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Variational inequalities theory, which was introduced in the
sixties, has emerged as an interesting and fascinating branch
of applicablemathematicswith awide range of applications in
industry, finance, economics, social, and pure and applied sci-
ences. This field is dynamic and is experiencing an explosive
growth in both theory and applications; as a consequence,
research techniques and problems are drawn from various
fields.The ideas and techniques of variational inequalities are
being applied in a variety of diverse areas of sciences and
prove to be productive and innovative. It has been shown that
this theory provides the most natural, direct, simple, unified,
and efficient framework for a general treatment of a wide
class of unrelated linear and nonlinear problems. Variational
inequalities have been extended and generalized in several
directions using novel and new techniques. In parallel, opti-
mizationmethods based onproximal point andproximal-like
type methods have attracted a large number of researchers
in the last three decades. In the same spirit, we can cite, for
instance, the alternating direction multipliers method, which
is based on the augmented lagrangian algorithm, which itself
can be seen as a direct application of the proximal point
algorithm to the dual problem of a constrained optimization
problem.

The aim of this special issue is to present new approaches
and theories for variational inequalities arising in mathemat-
ics and applied sciences. This special issue includes 14 high-
quality peer-reviewed papers that deal with different aspects

of variational inequalities. These papers contain some new,
novel, and innovative techniques and ideas. We hope that
all the papers published in this special issue can motivate
and foster further scientific works and development of the
research in the area of theory, algorithms, and applications
of variational inequalities.

The summaries of the 14 papers in this issue are listed as
follows.

The paper of C. Chen et al. considers a class of lin-
early constrained separable convex programming problems
without coupled variables. They weaken some conditions to
obtain convergence of the alternating direction method of
multipliers and they propose also a relaxed ADMM involving
an additional computation of optimal step size and establish
its global convergence under mild conditions.

The paper of H. Sun and Y. Wang revisits the global
error bound for the generalized nonlinear complementarity
problem over a polyhedral cone (GNCP) and sharpens the
global error bound for the GNCP under weaker conditions,
which improves the existing error bound estimation for the
problem.

The paper of M. Ma concerns the design and the conver-
gence analysis of algorithms to split variational inequality and
equilibrium problems.

The paper of Y. Wang and C. Wang gives a new modified
Ishikawa type iteration algorithm for common fixed points
of total asymptotically strict pseudocontractive semigroups.
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Strong and weak convergence are proved under mild condi-
tions. Furthermore, the main results presented in this work
extend and improve some recent results.

The paper of X. Fu presents an implementable proximal
step by a slight relaxation to the subproblemof proximal point
algorithm (PPA) to solve linearly constrained convex pro-
gramming. Self-adaptive strategies are proposed to improve
the convergence in practice. The paper also discusses some
applications and performs some numerical experiments to
confirm the efficiency of the proposed method.

The paper of H. Xu establishes the strong convergence
of prediction-correction and relaxed hybrid steepest-descent
method (PRH method) for variational inequalities under
some suitable conditions that simplify the proof. Further,
the author shows the efficiency of the proposed algorithm
through a well-designed set of practical numerical experi-
ments.

The paper of M. Xu et al. considers the study of some
matrix optimization problems using the proximal alternating
direction method. The authors show that the restriction on
the proximal parameters can be relaxed for solving these
kinds of problems and give some numerical experiments
to conclude that their modified method presents better
performance than the classical proximal alternating direction
method.

The paper of J.-L. Jiang et al. considers the locations of
multiple facilities in the space R𝑝, with the aim of mini-
mizing the sum of weighted distances between facilities and
regional customers, where the proximity between a facility
and a regional customer is evaluated by the closest distance.
And the authors propose a new location-allocation heuris-
tic scheme to solve their problem. Convergence is proved
under mild assumptions; and furthermore some preliminary
numerical results are reported to show the effectiveness of the
new algorithm.

The paper of A. Roldan et al. studies the existence and
uniqueness of coincidence point for nonlinear mappings of
any number of arguments under a weak (𝜓, 𝜑)-contractivity
condition in partial metric spaces. The obtained results
generalize, extend, and unify several classical and very recent
related results in the literature in metric spaces and in partial
metric spaces.

The paper of Z. Jia et al. extends the convergence analysis
given by Han and Yuan for alternating direction method of
multipliers (ADMM) from the strongly convex to a more
general case. Further, the authors prove under the assumption
that the individual functions are composites of strongly
convex functions and linear functions that the classical
ADMM for separable convex programming with two blocks
can be extended to the case with more than three blocks.

The paper of M. Li and Y. You presents a simple proof
for the same convergence rate of the relaxed proximal point
algorithm (PPA) in both ergodic and nonergodic senses.

The paper of W.-S. Du et al. extends, generalizes, and
improves several fundamental results on the existence (and
uniqueness) of coincidence points and fixed points for
well-known maps in the literature. Furthermore, some fixed

coincidence point theorems for multivalued nonself maps in
the context of complete metric spaces are given.

The paper of F. Ma et al. develops, studies, and imple-
ments a new prediction-correction method for monotone
variational inequalities with separable structure. At each
iteration, the proposed algorithm also allows the involved
subvariational inequalities to be solved in parallel.

The paper of A. Barbagallo and P. Mauro concerns a
dynamic oligopolistic market equilibrium problem in the
realistic case in which the presence of capacity constraints
and production excesses are allowed and, moreover, the
production function depends not only on the time but
also on the equilibrium distribution. The authors prove
the equivalence between this equilibrium definition and a
suitable evolutionary quasi-variational inequality, and they
study the analysis of existence, regularity, and sensitivity of
solutions.
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We consider the problem of seeking a symmetric positive semidefinite matrix in a closed convex set to approximate a given
matrix. This problem may arise in several areas of numerical linear algebra or come from finance industry or statistics and
thus has many applications. For solving this class of matrix optimization problems, many methods have been proposed in the
literature. The proximal alternating direction method is one of those methods which can be easily applied to solve these matrix
optimization problems. Generally, the proximal parameters of the proximal alternating direction method are greater than zero. In
this paper, we conclude that the restriction on the proximal parameters can be relaxed for solving this kind of matrix optimization
problems. Numerical experiments also show that the proximal alternating direction method with the relaxed proximal parameters
is convergent and generally has a better performance than the classical proximal alternating direction method.

1. Introduction

This paper concerns the following problem:

min
𝑋

{
1

2
‖𝑋 − 𝐶‖

2

𝐹
| 𝑋 ∈ 𝑆

𝑛

+
∩ 𝑆𝐵} , (1)

where 𝐶 ∈ 𝑅𝑛×𝑛 is a given symmetric matrix,

𝑆
𝑛

+
= {𝑋 ∈ 𝑅

𝑛×𝑛
| 𝑋
𝑇

= 𝑋,𝑋 ⪰ 0} ,

𝑆𝐵 = {𝑋 ∈ 𝑅
𝑛×𝑛

| Tr (𝐴 𝑖𝑋) = 𝑏𝑖, 𝑖 = 1, 2, . . . , 𝑝,

Tr (𝐺𝑗𝑋) ≤ 𝑑𝑗, 𝑗 = 1, 2, . . . , 𝑚} ,

(2)

matrices𝐴 𝑖 ∈ 𝑅𝑛×𝑛 and 𝐺𝑗 ∈ 𝑅𝑛×𝑛 are symmetric and scalars,
𝑏𝑖 and 𝑑𝑗 are the problem data, 𝑋 ⪰ 0 denotes that 𝑋 is a
positive semidefinite matrix, Tr denotes the trace of a matrix,
and ‖ ⋅ ‖𝐹 denotes the Frobenius norm; that is,

‖𝑋‖𝐹 = (Tr (𝑋𝑇𝑋))
1/2

= (

𝑛

∑
𝑖,𝑗=1

𝑋
2

𝑖𝑗
)

1/2

, (3)

and 𝑆
𝑛

+
∩ 𝑆𝐵 is nonempty. Throughout this paper, we assume

that the Slater’s constraint qualification condition holds so
that there is no duality gap if we use Lagrangian techniques
to find the optimal solution to problem (1).

Problem (1) is a type of matrix nearness problem, that is,
the problem of finding a matrix that satisfies some properties
and is nearest to a given one. Problem (1) can be called
the least squares covariance adjustment problem or the least
squares semidefinite programming problem and solved by
manymethods [1–4]. In a least squares covariance adjustment
problem, wemake adjustments to a symmetric matrix so that
it is consistent with prior knowledge or assumptions and a
valid covariancematrix [2, 5, 6].Thematrix nearness problem
hasmany applications especially in several areas of numerical
linear algebra, finance industry, and statistics in [6]. A recent
survey of matrix nearness problems can be found in [7]. It is
clear that the matrix nearness problem considered here is a
convex optimization problem. It thus follows from the strict
feasibility and coercivity of the objective function that the
minimum of (1) is attainable and unique.
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In the literature of interior point algorithms, 𝑆𝑛
+
is called

the semidefinite cone and the related problem (1) belongs to
the class of semidefinite programming (SDP) and second-
order cone programming (SOCP) [8]. In fact, it is possible
to reformulate problem (1) into a mixed SDP and SOCP as in
[3, 9]:

min 𝑡

s.t. ⟨𝐴 𝑖, 𝑋⟩ = 𝑏𝑖, 𝑖 = 1, 2, . . . , 𝑝,

⟨𝐺𝑗, 𝑋⟩ ≤ 𝑑𝑗, 𝑗 = 1, 2, . . . , 𝑚,

𝑡 ≥ ‖𝑋 − 𝐶‖𝐹,

𝑋 ∈ 𝑆
𝑛

+
,

(4)

where ⟨𝑋, 𝑌⟩ = Tr(𝑋𝑇𝑌).
Thus, problem (1) can be efficiently solved by standard

interior-point methods such as SeDuMi [10] and SDPT3 [11]
when the number of variables (i.e., entries in the matrix𝑋) is
modest, say under 1000 (corresponds to 𝑛 around 32) and the
number of equality and inequality constraints is not too large
(say 5,000) [2, 3, 12].

Specially, let

𝑆𝐵 = {𝑋 ∈ 𝑅
𝑛×𝑛

| Diag (𝑋) = 𝑒} , (5)

where Diag(𝑋) is the vector of diagonal elements of 𝑋 and
𝑒 is the vector of 1s. Then problem (1) can be viewed as the
nearest correlation matrix problem. For the nearest corre-
lation matrix problem, a quadratically convergent Newton
algorithm was presented recently by Qi and Sun [13], and
improved by Borsdorf and Higham [1]. For problem (1) with
equality and inequality constraints, one difficulty in finding
an efficient method for solving this problem is the presence
of the inequality constraints. In [3], Gao and Sun overcome
this difficulty by reformulating the problem as a system
of semismooth equations with two level metric projection
operators and then design an inexact smoothing Newton
method to solve the resulting semismooth system. For the
problem (1) with large number of equality and inequality
constraints, the numerical experiments in [14] show that the
alternating direction method (hereafter alternating direction
method is abbreviated as ADM) is more efficient in com-
puting time than the inexact smoothing Newton method
which additionally requires solving a large system of linear
equations at each iteration. The ADM has many applications
in solving optimization problems [15, 16]. Papers written by
Zhang, Han, Li, Yuan, and Bauschke and Borwein show that
the ADM can be applied to solve convex feasibility problems
[17–19].

The proximal ADM is a class of ADM type methods
which can also be easily applied to solve the matrix opti-
mization problems. Generally, the proximal parameters (i.e.,
the parameters 𝑟 and 𝑠 in (14) and (15)) of the proximal
ADM are greater than zero. In this paper, we will show that
the restriction on the proximal parameters can be relaxed
while the proximal ADM is used to solve problem (1).
Numerical experiments also show that the proximal ADM

with the relaxed proximal parameters generally has a better
performance than the classical proximal ADM.

The paper is organized as follows. In Section 2, we give
some preliminaries about the proximal alternating direction
method. In Section 3, we convert the problem (1) to a
structured variational inequality and apply the proximal
ADM to solve it. The basic analysis and convergent results
of the proximal ADM with relaxed proximal parameters are
built in Section 4. Preliminary numerical results are reported
in Section 5. Finally, we give some conclusions in Section 6.

2. Proximal Alternating Direction Method

In order to introduce the proximalADM,we first consider the
following structured variational inequality problem which
includes two separable subvariational inequality problems:
find (𝑥, 𝑦) ∈ Ω such that

(𝑥
󸀠 − 𝑥)

𝑇

𝑓 (𝑥) ≥ 0,

(𝑦󸀠 − 𝑦)
𝑇

𝑔 (𝑦) ≥ 0,
∀ (𝑥
󸀠
, 𝑦
󸀠
) ∈ Ω, (6)

where

Ω = {(𝑥, 𝑦) | 𝐴𝑥 + 𝐵𝑦 = 𝑏, 𝑥 ∈ X, 𝑦 ∈ Y} , (7)

𝑓 : 𝑅𝑛1 → 𝑅𝑛1 and 𝑔 : 𝑅𝑛2 → 𝑅𝑛2 are monotone; that is,

(𝑥 − 𝑥)
𝑇
(𝑓 (𝑥) − 𝑓 (𝑥)) ≥ 0, ∀𝑥, 𝑥 ∈ 𝑅

𝑛
1 ,

(𝑦 − 𝑦)
𝑇
(𝑔 (𝑦) − 𝑔 (𝑦)) ≥ 0, ∀𝑦, 𝑦 ∈ 𝑅

𝑛
2 ,

(8)

𝐴 ∈ 𝑅𝑙×𝑛1 , 𝐵 ∈ 𝑅𝑙×𝑛2 , and 𝑏 ∈ 𝑅𝑙; X ⊂ 𝑅𝑛1 and Y ⊂ 𝑅𝑛2

are closed convex sets. Studies of such variational inequality
can be found in Glowinski [20], Glowinski and Le Tallec [21],
Eckstein and Fukushima [22–24], He and Yang [25], He et al.
[26], and Xu [27].

By attaching a Lagrange multiplier vector 𝜆 ∈ 𝑅
𝑙 to

the linear constraint 𝐴𝑥 + 𝐵𝑦 = 𝑏, problem (6)-(7) can be
explained as the following form (see [20, 21, 24]): find 𝑤 =

(𝑥, 𝑦, 𝜆) ∈ W such that

(𝑥
󸀠 − 𝑥)

𝑇

[𝑓 (𝑥) − 𝐴𝑇𝜆] ≥ 0

(𝑦󸀠 − 𝑦)
𝑇

[𝑔 (𝑦) − 𝐵𝑇𝜆] ≥ 0, ∀𝑤󸀠 = (𝑥󸀠, 𝑦󸀠, 𝜆󸀠) ∈ W,

𝐴𝑥 + 𝐵𝑦 − 𝑏 = 0,

(9)

where

W = X × Y × 𝑅
𝑙
. (10)

For solving (9)-(10), Gabay [28] and Gabay and Mercier [29]
proposed the ADM method. In the classical ADM method,
the new iterate 𝑤

𝑘+1 = (𝑥𝑘+1, 𝑦𝑘+1, 𝜆𝑘+1) ∈ W is generated
from a given triple 𝑤𝑘 = (𝑥𝑘, 𝑦𝑘, 𝜆𝑘) ∈ W via the following
procedure.

First, 𝑥𝑘+1 is found by solving the following problem:

(𝑥
󸀠
− 𝑥)
𝑇

{𝑓 (𝑥) − 𝐴
𝑇
[𝜆
𝑘
− 𝛽 (𝐴𝑥 + 𝐵𝑦

𝑘
− 𝑏)]} ≥ 0,

∀𝑥
󸀠
∈ X,

(11)
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where 𝑥 ∈ X. Then, 𝑦𝑘+1 is obtained by solving

(𝑦
󸀠
− 𝑦)
𝑇

{𝑔 (𝑦) − 𝐵
𝑇
[𝜆
𝑘
− 𝛽 (𝐴𝑥

𝑘+1
+ 𝐵𝑦 − 𝑏)]} ≥ 0,

∀𝑦
󸀠
∈ Y,

(12)

where 𝑦 ∈ Y. Finally, the multiplier is updated by

𝜆
𝑘+1

= 𝜆 − 𝛽 (𝐴𝑥
𝑘+1

+ 𝐵𝑦
𝑘+1

− 𝑏) , (13)

where 𝛽 > 0 is a given penalty parameter for the linearly
constraint 𝐴𝑥 + 𝐵𝑦 − 𝑏 = 0. Most of the existing ADM
methods require that the subvariational inequality problems
(11)-(12) should be solved exactly at each iteration. Note
that the involved subvariational inequality problem (11)-(12)
may not be well-conditioned without strongly monotone
assumptions on 𝑓 and 𝑔. Hence, it is difficult to solve these
subvariational inequality problems exactly in many cases. In
order to improve the condition of solving the subproblem by
the ADM, some proximal ADMs were proposed (see, e.g.,
[26, 27, 30–34]). The classical proximal ADM is one of the
attractive ADMs. From a given triple 𝑤

𝑘 = (𝑥𝑘, 𝑦𝑘, 𝜆𝑘) ∈ W,
the classical proximal ADM produces the new iterate 𝑤𝑘+1 =

(𝑥𝑘+1, 𝑦𝑘+1, 𝜆𝑘+1) ∈ W by the following procedure.
First, 𝑥𝑘+1 is obtained by solving the following variational

inequality problem:

(𝑥
󸀠
− 𝑥)
𝑇

{𝑓 (𝑥) − 𝐴
𝑇
[𝜆
𝑘
− 𝛽 (𝐴𝑥 + 𝐵𝑦

𝑘
− 𝑏)]

+ 𝑟 (𝑥 − 𝑥
𝑘
)} ≥ 0, ∀𝑥

󸀠
∈ X,

(14)

where 𝑟 > 0 is the given proximal parameter and 𝑥 ∈ X.
Then, 𝑦𝑘+1 is found by solving

(𝑦
󸀠
− 𝑦)
𝑇

{𝑔 (𝑦) − 𝐵
𝑇
[𝜆
𝑘
− 𝛽 (𝐴𝑥

𝑘+1
+ 𝐵𝑦 − 𝑏)]

+ 𝑠 (𝑦 − 𝑦
𝑘
)} ≥ 0, ∀𝑦

󸀠
∈ Y,

(15)

where 𝑠 > 0 is the given proximal parameter and 𝑦 ∈ Y.
Finally, the multiplier is updated by

𝜆
𝑘+1

= 𝜆
𝑘
− 𝛽 (𝐴𝑥

𝑘+1
+ 𝐵𝑦
𝑘+1

− 𝑏) . (16)

In this paper, we will conclude that problem (1) can be
solved by the proximal ADM and the restriction on the
proximal parameters 𝑟 > 0, 𝑠 > 0 can be relaxed as
𝑟 > −1/2, 𝑠 > −1/2 when the proximal ADM is applied
to solve problem (1). Our numerical experiments later also
show that the numerical performance of the proximal ADM
with smaller value of proximal parameters is generally better
than the proximal ADM with comparatively larger value of
proximal parameters.

3. Converting Problem (1) to a Structured
Variational Inequality

In order to solve the problem (1) with proximal ADM, we
convert problem (1) to the following equivalent one:

min
𝑋,𝑌

1

2
‖𝑋 − 𝐶‖

2

𝐹
+

1

2
‖𝑌 − 𝐶‖

2

𝐹

s.t. 𝑋 − 𝑌 = 0,

𝑋 ∈ 𝑆
𝑛

+
, 𝑌 ∈ 𝑆𝐵.

(17)

Following the KKT condition of (17), the solution to (17) can
be found by finding 𝑤 = (𝑋, 𝑌, Λ) ∈ W such that

⟨𝑋󸀠 − 𝑋, (𝑋 − 𝐶) − Λ⟩ ≥ 0,

⟨𝑌󸀠 − 𝑌, (𝑌 − 𝐶) + Λ⟩ ≥ 0, ∀𝑤󸀠 = (𝑋󸀠, 𝑌󸀠, Λ󸀠) ∈ W,

𝑋 − 𝑌 = 0,

(18)

where

W = 𝑆
𝑛

+
× 𝑆𝐵 × 𝑅

𝑛×𝑛
. (19)

It is easy to see that problem (18)-(19) is a special case of
the structured variational inequality (9)-(10) and thus can be
solved by proximal ADM. For given 𝑤𝑘 = (𝑋𝑘, 𝑌𝑘, Λ𝑘) ∈

W, it is fortunate that the 𝑤𝑘+1 = (𝑋𝑘+1, 𝑌𝑘+1, Λ𝑘+1) can be
exactly obtained by the proximal ADM in the following way:

𝑋
𝑘+1

= 𝑃𝑆𝑛
+

{
1

1 + 𝛽 + 𝑟
(𝐶 + 𝑟𝑋

𝑘
+ 𝛽𝑌
𝑘
+ Λ
𝑘
)} , (20)

𝑌
𝑘+1

= 𝑃𝑆
𝐵

{
1

1 + 𝛽 + 𝑠
(𝐶 + 𝛽𝑋

𝑘+1
+ 𝑠𝑌
𝑘
− Λ
𝑘
)} , (21)

Λ
𝑘+1

= Λ
𝑘
− 𝛽 (𝑋

𝑘+1
− 𝑌
𝑘+1

) , (22)

where the projection of V on a nonempty closed convex set
𝑆 of 𝑅𝑚×𝑛 under Frobenius norm, denoted by 𝑃𝑆(V), is the
unique solution to the following problem; that is,

𝑃𝑆 (V) = argmin
𝑢

{‖𝑢 − V‖2𝐹 | 𝑢 ∈ 𝑆} . (23)

It follows that the solution to

min {
1

2
‖𝑍 − 𝑋‖

2

𝐹
| 𝑍 ∈ 𝑆

𝑛

+
} (24)

is called the projection of 𝑋 on 𝑆𝑛
+
and denoted by 𝑃𝑆𝑛

+

(𝑋).
Using the fact that matrix Frobenius norm is invariant under
unitary transform, it is known (see [35]) that

𝑃𝑆𝑛
+

(𝑋) = 𝑄Λ̃𝑄
𝑇
, (25)

where

𝑄
𝑇
𝑋𝑄 = diag (𝜆1, . . . , 𝜆𝑛) (26)

is the symmetric Schur decomposition of𝑋 (𝑄 = (𝑞1, . . . , 𝑞𝑛)

is an orthogonalmatrix whose column vector 𝑞𝑖, 𝑖 = 1, . . . , 𝑛,
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is the eigenvector of 𝑋, and 𝜆𝑖, 𝑖 = 1, . . . , 𝑛, is the related
eigenvalue),

Λ̃ = diag (𝜆̃1, . . . , 𝜆̃𝑛) , 𝜆̃𝑖 = max (𝜆𝑖, 0) . (27)

In order to obtain the projection 𝑃𝑆
𝐵

(𝑋), we need to solve the
following quadratic program:

min
𝑍

1

2
‖𝑍 − 𝑋‖

2

𝐹

s.t. Tr (𝐴 𝑖𝑍) = 𝑏𝑖, 𝑖 = 1, 2, . . . , 𝑝,

Tr (𝐺𝑗𝑍) ≤ 𝑑𝑗, 𝑗 = 1, 2, . . . , 𝑚.

(28)

The dual problem of (28) can be written as

min
V

1

2
V𝑇𝐻V + 𝑞

𝑇V

s.t. V ∈ 𝑅
𝑝

× 𝑅
𝑚

+
,

(29)

where 𝐻 is positive semidefinite and 𝐻 and 𝑞 have the
following form, respectively:

𝐻 =

(
(
(
(
(
(
(
(
(
(

(

Tr (𝐴1𝐴
𝑇

1
) ⋅ ⋅ ⋅ Tr (𝐴1𝐴

𝑇

𝑝
) Tr (𝐴1𝐺

𝑇

1
) ⋅ ⋅ ⋅ Tr (𝐴1𝐺

𝑇

𝑚
)

... ⋅ ⋅ ⋅
...

... ⋅ ⋅ ⋅
...

Tr (𝐴𝑝𝐴
𝑇

1
) ⋅ ⋅ ⋅ Tr (𝐴𝑝𝐴

𝑇

𝑝
) Tr (𝐴𝑝𝐺

𝑇

1
) ⋅ ⋅ ⋅ Tr (𝐴𝑝𝐺

𝑇

𝑚
)

Tr (𝐺1𝐴
𝑇

1
) ⋅ ⋅ ⋅ Tr (𝐺1𝐴

𝑇

𝑝
) Tr (𝐺1𝐺

𝑇

1
) ⋅ ⋅ ⋅ Tr (𝐺1𝐺

𝑇

𝑚
)

... ⋅ ⋅ ⋅
...

... ⋅ ⋅ ⋅
...

Tr (𝐺𝑚𝐴
𝑇

1
) ⋅ ⋅ ⋅ Tr (𝐺𝑚𝐴

𝑇

𝑝
) Tr (𝐺𝑚𝐺

𝑇

1
) ⋅ ⋅ ⋅ Tr (𝐺𝑚𝐺

𝑇

𝑚
)

)
)
)
)
)
)
)
)
)
)

)

, 𝑞 =

(
(
(
(
(
(

(

𝑏1 − Tr (𝐴1𝑋)
...

𝑏𝑝 − Tr (𝐴𝑝𝑋)

𝑑1 − Tr (𝐺1𝑋)

...
𝑑𝑚 − Tr (𝐺𝑚𝑋)

)
)
)
)
)
)

)

. (30)

Problem (29) is often amedium-scale quadratic program-
ming (QP) problem. A variety of methods for solving the QP
are commonly used, including interior-point methods and
active set algorithm (see [36, 37]).

Particularly, if 𝑆𝐵 is the following special case:

𝑆𝐵 = {𝑋 ∈ 𝑅
𝑛×𝑛

| 𝑋
𝑇

= 𝑋,𝐻𝐿 ≤ 𝑋 ≤ 𝐻𝑈} , (31)

where𝐻 ≥ 0 expresses that each element of𝐻 is nonnegative,
𝐻𝐿 and 𝐻𝑈 are given 𝑛 × 𝑛 symmetric matrices, and 𝑋 ≤ 𝐻𝑈
means that 𝐻𝑈 − 𝑋 ≥ 0; then 𝑃𝑆

𝐵

(𝑋) is easy to be carried out
and is given by

𝑃𝑆
𝐵
(𝑋) = min (max (𝑋,𝐻𝐿) ,𝐻𝑈) , (32)

where max(𝑋, 𝑌) and min(𝑋, 𝑌) compute the element-wise
maximum and minimum of matrix 𝑋 and 𝑌, respectively.

4. Main Results

Let {𝑤𝑘} be the sequence generated by applying the pro-
cedure (14)–(16) to problem (18)-(19); then for any 𝑤󸀠 =

(𝑋󸀠, 𝑌󸀠, Λ󸀠) ∈ W, we have that

⟨𝑋
󸀠
− 𝑋
𝑘+1

, 𝑋
𝑘+1

− 𝐶 − Λ
𝑘+1

− 𝛽 (𝑌
𝑘
− 𝑌
𝑘+1

)

+ 𝑟 (𝑋
𝑘+1

− 𝑋
𝑘
)⟩ ≥ 0,

⟨𝑌
󸀠
− 𝑌
𝑘+1

, 𝑌
𝑘+1

− 𝐶 + Λ
𝑘+1

+ 𝑠 (𝑌
𝑘+1

− 𝑌
𝑘
)⟩ ≥ 0,

Λ
𝑘+1

= Λ
𝑘
− 𝛽 (𝑋

𝑘+1
− 𝑌
𝑘+1

) .

(33)

Further, letting

𝐹 (𝑤
𝑘+1

) = (

𝑋𝑘+1 − 𝐶 − Λ𝑘+1

𝑌𝑘+1 − 𝐶 + Λ𝑘+1

𝑋𝑘+1 − 𝑌𝑘+1
),

𝑑1 (𝑤
𝑘
, 𝑤
𝑘+1

) = (

𝑟𝐼𝑛 0 0

0 (𝑠 + 𝛽) 𝐼𝑛 0

0 0
1

𝛽
𝐼𝑛

)(

𝑋𝑘 − 𝑋𝑘+1

𝑌𝑘 − 𝑌𝑘+1

Λ𝑘 − Λ𝑘+1
),

(34)

where 𝐼𝑛 ∈ 𝑅𝑛×𝑛 is the unit matrix, and

𝑑2 (𝑤
𝑘
, 𝑤
𝑘+1

) = 𝐹 (𝑤
𝑘+1

) − 𝛽(

𝐼𝑛
−𝐼𝑛
0

) (𝑌
𝑘
− 𝑌
𝑘+1

) , (35)

then we can get the following lemmas.

Lemma 1. Let {𝑤𝑘} be the sequence generated by applying the
proximal ADM to problem (18)-(19) and let 𝑤∗ ∈ W∗ be any
solution to problem (18)-(19); then one has

⟨𝑤
𝑘+1

− 𝑤
∗
, 𝑑2 (𝑤

𝑘
, 𝑤
𝑘+1

)⟩

≥ −⟨Λ
𝑘
− Λ
𝑘+1

, 𝑌
𝑘
− 𝑌
𝑘+1

⟩ +
󵄩󵄩󵄩󵄩󵄩
𝑋
𝑘+1

− 𝑋
∗󵄩󵄩󵄩󵄩󵄩

2

𝐹

+
󵄩󵄩󵄩󵄩󵄩
𝑌
𝑘+1

− 𝑌
∗󵄩󵄩󵄩󵄩󵄩

2

𝐹
.

(36)
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Proof. From (22) and (35), we have

⟨𝑤
𝑘+1

− 𝑤
∗
, 𝑑2 (𝑤

𝑘
, 𝑤
𝑘+1

)⟩ = − ⟨Λ
𝑘
− Λ
𝑘+1

, 𝑌
𝑘
− 𝑌
𝑘+1

⟩

+ ⟨𝑤
𝑘+1

− 𝑤
∗
, 𝐹 (𝑤

𝑘+1
)⟩ .

(37)

Since (9) and 𝑤∗ are a solution to problem (18)-(19) and
𝑋𝑘+1 ∈ 𝑆𝑛

+
, 𝑌𝑘+1 ∈ 𝑆𝐵, we have

⟨𝑤
𝑘+1

− 𝑤
∗
, 𝐹 (𝑤

∗
)⟩ ≥ 0. (38)

From (38), it follows that

⟨𝑤
𝑘+1

− 𝑤
∗
, 𝐹 (𝑤

𝑘+1
) − 𝐹 (𝑤

𝑘+1
) + 𝐹 (𝑤

∗
)⟩ ≥ 0. (39)

Thus, we have

⟨𝑤
𝑘+1

− 𝑤
∗
, 𝐹 (𝑤

𝑘+1
)⟩

≥ ⟨𝑤
𝑘+1

− 𝑤
∗
, 𝐹 (𝑤

𝑘+1
) − 𝐹 (𝑤

∗
)⟩

= ⟨𝑋
𝑘+1

− 𝑋
∗
, 𝑋
𝑘+1

− 𝑋
∗

− (Λ
𝑘+1

− Λ
∗
)⟩

+ ⟨𝑌
𝑘+1

− 𝑌
∗
, 𝑌
𝑘+1

− 𝑌
∗

+ (Λ
𝑘+1

− Λ
∗
)⟩

+ ⟨Λ
𝑘+1

− Λ
∗
, 𝑋
𝑘+1

− 𝑋
∗

− (𝑌
𝑘+1

− 𝑌
∗
)⟩

= ⟨𝑋
𝑘+1

− 𝑋
∗
, 𝑋
𝑘+1

− 𝑋
∗
⟩ + ⟨𝑌

𝑘+1
− 𝑌
∗
, 𝑌
𝑘+1

− 𝑌
∗
⟩

=
󵄩󵄩󵄩󵄩󵄩
𝑋
𝑘+1

− 𝑋
∗󵄩󵄩󵄩󵄩󵄩

2

𝐹
+

󵄩󵄩󵄩󵄩󵄩
𝑌
𝑘+1

− 𝑌
∗󵄩󵄩󵄩󵄩󵄩

2

𝐹
.

(40)

Substituting (40) into (37), we get the assertion of this lemma.

Lemma 2. Let {𝑤𝑘} be the sequence generated by applying the
proximal ADM to problem (18)-(19) and let 𝑤∗ ∈ W∗ be any
solution to problem (18)-(19); then one has

⟨𝑤
𝑘
− 𝑤
∗
, 𝐺0 (𝑤

𝑘
− 𝑤
𝑘+1

)⟩

≥ ⟨𝑤
𝑘
− 𝑤
𝑘+1

, 𝐺0 (𝑤
𝑘
− 𝑤
𝑘+1

)⟩ − ⟨Λ
𝑘
− Λ
𝑘+1

, 𝑌
𝑘
− 𝑌
𝑘+1

⟩

+
󵄩󵄩󵄩󵄩󵄩
𝑋
𝑘+1

− 𝑋
∗󵄩󵄩󵄩󵄩󵄩

2

𝐹
+

󵄩󵄩󵄩󵄩󵄩
𝑌
𝑘+1

− 𝑌
∗󵄩󵄩󵄩󵄩󵄩

2

𝐹
,

(41)

where

𝐺0 = (

𝑟𝐼𝑛 0 0

0 (𝑠 + 𝛽) 𝐼𝑛 0

0 0
1

𝛽
𝐼𝑛

). (42)

Proof. It follows from (33) that

⟨𝑤
󸀠
− 𝑤
𝑘+1

, 𝑑2 (𝑤
𝑘
, 𝑤
𝑘+1

) − 𝑑1 (𝑤
𝑘
, 𝑤
𝑘+1

)⟩ ≥ 0,

∀𝑤
󸀠
∈ W.

(43)

Thus, we have

⟨𝑤
𝑘+1

− 𝑤
∗
, 𝑑1 (𝑤

𝑘
, 𝑤
𝑘+1

)⟩

≥ ⟨𝑤
𝑘+1

− 𝑤
∗
, 𝑑2 (𝑤

𝑘
, 𝑤
𝑘+1

)⟩

≥ −⟨Λ
𝑘
− Λ
𝑘+1

, 𝑌
𝑘
− 𝑌
𝑘+1

⟩ +
󵄩󵄩󵄩󵄩󵄩
𝑋
𝑘+1

− 𝑋
∗󵄩󵄩󵄩󵄩󵄩

2

𝐹

+
󵄩󵄩󵄩󵄩󵄩
𝑌
𝑘+1

− 𝑌
∗󵄩󵄩󵄩󵄩󵄩

2

𝐹
.

(44)

From the above inequality, we get

⟨𝑤
𝑘
− 𝑤
∗
, 𝐺0 (𝑤

𝑘
− 𝑤
𝑘+1

)⟩

≥ ⟨𝑤
𝑘
− 𝑤
𝑘+1

, 𝐺0 (𝑤
𝑘
− 𝑤
𝑘+1

)⟩

− ⟨Λ
𝑘
− Λ
𝑘+1

, 𝑌
𝑘
− 𝑌
𝑘+1

⟩ +
󵄩󵄩󵄩󵄩󵄩
𝑋
𝑘+1

− 𝑋
∗󵄩󵄩󵄩󵄩󵄩

2

𝐹

+
󵄩󵄩󵄩󵄩󵄩
𝑌
𝑘+1

− 𝑌
∗󵄩󵄩󵄩󵄩󵄩

2

𝐹
.

(45)

Hence, (41) holds and the proof is completed.

Theorem 3. Let {𝑤𝑘} be the sequence generated by applying
the proximal ADM to problem (18)-(19) and let 𝑤∗ ∈ W∗ be
any solution to problem (18)-(19); then one has

󵄩󵄩󵄩󵄩󵄩
𝑤
𝑘+1

− 𝑤
∗󵄩󵄩󵄩󵄩󵄩

2

𝐺
≤

󵄩󵄩󵄩󵄩󵄩
𝑤
𝑘
− 𝑤
∗󵄩󵄩󵄩󵄩󵄩

2

𝐺

− ⟨𝑤
𝑘
− 𝑤
𝑘+1

,𝑀 (𝑤
𝑘
− 𝑤
𝑘+1

)⟩ ,

(46)

where

𝐺 = (

(𝑟 + 1) 𝐼𝑛 0 0

0 (1 + 𝑠 + 𝛽) 𝐼𝑛 0

0 0
1

𝛽
𝐼𝑛

),

𝑀 = (

(
1

2
+ 𝑟) 𝐼𝑛 0 0

0 (
1

2
+ 𝑠 + 𝛽) 𝐼𝑛 −𝐼𝑛

0 −𝐼𝑛
1

𝛽
𝐼𝑛

),

(47)

and ‖𝑤‖
2

𝐺
= ⟨𝑤, 𝐺𝑤⟩.

Proof. From (41), we have

󵄩󵄩󵄩󵄩󵄩
𝑤
𝑘+1

− 𝑤
∗󵄩󵄩󵄩󵄩󵄩

2

𝐺
0

=
󵄩󵄩󵄩󵄩󵄩
𝑤
𝑘
− 𝑤
∗

− (𝑤
𝑘
− 𝑤
𝑘+1

)
󵄩󵄩󵄩󵄩󵄩

2

𝐺
0

≤
󵄩󵄩󵄩󵄩󵄩
𝑤
𝑘
− 𝑤
∗󵄩󵄩󵄩󵄩󵄩

2

𝐺
0

− 2
󵄩󵄩󵄩󵄩󵄩
𝑤
𝑘
− 𝑤
𝑘+1󵄩󵄩󵄩󵄩󵄩

2

𝐺
0
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+ 2 ⟨Λ
𝑘
− Λ
𝑘+1

, 𝑌
𝑘
− 𝑌
𝑘+1

⟩ − 2
󵄩󵄩󵄩󵄩󵄩
𝑋
𝑘+1

− 𝑋
∗󵄩󵄩󵄩󵄩󵄩

2

𝐹

− 2
󵄩󵄩󵄩󵄩󵄩
𝑌
𝑘+1

− 𝑌
∗󵄩󵄩󵄩󵄩󵄩

2

𝐹
+

󵄩󵄩󵄩󵄩󵄩
𝑤
𝑘
− 𝑤
𝑘+1󵄩󵄩󵄩󵄩󵄩

2

𝐺
0

=
󵄩󵄩󵄩󵄩󵄩
𝑤
𝑘
− 𝑤
∗󵄩󵄩󵄩󵄩󵄩

2

𝐺
0

−
󵄩󵄩󵄩󵄩󵄩
𝑤
𝑘
− 𝑤
𝑘+1󵄩󵄩󵄩󵄩󵄩

2

𝐺
0

+ 2 ⟨Λ
𝑘
− Λ
𝑘+1

, 𝑌
𝑘
− 𝑌
𝑘+1

⟩ − 2
󵄩󵄩󵄩󵄩󵄩
𝑋
𝑘+1

− 𝑋
∗󵄩󵄩󵄩󵄩󵄩

2

𝐹

− 2
󵄩󵄩󵄩󵄩󵄩
𝑌
𝑘+1

− 𝑌
∗󵄩󵄩󵄩󵄩󵄩

2

𝐹
.

(48)

Rearranging the inequality above, we find that

󵄩󵄩󵄩󵄩󵄩
𝑤
𝑘+1

− 𝑤
∗󵄩󵄩󵄩󵄩󵄩

2

𝐺
≤
󵄩󵄩󵄩󵄩󵄩
𝑤
𝑘
− 𝑤
∗󵄩󵄩󵄩󵄩󵄩

2

𝐺
− ⟨𝑤

𝑘
− 𝑤
𝑘+1

,(

𝑟𝐼𝑛 0 0

0 (𝑠 + 𝛽) 𝐼𝑛 −𝐼𝑛

0 −𝐼𝑛
1

𝛽
𝐼𝑛

)(𝑤
𝑘
− 𝑤
𝑘+1

)⟩ − (
󵄩󵄩󵄩󵄩󵄩
𝑋
𝑘+1

− 𝑋
∗󵄩󵄩󵄩󵄩󵄩

2

𝐹
+

󵄩󵄩󵄩󵄩󵄩
𝑋
𝑘
− 𝑋
∗󵄩󵄩󵄩󵄩󵄩

2

𝐹
)

− (
󵄩󵄩󵄩󵄩󵄩
𝑌
𝑘+1

− 𝑌
∗󵄩󵄩󵄩󵄩󵄩

2

𝐹
+

󵄩󵄩󵄩󵄩󵄩
𝑌
𝑘
− 𝑌
∗󵄩󵄩󵄩󵄩󵄩

2

𝐹
) .

(49)

Using the Cauchy-Schwarz Inequality on the last term of the
right-hand side of (49), we obtain

󵄩󵄩󵄩󵄩󵄩
𝑋
𝑘+1

− 𝑋
∗󵄩󵄩󵄩󵄩󵄩

2

𝐹
+

󵄩󵄩󵄩󵄩󵄩
𝑋
𝑘
− 𝑋
∗󵄩󵄩󵄩󵄩󵄩

2

𝐹
≥

1

2

󵄩󵄩󵄩󵄩󵄩
𝑋
𝑘+1

− 𝑋
𝑘󵄩󵄩󵄩󵄩󵄩

2

𝐹
,

󵄩󵄩󵄩󵄩󵄩
𝑌
𝑘+1

− 𝑌
∗󵄩󵄩󵄩󵄩󵄩

2

𝐹
+

󵄩󵄩󵄩󵄩󵄩
𝑌
𝑘
− 𝑌
∗󵄩󵄩󵄩󵄩󵄩

2

𝐹
≥

1

2

󵄩󵄩󵄩󵄩󵄩
𝑌
𝑘+1

− 𝑌
𝑘󵄩󵄩󵄩󵄩󵄩

2

𝐹
.

(50)

Substituting (50) into (49), we get

󵄩󵄩󵄩󵄩󵄩
𝑤
𝑘+1

− 𝑤
∗󵄩󵄩󵄩󵄩󵄩

2

𝐺
≤

󵄩󵄩󵄩󵄩󵄩
𝑤
𝑘
− 𝑤
∗󵄩󵄩󵄩󵄩󵄩

2

𝐺

− ⟨𝑤
𝑘
− 𝑤
𝑘+1

,𝑀 (𝑤
𝑘
− 𝑤
𝑘+1

)⟩ .

(51)

Thus, the proof is completed.

Based on theTheorem 3, we get the following lemma.

Lemma 4. Let {𝑤𝑘} be the sequence generated by applying
proximal ADM to problem (18)-(19), 𝑤∗ ∈ W∗ any solution
to problem (18)-(19), 𝑟 > −1/2, and 𝑠 > −1/2; then one has the
following.

(1) The sequence {‖𝑤𝑘 − 𝑤∗‖
2

𝐺
} is nonincreasing;

(2) The sequence {𝑤𝑘} is bounded;

(3) lim𝑘→∞‖𝑤𝑘+1 − 𝑤𝑘‖
2

𝐹
= 0;

(4) 𝐺 and𝑀 are both symmetric positive-definitematrices.

Proof. Since

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(
1

2
+ 𝑠 + 𝛽) 𝐼𝑛 −𝐼𝑛

−𝐼𝑛
1

𝛽
𝐼𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=
((1/2) + 𝑠)

𝛽
, (52)

it is easy to check that if 𝑟 > −1/2, 𝑠 > −1/2, then 𝐺 and 𝑀

are symmetric positive-definite matrices.
Let 𝜏 > 0 be the smallest eigenvalue of matrix 𝑀. Then,

from (46), we have
󵄩󵄩󵄩󵄩󵄩
𝑤
𝑘+1

− 𝑤
∗󵄩󵄩󵄩󵄩󵄩

2

𝐺
≤

󵄩󵄩󵄩󵄩󵄩
𝑤
𝑘
− 𝑤
∗󵄩󵄩󵄩󵄩󵄩

2

𝐺
− 𝜏

󵄩󵄩󵄩󵄩󵄩
𝑤
𝑘
− 𝑤
𝑘+1󵄩󵄩󵄩󵄩󵄩

2

𝐹
. (53)

Following (53), we immediately have that ‖𝑤𝑘 − 𝑤∗‖
2

𝐺
is non-

increasing and thus the sequence {𝑤𝑘} is bounded. Moreover,
we have

󵄩󵄩󵄩󵄩󵄩
𝑤
𝑘+1

− 𝑤
∗󵄩󵄩󵄩󵄩󵄩

2

𝐺
≤

󵄩󵄩󵄩󵄩󵄩
𝑤
0
− 𝑤
∗󵄩󵄩󵄩󵄩󵄩

2

𝐺
− 𝜏

𝑘

∑
𝑗=0

󵄩󵄩󵄩󵄩󵄩
𝑤
𝑗
− 𝑤
𝑗+1󵄩󵄩󵄩󵄩󵄩

2

𝐹
. (54)

So, we get

𝑘

∑
𝑗=0

󵄩󵄩󵄩󵄩󵄩
𝑤
𝑗
− 𝑤
𝑗+1󵄩󵄩󵄩󵄩󵄩

2

𝐹
< ∞, ∀𝑘 > 0, (55)

then

lim
𝑘→∞

󵄩󵄩󵄩󵄩󵄩
𝑤
𝑘
− 𝑤
𝑘+1󵄩󵄩󵄩󵄩󵄩

2

𝐹
= 0. (56)

Thus, the proof is completed.

Following Lemma 4, now we are in the stage of giving the
main convergence results of proximal ADM with 𝑟 > −1/2

and 𝑠 > −1/2 for problem (18)-(19).

Theorem 5. Let {𝑤
𝑘} be the sequence generated by applying

proximal ADM to problem (18)-(19), 𝑟 > −1/2, and 𝑠 > −1/2;
then {𝑤𝑘} converges to a solution point of (18)-(19).

Proof. Since the sequence {𝑤𝑘} is bounded (see point (2) of
Lemma 4), it has at least one cluster point. Let𝑤∞ be a cluster
point of {𝑤𝑘} and the subsequence {𝑤𝑘𝑗} converges to 𝑤∞. It
follows from (33) that

lim
𝑗→∞

⟨𝑋
󸀠
− 𝑋
𝑘
𝑗
+1

, 𝑋
𝑘
𝑗
+1

− 𝐶 − Λ
𝑘
𝑗
+1

− 𝛽 (𝑌
𝑘
𝑗 − 𝑌
𝑘
𝑗
+1

)

+ 𝑟 (𝑋
𝑘
𝑗
+1

− 𝑋
𝑘
𝑗)⟩ ≥ 0,
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Table 1: Numerical results of Example 6.

𝑛
𝑟 = −0.3, 𝑠 = −0.3 𝑟 = 0, 𝑠 = 0 𝑟 = 3, 𝑠 = 3

It. CPU. It. CPU. It. CPU.
100 31 0.292 34 0.331 72 0.764
200 33 1.346 39 1.570 84 3.364
300 38 4.265 41 5.746 90 9.991
400 40 9.872 43 9.919 94 22.03
500 39 15.83 45 18.39 98 39.91

lim
𝑗→∞

⟨𝑌
󸀠
− 𝑌
𝑘
𝑗
+1

, 𝑌
𝑘
𝑗
+1

− 𝐶 + Λ
𝑘
𝑗
+1

+ 𝑠 (𝑌
𝑘
𝑗
+1

− 𝑌
𝑘
𝑗)⟩

≥ 0, ∀𝑤
󸀠
∈ W,

lim
𝑗→∞

Λ
𝑘
𝑗
+1

= Λ
𝑘
𝑗 − 𝛽 (𝑋

𝑘
𝑗
+1

− 𝑌
𝑘
𝑗
+1

) .

(57)

Following point (3) of Lemma 4, we have

⟨𝑋
󸀠
− 𝑋
∞

, 𝑋
∞

− 𝐶 − Λ
∞

⟩ ≥ 0,

⟨𝑌󸀠 − 𝑌∞, 𝑌∞ − 𝐶 + Λ∞⟩ ≥ 0, ∀𝑤󸀠 ∈ W,

𝑋∞ − 𝑌∞ = 0.

(58)

This means that 𝑤∞ is a solution point of (18)-(19). Since
{𝑤𝑘𝑗} converges to 𝑤∞, we have that, for any given 𝜀 > 0,
there exists an integer 𝑁 > 0 such that

󵄩󵄩󵄩󵄩󵄩
𝑤
𝑘
𝑗 − 𝑤
∞󵄩󵄩󵄩󵄩󵄩

2

𝐺
< 𝜀, ∀𝑘𝑗 ≥ 𝑁. (59)

Furthermore, using the inequality (53), we have

󵄩󵄩󵄩󵄩󵄩
𝑤
𝑘
− 𝑤
∞󵄩󵄩󵄩󵄩󵄩

2

𝐺
<

󵄩󵄩󵄩󵄩󵄩
𝑤
𝑘
𝑗 − 𝑤
∞󵄩󵄩󵄩󵄩󵄩

2

𝐺
, ∀𝑘 ≥ 𝑘𝑗. (60)

Combining (59) and (60), we get that

󵄩󵄩󵄩󵄩󵄩
𝑤
𝑘
− 𝑤
∞󵄩󵄩󵄩󵄩󵄩

2

𝐺
< 𝜀, ∀𝑘 > 𝑁. (61)

This implies that the sequence {𝑤
𝑘} converges to 𝑤∞. So the

proof is completed.

5. Numerical Experiments

In this section, we implement the proximal ADM to solve the
problem (1) and show the numerical performances of proxi-
mal ADM with different proximal parameters. Additionally,
we compare the classical ADM (i.e., the proximal ADM with
proximal parameters 𝑟 = 0 and 𝑠 = 0) with the alternating
projections method proposed by Higham [6] numerically
and show that the alternating projections method is not
equivalent to proximal ADMwith zero proximal parameters.
All the codes were written in Matlab 7.1 and run on IBM
notebook PC R400.

Example 6. In the first numerical experiment, we set the 𝐶1
as an 𝑛 × 𝑛 matrix whose entries are generated randomly in

[−1, 1]. Let 𝐶 = (𝐶1 + 𝐶𝑇
1
)/2 and further let the diagonal

elements of 𝐶 be 1 that is, 𝐶𝑖𝑖 = 1, 𝑖 = 1, 2, . . . , 𝑛. In this test
example, we simply let 𝑆𝐵 be in the form of (31) and

𝐻𝐿 = (𝑙𝑖𝑗) ∈ 𝑅
𝑛×𝑛

,

𝑙𝑖𝑗 = {
−0.5, 𝑖 ̸=𝑗

1, 𝑖 = 𝑗,
𝑖, 𝑗 = 1, 2, . . . , 𝑛,

𝐻𝑈 = (𝑢𝑖𝑗) ∈ 𝑅
𝑛×𝑛

,

𝑢𝑖𝑗 = {
0.5, 𝑖 ̸=𝑗

1, 𝑖 = 𝑗,
𝑖, 𝑗 = 1, 2, . . . , 𝑛.

(62)

Moreover, let 𝑋0 = eye(𝑛), 𝑌0 = eye(𝑛), Λ0 = zeroes(𝑛),
𝛽 = 4, and 𝜀 = 10−6, where eye(𝑛) and zeroes(𝑛) are both the
Matlab functions. For different problem size 𝑛 and different
proximal parameters 𝑟 and 𝑠, Table 1 shows the computational
results. There, we report the number of iterations (It.) and
the computing time in seconds (CPU.) it takes to reach
convergence. The stopping criterion of the proximal ADM is

󵄩󵄩󵄩󵄩󵄩
𝑤
𝑘+1

− 𝑤
𝑘󵄩󵄩󵄩󵄩󵄩max < 𝜀, (63)

where ‖𝑋‖max = max(max(abs(𝑋))) is the maximum
absolute value of the elements of the matrix 𝑋.

Remark 7. Note that if the proximal parameters are equal to
zero, that is, 𝑟 = 0 and 𝑠 = 0, then the proximal ADM is the
classical ADM.

Example 8. All the data are the same as in Example 6 except
that 𝐶1 is an 𝑛 × 𝑛 matrix whose entries are generated
randomly in [−1000, 1000],

𝐻𝐿 = (𝑙𝑖𝑗) ∈ 𝑅
𝑛×𝑛

,

𝑙𝑖𝑗 = {
−500, 𝑖 ̸=𝑗

1000, 𝑖 = 𝑗,
𝑖, 𝑗 = 1, 2, . . . , 𝑛,

𝐻𝑈 = (𝑢𝑖𝑗) ∈ 𝑅
𝑛×𝑛

,

𝑢𝑖𝑗 = {
500, 𝑖 ̸=𝑗

1000, 𝑖 = 𝑗,
𝑖, 𝑗 = 1, 2 . . . , 𝑛.

(64)

The computational results are reported in Table 2.

Example 9. Let 𝑆𝐵 be in the formof (31) and 𝑙𝑖𝑗 = 0, 𝑢𝑖𝑗 = +∞,
𝑖, 𝑗 = 1, 2, . . . , 𝑛. Assume that 𝐶, 𝑋0, 𝑌0, Λ 0, 𝛽, 𝜀, and the
stopping criterion are the same as those in Example 6, but
the diagonal elements of matrix 𝐶 are replaced by

𝐶𝑖𝑖 = 𝛼 + (1 − 𝛼) × rand, 𝑖 = 1, 2, . . . , 𝑛, (65)

where 𝛼 ∈ (0, 1) is a given number, rand is the Matlab
function generating a number randomly in [0, 1]. In the
following numerical experiments, we let𝛼 = 0.2. For different
problem size 𝑛 and different proximal parameters 𝑟 and 𝑠,
Table 3 shows the number of iterations and the computing
time in seconds it takes to reach convergence.
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Table 2: Numerical results of Example 8.

𝑛
𝑟 = −0.3, 𝑠 = −0.3 𝑟 = 0, 𝑠 = 0 𝑟 = 3, 𝑠 = 3

It. CPU. It. CPU. It. CPU.
100 49 0.476 54 0.551 116 1.837
200 51 2.197 57 2.334 128 5.430
300 59 6.614 61 8.108 136 15.25
400 56 12.74 63 14.51 140 31.65
500 58 23.90 66 26.90 147 59.98

Table 3: Numerical results of Example 9.

𝑛
𝑟 = −0.3, 𝑠 = −0.3 𝑟 = 0, 𝑠 = 0 𝑟 = 3, 𝑠 = 3

It. CPU. It. CPU. It. CPU.
100 32 0.282 35 0.288 70 0.566
200 33 1.295 36 1.397 72 4.006
300 34 3.745 37 4.156 73 8.285
400 34 7.885 37 8.571 73 16.73
500 34 14.07 37 15.42 74 29.87

Table 4: Numerical results of Example 10.

5
𝑟 = −0.3, 𝑠 = −0.3 𝑟 = 0, 𝑠 = 0 𝑟 = 3, 𝑠 = 3

It. CPU. It. CPU. It. CPU.
100 32 0.259 35 0.300 70 0.557
200 33 1.306 36 1.424 72 2.880
300 33 3.750 37 4.087 72 7.958
400 34 7.799 37 8.546 74 16.98
500 34 13.96 37 16.10 74 30.77

Table 5: (a) Numerical results of Example 11 with 𝑛𝑟 = 5. (b)
Numerical results of Example 11 with 𝑛𝑟 = 10.

(a)

𝑛
𝑟 = −0.3, 𝑠 = −0.3 𝑟 = 0, 𝑠 = 0 𝑟 = 1, 𝑠 = 1

It. CPU. It. CPU. It. CPU.
100 22 0.293 25 0.354 34 0.448
200 25 2.119 28 2.425 40 3.436
300 27 7.141 30 8.024 44 11.64
400 29 17.40 31 18.59 46 27.32
500 30 34.17 33 37.45 48 53.84

(b)

𝑛
𝑟 = −0.3, 𝑠 = −0.3 𝑟 = 0, 𝑠 = 0 𝑟 = 1, 𝑠 = 1

It. CPU. It. CPU. It. CPU.
100 23 0.309 25 0.342 33 0.439
200 24 2.029 27 2.305 38 3.162
300 27 7.150 29 7.801 42 11.29
400 28 16.68 31 18.47 45 26.60
500 29 32.73 32 36.37 47 53.06

Example 10. All the data are the same as in Example 9 except
that 𝛼 = 0. The computational results are reported in Table 4.

Example 11. Let 𝐶1 be an 𝑛 × 𝑛 matrix whose entries are
generated randomly in [−0.5, 0.5], 𝐶 = (𝐶1 + 𝐶𝑇

1
)/2, and let

the diagonal elements of 𝐶 be 1. And let

𝑆𝐵 = {𝑋 ∈ 𝑅
𝑛×𝑛

| 𝑋 = 𝑋
𝑇
, 𝑋𝑖𝑗 = 𝑒𝑖𝑗, (𝑖, 𝑗) ∈ B𝑒,

𝑋𝑖𝑗 ≥ 𝑙𝑖𝑗, (𝑖, 𝑗) ∈ B𝑙,

𝑋𝑖𝑗 ≤ 𝑢𝑖𝑗, (𝑖, 𝑗) ∈ B𝑢} ,

(66)

where B𝑒, B𝑙, B𝑢 are subsets of {(𝑖, 𝑗) | 1 ≤ 𝑖, 𝑗 ≤ 𝑛}

denoting the indexes of such entries of𝑋 that are constrained
by equality, lower bounds, and upper bounds, respectively. In
this test example, we let the index sets B𝑒, B𝑙, and B𝑢 be
the same as in Example 5.4 of [3]; that is, B𝑒 = {(𝑖, 𝑖) | 𝑖 =

1, 2, . . . , 𝑛} and B𝑙,B𝑢 ⊂ {(𝑖, 𝑗) | 1 ≤ 𝑖 < 𝑗 ≤ 𝑛} consist
of the indices of min(𝑛𝑟, 𝑛 − 𝑖) randomly generated elements
at the 𝑖th row of 𝑋, 𝑖 = 1, 2, . . . , 𝑛 with 𝑛𝑟 = 5 and 𝑛𝑟 = 10,
respectively. We take 𝑒𝑖𝑖 = 1 for (𝑖, 𝑖) ∈ B𝑒, 𝑙𝑖𝑗 = −0.1 for
(𝑖, 𝑗) ∈ B𝑙, and 𝑢𝑖𝑗 = 0.1 for (𝑖, 𝑗) ∈ B𝑢.

Moreover, let 𝑋0, 𝑌0, Λ 0, 𝛽, 𝜀, and the stopping criterion
be the same as those in Example 6. For different problem size
𝑛, different proximal parameters 𝑟 and 𝑠, and different values
of 𝑛𝑟, Tables 5(a) and 5(b) show the number of iterations and
the computing time in seconds it takes to reach convergence,
respectively.

Numerical experiments show that the proximal ADM
with relaxed parameters is convergent. Moreover, we draw
the conclusion that the proximal ADM with smaller value
of proximal parameters generally converges more quickly
than the proximal ADM with comparatively larger value of
proximal parameters to solve the problem (1).

Example 12. In this test example, we apply the proximal ADM
with 𝑟 = 0, 𝑠 = 0 (i.e., the classical ADM) to solve the nearest
correlation matrix problem, that is, problem (1) with 𝑆𝐵 in
the form of (5), and compare the classical ADM numerically
with the alternating projectionsmethod (APM) [6].TheAPM
computes the nearest correlation matrix to a symmetric 𝐶 ∈

𝑅
𝑛×𝑛 by the following process:

Δ𝑆0 = 0, 𝑌0 = 𝐶;
for 𝑘 = 1, 2, . . .

𝑅𝑘 = 𝑌𝑘−1 − Δ𝑆𝑘−1;
𝑋𝑘 = 𝑃𝑆𝑛

+

(𝑅𝑘);
Δ𝑆𝑘 = 𝑋𝑘 − 𝑅𝑘;
𝑌𝑘 = 𝑃𝑆

𝐵

(𝑋𝑘);
end.

In this numerical experiment, the stopping criterion of
the APM is

max {
󵄩󵄩󵄩󵄩𝑋𝑘 − 𝑋𝑘−1

󵄩󵄩󵄩󵄩max,
󵄩󵄩󵄩󵄩𝑌𝑘 − 𝑌𝑘−1

󵄩󵄩󵄩󵄩max,
󵄩󵄩󵄩󵄩𝑋𝑘 − 𝑌𝑘

󵄩󵄩󵄩󵄩max} < 𝜀.

(67)

Let the matrix 𝐶 and the initial parameters of classical
ADM be the same as those in Example 6. Table 6(a) reports
the numerical performance of proximal ADM and the APM
for computing the nearest correlation matrix to 𝐶.
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Table 6: (a) Numerical results of Example 12. (b) Numerical results
of Example 12.

(a)

𝑛
ADM APM

It. CPU. It. CPU.
100 28 0.381 47 0.743
200 33 2.878 59 5.443
300 36 9.462 70 20.68
400 38 22.50 81 54.38
500 39 43.32 89 114.7

(b)

𝑛
ADM APM

It. CPU. It. CPU.
100 27 0.634 42 0.582
200 30 2.590 59 5.428
300 32 8.524 65 19.36
400 34 20.34 75 50.79
500 35 39.43 86 111.6

Further, let 𝐶1 be an 𝑛 × 𝑛 matrix whose entries are
generated randomly in [0, 1] and 𝐶 = (𝐶1 + 𝐶𝑇

1
)/2. The

other data are the same as above. Table 6(b) reports the
numerical performance of the classical ADM and the APM
for computing the nearest correlation matrix to the matrix
𝐶. Numerical experiments show that the classical ADM
generally exhibits a better numerical performance than the
APM for the test problems above.

6. Conclusions

In this paper, we apply the proximal ADM to a class of
matrix optimization problems and find that the restriction
of proximal parameters can be relaxed. Moreover, numerical
experiments show that the proximal ADM with relaxed
parameters generally has a better numerical performance in
solving the matrix optimization problem than the classical
proximal alternating direction method.
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The paper is concerned with the dynamic oligopolistic market equilibrium problem in the realistic case in which we allow the
presence of capacity constraints and production excesses and, moreover, we assume that the production function depends not
only on the time but also on the equilibrium distribution. As a consequence, we introduce the generalized dynamic Cournot-
Nash principle in the elastic case and prove the equivalence between this equilibrium definition and a suitable evolutionary quasi-
variational inequality. For completeness we make the analysis of existence, regularity, and sensitivity of the solution. In the end, a
numerical example is provided.

