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In recent years, image processing methods based on convolutional neural networks (CNNs) have achieved very good results. At
the same time, many branch techniques have been proposed to improve accuracy. Aiming at the change detection task of remote
sensing images, we propose a new network based on U-Net in this paper. +e attention mechanism is cleverly applied in the
change detection task, and the data-dependent upsampling (DUpsampling) method is used at the same time, so that the network
shows improvement in accuracy, and the calculation amount is greatly reduced. +e experimental results show that, in the two-
phase images of Yinchuan City, the proposed network has a better antinoise ability and can avoid false detection to a
certain extent.

1. Introduction

Change detection in remote sensing images is a critical and
challenging task, and its specific work refers to the quan-
titative analysis of multiple temporal remote sensing images
for the same target area, determining the features and scope
of surface changes and detecting the changed and un-
changed parts [1]. Remote sensing image change detection is
utilized to detect illegal buildings, water area supervision,
natural disaster assessment, urban planning expansion re-
search, and military reconnaissance [2].

Because of the increasing amount of data from remote
sensing images and the increasing demand in this direction,
manual comparison and analysis of the change area appear
time-consuming and laborious. Due to factors such as
seasons and solar illumination, imaging styles of different
phases have huge differences [3], which make it difficult to
solve the change detection task by computer vision.

Change detection is a unique task for remote sensing
image processing, which can be regarded as a dichotomy
problem of a region changing or not, as shown in Figure 1.
Figure 1(a) shows the remote sensing images of a certain

region of Yinchuan City in 2015, Figure 1(b) shows the
remote sensing images of this region in 2017, and Figure 1(c)
shows the change label of this region, where black indicates
that the location has not changed and white indicates that
the location has changed. +e task of change detection is to
identify the changing areas in different phases.

General change detection methods are mainly based on
autoencoders and feature extraction through the full con-
nection between neurons [4]. But in fact, change detection
can flexibly apply the method of semantic segmentation and
extract features by convolution. CNNs have led the field in
image processing since AlexNet [5] won the championship
in 2012.With the advent of networks such as FCN [6], U-Net
[7], and SegNet [8], the baseline effect in this field is getting
better and better. However, due to the characteristics of the
change detection task, the above-mentioned excellent net-
works often cannot exert the best results.

In this paper, our task is to solve the change detection in
three districts of Yinchuan City. After a detailed analysis of
this task, we found that the volume of the changed part is
much smaller than that of the unchanged part. +ere is a
greater degree of positive and negative sample imbalance
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problem. To this end, we propose a new network based on
U-Net. +e network consists of encoder and decoder. Based
on the residual attention model [9], we proposed a new at-
tention mask structure for feature extraction, and a new
encoder structure is also proposed in order to better perceive
the changing area. By generating an attentionmask, themodel
can pay more attention to the regions with obvious changes
and improve the antinoise ability of the model. In the decoder
stage, a data-dependent upsampling method (DUpsampling)
[10] is used to replace the general upsampling method. +e
new upsampling method can be applied to smaller-resolution
feature maps, which greatly reduces the computational
complexity. At the same time, we propose a new loss function
for the network, and the initial values of different loss
functions are used to balance its impact on network training
and reduce the impact of sample imbalance.

2. Related Work

2.1. Convolutional Neural Network. +e achievement of
today’s success in image processing largely depends on the
CNNs [11]. +e essence of CNNs is a multilayer perceptron.
+e network structure includes a convolutional layer, a

downsampling layer, and a fully connected layer. +e reason
for its success is local connection and weight sharing method
[12]. Reducing the number of weight makes the network easy
to optimize and reduces the complexity of the model, which
reduces the risk of overfitting. +e earliest CNNs are time-
delayed neural networks [13] and Lenet-5 [14]. After
AlexNet won the champion of ILSVRC [15] in 2012, thanks
to the support of GPU computing cluster, deep CNNs such
as ZFNet [16], VGGNet [17], and GoogLeNet [18] became
the winning algorithm of ILSVRC for many times. But at the
same time, CNNs fail to converge with the deepening of
network layers. ResNet [19] proposes the mechanism of
residual learning, making the network easy to converge
while getting deeper. However, the original CNN receptive
field is small, and it cannot sense the neighborhood infor-
mation well. Enlarging the receptive field will lead to a large
increase in computing resources. At the same time, CNN’s
fully connected mode is too redundant and inefficient.

2.2. Attention Mechanism. Mnih et al. [20] confirmed the
effectiveness of attention mechanism. Attention is generally
classified into two types: one is top-down conscious

(a) (b)

(c)

Figure 1: Example of remote sensing image change detection.
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attention, called focus attention. +e other is bottom-up
unconscious attention, called saliency-based attention. Fo-
cus attention refers to the attention that has a predetermined
purpose and focuses on a certain object actively and con-
sciously [21, 22]. Saliency-based attention is also called
stimulation-based attention [23]. Wang et al. [9] proposed a
method to solve the problem of image classification by using
attention residual learning.

2.3. Encoder-Decoder Architectures. Since FCN was pro-
posed, people have been trying to use FCN to improve the
accuracy of pixel-level prediction. On the one hand, people
start with the atrous convolution [24, 25], which needs more
complex operations, and on the other hand, people use
encoder-decoder architectures. +e most significant feature
of encoder-decoder architectures is the ability to complete
end-to-end learning. U-Net improves on the FCN frame-
work by connecting codecs with skip connections to im-
prove the effect. SegNet records the location of the
maximum value during the maximum pooling operation of
the encoder part and then realizes nonlinear upsampling
through the corresponding pooling index in the decoder.
DeepLab V3 [26] uses the ASPP structure to expand the
receptive field, mining context information, and the im-
proved Xception module to reduce the number of param-
eters and achieve the best effect of the current semantic
segmentation network. Tian et al. [27] proposed a data-
dependent upsampling method, which enables the encoder
to sample down to the bottom layer and improve the ac-
curacy by fusing features of different layers.

2.4. Change Detection. Remote sensing image change de-
tection can greatly improve land utilization and contribute
to urban planning and expansion. In the first decade of this
century, CNN was rarely used in the field of change de-
tection. Carincotte et al. [28] used a fuzzy hidden Markov
chain algorithm to avoid a large number of false changes and
missed detections caused by threshold segmentation. Liu
et al. [29] used the stacked restricted Boltzmann machine to
analyze the differential images between multiphase SAR
images and classified the neighborhood features of the two-
phase images. By using the deep learning algorithm, the
images were classified pixel by pixel to achieve the purpose of
change detection. In recent years, CNNs began to be
implemented in this field. Desclee et al. [30] proposed an
object-oriented forest vegetation change detection method,
which firstly segments multitemporal high-resolution re-
mote sensing images and then, based on the hypothesis chi-
square test, identifies outliers of statistical differences in
reflectivity and marks corresponding objects as changes.
Qing et al. [31] applied Faster R-CNN to this field, greatly
reducing the false changes of detection results. Ma et al.
proposed a network based on multigrained cascade forest
and multiscale fusion, so that the network can select image
blocks of different sizes as input, thereby learning more
image features [32]. Dong et al. designed a “Siamese sam-
ples” convolutional neural network to learn the semantic
difference between changed and unchanged pixels [33].

+e change detection in Yinchuan area includes many
different landforms. Considering the particularity of this
region, our method adds the attention module in the feature
extraction stage and uses U-Net’s skip connection to further
reduce the loss of information from upsampling and
downsampling, it also uses DUpsampling to accelerate the
upsampling process, while facilitating subsequent feature
fusion. As a result, our model can avoid many false de-
tections, while ensuring accuracy without occupying too
many computing resources.

