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So far, it has been reached the academic consensus that the molecular subtypes are via genomic heterogeneity and immune
infiltration patterns. Considering that oxidative stress (OS) is involved in tumorigenesis and prognosis prediction, we propose
an innovative classification of colorectal cancer- (CRC-) OS subtypes. We obtain three datasets from The Cancer Genome
Atlas Program (TCGA) and Gene Expression Omnibus (GEO) online databases. 1399 OS-related genes were selected from the
GeneCards database. We remove the batch effect before conducting differentially expressed genes (DEGs) analyses between
normal and tumor samples. Nonnegative matrix factorization (NMF) was used to perform an unsupervised cluster. Lasso
regression and Cox regression were used to construct the signature model. DEGs, robust rank aggregation, and protein-protein
interaction networks were used to select hub genes, and then use hub genes to predict OS subtypes by random forest
algorithms. NMF identifies two OS-related subtypes of CRC patients. Eight OS-related gene signatures were built to predict the
outcome of patients, based on the DEGs between two subtypes. A total of 61 DEGs overlap each dataset, and the RRA analysis
shows that 17 genes are important in these three datasets, and 15 genes are shared genes between the two methods. PPI
network suggests that five hub genes are confirmed, they are SPP1, SERPINE1, CAV1, PDGFRB, and PLAU. These five hub
genes could predict the OS-related subtype of CRC accurately with AUC equal to 0.771. In our study, we identify two OS-
related subtypes, which will provide an innovative insight into colorectal cancer.

1. Introduction

Nowadays, with an estimated 1,800,000 new cases and
900,000 deaths annually [1, 2], colorectal cancer (CRC)
become the third most common cancer and the second lead-
ing cause of cancer death [3]. Despite rapid development in
the diagnosis and treatments of CRC, the mortality remains
high, especially in advanced stage at first diagnosis [4].
Therefore, the lack of biomarkers for early screening and
prognosis prediction is still an urgent clinical problem to
improve the treatments efficacy and reduce the cases mortal-
ity of CRC.

With the numerous studies on hallmarks of cancer, the
characteristics of genomic variation in CRC have unique

clonal, stromal, and immune dependencies [5]. So far, a
molecular classification of CRC has been reached the aca-
demic consensus than the four molecular subtype groups
via the current best description of the genomic heterogeneity
[6]. In addition to the transcriptomic subtypes of CRC, the
expression profile analysis of CRC showed that the immune
infiltration patterns with different immune-tolerant micro-
environment resulted in different effects of special immuno-
therapy [7, 8]. However, it is more notable that to maintain
the high proliferation rate tumor cells, it demands high ROS
concentrations, which the regulation of oxidative stress (OS)
includes oxidative metabolism, for example, the conversion
of the glycolytic pathway into the pentose phosphate path-
way [9, 10]. And the prognosis of radiotherapy and
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chemotherapy treatments is influenced through OS modula-
tion indicating that the OS is also highly significant for can-
cer therapy [11–14]. Therefore, we propose an innovative
classification of CRC-OS subtypes, which has never been
studied in-depth.

Machine learning is a computer technology applied arti-
ficial intelligence which has a widespread application in
improving medical research and clinical decision in clinic
such as diagnostics, precision medicine, and clinical trials
of cancer. In our study, we aimed at identifying potential
OS molecular subtypes and predicting CRC outcomes
through the gene expression profile in multiple datasets. By
utilizing the nonnegative matrix factorization (NMF) clus-
tering algorithm, 350 OS-related differentially expressed
genes (DEGs) were distinctly classified into two molecular
subtypes (named C1 and C2) in three CRC cohorts. Among
them, C1 was associated with a better prognosis. Moreover,
based on the intersection of C1 and C2 DEGs, we established
a novel OS-related prognostic signature by multivariate Cox
regression model and validated its significant prognostic
values for CRC patients. Finally, we also explored the hub
genes for predicting OS subtypes in CRC.

2. Materials and Methods

2.1. Data Obtain. We obtain datasets from three individual
datasets, colon adenocarcinoma (COAD) from The Cancer
Genome Atlas Program (TCGA), including 41 normal sam-
ples and 473 tumor samples; GSE39582, including 19 nor-
mal samples and 443 tumor samples; GSE29621, including
65 tumor samples from Gene Expression Omnibus (GEO),
respectively. Gene expression profile and clinic information
of the above samples were downloaded by R package TCGA
biolinks [15]. Oxidative stress- (OS-) related genes were
checked by the GeneCards database (https://www
.genecards.org/) and 1399 OS-related genes were selected
for future analysis.

2.2. Batch Effect Correction. Because the above datasets
resource from different individual databases, we use R pack-
age sva to reduce the batch effect between samples. We
merge these three datasets and calculate the overlap genes,
then use the combat method to remove the batch effect.

2.3. OS-Related Genes’ Different Expressions. We extract
1399 OS-related genes from the above merge expression
matrix which has been removed batch effect and then use
the limma package to conduct differential expression analy-
sis between normal and tumor samples. Absolute value of
LogFC was set to more than 1, and the p value was set to less
than 0.05.

2.4. Nonnegative Matrix Factorization Identify OS-Related
Subtype. Nonnegative matrix factorization (NMF) is an
excellent unsupervised learning algorithm that could iden-
tify the probable subtype between large samples. Here, we
also use this method and aim to identify candidate OS-
related subtypes in CRC samples. We set the rank from 2
to 10 using a method called brunet, and other algorithm
parameters were set as default.

2.5. Subtypes Validate and Survival Analysis. After identify-
ing candidate subtypes, we also use heat map and principal
component analysis (PCA) to validate the results of the typ-
ing results. Survival analysis is also used to compare different
subgroups. The survival difference was calculated by a log-
rank test.

2.6. Different Expression Genes between Subtypes. To explore
the potential mechanisms between subtypes and build a use-
ful prediction model, we use the limma package to conduct
differential expression analysis between groups. Here, we
set the absolute value of LogFC as more than 0.5, and the
p value also was set to less than 0.05.

2.7. Lasso Regression and Cox Regression to Identify Model
Genes. A useful machine learning method, Lasso regression
and Cox regression model were used to dimensionalize the
data. We use the batch univariate Cox regression model to
obtain the prognosis OS-related genes, and then we input
the above results into Lasso regression and calculate the
minimum value of lambda to get the important genes of
the model. Next, the important genes of Lasso regression
results will perform the last step, and multivariate Cox
regression will conduct this procedure to select the candidate
model genes.
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Figure 1: Workflow of the study. Three datasets (COAD, GSE39583, and GSE 28621) were obtained from TCGA and GEO including 1399
OS-related genes selected from the GeneCards database. Before DEGs analyses, the batch effect was removed. And nonnegative matrix
factorization (NMF) was used to perform an unsupervised cluster. Hub genes were selected by Lasso regression and Cox regression to
construct the signature model. DEGs, robust rank aggregation, protein-protein interaction networks were used to select hub genes to
predict OS subtypes by random forest algorithms.

2 Oxidative Medicine and Cellular Longevity

https://www.genecards.org/
https://www.genecards.org/


0−2

−8

−4

8

0

4

2 4 6
UMAP 1

8 10 12 14

U
M

A
P 

2

Dataset
COAD
GSE39582
GSE29621

(a)

−2.0−3.0

−2

4

0

2

−1.0 0.0
UMAP 1

1.0 2.0 3.0

U
M

A
P 

2

Dataset
COAD

GSE39582
GSE29621

(b)

OS related genes

Different expression analysis of OS related genes

DEGs

3501399

(c)

2
0.875

0.900

0.975

NMF rank survey

Cophenetic
NMF rank = 2

0.925

0.950

4 6 8 10

(d)

0
−10

−5

0

5

10 20
Dim1 (19.3%)

30

D
im

2 
(7

.1
%

)

Cluster
C1
C2

(e)

0

0.00

0.25

0.50

0.75

6 8
Time in years

12

1.00

42 14 1610

O
ve

ra
ll 

su
rv

iv
al

Cluster
C1
C2

Log rank p < 0.01

(f)

Figure 2: NMF cluster samples into two oxidative stress subtypes. Before batch correction, three datasets are scattered (a). After batch
correction, the component data is evenly distributed (b). The OS-related DEGs are selected by OS-related genes and DEGs (c). K = 2 was
best cut off by NMF analysis (d). PCA results show that two subtypes are grouped distinctly (e). Survival analysis demonstrates C2
patients with a poor prognosis, compared with C1 patients (f).
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Figure 3: Continued.
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2.8. A Signature Model Constructs to Predict the Overall
Survival of CRC Patients. The multivariate regression model
has selected candidate genes, which will be constructed as a
signature. This signature was constructed in two steps, first,
each candidate gene coefficient needs extract from multivar-
iate regression results, and second, we calculate the risk score
of each patient according to the following formula. Risk
score = expression × geneA + expression × gene B +
expression × gene C. After calculating all patients’ risk
scores, they will be divided into two groups, according to
the median value. A survival curve will be used to demon-
strate the differences between groups, and receiver operating
characteristic (ROC) was used to evaluate the signature pre-
diction ability.

2.9. DEGs Combine Robust Rank Aggregation to Identify
Important DEGs. We calculate the different genes in each
dataset and merge three DEGs results, then, we also use
robust rank aggregation (RRA) method to select the impor-

tant DEGs, and finally, we combine DEGs overlap results
and RRA results to get the final overlap genes which are con-
sidered as important genes with different expression
between subtypes. To explore the candidate mechanism of
DEGs between subtypes, Kobas (http://kobas.cbi.pku.edu
.cn/) was used to perform the enrichment analysis including
Gene Oncology and KEGG analysis.

2.10. Protein-Protein Interaction Networks Analysis and Hub
Gene Screened. We use the STRING database (https://cn
.string-db.org/), which is an online search for known protein
interactions to conduct protein-protein interaction networks
(PPI) to show the internal interaction in important genes
and use MCODE plugins, which are resources from Cytos-
cape. To identify the hub protein network, genes located in
this network were considered hub genes.

2.11. Hub Gene Predicts OS Subtypes by Random Forest
Algorithms. We perform hub genes to predict the OS

Table 1: Eight OS-related prognostic genes for signature model by multivariate Cox regression model.

Gene Coef HR HR.95L HR.95H p value

CD36 0.070893982 1.073467413 1.008614396 1.142490423 0.025764595

SCARA3 0.061080412 1.062984388 0.992720726 1.138221233 0.080019034

NOX1 -0.007467179 0.992560631 0.987524046 0.997622904 0.004016322

CCNF -0.079307037 0.923756253 0.855402943 0.997571521 0.043181104

PKM 0.005245057 1.005258837 1.002050265 1.008477682 0.001301438

GZMB -0.019493712 0.980695062 0.964974318 0.996671918 0.018065092

RHOD 0.016390642 1.016525706 1.000464261 1.032845001 0.043686726

CXCL1 -0.005312535 0.994701551 0.98998481 0.999440765 0.028478596
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Figure 3: 8-gene signature model to predict CRC patients’ outcome. DEGs between C1 and C2 in total datasets (a), Lasso regression
discover 15 genes that are important (b&c), after multivariate Cox and eight model genes are selected and eight genes signature are built
(d). In this model, patients with low-risk score always mean a better outcome, when compared with high-risk score patients (e), and the
ROC demonstrates that this model has a good predictive ability for patients’ prognosis (f).
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Figure 4: Continued.
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subtype of CRC by random forest (RF) algorithms, which
are included in the caret package. The detailed steps are
listed here. The dataset of standardization, which has
removed the batch effect, will be divided into two random
datasets: one account for 70% as a training set and another
is 30%, as a test set. Then, we use hub genes to predict the
OS subtype of CRC in the training set and validate the pre-
diction ability of these hub genes in the test set. Finally, we
visualize the decision tree of the model. In this step, the most
important is that all input gene expression needs to conduct
min-max normalization, which will transfer gene expression
values from 0 to 1.

3. Results

3.1. OS-Related Different Expressions of Genes. This study
workflow is shown in Figure 1, and a total of 1041 samples
were enrolled in our study, including 60 normal samples
and 981 tumor samples, respectively. 1399 OS-related genes
are selected from GeneCards, and we performed the remove
batch effect before extracted this OS-related gene from 981
tumor samples. Before batch removal, we could find that
samples are distributed in three different spaces
(Figure 2(a)), and after removing the batch effect, all samples
are distributed on average (Figure 2(b)).

3.2. Two OS-Related Subtypes of CRC Patients and DEGs.
Some OS-related genes were expressed differently between
normal and tumor tissues in CRC patients, so we conduct
DEGs analysis to filter the above genes. These results show
that 350 DEGs are selected, including 204 upregulated genes
and 146 downregulated genes, respectively (Figure 2(c)).

NMF conducts unsupervised clustering by these 350 DEGs.
When rank = 2, the clustering result is best, and samples will
be divided into two groups (Figure 2(d) and Supplement
Figure 1). The PCA results also demonstrate the above
conclusion (Figure 2(e)). Survival analysis results show that
when compared with cluster 1, cluster 2 patients will
obtain a poor prognosis (log-rank p < 0:01) (Figure 2(f)).

3.3. Eight OS-Related Gene Signatures Predict the Outcome of
Patients. DEGs between two subtypes are selected and input
into batch univariate Cox regression to screen prognosis
genes. To identify more accurate prognosis-related genes,
we use strict criteria as a p value less than 0.01. Finally, we
obtain 27 prognosis-related genes (Supplement Table 1).
These 27 genes for future study to continue to perform
dimensionality reduction by Lasso regression (LR). The LR
analysis results suggest that when lambda obtains the
minimum value, 15 important genes are screened
(Figures 3(b) and 3(c)). Next step, multivariate Cox
regression will analyze these important genes and confirm
the final model genes, then, we use the multivariate Cox
coefficient and gene expression value to build the final 8
OS-related gene signatures to predict the survival status of
CRC patients (Table 1). Each patient will obtain one risk
score after inputting 8 genes expression into the model,
and the risk curve and genes expression heat map is shown
in Figure 3(d). Patients with a risk score of more than the
median value will be defined as high-risk groups while
others will become low-risk groups. Survival analysis
results show that the low-risk group always means a better
outcome, while the high-risk group with a poor overall
survival rate (log-rank p < 0:001) (Figure 3(e)).
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Figure 4: DEGs and RRA analysis to select important genes. The workflow of hub genes to predict subtypes (a), and different expression
genes in each datasets (b–d) merge different DEGs (e) and use RRA to select hub genes (f).
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Figure 5: Five hub genes predict two oxidative stress subtypes by random forest. The merge cogenes of DEGs and RRA results (a) and to
perform PPI network analysis to select hub genes (b). Five hub genes are identified (c) and could predict patients subtype with high accuracy
by random forest algorithm (d–f).
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Furthermore, The ROC results, AUC = 0:707, demonstrate
that these 8 OS-related gene signatures also have better
predictive performance (Figure 3(f)).

3.4. Different Expressions of Genes between Two Subtypes in
each Dataset. The workflow of how to select candidate hub
genes, which will be performed to predict OS-related sub-
types of CRC patients, is shown in Figure 3(a). In this work-
flow, we could find that DEGs analysis is the main idea to
select hub genes (Figure 4(a)). So, in the next step, we con-
duct this process, and the different expressions analysis
between C1 and C2 in each dataset show that a total of 77
DEGs in GSE29621, including 55 upregulated DEGs and
22 downregulated DEGs; while 205 DEGs in GSE39582,
including 111 upregulated DEGs and 94 downregulated
DEGs; 169 DEGs in COAD, including 90 upregulated DEGs
and 79 downregulated DEGs, respectively (Figures 4(b)–
4(d)). In addition, Kobas results show that these DEGs are
enrichment in cellular response to oxidative stress, positive
regulation of inflammatory response, HIF-1 signaling path-
way, and metabolic pathways (Supplement Table 2 and 3).

3.5. Fifteen Important DEGs in Different DEGs Expression
Profile. We merge the above results of different expressions
of genes in each dataset, and the results show that 61 genes
overlap these three datasets (Figure 4(e)), and the RRA anal-
ysis shows that 17 genes are important genes in these three
datasets (Figure 4(f)). Merge 61 genes and RRA results, we
could find that 15 genes are shared genes (Figure 5(a)).

3.6. Five Hub Genes Identify. We input fifteen important
DEGs into the string database to construct the PPI network,
and this network shows that excluding GPX3, AOC3, DES,
and TPM1, the other 11 proteins interact closely
(Figure 5(b)). In addition, we further apply MCODE plugins

in these 11 proteins, and the hub protein network was
extracted. The five hub genes that construct this hub net-
work also were identified. They are SPP1, SERPINE1,
CAV1, PDGFRB, and PLAU (Figure 5(c)).

3.7. Prediction Model of OS-Related Subtype of CRC. Five
hub genes are used to build a prediction model of OS-
related subtype of CRC by random forest, and the best mtry
value is 2 while the number of trees is 200 in the training set
when the model obtains robust predictability (Figure 5(d)).
Figure 5(e) shows the importance of five hub genes. In addi-
tion, the high effective ability of the prediction model is also
demonstrated by test data. The model has a high AUC value,
0.771, in the test group (Figure 5(f)). We also show the deci-
sion tree of the model (Figure 6). According to this decision
tree, clinic physicians could evaluate patients’ OS-related
subtypes by judging five hub genes expression, step by step.

4. Discussion

The regulation of OS is an important factor in tumor devel-
opment. OS not only induces the formation of tumors by
abnormal cell proliferation [16] but also promotes further
tumor development by altering the metabolism of tumors
[17, 18]. Studies have also shown that targeting the antioxi-
dant capacity of tumor cells can have a positive impact on
cancer therapy [19]. OS is associated with colorectal carcino-
genesis and has been identified as an important risk factor
for colorectal adenoma in several studies [20–23]. So, focus-
ing on the role of OS-related genes in CRC is necessary to
promote diagnostic gene screening and therapeutic strate-
gies for CRC. Moreover, the small size of the dataset will
reduce the accuracy of the predictions and the robustness
of the subtypes. Given these, we utilized 3 datasets from
the TCGA and GEO databases to identify robust subtypes
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Figure 6: Decision tree of five hub genes prediction model. The decision tree of predict procedure, when we input patients genes expression
value, the model will follow the value cut off to make decision, and step by step, at the end, return a subtype results C1 or C2 to assistant
clinical decision.
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of CRC for better understanding the underlying molecular
pathogenesis of CRC. NMF algorithm has been widely
applied to reveal various cancer subtypes through clustering
tumor samples [24]. In our study, based on OS-related
DEGs, we successfully classified the CRC sample into two
subtypes (C1 and C2) by using the NMF algorithm. The
results of the PCA analysis revealed that our classification
was robust. Then, survival analysis results indicated that
C1 subtype had a better prognosis compared to C2 subtype.

It is well known that the prognosis of cancer affects clin-
ical decision-making. Recent clinical guidelines have empha-
sized the importance of using multigene tests to select
patients who should receive adjuvant therapy [25]. Multiple
genes of the tests are called cancer signatures, which are cru-
cial for cancer prognosis. Considering the impact of OS and
OS subtypes on clinical outcomes in CRC patients, therefore,
univariate Cox regression, Lasso Cox regression, and multi-
variate Cox regression analyses were conducted to construct
the optimal OS-related prognostic signature based on DEGs
between C1 and C2 subtypes. In this 8-gene prognostic
model, as expected, patients in the low-risk group had a bet-
ter overall survival rate. At the same time, our results showed
that this signature had good predictive accuracy in predict-
ing the overall survival of CRC patients. Overall, the prog-
nostic model we constructed may be useful for clinical
treatment and decision-making in CRC.

Through machine learning algorithms and the PPI net-
work, we successfully identified five OS-related hub genes,
including SPP1, PDGFRB, SERPINE1, CAV1, and PLAU.
All five hub genes play a significant role in tumor progres-
sion, invasion, and metastasis. Among these genes, secreted
phosphoprotein 1 (SPP1, also known as osteopontin) is a
secreted glycophosphoprotein, which can be secreted by a
variety of cells, including macrophages and endothelial cells
[26]. Previous works have demonstrated that SPP1 is overex-
pressed in various cancers (such as nonsmall cell lung cancer
[27] and ovarian cancer [28]) and involved in the progres-
sion and metastasis of cancer. In colorectal cancer, SPP1
expression was significantly upregulated, and it promoted
CRC metastasis by activating the epithelial-mesenchymal-
transition pathway [29]. Platelet-derived growth factor
receptor type β (PDGFRB, also called PDGFRβ) has been
identified as a causal gene for idiopathic basal ganglia calci-
fication [30]. Meanwhile, it is also correlated with CRC inva-
sion and metastasis, for example, excessive PDGFRβ
signaling leads to oversecretion of THBS4 and proliferative
colorectal tumor development [31]. As for the serpin pepti-
dase inhibitor, clade E, member 1 (SERPINE1, also called),
it is expressed in many cancer cell and regulates cancer
growth, invasion, and angiogenesis [32]. In the CRC cell line,
the study has demonstrated that SERPINE1 expression is
increased and related to tumor invasiveness and aggressive-
ness [33]. And, PAI-1 is regarded as a biomarker of poor
prognosis in various human cancers and a possible thera-
peutic target for some cancers [34]. Caveolin-1 (CAV1), an
oncogenic membrane protein related to endocytosis, extra-
cellular matrix organization, cholesterol distribution, cell
migration, and signaling has been linked to several cancers
[35, 36]. For instance, Yang et al. [37] have reported that

overexpression of CAV1 markedly inhibits the proliferation,
migration, and invasive potential of CRC cells, possibly by
reducing phosphorylation of epidermal growth factor recep-
tor activation. Lastly, plasminogen activator (PLAU) is also
associated with the complex phenotype of human cancer,
and its upregulation promotes metastatic cancers [38]. In a
CRC study, downregulation of PLAU expression inhibits
CRC cell proliferation and progression [39].

Although we have stratified OS molecular subtypes, built
OS-related prognostic model and identified hub genes in
CRC for the first time, there are some shortcomings in the
current study. First, since we used different platform data
and multiple CRC tissue samples, the effect of batch correc-
tion may not be completely eliminated. Second, the OS-
related prognostic signature constructed from public data-
sets of the TCGA and GEO databases should be validated
for their prognostic value through large-scale prospective
studies. Finally, the function of hub genes and their mecha-
nisms affecting CRC development also need to be further
elucidated.

5. Conclusion

Our study successfully utilizes multiple datasets to stratify
CRC samples into two novel OS subtypes, which can provide
new insights into the molecular features of CRC. The OS-
related prognostic gene signatures can serve as a powerful
tool for overall survival prediction and treatment guidance
in CRC patients. Additionally, we identified five key genes
(SPP1, PDGFRB, SERPINE1, CAV1, and PLAU) as poten-
tial biomarkers for predicting the OS subtype and diagnosis
of CRC. In general, these findings might enhance our under-
standing of the molecular pathogenesis of CRC and contrib-
ute to identifying new candidate biomarkers for CRC.

Data Availability

The datasets were obtained from the TCGA (colon adeno-
carcinoma: COAD) and GEO (GSE39582 and GSE29621)
databases, respectively. Oxidative stress (OS) related genes
were checked by the GeneCards database (https://www
.genecards.org/).

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

Authors’ Contributions

Haitao Zhong, Le Yang, Qingshang Zeng, Linlin Wu, Lei
Qin, and Qing-Qing Yu contributed equally to this work.

Acknowledgments

This work was supported by the Key Research and Develop-
ment Program of Jining Science and Technology (no.
2019SMNS012) and Doctoral Fund of Jining No. 1 People’s
Hospital (2021-BS-002).

10 Oxidative Medicine and Cellular Longevity

https://www.genecards.org/
https://www.genecards.org/


Supplementary Materials

Supplementary 1. Supplement Table 1: batch univariate Cox
regression discovers twenty-seven prognosis genes in DEGs
between two subtypes.

Supplementary 2. Supplement Table 2: Gene Oncology
enrichment results of DEGs between C1 and C2 cluster.

Supplementary 3. Supplement Table 3: KEGG enrichment
results of DEGs between C1 and C2 cluster.

Supplementary 4. Supplement Figure 1: the heat map for two
OS-related subtypes.

References

[1] H. Brenner, M. Kloor, and C. P. Pox, “Colorectal cancer,” Lan-
cet, vol. 383, no. 9927, pp. 1490–1502, 2014.

[2] N. Keum and E. Giovannucci, “Global burden of colorectal
cancer: emerging trends, risk factors and prevention strate-
gies,” Nature Reviews. Gastroenterology & Hepatology,
vol. 16, no. 12, pp. 713–732, 2019.

[3] R. L. Siegel, K. D. Miller, H. E. Fuchs, and A. Jemal, “Cancer
statistics, 2022,” CA: a Cancer Journal for Clinicians, vol. 72,
no. 1, pp. 7–33, 2022.

[4] D. Hanahan, “Hallmarks of cancer: new dimensions,” Cancer
Discovery, vol. 12, no. 1, pp. 31–46, 2022.

[5] D. Hanahan and R. A. Weinberg, “Hallmarks of cancer: the
next generation,” Cell, vol. 144, no. 5, pp. 646–674, 2011.

[6] J. Guinney, R. Dienstmann, X. Wang et al., “The consensus
molecular subtypes of colorectal cancer,” Nature Medicine,
vol. 21, no. 11, pp. 1350–1356, 2015.

[7] N. J. Llosa, M. Cruise, A. Tam et al., “The vigorous immune
microenvironment of microsatellite instable colon cancer is
balanced by multiple counter-inhibitory checkpoints,” Cancer
Discovery, vol. 5, no. 1, pp. 43–51, 2015.

[8] Z. Gatalica, C. Snyder, T. Maney et al., “Programmed cell death
1 (PD-1) and its ligand (PD-L1) in common cancers and their
correlation with molecular cancer type,” Cancer Epidemiology,
Biomarkers & Prevention, vol. 23, no. 12, pp. 2965–2970, 2014.

[9] A. Bar-Even, A. Flamholz, E. Noor, and R. Milo, “Rethinking
glycolysis: on the biochemical logic of metabolic pathways,”
Nature Chemical Biology, vol. 8, no. 6, pp. 509–517, 2012.

[10] S. Matoba, J. G. Kang, W. D. Patino et al., “p53 regulates mito-
chondrial respiration,” Science, vol. 312, no. 5780, pp. 1650–
1653, 2006.

[11] S. Afzal, S. A. Jensen, J. B. Sørensen, T. Henriksen,
A. Weimann, and H. E. Poulsen, “Oxidative damage to gua-
nine nucleosides following combination chemotherapy with
5-fluorouracil and oxaliplatin,” Cancer Chemotherapy and
Pharmacology, vol. 69, no. 2, pp. 301–307, 2012.

[12] M. Diehn, R.W. Cho, N. A. Lobo et al., “Association of reactive
oxygen species levels and radioresistance in cancer stem cells,”
Nature, vol. 458, no. 7239, pp. 780–783, 2009.

[13] J. Kozak, K. Jonak, and R. Maciejewski, “The function of miR-
200 family in oxidative stress response evoked in cancer che-
motherapy and radiotherapy,” Biomedicine & Pharmacother-
apy, vol. 125, article 110037, 2020.

[14] P. Ghosh, C. Vidal, S. Dey, and L. Zhang, “Mitochondria tar-
geting as an effective strategy for cancer therapy,” Interna-
tional Journal of Molecular Sciences, vol. 21, no. 9, p. 3363,
2020.

[15] A. Colaprico, T. C. Silva, C. Olsen et al., “TCGAbiolinks: an R/
bioconductor package for integrative analysis of TCGA data,”
Nucleic Acids Research, vol. 44, no. 8, article e71, 2016.

[16] P. L. de Sá Junior, D. A. D. Câmara, A. S. Porcacchia et al.,
“The roles of ROS in cancer heterogeneity and therapy,” Oxi-
dative Medicine and Cellular Longevity, vol. 2017, Article ID
2467940, 12 pages, 2017.

[17] N. H. Kim, Y. H. Cha, J. Lee et al., “Snail reprograms glucose
metabolism by repressing phosphofructokinase PFKP allow-
ing cancer cell survival under metabolic stress,” Nature Com-
munications, vol. 8, no. 1, article 14374, 2017.

[18] P. K. Kopinski, L. N. Singh, S. Zhang, M. T. Lott, and D. C.
Wallace, “Mitochondrial DNA variation and cancer,” Nature
Reviews Cancer, vol. 21, no. 7, pp. 431–445, 2021.

[19] C. Gorrini, I. S. Harris, and T. W. Mak, “Modulation of oxida-
tive stress as an anticancer strategy,” Nature Reviews Drug Dis-
covery, vol. 12, no. 12, pp. 931–947, 2013.

[20] D. Basak, M. N. Uddin, and J. Hancock, “The role of oxidative
stress and its counteractive utility in colorectal cancer (CRC),”
Cancers, vol. 12, no. 11, p. 3336, 2020.

[21] S. Loft and H. E. Poulsen, “Cancer risk and oxidative DNA
damage in man,” Journal of Molecular Medicine (Berlin, Ger-
many), vol. 74, no. 6, pp. 297–312, 1996.

[22] E. C. Cheung and K. H. Vousden, “The role of ROS in tumour
development and progression,” Nature Reviews Cancer,
vol. 22, no. 5, pp. 280–297, 2022.

[23] A. Tasdogan, J. M. Ubellacker, and S. J. Morrison, “Redox reg-
ulation in cancer cells during metastasis,” Cancer Discovery,
vol. 11, no. 11, pp. 2682–2692, 2021.

[24] D. D. Lee and H. S. Seung, “Learning the parts of objects by
non-negative matrix factorization,” Nature, vol. 401,
no. 6755, pp. 788–791, 1999.

[25] M. J. Duffy, N. Harbeck, M. Nap et al., “Clinical use of bio-
markers in breast cancer: updated guidelines from the Euro-
pean group on tumor markers (EGTM),” European Journal
of Cancer, vol. 75, pp. 284–298, 2017.

[26] M. Ahmed, R. Behera, G. Chakraborty et al., “Osteopontin: a
potentially important therapeutic target in cancer,” Expert
Opinion on Therapeutic Targets, vol. 15, no. 9, pp. 1113–
1126, 2011.

[27] X. Wang, F. Zhang, X. Yang et al., “Secreted phosphoprotein 1
(SPP1) contributes to second-generation EGFR tyrosine
kinase inhibitor resistance in non-small cell lung cancer,”
Oncology Research, vol. 27, no. 8, pp. 871–877, 2019.

[28] B. Zeng, M. Zhou, H.Wu, and Z. Xiong, “SPP1 promotes ovar-
ian cancer progression via integrin β1/FAK/AKT signaling
pathway,” Oncotargets and Therapy, vol. 11, pp. 1333–1343,
2018.

[29] C. Xu, L. Sun, C. Jiang et al., “SPP1, analyzed by bioinformatics
methods, promotes the metastasis in colorectal cancer by acti-
vating EMT pathway,” Biomedicine & Pharmacotherapy,
vol. 91, pp. 1167–1177, 2017.

[30] G. Nicolas, C. Pottier, D. Maltete et al., “Mutation of the
PDGFRB gene as a cause of idiopathic basal ganglia calcifica-
tion,” Neurology, vol. 80, no. 2, pp. 181–187, 2013.

[31] M. S. Kim, H. S. Choi, M. Wu et al., “Potential role of
PDGFRβ-associated THBS4 in colorectal cancer develop-
ment,” Cancers, vol. 12, no. 9, p. 2533, 2020.

[32] B. McMahon and H. C. Kwaan, “The plasminogen activator
system and cancer,” Pathophysiology of Haemostasis and
Thrombosis, vol. 36, no. 3-4, pp. 184–194, 2008.

11Oxidative Medicine and Cellular Longevity

https://downloads.hindawi.com/journals/omcl/2023/1737501.f1.txt
https://downloads.hindawi.com/journals/omcl/2023/1737501.f2.txt
https://downloads.hindawi.com/journals/omcl/2023/1737501.f3.txt
https://downloads.hindawi.com/journals/omcl/2023/1737501.f4.pdf


[33] G. Mazzoccoli, V. Pazienza, A. Panza et al., “ARNTL2 and
SERPINE1: potential biomarkers for tumor aggressiveness in
colorectal cancer,” Journal of Cancer Research and Clinical
Oncology, vol. 138, no. 3, pp. 501–511, 2012.

[34] P. A. Andreasen, “PAI-1 - a potential therapeutic target in can-
cer,” Current Drug Targets, vol. 8, no. 9, pp. 1030–1041, 2007.

[35] Z. C. Nwosu, M. P. Ebert, S. Dooley, and C. Meyer, “Caveolin-
1 in the regulation of cell metabolism: a cancer perspective,”
Molecular Cancer, vol. 15, no. 1, p. 71, 2016.

[36] J. Ketteler and D. Klein, “Caveolin-1, cancer and therapy resis-
tance,” International Journal of Cancer, vol. 143, no. 9,
pp. 2092–2104, 2018.

[37] J. Yang, T. Zhu, R. Zhao et al., “Caveolin-1 inhibits prolifera-
tion, migration, and invasion of human colorectal cancer cells
by suppressing phosphorylation of epidermal growth factor
receptor,”Medical Science Monitor, vol. 24, pp. 332–341, 2018.

[38] M. Sudol, “From Rous sarcoma virus to plasminogen activator,
Src oncogene and cancer management,” Oncogene, vol. 30,
no. 27, pp. 3003–3010, 2011.

[39] M. Lin, Z. Zhang, M. Gao, H. Yu, H. Sheng, and J. Huang,
“MicroRNA-193a-3p suppresses the colorectal cancer cell pro-
liferation and progression through downregulating the PLAU
expression,” Cancer Management and Research, vol. 11,
pp. 5353–5363, 2019.

12 Oxidative Medicine and Cellular Longevity



Research Article
Necroptosis-Related Modification Patterns Depict the Tumor
Microenvironment, Redox Stress Landscape, and Prognosis of
Ovarian Cancer

Rui Geng ,1 Zihang Zhong ,1 Senmiao Ni,1 Wen Liu,1 Zhiqiang He,1 Shilin Gan,1

Qinghao Huang,1 Hao Yu ,1 Jianling Bai ,1 and Jinhui Liu 2

1Department of Biostatistics, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District,
Nanjing 211166, China
2Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 Jiangsu, China

Correspondence should be addressed to Hao Yu; haoyu@njmu.edu.cn, Jianling Bai; baijianling@njmu.edu.cn,
and Jinhui Liu; jinhuiliu@njmu.edu.cn

Received 3 October 2022; Revised 29 October 2022; Accepted 19 January 2023; Published 11 April 2023

Academic Editor: Wenjie Shi

Copyright © 2023 Rui Geng et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Necroptosis is one of programmed cell death discovered recently, which involves in tumorigenesis, cancer metastasis, and immune
reaction. We studied the necroptosis-related genes (NRGs) in ovarian cancer (OV) tissues using data from public databases, which
separated into two NRGclusters. Patients in cluster A would have severe clinical characteristics, poor prognosis, and worse tumor
microenvironment infiltration characteristics. The NRG score was achieved through the Cox analysis, along with a construction of
a prognostic model. People with lower risk score would have better prognosis, lower expression of redox related genes, higher
immunogenicity, and better effect on immunotherapy. In addition, the NRG score was closely related to cancer stem cell index,
copy number variations, tumor mutation load, and chemosensitivity. We built a nomogram to enhance clinical application of
the signature. These outcomes can help use know the function of NRGs in OV and provide new ideas for evaluating clinical
outcome and developing more effective treatment protocols.

1. Introduction

Ovarian cancer (OV) is a major gynecological malignancy
around the world, and its mortality ranks first among gyne-
cological malignancies [1]. Worldwide, the number of new
OV cases was 313,959 and the number of deaths was
207,252 in 2020 [2]. Although the treatment of OV has made
many progresses recently, the prognosis of OV is still not
well [3]. More than 60% patients were in an advanced stage
when diagnosed [4, 5]. Through timely diagnosis and appro-
priate treatment, the mortality of advanced stage and recur-
rence rate of OV can be reduced to great extent [6]. So, it is
needed to found new diagnostic and therapeutic methods.
With development for the branch of the cancer cell immune
recognition and immune regulate molecules, immunother-
apy has become a research hotspot recently [7]. Developing
new biomarkers, identifying therapeutic targets, predicting

therapeutic effects, and screening potential immunothera-
peutic drugs offer new orientation for the remedy of OV
and may prolong the survival of patients [8].

Necroptosis is defined as a regulated type of necrosis
whose morphology is similar to necrosis, such as cell swelling
and rupture, regulated by certain signal pathways like apopto-
sis [9]. Necroptosis is crucial to cancer. For one thing, necrop-
tosis can trigger adaptive immune response and impede tumor
progression [10]. Meanwhile, the inflammatory response may
also help the occurrence and development of cancer, and
necroptosis can produce immunosuppressive tumor microen-
vironment (TME), which may contribute to cancer progres-
sion [11, 12]. Until now, several chemotherapeutics, natural
compounds, and classical necroptosis inducers have been
proved to disappear tumor cells through necroptosis. For
instance, characteristics such as etoposide, 5-FU, and cisplatin
may lead necroptosis of cancer cells [13]. Consequently, the
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Figure 1: Heredity and transcriptional changes of necroptosis-related genes (NRGs) in OV. (a) In TCGA-OV population, 89 patients had
gene mutations. (b) CNV frequency happened in NRG. (c) Location of CNV changes on 23 chromosomes in NRG. (d) Gene expression of
NRGs in normal and tumor tissues. ∗P < 0:05, ∗∗P < 0:01, ∗∗∗P < 0:001.
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Figure 2: Continued.
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selection of necroptosis-related genes and using them to build
predict signatures were promising methods to forecast the
prognosis OV patients.

Except malignant transformed cells, tumors consisted of
normal cells, like fibroblasts, muscle cells, and inflammatory
immune cells, which make up with TME together [14]. The
interaction between tumor cells and TME influences the treat-
ment effect of cancer [15]. In the early stage, tumors are infil-
trated by various adaptive and innate immune cells, which
conduct tumor-promoting and antitumor functions [16]. For
example, higher infiltration level of CD8 T cells is usually
related to better prognosis [17], while the macrophages M2
is supposed to be a poor prognostic marker [18]. In fact,
immunotherapy has become one of the most hopeful methods
in oncology. Clarifying the status of infiltrating immune cells
in TME and understanding their number and function may
contribute to formulate strategies to enhance the response rate
of immunotherapy. Necroptosis is becoming a new target of
cancer immunotherapy. Necroptosis in tumor cells regulates
TME and antitumor immunity, which will be particularly
helpful to the treatment of immune desert tumors [19, 20].
Necroptosis has different influence on tumor progression in
the light of tumor cell types and TME [21]. However, the
mechanisms are still unclear [22].

Redox reaction is a part of normal cell metabolism. If the
redox homeostasis is damaged, cell death may be induced

[23]. Increasing oxidative stress by increasing reactive oxy-
gen species level or decreasing cell antioxidant capacity is a
promising anticancer way, and it takes part in the mecha-
nism of many chemotherapy drugs that have been used in
clinical application [24]. More and more evidence shows
that the redox modification participated in the regulation
of some cell death modes, like necrosis and apoptosis. In
addition, thiol redox switches involve in regulating the
crosstalk between apoptotic and necrotic forms of cell death
[25]. Mitochondrial peroxidase has a upregulated expression
in different tumor types, including OV [26].

Our study calculated the expression profile of
necroptosis-related genes (NRGs) and downloaded the
immune pattern in OV by using two computational algo-
rithms. In terms of NRG expression level, OV patients were
separated into two independent subgroups. Then, the
patients were divided into three gene clusters according to
the differentially expressed genes (DEGs) between NRGclus-
ters. A prediction signature was further built to predict the
prognosis, so as to realize accurate identification and thera-
peutic measures of individuals.

2. Materials and Methods

2.1. Data Acquisition. Genetic and clinical profiles of OV
were downloaded from the cancer genome atlas (TCGA)
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Figure 2: Clinical and biological factors of two clusters defined by clustering analysis. (a) Interrelationships among NRGs in OV. (b) PCA
scatter plot reflecting the distinction between NRGclusters. (c) Survival probability of NRGcluster A and NRGcluster B. (d) Difference of
clinical factors expression levels of NRGs between NRGclusters.
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and gene expression omnibus (GEO). This study used 836
samples from two cohorts, TCGA-OV and GSE9891.
Table S1 shows clinical features of individuals involved in
the research. We combine TCGA-OV and GSE9891
datasets and use the “ComBat” algorithm to correct the
batch effect. In order to reduce statistical bias, samples
without overall survival (OS) value and without follow-up
data were screened out from the study. OV patients with
relevant characteristics (age, grade, and stage) and survival
data were used for further analysis. GSE9891 was
employed as an external set to validate.

2.2. Consensus Clustering Analysis. 67 NRGs were obtained
from published articles [27]. In accordance with gene
expression data, we performed consumes clustering via R
packages “ConsumusClusterPlus” [28]. To calculate the dif-
ferences of NRGs in pathways, the gene set variation analysis
(GSVA) was executed through a marker gene set (C2.
Cp.kegg. V7.2) from Molecular Signatures Database.

2.3. Gene Clusters Identification on the Basis of DEGs. Firstly,
the “limma” package was conducted to screen DEGs
between gene clusters. The univariate Cox regression
analysis was conducted on DEGs to screen DEGs related
to OV survival. Secondly, OV patients were classified
according to DEGs by using consistent clustering algo-
rithm, and the patients were separated into three different
subgroups.

2.4. Build Prognostic NRG Score Related to Necroptosis. After
integrating the transcriptome and clinical data, we deleted
individuals without prognostic data. All volunteers were ran-
domly separated into training (n = 319) and testing subtypes
(n = 318), and then the information of the training set was
used to build the NRG score which related to OV patients.
Based on prognostic genes associated with necroptosis, the
least absolute shrinkage and selection operator (LASSO)
regression algorithm was utilized to avoid over fitting through
the “glmnet” R package. The multivariate Cox analysis identi-
fied key genes to establish predict model on the base of the
training set. The formula is as follows: risk score = Σ ðcoefi ×
expiÞ, where coefi and expi, respectively, mean the coefficient
and express level of each gene. In accordance with median risk
score, samples were divided into two different subgroups.

2.5. The Difference of Clinical Features Patients and Stratified
Analysis. The score of individuals with different clinical fea-
tures was compared by box diagram and scatter diagram.
Hierarchical analysis was employed to assess the differences
in OS between different subgroups using the Kaplan–Meier
curve achieved by the “survminer” R package, to determine
that the model still has the ability to predict under different
clinicopathological characteristics.

2.6. Enrichment Analysis. Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) were applied
to enrich NRG-related processes. KEGG is a dataset usually
used to discover significantly altered pathways enriched in

(i) (j)

(k) (l)

Figure 3: Tumor mutation load of the two NRGclusters. (a) Gene set enrichment analysis of NRGclusters. (b, c) Immune infiltration levels
of two NRGclusters. (d) The stromal score, (e) immune score, and (f) estimated score of the two NRGclusters were compared. (g–j) Immune
checkpoint expression of NRGclusters. (k) HLA expression of two NRGclusters. (l) Compare the scores of biological pathways between the
two NRGclusters. ∗P < 0:05, ∗∗P < 0:01, ∗∗∗P < 0:001.
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gene list. GO and KEGG were carried out through the bioin-
formatics platform [29]. By aggregating gene into gene sets,
the gene set enrichment analysis (GSEA) offer rich scores,
which allows users to have an in-depth understanding of
how biological processes are influenced [30].

2.7. Assessment of Immune Infiltration Level. TME is widely
involved in the tumorigenesis and tumor progression. ESTI-
MATE can predict the TME status in the light of relevant
biomarkers expression in immune and stromal cells which
conducted by the R package “estimate” [31, 32]. The
single-sample gene set enrichment analysis (ssGSEA) can
quantitatively estimate immune cell components from com-
plex gene expression data by using the R package “GSVA”
[33, 34]. CIBERSORT can quantify the abundance of TIICs
in risk groups (http://cibersort.stanford.edu/).

2.8. The Difference of Biological Processes between
NRGclusters. Rosenberg et al. defined a set of genes related
to specific biological pathways, such as epithelial mesenchy-
mal transition markers, DNA damage repair, and CD8 T-
effector signature [35].

2.9. Phenotypes of RNAss Differentiation. In cancer stem cells
(CSCs), mRNA expression-based RNAss is a variable to
describe the similarity between tumors and stem cells [36,
37]. The higher the score was, the stronger the degree of stem-
ness and the lower differentiation degree. RNAss scores were
achieved from the xena (https://xenabrowser.net/datapages/).

2.10. Predict the Effect of Immunotherapy. Immunopheno-
score (IPS) has been verified to predict patient response to
immunotherapy [38], which can be achieved from The Can-
cer Immune Atlas (TCIA) (https://tcia.at/home). TMB can
screen individuals who could benefit more from immuno-
therapy [39]. The burden of gain or loss of copy number var-
iations (CNV) was calculated by gene pattern (https://cloud
.genepattern.org) [40].

2.11. Analysis of Drug Sensitivity. To assess the therapeutic
efficacy of chemotherapeutics on OV patients, the half max-
imum inhibitory concentration (IC50) of chemotherapeutics

was achieved by the “prrophetic” R package [38]. We
achieved the data of gene expression and drug sensitivity
from CellMiner to calculate the correlation between some
commonly used drugs and 8 genes.

2.12. Set Up a Nomograph. A nomogram can evaluate the OS
through the “rms” package [41], where each factors were
given a score, then added up them, and achieved a final
score [42].

Hosmer-Lemeshow was applied to testify whether the
predicted results were consistent with the fact [42]. The pre-
dictive ability of the model was explored through the C
-index and area under curve (AUC) [43, 44]. C-index can
be calculated by restricted mean survival (RMS). The capac-
ity of nomogram was calculated by C-index and AUC, rang-
ing from 0.5 to 1.0 [45].

2.13. Statistical Analysis. R version 4.1.0 was applied to anal-
yses in this research. P < 0:05 was considered significant.

3. Results

3.1. Genetic and Transcriptional Changes of NRGs in OV.
The analysis flow chart is performed in Figure S1.
Figure 1(a) presents the summary outcome of the
incidence of somatic mutations in 67NRGs.There were 89
mutations that occurred in 436 samples (20.41%) where
ATRX and ALK had highest mutation frequency (2%). The
CNV of MYC and TNFSF10 increased significantly, while
the CNV of TARDBP, TNFRSF21, HDAC9, AXL, TLR3,
and CYLD were decreased (Figure 1(b)). The location of
CNV of 67NRGs on chromosome is exhibited in
Figure 1(c). We also compared the discrepancy of genes in
control and OV samples (Figure 1(d)). Among the 67
genes, 38 genes had different expression levels, and the
corresponding OS was also different (Figure S2). Genetic
and transcriptional levels of NRGs between OV and
control tissues were different which means that NRGs have
a significant role in the progression of OV.

3.2. Discrimination of NRGclusters in OV. The state of NRG
interactions and regulator connections OV populations are

(o) (p)

Figure 4: Identify gene subtypes in the light of DEGs (a) GO and (b) KEGG enrichment analysis of two gene clusters. (c) Survival
probability of gene subtypes. (d) Clinicopathological features of three gene subtypes. (e) The expression of NRGs of gene clusters. (f, g)
Immune infiltration of gene clusters. (h) Stromal score, (i) immune score, and (j) estimated score of three gene clusters were compared.
(k–n) Expression of immune checkpoints. (o) HLA expression level of gene clusters. (p) Compare the score of biological pathways
between the three gene clusters. ∗P < 0:05, ∗∗P < 0:01, ∗∗∗P < 0:001.
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presented in Figure 2(a). For further analysis of the express
characteristics of NRG in OV, we classified OV patients from
k = 1 to k = 9 (Figure S3). PCA showed discrepancies in
necroptosis transcription between the NRGclusters
(Figure 2(b)). The Kaplan–Meier curve implied that
NRGcluster A had higher survival probability than patients in
NRGcluster B (Figure 2(c)). Furthermore, there were
discrepancies in NRG expression and clinicopathological
features among different OV subtypes (Figure 2(d)).
Compared with NRGcluster B, patients in NRGcluster A had
older age, more advanced stage and grade, and worse survival
status.

3.3. Characteristics of Different Subtypes of TME. As per-
formed in Figure 3(a), some immune activation-related pro-
cesses like B cell receptor signaling pathway were enriched in
NRGcluster B, which indicate immune activation
(Figure 3(a)). The immune infiltration scores of NRGcluster
A and NRGcluster B were compared, showing a great differ-
ence. The immune infiltration level in NRGcluster A was
lower than that in NRGcluster B. Innate and adaptive immune
cells were enriched in NRGcluster B (Figure 3(b)). Then, we
calculated the association between two RNA modified sub-
types and 22 TIICs. The proportion of immune cells was
higher in NRGcluster B which means that NRGcluster B
may related to immune activation (Figure 3(c)). Therefore,

we estimated the TME score of the NRGclusters
(Figures 3(d)–3(f)). A higher estimate score represents a
higher fraction of stromal and immune cells. The outcomes
indicated that patients in NRGcluster B had a higher TME
score. We noticed that the two NRGclusters had different
immune infiltrations. Features of NRGcluster A were similar
to the definition of “cold” tumors, which has less invasive
immune cells and may achieve less benefit from immune ther-
apy, while NRGcluster B is roughly similar to “hot” tumors.
Regarding the express levels of immune checkpoints in two
NRGclusters, we noticed that PD1 (Figure 3(g)), CTLA4
(Figure 3(h)), PDL1 (Figure 3(i)), and PD-L2 (Figure 3(j))
had a high expression level in NRGcluster B. The HLA expres-
sion of the NRGclusters was also different (Figure 3(k)). We
then found that some immune-related pathways were more
prominent in NRGcluster B (Figure 3(l)).

3.4. Identification of Gene Cluster Based on DEGs. We
screened out DEGs (Figure S4a) and then conducted GO
and KEGG analyses which revealed that NRGs were
mainly associated with immune-related processes which
means that they are crucial in the immune regulation of
TME (Figures 4(a) and 4(b)). The best number of clusters
is three (Figure S4b-S4e). Gene cluster B had the highest
survival probability and was related to early stage, early
grade, younger age, and better survival status (Figures 4(c)
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Figure 5: Construct NRG score based on the training set. (a) Distribution of groups with different classification criteria. Difference of NRG score
between (b) gene clusters and (c) NRGclusters. (d) Expression of the 8 NRGs between risk groups. (e) The Kaplan–Meier analysis shows survival
probability. (f) Assess sensitivity and specificity NRG score prediction in 1, 3, and 5 years. ∗P < 0:05, ∗∗P < 0:01, ∗∗∗P < 0:001.
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and 4(d)). In addition, patients in gene cluster B and
NRGcluster B had similar clinical characteristics. The gene
expression in three gene clusters was different (Figure 4(e)).
The outcome of ssGSEA showed that the vast immune cells
had higher infiltration levels in gene cluster B (Figure 4(f)),
which was primarily infiltrated by adaptive immune cells
(Figure 4(g)). In addition, gene cluster B tends to have
higher TME score and immune checkpoints expression
(Figures 4(h)–4(n)). HLA expression levels of gene clusters
in the three groups were also the highest expression in gene
cluster B (Figure 4(o)). In addition, classical biological
progresses were more prominent in gene cluster B
(Figure 4(p)). According to these features, we considered
that gene cluster B belongs to “hot” tumors.

3.5. Build and Testing the Prognostic Signature. Figure 5(a)
displays the spread of patients in three gene clusters and two
NRGclusters. 14 OS-related genes were screened as candidate
prediction genes (Figure S5a-S5b). Finally 8 achieved genes
(GBP2, RARRES3, CD38, LAMP3, GPR34, CLEC5A,
RARRES1, and FMO2) were selected. Among them, GBP2,
RARRES3, and CD38 were protective genes (Figure S5c).
According to the above results, we assessed the NRG
score: risk score = (−0.5265×GBP2 expression) + (−0.2565
×RARRES3 expression) + (−0.2786×CD38 expression) +
(0.2053×LAMP3 expression)+ (0.4263×GPR34 expression)
+ (0.2201×CLEC5A expression)+ (0.2249×RARRES1
expression)+ (0.1025×FMO2 expression). We noticed that
the score of gene cluster B was lower than that of gene

cluster A (Figure 5(b)). In the grouping according to
NRGcluster, there was no diversity of risk score between the
two subgroups (Figure 5(c)). Most of the 8NRGs had
different expression between the two risk subgroups in
training set (Figure 5(d)). Individuals with low scores had
higher OS when compared with higher score group
(Figure 5(e)). In addition, the AUC of NRG score for 1, 3,
and 5 years were 0.623, 0.686, and 0.771, respectively
(Figure 5(f)). Then, we use the testing group, all groups from
TCGA, and the data from GEO to verify the above results.
Figure S6 presents the difference of NRGs expression,
survival analysis, and AUC in two risk groups in testing set,
all sets, and GEO set, respectively. There were distinctions in
the eight gene expressions between the risk groups. The
AUC of NRG score for 1, 3, and 5 years is still high, which
means that the model had excellent predict ability.

3.6. The Difference of Risk Score between Different Feature
Patients. To analyze the relationship between NRG score
and clinical features, we compared the risk scores of dif-
ferent individuals. It was found that the NRG score of
OV patients in stages I-II was lower than in stages III-
IV (Figure S7a). Moreover, the risk score of OV patients
with better survival status was also lower than that of
OV patients with worse survival status (Figure S7b). The
NRG score was proved to be an independent prognostic
variable (Table 1). In different age, stage, and grade
subgroups, the OS of the high NRG score group tends
to be lower (Figure S7c). Furthermore, for BRCA1 wild

Table 1: Univariate and multivariate Cox regression analyses of the prognosis-related variables.

Variable
Univariable model Multivariable model

HR HR.95 L HR.95H P value HR HR.95 L HR.95H P value

Training set

Age 1.4679 1.0659 2.0215 0.0187 1.4287 1.0361 1.9702 0.0296

Grade 1.1163 0.7573 1.6454 0.5784

Stage 11.9886 1.6752 85.7985 0.0134 9.0377 1.2600 64.8256 0.0285

Risk score 1.9319 1.6308 2.2885 0.0001 1.8825 1.5865 2.2338 0.0001

Testing set

Age 1.4023 1.0347 1.9005 0.0293 1.3802 1.0179 1.8715 0.0380

Grade 1.2773 0.8671 1.8814 0.2156

Stage 2.7702 1.2974 5.9149 0.0085 2.4765 1.1551 5.3098 0.0198

Risk score 1.3176 1.1442 1.5173 0.0001 1.2787 1.1047 1.4800 0.0010

All set

Age 1.4182 1.1398 1.7645 0.0017 1.3772 1.1066 1.7139 0.0041

Grade 1.2049 0.9166 1.5839 0.1816

Stage 3.9317 1.9467 7.9407 0.0001 3.3380 1.6495 6.7551 0.0008

Risk score 1.4904 1.3431 1.6538 0.0001 1.4498 1.3031 1.6130 0.0001

GEO set

Age 1.5109 1.0347 2.2063 0.0326 1.5138 1.0358 2.2124 0.0322

Grade 1.3183 0.8887 1.9555 0.1696

Stage 6.8898 2.1835 21.7396 0.0010 5.9038 1.8625 18.7139 0.0026

Risk score 1.3764 1.1772 1.6093 0.0001 1.3164 1.1175 1.5506 0.0010
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Figure 6: Continued.
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R = 0.27, p = 5.6×10–6
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patients and chemotherapy treated patients, the survival
probability of patients with higher risk score was lower.

