivery rate depends on the threshold

of the number of copies and the spray strategy. Multiple-copy routing utilizes multiple paths

to transfer packets. Therefore, the node with larger delivery predictability should have more

copies of the packet. While the source spray and binary spray strategies used in Spray and

Wait routing do not consider the different utilities of the nodes. They spray the packets
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Figure 1: Flow chart of the proposed routing.

equally for each node. According to the analysis in Section 2.3, we apply a simple spray

strategy based on mean delivery predictability to the routing. Set B as the sum of average

contact and intercontact time between encounters of node pairs. We calculate the mean

delivery predictability P as follows:

P (a,b) =
1

B

∫B

0

Pinit(a,b) × e−λtdt, (2.18)

when P > P , half copies (L/2) will be transferred to the encountering node. When P < P ,

only one copy will be transferred to the encountering node.
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Table 1: Simulation environment parameters.

Simulation parameters Simulation values

Map size 4500 m × 3400 m

Packet transmission speed 250 kBps (2 Mbps)
Number of nodes

Pedestrian 60

Bicycles 30

Vehicles 30

Node movement Shortest Path Map Based Movement

Speed

Pedestrian 0.5–1.5 m/s

Bicycles 1.4–4 m/s

Vehicles 2.7–13.9 m/s

Transmission range 10 m

Packet size 500 kB–1 MB

Message generation interval 25 s, 35 s

In the wait phase, the original Spray and Wait store message in the buffer until the

destination is reached. Sometimes, however, the encountering node may have more chance

to encounter the destination, we consider delivering the last copy to the encountering node

with a larger delivery probability. Since this policy may lead to no convergence (none of the

nodes reach the destination before TTL), we consider the following process.

By combining (2.7) and (2.16), we construct a total utility of buffer utility and delivery

probability as follows:

Utotal = δUj + ψP(a, b) = δ
[
1 − e−ctup(1 − P(a, b)old)

]
+ ψ

(
1 − mj

N − 1

)
λRj exp

(−λLRj(TTL)
)
,

(2.19)

where δ and ψ are the weighted factors that represent the impact of buffer utility and delivery

probability on the total utility, respectively.

If the total utility Utotal is larger than a given threshold Uthreshold, the last copy will be

sent to the encountering node, otherwise it will be kept in the buffer until the TTL expires.

The flow of the scheme is shown in Figure 1.

3. Simulation and Analysis

This section evaluates the performance of the proposed routing by modifying and developing

the traditional Spray and Wait routing in the ONE [15, 20] simulator. We consider a scenario

with three classes of nodes, pedestrians, bicycles, and vehicles. The details of the simulation

parameters are listed in Table 1.

In the performance evaluation, we compare the proposed protocol with three

representative routing protocols: Epidemic Routing (ER), original Spray and Wait (SNW),
and ProPHET routing (PRO), respectively. We run all these routings in the same scenario with

the above parameters and compare their performance with regard to the success delivery
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rate and delivery delay under different buffer size, TTL, and total number of messages,

respectively.

Figures 2 and 3 show the delivery rate and average delay with variant buffer size

for ER, SNW, and PRO in comparison with the proposed optimal probability choice routing

protocol with buffer management. Among these routing protocols, the bigger buffer size

show the better performance of all protocols, and the performances of SNW and the proposed

protocol are better than PRO and ER. This result is due to the use of the limited number of

copies among these routings. Note that the proposed protocol provides a higher delivery rate

than SNW when the buffer size is larger than 12 M. This result validates the effectiveness of

the proposed buffer management policy in Section 2.4.
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Figures 4 and 5 show the performance under different TTL. The figures show that the

proposed protocol outperforms the other three routing algorithms. Along with the increase of

TTL, the delivery rates and the average delivery delays of all the four routings rise gradually.

The proposed protocol achieves the largest delivery rate and the shortest delay for all TLL

scenarios. This is reasonable because large TTL brings more time for the copies to stay in the

relay nodes without discarding, and this helps to increase the success delivery rate, while the

long-time staying in nodes will lead to lack of buffer spaces and large average delivery delay,

when buffer spaces run out, copies will be discarded again, which will lead to a reduction in

success delivery rate. That is, tradeoff is offered in terms of the TTL and buffer space.
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Although both the proposed protocol and the SNW require more copies than the other

schemes, our protocol outperforms the latter as the buffer size is increased. This is because

we use directly delivering in the wait phase to transmit the last one copy to the node with a

higher delivery probability to destination.

Figures 6, 7, 8, and 9 describe the average delivery rate, average buffer time, the

delivery delay, and overhead versus the total number of message. As the traffic increases,

the delivery rates and overhead of all the routing protocols decrease, while the average

buffer time and delivery delay increase eventually. Overall, the delivery rate of the proposed

protocol is the highest one and it is more robust than the other routing protocols, and the

average buffer time and overhead of the proposed protocol is kept in a very low level. The
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reason is as follows. Firstly, we use continuous encounter time to describe the encounter

opportunity, which makes it more precisely to describe the encounter opportunity. Secondly,

we provide different numbers of exchanging copies to the nodes according to their delivery

probabilities to the destination in the spray phase, the node transfers more copies to the

node with higher delivery predictability. It takes full advantage of the knowledge about the

historical encountering, and the delivery predictability reflects the node’s real mobility and

transfer ability more precisely and thus yields a faster transfer for the packet to the destination

node. Finally, taking the buffer management and the delivery probability into account in final

waiting phase will gain more buffer space the buffer and thus reduce the average buffer time

and increase the opportunity of finding the destination.
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4. Conclusion

Opportunistic networks aim to provide reliable communications in an intermittently

connected environment. The major challenge here is to route messages without an end-to-

end connection. To deal with the unpredictability in connections and network partitions, we

propose the probability choice routing protocol with buffer management for opportunistic

networks in this paper. In the proposed protocol, a delivery probability based on continuous

encountering duration time is set up such that each node can choose a better node as

its relay in spray phase, and a total utility of buffer management utility and delivery

probability is taken into consideration for delivering the last copy to the encountering node.

Extensive results are provided to evaluate the proposed routing protocol with ONE simulator.

Simulation experiments indicate that the proposed routing protocol outperforms the existing

routing solutions thanks to its ability to maximize the delivery rate and minimize the delivery

delay. Future research topic includes the extension to the real-life mobility.
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We propose the degenerate-generalized likelihood ratio test (DGLRT) for one-sided composite
hypotheses in cases of independent and dependent observations. The theoretical results show
that the DGLRT has controlled error probabilities and stops sampling with probability 1 under
some regularity conditions. Moreover, its stopping boundaries are constants and can be easily
determined using the provided searching algorithm. According to the simulation studies, the
DGLRT has less overall expected sample sizes and less relative mean index (RMI) values in
comparison with the sequential probability ratio test (SPRT) and double sequential probability
ratio test (2-SPRT). To illustrate the application of it, a real manufacturing data are analyzed.

1. Introduction

Consider the following hypotheses test problem:

H0 : θ ≤ θ0 versus H1 : θ ≥ θ1 (θ0 < θ1) (1.1)

with the error constraints

Pθ
{

acceptH1

} ≤ α for θ ≤ θ0

Pθ
{

acceptH0

} ≤ β for θ ≥ θ1.
(1.2)

Here, θ0, θ1 ∈ Θ, and Θ is the parameter space. Sequential tests for the problem (1.1) with

independently and identically distributed (i.i.d.) observations have been widely studied.

In cases of the one parameter exponential family with monotone likelihood ratio, the

sequential probability ratio test (SPRT) proposed by Wald [1] provided an optimal solution to
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the problem (1.1), in the sense of minimizing the expected sample sizes (ESSs) at θ = θ0 and

θ = θ1, among all tests satisfying the constraints (1.2).
However, its ESSs at other parameter points are even larger than that of the test

methods with fixed sample sizes. This led Weiss [2], Lai [3], and Lorden [4] to consider the

problem (1.1) from the minimax perspective. Subsequently, Huffman [5] extended Lorden’s

[4] results to show that the 2-SPRT provides an asymptotically optimal solution to the

minimax sequential test problem (1.1). Instead of the minimax approach, Wang et al. [6]
proposed a test minimizing weighted ESS based on mixture likelihood ratio (MLR). Since the

ESSs over [θ0, θ1] are hard to control and are usually focused on applications, Wang et al. [6]
paid much attention to investigate the performance of the ESS over [θ0, θ1]. Many tests for

the problem (1.1) under independent observations are developed from other perspectives,

including [7–11] and so forth.

It is true that in many practical cases the independence is justified, and hence these

tests have been widely used. However, such tests may not be effective in cases when

the observations are dependent, for example, Cauchy-class process for sea level (cf. [12]),
fractional Gaussian noise with long-range dependence (cf. [13, 14]) and the power law

type data in cyber-physical networking systems [15]. Especially for the power law data, the

sequential tests for dependent observations are particularly desired. This need is not limited

to these cases.

So far, many researchers studied sequential tests for various dependent scenarios.

Phatarfod [16] extended the SPRT to test two simple hypotheses H0 : θ = θ0 versus

H1 : θ = θ1 when observations constitute a Markov chain. Tartakovsky [17] showed that cer-

tain combinations of one-sided SPRT still own the asymptotical optimality in the ESS under

fairly general conditions for a finite simple hypotheses. Novikov [18] proposed an optimal

sequential test for a general problem of testing two simple hypotheses about the distribution

of a discrete-time stochastic process. Niu and Varshney [19] proposed the optimal parametric

SPRT with correlated data from a system design point of view. To our best knowledge,

however, there are few references available for considering the problem (1.1) with dependent

observations from the perspective of minimizing the ESS over [θ0, θ1]. Similar to Wang et al.

[6], one can extend the MLR to the dependent case. However, unlike the i.i.d. case, the MLR

under the dependent case may not be available because of the complexity of its computation.

Besides, its test needs to divide [θ0, θ1] into two disjoint parts by inserting a point. In i.i.d.

cases, this point can be selected following Huffman’s [5] suggestion. But, in the dependent

case, this suggestion may not be effective. One also can use the generalized likelihood ratio

(GLR) instead of the MLR. Unfortunately, as opposite to the MLR, the GLR does not preserve

the martingale properties which allow one to choose two constant stopping boundaries in

a way to control two types of error. Moreover, the computation of the GLR is hard to be

obtained in cases when the maximum likelihood estimator should be searched. This usually

happens in the dependent case.

In this paper, we propose a test method for both dependent and independent observa-

tions. It has the following features: (1) it has good performances over [θ0, θ1] in the sense of

less overall expected sample sizes; (2) its computation is reasonably simple; (3) its stopping

boundaries can be determined conveniently. The rest of the paper is organized as follows. In

Section 2, we describe the construction of the proposed test in details and present its basic

theoretical properties. Based on these theoretical results, we provide a searching algorithm

to compute stopping boundaries for our proposed test. In Section 3, we conduct some

simulation studies to show the performance of the proposed test. Some concluding remarks

are given in Section 4. Some technical details are provided in the appendix.
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2. The Proposed Test

Let xi =: (x1, x2, . . . , xi), i = 1, 2, . . . and suppose that the conditional probability distribution

of each xi|xi−1, f(xi|xi−1, θ) has an explicit form. Here, x1|x0 =: x1 and f(x1|x0, θ) =: f(x1, θ).
Thus, likelihood ratio can be defined as

Rn

(
θ, θ′

)
=

n∏
i=1

f
(
xi | xi−1, θ

)
f
(
xi | xi−1, θ′

) , θ, θ′ ∈ Θ. (2.1)

Lai [20] introduced this model to construct a sequential test for many simple hypotheses

when the observations are dependent. It is very general and also includes the i.i.d. cases.

Example 2.1. Consider, for instance, a simple nonlinear time series model:

xi = θx2
i−1 + εi, εi ∼N(0, 1). (2.2)

In this case, Rn(θ, θ′) =
∏n

i=1φ(xi − θx2
i−1)/φ(xi − θ′x2

i−1), x0 = 0, and φ(·) is the probability

density function of the standard normal distribution.

To overcome the difficulty stated in Section 1, we propose a test statistic which

minimizes the likelihood ratio with restriction to a finite parameter points in [θ0, θ1]. First, we

insert k (≥3) points into [θ0, θ1] uniformly, denoted as θ̃i with θ̃i = θ0 + (i− 1)(θ1 − θ0)/(k − 1),
i = 1, . . . , k. Next, we define the test statistic as max1≤i≤k Rn(θ̃i, θ′). It can be checked that this

test statistic not only preserves the martingale properties, but also inherits the merit of the

GLR. As long as k is not very large (e.g., k > 100), its computation will be very simple. Thus,

it has all the three features stated in Section 1. Since this maximization is restricted to some

finite points, we refer to it as degenerate-generalized likelihood ratio (DGLR).
Based on the DGLR, we define a stopping rule T for the problem (1.1) by

T = inf

{
n ≥ 1,max

1≤i≤k
Rn

(
θ̃i, θ0

)
≥ A or max

1≤i≤k
Rn

(
θ̃i, θ1

)
≥ B

}
, (2.3)

with the terminal decision rule

Δ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
accept H1, max

1≤i≤k
RT

(
θ̃i, θ0

)
≥ A,

accept H0, max
1≤i≤k

RT

(
θ̃i, θ1

)
≥ B,

continue sampling, else,

(2.4)

where 0 < A, B < ∞ are two stopping boundaries. Hereafter, the sequential test method

with (2.3) and (2.4) is called the degenerate-generalized likelihood ratio test (DGLRT). It has

some theoretical properties which are stated as follows. These theoretical properties provide

a guide to the design of the DGLRT, whose proofs are provided in the appendix.
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Let

α′(θ,A, B) = Pθ

{
max
1≤i≤k

RT

(
θ̃i, θ0

)
≥ A

}
, θ ∈ Θ0,

β′(θ,A, B) = Pθ

{
max
1≤i≤k

RT

(
θ̃i, θ1

)
≥ B

}
, θ ∈ Θ1

(2.5)

be the real error probabilities, where Θ0 and Θ1 represent the parameter subsets under H0

and H1, respectively.

Proposition 2.2. Suppose

∫
f
(
xi | xi−1, θ′′

)
f
(
xi | xi−1, θ′

) f(xi | xi−1, θ
)
dxi ≤ 1, (2.6)

for any positive integer n and every triple θ ≤ θ′ ≤ θ′′. For the DGLRT defined by (2.3) and (2.4), one
has α′(θ,A, B) ≤ k/A for all θ ∈ Θ0 and β′(θ) ≤ k/B for all θ ∈ Θ1.

Remark 2.3. The assumption (2.6) given in Proposition 2.2 is not restrictive. This holds for the

general one parameter exponential family and many others (cf. Robbins and Siegmund [21]).

Proposition 2.4. Suppose that there exists a constant ε > 0 such that Eθ′′[log{f(xi|xi−1; θ′)} −
log{f(xi|xi−1; θ)}] ≥ ε for all i and every triple θ ≤ θ′ ≤ θ′′. Under the assumptions stated in
Proposition 2.2, one has Pθ{T <∞} = 1 for all θ ∈ Θ.

Remark 2.5. For θ′′ ≥ θ′, we have

Eθ′′
[
log

{
f
(
xi | xi−1; θ′

)}
− log

{
f
(
xi | xi−1; θ

)}]
= −Eθ′′

[
log

{
f
(
xi | xi−1; θ

)}
− log

{
f
(
xi | xi−1; θ′

)}]
≥ − log

{
Eθ′′

[
f
(
xi | xi−1; θ

)
f
(
xi | xi−1; θ′

)]}

≥ 0.

(2.7)

The last inequality follows from (2.6). Eθ′′[log{f(xi|xi−1; θ′)} − log{f(xi|xi−1; θ)}] is positive

with probability 1 if θ /= θ′. Heuristically, the requirement that the difference be greater than

the constant ε > 0 for all i amounts to assuming that the sequence of data cumulatively adds

information about all the θ′′ ≥ θ′, which is generally true in sequential studies.

From Proposition 2.2, we conclude that the DGLRT satisfies the error constraints (1.2)
if A = k/α and B = k/β. From Proposition 2.4, it is easy to find that we absolutely stop

sampling after finite observations. These results imply that the DGLRT can be useful in a

sequential study for testing the problem (1.1).
In the DGLRT (2.3) and (2.4), the value of the parameter k should be large but finite.

In practice, we suggest that k = 10 (cf. Section 3). Regarding A and B, we can compute them

by simulation. Proposition 2.2 shows A ≤ k/α and B ≤ k/β. Thus, we can search (A, B) over
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Table 1: The ESSs at θ = −0.8 (0.1) 0 for −θ0 = θ1 = 0.5 and α = β = 0.01.

θ −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0

k = 3 6.293 7.121 8.181 9.545 11.241 13.156 15.136 16.600 17.141

k = 5 6.355 7.173 8.254 9.557 11.172 13.073 14.958 16.396 16.974

k = 10 6.380 7.228 8.264 9.577 11.138 13.039 14.897 16.344 16.889

k = 50 6.394 7.231 8.265 9.578 11.113 13.070 14.872 16.321 16.862

[1, k/α] × [1, k/β] with the real error probabilities being computed by simulations. One may

consider a density grid searching on [1, k/α] × [1, k/β]. But this is a time consuming job. To

reduce the computation, we introduce an efficient approach as follows. In the first step, we

can use bisection searching to find A1 (∈ [1, k/α]) such that α′(θ0, A1, k/β) = α. Then, fix A1

to find B1 (∈ [1, k/β]) such that β′(θ1, A1, B1) = β. Since α′(θ0, x, y) and 1−β′(θ1, x, y) increase

in x and decrease in y, we conclude that (A,B) ∈ [1, A1]× [1, B1]. Hence, we repeat the above

step over [1, A1] × [1, B1]. In this way, we generate a sequence of pairs (A1, B1), (A2, B2), . . ..
Following the above program, we have

A1 ≥ A2 ≥ · · · ≥ 1, B1 ≥ B2 ≥ · · · ≥ 1. (2.8)

It can be checked that these pairs converge to the exact stopping boundaries. In practice, we

repeat the above process and stop at step l if |α′(θ0, Al, Bl) − α| ≤ tol1 and |β′(θ1, Al, Bl) − β| ≤
tol2. Here, tol1 = 2%α and tol2 = 2%β. Computation involved in finding A and B is not

difficult partly due to the rapid developments in information technology. For example, in the

nonlinear time series model (2.2), setting −θ0 = θ1 = 0.25, α = 0.01, β = 0.05, and k = 10,

it requires 15 minutes to obtain the stopping boundaries A and B for the DGLRT based on

100,000 simulations, using Intel-Core i7-2.80 GHz CPU. Since this is a one-time computation

before testing, it is convenient to accomplish.

3. Numerical Studies

In this section, we present some simulation results regarding the numerical performance of

the proposed DGLRT. In the DGLRT, the parameter k needs to be chosen. We first investigate

the effect of k on the performance of the DGLRT according to i.i.d. observations from the

normal distribution N(θ, 1). Setting −θ0 = θ1 = 0.5 and α = β = 0.01, we compare the

DGLRTs with k = 3, 5, 10, 50. The corresponding stopping boundaries (A,B) are (69.3, 69.3),
(74.3, 74.3), (75.7, 75.7), and (76.7, 76.7), respectively. The ESSs at θ = −0.8 (0.1) 0.8 (i.e., θ

takes values from −0.8 to 0.8 with step 0.1) are computed based on 100,000 simulated data

and are provided in Table 1.

Because of the symmetry, we only include results for θ ∈ [−0.8, 0]. Table 1 shows that

the ESSs under a larger k are smaller than those under a smaller k if θ ∈ (θ0, θ1). Meanwhile,

it can be seen that a smaller k has a better performance outside (θ0, θ1). In order to assess

the overall performance of the tests, we compute their relative mean index (RMI) values.
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The RMI is introduced by Han and Tsung [22] for comparing the performance of several

control charts. It is defined as

RMI =
1

N

N∑
l=1

ESS(θl) − MESS(θl)
MESS(θl)

, (3.1)

where N is the total numbers of parameter points (i.e., θl’s) we considered, ESS(θl) denotes

the ESS at θl, and MESS(θl) is the smallest one among all the three ESS(θl). So, (ESS(θl) −
MESS(θl))/MESS(θl) can be considered as a relative difference of the given test, compared

to the best test, at θl, and RMI is the average of all such difference values. By this index, a

test with smaller RMI value is considered better in its overall performance. Since we focus on

the performance over the parameter interval [θ0, θ1], θl = −0.5 + 0.1(i − 1), i = 1, . . . , 10 in this

illustration. The resulting RMIs for the DGLRT under k = 3, 5, 10, 50 are 0.0116, 0.0042, 0.0017,

and 0.0011, respectively, which shows that the DGLRT under a larger k is more efficient than

the one under a smaller k. The improvement is minor when k is large enough. Considering

the complexity of computation, we select k = 10 for practical purposes. From now on, the

DGLRT is always the DGLRT under k = 10 unless otherwise stated.

Next, we investigate the performance of the DGLRT in controlling the ESSs over

[θ0, θ1]. In the i.i.d. case, we know the 2-SPRT has a better performance in controlling the

maximum ESS. For the ESSs over the neighborhoods of θ0 and θ1, the SPRT provides a closely

approximation. Based on extensive simulations, we conclude that these features still preserve

in the dependent case. Therefore, the SPRT and the 2-SPRT are compared with the DGLRT in

this paper. The following three cases are considered.

Case 1. Observations collected from normal distributions with mean θ and variance 1. Set

−θ0 = θ1 = 0.5 and α = β = 0.01 for the test problem (1.1).

Case 2. Observations collected from exponential distributions with mean 1/θ. The problem

(1.1) is set with θ0 = 0.5, θ1 = 2, and α = β = 0.01.

Case 3. Consider the test problem (1.1) for the simple nonlinear time series model (2.2) with

θ0 = 0, θ1 = 1 and α = β = 0.01.

In each case, the inserted point for the 2-SPRT is searched over [θ0, θ1]. The stopping

boundaries are also computed following the searching algorithm stated in Section 2. These

stopping boundaries (A,B) are listed in the order of the SPRT, 2-SPRT, and DGLRT: Case 1:

(56.4, 56.4), (37.4, 37.4), and (75.7, 75.7); Case 2: (63.8, 25.5), (42.5, 23.5), and (79.5, 39.5); and

Case 3: (14.5, 25.5), (8.2, 26.8), and (22.5, 36.5). Figures 1–3 display the ESS curves over [θ0 −
0.5, θ1 + 0.5] under the three tests for Cases 1–3 with the dashed line for the SPRT, the dotted

line for the 2-SPRT, and the solid line for the DGLRT. Figure 1 shows that the DGLRT is

comparable to the 2-SPRT in the middle of the parameter range and performs as well as the

SPRT in the two tails. It implies that the DGLRT controls both the maximum ESS and the

ESSs under H0 and H1 very well. The same conclusions can also be obtained from Figures 2

and 3. The RMIs for the SPRT, 2-SPRT, and DGLRT under the three cases are also computed.

The results are listed in Table 2. It can be seen that the RMI for the DGLRT is the smallest one

among the three tests under all three cases. Thus, the DGLRT performs the best, compared

with the SPRT and the 2-SPRT over [θ0, θ1].
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Figure 1: Comparison of ESS curves under the SPRT, the 2-SPRT, and the DGLRT for Case 1: −θ0 = θ1 = 0.5
for the normal distribution with mean θ and variance 1.
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Figure 2: Comparison of ESS curves under the SPRT, the 2-SPRT, and the DGLRT for Case 2: θ0 = 0.5 and
θ1 = 2 for the exponential distribution with mean 1/θ.
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Table 2: The RMI for the SPRT, 2-SPRT, and DGLRT under Cases 1–3.

Case The SPRT The 2-SPRT The DGLRT

1 0.1194 0.0402 0.0103

2 0.1148 0.0263 0.0135

3 0.0370 0.0105 0.0059
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Figure 3: Comparison of ESS curves under the SPRT, the 2-SPRT, and the DGLRT for Case 3: θ0 = 0 and
θ1 = 1 for the nonlinear time series (2.2).

To illustrate the DGLRT, we apply it to a real manufacturing data (cf. Chou et al. [23]).
A customer specifies an average breaking strength of a strapping tape as 200 psi, and the

standard deviation is 12 psi. The data are the breaking strength of different strapping tapes,

so the random errors mainly stem from the measurement errors. Thus, the observations can

be assumed to be independent. The Shapiro and Wilk [24] test shows that the data are taken

from a normal distribution. Consider the test problem (1.1) with θ0 = 200 and θ1 = 212 and

standardize the observations by using a transformation Xi → (Xi −206)/12, i = 1, 2, . . .. Then

the resulting test problem is equivalent to H0 : θ ≤ −0.5 versus H1 : θ ≥ 0.5. Under α =
β = 0.01, the corresponding stopping boundaries for the DGLRT are (75.7, 75.7). Based on the

first 20 real observations, we compute the test statistics of the DGLRT, which are displayed in

Table 3. In Table 3, standardized Xi indicates (Xi − 206)/12. Table 3 shows that

max1≤j≤k Ri(θ̃j , θ1) increases in i rapidly, while max1≤j≤k Ri(θ̃j , θ0) keeps constant for i = 1, 2,

. . . , 20 under the real data. Since max1≤j≤k Ri(θ̃j , θ1) crosses its stopping boundary at the 11th

observation, we should accept the null hypothesis according to the terminal decision rule

(2.4).
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Table 3: Implementation of the DGLRT with the first 20 observations of breaking strength of a strapping
tape.

Standardized The DGLRT

i Xi Xi max1≤j≤kRi(θj , θ0) max1≤j≤kRi(θj , θ1)
1 191 −1.250 1 3.490

2 193 −1.083 1 10.309

3 204 −0.167 1 12.182

4 215 0.750 1 5.755

5 182 −2.000 1 42.521

6 223 1.417 1 10.309

7 194 −1.000 1 28.022

8 202 −0.333 1 39.095

9 214 0.667 1 20.065

10 210 0.333 1 14.382

11 186 −1.667 1 76.172
12 211 0.417 1 50.199

13 202 −0.333 1 70.035

14 201 −0.417 1 106.272

15 191 −1.250 1 370.925

16 193 −1.083 1 1095.537

17 196 −0.833 1 2519.964

18 189 −1.417 1 10394.166

19 194 −1.000 1 28254.274

20 209 0.250 1 22004.450

4. Concluding Remarks

In this paper, we have proposed the DGLRT test in cases where the conditional density func-

tion has an explicit form. It has been shown that the properties of the DGLRT can guarantee

bounding two error probabilities. To make our method be more applicable, we further discuss

the selection of the parameter k and the searching algorithm for its stopping boundaries.

From our numerical results, we conclude that the DGLRT has several merits: (1) in contrast

to the SPRT, the DGLRT has much smaller ESS for θ in the middle of the parameter range and

nearly has the same performance for θ outside the interval (θ0, θ1). It is not surprising that the

2-SPRT performs the best in minimizing the maximum ESS because it is designed to be opti-

mal in the minimax sense. However, the relative difference of the maximum ESS between the

DGLRT and the 2-SPRT is minor. Moreover, for θ outside (θ0, θ1), the ESSs of the DGLRT are

much smaller than those of the 2-SPRT. That is to say, the DGLRT controls the maximum ESS

and the ESSs under two hypotheses; (2) under the RMI criteria, the DGLRT performs more

efficiently than the SPRT and the 2-SPRT over [θ0, θ1]; (3) its implementation is very simple.

While our focus in this paper is on methodological development, there are still some

related questions unanswered yet. For instance, at this moment, we do not know how to

determine the critical stopping boundaries for the DGLRT in an analytical way instead of the

Monte Carlo method. Besides, our method controls the ESS in pointwise, so it can be used to

construct control chart for detecting the small shifts. These questions will be addressed in our

future research.
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Appendix

Proof of Proposition 2.2. Let

T1 = inf

{
n ≥ 1, max

1≤i≤k
Rn

(
θ̃i, θ0

)
≥ A

}
,

T2 = inf

{
n ≥ 1, max

1≤i≤k
Rn

(
θ̃i, θ1

)
≥ B

}
.

(A.1)

So,

α′(θ,A, B) = Pθ
{

accept H1

}
= Pθ

{
T <∞,max

1≤i≤k
RT

(
θ̃i, θ0

)
≥ A

}

= Pθ
{
T1 ≤ T2, T <∞,max

1≤i≤k
RT

(
θ̃i, θ0

)
≥ A

}

≤ Pθ{T1 <∞} ≤
∫
{T1<∞}

1

A
max
1≤i≤k

RT1

(
θ̃i, θ0

)
dPθ

≤
k∑
i=1

1

A

∫
{T1<∞}

RT1

(
θ̃i, θ0

)
dPθ

≤ k

A
.

(A.2)

The last inequality follows from (2.6). Till now, we prove that the result α′(θ,A,B) ≤ k/A for

all θ ∈ Θ0. The other result can also be proven in a similar way.

Proof of Proposition 2.4. Since we insert k (≥3) points in [θ0, θ1], we can find a point θ2

which belongs to (θ0, θ1). Thus, there exists a ε > 0 such that Eθ[log{f(xi|xi−1; θ2)} −
log{f(xi|xi−1; θ0)}] ≥ ε. It implies that Eθ[Rn(θ2, θ0)] → ∞ for θ ≥ θ2. So,

lim
n→∞

Pθ

{
max
1≤i≤k

Rn

(
θ̃i, θ0

)
≥ A

}
≥ lim

n→∞
Pθ{Rn(θ2, θ0) ≥ A} = 1. (A.3)

Thus, we have the result that Pθ{T < ∞} = 1 for all θ ≥ θ2. In a similar way, we can

obtain Pθ{T <∞} = 1 for all θ ≤ θ2. Combining the two results, we complete this proof.
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This paper deals with the analysis of a third-order tensor composed of a fourth-order output
cumulants used for blind identification of a second-order Volterra-Hammerstein series. It is
demonstrated that this nonlinear identification problem can be converted in a multivariable system
with multiequations having the form of Ax + By = c. The system may be solved using several
methods. Simulation results with the Iterative Alternating Least Squares (IALS) algorithm provide
good performances for different signal-to-noise ratio (SNR) levels. Convergence issues using the
reversibility analysis of matrices A and B are addressed. Comparison results with other existing
algorithms are carried out to show the efficiency of the proposed algorithm.

1. Introduction

Nonlinear system modeling based on real-world input/output measurements is so far

used in many applications. The appropriate model and the determination of corresponding

parameters using the input/output data are owned to apply a suitable and efficient

identification method [1–7].
Hammerstein models are special classes of second-order Volterra systems where

the second-order homogenous Volterra kernel is diagonal [8]. These systems have been

successfully used to model nonlinear systems in a number of practical applications in several

areas such as chemical process, biological process, signal processing, and communications [9–

12], where, for example, in digital communication systems, the communication channels are

usually impaired by a nonlinear intersymbol interference (ISI). Channel identification allows

compensating the ISI effects at the receivers.

In [13], a penalty transformation method is developed. Indeed a penalty function is

formed by equations relating the unknown parameters of the model with the autocorrelations
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of the signal. This function is then included in the cost function yielding to an augmented

Lagrangian function. It has been demonstrated that this approach gives good identification

results for a nonlinear systems. However, this approach is still sensitive to additive Gaussian

noise because the 2nd-order moment is used as a constraint. Authors, in [7], overcame this

sensitivity by using 4th-order cumulants as a constraint instead of 2nd-order moments in

order to smooth out the additive Gaussian noise. But the proposed approach which is based

on a simplex-genetic algorithm becomes so long and computationally complex.

The main drawback of identification with Volterra series lies on the parametric

complexity and the need to estimate a very big number of parameters. In many cases, Volterra

series identification problem may be well simplified using the tensor formulation [10–12, 14].
Authors, in [10], used a parallel factor (PARAFAC) decomposition of the kernels to

derive Volterra-PARAFAC models yielding an important parametric complexity reduction

for Volterra kernels of order higher than two. They proved that these models are equivalent

to a set of parallel Wiener models. Consequently, they proposed three adaptive algorithms

for identifying these proposed Volterra-PARAFAC models for complex-valued input/output

signals, namely, the extended complex Kalman filter, the complex least mean square (CLMS)
algorithm, and the normalized CLMS algorithm.

In this paper, the algorithm derived in [14] is extended to be applied to blind

identification of a general second-order Volterra-Hammerstein system. The main idea is to

develop a general expression for each direction slices of a cubic tensor and then express

the tensor slices in an unfolded representation. The three-dimensional tensor elements

are formed by the fourth-order output cumulants. This yields to an Iterative Alternating

Least Square (IALS) algorithm which has the benefit over the original Volterra filters

in terms of implementation and complexity reduction. A convergence analysis based on

matrices reversibility study is given showing that the proposed IALS algorithm converges

to optimal solutions in the least mean squares sense. Furthermore, some simulation results

and comparisons with different existing algorithms are provided.

The present work is organized as follows; in Section 2, a brief study of the three-

dimensional tensor is presented. In Section 3, the model under study and the related output

cumulants are then proposed, whereas, in Section 4 the decomposition analysis of the

cumulant tensor is developed. In Sections 5 to 8, we give, respectively, the proposed blind

identification algorithm, the convergence study, some simulation results, and at the end some

main conclusions are drawn.

2. Three-Dimensional Tensor and Different Slice Expressions

A three-dimensional tensor C ∈ C
M×M×M can be expressed by

C =
M∑
i=1

M∑
j=1

M∑
k=1

Cijke
(M)
i ◦ e(M)

j ◦ e(M)
k

, (2.1)

where Cijk is the tensor value in the position (i, j, k) of the cube with dimension M, e
(M)
p

denotes the pth canonical basis vector with dimension M, and the symbol ◦ stands for the

outer product (Figure 1).
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i

j

Cijk

M

M

M

k

Figure 1: Cubic tensor representation.

A cubic tensor can be always sliced along three possible directions (horizontal, vertical,

and frontal) as depicted in Figure 2. This yields, in each case, to M matrices of M × M

dimensions.

The expression of the ith slice in the horizontal direction is given by

Ci•• =
M∑
j=1

M∑
k=1

Cijke
(M)
j ◦ e(M)

k
=

M∑
j=1

M∑
k=1

Cijke
(M)
j e

(M)T
k

. (2.2)

In the same manner, the other matrix expressions along with the vertical and frontal

directions are expressed, respectively, by

C•j• =
M∑
i=1

M∑
k=1

Cijke
(M)
i e

(M)T
k

; C••k =
M∑
i=1

M∑
j=1

Cijke
(M)
i e

(M)T
j . (2.3)

It is important to express the tensor slices in an unfolded representation, obtained by

stacking up the 2D matrices. Hence, three unfolded representations of C are obtained. For the

horizontal, the vertical, and the frontal directions, we get, respectively,

C[1] =

⎛⎜⎜⎜⎜⎜⎜⎝
C1..

C2..

...

CM..

⎞⎟⎟⎟⎟⎟⎟⎠; C[2] =

⎛⎜⎜⎜⎜⎜⎜⎝
C.1.

C.2.

...

C.M.

⎞⎟⎟⎟⎟⎟⎟⎠; C[3] =

⎛⎜⎜⎜⎜⎜⎜⎝
C..1

C..2

...

C..M

⎞⎟⎟⎟⎟⎟⎟⎠. (2.4)

We note that each matrix C[p] : p = 1, 2, 3 is an (M ×M,M) one.
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i

j

k

(a) horizontal slices

i

j

k

(b) vertical slices

i

j

k

(c) frontal slices

Figure 2: Different direction slices of a cubic tensor.

3. Nonlinear System Model and Output Cumulants Analysis

We focus on the identification of a second-order Volterra-Hammerstein model with finite

memory as it is given in [14]:

y(n) =
M∑
k=0

h1(k)u(n − k) +
M∑
k=0

h2(k)u2(n − k); h1(0) = 1; h2(0) = 1, hi(M)/= 0, (3.1)

where u(n) is the input of the system, assumed to be a stationary zero mean Gaussian white

random process with E(u2(n)) = γ2. M stands for the model order.

The Hammerstein coefficients vectors h1 and h2 are defined by

hp =
[
hp(0), hp(1), . . . , hp(M)

]T
; p = 1; 2. (3.2)

As we evoked in the Introduction, identification algorithms based on the computation

of 2nd-order output cumulants are sensitive to additive Gaussian noise because 2nd-order

cumulants of this latter are in general different to zero. Since the 4th-order cumulants of

additive Gaussian noise is null, it will be interesting to use the 4th-order output cumulants

to derive identification algorithms. But this will introduce another problem which is the

computation complexity. In this paper, we will overcome this shortcoming by using a tensor

analysis.
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To determine the kernels of this model, we will generate the fourth-order output

cumulants. For this purpose, we need to use the standard properties of cumulants and the

Leonov-Shiryaev formula for manipulating products of random variables.

The fourth-order output cumulant is given by [15]:

c4y(i1, i2, i3) = cum
[
y(n + i1), y(n + i2), y(n + i3), y(n)

]
= 8γ3

2

{
φ0(i1, i2, i3, 0) + φ0(i1, i3, i2, 0)

+ φ0(i2, i3, i1, 0) + φ0(i1, 0, i2, i3)

+φ0(i2, 0, i1, i3) + φ0(i3, 0, i1, i2)
}

+ 48γ4
2

M∑
l=0

h2(l + i1)h2(l + i2)h2(l + i3)h2(l),

(3.3)

where

φ0(i1, i2, i3, i4) =
M∑
l=0

h1(l + i1)h1(l + i2)h2(l + i3)h2(l + i4). (3.4)

It is easy to verify that c4y(i1, i2, i3) = 0 for all |i1|, |i2|, |i3| > M.

All the nonzero terms of c4y(i1, i2, i3) are obtained for (i1, i2, i3) ∈ [−M,M]3. Such a

choice allows us to construct a maximal redundant information, in which the fourth-order

cumulants are taken for time lags i1, i2, and i3 within the range [−M,M].
In the sequel we shall present an analysis of a 3rd-order tensor composed of the 4th-

order output cumulants.

4. Formulation and Analysis of a Cumulant Cubic Tensor

Let us define the three-dimensional tensor C(4,y) ∈ C
(2M+1)×(2M+1)×(2M+1), in which the element

in position (i, j, k) corresponds to c4y(i1, i2, i3), with i = i1 +M+1; j = i2 +M+1; k = i3 +M+1.

As i1, i2, i3 ∈ [−M,M], we get i, j, k ∈ [1, 2M + 1]. Thus,

Cijk = c4y

(
i −M − 1, j −M − 1, k −M − 1

)
= 8γ3

2

{
φ0

(
i −M − 1, j −M − 1, k −M − 1, 0

)
+ φ0

(
i −M − 1, k −M − 1, j −M − 1, 0

)
+ φ0

(
j −M − 1, k −M − 1, i −M − 1, 0

)
+ φ0

(
i −M − 1, 0, j −M − 1, k −M − 1

)
+ φ0

(
j −M − 1, 0, i −M − 1, k −M − 1

)
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+φ0

(
k −M − 1, 0, i −M − 1, j −M − 1

)}
+ 48γ4

2

M∑
l=0

h2(l + i −M − 1)h2

(
l + j −M − 1

)
× h2(l + k −M − 1)h2(l),

(4.1)

φ0(·, ·, ·, ·) is given by (3.4). It follows that

Cijk = 8γ3
2

{
M∑
l=0

h1(l + i −M − 1)h1

(
l + j −M − 1

)
h2(l + k −M − 1)h2(l)

+
M∑
l=0

h1(l + i −M − 1)h1(l + k −M − 1)h2

(
l + j −M − 1

)
h2(l)

+
M∑
l=0

h1

(
l + j −M − 1

)
h1(l + k −M − 1)h2(l + i −M − 1)h2(l)

+
M∑
l=0

h1(l + i −M − 1)h1(l)h2

(
l + j −M − 1

)
h2(l + k −M − 1)

+
M∑
l=0

h1

(
l + j −M − 1

)
h1(l)h2(l + i −M − 1)h2(l + k −M − 1)

+
M∑
l=0

h1(l + k −M − 1)h1(l)h2(l + i −M − 1)h2

(
l + j −M − 1

)}

+ 48γ4
2

M∑
l=0

h2(l + i −M − 1)h2

(
l + j −M − 1

)
h2(l + k −M − 1)h2(l).

(4.2)

Then, expression of the tensor C will be given by

C = 8γ3
2

2M+1∑
i=1

2M+1∑
j=1

2M+1∑
k=1

{
M∑
l=0

h1(l + i −M − 1)h1

(
l + j −M − 1

)
h2(l + k −M − 1)h2(l)

+
M∑
l=0

h1(l + i −M − 1)h1(l + k −M − 1)h2

(
l + j −M − 1

)
h2(l)

+
M∑
l=0

h1

(
l + j −M − 1

)
h1(l + k −M − 1)h2(l + i −M − 1)h2(l)

+
M∑
l=0

h1(l + i −M − 1)h1(l)h2

(
l + j −M − 1

)
h2(l + k −M − 1)
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+
M∑
l=0

h1

(
l + j −M − 1

)
h1(l)h2(l + i −M − 1)h2(l + k −M − 1)

+
M∑
l=0

h1(l + k −M − 1)h1(l)h2(l + i −M − 1)h2

(
l + j −M − 1

)}

× e(2M+1)
i ◦ e(2M+1)

j ◦ e(2M+1)
k

+ 48γ4
2

×
2M+1∑
i=1

2M+1∑
j=1

2M+1∑
k=1

M∑
l=0

h2(l + i −M − 1) · h2

(
l + j −M − 1

)
h2(l + k −M − 1)h2(l)

× e(2M+1)
i ◦ e(2M+1)

j ◦ e(2M+1)
k

.
(4.3)

The mathematical development of the expression (4.3) yields to

C = 8γ3
2

{
M∑
l=0

h2(l)h1•l ◦ h1•l ◦ h2•l +
M∑
l=0

h2(l)h1•l ◦ h2•l ◦ h1•l

+
M∑
l=0

h2(l)h2•l ◦ h1•l ◦ h1•l +
M∑
l=0

h1(l)h1•l ◦ h2•l ◦ h2•l

+
M∑
l=0

h1(l)h2•l ◦ h1•l ◦ h2•l +
M∑
l=0

h1(l)h2•l ◦ h2•l ◦ h1•l

}

+ 48γ4
2

M∑
l=0

h2(l)h2•l ◦ h2•l ◦ h2•l,

(4.4)

where

hp•l =
2M+1∑
m=1

hp(l +m −M − 1)e(2M+1)
m , p = 1; 2. (4.5)

This notation leads to define two channel matrices H1;H2 ∈ C
(2M+1)×(M+1) as follows:

Hp H(
hp

)
=

[
hp•0, hp•1, . . . , hp•M

]
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 · · · hp(0)

...
...

. . .
...

0 hp(0) · · · hp(M − 1)

hp(0) hp(1) · · · hp(M)

...
...

. . .
...

hp(M − 1) hp(M) · · · 0

hp(M) 0 · · · 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (4.6)

with p = 1; 2, and H(·) is the operator that builds a special Hankel matrix from the vector

argument as shown above.
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Let us compute now the different slices of the proposed tensor.

4.1. Horizontal Slices Expressions

From (2.2) and (4.3), we get

Ci•• = 8γ3
2

{
M∑
l=0

h2(l)h1(l + i −M − 1)h1•lh2T•l

+
M∑
l=0

h2(l)h1(l + i −M − 1)h2•lh1T•l

+
M∑
l=0

h2(l)h2(l + i −M − 1)h1•lh1T•l

+
M∑
l=0

h1(l)h1(l + i −M − 1)h2•lh2T•l

+
M∑
l=0

h1(l)h2(l + i −M − 1)h1•lh2T•l

+
M∑
l=0

h1(l)h2(l + i −M − 1)h2•lh1T•l

}

+ 48γ4
2

M∑
l=0

h2(l)h2(l + i −M − 1)h2•lh2T•l,

(4.7)

which can be written as

Ci•• = 8γ3
2

{
H1diagi(H1)ΣT

2 + Σ2diagi(H1)H1

+H1diagi(Σ2)HT
1 +H2diagi(Σ1)HT

2

+Σ1diagi(H2)HT
2 +H2diagi(H2)ΣT

1

}
+ 48γ4

2H2diagi(Σ2)HT
2 ,

(4.8)

where Σ1 = H1 diag(h1); Σ2 = H2 diag(h2); diagn(·) is the diagonal matrix formed by the nth

line of its argument.

It can easily be demonstrated that

Cm•• = C•m• = C••m = Cm. (4.9)
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It follows that

Cm = 8γ3
2

{
H1diagm(H1)ΣT

2 + Σ2diagm(H1)HT
1

+H1diagm(Σ2) HT
1 +H2diagm(Σ1)HT

2

+Σ1diagm(H2)HT
2 +H2diagm(H2)ΣT

1

}
+ 48γ4

2H2diagm(Σ2)HT
2 ,

(4.10)

with m = 1, . . . , 2M + 1.

The expression of the unfolded tensor representation is given by

C[U] =

⎛⎜⎜⎜⎜⎜⎜⎝
C1

C2

...

C2M+1

⎞⎟⎟⎟⎟⎟⎟⎠ = 8γ3
2

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎜⎝

H1diag1(H1)ΣT
2

H1diag2(H1)ΣT
2

...

H1diag2M+1(H1)ΣT
2

⎞⎟⎟⎟⎟⎟⎟⎟⎠ + · · ·

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭︸ ︷︷ ︸
the 6th terms with respect to Cm in (4.10)

+48γ4
2

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎜⎝

H2diag1(Σ2)HT
2

H2diag2(Σ2)HT
2

...

H2diag2M+1(Σ2)HT
2

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
.

(4.11)

To develop this expression, we need the following property.

Property 1. Let A be the matrix with dimensions (M,N) and B the matrix with dimensions

(M′,N), then

⎛⎜⎜⎜⎜⎜⎜⎝
Adiag1(B)

Adiag2(B)

...

AdiagM′(B)

⎞⎟⎟⎟⎟⎟⎟⎠ = B �A, (4.12)

where � stands for the Khatri-Rao product.
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It becomes that

C[U] = 8γ3
2

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(H1 �H1)diag(h2)HT

2 + (H1 �H2)diag(h2)HT
1

+(H2 �H1)diag(h2)HT
1 + (H1 �H2)diag(h1)HT

2

+(H2 �H1)diag(h1)HT
2 + (H2 �H2)diag(h1)HT

1

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
+ 48γ4

2

(
(H2 �H2)diag(h2)HT

2

)
.

(4.13)

5. Blind Identification System with Cumulant Tensor

To estimate the Volterra-Hammerstein kernels and to avoid the computation of Hp : p =
1, 2, we will use the following Khatri-Rao property to propose an Iterative Alternating Least

Square (IALS) procedure.

Property 2. If matrices A ∈ C
m×n and B ∈ C

n×m and vector d ∈ C
n are such that X =

Adiag(d)B, then it holds that vec(X) = (BT � A)d, where vec(·) stands for the vectorizing

operator.

Applying this property to (4.13), it is straightforward to write

vec
(
C[U]

)
= 8γ3

2

⎧⎪⎪⎨⎪⎪⎩
(H2 �H1 �H1)h2 + (H1 �H1 �H2)h2

+(H1 �H2 �H1)h2 + (H2 �H1 �H2)h1

+(H2 �H2 �H1)h1 + (H1 �H2 �H2)h1

⎫⎪⎪⎬⎪⎪⎭
+ 48γ4

2 ((H2 �H2 �H2)h2)

= 8γ3
2 {(H2 �H1 �H2) + (H2 �H2 �H1) + (H1 �H2 �H2)}h1

+

{
8γ3

2 ((H2 �H1 �H1) + (H1 �H1 �H2) + (H1 �H2 �H1))

+48γ4
2 ((H2 �H2 �H2))

}
h2.

(5.1)

Let A and B be

A = 8γ3
2 {(H2 �H1 �H2) + (H2 �H2 �H1) + (H1 �H2 �H2)},

B = 8γ3
2 ((H2 �H1 �H1) + (H1 �H1 �H2) + (H1 �H2 �H1)) + 48γ4

2 ((H2 �H2 �H2)).
(5.2)

The problem of the blind nonlinear identification will be expressed as

Ah1 + Bh2 = vec(CU). (5.3)

This system can be solved using several methods. We propose to resolve it using the

Iterative Alternating Least Square algorithm (IALS).
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6. Cost Functions and Iterative Alternating Least Square Algorithm

To apply the IALS algorithm, we suppose alternatively that Ah1 or Bh2 is a constant vector.

Then, we get two cost functions to be minimized. Assuming that the vector Bh2 is constant,

the first cost function will be expressed by

E1(h1) = ‖(vec(CU) − Bh2) −Ah1‖2. (6.1)

For the second cost function, we assume that Ah1 is constant; thus

E2(h2) = ‖(vec(CU) −Ah1) − Bh2‖2. (6.2)

The application of the least mean squares algorithm to these two functions leads to the

following solutions:

h1 = A#(vec(CU) − Bh2),

h2 = B#(vec(CU) −Ah1),
(6.3)

where the subscript # denotes the Moore-Penrose pseudoinverse of the corresponding matrix.

Finally, the different steps of the proposed IALS algorithm are summarized in

Algorithm 1.

The notation x̂ stands for the estimates of the parameter x.

7. Convergence Analysis

Equation (6.3) shows that the ALS algorithm converges to optimal solutions if and only if the

Moore-Penroze pseudoinverse matrices A# and B# exist, which implies that matrices A and B

must be full rank [14, 16]. To do this, we start by affirming that, due to the Hankel structure

and the assumption that hi(M)/= 0 (3.1), each of the matrices H1 and H2 is full rank. Then

rank(H1) = rank(H2) =M + 1. (7.1)

Let us now find out the rank of matrices Hi � Hj � Hk; i, j, k ∈ {1, 2} obtained from

Khatri-Rao product (5.1). We will make use of the following definition and property defining

the k-rank of a matrix and the rank of a Khatri-Rao product of two matrices [17].

Definition 7.1. The rank of a matrix A ∈ C
E×F (denoted by kA) is equal to k if and only if every

k columns of A are linearly independent. Note that kA ≤ min(E, F), for all A.

This means that the rank of the matrix A is the largest integer k for which every set

containing k columns of A is independent.

Property 3. Consider the Khatri-Rao product A �B, where A is E ×F and B is G×F. If neither

A nor B contains a zero column (and hence kA ≥ 1, kB ≥ 1), then kA�B ≥ min(kA + kB − 1, F).
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Initialize h1 and h2 as random variables (estimates ĥ
(0)
1 ; ĥ

(0)
2 ).

For n ≥ 1,

(i) build Hankel matrices using (4.5), for p = 1; 2,

Ĥ
(n)
1 = H(ĥ(n)1 ), Ĥ

(n)
2 = H(ĥ(n)2 ),

(ii) compute matrices estimate Â and B̂ as

Â(n) = 8γ3
2 {(Ĥ2 � Ĥ1 � Ĥ2) + (Ĥ2 � Ĥ2 � Ĥ1) + (Ĥ1 � Ĥ2 � Ĥ2)}

(n)
,

B̂(n) = {8γ 3
2 ((Ĥ2 � Ĥ1 � Ĥ1) + (Ĥ1 � Ĥ1 � Ĥ2) +(Ĥ1 � Ĥ2 � Ĥ1)) + 48γ4

2 ((Ĥ2 � Ĥ2 � Ĥ2))}
(n)

,

(iii) minimize cost functions (6.1) and (6.2) so that

ĥ
(n+1)
1 = Â(n)#(vec(CU) − B̂(n)ĥ

(n)
2 ),

ĥ
(n+1)
2 = B̂(n)#(vec(CU) − Â(n)ĥ

(n)
1 ),

(iv) reiterate until parametric error convergence

‖vec((ĥ(n+1)
1 ĥ

(n+1)
2 ) − (ĥ(n)1 ĥ

(n)
2 ))‖

‖vec(ĥ(n+1)
1 ĥ

(n+1)
2 )‖

≤ ε.

Algorithm 1: Different steps of the new blind identification algorithm-based cumulant tensor analysis.

It follows that

kHi�Hj
≥ min(2M + 1,M + 1), ∀i, j ∈ {1, 2}, (7.2)

which is equivalent to

kHi�Hj
≥M + 1. (7.3)

Due to the definition of the Khatri-Rao product and the structure of the Hankel

matrices Hi; i ∈ {1, 2}, we conclude that

kHi�Hj
=M + 1 = rank

(
Hi �Hj

)
. (7.4)

Consequently,

k(Hi�Hj )�Hk
=M + 1 = rank

(
Hi �Hj �Hk

)
, ∀i, j, k ∈ {1, 2}, (7.5)

which means that each matrix Hi �Hj �Hk is full rank whatever the values taken by i and j

in the set {1, 2}.

Let us now find out the rank of matrices A and B. For this purpose, we will study

the structure of the matrix Hi � Hj � Hk. Recall that Hi is a (2M + 1,M + 1) matrix. Let

Θi = [ 0 0 · · · 0]T be the zero column vector of dimension (2M + 1); i = 1, . . . ,M.
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Then, for the matrix Hi �Hj �Hk, we will have the following form:

Hi �Hj �Hk =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Θ1 Θ1 Θ1 XM

Θ2

... XM−1 Θ1

... ΘM−1 · · · Θ2 Θ2

ΘM X1

...
...

X0 ΘM ΘM−1 ΘM

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (7.6)

where Xi stands for the column vector of dimension (2M + 1)2(M + 1) which is constituted

by products of the kernels model arising from computation of the Khatri-Rao matrix product.

We have seen that Hi �Hj �Hk is full rank. The sum of different matrices Hi �Hj �Hk has

the same form of Hi �Hj �Hk whatever the system order and the values taken by i, j and k.

Consequently, matricesA and B are full rank and then their pseudoinverse exist. We conclude

that the IALS converges to an optimal solution in least mean squares sense.

8. Simulation Results

In this section, simulation results will be given to illustrate the performance of the proposed

algorithm. Two identification Volterra-Hammerstein systems are considered:

System 1:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
z(n) = u(n) − 0.25u(n − 1) + 0.9u(n − 2)

+u2(n) + 0.5u2(n − 1) − 0.35u2(n − 2),

y(n) = z(n) + e(n),

System 2:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
z(n) = u(n) − 0.4u(n − 1) + 0.5u(n − 2) + 0.95u(n − 3)

+u2(n) + 0.2u2(n − 1) − 0.7u2(n − 2) + 0.6u2(n − 3),

y(n) = z(n) + e(n).

(8.1)

The input sequence u(n) is assumed to be stationary, zero mean, white Gaussian noise

with variance γ2 = 1. The noise signal e(n) is also assumed to be white Gaussian sequence

and independent of the input. The parameter estimation was performed for two different

signal-to-noise ratio (SNR) levels: 20 dB and 3 dB.

The SNR is computed with the following expression:

SNR =
E
(
z2(n)

)
E(e2(n))

. (8.2)

Fourth-order cumulants were estimated from different lengths of output sequences

(N = 4096 and N = 16384) assuming perfect knowledge of the system model. To reduce

the realization dependency, parameters were averaged over 500 Monte-Carlo runs. For each
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Figure 3: Estimates of the parameters of System 1 with the IALS algorithm for N = 4096 and SNR = 3 dB.

simulation, we give the curves representing the variation of the estimates along with the

Monte-Carlo runs, and we resume exclusive results in different tables.

System 1

Figures 3 and 4 show the estimates of the different kernels of the proposed model, with the

IALS algorithm, for N = 4096 and for different SNR levels (3 dB and 20 dB).
The mean and the standard deviation of the estimated kernels against the true ones

are shown in Table 1.

Likewise, Figures 5 and 6 show the estimates of the different kernels of System 1 for

N = 16384 and for SNR levels equal to 3 dB and 20 dB, while, in Table 2, the mean and the

standard deviation of the estimated kernels against the true ones are shown.

From these results, we observe that the proposed IALS algorithm performs well

generating estimates for a large variation of the SNR (from 20 dB to 3 dB). We also note

that the standard deviation is relatively large and decreases with the number of the system

observations.

System 2

Figures 7 and 8 show the estimates of the different kernels of the second proposed model for

N = 4096 and for different SNR (20 dB and 3 dB).
The mean and the standard deviation of the estimated kernels against the true ones

are shown in Table 3.

Figures 9 and 10 show the estimates of the different kernels of System 2 for N = 16384

and for different SNR (20 dB and 3 dB), while, in Table 4, the mean and the standard deviation

of the estimated kernels against the true ones are shown. The mean and the standard
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Figure 4: Estimates of the parameters of System 1 with the IALS algorithm for N = 4096 and SNR = 20 dB.

Table 1: True and estimated values of the kernels of System 1 for N = 4096 (500 Monte-Carlo runs).

True parameters 3 dB 20 dB

Mean St. Dev. Mean St. Dev.

−0.25 −0.2401 0.3242 −0.2456 0.1778

0.9 0.9985 0.3773 0.8837 0.2143

0.5 0.5128 0.0945 0.4815 0.0589

−0.35 −0.3411 0.1046 −0.3521 0.0655

Table 2: True and estimated values of the kernels of System 2 for N = 16384 (500 Monte-Carlo runs).

True parameters 3 dB 20 dB

Mean St. Dev. Mean St. Dev.

−0.25 −0.2464 0.2520 −0.2589 0.1576

0.9 0.9238 0.2947 0.8884 0.1976

0.5 0.4900 0.0679 0.5028 0.0482

−0.35 −0.3665 0.0753 0.3478 0.0508

deviation of the estimated kernels against the true ones, for the second system, are shown

in Table 4.

From these results, we note also that the proposed algorithm provides good estimates

for the proposed system. The number of observations N affects the range of variation of the

standard deviation values. Indeed, for important values of N, this range becomes so small.

The method provides good estimates even for low levels of SNR. Furthermore, we note that

the larger the Monte-Carlo runs number, the smaller the standard deviations are.
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Figure 5: Estimates of the parameters of System 1 with the IALS algorithm for N = 16384 and SNR = 3 dB.

Table 3: True and estimated values of the kernels of System 2 for N = 4096 (500 Monte-Carlo runs).

True parameters 3 dB 20 dB

Mean St. Dev. Mean St. Dev.

−0.4 −0.4512 0.6550 −0.4293 0.1594

0.5 0.5074 0.7632 0.5173 0.1968

0.95 1.1556 0.5329 0.9390 0.1545

0.2 0.2358 0.2525 0.2157 0.0958

−0.7 −0.6794 0.2855 −0.6814 0.1260

0.6 0.5872 0.2268 0.5962 0.0986

8.1. Comparison with Existing Methods

The performance of the previous algorithm was compared with two works: the algorithm

proposed in [9] (will be noted as BIL to blind identification with linearization) and the

Lagrange Programming Neural Network (LPNN) proposed in [13].

(i) In [14], the problem of blind identification was converted into a linear multivariable

form using Kronecker product of the output cumulants. This can be described by

the following equations:

C
k

y

(
q, τ

)
= b(τ)

(
Γkw

)
p×p

bT
(
q
)
, (8.3)

where Ck
y(τ1, τ2, . . . , τk−1) denotes the output cumulants sequence of order k, Γkw is

the intensity (zero lag cumulant) of order k of the vector W which is formed in its
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Figure 6: Estimates of the parameters of System 1 with the IALS algorithm forN = 16384 and SNR = 20 dB.
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Figure 7: Estimates of the parameters of System 2 with the IALS algorithm for N = 4096 and SNR = 3 dB.

turn by the different powers of input, and b is the kernel vector.

For τ = 0, this becomes

C
k

y

(
q, 0

)
= b(0)

(
Γkw

)
p×p

bT
(
q
)
=

(
Γkw

)
p×p

bT
(
q
)
. (8.4)
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Figure 8: Estimates of the parameters of System 2 with the IALS algorithm for N = 4096 and SNR = 20 dB.
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Figure 9: Estimates of the parameters of System 2 with the IALS algorithm for N = 16384 and SNR = 3 dB.

Different important scenarios were discussed and successfully resolved. Here, we

are interested in the case of Gaussian input when the input statistics are known.

Despite the efficiency of the proposed method, the resulting algorithms are in

general cumbersome especially for the high series order (As confirmed by authors).
For more details, see [14].
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Figure 10: Estimates of the parameters of System 2 with the IALS algorithm for N = 16384 and SNR =
20 dB.

Table 4: True and estimated values of the kernels of System 2 for N = 16384 (500 Monte-Carlo runs).

True parameters 3 dB 20 dB

Mean St. Dev. Mean St. Dev.

−0.4 −0.4378 0.3824 −0.4121 0.1258

0.5 0.5116 0.5346 0.5122 0.1432

0.95 0.9450 0.4614 0.9507 0.1073

0.2 0.1847 0.1120 0.2143 0.0750

−0.7 −0.6877 0.1796 −0.6941 0.0772

0.6 0.6014 0.1323 0.5983 0.0604

(ii) In their work [13], authors tried to determine the different Volterra kernels

and the variance of the input from the autocorrelation estimates ρ[k] and the

third-order moments estimates μ[k, l] of the system output, using the Lagrange

Programming Neural Network (LPNN). As the LPNN is essentially designed

for general nonlinear programming, they expressed the identification problem as

follows:

Minimize: L
(
f
)
=

∑
i

∑
j

(
μ
[
i, j

] −M[
i, j, f

])2
,

Subject to: ρ[i] = R
[
i, j

]
,

(8.5)

whereR[i, j] is the autocorrelation function of the real process y[n] andM[i, j] is its

third order moment sequence. f is the vector formed by the unknown parameters
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of the Volterra model and the unknown variance of the driving noise.

So the Lagrangian function will be written as

L
(
f, λ

)
= L

(
f
)
+
∑
i

λi
(
ρ[i] − R[

i, f
])
. (8.6)

To improve the convergence and the precision of the algorithm, authors extended the

preceding function by defining the Augmented Lagrangian Function such as

L
(
f, λ

)
= L

(
f
)
+
∑
i

λi
(
ρ[i] − R[

i, f
])

+ β
∑
i

(
ρ[i] − R[

i, f
])2

, (8.7)

where {βk} is a penalty parameter sequence satisfying 0 < βk < βk+1 for all k, βk → ∞. So

the back-propagation algorithm can be established using the Lagrange multiplier.

The performance of the new proposed algorithm was compared with these two

algorithms. Each of these algorithms was used to identify the two models presented above

(8.1), for the case of Gaussian excitation, N = 16384 samples, and for the tow proposed SNR

levels 3 dB and 20 dB.

Figures 11 and 12 show a comparison of the standard deviations given by each

algorithm. We note that these results may vary considerably depending on the number of the

output observations. These results show that the new proposed algorithm performs well. For

a small number of unknown parameters, we note that all algorithms give in general the same

STD values and these values decrease by increasing the SNR values. We note furthermore

that BIL algorithm is so complex for programming in comparison with the LPNN and the new

one. For big number of unknown parameters, the BIL algorithm becomes very computational

complex and even the LPNN, while the new algorithm keeps its simplicity and provides good

parameters with very competitive STD values.

9. Conclusion

In this paper, a new approach for blind nonlinear identification problem of a second-order

Hammerstein-Volterra system is developed. Thanks to a matrix analysis of a cubic tensor

composed of the fourth-order output cumulants, the nonlinear identification problem is

reduced to a system having the following general form: Ax + By = c. This system is

solved using the Iterative Alternating Least Square. A convergence analysis shows that

matrices A and B are full rank which means that the IALS algorithm converges to optimal

solutions in the least mean squares sense. Simulation results on two different systems show

good performance of the proposed algorithm. It is noted also that the different values of

the estimates improve with the number of the system observation even for small values

of SNR. Comparison results with two algorithms show that the new proposed algorithm

performs well and especially in the case of great number of unknown parameters. Extending

the proposed algorithm for more input classes and for more general Volterra-Hammerstein

systems remains an open problem, and it is now the subject matter of current works.



Mathematical Problems in Engineering 21

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0

S
T

D

h1(1) h1(2) h2(1) h2(2)

SNR= 3 dB

(a)

0.25

0.2

0.15

0.1

0.05

0

S
T

D

h1(1) h1(2) h2(1) h2(2)

SNR=20 dB

New alg.

LPNN

BIL

(b)

Figure 11: Comparison of the standard deviations (STDs) of the new algorithm against those of the LPNN
and the BIL algorithms: System 1.
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Existing sinogram restoration methods cannot handle noises and nonstationary artifacts simul-
taneously. Although bilateral filter provides an efficient way to preserve image details while
denoising, its performance in sinogram restoration for low-dosed X-ray computed tomography
(LDCT) is unsatisfied. The main reason for this situation is that the range filter of the bilateral filter
measures similarity by sinogram values, which are polluted seriously by noises and nonstationary
artifacts of LDCT. In this paper, we propose a simple method to obtain satisfied restoration results
for sinogram of LDCT. That is, the range filter weighs the similarity by Gaussian smoothed sino-
gram. Since smoothed sinogram can reduce the influence of both noises and nonstationary artifacts
for similarity measurement greatly, our new method can provide more satisfied denoising results
for sinogram restoration of LDCT. Experimental results show that our method has good visual
quality and can preserve anatomy details in sinogram restoration even in both noises and non-
stationary artifacts.

1. Introduction

Radiation exposure and associated risk of cancer for patients receiving CT examination

have been an increasing concern in recent years. Thus, minimizing the radiation exposure

to patients has been one of the major efforts in modern clinical X-ray CT radiology [1–8].
However, the presentation of strong noises and non-stationary artifacts degrades the quality
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of low-dose CT images dramatically and decreases the accuracy of diagnosis dose. Many

strategies have been proposed to reduce the noise, for example, by nonlinear noise filters

[8–19] and statistics-based iterative image reconstructions (SIIRs) [20–28].
The SIIRs utilize the statistical information of the measured data to obtain good

denoising results but are limited for their excessive computational demands for the large CT

image size. Moreover, the mottled noise and non-stationary artifacts in LDCT images cannot

be accurately modeled into one specific distribution, which makes it a difficult task to differ-

entiate between noise/artifact and informative anatomical/pathological features [29].
Although the nonlinear filters show effectiveness in reducing noise both in sinogram

space and image space, they cannot handle the noise-induced streak artifacts. Since existing

methods cannot handle noises and artifacts simultaneously, designing a method to reduce

noise and non-stationary artifacts simultaneously becomes an open problem in sinogram res-

toration of LDCT.

Recently, many new nonlinear filters are presented and show promising denoising

performance on space domain [29–44]. Bilateral filter (BF), which integrates range filter (gray

level) and domain filter (space) together, is a well-known one [35, 36]. However, BF cannot

obtain satisfied results in sinogram restoration of LDCT because of polluted sinogram values

for the range filter. To obtain satisfied denoising results in serious noises, some efforts on

image space are proposed [37–41].
Wong suggests that two parameters, σ2

s and σ2
r , the variances of Gaussian functions

in domain and range filters, should be modulated according to local phase coherence of the

image pixels [37]. But it blurs edges or leaves uncleaned noises.

Ming and Bahadir improve the performance of BF by multiresolution method [38].
That is, filtering LL subband uses BF while smoothing wavelet subbands uses SURE shrink-

age. It also leads to blur edges while denoising.

van Boomgaard and van de Weijer argue that the main reason for unsatisfied denoising

results is the polluted center pixel of BF [40]. Thus, the satisfied results can be obtained by

replacing polluted center pixel with an estimate of its true gray levels.

Following [40], median bilateral filter (MBF) is proposed in [41]. MBF replaces the

center pixel with the median of a 3× 3 window. However, only replacing the center pixel also

cannot obtain satisfied denoising results.

Although BF and its improvements can obtain satisfied results in general image de-

noising, all these methods cannot handle sinogram restoration with noises and non-stationary

artifacts simultaneously. We think that the key to handle noises and artifacts simultaneously

is how to reduce the influence of both the noises and artifacts of sinogram of LDCT.

In this paper, we propose a new method to reduce the influence of the noises and

artifacts of sinogram simultaneously, named bilateral filter weighted by Gaussian filtered

sinogram (BFWGFS), which carried on BF on Gaussian smoothed sinogram. Note that,

proposed method is different to the method proposed in [40]. The proposed method in [40]
only replaces the gray levels of the center point with the median of a 3 × 3 square centered at

the center point, while our method replaces both the center point and all considering points

with their Gaussian smoothed sinogram values.

Since the smoothed sinogram can reduce the influence of both the noises and artifacts

of sinogram, the weight of the range filter defined on BFWGFS can measure the similarities

more precisely comparing to the original sinogram values in BF. Thus, the proposed method

can obtain satisfied results in noises and non-stationary artifacts simultaneously.

In the reminder of this paper, Section 2 will introduce the noise models; then in

Section 3, we will discuss the measurement of similarity and discussed the difference between
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the proposed method and method in [40]. Section 4 describes the denoising framework.

Section 5 is the experimental results and discussion. Section 6 gives conclusions and finally,

the acknowledgment part.

2. Noise Models

Based on repeated phantom experiments, low-mA (or low-dose) CT calibrated projection

data after logarithm transform were found to follow approximately a Gaussian distribution

with an analytical formula between the sample mean and sample variance, that is, the noise

is a signal-dependent Gaussian distribution [19].
In this section, we will introduce signal-independent Gaussian noise (SIGN), Poisson

noise, and signal-dependent Gaussian noise.

2.1. Signal-Independent Gaussian Noise (SIGN)

SIGN is a common noise for the imaging system. Let the original projection data be {xi},

i = 1, . . . , m, where i is the index of the ith bin. The signal has been corrupted by additive

noise {ni}, i = 1, . . . , m and one noisy observation

yi = xi + ni, (2.1)

where yi, xi, ni are observations for the random variables Yi, Xi, and Ni where the upper-case

and letters denote the random variables and the lower-cased letters denote the observations

for respective variables. Xi is normal N(0, σ2
X), and Ni is normal N(0, σ2

N) and independent

of the Gaussian random variable Xi. Thus, Yi is normal N(0, σ2
X + σ2

N).

2.2. Poisson Model and Signal-Dependent Gaussian Model

The photon noise is due to the limited number of photons collected by the detector [30]. For

a given attenuating path in the imaged subject, N0(i, α) and N(i, α) denote the incident and

the penetrated photon numbers, respectively. Here, i denotes the index of detector channel or

bin, and α is the index of projection angle. In the presence of noises, the sinogram should be

considered as a random process, and the attenuating path is given by

ri = − ln

[
N(i, α)
N0(i, α)

]
, (2.2)

where N0(i, α) is a constant, and N(i, α) is Poisson distribution with mean N.

Thus, we have

N(i, α) =N0(i, α) exp(−ri). (2.3)

Both its mean value and variance are N.

Gaussian distributions of ployenergetic systems were assumed based on limited

theorem for high-flux levels, and following many repeated experiments in [19], we have

σ2
i

(
μi

)
= fi exp

(
μi

γ

)
, (2.4)
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where μi is the mean, and σ2
i is the variance of the projection data at detector channel or bin

i, γ is a scaling parameter, and fi is a parameter adaptive to different detector bins.

The most common conclusion for the relation between Poisson distribution and

Gaussian distribution is that the photon count will obey Gaussian distribution for the case

with large incident intensity and Poisson distribution with feeble intensity [19]. In addition,

in [30], the authors deduce the equivalency between Poisson model and Gaussian model.

Therefore, both theories indicate that these two noises have similar statistical properties and

can be unified into a whole framework.

3. Measure Similarity

The formula of bilateral filter is

B
(
yij

)
=

1

k
(
yij

)∫∫∞

−∞
ystc

(
(s, t),

(
i, j

))
s
(
yst, yij

)
dsdt, (3.1)

where (s, t) and (i, j) are two pixels of sinogram. Here, sinogram is the observations of pro-

jection data, that is, the noisy projection data of LDCT. yst and yij are sinogram values of (s, t)
and (i, j), respectively. k(yij) is a normalized constant for two weighs and is defined as

k
(
yij

)
=

∫∫∞

−∞
c
(
(s, t),

(
i, j

))
s
(
yst, yij

)
dsdt, (3.2)

where c((s, t), (i, j)) and s(yst, yij) are measures of the spatial and range similarity between

the center pixel yij and its neighbor yst, respectively. Usually, these two measures are defined

as two Gaussian Kernel functions

c
(
(s, t),

(
i, j

))
= e(−1/2)(‖(s,t)−(i,j)‖/σd)2

, (3.3)

s
(
yst, yij

)
= e(−1/2)(‖yst−yij‖/σr)2

. (3.4)

Since the (i, j) value filtered by BF is the weighted average of nearby points weighted

by product of spatial distance and gray level difference, it was named by bilateral filter (BF)
to distinguish the general filter weighted only by spatial distance.

From (3.1)–(3.4), we can conclude that a pair of pixels yst, yij with both small

spatial distance and small sinogram value difference have high similarity and large-weighed

coefficients. It is plausible in slightly noisy projection data. For sinograms with serious noise

and non-stationary artifacts, it is unreal! That is, polluted sinogram values lead to incorrect

similarity measurement in the range filter of the bilateral filter. Thus, finding a measure of

similarity, which can measure similarity correctly in noise and non-stationary artifacts, is a

key problem in denoising using BF.

3.1. Gaussian Filter

Gaussian filter is defined as

G
(
yij

)
=

1∫∫∞
−∞e

(−1/2)(‖yst−yij‖/σ)2

dsdt

∫∫∞

−∞
yste

−1/2(‖yst−yij‖/σ)2

dsdt. (3.5)
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Since yst ∼N(μij , σ2
ij) for s = −∞, . . . ,∞ and t = −∞, . . . ,∞, noisy sinogram value Yij ∼

N(μij , σ2
ij) and the Gaussian-dependent noise (GWN)Nij ∼ N(0, σ2

ij), the distribution of the

pixel (i, j) filtered by the low-passed filter defined in (3.5) is

Yij + e1/(−2σ2)(Yi−1,j + Yi,j−1 + Yi+1,j + Yi,j+1 + · · ·
)

∼N

⎛⎜⎝μij ,
1 +

(
4e1/(−2σ2)

)2
+
(

4e2/(−2σ2)
)2

+ · · ·(
1 +

(
4e1/(−2σ2)

)
+
(
4e2/(−2σ2)

)
+ · · · )2

σ2
ij

⎞⎟⎠

∼N

⎛⎜⎝μij ,
1 +

(
4e(−1)/σ2

)
/
(

1 − e(−1)/σ2
)

(
1 +

(
4e(−1)/2σ2

)
/
(
1 − e(−1)/2σ2

))2
σ2
ij

⎞⎟⎠.