3. Our Approach

In this section, we first introduce the network we proposed
and then elaborate on each functional module of the
network, and we also propose a new loss function based on
the problem we meet to improve the accuracy of the model.
It is noteworthy that, different from the current main-
stream of change detection method based on the convo-
lution neural network, we improve the residual attention
mechanism, and we proposed a new way to generate at-
tention mask and apply the mask to change detection task.
At the same time, the DUpsampling method is used to
reduce the loss of computing resources. Finally, we noticed
the impact of the initial size of the loss function on the
network performance and proposed a new loss function,
which achieved good results.

3.1. Network Architecture. In this paper, we propose a new
network based on U-Net, as shown in Figure 2. Like U-Net,
the network is divided into encoder and decoder. +e
encoder downsamples the input to extract the features,
while the decoder upsamples the input to restore the
resolution. +e network uses a six-channel matrix super-
imposed on two pictures of different phases in the same
area as input to the encoder. +e encoder takes ResNet50 as
the trunk and adds the attention modules. +e attention
module consists of trunk branch and mask branch, which
perform feature extraction and mask generation on the
input, respectively. +e attention mask subtracts the three
channels of two RGB images as the input and outputs a
feature map with attention weight to highlight the key areas
of feature extraction. +en residuals are performed on
feature maps of mask branch and trunk branch. +e
DUpsampling method is used to replace the conventional
bilinear upsampling on the decoder, which avoids the
computation and memory footprint caused by reducing
step size (such as DeepLab V3) of the decoder. +e decoder
maintains the original network structure of U-Net. +ere
are skip connections between the encoder and the decoder
to combine the features of the corresponding encoding
during decoding.

3.2. Functional Modules

3.2.1. Encoder. In order to improve the accuracy of the
network, different from the traditional autoencoder net-
work, we choose to deepen the network depth, thus
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introducing ResNet50. Its unique residual learning method
can avoid the problem of unable to converge due to gradient
explosion or gradient disappearance in deep network. In the
encoder stage, ResNet50 as the backbone, and the residual
attention mechanism is added to form a new encoder
structure to guide the network to focus on areas with sig-
nificant changes and improve the network’s antinoise ability.
+e encoder includes three attention modules as shown in
Figure 3. Each attention module is divided into mask branch
and trunk branch. Trunk branch performs feature extraction
just like normal convolutional neural networks. Mask
branch is responsible for generating attention weights for

input features, and finally, residuals are performed on fea-
ture maps of mask branch and trunk branch. +e formula is
as follows:

Hi,c(x) � 1 + Mi,c(x)􏼐 􏼑∗Fi,c(x), (1)

where Fi,c(x) represents the features generated by the deep
convolutional network, Mi,c(x) represents the output of
the mask branch, and the value range of Mi,c(x) is [0, 1].
When it approaches 0, Hi,c(x)is approximately the orig-
inal featureFi,c(x). +e detailed structure is illustrated in
Table 1.

Conv [7 ∗ 7]

Max pool

Attention
module

Attention
module

Attention
module

Encoder Decoder

DecBlock1

DecBlock2

DecBlock3

DecBlock4
Skip connection

Softmax

Full-conv[3 ∗ 3]
Conv[3 ∗ 3]

Full-conv[2 ∗ 2]

DUpsampling

DUpsampling

DUpsampling

Figure 2: +e framework of our proposed network.
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3.2.2. Attention Module. Because change detection requires
comparing information of different phases in the same region,
we propose a new architecture of the attention modules, which
is different from semantic segmentation task when generating
attention weight. In the mask branch, we subtract each channel
of the original two feature maps to generate a new three-
channel feature map. +is step is called the channel-level
subtraction. +e new feature map is used to generate the at-
tention mask and then put it into the mask branch for
upsampling and downsampling and convolution, and the
purpose of this step is to downsample to low resolution so that
we can get strong semantic information. Eachmask branch has
a different number of residual units between upsampling and
downsampling as skip connections to capture attention in-
formation at different scales. Each time pass the residual unit
connected to the attention modules, and the size of the feature
map is reduced. +e architecture is displayed in Table 1.

3.2.3. Decoder. We keep the decoder structure of U-Net.+e
proposed network uses DUpsampling in the upsampling
phase to replace the original bilinear upsampling procedure.
+e bilinear upsampling method does not take into account
the correlation between the predicted pixels. DUsampling
uses the redundancy of segmentation labels to produce
accurate segmentation results through the rough features
generated by the encoder. And the encoder structure does
not need to continue to excessively reduce the resolution of
the feature map, thereby reducing the calculation time and
memory usage. An important discovery is that the label of
images is not independently and uniformly distributed, and
the structural information it contains is related, so the label
can be compressed without causing too much loss. So we

compress the label first and split label into multiple grids,
and each grid size is t∗ t (t is the image size ratio, such as 16
and 32), and then we reshape the content of each grid into a
vector v, then compress v into x, and stack x to get com-
pressed labels. Formally, we have

x � Pv, (2)

􏽥v � Wx. (3)

Linearly map v to x through P, and W is the inverse
mapping matrix, which is the reconstruction matrix.
+rough the following formula to minimize the recon-
struction error and optimize through SGD iteration, PCA

Input

Input

Attention module Attention module Attention module

So� mask branch

Residual unit

Output

Ch
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1 
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nv

1 
× 

1 
co

nv

Si
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oi
d

Down sample
Up sample
Residual unit
Convolution

Sigmoid function
Element-wise product
Element-wise sum
Channel-level subtraction

Figure 3: +e framework with our proposed encoder which includes three attention modules and some residual units.

Table 1: +e architecture details for our encoder.

Layer Output size Encoder
Conv1 512× 512 7× 7, 64, stride 2
Max pooling 256× 256 3× 3 stride 2

Residual unit 256× 256
1 × 1, 64
3 × 3, 64
1 × 1, 256

⎛⎝ ⎞⎠ × 1

Attention module 256× 256 Attention× 1

Residual unit 128×128
1 × 1, 128
3 × 3, 128
1 × 1, 512

⎛⎝ ⎞⎠ × 1

Attention module 128×128 Attention× 1

Residual unit 64× 64
1 × 1, 256
3 × 3, 256
1 × 1, 1024

⎛⎝ ⎞⎠ × 1

Attention module 64× 64 Attention× 1

Residual unit 32× 32
1 × 1, 64
3 × 3, 64
1 × 1, 256

⎛⎝ ⎞⎠ × 3
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[34] can be used to obtain the closed solutions P and W.
Formally,

P
∗
, W
∗

� argmin
P,W

􏽘
v

v − 􏽥v
2

� argmin
P,W

􏽘
v

v − WPv
2
. (4)

When we get the reconstructed matrix W, W is the
parameter of the convolution kernel, which can complete the
upsampling procedure, as shown in Figure 4.

At the same time, adaptive temperature softmax is in-
troduced because the DUpsampling method may be cal-
culated based on the one-hot label, so that the probability
distribution is relatively smooth, resulting in too slow or
even difficult convergence of loss in training [35], as shown
in the following equation:

sotfmax zi �
exp zi/T( 􏼁

􏽐j exp zi/T( 􏼁
. (5)

T can be learned automatically by the backpropagation
algorithm without tuning. +ere is a skip connection be-
tween the encoder and the decoder so that the decoder can
obtain the feature information in the encoder and reduce the
loss of information in the decoding procedure. +e decoder
part contains four decoders, whose input includes the en-
coder map from skipping connection and the output of the
previous layer. +rough the upsampling procedure, the size
of the feature map is doubled. Finally, two full convolutional
layers and one convolutional layer are added, so that the size
is enlarged again to achieve the effect of end-to-end training,
as shown in Figure 2.