1. Introduction

The aim of the paper is to improve the results obtained in
[1] concerning the dynamic oligopolistic market equilibrium
problem in presence of production excesses by introducing
the dependence on the equilibrium commodity shipment in
the production function (see K∗(𝑥∗) in (4)) and, as a conse-
quence, studying the so-called elastic model. This is a more
realistic situation since it is reasonable to think that the
production function is influenced not only by the time, but
also by the evaluation of the amount of commodity shipment,
namely, the forecasted equilibrium solution. The presence
of production excesses may be well justified in periods of
economic crisis, so it is possible that some of the amounts of
the commodity available are sold out whereas for a part of the
products, an excess of production can occur.

In the last decade a lot of problems considering a fea-
sible set depending on equilibrium solutions have been
studied (see, e.g., [2–4]). It is well known that the equilib-
rium models with fixed constraint sets may be expressed in
terms of evolutionary variational inequalities, while models
with elastic constraint sets are expressed by evolutionary
quasi-variational inequalities. Moreover, the dependence on
time leads to considering variational and quasi-variational

inequalities in an infinite dimensional setting, for example,
a Lebesgue space.

Let us remember that a dynamic oligopolistic market
equilibrium problem is the problem of finding a trade equi-
librium in a supply-demand market between a finite number
of spatially separated firms producing homogeneous goods in
a fixed time interval. Moreover, the firms act in a noncooper-
ative behavior. This problem has its origin with Cournot [5].
He considered only two firms and for this reason it was called
the duopoly problem. Later, Nash [6, 7] extended Cournot’s
duopoly problem to 𝑛 agents. A more complete and efficient
study was done by Nagurney et al. in [8–11], but the problem
was still faced in a static case through a finite dimensional
variational approach. Finally, in [12] the time dependencewas
considered in the model. It allows to explore the change of
behavior of equilibrium states for the oligopolistic market
models over a finite time interval of interest. As Beckmann
and Wallace stressed, for the first time, in [13], “the time-
dependent formulation of equilibrium problems allows one
to explore the dynamics of adjustment processes in which a
delay on time response is operating.” Of course a delay on
time response always happens because the processes do not
have an infinite speed.Usually, such adjustment processes can
be represented by means of a memory term which depends
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on previous equilibrium solutions according to the Volterra
operator (see, e.g., [14, 15]).

Furthermore, in [16] the authors describe the behavior of
the market by using the Lagrange multipliers of the infinite
dimensional duality theory developed in [17–21]. Such results
make use of the notion of tangent cone, normal cone, and
quasi-relative interior of sets (see [22, 23]), important tools
to overcome the difficulty of the emptiness of the topological
interior of the ordering cone which defines constraints of
several infinite dimensional problems (see [24, 25]). More-
over, a sensitivity result has been obtained which states that,
under additional assumptions, small changes of the solution
happen in correspondence with small changes of the profit
function.

Lately, in [1, 26], the model presented in [12] has been
improved with the addition of production excesses and
both production and demand excesses, respectively. Another
important question is to find some regularity properties for
the solution. In [1, 26], the continuity of solution is proved
under suitable assumptions, and it results to be very helpful
in order to introduce numerical schemes to compute equilib-
rium solutions (see [27, 28]).

In [29, 30], the authors abandon the study of the problem
froma producer’s point of viewwhose purpose is tomaximize
his own profit and focus their attention on the policy-maker’s
perspective whose aim is to control the commodity exporta-
tions by means of the imposition of taxes or incentives and
formulate the resulting optimization problem as an inverse
variational inequality.

This paper is structured as follows. In Section 2we present
the dynamic oligopolistic market equilibrium problem with
the elastic production function and after that we give the def-
inition of equilibrium according to the generalized Cournot-
Nash principle. Moreover, we prove the equivalence with a
suitable evolutionary quasi-variational inequality. Section 3 is
devoted to prove a result of existence of the solution, while in
Section 4 Kuratowski’s set convergence will be a preliminary
property in order to prove the continuity of the equilibrium
solution. In Section 5 we establish a sensitivity result that
shows how the equilibrium solution can change if the data
have been perturbed. In Section 6 a numerical example is
provided to make the theoretical model presented in the
previous sections more clearer.

2. Quasi-Variational Inequalities in
Dynamic Oligopolistic Markets

Let us consider 𝑚 firms 𝑃𝑖, 𝑖 = 1, . . . , 𝑚, that produce a
homogeneous commodity and 𝑛 demand markets 𝑄𝑗, 𝑗 =

1, . . . , 𝑛, that are generally spatially separated. Assume that
the homogeneous commodity, produced by the 𝑚 firms and
consumed by the 𝑛markets, is involved during a time interval
[0, 𝑇], 𝑇 > 0.

Let 𝑥𝑖𝑗(𝑡), 𝑖 = 1, . . . , 𝑚 and 𝑗 = 1, . . . , 𝑛, denote the non-
negative commodity shipment between the supply market 𝑃𝑖
and the demandmarket𝑄𝑗 at the time 𝑡 ∈ [0, 𝑇]. In particular,
let us set the vector 𝑥𝑖(𝑡) = (𝑥𝑖1(𝑡), . . . , 𝑥𝑖𝑛(𝑡)), 𝑖 = 1, . . . , 𝑚

and 𝑡 ∈ [0, 𝑇], as the strategy vector for the firm 𝑃𝑖.

Let us group the commodity shipments into a matrix
function 𝑥 : [0, 𝑇] → R𝑚𝑛

+
and suppose that 𝑥 ∈ 𝐿

2
([0,

𝑇],R𝑚𝑛
+
). Furthermore, we assume that the nonnegative com-

modity shipment𝑥𝑖𝑗 between the producer𝑃𝑖 and the demand
market𝑄𝑗 has to satisfy time-dependent constraints, namely,
there exist two nonnegative functions 𝑥, 𝑥 : [0, 𝑇] → R𝑚𝑛

+

such that

0 ≤ 𝑥
𝑖𝑗
(𝑡) ≤ 𝑥𝑖𝑗 (𝑡) ≤ 𝑥𝑖𝑗 (𝑡) , ∀𝑖 = 1, . . . , 𝑚,

∀𝑗 = 1, . . . , 𝑛, a.e. in [0, 𝑇] ,
(1)

and suppose that 𝑥, 𝑥 ∈ 𝐿2([0, 𝑇],R𝑚𝑛
+
).

Let us denote

𝐷 = {𝑥 ∈ 𝐿
2
([0, 𝑇] ,R

𝑚𝑛
) : 𝑥
𝑖𝑗
(𝑡) ≤ 𝑥𝑖𝑗 (𝑡) ≤ 𝑥𝑖𝑗 (𝑡) ,

∀𝑖 = 1, . . . , 𝑚,

∀𝑗 = 1, . . . , 𝑛, a.e. in [0, 𝑇] } .
(2)

It is easy to verify that𝐷 is a nonempty, compact, and convex
subset of 𝐿2([0, 𝑇],R𝑚𝑛). Let 𝑝𝑖(𝑡, 𝑥(𝑡)), 𝑖 = 1, . . . , 𝑚, denote
the nonnegative commodity output produced by firm 𝑃𝑖 at
the time 𝑡 ∈ [0, 𝑇]. Let us group the production output into a
vector function 𝑝 : [0, 𝑇] ×𝐷 → R𝑚

+
and let us suppose that

𝑝 ∈ 𝐿1([0, 𝑇] × 𝐷,R𝑚
+
).

Now, let us introduce the production excesses. Let 𝜖𝑖(𝑡),
𝑖 = 1, . . . , 𝑚, be the nonnegative production excess for the
commodity of the firm 𝑃𝑖 at the time 𝑡 ∈ [0, 𝑇]. Let us group
the production excess into a vector function 𝜖 : [0, 𝑇] → R𝑚

+

and let us assume that 𝜖 ∈ 𝐿2([0, 𝑇],R𝑚).
We consider a formulation of equilibrium problems

where the dependence of the production on the unknown
solution 𝑥∗ is in the average sense with respect to the time;
namely, the following feasibility condition holds:

𝑛

∑
𝑗=1

𝑥𝑖𝑗 (𝑡) + 𝜖𝑖 (𝑡) =
1

𝑇
∫
𝑇

0

𝑝𝑖 (𝑡, 𝑥
∗
(𝜏)) 𝑑𝜏,

𝑖 = 1, . . . , 𝑚, a.e. in [0, 𝑇] .

(3)

Hence, condition (3) states that the average of the quantity
produced by each firm 𝑃𝑖, in the time interval [0, 𝑇], must
be equal to the commodity shipments from that firm to all
the demand markets plus the production excess, at the time
𝑡 ∈ [0, 𝑇]. In fact, the production is supposed to depend on
the firms’ evaluation of the commodity shipments. So one can
expect the producers not to evaluate themarket practicability
instantly, but by an average with respect to the whole time
interval.
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The set of feasible vectors (𝑥, 𝜖) ∈ 𝐿2([0, 𝑇],R𝑚𝑛+𝑚) is
then given by the set-valued map K : 𝐷 → 2𝐿

2
([0,𝑇],R𝑚𝑛+𝑚

+
)

defined as:

K
∗
(𝑥
∗
)

= { (𝑥, 𝜖) ∈ 𝐿
2
([0, 𝑇] ,R

𝑚𝑛+𝑚
) :

𝑥
𝑖𝑗
(𝑡) ≤ 𝑥𝑖𝑗 (𝑡) ≤ 𝑥𝑖𝑗 (𝑡) , ∀𝑖 = 1, . . . , 𝑚,

∀𝑗 = 1, . . . , 𝑛, a.e. in [0, 𝑇] ,
𝑛

∑
𝑗=1

𝑥𝑖𝑗 (𝑡) + 𝜖𝑖 (𝑡) =
1

𝑇
∫
𝑇

0

𝑝𝑖 (𝑡, 𝑥
∗
(𝜏)) 𝑑𝜏,

∀𝑖 = 1, . . . , 𝑚, a.e. in [0, 𝑇] , 𝜖𝑖 (𝑡) ≥ 0,

∀𝑖 = 1, . . . , 𝑚, a.e. in [0, 𝑇] } .

(4)

Moreover, let us associate with each firm 𝑃𝑖 a production
cost 𝑓∗

𝑖
, 𝑖 = 1, . . . , 𝑚, and assume that the production cost

of a firm 𝑃𝑖 may depend upon the entire production pattern;
namely,

𝑓
∗

𝑖
= 𝑓
∗

𝑖
(𝑡, 𝑥 (𝑡) , 𝜀 (𝑡)) . (5)

Similarly, let us associate with each demand market 𝑄𝑗 a
demand price for unity of the commodity𝑑𝑗, 𝑗 = 1, . . . , 𝑛, and
assume that the demand price of a demand market 𝑄𝑗 may
depend, in general, upon the entire consumption pattern;
namely,

𝑑𝑗 = 𝑑𝑗 (𝑡, 𝑥 (𝑡)) . (6)

Let 𝑔∗
𝑖
, 𝑖 = 1, . . . , 𝑚, denote the storage cost of the commodity

produced by the firm𝑃𝑖 and assume that this costmay depend
upon the entire production pattern; namely,

𝑔
∗

𝑖
= 𝑔
∗

𝑖
(𝑡, 𝑥 (𝑡) , 𝜀 (𝑡)) . (7)

Finally, let 𝑐𝑖𝑗, 𝑖 = 1, . . . , 𝑚 and 𝑗 = 1, . . . , 𝑛, denote the trans-
action cost, which includes the transportation cost associated
with trading the commodity between firm 𝑃𝑖 and demand
market 𝑄𝑗. Here we permit the transaction cost to depend
upon the entire shipment pattern; namely,

𝑐𝑖𝑗 = 𝑐𝑖𝑗 (𝑡, 𝑥 (𝑡)) . (8)

Hence, we have the following mappings:

𝑓
∗
: [0, 𝑇] × 𝐿

2
([0, 𝑇] ,R

𝑚𝑛

+
)

× 𝐿
2
([0, 𝑇] ,R

𝑚

+
) 󳨀→ 𝐿

2
([0, 𝑇] ,R

𝑚

+
) ,

𝑑 : [0, 𝑇] × 𝐿
2
([0, 𝑇] ,R

𝑚𝑛

+
) 󳨀→ 𝐿

2
([0, 𝑇] ,R

𝑛

+
) ,

𝑔
∗
: [0, 𝑇] × 𝐿

2
([0, 𝑇] ,R

𝑚𝑛

+
)

× 𝐿
2
([0, 𝑇] ,R

𝑚

+
) 󳨀→ 𝐿

2
([0, 𝑇] ,R

𝑚

+
) ,

𝑐 : [0, 𝑇] × 𝐿
2
([0, 𝑇] ,R

𝑚𝑛

+
) 󳨀→ 𝐿

2
([0, 𝑇] ,R

𝑚𝑛

+
) .

(9)

The profit V∗
𝑖
(𝑡, 𝑥(𝑡), 𝜀(𝑡)), 𝑖 = 1, . . . , 𝑚, of the firm 𝑃𝑖 at the

time 𝑡 ∈ [0, 𝑇] is, then,

V∗
𝑖
(𝑡, 𝑥 (𝑡) , 𝜀 (𝑡))

=

𝑛

∑
𝑗=1

𝑑𝑗 (𝑡, 𝑥 (𝑡)) 𝑥𝑖𝑗 (𝑡)

− 𝑓
∗

𝑖
(𝑡, 𝑥 (𝑡) , 𝜀 (𝑡)) − 𝑔

∗

𝑖
(𝑡, 𝑥 (𝑡) , 𝜀 (𝑡))

−

𝑛

∑
𝑗=1

𝑐𝑖𝑗 (𝑡, 𝑥 (𝑡)) 𝑥𝑖𝑗 (𝑡) ;

(10)

namely, it is equal to the price that the demand markets are
disposed to payminus the production costs, the storage costs,
and the transportation costs.

By virtue of (3), we can express the nonnegative produc-
tion excess 𝜖𝑖(𝑡) at the time 𝑡 ∈ [0, 𝑇] in terms of the integral
average of the production function and the commodity
shipment. As a consequence, we get

𝑛

∑
𝑗=1

𝑥𝑖𝑗 (𝑡) ≤
1

𝑇
∫
𝑇

0

𝑝𝑖 (𝑡, 𝑥
∗
(𝜏)) 𝑑𝜏,

∀𝑖 = 1, . . . , 𝑚, a.e. in [0, 𝑇] .

(11)

Then, the production costs and the storage costs, by virtue of
(5) and (7), respectively, become

𝑓𝑖 (𝑡, 𝑥 (𝑡)) = 𝑓
∗

𝑖
(𝑡, 𝑥 (𝑡) , 𝜖 (𝑡)) ,

𝑔𝑖 (𝑡, 𝑥 (𝑡)) = 𝑔
∗

𝑖
(𝑡, 𝑥 (𝑡) , 𝜖 (𝑡)) ,

(12)

and, analogously, the profit (10) becomes

V𝑖 (𝑡, 𝑥 (𝑡)) = V∗
𝑖
(𝑡, 𝑥 (𝑡) , 𝜖 (𝑡))

=

𝑛

∑
𝑗=1

𝑑𝑗 (𝑡, 𝑥 (𝑡)) 𝑥𝑖𝑗 (𝑡) − 𝑓𝑖 (𝑡, 𝑥 (𝑡))

− 𝑔𝑖 (𝑡, 𝑥 (𝑡)) −

𝑛

∑
𝑗=1

𝑐𝑖𝑗 (𝑡, 𝑥 (𝑡)) 𝑥𝑖𝑗 (𝑡) .

(13)

As a consequence, the set of feasible vectors 𝑥 ∈

𝐿2([0, 𝑇],R𝑚𝑛) becomes the set-valued map K : 𝐷 →

2𝐿
2
([0,𝑇],R𝑚𝑛

+
), defined as

K (𝑥
∗
)

= {𝑥 ∈ 𝐿
2
([0, 𝑇] ,R

𝑚𝑛

+
) :

𝑥
𝑖𝑗
(𝑡) ≤ 𝑥𝑖𝑗 (𝑡) ≤ 𝑥𝑖𝑗 (𝑡) , ∀𝑖 = 1, . . . , 𝑚,

∀𝑗 = 1, . . . , 𝑛, a.e. in [0, 𝑇] ,
𝑛

∑
𝑗=1

𝑥𝑖𝑗 (𝑡) ≤
1

𝑇
∫
𝑇

0

𝑝𝑖 (𝑡, 𝑥
∗
(𝜏)) 𝑑𝜏,

∀𝑖 = 1, . . . , 𝑚, a.e. in [0, 𝑇] } .

(14)
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Let us denote 𝑥𝑖 = {𝑥𝑖𝑗}𝑗=1,...,𝑛
, 𝑖 = 1, . . . , 𝑚, and ∇𝐷V =

(𝜕V𝑖/𝜕𝑥𝑖𝑗) 𝑖=1,...,𝑚
𝑗=1,...,𝑛

. Let us assume the following assumptions:

(i) V𝑖(𝑡, 𝑥(𝑡)) is continuously differentiable for each 𝑖 =
1, . . . , 𝑚, a.e. in [0, 𝑇],

(ii) ∇𝐷V = (𝜕V𝑖/𝜕𝑥𝑖𝑗) 𝑖=1,...,𝑚
𝑗=1,...,𝑛

is a Carathéodory function,

such that

∃𝛾 ∈ 𝐿
2
([0, 𝑇]) :

󵄩󵄩󵄩󵄩∇𝐷V (𝑡, 𝑥)
󵄩󵄩󵄩󵄩𝑚𝑛 ≤ 𝛾 (𝑡) + ‖𝑥‖𝑚𝑛,

∀𝑥 ∈ R
𝑚𝑛
, a.e. in [0, 𝑇] ,

(15)

(iii) V𝑖(𝑡, 𝑥(𝑡)) is pseudoconcave with respect to the vari-
ables 𝑥𝑖, 𝑖 = 1, . . . , 𝑚, a.e. in [0, 𝑇].

For the reader’s convenience, we recall that a function V, con-
tinuously differentiable, is called pseudoconcave with respect
to 𝑥𝑖, 𝑖 = 1, . . . , 𝑚, a.e. in [0, 𝑇] (see [31]), if the following
holds a.e. in [0, 𝑇]:

⟨∇𝐷V𝑖 (𝑡, 𝑥1, . . . , 𝑥𝑖, . . . , 𝑥𝑚) , 𝑥𝑖 − 𝑦𝑖⟩

=

𝑛

∑
𝑗=1

𝜕V𝑖 (𝑡, 𝑥)
𝜕𝑥𝑖𝑗

(𝑥𝑖𝑗 − 𝑦𝑖𝑗) ≥ 0

󳨐⇒ V𝑖 (𝑡, 𝑥1, . . . , 𝑥𝑖, . . . , 𝑥𝑚)

≥ V𝑖 (𝑡, 𝑥1, . . . , 𝑦𝑖, . . . , 𝑥𝑚) .

(16)

Moreover, we recall that in the Hilbert space 𝐿2([0,

𝑇],R𝑘), we define the canonical bilinear form on 𝐿2([0, 𝑇],
R𝑘)
∗
× 𝐿2([0, 𝑇],R𝑘) by

⟨⟨𝜙, 𝑤⟩⟩ := ∫
𝑇

0

⟨𝜙 (𝑡) , 𝑤 (𝑡)⟩ 𝑑𝑡, (17)

where 𝜙 ∈ (𝐿2([0, 𝑇],R𝑘))∗ = 𝐿2([0, 𝑇],R𝑘), 𝑤 ∈ 𝐿2([0, 𝑇],

R𝑘), and

⟨𝜙 (𝑡) , 𝑤 (𝑡)⟩ =

𝑘

∑
𝑙=1

𝜙𝑙 (𝑡) 𝑤𝑙 (𝑡) . (18)

Now, let us consider the dynamic oligopolistic market, in
which the𝑚 firms supply the commodity in a noncooperative
fashion, each one trying tomaximize its own profit at the time
𝑡 ∈ [0, 𝑇]. We seek to determine a nonnegative commodity
distributionmatrix function𝑥∗ for which the𝑚 firms and the
𝑛 demand markets will be in a state of equilibrium according
to the dynamic Cournot-Nash principle.

Definition 1. 𝑥∗ ∈ K(𝑥∗) is a dynamic oligopolistic market
equilibrium in presence of production excesses if and only if
for each 𝑖 = 1, . . . , 𝑚 and a.e. in [0, 𝑇]

V𝑖 (𝑡, 𝑥
∗
(𝑡)) ≥ V𝑖 (𝑡, 𝑥𝑖 (𝑡) , 𝑥

∗

𝑖
(𝑡)) , a.e. in [0, 𝑇] , (19)

where 𝑥𝑖(𝑡) = (𝑥𝑖1(𝑡), . . . , 𝑥𝑖𝑛(𝑡)) and 𝑥
∗

𝑖
(𝑡) = (𝑥∗

1
(𝑡), . . . ,

𝑥∗
𝑖−1
(𝑡), 𝑥∗
𝑖+1
(𝑡), . . . , 𝑥∗

𝑚
(𝑡)), for 𝑖 = 1, . . . , 𝑚, a.e. in [0, 𝑇].

Definition 1 states that each firm 𝑃𝑖 maximizes its own
profit, at the time 𝑡 ∈ [0, 𝑇], considering the given optimal
strategy 𝑥∗

𝑖
(𝑡) of the other firms.

Theorem 2. Suppose that assumptions (i), (ii), and (iii) are
satisfied. Then, 𝑥∗ ∈ K(𝑥∗) is a dynamic oligopolistic market
equilibrium according to Definition 1 if and only if it satisfies
the evolutionary quasi-variational inequality

∫
𝑇

0

𝑚

∑
𝑖=1

𝑛

∑
𝑗=1

(−
𝜕V𝑖 (𝑡, 𝑥

∗
(𝑡))

𝜕𝑥𝑖𝑗
)(𝑥𝑖𝑗 (𝑡) − 𝑥

∗

𝑖𝑗
(𝑡)) 𝑑𝑡 ≥ 0

∀𝑥 ∈ K (𝑥
∗
) .

(20)

Proof. First of all, let us prove that the evolutionary quasi-
variational inequality (20), that we can write as follows:

∫
𝑇

0

𝑚

∑
𝑖=1

𝑛

∑
𝑗=1

−
𝜕V𝑖 (𝑡, 𝑥

∗
(𝑡))

𝜕𝑥𝑖𝑗
(𝑥𝑖𝑗 (𝑡) − 𝑥

∗

𝑖𝑗
(𝑡)) 𝑑𝑡

= ⟨⟨−∇𝐷V (𝑥
∗
) , 𝑥 − 𝑥

∗
⟩⟩

= ∫
𝑇

0

⟨−∇𝐷V (𝑡, 𝑥
∗
(𝑡)) , 𝑥 (𝑡) − 𝑥

∗
(𝑡)⟩ 𝑑𝑡 ≥ 0

∀𝑥 ∈ K (𝑥
∗
) ,

(21)

is equivalent to the following point-to-point quasi-variational
inequality:

⟨−∇𝐷V (𝑡, 𝑥
∗
(𝑡)) , 𝑥 (𝑡) − 𝑥

∗
(𝑡)⟩

=

𝑚

∑
𝑖=1

𝑛

∑
𝑗=1

−
𝜕V𝑖 (𝑡, 𝑥

∗
(𝑡))

𝜕𝑥𝑖𝑗
(𝑥i𝑗 (𝑡) − 𝑥

∗

𝑖𝑗
(𝑡)) ≥ 0

∀𝑥 (𝑡) ∈ K (𝑡, 𝑥
∗
) , a.e. in [0, 𝑇] ,

(22)

where

K (𝑡, 𝑥
∗
)

=
{

{

{

𝑥 (𝑡) ∈ R
𝑚𝑛

+
: 𝑥
𝑖𝑗
(𝑡) ≤ 𝑥𝑖𝑗 (𝑡) ≤ 𝑥𝑖𝑗 (𝑡) ,

∀𝑖 = 1, . . . , 𝑚, ∀𝑗 = 1, . . . , 𝑛,

𝑛

∑
𝑗=1

𝑥𝑖𝑗 (𝑡) ≤
1

𝑇
∫
𝑇

0

𝑝𝑖 (𝑡, 𝑥
∗
(𝜏)) 𝑑𝜏,

∀𝑖 = 1, . . . , 𝑚
}

}

}

.

(23)

In fact, let us suppose by absurdum that (22) does not hold,
namely, ∃𝑥(𝑡) ∈ K(𝑥∗), ∃𝐼 ⊆ [0, 𝑇] with𝑚(𝐼) > 0 such that

⟨−∇𝐷V (𝑡, 𝑥
∗
(𝑡)) , 𝑥 (𝑡) − 𝑥

∗
(𝑡)⟩ < 0 a.e. in 𝐼. (24)

Let us choose, now,

𝑥 (𝑡) = {
𝑥∗ (𝑡) , in [0, 𝑇] \ 𝐼,
𝑥 (𝑡) , in 𝐼.

(25)
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Hence, let us consider

⟨⟨−∇𝐷V (𝑡, 𝑥
∗
(𝑡)) , 𝑥 − 𝑥

∗
⟩⟩

= ∫
[0,𝑇]\𝐼

⟨−∇𝐷V (𝑡, 𝑥
∗
(𝑡)) , 𝑥 (𝑡) − 𝑥

∗
(𝑡)⟩ 𝑑𝑡

+ ∫
𝐼

⟨−∇𝐷V (𝑡, 𝑥
∗
(𝑡)) , 𝑥 (𝑡) − 𝑥

∗
(𝑡)⟩ 𝑑𝑡 < 0,

(26)

that is a contradiction. The vice versa is immediate.
So the equivalence between the evolutionary quasi-

variational inequalities (20) and (22) is proved.
Let us prove, now, the equivalence between the dynamic

Cournot-Nash principle and the evolutionary quasi-varia-
tional inequality (20).

Let us suppose that 𝑥∗ ∈ K(𝑥∗) is an equilibrium point
according to Definition 1; namely,

V𝑖 (𝑡, 𝑥
∗
(𝑡)) ≥ V𝑖 (𝑡, 𝑥 (𝑡) , 𝑥

∗
(𝑡)) ∀𝑥 (𝑡) ∈ K (𝑡, 𝑥

∗
) ,

a.e. in [0, 𝑇] , ∀𝑖 = 1, . . . , 𝑚.
(27)

For well known theorems of optimization, we have that the
necessary and sufficient condition to get (27) is that for all
𝑖 = 1, . . . , 𝑚, for all 𝑥(𝑡) ∈ K(𝑡, 𝑥∗), a.e. in [0, 𝑇]

⟨−∇𝐷V𝑖 (𝑡, 𝑥
∗
(𝑡)) , 𝑥𝑖 (𝑡) − 𝑥

∗

𝑖
(𝑡)⟩

=

𝑛

∑
𝑗=1

−
𝜕V𝑖 (𝑡, 𝑥

∗
(𝑡))

𝜕𝑥𝑖𝑗
(𝑥𝑖𝑗 (𝑡) − 𝑥

∗

𝑖𝑗
(𝑡)) ≥ 0.

(28)

By assumption that∇𝐷V𝑖 is a Carathéodory function such that

∃𝛾 ∈ 𝐿
2
([0, 𝑇]) :

󵄩󵄩󵄩󵄩∇𝐷V𝑖 (𝑡, 𝑥)
󵄩󵄩󵄩󵄩𝑚𝑛

≤ 𝛾 (𝑡) + ‖𝑥‖𝑚𝑛, ∀𝑥 ∈ R
𝑚𝑛
, a.e. in [0, 𝑇] ,

(29)

moreover, 𝑥 and 𝑥∗ ∈ 𝐿2([0, 𝑇],R𝑚𝑛), so we have

𝑡 󳨀→ ⟨−∇𝐷V𝑖 (𝑡, 𝑥
∗
(𝑡)) , 𝑥𝑖 (𝑡) − 𝑥

∗

𝑖
(𝑡)⟩ ∈ 𝐿

2
([0, 𝑇] ,R) .

(30)

Then, we get

⟨⟨−∇𝐷V𝑖 (𝑡, 𝑥
∗
(𝑡)) , 𝑥𝑖 − 𝑥

∗

𝑖
⟩⟩ ≥ 0 ∀𝑥 ∈ K (𝑥

∗
) , (31)

fromwhich, by summing up each firm 𝑃𝑖, for 𝑖 = 1, . . . , 𝑚, we
obtain
𝑚

∑
𝑖=1

⟨⟨−∇𝐷V𝑖 (𝑡, 𝑥
∗
(𝑡)) , 𝑥 − 𝑥

∗
⟩⟩

= ⟨⟨−∇𝐷V (𝑡, 𝑥
∗
(𝑡)) , 𝑥𝑖 − 𝑥

∗

𝑖
⟩⟩ ≥ 0 ∀𝑥 ∈ K (𝑥

∗
) .

(32)

Vice versa, let us suppose that 𝑥∗(𝑡) is a solution to
evolutionary quasi-variational inequality (20), but not an

equilibrium solution according to the dynamic Cournot-
Nash principle, namely, ∃𝐼 ⊆ [0, 𝑇] with 𝑚(𝐼) > 0, ∃𝑖 ∈
{1, . . . , 𝑚} and ∃𝑥

𝑖
such that

V
𝑖
(𝑡, 𝑥
∗
(𝑡)) < V

𝑖
(𝑡, 𝑥𝑖 (𝑡) , 𝑥

∗
(𝑡)) in 𝐼. (33)

Since the profit function V
𝑖
(𝑡, 𝑥(𝑡)) is pseudoconcave with

respect to 𝑥
𝑖
, we get

⟨−∇𝐷V𝑖 (𝑡, 𝑥
∗
(𝑡)) , 𝑥

∗

𝑖
(𝑡) − 𝑥

𝑖
(𝑡)⟩ < 0 in 𝐼. (34)

If we choose 𝑥 ∈ K(𝑥∗) such that

𝑥𝑖 (𝑡) =

{{

{{

{

𝑥∗
𝑖
(𝑡) in [0, 𝑇] \ 𝐼, ∀𝑖 = 1, . . . , 𝑚,

𝑥∗
𝑖
(𝑡) in 𝐼, if 𝑖 ̸= 𝑖,

𝑥𝑖 in 𝐼, if 𝑖 = 𝑖,
(35)

then

∫
𝑇

0

⟨−∇𝐷V (𝑡, 𝑥
∗
(𝑡)) , 𝑥 (𝑡) − 𝑥

∗
(𝑡)⟩ 𝑑𝑡

= ∫
𝐼

⟨−∇𝐷V𝑖 (𝑡, 𝑥
∗
(𝑡)) , 𝑥

𝑖
(𝑡) − 𝑥

∗

𝑖
(𝑡)⟩ 𝑑𝑡 < 0,

(36)

so we get the contradiction.

3. An Existence Theorem for
Equilibrium Solutions

Now, we prove an existence result for the equilibrium solu-
tion to the dynamic elastic oligopolistic market equilibrium
problem. To this aim, we recall a general existence result
for solutions to quasi-variational inequalities in topological
linear locally convex Hausdorff spaces due to Tan [32].

Theorem 3. Let 𝑋 be a topological linear locally convex
Hausdorff space and let 𝐷 be a convex compact nonempty
subset of 𝑋. Let 𝐶 : 𝐷 → 2

𝑋
∗

be an upper semicontinuous
multivalued mapping with 𝐶(𝑥), 𝑥 ∈ 𝐷, convex compact
nonempty, let K : 𝐷 → 2𝐷 be a closed lower semicontinuous
multivalued mapping with K(𝑥), 𝑥 ∈ 𝐷, convex compact
nonempty, and let 𝜑 : 𝐷 → R be a proper convex lower
semicontinuous function. Then, there exists 𝑥∗ ∈ 𝐷 such that:

(i) 𝑥∗ ∈ K(𝑥∗),
(ii) there exists 𝑦∗ ∈ K(𝑥∗) for which

⟨𝑥 − 𝑥
∗
, 𝑦
∗
⟩ + 𝜑 (𝑥) − 𝜑 (𝑥

∗
) ≥ 0, ∀𝑥 ∈ K (𝑥

∗
) . (37)

Now, we are able to prove our main result.

Theorem 4. Let V : [0, 𝑇] → R𝑚 and 𝑝 : [0, 𝑇] → R𝑚

be two vector functions such that assumptions (i) and (iii) are
satisfied and

(I) ∇𝐷V(𝑡, 𝑥) is measurable in 𝑡, for all 𝑥 ∈ R𝑚𝑛
+
, contin-

uous in 𝑥, a.e. in [0, 𝑇], such that ∃𝛾 ∈ 𝐿2([0, 𝑇]) :

‖∇𝐷V(𝑡, 𝑥)‖ ≤ 𝛾(𝑡) + ‖𝑥‖, for all 𝑥 ∈ R𝑚𝑛
+
, a.e. in [0, 𝑇];
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(II) 𝑝(𝑡, 𝑥) is measurable in 𝑡, for all 𝑥 ∈ R𝑚𝑛
+
, continuous

in 𝑥, a.e. in [0, 𝑇], such that ∃𝜙 ∈ 𝐿1([0, 𝑇]) :

‖𝑝(𝑡, 𝑥)‖ ≤ 𝜙(𝑡) + ‖𝑥‖
2, for all 𝑥 ∈ R𝑚𝑛

+
, a.e. in [0, 𝑇];

(III) ∃](𝑡) ≥ 0, a.e. in [0, 𝑇], 𝜂 ∈ 𝐿∞([0, 𝑇]) such that
󵄩󵄩󵄩󵄩𝑝 (𝑡, 𝑥1) − 𝑝 (𝑡, 𝑥2)

󵄩󵄩󵄩󵄩 ≤ 𝜂 (𝑡)
󵄩󵄩󵄩󵄩𝑥1 − 𝑥2

󵄩󵄩󵄩󵄩 ,

∀𝑥1, 𝑥2 ∈ R
m𝑛
+
, a.e. in [0, 𝑇] .

(38)

Then, evolutionary quasi-variational inequality (20) admits a
solution.

Proof. At first, observe that under the hypotheses (I) and (II)
and if 𝑥 ∈ 𝐿2([0, 𝑇],R𝑚𝑛

+
),

𝑡󳨃󳨀→ ∇𝐷V (𝑡, 𝑥 (𝑡)) ∈ 𝐿
2
([0, 𝑇] ,R

𝑚𝑛

+
) ,

𝑡󳨃󳨀→ 𝑝 (𝑡, 𝑥 (𝑡)) ∈ 𝐿
1
([0, 𝑇] ,R

𝑚

+
) .

(39)

Moreover, by (I) and (II) it follows that ∇𝐷V and 𝑝 belong
to the class of nemytskii operators. Therefore if {𝑥𝑘}𝑘∈N is a
sequence such that 𝑥𝑘 → 𝑥, in 𝐿2([0, 𝑇],R𝑚𝑛), we have

󵄩󵄩󵄩󵄩󵄩
∇𝐷V (𝑡, 𝑥

𝑘
) − ∇𝐷V (𝑡, 𝑥)

󵄩󵄩󵄩󵄩󵄩𝐿2
󳨀→ 0,

󵄩󵄩󵄩󵄩󵄩
𝑝 (𝑡, 𝑥

𝑘
) − 𝑝 (𝑡, 𝑥)

󵄩󵄩󵄩󵄩󵄩𝐿1
󳨀→ 0,

(40)

where the functions ∇𝐷V and 𝑝 are 𝐿2- and 𝐿1-continuous,
respectively.

Now, in order to show that K(𝑥∗) is a closed multifunc-
tion, we prove that the following condition holds. For every
two arbitrary sequences {𝑥𝑘}𝑘∈N and {𝑦𝑘}𝑘∈N such that 𝑥𝑘 →
𝑥 and 𝑦𝑘 → 𝑦 in 𝐿2([0, 𝑇],R𝑚𝑛), with 𝑦𝑘 ∈ K(𝑥𝑘), ∀𝑛 ∈ N,
then 𝑦 ∈ K(𝑥). To this aim, let us consider two arbitrary
convergent sequences in 𝐿2([0, 𝑇],R𝑚𝑛), {𝑥𝑘}𝑘∈N and {𝑦𝑘}𝑘∈N
to 𝑥 and 𝑦, respectively. Since 𝑦𝑘 ∈ K(𝑥𝑘), 𝑥

𝑖𝑗
(𝑡) ≤ 𝑦𝑘

𝑖𝑗
(𝑡) ≤

𝑥𝑖𝑗(𝑡), for 𝑖 = 1, . . . , 𝑚, 𝑗 = 1, . . . , 𝑛, and a.e. in [0, 𝑇], and
the convergence of the sequence {𝑦𝑘}𝑘∈N in 𝐿2([0, 𝑇],R𝑚𝑛)
implies that also 𝑦 satisfies the capacity constraints.

Moreover, the following relationship holds:
𝑚

∑
𝑗=1

𝑦
𝑘

𝑖𝑗
(𝑡) ≤

1

𝑇
∫
𝑇

0

𝑝𝑖 (𝑡, 𝑥
𝑘
(𝜏)) 𝑑𝜏,

𝑖 = 1, . . . , 𝑚, a.e. in [0, 𝑇] .

(41)

The left-hand side converges almost everywhere to
∑
𝑚

𝑗=1
𝑦𝑖𝑗(𝑡); for the right-hand side, meanwhile, 𝑖 = 1, . . . , 𝑚,

we have

sup
[0,𝑇]

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∫
𝑇

0

𝑝 (𝑡, 𝑥
𝑘
(𝜏)) 𝑑𝜏 − ∫

𝑇

0

𝑝 (𝑡, 𝑥 (𝜏)) 𝑑𝜏

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ sup
[0,𝑇]

∫
𝑇

0

󵄩󵄩󵄩󵄩󵄩
𝑝 (𝑡, 𝑥

𝑘
(𝜏)) − 𝑝 (𝑡, 𝑥 (𝜏))

󵄩󵄩󵄩󵄩󵄩
𝑑𝜏

≤
󵄩󵄩󵄩󵄩𝜂
󵄩󵄩󵄩󵄩𝐿∞([0,𝑇]) ∫

𝑇

0

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘
(𝜏) − 𝑥 (𝜏)

󵄩󵄩󵄩󵄩󵄩
𝑑𝜏.

(42)

By considering that the convergence of {𝑥𝑘} in 𝐿2 implies the
convergence even in 𝐿1, hence the sequence {(1/𝑇) ∫𝑇

0
𝑝𝑖(𝑡,

𝑥𝑘(𝜏))𝑑𝜏}𝑘∈N converges uniformly to (1/𝑇) ∫𝑇
0
𝑝𝑖(𝑡, 𝑥(𝜏))𝑑𝜏

in 𝐿1([0, 𝑇],R𝑚).
Now, let us show the lower semicontinuity of the mul-

tifunction K. To this aim it suffices to prove that for every
{𝑥𝑘}𝑘∈N such that 𝑥𝑘 → 𝑥, in 𝐿2([0, 𝑇],R𝑚𝑛), and for every
𝑦 ∈ K(𝑥), there exists a sequence {𝑦𝑘}𝑘∈N such that 𝑦𝑘 → 𝑦,
in 𝐿2([0, 𝑇],R𝑚𝑛), with 𝑦𝑘 ∈ K(𝑥𝑘), for all 𝑘 ∈ N.

Let {𝑥𝑘}𝑘∈N be an arbitrary sequence such that 𝑥𝑘 → 𝑥,
in 𝐿2([0, 𝑇],R𝑚𝑛), and let 𝑦 ∈ K(𝑥). Let us note that, for 𝑖 =
1, . . . , 𝑚 and 𝑗 = 1, . . . , 𝑛, and if

𝑎
𝑘

𝑖𝑗
(𝑡) = 𝑦𝑖𝑗 (𝑡) − 𝑥𝑖𝑗 (𝑡) +

1

𝑛𝑇

× [∫
𝑇

0

𝑝𝑖 (𝑡, 𝑥 (𝜏)) 𝑑𝜏 − ∫
𝑇

0

𝑝𝑖 (𝑡, 𝑥
𝑘
(𝜏)) 𝑑𝜏] ,

(43)

we obtain, by virtue of the uniform convergence of
{(1/𝑇) ∫

𝑇

0
𝑝𝑖(𝑡, 𝑥

𝑘(𝜏))𝑑𝜏}
𝑘∈N

to (1/𝑇) ∫
𝑇

0
𝑝𝑖(𝑡, 𝑥(𝜏))𝑑𝜏 in

𝐿1([0, 𝑇],R𝑚), that

lim
𝑘→+∞

𝑎
𝑘

𝑖𝑗
(𝑡) = 𝑦𝑖𝑗 (𝑡) − 𝑥𝑖𝑗 (𝑡) ≥ 0, a.e. in [0, 𝑇] . (44)

As a consequence, there exists an index ] such that for 𝑘 > ]
one has, for all 𝑖 = 1, . . . , 𝑚, for all 𝑗 = 1, . . . , 𝑛,

𝑎
𝑘

𝑖𝑗
(𝑡) ≥ 0, a.e. in [0, 𝑇] . (45)

Then, we consider the sequence {𝑦𝑘}𝑘∈N such that

(i) for 𝑘 > ], for all 𝑖 = 1, . . . , 𝑚, for all 𝑗 = 1, . . . , 𝑛,

𝑦
𝑘

𝑖𝑗
(𝑡) = 𝑥

𝑖𝑗
(𝑡) +min {𝑥𝑖𝑗 (𝑡) − 𝑥𝑖𝑗 (𝑡) , 𝑎

𝑘

𝑖𝑗
(𝑡)} ,

a.e. in [0, 𝑇] ,
(46)

(ii) for 𝑘 ≤ ], for all 𝑖 = 1, . . . , 𝑚, for all 𝑗 = 1, . . . , 𝑛,

𝑦
𝑘

𝑖𝑗
(𝑡) = 𝑃K(𝑥𝑘)𝑦𝑖𝑗 (𝑡) , a.e. in [0, 𝑇] , (47)

where 𝑃K(𝑥𝑘)(⋅) denotes the Hilbertian projection on K(𝑥𝑘).
It is easy to verify that if 𝑘 ≤ ], for (47), 𝑦𝑘 ∈ K(𝑥𝑘).

Instead, for 𝑘 > ], since for (45),min{𝑥𝑖𝑗(𝑡)−𝑥𝑖𝑗(𝑡), 𝑎
𝑘

𝑖𝑗
(𝑡)} ≥ 0,

for all 𝑖 = 1, . . . , 𝑚, for all 𝑗 = 1, . . . , 𝑛, a.e. in [0, 𝑇],

𝑦
𝑘

𝑖𝑗
(𝑡)≥𝑥

𝑖𝑗
(𝑡) , ∀𝑖 = 1, . . . , 𝑚, ∀𝑗 = 1, . . . , 𝑛, a.e. in [0, 𝑇] .

(48)

Moreover, since min{𝑥𝑖𝑗(𝑡) − 𝑥
𝑖𝑗
(𝑡), 𝑎𝑘
𝑖𝑗
(𝑡)} ≤ 𝑥𝑖𝑗(𝑡) − 𝑥

𝑖𝑗
(𝑡),

for all 𝑖 = 1, . . . , 𝑚, for all 𝑗 = 1, . . . , 𝑛, a.e. in [0, 𝑇], we have

𝑦
𝑘

𝑖𝑗
(𝑡)≤𝑥𝑖𝑗 (𝑡) , ∀𝑖=1, . . . , 𝑚, ∀𝑗=1, . . . , 𝑛, a.e. in [0, 𝑇] .

(49)
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Finally, we get
𝑛

∑
𝑗=1

𝑦
𝑘

𝑖𝑗
(𝑡) ≤

𝑛

∑
𝑗=1

𝑦𝑖𝑗 (𝑡) +
1

𝑇
∫
𝑇

0

𝑝𝑖 (𝑡, 𝑥
𝑘
(𝜏)) 𝑑𝜏

−
1

𝑇
∫
𝑇

0

𝑝𝑖 (𝑡, 𝑥 (𝜏)) 𝑑𝜏

≤
1

𝑇
∫
𝑇

0

𝑝𝑖 (𝑡, 𝑥 (𝜏)) 𝑑𝜏 +
1

𝑇
∫
𝑇

0

𝑝𝑖 (𝑡, 𝑥
𝑘
(𝜏)) 𝑑𝜏

−
1

𝑇
∫
𝑇

0

𝑝𝑖 (𝑡, 𝑥 (𝜏)) 𝑑𝜏

=
1

𝑇
∫
𝑇

0

𝑝𝑖 (𝑡, 𝑥
𝑘
(𝜏)) 𝑑𝜏, ∀𝑖 = 1, . . . , 𝑚, a.e. in [0, 𝑇] .

(50)

Hence, we can conclude that 𝑦𝑘 belongs to K(𝑥𝑘), for all 𝑘 ∈
N.

Let us prove now the convergence of {𝑦𝑘}𝑘∈N to 𝑦 in
𝐿2([0, 𝑇],R𝑚𝑛). Let us observe that

lim
𝑘→+∞

min {𝑥𝑖𝑗 (𝑡) − 𝑥𝑖𝑗 (𝑡) , 𝑎
𝑘

𝑖𝑗
(𝑡)}

= 𝑦𝑖𝑗 (𝑡) − 𝑥𝑖𝑗 (𝑡) , a.e. in [0, 𝑇] .
(51)

As a consequence, we have that the sequence {𝑦𝑘}𝑘∈N con-
verges to 𝑦. It is easy to show that K(𝑥) is a closed, bounded,
and convex subset of 𝐷 and since the space 𝐷 is compact,
K(𝑥), for all 𝑥 ∈ 𝐷, is compact too. As a consequence, all the
hypotheses of Theorem 3 are satisfied and the existence of at
least one solution is guaranteed.

4. Regularity Results for Equilibrium Solutions

In this section, we study the assumptions under which
the continuity of solutions to evolutionary quasi-variational
inequality, which expresses the equilibrium condition for the
dynamic elastic oligopolistic market equilibrium problem in
presence of production excesses, is ensured.

4.1. Set Convergence. First of all, we recall the notion of
Kuratowski’s set convergence that has an important role in
order to establish regularity results. The classical notion of
convergence for subsets of a given metric space (𝑋, 𝑑) is
introduced in the 1950s by Kuratowski (see [33]; see also
[34, 35]).

Let {K𝑛}𝑛∈N be a sequence of subsets of𝑋. Recall that

𝑑 − lim
𝑛

K𝑛 = {𝑥 ∈ 𝑋 : ∃{𝑥𝑛}𝑛∈N

eventually in K𝑛 such that 𝑥𝑛
𝑑
󳨀→ 𝑥} ,

𝑑 − lim
𝑛

K𝑛 = {𝑥 ∈ 𝑋 : ∃{𝑥𝑛}𝑛∈N

frequently in K𝑛 such that 𝑥𝑛
𝑑
󳨀→ 𝑥} ,

(52)

where eventually means that there exists 𝛿 ∈ N such that
𝑥𝑛 ∈ K𝑛 for any 𝑛 ≥ 𝛿 and frequentlymeans that there exists
an infinite subset𝑁 ⊆ N such that 𝑥𝑛 ∈ K𝑛 for any 𝑛 ∈ 𝑁 (in
this last case, according to the notation given above, we also
write that there exists a subsequence {𝑥𝑘

𝑛

}𝑛∈N ⊆ {𝑥𝑛}𝑛∈N such
that 𝑥𝑘

𝑛

∈ K𝑘
𝑛

).
In the following, we recall Kuratowski’s set convergence.

Definition 5. We say that {K𝑛} converges to some subset K ⊆

𝑋 in Kuratowski’s sense and we briefly write K𝑛 → K, if 𝑑 −
lim
𝑛
K𝑛 = 𝑑− lim𝑛K𝑛 = K.Thus, in order to verify thatK𝑛 →

K, it suffices to check that

(i) 𝑑 − lim𝑛K𝑛 ⊆ K, that is, for any sequence {𝑥𝑛}𝑛∈N
frequently in K𝑛 such that 𝑥𝑛

𝑑
󳨀→ 𝑥 for some 𝑥 ∈ 𝑆,

then 𝑥 ∈ K;
(ii) K ⊂ 𝑑 − lim

𝑛
K𝑛, that is, for any 𝑥 ∈ K there exists a

sequence {𝑥𝑛}𝑛∈N eventually in K𝑛 such that 𝑥𝑛
𝑑
󳨀→ 𝑥.

The below lemma establishes that the feasible setK of the
dynamic elastic oligopolistic market equilibrium problem in
the presence of production excesses satisfies the property of
Kuratowski’s set convergence.

Lemma 6. Let 𝑥, 𝑥 ∈ 𝐶0([0, 𝑇],R𝑚𝑛
+
), let 𝑝 ∈ 𝐶0([0, 𝑇] ×

R𝑚𝑛
+
,R𝑚
+
) be such that

∃𝜙 ∈ 𝐶
0
([0, 𝑇] ,R+) :

󵄩󵄩󵄩󵄩𝑝 (𝑡, 𝑥)
󵄩󵄩󵄩󵄩 ≤ 𝜙 (𝑡) + ‖𝑥‖

2
,

∀𝑥 ∈ R
𝑚𝑛

+
, in [0, 𝑇] ,

(53)

and let {𝑡𝑘}𝑘∈N be a sequence such that 𝑡𝑘 → 𝑡, with 𝑡 ∈ [0, 𝑇],
as 𝑘 → +∞. Then, the sequence of sets

K (𝑡𝑘, 𝑥
∗
) = {𝑥 (𝑡𝑘) ∈ R

𝑚𝑛
: 𝑥
𝑖𝑗
(𝑡𝑘) ≤ 𝑥𝑖𝑗 (𝑡𝑘) ≤ 𝑥𝑖𝑗 (𝑡𝑘) ,

∀𝑖 = 1, . . . , 𝑚, ∀𝑗 = 1, . . . , 𝑛,

𝑛

∑
𝑗=1

𝑥𝑖𝑗 (𝑡𝑘) ≤
1

𝑇
∫
𝑇

0

𝑝𝑖 (𝑡𝑘, 𝑥
∗
(𝜏)) 𝑑𝜏,

∀𝑖 = 1, . . . , 𝑚} ,

(54)

for all 𝑘 ∈ N, converges to

K (𝑡, 𝑥
∗
) = {𝑥 (𝑡) ∈ R

𝑚𝑛
: 𝑥
𝑖𝑗
(𝑡) ≤ 𝑥𝑖𝑗 (𝑡) ≤ 𝑥𝑖𝑗 (𝑡) ,

∀𝑖 = 1, . . . , 𝑚, ∀𝑗 = 1, . . . , 𝑛,

𝑛

∑
𝑗=1

𝑥𝑖𝑗 (𝑡) ≤
1

𝑇
∫
𝑇

0

𝑝𝑖 (𝑡, 𝑥
∗
(𝜏)) 𝑑𝜏,

∀𝑖 = 1, . . . , 𝑚} ,

(55)

as 𝑘 → +∞, in Kuratowski’s sense.
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Proof. Firstly, we prove condition (K1). Let {𝑡𝑘}𝑘∈N be a
sequence such that 𝑡𝑘 → 𝑡, with 𝑡 ∈ [0, 𝑇] as 𝑘 → +∞.
Making use of the continuity assumptions on 𝑥, 𝑥, and 𝑝, we
get 𝑥(𝑡𝑘) → 𝑥(𝑡), 𝑥(𝑡𝑘) → 𝑥(𝑡), and 𝑝(𝑡𝑘, 𝑦) → 𝑝(𝑡, 𝑦) as
𝑘 → +∞, respectively. Furthermore,

∃𝜙 ∈ 𝐶
0
([0, 𝑇] ,R+) :

󵄩󵄩󵄩󵄩𝑝 (𝑡, 𝑥
∗
(𝜏))

󵄩󵄩󵄩󵄩 ≤ 𝜙 (𝑡) +
󵄩󵄩󵄩󵄩𝑥
∗
(𝜏)
󵄩󵄩󵄩󵄩
2
,

(56)

for 𝑡 ∈ [0, 𝑇] and𝜏 ∈ [0, 𝑇]. Since 𝜙 ∈ 𝐶0([0, 𝑇]) and 𝑥∗ ∈
𝐿2([0, 𝑇],R𝑚𝑛

+
), then we have for 𝑡 ∈ [0, 𝑇] and 𝜏 ∈ [0, 𝑇]

󵄩󵄩󵄩󵄩𝑝 (𝑡, 𝑥
∗
(𝜏))

󵄩󵄩󵄩󵄩 ≤ 𝜙 (𝑡) +
󵄩󵄩󵄩󵄩𝑥
∗
(𝜏)
󵄩󵄩󵄩󵄩
2
∈ 𝐿
1
([0, 𝑇]) , (57)

and by virtue of the continuity of 𝑝 with respect to the first
variable we also obtain

lim
𝑛→+∞

𝑝 (𝑡𝑛, 𝑥
∗
(𝜏)) = 𝑝 (𝑡, 𝑥

∗
(𝜏)) , (58)

for 𝜏 ∈ [0, 𝑇] and 𝑥∗ ∈ 𝐿2([0, 𝑇],R𝑚𝑛
+
). Taking into account a

well known generalization of Lebesgue’s theorem,

lim
𝑛→+∞

∫
𝑇

0

𝑝 (𝑡𝑛, 𝑥
∗
(𝜏)) 𝑑𝜏 = ∫

𝑇

0

𝑝 (𝑡, 𝑥
∗
(𝜏)) 𝑑𝜏, (59)

for every 𝑥∗ ∈ 𝐿2([0, 𝑇],R𝑚𝑛
+
).

Let 𝑥(𝑡) ∈ K(𝑡, 𝑥∗) be fixed and let us note that, for 𝑖 =
1, . . . , 𝑚 and 𝑗 = 1, . . . , 𝑛, and if

𝑎𝑖𝑗 (𝑡𝑘) = 𝑥𝑖𝑗 (𝑡) − 𝑥𝑖𝑗 (𝑡𝑘) +
1

𝑛𝑇

× [∫
𝑇

0

𝑝𝑖 (𝑡𝑘, 𝑥
∗
(𝜏)) 𝑑𝜏 − ∫

𝑇

0

𝑝𝑖 (𝑡, 𝑥
∗
(𝜏)) 𝑑𝜏] ,

(60)

we have

lim
𝑘→+∞

𝑎𝑖𝑗 (𝑡𝑘) = 𝑥𝑖𝑗 (𝑡) − 𝑥𝑖𝑗 (𝑡) ≥ 0. (61)

As a consequence, there exists an index ] such that for 𝑘 > ],
for all 𝑖 = 1, . . . , 𝑚, for all 𝑗 = 1, . . . , 𝑛,

𝑎𝑖𝑗 (𝑡𝑘) ≥ 0. (62)

As a consequence, we consider the sequence {𝑥(𝑡𝑘)}𝑘∈N such
that

(i) for 𝑘 > ], for all 𝑖 = 1, . . . , 𝑚, for all 𝑗 = 1, . . . , 𝑛,

𝑥𝑖𝑗 (𝑡𝑘) = 𝑥𝑖𝑗 (𝑡𝑘) +min {𝑥𝑖𝑗 (𝑡) − 𝑥𝑖𝑗 (𝑡) ,

𝑥𝑖𝑗 (𝑡𝑘) − 𝑥𝑖𝑗 (𝑡𝑘) , 𝑎𝑖𝑗 (𝑡𝑘)} ,

(63)

(ii) for 𝑘 ≤ ], for all 𝑖 = 1, . . . , 𝑚, for all 𝑗 = 1, . . . , 𝑛,

𝑥𝑖𝑗 (𝑡𝑘) = 𝑃K(𝑡
𝑘
,𝑥∗)𝑥𝑖𝑗 (𝑡) , (64)

where 𝑃K(𝑡
𝑘
,𝑥∗)(⋅) denotes the Hilbertian projection on

K(𝑡𝑘, 𝑥
∗).

Obviously if 𝑘 ≤ ], for (64) we have 𝑥(𝑡𝑘) ∈ K(𝑡𝑘, 𝑥
∗).

Instead, for 𝑘 > ], since for (62), min{𝑥𝑖𝑗(𝑡) − 𝑥𝑖𝑗(𝑡), 𝑥𝑖𝑗(𝑡𝑘) −
𝑥
𝑖𝑗
(𝑡𝑘), 𝑎𝑖𝑗(𝑡𝑘)} ≥ 0, for all 𝑖 = 1, . . . , 𝑚, for all 𝑗 = 1, . . . , 𝑛, we

get

𝑥
𝑖𝑗
(𝑡𝑘) ≤ 𝑥𝑖𝑗 (𝑡𝑘) , ∀𝑖 = 1, . . . , 𝑚, ∀𝑗 = 1, . . . , 𝑛.

(65)

Moreover, since min{𝑥𝑖𝑗(𝑡) − 𝑥𝑖𝑗(𝑡), 𝑥𝑖𝑗(𝑡𝑘) − 𝑥𝑖𝑗(𝑡𝑘), 𝑎𝑖𝑗(𝑡𝑘)} ≤
𝑥𝑖𝑗(𝑡𝑘) − 𝑥𝑖𝑗(𝑡𝑘), for all 𝑖 = 1, . . . , 𝑚, for all 𝑗 = 1, . . . , 𝑛, we
have

𝑥𝑖𝑗 (𝑡𝑘) ≤ 𝑥𝑖𝑗 (𝑡𝑘) , ∀𝑖 = 1, . . . , 𝑚, ∀𝑗 = 1, . . . , 𝑛.

(66)

Since

min {𝑥𝑖𝑗 (𝑡) − 𝑥𝑖𝑗 (𝑡) , 𝑥𝑖𝑗 (𝑡𝑘) − 𝑥𝑖𝑗 (𝑡𝑘) , 𝑎𝑖𝑗 (𝑡𝑘)}

≤ 𝑎𝑖𝑗 (𝑡𝑘) = 𝑥𝑖𝑗 (𝑡) − 𝑥𝑖𝑗 (𝑡𝑘)

+ [
1

𝑛𝑇
∫
𝑇

0

𝑝𝑖 (𝑡𝑘, 𝑥
∗
(𝜏)) 𝑑𝜏 − ∫

𝑇

0

𝑝𝑖 (𝑡, 𝑥
∗
(𝜏)) 𝑑𝜏]

∀𝑖 = 1, . . . , 𝑚, ∀𝑗 = 1, . . . , 𝑛,

(67)

we have

𝑥𝑖𝑗 (𝑡𝑘) ≤ 𝑥𝑖𝑗 (𝑡) +
1

𝑛𝑇

× [∫
𝑇

0

𝑝𝑖 (𝑡𝑘, 𝑥
∗
(𝜏)) 𝑑𝜏 − ∫

𝑇

0

𝑝𝑖 (𝑡, 𝑥
∗
(𝜏)) 𝑑𝜏] ,

∀𝑖 = 1, . . . , 𝑚, ∀𝑗 = 1, . . . , 𝑛.

(68)

Then, taking into account (68), we obtain

𝑛

∑
𝑗=1

𝑥𝑖𝑗 (𝑡𝑘) ≤

𝑛

∑
𝑗=1

𝑥𝑖𝑗 (𝑡) +
1

𝑇
∫
𝑇

0

𝑝𝑖 (𝑡𝑘, 𝑥
∗
(𝜏)) 𝑑𝜏

−
1

𝑇
∫
𝑇

0

𝑝𝑖 (𝑡, 𝑥
∗
(𝜏)) 𝑑𝜏

≤
1

𝑇
∫
𝑇

0

𝑝𝑖 (𝑡, 𝑥
∗
(𝜏)) 𝑑𝜏

+
1

𝑇
∫
𝑇

0

𝑝𝑖 (𝑡𝑘, 𝑥
∗
(𝜏)) 𝑑𝜏

−
1

𝑇
∫
𝑇

0

𝑝𝑖 (𝑡, 𝑥
∗
(𝜏)) 𝑑𝜏

=
1

𝑇
∫
𝑇

0

𝑝𝑖 (𝑡𝑘, 𝑥
∗
(𝜏)) 𝑑𝜏, ∀𝑖 = 1, . . . , 𝑚.

(69)
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Hence, 𝑥(𝑡𝑘) ∈ K(𝑡𝑘, 𝑥
∗), for all 𝑘 ∈ N, and

lim
𝑘→+∞

𝑥𝑖𝑗 (𝑡𝑘)

= 𝑥
𝑖𝑗
(𝑡) +min {𝑥𝑖𝑗 (𝑡) − 𝑥𝑖𝑗 (𝑡) ,

𝑥𝑖𝑗 (𝑡) − 𝑥𝑖𝑗 (𝑡) , 𝑥𝑖𝑗 (𝑡) − 𝑥𝑖𝑗 (𝑡)}

= 𝑥
𝑖𝑗
(𝑡) + 𝑥𝑖𝑗 (𝑡) − 𝑥𝑖𝑗 (𝑡) = 𝑥𝑖𝑗 (𝑡) .

(70)

Then, the proof of condition (K1) is completed.
Let us prove, now, condition (K2). Let {𝑡𝑘}𝑘∈N be a

sequence such that 𝑡𝑘 → 𝑡, with 𝑡 ∈ [0, 𝑇], as 𝑘 → +∞.
Let {𝑥(𝑡𝑘)}𝑘∈N be a sequence, such that 𝑥(𝑡𝑘) ∈ K(𝑡𝑘, 𝑥

∗), for
all 𝑘 ∈ N, and converging to 𝑥(𝑡), as 𝑘 → +∞. We have to
prove that 𝑥(𝑡) ∈ K(𝑡, 𝑥∗).

