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Due to the expanding scope of Industry 4.0, the Internet ofTings has become an important element of the information age. Cyber
security relies heavily on intrusion detection systems for Internet ofTings (IoT) devices. In the face of complex network data and
diverse intrusion methods, today’s network security environment requires more suitable machine learning methods to meet its
security needs, and the current machine learning methods are hardly competent. In part because of network attacks by intruders
using cutting-edge techniques and the constrained environment of IoT devices themselves, the most widely used algorithms in
recent years include CNN and LSTM, with the former being particularly good at extracting features from the original data space
and the latter concentrating more on temporal features of the data. We aim to address the issue of merging spatial and temporal
variables in intrusion detection models by introducing a fusion model CNN and C-LSTM in this paper. Fusion features enhanced
parallelism in the training process and better results without a very deep network, giving the model a shorter training time, fast
convergence, and computational speed for emerging resource-limited network entities. Tis model is more suitable for anomaly
detection tasks in the resource-constrained and time-sensitive big data environment of the Internet of Tings. KDDCup-99,
a publicly available IBD dataset, was applied in our experiments to demonstrate the model’s validity. In comparison to existing
deep learning implementations, our proposed multiclass classifcation model delivers higher accuracy, precision, and recall.

1. Introduction

Internet of Tings (IoT) is a new network system consisting
of a cloud data center and subnodes under it that integrates
computing, controlling, and communication technologies.
In the era of industry 4.0, wireless network technology and
diverse smart devices are increasingly applied to the In-
dustrial Internet of Tings (IIoT), and more and more in-
dustrial applications are interactively connected through the
intelligence and real time of signal processing. Trough
a large number of distributed IoTdevices, ubiquitous sensors
are deployed throughout real scenarios. Tey detect envi-
ronmental data through various types of sensors and
transmit them to processing centers through various types of
IoT transmission protocols.Te processing center uses cloud

computing and big data technologies to extract valuable
information from this data and upgrade services. IoT has
been frequently employed in various felds such as health-
care, smart home, and intelligent transportation. By 2024,
IoT is anticipated to reach 83 billion devices [1]. Te diverse
category of IoT devices will set of the IoT architecture for
innovation.

In addition, cybercrime is growing dramatically in size,
complexity, and cost [1] due to the increasing spread of IoT
devices with distributed and large numbers in individual
homes, national grids, smart cars, and industrial assembly
lines, and the complexity of IoT defending systems [2].
Table 1 lists several typical cyber-attacks. Te rise of various
old and new types of cyber-attacks signifes that the use of
resume frewalls and signature certifcate-based defending is
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in great demand, and instead, a proactive approach must be
taken to discover threats. Intrusion detection systems have
become a crucial tool for identifying and defending against
network attacks in the form of malicious network trafc as
security threats continue to spread across the Internet. By
extracting features for analysis of network trafc and alerting
once unsafe trafc is detected, intrusion detection systems
enable network monitoring [3].

Anomaly detection is recognized as one of the key tools
for dynamic network security threat detection [4]. Tere are
numerous methods available for network anomaly de-
tection. To improve the performance of anomaly detection
systems when processed by intrusion detection systems,
artifcial intelligence techniques are applied to various types
of active-defending systems. However, reliable anomaly
detection of massive and complex multidimensional data in
industrial IoT is still a tricky task. In recent years, deep
learning has excelled in various classifcation tasks, but
a large amount of classifcation variables in the network
stream complicates the anomaly detection process using
gradient descent methods. Even though there are numerous
methods for anomaly detection, most people do not try to
use CNN (convolutional neural network) for anomaly de-
tection, compared to machine learning. As research has
intensifed in recent years, deep learning has increasingly
emerged in the feld of complex high-level data processing,
such as image and signal processing. Deep learning in-
terprets the internal rules and data expressions of data such
as word, image, and sound by extracting the internal features
of sample data during the learning process.Te ultimate goal
is that deep learning models have the ability to analyze and
learn from input data and eventually recognize data such as
characters, images, and sounds. Among them, two models
are widely used: recurrent neural networks (RNN) that
mainly extract time-step features for problems of NLP and
voice recognition, and CNN with powerful spatial feature
extraction for image classifcation and regression. Zeiler [5]
visually understands the functions of the intermediate fea-
ture layer and the operation of the classifer through the large
convolution neural network model, indicating that CNN is
very sensitive to the local structure of data. CNNs refect the

spatial properties of data by extracting spatial cues such as
color, level, and edges in images using convolutional per-
ceptual felds and shared weight coefcients while RNN uses
gate units to efciently simulate serialized data to refect the
temporal properties of the data. Te LSTM method is
mentioned in all model surveys for univariate and multi-
variate time series data mentioned by Lindemann et al. [6].
To achieve high performance, Kim and Cho [7] constructed
a C-LSTM network.Tey frst used preprocessing to initially
construct temporal correlations of the dataset, then used
CNN to extract these features, and fnally used LSTM to
extract spatial and temporal features. To ensure that the
features extracted by CNN are potentially correlated and
more efective than the temporal features extracted by
LSTM, Preciado-Grijalva and Iza-Teran [8] used two sliding
windows to generate time-dependent subsequences based on
C-LSTM. Meanwhile, Yin employed a modifed LSTM-
based self-encoder to extract more anomalous features
from the input sequence. Although CNN and LSTM are both
part of their network, the input that LSTM accepts only
comes from CNN extraction, and the spatialized extraction
of CNN disrupts the temporal aspects of the original data at
the potential level, which impacts LSTM’s learning efect to
some extent.

We propose an improved network structure based on the
study of the interaction between CNN and LSTM direct
serial methods for extracting data features. Te network
consists of a CNN and a C-LSTM using temporal convo-
lution, both of which receive input from the original dataset,
and the CNN and C-LSTM will focus on extracting spatio-
temporal features in the intrusion data, respectively, with the
modifed C-LSTM using one-dimensional temporal con-
volution and the LSTM focusing more on purely temporal
features of the intrusion data while ignoring some spatial
features; the CNN will learn more to reconstruct the spatial
features of the intrusion data and do parallel and fusion
between the two instead of serial, which can improve the
performance of the detection model. In the absence of
deeper network depth, anomaly detection achieves higher
scores in various metrics. Te signifcant contributions of
this paper are as follows:

Table 1: Several common types of network attacks.

Attacks Quantity

DoS and DDoS
DoS attack is designed to overload system resources to the point where they can no
longer respond to legitimate service requests. And DDoS is initiated by controlling

a large number of hosts infected with malware

MITM
As an “indirect” intrusion attack, a man-in-the-middle (MITM) type of network

attack allows an attacker to eavesdrop and steal communications from two
computers without directly afecting the network

DNS spoofng
Spoofng through the domain name system (DNS) is also a form of

man-in-the-middle attack, where a hacker can change the DNS records returned to
the querier to a response record of the attacker’s choosing

URL resolution Trough URL interpretation, an attacker can change and forge certain URL
addresses and access to personal or company private data

Zero-day attacks
Zero-day attacks are computer vulnerabilities that have not been discovered by
security vendors but may be in the hands of hacker groups, and once they are

discovered, 0 day vulnerability attacks can spread rapidly
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(1) A network model based on our C-LSTM and CNN
fusion is proposed to detect intrusion data using
shallow, small-scale deep learning models. Te model
utilizes the ideas of C-LSTM and exploits its advan-
tages. To retrieve temporal aspects of the intrusion
data on a partially parallel model, a one-dimensional
convolution is employed in place of the two-
dimensional convolution in the original C-LSTM.

(2) Fusing our C-LSTM and CNN to obtain a balance on
temporal and spatial features. Compared to the
original C-LSTM which presents the fnal prediction
results and scores by a single model, our fusion model
is trained and predicted independently by twomodels.
Te learning method of fusion learning determines
that it does not extract features by CNN and then
learn features by LSTM but fuses the features learned
by C-LSTM and CNN separately, which extends the
dimensionality of the features. In this way, even if the
features extracted by the CNN are insufcient, the
C-LSTM can be supplemented and extended. In terms
of the evaluation of several classifcation metrics, this
model outperforms the C-LSTM model.

(3) In light of the model fusion learning method, its two-
part model does not require a deep model depth to
learn every feature of the entire dataset and is faster
in its training and convergence than other methods.
Te two parts of our network, C-LSTM and CNN,
only need to learn the sensitive part of the data
features and combine them for prediction, rather
than learning all the features separately. Such
a mechanism facilitates its performance on resource-
constrained devices.

2. Related Work

Tis section summarizes machine learning methods for
anomaly detection based on a review of researchers’ research
on anomaly detection or intrusion detection in recent years.
As shown in Table 2, in the feld of anomaly detection, many
researchers classify a segment of the data as normal or
anomalous by extracting contextually relevant information
from the data. However, in general, this discriminative
approach also requires modeling of the data system, so
detection methods are divided into three categories: mod-
eling based on data statistics, modeling based on temporal
features, and modeling based on spatial features. Either the
error in the context of the data predicted by the time series is
used as the core of detection [9], or the original data is
reconstructed without a priori knowledge, and normal and
abnormal values are defned using thresholds [10]. Te core
of all these detection methods is to extract the necessary
features from the original data space that afect its de-
termination as normal or abnormal and thus perform
a credible classifcation.

2.1. Issues on Intrusion Detection System. Researchers have
already done in-depth research in the area of intrusion
detection for cybersecurity of IoT, cloud data centers, and

blockchain systems. Tey have investigated the general
anomaly detection problem by discussing anomaly detection
in time-series data in short chapters.

Hawkins [11] and Abraham and Chuang [12], as early
developers in this feld, have conducted in-depth research on
the network security of wireless network, Internet of Tings,
blockchain system, and other network systems, especially the
network security intrusion problem. However, many re-
searches on anomaly detection have found this kind of
problem and usually discuss the intrusion problem high-
lighted by abnormal data in several sections. Markou and
Singh [13, 14] have published research showing that among
the intrusion detection methods up to 2003, the intrusion
detection system based on feature extraction has been widely
used these days. Stephen and Arockiam [15] designed
a protocol suitable for resource-constrained nodes but with
lossy routing and explored an integrated approach to detect
Sybil attacks on the IoT.

2.2. UnsupervisedMethod inAnomalyDetection. Münz et al.
used the unsupervised learning method of K-means [16].
Tey discussed and derived the prime number of clusters by
statistical methods. By calculating the prime number and the
spatial distance of each fow data, the distance data are used
as the standard for distinguishing abnormal and normal
data. Zhang and Zulkernine adopted the random forest
method based on unsupervised learning [17], calculated the
closeness in each case, and designed a mathematical stan-
dard based on statistics to distinguish normal and
abnormal data.

2.3.Machine Learning inAnomalyDetection. Kaur et al. [18]
used CNN models to detect attacks in data streams. Tey
trained and validated their model with the cicids2017 and
cicids22018 datasets. Although their approach covers a wide
range of intrusion data types, their performance metrics fall
short of practicality. To detect intrusions in a massive data
environment, Hassan et al. [19] designed an integrated deep
learning model using CNN and wdlstm (long-term memory
with decreasing weights). CNN was used to fnd the best
features, and wdlstmmethod was used to prevent overftting
in neural networks [20]. Te Bayesian neural network is
studied in, and the LSTM based self-encoder is used to
replace some previous data extraction and analysis struc-
tures, and then, the MLP is used to perform the fnal pre-
diction step. Chen and Lin constructed time-step features of
the original data using a sliding window preprocessing al-
gorithm. Ten LSTM models were used to extract

Table 2: Several abnormal trafc detection methods.

Authors Model Dataset Year Score
G. Bae CNN KDD99 2019 Acc� 97.34
A. Diro LSTM AWID 2018 Acc� 98.22
Q. Tian Svm UNSW-NB15 2019 Acc� 97.00
Y. N. Kunang DNN NSL-KDD 2021 Acc� 83.33
In-young C-LSTM Webscope 2018 Acc� 99.62
Chunyong Yin C-LSTM-AE Webscope 2021 Acc� 98.6

Security and Communication Networks 3



information on the preprocessed high-dimensional data
[21]. Te LSTM model studied by Malhotra et al. [9] was
based on sensor data and normal signals. Tey used the
trained LSTM model to predict the succeeding signal as
a criterion for judging, and then, the actual input and the
criterion were calculated to derive the error distribution for
anomaly detection.

Tese methods use models that model serialized data to
learn temporal features and thus have the ability to predict
predictive classifcation. Just like RNN, after training RNN,
RNNwill have the ability to predict future data. In this way,
the output of the model can be used as a criterion to
compare with the actual data. Te result of the comparison
will be determined by a set threshold value to determine
whether it is normal or abnormal. Tis approach is based
on periodic trafc data and performs better on its dataset.
However, if periodicity is not predominantly represented
on the data set, the predicted results will not be accurate for
the actual data.

As mentioned previously, many attempts have been
made to detect intrusion data using various methods.
However, few attempts have been made to focus on spatio-
temporal features of the data to conduct research. Most
studies, in order to improve the performance of a single
dataset, usually model only the key features in the datasets
that have a high degree of impact, while few studies have
talked about taking both temporal and spatial features into
account. In contrast, spatio-temporal information is crucial
for data analysis and reconstruction because it integrates the
spatio-temporal features of the original data. In order to
utilize both temporal and spatial information in complex
trafc data for anomaly identifcation, a suitable learning
method is therefore required.

3. Modeling of C2-LSTM

Using models that make compromise judgments on tem-
poral and spatial features, C2-LSTM is a modifed C2-LSTM
model designed to evade attacks to achieve deception of
resource-constrained models by intrusion data. In the C2-
LSTM, the CNN and the improved C2-LSTM learn the
spatial and temporal dimensions of the intrusion trafc,
respectively.

3.1. Problem Defnition. Set D � X1, X2, . . . , Xk􏼈 􏼉 is a input
set which represents k kinds of labeled network trafc data
in anomaly detection. k includes q kinds of anomaly
samples and p kinds of normal samples.To be specifc, p is
much bigger than q, and p + q � k. Y � y1, y2, . . . , yk􏼈 􏼉 is
a set of label results for input D. Te work in [22–24] tries
to fnd outliers in the data and edit to identify them, while
the work in [25, 26] is for the classifcation and labeling of
the target sequence, whether it is abnormal or normal. Te
former is a regression method that regresses the input data
into an exact value. Te latter is a clustering or classif-
cation problem to classify it into one of the predefned
categories. Te issue studied in our paper is a classifcation

problem, i.e., classifying the input data into a corre-
sponding type yı.

3.2. Our C-LSTM. CNN and LSTM are the two components
of C-LSTM. Similar to C-LSTM, he uses self-encoders based
on LSTM and CNN to extract fused spatio-temporal features
from the data. Figure 1 shows its model structure.

Te C-LSTM uses preprocessed data as input. Te
convolutional layer uses convolutional kernels for learning
and feature extraction, and the parameters of each layer are
optimized by a back-propagation algorithm. Convolutional
operations can extract various features from the data space
level. Te frst few layers of convolution may only extract
some low-level features. For images, these are picture cor-
ners, single lines, edges of objects, etc. that are not sensitive
to the impact of the results, while higher level features that
afect the model performance will be extracted north in the
deeper layers of the network. Te pooling layer reduces
the computational efort by partitioning and sampling the
data, down sampling a large matrix into a smaller one, and
can prevent overftting at the same time. Te feature data
are transported to the LSTM. First, the CNN is composed
of a convolutional layer and a pooling layer for auto-
matically extracting a sequence of high-level spatial fea-
tures of the network trafc. We use a one-dimensional
convolution operation to extract the temporal features of
the input data directly by temporal convolution instead of
the normal two-dimensional convolution of C-LSTM.
After the convolution, an activation function is used to
perform the transformation of the non-nonlinear func-
tion. As a result, the model is able to capture features of
more dimensions.

Suppose it is an input vector of intrusion data and n is
the dimensionality of its features. Equation (1) yields the
output value from the i-th convolutional layer.

yi � σ bi + Wi∙x( 􏼁, (1)

where b is the bias of the feature mapping, W is the weight of
the kernel, and σ is an activation function.

We use circular units running from left to right to enable
the LSTM layer to understand the temporal properties of the
trafc data extracted from the upper CNN layer. Tis makes
the model in this layer to have a stronger understanding of
the feature transformation relationships on the time scale.
His input is the output of the pooling layer of the upper layer,
which is gated to control the discarding or adding of in-
formation for forgetting or remembering. Gating is an in-
formation selective pass-through structure based on
a multiplicative mechanism, consisting of a sigmoid func-
tion and a dot product operation that updates the cell state of
each gate according to its activation. Sigmoid functions have
output values in the interval [0, 1], with 0 representing
complete discard and 1 representing complete pass-through.
Cell management through these gates handles the upper
layer of input to input, output and forgetting gate opera-
tions. Te hidden value of the LSTM cell, ht, is updated once
per step t.
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ft � σg Wfxt + Ufct−1 + bf􏼐 􏼑, (2)

it � σg Wixt + Uict−1 + bi( 􏼁, (3)

ot � σg Woxt + Uoct−1 + bo( 􏼁, (4)

ct � ft∙ct−1 + it∙σc Wcxt + bc( 􏼁, (5)

ht � ot∙σh ct( 􏼁. (6)

Equations (2)–(4) use the symbol I: update the gate, take
sigmoid for the splicing result to indicate whether the
previous result needs to be updated, F: forget the gate, take
sigmoid for the splicing result to indicate whether the
previous result is discarded andO: synchronize the gate, take
sigmoid to indicate whether synchronization is required. C
and h, which stand for cell states and hidden values, re-
spectively, are used in equations (5) and (6). Te forgetting
gate, the input gate, and the output gate work together to
calculate these two values. Tese gates have only few linear
interactions with the other parts. σ is an activation function.
Te network using LSTM units provides excellent learning
capabilities through modeling signal time feature, which
yields the most advanced results in anomaly detection.

3.3. Fusion Model C2-LSTM. C2-LSTM uses a CNN and
C-LSTM for fusion. For the purpose of extracting spatio-
temporal features from the intrusion data center, CNN and
C-LSTM are used as two independent strong learners.
Anomaly detection is performed by splicing the two features
through fusion. Te two learners work parallelly to generate
and evaluate the fnal result; or in other words, there is no
reliance between them. Figure 2 illustrates its model
structure.

Te features retrieved by the CNN and the C-LSTM are
fused by fusion, and the features are stitched together after
both the CNN and LSTM have derived their own values.

S1 � σ bi + Wi∙x( 􏼁, (7)

S2 � ot∙σh ct( 􏼁, (8)

S � S1􏼂 􏼃, S2􏼂 􏼃􏼂 􏼃, (9)

where S1 is the output of the C-LSTM, and S2 is the output of
the LSTM. S is the stitching of the two feature matrices in the
last dimension. Here, we use the concatenate method to
blend features and models. At the end of the model,
a concatenate layer is built to combine the features extracted
from the previous model. We spliced the tensors in the last
dimension and ensured the alignment of the two parts of
features in the last dimension. Tis makes the fused features
rely on more than just the results of the previous operation
step, combining features of diferent properties.

In trafc detection, the fully connected layer is responsible
for reducing the sensitivity of the parameters in the learning
process. And Softmax is used to output the fnal classifcation
score. Tey are the layers used for the output of the C2-LSTM
model. In the upper part, the output of the fusion matrix is
stretched, and this vector will be fed to the fully connected
layer. Tis layer uses equation (10). D denotes the output of
the fully connected layer, and σ is the activation function.

Di � 􏽘 σ bi + Wi∙h( 􏼁. (10)

Te output of the fully connected layer is multiclassifed
by softmax and softmax layer classifes the raw data into
normal and abnormal classes.

3.4. Schema and Super Parameters. Te input of C2-LSTM is
41∗ 1 trafc input, and the parameters of various types of
structures can be adjusted under the design conditions of the
model. Te input of the C2-LSTM is 41∗ 1 trafc data. Under

input1 Conv1D

LSTM

Maxpooling1D
Relu

Tanh

input2

concatenate

Dense and Flatten

softmax

Figure 2: Model structure of our C2-LSTM which consists of
a CNN and our C-LSTM.

input

Conv1D

LSTM

Maxpooling1D

Relu

Tanh

Figure 1: Model structure of our C-LSTM which consists of one-
dimensional convolution, LSTM, and one-dimensional
maxpooling.
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the design conditions of the model, the parameters of various
types of structures can be adjusted, such as the depth of CNN
and LSTM, the design of convolution, and the gating strategy
of LSTM.Tese settings will determine the fnal performance
of the whole model, such as accuracy or learning speed. In
contrast, the C2-LSTM fusion method determines that it does
not require a high number of layers. Before entering the
LSTM, he becomes 19∗ 32 spatially feature-rich data by
convolution layer and pooling layer. We use ReLU as the
activation function of the model. After recent years of re-
search, ReLU learns faster than Tanh, and he ensures that the
product of the parts is all always 1, and there is no problem of
gradient disappearance of the sigmoid.

3.5. C2-LSTM Anomaly Detection Algorithm. Te workfow
of C2-LSTM anomaly detection is as follows: frst, preprocess
and normalize sample raw data to handle dirty data and
construct input sets X1 and X2. Ten, the input datasets are
learned with CNN and C-LSTM, respectively, and the outputs
of both are two feature matrices S1 and S2. By dimensional
stitching of feature fusion, S1 and S2 are reconstructed into S.
Te reconstructed features S will be used in the fnal prediction
to get the fnal classifcation of that trafc.Te specifc algorithm
is shown in Algorithm 1.

4. Experiment and Analysis

We use Python 3.7 as the programming language and the
CUDA version of Tensorfow 1.14.0 as the neural network
framework. Te lab deploys comparison experiments in the
same environment and trains models on 4 GeForce RTX
2080 Ti with 12G video memory. We use small batch
training in the experiments with a batch size of 512. Te
details of the experiments are as follows.

4.1. Data Sets and Preprocessing. KDD99 is a dataset for
monitoring abnormal connections from normal connec-
tions, from the DARPA Intrusion Detection Evaluation

Project in 1998. Te KDD99 dataset is a feature extract
version of the DARPA dataset (DARPA is the original
dataset), and the training data for the experiment were
7weeks of network trafc. Tis dataset was utilized in the
KDDCUP competition in 1999 and later became known as
the KDD99 dataset. Although the dataset is too old and may
have obsolescence issues, KDD99 was very popular among
researchers and sets the stage for deep learning and in-
telligent computing to make a big splash in intrusion
research.

Each entry in the dataset is labeled, specifcally into 2
types of anomalous attacks and 1 type of normal. We train
a random sample at a time to learn the characteristics of each
anomaly type in order to make predictions for each
input data.

In the experimental study, the network intrusion de-
tection packet kdd_cup_data_10percent from KDDCup99 is
marked as the training set and corrected as the test set. Te
kddcup_data_10percent packet is a 10% sample of the
kddcup_data packet. Since the data processed for the ex-
periment is network trafc, inputting a segment of network
trafc predicts the category to which it belongs (39
attacks + normal). For such a classifcation problem, we
conducted similar experiments in diferent models and
evaluated these models by accuracy, precision, recall, and
f1 score.

To explain our evaluation metrics, the following ex-
planation is given. Suppose a correct sample is incorrectly
considered as wrong in a dichotomous classifcation prob-
lem, and this wrong data is labeled as false positive (FP). A
false negative (FN) indicates that an abnormal instance is
labeled as normal. Similarly, true positives (TP) and true
negatives (TN) indicate abnormalities and correctly identify
normal instances. Te area enclosed by axes under the ROC
curve is defned as the AUC (area under the curve), which
has values between 0.5 and 1 in a 1∗ 1 coordinate system.
Te closer the AUC is to 1.0, the better the prediction equals
to 0.5, the lowest truthfulness and no application value.
Diferent metrics can be evaluated in this way:

Input: D1 � X1
1, X2

1, . . . , Xk
1􏽮 􏽯, D2 � X1

2, X2
2, . . . , Xk

2􏽮 􏽯 are the input sets, and label Y � y1, y2, . . . , yk􏼈 􏼉 is the corresponding
Output:A trained anomaly detection model M

(1) Initialize the model M
(2) Initialize the iteration count T, batch size N, threshold δ
(3) for q� 1 t o T do
(4) for m� 1 to 2 do
(5) for each batch Xi

m􏼈 􏼉
N

i�1 do
(6) Transfer Xi

1 into S1 via CNN by equation (7)
(7) Transfer Xi

2 into S2 via CNN by equation (8)
(8) Splice S1 and S2 into S
(9) Predict y(i)′ based on Z via the estimation network
(10) Update M to minimize loss
(11) end for
(12) if loss< δ: break
(13) end for
(14) return M

ALGORITHM 1: Anomaly Detection Algorithm Based on C2-LSTM.
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Figure 3: (a) Comparison of the metrics on the test data set and (b) comparison of the metrics on 100 epochs during training.
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accuracy �
TP + TN

TP + TN + FP + FN
,

precision �
TP

TP + FP
,

recall �
TP

TP + FN
,

AUC �
1
2

􏽘

m−1

i�1
xi+1 − xi( 􏼁∙ yi+1 + yi( 􏼁.

(11)

Data preprocessing using python consists of numerical
replacement text, numerical normalization, and tag unique
hot coding. Numerical replacement text mainly converts the
values of the 41 feature values of each connection that are
strings into numerical form.Te most-valued normalization
is used in numerical normalization. Te preprocessing ends
into 4 fles (train_x, train_y, test_x, test_y).

4.2. Analysis of Indicators. To build our model and conduct
experiments, we utilized two models; the CNN can extract
spatial features up to dimensionality, while the C-LSTM is

more sensitive to changes on time steps. We designed ex-
periments to evaluate the efect of CNN and C-LSTM fusion.
We set the number of convolution cores of the convolution
layer to 32 and the step size to 3. Te window size of the
pooled layer is 2. Te number of LSTM cells is 64. In this
experiment, we evaluated four models including CNN,
LSTM, C-LSTM, and C2-LSTM. After each model was
trained on the training dataset for 100 calendar hours at
a learning rate of 1e-2, the performance (precision, accuracy,
recall, and Auc score) on the test dataset was collected as
shown in Figure 3. Te fusion model with C2-LSTM has the
highest scores in terms of training accuracy, precision, recall,
and Auc. From the test results, we can conclude that our
C-LSTM outperforms the single CNN and LSTM. Proving
that it can extract more key features in time series, our
C-LSTM also demonstrates better temporal feature extrac-
tion and is higher than the original LSTM in terms of AUC,
accuracy, and precision metrics compared to the single
LSTM. At the same time, it is slightly lower than the LSTM in
terms of recall metrics, which we believe is due to the one-
dimensional CNN in front of the model that makes it focus
more on single temporal features and ignore spatial features
in some dimensions.
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Figure 4: Train these two models with 100 epochs of training data for comparison.
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4.3. Comparison with Our C-LSTM. In the paper [7], the
authors use sliding windows to construct preprocessed
temporal correlation data and use LSTM to extract
temporal features. In order to achieve better results in
temporal feature extraction with the fused model, our
improved model replaces the C-LSTM’s two-dimensional
convolution and sliding window operation for extracting
temporal features with a one-dimensional temporal
convolution and fuses it with the CNN. To demonstrate
the efectiveness of the improvement and fusion, we take
out the improved model separately and compare it with
the C2-LSTM. We evaluate the classifcation results of the
C-LSTM model with one-dimensional convolution and
the C2-LSTM. As shown in Figure 4, the two models are
trained with 100 epochs of training data with a learning
rate of 1e-3. Te lowest loss values and best performance
across all metrics are obtained by the fused C2-LSTM. Te
fused C2-LSTM based on fusion can extract superior
features for further classifcation, according to the
experiments.

4.4. Time Performance Requirements. Driven by the new
digital revolution represented by IoT technologies, these
emerging resource-constrained network entities usually
have limited computing power or more sensitive latency
characteristics. Terefore, the training and detection time
of the network and its own lightweight are also discussed in
our consideration and comparison experiments. We
compared the training time and prediction time for CNN,
LSTM, our modifed C-LSTM, and our fused C2-LSTM.
Te experimental conditions were a GeForce RTX 2080 Ti
with 12G video memory. Te training time is the total
training time when training 100 epochs with a batch size of
512, and the prediction time is the overall prediction time
when predicting 494021 data using the trained model.
Figure 5 depicts the performance at training time, with the
fused C2-LSTM converging fastest at a lower loss. Our C2-
LSTM ofers faster prediction and training speed compared

to simple CNN, as seen in Table 3.Tis is due to the fact that
our fusion model possesses superior capability in pre-
diction without requiring deep network layers.

5. Conclusions

We have proposed a new architecture combining CNN and
enhanced C-LSTM to better adapt to the emerging IoT
anomaly intrusion detection with massive data and high
latency sensitivity. In addition, we demonstrate that the
architecture that extracts spatial and temporal features
separately in parallel from CNN and C-LSTM before
fusing them can better learn both spatial and temporal
correlations of data simultaneously to better cope with
complex IoT environments. Based on this, we have
evaluated diferent anomaly detection methods and used
C2-LSTM to extract superior features for classifcation in
fully connected networks. According to the results of the
experiments, the model has performed at the highest level
in terms of accuracy, precision, completeness and AUC
score. Furthermore, its model structure determines that it
can boost detection performance without a deep network
and can also evaluate temporal performance at a higher
level. It is challenging to sustain its existing edge over
shallow networks in the face of ultrahigh latitude data,
though, as the complexity of the data keeps growing.
When faced with such data, we have intended to use PCA
to downscale and process the data, but using data pre-
processing methods will inevitably introduce some la-
tency, which is not permitted in industrial IoT devices
listed with high latency sensitivity, and we will continue to
work in this direction in the future.
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Figure 5: Convergence speed of training.

Table 3: Time consumption for training and prediction.

CNN (s) LSTM (s) Our C-LSTM (s) Ours (s)
Training time 956.35 1919.03 1339.25 1880.49
Testing time 3.06 3.09 2.81 2.62
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Internet of Vehicles (IoV) is a signifcant 5G application scenario. As it developed rapidly, more and more vehicles are connected
to Internet of Vehicles. Te data security and privacy are the premises to ensure its service quality in an open communication
network. Tis paper proposes IoV-SDCM, a secure data communication model in IoV. It includes a self-organizing relay
forwarding network and an assured delivery mechanism. Te relay forwarding network is used for constructing a dynamic
collaboration network with the vehicle as the node. Te security delivery mechanism is that network coding is used for data
fragmentation and re-encoding to improve network communication reliability. Homomorphic encryption is used to encrypt and
protect the encoding vector, improving information leakage and anticollusion attacks.Te theoretical proof proves that the model
has the ability of data transmission confdentiality and better antiattack capabilities, while it has privacy protection capabilities.
Furthermore, the experiment verifes that the model also has the advantage of high and stable data delivery efciency.

1. Introduction

Internet of Vehicles (IoV) is a new form of mobile Ad hoc
networks (MANETs) in the feld of road trafc, which is an
intelligent information network service [1]. Vehicles are
connected, and real-time information exchange is per-
formed on roadside facilities, the Internet, and trans-
portation systems in an open and joint environment [2].
However, the rapid movement of IoV nodes, dynamic to-
pology changes, and on-demand connectivity challenge
security and privacy [3]. Its security can be roughly divided
into security of terminals, communication networks, and
cloud platforms. Especially in the IoV communication
process, the high openness is well used to build a trans-
mission network. However, with the high-speed mobility of
vehicles, the network topology changes dynamically, and the
quality of data transmission service is difcult to guarantee.
At the same time, fake nodes or malicious attack entities will
also be introduced to launch Sybil attacks, DDoS, and APT
attacks. Or infer some privacy information for identity,

location, preferences, motion trajectory by trafc analysis,
packet analysis and tracing, and collusion attacks. Tese
issues cause that the vehicle control signals and alarm signals
are unable to be transmitted to the vehicle terminal in a
timely and fast manner or are intercepted and tampered by
attackers. Tey may even greatly impact the safety of users’
personal and property [4, 5]. Tere is a further problem with
the efective combination and balance of communication
efciency and security.

To solve the communication efciency problem, some
researchers study V2V relay communication strategies based
on node self-organizing cooperation to improve the
throughput of in-vehicle networks. For collaborative data
distribution and transmission, most researchers use content
relay and perfecting schemes [6], and some researchers use
game theory-based incentive mechanisms [7, 8] or some
learning algorithm [9] to promote cooperation between
nodes. Tese methods have made contributions to the
transmission delay and transmission fow and have a sig-
nifcant role in promoting vehicle data transmission in high-
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speed road scenarios or urban road scenarios. At the same
time, many researchers have paid great attention to the above
security issues in the new scenarios of 5G IoV communication
and some researchers have also focused on the efective
combination and balance of communication efciency and
security.Te concept of network coding was proposed in 2000
[10]. On the one hand, network coding technology can im-
prove the robustness of the network, resist the impact on
network links, reduce retransmissions, and reduce network
management overhead. On the other hand, it can improve the
security of information. Trough the XOR operation, it is
equivalent to encrypting the information, making the in-
formation more difcult to be eavesdropped. Even if the
information is eavesdropped, it is difcult for the eaves-
dropper to decode the information correctly because he does
not know the processing method of the information and
cannot obtain valid information. Terefore, some researchers
have used it for vehicle network data communication [11–13]
and secure communication [14, 15]. Meanwhile, some re-
searchers use anonymity, encryption, and one or more
technologies to design IoV privacy protectionmechanisms for
solving node identity privacy, location privacy, and data
privacy leakage during communication [16, 17].