3.2.4. Loss. +e two images of the change detection mission
in the three districts of Yinchuan were taken in 2015 and
2017.Whenwe look at the two phases of a total of 924 images
and found that the volume of the changed part is much
smaller than that of the unchanged part, change detection is
essentially a binary classification problem, namely, one re-
gional changes or not. +ere is a greater degree of positive
and negative samples by imbalance problem. +erefore, we
introduced the focal loss function [36], which can effectively
solve the imbalance of positive and negative samples, as part
of the loss function. Formally,

FL pt( 􏼁 � −αt 1 − pt( 􏼁
clog pt( 􏼁, (6)

where pt is the classification probability of different cate-
gories and c and αt are fixed values. Here, c � 2 and αt � 0.25.
Combined with the binary crossover entropy loss function
LBCE, which is commonly used in this task, combining the
above two loss functions, we proposed a new loss function.
First of all, we noticed that different types of loss functions
have different initial values. +erefore, if we simply weighted
the two loss functions, the loss function with a large initial
value would dominate the loss function with a small initial
value. We use the initial values of the two loss functions
obtained in the first iteration to balance:

loss �
c1

c1 + c2
FL pt( 􏼁 +

c2

c1 + c2
LBCE, (7)

where c1 is the initial value of LBCE and c2 is the initial value
of focal loss. Experiments show that c1 is much larger than
c2, often several times larger than c2, so that different loss
functions will not distinguish the primary and secondary
relationship due to different sizes. And then we add the two
loss functions together to get the final loss, and with α
approximating 0.3, our network will achieve the best results.
+e loss function can be formulated as follows:

loss � α
c1

c1 + c2
FL pt( 􏼁 +(1 − α)

c2

c1 + c2
LBCE. (8)

4. Experiments

In this section, we first explain the datasets we used and the
criteria we used to evaluate the effect of the method and then
introduce the relevant experimental details. At the same
time, we performed ablation experiments on the proposed
loss function, verified the effectiveness of our loss function,
and found the optimal value of α. Finally, we compare the
effect of the current mainstream network with our network.

4.1. Datasets. In our experiment, the datasets came from
Gaofen-2 (Gf-2) satellite including Xixia District, Xingqing
District, and Jinfeng District of Yinchuan City, known as
Yinchuan three districts. +e ground resolution of Gf-2 is 1
meter, indicating that per pixel represents one square meter.
+e image has four channels, namely, RGB channels and
near-infrared channel. Since the year 2015 image has only
RGB channels, we take RGB channels in both phases. +e
images we used have been irradiated and registered in

H × W × C

1 × C
C × N 1 × N

W

DUpsampling
Rearrange

2 × 2 × N/4

2H × 2W × N/4

Figure 4: +e specific process of DUpsampling. W is the reconstruction matrix, and there are three DUpsamplings in our network.
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absolute terms, but not in relative terms. +erefore, we first
performed histogram matching on the image to reduce the
radiation difference between the two images, as shown in
Figure 5.

Due to the particularity of change detection, we need to
select the original datasets and eliminate the regions with no
change or those with little change. Finally, 924 images from
Gf-2 satellite were selected, covering different areas such as
towns, agriculture, and industrial areas. Each image size was
512∗ 512.+e datasets were divided into training set, veri-
fication set, and test set at 7 : 2 :1, with 647, 184, and 92
pictures, respectively. Because of the small amount of
dataset, U-Net, which has relatively loose requirements on
dataset size, was chosen as the basic framework at the be-
ginning of designing the network.

4.2. EvaluationCriteria. In our experiment, accuracy and F1
value are used as the accuracy evaluation standard, and
FLOPS is used as the efficiency evaluation standard. +e
calculation formula of accuracy is as follows:

accuracy �
(TP + TN)

(P + N)
, (9)

where TP is the number of pixels with a positive detection
number representing actual changes that are correctly de-
tected and FP is the number of pixels with false detection
number representing actual unchanged that are erroneously
detected as changes. TP and FP correspond to TN and FN.
TN is the number of pixels that have not actually changed
but detected as changed and FN is the number of pixels that
have actually changed but detected as not changed.
P�TP+FN and N�FP +TN. +e calculation formulas of
precision and recall are as follows:

precision �
TP

TP + FP
, (10)

recall �
TP

TP + FN
. (11)

+e precision represents the proportion of correctly
detected change areas in the predicted results.+e higher the
precision, the less the false changes and noise, and recall
represents the proportion of correctly detected change areas
in the actual change areas. +e higher the recall, the better
the coverage of change detection results to the true change
results. On the basis of these two important indicators, we
calculated the weighted harmonic average of precision and
recall. As a comprehensive indicator, F1 value is used here:

F1 �
2 × precision × recall
precision + recall

. (12)

FLOPS is an abbreviation of floating-point operations
per second. It is often used to estimate the performance of a
network.

4.3.ExperimentalDetails. +ere are a number of areas in our
datasets that have not changed, so we filter the datasets. +e
size of each picture is 512∗ 512, which is about 250,000

pixels. We consider pictures with a total number of changed
pixels less than 1000 as unchanged and removed. In order to
enhance the generalization of the network, after histogram
matching of the images and reducing the imaging difference,
we carry out random geometric transformation and color
adjustment of the images in a small range and normalize
each channel value of the processed remote sensing images,
so that the network could rapidly converge. We use the
Adam optimizer [37] to train 1000 epochs on the network,
and the initial learning rate is designed to be 1 e− 3. After
each epoch, the learning rate dropped and α in the loss
function is set to 0.3.We observe that our networks generally
converged after 200 epochs.

4.4. Loss Function Ablation Experiments. To prove the ef-
fectiveness of our loss function, we performed two experi-
ments in this section. First, use formulas (7) and (13) as loss
functions, respectively, to compare the effect of initial value
balance on experimental results:

loss � FL pt( 􏼁 + LBCE, (13)

As mentioned above, the initial value of LBCE is much
larger than the focal loss, so during the training process,
LBCE will occupy the dominant position. +e datasets are
mentioned in Section 4.1. +e experimental details are
mentioned in Section 4.3. +e initial learning rate is set to
1 e−3. +e Adam optimizer is used to train 1000 epochs on
multiple networks. +e experimental results are shown in
Table 2. At the same time, the network has significantly
improved the convergence speed after the initial value
balance.

After confirming the effectiveness of the initial value
balance, we began to explore the optimal value of α.
When α � 0, it means that only LBCE works, and when α � 1,
only focal loss works. +e results of the comparative ex-
periments are as follows.

It can be seen from Figure 6 and Table 3 that, for our
problem, when α � 0.3, the network has the best perfor-
mance.+e reasonmay be that the imbalance of positive and
negative samples was improved after the introduction of
residual attention mechanism, so the effect of focal loss was
not optimal. In the following experiments, we set α to 0.3 by
default and compared it with other networks.