3.7. Assessment of TME in Terms of the NRGs. For the pur-
pose of deepen understanding the TME of subgroups, we first
conducted GSEA and found that the low NRG score group
was mainly related with some immune-related processes
(Figure 6(a)), while high-score individuals were associated
with cancer-related processes (Figure 6(b)). Further studies
indicated that pan-F-TBRS was obviously activated in the high
group (Figure 6(c)). People with higher risk score had higher
immune score and stromal score (Figures 6(e)–6(g)). Not sur-
prisingly, the combined estimated score of these two scores
was also higher in the high-risk group. We then identified
the relationships between immune cells and risk score as well
as the correlations between risk score and the score of classical
biological pathways enrichment (Figures 6(h) and 6(i)). The
immune function score of B cells, T helper cells, and Tfh was
significantly higher in low-risk groups (Figure 6(j)). Then,
we calculated the correlation between risk score and immune
cell abundance (Figure 7(a)). The NRG score was positively

associated with macrophages M2, mast cells activated, mono-
cytes, neutrophils, and T cells CD4 memory resting and had
negative relationship with macrophages M1, plasma cells,
etc. (Figure 7(b)). In terms of oxidative stress, the expression
of oxidative stress-related genes was low in low-risk group,
especially CYBB (Figure S8). Moreover, we noticed that a
great deal of immune cells was related to the genes
(Figure 7(c)). Human leukocyte antigen expression was also
higher in lower risk cohorts (Figure 7(d)). Figure 7(e) shows
that many immune checkpoints were overexpressed in
patients in high risk. There was discrepancy of immune
checkpoints expression between the groups. CTLA4, CD274,
PDCD1, and IDO1 had negatively correlation with risk score,
and HAVCR2 has positive relationship with the score
(Figure 7(f)). The outcome of IPS score indicates that low-risk
score was associated with higher immunogenicity (Figure 7(g)).

3.8. Predict the Curative Effect of Immunotherapy.
Figure 8(a) shows the relationships between the NRG score
and CSC index. We noticed that the NRG score was nega-
tively associated with CSC index (r = −0:35, P < 0:001)
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Figure 6: Evaluate TME of different risk groups. Main enriched biological pathways of (a) low NRG score group and (b) high-score group.
(c, d) The ssGSEA score and immune infiltration score of risk groups. (e–h) The NRG score had positive association with stromal cells,
immune cells, and estimated score. (i) The relevance of risk score and immune cells as well as classical biological pathway score. (c, j)
The difference of immune function score betweenthe groups.
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Figure 7: Continued.
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which showed that CRC cells with lower risk score have
more obvious stem cells and lower cell differentiation. L-
TMB accompanied with high risk means a significant poorer
survival probability than other groups (Figures 8(b) and
8(c)). Mutation frequencies of TP53 and TTN were high in
both cohorts (Figures 8(d) and 8(e)). Accompanied with
high-risk score, OS becomes lower (Figures 8(f) and 8(g)).

Figure 8(h) shows the distribution of GISTIC scores on all
chromosomes. Focal amplification and deletion of different
chromosome regions were found (Figures 8(i) and 8(j)).

3.9. Estimation of Drug Sensitivity. We chose drugs usually
applied in the remedy of OV to assess the sensitivity of
patients to these drugs. IC50 values of docetaxel in high-
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Figure 7: Immune infiltration situations of the subtypes. (a) The difference of immune cell abundance between the groups. (b) The correlation
between 8 genes and immune cell abundance. (c) The relationship between risk score and immune cell abundance. (d) The difference of HLA
expression between the groups. (e) Twenty immune checkpoints with differential expression in the two groups were depicted. (f) The correlation
between immune checkpoints and risk score. (g) The differences of IPS cell expression. ∗P < 0:05, ∗∗P < 0:01, ∗∗∗P < 0:001.
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risk patients were lower, while IC50 of A.443654 and pacli-
taxel was lower in people with low-risk score (Figure S8a-
S8c). We also calculated the relationships between some
common drugs and 8 genes. Taken together, the above
results suggested that NRGs are correlated with drug
sensitivity (Figure S8d).

3.10. Construct Nomograms for Clinical Application. Taking
care of the practical utilize of NRG score in predicting, we
built a nomogram containing NRG score and clinical factors
(Figure 9(a)), predictors including NRG risk score, age,
nomogram risk, and stage. Our signature had higher C
-index (Figure 9(b)). The AUC corresponding to NRG risk
was generally higher which indicates great prediction perfor-
mance, and it will be better when considering age and stage
(Figures 9(c)–9(e)). DCA indicated that the NRG risk score
or nomogram risk combined with clinical features had a
higher benefit in predicting the OS of OV patients at 1, 3,
and 5 years (Figures 9(f)–9(h)). A subsequent calibration
diagram proved it again (Figure 9(i)).

3.11. NRG Model Has Great Prognostic Performance. To con-
trast the prognosis ability of our signature with other signa-
tures, we screened four prognosis models from the previous
literatures. We used the multivariate Cox regression analysis
to assess the estimate score, based on specific genes expres-
sion (Figure S10a). Figure S10b indicated that the prognosis
of high-risk individuals was worse in all four models.
Obviously, our model has the highest C-index which was
0.65 (Figure S10c). Therefore, our genetic characteristics
performed best in about six years (Figure S10d).

4. Discussion

Despite progress in study and remedy of OV, the 5-year sur-
vival rate is still low [46], and more than half of the patient

relapse and develop drug resistance [47–50]. Cell death inhi-
bition is the ultimate cause of drug resistance in OV [51]. As
the main type of cell death, previous studies mostly focused
on the drug resistance of apoptosis in OV [52]. Necroptosis
is a newly noticed type of regulatory necrosis which has been
proven to have great effect on cancer, especially in drug
resistance [53]. Therefore, our exploration may improve
the poorer outcome of OV.

Patients in NRGcluster A had more advanced clinical
characteristics and poorer survival than patients in
NRGcluster B. There are also distinctions in the features of
TME between the two NRGclusters. The TME score and
immune checkpoint expression was higher in NRGcluster
B patients. We screened three gene clusters in the light of
DEGs. Then, we established an effective prognostic risk
score and verified its predict performance. There were great
differences in clinical features, TMB, TME, immune check-
point, C-index, CNV, and drug sensitivity between the risk
groups. Finally, the nomogram was established to further
enhance the performance and promote use of NRG score.

The prediction model has a close correlation with redox
stress and immune environment. The high-risk group has
higher levels of redox stress, which may be closely related to
their poor prognosis. Despite advances has been achieved in
immunotherapy recently, outcomes of OV patients have still
been heterogeneous, indicating the effect of TME in the occur-
rence and development of OV [54].TME is an ecosystem con-
sisting of tumor cells, infiltrating immune cells and stromal
cells intertwined with noncellular components. In this study,
the necroptosis pattern with immune inhibition was related
to higher NRG score, and the necroptosis pattern with
immune activation was related to lower NRG score. Macro-
phages M1, also known as “classic activated macrophages,”
has a proinflammatory effect. Their high expression was
associated with a better prognosis in patients with OV [55].
OV-associated memory T cells are also associated with
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Figure 8: Assess the efficacy of immunotherapy. (a) RNAss was negatively correlated with NRG score. (b, c) Survival probability of people
with different TMB and risk score. (d, e) The situation of gene mutation in different risk groups. (f, g) Survival probability of people with
TP53 mutation and TTN mutation. (h) Copy number score for the groups. (i, j) Cytoband shows amplification (left) and deletion (right).
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Figure 9: Continued.
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Figure 9: Built and verification of nomogram. (a) Nomograms used to predict OS in 1, 3, and 5 years. (b) C-index of prognostic factors
including risk score. (c–h) ROC and DCA curves of 1, 3, and 5 years. (i) Nomogram calibration curve of the model.
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chemotherapy response and longer survival [56]. CD4 T cells
have crucial effect on almost every aspect of immunity and are
considered an important component needed in tumor immu-
notherapy [57]. Plasma cell infiltration is related with high
CD4 and CD8 T cell response and great prognosis [58, 59],
while NRG score was positively associated with macrophage
M2, mast cell activation, monocyte, neutrophil, and T cell
CD4 memory rest. The more macrophages M2, the worse
the prognosis of patients with advanced OV [60]. Tumors
with high mast cell are associated with immunosuppressive
OV TME and are potentially insensitive to immunotherapy
[61]. Monocytes are recruited around the cancer and differen-
tiated into macrophages, which can be used as biomarkers of
OV progression [62]. Neutrophils are key players in OV and
have been considered new biomarkers of cancers or as immu-
notherapy targets to promote tumor progression [14].

TME is closely correlated with the response of patients
with various cancers to immunotherapy, and patients with
immunodominant TME subtypes benefit the most from
immunotherapy [63]. In the past decades, immunotherapy,
especially the treatment using ICIs, was developing rapidly.
The researches on ICI are booming, and clinical studies have
proved their safety and effectiveness. In this study, we
observed that CTLA4, CD274, PDCD1, and IDO1 had a
negative correlation with risk score, and HAVCR2 has a pos-
itive association with risk score. Among them, researchers
have a deeper understanding of CTLA4 and PDCD1. Evidence
from non-OV shows that patients with hot tumors infiltrated
by immunogenic T cells have lasting clinical benefits in PD-1/
PD-L1 blocking response compared with individuals with cold
tumors [64]. However, their effect in OV is not clear. Whether
they can be used as targets of immunotherapy in clinical still
needs further research. Immunotherapy conducted on these
patients may obtain better curative effect.

In addition, we found that OS decreased significantly
when TP53 and TTN mutation particularly combined with
high-risk score. Proteins encoded by some major target
genes regulated by TP53 are essential for maintaining geno-
mic integrity and cell life cycle [65]. TTN mutations are
closely associated with the response to immune checkpoint
blockade (ICB) [66, 67]. However, previous articles have
not clearly discussed whether TTN or TP53 mutation has
an impact on the immunotherapy effect of OV. Human
CNV is a repetitive or missing DNA fragment relative to
the reference genome, which may lead to genomic imbalance
and diseases such as tumor. So, it is correlated with the pro-
cess of diagnosis and prognosis [68, 69]. CNV has been
tested to be related to the prognosis of OV [70]. Low-risk
patients have more gene mutations, and CNV load belongs
to immune activation subgroup.

However, immunotherapy using ICB alone is less effec-
tive in the treatment of OV [71]. Therefore, it is necessary
to treat OV patients by ICB combined with chemotherapy,
radiotherapy, and other therapeutic methods. Cisplatin and
its derivatives are commonly used in OV chemotherapy. It
has been determined that cisplatin can induce necroptosis
and significantly increase the death of OV cells, to improve
the anticancer effect of chemotherapeutics [72, 73]. Taxane
cytotoxic drugs such as docetaxel have become one of the

most effective drugs for the immunotherapy of gynecological
cancer recently. It has been approved for the remedy of OV,
breast cancer, and so on [74, 75]. Paclitaxel can induce
immunogenic cell death in OV and achieve therapeutic
effect [76]. We found IC50 values of docetaxel in high-risk
patients were lower, while IC50 values of A.443654 and pac-
litaxel were lower in low-risk patients. Therefore, different
chemotherapy drugs can be used for patients in different risk
groups, which may get better therapeutic effect.

This study also has some shortcomings. Firstly, the
necroptosis genes included in this study were achieved from
previous articles. Some unreported NRGs might be ignored.
Secondly, the prognostic model constructed for OV in this
study needs to be verified in clinical application. Therefore,
we need to screen new genes related to necroptosis in more
cohorts and collect enough cases and clinical information of
OV in the future, to ensure that the model is effective for
clinical application.

5. Conclusions

Our comprehensive analysis of NRG reveals its impact on
TME, clinical characteristics, and prognosis of OV. The therapy
role of NRGs in immunotherapy was also analyzed. The above
results emphasize the significance of NRGs and offer new orien-
tation for guiding precision therapy strategy of OV patients.
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Background. Oxidative stress (OS) can either lead to leukemogenesis or induce tumor cell death by inflammation and immune
response accompanying the process of OS through chemotherapy. However, previous studies mainly focus on the level of OS
state and the salient factors leading to tumorigenesis and progression of acute myeloid leukemia (AML), and nothing has been
done to distinguish the OS-related genes with different functions. Method. First, we downloaded single-cell RNA sequencing
(scRNAseq) and bulk RNA sequencing (RNAseq) data from public databases and evaluated the oxidative stress functions
between leukemia cells and normal cells by the ssGSEA algorithm. Then, we used machine learning methods to screen out OS
gene set A related to the occurrence and prognosis of AML and OS gene set B related to treatment in leukemia stem cells
(LSCs) like population (HSC-like). Furthermore, we screened out the hub genes in the above two gene sets and used them to
identify molecular subclasses and construct a model for predicting therapy response. Results. Leukemia cells have different OS
functions compared to normal cells and significant OS functional changes before and after chemotherapy. Two different
clusters in gene set A were identified, which showed different biological properties and clinical relevance. The sensitive model
for predicting therapy response based on gene set B demonstrated predictive accuracy by ROC and internal validation.
Conclusion. We combined scRNAseq and bulk RNAseq data to construct two different transcriptomic profiles to reveal the
different roles of OS-related genes involved in AML oncogenesis and chemotherapy resistance, which might provide important
insights into the mechanism of OS-related genes in the pathogenesis and drug resistance of AML.

1. Background

Oxidative stress (OS) is a series of adaptive responses caused
by the imbalance between the reactive oxygen species (ROS)
and the antioxidant system of all aerobic organisms. The
integrated antioxidant system of an aerobic organism can

block the damage caused by redundant ROS [1]. However,
the abnormal redox state of cells can produce toxic effects
of peroxides and free radicals, thereby damaging cellular
proteins, lipids, and DNA, which can lead to aging, diseases,
and tumorigenesis [2]. Some chronic diseases and cancers
have been reported as a consequence of oxidative stress

Hindawi
Oxidative Medicine and Cellular Longevity
Volume 2023, Article ID 5343746, 20 pages
https://doi.org/10.1155/2023/5343746

https://orcid.org/0000-0003-4923-5145
https://orcid.org/0000-0001-6301-1119
https://orcid.org/0000-0003-2547-7895
https://orcid.org/0000-0003-3931-8385
https://orcid.org/0000-0001-5437-775X
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/5343746


[3–5], including hypertension, Alzheimer’s dementia, diabe-
tes, breast cancer, and renal cell carcinoma [6, 7], while ROS
shows bidirectional effects in cancer cells. On one hand, the
ROS initiates tumorigenesis and supports the proliferation
of cancer cells promoting the progression of cancer. On
the other hand, high levels of ROS are also toxic to cancer
cells causing cell death, which has been applied as a mecha-
nism of chemotherapy [8]. Recent study showed that the
combination of retinoic acid, tunicamycin, and arsenic triox-
ide can cause OS-induced cell death in FLT3-ITD+ AML cell
lines [9]. Interestingly, tumor cells can increase their antiox-
idant capacity to accommodate high ROS-mediated cell pro-
liferation while avoiding apoptosis and senescence triggered
by excessive ROS, which might explain the chemotherapy
resistance in cancers [10].

AML, the most common type of leukemia in adults
worldwide, is characterized by the infiltration of abnormally
clonal and undifferentiated leukemia cells in bone marrow,
blood, and other tissues [11]. The enormous cytogenetic
and molecular contexts make it a highly heterogeneous dis-
ease with distinct biological process and prognosis. Although
the advance in treatment has been achieved among younger
patients with a cure rate of 35-40%, the emergence of drug
resistance often leads to treatment failure and the prognosis
of elderly patients remains dismal; most patients died within
one year of diagnosis [12, 13]. Therefore, the development of
new therapies based on the individual genomic landscape
risk stratification and understanding the mechanisms under-
lying drug resistance in leukemia are supposed to improve
the remission rate and overall survival of AML patients. Cur-
rently, OS has been reported playing a role in the development
of several hematologic cancers, including AML, chronic mye-
loid leukemia (CML), and acute lymphoblastic leukemia
(ALL) [14, 15]. CML cells showed a higher oxidative stress
with significant lower SOD activity, which is correlated with
the altered intracellular calcium homeostasis. The increased
oxidative stress and decreased antioxidants have been reported
in ALL and AML patients in a recent study [14]. Dong et al.
[16] also constructed an effective risk model for predicting
the prognosis of AML patients based on the OS-related genes.
However, previous studies mainly focus on the level of OS
state and the salient factors leading to tumorigenesis and pro-
gression of AML, nothing has been done to explore the dual
roles and potential mechanism of OS in AML.

In our present work, we selected the OS-related genes,
which might contribute to the carcinogenesis of AML
through scRNAseq combined with bulk RNA sequencing
(RNAseq) data, and then established a molecular phenotype
based on the above genes, which could predict prognosis and
provide different OS profiles of AML patients. In addition,
we established an OS-related gene signature for predicting
the chemotherapy response of AML patients. All these could
provide more information and genomic evidence for indi-
vidualized precision therapy.

2. Material and Methods

2.1. scRNAseq and Bulk RNAseq Data Obtaining. The paired
bone marrow scRNAseq data and clinical information of 8

AML patients (AML314, AML371, AML997, AML707B,
AML475, AML329, AML556, and AML722B) and 4 healthy
donors (BM1, BM2, BM3, and BM4) were obtained from
Gene Expression Omnibus (GEO) database (https://www
.ncbi.nlm.nih.gov/geo/) using the accession number
GSE11625. We used the UCSC Xena (https://xenabrowser
.net/) to download the GDC TCGA Acute Myeloid Leukemia
(LAML) transcription expression data (n = 151) and pheno-
type data. The bulk RNAseq data and clinical information of
AML patients (GSE106291, n = 250) were also downloaded
from the GEO database. 1399 oxidative stress-related genes
were selected according to a previous study [17].

2.2. scRNAseq Data Processing. The scRNAseq data analysis
was performed in R version 4.1.3 as follows: (1) Seurat R
package [18] was used to convert scRNAseq data as a Seurat
object, and “NormalizeData” were used to preprocess and
standardize the data; (2) the top 2000 highly variable genes
after quality control were selected by “FindVariableFea-
tures”; (3) principal component analysis (PCA) was per-
formed based on the 2000 genes to analyze the scRNAseq
data; (4) uniform manifold approximation and projection
(UMAP) was applied to explore the scRNAseq data; (5) a
total of 21 different cell types were defined according to
the original data and reference [19]; and (6) the “FindMar-
kers” function was used to find all markers of different cell
types with the criterion FDR < 0:05 and jlog 2FCj > 0:5.

2.3. ssGSEA Algorithm to Evaluate the Oxidative Stress
Functions. GO BP terms “RESPONSE_TO_OXIDATIVE_
STRESS” and “CELL_DEATH_IN_RESPONSE_TO_OXI-
DATIVE_STRESS” were downloaded from the MsigDB
database (https://www.gsea-msigdb.org/gsea/index.jsp) to
evaluate oxidative stress-related functions and the R package
“GSVA” to score each cell with the single-sample GSEA
(ssGSEA) algorithm, setting as abs:ranking = T and parallel
:sz = 3. The higher the total score, the higher the gene
expression of each sample.

2.4. Functional Enrichment and Pathway Analysis. Gene
Ontology (GO), Kyoto Encyclopedia of Genes and Genomes
(KEGG), and Gene Set Enrichment Analysis (GSEA) func-
tional enrichment analyses were performed using the cluster
profiler package [20]. Three categories were included in the
GO enrichment analysis, i.e., biological process (BP), cellular
component (CC), and molecular function (MF). Default
parameters are selected as the setting of “enrichgo” function,
“enrichkegg” function, and “GSEA” function.

2.5. Nonnegative Matrix Factorization (NMF) Algorithm to
Identify Molecular Subclasses. First, the differential genes
derived from normal cells and tumor cells were intersected
with OS-related genes. The significant prognostic genes in
LAML dataset were selected by univariate Cox regression.
Then, we used unsupervised NMF to cluster the data by
using the package “NMF,” with the standard “brunet” for
10 iterations. The cluster value K was set at 2 to 10, and
the optimal number of clusters was based on the cophenetic
correlation coefficient. The relationship among clusters,
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Figure 1: Continued.
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clinical variables, and hub genes gene expression was shown
by heatmap with R package “ComplexHeatmap.”

2.6. Construction and Validation of OS-Related Gene Risk
Model. To select hub genes based on the above candidate
genes, LASSO regression (LR) was first used selecting the
minimal lambda value. Bootstrap_multicox regression and
risk regression model were built according to the multivari-
ate analysis results, and the formula of the model was as fol-
lows:

Risk score =〠Coef i ∗Gene i
SD bootstrap

: ð1Þ

LAML dataset was treated as a training set, and
GSE106291 was treated as a validated set. Patients were clas-

sified into a high- or low-risk group according to the risk
score. Overall survival was defined as the endpoint. The R
package “glmnet,” “boot,” “survival,” “survminer,” and
“ggplot2” were used.

2.7. Selection of OS-Related Genes for Chemotherapy-
Sensitive Model. First, the differential genes derived from
AML-BC and AML-AC of the HSC-like population were
intersected with OS-related genes. Then, a support vector
machine (SVM) with “AvgRank” is sorted by the average
ranking of 10-folds; target genes are obtained according to
the best point of accuracy and error rate value. Random for-
est (RF) is used to select top 20 genes according to
importancescore > 2:25, and the parameters of LASSO
regression (LR) are nlambda = 100, alpha = 1, and nfolds =
10 in the “cv.glmnet” function sets. Then, select coef
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Figure 1: Single-cell profiling of AML patients and healthy donors. A total of 13593 cells and 21 cell types from 8 AML patients before and
after induction chemotherapy and 4 healthy BM samples of GSE11625 are visualized by UMAP (a). Cell type composition in normal and
AML patients before chemotherapy (b). Cell type composition in the AML-BC and AML-AC groups (c). Cell type composition in the
sensitive and nonsensitive groups (d).
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according to lambda.min, and finally, filter out the target
genes. The intersection of three machine learning genes is
used for constructing the therapy response predictive model.
After multivariate logistic regression model analysis, a model
formula was set.

2.8. Construction and Validation of a Chemotherapy-
Sensitive Model. GSE106291 was the training set, and 50%
of the samples were selected as the internal validation set
randomly. Patients were divided into two groups (high-risk
vs. low-risk group) according to the sensitive score. The
receiver operating characteristic (ROC) was used to evaluate
the model’s predictability.

2.9. Statistical Analysis. All statistical analyses were per-
formed in R version 4.1.3. LASSO regression and Cox
regression analyses were conducted by the “glmnet” pack-
ages. The Wilcoxon rank sum test was used to compare
the two groups. Contingency table variables were analyzed
by chi-square test or Fisher’s exact tests. Survival analysis
was conducted by the KM method and compared by log-
rank via “survival” packages. A two-tailed P value < 0.05
was indicative of a statistically significant difference.

3. Results

3.1. Single-Cell Profiling of AML Patients and Healthy
Donors. We integrated paired bone marrow scRNAseq
data from 8 newly diagnosed AML patients before and
after induction chemotherapy and 4 bone marrow samples
from healthy donors. A total of 27899 features and13593
cells were included in this study. Among the 8 AML
patients, AML 722B achieved morphological remission
after two courses of induction chemotherapy and was

included in the nonsensitive group; the left 7 AML
patients achieved morphological remission after one stan-
dard course of chemotherapy, and they were included in
the sensitive group. The cells of AML patients at initial
diagnosis were classified as AML before chemotherapy
(AML-BC) group, and the cells after induction chemother-
apy were treated as AML after chemotherapy (AML-AC)
group (Figure 1(a)). A total of 4625 malignant cells of
six cell types (HSC-like, progenitor-like, GMP-like, promo-
nocyte-like, monocyte-like, and cDC-like) were identified
according to the defined cell types [19]. We can observe
highly proliferative leukemia cells in AML patients and sup-
pressed immune cells in the TME, compared with normal
bone marrow samples (Figure 1(b)). Significant recovery of
hematopoietic and immune cells was seen in these patients
when they achieved morphological remission after induction
chemotherapy (Figure 1(c)). Although fewer cells are in the
nonsensitive group, differences in cell populations between
the sensitive group and nonsensitive group can be observed
(Figure 1(d)).

3.2. Differential Oxidative Stress Response in AML and
Chemotherapy-Induced Changes in HSC-Like Subgroup. To
assess oxidative stress in leukemia cells, we scored each cell
in the AML-BC group and cells from normal bone marrow
according to the relevant functional items. First, we evalu-
ated the “GOBP_ RESPONSE_TO_OXIDATIVE_STRESS”
and “GOBP_CELL_DEATH_IN_RESPONSE_TO_OXIDA-
TIVE_STRESS” of the two types of samples. We found that
normal cells have a higher response oxidative stress score
(P = 0:003) and higher cell death in response to oxidative
stress score than leukemia cells (P = 0:026) (Figures 2(a)
and 2(b)). In addition, to find the subgroup most sensitive
to oxidative stress caused by chemotherapy, we assessed

(e)

Figure 2: Differential oxidative stress functions in AML single cells. Normal cells have a higher response oxidative stress score (P = 0:003)
and higher cell death in response to oxidative stress score than AML cells (P = 0:026) (a, b). Higher cell death in response to oxidative stress
score in the AML-BC group than in the AML-AC group (P = 2:2e − 09) (c). Higher cell death in response to oxidative stress score in the
sensitive group than the nonsensitive group (P = 0:00023) (d). GO and KEGG enrichment analyses of DEGs of the HSC-like subgroup
pre- and postchemotherapy (e).
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the cell death in response to oxidative stress score of differ-
ent leukemia subgroups before and after treatment.
Although a significant difference in cell death in response
to oxidative stress score of leukemia cells before and after
chemotherapy was observed (P = 2:2e − 09) (Figure 2(c)),
there was no significant difference in the scores of various
leukemia cell subsets pre- and posttreatment (Supplementary
Figure 1). Furthermore, the sensitive group also showed
higher cell death in response to oxidative stress score than
the nonsensitive group (P = 0:00023) (Figure 2(d)). Given
that leukemia stem cells are the main source of drug
resistance and disease progression, it is of great significance
to explore the transcriptomic changes before and after
treatment. We enriched the DEGs of the HSC-like
subgroup pre- and posttreatment and found that these
DEGs are mainly involved in the regulation of mRNA
metabolic process, intrinsic apoptotic signaling pathway,
myeloid cell differentiation, and homeostasis, along with
the oxidative stress-related biological processes, and are
mainly enriched in the spliceosome, ribosome, Parkinson’s
disease, pathways of neurodegeneration (multiple diseases),
cellular senescence, and chemical carcinogenesis (reactive
oxygen species pathways). GSEA also showed an activated
OXIDATIVE_PHOSPHORYLATION pathway (P = 2e − 04)
(Figure 2(e) and Supplementary Figure 2). These results
implied that OS has taken part in the development of
AML, and the elimination of leukemic stem cell
populations is associated with chemotherapy-induced OS
response.

3.3. Oncogenesis-Related OS Gene Set A in AML Single Cells.
By intersecting the DEGs between initial leukemia cells and
normal cells with OS-related genes, we screened out 59 AML
oncogenesis-related OS genes, termed OS gene set A

(Figure 3(a)) (Supplementary Table 1). The functional
annotation also confirmed that these genes mainly take
part in response to oxidative stress, response to reactive
oxygen species, and some other redox-related pathways
(Figure 3(b)).

3.4. Identification Subclasses of OS Gene Set A in AML Bulk
RNAseq. To explore the possible mechanism of the above
genes involved in AML, we used the LAML dataset as a
training set to screen out 11 prognosis-related OS genes by
Cox regression and classify them into 2 clusters (C1 and
C2) according to the NMF cophenetic (Figures 3(c) and
3(d)). C2 showed a higher response to oxidative stress score
than C1 (P = 0:03) (Figure 4(a)). Then, we further explore
the relationship between the two clusters and the prognosis
of AML, patients in C2 have worse overall survival than
C1 (P < 0:001) (Figure 4(b)), and C2 also correlated with
some clinical risk factors (age, risk category, and status)
(Figure 4(c)) (Table 1). All of these suggest that these
two clusters have different molecular and biological char-
acteristics. The GSVA analysis of the two clusters group
showed the activated INFLAMMATORY_RESPONSE
pathway (P adjust = 2e − 04), IL6_JAK_STAT3_SIGNALING
(P adjust = 2e − 04), KRAS_SIGNALING_UP (P adjust =
9e − 04), and TNFA_SIGNALING_VIA_NFKB (P adjust =
9e − 04) (Figure 4(d)). All these confirmed the oncogenic
and prognostic roles of OS-related gene set A in AML.

3.5. Validation of the Prognostic Role of OS Gene Set A. To
further validate the relationship between OS gene set A
and prognosis, we used LASSO regression to get 6 hub genes
(AIF1, ELANE, ENO1, GPX1, MPO, and THBS1) related to
prognosis in the LAML dataset to construct a prognostic risk
model (Supplementary Figure 3). Then, we got the risk
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Figure 3: Identification of oncogenesis-related OS gene set A and function annotation. Cells of AML-BC and normal samples are visualized
by UMAP (a). GO and KEGG enrichment analyses of oncogenesis-related OS gene set A (b). NMF to classify subclasses of OS gene set A in
AML bulk RNAseq dataset LAML (c, d).
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Figure 4: Different biological and clinical features of clusters in oncogenesis-related OS gene set A. Higher response to oxidative stress score
by ssGSEA of C2 than C1 (P = 0:03) (a). AML patients in C2 have worse overall survival than C1 (P < 0:001) (b). The relationship between
subclasses, clinical variables, and hub genes gene expression is visualized by heatmap (c). The significant enriched pathways of the two
clusters by GSVA (d). AML patients in the high-risk score group have worse in LAML training dataset (P < 0:001) (e). AML patients in
High-risk score group have worse in GSE106291 validation dataset (P < 0:001) (f).
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model formula according to the coefficient of the bootstrap_
multicox model.

Risk score =〠Coef i ∗Gene i
SD bootstrap

: ð2Þ

AML patients are divided into a high-risk group and a
low-risk group according to the median of each score. We
found that patients have a different prognosis between the
two risk groups (P < 0:001) (Figure 4(e)). At last, this
survival difference was also validated in the GSE106291
dataset (P < 0:001) (Figure 4(f)).

3.6. Identification of Chemotherapy-Related OS Gene Set B in
AML Single Cells. To identify genes involved in
chemotherapy-induced OS, we intersected the DEGs before
and after chemotherapy of leukemia stem cell- (LSC-) like
cells (HSC-like) with OS-related genes; 44 chemotherapy-
related OS genes were screened out as OS gene set B
(Figure 5(a)) (Supplementary Table 2).

3.7. Construct a Sensitive Model to Predict Therapy Response
Based on OS Gene Set B in AML Bulk RNAseq. GSE106291
dataset was used as a training set. RF, SVM, and LASSO
regression models were used to select model genes for pre-

dicting therapy response. We performed the RF algorithm
to select a set of 20 candidate genes (Figures 5(b) and
5(c)), the LASSO algorithm to identify a set of 17 candidate
genes (Figure 5(d)), and the SVM algorithm to select a set of
25 candidate genes (Figure 5(e)). At last, we choose the
intersected 9 genes obtained by the above three machine
learning algorithms to construct a model for predicting
treatment response (Figure 5(f)). After multivariate logistic
regression model analysis, we got a sensitive score for each
patient according to the model formula.

3.8. Validation of the Predictive Role of OS Gene Set B.
Patients in the training set were divided into low- or high-
sensitive groups based on a value of 0.5. We used ROC to
evaluate the predictive accuracy of the model; the AUC of
the training set is 0.819 (Figure 6(a)). In addition, we found
that patients in the high-sensitive group have better overall
survival than patients in the low-sensitive group (P < 0:001)
(Figure 6(b)). Besides, some clinical variables, like age, gen-
der, and life status, are correlated with the sensitive score
(Figure 6(c)). After validation in the internal dataset, the
AUC of the ROC in the validation dataset is 0.784
(Figure 6(d)), and patients in the high-sensitive score group
are more sensitive to chemotherapy (Figure 6(e)). All these
supported the effective predictive ability of the model.

4. Discussion

High levels of ROS can either lead to the death of normal
cells through the process of programmed cell death or acti-
vate redox-sensitive transcription factors, like forkhead box
class O (FoxO) transcription factor, which can regulate cell
proliferation, apoptosis, and differentiation and lead to
tumor formation and cancer progression [21]. As a clonally
malignant disease, the role of OS in the pathogenesis of
AML is not fully understood. Previous studies reported that
the abnormal mutants in leukemia cells, like FIT3-ITD and
Ras (N-Ras and H-Ras), could increase the DNA double-
strand breaks and induce the production of superoxide,
which lead to the occurrence of leukemia and promote the
proliferation of these malignant cells [22, 23]. Conversely,
alterations of redox homeostasis in both normal and onco-
genic cells can lead to death. Studies have been initiated to
explore redox-related mechanisms and proteins to poten-
tially target leukemia cells. Cytarabine and azanucleoside
DNA methyltransferase (DNMT) inhibitors are widely used
in AML patients, which have been revealed to cause a sub-
stantial increase in ROS in both resting and leukemia cells
and trigger cell cycle arrest and apoptosis [24, 25]. There-
fore, improving the current understanding of the underlying
mechanisms of OS generation in leukemogenesis and anti-
oxidant therapy will facilitate the progress in AML risk strat-
ification and therapeutic area.

Benefit from the bulk RNAseq and scRNAseq technol-
ogy, we can interpret the genomic profile of disease at the
single-cell level. The normal cells have more response to oxi-
dative stress score and are more prone to oxidative stress-
induced cell death than leukemia cell populations in our
data, which was consistent with the high proliferation of

Table 1: The different clinical characteristics between the two
subtypes of OS gene set A.

Characteristics C1 C2 P value

Age (years) 0.002

<60 45 31

≥60 17 37

Gender 0.313

Female 31 28

Male 31 40

Risk category <0.001
Favorable 27 3

Intermediate/normal 27 46

Poor 8 19

Blast cells 0.17

≤70% 47 58

>70% 15 10

FAB <0.001
M0 2 10

M1 14 17

M2 17 14

M3 14 0

M4 13 14

M5 2 10

M6 0 2

M7 0 1

Status <0.001
Alive 37 15

Dead 25 53
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tumor cells and the character that tumor cells can produce
more peroxidative substances to escape the toxic effects of
ROS by-products [26]. Although our results showed a signif-
icant difference of cell death in response to oxidative stress
score between AML-BC and AML-AC groups, there is no
significant difference in different leukemia cell subsets,
which might be due to that the tumor microenvironment
includes immune cells, stromal cells, and soluble molecules
in addition to tumor cells, and the crosstalk network of these
components may affect the cellular response to oxidative
stress. In addition, a significant difference between the sensi-
tive group and the resistant group can be observed, which
also suggested that OS-induced cell death was related to che-
motherapy resistance. The maintenance of the quiescent
state of hematopoietic stem cells depends on the low
production of ROS and high antioxidant defense, while leu-
kemia stem cells are more sensitive to OS compared with
normal hematopoietic stem cells [27, 28]. The function
annotation results of different leukemia populations also
provided evidence that HSC-like populations play an
important role in the chemotherapeutic drug-induced OS.
Given the bidirectional effect of ROS, we screened the
oncogenesis-related OS gene set A and the chemotherapy-
related OS gene set B from the scRNAseq data. Both two
gene sets have biological processes, like response to oxida-
tive stress, response to reactive oxygen species, and some
other redox-related items by GO enrichment analysis. The
results of KEGG also suggested that the oncogenesis-
related gene set might involve cellular senescence, transcrip-
tional misregulation in cancer, HIF-1 signaling pathway,
and FoxO signaling pathway, which have been revealed by

previous studies to be involved in the tumorigenesis of
AML [29–32]. In addition, the PI3K-Akt signaling pathway
and NF-kappa B signaling pathway were enriched by the OS
gene set B. Growing evidence suggested that targeting PI3K-
Akt signaling pathway may represent an effective treatment
to kill AML LSCs [33, 34], and NF-kappa B inhibitor LC1
also showed an inhibitory effect on primary AML cells
in vitro [35].

The two different clusters of prognosis-related OS genes
displayed distinct molecular and clinical features. It seems
that the higher the oxidative stress score, the worse the prog-
nosis, and the higher oxidative stress score group was also
related to some clinical risk factors, like age and risk category
[36]. We found that these differential genes were mainly
enriched in the INFLAMMATORY_RESPONSE pathway,
IL6_JAK_STAT3_SIGNALING, KRAS_SIGNALING_UP,
and TNFA_SIGNALING_VIA_NFKB through GSVA anal-
ysis, which might be important targets for future antiperox-
idative therapy in AML. Notably, myeloperoxidase (MPO),
as a common marker to distinguish between the myeloid
and lymphoid lineages, was mainly expressed in the low oxi-
dative stress score group according to our result. Previous
contradictory study has addressed its clinical significance
in pediatric B-acute lymphoblastic leukemia (B-ALL)
patients [37], and Kuang et al. [38] identified MPO as a risk
gene in AML patients. This contradictory result may be due
to the discrepancy between individuals and the biological
functions of MPO involved in different pathways. In addi-
tion, we constructed a nine-OS-related gene signature that
can effectively predict the therapy response from the
chemotherapy-related OS gene set B by different machine
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Figure 6: The predictive role of OS gene set B. ROC to evaluate the predictive accuracy of the training dataset GSE106291 (AUC = 0:819)
(a). Patients in the high-sensitive group have better overall survival than patients in the low-sensitive group (P < 0:001) (b). The relationship
between high- and low-sensitive groups, clinical variables, and hub genes gene expression are visualized by heatmap (c). ROC to evaluate the
predictive accuracy of the internal validation of GSE106291 (AUC = 0:784) (d). Patients in the high-sensitive score group are more sensitive
to chemotherapy (e).
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learning methods. Among these genes, C-C chemokine
receptor type 7 (CCR7) encodes the protein CCR7, which
is a member of the G protein-coupled receptor (GPR) family
and expressed in various activated B and T lymphocytes, and
has lower expression in nonresponders compared to
responders involved in therapy resistance of AML which is
revealed by a recent study [39]. Interleukin 1 receptor type
I (IL1R1), also known as CD121a, is an important mediator
involved in many cytokine-induced immune and inflamma-
tory responses. Stratmann et al. [40] reported IL1R1 as a bio-
marker associated with AML progression and attenuated
cellular growth and disease progression in primary AML
cells, and AML murine models can be observed when sup-
pressing IL-1 signaling [41]. All these suggest that the
chemotherapy-related signature might involve the OS-
induced immune response and inflammation to mediate
chemotherapy resistance, and further stratified therapy
could be adapted according to our signature.

In conclusion, our study is the first one to combine
scRNAseq and bulk RNAseq data to construct two differ-
ent transcriptomic profiles to reveal the different roles of
OS-related genes involved in AML oncogenesis and che-
motherapy resistance, which not only provide potential
biological targets for the treatment of AML but also pro-
vide important insights into the mechanism of OS-
related genes in the pathogenesis and drug resistance of
AML. However, there are some limitations to our study.
First, the occurrence of AML and drug resistance are
closely related to the tumor microenvironment; our study
mainly focused on the leukemia cell populations while
not assessing the cell communication between leukemia
cells and tumor-infiltrating immune cells mediated by the
OS-related genes from the single-cell perspective. Second,
more AML cohorts with scRNAseq data, which contain
more patients with resistant information, should be
included to reveal the role of OS-related genes in AML
drug resistance. Third, further experiments should be done
to explore the roles of hub OS genes in AML.
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Hepatocellular carcinoma (HCC) is one of the most common malignant tumors with high morbidity and mortality. Therefore,
finding new diagnostic and therapeutic targets is vital for HCC patients. Recent studies have shown that dysregulation of
RNA-binding proteins is often associated with cancer progression. Several studies have reported that the RNA-binding protein
SSB can promote cancer occurrence and progression and is linked to tumor epithelial-mesenchymal transition (EMT), which
could be a new diagnostic marker and therapeutic target. However, the expression and function of SSB in HCC remain to be
elucidated. Therefore, this study is aimed at clarifying the expression and biological function of SSB in HCC through
bioinformatics analysis combined with in vitro experiments. We found that SSB is highly expressed in HCC and is associated
with the poor prognosis of HCC patients, and it can serve as an independent unfavorable prognostic factor. Knockdown of
SSB can inhibit the growth of HCC cells in vitro, increase the level of apoptosis and the expression of pro-apoptosis-related
proteins, and decrease the expression of antiapoptotic proteins. Meanwhile, SSB knockdown reduced HCC cell invasiveness,
and the expression of EMT-related proteins changed significantly. We also found that the gene SSB was associated with the
level of oxidative stress in liver cancer cells, and the level of intracellular reactive oxygen species (ROS) increased after
knockdown of SSB. The results of bioinformatics analysis also showed that high expression of SSB may affect the effect of
checkpoint blockade (ICB) therapy. In conclusion, we found that SSB is highly expressed in HCC and that upregulated SSB
can promote the proliferation and metastasis of HCC through antiapoptotic, altered intracellular oxidative stress level, and
EMT pathways, which can serve as a new diagnostic marker and therapeutic target, and patients with high SSB expression may
not have obvious ICB therapy effect.

1. Introduction

According to the most recent statistics, more than 8 million
new hepatocellular carcinoma (HCC) cases are diagnosed
yearly, causing more than 4 million deaths [1]. The inci-
dence of HCC is highest in Asia, especially in China, which
accounts for almost half of the global cases [2]. While several

therapies have been developed in recent years, including
liver transplantation, hepatectomy, targeted therapy, abla-
tion, and transcatheter arterial chemoembolization, the sur-
vival rate in HCC patients is only 18% for five years [3]. This
is mainly because the early clinical manifestations of HCC
patients are not apparent, and most treatments are limited
to early-stage patients. Thus, exploring novel therapeutic
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targets based on molecular biomarkers is urgently needed
for HCC patients, which is crucial for the survival of
HCC patients.

SSB, also known as RNA-binding protein La or La-
related protein 3 (LARP3), belongs to the LA-related protein
family and is an RNA-binding protein mainly expressed in
the nucleus [4, 5]. RNA-binding proteins (RBPs) participate
in posttranscriptional regulation, such as splicing, polyade-
nylation, and stabilization [6]. Abnormal posttranscriptional
regulatory processes may lead to tumorigenesis, and the
mechanisms underlying this have been elucidated, including
genomic changes and posttranscriptional modifications [6,
7]. RBPs also influence oncogenes and tumor suppressor
genes’ expression and function [8]. Studies have shown that
different members of LARP family are involved in the occur-
rence and progression of cancer [9]. The SSB is highly
expressed in various tumors, including chronic myelogenous
leukemia, ovarian cancer, and head and neck cancer
[10–12]. Aberrant expression of SSB proteins contributes
to increased cancer cell proliferation, migration, invasion,
and chemoresistance and promotes tumor growth in mice
[12–14]. In addition, the SSB protein has RNA chaperone
activity that promotes the processing of noncoding precur-
sor RNAs but also stimulates the translation of selective
mRNAs that encode cancer-promoting and antiapoptotic
genes [15]. Oxidative stress plays an important role in the
occurrence and development of cancer, and it also affects
the prognosis of patients [16]. Thus, SSB may also affect
the level of oxidative stress in tumor cells. However, there
are still few reports and in-depth studies on the role of SSB
in HCC. Therefore, the specific molecular mechanism of
SSB in HCC needs to be explored urgently.

This study is aimed at investigating the prognostic role
and cancer-promoting molecular mechanisms of SSB in
HCC to identify SSB as a potential therapeutic target for
HCC patients. Through bioinformatics analysis combined
with in vitro experiments, we confirmed for the first time
that SSB was significantly upregulated in HCC tissues and
correlated with poor prognosis. It could promote the
progression and metastasis of HCC through epithelial-
mesenchymal transition (EMT), altered intracellular oxida-
tive stress level, and antiapoptotic pathways and may affect
the efficacy of immunotherapy.

2. Materials and Methods

2.1. Data Acquisition. The transcriptome sequencing and
clinicopathological data were retrieved from TCGA-LIHC
dataset (https://www.portal.gdc.cancer.gov/), and GTEx data
(https://gtexportal.org/) was also downloaded. In addition,
the GSE121248 dataset was downloaded from Gene Expres-
sion Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/) for
external expression validation. The differential expression of
SSB protein in normal liver and HCC tissue was analyzed
using immunohistochemistry (IHC) data from the Human
Protein Atlas database (HPA, https://www.proteinatlas.org/).
In addition, we performed SSB pancancer expression and sur-
vival analysis using TIMER 2.0 (http://timer.cistrome.org/)
and GEPIA (http://gepia.cancer-pku.cn/) databases.

2.2. Independent Prognostic and Clinical Characteristic
Analysis of Gene SSB. The patients were divided into high-
and low-expression groups according to the median expres-
sion level of gene SSB. Survival analysis was performed using
Kaplan-Meier and log-rank tests. We also assessed the rela-
tionship between SSB and clinical characteristics such as
age, sex, stage, grade, and TNM stage. In addition, univariate
and multivariate Cox analyses were performed for SSB and
clinical characteristics to determine independent prognostic
indicators. Analyses were performed using R software’s
“survival” and “survminer” packages (v 4.0.2). P < 0:05 was
considered significant.

2.3. Gene Set Enrichment Analyses (GSEA). SSB expression
was classified into high- and low-expression phenotypes
based on the median value of gene SSB expression.
Enrichment analysis was performed with default parameter
settings. The random number set is 1000 times. The FDR
< 0:05 are significantly enriched in GSEA.

2.4. Cell Culture. The human normal liver cell line (L-02)
and hepatocarcinoma cell lines (HepG2 and SMMC-7721)
were purchased from ICell Bioscience Inc (Shanghai, China)
and the Cell Bank of the Chinese Academy of Sciences
(Shanghai, China). The L-02 and SMMC-7721 cell lines
were cultured in RPMI-1640 medium (Gibco, Grand Island,
USA), and HepG2 cell line was cultured in DMEM medium
(Gibco, Grand Island, USA) and all media containing 10%
fetal bovine serum (FBS, Gibco, Grand Island, USA) and
1% penicillin/streptomycin (Beyotime, Shanghai, China).
All cells were preserved in a humidified incubator (37°C,
5% CO2).

2.5. Transfection of Hepatocarcinoma Cell Lines. Tianjin
Medical University’s Basic Experiment Center extracted
and synthesized the pLKO.1-SSB knockdown and pLKO.1-
SSB (scramble) plasmid. Three different SSB short hairpin
RNAs (shRNAs) were designed and transfected into hepa-
toma cells using lentiviral packaging plasmids. The specific
information is as follows: sh-scramble (5′-TGTGAGGAA
CTTGAGATCT-3′), sh-SSB1 (5′-CCTGCATCCAAACA
ACAGAAA-3′) and sh-SSB2 (5′-GCTGAAATGAAATCTC
TAGAA-3′). The shSSB base sequence is based on previ-
ously studied and verified sequence information [17].

2.6. RNA Extraction and Quantitative Real-Time Polymerase
Reaction (qRT-PCR) Assay. A total RNA extraction kit
(Solarbio, Beijing, China) was used to extract total RNA
from cells following the manufacturer’s instructions. After-
ward, the RNA was quantified using the One-Step SYBR
Prime Script RT-PCR kit (Takara, Japan). The expression
of SSB was normalized to GAPDH and was analyzed using
the 2−△△CT method [18]. The sequence information of the
SSB primers is in Supplementary Table 1.

2.7. Cell Viability Assay. Cell viability was measured by cell
counting kit-8 (CCK-8, Boster, Wuhan, China) assay.
Following transfection, each group’s cells were seeded into
96-well plates (1 × 104 cells/well) and cultured in the
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incubator for 24, 48, and 72 h. After that, 10μL of CCK-8
was added to each well and placed in the incubator (37°C,
5% CO2) for 1 h. Then, the absorbance at 450 nm was mea-
sured using a microplate reader (EnSpire, USA).

2.8. Colony Formation Assay. Cells in each group were
digested with 0.25% trypsin, seeded into 6-well plates, and
cultured in a medium containing 10% FBS for two weeks.
When visible colonies were formed, cells were fixed in 20%
methanol for 10–15min, then stained with 0.1% crystal vio-
let for 10min at room temperature, and finally, the colonies
in each well were counted [19].

2.9. Wound Healing Assay. Cells from each group were
seeded into 6-well plates for 24h before replacing the
medium with a serum-free medium. The cells were
scratched with a yellow pipette tip and cultured for 48h.
The cells were photographed at 0, 6, 24, and 48h. Image-J
(V7.0) software was used to quantify the distance between
two edges of the wound surface at each time point.

2.10. Apoptosis Detection by Flow Cytometry. Cell apoptosis
was detected using the Annexin-V-FITC/PI Apoptosis
Detection Kit (Solarbio, Beijing, China). After digesting the
cells of each group, 500μL of binding buffer, 5μL of FITC-
Annexin V, and 5μL of PI working solution were added.
Then, the cells were incubated at room temperature in the
dark for 15min. Finally, the level of apoptosis was detected
by flow cytometry (BD Accuri C6 Plus, USA) [20]. Data
were processed using FlowJo (V10.0) software.

2.11. Cell Cycle Detection by Flow Cytometry. Cell cycle dis-
tribution was assessed using the Cell Cycle Detection Kit
(KeyGEN, Nanjing, China). Cells in each group were first
fixed with 70% ethanol at 4°C overnight, then collected by
centrifugation, mixed with 500μL of RNase A/PI working
solution, and incubated at room temperature for 30min.
Finally, flow cytometry was used for detection. Data were
processed using ModFit LT (V3.1) software.

2.12. Measurement of ROS Levels by Flow Cytometry. The
ROS levels were measured using the ROS assay kit (Solarbio,
Beijing, China). Briefly, cells were resuspended in a serum-
free medium containing 10mM DCFH-DA. Subsequently,
flow cytometry was performed to detect the DCF fluores-
cence intensity. Finally, the mean fluorescence intensity
(MFI) was calculated.

2.13. Transwell Assay. Cell invasion assays were performed
using a transwell cell culture chamber coated with Matrigel
(Corning Costar, Inc.) according to the manufacturer’s
instructions. First, the cells of each group were inoculated
in a serum-free medium in the upper chamber, and the
medium containing 20% FBS was filled in the lower cham-
ber. After that, cells were cultured in an incubator (37°C,
5% CO2) for 24 h. Transwell migration experiments are
similar to the above steps, except that Matrigel is not added
to the migration experiments. Data were processed using
ImageJ (V7.0) software.

2.14. Western Blotting. Total protein was extracted from cells
in each group using RIPA lysate (Solarbio, Beijing, China).
The protein concentration was measured by the BCA
(KeyGEN, Nanjing, China) method. Then, the proteins were
separated by SDS-PAGE (Boster, Wuhan, China). After the
target proteins were transferred to the nitrocellulose filter
(NC, Boster, Wuhan, China) membrane, it was blocked with
5% skimmed milk at room temperature for 1 h. Next, these
membranes were incubated with primary antibodies such
as SSB (1 : 1000, Boster, Wuhan, China), E-cadherin
(1 : 1000, Cell Signaling Technology, USA), N-cadherin
(1 : 1000, Cell Signaling Technology, USA), ZO-1 (1 : 3000,
Proteintech, Wuhan, China), Vimentin (1 : 1000, Immuno-
Way, USA), GAPDH (1 : 20000, Affinity Biosciences, China),
Caspase3 (1 : 1000, Santa Cruz, USA), BCL2 (1 : 1000,
Abcam, USA), BCLXL(1 : 1000, Abcam, USA), and BAX
(1 : 2000, Abcam, USA) overnight at 4°C. Subsequently, these
membranes were incubated with the corresponding second-
ary antibody for 1 h at room temperature. The membranes
were exposed using an imaging system (Bio-Rad, Hercules,
USA) and quantified using ImageJ (V7.0) software.

2.15. Estimation of Correlations between SSB Expression
Level and Immune Cells. Spearman’s correlation analysis
was used to describe the correlation between the SSB and
various immune cells. The correlation analyses between
SSB expression and immune cells were performed using
the R package “ggstatsplot” (v 4.0.2). P < 0:05 was consid-
ered significant.

2.16. Prediction of Immune Checkpoint Blockade (ICB)
Therapy Response. According to the median SSB expression,
HCC samples were divided into two groups, and Tumor
Immune Dysfunction and Exclusion (TIDE) algorithm was
used to predict the potential response of ICB in the two
groups [21].

2.17. Evaluation of the Relationship between SSB Expression
and Immune Checkpoint-Related Genes. SIGLEC15, TIGIT,
CD274, HAVCR2, PDCD1, CTLA4, LAG3, and PDCD1LG2
are genes related to immune checkpoints. The expression
values of these eight genes were extracted to clarify the rela-
tionship between immune checkpoint-related genes and SSB
expression. The above results were statistically analyzed by R
software (v 4.0.2). P < 0:05 was considered significant.

2.18. Statistical Analysis. The bioinformatics data analyses of
this study were performed using R software (v 4.0.2). The
Wilcoxon rank-sum test determined the comparison
between the two groups. Analysis of in vitro experimental
data was conducted using GraphPad Prism 8.0 statistical
software. A one-way analysis of variance (ANOVA) com-
pared the differences among three or more groups, and the
Student t-test evaluates the significance between the two
groups. P < 0:05 was considered to be statistically significant.

3. Results

3.1. SSB Is Upregulated in HCC and Associated with Poor
Prognosis of HCC Patients. A total of 374 tumor samples
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(TCGA) and 276 normal samples (TCGA +GTEx) were
obtained. In addition, 70 HCC and 37 normal samples were
obtained from the GEO database (GSE121248). As displayed

in Figure 1(a), in TCGA and GEO databases, SSB was highly
expressed in HCC tissues compared with normal samples
(P < 0:05). Survival analysis results suggested that patients
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Figure 1: SSB is highly expressed in HCC tissues or cells. (a) SSB is highly expressed in HCC tissues compared to normal tissues based on
TCGA and GEO databases. (b) High expression of SSB is associated with poor prognosis in HCC patients. (c) SSB is highly expressed in
HepG2 and SMMC-7721 HCC cells compared with normal hepatocyte L-02. (d) SSB is highly expressed in HCC tissues compared to
normal liver tissues based on the HPA IHC database. (e) qRT-PCR results showed that SSB expression was significantly upregulated in
HepG2 and SMMC-7721 cells compared with L-02 cells. Data are shown as mean ± SD. ∗P < 0:05.
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with high SSB expression had a poor prognosis (Kaplan-Meier
and log-rank test, P < 0:05, Figure 1(b)). In vitro experiments,
western blot, and qRT-PCR showed that SSB was highly
expressed in HCC cell lines HepG2 and SMMC-7721 com-
pared with normal liver cell line L-02 (P < 0:05, Figures 1(c)
and 1(e)). The IHC data of SSB inHCC tissues and normal tis-
sues were downloaded from the HPA database. The results are
depicted in Figure 1(d), SSB was highly expressed in HCC tis-
sues compared with normal liver tissues.

3.2. Evaluation of the Correlation between SSB Gene
Expression and Clinicopathological Characteristics. The clin-
ical information of patients in TCGA-LIHC cohort is shown
in Table 1. Increased SSB expression correlated with age
(P = 0:021, Figure 2(a)), histological grade (G3/G4 vs. G1/
G2, P = 0:0004, Figure 2(c)), T stage (T3/T4 vs. T1/T2, P =
0:0033, Figure 2(d)), N stage (P = 0:028, Figure 2(e)), and
AJCC stage (III/IV vs. I/II, P = 0:00032, Figure 2(g)). How-
ever, there was no correlation between gender, M stage,
and SSB expression (P > 0:05, Figures 2(b) and 2(f)).

3.3. SSB Is an Independent Prognostic Risk Factor and Is
Involved in Multiple Cancer-Related Signaling Pathways.
The potential KEGG pathway between high and low SSB
expression was analyzed using GSEA method. The results
are described in Figure 2(h). The high expression of SSB
enriches a variety of cancer-related signaling pathways, such
as “colorectal cancer,” “glioma,” “pancreatic cancer,” “small
cell and non-small-cell lung cancer,” and other cancer sig-
naling pathways. In addition, the high expression of SSB also
affects the cell cycle and enriches signaling pathways related
to cancer invasion and metastasis, such as “adherens junc-
tion” and “gap junction.” On the other hand, the low
expression of SSB mainly enriches the metabolism-related
signaling pathways.