(3.6)

Thus,

G
(
Yij

) ∼N
⎛⎜⎝μij ,

(
e1/σ2

+ 3
)(
e1/2σ2 − 1

)2

(
e1/σ2 − 1

)(
e1/2σ2 + 3

)2
σ2
ij

⎞⎟⎠. (3.7)

For example, in image denoising, generally, σ is set to 2; thus,

G
(
Yij

) ∼N(
μij , 0.0157σ2

ij

)
. (3.8)

From the above equation, the variance of the smoothed sinogram value becomes very

small (smaller than original variance 0.0157 times). It means that the Gaussian filter makes

smoothed sinogram value closer to real projection data than the noisy sinogram value. Since

most of non-stationary artifacts in image space are the high-light points in noisy sinogram,

most of non-stationary artifacts can be suppressed by Gaussian filter.

In the same way, the distribution of the median in an s × s window centered at the

pixel (i, j) is

median
(
Yij

) ∼N(
μij ,

σ2
ij

s × s

)
. (3.9)

Just as the above discussion, if the median filter has similar estimate precision to

Gaussian filter in image denoising, s should at least be 8, which is estimated by
√

1/0.0157 =√
63.6943 ≈ 8. However, so large window of median filter will delete some real lines in

sinogram, which will lead to many artifacts in denoising sinogram.

3.2. Similarity Discussion

From the second equation of (3.4), the similarity between the sinogram values of two

pixels (i, j) and (s, t) is defined as a Gaussian function of the difference to their sinogram

values. Thus, large difference has small similarity, while small difference has large similarity.
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Following this conclusion, similarity discussion can be accomplished by discussing the

difference for each pair of pixels of sinogram. In this subsection, we will discuss the dif-

ferences by variances of three denoising schemes for BF.

Assume that Yst and Yij are iid Gaussian random variables corresponding to a pair of

pixels with the same real gray levels, Yij ∼N(μij , σ2
ij), Yst ∼N(μij , σ2

ij), and their difference

Yij − Yst ∼N
(
μij , 2σ

2
ij

)
. (3.10)

In the same way, since median(Yij) ∼N(μij , σ2
ij/s × s), we can conclude that

median
(
Yij

) − Yst ∼N(
μij ,

1 + s2

s2
σ2
ij

)
. (3.11)

Since G(Yij) ∼N(μij , (((e1/σ2

+ 3)(e1/2σ2 − 1)
2
)/(e1/σ2 − 1)(e1/2σ2

+ 3)
2
)σ2

ij), thus

G
(
Yij

) −G(Yst) ∼N
⎛⎜⎝μij , 2

(
e1/σ2

+ 3
)(
e1/2σ2 − 1

)2

(
e1/σ2 − 1

)(
e1/2σ2 + 3

)2
σ2
ij

⎞⎟⎠. (3.12)

Just as discussed in the last subsection, if we set σ to 2,

G
(
Yij

) −G(Yst) ∼N(
μij , 0.0314σ2

ij

)
. (3.13)

It is obvious that the variance of the first scheme is the biggest in all three schemes,

while the variance of the last scheme is the smallest in all three schemes. Since s ≥ 3, we have

2 >
s2 + 1

s2
> 1 > 0.0314. (3.14)

The first scheme corresponds to the bilateral, which measures difference by the

sinogram values of (i, j) and (s, t) directly. The second scheme corresponds to the mean

bilateral proposed in [41] whose similarity is measured between the median of the center

pixel (i, j) and the sinogram value of its neighbor (s, t). The third scheme corresponds to the

scheme of measuring the difference on the Gaussian filtered sinogram value.

It is well-known that smallest variance corresponds to the best estimate of real

projection data value. According to this rule, our proposed method can provide the best

estimate of real projection data value. Thus, BFWGFS can reduce both the influence of noises

and non-stationary artifacts.

4. The Algorithm

Just as the above discussion, satisfied denoising results can be got by weighed range filter on

Gaussian filtered sinogram. The steps of the algorithm are as follows:
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(1) compute the Gaussian filtered sinogram value G(yij) for all sinogram pixels using

(3.5),

(2) give σd and σr ,

(3) for each of pixel,

(i) compute c((s, t), (i, j)) using the first equation of (3.4) and s(G(yst), G(yij))
using

s
(
G
(
yst

)
, G

(
yij

))
= e(−1/2)(‖G(yst)−G(yij)‖/σr)2

, (4.1)

(ii) compute k(yij) using

k
(
yij

)
=

∫∫∞

−∞
c
(
(s, t),

(
i, j

))
s
(
G
(
yst

)
, G

(
yij

))
dsdt, (4.2)

(iii) compute GB(yij) using

GB
(
yij

)
=

1

k
(
yij

)∫∫∞

−∞
ystc

(
(s, t),

(
i, j

))
s
(
G
(
yst

)
, G

(
yij

))
dsdt, (4.3)

(4) repeat step 3 until all sinogram pixels have been proceeded.

5. Experiments and Discussion

The main objective for smoothing L-CT images is to delete the noise and non-stationary

artifacts while to preserve anatomy details for the images. Thus, the image visual quality

can be improved, and the denoised image can help doctors make correct medical diagnosis

more easily.

5.1. Data

Four groups of CT images with different doses were scanned from a 16 multidetector row

CT unit (Somatom Sensation 16; Siemens Medical Solutions) using 120 kVp and 5 mm slice

thickness: a 58-year-old man, two groups of 62-year-old women with different reduced dose,

and a 60-year-old man. Other remaining scanning parameters are gantry rotation time, 0.5

second; detector configuration (number of detector rows section thickness), 16× 1.5 mm; table

feed per gantry rotation, 24 mm; pitch, 1 : 1; reconstruction method, filtered back projection

(FBP) algorithm with the soft-tissue convolution kernel “B30f.” Different CT doses were

controlled by using two different fixed tube currents 30 mAs and 150 mAs (60 mA or 300

mAs) for LDCT and standard-dose CT (SDCT) protocols, resp.. The CT dose index volume

(CTDIvol) for LDCT images and SDCT images are in positive linear correlation to the tube

current and is calculated to be approximately ranged between 15.32 mGy and 3.16 mGy [29].
For additional visually illustration, we also put two groups of abdominal CT images of a

same woman with 60 mAs, and two groups of shoulder CT images with low dose 35 mAs

and standard dose 135 mAs (see Figure 2).
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5.2. Compared Methods

Bilateral filter (BF) is introduced at the beginning of Section 3. The main motivation for BF

is that the noisy image should be weighted not only by the position distance (spatial filter)
but also by the difference of sinogram values (range filter) [35]. The parameters of BF are

Gaussian Kernel for spatial filter σs = 1.8, Gaussian Kernel for range filter σr = 20/3, and

iteration time is 3.

Context is a term imported from image coding. The context of a pixel xij is always

defined as a vector used for describing the relationship between this pixels and other image

pixels. In this paper, in order to suppress the influence of noises, the context is defined as

ŷij =
1

9

s=i+1∑
s=i−1

t=j+1∑
t=j−1

yst. (5.1)

The context filter estimates real sinogram values from the points with similar context value.

In this paper, the threshold value for similar context is 10, that is,

xij and xst are similar points if
∣∣ŷij − ŷst∣∣ ≤ 10,

xij and xst are not similar points otherwise,
(5.2)

where ŷij is defined on (5.1). Although context filter can provide more samples for real value

estimate, it will produce some artifacts for losing the spatial relationship of sinogram.

Median bilateral filter (MBF) replaces the center pixel with the median of an s × s win-

dow [41]. However, just as analysis in Section 3, only replacing the center pixel also cannot

obtain satisfied denoising results. Here, when s set to 5 has the best performance, σr = 20/3

and σs = 1.8.

Multiresolution bilateral filter (MRBF) filtering LL subband uses BF while smoothing

wavelet subbands uses SURE shrinkage [38]. The wavelet used in the experiment is 1-level

symlets with support 4. The noisy variance σ̂N is estimated using median of HH band of the

wavelet [45] and σr = 3σ̂N and σs = 2. Although authors report that MRBF can obtain good

denoising results, it also leads to blur some important details.

Weighted intensity averaging over large-scale neighborhoods (WIA-LNs) is a state-of-the-art

method for sinogram reconstruction [29]. The motivation for WIA-LN is that the two pixels

of the same organ or tissue should have surrounding patches with higher similarities than the

two pixels of different organs or tissues. Thus, the real sinogram value of fi can be estimated

as

f̂i =
∑
j∈Ni

ωijfi∑
j∈Ni

ωij
, (5.3)

where

ωij = exp

⎛⎝−
‖ni − nj‖2

2,α

β|ni|

⎞⎠. (5.4)
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Here, fi denotes the intensities of the neighboring pixels in the search neighborhood

Ni centered at pixel index i. The weight of WIA-LN is built by using a similarity criterion

between the two comparing patches ni and nj . This similarity metrics is calculated using

(5.4), in which α denotes the two-dimensional standard deviation of Gaussian kernel. |ni|
is the total pixel number in patch ni. β is a superparameter. In this paper, β is set to be

0.8, and the sizes ni are set to 11 × 11. Although better vision and quantitative performance

are reported, the authors also indicate that WIA-LN cannot handle noise and non-stationary

artifacts simultaneously (see Figure 3(g)).
Proposed method (BFWGFS) replaces all sinogram values used in range filter of BF by the

Gaussian filtered sinogram values. Just as discussed in Section 3, smoothed sinogram values

can reduce the influence of both noise and non-stationary artifacts greatly, and BFWGFS can

provide good visual results and preserve more anatomy details. The parameters are σr =
20/3, σs = 1.8, iteration number is set to 1, and Gaussian smoothed kernel is set to 1.8.

5.3. Visual Comparison

Three groups of SDCT images, LDCT images, and the processed LDCT images for the clinical

abdominal examinations are shown in Figures 1–3. The parameters for compared methods

have been given in the last subsection. In Figure 1, the original and processed abdominal CT

images of a 58-year-old man are illustrated. Figures 1(a) and 1(b) are one SDCT image and

one LDCT image acquired at tube current time product 150 mAs and 30 mAs, respectively.

Figures 1(c), 1(d), 1(e), 1(f), 1(g), and 1(h) show BF, context, MBF, MRBF, WIA-LN, and

proposed method processed LDCT images, respectively. Figure 2 illustrates the original

and processed abdominal CT images of a 62-year-old woman. Figure 2(a) is one SDCT

image acquired at tube current time product 150 mAs. Figures 2(b) and 2(c) are two LDCT

images acquired at reduced tube current time products 60 mAs and 30 mAs, respectively.

Figures 2(d), 2(e), 2(f), 2(j), 2(k), 2(l), 2(g), 2(h), 2(i), 2(m), 2(n), and 2(o) illustrate the two

groups of processed LDCT images of Figures 2(b) and 2(c) by using compared methods.

Figure 3 illustrates the original and processed images for one shoulder scan of a 60-year-

old man, from which we found that WIA-LN tends to smooth both the streak artifacts and

informative human tissues, while proposed method can reduce the noise and artifacts with

preservation of anatomy details.

Comparing all the original SDCT images and LDCT images in Figures 1–3, we found

that the LDCT images were severely degraded by noise and streak artifacts. In Figures 1(c)–
1(f), just as the discussion in Section 3, there are so many noises left in processed images

using BF, context, MBF, and MRBF. WIA-LN shown in Figure 1(g) also makes some obvious

artifacts, while we can observe better noise/artifacts suppression and edge preservation

for proposed methods in Figure 1(h). Both WIA-LN and proposed method have good

performance in noises. Especially, compared to corresponding original SDCT images, the fine

features representing the intrahepatic bile duct dilatation and the hepatic cyst (pointed by

the white circles in the images of Figures 1 and 2, resp.) were well restored by using WIA-LN

and proposed method. The fine anatomical/pathological features (the exemplary structures

pointed by circles in Figures 1 and 2) can be well preserved compared to the original SDCT

images (Figures 1(a) and 2(a)) under-standard dose conditions. In Figures 3(g) and 3(h), it

indicates that although WIA-LN cannot handle noises and artifacts simultaneously, proposed

method can obtain satisfied results in this complex situation. Especially, proposed method

not only can suppress noises and artifacts in original LDCT image (Figure 3(a)) but also
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 1: Abdominal CT images of a 58-year-old man. (a) Original SDCT image with tube current time
product 150 mAs. (b) Original LDCT image with tube current time product 30 mAs. (c, d, e, f) BF, context,
MBF, and MRBF processed LDCT images, respectively. (g) WIA-LN processed LDCT image. (h) Proposed
method (BFWGFS) processed LDCT image. Note the obvious improvement of noise suppression and
preservation of the intrahepatic bile duct dilatation (white circles) for the WIA-LN and proposed method
processed LDCT images (g, h) compared to the original LDCT image in (b).

can preserve tiny anatomy details of subscapular arteries indicated by the white circles in

Figure 3(h) compared to the original SDCT image (Figure 3(b)).

6. Conclusions

In this paper, in order to improve the performance of LDCT imaging, we propose a new

method, named bilateral filter weighted by Gaussian filtered sinogram (BFWGFS) which

replaces the sinogram values of range filter of BF to the Gaussian filtered sinogram values.

Since carefully chosen parameters of Gaussian filter can reduce the influence both of noises

and non-stationary artifacts greatly, BFWGFS can provide a more reliable estimate sinogram

values for the range filter to improve the performance of classical BF in noises. Restoration
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o)

Figure 2: Abdominal CT images of a 62-year-old woman. (a) Original SDCT image with tube current time
product 150 mAs. (b) Original LDCT image with tube current time product 60 mAs. (c) Original LDCT
image with tube current time product 30 mAs. (d, e, f) LDCT images (60 mAs) processed by BF, context,
and MBF, respectively. (g, h, i) LDCT images (30 mAs) processed by BF, context, and MBF, respectively. (j,
k, l) LDCT images (60 mAs) processed by MRBF, WIA-LN and proposed method, respectively. (m, n, o)
LDCT images (30 mAs) processed by MRBF, WIA-LN, and proposed method, respectively. Compared to
the original LDCT images in (b) and (c), the improvement of preservation of the hepatic cyst (white circles)
for the WIA-LN, and proposed method in processed LDCT image (k), (l), and (n), (o) can be observed.

results for three real sinograms show that proposed method with suitable parameters can

obtain satisfied results even in both the noises and artifacts situation.
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We use tail dependence functions to study tail dependence for regularly varying (RV) time
series. First, tail dependence functions about RV time series are deduced through the intensity
measure. Then, the relation between the tail dependence function and the intensity measure
is established: they are biuniquely determined. Finally, we obtain the expressions of the tail
dependence parameters based on the expectation of the RV components of the time series. These
expressions are coincided with those obtained by the conditional probability. Some simulation
examples are demonstrated to verify the results we established in this paper.

1. Introduction

Copula is a useful tool for handling multivariate distributions with given univariate margins.

A copula C is a distribution function, defined on the unit cube [0, 1]d, with uniform one-

dimensional margins Ui. For any (u1, . . . , ud) ∈ [0, 1]d, C(u1, . . . , ud) = P{U1 ≤ u1, . . . , Ud ≤
ud}; the survival copula is Ĉ(u1, . . . , ud) = P{U1 ≥ 1 − u1, . . . , Ud ≥ 1 − ud}, the joint survival

function of copula C is C(u1, . . . , ud) = Ĉ(1 − u1, . . . , 1 − ud). Given a copula C, let

F(t1, . . . , td) = C(F1(t1), . . . , Fd(td)), where (t1, . . . , td) ∈ R
d, (1.1)

then F is a multivariate distribution with univariate margins F1, . . . , Fd. On the other hand,

given a distribution F with margins F1, . . . , Fd, there exists a copula C such that (1.1) holds.

And copula C is unique if F1, . . . , Fd are all continuous (Sklar [1], Nelsen [2]).
In generally, copula forms a natural way to describe the dependence between series

when making abstraction of their marginal distributions. Overviews of the probabilistic and

statistical properties of copula are to be found in [1–6].
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Tail dependence plays an important role among dependence measures due to its

ability to describe dependence among extreme values (Frahm et al. [7], Resnick [8, 9], and

Nikoloulopoulos et al. [10]) which is introduced by Joe [4]. The issue of tail dependence

is mainly for heavy tailed phenomena, heavy tailed phenomenon in fractal time series. It

is extensively studied and applied in insurance, risk management, traffic management and

engineering management, and so forth. [11–27].
Researchers find various multivariate distributions with heavy tails to describe the

extremal or tail dependence, see, Pisarenko and Rodkin [13], Hult and Lindskog [28], and

Fang et al. [29]. Many interesting tail quantities have been derived via standard methods:

coefficients of tail dependence [30–37] and tail dependence copulas (Charpentier and Segers

[38]).
In this paper, we are interested in the tail behavior of the time series X1, . . . , Xt which

have the form:

X = (X1, . . . , Xt) = (RZ1, . . . , RZt), (1.2)

where the scale variableR is independent of random vector (Z1, . . . , Zt). And X is multivariate

regularly varying with distribution function F having copula C.

This distribution is a generalized class, including, for example, multivariate Pareto and

multivariate elliptical distribution as special ones. Especially, the multivariate t distribution

is included in it. As an example, we will justify the results through multivariate t copula.

In order to analyze the tail dependence behavior of (1.2), we first study the tail

dependence functions via intensity measure. Then using the relation between tail dependence

parameter and the tail dependence functions, we explore the explicit representations of the

tail dependence parameters.

The outline of this paper is as follows. After some preliminaries about multivariate

regularly varying series and dependence functions in Section 2, detailed results for the

tail dependence functions are discussed in Section 3, the expressions of tail dependence

parameters for RV time series are demonstrated in Section 4, and multivariate t distribution

is demonstrated as an example in Section 5.

Throughout, (X1, . . . , Xt) is a random vector with joint distribution function F and

copula C. Minima and maxima will be denoted by ∧ and ∨, respectively. The Cartesian

product
∏t

i=1[ai, bi] is denoted by [a,b] for any a,b ∈ Rt
.

2. Preliminaries

Definition 2.1. The t-dimensional random vector X is said to be regularly varying with index

α ≥ 0 if there exists a random vector Θ with values in S
t−1 a.s., where S

t−1 denotes the unit

sphere in Rd with respect to the norm | · |, such that, for all u > 0,

P{|X| > ux,X/|X| ∈ ·}
P{|X| > x}

v→ u−αP{Θ ∈ ·}, (2.1)

as x → ∞. The symbol
v→ stands for vague convergence on S

t−1; vague convergence of

measures is treated in detail in Kallenberg [39]. The distribution of Θ is referred to as the
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spectral measure of X. For further information on multivariate regular variation we refer to

Resnick [8, 9].
In fact, (2.1) is equivalent to the following expression

nP
{
a−1
n X ∈ ·

}
v→ μ(·), (2.2)

where μ is an intensity measure or Radon measure on R/{0} and an is a sequence an of

nonnegative numbers.

From the Definition 2.1, we can see that the regularly varying distribution is connected with

intensity measure μ. The following lemma yields the explicit relation between them which

can be found in [8].

Lemma 2.2. Let random vector X be regularly varying with index α ≥ 0 and distribution function F,
then it is equivalent to the following.

(1) There exists an intensity measure μ on Rt/{0}, such that for every Borel set B ⊂ Rt/{0}
bounded away from the origin that satisfies μ(∂B) = 0,

lim
u→∞

P{X ∈ uB}
P{|X| > u} = μ(B), (2.3)

with the homogeneous condition μ(uB) = u−αμ(B).

(2) There exists an intensity measure μ on Rt/{0}, such that

lim
u→∞

1 − F(ux1, ux2, . . . , uxt)
1 − F(u, u, . . . , u) =

P
{
X/u ∈ [0, x]c

}
P
{
X/u ∈ [0, 1]c

} = μ
(
[0, x]c

)
, (2.4)

for all continuous points x of μ. According to Lemma 2.2, one notices that for any
nonnegative multivariate regularly varying random vector X, its nondegenerate univariate
margins Xi have regularly varying right tails and with the same index of X also, that is,

Fi(x) = P{Xi > x} = x−αLi(x), x > 0, (2.5)

where Li(x) is a slowly varying function.

Lemma 2.3 (Breiman [40]). Let ξ and η be two independent nonnegative random variables, η be
regularly varying with index α. If there exists a γ > α, such that Eξγ <∞, then

P
{
ξη > x

} ∼ E(ξα)P{
η > x

}
. (2.6)
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The multivariate version of the Lemma belongs to Basrak et al. [41]. It is said that, if X is regularly
varying in the sense of (2.2), A is a random t × t matrix, independent of X, with 0 < E‖A‖γ < ∞ for
some γ > α, then

nP
{
a−1
n AX ∈ ·

}
v→ μ̃(·) := E

(
μ ◦A−1(·)

)
, (2.7)

where v→ denotes vague convergence on R
t/{0}.

Definition 2.4 (Kluppelberg et al. [42]). Let F be the distribution function of random vector X
with continuous margins Fi, 1 ≤ i ≤ t and copula C. For any w = (w1, w2, . . . , wt) ∈ Rt

+, the

lower dependence function is defined as

l(w;C) = lim
x→ 0+

C(xw1, xw2, . . . , xwt)
x

, (2.8)

and the upper dependence function is defined as

u(w;C) = lim
x→ 0+

C(1 − xw1, 1 − xw2, . . . , 1 − xwt)
x

. (2.9)

The upper exponent function is defined as

u∗(w;C) =
∑

∅/=S⊂I
(−1)|S|−1uS(wS;CS), (2.10)

where uS(wS;CS) = limx→ 0+C(1 − xwj, ∀j ∈ S)/x.

From the definition, we can verify the elementary properties listed in Proposition 2.5 of

the tail dependence function. We denote τJ = limx→ 1−P{Fj(Xj) > x, ∀j /∈ J | Fi(Xi) > x, ∀i ∈ J}
and ξJ = limx→ 0+P{Fj(Xj) < x, ∀j /∈ J | Fi(Xi) < x, ∀i ∈ J} are the upper tail and lower

dependence parameters of X, respectively, where J is a nonempty subset of I = {1, . . . , t}. CJ

is the margin of C with component indexes in J .

Proposition 2.5. (1) For any 1 ≤ i, j ≤ t,

τij = u
(
1, 1;Cij

)
; ξij = l

(
1, 1;Cij

)
, (2.11)

where Cij is the margin copula of Xi,Xj .

(2) For any nonempty J ⊂ I,

τJ =
u(1, 1, . . . , 1;C)
u
(
1, 1, . . . , 1;CJ

) ; ξJ =
l(1, 1, . . . , 1;C)
l
(
1, 1, . . . , 1;CJ

) , (2.12)
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(3)

u(w;C) = lim
x→ 0+

Ĉ(xw1, xw2, . . . , xwt)
x

= l
(
w; Ĉ

)
. (2.13)

Proof. (1) According to the definition of τij , we get

τij = lim
x→ 1−

P
{
Fj

(
Xj

)
> x | Fi(Xi) > x

}
= lim

x→ 0+

P
{
Fj

(
Xj

)
> 1 − x, Fi(Xi) > 1 − x}

P{Fi(Xi) > 1 − x}

= lim
x→ 0+

Cij(1 − x, 1 − x)
x

= u
(
1, 1;Cij

)
;

(2.14)

similarly,

ξij = lim
x→ 0+

P
{
Fj

(
Xj

)
< x | Fi(Xi) < x

}
= lim

x→ 0+

P
{
Fj

(
Xj

)
< x, Fi(Xi) < x

}
P{Fi(Xi) < x}

= lim
x→ 0+

Cij(x, x)
x

= l
(
1, 1;Cij

)
.

(2.15)

(2) Note that

τJ = lim
x→ 1−

P
{
Fj

(
Xj

)
> x, ∀j ∈ I}

P{Fi(Xi) > x, ∀i ∈ J} = lim
x→ 0+

C(1 − x, . . . , 1 − x)/x
CJ(1 − x, . . . , 1 − x)/x

(2.16)

combined with (2.9), the first part is determined. The second part can be verified similarly.

(3) We can obtained the proof only paying attention to C(u1, . . . , ut) = Ĉ(1 − u1, . . . , 1 −
ut).

From the proposition, the upper tail dependence function of copula C is the lower one

of its survival copula Ĉ. And in most fractal time series, from the point of view of either

theory or applications, people only need to understand the right tail of the data, so we focus

on the upper tail function u(w;C) and coefficient τJ in the following.

We first study the upper tail dependence function of multivariate regularly varying

time series in (1.2) using the intensity measure.

3. The Upper Tail Dependence Function for RV Time Series

Theorem 3.1. Let X1, . . . , Xt be RV time series with regularly varying index α, distribution function
F, copula C, and the stochastic representation as (1.2). If the margins are tail equivalent as x → ∞,
then the upper tail dependence function can be written as

u(w;C) =
μ
(∏t

i=1

[
w−1/α
i ,∞

])
μ
(
[1,∞] × Rt−1

) , (3.1)
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and the upper exponent function can be written as

u∗(w;C) =
μ
((∏t

i=1

[
0, w−1/α

i

])c)
μ

((
[0, 1] × Rt−1

)c) . (3.2)

Proof. For any w = (w1, . . . , wt) ∈ Rt
+,

u(w;C) = lim
x→ 0+

P
{
Fi(Xi) ≤ xwi, ∀i ∈ I

}
P
{
F1(X1) ≤ x

} = lim
x→ 0+

P
{
Xi > F

−1

i (xwi), ∀i ∈ I
}

P
{
X1 > F

−1

1 (x)
} . (3.3)

Since every margin Fi is regularly varying with the same index α, we obtain that

Fi
(
y
)
=
Li

(
y
)

yα
, y > 0, (3.4)

where Li(y) is slowing varying function. So for any wi > 0, as x → 0+,

Fi
(
w1/α
i y

)
=
Li

(
w1/α
i y

)
wiyα

=
1

wi
·
Li

(
w1/α
i y

)
Li

(
y
) · Li

(
y
)

yα
=

1

wi
· hi

(
wi, y

) · Fi(y), (3.5)

where hi(wi, y) = Li(w
1/α
i y)/Li(y) → 1 as y → ∞. So the equation becomes

Fi
(
w1/α
i y

)
=

1

wi
· hi

(
wi, y

) · Fi(y), (3.6)

in other words,

w1/α
i y = F

−1

i

(
1

wi
Fi

(
y
)
hi
(
wi, y

))
. (3.7)

Now we let Fi(y) = xwi, then

w1/α
i F

−1

i (xwi) = F
−1

i

(
xhi

(
wi,F

−1

i (xwi)
))
, (3.8)

so, F
−1

i (xwi) = w
−1/α
i F

−1

i (xhi(wi,F
−1

i (xwi))).

As x → 0+, hi(wi,F
−1

i (xwi)) → 1, so we get that

F
−1

i (xwi) ≈ w−1/α
i F

−1

i (x). (3.9)
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And since the margins are equivalent, that is, Fi(y)/F1(y) → 1 as y → ∞. We have

F
−1

i (x)/F
−1

1 (x) → 1 as x → 0+ (Resnick [8]). So for sufficient small x, F
−1

i (x) ≈ F
−1

1 (x), and

z = F
−1

1 (x), combining (3.3) and (2.3), we obtain that

u(w;C) = lim
x→ 0+

P
{
Xi > w

−1/α
i F

−1

i (x), ∀i ∈ I
}

P
{
X1 > F

−1

1 (x)
} = lim

z→∞

P
{
Xi > w

−1/α
i z, ∀i ∈ I

}
P{X1 > z}

=
μ
(∏t

i=1

[
w−1/α
i ,∞

])
μ
(
[1,∞] × Rt−1

) .

(3.10)

In order to calculate u∗(w;C), we recall the inclusion-exclusion formula, it says that

P{∩i∈IAi} =
∑

∅/=S⊂I
(−1)|S|−1P

{∪j∈SAj

}
(3.11)

is valid for any finite set I and arbitrary events Ai, where i ∈ I.

Using this formula, (2.10) becomes

u∗(w;C) = lim
x→ 0+

P
{
Fj

(
Xj

)
> 1 − xwj, ∃j ∈ I

}
x

= lim
x→ 0+

P
{
Fj

(
Xj

) ≤ xwj, ∃j ∈ I
}

P
{
F1(X1) ≤ x

}
= lim

x→ 0+

P
{
Xj > F

−1

j

(
xwj

)
, ∃j ∈ I

}
P
{
X1 > F

−1

1 (x)
} .

(3.12)

By using the same method of (3.3), the following equation holds:

u∗(w;C) = lim
z→∞

P
{
Xi > w

−1/α
i z, ∃i ∈ I

}
P{X1 > z} =

μ
((∏t

i=1

[
0, w−1/α

i

])c)
μ
(
[1,∞] × Rt−1

) . (3.13)

Corollary 3.2. Under the same conditions as Theorem 3.1, the following result holds

μ
(
[1,∞] × Rt−1

)
=

1

u∗(1, . . . , 1;C)
. (3.14)

Proof. By (2.4), one can see that μ([0, 1]c) = 1. So we can get the result immediately by letting

all wi = 1, 1 ≤ i ≤ t in (3.2).
According to Theorem 3.1 and Corollary 3.2, we can represent the intensity measure

through the tail dependence function as the following Corollary.
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Corollary 3.3. Under the same conditions as Theorem 3.1, one has

μ([w,∞]) =
u
(
w−α

1 , . . . , w−α
t ;C

)
u∗(1, . . . , 1;C)

,

μ
(
[0,w]c

)
=
u∗

(
w−α

1 , . . . , w−α
t ;C

)
u∗(1, . . . , 1;C)

.

(3.15)

4. The Upper Tail Dependence Parameters for Regularly
Varying Time Series

According to Proposition 2.5 and Theorem 3.1, we can express the tail dependence

parameters by their tail dependence functions. In this section, we will deduce the upper tail

dependence parameters of time series with multivariate varying distribution in (1.2) by this

method. Hereafter, we let μ be the intensity measure of R = (R,R, . . . , R) with copula CR.

Where R is regularly varying at ∞ with index α, with survival function FR(r) = L(r)/rα, and

L(·) is a slowly varying function. So for any nonnegative vector w = (w1, . . . , wt), we have

μ
(
[0,w]c;CR

)
= lim

r→∞
P
{
R > r∧ti=1wi

}
P{R > r} = lim

r→∞

FR
(
r
∧t
i=1wi

)
FR(r)

, (4.1)

by inserting FR(r∧ti=1wi) = L(r
∧t
i=1wi)/(r

∧t
i=1wi)

α
and FR(r) = L(r)/rα into the representa-

tion, then,

μ
(
[0,w]c;CR

)
=

1(∧t
i=1wi

)α =

(
t∨
i=1

wi

)−α
. (4.2)

Similarly, we have,

μ
(
[w,∞];CR

)
=

t∧
i=1

w−α
i . (4.3)

Consequently, we get the main result as follows.

Theorem 4.1. Let X1, . . . , Xt be regularly varying time series with the same regularly varying index
α and the stochastic representation given in (1.2), the margins are tail equivalent as x → ∞. If there
exists a γ > α holds for 0 < E(Zγ

i+) <∞, then the upper tail dependence parameter of X1, . . . , Xt is

τJ =
E
(∧t

i=1

(
Zα
i+/E

(
Zα
i+

)))
E
(∧

i∈J
(
Zα
i+/E

(
Zα
i+

))) . (4.4)
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Proof. We first calculate the tail dependence function of X = (RZ1, . . . , RZt). In the following,

let CX and CY be the copula of X and Y, respectively. Denote

(Y1, . . . , Yt)T = A(R, . . . , R)T , (4.5)

where

A = diag

⎛⎝ Z1+(
E
(
Zα

1+

))1/α
, . . . ,

Zt+(
E
(
Zα

1+

))1/α

⎞⎠. (4.6)

Note that Yi = (Zi+/(E(Zα
i+))

1/α)R is strictly increasing transformation of Xi > 0,

for all i ∈ I, and the tail dependence function and the parameter are all copula properties.

Hence Y and X have the same tail dependence functions. By Lemma 2.3, one can see that

the marginal variables Yi of vector Y are tail equivalent and regularly varying with the same

index as X as x → ∞. Denote the intensity measures of Y and R by μ̃(·) and μ(·), respectively.

According to (2.7),

μ̃(·) = E
(
μ
(
A−1·

))
. (4.7)

Now by (4.6), we see that,

A−1 = diag

⎛⎝(
E
(
Zα

1+

))1/α

Z1+
, . . . ,

(
E
(
Zα

t+
))1/α

Zt+

⎞⎠, (4.8)

combining this with (4.3), for any nonnegative w, we obtain the intensity measure given by

μ̃([w,∞]) = E
(
μ
(
A−1[w,∞]

))
= E

⎛⎝μ

⎛⎝ t∏
i=1

⎡⎣(
E
(
Zα

i+

))1/α

Zi+
wi,∞

⎤⎦;CR

⎞⎠⎞⎠
= E

(
t∧
i=1

Zα
i+

E
(
Zα
i+

)w−α
i

)
.

(4.9)

Hence, we have

μ̃

(
t∏
i=1

[
w−α
i ,∞

])
= E

(
t∧
i=1

Zα
i+

E
(
Zα
i+

)wi

)
. (4.10)

Substituting this measure into (3.1), we get the upper tail dependence function of vector Y as

follows:

u
(
w;CY

)
= E

(
t∧
i=1

Zα
i+

E
(
Zα
i+

)wi

)
. (4.11)
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Since Y and X have the same tail dependence functions, we have

u
(
w;CX

)
= E

(
t∧
i=1

Zα
i+

E
(
Zα
i+

)wi

)
. (4.12)

By (2) in Proposition 2.5, we obtain the upper tail dependence parameters of vector X.

5. Examples

Let Z in (1.2) be Z = A(U1, . . . , Un), where A is a t × n matrix with AAT = Σ, and Σ is a

t × t semidefinite matrix, U = (U1, . . . , Un) is uniformly distributed on the unit sphere (with

respect to Euclidean distance) in Rn. We know that X conforms to an elliptical contoured

distribution (Fang et al. [43]). The tail dependence of the elliptical contoured distribution has

been discussed in Schmidt [33]. Here we select the t distribution to display our results in

Theorem 4.1 as a special case.

If X ∼ tn(μ,Σ, ν), then X has the stochastic representation ([43]):

X = μ +
√
ν√
S
Z, (5.1)

where S ∼ χ2
ν and Z ∼ Nn(0,Σ) are independent, μ ∈ Rn.

Let R =
√
ν/S. Then R2 ∼ IG(ν/2, ν/2) and R is regularly varying with index ν at ∞.

So the vector (X1, . . . , Xn) is regularly varying according to Schmidt [33].
For the upper tail dependence that only relies on the tail behavior of the random vector,

we can focus, without loss of generality, on the random vector X with zero mean vector.

Furthermore, since the strictly increasing transformation of (X1, . . . , Xn) does not change the

copula, Δ−1/2X has the same copula as X, where Σ = (σij) and Δ = diag(σ11, σ22, . . . , σnn).
Thus Δ−1/2X ∼ tn(0,Δ−1/2ΣΔ−1/2, ν). It is evident that Δ−1/2ΣΔ−1/2 becomes the correlation

matrix of the random vector. Consequently, we may assume that the covariance matrix Σ is

the correlation matrix. In this situation, all Z′
is have the same margins as N(0, 1). So E(Zν

i+)
are all equal for any 1 ≤ i ≤ n. Under these assumptions, using (4.4), we get the upper tail

dependence parameter of tn(0,Σ, ν) as

τJ =
E
(∧n

i=1Z
ν
i+

)
E
(∧

i∈JZ
ν
i+

) . (5.2)

This is coincided to the one obtained in Shi and Lin [34].

6. Simulations

In Section 4, we obtain the expressions of the tail dependence indexes about RV time series in

(1.2). In Section 5, we display our result in the multivariate t distribution as example. In this

Section, we will illustrate these results by some Monte Carlo simulated numerical examples.
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Figure 1: The estimation of τ2, τ12 under AR(1) (the left one) and EX (the right one) correlation structure.

Given that y(1), y(2), . . . , y(m) be generated from the multivariate normal distribution Nn(0,ρ),
then the upper tail dependence indices of tn(μ,Σ, ν) can be estimated by

τ̂J =

∑m
k=1

(∧n
j=1

∣∣∣y(k)
j

∣∣∣)νI{y(k) > 0 or y(k) < 0
}

∑m
k=1

(∧
i∈J

∣∣∣y(k)
i

∣∣∣)νI{y(k) > 0 or y(k) < 0
} . (6.1)

We estimate the upper tail dependence parameter of 3-dimensional t distribution

under autoregressive of order 1 (AR(1)), exchangeable(EX), Toeplitz(TOEP), and unstruc-

tured(UN) correlation structure, respectively. For each correlation matrix, we first generate

80,000 pseudorandom vectors, then use (5.2) to estimate tail dependence parameter for

different ν. Specifically, we do the following simulations.

∑
1

=

⎛⎝ 1 −0.3 0.09

−0.3 1 −0.3

0.09 −0.3 1

⎞⎠,
∑

2

=

⎛⎝ 1 −0.3 −0.3

−0.3 1 −0.3

−0.3 −0.3 1

⎞⎠. (6.2)

Let J = {2} and {1, 2}, respectively. The corresponding upper tail dependence param-

eters are denoted by τ2 and τ12. Σ1 and Σ2 are under AR(1) and EX correlation structure,

respectively, the simulated values of τ2, τ12 about different ν are computed and plotted in

Figure 1. Σ3 and Σ4 are under TOEP and UN correlation structure, the corresponding results

are demonstrated in Figure 2.

From the two figures, in spite of the correlation structure, τJ decreased and approached

0 quickly as ν increased to ∞, which is the tail dependence index for multivariate normal

copula.

Many researchers try to discuss the monotonicity of the tail dependence parameter

about the regular varying index. Embrechts et al. [11] proved that the tail dependence of the

bivariate t distribution is decreasing about the regular varying index ν, and demonstrated
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Figure 2: The estimation of τ2, τ12 under TOEP (the left one) and UN (the right one) correlation structure.

that the tail dependence parameter τ1 is decreasing in ν by numerical results. But From the

right graph in Figure 2., these conclusions are not always correct when t ≥ 3.

∑
3

=

⎛⎝ 1 −0.3 0.5

−0.3 1 −0.3

0.5 −0.3 1

⎞⎠,
∑

4

=

⎛⎝ 1 0.3 0.5

0.3 1 0.7

0.5 0.7 1

⎞⎠. (6.3)

7. Conclusion

In the paper, we mainly study tail dependence of RV time series in (1.2). We use tail

dependence function and intensity measure to express tail dependence parameters. Using tail

dependence function, we do not need to consider the explicit representation of the copula. We

first discuss the tail dependence function of the RV time series due to the propositions of the

regularly varying function, connecting the biuniquely determined property between the tail

dependence function and the intensity measure. Then we calculate the explicit formula of the

upper tail dependence parameter about the RV time series under some conditions. In fact,

we can obtain the extreme upper tail dependence index (Shi and Lin [34]) very similarly to

Theorem 4.1, for concise, we omit it here.

Copula of continuous variables is invariant under strictly increasing transformation

(Nelsen [2]). In order to obtain the tail dependence function of random vector X, we shift to

solve that of Y in (4.5), which is just a strictly increasing transformation of X.

At last, we select the t distribution as a special case to display our result, they are

coincided to the one given in [34]. The monotonicity of the tail dependence parameters

about the regular varying index is still an open problem. Under what constraints the tail

dependence parameters will be deceasing in the variation index? We are still interested in the

problem. We will discuss it in the following work in details. In engineering application, when

we confront fractal time series and seasonal data, we can model the tail dependence property

via the tail dependence function if the data is consistent with the constraint conditions in our

work.
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For test-sheet composition systems, it is important to adaptively compose test sheets with
diverse conceptual scopes, discrimination and difficulty degrees to meet various assessment
requirements during real learning situations. Computation time and item exposure rate also
influence performance and item bank security. Therefore, this study proposes an Adaptive Test
Sheet Generation (ATSG) mechanism, where a Candidate Item Selection Strategy adaptively
determines candidate test items and conceptual granularities according to desired conceptual
scopes, and an Aggregate Objective Function applies Genetic Algorithm (GA) to figure out the
approximate solution of mixed integer programming problem for the test-sheet composition.
Experimental results show that the ATSG mechanism can efficiently, precisely generate test
sheets to meet the various assessment requirements than existing ones. Furthermore, according
to experimental finding, Fractal Time Series approach can be applied to analyze the self-similarity
characteristics of GA’s fitness scores for improving the quality of the test-sheet composition in the
near future.

1. Introduction

With the rapid developments of information and assessment technology, the computerized

testing is generally used to assess, predict, and diagnose learners’ learning statuses because it

is able to effectively analyze examinees’ abilities and learning barriers. The test quality offered

by a computerized testing system depends on not only the quality of test items but also the

satisfied test sheets to meet the various requirements of assessment parameters, such as the
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difficulty degree, the discrimination degree, the associated concepts, and the expected testing

time. Thus, how to efficiently assist teachers in composing and generating an appropriate test

sheet to meet the diverse assessment requirements has become an important research issue.

Hwang [1] applied the dynamic programming technique to solve this issue, but the

solution is inefficient for a large-item bank because of the exponential growth of time and

space complexity. Su and Wang [2] developed an assistance system to provide teachers with

statistic information for assisting teachers in manually composing the desired test sheets, but

manually selecting appropriate test items in a large item bank is still inefficient and difficult

to ensure the qualities of test sheets. Therefore, the pressing problem of automatic test item

allocation is emerging and it can be regarded as a combinatorial optimization problem, which

is proven an NP-hard problem [3]. Therefore, Hwang et al. [4] formulated this problem

as a mixed integer programming model and proposed approximate solutions by using the

Genetic Algorithm (GA) approach [5]. The experimental results show that their proposed

approach can efficiently automatically compose a good enough test sheet for a large-scale

test.

However, the aforementioned studies mainly aim to automatically generate a test

sheet with a highest discrimination degree and to meet the constraints in terms of expected

testing time and concept relevance. These mechanisms are suitable for the large-scale test

only, but their natures are difficult to satisfy various purposes of assessments during the

real learning situation. In order to efficiently understand the students’ learning problems, it

is important to compose the test sheets with diverse conceptual scopes (C), discrimination

(D) and difficulty (P) degrees, such as displacement and summative assessments (with

normal distribution C and P), and formative and diagnostic assessments (with various

or specific C and P) [6–9]. Moreover, the computation time of the test-sheet composition

process and the Item Exposure Rate are our concerns as well. A long computation time will

decrease the performance of test-sheet composition system and a high-item exposure rate

will decrease the qualities of test items and Item Bank Security [10, 11]. Accordingly, to

consider not only the various assessment requirements but also the computation time and

item exposure rate, this study defines a new problem of automatic test item allocation, called

an Adaptive Test Sheet Generation problem. To solve it, this research proposes Adaptive

Test Sheet Generation (ATSG) mechanism, consisting of a Candidate Item Selection Strategy

(CISS) and an Aggregate Objective Function (AOF). CISS process can adaptively determine

candidate test items set and the conceptual granularities according to the desired concept

scope, and AOF applies GA algorithms to solve the mixed integer programming problem.

The evaluation results show that the proposed approach can generate test sheets to meet the

various assessment requirements.

2. Related Work

The original issue of the test sheet generation problem is identified for the large-scale tests,

where these test items covering all required concepts and having the highest degree of

discrimination are selected from a test item bank. Hwang [1] proposed an algorithm based

on dynamic programming technique to find optimal test sheets, but the exponential time

complexity causes the efficiency issue for a large number of candidate test items. Therefore,

the researchers formulated this problem as a mixed integer programming model and applied

a genetic algorithm [4] to figure out the approximate solution. In this paper, assume that a
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set of test items, which are related to m concepts, should be selected from n items in the item

bank. Each test item Qi is defined as

Qi =
(
ti, di, rij

)
, (2.1)

whereQi is a test item in the item bank (IB) and has a set of parameters including the expected

time ti needed for answering, the degree of discrimination di, and the degree of association

rij between Qi and a concept Cj .

The assessment requirement of a Test Sheet (TS) includes the lower bound l and upper

bound u of the totally expected answering time, and the lower bound hj of the total relevance

of each concept Cj . To formulate the problem, a decision variable xi is defined as a Kronecker
delta, that is,

xi =

⎧⎨⎩1, if Qi ∈ TS,

0, if Qi /∈ TS.
(2.2)

The goal of this problem is to maximize Z = (
∑n

i=1 dixi)/(
∑n

i=1 xi).
Subject to the concept range

∑n
i=1 rijxi ≥ hj for j = 1 to n and the testing time limitation

l ≤ ∑n
i=1 tixi ≤ u.

A Genetic Algorithm (GA) approach [5] is used to solve this problem, where a

chromosome is represented as an n-bit binary string [x1,x2,. . .,xn] and the fitness rank is

the summation of selected items’ discrimination degrees subtracted by the penalty scores.

The penalty scores are the degrees about the violation of expected time and concept ranges

constraints. The genetic algorithm iteratively generates new generation of chromosomes

by the Crossover and Mutation processes, as Random Functions, and finds the best

chromosomes according to their fitness ranks. In the Crossover, chromosomes of the next

iteration are generated by combining halves of two chromosomes, which are randomly

selected from the chromosomes in the current iteration. A chromosome can be more probably

selected because it has a higher fitness rank. Mutation is the other operation of changing

a chromosome, where the change of an arbitrary bit is randomly raised to a chromosome.

This kind of evolutionary algorithm can iteratively approach to the optimal solution and

use some random operations, such as the operations of Crossover and Mutation, to prevent

falling into the local optimal solutions. According to the evaluation, the test sheet generation

approach based on a GA can really provide good solutions among more than ten thousand

test items in an acceptable response time. Furthermore, the greedy algorithm approach [12],
the tabu search algorithm [13], and the discrete particle swarm optimization algorithm [14]
were subsequently applied to enhance the computation efficiency of test sheet generation

based on the aforementioned problem formulation.

Besides, the test sheet composition problem was extended to a parallel test sheets

composition problem, where multiple test sheets are generated at one time. These sheets must

have similar concept relevance, discrimination, and difficulty degrees but contain no common

test items. The problem was solved by extending the existing tabu search algorithm [15] and

the particle swarm optimization algorithm [16].
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Figure 1: Test sheet types to meet various assessment requirements.

3. Adaptive Test Sheet Generation Problem

In order to efficiently understand the students’ learning problems, the parameters of a

test sheet including conceptual scopes (C), discrimination (D), and difficulty (P) degrees

should be adaptively composed according to the various assessment purposes, such as

displacement and summative assessments (with normal distribution C and P), and formative

and diagnostic assessments (with various or specific C and P). As illustrated in Figure 1,

for the formative assessment, like a small-scale test, a test sheet with the specific and

detailed concepts, that is, low-level conceptual scope/fine-grained granularity, is required to

evaluate the students’ specific conceptual capabilities during the learning; for the diagnostic

assessment, like a specific-scale test, a test sheet with the diverse conceptual scopes and

granularities is used to diagnose the students’ learning problems; for the displacement and

summative assessments, like a large-scale test, a test sheet with the high-level conceptual

granularities is required to evaluate the students’ learning performance before and after the

learning, respectively.

However, as seen in Figure 2, the existing approaches did not take the adaptive

requirements, that is, C, P, and D into account, and only focus on the highest D. Consequently,

their composed test sheets may contain the miss- and error-included concept nodes and cannot

meet the adaptive requirements. Moreover, they also need to spend much more computation
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time to select candidate test items in the item bank because they have no item selection

strategy to filter the irrelevant ones in advance. Besides, item exposure rate, which denotes

the number of a test item used in the test sheets, also needs to consider for enhancing the Item

Bank Security.

Therefore, three issues are required to be solved for satisfying the adaptive require-

ments of a test sheet:

(i) how to generate a test sheet to precisely meet the adaptive requirements in

terms of conceptual granularities, discrimination, difficulty, and expected test time

parameters;

(ii) how to speed up the test sheet generation process for reducing the computation

time;

(iii) how to consider the item exposure rate issue to enhance the Item Bank Security.

An Adaptive Test Sheet Generation Problem Is Defined as Follows

Assume that a set of test items should be selected from n items in the item bank Q =
{Q1, Q2, . . . , Qn}. All items should be related to the concepts in a concept hierarchy H, a tree

of concepts as shown in Figure 1. The tree H contains m concepts as the tree nodes C, namely,

C = {C1, C2, . . . , Cm}. δ is a descendent function, where δ(Ci) ⊂ C is a set of descendent nodes

of Ci, and δ′(Ci) ⊂ C is a descendent leaf function, whereCj belongs to δ′(Ci) if and only if Cj

is a leaf concept of H and the descendent of Ci.

Cj ∈ δ′(Ci) iff
(
Cj ∈ δ(Ci)

) ∧ (
δ
(
Cj

)
= {∅}). (3.1)

Based on the Qi definition in Section 2, the item exposure times ei and the degree of difficulty

pi are taken in account in this study. Thus, each test item Qi is defined as follows.

Qi =
(
pi, ti, di, rij , ei

)
, where 0 ≤ di, pi, ri ≤ 1, ti, ei ∈ N (Natural Number). (3.2)

An example is provided in Figure 3, where the concept hierarchy H is a tree of concept Cj

and the test item set Q is a set of test items Qi. A weight rij denotes relevance degree between
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Figure 3: Concept hierarchy H and its related test items Q.

the concept Cj test item Qi, for example, the relevance of C2 and Q1 is r12 = 0.75. The δ(Cj)
denotes the subtree of the concept Cj , for example, C1 and C2 belong to the δ(C5).

Therefore, in this study, a test sheet (TS) can be defined as follows:

TS =
(
Qs, t′, p′, C′, r ′

)
, (3.3)

where TS includes the expected test time t′ of the test sheet, target difficulty degree p′,
target concepts C′ ⊂ C, and the lower bound of average concept relevance r ′. Based on the

definitions of existing studies mentioned in Section 2, a decision variable X = [x1,x2,. . .,xn] is

defined where xi is 1 if the test item Qi is selected to the test sheet; 0, otherwise.

The goal of the adaptive test sheet generation problem is to generate a test sheet to

(i) approach all the target parameters p′ and t′,

(ii) have the highest average discrimination degree,

(iii) have the balanced concept relevance weight sum of each required conceptual

granularity and its descents among the required concept range C′ and the average

relevance to be higher than r ′,

(iv) have the lowest average item exposure rate.

This is a multiobjective optimization problem, and the objective functions are defined

as follows.

The objective function of the discrimination degree is inversed to the average

discrimination degree of the test sheet:

D(X) = 1 −
(∑n

i=1 dixi∑n
i=1 xi

)
. (3.4)
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The objective function of the expected test time is the distance between the sum of expected

test time and the target expected time:

T(X) =

∣∣∣∣∣
(

n∑
i=1

tixi

)
− t′

∣∣∣∣∣. (3.5)

The objective function of the difficulty degree is the distance between the average difficulty

degree and the target difficulty degree:

P(X) =
∣∣∣∣ ∑n

i=1 pixi∑n
i=1 xi − p′

∣∣∣∣. (3.6)

Let r(X) be the average sum of relevance degree of each concept in the test sheet:

r(X) =

∑m
j=1

∑n
i=1 rijxi

|C′| . (3.7)

Let the generalized concept relevance �ij denote the maximum concept relevance of a test

item toward the concept Cj or its descendent concepts:

�ij = Max(rik) | Ck ∈ δ
(
Cj

)
. (3.8)

The objective function of concept relevance is the distance between the sum of generalized

concept relevance degrees and the average sum r(X). This objective function shows the

imbalance degree of the concept relevance:

R(X) =
m∑
j=1

∣∣∣∣∣ n∑
i=1

�ijxi − r(X)

∣∣∣∣∣. (3.9)

The objective function of the item exposure rate is the average exposure times:

E(X) =
∑n

i=1 eixi∑n
i=1 xi

. (3.10)

The multiobjective optimization problem is to find a test sheet X to minimize all the values of

objective functions and subject to the lower bound of average concept relevance r ′, as shown

in the following:

min
X

[D(X), T(X), P(X), R(X), E(X)]T

Subject to r(X) ≥ r ′.
(3.11)
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Figure 4: The flowchart of the CISS process.

4. Methodology

To solve the Adaptive Test Sheet Generation Problem, an Adaptive Test Sheet Generation

(ATSG) mechanism has been proposed. ASTG mechanism consists of a Candidate Item

Selection Strategy (CISS) to adaptively determine candidate test items set and the conceptual

granularities according to the desired concept scope, and an Aggregate Objective Function

(AOF) to apply Genetic Algorithm (GA) to figure out the approximate solution of mixed

integer programming problem for the test-sheet composition. CISS process is illustrated in

Figure 4.

4.1. Candidate Item Selection Strategy (CISS)

CISS process includes two phases: (1) specifying Concept Granularity and (2) selecting Can-

didate Test Item Set.
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Phase 1: Specifying Concept Granularity

Concepts associated with a test sheet might be in various granularities for specific educational

situations, so the conceptual granularities should be determined before generating a test

sheet. Because the required concepts Ci ∈ C′ might be in various granularities, the most

specific required concepts should be selected as the target concept set to precisely express the

requirements. Let C
′
denote the target concept set, where no concepts in the set are the other

concepts’ ancestors, and the goal of the first phase is determining the concepts in C
′
:

Phase 2: Selecting Candidate Test Item Set

Let θ be the candidate test item set, where the inner test items should be related to the target

concept set. In Phase 2, test items whose related concepts are out of C
′
are filtered:

Ci ∈ C
′

iff
(
Ci ∈ C′) ∧ (¬∃j, Ci ∈ δ

(
Cj

))
. (4.1)

Besides, the generalized concept relevance degrees � of all test items toward all

concepts in C
′
are calculated.

Qi ∈ θ iff ∃j,
((
Cj ∈ C

′) ∧ (�ij > 0
)) ∧ ¬∃k,((Ck /∈ C

′) ∧ (�ik > 0)
)
. (4.2)

After this phase, the search space can be reduced from Q to θ.

An example of CISS process is provided in Figure 5, where assume the required

concepts set C′ = {C4, C5, C9, C10}. In Phase 1, C4, C9, and C10 are selected into C
′

for

expressing the most specific required concepts. In Phase 2, only the test items which are

associated with the subtrees of concepts in C
′
can be selected to the candidate item set θ,

so Q3 and Q4 are filtered before solving the optimization problem.

4.2. Aggregate Objective Function

An aggregate objective function F(X) is defined to solve the multiobjective optimization

problem:

F(X) = SD + (1 − Pt) +
(
1 − Pp

)
+ (1 − Pr) + (1 − Pe) +

(
1 − P ′

r

)
. (4.3)

The aggregate objective function includes the discrimination score SD and the penalty scores

of the expected time Pt, the difficulty degree Pp, the concept relevance Pr , the concept

relevance lower bound P ′
r , and the exposure times Pe. All score and penalty score are

normalized to the range from 0 to 1.

The discrimination score SD is inversed to the objective function D(X):

SD = 1 −D(X). (4.4)



10 Mathematical Problems in Engineering

C 7

C 5 C 6

C 1 C 2 C 3 C 4

C 8 C 9 C 10

Q 1 Q 2 Q 3 Q 4 Q 5 Q 6

· · ·

· · ·

· · ·

Candidate item set

Conceptual

granularity C ′
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The penalty score of the expected time is the percentage of the distance between the sum of

expected test time and the target expected time over the target expected time. If the penalty

score is greater than 1, 1 is assigned the penalty score:

Pt = min

(
T(X)
t′

, 1

)
. (4.5)

The penalty score of the difficulty degree is the value generated by the objective function of

the difficulty degree:

Pp = P(X). (4.6)

The penalty score of the concept relevance balance degree is the average distance between

the sum of relevance degrees and the average sum of a concept:

Pr =
R(X)
|C′| . (4.7)

The penalty score of the concept relevance lower bound is greater than 0 if the average

concept relevance is lower than the concept relevance lower bound and the value the

percentage of the distance over the concept relevance lower bound. If the penalty score is

greater than 1, the penalty score will be set as 1:

P ′
r = min

( |Max(r ′(X) − r, 0)|
r ′

, 1

)
. (4.8)
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The penalty score of the exposure times is the percentage of the average of exposure times

over the exposure times parameter e′, which denotes the maximum exposure times to be

considered. If the average of the exposure times is greater than e′, the penalty score will be

set as 1:

Pe = min

(
E(X)
e′

, 1

)
. (4.9)

Thus, a single aggregate objective function F(X) can be defined to integrate all the score and

penalty scores to a single objective score as (5.1).
The genetic algorithm (GA) can be applied to solve the Adaptive Test Sheet Generation

Problem by maximizing the aggregate objective function F(X). The overall process of the

GA algorithm is shown in Figure 4. The CISS process can adaptively determine the desired

concept scopes and granularities, and the out-of-scope test items, that is, error-included concept
nodes in Figure 2, can be adaptively filtered to reduce the problem space of the test sheet

generation. The candidate test items can be encoded into chromosomes, which is an N-bit

binary string [x1,x2,. . .,xN], whereN is the amount of candidate test items and xi = 1 denotes

the test item i selected into the test sheet. In the beginning, a set of chromosomes, each whose

bit value is randomly set, are generated as the initial selection states. Then, each chromosome

is evaluated by the aggregate objective function F(X). The higher score the chromosome

gets, the more probability the chromosome can be reserved to generate the next generation.

In the Crossover step, the chromosomes with higher score of F(X) are selected to generate

new chromosomes. Two chromosomes are both broken into two segments in the randomly

selected segment lengths and the new chromosomes are generated by exchanging a segment

with each other. Further, in the Mutation step, a random bit of a random chromosome in the

new generation is inversed in order to prevent falling into the local optimal solutions. Then,

return to the Crossover step to further generate next generation until the iteration limitation is

achieved. Finally, the chromosome having the highest score of F(X) among the whole process

is the approximate solution.

5. Experiment and Evaluation

In order to evaluate the effectiveness of the proposed methodology in support of various

purposes of assessments during the real learning situation, three experiments have been

conducted. Firstly, various sizes of item banks are used to evaluate the efficiency and fitness

scores of the proposed ATSG mechanism. Secondly, various levels of target concepts C′ are

used to evaluate the performance and the satisfaction degree of concepts in ATSG mechanism.

Thirdly, exposure times of selected test items are measured during the 50 times of use. The

exposure times of test items are accumulated and the experiment can evaluate whether ATSG

mechanism can prevent the generation of the test sheets with high exposure times. In the

three experiments, a system of the control group has also been developed based on Hwang’s

methodology [4], where the objective function shown in (5.1) was modified to meet the

experimental requirements:

F(X) = SD + (1 − Pt) +
(
1 − Pp

)
+ (1 − Pr) +

(
1 − P ′

r

)
. (5.1)



12 Mathematical Problems in Engineering

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
1000 3000 5000 7000 9000 11000 13000 15000 17000 19000

Item bank size

Control

Experiment

F
it

n
es

s 
sc

o
re

Figure 6: Fitness scores in various sizes of item banks.

Some differences in the system of control group are listed as follows:

(1) It does not run the CISS; all test items are considered in the GA algorithm.

(2) It does not consider the exposure times of test items.

(3) It does not calculate the generalized concept relevance, so the required concepts for

control group are expended to all their descendent concepts.

The parameters of the GA algorithms used by the experimental and control systems were

determined to balance the effectiveness and efficiency. In the three experiments, the GA

algorithms were limited to 1,000 iterations and the mutation rate was 0.1. The population

size was 30 and all initial bits of chromosomes were assigned to 0 because the amount of all

test items was much larger than the amount of the selected test items.

5.1. Various Size of the Item Bank

The item banks having 1,000 to 20,000 test items are used to evaluate the systems’ efficiency

and effectiveness. In each item bank, 10 test sheets with randomly chosen parameters are

generated by the control and experimental systems. The effectiveness is measured by the

fitness score of the aggregate objective function F(X). The result of effectiveness is shown in

Figure 6, where the experimental system has more stable and generally higher fitness scores

than those of the control system.

The experimental result of efficiency is shown in Figure 7, where the response time

of the GA algorithm becomes higher if the size of item bank grows gradually. The reason is

that if there are more candidate test items, much longer chromosomes will be used and the

computing time dealing with all bits in chromosomes becomes much longer as well. Among

the two systems, experimental system, which applies CISS process to dramatically reduce the

size of candidate test items, can have much more efficient response time.
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5.2. Various Levels of Target Concepts

This experiment demonstrates the systems’ effectiveness of generating a test sheet for specific

level of target concepts. Target concepts in the most coarse-grained level, level 1, to the most

fine-grained level, level 6, are randomly chosen for the two systems. As shown in Figure 8, the

concept relevance scores of the control system are much lower than those of the experimental

system, especially when the concept level is fine grained. The reason is that without filtering

out-of-scope test items, the GA algorithm of the control system is difficult to precisely choose

the test items with accurate concepts. Figure 9 also shows that the test sheet generated by

the control system contains many out-of-scope test items, which will seriously affect the test

quality.

The result of response time in Figure 10 also reveals that the control system needs

more computation times to generate a test sheet because many out-of-scope test items are also

computed.

5.3. Exposure Times Measurement of Test Items

In the last experiment, 50 test sheets with similar target concept ranges are generated from

the item bank containing 2,000 test items and the used test items are recorded to calculate

the exposure times of each test item. Results of the average exposure times of test items are

shown in Figure 11, where the control system and the experimental system have no noticeable

difference. According to the analysis of each test sheet, although the experimental system

can prevent the test items with high exposure times, the average exposure times are still

accumulated due to the small range of target concepts. However, the out-of-scope test items

are usually used in the test sheet generated by the control system, so the exposure times of a
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single test item are accumulated slowly. That makes the exposure times of the experimental

system are not better than those of the control system.

6. Discussion

The proposed ATSG mechanism is able to solve Adaptive Test Sheet Generation Problem in

terms of the following aspects.
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6.1. The Control of the Concept Granularity of the Test Sheets and the
Prevention of the Irrelevant Problem Space

To simplify the discussion of this problem, assume that the concept tree is an L-level balanced

tree, and the amount of branches in each level is B. Let an adaptive requirement of the test

sheet contain n target concepts in level X. By applying the CISS mechanism, the problem
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space of the test sheet generation problem can be reduced to n/BX−1 of the original problem

space.

Proof. Assume that m items are related to a concept. The amount of candidate test items in

the previous research is mBL−1. By using the candidate item selection strategy, the amount of

the candidate test items C
′
is mnBL−X . Thus, the percentage of the new problem space over the

previous problem space is mnBL−X/mBL−1 = n/BX−1.

6.2. The Generation of a Test Sheet to Precisely Fit the Target Concept Range,
Difficulty, and Expected Test Time

In the new objective functions, the distances toward the target thresholds are used instead of

the lower bound and upper bound in the previous studies. Thus, the difficulty and expected

test item can be precisely fitted. Moreover, the candidate item selection strategy and the

penalty score of the concept relevance balance degree can ensure that the test sheet contains

balanced target concepts. As shown in Section 5.2, the concept relevance scores of the test

sheets generated by the experimental system are also much higher than those of the control

system.

6.3. The Consideration of the Item Exposure Rate

The penalty score of the exposure times Pe can prevent the high-exposure-rate items selected

to the test sheet.

6.4. The Extensibility of the ATSG Mechanism

Most approaches mentioned in the related work section applied more efficient evolutionary

algorithms, for example, the greedy algorithm approach [12], the tabu search algorithm [13],
and the discrete particle swarm optimization algorithm [14] to enhance the computation

efficiency of test sheet generation. However, these approaches did not yet take the conceptual

granularity, exposure rates, and test item filtering into account. Therefore, these enhanced

evolutionary approaches can thus be expected to replace the Hwang’s methodology [4] for

improving the efficiency of the Selecting Candidate Test Item Set phase (Figure 4) in the CISS

process of ATSG mechanism.

6.5. The Future Work of the ATSG Mechanism

According to our observation and finding of experimental results, the degree of fitness score

changes with the item bank sizes and the computation time (see Figure 6). Because the fitness

scores directly affect the quality of the generated test sheet, a new important issue will be how

to analyze the characteristics and predict the trends of fitness scores over times and item bank

sizes for improving the quality of test sheet composition. However, this kind of time series

problem may not be modeled by the conventional distribution model because the quality

of the GA selection strategy seems to have the characteristics of self-similarity. Therefore,

according to the study of Li [17], Fractal Time Series, which has the features of Long-Range

Dependence (LRD) and obeys the Power Law, are a suitable mathematical approach to model
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and analyze the features and phenomenon of self-similar series [18], for example, the data

series in the cyber-physical networking systems [19], the time series of sea level [20] and

molecular motion on the cell membrane [21], the DNA series [22], and the fractal lattice

geometry using Iterated Function System (IFS) on simplexes [23]. Accordingly, in the near

future, we are going to try to apply the fractal time series approach to analyze and model the

series of fitness score for figuring out the characteristics of self-similarity.

7. Conclusion

In this paper, an Adaptive Test Sheet Generation (ATSG) mechanism is proposed, where

the Candidate Item Selection Strategy (CISS) is come up to reduce the problem space of

test sheet composition and an Aggregate Objective Function (AOF) based on the Genetic

Algorithm (GA) is modeled to figure out the approximate solution. In this approach, the

adaptive conceptual scope and granularity and item exposure rates have been considered to

meet the various purposes of assessments during the real learning situation. Experimental

results show that ATSG mechanism is able to more efficiently, precisely, adaptively generate

the various test sheets than the existing approaches in terms of various conceptual scopes,

computation time, and item exposure rates. Furthermore, in the near future, the fractal time

series approach can be expected to be applied to analyze and model the series of GA’s fitness

score for figuring out the characteristics of self-similarity and improving the quality of test

sheet composition according to the experimental finding.
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This paper presents a novel trend-based segmentation method (TBSM) and the support vector
regression (SVR) for financial time series forecasting. The model is named as TBSM-SVR. Over
the last decade, SVR has been a popular forecasting model for nonlinear time series problem. The
general segmentation method, that is, the piecewise linear representation (PLR), has been applied
to locate a set of trading points within a financial time series data. However, owing to the dynamics
in stock trading, PLR cannot reflect the trend changes within a specific time period. Therefore, a
trend based segmentation method is developed in this research to overcome this issue. The model
is tested using various stocks from America stock market with different trend tendencies. The
experimental results show that the proposed model can generate more profits than other models.
The model is very practical for real-world application, and it can be implemented in a real-time
environment.

1. Introduction

Support vector machines (SVMs) have outperformed other forecasting models of machine

learning or soft computing (SC) tools such as decision tree, neural network (NN), bayes

classifier, fuzzy systems (FSs), evolutionary computation (EC), and chaos theory by many

researchers from historical nonlinear time series data applications in the last decade [1–5].
In these techniques, many researchers presented different forecasting models in dealing with

characteristics such as imprecision, uncertainty, partial truth, and approximation to achieve

practicability, robustness, and low solution cost in real applications [6–8]. However, the most

important issue in resolving the nonlinear time series problem is error revision. ANNs use

the empirical risk minimization principle to minimize the generalization errors but SVRs

use the structural risk minimization principle because SVR is able to analyze with small
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samples and to overcome the local optimal solution problem, which surpasses to ANNs [9–

11]. Therefore, the SVRs forecasting model is applied to accomplish the forecasting task in this

research. Presently, support vector regression (SVR), which was evolved from support vector

machine (SVM) based on the statistical learning theory, is a powerful forecasting and machine

learning approach for numerical prediction [12–15]. Also, SVR has high toleration error rate

and high accuracy for learning solution knowledge in complex problems [16]. Although SVR

can be applied well in time series data, the input vector is a key successful factor. Despite

the volatile nature of the stock markets, researchers still can find certain correlations between

these factors and stock prices. An investor’s primary goal is to make profits. In order to help

investors achieve their financial objectives, researchers have studied the relationship between

financial markets and price variations over time from [17–20].
In the last few years, several representations of time series data have been proposed;

the most often used representation is piecewise linear representation (PLR) [21–23]. It can

decompose a time series data into a series of bottom and peak points [24, 25] in financial

market. But the traditional PLR does not consider the multiple trending characteristics in

time series. Moreover, the price movements of stocks are affected by many factors such as

government policies, economic environments, interest rates, and inflation rates. The share

prices of most listed companies also move up and down with other changing factors like

market capitalization, earnings per share (EPS), price- to -earnings ratio, demand and supply,

and market news. Moreover, there are more fractal properties of financial data, such as self-

similarity, heavy-tailed distributions, long memory, as well as power laws [26–29]. One of

fractal properties is long memory which is a common characteristic in financial data or other

fields [30–32]. The daily stock trading is a short-term return so in this paper these fractal prop-

erties were not considered in our framework, just focusing on the real stock price’s trends.

Therefore, there is a need to develop a new segmentation method which takes the

price moving trends into consideration. As a result, this research will consider the multiple

trends of stock price’s movements in TBSM segmentation approach to capture the embedded

knowledge of nonlinear time series. This research intends to improve the SVR forecasting

performance using a trend based decomposition method. The TBSM approach has captured

the tendency of stock price’s movement which can be inputted into SVR in learning the

historical knowledge of the time series data. Moreover, a more accurate forecasting result

can be achieved when applied in real-time stock trading decision.

The rest of this paper is organized as follows. In Section 2, we describe TBSM

segmentation principle. Forecasting model is discussed in Section 3. Section 4 explains

modeling for trading decisions including using historical data to make trading decisions

by the TBSM approach, selecting highly correlated technical indices by stepwise regression

analysis (SRA), forecasting trading signals by SVR, and evaluating trading strategies.

Section 5 explains how the TBSM with SVR for stock trading decisions and compares the

profits obtained from various forecasting approaches. Finally, conclusions and directions for

further research are discussed in Section 6.

2. A Trend Based Segmentation Method (TBSM)

In the time series database there are many approaches such as Fourier transform, wavelets,

and piecewise linear representation which can be applied to find the turning point on time

series data. According to the characteristics of sequential data, a piecewise linear represen-

tation of the data is more appropriate. A variety of algorithms to obtain a proper linear
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Define: Threshold // cutting threshold
X Thld // horizontal area
Y Thld // vertical area
X // a time series
Y // stock price

1: Procedure TBSM(T)
2: Let T be represented as X[1, 2, . . . , n], Y [1, 2, . . . , n]
3: n = 0
4: Draw a line between (X1, Y1) and (Xn, Yn)
5: Max d = maximum distance of (Xi, Yi) to the line
6: If (Max d > Threshold)
7: Let (Xi, Y i) be the point with maximum distance
8: For j = X1 : Xn

9: If (|Xj − Xi| <X Thld) and (|Yj − Yi| < Y Thld)
10: Then Point[n] = [Xj ,Yj], n = n + 1
11: End If
12: End For
13: Select from Point[n ] : Xt1 = Min(X0), Xt2 = Max(Xn)
14: Return: S1 = T [X1, Xt1]
15: S2 = T [Xt2, Xn]
16: End If

Algorithm 1: A pseudocode for TBSM in time series data.

representation of segment data have been presented. As reported in [33–36], PLR is used to

support more tasks and provides an efficient and effective solution. In this paper we intend

to enhance the segmentation accuracy based on different trends in stock price’s movements.

The basic idea of TBSM is to modify the PLR segmentation using the trend tendency in

a specific time period. Three different trends such as uptrend, downtrend, and hold trend

will be considered when making the segmentation. Detailed procedures of TBSM include the

following. (1) PLR is applied to locate the turning points from the time series including up

or downtrends. (2) The points around each turning point will be double-checked if the

variations of the points are within the threshold. If yes, these points will have the same

buy/sell trading in this period. (3) These points are set to be in the same trend. The pseudo-

code of the TBSM is shown in Algorithm 1.

For example, a time series T = {t1, t2, . . . , t191} with 191 data is given to explain

the basic idea of the TBSM procedure. As shown in Figure 1(a), several trading points are

represented as buy (four red points) or sell (six green points) in this case. According to the

TBSM procedure, we can draw a line S1 form the first point to the last point as shown in

Figure 1(b) and find the max distance to line S1 which is point t26. Then line S1 is decomposed

into two segments including line S2 from t1 to t26 and line S3 from t26 to t191. Based on point

t26, we can locate point t16 to t56 which are varied within the threshold. These points are set as

hold trend and with the same state of point t26. Therefore line S2 and line S3 will be changed to

three different lines including line S4 from point t1 to point t16, line S5 from point t16 to point

t56, and line S6 is from point t56 to point t191 as shown in Figure 1(c). Next step is repeating the

same process for the rest of segments as t56 to t191. The final results are shown in Figure 1(d)
including two hold trend segments (dotted line), one uptrend segment, and two downtrend

segments (solid line) in this time series.
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Figure 1: An example for TBSM in time series data.

3. Support Vector Regressions (SVRs)

Support vector regression is a modification of machine-learning-theory-based classification

called support vector machine. Machine learning techniques have been applied for assigning

trading signal. Many studies used support vector machine for determining whether a case

contains particular class [37, 38]. But the shortcoming only deal with discrete class labels,

whereas trading signal continuum data type because a weight of signal can take a buy or

sell power. Grounded in statistical learning theory [1, 2], support vector regression is capable

to predict the continuous trading signal while still benefiting from the robustness of SVM.