4.5. Experimental Results. We select three mainstream
networks to compare with our network on our datasets
(mentioned in Section 4.1), including the stack autoencoder
based on deep confidence network [38], U-Net, and PSPNet
[39]. All networks are trained and tested on our datasets
without using pretrained models. As shown in Figure 7,
from left to right are the year 2015 images, the year 2017
images, attention mask, labels, and the results of different
networks. +e images on display include different scenes of
cities, towns, fields, and bare grounds. As shown in the
figure, our model is superior to other models in most cases.
Table 4 shows the performance of the above networks and
ours on F1 value, recall, and accuracy. As shown in the table,
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the networks based on the convolution are superior to the
stack autoencoder in our datasets, and PSPNet has a strong
ability of context information so that it performs better than

ordinary U-Net, and our network is 1.9% higher than
PSPNet in F1 and 5.1% higher in accuracy. +e performance
of F1 and accuracy verifies that our network and the pro-
posed loss functions are effective. At the same time, the
FLOPS value of our network is 4.5×109, which is far lower
than PSPNet and U-Net. It shows that our method has high
efficiency while ensuring accuracy and reduces waste of
computing resources. It is worth mentioning that in the
attention modules, our network will subtract the corre-
sponding channels of input to generate the attention mask.
In the figure, we will visualize the attention mask, and the
attention mask will optimize the network training process,
thus greatly improving the antinoise ability of our network.
+anks to the attention mask, our network can avoid many
false detections, such as the third set of pictures. We ana-
lyzed in detail that our task for two-phase imaging style
difference is huge, so we need to do histogram match in the
pretreatment stage, but after the match, color distortion will
happen, for example, the third group pictures had dark green
fields into a dark purple, which greatly affected the judgment
of the network, excellent network like PSPNet is also unable
to avoid this problem. In the fifth group pictures, we can see
that the attention mask divides the left variable area into two
parts, and our network can make correct judgments, while
most other networks are unable to. We also observe some
disadvantages from the experiment, such as the fourth group
experiment, mask only focuses on the middle of the road
section and ignores the rest of the change, so the module
cannot detect the change of the upper left corner buildings
like PSPNet; hence, generating accurate attentionmask is the
key to the success of our network. At the same time, because
we adopt the DUpsampling method, different from the
ordinary method, the training speed will be very fast. +is
experiment only took about 30 hours to train on the latest
GPU. At the same time, it is also convenient for feature
fusion of different output layers [26] to improve the accu-
racy. Experiments show that the accuracy of our proposed
network is greatly improved compared with the baseline. In
complex scenes such as densely built towns, thanks to the
attention mechanism, our network can reduce false detec-
tion and missed detection and show a better effect.

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0
0.1 0.3 0.5 0.7 10

The value of α

F1
Recall
Pixel accuracy

Figure 6: +e effect of different values of α on the experimental
results. It proves that our method has an optimal solution when
α � 0.3.

Table 3: Comparison of F1, recall values, and pixel accuracy values
with different values of α.

α F1 Recall Pixel accuracy
0 0.628 0.576 0.672
0.1 0.666 0.629 0.717
0.3 0.743 0.697 0.796
0.5 0.686 0.653 0.735
0.7 0.626 0.584 0.694
1 0.607 0.617 0.627

Table 2: Comparison of the effects of two loss functions on the
network.

Method F1 Recall Pixel accuracy Convergence epoch
Formula (7) 0.615 0.608 0.693 340
Formula (13) 0.575 0.554 0.574 570

(a) (b) (c)

Figure 5: Effect before and after histogram matching. (a) +e original images of 2017, (b) the original images of 2015, and (c) the processed
image of 2017.
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5. Conclusion

In this paper, we propose a new network based on U-Net by
combining the skip connection structure with the advanced
residual attention mechanism and the DUpsampling method,
andwe also propose a new loss function suitable for application
scenarios. Our network is applied to Yinchuan change de-
tection task, and experiments show that compared with the
current change detection methods, our network and loss
function have improved accuracy and F1 value without wasting
excessive computing resources. At the same time, our method
has a strong antinoise ability and certain robustness which can
better solve the change detection task of Yinchuan City.
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With the higher-order neighborhood information of a graph network, the accuracy of graph representation learning classification
can be significantly improved. However, the current higher-order graph convolutional networks have a large number of pa-
rameters and high computational complexity. -erefore, we propose a hybrid lower-order and higher-order graph convolutional
network (HLHG) learning model, which uses a weight sharing mechanism to reduce the number of network parameters. To
reduce the computational complexity, we propose a novel information fusion pooling layer to combine the high-order and low-
order neighborhood matrix information. We theoretically compare the computational complexity and the number of parameters
of the proposed model with those of the other state-of-the-art models. Experimentally, we verify the proposed model on large-
scale text network datasets using supervised learning and on citation network datasets using semisupervised learning. -e
experimental results show that the proposed model achieves higher classification accuracy with a small set of trainable
weight parameters.

1. Introduction

Convolutional neural networks (CNNs) have achieved great
success in grid structured data such as images and videos
[1, 2]. It is attributed to a series of filters of convolutional
layers from the CNNs that can obtain local invariant fea-
tures. Compared to a regularized network, the number of
neighbors of a node in a graph network may be different.
-erefore, it is difficult to directly implement the filter
operator in an irregular network structure [3].

In the graph network, the nodes and the connecting edges
between them contain abundant network characteristic in-
formation. A graph convolutional network (GCN) aggregates
the neighborhood nodes to realize continuous information
transmission based on a graph network. By making full use of
this information, a GCN can effectively achieve tasks such as
classification, prediction, and recommendation.

A graph convolutional network (GCN) generalizes
traditional convolutional neural networks (CNNs) to the
graph domain. -e GCN methods are mainly divided into
two categories [3], the frequency domain-based methods
[4–6] and the spatial domain-based methods [7, 8].

In the spatial domain, to simulate the convolution op-
eration of the traditional CNN on an image, the convolution
operation aggregates the information of the neighborhood
nodes [7–10]. Henaff et al. [11] proposed a smoothed
parametric spectral filter to realize localization and to
preserve the parameters of filters independent of the input
dimension. One of the key challenges is that the number of
neighborhood nodes in the network irregularly changes.

In the frequency domain, Bruna et al. [5] were the first
ones to extend CNN-type architectures to graphs. Cao et al.
[12] applied a generalized convolutional network to the
graph frequency domain using the Fourier transform. In this
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method, eigenvalue decomposition is performed on the
neighborhood matrix. To reduce the computational com-
plexity, Defferrard et al. [13] proposed the Chebyshev
polynomial of the eigenvalues of the graph Laplacian to
achieve efficient and localized graph convolutional operation
filters. Kipf andWelling [6] proposed a classical GCN, which
was approximated by a first-order Chebyshev polynomial.
-is approach reduces the computational complexity but
introduces truncation errors.-is introduction results in the
inability to capture high-level interaction information be-
tween the nodes in the graph, and it also limits the capa-
bilities of the model.-e information propagation process in
the graph is related not only to its first-order neighborhood
but also to its higher-order neighborhood.

Abu-El-Haija et al. [14, 15] proposed the high-order
convolutional network layer on a graph that used linear
combination of the high-order neighborhood basis of the
GCN [6]. Tiao et al. [16] proposed a Bayesian estimation
approach via the stochastic variational inference in the
adjacency matrix of the graph. Levie et al. [17] proposed
Cayley polynomials to compute the localized regular filters
of the interest frequency bands of graphs. -erefore, the
rational use of second-order neighborhoods, third-order
neighborhoods, and other high-order neighborhood infor-
mation will be beneficial to classification prediction accuracy
[14–16, 18–20].