Independent prognostic analyses of SSB and clinicopath-
ological characteristics were assessed using univariate and
multivariate Cox regression methods. Univariate Cox analy-
sis showed that AJCC stage, T stage, M stage, and SSB
expression were relevant to overall survival (all P < 0:05,
Figure 2(i)), and the multivariate Cox analysis showed that
only SSB expression was relevant to overall survival, which
also indicated that SSB was an independent prognostic fac-
tor (P < 0:05, Figure 2(j)).

3.4. Pancancer Analysis of SSB. The pancancer expression
analysis results are shown in Figure 3(a). SSB is differentially
expressed in other 14 cancer types (P < 0:05). In 9 of the 14
types of cancer, SSB was highly expressed in tumor tissues
compared to normal tissues, including urothelial bladder
carcinoma (BLCA), cholangiocarcinoma (CHOL), colon
adenocarcinoma (COAD), esophageal carcinoma (ESCA),
head and neck squamous cell carcinoma (HNSC), lung
adenocarcinoma (LUAD), lung squamous cell carcinoma
(LUSC), rectum adenocarcinoma (READ), and stomach
adenocarcinoma (STAD). In the remaining five cancer types,
SSB was lowly expressed in tumor tissues compared with
normal tissues or metastasis tissues, including kidney chro-
mophobe (KICH), kidney renal clear cell carcinoma (KIRC),

kidney renal papillary cell carcinoma (KIRP), skin cutaneous
melanoma (SKCM), and thyroid carcinoma (THCA).

According to the median value of SSB gene expression,
patients were divided into low- and high-expression groups,
and survival analysis was performed using Kaplan-Meier
and log-rank tests. The results of the SSB pancancer survival
analysis are illustrated in Figure 3(b). SSB has survival
significance in 6 cancer types (P < 0:05). The high expres-
sion of SSB in adrenocortical carcinoma (ACC), HNSC,
KIRP, brain lower grade glioma (LGG), and LUAD has
a poor prognosis, while high SSB expression in KIRC
has a good prognosis.

3.5. SSB Knockdown Inhibited the Proliferation and
Migration Ability of HepG2 and SMMC-7721 Cell Lines
and Increased Intracellular ROS Levels. Three types of
shRNA (sh-scramble, sh-SSB1, and sh-SSB2) were
designed to transfect HepG2 and SMMC-7721 cell lines.
The purpose of sh-SSB1 and sh-SSB2 is to knock down
the gene SSB. After determining the knockdown efficiency,
we performed the CCK-8 experiment. The results are
shown in Figures 4(a) and 4(b). In HepG2 and SMMC-

Table 1: The clinical characteristics in TCGA-LIHC cohort.

Parameter Type Patients

Status
Alive 241 (64.96%)

Dead 130 (35.04%)

Age
Mean (SD) 59.4 (13.5)

Median [Min, Max] 61 [16, 90]

Gender
Female 121 (32.61%)

Male 250 (67.39%)

Histologic grade

G1 55 (14.82%)

G2 178 (47.98%)

G3 120 (32.35%)

G4 13 (3.50%)

Unknown 5 (1.35%)

Pathologic M

M0 269 (72.51%)

M1 3 (0.81%)

Unknown 99 (26.68%)

Pathologic N

N0 253 (68.19%)

N1 4 (1.08%)

Unknown 114 (30.73%)

Pathologic T

T1 184 (49.60%)

T2 92 (24.80%)

T3 79 (21.29%)

T4 13 (3.50%)

Unknown 3 (0.81%)

AJCC stage

Stage I 174 (46.90%)

Stage II 85 (22.91%)

Stage III 84 (22.58%)

Stage IV 4 (1.08%)

Unknown 24 (6.53%)
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7721 cell lines, SSB expression was significantly reduced in
both sh-SSB1 and sh-SSB2 groups (P < 0:05) compared to
CON and sh-scramble groups, demonstrating that both
sh-SSB1 and sh-SSB2 have good knockdown efficiency.
The subsequent CCK8 experiments showed that in HepG2
and SMMC-7721 cell lines, knockdown of SSB could
significantly inhibit the proliferation of HCC cell lines
compared with CON and sh-scramble groups (P < 0:05,
Figures 4(c) and 4(d)). However, there was no significant
difference in cell viability between CON and sh-scramble
groups (P > 0:05).

We only selected sh-SSB1 as sh-SSB to knock down SSB
for subsequent in vitro experiments. The results of clone
formation experiments showed that in HepG2 and SMMC-
7721 cell lines, the number of cell clones formed after knock-
down of SSB was significantly lower than that in CON and
sh-scramble group cells (P < 0:05, Figure 4(e)). The results
of cell scratch experiments are shown in Figure 4(f). In
HepG2 and SMMC-7721 cell lines, there was no significant
difference in cell migration rates between groups at 6 hours
(P > 0:05), while at 24 and 48 hours, the cell migration rate
of the sh-SSB group was significantly lower than that of
the CON and sh-scramble groups (P < 0:05). The 24-hour
transwell migration assay confirmed that the cell migration
ability of the knockdown SSB group decreased (P < 0:05,
Supplementary Figure 1). In addition, we used flow
cytometry to detect the cell cycle of the cells in each group.
The results showed that in the HepG2 and SMMC-7721
cell lines, the proportion of cells in the proliferative G2
phase in the sh-SSB group decreased compared with that
in the CON and sh-scramble groups (P < 0:05, Figure 4(g)).

We used flow cytometry to detect ROS levels, and the
results showed that the intracellular ROS levels were
increased in hepatoma cells in the SSB knockdown group
compared with the CON and sh-scramble groups
(P < 0:05, Figure 4(h)).

3.6. Knockdown of SSB Promotes Apoptosis in HepG2 and
SMMC-7721 Cell Lines. After collecting the cells of each
group, the apoptosis level was detected by flow cytometry.

The results are shown in Figure 5(a). In the HepG2 and
SMMC-7721 cell lines, the apoptosis rate was increased in
the sh-SSB group compared with the CON and sh-scramble
groups (all P < 0:05). However, there was no significant
difference in apoptosis rate between the CON group and the
sh-scramble group (P > 0:05). In addition, we extracted the
total protein of each group of cells for western blot experi-
ments. The results showed that in HepG2 and SMMC-7721
cell lines, knockdown of SSB significantly increased the
expression of cleaved-Caspase3 and BAX proapoptotic
protein and decreased the antiapoptotic protein BCL2 and
BCLXL expression compared with the CON group and sh-
scramble group (P < 0:05, Figures 5(b) and 5(c)).

3.7. SSB Is Involved in the Invasion and Metastasis of HCC
through the EMT Pathway. Transwell invasion assay was
used to detect the effect of knockdown of SSB on the inva-
sion function of HepG2 and SMMC-7721 HCC cell lines.
The results are depicted in Figure 6(a). In HepG2 and
SMMC-7721 cells, the invasive ability of the cells after
knockdown of SSB decreased compared with CON and
sh-scramble groups (P < 0:05). In addition, we performed
western blot analysis to clarify the expression of EMT-
related proteins. The results are displayed in Figures 6(b)
and 6(c). In HepG2 and SMMC-7721 cells, after the
knockdown of SSB, the expression of N-cadherin, MMP-
2, MMP-9, Vimentin, and Snail proteins was decreased
compared with CON and sh-scramble groups, and the
expression of E-cadherin and ZO-1 proteins was increased
(P < 0:05).

3.8. High Expression of SSB May Affect the Effect of
Immunotherapy. The expression of SSB was negatively cor-
related with macrophages and NK cells but significantly pos-
itively correlated with CD4+T cells (P < 0:05, Figure 7(a)).
All eight immune checkpoint-related genes showed high
expression levels in patients with high SSB expression
(P < 0:05, Figure 7(b)). In TCGA-LIHC cohort, the high-
expression SSB group had significantly higher TIDE scores
than the low-expression group (P < 0:05, Figure 7(c)). As
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Figure 2: SSB is a prognostic risk factor involved in multiple cancer-related signaling pathways (a–g). The correlation of SSB expression
with clinicopathological variables. (h) GSEA suggests that SSB is involved in multiple cancer-related pathways. (i, j) Univariate and
multivariate Cox analyses confirmed SSB as an independent prognostic risk factor.
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Figure 3: Expression and Kaplan-Meier survival analysis of SSB in pancancer. (a) SSB pancancer expression analysis. (b) Kaplan-Meier
survival analysis of SSB in pancancer.
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Figure 4: Continued.
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judged by the TIDE score, patients with high expression of
SSB may be insensitive to ICB treatment. In other words,
patients with low expression of SSB may be more sensitive
to ICB treatment.

4. Discussion

HCC remains a disease with a poor prognosis and high mor-
tality due to its high late diagnosis rate, metastasis rate, and
rapid malignant progression [22]. However, early diagnosis
and effective treatment measures can significantly improve
the survival rate of HCC patients. Therefore, it is vital to find
new diagnostic markers and therapeutic targets for the early
progression of HCC [23, 24]. In recent years, due to the
rapid development of omics technology, we have gained a
deeper understanding of the pathogenesis, diagnosis, and
treatment of HCC [25].

In this study, we first analyzed the transcriptome data of
HCC samples in TCGA database, concluding that SSB is
highly expressed in HCC tissues and is an independent
prognostic risk factor for HCC patients. Afterward, we veri-
fied the expression of SSB using GEO and HPA IHC data-
bases. Furthermore, we used western blot and qRT-PCR
assays to confirm the high expression of SSB in HCC. SSB
expression and clinicopathological characteristics of HCC
patients were analyzed by univariate and multivariate Cox
analysis, suggesting that SSB was an independent prognostic
risk factor. In addition, GSEA suggested that the high
expression of SSB was associated with different tumor-
related signaling pathways. The pancancer research project
was initiated by TCGA in 2012, and this research relies on
multiomics high-throughput database information mining
to find the similarities and differences among tumors and

provide guidance for the subsequent diagnosis, prognosis,
and other treatment plans of tumors [26]. We subsequently
performed pancancer expression and survival analysis of
SSB, and the results showed that SSB was upregulated in
multiple cancers and affected patient prognosis, which was
also consistent with previous studies [10–12]. Although the
incidence of different cancers and the depth of research are
inconsistent, through pancancer analysis, the mechanism,
and effective drugs can be compared in-depth, and the same
target can be used for different cancers. In this study, we
mainly studied the prognostic significance and related mech-
anisms of SSB in patients with liver cancer and proved that
the high expression of SSB is not conducive to the prognosis
of patients. From the perspective of HCC treatment, specific
antibodies can be designed to try to block the function of
target molecules such as SSB, to achieve the possibility of
treatment and prevention of migration and recurrence. Now,
the development of tumor therapeutic drugs has crossed the
boundaries of tumor tissue types, and the development of spe-
cific drugs for the target molecules of pancancer analysis can
treat a variety of cancers of different tissue origins.

To further explore the biological function of SSB in HCC
cells, we knocked down SSB in two HCC cell lines (HepG2
and SMMC-7721). The results showed that after the knock-
down of SSB, the proliferation ability of HepG2 and SMMC-
7721 HCC cell lines decreased, and the cell cycle results also
showed that the proportion of cells in the proliferative phase
decreased. Apoptosis is a form of programmed cell death that
plays a crucial role in homeostasis, infection, injury, and clear-
ance of senescent cells [27]. After the knockdown of SSB, the
level of apoptosis increased, the expression levels of anti-
apoptotic-related proteins decreased, and the expression levels
of pro-apoptotic-related proteins increased in HCC cells. This
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Figure 4: SSB promoted HepG2 and SMMC-7721 cell proliferation in vitro. (a, b) The knockdown efficiency of SSB in hepatoma cell lines
HepG2 and SMMC-7721. (c, d) The cell viability of hepatoma cell lines SMMC-7721 and HepG2 decreased after SSB knockdown. (e) Cell
clone formation assay showed that the proliferation of hepatoma cells decreased after the knockdown of SSB. (f) Cell scratch assay showed
that hepatoma cell migration ability decreased after the knockdown of SSB. (g) The flow cytometry cell cycle results showed that the
proportion of cells in the proliferative phase decreased after the knockdown of SSB. (h) The levels of ROS in hepatocellular carcinoma
cell lines increased after SSB knockdown. Data are shown as mean ± SD. ∗ refers to a statistically significant difference in the sh-SSB
group compared to the CON group, P < 0:05. # refers to the statistically significant difference in the sh-SSB group compared to the
sh-scramble group, P < 0:05. NS: no statistical difference.
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Figure 5: Knockdown of SSB can promote the apoptosis of HCC cells. (a) After the knockdown of SSB, the level of apoptosis in hepatoma
cell lines HepG2 and SMMC-7721 increased. (b) Expression of apoptosis-related proteins in hepatoma cell line HepG2. (c) Expression of
apoptosis-related proteins in hepatoma cell line SMMC-7721. Data are shown as mean ± SD. ∗ refers to a statistically significant
difference in the sh-SSB group compared to the CON group, P < 0:05. # refers to the statistically significant difference in the sh-SSB
group compared to the sh-scramble group, P < 0:05. NS: no statistical difference.
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Figure 6: SSB can promote the invasion of hepatoma cells through the EMT pathway. (a) Cell invasion assay of HepG2 and SMMC-7721
cells. (b) EMT-related protein expression in the hepatoma cell line HepG2. (c) Expression of EMT-related proteins in hepatoma cell line
SMMC-7721. Data are shown as mean ± SD. ∗ refers to a statistically significant difference in the sh-SSB group compared to the CON
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also indicates that the gene SSB may promote the proliferation
of HCC cells through the antiapoptotic pathway.

Oxidative stress is associated with many physiological
and pathological processes [28, 29]. Disruption of cellular
oxidative stress homeostasis has been shown to be associated
with the development of HCC [30, 31]. Related studies have
shown that ROS play multiple roles in cancer [16, 32, 33].
On the one hand, ROS is crucial for cancer cell survival
and tumor growth, and on the other hand, excess ROS can
lead to cancer cell death [34]. Importantly, tumor cells utilize
cellular antioxidant systems to counteract the prodeath
effects of ROS. There is increasing evidence that proteins

with antioxidant activity are involved in tumorigenesis and
metastasis [35]. By conducting a series of experiments, we
verified that modulation of SSB affects ROS levels and may
thereby lead to the proliferation and metastasis of HCC.

Epithelial-mesenchymal transition (EMT) is the biologi-
cal process of transforming epithelial cells into cells with a
mesenchymal phenotype through a specific program. It
plays a vital role in embryonic development, chronic inflam-
mation, tissue remodeling, cancer metastasis, and various
fibrotic diseases [36–38]. In addition, studies have shown
that the malignant progression of many cancer types is likely
to depend entirely on the activation of EMT in tumor cells
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[39–41]. After EMT activation, E-cadherin and ZO-1 were
inhibited, resulting in loss of epithelial cell morphology.
The cells change to a spindle-shaped mesenchymal mor-
phology and express markers associated with the mesenchy-
mal cell state, such as N-cadherin, Vimentin, and fibronectin
[42, 43]. Previous studies have shown that the gene SSB is
associated with EMT, and the motility and invasion ability
of squamous cell carcinoma cells are decreased after knock-
down of SSB, and the expression of matrix metalloproteinase
2 (MMP-2) protein is significantly decreased [12, 17].

Tumor invasion and metastasis are a complex, continuous
process involving multiple molecules, especially matrix metal-
loproteinases (MMPs) [44]. Degradation of basement mem-
brane and extracellular matrix (ECM) by MMPs promotes
tumor cell invasion and proliferation [45]. MMP-2 and
MMP-9, among all MMP members, have been linked to
tumor metastasis [46, 47]. Therefore, the invasive ability of
tumor cells should be proportional to the expression of
MMP-2 and MMP-9. Snail is an essential inducer of EMT
and can strongly inhibit the expression of E-cadherin [48].
In addition, studies have revealed that Snail expression levels
are elevated in metastatic lesions of ovarian cancer [49]. In
the present study, we confirmed by transwell invasion assay
that the invasive ability of HepG2 and SMMC-7721 cell lines
was decreased after SSB knockdown. Afterward, a western blot
was performed to detect the expression of EMT marker pro-
teins. The results showed that after the knockdown of SSB,
the expression of epithelial marker protein N-cadherin
decreased, E-cadherin and other mesenchymal proteins
increased, andMMP-2 andMMP-9 expression also decreased.
This is also consistent with the results of previous studies. All
the above results indicate that SSB can participate in the inva-
sion and progression of HCC through the EMT pathway.

ICB therapy has revolutionized the treatment of cancer
in humans, and it can significantly improve patient out-
comes by reversing the immunosuppressive microenviron-
ment by reducing the likelihood of tumor immune escape
[50, 51]. TIDE uses a panel of gene expression signatures
to assess two distinct tumor immune escape mechanisms,
including tumor-infiltrating cytotoxic T lymphocyte (CTL)
dysfunction and CTL rejection by immunosuppressive fac-
tors. The higher the TIDE prediction score, the higher the
possibility of immune evasion, indicating that patients are
less likely to benefit from ICB treatment [21]. To further
evaluate the potential immune mechanism of SSB in LIHC,
we analyzed the level of SSB-related immune infiltration.
The results showed that the level of SSB expression was pos-
itively correlated with the infiltration level of CD4+ T cells in
LIHC. In addition, the expression of SSB was negatively cor-
related with macrophages and NK cells. We investigated the
association of SSB with immune checkpoints, including
SIGLEC15, TIGIT, CTLA4, CD274, HAVCR2, LAG3,
PDCD1, and PDCD1LG2, which are associated with ICB
responses. PD-1, CTLA4, LAG3, and HAVCR2 are T cell
depletion markers [52], and the T cell depletion is a major
factor contributing to immune dysfunction in cancer
patients. In this study, all these marker genes were positively
correlated with SSB expression in LIHC. Since high expres-
sion of immune checkpoints is associated with T cell exhaus-

tion and poor prognosis, this also partially explains the
cancer-promoting role of SSB. The TIDE score of the high-
expressing SSB group was higher, which also suggested that
it is not suitable for ICB treatment in the HCC patients with
high SSB expression.

In conclusion, we confirmed that SSB is highly expressed
in HCC tissues, which is a prooncogene and may be involved
in the proliferation, invasion, and metastasis of HCC through
antiapoptosis, changing the level of cellular oxidative stress,
and EMT pathway. We have demonstrated for the first time
that the gene SSB can affect the level of cellular oxidative stress
and it can be used as a new target for the diagnosis and treat-
ment of HCC patients. However, HCC patients with high SSB
expression may be insensitive to ICB therapy.
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Objective. Ferroptosis, a newly identified form of cell death, plays critical roles in the development and chemoresistance of lung
cancer. Tripartite motif 6 (TRIM6) acts as an E3-ubiquitin ligase and can promote the progression of human colorectal cancer.
The present study is aimed at investigating its role and potential mechanisms in lung cancer. Methods. Lentiviral vectors were
used to overexpress or knock down TRIM6 in human lung cancer cells. Cell survival, colony formation, lipid peroxidation,
intracellular iron levels, and other ferroptotic markers were examined. The role of TRIM6 on ferroptosis and chemosensitivity
was further tested in mouse tumor xenograft models. Results. TRIM6 was highly expressed in human lung cancer tissues and
cells, and its expression in the lung cancer cells was further increased by ferroptotic stimulation. TRIM6 overexpression
inhibited, while TRIM6 silence promoted erastin- and RSL3-induced glutaminolysis and ferroptosis in the lung cancer cells.
Mechanistically, TRIM6 directly interacted with solute carrier family 1 member 5 to promote its ubiquitination and
degradation, thereby inhibiting glutamine import, glutaminolysis, lipid peroxidation, and ferroptotic cell death. Moreover, we
observed that TRIM6 overexpression reduced the chemotherapeutic effects of cisplatin and paclitaxel. In contrast, TRIM6
silence sensitized human lung cancer cells to cisplatin and paclitaxel in vivo and in vitro. Conclusion. Our findings for the first
time define TRIM6 as a negative regulator of ferroptosis in the lung cancer cells, and TRIM6 overexpression enhances the
resistance of human lung cancer cells to chemotherapeutic drugs. Overall, targeting TRIM6 may help to establish novel
strategies to treat lung cancer.

1. Introduction

Lung cancer is the leading cause of cancer mortality world-
wide, and most patients are diagnosed at the advanced stages,
with very poor prognosis [1–5]. Cell death plays an impor-
tant role in regulating tumor growth, progression, and che-
motherapeutic response. Ferroptosis is a newly discovered
nonapoptotic death mode that involves the accumulation of
lipid reactive oxygen species (ROS) and subsequent depletion
of plasma membrane polyunsaturated fatty acids [6–10].
Glutathione (GSH) and the associated glutathione peroxi-
dase 4 (GPX4) are intracellular antioxidant defenses to scav-
enge the toxic lipid ROS [11]. In contrast, iron donates

electrons to oxygen to accelerate lipid ROS formation and
ferroptosis [12]. Accordingly, lipophilic or membrane imper-
meable iron chelators notably prevent lethal lipid peroxida-
tion and ferroptosis [11, 13]. L-Glutamine (Gln) is a major
nitrogen source for the synthesis of amino acids, nucleotides,
and lipids and also provides carbon source for the tricarbox-
ylic acid (TCA) cycle and cellular energetics, which is
required for the growth of cancer cells [14]. Yet, recent find-
ings have found that glutaminolysis promotes productions of
oxidizable lipids via the TCA cycle and eventually facilitates
ferroptosis [15, 16]. Gln is imported inside the cells by solute
carrier family 1 member 5 (SLC1A5) and SLC38A1, con-
verted into glutamate (Glu) by glutaminases (GLS), and then
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metabolized into alpha-ketoglutarate (α-KG) by either gluta-
mate dehydrogenase- (GLUD1-) mediated glutamate deami-
nation or glutamic-oxaloacetic transaminase 1 (GOT1-)
mediated transamination [15]. And supplementing α-KG
can fuel both energetic and anabolic pathways, mimicking
Gln-mediated ferroptotic induction. Therefore, targeting fer-
roptosis may develop novel therapeutic approaches to treat
lung cancer.

Ubiquitination acts as a pivotal posttranslational modifi-
cation for various proteins. During ubiquitination, polyubi-
quitin (Ub) chains are attached to the targeted proteins by
E1 Ub-activating enzymes, E2 Ub-conjugating enzymes,
and E3 Ub-ligases, which then mediate the proteasomal deg-
radation of these proteins [17–20]. Tripartite motif (TRIM)
proteins are a family of E3 Ub-ligases and implicated in car-
cinogenesis and chemoresistance of diverse cancers [21–23].
TRIM6, a member of TRIM proteins, plays critical roles in
regulating interferon signaling and antiviral responses [24,
25]. Results from Zeng et al. demonstrated that TRIM6
aggravated cardiomyocyte apoptosis and myocardial ische-
mia/reperfusion injury [26]. TRIM6 could also interact with
protooncogenic Myc to maintain the pluripotency of mouse
embryonic stem cells [27]. Moreover, Zheng et al. recently
observed that TRIM6 was upregulated in human colorectal
cancer (CRC) samples and that TRIM6 overexpression pro-
moted proliferation and chemoresistance of CRC cells [28].
These findings identify TRIM6 as a promising therapeutic
target of lung cancer.

2. Materials and Methods

2.1. Antibodies and Chemicals. Anti-TRIM6 (#11953-1-AP)
and anti-glyceraldehyde-3-phosphate dehydrogenase
(GAPDH, #10494-1-AP) were purchased from Proteintech
(Chicago, IL, USA). Anti-GPX4 (#ab125066), anti-SLC7A11
(xCT, #ab37185), anti-SLC3A2 (CD98, #ab108300), anti-
glutathione synthetase (GSS, #ab124811), anti-transferrin (Tf,
#ab109503), anti-Tf receptor (TfR, #ab84036), anti-nuclear fac-
tor E2-related factor 2 (NRF2, #ab137550), anti-SLC1A5
(#ab237704), and anti-SLC38A1 (#ab60145) were purchased
from Abcam (Cambridge, UK), while anti-ferroportin (FPN,
#NBP1-21502) was obtained from Novus Biologicals (Littleton,
Colorado, USA). Erastin (#S7242), RSL3 (#S8155), ferrostain-1
(Fer-1, #S7243), and liproxstatin-1 (Lip-1, #S7699) were
obtained from Selleck Chemicals (Houston, TX, USA). 2′,7′-
dichlorofluorescin diacetate (DCFH-DA, #D6883), superox-
ide anion assay kit (#CS1000), GSH assay kits (#CS0206),
α-KG (#349631), L-γ-glutamyl transpeptidase substrate
(SLC1A5 inhibitor; GPNA, #G1135), compound 968 (GLS
inhibitor; 968, #352010), bis-2-(5-phenylacetamido-1,3,4-thia-
diazol-2-yl) ethyl sulfide (GLS1 inhibitor; BPTES, #SML0601),
amino oxyacetate (pan-transaminase inhibitor; AOA,
#C13408), cycloheximide (protein synthesis inhibitor; CHX,
#01810), MG132 (proteasome inhibitor, #M7449), cisplatin
(DDP, #P4394), and paclitaxel (PTX, #1491332) were pur-
chased from Sigma-Aldrich (St. Louis, MO, USA). BODIPY™
581/591 C11 (BODIPY, #D3861) and tetramethylrhodamine
ethyl ester (TMRE, #T669) were obtained from Invitrogen
(Carlsbad, CA, USA). Malondialdehyde (MDA) assay kits

(#ab118970) were purchased from Abcam (Cambridge, UK),
while CellTiter 96® AQueous One Solution Cell Proliferation
Assay kit (MTS assay, #G3582) was obtained from Promega
(Madison, WI, USA). Lentivirus carrying the short hairpin
RNA sequences against human TRIM6 (TRIM6-KD #1 and
TRIM6-KD #2), human SLC1A5 (SLC1A5-KD), or the control
sequence (CTRL-KD) were generated by Gene Pharma Corpo-
ration (Shanghai, China). For TRIM6 overexpression, human
TRIM6 cDNA (TRIM6-OE), human SLC1A5 cDNA
(SLC1A5-OE), or a negative control (CTRL-OE) sequence was
cloned into the lentiviral vectors by Gene Pharma Corporation
(Shanghai, China).

2.2. Cell Culture. Human lung cancer cell lines A549, H358,
H460, H1299, PC9, and SPC-A-1 and normal human lung
epithelial cell BEAS-2B were purchased from American
Type Culture Collection and cultured in DMEM medium
supplemented with 10% fetal bovine serum (FBS) and 1%
antibiotics at 37°C under the humidified atmosphere
[29–31]. The cells were preinfected for 12 h with lentiviral
vectors carrying two different interfering sequences against
TRIM6 at a multiplicity of infection (MOI) of 50 to silence
endogenous TRIM6 or with TRIM6-OE virus (MOI = 20)
to overexpress TRIM6. And then, the cells were maintained
in fresh medium containing 10% FBS for an additional 24 h
before further treatment. To induce ferroptosis, the cells
were incubated with erastin (5μmol/L) or RSL3 (2μmol/L)
for 24h after TRIM6 genetic manipulation except special
annotation [32]. For ferroptosis suppression, Fer-1
(1μmol/L) or Lip-1 (0.2μmol/L) was added at 8 h before
erastin or RSL3 treatment [33]. In addition, the cells were
treated with GPNA (5mmol/L), 968 (20μmol/L), BPTES
(10μmol/L), or AOA (0.5mmol/L) at 8 h before erastin or
RSL3 stimulation to inhibit Gln uptake or metabolism in
the presence or absence of α-KG (4mmol/L) [15, 16]. For
SLC1A5 overexpression or silence, the cells were preinfected
with SLC1A5-OE (MOI = 20) or SLC1A5-KD (MOI = 50)
for 12h before TRIM6 genetic manipulation. In a separated
study, the cells were infected with TRIM6-OE (MOI = 20) or
CTRL-OE for 12h and then cultured in normal medium for
an addition 24 h, followed by a stimulation with CHX
(20mmol/L) for indicating times [28]. To clarify the role of
TRIM6 on chemosensitivity in human lung cancer cells,
the cells were treated with DDP (20μmol/L) or PTX
(0.3μmol/L) for 12 h after TRIM6 genetic manipulation [34].

2.3. Cell Survival Assay. Cell survival was determined using
the CellTiter 96® AQueous One Solution Cell Proliferation
Assay kit (MTS assay) [32]. Briefly, the cells (approximately
200 cells in 96-well plates) were incubated with CellTiter 96®
AQueous One Solution Reagent (20μL per 100μL medium)
at 37°C for 2 h under the humidified atmosphere, and then,
the absorbance was recorded at 490nm using a 96-well plate
reader.

2.4. Colony Formation Assay. For colony formation assay,
the cells were seeded into the 6-well plates and incubated
for 14 days with the colonies stained by 0.1% crystal violet.
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Next, the colonies were carefully rinsed with tap water and
dried at room temperature, and the colonies with a diameter
more than 0.05mm were counted by ImageJ software in a
blinded manner [32, 35, 36].

2.5. Measurements of Intracellular ROS and Lipid
Peroxidation. Intracellular ROS production was measured
using the nonfluorescent DCFH-DA reagent that could be
converted to the fluorescent DCF by free radicals [37–39].
In brief, the cells were homogenized in the assay buffer
and then incubated with DCFH-DA (10μmol/L) at 37°C
for 30min. The fluorescent intensity was examined using a
spectrofluorometer with an excitation/emission wavelength
at 488/525 nm. To detect lipid ROS level, the cells were incu-
bated with BODIPY (10μmol/L) at 37°C for 30min and the
fluorescent intensity was recorded by the simultaneous
acquisition of green signals (484/510 nm) and red signals
(581/610 nm) using the BD FACSAria cytometer [32]. Intra-
cellular MDA content was assessed using the commercial kit
following the manufacturer’s instructions, and the absor-
bance was measured at 532nm [32, 40].

2.6. Evaluations of GSH Level and GPX4 Activity. Intracellu-
lar GSH level was evaluated with a commercial kit according
to the manufacturer’s protocols and assayed colorimetrically
at 412nm. Relative GPX4 activity was determined using the
HPTLC method according to previous studies [11, 41]. In
brief, the cells were lysed in the reaction buffer, and the
supernatants were collected to incubate with 7α cholesterol
hydroperoxide (100μmol/L) at 37°C. Next, the peroxides
were extracted for HPTLC analysis, and analytes were
scanned and quantified using ImageJ software.

2.7. Detections of Superoxide Anion Generation and
Mitochondrial Membrane Potential (MMP). Superoxide
anion generation was assessed with a superoxide anion assay
kit via referring to the standard protocols. Briefly, the cells
were incubated with luminol solution (5μL) and enhancer
solution (5μL) at 37°C for 15min, and then, the lumines-
cence intensity was immediately measured. MMP was mea-
sured by incubating the cells with TMRE (200 nmol/L) at
37°C for 20min, and the fluorescence intensity of TMRE
was determined at 582nm [42].

2.8. Iron Assay. Labile iron pool (LIP) was measured by the
calcein-acetoxymethyl ester method [43]. In brief, intracellu-
lar LIP was loaded with calcein (2μmol/L) at 37°C for
30min, and then, the calcein was removed from iron by
deferoxamine (100μmol/L). The changes of fluorescence
intensity with or without deferoxamine incubation at an
excitation/emission wavelength of 485/535 nm were quanti-
fied as the amount of LIP. Ferrous iron (Fe2+) levels were
quantified at 593nm using a commercial kit.

2.9. Protein Extraction, Immunoblots (IB), and
Immunoprecipitation (IP). Cells were lysed in the RIPA lysis
buffer containing protease/phosphatase inhibitor cocktail at
4°C, and total protein concentrations were determined by
the bicinchoninic acid kit [44–46]. Then, equal amounts of
proteins were separated by sodium dodecyl sulfate/poly-

acrylamide gels (SDS-PAGE) and electrotransferred to the
polyvinylidene difluoride membranes, followed by an incu-
bation with 5% nonfat dried milk to block nonspecific bind-
ing. Next, the membranes were incubated with primary
antibodies at 4°C overnight and stained by the secondary
antibodies at room temperature for an additional 1 h. After
that, protein bands were visualized with an ECL reagent
and analyzed using the ImageJ software. For IP assay, cells
were lysed in IP lysis buffer, and then, the lysates were incu-
bated with indicating primary antibodies or IgG at 4°C over-
night with gentle shaking, followed by the incubation with
Protein A/G-agarose beads at room temperature for an addi-
tional 2 h. The immunoprecipitated proteins were subse-
quently washed for 5 times using the lysis buffer and
boiled before SDS-PAGE electrophoresis.

2.10. RNA Purification and Quantitative Real-Time PCR.
Total RNA was extracted using TRIzol reagent and then
converted to cDNA using oligo (dT) primers. Quantitative
real-time PCR was performed using QuantiNova SYBR
Green PCR Kit (Qiagen; Hamburg, Germany) and normal-
ized to GAPDH gene expression [47, 48].

2.11. Gln Uptake Assay.Gln uptake assay was performed using
the [3H]-L-Gln according to a previous study [15]. In brief, the
cells were incubated with [3H]-L-Gln (200nmol/L) in Gln-free
medium at 37°C for 15min, which were then harvested for
Gln measurements using a liquid scintillation counter.

2.12. Ubiquitination Assay In Vivo and In Vitro. For the in vivo
ubiquitination assay, HEK293T cells were transfected with indi-
cating plasmids for 48h, and then, the cells were harvested in
lysis buffer. Next, the samples were incubated with HA beads
at 4°C for 2h and then subjected to IP assay. For the in vitro
ubiquitination assay, purified HA-SLC1A5 proteins were incu-
bated with E1, E2 enzymes and human recombinant Ubwith or
without Flag-TRIM6 proteins in ubiquitination reaction buffer
(Boston Biochem) at 30°C for 90min, and then, the samples
were prepared for IP assay [49, 50].

2.13. Mouse Xenograft Tumor Model. All animal experiments
were approved by the Animal Ethics Committee of Renmin
Hospital of Wuhan University and also complied with the
Animal Research: Reporting of In Vivo Experiments (ARRIVE)
guidelines. 5 × 106 TRIM6-manipulated H460 or PC9 cells
were subcutaneously inoculated into the right flank of athymic
BALB/c nude mice (4-5 weeks old), and the tumor parameters
were calculated 4 weeks after cell inoculation [15]. To validate
the role of TRIM6 on chemosensitivity, tumor-bearing mice
received intraperitoneal injections of DDP (5mg/kg) or PTX
(15mg/kg) for 3 times every other day at the last week before
study termination [51].

2.14. Human Tissue Samples. Lung adenocarcinoma
(ADC), squamous cell cancer (SCC), and corresponding
adjacent normal tissues (ANT) were obtained from the
patients without neoadjuvant or adjuvant therapies after
written informed consent signed. ANT was obtained from
the same patients and was at least 3 cm away from the
tumor tissue. This study was approved by the Institutional
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Review Board of Renmin Hospital of Wuhan University
and conformed to the principles outlined in the Declara-
tion of Helsinki.

2.15. Statistical Analysis. All data are reported as the mean
± SD, and P < 0:05 was considered statistically significant.
Differences between two groups were compared using Stu-
dent’s two-tailed t-test, while one-way ANOVA followed
by the Tukey post hoc test was applied for comparison of
multiple groups. All statistical analyses were performed
using SPSS 19.0 software in a blinded manner.

3. Results

3.1. TRIM6 Expression in the Lung Cancer Samples Is
Increased upon Ferroptotic Stimulation. We first compared
TRIM6 expression in human lung cancer tissues and corre-
sponding ANT. As shown in Figures 1(a) and 1(b), human
lung ADC and SCC tissues exhibited higher TRIM6 expres-
sion. Besides, TRIM6 mRNA levels were also increased in
serials of the lung cancer cell lines (A549, H358, H460,
H1299, PC9, and SPC-A-1) in comparison with the normal
human lung epithelial cell BEAS-2B (Figure 1(c)). Besides,
we found that TRIM6 mRNA expressions in H460 and
PC9 cells were higher than those in other cancer cell lines;
therefore, we selected these two cell lines in our further study
(Figure 1(c)). Consistent with the mRNA levels, increased
TRIM6 protein expressions were also detected in H460 and
PC9 cells compared with BEAS-2B cell (Figure 1(d)). Next,
we explored whether TRIM6 expression in the lung cancer
cells was altered upon ferroptotic stimulation. As shown in
Figure 1(e), TRIM6 mRNA levels in H460 and PC9 cells
were increased in the initial phase after erastin or RSL3
treatment, but fell and even decreased at the later stages.
Therefore, all cells were incubated with erastin or RSL3 for
24 h except special annotation in our further experiments.
At this time, both of the two cell lines had increased TRIM6
expression and also received sufficient intensities of ferrop-
totic stimulation (Figure 1(e)). Results from IB further
confirmed that TRIM6 expression in the lung cancer cells
was increased upon ferroptotic stimulation (Figures 1(f)
and 1(g)). Collectively, these data demonstrate a potential
involvement of TRIM6 in ferroptosis of the lung cancer cells.

3.2. TRIM6 Overexpression Inhibits Erastin- and RSL3-
Induced Ferroptosis in the Lung Cancer Cells. We then over-
expressed TRIM6 in H460 and PC9 cells using lentiviral
vectors, and the efficiency was confirmed in Figure 2(a).
Interestingly, TRIM6 overexpression significantly enhanced
the survival and colony formation of the lung cancer cells
upon ferroptotic stimulation (Figures 2(b) and 2(c)). Lipid
peroxidation is an important feature of ferroptosis [13]. As
expected, erastin and RSL3 treatment provoked significant
increases of cellular and lipid ROS production, which were
inhibited in TRIM6-overexpressed cells (Figures 2(d) and
2(e)). The levels of intracellular superoxide anion and
MDA generation were also decreased by TRIM6 overexpres-
sion (Figures 2(f) and 2(g)). Consistent with previous stud-
ies, the lung cancer cells with erastin and RSL3 treatment

exhibited higher MMP levels that were inhibited by TRIM6
overexpression (Figure 2(h)) [52]. GSH and GPX4 are essen-
tial for reducing lipid hydroperoxides to lipid alcohols,
thereby preventing lipid peroxidation and ferroptotic cell
death [11]. As shown in Figures 2(i) and 2(j), the cells with
erastin or RSL3 stimulation exhibited lower levels of GSH
and GPX4 activities, which were preserved by TRIM6 over-
expression. However, TRIM6 overexpression did not affect
GPX4 protein abundances upon ferroptotic stimulation
(Figure 2(k)). Iron, especially LIP and Fe2+, is essential for
the execution of ferroptosis, and we thus evaluated the effect
of TRIM6 on intracellular LIP and Fe2+ levels [13, 43]. We
observed that TRIM6 overexpression slightly but signifi-
cantly reduced iron accumulation following the treatment
with erastin or RSL3 (Figures 2(l) and 2(m)). These findings
suggest that TRIM6 overexpression inhibits erastin- and
RSL3-induced ferroptosis in the lung cancer cells.

3.3. TRIM6 Silence Promotes Erastin- and RSL3-Induced
Ferroptosis in the Lung Cancer Cells. Next, we used two len-
tiviral vectors to knock down endogenous TRIM6 expres-
sion, and the efficiency was confirmed in Figure 3(a). As
expected, TRIM6 silence further decreased the survival and
colony formation of the lung cancer cells upon erastin and
RSL3 treatment (Figures 3(b) and 3(c)). Lipid ROS level
and MDA generation were also augmented in TRIM6-
deficient cells (Figures 3(d) and 3(e)). GSH depletions in
H460 and PC9 cells by erastin or RSL3 incubation were
more obvious after TRIM6 knockdown (Figure 3(f)). Intra-
cellular LIP and Fe2+ levels were increased in the lung cancer
cells by ferroptotic stimulation, which were further
enhanced in those with TRIM6 silence (Figures 3(g) and
3(h)). However, TRIM6 knockdown-associated cell death
could be remarkably suppressed by ferroptosis inhibitors,
Fer-1 and Lip-1, indicating an involvement of ferroptosis
(Figure 3(h)). These data imply that TRIM6 silence pro-
motes erastin- and RSL3-induced ferroptosis in the lung
cancer cells.

3.4. TRIM6 Modulates Ferroptosis via Affecting SLC1A5-
Mediated Glutaminolysis. We then examined the possible
molecular basis underlying TRIM6-mediated ferroptotic
actions. Unexpectedly, TRIM6 silence did not affect the
molecules essential for Glu uptake, GSH synthesis, and
iron transport (Figure S1A). In view of the unchangeable
GPX4 proteins and slight alterations of the iron accumula-
tion, we speculated that GSH/GPX4-mediated antioxidant
defenses and iron overload might not be the primary
mechanisms for TRIM6-mediated ferroptotic actions.
NRF2 is a major redox-dependent transcription factor and
negatively regulates ferroptosis [53]. However, TRIM6 knock-
down also unaffected NRF2 expression and its transcription
activity, as confirmed by expressions of the downstream heme
oxygenase 1 (HMOX1), NAD(P)H quinone dehydrogenase 1
(NQO1), and glutamate-cysteine ligase modifier subunit
(GCLM) (Figures S1A and S1B). Gln provides nutrition for
the growth of cancer cells; however, recent studies have
reported that glutaminolysis is linked to ferroptosis of the can-
cer cells via inducing the accumulation of lipid ROS
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Figure 1: TRIM6 expression in lung cancer samples is increased upon ferroptotic stimulation. (a) Relative TRIM6 mRNA levels in ADC,
SCC, and corresponding ANT (n = 10). (b) Protein levels of TRIM6 in ADC, SCC, and corresponding ANT (n = 6). (c) Relative TRIM6
mRNA levels in human lung cancer cell lines and normal epithelial cell (n = 6). (d) Protein levels of TRIM6 in H460, PC9, and BEAS-2B
cells (n = 6). (e) Relative TRIM6 mRNA levels in erastin- or RSL3-treated human lung cancer cells (n = 6). (f, g) Protein levels of TRIM6
in erastin- or RSL3-treated human lung cancer cells (n = 6). All data are reported as the mean ± SD, ∗P < 0:05 versus corresponding groups.

5Oxidative Medicine and Cellular Longevity



Re
la

tiv
e T

RI
M
6 

m
RN

A

Re
la

tiv
e T

RI
M
6 

m
RN

A

H460 PC9

0

2

4

6

0

1

2

3

4

5
⁎ ⁎

(a)

Ce
ll 

su
rv

iv
al

 (%
)

Ce
ll 

su
rv

iv
al

 (%
)

0

40

80

120

160

Erastin RSL3DMSO Erastin RSL3DMSO

H460 PC9

0

40

80

120
⁎ ⁎ ⁎ ⁎ ⁎ ⁎

(b)

Erastin RSL3DMSO Erastin RSL3DMSO

Co
lo

ny
 n

um
be

rs

Co
lo

ny
 n

um
be

rs

0

30

60

90

0

20

40

60

80

H460 PC9
⁎ ⁎ ⁎ ⁎ ⁎ ⁎

(c)

D
CF

 in
te

ns
ity

 (f
ol

d)

D
CF

 in
te

ns
ity

 (f
ol

d)

0

1

2

3

4

0

1

2

3

4

H460 PC9

Erastin RSL3DMSO Erastin RSL3DMSO

⁎ ⁎ ⁎ ⁎ ⁎ ⁎

(d)

BO
D

IP
Y 

in
te

ns
ity

 (f
ol

d)

BO
D

IP
Y 

in
te

ns
ity

 (f
ol

d)

0

2

4

6

0

2

4

6

H460 PC9

Erastin RSL3DMSO Erastin RSL3DMSO

⁎ ⁎ ⁎ ⁎ ⁎ ⁎

(e)

Erastin RSL3DMSO Erastin RSL3DMSO

Su
pe

ro
xi

de
 an

io
n 

(fo
ld

)

Su
pe

ro
xi

de
 an

io
n 

(fo
ld

)

0

1

2

3

4

0

1

2

3

4

H460 PC9
⁎ ⁎ ⁎ ⁎ ⁎ ⁎

(f)

M
D

A
 (n

m
ol

/m
g)

M
D

A
 (n

m
ol

/m
g)

Erastin RSL3DMSO Erastin RSL3DMSO
0

1

2

3

4

0

1

2

3

4

H460 PC9
⁎ ⁎ ⁎ ⁎ ⁎ ⁎

(g)

 
 

H460

Re
la

tiv
e M

M
P 

(fo
ld

)

0

2

4

6

0 6 12 18 24 (h)

⁎

⁎

Erastin + CTRL-OE

Erastin + TRIM6-OE
RSL3 + CTRL-OE

RSL3 + TRIM6-OE

Re
la

tiv
e M

M
P 

(fo
ld

)

0

2

4

6

0 6 12 18 24 (h)

PC9

⁎⁎

(h)

Erastin RSL3DMSO Erastin RSL3DMSO

G
SH

 (𝜇
m

ol
/m

g)

0

1

2

3

4

0

1

2

3

G
SH

 (𝜇
m

ol
/m

g)

H460 PC9
⁎ ⁎ ⁎ ⁎ ⁎ ⁎

(i)

Erastin RSL3DMSO Erastin RSL3DMSO

G
PX

4 
ac

tiv
ity

 (U
/g

)

G
PX

4 
ac

tiv
ity

 (U
/g

)

0

20

40

60

0

20

40

60

80

H460 PC9
⁎ ⁎ ⁎ ⁎ ⁎ ⁎

(j)

Figure 2: Continued.
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accumulation [14–16]. To investigate whether TRIM6 regu-
lated ferroptosis via affecting glutaminolysis, TRIM6-
deficient cells were treated with different pharmacological
inhibitors of Gln metabolism upon erastin stimulation
(Figure 4(a)). As shown in Figures 4(b) and 4(c), cell death
and MDA formation in TRIM6-deficient H460 cells were
markedly suppressed by inhibitors of Gln metabolism, except
BPTES, a specific GLS1 inhibitor. In contrast, supplementa-
tion of α-KG, the final product of glutaminolysis, reinduced
ferroptosis of erastin-treated lung cancer cells in the presence
of GPNA, 968, and AOA (Figures 4(b) and 4(c)). SLC1A5 and
SLC38A1 are two critical Gln importers and play critical roles
in regulating ferroptosis and lung cancer [15]. We found that
TRIM6 silence increased, while TRIM6 overexpression
decreased SLC1A5 protein levels in erastin-treated H460 cells,
with no impact on SLC38A1 expressions (Figures 4(d) and
4(e)). Accordingly, Gln uptake was enhanced in the lung can-
cer cells with TRIM6 silence, but inhibited in those with
TRIM6 overexpression (Figure 4(f)). To further confirm the
involvement of SLC1A5, H460 cells were preinfected with
SLC1A5-OE lentivirus, and the efficiency was confirmed in
Figure 4(g). As shown in Figure 4(h), Gln uptake in erastin-
treated H460 cells was decreased by TRIM6 overexpression,
yet restored by SLC1A5 overexpression, which was inhibited
by GPNA incubation. The decreases of MDA and lipid ROS
generation in TRIM6-overexpressed cells with erastin stimula-
tion were increased after the overexpression of SLC1A5, which
were then suppressed by GPNA treatment (Figure 4(i)).
Accordingly, TRIM6 overexpression-mediated restorations

of cell survival and colony formation were prevented in
SLC1A5-overexpressed H460 cells, but not in those treated
withGPNA (Figure 4(j)). In contrast, the increased Gln uptake
in TRIM6-deficient cells was significantly inhibited by
SLC1A5-KD infection (Figures S2A and S2B). Correspond-
ingly, TRIM6 silence-elicited ferroptosis was attenuated in
SLC1A5-deficient H460 cells (Figures S2C and S2D). These
data indicate that TRIM6 modulates ferroptosis via affecting
SLC1A5-mediated glutaminolysis.

3.5. TRIM6 Directly Interacts with SLC1A5 to Promote Its
Degradation. We also investigated how TRIM6 regulated
SLC1A5 inH460 cancer cells. As shown in Figure 5(a), TRIM6
overexpression made no alteration on SLC1A5 mRNA level.
This finding suggested that SLC1A5 protein might be destabi-
lized in TRIM6-overexpressed cells, and we thus assessed the
half-life of SLC1A5 by treating TRIM6-manipulated H460
cells with CHX. As shown in Figure 5(b), TRIM6 overexpres-
sion significantly shortened the half-life of SLC1A5 protein.
TRIM6 functions as an E3 Ub-ligase, while it is unclear
whether TRIM6 affects SLC1A5 protein stability via regulating
its ubiquitination. Intriguingly, we found that TRIM6 overex-
pression enhanced SLC1A5 ubiquitination in erastin-treated
H460 cells (Figure 5(c)). The catalytic ability of TRIM6 on
SLC1A5 ubiquitination was also confirmed in vivo and
in vitro (Figure 5(d)). To determine the Ub-dependent prote-
asomal degradation of SLC1A5, TRIM6-overexpressed H460
cells were incubated with MG132 upon erastin treatment.
The data implied that MG132 treatment blocked the
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Figure 3: Continued.
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reduction of SLC1A5 proteins caused by TRIM6 overexpres-
sion (Figure 5(e)). Accordingly, the decreased Gln uptake
was also prevented by MG132 incubation (Figure 5(f)). We
next explored whether this ubiquinated process depended
on the direct interaction between TRIM6 and SLC1A5. The
endogenous physical interaction was confirmed by IP assay
using H460 lysates (Figures 5(g) and S3A). To further vali-
date this reciprocal binding, lysates prepared from HEK293T
cells transiently transfected with Flag-tagged TRIM6 and
HA-tagged SLC1A5 were subjected to IP assay. Immunopre-
cipitation with anti-Flag or anti-HA antibodies brought
down both Flag-TRIM6 and HA-SLC1A5, indicating that
the two tagged proteins were associated with each other in
HEK293T cells (Figures 5(h) and S3B). Taken together, we
conclude that TRIM6 directly interacts with SLC1A5 to pro-
mote its degradation.

3.6. TRIM6 Regulates the Chemosensitivity of the Lung
Cancer Cells In Vivo and In Vitro. Given its effective role
in regulating ferroptosis, we finally determined whether
TRIM6 manipulation affected the chemosensitivity of the
lung cancer cells in vivo and in vitro. As shown in
Figures 6(a) and 6(b), TRIM6 overexpression significantly
reduced DDP- and PTX-mediated toxic effects to H460 cells
in vitro, as evidenced by the increased cell survival and col-
ony formation. Conversely, TRIM6 silence potentiated the
chemotherapeutic effects of DDP and PTX in H460 cells
(Figures 6(c) and 6(d)). We also examined the role of
TRIM6 on DDP- and PTX-mediated tumor-killing actions
in mouse xenograft tumor models. In line with the in vitro
findings, we observed that TRIM6 overexpression promoted,
while TRIM6 knockdown further inhibited tumor growth
upon DDP or PTX chemotherapy (Figures 6(e)–6(h)). To

H460

PC9

⁎ ⁎ ⁎

⁎ ⁎ ⁎

LI
P 

le
ve

l (
fo

ld
)

0

2

4

6

Erastin RSL3DMSO

LI
P 

le
ve

l (
fo

ld
)

0

2

4

6

Erastin RSL3DMSO

(g)

H460

PC9

CTRL-KD

TRIM6-KD #1

TRIM6-KD #2

⁎ ⁎ ⁎

⁎ ⁎ ⁎

Fe
2+

 le
ve

l (
fo

ld
)

0

2

4

6

Erastin RSL3DMSO

Fe
2+

 le
ve

l (
fo

ld
)

0

2

4

6

Erastin RSL3DMSO

(h)

Ce
ll 

su
rv

iv
al

 (%
)

Erastin

RSL3

TRIM6-KD #1

Fer-1

Lip-1

-

-

-

-

-

+

-

-

-

-

+

-

-

+

-

+

-

-

+

-

+

-

-

-

+

-

- +

-

-

- - - -

+ + + +-

++ + ++

+

0

40

80

120

160

H460

PC9

⁎ ⁎ ⁎ ⁎ ⁎

(i)
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enhance the translational value of our findings, we also ana-
lyzed the predictive role of TRIM6 and SLC1A5 on patient
survival in LUAD database. As shown in Figures S4A and
S4B, both TRIM6 and SLC1A5 expressions negatively
correlated with patient survival in LUAD database,
indicating a clinical role of TRIM6 and SLC1A4 of lung
cancer. These observations define TRIM6 as a promising
therapeutic target for the treatment of lung cancer.

4. Discussion

The present study shows the role of TRIM6 on ferroptosis
and chemosensitivity of lung cancer, and our major findings
are presented as below. Firstly, TRIM6 is highly expressed in
human lung cancer tissues and cells, and its expression in
the lung cancer cells is further increased by ferroptotic stim-
ulation. Secondly, TRIM6 overexpression inhibits, while
TRIM6 silence promotes erastin- and RSL3-induced gluta-
minolysis and ferroptosis in the lung cancer cells. Thirdly,
TRIM6 directly interacts with SLC1A5 to promote its ubiq-
uitination and degradation, thereby inhibiting Gln import,
glutaminolysis, lipid peroxidation, and ferroptotic cell death.
Finally, TRIM6 overexpression reduces the chemotherapeu-
tic effects of DDP and PTX. In contrast, TRIM6 silence sen-
sitized human lung cancer cells to DDP and PTX in vivo and
in vitro. Overall, our research for the first time defines
TRIM6 as a negative regulator of ferroptosis in the lung can-
cer cells, and TRIM6 overexpression enhances the resistance
of human lung cancer cells to chemotherapeutic drugs.
Overall, TRIM6 is a promising therapeutic target for the
treatment of lung cancer.

Ferroptosis, a newly identified form of cell death, plays
critical roles in the development and chemoresistance of
lung cancer. Wang et al. found that inhibiting ferroptosis
facilitated the proliferation of human lung cancer cells,

thereby promoting tumor progression [32], while inducing
ferroptosis by erianin suppressed the growth and migration
of the lung cancer cells [33]. Iron-related accumulation of
lethal lipid ROS is the predominant feature during ferropto-
sis; however, we found that TRIM6 genetic manipulation did
not affect Glu uptake, GSH synthesis, and iron transport.
Gln is the most abundant amino acid in human tissues
and plasma and provides nitrogen source for the biosynthe-
sis of amino acids, nucleotides, and lipids. Besides, Gln is
also an important carbon source and replenishes the inter-
mediates for TCA cycle via glutaminolysis [14]. However,
recent studies have reported that fueling of the TCA cycle
by glutaminolysis accelerates lipid peroxidation and ferrop-
tosis and that inhibiting glutaminolysis prevents ferroptotic
cell death [15, 16]. SLC1A5, a membranous importer, is
required for the uptake of neutral amino acids (e.g., Gln)
and contributes to metabolic reprogramming of cancer cells
[54]. Luo et al. proved that SLC1A5 suppression decreased
Gln uptake, lipid peroxidation, and ferroptosis, thereby facil-
itating the survival of melanoma cells and tumor progression
[15]. Consistently, we also found that TRIM6 directly inter-
acted with SLC1A5 to promote its protein degradation and
then inhibit erastin- or RSL3-mediated ferroptotic cell death.
In contrast, TRIM6 silence elevated SLC1A5 expression and
ferroptosis of the lung cancer cells.