Since 𝑥(𝑡𝑘) ∈ K(𝑡𝑘, 𝑥
∗), for all 𝑘 ∈ N,

𝑥
𝑖𝑗
(𝑡𝑘) ≤ 𝑥𝑖𝑗 (𝑡𝑘) ≤ 𝑥𝑖𝑗 (𝑡𝑘) , ∀𝑖 = 1, . . . , 𝑚,

∀𝑗 = 1, . . . , 𝑛, ∀𝑘 ∈ N,
(71)

𝑛

∑
𝑗=1

𝑥𝑖𝑗 (𝑡𝑘) ≤
1

𝑇
∫
𝑇

0

𝑝𝑖 (𝑡𝑘, 𝑥
∗
(𝜏)) 𝑑𝜏,

∀𝑖 = 1, . . . , 𝑚, ∀𝑘 ∈ N.

(72)

Passing to the limit in (71) as 𝑛 → +∞ and taking into
account the continuity assumption on the functions 𝑥, 𝑥, and
𝑝, we have

𝑥
𝑖𝑗
(𝑡) ≤ 𝑥𝑖𝑗 (𝑡) ≤ 𝑥𝑖𝑗 (𝑡) , ∀𝑖 = 1, . . . , 𝑚, ∀𝑗 = 1, . . . , 𝑛.

(73)

Now, passing to the limit for 𝑛 → +∞ in the left-hand side
of (72), we have

lim
𝑛→+∞

𝑛

∑
𝑗=1

𝑥𝑖𝑗 (𝑡𝑘) =

𝑛

∑
𝑗=1

𝑥𝑖𝑗 (𝑡) , ∀𝑖 = 1, . . . , 𝑚. (74)

Then, from (74) and (59), we obtain
𝑛

∑
𝑗=1

𝑥𝑖𝑗 (𝑡) ≤
1

𝑇
∫
𝑇

0

𝑝𝑖 (𝑡, 𝑥
∗
(𝜏)) 𝑑𝜏, ∀𝑗 = 1, . . . , 𝑛. (75)

As a consequence,

𝑥 (𝑡) ∈ K (𝑡, 𝑥
∗
) , (76)

and, hence, condition (K2) is achieved.

4.2. Continuity of Solutions to Weighted Quasi-Variational
Inequalities. In [2, 36–39] some continuity results for vari-
ational and quasi-variational inequalities in infinite dimen-
sional spaces have been obtained. It is worth remarking that
similar results have been proved for weighted variational and
quasi-variational inequalities in nonpivot Hilbert spaces (see
[4, 40]).

Now, we show a continuity result for equilibrium solu-
tions to the dynamic elastic oligopolistic market equilibrium
problem in presence of production excesses.

Theorem 7. Let 𝑥, 𝑥 ∈ 𝐶0([0, 𝑇],R𝑚𝑛
+
), and let 𝑝 ∈

𝐶0([0, 𝑇] ×R𝑚𝑛
+
,R𝑚
+
) be such that

∃𝜙 ∈ 𝐶
0
([0, 𝑇]) :

󵄩󵄩󵄩󵄩𝑝 (𝑡, 𝑥)
󵄩󵄩󵄩󵄩 ≤ 𝜙 (𝑡) + ‖𝑥‖

2
,

∀𝑥 ∈ R
𝑚𝑛
, in [0, 𝑇] ,

∃]∈𝐶0 ([0, 𝑇] ,R+) :
󵄩󵄩󵄩󵄩𝑝 (𝑡, 𝑥1)−𝑝 (𝑡, 𝑥2)

󵄩󵄩󵄩󵄩≤]
󵄩󵄩󵄩󵄩𝑥1−𝑥2

󵄩󵄩󵄩󵄩 ,

∀𝑥1, 𝑥2 ∈ R
𝑚𝑛
, in [0, 𝑇] .

(77)

Moreover, let V ∈ 𝐶1([0, 𝑇] × R𝑚𝑛
+
,R𝑚
+
) be a vector function

satisfying assumption (iii) and such that

∃𝛾 ∈ 𝐶
0
([0, 𝑇]) :

󵄩󵄩󵄩󵄩∇𝐷V (𝑡, 𝑥)
󵄩󵄩󵄩󵄩 ≤ 𝛾 (𝑡) + ‖𝑥‖ ,

∀𝑥 ∈ R
𝑚𝑛
, in [0, 𝑇] ,

∃𝜇 > 0 : ⟨−∇𝐷V (𝑡, 𝑥) + ∇𝐷V (𝑡, 𝑦) , 𝑥 − 𝑦⟩ ≥ 𝜇
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩
2
,

∀𝑥, 𝑦 ∈ R
𝑚𝑛
, in [0, 𝑇] .

(78)

Then the dynamic elastic market equilibrium distribution in
presence of production excesses 𝑥∗ ∈ K(𝑥∗) is continuous in
[0, 𝑇].

Proof. The existence of equilibrium solution is ensured by
Theorem 4. Moreover, by applying Theorem 8 in [2] and
taking into account Lemma 6, we obtain the continuity of
𝑥
∗ ∈ K(𝑥∗) in [0, 𝑇].

5. A Sensitivity Result

In this section a theorem about the sensitivity of solution is
presented.The following result establishes that a small change
in profit function produces a small change in equilibrium
distribution.

Theorem 8. Assume that the profit function changes from
V(⋅) to the perturbed function Ṽ(⋅) and denote by 𝑥∗ and 𝑥
the correspondent solutions of the following quasi-variational
inequalities:

⟨⟨−∇𝐷V (𝑥
∗
) , 𝑥 − 𝑥

∗
⟩⟩ ≥ 0, ∀𝑥 ∈ K (𝑥

∗
) , (79)

⟨⟨−∇𝐷Ṽ (𝑥) , 𝑥 − 𝑥⟩⟩ ≥ 0, ∀𝑥 ∈ K (𝑥
∗
) . (80)

Let ∇𝐷V(𝑡, 𝑥) be a strongly monotone function of constant 𝛼,
namely, for all 𝑥, 𝑦 ∈ K(𝑥∗), ∃𝛼 > 0 such that

⟨⟨−∇𝐷V (𝑥) + −∇𝐷V (𝑦) , 𝑥 − 𝑦⟩⟩ ≥ 𝛼
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩
2

𝐿2([0,𝑇],R𝑚𝑛)
.

(81)

Moreover, let ∇𝐷V be a Carathéodory function such that

∃ℎ ∈ 𝐿
2
([0, 𝑇]) :

󵄩󵄩󵄩󵄩∇𝐷V (𝑡, 𝑥 (𝑡))
󵄩󵄩󵄩󵄩𝑚𝑛

≤ ℎ (𝑡) + ‖𝑥 (𝑡)‖𝑚𝑛, a.e. in [0, 𝑇] .
(82)
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Then, it follows that

󵄩󵄩󵄩󵄩𝑥
∗
− 𝑥

󵄩󵄩󵄩󵄩𝐿2([0,𝑇],R𝑚𝑛) ≤
1

𝛼

󵄩󵄩󵄩󵄩−∇𝐷Ṽ (𝑥) + ∇𝐷V (𝑥
∗
)
󵄩󵄩󵄩󵄩𝐿2([0,𝑇],R𝑚𝑛).

(83)

Proof. Choosing 𝑥(𝑡) = 𝑥(𝑡) in (79) and 𝑥(𝑡) = 𝑥∗(𝑡) in (80),
by summing up the two new inequalities, we have

⟨⟨−∇𝐷Ṽ (𝑥) + ∇𝐷V (𝑥
∗
) , 𝑥
∗
− 𝑥⟩⟩ ≥ 0. (84)

By adding and subtracting −∇𝐷V(𝑥) in (84), we have

⟨⟨−∇𝐷Ṽ (𝑥) + ∇𝐷V (𝑥) , 𝑥
∗
− 𝑥⟩⟩

≥ ⟨⟨−∇𝐷V (𝑥
∗
) + ∇𝐷V (𝑥) , 𝑥

∗
− 𝑥⟩⟩ .

(85)

Moreover, by using the strong monotonicity, inequality (85),
and the Cauchy-Schwartz inequality, we get

𝛼
󵄩󵄩󵄩󵄩𝑥
∗
− 𝑥

󵄩󵄩󵄩󵄩
2

𝐿2([0,𝑇],R𝑚𝑛)
≤ ⟨⟨−∇𝐷V (𝑥

∗
) + ∇𝐷V (𝑥) , 𝑥

∗
− 𝑥⟩⟩

≤ ⟨⟨−∇𝐷Ṽ (𝑥) + ∇𝐷V (𝑥) , 𝑥
∗
− 𝑥⟩⟩

≤
󵄩󵄩󵄩󵄩−∇𝐷Ṽ (𝑥) + ∇𝐷V (𝑥)

󵄩󵄩󵄩󵄩𝐿2([0,𝑇],R𝑚𝑛)

×
󵄩󵄩󵄩󵄩𝑥
∗
− 𝑥

󵄩󵄩󵄩󵄩𝐿2([0,𝑇],R𝑚𝑛),

(86)

from which we get

󵄩󵄩󵄩󵄩𝑥
∗
− 𝑥

󵄩󵄩󵄩󵄩𝐿2([0,𝑇],R𝑚𝑛) ≤
1

𝛼

󵄩󵄩󵄩󵄩−∇𝐷Ṽ (𝑥) + ∇𝐷V (𝑥
∗
)
󵄩󵄩󵄩󵄩𝐿2([0,𝑇],R𝑚𝑛).

(87)

6. A Numerical Example

This section is devoted to provide a numerical example of the
theoretical achievements presented.

Let us consider two firms and two demand markets, as in
Figure 1. Let 𝑥, 𝑥 ∈ 𝐿2([0, 1],R4) be the capacity constraints
such that, a.e. in [0, 1],

𝑥 (𝑡) = (
0

2

5
𝑡

1

2
𝑡 0

) , 𝑥 (𝑡) = (
10𝑡 5𝑡

12𝑡 10𝑡
) . (88)

Let us denote

𝐷 = {𝑥 ∈ 𝐿
2
([0, 1] ,R

4
) : 𝑥
𝑖𝑗
(𝑡) ≤ 𝑥𝑖𝑗 (𝑡) ≤ 𝑥𝑖𝑗 (𝑡) ,

∀𝑖 = 1, 2, ∀𝑗 = 1, 2, a.e. in [0, 1] } .
(89)

Let 𝑝 ∈ 𝐿
1([0, 1] × 𝐷,R2) be the production function, such

that, a.e. in [0, 1],

𝑝 (𝑡) = (
6𝑡 + 2𝑥∗

11
(𝑡)

3𝑡 + 2𝑥∗
11
(𝑡) + 𝑥

∗

12
(𝑡)
) . (90)

Q1 Q2

P1 P2

Figure 1: Network structure of the numerical dynamic spatial
oligopoly problem.

As a consequence, the feasible set is the set value function
K : 𝐷 → 2𝐿

2
([0,1],R4) defined by

K (𝑥
∗
) = {𝑥 ∈ 𝐿

2
([0, 1] ,R

4
) : 𝑥
𝑖𝑗
(𝑡) ≤ 𝑥𝑖𝑗 (𝑡) ≤ 𝑥𝑖𝑗 (𝑡) ,

∀𝑖 = 1, 2, ∀𝑗 = 1, 2, a.e. in [0, 1] ,

2

∑
𝑗=1

𝑥𝑖𝑗 (𝑡) ≤ ∫
1

0

𝑝𝑖 (𝑡, 𝑥
∗
(𝜏)) 𝑑𝜏,

∀𝑖 = 1, 2, a.e. in [0, 1] } .
(91)

Let us consider the profit function V ∈ 𝐶1([0, 1]×𝐷,R2) given
by

V1 (𝑡, 𝑥 (𝑡)) = −4𝑥
2

11
(𝑡) − 2𝑥

2

12
(𝑡) − 𝑥11 (𝑡) 𝑥12 (𝑡)

+ 6𝑡𝑥11 (𝑡) + 3𝑡𝑥12 (𝑡) ,

V2 (𝑡, 𝑥 (𝑡)) = −2𝑥
2

21
(𝑡) − 5𝑥

2

22
(𝑡) − 2𝑥21 (𝑡) 𝑥22 (𝑡)

+ 6𝑡𝑥21 (𝑡) + 5𝑡𝑥22 (𝑡) .

(92)

Then, the operator ∇𝐷V ∈ 𝐿
2([0, 1] × 𝐷,R4) is given by

− ∇𝐷V (𝑡, 𝑥 (𝑡))

= (
8𝑥11 (𝑡) + 𝑥12 (𝑡) − 6𝑡 4𝑥12 (𝑡) + 𝑥11 (𝑡) − 3𝑡

4𝑥21 (𝑡) + 2𝑥22 (𝑡) − 6𝑡 10𝑥22 (𝑡) + 2𝑥21 (𝑡) − 5𝑡
) .

(93)
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The dynamic oligopolistic market equilibrium distribution in
presence of the excesses is the solution to the evolutionary
quasi-variational inequality:

∫
1

0

2

∑
𝑖=1

2

∑
𝑗=1

−
𝜕V𝑖 (𝑡, 𝑥

∗
(𝑡))

𝜕𝑥𝑖𝑗
(𝑥𝑖𝑗 (𝑡) − 𝑥

∗

𝑖𝑗
(𝑡)) 𝑑𝑡 ≥ 0,

∀𝑥 ∈ K (𝑥
∗
) .

(94)

Let us observe that all the hypotheses of Theorem 4 are sat-
isfied; hence, evolutionary quasi-variational inequality (94)
admits solutions.

In order to compute a solution to (94) we make use of the
direct method (see [41]). We consider the following system:

8𝑥
∗

11
(𝑡) + 𝑥

∗

12
(𝑡) − 6𝑡 = 0, 𝑥

∗

11
(𝑡) + 4𝑥

∗

12
(𝑡) − 3𝑡 = 0,

4𝑥
∗

21
(𝑡) + 2𝑥

∗

22
(𝑡) − 6𝑡=0, 2𝑥

∗

21
(𝑡) + 10𝑥

∗

22
(𝑡) − 5𝑡=0,

𝑥
𝑖𝑗
(𝑡) ≤ 𝑥

∗

𝑖𝑗
(𝑡) ≤ 𝑥𝑖𝑗 (𝑡) , ∀𝑖 = 1, 2, ∀𝑗 = 1, 2, a.e. in [0, 1] ,

2

∑
𝑗=1

𝑥
∗

𝑖𝑗
(𝑡) ≤ ∫

1

0

𝑝𝑖 (𝑡, 𝑥
∗
(𝜏)) 𝑑𝜏, ∀𝑖 = 1, 2, a.e. in [0, 1] ,

(95)

and we get the following solution, a.e. in [0, 1],

𝑥
∗
(𝑡) = (

7

10
𝑡
3

5
𝑡

25

18
𝑡
2

9
𝑡

) . (96)

Let us observe that the solution satisfies all the constraints; in
particular, if we compute

∫
1

0

𝑝1 (𝑡, 𝑥
∗
(𝜏)) 𝑑𝜏 = 6𝑡 +

7

10
,

∫
1

0

𝑝2 (𝑡, 𝑥
∗
(𝜏)) 𝑑𝜏 = 3𝑡 + 1,

(97)

we are able to obtain the related production excesses:

𝜖 (𝑡) = (

47𝑡 + 7

10

25𝑡 + 18

18

) . (98)

7. Conclusions

In [1] the dynamic oligopolistic market equilibrium problem
was studied by introducing production excesses, and the
dynamic Cournot-Nash equilibrium was characterized as a
solution to a suitable evolutionary variational inequality. In
this paper, in order to have a model closer to reality, it was
supposed that the production function depends on the equi-
librium commodity shipment. Hence, an elastic formulation
was introduced that leads to an equivalent formulation by
means of a suitable evolutionary quasi-variational inequality.

By means of this mathematical formulation, results of exis-
tence and regularity of solutions were proved. Furthermore,
a sensitivity analysis is provided. At last a numerical example
was provided in order to clarify the theoretical results. In
future work, it is possible to consider also demand excesses
and elastic demand function, in order to have a more com-
plete and realistic model.
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We revisit the global error bound for the generalized nonlinear complementarity problem over a polyhedral cone (GNCP). By
establishing a new equivalent formulation of the GNCP, we establish a sharper global error bound for the GNCP under weaker
conditions, which improves the existing error bound estimation for the problem.

1. Introduction

Let K = {V ∈ 𝑅𝑚 | 𝐴V ≥ 0, 𝐵V = 0} be a polyhedral cone in
𝑅𝑚 for matrices 𝐴 ∈ 𝑅𝑠×𝑚, 𝐵 ∈ 𝑅𝑡×𝑚, and let K∘ be its dual
cone; that is,

K
∘
= {𝑢 ∈ 𝑅

𝑚
| 𝑢 = 𝐴

⊤
𝜆1 + 𝐵

⊤
𝜆2, 𝜆1 ∈ 𝑅

𝑠

+
, 𝜆2 ∈ 𝑅

𝑡
} .

(1)

For continuous mappings 𝐹, 𝐺 : 𝑅𝑛 → 𝑅𝑚, the generalized
nonlinear complementarity problem, abbreviated as GNCP,
is to find vector 𝑥∗ ∈ 𝑅𝑛 such that

𝐹 (𝑥
∗
) ∈ K, 𝐺 (𝑥

∗
) ∈ K

∘
, 𝐹(𝑥

∗
)
⊤
𝐺 (𝑥
∗
) = 0.

(2)

Throughout this paper, the solution set of the GNCP, denoted
by𝑋∗, is assumed to be nonempty.

The GNCP is a direct generalization of the classical
nonlinear complementarity problem and a special case of
the general variational inequalities problem [1]. The GNCP
was deeply discussed [2–5] after the work in [6]. The GNCP
plays a significant role in economics, operation research,
nonlinear analysis, and so forth (see [7, 8]). For example, the
classical Walrasian law of competitive equilibria of exchange
economies can be formulated as a generalized nonlinear
complementarity problem in the price and excess demand
variables (see [8]).

For the GNCP, the solution existence and the numerical
solution methods for the GNCP were discussed [2, 3, 6]. As
an important tool for a mathematical problem, the global
error bound estimation for GNCP with the mapping being
𝛾-strongly monotone and Hölder continuous was discussed
in [5], and a global error bound for the GNCP for the linear
and monotonic case was established in [4].

In this paper, wewill establish a global error bound for the
problem (2) without the Hölder continuity of the underlying
mapping. To this end, we first develop some new equivalent
reformulations of the GNCP under weaker conditions and
then establish a sharper global error bound for the GNCP in
terms of some easier computed residual functions.The results
obtained in this paper can be taken as an improvement of
the existing results for GNCP and variational inequalities
problem [4, 5, 9–11].

To end this section, we give some notations used in this
paper. Vectors considered in this paper are taken in the
Euclidean space 𝑅𝑛 equipped with the usual inner product,
and the Euclidean 2-norm and 1-norm of vector in 𝑅𝑛 are,
respectively, denoted by ‖ ⋅ ‖ and ‖ ⋅ ‖1. We use 𝑅𝑛

+
to denote

the nonnegative orthant in𝑅𝑛 and use𝑥+ and𝑥− to denote the
vectors composed by elements (𝑥+)𝑖 := max{𝑥𝑖, 0}, (𝑥−)𝑖 :=
max{−𝑥𝑖, 0}, 1 ≤ 𝑖 ≤ 𝑛, respectively. For simplicity, we use
(𝑥; 𝑦) to denote vector (𝑥⊤, 𝑦⊤)⊤, use 𝐼 to denote the identity
matrix with appropriate dimension, use 𝑥 ≥ 0 to denote
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a nonnegative vector 𝑥 ∈ 𝑅𝑛, and use dist(𝑥, 𝑋∗) to denote
the distance from point 𝑥 to the solution set𝑋∗.

2. Global Error Bound for the GNCP

First, we give some concepts used in the subsequent.

Definition 1. Themapping 𝐹 : 𝑅𝑛 → 𝑅
𝑚 is said to be

(i) monotone with respect to 𝐺 : 𝑅𝑛 → 𝑅𝑚 if

⟨𝐹 (𝑥) − 𝐹 (𝑦) , 𝐺 (𝑥) − 𝐺 (𝑦)⟩ ≥ 0, ∀𝑥, 𝑦 ∈ 𝑅
𝑛
; (3)

(ii) 𝛾-strongly𝐺-monotonewith respect to𝐺 : 𝑅
𝑛
→ 𝑅
𝑚

if there are constants 𝑐1 > 0, 𝛾 > 0 such that

⟨𝐹 (𝑥) − 𝐹 (𝑦) , 𝐺 (𝑥) − 𝐺 (𝑦)⟩ ≥ 𝑐1
󵄩󵄩󵄩󵄩𝐺 (𝑥) − 𝐺 (𝑦)

󵄩󵄩󵄩󵄩
1+𝛾
,

∀𝑥, 𝑦 ∈ 𝑅
𝑛
.

(4)

Remark 2. Based on this definition, 𝛾-strongly 𝐺-monotone
implies monotonicity, and if 𝐹(𝑥) = 𝑀𝑥 + 𝑝, 𝐺(𝑥) = 𝑁𝑥 + 𝑞
with𝑀,𝑁 ∈ 𝑅𝑚×𝑛, 𝑝, 𝑞 ∈ 𝑅𝑚, then the above Definition 1(i)
is equivalent to that the matrix𝑀⊤𝑁 is positive semidefinite.

Now, we give some assumptions for our analysis based on
Definition 1.

Assumption 3. For mappings 𝐹, 𝐺 and matrix 𝐴 involved in
the GNCP, we assume that
(A1) mapping 𝐹 is monotone with respect to mapping 𝐺;
(A2) matrix 𝐴⊤ has full-column rank.

Remark 4. Under (A2) in the assumption, matrix 𝐴⊤ has left
inverse (𝐴𝐴⊤)−1𝐴, that is, its pseudoinverse of𝐴⊤. Certainly,
the assumption on matrix 𝐴⊤ is weaker than that on matrix
(𝐴⊤, 𝐵⊤) which has full-column rank [4]. In addition, when
the mappings 𝐹, 𝐺 are both linear, then Assumption 3(A1)
coincides with Assumption (A1) in [4].

In the following, we will establish a new equivalent
reformulation to the GNCP. First, we give the following
conclusion established in [2].

Theorem 5. A point 𝑥∗ ∈ 𝑅𝑛 is a solution of the GNCP if and
only if there exist 𝜆∗

1
∈ 𝑅𝑠, 𝜆∗

2
∈ 𝑅𝑡, such that

𝐴𝐹 (𝑥
∗
) ≥ 0,

𝐵𝐹 (𝑥
∗
) = 0,

𝜆
∗

1
≥ 0,

(𝐹 (𝑥
∗
))
⊤
𝐺 (𝑥
∗
) = 0,

𝐺 (𝑥
∗
) = 𝐴
⊤
𝜆
∗

1
+ 𝐵
⊤
𝜆
∗

2
.

(5)

FromTheorem 5, underAssumption 3(A2), we can trans-
form the system into a new system in which neither 𝜆1 nor
𝜆2 is involved. To this end, we need the following conclusion
[12].

Lemma 6. If the linear system𝐻𝑦 = 𝑏 is consistent, then 𝑦 =

𝐻
+𝑏 is the solution with theminimum 2-norm, where𝐻+ is the

pesudo-inverse of𝐻.

Lemma 7. Suppose that Assumption 3(A2) holds. Then, for
any 𝑥 ∈ 𝑅𝑛, the following statements are equivalent.

(1) There exist 𝜆1 ∈ 𝑅𝑠+, 𝜆2 ∈ 𝑅
𝑡 such that 𝐺(𝑥) = 𝐴⊤𝜆1 +

𝐵⊤𝜆2.
(2) Consider

{−𝐴
−1

𝐿
𝐵
⊤
[(𝐴
⊤
𝐴
−1

𝐿
− 𝐼) 𝐵

⊤
]
+

[𝐴
⊤
𝐴
−1

𝐿
− 𝐼] + 𝐴

−1

𝐿
}𝐺 (𝑥) ≥ 0,

{𝐴
⊤
{−𝐴
−1

𝐿
𝐵
⊤
[(𝐴
⊤
𝐴
−1

𝐿
− 𝐼) 𝐵

⊤
]
+

[𝐴
⊤
𝐴
−1

𝐿
− 𝐼] + 𝐴

−1

𝐿
}

+𝐵
⊤
[(𝐴
⊤
𝐴
−1

𝐿
− 𝐼) 𝐵

⊤
]
+

[𝐴
⊤
𝐴
−1

𝐿
− 𝐼] − 𝐼}𝐺 (𝑥) = 0,

(6)

where 𝐴−1
𝐿
= (𝐴𝐴⊤)

−1
𝐴.

Proof. The proof follows that of Lemma 2.1 in [4], and for
completeness, we include it.

Set

𝑋1 := {𝑥 ∈ 𝑅
𝑛
| 𝐺 (𝑥) = 𝐴

⊤
𝜆1 + 𝐵

⊤
𝜆2

for some 𝜆1 ∈ 𝑅
𝑠

+
, 𝜆2 ∈ 𝑅

𝑡
} ,

𝑋2 := {𝑥 ∈ 𝑅
𝑛
| { − 𝐴

−1

𝐿
𝐵
⊤
[(𝐴
⊤
𝐴
−1

𝐿
− 𝐼) 𝐵

⊤
]
+

× [𝐴
⊤
𝐴
−1

𝐿
− 𝐼] + 𝐴

−1

𝐿
}𝐺 (𝑥) ≥ 0,

{𝐴
⊤
{−𝐴
−1

𝐿
𝐵
⊤
[(𝐴
⊤
𝐴
−1

𝐿
− 𝐼) 𝐵

⊤
]
+

× [𝐴
⊤
𝐴
−1

𝐿
− 𝐼] + 𝐴

−1

𝐿
}

+ 𝐵
⊤
[(𝐴
⊤
𝐴
−1

𝐿
− 𝐼) 𝐵

⊤
]
+

× [𝐴
⊤
𝐴
−1

𝐿
− 𝐼] − 𝐼}𝐺 (𝑥) = 0} .

(7)

Now, we show that these two sets are equal.
First, for any 𝑥 ∈ 𝑋1, there exist 𝜆1 ∈ 𝑅𝑠

+
, 𝜆2 ∈ 𝑅𝑡 such

that

𝐺 (𝑥) = 𝐴
⊤
𝜆1 + 𝐵

⊤
𝜆2. (8)

Premultiplying (8) by 𝐴−1
𝐿
:= (𝐴𝐴⊤)

−1
𝐴 gives

𝐴
−1

𝐿
𝐺 (𝑥) = 𝜆1 + 𝐴

−1

𝐿
𝐵
⊤
𝜆2. (9)

Combining this with (8) yields that

𝐺 (𝑥) = 𝐴
⊤
(𝐴
−1

𝐿
𝐺 (𝑥) − 𝐴

−1

𝐿
𝐵
⊤
𝜆2) + 𝐵

⊤
𝜆2

= 𝐴
⊤
𝐴
−1

𝐿
𝐺 (𝑥) − [𝐴

⊤
𝐴
−1

𝐿
𝐵
⊤
− 𝐵
⊤
] 𝜆2;

(10)
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that is,

[𝐴
⊤
𝐴
−1

𝐿
𝐵
⊤
− 𝐵
⊤
] 𝜆2 = [𝐴

⊤
𝐴
−1

𝐿
− 𝐼]𝐺 (𝑥) . (11)

Recalling Lemma 6, we further have

𝜆2 = [(𝐴
⊤
𝐴
−1

𝐿
− 𝐼) 𝐵

⊤
]
+

[𝐴
⊤
𝐴
−1

𝐿
− 𝐼]𝐺 (𝑥) . (12)

Combining this with (9) yields that

𝜆1 = {−𝐴
−1

𝐿
𝐵
⊤
[(𝐴
⊤
𝐴
−1

𝐿
− 𝐼) 𝐵

⊤
]
+

[𝐴
⊤
𝐴
−1

𝐿
− 𝐼] + 𝐴

−1

𝐿
}

× 𝐺 (𝑥) .

(13)

Using (8), (12), and (13), we have

{𝐴
⊤
{−𝐴
−1

𝐿
𝐵
⊤
[(𝐴
⊤
𝐴
−1

𝐿
− 𝐼) 𝐵

⊤
]
+

[𝐴
⊤
𝐴
−1

𝐿
− 𝐼] + 𝐴

−1

𝐿
}

+𝐵
⊤
[(𝐴
⊤
𝐴
−1

𝐿
− 𝐼) 𝐵

⊤
]
+

[𝐴
⊤
𝐴
−1

𝐿
− 𝐼] − 𝐼}𝐺 (𝑥) = 0.

(14)

From the fact that 𝜆1 ≥ 0, by (13), one has

{−𝐴
−1

𝐿
𝐵
⊤
[(𝐴
⊤
𝐴
−1

𝐿
− 𝐼) 𝐵

⊤
]
+

[𝐴
⊤
𝐴
−1

𝐿
− 𝐼] + 𝐴

−1

𝐿
}𝐺 (𝑥)

≥ 0.

(15)

Combining this with (14) leads to that 𝑥 ∈ 𝑋2. This shows
that𝑋1 ⊆ 𝑋2.

Second, for any 𝑥 ∈ 𝑋2, let

𝜆1 = {−𝐴
−1

𝐿
𝐵
⊤
[(𝐴
⊤
𝐴
−1

𝐿
− 𝐼) 𝐵

⊤
]
+

[𝐴
⊤
𝐴
−1

𝐿
− 𝐼] + 𝐴

−1

𝐿
}

× 𝐺 (𝑥) ,

𝜆2 = {[(𝐴
⊤
𝐴
−1

𝐿
− 𝐼) 𝐵

⊤
]
+

[𝐴
⊤
𝐴
−1

𝐿
− 𝐼]}𝐺 (𝑥) .

(16)

Then, 𝜆1 ∈ 𝑅
𝑠

+
, 𝜆2 ∈ 𝑅

𝑡. From (14), one has

𝐺 (𝑥) = 𝐴
⊤
{−𝐴
−1

𝐿
𝐵
⊤
[(𝐴
⊤
𝐴
−1

𝐿
− 𝐼) 𝐵

⊤
]
+

[𝐴
⊤
𝐴
−1

𝐿
− 𝐼] + 𝐴

−1

𝐿
}

× 𝐺 (𝑥)

+𝐵
⊤
{[(𝐴
⊤
𝐴
−1

𝐿
− 𝐼) 𝐵

⊤
]
+

[𝐴
⊤
𝐴
−1

𝐿
− 𝐼]}𝐺 (𝑥)

= 𝐴
⊤
𝜆1 + 𝐵

⊤
𝜆2;

(17)

that is, 𝑥 ∈ 𝑋1. Hence, 𝑋2 ⊆ 𝑋1, and the desired result
follows.

Combining this conclusion with Theorem 5, we can
establish the following equivalent formulation of the GNCP:

𝐴𝐹 (𝑥) ≥ 0,

𝐵𝐹 (𝑥) = 0,

(𝐹 (𝑥))
⊤
𝐺 (𝑥) = 0,

𝑈𝐺 (𝑥) ≥ 0,

𝑉𝐺 (𝑥) = 0,

(18)

where

𝑈 = {−𝐴
−1

𝐿
𝐵
⊤
[(𝐴
⊤
𝐴
−1

𝐿
− 𝐼) 𝐵

⊤
]
+

[𝐴
⊤
𝐴
−1

𝐿
− 𝐼] + 𝐴

−1

𝐿
} ,

𝑉 = {𝐴
⊤
{−𝐴
−1

𝐿
𝐵
⊤
[(𝐴
⊤
𝐴
−1

𝐿
− 𝐼) 𝐵

⊤
]
+

× [𝐴
⊤
𝐴
−1

𝐿
− 𝐼] + 𝐴

−1

𝐿
}

+𝐵
⊤
[(𝐴
⊤
𝐴
−1

𝐿
− 𝐼) 𝐵

⊤
]
+

[𝐴
⊤
𝐴
−1

𝐿
− 𝐼] − 𝐼} .

(19)

For the ease of description, we denote 𝜇 = 𝐹(𝑥), ] = 𝐺(𝑥).
Thus, system (18) can be written as

𝐴𝜇 ≥ 0,

𝐵𝜇 = 0,

𝜇
⊤] = 0,

𝑈] ≥ 0,

𝑉] = 0.

(20)

For system (20), one has

𝜇
⊤] = 𝜇

⊤
{𝐴
⊤
{−𝐴
−1

𝐿
𝐵
⊤
[(𝐴
⊤
𝐴
−1

𝐿
− 𝐼) 𝐵

⊤
]
+

× [𝐴
⊤
𝐴
−1

𝐿
− 𝐼] + 𝐴

−1

𝐿
}

+𝐵
⊤
[(𝐴
⊤
𝐴
−1

𝐿
− 𝐼) 𝐵

⊤
]
+

[𝐴
⊤
𝐴
−1

𝐿
− 𝐼]} ]

= [𝐴𝜇]
⊤
{−𝐴
−1

𝐿
𝐵
⊤
[(𝐴
⊤
𝐴
−1

𝐿
− 𝐼) 𝐵

⊤
]
+

× [𝐴
⊤
𝐴
−1

𝐿
− 𝐼] + 𝐴

−1

𝐿
} ]

+ [𝐵𝜇]
⊤
{[(𝐴
⊤
𝐴
−1

𝐿
− 𝐼) 𝐵

⊤
]
+

[𝐴
⊤
𝐴
−1

𝐿
− 𝐼]} ]

= [𝐴𝜇]
⊤
[𝑈]] ,

(21)

where the first equality follows from the last equality in (20),
and the last equality uses the second equality in (20). Thus,
system (20) can be further written as

𝐴𝜇 ≥ 0, 𝐵𝜇 = 0,

(𝐴𝜇)
⊤
(𝑈]) = 0,

𝑈] ≥ 0, 𝑉] = 0.

(22)
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Furthermore, for any (𝜇, ]) ∈ 𝑅𝑚 × 𝑅𝑚 with 𝐴𝜇 ≥ 0, 𝑈] ≥ 0,
it holds from (21) that

𝜇
⊤] ≥ 0. (23)

Now, consider the following optimization problem:

min 𝑓 (𝜔) = [(𝐼, 0) 𝜔]
⊤
[(0, 𝐼) 𝜔]

s.t. 𝜔 ∈ Ω,
(24)

where 𝜔 = (𝜇, ]), Ω = {𝜔 ∈ 𝑅2𝑚 | 𝐴(𝐼, 0)𝜔 ≥ 0, 𝐵(𝐼, 0)𝜔 = 0,

𝑈(0, 𝐼)𝜔 ≥ 0, 𝑉(0, 𝐼)𝜔 = 0}. Denote the solution set of (24)
by Ω∗.

Lemma 8. Under Assumption 3(A1), 𝑓(𝜔) is a convex func-
tion.

Proof. For any 𝜔1, 𝜔2 ∈ 𝑅2𝑚, 𝜏 ∈ [0, 1], we have

𝑓 (𝜏𝜔1 + (1 − 𝜏) 𝜔2) − 𝜏𝑓 (𝜔1) − (1 − 𝜏) 𝑓 (𝜔2)

= [(𝐼, 0) (𝜏𝜔1 + (1 − 𝜏) 𝜔2)]
⊤

× [(0, 𝐼) (𝜏𝜔1 + (1 − 𝜏) 𝜔2)]

− 𝜏[(𝐼, 0) 𝜔1]
⊤
[(0, 𝐼) 𝜔1]

− (1 − 𝜏) [(𝐼, 0) 𝜔2]
⊤
[(0, 𝐼) 𝜔2]

= 𝜏
2
[(𝐼, 0) 𝜔1]

⊤
[(0, 𝐼) 𝜔1]

+ (1 − 𝜏)
2
[(𝐼, 0) 𝜔2]

⊤
[(0, 𝐼) 𝜔2]

+ 𝜏 (1 − 𝜏) [(𝐼, 0) 𝜔1]
⊤
[(0, 𝐼) 𝜔2]

+ 𝜏 (1 − 𝜏) [(𝐼, 0) 𝜔2]
⊤
[(0, 𝐼) 𝜔1]

− 𝜏[(𝐼, 0) 𝜔1]
⊤
[(0, 𝐼) 𝜔1]

− (1 − 𝜏) [(𝐼, 0) 𝜔2]
⊤
[(0, 𝐼) 𝜔2]

= −𝜏 (1 − 𝜏) [(𝐼, 0) 𝜔1]
⊤
[(0, 𝐼) 𝜔1]

− 𝜏 (1 − 𝜏) [(𝐼, 0) 𝜔2]
⊤
[(0, 𝐼) 𝜔2]

+ 𝜏 (1 − 𝜏) [(𝐼, 0) 𝜔1]
⊤
[(0, 𝐼) 𝜔2]

+ 𝜏 (1 − 𝜏) [(𝐼, 0) 𝜔2]
⊤
[(0, 𝐼) 𝜔1]

= −𝜏 (1 − 𝜏) ([(𝐼, 0) 𝜔1] − [(𝐼, 0) 𝜔2])
⊤

× ((0, 𝐼) 𝜔1 − (0, 𝐼) 𝜔2) ≤ 0,

(25)

where the first inequality uses Assumption 3(A1).The desired
result follows.

Based on (20), combining (23) with Lemma 8, we can
obtain the following conclusion.

Lemma 9. A point 𝜔∗ = (𝜇∗, ]∗) ∈ 𝑅2𝑚 is a solution of (20)
if and only if 𝜔∗ is a global optimal solution with the objective
vanishing of (24).

In the following, we give the error bound for a polyhedral
cone from [13] and error bound for a convex optimization
from [14] to reach our aims.

Lemma 10. For polyhedral cone 𝑃 = {𝑥 ∈ 𝑅
𝑛 | 𝐷1𝑥 =

𝑑1, 𝐵1𝑥 ≤ 𝑏1} with 𝐷1 ∈ 𝑅𝑙×𝑛, 𝐵1 ∈ 𝑅𝑚×𝑛, 𝑑1 ∈ 𝑅𝑙, and 𝑏1 ∈
𝑅𝑚, there exists a constant 𝑐2 > 0 such that

dist (𝑥, 𝑃) ≤ 𝑐2 [
󵄩󵄩󵄩󵄩𝐷1𝑥 − 𝑑1

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩(𝐵1𝑥 − 𝑏1)+

󵄩󵄩󵄩󵄩] ,

∀𝑥 ∈ 𝑅
𝑛
.

(26)

Lemma 11. Let 𝑃 be a convex polyhedron in 𝑅𝑛, and let 𝜃 be a
convex quadratic function defined on𝑅𝑛. Let 𝑆 be the nonempty
set of globally optimal solutions of the programming:

min 𝜃 (𝑥)

𝑠.𝑡. 𝑥 ∈ 𝑃
(27)

with 𝜃𝑜𝑝𝑡 being the optimal value of 𝜃 on 𝑆. There exists a scalar
𝑐3 > 0 such that

dist (𝑥, 𝑆) ≤ 𝑐3max { dist (𝑥, 𝑃) , 󵄨󵄨󵄨󵄨󵄨[𝜃 (𝑥) − 𝜃𝑜𝑝𝑡]+
󵄨󵄨󵄨󵄨󵄨
,

󵄨󵄨󵄨󵄨󵄨
[𝜃 (𝑥) − 𝜃𝑜𝑝𝑡]+

󵄨󵄨󵄨󵄨󵄨

1/2

} ,

∀𝑥 ∈ 𝑅
𝑛
.

(28)

Before proceeding, we present the following definition
introduced in [15].

Definition 12. The mapping 𝐺 : 𝑅𝑛 → 𝑅𝑚 is said to be
strongly nonexpanding with a constant 𝛼 > 0 if ‖𝐺(𝑥) −
𝐺(𝑦)‖ ≥ 𝛼‖𝑥 − 𝑦‖.

By Lemma 8, 𝑓(𝜔) is a convex function and the feasible
setΩ is a polyhedral. Combining this with Lemmas 10 and 11,
we immediately obtain the following conclusion.

Theorem 13. Suppose that 𝐹 is 𝛾-strongly 𝐺-monotone with
positive constants 𝑐1, 𝛾, respectively, and 𝐺 is strongly nonex-
panding with constant 𝛼 > 0.Then, there exists constant 𝜌1 > 0
such that

dist (𝑥,𝑋∗) ≤ 𝜌1 {
󵄩󵄩󵄩󵄩[𝐴𝐹 (𝑥)]−

󵄩󵄩󵄩󵄩 + ‖𝐵𝐹 (𝑥)‖

+
󵄩󵄩󵄩󵄩[𝑈𝐺 (𝑥)]−

󵄩󵄩󵄩󵄩 + ‖𝑉𝐺 (𝑥)‖

+
󵄨󵄨󵄨󵄨󵄨
[𝐹(𝑥)
⊤
𝐺 (𝑥)]

+

󵄨󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨󵄨
[𝐹(𝑥)
⊤
𝐺 (𝑥)]

+

󵄨󵄨󵄨󵄨󵄨

1/2

}
2/(1+𝛾)

,

∀𝑥 ∈ 𝑅
𝑛
.

(29)
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Proof. For any 𝑥 ∈ 𝑅𝑛, let 𝜔 = (𝜇, ]) = (𝐹(𝑥), 𝐺(𝑥)) ∈ 𝑅2𝑚.
Then, there exists 𝜔∗ = (𝜇∗, ]∗) = (𝐹(𝑥∗), 𝐺(𝑥∗)) ∈ Ω∗ such
that dist(𝜔,Ω∗) = ‖𝜔 −𝜔∗‖. A direct computation yields that

dist1+𝛾 (𝑥,𝑋∗)

≤
󵄩󵄩󵄩󵄩𝑥 − 𝑥

∗󵄩󵄩󵄩󵄩
1+𝛾

≤
1

𝛼1+𝛾
󵄩󵄩󵄩󵄩𝐺 (𝑥) − 𝐺 (𝑥

∗
)
󵄩󵄩󵄩󵄩
1+𝛾

≤
1

𝑐1𝛼
1+𝛾

[(𝐹 (𝑥) − 𝐹 (𝑥
∗
))
⊤
(𝐺 (𝑥) − 𝐺 (𝑥

∗
))]

≤
1

𝑐1𝛼
1+𝛾

󵄩󵄩󵄩󵄩𝐹 (𝑥) − 𝐹 (𝑥
∗
)
󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝐺 (𝑥) − 𝐺 (𝑥

∗
)
󵄩󵄩󵄩󵄩

≤
1

2𝑐1𝛼
1+𝛾

{
󵄩󵄩󵄩󵄩𝐹 (𝑥) − 𝐹 (𝑥

∗
)
󵄩󵄩󵄩󵄩
2
+
󵄩󵄩󵄩󵄩𝐺 (𝑥) − 𝐺 (𝑥

∗
)
󵄩󵄩󵄩󵄩
2
}

=
1

2𝑐1𝛼
1+𝛾

󵄩󵄩󵄩󵄩𝜔 − 𝜔
∗󵄩󵄩󵄩󵄩
2

=
1

2𝑐1𝛼
1+𝛾

dist2 (𝜔,Ω∗)

≤
1

2𝑐1𝛼
1+𝛾

𝑐
2

3

×max {dist (𝜔, Ω) , 󵄨󵄨󵄨󵄨[𝑓 (𝜔)]+
󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨[𝑓 (𝜔)]+

󵄨󵄨󵄨󵄨
1/2
}
2

≤
1

2𝑐1𝛼
1+𝛾

𝑐
2

3

×max {𝑐2 {
󵄩󵄩󵄩󵄩[𝐴 (𝐼, 0) 𝜔]−

󵄩󵄩󵄩󵄩 + ‖𝐵 (𝐼, 0) 𝜔‖

+
󵄩󵄩󵄩󵄩[𝑈 (0, 𝐼) 𝜔]−

󵄩󵄩󵄩󵄩 + ‖𝑉 (0, 𝐼) 𝜔‖} ,

󵄨󵄨󵄨󵄨[𝑓 (𝜔)]+
󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨[𝑓 (𝜔)]+

󵄨󵄨󵄨󵄨
1/2
}
2

≤
1

2𝑐1𝛼
1+𝛾

𝑐
2

3

×max {𝑐2, 1}
2
{
󵄩󵄩󵄩󵄩[𝐴𝜇]−

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝐵𝜇

󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩[𝑈]]−

󵄩󵄩󵄩󵄩 + ‖𝑉]‖

+
󵄨󵄨󵄨󵄨󵄨
[𝜇
⊤]]
+

󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
[𝜇
⊤]]
+

󵄨󵄨󵄨󵄨󵄨

1/2

}
2

,

(30)

where the second inequality follows from Definition 12
with constant 𝛼 > 0, the third inequality follows from
Definition 1(ii) with constants 𝑐1 > 0, 𝛾 > 0, the fourth
inequality follows from the Cauchy-Schwarz inequality, the
fifth inequality follows from the fact that (1/2)(𝑎2 + 𝑏2) ≥ 𝑎𝑏,
for all 𝑎, 𝑏 ∈ 𝑅, the sixth inequality follows from Lemma 11
with constant 𝑐3 > 0 and Lemma 9, and the seventh inequality
follows from Lemma 10 with constant 𝑐2 > 0. By (30)
and letting 𝜌1 = {(1/2𝑐1𝛼

1+𝛾)𝑐2
3
max{𝑐2, 1}

2
}
1/(1+𝛾), then the

desired result follows.

Remark 14. It is clear that if 𝐹 is 𝛾-strongly 𝐺-monotone and
𝐺 is strongly nonexpanding, then

⟨𝐹 (𝑥) − 𝐹 (𝑦) , 𝐺 (𝑥) − 𝐺 (𝑦)⟩ ≥ 𝑐1
󵄩󵄩󵄩󵄩𝐺 (𝑥) − 𝐺 (𝑦)

󵄩󵄩󵄩󵄩
1+𝛾

≥ 𝑐1𝛼
1+𝛾󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩
1+𝛾
,

∀𝑥, 𝑦 ∈ 𝑅
𝑛
.

(31)

Moreover, the conditions which both 𝐹 and 𝐺 are Hölder
continuous (or both 𝐹 and 𝐺 are Lipschitz continuous) in
Theorem 13 are removed. Thus, Theorem 13 is stronger than
Theorem 2.5 in [5]. Furthermore, by Theorem 2.1 in [5], the
GNCP can be reformulated as general variational inequalities
problem, and the conditions in Theorem 13 are also weaker
than those in Theorem 3.1 in [15], Theorem 3.1 in [11],
Theorem 3.1 in [10], andTheorem 2 in [9], respectively.

On the other hand, the condition that 𝐹 is 𝛾-strongly 𝐺-
monotone and 𝐺 is strongly nonexpanding in Theorem 13
is extended compared with the condition that 𝐹 is strongly
monotone with respect to 𝐺 (i.e., 𝛾 = 1) inTheorems 3.4 and
3.6 in [15], and it is also extended than compared with the
condition 𝐹 is strongly monotone with respect to 𝐺 (i.e., 𝛾 =
1) in Theorem 3.1 in [11], and compared with the condition
that 𝐹(𝑥) = 𝑥, 𝐺(𝑥) is strongly monotone (i.e., 𝛾 = 1) in
Theorem 3.1 in [10].

Using the following Definition 15 developed from the
complementarity conditions in (22), we can further detect the
error bound of the GNCP.

Definition 15. A solution 𝑥0 of the GNCP is said to be non-
degenerate if it satisfies

𝐴𝐹 (𝑥0) + 𝑈𝐺 (𝑥0) > 0. (32)

Lemma 16. Suppose that Assumptions 3(A1) and 3(A2) hold,
and the GNCP has a nondegenerate solution, say 𝑥0. Then,

Ω
∗
= {𝜔 ∈ Ω | [(𝐼, 0) 𝜔]

⊤
[(0, 𝐼) 𝜔0]

+[(0, 𝐼) 𝜔]
⊤
[(𝐼, 0) 𝜔0] = 0} ,

(33)

where 𝜔0 = (𝜇0, ]0) = (𝐹(𝑥0), 𝐺(𝑥0)).

Proof. Since

[(𝐼, 0) 𝜔0]
⊤
[(0, 𝐼) 𝜔0] = 0, (34)

by Assumption 3(A1), for any 𝜔 ∈ Ω, we have

0 ≤ (𝜇 − 𝜇0)
⊤
(] − ]0)

= [(𝐼, 0) 𝜔 − (𝐼, 0) 𝜔0]
⊤
[(0, 𝐼) 𝜔 − (0, 𝐼) 𝜔0]

= [(𝐼, 0) 𝜔]
⊤
[(0, 𝐼) 𝜔] − [(𝐼, 0) 𝜔]

⊤
[(0, 𝐼) 𝜔0]

− [(0, 𝐼) 𝜔]
⊤
[(𝐼, 0) 𝜔0] ;

(35)

that is,

[(𝐼, 0) 𝜔]
⊤
[(0, 𝐼) 𝜔0] + [(0, 𝐼) 𝜔]

⊤
[(𝐼, 0) 𝜔0]

≤ [(𝐼, 0) 𝜔]
⊤
[(0, 𝐼) 𝜔] .

(36)
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To prove the assertion, we only need to show that the solution
set Ω∗ is equal to the set

𝑊 := {𝜔 ∈ Ω | [(𝐼, 0) 𝜔]
⊤
[(0, 𝐼) 𝜔0]

+[(0, 𝐼) 𝜔]
⊤
[(𝐼, 0) 𝜔0] = 0} .

(37)

For any 𝜔̃ ∈ Ω∗, combining Lemma 9 with (20) yields
that

[(𝐼, 0) 𝜔̃]
⊤
[(0, 𝐼) 𝜔̃] = 0. (38)

Letting 𝜔 = 𝜔̃ in (36) yields that

[(𝐼, 0) 𝜔̃]
⊤
[(0, 𝐼) 𝜔0] + [(0, 𝐼) 𝜔̃]

⊤
[(𝐼, 0) 𝜔0] ≤ 0. (39)

Since 𝜔̃, 𝜔0 ∈ Ω, using the similar technique to that of (21),
we can obtain

[(𝐼, 0) 𝜔̃]
⊤
[(0, 𝐼) 𝜔0] + [(0, 𝐼) 𝜔̃]

⊤
[(𝐼, 0) 𝜔0]

= 𝜇
⊤]0 + ]̃⊤𝜇0

= (𝐴𝜇)
⊤
(𝑈]0) + (𝑈]̃)

⊤
(𝐴𝜇0)

≥ 0,

(40)

where 𝜔̃ = (𝜇, ]̃). Combining (39) with (40), we have Ω∗ ⊆
𝑊.

On the other hand, for any 𝜔 ∈ 𝑊, one has

[(𝐼, 0) 𝜔]
⊤
[(0, 𝐼) 𝜔0] + [(0, 𝐼) 𝜔]

⊤
[(𝐼, 0) 𝜔0] = 0. (41)

Since 𝜔, 𝜔0 ∈ Ω, using the similar arguments to that of (21),
one has

[(𝐼, 0) 𝜔]
⊤
[(0, 𝐼) 𝜔0] = [𝐴𝜇]

⊤
[𝑈]0] ,

[(0, 𝐼) 𝜔]
⊤
[(𝐼, 0) 𝜔0] = [𝑈]]

⊤
[𝐴𝜇0] .

(42)

Combining this with (41) yields that

[𝐴𝜇]
⊤
[𝑈]0] + [𝑈]]

⊤
[𝐴𝜇0] = 0. (43)

From (32), we deduce that

[𝐴𝜇]
⊤
[𝑈]] = 0. (44)

Thus, using (21), one has

𝜇
⊤] = 0. (45)

Hence, 𝜔 ∈ Ω∗.

Based on Lemma 16, we obtain the following conclusion.

Corollary 17. Suppose that the hypotheses of Lemma 16 hold.
Then,

Ω
∗
= {𝜔 ∈ Ω | [(𝐼, 0) 𝜔]

⊤
[(0, 𝐼) 𝜔0]

+[(0, 𝐼) 𝜔]
⊤
[(𝐼, 0) 𝜔0] ≤ 0} .

(46)

Theorem 18. Suppose that the hypotheses of Theorem 13 hold,
and the GNCP has a nondegenerate solution.Then, there exists
constant 𝜌2 > 0 such that

dist (𝑥, 𝑋∗)

≤ 𝜌2 {
󵄩󵄩󵄩󵄩[𝐴𝐹 (𝑥)]−

󵄩󵄩󵄩󵄩 + ‖𝐵𝐹 (𝑥)‖ +
󵄩󵄩󵄩󵄩[𝑈𝐺 (𝑥)]−

󵄩󵄩󵄩󵄩

+ ‖𝑉𝐺 (𝑥)‖ +
󵄨󵄨󵄨󵄨󵄨
[𝐹(𝑥)
⊤
𝐺 (𝑥)]

+

󵄨󵄨󵄨󵄨󵄨
}
2/(1+𝛾)

, ∀𝑥 ∈ 𝑅
𝑛
.

(47)

Proof. For any 𝑥 ∈ 𝑅𝑛, let 𝜔 = (𝜇, ]) = (𝐹(𝑥), 𝐺(𝑥)) ∈ 𝑅2𝑚.
Then, there exists 𝜔∗ = (𝜇∗, ]∗) = (𝐹(𝑥∗), 𝐺(𝑥∗)) ∈ Ω∗ such
that dist(𝜔,Ω∗) = ‖𝜔 − 𝜔∗‖. Letting 𝑥0 be a nondegenerate
solution of GNCP and letting𝜔0 = (𝐹(𝑥0),𝐺(𝑥0)) ∈ Ω

∗, then

dist1+𝛾 (𝑥,𝑋∗)

≤
󵄩󵄩󵄩󵄩𝑥 − 𝑥

∗󵄩󵄩󵄩󵄩
1+𝛾

≤
1

2𝑐1𝛼
1+𝛾

dist2 (𝜔,Ω∗)

≤
1

2𝑐1𝛼
1+𝛾

𝑐
2

4

× {
󵄩󵄩󵄩󵄩[𝐴 (𝐼, 0) 𝜔]−

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩[𝑈 (0, 𝐼) 𝜔]−

󵄩󵄩󵄩󵄩

+ ‖𝐵 (𝐼, 0) 𝜔‖ + ‖𝑉 (0, 𝐼) 𝜔‖

+
󵄩󵄩󵄩󵄩󵄩
{[(𝐼, 0) 𝜔]

⊤
[(0, 𝐼) 𝜔0]

+[(0, 𝐼) 𝜔]
⊤
[(𝐼, 0) 𝜔0]}+

󵄩󵄩󵄩󵄩󵄩
}
2

≤
1

2𝑐1𝛼
1+𝛾

𝑐
2

4

× {
󵄩󵄩󵄩󵄩[𝐴 (𝐼, 0) 𝜔]−

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩[𝑈 (0, 𝐼) 𝜔]−

󵄩󵄩󵄩󵄩

+ ‖𝐵 (𝐼, 0) 𝜔‖ + ‖𝑉 (0, 𝐼) 𝜔‖

+
󵄩󵄩󵄩󵄩󵄩
{ [(𝐼, 0) 𝜔]

⊤
[(0, 𝐼) 𝜔]}

+

󵄩󵄩󵄩󵄩󵄩
}
2

=
1

2𝑐1𝛼
1+𝛾

𝑐
2

4

× {
󵄩󵄩󵄩󵄩[𝐴𝜇]−

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩[𝑈]]−

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝐵𝜇

󵄩󵄩󵄩󵄩

+ ‖𝑉]‖ +
󵄩󵄩󵄩󵄩󵄩
{𝜇
⊤]}
+

󵄩󵄩󵄩󵄩󵄩
}
2

,

(48)

where the second equality uses the similar technique to that
of (30), the third inequality follows from Corollary 17 and
Lemma 10 with constant 𝑐4 > 0, and the last inequality is
based on (36). By (48) and letting 𝜌2 = {(1/2𝑐1𝛼

1+𝛾)𝑐2
4
}
1/(1+𝛾),

the desired result follows.

In the following, we give an error bound of the Hölderian
type [14].

Lemma 19. For 𝑖 = 1, 2, . . . , 𝑚, let 𝑔𝑖(𝑥) be a convex quadratic
function. If the set 𝑆 := {𝑥 ∈ 𝑅𝑛 | 𝑔1(𝑥) ≤ 0,
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𝑔2(𝑥) ≤ 0, . . . , 𝑔𝑚(𝑥) ≤ 0} is nonempty, then there exist a
positive integer 𝑑 ≤ 𝑛 + 1 (called the degree of singularity of
the inequality system) and a positive scalar 𝑐5 such that

dist (𝑥, 𝑆) ≤ 𝑐5max {󵄩󵄩󵄩󵄩[𝑔 (𝑥)]+
󵄩󵄩󵄩󵄩 ,
󵄩󵄩󵄩󵄩[𝑔 (𝑥)]+

󵄩󵄩󵄩󵄩
1/2
𝑑

} , ∀𝑥 ∈ 𝑅
𝑛
,

(49)

where [𝑔(𝑥)]+ = ([𝑔1(𝑥)]+, [𝑔2(𝑥)]+, . . . , [𝑔𝑚(𝑥)]+). Further-
more, if 𝑆 contains an interior point, then 𝑑 = 0.

Based on (18) and (21), the GNCP can also be written as

𝐴𝐹 (𝑥) ≥ 0,

𝐵𝐹 (𝑥) = 0,

(𝐹 (𝑥))
⊤
𝐺 (𝑥) ≤ 0,

𝑈𝐺 (𝑥) ≥ 0,

𝑉𝐺 (𝑥) = 0.

(50)

From Lemma 19, we can establish the following global
error bound for GNCP.

Theorem 20. Suppose that the hypotheses ofTheorem 13 hold,
and there exists point 𝑥 ∈ 𝑅𝑛 such that

𝐹(𝑥)
⊤
𝐺 (𝑥) < 0. (51)

Then, there exists constant 𝜌3 > 0 such that

dist (𝑥,𝑋∗) ≤ 𝜌3 {
󵄩󵄩󵄩󵄩[𝐴𝐹 (𝑥)]−

󵄩󵄩󵄩󵄩 + ‖𝐵𝐹 (𝑥)‖

+
󵄩󵄩󵄩󵄩[𝑈𝐺 (𝑥)]−

󵄩󵄩󵄩󵄩 + ‖𝑉𝐺 (𝑥)‖

+
󵄨󵄨󵄨󵄨󵄨
[𝐹(𝑥)
⊤
𝐺 (𝑥)]

+

󵄨󵄨󵄨󵄨󵄨
}
2/(1+𝛾)

, ∀𝑥 ∈ 𝑅
𝑛
.

(52)

Proof. Let 𝑆1 := {𝜔 ∈ 𝑅
2𝑚

| 𝑓(𝜔) ≤ 0}, where
𝑓(𝜔) = [(𝐼, 0)𝜔]

⊤
[(0, 𝐼)𝜔]. By Lemma 8, we have 𝑓(𝜔) is a

convex quadratic function. Combining this with (51), using
Lemma 19 with 𝑑 = 0, this yields the following result

dist (𝜔, 𝑆1) ≤ 𝑐6
󵄩󵄩󵄩󵄩[𝑓 (𝜔)]+

󵄩󵄩󵄩󵄩 , ∀𝜔 ∈ 𝑅
2𝑚
, (53)

where 𝑐6 is a positive constant.
Obviously, 𝑆1 is a closed convex set.Thus, for any𝜔 ∈ 𝑅2𝑚,

there exists a vector 𝜔 ∈ 𝑆1 such that

‖𝜔 − 𝜔‖ = dist (𝜔, 𝑆1) . (54)

For convenience, we also let

Ψ (𝜔) = (−𝐴 (𝐼, 0) 𝜔, −𝐵 (𝐼, 0) 𝜔, −𝑈 (0, 𝐼) 𝜔,

−𝑉 (0, 𝐼) 𝜔, 𝐵 (𝐼, 0) 𝜔, 𝑉 (0, 𝐼) 𝜔)+.
(55)

From (50), we haveΩ∗ = Ω⋂𝑆1, whereΩ is defined in (24),
so for any 𝜔 ∈ 𝑆1, combining Lemma 10, one has

dist (𝜔,Ω∗) ≤ 𝑐7 [
󵄩󵄩󵄩󵄩(−𝐴 (𝐼, 0) 𝜔)+

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩(−𝑈 (0, 𝐼) 𝜔)+

󵄩󵄩󵄩󵄩

+ ‖𝐵 (𝐼, 0) 𝜔‖ + ‖𝑉 (0, 𝐼) 𝜔‖ ]

= 𝑐7 [
󵄩󵄩󵄩󵄩(−𝐴 (𝐼, 0) 𝜔)+

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩(−𝑈 (0, 𝐼) 𝜔)+

󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩(𝐵 (𝐼, 0) 𝜔)+

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩(−𝐵 (𝐼, 0) 𝜔)+

󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩(𝑉 (0, 𝐼) 𝜔)+

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩(−𝑉 (0, 𝐼) 𝜔)+

󵄩󵄩󵄩󵄩]

≤ 𝑐7{
󵄩󵄩󵄩󵄩(−𝐴 (𝐼, 0) 𝜔)+

󵄩󵄩󵄩󵄩1 +
󵄩󵄩󵄩󵄩(−𝑈 (0, 𝐼) 𝜔)+

󵄩󵄩󵄩󵄩 1

+
󵄩󵄩󵄩󵄩(𝐵 (𝐼, 0) 𝜔)+

󵄩󵄩󵄩󵄩1 +
󵄩󵄩󵄩󵄩(−𝐵 (𝐼, 0) 𝜔)+

󵄩󵄩󵄩󵄩1

+
󵄩󵄩󵄩󵄩(𝑉 (0, 𝐼) 𝜔)+

󵄩󵄩󵄩󵄩1 +
󵄩󵄩󵄩󵄩− (𝑉 (0, 𝐼) 𝜔)+

󵄩󵄩󵄩󵄩1}

= 𝑐7‖Ψ (𝜔)‖1

≤ 𝑐7√2𝑠 + 2𝑡 + 2𝑚 ‖Ψ (𝜔)‖ ,

(56)

where 𝑐7 is a positive constant, and the second and third
inequalities follow from the fact that ‖𝑥‖ ≤ ‖𝑥‖1 ≤ √𝑛‖𝑥‖,
for all 𝑥 ∈ 𝑅𝑛.