After research and analysis, it is necessary that a secure
data communication scheme of IoV is constructed, con-
fguring a relay collaboration strategy to improve trans-
mission performance and a security policy to guarantee
security and privacy. Tis paper proposes IoV-SDCM, a
secure data communication model in IoV. Our main con-
tributions include the following:

(1) We design a self-organizing data communication
network composed of relay cooperative vehicle nodes.
Trough a pseudonymous strategy and a broadcast
policy, it achieves source node anonymity, target node
anonymity, and communication relationship ano-
nymity in the self-organizing relay forwarding network.

(2) A data delivery strategy is proposed utilizing random
network coding aided by homomorphic encryption
in the data communication. It increases network
throughput while protecting the confdentiality of
information. And it can defend against collusion
attacks during network coding transmission as the
global network coding vectors are encrypted by
homomorphic encryption.

(3) After the theoretical proof and performance analysis,
the proposed model reduces the overhead of en-
cryption and decryption and the computing cost of
nodes. Furthermore, it ensures the confdentiality of
data transmission and privacy protection capabil-
ities. We conclude that the model has high reliability
and good performance by simulation experiments.

Te rest of the paper is organized as follows. Section 2
provides the related work. Te proposed IoV-SDCM model
is described in Section 3 and the theoretical proof is analyzed
in Section 4. Section 5 reports the experiments in detail and
discusses the experimental results. Finally, a brief conclusion
is drawn in Section 6.

2. Related Work

2.1. Network Coding. Initially, some researchers have made
some progress in using network coding to improve the
communication performance of the Internet of Vehicles.
Ahlswede et al. [10] proposed the concept of network coding
in 2000. Ho et al. [18, 19] proposed an algorithm of random
network coding (RNC). It is simple in construction and easy
to implement in relay collaborative IoV communication.
Some scholars have used network encoding to provide IoV
data transmission and improve the stability and security of
data transmission between dynamic nodes. Kai et al. [20]
proposed an auxiliary scheduling algorithm based on net-
work coding to achieve data sharing and collaboration
between V2X, which improved data services’ performance
and bandwidth efciency and reduced the risk of direct data
exposure. Kwon and Park [21] proposed a V2I real-time data
distribution system for system network encoding, aiming at
the validity and reliability of V2I data transmission. It could
efectively reduce the network delay in V2I communication
caused by packet loss in the channel. Gao et al. [22] proposed
a network coding system that assists D2D transmission,
which improved the total network capacity using a payof
function balancing relay selection and resource allocation
under complex interference conditions. Te above research
could efectively improve the throughput of the network, but
no further research has been conducted on possible security
risks.

Next, some researchers attempt to solve the transmission
performance and some security problems by network
coding. Khan and Chatzigeorgiou [23] proposed an op-
portunistic relay framework based on random network
coding. It simulated the probability that it could partially or
wholly recover confdential data if an eavesdropper inter-
cepted a certain number of packets. And it also validated the
trade-ofs between security and reliability. Xu et al. [24]
proposed a transmission scheme using adaptive relay se-
lection, in which users promote secure communication
through collaboration. It had a stable performance gain and
efectively suppressed eavesdropping channels. However,
due to its security problems by itself, it is still unable to solve
the security problems such as conspiracy attacks in data
transmission.

2.2. Privacy Protection. At the same time, some researchers
have designed the IoV privacy protection using one or more
technologies such as anonymity and encryption. Kang et al.
[25] proposed that IoV edge resources and fog computing
technology can efectively manage and distribute pseudo-
nyms for identity authentication. It improves the ability of
identity privacy protection. Wang et al. [26] designed a
binary privacy-preserving scheme. Te scheme used
decentralized CA and biometric password-based authenti-
cation to reduce authentication costs and achieve condi-
tional privacy protection. Rajput et al. [27] designed a
hierarchical pseudonym authentication protocol that relied
solely on CA no longer and reduced the burden on IoV
systems. Rabieh et al. [28] gave a route privacy protection

2 Security and Communication Networks



method using homomorphic encryption and error-checking
technology, which protects the driver’s trajectory data pri-
vacy and prevents collusive attacks between malicious ve-
hicles. Te above research has only improved in security and
privacy, but limited improvement in network performance.

2.3. Our Motivation. Our paper focuses on a model for
secure data communication based on network coding and
relay collaboration. Te data communication network is
constructed based on relay collaboration vehicle nodes. In
the relay collaborative communication network, the relay
node could expand communication coverage, efectively
improving communication quality and increasing the
eavesdropped information risk.We deeply study the stability
and security of data transmission and give the corresponding
mechanism for security and privacy protection.

3. IoV-SDCM

Section 3.1 gives IoV-SDCM’s model defnition and com-
ponents. For the detailed components, the relay forwarding
network and security data delivery mechanism are described
in Section 3.2 and Section 3.3.

3.1. Model Defnition

Defnition 1. IoV secure data communication model (IoV-
SDCM): IoV-SDCM could be defned as quadruples (S,D,N,
T), where S is the source vehicle node, D is the target vehicle
node, N is the forwarding network including relay coop-
erative vehicle nodes, and T is the secure transmission policy,
as shown in Figure 1.

(i) Source vehicle node S: Te source vehicle node S
divides the information into m slices and uses the
pseudonymous strategy to generatem virtual source
vehicle nodes, each of which has a data fragment.

(ii) Target vehicle nodeD: target vehicle nodeD receives
the encoding information, global encoding vectors,
and local encoding matrix from the last relay vehicle
nodes and decodes to restore the original data.

(iii) Forwarding network N: Te forwarding network is
defned as a wireless multihop network composed of
m× n relay nodes R(i,j) (i� 1,2, . . ., m;j� 1,2, . . ., n;
R(i,j)), where R(i,j) means the j node in the ith hop
group. Te nodes and their links in the forwarding
network meet the following properties at the same
time: (1) there are m neighbour nodes within a hop
of source node S as the entry nodes R(i,j) (i� 1,2, . . .,
m;j� 1); (2) there are m neighbour nodes within a
hop of target vehicle node D as the exit nodes R(i,j)
(i� 1,2, . . ., m;j� n); (3) the relay nodes within the
adjacent one-hop range are all within the com-
munication range of each other; (4) the length of
each path is n; (5) there are m disjointed data
forwarding paths from the entry node to the exit
node.

(iv) Secure transmission policy T: Te source node uses
the homomorphic encryption function to encrypt
the initial global encoding vector and uses a random
coefcient to encode the information slices for
network encoding, which are transmitted to the
entrance nodes, respectively. Te relay node en-
codes the data slices by random coefcient selection.
It uses the splitting forwarding strategy in the
anonymous forwarding network to transmit the
encoding information, global encoding vectors, and
local encoding matrix. Finally, the exit node
broadcasts encoding information, a global encoding
vector, and a local encoding matrix to the target
node.

3.2. Relay Forwarding Network. It is necessary to meet the
requirements of source node anonymity, target node ano-
nymity, and communication relationship anonymity in the
self-organizing relay forwarding network. We use the
pseudonymous strategy for generating multiple virtual
source nodes to achieve the anonymity of the source node.
We build an anonymous relay forwarding network to
achieve anonymous communication relationships. In the
anonymous relay forwarding network, each hop contains a
group of nodes, the groups can communicate with each
other, and each group of nodes only knows its previous hop
group and the next hop group. Te exit node broadcasts
information to the target node to achieve receiver ano-
nymity. Te specifc forwarding network construction
process and related anonymity strategies are shown in
Figure 2.

3.2.1. Initialization. First, a forwarding link from a source
vehicle node to the target vehicle node is generated.

Te source vehicle node S routs a request message RREQ
to target vehicle node D. Te structure of RREQ is shown in
Table 1. If the adjacent node is not the target vehicle node, it
is logged to the RREQ message, and the number of paths is
increased by 1. Ten, it continues to be forwarded. Oth-
erwise, it stops forwarding and gets a forwarding path from
the source vehicle node S to target vehicle node D if an
adjacent node is the target vehicle node. Finally, the target
vehicle nodeD sends an answer message containing the path
information path to route request node S.

3.2.2. Source Vehicle Node Anonymity Policy. A virtual
source node strategy is proposed to achieve the source ve-
hicle node S anonymity. It generates m virtual source nodes
as forwarding nodes using the pseudonymous mechanism
and generates m forwarding paths.

Supposing the source vehicle node S is identifed as IDs, S
presets a hash function H and a random number generator
that results in a random number αi, where IDs and H are l
bits. Finally, S uses the hash function to generate the
pseudonym set S’� {S1, S2,. . ., Sm}. Te pseudonym of the
source node is
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S1 � H IDS⊕α1( 􏼁,

S2 � H IDS⊕α2( 􏼁,

Sm � H IDS⊕αm( 􏼁.

(1)

3.2.3. Relay Node Anonymity Policy. In a routing path
generated by initialization from source vehicle node S to
target node D, node i as the group header (Headeri) is se-
lected by neighbouring nodes, constructing the ith hop m-
anonymous group (Hop_Groupi). And its member node gj

meets the following conditions:

(i) Te ith hop m-anonymous group Hop_Groupi is
within the communication scope of its previous
anonymous group (Hop_Groupi-1) and the next hop
anonymous group (Hop_Groupi+1)

(ii) Te group head node Headeri could set the for-
warding path sequence gj for the member nodes in
the group, and the forwarding path sequence of the
member nodes is shown in Table 2.

3.2.4. Exit Node Broadcast Policy. For the exit node
(hop� n), a set of forwarding nodes containing m nodes is
generated. In the communication range of the previous hop
forwarding node, there are a developed set of forwarding
nodes. Te target node D, i.e., IDR, is within the broadcast
range of the exit node set.

3.2.5. Update Policy. We set the communication cycle T, in
which the source vehicle node carries data transmission
along the constructed anonymous forwarding network.
When the next communication cycle arrives, the original
anonymous forwarding network is abandoned, and an
anonymous forwarding network is re-established for data
transmission. It could prevent the failure of the routing node
and balance the energy consumption.

Te specifc process of constructing a self-organizing
anonymous forwarding network is shown in Algorithm 1.

3.3. SecureDataDeliveryMechanisms. As shown in Figure 3,
we suppose a trusted authority distributes a key pair (ke, kd)
for each node, where ke is an encryption key, and kd is a
decryption key, and the encryption key ke is issued to all
other nodes.

Phase 1. Te source vehicle node S divides the information
to be sentM into m slices of information (M1,M2, . . .,Mm).
Taking m� 3 as an example, it generates m virtual nodes,
assigning the encoded fragments to the virtual nodes.

If the source vehicle node does not know the target
vehicle node key, we preprocess the original data using the
information-slicing strategy. Tis mechanism aims to
ensure the confdentiality of the data during transmission.
A specifc method of slicing information is given as
follows.

An original message M of the source vehicle node is
sliced intom data fragment. Te length of a data fragment is
d, and then, the original messageM can be represented as an
m-dimensional vector:

M � M1, M2, . . . Mm( 􏼁. (2)

Since plaintext transmission of shared information leaks
content to relay nodes in the forwarding network, plaintext
transmission is not ideal. By introducing a random but
reversible transformation matrix A to construct a pertur-
bation source information slice, the original information
after the disturbance M′ is as follows.

M′ � AM

�

A1

A2

⋮

An

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
M1, M2 . . . , Mn( 􏼁

� A1M1, A2M2, . . . , AnMn( 􏼁

� M2′, M2′, . . . , Mn
′( 􏼁.

(3)

Source vehicle
 node S Forwarding network N Target vehicle 

node D

R1, 1 R1, 2 R1, 3R1, 0

R2, 1 R2, 2 R2, 3R2,0S

R3,1 R3, 2 R3, 3R3,0

Virtual source
vehicle nodes Entry nodes Relay nodes Exit nodes Target vehicle 

node D

Figure 1: IoV data security delivery model.
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Tus, the source information transmitted in the anon-
ymous forwarding network is the information M trans-
formed information.

M′ � M1′, M2′, . . . Mm
′( 􏼁. (4)

Te information-slicing policy avoids the direct trans-
mission from leaking content to relay nodes in the for-
warding network.

For the target vehicle node, as long as all slicing in-
formation of M′ and transformation matrix A are received,
the original information M can be restored, i.e.,

M � A
− 1

M′

� A
− 1

M1′, M2′, . . . Mm
′( 􏼁.

(5)

Phase 2. Te virtual source node encodes each slicing in-
formation separately and then sends the encoded data and
the encrypted global encoding vector to the entry node,
respectively.

Te source node S builds m diferent forwarding paths
for the data slices. For the original data M, the source node
divides it into m information slices (M1,M2, . . .,Mm) in the
source node data slicing strategy. Its encoding forwarding
strategy is that the source node selects a random coefcient
for each slicing data and computes the network encoding,
and then, it sends the encoded data and the encrypted global
encoding vector to the next hop node along m diferent
paths.

Assuming the length of each slice data d, the specifc
steps for the source node data encoding are as follows:

Step 1. Random coefcient selection for network encoding.
Randomly selectm coding coefcient vectors of length d

on a fnite feld F, C(i,0)
j (i� 1,2, . . .,m; j� 1,2, . . .,m), which

forms a local encoding matrix, denoted C(i,0) (i� 1,2, . . .,m),
i.e.,

C(i, 0) �

C
1
(i,0)

C
2
(i,0)

⋮

C
m
(i,0)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(i � 1, 2, . . . , m). (6)

Step 2. Network encoding for each slice Mi.
Te local encoding matrix C(i,0) and each sliceMi operate

a binary bit addition. Tat is, each encoding coefcient
vector of C(i,0), C(i,0)

j performs an XOR operation on Mi,
separately, denoted as follows:

M
(0)
i � C(i,0)⊕Mi

� C
1
(i,0)⊕Mi, C

2
(i,0)⊕Mi, . . . , C

m
(i,0)⊕Mi􏼐 􏼑(i � 1, 2, . . . , m).

(7)

Step 3. Calculating the global encoding vector.
Te global coding vector Vi

(0) consists of the ith coding
coefcient component of C(i,0), and then, the global coding
vector is as follows:

V
(0)
i � C

i
(1,0), C

i
(2,0), . . . , C

i
(m,0)􏼐 􏼑. (8)

Step 4. Encrypting the global encoding vector.
Te global encoding vector Vi

(0) is encrypted using a
homomorphic cryptographic function, denoted as

EV
(0)
i � EH V

(0)
i , ke􏼐 􏼑

� EH C
i
(1,0), C

i
(2,0), . . . , C

i
(m,0)􏼐 􏼑, ke􏼐 􏼑

� EC
i
(1,0), EC

i
(2,0), . . . , EC

i
(m,0)􏼐 􏼑.

(9)

Step 5. Forwarding the encoded message.

Root

Header

member

ID1 ID2 …

… … …

… IDn

g1 g2 gm-1 g1 g2 gm-1 g1 g2 gm-1

Hop_Group1 Hop_Group2 Hop_Groupn

Figure 2: A self-organizing anonymous forwarding network based on groups.

Table 1: Routing request message RREQ.

Source Target Num path [1] path [2] . . . . . . path [n]
ID S ID R n ID 1 ID 2 . . . . . . ID n

Table 2: Te m-anonymous group of the ith hop (Hop_Groupi).

hop hop1 hop2 . . . . . . hopj . . . . . . hopm
i g1 g2 gj gm
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Te source node sends the encoded information Mi
(0)

and the encrypted global encoded vector EVi
(0) along the ith

path to the exit node.
Te above encoding forwarding process avoids the direct

decoding of a single entry node because the encoded data
fragments consist of the splicing data and column vector of
the local encoding matrix. Te encoded data slices and
encrypted global encoded vectors are forwarded along the
m-path, respectively, preventing the exit nodes from col-
luding to recover the original data.

Phase 3. Te entry nodes re-encode and use the splitting
forwarding strategy for transmission after receiving the
encoded information and the encrypted global coding
vector. Te jth relay node of the ith hop R(i,j) receives the m
packets sent by the relay node of the previous hop m-path,
selects the random coefcient, and encodesm packets. Ten,
according to the list of neighbour nodes R(i,j), the encoded
information, the global encoding vector ciphertext
encrypted, and the row vector of the local encoding vector
are forwarded to the next hop relay node along m diferent
paths. Repeat the above process until the exit node completes
the encoding operation.

Te data forwarding policy of the relay node is similar to
the data forwarding policy of the source node. Te relay
node R(i,j) receives m packets sent by the relay node of the
previous hop m-path. It selects the random coefcient and
performs network encoding for m packets. Ten, the
encoded information, the ciphertext of the global encoding
vector, and the local encoding row vector are forwarded
along the m diferent paths to the next hop relay node. Te
specifc steps for relay node data encoding are as follows:

Step 6. Random coefcient selection for the network
encoding.

Randomly selectm coding coefcient vectors of length d
in a fnite feld F, C(i,j)

k (i� 1,2, . . ., m;j� 1,2, . . ., m;k� 1,2,
. . .,m), that forms a local codingmatrix, denoted asC(i,j), i.e.,

C(i, j) �

C
1
(i,j)

C
2
(i,j)

⋮

C
m
(i,j)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(i � 1, 2, . . . , m; j � 1, 2, . . . , m). (10)

Step 7. Relay node R(i,j) performs network encoding for the
m packets received, Mi

(j).
Te local encoding matrix C(i,j) calculates a binary bit

addition on Mi
(j). Tat is, each encoding coefcient vector

C(i,j)
k of C(i,j) performs an XOR operation on Mi

(j), re-
spectively, denoted as

M
(j)
i � C(i,j)⊕M

(j−1)
i

� C
1
(i,j)⊕M

(j−1)
i , C

2
(i,j)⊕M

(j−1)
i , . . . , C

m
(i,j)⊕M

(j−1)
i􏼐 􏼑

(i � 1, 2, . . . , m).

(11)

Step 8. Calculating the global encoding vector ciphertext of
the relay node R(i,j).

Since the global encoding vector is the ciphertext
encrypted by the homomorphic encryption function in the
received m-path packet, the relay node does not have the
corresponding decryption key. Te relay node could not
decode the original packet to be directly recovered. At the
same time, according to the homomorphic cryptographic
function, linear changes could directly use the ciphertext of
the global coding vector to generate new global coding
vectors.

Te global coding vector Vi
(j) consists of the ith coding

coefcient component, C(i,j); then, the global coding vector is
as follows:

EV
(j)
i � 􏽘

m

k�1
C

k
(k,j−1)EV

(j−1)

i . (12)
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M
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Figure 3: Secure transmission mechanism (m� 3, n� 3 as an example).

6 Security and Communication Networks



Step 9. Forwarding the encoded message.
Te relay node sends the encoded information Mi

(j), the
ciphertext of the global encoding vector EVi

(j), and the ith
row vector of the local encoding matrix C(i,j)

i to the relay
node in the ith path. In addition, the other row vectors of the
local encodingmatrix,C(i,1)

k (k≠ i), are sent to the relay node
along the j-th path, respectively.

Here, there are two points to be noted. For the entry
node R(i,1), there is only one input link, Vi

(1) �Vi
(0) and

EVi
(1) � EVi

(0). For the exit node, it broadcasts the encoded
information Mi

(n) and the ciphertext of the global encoding
vector EVi

(n) and the local encoding matrix C(i,j) to the target
vehicle node.

In the above encoding forwarding process, the encoded
data slice Mi

(j), the ciphertext of the global encoding vector
EVi

(j), and the row vector of the local encoding matrix C(i,j)
i

are forwarded along the unjoint m-paths, respectively. It
prevents the relay node from recovering the original data.

Phase 4. Te exit node broadcasts the encoding informa-
tion, global encoding vectors, and local encoding matrix to
the target node.

Phase 5. Without considering network errors, the target
vehicle node D receives the network encoding information
Mi

(n), the global encoding vector ciphertext EVi
(n), and local

encoding matrix C(i,n) from m-path. It uses the information
to recover the information completing the data forwarding
transmission process.

Assuming that the probability of transmission error is
negligible, the target vehicle node D could receive the
network encoding information Mi

(n), the global encoding
vector ciphertext EVi

(n), and the local encoding matrix C(i,n)
from m-path. Te decoding steps are as follows.

Step 10. Te target node D uses the decryption key kd to
decrypt the ciphertext of the global encoding vector EVi

(n) to
obtain the global encoding vector Vi

(n), and the decryption
operation is as follows:

V
(n)
i � D EV

(n)
i , kd􏼐 􏼑

� ⊕
n−1

k�0
C

i
(1,k), ⊕

n−1

k�0
C

i
(1,k), . . . , ⊕

n−1

k�0
C

i
(1,k)􏼒 􏼓.

(13)

Step 11. Te target vehicle node D restores the original slice
information Mi according to the network encoding infor-
mation Mi

(n), the global encoding vector Vi
(n), and the local

encoding matrix C(i,n) as follows:

Mi � M
(n)
i ⊕ V

(n)
i ⊕C(i,n)􏼐 􏼑. (14)

Step 12. Te target vehicle node D recovers the original
information M based on the original slice information Mi,
denoted as follows:

M � M1, M2, . . . Mm( 􏼁. (15)

Next, we will prove that the secure data delivery
mechanism can be successfully decrypted after receiving
encrypted data packets.

Assuming that the probability of transmission errors is
negligible in a data forwarding network based on network
encoding, the target vehicle node D could receive the net-
work encoding information Mi

(n), the ciphertext of global
encoding vector EVi

(n), and the local encoding matrix C(i,n)
from m-path.

Theorem 1. Without considering network errors, the target
vehicle node D receives the network encoded information
Mi

(n), the ciphertext of the global encoding vector EVi
(n), and

the local encoding matrix C(i,n) from the m-path, using them
to recover the information sent by the source node S
correctly.

Proof. Without considering network errors, the target ve-
hicle node D receives the network encoding information
Mi

(n), ciphertext EVi
(n), and local encoding matrixC(i,n) from

the m-path. Te above information is obtained after n op-
erations in the data forwarding network based on network
encoding. First, analyze the calculation process of the above
information.

Te information sliceMi is encoded by n times to obtain
Mi

(n), and its calculation process is as follows:

M
(n)
i � C(i,n)⊕M

(j−1)

i

� C(i,n)⊕ C(i,n−1)M
(j−2)
i􏼐 􏼑

� C(i,n)⊕ C(i,n−1)⊕ C(i,n−2)⊕M
(j−3)
i􏼐 􏼑􏼐 􏼑

� C(i,n)⊕ C(i,n−1)⊕ C(i,n−2)⊕ · · · C(i,0)⊕Mi􏼐 􏼑􏼐 􏼑􏼐 􏼑􏼐 􏼑

� ⊕
n

k�0
C(i,k)⊕Mi.

(16)

Te ciphertext of the global encoding vector EVi
(n) is

obtained by calculating EVi
(0) by n times, and its calculation

process is as follows:
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EV
(n)
i � 􏽘

n

k�1
C

k
(k,n−1)EV

(n−1)
i

� 􏽘
n

k�1
C

k
(k,n−1) 􏽘

n

k�1
C

k
(k,n−2)EV

(n−2)
i

⎛⎝ ⎞⎠

� 􏽘
n

k�1
C

k
(k,n−1) 􏽘

n

k�1
C

k
(k,n−2) 􏽘

n

k�1
· · · 􏽘

n

k�1
C

k
(k,1)EV

(1)
i

⎛⎝ ⎞⎠⎛⎝ ⎞⎠⎛⎝ ⎞⎠

� 􏽘
n

k�1
C

k
(k,n−1) 􏽘

n

k�1
C

k
(k,n−2) 􏽘

n

k�1
· · · 􏽘

n

k�1
C

k
(k,1) EC

i
(1,0), EC

i
(2,0), . . . , EC

i
(m,0)􏼐 􏼑⎛⎝ ⎞⎠⎛⎝ ⎞⎠⎛⎝ ⎞⎠

� ⊕
n−1

k�0
EC

i
(1,k), ⊕

n−1

k�0
EC

i
(1,k), . . . , ⊕

n−1

k�0
EC

i
(1,k)􏼒 􏼓.

(17)

Te target vehicle node D uses the decryption key kd to
decrypt the global encoding vector ciphertext EVi

(n) and
obtains the global encoding vector Vi

(n). Te result is as
follows:

V
(n)
i � D EV

(n)
i , kd􏼐 􏼑

� D ⊕
n−1

k�0
EC

i
(1,k), ⊕

n−1

k�0
EC

i
(1,k), . . . , ⊕

n−1

k�0
EC

i
(1,k)􏼒 􏼓, kd􏼒 􏼓

� ⊕
n−1

k�0
C

i
(1,k), ⊕

n−1

k�0
C

i
(1,k), . . . , ⊕

n−1

k�0
C

i
(1,k)􏼒 􏼓.

(18)

According toMi
(n), EVi

(n), and the local encoding matrix
C(i,n), the original information sliceMi can be recovered.Te
calculation method is as follows:

M
(n)
i � ⊕

n

k�0
C(i,k)⊕Mi

� ⊕
n−1

k�0
C(i,k)⊕C(i,n)⊕Mi

� V
(n)
i ⊕C(i,n)⊕Mi.

(19)

According to the above formula,Mi could be derived and
calculated as follows:

Mi � M
(n)
i ⊕ V

(n)
i ⊕C(i,n)􏼐 􏼑. (20)

Finally, the original information M� (M1, M2,. . ., Mn)
could be recovered according to Mi. End. □

4. Security Analysis

Tis section proves the security of the model from conf-
dentiality and anticollusion attack. Te confdentiality is
shown that the relay nodes except the target vehicle node
could not obtain the original information. Te anticollusion
attack is shown that collusion attackers could not jointly
recover the original data.

4.1.Confdentiality. In IoV-SDCM, the confdentiality of the
message indicates that no node in the forwarding network
could obtain the content of the sender message except for the
destination node.

Theorem 2. In addition to the target vehicle node D in IoV-
SDCM, the relay nodes in the network could not recover some
of the slicing information of the original information M sent
by the source vehicle node S.

Proof. According to the proof conclusions of reference [29],
it was proved that the homomorphic encryption function
encrypts the data homomorphically to form the ciphertext,
and then, the obtained ciphertext calculation result is ob-
tained by homomorphically decrypting the plaintext, which
is the same as the result of directly calculating the plaintext
data, but the plaintext data cannot be obtained. Based on the
demonstration, the nodes in the IoV-SDCM forwarding
network could not decrypt the part of the information of the
ith hop global coding vector because the homomorphic
encryption function encrypts the global encoding vector.
Te relay nodes except the target vehicle node D could not
recover the original informationM sent by the source vehicle
node S. Terefore, there is no early decoding phenomenon,
and the relay nodes could not decrypt part of the slicing
information of the original information M. End.

In summary, IoV-SDCM ensures the confdentiality of
the message. □

4.2.AnticollusionAttack. A collusion attack refers to the fact
that multiple attackers collude with each other to decode the
original information transmitted by the source vehicle node.
Te model proposed in this paper could prevent multiple
leakers from conspiring to recover some information from
the original information piece Mi.

Theorem 3. In addition to the target vehicle node D in the
model, there are multiple relay nodes in the anonymous
forwarding network. Te conspiratorial attackers could not
obtain part of the original information M by leaking part of
the information to recover the original data jointly.

Proof. According to the evidence in the paper [30], when the
global coding vector is exposed, multiple leak nodes could
recover some of the information of the original information
slice Mi through collusive attacks. Te main reason is the
leakage of the global coding vector Vi

(j). By obtaining a
partial global encoding vector Vi

(j), an attacker could solve
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for some slices of the original information. Te model
proposed in this paper uses a homomorphic encryption
function to encrypt the global encoding vectorVi

(j). Only the
target vehicle node D could decrypt the global encoding
vector Vi

(j), while other nodes could not decrypt the global
encoding vector Vi

(j). Terefore, the leakage of the global
encoding vector Vi

(j) is prevented, so that the attacker could
not solve part of the slicing information. Tat is, the col-
lusion attack of multiple leaked nodes could not be suc-
cessful. End □

Corollary 1. In addition to the destination node D in IoV-
SDCM, if multiple relay nodes jointly recover the original
information by disclosing some data, the conspiratorial at-
tackers could not get the original data.

Proof. According to Teorem 3, due to homomorphic en-
cryption functions to encrypt the global encoding vector, the
nodes in the forwarding network could not decrypt part of
the i-hop global encoding vector. Tere is no early decoding
phenomenon, and the conspiratorial attackers could not
obtain part of the fragmented information of the original
informationM. Terefore, the intermediate nodes could not
obtain the information of the original information M.
End □

4.3. Privacy Protection. Tis section proves that the mode
enabled privacy protection from packet analysis, trafc
analysis, and packet tracing.

Packet analysis is when the attacker analyzes the packet
to obtain information such as the identity and address of the
sender or receiver. In the process of anonymous data for-
warding, m packets are sent by the source vehicle node
containing their pseudonyms and entry node identities; the
m packets are sent by the relay node R(i,j) containing the relay
node identities and successor node identities. Tose nodes
do not have the identity information of the actual source
vehicle node and the target vehicle node. Only one packet in
the m packets sent by the exit node R(i,n) contains the target
vehicle node. Te attacker could not distinguish which is the
destination node. Terefore, in the process of anonymous
data forwarding, an attacker could not obtain information
such as the identity and address of the sender or receiver and
nor could it determine the communication relationship
between the sender and the receiver.

Trafc analysis is when an attacker determines the
communication relationship by observing the trafc patterns
of the network. In addition to the source vehicle node in the
anonymous forwarding network, the input degree of other
relay nodes R(i,j) is m, the output degree is also m, and the
network trafc pattern is balanced. Terefore, the attacker
could not determine the location of the target vehicle node
by observing the network trafc pattern, but only the lo-
cation of the source vehicle node could be found.

Packet tracing is when an attacker listens to a wireless
channel near a node and determines the source vehicle node
through hop-by-hop tracing. Assuming an attacker is lis-
tening to a wireless channel at a relay node in the

communication cycle T, each relay node R(i,j) has m front-
drive nodes. Te attacker could move to a front-drive node
R(k,j-1) of the listening node each time. If the attacker could
move to the source vehicle node in the same communication
cycle, you can locate the sender’s location. Suppose the
communication cycle ends and the attacker has not moved
to the source vehicle node. In that case, the original
anonymous forwarding network is abandoned, and the at-
tacker could not correctly locate the sender’s location.
Terefore, the success of packet tracing is afected by the
length of the communication cycle T and the forwarding
path.

5. Performance Analysis

Te IoV simulator of OMNeT++ is used to simulate the IoV
environment. We set a one-way 4-lane road shape of
30000m× 60m. Te vehicles only conduct V2V commu-
nication, the vehicle communication radius is 100∼300m,
and the vehicle speed range is 50 km/h∼100 km/h.Te linear
mobility mobile module is used to control the movement of
nodes and the vehicle. Te speed of the nodes is confgured
to follow a random distribution (14mps, 28mps). For the
communication between vehicle nodes, the IEEE 802.11 b
PHY/MAC protocol with a data rate of 11Mbps is con-
fgured, and IoV-SDCM is added to the application layer
module.

We give two defnitions to analyze the data delivery
performance of the model. One is the successful decoding
rate of vehicle nodes, which is the number of nodes that can
decode data divided by the number of all vehicle nodes in the
simulation time. Te other is the data receiving rate of
vehicle nodes, which are the valid data packets received by all
vehicle nodes divided by the total number of data packets in
the simulation time.

In the experiment, set the slice size d� 10, 20, and 30, the
size of each data packet after the slice is 1MB, and the
communication radius of the vehicle node is 200m. Figure 4
shows that the experiment results in the successful decoding
rate of vehicles decreases as the vehicle node amount in-
creases. Compared with the successful decoding rate, the
data reception rate decreases slowly. Te network topology
greatly afects the successful decoding rate of vehicles. When
the vehicle is in a tight state, more data packets are obtained
by V2V communication. However, the successful decoding
rate of the vehicle is more demanding. It not only requires
the vehicle to receive the data packets but also needs to be
able to obtain enough packets to be decoded.

When the amount of data to be distributed is constant,
the amount of data to be distributed is set to 30MB, the
communication radius of vehicle nodes is 200m, and the
slice size is set to 10, 15, 20, 25, and 30, for a total of 100
vehicle nodes. Figure 5 shows that with the increase of the
slice size d, the transmission time is reduced after the data
volume of each data packet is reduced. It could ensure the
successful receiving rate of vehicles, so the efciency is in-
creasing. At the same time, we can see that the change of the
decoding rate is afected by the successful reception rate.Te
decoding rate is consistent with the change of the successful
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Figure 4: Te infuence of the vehicle node amount on the delivery efciency.
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Figure 5: Te infuence of slice size on delivery efciency.
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receiving rate, and the decoding rate is slightly lower than
the receiving rate. However, the number of slices d can
neither be too large nor too small. If it is too large, the
reception will be incomplete and the decoding rate is low; if
it is too small, the transmission times will be increased, and
the system efciency will be reduced and the decoding rate is
also low.

With the expansion of the communication radius of
vehicle nodes, the vehicle nodes can communicate with
more nodes. In the simulation experiment, set the slice size
d � 10, the size of each data slice is 3MB, and there are 100
vehicle nodes. Figure 6 shows that the successful receiving
rate and decoding rate of vehicles decreases, and the de-
crease is relatively stable if the vehicle communication
radius increases. We can see that the decoding rate of data
packets is consistent with the change of the successful

reception rate, and the decoding rate is slightly lower than
the receiving rate. Because when the communication radius
becomes larger, the vehicle node can conduct V2V com-
munication with more vehicles, so that the average request
node increases, and the time that can communicate with
other nodes is wasted, thus resulting in a decrease in
efciency.