TRIM family proteins function as kinds of E3 Ub-ligases
and are implicated in the pathogenesis of lung cancer.
Results from Chen et al. implied that TRIM28 reduced the
proliferation of the lung cancer cell lines and that TRIM28
depletion led to increased cell proliferation [55]. Liu et al.
found that TRIM29 knockdown suppressed the proliferation
and invasion of human lung squamous cancer cells and also
enhanced the chemosensitivity of DDP [56]. And knock-
down of TRIM65 suppressed survival of DDP-resistant lung
cancer cell lines and tumor growth [57]. TRIM6 belongs to
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Figure 4: TRIM6 modulates ferroptosis via affecting SLC1A5-mediated glutaminolysis. (a) Schematic overview of the glutaminolysis
pathway and TCA cycle in ferroptosis. Gln is imported inside the cells by SLC1A5/SLC38A1 and then converted to Glu by GLS in
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transaminase inhibitor, AOA. (b, c) Cell survival and MDA formation in erastin-treated H460 cells (n = 6). (d, e) Protein levels of
SLC1A5 and SLC38A1 in erastin-treated H460 cells with TRIM6 knockdown or overexpression (n = 6). (f) Relative Gln uptake in
erastin-treated H460 cells (n = 8). (g) Relative SLC1A5 mRNA levels in H460 cells with or without SLC1A5-OE infection (n = 6). (h)
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P < 0:05 versus corresponding groups. NS indicates no significance.
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the TRIM family and is well known for its role in the antivi-
ral responses [24, 25]. Yet, recent studies revealed some
additional actions of TRIM6, including the regulation on
tumor progression [26–28]. Herein, we found that human

lung cancer tissues and cells exhibited higher TRIM6 expres-
sion compared with the ANT or normal lung epithelial cell
and that its expression in the lung cancer cells was further
increased by ferroptotic stimulation. Consistently, Zheng
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Figure 6: TRIM6 regulates the chemosensitivity of the lung cancer cells in vivo and in vitro. (a, b) Cell survival status and colony formation
in DDP/PTX-treated lung cancer cells with or without TRIM6 overexpression (n = 6). (c, d) Cell survival status and colony formation in
DDP/PTX-treated lung cancer cells with or without TRIM6 silence (n = 6). (e, f) Tumor volumes and weights in DDP/PTX-treated
xenografts models inoculated with TRIM6-overexpressed lung cancer cells (n = 6). (g, h) Tumor volumes and weights in DDP/PTX-
treated xenograft models inoculated with TRIM6-silenced lung cancer cells (n = 6). All data are reported as the mean ± SD, ∗P < 0:05
versus corresponding groups.

13Oxidative Medicine and Cellular Longevity



et al. previously also detected an upregulated TRIM6 expres-
sion in human CRC samples [28]. Liu et al. determined that
TRIM6 was highly expressed in angiotensin II- (Ang II-)
stimulated fibrotic kidneys and positively correlated with
the severity of renal fibrosis. Mechanistically, Ang II-
induced ROS generation activated nuclear factor-κB path-
way, which subsequently elevated TRIM6 expression
through binding to its promoter directly [58]. As we know,
ROS overproduction is a key feature of myocardial ische-
mia/reperfusion (I/R) injury. Results from Zeng et al.
revealed that cardiac TRIM6 mRNA and protein levels were
significantly upregulated following I/R injury [26]. Based on
these findings, we speculated that TRIM6 upregulated in fer-
roptotic condition might be associated with the increased
oxidative stress. Meanwhile, we found that increased TRIM6
expression in the lung cancer cells upon ferroptotic stimula-
tion could provide cytoprotective effects against chemother-
apeutic reagents. Further detections revealed that TRIM6
reduced glutaminolysis via targeting SLC1A5-mediated Gln
uptake. However, relatively little is known about how
TRIM6 modulates SLC1A5 currently. TRIM6 acts as an E3
Ub-ligase and is essential for protein stability via regulating
the ubiquitinated processes [24, 28]. In line with these stud-
ies, we proved that TRIM6 directly bound to SLC1A5 and
promoted its ubiquinated modification at the posttranscrip-
tional levels, thereby shortening the half-life of SLC1A5 pro-
tein and reducing ferroptotic cell death. Moreover, TRIM6
knockdown potentiated the lung cancer cells to DDP and
PTX treatment in vivo and in vitro.

In summary, our findings determine a novel regulatory
role of TRIM6 on ferroptosis and tumor progression of lung
cancer. Genetic or pharmacological inhibition of TRIM6
may provide promising strategies for the treatment of lung
cancer.
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Lung adenocarcinoma (LUAD) is among the most prevalent malignant lung cancers with a poor prognosis due to high
invasiveness and lethality despite multiple treatments. Since the lung is an important organ associated with oxidative stress,
and it has been confirmed that oxidative stress represents a potential cancer-specific depletion, it is of important significance to
investigate and evaluate the clinical value of oxidative stress mechanisms regulating tumor cell apoptosis. Furthermore, there
are few studies on the impact of the microenvironment on reaction to immune-checkpoint inhibitors (ICIs) in patients with
LUAD. Based on the TCGA-LUAD dataset, which is stratified into a training set as well as a validation set in a ratio of 2 : 1,
this investigation constructs and validates a prognostic predictive power of a gene signature model of oxidative stress-related
prognostic signatures. To ascertain the differences between the high-risk score group and the low-risk score group in tumor-
infiltrating lymphocytes and patients’ response to ICI therapy. This oxidative stress-related prognostic gene signature is
composed of MAP3K19 and NTSR1 and is an independent prognosis-related factor in the LUAD group. The outcome of
patients having a low risk score is better, and the difference was statistically significant, and individuals with a low risk score
had a larger number of infiltrating immune cell distribution in the tumor microenvironment, which was closely related to
clinical outcome. Our study suggests that the synergistic effect of oxidative stress-related prognostic gene markers-MAP3K19
and NTSR1 has clinical significance in the prognosis identification and immunotherapy of LUAD patients. Thus, the results
may help to better intersect the oxidative stress-related mechanisms in clinical value in LUAD but requires prospective validation.
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1. Introduction

Lung cancer is the major important cause of tumor-related
mortalities worldwide [1, 2]. LUAD is the most significant
subtype. Although many clinical studies have confirmed that
multitargeted drugs and immunotherapy can prolong the
overall survival (OS) and improve the objective response rate
(ORR) of LUAD patients [3–5], the rapid progression of the
disease due to multi-drug resistance is currently very diffi-
cult. Few targeted treatment options [6–9]. With the in-
depth research in many aspects [10, 11], it is beneficial to
discover small molecule inhibitors. Furthermore, significant
literature confirmed the hypothesis that the tumor microen-
vironment (TME) enhances tumor growth through para-
crine signaling [12]. So, more investigation should be taken
to improve the outcome among LUAD patients.

Redox homeostasis is crucial in not only the survival of
normal cells but also cancerous cells. Oxidative stress (OS)
is predominantly triggered by an imbalance between cellular
antioxidant mechanisms and metabolically generated oxida-
tive free radical species [13, 14]. This imbalance eventually
causes the excessive buildup of reactive oxygen species
(ROS) within body cells, leading to irreversible or reversible
injury to the body [15]. Nevertheless, numerous tumors have
increased levels of ROS and exhibited signs of chronic oxida-
tive stress as a result of oncogenic injury, hypoxia, metabolic
malfunctions, and proteotoxic stress [13]. Increased ROS is
hypothesized to enhance the progression of tumors at suble-
thal levels by inducing the mutations and changing cell sig-
naling [16]. Nonetheless, to block excessive oxidative
injury, tumors generally upregulate the antioxidant path-
ways [17]. Consequently, numerous cancerous cells are
hypersensitive to perturbation of ROS levels. Excessive oxi-
dative stress is known to aggravate the cytotoxic impacts of
chemotherapy, and efforts are being made to enhance ROS
generation in these environments [18, 19].

In this study, we attempted to obtain oxidative stress-
related expression profiling data for LUAD from The Cancer
Genome Atlas (TCGA) database and aggregated clinical
information and transcriptomes from 445 patients in
TCGA-LUAD with complete clinical informatics data and
express the data, dividing it into a training set (2/3 of the
total, n = 296) as well as a test set (1/3 of the total, n = 149
). We then performed univariate Cox proportional hazards
regression in both the training and the validation sets,
respectively, to identify genes with prognostic values utiliz-
ing the expression data of 147 oxidative stress-related genes.
Cox p values < 0.05 indicated a coexpression network of 35
oxidative stress DEGs associated with LUAD overall sur-
vival, with clinical information and transcriptomic expres-
sion data. Based on the LASSO algorithm, the prognosis-
related gene signatures composed of 3 and 8 oxidative
stress-related genes were screened in the training set and
the test set, respectively. Therefore, we obtained a LUAD
prognostic risk model composed of MAP3K19 and NTSR1
by intersection difference analysis. We further validated the
subgroup prognostic risk model by Kaplan-Meier (KM)
analysis as well as receiver-operating characteristic curve
(ROC) analysis. Additionally, the link between the risk

model and the TME was ascertained by both the ESTIMATE
R software package and the CIBERSORT tool. Lastly, differ-
entially infiltrating immune cells were discovered in the two
risk groups, and MAP3K19 and NTSR1 were found to be
statistically significant with immune-related genes. In con-
clusion, our study suggests that oxidative stress-related risk
models may provide a viable prognostic tool and important
function in the modulation of immune cell distribution in
the LUAD tumor microenvironment. Our hypothesis is that
this oxidative stress-related prognostic model gene signature
has the capacity to anticipate the targeting and prognosis of
LUAD. The aim of our investigation was to create and vali-
date an oxidative stress-related LUAD prognostic model and
to explore its predictive effect on poor prognosis in LUAD.
Assess and validate prognostic power and its independent
prognostic value. Our goal was to guide the clinical applica-
tion of this oxidative stress-related prognostic model gene
signature in LUAD.

2. Materials and Methods

Figure 1 presents the flow chart for the bioinformatics anal-
ysis. R language software (Version 4.0.3) [20] accomplished
all the statistical analyses, and p < 0:05 denoted a statistically
significant difference without a designated setting.

2.1. Data Acquiring and Cleaning. Transcriptomic data
(reads), as well as relevant clinical data encompassing sur-
vival status, age, sex, grade, and stage of LUAD patients,
were retrieved from TCGA (https://portal.gdc.cancer.gov/)
database. In total, 551 samples were incorporated in this
investigation (54 normal lung samples and 497 LUAD
samples). The initial expression data were normalized with
the aid of the trim mean of M values (TMM) algorithm in
the “limma” package [21], and genes with an average
expression not exceeding 1 were excluded. The “limma”
package was additionally utilized for MTG differential
expression analysis. The criteria for identifying differen-
tially expressed genes in our study were jlogFCj > 1 and
adj:p < 0:05. The read counts were transformed to TPM
values, and a log2ðx + 1Þ conversion was conducted for
further analyses since the TPM values were identical to
the microarray values.

We use the k-fold cross-validation method to divide the
sample set into k mutually exclusive subsets of similar size,
each of which keeps the data distribution as consistent as
possible. Then, each time the union of k − 1 subsets is used
as the training set, and the remaining subset is used as the
test set, so that k sets of training/testing sets can be obtained.
Perform k training and testing times, and return the average
of the k test results.

2.2. Identification of Differentially Expressed Oxidative
Stress-Related Genes with Prognostic Value in LUAD Tissue
and Normal Lung Tissue. As per the search term “oxidative
stress,” from the OMIM database, NCBI gene function mod-
ule, and the GeneCard database, a total of 9469 human genes
which are linked to oxidative stress were collected. Based on
this, we intersected these oxidative stress-related genes with
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the differentially expressed genes in the TCGA-LUAD data-
base to set and screen 147 oxidative stress-related genes with
significant expression differences for subsequent analysis.
We used a string-generated protein interaction (PPI) net-
work database (version 11.0) of 147 oxidative stress-related
genes differentially expressed in the TCGA-LUAD dataset
to construct a molecular interaction network for analyzing
closely interacting differential genes. Then, the PPI was
exported, and the Cytoscape [22] software was used for fur-
ther analysis, the network properties of each node were cal-
culated, and the MCODE [23] and Cytohubba [24] were
used to mine the hub nodes based on the degree of the
nodes. The high level of linkage may have an extremely
important function in the modulation of the whole biologi-
cal process, which deserves further study.

2.3. Creation and Validation of a Prognostic Oxidative Stress-
Related Signature for LUAD. We randomly divided 445
patients with complete clinical informatics data in TCGA-
LUAD into a training set (2/3 of the total, n = 296) and a test
set (1/3 of the total, n = 149). We then performed univariate
Cox proportional hazards regression in the training set and
validation set, respectively, to discover genes with prognostic
value, utilizing the expression data of 147 DE-oxidative
stress-related genes. A Cox p value < 0.05 connoted a sub-
stantial correlation with overall survival (OS). The degree
of correlation and prognostic value were selected using the
“Venn” R package for cross-analysis and genes affecting
prognostic value. To avert overfitting, all genes with p values
< 0.05 were subjected to a least absolute shrinkage and selec-
tion operator (LASSO) analysis using the package glmnet.
LASSO regression is usually a regularization method for

high-dimensional predictor selection. The hazard system
used LASSO Cox proportional hazards to build a score-
identifying gene signature to anticipate OS models for
LUAD patients. Prediction scores are weighted sums using
developed genes, with coefficient regularization by LASSO.
After being filtered by the LASSO model, the selected genes
are constructed by the multivariate Cox proportional haz-
ards model to construct an immune-related risk model:
risk score = level of gene a∗ coefficient a + level of gene b∗
coefficient b + level of gene c∗ coefficient c +⋯+level of gene
n∗ coefficient n. The risk score in the model represents the
prognosis of LUAD patients; the smaller the risk score, the
better the prognosis. Patients were categorized into two risk
groups utilizing the median risk score that served as a cutoff
value. The “pheatmap” R package used scatter diagrams to
show how the risk scores and survival durations of all
patients were distributed. The “stats” R package used princi-
pal component analysis (PCA) to measure the gene expres-
sion of an established signature. Kaplan-Meier (K-M)
survival analysis and time-dependent ROC analysis based
on OS were carried out utilizing the “survival” package, the
“survminer” package [25], and the “timeROC” package
[26] in R to measure the prognostic accuracy of the gene sig-
nature in the derivation set and validate it in the validation
set. Kaplan-Meier survival curves were used to derive the
predictive power, whereas a log-rank p value < 0.05 denoted
a statistical significance (utilizing package survival and surv-
miner). To ascertain predictive power of the immune signa-
ture’s, time-dependent ROC curves (package survivalROC)
were employed. Subsequently, logistic regression was used
for correlation analysis of dichotomous clinical subgroup
variables.

GSE135917 GSE38792

Normalize

Differential expression of
mitochondrial dysfunction genes

LASSO logistic
regression model PPI networks

Unsupervised
consensus clustering

GO/KEGG GSEA CIBERSORT

Correlation

ssGSEA evaluate
immune groups

Figure 1: Flowchart for constructing and validating a prognostic model for TCGA-LUAD overall survival.
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2.4. Pathway and Function Enrichment Analysis. To investi-
gate the biological value of these differentially expressed
IRGs, we utilized DAVID Bioinformatics Resources 6.8 to
conduct a pathway and function enrichment analysis. The
visualization procedure was carried out via the package
“ggplot2” [25].

2.5. Gene Set Enrichment Analysis (GSEA) of Oxidative Stress
Prognostic Model in LUAD. GSEA is a computational
approach utilized to ascertain if a predefined set of genes
exhibits statistical differences between two biological states,
which is typically employed to obtain the expression in a
dataset sample. Changes in the pathway as well as activity
of biological processes were analyzed [23]. To investigate
the variations in biological processes between the two groups
of samples, utilizing the gene expression profile dataset, we
retrieved the reference gene set “c2.cp.kegg.v7.4.entrez.gmt”
from the MSigDB database, using the R package “clusterPro-
filer” The GSEA method is included in “enrichment analysis
and visualization of datasets. p value < 0.05 was considered
statistically significant.

Gene set variation analysis (GSVA) [27] is a nonpara-
metric unsupervised analysis method, which is mainly used
to evaluate the microarray by transforming the expression

matrix of genes between various samples into the expression
matrix of gene sets between samples. Transcriptome gene set
enrichment findings assess if various metabolic pathways are
enriched across various samples. To investigate the biologi-
cal process variation occurring in the two groups of samples,
we utilized the R package GSVA to carry out the GSVA pro-
cedure based on the gene expression profile dataset and
downloaded the reference “c2.cp.kegg.v7.4. entrez” gene set
from the MSigDB database to compute the enrichment score
of every sample in each pathway in the dataset, combined
with the R package limma to screen significantly different
pathways, the GSVA enrichment results were visualized
based on the heatmap utilizing the R package pheatmap,
and p value < 0.05 denoted a statistically significant
significance.

2.6. Establishment and Verification of Nomogram. Nomo-
gram has been extensively utilized for anticipating cancer-
related prognosis. This approach allows individualized
approximates of the likelihood of recurrence, mortality, or
drug adherence. Using the prognostic model, this investiga-
tion developed the nomogram in the TCGA-LUAD cohort
by incorporating the above-stated clinical parameters to
anticipate the OS probably over 1, 3, and 5 years.

Table 1: Clinical characteristics of patients in TCGA-LUAD internal training set and validation set.

Characteristics Train (N = 296) Test (N = 149) Total (N = 445) p value FDR

Age

Mean ± SD 64:86 ± 10:00 65:05 ± 10:21 64:93 ± 10:06
Median [min-max] 66.00 [33.00, 88.00] 66.00 [41.00, 86.00] 66.00 [33.00, 88.00]

Gender 1 1

Female 162 (36.40%) 81 (18.20%) 243 (54.61%)

Male 134 (30.11%) 68 (15.28%) 202 (45.39%)

Stage 0.43 1

Stage I 157 (35.28%) 87 (19.55%) 244 (54.83%)

Stage II 68 (15.28%) 36 (8.09%) 104 (23.37%)

Stage III 54 (12.13%) 21 (4.72%) 75 (16.85%)

Stage IV 17 (3.82%) 5 (1.12%) 22 (4.94%)

T 0.88 1

T1 108 (24.27%) 49 (11.01%) 157 (35.28%)

T2 152 (34.16%) 80 (17.98%) 232 (52.13%)

T3 24 (5.39%) 14 (3.15%) 38 (8.54%)

T4 12 (2.70%) 6 (1.35%) 18 (4.04%)

M 0.52 1

M0 198 (44.49%) 100 (22.47%) 298 (66.97%)

M1 17 (3.82%) 5 (1.12%) 22 (4.94%)

MX 81 (18.20%) 44 (9.89%) 125 (28.09%)

N 0.19 0.93

N0 186 (41.80%) 105 (23.60%) 291 (65.39%)

N1 54 (12.13%) 27 (6.07%) 81 (18.20%)

N2 49 (11.01%) 17 (3.82%) 66 (14.83%)

N3 2 (0.45%) 0 (0.0e+0%) 2 (0.45%)

NX 5 (1.12%) 0 (0.0e+0%) 5 (1.12%)
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Features p-value Hazard ratio (95%CI)
HAO1 1.1e-289 21.69 (18.37-25.60)
HTR1B 1.2e-273 0.01 (0.01-0.02)
APOB 1.2e-268 13.46 (11.64-15.57)
SLC6A5 4.6e-211 11.41 (9.78-13.30)
SCARNA22 1.3e-209 2.06 (1.97-2.16)
MUC2 5.3e-194 7.34 (6.43-8.37)
PRODH2 9.4e-166 2.0e-13 (2.4e-14-1.6e-12)
KCNA4 2.7e-164 4.2e-4 (2.4e-4-7.4e-4)
FOXL2 1.4e-121 138.42 (91.67-209.01)
NPSR1 1.6e-94 92.01 (59.87-141.41)
MRGPRX3 4.4e-69 56298651.63 (7687524.49-412296335.40)
TNR 3.8e-34 0.07 (0.04-0.10)
FGF5 1.2e-33 0.37 (0.32-0.44)
MAP3K19 8.1e-29 0.11 (0.07-0.16)
NR1H4 4.0e-28 3.07 (2.51-3.75)
GABRR3 1.9e-24 6.5e-64 (4.8e-76-8.9e-52)
DNAH8 3.5e-24 216326752036.15 (1397552079.89-33485166184404.80)

CA6 3.5e-23 22.50 (12.16-41.62)
F11 3.6e-22 2.33 (1.96-2.76)
CHRM1 1.1e-20 3.70 (2.81-4.88)
DDX25 7.8e-19 8.66 (5.37-13.96)
NOS2P2 2.0e-17 1.8e-14 (1.2e-17-2.6e-11)
TTC29 2.0e-16 3.45 (2.57-4.63)
HYDIN 7.9e-15 51.34 (19.01-138.64)
GABRA5 1.8e-14 18.52 (8.78-39.05)
GIP 1.0e-13 0.46 (0.38-0.57)
C10orf90 3.9e-13 0.04 (0.02-0.10)
TNFRSF13B 5.7e-12 0.41 (0.32-0.53)
ANGPTL3 3.7e-11 5.47 (3.31-9.06)
CPN1 3.8e-11 0.06 (0.03-0.14)
KCNK9 4.5e-9 0.43 (0.32-0.57)
NEUROD1 3.5e-8 0.20 (0.11-0.35)
UGT3A1 4.5e-8 0.32 (0.21-0.48)
TRIML2 4.8e-8 0.27 (0.17-0.43)
PTPRQ 7.1e-5 0.34 (0.20-0.57)
UPB1 8.7e-5 0.10 (0.03-0.32)
CLCA1 9.9e-4 4.53 (1.84-11.13)
SLC7A3 3.1e-3 0.28 (0.12-0.65)

−240−220−200−180−160−140−120−100 −80 −60 −40 −20 0 20 40

TCGA-LUAD Train data set

(a)

Figure 2: Continued.
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Features p-value Hazard ratio (95%CI)
SLC6A5 2.0e-321 1.3e-123(6.6e-130-2.4e-117)

MIR34B 1.7e-303 1288.18(883.66-1877.87)

NRXN1 4.8e-298 9.6e-23(6.5e-24-1.4e-21)

FGF21 2.0e-277
2065618860419690752.00(202498758020797504.0

0-21070654053509427200.00)
CALML3 3.2e-276 0.13(0.11-0.14)
NTSR1 1.8e-241 203.78(148.86-278.96)
SERPINA4 6.7e-213 0.26(0.24-0.29)
GABRA5 1.5e-195 9.3e-7(3.7e-7-2.3e-6)
UPB1 1.5e-182 491283.81(201451.57-1198103.27)

CLCA1 6.2e-176 2.3e-12(3.6e-13-1.5e-11)

SLC6A15 3.2e-168 8.8e-4(5.3e-4-1.4e-3)

PIK3C2G 1.3e-161
151.21(105.17-217.42)

SNORA71D 1.2e-156
412.42(264.92-642.07)

MMP8 1.3e-133
1.7e-3(1.0e-3-2.9e-3)

GABRR3 1.0e-129
2.6e-110(3.5e-119-1.9e-101)

HSD3B1 9.2e-116
0.03(0.02-0.04)

PRAP1 7.3e-109
0.15(0.13-0.18)

CGB5 8.6e-92

0.16(0.14-0.20)

APOB 5.1e-90

1.87080830863734e+22(126547511632631005184.
00-2.76569936659587e+24)

IGF2BP3 2.4e-85
0.39(0.36-0.43)

KRT6B 2.7e-81
2.55(2.31-2.81)

SPAG11B 2.1e-77
6.2e-37(9.5e-41-4.0e-33)

RBP3 7.7e-61
2.43729635406729e+139(6.09257164223687e+122

-9.75025632258088e+155)
KCNK9 8.1e-52 4.5e-7(6.8e-8-3.0e-6)
KRT13 1.1e-47 0.13(0.10-0.17)

TTC29 1.6e-46 4.72(3.82-5.84)

TRIM48 8.8e-42 0.30(0.25-0.36)

GHRHR 2.0e-41
8.4e-18(2.8e-20-2.5e-15)

FOXL2 1.2e-34
9896.65(2279.12-42974.32)

NOS2P2 2.0e-28
8923777171580.22(45201729437.39-17617423049

77914.00)
CALB1 1.7e-24 1908.44(447.92-8131.15)
DNAH8 5.3e-21 5.06729383622552e+43(3.93888527165643e+34-6

.51896794441308e+52)GIP 1.9e-20
0.01(6.0e-3-0.04)KCNJ18 1.8e-15

0.12(0.07-0.20)NKX2-3 3.4e-12 0.35(0.26-0.47)
MAP3K19 1.9e-9 0.42(0.32-0.56)
UGT2B7 3.3e-7 0.34(0.22-0.51)
RMRP 2.0e-5 2477506.87(2850.79-2153101720.01)
KCNK10 0.01 36.36(2.33-567.46)
P2RX2 0.01 2.70(1.25-5.81)
KLK3 0.05 50.83(1.05-2462.78)

−400 −300 −200 −100 0 100 200 300 400 500

Log2 (Hazard ratio (95%CI))

TCGA-LUAD Test data set

(b)

65 213565 2135

Train Test

(c)

Figure 2: Univariate Cox analysis based on TCGA-LUAD internal training set and validation set and screening of differentially oxidative
stress genes associated with LUAD prognosis. (a) Forest plot displays the findings of univariate Cox analysis of differential oxidative
stress genes associated with LUAD prognosis in the training set; (b) forest plot demonstrates the findings of univariate Cox analysis of
differential oxidative stress genes associated with LUAD prognosis in the training set; (c) Venn shows 35 prognosis-related differential
oxidative stress genes at the intersection of the two sets.
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Figure 3: Continued.
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Furthermore, calibration curves evaluated the fitness
between actual survival statuses with visualized survival sta-
tus of the developed nomogram via bootstrap methods
(1,000 replicates). The values of prognosis evaluation
between risk signature, stage, and the nomogram were com-
pared via ROC curves at 1 year, 3 years, and 5 years,
correspondingly.

2.7. Computation of Immune Infiltration Score Was Premised
on the Gene Groups Previously Determined. We downloaded
the unified as well as the standardized pan-cancer dataset
from the UCSC (https://xenabrowser.net/) database: TCGA
TARGET GTEx (PANCAN, N = 19131, G = 60499). Addi-
tionally, we extracted gene expression data in every sample
and further screened the sample sources: Primary Blood-
Derived Cancer-Peripheral Blood (TCGA-LAML), Primary
Tumor, Metastatic TCGA-SKCM, Primary Blood-Derived
Cancer-Bone Marrow, Primary Solid Tumor, and Recurrent
Blood-Derived Cancer-Bone Marrow samples, further log2
ðx + 0:001Þ transformation was carried out on every expres-
sion value; in addition, we also extracted the gene expression
profile of every tumor, respectively, and mapped the expres-
sion profile. On the GeneSymbol, the R software package
ESTIMATE (version 1.0.13, https://bioinformatics
.mdanderson.org/public-software/estimate/, doi:10.1038/
ncomms3612) [28] was further used to calculate the gene

expression in each tumor, stromal, immune, and ESTI-
MATE scores for each patient.

2.8. GO, KEGG, and Immune Infiltration Enrichment
Analyses for Risk-Related DEGs. In accordance with the risk
grouping, normalized gene expression matrixes of the deri-
vation set as well as the validation set generated above were
employed with the “limma” R package to detect risk-related
DEGs with the cut-off criteria of jlogFCj ≥ 1 and adj:p < 0:05
, correspondingly. Risk-related DEGs were analyzed with
both GO and KEGG utilizing the “clusterProfiler” R pack-
age. Next, single-sample GSEA (ssGSEA) for immune infil-
tration was adopted with the “GSVA” R package to
ascertain the infiltration score of immune cells and the
immune-related roles.

2.9. Calculation of Immune Infiltration Score. CIBERSORT
played a crucial function in calculating an absolute immune
infiltrate score for the primary tumor samples. The default
CIBERSORT parameters were instrumental in generating
the curated CIBERSORT signature matrix. It roughly yielded
the expected relative abundances. We performed a pan-
cancer analysis of the CIBERSORT score, including the cor-
relation of immune score in pan-cancer, analyzed the corre-
lation of MAP3K19 and NTSR1 with the distribution of
various immune cells for LUAD patients, and visualized
them with heatmaps and scatter plots. The tumor purity,
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Hormone activity
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Figure 3: PPI network construction of differentially expressed genes related to oxidative stress and enrichment analysis of hub genes. (a)
1607 differentially expressed genes (jLogFCj > 2, adj. p value < 0.05) between normal samples and LUAD samples in the TCGA-LUAD
dataset, and 9469 oxidative stress genes were intersected, and 147 differentially expressed genes were obtained oxidative stress genes; (b)
the Network Analyzer tool of Cytoscape (v3.7.2) visualizes the PPIs of 147 differentially expressed oxidative stress genes with the largest
confidence interaction score of 0.4. As the degree of interaction increases, the color gradually changes from yellow to blue, and the font
changes from small to large; (c) the MCODE plug-in screened and visualized the closely related genes of the PPI network module; (d)
the CytoHubba plug-in was used to screen the top 20 closely related genes; (e) the intersection of the two methods is shown by Venn
diagram to obtain 18 closely related differentially oxidative stress-related genes; (f, g) based on 18 Hub Gene Ontology (GO) enrichment
analysis of genes as well as KEGG pathway enrichment bubble plots and histograms.
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as well as stromal scores, were determined utilizing the Esti-
mation of Stromal and Immune Scores ESTIMATE based on
RNA-seq data and global proteomic data.

2.10. Quantitative Reverse Transcription-Polymerase Chain
Reaction (qRT-PCR). Total RNA extracted from lung adeno-
carcinoma tissue and para-cancerous tissue with Trizol
Reagent (Invitrogen, USA) were reverse transcribed with
HiScript III 1st Strand cDNA Synthesis Kit (Vzayme,
China). Next, HiScript II One Step RT-PCR Kit (Vzayme,
China) and qRT-PCR analysis were used for detecting
cDNA expression levels, and GAPDH was used as internal
reference. Primers were shown as follows: GAPDH, forward
(F): 5′-AATGGGCAGCCGTTAGGAAA-3′, reverse(R): 5′-
GCCCAATACGACCAAATCAGAG-3′; NTR1, forward
(F): 5′-TCATCGCCTTTGTGGTCTGCT-3′, reverse (R): 5′
-TGGTTGCTGGACACGCTGTCG-3′; MAP3K19, forward
(F): 5′-AGGAGTTCGACCAAGATGGTG-3′, reverse (R):
5′-GGTCGAAAACTCTTCTGTCCTG-3′.

2.11. Immunohistochemistry (IHC) Staining. After deparaffi-
nization and dehydrating the tissue sections, they were sub-
jected to epitope retrieval, treated with H2O2, and blocked
against nonspecific bindings. The tissues were then incu-
bated overnight with anti-NTSR1 antibodies (1 : 100,
Abcam, ab217134) and anti-MAP3K19 antibodies (1 : 100,
Invitrogen, PA5-29285) at 4°C. Subsequently, the tissue sec-
tions were incubated with secondary antibodies (1 : 1000,
Proteintech, SA00001-2) for two hours at ambient tempera-

ture. The signal was detected with an enhanced DAB stain-
ing kit (Proteintech, China).

2.12. Statistical Analysis. The Spearman correlation test was
performed to investigate the link between two variables that
were nonlinearly linked. The Student’s t-test, on the other
hand, was utilized in comparing the normally distributed
data, whereas the chi-square test was carried out to contrast
pairwise and categorical features in various subgroup. Uni-
variate as well as multivariate Cox regression analyses
assessed the influences of the immune signature and numer-
ous clinic-pathological parameters on the survival of
patients. The package pheatmap was vital in plotting heat-
maps. A two-sided p < 0:05 was statistically significant.
Kruskal-Wallis test was employed for one independent var-
iable with two or more levels and an ordinal dependent var-
iable. K-M analysis measured the proportion of individuals
living for a particular period, whereas the log-rank test eval-
uated the significance of differences. In these investigations,
statistical analysis was performed by R software (4.0.0). A
two-tailed p value of <0.05 was statistically significant unless
otherwise stated.

3. Result

3.1. The Characteristics of Patients. RNA-sequencing profiles
of a total of 445 LUAD sample as well as clinic-pathological
data were obtained from the UCSC Xena TCGA-LUAD
dataset. Then, randomization was conducted to divide them

Table 2: List of GO and KEGG enrichment analysis results of differential oxidative stress hub genes with close interaction.

Ontology ID Description p value p.adjust Q value

BP

GO:0008217 Regulation of blood pressure 4.92e-05 0.008 0.004

GO:0090276 Regulation of peptide hormone secretion 7.32e-05 0.008 0.004

GO:0030072 Peptide hormone secretion 1.26e-04 0.008 0.004

GO:0007187
G protein-coupled receptor signaling pathway, coupled

to cyclic nucleotide second messenger
1.36e-04 0.008 0.004

GO:0046883 Regulation of hormone secretion 1.52e-04 0.008 0.004

CC

GO:0030658 Transport vesicle membrane 0.003 0.039 0.024

GO:0005788 Endoplasmic reticulum lumen 0.006 0.039 0.024

GO:0031045 Dense core granule 0.008 0.039 0.024

GO:0042629 Mast cell granule 0.009 0.039 0.024

GO:0030133 Transport vesicle 0.010 0.039 0.024

MF

GO:0048018 Receptor ligand activity 6.48e-04 0.014 0.008

GO:0005179 Hormone activity 9.68e-04 0.014 0.008

GO:0005184 Neuropeptide hormone activity 0.011 0.067 0.036

GO:0071855 Neuropeptide receptor binding 0.013 0.067 0.036

GO:0042056 Chemoattractant activity 0.015 0.067 0.036

KEGG

hsa04923 Regulation of lipolysis in adipocytes 4.83e-04 0.005 0.001

hsa04080 Neuroactive ligand-receptor interaction 7.00e-04 0.005 0.001

hsa04024 cAMP signaling pathway 0.007 0.032 0.009

hsa04950 Maturity onset diabetes of the young 0.016 0.056 0.017

hsa04913 Ovarian steroidogenesis 0.031 0.064 0.019
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Figure 4: Continued.
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into two groups, namely, the training set (331 patients) and
the test set (166 patients) (Table 1).

3.2. Prognosis-Related Differential Oxidative Stress Gene
Signatures Are Independent Prognostic Factors for LUAD
Patients. To determine the prognostic value of differentially
oxidative stress genes, we did a univariate Cox regression
analysis. There were 100 and 56 xenooxidative stress genes
significantly linked to the overall survival (OS) in the train-
ing and validation sets, respectively (Figures 2(a) and 2(b)).
A total of 35 differentially oxidative stress genes associated
with prognosis were obtained by intersecting them
(Figure 2(c)).

3.3. Construction of PPI Network of DEGs Related to
Oxidative Stress. We first performed a differential analysis
between 59 normal samples and 535 LUAD samples in the
TCGA-LUAD dataset using the limma algorithm and
obtained a total of 1607 differentially expressed genes
(jlogFCj > 2, adj. p value < 0.05). Based on this differential
result, 9469 previously identified oxidative stress genes were
intersected, and 147 differentially expressed oxidative stress
genes were obtained (Figure 3(a)). The STRING database
constructed a protein-protein interaction network (PPI) to
reflect the intermolecular interactions, and the largest confi-
dence interaction score was established at 0.4, which was
analyzed and visualized by the Network Analyzer tool of

Cytoscape (v3.7.2) (Figure 3(b)). PPI network modules were
screened for closely linked genes using the MCODE plugin
and visualized (Figure 3(c)). At the same time, the Cyto-
Hubba plugin was used to screen the Top20 closely linked
genes (Figure 3(d)). The intersection of the two approaches
was shown by the Venn diagram, obtaining 18 closely
related differentially oxidative stress-related genes
(Figure 3(e)), including HIST2H2AB, HIST1H2BC, SCG3,
HIST1H2AJ, CHGA, HIST1H3J, HIST1H1B, HIST1H2BM,
HIST1H1A, SCG2, HIST1H4F, HIST1H2AE, GHRHR,
KLK3, NEUROD1, NPY, HIST1H2BB, HIST1H2BH, and
CGA.

3.4. Functional Enrichment Analysis. We analyzed these 18
closely related differentially oxidative stress-related genes.
Gene Ontology (GO) enrichment analysis employing the
above genes suggests that these hub genes exist in the mem-
brane of transport vesicles, endoplasmic reticulum lumen,
mast cell granules, and transport vesicles, which can affect
blood pressure, hormone secretion, and G protein. Coupling
cyclic, coupling receptor signaling pathway, nucleotide sec-
ond messenger, and other functions play a regulatory role
and have certain applications for receptor-ligand activity,
neuropeptide hormone activity, neuropeptide receptor bind-
ing, and chemotactic activity value. The enrichment of BP
set was mostly concentrated in oxidative phosphorylation,
mitochondrial translation elongation, mitochondrial
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Figure 4: LASSO analysis of 147 differentially oxidative stress genes revealed the distribution and prognostic analysis of 8 gene markers. (a)
Cross-validation of tuning parameter selection in the LASSO model; (b) LASSO coefficient spectrum of 8 prognostic differentially oxidative
stress-related genes; (c) OS-based K-M survival of patients in the two risk groups in the TCGA-LUAD training set curves; (d) risk analysis
graph of 8 prognostic differential oxidative stress gene signatures; the upper panel shows the distribution as well as the median of risk scores
in the TCGA-LUAD training set; the middle panel shows the distribution of patients in various risk groups; the lower panel heatmap for the
differential expression of 8 genes in the two risk groups; (e) the prognostic performance of risk scores in the TCGA-LUAD training set at 1,
3, and 5 years is validated utilizing AUC of time-dependent ROC curves.
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Figure 5: Continued.
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translation termination, translation termination, and purine
ribonucleoside triphosphate metabolism. CC enrichment
was mostly concentrated in the inner mitochondrial mem-
brane, mitochondrial protein complexes, mitochondrial
matrix, organelle ribosomes, and mitochondrial ribosomes.
The enrichment of MF was mostly concentrated in the struc-
tural components of ribosomes, proton transmembrane,
transporter activity, electron transfer activity, cytochrome-c
oxidase activity, and heme-copper terminal oxidase activity.
This suggests that the Hub gene may be related to the trans-
membrane transport of cells in terms of molecular structure.
Combined with all the above enrichment results, we specu-
late that key genes related to oxidative stress may play a role
in the interaction process and related mechanisms between
cells. The KEGG pathway enrichment results indicated that
differential oxidative stress hub genes were enriched in mod-
ulation of lipolysis in adipocytes, neuroactive ligand-
receptor interaction, cAMP signaling pathway, maturity
onset diabetes of the young, ovarian steroidogenesis, and
other pathways. This result suggests that the differentially
expressed oxidative stress-related genes can affect the occur-
rence and progression of LUAD via the above potential bio-
logical functions and molecular pathways (Figures 3(f) and
3(g) and Table 2).

3.5. Establishment and Validation of Prognostic Gene
Signature Associated with Oxidative Stress in TCGA-LUAD.
To avert overfitting, we additionally performed a LASSO-

Cox analysis. In order to avoid the influence of confounding
factors, we first performed LASSO-Cox analysis on 147 dif-
ferentially oxidative stress genes in the training set and
established 8 gene signatures, including C10orf90, CIDEC,
MUC2, FGF5, KRT6A, DLEC1, MAP3K19, and NOS2P2.
Patients were categorized into high- and low-risk groups as
per the median risk score with each group containing 167
participants. To tune parameter selection through the
LASSO model, we utilized cross-validation (Figure 4(a)).
The coefficient profiles of LASSO for the eight prognostic
differentially oxidative stress-related genes were shown
(Figure 4(b)). At the same time, we show eight prognostic
differential oxidative stress gene signature risk analysis
graphs (Figure 4(d)). The upper graph shows the distribu-
tion as well as the median of risk scores in the training set
of TCGA-LUAD, and the middle graph shows the distribu-
tion of individuals in various risk groups. The figure below is
a heatmap of the differential expression of 8 genes in the two
risk groups. Further assessment of the gene signatures’ prog-
nostic value as well as the predictive performance utilizing
both K-M survival and time-dependent ROC analyses was
done, both of which yielded remarkable results. To account
for survival outcomes, we observed a statistically signifi-
cantly higher number of dead participants in the high-risk
group in contrast with the low-risk group (p = 1:2e − 6, HR
= 2:67 ð1:77, 4:02Þ) (Figure 4(c)). The AUC reached 0.59
(0.70-0.49) at 1 year, 0.69 (0.77-0.60) at 3 years, and 0.74
(0.84-0.64) at 5 years (Figure 4(e)).
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Figure 5: LASSO analysis of 35 differentially oxidative stress genes in the TCGA-LUAD training set showing the distribution and prognostic
analysis of 3 gene signatures. (a) Cross-validation of tuning parameter selection in the LASSO model; (b) LASSO coefficient spectrum of 3
prognostic differentially oxidative stress-related genes; (c) OS-based K-M survival of patients in the two risk groups in the TCGA-LUAD
training set curves; (d) 3 prognostic differential oxidative stress gene signature risk analysis graphs; the upper graph shows the
distribution as well as the median of risk scores in the TCGA-LUAD training set; the middle graph shows the distribution of individuals
in various risk groups, and the lower graph shows heatmap of differential expression of 3 genes in the two risk groups; (e) the prognostic
performance of risk scores in the TCGA-LUAD training set over 1, 3, and 5 years is validated utilizing AUC of time-dependent ROC
curves; (f) based on the training set, multivariate Cox proportional hazards regression forest plot for a 3-gene prognostic model.
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Furthermore, LASSO-Cox analysis was conducted on the
above 35 prognosis-related differential oxidative stress genes
in the training set and validation set, correspondingly. A 3-
gene prognostic model was predicted among the genes in
the training set, including NTSR1, MAP3K19, and NOS2P2
as predictors of patient prognosis (Figures 5(a) and 5(b)).
Not only K-M survival but also time-dependent ROC analy-
sis findings were significant. The high-risk group had a
greater mortality risk in contrast with the low-risk group
(p = 0:02, HR = 1:60 ð1:09, 2:35Þ) (Figure 5(c)). We show 3
prognostic differential oxidative stress gene signature risk
analysis graphs, the upper graph shows the distribution
and median of risk scores in the TCGA-LUAD training
set, and the heatmap reflects the expression differences of
model genes (Figure 5(d)). The AUC reached 0.56 (0.66-
0.46) at 1 year, 0.58 (0.68-0.48) at 3 years, and 0.65 (0.80-
0.49) at 5 years (Figure 5(e)). In the multivariate Cox regres-
sion analysis, NTSR1, MAP3K19, and NOS2P2 were incor-
porated. Multivariate Cox proportional hazards regression
based on the training set suggested that only NTSR1 and
MAP3K19 were jointly used as predictors of poor prognosis
at high risk of LUAD, with significant statistical significance
(Figure 5(f)).

An 8-gene prognostic model was predicted among the
genes in the validation set, including SLC6A5, SNORA71D,
PIK3C2G, KRT6B, IGF2BP3, NTSR1, KLK6, and MAP3K19
as predictors of patient prognosis (Figures 6(a) and 6(b)).
Both K-M survival and time-dependent ROC analysis find-

ings were significant. The high-risk group had a greater mor-
tality risk in comparison with the low-risk group
(p = 1:2e − 6, HR = 4:12 ð2:22, 7:63Þ) (Figure 6(c)). We show
risk analysis plots for eight prognostic differential oxidative
stress gene signatures, the upper panel shows the distribu-
tion and median of risk scores in the TCGA-LUAD training
set, the middle panel shows the distribution of individuals in
each risk group, and the lower panel shows heatmap of dif-
ferential expression of 8 genes in the two risk groups
(Figure 6(d)). The AUC reached 0.87 (0.98-0.76) at 1 year,
0.78 (0.90-0.66) at 3 years, and 0.77 (0.90-0.64) at 5 years
(Figure 6(e)).

In the prediction model constructed based on LASSO-
Cox analysis of 147 differentially oxidative stress-related
genes and 35 prognostic differentially oxidative stress-
related genes in the validation set, both MAP3K19 and
NOS2P2 were found to be prognostic predictors, although
NOS2P2 in the further multivariate Cox regression analysis
results were suggested to have no statistically significant
effect on prognosis. More interestingly, LASSO-Cox analysis
based on 35 prognostic differentially oxidative stress-related
genes found that MAP3K19 and NTSR1 could serve as prog-
nostic predictors in both training and validation sets. Based
on the above analysis, we believe that MAP3K19 and NTSR1
may have potential application value in predicting the prog-
nosis of LUAD, and more abundant analysis is urgently
needed to evaluate its application value and important clin-
ical significance in LUAD.
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Figure 6: LASSO analysis of 35 differentially oxidative stress genes in the TCGA-LUAD validation set showed the distribution and
prognostic analysis of 8 gene markers. (a) Cross-validation of tuning parameter selection in the LASSO model; (b) LASSO coefficient
spectrum of 8 prognostic differentially oxidative stress-related genes; (c) OS-based KM survival of patients in the two groups in the
TCGA-LUAD training set Curves; (d) 8 prognostic differential oxidative stress gene signature risk analysis graphs; the upper graph
shows the distribution as well as the median of risk scores in the TCGA-LUAD training set; the middle graph shows the distribution of
individuals in various risk groups, and the lower graph shows heatmap of differential expression of 8 genes in both risk groups; (e) AUC
of time-dependent ROC curves validates the prognostic performance of risk scores in the TCGA-LUAD training set at 1, 3, and 5 years.
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Figure 7: Continued.
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3.6. MAP3K19 and NTSR1 Prognostic Independence of
Clinical Characteristics. To further ascertain the prognostic
value and predictive performance of the MAP3K19 and
NTSR1 gene signatures, we first conducted a Cox regression
analysis based on 445 patient samples with complete clinical
information in TCGA-LUAD. We included clinical factors
including age at diagnosis, gender, tumor pathological grade,
lymph node status, distant metastasis, TNM stage, and
gene signatures MAP3K19 and NTSR1 expression (high-
and low-expression groups divided by median value).
Grouped by the median RiskScore, K-M survival analysis
revealed that the high-risk group had a higher mortality
risk in contrast with the low-risk group (p = 1:1e − 11,
HR = 3:53 ð2:40, 5:19Þ) (Figure 7(a)). The AUC of the
time-dependent ROC analysis reached 0.75 (0.84-0.66) at
1 year, 0.73 (0.81-0.65) at 3 years, and 0.76 (0.86-0.66)
at 5 years (Figure 7(b)). Subsequently, we constructed
nomograms to predict the prognostic status of LUAD at
1, 3, and 5 years utilizing the validation set and TCGA-
LUAD overall patient samples (Figures 7(e) and 7(f)),
respectively, and showed the predicted and actual nomo-
grams with calibration plots. The nomogram effectively
integrated the above prognostic variables and improved

the ability to predict overall survival in LUAD. Based on
the results of the validation set (Figures 7(c) and 7(d)), it
was suggested that among the above prognostic factors,
N (p < 0:01), NTSR1 (p = 0:04), and MAP3K19 (p < 0:001
) were statistically significant. The above prognostic factors
were validated in the TCGA-LUAD overall survival with
consistent results by nomogram and calibration plot
(Figures 7(e) and 7(f)).

The above results suggest that two gene marker prognos-
tic factors-MAP3K19 and NTSR1 have important clinical
significance for the prognosis of LUAD. Thus, we performed
independent analyses for MAP3K19 and NTSR1 in TCGA-
LUAD. Unpaired differential analysis between normal sam-
ples and LUAD samples indicated that NTSR1 was signifi-
cantly overexpressed in LUAD (Figure 8(a)), while
MAP3K19 was significantly underexpressed in LUAD
(Figure 8(d)). The results of differential expression analysis
of paired samples were consistent (Figures 8(b) and 8(e)).
Subsequent ROC curve analysis suggested that NTSR1
(AUC: 0.601 (0.532−0.671), Figure 8(c)) and MAP3K19
(AUC: 0.710 (0.633−0.787), Figure 8(f)) had a good diagnos-
tic performance for the differential diagnosis of LUAD
samples.
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Figure 7: Univariate and multivariate Cox regression analyses determined the prognostic value and predictive performance of the 2-gene
signature prognostic model, MAP3K19 and NTSR1. (a) K-M survival analysis revealed that the high-risk group had a higher mortality
risk than the low-risk group; (b) 1, 3, and 5-year time-dependent ROC curve analysis based on OS in LUAD patients; (c) nomogram
effectively integrated and shows the ability of age, sex, tumor pathological status grade, and TNM stage, as well as MAP3K19 and NTSR1
(high- and low-expression groups based on the median value) in the training set-related prognostic variables to predict LUAD overall
survival; (d) calibration plot for internal validation of nomograms for overall survival prognostic status for LUAD at 1, 3, and 5 years of
training set; (e) nomograms effectively integrate and demonstrate the ability of prognostic variables in TCGA-LUAD to predict overall
survival in LUAD; (f) calibration plot for internal validation of nomograms for overall survival prognostic status for LUAD at 1, 3, and 5
years of the TCGA-LUAD dataset.
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Figure 8: Differential expression analysis and diagnostic efficacy verification of oxidative stress-related 2-gene marker prognostic factors
MAP3K19 and NTSR1 in TCGA-LUAD. (a) Unpaired differential analysis of NTSR1 in LUAD between normal and LUAD samples
indicated significantly high expression; (b) paired differential analysis of NTSR1 in LUAD and normal samples suggested significantly
high expression; (c) ROC curve validated MAP3K19. It has good diagnostic performance for the differential diagnosis of LUAD samples;
(d) between normal and LUAD samples, the unpaired differential analysis of MAP3K19 in LUAD suggests significantly lower expression
in LUAD and significantly lower expression in LUAD; (e) MAP3K19 in LUAD paired difference analysis with normal samples indicated
significantly low expression; (f) ROC curve verified that MAP3K19 has good diagnostic performance for the differential diagnosis of LUAD.
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Figure 9: Continued.
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We further analyzed the clinical variable subgroup sur-
vival analysis of oxidative stress-related 2 gene signatures
MAP3K19 and NTSR1 in TCGA-LUAD, suggesting that
high NTSR1 expression and low expression of MAP3K19
were remarkably linked to poorer OS outcomes in LUAD
(Figure 9(a)); subgroup survival analysis of clinical variables
of primary therapy outcome, pathologic stage, and TNM
stage exhibited that high expression of NTSR1 was signifi-
cantly linked to poor prognosis, respectively (Figures 9(b)–
9(f)). In addition, our logistic regression forest plot of
dichotomous variables for clinical subgroups of MAP3K19
demonstrated correlations (not statistically significant in
NTSR1 analysis) (Figure 9(h)). Meanwhile, in vivo RT-
PCR and IHC results against NTSR1 (Figures 10(a)–10(c))
and MAP3K19 (Figures 10(d)–10(f)) were also consistent
with our previous analysis.

3.7. Differential Analysis and Enrichment Analysis Based on
Oxidative Stress-Related 2 Gene Signatures. All of the above
analyses confirmed the superior predictive performance of
MAP3K19 and NTSR1 for poor prognosis in LUAD, and
the following analysis focused on exploring how the oxida-
tive stress-related 2 gene signature might lead to poor prog-
nosis in LUAD.

In order to additionally explore the molecular mecha-
nism engaged in the identification of high-risk populations
with poor prognosis of LUAD in the oxidative stress prog-
nostic model composed of MAP3K19 and NTSR1, we sepa-
rately analyzed the significant differences between two risk
groups in the prognostic model constructed by the LASSO
algorithm in the training set and the validation set. We per-
formed differential analysis on the two risk groups defined

by the median risk of the training set (Figure 11(a)) and val-
idation set (Figure 11(b)) prediction model, respectively,
showing the expression of significantly different genes as a
heatmap. The 92 prognostic risk genes of oxidative stress
coexisting in both sets were obtained by the Venn diagram
(Figure 11(c)). These genes were then subjected to enrich-
ment analysis. GSVA analysis shows enriched entries with
jLogFCj > 0:5 and adj:p < 0:05 as a heatmap. We then ana-
lyzed the reference gene set retrieved from the MSigDB data-
base in “c2.cp.v7.2.symbols.gmt,” “h.all.v7.2.symbols.gmt”
gene set, and immune cell infiltration-related gene set.
Enrichment scores for each gene functional pathway were
obtained utilizing the GSVA package in R. The heatmap
visualizes the differential gene expression between the two
risk groups in the training set as well as the validation set.
It was found that the gene set enrichment results of
“h.all.v7.2.symbols.gmt” (Figure 11(d)) and “c2.cp.v7.2.sym-
bols.gmt” (Figure 11(e)) based on the MSigDB database were
concentrated in UNFOLDED PROTEIN RESPONSE, GLY-
COLYSIS, MTORC1 SIGNALING, MYC TARGETS V1,
MYC TARGETS V2, and other functions and ways.
Immune-related “immune.gmt” (Figure 11(f)) gene set
enrichment results focused on Eosinophil, Natural.killer.cell,
Immature..B.cell, Activated.B.cell, Mast.cell, and Type.1.-
T.helper .cell.

Next, the GO (Table 3) and KEGG (Table 4) enrichment
analysis results are shown by bubble plots (Figures 12(a)
and 12(b)) and bar graphs (Figures 12(c) and 12(d)). BP
was significantly enriched in oxidative phosphorylation,
mitochondrial translational elongation, mitochondrial
translational termination, translational termination, purine
ribonucleoside triphosphate metabolic process, and other
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Figure 9: Subgroup survival analysis of clinical variables for oxidative stress-related 2 gene signatures MAP3K19 and NTSR1 in TCGA-
LUAD. (a) K-M survival curves suggest that elevated NTSR1 expression level is substantially linked to poorer OS outcomes in LUAD;
(b–f) K-M survival curves suggest that high NTSR1 expression is linked to poor pathologic outcomes, respectively; stage, primary
therapy outcome and TNM stage were significantly correlated; (g) K-M survival curve suggested that low expression of MAP3K19 was
remarkably linked to poorer OS outcome in LUAD; (h) logistic regression forest plot of binary variables of clinical subgroups of
MAP3K19 showed the correlation sex.

21Oxidative Medicine and Cellular Longevity



n = 40
T−test, p = 1.9e−08

−8

−6

−4

−2

Normal Tumor

Re
la

tiv
e e

xp
re

ss
io

n 
of

 N
TS

R1
 (-

Δc
t)

(a)

Normal Tumor

N
TS

R1

(b)

0

5

10

15

Normal Tumor

Group

Re
la

tiv
e e

xp
re

ss
io

n 
of

 N
TS

R1
 (I

H
C)

n = 40
T−test, p < 2.2e−16

(c)

−15

−10

−5

Normal Tumor

Re
la

tiv
e e

xp
re

ss
io

n 
of

 M
A

P3
K 

(-
Δc

t)

n = 40
T−test, p = 0.0038

(d)

Normal Tumor

M
A

P3
K1

9

(e)

0

4

8

12

Normal Tumor

Group

Re
la

tiv
e e

xp
re

ss
io

n 
of

 M
A

P3
K1

9 
(I

H
C)

n = 40
T−test, p < 2.2e−16

(f)

Figure 10: qRT-PCR and IHC analysis of model genes. (a–c) NTSR1 mRNA and protein expression were significantly increased in LUAD
samples; (d–f) MAP3K19 expression in LUAD samples was significantly lower than that in paratumor normal tissue.
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items. CC was significantly enriched in mitochondrial
inner membrane, protein complex, matrix, ribosome, orga-
nellar ribosome, and other entries. MF was significantly
enriched in the structural components of the ribosome,
proton transmembrane transporter activity, cytochrome-c
oxidase activity, electron transfer activity, heme-copper
terminal oxidase activity, and other items. KEGG was sig-

nificantly enriched in oxidative phosphorylation, thermo-
genesis, ribosome, Parkinson’s disease, cardiac muscle
contraction, and other pathways. A pathview diagram with
differentially expressed genes colored for the arachidonic
acid metabolism pathway is displayed in (Figures 12(e)–
12(i)), including hsa00190, hsa03010, hsa04260, hsa04714,
and hsa05012.
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Figure 11: Differential analysis based on oxidative stress-related 2 gene signatures and GSVA enrichment analysis. (a, b) We obtained
heatmaps of differential gene expression between the training set (a) and validation set (b) between high- and low-risk groups,
correspondingly; (c) Venn diagram obtained the coexisting 92 prognostic risk genes of oxidative stress; (d–f) “h.all.v7.2.symbols.gmt” (e),
“c2.cp.v7.2.symbols.gmt” with jLogFCj > 0:5 and adj:p < 0:05 as a heatmap (e), enriched entries for immune-related (f) gene set GSVA
analysis.

Table 3: GO enrichment analysis of coexpressed genes based on the LUAD oxidative stress-related prognostic risk model.