SVM has been successfully employed to solve forecasting problems in many fields, such

as financial time series forecasting [39] and emotion computation [40]. For explaining the

concept of SVR, we have considered a standard regression problem. Let S = {Xi, Yi}i=1...n be

the set of data where Xi is input vector (selected technical index in this research), Yi (trading

signal ts) is an output vector, and n is the number of data points. In regression analysis, we

find a function f(Xi) such that Yi = f(Xi). This function can be used to find the output value

Y of any X. The standard regression function is as follows:

qi = f(xi) + δ, (3.1)

where δ denotes the random error and qi denotes the estimated output. There are two types of

regression problems, namely, linear and nonlinear. SVR is developed to tackle the nonlinear

regression problems because the nonlinear regression problems have high complexity as well
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as stock market trade. In SVR, at first the input vectors are nonlinearly mapped into a high-

dimensional feature space (F), where they are linearly correlated with the respective output

values.

SVR uses the following linear estimation function:

f(x) =
(
ω · φ(x)) + b, (3.2)

where ω denotes the weight vector, b denotes a constant, φ(x) denotes the mapping function

in the feature space, and (ω · φ(x)) denotes the dot product in the feature space F. SVR

transfers the nonlinear regression problem of the lower dimension input space (x) into a

linear regression problem of a high-dimension feature space. In other words, the optimization

problem involving a nonlinear regression is converted into finding the flattest function in the

feature space instead of input space.

Various cost functions like Laplacian, Huber’s Gaussian, and ε-insensitive can be

used in the formulation of SVR. The cost function should be suitable for the problem and

should not be very complicated because a complicated cost function could lead to difficult

optimization problems. Thus, we have used robust ε-sensitive cost function which is shown

below:

Lε
(
f(x), q

)
=

{∣∣f(x) − q∣∣ − ε, if
∣∣f(x) − q∣∣ ≥ 0

0, otherwise,
(3.3)

where ε denotes a precision parameter which represents the radius of the tube located around

the regression function f(x).
The {+ε,−ε} region is called ε-insensitive zone. ε is determined by the user. If the

actual output value lies in this region, the forecasting error is considered to be zero.

The weight vector,ω, and constant, b, in (3.2) are calculated by minimizing regularized

risk function which is shown in (3.4):

R(C) =
C

n

n∑
i=1

Lε
(
f(xi), qi

)
+

1

2
|ω|2, (3.4)

where Lε(f(xi), qi) denotes the ε-insensitive loss function, |ω|2/2 denotes the regularization

term, and C denotes the regularization constant. ω decides the complexity and approximate

accuracy of the regression model. Value of C is selected by the user to ensure appropriate

value of w and low empirical risk.

The two positive slack variables ξi and ξ∗i are used to replace the ε-insensitive loss

function of (3.3). ξi is defined as the distance between the qi and higher boundary of the ε-

insensitive zone, and ξ∗i is defined as the distance between the qi and lower boundary of the

ε-insensitive zone. Equation (3.4) is transformed into (3.5) by using the slack variables:

Minimize : Rreg

(
f
)
=

1

2
|ω|2 + C

n∑
i=1

(
ξi + ξ∗i

)
(3.5)

Subject to

⎧⎪⎪⎨⎪⎪⎩
qi −

(
ω · φ(xi)

) − b ≤ ε + ξi(
ω · φ(xi)

)
+ b − qi ≤ ε + ξ∗i

ξi, ξ
∗
i ≥ 0, for i = 1, . . . , n.

(3.6)
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Lagrange function method is used to find the solution which minimizes the regression risk

of (3.4) with the cost function in (3.3) which results in the following quadratic programming

problem (QP):

Minimize :
1

2

N∑
i=1

N∑
j=1

(
αi − α∗i

)(
αj − α∗j

)(
φ(xi) · φ

(
xj

))
+

N∑
i=1

(
ε

up

i − yi
)
αi +

N∑
i=1

(
εdown
i − yi

)
α∗i ,

(3.7)

Subject to :
N∑
i=1

(
αi − α∗i

)
= 0, where αi, α

∗
i ∈ [0, C], (3.8)

where αi and α∗i denote Lagrange multipliers. ε
up

i and εdown
i represent the ith up- and

downmargin, respectively. The value of ε
up

i and εdown
i is equal to ε. The QP problem of (3.7)

is solved under the constraints of (3.8). After solving the QP problem, we obtained Lagrange

multiplier from (3.9), and (3.2) is transformed into the following equation (3.10):

ω =
N∑
i=1

(
αi − α∗i

) · φ(xi), (3.9)

f(x) =
(
αi − α∗i

)(
φ(xi) · φ(x)

)
+ b. (3.10)

The Karush-Kuhn-Tucker (KKT) conditions are used to find the value of b. KKT conditions

state that at the optimal solution, the product between the Lagrange multipliers and the

constraints is equal to zero. The value of b can be calculated as follows:

b =

{
yi −

(
ω · φ(xi)

) − εup

i ,

yi −
(
ω · φ(xi)

)
+ εdown

i ,

for αi ∈ (0, C),

for α∗i ∈ (0, C).
(3.11)

Using the trick of the kernel function, (3.10) can be written as (3.12):

f(x) =
n∑
i=1

(
αi − α∗i

)
K(x, xi) + b, (3.12)

where K(x, xi) = (φ(x) · φ(xi)) denotes the kernel function which is symmetric and satisfies

the Mercer’s condition. SVR was able to predict the nonlinear relationship between technical

indices and trading signal ts better than other soft computing (SC) techniques.

4. Application in Financial Time Series Data

This paper proposes a forecasting framework using a TBSM combined with SVR model which

is called TBSM-SVR trading model for stock trading. The framework of TBSM-SVR trading

model has five stages: the first is generating nonlinear trading segments by TBSM approach
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Train trading
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Figure 2: The framework of TBSM-SVR model for stock trading.

from historical stock price; the second is trading signal transformation from trading segments;

the third is feature selection from technical indices by SRA approach; the fourth is learning the

trading forecasting model by SVRs approach. The framework of TBSM-SVR model is shown

in Figure 2. The five stages of TBSM-SVR model are explained as follows.

4.1. Find Turning Points Based on Multiple Trend by TBSM

According to TBSM procedure to find turning point based on trend of stock price, we selected

a time series of historical stock price in a period to segment into several segments based on

three trends including uptrend, downtrend, and hold trend. For example, a time series is

given to segment trend segments from the date 2008/1/2 to 2008/12/30. Figure 3 shows the

segmentation result by our proposed TBSM approach. The blue line is original historical stock

price. The dashed lines are up/down trends which if the segment trend goes up is belonging

to uptrend and if the segment trend goes down is belonging to downtrend. The dot line is
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Figure 3: An example of segmentation result by TBSM.

belonging to hold trend. In our experiment, each stock price can split to multiple trend seg-

ments for trading signal transformation.

4.2. Trading Signal Transformation

In this stage, the aim is calculating the trading signal for a nonlinear time series of

segmentation result which are a lot of segments based on trends. We suppose a segment

Sk is uptrend; then we assume the real value into the vector S′
k

like to Sk = [0, 0.1, . . . , 1]; if

Sk is hold trend but locates in buy point, then the vector like to S′
k
= [0.5, 0, 0.5]; if Sk is hold

trend but locates in sell point; then the vector like to S′
k
= [0.5, 1, 0.5]; if Sk is downtrend, then

the vector S′
k

like to [1, 0.9, . . . , 0]. Finally we combine these S′
k

to a full time series of trading

signal ts. If the segment belongs to uptrend or downtrend, then the formula equation (4.1) is

used to calculate trading signal value:

S′k,i =

⎧⎪⎪⎨⎪⎪⎩
i

L
if Sk is uptrend segment,

(L − i)
L

if Sk is downtrend segment,

(4.1)

where L denotes the length of segment Sk, whereas segment belonging to hold trend is using

(4.2) to calculation:

S′k,i =

⎧⎪⎪⎨⎪⎪⎩
1 if ith is higherpoint in time series,

0 if ith is lower point in time series,

0.5 otherwise.

(4.2)

For example, the S1, and S3 are hold trend; the S1 is down-trend; the S4 is up-trend. The

result of trading signal ts is shown in Figure 4. The red dotted line is the hold trend which

is a special signal for increasing reflects on the original turning points, so the hold trend is

not a horizontal line. The purple dotted line is downtrend signal, and the orange dotted line

is uptrend signal. For example, in the time series T the T1 to T5 and T10 to T14 are hold trend

signal representation, T6 to T9 is downtrend signal representation, and finally T15 to T18 is

uptrend signal representation. Finally the trading signal ts which is like to ts = {S1, S2, S3,

S4} = {〈0.5, 0.5, 1, 0.5, 0.5〉, 〈1, 0.66, 0.333, 0〉, 〈0.5, 0.5, 0, 0.5, 0.5〉, 〈0, 0.33, 0.66, 1〉}.

For the detail process see the pseudocode in Algorithm 2.
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Figure 4: A sample of trading signal.

Input: length, oldTs // input data length and vector.
Output: newTs // a new time series vector of trading signal.
Method:

1: Start = oldTs [1]
2: End = oldTs[length]
3: If Start = = −1 and End = = 1
4: newTs [1] = 0
5: For i = 1: length−1
6: newTs[i+1] = 1/(lenghth−1)∗i
7: End For
8: Else If Start = = 1 and End = = −1
9: newTs[length] = 0
10: For i = 1 : length−1
11: newTs[i+1] = 1/(lenghth−1)∗(length−i)
12: End For
13: Else
14: For i = 2 : length−1
15: newTs[i] = 0.5
16: End For
17: End If

Algorithm 2: A pseudocode for trend segments by TBSM in time series.

4.3. Feature Selection for Technical Indices by SRA

In this paper, we have considered 28 variables (technical indices) as listed in Table 1. These

variables are correlated with variations in stock prices to some degree. The quantity of

correlation varies for different variables. Rather than using all the 28 variables, we select the

variables with a greater correlation than a user-defined threshold. The variable selection is

done by stepwise regression analysis. We apply the SRA approach to determine which techni-

cal indices affecting the stock price. This is accomplished by selecting the variables repeatedly.

In the feature selection part input factors will be further selected using stepwise

regression analysis (SRA). The SRA has been applied to determine the set of independent

variables which is most closely affecting the dependent variable. The SRA is step by step to
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Table 1: Technical indices used as input variables.

Technical Technical index Explanation

Moving average (Ma) 5 MA, 6 MA,
10 MA, 20 MA

Moving averages are used to emphasize the
direction of a trend and smooth out price and
volume fluctuations that can confuse
interpretation.

Bias (BIAS) 5 BIAS, 10 BIAS

The difference between the closing value and
moving average line, which uses the stock
price nature of returning back to average price
to analyze the stock market.

Relative strength index
(RSI) 6 RSI, 12 RSI

RSI compares the magnitude of recent gains to
recent losses in an attempt to determine
overbought and oversold conditions of an
asset.

Nine days stochastic line
(K, D) 9 K, 9 D

The stochastic line K and line D are used to
determine the signals of overpurchasing,
overselling, or deviation.

Moving average
convergence and divergence
(MACD)

9 MACD

MACD shows the difference between a fast
and slow exponential moving average (EMA)
of closing prices. Fast means a short-period
average, and slow means a long period one.

Williams %R
(pronounced “percent R”) 12 W%R

Williams %R is usually plotted using negative
values. For the purpose of analysis and
discussion, simply ignore the negative
symbols. It is best to wait for the security’s
price to change direction before placing your
trades.

Moving average
convergence and divergence
(MACD)

9 MACD

MACD shows the difference between a fast
and slow exponential moving average (EMA)
of closing prices. Fast means a short-period
average, and slow means a long period one.

Williams %R
(pronounced “percent R”) 12 W%R

Williams %R is usually plotted using negative
values. For the purpose of analysis and
discussion, simply ignore the negative
symbols. It is best to wait for the security’s
price to change direction before placing your
trades.

Transaction volume (TV) 5 TV, 10 TV, 15 TV

Transaction volume is a basic yet very
important element of market timing strategy.
Volume provides clues as to the intensity of a
given price move.

Differences of technical
index (Δ)

Δ5 MA, Δ6 MA,
Δ10 MA, Δ5 BIAS,
Δ10 BIAS, Δ6 RSI,
Δ12 RSI,
Δ12 W%R, Δ9 K,
Δ9 D, Δ9 MACD

Differences of technical index between the day
and next day.
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select factor into regression model which if factor has the significance level, then it is selected.

We can follow (4.4) to calculate the F value of SRA:

SSR =
∑(

Ŷ − Y
)2
,

SSE =
∑(

Ŷi − Yi
)2
,

(4.3)

F∗j =
MSR

(
xj | xi

)
MSE

(
xj | xi

) =
SSR

(
xj | xi

)
SSE/(n − 2)

(
xj | xi

) i ∈ I, (4.4)

where SSR denotes a regression sum of square. SSE denotes residual sum of squares. x is the

value of technical index. y is the value of stock price. n is the total number of training data.

Ŷ is the forecasting value of regression. Y is the average stock price of training data. After

the feature selection by SRA, we can provide a set of features to form an input vector for the

next step to learning the forecasting model.

The steps of the SRA approach are described as follows.

Step 1. Find the correlation coefficient rfor each technical index v1, v2, . . . , vn with the stock

price y in a stock. These correlation coefficients are stored in a matrix called correlation

matrix.

Step 2. The technical index with largest R2 value is selected from the correlation matrix. Let

the technical index be vi. Derive a regression model between the stock price and technical

index, that is, ŷ = f(vi).

Step 3. Calculate the partial F value of other technical indices. Compare the R2 value of

the remaining technical indices and select the technical index with the highest correlation

coefficient. Let the technical index be vj . Derive another regression model, that is, ŷ =
f(vi, vj).

Step 4. Calculate the partial F value of the original data for the technical index vj . If the F-

value is smaller than the user-defined threshold, vj is removed from the regression model

since it does not affect the stock price significantly.

Step 5. Repeat Step 3 to Step 4. If the F-value of variable is more than the user-defined

threshold, the variable should be added to the model, otherwise it should be removed.

In addition, the range of the input variables of SVR model should be between 0 and 1.

Hence, the selected technical indices are normalized as follows:

Normal
(
xij

)
=

xij − Min(xi)
Max(xi) − Min(xi)

i = 1, . . . , n; j = 1, . . . , m; n, m ∈ �, (4.5)

where Normal(xij) denotes the normalized value of jth data point of ith technical index.

Max(xi) denotes the maximum value of ith technical index. Min(xi) denotes the minimum

value of ith technical index. xij denotes original value of jth data point of ith technical index.

n and m denote the total number of technical indices and data points, respectively.
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4.4. Learning the Trading Forecasting Model by SVR

Support vector regression will be applied as a machine learning model to extract the hidden

knowledge in the historic stock database. The single output is the trading signal ts from

TSBM process, and the multiple input features are technical indices from SRA selection. SVR

learning model transforms multiple features into high multidimensional feature space, and

the transformed feature space can be mapped into a hyperplane space to determine correct

signals based on those support vector points. On the kernel function selection, we try to use

linear, RBF, polynomial, and sigmoid functions to generate better performance for the SVR

model because the stock market is a very complicated nonlinear environment. Since the SVR

approach possesses high learning capability and accuracy in predicting continuous signals

for building hidden knowledge among trading signals and technical indices, it is a widely

used tool for predicting the trading signals.

4.5. Trading Points Decision from Forecasted Trading Signal

In the daily forecasting, if the forecasted trading signals by SVR satisfied buy threshold, then

this means it is needed to buy stock quickly because it is very close to turning point; otherwise

if the state satisfied a sell threshold, then there is need to sell stock. These satisfied points are

recommended to transaction in stock market. Before determining the trading point, we will

calculate the buy/sell threshold values for two trading types. The trading thresholds of two

types are as follows:

Buythreshold = μ + σ,

Sellthreshold = 1 − μ + σ,

μ =
1

N

N∑
i=1

x′i,

σ =
√

1

N

∑N
i=1

(
x′i − μ

)
,

(4.6)

where μ denotes the average of trading signal in training data. σ denotes the standard

deviation of trading signal in training data. Buy threshold denotes the buy trading threshold.

Sell threshold denotes the sell trading threshold. If forecasted trading signals form SVR

model in testing data are more than buy threshold, then this suggests trading point for buy

stocks else if forecasting signal in testing data is smaller than sell threshold, then this suggests

trading for sell stock.

In the trading decision step, the TBSM-SVR model is employed to calculate daily

trading signals. The detailed principles for making trading decisions include the following.

(1) If the time series prediction of trading signals by TBSM-SVR model is going up

and intersects with buy trading threshold Buy threshold, then it is a “buy” trading

decision.

(2) If the time series prediction of trading signals by TBSM-SVR model is going down

and intersects with sell trading threshold sell threshold, then it is a “sell” trading

decision.
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Figure 5: An example of result for detecting trading points of Apple.

(3) A “hold” trading decision is made (or do not make any trading decision) when the

forecasting trading signal does not intersect with buy and sell thresholds.

For example, Figure 5 shows trading points decision for Apple stock. How to suggest

the buy/sell points for stock in a time series in which the red square points are buy points

and green triangle points are the sell points? Both are satisfied two thresholds in which the

orange dotted line is sell threshold and the purple dotted line is buy threshold, so we can

forecast the trading points daily by an automatically trading system.

5. Experimental Results

5.1. Profit Evaluation and Parameters Setting

In this research, the trading point (buy and sell timing) is decided by the TBSM-SVR model

based on the forecasting trading signal of SVR and TBSM segmentation. In the experimental

section, we also use various forecasting models to the generated profiting trading points and

compare their performances. The profits in each different forecasting model are calculated as

follows:

profits = C
k∏
i=1

{
(1 − a − b) × pSi − (1 + a) × pBi

(1 + a) × pBi

}
, (5.1)

where C is the total amount of money to be invested at the beginning as well as the capital

of money, a refers to the tax rate of ith transaction, b refers to the handling charge of ith

transaction, k is the total number of transaction, pSi is the selling price of the ith transaction

and pBi is the buying price of ith transaction.

This study uses minimal root mean square error (RMSE) to measure the model

performance in SVR train stage. In the model selection strategy that the dataset uses the last

one trading period of training data contains (buy/sell and sell/buy states). The RMSE of an
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Table 2: The parameter setup for TBSM and SVR by DOEs (design of experiments).

Approach Parameter Value Explanation

TBSM Threshold 0.1σ to 1σ
The difference of price at uptrend
or downtrend

TBSM X Thld 0.1σ to 1σ
The difference of days at hold
trend

TBSM Y Thld 0.1σ to 1σ
The difference of price at hold
trend

SVR C 10−3 to 103 Cost

SVR ε 10−4 to 10−1 Epsilon

SVR d 2−9 to 2−1 Degree

SVR g 21 to 24 Gamma

estimator t̂s with respect to the estimated parameter ts is defined as the square root of the

mean square error:

RMSE =

√∑n
i=1 tsi − t̂si
N

. (5.2)

ts denotes the trading signal by trading signal transformation from TBSM segmentation in

Section 4.2. t̂s denotes the estimated trading signal by SVR forecasting model. N denotes

total number in each training data (Table 2).
In parameter section we use design of experiments (DOEs) approach to set each

parameter for capture optimal parameter combination for trading system in financial data.

The parameters of the TBSM are based on standard deviation σ from stock price in each

stock which is the range from 0.1σ to 1σ for testing in each parameters. In SVR model, the

kernels chosen for testing are “radial basis function (RBF)” and “polynomial” function. The

common combination includes cost C; epsilon ε and γ are selected by the grid search with

exponentially growing sequences. C ranges from 10−3 to 103. ε from 10−4 to 10−1 and γ is fixed

as 0. In “polynomial” function, the degree d ranges from 2−9 to 2−1. The gamma g ranges from

21 to 24 in RBF kernel.

5.2. Profit Comparison in the US Stock Market

In this research, we have selected 7 stocks from the US stock market to compare the profit

achieved by various trading models, including Apple, BOENING CO. (BA), Caterpillar Inc.

(CAT), Johnson and Johnson (JNJ), Exxon Mobil Corp. (XOM), Verizon Communication Inc.

(VZ), and S&P 500. Among all the stocks, 253 data points were collected for the training

period from 1/2/2008 (mm/dd/yy) to 12/31/2008 while 124 data points were used for

the testing period from 1/2/2009 to 6/30/2009. In this research, we have compared our

forecasting model of TBMS-SVR approach with two other identification models developed

in the past. The PLR-BPN model proposed by Chang et al. [26] used neural networks in

combination with PLR and exponential smoothing to determine the trading points. Kwon

and Kish [41] used statistical model such as moving average, rate of change and trading

volumes to determine the buy-sell points and generated profit.
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Table 3: Feature selection result in each stock for technical indices by SRA.

Stock Technical index

Apple 5 MA, 6 MA, 9 K, 9 MACD, 12 W%R

BA 5 MA, 6 MA, 9 K, 10 TV, 12 W%R

CAT 5 MA, 6 MA, 9 K, 10 TV, Δ5 MA

JNJ 5 MA, 6 MA, 6 RSI, 9 MACD, Δ5 MA

S&P 500 5 MA, 5 BIAS, 10 TV, 26 BR, TAPI

VZ 5 MA, 6 MA, Δ5 MA, 10 TV, 26 VR

XOM 5 MA,6 MA, Δ5 MA

Table 4: Model selection results from TSBM-SVR model for each stock.

Stock

Kernel

Radial basis function (RBF) Polynomial

g C ε SVs RMSE d C ε SVs RMSE

Apple 2−1 103 10−4 253 0.0819 2 [0.001 : 1000] [0.0001 : 0.1] 71 0.266

BA 2−1 103 10−1 107 0.0955 2 [0.001 : 1000] [0.0001 : 0.1] 76 0.269

CAT 2−1 103 10−3 254 0.0898 2 [0.001 : 1000] [0.0001 : 0.1] 156 0.233

JNJ 2−1 102 10−1 137 0.2617 1 [0.001 : 1000] [0.0001 : 0.1] 116 0.426

S&P 500 2−1 103 10−4 254 0.0004 1 [0.001 : 1000] [0.0001 : 0.1] 112 0.379

VZ 2−1 103 10−3 251 0.0031 1 [0.001 : 1000] [0.0001 : 0.1] 125 0.269

XOM 2−1 103 10−4 253 0.0001 2 [0.001 : 1000] [0.0001 : 0.1] 182 0.18

Table 5: Comparison of profit obtained by various forecasting models.

Stock no.
Stock
name

TBSN-SVR
model (RBF)

PLR-SVR
model
(RBF)

PLR-BPN
model

Statistical
model

1 Apple 92.35% 35.84% 12.97% 20.50%

2 BA 59.49% 35.69% 17.50% 20.03%

3 CAT 43.39% 36.09% 9.36% 24.83%

4 JNJ 13.95% 9.47% 16.88% 0%

5 S&P 500 22.78% 4.19% 3.77% 9.81%

6 VZ 28.60% 2.60% 27.72% 0%

7 XOM 22.40% 12.34% −1.99% −7.65%

Average 40.42% 19.46% 12.32% 9.65%

The technical indices selected result by SRA as shown in Table 3. Apple, Ba, CAT, JNJ,

S&P 500, and VZ used 5 features (technical indices) for training forecasting model; XOM used

3 features for training forecasting model. From this result we can know that a few features

can capture more trading knowledge.

From model selection results the RBF kernel has better low error in each stock by

RMSE. Moreover, the gamma, degree, cost, epsilon, support vectors, and RMSE as shown

in Table 4 are necessary parameters and measures. The models of TBSM-SVR in each stock

are selecting optimal parameter combination by RMSE consideration.
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Figure 7: The forecasted trading points of BA (a steady-trend stock).

Each forecasting model provides trading points for each stock, so the best profits of

the 3 forecasting models are shown in Table 5. The results turn out that our proposed TBSM

with SVR model generates the greatest returns for the seven stocks, that is, number 1, 2, 3, 4,

5, 6, and 7 outperform other models. The average profit rate of these seven stocks is 40.42%

using the TBSM-SVR model whereas the average profit rate generated by other models like

PLR-SVR, PLR-BPN, and Statistical is 19.46%, 12.32%, and 9.65%, respectively. Therefore, our

TBSM approach is better than PLR approach which is only considered linear representation.

The buy and sell points obtained from the TBSM forecasting model in each stock are

shown in Figures 6, 7, 8, 9, 10, 11, and 12. The red square represents the buy point, and the

black triangle represents the sell point using a trading strategy to determine turning points.

Furthermore, our proposed approach TBSM is better than PLR segmentation which denotes

that TBSM approach captures better trading knowledge for SVR forecasting model. Due

to PLR only the linear representation is considering, so it loses important trend. Therefore,

TBSM is an effective segmentation method for nonlinear time series data in stock market.
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Figure 8: The forecasted trading points of CAT (a downtrend stock).
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Figure 11: The forecasted trading points of VZ (a downtrend stock).
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Figure 12: The forecasted trading points of XOM (a downtrend stock).

6. Conclusions

In this paper we proposed a trading system combining TBSM with SVR, and it is called

TBSM-SVR-based stock trading system. This new trading system has been very effective

in earning high profit while with the greatest ability. Experimental results showed that the

TSBM can segment the stock price’s variation into different trading trends. The trading signal

in each trading trend will be assumed to be the same. The nonlinear time series can be

better represented using these trading trends. Additionally, SVR is applied to capture the

trading knowledge using the trading signals derived from these trading trends. The captured

knowledge is more effective using TBSM-SVR when compared to PLR segmentation method.

As a result, the primary goal of the investor could be easily achieved by providing him with

simple trading decisions. However, the limitation of the TBSM-SVR trading system is the

machine learning tool; that is, SVR is still not that mature yet. There are still rooms for the

improvement of a better machine learning mechanism to be developed. Therefore, the trading

system may make a wrong trading and lose money. In the future works, we can extend the

segmentation method by considering a more detailed trend by investigating different buy-

hold strategy or better trading strategy. In addition, the trend based segmentation method

can further consider the fractal properties such as long memory, which can be accommodated

to improve the segmentation performances.
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In order to overcome the inaccuracy of the forecast of a single model, a new optimal weight com-
bination model is established to increase accuracies in precipitation forecasting, in which three
forecast submodels based on rank set pair analysis (R-SPA) model, radical basis function (RBF)
model and autoregressive model (AR) and one weight optimization model based on improved
real-code genetic algorithm (IRGA) are introduced. The new model for forecasting precipitation
time series is tested using the annual precipitation data of Beijing, China, from 1978 to 2008. Results
indicate the optimal weights were obtained by using genetic algorithm in the new optimal weight
combination model. Compared with the results of R-SPA, RBF, and AR models, the new model can
improve the forecast accuracy of precipitation in terms of the error sum of squares. The amount of
improved precision is 22.6%, 47.4%, 40.6%, respectively. This new forecast method is an extension
to the combination prediction method.

1. Introduction

Precipitation time series forecast has received tremendous attention in the world because of

the uncertainty of climate change which increases the difficulty of accurately forecasting such

time series. The forecast of the nonlinear and uncertain time series is very difficult with the

traditional deterministic mathematic models, which cause new challenges to increase forecast

accuracies [1, 2]. There are many methods for predicting complex time series [3–13].
Rank set pair analysis (R-SPA) model is based on the principle of set pair analysis, and,

in this model, we take rank as the particular characteristic of the time series which could

be regarded as the standard of the similarity analysis. Radical basis function (RBF) neural
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network was firstly introduced by Broomhead and Lowe [7]. The RBF network model is moti-

vated by the locally tuned response observed in biological neurons. Neurons with a locally

tuned response characteristic can be found in several parts of the nervous system. The theo-

retical basis of the RBF approach lies in the field of interpolation of multivariate functions [8].
Chau applied particle swarm optimization training algorithm for artificial neural network

system (ANN) in prediction [3, 4]. The content of autoregressive (AR) model is a random

process, which is often used to model and forecast various types of natural phenomena.

The combination model techniques provide consensus forecast by linear combination

of individual model predictions according to different weighting strategies. The weights can

be equal for all models in the simplest case or be determined through certain regression based

methods [9]. The concept of combining the forecast model obtained from different models

has been discussed and used previously [10–19]. The sensible combination of the outputs of

different models has the additional merit that it may assist in the understanding of the

underlying physical processes. Genetic algorithms (GAs) encode a potential solution to a spe-

cific problem on a simple chromosome-like data structure and apply recombination operators

to these structures so as to preserve critical information. GAs are chosen to calculate the

weights of three submodels because of its outstanding performance in optimization analysis,

especially regarding the process of finding optimal parameters.

This study first combines the three submodels which are introduced as previous, and

the improved real-code genetic algorithm (IRGA) [19] is used to calculate the weights of the

combination model. The three submodels and the new optimal weight combination model

are used to forecast the annual precipitation for Beijing from 2004 to 2008. In the next section,

optimal weight combination model is presented. In Section 3, we discuss the application of

the optimal weight combination model. In Section 4, we give the conclusions.

2. The Optimal Weight Combination Model

In this paper, the procedure of establishing the new optimal weight combination model can be

divided into three steps as follows.

(1) Construct the weight combination model.

(2) Establish three submodels.

(3) Calculate the weights of the three submodels by using IRGA.

The flow chart of this procedure is shown in Figure 1.

2.1. Construction of the Weight Combination Model

In the case of N forecast models, the weight combination forecast model [20] may be ex-

pressed as

xi =
N∑
j=1

wjxji + ei, (2.1)

where xi is the observed discharge of the ith time period, wj is the weight assigned to the jth

model, and estimated discharge xji and ei are the combination error term.
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Figure 1: The flow chart of the procedure of establishing the new optimal weight combination model.

Equation (2.1) can be represented in matrix notation as

X = YW + E, (2.2)

where Y is the input matrix defined by

⎡⎢⎢⎢⎢⎢⎢⎣

x11 x21 . . . xN1

x12 x22 . . . xN2

...
...

. . .
...

x1n x2n . . . xNn

⎤⎥⎥⎥⎥⎥⎥⎦, (2.3)

X = (x1, x2, . . . , xn)
T is the output vector, W = (w1, w2, . . . , wN)T is the weight vector, E =

(e1, e2, . . . , en)
T is the combination error vector, T denotes the transpose of the vector, and n is

the total number of observations.
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Table 1: History set At and current set B.

History set Elements Subsequent value

A1 x1, x2, . . . , xT xT+1

A2 x2, x3, . . . , xT+1 xT+2

... · · · · · ·
Ai xi+1, xi+2, . . . , xi+T xi+T+1

... · · · · · ·
An−T xn−T , xn−T+1, . . . , xn−1 xn

Current set Elements Subsequent value

B xn−T+1, xn−T+2, . . . , xn xn+1

In the weight combination forecasting model, the sum of the weights w is normally

constrained to be equal to unity, that is

N∑
j=1

wj = 1. (2.4)

The value of the weight w cannot be less than zero, that is

wj ≥ 0
(
j = 1, 2, . . . ,N

)
. (2.5)

2.2. Establishment of the Three Submodels

2.2.1. Rank Set Pair Analysis (R-SPA) Model

The procedure of the establishment of this model is shown as follows.

(1) Consider an annual precipitation series x1, x2, . . . , xn, we constructed the history

sets A1, A2, . . . An−T , current set B and the subsequent value of these sets are rep-

resented in Table 1.

Because of the weak dependence in the annual precipitation series, we assume that the

number of history set and current set T to be an integer from 4 to 6.

(2) Rank transformation. We mark the elements in A1, A2, . . . , An−T , B from 1 to T ac-

cording to the rank of elements in the sets they belong to. If some elements have the

same rank, we mark them according to their average rank and round off the value.

Then, we could obtain the rank set A′
1, A

′
2, . . . , A

′
n−T , B

′.

(3) Construct n−T rank set pairs (A′
i, B

′) (i = 1, 2, . . . , n−T) and calculate the difference

d between the corresponding elements of A′
i and B′. If the absolute value of d is

equal to zero, we mark them “identical”; if the absolute value of d is greater than

T −2, we mark them “contrary”; if the absolute value of d is between zero and T −2,

we mark them “discrepant.” Respectively, count the total number of “identical,”

“contrary,” and “discrepant” of each rank set pair. According to the value of the
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coefficient of the discrepancy degree i and the coefficient of the contrary degree j,

the connection degree formula as follows:

μA−B =
S

N
+
F

N
i +

P

N
j, (2.6)

where μ is the connection degree of the set pair, N denotes the total number of

characteristics of the set pair, S represents the number of identity characteristics, P

is the number of contrary characteristics, F is the number of the characteristics if the

set pair is neither identity nor contrary. According to (2.6), we calculate the value

of the connection degree of each rank set pair.

(4) In accordance with the maximum principle, we can find a similar set A′
i of B, and

also we can find several similar sets of B under certain circumstances. A′
i is the

counterpart of Ai, and the subsequent value of Ai is xT+1. We can obtain the value

of xn+1 through the formula as follows:

xn+1 =
1

m

m∑
k=1

wkxT+k, (2.7)

where wk is the ratio of the average of the elements in B and the average of the

elements in Ak, m is the number of the similar sets of B.

2.2.2. Radical Basis Function (RBF) Model

The interpretation of the RBF method as an artificial neural network consists of three layers:

one layer is the input layer neurons feeding the feature vectors into the network; another layer

is a hidden layer of RBF neurons calculating the outcome of the bas functions; the last layer

is the output layer neurons calculating a linear combination of the basis functions [21, 22].
The different numbers of hidden layer neurons and spread constant are tried in the study. Its

topological structure is shown in Figure 2.

The procedure of the establishment of this model is shown as follows.

(1) Normalization of the time series. Consider an annual precipitation series {x1,

x2, . . . , xn}, we can transform the series to {x′1, x′2, . . . , x′n} by the normalization

formula as follows.

x′t =
xt − xmin

xmax − xmin
(t = 1, 2, . . . , n), (2.8)

where xmin and xmax denote the minimum and the maximum of the time

series {x1, x2, . . . , xn}.

(2) Forecast of the data. The application of the RBF neural networks to time series

data consists of two steps. The first step is the training of the neural networks.

Choose the first N value of the new series {x′1, x′2, . . . , x′n} as the training sample,

and set up the RBF neural networks. Once the training stage is completed, the

RBF neural networks will be applied to the forecasting data. Based upon the RBF
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Figure 2: The topological structure of RBF.

neural networks established by the training sample, we forecast the value of the

last n − N elements of the series {x′1, x′2, . . . , x′n} and the forecasting series can be

represented as {y′N+1, y
′
N+2, . . . , y

′
n}. In this study, we take that the value of the

mean-square error is 0.0001 and the width of the radical primary function is 1.

(3) Denormalization of the forecasting series. Since the value of the elements in fore-

casting series is between zero and one, that is y′j ∈ [0, 1], we should denormalize

the forecasting series {y′N+1, y
′
N+2, . . . , y

′
n} to final forecasting {yN+1, yN+2, . . . , yn}

through the denormalization formula as follows:

yj = y′j × (xmax − xmin) + xmin

(
j =N + 1,N + 2, . . . , n

)
. (2.9)

2.2.3. Autoregressive (AR) Model

In this paper, we regard the data of the annual precipitation as a time series and the trend

term, seasonal term, and random term can be extracted from the time series in sequence.

Then, we superpose the trend term, seasonal term and random term, and obtain the equation

as follows [23–25]:

xt = At + Bt + Ct, (2.10)

where xt is the precipitation time series, At is the trend term, Bt is the seasonal term, and

Ct is the random term.



Mathematical Problems in Engineering 7

The procedure of establishing the autoregressive model is shown as follows.

(1) The extraction of the trend term. In this paper, the data performs a clear quadratic

algorithms component, so a polynomial function is used to fit the precipitation data.

The trend term At can be described as follows:

At = P2t
2 + P1t + P0, (2.11)

where Pi (i = 0, 1, 2) is the coefficient of the quadratic polynomial (2.11).

(2) The extraction of the seasonal term. The analysis of precipitation seasonality can be

accomplished with the aid of modeling via spectral analysis. The precipitation sea-

sonality can be indicated with L waves. BBt is the output of Pt subtract At, and the

estimated value of BBt can be defined as BB′t:

BB′t =
a0

2
+

L∑
k=1

[
ak cos

2pkt

n
+ bk sin

2pkt

n

]
, (2.12)

where L = [n/2] is the number of harmonicwave, ak and bk are the coefficient of the

Fourier series (2.12):

a0 =
1

n

n∑
t=1

BBt,

ak =
2

n

n∑
i=1

BBt cos
2πki

n
(k = 1, 2, . . . , L),

bk =
2

n

n∑
i=1

BBt sin
2πki

n
.

(2.13)

Taking the working capacity into consideration, we choose the significant wave to

forecast. And we define the kth wave as the significant wave when the following inequality

is satisfied:

sk
2 = ak2 + bk

2 >
0.5s2 ln(k/a)

n
, (2.14)

where a is the level of significance (a = 5%); s2 is the variance of the series:

s2 =
1

n − 1

n∑
t=1

(
Pt − Pt

)2
. (2.15)

(3) The extraction of the random term. The random term Ct is defined as a linear

combination of Ct−1, Ct−2, . . . , Ct−p:

Ct = α0 + α1Ct−1 + α2Ct−2 + · · · + αpCt−p, (2.16)
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where p is the order number of the model; α i (i = 0, 1, . . . , p) denotes the coefficient

of the regression model, which can be confirmed by AIC (Akaike’s Information

Criterion) formula:

AIC
(
p
)
= n lnσp

2 + 2p, (2.17)

where n is the number of series, σp
2 represents the variance of AR(p) and the appro-

priative of p can be chosen among 1, 2, 3, and 4.

2.3. Calculation of the Weights of the Submodels

The key of setting up the optimal weight combination model is to ascertain the weight of each

forecasting model. In this study, we choose the weight which satisfies that the error sum of

squares of the combination model is the minimum among all weight combination forecasting

models, that is

min f = min
n∑
i=1

e2
i = min

n∑
i=1

⎛⎝xi −
N∑
j=1

wjxji

⎞⎠2

, (2.18)

where f is the error sum of squares of the combination model.

Two matrices S and E′ are defined as

S =

⎡⎢⎢⎢⎢⎢⎢⎣

e11 e12 . . . e1n

e21 e22 . . . e2n

...
...

. . .
...

eN1 eN2 . . . eNn

⎤⎥⎥⎥⎥⎥⎥⎦, eij
(
i = 1, 2, . . . ,N, j = 1, 2, . . . , n

)
, (2.19)

eij is the error of the jth forecasting value of the ith model,

E′ = SST =

⎡⎢⎢⎢⎢⎢⎢⎣

e′11 e′12 . . . e′1N
e′21 e′22 . . . e′2N
...

...
. . .

...

e′N1 e′N2 . . . e′NN

⎤⎥⎥⎥⎥⎥⎥⎦. (2.20)

And, the formula (2.13) can be represented as follows:

min f = min
n∑
i=1

e2
i = min

n∑
i=1

⎛⎝xi −
N∑
j=1

wjxji

⎞⎠2

=
N∑
i=1

N∑
j=1

wiwje
′
ij . (2.21)

If we obtain the value of wj (j = 1, 2, . . . ,N) with the aid of formula (2.4), (2.5), and

(2.21), then we can ascertain optimal weight combination model.
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Initialize the population by randomly generating 

their genes

Evaluate each member’s fitness value

Is there any fitness value reaching the 

desired result?

Calculate children number for each member

Apply crossover to randomly paired chromosome

Apply mutation with certain probability

Does number of generation reach the 

maximum?

End

N

N

Y

Y

Figure 3: The flow chart of genetic algorithm.

Genetic algorithm is an adaptive heuristic search algorithm premised on the evolu-

tionary ideas of natural selection and genetic mutation, and it has always been regarded as a

function optimizer [26–28]. The flow chart of genetic algorithm is shown in Figure 3.

In this paper, we use the improved real-code genetic algorithm (IRGA) to solve this

optimization problem. The population size is 20; the crossover fraction is 0.8, and the gene-

ration is 100.

3. Application of the Optimal Weight Combination Model

In this study, the data of the annual precipitation from 1978 to 2008 for Beijing are collected

and shown in Figure 4.
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Figure 4: An annual precipitation from 1978 to 2008 for Beijing.

Table 2: The forecasted data of three submodels.

Year
Measured
value
(mm)

Model

R-SPA RBF The autoregressive model

Forecasted
value (mm) Error (%) Forecasted

value (mm) Error (%) Forecasted
value (mm) Error (%)

2004 483.5 379.0 104.5 178.8 304.7 520.2 −36.7

2005 410.7 358.8 51.9 317.8 92.9 429.1 −18.4

2006 318.0 369.1 −51.1 407.5 −89.5 541.9 −223.9

2007 483.9 382.5 101.4 531.0 −47.1 445.1 38.8

2008 626.3 400.1 226.2 576.0 50.3 407.8 218.5

Table 3: The weights of the three submodels.

Model Weight

R-SPA model 22.9%

RBF neural networks model 37.2%

Autoregressive model 39.9%

Firstly, we use R-SPA, RBF, and AR models to forecast the annual precipitation from

2004 to 2008 of Beijing, respectively. And the outputs of the three models are shown in Table 2.

Based on the forecasted data of the three submodels, the weights of the three sub-

models in the combination model are obtained by using IRGA [19] and the weights of the

three models are 22.9%, 37.2%, and 39.9%, respectively, and are given in Table 3.

Based on the obtained weights, we calculate the forecasted data of optimal weight

combination model, and the output is represented in Table 4.

By comparing the output of the combination model with the output of the three sub-

models, we find that the error sum of squares of the combination model is apparently lower

than that obtained for any other submodel. In this study, the value of the error sum of squares

is regarded as the standard for judging the precision of the forecast of the annual precipitation

of Beijing, and the improvement of the precision of the new weight combination model com-

pared with three submodels is shown in Table 5.
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Table 4: The forecasted data of the combination model.

Year Measured value (mm) Forecasted value (mm)
2004 483.5 360.6

2005 410.7 371.3

2006 318.0 451.9

2007 483.9 462.2

2008 626.3 468.1

Table 5: The improvement of the precision of the new weight combination model.

Compared models The improved precision of new weight combination model

R-SPA model 22.6%

RBF model 47.4%

Autoregressive model 40.6%

So we conclude that the precision of the combination model is higher than that of three

models in terms of the error sum of squares.

4. Conclusions

A new optimal weight combination model, based on the R-SPA, RBF, and AR models and

one weight optimization model based on improved real-code genetic algorithm (IRGA), is

proposed in this paper. The annual precipitation time series of Beijing from 1978 to 2008 are

studied by using the new model. The main conclusions are given as follows.

(1) Three submodels, that is, R-SPA model, RBF model, and AR model, are tested to

forecast the annual precipitation of Beijing, and the results suggest that R-SPA is

better and RBF worst in the three models in terms of the error sum of squares. Dif-

ferent models have different precision for forecasting annual precipitation.

(2) The optimal weights can be obtained by use of IRGA in new optimal weight com-

bination model. Application results of the combination model indicate the weights

of the submodels can be appropriately confirmed and such method provides a new

way to improve the prediction precision for forecasting complex precipitation time

series.

(3) Compared with the results of R-SPA, RBF, and AR models, the proposed model can

improve the forecast accuracy of precipitation in terms of the error sum of squares,

and its improved precision is 22.6%, 47.4%, 40.6%, respectively. So the precision

of the three submodels can be improved by establishing the new model in preci-

pitation forecast.

(4) Because of the fail to avoid the drawbacks of three submodels completely, the

accuracy of the combination model is inevitably affected. In the future, the accuracy

of the combination model may be improved by applying some more advanced sub-

models.
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Multiplicative noise, also known as speckle noise, is signal dependent and difficult to remove.
Based on a fourth-order PDE model, this paper proposes a novel approach to remove the multi-
plicative noise on images. In practice, Fourier transform and logarithm strategy are utilized on the
noisy image to convert the convolutional noise into additive noise, so that the noise can be removed
by using the traditional additive noise removal algorithm in frequency domain. For noise removal,
a new fourth-order PDE model is developed, which avoids the blocky effects produced by second-
order PDE model and attains better edge-preserve ability. The performance of the proposed
method has been evaluated on the images with both additive and multiplicative noise. Compared
with some traditional methods, experimental results show that the proposed method obtains
superior performance on different PSNR values and visual quality.

1. Introduction

Image denoising plays an important role in the areas of image processing. A real recorded

image may be distorted by many expected or unexpected random factors, of which random

noise is an unavoidable one [1, 2]. The objective of image denoising or filtering is to recover

the true image from the noisy one. One of the challenges during the denoising process is to

preserve and enhance the important features. For images, edge is one of the most universal

and crucial features. Denoising via linear filters normally does not give satisfactory perfor-

mance since both noises and edges contain high frequencies. Therefore, some nonlinear filters

[3–18] have been proposed. Median filter [1] is one of the classical examples. Wavelet-based

image filters [19–22] are developing quickly. PDE-based nonlinear diffusion filters [23–26]
also make a hit on image denoising. One of PDE-based methods is the famous total variation

model (TVM) [27–35]. TVM has been improved in theory and algorithm continuously.
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Recently, Kim [23] proposed a model called αβω(ABO)-model by hybridizing a nonconvex

variant of the TVM, the motion by mean curvature (MMC) [29], and Perona-Malik model

[4] to deal with the mixture of the impulse and Gaussian noises reliably. In [23], they apply

the essentially nondissipative difference (ENoD) schemes [5, 6] for the MMC component to

eliminate the impulse noise with a minimum (ideally no) introduction of dissipation. Many

denoising methods are also employed in medical image processing [36–39].
Due to the coherent nature of some complicated image acquisition processes, such

as ultrasound imaging, synthetic aperture radar (SAR) and sonar (SAS), and laser imaging,

the standard additive noise model, so prevalent in image processing, is inadequate. Instead,

multiplicative noise models, that is, in which the noise field is multiplied by (not added to)
the original image, provide an accurate description of coherent imaging systems [40–42].
Multiplicative noise is naturally dependent on the image data. Various adaptive filters [43, 44]
for multiplicative noise removal have been proposed. Experiments have shown that filtering

methods work well when the multiplicative noise is weak.

In this paper, a new fourth-order PDE model is introduced by improving the original

fourth-order PDE model [24] in order to get high fidelity of the denoised images. To solve

the model efficiently and reliably, we suggest a simple and symmetrical difference schemes.

Median filter is exploited to alleviate the speckle effects in the processed image. At the

same time, a new multiplicative noise removal algorithm based on fourth-order PDE model

is proposed for the restoration of noisy image. To apply the proposed model for removal

of multiplicative noise, the Fourier transform is used to change convolution into product;

meanwhile, the logarithmic transformation is used to convert multiplicative noise into addi-

tive one. Experimental results show that the proposed method gets nice result in restoring

images, especially in edge preservation and enhancement.

The rest of this paper is organized as follows. In Section 2 we investigate a general

model of multiplicative noise. Total variation model and its discretization are introduced in

Section 3. In order to avoid the blocky effects of second-order PDE model and preserve edges,

a new fourth-order PDE denoising model is proposed in Section 4. Section 5 is devoted to a

study of multiplicative noise removal method, and an algorithm based on fourth-order PDE

model is developed. Numerical results are presented in Section 6. We summarize our conclu-

sions in Section 7.

2. Multiplicative Noise Model

Noise removal or reduction is very important in image processing community. The objection

of image denoising or filtering is to recover the true image from a noisy one. There are dif-

ferent noise types in real world. Multiplicative noise is common beside additive noise.

Quality of images may degenerate while images’ obtaining, transferring, and storage. The

movement of objects, the defects of the imaging system, the noise of the inherent record

equipment, and external disturbance also cause the image noise. Under the assumption that

imaging system is linear translation invariance system, we can use the following degradation

model to describe the multiplicative noise images:

u0

(
x, y

)
= hd

(
x, y

) ∗ f(x, y) + n(x, y), (2.1)
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Figure 1: Multiplicative noise images. (a) Original “Lena” image; (b) image convolution with template 3 ×
3 of (a); (c) image with Gaussian white noise of mean 0 and variance 0.01; (d) image with Gaussian white
noise of mean 0 and variance 0.05; (e) original “vegetables” image; (f) image convolution with template
3 × 3 of (a); (g) image with Gaussian white noise of mean 0 and variance 0.01; (h) image with Gaussian
white noise of mean 0 and variance 0.05.

where f is the ideal image, u0 is the noised image, n denotes the additive noise with mean 0

and variance σ2, ∗ denotes convolution operation, hd denotes the point spread function (PSF),
andGaussian function can be considered as one of the classical PSF:

Gd

(
x, y

)
= exp

{
−(x2 + y2

)
2σ2

}
, (2.2)

Therefore, the synthesized images with multiplicative noise in this paper are generated

for ideal images convolution with 2D Gaussian kernels and then noised with additive

Gaussian white noise. An example is shown in Figure 1. hd in (2.1) is chosen as (2.2), namely

Gaussian function templates. 3 × 3 Gaussian function template T3 = (1/16) ×
[

1 2 1
2 4 2
1 2 1

]
is em-

ployed here.

3. Total Variation Model

In order to recover the true image f as much as possible and/or to find a new image u in

which the information of interest such as object boundary in the image is more obvious and/

or more easily extracted, we will discuss PDE-based image denoising in this section. Second-

order PDE models have been studied as a useful tool for image denoising. The classical model

of them is total variation model (TVM) [27], and we will introduce it.

TVM was first proposed by Rudin et al. [27]. It is now one of the most successful tools

in image restoration. TVM has a simple fixed filter structure. In terms of the mathematical

foundation, unlike most statistical filters, TVM is based on functional analysis and geometry.
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Figure 2: Four neighboring image structure.

The additive noise removal problem is converted to energy function minimization problem

as below:

u = argmin{ETV(u)}

ETV(u) =
∫∫
Ω

|∇u|dxdy +
λ

2

∫∫
Ω

(u0 − u)2dxdy,
(3.1)

where Ω denotes image domain, and λ is Lagrange multiplier. The selection of the parameter

λ is very important for the smoothing result. The corresponding Euler-Lagrange equation is

−∇ ·
( ∇u
|∇u|

)
+ λ(u − u0) = 0, (3.2)

and the steepest descent marching gives

∂u

∂t
= ∇ ·

( ∇u
|∇u|

)
− λ(u − u0). (3.3)

To avoid singularities in flat regions or at local extreme, |∇u| in (3.2) is regularized to

|∇u|ε =
√
|∇u|2 + ε2 for a small positive parameter ε. Chan et al. [30] deduce discrete iterative

equation of TV model as follows:

un+1
α =

∑
β∈N(α)

hαβu
n
β + hααu

0
α, (3.4)

where u0
α denotes the pixel value at node α in the noisy image, n denotes iteration times, unα

denotes the image pixel value after n+1 iterations,N(α) denotes field of node α (see Figure 2).
The filter coefficients hαα and hαβ are given by

hαα =
λ

λ +
∑

β∈N(α)wαβ
,

hαβ =
wαβ

λ +
∑

β∈N(α)wαβ
,

(3.5)



Mathematical Problems in Engineering 5

wαβ =
gnα + gn

β

2h2
,

gnα =
1

|∇unα|
,

(3.6)

|∇unα| ≈
√√√√ 1

2h2

∑
β∈N(α)

(
un
β
− unα

)2
. (3.7)

Here, for any node αhαα +
∑

β∈N(α) hαβ = 1.

In conclusion, TV denoising algorithm steps can be summarized as follows:

(1) to assign parameter λ and a;

(2) compute the local variation |∇unα| by (3.7);

(3) compute respectively gnα and wn
αβ

(3.6);

(4) compute the filter coefficients hαα and hαβ by (3.5);

(5) calculate iterative equation (3.4).

For TV filtering process, the computational cost can be reduced by the algorithm. TVM

not only can remove noise but also can keep the image edge information. Some experimental

results are shown in Figure 3. TVM is better than the traditional denoising methods not only

in PSNR values but also in visual quality.

4. A New Fourth-Order PDE Denoising Model

In order to avoid the blocky effects (seen in Figure 3(f) and Figure 4(f)) widely seen in images

processed by anisotropic diffusion while preserve edges, You and Kaveh [24] proposed a

fourth-order PDE for noise removal. Motivated by [24] and TVM, we proposed a novel model

in [25, 26]. The new approach combines the advantages of the famous TVM and original

fourth-order PDE model. It can avoid the blocky effects and get high fidelity (improve the

quality of the processed image), which is important for image filter application (see Figure 4).
Consider the energy function as follows:

E(u) =
∫∫

Ω

(
f
(∣∣∣∇2u

∣∣∣) +
λ

2

∣∣∣u − u0
∣∣∣2
)
dxdy, (4.1)

where Ω is the image domain and λ > 0 is a parameter similar as in TVM. u0 is the noisy

image. ∇2 denotes Laplacian operator and we require f is an increasing function and bigger

than zero. Therefore, the minimization of the functional is equivalent to smoothing the image

as measured by |∇2u|.
The corresponding Euler-Lagrange equation is

∇2
(
f ′
(∣∣∣∇2u

∣∣∣) sign
(
∇2u

))
+ λ ·

(
u − u0

)
= 0, (4.2)
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(a) (b) (c)

(d) (e) (f)

Figure 3: Detail of restoring noisy Elaine image (512 × 512) with different filters. (a) Original image; (b)
noisy image, PSNR = 20.0742; (c) median, PSNR = 26.4554; (d) averaging, PSNR = 27.6876; (e) wiener,
PSNR = 26.7866; (f) TVM, PSNR = 30.0919.

where sign is the signed distance function, so (4.2) can be written as

∇2

(
f ′
(∣∣∣∇2u

∣∣∣) ∇2u

|∇2u|

)
+ λ ·

(
u − u0

)
= 0. (4.3)

If we define c(s) = f ′(s)/s, which is

∇2
(
c
(∣∣∣∇2u

∣∣∣)∇2u
)
+ λ ·

(
u − u0

)
= 0, (4.4)

therefore, the Euler equation may be solved through the following gradient descent proce-

dure:

∂u

∂t
= −∇2

(
c
(∣∣∣∇2u

∣∣∣)∇2u
)
− λ ·

(
u − u0

)
. (4.5)

So we can discretize and iterate to solve the equation.

To solve the model in (4.5) efficiently and reliably, we propose a simple symmetric

difference algorithm based on four neighboring systems (seen in Figure 2).
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We calculate Laplacian of the image intensity function as

∇2u|i,j =
ui+1,j + ui−1,j + ui,j+1 + ui,j−1 − 4ui,j

h2
, (4.6)

where h is space grid size. Given a time step Δt, (4.5) can be discretized as

un+1 = un −Δt
(
∇2

(
c
(∣∣∣∇2un

∣∣∣)∇2un
)
+ λ

(
un − u0

))
. (4.7)

Similar as [24], we define

c(s) =
1

1 + (s/k)2
, (4.8)

where k is a parameter.

So the symmetric fourth-order PDE denoising algorithm is as follows.

Step 1. Initialization: select the constants λ, k, h, Δt and choose an initial function (image) u.

Step 2. Compute ∇2u and |∇2u| using (4.6).

Step 3. Compute c(|∇2un|) using (4.8).

Step 4. Update u using (4.7).

Step 5. Repeat Steps 2 and 4 until convergence.

Figure 4 shows the results for a medical image with Gaussian white noise of mean 0

and variance 0.01. Median filter is applied to alleviating the speckle effects in the processed

image. We can see from Figure 4 that the new fourth-order PDE method obtains the biggest

PSNR values in all filter method and can avoid the block effect in Figure 4(f). At the same

time, the last result of the new method (Figure 4(j), PSNR = 28.4746 dB) is better than the

original fourth-order PDE method (Figure 4(b), PSNR = 27.7743 dB) not only in PSNR values

but also in visual quality.

5. Multiplicative Noise Removal Algorithm Based on
Fourth-Order PDE Model

Objective of most traditional algorithms is to deal with additive noise, but the result is not

ideal for the big multiplicative noise. This paper proposes a new multiplicative noise removal

algorithm and combines the denoising algorithm with image frequency domain. The whole

process is as follows.

Firstly, remove the additive noise n in model (2.1) by denoising algorithm, then the

model is simplified as

u0

(
x, y

)
= hd

(
x, y

) ∗ f(x, y). (5.1)
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 4: Detail of the denoising medical image with different methods. (a) A slice of an MRI brain image;
(b) image with Gaussian white noise of mean 0 and variance 0.01, PSNR = 21.0980; (c) denoised with
median filter (template: 3 × 3), PSNR = 27.3774; (d) denoised with averaging filter (template: 3 × 3),
PSNR = 27.7701; (e) denoised with Wiener filter (template: 5 × 5), PSNR = 27.8061; (f) denoised with
TVM (λ = 0.01, 10 iterations), PSNR = 24.9200; (g) results with the original fourth-order PDE model,
PSNR = 27.6730; (h) denoised (g) with Median filter, PSNR = 27.7743; (i) results with the new fourth-
order PDE model, PSNR = 26.9902; (j) denoised (i) with median filter, PSNR = 28.4746.

Secondly, convolution in (5.1) changes to product according to fast Fourier transform

(FFT):

U(u, v) = Hd(u, v) · F(u, v), (5.2)

where U(u, v), Hd(u, v), and F(u, v) denote FFT of u0(x, y), hd(x, y), and f(x, y), respec-

tively.

Thirdly, (5.2) can be rewritten by logarithmic transformation (LN) as follows:

lnU(u, v) = lnF(u, v) + lnHd(u, v). (5.3)

Fourthly, lnHd(u, v) in (5.3) can be regarded as additive noise in image frequency

domain, and we can remove it by some additive denoising algorithms, such as TVM and

fourth-order PDE model. Therefore,

lnU(u, v) = lnF(u, v). (5.4)

Fifthly, by exponential transform (EXP), (5.4) is rewritten as

U(u, v) = F(u, v). (5.5)

Sixthly, by inverse fast Fourier transform for (5.5), we can get

u = f, (5.6)
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TVM FFT log TVM EXP IFFT

uu0

Figure 5: Structure of multiplicative noise removal algorithm based on the total variational model.

Table 1: PSNR values obtained with difference filters (template 3 × 3).

Noise level
PSNR(dB) for Lena/vegetables image

Noisy image Average filter Median filter TV filter MNRATV

0.05 13.73/13.67 22.08/22.15 23.66/23.56 25.06/25.26 25.47/26.04
0.10 11.40/11.39 19.71/19.74 21.32/21.25 22.48/22.48 23.81/24.14
0.15 10.25/1024 18.36/18.46 19.85/19.80 20.64/20.74 22.64/22.92
0.20 9.54/9.52 17.46/17.50 18.78/18.66 19.44/19.40 21.74/21.78
0.25 9.05/9.05 16.84/16.87 17.96/17.83 18.54/18.56 21.05/21.12
0.30 8.69/8.68 16.40/16.49 17.29/17.16 17.86/17.85 20.46/20.51
0.35 8.42/8.40 16.02/15.98 16.67/16.62 17.29/17.33 19.93/20.02
0.40 8.19/8.20 15.68/15.71 16.24/16.40 16.86/16.90 19.56/19.62

where u in (5.6) is considered as the denoised image got by our algorithm. There are two

denoising processes in the multiplicative noise removal framework, that is, the first step and

the fourth step, if we select the denoising methods all as TVM removal framework of all as

TVM, structure of multiplicative noise removal algorithm can be seen below.

In Figure 5, multiplicative noise removal algorithm considers the natural image noise

as two parts, convolution changes to product by Fourier transform and product changes to

summation by logarithm, then noise can be removal according to total variation model and

the image is rebuilt.

6. Experimental Results

We use MATLAB 7.10 (R2010a) as the tool to carry out all algorithms a PC equipped with

an Intel Core i3-2330 M CPU at 2.20 GHz and 4G RAM memory and Windows 7 operating

system. Denoising performance is evaluated using the PSNR (peak signal-to-noise ratio) in

dB which defined by

PSNR = 10 · log10

R2M ·N[
f
(
x, y

) − u(x, y)]2
, (6.1)

where u(x, y) denotes the restored image with respect to the original image f(x, y), R = 255,

and M and N are the wide and high of image.

The effectiveness of the new multiplicative noise removal algorithm is based on the

total variation model (MNRATV) shown in Table 1, Figures 6 and 7. The sizes of the noisy

“Lena” and “vegetables” images is all 512 × 512. The numerical results are listed in Table 1

and compared in Figure 6. Visual quality is shown in Figure 7. Experimental results show that
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Figure 6: PSNR values in Table 1 plotted together. (a) Lena image; (b) vegetables image.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 7: Results of difference noise removal algorithms for noisy “Lena” and “vegetables” images. (a) The
multiplicative noisy image; (b) results of Median filter algorithm; (c) results of Averaging filter algorithm;
(d) results of TVM; (e) results of MNRATV.

the new method is available. It is better than the traditional denoising algorithm not only in

PSNR values but also in visual quality.

We can see from Table 1 and Figure 6 that the PSNR values of the restored images by

MNRATV are higher than restored images by all the other methods. It is little bigger than

those by TVM when the noise level is lower. The results of MNRATV and TVM are shown in

Figure 8.
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var = 0.05

(a)

PSNR = 25.07 dB

(b)

PSNR = 25.47 dB

(c)

var = 0.1

(d)

PSNR = 22.45 dB

(e)

PSNR = 23.9 dB

(f)

var = 0.15

(g)

PSNR = 20.63 dB

(h)

PSNR = 22.62 dB

(i)

var = 0.2

(j)

PSNR = 19.48 dB

(k)

PSNR = 21.78 dB

(l)

Figure 8: Results of MNRATV and TVM. Column 1 is the multiplicative noise with variance 0.05, 0.10,
0.15, and 0.20; respectively, Column 2 is the corresponding results with TVM, and Column 3 is the cor-
responding results with MNRATV.

Table 2: Different multiplicative noise removal method constructed with exist model.

Denoising method 1 Denoising method 2 New method

TVM TVM MNRA1(MNRATV)
FPDE TVM MNRA2

TVM FPDE MNRA3

FPDE FPDE MNRA4

There are two denoising methods in the first step and fourth step of the multiplicative

noise removal framework; we can call it denoising method 1 and denoising method 2. If they

are all chosen as TVM, then the whole framework in Figure 5 is called MNRA1 method, which

is called MNRATV before. TVM and fourth-order PDE (FPDE) model which we introduced

in Section 4 constitutes four methods. Details are shown in Table 2.

Different methods are employed to remove the noisy Lena image with different var-

iance. PSNR values are shown in Table 3. Seen from Table 3, TVM or FPDE directly is not
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Table 3: PSNR values obtained with difference algorithm for Lena image.

variance

PSNR(dB)

Noisy image TVM FPDE MNRA1 MNRA2 MNRA3 MNRA4

0.05 13.6935 25.0739 24.0739 25.4833 25.6347 25.8190 25.7443

0.10 11.4336 22.4860 22.3232 23.9355 24.2382 23.8612 23.9770

0.15 10.2712 20.7197 20.7700 22.7277 23.2101 22.4985 22.7830

0.20 9.5307 19.4144 19.6830 21.6790 22.4667 21.3851 21.7750

0.25 9.0769 18.6046 18.8871 21.0824 21.8927 20.6409 21.0582

0.30 8.6769 17.7913 18.0713 20.3577 21.2616 19.9417 20.3536

0.35 8.4000 17.2305 17.4785 19.8687 20.7377 19.3328 19.7712

0.40 8.1948 16.8051 16.9839 19.5339 20.3135 19.1239 19.4284

good because of the multiplicative noise type. Median filter cannot be exploited as denoising

method 2 since complex number is generated by the Fourier transform. Denoising method 1

is selected as FPDE in MNRA2, and it gets better results.

7. Conclusion

PDE models have been widely applied in image processing community especially in image

denoising. However, traditional PDE-based methods have some drawbacks unless the gov-

erning equations are both incorporating appropriate parameters and discretized by suitable

numerical schemes. In this paper, a new fourth-order PDE model is introduced by improving

the original fourth-order one [24] in order to avoid the blocky effect. To solve the model

efficiently and reliably, we suggest a symmetrically difference schemes. Median filtering is

exploited to alleviate the speckle effects in the processed image in succession. Accordingly, a

new multiplicative noise removal algorithm based on the proposed fourth-order PDE model

is presented. To remove the multiplicative noise, the convolution is changed into a product

by applying the Fourier transform. Furthermore, the multiplicative noise is converted into

the additive one by using a logarithmic transformation. Then the noise can be removed by

applying the proposed PDE model. Experimental results have shown the effectiveness of the

proposal.
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The paper studies the hypothesis testing in generalized linear models with functional coefficient
autoregressive (FCA) processes. The quasi-maximum likelihood (QML) estimators are given,
which extend those estimators of Hu (2010) and Maller (2003). Asymptotic chi-squares
distributions of pseudo likelihood ratio (LR) statistics are investigated.

1. Introduction

Consider the following generalized linear model:

yt = g
(
xTt β

)
+ εt, t = 1, 2, . . . , n, (1.1)

where β is d-dimensional unknown parameter, {εt, t = 1, 2, . . . , n} are functional coefficient

autoregressive processes given by

ε1 = η1, εt = ft(θ)εt−1 + ηt, t = 2, 3, . . . , n, (1.2)

where {ηt, t = 1, 2, . . . , n} are independent and identically distributed random variable errors

with zero mean and finite variance σ2, θ is a one-dimensional unknown parameter, and

ft(θ) is a real valued function defined on a compact set Θ which contains the true value θ0 as
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an inner point and is a subset of R1. The values of θ0 and σ2 are unknown. g(·) is a known

continuous differentiable function.

Model (1.1) includes many special cases, such as an ordinary regression model

(when ft(θ) ≡ 0, g(τ) = τ ; see [1–7]), an ordinary generalized regression model (when

ft(θ) ≡ 0; see [8–13]), a linear regression model with constant coefficient autoregressive

processes (when ft(θ) = θ, g(τ) = τ ; see [14–16]), time-dependent and function coefficient

autoregressive processes (when g(τ) = 0; see [17]), constant coefficient autoregressive pro-

cesses (when ft(θ) = θ, g(τ) = 0; see [18–20]), time-dependent or time-varying autoregres-

sive processes (when ft(θ) = at, g(τ) = 0; see [21–23]), and a linear regression model with

functional coefficient autoregressive processes (when g(τ) = τ ; see [24]). Many authors have

discussed some special cases of models (1.1) and (1.2) (see [1–24]). However, few people

investigate the model (1.1) with (1.2). This paper studies the model (1.1) with (1.2). The

organization of this paper is as follows. In Section 2, some estimators are given by the quasi-

maximum likelihood method. In Section 3, the main results are investigated. The proofs of

the main results are presented in Section 4, with the conclusions and some open problems in

Section 5.

2. The Quasi-Maximum Likelihood Estimate

Write the “true” model as

yt = g
(
xTt β0

)
+ et, t = 1, 2, . . . , n, (2.1)

e1 = η1, et = ft(θ0)et−1 + ηt, t = 2, 3, . . . , n, (2.2)

where g ′(τ) = (dg(τ)/dτ)/= 0, f ′t(θ) = (dft(θ)/dθ)/= 0. Define
∏−1

i=0ft−i(θ0) = 1, and by (2.2),
we have

et =
t−1∑
j=0

(
j−1∏
i=0

ft−i(θ0)

)
ηt−j . (2.3)

Thus et is measurable with respect to the σ−field H generated by η1, η2, . . . , ηt, and

Eet = 0, Var(et) = σ2
0

t−1∑
j=0

(
j−1∏
i=0

f2
t−i(θ0)

)
. (2.4)

Assume at first that the ηt are i.i.d. N(0, σ2), we get the log-likelihood of y2, . . . , yn
conditional on y1 given by

Φn = lnLn = − (n − 1) lnσ2

2
−

∑n
t=2

(
εt − ft(θ)εt−1

)2

2σ2
− (n − 1) ln 2π

2
. (2.5)
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At this stage we drop the normality assumption, but still maximize (2.5) to obtain QML

estimators, denoted by σ̂2
n, β̂n, θ̂n. The estimating equations for unknown parameters in (2.5)

may be written as

∂Φn

∂σ2
= −n − 1

2σ2
+

1

2σ4

n∑
t=2

(
εt − ft(θ)εt−1

)2
, (2.6)

∂Φn

∂θ
=

1

σ2

n∑
t=2

f ′t(θ)
(
εt − ft(θ)εt−1

)
εt−1,

∂Φn

∂βd×1
=

1

σ2

n∑
t=2

(
εt − ft(θ)εt−1

) · (g ′(xTt β)xt − ft(θ)g ′(xTt−1β
)
xt−1

)
.

(2.7)

Thus, σ̂2
n, β̂n, θ̂n satisfy the following estimation equations

σ̂2
n =

1

n − 1

n∑
t=2

(
ε̂t − ft

(
θ̂n

)
ε̂t−1

)2
, (2.8)

n∑
t=2

(
ε̂t − ft

(
θ̂n

)
ε̂t−1

)
f ′t
(
θ̂n

)
ε̂t−1 = 0, (2.9)

n∑
t=2

(
ε̂t − ft

(
θ̂n

)
ε̂t−1

)(
g ′
(
xTt β̂n

)
xt − ft

(
θ̂n

)
g ′
(
xTt−1β̂n

)
xt−1

)
= 0, (2.10)

where

ε̂t = yt − g
(
xTt β̂n

)
. (2.11)

Remark 2.1. If g(xTt β) = xTt β, then the above equations become the same as Hu’s (see [24]).
If ft(θ) = θ, g(xTt β) = xTt β, then the above equations become the same as Maller’s (see [15]).
Thus we extend those QML estimators of Hu [24] and Maller [15].

For ease of exposition, we will introduce the following notations, which will be used

later in the paper. Let (d + 1) × 1− vector ϕ = (βT , θ)T . Define

Sn
(
ϕ
)
= σ2 ∂Φn

∂ϕ
= σ2

(
∂Φn

∂β
,
∂Φn

∂θ

)
, Fn

(
ϕ
)
= −σ2 ∂2Φn

∂ϕ∂ϕT
. (2.12)

By (2.7), we have

Fn
(
ϕ
)
=

⎛⎜⎜⎝
Xn

(
ϕ,ω

)
U

∗
n∑
t=2

((
f ′t

2(θ) + ft(θ)f ′′t (θ)
)
ε2
t−1 − f ′′t (θ)εtεt−1

)
⎞⎟⎟⎠, (2.13)
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where the ∗ indicates that the elements are filled in by symmetry,

Xn

(
ϕ,ω

)
= −σ2

(
∂2Φn

∂β∂βT

)
,

U =
n∑
t=2

(
f ′t(θ)εt−1g

′
(
xTt β

)
xt + f ′t(θ)εtg

′
(
xTt−1β

)
xt−1 − 2ft(θ)f ′t(θ)εt−1g

′
(
xTt−1β

)
xt−1

)
,

∂2Φn

∂β∂βT
= − 1

σ2

n∑
t=2

(
g ′
(
xTt β

)
xt − ft(θ)g ′

(
xTt−1β

)
xt−1

)(
g ′
(
xTt β

)
xt − ft(θ)g ′

(
xTt−1β

)
xt−1

)T

+
1

σ2

n∑
t=2

(
εt − ft(θ)εt−1

)(
g ′′

(
xTt β

)
xtx

T
t − ft(θ)g ′′

(
xTt−1β

)
xt−1x

T
t−1

)
.

(2.14)

Because {et−1} and {ηt} are mutually independent, we have

Dn = E
(
Fn

(
ϕ0

))
=

⎛⎜⎜⎝
Xn

(
ϕ0

)
0

0
n∑
t=2

f ′t
2(θ0)Ee2

t−1

⎞⎟⎟⎠ =

(
Xn

(
ϕ0

)
0

0 Δ(θ0, σ0)

)
, (2.15)

where

Xn

(
ϕ0

)
=

n∑
t=2

(
g ′
(
xTt β0

)
xt − ft(θ0)g ′

(
xTt−1β0

)
xt−1

)(
g ′
(
xTt β0

)
xt − ft(θ0)g ′

(
xTt−1β0

)
xt−1

)T
,

Δ(θ0, σ0) =
n∑
t=2

f ′t
2(θ0)Ee2

t−1 = σ2
0

n∑
t=2

f ′t
2(θ0)

t−2∑
j=0

(
j−1∏
i=0

f2
t−i(θ)

)
= O(n).

(2.16)

By (2.8) (2.7) and Eηt = 0, we have

σ2
0E

(
∂Φn

∂β

∣∣∣∣
β=β0

)
=

n∑
t=2

Eηt
(
g ′
(
xTt β0

)
xt − ft(θ0)g ′

(
xTt−1β0

)
xt−1

)
= 0,

σ2
0E

(
∂Φn

∂θ

∣∣∣∣
θ=θ0

)
=

n∑
t=2

f ′t(θ0)E
(
ηtet−1

)
= 0.

(2.17)

3. Statement of Main Results

In the section pseudo likelihood ratio (LR) statistics for various hypothesis tests of interest

are derived. We consider the following hypothesis:

H1 : g(·), f(·) are continuous functions, and f
′(·)
/= 0, σ2

0 > 0. (3.1)
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When the parameter space is restricted by a hypothesis H0j , j = 1, 2, . . . , let β̂jn, θ̂jn, σ̂
2
jn be the

corresponding QML estimators of β, θ, σ2, and let

L̂jn = −2Φn

(
β̂jn, θ̂jn, σ̂

2
jn

)
(3.2)

be minus twice the log-likelihood, evaluated at the fitted parameters. Also let

L̂n = −2Φn

(
β̂n, θ̂n, σ̂

2
n

)
,

djn = L̂jn − L̂n
(3.3)

be the “deviance” statistic for testing H0j against H1. From (2.5) and (2.8),

L̂n = (n − 1) ln σ̂2
n + (n − 1)(1 + ln 2π) (3.4)

and similarly

L̂jn = (n − 1) ln σ̂2
jn + (n − 1)(1 + ln 2π). (3.5)

In order to obtain our results, we give some sufficient conditions as follows.