6. Conclusion

Tis paper proposes IoV-SDCM, a secure data communi-
cation model in IoV. Tis model is based on the relay
forwarding network and the secure data transmission
mechanism. It constructs a dynamic communication net-
work with the vehicle as the node. Te data communication
network reaches the target vehicle through the self-

Input: Source vehicle node S, target vehicle node D
Output: Anonymous forwarding network N
Process:

(1) If (Period�T)
(2) T�Null;//Using a tree structure to build an anonymous network and initialize the network.
(3) Send (S,D,mesg_rreq);//Te source vehicle node S sends a routing request message to the target vehicle nodeDRREQ, and record

the path information from the source node to the target node.
(4) Path�Receive (S, D, mesg_path);//Te target vehicle node D sends an answer message containing the path information path to

the source vehicle node S and complete the construction of the forwarding network. See Initialization in 3.2 Section for detail.
(5) If (Path)//If there is a forwarding path between the source vehicle node and the target vehicle node.
(6) For (each Path [i], i< n)//For each node in the forwarding path, it is used as a group header to build an m-anonymous group.
(7) select m− 1 node satisfying (Hop_Groupi is in the radius of Hop_Groupi-1 and Hop_Groupi+1)
(8) gj �Hop_Groupi[j];
(9) End For
(10) End If
(11) Path [n]� broadcast;//Te exit node broadcasts messages to the target node
(12) End If
(13) End

ALGORITHM 1: An anonymous forwarding network construction.
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Figure 6: Te infuence of communication range on delivery efciency.
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organizing relay collaboration policy with the security and
privacy strategy. Teoretical proof proves that it ensures the
confdentiality of data transmission with better antiattack
capabilities, privacy protection capabilities, and simulation
experiments verify that the model has the advantage of high
and stable performance.

Data Availability

Tis paper adopts theoretical proof and simulation exper-
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+e access of massive users and devices in the 6G networks increases the risk of network attacks. Designing a trusted protocol to
control user behavior can effectively improve the security capability of the network. However, most of the existing trusted
protocols focus on unilateral user behavior and lack effective control over the whole process of user behavior. In this paper, we
design a blockchain-enabled trusted protocol based on the whole-process user behavior. At first, we describe the Whole-Process
User Behavior (WPUB) after the user accesses the network, and model the whole-process trusted control process. +e proposed
model establishes a trusted chain between user identity, access action, and communication traffic, and realizes the control of
WPUB.+en, based on the proposed model, we design a whole-process trusted protocol with smart agents and smart contracts in
combination with blockchain. Finally, we evaluate the designed protocol in the HyperLedger Fabric-based prototype system.
Evaluations show that the proposed protocol can control the WPUB and reduce the risk of the network being attacked.

1. Introduction

+e Sixth-Generation (6G) network realizes borderless
connection under the global coverage, and enables the
ubiquitous connectivity of massive users and devices by
thoroughly integrating multiple heterogeneous networks,
including satellite, air, ground, and sea networks [1–3]. +e
access of a large number of users and devices increases the
potential risk of network attacks, bringing great challenges to
network security [4–6]. +e Trusted Protocol (TP) can ef-
fectively reduce the attacks launched by malicious users on
the network by controlling and managing user behaviors,
which is one of the important methods to improve network
security [7–9]. How to construct a TP to detect malicious
behaviors in 6G networks with massive connections is an
urgent problem to be solved. However, traditional TPs (such
as identity authentication, access control, and traffic de-
tection) are mostly deployed in centralized networks and are
difficult to be applied directly to 6G networks with dynamic
changes in user behaviors and heterogeneous network
structures. +e 6G networks put forward new security re-
quirements for TPs, which are mainly shown as follows.

(i) Behavior traceability. For the dynamically changing
user behavior in 6G heterogeneous networks, TPs
need to be able to memorize the user’s historical
behavior and make an accurate and dynamic control
based on the user behavior [10, 11]. Besides, the data
for TPs should be shared among trusted distributed
nodes.

(ii) Privacy protection. User behavior data reflects the
specific activities of users in the network [12, 13].
When analyzing user behavior, it should be ensured
that user behavior data is not leaked and maliciously
tampered with.

In recent years, as a key technology in the 6G network,
blockchain has been widely used in various fields [14, 15].
+e blockchain-based TPs can well meet the new security re-
quirements of the 6G networks. On the one hand, storing user
behaviors in the blockchain enables traceability of user historical
behavior, making it possible to accurately control dynamically
changing user behaviors. On the other hand, the decentralized
and tamper-proof characteristics of blockchain ensure the se-
curity and reliability of the constructed blockchain-based TPs.
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However, the existing blockchain-based TPs still have
the following problems. Firstly, most of the existing methods
manage user behavior under a single specific security re-
quirement, and cannot comprehensively consider the whole-
process user behavior after accessing the network. Secondly,
the existing methods lack dynamic closed-loop feedback,
and it is difficult to meet the needs of dynamic evaluation
and closed-loop management. +erefore, it is urgent to
construct a TP with dynamic closed-loop feedback that can
comprehensively consider the whole-process user behavior.

In this paper, we design aWhole-Process User Behavior-
based Blockchain-enabled Trusted Protocol (WPUB-BTP)
that can control the whole-process user behavior after
accessing the network.+e proposedWPUB-BTP constructs
a trusted control chain between user identity, access action,
and communication traffic, and realizes the control of user
behavior in the whole process. In addition, the protocol also
builds dynamic closed-loop feedback based on user repu-
tation, which realizes dynamic control of user behavior.

+e contribution of this paper can be summarized as
follows.

(i) We design the trusted control model of the whole-
process user behavior, which can comprehensively
consider identity authentication behavior, access
control behavior, and communication traffic
behavior.

(ii) We put forward a blockchain-enabled trusted
protocol based on the proposed model to achieve
dynamic control and closed-loop feedback on user
behavior.

(iii) We evaluate the trusted protocol in a HyperLedger
Fabric prototype system. +e evaluation shows that
the proposed protocol can control the whole-pro-
cess user behavior after the user accesses the net-
work, and reduces the risk of the network being
attacked.

+e remainder of this paper is organized as follows. In
Section 2, we review the secure control methods for user
behavior based on blockchain. In Section 3, we design the
trusted control model of the whole-process user behavior
consisting of identity authentication behavior, access control
behavior, and communication traffic behavior. Based on the
proposed model, we put forward the blockchain-enabled
trusted protocol in Section 4. +e prototype system and
evaluation analysis of the WPUB-BTP are represented in
Section 5. In the end, conclusions are drawn in Section 7.

2. Related Work

In this section, we review the related work on blockchain-
based security control methods in three aspects: identity
authentication, access control, and malicious traffic
detection.

2.1. Blockchain-Based Authentication Method. Identity au-
thentication prevents malicious users from accessing the
network by identifying user identities. Recently, many

researchers have designed many authentication methods
based on blockchain technology to improve the security of
the network.

In Vehicular Ad-hoc Networks (VANETs), Zheng et al.
[16] proposed a blockchain-based authentication system,
which can provide the trusted communication environment
of the Vehicle to Vehicle (V2V) and Vehicle to Infra-
structure (V2I). Similarly, Feng et al. [17] put forward a
Blockchain-based Assisted Privacy-preserving authentica-
tion System (BAPS) for VANETs. +e proposed system is
efficient and scalable, and can efficiently achieve privacy-
preserving authentication without any online registration
center. In the Internet of drones, Feng et al. [18] presented a
blockchain-based cross-domain authentication method to
build an identity federation for collaborative domains. To
ensure the privacy and security of the Intelligent
Transportation Systems (ITS) networks, Qureshi et al. [19]
proposed a Blockchain-based Privacy-Preserving Authen-
tication model (BPPAU).

2.2. Blockchain-Based Access Control Method. +e access
control method can prevent malicious users from accessing
network resources without authorization, and realize the
management and control of user access behavior. With the
development of blockchain, many blockchain-based access
control methods have been proposed.

Tan et al. [20] suggested a blockchain-empowered
general Green Smart Device (GSD) access control frame-
work in the Green Internet of +ings (GIoT). +e proposed
framework provides a fine-grained and extensible access
control of GSDs and ensures the credibility and immuta-
bility of permission data and identity data during access. On
the Internet of +ings (IoT), Sun et al. [21] proposed a
blockchain-based IoT access control system, which com-
bines the permission blockchain, Attribute-Based Access
Control (ABAC), and Identity-Based Signature (IBS) to
achieve security, lightweight, and cross-domain access
control. To provide decentralized Electrical Health Records
(EHR) and service automation, a blockchain-based Internet
of Medical +ings (IoMT) architecture called Fortified-
Chain is proposed by Egala et al. [22]. +e proposed ar-
chitecture can provide decentralized automation access
control, security, and privacy. In the Industrial Internet of
+ings (IIoT), Feng et al. [23] put forward a novel access
control framework based on blockchain, which consists of
three types of chaincodes: PMC, ACC, and CEC. +e
proposed framework can achieve fast and reliable consensus
based on historical behavior records stored in the ledger.

2.3. Blockchain-Based Traffic Detection Method. User traffic
detection is another important way to improve network
security. According to the way of traffic detection, it can be
divided intomethods-based statistical methods andmethods
based onmachine learningmethods [24]. In recent years, the
development of blockchain has enabled more and more
scholars to build detection models in blockchain networks
based on existing traffic detection technologies.
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In the Satellite Communication (SATCOM) systems,
Cao et al. [25] proposed a blockchain-based access control
and intrusion detection framework ACID, which can dy-
namically adjust the Access Control Rules (ACRs) and ef-
fectively detect attacks against smart contrasts. Similarly,
Guo et al. [26] proposed a blockchain-based Distributed
Collaborative Entrance Defense (DCED) framework to
protect the satellite networks from malicious attacks. Ex-
periment shows that the proposed framework can effectively
protect the bandwidth resources of satellite Internet from
DDoS attacks. Ramanan et al. [27] put forward a blockchain-
based decentralized replay attack detection mechanism for
large-scale power systems. +e proposed mechanism can
detect coordinated replay attacks with full privacy. To
prevent IoT devices and other computing resources from
DDoS attacks, Hayat et al. [28] proposed a Multilevel DDoS
mitigation approach (ML-DDoS) based on blockchain. +e
results show that the proposed framework can accurately
detect DDoS attacks in IoT, and has good performance in
throughput, latency, and CPU utilization.

In Table 1, we summarize the relevant work of block-
chain-based TPs and analyze whether they meet the security
requirements of TPs in 6G networks.+e above methods put
forward the blockchain-based TPs to improve network se-
curity in different aspects. However, most methods only
focus on one aspect of user behavior and lack control of the
whole-process user behavior after accessing the network. In
addition, for dynamically changing user behavior in the 6G
network, those methods lack closed-loop feedback, and
cannot adjust control strategies in real time according to
user behaviors. +erefore, based on blockchain, we build a
trusted protocol with dynamic closed-loop feedback to re-
alize the whole-process behavior control of users, so as to
meet the security requirements of TPs in the 6G networks.

3. Trusted Control Model

In this section, we first present the whole-process user be-
havior description. +en, we describe the trusted control
model of the whole-process user behavior.

3.1. Whole-Process User Behavior Description. Before in-
troducing the trusted control model, the Whole-Process
User Behavior (WPUB) in the 6G network needs to be
defined. According to the different behaviors initiated by
users after accessing the network, the WPUB can be divided
into three sub-behaviors: Identity Authentication Behavior
(IAB), Access Control Behavior (ACB), and Communica-
tion Traffic Behavior (CTB), as shown below.

WPUB≜ IAB, ACB, CTB{ }. (1)

IAB is the description of authentication behavior when a
user accesses the network. +e IAB can be represented as a
set consisting of Authentication Protocol (AP), Environ-
ment Attributes (EA), Identity Attributes (IA), Device At-
tributes (DA), etc., as shown in the following equation:

IAB≜ AP,EA, IA,DA, . . .{ }. (2)

ACB describes the actions taken by the user to access the
network resources, including Access Actions (AA), Resource
Attributes (RA), User Privilege (UP), and Resource Privilege
(RP). +e ACB can be represented as

ACB≜ AA,RA,UP,RP, . . .{ }. (3)

CTB reflects the behavior of the traffic generated by the
user’s interaction with other network entities after accessing
the network. According to the granularity level of the traffic,
CTB can be divided into Packet Behavior (PB), Flow Be-
havior (FB), Host Behavior (HB), Session Behavior (SB), etc.,
as shown in the following equation:

CTB≜ PB, FB,HB, SB, . . .{ }. (4)

+erefore, according to the above equations (2-4), the
WPUB can be expressed in detail as the follows:

WPUB≜

AP,EA, IA,DA, . . .

AA,RA,UP,RP, . . .

PB, FB,HB, SB, . . .

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (5)

3.2. Whole-Process Trusted Control Model. To realize the
trusted control of the WPUB, a Whole-Process Trusted
Control model (WPTC) deployed in the access gateway is
proposed. According to the division of WPUB, WPTC can
be divided into three different modules: Identity Au-
thentication Module (IAM), Access Control Module
(ACM), and Traffic Detection Module (TDM). +e pro-
posed three modules can control and manage the user’s
sub-behavior to ensure the trust of each process. Besides, to
achieve closed-loop feedback and dynamic control between
three different control processes, a Dynamic Control
Mechanism (DCM) based on the user’s reputation is also
proposed. +e DCM constructs a dynamic control between
user sub-behaviors in different modules and realizes the
trusted control of whole-process behavior. +e WPTC is
shown in Figure 1.

3.2.1. Identity Authentication Module. +e IAM authenti-
cates the identity of users to ensure the trusted user identity,
which is the first security protection barrier in the WPTC
framework. To better model the IAM and reflect the control
process of the module on IAB, we represent the Identity
Authentication Result (IAR) as the mapping relationship of
IAB, as shown in the following equation:
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It is assumed that n users are accessing the network
through the access gateway at time t. In (6), f is the trusted
authentication protocol reflecting the relationship between
IAR and IAB. IABt

i and IARt
i represent the IAB and IAR of

user ui at time t, respectively. If the identity of user ui is
trusted, the IARt

i is set to 1. Otherwise, IARt
i is set to 0.

1≤ i≤ n.

3.2.2. Access Control Module. +e ACM is the key module
to ensure the trust of access actions, which verifies
whether the user can be authorized to access the Network
Resources (NR) according to the access policy. +e user
needs to be authenticated before performing access
control. A user with a trusted identity can access the
network resources only after obtaining the legitimate
access authorization. +e ACM can be modeled as shown
in (7). g() is the trusted access control protocol. ACBt

i and
ACRt

i represent the ACB and the Access Control Result
(ACR) of user ui at time t, respectively. If the access action
of ui is authorized, the access control result is 1. Other-
wise, ACRt

i is 0.
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. (7)

3.2.3. Traffic DetectionModule. As an important component
inWPTC, TDMdetects the traffic in the network in real time
and realizes the timely detection and blocking of malicious
CTB. +e TDMmodule provides a guarantee for the trust of
the communication traffic. In the proposed WPTC, the user
can only send traffic to the NR after obtaining access au-
thorization. +erefore, we define the trusted traffic detection
protocol in TDM as the mapping relationship between CTB,
ACR, and Traffic Detection Results (TDR). h() is the trusted
traffic detection protocol. CTBt

i and TDRt
i , respectively,

represent the CTB and the ACR of user ui at time t. If the
traffic initiated by ui is detected as normal, then TDRt

i is 1; if
the CTBt

i is detected as malicious traffic, TDRt
i is 0.

Trusted
Protocol

Trusted
Control
Module

Whole-
Process

User
Behavior

Trusted
User Identity

Trusted
Access Actions

Trusted
Communication

Process

Trusted
WPUB Control

Identity
Authentication

Module

Access Control
Module

Traffic Detection
Module

Reputation
Evaluation

Module

Identity
Authentication

Behavior

Access Control
Behavior

Communication
traffic Behavior

Historical User
Behavior

Dynamic
Control

Mechanism

Behavior Control

Protocol Implement

Figure 1: +e framework of the whole-process trusted control model.

Table 1: Analysis of related work.

Ref. Year
Security requirement of trusted protocol in 6G networks

Trusted user
identity

Trusted access
actions

Trusted communication
traffic

Closed-loop
feedback

Privacy
protection

Behavior
traceability

[16] 2019 ✓ ✕ ✕ ✕ ✓ ✓
[17] 2019 ✓ ✕ ✕ ✕ ✓ ✓
[18] 2021 ✓ ✕ ✕ ✕ ✓ ✓
[19] 2022 ✓ ✓ ✕ ✕ ✓ ✓
[20] 2021 ✕ ✓ ✕ ✕ ✓ ✓
[21] 2021 ✕ ✓ ✕ ✕ ✓ ✓
[22] 2021 ✓ ✓ ✕ ✕ ✓ ✓
[23] 2021 ✕ ✓ ✕ ✕ ✓ ✓
[25] 2021 ✕ ✓ ✓ ✕ ✓ ✓
[26] 2022 ✕ ✕ ✓ ✕ ✓ ✓
[27] 2021 ✕ ✕ ✓ ✕ ✓ ✓
[28] 2022 ✕ ✕ ✓ ✕ ✓ ✓
Ours 2022 ✓ ✓ ✓ ✓ ✓ ✓
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. (8)

3.2.4. Dynamic Control Mechanism. +e above three
modules control user sub-behaviors from three aspects: user
identity, access action, and communication traffic. By
constructing a trusted control chain of the “user identity-
access action-communication traffic,” WPTC realizes the
security control of user behavior in the whole process. In
order to improve the security capability of closed-loop
feedback and dynamic control, we introduce the DCM in
WPTC.

DCM is the core control mechanism of WPTC, which
can dynamically control the user’s behavior by evaluating
the reputation of the user. In DCM, the user’s reputation is
calculated by the Reputation EvaluationModule (REM), and
the reputation is consisting of two kinds of subreputations:
Sub-behavior Reputation (SR) and Global Reputation (GR).
+e SR is calculated by the historical behavior of each sub-
behavior. Based on the division of the WPUB, the SR of user
ui at time t can be subdivided into user identity reputation
UIRt

i , access action reputation AARt
i , and communication

traffic reputation CTRt
i . +e UIRt

i , AARt
i , and CTRt

i can be
calculated by (9–11), respectively.

UIR
t
i � φ1 IAB

T
i􏼐 􏼑

� φ1 IAB
t1
i , . . . , IAB

tm
i􏼐 􏼑,

(9)

AAR
t
i � φ2 ACB

T
i􏼐 􏼑

� φ2 ACB
t1
i , . . . , ACB

tm
i􏼐 􏼑,

(10)

CTR
t
i � φ3 CTB

T
i􏼐 􏼑

� φ3 CTB
t1
i , . . . , CTB

tm
i􏼐 􏼑.

(11)

In (9)–(11), IABT
i , ACBT

i , and CTBT
i represent the

historical sub-behaviors of IAB, ACB, and CTB in the time
period T before time t, respectively. IABt1

i is the first his-
torical sub-behavior IAB of ui in the time period T. Likewise,
the historical sub-behavior in the time period of ACB and
CTB can be represented similarly to the IAB. φ1, φ2, and φ3
are the reputation evaluation functions of IAB, ACB, and
CTB, respectively.

+e global reputation GRt
i of user ui can be calculated by

the above three sub-behavior reputations, as shown in (12). θ
is the global reputation calculation function.

GRt
i � θ UIR

t
i , AAR

t
i , CTR

t
i􏼐 􏼑. (12)

When the user behavior is untrusted, based on proposed
SR (UIRt

i , AARt
i , CTRt

i) and GR (GRt
i), we put forward the

DCM in the above three models. +e DCM can be divided
into the following three stages.

In the identity authentication stage, the Dynamic
Control Result (DCR) generated by DCM can be modeled as
(13).When the identity of user ui is untrusted (IARt

i � 0), the
DCM can formulate different DCRs according to the different
UIRt

i .μ1 is the security control judgment function ofDCMin the
IAM, and DC Rt

i is the DCR of user ui at time t. If UIRt
i is

greater than the threshold value ω, the DCRt
i of user ui is set to

“re-authenticate.” If UIRt
i <ω, the DCRt

i is set to “access
blocking,” and the user is not allowed to access the network.

DCR
t
i � μ1 UIR

t
i |IAR

t
i � 0􏼐 􏼑. (13)

In the access control stage, the dynamic control process
can be represented as (14). +e DCM in the ACM ensures
that different control policies are implemented based on
different UIRt

i and AARt
i when user’s access behaviors are

abnormal (ACRt
i � 0). μ2 is the security control judgment

function of DCM in the ACM. If the access reputation value
ARt

i of user ui is less than the threshold value λ1, DCRt
i is

“access blocking,” which means the access behavior of the
user is blocked. If λ1 ≤ARt

i < λ2, the user needs to be re-
authenticated; If ARt

i ≥ λ2, the DCRt
i is “re-access control,”

and the user needs to perform access control again. +e ARt
i

can be calculated as follows. ARt
i � ψ(UIRt

i , AARt
i). ψ is the

evaluation function of the access behavior.

DCR
t
i � μ2 AR

t
i |ACR

t
i � 0􏼐 􏼑. (14)

In the traffic detection stage, DCM can be modeled as
(15). When a user initiates abnormal traffic to the network
(CTBt

i � 0), DCM formulates different security control
schemes based on the user’s global reputation GRt

i to im-
prove the security capability of the network. μ3 indicates the
security control judgment function of the DCM in the ACM.
When the user traffic is detected as malicious traffic, the
communication traffic is blocked. If the global reputation GRt

i

is less than ρ1, the user is recorded on the blacklist and is not
allowed to access the network for a period of time. If
ρ1 ≤GRt

i < ρ2, the DCRt
i is “re-authenticate”; If GR

t
i ≥ ρ2, the

user should be “re-access control.” ρ1 and ρ2 are the threshold
constants of global reputation in the traffic detection stage.

DCR
t
i � μ3 GR

t
i |CTB

t
i � 0􏼐 􏼑. (15)

In (13–15), the DCRt
i is one of the elements in the set of

Dynamic Control Policies (DCP). DCRt
i ∈ DCP. DCP can

be given as follows:
DCP � dcp1, . . . , dcpn􏼈 􏼉. (16)

In (16), dcpn is the nth subcontrol policy in the DCP set.
In the DCM, the subcontrol policy dcpn can be set as “re-
authentication,” “re-access control,” “access blocking,” “traffic
blocking,” and so on according to the specific network scenario.

4. Blockchain-Enabled Trusted Protocol
Based on WPUB

In this section, based on the proposed trusted control model,
we design the Blockchain-enabled Trusted Protocol (WPUB-
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BTP) including trusted user identity protocol, trusted access
action protocol, and trusted communication traffic protocol.

In WPUB-BTP, the functions of the modules in the
trusted control model are deployed in the access gateway and
blockchain network in the form of Smart Agents (SA) and
Smart Contracts (SC). +e SA is mainly responsible for
interacting with UEs, processing and forwarding the user
requests, while the SC stores the user behaviors and generate
trusted management policies in the blockchain.

+e division of modules in the trusted control model can
be shown as follows. +e functions of the IAM are per-
formed by the Identity Authentication Agent (IAA) and
Identity Authentication Smart Contract (IASC), and the
ACM is deployed as the Access Control Agent (ACA) and
Access Control Smart Contract (ACSC). In addition, the
TDM is deployed in WPUB-BTP as a Traffic Detection
Agent (TDA) and Traffic Detection Smart Contract (TDSC).
+e Reputation Evaluation Smart Contract (RESC) in the
blockchain network is deployed to perform the functions of
the proposed REM. Besides, the user in the WPUB-BTP is
represented as UE, and the network resources in the servers
are abbreviated as NR.

In the following subsections, we will describe the three
subprotocols inWPUB-BTP for security control of user sub-
behaviors. +e blockchain-enabled trusted protocol is
shown in Figure 2.

4.1. Trusted User Identity Protocol. In the trusted user
identity protocol, the IAA is used to forward and process the
identity authentication requests of users, while the IASC
stores the authentication credentials and generates the user
authentication vector.

+e trusted user identity protocol can be described as the
following steps.

STEP 1: UE sends the authentication request to IAA;
STEP 2: IAA invokes the interface of IASC to generate
authentication vector and authenticate user identity. If
the user identity is authenticated successfully, go to
STEP 4. Otherwise, go to STEP 3.
STEP 3: If the user identity is untrusted, IAA needs to
query the User Identity Reputation (UIR) of the user,
and generates the DCR according to the UIR;
STEP 4: Meanwhile, the IAA invokes IASC interfaces to
record identity authentication behaviors.
STEP 5: RESC updates the user identity reputation
based on the recorded IAB;
STEP 6: Finally, IAA returns the IAR or the DCR to UE.

4.2. TrustedAccess Action Protocol. +e trusted access action
protocol in the WPUB-BTP is used to evaluate user access
control behavior. In the trusted access action protocol, there
are two components, ACA and ACSC, which perform the
access control function. +e ACA is used to forward the
access control requests initiated by users, while the ACSC
generates the access policy and stores the user access control
behavior.

+e trusted access action protocol consists of the fol-
lowing seven steps.

STEP 1: UE sends the access control request to the ACA.
STEP 2: After receiving the access control request, the
ACA looks up the identity authentication result of the
UE to verify whether the user identity is legal; If the user
is illegal, the ACR is set to 0, and the next step is STEP 5.
Otherwise, go to STEP 3.
STEP 3: If the identity of the user is trusted, the ACSC
generates the access control policy for the UE. If the
user access action is unauthorized, go to STEP 4.
Otherwise, go to STEP 5.
STEP 4: ACA queries the user’s Access Action Repu-
tation (AAR), and generates the DCR based on the
obtained AAR.
STEP 5: At the same time, the ACA invokes ACSC
interfaces to record access control behaviors.
STEP 6: RESC updates the access action reputation
based on the recorded ACB.
STEP 7: In the end, ACA returns the access control
result or the dynamic control result to UE.

4.3. Trusted Communication Traffic Protocol. In the trusted
communication traffic protocol, the TDA in the access
gateway is the component that mainly performs the function
of traffic detection. In TDA, different types of detection
submodules can be deployed to detect the user traffic passing
through the gateway in real time. +e TDSC in the protocol
periodically stores the communication traffic behavior of
users.

+e trusted communication traffic protocol is used to
control the communication traffic behavior of users, which
includes the following steps.

STEP 1: UE sends the communication traffic through
the access gateway to the NR.
STEP 2: +e TDA in the access gateway needs to ask the
ACSC contract whether the user has permission to
access NRwhen the user’s traffic arrives for the first time.
STEP 3: If the UE is an authorized access user, the user
is allowed to send traffic to network resources. At the
same time, the TDA continuously detects the traffic
between UE and NR in real time.
STEP 4: If the traffic initiated by the user is detected
abnormal, the communication traffic needs to be
blocked at the first time. +en, the TDA calls the in-
terface of RESC to obtain the user’s Communication
Traffic Reputation (CTR), and generates the DCR based
on the obtained CTR;
STEP 5:Meanwhile, the TDAperiodically records the CTB
in the TDSC contract based on the traffic detection results.
STEP 6: And the RESC updates the communication
traffic reputation based on the recorded CTB.
STEP 7: At last, the TDA returns the dynamic control
result to UE.
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5. Evaluation

In this section, we first introduce the prototype system based
on the proposed WPUB-BCP protocol. +en, we evaluate
the WPUB-BCP protocol in the HyperLedger Fabric pro-
totype system.

5.1. Prototype System. As shown in Figure 3, based on the
proposed WPUB-BTP protocol, a prototype system is
deployed for evaluation. We deploy a server cluster based on
VMware vSphere [29] virtualization platform. +e server
cluster consists of 12 servers, each configured with a 40G
disk, 16G memory, and an 8-core processor. In the server
cluster, 12 servers can be divided into satellite networks
domain, cellular networks domain, and wireless local area

networks domain depending on the application scenario.
And each domain contains one UE and three access
gateways.

Compared with other blockchain platforms such as
Ethereum (https://ethereum.org/), HyperLedger Fabric
(https://github.com/hyperledger/fabric/) has the advantages
of high modularity and scalability, and has been widely and
maturely applied in various commercial scenarios. +ere-
fore, in this article, we build the WPUB-BTP protocol
prototype system based on Fabric. In the prototype system,
the blockchain network is constructed on the nine access
gateways.

In the prototype system, the HyperLedger Fabric
blockchain network is divided into three organizations (3
Org), and each organization consists of one certificate
authority (1 CA), three peer nodes (3 peers), and one

3.Detect UE-Network Resource communication traffic

UE IAA ACA TDA IASC ACSC TDSC RESC NR

UE IAA ACA TDA IASC ACSC TDSC RESC NR

1.Authentication request

4.Record IAB

5.Update UIR
6.Return IAR/DCR

1.Access control request

2.Query IAR

5.Record ACB

6.Update AAR

7.Return ACR/DCR

1.Send communication traffic

2.Query ACR

5.Record CTB
6.Update CPR

Trusted
User
Identity
Protocol

Trusted
Access
Action
Protocol

Trusted
Comm.
Process
Protocol

Access Gateway Blockchain NetworkUser Server

2.Authentication process

3.Query UIR

4.Query AAR

3.Access control process

4.Query CPR

7.Return DCR

Figure 2: +e blockchain-enabled trusted protocol.
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ordering node (1 orderer). +e access gateways initiate the
transactions to the blockchain network through the SDK
interface (fabric-py-sdk (https://github.com/hyperledger/
fabric-sdk-py/)) for data storage, update, and query op-
erations. +ree smart agents (IAA, ACA, and TDA) written
in Python (https://docs.python.org/3.9/) are deployed at
each access gateways, performing identity authentication,
access control, and traffic detection functions. In addition,
we design four smart contracts (IASC, ACSC, TDSC, and
RESC) based on the go-lang (https://github.com/golang/
go/) language and deploy them in the blockchain network
in the form of chaincodes. IASC and ACSC are used to
control user authentication behavior and access control

behavior, respectively. TDSC is used to detect the traffic
behavior sent by users, while RESC evaluates the reputation
based on user authentication, access control, and traffic
behavior to realize dynamic closed-loop control of user
behavior.

To evaluate the performance of the proposed WPUB-
BCP protocol, we deploy the specific control methods in
each module (SA and SC). In our previous work [30], an
authentication method based on EAP-MD5 is proposed for
fast authenticate. +erefore, in the IAM module, we use the
same authentication method to represent the trusted au-
thentication protocol f, so as to ensure the trusted user
identity. Besides, an access control method based on the
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Figure 3: +e prototype system of WPUB-BTP protocol.
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Attribute-Based Access Control (ABAC) model [31] is
deployed in the ACMmodule to represent the trusted access
control protocol g. In the TDM, we deploy the same traffic
detection method based on the Deep Deterministic Policy
Gradient (DDPG) algorithm as in [32] to represent the
trusted communication traffic protocol h. In addition, the
Beta Reputation System (BRS) [33] can give a compre-
hensively evaluation of users’ positive and negative behav-
iors. +erefore, in this paper, we deploy the BRS in REM
module to evaluate the reputation of user’s sub-behavior
(UIRt

i , AARt
i , CTRt

i) and to provide the feedback for dy-
namic control. φ1,φ2, and φ3 are the reputation value
calculation formulas of beta reputation system. Specifically,
the global reputation and the access reputation can be
calculated as follows: GRt

i � 1/3∗ (UIRt
i + AARt

i

+ CPRt
i ),AR

t
i � 1/2∗ (UIRt

i + AARt
i). In addition, the

threshold constants in the DCM are set as follows:
ω � 0.5, λ1 � 0.35, λ2 � 0.65, ρ1 � 0.4, ρ2 � 0.7. μ1, μ2, and
μ3 are set as described in Section 3.2.

5.2. Performance Evaluation. In this subsection, we first
evaluate the performance of the three proposed trusted
protocols: trusted user identity protocol, trusted access ac-
tion protocol, and trusted communication traffic protocol.
Subsequently, we functionally evaluated the designed dy-
namic control mechanism.

5.2.1. Trusted User Identity Protocol. Figure 4 shows the
evaluation result of the trusted user identity protocol. We
evaluate the control results of the trusted user identity protocol
under 100, 500, 1000, 2000, 5000, and 10000 authentication
requests, and the proportion of illegal users is 20%, 40%, 60%,
and 80%, respectively. As can be seen from Figure 4, the
proposed trusted user identity protocol can achieve accurate
authentication of a large number of users. In addition, the
proposed protocol can prevent illegal users from accessing the
network, which improves the security of the network.

5.2.2. Trusted Access Action Protocol. Subsequently, we
evaluate the trusted access action protocol with 100, 200,
500, and 1000 access control requests per second in, as
shown in Figure 5. In the evaluation, it is assumed that 20%
of the requests are sent by unauthenticated UEs and 80% by
the trusted identity UEs. In addition, it is assumed that 60%
of users with trusted identities can obtain access policies. As
can be seen from Figure 5, the proposed trusted access action
protocol can evaluate user access control behaviors and
successfully generate the corresponding access policies.
Furthermore, the evaluation results show that users without
trusted identities cannot get access authorization, which
ensures the security and credibility of the network from both
user identity and access action.