Based on the classical GCN [6], to make full use of the
high-order and low-order neighborhood information, we
propose a novel hybrid low-order and higher-order graph
convolutional network (HLHG). As shown in Figure 1, the
graph convolutional layer of our model is simple and ef-
fective at capturing the high-order neighborhood infor-
mation, nonlinearly combining the different order
neighborhood information. -e contributions are summa-
rized as follows:

(1) We propose a new fusion pooling layer to achieve
high-order neighborhood fusion with the low-order
neighborhood of graph networks

(2) We propose a low-order neighborhood and high-
order neighborhood weight sharing mechanism to
reduce the computational complexity and number of
parameters of the model

(3) -e experimental results show that our HLHG
achieves state-of-the-art performance in both the
text network classification with supervised learning
and the citation network with semisupervised
learning

-e rest of the paper is organized as follows. In Section 2,
the related theoretical basis such as the graph convolution
and the high-order graph convolution are introduced. In
Section 3, the general information fusion pooling for the
high-order neighborhood is presented. -en, the proposed
model and its variant are presented. -e computational
complexity and parameter quantity of the proposed model
are also theoretically analyzed. In Section 4, our proposed
model is verified and the corresponding analysis are pre-
sented. Finally, Section 5 concludes the paper.

2. Related Theoretical Background

In this section, the related theoretical basis will be intro-
duced, including the graph convolutional network (GCN).

2.1. Graph. Given a graph G, its nodes set V, and its edges E,
the graph is represented as G � (V, E). If nodes Vi and Vj

are connected, then Eij � 1; otherwise, Eij � 0. -e infor-
mation in the graph propagates along with the edge E. It also
applies when considering the network node self-loop, which
means that Eii � 1. Assuming that the information that is
propagated by each node in the graph network is x ∈ Rr, the
information matrix in the graph is X ∈ Rn×r, where n is the
total number of nodes in the graph network and r is the
dimension of the information feature. It assumes that if the
loop graph networkG is represented as 􏽥G, then the adjacency
matrix of the graph network 􏽥G is represented as 􏽥A � (A + I).
-e degree matrix of 􏽥A in the graph network 􏽥G is the di-
agonal matrix, 􏽥Dii � 􏽐j

􏽥Aij.

2.2. Graph Convolutional Network. In the given graph G,
there are two signals f � (f1, . . . , fn)T and
g � (g1, . . . , gn)T. -e graph’s Fourier transforms are de-
fined as 􏽢f � ΦTfand 􏽢g � ΦTg, where Φ is the orthonormal
eigenvalues of the graph Laplacian of graph G. -e same as
in Euclidean space, the spectral graph convolution operation
of f and g is given as an elementwise product as follows:

g∗f � Φ ΦT
g􏼐 􏼑 ∘ ΦT

f􏼐 􏼑􏼐 􏼑 � Φ􏽢GΦT
f, (1)

where 􏽢G � diag(􏽢g1, . . . , 􏽢gn) represents the diagonal matrix
of 􏽢g.

Defferrard et al. [13] utilized the k-th order polynomial
filters based on Chebyshev to represent the graph con-
volutional operation of Laplacian 􏽢G � 􏽐iαiΛi, where αi

denotes the coefficients andΛ represents the eigenvalues of
the Laplacian.

Kipf and Welling [6] propose the classical graph con-
volutional neural network model based on the Fourier
transform, g∗f � α􏽥Af. -e GCN model approximates the
model using a first-order Chebyshev polynomial. -e
propagation model in the graph network is as follows:

H
(l+1)

� σ 􏽥D
− (1/2) 􏽥A 􏽥D

− (1/2)
H

(l)
W

(l)
􏼒 􏼓, (2)

where H(l) denotes the information propagation matrix;
W(l) represents the trainable weight of layer l; when l � 0,
H(0) � X ∈ Rn×r, which represents the initial input value of
the GCN; σ(.) denotes the activation function. To reduce the
computational complexity, the convolution operator in the
graph is defined by a simple neighborhood average. How-
ever, the convolutional filters are too simple to capture the
high-level interaction information between the nodes in the
graph. -erefore, the classification accuracy on citation
network datasets is low.

Abu-El-Haija et al. [14, 15] propose a high-order graph
convolutional layer model based on the GCN for semi-
supervised node classification.-e propagation model of the
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high-order graph convolution is as shown in formula (3). In
this model, the transfer function of the (l + 1)-th layer is a
column concatenation from the first order to the p order in
the l-th layer, which is the linear combination of the high-
order neighborhood. In the propagation model, the different
order neighborhoods of the same layer use different weight
parameters:

H
(l+1)

� σ B
(0)

H
(l)

W
(l)
0

􏼌􏼌􏼌􏼌􏼌 . . . B
(p)

H
(l)

W
(l)
p

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓, (3)

where B � 􏽥D
− (1/2) 􏽥A 􏽥D

− (1/2). However, as the network layers
deepen, the dimensions of H(l+1) will increase and
propagate between layers. -erefore, the number of
trainable weight parameters will be more, and the training
resource will also be increased to learn the optimized
dimension of the weight.

3. Method

When the message passes through the graph network, the
nodes will receive latent representations from their first-hop
nodes and from their N-hop neighbors every time. In this
section, we propose a model to nonlinearly aggregate the
trainable parameters, which can choose how to mix latent
messages from various hop nodes.

3.1. General Information Fusion Pooling. -e information
propagation of the graph network is passed along the edges
between the vertices in the graph. It assumes that the graph
network G � (V, E) is an undirected graph. -e general
procedure of fusion pooling is described as follows. It as-
sumes that the k-th order neighborhood matrix is A(k) �

[a
(k)
ij ], and the result after the fusion pooling operator is

Pmax(A(0), . . . , A(k)) � Z(k) � [z
(k)
ij ], where z

(k)
ij �max(a

(1)
ij ,

a
(2)
ij , . . . ,a

(k)
ij )) and k represents the hop from the given node.

Here, is an example to show how to fuse the different
order neighborhoods. For a given adjacency matrix 􏽢A, as-
sume that h1 denotes the first-order neighborhood and h2
denotes the second-order neighborhood.

If h1 � 􏽢AXW1 �
1 0
1 1􏼢 􏼣 and h2 � 􏽢A

2
XW1 �

− 1 0
2 1􏼢 􏼣,

then Pmax(h1, h2) �
1 0
2 1􏼢 􏼣.

In the information dissemination and fusion process,
both the first-order neighborhood features and the high-
order neighborhood features are fully considered.-erefore,
the classification accuracy should be improved.

3.2. Our Proposed Model. In Figure 2, we propose the high-
order graph convolutional network model to fuse the high-
order messages that pass through the graph network. -e
model consists of an input layer, two graph convolutional
layers, and an information fusion pooling layer that is
connected to the graph convolutional layer. -e softmax
function is used for the multiclassification output.

-e proposed model extends the classical GCN model
[6] to the graph neural network of higher-order neigh-
borhoods. Each node in the model can get its representation
from its neighborhood and integrate messages. -e system
model is as follows:

Y �F Pm 􏽢Aσ H
(l+1)

􏼐 􏼑Wl+1, · · · ,
􏽢A

(p)σ H
(l+1)

􏼐 􏼑Wl+1􏼒 􏼓􏼒 􏼓, (4)

where p is the order of the neighborhoods, 􏽢A
(p) = 􏽢A

(p− 1) 􏽢A,
σ(.) is the activation function, function F(.) denotes the
softmax function. Parameter Wl+1 is the trainable weight
parameter of layer (l + 1) in the graph network, and function
Pm(.) represents Pmax(.), which denotes the hybrid high-
order and low-order of the information fusion. When pa-
rameter l is equal to 0, H(1) � Pmax(ÂH(0)W0,

· · · , 􏽢A
(p)

H(0)W0), which is the output of the first convolu-
tional layer of the graph propagation model. In addition,
H(0) � X ∈ Rn×r, which represents the initial input of our
model.