(A1) Xn =
∑n

t=2 xtx
T
t is positive definite for sufficiently large n and

lim
n→∞

max
1≤t≤n

xTt X
−1
n xt = O

(
n−α

)
, ∀α ∈

(
1

2
, 1

]
, lim

n→∞
sup |λ|max

(
X−1/2
n ZnX

−T/2
n

)
< 1, (3.6)

where Zn = (1/2)
∑n

t=2(xtx
T
t−1 + xt−1x

T
t ) and |λ|max(·) denotes the maximum in absolute value

of the eigenvalues of a symmetric matrix.

(A2) There is a constant α > 0 such that

t∑
j=1

(
j−1∏
i=0

f2
t−i(θ)

)
≤ α, max

1≤j≤n

∣∣∣∣∣∣
n∑

t=j+1

(
t−j−1∏
i=0

ft−i(θ0)

)∣∣∣∣∣∣ ≤ γ. (3.7)

(A3) f ′t(θ) = dft(θ)/dθ /= 0 and f ′′t (θ) = df ′t(θ)/dθ exist and are bounded, and g(·) is

twice continuously differentiable, 0 < m ≤ maxu|g ′(u)| ≤ M < ∞, 0 < m̃ ≤
maxu|g ′′(u)| ≤ M̃ <∞.

Theorem 3.1. Assume (2.1), (2.2) and (A1)–(A3).

(1) Suppose H01 : ft(θ) = θ and g(u) is a continuous function, σ2
0 > 0 holds. Then

d1n
D−→ χ2

1, n −→ ∞. (3.8)
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(2) Suppose H02 : ft(θ) = θ, g(u) = u, σ2
0 > 0 holds. Then

d2n
D−→ χ2

1, n −→ ∞. (3.9)

(3) Suppose H03 : ft(θ) = θ, g(u) = eu/(1 + eu), σ2
0 > 0 holds. Then

d3n
D−→ χ2

1, n −→ ∞. (3.10)

4. Proof of Theorem

To prove Theorem 3.1, we first introduce the following lemmas.

Lemma 4.1. Suppose that (A1)–(A3) hold. Then, for all A > 0,

sup
ϕ∈Nn(A)

∥∥∥D−1/2
n Fn

(
ϕ
)
D−T/2
n −Φn

∥∥∥ P−→ 0, n → ∞, (4.1)

where

Φn = diag

(
Id,

∑n
t=2 f

′
t
2(θ0)e2

t−1

Δn(θ0, σ0)

)
, (4.2)

Nn(A) =
{
ϕ ∈ Rd+1 :

(
ϕ − ϕ0

)T
Dn

(
ϕ − ϕ0

) ≤ A2
}
. (4.3)

Proof. Similar to proof of Lemma 4.1 in Hu [24], here we omit.

Lemma 4.2. Suppose that (A1)–(A3) hold. Then ϕ̂n → ϕ0, σ̂2
n → σ2

0 and

Xn

(
β∗, β∗∗, θ̂n

)
−→ Xn

(
ϕ0

)
, (4.4)

where β∗, β∗∗ are on the line of β0 and β̂n.

Proof. Similar to proof of Theorem 3.1 in Hu [24], we easily prove that ϕ̂n → ϕ0, and σ̂2
n →

σ2
0 . Since (4.4) is easily proved, here we omit the proof (4.4).

Proof of Theorem 3.1. Note that Sn(ϕ̂n) = 0 and Fn(ϕ̂n) are nonsingular. By Taylor’s expansion,

we have

0 = Sn
(
ϕ̂n

)
= Sn

(
ϕ0

) − Fn(ϕ̃n)(ϕ̂n − ϕ0

)
, (4.5)
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where ϕ̃n = aϕ̂n + (1 − a)ϕ0 for some 0 ≤ a ≤ 1. Since ϕ̂n ∈ Nn(A), also ϕ̃n ∈ Nn(A). By (4.1),
we have

Fn
(
ϕ̃n

)
= D1/2

n

(
Φn + Ãn

)
DT/2
n . (4.6)

Thus Ãn is a symmetric matrix with Ãn
P−→ 0. By (4.5) and (4.6), we have

DT/2
n

(
ϕ̂n − ϕ0

)
= DT/2

n F−1
n

(
ϕ̃n

)
Sn

(
ϕ0

)
=

(
Φn + Ãn

)−1
D−1/2
n Sn

(
ϕ0

)
. (4.7)

Let Sn(ϕ), Fn(ϕ) denote S
(β)
n (ϕ), S(θ)

n (ϕ), and F
(β)
n (ϕ), F(θ)

n (ϕ), respectively. By (4.7), we have

ΦnD
T/2
n

(
β̂n − β0, θ̂n − θ0

)
= D−1/2

n

(
S
(β)
n

(
ϕ0

)
, S

(θ)
n

(
ϕ0

))
+ oP (1). (4.8)

Note that

ΦnD
T/2
n =

⎛⎜⎜⎜⎝
XT/2
n

(
ϕ0

)
0

0

(∑n
t=2 f

′
t
2(θ0)e2

t−1

)
√
Δn(θ0, σ0)

⎞⎟⎟⎟⎠,

D−1/2
n =

⎛⎜⎝X−1/2
n

(
ϕ0

)
0

0
1√

Δn(θ0, σ0)

⎞⎟⎠.

(4.9)

By (2.15), (4.2) and (4.8), we get

XT/2
n

(
ϕ0

)(
β̂n − β0

)
= X−1/2

n

(
ϕ0

)
S
(β)
n

(
ϕ0

)
+ oP (1)

= X−1/2
n

(
ϕ0

) n∑
t=2

ηt
(
g ′
(
xTt β0

)
xt − ft(θ0)g ′

(
xTt−1β0

)
xt−1

)
+ oP (1),

(4.10)

n∑
t=2

f ′t
2(θ0)e2

t−1

(
θ̂n − θ0

)
= S(θ)

n

(
ϕ0

)
+ oP

(√
Δn(θ0, σ0)

)

=
n∑
t=2

f ′t(θ0)ηtet−1 + oP
(√

Δn(θ0, σ0)
)
.

(4.11)

Note that

εt = yt − g
(
xTt β

)
= g ′

(
xTt β

∗
)
xTt

(
β0 − β

)
+ et (4.12)
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By (2.1), (2.11) and (4.12), we have

ε̂t − ft
(
θ̂n

)
ε̂t−1 =

(
g ′
(
xTt β

∗
)
xTt − ft

(
θ̂n

)
g ′
(
xTt−1β

∗∗
)
xTt−1

)(
β0 − β̂n

)
+
(
et − ft

(
θ̂n

)
et−1

)
.

(4.13)

By (4.13) and (2.10), we have

n∑
t=2

(
ε̂t − ft

(
θ̂n

)
ε̂t−1

)2
=

n∑
t=2

(
ε̂t − ft

(
θ̂n

)
ε̂t−1

)((
g ′
(
xTt β

∗
)
xTt − ft

(
θ̂n

)
g ′
(
xTt−1β

∗∗
)
xTt−1

)

×
(
β0 − β̂n

)
+
(
et − ft

(
θ̂n

)
et−1

))
=

n∑
t=2

(
ε̂t − ft

(
θ̂n

)
ε̂t−1

)(
g ′
(
xTt β

∗
)
xTt − ft

(
θ̂n

)
g ′
(
xTt−1β

∗∗
)
xTt−1

)(
β0 − β̂n

)

+
n∑
t=2

(
ε̂t − ft

(
θ̂n

)
ε̂t−1

)(
et − ft

(
θ̂n

)
et−1

)

=
n∑
t=2

(
ε̂t − ft

(
θ̂n

)
ε̂t−1

)(
et − ft

(
θ̂n

)
et−1

)
.

(4.14)

By (4.13), we have

(
g ′
(
xTt β

∗
)
xTt − ft

(
θ̂n

)
g ′
(
xTt−1β

∗∗
)
xTt−1

)(
β0 − β̂n

)
=

(
ε̂t − ft

(
θ̂n

)
ε̂t−1

)
−
(
et − ft

(
θ̂n

)
et−1

)
.

(4.15)

By (4.15), we have

n∑
t=2

((
g ′
(
xTt β

∗
)
xTt − ft

(
θ̂n

)
g ′
(
xTt−1β

∗∗
)
xTt−1

)(
β0 − β̂n

))2

=
n∑
t=2

(
ε̂t − ft

(
θ̂n

)
ε̂t−1

)2
+

n∑
t=2

(
et − ft

(
θ̂n

)
et−1

)2

− 2
n∑
t=2

(
ε̂t − ft

(
θ̂n

)
ε̂t−1

)(
et − ft

(
θ̂n

)
et−1

)

=
n∑
t=2

(
et − ft

(
θ̂n

)
et−1

)2 −
n∑
t=2

(
ε̂t − ft

(
θ̂n

)
ε̂t−1

)2
.

(4.16)
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By (4.14) and (4.16), we have

n∑
t=2

(
ε̂t − ft

(
θ̂n

)
ε̂t−1

)2
=

n∑
t=2

(
et − ft

(
θ̂n

)
et−1

)2

−
n∑
t=2

((
g ′
(
xTt β

∗
)
xTt − ft

(
θ̂n

)
g ′
(
xTt−1β

∗∗
)
xTt−1

)(
β0 − β̂n

))2
.

(4.17)

By (4.15), we have

n∑
t=2

(
ε̂t − ft

(
θ̂n

)
ε̂t−1

)2

=
n∑
t=2

(
et − ft

(
θ̂n

)
et−1

)2
+

n∑
t=2

((
g ′
(
xTt β

∗
)
xTt − ft

(
θ̂n

)
g ′
(
xTt−1β

∗∗
)
xTt−1

)(
β0 − β̂n

))2

+ 2
n∑
t=2

(
et − ft

(
θ̂n

)
et−1

)((
g ′
(
xTt β

∗
)
xTt − ft

(
θ̂n

)
g ′
(
xTt−1β

∗∗
)
xTt−1

)(
β0 − β̂n

))
.

(4.18)

Thus, by (4.17) and (4.18), we have

n∑
t=2

((
g ′
(
xTt β

∗
)
xTt − ft

(
θ̂n

)
g ′
(
xTt−1β

∗∗
)
xTt−1

)(
β0 − β̂n

))2

+
n∑
t=2

(
et − ft

(
θ̂n

)
et−1

)((
g ′
(
xTt β

∗
)
xTt − ft

(
θ̂n

)
g ′
(
xTt−1β

∗∗
)
xTt−1

)(
β0 − β̂n

))
= 0.

(4.19)

Since ηt = et − ft(θ0)et−1, we have

n∑
t=2

(
et − ft

(
θ̂n

)
et−1

)2
=

n∑
t=2

(
ηt + ft(θ0)et−1 − ft

(
θ̂n

)
et−1

)2

=
n∑
t=1

η2
t +

n∑
t=2

(
ft(θ0) − ft

(
θ̂n

))2
e2
t−1 + 2

(
ft(θ0) − ft

(
θ̂n

))
ηtet−1.

(4.20)

Thus, by (4.17), (4.20) and mean value theorem, we have

(n − 1)σ̂2
n =

n∑
t=2

(
ε̂t − ft

(
θ̂n

)
ε̂t−1

)2

=
n∑
t=1

η2
t +

n∑
t=2

(
ft(θ0) − ft

(
θ̂n

))2
e2
t−1 + 2

(
ft(θ0) − ft

(
θ̂n

))
ηtet−1
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−
n∑
t=2

((
g ′
(
xTt β

∗
)
xTt − ft

(
θ̂n

)
g ′
(
xTt−1β

∗∗
)
xTt−1

)(
β0 − β̂n

))2

=
n∑
t=1

η2
t +

(
θ0 − θ̂n

)2 n∑
t=2

f ′t
2
(
θ̃
)
e2
t−1 + 2

(
θ0 − θ̂n

) n∑
t=2

f ′t
(
θ̃
)
et−1ηt

−
n∑
t=2

((
g ′
(
xTt β

∗
)
xTt − ft

(
θ̂n

)
g ′
(
xTt−1β

∗∗
)
xTt−1

)(
β0 − β̂n

))2
,

(4.21)

where θ̃ = aθ0 + (1 − a)θ̂n for some 0 ≤ a ≤ 1.

It is easy to know that

(
β̂n − β0

)T
Xn

(
ϕ0

)(
β̂n − β0

)

=

(
n∑
t=2

ηtX
−1/2
n

(
ϕ0

)(
g ′
(
xTt β0

)
xt − ft(θ0)g ′

(
xTt−1β0

)
xt−1

))2

+ op(1).

(4.22)

By Lemma 4.2 and (4.22), we have

(n − 1)σ̂2
n =

n∑
t=1

η2
t +

(
θ0 − θ̂n

)2 n∑
t=2

f ′t
2
(
θ̃
)
e2
t−1 + 2

(
θ0 − θ̂n

) n∑
t=2

f ′t
(
θ̃
)
et−1ηt

−
(

n∑
t=2

ηtX
−1/2
n

(
β∗, β∗∗, θ̂n

)(
g ′
(
xTt β0

)
xt − ft(θ0)g ′

(
xTt−1β0

)
xt−1

))2

+ oP (1)

=
n∑
t=1

η2
t +

(
θ0 − θ̂n

)2 n∑
t=2

f ′t
2
(
θ̃
)
e2
t−1 + 2

(
θ0 − θ̂n

) n∑
t=2

f ′t
(
θ̃
)
et−1ηt

−
(

n∑
t=2

ηtX
−1/2
n

(
ϕ0

)(
g ′
(
xTt β0

)
xt − ft(θ0)g ′

(
xTt−1β0

)
xt−1

))2

+ oP (1).

(4.23)

Hence, by (4.11), we have

θ̂n − θ0 =
∑n

t=2 f
′
t(θ0)ηtet−1∑n

t=2 f
′
t
2(θ0)e2

t−1

+ oP

( √
Δn(θ0, σ0)∑n

t=2 f
′
t
2(θ0)e2

t−1

)

=
∑n

t=2 f
′
t(θ0)ηtet−1∑n

t=2 f
′
t
2(θ0)e2

t−1

+ oP

⎛⎜⎝ 1√∑n
t=2 f

′
t
2(θ0)e2

t−1

⎞⎟⎠.

(4.24)
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By (4.24), we have

(
θ0 − θ̂n

)2 n∑
t=2

f ′t
2
(
θ̃
)
e2
t−1 + 2

(
θ0 − θ̂n

) n∑
t=2

f ′t
(
θ̃
)
et−1ηt

=

⎛⎜⎝∑n
t=2 f

′
t(θ0)ηtet−1∑n

t=2 f
′
t
2(θ0)e2

t−1

+ oP

⎛⎜⎝ 1√∑n
t=2 f

′
t
2(θ0)e2

t−1

⎞⎟⎠
⎞⎟⎠

2

n∑
t=2

f ′t
2
(
θ̃
)
e2
t−1

+ 2

⎛⎜⎝∑n
t=2 f

′
t(θ0)ηtet−1∑n

t=2 f
′
t
2(θ0)e2

t−1

+ oP

⎛⎜⎝ 1√∑n
t=2 f

′
t
2(θ0)e2

t−1

⎞⎟⎠
⎞⎟⎠ n∑

t=2

f ′t
(
θ̃
)
et−1ηt + oP (1)

=

⎛⎜⎝∑n
t=2 f

′
t(θ0)ηtet−1∑n

t=2 f
′
t
2(θ0)e2

t−1

+ oP

⎛⎜⎝ 1√∑n
t=2 f

′
t
2(θ0)e2

t−1

⎞⎟⎠
⎞⎟⎠

2

n∑
t=2

(
f ′t(θ0) + o(1)

)2
e2
t−1

+ 2

⎛⎜⎝∑n
t=2 f

′
t(θ0)ηtet−1∑n

t=2 f
′
t
2(θ0)e2

t−1

+ oP

⎛⎜⎝ 1√∑n
t=2 f

′
t
2(θ0)e2

t−1

⎞⎟⎠
⎞⎟⎠

·
n∑
t=2

(
f ′′t (θ0) + o(1)

)
et−1ηt + oP (1)

=

(∑n
t=2 f

′
t(θ0)ηtet−1

)2∑n
t=2 f

′
t
2(θ0)e2

t−1

− 2
(∑n

t=2 f
′
t(θ0)ηtet−1

)2∑n
t=2 f

′
t
2(θ0)e2

t−1

+ oP (1)

= −
(∑n

t=2 f
′
t(θ0)ηtet−1

)2∑n
t=2 f

′
t
2(θ0)e2

t−1

+ oP (1).

(4.25)

By Lemma 4.2, we have

(n − 1)σ̂2
n =

n∑
t=1

η2
t −

(∑n
t=2 f

′
t(θ0)ηtet−1

)2∑n
t=2 f

′
t
2(θ0)e2

t−1

−
(

n∑
t=2

ηtX
−1/2
n

(
β∗, β∗∗, θ̂n

)(
g ′
(
xTt β0

)
xt − ft(θ0)g ′

(
xTt−1β0

)
xt−1

))2

+ oP (1)

=
n∑
t=1

η2
t −

(∑n
t=2 f

′
t(θ0)ηtet−1

)2∑n
t=2 f

′
t
2(θ0)e2

t−1

−
(

n∑
t=2

ηtX
−1/2
n

(
ϕ0

)(
g ′
(
xTt β0

)
xt − ft(θ0)g ′

(
xTt−1β0

)
xt−1

))2

+ oP (1).

(4.26)
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Now, we prove (3.8). By (4.12), we have

ε̂t(1) = yt − g
(
xTt β̂1n

)
= g ′

(
xTt β̂

∗
1n

)
xTt

(
β0 − β̂1n

)
+ et. (4.27)

Note that

εt − ft(θ0)εt−1 =
(
g ′
(
xTt β

∗
)
xTt − ft(θ0)g ′

(
xTt−1β

∗∗
)
xTt−1

)(
β0 − β

)
+ ηt. (4.28)

From (4.28), we have

ε̂t(1) − θ̂1nε̂t−1(1) =
(
g ′
(
xTt β̂

∗
1n

)
xTt − θ̂1ng

′
(
xTt−1β̂

∗∗
1n

)
xTt−1

)(
β0 − β̂1n

)
+ ηt. (4.29)

By (2.8) and (2.10), we have

0 =
n∑
t=2

(
ε̂t(1) − θ̂1nε̂t−1(1)

)(
g ′
(
xTt β̂

∗
1n

)
xt − θ̂1ng

′
(
xTt−1β̂

∗∗
1n

)
xt−1

)

=
n∑
t=2

(
g ′
(
xTt β̂

∗
1n

)
xTt − θ̂1ng

′
(
xTt−1β̂

∗∗
1n

)
xTt−1

)(
β0 − β̂1n

)(
g ′
(
xTt β̂

∗
1n

)
xt − θ̂1ng

′
(
xTt−1β̂

∗∗
1n

)
xt−1

)

+
n∑
t=2

ηt
(
g ′
(
xTt β̂

∗
1n

)
xt − θ̂1ng

′
(
xTt−1β̂

∗∗
1n

)
xt−1

)

=
(
β0 − β̂1n

)T
X1n

(
β̂∗1n, β̂

∗∗
1n, θ̂1n

)
+

n∑
t=2

ηt
(
g ′
(
xTt β̂

∗
1n

)
xt − θ̂1ng

′
(
xTt−1β̂

∗∗
1n

)
xt−1

)
.

(4.30)

From (4.30), we obtain that

β̂1n − β0 = X−1
1n

(
β̂∗1n, β̂

∗∗
1n, θ̂1n

) n∑
t=2

ηt
(
g ′
(
xTt β̂1n

)
xt − θ̂1ng

′
(
xTt−1β̂1n

)
xt−1

)
. (4.31)

By (4.29), (4.31) and Lemma 4.2, we have

(n − 1)σ̂2
1n =

n∑
t=2

(
ε̂t(1) − θ̂1nε̂t−1(1)

)2

=
n∑
t=1

η2
t +

(
β0 − β̂1n

)T
X1n

(
β̂∗1n, β̂

∗∗
1n, θ̂1n

)(
β0 − β̂1n

)

+ 2
(
β0 − β̂1n

)T n∑
t=2

ηt
(
g ′
(
xTt β̂

∗
1n

)
xt − θ̂1ng

′
(
xTt−1β̂

∗∗
1n

)
xt−1

)
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=
n∑
t=1

η2
t −

(
n∑
t=2

ηtX
−1/2
1n

(
β̂∗1n, β̂

∗∗
1n, θ̂1n

)(
g ′
(
xTt β̂

∗
1n

)
xt − θ̂1ng

′
(
xTt−1β̂

∗∗
1n

)
xt−1

))2

+ op(1)

=
n∑
t=1

η2
t −

(
n∑
t=2

ηtX
−1/2
1n

(
ϕ0

)(
g ′
(
xTt β0

)
xt − θ0g

′
(
xTt−1β0

)
xt−1

))2

+ op.

(4.32)

By (3.3)–(3.5), we have

d1n = L̂1n − L̂n = (n − 1) ln

(
σ̂2

1n

σ̂2
n

)
= (n − 1)

((
σ̂2

1n

σ̂2
n

)
− 1

)
+ oP (1). (4.33)

Under the H01, and by (4.26), (4.32) and (4.33), we have

(n − 1)
(
σ̂2

1n − σ̂2
n

)
σ̂2
n

=

(∑n
t=2 ηtet−1

)2

σ̂2
n

∑n
t=2 e

2
t−1

+ oP (1)

=

(∑n
t=2 ηtet−1

)2

σ2
0

∑n
t=2 e

2
t−1

+ oP (1).

(4.34)

It is easily proven that

∑n
t=2 ηtet−1

σ0

√∑n
t=2 e

2
t−1

−→N(0, 1). (4.35)

Thus, by (4.33)–(4.35), we finish the proof of (3.8).
Next we prove (3.9). Under H02 : ft(θ) = θ, g(u) = u, and yt = xTt β0 + et, we have

ε̂t(2) = yt − xTt β̂2n = xTt β0 − xTt β̂2n + et = xTt
(
β0 − β̂2n

)
+ et. (4.36)

Hence

ε̂t(2) − θ̂2nε̂t−1(2) = xTt
(
β0 − β̂2n

)
+ et − θ̂2n

(
xTt−1

(
β0 − β̂2n

)
+ et−1

)
=

(
xTt − θ̂2nx

T
t−1

)(
β0 − β̂2n

)
+ ηt.

(4.37)

By (2.8), (2.10), we have

0 =
n∑
t=2

(
ε̂t(2) − θ̂2nε̂t−1(2)

)(
xt − θ̂2nxt−1

)

=
n∑
t=2

(
xTt − θ̂2nx

T
t−1

)(
β0 − β̂2n

)(
xt − θ̂2nxt−1

)
+

n∑
t=2

ηt
(
xt − θ̂2nxt−1

)
.

(4.38)
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From (4.38), we obtain,

β̂2n − β0 = X−1
2n

(
θ̂2n

) n∑
t=2

ηt
(
xt − θ̂2nxt−1

)
. (4.39)

Thus, by (4.37), (4.39) and Lemma 4.2, we have

(n − 1)σ̂2
2n =

n∑
t=2

(
ε̂t(2) − θ̂2nε̂t−1(2)

)2

=
n∑
t=1

η2
t +

(
β0 − β̂2n

)T
X2n

(
θ̂2n

)(
β0 − β̂2n

)
+ 2

(
β0 − β̂2n

)T n∑
t=2

ηt
(
xt − θ̂2nxt−1

)

=
n∑
t=1

η2
t −

(
n∑
t=2

ηt
(
xt − θ̂2nxt−1

)T)
X−1

2n

(
θ̂2n

)( n∑
t=2

ηt
(
xt − θ̂2nxt−1

))

=
n∑
t=1

η2
t −

(
n∑
t=2

ηtX
−1/2
2n (θ0)(xt − θ0xt−1)

)2

+ op(1).

(4.40)

By (3.3)–(3.5), we have

d2n = L̂2n − L̂n = (n − 1) ln

(
σ̂2

2n

σ̂2
n

)
= (n − 1)

((
σ̂2

2n

σ̂2
n

)
− 1

)
+ oP (1). (4.41)

Under the H02, by (4.26), (4.40), and (4.41), we obtain

(n − 1)
(
σ̂2

2n − σ̂2
n

)
σ̂2
n

=

(∑n
t=2 ηtet−1

)2

σ̂2
n

∑n
t=2 e

2
t−1

+ oP (1)

=

(∑n
t=2 ηtet−1

)2

σ2
0

∑n
t=2 e

2
t−1

+ oP (1).

(4.42)

Thus, by (4.35), (4.42), (3.9) holds.

Finally, we prove (3.10). Under H03, we have

ε̂t(3) = yt − ex
T
t β̂

∗
3n

1 + ex
T
t β̂

∗
3n

=
ex

T
t β̂

∗
3n(

1 + ex
T
t β̂

∗
3n

)2
xTt

(
β0 − β̂3n

)
+ et. (4.43)
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Thus

ε̂t(3) − θ̂3nε̂t−1(3) =
ex

T
t β̂

∗
3n(

1 + ex
T
t β̂

∗
3n

)2
xTt

(
β0 − β̂3n

)
+ et

− θ̂3n
ex

T
t−1β̂

∗∗
3n(

1 + ex
T
t−1β̂

∗∗
3n

)2
xTt−1

(
β0 − β̂3n

)
− θ̂3net−1

=

⎛⎜⎝ ex
T
t β̂

∗
3n(

1 + ex
T
t β̂

∗
3n

)2
xTt − θ̂3n

ex
T
t−1β̂

∗∗
3n(

1 + ex
T
t−1
β̂∗∗3n

)2
xTt−1

⎞⎟⎠(
β0 − β̂3n

)
+ ηt.

(4.44)

By (2.8) and (2.10), we have

0 =
n∑
t=2

(
ε̂t(3) − θ̂3nε̂t−1(3)

)⎛⎜⎝ ex
T
t β̂

∗
3n(

1 + ex
T
t β̂

∗
3n

)2
xt − θ̂3n

ex
T
t−1β̂

∗∗
3n(

1 + ex
T
t−1β̂

∗∗
3n

)2
xt−1

⎞⎟⎠

=
n∑
t=2

⎛⎜⎝ ex
T
t β̂

∗
3n(

1 + ex
T
t β̂

∗
3n

)2
xTt − θ̂3n

ex
T
t−1β̂

∗∗
3n(

1 + ex
T
t−1
β̂∗∗3n

)2
xTt−1

⎞⎟⎠(
β0 − β̂3n

)

×

⎛⎜⎝ ex
T
t β̂

∗
3n(

1 + ex
T
t β̂

∗
3n

)2
xt − θ̂3n

ex
T
t−1β̂

∗∗
3n(

1 + ex
T
t−1β̂

∗∗
3n

)2
xt−1

⎞⎟⎠

+
n∑
t=2

ηt

⎛⎜⎝ ex
T
t β̂

∗
3n(

1 + ex
T
t β̂

∗
3n

)2
xt − θ̂3n

ex
T
t−1
β̂∗∗3n(

1 + ex
T
t−1β̂

∗∗
3n

)2
xt−1

⎞⎟⎠

=
(
β0 − β̂3n

)T
X3n

(
β̂∗3n, β̂

∗∗
3n, θ̂3n

)
+

n∑
t=2

ηt

⎛⎜⎝ ex
T
t β̂

∗
3n(

1 + ex
T
t β̂

∗
3n

)2
xt − θ̂3n

ex
T
t−1β̂

∗∗
3n(

1 + ex
T
t−1β̂

∗∗
3n

)2
xt−1

⎞⎟⎠.

(4.45)

From (4.45), we obtain

β̂3n − β0 = X−1
3n

(
β̂∗3n, β̂

∗∗
3n, θ̂3n

) n∑
t=2

ηt

⎛⎜⎝ ex
T
t β̂

∗
3n(

1 + ex
T
t β̂

∗
3n

)2
xt − θ̂3n

ex
T
t−1β̂

∗∗
3n(

1 + ex
T
t−1β̂

∗∗
3n

)2
xt−1

⎞⎟⎠. (4.46)
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By (4.44), (4.46) and Lemma 4.2, we have

(n − 1)σ̂2
3n =

n∑
t=2

(
ε̂t(3) − θ̂3nε̂t−1(3)

)2

=
n∑
t=1

η2
t +

(
β0 − β̂3n

)T
X3n

(
β̂∗3n, β̂

∗∗
3n, θ̂3n

)(
β0 − β̂3n

)

+ 2
(
β0 − β̂3n

)T n∑
t=2

ηt

⎛⎜⎝ ex
T
t β̂

∗
3n(

1 + ex
T
t β̂

∗
3n

)2
xt − θ̂3n

ex
T
t−1β̂

∗∗
3n(

1 + ex
T
t−1β̂

∗∗
3n

)2
xt−1

⎞⎟⎠

=
n∑
t=1

η2
t −

⎛⎜⎝ n∑
t=2

ηtX
−1/2
3n

(
β̂∗3n, β̂

∗∗
3n, θ̂3n

)

×

⎛⎜⎝ ex
T
t β̂

∗
3n(

1 + ex
T
t β̂

∗
3n

)2
xTt − θ̂3n

ex
T
t−1
β̂∗∗3n(

1 + ex
T
t−1β̂

∗∗
3n

)2
xTt−1

⎞⎟⎠
⎞⎟⎠

2

=
n∑
t=1

η2
t −

⎛⎜⎝ n∑
t=2

ηtX
−1/2
3n

(
ϕ0

)⎛⎜⎝ ex
T
t β0(

1 + ex
T
t β0

)2
xt − θ0

ex
T
t−1β0(

1 + ex
T
t−1β0

)2
xt−1

⎞⎟⎠
⎞⎟⎠

2

+ op(1).

(4.47)

By (3.3)–(3.5), we know that

d3n = L̂3n − L̂n = (n − 1) ln

(
σ̂2

3n

σ̂2
n

)
= (n − 1)

((
σ̂2

3n

σ̂2
n

)
− 1

)
+ oP (1). (4.48)

Under the H03, by (4.26), (4.47) and (4.48), we have

(n − 1)
(
σ̂2

3n − σ̂2
n

)
σ̂2
n

=

(∑n
t=2 ηtet−1

)2

σ2
0

∑n
t=2 e

2
t−1

+ oP (1). (4.49)

Thus, (3.10) follows from (4.48), (4.49), and (4.35). Therefore, we complete the proof of

Theorem 3.1.

5. Conclusions and Open Problems

In the paper, we consider the generalized linear mode with FCA processes, which includes

many special cases, such as an ordinary regression model, an ordinary generalized regression

model, a linear regression model with constant coefficient autoregressive processes, time-

dependent and function coefficient autoregressive processes, constant coefficient autore-

gressive processes, time-dependent or time-varying autoregressive processes, and a linear



Mathematical Problems in Engineering 17

regression model with functional coefficient autoregressive processes. And then we obtain

the QML estimators for some unknown parameters in the generalized linear mode model and

extend some estimators. At last, we use pseudo LR method to investigate three hypothesis

tests of interest and obtain the asymptotic chi-squares distributions of statistics.

However, several lines of future work remain open.

(1) It is well known that a conventional time series can be regarded as the solution to a

differential equation of integer order with the excitation of white noise in mathematics, and a

fractal time series can be regarded as the solution to a differential equation of fractional order

with a white noise in the domain of stochastic processes (see [25]). In the paper, {εt} is a

conventional nonlinear time series. We may investigate some hypothesis tests by pseudo LR

method when the {εt} is a fractal time series (the idea is given by an anonymous reviewer).
In particular, we assume that

p∑
i=0

ap−iDviεt = ηt, (5.1)

where vp, vp−1, . . . , v0 is strictly decreasing sequence of nonnegative numbers, ai is a constant

sequence, and Dv is the Riemann-Liouville integral operator of order v > 0 given by

Dvh(t) =
1

Γ(v)

∫ t

0

(t − u)v−1h(u)du, (5.2)

where Γ is the Gamma function, and h(t) is a piecewise continuous on (0,∞) and integrable

on any finite subinterval of [0,∞) (See [25, 26]). Fractal time series may have a heavy-

tailed probability distribution function and has been applied various fields of sciences and

technologies (see [25, 27–32]). Thus it is very significant to investigate various regression

models with fractal time series errors, including regression model (1.1) with (5.1).
(2) We maybe investigate the others hypothesis tests, for example:

H04: ft(θ) = 0, g(u) = u, σ2
0 > 0;

H05: ft(θ) = θ, g(u) = 0, σ2
0 > 0;

H06: ft(θ) = 0, g(u) = eu/(1 + eu), σ2
0 > 0;

H07: ft(θ) = at and g(u) is a continuous function, σ2
0 > 0;

H08: ft(θ) = at, g(u) = u, σ2
0 > 0;

H09: ft(θ) = at, g(u) = eu/(1 + eu), σ2
0 > 0.
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Abnormal running behavior frequently happen in robbery cases and other criminal cases. In
order to identity these abnormal behaviors a method to detect and recognize abnormal running
behavior, is presented based on spatiotemporal parameters. Meanwhile, to obtain more accurate
spatiotemporal parameters and improve the real-time performance of the algorithm, a multitarget
tracking algorithm, based on the intersection area among the minimum enclosing rectangle of the
moving objects, is presented. The algorithm can judge and exclude effectively the intersection of
multitarget and the interference, which makes the tracking algorithm more accurate and of better
robustness. Experimental results show that the combination of these two algorithms can detect and
recognize effectively the abnormal running behavior in surveillance videos.

1. Introduction

In most of the existing video surveillance systems, moving objects only were detected and

tracked, which lacked to detect and recognize their behaviors in the surveillance scene.

However, the purpose of monitoring the scene is to detect and analyze the unusual event

or person’s abnormal behavior in real life. In a long video sequence, such works handled

manually are neither practical nor efficient, and the video surveillance system has already

lost its original intention for preventing and actively intervening and almost become a tool

of providing video evidence afterwards. The intelligent detection of abnormal behavior not

only can detect abnormal behavior and inform the staffs to prevent illegal activities in time,

but also can save a lot of storage space and avoid the staffs finding and collecting massively

evidence after the illegal actions had happened.
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At present, the methods of detecting abnormal behavior always have analyzed the

continuous motion trail of moving object. First of all, the areas that change in the current

frame have been identified, and the objects (people) of the region has been tracked in

real-time. Secondly, velocity, acceleration, motion direction, and so on has been computed

on the basis of the state information that was founded in each frame, and state models

have been established. Finally, state parameters of the test video have been matched with

the precalibrated parameters of the model in which the normal and reference sequence of

events have been contained, and then abnormal events can be detected under the degree

of match [1, 2]. Shape, motion and other information have been extracted from image

sequence through a predetermined criteria. Based on above-mentioned information, the

normal behavior model has been defined by using artificial or semisupervised methods,

which usually have modeled the state represented by the features of the image sequences

with HMM, and then observation has been considered as abnormal behavior if they do

not match the normal behavior model [3, 4]. However, the unpredictable and infrequent

characteristics of abnormal behaviors have limited the supervised learning methods, because

these methods have needed a large number of training samples. The complexity of events

and actions often make a simple event model not enough to express a wide range of abnormal

behaviors [5, 6].
In [7, 8], video documents were divided into some segments according to some rules,

then extracting features from each subvideo were composed of a vector to represent this sub-

video. The method of clustering and similarity measure was adapted to those vectors, and

then the behavior in a sub-video would be considered as abnormal if the subvideo had less

categories. But the computation would dramatically increase as the number of categories

increased. It was very difficult that identifying abnormal behavior kept real time. Jian-hao

and Li [9] proposed a method to identify abnormal behavior, such as robbery, fighting

and chasing, in surveillance videos. The method recognized these behaviors according to

the disorder of velocity, and direction of these behaviors. However, the method could not

distinguish the three abnormal behaviors. Cheng et al. [10] proposed a method to detect and

describe periodic motions, which can be used to characterize periodic motion of a nonrigid

moving object, such as human running behavior. Furthermore, to identify the human running

behavior, they defined a descriptor derived from their periodic motion description. However,

it could not classify these running behaviors.

In order to satisfy the real-time performance in the surveillance system, this paper

proposes a method that detects the abnormal running behavior on the basis of spatio-

temporal parameters in surveillance videos. First of all, we extract foreground objects from

videos based on Mixture Gaussian Model and Frame Subtraction [11, 12] and binarize the

images. The algorithm for extract foreground involves nonlinear systems [13–15]. In addition,

we obtain a clearer foreground image with morphological processing. Furthermore, in order

to satisfy the real-time requirement, this paper presents a multitarget tracking algorithm

that is based on the intersection area among the minimum enclosing rectangles, which can

effectively track multiple objects in the case of shelter. Finally, the abnormal running behavior

can be detected through spatio-temporal relationship. Experimental results show the effective

and the real-time performance of the proposed algorithm.

This paper is organized as follows. In Section 2, the definitions of the normal running

behavior and the abnormal behavior are presented. In Section 3, the method of multitarget

tracking is described in detail. In Section 4, the approach to recognize abnormal running

behavior is described. In Section 5, experimental results based on the surveillance video

database are shown, and the conclusion is given in Section 6.
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2. Definition of Running Behaviors

Abnormal running behaviors frequently happened in robbery cases and other criminal cases.

In order to distinguish between the abnormal running and the normal running, we first

present the definition of the two behaviors as follow.

Definition 2.1 (normal running). The object gradually accelerates from the state of walking

or being stationary and then reaches even greater than the speed of normal running after a

certain long time, or the object’s speed moving into the video scene is greater than the speed

of normal running. We define the above-mentioned action as the Normal Running Behavior.
It can be represented by the following equation:

isRun =

{
1 (V0 ≤ Vwalk, Vt > Vrun, t > Trun)||(V0 ≥ Vrun),
0 else.

(2.1)

Definition 2.2 (abnormal running). The object suddenly accelerates from the state of walk or

stationary and then reaches even greater than the speed of normal running after a certain

short time, which is defined as Abnormal Running Behavior. It can be written as:

isAbnormal =

{
1 V0 ≤ Vwalk, Vt > Vrun, t < Tab

0 else,
(2.2)

where V0, Vt are the initial velocity and the instantaneous velocity of the interested object,

respectively, and Vwalk, Vrun are the speed of walk and the speed of normal running,

separately. In additional, t is the time interval of an object from the speed less than Vwalk

to the speed Vt. When the speed Vt > Vrun, Trun is a time threshold used to determine whether

the motion of object is the normal running, Tab is also a time threshold used to determine

whether the motion of object is the abnormal running, and there is Tab > Trun. Diagrams of

the behavior are shown in Figures 1 and 2.

In Figures 1 and 2, t1 is the start time and t2 is the moment that the speed of moving

object reaches the Vrun value. The difference between Figures 1 and 2 is that t2 − t1 > Trun

existed in Figure 1, while there is t2 − t1 < Tab in Figure 2. From this we have two conclusions:

the key to distinguish the run behavior from the nonrun behavior is the speed of moving

target; while the key to differentiate normal running from abnormal running is the moment

at which moving targets achieve the speed of running.

3. Target Tracking under Shelter

3.1. The Basic Idea of the Method

Between the two adjacent images, the position and the contour of the same object are only

changing a little in general, so the object’s region in the two images is often intersected with

each other [16, 17]. It is an important feature in continuous video sequences. The feature is

exploited to track object in continuous video sequences in this paper, which is also used to

detect moving objects in the algorithm of frame subtraction. In the following we will discuss

the fundamental ideas of this paper in detail.
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Vwalk

VRun

t

V

t1 t1 + Trun t2

Figure 1: Normal running.

Vwalk

VRun

t

V

t2t1 t1 + Tab

Figure 2: Abnormal running.

In this paper, a moving object is marked with the minimum enclosing rectangle which

is represented as Rect I(I.x, I.y, I.width, I.Height), and (I.x, I.y) refers to coordinates of the

upper left corner. (I.width, I.Height) refers to the width and the height of the rectangle. Thus

the moving object’s centroid can be calculated as the following formula:

CI.x = I.x +
I.width

2
, (3.1)

CI.y = I.y +
I.height

2
. (3.2)
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In accordance with (3.1) and (3.2), we can obtain the centroid CI(CI.x, CI.y) of the

moving object. We assume that J which is represented as Rect J(J.x, J.y, J.witdth, J.Height) is

a moving object in the t − 1 frame. We consider that the moving object J intersects with I, a

moving object, in the t frame if they satisfy the following formulas:

|CI.x − CJ.x| ≤ I.width

2
+
J.width

2
, (3.3)

∣∣CI.y − CJ.y∣∣ ≤ I.height

2
+
J.height

2
, (3.4)

Aea(Rect I&Rect J)
min Aea(Rect I,Rect J)

≥ r. (3.5)

Actually the object I intersects with the object J if they satisfy the (3.3) and (3.4),
while the object’s position does not always have much change in the two adjacent images,

so that the intersection area between the rectangle of Rect I and Rect J has the property that is

represented as (3.5). In this paper, Rect I and Rect J are considered as the intersection unless

they meet (3.3), (3.4), and (3.5) simultaneously. Shelter often occurs in surveillance scenes,

because there are always multiple moving objects, so (3.5) can exclude a small part of the

shelter which always impacts on the object tracking.

The shelter often happens in multitarget tracking in which objects may be sheltered by

others or themselves, or by the stationary object in the background. The degree of the shelter

is always different. The object’s shelter can be divided into two stages. Firstly, the shelter

occurring means that the target information is lost more and more during this period, which is

shown as two or more rectangle boxes merged. Secondly, the shelter begins disappearing, and

the target information is gradually restored, which are shown as the rectangle box separated

into two or more rectangle boxes.

Therefore, when the block is occurring, this approach is to merge the blocked objects

into a new object tracking and to record the histogram information of the sheltered objects in

the previous frame. When the shelter is disappearing, to recognize the separated object, the

separated rectangular box matches the recorded histogram of the tracked target.

3.2. The Exclusion of Interference

The interference in the moving object detection phase generally has two features. One is small

size, and the other is the short survival time. In the former case, since we are only interested

in people in video images and the people size in video images is generally not too small, so

we can use a threshold to remove small object. According to data from several experimental

results, we remove the object if its target area is less than 30 pixels. In the latter case, we

have designed the list of temporary tracked objects, m TempObjectList, and the list of tracked

objects, m TrackedObjectList, which are shown in Figure 3.

The node structures of the two lists are same. Each node records the corresponding

history information of the moving target, such as the information of tracking process or

the tracking information of behaviors analysis. These nodes are called tracked objects. There

are differences in the two lists. m TempObjectList records the moving object in scenes whose

existence time does not exceed a certain threshold, and m TrackedObjectList records the stable

moving object whose existence time reaches a certain threshold.
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1 2 null

1 2 null

m

n

···

···m TrackedObjectList

m TempObjectList

Figure 3: The list of temporary tracked object and tracked object.

According to many experimental results, only when the existence time of the moving

object reaches 5 frames, then the moving object is inserted into m TrackedObjectList and

deleted from m TempObjectList. This method can exclude short-term interference in the

surveillance video. Meanwhile, in order to avoid the interference in which the objects appear

in part, we only deal with the object that has entered completely into the scene.

3.3. The Proposed Algorithm

Algorithm 3.1. Multitarget tracking algorithm.

Input. The list of moving objects extracted from the current frame.

Step 1. We get a node from the m TempObjectList or m TrackedObjectList. If there are moving

objects in the list of moving objects with the node that satisfies the formulae (3.3), (3.4), and

(3.5), then those moving objects are recorded as associated objects in the node. The node is

recorded as associated node in those moving objects too. If there are some nodes which are

not handled in the m TempObjectList or the m TrackedObjectList, then go to Step 1. Otherwise,

go to Step 2.

Step 2. We get a node from the m TempObjectList and the m TrackedObjectList and count the

number of associated objects of the node. If n = 0, then goto Step 3, else if n = 1, then go to

Step 4, else go to Step 5. If every node in the m TempObjectList and the m TrackedObjectList has

been processed, then go to Step 6.

Step 3. n = 0 shows the tracked objects has disappeared in the current frame, if it belongs

to m TempObjectList, then it is deleted from m TempObjectList. Otherwise if it is inserted into

m TempObjectList and deleted from m TrackedObjectList, go to Step 2.

Step 4. n = 1 means that there is only one object associated with the node. If there are more

associated nodes recorded in the associated object, then the shelter algorithm will begin.

Otherwise, the node is updated with the information of the associated object. Go to Step 2.

Step 5. n > 1 indicates that there are more associated objects, so the approach of the shelter

disappearing is utilized. Go to Step 2.

Step 6. If there are not objects associated with any node in the m TempObjectList and the

m TempObjectList, then a new node is generated for the object, and the node is inserted into

the m TempObjectList. Go to Step 7.

Step 7. Update the m TempObjectList and the m TrackedObjectList. Delete the node whose

existence time is more than 5 frames from the m TempObjectList and insert it into the

m TrackedObjectList.
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Figure 4: The main flow of multitarget tracking method.

Figure 4 shows the main flow chart of the algorithm. Mean shift and Particle Filter are

the most popular tracking algorithms in the intelligent video surveillance system. Comparing

with Mean shift tracking algorithm and Particle Filter tracking algorithm, the proposed

multitarget tracking algorithm has the following advantages.

(1) In the tracking result, regardless of the shelter, Particle Filter tracking results are

more accurate than Mean shift, and Particle Filter is less affected by the background.

Mean shift can track fast moving targets, but it is vulnerable to the background that

is similar to the tracking target. And it can easily cause the vibration of the tracking

window, which results in the tracking result being not stable. But our algorithm

is less affected by the background as well as Particle Filter, and our algorithm can

exclude two typical interferences in the surveillance video. Particle Filter and Mean
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shift cannot track the object which is entirely sheltered, but our algorithm can do

this.

(2) About the time complexity, Particle Filter is more complex than Mean shift. The

time complexity of Particle Filter is O(K2N2), where K is the number of moving

objects in the current frame, and N is the number of particles that distributed to

moving objects [18]. The time complexity of Mean shift is O(NkhCs), where N

is the average number of iterations per frame, kh is the number of pixel of target

in the window of nuclear function, and is Cs the cost of arithmetic operations,

such as an addition operation [19]. However, the time complexity of the proposed

multitarget tracking algorithm is O(K2), where K is the number of moving objects

in the current frame.

4. Detection of Abnormal Running Behavior

4.1. Detection of Running Behavior

According to the conclusion in the second part, the key to distinguish the running behavior

or nonrunning behavior is the speed of the moving object. The instantaneous speeds of the

targets can be simply obtained from vvideo = sk − sk−1, where sk, sk−1 is the target’s centroid

in the frame of k and k − 1, respectively. But it has not taken into account the actual action.

People may appear into the surveillance video scene from different angles, and the distance

between man and the camera may be changing. In addition, the focal lengths of cameras may

often vary. Although people were standing in the same position, if its location was relatively

far away from the camera, his picture will be small. On the contrary it will be relatively large.

Moreover, the focal length has the same impact on the picture size of man in the video images.

Thus we can see that vvideo is related with the camera focal length and the distance between

man and camera, for which we use the following formula to revise vvideo:

ν = α × vvideo√
min Aea(Rect I,Rect I ′)

, (4.1)

where Rect I, Rect I ′ is the enclosing rectangle of the moving object I in two adjacent frames,

respectively. And α = 27 is a const, vvideo, v′
video

is the instantaneous speed of object I in

the corresponding conditions of Rect I, Rect I ′, respectively. As RectI is similar to Rect I ′,
vvideo/

√
area(Rect I) = v′

video
/
√

area(Rect I ′). From this we can see that if the actual speeds

of an object into surveillance scene are same, vvideo/
√

area(Rect I) is same as the target area,

even if in different shooting conditions. Therefore, the speed revised by (4.1) is reliable.

However, there are many reasons leading to the instantaneous speed being not reliable.

First of all, the human motions are a complex system with a high degree of freedom and

nonlinear characteristics. Secondly, the position and the contour of the object will have

little change between the two adjacent images in general. Nevertheless, there may be some

interference in the phase of extracting moving targets. It will lead to the centroid position

if the target have not changed, even in the opposite direction. It makes the centroid and the

instantaneous speed not accurate with formula (3.1). To reduce the influence of the unreliable

factors, we use the average speed in a short time to distinct running or not. The average speed

of the targets can be obtained from v = (vk1
+ · · · + vk2

)/( k2 − k1), where k2 and k1 is frame

number.
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4.2. Recognition between Normal and Abnormal Running

Distinction of abnormal running is carried out under the condition of, Vt > Vrun. Only when

the speed of the moving target has reached the Vrun, we determine whether the object running

is normal running or not. According to Definition 2.2, if the speed of the moving target

achieves the running speed, the key to distinguish whether it is abnormal running is the

time of t. If it is abnormal running, there are t < Tab and V0 ≤ Vwalk. According to the Newton

Leibniz Theorem, there are

Vt − V0 =
∫
adt = at =⇒ t =

(Vt − V0)
a

t < Tab,

V0 ≤ Vwalk, Vt > Vrun

a >
(Vrun − Vwalk)

Tab
,

(4.2)

where Vrun, Vwalk, and Tab are consts, so (Vrun − Vwalk)/Tab is a const too, which is abbreviated

as AMIN in this paper. Therefore, it can be distinguished between abnormal and normal

running by judging whether a is greater than AMIN.

4.3. The Proposed Recognition Algorithm

Based on the above analysis, Definition 2.2 reduces to the following formula:

isAbnormal =

{
1 V > Vrun, a > AMIN,

0 else.
(4.3)

In accordance with the above formula, determining whether the target behavior is

abnormal running, we only need to judge whether V and a of the moving target meet a certain

condition. In the light of many experimental results, the threshold of V and a is set to 4.0 and

0.4, separately. Thus we get the criterion for detecting and recognizing abnormal.

Algorithm 4.1. recognition algorithm for abnormal running.

Input. The list of moving objects extracted from current frame.

Step 1. The moving targets in the current frame are tracked with Algorithm 3.1, and then

m TrackedObjectList is got. Go to Step 2.

Step 2. Get a tracked object from m TrackedObjectList and calculate the average speed v of the

object in 5 frames, if v > Vrun then go to Step 3, else go to Step 4.

Step 3. Calculating the average acceleration a of the object in 5 frames, if a > AMIN then the

object is identified as abnormal, otherwise go to Step 4.

Step 4. If there are tracked objects in the m TrackedObjectList have not been access then go to

Step 2, else end.

Figure 5 shows the main flow chart of the algorithm.
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Figure 5: The main flow of recognition algorithm for abnormal running.

5. Experimental Results

Our algorithms are implemented using the OpenCV library with C++ interface, which has

been tested and evaluated in simple surveillance scenes and complicated surveillance scenes

from open surveillance datasets PETS 2007 [20]. Objects are modeled as rectangular bounding

boxes with two colors. If the object is an abnormal object, then we identify it with black box

and red “running” will appear on the box above, otherwise with red box, no “running”.

Besides, the red font upper left corner of the image shows the frame number. and the number

of the objects, what is more, the green line in the image stands for the trajectory of the objects.

5.1. The Selection of Vrun and AMIN

Figure 6(a) shows the relationship between the performance of the proposed algorithm and

the value of threshold Vrun. And Figure 6(b) shows the relationship between the performance

of the algorithm and the threshold value of AMIN too. According to Figure 6, we conclude

that the best threshold of Vrun is 4.0, and the optimal threshold of AMIN is 0.4.
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Figure 6: The detection of performance at different threshold values.

5.2. In Simple Surveillance Scenes

The first test case is to detect abnormal running in a simple scene with single person. Figure 6

shows the result. In Figure 7(a), the existence time of the target is less than 5 frame, so that

its behavior is not judged in frame 425. But in Figure 7(b), the average speed of the person

reaches v = 5.34 which is more than 4.0, and the average acceleration of the person is a =
0.889 which is more than 0.4 too, and we can see that v and a meet the criterion for judging

abnormal running, so the person is an abnormal target in the frame of 433.

5.3. In Complicated Surveillance Scenes

Figures 8 and 9 illustrate two complicated cases of abnormal running detection, respectively.

In Figure 8, although there is more than one object, but shelter did not occurred between the

objects, yet shelter happened in Figure 8.
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(a) The frame of 425 (b) The frame of 433

Figure 7: Detection of abnormal running in simple surveillance scenes.

Object 3

(a) The frame of 348

Object 3

Object 4
Object 5

(b) The frame of 356

Figure 8: Without shelter.

In Figure 8(a), the average speed of the person (referred to as object 1) is v = 5.42

which is more than 4.0, but his average acceleration a = −0.05, which is less than 0.4, so the

person 1 is not an abnormal target in the frame 65. Meanwhile, the average speed of another

person (referred to as object 3) is v = 7.50 and its average acceleration is a = 1.87, so object 3

is an abnormal target. Besides, the existence time of object 4 and object 5 is both less than 5,

so that their behaviors are not judged in the frame 348. In Figure 8(b), the average speed of

object 1 is v = 7.9, but its average acceleration is a = 0.17, so object 1 is not an abnormal target.

While the average speed of object 3 is v = 7.00 and its average acceleration is a = 1.40, the

average speed of object 4 is v = 4.85 and its average acceleration is a = 1.21, and the average

speed of the object 5 is v = 5.00 and its average acceleration is a = 1.69, so as we have seen,

object 3, object 4 and object 5 are all identified as abnormal targets in frame 356.

In Figure 9(a), the average speed of the object 2 is v = 3.49, and is less than 4.0, so it

is not an abnormal target. Object 3 behavior is not judged because of its existence time which

is less than 5 frames. In Figure 9(b), serious shelter happened, which results in object 2 and

object 3 merged into a new object 4, so we only need judge object 4, at this time the average

speed of object 4 is v = 4.29, and its average acceleration is a = 0.71, so object 4 is identified as

an abnormal target. Experimental results show that this algorithm can accurately detect the

abnormal running behavior in different scenes.
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Figure 9: With shelter.

6. Conclusion

Abnormal running frequently happened in robbery cases and other criminal cases. In order

to identity such abnormal behavior in real time, this paper proposed a method on the basis of

spatio-temporal parameters which can detect accurately the abnormal running. Meanwhile,

to obtain precise spatiotemporal parameters and improve the real-time performance of the

proposed algorithm, this paper proposed a multitarget tracking algorithm that is based on the

intersection area among the minimum enclosing rectangle of the moving objects. The simple

and real-time algorithm can effectively judge the intersection among objects and exclude the

interference. In addition, two means of excluding interference are adopted in the multitarget

tracking, which can exclude the objects which are too small or stay too short in scenes. Thus,

the complexity of multitarget tracking is reduced significantly, and the accuracy is improved.
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A nonlinear digital control scheme is proposed for analyses and designs of stable industry
processes. It is derived from the converging characteristic of a specified numerical time series.
The ratios of neighbourhoods of the series are formulated as a function of the output of the plant
and the reference input command and will be converted to be unities after the output has tracked
the reference input command. Lead compensations are also found by another numerical time
series to speed up the system responses on the online adjusting manner. A servosystem, a time-
delay system, a high-order system, a very-high-order system, and a 2 × 2 multivariable aircraft
gas turbine engine are used to illustrate effectiveness of the proposed nonlinear digital controller.
Comparisons with other conventional methods are also made.

1. Introduction

For unit feedback discrete-time control systems, the control sequences are usually functions

of the difference between the sampled reference input and output of the plant [1–5]. The

discrete-time control sequence can be generated by Finite Impulse Response (FIR) filter or

Infinite Impulse Response (IIR) filter. The input of FIR or IIR filter is the difference between

the sampled reference input and output of the plant. The output of FIR or IIR will be the input

of the plant. In general, they are linear controllers.

In this literature, a nonlinear discrete-time control sequence described by periodic

numerical series G(jTS) is proposed for analyses and designs of industry processes. They

are sampled-data feedback control systems. TS represents the sampling interval. The ratios

of G((k + 1)TS) to G(kTS) of the series are formulated as a function of the reference input

command and the output of the plant. The value of G(kTS) is the control input of the plant at

time intervals between (k−1)TS and kTS. Thus, the considered system is closed as a feedback

control system by use ofG(jTS). It will be seen that the output of the plant tracks the reference
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input command exactly after ratios G((k + 1)TS)/G(kTS) of the series being converted to

unities. It implies thatG(kTS) will be converted to a steady-state value for a constant reference

input applied. The stability of the closed-loop system is guaranteed by selecting the proper

function of ratios G((k + 1)TS)/G(kTS). This function can be called as “Regulation Function.”

It will be proven that the considered system using G(kTS) becomes a negative feedback

control system for a stable plant [4].
Note that it needs not integration to get zero tracking error, and performance of

controlled systems are dependent on selected functions ofG((k+1)TS)/G(kTS). Furthermore,

an adaptive limitation for G(kTS) can be applied also to minimize the control effort and get

better performance. Controlled results will be compared with conventional famous PI and

PID controllers [6–15]. In this work, measurement noises of plant outputs are not considered.

It is worthwhile to include recent developments of fractional-order systems and controls

[16, 17] in the proposed nonlinear automatic regulation time series. They have been applied

to signal processing [18], Cyber-physical networking system [19, 20], PMSM position servo

system [21], and optimal control [22].
In following sections, basic concepts of the proposed nonlinear discrete-time control

sequence are discussed first, and then a servo system, a time-delay system, a high-order

system, a very-high-order system, and a 2 × 2 multivariable aircraft gas turbine examples

are used to illustrate their tracking behaviour and performance. Simulating results will show

that the proposed nonlinear digital controller gives another possible way for analyses and

designs of industry processes. Design results of the fourth example give the proposed method

can also be applied to multivariable feedback control systems.

2. The Basic Approach

2.1. Automatic Regulation Time Series

A numerical series with time interval TS [1–5] can be written as in the form of

G
(
jTS

)
, j = 1, 2, 3, . . . , n, n + 1, . . . , (2.1)

where G(jTS) represents a constant value between time interval from (j − 1)TS and jTS. For

simplicity, the representation of G(jTS) will be replaced by G(j) in the following evaluations.

The ratios G(j + 1)/G(j) of the series are defined as in the form of

F
(
j
)
=
G
(
j + 1

)
G
(
j
) , j = 1, 2, 3, . . . , n, n + 1, . . . . (2.2)

Equation (2.2) gives the value of G(n + 1) approaches to be a constant value when the value

of F(n) approaches to be unity. Now, the problem for closing the considered system is to find

the formula of F(j) which is the function of the reference input command R and the output

of the plant Y . G(n + 1) is used as the input of the considered system. Considering a series

given below,

G(n + 1) =

[
m∑
i=0

ai

(
R(n)
YS(n)

)i
]
G(n), (2.3)
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where R(n) represents the reference input command and YS(n) represents the nonzero

sampled output of the plant at the sampling interval nTS. Note that this non-zero constraint

will be removed later by level shifting. Equation (2.3) is a possible way to close the considered

system as a sampled-data feedback control system. Assuming the reference input command

has been tracked by applying control effort G(j), (2.3) becomes

G(n + 1) =
m∑
i=0

aiG(n). (2.4)

For steady-state condition, G(n + 1) approaches to be a constant value, and it gives

m∑
i=0

ai = 1. (2.5)

Rearranging (2.3) and taking the derivative of it with respect to YS(n)/R(n), one has

F(n) =
m∑
i=0

ai

(
YS(n)
R(n)

)−i
, (2.6)

∂F(n)
∂(YS(n)/R(n))

= −
m∑
i=0

iai

(
YS(n)
R(n)

)−1−i
. (2.7)

The sufficient but not necessary condition for (2.7) less than zero is ai > 0 for YS(n)/R(n) ∼= 1

and (2.6) can be rewritten as in the form of

F(n) =
m∑
i=0

ai

∣∣∣∣YS(n)R(n)

∣∣∣∣−i. (2.8)

ai > 0 will be used in the following evaluations. Negative value of (2.7) represents the closed-

loop system using (2.3) activated as a negative feedback system around the equilibrium

condition; that is, YS(n) = R(n). This statement will be illustrated and discussed by a graph

in the next paragraph. The first-order polynomial described in (2.3) can be written as in the

form of

G(n + 1) =
[
β

∣∣∣∣ R(n)YS(n)

∣∣∣∣ + 1 − β
]
G(n), (2.9)

where β satisfies constrains stated above and becomes an adjustable parameter. Thus, the

ratios F(n) become

F(n) = β
∣∣∣∣ R(n)YS(n)

∣∣∣∣ + 1 − β. (2.10)
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F(n) can be called as “Regulation Function” also. Similarly, the third-order representation of

F(n) is in the form of

F(n) = α
∣∣∣∣YS(n)R(n)

∣∣∣∣−3

+ γ
∣∣∣∣YS(n)R(n)

∣∣∣∣−1

+ 1 − α − γ, (2.11)

where 0 < α and 0 < γ .

Taking the derivative of (2.10) with respect to YS(n) = R(n), one has

∂F(n)
∂(YS(n)/R(n))

= −β
(
YS(n)
R(n)

)−2

. (2.12)

For negative value of (2.12), the value of β must be greater than zero. This implies the range

of β is 0 < β < 1. The suitability of the proposed nonlinear adaptive digital controller is based

on this negative regulation characteristic. Figure 1 shows ratios F(n) versus R(n)/YS(n)
represented by (2.9) for β = 0.9, 0.7, 0.5, 0.3 and 0.1, respectively.

Figure 1 shows that the value of F(n) is less than one for that of YS(n) greater than

that of R(n), then the value of G(n + 1) will be decreased; the value of F(n) is greater than

one for that of YS(n) less than that of R(n), and the value of G(n + 1) will be increased. This

implies that the controlled system connected using (2.9) will be regulated to the equilibrium

point (YS(n)/R(n) = 1) and gives a negative feedback control system for deviation from the

equilibrium point. From Figure 1, it can be seen that one can adjust β to get desired regulating

slope; that is, regulating characteristic. Certainly, other tracking functions can be formulated

and proposed also for the considered system, if its derivative with respect to YS(n)/R(n) is

negative. Similar to the derivation of (2.12), (2.11) gives

∂F(n)
∂(YS(n)/R(n))

= −
{
γ

(
YS(n)
R(n)

)−2

+ 3α

(
YS(n)
R(n)

)−4
}
, (2.13)

where 0 < α and 0 < γ .

The constraint of non-zero YS(n) can be removed by R(n)/YS(n) of (2.9) replaced by

(R(n) + Yo)/(YS(n) + Yo). Yo is a positive value and represents the negative maximal control

swing. The modified equation of (2.9) becomes

G(n + 1) =
{
β

∣∣∣∣ R(n) + YoYS(n) + Yo

∣∣∣∣ + 1 − β
}
G(n). (2.14)

Equation (2.14) implies ratios G(n + 1)/G(n) are in the form of

F(n) =
[
β

∣∣∣∣ R(n) + YoYS(n) + Yo

∣∣∣∣ + 1 − β
]
, n = 1, 2, 3, . . . , j, j + 1, . . . . (2.15)

Control inputs of the plant are in the form of

u(n + 1) = G(n + 1) − Yo
P(0)

(2.16)
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Figure 1: G(n + 1)/G(n) Versus R/YS for β = 0.9, 0.7, 0.5, 0.3, and 0.1.

for the negative swing control using positive values of β, G(n), and F(n). Equation (2.14)
gives negative regulation characteristics also for R(n) = YS(n) is corresponding to R(n)+Yo =
YS(n) + Yo. Similar to the evaluation of (2.12), the derivative of (2.15) becomes

∂F(n)
∂((YS(n) + Yo)/(R(n) + Yo))

= −β
(
YS(n) + Yo
R(n) + Yo

)−2

. (2.17)

Figure 2 shows the connected system configuration using (2.14) and (2.16) in which U is the

sampled with hold output of the controller. The values of G(n) and F(n) will be all positive

for the summation of YS(n) and Yo (or R and Yo) is greater than zero with specified values of

Yo. All positive values will give the better continuity and regulating characteristic of the time

series. Naturally, absolute value of (R(n)+Yo)/(YS(n)+Yo) can be used in (2.14) to guarantee

positive of G(n) and F(n) for negative of R(n).

2.2. Control Effort Limitation

An adaptive value of Yo can be selected at |R(n)| for the system is well controlled. Then (2.14)
and (2.16) can be rewritten as

G(n + 1) =
{
β

∣∣∣∣ R(n) + |R(n)|YS(n) + |R(n)|
∣∣∣∣ + 1 − β

}
G(n), (2.18)

u(n + 1) = G(n + 1) − |R(n)|
P(0)

, (2.19)
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respectively. The maximal value of G(n) can be limited by an adaptive constraint |R(n) +
|R(n)|| to minimize the control effort. The control input U of the plant is now described by

(2.19).
Note that the singularity of (2.18) must be avoided when YS(n) + |R(n)| = 0. It is easy

to replace YS(n) + |R(n)| = 0 by a small value. A small value of G(n) is selected also to avoid

null time series. Figure 3 shows an equivalent block diagram of Figure 2 using constraint of

G(n) and singularity avoidance of YS(n) + |R(n)| = 0. The constrain of G(n) cannot be only

for minimizing the control effort but also for improving system performance.

2.3. Phase Lead Compensation

A conventional digital filterC(z) in Figure 3 can be applied for filteringG(n), if it is necessary.

In general, phase lead is used for speeding up the time response. The first-order phase lead

can be expressed as

C(z) =
Tns + 1

Tns/ρ + 1

∣∣∣∣
s=(2/TS)((z−1)/(z+1))

(2.20)

for ρ > 1. The parameter Tn can be found by another numerical time series. It is

W(n + 1) =

[
η

(
Tc
Tcs

)j

+ 1 − η
]
W(n),

Tn =W(n + 1),

(2.21)

where Tc is the time constant of the closed loop system and Tcs is the wanted time constant.

Considering a illustrating example [6] is shown in Figure 3, in which P(s) is in the

form of

P(s) =
30

s2 + 10s + 30
. (2.22)

DC gain of P(s) is unity. The sampling period TS is selected to be equal to 0.1 second for

illustrating variations of G(n) and F(n). Time responses of the overall system using the

nonlinear digital controller for β = 0.5, Yo = |R(n)| and C(z) = 1 are shown in Figure 4.

Magnitudes of reference inputs between 0 and 5 seconds are equal to 1, between 5 and 10

seconds are equal to −0.7, between 10 and 14 seconds are equal to 0.5, and between 14 and 17

seconds are equal to −0.3, in which gives reference input R(n) (dash line), output Y (solid

line), time series G(n) (dotted line), and ratios F(n) (dash-dotted line) of G(n). Figure 4

shows that all values of G(n) and F(n) are positive while the value of output Y is tracking

the negative value of the reference input R(n). The value of R(n) can be positive or negative.

Figure 4 shows also that ratios F(n) are converted to be unities quickly; that is, the

controlled output tracks the reference input quickly. The proposed method gives a good

performance and zero steady-state error without integration. Note that maximal values of

G(n) are set to be |R(n) + |R(n)|| for better performance and minimal the control effort.

Equation (2.14) gives that F(n) will be converted to 0.5 for zero input (R(n) = 0) and β = 0.5.

Equation (2.14) and Figure 1 give that the less the value of β is, the larger the regulation slope

will be. β = 0.5 is the optimal value for the considered system.
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Figure 5 shows time responses for β = 0.50 and sampling frequency equal to 100, 40,

20, 10, and 5 Hz, respectively. It shows that 40 Hz (i.e., TS = 25 ms) is fast enough for the

considered system. Figure 6 shows comparisons with a phase-lead compensator C(z) which

is included in the control loop. The phase-lead compensator C(z) is in the form of

C(z) =
0.15923s + 1

0.03185s + 1

∣∣∣∣
s = (2/TS)((z−1)/(z+1))

. (2.23)

It can speed up the time responses while keeping system performance.

The proposed control scheme using numerical time series will be applied to three

numerical SISO (single-input single-output) examples in next section on online adjusting

manner. Equation (2.21) will be used for finding phase-lead compensators C(z) to meet

design specifications.

3. Numerical Examples

Example 3.1. Consider a stable plant that has the transfer function [7, 8]

P1(s) =
e−s

(s + 1)2
. (3.1)

It has pure time delay of 1 second. The specification for time constant Tcs = 1.85 sec is selected.

Parameters of (2.18) and (2.21) are β = 0.7, TS = 25 ms, ρ = 50, η = 0.9, and j = 1. Figure 7
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shows online adjusting processes for finding C(z). The initial guess of Tn is equal to 1.00 and

converted to 0.5195 after third adjusting processes. The found lead compensator is

C(z) =
0.5195s + 1

0.5195s/ρ + 1

∣∣∣∣
s=(2/TS)((z−1)/(z+1))

. (3.2)

Time constants of each step are 1.4107, 1.8488, 1.8498, and 1.8500. Figure 7 shows the proposed

method provides an automatic regulation procedure to get wanted design specifications. It

gives good performance and zero steady-state error.

Simulation results of the proposed method and four other methods are presented for

comparisons. They are Ziegler-Nichols method [9–12] for finding PI and PID compensators,

Tan et al. [13, 14] for finding PID compensator, and Majhi [7, 8] for finding PI compensator.

The controller is in the form of

u(t) = Kpe(t) +Ki

∫
e(t)dt +Kd

d

dt
e(t). (3.3)

Parameters of four found compensators are given below:

(1) ZN(PI): Kp = 1.240 and Ki = 0.251;

(2) ZN(PID): Kp = 1.6367, Ki = 0.4187, and Kd = 0.5972;

(3) Tan’s(PID): Kp = 0.620, Ki = 0.5636, and Kd = 0.1705;

(4) Majhi’s(PI): Kp = 0.864 and Ki = 0.3653.

Integral of the Square Error (ISE) and Integral of the Absolute Error (IAE) are given in

Table 1. Time responses are shown in Figure 8. From Table 1 and Figure 8, one can see that the

proposed method gives faster and better performance than those of other methods presented.
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Table 1: IAE and ISE errors of Example 3.1 using different control methods.

Methods Proposed ZN(PI) ZN(PID) Tan’s Majhi’s

ISE 1.4610 2.2675 1.7694 2.2471 2.4654

IAE 1.8726 4.0107 2.8757 3.0725 4.0659

Example 3.2. Consider a sixth order plant [7, 8]

P2(s) =
1

(s + 1)6
. (3.4)
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Table 2: IAE and ISE errors of Example 3.2 using different control methods.

Methods Proposed ZN(PI) ZN(PID) Ho’s Majhi’s

ISE 3.3895 5.335 4.023 5.215 3.746

IAE 4.4798 9.279 6.492 7.219 5.425

The specification of time constant Tcs = 4.8 sec is selected. Parameters of (2.18) and (2.21) are

β = 0.5, TS = 25 ms, ρ = 50, η = 0.9, and j = 3. The initial guess of Tn is equal to 1.0 and

converted to 0.7759 after second adjusting process. The found lead compensator is

C(z) =
0.7759s + 1

0.7759s/ρ + 1

∣∣∣∣
s=(2/TS)((z−1)/(z+1))

. (3.5)

Figure 9 shows on-line adjusting processes for finding C(z) to meet Tcs = 4.8 sec. Simulation

results of the proposed and four other methods are presented for comparisons. They are

Ziegler-Nichols rule [9–12] for finding PI and PID compensators, Ho et al. [15] for finding

PID compensator, and Majhi [7, 8] for finding PI compensator. Parameters of five found

compensators are given below:

(1) ZN(PI): Kp = 1.079 and Ki = 0.110;

(2) ZN(PID): Kp = 1.4248, Ki = 0.1838, and KD = 1.360;

(3) Majhi’s(PI): Kp = 0.7736, and Ki = 0.1547;

(4) Ho’s(PID): K(s) = 1.3(1 + 0.189/s + 1.3s/(0.13s + 1)).

Integral of the Square Error (ISE) and Integral of the Absolute Error (IAE) are given in Table 2.

Time responses are shown in Figure 10. From Table 2 and Figure 10, one can see that the

proposed method gives faster and better performance than those of other methods.
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Example 3.3. Consider the very-high-order plant [7, 8]:

P3(s) =
1

(s + 1)20
. (3.6)

The design specification for time constant Tcs = 19.0 sec is selected. Parameters of (2.18) and

(2.21) are β = 0.5, TS = 25 ms, ρ = 50, η = 0.9, and j = 3. The initial guess of Tn is equal to 1.00

and converted to 0.9586 after the fourth adjusting process. The found lead compensator is

C(z) =
0.9586 s + 1

0.9586 s/ρ + 1

∣∣∣∣
s=(2/TS)((z−1)/(z+1))

. (3.7)

Figure 11 shows time response of the controlled system, which gives reference input R(n)
(dash line), output Y (solid line), time seriesG(n) (dotted line), and ratios F(n) (dash-dotted

line) of G(n). It gives good performance and zero steady-state errors. Figure 11 shows the

considered plant is a large time-lag system. The high order system model is usually used to

describe the industry process for replacing pure time delay (e.g., e−Tds) such that conventional

analysis and design techniques can be applied [7, 8]. Figure 11 shows the proposed method

can be applied to a large time-delayed system.

Final results and four other methods are presented for comparison and show the merit

of the proposed method. They are Ziegler-Nichols method [9–12] for finding PI and PID

compensators, Zhuang and Atherton [23] for finding PI compensator, and Majhi [7, 8] for

finding PI compensator. Parameters of four found compensators are given below:

(1) ZN(PI): Kp = 0.585 and Ki = 0.0305;

(2) ZN(PID): Kp = 0.77256,Ki = 0.05088, and Kd = 4.9135;
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(3) Majhi’s(PI): Kp = 0.5097 and Ki = 0.0443;

(4) Zhuang’s(PI): Kp = 0.473 and Ki = 0.058.

Time responses are shown in Figure 12. Table 3 gives integration of absolute error (IAE) and

integration of square error (ISE) of them. From Table 3 and Figure 12, one can see that the

proposed method gives better performance than those of other methods.



14 Mathematical Problems in Engineering

6

R1

Y1

R2

Y2

0 5 10 15

5

4

3

2

1

0

−1

R
1
,Y

1
,R

2
,Y

2

Time (s)

Figure 13: Time responses of Example 3.4 for β = 0.5 and TS = 25 ms.

Table 3: IAE and ISE errors of Example 3.3 using different control methods.