Ontology ID Description BgRatio p value p.adjust Q value

BP

GO:0006119 Oxidative phosphorylation 145/18670 8.76e-10 1.28e-06 1.17e-06

GO:0070125 Mitochondrial translational elongation 88/18670 5.21e-09 2.78e-06 2.53e-06

GO:0070126 Mitochondrial translational termination 89/18670 5.70e-09 2.78e-06 2.53e-06

GO:0006415 Translational termination 104/18670 1.97e-08 7.19e-06 6.56e-06

GO:0009205 Purine ribonucleoside triphosphate metabolic process 335/18670 2.83e-08 7.42e-06 6.76e-06

CC

GO:0005743 Mitochondrial inner membrane 473/19717 3.79e-18 7.50e-16 6.10e-16

GO:0098798 Mitochondrial protein complex 262/19717 1.10e-10 1.09e-08 8.85e-09

GO:0005759 Mitochondrial matrix 469/19717 1.45e-08 9.60e-07 7.81e-07

GO:0000313 Organellar ribosome 87/19717 1.03e-07 4.09e-06 3.33e-06

GO:0005761 Mitochondrial ribosome 87/19717 1.03e-07 4.09e-06 3.33e-06

MF

GO:0003735 Structural constituent of ribosome 202/17697 3.60e-06 9.07e-04 7.84e-04

GO:0015078 Proton transmembrane transporter activity 133/17697 3.07e-05 0.004 0.003

GO:0009055 Electron transfer activity 114/17697 1.66e-04 0.011 0.009

GO:0004129 Cytochrome-c oxidase activity 28/17697 2.69e-04 0.011 0.009

GO:0015002 Heme-copper terminal oxidase activity 28/17697 2.69e-04 0.011 0.009
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3.8. Gene Set Enrichment Analysis of Oxidative Stress Gene
Model in LUAD. In order to additionally explore the molec-
ular processes engaged in the identification of high-risk pop-
ulations with poor prognosis of LUAD in the oxidative stress
prognostic model composed of MAP3K19 and NTSR1,
GSEA is a computational method utilized to ascertain if a
predefined set of genes shows statistical differences between
two biological states, which is typically utilized to estimate
expression in a dataset sample. Changes in the pathway as
well as biological process activity were analyzed [23]. To
investigate the variations in biological mechanisms between
the two groups of samples, employing the gene expression
profile dataset, we obtained the reference gene set
“c2.cp.kegg.v7.4.entrez.gmt” from the MSigDB database, uti-
lizing the R package “clusterProfiler.” The GSEA method is
included in enrichment analysis and visualization of data-
sets. p value < 0.05 was considered statistically significant
(Figure 13 and Table 5).

3.9. Pan-Cancer Analysis of Immune Cells and Immune
Infiltration Based on MAP3K19 and NTSR1. The infiltration
abundance of immune cells was analyzed by CIBERSORT,
and the correlation heatmap in pan-cancer showed that
MAP3K19 (Figure 14(a)) and NTSR1 (Figure 14(b)) were
significantly correlated with immune infiltration in more
types of tumors. Based on TCGA LUAD transcription pro-
file and CIBERSORT, we derived the proportions of 22
tumor-infiltrating immune cells. In our study, the use of
RNA-seq data as well as global proteomic data inferred
MAP3K19 and NTSR1 for pan-cancer tumor purity,
immune score, and stromal score. From this, significantly
correlated immune infiltration scores were identified, and
we analyzed the scores for stromal cell levels, tumor purity,
and immune cell infiltration levels in cancer tissues calcu-
lated with ESTIMATE expression was substantially posi-
tively linked to immune score, ESTIMATE score, and
stromal score, respectively. The results suggest that NTSR1
(Figures 14(c)–14(e)) and MAP3K19 (Figures 14(f)–14(h))
were closely related to stromal cell level, tumor purity, and
immune cell infiltration level in the lung tumor microenvi-
ronment and may affected the prognosis of LUAD by chang-
ing the tumor immune microenvironment.

3.10. Correlation Analysis of Immune Cell Infiltration. It was
found that MAP3K19 was positively correlated with T cell
CD4 memory resting and B cell memory (Figures 15(a)
and 15(b)) and negatively correlated with mast cells acti-
vated and dendritic cells activated (Figures 15(c) and
15(d)). NTSR1 was positively correlated with neutrophils,

macrophages M0, and T cell gamma delta (Figures 15(e)–
15(g)) and negatively linked to mast cells resting
(Figure 15(h)). In our study, the use of RNA-seq data as well
as global proteomic data inferred MAP3K19 and NTSR1 for
pan-cancer tumor purity, immune score, and stromal score.
From this, significantly correlated immune infiltration
scores were identified, and we analyzed the scores for stro-
mal cell levels, tumor purity, and immune cell infiltration
levels in cancer tissues calculated with ESTIMATE expres-
sion which was substantially positively linked to immune
score, ESTIMATE score, and stromal score, respectively.
The results suggest that NTSR1 (Figures 14(c)–14(e)) and
MAP3K19 (Figures 14(f)–14(h)) were closely related to stro-
mal cell level, tumor purity, and immune cell infiltration
level in the lung tumor microenvironment and may affected
the prognosis of LUAD by changing the tumor immune
microenvironment.

4. Discussion

Globally, lung cancer is the major cause of cancer-related
mortalities, whereas LUAD is the most prevalent histological
subtype of the disease. About two-thirds of LUAD have acti-
vated oncogenes. Most oncogene mutations often activate
downstream signaling pathways through oxidative stress
pathways and states, ultimately leading to lethal malignan-
cies, including LUAD [24, 29, 30]. Molecularly targeted ther-
apy significantly improves survival in patients with
treatment-targeted lesions compared to conventional che-
motherapy [31, 32]. However, the clinical efficacy of targeted
drugs has been improved due to the lack of appropriate
small molecules to bind major tumor-causing gene
mutations.

For the survival of both normal cells and cancerous cells,
redox hemostasis is fundamental. Nonetheless, numerous
malignancies have increased levels of reactive oxygen species
(ROS) and exhibit signs of chronic oxidative stress as a result
of oncogenic injury, metabolic malformations, hypoxia, and
proteotoxic stress [33]. The increased ROS at the sublethal
level is implicated in the enhancement of tumor develop-
ment via triggering mutations and altering cell signaling
[34]. Because traditional cytotoxic agents additionally influ-
ence normal tissues, targeted approaches that induce cata-
strophic oxidative stress selectively in malignant cells
would avail a better therapeutic window [35].

The LUAD cohort of TCGA availed both the expression
and clinical data in this study. Among oxidative stress-
related genes, we did differential expression analysis as well
as univariate Cox analysis to screen 32 prognostic DEGs

Table 4: KEGG enrichment analysis of coexpressed genes based on the LUAD oxidative stress-related prognostic risk model.

Ontology ID Description BgRatio p value p.adjust Q value

KEGG

hsa00190 Oxidative phosphorylation 133/8076 4.47e-08 3.35e-06 2.82e-06

hsa04714 Thermogenesis 231/8076 4.98e-07 1.87e-05 1.57e-05

hsa03010 Ribosome 158/8076 2.71e-05 6.77e-04 5.70e-04

hsa05012 Parkinson disease 249/8076 6.90e-05 0.001 0.001

hsa04260 Cardiac muscle contraction 87/8076 1.25e-04 0.002 0.001
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Figure 12: Continued.
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from 147 differentially expressed oxidative stress-related
genes and utilized Lasso-penalized Cox regression analysis
constructed 2 gene markers associated with prognosis. At
the same time, by constructing a PPI network, we analyzed
the distribution of 18 differentially oxidative stress hub genes
in transport vesicles, endoplasmic reticulum lumen, etc.,
affecting blood pressure, hormone secretion, nucleotide sec-
ond messengers, and other functions to regulate oxidative
stress effect. To construct and validate the oxidative stress
gene signature affecting the diagnosis and prognosis of
LUAD, we randomly divided 445 patients with complete
clinical informatics data in TCGA-LUAD into the training
set (2/3 of the total, n = 296) and the test set (1/3 of the total,
n = 149); the grouping is normally distributed. We first per-
formed a univariate Cox regression analysis of gene expres-
sion premised on the expression data of 147 oxidative
stress-related genes in the training and test set, correspond-
ingly. Thirty-five genes with prognostic values coexisting in
both sets were identified. Then, we performed LASSO-Cox
proportional hazards regression based on 35 prognostic-
related differential oxidative stress genes in the training
and validation set, correspondingly, and found that
MAP3K19 and NTSR1 in both sets showed a better predic-
tion of poor prognosis in LUAD ability. Therefore, the prog-
nostic independence of 2-gene signature prognostic factors,

MAP3K19 and NTSR1, was further analyzed in combination
with clinical features. A nomogram was constructed to effec-
tively integrate prognostic variables and validated with cali-
bration. Next, the difference analysis of MAP3K19 and
NTSR1 in TCGA-LUAD and the correlation analysis of clin-
ical variables indicated that both the high expression of
NTSR1 and the low expression of MAP3K19 had a better
diagnostic performance for the diagnosis of LUAD and the
identification of poor prognosis. At the same time,
MAP3K19 and NTSR1 were found to be significantly corre-
lated with clinical variables such as LUAD pathological stage
and TNM grade. Prognosis-related differential oxidative
stress gene signatures are independent prognostic factors in
patients with LUAD.

The importance of tumor immune activity on tumori-
genesis and development, as well as individual variation at
the gene level, has attracted more and more researchers to
focus on the significance of differential genes that may be
useful in distinguishing pRCC patients with heterogeneous
responses and predicting prognosis potentially meaningful.
The ESTIMATE analysis of pan-cancer species analysis of
MAP3K19 and NTSR1 in TCGA database systematically
recorded the abundance of 22 tumor-infiltrating immune
compartments in LUAD samples through the CIBERSORT
algorithm and integrated it with the MAP3K19 and NTSR1

04260 4/7/20
(c) Kanehisa laboratories

Cardiac muscle contraction

(h)

Thermogenesis

04714 7/7/21
(c) Kanehisa laboratories

(i)

Figure 12: GO and KEGG enrichment analysis. (a–d) GO (a, c) and KEGG (b, d) enrichment analysis of 92 differentially expressed genes
associated with LUAD prognosis. Bubble and bar graphs show the results of GO and KEGG enrichment analysis; (e–i) pathview diagrams
with DEGs colored for expression are shown for hsa00190, hsa03010, hsa04260, hsa04714, and hsa05012, respectively. The figure shows
term with p:adjust < 0:05. The length of the bars in the histogram denotes the amount of gene enrichment, the color denotes the
significance, and the significance level increases gradually from blue to red.

30 Oxidative Medicine and Cellular Longevity



High

0 2,000 4,000 6,000 8,000

Rank in ordered dataset

−0.2 High

−0.1

0.0

0.1

0.2 Low

Ra
nk

ed
 li

st 
m

et
ric

JAK_STAT_SIGNALING_PATHWAY (ES = 0.5561,NP = 0.0000)

0.0
0.1
0.2
0.3
0.4
0.5

En
ric

hm
en

t s
co

re

(a)

High

0 2,000 4,000 6,000 8,000

Rank in ordered dataset

−0.2 High

−0.1

0.0

0.1

0.2 Low

Ra
nk

ed
 li

st 
m

et
ric

SYSTEMIC_LUPUS_ERYTHEMATOSUS (ES = 0.6502,NP = 0.0040)

0.0
0.1
0.2
0.3
0.4
0.5
0.6

En
ric

hm
en

t s
co

re

(b)

High

0 2,000 4,000 6,000 8,000

Rank in ordered dataset

−0.2 High

−0.1

0.0

0.1

0.2 Low

Ra
nk

ed
 li

st 
m

et
ric

LEISHMANIA_INFECTION (ES = 0.5961,NP = 0.0041)

0.0
0.1
0.2
0.3
0.4
0.5

En
ric

hm
en

t s
co

re

(c)

Figure 13: Continued.
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Figure 13: Gene set enrichment analysis of oxidative stress prognostic gene signature in LUAD. (a) JAK_STAT_SIGNALING_PATHWAY
(ES = 0:5561, NP = 0:0000); (b) SYSTEMIC_LUPUS_ERYTHEMATOSUS (ES = 0:6502, NP = 0:0040); (c) LEISHMANIA_INFECTION
(ES = 0:5961, NP = 0:0041); (d) NATURAL_KILLER_CELL_MEDIATED_CYTOTOXICITY (NP = 0:0064); (e) AUTOIMMUNE_
THYROID_DISEASE (ES = 0:7506, NP = 0:0021); (f) VIRAL_MYOCARDITIS (ES = 0:6040, NP = 0:0000); (g) CYTOKINE_
CYTOKINE_RECEPTOR_INTERACTION (ES = 0:4820, NP = 0:0142); (h) T_CELL_RECEPTOR_SIGNALING_PATHWAY
(ES = 0:5250, NP = 0:0000); (i) ALLOGRAFT_REJECTION (ES = 0:7815, NP = 0:0021).
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molecular profiles to analyze the degree of immune infiltra-
tion in LUAD. Subsequently, further immune score, stromal
score, and ESTIMATE score in the pan-cancer TME
revealed the potential roles of MAP3K19 and NTSR1 in reg-
ulating stromal/immune scores and gene expression in
tumors. This suggests that the oxidative stress prognostic
model composed of MAP3K19 and NTSR1 may be involved
in the molecular mechanism in the identification of high-
risk populations with poor prognosis of LUAD.

Studies have shown that MAP3K19 level is elevated in
COPD and bronchoalveolar lavage macrophages from
patients with IPF. At the level of target gene transcription
or protein synthesis, molecular studies have confirmed that
MAP3K19 inhibitors are linked to pirfenidone or ninted-
anib. At the same time, MAP3K19 significantly attenuated
bleomycin-induced pulmonary fibrosis [36] and is a central
mediator of cigarette smoke-induced pulmonary inflamma-
tion and lower airway destruction [37]. In studies on lung
cancer, targeting MAP3K19 has been reported to prevent
human lung myofibroblast activation in vitro and in a
humanized SCID model of idiopathic pulmonary fibrosis
[38]. On the other hand, it can also phosphorylate MAP2K,
thereby activating ERK as well as JNK kinases and increasing
the KRAS mutant lung cancer cells’ viability [39]. The mech-
anism of action of NTSR1 in various tumors has also been
reported many times [40]. Effects, underlying mechanisms,
and clinical roles of NTSR1 on gastric adenocarcinoma cell
proliferation and invasion. Interfering with NTSR1 expres-
sion exhibits anti-invasive effects through the Jun/miR-
494/SOCS6 axis in glioblastoma cells [41]. The mechanism
of action of NTSR1 in various tumors has also been reported
many times. Effects, underlying mechanisms, and clinical
roles of NTSR1 on gastric adenocarcinoma cell proliferation
and invasion. Interfering with NTSR1 expression causes
anti-invasive effects through the Jun/miR-494/SOCS6 axis
in glioblastoma cells. NTSR1 and Wnt/β-catenin enhance
tumor growth in glioblastoma [42]. Furthermore, NTSR1
methylation is linked to the lateral and noninvasive progres-
sion of colorectal tumors, whereas lowered levels of methyl-
ation might enhance the malignant potential via activation
of NTSR1 [43].

In conclusion, this study constructed and validated a 2-
gene oxidative stress-related LUAD prognostic model,
MAP3K19 and NTSR1, which were significantly correlated
with clinical variables (including LUAD pathological stage
and TNM grade) and significantly affected the infiltration
of immune cells in the tumor microenvironment (TME)
of LUAD. And they are all involved in the process of oxi-
dative stress and the energy metabolism network of ROS.
The results of enrichment analysis based on the biological
functions of GO, KEGG, and GSEA and pathway signaling
patterns suggest that the molecular expression of
MAP3K19 and NTSR1 and other immune cells help in
the process of oxidative stress, even though conclusive evi-
dence is still unavailable. Studies have shown that during
apoptosis, immune cells are attracted and aggregated by a
set of signals that enhance programmed cell death [44,
45]. In terms of bioinformatics, various studies have
revealed a possible link between tumor and immune infil-
tration [46, 47]. Additionally, to palliative targeted therapy,
monotherapy with new immunotherapies, such as immune
checkpoint inhibitors (ICIs), has also demonstrated quite
successful outcomes in some individuals with advanced
LUAD [48]. In this study, through risk group-based
immune annotation analysis, we found that macrophages,
Tregs, and other types of immune cells and costimulation
of immune-related roles were significantly enriched in
both cohorts, suggesting that there may be potential regu-
latory mechanisms.

This study found some limitations. In a bioinformatics
study, the weakness of the absence of experimental as well
as clinical validation remains, and the utilization of alterna-
tive cutoff criteria, statistical methodologies, or analytical
tools may provide varied results. Furthermore, building a
prognostic model by focusing on a single marker may result
in the deletion of numerous other potential prognostic
genes. In conclusion, we created a novel 2-gene signature
associated with oxidative stress that was shown to be an
independent prognostic predictor of OS in LUAD. Through
functional annotation analysis, the gene signature was asso-
ciated with tumor immunity; nonetheless, its underlying
process is not clear and needs to be explored further.

Table 5: Results of gene set enrichment analysis of gene signatures in prognostic models of oxidative stress.

Term ES NES p value FDR

VIRAL_MYOCARDITIS 0.604 2.0023 0.0117 0.04

AUTOIMMUNE_THYROID_DISEASE 0.7506 2.0069 0.0021 0.0149

ASTHMA 0.7919 2.0269 0.002 0.0168

NATURAL_KILLER_CELL_MEDIATED_CYTOTOXICITY 0.5455 1.9577 0.0064 0.0191

JAK_STAT_SIGNALING_PATHWAY 0.5561 2.0488 0.0259 0.023

LEISHMANIA_INFECTION 0.5961 1.8795 0.0041 0.0266

ALLOGRAFT_REJECTION 0.7815 1.9236 0.0021 0.0269

T_CELL_RECEPTOR_SIGNALING_PATHWAY 0.525 1.8848 0.0288 0.0149

SYSTEMIC_LUPUS_ERYTHEMATOSUS 0.6502 1.897 0.004 0.0293

CYTOKINE_CYTOKINE_RECEPTOR_INTERACTION 0.482 1.8142 0.0142 0.046

TOLL_LIKE_RECEPTOR_SIGNALING_PATHWAY 0.4956 1.8005 0.0151 0.0487

34 Oxidative Medicine and Cellular Longevity



B_cel
ls_

naiv
e

B_cel
ls_

mem
ory

Plas
ma_cel

ls

T_cel
ls_

CD8

T_cel
ls_

CD4_naiv
e

T_cel
ls_

CD4_mem
ory_res

tin
g

T_cel
ls_

CD4_mem
ory_act

ivate
d

T_cel
ls_

follic
ular

_help
er

T_cel
ls_

reg
ulato

ry_(Treg
s)

T_cel
ls_

gam
ma_delta

NK_cel
ls_

res
tin

g

NK_cel
ls_

act
ivate

d

Monocytes

Macr
ophages_

M0

Macr
ophages_

M1

Macr
ophages_

M2

Dendriti
c_cel

ls_
res

tin
g

Dendriti
c_cel

ls_
act

ivate
d

Mast
_cel

ls_
res

tin
g

Mast
_cel

ls_
act

ivate
d

Eosin
ophils

Neutro
phils

TCGA-TGCT (N = 132)
TCGA-THCA (N = 503)
TCGA-LAML (N = 214)
TCGA-PAAD (N = 177)
TCGA-STES (N = 569)
TCGA-SKCM-P (N = 101)
TCGA-LUAD (N = 500)
TCGA-PCPG (N = 177)
TCGA-STAD (N = 388)
TCGA-KIPAN (N = 878)
TCGA-UVM (N = 79)
TCGA-ESCA (N = 181)
TCGA-KIRC (N = 528)
TCGA-READ (N = 91)
TCGA-CESC (N = 291)
TCGA-SKCM (N = 452)
TCGA-CHOL (N = 36)
TCGA-LGG (N = 504)
TCGA-MESO (N = 85)
TCGA-SKCM-M (N = 351)
TCGA-UCEC (N = 178)
TARGET-ALL-R (N = 99)
TCGA-GBMLGG (N = 656)
TCGA-COAD (N = 282)
TCGA-PRAD (N = 495)
TARGET-NB (N = 153)
TCGA-LIHC (N = 363)
TCGA-DLBC (N = 46)
TCGA-SARC (N = 258)
TCGA-GBM (N = 152)
TCGA-UCS (N = 56)
TCGA-BRCA (N = 1077)
TCGA-ACC (N = 77)
TCGA-OV (N = 417)
TCGA-THYM (N = 118)
TCGA-KICH (N = 65)
TCGA-LUSC (N = 491)
TCGA-KIRP (N = 285)
TCGA-HNSC (N = 517)
TCGA-COADREAD (N = 373)
TARGET-ALL (N = 86)
TARGET-WT (N = 80)
TARGET-LAML (N = 142)
TCGA-BLCA (N = 405)

Correlation coefficient

−0.5 0.0 0.5

p value

0.0 0.5 1.0 1.5 2.0

(a)

Figure 14: Continued.

35Oxidative Medicine and Cellular Longevity



B_cel
ls_

naiv
e

B_cel
ls_

mem
ory

Plas
ma_cel

ls

T_cel
ls_

CD8

T_cel
ls_

CD4_naiv
e

T_cel
ls_

CD4_mem
ory_res

tin
g

T_cel
ls_

CD4_mem
ory_act

ivate
d

T_cel
ls_

follic
ular

_help
er

T_cel
ls_

reg
ulato

ry_(Treg
s)

T_cel
ls_

gam
ma_delta

NK_cel
ls_

res
tin

g

NK_cel
ls_

act
ivate

d

Monocytes

Macr
ophages_

M0

Macr
ophages_

M1

Macr
ophages_

M2

Dendriti
c_cel

ls_
res

tin
g

Dendriti
c_cel

ls_
act

ivate
d

Mast
_cel

ls_
res

tin
g

Mast
_cel

ls_
act

ivate
d

Eosin
ophils

Neutro
phils

TCGA-TGCT (N = 132)
TCGA-HNSC (N = 517)
TARGET-ALL-R (N = 99)
TCGA-CESC (N = 291)
TCGA-THYM (N = 118)
TCGA-PRAD (N = 495)
TCGA-COAD (N = 282)
TCGA-COADREAD (N = 373)
TCGA-LUSC (N = 491)
TCGA-LUAD (N = 500)
TCGA-KICH (N = 65)
TCGA-UCS (N = 56)
TCGA-THCA (N = 503)
TCGA-STAD (N = 388)
TCGA-SKCM-P (N = 101)
TARGET-NB (N = 153)
TCGA-PAAD (N = 177)
TCGA-STES (N = 569)
TCGA-ACC (N = 77)
TCGA-LIHC (N = 363)
TCGA-GBM (N = 152)
TCGA-SARC (N = 258)
TCGA-KIPAN (N = 878)
TCGA-SKCM-M (N = 351)
TCGA-LGG (N = 504)
TCGA-BLCA (N = 405)
TCGA-BRCA (N = 1077)
TCGA-DLBC (N = 46)
TCGA-UCEC (N = 178)
TCGA-ESCA (N = 181)
TCGA-KIRC (N = 528)
TCGA-CHOL (N = 36)
TCGA-GBMLGG (N = 656)
TCGA-MESO (N = 85)
TCGA-UVM (N = 79)
TARGET-LAML (N = 142)
TCGA-LAML (N = 214)
TARGET-ALL (N = 86)
TARGET-WT (N = 80)
TCGA-PCPG (N = 177)
TCGA-SKCM (N = 452)
TCGA-OV (N = 417)
TCGA-KIRP (N = 285)
TCGA-READ (N = 91)

Correlation coefficient

−0.4−0.2 0.0 0.2 0.4

p value

0.0 0.5 1.0 1.5 2.0

(b)

0

1,000

2,000

3,000

Im
m

un
e s

co
re

−5 0 5

NTSR1 Expression

TCGA-LUAD (N = 500): p = 2.8e-3 r = 0.13 = 0.13

(c)

−2,000

0

2,000

4,000

Es
tim

at
e s

co
re

−5 0 5

NTSR1 Expression

TCGA-LUAD (N = 500): p = 6.7e-4 r = 0.15 = 6.7e-4 r = 0.15

(d)

Figure 14: Continued.

36 Oxidative Medicine and Cellular Longevity



The TCGA-LUAD cohort availed both the clinical data
and the expression data in this study. Among oxidative
stress-related genes, we did differential expression analysis
and univariate Cox analysis in order to screen 32 prognostic
DEGs from 147 differentially expressed oxidative stress-
related genes and utilized Lasso-penalized Cox regression
analysis constructed 2 gene markers associated with progno-
sis. At the same time, by constructing a PPI network, we
analyzed the distribution of 18 differentially oxidative stress
hub genes in transport vesicles, endoplasmic reticulum
lumen, etc., affecting blood pressure, hormone secretion,
nucleotide second messengers, and other functions to regu-
late oxidative stress effect. To construct and validate the oxi-
dative stress gene signature affecting the diagnosis and
prognosis of LUAD, we randomly divided 445 patients with

complete clinical informatics data in TCGA-LUAD into the
training set (2/3 of the total, n = 296) and the test set (1/3 of
the total, n = 149); the grouping is normally distributed. We
first performed a univariate Cox regression analysis of gene
expression premised on the expression data of 147 oxidative
stress-related genes in the training and test sets, respectively.
Thirty-five genes with prognostic values coexisting in both
sets were identified. Then, we performed LASSO-Cox pro-
portional hazards regression based on 35 prognostic-
related differential oxidative stress genes in the training set
as well as the validation set, respectively, and found that
MAP3K19 and NTSR1 in the two sets showed a better pre-
diction of poor prognosis in LUAD ability. Therefore, the
prognostic independence of 2-gene signature prognostic fac-
tors, MAP3K19 and NTSR1, was further analyzed in
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Figure 14: Immune cell infiltration analysis. (a, b) CIBERSORT analysis of MAP3K19 (a) and NTSR1 (b) heatmaps related to the
infiltration abundance of immune cells in pan-cancer; (c–h) ESTIMATE analyzed the scores of tumor purity, stromal cell level, and
immune cell infiltration level in tumor tissue and showed NTSR1 (c–e) and MAP3K19 (f–h) expression with immune score, ESTIMATE
score, and stromal score, respectively, with a scatterplot positively correlated.
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Figure 15: Continued.
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combination with clinical features. A nomogram was con-
structed to effectively integrate prognostic variables and val-
idated with calibration. Next, the difference analysis of
MAP3K19 and NTSR1 in TCGA-LUAD and the correlation
analysis of clinical variables indicated that both the high
expression of NTSR1 and the low expression of MAP3K19
had a better diagnostic performance for the diagnosis of
LUAD and the identification of poor prognosis. At the same
time, MAP3K19 and NTSR1 were found to be significantly
correlated with clinical variables such as LUAD pathological
stage and TNM grade. Prognosis-related differential oxida-

tive stress gene signatures are independent prognostic fac-
tors in patients with LUAD. ESTIMATE analysis results of
pan-cancer species analysis of MAP3K19 and NTSR1 in
TCGA database. The abundances of 22 tumor-infiltrating
immune compartments in LUAD samples were systemati-
cally recorded by the CIBERSORT algorithm and integrated
with MAP3K19 and NTSR1 molecular profiles to analyze
the degree of immune infiltration in LUAD. Subsequently,
further immune score, stromal score, and ESTIMATE score
in the pan-cancer TME revealed the potential roles of
MAP3K19 and NTSR1 in regulating stromal/immune scores
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Figure 15: Correlation analysis of immune cell infiltration. (a, b) MAP3K19 was positively correlated with T cells CD4 memory resting and
B cells memory; (c, d) MAP3K19 was negatively correlated with mast cells activated and dendritic cells activated; (e–g) NTSR1 was positively
correlated with neutrophils, macrophages M0, and T cells gamma delta; (h) NTSR1 was negatively linked to mast cells resting.
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and gene expression in tumors. This suggests that the oxida-
tive stress prognostic model composed of MAP3K19 and
NTSR1 may be involved in the molecular mechanism in
the identification of high-risk populations with poor prog-
nosis of LUAD.
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Oxidative stress is crucial to the biology of tumors. Oxidative stress’ potential predictive significance in colorectal cancer (CRC)
has not been studied; nevertheless here, we developed a forecasting model based on oxidative stress to forecast the result of
CRC survival and enhance clinical judgment. The training set was chosen from the transcriptomes of 177 CRC patients in
GSE17536. For validation, 65 samples of colon cancer from GSE29621 were utilized. For the purpose of choosing prognostic
genes, the expression of oxidative stress-related genes (OXEGs) was found. Prognostic risk models were built using
multivariate Cox regression analysis, univariate Cox regression analysis, and LASSO regression analysis. The outcomes of the
western blot and transcriptome sequencing tests were finally confirmed. ATF4, CARS2, CRP, GPX1, IL1B, MAPK8, MRPL44,
MTFMT, NOS1, OSGIN2, SOD2, AARS2, and FOXO3 were among the 14 OXEGs used to build prognostic characteristics.
Patients with CRC were categorized into low-risk and high-risk groups according on their median risk scores. Cox regression
analysis using single and multiple variables revealed that OXEG-related signals were independent risk factors for CRC.
Additionally, the validation outcomes from western blotting and transcriptome sequencing demonstrated that OXEGs were
differently expressed. Using 14 OXEGs, our work creates a predictive signature that may be applied to the creation of new
prognostic models and the identification of possible medication candidates for the treatment of CRC.

1. Introduction

Colorectal cancer (CRC) is a common malignant tumor of
the gastrointestinal tract [1]. It is the second most lethal

malignancy in China, after lung cancer, with an incidence
of roughly 40,800 persons. The fourth malignant tumor
accounts for around 195,600 annual deaths [2]. Currently,
colorectal cancer patients can receive treatment through
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Figure 1: Construction of the prognostic model in GEO-CRC. (a) According to the results of univariate Cox regression analysis, a total of 15
genes were identified as prognostic genes; (b) LASSO coefficient profiles of the prognostic genes; and (c) turning optimal parameter
(lambda) screening in the LASSO model.
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Figure 2: Principal component analysis. (a) PCA analysis was performed in high- and low-risk groups. (b) PCA analysis of prognosis model.
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surgery, endoscopic procedures, radiotherapy, chemother-
apy, and immunotherapy [3], but the overall survival rate
of colorectal cancer patients has not dramatically enhanced
[4]. On account of the high invasiveness and paucity of
awareness of early physical examination, diagnosis is often
made once symptoms have advanced or the disease has
metastasized, which poses significant challenges for the
prognosis and course of treatment.

Tumor development consists of a multitude of complex
variables. The oxidative stress factor plays a significant role
in numerous stages of tumor advancement, including the
transformation of normal cells into tumor cells, prolifera-
tion, tumor angiogenesis, and metastasis [5–8]. The term
“tumor of oxidative stress” refers to an improper regulation
mechanism of oxidative signaling and oxidative damage of
macromolecules caused by an imbalance in the body’s oxi-
dation and antioxidation system of mutual limitation [9].

The effect of oxidative stress mainly involves reactive
nitrogen species (RNS) and reactive oxygen species (ROS)
as an outcome of chemical reactions; the resulting effect is
often seen as a double-edged sword, with great controversy
over the tumor-promoting and tumor-suppressing effects
[6, 10], the specific effect of ROS levels on tumor cells them-
selves, [11] sensitivity and lack of oxygen, and the tumor
microenvironment of regulatory factors. When the content
of ROS is insufficient to break the balance between oxidative
and antioxidant systems in the tumor growth environment,
it can participate in the regulation of epithelial-
mesenchymal transition (EMT), tumor angiogenesis, and
other processes by activating PI3K/Akt and NF-κB signaling
pathways [12–14]. ROS can also promote the metastasis and

proliferation of tumor cells [15]. At the same time, low levels
of ROS can cause occasional DNA base mismatch and DNA
damage in the body, which will be repaired immediately.
However, when a large amount of ROS causes the amassing
of DNA damage in tumor cells to the extent that it cannot be
repaired, conventional base excision repair [16] and nucleo-
tide excision repair cannot remove the damaged DNA. Thus,
the tumor cells have to undergo programmed cell death.

Plasma medicine is an emerging academic area that
combines clinical medicine, physics, and life sciences. Cold
atmospheric plasma-activated medium (PAM), which is
dependent on plasma production of active substances trans-
ferred to the medium, has a wide range of uses [17]. Its anti-
cancer effect is generally considered to be through ROS and
RNS [18–20]. Therefore, PAM was selected as an oxidative
stress source to verify the relationship between oxidative
stress and tumor prognosis.

In recent years, the relationship between the accumula-
tion of ROS and immunotherapy has been more and more
frequently mentioned. It is particularly important to clarify
the technique of the body’s immune feedback to a tumor
and the escape of tumor cells from immune effect during
oxidative stress [21, 22]. ROS production also affects the
anticancer effects of CD8+ and CD4+ T cells in the tumor
microenvironment [23, 24]. Many clinical trials and success-
ful checkpoint immunotherapy instances have shown the
crucial role that the cellular immune system plays in the
treatment of cancer.

In the process of oxidative stress and colorectal cancer
research, early prediction models and prognostic gene
screening are particularly important. In this research, based
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Figure 3: Evaluation of the prognostic signature in GEO-CRC. (a) Kaplan-Meier (K-M) curve of overall survival for the training set; (b) K-
M curves of overall survival for the validation set; (c) ROC curves of 1-year, 3-year, and 5-year survival rates for the training set; (d) ROC
curves of 1-year, 3-year, and 5-year survival rates for the validation set; (e, f) Cox regression analysis of risk scores and other clinical
characteristics (age, gender, grade, stage); (g) ROC curve of clinical characteristics for the training set; and (h) ROC curve of clinical
characteristics for the validation set.
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on information from Gene Expression Omnibus (GEO),
related genes that may affect the prognosis of CRC were
studied.

2. Materials and Methods

2.1. Data Sources and Processing. The CRC cohort’s tran-
scriptional dataset with aligning clinical data were down-
loaded from the Gene Expression Omnibus (GEO)

database. After comprehensive screening, data sets
GSE17536 and GSE29621 were chosen for this study, in
which 177 patients with symptoms of colorectal cancer were
included in GSE17536 as a training set, and 65 patients with
colorectal cancer were included in GSE29621 as the valida-
tion set.

2.2. Screening for Oxidative Stress-Related Genes. Eighty
genes related to oxidative stress were retrieved from
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GeneCards (https://www.genecards.org/). The cut-offs were
set as relevance score > 20 (Supplement 1). Subsequently,
77 expressed genes of oxidative stress were identified by
Venn diagram package (1.7.1).

2.3. Establishment and Assessment of Prognostic Risk Score
Model. Univariate Cox regression screening was performed
for prognostic OXEGs. The LASSO algorithm was imple-
mented to find the value of the minimum error of cross val-
idation and obtain the best prognostic gene of the model.
Finally, stable OXEGs were constructed as the final prognos-
tic model. Kaplan-Meier curves were utilized to establish
prognostic differences between groups, and ROC curves
were used to calculate the 1-, 3-, and 5-year survival of
patients. Finally, the correlation between patients’ low-risk
and high-risk groups and clinical information was
calculated.

2.4. Nomogram Prognosis Prediction Model Establishment.
We used the “RMS” package in version R (4.2.0) to plot
the lipopograph model in combination with patient’s age,
sex, grade, stage, and risk score. To show the accord between
the actual survival probabilities at 1, 3, and 5 years and those
predicted by the nomogram, calibration curves were devel-
oped. Finally, the model was validated using the ROC curve,
multivariate Cox regression, and univariate Cox regression.

2.5. Correlation between Low-Risk and High-Risk Groups for
Immune Cell Infiltration. CIBERSORT R package was used

to establish the amount of tumor-infiltrating immune cells
in CRC tumor samples. Finally, we examined the functional
differences of tumor immune cells through “reshape2,”
“GSVA,” and “GSEABase” software package in R version
(4.2.0).

2.6. Gene Enrichment Examination between High-Risk and
Low-Risk Groups. In order to show the influence of potential
biological pathways in the differential expression of OXEGs,
r-packet clusterProfiler was utilized for gene ontology (GO)
enrichment examination and KEGG pathway examination.
The molecular signatures database (MSigDB) used with the
Gene Set Enrichment Analysis (GSEA) software version
(holdings) was C2 (C2. Cp. Kegg. 7.5.1. Entrez. GMT) used
to evaluate the link between biological and genetic traits.
The significance level was set to P < 0:05, and the number
of arbitrary sample permutations was set to 1000.

2.7. Transcriptome Sequencing Validation of Colorectal
Cancer. Three CRC tissues from the Anorectal Department,
Nanjing Hospital of Traditional Chinese Medicine were col-
lected and matched with normal tissues for transcriptome
sequencing. Patients received no neoadjuvant chemotherapy
or radiotherapy. Consent was obtained from the study partic-
ipants prior to study commencement. Clinicopathological
characteristics of these patients were also collected. The col-
lected tissues were frozen in liquid nitrogen. The Declaration
of Helsinki, the World Medical Association’s code of ethics
for human experimentation, was followed throughout the
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performance of this study. The ethics committee of the Nan-
jing Hospital of Traditional Chinese Medicine had to approve
the study. Informed consent was signed by all patients whose
tissue samples were collected before the study began.

2.8. Cell Line Culture and Treatment. The CRC cell line
SW480 was grown in 1640 media with 10% fetal bovine

serum (FBS), 1% penicillin/streptomycin, and 5% carbon
dioxide in a humid environment at 37°C. All materials for
cell culture were purchased from Gibco, USA. Cell lines
within 10 generations were selected to reduce the influence
of passage on experimental results. The particular plasma
jet was designed by Nanjing Tech University. PAM is made
by plasma jet spraying PBS solution at a distance of 5mm. In
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the control group, 200μl of 50% PAM solution was added to
the medium and grown for 24 hours.

2.9. Enzyme-Linked Immunosorbent Assay (ELISA). Each
group’s culture medium supernatant was collected. Each
batch of cells’ supernatant was examined using ELISA kits
from Quanzhou Ruixin Biological Technology Co., Ltd. in
Quanzhou, China, to measure the amount of IL-17A com-
ponents present.

2.10. Cell Transfection. The SW480 ACT1-knockdown cells
were transfected using LipofectamineTM 2000 Transfection
Reagent (11668019). The Supplement 2 document includes
the siRNA sequence screening. Six-well plates containing
SW80 cells were planted with 5,105 cells per well. 250 l of
Opti-MEM was added to two EP tubes once the cells had
acquired a confluency of 60–70%. Then, 5μg siRNA was
added to one tube and 5μl Lipofectamine 2000 to the other
tube. After mixing, the tubes were left at noncold normal
temperature for 5min and then, the liquid of the two EP
tubes was mixed gently and placed on an ultraclean table

for 20min, followed by the incubator for 6 h before changing
to complete medium and continuing to culture. The fresh
medium was replaced after 24 hours, and 200μl of 50%
PAM solution was added to the medium and cultured for
24 hours.

2.11. Western Blotting. RIPA lysis buffer (Epizyme Biomed-
ical Technology, Shanghai, China) was used to extract total
proteins in SW480 on ice (with 1% protease and phospha-
tase inhibitors). Before the samples were differentiated using
12% SDS-PAGE and conveyed to the polyvinylidene difluor-
ide (PVDF) membranes, the total protein content was eval-
uated using the BCA Protein Assay Kit (TransGen Biotech,
Beijing, China). After 15 minutes of blocking with Quick-
Block Blocking Buffer from Beyotime Biotechnology in
Shanghai, China, membranes were grown with various
diluted primary antibodies overnight at 4°C. Following three
TBST washes, the membranes were incubated for 1 hour
with a second antibody that had been diluted. Proteintech
(Wuhan, China) provided the ACT1 (26692-1-AP) primary
antibody, while Abmart Technology provided the TRAF6

0.0

0.5

1.0

1.5

2.0

Act1 TRAF6 NF-𝜅b MAPK

ns

Re
la

tiv
e p

ro
te

in
 ex

pr
es

sio
n

(G
A

PD
H

 ad
ju

ste
d)

⁎
⁎

⁎⁎

NC
PAM

siRNA + NC
siRNA + PAM

65 KDa

NC PAM +NC +PAM
siRNAsiRNA

58 KDa

65 KDa

42 KDa

36 KDa

SW480

GAPDH

MAPK

NF-𝜅B

TRAF6

Act1

(d)

Figure 9: Validation of prognostic genes and enrichment pathways. (a) Prognostic gene sequencing heat map; (b) the increased expression
of IL-17 in SW480 cell line was verified by ELISA; (c) validation of ACT1 knockdown in SW480 cell line; (d) validation of IL-17 pathway
proteins. ∗P < 0:05; ∗∗P < 0:01; ∗∗∗P < 0:001.
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(T55175S), NF-B (p65) (T55034S), and MAPK P38
(T40075S) primary antibodies (Shanghai, China). The sec-
ondary antibody, goat antirabbit IgG (H+L) HRP
(BL003A), was bought from Biosharp (Hefei, China).

2.12. Statistical Analysis. GraphPad Prism 8.0 was used to
conduct all statistical analyses (GraphPad Software, San
Diego, CA, USA). The Student t-test was used to compare
the variations between the means of the two groups. The
mean and standard deviation for all statistical data were dis-
played (SD). Statistics were identified as significant when P
< 0:05.

3. Results

3.1. Prognostic Risk Signature Construction of OXEGs. Based
on univariate Cox regression analysis, 15 genes were recog-
nized as prognostic (Figure 1(a)). Finally, we screened 14
features of OSDEGs analysis after LASSO analysis and mul-
tivariate Cox regression analysis (Figures 1(b) and 1(c)).
AARS2 and FOXO3 were the protective factors in the prog-
nostic model, while ATF4, CARS2, CRP, CYBA, GPX1,
IL1B, MAPK8, MRPL44, MTFMT, NOS1, OSGIN2, and
SOD2 were considered as risk factors in the prognostic
model. The risk score for each CRC patient in GSE17536
was assessed using the following equation: Risk score = ð−
1:74 × AARS2 expressionÞ + ð0:36 × ATF4 expressionÞ + ð
2:08 × CARS2 expressionÞ + ð2:98 × CRP expressionÞ + ð
0:40 × CYBA expressionÞ + ð−0:61 × FOXO3 expressionÞ + ð
0:68 × GPX1 expressionÞ + ð0:06 × IL1B expressionÞ + ð0:52
×MAPK8 expressionÞ + ð0:47 ×MRPL44 expressionÞ + ð
0:09 ×MTFMT expressionÞ + ð1:43 × NOS1 expressionÞ + ð
1:04 × OSGIN2 expressionÞ + ð0:14 × SOD2 expressionÞ.
Finally, CRC patients in GSE17536 were categorized as the
high-risk and the low-risk groups based on the median risk
score. We performed PCA analysis on both groups
(Figures 2(a) and 2(b)) and found that the prognostic model
genes could effectively identify between the low-risk and
high-risk categories.

3.2. Evaluation of the Prognostic Performance of the OXEGs
Signature. The low-risk group had a finer prognosis and a
longer surviving time, whereas the high-risk group had an
inferior prognosis and a shorter survival time, as shown by
the Kaplan-Meier survival curve (Figure 3(a)). Additionally,
we used the external validation dataset GSE29621 to confirm
the prognostic risk profile’s accuracy, and we found consis-
tent variation in overall survival (OS) between the high-
risk and the low-risk groups. (Figure 3(b)). Area under the
curve (AUC) measurements for the 1-, 3-, and 5-year sur-
vival rates were 0.900, 0.781, and 0.804, respectively, while
these measurements for the 1-, 3-, and 5-year AUC of the
validation set were 0.946, 0.684, and 0.724, respectively. This
data demonstrated that our prognostic prediction had good
sensitivity and specificity (Figures 3(c) and 3(d)). Subse-
quently, we showed from Cox regression analysis that the
prognostic risk models associated with OXEGs are indepen-
dent predictors of CRC prognosis (Figures 3(e) and 3(f)).
We further predicted the relationship between clinical fea-

tures and prognostic value by ROC (Figure 3(g)), and the
AUC of the model was 0.804, while the AUC of age, gender,
stage, and grade were 0.535, 0.493, 0.573, and 0.456, respec-
tively, demonstrating the model’s excellent sensitivity and
specificity. The ROC curve of the validation set signified that
the AUC value of the model was 0.724, which was higher
than other clinical features (Figure 3(h)). Through clinical
correlation analysis (Figures 4(a)–4(d)), we concluded that
age was substantially different between the groups at high-
and low-risk (P < 0:05), while gender, grade, and stage were
not statistically significant.

3.3. Nomogram Construction and Evaluation. We con-
structed a nomogram based on age, sex, grade, stage, and
risk scores for 14 OXEGs to foretell the 1-, 3-, and 5-year
survival in CRC patients (Figure 5(a)). As can be seen from
the calibration curve (Figure 5(b)), the survival prediction
for year 5 is in good agreement with the actual value. In
the ROC curve (Figure 5(c)), the value of AUC was 0.689,
indicating that the model had high accuracy. The rosette
model was later demonstrated to be an independent deter-
minant of CRC prognosis by univariate and multivariate
Cox regression analysis. (Figures 5(d) and 5(e)).

3.4. Association between Tumor Immune Cell Infiltration and
Risk Score. Calculations were made to determine the varia-
tion in immune cells between the low-risk group and the
high-risk group using the CIBERSORT method to get the
waterfall diagram of immune cells in the tumor group
(Figures 6(a) and 6(b)). As seen in the image, the high-risk
group had elevated levels of neutrophils, eosinophils, and
activated NK cells (P < 0:05), but the low-risk group had
considerably higher levels of resting NK cells infiltrating
their tissues. APC costimulation, inflammation-promoting,
CCR, T cell costimulation, cytolytic activity, HLA, T cell
coinhibition, and checkpoint were all more significant in
the high-risk group, according to the analyses of immune
cell function (Figure 6(c)).

3.5. Gene Enrichment Analysis. Twenty-seven differential
genes were identified in the low-risk and high-risk categories
(Supplement 3). We examined the GO and KEGG pathways
of the differential genes and obtained a total of 68 KEGG sig-
naling pathways and 832 significantly enriched biological
processes (Supplements 4 and 5). The biological processes
were enriched for positive control of ion transport, response
to lipopolysaccharide, response to cold, positive control of
calcium ion transmembrane transport, neutrophil chemo-
taxis, positive management of calcium ion transport, granu-
locyte migration, and T cell chemotaxis. In the cellular
component, collagen-regulation of fibroblast extracellular
matrix, external side of plasma membrane, CatSper complex,
meiotic spindle, and male germ cell nucleus were enriched.
In addition, we demonstrated significant enrichment of
receptor ligand activity, signaling receptor activator activity,
cytokine activity, carbohydrate binding, cytokine receptor
binding, CXCR chemokine receptor binding, and chemokine
activity in molecular function (Figure 7(a)). The IL-17 sig-
naling pathway, lipid and atherosclerosis, cytokine-
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cytokine receptor interaction, longevity regulating pathway-
multiple species, viral protein interaction with cytokine and
cytokine receptor, and Toll-like receptor signaling pathway
were the pathways that KEGG enrichment analysis showed
to be enriched (Figure 7(b)). The enrichment disparities
between the high-risk and the low-risk groups may be seen
by GSEA. Systemic lupus erythematosus, basal cell carci-
noma, O-glycan biosynthesis, Wnt signaling pathway, reti-
nol metabolism, drug metabolism cytochrome p450, and
maturity-onset diabetes of the young were the major areas
of enrichment in the low-risk group. Cytokine receptor
interaction, leishmania infection, NOD-like receptor signal-
ing pathway, natural killer cell mediated cytotoxicity, and
systemic lupus were the major areas of enrichment in the
high-risk group (Figure 8).

3.6. Validation of Prognostic Genes and Enrichment
Pathways. Sequencing results portrayed that prognostic
genes were different in colorectal cancer tissues and adjacent
tissues. As can be seen from Figure 9, FOXO3 and MAPK8
were highly expressed in adjacent tissues. ATF4, MTFMT,
CYBA, OSGIN2, NOS1, GPX1P1, CARS2, CRP, MRPL44,
SOD2, AARS2, and IL-1B are highly expressed in colorectal
cancer tissues (Figure 9(a)). After ELISA confirmed that IL-
17A was increased in the oxidative stimulation group
(Figure 9(b)), we knocked down the IL-17A receptor ACT1
(Figure 9(c)) and performed oxidative stimulation again.
Western blot results signify the expressions of downstream
signaling factors TRAF6, NF-κB, and MAPK signaling path-
ways were decreased to a certain extent after ACT1 knock-
down (Figure 9(d)).

4. Discussion

As one of the prevalent malignant tumors in the world, colo-
rectal cancer has a high fatality rate. The 5-year survival rate
for individuals with advanced CRC is around 14%, and more
than 50% of patients receive their diagnosis at an advanced
stage [25, 26]. There is still an urgency for developing a
prognostic model in order to give tailored prediction and
precision medicine for CRC patients who are dealing with
the therapeutic conundrum.

In the body, the content of ROS in normal cells and
tumor cells is different, and the sensitivity to oxidative
stress is also different. Oxidative DNA damage has been
widely accepted as an important feature of the occurrence
of malignant tumors. At present, researchers have found a
variety of novel treatment methods based on ROS to
restore chemoresistance and overcome radiotherapy resis-
tance, enhance the efficacy of chemoradiotherapy,
[27–31] and bring certain guiding significance to clinical
treatment. At the same time, oxidative stress products in
the tumor microenvironment also affect the immune
response of the body. Therefore, we established and veri-
fied the prognostic design in relation to OXEGs to foretell
the prognosis of CRC patients.

Using multivariate and univariate Cox regression analy-
sis with the LASSO technique, we examined the differentially
expressed genes related to oxidative stress in GEO. 14

OXEGs were screened (AARS2, FOXO3, ATF4, CARS2,
CRP, CYBA, GPX1, IL1B, MAPK8, MRPL44, MTFMT,
NOS1, OSGIN2, and SOD2) to create a prognostic risk
model for prediction. The model we created has good spec-
ificity and sensitivity and ROC testing showed that its AUC
was 0.804. Additionally, we discovered that age was a predic-
tive factor that affected CRC patients on its own. AARS2 and
FOXO3 are protective factors in the prognostic model of
CRC, and the former regulates the proliferation of colorectal
cancer by affecting mitochondrial respiration [32]. The latter
is associated with morbidity and mortality in CRC [33] and
can modulate its mediated SOX2 expression to affect cancer
migration, invasion, and stem cell proliferation [34]. ATF4
regulates tumor autophagy in CRC and affects tumor sur-
vival [35]. CRP is related to systemic inflammation, but its
effect on colorectal cancer is not clear. CYBA can induce
familial colorectal cancer by interfering with the integrity
of intestinal barrier [36]. IL-1B, as a member of the interleu-
kin family, is closely related to tumor immunity [37]. SOD2
contributes to the chemical resistance of colorectal cancer
[38], and according to research, MAPK8 can promote the
progression of colorectal cancer [39]. However, the func-
tional roles of CARS2, GPX1, MRPL44, MTFMT, NOS1,
and OSGIN2 in CRC are still unknown. The sensitivity
and accuracy of this model are further verified by the com-
bined GEO dataset. Our findings suggest that higher risk is
associated with poorer outcomes.

A total of 68 KEGG signaling pathways and 832 signifi-
cantly enriched biological processes were obtained through
enrichment analysis. The most interesting point was the sig-
nificant enrichment of the IL-17 pathway. When ROS con-
tent increased, levels of the proinflammatory cytokine IL-
17A increased through retardation of the PI3K/AKT/mTOR
pathway and selective autophagy [40]. We also demon-
strated by ELISA that IL-17A levels were significantly
increased in SW480 cells after oxidative stimulation. Many
studies have also proven the relationship between IL-17A
level and REDOX environment [41, 42]. To this end, we per-
formed western blot verification of oxidative stimulation
after knocking down the receptor ACT1 of IL-17A [43]
and found that the downstream factor TRAF6 and the rela-
tive content of corresponding pathways including NF-κB
and MAPK were affected (see mechanism diagram in the
Supplementary Material). MAPK may not be statistically
significant due to the interference of other related pathways,
which will be discussed further.

PAM can increase the content of ROS in tumor cells,
and the accumulation of a large number of active sub-
stances leads to tumor cell death. Many researchers have
affirmed the effect of PAM in the treatment of tumors
in vivo and in vitro. Nakamura et al. [44] showed that
PAM inhibited the metastasis of ovarian cancer through
in vivo and in vitro experiments, and Utsumi et al. proved
that PAM also has a certain therapeutic effect on chemo-
therapy resistant ovarian cancer [45]. To expand on the
selection of PAM concentration in this study, we will fur-
ther select a wider range of concentrations to verify the
difference between low concentration and high concentra-
tion groups.
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We estimated the variation in immune infiltration
between the two categories using the CIBERSORT method
in order to study the link between immune cell infiltration
and risk ratings. We identified significant increases in mono-
cyte, activated NK cells, eosinophils, and neutrophil levels in
the low-risk group. Moreover, the largely enriched IL-17A
pathway is closely linked to immune cells. Bruno et al. atten-
uated the antifungal host immune response by using IL-17A
inhibitors, which increased the incidence of Candida infec-
tion [46]. These results suggest that oxidative stress-related
gene tags may influence immune cell infiltration and hence
the efficacy of colorectal cancer immunotherapy.

5. Conclusions

In conclusion, using 14 OXEGs, we created a prognostic
model for colorectal cancer under oxidative stress that has
a high predictive value. This study provides the possibility
for individuals with CRC to get individualized care.
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Overexpression of Golgi membrane protein 1 (GOLM1) is closely associated with hepatocellular carcinoma (HCC) vascular
invasion. How GOLM1 may be involved in angiogenesis in HCC remains unclear. We explored how GOLM1 promotes
angiogenesis in HCC and potential prognostic value. Expression levels of GOLM1 in HCC patients and healthy controls were
obtained from The Cancer Genome Atlas (TCGA). Differentially expressed genes (DEGs) between HCC patients and controls
were compared. GOLM1 was knocked out in the HCC cell line, and RNA sequencing and DEG expression analysis were
performed compared with control cells. Based on TCGA data and cell line RNA sequencing data, DEGs affected by a high
expression of GOLM1 were identified. Subsequently, enrichment analysis was performed to explore the functions and
pathways of the DEGs affected by a high expression of GOLM1. A relevant network analysis was built. Cox regression,
genomic variance analysis scores, minimum absolute shrinkage and selection operator regression, and random forest regression
models were applied to determine the best prognostic model and validated using the GSE54236 dataset from the Gene
Expression Omnibus (GEO). We determined the effect of GOLM1 expression on immune cell infiltration in liver cancer.
GOLM1 was overexpressed in HCC tissues compared with controls, and its level correlated with tumor purity and prognosis.
400 DEGs affected by highly expressed GOLM1 were identified in TCGA and cell line RNA sequencing data. Enrichment
analysis revealed that these DEGs may be related to biological processes of oxidative stress and angiogenesis and involved in
the VEGF signaling pathway and protein processing in endoplasmic reticulum. We predicted a comprehensive regulatory
network in which GOLM1 activated VEGF signaling to promote HCC angiogenesis. GOLM1 may interact with E2F1 and
IGF2BP3 to promote angiogenesis. GOLM1 overexpression was associated with greater immune cell infiltration. A random
forest regression model was the best prognostic model. Our study reveals a potential molecular mechanism of GOLM1 in
promoting HCC. We developed two prognostic models based on DEG associated with GOLM1 overexpression to help stratify
HCC prognosis and improve individualized treatment.

1. Introduction

Liver cancer has the fourth highest mortality among malig-
nant tumors worldwide [1]. Among the three pathological
types of primary liver cancer, hepatocellular carcinoma
(HCC) is the most common, accounting for about 90% of
cases [2]. HCC is a typical vascular tumor, so angiogenesis
plays an important role in its onset and progression [3]. Sev-
eral angiogenesis pathways are abnormally activated in HCC

to support tumor development, including pathways involv-
ing vascular endothelial growth factor (VEGF), fibroblast
growth factor (FGF), and platelet-derived growth factor
and their receptors, as well as pathways involving angiopoe-
tin and Tie [4]. Targeted antiangiogenesis therapy has
become one of the main strategies for treating HCC.
Although a variety of antiangiogenic drugs are currently
under development, only sorafenib and lenvatinib have been
approved for the first-line treatment of advanced HCC
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[2–4]. Therefore, in-depth studies on the mechanisms of
HCC angiogenesis are needed to identify new targets for
the development of effective antiangiogenic drugs.