In the preliminary experiment, we found that the two-
layer high- and low-order mixed graph convolution is better
than the one-level high- and low-order mixed graph con-
volution, and stacking more layers does not significantly

H(l) H(l+1)

X

A

X

W(l)

(a)

H(l) H(l+1)

X

X

X

X

X

X

A
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W(l)

W(l) Fu
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Figure 1:-e graph convolutional layer of our model. (a) First-order graph convolutional layer of the Kipf andWelling [6] model.-e input
is H(l− 1), the output is H(l), and the trainable parameter is W(l). (b)-e 3rd order graph convolutional layer of our HLHGmodel. Different
order neighborhood matrices share the trainable weight.
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improve the accuracy of the graph recognition task.
-erefore, this paper uses a 2-layer graph convolution
layer. In further experiments, we validate p � 2 and p � 3
in equation (4) for our HLHG models. In the supervised
learning and unsupervised learning classification tasks,
our HLHG models show very good performance and
achieve a good balance between the classification accuracy
and computational complexity. We also validate that at
p � 4 and p> 4, the classification accuracy is not signif-
icantly improved. -erefore, we only analyze and im-
plement our model for p � 2 and p � 3 in the following
sections.

In equation (4), the model with p � 2, that is, the hybrid
model of the 1st and 2nd order neighborhoods, is called the
HLHG-2 model. -e model with p � 3, that is, the hybrid
model of the 1st, 2nd, and 3rd order neighborhoods, is called
the HLHG-3 model.

In the HLHG-2 model, it assumes that the graph con-
volutional network has 2 convolutional layers and the ac-
tivation function is Relu. -en, the output Y of the HLHG-2
model can be expressed as follows:

Y � F Pm 􏽢A(Relu(M2))W2,
􏽢A
2
(Relu(M2))W2􏼔 􏼕􏼔 􏼕,

(5)

where M2 � Pmax(􏽢AXW1,
􏽢A
2
XW1) and Pm denotes the

fusion pooling Pmax.
-e same as with the HLHG-2model, the output Y of the

HLHG-3 model can be expressed as follows:

Y � F Pm 􏽢AT, 􏽢A
2
T, 􏽢A

3
T􏼔 􏼕􏼔 􏼕, (6)

where T � (Relu(M3))W2 and M3 � Pmax(􏽢AXW1,

􏽢A
2
XW1,

􏽢A
3
XW1).

For a large-scale graph network, it is unacceptable to
directly calculate 􏽢A

3
� 􏽢A

(2) 􏽢A � 􏽢A􏽢A􏽢A. -erefore, we calcu-
late 􏽢A

3
XW1 � 􏽢A(􏽢A(􏽢AX)) W1. In general, the dimension of

􏽢AX is less than 􏽢A, and this procedure avoids large-scale
matrix multiplication operations.

-erefore, our HLHG model has a 2-layer graph net-
work, and the iterative expression of the 2nd order neigh-
borhood is as follows:

Y � softmax 􏽢ARelu(H)W2,
􏽢A
2Relu(H)W2􏼒 􏼓, (7)

where H � Pmax(􏽢AXW1,
􏽢A
2
XW1). We use Pmax as our

fusion pooling operator, which assumes the maximum value
in the corresponding element. Algorithm 1 shows how to
fuse the different order neighbors.

We use the multiclassified cross entropy as the loss
function of our HLHG model, L � − 􏽐i 􏽥yilog(qi), where 􏽥Y is
the labeled samples. -e graph neural network trainable
weights W1 andW2 are trained using gradient descent. In each
training iteration, we perform the batch gradient descent.

3.3. Computational Complexity and Parameter Quantity.
In the large-scale graph network, the adjacency matrix is
􏽢A ∈ Rn×n. It is difficult to directly calculate 􏽢A

(p). To reduce the
computational complexity, we iteratively calculate 􏽢A

(p). For
higher orders, the right to left iterative multiplication pro-
cedure is 􏽢A

(p)
H(l)Wl � (􏽢A

(p)
H(l))Wl � 􏽢A(􏽢A

(p− 1)
H(l))Wl.

For example, when p � 1, 􏽢A
(1)

H(0) � 􏽢AX ∈ Rn×r. When
p � 2, 􏽢A

(2)
H(1) � 􏽢A(􏽢AX) ∈ Rn×r.

In the proposed model, the input feature of the graph
network isX ∈ Rn×r. -e weight of the first convolutional
layer is W1 ∈ Rr×r1 , and the weight of the second layer is
W2 ∈ Rr1×r2 .-en, the input of the first convolutional layer is
H(0) � X ∈ Rn×r where the parameter r represents the di-
mension of the input feature. For example, r1 denotes the
number of hidden neurons in the first convolutional layer
and r2 denotes the number of hidden neurons in the second
convolutional layer. In our HLHG model, the trainable
weight parameters are shared in the same convolutional
layer. -erefore, in the first convolutional layer, the output
dimension after the convolutional operator is the same.-at
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Figure 2: HLHG mode. -e graph convolutional network layer of the HLHG model consists of two convolutional layers and information
fusion pooling. -e input parameters are from the first-order to the n-th order neighborhoods. When n� 1, the model degenerates into a
classical graph convolution GCNmodel. When the neighborhood order is n� 2, it is called the HLHG-2model, and its input parameters are
the 1st order neighborhood and the 2nd order neighborhood. When the neighborhood order is n� 3, it is called the HLHG-3 model, and its
input parameters are the 1st order neighborhood, the 2nd order neighborhood, and the 3rd order neighborhood.
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is, 􏽢AXW1 ∈ Rn×r1 , 􏽢A
(2)

XW1 ∈ Rn×r1 , and 􏽢A
(k)

XW1 ∈ Rn×r1 ,
where k is the order of the adjacency matrix 􏽢A.

In the l-th convolutional layer, 􏽢A
(k)

H(l)Wl ∈ Rn×rl ,
where rl denotes the number of hidden neurons in the l-th
convolutional layer. It assumes that 􏽢A is a sparse matrix with
m nonzero elements. For the l-th convolutional layer of our
HLHG, the computational complexity is O(rl × k × m × rl− 1)

and the quantity of trainable weight is O(rl × rl− 1).
-e total computational complexity of our HLHGmodel

is O(􏽐
j

l (rl × k × m × rl− 1)), and the total number of train-
able parameters is O(􏽐

j

l (rl × rl− 1)), where parameter j

denotes the total number of convolutional layers and l

denotes the l-th convolutional layer. When l � 1, r0 rep-
resents the feature dimensions of the datasets and rl rep-
resents the number of hidden neurons in the l-th
convolutional layer. For all the datasets, r0≫ rl; therefore,
we only consider the first convolutional layer when we
compare the computational complexity and number of
parameters.

Compared to [14], we set fewer filters to maintain a
similar computational complexity and the number of pa-
rameters is less via weight sharing for both the lower-order
and higher-order convolutions.

4. Experiments

We conduct experiments in order to verify that our HLHG
model can be applied to supervised learning and semi-
supervised learning. On the text network datasets, we
compare our model with the state-of-the-art methods using
supervised learning. On the citation network datasets, we
compare our model with the state-of-the-art methods using
semisupervised learning. For all experiments, we construct a
2-layer graph convolutional network of our model using
TensorFlow. -e code and data are available on GitHub.

4.1. Supervised Text Network Classification. We conduct
supervised learning on five benchmark text graph datasets to
compare the classification accuracy of HLHG with the graph

convolutional neural network and other deep learning
approaches.