5.2.3. Trusted Communication Traffic Protocol. In Figure 6,
the management and control process of user traffic behavior
by the proposed trusted communication traffic protocol is
shown. We simulated the traffic sent by two types of

authorized users, namely normal user traffic and abnormal
user traffic. Within 0–200 s, the normal users continuously
send normal traffic to the network resource, while the ab-
normal uses periodically launch attack traffic. Both the
normal traffic and the abnormal traffic are generated
according to traffic dataset collected in [20]. +e traffic
detection module is deployed in the access gateway at 50 s.
As shown in the figure, the traffic detection module can
distinguish the normal traffic and abnormal traffic according
to the traffic characteristics. And the trusted communication
traffic protocol can generate the real-time control policies to
block the malicious traffic according to the detection results.

5.2.4. Dynamic Control Mechanism. In this subsection, we
evaluate the continuous dynamic control results of the
proposed dynamic control mechanism on user behavior
when the user accesses the network and performs identity
authentication, access control, and traffic detection in
sequence.

As shown in Table 2, we simulate the user behavior of
200 users accessing the network. At the beginning of 200
users accessing the network, we set 50% of users to send
correct authentication requests, 25% of high-reputation
users (reputation greater than 0.5) to send incorrect au-
thentication requests, and 25% of low-reputation users (low
reputation greater than 0.5) to send a bad authentication
request. +e 100 users with trusted identities who send
correct authentication requests need to perform access
control when accessing network resources. Similarly, we set
the following settings for users who send access control
requests, among which 50% of users have successful access
control, and 50% of users have failed access control; among
the users whose access control fails, we set 50% of the users
whose reputation is higher than 0.65, 30% of users have a
reputation between 0.35 and 0.65, and 20% of users have a
reputation below 0.35. Finally, among the 50 authorized
users, we set 25 users send normal traffic, and the rest send
abnormal traffic. In order to display the dynamic control
results in the traffic detection stage, we divided the users
sending abnormal traffic into three groups as follows:
good reputation (reputation is greater than 0.7), moderate
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Figure 4: +e evaluation of the trusted user identity protocol.
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reputation (reputation is between 0.4 and 0.7), and low
reputation (reputation is lower than 0.4). +e three groups
have 25, 15 and 10, users respectively.

Figure 7 shows the dynamic control results of the whole-
process user behavior in three continuous stages. 0–200 s is
the user identity authentication stage; 200–300 s is the user
access control stage; and 300–350 s is the user traffic de-
tection stage. It should be noted that, in order to visually
display the results of dynamic control mechanism, Figure 7
only shows the number of users who successfully authen-
ticated for the first time and access control for the first time,
but does not show the number of users who successfully re-
authenticated and re-access control.

In the identity authentication stage, we simulated a total
of 200 users sending identity authentication requests to
IAM. As can be seen from Figure 7, the designed IAM can
accurately control user authentication behavior, and can
generate different dynamic control results according to
different reputation values of users.

Only users who are successfully authenticated in the
identity authentication stage can perform access control.
+erefore, in the access control stage, it can be seen from
Figure 7 that the number of re-authentication (“re-auth”),
re-access control (“re-acc. ctrl.”), and access blocking (“acc.
block”) users changes with the time in the 200–300 s time
period. +e designed ACM module can generate
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corresponding access control policies according to user’s
access action.

In the traffic detection phase, as can be seen from
Figure 7, the traffic detection module can allow users who
send normal traffic (“tfc. allow”) to access network re-
sources, and block the traffic sent by malicious users (“tfc.
block”) in time. In addition, the designed dynamic feedback
mechanism can generate accurate dynamic control results
(“re-auth,” “re-acc. ctrl.,” and “acc. block”) according to the
user’s reputation value when the traffic detection is ab-
normal. When the user’s reputation is lower than the
threshold 0.4, the dynamic control mechanism will prevent
users from accessing the network (“acc. block”). When the
user reputation value is between 0.4 and 0.7, the proposed
mechanism generates the dynamic control result of “re-
auth.”When the user’s reputation is higher than 0.7, the user
is asked to redo the access control process (“re-acc. ctrl.”).

6. Conclusion

In this paper, we have proposed a blockchain-enabled
trusted protocol based on the whole-process user behavior.
+e proposedWPUB-BTP constructs a trusted control chain
between user identity, access action, and communication

traffic, and realizes the control of user behavior in the whole
process. In addition, the protocol also builds dynamic
closed-loop feedback based on user reputation, which re-
alizes dynamic control of user behavior. Eventually, we
deployed the proposed protocol in the Hyperledger Fabric
for evaluation. +e results show that the proposed WPUB-
BTP can control the whole-process user behavior and reduce
the risk of network being attacked.

+is paper focuses on demonstrating the dynamic
trusted control mechanism based on whole-process user
behavior. In future work, we will optimize the trusted
subprotocol and parameter selection in each module, and
conduct more in-depth research on authentication, access
control, and malicious traffic detection.
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-e intrusion detection schemes (IDSs) based on the Gradient Boosting Decision Tree (GBDT) face three problems: unbalanced
training data distribution, large dimensionality of data features, and difficulty in model parameter optimization, which lead to
weak monitoring capability and high false positive rate. For the problem of unbalanced training data distribution, we make the
one-sided gradient oversampling algorithm to ensure the balance between the data of each category. To tackle the problem of the
large dimensionality of data features, we develop a hierarchical cross-validation algorithm for binding mutually exclusive features.
To address the problem of difficulty in model parameter optimization, we design a Bayesian optimization algorithm to make the
model parameter search process more targeted and reduce the model training cost by establishing functional relationships
between hyperparameters and target functions. -e detailed experimental results show that the scheme can effectively solve the
problems of data imbalance, high-dimensional data features, and low parameter finding efficiency, and improve the model’s
ability to monitor the attack behavior.

1. Introduction

Internet of -ings (IoT) [1, 2] incorporates various types of
acquisition or control sensors as well as mobile commu-
nications, intelligent analytics, and other technologies into
various aspects of industrial production processes, making a
large number of resource-constrained end devices gradually
becoming first-class network entities [3, 4]. Compared to
personal computers and cloud servers with large amounts of
computing resources, end devices are usually close to the
user side or in the transmission path and have a higher
likelihood of being compromised by attackers. For example,
an attacker can perform a side-channel attack on end devices
by monitoring common information such as the time
consumption and power consumption of end devices. In-
trusion detection schemes are one of the most well-known
security protection techniques in the traditional Internet
domain [5–7]. However, since emerging resource-

constrained network entities usually have limited computing
power or insufficient power supply, mainstream intrusion
detection techniques are hardly as effective as they were in
the past. -erefore, it is necessary to design lightweight
intrusion detection techniques to protect the security of
resource-constrained end devices in IoT.

IDSs are mainly divided into two categories: traditional
detection schemes and machine learning-based detection
schemes. Traditional detection schemes suffer from weak
monitoring capability [8, 9], high false positive rates [10, 11],
difficult feature information collection [12], etc. To cope with
these problems of traditional detection schemes, various
IDSs based on machine learning [13] have been proposed
one after another. -ese detection schemes first use machine
learning algorithms to learn known attack types and then use
training models to identify attacks with corresponding
features. It can be broadly classified into the following two
categories: (1) IDSs based on a single machine learning
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algorithm. Lippmann et al. [14] used a neural network
composed of multilayer perceptions without hidden units to
construct an anomaly detection system. -e number of
keyword occurrences in the Telnet session is first used as
input to the neural network, and then the instances that are
flagged as attacks are used as training data to train the
multilayer perceptual neural network. Bivens et al. [15] used
the TCP/IP data from DARPA to construct an anomaly
detection system based on the multilayer perceptual neural
network. It uses time windows to detect multiple packets as a
group. However, the applicability of this scheme is very
limited and the constructed model is simple and cannot
handle large data volume, which leads to degradation of the
model performance and has been rarely used in recent years.
(2) IDS based on the integrated learning algorithm. Mousavi
et al. [16] combined the grid search algorithm to reduce the
number of input data and normal data matching the number
of matches. Arif et al. [17] improved the recognition rate of
the model on attack data by constructing the intrusion
detection model with the help of principal component
analysis unsupervised dimensionality reduction algorithm
and Adaboost algorithm [18]. Nabila et al. [19] constructed a
classifier by Random Forest and were able to identify four
types of attacks, DOS, Probe, U2R, and R2L [20]. GBDT [21]
is one of the most applied models for integrated learning to
solve classification problems. IDSs [22–26] based on GBDT
[27] are one of the most widely used means to defend against
attacker intrusions today. However, this scheme usually
requires integrated learning of multiple base models, and
suffers from three problems: unbalanced training data dis-
tribution, large feature dimensionality, and difficulty in
finding the optimal model parameters, which reduce the
recognition accuracy, learning efficiency, and generalization
ability of the model.

To solve the above problems, we propose a lightweight
gradient boosting method, called LGBM, to improve the
recognition accuracy, training efficiency, and general-
ization ability of the model. -e main contributions are as
follows:

(1) For the problem of unbalanced training data dis-
tribution, we develop a Gradient Borderline-syn-
thetic Minority Oversampling Technique
(GSMOTE) for expanding small samples of data
(data classes with small sample size). -e algorithm
first updates the data samples based on the gradient
value of each sample in the dataset by the unilateral
gradient sampling algorithm and then uses the
synthetic minority oversampling algorithm to ex-
pand the updated dataset with small samples, thus
ensuring the balance among the data samples.

(2) For the problem of large dimensionality of data
features, we design an Exclusive Features Binding-
Hierarchy Cross-Validation algorithm (EFB-HCV)
to reduce the feature dimensionality of the data. -e
algorithm first performs feature combinations based
on the graph coloring idea and binds the mutually
exclusive features existing in the data set to reduce
the number of features.

(3) For the problem of difficult parameter search during
model training, we propose a Bayesian Optimization
algorithm (BO) to improve the optimization effi-
ciency of model parameters. -e algorithm adds a
step limit to the parameter search process and
regulates the search range of the parameters
according to the step size, which can effectively avoid
the traversal operation of all parameters.

(4) To verify the effectiveness of LGBM, we compare
LGBM, Random Forest, Adaboost, Decision Tree,
and GBDT with the help of four metrics: precision,
recall, F-measure, and Roc curve. Detailed experi-
mental results show that the new scheme improves
the recognition rate of the model for a few attack
types, the efficiency of the model parameter search,
the learning efficiency, and the generalization ability.

2. Basic Knowledge

-is section introduces two aspects of gradient boosting
Decision Tree and basic optimization solution.

2.1. Gradient Boosting Decision Tree. GBDT is an efficient
regression problem-solving method based on the boosting
algorithm, which uses the regression tree as the basic
classifier and a gradient boosting learning algorithm to it-
eratively generate a Decision Tree. Boosting algorithm is a
weighted linear combination of multiple weak learners, i.e.,
f(x
⇀

) � fM(x
⇀

) � 􏽐
M
m�1 hm(x

⇀
,Θm), x

⇀ is the input of model,
hm(x
⇀

,Θm) denotes themth model,Θm are the parameters of
the mth model,M is the number of base models. -e CART
tree applied by the boosting algorithm is a binary decision
tree.-e CARTtree generates a classification decision tree, if
the data to be predicted is discrete, and a regression decision
tree if the data to be predicted is continuous. As an improved
algorithm of GBDT, the LGBM also uses the CART re-
gression tree as the base learner to find the best division
point containing all features. -e CARTregression tree uses
the squared error as the discriminant of the best division
point, and the regression boosting tree process is described
as follows:

For the training set N � (x
⇀
1, 􏽥y1), (x

⇀
2, 􏽥y2),􏽮

. . . , (x
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(c) the residuals were fitted by learning regression
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) � 􏽐
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2.2. Basic Optimization Solution. GBDTneeds to traverse all
features of all samples when constructing a Decision Tree to
obtain effective splitting nodes to obtain the maximum
information gain points. However, when the number of
samples is large and the dimensionality of sample features is
too high, its training efficiency will be significantly reduced.
-e new algorithm LGBM uses one-sided gradient sampling
algorithm and mutually exclusive feature binding algorithm
to reduce the number of training samples and the number of
sample features in the training process to improve the
training speed of the model.

2.2.1. One-Sided Gradient Sampling. One-sided gradient
sampling is a common processing algorithm when the
dataset contains a large amount of sample data. Instead of
using weight values to measure the importance of the
samples in GBDT, the negative gradient of the loss function
is fitted.-e larger the sample prediction error, the larger the
absolute value of the gradient, and the worse the learning of

the sample. And, the smaller the sample prediction error, the
smaller the absolute value of the gradient, and the better the
learning of the sample.

-e one-sided gradient sampling algorithmmeasures the
importance of the sample by the gradient of the sample, i.e.,
the higher the absolute value of the gradient of the sample,
the higher the importance of the sample. One-sided gradient
sampling keeps all samples with larger gradient values, while
random sampling is performed among samples with smaller
gradient values. -e specific process is that firstly, the
samples are arranged in descending order according to their
absolute values of gradient, and then the top a% of them are
selected as the large gradient sample point set A, and the
remaining sample set is randomly selected b% as the small
gradient sample set B. Finally, the two sets are combined and
the model is trained under the updated data set.

-e variance gain in the one-sided gradient sampling
algorithm is defined as:

􏽥Vj|T(d) �
1

nT

􏽐
x
⇀

i ∈αl
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⇀
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􏽐
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⇀
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2

nl|T(d)
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nT is the number of all retained samples, nl|T(d) is the
number of samples in the left subtree, and nr|T(d) is the
number of samples in the right subtree. αl and αr are the set
of samples with larger retention gradient values in the left
subtree and right subtree. βl and βr are the set of samples
with smaller retention gradient values in the left subtree and
right subtree.-e algorithm defines the approximation error
as: φ(d) � |􏽥Vj|T(d) − Vj|T(d)|, the gradient values are
gl(d) � 􏽐

x
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i∈L
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x
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i∈R
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�
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√
maxxi∈B|gi| is

the maximum gradient weighted value in B.
D � max(gl(d), gr(d)) is selected as the maximum of the
mean gradient values in the left and right subtrees. -e one-
sided gradient sampling algorithm increases the diversity of
the base model, which helps to improve the generalization
ability of the integrated model and also improves the ability
of the model to monitor the attack behavior.

2.2.2. Mutually Exclusive Feature Binding. For the sample
x
⇀

i � (xi,1, xi,2, . . . , xi,n)T in the dataset
R � (x

⇀
1, y1), (x

⇀
2, y2), . . . , (x

⇀
n, yn)􏽮 􏽯, if for each sample

i � 1, 2, . . . , N, there will be no xi,j ≠ 0, xi,k ≠ 0, then the
sample features j and k are mutually exclusive features. -e
mutually exclusive feature finding process is described as
follows (Algorithm 1):

Benefiting from the histogram algorithm, LGBM first
groups consecutive features into n integers (n integers

represent n histograms), then iterates through the sample
features, merges the features belonging to a certain integer
range into the histogram represented by that integer, and
finally merges each feature into each histogram, thus finding
the best segmentation point based on the discrete value of
the histogram.

3. Lightweight Gradient Boosting Method

-is section focuses on three aspects: unbalanced data pro-
cessing, data characterization, and parameter optimization.

3.1. UnbalancedData Processing. -rough the analysis of the
collected intrusion detection dataset, we found that the data
distribution of each category in the original dataset is ex-
tremely unbalanced, and the number of DOS attack types in
the KDD dataset is about 400,000, accounting for about 80%
of the total data, while the number of U2L attack types is
about 60, accounting for less than 1%.-is problem is likely to
cause the learner to overfit large samples (data categories with
large sample data) and underfit small samples (data categories
with small sample data), leading to a decrease in the accuracy
of model recognition. To solve this problem, we propose the
Gradient Borderline-synthetic Minority Oversampling
Technique (GSMOTE) to expand the small sample data.

-e GSMOTE algorithm manually synthesizes new
sample data for the few classes of samples that are at the
boundary, which effectively solves the problem that the
boundary instances are prone to misclassification in the
SMOTE. Using the gradient sampling algorithm decreases
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the amount of sample data and reduces the amount of
learning required by the model. According to the fitting
principle of GBDT to the objective function, the gradient is
crucial information to measure the fitting effect of samples.
-erefore, we update the dataset with the gradient value of
samples. If the gradient value of a sample is small and its
learning error is small, it indicates that the sample has been
well trained and the instances with small gradient values can
be appropriately deleted in the dataset. If the gradient value
of a sample is large, it indicates that the sample has not been
fully learned and the instances with large gradient values in
the dataset are retained.

We first update the dataset using the one-sided gradient
sampling algorithm to eliminate sample points with small
gradient values, and then perform data balancing on the
updated dataset using the GSMOTE Algorithm 2, the
pseudo-code for the GSMOTE is as follows:

Where T is the number of minority samples, k is the
number of nearest neighbors, and N is the sampling rate.
MinoritySam[][] is an array for original minority samples,
Newindex[][] is the number of synthetic samples generated,
SyntheticSam[][] is the array for synthetic samples, and
numattrs is the number of attributes.

3.2. Data Feature Dimensionality Reduction. -e recursive
feature elimination algorithm, which first assigns weights
to each feature of the sample, is trained on the specified
dataset using the base model. -en the feature weights of
the trained model are extracted and the sample features
with the smallest weight are removed by sorting them from
largest to smallest according to their absolute values. Fi-
nally, the process is recursively repeated until the desired
number of features is reached. In the sparse feature space,
many features are mutually exclusive, i.e., they never obtain
nonzero values at the same moment, and mutually ex-
clusive features can be bundled into one feature. -e al-
gorithm reduces the data feature dimensionality to some
extent and retains the valid feature information by cross-
validation methods. However, this algorithm is costly in the
process of dimensionality reduction and requires iterative
training of the base model to traverse all sample features
before the final sample dataset can be obtained. In addition,
the sample features eliminated by recursion also contain
information useful for the classification samples, and the
dataset after multiple recursions will lose some effective
features. -erefore, the performance of the model trained
with this dataset is reduced.

-e number of samples in the original dataset is large,
and the feature dimension is large. According to the
analysis of the original dataset, it is known that the high-
dimensional data feature space has multiple features whose
values will not be nonzero at the same time, i.e., the high-
dimensional data feature space is sparse, which we call
mutually exclusive features. -erefore, the mutually ex-
clusive features can be used to merge multiple features in
the dataset, thus reducing the number of features and the
dimensionality of the features. According to the idea of the
graph coloring problem, the mutually exclusive feature

merging algorithm uses graph vertices to represent sample
features, and there is no connection between mutually
exclusive features, so when the graph is colored with K
colors, there are K groups of mutually exclusive features in
the graph. -e pseudo-code of the Exclusive Features
Binding Algorithm 3 is as follows:

-e mutually exclusive feature merging algorithm
performs feature combination based on the graph coloring
problem idea, where features are used as vertices of a
graph, edges connect two nonmutually exclusive features,
and the weights of the edges indicate the total conflict
values of the two features, and feature points of the same
color in the graph are mutually exclusive features. For
incomplete mutually exclusive features, the algorithm
allows lower conflicts, so the features can be further
combined to reduce the number of features and improve
computational efficiency. To ensure that the original
features are successfully separated after each feature
combination is merged, i.e., the original feature values can
be identified in the merged feature combination, the al-
gorithm sets offsets for the corresponding feature values,
appropriately changes the range of feature values, and
assigns different feature values to different bins in the
feature combination, thus avoiding feature value confu-
sion after feature fusion.

To avoid the uneven distribution of data categories by
the K-fold cross-validation method, we propose to use the
Hierarchy Cross-Validation Algorithm (HCV), which treats
the sample data of each attack category in a balanced way
and uses a hierarchical data extraction method to ensure the
equal proportional division of attack categories in the
training and test sets. -e pseudo-code of the Exclusive
Features Binding-Hierarchy Cross-Validation Algorithm 4
(EFB-HCV) is as follows:

-e EFB-HCV algorithm first optimizes the data feature
reduction scheme of RFE-HCV to avoid recursively ma-
nipulating the dataset, and then uses the same hierarchical
cross-validation method in data slicing to ensure equal
proportional distribution of attack categories in the training
and test sets. -e specific details are described as follows:

(1) In terms of feature optimization, the EFB-HCV al-
gorithm uses the mutually exclusive feature binding
technique to feature the dataset and merges the same
color feature points, i.e., mutually exclusive features,
and sets an offset for incomplete mutually exclusive
feature values to further reduce the number of fea-
tures. -e algorithm does not need to assign a weight
value to each feature, which avoids the iterative
training of the model and reduces the model training
cost.

(2) In terms of data assignment, the data features are
processed by the mutually exclusive feature binding
algorithm. -en the hierarchical cross-validation
algorithm divides the data proportionally. In other
words, the data in each training set belong to dif-
ferent attack categories, and the proportion of attack
categories in each training set and test set is the same
as the original training set.
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3.3. Parameter Optimization. -e grid search algorithm first
combines the values of multiple parameters and grids them,
then uses each set of parameter combinations for base model
training, and finally selects the best parameter combination
based on the performance of the model. -e updated grid
search algorithm improves the efficiency of parameter search
to some extent by stepping updating strategy, but both al-
gorithms simply search for parameter combinations without
making full use of the information of search points, which
reduces the quality and efficiency of parameter search.
Bayesian Optimization Algorithm (BO) in the case of a large
number of parameter combinations can be more efficient than
grid search by establishing the proxy function through finite
iteration, making full use of the searched parameter infor-
mation, and determining the optimal parameter combination
directly based on the maximum value of the proxy function.
-e pseudo-code of BO is as follows (Algorithm 5):

-e base model root node is initialized, the constant
values are predicted, and the parameters such as model
n_estimator are estimated. Where f is the black box function
being optimized, X is the parameter search space, S is the
collection function, andM is the agent model. According to
the Bayesian optimization idea, firstly initialize the data set
Data which contains n candidate solutions. Second, the n
candidate solutions found by this point set are used to build
a Gaussian regression model for making the posterior
probabilities of other candidate points. -en, the collection
function is constructed based on the posterior probabilities
to find the next point that may produce the extreme value.
Finally, the point that makes the function reach its maxi-
mum value is selected as the parameter of the training
model.

Bayesian modeling of the function values of the black-
box function using a Gaussian process gives the probability
distribution of each function value, lets the function value at
each point be a random variable, and multiple random
variables form a random vector obeying a normal distri-
bution. For the function f(x), there are n sampling points
(x1, x2, · · · , xn), the corresponding function values f(x) �

[f(x1), f(x2), . . . f(xn)] of which form a vector, which
obey a normal distribution in the Gaussian regression
process:

f(x) ∼ N μ x1:n( 􏼁, 􏽘 x1:n, x1:n( 􏼁􏼐 􏼑. (2)

μ(x1:n) is the mean vector of the Gaussian distribution.
􏽐(x1:n, x1:n) denotes the covariance matrix. -e covariance
matrix is usually implemented using a kernel function,
which is defined in the Gaussian regression process as:

k x1, x2( 􏼁 � z exp −
1
2ε2

x1 − x2
����

����
2

􏼠 􏼡. (3)

z, ε is the parameter of the kernel function, and the mean
vector is calculated from the mean function μ(x). According
to the multidimensional normal distribution from the co-
variance matrix and the mean the vector,we can predict the
probability distribution of the function value of the

pointxn+1, after adding the point the function value vector
distribution is f(x1:n+1) and obeys the n+ 1 dimensional
normal distribution.

f x1:n( 􏼁

f xn+1( 􏼁
􏼢 􏼣 ∼ N

μ x1:n( 􏼁

μ xn+1( 􏼁
􏼢 􏼣,

K k

k
T

k xn+1, xn+1( 􏼁
􏼢 􏼣􏼠 􏼡, (4)

where f(x1: n) obeys the n-dimensional normal distribu-
tion, the mean vector is μ(x1:n), k is denoted as
k � [k(xn+1, x1), k(xn+1, x2), . . . k(xn+1, xn)], calculated
from the kernel function. -e covariance matrix K can be
calculated based on the mean function and the covariance
function. -e mean and variance expressions of the con-
ditional distribution obeyed can be introduced according to
the rules for calculating the f(xn+1) multidimensional
normal distribution as:

μ � k
T
K

− 1
f x1:n( 􏼁 − μ x1:n( 􏼁( 􏼁,

σ2 � k xn+1, xn+1( 􏼁 − k
T
K

− 1
k.

(5)

Suppose the mapping relationship between the param-
eters to the objective function is f(x), f(x) is uncertain, and
the acquisition function constructed by the mathematical
expectation of f(x) does not satisfy the conditions of the
corresponding function, i.e., the value of the acquisition
function is small at the existing adopted points, and the value
of the acquisition function is large at the points within the
confidence interval and the mean value of the function is
larger.We improve theexpectation acquisition function as
follows: let n candidate solutions have been searched and the
function is maximal:

􏽢fn � max f x1( 􏼁, f x2( 􏼁, . . . , f xn( 􏼁( 􏼁. (6)

Calculate the function value for the next candidate
point xn+1 as f(xn+1), if f(xn+1)≥ 􏽢fn, then the extreme
value of the function at n+1 is f(xn+1), and vice versa 􏽢fn.
After adding new candidate points, the improvement value
of the function is [f(xn+1) − 􏽢fn]∗, and the optimization
goal is to find the candidate point x that makes the max-
imum improvement value.

EIn(x) � En f xn+1( 􏼁 − 􏽢fn􏽨 􏽩
∗

􏽨 􏽩. (7)

En[∗] � E[∗ |x1,n, y1,n] denotes the expected value calcu-
lated from the first n sampling points and their function
values. Because the Gaussian process f(x) obeys a normal
distribution, located at point x the mean value is φ � φ(x),
and the variance is σ2 � σ2(x), such that λ � f(x), is
introduced:

EIn(x) � 􏽚
+∞

− ∞
λ − 􏽢fn􏽨 􏽩

+ 1
����
2πσ

√ exp −
(λ − φ)

2

2σ2
􏼠 􏼡dz

� 􏽚
+∞

􏽢fn

λ − 􏽢fn􏼐 􏼑
1
����
2πσ

√ exp −
(λ − φ)

2

2σ2
􏼠 􏼡dz.

(8)
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Based on the points for dollars we get,

EIn(x) � 􏽚
+∞

􏽢fn

λ − 􏽢fn􏼐 􏼑
1
����
2πσ

√ exp −
(λ − φ)

2

2σ2
􏼠 􏼡dz

� φ − 􏽢fn􏼐 􏼑 1 − ϑ
􏽢fn − φ􏼐 􏼑

σ
⎛⎝ ⎞⎠⎛⎝ ⎞⎠ + στ

􏽢fn − φ􏼐 􏼑

σ
⎛⎝ ⎞⎠.

(9)

τ(x) is the probability density function of the standard
normal distribution. ϑ(x) is the distribution function of the
normal distribution. Let Δ(x) � φ(x) − 􏽢fn then,

EIn(x) � [Δ(x)]
+

+ σ(x)τ
Δ(x)

σ(x)
􏼠 􏼡 − |Δ(x)|ϑ

Δ(x)

σ(x)
􏼠 􏼡. (10)

-e expectation improvement function defines the ex-
pected value at each point as a function of that point, and
eventually, the next candidate point is obtained based on the
extreme value of the expected improvement function:

xn+1 � argmaxEIn(x). (11)

4. Experimental Section

We validate the model optimization scheme for LGBM by
using the Anaconda integrated development tool. First, we
introduce the NSL-KDD. Secondly, we compare LGBMwith
GBDT, Adaboost, Decision Tree, and Random Forest under
three metrics of precision, recall, F-measure, and Roc curve
to elaborate advantages of LGBM. -en we analyze the
effectiveness of LGBM for identifying different attack types
using Roc curves. Finally, the optimization process of
Bayesian and grid search for hyperparameters is compared
and analyzed to verify that the Bayesian optimization al-
gorithm has a better optimization effect on hyperparameters
while ensuring optimization efficiency.

4.1. NSL-KDD Dataset. To address the problems of re-
dundant records and unbalanced attack categories in the
KDD, the NSL-KDD removes duplicate records from the
training and test sets to ensure that the classifier does not
bias towards a larger number of attack types, which in turn
improves the detection accuracy of the classifier. Setting the
number of records in the training and test sets can reduce the
running cost of the experiment and eliminate the need to
randomly select some data. As shown in Table 1, NSL-KDD
contains four attack types (Dos, Probe, U2R, and R2L) and
21 specific attack instances, which are more abundant
compared with the KDD, and the test set contains new
samples of attack instances to better evaluate the classifi-
cation performance of the learner. -e distribution of the
NSL-KDD data set is shown in Table 2.

5. Comparative Analysis of Model
Recognition Performance

To test the recognition performance of LBGM to identify
different classes of attacks, we compare the LGBM model

with four models, GBDT, Adaboost, Decision Tree, and
Random Forest under the three metrics of precision, recall,
and F-measure. GBDT (Gradient Boosting Decision Tree)
[27] is an iterative decision tree algorithm, which constructs
a set of weak learners and accumulates the results of multiple
decision trees as the final prediction output. Random forest
[28] is a commonly used machine learning algorithm, which
combines the output of multiple decision trees to reach a
single result. -e five models are trained and learned under
the NSL-KDD training set, and the models are validated by
the test set to derive the recognition performance of each
model for the attack types under different metrics.

Figure 1(a) indicates the precision of the five models for
the attack instances. From this table, it can be seen that the
LGBM has a high precision for each attack type and most of
the models have good precision for two common attack
types, Probe and DOS. LGBM has the highest accuracy of
precision compared to the other two options, which is only
slightly weaker in Probe. -e number of weak classifiers in
the Adaboost is hard to set, resulting in a lower precision for
the Probe attack type. For the two minority attack types U2R
and R2L, the LGBM and the GBDT have high precision for
both attacks, which is because both models use the boosting
mechanism to integrate multiple weak learners to obtain
strong learners, thus optimizing the overall performance of
the model. Also, the LGBM uses the gradient synthesis
minority class over adoption algorithm to process the data
set and reasonably increases the number of samples of both
U2R and R2L attacks, making the model equally good at
identifying minority attack types. Decision Tree and Ran-
dom Forest do not sample the dataset, resulting in a lower
precision for U2R attack samples than GBDT and LGBM,
but the Decision Tree is more sensitive to anomalous
samples, so the Decision Tree has better precision for R2L.

Figure 1(b) presents the recall of the five models for
different attack types. Compared to the precision rate, the
recall of all models for U2R and R2L attack samples decrease
to some extent, but the LGBM model still maintains rela-
tively high recall for both attack samples, indicating that the
model throws to maintain a good recall of positive example
samples while ensuring the precision rate. For common
attack types such as Probe and Dos, the number of sample
features is large and the model can maintain a stable recall
through training, so most of the models still present high
recall for common attack types.

Figure 1(c) shows the F-measure of the five models for
different attack types. A comparison of the F-measure of the
five models for different attack types shows that the overall
performance of the Adaboost model is poor, which is be-
cause that the model fails to effectively process the data
samples and cannot effectively identify unknown or un-
common attack types. Compared with Adaboost, the LGBM
has better overall performance, especially for the detection
and identification of two rare attack types, U2R and R2L.
-at is because the sample processing of the dataset removes
the sample data with small gradient values and expands the
small samples (a small number of attack samples) so that the
model can fully learn from them. Random Forest outper-
forms Adaboost in overall performance but is less effective in
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identifying and detecting uncommon attack types than
LGBM models. -at is because the trained models are
slightly less targeted due to the lack of expansion of the small
sample data. To sum up, the overall performance of the
LGBM model is better than the other models.

5.1. Comparative Analysis of Model Roc Curves. Figure 2
depicts the Roc curves of the five models for different at-
tack types. According to the definition of Roc curves, the
special points in the figure are first analyzed.-e point (0, 1),
i.e., TPR� 1 and FPR� 0, indicates that the classifier clas-
sifies all samples correctly. -e point (1, 0), i.e., TPR� 0 and
FPR� 1, indicates that the classifier misclassifies all samples
and has the worst performance. -e two points (0, 0) (1, 1)
indicate that the classifier predicts negative samples and
positive samples. -e ability of the model to detect and
identify each attack type is known from the Roc curve of
each model.

Figures 2(a) and 2(c) show that the Roc curves of De-
cision Tree and Random Forest have similar recognition
effects on attack samples such as U2R and R2L. Also, the
curves are close to y� x indicating that the model classifies

the samples randomly and does not effectively detect the
sample data. -at is because the Decision Tree and Random
Forest models tend to select different attributes when
classifying the category data with a large difference in the
number of samples, resulting in a poor recognition rate due
to insufficient training for sample data with few attributes. It
can conclude that the two models have a higher recognition
accuracy for a larger number of Probe, DOS, and normal
data samples. Figure 2(d) shows the Roc curves of the
Adaboost model for different attack types. -e model ap-
pears to misclassify R2L samples and has lower recognition
accuracy for other types of sample data, as the model is
sensitive to the distribution of sample data and does not
balance the dataset leading to a decrease in the classification
accuracy of the model. -e Roc curves of the GBDT and
LGBMmodels are shown in Figures 2(b) and 2(e), and it can
be seen that both of them have better recognition ability for
each type of data sample. Since the GBDT model can ef-
fectively deal with anomalous data and can handle both
continuous and discrete values, the model has better rec-
ognition accuracy for R2L attack types. In summary, the
overall recognition accuracy of the LGBM model for dif-
ferent attack types is better than other models.