Methods Proposed ZN(PI) ZN(PID) Majji’s Zhuang’s

ISE 15.7313 21.2271 16.2160 20.1908 21.8142

IAE 18.0892 32.7084 22.9707 26.8295 32.9125

Example 3.4. Consider a gas turbine engine with plant transfer function matrix [24–26]:

P4(s) =
1

Δ(s)

[
2533 + 1515.33s + 14.9s2 1805947 + 1132094.7s + 95150s2

12268.8 + 8642.68s + 85.2s2 2525880 + 1492588s + 124000s2

]
, (3.8)

where Δ(s) = 2525 + 3502.7s + 1357.3s2 + 113.22s3 + s4. It is a 2 × 2 multivariable plant. The

steady-state gain of open loop P4(s) is in the form of

P4(0) =

[
1.00316 715.2265

4.85893 1000.3485

]
. (3.9)

A pre-compensating matrix P−1
4 (0) is first applied to decouple the plant in low-frequency

band. Then, two digital filters are used in the diagonal to filter outputs of two time series for

speeding up transient responses. They are in the form of

C1(z) =
0.75s + 1

0.15s + 1

∣∣∣∣
s=(2/TS)((z−1)/(z+1))

,

C2(z) =
0.60s + 1

0.25s + 1

∣∣∣∣
s=(2/TS)((z−1)/(z+1))

,

(3.10)
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where TS = 25 ms is the sampling period. Figure 13 shows time responses of this controlled

system for β = 0.5. It shows that the proposed control scheme can be applied to the

multivariable feedback control system also.

4. Conclusions

In this literature, a new nonlinear digital controller has been proposed for analyses and

designs of industry processes. They are sampled-data feedback control systems. It was

applied to four simple and complicated numerical examples to get good performance and

zero steady-state errors. No integrations of tracking errors are needed to get zero steady-state

errors. Lead compensations are also found by another numerical time series to speed up the

system responses on the on-line adjusting manner. From simulation and comparison results

with other famous control methods, it can be seen that the proposed method provides another

possible control scheme for sampled-data feedback control systems, and it is worthwhile to

find other regulation F(n) to get better performance.
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Health management for a complex nonlinear system is becoming more important for condition-
based maintenance and minimizing the related risks and costs over its entire life. However,
a complex nonlinear system often operates under dynamically operational and environmental
conditions, and it subjects to high levels of uncertainty and unpredictability so that effective
methods for online health management are still few now. This paper combines hidden semi-
Markov model (HSMM) with sequential Monte Carlo (SMC) methods. HSMM is used to
obtain the transition probabilities among health states and health state durations of a complex
nonlinear system, while the SMC method is adopted to decrease the computational and
space complexity, and describe the probability relationships between multiple health states and
monitored observations of a complex nonlinear system. This paper proposes a novel method of
multisteps ahead health recognition based on joint probability distribution for health management
of a complex nonlinear system. Moreover, a new online health prognostic method is developed.
A real case study is used to demonstrate the implementation and potential applications of the
proposed methods for online health management of complex nonlinear systems.

1. Introduction

With the rapid development of modern economy, the manufacturing industry increasingly

needs to operate equipment at high reliability, low environmental risks, and human safety.

The technological development has resulted in increasing complexity in both industrial

machinery and production systems. It is difficult or almost impossible to identify and predict

failure conditions in a timely manner. In a complex nonlinear system, high maintenance

cost and uncertain downtime are often caused by system’s failures. Health management for
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a complex nonlinear system has a significant impact on the profitability of a business. So

system’s health diagnosis and prognosis implementing CBM (condition-based maintenance)
become a basic and desirable requirement in many application domains, where safety,

reliability, and availability of systems are considered critically [1]. Health management

involves evaluating the current system condition, observing the future system condition and

predicting the system residual useful life (RUL) before the failures.

In the system health management framework, health prognosis is a complex process

and it is particularly difficult when the system under study is operating in the real time

environment. Traditional linear methods such as ARIMA (autoregressive integrated moving

average) cannot precisely predict the system health. For this reason, the study on online

health management has attracted much attention. Some prognostic models have been

introduced and developed with various degrees of success. Usually, three categories of

nonlinear prognostic methods can be classified to obtain system health prognosis, including

physical models, data-driven models, and model-driven models.

With intelligent monitoring systems, physical models are useful to account for

different operating conditions. They integrate physical features of a system for monitoring.

Therefore, the functional mappings between the drifting parameters and the selected

prognostic features can be established. Kacprzynski et al. [2] proposed a helicopter gear

prognosis method that fused physics of failure modeling and relevant diagnostic information.

Oppenheimer and Loparo [3] applied a physical model to estimate residual useful lifetime

based on the crack growth law. These methods applied physical modeling and advanced

parametric identification techniques, along with failure detection and prognosis algorithm for

estimating the time to failure of complex nonlinear systems. The limitations of these models

are their higher costs and lower accuracy. Furthermore, it is very difficult to build a good

physical model.

Data-driven methods use the monitored data to predict the health of complex

nonlinear systems. Li [4] gave a tutorial review about fractal time series that was substantially

different from the conventional time series in its statistic properties such as heavy-tailed

probability distribution functions and slowly decayed autocorrelation functions. M. Li and

J. Y. Li [5] addressed the particularity of the predictability of long-range dependence series

and presented a generalized mean square error in the domain of generalized functions to

prove the existence of long-range dependence series prediction. Li et al. [6] introduced

the concept of one-dimensional random functions with long-range dependence based on a

specific class of processes called the Cauchy-class process and presented the power spectrum

density function of the Cauchy-class process in the closed form. Li and Zhao [7] addressed the

power laws related to some physical systems and discussed that power-law-type data may be

governed by stochastically differential equations of fractional order. Chen et al. [8] proposed

a novel kernel machine-based rank-lifting regularized discriminant analysis method for

nonlinear problems. However, the slow convergence and local minimum value are main

drawbacks of these models and the computational explosion problems will occur when the

number of observations increases dramatically. All disadvantages limit these models in the

applications of online equipment health management.

Model-based prognostic methods rely on the use of a mathematical model to represent

the degradation behavior of the system. A main nonlinear time series method of model-

driven methods called hidden Markov model has been quite effective for health prognosis.

Zhou et al. [9] applied a new method for real time failure prognosis, by combining the

capabilities of the HMM and the belief rule base. However, only ordinary HMM techniques

are adopted and the inherent limitations within HMM still exist in their models. By allowing
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one state to generate a sequence of observations and have an explicit distribution for the

duration of states, the HMM is generalized to HSMM. The HSMM has been an active research

topic since the late 1980s. It has attracted considerable research attention in some fields [10–

13]. Dong and He [14] presented an integrated framework based on HSMM for multisensors

equipment diagnosis and prognosis. And in [15], they proposed a segmental hidden semi-

Markov model for prognosis and diagnosis of the equipment. The HSMM has very rich

mathematical structures and can form the solid theoretical foundation for use. Thus, HSMM

has been effective for the health management of systems. However, the major drawback of

HSMM is that recognizing and training processes of HSMM are often time consuming which

is disadvantageous when real time prognosis is required. So HSMM is only applied to the

offline equipment health prediction. The improvement for traditional HSMM is needed for

online health management of complex nonlinear systems.

The SMC method could decrease the computational and space complexity. And if

the mathematical model or statistical model of a system is known, the filter based methods

including SMC method can predict the health by estimating states or parameters of systems.

The SMC method can also recognize the hidden failures of complex nonlinear systems.

Unfortunately, when the mathematical models or the statistical models of systems are difficult

to obtain, the SMC method is not applied to predict the health of systems. However, HSMM

has very rich mathematical structures. So we combine the SMC method with HSMM in this

paper. HSMM is used to obtain the transition probabilities among health states and health

state durations of a complex nonlinear system, while the SMC method is adopted to decrease

the computational and space complexity and describe the probability relationships between

multiple health states and monitored observations of a complex nonlinear system. This

paper proposes a novel multistep ahead recognition algorithm based on the joint probability

distribution for health management of complex nonlinear systems. The proposed method

has a better mathematical structure and better performance for real time prognosis. It can

also decrease the computational complexity for health prognosis. Moreover, it overcomes the

offline only constraint of the HSMM Viterbi algorithm and can recognize the health states in

real time. Thus, it is effective for online health management of complex nonlinear systems.

This paper aims to develop a new method for online health management of complex

nonlinear systems. The paper is organized as follows. In Sections 2 and 3, the theories of

HSMM and SMC methods are introduced. Section 4 proposes a joint multistep ahead health

recognition algorithm based on HSMM using SMC methods and develops the corresponding

online health prognostic algorithm for complex nonlinear systems. In Section 5, a case study

for online health management of a complex nonlinear system is provided. Finally, conclusions

are drawn in Section 6.

2. Hidden Semi-Markov Model

A HSMM is constructed by adding the state duration into the well-defined HMM structures.

Unlike a state in a standard HMM, a state in HSMM generates a segment of observations, as

opposed to a single observation in the HMM. The states in a segmental hidden semi-Markov

model are called macrostates (i.e., segments). Each macrostate consists of several single states,

which are called microstates [15]. Suppose that a macrostate sequence has n segments and

let qi be the time index of the endpoint of the ith segment (0 ≤ i ≤ n − 1). The segments are

illustrated in Figure 1.
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Figure 1: Mapping of microstates and macrostates for a general HSMM.

For the ith macrostate, the observations are oqi−1+1, . . . , oqi , respectively, and they have

the same macrostate labels as follows:

sqi−1+1 = sqi−2+1 = · · · = sqi = hi. (2.1)

In this paper, the monitored observations are continuous signals. In order to deal

with the continuous observations, instead of the discrete-state situation, the continuous-state

situation is adopted. The HSMM can establish a rational relationship between the states and

observations. For some nonlinear problems, the state space model of HSMM can be described

as follows

xn ∼ g(xn | xn−1,Λ),

yn ∼ h
(
yn | xn,Λ

)
.

(2.2)

Based on the state space model, a standard HSMM can be established as follows:

xn ∼ p(xn | xn−1, A),

yn ∼ h
(
yn | xn, B

)
,

di ∼N(di | ui, σi), 0 ≤ d ≤ D.
(2.3)

For convenience, the above equation can be rewritten as follows:

xn ∼ p(xn | xn−1),

yn ∼ q
(
yn | xn

)
,

di ∼N(di | ui, σi), 0 ≤ d ≤ D,
(2.4)

where Λ is the parameter set of HSMM in the state space model. di is the duration of the

state i and D is the maximum state duration. ui and σi are the duration mean and variance

of state i, respectively. xn ∈ S is a hidden state at time n (S = {s1, s2, . . . , sN} is the hidden

state set with N elements). xn ∼ gn (xn | xn−1, A) is the system model and depends on
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the state transition probability A = {aij}, (aij = P (xt = sj | xt−1 = si)). yn ∼ hn(yn | xn−1, B)
is the observation model (yn ∈ O) and O = {o1, o2, . . . , oT} is the observation sequence with

T elements. B = {bi(o), 1 ≤ i ≤ N} is the conditional probability distribution of observation

(bi(o) = p(yn | xn = si)).
Besides, there is an initial state distribution π (πi = p (x1 = si), 1 ≤ i ≤ N). It can be

seen that an HSMM can be described by λ (λ = {A, B, D, π}). In real applications, there are

three basic problems associated with an HSMM.

(1) Evaluation (Also Called Classification). Given the observation sequence O =
o1o2 · · · oT , and an HSMM λ, what is the probability of the observation sequence

given the model (i.e., P(O | λ))? The solution of this problem is obtained by using

the forward-backward algorithm.

(2) Decoding (Also Called Recognition). Given the observation sequence O = o1o2 · · · oT ,

and an HSMM λ, what sequence of hidden states S = (s1, s2, . . . , sN) most probably

generates the given sequence of observations? This problem is solved by using the

Viterbi algorithm. Here, a novel algorithm is used to solve this problem.

(3) Learning (Also Called Training). How to adjust the model parameters λ =
{A, B, D, π} to maximize P(O | λ)? This problem is solved by using the Baum-

Welch algorithm.

Different algorithms have been developed for the above three problems. The details

of three problems and the corresponding algorithms can be found in Rabiner [16] and Dong

and He [15].

3. Sequential Monte Carlo Methods

Sequential Monte Carlo method has been introduced in the 1960s, and it is a significant and

powerful methodology for coping with difficult nonlinear problems. The key idea of the

SMC method is to represent the posterior density function by a set of random samples with

associated weights and compute recognition probability based on these samples.

Let {xin−1, w
i
n−1}

Ns

i=1
denote the sample from importance function, and let wi

n−1 denote

the weights of particles (xin−1 (i = 1, 2, . . . ,Ns)), and Ns is the number of particles for the

computation. Then, p (xn−1 | y0:n−1) can be approximated as follows:

p
(
xn−1 | y0:n−1

) ≈ N∑
i=1

wi
n−1δ

(
xn−1 − xin−1

)
, (3.1)

where wi
n−1 ∝ p (xi0:n−1 | y0:n−1)/q (xi0:n−1 | y0:n−1),

∑N
i=1 w

i
n−1 = 1, q(xi0:n−1 | y0:n−1) is the impor-

tance probability density, and the δ(·) is Dirac delta function [17].
With the increase of new observation data, in order to obtain the new sample (xi0:n ∼

q(x0:n | y0:n)), the new data (xin ∼ q(xn | xi0:n−1, y0:n)) can be added into the old sample

(xi0:n−1 ∼ q(x0:n−1 | y0:n−1)). And, the weights of particles xin can be obtained as follows:

w̃i
n =

p
(
xin | xin−1

)
p
(
yn | xin

)
q
(
xin | xi0:n−1, y0:n

) wi
n−1. (3.2)
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So the posterior probability density of xn can be written as follows:

p
(
xn | y0:n

)
=

N∑
i=1

wi
nδ

(
xn − xin

)
. (3.3)

However, the choice of the importance density function is critical for the performance

of the SMC method. In the paper, the a priori probability density function is chosen as the

importance density function and it is written as follows:

q
(
xin | xi0:n−1, y0:n

)
= p

(
xik | xik−1

)
. (3.4)

From (3.2) and (3.4), we can obtain

w̃i
n = p

(
yn | x(i)

n

)
w

(i)
n−1, w

(i)
n =

w̃i
n∑N

i=1 w̃
i
n

. (3.5)

In the sequential importance sampling implementation of SMC methods, since most

particles have negligible weights after a few iterations, the main difficulty is the degeneracy

problem [18]. Several researchers have developed methods to overcome the degeneracy in

the particle population N̂eff, which is an estimation of the effective sample size Neff [18, 19].
Neff and N̂eff can be approximated as follows:

Neff =N ∗
(

1 + var
(
w

(i)
n

)−1
)
, N̂eff =

(
Ns∑
i=1

(
w

(i)
n

)2
)−1

. (3.6)

In (3.6), if the valid sample Neff becomes smaller, the degeneracy of SMC methods

becomes more serious. But, whenever N̂eff is smaller than Nthres, a resampling algorithm

will be applied to eliminate the particles with small weights, and it also reserves the compu-

tational impacts on the optimal results in those having large weights [18].
After the resampling procedure, the new particle population ({x̃(i)

0:n}i=1,...,N
) is an

independent and identically distributed sample of the empirical distribution; thus, the

weights are reset to w̃i
n =N−1 and we have

p
(
xn | y0:n

)
=

N∑
i=1

wi
nδ

(
xn − xin

)
=

1

N

N∑
i=1

δ
(
xn − xin

)
. (3.7)

4. Online Prognosis Model for Complex Nonlinear Systems

The health management for complex nonlinear systems uses both state transition relations

and duration information to predict the evolving trend or estimate the remaining useful

life. In the previous sections, the HSMM given by (2.4) is considered and its parameters are

obtained through the training algorithm in which state duration probabilities are estimated

on the trellis of observations and states. In this section, the framework for online health

management of a system is described.

Firstly, a novel algorithm for online health recognition of a system based on HSMM

is proposed by using SMC method and its computational framework is given. Then,
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the collected sensor data is used as the input of the proposed model. With the state

information obtained from the proposed method, an online health prognostic model for

a system is proposed. The intention is to apply SMC method to make joint multisteps

ahead health recognition with all available information. The principle of SMC-based HSMM

involves two main phases, as shown in Figure 2. For a complex nonlinear system, the learning

phase will generate an appropriate model and an exploitation phase will recognize its current

health condition and predict its RUL. In the first phase, which is achieved offline, the raw

data provided by the sensors is processed for HSMM training. The second phase, which is an

online one, exploits the trained models for recognizing the current system state (by using the

following proposed method) and computing the corresponding RUL.

In the following, the data processing algorithm is described first. Then, a novel HSMM-

based algorithm for online health recognition of complex nonlinear systems using SMC

methods is proposed, and the computational framework is given. Finally, with the state

information obtained from the proposed method, the online health prognostic model for

complex nonlinear systems is proposed.

4.1. Data Processing Algorithm

The data processing algorithm includes feature extraction using wavelets and vector

quantization. The feature extraction is described first. Since the structures of each part are

different, when a system fails, it often generates a large number of nonstationary signals. The

performance of output signals in each frequency band is different. The wavelet analytical

method can automatically decompose different frequency signals into different frequency

bands, which can increase the time-frequency resolution and realize failure feature extraction.

The failure feature extraction algorithm using wavelet can be described as follows.

Step 1. The vibration signals can be decomposed into V -layers wavelet, and coefficients

(Xj (j = 1, 2, . . . , 2V )) of 2V frequency bands from low frequency to high frequency of the

V -layers are extracted, respectively.

Step 2. Reconstruct the wavelet package coefficients and extract each frequency band signal

Sj (j = 1, 2, . . . , 2V ).

Step 3. The total energy of each frequency band signal is computed by the following equation:

Ej =
∫ ∣∣Sj(t)∣∣2

dt =
n∑
k=1

∣∣xjk∣∣2
, (4.1)

where xjk (j = 1, 2, . . . , 2V , k = 1, 2, . . . , n) is the amplitude of discrete points for

reconstructing signals.

Step 4. Construct and normalize feature vector as follows:

E =

⎛⎝ 2V∑
j=1

∣∣Ej∣∣2

⎞⎠1/2

. (4.2)

So the feature vector F equals F ′ (i.e., F ′ = (E1, E2, . . . , E
V
2 )/E).
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Figure 2: Fault prognosis scheme of HSMM-based SMC method.
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The feature vector must be quantized before the wavelet fault feature vector is

used for HSMM training. The self-organizing feature maps (SOMs) are often used for

vector quantization. The SOMs simulates self-organizing feature maps function of the

brain’s nervous system, it is a competitive learning network, and the learning process is

unsupervised and self-organized [20].

4.2. Joint Multisteps Ahead Health Recognition for
Systems Using SMC in HSMM

One purpose of the paper is to offer the appropriate methods for real time recognition of

health states and RUL prognosis as a continuous function of time. A new HSMM-based SMC

method is applied to address the recognition problems of HSMM. Currently, the primary

concerns in HSMM are two aspects: one-step ahead health recognition of states by estimating

the probability distribution p(xn | y1:n−1) and multistep ahead health recognition of states

by estimating the probability distribution p(xn+h | y1:n−1) [18]. However, the recognizing

trajectories of p(xn | y1:n−1) and p(xn+h | y1:n−1) may be incredible due to neglecting the

consistency principle of HSMM. The consistency is very important and required for many

cases. Therefore, a novel method of multistep ahead state health recognition based on joint

probability distribution p(xn:n+h | y1:n−1), which provides the most possible recognition

for the recognizing trajectory, is proposed. In order to illustrate the superiority of the

proposed method, the proposed joint multisteps ahead algorithm will be compared with the

general multistep ahead algorithm and one-step ahead algorithm on the aspect of prognostic

accuracy.

In the following, the SMC method is used for joint multistep ahead health recognition

given all available information up to time n − 1. The joint multistep ahead health recognition

method is capable of capturing the relationship between hidden states and observations of a

system. By combining the capabilities of HSMM and SMC method, a new health recognition

algorithm is proposed here to recognize the hidden failure online. And HSMM can provide

rich mathematical structures for health management of complex nonlinear systems.

This health recognition algorithm is related to the one-step ahead health recognition.

The state probability density function of the one-step ahead health recognition can be

obtained by a recursive manner based on Algorithm 4.1. Suppose that the state pdf p(xn−1 |
y1:n−1) can be approximated by {x(i)

0:n−1, w
i
n−1}

Ns

i=1
, as it is shown as follows:

p
(
xn−1 | y1:n−1

)
=

Ns∑
i=1

wi
n−1δ

(
xn−1 − xin−1

)
. (4.3)

The state probability density p(x̂n | y1:n−1) can be approximated with new samples

evolved from {xi0:n−1, w
i
n−1}

Ns

i=1
(the symbol ̂ represents the recognized value). The procedure

of the one-step ahead health recognition is described as follows.

Algorithm 4.1. Online one-step ahead health recognition is as follows

Step 1. Let x̂in ∼ p(x̂n | xin−1), then

p
(
x̂n | y1:n−1

) ≈ Ns∑
i=1

wi
n−1δ

(
x̂n − x̂in

)
. (4.4)
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Step 2. Update the weights ŵi
n = p(yn | x̂in)wi

n−1, then

wi
n =

ŵi
n∑Ns

i=1 ŵ
i
n

. (4.5)

Step 3. Compute the state pdf as follows:

p
(
x̂n | y1:n

) ≈ Ns∑
i=1

wi
nδ

(
x̂n − x̂in

)
. (4.6)

Then, we extend to the joint multistep ahead health recognition. Based on (2.4) and

the current state recognition Algorithm 4.1, p(xn−1 | y1:n−1) can be obtained. According to the

conditional probability and chain rule of probability, we can obtain

p
(
x̂n:n+h−1 | y1:n−1

)
=

h−1∏
j=0

p
(
x̂n+j | y1:n−1, x̂n:n+j−1

)
. (4.7)

In the above equation, p(x̂n+j | y1:n−1, x̂n:n+j−1), j = 0, 1, . . . , h − 1 is just one-

step ahead health recognition probability and can be approximated by Algorithm 4.1 with

{x̂i
n+hx

i
0:n−1, w

i
n+h−1

}Ns

i=1
such that

p
(
xn+j | y1:n, xn:n+j−1

)
=

Ns∑
i=1

wi
n+hδ

(
x̂n+h − x̂in+h

)
. (4.8)

The joint h-step ahead health recognition can be approximated by the particles with

corresponding weights:

{(
x̂
i0
n , . . . , x̂

ih−1

n+h−1

)
,
(
ŵ
i0
n−1, . . . , ŵ

ih−1

n+h−2

)}Ns

i0,...,ih−1
=1
. (4.9)

And we have

p
(
x̂n:n+h−1 | y1:n−1

)
=

Ns∑
i0=1

· · ·
Ns∑

ih−1=1

(
ŵ
i0
n−1, . . . , ŵ

ih−1

n+h−2

)
δ
(
x̂n − x̂i0n , . . . , x̂n+h−1 − x̂ih−1

n+h−1

)
. (4.10)

So the overall online joint multistep ahead health recognition algorithm can be

described as follows.

Algorithm 4.2. Online joint multistep (h-steps) ahead health recognition is as follows.

Step 1. Based on Step 1 in Algorithm 4.1, we can obtain

p
(
x̂n | y1:n−1

) ≈ Ns∑
i=1

wi
n−1δ

(
x̂n − x̂in

)
. (4.11)
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Step 2. If h = 1, then go to Step 3, otherwise set k = 1.

Substep 1. Use the prognosis value {x̂i
n+k−1

}Ns

i=1
to update weights {wi

n+k−2
}Ns

i=1
, according to

wi
n+k−1

= p(ŷi
n+k−1

| x̂i
n+k−1

)wi
n+k−2

, then we have

p
(
x̂n+k−1 | y1:n−1

) ≈ Ns∑
i=1

wi
n+k−1δ

(
x̂n+k−1 − x̂in+k−1

)
. (4.12)

Substep 2. Let x̂i
n+k ∼ p(x̂n+k | x̂in+k−1

), then

p
(
x̂n+k | y1:n−1

) ≈ Ns∑
i=1

wi
n+k−1δ

(
x̂n+k − x̂in+k

)
. (4.13)

Substep 3. Let k = k + 1. If k = h, then the joint h-step ahead prognosis can be obtained based

on (4.10), and go to Step 3, otherwise return to Substep 1.

Step 3. When the online monitoring measurement yn is available, update the weights ŵi
n =

p(yn | x̂in)wi
n−1, and

p
(
x̂n | y1:n

) ≈ Ns∑
i=1

wi
nδ

(
x̂n − x̂in

)
. (4.14)

Based on Algorithm 4.2, for a given new sequence of continuously observed data,

the state recognition probability of the current time can be obtained. Based on the state

recognition probability, the RUL values of a complex nonlinear system at the current time

can be predicted based on the prognostic algorithm.

Obviously, the relationship between joint multistep ahead health recognition and

simple multistep ahead recognition is given as follows:

p
(
x̂n+h−1 | y1:n−1

)
=

∑
x̂n

· · ·
∑
x̂n+h−1

p
(
x̂n:n+h−1 | y1:n−1

)
. (4.15)

In the above equation, p(x̂n+h−1 | y1:n−1) is the marginal distribution of p(x̂n:n+h−1 |
y1:n−1). The simple multistep ahead recognition is suitable for the situation where the health

management of a system needs to be obtained at given time with lower accuracy. However,

the joint multistep ahead health recognition algorithm is much better for online health

management of a system due to the ability of keeping the Markov consistency in HSMM.

After obtaining the state recognition probability of a system, the health state change

point needs to be determined. The health state change point is defined as the point at which

the system changes from health state xl to health state xl+1. Through the health state change

point detection, the time from the system’s current condition to the health state change point

can be estimated, as the health state change point corresponds to the switching from health

state xl to health state xl+1 in the model and the determination of health state change point

can be obtained in the following way: apply the joint multistep ahead health recognition
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Figure 3: The recognized state sequences for a system having two health states.

algorithm online when new observations are obtained. If the value of p(Sl = xl+1 | y1:l−1) is

increasing up to time l and becomes the maximum at time l, then l will be the health state

change point.

For new observations y1y2 · · ·yT and two system health states, the recognized state

sequences of a system for computing RUL are shown in Figure 3. From Figure 3, it can be

seen that each state sequence will provide the location recognition of the health state change

point. Moreover, the probability of a system staying in the state based on Algorithm 4.2 can

be recognized and the RUL values of a system can be computed.

4.3. Online Health Prognosis Model for Complex Nonlinear Systems

For the health prognosis of a system, its purpose is to predict the progression of a failure

condition in order to estimate the RUL of a system. Assuming that the system will go through

health states si (i = 1, 2, . . . , n − 1) before entering the failure state F(sn). And let D(si) denote

the expected duration of a system at health state si. Once the system enters health state si, its

RUL will equal the summation of the residual useful duration of a system staying at health

state si and the residual useful duration of system staying in the future health states before

failure. This type of prognostic structure is shown in Figure 4. Let D̂(s(l)i ) denote the residual

duration of a system staying in health state si at the lth observation time point. Then, we can

obtain

D(si) = μ(si) + ρσ2(si),

ρ =

(
life time −∑N

i=1 μ(si)
)

∑N
i=1 σ

2(si)
,

D̂
(
s
(l)
i

)
= p

(
Sl = si | y1:l

)
D(si),

(4.16)

where μ(si) is the mean of duration probability function pi(d) of state si and σ2(si) is

the variance of duration probability function pi(d) of state si. l represents the step length.

p(Sl = si | y1:l) denotes the state probability of si at the lth observation time point based on

observation y1:l.
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Figure 4: Prognostic structure based on HSMM using SMC method. Life time of a component = D(s1) +
D(s2)+ D(s3)+ · · ·+D(sN). D(si): duration of a component staying at state si. s1: health state 1 (baseline),
s2: health state 2 (contamination 1), . . ., sN : health state N (failure), aij : transition probability.

Based on (4.16), the RUL at the lth observation time point since a system stays at the

health state si can be computed as follows:

RUL(l) = D̂
(
s
(l)
i

)
+

n−1∑
j=i+1

D
(
sj
)
. (4.17)

By integrating (4.16) with (4.17), the RUL at the lth observation time point since a

system enters health state si can be obtained.

4.4. Prognosis Algorithm

The proposed methods are used during the online phase in order to recognize health states

and estimate the RUL values. In terms of the HSMM-based SMC method, the online health

management procedure of a system can be described as follows.

Step 1. This step consists of learning the appropriate HSMM that best fits and represents

the online observed sequence. Indeed, the observations are continuously fed into the set of

learned (completely defined) models and a likelihood value is calculated in order to learn the

appropriate model that will be used for the computation of the expected state duration and

the initial state transition probability.

Step 2. This step is related to the recognition of the current state. Based on Algorithm 4.2, the

pdf of state si at the lth observation time since a system enters state si can be computed with

the online monitored data using joint multistep ahead health recognition algorithm. And the

health state change point of a system can also be obtained.

Step 3. Based on Step 2, the residual duration of a system keeping the health state si at the lth

observation time point can be computed based on (4.16).

Step 4. Based on (4.17), the RUL at the lth observation time point since a system enters health

state si can be obtained.
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Figure 5: Schematic diagram of the experimental setup.

5. Case Study

To evaluate the performance of the HSMM-based SMC method for online health management

of complex nonlinear systems, a real hydraulic pump health monitored application is used.

In the case study, the long-term wear test experiments were conducted at a research

laboratory facility. In the test experiments, three pumps (pump 6, pump 24, and pump 82)
were worn by running them using oil-containing dust. In other words, it is a seeding fault

experiment and the deterioration of the three pumps does not follow a nature process. Each

pump experienced four states: baseline (normal state), contamination 1 (5 mg of 20-um dust

injected into the oil reservoir), contamination 2 (10 mg of 20-um dust injected into the oil

reservoir), and failure (15 mg of 20-um dust injected into the oil reservoir). The contamination

stages in this hydraulic pump wear test case study correspond to different stages of flow

loss in the pumps. As the flow rate of a pump clearly indicates pump’s health state, the

contamination stages corresponding to different degrees of flow loss in a pump were defined

as the health states of the pump in the test [15, 21].
Vibration signals were collected from a pump accelerometer that was positioned

parallel to the axis of swash plate swivel axis and data was continuously sampled. Figure 5

shows the schematic diagram of the experimental setup. The pump used for testing in the

experiments was a Back Hoe Loader: a 74 cc/rev variable displacement pump. The data was

collected at a sample rate of 60 kHz with antialiasing filters from accelerometers designed to

have a usable range of 10 kHz. In many cases, the most distinguished information is hidden

in the frequency content of signals. So the time-frequency representation of signals is needed.

In this case, the signals were processed using wavelet packet with Daubechies wavelet 10

(db10) and five decomposition levels as the db10 wavelet provide the most effective way to

capture the fault information in the pump vibration data. The coefficients obtained by the

wavelet packet decomposition were used as the inputs.

5.1. Hidden States and Probability Density of Parameters

For prognosis, the health changing mechanisms of a system usually involve several degraded

states. From normal to failure, a system goes through a series of different degraded states
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Figure 6: A HSMM scheme describing failure mechanism of a system.

and the certain transition relation among states is existed. There are four hidden states in

this case study which are defined as baseline, contamination 1, contamination 2, and failure,

respectively. The state transition process for the experiment is described by Figure 6.

There should be three probability distributions which will be modeled by the

following sections, including the probability of state transition, the probability of state

duration, and the probability of observation.

5.1.1. Probability of State Transitions

Assuming that Aij is the jth element of the ith row of the transition matrix A, then the

transition probability can be computed as follows:

Aij =

(
(1 − λ)mij + λAij

)
∑N

i=1

(
(1 − λ)mij + λAij

) , i, j = 1, 2, 3, 4, (5.1)

where the values of Aij come from the expert knowledge, mij denotes the number of

transitions from state xj to xi (mi0 is the count of occurrences of the state xi). λ is used to

control the weights between the expert knowledge and observation evidence.

5.1.2. Probability of State Duration

The duration probability distribution pi(d) can be modeled using the half-normal distribution

and expressed as follows:

pi(d) =
1

σi

√
2

π
exp

(
−1

2

(
d − μi
σi

))
, i = 1, 2, 3, 4, (5.2)

where σ2(si) is the variance for the ith state and μ(si) is the mean for the ith state.
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Figure 7: One sequence of the historical health data for a failure event.

5.1.3. Probability of Observations

For the observation sequences, two Gaussian mixtures for each state are chosen. Thus, the

following probability density can be obtained:

bi(ot) =
2∑
k=1

ωikN(ot, uik,Uik), i = 1, 2, 3, 4, k = 1, 2, (5.3)

where N(ot, uik,U2
ik
) is the kth mixture Gaussian distribution at state si. uik, U2

ik
, and ωik

are the mean, variance, and mixture weight of the kth Gaussian distribution at state si,

respectively. However, the weights must satisfy the following constraints:

2∑
k=1

wik = 1 wik ≥ 0, i = 1, 2, 3, 4, k = 1, 2. (5.4)

Based on Sections 2, 5.1.1 and 5.1.2, the parameters of HSMM can be described as

follows:

{A,B,D, π} =
{
aij , uik,U

2
ik, wik, μi, σi, πi, 1 ≤ i, j ≤ 4, 1 ≤ k ≤ 2

}
. (5.5)

5.2. Results and Discussion

For the health prognosis, the lifetime training data from three hydraulic pumps is used.

An HSMM with four health states (baseline, contamination 1, contamination 2, and failure)
can be trained. The initial transition probabilities among four health states are transition

probabilities at the beginning of pump’s running. And the expected values of the duration

time in each state are also available through the training process. The results are given in

Tables 1 and 2.

In this case study, we denote baseline state as s1, contamination 1 state as s2,

contamination 2 state as s3, failure state as s4, and the states set as S (Sl ∈ S, and Sl denotes the

health state at observation time point l). Historical health data for pumps, at each observation

time point in one of the failure events, is shown in Figure 7. y-axis indicates the health state

of a pump, where 1 means s1, 2 means s2, 3 means s3, and 4 means s4. It can be seen from

Figure 7 that the health states for pumps are rigidly degrading over time.
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Table 1: Transition probabilities among four health states.

State Baseline Contamination 1 Contamination 2 Failure

Baseline 0.9056 0.0879 0.0063 0.0002

Contamination 1 0 0.8491 0.1506 0.0003

Contamination 2 0 0 0.9129 0.0871

Failure 0 0 0 1

Table 2: Expected values of duration time for each health state.

State Baseline Contamination 1 Contamination 2 Failure

Exp. of duration 10.4549 9.7923 11.3375 —

Table 3: State density of 5 observation time points.

Observation time point (l) State probability Health state

1 0.8821

s1

2 0.8556

3 0.7908

4 0.7744

5 0.6379

For testing the proposed methods, after the pumps enter baseline state, firstly, the 5

observation time points are used to compute the RUL and test the effectiveness. Based on

Section 4.2, the state recognition probability of the pumps staying at health state “baseline”

(i.e., p(Sl = s1 | y1:l−1), l = 1, . . . , 5) can be computed and the results are given in Table 3.

Then, based on (4.16) and (4.17), the RUL values of 5 observation time points for

pumps can be obtained. The comparison of the prognostic and actual RULs and their relative

errors are provided in Table 4. It can be seen that the proposed methods are effective for

online failure prognosis of pumps. The relative error is computed as follows:

Error = 100% ×
∣∣Actual RUL − Prognostic RUL

∣∣
Actual RUL

. (5.6)

In order to determine whether the proposed methods have a better performance for

online failure prognosis of pumps, the sample size is enlarged from 5 observation time points

to 29 observation time points.

First, based on Algorithm 4.2, the observation step is set as 4 (i.e., h = 4, h is the

observation steps) and the state is recognized after 4 observation time points.

Then, the state recognition probability is computed. The health state change point is

obtained and the changing trends of the state probability with the observation time points

are shown in Figure 8. Figures 8(a), 8(b), and 8(c) are the probability changing trends of

states s1, s2, and s3, respectively. Each health state of pumps is assumed to begin from the

observation time point when the corresponding health state probability has the largest value.

From Figure 8, it can be seen that the health state of pumps stays at state s1 from the 6th

observation time point to the 12th observation time point (see Figure 8(a)), the health state
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Table 4: Prognostic and actual RUL (5 observation time points).

Actual RUL Computed RUL Relative error (%)
32.0000 30.3521 5.1498

31.0000 30.0746 2.9851

30.0000 29.3980 2.0067

29.0000 29.2262 0.7801

28.0000 27.7989 0.7181
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Figure 8: Changing trends of the state probability.

of pumps stays at state s2 from the 13th observation time point to the 22nd observation

time point (see Figure 8(b)), and the health state of pumps stays at state s3 from the 23rd

observation time point to the 29th observation time point (see Figure 8(c)). Each health state

probability for the corresponding observation time points can be found in Table 5.

From Table 5 and Figure 8(a), it can be seen when the observation time point is 5, the

failure prognosis probability p(Sl+4 = s1 | y0:l) suddenly begins to increase its values and

when the observation time point is 6, the failure prognosis probability obtains the maximum

value. And it progressively becomes stable from the 6th observation time point, so it indicates

that the pumps have more failure possibility at about 6th observation time point. In fact,

at the 6th observation time point, the health state of the pumps begins to change from the
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Table 5: State prognosis probability.

Observation time point State probability Health state

3 0.0711

s1

4 0.0703

5 0.0895

6 0.5186

7 0.3907

8 0.3413

9 0.2379

10 0.2092

11 0.1327

12 0.1203

13 0.8792

s2

14 0.7982

15 0.7328

16 0.6307

17 0.5961

18 0.4841

19 0.3384

20 0.2306

21 0.1864

22 0.1664

23 0.8935

s3

24 0.8632

25 0.8014

26 0.6902

27 0.6187

28 0.5341

29 0.3062

baseline. From Figure 8(b), it can be seen when the observation time point is 6, the failure

prognosis probability p(Sl+4 = s2 | y0:l) obviously begins to increase its values. When the

observation time point is 7, the failure prognosis probability exceeds 0.5. It is shown that the

failure mode of the pumps begins to shift into the second failure mode (contamination 1).
In fact, the failure mode of the pumps lies in the contamination 1 at the 13th observation

time point. From Figure 8(c), it can be seen when the observation time point is 13, the failure

prognosis probability p(Sl+4 = s3 | y0:l) obviously begins to increase its values. When the

observation time point is 18, the failure prognosis probability exceeds 0.5. It is shown that

the failure mode of the pumps begins to shift into the third fault mode (contamination 2). In

fact, the failure mode of the pumps lies in the contamination 2 at the 23rd observation time

point. It can also be seen that the simulation results are consistent with the actual states and

the proposed methods of HSMM-based SMC method can be used to predict the evolution of

the system.

Based on (4.16), each D̂(s(l)i ) (l represents the observation time point and i = 1, 2, 3) can

be computed. And the expected residual duration of the pumps staying at each health state

can be obtained. According to (4.17) and the values of each D̂(s(l)i ), the RUL can be obtained
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Table 6: RUL prognostic comparison with 4 methods.

Actual
RUL

HSMM
(joint

multisteps)

Relative
error

HSMM
(multisteps)

Relative
error

HSMM
(one-step)

Relative
error

HSMM
Relative

error

30.00 29.398 2.0067 29.3980 2.0067 29.3980 2.0067 30.2558 0.8527

26.00 25.2142 3.0224 28.5854 9.9438 27.8536 7.1291 29.9643 15.2473

22.00 22.5172 2.3507 26.0616 18.4618 25.3297 15.1352 29.7954 35.4336

17.00 17.5134 3.0199 15.3897 9.4721 18.3274 7.8085 19.4981 14.6947

15.00 16.0776 7.1837 13.7082 8.6119 17.6251 17.5009 19.2081 28.054

12.00 13.1625 9.6878 13.4892 12.4097 15.4476 28.7302 18.8666 57.2217

11.00 12.9667 17.879 13.3303 25.2653 14.3096 30.0869 10.2471 6.8445

9.00 9.7866 8.7401 13.2352 19.4156 13.5290 50.3224 10.0291 11.4344

5.00 6.0558 21.1166 8.0292 35.8459 7.0224 40.4490 9.7675 95.35

MAPE 8.3341 (%) 15.7147 (%) 22.1298 (%) 29.4592 (%)

and the results of HSMM, multistep ahead and one-step ahead health recognition methods

can be compared. The comparison between the prognostic and actual RUL is given in Table 6,

and the comparison scheme is illustrated in Figure 9. The mean absolute percentage error

(MAPE) is set as follows:

MAPE =
(

1

n

) n∑
i=1

εi, (5.7)

where i is the observation time point and n is the total observation time points.

Based on Table 6, the relative error of the proposed methods between the prognostic

RUL and actual RUL is quite small. So it indicates that the proposed method has a better

performance for online failure prognosis of the pumps. And the MAPE of the proposed

methods is smaller than that of HSMM [14], multistep ahead, and one-step ahead health

recognition methods, respectively. So the prognostic accuracy of the proposed method is

higher than that of the HSMM, multisteps ahead, and one-step ahead health recognition

methods, respectively.

Through the overall case study, the sample of the pumps is modeled based on

HSMM using SMC methods and the failure prognosis is implemented based on the available

observations. The results show that the proposed methods have a better performance for

online health management of a system, including prognostic effectiveness and accuracy.

Furthermore, the computational complexity of the proposed methods is decreased compared

with HSMM-based method [15] the prognostic accuracy is better than both multisteps ahead

and one-step ahead health recognition methods. The proposed methods also reduce the

computing storage space. This indicates that the proposed methods are more effective for

online health management of complex nonlinear systems and could be used in the real time

applications with large data sets.

6. Conclusions

Currently, prognosis is still in its infancy and the literature is yet to present a working model

for effective prognosis, but a new trend is that more combination models are designed to
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deal with data extraction, data processing, and modeling for prognosis. In this paper, in

order to obtain the health management of a system, the detailed models and algorithm of

HSMM-based SMC method are proposed. Because it is difficult for a single method to obtain

satisfied results online health management of a system, the novel online prognostic methods

for a system are developed based on both the mathematical structure of HSMM and online

features of SMC method, including online health recognition algorithm and online prognostic

model. The methods can eliminate the disadvantages of each method, increase the prognostic

accuracy, and utilize the advantages of each method. A case study is used to illustrate

the superiority of the proposed methods. Through the comparisons among the proposed

methods, HSMM, multisteps ahead, and one-step ahead health recognition algorithm, the

results show that the proposed methods have a better performance and are more effective for

online health management of complex nonlinear systems.
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This paper presents an efficient texture synthesis based on wavelet packet tree (TSWPT). It has
the advantage of using a multiresolution representation with a greater diversity of bases functions
for the nonlinear time series applications such as fractal images. The input image is decomposed
into wavelet packet coefficients, which are rearranged and organized to form hierarchical trees
called wavelet packet trees. A 2-step matching, that is, coarse matching based on low-frequency
wavelet packet coefficients followed by fine matching based on middle-high-frequency wavelet
packet coefficients, is proposed for texture synthesis. Experimental results show that the TSWPT
algorithm is preferable, especially in terms of computation time.

1. Introduction

Texture modeling can be effectively applied to a wide variety of natural surfaces such as

plants, furs, skins, minerals, terrains, and fractal materials [1, 2] and is an important issue in

cyber-physical systems [3–7]. Numerous techniques have been proposed for texture process-

ing; one may refer to [8] for a complete survey.

Given an example texture, the goal of texture synthesis is to produce a visually similar

image of any size. One may easily tile small textures to synthesize a larger image; however,

there are some blocking effects near the tile edges [9]. Although some smoothing methods

were proposed to reduce the blocking effects at the cost of computation time, it seems to be
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limited in improvements, especially for structured textures [10]. Efros and Leung proposed

a neighborhood matching method [11], in which each pixel of the synthesis image was

obtained by searching the most similar one in the source image based on the user-defined

neighboring pixels. Wei and Levoy took account of the order in which pixels were synthesized

and proposed an order-independent search-based texture synthesis algorithm [12]. Instead

of synthesizing one pixel at a time, a patch of pixels can be taken as a whole and synthesized

by matching the overlap regions between neighboring patches [13–15]. To improve the

synthesis speed, the multi-resolution approach has been widely used for texture analysis and

synthesis [16, 17]; Fang and Lien developed a rapid image synthesis system by adopting a

multi-resolution approach, which consisted of an analysis process and a synthesis process. It

consumed most of the computation time in the analysis process; yet the speed of synthesis

was very fast [16]. In [17], De Bonet proposed a scheme of generating the synthesis image by

sampling the filtered outputs of a texture in the framework of Laplacian pyramid [18]. Burt

adopted the Gaussian pyramid [19] to represent both the input texture and the synthesis

image at multiple resolutions and synthesized the texture images from lower to higher

resolutions [20].
Wavelet transform provides an efficient multi-resolution representation [21], in which

the higher frequency components of an image are projected onto the shorter basis functions

with higher spatial resolutions and the lower frequency components are projected onto

the larger basis functions with higher spectral resolutions. Such a compact representation

matches the characteristics of human visual system [22]. Wavelet theory has been successfully

applied to many applications such as parameter estimation in fractal signals and images

[23–29]. Yu et al. randomly sampled blocks of wavelet coefficients from the input texture

to substitute that of the synthesis image [30]. Cui et al. adopted a 2-level wavelet transform

and generated the synthesis image by minimizing the sum of squared distances between

neighboring blocks of wavelet coefficients [31].
For images with textures, lots of wavelet coefficients are likely to be significant in

the middle-high frequency subbands, which surely demand further decompositions for a

more compact representation [32]. Note that wavelet transform only decomposes the low-

frequency component of an image at each resolution. However, both the low-frequency

and high-frequency components can be decomposed using wavelet packet transform, which

provides more bases functions than wavelet transform [33]. In [34], we proposed an efficient

scheme to organize the wavelet packet coefficients of an image into hierarchical trees called

wavelet packet (WP) trees for image compression. In this paper, an efficient WP tree-based

algorithm is proposed for the texture synthesis applications.

The remainder of this paper proceeds as follows. In Section 2, wavelet transform and

wavelet packet transform are briefly reviewed. Section 3 describes the proposed scheme to

synthesize a texture image based on the WP trees of an example texture. Experimental results

are presented in Section 4. Conclusion can be found in Section 5.

2. Review of Wavelet Transform and Wavelet Packet Transform

Wavelet-transform- (WT-) based multiresolution analysis/synthesis has drawn a lot of

attention to the signal/image/video applications. The extension of WT known as wavelet

packet transform (WPT) provides a much larger family of bases functions with a more

compact representation. In this section, a brief review of WT and WPT is given. For a more

complete survey, we refer readers to [21].
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2.1. Wavelet Transform

WT has a variety of desirable properties, for example, joint space-spatial frequency localiza-

tion, self-similarity across subbands of the same orientation, and energy clustering within

each subband. For a discrete signal at resolution �, S�(n), the wavelet transform is defined as

S�+1(n) =
∑
k

h(2n − k) · S�(k),

D�+1(n) =
∑
k

g(2n − k) · S�(k),
(2.1)

where

h(n) =
〈
φ, φ−1,−n

〉
,

g(n) =
〈
ψ, φ−1,−n

〉
,

φ−1,−n(x) = 2−1/2φ
(

2−1x − n
)
.

(2.2)

ψ is a (mother) wavelet, φ is the corresponding scaling function, S�+1(n) is the approximation

signal at the next coarser resolution �+1,D�+1(n) is the detail information between resolutions

� and � + 1, h(n) and g(n) are low-pass filter and high-pass filter, respectively, and 〈·, ·〉 is

an inner product operator. S�(n) can be exactly reconstructed from S�+1(n) and D�+1(n) by

using the following inverse wavelet transform (IWT):

S�(n) =
∑
k

h̃(n − 2k) · S�+1(k) +
∑
k

g̃(n − 2k) ·D�+1(k), (2.3)

where h̃(n) = h(−n) and g̃(n) = g(−n).
For the image applications, 2D WT can be obtained by using a tensor product of two

1D WTs, horizontally followed by vertically or vice versa. Specifically, let LL0(m,n) be an

image at the finest resolution 0, where m and n are indices for the vertical and horizontal

orientations, respectively. The 2D WT of LL0(m,n) is as follows:

LL1(m,n) =
∑
i

∑
j

h(i) · h(j) · LL0

(
2m − i, 2n − j),

LH1(m,n) =
∑
i

∑
j

h(i) · g(j) · LL0

(
2m − i, 2n − j),

HL1(m,n) =
∑
i

∑
j

g(i) · h(j) · LL0

(
2m − i, 2n − j),

HH1(m,n) =
∑
i

∑
j

g(i) · g(j) · LL0

(
2m − i, 2n − j),

(2.4)

where LL1(m,n) is the approximation image at the next coarser resolution 1, LH1(m,n),
HL1(m,n), and HH1(m,n) are the detail images in the vertical, horizontal, and diagonal

orientations, respectively. Figure 1 shows a 2-level 2D WT, where subbands LH� , HL� , HH� ;

� = 1, 2, and LL2 are delimited by solid lines. Similarly, 2D IWT can be obtained by using the

tensor product of two 1D IWTs.
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Figure 1: 2-level wavelet transform (solid boundaries), wavelet packet transform (dashed boundaries),
and a wavelet packet tree with wavelet packet coefficients connected by arrows.

2.2. Wavelet Packet Transform

2D WT is only to decompose the lowest-frequency subband of an image in an iterative

manner. More specifically, only the scaling coefficients are decomposed from higher to lower

resolutions. However, for the texture applications, wavelet coefficients in the middle- and

high-frequency subbands are likely to be significant, which needs to be taken into account to

improve the multiresolution representation.

As one can see, both the low-frequency scaling coefficients and high-frequency

wavelet coefficients of a signal, at any resolution, can be decomposed, which leads to wavelet

packet transform (WPT), and a much larger family of bases functions can be produced [33].
Moreover, 2D WPT can be obtained by using a tensor product of two 1D WPTs. Figure 1

shows a 2-level 2D WPT, where all the wavelet subbands LH1, HL1, and HH1, at resolution

1, are further decomposed into wavelet packet subbands delimited by dashed lines.

3. Wavelet-Packet-Tree-Based Texture Synthesis

Wavelet packet transform provides more bases functions, which leads to a more compact

representation in comparison with wavelet transform. For the image-coding applications,

we had proposed an efficient scheme to organize the wavelet packet (WP) coefficients of an

image into hierarchical trees called WP trees [32]. In this section, we explore the key features

of WP trees and propose a WP-tree-based algorithm for texture synthesis.

3.1. Wavelet Packet Tree

The WP coefficients of a sequence of wavelet coefficients D�(n), at resolution �, are computed

by

D̃�,1(n) =
∑
k

h(2n − k) ·D�(k),

D̃�,2(n) =
∑
k

g(2n − k) ·D�(k),
(3.1)
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which can be efficiently rearranged and concatenated by

D̃�(n) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
D̃�,1

(n
2

)
; even n,

D̃�,2

(
n − 1

2

)
; odd n.

(3.2)

After the rearrangement and concatenation above, the dyadic relationship of wavelet

coefficients across subbands is still valid and can be used to construct the dyadic WP trees

of a signal. Similarly, the (2D) WP trees of an image can be obtained by rearranging the WP

coefficients horizontally followed by vertically or vice versa. Figure 1 shows a 2-level WP

tree with arrows connecting the related WP coefficients.

The key idea behind the construction of WP trees is based on the spatial relationships

of WP coefficients. It has the same structure, that is, quad-tree structure, as the conventional

wavelet trees. Furthermore, the number of high-energy wavelet coefficients can be

significantly reduced through the use of wavelet packet transform. Take the rice image shown

in Figure 5 as an example. The cumulative energy distribution (CED) of wavelet coefficients

or WP coefficients is given by

CED(n) =
∑n

i=1|C(i)|∑N
i=1|C(i)|

× 100%, (3.3)

where |C(i)|, i = 1, 2, . . . ,N, is the sorted magnitudes of wavelet coefficients or WP coefficients

in descending order, n in is the number of coefficients, and N is the total number of

coefficients. Figure 2 shows the CED curves of wavelet coefficients and WP coefficients,

where the horizontal and vertical axes are the number of coefficients and percentage of

energy, respectively. It is noted that the energy clustering of WP coefficients is more compact

than wavelet coefficients. As a result, the WP-based representation is preferable to the

wavelet-based representation for texture images.

3.2. Proposed Algorithm

As noted, the low-frequency WP coefficients retain the global information of an image,

and the high-frequency WP coefficients contain the local detail. It is desirable to coarsely

synthesize an image based on the low-frequency WP coefficients and then tune the

intermediate synthesis result based on the high-frequency WP coefficients. Motivated by the

fact above, we propose an efficient WP-tree-based texture synthesis algorithm using a two-

step process: a coarse searching followed by a fine tuning. Figure 2 depicts a flowchart of the

proposed algorithm. It is presented in steps as follows.

Step 1 (initialization). Decompose the source image by wavelet packet transform, rearrange

the high-frequency WP coefficients, and construct the WP trees. Randomly select a WP tree

from the source image, which is replicated in the upper left corner of the synthesis image.



6 Mathematical Problems in Engineering

Step 2 (coarse matching). For every WP tree to be synthesized, starting from the upper left

corner to the lower right corner of the synthesis image, search the candidate WP trees from

the source image by using a coarse matching with a tolerance as follows:

CWPj =
{

WPsouce,i | errLFN

(
i, j

) ≤ tolj , ∀i
}
,

tolj = min
i

errLFN

(
i, j

) · (1 + Tr),

errLFN

(
i, j

)
=

∑
p∈Ni,q∈Nj

distLFN

(
p, q

)
,

distLFN

(
p, q

)
=

∑
m,n∈LFN

(
WPsource,p(m,n) − WPsynthesis,q(m,n)

)2
,

(3.4)

where CWPj is the set of candidate WP trees obtained from the source image for matching

the synthesis WP tree WPsynthesis,j , with the tolerance tolj , Tr is a given threshold, distLFN(p, q)
is the distance between WPsource,p and WPsynthesis,q based on the low-frequency nodes (LFNs)
of WP trees, and Ni and Nj are neighbors of WPsource,i and WPsynthesis,j , respectively. Causal

neighborhoods were used in our experiments.

Step 3 (fine matching). After the coarse matching in Step 2, the following fine matching is

used to find the best WP tree based on the high-frequency nodes (HFNs) of the candidate

WP trees.

WPsynthesis,j = WPsource,i; i = arg

(
min
i

err
HFN

(
i, j

))
,

errHFN

(
i, j

)
=

∑
p∈Ni,q∈Nj

distHFN

(
p, q

)
,

distHFN

(
p, q

)
=

∑
m,n∈HFN

(
WPsource,p(m,n) − WPsynthesis,q(m,n)

)2
,

(3.5)

where WPsource,i ∈ CWPj in (3.5).

Step 4. Repeat Step 2 followed by Step 3 until all the WP trees to be synthesized are obtained

from the WP trees of the source image.

Step 5. Finally, the synthesis image is obtained by taking the inverse wavelet packet transform

of the synthesis WP trees.

To reduce the synthesis time, one can easily modify Steps 2 and 3 by using patches

of WP trees instead of single WP trees. Moreover, it is noted that lots of high-frequency WP

coefficients are not significant, and only a small portion of middle-frequency WP coefficients

are sufficient for the fine matching in Step 3. Thus, the proposed texture synthesis based on

wavelet packet tree (TSWPT) algorithm is simple and computationally efficient. Flowchart of

the TSWPT algorithm is shown in Figure 3.
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Figure 2: Cumulative energy distributions (CEDs) of the wavelet coefficients (solid line) and wavelet
packet coefficients (dashed line) of the rice image shown in Figure 5.
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Inverse wavelet packet transform

Wavelet packet transform

Figure 3: Flowchart of the TSWPT algorithm.
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Figure 4: Visual comparison. Source images (1st column), synthesis images using Efros’ algorithm [13]
(2nd column), Cui’s algorithm [31] (3rd column), and the TSWPT algorithm (4th column).

4. Experimental Results

In the first experiment, the size of source images is 128 × 128, which are shown in the 1st

column of Figure 4; the size of synthesis images is 256×256. The TSWPT algorithm is applied

to patches of WP trees in order to reduce computation time. The size of patches is 11 × 11,

and the width of overlapped regions between neighboring patches is 3. The root nodes of WP

trees, that is, WP coefficients in the lowest frequency subband, are used in the coarse matching
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Figure 5: Synthesis images at double the size of the source image (top) using Efros’ algorithm [13] (middle)
and the TSWPT algorithm (bottom).

step to retain the global appearance of the input source image. Since the essential components

of textures are mainly distributed in the middle-frequency subbands, the highest-frequency

WP coefficients, that is, the leaf nodes of WP trees, can be ignored in the fine matching step.

The biorthogonal 9/7 wavelet is used. The threshold value, Tr , is set to 0.1.

Two widely used algorithms, Efros’ algorithm [13] and Cui’s algorithm [31], were

used for comparisons with the TSWPT algorithm. The synthesis results are shown in the

2nd, 3rd, and 4th columns of Figure 4, respectively. Visual inspection shows that TSWPT

is comparable to Cui’s algorithm and is preferable to Efros’ algorithm. All the algorithms

were implemented by Matlab without optimization in source codes. Table 1 shows the

computation times running on PC with CPU of 1.7 GHz. It is noted that TSWPT is superior

to both Efros’ and Cui’s algorithms.

In the second experiment, the sizes of source image and synthesis image are 192 × 128

and 384 × 256, respectively. All the settings are the same as the first experiment. The source

image and synthesis results using Efros’ algorithm and TSWPT are shown in Figure 5. It is

shown that there are some blocking effects in the synthesis image using Efros’ algorithm.

However, blocking effects are likely to be eliminated by using the TSWPT algorithm due

largely to the filtering operations of inverse wavelet packet transform in Step 5. Figure 6
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Table 1: Comparison of computation times.

Efros and freeman [13] Cui et al. [31] TSWPT

Image 1 3.784 s 0.703 s 0.416 s

Image 2 3.893 s 0.854 s 0.425 s

Image 3 3.939 s 0.810 s 0.404 s

Image 4 3.914 s 0.737 s 0.372 s

Image 5 3.891 s 0.731 s 0.392 s

1 2 3 4 5 6 7 8
0

50

100

150

(s
)

Enlargement rates of image size

Figure 6: Synthesis times of the texture image (Figure 5) using Efros’ algorithm [13] (solid line), Cui’s
algorithm [31] (dashed line), and the TSWPT algorithm (dotted line).

shows the computation times at various enlargement rates of image size. As one can see,

the TSWPT algorithm outperforms both Efros’ and Cui’s algorithms.

5. Conclusion

The multi-resolution approach is suitable for texture synthesis in terms of computation

time. Wavelet packet transform provides more bases functions than wavelet transform and

therefore produces a more compact representation. We adopt wavelet packet transform to

analyze the input texture and organize wavelet packet coefficients to form hierarchical trees

called wavelet packet trees. The low-frequency nodes of wavelet packet trees contain the

global characteristics of an image; the high-frequency nodes contain the local details. Thus,

we propose texture synthesis based on wavelet packet tree (TSWPT). It has the advantage of

saving computation time dramatically, and moreover, no training process is needed. Given a

128 × 128 texture, experimental results show that the computation time for synthesizing an

256 × 256 image is only a fraction of a second.
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Affine invariant functions are constructed in spatial domain. Unlike the previous affine repre-
sentation functions in transform domain, these functions are constructed directly on the object
contour without any transformation. To eliminate the effect of the choice of points on the contour,
an affine invariant function using seven points on the contour is constructed. For objects with
several separable components, a closed curve is derived to construct the affine invariant functions.
Several experiments have been conducted to evaluate the performance of the proposed method.
Experimental results show that the constructed affine invariant functions can be used for object
classification.

1. Introduction

Recognizing objects that are subjected to certain viewing transformation is important in the

field of computer vision [1]. Affine transformation may be used as an approximation to

viewpoint-related changes of objects [2–4]. Typical geometric transformation such as rotation,

translation, scaling, and skewing are included in the affine transformation.

The extraction of affine invariant features plays a very important role in object

recognition and has been found application in many fields such as shape recognition and

retrieval [5, 6], watermarking [7], identification of aircrafts [1, 8], texture classification [9],
image registration [10], and contour matching [11].

Many algorithms have been developed for affine invariant features extraction. Based

on whether the features are extracted from the contour only or from the whole-shape region,

the approaches can be classified into two main categories: region-based methods and contour-

based methods [12]. For good overviews of the various techniques refer to [12–15].
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Contour-based methods provide better data reduction, and the contour usually offers more

shape information than interior content [12]. A number of contour-based methods have

been introduced in recent years. Affine invariant function (AIF) in these papers is usually

constructed in transform domain (see [1, 8, 16–20], etc.).
Due to the spatial and frequency localization property of wavelets, many wavelet-

based algorithms have been developed for the extraction of affine invariant features. It is

reported that these wavelet-based methods outperform Fourier descriptors [1, 8, 19]. In these

methods, the object boundary is firstly analyzed by wavelet transform at different scales.

The obtained approximation and detail signals are then used for the construction of AIF. The

choice of the signals, the number of decomposition levels, and the wavelet functions used

have all resulted in a number of different approaches. Many promising results have been

reported; Alferez and Wang [21] proposed geometric and illumination invariants for object

recognition depending on the details coefficients of dyadic wavelet decomposition. Tieng

and Boles [19] have developed an approximation-detail AIF using one dyadic level only.

Another AIF, the detail-detail representation function, was derived by Khalil and Bayoumi

using a dyadic wavelet transform [1, 8]. The invariant function is computed by utilizing two,

three, or four dyadic scale levels. Recently, AIF from the approximation coefficients has been

developed by applying two different wavelet transforms with different wavelet basis [18].
The synthesized AIF is proposed by Lin and Fang [17] with the synthesized feature signals

of the shape.

However, in all these methods, AIFs are constructed in transform domain. That is to

say, the shape contour is firstly transformed by a linear operator (e.g., wavelet transform,

Fourier transform, etc.). Then AIFs are constructed from the transformed contour. In this

paper, we construct AIF directly by the shape contour without any transformation. Equidis-

tant Points on the object contour are used to construct AIFs. To eliminate the effect of the

choice of points on the contour, an AIF using seven points on the contour is constructed. In

addition, the shape contour is not available [12] in many cases. For example, the image of

Chinese character “Yang” as shown in Figure 3 consists of several components. AIFs can not

be constructed from these objects. To address this problem, we derive a closed curve, which is

called general contour (GC), from the object. GC is obtained by performing projections along

lines with different polar angles. The GC derived from the affine transformed object is the

same affine transformed version as that of the original object. AIFs can be constructed in

spatial domain from the derived GC. Several experiments have been conducted to evaluate

the performance of the proposed method. Experimental results show that the constructed

affine invariant functions can be used for object classification.

The rest of the paper is organized as follows: in Section 2, some basic concepts about

affine transform are introduced. AIFs are constructed in Section 3. The performance of the

proposed method is evaluated experimentally in Section 4. Finally, some conclusion remarks

are provided in Section 5.

2. Preliminaries

2.1. Affine Transformation

Consider a parametric point x(t) = [x(t), y(t)]T with parameter t on the object contour. The

affine transformation consists of a linear transformation and translation as follows:

x̃(t) = a11x(t) + a12y(t) + b1,

ỹ(t) = a21x(t) + a22y(t) + b2.
(2.1)
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The above equations can be written with the following form:

x̃(t) =

[
a11 a12

a21 a22

][
x(t)

y(t)

]
+

[
b1

b2

]
= Ax(t) + b, (2.2)

where the nonsingular matrix A represents the scaling, rotation, skewing transformations,

and the vector b corresponds to the translation.

If I is an affine invariant function and Ĩ is the same invariant function calculated using

the points under the affine transformations, then the relation between them can be formulated

as

Ĩ = IJw, (2.3)

where J = det(A) is the determination of the matrix A. The exponent w of the power is called

the weight of the invariance. If w = 0, the function I is called as absolute invariant. If w/= 0,

the function I is called a relative invariant.

2.2. Affine Invariant Parameters

To establish one-to-one relation between two contour, the object contour should be parame-

terized. The arc length parameter transforms linearly under any liner transformation up to

the similarity transform including translation, rotation, and scaling. But, it is not a suitable

parameter for the constructing affine invariant function.

There are two parameters which are liner under an affine transformation: the affine arc

length [22] and the enclosed area [16]. The affine arc length τ is defined as follows:

τ =
∫

3

√
ẋ(t)ÿ(t) − ẍ(t)ẏ(t)dt, (2.4)

where ẋ(t), ẏ(t), and ẍ(t), ÿ(t) are the first and the second derivatives of x(t), y(t) with

respect to the arc length parameter t. Arbter et al. [16] defined the enclosed area parameter σ

as follows:

σ =
1

2

∫∣∣x(t)ẏ(t) − y(t)ẋ(t)∣∣dt. (2.5)

These two parameters can be made completely invariant by simply normalizing them with

respect to either the total affine arc length or the enclosed area of the contour. In the discrete

case, the derivatives of x and y can be calculated using finite difference equations. To establish

one-to-one relation between two parameter, the contour should be normalized and resampled

as in [19]. In the experiments of this paper, we use the enclosed area as the parameter.

In the discrete case, the parameterization should be normalized and resampled. The curve

normalization approach used in this paper mainly composes of the following steps [23].

(i) For the discrete object contour {(x(tk), y(tk)) : k = 0, 1, 2, . . . ,N − 1}, compute the

total area of the object contour by the following formula

EAN =
1

2

N−1∑
k=0

∣∣(x(tk) − x0)
(
y(tk+1) − y0

) − (x(tk+1) − x0)
(
y(tk) − y0

)∣∣, (2.6)
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where O(x0, y0) denotes the centroid of the object. Let the number of points on the

contour after the parameterization be N too. Denote that Spart = EAN/N.

(ii) Select the starting point on object contour as the starting point P0(x′(σ0),y′0(σ0))
of the normalized curve. From P0(x′(σ0), y′(σ0)) on object contour, search a point

P1(x′(σ1), y′(σ1)) along the contour, such that the area of each closed zone; namely,

the polygon P0OP1 equals to Spart.

(iii) Using the same method, from point P1(x′(σ1), y′(σ1)), calculate all the points

Pi(x′(σi), y′(σi)), i ∈ {1, 2, . . . ,N − 1} along the object contour. Pi(x′(σi), y′(σi)),
i ∈ {1, 2, . . . ,N − 1} along object contour.

In the experiments of this paper, the object contour or GC is normalized and resampled such

that N = 256.

3. Affine Invariant Object Representation

In this part, we will derive invariant function from the normalized object contours. Correla-

tion coefficient is used to measure the similarity of two AIFs. To construct AIFs from objects

with several separable components, we convert the object into a closed curve by performing

projections along lines with different polar angles.

3.1. AIFs Construct in Spatial Domain

Let [x(σ), y(σ)], and [x̃(σ̃), ỹ(σ̃)] be the parametric equations of two contours that differ only

by an affine transformation. For simplicity, in this subsection, we assume that the starting

points on both contours are identical. After normalizing and resampling, there is a one-to-

one relation between σ and σ̃. We use the object centroid as the origin, then translation factor

b is eliminated. Equation (2.2) can be written in matrix form as x̃(t) = Ax(t).
Let γ be an arbitrary positive constant, then [x(σ + γ), y(σ + γ)] is a shift version of

[x(σ), y(σ)]. We define the following function:

S
(
γ, σ

)
= x(σ)y

(
σ + γ

) − y(σ)x(σ + γ
)

=

∣∣∣∣∣x(σ) x
(
σ + γ

)
y(σ) y

(
σ + γ

)
∣∣∣∣∣, (3.1)

where | · | denotes determination of a matrix. As a result of normalizing and resampling,

[x(σ), y(σ)], [x̃(σ̃), ỹ(σ̃)], and [x(σ + γ), y(σ + γ)], [x̃(σ̃ + γ), ỹ(σ̃ + γ)] satisfy the following

equation:

(
x̃(σ̃)

ỹ(σ̃)

)
= A

(
x(σ)

y(σ)

)
,

(
x̃
(
σ̃ + γ

)
ỹ
(
σ̃ + γ

)) = A

(
x
(
σ + γ

)
y
(
σ + γ

)). (3.2)

It follows that

S̃
(
γ, σ̃

)
=

∣∣∣∣∣x̃(σ̃) x̃
(
σ̃ + γ

)
ỹ(σ̃) ỹ

(
σ̃ + γ

)
∣∣∣∣∣ = JS(γ, σ). (3.3)
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Figure 1: (a) A plane object. (b) The boundary of plane in (a). (c) The invariant function for the boundary
in (b).

In other words, S given in (3.1) is a relative invariance function. To eliminate the factor J =
det(A) in (3.3), S(γ, σ) needs to be normalized. We normalize S as follows:

Iγ =
S
(
γ, σ

)
EAN

, (3.4)

where EAN denotes enclosed area of the object contour as defined in (2.6). It follows from

(3.3) that Iγ given in (3.4) is an AIF. In [1, 8, 16–20], the shape contour is firstly transformed

by a linear operator (such as wavelet transform, Fourier transform, etc.). Then AIFs are

constructed from the transformed contour. In our method, the AIF given in (3.4) is directly

constructed from the shape contour without any transformation.

Figure 1(a) shows a plane object, and Figure 1(b) shows its boundary. Figure 1(c)
shows the AIF defined in (3.3) associated with Figure 1(b). Figure 2(a) shows an affine

transformation version of plane in Figure 1(a), and Figure 2(b) shows its boundary.

Figure 2(c) shows the AIF derived from Figure 2(b). In Figures 1(c) and 2(c), γ is set to 32.

Note that after affine transformation, the starting points of AIFs are different. We observe that

Figure 2(c) is nearly a translated version of Figure 1(c).
Experimental results show that the choice of γ may affect the accuracy of the object

classification based on Iγ . Some choice of γ may result in lower accuracy while other choice
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Figure 2: (a) An affine transformation version of Figure 1(a). (b) The boundary of plane in (a). (c) The AIF
for the boundary in (b).

of γ may result in higher accuracy. To eliminate the effect of the choice of γ , we construct AIFs

that involve more points on the object contour. In experiments of this paper, we use seven

equidistant partition points of the object contour: γ1 = N/8, γ2 = 2N/8, . . . , γ7 = 7N/8 to

construct AIF as follows:

Hγ1,γ2,...,γ7
= Iγ1

Iγ2
Iγ3
Iγ4
Iγ5
Iγ6

+ Iγ1
Iγ2
Iγ3
Iγ4
Iγ5
Iγ7

+ Iγ1
Iγ2
Iγ3
Iγ4
Iγ7
Iγ6

+ Iγ1
Iγ2
Iγ3
Iγ7
Iγ5
Iγ6

+ Iγ1
Iγ2
Iγ7
Iγ4
Iγ5
Iγ6

+ Iγ1
Iγ7
Iγ3
Iγ4
Iγ5
Iγ6

+ Iγ7
Iγ2
Iγ3
Iγ4
Iγ5
Iγ6
.

(3.5)

Indeed, it can be shown that, for arbitrary constants: γ1, γ2, . . . , γn, homogeneous polynomials

in terms of Iγ1
, Iγ2

, . . . , Iγn are also AIFs.
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3.2. Measurement of the Similarity between Two AIFs

We have seen from Figures 1(c) and 2(c) that affine transformation may result in a translated

version of AIF. To eliminate the effect of starting point, one-dimensional Fourier transform

can be applied to the obtained AIF. The invariance can be achieved by ignoring the phase in

the coefficients and only keeping the magnitudes of the coefficients. This way has a lower

computational complexity since that FFT is faster than shift matching [24].
In this paper, we construct AIFs in spatial domain. Therefore, to eliminate the effect of

starting point, we use correlation coefficient as in [18] to measure the similarity between two

AIFs. For two sequences Ik and I ′k, the normalized cross-correlation is defined as follows:

RI,I ′(l) =
∑

l

∑
k IkI

′
k−l√∑

I2
k

∑
I ′2k

. (3.6)

One of sequences, Ik or I ′k is rendered periodically, then the maximum value of correlation is

selected. Such an arrangement reduces the effect of the boundary starting point variation [18].
Consequently, translation invariant is achieved. Based on [25–27], some other approaches can

be derived to eliminate the effect of starting point.

3.3. AIFs for Objects with Several Separable Components

AIFs given in (3.4) and (3.5) can be used to object contour. But, in real-life, many objects

consist of several separable components (such as Chinese character “Yang” in Figure 3(a)).
Object contours are not available for these objects. Consequently, AIFs given in Section 3.1

cannot be used to these objects. To address this problem, we convert the object into a closed

curve by performing projection along lines with different polar angles (which is called central

projection transformation in [28]). The obtained closed curve is called general contour (GC) in

[29]. It can be proved that the GC extracted from the affine transformed object is also an affine

transformed version of GC extracted from the original object. Consequently, AIFs given in

Section 3.1 can be constructed based on the GC of the object. For example, Figure 3(b) shows

the GC of Figure 3(a). Figure 3(c) shows the AIF derived from GC of Figure 3(a).

4. Experiment

In this section, we evaluate the discriminate ability of the proposed method. In the first ex-

periment, we examine the proposed method by using some airplane images. Object contours

can be derived from these images. In the second experiment, we evaluate the discriminate

ability of the proposed method by using some Chinese characters. These characters have

several separable components, and contours are not available for these objects.

In the following experiments, the classification accuracy is defined as

η =
δ

λ
× 100%, (4.1)

where δ denotes the number of correctly classified images, and λ denotes the total number of

images applied in the test. Affine transformations are generated by the following matrix [1]:

A = k

(
cos θ − sin θ

sin θ cos θ

)⎛⎝a b

0
1

a

⎞⎠, (4.2)
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Figure 3: (a) The Chinese character “Yang”. (b) GC of Chinese in (a). (c) The AIF for GC in (b).

where k, θ denote the scaling, rotation transformation, respectively, and a, b denote the

skewing transformation. To each object, the affine transformations are generated by setting

the parameters in (4.2) as follows: k ∈ {0.8, 1.2}, θ ∈ {30, 90◦, 150◦, 210◦, 270◦, 330◦}, b ∈
{−3/2,−1,−1/2, 0, 1/2, 1, 3/2} and, a ∈ {1, 2}. Therefore, each image is transformed 168 times.