Furthermore,

‖Ψ (𝜔) − Ψ (𝜔)‖

= ‖(−𝐴 (𝐼, 0) 𝜔, −𝐵 (𝐼, 0) 𝜔, −𝑈 (0, 𝐼) 𝜔,

−𝑉 (0, 𝐼) 𝜔, 𝐵 (𝐼, 0) 𝜔, 𝑉 (0, 𝐼) 𝜔)+

− (−𝐴 (𝐼, 0) 𝜔, −𝐵 (𝐼, 0) 𝜔, −𝑈 (0, 𝐼) 𝜔,

−𝑉 (0, 𝐼) 𝜔, 𝐵 (𝐼, 0) 𝜔, 𝑉 (0, 𝐼) 𝜔)+
󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩󵄩
𝑃𝑅2𝑠+2𝑡+2𝑚
+

{(−𝐴 (𝐼, 0) 𝜔, −𝐵 (𝐼, 0) 𝜔,

− 𝑈 (0, 𝐼) 𝜔, −𝑉 (0, 𝐼) 𝜔,

𝐵 (𝐼, 0) 𝜔, 𝑉 (0, 𝐼) 𝜔)}

− 𝑃𝑅2𝑠+2𝑡+2𝑚
+

{(−𝐴 (𝐼, 0) 𝜔, −𝐵 (𝐼, 0) 𝜔,

− 𝑈 (0, 𝐼) 𝜔, −𝑉 (0, 𝐼) 𝜔,

𝐵 (𝐼, 0) 𝜔, 𝑉 (0, 𝐼) 𝜔)}
󵄩󵄩󵄩󵄩󵄩

≤ ‖{(−𝐴 (𝐼, 0) 𝜔, −𝐵 (𝐼, 0) 𝜔, −𝑈 (0, 𝐼) 𝜔,

−𝑉 (0, 𝐼) 𝜔, 𝐵 (𝐼, 0) 𝜔, 𝑉 (0, 𝐼) 𝜔)}

− {(−𝐴 (𝐼, 0) 𝜔, −𝐵 (𝐼, 0) 𝜔, −𝑈 (0, 𝐼) 𝜔,

−𝑉 (0, 𝐼) 𝜔, 𝐵 (𝐼, 0) 𝜔, 𝑉 (0, 𝐼) 𝜔}‖

≤ ‖𝐴 (𝐼, 0) 𝜔 − 𝐴 (𝐼, 0) 𝜔‖

+ 2 ‖𝐵 (𝐼, 0) 𝜔 − 𝐵 (𝐼, 0) 𝜔‖

+ ‖𝑈 (0, 𝐼) 𝜔 − 𝑈 (0, 𝐼) 𝜔‖

+ 2 ‖𝑉 (0, 𝐼) 𝜔 − 𝑉 (0, 𝐼) 𝜔‖
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≤ (‖𝐴 (𝐼, 0)‖ + 2 ‖𝐵 (𝐼, 0)‖ + ‖𝑈 (0, 𝐼)‖ + 2 ‖𝑉 (0, 𝐼)‖)

× ‖𝜔 − 𝜔‖

= (‖𝐴 (𝐼, 0)‖ + 2 ‖𝐵 (𝐼, 0)‖ + ‖𝑈 (0, 𝐼)‖ + 2 ‖𝑉 (0, 𝐼)‖)

× dist (𝜔, 𝑆1) ,
(57)

where the second equality follows from the fact that

min {𝑎, 𝑏} = 𝑎 − 𝑃𝑅
+
(𝑎 − 𝑏) , ∀𝑎, 𝑏 ∈ 𝑅, (58)

and the first inequality is by nonexpanding property of
projection operator. Thus,

‖Ψ (𝜔)‖ ≤ ‖Ψ (𝜔)‖

+ (‖𝐴 (𝐼, 0)‖ + 2 ‖𝐵 (𝐼, 0)‖

+ ‖𝑈 (0, 𝐼)‖ + 2 ‖𝑉 (0, 𝐼)‖) dist (𝜔, 𝑆1) .
(59)

Combining (56) with (59), for any 𝜔 ∈ 𝑅2𝑚, we have

dist (𝜔,Ω∗) ≤ dist (𝜔, 𝑆1) + dist (𝜔,Ω∗)

≤ dist (𝜔, 𝑆1) + 𝜎 ‖Ψ (𝜔)‖ ≤ dist (𝜔, 𝑆1)

+ 𝜎 ( ‖Ψ (𝜔)‖

+ (‖𝐴 (𝐼, 0)‖ + 2 ‖𝐵 (𝐼, 0)‖ + ‖𝑈 (0, 𝐼)‖

+2 ‖𝑉 (0, 𝐼)‖) dist (𝜔, 𝑆1))

≤ 𝜎 ‖Ψ (𝜔)‖

+ [𝜎 (‖𝐴 (𝐼, 0)‖ + 2 ‖𝐵 (𝐼, 0)‖

+ ‖𝑈 (0, 𝐼)‖ + 2 ‖𝑉 (0, 𝐼)‖) + 1]

× dist (𝜔, 𝑆1)

≤ 𝜎 ‖Ψ (𝜔)‖

+ [𝜎 (‖𝐴 (𝐼, 0)‖ + 2 ‖𝐵 (𝐼, 0)‖

+ ‖𝑈 (0, 𝐼)‖ + 2 ‖𝑉 (0, 𝐼)‖) + 1] 𝑐6

×
󵄩󵄩󵄩󵄩[𝑓 (𝜔)]+

󵄩󵄩󵄩󵄩

≤ 𝜂 (‖Ψ (𝜔)‖ +
󵄩󵄩󵄩󵄩[𝑓 (𝜔)]+

󵄩󵄩󵄩󵄩)

≤ 𝜂 (‖Ψ (𝜔)‖1 +
󵄩󵄩󵄩󵄩[𝑓 (𝜔)]+

󵄩󵄩󵄩󵄩)

≤ 𝜂 (
󵄩󵄩󵄩󵄩(−𝐴 (𝐼, 0) 𝜔)+

󵄩󵄩󵄩󵄩1 +
󵄩󵄩󵄩󵄩(−𝑈 (0, 𝐼) 𝜔)+

󵄩󵄩󵄩󵄩1

+‖𝐵(𝐼, 0)𝜔‖1 + ‖𝑉(0, 𝐼)𝜔‖1 +
󵄩󵄩󵄩󵄩[𝑓 (𝜔)]+

󵄩󵄩󵄩󵄩)

≤ 𝜂 (√𝑠
󵄩󵄩󵄩󵄩(−𝐴 (𝐼, 0) 𝜔)+

󵄩󵄩󵄩󵄩 + √𝑠
󵄩󵄩󵄩󵄩(−𝑈 (0, 𝐼) 𝜔)+

󵄩󵄩󵄩󵄩

+ √𝑡 ‖𝐵 (𝐼, 0) 𝜔‖ + √𝑚‖𝑉 (0, 𝐼) 𝜔‖

+
󵄩󵄩󵄩󵄩[𝑓 (𝜔)]+

󵄩󵄩󵄩󵄩 )

≤ 𝑐8 (
󵄩󵄩󵄩󵄩(−𝐴 (𝐼, 0) 𝜔)+

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩(−𝑈 (0, 𝐼) 𝜔)+

󵄩󵄩󵄩󵄩

+ ‖𝐵 (𝐼, 0) 𝜔‖

+ ‖𝑉 (0, 𝐼) 𝜔‖ +
󵄩󵄩󵄩󵄩[𝑓 (𝜔)]+

󵄩󵄩󵄩󵄩) ,

(60)

where the second inequality follows from (56) with constant
𝜎 = 𝑐7√2𝑠 + 2𝑡 + 2𝑚, the third inequality uses (59), the fifth
inequality follows from (53), the sixth inequality follows from
the fact that

𝜂 = max {𝜎, [𝜎 (‖𝐴 (𝐼, 0)‖ + 2 ‖𝐵 (𝐼, 0)‖ + ‖𝑈 (0, 𝐼)‖

+2 ‖𝑉 (0, 𝐼)‖) + 1] 𝑐6} ,
(61)

the seventh and ninth inequalities follow from the fact that

‖𝑥‖ ≤ ‖𝑥‖1 ≤ √𝑛 ‖𝑥‖ , ∀𝑥 ∈ 𝑅
𝑛
, (62)

and the last inequality follows by letting 𝑐8 = 𝜂max{√𝑠, √𝑡,
√𝑚, 1}.

For any 𝑥 ∈ 𝑅𝑛, letting 𝜔 := (𝜇, ]) = (𝐹(𝑥), 𝐺(𝑥)) ∈ 𝑅2𝑚,
then there exists 𝜔∗ = (𝜇

∗
, ]∗) = (𝐹(𝑥

∗
), 𝐺(𝑥

∗
)) ∈ Ω

∗ such
that dist(𝜔,Ω∗) = ‖𝜔 − 𝜔∗‖, and a direct computation yields
that

dist1+𝛾 (𝑥,𝑋∗) ≤ 󵄩󵄩󵄩󵄩𝑥 − 𝑥
∗󵄩󵄩󵄩󵄩
1+𝛾

≤
1

2𝑐1𝛼
1+𝛾

dist2 (𝜔,Ω∗)

≤
1

2𝑐1𝛼
1+𝛾

𝑐
2

8

× {
󵄩󵄩󵄩󵄩[𝐴 (𝐼, 0) 𝜔]−

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩[𝑈 (0, 𝐼) 𝜔]−

󵄩󵄩󵄩󵄩

+ ‖𝐵 (𝐼, 0) 𝜔‖ + ‖𝑉 (0, 𝐼) 𝜔‖

+
󵄩󵄩󵄩󵄩󵄩
{[(𝐼, 0) 𝜔]

⊤
[(0, 𝐼) 𝜔]}

+

󵄩󵄩󵄩󵄩󵄩
}
2

=
1

2𝑐1𝛼
1+𝛾

𝑐
2

8
{
󵄩󵄩󵄩󵄩[𝐴𝜇]−

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩[𝑈]]−

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝐵𝜇

󵄩󵄩󵄩󵄩

+ ‖𝑉]‖ +
󵄩󵄩󵄩󵄩󵄩
{𝜇
⊤]}
+

󵄩󵄩󵄩󵄩󵄩
}
2

,

(63)

where the deduction of the second equality uses the similar
technique to that of (30), and the third inequality is by (60).
By (63) and letting 𝜌3 = {(1/2𝑐1𝛼

1+𝛾)𝑐2
8
}
1/(1+𝛾), then the

desired result follows.

Remark 21. When 𝐹 is strongly monotone with respect to 𝐺,
that is, 𝛾 = 1, without the requirement of nondegenerate
solution, the square root term in the error bound estimation is
removed as stated inTheorem 20.Hence, the error estimation
becomes more practical than that in Theorem 4.1 in [4].
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3. Global Error Bound for the GLCP

In this section, we consider the linear case of the GCP such
thatmappings𝐹 and𝐺 are both linear; that is,𝐹(𝑥) = 𝑀𝑥+𝑝,
𝐺(𝑥) = 𝑁𝑥 + 𝑞 with𝑀,𝑁 ∈ 𝑅𝑚×𝑛, 𝑝, 𝑞 ∈ 𝑅𝑚:

min 𝐻(𝑥) = (𝑀𝑥 + 𝑝)
⊤
(𝑁𝑥 + 𝑞)

s.t. 𝑥 ∈ 𝑋,
(64)

where

𝑋 = {𝑥 ∈ 𝑅
𝑛
|
𝐴 (𝑀𝑥 + 𝑝) ≥ 0, 𝑈 (𝑁𝑥 + 𝑞) ≥ 0,

𝐵 (𝑀𝑥 + 𝑝) = 0, 𝑉 (𝑁𝑥 + 𝑞) = 0
} . (65)

For problem (64), combining (18) with (23) and using
a similar discussion in Lemmas 8 and 9, we also have the
following conclusion.

Lemma 22. Under Assumption 3(A1),𝐻(𝑥) is a convex func-
tion.

Lemma 23. 𝑥∗ ∈ 𝑅𝑛 is a solution of the GLCP if and only if 𝑥∗
is global optimal solution with the objective vanishing of (64).

Based on (64), using the argument similar to that of
Theorem 13, we can obtain the following conclusion.

Theorem 24. Under Assumptions 3(A1) and 3(A2), and that
mappings 𝐹 and 𝐺 are both linear, there exists constant 𝜌4 > 0
such that

dist (𝑥,𝑋∗) ≤ 𝜌4 {
󵄩󵄩󵄩󵄩[𝐴𝐹 (𝑥)]−

󵄩󵄩󵄩󵄩 + ‖𝐵𝐹 (𝑥)‖ +
󵄩󵄩󵄩󵄩[𝑈𝐺 (𝑥)]−

󵄩󵄩󵄩󵄩

+ ‖𝑉𝐺 (𝑥)‖ +
󵄨󵄨󵄨󵄨󵄨
[𝐹(𝑥)
⊤
𝐺 (𝑥)]

+

󵄨󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨󵄨
[𝐹(𝑥)
⊤
𝐺 (𝑥)]

+

󵄨󵄨󵄨󵄨󵄨

1/2

} , ∀𝑥 ∈ 𝑅
𝑛
.

(66)

Proof. For any 𝑥 ∈ 𝑅𝑛, a direct computation yields that

dist (𝑥,𝑋∗)

≤ 𝑐9max {dist (𝑥, 𝑋) , 󵄨󵄨󵄨󵄨[𝐻 (𝑥)]+
󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨[𝐻 (𝑥)]+

󵄨󵄨󵄨󵄨
1/2
}

≤ 𝑐9max {𝑐10 {
󵄩󵄩󵄩󵄩[𝐴𝐹 (𝑥)]−

󵄩󵄩󵄩󵄩 + ‖𝐵𝐹 (𝑥)‖

+
󵄩󵄩󵄩󵄩[𝑈𝐺 (𝑥)]−

󵄩󵄩󵄩󵄩 + ‖𝑉𝐺 (𝑥)‖} ,

󵄨󵄨󵄨󵄨[𝐻 (𝑥)]+
󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨[𝐻 (𝑥)]+

󵄨󵄨󵄨󵄨
1/2
}

≤ 𝑐9max {𝑐10, 1} {
󵄩󵄩󵄩󵄩[𝐴𝐹 (𝑥)]−

󵄩󵄩󵄩󵄩 + ‖𝐵𝐹 (𝑥)‖

+
󵄩󵄩󵄩󵄩[𝑈𝐺 (𝑥)]−

󵄩󵄩󵄩󵄩

+ ‖𝑉𝐺 (𝑥)‖ +
󵄨󵄨󵄨󵄨󵄨
[(𝐹 (𝑥))

⊤
𝐺 (𝑥)]

+

󵄨󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨󵄨
[(𝐹 (𝑥))

⊤
𝐺 (𝑥)]

+

󵄨󵄨󵄨󵄨󵄨

1/2

} ,

(67)

where the first inequality follows from Lemma 11 with con-
stant 𝑐9 > 0 and Lemma 23, and the second inequality uses
Lemma 10 with constant 𝑐10 > 0. By (67) and letting 𝜌4 =
𝑐9max{𝑐10, 1}, the desired result follows.

Remark 25. Obviously, Assumption 3(A2) in Theorem 24
is weaker than Assumption (A2) in Theorem 4.1 in [4],
Assumption 3(A1) coincides with Assumption (A1) in [4]. In
addition, Theorem 24 is sharper thanTheorem 4.1 in [4].

The following result further estimates the error bound for
the GLCP.

Theorem 26. Suppose that the hypotheses ofTheorem 24 hold,
and the GLCP has a nondegenerate solution. Then, there exists
constant 𝜌5 > 0 such that

dist (𝑥,𝑋∗) ≤ 𝜌5 {
󵄩󵄩󵄩󵄩[𝐴𝐹 (𝑥)]−

󵄩󵄩󵄩󵄩 + ‖𝐵𝐹 (𝑥)‖ +
󵄩󵄩󵄩󵄩[𝑈𝐺 (𝑥)]−

󵄩󵄩󵄩󵄩

+ ‖𝑉𝐺 (𝑥)‖ +
󵄨󵄨󵄨󵄨󵄨
[𝐹(𝑥)
⊤
𝐺 (𝑥)]

+

󵄨󵄨󵄨󵄨󵄨
} ,

∀𝑥 ∈ 𝑅
𝑛
.

(68)

Proof. From Corollary 17, we have

𝑋
∗
= {𝑥 ∈ 𝑋 | (𝑀𝑥 + 𝑝)

⊤
(𝑁𝑥0 + 𝑞)

+(𝑁𝑥 + 𝑞)
⊤
(𝑀𝑥0 + 𝑝) ≤ 0} ,

(69)

where 𝑥0 is a nondegenerate solution of GLCP, and 𝑋 is
defined in (64). For any 𝑥 ∈ 𝑅𝑛, a direct computation yields
that

dist (𝑥,𝑋∗) ≤ 𝑐11 {
󵄩󵄩󵄩󵄩[𝐴 (𝑀𝑥 + 𝑝)]

−

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩[𝑈 (𝑁𝑥 + 𝑞)]

−

󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩𝐵 (𝑀𝑥 + 𝑝)

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑉 (𝑁𝑥 + 𝑞)

󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩
[(𝑀𝑥 + 𝑝)

⊤
(𝑁𝑥0 + 𝑞)

+(𝑁𝑥 + 𝑞)
⊤
(𝑀𝑥0 + 𝑝)]+

󵄩󵄩󵄩󵄩󵄩
}

≤ 𝑐11 {
󵄩󵄩󵄩󵄩[𝐴 (𝑀𝑥 + 𝑝)]

−

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩[𝑈 (𝑁𝑥 + 𝑞)]

−

󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩𝐵 (𝑀𝑥 + 𝑝)

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑉 (𝑁𝑥 + 𝑞)

󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩
[(𝑀𝑥 + 𝑝)

⊤
(𝑁𝑥 + 𝑞)]

+

󵄩󵄩󵄩󵄩󵄩
} ,

(70)

where the first inequality follows from Lemma 10 with con-
stant 𝑐11 > 0, and the second inequality uses (36). Letting
𝜌5 = 𝑐11, the desired result follows.

Remark 27. The condition inTheorem 26 is weaker than that
in Theorem 4.2 in [4].
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Theorem 28. Suppose that the hypotheses ofTheorem 24 hold,
and there exists point 𝑥 ∈ 𝑅𝑛 such that (51) holds. Then there
exists constant 𝜌6 > 0 such that

dist (𝑥,𝑋∗) ≤ 𝜌6 {
󵄩󵄩󵄩󵄩[𝐴𝐹 (𝑥)]−

󵄩󵄩󵄩󵄩 + ‖𝐵𝐹 (𝑥)‖ +
󵄩󵄩󵄩󵄩[𝑈𝐺 (𝑥)]−

󵄩󵄩󵄩󵄩

+ ‖𝑉𝐺 (𝑥)‖ +
󵄨󵄨󵄨󵄨󵄨
[𝐹(𝑥)
⊤
𝐺 (𝑥)]

+

󵄨󵄨󵄨󵄨󵄨
} ,

∀𝑥 ∈ 𝑅
𝑛
.

(71)

Proof. Let 𝑆2 := {𝑥 ∈ 𝑅𝑛 | 𝐻(𝑥) ≤ 0}, where 𝐻(𝑥) =

(𝑀𝑥+𝑝)
⊤
(𝑁𝑥+𝑞). By Lemma 22,𝐻(𝑥) is a convex quadratic

function, and 𝑆2 is a closed convex set. For any 𝑥 ∈ 𝑅𝑛, there
exists a vector 𝑥 ∈ 𝑆2 such that

‖𝑥 − 𝑥‖ = dist (𝑥, 𝑆2) . (72)

Combining (51) and applying Lemma 19 yield the following
result:

dist (𝑥, 𝑆2) ≤ 𝑐12
󵄩󵄩󵄩󵄩[𝐻 (𝑥)]+

󵄩󵄩󵄩󵄩 , ∀𝑥 ∈ 𝑅
𝑛
, (73)

where 𝑐12 is a positive constant. For convenience, we let

𝜑 (𝑥) = (−𝐴𝐹 (𝑥) , −𝐵𝐹 (𝑥) , −𝑈𝐺 (𝑥)

−𝑉𝐺 (𝑥) , 𝐵𝐹 (𝑥) , 𝑉𝐺 (𝑥) )+.
(74)

From (50), we have𝑋∗ = 𝑋⋂𝑆2, where𝑋 is defined in (64).
So for any 𝑥 ∈ 𝑆2, combining Lemma 10 and using the similar
technique to that of (56), one has

dist (𝑥,𝑋∗) ≤ 𝑐13 [
󵄩󵄩󵄩󵄩(−𝐴𝐹 (𝑥))+

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩(−𝑈𝐺 (𝑥))+

󵄩󵄩󵄩󵄩

+ ‖𝐵𝐹 (𝑥)‖ + ‖𝑉𝐺 (𝑥)‖ ]

≤ 𝑐13√2𝑠 + 2𝑡 + 2𝑚
󵄩󵄩󵄩󵄩𝜑 (𝑥)

󵄩󵄩󵄩󵄩 ,

(75)

where 𝑐13 is a positive constant.
Using the fact that

min {𝑎, 𝑏} = 𝑎 − 𝑃𝑅
+
(𝑎 − 𝑏) , ∀𝑎, 𝑏 ∈ 𝑅, (76)

and using the similar technique to that of (57), one has
󵄩󵄩󵄩󵄩𝜑 (𝑥) − 𝜑 (𝑥)

󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩 (−𝐴𝐹 (𝑥) , −𝐵𝐹 (𝑥) , −𝑈𝐺 (𝑥) , −𝑉𝐺 (𝑥) ,

𝐵𝐹 (𝑥) , 𝑉𝐺 (𝑥))+

− (−𝐴𝐹 (𝑥) , −𝐵𝐹 (𝑥) , −𝑈𝐺 (𝑥) ,

− 𝑉𝐺 (𝑥) , 𝐵𝐹 (𝑥) , 𝑉𝐺 (𝑥))+
󵄩󵄩󵄩󵄩

≤ ‖𝐴𝐹 (𝑥) − 𝐴𝐹 (𝑥)‖ + 2 ‖𝐵𝐹 (𝑥) − 𝐵𝐹 (𝑥)‖

+ ‖𝑈𝐺 (𝑥) − 𝑈𝐺 (𝑥)‖ + 2 ‖𝑉𝐺 (𝑥) − 𝑉𝐺 (𝑥)‖

≤ (‖𝐴𝑀‖ + 2 ‖𝐵𝑀‖ + ‖𝑈𝑁‖ + 2 ‖𝑉𝑁‖) ‖𝑥 − 𝑥‖

= (‖𝐴𝑀‖ + 2 ‖𝐵𝑀‖ + ‖𝑈𝑁‖

+2 ‖𝑉𝑁‖) dist (𝑥, 𝑆2) ,

(77)

where the second inequality is by nonexpanding property of
projection operator. Thus,

󵄩󵄩󵄩󵄩𝜑 (𝑥)
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝜑 (𝑥)
󵄩󵄩󵄩󵄩 + (‖𝐴𝑀‖ + 2 ‖𝐵𝑀‖

+ ‖𝑈𝑁‖ + 2 ‖𝑉𝑁‖) dist (𝑥, 𝑆2) .
(78)

Combining (75) with (78), we know that for any 𝑥 ∈ 𝑅𝑛, it
holds that

dist (𝑥,𝑋∗)

≤ dist (𝑥, 𝑆2) + dist (𝑥, 𝑋∗)

≤ dist (𝑥, 𝑆2) + 𝜎1
󵄩󵄩󵄩󵄩𝜑 (𝑥)

󵄩󵄩󵄩󵄩

≤ dist (𝑥, 𝑆2)

+ 𝜎1 (
󵄩󵄩󵄩󵄩𝜑 (𝑥)

󵄩󵄩󵄩󵄩 + (‖𝐴𝑀‖ + 2 ‖𝐵𝑀‖

+ ‖𝑈𝑁‖ + 2 ‖𝑉𝑁‖) dist (𝑥, 𝑆2))

≤ 𝜎1
󵄩󵄩󵄩󵄩𝜑 (𝑥)

󵄩󵄩󵄩󵄩

+ [𝜎1 (‖𝐴𝑀‖ + 2 ‖𝐵𝑀‖

+ ‖𝑈𝑁‖ + 2 ‖𝑉𝑁‖) + 1] dist (𝑥, 𝑆2)

≤ 𝜎1
󵄩󵄩󵄩󵄩𝜑 (𝑥)

󵄩󵄩󵄩󵄩

+ [𝜎1 (‖𝐴𝑀‖ + 2 ‖𝐵𝑀‖

+ ‖𝑈𝑁‖ + 2 ‖𝑉𝑁‖) + 1] 𝑐12
󵄩󵄩󵄩󵄩[𝐻 (𝑥)]+

󵄩󵄩󵄩󵄩

≤ 𝜂1 (
󵄩󵄩󵄩󵄩𝜑 (𝑥)

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩[𝐻 (𝑥)]+

󵄩󵄩󵄩󵄩)

≤ 𝜂1 (
󵄩󵄩󵄩󵄩𝜑 (𝑥)

󵄩󵄩󵄩󵄩1 +
󵄩󵄩󵄩󵄩[𝐻 (𝑥)]+

󵄩󵄩󵄩󵄩)

≤ 𝜂1 (
󵄩󵄩󵄩󵄩(−𝐴𝐹 (𝑥))+

󵄩󵄩󵄩󵄩1 +
󵄩󵄩󵄩󵄩(−𝑈𝐺 (𝑥))+

󵄩󵄩󵄩󵄩1

+ ‖𝐵𝐹 (𝑥)‖1 + ‖𝑉𝐺 (𝑥)‖1 +
󵄩󵄩󵄩󵄩[𝐻 (𝑥)]+

󵄩󵄩󵄩󵄩 )

≤ 𝜂1 (√𝑠
󵄩󵄩󵄩󵄩(−𝐴𝐹 (𝑥))+

󵄩󵄩󵄩󵄩 + √𝑠
󵄩󵄩󵄩󵄩(−𝑈𝐺 (𝑥))+

󵄩󵄩󵄩󵄩

+ √𝑡 ‖𝐵𝐹 (𝑥)‖ + √𝑚‖𝑉𝐺 (𝑥)‖ +
󵄩󵄩󵄩󵄩[𝐻 (𝑥)]+

󵄩󵄩󵄩󵄩 )

≤ 𝜌6 (
󵄩󵄩󵄩󵄩(−𝐴𝐹 (𝑥))+

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩(−𝑈𝐺 (𝑥))+

󵄩󵄩󵄩󵄩 + ‖𝐵𝐹 (𝑥)‖

+ ‖𝑉𝐺 (𝑥)‖ +
󵄩󵄩󵄩󵄩[𝐻 (𝑥)]+

󵄩󵄩󵄩󵄩 ) ,

(79)

where the second inequalities follows from (75) with constant
𝜎1 = 𝑐13√2𝑠 + 2𝑡 + 2𝑚, the third inequality follows from
(78), the fifth inequality follows from (73), the sixth inequality
follows by letting 𝜂1 = max{𝜎1, [𝜎1(‖𝐴𝑀‖+2‖𝐵𝑀‖+‖𝑈𝑁‖+

2‖𝑉𝑁‖) + 1]𝑐12}, and the seventh and ninth inequality follow
from the fact that

‖𝑥‖ ≤ ‖𝑥‖1 ≤ √𝑛 ‖𝑥‖ , ∀𝑥 ∈ 𝑅
𝑛
. (80)

By (79) and letting 𝜌6 = 𝜂1max{√𝑠, √𝑡, √𝑚, 1}, the desired
result follows.
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Remark 29. In Theorem 28, without the requirement of
nondegenerate solution, the square root term in the error
bound estimation is removed. Hence, the error estimation
becomes more practical than that in Theorem 4.1 in [4].

4. Comparison with Existing Error Bound

In the end of this paper, we will present an example to
compare Theorem 13 and Theorem 2.5 in [5]. Furthermore,
we will present two examples to show the conclusion in
Theorem 13 can provide a global error bound for the GNCP,
while the conclusion inTheorem 2.5 in [5] cannot do.

Example 30. When K = 𝑅
𝑚

+
, (2) reduces to the generalized

nonlinear complementarity problem of finding vector 𝑥∗ ∈
𝑅𝑛 such that

𝐹 (𝑥
∗
) ≥ 0, 𝐺 (𝑥

∗
) ≥ 0, 𝐹(𝑥

∗
)
⊤
𝐺 (𝑥
∗
) = 0. (81)

For (81), usingTheorem 13 with 𝛾 = 1, we have

dist (𝑥,𝑋∗) ≤ 𝜌𝜑 (𝑥) , ∀𝑥 ∈ 𝑅
𝑛
, (82)

where 𝜑(𝑥) =: ‖[𝐹(𝑥)]−‖ + ‖[𝐺(𝑥)]−‖ + |[𝐹(𝑥)
⊤
𝐺(𝑥)]+| +

|[𝐹(𝑥)
⊤
𝐺(𝑥)]+|

1/2.
Using Theorem 2.5 in [5] with 𝛾 = 1, V1 = V2 = 1, and

𝛽 = 1, we have that there exists constant 𝜌 > 0 such that

dist (𝑥,𝑋∗) ≤ 𝜌𝑟 (𝑥) , (83)

where 𝑟(𝑥) =: ‖min{𝐹(𝑥), 𝐺(𝑥)}‖. In addition,

𝜑 (𝑥) ≤ {2√𝑚 + ‖max {𝐹 (𝑥) , 𝐺 (𝑥)}‖} {𝑟 (𝑥) + 𝑟(𝑥)1/2} .
(84)

In particular, when ‖𝑥‖ ≤ 𝑐14 with constant 𝑐14 > 0, then there
exists positive constant 𝑐15 such that

𝜑 (𝑥) ≤ 𝑐15 {𝑟 (𝑥) + 𝑟(𝑥)
1/2
} . (85)

In fact, we have

𝜑 (𝑥) ≤
󵄩󵄩󵄩󵄩(𝐹 (𝑥))−

󵄩󵄩󵄩󵄩1 +
󵄩󵄩󵄩󵄩(𝐺 (𝑥))−

󵄩󵄩󵄩󵄩1

+ [(𝐹 (𝑥))
⊤
𝐺 (𝑥)]

+
+ [(𝐹 (𝑥))

⊤
𝐺 (𝑥)]

1/2

+

≤ 2√𝑚‖min {𝐹 (𝑥) , 𝐺 (𝑥)}‖

+ [(𝐹 (𝑥))
⊤
𝐺 (𝑥)]

+
+ [(𝐹 (𝑥))

⊤
𝐺 (𝑥)]

1/2

+

≤ 2√𝑚‖min {𝐹 (𝑥) , 𝐺 (𝑥)}‖

+

𝑚

∑
𝑖=1

[(𝐹 (𝑥))𝑖(𝐺 (𝑥))𝑖]+

+ {

𝑚

∑
𝑖=1

[(𝐹 (𝑥))𝑖(𝐺 (𝑥))𝑖]+}

1/2

≤ 2√𝑚‖min {𝐹 (𝑥) , 𝐺 (𝑥)}‖

+

𝑚

∑
𝑖=1

󵄨󵄨󵄨󵄨min {𝐹 (𝑥) , 𝐺 (𝑥)}𝑖
󵄨󵄨󵄨󵄨 ⋅
󵄨󵄨󵄨󵄨max {𝐹 (𝑥) , 𝐺 (𝑥)}𝑖

󵄨󵄨󵄨󵄨

+ {

𝑚

∑
𝑖=1

󵄨󵄨󵄨󵄨min {𝐹 (𝑥) , 𝐺 (𝑥)}𝑖
󵄨󵄨󵄨󵄨

⋅
󵄨󵄨󵄨󵄨max {𝐹 (𝑥) , 𝐺 (𝑥)}𝑖

󵄨󵄨󵄨󵄨 }

1/2

≤ 2√𝑚‖min {𝐹 (𝑥) , 𝐺 (𝑥)}‖

+ ‖min {𝐹 (𝑥) , 𝐺 (𝑥)}‖ ⋅ ‖max {𝐹 (𝑥) , 𝐺 (𝑥)}‖

+ {‖min {𝐹 (𝑥) , 𝐺 (𝑥)}‖ ⋅ ‖max {𝐹 (𝑥) , 𝐺 (𝑥)}‖}1/2

= {2√𝑚 + ‖max {𝐹 (𝑥) , 𝐺 (𝑥)}‖} 𝑟 (𝑥)

+ ‖max {𝐹 (𝑥) , 𝐺 (𝑥)}‖1/2𝑟(𝑥)1/2

≤ {2√𝑚 + ‖max {𝐹 (𝑥) , 𝐺 (𝑥)}‖} {𝑟 (𝑥) + 𝑟(𝑥)1/2} ,
(86)

where the first inequality follows from the fact that ‖𝑥‖ ≤

‖𝑥‖1, for all 𝑥 ∈ 𝑅
𝑚, the second inequality follows from

the fact that 𝑎− ≤ |min{𝑎, 𝑏}|, for all 𝑎, 𝑏 ∈ 𝑅, the third
inequality follows from the fact that (𝑎 + 𝑏)+ ≤ 𝑎+ + 𝑏+, for
all 𝑎, 𝑏 ∈ 𝑅, the fourth inequality follows from the fact that
(𝑎𝑏)+ ≤ |min{𝑎, 𝑏}| ⋅ |max{𝑎, 𝑏}|, for all 𝑎, 𝑏 ∈ 𝑅, and the fifth
inequality follows from the Cauchy-Schwarz inequality.

Example 31. For mappings 𝐹, 𝐺 : 𝑅+ → 𝑅 involved in
problem (81), we set

𝐹 (𝑥) = (𝑥 + 1)
2
, 𝐺 (𝑥) = √𝑥. (87)

It is easy to see that the solution set𝑋∗ = {0}, and one has

⟨𝐹 (𝑥) − 𝐹 (𝑦) , 𝐺 (𝑥) − 𝐺 (𝑦)⟩ =
𝑥 + 𝑦 + 2

√𝑥 + √𝑦
(𝑥 − 𝑦)

2

≥ (𝑥 − 𝑦)
2
,

(88)

where the first inequality follows from the fact that 𝑥+𝑦+2 ≥
√𝑥 + √𝑦.

In fact, we consider the following four cases.

Case 1 (𝑥 ≥ 1 and 𝑦 ≥ 1). Then, 𝑥 ≥ √𝑥 and 𝑦 ≥ √𝑦, and the
desired result follows.

Case 2 (0 ≤ 𝑥 ≤ 1 and 0 ≤ 𝑦 ≤ 1). Then,√𝑥 ≤ 1 and√𝑦 ≤ 1,
and the desired result follows.

Case 3 (0 ≤ 𝑥 ≤ 1 and 𝑦 ≥ 1). Then, √𝑥 ≤ 1 and √𝑦 ≤ 𝑦,
and the desired result follows.

Case 4 (𝑥 ≥ 1 and 0 ≤ 𝑦 ≤ 1). Then, √𝑥 ≤ 𝑥 and √𝑦 ≤ 1,
and the desired result follows.
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For any 𝑥(𝜖) := 𝜖, 𝜖 ≥ 0. By Theorem 13 with 𝛾 = 1, we
can obtain

‖𝑥 (𝜖) − 0‖

𝜑 (𝑥 (𝜖))
=

𝜖

(𝜖 + 1)
2√𝜖 + √(𝜖 + 1)

2√𝜖

󳨀→ 0 (89)

as 𝜖 → +∞.Thus,Theorem 13 provides a global error bound
for the GNCP. UsingTheorem 2.5 in [5], for 𝑥(𝜖), we have

‖𝑥 (𝜖) − 0‖

𝑟 (𝑥 (𝜖))
=

𝜖
󵄩󵄩󵄩󵄩󵄩
min {(𝜖 + 1)2, √𝜖}󵄩󵄩󵄩󵄩󵄩

=
𝜖

√𝜖
= √𝜖 󳨀→ +∞

(90)

as 𝜖 → +∞. Thus, Theorem 2.5 in [5] fails in providing an
error bound for this GNCP.

Example 32. For mappings 𝐹, 𝐺 : 𝑅 → 𝑅 involved in
problem (81), we set

𝐹 (𝑥) =
1

3
𝑥
3
+ 𝑥, 𝐺 (𝑥) = 𝑥. (91)

It is easy to see that the solution set 𝑋∗ = {0}. Without
loss of generality, we let 𝑥 > 𝑦, and one has

𝐹 (𝑥) − 𝐹 (𝑦) ≥ (𝑥 − 𝑦)
2
, (92)

where the inequality follows from the fact that

(
1

3
𝑥
3
+ 𝑥) − (

1

3
𝑦
3
+ 𝑦) − (𝑥 − 𝑦)

2

= (𝑥 − 𝑦) [
1

3
𝑥
2
+
1

3
𝑦
2

+
1

3
𝑥𝑦 + 1 + (𝑥 − 𝑦)] ≥ 0.

(93)

In fact, we consider the following four cases.

Case 1 (𝑥 > 𝑦 ≥ 0). Then, (1/3)𝑥2 + (1/3)𝑦2 + (1/3)𝑥𝑦 + 1 +
(𝑥 − 𝑦) ≥ 0, and the desired result follows.

Case 2 (0 ≥ 𝑥 > 𝑦). Then, (1/3)𝑥2 + (1/3)𝑦2 + (1/3)𝑥𝑦 + 1 +
(𝑥 − 𝑦) ≥ 0, and the desired result follows.

Case 3 (𝑥 ≥ 0, 𝑦 < 0 and 𝑥 + 𝑦 ≥ 0). Then,

1

3
𝑥
2
+
1

3
𝑦
2
+
1

3
𝑥𝑦 + 1 + (𝑥 − 𝑦)

=
1

3
𝑥 (𝑥 + 𝑦) +

1

3
𝑦
2
+ 1 + (𝑥 − 𝑦) ≥ 0,

(94)

and the desired result follows.

Case 4 (𝑥 ≥ 0, 𝑦 < 0, and 𝑥 + 𝑦 ≤ 0). Then,

1

3
𝑥
2
+
1

3
𝑦
2
+
1

3
𝑥𝑦 + 1 + (𝑥 − 𝑦)

=
1

3
𝑥
2
+
1

3
𝑦 (𝑥 + 𝑦) + 1 + (𝑥 − 𝑦) ≥ 0,

(95)

and the desired result follows.

Thus, we obtain

⟨𝐹 (𝑥) − 𝐹 (𝑦) , 𝐺 (𝑥) − 𝐺 (𝑦)⟩ ≥ (𝑥 − 𝑦)
3
. (96)

For any 𝑥(𝜖) := 𝜖, 𝜖 ≥ 0. By Theorem 13 with 𝛾 = 2, we
can obtain
‖𝑥 (𝜖) − 0‖

𝜑 (𝑥 (𝜖))
=

𝜖

[((1/3) 𝜖3 + 𝜖) 𝜖 + √((1/3) 𝜖3 + 𝜖) 𝜖]
2/3

󳨀→ 0

(97)

as 𝜖 → +∞.Thus,Theorem 13 provides a global error bound
for the GNCP.

On the other hand, usingTheorem 2.5 in [5], for 𝑥(𝜖), we
have
‖𝑥 (𝜖) − 0‖

𝑟(𝑥 (𝜖))
𝛿

=
𝜖

󵄩󵄩󵄩󵄩min {(1/3) 𝜖3 + 𝜖, 𝜖}󵄩󵄩󵄩󵄩
𝛿
=

𝜖

𝜖𝛿
󳨀→ +∞ (98)

as 𝜖 → +∞, where 𝛿 is a constant with 1/3 < 𝛿 ≤ 1/2. Thus,
Theorem 2.5 in [5] fails in providing an error bound for this
GNCP.

5. Conclusion

In this paper, we established some global error bounds on
the generalized nonlinear complementarity problems over a
polyhedral cone, which improves the result obtained for vari-
ational inequalities and the GNCP [4, 5, 9–11] by weakening
the assumptions. Surely, under milder conditions, we may
establish global error bounds for GNCP and use the error
bounds estimation to establish quick convergence rate of the
methods for the GNCP. This is a topic for future research.
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This paper considers the locations of multiple facilities in the space 𝑅𝑝, with the aim of minimizing the sum of weighted distances
between facilities and regional customers, where the proximity between a facility and a regional customer is evaluated by the closest
distance. Due to the fact that facilities are usually allowed to be sited in certain restricted areas, some locational constraints are
imposed to the facilities of our problem. In addition, since the symmetry of distances is sometimes violated in practical situations,
the gauge is employed in this paper instead of the frequently used norms for measuring both the symmetric and asymmetric
distances. In the spirit of the Cooper algorithm (Cooper, 1964), a new location-allocation heuristic algorithm is proposed to solve
this problem. In the location phase, the single-source subproblem with regional demands is reformulated into an equivalent linear
variational inequality (LVI), and then, a projection-contraction (PC) method is adopted to find the optimal locations of facilities,
whereas in the allocation phase, the regional customers are allocated to facilities according to the nearest center reclassification
(NCR). The convergence of the proposed algorithm is proved under mild assumptions. Some preliminary numerical results are
reported to show the effectiveness of the new algorithm.

1. Introduction

Due to the large number of practical applications in various
fields such as marketing, urban planning, supply chain man-
agement, and transportation, the continuous facility location
problem has aroused the attention of many researchers ever
since the pioneering work [1, 2]. For a comprehensive review
on this topic, see, for example, [3, 4]. More specifically, the
continuous facility location problem in a space is to seek the
optimal locations for facilities serving customers (also called
demand points), with certain objectives such as minimizing
the sum of distances between facilities and customers.

The vast majority of literature treats the locations of
facilities and customers as points in a space. Hence, the
distances between facilities and customers are just the
point-to-point distance without any ambiguity. In practical
applications, however, regional demand arises frequently in
such scenarios as uncertain demand, mobile demand, or
cumbersome discrete situation whose number of demand

points is extremely large. For such scenarios, many authors
(e.g., [5–11]) promote that the regional customer, that is, the
locations of customers are geometrically connected regions
rather than points, should be considered. Therefore, in this
paper, we consider the case of regional customer.

The question to be emphasized here, however, is how to
measure the proximity from a regional customer to a facility.
In the literature, different kinds of distances have been used
to measure the required proximity. For example, the average
distance evaluated by the proximity between the facility and
some mean point in the interior of a regional customer (e.g.,
[10–13]) and the farthest distance measured by the proximity
between the facility and the farthest point on the boundary
of a regional customer (e.g., [8, 9, 14, 15]). Definitely, the
regional customers are treated by the average fashion when
the average distance is considered, while the farthest distance
realizes the worst-off nature in the sense that the regional
customers are represented by their respective farthest points.
In some real-life applications, however, the best-off nature is
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of importance in facility location; see, for example, [6, 16, 17].
To realize precisely the desired best-off nature, we need to
consider the closest distance; that is, the proximity from a
regional customer to a facility is evaluated by the closest
distance to this facility. Thus, in this paper, we consider the
closest distance to measure such a proximity. Note that the
three kinds of distances have been well justified in [14, 15] and
the reader can be referred to them for more details.

Focusing on the real-life applications with vast eyes, the
regional customers and the closest distances are highly essen-
tial to be considered.An example is about the communication
networkwhere several central servers are required to be sited.
The demand points on the network are partially connected
forming groups, each containing a large number of demand
points. The points in the same group are connected to one
another, and thus, each group becomes a regional customer
in the plane. The servers need to be connected to the closest
points in each regional customer, and the rest of the regional
customer will be connected to the servers through that con-
nection. Hence, the regional customers and the closest dis-
tances need to be used in the locations of these central servers.
For more applications, we refer to, for example, [6, 15, 16].

As amatter of fact, in the literature of facility location, the
distance is usually measured by norms such as 𝑙𝑝-norms and
block norms. References [3, 18] discuss the approximations
about the weighted 𝑙𝑝-norms based on statistical evidence.
References [19, 20] investigate the use of block norms to
obtain good approximation of actual distances. As it is
known, the symmetry property of the norm assures that
the distance from one point to another is always equal to
the distance back. Nevertheless, as one of the first in-depth
studies of mathematical location problems, [21] highlights
the fact that in numerous real situations the symmetry
of the distance is violated, for example, transportation in
rush-hour traffic, flight in the presence of wind, navigation
in the presence of currents, transportation on an inclined
terrain, and so forth. For about two decades after the work
of [21], however, no further research on this topic seems
to be published, and only in the recent twenty years have
the asymmetric distance problems started to attract the
researchers’ interest, for example, [22–28].

In this paper, we are interested in the locations ofmultiple
facilities in the space 𝑅

𝑝 with the aim of minimizing the
sumofweighted distance between these facilities and regional
customers, where the distance between a facility and a
regional customer is evaluated by the closest distance. In
addition, we formulate this problem in a quite general way
with the aim of enhancing its practical applicability. First,
we recognize that, usually, not all the points in the space
𝑅

𝑝 are possible locations; that is, new facilities are often
allowed to be sited within the confines of the restricted areas.
Therefore, we introduce locational constraints so that both
the unconstrained and constrained problems are taken into
consideration in this paper. Second, since the distance in
many practical situations is not necessarily symmetric, the
gauge is used to measure the distance instead of the widely
used norms. With the more general distance measuring
function used, both the symmetric and asymmetric distances
can be considered in our problem.

The rest of this paper is organized as follows. Section 2
states the formulation of our problem, which is shown to
be nonconvex and NP-hard. The spirit of the well-known
location-allocation heuristic algorithm, which consists of a
location phase and an allocation phase in each iteration,
is also discussed in this section. In Section 3, the sub-
problems arising in location phase and allocation phase
are solved. More specifically, for the subproblem arising
in allocation phase, the regional customers are allocated
to facilities according to the nearest reclassification (NCR)
heuristic, whereas for the single-source subproblem arising in
location phase, the relationship between the subproblem and
a monotone linear variational inequality (LVI) is firstly built,
and then, a projection-contraction (PC) method is adopted
to find the optimal location of the facility. A new location-
allocation heuristic algorithm is proposed in Section 4 for
solving our targeted problem, and its convergence is proved
in Section 5. Preliminary numerical results are reported in
Section 6 to verify the efficiency of the proposed algorithm.
Finally, some conclusions are drawn in Section 7.

2. Model Description

This paper focuses on finding locations in the space 𝑅𝑝 for𝑚
facilities, with the objective to minimize the sum of weighted
closest distances between these facilities and 𝑛 regional
customers. Note that the minisum single-source models with
closest distance have been well justified in [6, 16] where the
distances are particularly measured by 𝑙1-norm and 𝑙2-norm,
respectively. In ourmulti-sourcemodel, however, the gauge is
used to measure the distances between facilities and regional
customers, and thus, both the symmetric distance (including
the 𝑙1-norm used in [16] and the 𝑙2-norm used in [6]) and the
asymmetric distance are considered.

Let 𝐵 be a compact convex set in 𝑅
𝑝, and let the interior

of 𝐵 contain the origin; then, the gauge of 𝐵 is defined by

𝛾 (𝑥) = inf {𝜆 > 0 |
𝑥

𝜆
∈ 𝐵} , ∀𝑥 ∈ 𝑅

𝑝
. (1)

𝐵 is called the unit ball of 𝛾(⋅) due to

𝐵 = {𝑥 ∈ 𝑅
𝑝
| 𝛾 (𝑥) ≤ 1} . (2)

This way to define a gauge from a compact convex set was
first introduced by Minkowski [29]. The gauge 𝛾(⋅) satisfies
the following properties:

(1) 𝛾(𝑥) ≥ 0 and 𝛾(𝑥) = 0 ⇔ 𝑥 = 0;

(2) 𝛾(𝑡𝑥) = 𝑡𝛾(𝑥) for any 𝑡 ≥ 0;

(3) 𝛾(𝑥 + 𝑦) ≤ 𝛾(𝑥) + 𝛾(𝑦) for any 𝑥 and 𝑦 ∈ 𝑅𝑝.

It follows from (2) and (3) that any gauge 𝛾(𝑥) is a convex
function of 𝑥. The distance measuring function can be
derived from a gauge by

𝐷(𝑥, 𝑦) = 𝛾 (𝑦 − 𝑥) . (3)
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When 𝐵 is symmetric around the origin, according to the
definition of (1), we have

𝛾 (−𝑥) = 𝛾 (𝑥) , ∀𝑥 ∈ 𝑅
𝑝
. (4)

Combining (3) and (4), it follows that

𝐷(𝑥, 𝑦) = 𝐷 (𝑦, 𝑥) , (5)

whichmeans that the distancemeasured by 𝛾(⋅) is symmetric.
On the contrary, when 𝐵 is not symmetric around the
origin, (4) does not hold any more, and thus, the distance
measured by the gauge 𝛾(⋅) is asymmetric. Thus, when
different compact convex sets are used as unit balls, different
gauges (symmetric or asymmetric) can be generated and
employed to measure distances in location problems, which
depends on the requirements of practical applications.

LetΛ = {𝐴𝑗 ⊂ 𝑅𝑝 | 𝑗 = 1, . . . , 𝑛}denote the set of regional
customers, and let 𝑥𝑖(𝑖 = 1, . . . , 𝑚) be the location of the 𝑖th
facility. Each regional customer 𝐴𝑗 is simply assumed to be
closed and convex. We denote the closest point in 𝐴𝑗 to the
facility 𝑥𝑖 by

𝑎𝑗 (𝑥𝑖) := argmin {𝐷 (𝑞, 𝑥𝑖) | 𝑞 ∈ 𝐴𝑗}

= argmin {𝛾 (𝑥𝑖 − 𝑞) | 𝑞 ∈ 𝐴𝑗} .

(6)

Then, the closest distance between the facility 𝑥𝑖 and the
regional customer 𝐴𝑗, denoted by 𝑑𝑗(𝑥𝑖), can be represented
by

𝑑𝑗 (𝑥𝑖) := min
𝑞∈𝐴
𝑗

𝐷(𝑞, 𝑥𝑖) = 𝛾 (𝑥𝑖 − 𝑎𝑗 (𝑥𝑖)) . (7)

When the gauge is used tomeasure distances, we have the
following proposition for 𝑎𝑗(𝑥) and 𝑑𝑗(𝑥) which is similar to
that in [16].

Proposition 1. Let 𝑥 be the location of a facility; then, the
closest point 𝑎𝑗(𝑥) in (6) is well defined, and the closest distance
𝑑𝑗(𝑥) in (7) is a convex function of 𝑥.

Proof. Since 𝐴𝑗 is a convex set and 𝛾(⋅) is a convex function,
(6) is a convex problem, and thus, 𝑎𝑗(𝑥) is well defined.

Now, we prove that 𝑑𝑗(𝑥) is a convex function of 𝑥 as
follows. Let 𝑥 and 𝑦 be two points in 𝑅𝑝 and 𝜆 ∈ [0, 1]; then,
due to 𝑎𝑗(𝑥) and 𝑎𝑗(𝑦) in𝐴𝑗 and the convexity of𝐴𝑗, it follows
that 𝜆𝑎𝑗(𝑥) + (1 − 𝜆)𝑎𝑗(𝑦) ∈ 𝐴𝑗, and thus, we have

𝑑𝑗 (𝜆𝑥 + (1 − 𝜆) 𝑦)

= min
𝑎∈𝐴
𝑗

𝐷(𝑎, 𝜆𝑥 + (1 − 𝜆) 𝑦)

≤ 𝐷 (𝜆𝑎𝑗 (𝑥) + (1 − 𝜆) 𝑎𝑗 (𝑦) , 𝜆𝑥 + (1 − 𝜆) 𝑦)

= 𝛾 (𝜆𝑥 + (1 − 𝜆) 𝑦 − (𝜆𝑎𝑗 (𝑥) + (1 − 𝜆) 𝑎𝑗 (𝑦)))

= 𝛾 (𝜆 (𝑥 − 𝑎𝑗 (𝑥)) + (1 − 𝜆) (𝑦 − 𝑎𝑗 (𝑦)))

≤ 𝛾 (𝜆 (𝑥 − 𝑎𝑗 (𝑥)))+𝛾 ((1 − 𝜆) (𝑦 − 𝑎𝑗 (𝑦)))

= 𝜆𝛾 (𝑥 − 𝑎𝑗 (𝑥)) + (1 − 𝜆) 𝛾 (𝑦 − 𝑎𝑗 (𝑦))

= 𝜆𝑑𝑗 (𝑥) + (1 − 𝜆) 𝑑𝑗 (𝑦) .

(8)

Therefore, 𝑑𝑗(𝑥) is convex with respect to 𝑥, and the proof is
complete.

Based on the notations introduced above, now the
constrained multi-source location problem (abbreviated as
CMLP) we consider in this paper takes the following formu-
lation:

CMLP: min
𝑋,𝑊

𝑛

∑
𝑗=1

𝑚

∑
𝑖=1

𝑤𝑖𝑗𝑑𝑗 (𝑥𝑖) =

𝑛

∑
𝑗=1

𝑚

∑
𝑖=1

𝑤𝑖𝑗𝛾 (𝑥𝑖 − 𝑎𝑗 (𝑥𝑖))

s.t.
𝑚

∑
𝑖=1

𝑤𝑖𝑗 = 𝑠𝑗, 𝑗 = 1, 2, . . . , 𝑛,

𝑥𝑖 ∈ Π𝑖, 𝑖 = 1, 2, . . . , 𝑚,

(9)

where 𝑠𝑗 ≥ 0 is the given demand required by the 𝑗th
customer,𝑋 = (𝑥𝑇

1
, . . . , 𝑥𝑇

𝑚
)

𝑇 is the variable of the locations of
facilities to be determined,𝑊 = (𝑤𝑖𝑗)𝑚×𝑛 is the undetermined
variable of 𝑤𝑖𝑗 which denotes the unknown allocation from
the 𝑖th facility to the 𝑗th customer, and Π𝑖 is the locational
constraint for the 𝑖th facility which is assumed to be a convex
and closed set in 𝑅

𝑝.
More explanations are required for our model (9). First,

the locational constraint Π𝑖 in (9) can also be chosen as
𝑅𝑝, and if all Π𝑖(𝑖 = 1, . . . , 𝑚) are 𝑅𝑝, the CMLP (9) is
a unconstrained problem, and thus, both the constrained
and unconstrained problems are considered in our model.
Second, mark that the minisum models analyzed in [6, 16]
are two special cases of CMLP (9), where 𝑚 = 1, Π𝑖 = 𝑅𝑝,
and 𝛾(𝑥) is particularly 𝑙1-norm in [16] and Euclidean norm
in [6].

It is noted that, with the presupposition that each facility
is capable of providing sufficient services for the targeted
customers, each customer is ultimately served only by the
nearest facility in order tominimize the total sum of weighted
distances.Therefore, the mathematical model CMLP also has
the following form:

CMLP󸀠: min
𝑋∈Π

𝐶 (𝑋) =

𝑛

∑
𝑗=1

𝑠𝑗 min
1≤𝑖≤𝑚

𝑑𝑗 (𝑥𝑖)

=

𝑛

∑
𝑗=1

𝑠𝑗 min
1≤𝑖≤𝑚

𝛾 (𝑥𝑖 − 𝑎𝑗 (𝑥𝑖)) ,

(10)

whereΠ is the cartesian product of locational constraints; that
is, Π = Π1 × ⋅ ⋅ ⋅ × Π𝑚.
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When all 𝐴𝑗 are points not regions and all Π𝑖 are 𝑅𝑝,
CMLP (9) reduces to the well-known multi-source Weber
problem (MWP) which has wide applications in operations
research, marketing, urban planning, and so forth; see, for
example, [3, 30, 31]. Recall the fact that the multi-source
Weber problem is nonconvex [32] and NP-hard [33], and
therefore, heuristics algorithms are extremely popular and
highly appreciated for overcoming the difficulty caused by its
nonconvexity and NP-hardness; see, for example, [3, 30, 34–
37]. In particular, the classical location-allocation heuristic,
also called the Cooper algorithm, has received much atten-
tion ever since it was presented originally by Cooper in [34]
forMWP, whose attractive characteristic is that each iteration
consists of a location phase and an allocation phase. Now, as
a more general problem of MWP, CMLP is also nonconvex
and NP-hard. Hence, in this paper, we are interested in
applying the location-allocation heuristic to solve the CMLP
(9). Accordingly, some location subproblems and allocation
subproblems occur. To clarify it, let M = {1, 2, . . . , 𝑚}, N =

{1, 2, . . . , 𝑛}, and then Λ = {𝐴𝑗 : 𝑗 ∈ N}. At the (𝑘 − 1)th
iteration, let {Λ𝑘−1

1
, Λ𝑘−1

2
, . . . , Λ𝑘−1

𝑚
} be the disjoint partition of

Λ in the sense that ∪𝑚

𝑖=1
Λ𝑘−1

𝑖
= Λ and Λ𝑘−1

𝑖
∩ Λ𝑘−1

𝑗
= 0 (for

𝑖 ̸= 𝑗), and each Λ𝑘−1

𝑖
(𝑖 = 1, . . . , 𝑚) in the partition is called

one cluster. Then, at the 𝑘th iteration, the location phase
finds the candidates of locations of facilities (denoted by
𝑥𝑘

1
, 𝑥𝑘

2
, . . . , 𝑥𝑘

𝑚
) by solving the following𝑚 constrained single-

source location problems (CSLP) with the closest distance
under gauge for each cluster Λ𝑘−1

𝑖
, 𝑖 = 1, . . . , 𝑚:

CSLP:

𝑥
𝑘

𝑖
= argmin

𝑥∈Π
𝑖

{

{

{

𝐶
𝑘

𝑖
(𝑥) := ∑

{𝑗∈N:𝐴
𝑗
∈Λ𝑘−1
𝑖 }

𝑠𝑗𝛾 (𝑥 − 𝑎𝑗 (𝑥))

= ∑

{𝑗∈N:𝐴
𝑗
∈Λ𝑘−1
𝑖 }

𝑠𝑗min
𝑞
𝑗
∈𝐴
𝑗

𝛾 (𝑥 − 𝑞𝑗)
}

}

}

.

(11)

After the location phase, the allocation phase then revises the
current partition of Λ to generate a new disjoint partition
of Λ = {Λ

𝑘

1
, Λ𝑘

2
, . . . , Λ𝑘

𝑚
} by the following nearest center

reclassification (NCR) heuristic (see [38]): for some customer
𝐴𝑗 ∈ Λ𝑘−1

ℎ
(𝑗 ∈ {1, 2, . . . , 𝑛} and ℎ ∈ {1, 2, . . . , 𝑚}), if 𝑥𝑘

𝑙
(𝑙 ̸= ℎ)

is the nearest point for𝐴𝑗 among all𝑥𝑘

𝑖
computed by (11), then

Λ𝑘

ℎ
= Λ𝑘−1

ℎ
\ {𝐴𝑗} andΛ

𝑘

𝑙
= Λ𝑘−1

𝑙
∪ {𝐴𝑗}. If 𝑥

𝑘

𝑖
solved by (11) is

the nearest facility for each regional customer inΛ𝑘−1

𝑖
for any

𝑖 ∈ {1, 2, . . . , 𝑚}, then 𝑥𝑘

𝑖
(𝑖 = 1, 2, . . . , 𝑚) are the desirable

locations of facilities and stop. Otherwise, we set 𝑘 = 𝑘 + 1

and repeat the iterations.

3. The Subproblems in Location and
Allocation Phases

In this section, we will discuss the subproblems arising in the
location phase and allocation phase.The allocation phase will

partition the customers to 𝑚 clusters by the nearest center
reclassification (NCR) heuristic, and the location phase will
find the optimal location for each cluster by solving𝑚 CSLPs
(11).

3.1. Nearest Center Reclassification for Allocation of Customers.
The implementation of NCR heuristic to allocate regional
customers can be executed by the following framework; see
[38] for more details about this heuristic.

Algorithm 2 (the implementation of NCR). Given an initial
partition Λ

0 = {Λ0

1
, Λ0

2
, . . . , Λ0

𝑚
}.

For 𝑘 = 1, 2, . . ., do.
Step 1. Set 𝑡 = 0 (𝑡 stores the number of reassignments);
Step 2. Compute the facility 𝑥𝑘

𝑖
of Λ𝑘−1

𝑖
by solving CSLP (11),

for 𝑖 = 1, 2, . . . , 𝑚;
Step 3. For 𝑗 = 1, 2, . . . , 𝑛 do:

𝑑𝑖𝑗 := 𝛾(𝑥𝑘

𝑖
− 𝑎𝑗(𝑥

𝑘

𝑖
)) for 𝑖 = 1, . . . , 𝑚;

if 𝐴𝑗 ∈ Λ𝑘−1

ℎ
and 𝑑𝑙𝑗 = min𝑖=1,...,𝑚; 𝑖 ̸= ℎ{𝑑𝑖𝑗} < 𝑑ℎ𝑗,

then Λ𝑘

ℎ
= Λ𝑘−1

ℎ
\ {𝐴𝑗}, Λ

𝑘

𝑙
= Λ𝑘−1

𝑙
∪ {𝐴𝑗};

𝑡 = 𝑡 + 1.

Step 4. If 𝑡 = 0, then the iteration terminates with {𝑥𝑘

1
, . . . , 𝑥𝑘

𝑚
}

being the desirable locations for facilities and the customers
in Λ𝑘−1

𝑖
being served by 𝑥𝑘

𝑖
(𝑖 = 1, . . . , 𝑚).