We wondered whether Golgi membrane protein 1
(GOLM1), also known as GP73 or GOLPH2, may be a suit-
able therapeutic target in HCC. GOLM1 is expressed pre-
dominantly in epithelial cells [5] and can also be cleaved
by proprotein convertase and secreted into the blood [6].
GOLM1 is overexpressed in a variety of malignancies
including HCC, and its high expression correlates strongly
with poor prognosis [7]. A previous multicenter study com-
paring serum GOLM1 and alpha-fetoprotein (AFP) in 4217
human subjects showed that GOLM1 had a sensitivity and
specificity of 76.4% and 97.4%, respectively, for HCC, while
AFP had a sensitivity and specificity of 58.2% and 85.3%,
respectively [8]. Another meta-analysis involving 11 studies
showed that GOLM1 was superior to AFP as a diagnostic
marker in 5 studies, while the results were opposite or
unclear in the remaining 6 studies [9]. Therefore, GOLM1
may even allow a more sensitive and specific diagnosis of
liver cancer than AFP [8–10].

Our previous study found that serum GOLM1 levels
were significantly higher in patients with HCC, and its sen-
sitivity and specificity for diagnosing HCC were higher than
those of AFP [11]. Further studies related to GOLM1 and
drug resistance in HCC were conducted, and it was con-
firmed that GOLM1 promoted oxaliplatin resistance in
human HCC cells [12]. In addition, it was also noted during
the collection of clinical case data from HCC patients that
GOLM1 elevated vascular invasion more significantly in
HCC patients [13]. Other studies reported that GOLM1 pro-
motes tumor metastasis by participating in the epithelial-
mesenchymal transformation and recycling of epidermal
growth factor receptor and receptor tyrosine kinases [14,
15]. Moreover, GOLM1 can enhance STAT3 phosphoryla-
tion by upregulating the epidermal growth factor receptor
and then activating programmed death-ligand 1 transcrip-
tional expression to inhibit immune responses [16]. Thus,
evidence suggests that GOLM1 promotes the pathogenesis
and progression of HCC through various mechanisms,
whereas no detailed studies specifically addressing the
GOLM1 gene and HCC angiogenesis have been reported
both nationally and internationally.

To explore this possibility, we combined data from The
Cancer Genome Atlas-Liver Hepatocellular Carcinoma
(TCGA-LIHC) and experimental sequencing data from an
HCC cell line. These findings may reveal new targets and
strategies for targeted antiangiogenic therapy in HCC.

2. Material and Methods

2.1. Data Collection. Gene expression profiles were obtained
from publicly available databases: The Cancer Genome Atlas
(TCGA; https://portal.gdc.cancer.gov), from which data on
371 HCC patients and 50 controls were extracted and Gene
Expression Omnibus (GEO; http://www.ncbi.nlm.nih.gov/
geo), from which the dataset GSE54236 [17] was extracted
for 81 tumor tissues from 78 HCC patients and 80 controls
from 54 consecutive patients with cirrhosis. GEO data were

used as the validation dataset. The current study adheres to
TCGA and GEO data access policies and publication guide-
lines. The Tumor Immune Estimation Resource database
(TIMER, http://timer.cistrome.org/) was to identify the dif-
ferential expression of GOLM1 in tumor and normal tissues
of multiple cancer species.

2.2. Immunohistochemistry (IHC). Tumor and adjacent tis-
sues from three patients with HCC were collected from the
Guangxi Medical University Cancer Hospital, immediately
fixed in 10% formaldehyde for 12 h, dehydrated, transparent,
paraffin-embedded, and sectioned (4μm) for IHC. After
dewaxing the paraffin sections into water, antigen repair
was performed using sodium citrate buffer (pH6.0) for
15min at 95°C and washed 3 times with phosphate buffered
saline (PBS). The slides were then incubated with 3% H2O2
for 30min to block endogenous peroxidase activity and 5%
bovine serum albumin (BSA) for 1 h at room temperature
to block nonspecific binding sites and incubated with pri-
mary antibody GOLM1 (American, Proteintech, Cat No.
15126-1-AP) overnight at 4°C. After three washes with
PBS, the sections were incubated with the corresponding
horseradish peroxidase at 37°C. The sections were incubated
with the corresponding horseradish peroxidase- (HRP-)
coupled secondary antibody (China, Beijing, ZSGB-BIO,
SP-9001) in a wet box for 1 h and washed three times with
PBS. Diaminobenzidine (DAB) was incubated for 10min
for color development, and hematoxylin was incubated for
3min for nuclear restaining. Finally, the gradient was dehy-
drated in ethanol, clear in xylene, and sealed in neutral gum.
IHC images were acquired under a standard light micro-
scope (Olympus, Tokyo, Japan) and analyzed using Image-
Pro Plus software (Media Cybernetics, Rockville, MD,
United States). This study was approved by the Ethics Com-
mittee of the Guangxi Medical University Cancer Hospital.
All procedures involving human participants complied with
the ethical standards of the research committee and its ethi-
cal standards. Informed consent was obtained from partici-
pants for all study procedures and sequencing protocols.

2.3. Cell Cultures. We purchased MHCC97H cells from the
Shanghai Institutes for Biological Sciences of the Chinese
Academy of Sciences (CAS) as an HCC in vitro model. After
being thawed, resuscitated, and passaged, the cells were kept
in RPMI 1640 medium containing 10% fetal bovine serum
and cultured in 37°C, 5% CO2 saturated humidity cell
incubator.

2.4. RNA Sequencing. GOLM1 expression was silenced in
MHCC97H cells using two small interfering RNAs (siR-
NAs). The siRNA sequences were: siRNA 1, 5′-agg-
gaaacgtgcttggtaa-3′ and siRNA 2, 5′-gaatagaagaggtcaccaa-3′
. Lentiviral vectors encoding short hairpin RNA (shRNA)
were designed based on the siRNA sequences to knock down
GOLM1 expression (GOLM1-KD) [12]. These vectors were
constructed by Hanyin Co. (Shanghai, China). The lentivi-
ruses expressing the negative control lentivirus (Vector)
were also constructed by Hanyin Co. (Shanghai, China).
Total RNA was isolated from GOLM1-KD MHCC97H cells
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and control MHCC97H cells using TRIzol (Thermo Scien-
tific, Uppsala, Sweden) and purified using the RNeasy kit
(Qiagen, Valencia, CA). RNA-Seq libraries were constructed
using the TruSeq Stranded mRNA-Seq Library Preparation
Kit (Illumina, San Diego, California, USA). Samples were
sequenced using the Illumina NovaSeq system, generating
paired-end reads of 150 base pairs. Raw sequence reads were
converted into fragments per exon kilobase per million
mapped reads (FPKM) to quantify gene expression.

2.5. Survival Analysis. Expression profiles were normalized
using the “voom” function in the limma package in R [18].
For analyzing survival as a function of GOLM1 expression,
the best cut-off value was determined using the “surv_cut-
point” function in the survminer package in R (http://www
.rstudio.org). According to the best cut-off value, patients
were divided into groups expressing low or high levels of
GOLM1. Then, overall survival (OS) was compared between
the two groups using the log rank test.

2.6. Identification of Differentially Expressed Genes (DEGs).
The limma package in R was used to identify DEGs between
HCC patients and controls in TCGA data, as well as mRNAs
whose expression differed between GOLM1-KD and control
cells. DEGs with expression differences showing P.adjust <
0.05 were considered significant and included in further
analyses. DEGs that were up- or downregulated across both
TCGA and RNA sequencing data were defined as DEGs
affected by GOLM1-KD. DEGs whose expression was oppo-
site to that of DEGs affected by GOLM1-KD were identified
as genes associated with GOLM1 overexpression.

2.7. Functional Enrichment Analysis. To explore the biologi-
cal processes and signaling pathways in which DEG associ-
ated with GOLM1 overexpression may be involved, Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) analyses were performed using the clus-
terProfiler package in R [19]. Results associated with P <
0:05 were defined as significant.

2.8. Constructing Regulatory Networks. We used the RNAIn-
ter database (http://www.rna-society.org/rnainter) [20] to
extract DEGs that interacted with GOLM1 (P < 0:05). The
set screening criterion was a score > 0:5. In combination
with KEGG pathway genes, the Pearson correlation test
and the hypergeometric test were utilized using the expres-
sion profiles. Finally, a comprehensive regulatory network
of GOLM1-KEGG correlation was obtained. Results associ-
ated with P < 0:05 were considered significant.

2.9. Molecular Docking. We then explored whether target
proteins may be able to bind GOLM1. We downloaded the
three-dimensional structures of GOLM1 and target proteins
from the Protein Data Bank (http://www.rcsb.org). Molecu-
lar docking was performed using Hex 8.0.0 software [21],
and the results were visualized with PyMol software [22].
For whether two molecules have binding ability between
them, when the docking energy is less than 0KJ/mol, it
means that both have binding potential, and the smaller
the energy, the higher the binding potential.

2.10. Gene Set Variant Analysis (GSVA). We extracted the
mechanism genes for univariate Cox regression analysis to
obtain the meaningful DEGs of univariate Cox regression
and then calculated the GSVA score of these genes for indi-
vidual sample using GSVA package in R [23].

2.11. Least Absolute Shrinkage and Selection Operator
(LASSO) Regression Models. Cox regression was used to iden-
tify DEG associated with OS of HCC patients. The glmnet
package in R [24] was used to integrate potentially prognostic
DEGs into a binomial LASSO regression model. During
LASSO regression, we retained potential predictors with non-
zero coefficients in order to generate candidate DEGs. Areas
under receiver operating characteristic curves (AUCs) were
calculated using the pROC package in R [25]. Cox regression
was used to construct a prognostic nomogram to predict
two- and five-year OS of HCC patients in TCGA.

2.12. Random Forest Algorithm. Genes with prognostic value
in the univariate Cox regression were obtained. Survival data
were dimensionally reduced using a random forest survival
algorithm [26], ranked based on factor importance, and then
filtered for gene signatures. Forest plots were generated
using the forestplot package in R.

2.13. Immune Cell Infiltration. The level of infiltration of dif-
ferent types of immune cells was assessed using CIBERSORT
(https://cibersort.stanford.edu/) and ssGSEA in the GSVA
routine. Immune cells indicated as 0 were excluded from
the analysis. A set of marker genes for the immune cell types
analyzed by ssGSEA was obtained from Bindea et al. [27].
TIMER 2.0 [28] was used to assess the levels of immune cell
infiltration. We also evaluated potential correlations between
candidate genes and immune cell types using Pearson corre-
lation analysis, with significance defined as P < 0:05. jcorj
> 0:2 was considered to indicate that a correlation existed.

2.14. Data Analysis and Statistics. All bioinformatics analy-
ses in this study were performed based on the Bioinforcloud
platform (http://www.bioinforcloud.org.cn).

3. Results

3.1. GOLM1 Is Overexpressed in HCC and Strongly
Associated with Poor Patient Prognosis. The study flowchart
is shown in Figure 1. We identified a total of 12040 DEGs
between HCC and controls in TCGA data (Figure 2(a)). In
TCGA specimens (371 HCC tissues and 50 healthy con-
trols), we found that GOLM1 was abundantly expressed at
different stages of HCC but weakly expressed in controls
(Figures 2(b) and 2(c)). Similarly, immunohistochemistry
analysis showed a higher expression of GOLM1 in tumor
than in adjacent tissue (Figure 2(d)). Interestingly, HCC
patients with high expression of GOLM1 had poorer OS
than those with low expression (Figure 2(e)).

Furthermore, analysis of the TIMER database showed
GOLM1 to be upregulated in several types of tumors
(Figure 2(f)). The above results show that GOLM1 is highly
expressed in HCC. In addition, GOLM1 expression is closely
related to the poor prognosis of HCC.
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3.2. Biological Functions of DEG Associated with GOLM1
Overexpression in HCC. To identify DEG associated with
GOLM1 overexpression, we performed differential expres-
sion analysis of the RNA sequencing data from our cell cul-
tures. A total of 1363 DEGs between the GOLM1-KD
MHCC97H cells and control MHCC97H cells groups were
identified, comprising 744 upregulated and 619 downregu-
lated genes (Figure 3(a)). Then, we analyzed overlapping
DEGs found in 1363 DEGs cell cultures and the 14787 DEGs
identified in TCGA. We found 737 overlapping genes, which
were defined as DEGs affected by GOLM1-KD. In addition,
400 DEGs opposite to the DEGs affected by GOLM1-KD
expression were identified as the specific DEGs associated
with GOLM1 overexpression (Supplementary Table 1,
Figure 3(b)).

These specific DEGs associated with GOLM1 overex-
pression were enriched for GO biological processes related
to oxidative stress and angiogenesis: cellular response to oxi-
dative stress, intrinsic apoptotic signaling pathway in
response to oxidative stress, oxidative phosphorylation, and
positive regulation of angiogenesis (Figure 3(c)). KEGG
pathway analysis showed that these DEGs were involved
mostly in protein processing in the endoplasmic reticulum,
oxidative phosphorylation, apoptosis, and the VEGF signal-
ing pathway (Figure 3(d)). Among them, the VEGF signal-
ing pathway is activated in HCC and promotes
angiogenesis [29], which attracted our attention
(Figure 3(e)).

3.3. GOLM1 Activates the VEGF Signaling Pathway to
Promote Angiogenesis in HCC. To identify the regulatory
network associated with GOLM1, pivot analysis was per-
formed based on the RNAInter database (http://www.rna-
society.org/rnainter) to find the genes interacting with
GOLM1. The results identified 37 GOLM1 pivot genes with
statistical significance, which indirectly regulated 12 KEGG
pathways (Figure 4(a)). In particular, we identified six pivot
genes in the VEGF signaling pathway: PTBP1, AR, CELF2,
E2F4, DICER1, and CSTF2T. We also identified four path-
way genes: HRAS, PTK2, PRKCB, and RAC2 (Figure 4(b)).

Thus, a comprehensive regulatory network of GOLM1, pivot
genes, pathway genes, and the VEGF signaling pathway was
constructed (Figure 4(c)). To further explore the regulation
of target genes by GOLM1, we performed molecular docking
analyses. The results showed that GOLM1 has the potential
to bind E2F4 and PTBP1 (Figure 4(d)). Therefore, we postu-
late that GOLM1 targets E2F4 and PTBP1 to activate the
VEGF signaling pathway, thereby promoting angiogenesis
in HCC (Figure 4(e)).

3.4. Construction of a Prognostic Model for HCC. In order to
screen prognosis-related genes, mechanism genes in
Figure 4(c) and 400 specific DEGs were extracted for univar-
iate Cox regression analysis, and 52 DEGs associated with
prognosis were obtained. To obtain the best prognostic
model, 52 DEGs and GOLM1 were combined to construct
four models based on GSVA, multifactor Cox regression,
LASSO, or random forest regression. First, the GSVA scores
of 53 prognostic genes were obtained by the GSVA model
(Figure 5(a)). Then, 53 DEGs were subjected to multivariate
Cox regression analysis to screen for independent prognostic
factors and construct prognostic models, and finally, three
prognostic genes were identified: HAVCR1, ETFDH, and
MMP7 (Figure 5(b)). Similarly, LASSO regression analysis
was performed on 53 DEGs to further remove redundant
variables, and 14 genes were identified and used to construct
prognostic models (Figure 5(c)). Finally, we used random
forest regression models to identify 35 characteristic genes
as the most relevant regulators of prognosis and constructed
the corresponding models (Figure 5(d)).

To determine the best prognostic model, temporal ROC
curves for median survival and survival at 1, 3, 5, and 8 years
were plotted based on the risk scores of the four models
(Figure 5(e)). The results showed that the random forest
regression model had the optimal scoring efficacy. Subse-
quently, combined with the clinical characteristics of
patients, we incorporated tumor distant metastasis, TNM
stage, and random forest score models to construct 2-year
and 5-year column line graph prediction models. The results
showed that distant tumor metastasis, TNM stage, and

371 HCC patients
50 controls 

TCGA database

Differential expression
analysis

Differential expression
analysis

GOLM1 expression level

p < 0.05

Overall survival

Prognosis

MHCC97H cells
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RNA sequencing

Identification of
DEGs by high

expression of GOLM1

Functional enrichment analysis

Mechanism of GOLM1
activating VEGF pathway
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of HCC 

Analyze tumor infiltration
by immunocytes 

Mechanism of protein
processing in endoplasmic
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Figure 1: Study flowchart. The flow diagram of this study. DEGs: differentially expressed genes; HCC: hepatocellular carcinoma; KD:
knocked down; TCGA: The Cancer Genome Atlas; VEFG: vascular endothelial growth factor.
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random forest score were independent prognostic factors for
patients with HCC (Figure 5(f)). To validate the predictive
value of the model, survival curves were used to demonstrate
the OS and RFS curves of the clinical prognostic score model
between samples of the high- and low-risk groups, and the
results showed that patients in the high-risk group had sig-
nificantly lower OS (P < 0:0001) and RFS (P < 0:0001) than
those in the low-risk group, indicating that this clinical prog-
nostic score model could effectively discriminate between

the high- and low-risk groups (Figure 5(g)). We confirmed
this result in the validation dataset GSE54236 (additional
Figures 1(a) and 1(b)).

3.5. Role of Protein Processing in the Endoplasmic Reticulum
in HCC. We previously showed that DEGs associated with
GOLM1 overexpression are predicted to participate in pro-
tein processing in the endoplasmic reticulum (Figure 3(d))
[30]. Multiple pathways, such as the endoplasmic
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Figure 2: GOLM1 is overexpressed in hepatocellular carcinoma (HCC) and strongly associated with poor patient prognosis. (a)
Differentially expressed genes (DEGs) between HCC patients and healthy controls from The Cancer Genome Atlas (TCGA). (b) GOLM1
expression level in 371 HCCs (green circle) and 50 adjacent normal tissues (red circle) from the TCGA. (c) GOLM1 expression at
different HCC stages compare to the control group. (d) Immunohistochemistry against GOLM1 in tumor and adjacent tissues. (e)
Kaplan-Meier curves of overall survival of patients in the high and low GOLM1 groups in TCGA. (f) GOLM1 expression in the Tumor
Immune Estimation Resource database. DEGs: differentially expressed genes.
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Figure 3: Identification and enrichment analysis of genes associated with high GOLM1 expression. (a) DEGs in GOLM1-knocked down
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reticulum-associated degradation pathway and the endo-
plasmic reticulum stress pathway are involved in protein
processing in this organelle [30, 31]. Therefore, to explore
the potential relevance of protein processing in the endo-
plasmic reticulum in HCC, we first constructed a compre-
hensive regulatory network including GOLM1, pivot genes,
and pathway genes (Figure 6(a)). We then explored the
potential of GOLM1 to bind other molecules in this net-
work. The results predicted that GOLM1 could stably bind
E2F1 and IGF2BP3 (Figure 6(b)).

Next, we extracted relevant genes from the compre-
hensive regulatory network for univariate Cox regression
analysis, and 12 genes significantly associated with prog-
nosis were identified. The 12 DEGs plus GOLM1 were
combined to construct four models based on GSVA

(Figure 6(c)), multifactorial Cox regression (Figure 6(d)),
LASSO (Figure 6(e)), and random forest (Figure 6(f)).
The random forest regression model with 11 characteristic
genes was the best prognostic model (Figure 6(g)). To val-
idate its predictive value, we performed survival analysis
according to the random forest risk score: patients with
high scores had much worse OS and recurrence-free sur-
vival than those with low scores (Figure 6(h)). We con-
firmed this result in the validation dataset GSE54236
(additional Figures 2(a) and 2(b)).

3.6. Immune Infiltration in HCC. Studies have pointed out
that protein processing in the endoplasmic reticulum plays
a crucial role in immune responses [32, 33]. Using the
TIMER 2.0 database, we showed that the 11 characteristic

GOLM1 Etotal: –657.85 kj/mol PTBP1

GOLM1 Etotal: –544.67 kj/mol E2F4

(d)

E2F4 PTBP1

VEGF signaling pathway

Cytoplasm

Angiogenesis

Blood vessel

GOLM1

(e)

Figure 4: GOLM1 activates the vascular endothelial growth factor (VEGF) signaling pathway to promote angiogenesis in hepatocellular
carcinoma. (a) Gene expression correlation network based on GOLM1 as well as pivot and target genes identified in the RNAInter
database. (b) Pathway map interrelating GOLM1, pivot genes, pathway genes, and the VEGF signaling pathway. (c) Network view of
GOLM1, pivot genes, target genes, and the VEGF pathway. Red represents upregulated gene expression, blue represents downregulated
gene expression. (d) Molecular docking studies of PTBP1 and E2F4 with GOLM1. (e) Schematic of a potential mechanism by which
GOLM1 promotes angiogenesis in HCC. VEFG: vascular endothelial growth factor.
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genes correlated significantly with the abundance of neutro-
phils, endothelial cells, M2 macrophages, uncharacterized
cells, and myeloid dendritic cells (Figures 7(a) and 7(b)).
In addition, we analyzed the correlation between random
forest risk score and immune checkpoints PDCD1, CD274,
and CTLA4: the risk score correlated positively with expres-
sion of PDCD1 and CTLA4, but not with expression of
CD274 (Figure 7(c)).

Based on the above results, we propose that GOLM1
may regulate protein processing in the endoplasmic reticu-
lum by binding to E2F1 and IGF2BP3, thereby promoting
the infiltration of endothelial cells and angiogenesis in
HCC (Figure 7(d)).

4. Discussion

HCC is one of the cancers with higher incidence andmortality
in the world [34]. Exploring how HCC occurs and progresses
may help identify tumor markers, formulate effective treat-
ment plans, and improve prognosis. HCC is a typical vascular
tumor, and angiogenesis plays a key role in its growth [4].
However, vascular-related signaling pathways in HCC are still
unclear, and new research is urgently needed to find new ther-
apeutic targets. Our study shows that GOLM1 overexpression
is closely related to vascular invasion of HCC. Therefore,
exploring the relationship between GOLM1 and angiogenesis
may help to identify new therapeutic targets in HCC.
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Figure 5: Establishment of the prognostic model for hepatocellular carcinoma (HCC) patients. (a) GSVA score of 53 prognostic genes. (b)
Multivariate Cox regression analysis. (c) Establishment of the LASSO regression model. (d) Results of the random forest regression model
for selecting prognostic characteristic genes. Thirty-five signature genes were selected by the random forest regression model. (e) The
timeROC curve analysis of median survival and survival rates at one, three, five, and eight years for the above four models in TCGA. (f)
Nomogram for predicting two- and five-year overall survival rates of HCC patients. The nomogram includes three variables: metastasis,
N (presence or absence of lymphatic metastasis), and random forest risk score. (g) Performance validation of clinical prognostic models
in the TCGA training sets. AUC: area under the receiver operating characteristic curve; GSVA: gene set enrichment analysis; LASSO:
least absolute shrinkage and selection operator regression; RandomForestSRC: fast unified random forests for survival, regression, and
classification.
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First, we used the TCGA database to explore GOLM1
expression in HCC. Consistent with previous studies, we
found that GOLM1 was overexpressed in HCC compared
with healthy controls and was closely associated with poor
prognosis [35].

By analyzing sequencing data in both MHCC97H cells
and TCGA database, we identified 400 specific DEGs associ-
ated with GOLM1 overexpression. GO analysis revealed that
these genes are mainly involved in oxidative stress-related
biological processes. KEGG pathway enrichment analysis
showed that those genes were involved mainly in key path-
ways, such as the VEGF signaling pathway and protein pro-
cessing in the endoplasmic reticulum. In view of the

importance of angiogenesis in HCC, it is reasonable to
hypothesize that GOLM1 promotes angiogenesis by activat-
ing VEGF signaling. The involvement of protein processing
in the endoplasmic reticulum is also plausible, because endo-
plasmic reticulum stress has been implicated in HCC
through its ability to promote tumor growth, metastasis,
angiogenesis, and drug resistance [36]. In addition, increased
oxidative stress is thought to be a recognized mechanism
contributing to HCC [37]. Reactive oxygen species (ROS)
are a source of oxidative stress generated in various organ-
elles and stress pathways, such as mitochondria, peroxi-
somes, and endoplasmic reticulum [38]. Excessive ROS
disrupts the integrity of proteins and lipids and may cause
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Figure 6: Role of GOLM1 in protein processing in the endoplasmic reticulum in hepatocellular carcinoma (HCC). (a) Regulatory network
view of GOLM1, pivot genes, pathway genes, and the protein processing in the endoplasmic reticulum pathway. Red represents upregulated
gene expression, and blue represents downregulated gene expression. (b) Molecular docking studies of E2F1 and IGF2BP3 with GOLM1. (c)
GSVA score of the 13 prognostic genes. (d) Multivariate Cox regression analysis. (e) Establishment of the LASSO regression model. (f) The
random forest regression model identified 11 signature genes associated with survival. (g) The timeROC curve analysis of median survival
and survival rates at one, three, five, and eight years for the above four models in TCGA. (h) Performance validation of the optimal random
forest regression model in the TCGA training set. AUC: area under the receiver operating characteristic curve; GSVA: gene set enrichment
analysis; LASSO: least absolute shrinkage and selection operator regression; RandomForestSRC: fast unified random forests for survival,
regression, and classification.
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genetic mutations inducing carcinogenesis [39]. The endo-
plasmic reticulum generates oxidative stress associated with
endoplasmic reticulum stress when it contains endoplasmic
reticulum redox protein 1 alpha and protein disulfide bond
isomerase [40]. The endoplasmic reticulum oxidative stress
triggers the release of hydrogen peroxide and calcium ions
into the cytosol, further leading to increased mitochondrial
oxidative stress and increased ROS. Hepatic oxidative stress
leads to T cell tyrosine phosphatase (TCTPT) inactivation
and promotes STAT3 signaling to drive HCC develop-
ment [41].

Our results showed that GOLM1 might activate the
VEGF pathway by binding to E2F4 and PTBP1. E2F4 is a
novel tumor marker and well-established transcription fac-
tor that has been associated with HCC prognosis [42]. It is
involved in the cell cycle, cell proliferation, resistance to apo-
ptosis, and tumor progression [43, 44]. Recent studies
reported that E2F4 overexpression is able to promote HCC
cell proliferation by upregulating CDCA3 [45]. PTBP1 is
an RNA binding protein that regulates RNA splicing and is
involved in cellular processes such as the cell cycle, apopto-
sis, and immune activation [46]. PTBP1 regulates the alter-
native splicing of exon 10 in the Axl gene, allowing it to
promote HCC cell invasion and metastasis [47]. E2F4 and
PTBP1 have not previously been linked to HCC angiogene-
sis, so our results suggest that future studies should explore
this possible link in detail.

Our results also suggest that GOLM1 may be involved in
protein processing in the endoplasmic reticulum by binding
to E2F1 and IGF2BP3, promoting endothelial cell infiltra-

tion. Endothelial cells are indispensably linked to angiogen-
esis, a complex, highly ordered process that is dependent on
endothelial cells [48]. Our immunoinfiltration analysis
found that endothelial cells were significantly infiltrated;
however, the link between GOLM1 and endothelial cells is
not known. E2F1 is a transcription factor involved mainly
in the regulation of the cell cycle, cell proliferation, and apo-
ptosis [49], and it is a key determinant of the survival of cells
under endoplasmic reticulum stress [50]. IGF2BP3 is highly
expressed in a variety of tumors including HCC, lung, and
prostate cancers, and it helps maintain tumor cell growth,
proliferation, invasion, and drug resistance through several
oncogenic pathways [51]. IGF2BP3 can inhibit ZO-1 expres-
sion, enhancing the ability of HCC cells to invade [52]. Few
studies have examined E2F1 and IGF2BP3 in HCC, so our
results justify more detailed experiments into how they
may contribute to disease onset and progression.

Based on the RNAInter database and VEGF signaling
pathway, we identified 11 mechanism genes and then ana-
lyzed and verified these genes and 400 specific DEGs in
TCGA and GEO databases. Finally, a new HCC prognostic
model was constructed based on a random forest approach.
Most of the 35 characteristic genes in the model have previ-
ously been linked to HCC. For example, low expression of
UGP2 is associated with HCC progression [53]; RAN pro-
motes the growth, migration, and invasion of HCC cells
[54]; ITGAV is up-regulated in HCC and promotes tumor
metastasis [55]; ETFDH is underexpressed in HCC and
associated with poor OS [56]; and SERPINA3 mediates the
upregulation of HNRNP-K transcriptional activity and
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Figure 7: Immune infiltration in hepatocellular carcinoma (HCC) and relationship with GOLM1. (a, b) Correlation between 11 signature
genes and immune cells. (c) Correlation between random forest regression model risk scores and immune checkpoints PDCD1, CD274, and
CTLA4. (d) Schematic showing a potential mechanism by which GOLM1 may regulate protein processing in the endoplasmic reticulum.
GOLM1 binds E2F1 and IGF2BP3 to promote tumor infiltration into the endothelium and affect angiogenesis in HCC.
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promotes the survival and proliferation of HCC cells [57].
Several genes in our model may be related to HCC but the
potential connection requires further study. These genes
include NDC1, TTBK1, PSMD11, FANCE, TRPM8, GSAP,
SEPSECS, VMA21, PLA2G12A, SORD, UBTF, MCEE, and
GOLM1.

We provide evidence that the random forest model is an
independent prognostic factor for HCC, can be used to pre-
dict OS and recurrence-free survival, and can evaluate the
prognosis of HCC patients. In order to improve the accuracy
of the prognostic prediction, a nomogram was developed
based on the random forest model as well as patient clinical
characteristics. The OS nomogram also included the risk
scores of metastasis, N (presence or absence of lymphatic
metastasis), and random forest score.

We also identified the optimal random forest regression
model based on protein processing in the endoplasmic retic-
ulum. The results of the Kaplan-Meier curve showed that the
model can help identify the high-risk and low-risk HCC
patients. Among the 11 characteristic genes identified,
HNRNPC emerged as an independent prognostic factor for
OS and disease-free survival in HCC patients, and it may
be related to sorafenib treatment and anti-PD-1 immuno-
therapy response [58]. A recent study [59] suggested that
the splicing regulator hnRNPU is a new transcriptional tar-
get of c-Myc in HCC. In that work, c-Myc upregulated
hnRNPU, while hnRNPUSSR3 stabilized the c-Myc mRNA,
thereby promoting c-Myc-driven HCC development.
CPSF6, as an alternative polyadenylation factor, is an activa-
tor of pre-mRNA cleavage and polyadenylation processing
[60]. CPSF6 is able to upregulate NQO1 to regulate HCC cell
metabolism and thereby promote tumor development [61].
EWSR1 is strongly expressed in HCC, it is associated with
histological grade and pathological T stage, and it is consid-
ered a novel tumor prognostic marker [62]. HSP90AB1 is
also associated with HCC, and it may be involved in the pro-
gression from cirrhosis to HCC [63]. SSR3 is highly
expressed in HCC and is associated with tumor size, TNM
stage, differentiation grade, and poor prognosis [64].
CAPRIN1 is upregulated in HCC and can partially reverse
the downregulation of c-MYC and CCND2 caused by
miR-621 dysregulation, thereby promoting cell proliferation
[65]. At present, the roles of EIF2AK4, U2AF2, and CSTF2
in HCC remain unclear. In this way, our results identify
novel genes associated with HCC, and future investigation
of these genes may provide new insights into the disease
and its treatment.

In addition, various types of infiltrating immune cells
have been described in the pathogenesis of HCC, and the
potential role is not yet clear. To date, the main focus of can-
cer immunotherapy has been to interrupt immune check-
points that inhibit antitumor lymphocytes. In addition to
lymphocytes, the HCC milieu includes many other immune
cell types, of which neutrophils are emerging as important
contributors to the pathogenesis of hepatocellular carci-
noma. A growing body of evidence supports neutrophils as
key mediators of the immunosuppressive environment in
which certain cancers develop and as drivers of tumor pro-
gression [66]. Little is known about the impact of endothelial

cells on tumor cell behavior. In HCC patients, endothelial
cells act as promoters of molecular crosstalk, enhancing
HCC cell survival, migration, and invasion [67]. Recently,
information about M2 macrophages promoting hepatocellu-
lar carcinoma metastasis revealed the mechanism of metas-
tasis in HCC [68]. However the role of bone marrow
dendritic cells in HCC is not known for the time being.

Although our study identified potential molecular mech-
anisms through which GOLM1 promotes HCC angiogene-
sis, it still has several limitations. First, our work was based
mainly on bioinformatics predictions using previously pub-
lished data from TCGA. Nevertheless, we validated our in
silico findings using a GEO dataset and explored the role
of GOLM1 in HCC using cell culture and RNA sequencing
together. Second, the established nomogram model needs
external validation. Since our prognostic model was con-
structed and validated using retrospective analysis of public
databases, it should be confirmed in prospective studies.
Future work should investigate, in vivo and in vitro, how
GOLM1 promotes HCC angiogenesis.

5. Conclusions

Our study constructed HCC prognostic models based on
DEG associated with GOLM1 overexpression, which may
help to stratify HCC patients according to prognosis and
to guide individualized treatment. Functional enrichment
analysis of these genes led us to propose a mechanism by
which GOLM1 promotes HCC angiogenesis. This may help
develop effective treatments.
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Glioma is the most common of all central nervous system (CNS) malignancies and is associated with a poor prognosis. Pyroptosis
has been proven to be associated with the progression of multiple tumors and CNS diseases. However, the relationships between
pyroptosis and clinical prognosis and immune cell infiltration are unclear in glioma. In this study, we conducted a comprehensive
exploration of pyroptosis in glioma. First, prognosis-related genes were screened at each key regulatory locus in the pyroptosis
pathway, and the prognostic ability and coexpression relationships of GSDMD and its upstream pathway genes NLRC4/
CASP1/CASP4 were identified and well validated in multiple datasets. Tissue microarray-based immunohistochemistry results
showed higher levels of NLRC4 and N-terminal GSDMD in high-grade gliomas, providing conclusive evidence of pyroptosis in
gliomas. The robustness of the prognostic model based on these four genes was well validated in TCGA and CGGA cohorts.
Bulk RNA-seq-based analysis showed that the group defined as the high-risk group according to the model showed activation
of multiple inflammatory response pathways and impaired synaptic gene expression and had a higher infiltration of bone
marrow-derived macrophages (BMDMs) and a hypersuppressed immune microenvironment. More importantly, three
independent single-cell RNA-seq (scRNA-seq) datasets demonstrated that tumor-infiltrating macrophages, particularly
BMDMs but not tissue-resident microglia, showed significant coexpression of the GSDMD and CASP genes, and BMDMs
from high-grade gliomas accounted for a higher proportion of immune infiltrating cells and had higher expression of
pyroptosis genes. Finally, we revealed the activation of pathways in response to LPS/bacteria and oxidative stress during
BMDM development toward the pyroptosis cell fate by pseudotime trajectory analysis, suggesting potential BMDM pyroptosis
initiators. The above results provide not only novel insights into the pathological mechanisms of glioma but also novel
therapeutic targets for glioma, suggesting the potential application of pyroptosis inhibitors (e.g., disulfiram).

1. Introduction

Gliomas, which usually originate from glial cells or precursor
cells and progress to astrocytomas, oligodendrogliomas, ven-
tricular meningiomas, or oligodendroglial astrocytomas,
account for approximately 80% of malignant tumors of the
central nervous system (CNS) [1]. The World Health Organi-
zation classifies gliomas into 4 grades [2]. The 10-year survival
rate for low-grade gliomas (grades I-II) is 47%, and themedian
survival time is 11.6 years, while the median overall survival

for grade IV gliomas is worse, at 15 months. With advances
in targeted tumor treatment research and technology, there
have been several breakthroughs in the identification of gli-
oma molecular markers, such as isocitrate dehydrogenase
(IDH) mutations [3] and O6-methylguanine-DNA methyl-
transferase (MGMT O6) promoter methylation [4]. However,
these established markers are limited in their ability to eluci-
date the pathogenesis of glioma and are difficult to translate
into targeted therapeutics. Therefore, it is urgent to explore
new diagnostic assessment and prognostic analysis strategies
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for glioma pathogenesis and progression mechanisms and to
obtain novel therapeutic agents based on these mechanisms.

Pyroptosis is a proinflammatory mode of programmed
cell death characterized by cell swelling and eventual rupture
and the release of inflammatory contents following the perfo-
ration of the cell membrane, which is mediated by the N-
terminal domain of the gasdermin protein [5, 6]. The gasder-
min family has six members, including GSDMA, GSDMB,
GSDMC, GSDMD, GSDME (DFNA5), and DFNB59. Except
for DFNB59, the pyroptosis-mediating ability of all members
has been well validated [7]. The inflammatory response caused
by pyroptosis promotes immune cell infiltration to eliminate
the pathogen or activate the tumor microenvironment
[8–10]. However, excessive inflammatory responses not only
damage normal cells but also reduce immune surveillance
and the suppression of malignant cells, resulting in chronic
inflammation and tumor immune escape [11]. As an impor-
tant molecular marker of pyroptosis [9], IL1β is generally
released from the pore formed by oligomerized GSDMD
[12] and has been shown to be closely associated with the for-
mation of an immunosuppressive microenvironment in sev-
eral tumor types [13–15]. Notably, several studies have
shown that the proinflammatory cytokine IL1β is significantly
elevated in the serum of glioblastoma (GBM) patients and
serves as a potential serum marker for this type of disease
[16, 17]. In addition, a very recent study showed that
monocyte-derived macrophages in gliomas secrete IL1β in
response to tumor cell induction, while Il1b knockdown sig-
nificantly prolonged the survival time of primary glioma mice
[18]. These studies suggest that aberrant pyroptosis signals
may be present in glioma. In fact, pyroptosis has been demon-
strated to be associated with the development of various
peripheral inflammatory diseases and tumors, and several
recent studies have reported that pyroptosis plays a critical
role in the progression of CNS diseases, including Alzheimer’s
disease [19], multiple sclerosis [20], and stroke [21]. However,
the relationship between pyroptosis and glioma, the most
common primary tumor of the CNS, has rarely been reported.
Here, we hypothesized that the progression of pyroptosis
within gliomas could be used as a novel criterion for disease
staging and prognostic assessment.

Although there have been several studies on prognosis-
related pyroptosis genes in glioma [22, 23], they have been
limited to establishing a prognostic model based on regression
analysis while ignoring the correlation between pyroptosis and
the tumor immune microenvironment. Moreover, these stud-
ies have tended to analyze all pyroptosis-related genes in gen-
eral, but different gasdermin-mediated pyroptosis pathways
are relatively independent from each other, and many genes
are involved in other biological functions, such as apoptosis,
so each pathway should be explored independently to reflect
the situation of pyroptosis in glioma more accurately. The
aim of this study was to identify the potential origin of pyrop-
tosis activation signals in glioma through bioinformatics anal-
ysis of bulk RNA-seq data and single-cell RNA sequencing
(scRNA-seq) data from glioma patients and to develop a risk
score model based on markers of this signaling pathway to
more effectively predict patient prognosis. This model will
help to explore the relationship between pyroptosis and the

progression of glioma. In addition, we explored the potential
link between pyroptosis and the immune microenvironment
in glioma. We also used single-cell transcriptomics data to
identify cell clusters in tumors with the ability to induce pyr-
optosis, and these clusters can provide targets for the develop-
ment of novel therapies for glioma.

2. Materials and Methods

2.1. Data Acquiring. The bulk RNA-seq and clinical infor-
mation of glioma patients were obtained from TCGA data-
base (https://portal.gdc.cancer.gov/), CGGA database
(http://www.cgga.org.cn/), and GEO database (https://www
.ncbi.nlm.nih.gov/geo/). TCGA cohort contained 702 tumor
samples, the CGGA cohort contained 325 tumor samples,
the Bao dataset (GSE48865) [24] contained 274 tumor sam-
ples, and the Gravendeel dataset (GSE12907, GSE4271) [25]
contained 276 tumor samples. TCGA and CGGA cohorts
are used for candidate gene screening and prognostic model
establishment and validation, while the other cohorts are
used for candidate gene screening only. TCGA and CGGA
datasets used for prognostic modeling screened samples
according to the following criteria: (1) having WHO grade
classification and ≥II; (2) having complete survival informa-
tion, including overall survival and final events; and (3) hav-
ing not received immune checkpoint blocker therapy. There
were 597 samples in the filtered TCGA dataset and 306 sam-
ples in the CGGA dataset, and detailed clinical characteris-
tics are summarized in Table 1.

The scRNA-seq expression profiles and cell annotation
files of Cyril Neftel et al. (GSE131928) [26], which contained
a total of 7930 cells from 28 patients, were obtained from the
Single Cell Portal database (https://singlecell.broadinstitute
.org/single_cell). The scRNA-seq expression profiles of Kai
Yu et al. (GSE117891) [27], which contained 6148 cells from
13 patients, were obtained from the CGGA database. The
scRNA-seq expression profiles of Andrew Venteicher et al.
(GSE89567) [28], which contained 6341 cells from 10
patients, were obtained from the GEO database. A simplified
workflow for the current study is depicted in Figure (1).

2.2. Tumor Microenvironment Estimation. Immune score,
stromal score, and ESTIMATE score were calculated using
the ESTIMATE R package [29]. CIBERSORT was used to
predict the abundance of each type of cell infiltration in
the tumor microenvironment (TME) [30]. Dysfunctional
CD8+ T cell infiltration levels for TCGA_LGG and
TCGA_GBM were obtained from the Tumor Immune Dys-
function and Exclusion (TIDE) portal (http://tide.dfci
.harvard.edu/) [31]. Response to immune checkpoint block-
ade therapy in TCGA and CGGA cohorts was also predicted
in the TIDE portal. In addition, we used single sample gene
set enrichment analysis (ssGSEA) to predict immune inhibi-
tion scores and TGF-β response scores (TBRS) in each sam-
ple based on the gene sets identified by Mariathasan et al.
[32] (Supplementary Table. S1).

2.3. Differentially Expressed Gene Analysis and Functional
Annotation. Analysis and functional annotation of

2 Oxidative Medicine and Cellular Longevity
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differentially expressed genes (DEGs) were performed using
an empirical Bayesian approach by using the limma R pack-
age. Adjusted p values less than 0.05 and absolute Log2 fold

changes (log2FC) greater than 1.5 were considered DEGs
and used for GO and KEGG functional annotation by the
clusterProfiler R package.

Prognosis-related
Gasdermin gene
identification

1. Correlation analyis

1. Gene colocalization

1. Data integration 2. Pseudotime analysis

2. DEGs enrichment 3. Scissor

Training:
TCGA

Validaion
CGGA

1. GO
✓ BMDM / Microglia

✓ Immune inhibition
✓ ICB response2. KEGG

3. GSEA

2. Metascore

1. TCGA-LGGGBM (n = 702)

bu
lk

 R
N

A-
se

q

1. GSE131928
2. GSE117891
3. GSE89567

2. CGGA (n = 325)
3. GSE48865(n = 275)
3. Gravendeel_data (n = 276)

(GSE12907+GSE4271)
sc

RN
A-

se
q

Figure 1: The complete research workflow. IHC: immunohistochemistry; DEGs: differentially expressed genes; GO: Gene Ontology
analysis; KEGG: Kyoto Encyclopedia of Genes and Genomes; GSEA: gene set enrichment analysis; TME: tumor microenvironment;
BMDM: bone marrow-derived macrophages; ICB: immune checkpoint blockade.
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2.4. Visualization of the Pyroptosis Pathway. To explore the
GSDMD upstream signaling pathway, we divided TCGA
cohort into the high- and low-expression groups by median
GSDMD expression values and screened DEGs. The network
building tool MetaCore™ version 5.4 (GeneGo) was used for
pathway enrichment of differentially expressed genes as
described previously [33], and the upstream signaling path-
ways of GSDMD were selected for visualization and analysis.

2.5. Tissue Microarray and Immunohistochemistry (IHC).
Tissue microarrays purchased from Bioaitech were used for
IHC. Each microarray contained 11 normal brain tissues, 7
grade I glioma samples, 32 grade II glioma samples, 22 grade
III glioma samples, and 36 grade IV glioma samples. Anti-
human GSDMD-N antibody (abcam, ab215203), anti-
human NLRC4 antibody (abclonal, A13117), and anti-
human PD1 antibody (servicebio, GB12338) were used for
staining. The degree of IHC staining was reviewed and
scored independently by two observers who were unaware
of the clinical characteristics. The intensity of staining was
scored according to the following criteria: cells with <25%
staining were scored as (−, 1); cells with 25-49% staining
were scored as (+, 2); cells with 50-74% staining were scored
as (++, 3); and cells with 75-100% staining were scored as (+
++, 4). The staining color was scored as negative light-yellow
particle (1), brown-yellow particle (2), and brown particle
(3). The final score was defined as the staining number score
multiplied by the staining color score.

2.6. Generation of Riskscore. To establish a risk score that
can assess the degree of activation of apoptotic pathways in
individual patients, we performed multivariate Cox analysis
on the screened highly conserved co-expressed gene cluster
NLRC4/CASP1/CASP4/GSDMD using TCGA cohort as a
training set. The Riskscore formula was constructed based
on the coefficients of multivariate Cox analysis and validated
for stability in the CGGA cohort. Kaplan–Meier curves were
plotted to prove the prognostic value of the Riskscore, and
log-rank tests were employed for analyzing statistical differ-
ences between the high- and low-risk groups. The accuracy
of the Riskscore was assessed using receiver operating char-
acteristic (ROC) curves. The independence of Riskscore was
assessed using univariate and multifactorial Cox analyses.

2.7. Copy Number Variation and Tumor Mutational Burden
Analysis. To determine copy number alteration events, we
used the set of discrete copy number calls provided by GIS-
TIC 2.0: homozygous deletion (−2); hemizygous deletion
(−1); no-change (0); low-level gain (1); and high-level ampli-
fication (2). When more than half of the genes in the ampli-
fied or deleted peak region were high-level amplification (2)
or homozygous deletion (−2), the copy number of the peak
region is defined as changed. The oncoplot function in the
maftools R package was used to visualize the general condi-
tion of the Mutation Annotation Format (MAF) of TCGA
cohort in the form of a waterfall chart.

2.8. Bone Marrow-Derived Macrophage (BMDM) and
Microglia Estimation. We used the single sample gene set
enrichment analysis (ssGSEA) to predict BMDM and

microglia infiltration scores in each sample based on the
DEGs between microglia and BMDM demonstrated by
Bowman et al. [34] as gene sets (Supplementary Table. S2).
The gene set of DEGs in BMDM and microglia identified
by Muller et al. [35] was used to validate the robustness of
the above prediction. The same approach was used to pre-
dict the BMDM and microglia infiltration scores of macro-
phage subpopulations in the scRNA-seq dataset to
distinguish BMDM and microglia at the single-cell level.

2.9. scRNA-seq Data Processing. The Seurat R package was
used for scRNA-seq data processing as previously described
[36]. Cells were removed if the number of expressed genes
was less than 200 or more than 6,000, the UMI count was
less than 1,000 and/or the percentage of mitochondrial genes
was more than 0.1. The NormalizeData and ScaleData func-
tions are used to normalize the matrix for subsequent cell
clustering and dimensionality reduction. The first 2,000
highly variable genes identified by the FindVariableFeatures
function were used in the RunPCA function for principal
component analysis (PCA). The FindClusters function is
used to cluster cells at a resolution of 0.5. RunTSNE is used
to project cells into two dimensions and visualize them. The
FindAllMarkers function was used to identify specific macro-
phage cluster DEGs compared to all other macrophage clus-
ters. The harmony R package was used for integration and
batch effect correction of expression profiles of BMDM and
microglia from different datasets [37]. The monocle R package
was used for performing differential expression and time-
series analysis for single-cell expression experiments.

2.10. Identifying Phenotype-Associated Subpopulations. As
previously described, the Scissor R package was used for
phenotype-guided single-cell subpopulation identification
[38]. Briefly, the Cyril Neftel single-cell expression matrix,
TCGA bulk expressionmatrix, and phenotype of interest (over-
all survival in this study) were processed using Scissor. All cells
can be divided into Scissor-positive (Scissor+) cells and Scissor-
negative (Scissor−) cells, which are positively and negatively
associated with the phenotype of interest, respectively.

2.11. Statistical Analysis. All statistical analyses were per-
formed using R (4.1.2) software. Student’s t-test (unpaired,
two-tailed) was used to assess differences between two indepen-
dent groups, and the Wilcoxon test is used for nonparametric
tests between data that do not conform to a normal distribu-
tion. One-way analysis of variance (ANOVA) was used as a
parametric method for data from more than two groups. The
chi-square test was executed for the comparison of categorical
variables between the high- and low-risk groups. The survivor
and survminer R packages were used for survival analysis.

3. Results and Discussion

3.1. GSDMD Significantly Correlated with the Progression
and Overall Survival of Glioma. Gasdermin proteins are the
final executors of pyroptosis, and their expression level
directly affects the possibility of pyroptosis occurring [39].
Considering that the gasdermin family contains five mem-
bers that have been confirmed to mediate pyroptosis, we

5Oxidative Medicine and Cellular Longevity
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Figure 2: Continued.
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examined the relationship between the different gasdermin
genes and the progression or prognosis of glioma to investi-
gate the most critical gene for the execution of pyroptosis in
gliomas.

We first analyzed the expression of gasdermin family
genes in different-grade gliomas in TCGA-LGGGBM and
CGGA cohorts. The results showed that among the five pyr-
optosis genes of this family, only the expression of GSDMD
showed a stable correlation with disease progression in both
cohorts, and higher WHO grades corresponded to higher
GSDMD expression (Figures 2(a) and 2(b)). This finding is
consistent with the findings reported by Liu et al. that (1)
GSDMD protein levels were elevated in clinical glioma tissue,
accompanied by significant cleavage bands, and (2) GSDMD
protein expression in GBM samples was higher than that in
LGG samples [40]. IDH represents a major biomarker with
diagnostic, prognostic, and predictive implications in glioma,
and mutant phenotypes have a worse prognosis (Figure S1).
The expression of multiple gasdermin genes in TCGA and
CGGA cohorts was significantly different among the IDH
phenotype groups (Figures 2(c) and 2(d)). However, in
TCGA cohort, the expression of GSDMD (wild type vs.
mutant) Log2FC = 1:784 was compared with the expression
of gasdermin Log2FC in -0.823~0.899; in the CGGA cohort,
the expression of GSDMD (wild type vs. mutant) Log2FC =
1:603 was compared with the expression of gasdermin
Log2FC in -0.553~0.815. Therefore, among the gasdermin
family members, GSDMD is the most differentially
expressed gene among different IDH phenotypes of glioma.

To further confirm that GSDMD has a more significant
indicative role in glioma than other gasdermin genes, we
evaluated the overall survival time of each group based on
the clinical information of patients from TCGA and CGGA
datasets and gasdermin gene expression profiles, using the
median expression of each gene as a cutoff point to divide
the high and low expression groups (Figures 2(e) and 2(f)).
The results showed that GSDMA, GSDMC, and GSDMD
were significantly correlated with prognosis in both TCGA

and CGGA datasets and high expression of GSDMA and
GSDMD corresponded to shorter survival, but GSDMC
showed the opposite results. However, GSDMB and GSDME
showed only limited prognostic relevance in a single dataset.
Notably, in TCGA and CGGA cohorts, compared to the
high expression group, the median survival time was pro-
longed 4.36-fold and 5.22-fold in the GSDMD low-
expression group, while it was prolonged only 2.38-fold
and 1.63-fold in the GSDMA low-expression group.

In conclusion, multiple gasdermin-mediated complex
pyroptosis signaling networks may exist in gliomas. How-
ever, compared with other gasdermin genes, the pyroptosis
triggered by GSDMD plays the most critical role in both
the progression and the prognosis of glioma. Therefore, we
performed subsequent data mining work around GSDMD.

3.2. The NLRC4/CASP1/CASP4/GSDMD Pyroptosis Signaling
Axis Can Be Used as a Prognostic Factor for Glioma. The pro-
cess of pyroptosis requires not only gasdermin expression but
also upstream activation signals leading to gasdermin cleavage
and N-terminal domain release, which are equally crucial. It
has been well demonstrated that caspase-1, caspase-4, and
caspase-5 are activators of GSDMD, capable of cleaving
GSDMD at hGSDMD276 and releasing GSDMD-NT, leading
to pyroptosis [5]. CASP1, CASP4, and CASP5 were all signif-
icantly associated with overall survival in TCGA cohort
(Figure 3(a)). Among them, CASP1 and CASP4 showed a par-
ticularly significant positive correlation with GSDMD
(R > 0:75, p < 10−16), while the coexpression of CASP5 was
discrete (Figure 3(b)). The highly conserved coexpression rela-
tionships between CASP1/GSDMD and CASP4/GSDMD
were validated in three other independent datasets
(Figure S2), indicating CASP1/CASP4/GSDMD signaling
axis activation in glioma.

Inflammasomes are the activator of multiple caspases,
among which multiple inflammasomes such as NLRP1,
NLRP3, and NLRC4 are directly involved in classical or non-
classical pyroptosis pathways and act as receptors of
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Figure 2: GSDMD expression was significantly associated with the progression and prognosis of glioma. (a, b) Expression levels of
gasdermin family genes in patients with different WHO grades in TCGA and CGGA cohorts. (c, d) Expression levels of gasdermin
family genes in patients with different IDH mutation phenotypes in TCGA and CGGA cohorts. (e, f) Kaplan–Meier plots for overall
survival time (OS) of patients with different gasdermin family gene expression in TCGA and CGGA cohorts, using the median
expression of each gene as a cutoff point to divide the high and low expression groups. Statistics were calculated using two-tailed,
unpaired Student’s t-test with Welch’s correction in a-d. ns: not significant. ∗p < 0:05, ∗∗p < 0:01, ∗∗∗p < 0:001,and∗∗∗∗p < 0:0001.

8 Oxidative Medicine and Cellular Longevity



++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+++++++++++

+

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+++

++

+ +++ + +
p < 0.0001

0.00

Low
High

0.25

0.50

0.75

1.00

0 2000 4000 6000
Time (day)

0 2000 4000 6000
Time (day)

0 2000 4000 6000
Time (day)

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
++++++++

+
+ +

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+++

+ ++ +
p < 0.0001

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
++++++++

+
+ +

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+++

+ ++ +
p < 0.0001

CASP1 CASP4 CASP5
Su

rv
iv

al
 p

ro
ba

bi
lit

y

(a)

R = 0.76, p< 2.2e–16

6

8

10

4 6 8 10
CASP1

G
SD

M
D

6

8

10

4 6 8 10

G
SD

M
D

6

8

10

0 2 4 6

G
SD

M
D

CASP4 CASP5

R = 0.44, p< 2.2e–16R = 0.78, p< 2.2e–16

(b)

Multivariate
NLRC4 0.0353 1.210 (1.042–1.432)

CASP1 0.0073 1.365 (1.204–1.665)

CASP4 <0.0001 2.775 (2.007–3.836)

GSDMD <0.0001 1.597 (1.287–2.964)

0.5 1.0 1.5 2.0 2.5 3.0 3.5

Univarate

Hazard ratio

NLRP1 0.419
P value HR (95%CI)

P value HR (95%CI)

1.132 (0.838–1.529)
NLRP2 0.382 1.033 (0.912–1.346)

NLRP3 0.946 1.01 (0.753–1.354)
NLRC4 <0.0001 2.594 (1.877–3.565)

NOD2 0.169 1.127 (0.866–1.455)
CASP1 <0.0001 3.735 (2.663–5.238)
CASP4 <0.0001 4.561 (3.23–6.442)

GSDMD <0.0001 4.083 (2.929–5.693)

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

(c)

Figure 3: Continued.