4.1.1. Datasets. In our supervised experiments, the 20-
Newsgroups (20NG), Ohsumed, R52 and R8 of Reuters
21578, and Movie Review (MR) are used to verify the
proposedmodels.-ese datasets are publicly available on the
web and are widely used as test-verified datasets. -e
summary statistic features of the text network are shown in
Table 1.

-ese benchmark text datasets were processed by Yao
et al. [21], who converted the text datasets into graph net-
work structures. -en, they used preprocessing to construct
the adjacency matrix of the graph network input and input
parameters.-e dataset is divided into a training dataset and
a test dataset in the same way.

4.1.2. Baselines and Experimental Setting. We compare our
HLHG with the following approaches: the convolutional
neural network with pretrained vectors (CNN-rand) [22],
the LSTM model with pretrained vectors (LSTM-pre) [23],
the predictive text embedding for text classification (PTE)
[24], the fast text classifier (fastText) [25], the simple word
embedding model with simple pooling strategies (SWEM)
[26], the label-embedding attentive model for text classifi-
cation (LEAM) [27], the graph CNN model with the Che-
byshev filter (GCN-C) [13], the graph CNN model with the
spline filter (GCN-S) [5], the graph CNN model with the
Fourier filter (GCN-F) [11], and the graph convolutional
network for text classification (text GCN) [21]. -e baseline
models were tested by Yao et al. [21].

In our HLHG-2 model, we set the dropout rate� 0.2.-e
learning rate is updated from Adam [28] during the training
process. In our model, we set the L2 loss weight as 0, and we
adopt early stopping. We set the learning rate to 0.02 for the
R8 dataset, and the learning rates of the remaining datasets
are all set to 0.01. We set different epochs for different
datasets.-e number of epochs in the R52 dataset is 350.-e
number of epochs in the OH and 20NG datasets is 200, and
the number in the R8 and MR datasets is 60. In the HLHG-2
model, we set the number of hidden neurons in the 1st
convolutional layer as 128 for all datasets.

Except for the parameters in Table 2, the other pa-
rameters are the same as in the HLHG-2 model.

For our HLHG-3, we set the number of hidden neurons
in the first convolutional layer to 128 except for the MR
dataset, which is set to 64. To obtain better training results,
we separately set different hyperparameters such as the
dropout rate, learning rate, and number of epochs for dif-
ferent datasets (see Table 2). In addition, the other pa-
rameters of HLHG-3 are the same as those in HLHG-2.

We construct the graph network for our HLHG-2 and
HLHG-3 models, and the feature matrix and other pa-
rameters are the same as those by Yao et al. [21].

4.1.3. Results. We show supervised text classification ac-
curacies for the five datasets in Table 3. We demonstrate how

(1) Inputs: X, 􏽢A, and the other parameters.
N (number of hidden units), dr (dropout rate),
L2 (L2 regularization), es (early stopping),
epochs and lr (learning rate).
Output: weight parameters W1 and W2.

(2) Randomly generate the trainable weights W1 and W2;
(3) Iteratively calculate the forward output value

(1) h1 � 􏽢AXW1, h2 � 􏽢A
2
XW1 � 􏽢Ah1

(2) h3 � Pmax(h1, h2)

(3) h4 � Relu(h3);
(4) h5 � 􏽢Ah4W2, h6 � 􏽢A

2
h5

(5) h7 � Pmax(h5, h6)

(6) Y � softmax(h7)

(4) Calculate the cross entropy L � − 􏽐i 􏽥yilog(qi)

ALGORITHM 1: Iterative calculation for HLHG-2.
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our model performs on common splits that were taken from
Yao et al.’s study [21].

Table 3 presents the classification accuracies and stan-
dard deviations of our models and the benchmark on the
text network data. In general, our HLHG-2 and HLHG-3
achieve high levels of performance. Specifically, they achieve
the best performances on R52, OH, 20NG, and R8. Com-
pared to the best performing approach, the proposed models
yield worse accuracies on the MR dataset. In general, the
HLHG-3 and HLHG-2 models perform equally well. More
specifically, the 3rd order HLHG has slightly better classi-
fication accuracy than the 2nd order HLHG on most
datasets. However, the performance difference is not very
large. Overall, the proposed architecture with hybrid high-
and low-order neighborhoods has good classification per-
formance, which indicates that it effectively preserves the
topological information of the graph, and it also obtains a
high-quality representation of the nodes.

-e benchmark test results are copied from [8]. -e
mean standard deviation of our model is the average of 100
runs.

Table 4 shows the comparison of the network complexity
and the number of parameters with the Text GCN [21]. Our

HLHG can match the Text GCN with respect to compu-
tational complexity while requiring fewer parameters than
the Text GCN. As described in Section 3.3, the number of
features in the dataset is much larger than the number of
neurons in the hidden convolutional layer. -erefore, we
only compare the computational complexity and number of
parameters of the first convolutional layer in our HLHG
model. In Table 4, Comp. and Params represent the com-
putational complexity and the number of parameters in the
first layer of the graph convolutional network, respectively.
In the computational complexity results, the first constant
denotes the number of neurons in the first convolutional
layer and the second constant denotes the order of the
adjacency matrix. -e parameter m denotes the number of
nonzero entries of the sparse regularization adjacency
matrix.-e parameter r denotes the feature dimension of the
nodes in the graph network.

In the Text GCN [21], the number of hidden neurons in
the first convolutional layer is 200; therefore, the complexity
and params are 200. In our HLHG-2 model, 128 denotes the
number of hidden neurons in the first convolutional layer
and 2 represents the highest order of HLHG-2. In our
HLHG-3 model, 128 and 64 denote the number of hidden

Table 1: Text network datasets.

Datasets C D Tr Te N
R52 52 9,100 6,532 2,568 17,992
OH 23 7,400 3,357 4,043 21,557
20NG 20 18,846 11,314 7,532 61,603
R8 8 7,674 5,485 2,189 15,362
MR 2 10,662 7,108 3,554 29,426
C indicates the category, D is the total number of texts, Tr is the training set, Te is the test set, and N is the number of vertices of the graph network.

Table 2: -e hyperparameters in our HLHG-3 model.

Datasets Dropout Learning rate Epochs
R52 0.6 0.005 950
OH 0.2 0.01 230
20NG 0.0 0.01 210
R8 0.2 0.005 300
MR 0.1 0.01 80

Table 3: Text network classification accuracy.

Methods R52 OH 20NG R8 MR
CNN-rand [22] 87.59 58.44 82.15 95.71 77.75
LSTM [23] 85.54 41.13 65.71 93.68 75.06
LSTM-pre [23] 90.48 51.10 75.43 96.09 77.33
PTE [24] 90.71 53.58 76.74 96.69 70.23
fastText [25] 92.81 57.70 79.38 96.13 75.14
SWEM [26] 92.94 63.12 85.16 95.32 76.65
LEAM [27] 91.84 58.58 81.91 93.31 76.95
GCN-C [13] 92.75 63.86 81.42 96.99 77.22
GCN-S [5] 92.74 62.82 — 96.80 76.99
GCN-F [11] 93.20 63.04 — 96.89 76.74
Text GCN [21] 93.56 68.36 86.34 97.07 76.74
HLHG-2 (ours) 94.21± 0.14 69.16± 0.19 86.57 ± 0.08 97.25 ± 0.10 75.95± 0.14
HLHG-3 (ours) 94.33 ± 0.16 69.36 ± 0.24 86.35± 0.24 97.25± 0.12 76.49± 0.32
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neurons in the first convolutional layer and 3 represents the
highest order of the corresponding model. -e result in
Table 4 shows that our HLHG-3 model has better compu-
tational complexity for the MR dataset. Because of the
weight sharing in the different order neighborhoods, our
HLHG models require fewer trainable weight parameters.
Especially on the MR dataset, the number of parameters is
only 1/3 of that of the Text GCN [21].