Input: R � (x
⇀
1, y1), (x

⇀
2, y2), . . . , (x

⇀
n, yn)􏽮 􏽯, the conflict threshold K;

Output: the set F of feature grouping bin;
Step 1: Initialize FN as an array consisting of the number of nonzero eigenvalues;
Step 2: Iterate over all features j of all samples and obtain the nonzero value FNj of j, sort the number of vertex features in descending

order according to the array FN, and initialize the set F;
Step 3: Assume that the current vertex is j, traverse the feature grouping bin, calculate the conflict value con between j and the feature

points in the bin, con is less than K, then it indicates that vertex j and the feature points in the bin do not conflict, add j to the
feature grouping bin;

Step 4: If vertex j conflicts with the features in bin and is not added to the feature grouping bin, create a new feature grouping for that
vertex and add it to the set F.

ALGORITHM 1: Mutually exclusive feature search algorithm.

(01) Initialize T, k, N;
(02) If N< 100 then
(03) Randomize the Tminority class samples;
(04) T� (N/100)∗T;
(05) N� 100;
(06) End if
(07) For i� 1 to T:
(08) Compute k nearest neighbors for i and save the indices in the mArray;
(09) while N!� 0 do
(10) Choose a random number s between 1 and k;
(11) for a� 1 to numattrs:
(12) dif�MinoritySam[mArray[s]][a] − MinoritySam[i][a];
(13) gap� random a number between 0 and 1;
(14) end for
(15) Newindex++;
(16) N�N − 1;
(17) End while
(18) End for

ALGORITHM 2: GSMOTE algorithm.
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5.2. Comparative Analysis of Model Parameter Optimization.
Hyperparameters are set before the training of a machine
learning model and directly a�ect the learning e�ect of the
model. A set of optimal hyperparameters can improve the
learning ability and e�ectiveness of the model. �e grid
search algorithm can iterate through all parameter combi-
nations to �nd the optimal combination of parameters, but
this method is less e�cient. If the number of model pa-
rameters is too large, the grid search algorithm will increase
the training cost of the model and reduce the e�ciency of
parameter optimization. Moreover, the algorithm performs
an iterative search so that the model training is not targeted.
�erefore, we use the Bayesian optimization algorithm to
optimize the parameters, and the experimental results are
shown in Tables 3 and 4. We select three important pa-
rameters, max_depth, n_estimator, and num_leaves, to

measure the amount of data contained in the NSL-KDD and
train them under the LGBM model with tuning parameters.

Tables 3 and 4 show the overall performance of opti-
mization methods with di�erent combinations of parame-
ters. �e model achieves the highest performance value of
0.9528 in the test set, the grid search algorithm, while the
performance value of the model optimized with Bayesian
parameters is 0.9906, which indicates that the Bayesian-
optimized parameters can enhance the training learning
ability of the model and obtain a stronger classi�er. �is is
because the random combination of di�erent parameter
values by the grid search algorithm tends to lead to excessive
di�erences between di�erent parameter values, making it
di�cult for the model to reach the optimal value. �e
Bayesian optimization algorithm establishes a functional
relationship between the hyperparameters and the model
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Figure 1: Accuracy of the analysis of model recognition performance. (a) Precision. (b) Recall. (c) F-measure.
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Figure 2: Roc curve of model. (a) Decision tree. (b) GBDT. (c) Random forest. (d) Adaboost. (e) LGBM.
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(01) Input: F: features, MC: max conflict count, G: construct graph, NumData: number of data, B: One bundle of exclusive features;
(02) searchOrder�G.sortbyDegree();
(03) for i in searchOrder do:
(04) needNew�True;
(05) for j� 1 to len (bundles) do:
(06) cnt�ConflictCnt (bundles[j], F[i]);
(07) if cnt + bundlesConflict [i]≤MC then
(08) bundles [j].add (F[i]), needNew� False;
(09) break;
(10) binScope� 0, NumBin� 0;
(11) end if
(12) end for
(13) end for
(14) for i� 1 to NumData do
(15) newBin [i]� 0;
(16) for j� 1 to len (B) do
(17) if B[j].bin[i]!� 0 then
(18) newBin [i]�B[j].bin[i] + binScope [j];
(19) end if
(20) end for
(21) end for
(22) Output: newBin, binScope

ALGORITHM 3: Exclusive features binding.

(01) Initialize Estimator, 􏽐k(ck), M1, · · · , Mg;
(02) for m � M1 to Mgdo:
(03) exclusive features binding for Mi, i � 1, · · · , g;
(04) covariance matrix Sc obtained from sample set;
(05) fitting F(Sc, 􏽐k(ck))⟶ 􏽢ck,c, 􏽐k(􏽢ck,c);
(06) covariance matrix SV obtained from Validation set;
(07) fitting F(Sv, 􏽐k(􏽢ck,c))⟶Θ;
(08) comparison of the cross-validation indices Θ;
(09) end for
(10) Output the most stable Θ.

ALGORITHM 4: EFB-HCV algorithm.

(01) Initialize f0(x) � argminc 􏽐
N
i�1 L(yi, c), f, X, S, M;

(02) Initialize EFB-HierarchyCV;
(03) n_estimator: Data � Samples(f, X);
(04) for i � av(Data) to T do:
(05) P(y|x,Data) � FitModel(M,Data);
(06) Xi � argmax S(x, P(y|x,Data));
(07) Yi � f(Xi);
(08) Data � Data + (Xi, Yi);
(09) for m� 1 to M do:
(10) for i � 1, 2, · · · , N do:
(11) compute rim � − [zL(yi, f(xi))/zf(xi)]f�fm− 1

;
(12) end for
(13) end for
(14) fit a regression tree to the targets rim giving terminal regions Rjm, j � 1, 2, · · · , J;
(15) for j � 1, 2, · · · , Jm do:
(16) compute rjm � argmin􏽐xi∈Rjm

L(yi, fm− 1(xi) + c);
(17) end for
(18) Update fm(x) � fm− 1(x) + 􏽐

Jm

j�1 cjmI(x ∈ Rjm);
(19) end for
(20) Output: 􏽢f(x) � fM(x).

ALGORITHM 5: BO algorithm.
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objective function, and the corresponding parameter values
are obtained through the optimal value of the functional
relationship.

6. Conclusion

Intrusion detection technology is one of the most well-
known security protection technologies in the traditional
Internet domain. However, due to the emerging resource-
constrained network entities, with limited computing power
or insufficient power supply, it is difficult for mainstream
intrusion detection technologies to perform as effectively as
before. IDSs based on GBDT face three major challenges:
unbalanced training data distribution, excessive feature
dimensionality, and difficulty in finding the best model
parameters that cannot be effectively applied to the security

protection of end devices in IoT. To solve these problems, we
propose an optimization model LGBM for GBDT. Detailed
experimental results verify the effectiveness of the proposed
scheme.
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Cyber-physical systems (CPSs) will play an important role in future real-world applications through the deep integration of
computing, communication, and control technologies. CPSs are increasingly deployed in critical infrastructure, industry, and
homes to achieve a smart grid, smart transportation, and smart healthcare and to bring many benefits to citizens, businesses, and
governments. However, the openness and complexity brought by network and wireless communication technology, as well as the
intelligence and dynamic of network intrusions make CPS more vulnerable to network intrusions and bring more serious threats
to human life, enterprise productivity, and national security. Therefore, intrusion detection and defense in CPS have attracted
considerable attention and have become a fundamental aspect of CPS security. However, a new challenging problem arises: how to
improve the efficiency and accuracy of intrusion detection while protecting user privacy during the intrusion detection process. To
address this challenge, we propose a deep reinforcement learning-based privacy-enhanced intrusion detection and defense
mechanism (PIDD) for CPS. The PIDD is composed of three modules: privacy-enhanced topology graphs generation module,
graph convolutional networks-based user evaluation module, and the deep reinforcement learning-based intruder identification
and handling module. The experimental results show that the proposed PIDD achieves excellent performance in intrusion
detection accuracy, intrusion defense percentage, and privacy protection.

1. Introduction

Cyber-physical systems (CPSs) are integral and complex
systems that deeply integrate computing, communication,
and physical systems. They bring a number of benefits to
citizens, businesses, and governments and have attracted
more attention in recent years. CPS plays an important role
in wide real-world applications and has been making great
business impacts in various industrial sectors, such as en-
ergy, transportation, healthcare, and manufacturing. With
the rapid evolution of wireless communication networks,
more and more CPS subsystems are built and connected
through the communication networks, which enables more
and more devices to link to CPS. However, the extensive
utilization of devices with security vulnerabilities and

unprotected communication networks makes CPS more
prone to malicious cyber attacks and intrusions [1] (see
Figure 1). These cyber threats, if they cannot be detected
quickly and adjust the proper response strategy, will lead to
grave consequences such as equipment damage, financial
losses, and public safety. Traditional intrusion detection
systems, primarily designed for conventional information
technology systems, are not enough for CPS since they do
not take into account the physical side of CPS.

In order to overcome these security threats, a deep re-
inforcement learning-based privacy-enhanced intrusion
detection and defense mechanism (PIDD) is proposed for
CPS. Intrusion detection and defense (IDD) is one of the
most important strategy for securing CPS from malicious
intrusions [2–4]; it can effectively minimize or prevent the
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damage caused by the intrusions through performing IDD to
model and monitor the malicious behaviors and intrusions
early, and taking proper counter-intrusion measures and
mitigation actions. With the characteristics of predicting
future intrusions or security threats by building detection-
based models and predictions based on empirical data,
machine learning has been introduced into IDD to enhance
CPS’s security.

Although there are emerging machine learning-based
IDD mechanisms [5–9], they do not take into account the
users’ privacy preservation while realizing intrusion detec-
tion and defense. Moreover, they do not combine the po-
tential relationship between a user being an intruder and the
user’s communication topology graphs and features into
IDD design in CPS, which helps to make the counter-
measures against intrusions more efficient and reliable. The
formal description of the intrusion detection problem
addressed in this paper is as follows. Under the given
communication conditions, it can efficiently discover in-
trusion behaviors and realize privacy protection at the same
time.

Inspired by the previous work [10] on anomaly detec-
tion, we utilize the deep neural network with DRL training to
solve the challenging problem of intrusion detection and
defense in CPS. The main contributions of this paper are
listed as follows.

(i) To achieve efficient intrusion detection while con-
sidering user privacy protection, we apply a varia-
tional graph autoencoder to construct a privacy-
enhanced intrasystem communication topology
graph and an intersystem communication topology
graph with normal node characteristics. Based on
these privacy-enhancing graphs and noisy node
features, we employ graph convolutional networks
to evaluate users’ communications as regular users,
intrasystem intruders, or intersystem intruders.

(ii) In order to improve the accuracy of intrusion de-
tection, the deep reinforcement learning method

twin delayed deep deterministic policy gradient
algorithm (TD3) is used, which integrates the de-
cisions made by each variational graph autoencoder
during intrasystem communication and intersystem
communication, respectively to determine whether
the user is ultimately an intruder. Although adding
noise will affect the detection accuracy, the TD3
algorithm still guarantees high-accuracy intrusion
detection.

(iii) In order to effectively prevent intrusion, the cor-
responding countermeasures against intrusion are
proposed. For intrasystem intruders, intrasystem
communication is restricted, while intersystem in-
truders prohibit intersystem communication. In
addition, both intrasystem communication and
intersystem communication are prohibited for
intrasystem and intersystem intruders.

(iv) Validation experiments are performed on the “CSE-
CIC-IDS2018” dataset. The experimental results
show that the proposed PIDD achieves excellent
performance in terms of high intrusion detection
accuracy, defense capability, and low privacy
leakage.

The remainder of this paper is organized as follows. The
proposed intrusion detection and defense framework are
described in the following section. The implementation
details of the DRL-based privacy-enhanced solution are then
presented. Simulation results are presented and then dis-
cussed. The final section concludes this paper.

2. Overall Design of the DRL-Based Privacy-
Enhanced Intrusion Detection and
Defense in CPS

In this section, we first introduce the basic concept of CPS
and the formulation of the intrusions and defenses problem.
The proposed PIDD framework is then presented in detail.

2.1. Cyber-Physical Systems. A CPS is a controllable, reliable,
and scalable multidimensional complex system that deeply
integrates computing, communication, and control capa-
bilities based on environmental perception. CPS connects
physical equipment to the Internet and realizes deep inte-
gration and real-time interaction through the feedback loop
of the mutual influence of computing and physical processes
to add or expand new functions and detect or control
physical equipment in a safe, reliable, efficient, and real-time
manner. CPS enables physical devices to have five functions:
computing, communication, precise control, remote coor-
dination, and autonomy. Through the organic integration
and in-depth collaboration of computation, communica-
tion, and control technologies, realtime perception, dynamic
control, and information services of large-scale engineering
systems are realized, which makes CPS play an important
role in wide real-world applications and has been making
great business impacts in various industrial sectors, such as
energy, transportation, healthcare, and manufacturing.
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Figure 1: The architecture of cyber-physical systems and the
potential security threat.
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However, the diversity of application scenarios, the open-
ness and complexity of networking and wireless commu-
nication, and the intelligence and dynamics of intrusions
bring about unpredicted security and privacy protection
challenges to intrusion detection and defense mechanisms.
Therefore, efficient, accurate, and privacy-enhanced intru-
sion detection and defense mechanisms are crucial to the
success of CPS.

2.2. Intrusions and Defenses in CPS: Problem Formulation.
Cyber-intrusions mainly include intrasystem intrusions and
intersystem intrusions, both of which will lead to equipment
damage, economic loss, public safety, and other serious
consequences. Many traditional countermeasures have been
proven efficient against various intrusions. For example, in
[11], to authenticate user equipment, Cui et al. first devel-
oped an edge computing-enabled unified authentication
framework with the consideration of privacy preservation.
Then, to prevent compromised user equipments (UEs) from
launching internal intrusions, they adopt reinforcement
learning and design a trust evaluation-based method to
detect compromised user equipment. To enhance traditional
intrusion detection mechanisms, Shen et al. [12] measure the
data response processing time in the interlayer, analyze
network traffic to eliminate abnormal packets, and design a
hybrid augmented device fingerprinting approach to
eventually realize intrusion classification and detection.
However, these traditional intrusion detection systems,
primarily designed for conventional information technology
systems, are not enough for CPS since they do not take into
account the physical side of CPS.

In recent years, as one of the important strategies to
protect CPS from malicious intrusions, intrusion detection
and defense have been paid attention to by theoretical re-
search and industrial applications.

In [13], a novel intrusion detection method based on
network topology verification was proposed to improve the
security of the controller area network with a flexible data
rate network. The method reliably detected external intru-
sion devices through a simple random walk-based network
topology construction and subsequent verification and
triggered a security mode to further protect the network
from attacks. To deal with intrusion detection based on
dynamic data, Qi et al. [9] proposed a new anomaly de-
tection method combining locality-sensitive hashing, iso-
lation forest, and PCA. This method operated on
multifaceted data by introducing locality-sensitive hashing
and PCA, effectively captured group anomalies and could
perform model updates and processe data in constant
memory and time. In [14], the vulnerabilities of in-vehicle
and external networks were first discussed, and a multilayer
hybrid intrusion detection algorithm, including signature-
based and anomaly-based intrusion detection, was proposed
to detect known and unknown attacks on in-vehicle
networks.

Yang et al. [15] formulated the fine-grained known/
unknown intrusion detection problem as a two-stage
minimization problem, where the first stage used a

conditional autoencoder to seek a score metric to minimize
the empirical risk of misclassifying known attacks. The
second stage was to use extreme value theory to model the
distribution of reconstruction errors to find another score
metric to minimize the identification risk of inferring un-
known attacks. To detect malicious TCP packets, Bitton and
Shabtai [16] proposed a network-based intrusion detection
system specifically for securing remote desktop connections.
The system utilized an innovative machine learning-based
anomaly detection technique for finding malicious TCP
packets that carried exploits aimed at the remote desktop
protocols server. High-speed networks need to process a
large amount of network traffic in real time, and it is difficult
to implement intrusion detection models under large
amounts of big data. To process network content and build
reliable machine learning-based intrusion detection models,
Viegas et al. [17] proposed a new scalable and persistent
intrusion detection architecture. Using deep learning and
generative adversarial networks, Shu et al. [18] explored
distributed SDN and designed a cooperative intrusion de-
tection system for VANET that enabled multiple SDN
controllers to jointly train a global intrusion detection model
for the entire network without directly exchanging their
subnetwork flows.

In fact, both communication topologies and features
should be taken into account in IDD design due to the fact
that the decisions made on communication features alone
are not reliable. Given the difficulty of making out the
specific relations between the communication topologies
and the corresponding features, specific machine learning
technologies, i.e., graph neural networks and deep rein-
forcement learning algorithms [19], should be adopted.
Although machine learning technologies can efficiently
detect and defend against intrusions in CPS, users might
suffer from privacy leakage problems [20] due to users’ data
not being properly dealt with. In addition, since CPS in-
trusions have becomemore intelligent and the heterogeneity
problem of CPS still exists, various domains may have
specific specifications regarding the standards and objectives
of security, and the IDD mechanism for one CPS domain
may not match the other one.

2.3. The Proposed PIDD Framework. The framework of
PIDD is shown in Figure 2, which consists of three modules:
a privacy-enhanced communication topology graph gen-
eration module, a graph convolutional network-based user
evaluation module, and a deep reinforcement learning-
based intruder identification and processing module.

(i) Privacy-Enhancing Communication Topology Map
Generation Module. This module first collects each
user’s communication topology map and features
from all border routers. Then, the privacy-en-
hancing communication topology graph is con-
structed by two variational graph autoencoders
(VGAE) [21] using the intrasystem and intersystem
communication topology graphs, respectively. Next,
appropriate noise is injected to ensure privacy
protection of user communication features.
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(ii) GCN-Based User Evaluation Module. Based on
privacy-enhancing topological graphs and noisy
node features, uses a graph convolutional network
(GCN) [22] to evaluate users as potential regular
users, intruders in the system, or intersystem
intruders.

(iii) DRL-Based Intrusion Detection and DefenseModule.
This module adopts the twin delayed deep deter-
ministic policy gradient algorithm (TD3) based on
deep reinforcement learning to judge whether a user
is an intruder and how to deal with different cat-
egories of users. Based on the final decision, users
detected as intruders will be banned from com-
municating within or across systems.

In PIDD, to efficiently detect and defend intrusions, two
entities of CPS, namely users and routers, are defined as
follows.

(i) Users. There are two types of users considered in this
paper. One is the normal user, while the other one is
the intruder. Normal users communicate with other
users within the system or cross-systems, while the
intruders might launch intrusions to do different
levels of damage to intrasystem routers or border
routers and eventually paralyse the entire CPS.

(ii) Routers. For each system, there are several intra-
system routers, which coordinate the intrasystem
communications, and a system border router, which
is responsible for cross-system communication
routing. Due to the significance of routers, to reduce
the quality of service of CPS, intruders might target
routers and launch the following intrusions: denial
of service attacks, botnet attacks, and infiltration
attacks, which are difficult to detect merely based on
the features of the communication data. Within the
entire CPS, the core router that coordinates all in-
tersystems communications. We deploy the

intrusion detection module on the core router to
detect both intersystem intrusions and intrasystem
intrusions. The intrusion detection module collects
users’ communication topology graphs and the
corresponding features from all region-border
routers for further analysis to detect intruders.

3. Models and Algorithms for the PIDD

All three modules of the proposed PIDD work collabora-
tively to detect and defend against intrusions in CPS, which
are elaborated on in details.

3.1. Privacy-Enhanced Communication Topology Graphs
Generation Module. Recall that both communication to-
pology graphs and features of each user will be used to
determine whether this user is an intruder or not. However,
without proper privacy preservation, this information about
users will be exposed. Injecting the proper noises can solve
this problem. However, doing so will raise two other
problems: (i) whether both communication topology graphs
and features will be injected with noises; (ii) how much
noises should be injected without causing serious detection
accuracy degradation. The feasible solution to the first
problem is to inject noises into communication features
only. The reason for that is as follows: In order to ensure the
privacy of the topology graph, the degree of each node
within will be added as noise. Then, one should reconstruct
the graph from the latest degree sequence. However, it is
difficult due to the fact that the degree sequence might not
satisfy the basic requirements of graph reconstruction [23].
Even if it is possible to reconstruct the graph, the intrusion
detection accuracy will be greatly reduced, because as more
communication links are added to the graph, some links will
actually never exist in reality.That indicates that noise can be
added to communication features only. To solve the second
problem, we let each feature of the communication be
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normalized and added a random sampled noise from the
normal distribution. Since the noise injection will result in
the detection accuracy degradation, each noise is associated
with a discount factor that ranges from 5% to 15%, with an
increment of 5%.

We are aware that even if the communication features
are protected by noise disturbance, there is always a chance
that the original features will be discovered by using gen-
erative adversarial networks (GAN) [24], especially when the
communication topology graphs remain the same. Thereby,
we employ the VGAE to realize further privacy preservation.
Basically, VGAE exploits latent variables and is able to learn
interpretable latent representations for undirected graphs by
using GCN as an encoder and a simple inner-product de-
coder. In VGAE, each communication topology graph is
treated as an undirected and unweighted graph. For each
graph, an adjacency matrix with diagonal elements set to 1, a
degree matrix, and a random latent variable are introduced.
The inference model used in VGAE is parameterized by a
two-layer GCN in which both a mean vector matrix and a
latent variable variance matrix are constructed. Unlike in-
ference models, generative models are given by inner
products between latent variables. VGAE takes the varia-
tional lower bound as the optimization objective of varia-
tional parameters. Note that we feed two different VGAEs
with the intrasystem communication topology graphs and
the intersystem communication graph of each user, re-
spectively, to construct the individual privacy-enhanced
communication topology graphs. Obviously, these two
VAGEs should be trained with pairs of communication
topology graphs and features of intruders or users in ad-
vance. To sum up, all VAGEs of the proposed PIDD are
responsible for privacy preservation during intrusion
detection.

3.2. GCN-Based Users Evaluation Module. Once privacy-
enhanced intrasystem and intersystem communication to-
pology graphs are constructed by VGAEs, we employ two
GCNs to rate the user and generate the intrasystem rating
and the intersystem rating, respectively.

Specifically, there are many irregular data structures.The
typical ones are graph structures or topological structures,
i.e., social networks, chemical molecular structures,
knowledge graphs, and communication topology graphs.
Similar to CNN, GCN is a feature extractor of graph data
that requires both an adjacent matrix and a feature matrix so
that these features can be used to classify graph data for node
classification, graph classification, edge prediction, and
graph embedding. In this paper, both intrasystem and in-
tersystem intruder identification are referred by the graph
classification. That suggests we can train GCNs with the
labelled pairs of privacy-enhanced communication topology
graphs and noisy node features about intruders constructed
by using VGAEs. Once both GCNs are well trained, the
GCNs’ classification results about a user are considered as
the intrasystem rating and intersystem rating of that user,
respectively.

3.3. DRL-Based Intruders’ Identification and Handling
Module. It is worth mentioning that two ratings of the user,
namely the intrasystem rating and the intersystem rating,
cannot guarantee the user is an intruder. For example, even
if both GCNs are well trained, there is always a chance that a
normal user is misjudged as an intruder and vice versa due to
the fact that the original communication topology graphs are
altered by VGAEs, and the corresponding features are added
with noises. Thereby, we introduce the overall rating of each
user by calculating the weighted sum of two ratings. If the
overall rating is higher than 0.5, then this user is a normal
user; otherwise, the user is an intruder. To defend against
intrusions, the intruder should be eliminated from the
communication system of the CPS. However, some users
might have overall ratings almost equal to 0.5, which might
result from occasionally launching intrusions against routers
in CPS. Thereby, for a user whose intrasystem rating is
higher than 0.5, the intrasystem communication of this user
should be forbidden; otherwise, the intersystem commu-
nication of this user should be banned.

Since the final decision is made based on the overall
rating, the pair of weights should be calculated to improve
intrusion detection accuracy. Note that each weight ranges
from 0 to 1, with the sum of all weights equal to 1. That
suggests the optimal pair of weights should be searched in a
continuous space. As an off-policy method, DQN does not
use the real action of the interaction each time it learns but
uses the action that is currently considered to be the most
valuable to update the objective value function, so there will
be an overestimation of the Q value. Compared with DQN,
TD3 uses two critical networks to estimate the action value
function and uses soft update, policy noise, delayed learning,
and gradient interception methods to solve the problem of
overestimation. Thereby, we develop a twin delayed deep
deterministic policy gradient (TD3) based intrusion detec-
tion mechanism. Specifically, the TD3 algorithm requires an
actor-network π, a target actor network π′, two critic net-
works Q1 and Q2, and their target network Q1′ and Q2′.
Basically, the network of participants chooses the action that
should be taken for the state, and the network of critics
evaluates this choice and prevents overestimation. We first
give the definitions of state, action, and reward, respectively,
as follows:

(i) State. Since each user might be a normal user or an
intruder, let 0 represent the user being a normal one
and 1 represent the user’s being an intruder.
Thereby, the state is constructed as a vector that
consists of the binary representation of intrusion
detection for all users.

(ii) Action. Recall that intrusion detection depends on
the intrasystem rating and the intersystem rating of
each user, both of which are coordinated by a pair of
weights to generate the overall rating. Therefore, the
pair of weights serves as the action. As the sum of
two weights is equal to 1, if either weight is higher
than 0.5, then the corresponding intrusion detection
result is more dominant than the other. Moreover,
the action should include countermeasures against
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intruders. If the user is an intrasystem intruder, an
intersystem intruder, or both, then the user is
forbidden to communicate with intrasystem users,
intersystem users, or both accordingly.

(iii) Reward. The goal of intrusion detection is to detect
and eliminate intruders to greatly reduce the
number of intrusions in CPS. That suggests the
intrusions prevented should be taken into account
in the reward calculation. Moreover, the commu-
nication traffic should be considered as well,
asimproperly chosen weights might result in a
significant communication traffic drop.Thereby, we
let the normal communication traffic, which equals
the overall communication traffic minus the in-
trusion traffic, be the reward to evaluate the per-
formance of the proposed PIDD.

In TD3 training, we randomly sample N experience to
update the critic network with the loss function,

L ϑQi􏼐 􏼑 �
1
N

􏽘

N

j

Qi sj, aj|ϑ
Qi􏼐 􏼑 − Yj􏽨 􏽩

2
, (1)

where

Yj � rj + c Qi
′ si+1, π si+1|ϑ

π′
􏼒 􏼓|ϑQ′

i􏼒 􏼓􏼔 􏼕
i�1,2

. (2)

Thereby, we have,

ϑQi←ϑQi − η
zL ϑQi􏼐 􏼑

zϑQi
. (3)

Then, we update the actor-network π by optimizing the
objective function,

J ϑπ( 􏼁 � 􏽘
N

j

Q1 s, a|ϑQ1􏼐 􏼑π sj|ϑ
π

􏼐 􏼑|s � sj, a � π sj|ϑ
π

􏼐 􏼑􏽨 􏽩. (4)

with

ϑπ←ϑπ + ι
zJ ϑπ( 􏼁

zϑπ
. (5)

Next, the parameters of target networks ϑQ′ and ϑπ′ are
updated with a learning rate κ.

Note that the training process for all three modules of the
proposed PIDD is as follows. First, VGAE and GCN are
trained using all labelled communication topology maps and
features of users and intruders in the privacy-enhancing
communication topology map generation module and the
GCN-based user evaluation module. Then, TD3 is trained
using the corresponding ratings in the DRL-based intruder
identification and a processing module. Once trained, the
proposed PIDD is able to determine whether a user is an
intruder based on the user’s communication topology and
characteristics.

The main symbols and their meanings for the proposed
PIDD are shown in Table 1.

4. Numerical Results

To evaluate the performance of the proposed mechanism, we
target three attacks, namely the denial of service attack
(DoS), the botnet attack (Bot), and the infiltration attack
(Inf), to prevent intrusion.The experiment was conducted to
evaluate the performance of the proposed PIDD in Python
on a computer equipped with an i7 6.4GHZ processor, 32G
memory, and a win7 64-bit system. In VGAE, initialized
weights are set as described in [21], and a 32-dim hidden
layer and 16-dim latent variables are used in all experiments.
There are up to 200 iterations of training using Adam with a
learning rate of 0.01.

The “CSE-CIC-IDS2018” dataset, which is available at
“https://www.unb.ca/cic/datasets/ids-2018.html,” is used in
this experiment. The dataset includes seven different attack
scenarios: Brute-force, Heartbleed, Botnet, DoS, DDoS, Web
attacks, and infiltration of the network from inside. The
attacking infrastructure includes 50 machines, and the
victim organization has 5 departments and includes 420
machines and 30 servers. The dataset includes the captured
network traffic and system logs of each machine, along with
80 features extracted from the captured traffic by using
CICFlowMeter-V3. To facilitate the performance evaluation,
each cyber-physical system contains at most 16 routers and 1
border router. Both intrasystem communication topology
graphs and intersystem communication topology graphs are
extracted first. Then, all these topology graphs and com-
munication features are used to determine whether users are
intruders. The following indexes are employed to evaluate
the performance of the PIDD with the consideration of
different percentages of noise added.

(i) Detection Accuracy. Both the false alarm rate (FAR)
and the miss detection rate (MDR) are applied to
evaluate the detection accuracy.

(ii) Intrusion Prevention Percentage. The percentage of
intrusions prevented in overall intrusions launched

(iii) Privacy Preservation Percentage. The differences
between the original communication topology
graphs and the privacy-enhanced ones aremeasured
in the privacy preservation percentage.

Figure 3 shows the detection accuracy of adding different
percentages of noise. As shown in Figure 3, we find that the
FAR and MDR of all three types of intrusions increase as the

Table 1: Main symbols and meanings.

Symbol Meaning
CPS Cyber-physical systems
IDD Intrusion detection and defense
GCN Graph convolutional network
VGAE Variational graph autoencoders
TD3 Twin delayed deep deterministic policy gradient
π Actor network
π′ Target actor network
Qi�1,2 Critic network
Qi�1,2′ Target critic network
η, ι, κ Learning rate
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percentage of added noise increases. Furthermore, PIDD
achieves on average 6%, 11.5%, and 14% of FAR and 3%, 4%,
and 7% of MDR, and all noises are 5%, 10%, and 15% in-
trusion, respectively. What’s more, even though the features
add up to 15% noise, the highest FAR andMDR of PIDD are
still lower than 16% and 8%. This is because the proposed
PIDD combines the graph variational autoencoder and the
graph neural network and considers intrasystem and in-
tersystem communication at the same time, so it can ef-
fectively discover the intrusion behavior of the attacker.
Experimental results show that PIDD can accurately detect
routing intrusions in CPS with noisy communication data.

Table 2 gives the intrusion prevention that adds different
percentages of noise in terms of intrasystem intrusion and
intersystem intrusion. As observed in Table 2, it is clear that
the percentage of intrusion prevention decreases with the
percentage of added noise, as expected. Note that PIDD is
more effective at preventing intrasystem intrusion than
intersystem intrusion. This may be due to intruders
launching intrasystem intrusions more frequently, making
intrusion patterns harder to learn. Additionally, PIDD can
detect and block at least 83% of intrasystem intrusions and
81% of intersystem intrusions, even when up to 15% of the
noise is added to the communication signature. The in-
trusion prevention shown in Table 2 shows that PIDD can
effectively defend against routing intrusion in CPS because
the variational graph autoencoder and graph neural network
adopted by PIDD can well capture the characteristics of
intrusion behavior.

Figure 4 shows the privacy protection of adding different
percentages of noise. It is worth mentioning that, in order to
protect the privacy of users, only noise has been added to the
communication function. As the percentage of added
Gaussian noise increases, the user’s privacy is better pro-
tected. On the other hand, VGAE modifies the user’s
communication topology map to a privacy-enhanced
communication topology map as the input to the GCN-
based classifier. Both noise injection and VGAE-based graph

modification provide user privacy protection, which is
verified in this figure. Furthermore, PIDD achieves on av-
erage about 91%, 86%, and 82% privacy preservation, adding
5%, 10%, and 15% of noise, respectively. This shows that
PIDD can protect the privacy of users during the intrusion
detection process.
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Figure 3: Detection accuracy with different percentages of noise added. (a) FAR and (b) MDR.

Table 2: Intrusion prevention with different percentages of noise
added.

Intrusion
Noise

5 (%) 10 (%) 15 (%)
Intra_DoS 93 87 83
Inter_DoS 91 85 82
Intra_Bot 93 87 83
Inter_Bot 89 85 84
Intra_Inf 92 87 83
Inter_Inf 88 86 81
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Figure 4: Privacy preservation with different percentages of noise
added.
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5. Conclusion

In order to improve the efficiency and accuracy of intrusion
detection and protect user privacy from being leaked during
the CPS intrusion detection process, this paper proposes a
privacy-enhanced intrusion detection and defense mecha-
nism based on deep reinforcement learning. Specifically,
first, two variational graph autoencoders are trained to
generate privacy-enhanced communication topology
graphs. Second, two graph convolutional networks are
trained based on the privacy-enhanced communication
topology map and noise features to perform user evaluation.
Finally, a deep reinforcement learning algorithm TD3 is
applied to identify intruders and execute appropriate
countermeasures. We conducted validation experiments on
the “CSE-CIC-IDS2018” dataset. Experimental results show
that the proposed PIDD achieves excellent performance in
terms of intrusion detection accuracy, intrusion prevention
percentage, and privacy protection.