4.1. Air Plane Image Classification

The first experiment is conducted to classify the airplane images. Seven airplane images

shown in Figure 4 are used as models in this experiment. Some of these models represent

different objects but with similar contours, such as model 6 and model 7. They can be easily

misclassified due to their similarity. We test the effect of the choice of the constant γ . The

contour is normalized and resampled such that N = 256. We set γ1 = 32, γ2 = 64, . . . , γ7 = 224.

To each airplane image, the affine transformations are generated by setting the parameters

in (4.2) as aforementioned. Therefore, each image is transformed 168 times. That is to say,

the test is repeated 1176 times. Table 1 shows the classification accuracy of different constants

and that AIF is given in (3.5). It can be observed that different accuracies may be achieved

with different γ . For example, the accuracy rates are very low for γ4 = 128 and γ7 = 224. To

eliminate the effect of the choice γ , AIFs involved more points that can be used for object

classification. In the rest of this paper, we use AIF given in (3.5) to extract affine invariant

features.
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Figure 4: The airplane models.

Table 1: Classification accuracies for different γ under different affine transformations.

γ 32 64 96 128

Accuracy rates 90.05% 96.51% 93.03% 87.59%

γ 160 192 224 AIF in (3.5)
Accuracy rates 93.03% 96.51% 88.61% 92.52%

4.2. The Classification of Objects with Several Separable Components

In this experiments, we extract affine invariant features from objects with several separable

components. 10 Chinese characters shown in Figure 4 are used as the database. These

characters are with regular script font. The size of these characters is 128 × 128. Each of

these characters consists of several separable components. Some characters have the same

structures, but the number of strokes or the shape of specific stokes may be a little different.

As aforementioned, each character image is transformed 168 times. That is to say, the

test is repeated 1680 times. Experiments on Chinese characters in Figure 5 and their affine

transformations show that 96.25% accurate classification can be achieved by using AIF given

in (3.5).
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Figure 5: Test characters used in the second experiment.

5. Conclusions

In this paper, we construct AIFs in spatial domain. Unlike the previous affine representation

functions in transform domain, these AIFs are constructed directly on the object contour

without any transformation. This technique is based upon object contours, parameterized by

an affine invariant parameter, and shifting of the contour. To eliminate the effect of the choice

of points on the contour, an AIF using seven points on the contour is constructed. For objects

with several separable components, a closed curve is derived to construct the AIFs. Several

experiments have been conducted to evaluate the performance of the proposed method.
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High-speed railway private cellular network provides voice and data services for passengers. It
brings much signaling cost as a great many of mobile subscribers ask for location updating simul-
taneously. Moreover, it leads to plenty of control signaling channel requests. This paper presents
two novel location updating schemes, that is, “clustering location management” and “mobile
group location management” to solve the problems caused by the existing location updating
scheme in high speed railway cellular private network. These two schemes can realize location up-
dating without occupying more frequency resources. In addition, it does not impact the mobile
subscribers’ paging. Then it analyses the performance of two improved schemes, such as channel
request number of stand-alone dedicated control channel (SDCCH), average waiting time of loca-
tion updating, cost of location updating, and paging. The result indicates that both schemes can uti-
lize the SDCCH channel resource effectively.

1. Introduction

With the constructing and opening of the high-speed railway lines, mobile users’ demand of

the voice, data, and other services in the high-speed train is gradually improved. Since the en-

vironment of the radio propagation is very complex, and it executes handover frequently

during the calling procedure, mobile users have some problems, such as low communication

quality, and high call drop rate. Although it can be solved through the construction of private

networks for the high-speed railways [1, 2], some new problems are involved correspond-

ingly. For example, there are a large number of mobile users in the same train. All mobile

users will send the location update messages to the network at the same time. As a result, the

signaling overhead will be increased, and it will even cause the congestion of signaling chan-

nel [3, 4]. The field test data also confirmed this. It can be found that most congested base sta-

tions locate at the border between the two location areas, and the congestion time is
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concentrated within a brief period. Thus, in order to ensure the success of location update,

more frequencies should be allocated even if the requirement of voice service in the private

network is less. Obviously it is a waste of the network resources. In this paper, to reduce the

cost of the location updating and improve the performance of communication system, we

propose “clustering location management” scheme and “mobile group location manage-

ment” scheme used in mobile communication system for passenger dedicated lines, and it

may ensure the mobile users to execute location update successfully and not to affect the nor-

mal paging process.

There are three types of approaches for location update procedure: time-based, move-

ment-based, and distance-based update schemes [5]. Each type has its advantages suitable

for special applications. In order to improve the performance of location management, the

improved methods based on those schemes are proposed in the literatures [6–13], such as

hybrid location update scheme [6], dynamic location management scheme based on move-

ment-state [7], interoperation of identity management [8], and two-level pointer forwarding

strategy for location management in PCS networks [9]. According to the move trend of train,

some mobile location management schemes have also been proposed. For instance, a method

was proposed in [10], which divided the users into different groups based on their move

speed and used the corresponding location management scheme to improve paging ef-

ficiency. In [11], a hybrid method based on self-organization mobile network and GSM

network has been presented, but the complexity of implementation is increased. According

to the characteristics of railway communication, a group location management method based

on the group ID (GID) and virtual visit location register (VVLR) is proposed in [12]. To

meet the requirement of mobility of base-station in military communication, an enhanced

mechanism for relay-based group mobility by extending the IEEE 802.16 m specification on

relay is proposed in [13]. However, the methods described in [12, 13] both need to add some

mobile base-station equipments, and the internal communication in a group still occupied the

network resource, it brings a great challenge to the mobile communication network. Several

location management strategies to reduce the cost of location management in mobile net-

works are presented in [14–16].
For the above reasons, we propose two location update schemes not taking additional

frequency resource, and the improved schemes may ensure all the users on the high-speed

train to finish location update. For the specific application, we mainly consider two schemes.

The first scheme is called “clustering location management” scheme, in which mobile users

will be divided into multiple groups to execute location update separately. The second

scheme considers the mobile users in a carriage as an integral unit (group), and a particular

device (group head) executes location update as the representative of the whole group, which

is called “mobile group location management” scheme. This paper is organized as follows: in

Section 2, the principles of two improved location schemes are described. In Section 3, the

further analysis and performance comparison of the existing scheme and improved schemes

are given. Finally the conclusion is obtained in Section 4.

2. Principle Description of Two Improved Schemes

2.1. Clustering Location Management Scheme

The basic idea of clustering location management (CLM) scheme is to divide the mobile sub-

scribers (MSs) with high-speed movement into two or more clusters according to their
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Figure 1: location area and virtual location area.

identification, such as international mobile subscriber identity (IMSI), and then the MSs in

each cluster perform location updating in turns. Thus, it can reduce the number of MSs who

need location updating in unit time, decreasing the network resource requirement. Mean-

while, through the virtual location area, it can guarantee the paging of those MSs who have

not carried out the location updating yet, so as to reduce the call failure probability and im-

prove the reliability of communication.

To take two user clusters clustering in GSM system as an example, according to the

difference number of the end bit of IMSI, the odd number MSs is clustering as Cluster 1, the

even number MSs is clustering as Cluster 2. When mobile stations find that the current loca-

tion area code (LAC) is different from the previous registered LAC, they will request a loca-

tion updating. Considering the different clusters, the network side let the MSs of Cluster

1 carry out the normal location updating procedure, but the updating request of the MSs of

Cluster 2 will not be accepted temporarily. After the timer reaches the default time T , then the

MSs of Cluster 2 perform the location updating procedure. The value of the default time T

is related with the speed of train and the cell radius, T should not be longer than the train

travel time for a cell, namely, it should guarantee the MSs of Cluster 1 to complete the location

updating within T .

Considering the network coverage along the railway is linear in general, as shown in

Figure 1, supposed that LAL, LAM, and LAN are three adjacent location areas, which are l cells

in LAL, m cells in LAM, and n cells in LAN. After adopting the CLM scheme, during the loca-

tion updating phase of Cluster 1, if the MS in Cluster 2 has an incoming call, it will be miss-

ed because the MSs in Cluster 2 have not performed location updating yet. Hence, we put

forward a concept of virtual location area for paging the MSs in Cluster 2 during Cluster 1 up-

dating phase. The virtual location areas are recorded in the database of network side, and it

contains all cells in the original location area and adds an adjacent cell, which is in the target

location area. In this case, if the MS in Cluster 2 has an incoming call, it will page MSs in the

virtual location area. As shown in Figure 1, when the train travels from left to right, LALf,

which is the virtual location area of LAL, is defined as all cells in LALand cell M1, and LAMf,

which is the virtual location area of LAM, is defined as all cells in LAM and cell N1. Similarly,

when the train travels from right to left, LAMb, which is the virtual location area of LAM, is

defined as all cells in LAM and cell L1, and LANb, which is the virtual location area of LAN, is

defined as all cells in LAM and cell Mm.

By use of the virtual location area, the MSs who are waiting for location updating will

not miss the incoming calls. For example, when MSs move from LAM into LAN, before the

timer time t reaches the default time T , the MSs of Cluster 2 are located in cell N1, which
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belongs to LAN, but their location information is still LAM; when the MS of Cluster 2 has an

incoming call, the network will page the MS in the virtual location area LAMf, including cell

M1, M2, . . ., Mm and cell N1, so the called MS will not miss the incoming call. Note that the

paging procedure of the MSs in Cluster 2 is as usual.

If the number of MSs is very large, to avoid the call failure caused by too many location

updates, the MSs can be divided into more clusters, each cluster carries out the location up-

dating procedure in turns. However, the virtual location areas for each cluster must be rede-

fined, the specific rules of which can be decided by the network operators.

2.2. Mobile Group Location Management Scheme

To implement the mobile group location management (MGLM) scheme, we need to configure

some network devices in each railway carriage to build WLANs, as shown in Figure 2. Each

WLAN’s coverage range is limited within a carriage, and it should be equipped with a

device as the mobile group head (MGH), which is responsible for the management of mobile

terminals and performs the integrated location updating with representing the group. MGH

comprises a wireless access point (AP), a cellular communication transceiver, and MGH re-

gister for storage the registered information of group members, as shown in Figure 3. The

mobile terminals have dual mode, which means they support both cellular network wireless

transceiver function and Wi-Fi function; hence, they have the ability to access to the WLAN.

In our MGLM scheme, we take GSM network as an example. It includes several pro-

cesses: the group formation, dissolution and update process, intramobile switching center/

visitor location register (MSC/VLR) group location updating procedure, inter-MSC/VLR

group location updating procedure. As for the group location updating, it is in relative terms

of traditional GSM location updating, the traditional GSM location updating is requested

by MSs, each update just updates one MS’s information, but the group location updating is
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requested by the MGH, and it may update the location information of all MSs managed by the

MGH. Apparently, the updating efficiency of MGLM scheme is much higher than the tradi-

tional ways. The details of those processes are as follows.

2.2.1. Group Formation, Dissolution, and Update Process

As the train sets off from the origin station, the WLANs in the carriages are enabled, the AP in

MGH periodically sends member-joining notification message to MSs, the MSs in the carriage

establish association with AP through the WLAN and are formed as an integral unit (group).
The MGH is taken as the whole group representative, and the ordinary MSs are regarded as

the group members. The specific process related to group formation, dissolution, and update

includes the following steps.

(1) The AP in MGH sends the checking signal with a period of TAP in the wireless

coverage range, usually inside a railway carriage. Mobile group head register stores

every MS’s IMSI number or temporary mobile subscriber identity (TMSI) number,

each TMSI is correspondent to an IMSI;

(2) When the mobile terminals (MTs) within WLAN signal coverage range receives the

checking signal, they reply their own IMSI (or TMSI) number, and then apply for

joining the group;

(3) After receiving the reply of each MS, the MGH registers the IMSI (or TMSI) num-

ber and sequence number of each MS, then returns a confirmation message and seq-

uence number to the MS; when the MS receives the confirmation message, it means

that MS has joined the group and knows its sequence number in the group;

(4) MGH checks the change of member in the carriage every TAP cycle regularly, when

MGH finds new member joining the group, it registers the new MS information and

returns the corresponding message and sequence number;

(5) After sending the period checking signal, if the MGH has not received the IMSI (or

TMSI), it thinks that the MS has left the group and then cancels the MS group regi-

stration information.

2.2.2. Intra-MSC/VLR Group Location Updating Procedure [17]

The intra-MSC/VLR group location updating procedure is shown in Figure 4.
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Figure 4: Intra-MSC/VLR group location updating procedure.

(1) The MGH sends the “channel request” message to BTS on random access channel

(RACH), the priority of this message is higher than those sent from the ordinary

MSs’, so the base station (BTS) responds to the “immediate assignment” message

on a stand-alone dedicated control channel (SDCCH);

(2) The MGH sends the “location updating request” message to the network, which in-

cludes each MS’s IMSI (or TMSI) number and old location area identify (LAI) in

sequence. The location updating request is forwarded to the MSC/VLR;

(3) The VLR stores each MS’s new LAI, assigns a new TMSI to each MS, and then sends

the new TMSI table aligned in sequence via “location updating accept” message to

the MGH;

(4) The MGH receives the new TMSI table and forwards the message including the new

MS’s TMSI via WLAN, then each MS updates its location information and TMSI;
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(5) The MSs in the group replies the “TMSI reallocation complete” acknowledgement

message to the MGH through the WLAN, if the MGH does not receive the acknow-

ledgement message of some MS, the MS location updating failure is considered;

(6) The MGH replies back “TMSI reallocation complete” or “location updating failure”

message of each MS to the network in sequence, MSC receives the message and

releases the channel link. For the MSs failed in location updating, the network

responds their “location updating message” messages sent to the BTS individually,

the location updating procedure is the same as the traditional one;

(7) After completing the location updating, the mobile station sets SIM card’s update

status to UPDATED (latest) and storages the new LAI.

2.2.3. Inter-MSC/VLR Group Location Updating Procedure [17]

The inter-MSC/VLR group location updating procedure is shown in Figure 5, in this case

MSs move from VLR1 to VLR2.

(1) The MGH sends the “channel request” message to BTS on random access channel

(RACH), the priority of this message is higher than those sent from the ordinary

MSs’, the base station (BTS) responds to the “immediate assignment” message on

a stand-alone dedicated control channel (SDCCH);

(2) The MGH sends the “location updating request” message to the network, which

includes each MS’s IMSI (or TMSI) number and old location area identify (LAI) in

sequence. The location updating request is forwarded to the VLR2 via MSC2;

(3) The new VLR2 inquires to the old VLR1 the authentication parameters and identity

of each MS;

(4) The old VLR1 sends the new identity and authentication parameters of each MS to

the new VLR2 in sequence, including IMSI, RAND, SRES, and Kc;

(5) The new VLR2 assigns a new TMSI to each MS, then sends the new TMSI table alig-

ned in sequence via “location updating accept” message to the MGH, if necessary,

it will send encrypted mode;

(6) The MGH receives the new TMSI table and forwards the message including the new

MS’s TMSI via WLAN, then each MS updates its location information and TMSI;

(7) The MSs in the group replies the “TMSI reallocation complete” acknowledgement

message to the MGH through the WLAN, if the MGH does not receive the acknow-

ledgement message of some MS, the MS location updating failure is considered;

(8) The MGH replies back “TMSI reallocation complete” or “location updating failure”

message of each MS to the network in sequence, MSC1 receives the message and

releases the channel link. For the MSs failed in location updating, the network res-

ponds their “location updating message” messages sent to the BTS individually, the

location updating procedure is the same as the traditional one;

(9) The new VLR2 notifies the HLR each mobile resides, then the HLR sends the MS’s

information to the new VLR2, and the old VLR1is told to delete the data of that MS;

(10) After completing the location updating, the mobile station sets SIM card’s update

status to UPDATED (latest) and stores the new LAI.
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3. Performance Analysis

3.1. Parameter Hypothesis

Generally speaking, the minimum interval between two trains in one way is about 10 km.

Considering that most of the high-speed railway is double-tracked, there are at most two pas-

senger trains within the 20 km range. Each train has k (k = 8 ∼ 16) carriages, and each car-

riage may carry 75 passengers; hence, total number of passengers per train is Q = 600 ∼ 1200,

in which the number of GSM mobile subscriber is about 60%, that is, the biggest number of

MSs to perform location updating once is 2 × Q × 60% = 1.2Q; supposing each line traffic is

0.02 Er1, then the total traffic is 1.2Q × 0.02 = 0.024QErl. According to a radio channel call

loss rate 2% to design, the least channel number and SDCCH channel number needed per

cell is shown in Table 1, due to the LAC boundary of the private network needed to provide

enough channel resources to complete location updating and routing updating, consequently

the increased number of SDCCHs is 3.2–4 times of the number of traffic channel [1, 2].
Based on the analysis of signaling, a location update occupies SDCCH average 3 s; con-

sidering the time from an SDCCH be released (i.e., CHANNEL RELEASE ACK is received)
to be reassigned, a normal location updating total time is about 3.5 s.
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Table 1: Number of passenger versus the number of TCH and SDCCH.

The number of
passengers
per train Q

Traffic
(Erl)

The number of TCH
N(radio loss rate

2%)

The number of
SDCCHs S per

normal cell

The number of SDCCHs
SLAC = 4N per cell in the

private network

600 14.4 22 32 88

700 16.8 25 32 88

800 19.2 27 32 88

900 21.6 30 40 96

1000 24 33 40 96

1100 26.4 36 48 144

1200 28.8 37 48 148

3.2. Performance Analysis of Traditional Location Management Scheme

In the traditional location management scheme, the cost of location updating and paging per

MS on the train in a unit time is represented by CT :

CT = ηCLU + λCCP , (3.1)

where η = v/R is the location updating rate; v indicates the speed of train; R expresses the

average distance between location boundaries; CLU indicates the average location updating

cost of each MS; λC is the call arrival rate, that is, the arrived calling number of each MS per

unit time; CP represents the average paging cost of each MS:

CP = x · CPcell, (3.2)

where x indicates the average number of cells in an LA and CPcell represents the paging cost

of each cell, here supposed the average distance over an LA is about R = 100 km including

average 10 cells, v = 300 km/h, λC = 0.5/h. Supposing that the passengers in a train is Q,

1.2Q expresses the total location updating number of MSs at the same time, thus the total

cost of all location management per unit time is represented by CT
′, and

CT
′ = 1.2Q

(
ηCLU + λCCP

)
. (3.3)

If SDCCH is congested, the average location updating time is increased, which can be

obtained by M/M/C model [18–21]. Supposing the average waiting time per MS is Wq, as

shown in (3.4):

Wq =
1

cμ(1 − (
λ/cμ

)
)2
pc, (3.4)

where c represents available SDCCH number and μ represents the number of location up-

dates in a unit time (1 s) completed in one SDCCH. Considering that a normal location up-

dating total time is about 3.5 s, the average service rate is μ = 1/3.5, and λ represents the aver-

age arrived rate of location updating. Since the triggering time of the location updating is very
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short, we suppose that all MSs start location updating procedure within 1 min, λ = 1.2Q/60.

pc and the traffic degree ρ are related to SDCCH number c and the steady-state probability

p0:

pc =
1

c!
· ρc · p0,

ρ =
λ

μ
,

p0 =

[
c−1∑
k=0

1

k!
ρk =

ρc

c!(1 − ρc)

]−1

,

ρc =
λ

cμ
< 1,

(3.5)

where k represents the number of MSs, that is, 1.2Q, from the above equations, the number

of MSs is more, the number of SDCCHs is less, thus the SDCCH is more congested, and the

average waiting time of MS for location updating is much longer.

3.3. Performance Analysis of CLM Scheme

In the improved CLM scheme, MSs are divided into n clusters. The cost of the location updat-

ing is the same as the cost of traditional location management scheme, although the cost of

paging is increased, the performance of radio resource utilization rate and the average wait-

ing time of location updating is improved. Please refer to [22–25]:

CLU

CPcell
= 17. (3.6)

As we know, the cost of location updating occupies too much proportion of the total

cost of location management; therefore, a little increase of paging cost will bring little effect to

the total cost of location management. Supposing CPcell is the unit cost, we may calculate CLU

and CP via formulas (3.6) and (3.2), respectively; moreover, we may analyze the cost of the

location updating and the cost of paging and the total cost.

Through clustering, the number of SDCCHs can be reduced greatly. From Figure 6, we

can see that the CLM scheme with 48 SDCCHs can acquire the similar waiting time perfor-

mance of traditional scheme with 88 SDCCHs, which reduces a great amount of the SDCCH

channel consumption. And the more the number of the SDCCH is, the shorter the average

waiting time is. Observed in Figure 6, we may choose the appropriate number of SDCCHs to

be assigned. When n = 1, which means no clustering, it needs at least 88 SDCCHs [1]; when

n = 2, the number of SDCCHs can be set to 48; when n = 3, the number of SDCCHs can be

set to 40; when n = 4, the number of SDCCHs can be just set to 32. Hence, it can greatly re-

duce the SDCCH channel resource by clustering and further enhance the QoS quality of MSs.

Using the same number of SDCCHs, the more clusters in CLM, the shorter the average wait-

ing time is. For example when SDCCH = 88, the average waiting time of the traditional

scheme (i.e., n = 1) is 0.215653 s, and when SDCCH = 56, the average waiting time of CLM for

n = 2 is just 0.15365 s, consequently, the CLM scheme can achieve a better performance.
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Figure 6: The average waiting time of location updating.
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Figure 7 describes the performance comparison of the cost of the location updating bet-

ween traditional scheme and the CLM scheme. Seen from the graph, no matter whether clus-

tering, the general trend of the location updating cost is increased as the number of MSs.

When no clustering (i.e., n = 1), if the number of MSs is less than 850, the updating cost is

a little better than CLM scheme, but its number of SDCCHs far outweighs the CLM scheme;

whereas when the total passengers is nearly 1200, the cost of location updating for no clus-

tering increases significantly. When using the same number SDCCH, the more clusters;
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the less cost of location updating. When using the same number of clusters n, the more

SDCCHs are assigned, the less cost of location updating is.

Figure 8 is the paging cost performance comparison between the traditional scheme

and the CLM scheme. We can see that the more clusters, the higher paging cost is increased,

but usually the value of n could be 2 or 3 in practical application, and the paging cost only oc-

cupies a small proportion of the cost of location management.
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Hence, it can be concluded that on the basis of saving SDCCH resource, the CLM

scheme can acquire the similar average waiting time and total location management cost per-

formance of the traditional scheme.

3.4. Performance Analysis of MGLM Scheme

In MGLM scheme, we suppose that there are d ∗ 1.2Q (0 < d < 1) MSs with dual-mode ter-

minals joining into the group, the other users cannot join into the group due to mobility or

without dual-mode terminals. The definition Q is the same as 3.2; d represents the proportion

of MSs in the group. According to the basic principle of the MGLM scheme, the decreasing

percentage of SDCCH is in proportion to the percentage of MSs joining in the group, for in-

stance, when d = 0.5, the amount of SDCCHs is decreased from 88 to 44. However when

d > 0.5, to meet the requirement of calling, the number of SDCCHs is not suitable for de-

creasing. From the specific procedure of the MGLM scheme, we know the overhead of the

MGLM scheme includes the overhead of the initial group registration procedureCg , the over-

head of the group location updating procedure CLU G, the overhead of paging CP , and the

overhead of group cancellation procedure Cc. Since the group registration does not involve

the mobile network resources, it will be neglected, and the group cancellation procedure can

be equivalent to the cost of a location updating. Assuming there are 75 passengers in each car-

riage, where 75dMSs with the dual-mode terminal join the group update management, hence

the cost of location updating includes two parts: the cost of dual-mode users CLU G and the

cost of ordinary users CLU. The calculation of the LA cost for ordinary users is the same as the

calculation in traditional scheme, to see (3.6); the LA cost of other dual-mode users can be

derived by the signaling:

CLU G

CPcell
≈ 12.36. (3.7)

Hence, the total cost of MGLM is

CT G
′ = 1.2Q · d · (η + 1

)
CLU G + 1.2Q · (1 − d) · ηCLU + 1.2Q · λcCP , (3.8)

where the cost of paging Cp is the same as the one in the traditional management scheme.

The cost of the location management comparison is depicted in Figure 9.

Figure 9 shows that the total cost of the CLM is higher than the tradition scheme’s, this

is because the virtual paging area introduced by CLM leads to the increase of paging cost.

Whereas the total cost of the MGLM is relatively low, and with the number increase of MSs

joining in the group, its total cost decreases more and more. The reason is that the group

location updating may reduce the updating cost greatly. Obviously, we do not consider the

equipment cost in MGLM in this paper.

4. Conclusions

In this paper, two kinds of location updating schemes for high-speed railway private network

are provided, that is, clustering location management (CLM) and mobile group location man-

agement (MGLM). The performance analysis and comparison results of traditional scheme,
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CLM and MGLM schemes are also given. From the results we may conclude that both the

two improved location updating schemes can reduce the number of SDCCHs greatly. For ex-

ample, with CLM scheme, it may decrease the number of location updating per unit time

more than 50%, and it can acquire much better performance with 56 SDCCHs than traditional

scheme with 88 SDCCHs. Consequently, it saves the SDCCH resource greatly. Meanwhile,

through adopting the virtual location area, it can guarantee the paging of MSs and reduce the

call failure probability and improve the reliability of communication. However, the CLM

scheme may increase the complexity of network management. From the view of decreasing

radio resource and the cost of location updating, the MGLM scheme is the best choice, in

which the decreasing extent of SDCCH is related with the percentage of MSs joining in the

group, for instance, when d = 0.5, the amount of SDCCHs is decreased from 88 to 44. Since the

members of carriage can perform group location updating by the MGH, the cost of the loca-

tion updating is decreased greatly; but it needs to add the MGH device in each carriage and

leads to much change in both the network side and the mobile terminals, the complexity of

MGLM is the highest in 3 schemes. In conclusion, the railway private cellular network operat-

or may take a suitable location management improved scheme to decrease the location updat-

ing average waiting time and utilize the radio resource effectively.
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In order to preserve singularities in denoising, we propose a new scheme by adding dilated
singularity prior to noisy images. The singularities are detected by canny operator firstly and then
dilated using mathematical morphology for finding pixels “near” singularities instead of “on”
singularities. The denoising results for pixels near singularities are obtained by nonlocal means in
spatial domain to preserve singularities while the denoising results for pixels in smooth regions
are obtained by EM algorithm constrained by a mask formed by downsampled spatial image
with dilated singularity prior to suiting the sizes of the subbands of wavelets. The final denoised
results are got by combining the above two results. Experimental results show that the scheme can
preserve singularity well with relatively high PSNR and good visual quality.

1. Introduction

How to preserve edges and textures in image denoising is a very difficult and important topic.

Many efforts focus on this topic for a long time. The most straight way to image denoising

while preserving singularities is adaptive methods [1, 2], which suggest that denoising

should be carried on local regions. However, preserving singularities requires the size of local

area to be small while denoising requires the size of local area to be large, which makes it

become a trade-off problem.

Recently, Buades et al. argue that the small size of local area is not a requirement for

preserving singularities in image denoising. That is, if correct similar pixels can be found

through their similar local areas, singularity preserving denoising can be achieved by simple

mean smoothing [3]. Nonlocal means has very good performance in maintaining the borders
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and textures than most of existing methods. Based on it, some improved algorithms are

proposed [4–10]. However, its computation cost is very high.

Although some denoising methods on spatial domain, such as nonlocal means and its

improvements, nonlinear anisotropic diffusion, and fractional calculus can provide satisfied

denoising results, most of them suffer from high computation burden [9, 11–20]. Thus, some

researchers suggest that wavelets can be used to reduce the computation cost and suppress

noises.

Some works on wavelet domain propose that threshold values should be selected

according to statistical rules; the type of these methods is called shrinkage denoising. In [21],
the threshold is determined by SURE shrinkage, which has better performance than threshold

selected by Baysian rule. However, all coefficients in a subband are considered as indepen-

dent identical distributed (iid) variables, and this is considered an unreal assumption.

In order to improve the performance of shrinkages, some schemes focus on how to

describe the residual dependencies among wavelet coefficients [22–26]. In [22], the authors

present a tree structure to describe the dependency among the wavelet coefficients. Recently,

[23] proposes that trivariates should be used for three subbands of wavelet coefficients.

Both methods can provide improved denoising results than independent model for

wavelet coefficients, but they do not consider the difference between pixels near singularities

and in smooth regions. That is, they think that the coefficients near singularities are the same

as they are in smooth regions. Intuitively, it is wrong.

We suggest that the dependency among wavelet coefficients should be considered

both on their local energy and their object labels [26]. However, object labels cannot be

assigned correctly in serious noise especially in high-frequency subbands.

Most recently, following block similarity proposed in [3], a denoised method based

on collaborative filtering and wavelets is proposed. It obtains great success in its high value

of peak signal noise ratio (PSNR). However, estimating real levels both of singularity points

and smooth points with large regions leads it has very high computation complexity.

In summary, there are two popular methods to preserve singularities in denoising:

one is local area similarity proposed in [3] and then improved by many efforts; the other is

adaptive denoising in small local regions. The former has good performance in preserving

singularities but suffers from its high computation complexity while the latter has low

computation complexity and good performance in smooth regions but blurs the singularities.

It reminds us that if we can distinguish points near singularities from the points in

smooth regions correctly and design different denoising schemes for these two types of

points separately, singularities can be preserved in denoising. Following this idea, dilated

singularity prior is posed to find points “near” singularities instead of “on” singularities.

After distinguishing pixels near singularities from pixels in smooth regions, the real level for

pixels in smooth regions can be estimated by a smooth version of noisy image. By combining

these two different denoising methods together, we can obtain good denoising results.

The detailed framework will be introduced as follows. The second section in this

paper will introduce backgrounds, the third section introduces how to build mask, and the

fourth section describes the denoising framework. Section 5 is the experimental results and

discussion. Section 6 gives conclusions, and, finally, there is the acknowledgment part.

2. Backgrounds

In this section, we will introduce terms, notations, and concepts for image denoising,

wavelets, and GMM.
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2.1. Image Denoising

An image x is regarded as a realization of a random field X. In these terms, the image

denoising problem can be rephrased as follows: given a noisy image, estimate for real gray

level of each pixel.

Let the original image be {xi,j}, i, j = 1, . . . ,N, whereN is some integer power of 2 and

(i, j) is the pixel coordinate of the image. The image has been corrupted by additive noise and

one observation

yi,j = xi,j + ni,j , (2.1)

where ni,j is an iid variable as normal N(0, σ2
n) and independent to xi,j . The goal is to remove

the noise from yi,j and obtain an estimate x̂i,j of xi,j which minimizes the mean squared error

(MSE):

MSE(x̂) =
1

N2

N∑
i,j=1

[
x̂i,j − xi,j

]2
. (2.2)

Thus, the minimum MSE estimate would be the conditional mean estimate of a Gaussian

signal with Gausssian noise

E
[
Xi,j | Yi,j

]
=

σ2
Xi,j

σ2
Xi,j

+ σ2
n

yi,j , (2.3)

where Xi,j and Yi,j are the random variables of xi,j and yi,j respectively.

However, only one observation (a noisy image) provides for us to estimate real gray

levels for the image. Thus we have to share statistical information among image pixels. One

common method used in adaptive denoising assuming pixels in a local region is iid variables.

However, since local regions have singularities, iid variable assumption leads to blurred

edges and textures.

Intuitively, pixels with more similar real gray levels have higher probability for

identical distribution. Thus more plausible way for selecting iid pixels converts to find pixels

with similar real gray levels in a local region.

However, finding pixels with similar real gray levels in noise is very difficult. In this

paper, we use singularities detected in spatial domain combined with a mask built on LL

subband of wavelets to help us find similar pixels in a local region. The whole framework

will be given in Section 4.

2.2. Wavelets and Gaussian Mixture Model (GMM) [21]

Let W = wx, W denote the matrix of wavelet coefficients of x, where w is the 2D dyadic

orthogonal wavelet transform operator. It is convenient to group wavelet coefficients into

groups or subbands of different scales and orientations, where, for example, the label HL1
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refers to those coefficients at the first scale of decomposition which are the output of the

high-pass filter in the horizontal direction and the low-pass filter in the vertical direction. The

subbands HHk,HLk,LHk, k = 1, 2, . . . , J are called the details, where k is the scale, with J

being the largest (or coarsest) scale in the decomposition, and a subband at scale k has size

N/2k × N/2k. The subband LLJ is the low-resolution residual. Wavelets lead to a natural

structure of the wavelet coefficients into three subbands representing the horizontal, vertical,

and diagonal edges.

The coefficients of DWTs of many real-world images tend to be sparse, with just

a few nonzero coefficients containing most of the image energy. This property, combined

with our view of the image as a realization from a family or distribution of signal, leads

to a simple model for an individual wavelet coefficient. Hence, the marginal density of

each wavelet coefficient is typically described by a peaky and heavy-tailed non-Gaussian

density.

Such densities are well approximated by a two-component Gaussian mixture model

[21], and its overall pdf is given by

fWi,j

(
ωi,j

)
=

1∑
m=0

PSi,j YWi,j |Si,j
(
ωi,j | Si,j = m

)
. (2.4)

In general, a 2-state Gaussian mixture model for a random variable Wi,j consists of

(1) discrete random state variable Si,j taking the value Si,j ∈ {0, 1} according to the

probability mass function (pmf);

(2) means and variances of Gaussian distributions.

In most applications of mixture models, the value ωi,j , can be observed, but the value

of the state variable is not; we say that the value of Si,j is hidden. Although each wavelet

coefficient Wi,j is conditionally Gaussian given its state variable Si,j , the wavelet coefficient

has an overall non-Gaussian density due to the randomness of Si,j .

2.3. EM Algorithm

EM algorithm is a kind of Max-likelihood Estimation (MLE) algorithm whose target is to

find a set of hidden states to maximize the probability of observations. If the initial values

for parameters are known, EM iterates between estimating the probability for the state

(Expectation) and updating the model given the state probabilities (Maximization).
The normal form of the E step and M step of EM algorithm is as follows.

Expectation (E):

PSi,j |Wi,j

(
m | ωi,j

)
=

PSi,j (m)PWi,j |Si,j
(
ωi,j | m

)
∑1

m=0 PSi,j (m)PWi,j |Si,j
(
ωi,j | m

) . (2.5)
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Maximization (M):

PSi,j (m) =
1

N

∑
t,k

PSt,k |Wt,k
(m | ωt,k),

σ2
i,j,m =

1

NPSi,j (m)

∑
t,k

ω2
t,kPSt,k |Wt,k

(m | ωt,k),
(2.6)

where N is the samples of an image.

3. Designing Mask

Just as discussed in Section 2.1, image denoising using statistical theory has to find similar

pixels as iid variables. However, pixels near singularities have very different statistical

properties to pixels in smooth regions. Thus, if two types of pixels, pixels near singularities

and pixels in smooth regions, can be parted correctly, iid variables can be selected from the

pixels with identical type labels. Based on this idea, we present a method to find similar

pixels by posing dilated singularity prior. That is, singularity prior and its dilated version are

used to find pixels near singularities while other pixels are considered as in smooth regions.

However, polluted gray levels will also lead to noisy wavelet coefficients in the details

of wavelets, which hampers us to detect singularities and measure the similarity among

wavelet coefficients correctly. Therefore, posing singularity prior and finding similar pixels

in the details of wavelets cannot be carried on directly using the details of wavelets.

One solution for these difficulties is to design a mask and then apply it to the details of

wavelets for image denoising. In this section, we will discuss the method to design the mask

in detail.

3.1. Dilated Singularity Prior

Pixels near singularities are different to the pixels in smooth regions. Thus if we can find

the pixels near singularities correctly and handle them separately, the singularities can be

preserved in denoising. On the other side, smoothing only among pixels in smooth regions,

which is implemented by abandoning pixels near singularities, can help us reduce the

outliers in estimate. Moreover, parting pixels to different groups can help us design different

denoising methods separately according to their different statistical properties. Thus it can

get satisfying denoising results for both groups.

However, in noise, singularities in the details of wavelets cannot be detected correctly.

Moreover, the low-resolution residual of wavelets is an oversmoothing version for the noisy

image, which blurs many important weak singularities, such as some textures and degraded

edges. Therefore, singularities cannot be detected from the subbands of the wavelets directly.

In this paper, the singularities are located in spatial domain using canny operator and then

downsampled to suit the size of different subbands of wavelets.

It should be indicated that although some pixels near singularities have similar real

gray levels to nearby pixels in smooth regions, they have different statistical natures to the

pixels in nearby smooth region. Thus, we need find pixels near singularities instead of on
singularities. Based on this consideration, the detected singularities by canny are dilated

using mathematical morph operator.
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(a) Step 1: the singularities detected by canny in
noisy barbara
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(b) Step 2: the dilated singularities
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(c) Step 3: the downsampled dilated singularity
prior

nz = 29171

(d) The mask composed by LL1 and singularity
prior

Figure 1: The steps for locating singularity prior and making the mask. (a)–(c) three steps for locating
singularity prior in Section 3.1; (d) the mask in Section 3.2.

In summary, procedures for posing singularity prior are

(1) detecting singularities in the noisy image using canny operator;

(2) dilating singularities using mathematical morphology operator;

(3) downsampling singularity image obtained in procedure 2 to form singularity prior

for different subbands of wavelets.

One example for these three steps of noisy 512 × 512 barbara whose noise variance is

0.01 is shown in Figures 1(a)–1(c).
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3.2. Designing Mask

After parting pixels into two groups by posing dilated singularity prior, we have to measure

the similarity for two groups correctly in noise. However, even having posed singularity

prior, measuring similarity among pixels in smooth regions correctly in the details of wavelets

is very difficult because of noise influence in high frequency.

Fortunately, the low-resolution residual of wavelets can provide a downsampled

smoother version for noisy images. Thus, if the singularity prior is posed to the low-

resolution residual of wavelets, the similarity among pixels in smooth regions can be

measured correctly by the coefficients of the low-resolution residual. Based on this discussion,

the mask for the details of wavelets is designed as posing singularity prior to the low

resolution of wavelets.

Figures 1(a)–1(c) show the steps for building the singularity prior for pixels in smooth

regions, and the final mask is shown in Figure 1(d).

4. The Framework

In this section, we will discuss the framework for the proposed method, whose flow chart is

shown in Figure 2. In Figure 2, the squares without shadow represent the method used in this

framework while the shaded squares represent the processing results for the methods, and ⊕
represents combining two squares together. The dashed frame with a title frame “Mask” is

the steps for designing masks for different pixel groups presented in Section 3.

The proposed method is based on a novel idea of preserving singularities by

processing pixels near singularities and in smooth regions separately. The steps for denoising

to different types of pixels are shown in Figure 2 as the two dashed frames with number 1 and

2 in two triangles where number 1 indicates the denoising steps for pixels in smooth regions

and number 2 indicates denoising steps for pixels near singularities. Both methods will be

discussed detailedly in this section.

4.1. Denoising for Pixels Near Singularities

In order to preserve singularities, the pixels near singularities located by dilated singularity

prior should be processed alone. Since LL subband of wavelets will blur the singularities

while the details of wavelets will magnify the influence of noises, the denoising for pixels

near singularities should be carried on spatial domain directly. In this subsection, we will

present the denoising method for pixels near singularities.

For each pixel yi,j of image, after imposing dilated singularity prior, it has a one and

only one label fi,j and fi,j ∈ {0, 1}, where 0 represents “non-singularity” and 1 represents

“near singularity.”

Essentially, the most important procedure for image denoising is how to select similar

points from image pixels. Similar pixels selected according to their block similarity are

proposed in [3] recently. In this framework, the block is defined as a square with fixed size

centered at the consideration pixel. In our method, the similarity among two pixels yi,j , ys,t
with labels fi,j = 1 and fs,t = 1 can be measured by two 7× 7 blocks centered at (i, j) and (s, t):

S
(
yi,j , ys,t

)
=

k=3,l=3∑
k=−3,l=−3

∥∥yi−k,j−l − ys−k,t−l∥∥2
e−(k

2+l2)/2σ2

. (4.1)
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Figure 2: The flowchart of proposed method.

Thus, for each pixel yi,j with fi,j = 1, searches in a 21 × 21 window to find its similar

pixels whose similarity between itself and yi,j is below a predefined threshold T :

χ(s, t) =

⎧⎨⎩1 : S
(
yi,j , ys,t

) ≤ T,
0 : S

(
yi,j , ys,t

)
> T.

(4.2)

Thus the estimate of the real gray level of yi,j is

ŷi,j =
1

n

k,l=10∑
k,l=−10

yi−k,j−lχ
(
i − k, j − l)fi−k,j−l, (4.3)

where

n =
k,l=10∑
k,l=−10

χ
(
i − k, j − l)fi−k,j−l. (4.4)
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Since χ(i − k, j − l) and fi−k,j−l are two indicator functions, we can combine them as

χ
(
i − k, j − l) =

⎧⎨⎩1 : S
(
yi,j , yi−k,j−l

) ≤ T, fi−k,j−l = 1,

0 : otherwise.
(4.5)

Therefore, (4.3) becomes

ŷi,j =
1

n

k,l=10∑
k,l=−10

yi−k,j−lχ
(
i − k, j − l), (4.6)

where

n =
k,l=10∑
k,l=−10

χ
(
i − k, j − l). (4.7)

According to the above discussion, the denoising steps for pixels near singularities are

as follows.

(1) Initialization: give T , compute fi,j for all image pixels according to dilated singu-

larity prior.

(2) For an image pixel (i, j)with fi,j = 1

(a) for k = −10 : 10, l = −10 : 10

compute S(yi,j , yi−k,j−l) using (4.1), for all fi−k,j−l = 1,

(b) if S ≤ T , χ(i − k, j − l) = 1

otherwise, χ(i − k, j − l) = 0,

(c) compute ŷi,j using (4.6).

(3) Repeat step 2 a – c until all image pixels have been processed.

4.2. Denoising for Pixels in Smooth Regions

Wavelets, which are based on the idea that a linear, invertible transform will represent

the image by the sparse wavelet coefficients whose structure is “simpler” to process, are a

powerful tool to reduce the complexity.

However, in noise, there are two difficulties: one is the singularities cannot be located

correctly in all subbands; the other is how to find similar pixels in the details of wavelets. In

order to solve the above two problems, a mask will be built in the LL subbands and spatial

domain together whose detailed algorithm is discussed in Section 3. That is, locate prior

in spatial domain and then downsample and pose it to the LL subband to form the mask.

Therefore, the real values of the details of wavelets can be estimated based on the mask.

Let Wt
i,j,k

denote a coefficient of wavelet, where t ∈ {0, 1, 2, 3} and 0, 1, 2, 3 represent

the LL, HL, LH, and HH subband, respectively, and k represents the decomposition scale.
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Since the mask is built by posing singularity prior to the LL subband of each scale, we

can give a label ιi,j,k for a pixel W0
i,j,k

in LL subband and ιi,j,k ∈ {0, 1}, where 0 represents “non-

singularity” and 1 represents “near singularity”. Thus ιi,j,ks combined with W0
i,j,k

s forms the

mask to measure the similarity between each pair of wavelet coefficients.

In our method, Wt
i,j,k

, t = 0, 1, 2, 3, is considered as a random variable with GMM

distribution

PWt
i,j,k

(
ωt
i,j,k

)
=

1∑
m=0

PSt
i,j,k
YWt

i,j,k
|St
i,j,k

(
ωt
i,j,k | Sti,j,k = m

)
, (4.8)

where i, j = 1, . . . ,N/2k, t = 0, 1, 2, 3.

Thus if the parameters Θ = {PSt
i,j,k

=m, σ
t
m,i,j,k

,m = 0, 1} where σt
m,i,j,k

,m = 0, 1 are two

standard deviations of Gaussian components, have known. The real value of Wt
i,j,k

can be

estimated as

ω̂t
i,j,k =

1∑
m=0

P
(
Sti,j,k = m | ω,Θ

)[(
σt
m,i,j,k

)2 − σ2
n

]
+(

σt
m,i,j,k

)2
, (4.9)

where

[(
σtm,i,j,k

)2 − σ2
n

]
+
=

⎧⎪⎨⎪⎩
[(
σt
m,i,j,k

)2 − σ2
n

]
:

[(
σt
m,i,j,k

)2 − σ2
n

]
≥ 0,

0 : otherwise.

(4.10)

However, only one observation is for W ; thus we have to share statistical information

to estimate parameter Θ. Generally, the statistical information should be shared among iid

variables. Pixels with small spatial distance and similar real values are iid variables which

is a plausible assumption. Then we will discuss how to find pixels with small distance and

similar real values in the details of wavelets. Since the following steps are processed in a

subband and one scale, we will omit index t for t = 1, 2, 3, k for above notations for the sake

of simple explanation.

The similar pixels ofWi,j can be selected from a (2ν+1)×(2ν+1) window with measure

of similarity

γ
(
ωi,j , ωs,t

)
=

∥∥∥ω0
i,j −ω0

s,t

∥∥∥
2
× φ

(
ω0
i,j , ω

0
s,t

)
, (4.11)

whereω0
i,j andω0

s,t are values of (i, j) and (s, t) in the LL subband, respectively; the φ(ω0
i,j , ω

0
s,t)

is a binary value function

φ
(
ω0
i,j , ω

0
s,t

)
=

⎧⎨⎩1 : ιi,j = ιs,t,

0 : otherwise.
(4.12)
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Then by using similarity measure defined in (4.11) we can find similar points in a

(2ν + 1) × (2ν + 1) centered at (i, j)

Φi,j =
{
(s, t) | γ(ωi,j , ωs,t

)
/= 0, γ

(
ωi,j , ωs,t

) ≤ τ, |s − i| ≤ ν, ∣∣t − j∣∣ ≤ ν}. (4.13)

Thus the parameter Θ can be estimated using EM algorithm in the collection Φi,j .

Expectation (E):

PSi,j |Wi,j

(
m | ωi,j

)
=

PSi,j (m)PWi,j |Si,j
(
ωi,j | m

)
∑1

m=0 PSi,j (m)PWi,j |Si,j
(
ωi,j | m

) . (4.14)

Maximization (M):

PSi,j (m) =
1∣∣Φi,j

∣∣ ∑
s,t,(s,t)∈φ

PSs,t|Ws,t
(m | ωs,t),

σ2
i,j,m =

1∣∣Φi,j

∣∣PSi,j (m)

∑
s,t,(s,t)∈φ

ω2
s,tPSs,t|Ws,t

(m | ωs,t),

(4.15)

where |Φi,j | is the number of elements in Φi,j .

In summary, the steps of denoising for pixels in smooth regions are

(1) Initialization: input scale J , dilated singularity prior F whose size is N ×N, and ν.

(2) Build marks for the details of di erent scale using downsample (see Section 3).

(3) Find similar pixels for each Wt
i,j,k

: find similar points using (4.11) and then compute

φ.

(4) EM algorithm, for each Wt
i,j,k

, estimate parameter Θ using EM algorithm in (4.14)-
(4.15).

(5) Repeat Steps (3)-(4) until all wavelet coe cients have been processed.

(6) Inverse wavelet transform: obtain denoised results using inverse wavelet transform

for all processed coefficients.

(7) Get final denoised image: the final denoised image can be got by combining both

denoising image together; that is, the real values for pixels near singularities are

estimated using the method in Section 4.1, and the values for other pixels are

estimated using steps (1)–(6).

5. Experimental Results

In order to compare our method with state-of-the-art methods and denoising methods using

wavelets, the proposed method is compared with nonlocal means [3], BM3D [10], BLS-

GSM [21], and HMT [22]. Nonlocal means [3] and BM3D [10] are two well-known state-

of-the-art methods. That is, nonlocal means and BM3D find similar points using the block
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Figure 3: The noisy image is shown in (a) whose standard deviation of noise is 25, and the denoised results
using different methods are shown in (b)–(f).

similarity between a pair of pixels, which is proposed firstly in [3]. BM3D designs a complex

hierarchical scheme to get very high PSNR, which is usually used as benchmark in many

denoising scheme.

Moreover, HMT which is presented in [22] is a famous wavelet denoising method

capturing dependency among the details of wavelets using a tree structure while BLS-GSM

is a wavelet denoising method using adaptive shrinkage and GMM.

Since the objective for presenting the denoised results of our method only focuses

on whether adding singularity prior can improve the denoising performance, we use some

simple tools for testing the potential of our new framework. The wavelet used in this paper

is one scale “Haar”; similarity threshold τ , ν in Φi,j is from 14 to 28 and 3, respectively. Even

by using this simple form, the proposed method has good performance both in PSNR and

visual quality (see Figure 3). That is, its average PSNR only is 0.2 db lower than the nonlocal

means [3]; the average PSNR for lena is 0.4 db lower than the BM3D, and for Barbara, it is

1.4 db lower than BM3D (see Table 1).
Although the values of PSNR for proposed method are lower than both nonlocal

means and BM3D, considering both of them being state-of-art denoising methods and

their computation complexity, PSNR of proposed method is an acceptable result. Moreover,

the main objective for this paper only focuses on designing a new scheme to improve

performance in singularity preserving by adding singularity prior in image denoising. We

think the experimental results can demonstrate the potential of proposed method. Based on



Mathematical Problems in Engineering 13

Table 1: PSNR Comparison of HMT [22], BLS-GSM [21], nonlocal [3], BM3D [10], and the proposed
method with simulated gaussian noisy image.

Image
Standard deviation

of noise
HMT
[22]

BLS-GSM
[21]

Nonlocal
[3]

BM3D
[10]

Proposed
method

Lena
(512 × 512)

10 34.08 35.23 35.65 35.91 35.51

15 31.89 33.50 34.12 34.26 33.85

20 30.41 32.26 32.82 33.05 32.66

25 29.36 31.30 31.89 32.09 31.71

Barbara
(512 × 512)

10 31.62 33.13 34.06 34.93 33.74

15 29.28 30.76 31.78 33.05 31.67

20 27.81 29.10 30.41 31.72 30.16

25 26.61 27.80 29.29 30.64 29.00

this framework, some different methods can be used to improve the performance further.

For example, the performance can be improved by processing pixels near singularities using

BM3D, using different wavelets, designing different denoising methods for pixels in smooth

regions, or by designing more suitable singularity location tools, and so forth. However,

discussion about how to improve our framework further is beyond the scope of this paper.

6. Conclusions

In this paper, we propose a new scheme to preserve singularities in image denoising by

adding dilated singularities to noisy image. This scheme even that uses simple tools can

get satisfying denoising results both in PSNR and visual quality. Since the scheme is based

on the fact that pixels near singularities have different statistical properties to the pixels

in the smooth regions, it is designed by parting the pixels into two groups using dilated

singularity prior and handled pixels with different type labels separately. Dilated singularity

prior used to locate the pixels “near” singularities instead of “on” singularities can help us

obtain satisfied denoising results and reduce computation complexity. Moreover, denoising

in smooth regions can be carried on a smoother version of the noisy image, called mask,

since the pixels near singularities have been excluded. Based on the above well-designed

framework, the proposed method can obtain good denoising results.
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With the global climate change, drought disasters occur frequently. Drought prediction is an
important content for drought disaster management, planning and management of water resource
systems of a river basin. In this study, a short-term drought prediction model based on deep
belief networks (DBNs) is proposed to predict the time series of different time-scale standardized
precipitation index (SPI). The DBN model is applied to predict the drought time series in the
Huaihe River Basin, China. Compared with BP neural network, the DBN-based drought prediction
model has shown better predictive skills than the BP neural network for the different time-scale
SPI. This research can improve drought prediction technology and be helpful for water resources
managers and decision makers in managing drought disasters.

1. Introduction

With the global environmental degradation and water resource shortages, droughts are

becoming increasingly eye catching and have aroused the attention of many countries

and regions. Drought is considered the most complex but least understood of all natural

hazards, affecting more people than any other disasters [1]. In recent years, drought disasters

continuously happened and caused serious impact on production and life in China. The

losses caused by drought ranked the first in all natural hazards in China [2]. For example,

in the extreme drought in Southwest China during 2009 to 2010, five provinces and cities

suffered droughts which have seriously threatened people’s life and economic production

activities. The Chinese northern region also suffered severe drought in 2011. Long and



2 Mathematical Problems in Engineering

severe droughts have direct impacts on industrial production, people’s lives, and ecological

environment and even lead to desertification and other natural disasters. Droughts have

become serious constraints to the sustainable development of Chinese society and economy

[3, 4]. Drought prediction is an important content in the planning and management of

water resource systems of a river basin. How to effectively monitor and forecast droughts

has become the research focus, which can help to take effective strategies and measures to

mitigate the damages of droughts.

There are some forecasting methods used in drought prediction fields. Lohani and

Loganathan used a nonhomogeneous Markov chain model to characterize the stochastic

behavior of drought, and an early-warning system in the form of a decision tree enumerating

is proposed for drought management [5]. Jia et al. established a grey-time series combined

method (GTCM) to predict annual precipitation of Huangcun Meteorological Observation,

Daxing county, Beijing [6]. Yang et al. proposed a chaotic Bayesian method based on

multiple criteria decision making to forecast nonlinear hydrological time series, which

can be applied in drought forecast [7]. The predictability of drought severity from

spatiotemporal varying indices of large-scale climate phenomena was studied by integrating

linear and nonlinear statistical data models, and the model was used for the Murray-

Darling Basin (MDB) in Australia [8]. Meteorological droughts were characterized using

the standardized precipitation index (SPI) developed by McKee et al. [9]. Drought classes

based on standardized precipitation index (SPI) values were derived by Markov chain

model in Alentejo, Southern Portugal [10]. Peng et al. used weighted Markov chain to

predict the future drought index, weighted by the standardized self-coefficients. The drought

indexes of Nanjing city from 1959 to 2004 were a specific application with this method

and satisfactory results were obtained [11]. SPI is calculated from monthly precipitation

data collected from 36 weather stations in Guanzhong plain and Weibei tablelands, and the

Markov chain model with weights was applied to predict SPI drought intensity by using

standardized self-coefficients as weights [12]. The vegetation temperature condition index

(VTCI) based on remote sensing data is used for drought monitoring. The ARIMA models

were developed to simulate the VTCI series and be used in Guanzhong Plain in China [13].
The loglinear modeling for three-dimensional contingency tables was used for short-term

prediction of drought severity classes. The results show that three-dimensional loglinear

modeling of monthly drought class transitions is able to capture the trends for both drought

initiation, establishment, and drought dissipation [14]. Mishra and Desai compared linear

stochastic model (ARIMA/SARIMA), recursive multistep neural network (RMSNN), and

direct multisteps neural network (DMSNN) for drought forecasting by using standardized

precipitation index (SPI) series as drought index in the Kansabati River Basin in India

[15]. Traditionally, forecasting research and practice has been dominated by conventional

statistical methods. Recently, the study of long range or long memory has received many

attentions in forecasting. Hurst developed a test for long-range dependence and found

significant long-term correlations among fluctuations in the Nile’s outflows and described

these correlations in terms of power laws [16]. Mathematical models with long-range

dependence were first introduced to statistics by Mandelbrot and his workers [17–19]. Long-

range dependence is often encountered in practice, not only in hydrology, geophysics, and

finance, but also in all fields of statistical applications [20–24]. Pelletier and Turcotte present

power spectra of time-series data for tree ring width chronologies, atmospheric temperatures,

river discharges, and precipitation averaged over hundreds of stations worldwide. They

thought that long-range persistence can have a dramatic effect on the likelihood of severe

hydrologic drought and computed recurrence intervals for droughts of different magnitudes,
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durations, and coefficients of variation [25]. Radziejewski and Kundzewicz computed fractal

dimensions of crossings of Warta flows by using a novel variant of the box-counting method,

and spectral properties are compared between the time series of flows [26]. Li et al. computed

long-range dependence (LRD) of sea level and thought that sea level is multiscaled and heavy

tailed [27].
Recently, deep belief networks (DBNs) are proposed by Hinton. The DBN is a

probabilistic generative model, the bottom layer is observable, and the multiple hidden

layers are created by stacking multiple restricted Boltzmann machines (RBMs) on top of

each other [28]. Hinton et al. derived a way to perform fast, greedy learning of deep

belief networks (DBN) one layer at a time, with the top two layers forming an undirected

bipartite graph [29]. DBNs and restricted Boltzmann machines (RBMs) have already been

applied successfully to solve many problems [30]. Lee et al. present a convolutional

deep belief networks and are used to scale the realistic image sizes [31]. A novel text

classification approach based on deep belief networks is proposed, and the proposed method

outperforms traditional classifier based on support vector machine [32]. Zhou et al. present

a discriminative deep belief networks (DDBNs) to address the image classification problem

with limited labeled data. Experiments on the artificial dataset and real image datasets show

that DDBN outperforms most semisupervised algorithms [33]. Chao et al. proposed a deep

belief network (DBN) to forecast the foreign exchange rate. In their experiments, both British

pound/US dollar and Indian rupee/US dollar exchange rates are forecasted, and the results

show that deep belief networks (DBNs) achieve better performance than feed-forward neural

networks [34]. Deep learning techniques have also been shown to perform significantly better

than other techniques for problems such as image classification and handwriting analysis

[31].
In this paper, we propose a deep belief network (DBN) for short-term prediction of

drought index. The aims of this study are to present and evaluate the performance of DBN

model as a drought prediction method. This model was applied to forecast drought index

using standardized precipitation index (SPI) series in the Huaihe River Basin, China. The

results are compared and analyzed with BP neural network for demonstration of the validity

of the DBN model. The remainder of the paper is organized as follows. In Section 2, the

standardized precipitation index (SPI) and BP neural network are introduced, and the deep

belief networks (DBN) model for drought index prediction is proposed. In Section 3, a case

is studied, and discussions are arranged. Finally in Section 4, the main conclusions and a

discussion for future work are given.

2. Methodology

2.1. Standardized Precipitation Index (SPI)

The SPI was formulated by Mckee et al. of the Colorado Climate Center in 1993. The purpose

is to assign a single numeric value to the precipitation which can be compared across regions

with markedly different climates [11]. The SPI is an index based on the probability of

precipitation for any time scale. Technically, the SPI is the number of standard deviations

that the observed value would deviate from the long-term mean, for a normally distributed

random variable. The SPI can be computed for different time scales and can provide early

warning of drought and help assess drought severity. The SPI is a probability index that

considers only precipitation, while Palmer’s indices are water balance indices that consider

water supply (precipitation), demand (evapotranspiration), and loss (runoff). So, SPI is less
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complex than PDSI [35]. Now, the standardized precipitation index (SPI) is widely accepted

and used throughout the world [36]. The computing procedure of the SPI value is as follows

[37, 38].
Assuming that a precipitation series of some time scale is x, then its probability density

function of Γ distribution is expressed as

f(x) =
1

βγΓ
(
γ
)xγ−1e−x/β, x > 0, (2.1)

where Γ(γ) is a gamma function and Γ(γ) =
∫∞

0
xγ−1e−xdx. β and γ are the shape parameter

and the scale parameter, respectively, and β > 0, γ > 0. The precipitation value x > 0.

The shape and scale parameters can be estimated by the maximum likelihood method

as follows:

γ̂ =
1 +

√
1 + 4A/3

4A
,

β̂ =
x

γ̂
,

(2.2)

where A = ln(x) − (1/n)
∑n

i=1 lnxi, n stands for the number of precipitation observations, xi
are the samples of the precipitation data, and x is the mean of these samples.

The gamma distribution is not defined for x = 0; however, the actual precipitation

can be 0. Therefore, cumulative probability of precipitation for a certain time scale can be

calculated using the following formula [38, 39]:

H(x) = u + (1 − u)F(x), (2.3)

where F(x) = (1/Γ(γ̂))
∫x

0
tγ̂−1e−tdt and t = x/β̂. u is the probability of zero precipitation and

can be calculated as m/n. m is the total number of precipitation series, and n is the number

of zeros in the precipitation series.

The cumulative probability, H(x), is then transformed to the standard normal random

variable with mean as zero and variance as one. Following Edwards and Mckee [40] and

Hughes and Saunders [41], SPI can be obtained as follows:

SPI =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−
(
t − c0 + c1t + c2t

2

1 + d1t + d2t2 + d3t3

)
for 0 < H(x) ≤ 0.5,

t − c0 + c1t + c2t
2

1 + d1t + d2t2 + d3t3
for 0.5 < H(x) < 1,

(2.4)
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Figure 1: The structure of BP neural network.

where

t =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

√
ln

(
1

(H2(x))

)
for 0 < H(x) ≤ 0.5,

√√√√ln

(
1

(1 −H(x))2

)
for 0.5 < H(x) < 1.

(2.5)

In (2.4), the ci and di are parameters during the computing process and c0 = 2.515517,

c1 = 0.802853, c2 = 0.010328, d1 = 1.432788, d2 = 0.189269, and d3 = 0.001308.

According to SPI, drought can be classified. When the value of SPI is continuously

negative, a drought event occurs. The event ends when the SPI becomes positive.

2.2. Backpropagation Neural Network (BPNN)

The BP neural network is a kind of multilayer feed-forward networks with training by error

backpropagation algorithm [42]. It is a kind of supervised learning neural network, the

principle behind which involves using the steepest gradient descent method to reach any

small approximation. A general model of the BP neural network has a structure as described

in Figure 1.

In Figure 1, there are three layers contained in BP: input layer, hidden layer, and output

layer. Two nodes of each adjacent layer are directly connected, which is called a link. Each link

has a weighted value presenting the relational degree between two nodes. The algorithm of

BP neural network is to input the training samples from the input layer and then obtain

the calculation output through the operation of corresponding thresholds, functions, and

connection weights between nodes [42, 43]. The node function has usually selected S-type

function as follows:

f(x) =
1

1 + e−x/Q
. (2.6)

The Q in the equation is a Sigmoid parameter which is the form of adjusted activation

function, and the specific algorithm is introduced in [44]. The output error is obtained by

the comparison between the calculation output and the sample output. If the error does not

meet the requirements, the network weights and thresholds usually are adjusted along the
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negative gradient direction of network error and finally reach the minimum network error

[45]. The number of hidden layer nodes is firstly determined by employing an empirical

formula in the design stage and finally adjusted by comparing the efficiencies of different

numbers of hidden layer nodes in neural network training stage [46].

2.3. Deep Belief Networks

A deep belief network (DBN) is a generative model with an input layer and an output layer,

separated by many layers of hidden stochastic units. The multilayer neural network can

efficiently be trained by composing RBMs using the feature activations of one layer as the

training data for the next. Figure 2 shows an example of a DBN structure [28].
Usually a DBN consists of two kinds of different layers. They are visible layer and

hidden layer. Visible layers contain input nodes and output nodes, and hidden layers contain

hidden nodes. Hinton et al. proposed a greedy layerwise unsupervised learning algorithm

for DBNs which is based on sequence training with restricted Boltzmann machines (RBMs)
[28, 34]. A restricted Boltzmann machine (RBM) is composed of two different layers of units,

with weighted connection between them. It consists of one layer of visible nodes (neurons)
and one layer of hidden units. Figure 3 shows an RBM structure. Nodes in each layer have no

connections between them and are connected to all other units in another layer. Connections

between nodes are bidirectional and symmetric. Restricted Boltzmann machines (RBMs)
have been used as generative models of many different types of data including labeled or

unlabeled images windows of mel-cepstral coefficients that represent speech, and so on.

Their most important use is as learning modules that are composed to form deep belief nets

[28].
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Let vi and hj represent the states of visible node i and hidden node j, respectively.

For binary state nodes, that is, vi and hj ∈ {0, 1}, the state of hj is set to 1 with probabilities

[47]:

phj = p
(
hj = 1 | ν) = σ

(
bj +

∑
i

wijνi

)
, (2.7)

where σ(x) is the logistic sigmoid function 1/(1 + exp(−x)), bj is the bias of j, and νi is the

binary state. wij is the weight between νi and hj . After binary states have been chosen for the

hidden units, then set the state of νi to be 1 with probability

pνi = p(νi = 1 | h) = σ
⎛⎝bi +

∑
j

wijhj

⎞⎠. (2.8)

The training process of the RBM is described as follows. Firstly, a training sample is

presented to the visible nodes, and the {νi} is obtained. Then the hidden nodes state that {hj}
are sampled according to probabilities in (2.7). This process is repeated once more to update

the visible and then the hidden nodes, and the one-step “reconstructed” states ν′i and h′j are

obtained. The update in a weight is given as follows:

Δwij = η
(〈
νihj

〉 − 〈
ν′ih

′
j

〉)
, (2.9)

where η is the learning rate, and 〈·〉 refers to the expectation of the training data.

A continuous restricted Boltzmann machine (CRBM) is considered by Chao et al. [34]
and Chen and Murray [48]. Suppose the inputs nodes with state {si}, then the output nodes

sj can be computed as follows:

sj = ϕj

(∑
i

wijsi + σ ·Nj(0, 1)

)
, (2.10)

where ϕj(x) is a sigmoid function with lower and upper asymptotes at θL and θH , ϕj(xj) =
θL+(θH−θL)·(1/(1+e−ajxj )).Nj(0, 1) represents a unit Gaussian. σ is a constant, and parameter

aj is a “noise-control” parameter which controls the slope of the sigmoid function [49]. The

update equations for wij and aj are

Δwij = ηw
(〈
sisj

〉 − 〈
s′is

′
j

〉)
,

Δaj =
ηa

a2
j

(〈
s2
j

〉
−
〈
s′2j

〉)
,

(2.11)

where ηw and ηa represent the learning rates, s′j denotes the one-step sampled state of node

j, and 〈·〉 refers to the expectation of the training data. We train sequentially as many RBMs
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as the number of hidden layers in the DBN to construct a DBN model. We adopt the learning

algorithm according to [28, 34, 50]. The method of stacking CRBMs makes it possible to

train many layers of hidden units efficiently and is one of the most common deep learning

strategies. As each new layer is added, the overall generative model gets better. This process

of learning is continued until a prescribed number of hidden layers in the DBN have been

trained. In order to apply DBN model to drought prediction using SPI series, the DBN model

with two hidden layers is selected in this paper. The main steps using DBN model for drought

index prediction are as follows.

Step 1. Compute the different time-scale SPI series by precipitation data.

The different time-scale SPI series are computed by precipitation data by the

description method in Section 2.1, and different time-scale SPI series are obtained.

Step 2. Normalize the SPI series by formula (2.12) as follows:

SPI′ =
SPI − SPImin

SPImax − SPImin
, (2.12)

where SPI′ and SPI represent the normalized and original SPI data, respectively. The SPImin

represents the minimum value of the corresponding SPI series, and SPImax represents the

maximum value of the corresponding SPI series.

Step 3. Determine the optimal network structure by experiments.

Determine the number of input nodes, the numbers of the first hidden and second

hidden nodes, and weight coefficients by learning algorithm. The data of SPI series are split

into two parts. The first part is used as a training sample, and the rest is used as a testing

sample. During the training process, the network structures for different time-scale SPI series

are determined according to the criterion of smallest RMSE and MAE.

Step 4. Forecast drought index based on DBN model and results analysis.

3. Case Study

3.1. Experimental Design

We use four data sets of precipitation in the experiments. Four hydrologic stations were

considered in this study. They are Bengbu, Fuyang, Xuchang, and Zhumadian in Huaihe

River Basin which is located in the eastern part of China. Data sets contain monthly

precipitation during 1958–2006. These data are used to calculate four different time scales

of standardized precipitation index (SPI), that is, SPI3, SPI6, SPI9, and SPI12. Taking the

SPI3 as an example, all of the SPI sets are divided into two parts. The observations during

1958–1999 are as training set, and the remaining observations during 2000–2006 are as testing

set.

Our purpose of this research is to explore if the DBN model can be used well in drought

prediction by using the monthly rainfall data of four hydrologic stations from January 1958

to 2006 to calculate different time scales of SPI in Huaihe River Basin.
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Table 1: The CRBM results of Bengbu SPI3.

Number
of input
nodes

Number
of hidden

nodes
RMSE MAE

Number
of input
nodes

Number
of hidden

nodes
RMSE MAE

2

5 0.1270 0.0980

7

5 0.1107 0.0869

10 0.1276 0.0983 10 0.1114 0.0877

15 0.1306 0.1002 15 0.1113 0.0878

20 0.1276 0.0983 20 0.1113 0.0877

25 0.1274 0.0982 25 0.1123 0.0885

3

5 0.1270 0.0987

8

5 0.1113 0.0865

10 0.1293 0.1000 10 0.1120 0.0871

15 0.1272 0.0988 15 0.1115 0.0866

20 0.1274 0.0989 20 0.1117 0.0869

25 0.1273 0.0988 25 0.1097 0.0864

4

5 0.1292 0.0993

9

5 0.1105 0.0863

10 0.1291 0.0990 10 0.1117 0.0876

15 0.1283 0.0988 15 0.1119 0.0876

20 0.1301 0.0995 20 0.1120 0.0876

25 0.1286 0.0992 25 0.1181 0.0945

5

5 0.1225 0.0929

10

5 0.1112 0.0874

10 0.1230 0.0927 10 0.1116 0.0875

15 0.1235 0.0931 15 0.1123 0.0884

20 0.1232 0.0928 20 0.1115 0.0885

25 0.1248 0.0939 25 0.1121 0.0886

6

5 0.1235 0.0931

10 0.1239 0.0930

15 0.1236 0.0934

20 0.1235 0.0930

25 0.1244 0.0942

In this paper, we use two criteria to evaluate the performance of a DBN in drought

forecasting. They are root mean square error (RMSE) and mean absolute error (MAE). The

formulas of this two predictive accuracy measures are listed as follows:

RMSE =

√√√∑T
i=1

(
yi − y′i

)2

T
,

MAE =
∑T

i=1

∣∣yi − y′i∣∣
T

,

(3.1)

where yi is the observations of SPI, y′i is the predicted SPI values, and T is the total number

of predictions.
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Table 2: The DBN results of Bengbu SPI3.

Number
of input
nodes

Number
of first
hidden
nodes

Number
of second

hidden
nodes

RMSE MAE
Number
of input
nodes

Number
of first
hidden
nodes

Number
of second

hidden
nodes

RMSE MAE

5 0.6924 0.5497 5 0.6905 0.5510

10 0.6911 0.5567 10 0.6842 0.5425

5 15 0.7103 0.5787 5 15 0.6858 0.5473

20 0.7006 0.5712 20 0.7138 0.5860

25 0.8051 0.6858 25 0.7068 0.5769

5 0.7048 0.5702 5 0.6881 0.5472

10 0.6911 0.5506 10 0.6899 0.5479

10 15 0.6962 0.5616 10 15 0.6954 0.5548

20 0.7147 0.5874 20 0.7090 0.5775

25 0.7749 0.6606 25 0.7032 0.5805

5 0.6852 0.5453 5 0.6930 0.5545

10 0.6926 0.5596 10 0.7165 0.5887

8 15 15 0.6969 0.5636 9 15 15 0.7300 0.6106

20 0.7265 0.6113 20 0.7218 0.6070

25 0.7316 0.6236 25 0.7488 0.6375

5 0.7224 0.6001 5 0.6915 0.5516

10 0.6923 0.5525 10 0.6962 0.5592

20 15 0.7152 0.5940 20 15 0.7407 0.6245

20 0.6955 0.5560 20 0.7140 0.5885

25 0.7794 0.6679 25 0.7309 0.6136

5 0.6935 0.5570 5 0.6919 0.5563

10 0.6877 0.5496 10 0.7013 0.5637

25 15 0.7037 0.5761 25 15 0.6949 0.5617

20 0.7470 0.6322 20 0.7669 0.6566

25 0.7174 0.5868 25 0.7214 0.6104

We use the learning sample to find an optimal network structure for these four

different time-scales SPI. Taking the SPI3 of Bengbu data as an example, we explain how to

determine an optimal network structure. In our experiment, the DBN has two hidden layers.

The key for our experiment is to determine the numbers of input and hidden nodes. We

determine the optimal number of input nodes and two hidden layer nodes by experiments.

On one hand, neural networks with too few hidden nodes may not have enough power

to model the data. On the other hand, neural networks with too many hidden nodes may

lead to overfitting problems and finally result in poor forecasting performance [30]. In our

experiment, the number of input nodes and hidden nodes of the DBN network structures

is selected by experimentation. The number of input nodes ranges from 2 to 10. Because the

forecasting performance of neural networks is not as sensitive to the number of hidden nodes

as to the number of input nodes, so the number of hidden nodes is selected by five levels, that

is, 5, 10, 15, 20, and 25. We did the experiment for 45 times to find the optimal structure of

DBN. We compared the RMSE and MAE, and we determined the number of every layer node.

The results are shown in Table 1.
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Table 3: The optimal network structures of DBN.

SPI series Station
Number of
input nodes

Number of first
hidden nodes

Number of second
hidden nodes

SPI3

Bengbu 9 5 10

Fuyang 8 20 15

Xuchang 8 20 15

Zhumadian 8 20 15

SPI6

Bengbu 10 5 10

Fuyang 7 5 5

Xuchang 7 5 5

Zhumadian 8 5 5

SPI9

Bengbu 10 5 5

Fuyang 7 5 5

Xuchang 6 5 5

Zhumadian 10 5 15

SPI12

Bengbu 8 5 5

Fuyang 10 5 5

Xuchang 9 5 5

Zhumadian 10 5 5

In Table 1, we find when the CRBM structure is 8-25, the RMSE is the smallest, and

when the CRBM structure is 9-5, the MAE is the smallest. We can find that the most optimal

structure is most likely to appear when the number of input nodes is 8 or 9. Then we do the

next step. The results of the next step have just been shown in Table 2. We can find that the

best DBN structure is 9-5-10-1. That is, the DBN has 9 input nodes, 5 nodes in the first hidden

layer, 10 nodes in the second hidden layer, and 1 output node, and the RMSE and MAE are

the smallest of all.