3.2. The Variational Inequality Approach for CSLP (11).
According to the spirit of location-allocation heuristic algo-
rithm, our central task for the CMLP is to solve CSLP (11)
in location phase by an efficient means. Recall that the CSLP
is a generalized problem of the minisummodels discussed in
[6, 16], whereΠ𝑖 = 𝑅𝑝 and the gauge 𝛾(⋅) are the particular 𝑙1-
norm in [16] and 𝑙2-norm in [6]. For themodel under 𝑙1-norm
in [16], by taking advantage of the piecewise linearity of the
objective function, this model can be reduced to a standard
minisum problem which can be easily solved by obtaining a
median point for each coordinate separately. For theminisum
model under 𝑙2-norm in [6], an efficient Weiszfeld-type
method is proposed, and the convergence of this method is
analyzed. Similar to Weiszfeld procedure [2], one problem
of the proposed method is that the singular case, that is, the
current iterate happens to be within some location of regional
customers, may occur during its implementation. Due to the
use of the gradient of objective function in the iteration, this
method will terminate unexpectedly once the singular case
occurs. In order to tackle the undesirable singular case and
make theWeiszfeld-typemethod computational effective, the
authors suggest to ignore the gradient of ‖𝑥−𝑎𝑗(𝑥)‖ if 𝑥 ∈ 𝐴𝑗

and then add an extra descent check and a boundary check to
the iteration. As pointed out byTheorem 1 in [6], however, the
sequence generated by the proposed Weiszfeld-type method
is possible to be convergent to a nonoptimal point which is
on the boundary of the regional customer.

In this section, a variational inequality approach is pro-
posed to solve the general CSLP (11), where the locational
constraints are imposed to the facility and the gauge is
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used as distance measuring function. Note that the study
of variational inequality has received much attention due
to its various applications arising in engineering, operations
research, economics, transportation, and so forth; see, for
example, [39–45]. Specifically, the CSLP (11) considered in
this paper is first reformulated into an equivalent linear vari-
ational inequality (LVI), and then, a projection-contraction
(PC) method is adopted to solve the LVI. Consequently,
a sequence will be generated by the variational inequality
approach, which is shown to be convergent to the optimal
location of the facility 𝑥

𝑘

𝑖
of (11) even in the singular case.

In addition, the closest points to the facility and the dual
vectors with respect to the gauge can also be obtained from
the generated sequence.

For convenience and succinctness, with the assumption
that Λ𝑘−1

𝑖
contains 𝑑 customers, throughout this section, we

ignore some superscripts and subscripts in (11) and consider
the simplified model of (11) without confusion:

MCSLP: 𝑥=argmin
𝑥∈Π

{

{

{

𝐶 (𝑥) :=

𝑑

∑
𝑗=1

𝑠𝑗𝛾 (𝑥−𝑎𝑗 (𝑥))
}

}

}

. (12)

According to Proposition 1, it follows that CSLP (11), or
equivalently MCSLP (12), is convex problem of 𝑥.

3.2.1. LVI Reformulation of MCSLP. For the gauge 𝛾(⋅) in (12)
which is defined by (1), there exists a dual gauge, 𝛾𝑑

(⋅), defined
by

𝛾
𝑑
(𝑧) = max {𝑧𝑇

𝑥 | 𝛾 (𝑥) ≤ 1} . (13)

Let 𝐵𝑑 be the unit ball of the dual gauge 𝛾𝑑(⋅), which is also
convex and compact and exactly the polar set of 𝐵. The dual
gauge of 𝛾𝑑(⋅) is again 𝛾(⋅), that is,

𝛾 (𝑥) = max {𝑧𝑇
𝑥 | 𝛾

𝑑
(𝑧) ≤ 1} , (14)

which can also be rewritten as

𝛾 (𝑥) = max
𝑧∈𝐵𝑑

𝑧
𝑇
𝑥. (15)

For more details about gauge and dual gauge, as well as their
unit balls, the readers can be referred to [27].

According to (15), MCSLP (12) is equivalent to the
following min-max problem:

min
𝑥∈Π

max
𝑧
𝑗
∈𝐵𝑑
𝑠𝑗

𝑑

∑
𝑗=1

𝑧
𝑇

𝑗
(𝑥 − 𝑎𝑗 (𝑥)) , (16)

where each 𝑧𝑗 is a vector in 𝐵𝑑

𝑠
𝑗

= {𝜉 ∈ 𝑅𝑝 | 𝛾𝑑(𝜉) ≤ 𝑠𝑗}. Since
𝑎𝑗(𝑥) is the closest point to 𝑥 in𝐴𝑗, we can introduce 𝑦𝑗 ∈ 𝐴𝑗

to replace 𝑎𝑗(𝑥). Hence, (16) is equivalent to

min
𝑥∈Π,𝑦

𝑗
∈𝐴
𝑗

max
𝑧
𝑗
∈𝐵𝑑
𝑠𝑗

𝑑

∑
𝑗=1

𝑧
𝑇

𝑗
(𝑥 − 𝑦𝑗) . (17)

Denote

𝑦 = (𝑦
𝑇

1
, . . . , 𝑦

𝑇

𝑑
)

𝑇

, 𝑧 = (𝑧
𝑇

1
, . . . , 𝑧

𝑇

𝑑
)

𝑇

,

𝐴 = 𝐴1 × ⋅ ⋅ ⋅ × 𝐴𝑑, B
𝑑
= 𝐵

𝑑

𝑠
1

× ⋅ ⋅ ⋅ × 𝐵
𝑑

𝑠
𝑑

,

(18)

and let (𝑥∗, 𝑦∗, 𝑧∗) ∈ Π×𝐴×B𝑑 be the solution of (17); then,
it follows that (𝑥∗, 𝑦∗, 𝑧∗) is the saddle point of the objective
function∑

𝑑

𝑗=1
𝑧𝑇

𝑗
(𝑥 − 𝑦𝑗); that is,

𝑑

∑
𝑗=1

𝑧
𝑇

𝑗
(𝑥

∗
− 𝑦

∗

𝑗
) ≤

𝑑

∑
𝑗=1

𝑧
∗𝑇

𝑗
(𝑥

∗
− 𝑦

∗

𝑗
) ≤

𝑑

∑
𝑗=1

𝑧
∗𝑇

𝑗
(𝑥 − 𝑦𝑗) ,

∀ (𝑥, 𝑦, 𝑧) ∈ Π × 𝐴 ×B
𝑑
.

(19)

Thus, (𝑥∗, 𝑦∗, 𝑧∗) is the solution of the following linear
variational inequality:

𝑥
∗
∈ Π, 𝑦

∗
∈ 𝐴, 𝑧

∗
∈ B

𝑑
,

(𝑥 − 𝑥
∗
)

𝑇
(

𝑑

∑
𝑗=1

𝑧
∗

𝑗
) ≥ 0, ∀𝑥 ∈ Π,

(𝑦𝑗 − 𝑦
∗

𝑗
)

𝑇

(−𝑧
∗

𝑗
) ≥ 0, ∀𝑦𝑗 ∈ 𝐴𝑗,

(𝑧𝑗 − 𝑧
∗

𝑗
)

𝑇

(− (𝑥
∗
− 𝑦

∗

𝑗
)) ≥ 0, ∀𝑧𝑗 ∈ 𝐵

𝑑

𝑠
𝑗

.

(20)

A compact form of (20) is

LVI (Ω,𝑀, 𝑞) : 𝑢
∗
∈ Ω, (𝑢 − 𝑢

∗
)

𝑇
(𝑀𝑢

∗
+ 𝑞) ≥ 0,

∀𝑢 ∈ Ω,

(21)

where 𝑢 = (𝑥𝑇, 𝑦𝑇, 𝑧𝑇)
𝑇, Ω = Π × 𝐴 ×B𝑑,

𝑀 = (
0 𝑁

−𝑁𝑇 0
) ,

𝑁 = (

(

𝐼2 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝐼2

−𝐼2 0 ⋅ ⋅ ⋅ 0

0 d d
...

... d d 0

0 ⋅ ⋅ ⋅ 0 −𝐼2

)

)

, 𝑞 = 0.

(22)

Note that 𝑀 in (22) is a skew-symmetric matrix, then
it is positive semidefinite, and thus, the linear variational
inequality (21)-(22) is monotone.

Based on the deduction above, we know that if
(𝑥

∗, 𝑦∗, 𝑧∗) is the solution of (17), that is, 𝑥∗ is the solution of
the MCSLP (12), then (𝑥∗, 𝑦∗, 𝑧∗) will be the solution of the
LVI (21)-(22). Further, we can prove that theMCSLP (12) and
the LVI (21)-(22) are equivalent in the following theorem.

Theorem 3. The MCSLP (12) and the LVI (21)-(22) are
equivalent in the sense that they have the same solution of
𝑥 ∈ Π.
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Proof. Since the MCSLP (12) is equivalent to (17), we need to
prove that (17) and the LVI (21)-(22) are equivalent. In the
following, we will prove that (𝑥∗, 𝑦∗, 𝑧∗) is a solution of (17)
if and only if (𝑥∗, 𝑦∗, 𝑧∗) is a solution of LVI (21)-(22).

Let (𝑥∗, 𝑦∗, 𝑧∗) be the solution of (17); then, according to
the deduction above, we know that (𝑥∗, 𝑦∗, 𝑧∗) is the solution
of LVI (21)-(22).

On the other hand, let (𝑥∗
, 𝑦

∗
, 𝑧

∗
) be the solution of LVI

(21)-(22) and 𝜙(𝑥, 𝑦, 𝑧) = ∑
𝑑

𝑗=1
𝑧𝑇

𝑗
(𝑥−𝑦𝑗); then, the inequality

(19) is true, which means that (𝑥∗, 𝑦∗, 𝑧∗) is the saddle point
of 𝜙(𝑥, 𝑦, 𝑧).

Note that (𝑥∗, 𝑦∗, 𝑧∗) is the saddle point of 𝜙(𝑥, 𝑦, 𝑧) if
and only if (𝑥∗, 𝑦∗, 𝑧∗) ∈ Ω and

max
𝑧∈B𝑑

𝜙 (𝑥
∗
, 𝑦

∗
, 𝑧) = 𝜙 (𝑥

∗
, 𝑦

∗
, 𝑧

∗
)

= min
𝑥∈Π,𝑦∈𝑌

𝜙 (𝑥, 𝑦, 𝑧
∗
) ,

(23)

which implies that

min
𝑥∈Π,𝑦∈𝑌

max
𝑧∈B𝑑

𝜙 (𝑥, 𝑦, 𝑧) ≤ max
𝑧∈B𝑑

𝜙 (𝑥
∗
, 𝑦

∗
, 𝑧)

= 𝜙 (𝑥
∗
, 𝑦

∗
, 𝑧

∗
)

= min
𝑥∈Π,𝑦∈𝑌

𝜙 (𝑥, 𝑦, 𝑧
∗
)

≤ max
𝑧∈B𝑑

min
𝑥∈Π,𝑦∈𝑌

𝜙 (𝑥, 𝑦, 𝑧) .

(24)

On the other hand, let 𝑧󸀠 be any vector inB𝑑; then, we have

min
𝑥∈Π,𝑦∈𝑌

𝜙 (𝑥, 𝑦, 𝑧
󸀠
) ≤ min

𝑥∈Π,𝑦∈𝑌
max
𝑧∈B𝑑

𝜙 (𝑥, 𝑦, 𝑧) . (25)

We choose 𝑧󸀠 in (25) as the maximum point of the left term
over 𝑧󸀠 ∈ B𝑑; then,

max
𝑧∈B𝑑

min
𝑥∈Π,𝑦∈𝑌

𝜙 (𝑥, 𝑦, 𝑧) ≤ min
𝑥∈Π,𝑦∈𝑌

max
𝑧∈B𝑑

𝜙 (𝑥, 𝑦, 𝑧) . (26)

Combining (24) and (26), it follows that all terms in (24) are
equal, and therefore,

𝜙 (𝑥
∗
, 𝑦

∗
, 𝑧

∗
) = min

𝑥∈Π,𝑦∈𝑌
max
𝑧∈B𝑑

𝜙 (𝑥, 𝑦, 𝑧) , (27)

which implies that (𝑥∗, 𝑦∗, 𝑧∗) is the solution of (17).

Remark 4. It is worth pointing out that the equivalence
between theMCSLP (12) and the linear variational inequality
(21)-(22) can also be obtained by the duality theory and
the variable 𝑧𝑗 and the set 𝐵𝑑

𝑠
𝑗

(𝑗 = 1, . . . , 𝑑) in (16) are,
respectively, the dual vector and dual ball in the space 𝑅𝑝

which satisfy 𝑧𝑗 ∈ 𝐵𝑑

𝑠
𝑗

.

The norms especially 𝑙1, 𝑙2, and 𝑙∞ are frequently used to
measure distances in the literature; see, for example, [18, 19].
It should be noted that the gauge used in this paper is an
extension of norms which include 𝑙1, 𝑙2, and 𝑙∞. When the

gauge 𝛾(⋅) is chosen as the 𝑙1, 𝑙2, and 𝑙∞-norm, the dual gauge
𝛾𝑑(⋅) will be the 𝑙∞, 𝑙2, and 𝑙1-norm, respectively. Let

𝐵𝑠
𝑗
,2 = {𝜉 ∈ 𝑅

𝑝
|
󵄩󵄩󵄩󵄩𝜉
󵄩󵄩󵄩󵄩2

≤ 𝑠𝑗} , B2 = 𝐵𝑠
1
,2 × ⋅ ⋅ ⋅ × 𝐵𝑠

𝑑
,2,

(28)

where ‖ ⋅ ‖2 is the Euclidean norm; then, as a particular case
of our single-source location problem (11), the problem under
𝑙2-normanalyzed in [6] can be reformulated into the LVI (21)-
(22) in whichB𝑑 is equal toB2 and Π = 𝑅𝑝.

Further let

𝐵𝑠
𝑗
,1 = {𝜉 ∈ 𝑅

𝑝
|
󵄩󵄩󵄩󵄩𝜉
󵄩󵄩󵄩󵄩1

≤ 𝑠𝑗} ,

𝐵𝑠
𝑗
,∞ = {𝜉 ∈ 𝑅

𝑝
|
󵄩󵄩󵄩󵄩𝜉
󵄩󵄩󵄩󵄩∞

≤ 𝑠𝑗} ,

(29)

where ‖ ⋅ ‖1 and ‖ ⋅ ‖∞ are the 𝑙1, 𝑙∞-norm, respectively, and

B1 = 𝐵𝑠
1
,1 × ⋅ ⋅ ⋅ × 𝐵𝑠

𝑑
,1, B∞ = 𝐵𝑠

1
,∞ × ⋅ ⋅ ⋅ × 𝐵𝑠

𝑑
,∞.

(30)

Then, the CSLP (11) under 𝑙1-norm (the minisum model dis-
cussed in [16]) and the CSLP under 𝑙∞-norm are equivalent
to the LVI (21)-(22), where B𝑑 is, respectively, equal to B∞

andB1 and the locational constraints Π are both 𝑅𝑝.

3.2.2. A Projection-Contraction Method for LVI (21)-(22).
Among numerous effective numerical algorithms for solv-
ing VI, especially LVI, one famous one is the projection-
contraction (PC) method which was originally proposed by
Uzawa [46]. The attractive characteristics of the PC method,
for example, simpleness and effectiveness, have motivated
further development on VI especially in computational
aspects; see, for example, [39, 47–49]. In this section, we
will summarize some concepts and results about linear varia-
tional inequalities and then adopt the projection-contraction
method in [48] for solving LVI (21)-(22). More details about
the proposed PC method can be referred to [48].

Let𝑊 be a nonempty closed convex set of 𝑅Q. For a given
V ∈ 𝑅Q, the projection of V onto 𝑊 denoted by 𝑃𝑊(V) is the
unique solution of the following problem:

𝑃𝑊 (V) = argmin {‖𝑢 − V‖2 | 𝑢 ∈ 𝑊} . (31)

A basic proposition of the projection mapping on a closed
convex set is

(V − 𝑃𝑊 (V))𝑇
(𝑢 − 𝑃𝑊 (V)) ≤ 0, ∀V ∈ 𝑅

Q
, ∀𝑢 ∈ 𝑊. (32)

It is well known (see, e.g., [50]) that for any 𝛽 > 0, 𝑢∗ is
the solution of LVI(Ω,𝑀, 𝑞) if and only if

𝑒 (𝑢
∗
, 𝛽) := 𝑢

∗
− 𝑃Ω [𝑢

∗
− 𝛽 (𝑀𝑢

∗
+ 𝑞)] = 0. (33)

In the literature of variational inequalities, 𝑒(𝑢, 𝛽) is usually
called the error bound of LVI, and it quantitatively measures
how much 𝑢 fails to be the solution of LVI(Ω,𝑀, 𝑞). There-
fore, 𝑒(𝑢, 𝛽) can serve as the stopping criterion for solving
LVI(Ω,𝑀, 𝑞) iteratively.
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Let

𝑒 (𝑢) = 𝑒 (𝑢, 1) , 𝑔 (𝑢) = 𝑀
𝑇
𝑒 (𝑢) + (𝑀𝑢 + 𝑞) ,

𝜑 (𝑢) = 𝑒(𝑢)
𝑇
(𝑀𝑢 + 𝑞) ,

(34)

and Ω∗ be the set of solutions of LVI(Ω,𝑀, 𝑞); then, for the
positive semidefinite (not necessarily symmetric) matrix 𝑀,
the following theorem can be obtained.

Theorem 5 (Lemma 1 and Theorem 2 in [48]). Let 𝑢 ∈ Ω,
𝑢

∗ ∈ Ω∗, 𝑔(𝑢), and 𝜑(𝑢) be defined as (34). Then, it holds that

(𝑢 − 𝑢
∗
)

𝑇
𝑔 (𝑢) ≥ 𝜑 (𝑢) ≥ ‖𝑒 (𝑢)‖

2

2
. (35)

For 𝑢 ∈ Ω \ Ω∗, it follows from Theorem 5 that −𝑔(𝑢)
is a descent direction of the unknown function ‖𝑢 − 𝑢∗‖

2

2
.

We state the projection-contractionmethod in [48] as follows
which is used to solve the LVI (21)-(22).

Algorithm 6 (the projection-contraction method for LVI
(21)-(22)).
Step 0. Let 𝜀 > 0, 𝛽 = 1, 𝛼1, 𝛼2 (𝛼1 > 𝛼2) and 𝑢0 ∈ Ω. Set
𝑘 = 0.
Step 1. Calculate 𝑒(𝑢𝑘). If ‖𝑒(𝑢𝑘)‖ < 𝜀, stop.
Step 2. Calculate 𝑔(𝑢𝑘) and set 𝛼(𝑢𝑘) as

𝛼 (𝑢
𝑘
) =

󵄩󵄩󵄩󵄩󵄩
𝑒 (𝑢𝑘)

󵄩󵄩󵄩󵄩󵄩

2

󵄩󵄩󵄩󵄩𝑒 (𝑢
𝑘) + 𝑀𝑇𝑒 (𝑢𝑘)

󵄩󵄩󵄩󵄩
2
. (36)

Step 3. Calculate 𝑢𝑘+1 as

𝑢
𝑘+1

= 𝑃Ω [𝑢
𝑘
− 𝜌𝛼 (𝑢

𝑘
) 𝑔 (𝑤

𝑘
)] , 𝜌 ∈ (0, 2) . (37)

Step 4. Adjust 𝛽 as follows

𝛽 =

{{{{{{

{{{{{{

{

3

2
𝛽 √𝛼 (𝑢𝑘) ≥ 𝛼1,

2

3
𝛽 √𝛼 (𝑢𝑘) ≤ 𝛼2,

𝛽 otherwise,

(38)

and set

𝑀 = 𝛽𝑀, 𝑞 = 𝛽𝑞. (39)

Let 𝑘 = 𝑘 + 1 and go to Step 1.

Remark 7. In Step 4 of Algorithm 6, the parameter 𝛽 is self-
adaptive during the iterations according to the value of 𝛼(𝑢𝑘).
Note that 𝑀 is skew-symmetric, and thus, 𝛼(𝑢𝑘) can also be
rewritten as

𝛼 (𝑢
𝑘
) =

󵄩󵄩󵄩󵄩󵄩
𝑒 (𝑢𝑘)

󵄩󵄩󵄩󵄩󵄩

2

(
󵄩󵄩󵄩󵄩𝑒 (𝑢

𝑘)
󵄩󵄩󵄩󵄩

2
+
󵄩󵄩󵄩󵄩𝑀

𝑇𝑒 (𝑢𝑘)
󵄩󵄩󵄩󵄩

2
)
, (40)

which is shown to be in [0, 1]. It follows from (39)-(40) that
the two terms ‖𝑒(𝑢𝑘)‖

2

and ‖𝑀𝑇𝑒(𝑢𝑘)‖
2

in the denominator
of 𝛼(𝑢𝑘) are balanced by the self-adaptive parameter 𝛽.

Theorem 8 (Theorem 3 in [48]). Let 𝑢∗ be a solution of LVI
(21)-(22); then, the sequence {𝑢𝑘} generated by Algorithm 6
satisfies

󵄩󵄩󵄩󵄩󵄩
𝑢

𝑘+1
− 𝑢

∗󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩󵄩
𝑢

𝑘
− 𝑢

∗󵄩󵄩󵄩󵄩󵄩

2

−
𝜌 (2 − 𝜌)

󵄩󵄩󵄩󵄩𝐼 +𝑀𝑇󵄩󵄩󵄩󵄩
2

󵄩󵄩󵄩󵄩󵄩
𝑒 (𝑢

𝑘
)
󵄩󵄩󵄩󵄩󵄩

2

. (41)

As a result, {𝑒(𝑢𝑘)} converges to zero, and thus, all
accumulation points of {𝑢𝑘} are the solutions of LVI (21)-
(22). However, it follows from (41) that ‖𝑢𝑘+1 − 𝑢∗‖ ≤

‖𝑢𝑘 −𝑢∗‖, which implies that {𝑢𝑘} has only one accumulation
point. Thus, the sequence {𝑢𝑘} generated by Algorithm 6 will
converge to the optimal solution of LVI (21)-(22).

4. A Location-Allocation Heuristic
for CMLP (9)

Recall the fact that for the well-known multi-source Weber
problem (MWP), heuristics algorithms are extremely popular
and frequently used for overcoming its nonconvexity and
NP-hardness. In particular, the location-allocation heuristic
algorithm has drawn much attention ever since its presen-
tation by Cooper [34]. Note that the targeted CMLP (9) is
an extension of the MWP and it is harder than MWP, and
thus, in this paper, we also focus on applying the location-
allocation heuristic algorithm for solving the CMLP in the
spirit of Cooper’s work.

Our previous analysis indicates that each iteration of the
location-allocation heuristic algorithm to be presented con-
sists of an allocation phase and a location phase. The alloca-
tion task generates a new disjoint partition of all the regional
customers according to the principle of NCR as in the Cooper
algorithm, and the location phase identifies the optimal loca-
tions for the current partition of customers via implementing
the variational inequality approach for solving𝑚 CSLPs.

Mark that the CMLP (9) differs fromMWPmainly in that
the customers are represented by regions rather than points.
Consequently, the CSLPs involved in the location phase are
constrained location problems with regional demand and
closest distances under gauge. No doubt that the numerical
implementation of the heuristic algorithm to be presented is
expected to bemore complicated than the location-allocation
algorithms forMWP.Therefore, how to accelerate the conver-
gence of the proposed heuristic deserves further considera-
tion. To achieve this objective, we here consider a particular
strategy for the initial partition of regional customers or the
initial locations of facilities. In practical implementation, we
suggest to choose the solution of the following constrained
multi-sourceWeber problem (CMWP) as the initial locations
of facilities for CMLP:

CMWP: min
(𝑥
1
,...,𝑥
𝑚

)∈Π
1
×⋅⋅⋅×Π

𝑚

𝐶
󸀠
(𝑋) =

𝑛

∑
𝑗=1

𝑠𝑗 min
1≤𝑖≤𝑚

𝛾 (𝑥𝑖 − 𝑔𝑗) ,

(42)

where 𝑔𝑗’s are geometric centers of the regional customers.
Then, we apply the NCR to determine an initial partition
of regional customers according to the solution of (42). For
solving the constrainedmulti-sourceWeber problem (42), we
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employ the location-allocation heuristic algorithm in [35].
As we will show by numerical experiments, this initialization
strategy can accelerate the convergence of the proposed
algorithm greatly.

In the spirit of Cooper’s work, the newheuristic algorithm
is ready to be presented for solving the targeted CMLP (9),
and its iterative framework can be elaborated as follows.

Algorithm 9 (a location-allocation heuristic algorithm for
CMLP). Initialization: Solve (42) by the location-allocation
heuristic in [35] and use its heuristic solutions as the ini-
tial locations of facilities (𝑥0

1
, 𝑥0

2
, . . . , 𝑥0

𝑚
). Then, the initial

partition of regional customers, which is denoted by Λ0 =

{Λ0

1
, Λ0

2
, . . . , Λ0

𝑚
}, is generated by the spirit of NCR heuristic

(Step 3 in Algorithm 2). Set 𝑘 = 1.
Step 1 (location phase). Solve the involved CSLP (11) and find
the location of facility𝑥𝑘

𝑖
forΛ𝑘−1

𝑖
by the variational inequality

approach. Denote𝑋𝑘 = (𝑥𝑘 𝑇

1
, . . . , 𝑥𝑘 𝑇

𝑚
)

𝑇.
Step 2 (allocation phase). Update the partition of regional
customers Λ from Λ𝑘−1

𝑖
to Λ𝑘

𝑖
based on the spirit of NCR

heuristic.
Step 3 If ‖𝑋𝑘 − 𝑋𝑘−1‖ < 𝜀, the current locations and partition
are heuristic locations of facilities and heuristic partition of
customers. Otherwise, set 𝑘 = 𝑘 + 1 and go to Step 1.

Remark 10. At the (𝑘 + 1)th iteration, it is recommended to
use 𝑥𝑘

𝑖
(and the corresponding 𝑦 and 𝑧) in Step 1 as the initial

iterate in the variational inequality approach for solving 𝑥𝑘+1

𝑖

(𝑖 = 1, . . . , 𝑚), considering the fact that Λ𝑘

𝑖
usually differs

from Λ𝑘−1

𝑖
slightly in practical implementation.

Remark 11. Compared to the main body of the proposed
location-allocation heuristic algorithm, the workload of the
initialization is relatively less. However, this initialization
strategy can reduce its number of iterations and computing
time, which will be verified by the numerical experiments
to be reported in Section 6.2. Hence, the convergence of the
proposed algorithm is accelerated greatly by this initialization
strategy.

5. Convergence of the Proposed
Heuristic Algorithm

In this section, we analyze the convergence of the proposed
location-allocation heuristic (Algorithm 9). For simplifica-
tion of our discussion, some notations are introduced as
follows. Let 𝐴 = 𝐴1 × ⋅ ⋅ ⋅ × 𝐴𝑛, and recallΠ = Π1 × ⋅ ⋅ ⋅ × Π𝑚.
For any 𝑋 = (𝑥𝑇

1
, . . . , 𝑥𝑇

𝑚
)

𝑇
∈ Π and 𝐶 = (𝑐𝑇

1
, . . . , 𝑐𝑇

𝑛
)

𝑇
∈ 𝐴,

we can define an ordered pair (𝑋, 𝐶) and we can also define
the function 𝜔(𝑋, 𝐶), in the current partition of customers as
follows:

𝜔 (𝑋, 𝐶) =

𝑚

∑
𝑖=1

𝑛

∑
𝑗=1

𝑤𝑖𝑗𝛾 (𝑥𝑖 − 𝑐𝑗)

=

𝑚

∑
𝑖=1

∑

{𝑗∈N:𝐴
𝑗
∈Λ
𝑖}

𝑠𝑗𝛾 (𝑥𝑖 − 𝑐𝑗) ,

(43)

which represents the objective functional value of CMLP (9)
at (𝑋, 𝐶).

During the implementation ofAlgorithm9,we denote the
mapL : Π × 𝐴 → Π × 𝐴 as the location operation in Step 1
and the mapA : Π×𝐴 → Π × 𝐴 as the allocation operation
in the Step 2. It follows that

L (𝑋
𝑘
, 𝐶

𝑘
) = (𝑋

𝑘+1
, 𝐶

𝑘
) ,

A (𝑋
𝑘+1

, 𝐶
𝑘
) = (𝑋

𝑘+1
, 𝐶

𝑘+1
) ,

(44)

where𝑋𝑘 and𝑋𝑘+1 are, respectively, the locations of facilities
in the 𝑘th and (𝑘 + 1)th iteration, 𝐶𝑘 is the variable of the
closest points to 𝑋𝑘 in the partition of Λ𝑘, 𝐶𝑘 is the closest
points to the new𝑋𝑘+1 in the partition of Λ𝑘, and 𝐶𝑘+1 is the
closest points to the new 𝑋𝑘+1 in the new partition of Λ𝑘+1.
Then, the iterate scheme of the location-allocation heuristic
is

(𝑋
𝑘+1

, 𝐶
𝑘+1

) = AL (𝑋
𝑘
, 𝐶

𝑘
) . (45)

Let 𝑆(𝑋0, 𝐶0) denote the iterative sequence generated by
the location-allocation heuristic for CMLP with the initial
iterate (𝑋0, 𝐶0). During the implementation of the proposed
heuristic algorithm, we choose the initial iterate in location
phase for solving CSLP as Remark 10 indicates. We first give
the following proposition which reveals the monotonicity of
the generated sequence 𝑆(𝑋0, 𝐶0).

Proposition 12. 𝑆(𝑋0, 𝐶0) is strictly monotone in the sense
that 𝜔(𝑋𝑘+1, 𝐶𝑘+1) < 𝜔(𝑋𝑘, 𝐶𝑘) if𝑋𝑘+1 ̸=𝑋𝑘.

Proof. Since 𝑋𝑘+1 ̸=𝑋𝑘, there exists at least one 𝑖 ∈ M such
that 𝑥𝑘+1

𝑖
̸=𝑥𝑘

𝑖
. For such 𝑖’s according to the following convex

optimization problem

𝑥
𝑘+1

𝑖

= argmin
𝑥∈Π
𝑖

{

{

{

𝐶
𝑘+1

𝑖
(𝑥) = ∑

{𝑗∈N:𝐴
𝑗
∈Λ𝑘
𝑖}

𝑠𝑗𝛾 (𝑥 − 𝑎𝑗 (𝑥))
}

}

}

,
(46)

we have

𝜔 (𝑋
𝑘+1

, 𝐶
𝑘
) ≤ 𝜔 (𝑋

𝑘
, 𝐶

𝑘
) . (47)

Based onRemark 10, we know that if𝑥𝑘

𝑖
is the solution of (46),

then 𝑥𝑘+1

𝑖
will be equal to 𝑥𝑘

𝑖
.Therefore, 𝑥𝑘+1

𝑖
̸=𝑥𝑘

𝑖
implies that

𝑥𝑘

𝑖
is not the solution of (46), and thus, 𝐶𝑘+1

𝑖
(𝑥𝑘+1) < 𝐶𝑘

𝑖
(𝑥𝑘).

It follows that

𝜔 (𝑋
𝑘+1

, 𝐶
𝑘
) < 𝜔 (𝑋

𝑘
, 𝐶

𝑘
) . (48)

On the other hand, based on the principle of NCR in the
allocation phase of Algorithm 9, we also have

𝜔 (𝑋
𝑘+1

, 𝐶
𝑘+1

) ≤ 𝜔 (𝑋
𝑘+1

, 𝐶
𝑘
) . (49)
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By Combining (48) and (49), it follows that

𝜔 (𝑋
𝑘+1

, 𝐶
𝑘+1

) < 𝜔 (𝑋
𝑘
, 𝐶

𝑘
) . (50)

The proof is complete.

Based on the monotonicity of the generated sequence
𝑆(𝑋0, 𝐶0), the following theorem can be proved.

Theorem 13. Let {𝑆𝑘} := 𝑆(𝑋0, 𝐶0). Then, the generated
sequence {𝑆𝑘} satisfies that

(1) 𝜔(𝑆𝑘) → 𝜔(𝑆) for some 𝑆 ∈ Π × 𝐴,
(2) all accumulation points of {𝑆𝑘} have the same objective

functional values.

Proof. After a finite number of iterations, if 𝑋𝐽+1
= 𝑋

𝐽,
then the iterates after 𝑆𝐽 will be constant, and thus, {𝑆𝑘} is
convergent to (𝑋𝐽, 𝐶𝐽) ∈ Π × 𝐴, and the two assertions are
both true.

Below, we will discuss the case that 𝑋𝑘+1 ̸=𝑋𝑘 for any
𝑘 ∈ 𝑁. First, we prove the first assertion. Since 𝑆𝑘 ∈ Π × 𝐴

and Π × 𝐴 is a compact space, it follows from the Bolzano-
Weierstrass theorem that there exists a subsequence of {𝑆𝑘}

which, say {𝑆𝑘}𝐾, converges to an element 𝑆 ∈ Π × 𝐴; that is,

lim
𝐾 → ∞

{𝑆𝑘}𝐾
󳨀→ 𝑆, 𝑆 ∈ Π × 𝐴. (51)

Note that 𝜔(𝑋, 𝐶) is a continuous function according to (43);
then,

lim
𝐾 → ∞

𝜔 ({𝑆𝑘}𝐾
) 󳨀→ 𝜔 (𝑆) , 𝑆 ∈ Π × 𝐴. (52)

Due to that {𝜔(𝑆𝑘)} is a monotone sequence (Proposition 12)
and has lower bound, then {𝜔(𝑆𝑘)} is convergent. Thus, any
subsequence of {𝜔(𝑆𝑘)} will be convergent to the same value.
Note that {𝜔({𝑆𝑘}𝐾)} is a subsequence of {𝜔(𝑆𝑘)} and it is
convergent to 𝜔(𝑆); then, it follows that

lim
𝑘 → ∞

𝜔 (𝑆𝑘) 󳨀→ 𝜔 (𝑆) , 𝑆 ∈ Π × 𝐴. (53)

The second assertion can easily be proved. Let 𝑃 be an
accumulation point of {𝑆𝑘}; then, there exists one subse-
quence {𝑆𝑘}𝐾󸀠 which converges to𝑃, and due to the continuity
of 𝜔(𝑋, 𝐶), we have

𝜔 ({𝑆𝑘}𝐾󸀠
) 󳨀→ 𝜔 (𝑃) . (54)

The first assertion has shown that {𝜔(𝑆𝑘)} is convergent, and
note that {𝜔({𝑆𝑘}𝐾󸀠)} is a subsequence of {𝜔(𝑆𝑘)}; then, it
follows that

𝜔 (𝑃) = lim
𝐾󸀠→ ∞

𝜔 ({𝑆𝑘}𝐾󸀠
) = lim

𝑘 → ∞
𝜔 (𝑆𝑘) . (55)

Thus, all accumulation points of {𝑆𝑘} have the same objective
functional values equal to lim𝑘 → ∞𝜔(𝑆𝑘).

Lemma 14. L : Π × 𝐴 → Π × 𝐴 which is defined in (44) is
a closed map over Π × 𝐴.

Proof. Note that the CSLP (11) is a convex problem, then

argmin
𝑥∈Π
𝑖

{

{

{

∑

{𝑗∈N:𝐴
𝑗
∈Λ𝑘−1
𝑖 }

𝑠𝑗min
𝑞
𝑗
∈𝐴
𝑗

𝛾 (𝑥𝑖 − 𝑞𝑗)
}

}

}

,

𝑖 = 1, 2, . . . , 𝑚,

(56)

are continuous. Since Π × 𝐴 is a compact space and also a
Hausdorff space and every continuous map from a compact
space to aHausdorff space is closed, it follows thatL is closed
over Π × 𝐴.

Lemma 15. Let 𝜐0 be a given vector in Π × 𝐴 and Δ := {𝜐 ∈

Π × 𝐴 | 𝜔(𝜐) ≤ 𝜔(𝜐0)}. Then, Δ is a compact set.

Proof. It is known that every closed subset of a compact space
is also compact, and therefore, it is enough to prove that Δ is
a closed set.

For any sequence {𝜐𝑘}with 𝜐𝑘 ∈ Δ, sinceΠ×𝐴 is compact,
according to Bolzano-Weierstrass, there exists a convergent
subsequence {𝜐𝑘}𝐾 of {𝜐𝑘} such that

lim
𝐾 → ∞

{𝜐𝑘}𝐾
󳨀→ 𝜐. (57)

Due to the continuity of 𝜔, it follows that

lim
𝐾 → ∞

𝜔 ({𝜐𝑘}𝐾
) = 𝜔 (𝜐) . (58)

On the other hand, {𝜐𝑘}𝐾 ∈ Δ implies

𝜔 ({𝜐𝑘}𝐾
) ≤ 𝜔 (𝜐0) . (59)

By combining (58), (59), and the continuity of 𝜔, the follow-
ing inequality is obtained:

𝜔 (𝜐) ≤ 𝜔 (𝜐0) , (60)

and accordingly, 𝜐 ∈ Δ. This means that Δ is closed, and the
proof is complete.

Now, we are ready to prove the convergence of the
proposed location-allocation heuristic (Algorithm 9). Let
Ξ ⊆ Π × 𝐴 be the nonempty local solution set of CMLP
(9). Recall that in the location-allocation Cooper algorithm
for MWP, if 𝑋𝐽+1 = 𝑋𝐽 occurs after a finite number of
iterations, the iterates after 𝑋𝐽 will be constant. Then, no
further improvement is possible forMWP, and it follows from
[32, 34] that the𝑋𝐽 is a local solution ofMWP. Similarly, in the
proposed location-allocation heuristic algorithm for CMLP,
if 𝑋𝐽+1 = 𝑋𝐽 occurs, the iterates after 𝑆𝐽 = (𝑋𝐽, 𝐶𝐽) will
also be constant. Then, exactly as in the location-allocation
Cooper algorithm for MWP, no further improvement is
possible for CMWP, and a local solution, namely, 𝑆𝐽, is
obtained. Hence in this case, {𝑆𝑘} is convergent to the 𝑆𝐽 ∈ Ξ.
However, it is not assured that 𝑋𝐽+1 = 𝑋𝐽 always occurs
during the implementation of Algorithm 9, and therefore,
we assume that 𝑋𝑘+1 ̸=𝑋𝑘 for any 𝑘 ∈ 𝑁 and prove the
convergence in this case.



10 Abstract and Applied Analysis

Theorem 16. Assume that 𝑋𝑘+1 ̸=𝑋𝑘 for any 𝑘 ∈ 𝑁; then, all
the accumulation points of the sequence {𝑆𝑘} belong to Ξ.

Proof. Let 𝑆 be an accumulation point of {𝑆𝑘}. Due to 𝑆𝑘 ∈ Π×

𝐴 and the compactness ofΠ×𝐴, we know that (1) 𝑆 ∈ Π×𝐴

and (2) there exists a subsequence {𝑆𝑘}𝐾 which is convergent
to 𝑆. According toTheorem 13, we know that

lim
𝑘 → ∞

𝜔 (𝑆𝑘) = 𝜔 (𝑆) , 𝑆 ∈ Π × 𝐴. (61)

So, it is enough to prove 𝑆 ∈ Ξ. We prove this by
contradiction. Assume that 𝑆 ∉ Ξ; that is, 𝑆 is not a solution,
and we consider the subsequence {𝑆𝑘+1}𝐾. Denote Δ = {𝜐 ∈

Π × 𝐴 | 𝜔(𝜐) ≤ 𝜔(𝑆0)}. Due to Proposition 12, it follows that
for all 𝑘 ∈ 𝑁 we have (𝑋𝑘+1, 𝐶𝑘) ∈ Δ and (𝑋𝑘+1, 𝐶𝑘+1) ∈ Δ.
According to Lemma 15, Δ is compact, and thus, there exists
𝐾

󸀠 ⊂ 𝐾 such that

lim
𝐾󸀠→ ∞

(𝑋
𝑘+1

, 𝐶
𝑘
)

𝐾󸀠
= 𝜐1, lim

𝐾󸀠→ ∞

(𝑋
𝑘+1

, 𝐶
𝑘+1

)
𝐾󸀠

= 𝜐2.

(62)

According to Lemma 14, the map L is closed at 𝑆 ∈ Π × 𝐴;
then, it follows that 𝜐1 = L(𝑆). Further, due to 𝑆 ∉ Ξ, V1 will
be not equal to 𝑆. Otherwise, we can choose 𝑆 as the initial
iterate of the location-allocation heuristic algorithm, then,
the sequence generated by the algorithm will be constant. It
follows from the first case (i.e., 𝑋𝐽+1 = 𝑋𝐽) that 𝑆 will be a
local solution, which contradicts with 𝑆 ∉ Ξ. Therefore, we
can obtain V1 ̸=𝑆. Together with the monotone proposition
ofL (48), we have the inequality

𝜔 (𝜐1) < 𝜔 (𝑆) . (63)

On the other hand, note thatA(𝑋𝑘+1, 𝐶𝑘) = (𝑋𝑘+1, 𝐶𝑘+1);
then, by the monotonicity ofA (49), it follows that

𝜔(𝑋
𝑘+1

, 𝐶
𝑘+1

)
𝐾󸀠

≤ 𝜔(𝑋
𝑘+1

, 𝐶
𝑘
)

𝐾󸀠
, (64)

and thus, by taking the limit for (64) and by the continuity
of 𝜔, we know 𝜔(𝜐2) ≤ 𝜔(𝜐1). Combining this with (63), we
obtain

𝜔 (𝜐2) < 𝜔 (𝑆) . (65)

However, note that 𝜐2 and 𝑆 are two accumulation points of
{𝑆𝑘}, and according to the second assertion of Theorem 13,
𝜔(𝜐2) = 𝜔(𝑆), which will contradict with (65). Therefore, our
assumption is wrong, and thus, 𝑆 ∈ Ξ.

As a result, we have the following convergence theo-
rem for the sequence generated by the proposed location-
allocation algorithm.

Theorem 17. The sequence 𝑆(𝑋
0, 𝐶0) generated by the pro-

posed location-allocation heuristic algorithm either converges
to a point in Ξ or all accumulation points of 𝑆(𝑋0, 𝐶0) belong
to Ξ.

6. Numerical Results

This section reports some preliminary numerical results to
verify the theoretical assertions proved in previous sections.
Section 3.1, reports some numerical results of the proposed
variational inequality approach for the CSLP (11) (or equiva-
lently (12)) which includes (1) the results of the comparison
between our approach and the Weiszfeld-type method by
solving the example in [6] and some randomly generated
unconstrained examples under Euclidean distances and (2)

the results of our approach for solving some randomly gen-
erated constrained examples under a gauge. These numerical
results demonstrate the efficiency of the proposed variational
inequality approach for CSLP. In the second subsection, we
apply the proposed location-allocation heuristic algorithm to
solve some randomly generated examples of the CMLP (9).
In particular, the effectiveness of the initialization strategy
adopted in this heuristic for accelerating convergence will be
justified. All the programming codes are written by Matlab
2012b and were run on an ASUS notebook (Intel Core2 Duo
T6670 2.20GHz).

6.1. Numerical Results of Variational Inequality Approach for
CSLP. When applying the variational inequality approach
for solving CSLP and MCSLP (12), theoretically, the initial
iteration 𝑢

0 in Algorithm 6 can be chosen arbitrarily inΩ. In
practical implementation, however, we choose 𝑢0 judiciously
similar to the initialization strategy in the location-allocation
heuristic: let 𝑔𝑗 (𝑗 = 1, . . . , 𝑑) be the centers of regional
customers, solve the following single-source Weber problem
(SWP):

𝑥
∗
= argmin

𝑥∈Π

{

{

{

𝑑

∑
𝑗=1

𝛾 (𝑥 − 𝑔𝑗)
}

}

}

(66)

by the projection-contraction method in [35], and then use
its solution as the initial iterate for Algorithm 6. We call this
the initialization strategy of variational inequality approach.
In addition, throughout our experiments of VI approach, the
𝛼1 and 𝛼2 in Algorithm 6 are chosen as 1 and 0, respectively.

We first solve the example given in [16] by the pro-
posed variational inequality approach and theWeiszfeld-type
method in [16].

Example 18. Here, 𝑑 = 5; that is, there are five regional
customers, and all customers are unit squares whose sides
are parallel to the axes. The geometric centers of the five
customers are (0.5, 0.5), (4.5, 0.5), (0.5, 2.5), (2.5, 2.5), and
(4.5, 2.5), and 𝑠𝑗 = 1, 𝑗 = 1, . . . , 5.

In order to clarify the comparison of two methods, we
choose the same stopping criterion as ‖𝑥𝑘+1 − 𝑥𝑘‖ ≤ 10−4

(throughout this section, ‖ ⋅ ‖ is the 𝑙∞-norm). We test this
example for 100 times with the same initial iterate for the two
methods which is randomly generated in [0, 5] × [0, 3], and
the numerical results including the location of new facility,
the closest points to the facility, number of iterations, and
computing time in units of second are reported in Table 1.
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Table 1: Numerical results for Example 1 given in [16].

Main results VI approach Weiszfeld-type method
𝑥 (2.5000, 1.9484) (2.5000, 1.9484)
𝑎1(𝑥) (1.0000, 1.0000) (1.0000, 1.0000)
𝑎2(𝑥) (4.0000, 1.0000) (4.0000, 1.0000)
𝑎3(𝑥) (4.0000, 2.0000) (4.0000, 2.0000)
𝑎4(𝑥) (2.5000, 2.0000) (2.5000, 2.0000)
𝑎5(𝑥) (1.0000, 2.0000) (1.0000, 2.0000)
Objective value 6.6027 6.6027
Number of iterations 32.81/23.77 237.60
CPU 0.0124 0.0610
“32.81/23.77” means 32.81 Iter. for initialization and 23.77 Iter. for VI
approach.

According to Table 1, it follows that both methods
can get the optimal location of the new facility. Though
our variational inequality approach needs smaller iteration
numbers and less computing time, bothmethods are efficient
for solving Example 1 given in [6].

Recall that the sequence generated by the Weiszfeld-type
method in [16] is possible to be convergent to a nonoptimal
point on the boundary of the regional customer, as indicated
in [16]. The variational inequality approach, however, can
obtain the optimal location of the new facility, which is
guaranteed by the theoretical analysis in Section 3.2. To
illustrate this, we compare two methods by solving the
following particular example.

Example 19. Similar to Example 18, the number of customers
𝑑 = 5, and all customers are unit squares whose edges are
parallel to the axes. Let 𝑑1 be the distance between any two
neighboring customers, and we set 𝑑1 equal to 1, 0.1, 0.01, and
0.001, respectively. The weights 𝑠𝑗 (𝑗 = 1, . . . , 5) are randomly
generated in the area of regional customers.

Note that in Example 19 the parameter 𝑑1 reflects how
close the customers are away from its neighborhoods.We test
this example for a large number of times with the stopping
criterion ‖𝑥𝑘+1−𝑥𝑘‖ ≤ 10−4, and the average numerical results
are reported in Table 2. In this table, each row reports the
average results by testing Example 19 for one hundred times.
The column of “No. of Iter.0” gives the average iteration times
of initialization in the variational inequality approach, and
the column of “No. of Iter.” reports the average iteration times
of bothmethods.The two columns of “CPU” give the average
computing time in units of second for variational inequality
approach (including the computing time for initialization)
and Weiszfeld-type method, respectively. The columns of
“Obj.” give the average objective functional value obtained by
the two methods, and the column of “Impro. Percent” gives
the improvement percentage in objective functional values
of the VI approach to Weiszfeld-type method. Remark that
the convergence of VI approach to the optimal location of
new facility is guaranteed, and then the column of “Freq.
Num.” reports the frequency among one hundred times that
the Weiszfeld-type method can get the same solution as

VI approach; that is, it does not converge to the nonoptimal
solution on the boundary of the customer.

According to Table 2, it follows that both the VI approach
and the Weiszfeld-type method are efficient for solving this
particular example, and both of them need a small number
of iterations and little computing time. In comparison of
two methods, we can find that VI approach needs more
iteration times and computing time than Weiszfeld-type
method. From the column of “Impro. Percent,” however,
we can conclude that VI approach can obtain a better
solution (in fact, the solution obtained by VI approach is
the optimal location of new facility) than Weiszfeld-type
method. In addition, according to the last column, we find
that when 𝑑1 decreases, that is, the customers become closer
and closer, the frequency thatWeiszfeld-typemethod obtains
the optimal solution gets smaller and smaller. When 𝑑1 is
0.001, which implies that the customers are quite close to
the neighborhoods, this frequency is totally less than 20. In
other words, for this particular example with 𝑑1 = 0.001,
the sequence generated byWeiszfeld-typemethod has a great
possibility (more than 80%) to be convergent to a nonoptimal
solution which is on the boundary of the customer. On the
contrary, when 𝑑1 is 1, which means that the customers are
enough far away from one another, Weiszfeld-type method
can obtain the optimal location of facility in most cases, and
the frequency even exceeds 90.

Since our main effort in this paper is to solve the general
location problem under gauge and locational constraint, it
is necessary to apply the variational inequality approach to
solve some CSLPs. In particular, we test a large number of
randomly generated CSLPs with the number of customers 𝑑
from 10 to 2000. In the experiments, all regional customers
are assumed to be square units, and their edges are parallel to
the coordinate axes.The geometric centers of all regional cus-
tomers are randomly generated in [−100, 100]

2; the weights
of the regional customer are all randomly chosen in (1,5);
the locational constraint is ‖𝑥 − 𝑂‖ ≤ 𝑟, where the center
𝑂 is randomly generated in [−100, 100]

2, and the radius 𝑟
is randomly generated in (1,5); the stopping criterion of VI
approach is chosen as

󵄩󵄩󵄩󵄩󵄩
𝑥

𝑘+1
− 𝑥

𝑘󵄩󵄩󵄩󵄩󵄩
≤ 10

−4
,

󵄩󵄩󵄩󵄩󵄩
𝑒 (𝑢

𝑘+1
)
󵄩󵄩󵄩󵄩󵄩
≤ 10

−4
,

(67)

and the initial iterate is randomly generated in [−100, 100]
2;

the gauge 𝛾(⋅) is generated with the unit ball set as

9(𝑥 +
2

3
)

2

+ 12𝑦
2
= 16. (68)

For each 𝑑, we test one hundred randomly generated CSLPs,
and the average numerical results are reported in Table 3.
To illustrate the effect of the initialization strategy of VI
approach, we also report the results of VI approach without
the initialization strategy. The columns of “VI approach
with Initial.” and “VI approach without Initial.,” respectively,
report the average number of iterations and average comput-
ing time of variational inequality approach with and without
the initialization strategy.
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Table 2: Numerical results of VI approach and Weiszfeld-type method for Example 19.

𝑑1

VI approach Weiszfeld-type method Impro. Freq.
No. of Iter.0 No. of Iter. CPU Obj. No. of Iter. CPU Obj. percent num.

1

25.11 59.96 0.015 15.4465 52.99 0.0117 15.5664 0.78 90
25.04 58.97 0.015 15.1803 27.28 0.0055 15.2926 0.74 92
25.35 60.89 0.015 15.3693 31.11 0.0070 15.4834 0.74 92
25.24 59.80 0.015 15.0924 35.45 0.0080 15.1961 0.69 90
23.61 55.13 0.014 14.6321 34.27 0.0069 14.7055 0.50 93

0.1

32.95 278.26 0.060 4.2157 28.59 0.0082 4.6791 10.99 63
32.11 270.81 0.059 4.0864 60.38 0.0135 4.4318 8.45 66
34.07 301.67 0.067 4.2248 36.63 0.0081 4.6001 8.88 63
34.16 278.24 0.065 4.1189 34.03 0.0067 4.4854 8.89 63
32.63 280.00 0.062 4.0842 38.20 0.0069 4.3619 6.80 64

0.01

33.11 427.34 0.089 3.0633 25.85 0.0063 3.8005 24.07 28
35.28 407.61 0.086 3.0615 39.92 0.0087 3.7669 23.04 25
39.26 382.82 0.080 3.1259 26.53 0.0064 3.6954 18.22 29
35.46 425.33 0.089 2.9975 35.06 0.0077 3.6500 21.77 35
32.96 437.24 0.091 3.0691 57.90 0.0130 3.6925 20.31 33

0.001

35.44 151.52 0.035 3.0477 18.88 0.0045 3.8310 25.70 15
36.87 140.58 0.032 3.0224 17.20 0.0048 3.7128 22.84 14
33.43 91.72 0.022 2.9797 17.53 0.0042 3.9617 32.96 17
33.79 115.79 0.027 2.9600 15.20 0.0044 3.7221 25.75 19
37.19 96.08 0.022 3.1936 16.47 0.0047 4.1362 29.52 18

Table 3: Numerical results of VI approach for CSLP (12).

𝑑
VI approach with Initial. VI approach without Initial.

No. of Iter.0 No. of Iter. CPU No. of Iter. CPU
10 26.59 20.30 0.0108 25.26 0.0080
20 24.51 32.80 0.0239 38.20 0.0193
50 27.25 57.69 0.0847 64.89 0.0762
100 25.09 92.53 0.2664 106.84 0.2442
200 29.83 145.97 1.2196 170.66 1.3389
500 27.97 224.74 13.7783 252.99 15.9382
1000 26.71 259.03 56.8598 284.54 62.0384
2000 23.12 281.59 245.5680 346.52 295.2305

According to Table 3, it is easy to conclude that the
variational inequality approach is effective for solving CSLP
under gauge considering the difficulty of this problem. In
addition, the number of iterations of “VI approach with
Initial.” is less than that of “VI approach without Initial.,”
which shows that the initialization strategy can accelerate
the convergence of the variational inequality approach. This
strategy, however, does not necessarily reduce the computing
time of VI approach, especially when 𝑑 is small, for example,
𝑑 = 10, 20, 50, and 100, which can be explained as follows.
When the number of customers 𝑑 is small, the variational
inequality problem is small scale, and thus, it can be solved in
a short time. In this case, the computational workload of ini-
tialization plays an important role in the total workload, and
therefore, the computing time of “VI approach with Initial.” is
greater than that of “VI approach without Initial.” due to the

computational iterations for initialization.With 𝑑 increasing,
the scale of VI problem as well as the number of iterations
becomes larger. Then, in the comparison of the workload of
VI approach, the workload of initialization can almost be
ignored, and therefore, the computing time of “VI approach
with Initial.” will be smaller than that of “VI approachwithout
Initial.” As a matter of fact, Table 3 reveals the computational
necessity of the initialization strategy of variational inequality
approach for large-scale CSLP; for example, the iteration
number and computing time are reduced about 1/5 by the
initialization strategy when 𝑑 = 2000.

6.2. Numerical Results of Heuristic Algorithm for CMLP. This
subsection applies the proposed location-allocation heuristic
algorithm (Algorithm 9) to solve a large number of CMLPs
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Table 4: Numerical results of location-allocation heuristic for CMLP.

𝑛 𝑚
Algorithm 9 with Initial. Algorithm 9 without Initial.

Iter.0 Iter.0-PC Iter. Iter.-PC CPU Iter. Iter.-PC CPU

100

2 2.83 73.33 1.20 289.00 0.4868 3.04 176.70 0.7018
4 3.61 99.88 1.29 176.80 0.2652 2.65 218.47 0.4992
6 4.55 99.05 1.53 121.75 0.1710 3.50 130.96 0.2580
8 3.60 126.23 1.82 149.37 0.2250 3.02 170.32 0.2836
10 3.84 138.61 2.26 257.51 0.3212 4.65 240.48 0.5118

200

2 3.24 81.22 1.24 1620.80 5.4664 3.49 1192.33 11.4596
4 4.01 112.96 1.71 447.08 1.2932 4.37 433.10 2.5694
6 4.65 141.10 2.23 262.97 0.7958 3.88 305.75 1.4538
8 4.26 130.25 2.65 246.80 0.6268 4.83 287.12 1.1734
10 4.67 171.65 2.68 281.40 0.5866 4.46 346.18 1.0232

500

2 4.03 82.35 1.63 1998.20 64.5468 4.26 1815.90 139.2036
4 4.66 104.28 2.27 1304.48 12.3492 5.25 1445.82 26.5510
6 5.27 133.55 2.62 727.13 5.3322 7.60 875.26 18.2956
8 7.60 169.97 2.84 549.60 2.8050 5.24 429.83 3.8626
10 5.42 187.95 3.47 508.13 2.3742 5.02 507.70 3.3946

1000

2 4.49 56.69 1.91 718.17 93.2321 5.63 1587.31 365.6085
4 4.81 80.60 2.10 1376.13 46.2636 5.49 1576.85 113.8830
6 6.84 96.75 3.43 683.35 16.1398 7.65 1344.53 57.7762
8 7.20 161.50 3.28 563.69 9.3570 6.06 760.93 20.0896
10 6.63 171.89 4.05 615.07 7.5880 6.47 700.53 12.9448

(9) and also verifies the necessity of the initialization strategy
in Algorithm 9. In the experiments, we again generate a large
number of CMLPs with unit square customers and assume
that the edges of these regions are parallel to the coordinate
axes. The geometric centers of all the demand regions are
randomly generated in [−100 100]

2, and all the demands,
𝑠𝑗 (𝑗 = 1, 2, . . . , 𝑛), are randomly generated in [ 1 10 ]. The
gauge 𝛾(⋅) is also defined with the unit ball set as (68). We
test the scenario with 𝑛 = 100, 200, 500, and 1000 and 𝑚 =

2, 4, 6, 8, and 10; the locational constraints are ‖𝑥 − 𝑂𝑗‖ ≤

𝑟𝑗 (𝑗 = 1, . . . , 𝑚), where the radius 𝑟𝑗 is randomly generated
in [1, 10], and the center 𝑂𝑗 is given in advance as follows:

𝑚 = 2 : 𝑂1 = (−50, 0)
𝑇
, 𝑂2 = (50, 0)

𝑇
;

𝑚 = 4 : 𝑂1 = (−50, −50)
𝑇
, 𝑂2 = (50, −50)

𝑇
,

𝑂3 = (−50, 50)
𝑇
, 𝑂4 = (50, 50)

𝑇
;

𝑚 = 6 : 𝑂1 = (−50, −50)
𝑇
, 𝑂2 = (0, −50)

𝑇
,

𝑂3 = (50, −50)
𝑇
, 𝑂4 = (−50, 50)

𝑇
,

𝑂5 = (0, 50)
𝑇
, 𝑂6 = (50, 50)

𝑇
;

𝑚 = 8 : 𝑂1 = (−50, −50)
𝑇
, 𝑂2 = (0, −50)

𝑇
,

𝑂3 = (50, −50)
𝑇
, 𝑂4 = (−50, 50)

𝑇
,

𝑂5 = (0, 50)
𝑇
, 𝑂6 = (50, 50)

𝑇
,

𝑂7 = (−25, 0)
𝑇
, 𝑂8 = (25, 0)

𝑇
;

𝑚 = 10 : 𝑂1 = (−50, −50)
𝑇
, 𝑂2 = (0, −50)

𝑇
,

𝑂3 = (50, −50)
𝑇
, 𝑂4 = (−50, 50)

𝑇
,

𝑂5 = (0, 50)
𝑇
, 𝑂6 = (50, 50)

𝑇
,

𝑂7 = (−60, 0)
𝑇
, 𝑂8 = (−20, 0)

𝑇
,

𝑂9 = (20, 0)
𝑇
, 𝑂10 = (60, 0)

𝑇
.

(69)

The initial locations of facilities are randomly generated in
[−100 100]

2, and the stopping criterion used in Algorithms
6 and 9 is chosen as

󵄩󵄩󵄩󵄩󵄩
𝑥

𝑘+1
− 𝑥

𝑘󵄩󵄩󵄩󵄩󵄩
< 10

−4
. (70)

To show the significance of the initialization strategy,
we compare the numerical performance of the location-
allocation heuristic algorithm with initialization strategy
(denoted by “Algorithm 9 with Initial.”) and without this
initialization strategy (denoted by “Algorithm 9 without
Initial.”). In the initialization step of Algorithm 9, the
location-allocation algorithm in [35] is adopted to solve
the corresponding CMWP (42), where a PC method is
proposed to solve the subproblems in location phase, and
the numbers of iterations of the algorithm in [35] (denoted
by “Iter0”) and the average iteration numbers of PC method
in one iteration of the algorithm (denoted by “Iter0-PC”)
are reported. The columns of “Iter.” and “CPU,” respectively,
report the number of iterations and computing time of
Algorithm9with andwithout initialization strategy. Since the
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efficiency ofAlgorithm9 ismainly determined by the number
of iterations of the variational inequality approach, we also
report the average number of iterations of Algorithm 6 in
one iteration of Algorithm 9 (denoted by “Iter.-PC”). For each
given pair (𝑛,𝑚), we test the CMLP for 100 times, and the
computational performance is reported in Table 4.

It follows from Table 4 that the proposed location-
allocation heuristic, with or without the initialization strat-
egy, is capable of tackling the CMLP (9) efficiently, even
for large-scale cases. Also, the necessity of the initialization
strategy is evident. In fact, this strategy reduces both the
number of iterations and the computing time by about 50%.

Another interesting fact obtained from Table 4 deserves
further illustration. Recall that with the number of new facil-
ities (𝑚) increasing, the number of subproblems (CSLPs) in
location phase increases too. According to Table 4, however,
we find that for fixed number of customers (𝑛), with 𝑚

increasing, the number of iterations for solving 𝑚 CSLPs in
one iteration of Algorithm 9 does not increase but almost
decreases with𝑚, especially for large-scale CMLP.This can be
illustrated roughly as follows. For fixed 𝑛, when 𝑚 increases,
the average number of customers in eachΛ𝑘

𝑖
becomes smaller,

which implies that the scale of the involved CSLP (11) in
location phase is smaller. According to Table 3, it follows that
we need smaller number of iterations for small-scale CSLP,
and thus, the total number of iterations for solving 𝑚 CSLPs
decreases. Similarly, due to the same reason, the computing
time for solving CMLP also decreases with 𝑚 increasing, as
reported in the column of “CPU” in Table 4.