Although the proposed algorithm can perform intrusion
detection under the condition of preserving privacy, the
detection accuracy needs to be improved. Our future re-
search directions include how to further combine the
characteristics of intrusion behavior with the communica-
tion topology of intrusion.
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'e collaborative online 3D rendering system proposed in this paper ensures the quality of user experience and protects online
rendering resources. In this system, the conditional generative adversarial network is used to calculate complex global illu-
mination information instead of rendering them on cloud servers. 'e web front-end generates high-frequency direct lighting
information in real-time and displays the final result which is a blend of front-end direct lighting information and back-end
indirect lighting information. Experiments show that our proposed system can improve the rendering quality of theWeb3D front-
end, ensure Web-Cloud load balance, and protect rendering resources online.

1. Introduction

In the era of the Internet+, with the development of Web3D
technology, more and more users are accustomed to the
flexibility of experiencing 3D content on various portable
devices, such as mobile phones, laptops, and head-mounted
devices. Web3D technology, which puts 3D content on Web
browsers, is supported by most mobile devices. 'is tech-
nology has a revolutionary impact on the new generation of
Web services and produces various critical applications in
the smart city, virtual tourism, virtual museums, e-com-
merce, etc.

'e advantages of Web3D are excellent cross-platform,
but its defect is limited rendering power. Web3D system
rendering capabilities are mainly determined by its core
graphics application programming interface (API)
“WebGL” and hardware configuration. 'e latest WebGL
2.0 technology version is based on OpenGL ES 3.0 designed
for embedded devices. 'erefore, it is difficult to achieve the
same rendering performance as on the personal computer
with high-level graphics API “OpenGL.” Besides, the loading
latency of three-dimensional (3D) model data on the Web
also poses a significant challenge, resulting in a long waiting

time, which significantly reduces the user’s quality of ex-
perience (QoE). In addition, the 3D model resources in the
Web3D application are directly transmitted to the Web
front-end, which brings the risk of resource leakage.

For this, the collaborative rendering system has
emerged to split the complex task of rendering the scene
between the cloud server and the Web client. As a col-
laborative rendering system, our CloudBaking [1, 2] is a
dedicated Web3D application-oriented dynamic scene
lighting and shadow rendering system intended to com-
pensate for the inadequate rendering capability of the
Web3D application. 'erefore, we design this system to
perform collaborative lighting and shadow rendering at
both the client and server for theWeb3D scene.'is system
assigns the high-complexity lighting and shadow rendering
to the cloud server, including soft shadow, global illumi-
nation, and so on. 'e web client performs the task of low-
complexity renderings, such as direct lighting and screen-
space ambient occlusion. 'erefore, the high-precision 3D
scene model is safely placed in the cloud, while the Web
front-end only needs a lightweight and encrypted low-
precision scene model, which reduces the risk of resource
leakage.
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2. Related Work

2.1. Web3D Technology. In 1997, the virtual reality markup
language (VRML) was officially released as an international
standard for Web3D, making it possible for 3D model files
[3] to be transferred over the Internet. In August 2004, the
X3D specification was released as an international standard
for Web3D. X3D integrated technologies such as XML, Java,
and streaming at that time in the hopes of increasing
processing power, rendering quality, and speed of trans-
mission. 'e Khronos Group released the WebGL 1.0
specification inMarch 2011.WebGL 1.0 is based onOpenGL
ES 2.0 and provides APIs for 3D graphics. 'e WebGL 2.0
specification was released in 2013, and, based on OpenGL ES
3.0, was supported for the first time in major Web browsers
such as Firefox, Chrome, and Opera [4].

In recent years, WebGL is used as a graphics engine in
many Web3D applications. Furthermore, many companies
have developed their own advanced rendering engines based
on WebGL, such as three. js and Babylon. [4]. Among these,
three. js is a 3D graphics real-time rendering library based on
JavaScript and WebGL. It has become gradually favored by
the majority of users because of its efficient and plug-in-free
Web-side rendering capabilities. Many Web3D rendering
systems use three. js, such as the Web page visualization
system proposed by Marion and Jomier [5], and the real-
time visualization and segmentation system of real-time
visual medical images developed by Jacinto et al. [6]. Sim-
ilarly, our system also uses the three. js engine.

2.2. Web3D System. Web3D systems have been widely used
in people’s daily life for their excellent cross-platform and
easy deployment. In a Web3D system, data are transformed
into visual 3D models and presented on the Web, stimu-
lating people’s interest. Virtual heritage (VH), which dis-
plays the digitization of culturally historical artifacts for
display on the Web browser, is a very typical use of Web3D.
Currently, website presentations cannot satisfy the extensive
and intensive experience of VH users. 'e VH websites
provide narrative knowledge, annotation experience, and
mobile environment experience to adapt to the changes [7].
Building information models (BIMs) have recently become
the mainstream visualizing data in the building field. To
display such data with high volume, variety, velocity, and
value attributes on Web browsers, researchers have created
an online Web3D system based on semantic analysis and
light-weighting technology [8].

Web3D technology has been widely used to build many
educational virtual environments (EVEs). In the beginning,
EVEs were used to create visual immersion-based virtual
scene display cases, such as the Webtop system [9]. Besides,
the researchers of EVEs are also concerned about user
engagement, interaction, and collaboration, such asWeb3D-
based surgical training simulators for the treatment of tri-
geminal neuralgia [10], virtual space-time environments
online [11], and virtual war online [12]. Users of the Web3D
system can experience immersion in education, training,
and tourism without leaving home at a low cost.

2.3.Web3DRendering System. A real-time rendering system
is the critical subsystem of a Web3D system, responsible for
the 3D scene’s loading and rendering. We classify Web3D
rendering systems into three categories based on which
“side” the rendering task occurs.

2.3.1. Local Rendering System. 'is system puts the main
rendering tasks on the Web browser. 'e server is re-
sponsible for storing and transmitting the 3D scene’s data
without participating in rendering tasks. 'e VH system [7],
virtual building system [8], and Webtop systems [9] men-
tioned above employ this kind of rendering system.

2.3.2. Remote Rendering System. 'is system puts the main
rendering task on the servers and delivers the rendered
results to the Web browser in the form of image steam. 'e
web client is only used to display the rendering results
without participating in rendering.'is system is very suited
for the Web3D application with high-quality rendering
performance demand [4]. By avoiding the direct loading of
3D models on web browsers, the system can protect 3D
models from illegal downloading by users [13].

2.3.3. Hybrid Rendering System. 'is system combines the
two systems described above and allows the Web-Client side
and cloud-server side to render collaboratively. Such a
system avoids the waste of front-end rendering resources
and guarantees the execution of expensive rendering tasks.
'is kind of system is widely used to study lighting rendering
in dynamic scenes.

'e Cloud Light system first proposed allocating lighting
rendering tasks [14]. Remote Asynchronous Indirect
Lighting (RADL) implements viewpoint-independent col-
laborative lighting rendering [15]. Shading Atlas Streaming
(SAS) [16] puts all shading calculations in the cloud to
complete and uses the Shading Atlas mechanism of Virtual
Texture for storage. Also, the Cloud Baking system (CB
system) proposed by ourselves is a typical hybrid rendering
system [1, 2].

2.4. GenerativeAdversarial Networks. 'eGAN represents a
deep learningmodel based on two sets of the neural network,
generator, and discriminator, for game-based mutual
learning to generate the desired output. Since the suggestion
of Goodfellow et al. was proposed [17], GAN has achieved
remarkable results in the areas of “image to image” trans-
lation [18, 19], style transfer [20], super-resolution [21], and
3D model generation [22, 23], etc. 'e research into the
image-to-image translation field provides us with a direct
motivation to replace the image-based pre-rendering
mechanism and the real-time rendering at the cloud server
with GAN. In doing so, the images generated by the cloud
server will be saved in the cloud server for training the
relevant GAN model, and the generative model ends up
being sent to the web client to generate the global illumi-
nation map (GI map).
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3. System Architecture

Based on our CloudBaking (CB) [2], we present an intel-
ligent remote rendering system called the Intelligent
CloudBaking (ICB). For completeness, we offer the whole
pipeline and workflow of the ICB system and focus on the
ICB system’s advancement compared to the CB system. As
the CB system, the ICB system also consists of two separate
rendering systems: the Web-Client system and the Cloud-
Server system. 'e protocol for connecting the two systems
is also WebSocket, as shown in Figure 1.

Similar to the CB system, our system contains two
modules: cloud server and client. But we newly proposed a
GAN-based pre-rendering module, which transfers the pre-
rendering task from the CRT-buffers manager to the GAN.
'is solves the problem of cloud storage space limitation,
and the images stored in CRT-buffers provide a large
amount of input data for GAN training. 'e 3D Warping
technology based on the prediction mechanism is used to
eliminate the hole artifacts of the generated GI map. 'e
original 3D scene is preprocessed into LMP and then
progressively streamed to the client to generate DI-map.
Finally, the mixed image of DI-map and GI map is presented
to the user on the client. In addition, the resources obtained
by the cloud of this system, such as Light-Weight 3D Scene
Steam, encoded GI-map steam, and GAN for GI maps, have
been lightweight or encoded, which further improves the
protection of rendering resources.

3.1. Cloud-Server Subsystem. Like the CB system, ICB
lightweight the original 3D scene for reducing the initial
loading time [24] and progressively streams the lightweight
version to the Web-Client for rendering. To reduce the
initial loading time, each 3D scene is preprocessed into LPM
[24] and stored on the rendering server. 'e rendering
server progressively streams the LPM version to the client
renderer for rendering upon request from the client.

However, the cloud-sever no longer generates the GI
maps only like the CB but renders a cloud rendering texture
buffer (CRT-buffer) for the current scene. As shown in
Table 1, the CRT-buffer contains a group of images rendered
under the current viewing frustum, which can be divided
into two categories, including: (1) images whose pixel values
store the rendered scene with lighting and shadow infor-
mation (e.g., GI map, albedo map, and direct lighting map),
called L&S-images and (2) images whose pixel values record
the rendered scene geometry information (e.g., the depth
map and normal map), called G-images. When the CRT-
buffer has been rendered in Cloud-Server, we design an
octree-based CRT-buffers manager to store them rather than
discard them as in the earlier system. 'ese images stored in
Cloud-Sever can be used as input data to pre-render the GI
map (e.g., when the CRT-buffers store the GI maps under a
similar view), or to train the GAN for GI maps offline (e.g.,
when the CRT-buffer manager store the input data enough).
After storing many images in the CRT-buffer manager of
Cloud-Server, our system pre-renders the GI map by CRT-
buffers manager searching first instead of rendering it.

3.2. Web-Client Subsystem. 'e web client with good cross-
platform and extensibility is the primary interaction me-
dium. However, despite the continued improvement to
external equipment performance that carries the Web3D
applications, a compromise on the rendering capability
remains necessary for theWeb3D technique to embed on the
Web. 'erefore, to enhance the web client’s interactivity
while reducing the pressure from rendering, we restricted
the task of direct lighting rendering to the web client and
branded the results after rendering it as a direct-lightingmap
(DL map). Many GI maps either derived from rendering at
the cloud server or generated by the neural network at the
web client will be sent here at the time of scene editing by the
user at the web client. 'is is achieved in the following steps:
(1) 'e web client checks out whether there is a generative
network locally. (2) If the generative network does not exist,
then send GI map request to the cloud server and await
rendered GI map transmitted from the cloud server. (3)
Otherwise, GI map of the current viewpoint should be
generated by the generative model at the web client.
Meanwhile, the input images of the generated model need to
be rendered on the Web client, and we call these maps the
WRT-buffer (as shown in Table 2).

Both approaches to GI map generation will contribute to
interactive latency, with the only difference being that the
latency would occur at different phases. For the former one,
it would occur during the stages, including the cloud server
rendering stage, GI map encoding stage, and transmission
stage. 'e latter one would happen when the GI map is
generated by the generative model at the web client. Limited
by the interaction delay, the rendering system with view-
point correlation is incapable of ensuring consistency be-
tween the viewpoint in the rendered DL map and that in the
generated GI map, distortion is bound to arise from
blending the two maps at the web client. In the process of
prediction, a camera with a larger range of field-of-view
(FOV) than the web client was chosen for the cloud server,
for which the GI map information rendered in the cloud
server could have a wider range than the DL map infor-
mation rendered at the web client, and thus the predicted
probability of artificial hole generated to GI map would be
reduced. As revealed in the experiment, the higher the
camera’s FOV value for the training set of rendering, the
better the quality of a map generated by the neural network.
Finally, the blending GI map and DL map at the web client
(weighed averaging for pixels) could derive the rendered
frame as output for ultimate display.

4. Prefetch Strategy for 3D Warping

'e 3D warping method is a technique of warping a ref-
erence image to an arbitrary viewpoint by projecting pixels
on the reference image plane into the 3D space and
reprojecting them to the target image plane (see the Re-
sources [2] for more details). All 3D warping methods
produce hole artifacts, and our method is no exception. 'e
hole artifacts appear in our method because 3D models’
vertex cannot find the texture coordinates on a pixel-missing
reference image (GI map), as shown in Figure 2. Ourmethod
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of eliminating hole artifacts, the Prefetch method, supple-
ments missing pixels by prefetching the new GI map gen-
erated by the predicted viewpoint.

In the field of Web3D technology, the camera simulates
the human eyes and becomes the primary source of inter-
active data in the Web3D system. Our Prefetch method
predicts the view frustum of the reference camera on the
cloud-server side after a change in TIL (TIL is the length of
interactive latency in our system). Assuming the network

environment is stable, TIL is relatively fixed. We take six
general directions, including forwarding, backward, left,
right, up, and down, as the basic predicted camera move-
ment directions. Within the TIL, our system calculates the
camera view frustums after the movements.'en we set up a
new camera whose frustum includes these view frustums, as
shown in Figure 3.

First, after the web front-end camera is shifted, the cloud
camera needs to include this range, and the cloud camera’s
view angle θt at any time t is shown as follows:

Original 3D Scene

Cloud Rendering
(if needed)

WebGL Rendering

3D warping based predictor 

WRT-buffers Manager

Blending

GAN based GI map
Generator 

Light-weighted
3D scene stream

WRT-buffer

Final frame

LI map

GI map

GAN for GI maps

Encoded
GI-map stream

GAN Trainer for GI
map

CRT-buffers Manager
based pre-renderer

(if stored the similar map)

CRT-buffers

CRT-buffer

GI map

Light-weighting
and streaming 

H.264 Encoder and
streaming H.264 Decoder

GI map GI map

GI map
(if pre-render

failure) 

Web-ClientCloud-Server

Figure 1: Intelligent Cloud Baking system architecture. Compared with the CB system, our system still contains two modules: cloud
rendering and web front-end rendering, but the difference is that we propose a pre-rendering module based on GAN. 'e new module
transfers the pre-rendering task from the CRT-buffers manager to GAN, which solves the problem of cloud storage space limitation and
makes full use of the image data stored in CRT-buffers for training GAN.

Table 1: CRT-buffer struct.

Attribute names Category Data type
Direct lighting map

L&S-images
Texture

Albedo map Texture
GI map Texture
Normal map G-images Texture
Depth map Texture
Direction Camera information Vector
Position Vector

Table 2: WRT-buffer struct.

Attribute names Category Data type
Direct lighting map L&S-images Texture
Albedo map Texture
Normal map G-images Texture
Depth map Texture
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θt � 2π cot
max TIL ∗Vt.x

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, asp∗TIL ∗Vt.y

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏽮 􏽯

Vt

.z⎛⎝ ⎞⎠ + α. (1)

Vt (x, y, z) refers to the moving speed vector of the front-
end viewpoint at any time t, asp refers to the aspect ratio of
the cross-sectional view of the cloud camera. 'is formula
first compares the moving distance’s influence in the hor-
izontal direction (x-direction) and the vertical direction (y-
direction) on the view angle, then gets the most significant
value and converts it into such an angle. In the same way,
after the web front-end camera is rotated, the new view angle
of the cloud camera is shown as follows:

θr � max α + TIL ∗Vr.x, arctan tan TIL ∗Vr.y + α( 􏼁∗ asp( 􏼁􏼈 􏼉.

(2)

Vr (x, y, z) is the Web front-end viewpoint’s rotation
speed. However, under the influence of translation and
rotation, the new view angle generated by the camera view
volume at the back end of the cloud does not need to be

superimposed simultaneously. It is only necessary to use the
largest of the two as the new viewing volume angle. 'e
maximum cannot exceed π, as shown in the following
formula:

θ � min π, max θt, θr􏼈 􏼉􏼈 􏼉. (3)

'e orientation of the viewpoint remains the same, and
the position of the viewpoint moves in the opposite direction
of the orientation, mainly to place the cloud viewpoint
behind the front viewpoint, as shown in the following
formula:

Pi.x � Po.x,

Pi.y � Po.y,

Pi.z � Po.z + Vt.z.

⎧⎪⎪⎨

⎪⎪⎩
(4)

Pi (x, y, z) refers to the position of the cloud viewpoint,
and Po (x, y, z) refers to the position of the front-end
viewpoint.

sponzagallery

Ground truthHole artifacts Hole artifacts Ground truth

Figure 2: GI map with hole artifact VS. 'e ground truth. 'e image processed by 3D Warping has many hole artifacts due to the lack of
pixel information, which is obviously different from the ground truth.

Translation

left

forward

right

back

Rotation

L R

Figure 3: Optimization strategy for 3D warping. 'is strategy uses the image of the rendered frame to infer the motion vector of the next
frame according to the corresponding position of the object in the scene in the pixel and predicts it according to the four directions of
movement and the two directions of rotation in the motion vector, which can effectively improve the accuracy of prediction.
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5. GAN-based Pre-renderer

For GAN, the management of large-scale data sets for
training is very critical. 'erefore, we built the CRT-buffer
manager, which is an octree-based cloud server data
manager, as shown in Figure 4. 'e nodes of this tree
contain a set of viewpoint information in the rendered
scene and the image information rendered on these
viewpoints, as shown in Table 3. 'e depth of our octree is
determined by the scale of the scene, and we store infor-
mation in leaf nodes.

Before the construction of GAN, the pre-rendering task
mainly relied on the CRT-buffer manager, which was re-
alized on the assumption that the light source information in
the rendered scene did not change. 'e pre-rendering steps
are as follows: (1) Under the assumption that the conditions
are established, the system checks whether there is a leaf
node in the octree of themanager through the position of the
camera. (2) If the leaf node does not exist, our system will
directly request the cloud to render the GI map. (3) Oth-
erwise, the system will compare the current camera infor-
mation with all the camera information in the leaf node one
by one. (4) During the comparison process, if it is found that
there is a camera “similar” to the current camera’s position
and orientation in the leaf node, then directly take out the GI
map corresponding to the camera’s position and send it to
the Web front-end. Otherwise, the system will still request
the cloud to render the GI map. If the dot product of the
positions and directions in the two cameras are all below
threshold α (α < 0.1), we judge that the two cameras are
“similar”.

With the accumulation of data in the CRT-buffer
manager, the limitation of cloud storage space has become a
bottleneck problem for pre-rendering based on the CRT-
buffer manager. 'erefore, we built a GAN-based Pre-

Renderer mechanism, which uses the image generation
capabilities of GAN to pre-render, instead of pre-rendering
based on the CRT-buffer manager. Meanwhile, a large
number of images stored in the CRT-buffer manager provide
input data for the construction of GAN.

Our GAN-based Pre-Renderer is derived from our
proposed GIGAN system for the rendering of human organs
[25]. As shown in Figure 5, the GAN-based Pre-Renderer
consists of a Web client and a cloud server and employs
WebSocket for network communication. 'e cloud server
trains a conditional generative adversarial network (GAN)
to generate a global illumination map (GI map) using a
CRT-buffer rendered by the cloud renderer. After training
the network, our pre-rendering system sends the generated
model to theWeb client and then uses it to generate GI maps
on the Web client in real-time. Like the GIGAN system, the
GAN generator network in our pre-rendering system uses
the traditional U-net-based encoder-decoder framework
[26]. 'e discriminator network uses the Markovian patch
GAN structure [20]. 'eir input data is the image dataset in
our CRT-buffer, and we prove the validity of these data in
the subsequent chapter. In addition, multipath TCP
(MPTCP) is considered to be the most potential trans-
mission mechanism to meet the specific requirements of

Cloud rendering textures buffer (CRT-buffer)

Albedo map Direct lighting map Normal map Depth map GI map

C

C

Figure 4: Octree-based CRT-buffers manager. 'is management method has a positive effect on data access in large-scale scene datasets,
using the octagonal tree structure to manage the data in the entire scene, divide the scene data, and store the CRT-buffer data (Albedo maps,
Direct lighting map, Normal map, Depth map, and Gl map) in the scene to each leaf node, which can effectively improve the system
operation efficiency.

Table 3: Node struct of octree in CRT-buffer manager.

Attribute
names Category Data type

CRT-buffers L&S-images and camera
information

CRT-
buffer

Adjacent CRT-
buffer

Position Node information Vector
Index Int
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multimedia transmission in a multi-homed wireless network
environment, which is the main reference for the future
transmission mechanism of our system [27].

However, the scene rendered by our system is uni-
versal, and the complexity and scale of the 3D models in
the scene exceed that of the human organ models rendered
in the GIGAN system. 'erefore, we optimized GAN to
improve the quality of generated images and shorten the
training time. 'e loss function of our GAN is shown as
follows:

L � La + Lc + Lp. (5)

Similar to the loss function of GIGAN, we employ the
adversarial loss function (La) based on the conditional
Wasserstein GAN [28] with gradient penalty to measure the
basic information’s difference between generated image and
ground truth in adversarial processing, as shown in the
following formula:

La(G, D) � Ec,y pdata(dg, y)[D(c, y)]

− Ec Pdata(c), z Pz(z)[D(c, G(z))]

+ λGPEc Pdata(dg),y pGP .

(6)

In this formula, we refer to the algorithm of WGAN-GP.
G is a generator, D is a discriminator, z∼pz (z) is a random
noise from a certain distribution (such as normal distri-
bution and uniform distribution), c, y∼pdata (c, y) are
images, respectively, from the source domain and the cor-
responding target domain, y∼pgp represents the distribu-
tion after linear interpolation between the real data
distribution and the generated data distribution. λ GP is a
hyperparameter. K represents the expected close value of the
gradient during training, and k� 1 here.
Ａnd we use the contention loss (Lc) to measure the

difference of each pixel between the generated image and the
ground truth (for details, please refer to the literature [25]),
as shown in the following formula:

Lc(G) � Ec,y∼pdata(c,y) ‖y − G(c, z)‖1􏼂 􏼃. (7)

In addition, we added a new perceptual loss function Lp
to the original loss function. We employ the perceptual loss
(Lp) to measure the contextual and structural information
between generated image and ground truth and apply a pre-
trained VGG19 network [29] to achieve this. 'e perceptual
loss can be formulated as follows:

LP(y, 􏽢y) �
1

CiHiWi

E
y∼pdata,􏽢y ∼ pgp

θi(y) − θi(􏽢y)
����

����2􏽨 􏽩. (8)

In formula 8, Ci, Hi, and Wi, respectively, represent the
channel number, width and height of the image features.
θi(y) indicates the i-th layer of the VGG19 network (after
activation). 'e new loss function plays an effective role in
ensuring the quality of the output GI map.

As shown in Figure 6, the image data set in the CRT-
buffer is collected as the input of the generator with skip
connections and then passes 5 downsampling layers and 5
upsampling layers before generating the GI map. Lea-
kyReLu is used as the activation function in the entire
downsampling process, while ReLu and tanh (the last
layer only) are used as the activation function in the
upsampling process. 'e discriminator is composed of 4
encoders and uses LeakyReLU as the activation function.
During training, the network randomly reads data from
the data set in batch size to 4, and G-D alternately uses
mini-batch stochastic gradient descent and Adam opti-
mizer with learning rate � 0.0001 to update the weight of
the network. Compared with GIGAN, the GAN training
time of our pre-rendering system is shortened by 20%–
30%.

6. Experimental Results and Analysis

'e test environment of our system is as follows: Our cloud
server is equipped with two Intel Xeon Silver 4114 2.2GHz
CPUs, one Nvidia Quadro P5000 GPU, and 128GB of RAM,
and the server is running Windows Server 2012. For the web
client, we use a laptop with an Intel Core i7-7700HQ
2.8GHz CPU, an Nvidia GeForce GTX1060M GPU, and

albedo map depth map GI map

normal mapDL map

Cloud Server Web

WEB
SOCKET

generated
GI map

DL map

WebGL rendererCloud renderer Generative network (only once)

train network

Le�:Blend DL with GI Right:only DL 

GAN for rendering

GI map (every frame)

a�er training

Figure 5: GAN-based Pre-Renderer mechanism. 'e cloud server transmits the generative model to the web client only once, which
changes the previous model in which the cloud server needs to render the GImap and transmit it to the web client every frame.'en the web
client can generate the GI map locally in real-time.
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8GB of RAM.'e laptop runsWindows 10 and uses Google
Chrome version 71 as a web browser.

For verifying the rationality of the input of our GAN and
the effectiveness of this system, we conducted the following
test: (1) First, we enumerate a combination of multiple types
of image data as the input data of the generative confron-
tation network. (2) In the cloud back-end, we generate
various GANs based on these different sets of input data. (3)

We pass these GANs to theWeb front-end and generate new
GI maps based on them on this end. (4) Finally, we test the
image quality of these GI maps generated by different GANs
and compare them.

Direct lighting information is part of global illumination,
and the albedo is directly involved in the calculation of
global illumination. 'erefore, we use the DL map and
albedo map data storing these two information as the most
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Figure 6: Overall conditional generative adversarial network architecture. 'e generator network adopts a 5-layer U-NET structure, in
which the convolution and deconvolution operations can be regarded as the process of encoding and decoding. And the discriminant
network adopts a 4-layer full convolutional network.
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important GAN input data to generate the final GI map. In
addition, we also selected position map, depth map, nor-
malWorld map (normal map in world space), and nor-
amlView map (normal map in view space) from the
G-buffers data. We take the random combination of the
pictures elected in G-buffers and the previous two pictures as
GAN’s input configuration, as shown in the dotted box in
Figure 7. In the end, we get multiple sets of generative
adversarial network models.

We judge the pros and cons of our GANs’ model by
testing the quality of the final generated GI map. 'is paper
uses structural similarity (SSIM) and mean square error
(MSE) to evaluate the similarity between the generated
image and the real image.'e formermeasures the similarity
by comparing the brightness, contrast, and structure of the
two images, while the latter measures it from the error
between the corresponding pixels of the two images. Zinner
et al. proposed that the image quality is acceptable when
SSIM is greater than 0.88 [22], so our paper uses 0.88 as the
image quality threshold and sets both SSIM and MSE to be
calculated in the image’s RGB color space (range 0–255). In
addition, we make the cameras in the test set move along a

different path from the training set to test the generalization
of the model. In Figure 7, different colors represent different
input configurations. 'e horizontal axis represents the
number of iterations of the network, and the vertical axis
represents the SSIM (higher is better) or the MSE (lower is
better) between the generated image and the real image.

As shown in Figure 7, most GANs obtained after a small
number of training iterations can make the generated im-
age’s quality exceed the basic threshold. We judge the direct
illumination information occupies a higher ratio in the
global illumination image, which enables GAN to quickly fit
and generate a high-quality GI map, and all our input
configurations include this information. After 20,000
training iterations, the changes of SSIM and MSE between
the real image and the image generated by most GANs have
stabilized. 'erefore, we consider 20,000 times is the ideal
threshold for our GAN training times.

In addition, based on the viewpoint correlation of our
system, we use the normal map of the view space as the input
data of GAN. But the experimental results prove that using
the normal map of world space as the input data of GAN can
make the final generated image quality higher, which means
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Figure 7: Network iterations VS. SSIM and MSE in different input configurations (test scene is sponza). We can compare the difference
between GI map generated by different GANs and Ground truth under the same number of iterations.
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that the normal map of world space has more effective
information than the normal map of view space. Note that
the data between the three pairs of different input config-
urations in Figure 7 illustrate the above results, including E
and H, F and I, G and J.

Finally, we found that among all input configurations,
the generated image obtained by the GAN obtained by the Ith
input configuration (albedo, DL, normal, and depth) has the
highest SSIM and the lowest MSE value, and the entire
training process is relatively stable.'erefore, we use the I-th
input configuration, the final results are shown in Figure 8.
'ese results show that the GI maps generated by this GAN
are very close to the real GI maps.

7. Conclusion

'is paper attempts to combine cloud rendering technology
with artificial intelligence technology. We propose a

complete architecture of a smart cloud rendering system for
Web3D based on the CloudBaking system and GAN. Our
system uses a trained neural network to generate rendered
images and eventually partially replaces the hardware’s
rendering capabilities. Experimental results prove that the
GAN-based intelligent rendering system for Web3D can
complete rendering tasks while saving and protecting ren-
dering resources.

Although the use of GAN effectively improves the speed
of real-time rendering, neural network cannot completely
solve the inevitable delay. In order to reduce latency, the
architectural optimization of cloud rendering systems is
usually considered. At present, 5G network and edge
computing technology are fully utilized to optimize the
architecture of cloud rendering system, which reduces the
interaction delay of the system. In addition, the training
process relies on the accumulation of a large number of pre-
rendered images, which is also a challenge to storage space.

Generated GI map Real GI map Differences

Gallery

Sponza

Fireplace

Scene name

Figure 8: Generated GI map VS. Real GI map.'e difference between the differential GI map and the Real GI map pixel-by-pixel difference
operation can be more intuitively recognized.'e darker the color, the smaller the difference between the corresponding pixels'ese results
show that the generated GI maps are very close to the real GI maps.
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And the use of different neural network structures has a
crucial impact on the result. 'ese are the areas that can be
improved in our future work.
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As one of the next generation networks, Named Data Networking (NDN) performs well on content distribution. However, it is
vulnerable against a new type of denial-of-service (DoS) attacks, interest flooding attacks (IFAs), one of the fatal threats to NDN.
'e attackers request nonexist content to occupy the Pending Interest Table (PIT), and it causes the degradation of network
performance. Because of the great harm and strong concealment of this attack, it is urgent to detect and throttle the attack. 'is
paper proposes a detection mechanism based on Long Short-Term Memory (LSTM) with attention mechanism, which uses
sequence with different treatments. Once IFA is detected, the Hellinger distance is used to recognize malicious Interest prefix.'e
simulation results show that the proposed scheme can resist IFA effectively compared to state-of-the-art schemes.

1. Introduction

'e purpose of traditional network architecture based on
TCP/IP is to meet the end-to-end data transmission, which
cannot meet the diversified needs today. 'erefore, the
researchers began to study new network architectures. In-
formation Centric Networking (ICN) [1] aims to build a new
content-centric future network architecture, and it trans-
forms the current host-centric communication mode into
the content-centric network communication mode. Typical
representative projects of ICN include information-oriented
network architecture (Network of Information, NetInf ) [2],
publish/subscribe Internet routing paradigm, and publish/
subscribe Internet topology (PSIRP/PURSUIT) [3], Data-
Oriented Network Architecture (DONA) [4], Content
Centric Networking (CCN) [5], and Named Data Net-
working (NDN) [6]. 'e most representative ICN archi-
tecture is NDN, which was proposed by Zhang Lixia of
UCLA (University of California-Los Angeles) and Van
Jacobson of Xerox PARC (Xerox Palo Alto Research Center)
in 2010. 'e architecture of NDN is shown in Figure 1.

In the NDN network, there are two types of packets:
Interest packet and Data packet [6]. 'e users send Interest

packet to request content, and the returned content is called
Data packet.'ere are three data structures in NDN: content
store (CS), Pending Interest Table (PIT), and forwarding
information base (FIB) [6]. NDN implements routing and
forwarding via these three data structures:

(i) FIB: it stores the interface information pointing to
the specified content, and the Interest packet is
forwarded according to the FIB.

(ii) PIT: it records the unsatisfied Interest packet and
the corresponding interfaces and can aggregate the
Interest packets, and the Data packets are returned
in the original way according to the interface in-
formation of the PIT.

(iii) CS: the router caches the received Data packet to
realize intranetwork caching and reduces the delay
for users to obtain data.

'eNDN forwarding process of Interest packet andData
packet is shown in Figure 2.

When an NDN router receives an Interest packet, first it
checks if CS has a matching data. If so, the router returns the
Data Packet. Otherwise, the router checks whether PIT has a
matching entry. If it exists, the router adds incoming
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interface of the Interest packet to the entry. Otherwise, the
router forwards Interest packet based on the FIB. When
receiving a Data packet, the router first checks if PIT has a
matching entry. If it exists, the router returns the Data
packet based on the information of the PIT and caches the
Data Packet. Otherwise, the router will drop the Data
packet.

Denial of service (DoS) and distributed denial of service
(DDoS) are rampant in the traditional TCP/IP architecture
[8]. NDN can mitigate the impact of DDoS in TCP/IP ar-
chitecture. However, the researchers discover a new type of
DDoS attack called IFA [8]. As shown in Figure 3, the at-
tacker forges a number of fake Interest packets to consume
the memory resources of routers, which cause the degra-
dation of network performance.