According to above processes, we can determine the optimal structures of DBN for the

four stations and different time-scale SPI series. We try nine levels of input nodes from 2 to 10

in combination with five hidden nodes (5, 10, 15, 20, and 25) for CRBM training. We can find

the optimal network structure in a similar way for all of the SPI series. The optimal network

structures of DBN for the different four stations and different time-scale SPI series are shown

in Table 3.

3.2. Results and Discussion

In this paper, the DBN and BP neural network model are used for forecasting the different

time-scale SPI series, and the results of their prediction are compared. The quantitative

performance evaluations of DBN and BP neural network are carried out by using RMSE and

MAE. The results are shown in Table 4.

We can find that the prediction errors of the DBN are smaller than the prediction

errors of BP neural network in Table 4. The errors results demonstrate that DBN model

is suitable for the drought prediction in the Huaihe River Basin. DBN model can obtain

smaller RMSE and MAE compared with BP neural network. With the change of the time

scale of SPI from little to large, the RMSE and MAE become smaller. That is, the fitting
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Table 4: The comparison of RMSE and MAE between BP and DBN.

Station Model Errors SPI3 SPI6 SPI9 SPI12

Bengbu

DBN
RMSE 0.6842 0.6592 0.5355 0.4797

MAE 0.5425 0.5274 0.3959 0.3553

BP neural
network

RMSE 0.9897 0.6987 0.5899 0.5809

MAE 0.7564 0.5523 0.4157 0.4532

Fuyang

DBN
RMSE 0.8112 0.6634 0.5590 0.5620

MAE 0.6527 0.4812 0.3923 0.4282

BP neural
network

RMSE 1.0876 0.8022 0.8032 0.5773

MAE 0.8202 0.5867 0.5509 0.4080

Xuchang

DBN
RMSE 0.7258 0.5764 0.5262 0.4236

MAE 0.5714 0.4342 0.3880 0.2976

BP neural
network

RMSE 0.8223 0.6938 0.6783 0.4454

MAE 0.6786 0.5411 0.4725 0.3268

Zhumadian

DBN
RMSE 0.7794 0.6239 0.5686 0.4990

MAE 0.6276 0.4792 0.3811 0.3504

BP neural
network

RMSE 1.0780 0.7956 0.7996 0.4474

MAE 0.8147 0.6336 0.5365 0.3144

results of SPI12 are better than SPI9, SPI9 is better than SPI6, and SPI6 is better than SPI3.

In a word, DBN has a higher precision in drought prediction based on SPI than BP neural

network.

Figure 4 shows the test results of SPI3, SPI6, SPI9, and SPI12 of Bengbu station. It is

obvious that the prediction values of different time-scale SPI series are very close to the actual

ones. The comparison results between observations and predicted data of Fuyang station,

Xuchang station, and Zhumadian station are shown in Figures 5, 6, and 7 using DBN and BP

neural network for SPI6 series.

From Figures 5, 6, and 7, the predicted data of SPI based on DBN model agreed with

observations very well. The majority of DBN outputs are nearer to the real SPI values than

those of BP neural network. The results show that the DBN model is appropriate for short

term of drought index and can obtain higher precision.

4. Conclusion

In this paper, we proposed a deep belief network (DBN) for short-time drought index

prediction. The forecasting model based on DBN is used to forecast different time-scale SPI

series of four stations in Huaihe River Basin, China. Compared with the BP neural network,

the DBN-based model is more reliable and efficient for short-term prediction of drought

index. The errors results show that the DBN model outperforms the BP neural network.

This study shows that the DBN model is a useful tool for drought prediction. Due to the

complexity of the formation mechanism of the drought disasters and the long memory of

hydrological data, some new method which can deal with long-range dependence will be
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Figure 4: Results comparison between observations and predicted data using DBN for different time-scale
SPI series of Bengbu station.
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Figure 5: A comparison of DBN and BP neural network for SPI6 series of Fuyang station.
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Figure 6: A comparison of DBN and BP neural network for SPI6 series of Xuchang station.
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Figure 7: A Comparison of DBN and BP neural network for SPI6 series of Zhumadian station.

thought about, and further studies are needed to deal with more complex situations for

drought prediction.
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The 2-D bar code possesses large capacity of data, strong ability for error correction, and high
safety, which boosts the 2-D bar code recognition technology being widely used and developed
fast. This paper presents a novel algorithm for locating data matrix code based on finder pattern
detection and bar code border fitting. The proposed method mainly involves three stages. It first
extracts candidate regions that may contain a data matrix code by morphological processing and
then locates the data matrix code roughly by detecting “L” finder pattern and the dashed border on
the candidate regions. Finally, the lines fitted with the border points are used as the borders of data
matrix code. A number of data matrix code images with complexity background are selected for
evaluations. Experimental results show that the proposed algorithm exhibits better performance
under complex background and other undesirable conditions.

1. Introduction

2-D bar code consists of a certain white and black geometric modules that alternately arrange

in the vertical and horizontal directions according to certain rules (see Figure 1), and it is

a symbol with large capacity for storing information. As the 2-D bar code with smallest

size in the world, data matrix code is widely applied to electronic product components. 2-D

bar code recognition technology shows great commercial value, and at present, most COTS

(commercial of the shell) recognition algorithms are proprietary and protected by patents, so

the 2-D bar code recognition technology is in a great demand for researching.

How to locate a 2-D bar code quickly and precisely in an image with complex

background, poor illumination or other undesirable condition is crucial to the recognition

process. For data matrix code location, many kinds of location algorithms have been
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Figure 1: Data matrix code symbol.

proposed. Donghong et al. [1] proposed an algorithm based on Radon transform, which

mainly locates data matrix code by the “L” finder pattern and dashed border detection. This

algorithm has high precision and works well for the data matrix code within high density but

is very time consuming and is not suitable to be applied to real-time application. Chenguang

et al. [2] proposed the locating algorithm based on Hough transform. This algorithm is very

time consuming and space consuming though it can reduce the consumption by a second

Hough transformation. What’s worse, this algorithm has low precision for the complex

background. Wenting and Zhi [3] discussed the method of locating data matrix code based

on convex algorithm, which determines the 3 vertexes of the “L” finder pattern according

to the convex of the edge points of the bar code. This algorithm is simple and fast but

requires that background is clean and the bar code gets no stained and complete. There

are other locating algorithms [4, 5] and are solely appropriate for specific situation, such

as simple background situation, good illumination condition, and low density. In reality, the

bar code images are always accompanied with complex background, and furthermore the

images might get stained, incomplete, or printed in high density. Under these undesirable

conditions, most of the algorithms mentioned above do not work effectively or are not

demanded for higher processing power and more storage space, which cannot satisfy most

real-time application. The location problem of 2-D barcode involves nonlinear systems

[6, 7].
In this paper, we propose a data matrix code location algorithm based on finder

pattern detection and bar code border fitting, which is proved by extensive experiments to

be effectively and fast. In this algorithm, the finder pattern is detected mainly based on line

segment detection and combination. Some work has been done for finding “L” finder pattern

by segment detection, such as reference [8–12]. About line segment detection, Grompone Von

Gioi et al. [13] proposed a linear-time algorithm called line segment detector (LSD), which

requires no parameter tuning and gives accurate results. The LSD algorithm has improved

the line segment finder proposed by Burns et al. [14] and combined with a validation criterion

inspired from Desolneux et al. [15, 16]. In this paper, the LSD algorithm is utilized to detect

the “L” finder pattern, and an introduction of LSD is given in the related work section. About

border fitting, the most important step is straight line fitting. An effective straight line fitting
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solution is proposed by Fischler and Bolles called RANSAC [17] algorithm, which will be

used to fit the bar code borders.

The remainder of this paper will be organized as followings. Section 2 is the

introduction of the related algorithm about line segment detection. Section 3 will give details

of the proposed data matrix code location algorithm. Section 4 comments on the experimental

results and Section 5 concludes the paper.

2. Related Work

LSD is a linear-time line segment detector, which draws and improves the idea of Burns

et al. (see [14]) that defines a line segment as a region which only concerning the gradient

information, and combines the validation criterion inspired from Desolneux et al. (see [15,

16]). This algorithm is implemented in 4 steps.

Step 1 (finding the line-support regions). This method defines a line segment as a region

called line-support region, which is a cluster of points in a connected region that sharing

roughly the same gradient orientation angle and whose gradient magnitude is greater than

a threshold. To get the line-support region, a region-grow algorithm is applied. Firstly, a

pseudoordering is done. The pixels whose gradient magnitude value is larger than threshold

ρ are classified into a finite number of bins according to their gradient magnitude value,

then the pixels from higher bins are visited first and pixels in lower bins later; secondly, each

region starts with one pixel and initializes the line-support region angle with the first pixel’s

gradient angle, if an adjacent pixel is under the condition as inequality (2.1), add it to the

line-support region and update the line-support region angle as formula (2.2). Repeat the

steps until there is no pixel that can be added to the line-support region.

abs
(
angle

(
p
) − θregion

)
< τ, (2.1)

where p is the adjacent pixel, τ = 22.5◦ is the threshold of the difference between adjacent

pixel’s angle and line-support region angle.

θregion = arctan

(∑
i sin

(
angi

)∑
i cos

(
angi

)). (2.2)

Step 2 (finding the rectangular approximation of every line-support regions). A line segment

that associated with a line-support region is defined as a rectangle which is the rectangular

approximation of the line-support region. Parameters, such as center, orientation angle,

length, and width, can be used to describe a line segment, see Figure 2. In LSD algorithm,

instead of using the mean level-line angle as the line angle, which may lead to erroneous line

angle estimation, the first inertia axis orientation is used to be the line segment orientation.

The centroid of mass of the rectangular approximate is selected as the center, when the

gradient magnitude is used as pixel’s mass. The length and width are chosen in the way

that covers the line-support region.

Step 3 (validation of each potential line segment). After getting the rectangular approxima-

tions of line-support region, it is necessary to validate each approximation a line segment
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Figure 2: Line segments are characterized by a rectangle determined by its center point, angle, length, and
width.

or not according to the number of aligned point and the total number of pixels of each

approximation. Aligned point is defined as the pixel whose gradient angle is the same to

the line segment angle up to the tolerance τ .

Suppose that image background has the Gaussian white noise model H0, more

formally, an image X under the background model H0 is a random image (defined on the

grid Γ = [1,N] × [1,M] ⊂ Z2) such that:

(1) for all m ∈ Γ, angle(∇X(m)) is uniformly distributed over [0, 2π].

(2) The family {angle(∇X(m))}m∈Γ is composed of independent random variables.

Under the model H0, image is isotropic flat zones, while straight edges are exactly the

opposite: highly anisotropic zones. Thus, in practice, a set of pixels will not be accepted as

a line segment if it could have been formed by an isotropic process. This algorithm defines

the Number of False Alarms of a rectangle r ∈ R in an image x, as

NFA(r, x) = #R · IPH0
[k(r, X) ≥ k(r, x)]. (2.3)

In the formula (2.3), X is a random image under model H0, #R is the total number of

potential rectangle (line segment) in image X, k(r, X), and k(r, x) represent the number of

aligned points in rectangle in image X and image x, respectively, IPH0
[k(r, X) ≥ k(r, x)] is

the probability that k(r, X) greater than or equal to k(r, x).
The smaller the NFA value is, the more significant the rectangle r is. Consider one pixel

accuracy, there are N4 potential line segments in a N ×N image for the start point and end

point both have N2 possible, but in practice, line segment’s width can be at most N pixels,

thus #R =N5. Under the model H0 and a tolerance τ = πp for the difference between aligned

point gradient angle and line segment angle, p = τ/π is the probability of that a given point is

an aligned point. Each pixel’s gradient is independent in rectangle, so the number of aligned

point k(r) obey binomial distribution, thus,

IPH0
[k(r, X) ≥ k(r, x)] = b(n(r), k(r), p), (2.4)
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where b(n, k, p) =
∑n

i=k(n/i)p
i(1 − p)n−i, finally, NFA is easy to be calculated:

NFA(r) =N5 · b(n(r), k(r), p). (2.5)

The NFA is the key to validate the rectangle as a line segment or not, if NFA is less than a

threshold ε, then the rectangle is accepted as a ε-meaningful line segment, vice, the rectangle

is not a line segment. This method is almost independent of ε (actually logarithmic). Thus,

this algorithm let ε = 1 thoroughly as advised by Fuchao (see [17]).

Step 4 (improved the approximations of line-support region and validate them). In Step 3,

the best rectangular approximation of a line-support region is the one that gives the smallest

NFA value, in order to get a better NFA, the LSD algorithm tries to adjust the width of

the approximation and the probability p. Five dyadic precision steps are considered before

adjusting the rectangle width and again five dyadic precision steps afterward. Repeat Steps 2

and 3 and keep the rectangular approximation with best NFA value as the final line segment.

3. The Proposed Location Algorithm

Observed the data matrix code, the “L” finder pattern and the dashed border make data

matrix code distinct from other 2-D bar codes or objects, so the first idea that comes to mind

is to locate the data matrix code by detecting the “L” finder pattern and dashed border, but

this procedure may lead to an imprecise location when there exists a perspective distortion in

the bar code image or the image get stained or obscured (these situations happen frequently).
Therefore, it needs to locate the bar code more precisely. In this paper, we utilize some edge

points of data matrix code to fit 4 straight lines as the 4 borders of the bar code and finally

achieve accurate positioning with their intersections (4 vertexes).
The location steps discussed above are the main steps of the location algorithm, which

consume most of processing time, and the computation time is closely related to the size of

the image. Normally, the bar code region is only a small part of the image, it is necessary

to extract the bar code from the image to facilitate the follow-up location. In this way, it not

only reduces the cost of computation but also enhances the antijamming capability of the

algorithm for the extraction of bar code removes most of the background. After the extraction

of candidate regions (may include a data matrix code), the location algorithm is applied

on them to complete the whole location. The whole data matrix code location procedure is

shown in Figure 3.

3.1. Extraction of Data Matrix Code Candidate Region

In general, 2-D barcodes consist of staggered white and black modules and have vast closely

spaced edges, while other objects or background in the image has few sparse edges. This

characteristic is utilized to extract candidate regions in 3 steps:

Step 1 (edge detection, remove most of the background by canny edge detection). The

proposed algorithm chooses canny operator to do edge detection because it can get more

complete edges by restraining the nonmaximum value and connecting the inconsecutive

edges with mathematical morphology. Canny operator gets a good tradeoff between noise

suppression and edge detection. In the standard canny edge detection, the first step is the
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Figure 3: Data matrix code location algorithm flowchart.

Gaussian filtering which is used to remove noise, but in this application, we ignore this step

to save time bringing little impact on subsequent processing.

Step 2 (morphological processing, highlight the bar code region by dilate operation and

open operation). The dilate operation fills bar code but expands bar code boundary at the

same time, which may lead to connection of bar code and other objects (such as text).
So open operation is used to separate these small adhesions. The result is susceptible to

the shape and size of the structure element. Actually, 2-D barcode module always has

the size of 3 to 8 pixels in rectangle shape, so the structure elements are defined as

follows.

1 1 1 1 1

 1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

Open structure element:
5 × 5 rectangle

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

Dilate structure element:
4 × 4 rectangle

(3.1)

Step 3 (contour analysis, filter candidate regions with contour perimeter and area). Mark

every connected region: {R1, R2, . . . , Rn} and extract the contour: {C1, C2, . . . , Cn}, then filter

the connected regions with their perimeter and area:

candidate regions = {Ri | Perimeter(Ci) > τ1 & & Area(Ri) > τ2}. (3.2)
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Figure 4: Extraction of bar code candidate region.

To make sure that the whole bar code is included in the candidate region, the bounding box

of the candidate is calculated and expanded. The experimental results are shown in Figure 4.

3.2. Preliminary Location Based on Finder Pattern

Based on the data matrix code feature analysis mentioned above, it can quickly determine

whether there is a data matrix code or not in a candidate region and obtain the approximate

location of data matrix code by detecting the “L” finder pattern. Detection of dashed

border helps determine the top and right boundary position of data matrix code. In this

paper, “L” finder pattern and the dashed border are detected to preliminarily locate data

matrix.

3.2.1. “L” Finder Pattern Detection

L-detection is relatively complex, but an “L” finder pattern can be regards as two

segments, and there are many mature line segment detection algorithms. The LSD algorithm

(introduced in Section 2) proposed by Grompone Von Gioi et al. [13] is utilized to detect line

segment. Consider that Step 4 of LSD is not very meaningful for large and well-contrasted

line segments (the “L” finder pattern of data matrix code is always well contrasted) and time

consuming within repeat of Steps 2 and 3, our algorithm ignores this step to save time. The

detection result is shown in Figure 5.

An “L” finder pattern can be detected by combining the appropriate line segments.

Assume that the line segments obtained in a candidate region are: {l1, l2, . . . , ln}, a line

segment is described with its two endpoints as: li = {pi1, pi2}. Normally, if two line segments

are belong to the same “L” finder pattern, then angle(li, lj) = 90◦, i, j = 1, 2, . . . n. But

this assumption no longer holds when the image has perspective deformation. Extensive

experiments have demonstrated that the angle usually ranges from 60◦ to 120◦. A constrain

about the segments’ length ratio that the length of the long line segment can not exceed 5

times the length of the short one is added. Therefore, combination of line segments can be

implemented as in Algorithm 1.

Inevitably, some pseudo-L will be detected, so an “L” finder pattern will be abandoned

if the postprocessing cannot locate a data matrix code. The approximate location of 3 vertexes

(two endpoints and an intersection of “L”) can be obtained from the “L” finder pattern to

locate data matrix code roughly just as Figure 5(c).
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Figure 5: “L” finder pattern detection (a) shows the result of line segment detection; (b) combine the
appropriate segments to an “L”; (c) roughly location using the 3 vertexes.

For each li (i = 1 : n)
If li is not marked

Search in Dpi1 and Dpi2 to find lj ; // Dpi1 and Dpi2 are Neighborhoods of pi1 and pi2.
If lj is not marked && 60◦ < angle(li, lj) < 120◦

&& max{len(li), len(lj)}/min{len(li), len(lj)} < 5 // len(li) and len(lj) are the
lengths of li and lj

Combine li and lj into an “L”;
Mark li and lj ;

End
End

End

Algorithm 1

3.2.2. Dashed Border Detection

Composed by alternating black modules and white modules, the dashed border has a lot of

edges. On the other hand, the dashed border is roughly parallel to the “L” finder pattern.

Detecting a dashed border by scanning edge point in the direction paralleling to “L” in two

steps.

Step 1 (determine a detecting region). A quadruple: {x, y,width,height} is used to defined

the detecting region, where x and y are coordinates of the start point of the scanning, width

and height are scanning arranged paralleling to “L” (see Figure 6). The 3 vertexes of the “L”

are p1(x1, y1), p2(x2, y2), and p3(x3, y3), and the lengths of the two segments of “L” are len1

and len2. len1 > len2, then the detection regions are

detect regupper =
{
x1 − τ, y1 − τ, len1 + 2τ, len1 − len2 + 2τ

}
,

detect regright =
{
x3 + τ, y3 + τ, len1 − len2 + 2τ, len1 + 2τ

}
,

(3.3)

where τ is an adjustable parameter.
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Figure 6: Dashed border detection.
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Figure 7: Scan border points.

Step 2. Progressively scan edge points in the direction paralleling to the horizontal line

segment of “L” in detect regupper and count the number of edge points. The row with

the most edge points is kept as the horizontal dashed border. The row with the least

edge points is kept as static region. The vertical dashed border is detected in the same

way.

3.3. Border Fitting

The 3 vertexes obtained from the “L” finder pattern can only roughly locate data matrix code,

even, the location is wrong when the “L” gets stained or partly covered and the detection

of the dashed borders is not precise. So it is necessary to get more information for further

location. In this paper, the 4 borders will be fitted to finally locate data matrix code in 3 steps.

Step 1 (scan border points). Border point is defined as the first edge point from outside to

inside in the direction perpendicular to bar code’s border. The scanning range is around

the bar code borders with an offset (such as 5 pixels). An example has been demonstrated

in Figure 7, 4 sets of border points can be obtained: border pointleft, border pointright,

border pointupper, and border pointlower.
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Step 2 (fit borders). In mathematics, it is usually to describe a straight line by equality [18]:
y = kx+b, but it cannot work when the straight line is perpendicular to the x axis, the slope k

tends to be infinity, thus we use Hesse paradigm to describe a straight line: ax + by + c = 0, in

fact, it is a excessive parametric expression, 2 points can determine a straight line while there

are 3 parameters in the equality, so a constraint is added: a2 + b2 = 1.

In order to fit a straight line in a set of point: {p1(x1, y1), p2(x2, y2), . . . , pn(xn, yn)}, the

sum of the distance from each point to the straight line: e2 =
∑n

i (ai + byi + c)
2 should be

minimized. Therefore, the straight line fitting can be converted into distance minimization

problem. But if a = b = c = 0, the equality above will get a zero measurement error. To avoid

this problem, the constraint condition a2 + b2 = 1 would be added as a Lagrangian multiplier:

e2 =
n∑
i

(
axi + byi + c

)2 + λ
(
a2 + b2 − 1

)
n. (3.4)

The minimization problem can be expressed as:

(a, b, c) = arg
(

min
(
e2

))
. (3.5)

Solve (3.5):

a

b
= −sxy

sxx
= −syy

sxy
, c = −(ax + by

)
(3.6)

to avoid the situation that a/b = −0/0, accept the proposition that with greater value:

if syy ≥ sxx, a

b
= −syy

sxy
, then a = − syy√

syy2 + sxy2
, b = − sxy√

syy2 + sxy2
;

if syy < sxx,
a

b
= −sxy

sxx
, then a = − sxy√

sxx2 + sxy2
, b = − sxx√

sxx2 + sxy2
.

(3.7)

In the formulas above:

x =
1

n

n∑
i

xi, y =
1

n

n∑
i

yi,

sxx =
n∑
i

(xi − x)2, syy =
n∑
i

(
yi − y

)2
, sxy =

n∑
i

(xi − x)
(
yi − y

)
.

(3.8)

Once the values of parameter a, b, c are determined, a straight line is fitted. Let us

consider the points in the set, some outliers must deviate the straight line which fitted by

minimizing the distance from points to it. An effective solution is the mature and typical

RANSAC algorithms. This algorithm selects minimum quality of points (such as 2 points)
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Figure 8: Precisely location.

randomly to fit a straight line, and then check the proposition of outliers. Repeat this

procedure until the proposition of outliers reaches level less than a threshold such as 1%,

and the straight line with minimum proposition of outliers is kept, finally used these certain

2 points and their inliers to fit the final straight line. The robustness RANSAC is used in this

paper to fit 4 borders with the 4 set of border points obtained in Step 1.

Step 3 (obtain 4 vertexes of data matrix code precisely). After the Step 2, 4 straight lines lleft,

lupper, lright, and llower, have been fitted and then calculate their intersections to obtain data

matrix code position. The Figure 8 shows the final precise location.

4. Experimental Results

In order to verify the performance of the proposed algorithm, we conduct experiments on

the images under different conditions (such as complex background, perspective distortion)
and give four representative experimental results. All the experiments run on the ARM 11

hardware platform, and all test images have the resolution of 752 × 480. Figures 9(a)∼9(d)
are the four original test images. Figure 9(a) is the mobile phone battery image with a data

matrix code. Around the data matrix code, there are some texts and other objects closed to the

bar code, which bring great interference to bar code location. Figure 9(b) is an USB data cable

connector image with a data matrix code. The size of the USB connector is small and the size

of data matrix code is even smaller. Also, there are lots of texts very closed to the data matrix

code. Figure 9(c) is an award ticket image with a data matrix code; the image is dim with

bad illumination. Figure 9(d) is an image of the printed data matrix code, some perspective

distortions exist in the image because of the tilt angle when taking photo.

Figures 9(e)∼9(h) are the experimental results of data matrix code location. It can

be seen that the proposed location method works effectively and precisely. Figure 9(e)
shows that the proposed algorithm has good robustness to interference brought by complex

background. Figure 9(f) demonstrates that the algorithm has high precise for the small size of

data matrix code. Figures 9(g) and 9(h) reveal that the proposed algorithm can achieve good

performance even under bad illumination or distortion conditions.

Moreover, the proposed algorithm costs no more than 100 ms in these experiments,

which can completely satisfy the demand of real-time application, and it is especially suitable

for embedded device.
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(a) Complex background

(b) Small size

(c) Bad illumination

(d) Distortion

(e) Location result of (a)

(f ) Location result of (b)

(g) Location result of (c)

(h) Location result of (d)

Figure 9: Data Matrix code precise locations.

5. Conclusions

A data matrix code location algorithm is proposed in this paper, which utilizes the obvious

features of “L” finder pattern and dashed border of data matrix code. This algorithm provides

3 advantages compared to those algorithms mentioned. (1) First: robustness, it locates data

matrix code on candidate regions excluding most of interference from background. The two

most important algorithms, namely, LSD and RANSAC, are used to achieve high robustness

under complexity background conditions. (2) Second: it has high accuracy, preliminarily

location by finder pattern, and then accurate location by fitting border lines. (3) It is suitable

for real-time application. Extraction of candidate region greatly reduces the operating area

of location algorithm, which saves a lot of time. Instead of using the time-consuming Hough
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transformation algorithm to detect line segment, the linear-time LSD algorithm is used. The

proposed method is evaluated on four images with complex background or distortion. The

experimental results show that our proposed algorithm gives good performance.
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The classification of erythrocyte plays an important role in clinic diagnosis. In terms of the
fact that the shape deformability of red blood cell brings more difficulty in detecting and
recognize for operating automatically, we believed that the recovered 3D shape surface feature
would give more information than traditional 2D intensity image processing methods. This
paper proposed a combined approach for complex surface segmentation of red blood cell
based on shape-from-shading technique and multiscale surface fitting. By means of the image
irradiance equation under SEM imaging condition, the 3D height field could be recovered from
the varied shading. Afterwards the depth maps of each point on the surfaces were applied to
calculate Gaussian curvature and mean curvature, which were used to produce surface-type label
image. Accordingly the surface was segmented into different parts through multiscale bivariate
polynomials function fitting. The experimental results showed that this approach was easily
implemented and promising.

1. Introduction

The erythrocyte shape deformability is critical to the filterability of blood. It has drawn

considerable attentions into the pathology research in clinical relevant blood diseases.

Unfortunately, the diagnosing is usually performed by a human expert, and it shows some

drawbacks such as time-cost consuming and inaccuracy. Conventionally, the experts deal

with erythrocyte images segmentation issue with 2D gray scale image. However, in order to

obtain a satisfied performance, the classification and recognition should be based on the real

shape of RBCs. In fact, the shape feature of red blood cell provides more useful information

for diagnosing accurately than intensity level image. So it is necessary to take the shape
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Figure 1: A typical SEM image of red blood cells.

information into consideration in this real problem. For our experiments, we use a database

of 100 RBC images obtained by scanned electron microscope rather than optical imaging

system. In [1], Egerton elaborated the operation principle of SEM, which creates images that

are particularly easy to implement because the brightness in it is a function of the slope of

the specimen at that point and forms a varied shading image. It is unlike the optical and

transmission electron microscope, whose brightness depends on the thickness and optical

and electron density instead.

In [2], Russ mentioned that many of the two-dimensional images have been sectioned

through three-dimensional structures. This is especially true in the various types of

microscopy, where either polished flat planes or cut thin sections are needed in order to

form the images in the first place. But the specimens thus sampled are three dimensional,

and the goal of microscopists is to understand the three-dimensional structure. Some

works have been done on optical blood cell images with traditional 2D methods [3–5]. In

order to detect and classify malaria parasites in images of Giemsa-stained blood slides, Di

Ruberto et al. proposed a morphological approach to evaluate the parasitaemia of the blood.

They segmented the cells (red and white) from the background firstly and then detected

and classified the parasites infecting them [3, 6]. Equally with malaria parasite detection

mentioned above, Kumarasmy et al. presented an automated method for the robust analysis

of RBC images via Gestalt laws [4], and Mandal et al. presented a segmentation method

of blood smear images using normalized cut [5]. As we well know that, noise estimation

is a challenge problem for complex structures of images, Liao et al. presented a method

determining neighborhoods of the image pixels automatically with adaptive denoising and

estimate noise for a single-slice sonogram of low-dose CT based on the homogenous patches

centered at a special pixel. In their method, the noisy image is viewed as an observation of

a nonlinear time series. The true state of the NTS must be recovered from the observation to

realize image denoising [7, 8]. Furthermore, Hu et al. proposed an image smoothing using

nonlinear anisotropic diffusion [9]. They suggested that the diffusion should be performed

both among the time variants and spatial variant.

Figure 1 shows a typical example of such kind of red blood cell images captured

by SEM with which we are going to deal. They were obtained at 600 times magnification

using a scanned electron microscope. As shown in Figure 1, there are some outstanding
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characteristics about this image which make our problem be significant and challenging. On

the one hand, the image represents very highly good quality with varied shading illuminated

by light source. On the other hand, some light gridlines are superimposed in the image. The

gridlines were added for the sake of manual counting. In addition, those cells’ shape takes on

lots of irregular deformation, which is the primary problem we have to solve to segment

effectively. As we well know, image segmentation is the bridge to classification properly.

We aimed to develop a satisfied algorithm to classify the red blood cells into different

groups accurately. And also we believed that conventional segmentation methods based on

gray value could be unsuitable to this case. In this paper we proposed a new strategy to

segment RBC image according to surface feature extraction. At first, we have to estimate the

distribution of erythrocyte shapes from scanned electron microscope. Then each cell’s three-

dimension shape was reconstructed as 3D height field using shape-from-shading technique.

Lastly we implement multiscale surface fitting segmentation algorithm to partition the cells

based on the depth data acquired in the previous procedures.

This paper is organized as follow. Firstly the preliminary work including system

framework and image preprocessing are introduced in Section 2. In Section 3, a guided

contour tracing method was used to extract the boundary and center point information.

Accordingly all pixels of each cell which is located on the top of overlapped cells can

be further obtained, whose intensity tone is disposed as shading information. The 3-D

reconstruction of each cell is introduced in Section 4. We deduced an image irradiance

equation under SEM imaging condition with linear approximation. Shape-from-shading

technique is applied in this project, such as shape-from-shading technique using linear

approximation. The next section is about to divide surface into several different types after

computing mean curvature and Gaussian curvature. Multiscale surface fitting segmentation

algorithm is proposed in Section 6 which involves seed extraction, region growing, and so

on. In the end, Section 7 draws some conclusions and expects a few future works.

2. Image Preprocessing and System Framework

As shown in Figure 2(a), there existed some bright gridlines superimposed on the original

image, which have some side effects on the subsequent work. As mentioned before, the

images show perfect quality other than these lines, which is used to count and classification

manually. The system we developed here is to relieve human from exhausted hand work and

run automatically. Additionally, in terms of the shading information being critical in our case,

we regard the lines as noise and we have to remove them before recovering the 3D shape from

gray tone image.

2.1. System Framework

We describe the system framework in Algorithm 1.

2.2. Image Processing Using Median Filtering Locally

As time consumption is sensitive during RBCs classification, we make use of median filter to

get rid of the gridlines. The median filter is a smoothing technique that causes minimal edge
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(a) Gridline superimposed image (b) Denoising using median locally

(c) Denoising using median filter directly on
the whole image

Figure 2: RBC image preprocessing.

blurring, which involves replacing the pixel value at each point in an image by the median of

the pixel values in a neighborhood about the point:

g
(
x, y

)
= med

{
f
(
x − k, y − l), (k, l ∈W)

}
, (2.1)

where f(x, y) is the original image and g(x, y) is median filtered image, respectively. W is a

2-dimensional 7∗7 template.

Figure 2(a) shows a scaled original RBC image with four white gridlines superim-

posed on it. The denoised image after median filtering directly on whole image is presented

in Figure 2(c), in which the lines are removed successfully. However, the edges of cell

image have been blurred and brightness changed at the same time. Consequently the

issue of inaccuracy would arise from the change, because the recovered shape is relied on
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1. Image Denoising
1.1 Find the rough position of each grid line;
1.2 Remove the noise using median filtering locally.

2. Cell Extraction Individually
2.1 Guided boundary contour tracing;
2.2 Cell Extraction through 4-neighborhood region growing.

3. Shape from Shading Using Linear Approximation
3.1 Image Irradiance Equation Deduction;
3.2 3-D Shape Reconstructing.

4. Computing RBC shape surface feature
4.1Compute mean curvature and Gaussian curvature using image convolution;
4.2 Set a threshold for this two curvature.

5: Segmentation through multiscale surface fitting
More details is in Section 6: Experiment.

Algorithm 1

the irradiance mostly. Fortunately we can detect the exact positions where those lines are by

horizontal and vertical projection using

∑
i⊕j
Q
(
i, j

)
, (2.2)

respectively, where Q(i, j) only represents those pixels whose gray value is approximately

equal to the pixels in those white gridlines. i ⊕ j means that only horizontal pixels are

computed when sum on i and vertical pixels are projected when sum on j as well.

Experimental results show that, while determining the exact positions of vertical lines, the

points located in the range of i ∈ [253, 259] or [509, 517] have to be considered only. And

those points whose j coordinate is in the range of j ∈ [253, 259], [509, 515], [765, 771] have to

be dealt with when impose median filtering locally.

As a result, this local median filtering method leads to a handily approach, namely

filling locally combined with median filtering, 7∗7 structure element defined. The improved

result is shown in Figure 2(b), in which all the cells keep the same shading information as the

original image and the gridlines have been removed successfully as well.

3. Tracing Contour and Cell Extraction Individually

3.1. Guided Contour Tracing

Vromen and McCane [10] proposed a method named contour-tracing-based approach to the

problem of finding the boundary of red blood cells in a scanned electron microscope image

automatically. As shown in the above Figure 1, there are considerable overlapped cells. We

are just only interested in estimating the distribution of different erythrocyte shapes from

SEM image rather than the accurate counting number. So it makes sense to assume that the

distribution of overlapped cells is identical to the overall distribution. Consequently only

those top-level cells are needed to be detected and recognized. At the very beginning, the

most possible direction is chosen by taking the prior information of tracing into account so
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far. Since the cell contours are likely elliptical, it would be reasonable to fit a conic shape to

the path. A parameterized second-degree polynomial over the last n points was modeled the

local curvature:

x(t) = at2 + bt + c,

y(t) = et2 + ft + g.
(3.1)

The best fitting polynomial was calculated through a number of data points using least

squares. In order to increase accuracy and decrease computation, consider only the directions

with angles in a certain window around the predicted direction. This was represented with a

set of unit vector ui ∈ U:

U =
{(

cos
(
αi + β

)
, sin

(
αi + β

)) | βmin ≤ β ≤ βmax

}
, (3.2)

where αi is the angle of the predicted tangent. In our application β is uniformly sampled

between βmin = −(π/2) and βmax = (π/2).
Figure 3(a) shows the scaled 256∗256 RBC image, and the contours after guided tracing

are presented in Figure 3(b). There are 7 traced contours in Figure 3(b) which are located on

top level of overlapped cell image. All of the contour information is stored as attributes in an

XML file. It also contains the locus of each point on the boundary.

3.2. Cell Extraction Individually

As shown in Figure 4, there is a break point marked by a white circle in each traced boundary,

which would result in a wrong region when growing we should fill them as a complete

boundary point before growing. If the number of neighbors around a predicted boundary

point is less than three under 8-connectivity, we consider it as a break point. The relationships

between the two break points and how they break with each other are shown in Figure 5.

According to the extracted cell contours’ information, we can grow each cell starting

at center point regionally to get the entire cell image. The algorithms can be described in

Algorithm 2.

The resulting image of region growing subject to contour boundary is shown in

Figure 3(c). After growing regionally, we got the number of pixels which make the whole

image and their gray level value. In Table 1, there are 7 cell contours that have been extracted

altogether, where CENTER X and CENTER Y are the cell’s center point coordinates and

PIXELS denotes the pixels number involved in each cell.

4. Shape from Shading Using Linear Approximation

4.1. Shape from Shading and PDE

The “shape from shading” problem, namely, SFS, is to recover the 3-D shape of a surface

from a gray-level monochrome image. In the 1970s Horn firstly proposed the approach to

reconstruct the original shape from a varied shading image, which associated with obtaining

a solution of a nonlinear first-order partial differential equation (PDE), that is, brightness
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(a) Scaled 256∗256 image (b) Contour after guided tracing

(c) Extracted cells

Figure 3: Cell image extracted using contour tracing.

Figure 4: Break point in cells boundary.
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(a) Horizontal break (b) Vertical
break

(c) 45◦ break

(d) 135◦ break (e) Others

Figure 5: Five different types of break points.

1. Draw some key points for region growing
Collect the center points and contour points from the extracted contour which is stored in
a XML data file.

2. Region Growing
2.1 Set the center point as a seed;
2.2 Grow the cell from the seed in the way of 4 connectivity neighborhoods till touch certain
point on contour;
2.3 Store the pixels’ information into a XML file attributed by position and gray level as tree
nodes.

3. Continue to calculate cell pixels included in next contour
4. If All cells have been extracted successfully, then exit
5. Else return 1

Algorithm 2: Region growing algorithm.

equation. From then on, a number of articles have emerged which come up with various

kinds of methods to strive to implement this technique into real or artificial synthetic images.

This PDE equation arises from the

I(x1, x2) = R(n(x1, x2)). (4.1)

(x1, x2) is the coordinates of a point x in the image. The brightness equation connects the

reflectance map (R) to the brightness image (I). Almost all the shape-from-shading methods

at the exception of an extremely small number of papers [11–13] assume that the scene model
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Table 1: Contours’ information of traced cells.

No. Center X Center Y Pixels

1 37.884 175.931 2697

2 114.131 179.526 2927

3 191.346 65.3348 2777

4 187.606 138.718 2516

5 154.363 209.667 2027

6 211.253 202.634 2359

7 233.308 134.118 953

is Lambertian. The reflectance map is the cosine of the angle between the light vector L(x)
and the normal vector n(x) to the surface:

R = cos(L, n) =
L

|L| ·
n

|n| , (4.2)

where R, L, and n depend on (x1, x2) [14].
Shape from shading is a fundamental issue in computer vision, and considerable

research has been performed [15, 16] in trying to solve this problem including methods

of medical image processing. In [17], the authors applied their method to an endoscopic

image of a normal stomach and showed the result obtained by generic algorithm in the

perspective case with the light source at the optical center, which is not suitable for SEM.

Tankus et al. in their papers [18–20] suggested the reconstruction algorithm under an

assumption of perspective shape from shading. Deguchi and Okatani [21] accomplished

shape reconstruction from an endoscope image by shape-from-shading technique for a point

light source at the projection center.

4.2. Reflectance Map under SEM Imaging Condition

Jones and Taylor [22] proposed that SEM imaging process is particularly appropriate for SFS,

since it allows us to make the simplifying assumptions that the projection is orthographic and

the ”light source” is at infinity. The Lambertian reflectance function is given by

R
(
p, q

)
= η n̂ · Î, (4.3)

where n̂ = (−p,−q, 1)/
√
p2 + q2 + 1 is the unit normal vector, Î is a unit vector in the direction

of the light source, and η is the surface albedo.

The SEM reflectance function is based upon the theoretical prediction that the number

of electron emitted from a surface in the SEM is proportional to the secant of the angle

between the illumination direction and the surface normal. The reflectance function is

denoted by [22]

R
(
p, q

)
=

η

n̂ · Î
. (4.4)
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In this paper, we assume that the image is formed by orthographic projection, because

the object specimen examined by SEM is very small in comparison to distance from light

source.

4.3. Linear Approximation

In [23], the authors believed that the linearity of the reflectance map in the depth Z, instead

of p and q, is more appropriate in some cases. They presented a method for computing depth

from a single-shaded image by employing the discrete approximations for p and q using finite

differences and linearly approximating the reflectance in Z(x, y). It gave good results for the

spherical surface and can be applied to any reflectance function.

In this paper we aim to recover the red blood cell’s shape of an image captured by SEM

based on linear approximation. It is extended to solve such a problem assumed orthographic

projection and derive the implementation equations with the reflectance function inverse to

Lambertian reflectance function.

Image irradiance equation (IRE) indicates the relationship between reflection function

and image irradiance. The recovered shape can be represented by depth map Z, normal

(nx, ny, nz), or surface gradient (p, q). The radiance of surface patch depends on gradient,

light source location, and reflectance property. The gray level of a pixel in the image is

determined by light direction and normal vector, assumed Lambertian model, which can be

denoted by IRE:

E
(
x, y

)
= R

(
p, q

)
=

1 + pps + qqs√
1 + p2 + q2

√
1 + p2

s + q2
s

, (4.5)

where E(x, y) is a gray level at pixel (x, y), p = ∂z/∂x and q = ∂z/∂y, and (ps, qs, 1) is the

illumination direction.

By approximating the p and q discretely, we get

p =
∂z

∂x
= Z

(
x, y

) − Z(
x − 1, y

)
,

q =
∂z

∂y
= Z

(
x, y

) − Z(
x, y − 1

)
.

(4.6)

According to (4.6), the reflection function can be rewritten as

0 = f
(
E
(
x, y

)
, Z

(
x, y

)
, Z

(
x − 1, y

)
, Z

(
x, y − 1

))
= E

(
x, y

) − R(
Z
(
x, y

) − Z(
x − 1, y

)
, Z

(
x, y

) − Z(
x, y − 1

))
.

(4.7)

Under the assumption of the point (x, y) and image E is given, the linear approxima-

tion of function f with respect to Zn−1 after Jacobi iteration method is:

0 = f
(
Z
(
x, y

))
≈ f

(
Zn−1

(
x, y

))
+
(
Z
(
x, y

) − Zn−1
(
x, y

)) d

dZ
(
x, y

)f(Zn−1
(
x, y

))
.

(4.8)
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The nth iterative result Zn(x, y) can be denoted by

Zn
(
x, y

)
= Zn−1

(
x, y

)
+

−f(Zn−1
(
x, y

))(
d/dZ

(
x, y

))
f
(
Zn−1

(
x, y

)) . (4.9)

As mentioned previously, the reflection function is inversal to Lambertian model un-

der the condition of SEM imaging. Equation (4.5) is transformed into

R
(
p, q

)
=

√
1 + p2 + q2

√
1 + p2

s + q2
s

1 + pps + qqs
. (4.10)

Now we compute the partial derivatives of p and q with R:

∂R
(
p, q

)
∂p

=
√

1 + p2
s + q2

s

p
(
1 + pps + qqs

) − (
1 + p2 + q2

) · ps(
1 + pps + qqs

)2
√

1 + p2 + q2
,

∂R
(
p, q

)
∂q

=
√

1 + p2
s + q2

s

q
(
1 + pps + qqs

) − (
1 + p2 + q2

) · qs(
1 + pps + qqs

)2
√

1 + p2 + q2
.

(4.11)

So,

∂R

∂p
+
∂R

∂q
=

√
1 + p2

s + q2
s

((
p + q

)(
1 + pps + qqs

) − (
1 + p2 + q2

) · (ps + qs))(
1 + pps + qqs

)2
√

1 + p2 + q2
. (4.12)

The right part of (4.9) is rewritten as

d

dZ
(
x, y

)f(Zn−1
(
x, y

))
=
∂R

∂p
+
∂R

∂q

=

√
1 + p2

s + q2
s

((
p + q

)(
1 + pps + qqs

) − (
1 + p2 + q2

) · (ps + qs))(
1 + pps + qqs

)2
√

1 + p2 + q2
.

(4.13)

We use the shape-from-shading method with linear approximation to reconstruct the

red blood cell’s 3-D shape as in Figure 6.

5. Curvature Calculation

There are 8 different types of surface altogether, namely peak, pit, ridge, valley, flat, minimal

surface, saddle ridge, and saddle valley. The surface type of each data point on a scene object

can be designated by the signs of mean curvature and Gaussian curvature uniquely. Both of

these two curvatures can be calculated by local convolution [24, 25]. Each data point in a
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(b) Filtered smooth shape

Figure 6: Reconstructed RBC 3D shape.

given window N∗N is associated with a 2-dimensional position (u, v) from the set U × U,

where

U =
{
−N − 1

2
, . . . ,−1, 0, 1, . . . ,

N − 1

2

}
(5.1)

and N is odd.

The following discrete orthogonal polynomials provide local biquadratic surface

fitting capability:

φ0(u) = 1, φ1(u) = u, φ2(u) = u2 − M(M + 1)
3

, (5.2)

whereM = (N−1)/2. The biquadratic is the minimal degree polynomial surface type needed

to estimate the first and second partial derivatives. A corresponding set of bi(u) functions is
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the normalized versions of the orthogonal polynomials φi(u) given by bi(u) = φi(u)/Pi(M),
where the Pi(M) are normalizing constants. The three normalization constants are given by

P0(M) =N,

P1(M) =
2

3
M3 +M2 +

1

3
M,

P2(M) =
8

45
M5 +

4

9
M4 +

2

9
M3 − 1

9
M2 − 1

15
M.

(5.3)

Defining a set of surface G in R3 space, G ⊂ R3, which can be parameterized by

G =

⎧⎨⎩g(u, v) =

⎡⎣g1(u, v)
g2(u, v)
g3(u, v)

⎤⎦:umin<u<umax
vmin<v<vmax

⎫⎬⎭. (5.4)

Before implementing the surface-fitting segmentation algorithm, the surface types

have to be divided at first, which is based on mean curvature and Gaussian curvature. The

computation of mean curvature and Gaussian curvature of digital surface is approximated by

partial derivative estimation, which is calculated via the appropriate 2D image convolution

(denoted by ∗):

gu = Du
∗
S

∗g, gv = Dv
∗
S

∗g,

guu = Duu
∗
S

∗g, guv = Duv
∗
S

∗g, gvv = Dvv
∗
S

∗g,
(5.5)

where S = �s �s T is a 7 × 7 binomial smoothing window:

�s =
1

64

[
1 6 15 20 15 6 1

]
,

[Du] = �d0
�d T

1 , [Dv] = �d1
�d T

0 ,

[Duu] = �d0
�d T

2 , [Duv] = �d1
�d T

1 , [Dvv] = �d2
�d T

0 ,

(5.6)

where

�d0 =
1

7

[
1 1 1 1 1 1 1

]T
,

�d1 =
1

28

[−3 −2 −1 0 1 2 3
]T
,

�d2 =
1

84

[
5 0 −3 −4 −3 0 5

]T
.

(5.7)
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Table 2: Average and variance of mean curvature and gaussian curvature.

No. Average of MC Average of GC Variance of MC Variance of GC

1 −0.00358235 −0.0118867 0.0144467 0.0110893

2 0.0019092 −0.0031961 0.0007467 0.00135311

3 −0.00801067 −0.000136584 0.00776577 8.05916e−06

4 0.00362456 −0.00492172 0.00174206 0.00280074

5 4.11563e-05 −0.00502711 0.00281172 0.00672413

6 0.00774488 −0.00243966 0.0071536 0.000373712

7 0.00235231 −0.0132902 0.00192086 0.0311508

The mean curvature and Gaussian curvature can be calculated by partial derivative as

follows:

H =

(
1 + g2

v

)
guu +

(
1 + g2

u

)
gvv − 2gugvguv

2

(√
1 + g2

u + g2
v

)3
,

K =
guugvv − g2

uv(
1 + g2

u + g2
v

)2
.

(5.8)

Table 2 shows the average and variance of mean curvature and Gaussian curvature of the 7

extracted cells in Figure 3.

6. Experiment

6.1. Surface-Type-Based Image Segmentation

The fundamental formulation of region-based image segmentation is defined as

(1) Un
i=1Ri = R;

(2) Ri is a connected region, i = 1, 2, . . . , n;

(3) Ri ∩ Rj = Φ, for ∀(i, j), i /= j;
(4) P(Ri) = TRUE, i = 1, 2, . . . , n;

(5) P(Ri ∪ Rj) = FALSE, Ri is adjacent to Rj ,

where P(Ri) is a uniformity predicate defined on groups of connected pixels. Ri was grown

regionally via 8-connected neighborhood. All the points in region Ri satisfy the same surface

function. Different regions meet different surface fitting function.

The segmentation procedure is divided into two mainly different parts. Firstly we

compute the surface-type label image by

T = 1 + 3
(
1 + 3sgnεH (H)

)
+
(
1 − 3sgnεK(K)

)
, (6.1)

where T denotes the surface type ranging from 1 to 9 as shown in Table 3.
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Table 3: Surface type defined by mean and Gaussian curvature.

K > 0 K = 0 K < 0

H < 0 Peak (T = 1) Ridge (T = 2) Saddle ridge (T = 3)
H = 0 None (T = 4) Flat (T = 5) Minimal surface (T = 6)
H > 0 Pit (T = 7) Valley (T = 8) Saddle valley (T = 9)

1. Initialization
1.1 Get the whole depth map image from the output of shape from shading procedure;
1.2 Obtaining the range image by filling the value of each pixel, which is associated with the
current processing cell by depth data;
1.3 Compute an estimate of the noise variance at each pixel;
1.4 Computing mean curvature and Gaussian curvature through separable convolution;
1.5 Computing the surface type label image and find all connected components of each surface
type label image, sort it to get histogram distribution;
1.6 Extracted seed region through erosion (contraction) operation.

2. Iterative variable order surface fitting
2.1 Perform surface fit from the lowest order, if it is OK using RMS error and region test;
2.2 Then goto 3;
2.3 Else increase the order and fit again;
2.4 if order >4, then return.

3. Region Growing
3.1 Find the new region consisting of compatible connected neighboring pixels.

Algorithm 3: Algorithm of multiscale segmentation through mapped depth.

We the define root mean square error (RMSE) as

σ2
SN

=
1

N

∑
(x,y)∈SN

(
zij −Φ�a

(
x, y

))2
, (6.2)

to measure whether the difference between fitted value and original depth is confined to the

range preset by a threshold as in Algorithm 3.

6.2. Algorithm

6.2.1. Experimental Result

In our experiment, we define the RMS fit error as ε = ωσimg, where σimg means noise variance,

and

ẑ
(
p
)
= f̂

(
mk, �al, x

(
p
)
, y

(
p
))

(6.3)

is compared with

z
(
p
)
= g̃

(
x
(
p
)
, y

(
p
))
, (6.4)
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(a) Flat (b) Pit (c) Valley

Figure 7: Three surface-type components.

to see if the pixel p is compatible with the approximating surface function. If the magnitude

of the difference between the function value and the digital surface value is less than the

allowed tolerance value, denoted by ω0 · εkl , then the pixel p is added to the set of compatible

pixels, denoted by C(mk, �a
k
l
, εk

l
), which are compatible with the surface fit to the region

R̂k
l
. Otherwise, the pixel is incompatible and discarded. The result of this process is the

compatible pixel list:

C
(
mk, �a

k
l , ε

k
l

)
= p ∈ I :

∣∣ẑ(p) − z(p)∣∣ ≤ ω0 ε
k
l . (6.5)

We choose ωl = 4.5 and ω0 = 8 experimentally.

If we threshold the mean curvature and Gaussian curvature with an appropriate value,

only three different surface type are remained among all cells. In our experiment, we choose

εH = 0.0015,

εK = 0.03
(6.6)

as the mean curvature and Gaussian curvature separately. The function of sgn in (6.1) is

defined as

sgn(H,K) =

⎧⎪⎪⎨⎪⎪⎩
1 (ε,+∞)
0 (−ε,+ε)
−1 (−∞,−ε).

(6.7)

The three kinds of surface type are flat, pit, and valley, respectively, as shown in

Figure 7.

Figure 8 represents the process of extracting seed region through erosion (contraction)
operation. In order to implement the surface fitting segmentation algorithm, the seed region

has to be obtained using erosion operation firstly. After several iteration, the pixel numbers

of remained regions for growing are 32, 34, 45, 6 for these four region, respectively.
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Figure 8: Contraction process to extract seed region of red blood cell.

Table 4: Accuracy of segmentation.

Category Number of flat surfaces Number of pit surfaces Number of valley Surfaces Accuracy

1 1 1 0 88.9%

2 1 2 0 93.3%

3 2 1 0 90.9%

4 0 1 0 100%

5 3 3 0 100%

6 2 2 1 100%

7 3 1 0 100%

8 2 2 0 94.6%

9 1 1 1 100%

10 2 1 1 100%

11 1 2 1 100%

In Figure 9, the cell is segmented into three isolated parts perfectly, which are obtained

through fitting based on surface type.

6.3. Evaluation

In order to evaluate our proposed combined algorithm, we used a dataset containing 800

SEM images. These images are with resolution of 1024 by 768 pixels. For our evaluation, we

ran the algorithm on 100 randomly selected images.

We divided the cells into different categories according to their distribution of surface

type. Table 4 elaborated the segmentation accuracy of each category.
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(a) Original cell image (b) Flat region grew regionally

(c) Pit region 1 grew regionally (d) Pit region 2 grew regionally

Figure 9: The segmentation result using surface fitting method.

7. Conclusion and Future Work

This paper is about how to reconstruct the 3D shape of red blood cell from gray tone

images using scanned electronic microscope based on shape-from-shading technique, as well

combined with linear approximation. The result of cell surface shape is given by height field.

Our algorithm can be trivially transformed to various different kinds of reflection models. In

Figure 7, the surface-type label image is given with cell number added manually. There are

mainly three types of surfaces left after threshold. The distribution of count number of each

surface type in every cell can present some useful information for classifying correctly, which

will be trained as input data. In the end, we aim to construct a classifier by means of cascaded

SVMs architecture to recognize whether the red blood cell is normal or not.
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Vibrational conveyers with a centrifugal vibration exciter transmit their load based on the jumping
method. Common unbalanced-mass driver oscillates the trough. The motion is strictly related to
the vibrational parameters. The transition over resonance of a vibratory system, excited by rotating
unbalances, is important in terms of the maximum vibrational amplitude produced and the power
demand on the drive for the crossover. The mechanical system is driven by the DC motor. In
this study, the working ranges of oscillating shaking conveyers with nonideal vibration exciter
have been analyzed analytically for superharmonic and subharmonic resonances by the method of
multiple scales and numerically. The analytical results obtained in this study agree well with the
numerical results.

1. Introduction

The load-carrying element of a horizontal shaking conveyer performs, as a rule, linear

(or sometimes circular or elliptical) symmetrical harmonic oscillations—with a sinusoidal

variation of exciting force. In vertical shaking conveyers, the load-carrying element performs

double harmonic oscillations: linear along the vertical axis and rotational around that axis

(i.e., longitudinal and torsional oscillations). Conveyer drives with centrifugal vibration

exciters may have (1) a single unbalanced-mass, (2) two equal unbalancing masses, (3)
a pendulum-type unbalanced-mass, (4) four unbalanced-masses in two shafts, (5) four

rotating unbalanced-masses for three principal modes of oscillation, that is, linear, elliptical,

and circular. To induce strictly oriented linear oscillations of the load-carrying element, the

conveyer drive should be arranged so that the line of excitation force passes through the
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inertial centre of the entire oscillating system. Nonideal drives find application in suspended

and supported vibrational conveyers and feeders [1].
By the characteristics and adjustment of the elastic support elements (oscillating

system), we can distinguish between shaking conveyers with a resonant, subresonant, and

superresonant system.

A practical difficulty with unbalanced-mass exciters, observed as early as 1904 by A

Sommerfeld, is that local instabilities may occur in operating speed of such devices.

Rocard [2], Mazert [3], Panovko, and I. I. Gubanova [4] have studied the problem of

the stability of the unbalanced-mass exciter.

The first detailed study on the nonideal vibrating systems is presented by Kononenko.

He obtained satisfactory results by the comparison of the experimental analysis and the

approximated method [5].
After this publication, the nonideal problem was presented by Evan-Ivanowski [6] or

Nayfeh and Mook [7]. These authors showed that sometimes dynamical coupling between

energy sources and structural response that had not to be ignored in reel engineering

problems.

Theorical studies and computations of Ganapathy and Parameswaran have indicated

the beneficial effect of the “material load” during the starting and transition phase of an

unbalanced-mass-driven vibrating conveyor [8].
Bolla et al. analyzed through the multiple scales method a response of a simplified

nonideal and nonlinear vibrating system [9].
Götzendorfer in [10] presented a macromechanical model for the transport of granular

matter on linear and horizontal conveyors subject to linear, circular or elliptic oscillations and

compared it to experimental results [10].

2. The Governing Equations of the Motion

The equations of motion for the modified rocard system may be obtained by using Lagrange’s

equation

d

dt

(
∂T

∂q̇i

)
+
∂D

∂q̇i
− ∂T

∂qi
+
∂V

∂qi
= 0, (2.1)

where T , the kinetic energy, is

T =
1

2
Mẏ2 +

1

2
m

[(
ẏ + θ̇e cos θ

)2 +
(
θ̇e sin θ

)2
]
+

1

2
Imotθ̇

2, (2.2)

where e is the eccentricity of the mass m, m is the unbalanced-mass, M is the mass of the

trough and the conveyed material on the trough of the conveyor, θ is the angle of rotation of

the shafts carrying unbalanced-masses, Imot is the moment of inertia of the rotating parts in

the motor, V , the potential energy, is

V =
1

2
k1y

2 +
1

4
k2y

4 +mge(1 + sin θ), (2.3)
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where the constants k1 and k2 are the linear and nonlinear elastic coefficients, respectively, D,

the Rayleigh dissipation function, is

D =
1

2
cẏ2 +

1

2
K

(
ωs − θ̇

)
, (2.4)

and qi is the generalized coordinate. Applying Lagrange’s equation for the two coordinates

qi = y and qi = θ gives the differential equations of motion

Mÿ +mÿ + cẏ + k1y + k2y
3 = me

(
θ̇2 sin θ − θ̈ cos θ

)
,⎛⎜⎝Imot +me2︸ ︷︷ ︸

Isys

⎞⎟⎠θ̈ +me
(
ÿ cos θ + g cos θ

)
=

1

2

[
∂K

∂θ̇

(
θ̇ −ωs

)
+K

]
.

(2.5)

Equation (2.5) can be rewritten as follows:

ÿ +ω2
0y = ε

[
−2μẏ − αy3 − eθ̈ cos θ

]
+ κ

(
θ̇2 sin θ

)
, (2.6)

θ̈ = ε
[−I cos θ

(
ÿ + g

)
+ E

(
θ̇
)]
, (2.7)

where

I =
(m +M)e

Isys
, κ =

me

m +M
, 2μ =

c

m
, α =

k2

m
,

k1

m +M
= ω2

0,
m

m +M
= ε, E

(
θ̇
)
=

(m +M)L
(
θ̇
)

mIsys
,

L
(
θ̇
)
=

1

2

[
∂K

∂θ̇

(
θ̇ −ωs

)
+K

]
,

(2.8)

where c is the damping coefficient of the vibrating conveyor, g is acceleration due to gravity,

Isys = (Im + IM + Imot) is the total moment of inertia of all the rotating parts in the system, and

ωs is the synchronous angular speed of the induction motor [9]. K is the instantaneous drive

torque available at the shafts. Note that E contains L(θ̇) that is the active torque generated by

the electric circuit of the DC motor, shown in Figure 1.

3. Analytical Solution

Ideal system: if there is no coupling between motion of the rotor and vibrating system and

θ̇ = constant (θ = ωt, θ̈ = 0), (2.6) becomes

ÿ +ω2
0y = ε

[
−2μẏ − αy3

]
+ κω2 sinωt. (3.1)

On the right side of the equation, a function of time is present.
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Figure 1: Vibrating model of the system.

Nonideal system:

θ̈ = ε
[−I cos θ

(
ÿ + g

)
+ E

(
θ̇
)]
,

ÿ +ω2
ny = ε

[
−2μẏ − αy3 − eθ̈ cos θ

]
+ κ

(
θ̇2 sin θ

)
,

(3.2)

where E(θ̇) = Mm(θ̇) − H(θ̇) is the difference between the torque generated by the motor

and the resistance torque. Function E(θ̇) = u1 − u2θ̇ is approximated by a straight line, where

u1 is a control parameter that can be changed according to the voltage, and u2 is a constant

parameter, characteristic for the model of the motor.

We will obtain an approximate analytical solution to (3.2) by using the multiple scales

method:

θ(t, ε) ≈ θ0(T0, T1) + εθ1(T0, T1) + ε2θ2(T0, T1),

y(t, ε) ≈ y0(T0, T1) + εy1(T0, T1) + ε2y2(T0, T1),

Tn = εnt, n = 0, 1, . . . , T0 = t, T1 = εt

(3.3)

where the fast scale T0 = t and slow scale T1 = εt. The time derivatives transform according to

d

dt
=
dT0

dt

∂

∂T0
+
dT1

dt

∂

∂T1
+ · · · = D0 + εD1 + · · ·

d2

dt2
= D2

0 + 2εD0D1 + · · · ,
(3.4)

where Dn = ∂/∂Tn, (n = 0, 1, . . .); then,

θ̇ =
dθ

dt
≈ D0θ0 + ε(D1θ0 +D0θ1) + · · · ,

θ̈ =
d2θ

dt2
≈ D2

0θ0 + ε
(

2D0D1θ0 +D2
0θ1

)
+ · · · ,
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ẏ =
dy

dt
≈ D0y0 + ε

(
D1y0 +D0y1

)
+ · · · ,

ÿ =
d2y

dt2
≈ D2

0y0 + ε
(

2D0D1y0 +D2
0y1

)
+ · · · .

(3.5)

Substituting (3.5) into (3.2), we will obtain

D2
0θ0 = ε

[
−2D0D1θ0 −D2

0θ1 − I cos θ
(
D2

0y0 + g
)
+ E

(
θ̇
)]
,

D2
0y0 + ε

(
2D0D1y0 +D2

0y1

)
+ω2

n

(
y0 + εy1

)
= ε

[
−2μD0y0 − α

(
y0

)3 − eD2
0θ0 cos θ

]
+ κ[D0θ0 + ε(D1θ0 +D0θ1)]

2 sin θ
]
,

(3.6)

and equating coefficients of a like powers ε, we obtain

(i) for ε0

D2
0θ0 = 0,

D2
0y0 +ω2

0y0 = κ(D0θ0)
2 sin θ,

(3.7)

(ii) for ε1

D2
0θ1 = −2D0D1θ0 − I cos θ

(
D2

0y0 + g
)
+ E

(
θ̇
)
, (3.8)

D2
0y1 +ω2

0y1 = −2D0D1y0 − 2μD0y0 − α
(
y0

)3 − eD2
0θ0 cos θ

+ κ 2D0θ0(D1θ0 +D0θ1) sin θ.
(3.9)

The solution of (3.7) can be written as

θ0 = BT0 + σT1, (3.10)

y0 = Λ sin(T0Ω) +A(T1)eiω0T0 +A(T1)e−iω0T0 , (3.11)

where

cos(θ0 + εθ1) = cos(θ0) +O(ε), sin(θ0 + εθ1) = sin(θ0) +O(ε),

Λ =
−κΩ2(

Ω2 −ω2
0

) . (3.12)
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Table 1: Vibrational conveyer parameters in SI units.

ε α μ c I e(m) E1 E0 g ω0 k1 k2 m M

0.05 0.01 0.01 1 0.9 0.2 1.5 1.6 9.81 1 2 000 100 5 200

3.1. Subharmonic Resonances Ω ≈ 3ω0 (Table 1)

Near resonance:

D0θ0 = Ω, (3.13)

Ω = 3ω0 + εσ. (3.14)

The solution of (3.13) can be written as

θ0 = ΩT0 = 3ω0T0 + σT1. (3.15)

Taking

A[T1, T2] =
a[T1]

2
eiβ[T1], (3.16)

where a and β are real, and substituting it into (3.11), we will obtain

y0 =
1

2
e−iT0ω0−iβ(T1)a(T1) +

1

2
eiT0ω0+iβ(T1)a(T1) + Λ sin(T0Ω),

θ1 =
1

8
(
Ω3 −Ωω2

0

)2
e−i(T0ω0+β(T1))

× I
(
− 4Ω2ω2

0a(T1)

×
((

1 + e2i(T0ω0+β(T1))
)(

Ω2 +ω2
0

)
cos(T0Ω) − 2i

(
−1 + e2i(T0ω0+β(T1))

)
Ωω0 sin(T0Ω)

)
−2ei(T0ω0+β(T1))

(
Ω2 −ω2

0

)
cos(T0Ω)

(
−4g +

(
−κΩ2 + Λω2

0

)
sin(T0Ω)

))
,

y1 =
(
e−i(3T0Ω+4T0ω0+3β(T1))

×
(
−8e3iβ(T1)Ω

(
Ω3 + 3Ω2ω0 −Ωω2

0 − 3ω3
0

)
×
(
ieiT0(4Ω+3ω0)ω2

0

(
3αΛ3 + 8iΛμΩ + Iκ2Ω2 − IκΛω2

0

)(
36Ω4 − 13Ω2ω2

0 +ω
4
0

)
+ ieiT0(2Ω+3ω0)ω2

0

(
−3αΛ3 + 8iΛμΩ − Iκ2Ω2 + IκΛω2

0

)(
36Ω4 − 13Ω2ω2

0 +ω
4
0

)
+ 4eiT0(Ω+3ω0)gIκω2

0

(
9Ω4 − 10Ω2ω2

0 +ω
4
0

)
+ 4eiT0(5Ω+3ω0)gIκω2

0
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×
(

9Ω4 − 10Ω2ω2
0 +ω

4
0

)
+ 8e3iT0(Ω+ω0)gIκ

(
36Ω6 − 49Ω4ω2

0 + 14Ω2ω4
0 −ω6

0

)
− ie3iT0(2Ω+ω0)ω2

0

(
4Ω4 − 5Ω2ω2

0 +ω
4
0

)(
αΛ3 + Iκ

(
κΩ2 −Λω2

0

))
−ie3iT0ω0ω2

0

(
4Ω4 − 5Ω2ω2

0 +ω
4
0

)(
−αΛ3 + Iκ

(
−κΩ2 + Λω2

0

)))
+ 2e2iβ(T1)ω2

0

(
36Ω5 + 108Ω4ω2

0 − 39Ω2ω3
0 + Ωω4

0 + 3ω5
0

)
×
(
eiT0(5Ω+2ω0)(Ω +ω0)2

(
2IκΩω2

0 + 3αΛ2(−Ω +ω0)
)

+ ei(T0(Ω+4ω0)+2β(T1))(Ω +ω0)2
(

2IκΩω2
0 + 3αΛ2(−Ω +ω0)

)
+ ei(T0(Ω+2ω0)(Ω −ω0)2

(
2IκΩω2

0 − 3αΛ2(Ω +ω0)
)
+ ei(5T0Ω+4T0ω0+2β(T1))

×(Ω −ω0)2
(

2IκΩω2
0 − 3αΛ2(Ω +ω0)

))
a(T1) + 24iei(T0(2Ω+ω0)+β(T1))α

×ΛΩω2
0

(
−
(
−1 − 2e2i(T0ω0+β(T1)) + 2e2i(T0(Ω+ω0)+β(T1)) + e2i(T0(Ω+2ω0)+2β(T1))

)
Ω

+
(
−1 + 6e2i(T0ω0+β(T1)) − 6e2i(T0(Ω+ω0)+β(T1)) + e2i(T0(Ω+2ω0)+2β(T1))

)
ω0

)
×
(

36Ω6 − 49Ω4ω2
0 + 14Ω2ω4

0 −ω6
0

)
a(T1)2 + e3iT0Ω

(
1 + e6i(T0ω0+β(T1))

)
αΩ

×
(
Ω2 −ω2

0

)2(
36Ω5 + 108Ω4ω0 − 13Ω3ω2

0 − 39Ω2ω2
0 + Ωω4

0 + 3ω5
0

)
a(T1)3

)
× (cos(T0ω0) + i sin(T0ω0)))/

(
64Ω

(
6Ω2 − 5Ωω0 +ω2

0

)
×
(
−Ω2ω0 +ω3

0

)2

×
(

6Ω3 + 23Ω2ω0 + 16Ωω2
0 + 3ω3

0

))
.

(3.17)

Secular terms will be eliminated from the particular solution of (3.8) if we choose A to be a

solution of

−2εσ ′ + E
(
θ̇
)
. (3.18)

In addition to the terms proportional to e(±iω0T0) or proportional to e[±i(Ω−2ω0)T0] there is

another term that produces a secular term in (3.9). We express (Ω − 2ω0)T0 in terms of ω0T0

according to

(Ω − 2ω0)T0 = ω0T0 + εσT0 = ω0T0 + σT1. (3.19)
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Table 2: Vibrational conveyer parameters in SI units.

ε α μ c I e(m) E1 E0 g ω0 k1 k2 m M

0.05 0.01 0.01 1 0.9 0.2 1.5 1.6 9.81 10 200 000 100 5 200

3.2. Superharmonic Resonances Ω ≈ (1/3)ω0 (Table 2)

We consider

3Ω = ω0 + εσ. (3.20)

In addition to the terms proportional to e(±iω0T0) in (3.9), there is another term that

produces a secular term in (3.9). This is −αΛ3e(±3iΩT0). T0 eliminate the secular terms, we

express 3ΩT0 in terms of ω0T0 according to

3ΩT0 = (ω0 + εσ)T0 = ω0T0 + σεT0 = ω0T0 + σT1. (3.21)

Eliminating secular terms in equations, taking (3.16), and separating real and imaginary

parts, the system of equations solved it is as follows [11]:

y0 =
1

2
e−iT0ω0−iβ(T1)a(T1) +

1

2
eiT0ω0+iβ(T1)a(T1) + Λ sin(T0Ω),

θ1 =
1

8(Ω3 −Ωω2
0)

2
e−i(T0ω0+β(T1))

× I
(
−4Ω2ω2

0a(T1)

×
((

1 + e2i(T0ω0+β(T1))
)(

Ω2 +ω2
0

)
cos(T0Ω) − 2i

(
−1 + e2i(T0ω0+β(T1))

)
Ωω0 sin(T0Ω)

)
−2ei(T0ω0+β(T1))

(
Ω2 −ω2

0

)
cos(T0Ω)

(
−4g +

(
−κΩ2 + Λω2

0

)
sin(T0Ω)

))
,

y1 =
(
e−i(2T0Ω+5T0ω0+3β(T1))

×
(
−8e3iβ(T1)Ω

(
Ω4 − 10Ω2ω2

0 + 9ω4
0

)
×
(

4eiT0(4Ω+5ω0)gIκω2
0

(
Ω2 −ω2

0

)
− 4e5iT0ω0gIκω2

0

(
−Ω2 +ω2

0

)
+ ieiT0(3Ω+5ω0)ω2

0

(
4Ω2 −ω2

0

)(
3αΛ3 + 8iΛμΩ + Iκ2Ω2 − IκΛω2

0

)
+ eiT0(Ω+5ω0)ω2

0

(
−4Ω2 +ω2

0

)(
3iαΛ3 + 8ΛμΩ + iIκ2Ω2 − iIκΛω2

0

)
+ 8eiT0(2Ω+5ω0)gIκ

(
4Ω4 − 5Ω4ω2

0 +ω
4
0

))
+ 2e2iβ(T1)ω2

0

(
4Ω4 − 37Ω2ω2

0 + 9ω0

)
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×
(
e4iT0(Ω+ω0)(Ω +ω0)2

(
2IκΩω2

0 + 3αΛ2(−Ω +ω0)
)
+ e2i(3T0ω0+β(T1))(Ω +ω0)2

×
(

2IκΩω2
0 + 3αΛ2(−Ω +ω0) + e4iT0ω0(Ω −ω0)2

(
2IκΩω2

0 − 3αΛ2(Ω +ω0)
)

+ e2i(2T0Ω+3T0ω0+β(T1))(Ω −ω0)2
(

2IκΩω2
0 − 3αΛ2(Ω +ω0)

))
a(T1)

− 24ieiβ(T1)αΛΩω2
0

(
4Ω4 − 5Ω2ω2

0 +ω
4
0

)
×
(

2ei(3T0Ω+5T0ω0+2β(T1))
(
Ω2 − 9ω2

0

)
− 2ei(T0(Ω+5ω0)+2β(T1))

(
Ω2 − 9ω2

0

)
− eiT0(Ω+3ω0)

(
Ω2 − 4Ωω0 + 3ω2

0

)
+ ei(3T0Ω+7T0ω0+4β(T1))

(
Ω2 − 4Ωω0 + 3ω2

0

)
+ e3iT0(Ω+ω0)

(
Ω2 + 4Ωω0 + 3ω2

0

)
− ei(T0(Ω+7ω0)+4β(T1))

×
(
Ω2 + 4Ωω0 + 3ω2

0

))
a(T1)2

+
(
e2iT0(Ω+ω0) + e2i(T0(Ω+4ω0)+3β(T1))

)
αΩ

(
Ω2 −ω2

0

)2

×
(

4Ω4 − 37Ω2ω2
0 + 9ω4

0

)
a(T1)3

))
/

(
64

(
−Ω2ω0+ω3

0

)2(
4Ω5−37Ω3ω2

0+9Ωω4
0

))
.