7. Conclusion

In this paper, we are interested in the locations of multiple
facilities in the space 𝑅𝑝 with regional demands, where
the closest distance is used to measure the proximities
between facilities and customers. With locational constraints
introduced for the locations of new facilities and with the
gauge used as the distance measuring function, the prob-
lem considered in this paper has much more applications
in practice. Due to its nonconvexity and NP-hardness, a
new location-allocation heuristic algorithm is proposed to
solve this problem, and its convergence is proved under
mild assumptions. Some preliminary numerical experiments
are reported to verify the computational efficiency of the
proposed algorithm.
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We consider a class of linearly constrained separable convex programming problems whose objective functions are the sum of three
convex functions without coupled variables. For those problems, Han and Yuan (2012) have shown that the sequence generated by
the alternating direction method of multipliers (ADMM) with three blocks converges globally to their KKT points under some
technical conditions. In this paper, a new proof of this result is found under new conditions which are much weaker than Han and
Yuan’s assumptions. Moreover, in order to accelerate the ADMMwith three blocks, we also propose a relaxed ADMM involving an
additional computation of optimal step size and establish its global convergence under mild conditions.

1. Introduction

In various fields of applied mathematics and engineering,
many problems can be equivalently formulated as a sep-
arable convex optimization problem with two blocks; that
is, given two closed convex functions 𝑓𝑖 : R𝑛𝑖 → R ∪

{+∞}, 𝑖 = 1, 2, to find a solution pair (𝑥∗
1
, 𝑥∗
2
) of the following

problem:

min 𝑓1 (𝑥1) + 𝑓2 (𝑥2)

s.t. 𝐴1𝑥1 + 𝐴2𝑥2 = 𝑏,
(1)

where 𝐴 𝑖 is a matrix in R𝑝×𝑛𝑖 , 𝑖 = 1, 2, and 𝑏 is a vector in
R𝑝. The classical alternating direction method of multipliers
(ADMM) [1, 2] applied to problem (1) yields the following
scheme:

𝑥
𝑘+1

1
= arg min

𝑥
1
∈R𝑛1

𝑓1 (𝑥1) − ⟨𝐴
𝑇

1
𝜆
𝑘
, 𝑥1⟩

+
𝛽

2

󵄩󵄩󵄩󵄩󵄩
𝐴1𝑥1 + 𝐴2𝑥

𝑘

2
− 𝑏

󵄩󵄩󵄩󵄩󵄩

2

,

𝑥
𝑘+1

2
= arg min

𝑥
2
∈R𝑛2

𝑓2 (𝑥2) − ⟨𝐴
𝑇

2
𝜆
𝑘
, 𝑥2⟩

+
𝛽

2

󵄩󵄩󵄩󵄩󵄩
𝐴1𝑥
𝑘+1

1
+ 𝐴2𝑥2 − 𝑏

󵄩󵄩󵄩󵄩󵄩

2

,

𝜆
𝑘+1

= 𝜆
𝑘
− 𝛽 (𝐴1𝑥

𝑘+1

1
+ 𝐴2𝑥

𝑘+1

2
− 𝑏) ,

(2)

where 𝜆𝑘 is a Lagrangian multiplier and 𝛽 > 0 is a penalty
parameter. Possibly due to its simplicity and effectiveness, the
ADMM with two blocks has received continuous attention
both in theoretical and application domains. We refer to
[3–8] for theoretical results on ADMM with two blocks
and [9–13] for its efficient applications in high-dimensional
statistics, compressive sensing, finance, image processing,
and engineering, to name just a few.

In this paper, we concentrate on the linearly constrained
convex programming problem with three blocks:

min 𝑓1 (𝑥1) + 𝑓2 (𝑥2) + 𝑓3 (𝑥3)

s.t. 𝐴1𝑥1 + 𝐴2𝑥2 + 𝐴3𝑥3 = 𝑏,
(3)
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where 𝑓3 : R
𝑛
3 → R ∪ {+∞} is a closed convex function

and 𝐴3 is a matrix in R𝑝×𝑛3 . For solving (3), a nature idea is
to extend the ADMM with two blocks to the ADMM with
three blocks in which the next iteration (𝑥𝑘+1

2
, 𝑥𝑘+1
3

, 𝜆𝑘+1) is
updated by

(𝑥
𝑘+1

2
, 𝑥
𝑘+1

3
, 𝜆
𝑘+1

) := (𝑥
𝑘

2
, 𝑥
𝑘

3
, 𝜆̃
𝑘
) , (4)

where

𝑥
𝑘

1
= arg min

𝑥
1
∈R𝑛1

𝑓1 (𝑥1) − ⟨𝐴
𝑇

1
𝜆
𝑘
, 𝑥1⟩

+
𝛽

2

󵄩󵄩󵄩󵄩󵄩
𝐴1𝑥1 + 𝐴2𝑥

𝑘

2
+ 𝐴3𝑥

𝑘

3
− 𝑏

󵄩󵄩󵄩󵄩󵄩

2

,

𝑥
𝑘

2
= arg min

𝑥
2
∈R𝑛2

𝑓2 (𝑥2) − ⟨𝐴
𝑇

2
𝜆
𝑘
, 𝑥2⟩

+
𝛽

2

󵄩󵄩󵄩󵄩󵄩
𝐴1𝑥
𝑘

1
+ 𝐴2𝑥2 + 𝐴3𝑥

𝑘
− 𝑏

󵄩󵄩󵄩󵄩󵄩

2

,

𝑥
𝑘

3
= arg min

𝑥
3
∈R𝑛3

𝑓3 (𝑥3) − ⟨𝐴
𝑇

3
𝜆
𝑘
, 𝑥3⟩

+
𝛽

2

󵄩󵄩󵄩󵄩󵄩
𝐴1𝑥
𝑘

1
+ 𝐴2𝑥

𝑘

2
+ 𝐴3𝑥3 − 𝑏

󵄩󵄩󵄩󵄩󵄩

2

,

𝜆̃
𝑘
= 𝜆
𝑘
− 𝛽 (𝐴1𝑥

𝑘

1
+ 𝐴2𝑥

𝑘

2
+ 𝐴3𝑥

𝑘

3
− 𝑏) .

(5)

Similar to theADMMwith two blocks, theADMMwith three
blocks has found numerous applications in a broad spectrum
of areas, such as doubly nonnegative cone programming
[14], high-dimensional statistics [15, 16], imaging science
[17], and engineering [18]. Even though its numerical effi-
ciency is clearly seen from those applications, the theoretical
treatment of ADMM with three blocks is challenging and
the convergence of the ADMM is still open given only the
convex assumptions of the objective function. To alleviate
this difficulty, the authors of [19, 20] proposed prediction-
correction type methods to solve the general separable con-
vex programming; however, numerical results show that the
direct ADMM outperforms its variants substantially. There-
fore, it is of great significance to investigate the theoretical
performance of the ADMM with three blocks even only to
provide sufficient conditions to guarantee the convergence.
To the best of our knowledge, there exist only two works
aiming to attack the convergence problem of the direct
ADMM with three blocks. By using an error bound analysis
method, Hong and Luo [21] proved the linear convergence
of the ADMM with 𝑚 blocks for sufficiently small 𝛽 subject
to some technical conditions. However, the sufficiently small
requirement on𝛽makes the algorithmdifficult to implement.
In [22], Han and Yuan employed a contractive analysis
method to establish the convergence of ADMM under the
strongly convex assumptions of 𝑓𝑖 and the parameter 𝛽

less than a threshold depending on all the strongly convex
moduli. In this paper, we firstly prove the convergence of
ADMM with three blocks under two conditions weaker
than those of [22]. In our conditions, the threshold on the
parameter 𝛽 only relies on the strongly convex moduli of 𝑓2
and𝑓3, and furthermore𝑓1 is not necessarily strongly convex

in one of our conditions. Also, the restricted range of 𝛽 in this
paper is shown to be at least three times as big as that of [22].

In order to accelerate the ADMM with three blocks,
we also propose a relaxed ADMM with three blocks which
involves an additional computation of optimal step size.
Specifically, with the triple (𝑥

𝑘

2
, 𝑥𝑘
3
, 𝜆𝑘), we first generate

a predictor (𝑥𝑘
2
, 𝑥𝑘
3
, 𝜆̃𝑘) according to (5) and then obtain

(𝑥𝑘+1
2

, 𝑥𝑘+1
3

, 𝜆𝑘+1) in the next iteration by

𝑥
𝑘+1

2
= 𝑥
𝑘

2
− 𝛾𝛼
∗

𝑘
(𝑥
𝑘

2
− 𝑥
𝑘

2
) ,

𝑥
𝑘+1

3
= 𝑥
𝑘

3
− 𝛾𝛼
∗

𝑘
(𝑥
𝑘

3
− 𝑥
𝑘

3
) ,

𝜆
𝑘+1

= 𝜆
𝑘
− 𝛾𝛼
∗

𝑘
(𝜆
𝑘
− 𝜆̃
𝑘
) ,

(6)

where 𝛾 ∈ (0, 2) and 𝛼∗
𝑘
is special step size defined in (43).

The convergence of the relaxed ADMM is also established
under mild conditions. We should mention that it is possible
tomodify the analyses given in this paper to be problemswith
more than three blocks of separability. But this is not the focus
of this paper.

The remaining parts of this paper are organized as follows.
In Section 2, we list some preliminaries on the strongly
convex function, subdifferential, and the ADMM with three
blocks. In Section 3, we first show the contractive property
of the distance between the sequence generated by ADMM
with three blocks and the solution set and then prove
the convergence of ADMM under certain conditions. In
Section 4, we extend the direct ADMM with three blocks to
the relaxed ADMM with an optimal step size and establish
its convergence under suitable conditions. We conclude our
paper in Section 5.

Notation. For any positive integer 𝑚, let 𝐼𝑚 be the 𝑚 × 𝑚

identity matrix. We use ‖ ⋅ ‖ and ‖ ⋅ ‖2 to denote the vector
Euclidean normand the spectral normofmatrices (defined as
the maximum singular value of matrices). For any symmetric
matrix 𝑆 ∈ R𝑛×𝑛, we write ‖𝑥‖2

𝑆
= 𝑥
𝑇
𝑆𝑥 for any 𝑥 ∈ R𝑛. 𝐺

and𝑀 are two (𝑛2 + 𝑛3 + 𝑝) × (𝑛2 + 𝑛3 + 𝑝)matrices defined
by

𝐺 := (

𝛽𝐴𝑇
2
𝐴2 0 0

0 𝛽𝐴𝑇
3
𝐴3 0

0 0
𝐼

𝛽

) ,

𝑀 := (

2𝛽𝐴𝑇
2
𝐴2 0 0

0 𝛽𝐴𝑇
3
𝐴3 0

0 0
𝐼

𝛽

) ,

(7)

respectively. For given 𝑥1 ∈ R𝑛1 , 𝑥2 ∈ R𝑛2 , 𝑥3 ∈ R𝑛3 , and
𝜆 ∈ R𝑝, we frequently use 𝑢 and V to denote the joint vectors
of 𝑥2, 𝑥3, 𝜆 and 𝑥1, 𝑥2, 𝑥3, 𝜆, respectively; that is,

𝑢 = [𝑥
𝑇

2
, 𝑥
𝑇

3
, 𝜆
𝑇
]
𝑇

, V = [𝑥
𝑇

1
, 𝑥
𝑇

2
, 𝑥
𝑇

3
, 𝜆
𝑇
]
𝑇

, (8)

while 𝑢̃ and Ṽ are the joint vectors corresponding to 𝑥2, 𝑥3, 𝜆̃
and 𝑥1, 𝑥2, 𝑥3, 𝜆̃.
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2. Preliminaries

Throughout this paper, we assume 𝑓𝑖, 𝑖 = 1, 2, 3, are strongly
convex functions with modulus 𝜇𝑖 ≥ 0; that is

𝑓𝑖 ((1 − 𝛼) 𝑧 + 𝛼𝑧
󸀠
)

≤ (1 − 𝛼) 𝑓𝑖 (𝑧) + 𝛼𝑓𝑖 (𝑧
󸀠
)

−
1

2
𝜇𝑖𝛼 (1 − 𝛼)

󵄩󵄩󵄩󵄩󵄩
𝑧 − 𝑧
󸀠󵄩󵄩󵄩󵄩󵄩

2

, ∀𝑧, 𝑧
󸀠
∈ R
𝑛
𝑖 ,

(9)

for each 𝑖. Note that 𝑓𝑖 is a strongly convex function with
modulus 0 being equivalent to the convexity of 𝑓𝑖. Let 𝑥 be
a point of dom(𝑓𝑖); the subdifferential of 𝑓𝑖 at 𝑥 is defined by

𝜕𝑓𝑖 (𝑥) := {𝑥
∗
| 𝑓 (𝑧) ≥ 𝑓 (𝑥) + ⟨𝑥

∗
, 𝑧 − 𝑥⟩ , ∀𝑧} . (10)

From Proposition 6 in [23], we know that, for each 𝑖, 𝜕𝑓𝑖 is
strongly monotone with modulus 𝜇𝑖 which means

⟨𝑧1 − 𝑧2, 𝑥1 − 𝑥2⟩ ≥ 𝜇𝑖
󵄩󵄩󵄩󵄩𝑧1 − 𝑧2

󵄩󵄩󵄩󵄩
2
≥ 0,

∀𝑥1, 𝑥2, 𝑧1 ∈ 𝜕𝑓𝑖 (𝑥1) , 𝑧2 ∈ 𝜕𝑓𝑖 (𝑥2) .

(11)

The next lemma introduced in [22] plays a key role in the
convergence analysis of the ADMM and the relaxed ADMM
with three blocks.

Lemma 1. Let (𝑥∗
1
, 𝑥∗
2
, 𝑥∗
3
, 𝜆∗) be any KKT point of problem

(3). Let Ṽ𝑘 be generated by (5) from given 𝑢𝑘. Then, one has

⟨𝑢̃
𝑘
− 𝑢
∗
, 𝐺 (𝑢
𝑘
− 𝑢̃
𝑘
)⟩

≥

3

∑
𝑖=1

𝜇𝑖 ‖𝑥
𝑘

𝑖
− 𝑥
∗

𝑖
‖
2
+⟨𝜆

𝑘
− 𝜆̃
𝑘
,

3

∑
𝑖=2

𝐴 𝑖 (𝑥
𝑘

𝑖
− 𝑥
𝑘

𝑖
)⟩

+ 𝛽⟨𝐴3 (𝑥
𝑘

3
− 𝑥
∗

3
) , 𝐴2 (𝑥

𝑘

2
− 𝑥
𝑘

2
)⟩ .

(12)

3. The ADMM with Three Blocks

In this section, we first investigate the contractive property
of the distance between the sequence generated by ADMM
with three blocks and the solution set under the condition
that 0 < 𝛽 ≤ min{𝜇2/‖𝐴2‖

2

2
, 𝜇3/‖𝐴3‖

2

2
}.

Lemma 2. Let V∗ = (𝑥∗
1
, 𝑥∗
2
, 𝑥∗
3
, 𝜆∗) be a KKT point of

problem (3) and let the sequence {V𝑘 = (𝑥𝑘
1
, 𝑥𝑘
2
, 𝑥𝑘
3
, 𝜆𝑘)} be

generated by the ADMM with three blocks. Then, it holds that
󵄩󵄩󵄩󵄩󵄩
𝑢
𝑘+1

− 𝑢
∗󵄩󵄩󵄩󵄩󵄩

2

𝑀
≤
󵄩󵄩󵄩󵄩󵄩
𝑢
𝑘
− 𝑢
∗󵄩󵄩󵄩󵄩󵄩

2

𝑀
− 𝛽

󵄩󵄩󵄩󵄩󵄩
𝐴3(𝑥
𝑘+1

3
− 𝑥
𝑘

3
)
󵄩󵄩󵄩󵄩󵄩

2

− 𝛽
󵄩󵄩󵄩󵄩󵄩
𝐴1𝑥
𝑘+1

1
+ 𝐴2𝑥

𝑘

2
+ 𝐴3𝑥

𝑘+1

3
− 𝑏

󵄩󵄩󵄩󵄩󵄩

2

− 2𝜇1
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘+1

1
− 𝑥
∗

1

󵄩󵄩󵄩󵄩󵄩

2

− 2
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘+1

2
− 𝑥
∗

2

󵄩󵄩󵄩󵄩󵄩

2

𝜇
2
𝐼
𝑛2
−𝛽𝐴𝑇
2
𝐴
2

− 2
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘+1

3
− 𝑥
∗

3

󵄩󵄩󵄩󵄩󵄩

2

𝜇
3
𝐼
𝑛3
−𝛽𝐴𝑇
3
𝐴
3

.

(13)

Proof. Since 𝑥𝑗
3
minimizes 𝑓3(⋅) − ⟨𝐴𝑇

3
𝜆𝑗, ⋅⟩, we deduce from

the first order optimality condition that

𝐴
𝑇

3
𝜆
𝑗
∈ 𝜕𝑓3 (𝑥

𝑗

3
) , 𝑗 = 0, 1, . . . , 𝑘. (14)

By (14) and themonotonicity of 𝜕𝑓3(⋅) (11), it is easily seen that

⟨𝑥
𝑘

3
− 𝑥
𝑘+1

3
, 𝐴
𝑇

3
𝜆
𝑘
− 𝐴
𝑇

3
𝜆
𝑘+1

⟩ ≥ 0. (15)

Then for each 𝑘,

⟨𝑢
𝑘+1

− 𝑢
∗
, 𝐺 (𝑢
𝑘
− 𝑢
𝑘+1

)⟩

≥

3

∑
𝑖=1

𝜇𝑖
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘+1

𝑖
− 𝑥
∗

𝑖

󵄩󵄩󵄩󵄩󵄩

2

+ ⟨𝜆
𝑘
− 𝜆
𝑘+1

, 𝐴2 (𝑥
𝑘

𝑖
− 𝑥
𝑘+1

2
)⟩

+ 𝛽⟨𝐴3 (𝑥
𝑘+1

3
− 𝑥
∗

3
) , 𝐴2 (𝑥

𝑘+1

2
− 𝑥
𝑘

2
)⟩

≥

2

∑
𝑖=1

𝜇𝑖
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘+1

𝑖
− 𝑥
∗

𝑖

󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘+1

3
− 𝑥
∗

3

󵄩󵄩󵄩󵄩󵄩

2

𝜇
3
𝐼
𝑛3
−𝛽𝐴𝑇
3
𝐴
3

+ ⟨𝜆
𝑘
− 𝜆
𝑘+1

, 𝐴2 (𝑥
𝑘

2
− 𝑥
𝑘+1

2
)⟩

−
𝛽

4

󵄩󵄩󵄩󵄩󵄩
𝐴2 (𝑥

𝑘+1

2
− 𝑥
𝑘

2
)
󵄩󵄩󵄩󵄩󵄩

2

,

(16)

where the last “≥” follows from the elementary inequality

⟨𝑥, 𝑦⟩ ≥ −‖𝑥‖
2
−
1

4

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩
2
. (17)

Since

󵄩󵄩󵄩󵄩󵄩
𝐴3 (𝑥

𝑘+1

3
− 𝑥
𝑘

3
)
󵄩󵄩󵄩󵄩󵄩

2

≤ 2
󵄩󵄩󵄩󵄩󵄩
𝐴3(𝑥
𝑘+1

3
− 𝑥
∗

3
)
󵄩󵄩󵄩󵄩󵄩

2

+ 2
󵄩󵄩󵄩󵄩󵄩
𝐴3 (𝑥

𝑘

3
− 𝑥
∗

3
)
󵄩󵄩󵄩󵄩󵄩

2

,

(18)

by direct computations, we further obtain that

󵄩󵄩󵄩󵄩󵄩
𝑢
𝑘
− 𝑢
∗󵄩󵄩󵄩󵄩󵄩

2

𝐺
≥
󵄩󵄩󵄩󵄩󵄩
𝑢
𝑘+1

− 𝑢
∗󵄩󵄩󵄩󵄩󵄩

2

𝐺

+
󵄩󵄩󵄩󵄩󵄩
𝑢
𝑘+1

− 𝑢
𝑘󵄩󵄩󵄩󵄩󵄩

2

𝐺
+ 2𝜇1

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘+1

1
− 𝑥
∗

1

󵄩󵄩󵄩󵄩󵄩

2

+ 2
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘+1

2
− 𝑥
∗

2

󵄩󵄩󵄩󵄩󵄩

2

𝜇
2
𝐼
𝑛2
−(𝛽/2)𝐴𝑇2𝐴2

+ 2
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘+1

3
− 𝑥
∗

3

󵄩󵄩󵄩󵄩󵄩

2

𝜇
3
𝐼
𝑛3
−𝛽𝐴𝑇
3
𝐴
3

+ 2 ⟨𝜆
𝑘
− 𝜆
𝑘+1

, 𝐴2 (𝑥
𝑘

2
− 𝑥
𝑘+1

2
)⟩

− 𝛽
󵄩󵄩󵄩󵄩󵄩
𝐴2 (𝑥

𝑘

2
− 𝑥
∗

2
)
󵄩󵄩󵄩󵄩󵄩

2

,

(19)
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which, together with 𝐺 = 𝑀 − (
𝛽𝐴
𝑇

2
𝐴
2

0
0

), implies

󵄩󵄩󵄩󵄩󵄩
𝑢
𝑘
− 𝑢
∗󵄩󵄩󵄩󵄩󵄩

2

𝑀
≥
󵄩󵄩󵄩󵄩󵄩
𝑢
𝑘+1

− 𝑢
𝑘󵄩󵄩󵄩󵄩󵄩

2

𝐺

+
󵄩󵄩󵄩󵄩󵄩
𝑢
𝑘+1

− 𝑢
∗󵄩󵄩󵄩󵄩󵄩

2

𝑀
+ 2𝜇1

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘+1

1
− 𝑥
∗

1

󵄩󵄩󵄩󵄩󵄩

2

+ 2
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘+1

2
− 𝑥
∗

2

󵄩󵄩󵄩󵄩󵄩

2

𝜇
2
𝐼
𝑛2
−𝛽𝐴𝑇
2
𝐴
2

+ 2
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘+1

3
− 𝑥
∗

3

󵄩󵄩󵄩󵄩󵄩

2

𝜇
3
𝐼
𝑛3
−𝛽𝐴𝑇
3
𝐴
3

+ 2 ⟨𝜆
𝑘
− 𝜆
𝑘+1

, 𝐴2 (𝑥
𝑘

2
− 𝑥
𝑘+1

2
)⟩ .

(20)

Note that

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘

2
− 𝑥
𝑘+1

2

󵄩󵄩󵄩󵄩󵄩

2

𝛽𝐴𝑇
2
𝐴
2

+ 2 ⟨𝜆
𝑘
− 𝜆
𝑘+1

, 𝐴2 (𝑥
𝑘

2
− 𝑥
𝑘+1

2
)⟩

+
1

𝛽

󵄩󵄩󵄩󵄩󵄩
𝜆
𝑘
− 𝜆
𝑘+1󵄩󵄩󵄩󵄩󵄩

2

= 𝛽
󵄩󵄩󵄩󵄩󵄩
𝐴1𝑥
𝑘+1

1
+ 𝐴2𝑥

𝑘

2
+ 𝐴3𝑥

𝑘+1

3
− 𝑏

󵄩󵄩󵄩󵄩󵄩

2

.

(21)

We complete the proof of this lemma.

With the above preparation, we are ready to prove the
convergence of the ADMM with three blocks for solving (3)
given the following conditions.

Theorem 3. Let {V𝑘 = (𝑥𝑘
1
, 𝑥𝑘
2
, 𝑥𝑘
3
, 𝜆𝑘)} be the sequence

generated by the ADMMwith three blocks.Then {V𝑘} converges
to a KKT point of problem (3) if either of the following
conditions holds:

(i) 𝜇1 > 0 and 0 < 𝛽 ≤ min{𝜇2/‖𝐴2‖
2

2
, 𝜇3/‖𝐴3‖

2

2
};

(ii) 𝐴1 is of full column rank, 0 < 𝛽 < 𝜇2‖𝐴2‖
2

2
, and 𝛽 ≤

𝜇3‖𝐴3‖
2

2
.

Proof. By the inequality (13), it follows that the sequence
{𝐴2𝑥
𝑘

2
, 𝐴3𝑥
𝑘

3
, 𝜆𝑘} is bounded. Recall that

𝐴1𝑥
𝑘+1

1
=
𝜆𝑘 − 𝜆𝑘+1

𝛽
− 𝐴2𝑥

𝑘+1

2
− 𝐴3𝑥

𝑘+1

3
+ 𝑏. (22)

Hence {𝐴1𝑥
𝑘

1
} is also bounded. Moreover, from (13) we see

immediately that

+∞ >

∞

∑
𝑘=1

𝛽
󵄩󵄩󵄩󵄩󵄩
𝐴3(𝑥
𝑘+1

3
− 𝑥
𝑘

3
)
󵄩󵄩󵄩󵄩󵄩

2

+ 𝛽
󵄩󵄩󵄩󵄩󵄩
𝐴1𝑥
𝑘+1

1
+ 𝐴2𝑥

𝑘

2
+ 𝐴3𝑥

𝑘+1

3
− 𝑏

󵄩󵄩󵄩󵄩󵄩

2

+

∞

∑
𝑘=1

2𝜇1
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘+1

1
− 𝑥
∗

1

󵄩󵄩󵄩󵄩󵄩

2

+ 2
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘+1

2
− 𝑥
∗

2

󵄩󵄩󵄩󵄩󵄩

2

𝜇
2
𝐼
𝑛2
−𝛽𝐴𝑇
2
𝐴
2

+ 2
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘+1

3
− 𝑥
∗

3

󵄩󵄩󵄩󵄩󵄩

2

𝜇
3
𝐼
𝑛3
−𝛽𝐴𝑇
3
𝐴
3

.

(23)

According to the condition that 0 < 𝛽 ≤ min{𝜇2/‖𝐴2‖
2

2
,

𝜇3/‖𝐴3‖
2

2
}, we know

∞

∑
𝑘=1

‖𝐴3 (𝑥
𝑘+1

3
− 𝑥
𝑘

3
) ‖
2
< ∞,

∞

∑
𝑘=1

‖𝐴1𝑥
𝑘+1

1
+ 𝐴2𝑥

𝑘

2
+ 𝐴3𝑥

𝑘+1

3
− 𝑏‖
2
< +∞,

∞

∑
𝑘=1

𝜇1 ‖𝑥
𝑘+1

1
− 𝑥
∗

1
‖
2
< +∞,

∞

∑
𝑘=1

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘+1

2
− 𝑥
∗

2

󵄩󵄩󵄩󵄩󵄩

2

𝜇
2
𝐼
𝑛2
−𝛽𝐴𝑇
2
𝐴
2

< +∞,

∞

∑
𝑘=1

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘+1

3
− 𝑥
∗

3

󵄩󵄩󵄩󵄩󵄩

2

𝜇
3
𝐼
𝑛3
−𝛽𝐴𝑇
3
𝐴
3

< +∞.

(24)

It therefore holds that

lim
𝑘→∞

󵄩󵄩󵄩󵄩󵄩
𝐴3 (𝑥

𝑘+1

3
− 𝑥
𝑘

3
)
󵄩󵄩󵄩󵄩󵄩

2

= 0,

lim
𝑘→∞

󵄩󵄩󵄩󵄩󵄩
𝐴1𝑥
𝑘+1

1
+ 𝐴2𝑥

𝑘

2
+ 𝐴3𝑥

𝑘+1

3
− 𝑏

󵄩󵄩󵄩󵄩󵄩

2

= 0,

(25)

lim
𝑘→∞

𝜇1
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘+1

1
− 𝑥
∗

1

󵄩󵄩󵄩󵄩󵄩

2

= 0,

lim
𝑘→∞

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘+1

2
− 𝑥
∗

2

󵄩󵄩󵄩󵄩󵄩

2

𝜇
2
𝐼
𝑛2
−𝛽𝐴𝑇
2
𝐴
2

= 0,

lim
𝑘→∞

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘+1

3
− 𝑥
∗

3

󵄩󵄩󵄩󵄩󵄩

2

𝜇
3
𝐼
𝑛3
−𝛽𝐴𝑇
3
𝐴
3

= 0.

(26)

Therefore, the sequence {𝜇1‖𝑥
𝑘

1
‖
2

, ‖𝑥𝑘
2
‖
2

𝜇
2
𝐼
𝑛2
−𝛽𝐴𝑇
2
𝐴
2

,

‖𝑥𝑘
3
‖
2

𝜇
3
𝐼
𝑛3
−𝛽𝐴𝑇
2
𝐴
2

} is bounded, which, together with the bound-
edness of {𝐴1𝑥

𝑘

1
, 𝐴2𝑥
𝑘

2
, 𝐴3𝑥
𝑘

3
, 𝜆𝑘}, implies that {𝑥𝑘

2
, 𝑥𝑘
3
, 𝜆𝑘} is

bounded, and {𝑥
𝑘

1
} is bounded given the condition 𝜇1 > 0 or

𝐴1 is of full column rank. Moreover, since

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘+1

3
− 𝑥
𝑘

3

󵄩󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩󵄩
𝐴3𝑥
𝑘+1

3
− 𝐴3𝑥

𝑘

3

󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘+1

3
− 𝑥
𝑘

3

󵄩󵄩󵄩󵄩󵄩

2

𝜇
3
𝐼
𝑛3
−𝐴𝑇
3
𝐴
3

,

(27)

by the first equality in (25) and the third equality in (26), it
holds that

lim
𝑘→∞

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘+1

3
− 𝑥
𝑘

3

󵄩󵄩󵄩󵄩󵄩
= 0. (28)
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We proceed to prove the convergence of ADMM by consid-
ering the following two cases.

Case 1 ( 𝜇1 > 0 and 𝛽 ≤ min(𝜇2/‖𝐴2‖
2

2
, 𝜇3/‖𝐴3‖

2

2
)). In this

case, the sequence {𝑥𝑘
1
} converges to 𝑥∗

1
and then

lim
𝑘→∞

󵄩󵄩󵄩󵄩󵄩
𝐴2𝑥
𝑘+1

2
− 𝐴2𝑥

𝑘

2

󵄩󵄩󵄩󵄩󵄩
= 0, lim

𝑘→∞

󵄩󵄩󵄩󵄩󵄩
𝜆
𝑘+1

− 𝜆
𝑘󵄩󵄩󵄩󵄩󵄩

= 0.

(29)

By the second equality in (26), we deduce from (29) that

lim
𝑘→∞

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘+1

2
− 𝑥
𝑘

2

󵄩󵄩󵄩󵄩󵄩
= 0. (30)

Since {𝑥𝑘
2
, 𝑥𝑘
3
, 𝜆𝑘} is bounded, there exist a triple (𝑥∞

2
, 𝑥∞
3
, 𝜆∞)

and a subsequence {𝑛𝑘} such that

lim
𝑘→∞

𝑥
𝑛
𝑘

2
= 𝑥
∞

2
, lim

𝑘→∞
𝑥
𝑛
𝑘

2
= 𝑥
∞

2
, lim

𝑘→∞
𝜆
𝑛
𝑘 = 𝜆
∞
,

(31)

which by combining (25), (29) with given conditions, implies

lim
𝑘→∞

𝑥
𝑛
𝑘
+1

2
= 𝑥
∞

2
, lim

𝑘→∞
𝑥
𝑛
𝑘
+1

2
= 𝑥
∞

2
,

lim
𝑘→∞

𝜆
𝑛
𝑘
+1

= 𝜆
∞
.

(32)

Note that

0 ∈ 𝜕𝑓1 (𝑥
𝑘+1

1
) − 𝐴
𝑇

1
𝜆
𝑘+1

+ 𝐴
𝑇

1
𝐴2 (𝑥

𝑘

2
− 𝑥
𝑘+1

2
)

+ 𝐴
𝑇

1
𝐴3 (𝑥

𝑘

3
− 𝑥
𝑘+1

3
) ,

0 ∈ 𝜕𝑓2 (𝑥
𝑘+1

2
) − 𝐴
𝑇

2
𝜆
𝑘+1

+ 𝐴
𝑇

2
𝐴3 (𝑥

𝑘

3
− 𝑥
𝑘+1

3
) ,

0 ∈ 𝜕𝑓3 (𝑥
𝑘+1

3
) − 𝐴
𝑇

3
𝜆
𝑘+1

,

𝜆
𝑘+1

= 𝜆
𝑘
− 𝛽 (𝐴1𝑥

𝑘+1

1
+ 𝐴2𝑥

𝑘+1

2
+ 𝐴3𝑥

𝑘+1

3
) .

(33)

Then, by taking the limits on both sides of (33), using (25) and
(29), and invoking the upper semicontinuous of 𝜕𝑓1(⋅), 𝜕𝑓2(⋅),
and 𝜕𝑓3(⋅) [24], one can immediately write

0 ∈ 𝜕𝑓1 (𝑥
∗
) − 𝐴
𝑇

1
𝜆
∞
,

0 ∈ 𝜕𝑓2 (𝑥
∞

2
) − 𝐴
𝑇

2
𝜆
∞
,

0 ∈ 𝜕𝑓3 (𝑥
∞

3
) − 𝐴
𝑇

3
𝜆
∞
,

𝐴1𝑥
∗
+ 𝐴2𝑥

∞

2
+ 𝐴3𝑥

∞

3
= 𝑏,

(34)

which indicates (𝑥∗
1
, 𝑥∞
2
, 𝑥∞
3
, 𝜆∞) is a KKT point of problem

(3). Hence, the inequality (13) is also valid if (𝑥∗
1
, 𝑥∗
2
, 𝑥∗
3
, 𝜆∗)

is replaced by (𝑥∗
1
, 𝑥∞
2
, 𝑥∞
3
, 𝜆∞). Then it holds that

2𝛽
󵄩󵄩󵄩󵄩󵄩
𝐴2𝑥
𝑘+1

2
− 𝐴2𝑥

∞

2

󵄩󵄩󵄩󵄩󵄩

2

+ 𝛽
󵄩󵄩󵄩󵄩󵄩
𝐴3𝑥
𝑘+1

3
− 𝐴3𝑥

∞

3

󵄩󵄩󵄩󵄩󵄩

2

+
1

𝛽

󵄩󵄩󵄩󵄩󵄩
𝜆
𝑘+1

− 𝜆
∞󵄩󵄩󵄩󵄩󵄩

2

≤ 2𝛽
󵄩󵄩󵄩󵄩󵄩
𝐴2𝑥
𝑘

2
− 𝐴2𝑥

∞

2

󵄩󵄩󵄩󵄩󵄩

2

+ 𝛽
󵄩󵄩󵄩󵄩󵄩
𝐴3𝑥
𝑘

3
− 𝐴3𝑥

∞

3

󵄩󵄩󵄩󵄩󵄩

2

+
1

𝛽

󵄩󵄩󵄩󵄩󵄩
𝜆
𝑘
− 𝜆
∞󵄩󵄩󵄩󵄩󵄩

2

,

(35)

which yields

lim
𝑘→∞

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘

2
− 𝑥
∞

2

󵄩󵄩󵄩󵄩󵄩

2

𝐴𝑇
2
𝐴
2

= 0,

lim
𝑘→∞

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘

3
− 𝑥
∞

3

󵄩󵄩󵄩󵄩󵄩

2

𝐴𝑇
3
𝐴
3

= 0,

(36)

lim
𝑘→∞

𝜆
𝑘
= 𝜆
∞
. (37)

By adding the last two equalities in (26) to (36), we know

lim
𝑘→∞

𝑥
𝑘

2
= 𝑥
∞

2
, lim

𝑘→∞
𝑥
𝑘

3
= 𝑥
∞

3
. (38)

Therefore, we have shown that the whole sequence
{(𝑥𝑘
1
, 𝑥𝑘
2
, 𝑥𝑘
3
, 𝜆𝑘)} converges to (𝑥∗

1
, 𝑥∞
2
, 𝑥∞
3
, 𝜆∞) under

condition (i) inTheorem 3.

Case 2 (𝐴1 is of full column rank, 0 < 𝛽 < 𝜇2/‖𝐴2‖
2

2
, and

𝛽 ≤ 𝜇3/‖𝐴3‖
2

2
). In this case, the sequence {𝑥𝑘

2
} converges to

𝑥∗
2
and {𝑥𝑘

1
} is bounded. From the second equality in (25) and

(28), we have

lim
𝑘→∞

‖𝐴1𝑥
𝑘+1

1
− 𝐴1𝑥

𝑘

1
‖ = 0,

lim
𝑘→∞

‖𝜆
𝑘
− 𝜆
𝑘+1

‖ = 0.

(39)

Since 𝐴1 is of full column rank, it therefore holds that

lim
𝑘→∞

‖𝑥
𝑘+1

1
− 𝑥
𝑘

1
‖ = 0. (40)

Let (𝑥∞
1
, 𝑥∞
3
, 𝜆∞) be a cluster point of the sequence

{𝑥𝑘
1
, 𝑥𝑘
3
, 𝜆𝑘}. Following a similar proof in Case 1, we are able to

show (𝑥∞
1
, 𝑥∗
2
, 𝑥∞
3
, 𝜆∞) is a KKT point of problem (3) and the

whole sequence {(𝑥𝑘
1
, 𝑥𝑘
2
, 𝑥𝑘
3
, 𝜆𝑘)} converges to this point.

Remark 4 (see [22]). the authors proved the convergence
of the ADMM under the conditions that 𝑓1, 𝑓2, and 𝑓3 are
strongly convex and 0 < 𝛽 < min1≤𝑖≤3{𝜇𝑖/3‖𝐴 𝑖‖

2

2
}. Our

result improves the upper bound min1≤𝑖≤3{𝜇𝑖/3‖𝐴 𝑖‖
2

2
} by

min{𝜇2/‖𝐴2‖
2

2
, 𝜇3/‖𝐴3‖

2

2
}. Moreover, in our condition (ii),

the strongly convexity assumption is only imposed on 𝑓2 and
𝑓3 while 𝑓1 is not necessarily strongly convex with positive
modulus.

4. The Relaxed ADMM with Three Blocks

For the ADMMwith two blocks, Ye and Yuan [25] developed
a variant of alternating direction method with an optimal
step size. Numerical results demonstrated that an additional
computation on the optimal step size would improve the
efficiency of the new variant of ADMM. In this section, by
adopting the essential idea of Ye and Yuan [25], we propose
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a relaxed ADMMwith three blocks to accelerate the ADMM
via an optimal step size. For notational simplicity, we write

Φ(𝑢
𝑘
, 𝑢̃
𝑘
) :=

3𝛽

4

󵄩󵄩󵄩󵄩󵄩
𝐴2(𝑥
𝑘

2
− 𝑥
𝑘

2
)
󵄩󵄩󵄩󵄩󵄩

2

+ 𝛽
󵄩󵄩󵄩󵄩󵄩
𝐴3(𝑥3 − 𝑥

𝑘

3
)
󵄩󵄩󵄩󵄩󵄩

2

+
1

𝛽

󵄩󵄩󵄩󵄩󵄩
𝜆
𝑘
− 𝜆̃
𝑘󵄩󵄩󵄩󵄩󵄩

2

+ ⟨𝜆
𝑘
− 𝜆̃
𝑘
, 𝐴2 (𝑥

𝑘

2
− 𝑥
𝑘

2
) + 𝐴3 (𝑥

𝑘

3
− 𝑥
𝑘

3
)⟩ .

(41)

With 𝑢𝑘 = (𝑥𝑘
2
, 𝑥𝑘
3
, 𝜆𝑘), the new iterate of extended ADMM is

produced by

𝑢
𝑘+1

= 𝑢
𝑘
− 𝛾𝛼
∗
(𝑢
𝑘
− 𝑢̃
𝑘
) , 𝛾 ∈ (0, 2) , (42)

where 𝑢̃𝑘 is the solution of (5) and 𝛼∗ is defined by

𝛼
∗
:=

Φ (𝑢𝑘, 𝑢̃𝑘)

‖𝑢𝑘 − 𝑢̃𝑘‖
2

𝐺

. (43)

Lemma 5. Let the sequence {𝑢𝑘} be generated by the relaxed
ADMM with three blocks. Then, if 0 < 𝛽 ≤ 𝜇3/‖𝐴3‖

2

2
, the

following statements are valid:

(i) Φ(𝑢𝑘, 𝑢̃𝑘) ≥ (1/6)‖𝑢𝑘 − 𝑢𝑘+1‖
2

𝐺
and thus 𝛼∗ ≥ 1/6;

(ii) ‖𝑢𝑘+1 − 𝑢∗‖
2

𝐺
≤ ‖𝑢𝑘 − 𝑢∗‖

2

𝐺
− (1/36)𝛾(2 −

𝛾)‖𝑢𝑘 − 𝑢̃𝑘‖
2

𝐺
− (1/3)𝛾𝜇1‖𝑥

𝑘

1
− 𝑥∗
1
‖
2

−

(1/3)𝛾𝜇2‖𝑥
𝑘

2
− 𝑥∗
2
‖
2

− (1/3)𝛾‖𝑥𝑘
3
− 𝑥∗
3
‖
2

𝜇
3
𝐼−𝛽𝐴𝑇

3
𝐴
3

.

Proof. By direct computations to Φ(𝑢𝑘, 𝑢̃𝑘), we know that

Φ(𝑢
𝑘
, 𝑢̃
𝑘
)

=
3𝛽

4

󵄩󵄩󵄩󵄩󵄩
𝐴2 (𝑥

𝑘

2
− 𝑥
𝑘

2
)
󵄩󵄩󵄩󵄩󵄩

2

+ 𝛽
󵄩󵄩󵄩󵄩󵄩
𝐴3(𝑥3 − 𝑥

𝑘

3
)
󵄩󵄩󵄩󵄩󵄩

2

+
1

𝛽

󵄩󵄩󵄩󵄩󵄩
𝜆
𝑘
− 𝜆̃
𝑘󵄩󵄩󵄩󵄩󵄩

2

+ ⟨𝜆
𝑘
− 𝜆̃
𝑘
, 𝐴2 (𝑥

𝑘

2
− 𝑥
𝑘

2
) + 𝐴3 (𝑥

𝑘

3
− 𝑥
𝑘

3
)⟩

≥
3𝛽

4

󵄩󵄩󵄩󵄩󵄩
𝐴2(𝑥
𝑘

2
− 𝑥
𝑘

2
)
󵄩󵄩󵄩󵄩󵄩

2

+ 𝛽
󵄩󵄩󵄩󵄩󵄩
𝐴3(𝑥3 − 𝑥

𝑘

3
)
󵄩󵄩󵄩󵄩󵄩

2

+
1

𝛽

󵄩󵄩󵄩󵄩󵄩
𝜆
𝑘
− 𝜆̃
𝑘󵄩󵄩󵄩󵄩󵄩

2

−
𝛽

2

󵄩󵄩󵄩󵄩󵄩
𝐴2 (𝑥

𝑘

2
− 𝑥
𝑘

2
)
󵄩󵄩󵄩󵄩󵄩

2

−
1

2𝛽

󵄩󵄩󵄩󵄩󵄩
𝜆
𝑘
− 𝜆̃
𝑘󵄩󵄩󵄩󵄩󵄩

2

−
3𝛽

4

󵄩󵄩󵄩󵄩󵄩
𝐴3(𝑥
𝑘

3
− 𝑥
𝑘

3
)
󵄩󵄩󵄩󵄩󵄩

2

−
1

3𝛽

󵄩󵄩󵄩󵄩󵄩
𝜆
𝑘
− 𝜆̃
𝑘󵄩󵄩󵄩󵄩󵄩

2

=
𝛽

4

󵄩󵄩󵄩󵄩󵄩
𝐴2(𝑥
𝑘

2
− 𝑥
𝑘

2
)
󵄩󵄩󵄩󵄩󵄩

2

+
𝛽

4

󵄩󵄩󵄩󵄩󵄩
𝐴3(𝑥
𝑘

3
− 𝑥
𝑘

3
)
󵄩󵄩󵄩󵄩󵄩

2

+
1

6𝛽

󵄩󵄩󵄩󵄩󵄩
𝜆
𝑘
− 𝜆̃
𝑘󵄩󵄩󵄩󵄩󵄩

2

,

(44)

where the second inequality follows Cauchy inequality. It
therefore holds that

Φ(𝑢
𝑘
, 𝑢̃
𝑘
) ≥

1

6

󵄩󵄩󵄩󵄩󵄩
𝑢
𝑘
− 𝑢̃
𝑘󵄩󵄩󵄩󵄩󵄩

2

𝐺
, (45)

which completes the proof of the first part. By Lemma 1 and
the elementary inequality (17), it can be easily verified that

⟨𝑢
𝑘
− 𝑢
∗
, 𝐺 (𝑢
𝑘
− 𝑢̃
𝑘
)⟩

≥ Φ (𝑢
𝑘
, 𝑢̃
𝑘
) + 𝜇1

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘

1
− 𝑥
∗

1

󵄩󵄩󵄩󵄩󵄩

2

+ 𝜇2
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘

2
− 𝑥
∗

2

󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘

3
− 𝑥
∗

3
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2

𝜇
3
𝐼
𝑛3
−𝛽𝐴𝑇
3
𝐴
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(46)

and then
󵄩󵄩󵄩󵄩󵄩
𝑢
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− 2𝛾𝛼
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∗
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𝜇
3
𝐼
𝑛3
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𝐴
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(47)

This, together with the fact that 𝛼∗ ≥ 1/6, completes the
proof.

Based on the above inequality, we are able to prove the
following convergence result of the relaxed ADMM with
three blocks. Since the proof is in line with that ofTheorem 3,
we omit it.

Theorem 6. Let {V𝑘 = (𝑥𝑘
1
, 𝑥𝑘
2
, 𝑥𝑘
3
, 𝜆𝑘)} be the sequence

generated by the relaxed ADMM. Then {V𝑘} converges to a
KKT point of problem (3) under the conditions that 0 < 𝛽 ≤

𝜇3/‖𝐴3‖
2

2
and 𝐴1, 𝐴2, and 𝐴3 are of full column rank.

5. Conclusion Remarks

In this paper, we take a step to investigate the ADMM for
separable convex programming problems with three blocks.
Based on the contractive analysis of the distance between
the sequence and the solution set, we establish theoretical
results to guarantee the global convergence of ADMM with
three blocks under weaker conditions than those employed
in [22]. By adopting the essential idea of [25], we also present
a relaxed ADMM with an optimal step size to accelerate the
ADMM and prove its convergence under mild assumptions.
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éléments finis d’ordre un, et la résolution, par pénalisation-
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We establish the strong convergence of prediction-correction and relaxed hybrid steepest-descent method (PRH method) for
variational inequalities under some suitable conditions that simplify the proof. And it is to be noted that the proof is different
from the previous results and also is not similar to the previous results. More importantly, we design a set of practical numerical
experiments. The results demonstrate that the PRH method under some descent directions is more slightly efficient than that of
the modified and relaxed hybrid steepest-descent method, and the PRHMethod under some new conditions is more efficient than
that under some old conditions.

1. Introduction

Let 𝐻 be a real Hilbert space with inner product ⟨⋅, ⋅⟩ and
norm ‖ ⋅ ‖, let 𝐾 be a nonempty closed convex subset of 𝐻,
and let 𝐹 : 𝐻 → 𝐻 be an operator. Then the variational
inequality problem VI(𝐹, 𝐾) [1] is to find 𝑥

∗ ∈ 𝐾 such that

𝑥
∗
∈ 𝐾, ⟨𝑥 − 𝑥

∗
, 𝐹 (𝑥
∗
)⟩ ≥ 0, ∀𝑥 ∈ 𝐾. (1)

The literature contains many methods for solving vari-
ational inequality problems; see [2–25] and references
therein. According to the relationship between the variational
inequality problems and a fixed point problem, we can obtain

𝑥
∗ is the solution of VI (𝐹,𝐾)

⇐⇒ 𝑥
∗
= 𝑃𝐾 [𝑥

∗
− 𝛽𝐹 (𝑥

∗
)] , 𝛽 > 0,

(2)

where the projection operator 𝑃𝐾 is the projection from 𝐻

onto𝐾, that is,

𝑃𝐾 (𝑥) = argmin
𝑦∈𝐾

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 , ∀𝑥 ∈ 𝐻. (3)

In this paper, 𝐹 : 𝐻 → 𝐻 is an operator with 𝐹 : 𝜅-Lipschtz
and 𝜂-strongly monotone; that is, 𝐹 satisfies the following
conditions:

󵄩󵄩󵄩󵄩𝐹 (𝑥) − 𝐹 (𝑦)
󵄩󵄩󵄩󵄩 ≤ 𝜅

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 ,

⟨𝐹 (𝑥) − 𝐹 (𝑦) , 𝑥 − 𝑦⟩ ≥ 𝜂
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩
2
, ∀𝑥, 𝑦 ∈ 𝐾.

(4)

If 𝛽 is small enough, then 𝑃𝐾 is a contraction. Naturally, the
convergence of Picard iterates generated by the right-hand
side of (2) is obtained by Banach’s fixed point theorem. Such a
method is called the projectionmethod ormore results about
the projection method see [6, 8, 20] and so forth.

In fact, the projection𝑃𝐾 in the contractionmethodsmay
not be easy to compute, and a great effort is to compute
the projection 𝑃𝐾 in each iteration. Yamada and Deutsch
have provided a hybrid steepest-descent method for solving
the VI(𝐹,𝐾) [2, 3] in order to reduce the difficulty and
complexity of computing the projection 𝑃𝐾. Subsequently,
the convergence of hybrid steepest-descent methods was
given out by Xu and Kim [4] and Zeng et al. [5]. Naturally,
by analyzing several three-step iterative methods in each
iteration by the fixed pointed equation, we can obtain the
Noor iterations. Recently, Ding et al. [7] proposed a three-
step relaxed hybrid steepest-descent method for variational
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inequalities, and the simple proof of three-step relaxed hybrid
steepest-descent methods under different conditions was
introduced by Yao et al. [24]. The literature [14, 16] described
a modified and relaxed hybrid steepest-descent (MRHSD)
method and the different convergence of the MRHSD
method under the different conditions. A set of practical
numerical experiments in the literature [16] demonstrated
that the MRHSD method has different efficiency under
different conditions. Subsequently, the prediction-correction
and relaxed hybrid steepest-descent method (PRH method)
[15] makes more use of the history information and less
decreases the loss of information than the methods [7, 14].
The PRH method introduced more descent directions than
the MRHSD method [14, 16], and computing these descent
directions only needs the history information.

In this paper, we will prove the strong convergence
of PRH method under different and suitable restrictions
imposed on parameters (Condition 12), which differs from
that of [15]. Moreover, the proof of strong convergence
is different from the previous proof in [15], which is not
similar to that in [7] in Step 2. And more importantly,
numerical experiments verify that the PRH method under
Condition 12 is more efficient than that under Condition 10,
and the PRH method under some descent directions is more
slightly efficient than that of the MRHSD method [14, 16].
Furthermore, it is easy to obtain these descent directions.

The remainder of the paper is organized as follows.
In Section 2, we review several lemmas and preliminaries.
We prove the convergence theorem under Condition 12 in
Section 3. In Section 4, we give out a series of numerical
experiments, which demonstrated that the PRH method
under Condition 12 is more efficient than under Condition
10. Section 5 concludes the paper.

2. Preliminaries

In order to proof the later convergence theorem,we introduce
several lemmas and the main results in the following.

Lemma 1. In a real Hilbert space H, there holds the inequality

󵄩󵄩󵄩󵄩𝑥 + 𝑦
󵄩󵄩󵄩󵄩
2
≤ ‖𝑥‖

2
+ 2 ⟨𝑦, 𝑥 + 𝑦⟩ , ∀𝑥, 𝑦 ∈ 𝐻. (5)

The lemma is a basic result of a Hilbert space with the
inner product.

Lemma 2 (demiclosedness principle). Assume that 𝑇 is a
nonexpansive self-mapping on a nonempty closed convex subset
𝐾 of a Hilbert space 𝐻. If 𝑇 has a fixed point, then (𝐼 − 𝑇)

is demiclosed. That is, whenever 𝑥𝑛 is a sequence in 𝐾 weakly
converging to some 𝑥 ∈ 𝐾 and the sequence (𝐼 − 𝑇)𝑥𝑛 strongly
converges to some 𝑦 ∈ 𝐻, it follows that (𝐼 − 𝑇)𝑥 = 𝑦. Here 𝐼
is the identity operator of𝐻.

The following lemma is an immediate result of a projec-
tion mapping onto a closed convex subset of a Hilbert space.

Lemma 3. Let𝐾 be a nonempty closed convex subset of𝐻. For
all 𝑥, 𝑦 ∈ 𝐻 and 𝑧 ∈ 𝐾, then

(1) ⟨𝑃𝐾(𝑥) − 𝑥, 𝑧 − 𝑃𝐾(𝑦)⟩ ≥ 0,
(2) ‖𝑃𝐾(𝑥)−𝑃𝐾(𝑦)‖

2
≤1‖𝑥−𝑦‖

2
−‖𝑃𝐾(𝑥)−𝑥 +𝑦 −𝑃𝐾(𝑦)‖

2.

Lemma 4 (see [13]). Let {𝑥𝑛} and {𝑦𝑛} be bounded sequence
in a Banach space X and let {𝜁𝑛} be a sequence in [0, 1] with
0 < lim inf𝑛→∞𝜁𝑛 ≤ lim sup

𝑛→∞
𝜁𝑛 < 1. Suppose 𝑥𝑛+1 =

(1−𝜁𝑛)𝑦𝑛+𝜁𝑛𝑥𝑛 for all integers 𝑛 ≥ 0 and lim sup
𝑛→∞

(‖𝑦𝑛+1−

𝑦𝑛‖ − ‖𝑥𝑛+1 − 𝑥𝑛‖) ≤ 0. Then lim sup
𝑛→∞

‖𝑦𝑛 − 𝑥𝑛‖ = 0.

Lemma 5 ([5, 7]). Let {𝑠𝑛} be a sequence of nonnegative real
numbers satisfying the inequality

𝑠𝑛+1 ≤ (1 − 𝛼𝑛) 𝑠𝑛 + 𝛼𝑛𝜏𝑛 + 𝛾𝑛, ∀𝑛 ≥ 0, (6)

where 𝛼𝑛, 𝜏𝑛, and 𝛾𝑛 satisfy the following conditions:

(1) 𝛼𝑛 ⊂ [0, 1], ∑
∞

𝑛=0
𝛼𝑛 = ∞, or ∏

∞

𝑛=0
(1 − 𝛼𝑛) = 0,

(2) lim𝑛→∞ sup 𝜏𝑛 ≤ 0,
(3) 𝛾𝑛 ⊂ [0,∞),∑

∞

𝑛=0
𝛾𝑛 < ∞.

Then lim𝑛→∞𝑠𝑛 = 0.

Since 𝐹 is 𝜂-strongly monotone, VI(𝐹,𝐾) has a unique
solution 𝑥∗ ∈ 𝐾 [5]. Assume that 𝑇 : 𝐻 → 𝐻 is a
nonexpansive mapping with the fixed point set Fix(𝑇) = 𝐾.
Obviously Fix(𝑃𝐾) = 𝐾.

For any given numbers 𝜆 ∈ (0, 1) and 𝜇 ∈ (0, 2𝜂/𝜅2), we
define the mapping 𝑇𝜆

𝜇
: 𝐻 → 𝐻 by

𝑇
𝜆

𝜇
𝑥 : 𝑇𝑥 − 𝜆𝜇𝐹 (𝑇𝑥) , ∀𝑥 ∈ 𝐻. (7)

Lemma 6 (see [5]). If 0 < 𝜇 < 2𝜂/𝜅2 and 0 < 𝜆 < 1, then 𝑇𝜆
𝜇

is a contraction. In fact,
󵄩󵄩󵄩󵄩󵄩
𝑇
𝜆

𝜇
𝑥 − 𝑇
𝜆

𝜇
𝑦
󵄩󵄩󵄩󵄩󵄩
≤ (1 − 𝜆𝛿)

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 , (8)

where 𝛿 = 1 − √1 − 𝜇(2𝜂 − 𝜇𝜅2), for all 𝑥, 𝑦 ∈ 𝐻.

Lemma 7 (see [7]). Let {𝛼𝑛} be a sequence of nonnegative
numbers with lim sup

𝑛→∞
𝛼𝑛 < ∞ and let {𝛽𝑛} be sequence

of real numbers with lim sup
𝑛→∞

𝛽𝑛 ≤ 0. Then

lim sup
𝑛→∞

𝛼𝑛𝛽𝑛 ≤ 0. (9)

3. Convergence Theorem

Before analyzing the convergence theorem,we first review the
PRH method and related results [15].

Algorithm 8 (see [15]). Take three fixed numbers 𝑡, 𝜌, 𝛾 ∈

(0, 2𝜂/𝜅
2
), starting with arbitrarily chosen initial points 𝑥0 ∈

𝐻, compute the sequences {𝑥𝑛}, {𝑥𝑛}, {𝑥𝑛}, {𝑥𝑛} such that;

Prediction

Step 1: 𝑥𝑛 = 𝛾𝑛𝑥𝑛 + (1−𝛾𝑛)[𝑇𝑥𝑛 −𝜆󸀠󸀠
𝑛+1

𝛾𝐹(𝑇𝑥𝑛)],
Step 2: 𝑥𝑛 = 𝛽𝑛𝑥𝑛+(1−𝛽𝑛)[𝑇𝑥𝑛−𝜆

󸀠

𝑛+1
𝜌𝐹(𝑇𝑥𝑛)],

Step 3: 𝑥𝑛 = 𝜃𝑛𝑥𝑛 + (1 − 𝜃𝑛)𝑥𝑛, 0 ≤ 𝜃𝑛 ≤ 1,
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Correction

Step 4: 𝑥𝑛+1 = 𝛼𝑛𝑥𝑛 + (1 − 𝛼𝑛)[𝑇𝑥𝑛

−𝜆𝑛+1𝑡𝐹(𝑇𝑥𝑛)],

where 𝑇 : 𝐻 → 𝐻 is a nonexpansive mapping.

Let {𝛼𝑛} ⊂ [0, 1), {𝛽𝑛} ⊂ [0, 1] and {𝛾𝑛} ⊂ [0, 1], {𝜆𝑛}, {𝜆
󸀠

𝑛
},

{𝜆󸀠󸀠
𝑛
} ⊂ (0, 1) satisfy the following conditions.

Remark 9. In fact, the PRH method is the MRHSD method
when 𝜃𝑛 ≡ 0, for all 𝑛.

Condition 10. One has

(1)

∞

∑
1

󵄨󵄨󵄨󵄨𝛼𝑛 − 𝛼𝑛−1
󵄨󵄨󵄨󵄨 < ∞,

∞

∑
1

󵄨󵄨󵄨󵄨𝛽𝑛 − 𝛽𝑛−1
󵄨󵄨󵄨󵄨 < ∞,

∞

∑
1

󵄨󵄨󵄨󵄨𝛾𝑛 − 𝛾𝑛−1
󵄨󵄨󵄨󵄨 < ∞,

(2) lim
𝑛→∞

𝛼𝑛 = 0, lim
𝑛→∞

𝛽𝑛 = 1, lim
𝑛→∞

𝛾𝑛 = 1,

(3) lim
𝑛→∞

𝜆𝑛 = 0, lim
𝑛→∞

𝜆𝑛

𝜆𝑛+1
= 1,

∞

∑
1

𝜆𝑛 = ∞,

(4) 𝜆𝑛 ≥ max {𝜆󸀠
𝑛
, 𝜆
󸀠󸀠

𝑛
} , ∀𝑛 ≥ 1.

(10)

Theorem 11 (see [15]). In Condition 10, the sequence {𝑥𝑛}

converges strongly to 𝑥∗ ∈ 𝐾, and 𝑥∗ is the unique solution
of the 𝑉𝐼(𝐹,𝐾).

We obtain the strong convergence theorem of PRH
method for variational inequalities under different assump-
tions.

Condition 12. One has

(1) 0 < lim inf
𝑛→∞

𝛼𝑛 ≤ lim sup
𝑛→∞

𝛼𝑛 < 1,

lim
𝑛→∞

𝛽𝑛 = 1, lim
𝑛→∞

𝛾𝑛 = 1,

(2) lim
𝑛→∞

𝜆𝑛 = 0,

∞

∑
1

𝜆𝑛 = ∞,

(3) 𝜆𝑛 ≥ max {𝜆󸀠
𝑛
, 𝜆
󸀠󸀠

𝑛
} , ∀𝑛 ≥ 1.

(11)

Theorem 13. The sequence {𝑥𝑛} converges strongly to 𝑥∗ ∈ 𝐾,
and 𝑥∗ is the unique solution of the 𝑉𝐼(𝐹,𝐾). Assume that
{𝛼𝑛}, {𝛽𝑛} and {𝛾𝑛}, {𝜆𝑛}, {𝜆󸀠𝑛}, {𝜆

󸀠󸀠

𝑛
} satisfy Condition 12.

Proof. We divide the proof into several steps.
Step 1. {𝑥𝑛}, {𝑥𝑛}, {𝑥𝑛}, and {𝑥𝑛} are bounded. Since 𝐹 is 𝜂-
strongly monotone, VI(𝐹, 𝐾) (1) has a unique solution 𝑥∗ ∈

𝐾, and𝑇𝜆𝑛+1𝑡 𝑥∗ = 𝑥∗−𝜆𝑛+1𝑡𝐹(𝑥
∗),𝑇𝜆

󸀠

𝑛+1

𝜌
𝑥∗ = 𝑥∗−𝜆𝑛+1𝜌𝐹(𝑥

∗),
𝑇𝜆
󸀠󸀠

𝑛+1

𝛾
𝑥∗ = 𝑥∗ − 𝜆𝑛+1𝛾𝐹(𝑥

∗).