'e IFA attack has great harm and strong conceal-
ment, and the researchers have tried various defend
mechanisms, mainly including machine learning and
statistical method. Due to the characteristics of network
traffic, it is difficult to accurately identify attacks of a single
time interval, resulting in low accuracy of attack detec-
tion. 'is paper uses past data through sliding window
and proposes an attention-based Long Short-Term
Memory (LSTM) [9] for IFA detection. Once IFA is de-
tected, the Hellinger distance [10] is used to identify the
malicious prefix.

'e contributions of this paper are summarized as
follows:

(1) 'is paper uses the LSTM model with attention
mechanism to detect IFA by exploiting the past data
sequence and with different treatments

(2) 'is paper proposes a Hellinger distance-based
malicious Interest prefix identify mechanism

(3) 'e simulation results show that the scheme pro-
posed can detect IFA effectively

'e rest of the paper is organized as follows: Section 2
gives a review of related works. Section 3 presents detection
mechanism and mitigation mechanism in detail. Section 4
gives an evaluation of the proposed mechanism and com-
pares the proposed mechanism with state-of-the-art
mechanism. Finally, Section 5 concludes the paper.

2. Related Works

Various literature works have been proposed on detecting
and mitigating the IFA. Some approaches use machine
learning to detect IFA. In paper [11], linear SVM and SVM
with Gaussian radial basis kernel function were used to
detect IFA. It consisted of two phases: the training phase and
the test phase. In paper [12], the Isolation Forest was used to
calculate the abnormal score of each Interest prefix at the
end of each fixed time interval to detect abnormal Interest
packet prefix. In paper [13], the deep reinforcement learning
was used to detect IFA. In paper [14], the naı̈ve Bayes (NB),
J48 decision tree, multilayer perceptron with back-
propagation (BP), and radial basis function (RBF) network
were used to detect IFA. In paper [15], the authors used
multilayer perceptron (MLP) with backpropagation (BP),
radial basis function (RBF) network with particle swarm
optimization (PSO), JAYA and teaching–learning-based
optimization (TLBO), linear support vector machine (SVM),
and fine k-nearest neighbours (KNN) to detect the attack. In
paper [16], the authors used association rule algorithm to
find the correlation between features and used decision tree
algorithm to detect the attack.

Some approaches use the mathematical model to detect
IFA. In paper [17], every NDN router computed the Gini
impurity to detect IFA by measuring the Interest name in a
router. In paper [18], the 'eil index was used to detect IFA
and the Interest packets were divided into groups by 'eil
entropy to evaluate the intragroup and intergroup difference
of Interest name distribution. In paper [19], two traffic
features were used to establish confidence interval, respec-
tively, to detect IFA. In paper [20], the authors used mean
and variance of packet hop counts to distinguish legitimate
users from malicious users. In paper [21], the authors used
hash-based security label to identify the malicious prefix. In
paper [22], the authors used wavelet analysis to detect IFA.
In paper [23], the routers used active queue management
(AQM) to defend IFA. In paper [24], each edge router used
token-based router monitoring policy (TRM) to mitigate the
IFA by controlling the data requestors. 'e detection
method used in the related work is shown in Table 1. 'e
main drawback of existing IFA detectionmethod is counting
the traffic information on a fixed time interval, which ig-
nores the temporal relationship of traffic.
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Figure 1: TCP/IP architecture vs NDN architecture [6, 7].

Router ProviderUser

CS PIT FIB
Interest forward

Data
Add incoming

interface Drop or NACK

PIT

CS

Dataforward

Drop

✓ ✓

✓× ×

×

Found
NotFound

✓

✓

×

×

Figure 2: NDN forwarding process [6].

2 Security and Communication Networks



3. Detection Mechanism Based on Attention
Mechanism with LSTM

'is section gives an overview of proposed defend mech-
anism, detection mechanism, and mitigation mechanism.

3.1.Overview. 'edefendmechanismmainly consists of five
parts, the data collection module, the data preprocessing
module, the detection module, the response module, and the
mitigation module, as shown in Figure 4.

In the data collection module, the traffic data is collected
and it is then input to the preprocessing module. In the
preprocessing module, the traffic characteristics are

extracted. 'e traffic characteristics are used to detect IFA in
the detection module. Once IFA is detected, the response
module will start identify the malicious prefix. Finally, the
mitigation module uses malicious prefix to limit the mali-
cious Interest packet.

3.2. Long Short-TermMemory. Deep learning is popular and
is used in various applications. Recurrent neural network
(RNN) [27] is a type of deep learning methods, which can be
used to detect anomaly. However, there is a gradient van-
ishing problem in RNN [28]. Long Short-Term Memory
(LSTM) [9] is an improved version of RNN, which solves the
problem of RNN. 'e LSTM structure is shown in Figure 5.

It mainly includes three structures, input gate, forget
gate, and output gate, which are used to update the LSTM
cell as follows [9]:

ft � σ Wf ht−1, xt􏼂 􏼃 + bf􏼐 􏼑,

it � σ Wi ht−1, xt􏼂 􏼃 + bi( 􏼁,

􏽥Ct � tanh WC ht−1, xt􏼂 􏼃 + bC( 􏼁,

Ct � ft ∗Ct−1 + it ∗ 􏽥Ct,

ot � σ Wo ht−1, xt􏼂 􏼃 + bo( 􏼁, and

ht � ot ∗ tanh Ct( 􏼁,

(1)

where W is the weight, b is the bias, ht is the hidden state at
time step t, and xt is the input at time step t.

3.3. Attention Mechanism. 'e Attention mechanism is
inspired by human attention behaviour and is well applied to
deep learning.

In paper [29], the attention mechanism was proposed.
Given an input X � [x1, x2, . . . , xN] ∈ RD×N, where N is the
length of input, xn ∈ RD, n ∈ [1, N], and D is the number of
dimensions in each time step, the calculation of the attention
mechanism is divided into two steps: first calculate the at-
tention probability of all input and then calculate the

Table 1: Comparison between related paper.
Paper Year Offline Online Detection method
[12] 2021 7 ✓ Isolation forest
[16] 2021 ✓ 7 Association rules + decision tree
[23] 2021 7 ✓ AQM
[24] 2021 7 ✓ Token
[19] 2020 7 ✓ Confidence interval
[21] 2020 7 ✓ Hash
[11] 2019 ✓ ✓ SVM
[18] 2019 7 ✓ 'eil index
[25] 2019 7 ✓ Hypothesis testing
[26] 2019 7 ✓ AQM
[13] 2020 7 ✓ Deep reinforcement learning
[17] 2018 7 ✓ Gini impurity

[14] 2019 ✓ 7

MLP with BP
RBF classifier

J48
Naive Bayes

[20] 2018 7 ✓ Mean-variance

[15] 2017 ✓ 7

MLP with BP
RBF with PSO
RBF with JAYA
RBF with TLBO
SVM linear
Fine KNN

[22] 2017 7 ✓ Wavelet analysis

R1

R2 R3

R4
R5

R6

Malicious user

Legitimate user

Provider

Legitimate packet
Malicious packet

Figure 3: IFA sample.
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weighted average of the input information according to the
attention probability.

3.4. Detection Mechanism. 'is section presents the detec-
tion mechanism in detail. First, some used notations are
listed and some features are defined. 'e notations used are
listed in Table 2.

Definition 1. (Router PIT Utilization Size). It denotes the
number of PIT entries in PIT during one time slice.

U ti, Rj􏼐 􏼑 � e ti, Rj􏼐 􏼑. (2)

Definition 2. (Router Interest Satisfaction Ratio). It denotes
the number of Data packets received to the number of
Interest packets received in one time slice.

S ti, Rj􏼐 􏼑 �
φ ϕ ti, Rj􏼐 􏼑􏼐 􏼑

ϕ ti, Rj􏼐 􏼑
. (3)

Definition 3. (Router Interest Request Frequency). It de-
notes the number of Interest packets received in one time
slice.

I ti, Rj􏼐 􏼑 � ϕ ti, Rj􏼐 􏼑. (4)

Definition 4. (Router Data Reply Frequency). It denotes the
number of Data packets replied in one time slice.

r ti, Rj􏼐 􏼑 � φ ϕ ti, Rj􏼐 􏼑􏼐 􏼑. (5)

'e feature calculation is shown in Algorithm 1.
'e detection mechanism detects IFA through a sliding

window, as shown in Figure 6.
A network traffic formally as a time series:

Z � z1, z2, . . . , zi, . . . , zF􏼈 􏼉, which consists of F time steps.
zi(1≤ i≤F) represents the i th time step. For each sliding
window, which consists of φ time steps, the detection model
is used to classify the sliding window as legitimate or
malicious.

Figure 7 shows the LSTM with attention mechanism for
IFA detection. 'e attention mechanism can improve the
performance of LSTM by discriminatively utilizing each step
of hidden state information [30]. 'erefore, this paper uses
the traditional LSTM with attention mechanism to detect
IFA. 'e hidden states of each step are multiplied with
attention weights.

In LSTM layer, the input of each step is mapped to a
hidden state.

hi � LSTM zi( 􏼁, i ∈ [1, F], (6)

where hi is the hidden state at time step i and zi is the input at
time step i.

In attention layer, the hidden state of each step is input to
a subsequent attention layer. It takes the form as follows [31]:

H � 􏽘

N

t�1
αth(t) and

αt �
exp gt Wt, h(t)( 􏼁( 􏼁

􏽐
N
t�1 exp gt wt, h(t)( 􏼁( 􏼁

,

(7)
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Figure 4: 'e architecture of defend mechanism.
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where αt is the weight for each time step and gt(·) is a
fully connected layer with ReLU activation and pa-
rameters Wt.

'e illustration of attention mechanism is shown in
Figure 8.

In output layer, the attention layer resultsH is input to a
fully connected layer with sigmoid activation to obtain the
final result.

output � simoid(v). (8)

'e detection mechanism is shown in Algorithm 2.

'e algorithm works as mentioned in the following
steps:

Step (1): count the traffic information in time slice ε, use
Algorithm 1
Step (2): when the sliding window size is φ, fed to the
detection model, get output y

Step (3): if the detection result is legitimate, forward the
sliding window and return to Step (2)
Step (4): if the detection result is malicious, trigger the
malicious prefix identification mechanism

Table 2: Notation used.

Notation Description
ti 'e i-th time slice
Rj 'e j-th router
ϕ(ti, Rj) 'e number of receiving Interests of the j-th router in the i-th time slice
φ(ϕ(ti, Rj)) 'e number of receiving corresponding Data packets
e(ti, Rj) 'e number of PIT entry of router j at the i-th time slice

Input:
ε ▷ 'e time slice size
Output:
i ▷ 'e request frequency
r ▷ 'e reply frequency
s ▷ 'e satisfaction ratio

(1) procedure IncomingInterest(slice ε)
(2) i⟶ i + 1
(3) end procedure
(4) procedure IncomingData(slice ε)
(5) r⟶ r + 1
(6) end procedure
(7) s⟶ r/i
(8) return i r s

ALGORITHM 1: Interest features computing.

Input:
ε ▷ 'e time slice size
φ ▷ 'e sliding window size
Thr ▷ Detection threshold
Output:
Detection result

(1) Compute the metrics during time slice ε
(2) for the consecutive time step with length φ do
(3) fed the sequence Z to the detection model
(4) y � LSTMAtt(Z)

(5) if y>Thr then
(6) return legitimate
(7) else
(8) return malicious
(9) end if
(10) end for

ALGORITHM 2: LSTM with attention mechanism-based detection.
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3.5. Response Mechanism. 'is paper recognizes the mali-
cious Interest prefixes based on the Hellinger distance [10].
'e Hellinger distance is used to measure the deviation

between two probability distributions independent of
parameters.

H(P,Q) �
1
�
2

√

��������������

􏽘

n

i�1

��
pi

􏽰
−

��
qi

√
􏼐 􏼑

2

􏽶
􏽴

, pi ≥ 0; qi ≥ 0, (9)

where P and Q are two probability distributions, P and Q

are n-tuples (p1, p2, .., pn), and (q1, q2, .., qn), 􏽐ipi � 1, and
􏽐iqi � 1.

'e malicious prefix recognition process is shown in
Algorithm 3.

3.6. Mitigation Mechanism. When malicious prefixes are
recognized, the router will send notification packet that

time

current

. . .

. . .

current - 

Figure 6: 'e sliding window.
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Figure 8: Illustration of temporal attention mechanism.
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includes the malicious prefixes to the downstream router, as
shown in Figure 9. 'e downstream routers extract the
malicious prefix and limit its sending rate when receiving the
notification packet.

4. Performance Evaluation

In order to evaluate the performance of the proposed
scheme, this paper conducts a set of simulations in ndnSIM
[32]. 'en, this paper compares the proposed scheme with
the state-of-the-art defend scheme. 'e simulations pa-
rameters are shown in Table 3.

'is paper considers tree topology as shown in Figure 10.
'e tree topology which is one of the most severely affected
by the IFA is widely used in detection mechanism evaluation
of IFA.

In tree topology, Rx denotes the NDN router, Cx de-
notes the legitimate user, Px denotes the data provider, and
Ax denotes the malicious user. 'e red lines denote con-
nections between the malicious user and NDN router, the

green lines denote connections between the legitimate user
and NDN router, the black lines denote connections be-
tween NDN routers, and the blue lines denote the con-
nections between the data provider and NDN router.

In tree topology, there are 9 legitimate users and 7
malicious users. 'e simulation lasts 800s. 'e legitimate
users issue Interest with the Zipf-Mandelbrot distribution
[33], and the malicious users issue Interest with uniform
distribution. In Zipf-Mandelbrot distribution, the content
items with k-th rank in the whole content popularity ranking
list are requested with probability qk􏼈 􏼉k�1,2...K, where
qk � c/(k + q)s, c � 􏽐

K
k�1 1/(k + q)s

􏽮 􏽯
− 1
, K is the size of the

popularity list, and q and s are parameters.

4.1. Performance Metrics. 'e performance of detection
mechanism is evaluated by the confusion matrix, as shown in
Figure 11, where TP represents the number of abnormal traffic,
which is classified as abnormal, TN represents the number of
normal traffic, which is classified as normal, FP represents the

Input:
Interest prefix distribution when IFA is detected: P
Interest prefix distribution before IFA is detected: Q
Interest prefix set: I

Output:
Malicious prefix set

(1) Q′ � Q

(2) for prefixi ∈ I do
(3) Qi
′ � Pi

(4) calculate the Hellinger distance H(Qi
′,Q)

(5) if H(Qi
′,Q)> thr then

(6) add prefixi to malicious prefix set
(7) end if
(8) end for
(9) return malicious prefix set

ALGORITHM 3: Hellinger distance-based malicious prefix recognition.
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Legitimate user
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Notification packet

Figure 9: IFA mitigation sample.
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number of normal traffic, which is classified as abnormal, and
FN represents the number of abnormal traffic, which is clas-
sified as normal.'is paper compares the detectionmechanism
with SVM and LSTM from the following metrics:

(i) Interest satisfaction ratio: it is defined as the ratio
between the number of Data packets received and
the number of Interest packets sent.

(ii) PIT size: it is defined as the number of entries in the
PIT.

(iii) Accuracy: it is defined as the overall performance of
the model and is calculated as follows:

accuracy �
TP + TN

TP + FP + TN + FN
. (10)

(iv) Recall: it is defined as the proportion of attack
samples that are correctly identified as attacks, and it
is calculated as follows:

recall �
TP

TP + FN
. (11)

4.2. Hyperparameter Tuning. 'e detection model’s archi-
tectures are built using Pytorch in Python on a machine with
32GB RAM.'is paper trains detection model for 50 epochs
with Adam optimizer [34] at a learning rate of 0.001.

4.3. Loss Function. 'e binary cross entropy is a loss
function that is used in binary classification problems. 'e
objective of the detectionmechanism is to label time window
as normal or abnormal; therefore, this paper uses binary
cross entropy loss function for training the LSTM and LSTM
with attention mechanism, which is computed as follows:

L � −
1
N

􏽘

N

i�1
yi · log p yi( 􏼁( 􏼁 + 1 − yi( 􏼁 · log 1 − p yi( 􏼁( 􏼁. (12)

where yi is the binary label and N is the total number of
samples in training set.

4.4. Impact of the IFA. Attack intensity (λ) is defined as the
ratio of malicious user’s sending rate to the legitimate user’s
sending rate. In this section, this paper evaluates the impact
of the IFA and considers two types of routers: the router only
connected to legitimate user and the router connected to
legitimate user and malicious user.

In Figure 10, this paper evaluates PIT size of the routers
R11, R10, and R8 under IFA and evaluates the Interest
satisfaction ratio of normal users under the IFA.

Figure 12 shows the PIT size under IFA with different
attack intensities. When there is no attack, the routers have a
constant PITsize.When IFA is launched at the 400th second,
the PIT size begins to increase and the greater the attack
intensity, the greater the PIT size. 'e impact on PIT size is
also different for routers in different locations; the router
R11 is least affected by the attack because it is not connected
to a malicious user; the router R10 is greatly affected by the
attack because it has the most connections with malicious
users.

Figure 13 shows the Interest satisfaction ratio of normal
user under IFA with different attack intensities. 'e Interest
satisfaction ratio is stable without IFA, and the Interest
packet sent by the user can receive the corresponding Data
packet. At the 400th second, the IFA is launched, the Interest
packets sent by users can hardly receive the corresponding
Data packets, and the Interest satisfaction ratio decreases
instantaneously. Moreover, with the increase of attack in-
tensity, more malicious Interest packets are sent and the
impact on Interest satisfaction ratio of normal users is
greater.

4.5. Performance of Detection Mechanism. In this section,
this paper compares our detection mechanism with SVM
and LSTM from detection accuracy and recall. 'en, this
paper evaluates the defend mechanism from Interest sat-
isfaction ratio and PIT size with expired-PIT-based defend
mechanism [35].

Firstly, the learning rate and batch size used in this paper
are introduced. 'is paper selects learning rate and batch
size by comparing the detection accuracy. 'e learning rate
is 0.001, 0.005, and 0.01, respectively. 'e batch size is 512,
256, and 128, respectively.'e simulation results of different
learning rates and batch sizes on the detection accuracy are
shown in Figures 14–16, respectively.
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Table 3: Simulation parameters.

Parameters Value
Legitimate request distribution Zipf-Mandelbrot
Malicious request distribution Uniform
Number of content types 1000
Malicious request rate 100
Legitimate request rate 100
Lifetime of PIT entries (second) 1
Attack time (second) 400
Simulation time 800
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Figure 14 shows the detection accuracy under different
attack intensities with different learning rates when the batch
size is 512. When the learning rate is 0.001, the accuracy is
the highest.

Figure 15 shows the detection accuracy under different
attack intensities with different learning rates when the batch
size is 256. When the learning rate is 0.001, the accuracy is
the highest.

Figure 16 shows the detection accuracy under different
attack intensities with different learning rates when the batch
size is 128.

Finally, this paper sets the batch size 512 and the learning
rate is 0.001. As shown in Figures 17 and 18, with the in-
crease in the number of epochs, the accuracy increases and
the loss decreases. When the epochs are equal to 50, the
model tends to be stable.

Next, this paper compares the accuracy and recall of the
detection mechanism with SVM and LSTM, and the results
are shown in Figures 19 and 20.

Figure 19 shows the detection accuracy of the proposed
detection mechanism under different attack intensities.
Compared with LSTM and SVM, the detection mechanism
proposed in this paper has the highest accuracy.

Figure 20 shows the recall of the proposed detection
mechanism under different attack intensities. Compared
with LSTM and SVM, the detection mechanism proposed in
this paper has the highest recall.

4.6. Performance of Mitigation Mechanism. 'is section
evaluates our mitigation mechanism on the Interest satis-
faction ratio and PIT size.

Figure 21 shows the Interest satisfaction ratio with the
proposed defend mechanism and expired-PIT-based defend
mechanism under attack. When the malicious users launch
IFA at the 400th second, the Interest satisfaction ratio drops
rapidly. Under high attack intensity, the proposed detection
mechanism quickly detects the attack and limits the sending
of malicious packets and the Interest satisfaction ratio

returns to the normal level. 'is paper also tests the impact
of the detection mechanism on the burst traffic of normal
users, and the proposed detection mechanism will not
misjudge the burst traffic of normal users.
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Figures 22 and 23 show the PIT size with the proposed
defend mechanism and expired-PIT-based defend mecha-
nism under attack. When the attacker starts the attack at the
400th second, the PIT size rises rapidly. Under high attack
intensity, the detection mechanism quickly detects the attack
of different attack intensities and limits the sending of
malicious packets and the PIT size returns to the normal
level.

5. Conclusions

'is paper proposes a defend mechanism for Interest
flooding attack in NDN. 'e defend consists of three parts:
detection, response, and mitigation. 'e LSTM with at-
tention mechanism is used to detect IFA; once IFA is de-
tected, the Hellinger distance is used to identify malicious
Interest packet prefix. Finally, the malicious prefix is sent to
the downstream routers to cooperate to limit the attack. 'e
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experimental results show that the LSTM with attention
mechanism shows better performance than the LSTM and
SVM. In future work, this paper will consider multiple at-
tacks in NDN, such as collusive attack, low-rate IFA, and
large-scale topology.
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Internet of 'ings (IoT) is widely used in environmental monitoring, smart healthcare, and other fields. Due to its distributed
nature, IoT is vulnerable to various internal attacks. One of these attacks is the packet-dropping attack, which is very harmful. 'e
existing packet-dropping attack detection algorithms are unsuitable for emerging resource-constrained IoT networks. For ex-
ample, ML-based algorithms always inject numerous packets to obtain the training dataset. However, it is heavyweight for energy-
limited nodes to forward these extra packets. In this paper, we propose a lightweight evidence fusion-based detection algorithm
(EFDA), which leverages the packet forwarding evidence to identify malicious nodes. Firstly, EFDA finds the sequence numbers of
dropped packets and their corresponding source nodes. 'en, it traces the routing path of each dropped packet and collects
evidence for detection. 'e evidence stored by nodes around the path record the node’s forwarding behaviors. Finally, the
collected evidence is fused to evaluate the trust of nodes. Based on nodes’ trust, the K-means clustering is used to distinguish
between malicious nodes and benign nodes. We conduct simulation experiments to compare EFDA with ML-based algorithms.
'e experimental results demonstrate that EFDA can detect the packet-dropping attack without injecting packets and achieve a
higher detection accuracy.

1. Introduction

In the last decade, the Internet of things (IoT) has become a
popular infrastructure to support many applications, such as
intelligent transportation [1] and smart home [2]. IoT is a
system consisting of interrelated computing devices, which
collect and process the data acquired from the environ-
ments. 'ese devices (such as sensors) cooperate with each
other through the IoT protocol, including ZigBee [3], Wi-Fi
[4], and Bluetooth.

With the rapid development and application of IoT, it is
prone to varied attacks, among which the packet-dropping
attack is very hard to detect and prevent. In the packet-
dropping attack, malicious attackers can invade and control
legitimate devices to discard some essential packets halfway,
causing the base station loses the important information. For
example, malicious nodes drop the vital packets in the
healthcare wireless sensor network (WSN) that contains the

alarm information for the patient’s health parameters such
as blood pressure and heart rate [5]. If the alarm information
is not transmitted to the doctors but dropped halfway, the
patients will be at risk. It is vital to detect malicious nodes.

1.1. Motivation. In recent years, many traditional packet-
dropping attack detection algorithms have been proposed,
but they are not suitable for the emerging resource-con-
strained IoT networks. For instance, traditional machine
learning (ML)-based detection algorithms [6–9] identify
malicious nodes by training detection models. 'e perfor-
mance of the detection models depends on the size of the
training dataset. To get a large size of the training dataset,
numerous labeled packets need to be injected into the IoT
networks. However, it is heavyweight for energy-limited
nodes to forward numerous injected packets. It is crucial to
propose a lightweight algorithm for resource-constrained
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IoT networks. To overcome this problem, we propose a
lightweight evidence fusion-based detection algorithm
(EFDA), which uses the packet forwarding evidence (PFEs)
to identify malicious nodes. �e PFE is generated during the
packet forwarding process. When a node in the network
forwards a packet, it locally stores a packet forwarding re-
cord. Due to the broadcast characteristic of wireless com-
munication in IoT networks, each neighbor of the node can
sni� the packet and generate a PFE.

As shown in Figure 1, EFDA contains three phases.

(1) Getting the dropped packet set: the base station
needs to �nd the dropped packets and their corre-
sponding source nodes. For this purpose, the base
station divides received packets into groups
according to their source nodes. �en, the base
station sorts the received packets in each group based
on their sequence numbers.�e dropped packets can
be found because their sequence numbers are not in
the groups. Figure 1 shows an example that the base
station divides the received packets into two groups
according to two source nodes: N1 and N2. After
sorting the packets in each group, it �nds that the
dropped packet isN1.Packet2, which is the identi�er
of the packet whose corresponding source node is
N1.

(2) Collecting PFEs: for each dropped packet, the base
station traces its routing path and �nds the suspi-
cious nodes. In Figure 1, the base station sends a
request to N1 to ask it for the next forwarding node
of N1.Packet2; N1 searches its forwarding records
and �nds that the next forwarding node of
N1.Packet2 is N2, on behalf of the base station, N1
asks N2 for the next forwarding node of the packet;
N2 searches its forwarding records and �nds that
next forwarding node isN4;N2 continues to askN4
for the next forwarding node of the packet; N4 re-
ports the next forwarding node of the packet is N6.
But after N4 asks N6, N6 reports that it has never
received the packet. At this moment, the base station
�nds a logic con�ict betweenN4 andN6, and then, it
identi�esN4 andN6 as suspicious nodes. To resolve
the logic con�ict and �nd the liar, the base station
collects PFEs stored by the neighbors of N4, namely
N2, N3, and N5.

(3) Fusing PFEs: the base station fuses the collected
PFEs. BecauseN2,N3, andN5 provide PFEs to prove
that N4 has forwarded N1.Packet2 to N6, the base
station discovers that N6 lies to hide its dropping
packet behavior.

As mentioned above, EFDA does not need to inject extra
packets to obtain the training dataset to train the detection
model, and it utilizes the existing PFEs in the network to
perform logical reasoning and identify malicious nodes.

In summary, the contributions of this paper are as
follows.

We propose a lightweight evidence fusion based packet
dropping attack detection algorithm (EFDA) for the

resource-constrained IoT networks. EFDA uses the packet
forwarding evidences to detect malicious nodes, which
achieves a high detection accuracy with a low cost. We
conduct simulation experiments to systematically evaluate
our detection algorithm. �e experimental results show that
EFDA provides better detection accuracy than ML-based
algorithms.

1.2. Organization. �e remainder of this paper is organized
as follows. Section 2 introduces the related work of the
packet dropping attack detection in IoT. Section 3 formalizes
the packet dropping attack. Section 4 details our detection
algorithm, EFDA. Section 5 shows the results of the sim-
ulation experiments. Section 6 concludes this paper.

2. Related Work

To resist the packet dropping attack, a wide variety of al-
gorithms are proposed in recent researches, which can be
divided into �ve categories: monitor-based algorithms, ac-
knowledgment-based algorithms, camou�age-based algo-
rithms, ML-based algorithms, and other algorithms.

2.1. Monitor-Based Algorithm. �e core of monitor-based
algorithms is to place monitoring nodes among commu-
nication nodes and classify them into “normal” and “ab-
normal” by the collected tra�c data [10]. Watchdog [11] is a
basic technology for the packet dropping attack detection,
where a monitoring node sni�s the tra�c of the next hop to
detect the attacks of malicious nodes. Li et al. [12] applied the
watchdog to monitor the behavior of nodes rather than
tra�c data, and they detected malicious nodes by comparing
the interval of sending and receiving packets with the
threshold. In the monitor-based detection (CMD) [13], each
node monitors the packet loss rates of its preferred parent
node and its one-hop neighbor nodes. By comparing the
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Figure 1: �e process of EFDA.
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packet loss rate of its preferred parent and one-hop neighbor
nodes, the monitoring node can find the abnormal behaviors
of its preferred parent node.

2.2. Acknowledgment-Based Algorithms. 'e acknowledg-
ment-based algorithms depend on the acknowledgment
(ACK) packet to detect malicious nodes [14]. Each node is
responsible for monitoring the forwarding behaviors of its
next node and reporting it to the base station by sending ACK
packets. In adaptive acknowledgment-based approach (AAA)
[15], each node monitors its one-hop and two-hop down-
stream nodes. After forwarding a data packet, the node
overhears the forwarding behavior of its one-hop downstream
node and waits to receive an ACK packet from its two-hop
downstream node. Once receiving no ACK packet, the node
identifies its one-hop downstream node as a malicious node.
In single checkpoint-based detection (SCAD) [16], the source
node randomly selects an intermediate node on the routing
path as the checkpoint node for each packet. After receiving
the packet, both the sink node and checkpoint node need to
reply an ACK packet to the source node. If receiving no ACK
packet, other intermediate nodes will send an alarm packet to
the source node to suspect their downstream nodes, which are
identified as malicious nodes.

2.3. Camouflage-Based Algorithms. In the energy harvesting
motivated networks (EHNets), some nodes called energy
harvesting node need to periodically harvest energy from an
immediate environment. In camouflage-based active de-
tection (CAM) [17], each node actively disguises it as an
energy harvesting node and pretends not to overhear its
adjacent nodes. But actually, each node monitors any for-
warding behaviors of its adjacent nodes. Once finding ab-
normal behaviors, they identify that adjacent node as a
malicious node. In the EYES [18], each node not only ac-
tively disguises itself as an energy harvesting node to
overhear the forwarding behaviors of its adjacent nodes but
also validates any previous uncertain forwarding behavior to
detect malicious nodes.

2.4. ML-Based Algorithms. Machine learning (ML) is a
common and efficient technology, which has been widely
used in malicious node detection. Akbani et al. [19] com-
bined the ML with the reputation systems (RS), which
automates the process of designing the RS model. Liu et al.
[20] proposed a trust system, which calculated the trust of
each node by the trust of each routing path. Based on the
trusts of nodes, they were divided into malicious or benign
group. Liu et al. [21] improved this scheme, and they used
the method of linear regression to calculate the trust of
nodes, which was more accurate than [20]. Also, they took
into account the possibility that nodes launched the mul-
tiple-mix-attack. Yang et al. [22] considered a more fine-
grained attack named selective-edge packet attack, and they
argued that malicious nodes may be more intelligent to
launch an attack selectively. Also, they selected the best
scheme after sifting through various types of regression
algorithms and clustering algorithms.

2.5. Other Algorithms. In [23], due to most of the detection
algorithms are for the centralized networks, blockchain-
based multimobile code-driven trust mechanism (BMCTM)
is proposed to detect malicious nodes in decentralized
networks. It combines the blockchain technology and trust
system, which detects nodes as malicious nodes according to
their low trusts. A secure routing framework is proposed in
[24], which leverages a new type of packet called dummy
packet to detect malicious nodes.'e dummy packet scheme
is used to find the critical routes and detect malicious nodes
in the critical routes. In [25], considering malicious nodes
may lie to attract and drop packets during route estab-
lishment phase, and a robust hybrid method is proposed to
strengthen the route security.

Most of the above algorithms are heavyweight for the
emerging resource-constrained IoT networks. For monitor-
based algorithms, acknowledgment-based algorithms, and
camouflage-based algorithms, the energy-limited nodes
need to monitor the forwarding behaviors of their neighbor
nodes and to converge collected data all the times. For ML-
based algorithms, the energy-limited nodes need to assist
them to obtain the training dataset by forwarding numerous
injected packets. 'ey are heavyweight for energy-limited
nodes. 'erefore, in this paper, we propose a lightweight
evidence fusion-based detection algorithm (EFDA) to
achieve a high detection accuracy.

3. Network and Attack Model

In this section, the network model is introduced, and the
packet-dropping attack is formalized. Table 1 exhibits a list
of notations for later reference.

3.1. Network Model. In this paper, the IoT network is a
multihop wireless network consisting of sensor nodes, which
communicate with each other through the routing protocol
for low-power and lossy networks (RPL). 'e sensor nodes
collect data and encapsulate them into packets. 'e packets
are forwarded by relay nodes to the base station. A typical
IoT network is shown in Figure 2.

A node is represented as Ni (i ∈ [1, M]), and the base
station is represented as S. Each node has at least one routing
path to the base station S. A routing path is represented as
Pathj (j ∈ [1, K]), which is expressed as

Pathj � N1⟶ N2⟶ · · ·⟶ Ni⟶ S􏼂 􏼃, (1)

where it represents a packet which is sent from N1, for-
warded through N2, . . . , Ni in a sequence, and finally re-
ceived by the base station S.

'en, the network is expressed as

Network � (N, S, P),

N � N1, N2, . . . , Ni, . . . , NM􏼈 􏼉,

P � Path1,Path2, . . . , Pathj, . . . , PathK􏽮 􏽯,

(2)

where N is the set of nodes in the network, and P is the set of
routing paths in the network, Network is the network

Security and Communication Networks 3



consisting of the sensor nodes, the base station, and the
routing paths.

3.2. Packet Dropping AttackModel. If there are no malicious
nodes, a packet will arrive at the base station. However, the
packet may be discarded halfway if there are malicious
nodes.