4.2. Semisupervised Node Classification. We conduct semi-
supervised learning on three benchmark citation network
datasets to compare the node classification accuracy of
HLHG with some classical approaches and with some graph
convolutional neural network approaches. -e graph sem-
isupervised learning corresponds to the process of “label”
spreading on citation networks.

4.2.1. Datasets. In semisupervised node classification, we
use the CiteSeer, Cora, and PubMed citation network
datasets [29]. In these citation datasets, the nodes represent
the articles that were published in the corresponding journal.
-e edges between the two nodes represent references from
one article to another, and the tags represent the topics of the
articles. -e citation link constructs an adjacency matrix.
-ose datasets have low label rates. -e summary statistic
features of the citation graph are shown in Table 5.

4.2.2. Baselines and Experimental Setting. We compare our
HLHG with the same baseline methods as by Abu-El-Haija
et al. [15] and Yang et al. [30]. -e baselines are as follows:
manifold regularization (ManiReg) [31], semisupervised
embedding (SemiEmb) [32], label propagation (LP) [33],
skip-gram-based graph embeddings (DeepWalk) [34], the
iterative classification algorithm (ICA) [35], Planetoid [30],
HO [14], and MixHop [15].

For the HLHG-2model, we use the following parameters
for the citation datasets (Cora, CiteSeer, and PubMed): 16
(number of hidden units), 0.5 (dropout rate), 0.0005 (L2
regularization), 10 (early stopping), 300 (number of epochs),
and 0.01 (learning rate).

For tthe HLHG-3 model, we set different numbers of
hidden neurons for the different datasets. We set 8 hidden
neurons for the CiteSeer dataset to reduce the computational
complexity and the number of parameters, and set 10 hidden
neurons for the Cora and PubMed datasets to capture richer
features.-e hyperparameters of the HLHG-3 are set as shown
in Table 6.

4.2.3. Results. In the semisupervised experiments, we train
and test our models on those citation network datasets
following the methodology that was proposed by Yang et al.
[30]. -e classification accuracy is the average of 100 runs
with random weight initializations.

-e benchmark test results were copied from [15, 30].
-e mean standard deviation of our model is the average of
100 runs.

In Table 7, the node classification accuracies that are
above the line are copied from Abu-El-Haija [14, 15] and
Yang et al. [30]. -e values below the line are our HLHG
models. ± represents the standard deviation of 100 runs with
different random initializations. -ese splits utilize only 20
labeled nodes per class during training. We achieve the best
test accuracies of 82.7% and 71.5% on the Cora and CiteSeer
datasets, respectively. Compared with other high-order
graph convolutional neural networks [14, 15] on the same
datasets, they get the high-order information using linear
combinations of features from farther distances. Our HLHG
model acts nonlinearly to get the high-order neighborhood
information.

In Table 8, we compare the network complexity and the
number of parameters with the other high-order graph
convolutional networks and the classic GCN. -e result
shows that our model has the same computational com-
plexity as other approaches. With respect to the number of

Table 4: Comparison of network computational complexity and
the number of parameters.

Approaches Comp. Params
Text GCN [21] O (200 × 1 × m × r) O (200 × r)
HLHG-2 (ours) O (128 × 2 × m × r) O (128 × r)

HLHG-3 (ours)

O (64 × 3 × m × r)
(MR dataset)

O (64 × r)
(MR dataset)

O (128 × 3 × m×r)
(other datasets)

O (128 × r)
(other datasets)

Table 5: Citation network datasets.

Datasets N E F L C
Cora 2708 5429 1433 0.052 7
CiteSeer 3327 4732 3703 0.036 6
PubMed 19717 44338 500 0.003 3
N means the number of nodes of citations, E means the number of edges
between citations, F means the number of features of the nodes, L denotes
the labeling rate, and C denotes the number of classes.

Table 6: -e hyperparameters of HLHG-3.

Datasets Dropout Learning rate Early stopping Epochs
Cora 0.5 0.01 No 500
CiteSeer 0.5 0.005 5 500
PubMed 0.6 0.01 1 200

Table 7: Citation network classification test accuracy.

Approaches Cora CiteSeer PubMed
ManiReg [31] 59.5 60.1 70.7
SemiEmb [32] 59.0 59.6 71.1
LP [33] 68.0 45.3 63.0
DeepWalk [34] 67.2 43.2 65.3
ICA [35] 75.1 69.1 73.9
Planetoid [30] 75.7 64.7 77.2
GCN [6] 81.5 70.3 79.0
HO-3 [14] 81.6± 0.47 71.2± 0.94 80.0± 0.64
HO-4 [14] 81.6± 0.63 71.2± 0.84 80.1± 0.65
MixHop [15] 81.8± 0.62 71.4± 0.81 80.0± 1.10
MixHop (learned) [15] 81.9± 0.40 71.4± 0.81 80.8± 0.58
HLHG-2 (ours) 82.7± 0.28 71.5± 0.22 79.1± 0.18
HLHG-3 (ours) 82.7± 0.29 71.5± 0.39 79.3± 0.15
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parameters, our HLHG-3 model has fewer parameters than
the GCN [6].-e reason is that our model shares the weights
in the same layer among the different order neighborhood
matrixes.

5. Conclusion

In this paper, we propose a hybrid lower-order and higher-
order GCN model for the supervised classification of text
network datasets and for semisupervised classification in a
citation network. In our model, we propose a novel non-
linear information fusion layer to combine the low- and
higher-order neighborhoods. To reduce the number of
parameters, we propose sharing the weights in the same
convolutional layer with different order neighborhoods.
Experiments on the two network datasets suggest that
HLHG has the capability to fuse higher-order neighbor-
hoods for supervised classification and semisupervised
classification. Our model significantly outperforms the
benchmarks. We also find that the computational com-
plexity and the number of parameters are less than those of
the high-order method. In order to obtain more neigh-
borhood information, we could use more higher-order
adjacency matrix. However, the direct use of higher orders
may lead to oversmoothing problems. -erefore, in future
research work, we will extend our HLHG models to fuse
graph attention networks [36] to develop a deeper graph
convolutional network.
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[36] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio,
and Y. Bengio, “Graph attention networks,” 2017, https://
arxiv.org/abs/1710.10903.

Computational Intelligence and Neuroscience 9

https://arxiv.org/abs/1606.09375
https://arxiv.org/abs/1905.00067
https://arxiv.org/abs/1905.00067
https://arxiv.org/abs/1906.01852
https://arxiv.org/abs/1906.01852
https://arxiv.org/abs/1811.02662
https://arxiv.org/abs/1810.00826
https://arxiv.org/abs/1810.00826
https://arxiv.org/abs/1511.02136
https://arxiv.org/abs/1809.05679
https://arxiv.org/abs/1408.5882
https://arxiv.org/abs/1605.05101
https://arxiv.org/abs/1605.05101
https://arxiv.org/abs/1607.01759
https://arxiv.org/abs/1607.01759
https://arxiv.org/abs/1805.09843
https://arxiv.org/pdf/1805.04174.pdf
https://arxiv.org/pdf/1805.04174.pdf
https://arxiv.org/pdf/1412.6980.pdf,
https://arxiv.org/abs/1710.10903
https://arxiv.org/abs/1710.10903