A series of computations yields

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
∗󵄩󵄩󵄩󵄩 =

󵄩󵄩󵄩󵄩󵄩
𝛼𝑛𝑥𝑛 + (1 − 𝛼𝑛) 𝑇

𝜆
𝑛+1

𝑡 𝑥 − 𝑥
∗󵄩󵄩󵄩󵄩󵄩

≤ 𝛼𝑛
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩 + (1 − 𝛼𝑛)
󵄩󵄩󵄩󵄩󵄩
𝑇
𝜆
𝑛+1

𝑡 𝑥 − 𝑥
∗󵄩󵄩󵄩󵄩󵄩

≤ 𝛼𝑛
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩 + (1 − 𝛼𝑛)

× [
󵄩󵄩󵄩󵄩󵄩
𝑇
𝜆
𝑛+1

𝑡 𝑥 − 𝑇
𝜆
𝑛+1

𝑡 𝑥
∗󵄩󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩
𝑇
𝜆
𝑛+1

𝑡 𝑥
∗
− 𝑥
∗󵄩󵄩󵄩󵄩󵄩
]

≤ 𝛼𝑛
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩 + (1 − 𝛼𝑛)

× [(1 − 𝜆𝑛+1𝜏)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩 + 𝜆𝑛+1𝑡
󵄩󵄩󵄩󵄩𝐹 (𝑥
∗
)
󵄩󵄩󵄩󵄩] ,

(12)

where 𝜏 = 1 − √1 − 𝑡(2𝜂 − 𝑡𝜅2) ∈ (0, 1),

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩 =

󵄩󵄩󵄩󵄩󵄩󵄩
𝛽𝑛𝑥𝑛 + (1 − 𝛽𝑛) 𝑇

𝜆
󸀠

𝑛+1

𝜌
𝑥𝑛 − 𝑥

∗
󵄩󵄩󵄩󵄩󵄩󵄩

≤ 𝛽𝑛
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩 + (1 − 𝛽𝑛)
󵄩󵄩󵄩󵄩󵄩󵄩
𝑇
𝜆
󸀠

𝑛+1

𝜌
𝑥𝑛 − 𝑥

∗
󵄩󵄩󵄩󵄩󵄩󵄩

≤ 𝛽𝑛
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩 + (1 − 𝛽𝑛)

× [
󵄩󵄩󵄩󵄩󵄩󵄩
𝑇
𝜆
󸀠

𝑛+1

𝜌
𝑥𝑛 − 𝑇

𝜆
󸀠

𝑛+1

𝜌
𝑥
∗
󵄩󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩󵄩
𝑇
𝜆
󸀠

𝑛+1

𝜌
𝑥
∗
− 𝑥
∗
󵄩󵄩󵄩󵄩󵄩󵄩
]

≤ 𝛽𝑛
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩 + (1 − 𝛽𝑛)

× [(1 − 𝜆
󸀠

𝑛+1
𝜏
󸀠
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩 + 𝜆
󸀠

𝑛+1
𝜌
󵄩󵄩󵄩󵄩𝐹 (𝑥
∗
)
󵄩󵄩󵄩󵄩]

≤ 𝛽𝑛
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩 + (1 − 𝛽𝑛)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

+ (1 − 𝛽𝑛) 𝜆
󸀠

𝑛+1
𝜌
󵄩󵄩󵄩󵄩𝐹 (𝑥
∗
)
󵄩󵄩󵄩󵄩 ,

(13)

where 𝜏󸀠 = 1 − √1 − 𝜌(2𝜂 − 𝑡𝜅2) ∈ (0, 1).
Moreover, we also obtain

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩 =

󵄩󵄩󵄩󵄩󵄩󵄩
𝛾𝑛𝑥𝑛 + (1 − 𝛾𝑛) 𝑇

𝜆
󸀠󸀠

𝑛+1

𝛾
𝑥𝑛 − 𝑥

∗
󵄩󵄩󵄩󵄩󵄩󵄩

≤ 𝛾𝑛
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩 + (1 − 𝛾𝑛)
󵄩󵄩󵄩󵄩󵄩󵄩
𝑇
𝜆
󸀠󸀠

𝑛+1

𝛾
𝑥𝑛 − 𝑥

∗
󵄩󵄩󵄩󵄩󵄩󵄩

≤𝛾𝑛
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩 + (1 − 𝛾𝑛)

× [
󵄩󵄩󵄩󵄩󵄩󵄩
𝑇
𝜆
󸀠󸀠

𝑛+1

𝛾
𝑥𝑛 − 𝑇

𝜆
󸀠󸀠

𝑛+1

𝛾
𝑥
∗
󵄩󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩󵄩
𝑇
𝜆
󸀠󸀠

𝑛+1

𝛾
𝑥
∗
− 𝑥
∗
󵄩󵄩󵄩󵄩󵄩󵄩
]

≤ 𝛾𝑛
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩 + (1 − 𝛾𝑛)

× [(1 − 𝜆
󸀠󸀠

𝑛+1
𝜏
󸀠󸀠
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩 + 𝜆
󸀠󸀠

𝑛+1
𝛾
󵄩󵄩󵄩󵄩𝐹 (𝑥
∗
)
󵄩󵄩󵄩󵄩]

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩 + (1 − 𝛾𝑛) 𝜆
󸀠󸀠

𝑛+1
𝛾
󵄩󵄩󵄩󵄩𝐹 (𝑥
∗
)
󵄩󵄩󵄩󵄩 ,

(14)
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where 𝜏󸀠󸀠 = 1 − √1 − 𝛾(2𝜂 − 𝑡𝜅2) ∈ (0, 1), subtituting; (14)
into (13) and (14) into (12), we immediately obtain

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩 = 𝛽𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩 + (1 − 𝛽𝑛)

× [(1 − 𝜆
󸀠

𝑛+1
𝜏
󸀠
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩 + 𝜆
󸀠

𝑛+1
𝜌
󵄩󵄩󵄩󵄩𝐹 (𝑥
∗
)
󵄩󵄩󵄩󵄩]

≤ 𝛽𝑛
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩 + (1 − 𝛽𝑛)

× [(1 − 𝜆
󸀠

𝑛+1
𝜏
󸀠
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

+ (1 − 𝛾𝑛) 𝜆
󸀠󸀠

𝑛+1
𝛾
󵄩󵄩󵄩󵄩𝐹 (𝑥
∗
)
󵄩󵄩󵄩󵄩 +𝜆
󸀠

𝑛+1
𝜌
󵄩󵄩󵄩󵄩𝐹 (𝑥
∗
)
󵄩󵄩󵄩󵄩]

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩 + (1 − 𝛽𝑛) 𝜆𝑛+1 (𝛾 + 𝜌)
󵄩󵄩󵄩󵄩𝐹 (𝑥
∗
)
󵄩󵄩󵄩󵄩 .

(15)

Furthermore,

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩 =

󵄩󵄩󵄩󵄩𝜃𝑛𝑥𝑛 + (1 − 𝜃𝑛) 𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

≤ 𝜃𝑛
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩 + (1 − 𝜃𝑛)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

≤ 𝜃𝑛 [
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩 + (1 − 𝛾𝑛) 𝜆
󸀠󸀠

𝑛+1
𝛾
󵄩󵄩󵄩󵄩𝐹 (𝑥
∗
)
󵄩󵄩󵄩󵄩]

+ (1 − 𝜃𝑛) [
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩 + (1 − 𝛽𝑛) 𝜆𝑛+1

× (𝛾 + 𝜌)
󵄩󵄩󵄩󵄩𝐹 (𝑥
∗
)
󵄩󵄩󵄩󵄩]

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩 + (1 − 𝛾𝑛) 𝜆
󸀠󸀠

𝑛+1
𝛾
󵄩󵄩󵄩󵄩𝐹 (𝑥
∗
)
󵄩󵄩󵄩󵄩

+ (1 − 𝛽𝑛) 𝜆𝑛+1 (𝛾 + 𝜌)
󵄩󵄩󵄩󵄩𝐹 (𝑥
∗
)
󵄩󵄩󵄩󵄩 ,

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
∗󵄩󵄩󵄩󵄩

≤ 𝛼𝑛
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩 + (1 − 𝛼𝑛)

× [(1 − 𝜆𝑛+1𝜏)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩 + 𝜆𝑛+1𝑡
󵄩󵄩󵄩󵄩𝐹 (𝑥
∗
)
󵄩󵄩󵄩󵄩]

≤ 𝛼𝑛 [
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩 + (1 − 𝛾𝑛) 𝜆
󸀠󸀠

𝑛+1
𝛾
󵄩󵄩󵄩󵄩𝐹 (𝑥
∗
)
󵄩󵄩󵄩󵄩]

+ (1 − 𝛼𝑛) {(1 − 𝜆𝑛+1𝜏)

× [
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩 + (1 − 𝛾𝑛) 𝜆
󸀠󸀠

𝑛+1
𝛾
󵄩󵄩󵄩󵄩𝐹 (𝑥
∗
)
󵄩󵄩󵄩󵄩

+ (1 − 𝛽𝑛) 𝜆𝑛+1 (𝛾 + 𝜌)
󵄩󵄩󵄩󵄩𝐹 (𝑥
∗
)
󵄩󵄩󵄩󵄩]

+ 𝜆𝑛+1𝑡
󵄩󵄩󵄩󵄩𝐹 (𝑥
∗
)
󵄩󵄩󵄩󵄩}

≤ 𝛼𝑛
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩 + 𝛼𝑛 (1 − 𝛾𝑛) 𝜆𝑛+1𝛾
󵄩󵄩󵄩󵄩𝐹 (𝑥
∗
)
󵄩󵄩󵄩󵄩 + (1 − 𝛼𝑛)

× [(1 − 𝜆𝑛+1𝜏)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩 + 𝜆𝑛+1 (2𝛾 + 𝜌 + 𝑡)
󵄩󵄩󵄩󵄩𝐹 (𝑥
∗
)
󵄩󵄩󵄩󵄩] .

(16)

It is easy to obtain the following by induction:

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩 ≤ 𝑀0, ∀𝑛 ≥ 0, (17)

where𝑀0 = max{3‖𝑥0 − 𝑥∗‖, 3(𝜌 + 𝛾 + 𝑡)‖𝐹(𝑥∗)‖/𝜏},

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩 + (1 − 𝛽𝑛) 𝜆𝑛+1 (𝛾 + 𝜌)

󵄩󵄩󵄩󵄩𝐹 (𝑥
∗
)
󵄩󵄩󵄩󵄩

≤ (1 +
𝜏

3
)𝑀0,

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩 + (1 − 𝛾𝑛) 𝜆

󸀠󸀠

𝑛+1
𝛾
󵄩󵄩󵄩󵄩𝐹 (𝑥
∗
)
󵄩󵄩󵄩󵄩

≤ (1 +
𝜏

3
)𝑀0,

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩 ≤ 𝜃𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩 + (1 − 𝜃𝑛)

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

≤ 2 (1 +
𝜏

3
)𝑀0.

(18)

Hence

{𝑇𝑥𝑛} , {𝑇𝑥𝑛} , {𝑇𝑥𝑛} , {𝑇𝑥𝑛} ,

{𝐹 (𝑇𝑥𝑛)} , {𝐹 (𝑇𝑥𝑛)} , {𝐹 (𝑇𝑥𝑛)} , {𝐹 (𝑇𝑥𝑛)}
(19)

are also bounded.
Step 2. Consider ‖𝑥𝑛+1 − 𝑥𝑛‖ → 0.

Indeed, by a series of computations, we have

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥𝑛−1
󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩󵄩󵄩
𝛾𝑛𝑥𝑛 − 𝛾𝑛−1𝑥𝑛−1 + (1 − 𝛾𝑛) 𝑇

𝜆
󸀠󸀠

𝑛+1

𝛾
𝑥𝑛

− (1 − 𝛾𝑛−1) 𝑇
𝜆
󸀠󸀠

𝑛

𝛾
𝑥𝑛−1

󵄩󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝛾𝑛𝑥𝑛 − 𝛾𝑛−1𝑥𝑛−1

󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩󵄩
(1 − 𝛾𝑛) 𝑇

𝜆
󸀠󸀠

𝑛+1

𝛾
𝑥𝑛 − (1 − 𝛾𝑛−1) 𝑇

𝜆
󸀠󸀠

𝑛

𝛾
𝑥𝑛−1

󵄩󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥𝑛−1

󵄩󵄩󵄩󵄩 +
󵄨󵄨󵄨󵄨󵄨
(1 − 𝛾𝑛) 𝜆

󸀠󸀠

𝑛+1
− (1 − 𝛾𝑛−1) 𝜆

󸀠󸀠

𝑛

󵄨󵄨󵄨󵄨󵄨

× 𝛾
󵄩󵄩󵄩󵄩𝐹 (𝑇𝑥𝑛−1)

󵄩󵄩󵄩󵄩

+
󵄨󵄨󵄨󵄨𝛾𝑛 − 𝛾𝑛−1

󵄨󵄨󵄨󵄨 (
󵄩󵄩󵄩󵄩𝑥𝑛−1

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑇𝑥𝑛−1

󵄩󵄩󵄩󵄩) .

(20)

According to (20) and the prediction step of Algorithm 8, we
also obtain

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥𝑛−1
󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩󵄩󵄩
𝛽𝑛𝑥𝑛 − 𝛽𝑛−1𝑥𝑛−1 + (1 − 𝛽𝑛) 𝑇

𝜆
󸀠

𝑛+1

𝜌
𝑥𝑛

− (1 − 𝛽𝑛−1) 𝑇
𝜆
󸀠

𝑛

𝜌
𝑥𝑛−1

󵄩󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝛽𝑛𝑥𝑛 − 𝛽𝑛−1𝑥𝑛−1

󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩󵄩
(1 − 𝛽𝑛) 𝑇

𝜆
󸀠

𝑛+1

𝜌
𝑥𝑛 − (1 − 𝛽𝑛−1) 𝑇

𝜆
󸀠

𝑛

𝜌
𝑥𝑛−1

󵄩󵄩󵄩󵄩󵄩󵄩
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≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥𝑛−1

󵄩󵄩󵄩󵄩 +
󵄨󵄨󵄨󵄨󵄨
(1 − 𝛽𝑛) 𝜆

󸀠

𝑛+1
− (1 − 𝛽𝑛−1) 𝜆

󸀠

𝑛

󵄨󵄨󵄨󵄨󵄨

× 𝜌
󵄩󵄩󵄩󵄩𝐹 (𝑇 𝑥𝑛−1)

󵄩󵄩󵄩󵄩 + (1 − 𝛽𝑛) (1 − 𝜆
󸀠

𝑛+1
𝜏
󸀠
)

×
󵄨󵄨󵄨󵄨𝛾𝑛 − 𝛾𝑛−1

󵄨󵄨󵄨󵄨 (
󵄩󵄩󵄩󵄩𝑥𝑛−1

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑇𝑥𝑛−1

󵄩󵄩󵄩󵄩)

+ (1 − 𝛽𝑛) (1 − 𝜆
󸀠

𝑛+1
𝜏
󸀠
)
󵄨󵄨󵄨󵄨󵄨
(1 − 𝛾𝑛) 𝜆

󸀠󸀠

𝑛+1
− 𝛾𝑛−1𝜆

󸀠󸀠

𝑛

󵄨󵄨󵄨󵄨󵄨

× 𝛾
󵄩󵄩󵄩󵄩𝐹 (𝑇𝑥𝑛−1)

󵄩󵄩󵄩󵄩 +
󵄨󵄨󵄨󵄨𝛽𝑛 − 𝛽𝑛−1

󵄨󵄨󵄨󵄨

× (
󵄩󵄩󵄩󵄩𝑥𝑛−1

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑇 𝑥𝑛−1

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑇 𝑥𝑛−1

󵄩󵄩󵄩󵄩) .

(21)

Also by the prediction step of Algorithm 8 and (20), (21), we
have

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥𝑛−1
󵄩󵄩󵄩󵄩 ≤ 𝜃𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥𝑛−1
󵄩󵄩󵄩󵄩 + (1 − 𝜃𝑛)

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥𝑛−1
󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥𝑛−1

󵄩󵄩󵄩󵄩

+
󵄨󵄨󵄨󵄨󵄨
(1 − 𝛾𝑛) 𝜆

󸀠󸀠

𝑛+1
− (1 − 𝛾𝑛−1) 𝜆

󸀠󸀠

𝑛

󵄨󵄨󵄨󵄨󵄨
𝛾
󵄩󵄩󵄩󵄩𝐹 (𝑇𝑥𝑛−1)

󵄩󵄩󵄩󵄩

+
󵄨󵄨󵄨󵄨𝛾𝑛 − 𝛾𝑛−1

󵄨󵄨󵄨󵄨 (
󵄩󵄩󵄩󵄩𝑥𝑛−1

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑇𝑥𝑛−1

󵄩󵄩󵄩󵄩)

+
󵄨󵄨󵄨󵄨󵄨
(1 − 𝛽𝑛) 𝜆

󸀠

𝑛+1
− (1 − 𝛽𝑛−1) 𝜆

󸀠

𝑛

󵄨󵄨󵄨󵄨󵄨
𝜌
󵄩󵄩󵄩󵄩𝐹 (𝑇𝑥𝑛−1)

󵄩󵄩󵄩󵄩

+ (1 − 𝛽𝑛) (1 − 𝜆
󸀠

𝑛+1
𝜏
󸀠
)
󵄨󵄨󵄨󵄨𝛾𝑛 − 𝛾𝑛−1

󵄨󵄨󵄨󵄨

× (
󵄩󵄩󵄩󵄩𝑥𝑛−1

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑇𝑥𝑛−1

󵄩󵄩󵄩󵄩) + (1 − 𝛽𝑛) (1 − 𝜆
󸀠

𝑛+1
𝜏
󸀠
)

×
󵄨󵄨󵄨󵄨󵄨
(1 − 𝛾𝑛) 𝜆

󸀠󸀠

𝑛+1
− 𝛾𝑛−1𝜆

󸀠󸀠

𝑛

󵄨󵄨󵄨󵄨󵄨
𝛾
󵄩󵄩󵄩󵄩𝐹 (𝑇𝑥𝑛−1)

󵄩󵄩󵄩󵄩

+
󵄨󵄨󵄨󵄨𝛽𝑛 − 𝛽𝑛−1

󵄨󵄨󵄨󵄨 (
󵄩󵄩󵄩󵄩𝑥𝑛−1

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑇𝑥𝑛−1

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑇𝑥𝑛−1

󵄩󵄩󵄩󵄩) .

(22)

Let

𝑦𝑛 = 𝑇
𝜆
𝑛+1

𝑡 𝑥𝑛 = 𝑇𝑥𝑛 − 𝜆𝑛+1𝑡𝐹 (𝑇𝑥𝑛) , (23)

so we get

𝑥𝑛+1 = 𝛼𝑛𝑥𝑛 + (1 − 𝛼𝑛) 𝑦𝑛. (24)

Furthermore,

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑦𝑛−1
󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝑇𝑥𝑛 − 𝑇𝑥𝑛−1 + 𝜆𝑛𝑡𝐹 (𝑇𝑥𝑛−1) − 𝜆𝑛+1𝑡𝐹 (𝑇𝑥𝑛)

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑇𝑥𝑛 − 𝑇𝑥𝑛−1

󵄩󵄩󵄩󵄩 + 𝜆𝑛𝑡
󵄩󵄩󵄩󵄩𝐹 (𝑇𝑥𝑛−1)

󵄩󵄩󵄩󵄩

+ 𝜆𝑛+1𝑡
󵄩󵄩󵄩󵄩𝐹 (𝑇𝑥𝑛)

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥𝑛−1

󵄩󵄩󵄩󵄩 + 𝜆𝑛𝑡
󵄩󵄩󵄩󵄩𝐹 (𝑇𝑥𝑛−1)

󵄩󵄩󵄩󵄩

+ 𝜆𝑛+1𝑡
󵄩󵄩󵄩󵄩𝐹 (𝑇𝑥𝑛)

󵄩󵄩󵄩󵄩 .

(25)

Apply lim𝑛→∞𝛽𝑛 = 1, lim𝑛→∞𝜆𝑛 = 0, and lim𝑛→∞𝛾𝑛 = 1

and (22), (25) to get
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑦𝑛−1

󵄩󵄩󵄩󵄩 −
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥𝑛−1

󵄩󵄩󵄩󵄩

≤
󵄨󵄨󵄨󵄨󵄨
(1 − 𝛾𝑛) 𝜆

󸀠󸀠

𝑛+1
− (1 − 𝛾𝑛−1) 𝜆

󸀠󸀠

𝑛

󵄨󵄨󵄨󵄨󵄨
𝛾
󵄩󵄩󵄩󵄩𝐹 (𝑇𝑥𝑛−1)

󵄩󵄩󵄩󵄩

+
󵄨󵄨󵄨󵄨𝛾𝑛 − 𝛾𝑛−1

󵄨󵄨󵄨󵄨 (
󵄩󵄩󵄩󵄩𝑥𝑛−1

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑇𝑥𝑛−1

󵄩󵄩󵄩󵄩)

+
󵄨󵄨󵄨󵄨󵄨
(1 − 𝛽𝑛) 𝜆

󸀠

𝑛+1
− (1 − 𝛽𝑛−1) 𝜆

󸀠

𝑛

󵄨󵄨󵄨󵄨󵄨
𝜌
󵄩󵄩󵄩󵄩𝐹 (𝑇𝑥𝑛−1)

󵄩󵄩󵄩󵄩

+ (1 − 𝛽𝑛) (1 − 𝜆
󸀠

𝑛+1
𝜏
󸀠
)
󵄨󵄨󵄨󵄨𝛾𝑛 − 𝛾𝑛−1

󵄨󵄨󵄨󵄨 (
󵄩󵄩󵄩󵄩𝑥𝑛−1

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑇𝑥𝑛−1

󵄩󵄩󵄩󵄩)

+ (1 − 𝛽𝑛) (1 − 𝜆
󸀠

𝑛+1
𝜏
󸀠
)

×
󵄨󵄨󵄨󵄨󵄨
(1 − 𝛾𝑛) 𝜆

󸀠󸀠

𝑛+1
− 𝛾𝑛−1𝜆

󸀠󸀠

𝑛

󵄨󵄨󵄨󵄨󵄨
𝛾
󵄩󵄩󵄩󵄩𝐹 (𝑇 (𝑥𝑛−1))

󵄩󵄩󵄩󵄩

+
󵄨󵄨󵄨󵄨𝛽𝑛 − 𝛽𝑛−1

󵄨󵄨󵄨󵄨 (
󵄩󵄩󵄩󵄩𝑥𝑛−1

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑇𝑥𝑛−1

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑇𝑥𝑛−1

󵄩󵄩󵄩󵄩)

+ 𝜆𝑛𝑡
󵄩󵄩󵄩󵄩𝐹 (𝑇𝑥𝑛−1)

󵄩󵄩󵄩󵄩 + 𝜆𝑛+1𝑡
󵄩󵄩󵄩󵄩𝐹 (𝑇𝑥𝑛)

󵄩󵄩󵄩󵄩 󳨀→ 0.

(26)

According to Lemma 4, we obtain

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑦𝑛−1 − 𝑥𝑛−1
󵄩󵄩󵄩󵄩 = 0. (27)

Furthermore, by lim𝑛→∞𝛾𝑛 = 1, we also get
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥𝑛

󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩󵄩
− (1 − 𝛾𝑛) 𝑥𝑛 + (1 − 𝛾𝑛) [𝑇𝑥𝑛 − 𝜆

󸀠

𝑛+1
𝛾𝐹 (𝑇𝑥𝑛)]

󵄩󵄩󵄩󵄩󵄩

≤ (1 − 𝛾𝑛)
󵄩󵄩󵄩󵄩𝑥𝑛

󵄩󵄩󵄩󵄩 + (1 − 𝛾𝑛)
󵄩󵄩󵄩󵄩𝑇𝑥𝑛

󵄩󵄩󵄩󵄩 + 𝜆
󸀠

𝑛+1
𝛾
󵄩󵄩󵄩󵄩𝐹 (𝑇𝑥𝑛)

󵄩󵄩󵄩󵄩 󳨀→ 0.

(28)

By (27), (28) and the correction step of Algorithm 8, we
immediately conclude that

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥𝑛−1
󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝛼𝑛−1𝑥𝑛−1 + (1 − 𝛼𝑛−1) 𝑦𝑛−1 − 𝑥𝑛−1

󵄩󵄩󵄩󵄩

≤ 𝛼𝑛−1
󵄩󵄩󵄩󵄩𝑥𝑛−1 − 𝑥𝑛−1

󵄩󵄩󵄩󵄩 + (1 − 𝛼𝑛−1)
󵄩󵄩󵄩󵄩𝑦𝑛−1 − 𝑥𝑛−1

󵄩󵄩󵄩󵄩 󳨀→ 0,

(29)

so we get
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥𝑛

󵄩󵄩󵄩󵄩 󳨀→ 0. (30)

Step 3. Consider ‖𝑥𝑛+1 − 𝑇𝑥𝑛‖ → 0.
Indeed, by the prediction step of Algorithm 8, we have

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥𝑛
󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩󵄩
− (1 − 𝛽𝑛) 𝑥𝑛 + (1 − 𝛽𝑛) [𝑇𝑥𝑛 − 𝜆

󸀠

𝑛+1
𝜌𝐹 (𝑇𝑥𝑛)]

󵄩󵄩󵄩󵄩󵄩

≤ (1 − 𝛽𝑛)
󵄩󵄩󵄩󵄩𝑥𝑛

󵄩󵄩󵄩󵄩 + (1 − 𝛽𝑛) [
󵄩󵄩󵄩󵄩𝑇𝑥𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩󵄩
𝜆
󸀠

𝑛+1
𝜌𝐹 (𝑇𝑥𝑛)

󵄩󵄩󵄩󵄩󵄩
] .

(31)

According to the assumption lim𝑛→∞𝛽𝑛 = 1 and
lim𝑛→∞𝜆𝑛 = 0, then

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥𝑛
󵄩󵄩󵄩󵄩 󳨀→ 0. (32)
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By (32), we immediately obtain

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥𝑛
󵄩󵄩󵄩󵄩 ≤ 𝜃𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥𝑛
󵄩󵄩󵄩󵄩 + (1 − 𝜃𝑛)

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥𝑛
󵄩󵄩󵄩󵄩 󳨀→ 0. (33)

By a series of computations, we can get

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑇𝑥𝑛
󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩󵄩
𝛼𝑛 (𝑥𝑛 − 𝑇𝑥𝑛) + (1 − 𝛼𝑛) (𝑇

𝜆
𝑛+1

𝑡 𝑥 − 𝑇𝑥𝑛)
󵄩󵄩󵄩󵄩󵄩

≤ 𝛼𝑛
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇𝑥𝑛

󵄩󵄩󵄩󵄩 + (1 − 𝛼𝑛)
󵄩󵄩󵄩󵄩𝑇𝑥𝑛 − 𝑇𝑥𝑛

󵄩󵄩󵄩󵄩

+ (1 − 𝛼𝑛) 𝜆𝑛+1𝑡
󵄩󵄩󵄩󵄩𝐹 (𝑇𝑥𝑛)

󵄩󵄩󵄩󵄩

≤ 𝛼𝑛
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇𝑥𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥𝑛

󵄩󵄩󵄩󵄩 + 𝜆𝑛+1𝑡 ‖𝐹 (𝑇𝑥)‖

≤ 𝛼𝑛
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑇𝑥𝑛

󵄩󵄩󵄩󵄩 + 𝛼𝑛
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥𝑛+1

󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥𝑛

󵄩󵄩󵄩󵄩 + 𝜆𝑛+1𝑡 ‖𝐹 (𝑇𝑥)‖ .

(34)

Hence, by (28), (33), and (34), we also obtain

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑇𝑥𝑛
󵄩󵄩󵄩󵄩 ≤

𝛼𝑛

1 − 𝛼𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥𝑛+1
󵄩󵄩󵄩󵄩

+

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥𝑛
󵄩󵄩󵄩󵄩

1 − 𝛼𝑛
+

𝜆𝑛+1𝑡 ‖𝐹 (𝑇𝑥)‖

1 − 𝛼𝑛
󳨀→ 0.

(35)

Using Steps 2 and 3, it is easy to obtain the following corollary.

Corollary 14. Consider ‖𝑥𝑛 − 𝑇𝑥𝑛‖ → 0.
Applying Steps 2 and 3 , one gets

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑇𝑥𝑛
󵄩󵄩󵄩󵄩 󳨀→ 0,

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥𝑛
󵄩󵄩󵄩󵄩 󳨀→ 0, (36)

so it is easy to see that

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇𝑥𝑛
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑇𝑥𝑛
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥𝑛
󵄩󵄩󵄩󵄩 󳨀→ 0. (37)

Step 4. Consider lim𝑛→∞ sup⟨−𝐹(𝑥∗), 𝑇𝑥𝑛 − 𝑥∗⟩ ≤ 0.
For some 𝑥 ∈ 𝐻, here exits {𝑇𝑥𝑛

𝑖

} → 𝑥 weakly and such
that

lim
𝑛→∞

sup ⟨−𝐹 (𝑥
∗
) , 𝑇𝑥𝑛 − 𝑥

∗
⟩

= lim
𝑛→∞

sup ⟨−𝐹 (𝑥
∗
) , 𝑇𝑥𝑛

𝑖

− 𝑥
∗
⟩ .

(38)

According to {𝑇𝑥𝑛
𝑖

} → 𝑥, we have

𝑥 ∈ Fix (𝑇) = 𝐾. (39)

By 𝑥∗ being the unique solution of VI(𝐹, 𝐾), we can obtain

lim
𝑛→∞

sup ⟨−𝐹 (𝑥
∗
) , 𝑇𝑥𝑛 − 𝑥

∗
⟩

= lim
𝑛→∞

sup ⟨−𝐹 (𝑥
∗
) , 𝑥 − 𝑥

∗
⟩

≤ 0.

(40)

Since ‖𝑇𝑥𝑛−𝑇𝑥𝑛‖ ≤ ‖𝑥𝑛−𝑥𝑛‖ → 0, we immediately conclude
that

lim
𝑛→∞

sup ⟨−𝐹 (𝑥
∗
) , 𝑇𝑥𝑛 − 𝑥

∗
⟩

≤ lim
𝑛→∞

sup ⟨−𝐹 (𝑥
∗
) , 𝑇𝑥𝑛 − 𝑇𝑥𝑛⟩

+ lim
𝑛→∞

sup ⟨−𝐹 (𝑥
∗
) , 𝑇𝑥𝑛 − 𝑥

∗
⟩

≤ lim
𝑛→∞

sup ⟨−𝐹 (𝑥
∗
) , 𝑇𝑥𝑛 − 𝑥

∗
⟩

≤ 0.

(41)

Step 5. By Step 1 and Lemma 1, we have

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
∗󵄩󵄩󵄩󵄩
2

=
󵄩󵄩󵄩󵄩󵄩
𝛼𝑛 (𝑥𝑛 − 𝑥

∗
) + (1 − 𝛼𝑛) (𝑇

𝜆
𝑛+1

𝑡 𝑥𝑛 − 𝑥
∗
)
󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝛼𝑛 (𝑥𝑛 − 𝑥

∗
)
󵄩󵄩󵄩󵄩
2
+ (1 − 𝛼𝑛)

×
󵄩󵄩󵄩󵄩󵄩
(𝑇
𝜆
𝑛+1

𝑡 𝑥𝑛 − 𝑇
𝜆
𝑛+1

𝑡 𝑥
∗
+ 𝑇
𝜆
𝑛+1

𝑡 𝑥
∗
− 𝑥
∗
)
󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝛼𝑛 (𝑥𝑛 − 𝑥

∗
)
󵄩󵄩󵄩󵄩
2
+ (1 − 𝛼𝑛)

× [
󵄩󵄩󵄩󵄩󵄩
𝑇
𝜆
𝑛+1

𝑡 𝑥𝑛 − 𝑇
𝜆
𝑛+1

𝑡 𝑥
∗󵄩󵄩󵄩󵄩󵄩

2

+ 2 ⟨𝑇
𝜆
𝑛+1

𝑡 𝑥
∗
− 𝑥
∗
, 𝑇
𝜆
𝑛+1

𝑡 𝑥𝑛 − 𝑥
∗
⟩]

≤ 𝛼𝑛[
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩 + (1 − 𝛾𝑛) 𝜆
󸀠󸀠

𝑛+1
𝛾
󵄩󵄩󵄩󵄩𝐹 (𝑥
∗
)
󵄩󵄩󵄩󵄩]
2

+ (1 − 𝛼𝑛) (1 − 𝜆𝑛+1𝜏)
2

× [
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩 + (1 − 𝛾𝑛) 𝜆
󸀠󸀠

𝑛+1
𝛾
󵄩󵄩󵄩󵄩𝐹 (𝑥
∗
)
󵄩󵄩󵄩󵄩

+ (1 − 𝛽𝑛) 𝜆𝑛+1 (𝛾 + 𝜌)
󵄩󵄩󵄩󵄩𝐹 (𝑥
∗
)
󵄩󵄩󵄩󵄩 ]
2

+ 2𝑡𝜆𝑛+1 ⟨−𝐹 (𝑥
∗
) , 𝑇𝑥𝑛 − 𝑥

∗
− 𝑡𝜆𝑛+1𝐹 (𝑇𝑥𝑛)⟩

≤ 𝛼𝑛
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩
2
+ (1 − 𝛾𝑛) 𝜆𝑛+1𝛾𝑀

+ (1 − 𝛼𝑛) (1 − 𝜆𝑛+1𝜏)
2󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩
2

+ (1 − 𝛼𝑛) (1 − 𝜆𝑛+1𝜏)
2
(1 − 𝛽𝑛) 𝜆𝑛+1𝑀

+ (1 − 𝛼𝑛) (1 − 𝜆𝑛+1𝜏)
2
(1 − 𝛾𝑛) 𝜆𝑛+1𝛾𝑀

+ 2𝑡𝜆𝑛+1 ⟨−𝐹 (𝑥
∗
) , 𝑇𝑥𝑛 − 𝑥

∗
− 𝑡𝜆𝑛+1𝐹 (𝑇𝑥𝑛)⟩

≤ [1 − (1 − 𝛼𝑛) 𝜆𝑛+1𝜏]
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩
2

+ (1 − 𝛼𝑛) 𝜆𝑛+1𝜏𝑤
󸀠

𝑛+1
,

(42)



Abstract and Applied Analysis 7

where

𝑤
󸀠

𝑛+1
=

2𝑡 ⟨−𝐹 (𝑥∗) , 𝑇𝑥𝑛 − 𝑥∗ − 𝑡𝜆𝑛+1𝐹 (𝑇𝑥𝑛)⟩

𝜏 (1 − 𝛼𝑛)

+
𝜑𝑛

𝜏 (1 − 𝛼𝑛)
+

𝜉𝑛

𝜏 (1 − 𝛼𝑛)
,

𝜑𝑛 = (1 − 𝛾𝑛) 𝛾𝑀,

𝜉𝑛 = (1 − 𝛼𝑛) (1 − 𝜆𝑛+1𝜏)
2
(1 − 𝛽𝑛)𝑀

+ (1 − 𝛼𝑛) (1 − 𝜆𝑛+1𝜏)
2
(1 − 𝛾𝑛) 𝜆𝑛+1𝛾𝑀,

(43)

and𝑀0 ≪ 𝑀 < ∞.
Denote

𝑠
󸀠

𝑛+1
=
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥

∗󵄩󵄩󵄩󵄩 , 𝑢𝑛 = (1 − 𝛼𝑛) 𝜆𝑛+1𝜏. (44)

We can rewrite (42) as

𝑠
󸀠

𝑛+1
≤ (1 − 𝑢𝑛) 𝑠

󸀠

𝑛
+ 𝑢𝑛𝑤

󸀠

𝑛
+ 0. (45)

In fact, 𝑢𝑛, 𝑤
󸀠

𝑛
satisfies Lemma 5; according to

lim
𝑛→∞

𝛽𝑛 = 1, lim
𝑛→∞

𝛾𝑛 = 1, lim
𝑛→∞

𝜆𝑛 = 0, (46)

we obtain
𝜑𝑛

𝜏 (1 − 𝛼𝑛)
󳨀→ 0,

𝜉𝑛

𝜏 (1 − 𝛼𝑛)
󳨀→ 0.

(47)

Moreover, by Step 4, we also obtain

lim
𝑛→∞

2𝑡 ⟨−𝐹 (𝑥∗) , 𝑇𝑥𝑛 − 𝑥∗ − 𝑡𝜆𝑛+1𝐹 (𝑇𝑥𝑛)⟩

𝜏 (1 − 𝛼𝑛)

≤
2𝑡

𝜏
lim
𝑛→∞

sup {⟨−𝐹 (𝑥
∗
) , 𝑇𝑥𝑛 − 𝑥

∗
⟩

+ 𝜆𝑛+1 ⟨−𝐹 (𝑥
∗
) , −𝑡𝐹 (𝑇𝑥𝑛)⟩}

≤
2𝑡

𝜏
lim
𝑛→∞

sup {⟨−𝐹 (𝑥
∗
) , 𝑇𝑥𝑛 − 𝑥

∗
⟩}

+ lim
𝑛→∞

sup {𝜆𝑛+1 ⟨−𝐹 (𝑥
∗
) , −𝑡𝐹 (𝑇𝑥𝑛)⟩}

≤ 0 + 0 = 0.

(48)

Furthermore, by (43), (47), and (48), it is easy to obtain

lim
𝑛→∞

sup𝑤󸀠
𝑛
≤ 0. (49)

Consequently apply Lemma 5 to obtain
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩 󳨀→ 0. (50)

4. Numerical Experiments

The problem considered in this section is

min {
1

2
‖𝑋 − 𝐶‖

2

𝐹
| 𝑋 ∈ 𝐾} , (51)

where ‖ ⋅ ‖𝐹 is the matrix Fröbenis norm; that is,

‖𝐶‖𝐹 = (

∞

∑
𝑖=1

∞

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝐶𝑖𝑗

󵄨󵄨󵄨󵄨󵄨

2

)

1/2

. (52)

Note that the matrix Fröbenis norm is induced by the
inner product

⟨𝐴, 𝐵⟩ = Trace (𝐴𝑇𝐵) . (53)

The problems arise from finance and statistics, and we form
the test problems similarly as in [9, 21].

Let 𝐾 = 𝑆𝑛
+
∩ ß, where

𝑆
𝑛

+
= {𝐻 ∈ R

𝑛×𝑛
| 𝐻
𝑇
= 𝐻,𝐻 ⪰ 0} ,

ß = {𝐻 ∈ R
𝑛×𝑛

| 𝐻
𝑇
= 𝐻,𝐻𝐿 ≤ 𝐻 ≤ 𝐻𝑈} .

(54)

Let 𝐻𝐿, 𝐻𝑈 be given 𝑛 × 𝑛 symmetric matrices, and 𝐶

asymmetric which differs from previous approaches [9, 21],
and it is to be noted that the extended contraction method
(EC method) [9] has much difficulty in computing the
examples when 𝐶 is asymmetric, where𝐻𝐿 ≤ 𝐻𝑈 in element
wise:

𝐻𝐿 ≤ 𝐻𝑈 : (𝐻𝐿)𝑖𝑗 ≤ (𝐻𝑈)𝑖𝑗, ∀𝑖, 𝑗 ∈ 1, . . . , 𝑛. (55)

Then (51) is equivalent to the following variational
inequality:

⟨𝑋
󸀠
− 𝑋, ∇ (

1

2
‖𝑋 − 𝐶‖

2
)⟩ ≥ 0, ∀𝑋

󸀠
∈ 𝐾. (56)

So we get

⟨𝑋
󸀠
− 𝑋,𝑋 − 𝐶⟩ ≥ 0, ∀𝑋

󸀠
∈ 𝐾. (57)

According to Condition 10, we take the following param-
eter sequences, and let Condition 10 denote the parameter
sequences:

𝛼𝑛 =
1

ln 𝑛
,

𝜆𝑛 = 𝜆
󸀠

𝑛
= 𝜆
󸀠󸀠

𝑛
=

1

ln (𝑛 + 1)
,

𝛽𝑛 = 𝛾𝑛 = 1 −
1

ln 𝑛
,

𝛾 = 𝜌 = 𝑡 = 𝑐0 > 0.

(58)

According to Condition 12, we take the following param-
eter sequences, and let Condition 12 denote the parameter
sequences:

𝛼𝑛 = 0.8 −
1

(10 ∗ ln 𝑛)
, 𝑛 = 2𝑘,

𝛼𝑛 = 0.3 −
1

(10 ∗ ln 𝑛)
, 𝑛 = 2𝑘 − 1,
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Table 1: Numerical results for the PRH method and the EC method.

Asymmetric matrix 𝑐0 = 0.1, 𝜃𝑛 = 0.8, tolerance = 10−4

Condition 10 Condition 12 EC method
𝑛 It cpu It cpu It cpu tolerance
100 201 8.34 130 5.35 100 14.46 8.289𝑒 + 000

200 333 75.44 208 47.14 100 94.30 1.010𝑒 + 002

300 443 318.02 272 174.70 100 302.29 4.899𝑒 + 002

400 543 789.16 330 446.00 100 686.83 9.628𝑒 + 002

500 647 1747.70 388 972.18 100 1287.36 1.756𝑒 + 003

1000 1082 19884.30 634 11502.13 100 9220.50 9.826𝑒 + 003

2000 >2000 >150000 1052 128504.67 100 >74640.41 >5.597𝑒 + 003

Matlab code:
𝐶 = zeros(𝑛, 𝑛); HU = ones(𝑛, 𝑛) ∗ 0.1; HL = −HU;
for 𝑖 = 1 : 𝑛

for 𝑗 = 1 : 𝑛

𝑡 = mod(𝑡 ∗ 42108 + 13846, 46273);
𝐶(𝑖, 𝑗) = 𝑡 ∗ 2/46273 − 1;

end;
end;
for 𝑖 = 1 : 𝑛

𝐶(𝑖, 𝑖) = abs(𝐶(𝑖, 𝑖)) ∗ 2; HU(𝑖, 𝑖) = 1; HL(𝑖, 𝑖) = 1;
end;

Algorithm 1

Table 2: Numerical results for tolerance 10−4.

Asymmetric
matrix

𝑐0 = 0.1, 𝜃𝑛 = 0.8

Condition 10 Condition 12
𝑛 It cpu It cpu
100 204 8.78 130 5.45
200 330 76.08 208 47.72
300 445 323.20 272 175.89
400 548 867.56 330 450.59
500 663 1916.90 388 994.18

Table 3: Numerical results for tolerance 10−3.

Asymmetric
matrix

𝑐0 = 0.1, 𝜃𝑛 = 0.8

Condition 10 Condition 12
𝑛 It cpu It cpu
1000 193 3893.63 126 2280.74
2000 318 42981.02 200 28737.65

𝜆𝑛 = 𝜆
󸀠

𝑛
= 𝜆
󸀠󸀠

𝑛
=

1

ln (𝑛 + 1)
,

𝛽𝑛 = 1 −
1

ln 𝑛
, 𝑛 = 2𝑘,

𝛽𝑛 = 1 −
1

ln 𝑛
, 𝑛 = 2𝑘 − 1,

𝛾𝑛 = 1 −
1

ln 𝑛
, 𝑛 = 2𝑘,

𝛾𝑛 = 1 −
1

ln (2𝑛)
, 𝑛 = 2𝑘 − 1,

𝛾 = 𝜌 = 𝑡 = 𝑐0 > 0.

(59)

Obviously, we have much difficulty in computing the projec-
tion of 𝑃𝐾[𝑋], for all 𝑥 ∈ 𝑆𝑛. In order to reduce the difficulty
and complexity of computing the projection𝑃𝐾, we define𝑇𝑋
by

𝑇𝑋 = 𝐻 (𝐺 (𝑋)) , (60)

where

𝐺 (𝑋) = min (𝐻𝑈,max (𝑋,𝐻𝐿)) ,

𝐻 (𝑋) = 𝑃𝑆𝑛
+

(𝑋) ,
(61)

which can be computed without difficulty and the fixed point
set of Fix(𝑇) = 𝐾. According to Theorems 11 and 13, the
sequences generated byAlgorithm 8underConditions 10 and
12 are convergent.

The computation beginswith ones (𝑛, 𝑛) inMATLABand
stops as soon as ‖𝑥𝑘+1 − 𝑥𝑘‖ ≤ 10−3 or 10−2. All codes were
implemented in MATLAB 7.1 and ran at a Pentium R 1.70G
processor, 2G Acer note computer.

We test the problems with 𝑛 = 100, 200, 300, 400, 500,
1000, and 2000. The test results with the PRH method under
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Table 4: Numerical results for tolerance 10−4.

Asymmetric matrix 𝛾 = 0.1, 𝜌 = 0.3, 𝑡 = 0.1

𝜃𝑛 = 0 𝜃𝑛 = 0.2 𝜃𝑛 = 0.4 𝜃𝑛 = 0.6 𝜃𝑛 = 0.8

𝑛 It cpu It cpu It cpu It cpu It cpu
100 132 5.52 134 5.60 128 5.50 134 5.67 132 5.54
200 210 48.04 206 47.22 208 48.04 204 47.15 214 48.58
300 274 177.49 268 176.08 276 178.80 274 177.68 276 178.84
400 336 468.28 328 445.93 336 468.20 334 454.24 330 453.79
500 392 977.79 394 1012.57 378 948.44 386 953.91 390 971.10

Matlab code:
𝐶 = zeros(𝑛, 𝑛); HU = ones(𝑛, 𝑛) ∗ 0.1; HL = −HU;
for 𝑖 = 1 : 𝑛

for 𝑗 = 1 : 𝑛

𝐶 = −1 + 2 ∗ rand(𝑛);
end;

end;
for 𝑖 = 1 : 𝑛

𝐶(𝑖, 𝑖) = abs(𝐶(𝑖, 𝑖)) ∗ 2; HU(𝑖, 𝑖) = 1; HL(𝑖, 𝑖) = 1;
end;

Algorithm 2

different conditions are reported in Tables 1, 2, 3, and 4. And
the CPU time is in seconds. It is to be noted that the results
of extended contraction method are only given out when the
iteration step (It) is less than or equal to 100.
Test Examples 1. In this example we generate the data in a
similar manner as in [9]. The entries of diagonal elements of
𝐶 are randomly generated in the interval (0, 2); the entries
of off-diagonal elements of 𝐶 are randomly generated in the
interval (−1, 1) (Algorithm 1):

(𝐻𝑈)𝑗𝑗 = (𝐻𝐿)𝑗𝑗 = 1,

(𝐻𝑈)𝑖𝑗 = −(𝐻𝐿)𝑖𝑗 = 0.1, ∀𝑖 ̸=𝑗, 𝑖, 𝑗 = 1, 2, . . . , 𝑛.
(62)

When 𝑛 ≥ 1000 and tolerance 10−4, the computation time of
the proposed method is too long, so the results of the PRH
method give out approximate solution with 𝑛 ≥ 1000 and
tolerance 10−3 in the following. And the extended contraction
method (EC method) has much difficulty in computing the
examples when 𝐶 is asymmetric. Furthermore, by intro-
ducing auxiliary variable, the certain projection method or
relaxed-PPAmethod [10] can be implemented by these tests.
Test Examples 2. We form the data of the second problems
similarly as in the first test examples. The entries of diagonal
elements of 𝐶 are randomly generated in the interval (0, 2);
the entries of off-diagonal elements of 𝐶 are generated from
a uniform distribution in the same interval (Algorithm 2):

(𝐻𝑈)𝑗𝑗 = (𝐻𝐿)𝑗𝑗 = 1,

(𝐻𝑈)𝑖𝑗 = −(𝐻𝐿)𝑖𝑗 = 0.1, ∀𝑖 ̸=𝑗, 𝑖, 𝑗 = 1, 2, . . . , 𝑛.
(63)

From Tables 1 to 3, we found that the iteration numbers
and CPU time of PRH under Condition 12 are more efficient
than that under Condition 10. In Table 4 of our method,
the tests’ results give out that the PRH method under some
descent directions is more slightly efficient than those of the
MRHSDmethod [14, 16], and it is easy to obtain these descent
directions. Furthermore, it is important to find 𝛾, 𝜌, and 𝑡 by
Tables 2 and 4.

5. Conclusions

We have proved the strong convergence of PRH method
under Condition 12, which differs from Condition 10. The
result can be considered as an improvement and refinement
of the previous results [14]. Andmore importantly, numerical
experiments demonstrated that the PRH method under
Condition 12 is more efficient than that under Condition
10, and the PRH method under some descent directions is
more slightly efficient than that of the MRHSD method.
How to select parameters of the PRH method for solving
variational inequalities is worthy of further investigations in
the future.
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The monotone variational inequalities capture various concrete applications arising in many areas. In this paper, we develop a
new prediction-correction method for monotone variational inequalities with separable structure. The new method can be easily
implementable, and the main computational effort in each iteration of the method is to evaluate the proximal mappings of the
involved operators. At each iteration, the algorithm also allows the involved subvariational inequalities to be solved in parallel.
We establish the global convergence of the proposed method. Preliminary numerical results show that the new method can be
competitive with Chen’s proximal-based decomposition method in Chen and Teboulle (1994).

1. Introduction

The variational inequality (VI (Ω, 𝐹)) in the finite-dimen-
sional space is to determine a vector 𝑢 ∈ Ω such that

⟨𝑢
󸀠
− 𝑢, 𝐹 (𝑢)⟩ ≥ 0, ∀𝑢

󸀠
∈ Ω, (1)

where Ω ∈ R𝑛 is a nonempty closed convex subset and 𝐹
is a continuous mapping from R𝑛 into itself. The VI (Ω, 𝐹)
has found many efficient applications in a broad spectrum of
areas such as traffic equilibrium [1] and network economic
problems [2]. For solving (1), the proximal point algorithm
(PPA), which was proposed by Martinet [3] and further
studied by Rockafellar [4, 5], generates the new iterative point
𝑢
𝑘+1 via the following procedure:

⟨𝑢
󸀠
− 𝑢
𝑘+1
, 𝐹 (𝑢
𝑘+1
) + 𝐺 (𝑢

𝑘+1
− 𝑢
𝑘
)⟩ ≥ 0, ∀𝑢

󸀠
∈ Ω, (2)

where 𝐺 ∈ R𝑛×𝑛 is a positive definite matrix, playing the
role of proximal regularization parameter. Note that the PPA
has to solve systems of nonlinear equations in each iteration.
In many cases, solving these equations is quite difficult. This
difficulty has inspired the burst of approximate versions of
the PPAs, in order to approximately solve (2) under certain
“relative error.” These new methods include well-known-
extragradient type methods (EGM) as special cases. Assume

that 𝐹 is Lipschitz continuous; that is, there is 𝑙 ∈ (0, 1), such
that

𝛽
󵄩󵄩󵄩󵄩󵄩
𝐹 (𝑢
𝑘
) − 𝐹 (𝑢̃

𝑘
)
󵄩󵄩󵄩󵄩󵄩
≤ 𝑙
󵄩󵄩󵄩󵄩󵄩
𝑢
𝑘
− 𝑢̃
𝑘󵄩󵄩󵄩󵄩󵄩
. (3)

Then at each iteration EGM takes the following general form:

⟨𝑢
󸀠
− 𝑢̃, 𝛽𝐹 (𝑢

𝑘
) + 𝑢̃ − 𝑢

𝑘
⟩ ≥ 0, ∀𝑢

󸀠
∈ Ω,

⟨𝑢
󸀠
− 𝑢
𝑘+1
, 𝛽𝐹 (𝑢̃) + 𝑢

𝑘+1
− 𝑢
𝑘
⟩ ≥ 0, ∀𝑢

󸀠
∈ Ω.

(4)

In this paper, we consider the following variational
inequalities: find a vector 𝑤 ∈ D such that

⟨𝑤
󸀠
− 𝑤, 𝐹 (𝑤)⟩ ≥ 0, ∀𝑤

󸀠
∈ D, (5)

with

𝑤 := (
𝑥

𝑦
) , 𝐹 (𝑤) := (

𝑓 (𝑥)

𝑔 (𝑦)
) ,

D = {(𝑥, 𝑦) | 𝑥 ∈ X, 𝑦 ∈ Y, 𝐴𝑥 + 𝐵𝑦 = 𝑏} ,

(6)

where D ∈ R𝑛+𝑝 is a nonempty closed convex subset and
𝑓 : X → R𝑛 and 𝑔 : Y → R𝑝 are monotone operators.
Problem (5) is referred to as a structured variational inequal-
ity (SVI) [6].
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By attaching a Lagrange multiplier vector 𝜆 ∈ R𝑚 to
the linear constraints 𝐴𝑥 + 𝐵𝑦 = 𝑏, the VI problem (5) is
converted into the following form:

⟨

𝑥
󸀠 − 𝑥, 𝑓 (𝑥) − 𝐴

𝑇𝜆

𝑦󸀠 − 𝑦, 𝑔 (𝑦) − 𝐵𝑇𝜆

𝜆󸀠 − 𝜆, 𝐴𝑥 + 𝐵𝑦 − 𝑏

⟩ ≥ 0, ∀𝑢
󸀠
∈ Ω, (7)

where

Ω = X ×Y ×R
𝑚
. (8)

The compact form is

⟨𝑢
󸀠
− 𝑢, 𝐹 (𝑢)⟩ ≥ 0, ∀𝑢

󸀠
∈ Ω, (9)

with

𝑢 := (

𝑥

𝑦

𝜆

) , 𝐹 (𝑢) := (

𝑓 (𝑥) − 𝐴
𝑇𝜆

𝑔 (𝑦) − 𝐵𝑇𝜆

𝐴𝑥 + 𝐵𝑦 − 𝑏

) . (10)

For the purpose of parallel computing, the proximal al-
ternating directions method (PADM) generates 𝑢̃𝑘 = (𝑥𝑘, 𝑦𝑘,
𝜆̃𝑘) ∈ Ω as follows [7, 8]: first find an 𝑥𝑘 ∈ X such that

⟨𝑥
󸀠
− 𝑥
𝑘
, 𝑓 (𝑥
𝑘
) − 𝐴
𝑇
[𝜆
𝑘
− 𝛽 (𝐴𝑥

𝑘
+ 𝑦
𝑘
− 𝑏)]

+𝑟 (𝑥
𝑘
− 𝑥
𝑘
)⟩ ≥ 0, ∀𝑥 ∈ X.

(11)

Then find an 𝑦𝑘 ∈ Y such that

⟨𝑦
󸀠
− 𝑦
𝑘
, 𝑔 (𝑦
𝑘
) − 𝐵
𝑇
[𝜆
𝑘
− 𝛽 (𝐴𝑥

𝑘
+ 𝑦
𝑘
− 𝑏)]

+𝑠 (𝑦
𝑘
− 𝑦
𝑘
)⟩ ≥ 0, ∀𝑦 ∈ Y.

(12)

Finally, update 𝜆̃𝑘 via

𝜆̃
𝑘
= 𝜆
𝑘
− 𝛽 (𝐴𝑥

𝑘
+ 𝐵𝑦
𝑘
− 𝑏) . (13)

Here 𝑟 ≥ 0 and 𝑠 ≥ 0 are given proximal parameters; 𝛽 ≥ 0 is
a given penalty parameter for the linearly constraints. Note
that when 𝑟 = 𝑠 = 0 in (11)-(12), the classical alternating
directions method (ADM) is recovered. To make the PADM
(11)–(13) more efficient and flexible, some strategies have
been developed. For example, allow 𝑟, 𝑠, and 𝛽 to vary from
iteration to iteration according to certain strategies [8–10];
produce the new iterate based on the minor correction to the
predictor. A simple and effective correction scheme is (see,
e.g., [11, 12])

𝑢
𝑘+1
= 𝑢
𝑘
− 𝛼𝑘 (𝑢

𝑘
− 𝑢̃
𝑘
) , (14)

where 𝛼𝑘 > 0 is a chosen step size.
The PADM (11)–(13) is often easy to implement under the

assumption that the decomposed subproblems have closed-
form solutions or can be efficiently solved up to a high
precision. However, in some cases, matrixes 𝐴 and 𝐵 are not
identity matrices, and the two subproblems in PADM (11)-
(12) are difficult to solve because the evaluation of (𝐴𝑇𝐴 +

(1/𝛽)𝑓)
−1
(𝐴𝜐) and (𝐵𝑇𝐵 + (1/𝛽)𝑔)−1(𝐵𝜐) could be costly. To

overcome this difficulty, we propose a new implementable
prediction-correction method for the SVI. At each iteration,
we first decompose the problem to two small problems with
respect to 𝑥 and 𝑦, respectively. The two subproblems are
all easy to solve under the assumption that the resolvent
operators of 𝑓 and 𝑔 are easy to evaluate, where the resolvent
operator of mapping 𝑇 is defined as (𝐼 + 𝜆𝑇)−1(𝜐). Then, we
update the Lagrange multipliers and make a correction step
to ensure the algorithm’s convergence.

The SVI has been studied extensively both in the the-
oretical frameworks and applications. Recently, Han [13]
proposed a hybrid entropic proximal decomposition method
for the SVI. Han’s method is based on logarithmic-quadratic
functions and combined with self-adaptive strategy. He [14]
presented a parallel splitting augmented Lagrangian method
which can be extended to solve the system of equilibrium
problems with three separable operators. Xu et al. [15]
proposed two classes of correction methods for the SVI in
which themapping 𝐹 does not have an explicit form. Besides,
Xu and Wu [16] also studied a class of linearized proximal
alternating directionmethods and showed that the relaxation
factor can have the same restriction region as for the general
ADM. Yuan and Li [17] developed a logarithmic-quadratic-
proximal- (LQP-) based decomposition method by applying
the LQP terms to regularize the ADM subproblems; then
Bnouhachem et al. [18] studied a new inexact LQP alternating
direction method by solving a series of related systems of
nonlinear equations.

The rest of this paper is organized as follows. In Section 2,
we review some preliminaries which are useful for further
analysis. In Section 3, we present the new implementable
prediction-correctionmethod for SVI, and the global conver-
gence result is established. Numerical experiments and some
conclusions are addressed in Sections 4 and 5, respectively.

2. Preliminaries

In this section, we make some standard assumptions and
summarize some basic properties of VI which will be used
in the subsequent discussions.

Assumption

(A1) X,Y are simple closed convex sets.
A set which is said to be simple means that the pro-
jection onto the set is easy to compute, where the
projection of a point 𝜐 onto the closed convex set
Ω, denoted by 𝑃Ω(𝜐), is defined as the nearest point
𝑢 ∈ Ω to 𝜐; that is,

𝑃Ω (𝜐) = argmin {‖𝑢 − 𝜐‖ | 𝑢 ∈ Ω} . (15)

(A2) The mapping 𝐹 is point-to-point, monotone, and
continuous.
A mapping 𝐹 : R𝑛 → R𝑛 is said to be monotone on
Ω if

⟨𝑢 − 𝜐, 𝐹 (𝑢) − 𝐹 (𝜐)⟩ ≥ 0, ∀𝑢, 𝜐 ∈ Ω. (16)
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(A3) The solution set of SVI (Ω, 𝐹), denoted by Ω∗, is
nonempty.

Properties. Let 𝐺 be a symmetric positive definite matrix; the
𝐺-norm of the vector 𝑢 is denoted by ‖𝑢‖𝐺 := √⟨𝑢, 𝐺𝑢⟩. In
particular, when𝐺 = 𝐼, ‖𝑢‖ := √⟨𝑢, 𝑢⟩ is the Euclidean norm
of 𝑢. For amatrix𝐴, ‖𝐴‖ denotes its norm ‖𝐴‖ := max{‖𝐴𝑥‖ :
‖𝑥‖ ≤ 1}.

The following well-known properties of the projection
operator will be used in the coming analysis.

Lemma 1. Let Ω ∈ R𝑛 be a nonempty closed convex set; let
𝑃Ω(⋅) be the projection operator onto Ω under the 𝐺-norm.
Then

⟨𝑢
󸀠
− 𝑃Ω (𝑢

󸀠
) , 𝐺 (𝑢 − 𝑃Ω (𝑢

󸀠
))⟩ ≤ 0, ∀𝑢

󸀠
∈ R
𝑛
, ∀𝑢 ∈ Ω,

󵄩󵄩󵄩󵄩󵄩
𝑃Ω (𝑢) − 𝑃Ω (𝑢

󸀠
)
󵄩󵄩󵄩󵄩󵄩𝐺
≤
󵄩󵄩󵄩󵄩󵄩
𝑢 − 𝑢
󸀠󵄩󵄩󵄩󵄩󵄩𝐺
, ∀𝑢, 𝑢

󸀠
∈ R
𝑛
,

󵄩󵄩󵄩󵄩󵄩
𝑢 − 𝑃Ω (𝑢

󸀠
)
󵄩󵄩󵄩󵄩󵄩

2

𝐺
≤
󵄩󵄩󵄩󵄩󵄩
𝑢 − 𝑢
󸀠󵄩󵄩󵄩󵄩󵄩

2

𝐺
−
󵄩󵄩󵄩󵄩󵄩
𝑢
󸀠
− 𝑃Ω (𝑢

󸀠
)
󵄩󵄩󵄩󵄩󵄩

2

𝐺
,

∀𝑢
󸀠
∈ R
𝑛
, ∀ 𝑢 ∈ Ω.

(17)

For any arbitrary positive scalar 𝛽 and 𝑢 ∈ Ω, let 𝑒(𝑢, 𝛽)
denote the residual function associated with the mapping 𝐹;
that is,

𝑒 (𝑢, 𝛽) = 𝑢 − 𝑃Ω [𝑢 − 𝛽𝐹 (𝑢)] . (18)

Lemma 2. 𝑢∗ is a solution of the SVI (Ω, 𝐹) if and only if
𝑒(𝑢∗, 𝛽) = 0 for any given positive constant 𝛽 (see [2, page
267]).