9Oxidative Medicine and Cellular Longevity



LPS

Lipoteichoic acid

Uric acid

Biglycan

Muramyl dipeptide

ATP

K(’+) extracellular
region

K(’+) cytosol

P2X7

TXNIP (VDUP1)

IPAF-
inflammasome

IKK-gamma RIPK2 Caspase-5

IL-18IL-1 betaNF-kBI-kBIKK
(cat)

IL-1
signaling
pathway

NF-kB
signaling
pathway

Inflamatory response

Release of IL-1 beta
from the cell

beta
TNF-alpah

TNF-R1IL-1Rl

CARD8 CARD8

NALP1-
inflammasome

NALP2-
inflammasome

NALP3-
inflammasome

NOD2-
signalosome

Activation: Danger signals (e.g. LPS,
Lipoteichoic acid and uricic acid) activate

NALP3-inflammasome presumably via
the pore-forming pannexin-1

Activation:
Activated P2X7
promotes K(’+)

efflux from the cell
Pannexin-1

fliC (S. typhimurium)

NOD1-
signalosome

Nod1

RIPK2

CARD5 CARD12 CARD9 CARD5 CARD5CARD7

Activation: Muramyl
dipeptide is delivered into

the cell by phagocytosis
and activates Nod2

(CARD15) and CARD7

Activation: K(’+) efflux triggers
production of reactive oxygen

species (ROS) leading to
NALP3-inflammasome activation

through TXNIP (VDUP1)

Activation:
Pannexin-1
promotes
NALP3

activation

NALP2 CARD5 NALP3
Nod2

(CARD15)

TLR4

TLR2 and
TLR4 signaling
pathways

(d)

Figure 3: Continued.

10 Oxidative Medicine and Cellular Longevity



2

4

6

8

10

CASP1 CASP4 NLRC4

G
en

e e
xp

re
ss

io
n

⁎⁎⁎⁎ ⁎⁎⁎⁎ ⁎⁎⁎⁎

IDH_mutation

Wild type

Mutant

(e)

0

5

10

G
en

e e
xp

re
ss

io
n

CASP1 CASP4 NLRC4

⁎⁎⁎⁎ ⁎⁎⁎⁎ ⁎⁎⁎⁎

Grade

WHO II

WHO III

WHO IV

(f)

G
SD

M
D

-N

Normal brain

100 𝜇m

400 𝜇m

WHO I WHO II WHO III WHO IV

N
LR

C4

(g)

Figure 3: Continued.

11Oxidative Medicine and Cellular Longevity



pyroptosis [41]. Therefore, to explore the upstream activation
signals of CASP genes, we selected representative NLRP1,
NLRP2, NLRP3, NLRC4, and NOD2 inflammasome genes
to examine their correlation with CASP1/CASP4/GSDMD.
Univariate Cox regression analysis revealed that only NLRC4
of the CASP1 upstream inflammasome genes had a significant
effect on overall survival (HR = 2:594, p < 0:0001), and multi-
variate Cox regression analysis demonstrated that NLRC4/
CASP1/CASP4/GSDMD could jointly affect overall survival
in TCGA cohort (Figure 3(c)). Among inflammasome genes,
NLRC4 demonstrated its unique prognostic value in the
CGGA cohort and Gravendeel dataset (Figure S3).
Furthermore, we screened differentially expressed genes
(DEGs) between the high and low GSDMD expression
groups using the limma R package, performed pathway
enrichment of DEGs, and analyzed GSDMD upstream gene
hits using the network building tool MetaCore. The
visualization results again demonstrated the unique
association of the NLRC4 (CARD12 in the map) gene with
GSDMD among inflammasome genes (Figure 3(d)). In
addition, the expression of the CASP1, CASP4, and NLRC4
genes in TCGA cohort increased with disease progression
and showed higher expression in the wild-type IDH group
(Figures 3(e) and 3(f)), and the NLRC4/CASP1/CASP4/
GSDMD coexpression relationship was verified in TCGA
cohort and three other independent datasets (Figure S4). To
further confirm pyroptosis in gliomas, we examined the
protein levels of N-terminal GSDMD (GSDMD-N), which is

produced by cleavage of full-length GSDMD by caspase-1
and caspase-4 and is the most classic marker of pyroptosis, in
gliomas of different disease grades and normal brain tissue.
We also examined the protein levels of NLRC4. The results
showed that GSDMD-N and NLRC4 were barely detectable
in the normal brain tissue, while the levels of both GSDMD-
N and NLRC4 increased in matched samples with increasing
disease grade (Figure 3(g)). Semiquantitative analysis also
showed significantly higher levels of GSDMD-N and NLRC4
in higher-grade glioma samples (Figures 3(h) and 3(i)), which
provided conclusive evidence for GSDMD-mediated
pyroptosis in gliomas.

To investigate in depth whether this signaling axis can
be used as a valid guide for predicting patient prognosis,
we constructed a scoring system based on the NLRC4/
CASP1/CASP/GSDMD pyroptosis axis. We extracted the
4 genes with significant coefficients in the multivariate
Cox analysis of TCGA dataset, used these data as the
training set, and finally obtained the risk score formula:
Riskscore = 1:02065 × exprCASP4 + 0:46802 × exprGSDMD +
0:31184 × exprCASP1 + 0:09562 × exprNLRC4. The Riskscore
for each patient was calculated, and the patients were
divided into the high- and low-risk groups according to
the median Riskscore (Figures 4(a) and 4(b)). There were
significant differences in the histological classification,
WHO grade, IDH mutation phenotype, and chromosome
1p19q codeletion phenotype between the two groups,
while chemotherapy and temozolomide acceptance
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Figure 3: NLRC4/CASP1/CASP4/GSDMD signaling axis genes in TCGA cohort have similar expression patterns and jointly affect overall
survival. (a) Kaplan–Meier plots for the OS of patients with different CASP gene expression in TCGA cohort, using the median expression of
each gene as a cutoff point to divide the high- and low-expression groups. (b) Scatter plot of the correlation between the GSDMD gene and
the expression of three caspase genes in TCGA cohort. The degree of correlation was examined using Spearman’s coefficient. (c) Univariate
Cox analysis of the effects of GSDMD, CASP4, and CASP1 and their upstream inflammasome gene expression on overall survival. Genes
with p < 0:05 were selected for multivariate Cox analysis. Hazard ratios are presented as forest plots. (d) Pathway enrichment of DEGs
between the GSDMD high- and low-expression groups using Metacore and visualization of CASP1 upstream gene hits. The red
thermometer indicates the Log2FC of different genes. (e, f) Expression levels of CASP1, CASP4, and NLRC4 genes in patients with
different WHO grades and IDH mutation phenotypes in TCGA cohort. (g) Representative sections of matched GSDMD-N and NLRC4
immunohistochemistry from normal brain tissue and different grades of glioma samples. (h, i) Semiquantitative results of GSDMD-N
and NLRC4 staining levels in tissue microarrays. Statistics were calculated using one-way analysis of variance (ANOVA) in (f). Statistics
were calculated using two-tailed, unpaired Student’s t-test with Welch’s correction in (e, h, i). ∗∗∗∗p < 0:0001, ∗∗p < 0:01, and∗p < 0:05.
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differences were not significant (Table. 1). Time-dependent
ROC and Kaplan–Meier curves were used to assess the
prognostic ability of the four pyroptosis-associated genetic
signatures. The results showed that the high-pyroptosis-
risk group defined by the four signature genes had signif-
icantly shorter OS in TCGA training cohort and the
CGGA external validation cohort (Figures 4(c) and 4(d)).
The AUC (area under the ROC curve) was 0.85, 0.90, and
0.87 for the 1-year, 3-year, and 5-year OS in the training
cohort and 0.72, 0.80, and 0.84 in the CGGA cohort,
respectively. The ROC curves showed a similar prognostic
value of our established prognostic model and the previously
established 10-pyroptosis-gene prognostic model [22] and
golden standard WHO grading system for predicting OS at
1, 3, and 5 years in TCGA and CGGA cohorts (Figure S5).
Moreover, univariate and multifactorial Cox regression
analyses revealed that the Riskscore could be used as a valid
independent prognostic factor, as well as disease grade, age,
IDH mutation status, and 1p19q codeletion status
(Figures 4(e) and 4(f)). Nomograms based on the results of
multivariate Cox regression analysis were used for scoring to
assess the accuracy of the model. To correctly predict the 1-,
3-, and 5-year OS, we created a nomogram4 that included
the WHO grade, age, IDH mutation status, 1p19q codeletion
status, and the Riskscore (Figures 4(g) and 4(h)). The
calibration curve study revealed agreement between the

patients’ anticipated and observed 1-, 3-, and 5-year OS rates
in both TCGA and CGGA cohorts (Figures 4(i) and 4(j)).

3.3. Differential Gene, Tumor Mutational Burden, and Drug
Prediction Analysis Based on the Four-Pyroptosis-Gene
Prognostic Model. The distinct prognosis of the high- and
low-risk groups defined by the four pyroptosis genes drove
us to further explore the functional enrichment of the differ-
ential genes between the high- and low-risk groups and thus
speculate on the potential mechanisms of pyroptosis
involved in glioma disease progression. We analyzed differ-
entially expressed genes between the high- and low-risk
groups in TCGA dataset using the Limma R package. We
screened DEGs with ∣log 2‐fold change ∣ >1:5 and adjusted p
< 0:05 and obtained a total of 498 upregulated genes and
518 downregulated genes (Figures 5(a) and 5(b)). Principal
component analysis (PCA) showed that the high-risk group
distinctly clustered apart from the low-risk group, revealing
significant differences in expression profiles between the two
groups (Figure 5(c)).

The GO enrichment results showed that upregulated
DEGs were mainly involved in various immune response-
related biological processes, such as cellular immune
response, cellular defense response, and response to cyto-
kines (Figure 5(d)). The KEGG enrichment results indicated
that upregulated DEGs were mainly associated with
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Figure 4: Stable prognostic model based on NLRC4/CASP1/CASP4/GSDMD pyroptosis signaling axis genes. (a, b) Relationship between
risk score and overall survival of patients and expression levels of NLRC4, CASP1, CASP4, and GSDMD genes in TCGA training cohort
and CGGA validation cohort. (c, d) Time-dependent ROC analysis and Kaplan–Meier analysis in TCGA training cohort and CGGA
validation cohort to assess the prognostic value of the Riskscore, using the median Riskscore as a cutoff point to divide the high- and
low-risk groups. (e, f) Univariate Cox analysis and multivariate Cox analysis in TCGA training cohort and CGGA validation cohort.
Hazard ratios are presented as forest plots. (g, h) The nomogram for predicting the proportion of patients with 1-, 3-, and 5-year overall
survival in TCGA and CGGA cohorts. (i, j) The calibration curves for the prediction of 1-, 3-, and 5-year overall survival in TCGA
cohort and CGGA cohort.
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inflammatory response signals, such as multiple bacterial
and viral infections and autoimmune diseases such as rheu-
matoid arthritis (Figure 5(e)). Gene set enrichment analysis
(GSEA) also showed the activation of various proinflamma-
tory signaling pathways in the high-risk group, including
IL2-STAT5, IL6-STAT3, and IFN-α responses (Figure 5(f
)). Pyroptosis is a proinflammatory cell death mode in which
large amounts of inflammatory substances are released dur-
ing cell death and trigger an inflammatory response, which
coincided with the activation of multiple aberrant immune
response pathways present in the high-pyroptosis-risk
group. In addition, the top ten GO terms enriched by down-
regulated DEGs all had a strong link with synapse formation,
stabilization, and signal transduction (Figure 5(g)). Clini-
cally, patients with high-grade glioma tend to develop
degenerative diseases such as memory loss and cognitive
impairment, and it has been demonstrated that impaired
cognitive function is associated with shorter survival in glio-
blastoma patients [42]. Furthermore, pyroptosis is strongly
associated with Alzheimer’s disease progression, and
GSDMD serves as an important marker for AD [19]. This
is consistent with our analysis that there is an association
between high-grade gliomas, corresponding to a high risk
of pyroptosis, and neurodegenerative diseases. Taken
together, these results indicate that a high degree of
CASP1/CASP4/NLRC4/GSDMD pyroptosis is accompanied
by the activation of proinflammatory signaling pathways in
the brain and is closely associated with impaired establish-
ment and stability of neuronal synapses.

We also explored differences in copy number variation
(CNV) and tumor mutational burden (TMB) between the
high-risk and low-risk groups. A significantly higher propor-
tion of samples in the high-risk group had CNV. We screened
for the genes that differed most significantly between the high-
risk and low-risk groups, including high-level amplified genes
and homozygous deletion genes. Interestingly, several inter-
feron alpha (IFNA) family genes in the high-risk group were
homozygously deleted (Figure S6a), and the activation of the
inflammasome was previously reported to have an
antagonistic effect on the type I interferon response in
macrophages [43]. However, a correlation of other genes with
pyroptosis could not be identified in previous studies. In
addition, the CNV in the NLRC4, CASP1, CASP4, and
GSDMD genes did not vary significantly between the high-
and low-risk groups (Figure S6b). The low-risk group had an
IDH1 mutation rate of 86.95%, and the majority of these
samples also had mutations in the ATRX and CIC genes,
which are characteristic of LGGs, such as oligodendrogliomas
[44] (Figure S6c). In contrast, more EGFR, TTN, and PTEN
mutations, which are usually characteristic of GBM [45], were
observed in the high-risk group (Figure S6d).

We also performed a preliminary drug sensitivity analysis.
The drug sensitivity data and expression profile data for gli-
oma cell lines were obtained from Genomics of Drug Sensitiv-
ity in Cancer (GDSC) and the Cancer Therapeutics Response
Portal (CTRP). Multiple drug candidates were screened by
correlation analysis of the expression levels of the four pyrop-
tosis genes of the cell lines with the IC50 of different drug
treatments in the GDSC database (Figure S7a, b) and the

drug sensitivity (1-(AUC/30)) in the CTRP database
(Figure S7c, d). However, the sensitivity to each of these
drug candidates can only be correlated with the expression
of one of the pyroptosis genes, so the combination is more
appropriate for this pyroptosis target.

3.4. Increased Infiltration of BMDMs and the
Immunosuppressive Microenvironment in the High-Risk
Group. We demonstrated that the high-risk group was asso-
ciated with multiple inflammatory response signaling path-
ways (Figures 5(e)–5(g)), and we speculated that this may
be associated with the altered infiltration of immune cells
caused by the NLRC4/CASP1/CASP4/GSDMD pyroptosis
axis. The ESTIMATE R package was used to predict the stro-
mal score, immune score, and ESTIMATE score
(stromal score + immune score), and the results showed that
the high-risk group had a higher immune score and stromal
score, which represented a higher degree of immune infiltra-
tion and tumor malignancy (Figure 6(a)). CIBERSORT was
used to predict immune cell infiltration in TCGA cohort,
and the most abundant immune cells in gliomas were M2
macrophages, which were further increased in the high-risk
group. (Figure 6(b)). Previous studies have shown that mac-
rophages in gliomas, especially those with the M2 pheno-
type, play an important role in the formation of the
immunosuppressive microenvironment and tumor progres-
sion [46, 47]. Since brain macrophages can be divided into
bone marrow-derived macrophages (BMDMs) and tissue-
resident microglia and function differently, we used the
DEGs between microglia and BMDMs demonstrated by
Bowman et al. (Supplementary Table. S2) [34] as gene sets
and assessed the microglia and BMDM infiltration in each
sample by ssGSEA (single sample GSEA). BMDM infiltra-
tion differed remarkably between the high- and low-risk
groups, while microglia did not change significantly
(Figure 6(c)). Notably, the BMDM infiltration score had a sig-
nificant positive correlation with M2 macrophage infiltration
(R = 0:56, p < 0:0001) (Figure 6(d)) and the Riskscore
(R = 0:69, p < 0:0001) (Figure 6(e)), which could not be
observed in microglia. In addition, high infiltrations of M2
macrophages and BMDMs were strongly associated with poor
prognosis, whereas microglia were of opposite and limited
predictive value (p = 0:029) (Figure 6(f)). To verify the robust-
ness of the association of high BMDM infiltration with poor
prognosis and the positive correlation between BMDM infil-
tration and the Riskscore, we further used the microglia and
BMDM differentially expressed genes from the study of
Muller et al. (Supplementary Table. S3) to predict microglial
and BMDM infiltration scores [35]. The results once again
demonstrated the excellent prognostic value of BMDM infil-
tration, but not microglial infiltration (Figure S8b), and the
robust positive correlation between BMDM infiltration and
the Riskscore (R = 0:75, p < 0:0001) or M2 macrophage
infiltration (R = 0:62, p < 0:0001) (Figure S8c, d).

Dysfunctional CD8+ T cell infiltration predicted by
Tumor Immune Dysfunction and Exclusion (TIDE) was
higher in the high-risk group (Figure 6(g)). ssGSEA based
on the immune checkpoint gene set and the TGF-β response
score (TBRS) gene set associated with the anti-PD1
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treatment response identified by Sanjeev et al. (Supplemen-
tary Table. S1) [32] was used to evaluate the immunosup-
pression score (Figure 6(h)) and TBRS (Figure 6(i)) in each
sample, which were also higher in the high-risk group,
representing a hypersuppressed immune microenvironment

and disappointing anti-PD1 treatment response rate. Due to
the lack of open access to immune checkpoint blockade
(ICB) glioma therapy cohorts, we used TIDE to predict the
response to ICB therapy in TCGA and CGGA cohorts.
Response rates were significantly lower in the high-risk
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Figure 6: The Riskscore, defined by the pyroptosis axis, was associated with the immunosuppressive tumor microenvironment. (a) Stromal
score, immune score, and ESTIMATE score of TCGA cohort predicted based on ESTIMATE R package. (b) Immune cell infiltration in
TCGA cohort predicted by CIBERSORT. (c) ssGSEA based on macrophage and microglial DEGs to calculate the BMDM infiltration
score and microglial infiltration score for each sample. (d) Scatter plots of the correlation between the infiltration score of BMDMs or
microglia and the infiltration of M2-type macrophages. Spearman’s coefficient was used to evaluate the degree of correlation. (e) Scatter
plots of the correlation between the infiltration fraction of BMDMs or microglia and the Riskscore. Spearman’s coefficient was used to
evaluate the degree of correlation. (f) Kaplan–Meier curves for the correlation between M2 macrophage, BMDM, and microglial
infiltration and overall survival time in TCGA cohort, using the median infiltration score as a cutoff point to divide the high- and low-
infiltration groups. (g) Dysfunctional CD8+ T cell infiltration score predicted by Tumor Immune Dysfunction and Exclusion (TIDE) in
TCGA cohort. (h, i) Immunosuppression scores (h) and TGF-β response score (TBRS) (i) calculated for each sample based on ssGSEA
with different characteristic gene sets. (j) Heatmap of the expression of immune checkpoint genes in TCGA cohort, aligned by immune
checkpoint gene pairing and displaying the Log2FC (high-risk vs. low-risk) of the corresponding gene expression on the y-axis. The
results for p > 0:05 are shown in gray. (k) The ICB responses of TCGA (left) and CGGA cohorts (right) based on the TIDE prediction
results are presented in the stacked histograms. (l) Representative sections of matched GSDMD-N and PD1 immunohistochemistry from
high pyroptosis group (GSDMD-N score > 5) and low pyroptosis group (GSDMD-N score < 5). (m) Semiquantitative results of PD1
staining levels in tissue microarray. Statistics were calculated using two-tailed, unpaired Student’s t-test with Welch’s correction in (a–c)
and (g–i). Statistics were calculated using the Chi-squared test in (k). ns: not significant. ∗p < 0:05, ∗∗p < 0:01, ∗∗∗p < 0:001,and∗∗∗∗p <
0:0001.
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group than in the low-risk group in both cohorts
(Figure 6(k)), consistent with previous results of a higher
TBRS in the high-risk group. In addition, the landscape
analysis of immune checkpoint receptor and ligand genes
demonstrated a positive correlation between gene expression
and the Riskscore for the majority of immune checkpoints
(Figure 6(j)).

In addition, we divided the samples into the positive pyr-
optosis group (GSDMD-N score > 5) and the negative pyr-
optosis group (GSDMD-N score < 5) based on the staining
results of GSDMD-N of tissue microarray and compared
the PD1 immunohistochemical staining levels in the two
groups. The results showed that the PD1 level in the positive
pyroptosis group was significantly higher than that in the
negative pyroptosis group (Figures 6(l) and 6(m)), indicating
that pyroptosis in the microenvironment of glioma was
accompanied by deepening immunosuppression. Therefore,
it is hypothesized that inhibition of pyroptosis in glioma
may facilitate the alleviation of the immunosuppressive
microenvironment.

Although the Riskscore was previously demonstrated to
be associated with proinflammatory signals (Figure 5), it is
not contradictory to mediating the establishment of a sup-
pressive immune microenvironment. Pyroptosis is a type
of proinflammatory cell death, and prolonged infiltration
of IL1β, IL2, and IL6 in the inflammatory environment
induces Tregs [48] and promotes the invasion and prolifera-
tion of glioma stem cells (GSCs) [49]. Our study showed that
the activation of the NLRC4/CASP1/CASP4/GSDMD pyr-
optosis axis was significantly and positively correlated with
M2-type BMDM infiltration, suggesting that blocking pyr-
optosis in glioma may be a potential approach to reduce
macrophage infiltration. Pyroptosis inhibitors have potential
as adjuvant therapeutic agents in high-grade glioma, such as
dimethyl fumarate, which has been approved by the FDA to
reduce macrophage infiltration by inhibiting pyroptosis to
achieve efficacy in the treatment of multiple sclerosis [20]
and has been demonstrated to cross the blood–brain bar-
rier [50].

3.5. The Activation of the NLRC4/CASP1/CASP4/GSDMD
Signaling Axis Is Mainly Present in Peripheral BMDMs. To
elucidate the potential link between macrophage infiltration
and the NLRC4/CASP1/CASP4/GSDMD pyroptosis signal-
ing axis, we further explored the source cells of pyroptosis
in gliomas at single-cell resolution. The scRNA-seq expres-
sion profiles and cell annotation files of Neftel et al. [26]
were obtained from the Single Cell Portal database, contain-
ing a total of 7930 cells from 28 patients (Figure 7(a)). After
data cleaning and cell type clustering, cells were classified
into malignant cells, macrophages, T cells, oligodendrocytes,
and astrocytes (Figures 7(b) and 7(c)). ssGSEA predicted the
BMDM score and microglia score in the same way as pre-
sented previously and was used to differentiate between
peripheral-derived BMDMs and tissue-resident microglia
(Figure S9).

The coexpression of CASP and GSDMD is required for
the occurrence of pyroptosis, while CASP4, GSDMD and
NLRC4, CASP1, and GSDMD colocalization signals were

located in the macrophage/microglia population
(Figure 7(d)) and were significantly concentrated in the
BMDM cluster (Figure 7(e)). The gene expression levels of
NLRC4, CASP1, CASP4, and GSDMD were all higher in
BMDMs than in microglia (Figure 7(f)), suggesting that
BMDMs are more sensitive to pyroptosis or more prone to
pyroptosis than other cells. The BMDM cluster was further
divided into five subpopulations from cluster_0 to cluster_
4, while CASP4+ GSDMD+ and NLRC4+ CASP1+
GSDMD+ cells were clearly concentrated in the cluster_0
cell cluster (Figure 7(g)). With Log2FC > 1:5 and adjusted p
< 0:05, 118 signature genes of the cluster_0 BMDM subpop-
ulation were screened, including various chemokine genes,
such as CCL3, CCL4, and CXCL12, and the proinflamma-
tory cytokine gene IL1B (Figure 7(h)). There is no doubt that
GO enrichment analysis hits BP terms of multiple cell che-
motaxis and migration-related pathways (Figure 7(i)).
Therefore, the positive cycle that accompanies the release
of inflammatory molecules such as DAMPs and multiple
chemokines during macrophage pyroptosis leads to more
infiltration of peripheral monocytes and macrophages,
which may trigger a worse prognosis. To use big data and
survival information to aid in scRNA-seq data analysis, we
used the Scissor R package to assess the relevance of single
cells to patient overall survival. Briefly, using TCGA-
LGGGBM dataset and the Cyril Neftel scRNA-seq dataset,
Scissor was applied to distinguish cells with high expression
of survival-related genes, where scissor-positive (Scissor+)
cells were those associated with poor survival and scissor-
negative (Scissor-) cells were those associated with good
prognosis. As expected, the macrophage population was
filled with a large number of cells associated with poor sur-
vival, and the NLRC4+ CASP1+ CASP4+ GSDMD+ BMDM
concentrated cluster had a very high proportion of cells
associated with a poor prognosis (71.33%) (Figure 7(j)).

Other glioma scRNA-seq datasets were used to validate
our above findings. First, we obtained the dataset from the
CGGA database from Yu et al., including 6148 cells from
13 patients [27]. The cells were classified into 6 cell types,
including BMDMs and microglia, by downscaling analysis
and cell-type identification (Figures 8(a) and 8(b)). BMDMs
had significantly higher expression levels of GSDMD,
CASP1, CASP4, and NLRC4 than microglia (Figure 8(c)).
In addition, we calculated the PyropScore for each cell using
ssGSEA based on the expression levels of the four genes. The
PyropScore of BMDMs was significantly higher than that of
microglia (Figure 8(d)). The NLRC4+ CASP1+ GSDMD+
and CASP4+ GSDMD+ cell populations were also signifi-
cantly enriched in the BMDM cell cluster (Figure 8(e)). Con-
sistent results were obtained based on the analysis of another
independent dataset, GSE89567, which contained 6341 cells
from 10 patients [28] (Figures 8(f)–8(j)).

3.6. The Activation of Pathways of Response to LPS/Bacteria
and Oxidative Stress in Pyroptotic BMDMs. To further
explore the differences between tumor-infiltrating BMDMs
and microglia and the potential triggers of BMDM pyropto-
sis, the expression profiles of all BMDMs and microglia were
extracted from the above 3 datasets, and the Harmony R
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package was used for batch effect correction. A total of 1423
BMDMs and 1441 microglia from 36 patients were finally
integrated (Figure 9(a)). Notably, BMDM infiltration gradu-
ally replaced most microglia as disease grade progressed
(Figure 9(b)), and BMDMs from high-grade gliomas had sig-
nificantly higher expression of CASP1, CASP4, GSDMD,
and NLRC4 genes than low-grade gliomas, whereas microglia
did not have this conserved relationship (Figure 9(c)). This
result is consistent with the previous results of a positive corre-
lation between the Riskscore and BMDM infiltration obtained
based on bulk RNA-seq analysis (Figure 6(e)). We defined
CASP1+GSDMD+ andCASP4+GSDMD+ cells as pyroptotic
cells and observed a significantly higher proportion of pyrop-
totic cells in BMDMs than in microglia (Figure 9(d)). To
explore the characteristic changes during BMDM develop-
ment toward the pyroptosis cell fate, we explored the BMDM
differentiation trajectory using the Monocle R package
(Figure 9(e)). Notably, pseudotime analysis revealed two cell
fates of the BMDM developmental trajectory in gliomas, one
of which had a significantly higher proportion of pyroptotic
cells (Figure 9(f)). By integrating pathway enrichment and tra-
jectory information, we found that BMDM development

toward the pyroptosis cell fate was accompanied by the activa-
tion of the response pathway to lipopolysaccharide (LPS), bac-
teria and oxidative stress (Gene Cluster 1) (Figure 9(g)). LPS
and bacterial infection (e.g., Salmonella typhimurium) are
classic inducers of pyroptosis in macrophages [51], while oxi-
dative stress has also been recently reported to lead to
caspase1-GSDMD-mediated pyroptosis [52, 53]. Although
the presence of LPS and bacterial infection in gliomas is less
likely, aberrant activation of this response pathway and reac-
tive oxygen species in the tumor microenvironment may lead
to macrophage pyroptosis. In addition, we evaluated the acti-
vation of the LPS/bacteria response pathway and the oxidative
stress response pathway in TCGA cohort using ssGSEA based
on the corresponding genes in Gene Cluster 1. The results
showed that the high-risk group had significantly higher
LPS/bacteria response and oxidative stress response pathway
scores (Figure 9(h)) and that high LPS/bacteria response
pathway scores and oxidative stress pathway scores were
associated with shorter overall survival (Figure 9(i)). The
above results suggest that the activation of LPS/bacteria or oxi-
dative stress pathways is associated with poor prognosis, sug-
gesting that they may be triggers of BMDM pyroptosis,
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Figure 7: Single-cell transcriptomics revealed that the NLRC4/CASP1/CASP4/GSDMD pyroptosis axis was colocalized in peripheral-
derived BMDMs. (a) t-distributed stochastic neighbor embedding (tSNE) plot of all single cells. (b) tSNE plot of all cells with cell-type
annotations. (c) The signature gene expression matrix for cell cluster identification. (d) tSNE plot of CASP4+ GSDMD+ and NLRC4+
CASP1+ GSDMD+ cells in all cells. Red circles highlight the colocation cluster. (e) tSNE plots of microglia and peripheral-derived
macrophages (BMDMs) (top) and distribution of CASP4+ GSDMD+ and NLRC4+ CASP1+ GSDMD+ cells in microglia and BMDMs
(bottom). (f) Comparison of NLRC4, CASP1, CASP4, and GSDMD gene expression in BMDMs and microglia. (g) tSNE plots of the
distribution of subpopulations of BMDMs (top) and distribution of CASP4+ GSDMD+ and NLRC4+ CASP1+ GSDMD+ cells in BMDM
subpopulations (bottom). (h) Heatmap of DEG expression used to distinguish macrophage clusters_0~clusters_4 and highlight genes of
interest on the right. (i) GO enrichment analysis of DEGs of BMDM cluster_0. (j) tSNE plots with scissors prediction results of all cells
(top) and BMDM (bottom). The percentage of scissor-positive cells in each subpopulation of BMDMs is shown on the right.
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Figure 8: Continued.
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thereby affecting the tumor microenvironment and leading to
tumor progression.

4. Discussion

Gliomas are the most common primary tumors of the cen-
tral nervous system (CNS) and remain incurable, and a dee-
per understanding of their pathobiology is urgently needed
[54]. The glioma tumor microenvironment has a large num-
ber of chemokines, cytokines, and growth factors. Despite
the recruitment of a high abundance of infiltrating immune
cells, such as microglia, peripheral macrophages, CD8+ T
cells, CD4+ T cells, and Tregs, the chronic inflammatory
environment leads to the establishment of a tumor immuno-
suppressive microenvironment, which ultimately promotes
tumor development [55, 56].

Recently, an inflammatory cell death known as pyroptosis
has emerged as an important mediator of the inflammatory
response, and as research progresses, pyroptosis is being

proven to be closely associated with an increasing number of
types of inflammatory diseases and tumors [10, 57, 58].
Although several recent studies have expanded on the involve-
ment of gasdermin family genes in pyroptosis pathways
[59–61], the GSDMD-mediated pyroptosis signaling pathway
triggered by inflammasomes has been shown to be the path-
way most associated with the formation of an immunosup-
pressive microenvironment in a variety of tumors [62]. For
example, in pancreatic ductal adenocarcinoma (PDA) and
head and neck squamous cell carcinoma (HNSCC), inflam-
masomes of tumor-associated macrophages activate caspase-
1 and mediate the cleavage of GSDMD and the release of
mature IL1β, resulting in the suppression of CD8+ T cells
[13, 14]. Although inflammasome-mediated pyroptosis in gli-
oma has not been reported, IL1β has been shown to be a
serum marker in glioblastoma [16, 17], which prompted us
to explore potential pyroptosis pathways in glioma.

In this study, we conducted a comprehensive exploration
of pyroptosis in glioma. We screened for prognosis-related
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Figure 8: Analysis of other datasets confirmed the high expression of pyroptosis genes in BMDMs. (a–e) Visualization and analysis of the
GSE117891 dataset. (a) t-distributed stochastic neighbor embedding (tSNE) plot of all single cells with cell type annotations. (b) The
signature gene expression matrix for cell cluster identification. (c) Comparison of CASP1, CASP4, GSDMD, and NLRC4 expression in
BMDMs and microglia. (d) Comparison of the PyropScore between BMDMs and microglia, which was calculated using ssGSEA based
on the expression levels of the four genes. (e) The tSNE plots reveal NLRC4+ CASP1+ GSDMD+ cells and CASP4+ GSDMD+ cells in
all cells. Red circles highlight the positive cell cluster. (f–j) Visualization and analysis of the GSE89567 dataset. All analysis and
visualization methods are the same as those in (a–e). Statistics were calculated using two-tailed, unpaired Student’s t-test with Welch’s
correction in (d, i). ns: not significant. ∗∗p < 0:01, ∗∗∗p < 0:001, and∗∗∗∗p < 0:0001.
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genes at each key regulatory site of the pyroptosis pathway,
obtained the NLRC4/CASP1/CASP4/GSDMD gene cluster,
and developed a robust prognostic model based on this clus-
ter. The differentially expressed genes that were upregulated
in the high-risk group, defined by the expression of the four
genes, were associated with the activation of multiple inflam-
matory response pathways and increased immune cell infil-
tration, which are typical results of pyroptosis. In addition,

we demonstrated an immunosuppressive microenvironment
in the high-risk group using multiple methods, including
TIDE, ssGSEA, and landscape analysis of immune check-
point expression profiles. Moreover, the differentially
expressed genes that were in the high-risk group were
strongly associated with synaptic establishment and synaptic
signaling, suggesting that pyroptosis can lead to synaptic
impairment and neurodegenerative diseases and may
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Figure 9: Activation of oxidative stress pathways in pyroptotic BMDMs was associated with poor prognosis. (a) BMDM and microglia
identified in the GSE131928, GSE117891 and GSE117891 datasets were extracted and integrated using the harmony R package. (b) tSNE
plots show the distribution of BMDMs and microglia in glioma samples of different disease grades after correction for batch effects. The
pie charts show the percentage of BMDMs and microglia in each WHO grade of sample. (c) Comparison of CASP1, CASP4, GSDMD,
and NLRC4 expression in BMDMs (left) and microglia (right) from samples of different WHO grades. (d) CASP1+ GSDMD+ and
CASP4+ GSDMD+ cells were defined as pyroptotic cells, and the pyroptosis type of the cells was projected in the tSNE plot. The pie
charts show the percentage of BMDMs and microglia in each WHO grade of sample. The pie chart shows the percentage of pyroptotic
cells in BMDMs and microglia. (e, f) Trajectory of all BMDMs along pseudotime. The colors from blue to red represent the forward
order of pseudotime. The pyroptosis type of the cells is projected on the trajectory. (g) Heatmap revealing the dynamic changes in gene
expression during the differentiation process. From the middle to the left and to the right represent the process of changes in gene
expression toward differentiation to the two cell fates. Differences in enriched pathways by GO between different phases (right panel).
Genes were grouped into four clusters according to their expression patterns, and the results of GO enrichment analysis for each gene
cluster are presented in different colors and shown below. (h, i) ssGSEA in TCGA cohort based on the LPS/bacterial response pathway
and oxidative stress response pathway genes in Gene Cluster 1, comparing their differences between the high- and low-risk groups and
their impact on overall survival. Statistics were calculated using the Wilcoxon test in (c). Statistics were calculated using two-tailed,
unpaired Student’s t-test with Welch’s correction in (h). ns: not significant. ∗∗p < 0:01, ∗∗∗p < 0:001, and∗∗∗∗p < 0:0001.
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explain to some extent the clinical phenomenon of cognitive
dysfunction associated with poor prognosis in glioblastoma
patients [42]. Notably, the Riskscore was significantly posi-
tively correlated with BMDM infiltration, while the single-
cell transcriptomics further demonstrated that NLRC4+
CASP1+ GSDMD+ and CASP4+ GSDMD+ cells were con-
centrated in a specific peripheral-derived BMDM cluster.
Gene characteristics of this cell cluster were found to be
associated with monocyte/leukocyte chemotaxis and the
expression of IL1β, an important cytokine involved in the
establishment of the immunosuppressive microenviron-
ment, in several previous studies. More importantly, our
analysis based on bulk RNA-seq datasets showed a signifi-
cant positive correlation between pyroptosis gene expression
and BMDM infiltration, and independent validation in mul-
tiple single-cell RNA-seq datasets further provided conclu-
sive evidence that the four pyroptosis genes were highly
expressed only in BMDMs and that pyroptosis gene expres-
sion levels were even higher in BMDMs from high-grade gli-
oma samples. Finally, we revealed the activation of LPS/
bacteria and oxidative stress response pathways during
BMDM development toward the pyroptosis cell fate by
pseudotime analysis, suggesting potential BMDM pyroptosis
initiators. This is the first demonstration of a strong associ-
ation between the pyroptosis signaling pathway and BMDM
in glioma, providing novel insights into the pathological
mechanisms of glioma.

Disulfiram (DSF), a recently demonstrated pyroptosis
inhibitor [63], has been well validated in preclinical studies
for the treatment of glioblastoma and has advanced to the
clinical study phase as a novel adjuvant [64, 65]. In these
studies, DSF was considered only as an acetaldehyde dehy-
drogenase (ALDH) inhibitor based on its classic function
of treating alcohol addiction, but given its new status, the
drug’s function as an inhibitor of pyroptosis in glioma needs
to be re-examined to guide the screening of suitable patients.
In addition, our bulk RNA-seq-based analysis showed a sig-
nificant positive correlation between the Riskscore and
BMDM infiltration, and we further provided conclusive evi-
dence in multiple independent single-cell RNA-seq datasets
that four pyroptosis genes are highly expressed only in
BMDMs. Several previous studies have provided solid evi-
dence that the infiltration of BMDMs leads to tumor pro-
gression and the establishment of an immunosuppressive
microenvironment [34, 66]. Thus, the model we developed
can be used to predict the pyroptosis and BMDM infiltration
levels in a patient’s tumor microenvironment, thus assisting
in the selection of candidate antipyroptosis drugs and anti-
macrophage drugs for the treatment of glioma. Therefore,
this retrospective study is of great value, as it provides an
in-depth exploration of glioma pathogenesis and its results
suggest possibilities for drug development and repurposing
based on the pyroptosis signaling pathway.

However, there are still some limitations: (1) the study
was conducted based on retrospective data; thus, selection
bias might be unavoidable, and (2) although we provided
evidence based on bulk transcriptome, single-cell tran-
scriptome and tissue microarray immunohistochemistry
data demonstrating a strong relationship between glioma

progression and pyroptosis, complex in vivo experiments,
such as testing the rate of glioma tumorigenesis and immu-
nosuppression of the tumor microenvironment in GSDMD-
deficient mice, can provide more conclusive evidence for the
value of pyroptosis as a drug target, which is a promising
direction for subsequent studies.

5. Conclusions

Our study revealed a critical role of pyroptosis in maintaining
immunosuppression in the tumor microenvironment and
established a robust pyroptosis score as a prognostic bio-
marker. We further identified the pyroptosis BMDM cluster
at single-cell resolution and preliminarily explored the trigger
of BMDM pyroptosis, aberrant activation of pathways in
response to LPS/bacteria and oxidative stress, providing
potential targets for novel therapies against glioma, such as
pyroptosis inhibitors and antimacrophage drugs.
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Background. SPTSSA encodes the small subunit A of serine palmitoyltransferase. It catalyzes the formation of sphingoid long-
chain base backbone of sphingolipids. Its role in glioma prognosis and tumor-infiltrating immune cells remains unclear.
Methods. We analyzed SPTSSA expression and association with clinical prognosis using GEPIA and CGGA database. Then,
GSEA was performed to identify relevant biological functions of SPTSSA. The correlations between SPTSSA expression and
tumor immune infiltrates were investigated using CIBERSORT and TIMER. Finally, IHC and IF were performed to confirm
the value of prognosis and the correlation with immune infiltration. Results. SPTSSA expression was significantly upregulated
in diffuse glioma compared to normal tissues and associated with poor survival in GEPIA and CGGA database. Then, we
identified biological processes and signaling pathways associated with SPTSSA expression. The result showed that SPTSSA
enriched in the GO term like oxidative stress. Finally, we showed that SPTSSA expression was significantly associated with
tumor-infiltrating immune cells and overall survival via IHC. Conclusion. These findings suggest that SPTSSA expression might
be used as a prognostic biomarker for glioma and potential target for novel glioma therapy.

1. Introduction

In adults, in the central nervous system, the glioblastoma
multiforme (GBM) is known to be the most prevalent form
of malignancy. Representing almost 15% of all brain tumors,
it has an incidence of 3.4 per 100,000 [1–3]. Eighty percent
of GBMs is primary (de novo) GBMs and mainly occurs in
older patients; the remaining GBMs are secondary GBMs
derived from lower-grade astrocytoma or oligodedrogliomas
and mainly occur in younger patients. GBM is an aggressive
neoplasm; if untreated, patients have a median survival of 3
months [4]. The current standard treatments include surgi-
cal resection, chemotherapy with temozolomide, and radio-
therapy [5]. With a median survival level of 12-14 months,
the prognosis of GBM remains poor despite the advances
in radiotherapy and surgery. Less than 5% of patients survive
longer than 5 years after diagnosis [6–8]. Novel GBM treat-
ments with improved clinical outcomes are urgently needed.

Cancer immunotherapy takes advantage of the body’s
own immune system to eradicate tumor cells [9, 10]. Cur-

rent GBM immunotherapy approaches include checkpoint
inhibitor treatment, adoptive cell therapy, dendritic-cell-
based therapy, and peptide vaccination [11, 12]. Because
the immune system plays a key role in the formation and
establishment of tumors, a deep understanding of tumor
microenvironment is essential to elucidate tumor-immune
interactions and develop effective immunotherapy for
GBM. Previous studies suggest that both tumor-associated
macrophages (TAMs) and tumor-infiltrating neutrophils
(TINs) could affect the treatment outcome and overall sur-
vival in GBM [13–16]. However, comprehensive analysis of
various immune cell subtypes of GBM is lacking.

With the rapid development of various techniques for
gene expression analysis and accumulation of large gene
expression databases on clinical samples, bioinformatics
analysis plays a significant role in screening and identifica-
tion of candidate biomarkers for various diseases including
cancers [17–19]. Bioinformatics not only provides data for
identification of functionally differentially expressed genes
(DEGs) for cancer diagnosis and prognosis but can also infer
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the percentage of tumor-infiltrating immune cells from gene
expression profiles [20, 21]. Finally, IHC result confirmed
that SPTSSA was a novel biomarker associated with the infil-
trating immune cells.

In the current study, we used bioinformatics analysis on
GEPIA and CGGA databases and identified SPTSSA expres-
sion correlating with the prognosis of glioma patients. We
further determined the correlation of SPTSSA expression
with tumor-infiltrating immune cells using CIBERSORT,
TIMER, and IHC. Our data provide rationale for future clin-
ical and experimental studies of SPTSSA in GBM.

2. Material and Methods

2.1. GEPIA Dataset Analysis.We used Gene Expression Pro-
filing Interactive Analysis (GEPIA) (http://gepia.cancer-pku
.cn/), an interactive web server to identify cancer types that
showed differential expression of SPTSSA gene between can-
cerous and normal tissues. Among cancer types that demon-
strated differential expression of SPTSSA gene, we analyzed
the association of SPTSSA expression and overall survival.

2.2. Clinical Information and the CGGA mRNA Matrix. In
this study, the glioma samples obtained from the CGGA
network (http://www.cgga.org.cn) numbering 1018 were
included. The respective clinicopathological information
and the informed consent for all these samples were
obtained. The institutional review board of the Tiantan Hos-
pital approved this study. To ascertain the differences in the
SPTSSA expression and the survival value, an analysis was
conducted initially. Besides, the mRNAseq_325 (Illumina
HiSeq 2000 or 2500) and the mRNAseq_693 (Platform: Illu-
mina HiSeq) datasets were also downloaded for further
investigations. From the total number of 1,018 glioma sam-
ples comprising the two datasets, 693 samples were from
mRNAseq_693, and 325 samples were from the mRNA-
seq_325. For batching and normalizing the two mRNA
matrices, the limma and Sva packages were utilized.
Table 1 enumerates the 749 completed clinical information
contained in the clinicopathological characteristics of the
patients received from the CGGA databases. The R software
was used to conduct the gene expression and the survival
analyses (version 3.6.2).

2.3. Gene Set Enrichment Analysis (GSEA). To determine the
statistical significance of a previously outlined set of genes
and the presence of consistent differences concerning two
biological states, researchers utilize a computational method
like GSEA [22, 23]. In this research, GSEA produced a pre-
liminary list that classified the genes based on their associa-
tion with the SPTSSA expression. Moreover, it elaborates on
the remarkable differences between the survival of low- and
high-SPTSSA groups.

In every analysis, gene set permutations were performed
repetitively for 1000 times. We created a phenotype label
based on the SPTSSA’s expression level. Furthermore, we
used the normalized enrichment score (NES) and nominal
p value to categorize the enriched pathways in every pheno-

type [24]. Significantly enriched gene sets occurred at a dis-
covery rate of jNESj > 1 and ðFDRÞ < 0:05.

2.4. Tumor-Infiltrating Immune Cell Analysis Using
CIBERSORT. CIBERSORT is a gene expression-based ana-
lytical tool for characterizing immune cell composition
(http://cibersort.stanford.edu). Using CIBERSORT, we cal-
culated the percentage of infiltrating immune cells in glioma
tissues. Wilcox test was used to analyze the difference
between SPTSSA high- and low-expression groups. R lan-
guage survival package was used to determine the relation-
ship between infiltrating immune cells and overall survival.

2.5. TIMER Database Analysis. Tumor Immune Estimation
Resource (TIMER, http://cistrome.shinyapps.io/timer/) is a
web server for comprehensive analysis of tumor-infiltrating
immune cells. Using TIMER database, we further validated
the correlation between SPTSSA expression and tumor-
infiltrating immune cells.

2.6. Sample Collection. The SPTSSA expression analysis uti-
lized IHC to assess the glioma tissues of 35 patients on par-
affin-embedded, formalin-fixed slides. These samples were
collected from the Affiliated Hospital of Nantong University
from 2004 to 2014. Using these tissues, the TMA was con-
structed through the Tissue Microarray System (Quick-
Ray, UT06, Unitma, Seoul, South Korea) based on the
approach mentioned previously. The clinicopathological
information obtained included the differentiation grade, his-
tological type, age, and sex. All patients in the study signed
and issued a written informed consent. The Affiliated Hospi-
tal of Nantong University’s Human Research Ethics Com-
mittee approved the study protocol (2018-K020).

2.7. Construction of the Tissue Microarray (TMA). From the
tissue areas containing>50% tumor, the pertinent regions
were selected for the TMA construction from each block of
the glioma tissue. Using the MTA-1 Manual Tissue Arrayer
(Beecher Instruments, Sun Prairie, WI, USA), representative
tumor cores measuring around 1mm and two/three in num-
ber were transferred from the glioma tissue blocks to the
recipient TMA blocks in each case. In this manner, the
TMAs were constructed.

2.8. Preparation of Monoclonal Antibody against SPTSSA.
Mab (monoclonal antibody) was prepared from female SPF
(specific pathogen free) mice which firstly received 60μg
polypeptide (3.0mg/mL) subcutaneous injections. Then,
four mice received either four subcutaneous injection poly-
peptide. Indirect ELISA was performed to analyze the titer
of IgG antibody. No. 4 mouse was chosen to perform cell
fusion.

2.9. Immunohistochemistry (IHC). To quench the endoge-
nous peroxidase, the TMA sections were incubated for 15
minutes with methanol and 3% H2O2 after being deparaffin-
ized. By heating the sections in sodium citrate buffer
(10mmol/L, pH6.0) for 3 minutes in a pressure cooker,
the antigen was retrieved. Subsequently, for one hour, with
the primary goat anti-SPTSSA antibody-diluted bovine
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serum albumin, the tissue sections were incubated. The
phosphate-buffered saline was used to wash the sections
before being incubated for 15 minutes with horseradish
peroxidase-conjugated donkey anti-goat antibody (Abcam)
and washed further. Prior to the light counterstaining with
hematoxylin, the sections were incubated for 15 minutes
with diaminobenzidine solution (Kem-En-Tec Diagnostics,
Taastrup, Denmark) to develop the color.

2.10. Immunofluorescence Staining. The glioma samples
were cut in thin sections of 3μm for immunostaining. Using
the Fluorescence Kit (NEL 797001KT; PerkinElmer) and the
Opal 8-color Fluorophore TSA, the multiplex immunofluo-
rescence (IF) was done for CD83/CD56/CD20/CD68/
CD66b/CD8/CD4/CD3 on the 3μm formalin-fixed glioma
tissue sections. Since combining four or more antibodies
using IHC was challenging technically, instead of IHC, we
performed the multiplexed IF.

2.11. Multispectral Analysis and Imaging. With an interac-
tive image segmentation system, the Vectra 3 automated
quantitative pathology imaging system, the image analysis,
and acquisition were performed on the glioma slides.
According to the intensity and the staining pattern on each
selected image, the pathologist decided the fluorescent
intensity count cutoff value for positivity for each marker
of interest (CD83/CD56/CD20/CD68/CD66b/CD8/CD4/
CD3). The extragerminal center area and the germinal cen-
ter area were included for each image of the normal glioma
tissue. The manual tissue segmentation function of the soft-
ware was utilized for differentiating the two areas and ana-
lyzed independently.

2.12. Survival Analysis. Using SPTSSA medium expression
level, glioma samples were stratified into high-SPTSSA
expression and low-SPTSSA expression groups. Kaplan-
Meier survival analysis was used to estimate the survival dis-
tributions. Evaluating the statistical significance required the
log-rank test between stratified survival groups through the
GraphPad Prism package. Then, we filtered the survival
and gene expression data using Cox regression analyses at
p < 0:05.

3. Results

3.1. SPTSSA Was Significantly Upregulated in Diffuse Glioma
Compared to Normal Tissues and Associated with Poor
Survival.We searched Gene Expression Profiling Interactive
Analysis (GEPIA) database for SPTSSA expression in vari-
ous tumor types. TCGA (http://tcga-data.nci.nih.gov/tcga/)
and GTEx (http://commonfund.nih.gov/GTEx/) datasets
from 33 tumor types were retrieved. The analysis of gene
expression profile across all tumor samples and paired nor-
mal tissues indicated that seven tumor types (DLBC, GBM,
LGG, LIHC, PAAD, TGCT, and THYM) showed signifi-
cant higher SPTSSA expression in tumor tissues than in
normal tissues (Figure 1(a)). Among these seven tumor
types, we separated tumor cases into high-SPTSSA expres-
sion cases (>median expression level) and low-SPTSSA
expression cases (≤median expression level) (Figure 1(b)).
Log rank survival analysis indicated that high-SPTSSA
expression in GBM and LGG was associated with poor sur-
vival (HR = 2:3, pðHRÞ = 7:3e − 10, Logrank p = 2:7e − 10)
(Figure 1(c)).

Table 1: Clinical information analysis based on CGGA database.

Total (749) Low expression (374) High expression (375) χ2 p

PRS_type

Primary 502 267 235 6.691 0.035

Recurrent 222 95 127

Secondary 25 12 13

Grade

WHO II 218 127 91 16.663 0

WHO III 240 128 112

WHO IV 291 119 172

Gender
Male 307 167 140 4.147 0.042

Female 442 207 235

Age
≤41 342 169 173 0.068 0.795

>41 407 205 202

Radio_status
No 124 74 50 5.644 0.018

Yes 625 300 325

Chemo_status
No 229 134 95 9.718 0.002

Yes 520 240 280

IDH_mutation_status
Wildtype 339 157 182 3.247 0.072

Mutant 410 217 193

1p19q_codeletion_status
Noncodel 614 283 331 7.888 0.005

Codel 155 91 64
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Figure 1: (a) Overview of expression of all cancers and normal tissues in GEPIA database. (b) Differences of SPTSSA in normal cells, low-
grade glioma, and glioblastoma. (c) Grouped by median, high expression of SPTSSA was associated with poor survival.
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3.2. Correlation of SPTSSA Expression with Clinical
Characteristics. To confirm our observation, we next ana-
lyzed SPTSSA expression using CGGA database. Log-
rank test analysis showed that high-SPTSSA expression
was significantly associated with poor survival (p < 0:001)
(Figure 2(a)). In univariate analysis, PRS-type, histology,
grade, age, chemotherapy, IDH-mutation, 1p19q-codeke-
tion, and SPTSSA expression were all significantly associated
with survival (Figure 2(b)). In multivariate analysis, PRS-
type, grade, IDH-mutation, 1p19q-codeletion, and SPTSSA
remained significantly associated with survival (Figure 2(c)).
Moreover, a nomogram was carried out to investigate individ-
ualized survival probability (Supplementary Figure 1A), and
calibration curve was carried out to demonstrate the
accuracy of the nomogram in predicting prognosis at
different time points (Supplementary Figure 1B). The cox
analysis between SPTSSA and OS, PFI, DSS, and DFI was
also carried out (Supplementary Figure 2A-2D). The results
showed that SPTSSA correlated positively with OS, PFI, and
DSS based on pan-cancer analysis. All the results indicate
that SPTSSA could serve as an independent prognostic
predictor for glioma.

3.3. Multifactorial Integrated Survival Analysis in CGGA
Database. The radiotherapy (Figure 3(a)), chemotherapy
(Figure 3(b)), IDH1 genotypes (Figure 3(c)), and 1p19q
status (Figure 3(d)) were added as variables in multifacto-
rial analysis to further investigate the clinical value of
SPTSSA. The correlation between the expression of
SPTSSA and the survival rate with chemotherapy was ana-
lyzed subsequently. The poorest outcome was noticed in
the case of the highest SPTSSA expression with chemo-
therapy (Figure 3(b), cherry), whereas the expression of
SPTSSA without chemotherapy (Figure 3(b), purple) indi-
cated the lowest. The role of the corresponding radiother-
apy (p < 0:0001) SPTSSA as an important indicator was
evidenced by the higher expression of SPTSSA (Figure 3(a),
cherry and green) in the IDH1-mutant groups (Figure 3(a),
purple and blue) revealing poor survival. The patients with
high expression of SPTSSA (Figure 3(d), green) and noncodel
1p19q finally indicated the worst prognosis.

3.4. Correlations between SPTSSA and Immunotherapy,
Immunotherapy Response Prediction. Cancer immunother-
apy is radically transforming cancer [25], and the use of
immunotherapy in cancer treatment is on the rise [26]. Sev-
eral studies have shown that immunotherapy and targeted
therapy are effective in melanomas [27]. Thus, it is necessary
to investigate the relationship between SPTSSA and immu-
notherapy and immunotherapy response prediction. In our
study, we downloaded 109 samples from GSE91061, and
the results showed that SPTSSA expression level has a
positive correlation with anti-PD-1/CTLA-4 therapy both
in LGG and GBM (Supplementary Figure 3A). And
immunotherapy response prediction of AUC is 0.688
which reveals that SPTSSA can predict immunotherapy
response of glioma patients (Supplementary Figure 3B).

Furthermore, we investigated the relationship between
SPTSSA and immune suppressive factors, immune promot-

ing factors, MHC factors, chemokine, and receptors (Supple-
mentary Figure 3C). The results showed that SPTSSA has a
positive relationship with most immune suppressive factors,
immune promoting factors, MHC factors, chemokine, and
receptors which indicate that SPTSSA could have a good
immune therapy towards glioma patients.

3.5. Connections between SPTSSA and Genomic Alteration.
The majority of cancers harbor at least one genomic alter-
ation that could lead to potential treatment options, with
84% showing at least one. And tailored medicine is often
based on specific genetic alterations that improve treatment
outcomes [28]. Thus, exploring the relationship between
SPTSSA and genomic alteration seems to be necessary. In
our study, we found that SPTSSA is positively correlated
with CALN1 in GBM, while no positive correlated genomic
alteration found in LGG. And in GBM, the gain of SPTSSA
genomic alteration located in 17q13.2, while the loss of
SPTSSA genomic alteration located in 14q13.1 and 14q24.2
(Supplementary Figure 4A-4B).