(3.22)

4. Stability Analysis

We analyzed in this system the stability (a, γ) in the equilibrium point, using (4.1), where F is

the Jacobian matrix of (4.2), and γsub = 3β[T1]−T1σ[T1], γsup = [β[T1]−T1σ[T1]]. Stability of the

approximate solutions depends on the value of the eigenvalues of the Jacobian matrix F [12].
The solutions are unstable if the real part of the eigenvalues is positives Figures 2(a1) and

2(a2). Figure 2 shows the frequency-response curves for the subharmonic and superharmonic

resonance of the unbalanced vibratory conveyor:

a′sub = −μa − 3

8ω0
αΛa2 cos

[
γ
]
,

γ ′sub = −3
(
2IκΩ2ω2

0 + 3αΛ2
(−Ω2 +ω2

0

))
4
(
Ω2 −ω2

0

)
ω0

+
9

8ω0
αa2 − 9

8ω0
αΛa sin

[
γ
] − σ,

a′sub = −μa − 3

8ω0

(
αΛ3 + Iκ

(
κΩ2 −Λω2

0

))
cos

[
γ
]
,

γ ′sub = −
(
2IκΩ2ω2

0 + 3αΛ2
(−Ω2 +ω2

0

))
4
(
Ω2 −ω2

0

)
ω0

+
3αa2

8ω0
+

(
αΛ3 + Iκ

(
κΩ2 −Λω2

0

))
sin

[
γ
]

8ω0a
− σ,

(4.1)

F =
{
∂af1, ∂γf1

}
,
{
∂af2, ∂γf2

}
, f1 = a′, f2 = γ ′. (4.2)
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Figure 2: Subharmonic resonance and superharmonic resonance. (a) Frequency-response curves with
stability, — stable, · · · unstable {(a1) : a = 2.78–10, σ = 0.43258–2.62092 and (a2): a = 2.73–7.21,
σ = 0.6782–0.986448}, (b) effect of detuning parameter, and (c) effect of damping parameter.
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Figure 3: Subharmonic resonance: (a) power spectrum and superharmonic resonance, (b) power spectrum,
(c) phase portrait, and (d) Poincaré sections.

5. Numerical Results

The numerical calculations of the vibrating system are performed with the help of the

software Mathematica [13, 14]. We analyze the subharmonic resonance Ω ≈ 3ω0 and

superharmonic resonance 3Ω ≈ ω0. Figure 3 shows the power spectrum, phase portrait and

the Poincaré map for superharmonic resonance and Figure 3 shows the power spectrum for

superharmonic resonance.

6. Conclusions

The vibrating system is analyzed, analytically, and numerically for superharmonic and

subharmonic resonance by the method of multiple scales. Very often in the motion of the

system near resonance the jump phenomenon occurs. The frequency-response curves of the

subharmonic resonance consist of two branches; the left one is stable and the right one is

unstable (saddle node bifurcation). The frequency-response curves of the superharmonic

resonance consist of three branches; the left one is stable, the middle one is unstable, and

the right one is stable (pitchfork bifurcation). The stable motions of the oscillator are shown
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with one peaks in the power spectrum for superharmonic resonance and with two peaks in

the power spectrum for subharmonic resonance. Both analytical and numerical results that

we have obtained are in good agreement. The system studied here exhibits chaotic behaviour

in case of strong nonlinearity. This will be reported in the forthcoming paper. Furthermore,

control methods in the passage through resonance await for future publication.
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Digital watermarking is a good tool for healthcare information management systems. The well-
known quantization-index-modulation- (QIM-) based watermarking has its limitations as the host
image will be destroyed; however, the recovery of medical image is essential to avoid misdiagnosis.
A transparent yet reversible watermarking algorithm is required for medical image applications.
In this paper, we propose a fractional-discrete-cosine-transform- (FDCT-) based watermarking to
exactly reconstruct the host image. Experimental results show that the FDCT-based watermarking
is preferable to the QIM-based watermarking for the medical image applications.

1. Introduction

In the healthcare information systems nowadays, one of the major challenges is a lack

of complete access to patients’ health information. Ideally, a comprehensive healthcare

information system will provide the medical records including health insurance carriers,

which are important for clinical decision making. There is sure to be a risk of misdiagnosis,

delay of diagnosis, and improper treatments in case of insufficient medical information

available [1].
Digital watermarking, which is a technique to embed imperceptible, important data

called watermark into the host image, has been applied to the healthcare information
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management systems [2–6]. However, it might cause the distortion problem regarding the

recovery of the original host image. In order to protect the host image from being distorted,

digital watermarking with legal and ethical functionalities is desirable especially for the

medical images applications [7–10]. Specifically, any confidential data such as patients’

diagnosis reports can be used as watermark and then embedded in the host image by using

digital watermarking with an authorized utilization. Thus, digital watermarking can be used

to facilitate healthcare information management systems.

Discrete cosine transform (DCT) has been adopted in various international standards,

for example, JPEG, MPEG, and H.264 [11]. The miscellaneous DCT algorithms and

architectures have been proposed [12–15]. The fractional discrete cosine transform (FDCT)
[16, 17], which is a generalized DCT, is yet more applicable in the digital signal processing

applications. In this paper, we propose a novel algorithm called the fractional-discrete-

cosine-transform (FDCT-) based watermarking for the healthcare information management

applications. In addition, the advantage of FDCT is to take account of the phenomena

of image processing [18, 19], which is fundamental in nonlinear time series [20, 21] and

fractal time series [22–25]. The remainder of the paper proceeds as follows. In Section 2, the

type I fractional discrete cosine transform is reviewed. Section 3 describes the half discrete

cosine transform. The proposed FDCT-based watermarking and experimental results on

various medical images are presented in Section 4. The architecture of the half-DCT-based

watermarking processor implemented by using FPGA (field programmable gate array) is

given in Section 5. The conclusion can be found in Section 4.

2. Review of Type I Fractional Discrete Cosine Transform

For the sake of simplicity, let us take the 8-point, type I forward DCT as an example. The

corresponding matrix can be expressed as follows [16, 17]

C =

∥∥∥∥∥∥
√

2

8 − 1

[
kmkn cos

(
mnπ

8 − 1

)]∥∥∥∥∥∥, (2.1)

where

km =

⎧⎨⎩
1√
2
, m = 1, m = 8,

1, 1 < m < 8,

kn =

⎧⎨⎩
1√
2
, n = 1, n = 8,

1, 1 < n < 8,

m = 1, 2, 3, . . . , 8, n = 1, 2, 3, . . . , 8.

(2.2)

It can be diagonalized by

C = UΛUT , (2.3)
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where U is an orthonormal matrix obtained from the eigenvectors of C, which is given by

U =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.0854 −0.3941 −0.2698 0.3618 −0.4605 −0.2208 0.5689 −0.2216

−0.0279 −0.0878 0.2942 −0.4052 −0.4381 0.3122 0.3273 0.5868

0.0859 0.6984 −0.2412 0.0788 −0.5416 −0.3122 −0.1721 0.1418

0.3807 0.4165 0.4627 0.3663 0.0691 0.3122 0.4141 −0.2442

−0.0454 0.3022 −0.2725 −0.4071 0.4507 −0.3122 0.6014 0.0658

−0.4867 0.1983 0.0220 −0.4048 −0.2402 0.3122 0.0113 −0.6537

0.6633 −0.2123 0.1550 −0.4814 −0.1927 −0.3122 −0.0790 −0.3440

−0.4010 0.0090 0.6852 0.0568 0 −0.6053 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (2.4)

Λ is a diagonal matrix composed of the corresponding eigenvalues, which is given by

Λ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 0 0 0 0 0 0

0 −1 0 0 0 0 0 0

0 0 −1 0 0 0 0 0

0 0 0 −1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (2.5)

and UT is the transpose matrix of U. Based on (2.3), the square of the DCT matrix can be

written as

C2 = C · C = UΛUTUΛUT = UΛ2UT . (2.6)

Similarly, we have

Cα = UΛαUT , (2.7)
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where

Λα =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λa1 0 0 0 0 0 0 0

0 λa2 0 0 0 0 0 0

0 0 λa3 0 0 0 0 0

0 0 0 λa4 0 0 0 0

0 0 0 0 λa5 0 0 0

0 0 0 0 0 λa6 0 0

0 0 0 0 0 0 λa7 0

0 0 0 0 0 0 0 λa8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (2.8)

α is a real fraction, λan = ej(θn+2πqn)a, n = 1, 2, 3, . . . , 8, θ1, θ2, θ3, θ4 = π and θ5, θ6, θ7, θ8 = 0, qn is

an element of generating sequence (GS) q = (q1, q2, . . . , q8), and qn is an integer for 0 ≤ qn ≤ 7.

3. Half Discrete Cosine Transform

The half-DCT, that is, the FDCT with α = 1/2 is obtained by

√
C = UΛ1/2UT , (3.1)

where

Λ1/2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

j 0 0 0 0 0 0 0

0 j 0 0 0 0 0 0

0 0 j 0 0 0 0 0

0 0 0 j 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.2)

The matrix z, obtained by combining the 8-point half-DCT of x and y is defined as

z = C1x − C1y = C1x + C2y, (3.3)

where

C1 = UΛ1/2UT ,

C2 = −C1 = −UΛ(1/2)UT .
(3.4)
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U is the orthonormal matrix given by

U = [u1,u2, . . . ,un],

umuTn =

⎧⎨⎩1, m = n,

0, m/=n.

(3.5)

Let Un be defined as

Un = unuTn (3.6)

we have

UmUn =
(
umuTm

)(
unuTn

)
=

⎧⎨⎩Un = unuTn, m = n

0, m/=n.
(3.7)

It is noted that C1 and C2 can be rewritten as

C1 = UΛ1/2UT = CR + jCI ,

C2 = −UΛ1/2UT = CI + jCR,
(3.8)

where

CR = U1 +U2 +U3 +U4, (3.9)

CI = U5 +U6 +U7 +U8. (3.10)

According to (3.7), (3.9) and (3.10) we have

CRCR = CR,

CICI = CI ,

CRCI = 0,

CICR = 0,

CR + CI = I,

CI − CR = −(U1 +U2 +U3 +U4) + (U5 +U6 +U7 +U8) = C.

(3.11)

From (3.11), we have

z =
(
CR + jCI

)
x +

(
CI + jCR

)
y. (3.12)
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QIMSecret key encoder

q

W QV

V

S

K

Figure 1: The conventional QIM-based watermarking (W: the watermark, K: the secret key, S: the coded
watermark, q: the quantization step, V: the host image, and QV: the watermarked image).

Assume that

y = x + y′,

z =
(
CR + jCI

)
x +

(
CI + jCR

)(
x + y′

)
=

(
CR + CI + jCR + jCI

)
x +

(
CI + jCR

)
y′

= x + CIy′ + j
(
x + CRy′

)
.

(3.13)

Thus, x and y can be obtained from z as follows:

Re{z} − Im{z} = (
x + CIy′

) − (
x + CRy′

)
= (CI − CR)y = C · y′,

y′ = C−1 · (Re{z} − Im{z}),
x = Re{z} − CIy′,

x = Im{z} − CRy′,

y = x + y′.

(3.14)

4. The Proposed Fractional-Discrete-Cosine-Transform-Based
Watermarking

Both transparency and recovery of the host image are required for the medical applications.

As the conventional quantization-index-modulation- (QIM-) [26] based watermarking is

irreversible, we propose a novel FDCT- based algorithm for reversible watermarking.

4.1. Quantization Index Modulation

Figure 1 depicts the conventional QIM-based watermarking [26]. In which, W,K,S,V,

and QV denote the watermark, the secret key, the coded watermark, the host image,

and the watermarked image, respectively. For the sake of simplicity, let us consider the

monochromatic images with 256 grey levels, and the size of the watermark is one-fourth
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Figure 2: The secret key K used for mapping the watermark onto the host image.
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Figure 3: Operations of the QIM scheme for the coded watermark pixels being (a) bit 1 and (b) bit 0,
respectively.

of that of the host image. The secret key is used to map the binary representation of the

watermark onto the host image, for example, Figure 2 depicts the binary representation of a

watermark pixel that is mapped onto a 4 × 4 segment using a given secret key.

Figure 3 shows the operation of the QIM block, in which the grey levels of the host

image, V, ranging between 2c · q and (2c + 1) · q will be quantized into (2c + 1) · q if the

corresponding pixels of the coded watermark, S, are bit 1; otherwise they are quantized into

2c · q if the corresponding pixels are bit 0. For the grey levels of V that are between (2c + 1) · q
and (2c + 2) · q, they will be quantized into (2c + 1) · q or (2c + 2) · q depending on the

corresponding pixels of S being bit 1 or 0, respectively. Note that q denotes the quantization

step, 0 ≤ c < 255/(2 · q), and c is an integer number.

It is noted that the watermarked image, QV, can be written as

QV
(
i, j

)
=

⎧⎨⎩(2c + 1)q if V
(
i, j

) ∈ (
(2c + 0.5)q, (2c + 1.5)q

]
, S

(
i, j

)
= 1,

(2c)q if V
(
i, j

) ∈ (
(2c − 0.5)q, (2c + 0.5)q

]
, S

(
i, j

)
= 0,

(4.1)

where (i, j) denotes the position index of pixels, and the coded watermark, S, can be obtained

by

S
(
i, j

)
=

⎧⎨⎩1 if QV
(
i, j

) ∈ (
(2d + 0.5)q, (2d + 1.5)q

]
,

0 otherwise
(4.2)
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Figure 4: Operations of the inverse QIM scheme for the coded watermark pixels.

q

Inverse QIM Secret key decoder WQV
S

K

Figure 5: Extraction of the watermark, W, from the watermarked image, QV, based on the conventional
QIM scheme.

as shown in Figure 4. Together with the secret key, K, the watermark, W, can be exactly

extracted from the watermarked image, QV, as shown in Figure 5.

4.2. Proposed FDCT-Based Watermarking

According to (3.12), the half-DCT can be used to combine two real valued signals into a

single, complex-valued signal. Let x and y in (3.12) be the host image and the watermark,

respectively, and z the watermarked image. The watermark and host image can be extracted

from z by using (3.14). Figure 6 depicts the proposed FDCT-based watermarking, where

W,V,S,QV,HVR, and HVI are the watermark, the host image, the secret key, the QIM

watermarked image, and the watermarked images, R and I, respectively. According to (3.12),
the half-DCT consists of two matrix multiplications as shown in Figure 7, where CR and CI

are the half-DCT coefficient matrices for (3.9) and (3.10), respectively.

The original host image, V, and watermark, W, can be exactly reconstructed from

the watermarked images: HVR and HVI as shown in Figures 8 and 9, where CI is the

corresponding half-DCT matrix and C−1 is the inverse DCT matrix.

4.3. Experimental Results on Medical Images

The proposed FDCT-based watermarking algorithm has been evaluated on various medical

images. Figure 10 shows the test 256 × 256 images with 256 grey levels, namely, spine,

chest, fetus and head obtained by magnetic resonance image (MRI), X-ray, ultrasound, and

computed tomography (CT), respectively, which are used as host images. Figure 11 shows

the 64 × 64 Lena image used as watermark with 256 grey levels.

The peak signal-to-noise ratio (PSNR) is used to evaluate the image quality [4, 8, 26],
which is defined as

PSNR = 20 log

(
255√
MSE

)
, (4.3)
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Figure 6: The proposed FDCT-based watermarking (W: the watermark, V: the host image, S: the secret
key, QV: the QIM watermarked image, and HVR and HVI : the watermarked images, R and I, resp.).
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Figure 7: Data flow of the half-DCT operation (V: the host image, QV: the QIM watermarked images, HVR

and HVI : the watermarked image for real R and imaginary I, and CR and CI : the corresponding half-DCT
matrices.).
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Figure 8: The proposed inverse FDCT-based watermarking for image extraction.
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Figure 9: Data flow of the inverse half-DCT operation (CI : the corresponding half-DCT matrix and C−1:
the inverse DCT matrix).

(a) (b) (c) (d)

Figure 10: The 256 × 256 host images with 256 grey levels: (a) spine (MRI), (b) chest (X-ray), (c) fetus
(ultrasonic), and (d) head (CT).

Figure 11: The 64 × 64 Lena image with 256 grey levels used as watermarks.
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Figure 12: The PSNR of the watermarked image of the spine (MRI) at various QIM quantization steps.

where MSE denotes the mean square error. Figures 12, 13, 14, and 15 show the PSNR of the

QIM watermarked image and FDCT watermarked images R and I of spine (MRI), chest (X-

ray), fetus (ultrasonic), and head (CT) at various QIM quantization steps q. Figure 16 shows

the QIM watermarked images (first row), the FDCT watermarked images, R (second row)
and I (third row), and two extracted watermarks from the R and I watermarked images

(fourth row) with QIM quantization step q = 5. It is noted that the FDCT watermarked images

are more transparent than conventional QIM watermarked images, and the block effect of the
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Figure 13: The PSNR of the watermarked image of the chest (X-ray) at various QIM quantization steps.
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Figure 14: The PSNR of the watermarked image of the fetus (ultrasonic) at various QIM quantization steps.

Table 1: Comparison between this work and the related watermarking algorithms.

Items
Methods

Conventional QIM [26] Nested QIM [8] FDCT Watermarking

Watermarked image transparency Poor Good Better

Reversible watermarking No Yes Yes

Block effect Yes Yes No

FDCT-based watermarking is eliminated. Table 1 shows the comparison between this work

and the related watermarking algorithms [8, 26].
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Figure 15: The PSNR of the watermarked image of the head (CT) at various QIM quantization steps.

Figure 16: The QIM watermarked images (first row) and the FDCT watermarked images, R (second row)
and I (third row), and two extracted watermarks: left one and right one (fourth row) are extracted from
the R and I watermarked image, respectively, with QIM quantization step q = 5.
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Figure 17: The architecture of the proposed 8-point half-DCT processor.
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Figure 18: The matrix operation block in the proposed 8-point half-DCT and inverse half-DCT processor.
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5. FPGA Implementation of Half-DCT-Based Watermarking Processor

According to the data flow of the half-DCT shown in Figure 7, the architecture of the

proposed 8-point half-DCT processor is shown in Figure 17. In which, the matrix operation

block performs the matrix-vector multiplications of CR ·V, CI ·V, CR ·QV and CI ·QV shown

in Figure 18, and the latch and CLA perform the addition operations of CR ·V + CI ·QV and

CI ·V + CR ·QV.

According to the data flow of the inverse half-DCT shown in Figure 9, the architecture

of the proposed 8-point inverse half-DCT processor is shown in Figure 19. In which, the

matrix operation block performs the matrix-vector multiplications of C−1 · (HVR −HVI) and

CI · (C−1 · (HVR − HVI)). In the proposed 8-point inverse half-DCT processor as shown in

Figure 19, the latch array storing data for matrix operation is shown in Figure 20.

The platform for architecture development and verification has been designed as

well as implemented in order to evaluate the development cost. The architecture has been

implemented on the Xilinx FPGA emulation board [27]. The Xilinx Spartan-3 FPGA has been
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Figure 21: Block diagram and circuit board of the architecture development and verification platform for
half-DCT-based watermarking processor.

integrated with the microcontroller (MCU) and I/O interface circuit (USB 2.0) to form the

architecture development and verification platform. Figure 21 depicts block diagram and

circuit board of the architecture development and evaluation platform, which can perform

the prototype of special processor for half-DCT-based watermarking. In the architecture

development and evaluation platform, the microcontroller reads data and commands from

PC and writes the results back to PC by USB 2.0; the Xilinx Spartan-3 FPGA implements

the proposed half-DCT processor. The hardware code written in Verilog is for PC with

the ModelSim simulation tool [28] and Xilinx ISE smart compiler [29]. It is noted that the

throughput can be improved by using the proposed architecture while the computation

accuracy is the same as that obtained by using Matlab technical computing tool [30] with

the same word length. Thus, the proposed programmable half-DCT architecture is able

to improve the power consumption and computation speed significantly. Moreover, the

reusable intellectual property (IP) 8 × 8 half-DCT/IDCT core has also been implemented

in Verilog hardware description language [31] for the hardware realization. All the control

signals are internally generated on-chip. The proposed half-DCT processor provides both

high throughput and low gate count.

6. Conclusion

In this paper, a novel algorithm called the FDCT-based reversible watermarking has been

proposed for medical image watermarking. The transparency of the watermarked image

can be increased by taking advantage of the proposed watermarking. As the host image

can be exactly reconstructed, it is suitable especially for the medical image applications. In

addition, the elimination of block effect avoids detecting QIM coded watermarked image.

Thus, the FDCT-based reversible watermarking is preferable to facilitate data management

in healthcare information management systems.
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This paper gives a novel traffic feature for identifying abnormal variation of traffic under DDOS
flood attacks. It is the histogram of the maxima of the bounded traffic rate on an interval-by-
interval basis. We use it to experiment on the traffic data provided by MIT Lincoln Laboratory
under Defense Advanced Research Projects Agency (DARPA) in 1999. The experimental results
profitably enhance the evidences that traffic rate under DDOS attacks is statistically higher than
that of normal traffic considerably. They show that the pattern of the histogram of the maxima of
bounded rate of attack-contained traffic greatly differs from that of attack-free traffic. Besides, the
present traffic feature is simple in mathematics and easy to use in practice.

1. Introduction

People nowadays are heavily dependent on the Internet that serves as an infrastructure in the

modern society. However, distributed denial-of-service (DDOS) flood attackers remain great

threats to it. By consuming resources of an attacked site, the victim may be overwhelmed such

that it denies services it should offer or its service performances are significantly degraded.

Therefore, intrusion detection system (ISD) for detecting DDOS flood attacks has been greatly

desired.

There are two categories regarding IDSs. One is misuse detection and the other

anomaly detection. Attacking alerts given by misuse detection is primarily based on a library

of known signatures to match against network traffic, see, for example, [1–5]. Thus, attacking
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Figure 1: Time series: OM-W1-1-1999AF for the first 1024 points.
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Figure 2: Traffic upper bound of OM-W1-1-1999AF for 0 ≤ I ≤ 63.

with unknown signatures from new variants of an attack can escape from being detected by

signature-based IDSs with the probability one, see, for example, [6], making such a category

of IDSs at the protected site irrelevant. However, based on anomaly detection, abnormal

variations of traffic are identified as potential intrusion so that this category of IDSs are

particularly paid attention to for identifying new attacking, see, for example, [7–13]. For the

simplicity, in what follows, the term IDS is in the sense of anomaly detection.

Noted that the detection accuracy is a key issue of an anomaly detector, see, for

example, [14, 15]. To be effective, IDSs require appropriate features for accurately detecting

an attack and distinguishing it from the normal activity as can be seen from [10, Section IV].
Hence, developing new traffic features for anomaly detection is essential.

The reference papers regarding traffic features for IDS use are wealthy. For example,

86 features for clustering normal activities are discussed in [9]. Note that a selected feature is

methodology-dependent. In this regard, [16] uses packet head data. The paper [17] utilizes

autocorrelation function of long-range dependent (LRD) traffic time series in packet size and

[18] employs the Hurst parameter. Scherrer et al. adopt scaling properties of LRD traffic [19].
The traffic models used in [17–23] are in the sense of fractal. In general, fractal models

might be somewhat complicated in practical application in engineering in comparison with

the traffic feature proposed in this paper.
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Figure 3: Traffic rate bound of OM-W1-1-1999AF for 0 ≤ I ≤ 63.
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Recall that there are two categories in traffic modeling [24, Section XIV]. One is

statistical modeling (e.g., LRD processes). The other bounded modeling, which has particular

applications to modeling traffic at connection level, see, for example, [25–30]. Bounded

models, in conjunction with a class of service disciplines, are feasible and relatively efficient

in applications, such as connection admission control (CAC) in guaranteed quality-of-service

(QoS). In addition, such models are simple in mathematics and relatively easy to be used in

practice in comparison with fractal models. This paper aims at providing a new traffic feature

for anomaly detection based on bounded modeling of traffic. The main contributions in this

paper are as follows.

(i) We present the histogram of the maxima of bounded traffic rate on an interval-by-

interval basis as a traffic feature for exhibiting abnormal variation of traffic under

DDOS flood attacks.

(ii) The experimental results exhibit that the maxima of rate bound of attack-contained

traffic is statistically greater than that of attack-free traffic drastically.

The rest of paper is organized as follows. Experimental data and related work

are briefed in Section 2. The histogram of the maxima of traffic rate bound is proposed
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Figure 5: Traffic rate bound series for OM-W1-1-1999AF.
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Figure 6: Traffic rate bound series. Solid lines for attack-free traffic OM-W1-1-1999AF. Dot lines for attack-
contained traffic OM-W1-1-1999AC.

in Section 3. Experimental results are demonstrated in Section 4, which is followed by

discussions and conclusions.

2. Experimental Data and Related Work

2.1. Experimental Data

While DDOS attacks continue to be a problem, there is currently not much quantitative

data available for researchers to study the behaviors of DDOS flood attacks. The data in the

1998-1999 DARPA (http://www.ll.mit.edu/IST/ideval) are valuable but rare for public use

though there are points worth further discussion [31]. Those data were obtained under the

conditions of realistic background traffic and mean examples of realistic attacks [32, 33]. The

used data sets in 1999 contain more than 200 instances and 58 attacks types, see, for details

[34]. Two data sets are explained below.

2.1.1. Set One: Attack-Free Traffic (1999 Training Data—Week 1)

The first set of data containing 5 traces. We name them by OM-W1-i-1999AF (i = 1, 2, 3, 4, 5),
meaning Outside-MIT-week1-i-1999-attack-free. Table 1 indicates the actual times at which

the first packet and last one were extracted for each trace.
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Figure 7: Maxima of traffic rate bound. (a) Maxima of GAMA(I, n) for OM-W1-1-1999AF. (b) Maxima of
GAMA(I, n) for OM-W2-1-1999AC.

Table 1: Data set for attack-free traffic.

First Packet Time Last Packet Time Trace Name

Mon Mar 1 08:00:02 Tue Mar 2 06:00:02 OM-W1-1-1999AF

Tue Mar 2 08:00:02 Wed Mar 3 06:00:01 OM-W1-2-1999AF

Wed Mar 3 08:00:03 Thu Mar 4 06:00:01 OM-W1-3-1999AF

Thu Mar 4 08:00:03 Fri Mar 5 06:00:02 OM-W1-4-1999AF

Fri Mar 5 08:00:02 Sat Mar 6 06:00:02 OM-W1-5-1999AF

2.1.2. Set Two: Attack-Contained Traffic (1999 Training Data—Week 2)

Five traces are included in the second data set. They are named as OM-W2-i-1999AC (i = 1, 2,

3, 4, 5), implying Outside-MIT-week2-i-1999-attack contained. The actual times at which the

first packet and last one were extracted for each trace are listed in Table 2.

2.2. Traffic Rate under DDOS Flood Attacks

Roughly, high rate is the radical feature of attack-contained traffic. The paper [35] reported

the real events in 2000. He noticed that “the attacks inundated servers with 1 gigabit per

second of incoming data, which is much more traffic than they were built to handle [35, page

12].” The analysis given by Moore et al. says that “to load the network, an attacker generally

sends small packets as rapidly as possible since most network devices (both routers and

NICs) are limited not by bandwidth but by packet processing rate [36, Section 2.1].” They

infer that traffic rate is usually the best measure of network load during an attack. In short,

computer scientists consider high rate as a basic feature of attack-contained traffic, also see,

for example, [37–42]. The experimental results in this paper are simply for the data of the

1999 DARPA in the case of high-rate attacks.
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Figure 8: Histograms. (a) Hist[MGAMA F(n)] of OM-W1-1-1999AF. (b) Hist[MGAMA C(n)] of OM-W1-
1-1999CF. (c) Comparison: Corr FC = 0.01751.

Table 2: Data set for attack-contained traffic.

First Packet Time Last Packet Time Trace Name

Mon Mar 8 08:00:01 Tue Mar 9 06:00:49 OM-W2-1-1999AC

Tue Mar 9 08:00:01 Wed Mar 10 06:00:59 OM-W2-2-1999AC

Wed Mar 10 08:00:03 Thu Mar 11 06:00:01 OM-W2-3-1999AC

Thu Mar 11 08:00:03 Fri Mar 12 06:00:00 OM-W2-4-1999AC

Fri Mar 12 08:00:02 Sat Mar 13 06:00:00 OM-W2-5-1999AC

2.3. Traffic Bounds

In this subsection, we brief the deterministic bounds for accumulated traffic and traffic rate

with the help of demonstrations using traffic traces OM-W1-1-1999AF and OM-W1-1-1999CF.
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Figure 9: Time series of traffic traces. (a) The first 1024 points of OM-W1-2-1999AF. (b) The first 1024 points
of OM-W2-2-1999AC.
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Figure 10: Series of traffic rate bound. (a) For OM-W1-2-1999AF. (b) For OM-W2-2-1999AC.

Let x(ti) be the series, indicating the number of bytes in the ith packet (i = 0, 1, . . .)
of arrival traffic at time ti. Then, x(i) is a discrete series, indicating the number of bytes in the

ith packet of arrival traffic. Figure 1 shows a plot of x(i) for the first 1024 points of OM-W1-

1-1999AF.

According to [27, 43], an upper bound of arrival traffic x(i) is given below.

Definition 2.1. Let x(i) be the arrival traffic function. Then,

F(I) = max
i≥0

[x(i + I) − x(i)], for i > 0, I > 0, (2.1)

is called traffic upper bound of x(i) over the duration of length I.
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Figure 11: Series of the maxima of traffic rate bound. (a) For OM-W1-2-1999AF. (b) For OM-W2-2-1999AC.

Note 1. The physical meaning of F(I) is that the accumulated amount of arrival traffic x(i)
over the duration of length I is upper bounded by F(I). The unit of F(I) is bytes. F(I) is an

increasing function in terms of I. Figure 2 indicates F(I) of OM-W1-1-1999AF for 0 ≤ I ≤ 63.

Definition 2.2. Let x(i) be the arrival traffic function. Then,

GAMA(I) =
F(I)
I

=
maxi≥0[x(i + I) − x(i)]

I
, for i > 0, I > 0, (2.2)

is called upper bound of traffic rate (traffic rate bound for short) of x(i).

Note 2. Equation (2.2) specifies that GAMA(I) is the maximum arrival rate at a specific point

in the network over any duration of length I. The unit of GAMA(I) is defined as Bytes per

I. GAMA(I) is a decreasing function in terms of I. Figure 3 demonstrates GAMA(I) of OM-

W1-1-1999AF for 0 ≤ I ≤ 63.

3. Histogram of Maxima of Traffic Rate Bound: A Feature for
Identifying Abnormal Variation of Traffic under DDOS Attacks

In this section, we first introduce the time series of traffic rate bound. Then, we establish

the maxima of traffic rate bound. Finally, we achieve the histogram of the maxima of traffic

rate bound. The demonstrations with the experimental data are used for facilitating the

discussions.
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Figure 12: Histograms of the maxima of traffic rate bound. (a) For OM-W1-2-1999AF. (b) For OM-W2-2-
1999AC. (c) Comparison: Corr FC = 0.163261.

3.1. Traffic Bound Series

Theoretically, I can be any positively real number. In practice, however, I is selected as a finite

positive integer. Fix the value of I and observe traffic bounds in the interval ((n−1)I, nI), n =
1, 2, . . . ,N. Then, we express traffic bounds as a function in terms of the interval index n.

Considering the index n, we express traffic upper bound by F(I, n), which is a series.

Note that x(i) is a stochastic series and so is F(I, n). That is, F(I,m)/=F(I, n) for m/=n.

We term F(I, n) traffic upper bound series. Similarly, we use GAMA(I, n) to represent traffic

rate bound series. Figure 4 shows the traffic upper bound series. Figure 5 plots the rate bound

series.

Since GAMA(I, n) is random, identification in a single interval is not enough. We use

Figure 6 to explain this point of view. From Figure 6, we see that the rate bound of attack-

contained traffic is greater than that of attack-free traffic in some intervals, for example, in

the second and third intervals. However, it is less than the rate bound of attack-free traffic
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Figure 13: Time series of traffic traces. (a) The first 1024 points of OM-W1-3-1999AF. (b) The first 1024
points of OM-W2-3-1999AC.
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Figure 14: Series of traffic rate bound. (a) For OM-W1-3-1999AF. (b) For OM-W2-3-1999AC.

in some intervals, for example, in the first and fourth intervals. Therefore, we will study the

issue how the bound series of traffic rate statistically varies under DDOS flood attacks. For

this reason, we study the maxima of traffic rate bound.

3.2. Maxima of Traffic Rate Bound

Denote that

MGAMA(n) = Max[GAMA(I, n)], (3.1)
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Figure 15: Series of the maxima of traffic rate bound. (a) Maxima of GAMA(I, n) for OM-W1-3-1999AF.
(b) Maxima of GAMA(I, n) for OM-W2-3-1999AC.

over the index I in each interval [(n − 1)I, nI]. Then, MGAMA(n) represents a series to

describe the maximum value of GAMA(I, n) in each interval [(n − 1)I, nI]. In other words,

MGAMA(n) stands for the maxima of GAMA(I, n). The unit of MGAMA(n) is the same

as that of GAMA(I, n). Here and below, we use the notation MGAMA F(n) for attack-

free traffic and MGAMA C(n) for attack-contained traffic. Figures 7(a) and 7(b) give the

plots of MGAMA F(n) and MGAMA C(n) for OM-W1-1-1999AF and OM-W2-1-1999AC,

respectively.

3.3. Histogram of Maxima

Denote Hist[MGAMA F(n)] and Hist[MGAMA C(n)] as the histograms of MGAMA F(n)
and MGAMA C(n), respectively. Then, they represent empirical distributions of

MGAMA F(n) and MGAMA C(n). Figures 8(a) and 8(b) indicate the Hist[MGAMA F(n)]
and Hist[MGAMA C(n)] for OM-W1-1-1999AF and OM-W1-1-1999CF, respectively. From

Figure 8(c), we see that the pattern of Hist[MGAMA F(n)] considerably differs from that of

Hist[MGAMA C(n)]. To investigate this phenomenon quantitatively, we need a measure to

describe the similarity or dissimilarity between the pattern of Hist[MGAMA F(n)] and that

of Hist[MGAMA C(n)], which will be explained in the next subsection.

3.4. Correlation Coefficient Used as a Similarity Measure for
Pattern Matching

There are many measures to characterize the similarity or the dissimilarity of two patterns

in the field of pattern matching, see, for example, [44, 45]. Among them, the correlation



12 Mathematical Problems in Engineering

0 375 750 1125 1500
0

0.5

1

Attack free

MGAMA F(n) (bytes per I)

H
is

t[
M

G
A

M
A

F
(n
)]

(a)

0 375 750 1125 1500
0

0.5

1

Attack contained

MGAMA C(n) (bytes per I)

H
is

t[
M

G
A

M
A

C
(n
)]

(b)

0 375 750 1125 1500
0

0.5

1

Attack free

Attack contained

MGAMA(n) (bytes per I)

H
is

t[
M

G
A

M
A
(n
)]

(c)

Figure 16: Histograms of the maxima of traffic rate bound. (a) For OM-W1-3-1999AF. (b) For OM-W2-3-
1999AC. (c) Comparison: Corr FC = 0.045515.

coefficient between two patterns is commonly used in engineering, see, for example, [46].
We use it to measure the pattern similarity in this research. Denote that

CorrFC = corr Hist MGAMAF(n) , Hist MGAMAC(n) , (3.2)

where corr implies the correlation operation.

It is known that 0 ≤ Corr FC ≤ 1. The larger the value of Corr FC the more

similar between the pattern of Hist[MGAMA F(n)] and that of Hist[MGAMA C(n)].
Mathematically, the case of Corr FC = 1 implies that the pattern of Hist[MGAMA F(n)] is

exactly the same as that of Hist[MGAMA C(n)]. On the contrary, Corr FC = 0 means that

the pattern of Hist[MGAMA F(n)] is totally different from that of MGAMA C(n)]. From the

point of view of engineering, however, the extreme case of either Corr FC = 1 or Corr FC = 0

does not make much sense due to errors and uncertainties in measurement and digital
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Figure 17: Time series of traffic traces. (a) The first 1024 points of OM-W1-4-1999AF. (b) The first 1024
points of OM-W2-4-1999AC.
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Figure 18: Series of traffic rate bound. (a) For OM-W1-4-1999AF. (b) For OM-W2-4-1999AC.

computation. In practical terms, one uses a threshold for Corr FC to evaluate the similarity

between two. The concrete value of the threshold depends on the requirement designed by

researchers that but it is quite common to take 0.7 as the smallest value of the threshold for the

pattern patching purpose. Suppose that we consider 0.8 as the threshold value. Then, we say

that the pattern of Hist[MGAMA F(n)] is similar to that of Hist[MGAMA C(n)] if Corr FC

≥ 0.8 and dissimilar otherwise.

By computing, we obtain Corr FC = 0.01751 for OM-W1-1-1999AF and OM-W2-

1-1999CF, implying the pattern of Hist[MGAMA F(n)] considerably differs from that of

Hist[MGAMA C(n)] as indicated in Figure 8(c). We will further demonstrate this interesting

phenomenon in the next section.
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Figure 19: Series of the maxima of traffic rate bound. (a) Maxima of GAMA(I, n) for OM-W1-4-1999AF.
(b) Maxima of GAMA(I, n) for OM-W2-4-1999AC.

4. Experimental Results

The value of Corr FC for OM-W1-1-1999AF and OM-W2-1-1999CF has been mentioned

above. In this section, we illustrate experimental results describing Corr FC for OM-W1-2-

1999AF and OM-W2-2-1999CF. The plots to illustrate Corr FC for OM-W1-3-1999AF and OM-

W2-3-1999CF, OM-W1-4-1999AF and OM-W2-4-1999CF, OM-W1-5-1999AF and OM-W2-5-

1999CF and are listed in the appendices.

Figures 9(a) and 9(b) are the plots of the first 1024 points of OM-W1-2-1999AF

and OM-W2-2-1999CF, respectively. Figures 10(a) and 10(b) indicate the series of traffic

rate bound for OM-W1-2-1999AF and OM-W2-2-1999CF for n = 0, 1, . . . , 16 with I = 64,

respectively. Figures 11(a) and 11(b) demonstrate the maxima of rate bound for both traffic

traces for n = 0, 1, . . . , 128. Figures 12(a) and 12(b) show the histograms of the maxima

of traffic rate bound for both traces. Figure 12(c) gives the comparison between two. By

computation, we have Corr FC = 0.163261, meaning that the pattern of Hist[MGAMA F(n)]
considerably differs from that of Hist[MGAMA C(n)] for OM-W1-2-1999AF and OM-W2-2-

1999AC.

Note that the values of Corr FC for other three pairs of test traces, see Figures 16(c),
20(c), and 24(c), also exhibit that the pattern of Hist[MGAMA F(n)] is noticeably different

from that of Hist[MGAMA C(n)]. We summarize the values of Corr FC of all five pairs of

traces in Table 3, which shows that Corr FC < 0.2 for all pairs of test traces.

5. Discussions and Conclusions

The maxima of rate bound of attack-contained traffic is not always higher than that of attack-

free traffic, see Figure 7. Statistically, however, it is higher than that of attack-free traffic
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Figure 20: Histograms of the maxima of traffic rate bound. (a) For OM-W1-4-1999AF. (b) For OM-W2-4-
1999AC. (c) Comparison: Corr FC = 0.141885.

significantly as can be seen from the experimental results illustrated by Figures 8(c), 12(c),
16(c), 20(c), and 24(c). In addition, the results expressed in Table 3 indicate that the pattern

of Hist[MGAMA F(n)] is obviously different from that of Hist[MGAMA C(n)]. Thus, the

results in this paper suggest that the histogram of the maxima of traffic rate bound may

yet be a traffic feature to distinctly identify abnormal variation of traffic under DDOS flood

attacks.

In comparison with fractal model of traffic as discussed in [18, 19, 43], the present

feature has an apparent advantage. Recall that statistical models like LRD processes, see,

for example, [18, 19], are usually for traffic in the aggregate case, but there is lack of evidence

to use them to characterize statistical patterns of real traffic at connection. As a matter of

fact, finding statistical patterns of traffic at connection may be a tough task. To overcome

difficulties in describing traffic at connection level, bounded modeling is introduced [25–29].
Thus, if we let xj,k(t) be all flows going through server k from input link j and let Fj,k(I)
be the maximum traffic constraint function of xj,k(t), the present analysis method of traffic
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Figure 21: Time series of traffic traces. (a) The first 1024 points of OM-W1-5-1999AF. (b) The first 1024
points of OM-W2-5-1999AC.
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Figure 22: Series of traffic rate bound. (a) For OM-W1-5-1999AF. (b) For OM-W2-5-1999AC.

Table 3: Correlation coefficients between the pattern of Hist[MGAMA F(n)] and that of
Hist[MGAMA C(n)] for 5 pairs of test traces.

Attack-free traffic traces Attack-contained traffic traces Corr FC

OM-W1-1-1999AF OM-W2-1-1999AC 0.01751

OM-W1-2-1999AF OM-W2-2-1999AC 0.163261

OM-W1-3-1999AF OM-W2-3-1999AC 0.045515

OM-W1-4-1999AF OM-W2-4-1999AC 0.141885

OM-W1-5-1999AF OM-W2-5-1999AC 0.177468
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Figure 23: Series of the maxima of traffic rate. (a) Maxima of GAMA(I, n) for OM-W1-5-1999AF. (b)
Maxima of GAMA(I, n) for OM-W2-5-1999AC.

is technically sound and usable for xj,k(t) but fractal models may not. Since the bounded

models of traffic are mainly used at connection level in some applications, such as real-time

admission control, it is clear that the present traffic feature for identifying abnormal variation

of traffic under DDOS flood attacks can be extracted at early stage of attacks.

Appendices

These appendices gives experimental results for three pairs of traces. They are OM-W1-

3-1999AF and OM-W2-3-1999CF, OM-W1-4-1999AF and OM-W2-4-1999CF, and OM-W1-5-

1999AF and OM-W2-5-1999CF. The values of Corr FC for each pair of traces are given in the

captions of Figures 16(c), 20(c), and 24(c), respectively.

A. Experiments for OM-W1-3-1999AF and OM-W2-3-1999CF

See Figures 13, 14, 15, and 16.

B. Experiments for OM-W1-4-1999AF and OM-W2-4-1999CF

See Figures 17, 18, 19, and 20.

C. Experiments for OM-W1-5-1999AF and OM-W2-5-1999CF

See Figures 21, 22, 23, and 24.
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Figure 24: Histograms of the maxima of traffic rate bound. (a) For OM-W1-5-1999AF. (b) For OM-W2-5-
1999AC. (c) Comparison: Corr FC = 0.177468.
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Image compression is necessary in various applications, especially for efficient transmission over
a band-limited channel. It is thus desirable to be able to segment an image in the compressed
domain directly such that the burden of decompressing computation can be avoided. Motivated
by the adaptive binary arithmetic coder (MQ coder) of JPEG2000, we propose an efficient scheme
to segment the feature vectors that are extracted from the code stream of an image. We modify the
Compression-based Texture Merging (CTM) algorithm to alleviate the influence of overmerging
problem by making use of the rate distortion information. Experimental results show that the MQ
coder-based image segmentation is preferable in terms of the boundary displacement error (BDE)
measure. It has the advantage of saving computational cost as the segmentation results even at low
rates of bits per pixel (bpp) are satisfactory.

1. Introduction

Image segmentation is important in many applications, ranging from industrial monitoring

to medical diagnosis. Among numerous techniques, the feature-based approach has received

a lot of attention due largely to its computational efficiency [1]. However, the segmentation

result is dependent on the selection of feature vectors [2–7]. Early research work on feature

extraction is mainly at a single scale. It is noted that an image is decomposed into band-

pass subimages by simple visual cortical cells in the human visual system (HVS) [8], which

can be modeled by Gabor filters with spatial frequencies and orientations properly tuned
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[9]. Wavelet transform (WT) provides an efficient multiresolution representation, in which

the higher detail information of an image is projected onto the shorter basis function with

higher spatial resolution, and the lower detail information is projected onto the larger basis

function with higher spectral resolution. This property matches the characteristics of HVS

[10]. Various WT-based schemes were proposed to extract image features at multiple scales

[11–14]. In addition, the advantage of WT is to take account of the phenomena of multiscales

[15–17], which is fundamental in nonlinear time series [18–20] and fractal time series

[21].
With the rapid growth of multimedia technologies [22–25] and the Internet applica-

tions, image compression is still in great demand [26]. As one can see, it is desirable to extract

image features in the compressed domain directly, such that the burden of decompressing an

image can be avoided [14, 27, 28]. The Joint Photographic Expert Group (JPEG) standard

shows satisfactory results at moderate compression rates. The JPEG2000 standard, which

adopts WT as the underlying transform, is preferable for additional advantages, for example,

embedded coding and progressive transmission [29, 30]. In embedded coding, the original

image is coded into a single code stream, from which the decoded image at any bit rate can be

obtained. For progressive transmission, which is especially beneficial to the image browsing

and Internet streaming applications, JPEG2000 uses the postcompression rate distortion

(PCRD) algorithm to arrange the code stream of an image in decreasing order of information

importance [31]. It is based on the rate distortion theory; more specifically, the rate distortion

slope (RDS) should be nonincreasing as the number of coding bits increases. For the image

segmentation applications, two interesting questions are thus raised. (1) Is it possible that

image segmentation can be carried out in the compressed domain such that the burden of

decoding computations can be avoided? (2) Is there a common piece of information, based

on which image features can be constructed at both encoder and decoder? If so, there is no

need to transmit these features from encoder to decoder.

This paper presents an efficient scheme to segment an image in the compressed

domain. It is a two-step algorithm. In the first step, the MQ coder-based image features are

coarsely clustered into small regions known as superpixels by using the simple K-means

algorithm. The inherently oversegmented superpiexels are merged recursively by using the

Compression-based Texture Merging (CTM) algorithm [32]. In order to avoid over merging,

we propose a simple RDS-based method to terminate CTM accordingly. The remainder of

this paper proceeds as follows. In Section 2, the JPEG2000 standard is briefly reviewed. In

Section 3, the modified CTM algorithm with the MQ coder-based image features is proposed

to segment JPEG2000 images. Experimental results are presented in Section 4. Conclusion is

given in Section 5.

2. Introduction to JPEG2000

The core of JPEG2000 is the embedded block coding with optimized truncation (EBCOT)
algorithm [29], which adopts wavelet transform (WT) as the underlying method for subband

decompositions. WT provides many desirable properties, for example, joint space-spatial

frequency localization with orientation selectivity, self-similarity of wavelet coefficients

across subbands of the same orientation, and energy clustering within each subband [10].
Among various WT-based image features, the commonly used are magnitude, energy, the

generalized Gaussian distribution signature, and the cooccurrence measures [11–14].
EBCOT is a two-tier algorithm. Tier-1 consists of bit-plane coding (BPC) followed by

arithmetic coding (AC). Tier-2 aims for optimal rate control. In BPC, three coding passes,
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Figure1:Flowchart of the proposed algorithm.

namely, the significance propagation (SP) pass, the magnitude refinement (MR) pass, and

the clean up (CU) pass, are involved with four primitive coding operations, namely, the

significance coding operation, the sign coding operation, the magnitude refinement coding

operation, and the cleanup coding operation. For a wavelet coefficient that is currently

insignificant, if any of the 8 neighboring coefficients are already significant, it is coded

in the SP pass using the significance coding operation; otherwise, it is coded in the CU

pass using the cleanup coding operation. If this coefficient becomes significant, the sign is

coded immediately using the sign coding operation. In the MR pass, magnitudes of the

significant coefficients are updated using the magnitude refinement coding operation. The

output bit streams of coding passes can be further coded by using a context-based arithmetic

coder known as the MQ coder to improve the compression performance. Based on the

8 neighboring coefficients, the MQ coder defines 18 context labels with their respective

probability modes stored in the MQ table [29].
In JPEG2000, a large image can be partitioned into nonoverlapped subimages called

tiles, each tile is decomposed into subbands by WT, each subband is divided into small blocks

called code blocks, and each code block is independently coded from the most significant

bit-plane to the least significant bit-plane. For optimal rate control, JPEG2000 adopts the

postcompression rate distortion (PCRD) algorithm. Specifically, let {Bi} be the code blocks

of an image. The embedded code stream of Bi can be terminated at some point, say ni, with

a bit rate denoted by R
ni
i ; all the end points of coding passes are possible truncation points.

PCRD selects the optimal truncation points to minimize the overall distortion: D = i D
ni
i

subject to the rate constraint: R = i R
ni
i Rc, where D

ni
i denotes the distortion incurred

by discarding the coding passes after ni, and Rc is the target bit rate. It is noted that the
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Figure2:(a) Original image. (b) (d) Segmentation results with the first, second, and third candidates of
ε. (e) Plot of the candidates of ε.

coding passes with nonincreasing rate distortion slopes (RDS) are candidates for the optimal

truncation points. Based on the above, we propose an efficient scheme to segment JPEG2000

images in the following section.

3. Image Segmentation in the JPEG2000 Domain

In this section, we modify the Compression-based Texture Merging (CTM) algorithm [32]
to segment the MQ coder-based image features [28] in an adaptive manner. As a result, the

image segmentation task can be conducted in the JPEG2000 domain directly, and the burden

of decompressing computation can be avoided.

3.1.The M Q Coder-Based Im age Feature

The distribution of wavelet coefficients known as the wavelet histogram has been widely

used for image segmentation. As the binary variables of wavelet coefficients are almost
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Figure4:Average (a) PRI and (b) BDE using CTM (solid line) and the modified CTM with the MQ coder-
based image features (dotted line).

independent across bit-planes [14], the joint probability mass function (PMF) representing

the wavelet histogram can be approximated as

P(|c|= x) =
n−1

i=0

Pi(xi), (3.1)

where x is the absolute value of a wavelet coefficient, c, which can be written by

x =
n−1

i=0

xi ·2i; xi {0, 1}, (3.2)
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Figure 5:Landscape images: left column: original images with the boundaries obtained by using the
proposed algorithm; middle and right columns: the segmentation results obtained by using the proposed
algorithm and the CTM algorithm, respectively.

n is the number of bit-planes, and Pi( ) is the ith bit-plane’s PMF. Based on the MQ

table defined in JPEG2000, we proposed a simple scheme to estimate the local PMF [28].
Specifically, let Pi(xi = 1) be the probability of 1 bit for variable xi on the ith bit-plane, which

can be obtained from the MQ table as follows:

Pi(xi = 1) =
Qe Value if MPS = 0,

1 − Qe Value if MPS = 1,
(3.3)

where Qe Value is the probability of less probable symbol (LPS) stored in the MQ table, and

MPS stands for more probable symbol. Note that the set {Pi(xi = 1); i = 0, . . . , n− 1}obtained

from the MQ table can be used to estimate the local PMF. As the MQ table is available at both

encoder and decoder, there is no need to transmit the overhead information to construct the

MQ features.
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Figure6:Objects images: left column: original images with the boundaries obtained by using the proposed
algorithm; middle and right columns: the segmentation results obtained by using the proposed algorithm
and the CTM algorithm, respectively.

3.2.The M odified CTM Algorithm

In this section, we modify the CTM algorithm [32] to segment the MQ feature vectors of an

image. With a set of MQ feature vectors, the number of coding bits can be approximated as

L(ε) =
N +D

2
log2 det I +

D

ε2N
Σ +

D

2
log2 1 +

μTμ

ε2
, (3.4)

where μ is the mean vector, Σ is the covariance matrix, ε is the distortion incurred, D is the

feature dimension, and N is the number of feature vectors. For K sets of MQ feature vectors,

the total number of coding bits is given by

Ltot(ε) =
K

i=1

Li(ε) −Nilog2

Ni

N
, (3.5)
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Figure7:Urban images: left column: original images with the boundaries obtained by using the proposed
algorithm; middle and right columns: the segmentation results obtained by using the proposed algorithm
and the CTM algorithm, respectively.

where Li(ε) and Ni are the number of coding bits obtained by (3.4) and the number of MQ

feature vectors in the ith set, respectively, and N is the total number of MQ feature vectors,

that is, N = K
i=1 Ni. The idea behind CTM is to merge two sets of feature vectors such

that the coding bits can be reduced maximally. The pairwise merging procedure of CTM is

performed iteratively until no merge can reduce the coding bits any more. As mentioned

in [32], the termination of CTM is dependent on the distortion parameter, ε, which can be

determined by

ε = min ε : d(ε) γ , (3.6)

where d(ε) is the distance between a pair of segments with respect to ε.

Motivated by the rate distortion theory, which has been widely used in embedded

image coding for optimal rate control, we propose a simple scheme to determine the can-

didates of ε. Specifically, for a sequence of increasing distortion values: ε1 < ε2 < ···, the
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Figure8:Water images: left column: original images with the boundaries obtained by using the proposed
algorithm; middle and right columns: the segmentation results obtained by using the proposed algorithm
and the CTM algorithm, respectively.

number of segments and the total number of coding bits are monotonically decreasing, that

is, K1 > K2 > ···and Ltot(ε1) > Ltot(ε2) > ···. The rate distortion slope (RDS) is thus defined

as

S(εi) =
ΔDi

ΔRi
, (3.7)

where

ΔRi =
Ltot(εi−1) − Ltot(εi)

N
,

ΔDi = εi − εi−1,

(3.8)
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Figure 9:Portraits images: left column: original images with the boundaries obtained by using the
proposed algorithm; middle and right columns: the segmentation results obtained by using the proposed
algorithm and the CTM algorithm, respectively.

and N is the number of MQ feature vectors. As RDS should be nondecreasing, that is,

S(εi) S(εi+1) for εi < εi+1, (3.9)

if S(εi) > S(εi+1), εi can be considered as a candidate to terminate the merging process of

CTM. Thus, we modify the selection of ε as follows:

ε = max
i

εi : S(εi) > S(εi+1), d(εi) γ . (3.10)
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Figure 10:Animals images: left column: original images with the boundaries obtained by using the
proposed algorithm; middle and right columns: the segmentation results obtained by using the proposed
algorithm and the CTM algorithm, respectively.

Figure 1 depicts flowchart of the modified CTM with the RDS-based adaptive selection

of ε , where the MQ coder-based image features are projected into a low-dimensional space

via principal component analysis (PCA) in order to reduce the computational cost further,

and the initial superpixels are obtained by using the simple K-means algorithm. Take the

image shown in Figure 2(a) as an example; the candidates of ε are shown in Figure 2(e),
where the horizontal and vertical axes are the distortion and the RDS values, respectively.

Figures 2(b)–2(d) show the segmentation results with the first, second, and third candidates

of ε. As one can see, the rate distortion information can be used to avoid overmerging of

CTM.

4. Experimental Results

The proposed algorithm has been extensively evaluated on the Berkeley database [33]. The

9/7-wavelet filters adopted by JPEG2000 are used to extract the MQ coder-based image
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Table1:Average PRI and BDE on the Berkeley image database.

Measure The proposed algorithm CTM Mean-shift NCuts

Average PRI 0.757 0.756 0.755 0.723

Average BDE 9.2 9.4 9.7 9.6

features. The number of initial superpixels is set to 50. In addition to visual inspection, the

boundary displacement error (BDE) and the probabilistic Rand index (PRI) [34] are used for

quantitative evaluation. The segmentation results are compared with CTM, Mean-Shift and

NCuts. In Mean-Shift, the parameters hs and hr are set to 13 and 19, respectively; in NCuts,

the number of segments is 20. The threshold γ of CTM is set to 0.1, as suggested in [32].
We first evaluate the segmentation performance at various compression rates.

Figure 3(a) shows a test image with two Brodatz textures, namely, wood and grass.

Figure 3(b) depicts percentages of errors at various rates of bits per pixel (bpp). It is noted that

the segmentation results even at low bpp rates are satisfactory; thus, a small portion of code

stream is sufficient for the segmentation task. It has the advantage of saving transmission

time, computational cost, and memory space, which are desirable especially for the Internet

applications.

Table 1 shows the BDE and PRI performances compared to CTM, Mean-Shift, and

NCuts. The proposed algorithm is preferable in terms of the average BDE.

The improvements in PRI and BDE using (3.10) are shown in Figures 4(a) and 4(b),
respectively, where the horizontal axis is the threshold: γ . It is shown that the proposed

algorithm is more robust by taking account of the rate distortion information to avoid

overmerging.

Figures 5, 6, 7, 8, 9, and 10 are representative of the Landscape, Objects, Urban, Water,

Portraits, and Animals images in the Berkeley database. The original images are shown in

the left column. The segmentation results by using the proposed algorithm and the CTM

algorithm are given in the middle and right columns, respectively. It is noted that, for images

with high-detail contents, the proposed algorithm improves the segmentation results visually.

5. Conclusion

The MQ coder provides effective probability models, which is available at both encoder

and decoder and therefore can be used to extract image features in the JPEG2000 domain

directly. As a result, no overhead transmission is necessary to extract the feature vectors,

and moreover the burden of decompressing a JPEG2000 image can be avoided. Based on the

MQ coder, an efficient scheme of segmenting an image has been proposed. In order to avoid

overmerging, the CTM algorithm has been modified by taking account of the rate distortion

information. The proposed algorithm has been evaluated on images with Brodatz textures

and the Berkeley image database. It is shown that the segmentation results at low-middle bpp

rates are rather promising. In addition, for images with high-detail contents, the proposed

algorithm is preferable in terms of the average BDE measure and visual comparison.
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There are m any param etersw hich are very di cultto calibrate in the threshold autoregressive
prediction m odelfornonlineartim e series.The threshold value,autoregressive coe cients,and
the delay tim e are key param etersin the threshold autoregressive prediction m odel.To im prove
prediction precision and reduce the uncertaintiesin the determ ination ofthe above param eters,
a new DN A deoxyribonucleic acid optim ization threshold autoregressive prediction m odel
DN AO TARPM isproposed by com bining threshold autoregressivem ethod and DN A optim iza-
tion m ethod.Theaboveoptim alparam etersareselected bym inim izingobjectivefunction.Realice
condition tim eseriesatBohaiaretaken tovalidatethenew m ethod.Theprediction resultsindicate
thatthe new m ethod can choose the above optim alparam etersin prediction process.Com pared
w ith im proved genetic algorithm threshold autoregressive prediction m odel IGATARPM and
standard genetic algorithm threshold autoregressive prediction m odel SGATARPM ,DN AO -
TARPM hashigherprecision and fasterconvergencespeed forpredicting nonlinearicecondition
tim eseries.

1.Introduction

M any naturalphenom ena,such asicecondition,runo ,areusually nonlinear,com plex,and
dynam icprocesses.Prediction ofice conditionsisofprim ary im portance forw eatherfore-
casting,agriculture,geosciences,and m arine transportation safety.The sim ulation ofthe
nonlineartim eseriesw asverydi cultw ith thetraditionaldeterm inisticm athem aticm odels,
w hich cause new challengesto calibrate the param eters 1,2 .There are m any m ethodsfor
predicting nonlineartim eseries 3–10 .Threshold autoregressive TAR m odelsaretypically
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applied to tim e series data as an extension ofautoregressive m odels forhigherdegree of
flexibilityin m odelparam etersthrough aregim esw itchingbehavior.TAR m odelsw ereintro-
duced byTongand Liin 1977and m orefullydeveloped in thesem inalpaper 11 .Thethresh-
old autoregressivem odelisaspecialcaseofTong’sgeneralthreshold autoregressivem odels.
Thelatterallow sthethreshold variableto bevery flexible,such asan exogenoustim eseries
in theopen-loop threshold autoregressivesystem 11–13 .Foracom prehensivereview ofde-
velopm entsoverthe30yearssincethebirth ofthem odel,seeTong 14 .H ow ever,theuncer-
taintiesin determ ining theparam etersofthethreshold variables,autoregressivecoe cients,
and thedelay tim eexistin thedeveloped threshold autoregressivem odel.So asto im prove
theprediction accuracy,thekeyproblem ishow todeterm inetheparam etersin theprediction
m odel.

The globaloptim ization in determ ining allthe param etersisintractable m athem ati-
cally.O ncean objectivefunction hasm any localextrem epoints,thetraditionaloptim ization
m ethodsm ay notobtain theglobaloptim alsolution.A geneticalgorithm GA based on the
genetic evolution ofa species w asproposed by H olland 15 .GA isa globaloptim ization
algorithm .H ow ever,the com putationalam ountis very large and prem ature convergence
phenom ena existin GA 16–20 .Recently,Adlem an 21 show ed thatDN A can be used to
solveacom putationally hard problem .M any scientistsused DN A com putation to solvereal
problem s 22–24 .

In thisstudy,DN A optim ization threshold autoregressiveprediction m odel DN AO -
TARPM ispresented to determ inetheparam etersand to im provethecalculation precision
forpredicting ice condition tim e series.In orderto validate the new m ethod,som e realice
condition tim eseriesareused.

2.D N A O ptim ization Threshold Autoregressive
Prediction M odel(D N AO TARPM )

TheTAR m odelisatoolforpredictingfuturevaluesin tim eseriesassum ingthatthebehavior
ofthe tim e serieschangesonce the tim e seriesshiftsto a di erentregim e.The sw itch from
oneregim eto anotherdependson thep pastvaluesofthex series.Them odelconsistsofk
autoregressive AR partsforeach di erentregim e.The m odelisusually referred to asthe
TAR k,p m odelw herek isthenum berofregim esand p istheorderoftheautoregressive
part.Sincethosecan di erbetw een regim es,thep portion issom etim esdropped and m odels
aredenoted sim ply asTAR k .A k-regim eTAR d;p1,p2,...,pk m odelfortim eseriesx i
i 1,2,...,n hastheform

x i b j,0
pj

l 1
b j,l x i− l e j,i , x i− d r j− 1 ,r j , j 1,2,...,k ,

2.1

w herer 0 − ,r k ,r j j 1,2,...,k−1 arek−1nontrivialthreshold param eters
dividing the dom ain into k di erentregim es;d is the delay tim e param eters,b j,l is the
regressivecoe cientsin thejth regim e,e j,i standsforw hite-noiseerrorterm w ith constant
variance,and pj is the autoregressive orderin the jth regim e ofthe m odel.The threshold
param eterssatisfy theconstraint:

− r 0 < r 1 < r 2 < ···< r k − 1 < r k . 2.2
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H ere d,k,r 1 ,r 2 ,...,r k − 1 ,p1,p2,...,pk,and b j,l are param eters in TAR
m odel.Itisvery di cultto determ inetheseparam etersw ith thetraditionalm ethods.

In thispaper,w euseDN A optim ization m ethod to determ inetheparam etersand im -
provem odelaccuracy.Thenew m odel,DN A optim ization threshold autoregressivepredic-
tion m ethod DN AO TARPM ,isdescribed asfollow s.

Step1 Determ inethedelaytim ed and thenum berofregressivecoe cients .Thedelaytim e
d isdeterm ined by the autocorrelation function m ethod 21 .The autocorrelation function
R j fordelay tim ejiscalculated as

R j

n
i j 1 x i − m x x i− j − m x

n
i 1 x i − m x

2
,

m x
n

i 1

x i

n
.

2.3

The delay tim e d isselected w hen autocorrelation function R j 25 satisfiesthe follow ing
condition:

R j / R1 j ,R2 j , 2.4

R1 j
−1− u /2 · n − j− 1

0.5

n − j
, R2 j

−1 u /2 · n − j− 1
0.5

n − j
, 2.5

w here u /2 is the upper100 · /2 percentage pointofthe norm aldistribution for1 −
confidence level.The num berofregressive coe cientspl m ax j ,l 1,2,...,k.Som e of
thejvaluesareregarded asthedelay tim e.

Step 2 Determ ine the num ber and ranges of threshold param eters .Considering a set
{ x i,x i− d |i 1,2,3,...;d 1,2,...} from the tim e series i i 1,2,...,n ,w e
dividex i−d intosregim es s > k .SupposethereareN jnum berofx i−d in thejth part,
and thecorresponding x i isregarded asx i,j .In thejth part,theconditionalexpectation
ofx i given theeventX x i− d is

E
x i

x i− d j

N j

i 1

x i,j

N j
, j 1,2,...,s;d 1,2,.... 2.6

Letx i− d behorizontalaxis,and letE x i/x i− d beverticalaxis;w ecan getthescatter
plots.W hen the scatter plots are piecew ise linear m ap,w e can estim ate the num ber and
rangesofthreshold param eters.Thepiecew isenum berofpiecew iselinearm ap isthenum ber
ofthreshold param eters,and the rangesofthe piecew ise pointsare the rangesofthreshold
param eters.
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Step 3 Constructthe objective function .The param eterestim ation forDN AO TARPM can
beobtained by thefollow ing objectivefunction,nam ely,them ean ofleastresidualabsolute
valuesum :

M inf f r 1 ,r 2 ,...,r k − 1 ;b j,l i|x i − x i |

n
. 2.7

Step 4 Solve objective function by DN A optim ization m ethod .Solving the param etersof
r 1 ,r 2 ,...,r k − 1 ;b j,l, j 1,2,...,k;l 1,2,...,pj ,in the optim ization objective
function 2.7 isonenonlinearoptim ization problem .Itisratherdi culttodealw ith itusing
atraditionaloptim ization m ethod.Theaboveoptim alm odelcan besolved by thefollow ing
DN A optim ization m ethod 24 .Thek-regim eprediction form ulaw illbeseen in thefollow -
ing application partin detail.

If w e solve objective function 2.7 w ith im proved genetic algorithm ,w e callthe
m ethod im proved genetic algorithm 18 threshold autoregressive prediction m ethod
IGATARPM ,and ifw e solve objective function 2.7 w ith standard genetic optim ization
m ethod 15 ,w ecallthem ethod standard geneticalgorithm threshold autoregressivepredic-
tion m ethod SGATARPM .

3.D N A O ptim ization M ethod (D N AO M )

Considerthefollow ing optim ization problem :

M in f c1,c2,...,cp

st. aj cj bj forj 1,2,...,p,
3.1

w here c {cj,j 1,2,...,p},cj isa param eterto be optim ized,f isan objective function,
and f 0, aj,bj istherangeofcj.

TheprocedureofDN AO M isshow n asfollow s 25 .

Step 1 DN A encoding .Suppose DN A-encoding length is m in every param eter,the jth
param eterrangeistheinterval aj,bj ,and then each intervalisdivided into 2m − 1subinter-
vals:

cj aj j· 2
m − 1 ·hj, 3.2

w herethelength ofsubintervalofthejth param eterhj bj− aj / 2m − 1 isconstant.The
searching location Ij j· 2m − 1 isan integer,and 0 Ij < 2m , j isarandom variable,and
0 j 1,forj 1,2,...,p.

TheDN A codearray ofthejth param eterisdenoted by thegrid pointsof{d j,k |k
1,2,...,m }forevery individual:

Ij
m

k 1
d j,k ·2k−1. 3.3



M athem aticalProblem sin Engineering 5

DN AO M ’s process operates on a population ofindividuals also called DN A code array,
strings,orchrom osom es .Each individualrepresentsapotentialsolution totheproblem .For
corresponding 1× 1 T,1× 0 A ,0× 1 G,0× 0 C.Thefirstposition value“1”or
“0” expressestheposition ofDN A codeand thesecond position value“1” or“0” expresses
thetruevalueofbinary codeand thevalueofDN A code.

Step2 creating theinitialpopulation .To coverthew holesolution spaceand to avoid indi-
vidualsentering into thesam eregion,largeuniform ity random population isselected in this
algorithm .O nce the initialfatherpopulation hasbeen generated,the decoding and fitness
evaluation should bedone.

Step3 evaluating fitnessvalueofeach individual.Thesm allerthevaluef i is,thehigher
thefitnessofitscorresponding ith chrom osom eis i 1,2,...,N .So thefitnessfunction of
ith chrom osom eisdefined asfollow s:

F i
1

f i
2

1.0
. 3.4

Step4 selection .Selectchrom osom epairsrandom ly depending on theirfitnessvaluefrom
theinitialpopulation.Tw o groupsofN -chrom osom esd1 j,k,i and d2 j,k,i,aregotten j
1,2,...,p;k 1,2,...,m ;i 1,2,...,N .

Step 5 tw o-pointcrossoverand tw o-pointm utation .Perform crossoverand m utation on
chrom osom esthesam easGA.

Step 6 DN A evolution .RepeatSteps3–6 untilthe evolution tim esq Q Q isthe total
evolution tim es ortheterm ination condition issatisfied.

Step7 accelerating cycle .Theparam eterrangesofne-excellentindividualsobtained by Q -
tim es ofthe DN A-encoded optim alevolution alternating are regarded as the new ranges
ofthe param eters,and then the w hole processisback to the DN A-encoding.The DN AO M
com putation isoveruntilthealgorithm running tim esreachesthedesigned T tim esorthere
existsan optim alchrom osom eCfitw hosefitnesssatisfiesagiven criterion.In theform ercase
theCfit isthefittestchrom osom e orthem ostexcellentchrom osom ein thepopulation.That
is,thechrom osom eCfitrepresentsthesolution 25 .

Theparam etersoftheDN AO M areselected asfollow s.Thelength m 10,population
sizeN 100,thenum berofexcellentindividualsne 10,thetim esofevolution alternating
Q 3,thecrossoverprobability pc 1.0,and them utation probability pm 0.5.

4.Application in Ice Condition Tim e Series

Therealicecondition tim eseriesin thisstudy arechosen astheannualicecondition atBohai
in China fortheperiod of1966 to 1994 29 years 25 .Fortheicecondition tim eseries,the
firstm odeling datasetisthedataduring theperiod of1966to1993 28years .Theprediction
lead tim eistheyearof1970–1994 25years .
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Figure1:Theautocorrelation function figurefortheobserved tim eseries.

4.1.The Autocorrelation Function R j forD elay Tim e j

The changesofthe autocorrelation functionsforthe tim e seriesare presented atthe confi-
dencelevel70% in Figure1.

From Figure1,w e can see thatonly the valuesofR 1 ,R 3 ,R 4 satisfy condition
2.4 .So thedelay tim ed is1,3,or4in DN AO TARPM .

4.2.The N um berand RangesofThreshold Param eters

The num berand rangesofthreshold param etersofthe above ice condition tim e seriesare
determ ined by theconditionalexpectation ofx i given theeventX x i− d .Thescatter
plotoftheconditionalexpectation isshow n in Figure2.

From Figure2,w ecan seethattherearetw o piecew iselinearm aps,and thepiecew ise
pointisaround them ean valueofthetim eseries.So w esupposey i x i − m ean value,
and thek-regim eTAR d;p1,p2,...,pk m odelhasthefollow ing form ford 1,3,4:

y i
b 1,1 y i− 1 b 1,3 y i− 3 b 1,4 y i− 4 ,y i− d r 1 ,

b 2,1 y i− 1 b 2,3 y i− 3 b 2,4 y i− 4 ,y i− d > r 1 ,

x i y i m ean value.

4.1

The param etersofr 1 ,b j,l j 1,2;l 1,3,4 are required in thism odel.In this
w ork,thethreeparam etersareestim ated w ith respectto onecriterion,nam ely,them ean of
leastresidualabsolutevaluesum show n in 2.6 .
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4.3.ResultCom parison betw een D N AO TARPM ,
IG ATARPM ,and SG ATARPM

The tim e series w ere predicted by DN AO TARPM ,IGATARPM ,and SGATARPM ,respec-
tively.

M ean leastresidualabsolutevaluesum f is0.5737forDN AO TARPM .Theevaluation
num berofthe objective function is900.The com putationalresultsofthe above m odelare
given in Table1.

For IGATARPM ,the evaluation num ber ofthe objective function is 2700,and the
prediction errorf is0.6016.

For SGATARPM ,the evaluation num ber ofthe objective function is 2700,and the
prediction errorf is0.6380.

From Table1,w e can see thatprediction results for DN AO TARPM are better than
those w ith the otherm ethods.The prediction resultsofthe practicalexam ple are show n in
Figure3w ith di erentm ethods.

From Table1 and Figure3,w e can see thatthe results achieved w ith our DN AO -
TARPM m ethod aresatisfactory in globaloptim um and prediction precision.
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Table 1:The com parison ofthe prediction results forDN AO TARPM ,IGATARPM ,and SGATARPM at
Bohai.

M ethods Param eters
O bjective
function

m inim um f

r 1 b 1,1 b 1,3 b 1,4 b 2,1 b 2,3 b 2,4

−1.0,1.0 −0.5,0.5 −0.5,0.5 −0.5,0.5 −0.5,0.5 −0.5,0.5 −0.5,0.5

DN AO -TARPM −0.02 0.34 0.24 −0.36 0.13 0.39 −0.46 0.5737

IGA-TARPM −0.75 0.12 0.40 −0.20 0.20 0.28 −0.44 0.6016

SGA-TARPM 0.90 0.26 0.33 −0.50 −0.06 −0.35 0.36 0.6380
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Figure3:Com parison ofprediction resultsw ith DN AO TARPM ,IGATARPM ,and SGATARPM atBohai.

Com pared w ith IGATARPM and SGATARPM ,DN AO TARPM has a faster conver-
gencespeed and higherprecision.And itisusefulforparam eteroptim izationofthenonlinear
icecondition tim eseriesm odel.

5.Conclusions

In orderto im prove prediction precision and reduce the uncertainties in determ ination of
theparam etersforforecasting nonlinearicecondition tim eseries,a new DN A optim ization
threshold autoregressive prediction m odel DN AO TARPM isproposed in thispaper.The
ice condition tim e seriesatBohaiin China are studied by using DN AO TARPM .The m ain
conclusionsaregiven asfollow s.

1 DN AO TARPM isestablished by using DN A optim ization m ethod and threshold
autoregressive m odel.The delay tim e d isselected w ith autocorrelation function,
and theresultsindicatex i− 1 ,x i− 3 ,x i− 4 havesignificantinfluenceon the
icecondition tim eseries 0.30 atBohai.
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2 DN A optim ization m ethod isproposed foroptim izing allparam etersin DN AO -
TARPM m odel.Theoptim alparam eters,thatis,thethreshold value,autoregressive
coe cients,and the delay tim e,are obtained forpredicting the ice condition tim e
seriesatBohaiby using DN A optim ization m ethod.

3 The prediction errors are 0.5737, 0.6016, and 0.6380 w ith DN AO TARPM ,
IGATARPM ,and SGATARPM atBohai,respectively.DN AO TARPM can reducethe
calculation errors.Itprovidesa new w ay to forecastnonlinearice condition tim e
series.

4 The evaluation num ber of the objective function is 900,2700,and 2700 w ith
DN AO TARPM ,IGATARPM ,and SGATARPM atBohai,respectively.Com pared
w ith IGATARPM and SGATARPM ,DN AO TARPM m odelhasafasterconvergence
speed.Thenew m odel DN AO TARPM can beused in predicting othernonlinear
system sin thefutureand itstheory w illbefurtherstudied.
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