As shown in Figure 3, the malicious node N6 drops the
packet N1.Packet2. In this paper, the malicious nodes may
launch the packet-dropping attack with a certain probability
Pd (Pd ∈ (0, 1]). We use Ni.Pd to represent the probability
that Ni launches a packet-dropping attack. Considering the
harmfulness of the packet-dropping attack and the con-
strained resources of the IoT network, the malicious nodes
should be detected with a high accuracy and a low overhead.

3.3. PFEModel. 'e packet forwarding evidences (PFEs) are
generated during the packet transmission. Due to the
broadcast characteristic of wireless communication, when a
node Nf forwards a packet Ni.Packetj, all neighbors of Nf

can sniff the packet. 'e receiving node Nr will receive the
packet, and other neighbors of Nf generate PFEs to record
the forwarding behavior of Nf. 'e generated PFE can be
represented as

PFE � Nf, Ni.Packetj, Nr􏼐 􏼑, (3)

where it represents the neighbors of Nf witness that Nf has
forwarded the packet N1.Packetj to Nr.

As shown in Figure 4, N4 wants to forward the packet
N1.Packet2 to N6. Due to the broadcast characteristic of
wireless communication, all neighbors of N4 can sniff the
packet. N6 receives the packet, and the other neighbors (N2,
N3, N5, N10) of N4 generate a PFE, namely
(N4, N1.Packet2, N6).

During packet transmission, each node generates nu-
merous PFEs according to the forwarding packet behaviors
of its neighbors. We design a table named PFE Table (PFET)
for each node to store the PFEs. PFET is shown in
Table 2.where there are four fields: Packet-ID, Forwarding
Node, Receiving Node, and Capacity. Packet-ID means the
identifier of the forwarded packet; Forwarding Node means
the node that forwards the packet; Receiving Nodemeans the
node that receives the packet; Capacitymeans the number of
PFEs that a node can store. We assume that a node’s total
capacity is C, and it is divided equally to its neighbors.
According to Table 2, we can know that N10 has generated
three PFEs about N4, which, respectively, represent N4 has
forwarded N1.Packet2 to N6, N1.Packet3 to N5, and
N2.Packet1 to N3.

To avoid PFE being faked or tampered, we apply the
signcryption in [26] to transfer the PFE. 'e signcryption
generalized-CLSC (gCLSC) is secure and lightweight, which
can be used in the resource-constrained IoTnetwork. Before
sending a PFE to the base station, the sending node encrypts
and signs the PFE with gCLSC. After receiving the encrypted
and signed PFE, the base station verifies the sending node’s
signature and decrypts the PFE with gCLSC.

4. Algorithm

In this section, we introduce our evidence fusion-based
detection algorithm (EFDA), which is divided into three
phases. (1) Getting the dropped packet set: the base station
finds the dropped packet set and the source node of each
dropped packet. (2) Collecting PFEs: for each dropped
packet, the base station traces its routing path and finds the
suspicious nodes. PFEs stored by neighbors of suspicious
nodes are collected. (3) Fusing PFEs: the base station fuses
the collected PFEs to detect malicious nodes.

4.1. Getting the Dropped Packet Set. 'e source nodes collect
data from the environment, encapsulate them into packets,
and then upload the packets to the base station. After re-
ceiving the packets, the base station divides the received
packets into different groups Gi (i ∈ [1, M]) according to
their source nodes Ni. For each group, the base station sorts
the packets according to their sequence numbers. After
grouping and sorting the received packets, the base station
can find the dropped packets and their corresponding source
nodes.

As Figure 5 shows, the base station divides the received
packets into M groups and sorts the packets for each group.
For the first group of the source node N1, the base station
receives the packets with sequence number N1.Packet1,
N1.Packet2, and N1.Packet4 except N1.Packet2. So it finds
that N1.Packet2 is dropped. After checking all groups, the
base station can obtain the dropped packet set.

4.2. Collecting PFEs. After finding all the dropped packets,
the base station traces the routing path of each dropped
packet. In the process of tracing, the base station investigates
the nodes on the routing path hop by hop. In the final hop, it

Table 1: Notations.

Symbol Meaning
N 'e set of nodes in a network
Ni A node in N

S 'e base station in a network
P 'e set of routing paths in a network
Pathj A routing path in P

Ni.Packetk 'e identifier of a packet whose source node is Ni

Pd 'e attack probability of a node

Base Station
N1

N2

N3

N4

N5

N6

N7

N8

N10

Figure 2: A typical IoT network.
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can find two suspicious nodes that may drop the packet. To
judge the suspicious nodes, PFEs about them are collected at
the base station. We propose an evidence collection protocol
(ECP) to trace the routing path and collecting PFEs.

In order to assist ECP to trace the routing path of each
dropped packet, each node in the network needs to generate
records about its packet forwarding behaviors. Each node
maintains a packet forwarding record table (PFRT) to store
the records, which is shown in Table 3. It contains three
fields: Last Node, Packet-ID, and Next Node. Last Node
means the last node that forwards the packet, Packet-ID
means the identifier of the forwarded packet, and Next Node
means the next node where the packet is forwarded. After a
node receives a packet and forwards the packet to another
node, it will update its PFRT to record the forwarding
behavior.

As shown in Figure 6, during the transmission of the
packet N1.Packet2, N4 receives the packet from N2 and
forwards it to N6. To record this forwarding behavior, N4
inserts a record (N2, N1.Packet2, N6) into its PFRT. Besides,

malicious nodes may not update their PFRTs because they
drop packets instead of forwarding them.

Based on the packet forwarding records stored by nodes,
ECP can trace the routing path of each dropped packet. For a
dropped packet Ni.Packetj, the process of tracing the packet
can be described as follows.

'e base station finds the dropped packet Ni.Packetj and
its corresponding source node Ni. It constructs a TM
message (shown in Table 4) tm {“Packet-ID”: “Ni.Packetj”}
and sends it to Ni. 'e message tm is used to ask Ni for the
next forwarding node of Ni.Packetj. After that, the base
station initializes the tracing progress as [Ni]. Once re-
ceiving tm, node Ni searches its PFRT for the packet for-
warding record about the packet. It finds the next forwarding
node is Ns. It constructs a RM message (shown in Table 5)
rm {“Successor”: “Ns”} and sends it to the base station. 'e
message rm is used to report the tracing progress to the base
station. Besides, Ni forwards tm to Ns to ask it to continue to
trace the routing path of the packet. When the base station
receives rm, it updates the tracing progress as [Ni⟶ Ns].
After receiving tm, node Ns repeats the operations like Ni to
continue to trace the routing path. After several steps of
tracing, the tracing progress is updated to
[Ni⟶ Ns⟶ · · ·⟶ Nk⟶ Nm], and a malicious
node Nm receives tm.

As shown in Figure 7, the base station finds the dropped
packet N1.Packet2 and its corresponding source node N1.
'en, it sends a TM message tm to N1 and initializes the
tracing progress as [N1]. Once receiving tm, node N1
searches its PFRTand finds the next forwarding node is N2.
It sends a RM message rm1 to the base station and forwards
tm to N2. When the base station receives rm1, it updates the
tracing process as [N1⟶ N2]. Once receiving tm, nodeN2
continues to trace the routing path of the packet. After
several steps of tracing, the tracing progress is updated to
[N1⟶ N2⟶ N4⟶ N6], and N6 receives tm from N4.
We assume that node N6 is a malicious node.

When a malicious node Nm receives tm, there are three
possible cases as follows.

Case 1. 'e malicious node does not respond to the base
station.

'e continued tracing process is described as follows.
After receiving tm, the malicious node Nm does not

respond to the base station. Once receiving no response from
Nm, the base station identifies Nm as a malicious node.

N1.Packet1

N 1.Packet 2

N 1.Packet 1

N 1.P
acket 1

N 1.P
acket 2

N
1 .Packet1

N
1 .Packet2

Base Station
N1

N2

N3

N4

N5

N6

N8

N7

Figure 3: A network with malicious nodes.
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Figure 4: An example of the PFEs generated.

Table 2: PFET of N10.

Packet-ID Forwarding node Receiving node Capacity
N1.Packet2

N4

N6
C/2N1.Packet3 N5

N2.Packet1 N3

N4.Packet1
N6

N5
C/2N4.Packet2 N7

N5.Packet1 N7
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As shown in Case 1 of Figure 7, N6 has received tm from
N4, but it does not respond to the base station. 'e base
station identifies N6 as a malicious node.

Case 2. 'e malicious node responds that it has never re-
ceived the packet forwarded by its predecessor.

'e continued tracing process is described as follows:
After receiving tm, the malicious node Nm denies that it

has received Ni.Packetj from Nk. So, it constructs an IM
message (shown in Table 6) im {“Packet-ID”: “Ni.Packetj,”
“Impeaching-Node”: “Nm,” “Impeached-Node”: “Nk”} and
sends it to the base station. 'e message im is used to report
the base station that Nm has never received Ni.Packetj from
Nk. When the base station receives im, it finds a logic conflict
between Nk and Nm. It identifies Nk and Nm as suspicious
nodes.

As shown in Case 2 of Figure 7, N6 denies that it has
received N1.Packet2 from N4. 'en, it sends an IM message
im1 to the base station. After receiving im1, the base station
identifies N4 and N6 as suspicious nodes.

Case 3. 'e malicious node responds that it has forwarded
the packet to a neighbor, but actually not.

'e continued tracing process is described as follows:
After receiving tm, the malicious node Nm lies that it has

forwarded Ni.Packetj to Nn. So, it sends rm {“Successor”:
“Nn”} to the base station. Besides, it forwards tm to Nn.
When the base station receives rm, it updates the tracing
progress as [Ni⟶ Ns⟶ · · ·⟶ Nk⟶ Nm⟶ Nn].
Once receiving tm, node Nn searches its PFRT but finds no
packet forwarding record about Ni.Packetj. So, it sends im

{“Packet-ID”: “Ni.Packetj,” “Impeaching-Node”: “Nn,”
“Impeached-Node”: “Nm”} to the base station to deny that it
has received Ni.Packetj from Nm. When the base station
receives im, it finds a logic conflict between Nm and Nn. It
identifies Nm and Nn as suspicious nodes.

As shown in Case 3 of Figure 7, N6 lies that the next
forwarding node is N8. It sends rm4 to the base station and
forwards tm to N8. When the base station receives rm4, it
updates the tracing progress as
[N1⟶ N2⟶ N4⟶ N6⟶ N8]. Once receiving tm,
node N8 sends im2 to the base station to deny that it has
received N1.Packet2 from N6. When the base station re-
ceives im2, it identifies N6 and N8 as suspicious nodes.

After the tracing process of a dropped packet like
Ni.Packetj, the base station can get two suspicious nodes like
Nk and Nm (Nm and Nn). To find the liar in them, the base
station needs to collect PFEs about them as follows.

Without loss of generality, we suppose the suspicious
nodes are Nk and Nm.

N1.Packet1 N1.Packet2 N1.Packet3 N1.Packet4G1

N2.Packet1 N2.Packet3N2.Packet2 N2.Packet4G2

NM.Packet3NM.Packet1 NM.Packet2 NM.Packet4GM

The base station

N1.Packet2 N2.Packet3 NM.Packet1···

Dropped packet set

Figure 5: 'e process of getting the dropped packets set.

Table 3: Packet forwarding record table of N4.

Last node Packet-ID Next node
N2 N1.Packet2 N6

N4

N2 N6

Last Node
N2

Packet-IDPacket-ID Next Node
N1.Packet2 N6 Insert

N1.Packet2

N
1 .Packet2 N 1.P

acket 2
N1.Packet2

Figure 6: An example of updating the PFRT.

Table 4: Tracing message (TM).

Field Description
Packet-ID 'e identifier of a dropped packet

Table 5: Reporting message (RM).

Field Description
Successor 'e next forwarding node of the dropped packet
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'e base station constructs a CEM message (shown in
Table 7) cem {“Expected-PFE”: “(Nk, Ni.Packetj, Nm)”} and
sends it to the precursor Nk of the suspicious nodes. 'e
message cem is used to collect PFEs. Once receiving cem, Nk

constructs a REM message (shown in Table 8) rem {“Ex-
pected-PFE”: “(Nk, Ni.Packetj, Nm)”} and sends it to its
neighbors. 'e message rem is used to request the neighbors
to send the relevant PFEs to the base station. When each
neighbor of Nk receives rem, it searches its PFET for the
PFE. Once getting the matched PFE, each neighbor con-
structs an EM message (shown in Table 9) em {“PFE”:
“(Nk, Ni.Packetj, Nm)”} and sends it to the base station. But,
the accomplice does not submit correct PFE by sending em

{”PFE”: “(No Evidence)”} or submits a faked PFE to the base
station. After receiving all EM messages, the base station
extracts the PFEs in them.

As shown in Case 2 of Figure 7, the base station finds the
suspicious nodes N4 and N6. It sends a CEM message cem1
to the precursor N4. Once N4 receives cem1, it sends a REM
message rem1 to its neighbors. When the neighbors (N2, N3,
N5, and N10) receive rem1, benign neighbor N2 (N3, N5)
searches its PFETs and sends the matched PFE by an EM
message em1 (em2, em3) {“PFE”: N4, N1.Packet2,
N6“(N4, N1.Packet2, N6)”} to the base station, but the ac-
complice N10 sends em4 {“PFE”: “(No Evidence)”} to the
base station. After receiving all EM messages, the base
station extracts all PFEs.

After tracing the routing path of a dropped packet by
ECP, the base station can get two suspicious nodes and their
relevant PFEs.

4.3. Fusing PFEs. After the base station finds the suspicious
nodes and collects their relevant PFEs by ECP, we propose
an evidence fusion algorithm (EFA) to fuse these PFEs and
detect malicious nodes.

'e evidence fusion is actually a voting process. For the
suspicious nodes Nk and Nm about Ni.Packetj, Nk’s
neighbors send either PFE (Nk, Ni.Packetj, Nm) or PFE
(NoEvidence) to the base station. PFE (Nk, Ni.Packetj, Nm)
means a neighbor witnesses Nk has forwarded Ni.Packetj to
Nm, and it votes for Nk. PFE (NoEvidence) means a
neighbor regards Nk as the liar, and it votes for Nm. 'e
number of votes for a node is represented as v, and vk (vm) is
the number of votes for Nk (Nm). Malicious neighbors may
submit a faked PFE to vote for its accomplices. To mitigate
the effects of the collusion among malicious nodes, we use
nodes’ weights to multiply nodes’ votes. 'e weight of Ni is
represented as ωi, and it is the ratio of Ni’s trust to the initial
value, namely ωi � ti/T. 'e trust of Ni (i ∈ [1, M]) is
represented as ti, and the initial value of ti is T. 'e base
station maintains a trust and weight table (TWT) to record
the trusts and weights of all nodes.

N2.Packet3 NM.Packet1···Dropped packet set

N1

The base station

N2 N4 N6 N8

N1.Packet2

tm

tm

rm

Tracing progress: [ N1-> N2-> N4 -> N6 ]

tm

rm2

tm

rm3

case 1

N6

malicious node

Do nothing

case 2

N6N4

im1N3 N5 N10

rem1 rem1rem1

em2 em3 em4

case 3

N6

rm4

N8tm

im2
N5 N7 N10

rem2 rem2 rem2

em6 em7 em8

cem1 cem2

N2

em1

rem1

Tracing progress: [ N1-> N2-> N4 -> N6 -> N8 ]

N4

rem2

em5

Figure 7: An example of ECP.

Table 6: Impeaching message (IM).

Field Description
Packet-ID 'e identifier of a dropped packet

Impeaching-node 'e node impeaches that impeached node
has not forwarded the packet to it

Impeached-node 'e node is impeached

Table 7: Collecting evidences message (CEM).

Field Description
Expected-PFE 'e PFE is expected by the base station

Table 8: Requesting evidence message (REM).

Field Description
Requested-PFE 'e PFE is requested by the sending node
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As the votes are weighted, the number of votes for a node
is the sum of the weights of the neighbors that have voted for
it. After fusing PFEs, the base station identifies the node with
fewer votes as the liar and punishes it by decreasing its trust.

For the dropped packet N1.Packet2 in Case 2 of Figure 7,
the base station gets four PFEs {N2: (N4, N1.Packet2, N6),
N3: (N4, N1.Packet2, N6), N5: (N4, N1.Packet2, N6),
N10: (NoEvidence) }. N2, N3, and N5 witness that N4 has
forwarded N1.Packet2 to N6, and they regard N4 as a benign
node and vote for it. But N10 denies that N4 has forwarded
the packet to N6, and it regards N6 as a benign node and
votes for it. Because ω2, ω3, ω5, and ω10 are initialized as 1,
v4 � ω2 + ω3 + ω5 � 3 and v6 � ω10 � 1. By comparing v4
with v6, the base station identifies N6 as the liar and de-
creases its trust.

For a dropped packet, ECP traces its routing path to find
two suspicious nodes and the relevant PFEs, and EFA fuses
these PFEs to discover the liar and decreases its trust. After
ECP traces all dropped packets and EFA punishes all liars
over, the final trusts of nodes can be obtained. Based on the
final nodes’ trusts, the K-means clustering is used to cluster
nodes into two groups: malicious group (MG) and benign
group (BG).

As shown in Algorithm 1, EFDA contains three steps.

(1) Getting the dropped packet set: the base station
divides the received packets into different groups Gi

according to their source nodes (line 3–5) and sorts
the packets according to their sequence numbers for
each group (line 6-7). After grouping and sorting the
received packets, the base station can find the
dropped packet set, namely DPS (line 8–12).

(2) Collecting PFEs: for each dropped packet, the base
station S sends a TM message to the source node Ni

to start a tracing process (line 14–15). 'e current
node Ncur finds the successor Ns and continues the
tracing process until the base station finds two
suspicious nodes Nk, Nm (line 17–23). 'e base
station collets PFEs about Nk, Nm to judge them
(line 24–28).

(3) Fusing PFEs: for two suspicious nodes, the base
station fuses their relevant PFEs to update their votes
(line 29–35). 'e node with fewer votes is punished
by decreasing its trust (line 36–41). Based on the final
nodes’ trusts, the K-means clustering is used to
cluster nodes to BG and MG (line 43).

4.4. Algorithm Analysis

4.4.1. Algorithm Complexity Analysis. According to the
pseudocode in Algorithm 1, the proposed approach contains

three steps: (1) getting the dropped packet set: in order to get
the dropped packet set, EFDA needs to traverse the received
packet set (RPS). 'e complexity of the first step is
O1 � size(RPS), where size(RPS) means to find the size of
the set RPS. (2) Collecting PFEs: in order to collect PFEs,
EFDA needs to traverse the dropped packet set (DPS). For
each dropped packet, EFDA needs to trace the routing path
of the dropped packet. 'e complexity of the second step is
O2 � size(DPS) × size(Path), where Path means the traced
routing path. (3) Fusing PFEs: in order to fuse PFEs, EFDA
needs to traverse the PFEs for each dropped packet. 'e
complexity of the third step is O3 � size(DPS) × size(PFEs).
'erefore, the complexity of EFDA is represented as O �

O1 + O2 + O3 � size(RPS) + size(DPS) × size(Path) +

size(PFEs).

4.4.2. Algorithm Overheads Analysis

(1) Energy Overheads of EFDA. EFDA detects malicious
nodes by tracing the routing paths of dropped packets. In
addition, it can get the detection results in a limited number
of dropped packets. We assume that the limited number of
dropped packets is L. For each tracing process, considering
the worst case, all nodes on the routing path need to send a
TM message and a RM message. Only some specified nodes
need to send an IM message, a REM message, or an EM
message. 'erefore, each node sends no more than 3 extra
messages for one tracing process. Because EFDA needs to
trace L dropped packets, each node sends no more than 3 ×

L extra messages for one time detection. Moreover, since the
sizes of the above messages are small, the energy overheads
of sending them are small.
(2) Storage Overheads of EFDA. In EFDA, each node
needs to store the packet forwarding records and PFEs,
and we estimate the storage overheads of EFDA to prove
its feasibility. 'e storage overheads of a node are affected
by the sizes of its PFRT and PFET. A general IoT device
forwards 1200messages/minute according to the study in
[27]. Assuming that EFDA is executed every hour to
detect malicious nodes. During this period, there are
72000 messages forwarded and 72000 packet forwarding
records stored by a node. For a packet forwarding record,
it contains three fields, and its storage overheads are
3 Bytes. 'e storage overheads of PFRT are
72000 × 3 � 216000 Bytes ≈ 210 kB. For PFET, its capacity
C (shown in Table 2) is approximate to the number of
forwarded packets, namely 72000. For a PFE, it contains
three fields, and its storage overheads are 3 Bytes. 'e
storage overheads of PFET are 72000 × 3 �

216000 Bytes ≈ 210 kB. So, the storage overheads of a
node are 210 + 210 � 420 kB, which is far less than a
general IoT device’s storage 2GB [28].

4.4.3. Distinction between EFDA and ML-Based Algorithms.
In this section, we analyze the distinction between EFDA
and ML-based algorithms. For each injected packet, ML-
based algorithms use it to calculate the trust of its routing
path by mathematical reasoning. 'en, they use the

Table 9: Evidence message (EM).

Field Description

PFE 'e stored PFE is encrypted and signed by
the sending node, and it sends to the base station
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routing path’s trust to estimate the nodes’ trusts on the
routing path. However, in order to estimate the nodes’
trusts more accurately, numerous packets need to be
injected to get more routing path’s trusts, which are used
as the input of the ML-based algorithms.

On the contrary, EFDA detects malicious nodes
without injecting packets. It can trace the routing path of
each dropped packet and find the suspicious nodes. 'e

PFEs around suspicious nodes are collected to the base
station, and EFDA fuses them to find the malicious nodes.
A potential constraint for EFDA is how to resist collusive
attacks. Suppose that a benign node is surrounded by
many malicious nodes, they submit faked PFEs that cause
the base station to misidentify the benign node as a
malicious node. A possible extension is to use the causal
inference algorithm to solve the problem.

Input: RPS (Received Packet Set)
Output: BG (Benign Group), MG (Malicious Group)

(1) Initialize BG � ∅,MG � ∅;
Step1 Getting the dropped packet set:

(2) Initialize all Gi � ∅,DPS � ∅ ;
(3) foreach Ni.Packetj ∈ RPS do
(4) Gi � Gi ∪Ni.Packetj;
(5) end
(6) for i � 1; i≤M; i ++ do
(7) Gi sorts inner Ni.Packetj in ascending order of j;
(8) for j � 1; j≤ jmax; j ++ do
(9) if Ni.Packetj ∉ Gi then
(10) DP S � DP S∪Ni.Packetj;
(11) end
(12) end
(13) end

Step2 Collecting PFEs:
(14) foreach Ni.Packetj ∈ DP S do
(15) S⟶ TMNi, Process � Ni􏼈 􏼉;
(16) Ncur � Ni;
(17) while Find no suspicious nodes do
(18) Ncur finds next forwarding node is Ns;
(19) Ncur ⟶ RMS, Ncur⟶T M Ns;
(20) Ncur � Ns;
(21) Process �Process∪Ns;
(22) end
(23) S finds two suspicious nodes (Nk, Nm);
(24) S⟶ CEMNk;
(25) Nk ⟶ REMNk

′sneighbors;
(26) foreach neighbor ∈ Nk

′s neighbors do
(27) neighbor⟶ PFES;
(28) end

Step3 Fusing PFEs:
(29) foreach PFE ∈ PFEs do
(30) if PFE �� Nk, Ni.Packetj, Nm􏽮 􏽯 then
(31) Vk ++;
(32) else
(33) Vm ++;
(34) end
(35) end
(36) if Vk >Vm then
(37) Decrease Nm’s trust;
(38) end
(39) if Vk <Vm then
(40) Decrease Nk’s trust;
(41) end
(42) end
(43) Based on nodes’ trusts, K-means clusters nodes to BG and MG;
(44) return (BG, MG);

ALGORITHM 1: EFDA algorithm.
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5. Performance Evaluation

In this section, we evaluate the performance of our proposed
EFDA and compare it with two typical ML-based algo-
rithms, namely HD [20] and PDE [21].

Both HD and PDE need to inject numerous labeled
packets into the network and collect them at the base station.
Each labeled packet has a routing path, and each routing
path has abundant labeled packets. For each routing path,
not all labeled packets on the routing path can be collected
by the base station due to the malicious nodes. HD and PDE
define the trust of the routing path as a ratio, which is the
number of collected labeled packets to the total number of
labeled packets on the routing path. According to whether a
node is on the routing path, the relationship between the
trust of nodes and the trust of the routing path can be
formalized as a mathematical equation. 'e mathematical
equation can be solved by machine learning algorithms, and
the trust of nodes can be obtained. Based on the trust of
nodes, the clustering algorithm classifies them into benign
group and malicious group.

We evaluate accuracy and error rate to compare de-
tection performance. As shown in Table 10, the accuracy is
defined as Pa � (TP + TN)/(P + N), and the error rate is
defined as Fa � (FP)/(FP + TN).

5.1. Experimental Environment

5.1.1. Environmental Settings. In our environment, all nodes
are evenly distributed in a rectangle area of 100 × 100m2,
and each node’s communication range is 10m. Our IoT
network is generated randomly, and there is at least one
routing path from each source node to the base station.

To avoid bias, we run our simulation for each experiment
in 10 rounds with 10 different networks generated randomly.

'e average value of 10 rounds’ result is calculated as the
final experimental result of each experiment. In particular,
we use the simulator in [21] and add our EFDA to it. Both
EFDA and theML-based algorithms are deployed at the base
station.

5.1.2. Environmental Variables. In the following experi-
ments, we investigate the impact of the variables (shown in
Table 11) on the detection performance. Unless otherwise
specified, all experimental variables will remain the default,
which is set as follows.

'e number of uploaded packets is 500. 'e number of
nodes is 15. 'e probability of an attack is 0.3. 'e per-
centage of malicious nodes is 0.3. 'e diversity of the
network is 1.

5.2. HD vs PDE vs EFDA. In this section, we explore the
performance comparison among HD, PDE, and EFDA
through experiments.

5.2.1. Impact of the Number of Uploaded Packets. 'e results
in Figure 8 show that EFDA performs better than HD and
PDE. When the number of uploaded packets is small, HD
and PDE get a low Pa. As the number of uploaded packets
increases, HD and PDE can get a higher Pa. EFDA gets a
stale Pa in all cases. 'is is because as the number of
uploaded packets increases, HD and PDE can calculate more
routing path’s trust to estimate nodes’ trusts. Once more
collected information is used to estimate nodes’ trusts, HD
and PDE can get more exact nodes’ trusts and get more
accurate detection results. EFDA can trace the routing path
to find the suspicious nodes and detect malicious nodes in a
smaller detection range. EFDA hardly needs abundant

Table 10: Experimental evaluation.

Detection result
Negative Positive Total

Actual result
Negative True positive (TP) False negative (FN) P (actual negative)
Positive False positive (FP) True negative (TN) N (actual positive)
Total P′ (detect negative) N′ (detect positive) P+N

Table 11: Variables and description.

Variables Description
'e number of uploaded
packets 'e number of packets that are uploaded to the base station will influence the detection accuracy

'e number of nodes It means the number of nodes deployed in the network, which can affect the scale of the network and the
detection accuracy

'e percentage of malicious
nodes It means that how many nodes are malicious in the network, which can affect the detection result

'e probability of attack Malicious nodes launch the packet-dropping attack with a probability, and less probability means that the
node is more difficult to be detected. It can influence the detection accuracy

'e diversity of network
It essentially indicates the ratio of available routing paths that could be chosen by source nodes to upload
packets. 'e diversity of network reflects the routing paths’ complexity, and it influences the detection

accuracy

10 Security and Communication Networks



routing path’s information to estimate nodes’ trusts, so it can
get a stable detection results.

5.2.2. Impact of the Number of Nodes. �e results in Figure 9
show that when the number of nodes is small, all algorithms
get a high Pa and a low Fa; but when the number of nodes
increases, the accuracy Pa of all algorithms decreases, and
the error rate Fa of them increases. EFDA still performs
better than HD and PDE in all cases. �is is because when
the number of nodes is 5, the network topology is simple,
andmalicious nodes are more easily to be detected; when the
number of nodes increases and the network topology be-
comes more complex, the malicious nodes are more likely to
hide their abnormal behaviors, and it is di�cult to identify
all malicious nodes. However, no matter how complex the

network topology becomes, EFDA still reaches higher ac-
curacy than HD and PDE.

5.2.3. Impact of the Percentage of Malicious Nodes. �e
results in Figure 10 show that EFDA gets the better results
than the other two detection algorithms; but with the
percentage of malicious nodes increases, the accuracy Pa of
EFDA is getting lower and the error rate Fa of EFDA is
getting higher, while the trends of HD and PD remain stable.
�is is because when the percentage of malicious nodes
increases, the number of malicious nodes in the network will
also increase that leads to more malicious nodes cooperate to
resist EFDA. Assuming that most of the neighbors around a
benign node are malicious, the malicious neighbors vote for
its accomplice, which causes the benign node to be
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Figure 8: �e impact of the number of uploaded packets. (a) Impact of the number of uploaded packets on Pa. (b) Impact of the number of
uploaded packets on Fa.
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Figure 9: �e impact of the number of nodes. (a) Impact of the number of nodes on Pa. (b) Impact of the number of nodes on Fa.
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misidenti�ed as the liar, and its trust is decreased by EFDA.
Because EFDA misidenti�ed the benign node as a malicious
node, it gets a lower Pa and a higher Fa. Although we have
optimizations for the collusion among malicious nodes, it is
di�cult to resist the collusion attacks from many malicious
nodes.

5.2.4. Impact of the Probability of Attack. �e results in
Figure 11 show that EFDA performs better than HD and
PDE. When the probability of attack is small, EFDA gets a
small Pa and a large Fa. However, when the probability of
attack increases, the accuracy Pa of EFDA begins to increase,
and the error rate Fa of EFDA begins to decrease. �e trends
of HD and PDE are similar, but their accuracy Pa is lower
than that of EFDA, and their error rate Fa is higher than that
of EFDA. �is is because when the probability of attack is

small, malicious nodes intend to hide their attack behaviors
that make EFDA more di�cult to detect them. However,
when the probability of attack becomes larger, malicious
nodes are more likely to launch a packet dropping attack that
makes EFDA �nd more dropped packets. EFDA traces more
routing paths of the dropped packets and �nds more sus-
picious nodes, and it gets more accurate detection results.

5.2.5. Impact of the Diversity of Network. �e results in
Figure 12 show that when the diversity of network is low,
both HD and PDE get a low Pa and a high Fa. With the
diversity of network increases, their accuracy Pa becomes
higher, and their error rate Fa becomes lower. However,
EFDA gets stable accuracy Pa and error rate Fa in all cases,
and they are better than those of HD and PDE. �is is
because when the diversity of network is low, there are few
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Figure 10: �e impact of the percentage of malicious nodes. (a) Impact of the percentage of malicious nodes on Pa. (b) Impact of the
percentage of malicious nodes on Fa.
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Figure 11:�e impact of the probability of attack. (a) Impact of the probability of attack on Pa. (b) Impact of the probability of attack on Fa.
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routing paths for source nodes to upload packets to the base
station. It means HD and PDE obtain few routing paths’
information to estimate the nodes’ trusts, and that causes
HD and PDE to get the inaccurate nodes’ trusts. �erefore,
they get negative detection results. As the diversity of net-
work becomes larger, HD and PDE obtain more routing
paths’ information to estimate the nodes’ trusts, and they get
positive detection results. However, EFDA does not need
more di�erent routing paths’ information to estimate the
nodes’ trusts. It can trace the path of dropped packet and
accurately �nd the suspicious nodes on the path, and it only
decreases the liar’s trust. So, EFDA detects malicious nodes
more e�ciently than HD and PDE.

5.3. Discussion and Limitations. In the experiments, we
explore the performance comparison between HD, PDE,
and EFDA on �ve variables, which are the number of
uploaded packets, the number of nodes, the percentage of
malicious nodes, the probability of attack, and the diversity
of the network. Overall, it is observed that EFDA can achieve
better detection performance compared with HD and PDE.
EFDA can improve the detection rate by around 20% to 30%.

Although EFDA performs better than HD and PDE,
there are some limitations that can be addressed in our
future work. When the percentage of malicious nodes ex-
ceeds 50%, the detection performance of EFDA declines
signi�cantly, which indicates that EFDA is di�cult to resist
the collusion of numerous malicious nodes. In our future
work, we plan to investigate how to resist the collusion of
numerous malicious nodes.

6. Conclusion

Due to the distributed nature of the IoT networks, they are
vulnerable to the packet-dropping attack. �ere are abun-
dant detection algorithms to detect the packet dropping
attack; however, most of them are heavyweight for the re-
source-constrained IoTnetwork. In this paper, we propose a

lightweight evidence fusion-based detection algorithm,
namely EFDA. It uses packet forwarding evidence to detect
malicious nodes. In EFDA, the received packets are grouped
and sorted to �nd the dropped packets. For each dropped
packet, the base station traces its routing path, �nds the
suspicious nodes, and collects evidence. �e collected evi-
dences are fused to �nd the liar, and EFDA punishes the liar
by decreasing its trust. Based on nodes’ trusts, the K-means
clustering is used to cluster nodes and detect malicious
nodes.

Our experimental results demonstrate that EFDA has
better detection performance than two typical ML-based
algorithms: HD and PDE. EFDA detects malicious nodes
without injecting packets, and it can improve the detection
accuracy by around 20% to 30%.
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