3.6. Gene Set Enrichment Analysis (GSEA). To distinguish
the differentially activated signaling pathways in GBM, we
performed the GSEA between low- and high-SPTSSA
expression data sets. Under the MSigDB Collection’s
(c5.all.v7.1.symbols.gmt) enrichment analysis, the SPTSSA
generated significant differences that were reported in the
GSEA (p < 0:05). Our selection of the most highly enriched
signaling pathways was based on their normalized enrich-
ment scores (jNESj > 1) (Figure 4). The outcome revealed
that negative regulation of response to oxidative stress, neg-
ative regulation of mitotic cell cycle, neuron death in
response to oxidative stress, positive regulation of cellular
catabolic process, and transcription factor complex were
enriched in low expression phenotype (Figure 4(a)).

3.7. Connections between SPTSSA and TMB, MSI, and
Immune Checkpoint. There are studies which reveal that
lower TMB values are associated with longer mean overall
survival times, concluding that TMB is a marker of tumor
malignancy [29]. Instability of microsatellites (MSI) results
from mutations in DNA mismatch repair (MMR) genes,
which fail to repair errors in DNA replication in repetitive
sequences (microsatellites) [30]. There are studies found that
MSI is associated with poor differentiation, proximal loca-
tion, and failure of chemotherapy in colorectal cancers
[31]. Thus, investigating the relationship between SPTSSA
and TMB, MSI seem to be necessary. Regarding TMB, we
found that SPTSSA expression level is correlated with
TMB in GBM and LGG, while in MSI, we found no sense
(Figures 5(a) and 5(b)).

Further, immune cells, checkpoint expression, and MSI
status play a significant role in prognosis [32]. Thus, we fur-
ther investigate the relationship between SPTSSA and
immune checkpoint. And the results showed that SPTSSA
correlated with most immune checkpoints (Figure 5(c)).

3.8. Associations between SPTSSA and DNA Methylation.
DNA methylation is mediated by DNA methyltransferase
(DNMT) and is affected by the environment [33–35]. Thus,
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Figure 2: Continued.
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we investigate the relationships between SPTSSA and four
methytransferases (DNMT3B, DNMT3A, DNMT2, and
DNMT1) (Supplementary Figure 5A). p < 0:05 and R >
0:20 indicated a significant and positive relationship,
respectively. The results showed that SPTSSA has a
positive correlation with four methytransferases in LGG,
while in GBM, SPTSSA only has a positive correlation with
DNMT3B, DNMT3A, and DNMT2.

3.9. Correlation of SPTSSA Expression and Infiltrating
Immune Cells. We used CIBERSORT analysis to evaluate
the correlation of SPTSSA expression with tumor-infiltrating
immune cells (TIICs). As Figure 6(b) illustrates, our results
demonstrated two statistically significant associations. First,
the ratio of monocytes, NK cells (activated), T follicular
helper (Tfh) cells, naive CD4+ T cells, memory B cells, and
naive B cells were substantially lower in tumor cases with
high SPTSSA expression. Second, eosinophils, dendritic cells
(activated and resting), and macrophages (M0) were consid-
erably higher in tumor cases with high SPTSSA expression.

3.10. Correlation of Infiltrating Immune Cells and Overall
Survival. Using log-rank test survival analysis, we showed
that high number of macrophage M0 cells (p < 0:001), T
cells CD4 naive (p < 0:001), monocytes (p < 0:001), macro-
phages M2 (p < 0:001), dendritic cells activated (p < 0:001),
T cells gamma delta (p = 0:004), T cells regulatory (Tregs)
(p = 0:009), neutrophils (p = 0:030), and plasma cells (p =
0:032) were significantly associated with survival (Figure 6(a)).

3.11. Validation of Correlation between SPTSSA and
Infiltrating Immune Cells. Using the TIMER database
(Figure 6(b)), the correlation between the infiltrating
immune cells and the SPTSSA expression was analyzed fur-
ther to confirm our observation. The SPTSSA expression

being significantly correlated with numbers of tumor-
infiltrating dendritic cells, neutrophils, and macrophages
was revealed clearly.

3.12. Immunohistochemistry (IHC). To estimate the expres-
sion of SPTSSA in glioma tissues, we used IHC. Our findings
revealed that in contrast to low-grade (I and II) gliomas,
high-grade (III and IV) gliomas have highly expressed
SPTSSA (Figure 7(a)). Log rank survival analysis indicated
that high-SPTSSA expression in glioma was associated with
poor survival (Logrank p = 0:045) (Figure 7(b)). In univari-
ate analysis and multivariate analysis, SPTSSA is the only
factor significantly associated with survival (Figure 7(c)).

3.13. Correlation Analysis between SPTSSA Expression and
Immunosuppressive Markers. To investigate the relationship
between SPTSSA and the tumor immunology infiltrating
cells, we focused on the correlations between SPTSSA
and well-known immunosuppression-related genes. Analy-
sis with TMA showed that SPTSSA had highly positive
correlation with CD8, CD66b, and CD20 (Supplementary
Figure 5B).

4. Discussion

In the current study, by employing various bioinformatics
analysis tools, we identified that SPTSSA expression was
upregulated in diffuse glioma and associated with poor sur-
vival. We characterized SPTSSA-related biological processes
and signaling pathways. Finally, we provided evidence that
SPTSSA expression was correlated with tumor immune infil-
trates by CIBERSORT, TIMER, IHC, and IF.

GEPIA is a web-based interactive tool for mining RNA
sequencing data on TCGA and the GTEx databases [17,
18]. It covers over 45,000 genes. GEPIA allows experimental
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Figure 2: (a) Using CGGA database, grouped in median, high expression of SPTSSA predicts poor prognosis. (b, c) Univariate and
multivariate Cox analyses indicated that SPTSSA was an independent predictor for OS.

7Oxidative Medicine and Cellular Longevity



Strata

Group high with ratio

Group high without ratio

Group low with ratio

Group low without ratio

0.00

Su
rv

iv
al

 p
ro

ba
bi

lit
y

0

1

2

0.25

0.50

0.75

1.00

p < 0.001

6
Time

3 1290

St
ra

ta

6
Time

3 1290

74
300

325
50

29
147

105
13

14
78

42
8

3
36

16
1

0
0

0
0

Number at risk

n.
ce

ns
or

6
Time

3 1290

Number of censoring

(a)

Strata

Group high with Chemo

Group high without Chemo

Group low with Chemo

Group low without Chemo

0.00

Su
rv

iv
al

 p
ro

ba
bi

lit
y

0

1

2

0.25

0.50

0.75

1.00

p < 0.001

6
Time

3 1290

St
ra

ta

6
Time

3 1290

134
240

280
95

77
99

83
35

43
49

33
17

27
12

8
9

0
0

0
0

Number at risk

n.
ce

ns
or

6
Time

3 1290

Number of censoring

(b)

Figure 3: Continued.
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Figure 3: Survival analysis of CGGA patients to SPTSSA expression compared with (a) radiotherapy, (b) chemotherapy, (c) IDH mutation,
and (d) 1p19q status.
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Figure 4: (a) Enrichment plots from the Gene Set Enrichment Analysis. (b) The proportions of 22 tumor-infiltrating immune cells in high-
SPTSSA and low-SPTSSA expression group.
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biologists with limited computational programming skills
to perform large scale gene expression analyses [36, 37].
For current study, we utilized both differential expres-
sion analysis and patient survival analysis functions of

GEPIA. We found that SPTSSA was not only differen-
tially expressed in GBM but also associated with GBM
survival. We further validated our findings by searching
CGGA database.

Type

(c)

Figure 5: Correlations between SPTSSA and (a) TMB and (b) MSI. (c) Relationships between SPTSSA expression level and immune
checkpoints.
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Figure 6: (a) Macrophage M0 cells (p < 0:001), T cells CD4 naive (p < 0:001), monocytes (p < 0:001), macrophages M2 (p < 0:001), dendritic
cells activated (p < 0:001), T cells gamma delta (p = 0:004), T cells regulatory (Tregs) (p = 0:009), neutrophils (p = 0:030), and plasma cells
(p = 0:032) were significantly associated with survival. (b) The correlation of immune cells and SPTSSA expression in the TIMER database.
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SPTSSA is the gene encoding the small subunit A of
serine palmitoyltransferase (SPT). It catalyzes the formation
of sphingoid long-chain base backbone of sphingolipids
[38]. Sphingolipids are structural compounds of biological
membranes, and recent studies suggest sphingolipids can
also serve as secondary messengers, participating in apopto-
sis, proliferation, senescence, angiogenesis, and vesicular
trafficking [39, 40]. Because alterations in bioactive sphin-
golipids have been linked to cancer progression and prog-
nosis, their key metabolic enzymes have been actively
pursued as novel targets in cancer drug development
[41–44]. The enrichment analysis showed that SPTSSA is

related to the oxidative stress. Numerous studies have
shown that the role of oxidative stress in glioma is quite
important. To our best knowledge, this is the first study
reporting the connection between SPTSSA expression, a
key catalytic enzyme in sphingolipids synthesis, and cancer
progression and prognosis.

To further shed light on the potential function of
SPTSSA in GBM progression, we used both CIBERSORT
and TIMER to correlate tumor-infiltrating immune cells
with SPTSSA expression in GBM. Tumor-infiltrating
immune cells are major member of the tumor microenviron-
ment. They correlate with tumor prognosis and response to
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Figure 7: (a) IHC of grade II~IV glioma sample from the Affiliated Hospital of Nantong University. (a) Using TMA, grouped in median,
high expression of SPTSSA predicts poor prognosis. (b, c) Univariate and multivariate Cox analyses indicated that SPTSSA was an
independent predictor for OS.
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therapy. Traditionally, immunohistochemistry [45–47] and
flow cytometry [48] are used to analyze and enumerate
different subsets of immune cells. However, these methods
are limited by the availability of markers and antibodies
for identification of subtypes of immune cells as well as
high quality tumor samples. CIBERSORT is a type of in
silico tissue dissection method for enumerating different
cell fractions from undissected tissue gene expression pro-
files through computational deconvolution analysis [20,
49]. Using pure immune cell subtype expression profiles,
CIBERSORT can accurately estimate the immune cell sub-
types of a tumor biopsy and enable the discovery of bio-
markers and novel immunotherapeutic targets. Using
CIBERSORT, we showed that the numbers of CD4 T
memory cells and macrophage cells were positively corre-
lated with SPTSSA expression, while the number of acti-
vated mast cells were negatively correlated with SPTSSA
expression.

The TIMER was used to analyze the association with the
survival of the tumor-infiltrating immune cells, to confirm
our observations further. Cancer biologists are enabled in
quantifying the abundance of tumor-infiltrating immune
cells through a flexible and comprehensive mode by the
TIMER (Tumor Immune Estimation Resource) [21]. The
abundance of tumor-infiltrating immune cells from the bulk
gene expression profiles are identified using the TIMER
computational deconvolution methods. The association with
overall survival was provided together with the association
of the tumor-infiltrating immune cell abundance with the
gene expression by TIMER. We successfully identified that
higher numbers of activated mast cells were associated with
better survival in GBM, that higher numbers of macrophage
M0/M1 cells were associated with poor survival in GBM,
and that there was a correlation with the SPTSSA expression
of the tumor-infiltrating dendritic cells, neutrophils, and the
macrophages. The SPTSSA being an independent prognosis
factor and dysregulated in glioma was confirmed from the
IF and the IHC results.

5. Conclusion

In summary, using bioinformatics tools, we identified
high-SPTSSA expression in GBM tissues, and high-SPTSSA
expression was associated with poor survival. In silico
tumor-infiltrating immune cell analysis suggests that
high-SPTSSA expression was associated with high number
of specific subtype immune cells. Future experimental
studies are needed to explore the potential of SPTSSA as
prognostic marker as well as novel immunotherapy target
for GBM.
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Background. Oxidative stress (OS) is associated with the development of acute myeloid leukemia (AML). However, there is lack of
relevant research to confirm that OS-related genes can guide patients in risk stratification and predict their survival probability.
Method. First, we Data from three public databases, respectively. Then, we use batch univariate Cox regression and machine
learning to select important characteristic genes; next, we build the model and use receiver operating characteristic curve
(ROC) to evaluate the accuracy. Moreover, GSEAs were performed to discover the molecular mechanism and conduct
nomogram visualization. In addition, the relative importance value was used to identify the hub gene, and GSE9476 was to
validate hub gene difference expression. Finally, we use symptom mapping to predict the candidate herbs, targeting the hub
gene, and put these candidate herbs into Traditional Chinese Medicine Systems Pharmacology (TCMSP) to identify the main
small molecular ingredients and then docking hub proteins with this small molecular. Results. A total of 313 candidate
oxidative stress-related genes could affect patients’ outcomes and machine learning to select six potential genes to construct a
gene signature model to predict the overall survival (OS) of AML patients. Patients in a high group will obtain a short survival
time when compared with the low-risk group (HR = 3:97, 95% CI: 2.48-6.36; p < 0:001). ROC results demonstrate the model
has better prediction efficiency with AUC 0.873. GSEA suggests that this gene is enriched in several important signaling
pathways. Nomogram is constructed and is robust. PLA2G4A is a hub gene of signature and associated with prognosis, and
Nobiletin could target PLA2G4A for therapy AML. Conclusion. We use two different machine learning methods to build six
oxidative stress-related gene signatures that could assist clinical decisions and identify PLA2G4A as a potential biomarker for
AML. Nobiletin, targeting PLA2G4, may provide a third pathway for therapy AML.

1. Introduction

Acute myeloid leukemia (AML) was derived from abnormal
stem cell precursors of the myeloid lineage [1]. These prolif-
erative clonal hematopoietic precursor cells damage the nor-
mal hematopoiesis and cause a series of clinical symptoms.
Although AML is a rare disease compared with other newly
diagnosed cancers, it accounts for more than 15% of acute
leukemia with more than 30% mortality [2, 3]. Currently,
molecular and cytogenetic features are recognised as key
prognostic factors for the disease diagnosis. Hematopoietic

stem cell transplantation (HSCT) remains the only way to
cure this disease, but the overall survival (OS) is still stagnant
due to severe infection and acute graft-versus-host disease
(aGVHD) after transplantation [3, 4]. More than 70% of
patients receiving conventional chemotherapy will eventu-
ally relapse or become refractory leukemia [5]. Thus, it is
of great importance to gain an understanding of the genetic
variations in this disease and explore new targets for predict-
ing prognosis and direct treatment.

Oxidative stress (OS) refers to a state of imbalance
between reactive oxygen species (ROS) and antioxidant
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Figure 1: Machine learning to identify important oxidative stress-related genes for the prognosis model. (a, b) The error rate of the random
forest model is 29.83%, and the better and poor prognosis genes are ordered by their importance. (c) Thirty-four prognosis-related genes are
important more than 0.3. (d, e) Fifteen candidate genes are extracted from the expression profile by the lasso regression model. (f) Six
potential genes were identified after the merge of the results of the above two different machine learning algorithms.
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effects in the body, which is characterized as inflammatory
infiltration of neutrophils, increased secretion of proteases,
and the production of a large number of oxidative com-
pounds [6]. ROS have been confirmed to be associated with
cellular signaling and gene expression in the normal cellular
process [7, 8]. However, once the endogenous ROS is not
adequately eliminated by the antioxidant system, the proox-
idant/antioxidant balance is lost and leads to the occurrence
of OS, which will damage the biological processes and the
DNA repair mechanisms, leading to kinds of diseases and
carcinogenesis, such as neurological disease, cardiovascular
disease, breast cancer, prostate cancer, and hematologic
malignancies [9–14]. On the other hand, ROS can undertake
an opposite role in tumor therapy by inducing cell apoptosis
[14]. Therefore, clarifying the dual role of OS in the patho-
genesis and treatment of AML and selecting the potential
beneficial population would lay the foundation for individu-
alized precision treatment.

In the present work, we use two different machine learn-
ing methods to select candidate prognosis genes in oxidative
stress-related gene sets and build a six-gene signature model
to predict the AML patients’ outcomes. In addition, we also
identify PLA2G4A as a hub gene of signature and associated
with prognosis and found that Nobiletin, a type of tradi-
tional Chinese medicine, targeting PLA2G4 may provide a
third pathway for therapy AML.

2. Methods and Materials

2.1. Data Obtaining and Prepared. Public datasets were
applied to this study: The Cancer Genome Atlas Program
(TCGA), Genotype-Tissue Expression (GTEx), and Gene
Expression Omnibus (GEO), respectively. We obtain AML
data from TCGA database, which includes RNAseq records
and clinical information of patients. Original count data
are transferred to TPM style and extract 1399 oxidative
stress-related genes, recorded by gene card database, from
the expression profile to construct a new oxidative stress-
related gene matrix for model building. Overall survival
(OS) was defined as the endpoint. RNAseq data of donor
bone marrow are from the GTEx database. GSE9476, includ-
ing 38 donors and 26 AML samples, was used to validate
hub gene differential expression between healthy hemato-
poietic cells and leukemic blasts. The 3D structure of hub
protein and small-molecule structures are sourced from
PDB and Pub Chem, respectively.

2.2. Batch Univariate Cox Regression to Identify Prognosis-
Related Genes. Too many genes will affect patients’ out-
comes; here, we use batch univariate Cox regression to iden-
tify prognosis-related genes of oxidative stress. After
analysis, genes with a p value less than 0.05 were identified
as significant factors, and this gene will be input into the
next model to perform dimensionality reduction.

2.3. Machine Learning to Select Important Characteristic
Genes. Random forest and lasso regression are performed
to identify important characteristic genes of oxidative stress.
The importance of the random forest algorithm was defined
as 0.3, and then, all of these requirement genes were put into
the lasso regression model, which model set significant crite-
rion was lambda is minimal.

2.4. Predictive Model Construct and Validation. For building
the final prediction model, we use multivariate Cox regres-
sion to analyze the significant oxidative stress-related genes;
as above standard, the p value is also set as less than 0.05.
After selecting all of these requirement genes, we build the
final model for the prediction of patient outcome, according
to the regression coefficients. Each patient will obtain one
risk score, patients will be divided into high- and low-risk
groups, according to the median value. Survival analyses
were conducted by log-rank test. Forty percent of the total
data were set as a test dataset to validate robust of the above
model. Area under ROC was used to evaluate the predictive
accuracy.

2.5. Difference Expression Genes between High-Risk and Low-
Risk Groups. To identify the differential expression genes
between the high-risk and low-risk groups, the limma pack-
age was used to conduct this procedure, and the criteria of
significant genes were set as absolute of log fold change more
than 2 and p value less than 0.05.

2.6. GSEA of Differential Expression Genes. The molecular
mechanism of differential expression genes between the
high-risk and low-risk groups is unclear; here, we use the
GSEA function, which provides by the cluster profile pack-
age, to do GO and KEGG pathway enrichment analysis. p
value less than 0.05 was identified as a significant enrich-
ment result.

2.7. Nomogram Construction and Evaluation. Nomogram is
more than eyes and provides a convenient tool for clinical
physicians to assist clinical decisions. Significant genes from
the above multivariate Cox regression results will be consid-
ered and put into the VRPM package to conduct visualiza-
tion. The area under the curve (AUC) of receiver operating
characteristic (ROC) and calibration curve were used to
evaluate the model’s robustness.

2.8. Hub Gene Selection and Validation. In the gene panel,
not all the genes play an important role in the model, so
we select the importance value of the model gene and order
it from high to low, and the biggest value of the important
gene was identified as the hub gene. Donor patients’ bone
marrow, which obtains from the GTEx database, will be

Table 1: Multivariate Cox regression for model genes.

Gene symbol Coef HR p value
95% CI

Lower Upper

AGRN -0.391 0.676 0.507 0.902 0.008

ETFB 0.827 2.289 1.051 4.985 0.037

PLA2G4A 0.236 1.266 0.965 1.661 0.088

RYR1 0.650 1.917 1.239 2.966 0.003

SIGMAR1 0.404 1.498 1.026 2.187 0.036

SOCS1 0.473 1.605 1.177 2.189 0.003
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compared with AML patients’ bone marrow to validate hub
gene difference expression. In addition, sample from
GSE9476 also repeats the above operation. Moreover, sur-
vival analysis was performed to conduct by survminer pack-
age, to compare survival probability difference between high
and low expression patients.

2.9. Screening Candidate Herbs Targeting Hub Protein. Tra-
ditional Chinese medicine has been confirmed that has the
potential ability to target tumor markers. We use a symptom
mapping (symMap Version 2.0) database to predict the can-
didate herbs, which will target the hub gene. Herbs with
FDR less than 0.05 will be selected. The top 10 requirement
herbs will be selected and also checked by the previous liter-
ature, which has been reported to have the ability of antican-
cer function for preparing docking with hub proteins.
Candidate herbs will be input into Traditional Chinese Med-
icine Systems Pharmacology (TCMSP) to identify the main
small molecular ingredients, according to oral bioavailability
(OB) more than 30 and drug-likeliness (DL) more than 0.18.

2.10. Docking Structures between Proteins and Small
Molecular Drugs. Before docking both structures, we need
prepared ligand and receptor structures. So, we download
the hub protein’s 3D structure from the protein data bank
(PDB; https://www.rcsb.org/) and obtain small molecular
drug structure form Pub Chem database (https://pubchem
.ncbi.nlm.nih.gov/), respectively. Then, an online tool will
conduct a docking program (https://cadd.labshare.cn/cb-
dock2/php/index.php).

3. Results

3.1. Prognosis Genes in Oxidative Stress-Related Gene Set of
AML. We use a batch univariate regression model to filter
no significant genes, which could not affect patients’ out-

comes, and some prognosis-related genes in the oxidative
stress-related gene set were selected. The results of the batch
univariate regression model show that a total of 313 candi-
dates’ oxidative stress-related genes could affect patients’
outcomes (Supplement Table 1).

3.2. Machine Learning to Select Candidate Model Genes.
Random forest and lasso regression models were used to
select candidate model genes. On the one hand, we put the
expression matrix to the random forest model. The results
show that the error rate of the random forest model is
29.83%, and the better and poor prognosis genes are ordered
by importance (Figures 1(a) and 1(b)). When we set variable
relative importance to more than 0.3, 34 prognosis-related
genes are selected, and the top 10 significant are shown in
Figure 1(c) (Supplement Table 2). On the other hand, the
above expression matrix is also put into the lasso
regression model, when the model selects the minimal
lambda value; 15 candidate genes are extracted from the
expression profile (Figures 1(d) and 1(e)). Then, we merge
the results of the above two different machine learning
algorithms. Six potential genes were identified to construct
a gene signature model (Figure 1(f)).

3.3. Six-Gene Signature Could Predict the OS of AML
Patients. After multivariate Cox regression model analysis,
we find six genes from machine learning methods are
included in the model (Table 1). So, in the next step, we
build a six-gene signature model to predict the OS of AML
patients, according to the coefficient of multivariate Cox
regression. After building the signature model, every patient
will obtain a risk score, which calculated by the model for-
mula, risk score = ð−0:391Þ × AGRN + ð0:827Þ × ETFB + ð
0:236Þ × PLA2G4A + ð0:650Þ × RYR1 + ð0:404Þ × SIGMAR
1 + ð0:473Þ × SOCS1. After the count, patients will be
divided into low-risk and high-risk groups, based on median
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Figure 2: Six oxidative stress-related gene signature construction and internal validation. (a) Each patient will obtain a risk score, which is
calculated by the model formula. (b) Patients in a high group will obtain a short survival time when compared with the low-risk group, and
this difference is significant (HR = 3:97, 95% CI: 2.48-6.36; p < 0:001). (c) ROC demonstrates the model has better prediction efficiency with
AUC is 0.873. (d–f) Internal validation results also support the above conclusions, and the AUC is 0.836.
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value (Figure 2(a)). Figure 2(b) shows that patients in the
high group will obtain a short survival time when compared
with the low-risk group, and this difference is significant
(HR = 3:97, 95% CI: 2.48-6.36; p < 0:001). We use ROC to
evaluate the prediction accuracy of the model, and the
results demonstrate the model has better prediction effi-
ciency with AUC is 0.873 (Figure 2(c)). Internal validation
results also support the above conclusions. Patients with
low-risk scores mean longer living times when compared
with high-risk score patients. In addition, the ROC of the

validation dataset also shows the model could predict
patients’ outcome accuracy with AUC equal to 0.836
(Figures 2(d)–2(f)).

3.4. Six-Gene Signature with Clinical Factors. Age and sex are
both important clinical characteristics for AML patients.
Here, we perform survival analysis to discover the difference
between clinical subgroups. In the age subgroup, we find
that in patients under 60 years old, the high-risk score means
a shorter survival time, when compared with the low-risk
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Figure 3: Signature with clinical variables. (a) In the age subgroup, patients under 60 years old, the high-risk score means shorter survival
time, when compared with the low-risk group (HR = 5:03, 95% CI: 2.33-10.87; p < 0:001). (b) This conclusion also confirmed by patients
more than 60 years old (HR = 2:18, 95% CI: 1.19-3.98; p = 0:018). (c, d) As for the sex subgroup, patients with low-risk scores always
represent a better prognosis, when compared with a high-risk score, no matter which sex they are (HR = 3:67, 95% CI: 1.97-6.85; p <
0:001 vs. HR = 4:35, 95% CI: 2.12-8.94; p < 0:001, respectively).
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group (HR = 5:03, 95% CI: 2.33-10.87; p < 0:001)
(Figure 3(a)). This conclusion also confirmed by patients
more than 60 years old (HR = 2:18, 95% CI: 1.19-3.98; p =
0:018) (Figure 3(b)). As for the sex subgroup, patients with
low-risk scores always represent have a better prognosis,
no matter which sex they are (HR = 3:67, 95% CI: 1.97-
6.85; p < 0:001 vs. HR = 4:35, 95% CI: 2.12-8.94; p < 0:001,
respectively) (Figures 3(c) and 3(d)).

3.5. Different Expression Genes and Enrichment Analysis.
Patients with different risk scores have different prognoses.
Identifying different expression genes between two groups
is good to discover the molecular mechanism in the future.
The different expression analyses demonstrate a total of 49
different expression genes between low- and high-risk
groups (Supplement Table 3). After doing GSEA, we found
that this gene is enriched in embryonic skeletal system
morphogenesis, endoplasmic reticulum lumen, and RNA
polymerase II-specific (Figure 4(a)), and the involved

pathways are cytokine-cytokine receptor interaction
pathway, NF-kappa B, PI3K-AKT, and MAPK signaling
pathway (Figures 4(b)–4(g)).

3.6. Nomogram Is a Useful Tool for Assistant Clinical
Decision. We have demonstrated that six gene signatures
could predict patients’ outcome accuracy, so we build a
nomogram, based on six gene expressions, to assist clinical
decisions. This model is shown in Figure 5(a), and according
to six gene expressions, patients will obtain six score values
and accumulate six values to become one total score and
projection onto the survival axis to obtain patients’ 1-year,
3-year, and 5-year survival probability, respectively. The
ROC of the model is 0.761, and the C index of this nomo-
gram is 0.774. Calibration curve analysis results suggest that
survival prediction results of 1-year, 3 year, and 5-year sur-
vival probability were close to the ideal line (Figure 5(b)).

3.7. PLA2G4A Is a Hub Gene of Signature and Associated
with Prognosis. We extract the relative importance of six
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model genes, and the PLA2G4A has the biggest value, so it
was confirmed as the model hub gene (Figure 6(a)); to vali-
date the potential value, we use external data set, GTEx, and
GSE9476, to observe the expression difference between
donor bone marrow and leukemic blasts from AML patients.
The result demonstrates that PLA2G4 is a high expression in
leukemic blasts and low expression in healthy hematopoietic
cells (p = 8:9e − 34 vs. p = 5:5e − 06, respectively)
(Figures 6(b) and 6(c)). Survival analysis also shows that
high expression of this gene will lead to a poor outcome
when compared with low expression patients (HR = 3:03,
95% CI: 1.97-4.67; p < 0:001) (Figure 6(d)).

3.8. Nobiletin Targeting PLA2G4A Provides a Third Pathway
for Therapy AML. A total of 41 required herbs had been pre-
dicted, and the top 10 herbs are listed in Figure 6(e) and
Supplement Table 4. Of these ten herbs, Zhiqiao has been
reported to have a potential function as an anticancer. To
identify which ingredients are important for these herbs,
we input in into the TCMSP database. The results show
that Hesperetin, Nobiletin, Naringenin, Marmin, and Beta-
sitosterol are the main components of this drug (Table 2).
During these components, Nobiletin has the best OB
(61.67%) and highest DL (0.52); it was selected as a
candidate small molecular drug to target PLA2G4A. The
docking results also demonstrate the above conclusion
(Figure 6(f)).

4. Discussion

Although advances have been achieved in the therapeutic
options which greatly improve the overall response rate,
the long-term prognosis of this disease remains dismal, espe-

cially among elder patients [15]. Besides, the complex
molecular and cytogenetic abnormalities make AML a kind
of heterogeneous disease with differential prognosis even in
the same risk group by clinical practice guidelines [16]. All
these revealed that insight into the genetic landscape of
AML would benefit more patients. The development of var-
ious sequencing technologies has provided more informa-
tion on the mechanism of pathogenesis, chemoresistance,
and more refined prognostic stratification of AML in the
past decades. Recently, Mer et al. [15] proposed a unique
subtype of NPM1-mutated AML with different biological
and therapeutical implications based on a stem cell signa-
ture. A set of mitochondrial metabolism proteins was also
identified as potential targets associated with leukemia pro-
gression by multiomics [17]. Furthermore, some gene-
based signatures have been constructed to predict the prog-
nosis of AML as in other cancers [18, 19]. All these have
brought new opportunities for the treatment of AML.

The maintenance of the quiescent state of hematopoietic
stem cells (HSCs) depends on a condition of anaerobic gly-
colysis with low ROS generation, while compelling evidence
has indicated that leukemia stem cells (LSCs), which are
considered the main part of drug resistance, are more depen-
dent on oxidative respiration with high ROS levels compa-
nied by an imbalance of oxidative and antioxidant, which
promote the progression of leukemia by activating the path-
ways involved in the cell proliferation, survival, and invasion
[20, 21]. Previous studies have proved that the redundant
ROS could be a risk factor for tumorigenesis and the drug
resistance role of ROS in varied leukemia modes [22, 23].
Interestingly, LSCs are more susceptible to external antioxi-
dants, and ROS and lipid peroxidation by-products can trig-
ger cell apoptosis, which also brings new chemotherapy
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options. These all suggest a bidirectional role of ROS in leu-
kemia [24]. Given the above complex mechanism, we aim to
construct an accurate model which can provide precise pre-
dictivity and guide stratification therapy for clinical
application.

As shown in our work, we used machine learning to
select six hub OS-related genes, which demonstrated robust
predictive ability in AML populations. Agrin (AGRN) has
been described as a multifunctional heparan sulfate proteo-
glycan, which can regulate angiogenesis and has a board-
ranging impact on the tumor microenvironment (TME) in
HCC and papillary thyroid carcinoma (PTC) [25, 26]. How-
ever, nothing has been reported on the exact function of
AGRN in AML. Electron transfer flavoprotein β subunit
(ETFB) can transfer the electrons to the electron transport
chain (ETC) and maintain the generation of ATP. Caplan
et al. [17] recently found that increased mitochondrial stress
and apoptosis in AML mouse models can be induced by
silencing ETFB, which suggests that ETFB could be a poten-
tial therapeutic target for AML. Moreover, the placental
phospholipase A24A (PLA2G4A), sigma 1 receptor (Sig1R),
and suppressors of cytokine signaling 1 (SOCS1) have been
reported in varied diseases which are involved in the stress
response biological procedure [27–29]. However, to the best
of our knowledge, abscisic acid receptor (PYR1) has been
shown as a stomatal regulation response to drought stress
in plants, and no studies regarding abscisic acid receptor
(PYR1) have been reported in human diseases or cancers
[30]. Among these six genes, PLA2G4A has the most impor-
tant in our model, which is one of the cytosolic placental
phospholipases A2 (cPLA2) family and can catalyze the
hydrolysis of membrane phospholipids to release arachi-
donic acid (AA) and lysophospholipid. It has been identified
as an index in response to oxidative stress in preeclampsia
and might be due to the oxidation of AA [27]. Higher
expression of PLA2G4A is positively correlated with the
migration and invasion of lung cancer cells and unfavorable
prognosis in breast cancers [31, 32]. Previous studies also
revealed that PLA2G4A expression could be an independent
diagnostic and prognostic marker in patients with non-M3/
NPM1 WT AML patients [33], which was also confirmed in
our study. Nevertheless, whether this differential prognosis
is caused by PLA2G4A through oxidative stress remains to
be further investigated.

To explore the specific mechanism of OS-related genes
in AML, we carried out functional annotation of DEGs
between the high and low gene expression groups. The OS-

related genes were enriched in the cytokine-cytokine recep-
tor interaction pathway, NF-kappa B signaling pathway,
JAK-STAT signaling pathway, apoptosis, PI3K-AKT signal-
ing pathway, and MAPK signaling pathway as revealed by
the GSEA results, which have been identified by previous
studies serving as an important role in the pathogenesis
and progression of AML. The PI3K/AKT pathway was
proved to play important roles in regulating cell prolifera-
tion, differentiation, apoptosis, and migration in kinds of
human diseases and cancers, such as diabetes, colorectal
cancer, and AML [34, 35]. Some scholars also reported the
PI3K/AKT pathway is associated with oxidative stress-
mediated survival of melanoma and when targeting the
PI3K/AKT and MAPK/ERK signaling pathway exerts an
anticancer effect in leukemia cells by induction of oxidative
stress and the cellular antioxidant defense mechanisms,
which suggest PI3K/AKT and MAPK/ERK signaling path-
way might involve in the leukemia cell apoptosis caused by
oxidative stress [36, 37].

However, there are some limitations to our study. First,
we did not distinguish between OS-related genes that pro-
mote leukemia proliferation and invasion with genes that
mediate leukemia cell apoptosis via chemotherapy-induced
OS. More datasets with pre/posttreatment information need
to be included to clarify this bidirectional effect of OS. Sec-
ond, our results need to be validated in a clinical trial in
the further.

5. Conclusion

Our six oxidative stress-related gene signatures could predict
AML patients’ outcome accuracy, and this model is robust.
It may become a useful tool to assist clinical decisions. In
addition, we identify PLA2G4A as a potential biomarker
for AML. Nobiletin, targeting PLA2G4, may provide a third
pathway for therapy AML.
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Table 2: Ingredients of Chinese traditional medicine Zhiqiao.
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MOL000358 Beta-sitosterol 36.91 0.75 414.79 8.08 0.23 5.36
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Background. T lymphoblastic lymphoma/leukemia (T-LBL/ALL) is an aggressive malignant tumor with 5-year overall survival
(OS) rate reached 80% after high-dose chemotherapy. Due to the relatively low incidence of T-LBL/ALL, only a few risk
factors have been identified. The occurrence and prognosis of malignant tumors are closely related to oxidative stress, but the
prognostic relationship between T-LBL/ALL and systematic oxidative stress indexes has not been reported yet. Methods. A
total of 258 T-LBL/ALL patients were retrospectively analyzed. The relationship between systematic oxidative stress indexes,
such as creatinine (CRE), gamma-glutamyl transpeptidase (γ-GGT), albumin (ALB), alkaline phosphatase (ALP), fibrinogen
(FBG), C-reactive protein (CRP) and total bilirubin (TBIL), and survival of T-LBL/ALL patients, was analyzed. The weight of
indexes was used to calculate the patients' oxidative stress risk score. The independent prognostic value of oxidative stress risk
grouping (OSRG) was analyzed. Results. Higher CRE, CRP, and lower ALB were associated with poorer OS in T-LBL/ALL
patients. The OSRG established by CRE, ALB, and CRP was an independent prognostic factor for OS of T-LBL/ALL patients.
Patients in the high-risk group were more likely to be patients older than 14 years old and patients with superior vena cava
obstruction syndrome (SVCS), pleural effusion, pericardial effusion, and mediastinal mass. Conclusion. For OS in T-LBL/ALL
patients, OSRG was observed as an independent prognostic factor, which provided a new idea for accurate prognostic prediction.

1. Introduction

T lymphoblastic lymphoma/leukemia (T-LBL/ALL) is a
malignant tumor originating from progenitor T cells,
accounting for only 2% of the lymphoma incidence. T-
LBL/ALL mostly occurs in children and adolescents [1].
After intensive chemotherapy, the current 5-year overall
survival (OS) rate can reach up to 80% [2]. However, the
prognosis of refractory and recurrent T-LBL/ALL patients
is very poor, and the 5-year OS is less than 20% [3]. Early
detection of relapse may improve the outcome. Further-
more, high-dose chemotherapy can improve the survival
and overall response rate (ORR), but treatment-related
death (TRD) is one of the important factors affecting
patients' outcomes [2]. Therefore, how to accurately predict

the prognosis by performing risk stratification according to
simple and feasible indicators before treatment is of great
significance to guide treatment intensity and follow-up fre-
quency. Due to relatively low incidence rate of T-LBL/ALL,
few risk factors of T-LBL/ALL have been identified by the
large samples.

Oxidative stress is considered an important factor in
the occurrence and development of cancer, and it also
affects the patient's prognosis [4, 5]. In the evolution of
tumors, oxidative stress can cause dysregulation of tumor
microenvironment metabolism and signaling pathways and
lead to malignant transformation of cells [6]. Reactive oxygen
species (ROS) may play an important role in T cell activation
and signal transduction and may be associated with the
development of T cell lymphoma [7]. However, in T cell
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lymphoma, tumor cells avoid ROS damage by down-
regulating oxidative stress signaling pathways [8]. These
evidences suggest that oxidative stress is closely related to
T-LBL/ALL.

Previous studies had showed that hematologic indicators
could reflect the status of systematic oxidative stress. Creat-
inine (CRE), C-reactive protein (CRP), and total bilirubin
(TBIL) increased in oxidative stress mouse models and
critically ill polytrauma patients, while decreasing after anti-
oxidant treatment [9–12]. Albumin (ALB) is an important
antioxidant in the body and is a marker commonly used to
reflect oxidative stress levels [13]. Gamma-glutamyl trans-
ferase (γ-GGT), a commonly used indicator of oxidative
stress, decreased after patients received antioxidant therapy
[14]. Increased alkaline phosphatase (ALP) activity is associ-
ated with oxidative stress in colitis models [15]. Fibrinogen
is the main plasma protein of oxidative modification and
can be used as a marker to assess oxidative stress [16, 17].
Previously, we reported that systematic oxidative stress
indexes are associated with the survival of breast cancer
patients [18]. However, systematic oxidative stress indexes
and prognosis of T-LBL/ALL have not been reported.

Therefore, the purpose of this study is to explore the
relationship between systematic oxidative stress indexes
and T-LBL/ALL. Afterward, it provides a new idea for pre-
dicting the prognosis of T-LBL/ALL, guiding the intensity
of treatment and the frequency of follow-up.

2. Methods

2.1. Patients and Study Design. This study retrospectively
enrolled patients who were pathologically diagnosed with
T-LBL/ALL at Sun Yat-Sen University Cancer Center
(SYSUCC) from January 2010 to December 2020. The inclu-
sion criteria included as follows: (1) diagnosed as T-LBL/
ALL by pathology in SYSUCC; (2) received standard antitu-
mor therapy in SYSUCC; (3) patients underwent biochemi-
cal examination such as CRE, GGT, ALB, ALP, FBG, CRP,
and TBIL within 3 days before chemotherapy; and (4) com-
plete follow-up records. The exclusion criteria included as
follows: (1) patients had received antitumor therapy before
being transferred to our hospital; (2) absence of follow-up
or biochemical information; (3) the liver and kidney dys-
function; and (4) accompanied by acute and chronic inflam-
matory diseases. The study is in line with the Declaration of
Helsinki and the Ethics Committee of SYSUCC (identifier:
B2022-155-01) as well.

2.2. Data Collection.We collected age, sex, Eastern Cooper-
ative Oncology Group (ECOG) status, “B” symptoms,
pathological diagnosis, clinical stage, superior vena cava
obstruction syndrome (SVCS), central nervous system
(CNS) involvement, mediastinal mass, pericardial effusion,
pleural effusion, lactate dehydrogenase (LDH), and bone
marrow (BM) biopsy examination of patients with T-LBL/
ALL. The results of CRE, GGT, ALB, ALP, FBG, CRP, and
TBIL were obtained within 3 days before the chemotherapy.
An experienced pathologist at SYSUCC was requested to
reassess the pathological diagnosis of the patients. The

patient’s age referred to the age of pathological diagnosis.
The “B” symptoms referred to fever >38°C for more than 3
days, severe night sweats, and/or 10% weight loss without
apparent cause in the last 6 months. The clinical stage was
based on the Ann Arbor stage. Furthermore, mediastinal
mass, pleural effusion, and pericardial effusion were also
determined based on imaging findings. SVCS referred to
edema of the upper limb, neck, face, and superficial varicose
veins of the upper body caused by mediastinal mass. The
biochemical test was analyzed by an automatic biochemical
analyzer (Hitachi 7600 series, Tokyo, Japan). As for treat-
ment, 205 patients (79.5%) received the BFM-90/95 regimen,
in which pegaspargase was produced by Jiangsu Hengrui
Pharmaceutical Co., Ltd. In addition, 13 patients (5.0%)
received ECOG 2003 and 12 patients (4.7%) received
hyper-CVAD/MA regimen. Another 28 patients (10.9%)
received other regimens, such as GD 2008ALL and SCCLG-
ALL-2016. After standard treatment, patients received a
regular telephone or outpatient follow-up visits after the
treatment. The last follow-up of the patients included in this
study was conducted in June 2021.

2.3. Statistical Analysis. R software (version 4.0.2) and SPSS
24.0 were used to perform analysis of the data statistics of
this study. The best cut-off values of GGT, ALB, CRP, TBIL,
FBG, CRE, and BUN were determined by “survminer” pack-
age in “R” software. If the value is higher than the cut-off
value, the value is 2; if the value is lower than the cut-off
value, the value is 1. The univariate and multivariate Cox
regression analyses were used to conclude the OS-
independent prognostic factors. The correlation coefficient
of systematic oxidative stress indexes was determined by
the lowest AIC (Akaike information criterion) value [19].
Then, the systematic oxidative stress risk score of each
patient was calculated. The Kaplan-Meier survival analysis
was used to analyze the patients’ survival. The time-
dependent receiver operating characteristic (ROC) curve
was used to compare the prognostic value of oxidative stress
risk grouping (OSRG) and clinical prognostic indicators. To
compare the correlations between variables, the Chi-square
test with p value <0.05 was used to consider statistically sig-
nificant in the two-tailed test.

3. Results

3.1. Information on Patients and Oxidative Stress Indicators.
A total of 266 T-LBL/ALL patients at SYSUCC were retro-
spectively registered in our study. Out of 266, 8 patients died
due to treatment-related complications. To ensure the
prediction accuracy of this risk grouping, these 8 patients
with TRD were excluded from the study. Of the 258 patients
enrolled, 109 patients were younger, while 149 patients were
older than 14 years. The patients’ clinical features are pre-
sented in Table 1. Based on “Surv_cutpoint” analysis of R
software, the optimal cut-offs of CRE, GGT, ALB, ALP,
FBG, CRP, and TBIL were 44.6μmol/L, 21.2U/L, 38.7 g/L,
106.7U/L, 3.09 g/L, 12.28mg/L, and 11.8 μmol/L, respec-
tively (Supplementary Figures 1(a)–1(g)). Table 2 shows
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the distribution of systematic oxidative stress indexes of
patients.

3.2. Calculation of Oxidative Stress Risk Score. Conversion of
CRE, GGT, ALB, ALP, FBG, CRP, and TBIL into dichotomy
based on the cut-offs was done as described above. The
values of “1” and “2” were used for scoring. The values were

defined as 2 if it was higher than cut-offs, and 1 if they were
lower. The univariate Cox regression analysis revealed that
only ALP was not correlated with OS, while all other factors
including CRE, GGT, ALB, FBG, CRP, and TBIL were corre-
lated with OS (Figure 1(a)). In multivariate Cox regression
analysis, the elevated CRP and CRE were related to worse
outcomes in the T-LBL/ALL patients, while the elevated
ALB was associated with better outcomes (Figure 1(b)).
Then, to calculate the weight of oxidative stress indexes in
the model, we calculated the correlation coefficient of
indexes based on AIC. Oxidative stress risk score = -0.59×
value of ALB+1.06× value of CRE+0.72× value of CRP
(Figure 1(c)). Then, OSRG of T-LBL/ALL patients was
identified based on the median value of oxidative stress risk
score. Patients with a risk score greater than the median
value were in high-risk group, and patients with a risk score
less than or equal to the median value were in low-risk
group.

3.3. Relationship between OSRG and Clinical Features. The
group with high-risk was correlated with worse OS in the
patients with T-LBL/ALL (Figure 2(a)). Meanwhile, we cal-
culated the relationship between OSRG and progression-
free survival (PFS). The results showed that the high-risk
group had shorter PFS as compared to the low-risk group
(Figure 2(b)). Similarly, in subgroup analysis, we found that
OS and PFS were worse in the high-risk group than that in
the low-risk group in both patients younger than 14 years
old (Figures 3(a) and 3(c)) and patients older than 14 years
old (Figures 3(b) and 3(d)). To further explore the relation-
ship between OSRG and clinical features, we performed the

Table 1: Clinical characteristics of study population.

Characteristics Number (n) Percentage (%)

Sex

Male 196 76.0

Female 62 24.0

Age

≤14 109 42.2

>14 149 57.8

ECOG

<2 249 96.5

≥2 9 3.5

B symptoms

Yes 56 21.7

No 202 78.3

SVCS involvement

Yes 103 39.9

No 155 60.1

Pleural effusion

Yes 96 37.2

No 162 62.8

Pericardial effusion

Yes 53 20.5

No 205 79.5

CNS involvement

Yes 10 3.9

No 248 96.1

Mediastinal involvement

Yes 164 63.6

No 94 36.4

BM involvement

Yes 102 39.5

No 156 60.5

LDH status

Elevated 136 52.7

Normal 122 47.3

Ann Arbor stage

I/II 18 7.0

III/IV 240 93.0

ASCT/HSCT at CR

Yes 12 4.7

No 246 95.3

Treatment response

CR 229 88.8

Non-CR 29 11.2

Table 2: oxidative stress indexes of study population.

Oxidative stress indexes Number (n) Percentage (%)

CRE (μmol/L)

≤44.6 89 34.5

>44.6 169 65.5

GGT (U/L)

≤21.2 132 51.2

>21.2 126 48.8

ALB (g/L)

≤38.7 98 38.0

>38.7 160 62.0

ALP (U/L)

≤106.7 154 59.7

>106.7 104 40.3

FBG (g/L)

≤3.09 190 73.6

>3.09 68 26.4

CRP (mg/L)

≤12.28 195 75.6

>12.28 63 24.4

TBIL (μmol/L)

≤11.8 212 82.2

>11.8 46 17.8
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p value

ALB

ALP

CRE

CRP

TBIL

FBG

GGT

Hazard ratio

Hazard ratio

0.007

0.205

0.002

0.049

0.041

0.017

< 0.001

0.474 (0.275–0.818)

0.691 (0.389–1.225)

3.289 (1.547–6.994)

2.912 (1.680–5.048)

1.879 (1.001–3.525)

2.004 (1.131–3.548)

1.802 (1.023–3.172)

0 1 2 3 4 5 6

(a)

p value

ALB

CRE

CRP

TBIL

FBG

GGT

Hazard ratio

Hazard ratio

0.045

0.021

0.018

0.111

0.245

0.752

0.550 (0.306–0.987)

2.558 (1.153–5.673)

2.132 (1.141–3.986)

1.694 (0.887–3.235)

1.416 (0.788–2.547)

0.901 (0.472–1.721)

0 1 2 3 4 5

(b)

Oxidative stress risk score = –0.59 × value of ALB + 1.06 × value of CRE + 0.72 × value of CRP

(c)

Figure 1: Establishment of oxidative stress risk score. The univariate (a) and multivariate (b) Cox regression analysis of oxidative stress
indexes. (c) Calculation formula of oxidative stress risk score.
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Figure 2: OSRG was related to prognosis in T-LBL/ALL patients. Kaplan-Meier curves revealed that the OS (a) and PFS (b) of high-OSRG
patients were shorter than that of low-OSRG patients.
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Figure 3: Continued.
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Figure 3: Subgroup survival analysis for T-LBL/ALL patients. (a) Kaplan-Meier analysis for the OS of patients younger than 14 years old.
(b) Kaplan-Meier analysis for the OS of patients older than 14 years. (c) Kaplan-Meier analysis for the PFS of patients younger than 14 years
old. (d) Kaplan-Meier analysis for the PFS of patients older than 14 years.
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Chi-square test, and the results revealed that the patients in
high-risk group were more likely to be patients older than
14 years old, and patients with SVCS, pleural effusion,
pericardial effusion, and mediastinal mass. At the same
time, the complete response (CR) rate was higher in the
low-risk group (Table 3).

3.4. Independent Prognostic Significance of OSRG. In Kaplan-
Meier survival analysis, the high-risk was associated with
worse outcomes in T-LBL/ALL patients. To further explore
its prognostic value, the univariate and multivariate Cox
analysis was calculated for all the indicators that might affect
the prognosis of the patients. The univariate Cox regression
analysis showed that OSRG, age, CNS involvement, and BM
involvement were correlated with the prognosis of the
patients. The multivariate Cox regression analysis showed
that OSRG, CNS involvement, and BM involvement were
independent prognostic factors for T-LBL/ALL patients
(Table 4). Further ROC curves revealed that the predictive
accuracy of OSRG is better than factors of age, CNS involve-
ment, and BM involvement. The area under the ROC curves
was used to compare the prognostic value of OSRG and
clinical prognostic indicators for predicting 2-year OS
(Figure 4(a)) and 5-year OS (Figure 4(b)).

4. Discussion

Oxidative stress is closely related to cancer occurrence and
cancer development as well as prognosis[4, 5, 20, 21]. Previ-
ously, we have reported that systematic oxidative stress
indexes are related to the prognosis of breast cancer patients
[18]. However, systematic oxidative stress indexes and prog-
nosis of T-LBL/ALL have not been reported.

Albumin (ALB) is an important protein present in
human plasma. In cancer patients with normal liver synthe-
sis function, ALB is often associated with the patient’s nutri-
tional status and inflammation level [22]. It also has the
effect of antioxidant stress [23]. Elevated ALB is often
associated with better survival in cancer patients [24]. This
study also showed that higher ALB was suggestive of longer
OS in T-LBL/ALL patients. Creatinine (CRE) in the blood is
derived from exogenous and endogenous. Endogenous CRE
is the product of the metabolism of muscle tissue in the
body. It has been shown in other studies that CRE is corre-
lated to the level of oxidative stress in the body, which
decreases after patients receive antioxidant treatment [12].
Higher CRE level is associated with a worse prognosis for
patients with malignant tumor [25]. C-reactive protein
(CRP) is an acute protein that reflects the level of inflamma-
tion in the body. Increased CRP can be observed in many
malignant tumors and is associated with poor prognosis of
tumor patients [26, 27].

The present investigation is the first to analyze the
prognostic value of indicators of systematic oxidative stress
on T-LBL/ALL. Among the 7 indicators of systematic oxida-
tive stress, ALB, CRE, and CRP were independent prognos-
tic factors for T-LBL/ALL patients. The multivariate Cox
regression analysis showed that the OSRG established
according to the weight of ALB, CRE, and CRP was an inde-

pendent prognostic factor for the T-LBL/ALL patients. This
study also confirmed that indicators of systematic oxidative
stress is also associated with the prognosis of T-LBL/ALL.
At the same time, we found the association between OSRG
and clinical characteristics of T-LBL/ALL patients. The
high-risk group was associated with older age, presence of

Table 3: Relationship between OSRG and clinical characteristics.

Characteristics
OSRG-low
(n = 164)

OSRG-high
(n = 94) P value

Sex

Male 123 75.0 73 77.7 0.630

Female 41 25.0 21 22.3

Age

≤14 96 58.5 13 13.8 0.000

>14 68 41.5 81 86.2

ECOG

<2 156 95.1 93 98.9 0.108

≥2 8 4.9 1 1.1

B symptoms

Yes 32 19.5 24 25.5 0.259

No 132 80.5 70 74.5

SVCS

Yes 56 34.1 47 50.0 0.012

No 108 65.9 47 50.0

Pleural effusion

Yes 50 30.5 46 48.9 0.003

No 114 69.5 48 51.1

Pericardial effusion

Yes 17 10.4 36 38.3 0.000

No 147 89.6 58 61.7

CNS involvement

Yes 5 3.0 5 5.3 0.363

No 159 97.0 89 94.7

Mediastinal involvement

Yes 94 57.3 70 74.5 0.006

No 70 42.7 24 25.5

BM involvement

Yes 66 40.2 36 38.3 0.758

No 98 59.8 58 61.7

LDH status

Elevated 85 51.8 51 54.3 0.707

Normal 79 48.2 43 45.7

Ann Arbor stage

I/II 15 9.1 3 3.2 0.071

III/IV 149 90.9 91 96.8

ASCT/HSCT at CR

Yes 6 3.7 6 6.4 0.317

No 158 96.3 88 93.6

Treatment response

CR 152 92.7 77 81.9 0.008

Non-CR 12 7.3 17 18.1
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SVCS, pleural effusion, pericardial effusion, and mediastinal
mass. Additionally, the CR rate was also lower in the high-
risk group than in the low-risk group. Patients with
relapsed/refractory T-LBL/ALL have a poor prognosis, and
early detection of disease progression is of great significance
to patients. Further analysis showed that OSRG could pre-

dict PFS in patients, and patients in the high-risk group
had a higher recurrence rate.

At present, there are few studies on the analysis of prog-
nostic factors, which make this study important to prognosis
prediction for T-LBL/ALL patients. In this study, the data of
258 patients with T-LBL/ALL were included and analyzed,

Table 4: Results of the univariate and multivariate Cox regression analysis for OS.

Variables Univariate Cox analysis Multivariate Cox analysis
HR (95% CI) P value HR (95% CI) P value

Sex

Male Reference 0.905

Female 0.961 (0.504-1.833)

Age

≤14 Reference 0.008 Reference 0.102

>14 2.305 (1.248-4.258) 1.797 (0.890-3.628)

ECOG

<2 Reference 0.771

≥2 1.234 (0.300-5.079)

B symptoms

No Reference 0.582

Yes 1.193(0.637-2.234)

SVCS involvement

No Reference 0.224

Yes 1.402 (0.813-2.415)

Pleural effusion

No Reference 0.492

Yes 1.215 (0.698-2.115)

Pericardial effusion

No Reference 0.131

Yes 1.604 (0.868-2.961)

CNS involvement

No Reference <0.001 Reference <0.001

Yes 4.395 (1.872-10.322) 4.367 (1.845-10.339)

Mediastinal involvement

No Reference 0.212

Yes 1.466(0.804-2.673)

BM involvement

No Reference 0.030 Reference 0.010

Yes 1.834 (1.060-3.173) 2.095 (1.198-3.666)

LDH status

Elevated Reference 0.277

Normal 1.360 (0.782-2.368)

Ann Arbor stage

I/II Reference 0.698

III/IV 0.832 (0.329-2.105)

ASCT/HSCT at CR

No Reference 0.735

Yes 1.244 (0.381-3.930)

OSRG

Low Reference <0.001 Reference 0.002

High 3.377 (1.929-5.911) 2.759 (1.470-5.180)
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confirming that the OSRG is an independent prognostic fac-
tor for T-LBL/ALL patients. T-LBL/ALL is one of the malig-
nant tumors with an acceptable prognosis after intensive
chemotherapy, but still, its TRD and disease progression
are the factors causing the poor prognosis. This study can
further provide clinicians with references for precise treat-
ment and follow-up frequency for T-LBL/ALL patients.

However, the present study is a single-center retrospec-
tive study, and the specific mechanism of oxidative stress
in tumor development and outcome is yet not clear. Due
to the retrospective analysis, it failed to match the consis-
tency of OSRG with the 2’, 7’-dichlorofluorescin (DCFH)
assay in detecting ROS. Furthermore, basic research and
prospective study are needed in the future.
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