Lemma 3. Solving SVI (Ω, 𝐹) (7) is equivalent to find a zero
point of the mapping

𝑒 (𝑢, 𝛽) := (

𝑒1 (𝑢, 𝛽)

𝑒2 (𝑢, 𝛽)

𝑒3 (𝑢, 𝛽)

)

=(

𝑥 − 𝑃X {𝑥 − 𝛽 [𝑓 (𝑥) − 𝐴
𝑇𝜆]}

𝑦 − 𝑃Y {𝑦 − 𝛽 [𝑔 (𝑦) − 𝐵
𝑇𝜆]}

𝛽 (𝐴𝑥 + 𝐵𝑦 − 𝑏)

) .

(19)

3. The New Algorithm

In this section, we present a new prediction-correction
method for SVI (Ω, 𝐹) and show its global convergence. But,

at the beginning, to make the algorithm more succinct, we
first define some matrices:

𝐻 = (

𝑟𝐼 0 0

0 𝑠𝐼 0

0 0
1

𝛽
𝐼
) , 𝑀 =(

𝐼 0
1

𝑟
𝐴𝑇

0 𝐼
1

𝑠
𝐵𝑇

0 0 𝐼

),

𝑄 = (

𝑟𝐼 0 𝐴𝑇

0 𝑠𝐼 𝐵
𝑇

0 0
1

𝛽
𝐼

) .

(20)

Obviously, 𝐻 is a symmetric positive definite matrix
whenever 𝑟 > 0, 𝑠 > 0, and𝛽 > 0, andwe also have𝑄 = 𝐻𝑀.

3.1. Description of the Algorithm

Algorithm 4. It is a prediction-correction-based algorithm
for the SVI (Ω, 𝐹).

Phase 1 (initialization step). Given a small number 𝜖 > 0,
let 𝛾 ∈ (0, 2); matrixes 𝑄,𝑀 are defined in (20). Take 𝑢0 ∈
R𝑛+𝑝+𝑚; set 𝑘 = 0. Choose the parameters 𝑟 > 0, 𝑠 > 0, and
𝛽 > 0 such that

𝑟 > 2𝛽
󵄩󵄩󵄩󵄩󵄩
𝐴
𝑇
𝐴
󵄩󵄩󵄩󵄩󵄩
, 𝑠 > 2𝛽

󵄩󵄩󵄩󵄩󵄩
𝐵
𝑇
𝐵
󵄩󵄩󵄩󵄩󵄩
. (21)

Phase 2 (prediction step). Generate the predictor𝑥𝑘 via solving
the following projection equation:

𝑥
𝑘
= 𝑃X [𝑥

𝑘
−
1

𝑟
(𝑓 (𝑥

𝑘
) − 𝐴
𝑇
𝜆
𝑘
)] . (22)

Then find an 𝑦𝑘 ∈ Y such that

𝑦
𝑘
= 𝑃Y [𝑦

𝑘
−
1

𝑠
(𝑔 (𝑦
𝑘
) − 𝐵
𝑇
𝜆
𝑘
)] . (23)

Finally, update 𝜆̃𝑘 via

𝜆̃
𝑘
= 𝜆
𝑘
− 𝛽 (𝐴𝑥

𝑘
+ 𝐵𝑦
𝑘
− 𝑏) . (24)

Phase 3 (correction step). Correct the predictor, and generate
the new iterate 𝑢𝑘+1 via

𝑢
𝑘+1
= 𝑢
𝑘
− 𝛼𝑘𝑀(𝑢

𝑘
− 𝑢̃
𝑘
) , (25)

where

𝛼𝑘 = 𝛾𝛼
∗

𝑘
, 𝛼

∗

𝑘
=
⟨𝑢𝑘 − 𝑢̃𝑘, 𝑄 (𝑢𝑘 − 𝑢̃𝑘)⟩

󵄩󵄩󵄩󵄩𝑀 (𝑢
𝑘 − 𝑢̃𝑘)

󵄩󵄩󵄩󵄩
2

𝐻

. (26)

Phase 4 (convergence verification). If ‖𝑢𝑘 − 𝑢𝑘+1‖ ≤ 𝜖, stop;
otherwise set 𝑘 := 𝑘 + 1; go to Phase 2.
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Remark 5. Note that (22) does not involve 𝑦𝑘 and that (23)
is independent on the 𝑥𝑘 generated by (22). Hence the two
projections (22) and (23) are eligible for parallel computation.

Remark 6. It is easy to check that 𝑢̃𝑘 = (𝑥𝑘, 𝑦𝑘, 𝜆̃𝑘) is a
solution of SVI (Ω, 𝐹) if and only if 𝐴𝑥𝑘 = 𝐴𝑥𝑘, 𝐵𝑦𝑘 = 𝐵𝑦𝑘,
and 𝜆𝑘 = 𝜆̃𝑘. Thus, it is reasonable to take the magnitude of
‖𝑢𝑘 − 𝑢𝑘+1‖ ≤ 𝜖 as the stopping criterion.

Remark 7. The strategy of choosing the step size 𝛼𝑘 in the
correction step which coincides with the strategy in He’s
papers, see, for example, [19], will be explained in detail in
the following section.

Remark 8. Our method and the methods proposed in [6, 15,
20] are all in the prediction-correction algorithmic frame-
work, where at each iteration they make a prediction step to
produce a predictor and a correction step to generate the new
iterate via correcting this predictor.

3.2. Contractive Properties. Now, we start to prove some
properties of the sequence {𝑢̃𝑘}. The first lemma quantifies
the discrepancy between the point 𝑢̃𝑘 and a solution point of
SVI (Ω, 𝐹).

Lemma 9. Let {𝑢̃} be generated by (22)–(24), and let the
matrix𝑀 be given in (20). Then one has

⟨𝑢
󸀠
− 𝑢̃
𝑘
, 𝐹 (𝑢̃) − 𝑄 (𝑢

𝑘
− 𝑢̃
𝑘
)⟩ ≥ 0, ∀𝑢

󸀠
∈ Ω. (27)

Proof. Note that 𝑢̃𝑘 generated by (22)–(24) are actually
solutions of the following VIs:

⟨𝑥
󸀠
− 𝑥
𝑘
, 𝑓 (𝑥
𝑘
) − 𝐴
𝑇
𝜆
𝑘
− 𝑟 (𝑥

𝑘
− 𝑥
𝑘
)⟩ ≥ 0, ∀𝑥 ∈ X,

(28)

⟨𝑦
󸀠
− 𝑦
𝑘
, 𝑔 (𝑦
𝑘
) − 𝐵
𝑇
𝜆
𝑘
− 𝑠 (𝑦

𝑘
− 𝑦
𝑘
)⟩ ≥ 0, ∀𝑦 ∈ Y,

(29)

⟨𝜆
󸀠
− 𝜆̃
𝑘
, 𝐴𝑥
𝑘
+ 𝐵𝑦
𝑘
− 𝑏 −

1

𝛽
(𝜆
𝑘
− 𝜆̃
𝑘
)⟩ ≥ 0, ∀𝜆 ∈ R

𝑚
.

(30)

Combining (28)–(30) together, we have

⟨

𝑥
󸀠 − 𝑥𝑘, 𝑓 (𝑥𝑘) − 𝐴𝑇𝜆̃𝑘 − 𝐴𝑇 (𝜆𝑘 − 𝜆̃𝑘) − 𝑟 (𝑥𝑘 − 𝑥𝑘)

𝑦󸀠 − 𝑦𝑘, 𝑔 (𝑦𝑘) − 𝐵𝑇𝜆̃𝑘 − 𝐵𝑇 (𝜆𝑘 − 𝜆̃𝑘) − 𝑠 (𝑦𝑘 − 𝑦𝑘)

𝜆󸀠 − 𝜆̃, 𝐴𝑥𝑘 + 𝐵𝑦𝑘 − 𝑏 −
1

𝛽
(𝜆𝑘 − 𝜆̃𝑘)

⟩

≥ 0, ∀𝑢
󸀠
∈ Ω.

(31)

Using the notations of𝐹 (see (10)) and𝑄 (see (20)), the earlier
inequality can be rewritten into

⟨𝑢
󸀠
− 𝑢̃
𝑘
, 𝐹 (𝑢̃) − 𝑄 (𝑢

𝑘
− 𝑢̃
𝑘
)⟩ ≥ 0, ∀𝑢

󸀠
∈ Ω. (32)

The assertion (27) is thus proved.

The following lemma plays a key role in proving the
convergence of the algorithm.

Lemma 10. Let matrixes 𝑄, 𝐻 be defined in (20), if the
parameters 𝑟 > 0,𝑠 > 0, and 𝛽 > 0 in (22)–(24) satisfy

𝑟 > 2𝛽
󵄩󵄩󵄩󵄩󵄩
𝐴
𝑇
𝐴
󵄩󵄩󵄩󵄩󵄩
, 𝑠 > 2𝛽

󵄩󵄩󵄩󵄩󵄩
𝐵
𝑇
𝐵
󵄩󵄩󵄩󵄩󵄩
. (33)

Then for the matrix 𝑄 in (27), one has

⟨𝑢 − 𝑢̃, 𝑄 (𝑢 − 𝑢̃)⟩ ≥ (1 −
𝜇

2
) ‖𝑢 − 𝑢̃‖

2

𝐻

∀𝑢 ̸= 𝑢̃ ∈ R
𝑛+𝑝+𝑚

,

(34)

with

𝜇 = √max{
2𝛽
󵄩󵄩󵄩󵄩󵄩
𝐴𝑇𝐴
󵄩󵄩󵄩󵄩󵄩

𝑟
,
2𝛽
󵄩󵄩󵄩󵄩󵄩
𝐵𝑇𝐵
󵄩󵄩󵄩󵄩󵄩

𝑠
} ∈ (0, 1) . (35)

Proof. For any 𝑢 ̸= 𝑢̃, we have

⟨𝑢 − 𝑢̃, 𝑄 (𝑢 − 𝑢̃)⟩ = ‖𝑢 − 𝑢̃‖
2

𝐻

+ ⟨𝜆 − 𝜆̃, 𝐴 (𝑥 − 𝑥)⟩ + ⟨𝜆 − 𝜆̃, 𝑦 − 𝑦⟩ .

(36)

According to the Cauchy-Schwarz inequality, we get

⟨𝜆 − 𝜆̃, 𝐴 (𝑥 − 𝑥)⟩ + ⟨𝜆 − 𝜆̃, 𝑦 − 𝑦⟩

=
1

2
(2 ⟨𝜆 − 𝜆̃, 𝐴 (𝑥 − 𝑥)⟩ + 2 ⟨𝜆 − 𝜆̃, 𝐵 (𝑦 − 𝑦)⟩)

≥ −
1

2
{
2𝛽

𝜇
‖𝐴 (𝑥 − 𝑥)‖

2
+
𝜇

2𝛽

󵄩󵄩󵄩󵄩󵄩
𝜆 − 𝜆̃

󵄩󵄩󵄩󵄩󵄩

2

}

−
1

2
{
2𝛽

𝜇

󵄩󵄩󵄩󵄩𝐵 (𝑦 − 𝑦)
󵄩󵄩󵄩󵄩
2
+
𝜇

2𝛽

󵄩󵄩󵄩󵄩󵄩
𝜆 − 𝜆̃

󵄩󵄩󵄩󵄩󵄩

2

}

= −
1

2
{
2𝛽

𝜇
‖𝐴 (𝑥 − 𝑥)‖

2
+
2𝛽

𝜇

×
󵄩󵄩󵄩󵄩𝐵 (𝑦 − 𝑦)

󵄩󵄩󵄩󵄩
2
+
𝜇

𝛽

󵄩󵄩󵄩󵄩󵄩
𝜆 − 𝜆̃

󵄩󵄩󵄩󵄩󵄩

2

} .

(37)

With the 𝜇 defined in (35), we have

2𝛽

𝜇
‖𝐴 (𝑥 − 𝑥)‖

2
≤ 𝜇𝑟‖𝑥 − 𝑥‖

2
,

2𝛽

𝜇

󵄩󵄩󵄩󵄩𝐵 (𝑦 − 𝑦)
󵄩󵄩󵄩󵄩
2
≤ 𝜇𝑠
󵄩󵄩󵄩󵄩𝑦 − 𝑦

󵄩󵄩󵄩󵄩
2
.

(38)

Substituting (38) into (37), combining (36), the assertion (34)
is proved.

Lemma 11. Suppose that 𝑢∗ = (𝑥∗, 𝑦∗, 𝜆∗) ∈ Ω is a solution
point of (9) and the sequences {𝑢𝑘+1} are corrected by an
undeterminate step size denoted by 𝛼 instead of (26); that is,

𝑢
𝑘+1
= 𝑢
𝑘
− 𝛼𝑀(𝑢

𝑘
− 𝑢̃
𝑘
) . (39)
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Then one has

𝜗
𝑘
(𝛼) ≥ 𝜑

𝑘
(𝛼) , (40)

where

𝜗
𝑘
(𝛼) =

󵄩󵄩󵄩󵄩󵄩
𝑢
𝑘
− 𝑢
∗󵄩󵄩󵄩󵄩󵄩

2

𝐻
−
󵄩󵄩󵄩󵄩󵄩
𝑢
𝑘+1
− 𝑢
∗󵄩󵄩󵄩󵄩󵄩

2

𝐻
,

𝜑
𝑘
(𝛼) = 2𝛼 ⟨𝑢

𝑘
− 𝑢̃
𝑘
, 𝑄 (𝑢

𝑘
− 𝑢̃
𝑘
)⟩ − 𝛼

2󵄩󵄩󵄩󵄩󵄩
𝑀(𝑢
𝑘
− 𝑢̃
𝑘
)
󵄩󵄩󵄩󵄩󵄩

2

𝐻
.

(41)

Proof. One can see that

𝜗
𝑘
(𝛼) =

󵄩󵄩󵄩󵄩󵄩
𝑢
𝑘
− 𝑢
∗󵄩󵄩󵄩󵄩󵄩

2

𝐻
−
󵄩󵄩󵄩󵄩󵄩
𝑢
𝑘+1
− 𝑢
∗󵄩󵄩󵄩󵄩󵄩

2

𝐻

=
󵄩󵄩󵄩󵄩󵄩
𝑢
𝑘
− 𝑢
∗󵄩󵄩󵄩󵄩󵄩

2

𝐻
−
󵄩󵄩󵄩󵄩󵄩
𝑢
𝑘
− 𝛼𝑀(𝑢

𝑘
− 𝑢̃
𝑘
) − 𝑢
∗󵄩󵄩󵄩󵄩󵄩

2

𝐻

= 2𝛼 ⟨𝑢
𝑘
− 𝑢
∗
, 𝐻𝑀(𝑢

𝑘
− 𝑢̃
𝑘
)⟩

− 𝛼
2󵄩󵄩󵄩󵄩󵄩
𝑀(𝑢
𝑘
− 𝑢̃
𝑘
)
󵄩󵄩󵄩󵄩󵄩

2

𝐻
.

(42)

On the other hand, since 𝑄 = 𝐻𝑀, using the monotonicity
of 𝐹 and Lemma 9, we have

⟨𝑢
𝑘
− 𝑢
∗
, 𝐻𝑀(𝑢

𝑘
− 𝑢̃
𝑘
)⟩ = ⟨𝑢

𝑘
− 𝑢
∗
, 𝑄 (𝑢

𝑘
− 𝑢̃
𝑘
)⟩

= ⟨𝑢
𝑘
− 𝑢̃
𝑘
, 𝑄 (𝑢

𝑘
− 𝑢̃
𝑘
)⟩

+ ⟨𝑢̃
𝑘
− 𝑢̃
∗
, 𝑄 (𝑢

𝑘
− 𝑢̃
𝑘
)⟩

≥ ⟨𝑢
𝑘
− 𝑢̃
𝑘
, 𝑄 (𝑢

𝑘
− 𝑢̃
𝑘
)⟩

+ ⟨𝑢̃
𝑘
− 𝑢
∗
, 𝐹 (𝑢̃
𝑘
)⟩

≥ ⟨𝑢
𝑘
− 𝑢̃
𝑘
, 𝑄 (𝑢

𝑘
− 𝑢̃
𝑘
)⟩

+ ⟨𝑢̃
𝑘
− 𝑢
∗
, 𝐹 (𝑢
∗
)⟩

≥ ⟨𝑢
𝑘
− 𝑢̃
𝑘
, 𝑄 (𝑢

𝑘
− 𝑢̃
𝑘
)⟩ .

(43)

Combining (42)-(43) together, we have

𝜗
𝑘
(𝛼) = 2𝛼 ⟨𝑢

𝑘
− 𝑢
∗
, 𝑄 (𝑢

𝑘
− 𝑢̃
𝑘
)⟩

− 𝛼
2󵄩󵄩󵄩󵄩󵄩
𝑀(𝑢
𝑘
− 𝑢̃
𝑘
)
󵄩󵄩󵄩󵄩󵄩

2

𝐻

≥ 2𝛼 ⟨𝑢
𝑘
− 𝑢̃
𝑘
, 𝑄 (𝑢

𝑘
− 𝑢̃
𝑘
)⟩

− 𝛼
2󵄩󵄩󵄩󵄩󵄩
𝑀(𝑢
𝑘
− 𝑢̃
𝑘
)
󵄩󵄩󵄩󵄩󵄩

2

𝐻

= 𝜑
𝑘
(𝛼) .

(44)

Thus, 𝜑𝑘(𝛼) is a lower bound of 𝜗𝑘(𝛼) for any 𝛼 > 0.

Remark 12. Note that 𝜑𝑘(𝛼) is a quadratic function of 𝛼 and
it reaches its maximum at

𝛼
∗

𝑘
=
⟨𝑢𝑘 − 𝑢̃𝑘, 𝑄 (𝑢𝑘 − 𝑢̃𝑘)⟩

󵄩󵄩󵄩󵄩𝑀 (𝑢
𝑘 − 𝑢̃𝑘)

󵄩󵄩󵄩󵄩
2

𝐻

. (45)

Hence, it is reasonable to use the step size strategy (26). The
parameter 𝛾 in (26) plays the role of a relaxation or scaling
parameter. We can easily see that 𝛾 ∈ (0, 2) can ensure
convergence.

Now, we prove the Fejér monotonicity of the iterative
sequence {𝑢𝑘} generated by the algorithm.

Theorem 13. Suppose that 𝑢∗ = (𝑥∗, 𝑦∗, 𝜆∗) ∈ Ω is a solu-
tion point of (9) and the sequences {𝑢𝑘} are generated by the
algorithm. Then

󵄩󵄩󵄩󵄩󵄩
𝑢
𝑘+1
− 𝑢
∗󵄩󵄩󵄩󵄩󵄩

2

𝐻
≤
󵄩󵄩󵄩󵄩󵄩
𝑢
𝑘
− 𝑢
∗󵄩󵄩󵄩󵄩󵄩

2

𝐻

−
1

2
𝑟 (2 − 𝑟) (1 −

𝜇

2
)
󵄩󵄩󵄩󵄩󵄩
𝑢
𝑘
− 𝑢̃
𝑘󵄩󵄩󵄩󵄩󵄩

2

𝐻
.

(46)

Proof. According to Lemma 11,

󵄩󵄩󵄩󵄩󵄩
𝑢
𝑘+1
− 𝑢
∗󵄩󵄩󵄩󵄩󵄩

2

𝐻
≤
󵄩󵄩󵄩󵄩󵄩
𝑢
𝑘
− 𝑢
∗󵄩󵄩󵄩󵄩󵄩

2

𝐻
− 𝜑
𝑘
(𝛼𝑘)

=
󵄩󵄩󵄩󵄩󵄩
𝑢
𝑘
− 𝑢
∗󵄩󵄩󵄩󵄩󵄩

2

𝐻
− (2𝛼𝑘 ⟨𝑢

𝑘
− 𝑢̃
𝑘
, 𝑄 (𝑢

𝑘
− 𝑢̃
𝑘
)⟩

−𝛼
2

𝑘

󵄩󵄩󵄩󵄩󵄩
𝑀(𝑢
𝑘
− 𝑢̃
𝑘
)
󵄩󵄩󵄩󵄩󵄩

2

𝐻
)

=
󵄩󵄩󵄩󵄩󵄩
𝑢
𝑘
− 𝑢
∗󵄩󵄩󵄩󵄩󵄩

2

𝐻
− 𝛾 (2 − 𝛾) 𝛼

∗

𝑘

× ⟨𝑢
𝑘
− 𝑢̃
𝑘
, 𝑄 (𝑢

𝑘
− 𝑢̃
𝑘
)⟩

≤
󵄩󵄩󵄩󵄩󵄩
𝑢
𝑘
− 𝑢
∗󵄩󵄩󵄩󵄩󵄩

2

𝐻
− 𝛾 (2 − 𝛾) 𝛼

∗

𝑘
(1 −

𝜇

2
) ‖𝑢 − 𝑢̃‖

2

𝐻
.

(47)

Moreover, it follows from (26) that the step size

𝛼
∗

𝑘
=

󵄩󵄩󵄩󵄩󵄩
𝑢𝑘 − 𝑢̃𝑘

󵄩󵄩󵄩󵄩󵄩

2

𝑄+𝑄𝑇

2
󵄩󵄩󵄩󵄩𝑀 (𝑢

𝑘 − 𝑢̃𝑘)
󵄩󵄩󵄩󵄩
2

𝐻

=

󵄩󵄩󵄩󵄩󵄩
𝑢𝑘 − 𝑢̃𝑘

󵄩󵄩󵄩󵄩󵄩

2

𝑄+𝑄𝑇

2
󵄩󵄩󵄩󵄩𝑢
𝑘 − 𝑢̃𝑘

󵄩󵄩󵄩󵄩
2

𝑀𝑇𝐻𝑀

=
1

2
((
󵄩󵄩󵄩󵄩󵄩
𝑢
𝑘
− 𝑢̃
𝑘󵄩󵄩󵄩󵄩󵄩

2

𝑀𝑇𝐻𝑀
+ 𝑟
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘
− 𝑥
𝑘󵄩󵄩󵄩󵄩󵄩

2

+ 𝑠
󵄩󵄩󵄩󵄩󵄩
𝑦
𝑘
− 𝑦
𝑘󵄩󵄩󵄩󵄩󵄩

2

+ (
1

𝛽

󵄩󵄩󵄩󵄩󵄩
𝜆
𝑘
− 𝜆̃
𝑘󵄩󵄩󵄩󵄩󵄩

2

−
1

𝑟

󵄩󵄩󵄩󵄩󵄩
𝐴
𝑇
(𝜆
𝑘
− 𝜆̃
𝑘
)
󵄩󵄩󵄩󵄩󵄩

2

−
1

𝑠

󵄩󵄩󵄩󵄩󵄩
𝐵
𝑇
(𝜆
𝑘
− 𝜆̃
𝑘
)
󵄩󵄩󵄩󵄩󵄩

2

))

× (
󵄩󵄩󵄩󵄩󵄩
𝑢
𝑘
− 𝑢̃
𝑘󵄩󵄩󵄩󵄩󵄩

2

𝑀𝑇𝐻𝑀
)
−1

)

≥
1

2
((
󵄩󵄩󵄩󵄩󵄩
𝑢
𝑘
− 𝑢̃
𝑘󵄩󵄩󵄩󵄩󵄩

2

𝑀𝑇𝐻𝑀
+ 𝑟
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘
− 𝑥
𝑘󵄩󵄩󵄩󵄩󵄩

2

+ 𝑠
󵄩󵄩󵄩󵄩󵄩
𝑦
𝑘
− 𝑦
𝑘󵄩󵄩󵄩󵄩󵄩

2

+(
1

𝛽
−
1

𝑟

󵄩󵄩󵄩󵄩󵄩
𝐴
𝑇
𝐴
󵄩󵄩󵄩󵄩󵄩
−
1

𝑠

󵄩󵄩󵄩󵄩󵄩
𝐵
𝑇
𝐵
󵄩󵄩󵄩󵄩󵄩
)
󵄩󵄩󵄩󵄩󵄩
𝜆
𝑘
− 𝜆̃
𝑘󵄩󵄩󵄩󵄩󵄩

2

)

×(
󵄩󵄩󵄩󵄩󵄩
𝑢
𝑘
− 𝑢̃
𝑘󵄩󵄩󵄩󵄩󵄩

2

𝑀𝑇𝐻𝑀
)
−1

) .

(48)
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Based on the conditions (33), we have

𝑟
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘
− 𝑥
𝑘󵄩󵄩󵄩󵄩󵄩

2

+ 𝑠
󵄩󵄩󵄩󵄩󵄩
𝑦
𝑘
− 𝑦
𝑘󵄩󵄩󵄩󵄩󵄩

2

+ (
1

𝛽
−
1

𝑟

󵄩󵄩󵄩󵄩󵄩
𝐴
𝑇
𝐴
󵄩󵄩󵄩󵄩󵄩
−
1

𝑠

󵄩󵄩󵄩󵄩󵄩
𝐵
𝑇
𝐵
󵄩󵄩󵄩󵄩󵄩
)
󵄩󵄩󵄩󵄩󵄩
𝜆
𝑘
− 𝜆̃
𝑘󵄩󵄩󵄩󵄩󵄩

2

≥ 0.

(49)

Hence,

𝛼
∗

𝑘
≥
1

2

󵄩󵄩󵄩󵄩󵄩
𝑢𝑘 − 𝑢̃𝑘

󵄩󵄩󵄩󵄩󵄩

2

𝑀𝑇𝐻𝑀

󵄩󵄩󵄩󵄩𝑢
𝑘 − 𝑢̃𝑘

󵄩󵄩󵄩󵄩
2

𝑀𝑇𝐻𝑀

=
1

2
. (50)

Substituting (50) into (47), we have
󵄩󵄩󵄩󵄩󵄩
𝑢
𝑘+1
− 𝑢
∗󵄩󵄩󵄩󵄩󵄩

2

𝐻
≤
󵄩󵄩󵄩󵄩󵄩
𝑢
𝑘
− 𝑢
∗󵄩󵄩󵄩󵄩󵄩

2

𝐻

−
1

2
𝑟 (2 − 𝑟) (1 −

𝜇

2
)
󵄩󵄩󵄩󵄩󵄩
𝑢
𝑘
− 𝑢̃
𝑘󵄩󵄩󵄩󵄩󵄩

2

𝐻
.

(51)

Thus, we obtain the assertion of this theorem.

Based on the earlier results, we are now ready to prove the
global convergence of the algorithm.

Theorem 14. The sequence {𝑢𝑘} generated by the proposed
algorithm converges to a solution of SVI (Ω, 𝐹).

Proof. We prove the convergence of the proposed algorithm
by following the standard analytic framework of contraction-
type methods. It follows from (46) that {𝑢𝑘} is bounded, and
we have that

lim
𝑘→∞

󵄩󵄩󵄩󵄩󵄩
𝑢
𝑘
− 𝑢̃
𝑘󵄩󵄩󵄩󵄩󵄩𝐻
= 0. (52)

Consequently,

lim
𝑘→∞

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘
− 𝑥
𝑘󵄩󵄩󵄩󵄩󵄩
= 0, lim

𝑘→∞

󵄩󵄩󵄩󵄩󵄩
𝑦
𝑘
− 𝑦
𝑘󵄩󵄩󵄩󵄩󵄩
= 0,

lim
𝑘→∞

󵄩󵄩󵄩󵄩󵄩
𝐴𝑥
𝑘
+ 𝐵𝑦
𝑘
− 𝑏
󵄩󵄩󵄩󵄩󵄩
= lim
𝑘→∞

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

1

𝛽
(𝜆
𝑘
− 𝜆̃
𝑘
)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
= 0,

(53)

since (see (22) and (23))

𝑥
𝑘
= 𝑃X [𝑥

𝑘
−
1

𝑟
(𝑓 (𝑥

𝑘
) − 𝐴
𝑇
𝜆̃
𝑘
)

+ (𝑥
𝑘
− 𝑥
𝑘
) +
1

𝑟
𝐴
𝑇
(𝜆
𝑘
− 𝜆̃
𝑘
)] ,

𝑦
𝑘
= 𝑃Y [𝑦

𝑘
−
1

𝑠
(𝑔 (𝑦
𝑘
) − 𝐵
𝑇
𝜆̃
𝑘
)

+ (𝑦
𝑘
− 𝑦
𝑘
) +
1

𝑠
𝐵
𝑇
(𝜆
𝑘
− 𝜆̃
𝑘
)] ,

𝜆̃
𝑘
= 𝜆
𝑘
− 𝛽 (𝐴𝑥

𝑘
+ 𝐵𝑦
𝑘
− 𝑏) .

(54)

It follows from (53) that

lim
𝑘→∞

𝑥
𝑘
− 𝑃X [𝑥

𝑘
−
1

𝑟
(𝑓 (𝑥

𝑘
) − 𝐴
𝑇
𝜆̃
𝑘
)] = 0,

lim
𝑘→∞

𝑦
𝑘
− 𝑃Y [𝑦

𝑘
−
1

𝑠
(𝑔 (𝑦
𝑘
) − 𝐵
𝑇
𝜆̃
𝑘
)] = 0,

lim
𝑘→∞

𝐴𝑥
𝑘
+ 𝐵𝑦
𝑘
− 𝑏 = 0.

(55)

Because 𝑢̃𝑘 is also bounded, it has at least one cluster point.
Let 𝑢∞ be a cluster point of 𝑢̃𝑘, and let 𝑢̃𝑘𝑗 be the subsequence
converging to 𝑢∞. It follows from (55) that

lim
𝑗→∞

𝑥
𝑘
𝑗 − 𝑃X [𝑥

𝑘
𝑗 −
1

𝑟
(𝑓 (𝑥

𝑘
𝑗) − 𝐴

𝑇
𝜆̃
𝑘
𝑗)] = 0,

lim
𝑗→∞

𝑦
𝑘
𝑗 − 𝑃Y [𝑦

𝑘
𝑗 −
1

𝑠
(𝑔 (𝑦
𝑘
𝑗) − 𝐵

𝑇
𝜆̃
𝑘
𝑗)] = 0,

lim
𝑗→∞

𝐴𝑥
𝑘
𝑗 + 𝐵𝑦

𝑘
𝑗 − 𝑏 = 0.

(56)

Consequently,

𝑥
∞
− 𝑃X [𝑥

∞
−
1

𝑟
(𝑓 (𝑥
∞
) − 𝐴
𝑇
𝜆
∞
)] = 0,

𝑦
∞
− 𝑃Y [𝑦

∞
−
1

𝑠
(𝑔 (𝑦
∞
) − 𝐵
𝑇
𝜆
∞
)] = 0,

𝐴𝑥
∞
+ 𝐵𝑦
∞
− 𝑏 = 0.

(57)

Using the continuity of 𝐹 and the projection operator 𝑃Ω(⋅),
we have that 𝑢∞ is a solution of SVI (Ω, 𝐹).

On the other hand, by taking limits over the subsequences
in (52) and using lim𝑗→∞𝑢̃

𝑘
𝑗 = 𝑢∞, we have that, for any

𝑘 > 𝑘𝑗, it follows from (46) that

󵄩󵄩󵄩󵄩󵄩
𝑢
𝑘
− 𝑢
∞󵄩󵄩󵄩󵄩󵄩𝐻

≤
󵄩󵄩󵄩󵄩󵄩
𝑢
𝑘
𝑗 − 𝑢
∞󵄩󵄩󵄩󵄩󵄩𝐻
. (58)

Thus, the sequence {𝑢𝑘} converges to 𝑢∞, which is a solution
of SVI (Ω, 𝐹).

4. Numerical Experiments

In this section, we present some numerical experiments
results to show the effectiveness of the proposed algorithm.
The codes are run on a notebook computer with Inter(R)
Core(TM) 2 CPU 2.0GHZ and RAM 2.00GM under MAT-
LAB Version 2009b.

We consider the following optimization problem:

min
𝑥∈R𝑛,𝑦∈R𝑝

1

2
𝑥
𝑇
𝑃𝑥 +

1

2
𝑦
𝑇
𝑄𝑦

s.t. 𝐴𝑥 + 𝐵𝑦 = 𝑏,

(59)

where 𝑃 ∈ R𝑛×𝑛, 𝑄 ∈ R𝑝×𝑝 are symmetric positive
semidefinite matrixes, 𝐴 ∈ R𝑚×𝑛, 𝐵 ∈ R𝑚×𝑝, and 𝑏 ∈ R𝑚.

Using the KKT condition, the problem (59) can be
converted into the following variational inequality: find𝑤∗ =
(𝑥∗, 𝑦∗, 𝜆∗) ∈ R𝑛+𝑝+𝑚 such that

⟨

𝑥󸀠 − 𝑥∗, 𝑃𝑥∗ − 𝐴𝑇𝜆∗

𝑦
󸀠
− 𝑦
∗
, 𝑄𝑦

∗
− 𝐵
𝑇
𝜆
∗

𝜆󸀠 − 𝜆∗, 𝐴𝑥∗ + 𝐵𝑦∗ − 𝑏

⟩ ≥ 0, ∀𝑤
󸀠
∈ R
𝑛+𝑝+𝑚

. (60)

In this example, we randomly created the input data of the
tested collection in the following manner.
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Table 1: Numerical results for the example.

𝑚 𝑛 𝑝
PDM New algorithm

Iter. CPU (s) Error Iter. CPU (s) Error
10 10 10 237 0.075 9.956 × 10−5 237 0.075 9.895 × 10−5

10 15 15 250 0.143 9.758 × 10−5 250 0.086 9.815 × 10−5

20 20 20 314 0.115 9.669 × 10
−5 314 0.112 9.728 × 10

−5

20 30 30 372 0.175 9.586 × 10−5 372 0.178 9.597 × 10−5

40 50 50 561 3.443 9.631 × 10−5 561 1.340 9.625 × 10−5

50 80 80 714 3.534 9.990 × 10
−5 715 1.963 9.892 × 10

−5

60 100 100 842 8.107 9.982 × 10−5 842 7.274 9.996 × 10−5

100 120 120 1065 9.773 9.926 × 10−5 1065 11.786 9.938 × 10−5

150 200 200 1661 24.451 9.942 × 10
−5 1661 21.366 9.947 × 10

−5

200 250 250 2055 38.037 9.907 × 10−5 2055 35.020 9.911 × 10−5

200 300 300 2445 66.520 9.964 × 10−5 2445 61.673 9.970 × 10−5

(i) 𝑃 and𝑄were generated randomly with eigenvalues in
[5, 10] according to the following MATLAB scripts:

𝑃 = rand (𝑛); [𝑄1, 𝑅1] = qr (𝑃),
𝑆 = 5 + 5 ∗ rand (𝑛, 1); 𝑃 = 𝑄1 ∗ diag (𝑆) ∗ 𝑄1󸀠,
𝑄 = rand (𝑝); [𝑄2, 𝑅2] = qr (𝑄),
𝑆 = 5 + 5 ∗ rand (𝑚, 1); 𝑃 = 𝑄2 ∗ diag (𝑆) ∗𝑄2󸀠.

(ii) 𝐴 and 𝐵 were generated randomly with singular
values in [0, 3], and the maximum singular value is
3 according to the following MATLAB scripts:

𝐴 = rand (𝑚, 𝑛); [𝑈, 𝑆, 𝑉] = svd (𝐴),
𝑆 = 𝑆/𝑆 (1, 1) ∗ 3; 𝐴 = 𝑈 ∗ 𝑆 ∗ 𝑉󸀠,
𝐵 = rand (𝑚, 𝑝); [𝑈, 𝑆, 𝑉] = svd (𝐵),
𝑆 = 𝑆/𝑆(1, 1) ∗ 3; 𝐵 = 𝑈 ∗ 𝑆 ∗ 𝑉󸀠.

(iii) 𝑏 is generated randomly with 𝑏 = rand (𝑚, 1) ∗ 10.

According to the data generation, we have ‖𝐴𝑇𝐴‖ = 9 and
‖𝐵𝑇𝐵‖ = 9.

To apply (22)–(25) to solve (59), instead of choosing the
step length 𝛼𝑘 judiciously as (24), we can simply choose 𝛼𝑘 ≡
1 by takeing 𝑟 = 1/𝛼∗

𝑘
(since 𝛼∗

𝑘
> 1/2 when 𝑢 ̸= 𝑢̃, we have

𝑟 ∈ (0, 2) which satisfies the requirement). Then, we obtain
the following subproblems which are all easy enough to have
closed-form solutions:

𝑥
𝑘
= (𝑟𝐼 + 𝑃)

−1
(𝑟𝑥
𝑘
+ 𝐴
𝑇
𝜆
𝑘
) ,

𝑦
𝑘
= (𝑠𝐼 + 𝑄)

−1
(𝑠𝑦
𝑘
+ 𝐵
𝑇
𝜆
𝑘
) ,

𝜆̃
𝑘
= 𝜆
𝑘
− 𝛽 (𝐴𝑥

𝑘
+ 𝐵𝑦
𝑘
− 𝑏) ,

𝑥
𝑘+1
= 𝑥
𝑘
−
1

𝑟
𝐴
𝑇
(𝜆
𝑘
− 𝜆̃
𝑘
) ,

𝑦
𝑘+1
= 𝑦
𝑘
−
1

𝑠
𝐵
𝑇
(𝜆
𝑘
− 𝜆̃
𝑘
) ,

𝜆
𝑘+1
= 𝜆̃
𝑘
.

(61)

For comparison, we also solve it by the parallel decom-
position method (denoted by PDM) that has been studied
extensively in the literature (e.g., [21, 22]). For PDM, the
restrictions on the proximal parameters are the same as our
algorithm. By applying PDM to (59), we obtain the following
subproblems which are also easy enough to have closed-form
solutions:

𝑥
𝑘+1
= (𝑟𝐼 + 𝑃)

−1
(𝑟𝑥
𝑘
− 𝛽𝐴
𝑇
(𝐴𝑥
𝑘
+ 𝐵𝑦
𝑘
− 𝑏 −

1

𝛽
𝜆
𝑘
)) ,

𝑦
𝑘+1
= (𝑠𝐼 + 𝑄)

−1
(𝑠𝑦
𝑘
− 𝛽𝐵
𝑇
(𝐴𝑥
𝑘
+ 𝐵𝑦
𝑘
− 𝑏 −

1

𝛽
𝜆
𝑘
)) ,

𝜆
𝑘+1
= 𝜆
𝑘
− 𝛽 (𝐴𝑥

𝑘+1
+ 𝐵𝑦
𝑘+1
− 𝑏) .

(62)

We report the numerical experiments by building their
performance profiles in terms of the number of iterations
and the total of computational time. Here, we take 𝛽 = 3 +
(𝑛/10), 𝑟 = 𝑠 = 20𝛽 for the two algorithms. We set the initial
vector (𝑥0, 𝑦0, 𝜆0) = (0, 0, 0), and the stopping criterion is

Tol = max { 󵄩󵄩󵄩󵄩󵄩𝑥
𝑘+1
− 𝑥
𝑘󵄩󵄩󵄩󵄩󵄩∞
,

󵄩󵄩󵄩󵄩󵄩
𝑦
𝑘+1
− 𝑦
𝑘󵄩󵄩󵄩󵄩󵄩∞
,
󵄩󵄩󵄩󵄩󵄩
𝜆
𝑘+1
− 𝜆
𝑘󵄩󵄩󵄩󵄩󵄩∞
} ≤ 10

−4
.

(63)

The computational results are given inTable 1 for different
choices of𝑚, 𝑛, and 𝑝. We reported the number of iterations
(Iter.) and the computing time in seconds (CPU(s)) when the
mentioned stopping criterion is achieved.

The data in Table 1 indicates clearly that the proposed
method is efficient compared with the classical PDM in [21,
22]. We can observe that the iteration numbers and the CPU
time of the two algorithms are almost the same.

5. Conclusions

In this paper, we proposed a new implementable algorithm
for solving the monotone variational inequalities with sep-
arable structure. At each iteration, the algorithm performs
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two easily implementable projections parallelly to produce
a predictor and then makes a simple correction to generate
the new iterate. Under some mild conditions, we proved the
global convergence of the new method. We also give some
numerical experiments to show that the proposed method is
applicable and valid.
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The purpose of this paper is extending the convergence analysis of Han and Yuan (2012) for alternating direction method of
multipliers (ADMM) from the strongly convex to a more general case. Under the assumption that the individual functions are
composites of strongly convex functions and linear functions, we prove that the classical ADMMfor separable convex programming
with two blocks can be extended to the case with more than three blocks. The problems, although still very special, arise naturally
from some important applications, for example, route-based traffic assignment problems.

1. Introduction

In this paper, we consider the convex programming with
separable functions:

min{
𝑚

∑
𝑖=1

𝑓𝑖 (𝑥𝑖) |

𝑚

∑
𝑖=1

𝐴 𝑖𝑥𝑖 = 𝑏, 𝑥𝑖 ∈ X𝑖, 𝑖 = 1, 2, . . . , 𝑚} ,

(1)

where 𝑓𝑖 : R
𝑛
𝑖 → R ∪ {+∞} (𝑖 = 1, 2, . . . , 𝑚) are closed

proper convex functions (not necessarily smooth); 𝐴 𝑖 ∈

R𝑙×𝑛𝑖 (𝑖 = 1, 2, . . . , 𝑚); X𝑖 ⊆ R𝑛𝑖 (𝑖 = 1, 2, . . . , 𝑚) are closed
convex sets; 𝑏 ∈ R𝑙 and ∑𝑚

𝑖=1
𝑛𝑖 = 𝑛. Throughout the paper,

we assume that the solution set of (1) is nonempty.
For the special case of (1) with𝑚 = 2,

min {𝑓1 (𝑥1) + 𝑓2 (𝑥2) |

𝐴1𝑥1 + 𝐴2𝑥2 = 𝑏, 𝑥𝑖 ∈ X𝑖, 𝑖 = 1, 2} ,
(2)

the problem has been studied extensively. Among lots of
numerical methods, one of the most popular methods is

the alternating direction method of multipliers (ADMM)
which was presented originally in [1, 2]. The iterative scheme
of ADMM for (2) is as follows:

𝑥
𝑘+1

1
= argmin{𝑓1 (𝑥1) − (𝜆

𝑘
)
𝑇

𝐴1𝑥1

+
𝛽

2

󵄩󵄩󵄩󵄩󵄩
𝐴1𝑥1 + 𝐴2𝑥

𝑘

2
− 𝑏

󵄩󵄩󵄩󵄩󵄩

2

| 𝑥1 ∈ X𝑖} ;

𝑥
𝑘+1

2
= argmin{𝑓2 (𝑥2) − (𝜆

𝑘
)
𝑇

𝐴2𝑥2

+
𝛽

2

󵄩󵄩󵄩󵄩󵄩
𝐴1𝑥
𝑘+1

1
+ 𝐴2𝑥2 − 𝑏

󵄩󵄩󵄩󵄩󵄩

2

| 𝑥2 ∈ X2} ;

𝜆
𝑘+1

= 𝜆
𝑘
− 𝛽 (𝐴1𝑥

𝑘+1

1
+ 𝐴2𝑥

𝑘+1

2
− 𝑏) ,

(3)

where 𝜆𝑘 is Lagrange multiplier associated with the linear
constraints and 𝛽 > 0 is the penalty parameter. The
convergence of ADMM for (2) was also established under
the condition that the involved functions are convex and the
constrained sets are convex too.
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While there are diversified applications whose objective
function is separable into𝑚 ≥ 3 individual convex functions
without coupled variables, such as traffic problems, the
problem of recovering the low-rank, sparse components of
matrices from incomplete and noisy observation in [3], the
constrained total-variation image restoration and reconstruc-
tion problem in [4, 5], and the minimal surface PDE problem
in [6], it is thus natural to extend ADMM from 2 blocks to𝑚
blocks, resulting in the iterative scheme:

𝑥
𝑘+1

1
= argmin {𝑓1 (𝑥1) − (𝜆

𝑘
)
𝑇

𝐴1𝑥1

+
𝛽

2

󵄩󵄩󵄩󵄩󵄩
𝐴1𝑥1 + 𝐴2𝑥

𝑘

2
+ ⋅ ⋅ ⋅

+𝐴𝑚𝑥
𝑘

𝑚
− 𝑏

󵄩󵄩󵄩󵄩󵄩

2

| 𝑥1 ∈ X1} ;

𝑥
𝑘+1

2
= argmin {𝑓2 (𝑥2) − (𝜆

𝑘
)
𝑇

𝐴2𝑥2

+
𝛽

2

󵄩󵄩󵄩󵄩󵄩
𝐴1𝑥
𝑘+1

1
+ 𝐴2𝑥2 + ⋅ ⋅ ⋅

+𝐴𝑚𝑥
𝑘

𝑚
− 𝑏

󵄩󵄩󵄩󵄩󵄩

2

| 𝑥2 ∈ X2} ;

...

𝑥
𝑘+1

𝑚
= argmin {𝑓𝑚 (𝑥𝑚) − (𝜆

𝑘
)
𝑇

𝐴𝑚𝑥𝑚

+
𝛽

2

󵄩󵄩󵄩󵄩󵄩
𝐴1𝑥
𝑘+1

1
+ 𝐴2𝑥

𝑘+1

2
⋅ ⋅ ⋅

+𝐴𝑚𝑥𝑚 − 𝑏
󵄩󵄩󵄩󵄩󵄩

2

| 𝑥𝑚 ∈ X𝑚} ;

𝜆
𝑘+1

= 𝜆
𝑘
− 𝛽 (𝐴1𝑥

𝑘+1

1
+ 𝐴2𝑥

𝑘+1

2
+ ⋅ ⋅ ⋅ + 𝐴𝑚𝑥

𝑘+1

𝑚
− 𝑏) .

(4)

Unfortunately, the convergence of the natural extension
is still open under convex assumption, and the recent conver-
gence results [7] are under the assumption that all the func-
tions involved in the objective functions are strongly convex.
This lack of convergence has inspired some ADM-based
methods, for example, prediction-correction type method
[3, 8–11], that is, the iterate 𝑥𝑘+1

1
, 𝑥
𝑘+1

2
, . . . , 𝑥

𝑘+1

𝑚
is regarded

as a prediction, and the next iterate is a correction for it.
However, the numerical results show that the algorithm (4)
always performs better than these variants. Recently, Han and
Yuan [7] show that the global convergence of the extension of
ADMMfor𝑚 ≥ 3 is valid if the involved functions are further
assumed to be strongly convex. This result does not answer
the open problem regarding the convergence of the extension
of ADMM under the convex assumption, but it makes a key
progress towards this objective.

In this paper, we consider the separable convex optimiza-
tion problem (1) where each individual function 𝑓𝑖 is the
combination of a strongly convex function 𝑔𝑖 and a linear

transform 𝐵𝑖. That is, (1) takes the following form:

min{
𝑚

∑
𝑖=1

𝑔𝑖 (𝐵𝑖𝑥𝑖) |

𝑚

∑
𝑖=1

𝐴 𝑖𝑥𝑖 = 𝑏, 𝑥𝑖 ∈ X𝑖, 𝑖 = 1, 2, . . . , 𝑚} ,

(5)

where 𝑔𝑖 : R
𝑠
𝑖 → R ∪ {+∞} (𝑖 = 1, 2, . . . , 𝑚) are closed

proper strongly convex function with the modulus 𝜇𝑖 (not
necessarily smooth); 𝐴 𝑖 ∈ R𝑙×𝑛𝑖 (𝑖 = 1, 2, . . . , 𝑚); X𝑖 ⊆
R𝑛𝑖 (𝑖 = 1, 2, . . . , 𝑚) are closed convex sets; 𝑏 ∈ R𝑙 and
∑
𝑚

𝑖=1
𝑛𝑖 = 𝑛; 𝐵𝑖 ∈ R𝑠𝑖×𝑛𝑖 (𝑖 = 1, 2, . . . , 𝑚), where 𝐵𝑖 may

not have full column rank (if 𝐵𝑖 has full column rank, the
composite function is strongly convex and reduces to the
case considered in [7]). Note that although (5) is very special,
it arises frequently from many applications. One example is
under the route-based traffic assignment problem [12], where
𝑔𝑖 is the link traffic cost, 𝐵𝑖 is the link-path incidence matrix,
and 𝑥 is the path follow vector.

In the following, we abuse a little the notation and still
write 𝑔𝑖 with 𝑓𝑖; that is, the problem under consideration is

min{
𝑚

∑
𝑖=1

𝑓𝑖 (𝐵𝑖𝑥𝑖) |

𝑚

∑
𝑖=1

𝐴 𝑖𝑥𝑖 = 𝑏, 𝑥𝑖 ∈ X𝑖, 𝑖 = 1, 2, . . . , 𝑚} ,

(6)

where 𝑓𝑖 : R
𝑠
𝑖 → R ∪ {+∞} (𝑖 = 1, 2, . . . , 𝑚) are closed

proper strongly convex function with the modulus 𝜇𝑖 (not
necessarily smooth).

The rest of the paper is organized as follows. In the next
section, we list some necessary preliminary results that will be
used in the rest of the paper. We then describe the algorithm
formally and analyze its global convergence under reasonable
conditions in Section 3. We complete the paper with some
conclusions in Section 4.

2. Preliminaries

In this section, we summarize some basic concepts and their
properties that will be useful for further discussion.

Let ‖ ⋅ ‖𝑝 denote the standard definition of the 𝑙𝑝-norm,
and particularly, let ‖ ⋅ ‖ = ‖ ⋅ ‖2 denote the Euclidean norm.
For a symmetric and positive definite matrix 𝐺, we denote
‖ ⋅ ‖𝐺 the 𝐺-norm, that is, ‖𝑥‖𝐺 = √𝑥𝑇𝐺𝑥. If 𝐺 is the product
of a positive parameter 𝛽 and the identity matrix 𝐼, that is,
𝐺 = 𝛽𝐼, we use the simpler notation: ‖ ⋅ ‖𝐺 = ‖ ⋅ ‖𝛽.

Let 𝑓 : R𝑛 → R ∪ {+∞}. If the domain of 𝑓 denoted by
dom𝑓 = {𝑥 ∈ R𝑛 | 𝑓(𝑥) < +∞} is not empty, then 𝑓 is said
to be proper. If for any 𝑥 ∈ R𝑛 and 𝑦 ∈ R𝑛, we have

𝑓 (𝑡𝑥 + (1 − 𝑡) 𝑦) ≤ 𝑡𝑓 (𝑥) + (1 − 𝑡) 𝑓 (𝑦) , ∀𝑡 ∈ [0, 1] ,

(7)

then 𝑓 is said to be convex. Furthermore, 𝑓 is said to be
strongly convex with the modulus 𝜇 > 0 if and only if

𝑓 (𝑡𝑥 + (1 − 𝑡) 𝑦) ≤ 𝑡𝑓 (𝑥) + (1 − 𝑡) 𝑓 (𝑦)

−
1

2
𝜇𝑡 (1 − 𝑡)

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩
2
, ∀𝑡 ∈ [0, 1] .

(8)



Abstract and Applied Analysis 3

A set-valued operator 𝑇 defined on R𝑛 is said to be
monotone if and only if

(𝑢 − 𝑢̃)
𝑇
(𝑤 − 𝑤) ≥ 0, ∀𝑤 ∈ 𝑇𝑢, ∀𝑤 ∈ 𝑇𝑢̃, (9)

and 𝑇 is said to be strongly monotone with modulus 𝜇 > 0 if
and only if

(𝑢 − 𝑢̃)
𝑇
(𝑤 − 𝑤) ≥ 𝜇‖𝑢 − 𝑢̃‖

2
, ∀𝑤 ∈ 𝑇𝑢, ∀𝑤 ∈ 𝑇𝑢̃. (10)

Let Γ0(R
𝑛) denote the set of closed proper convex

functions from R𝑛 to R ∪ {+∞}. For any 𝑓 ∈ Γ0(R
𝑛), the

subdifferential of 𝑓 which is the set-valued operator, defined
by

𝜕𝑓 : 𝑥 󳨃󳨀→ {𝜉 ∈ R
𝑛
|

(𝑦 − 𝑥)
𝑇
𝜉 + 𝑓 (𝑥) ≤ 𝑓 (𝑦) , ∀𝑦 ∈ dom 𝑓} ,

(11)

is monotone. Moreover, if 𝑓 is strongly convex function with
the modulus 𝜇, 𝜕𝑓 is strongly monotone with the modulus 𝜇.

Let 𝐹 be a mapping from a setΩ ⊂ R𝑛 → R𝑛. Then 𝐹 is
said to be co-coercive onΩ with modulus 𝛾 > 0, if

(𝑢 − V)𝑇 (𝐹 (𝑢) − 𝐹 (V)) ≥ 𝛾‖𝐹 (𝑢) − 𝐹 (V)‖2, ∀𝑢, V ∈ Ω.
(12)

Throughout the paper, we make the following assump-
tions.

Assumption 1. (i) 𝑛𝑖‖𝐵𝑖𝑥𝑖‖ ≥ ‖𝐴 𝑖‖‖𝑥𝑖‖, ∀𝑥𝑖 ∈ R𝑛𝑖 , 𝑖 ∈

{1, 2, . . . , 𝑚}; (ii) the solution set of (1) is nonempty.

Remark 2. Assumption 1 is a little restrictive. However, some
problems can satisfy it. A remarkable one is the following
route-based traffic assignment problem.

Consider a transportation network 𝐺(N, 𝐸), where N
is the set of nodes. We denote the set of links by A, and
the number of the element of A by 𝑁A, respectively. Let RS
denote the set of origin-destination (O-D) pairs. For an O-D
pair rs ∈ RS, let 𝑞rs be its traffic demand; let 𝑃rs be the set of
routes connecting rs, and 𝑝 ∈ 𝑃rs; Nrs denotes the number
of the routes connecting rs; let ℎrs

𝑝
be the route flow on 𝑝. The

feasible route flow vector ℎ = (𝑝 ∈ 𝑃rs | rs ∈ RS) is thus given
by

𝐻 =
{

{

{

ℎ | ∑
𝑝∈𝑃rs

ℎ
rs
𝑝
= 𝑞

rs
, ℎ

rs
𝑝
≥ 0, ∀𝑝 ∈ 𝑃

rs
, rs ∈ RS

}

}

}

= {ℎ | 𝑒
𝑇
(ℎ

rs
1
, ℎ

rs
2
, . . . , ℎ

rs
𝑁rs) = 𝑞

rs
,

ℎ
rs
𝑝
≥ 0, ∀𝑝 ∈ 𝑃

rs
, rs ∈ RS} .

(13)

Define 𝐸 as the link-route incidence matrix such that

𝛿
𝑎

𝑝
= {

1, if 𝑝 contains link 𝑎

0, otherwise.
(14)

Then, link flow 𝑓𝑎 can be written as

𝑓𝑎 = ∑
rs∈RS

∑
𝑝∈𝑃rs

𝛿
𝑎

𝑝
ℎ
rs
𝑝
, ∀𝑎 ∈ A,

𝐹 = 𝐸𝐻 = {𝑓 | 𝑓 = 𝐸ℎ, ℎ ∈ 𝐻} .

(15)

By denoting the link cost function as 𝐶𝑎(𝑓) and for the
additive case, the route cost function as 𝐶𝑝(ℎ), they can be
related by

𝐶𝑝ℎ = ∑
𝑎∈A

𝛿
𝑎

𝑝
𝐶𝑎 (𝑓) . (16)

The user equilibrium traffic assignment problem can be
formulated as a VI: find 𝑓∗ ∈ 𝐹 such that

(𝑓 − 𝑓
∗
)
𝑇
𝐶 (𝑓
∗
) ≥ 0, ∀𝑓 ∈ 𝐹, (17)

or equivalently, find ℎ∗ ∈ 𝐻 such that

(ℎ − ℎ
∗
)
𝑇
𝐸
𝑇
𝐶 (𝐸ℎ

∗
) ≥ 0, ∀ℎ ∈ 𝐻, (18)

where 𝐶 = {𝐶𝑎} is the vector of the link cost function.
In general, it is easy to show that 𝑒 is a row of 𝐸 and 𝐸

is not a full column rank (if 𝐸 is, then the above variational
inequality is strongly monotone).

For simplicity, in the following, we only consider the case
for 𝑚 = 3. Notice that for 𝑚 ≥ 3, it can be proved similarly
following the processing of𝑚 = 3.

3. The Method

In this section, we consider the following convex minimiza-
tion problem with linear constraint, where the objective
function is in the form of the sum of three individual
functions without coupled variable:

min 𝑓1 (𝐵1𝑥1) + 𝑓2 (𝐵2𝑥2) + 𝑓3 (𝐵3𝑥3)

s.t. 𝐴1𝑥1 + 𝐴2𝑥2 + 𝐴3𝑥3 = 𝑏, 𝑥𝑖 ∈ X𝑖, 𝑖 = 1, 2, 3,

(19)

where 𝑓𝑖 : R
𝑠
𝑖 → R ∪ {+∞} (𝑖 = 1, 2, 3) are closed proper

strongly convex functionwith themodulus𝜇𝑖 (not necessarily
smooth); 𝐵𝑖 ∈ R𝑠𝑖×𝑛𝑖 (𝑖 = 1, 2, 3), 𝐴 𝑖 ∈ R𝑙×𝑛𝑖 (𝑖 = 1, 2, 3);
X𝑖 ⊆ R𝑛𝑖 (𝑖 = 1, 2, 3) are closed convex sets; 𝑏 ∈ R𝑙 and
∑
3

𝑖=1
𝑛𝑖 = 𝑛.
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The iterative scheme of ADMM for problem (19) is as
follows:

𝑥
𝑘+1

1
= argmin {𝑓1 (𝐵1𝑥1) − (𝜆

𝑘
)
𝑇

𝐴1𝑥1

+
𝛽

2

󵄩󵄩󵄩󵄩󵄩
𝐴1𝑥1

+𝐴2𝑥
𝑘

2
+ 𝐴3𝑥

𝑘

3
− 𝑏

󵄩󵄩󵄩󵄩󵄩

2

| 𝑥1 ∈ X1} ,

𝑥
𝑘+1

2
= argmin {𝑓2 (𝐵2𝑥2) − (𝜆

𝑘
)
𝑇

𝐴2𝑥2

+
𝛽

2

󵄩󵄩󵄩󵄩󵄩
𝐴1𝑥
𝑘+1

1

+𝐴2𝑥2 + 𝐴3𝑥
𝑘

3
− 𝑏

󵄩󵄩󵄩󵄩󵄩

2

| 𝑥2 ∈ X2} ,

𝑥
𝑘+1

3
= argmin {𝑓3 (𝐵3𝑥3) − (𝜆

𝑘
)
𝑇

𝐴3𝑥3

+
𝛽

2

󵄩󵄩󵄩󵄩󵄩
𝐴1𝑥
𝑘+1

1

+𝐴2𝑥
𝑘+1

2
+ 𝐴3𝑥3 − 𝑏

󵄩󵄩󵄩󵄩󵄩

2

| 𝑥3 ∈ X3} ,

𝜆
𝑘+1

= 𝜆
𝑘
− 𝛽 (𝐴1𝑥

𝑘+1

1
+ 𝐴2𝑥

𝑘+1

2
+ 𝐴3𝑥

𝑘+1

3
− 𝑏) ,

(20)

where 𝜆𝑘 is the Lagrangian multiplier associated with the
linear constraints and 𝛽 > 0 is the penalty parameter.

4. Convergence

In this section, we prove the convergence of the extended
ADMM for problem (19). As the assumptions aforemen-
tioned, by invoking the first-order necessary and sufficient
condition for convex programming, we easily see that the
problem (19) under the condition is characterized by the
following variational inequality (VI): find 𝑢∗ ∈ U and 𝜉∗

𝑖
∈

𝜕𝑓𝑖(𝐵𝑖𝑥
∗

𝑖
) such that

(𝑢 − 𝑢
∗
)
𝑇
𝑄 (𝑢
∗
) ≥ 0, ∀𝑢 ∈ U, (21)

where

𝑢 :=(

𝑥1
𝑥2
𝑥3
𝜆

) , 𝑄 (𝑢) :=(

𝐵𝑇
1
𝜉1 − 𝐴

𝑇

1
𝜆

𝐵𝑇
2
𝜉2 − 𝐴

𝑇

2
𝜆

𝐵
𝑇

3
𝜉3 − 𝐴

𝑇

3
𝜆

𝐴1𝑥1 + 𝐴2𝑥2 + 𝐴3𝑥3 − 𝑏

),

U = X1 ×X2 ×X3 ×R
𝑙
.

(22)

We denote the VI (21)-(22) by MVI(U, 𝑄).

Similarly, in [7], we propose an easily implementable
stopping criterion for executing (20):

max{max
1≤𝑖≤3

󵄩󵄩󵄩󵄩󵄩
𝐴 𝑖𝑥
𝑘

𝑖
− 𝐴 𝑖𝑥

𝑘+1

𝑖

󵄩󵄩󵄩󵄩󵄩
,

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

3

∑
𝑖=1

𝐴 𝑖𝑥
𝑘

𝑖
− 𝑏

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

} ≤ 𝜖, (23)

and its rationale can be seen in the following lemma.

Lemma 3 (see [7]). If ∑3
𝑖=1

𝐴 𝑖𝑥
𝑘

𝑖
− 𝑏 = 0 and 𝐴 𝑖𝑥

𝑘

𝑖
=

𝐴 𝑖𝑥
𝑘+1

𝑖
(𝑖 = 1, 2, 3), then (𝑥𝑘+1

1
, 𝑥𝑘+1
2

, 𝑥𝑘+1
3

, 𝜆𝑘+1) is a solution
of MVI(U, 𝑄).

Lemma 3 implies that the iterate {(𝑥𝑘
1
, 𝑥𝑘
2
, 𝑥𝑘
3
, 𝜆𝑘)} is a

solution of MVI(U, 𝑄) when the inequality (23) holds with
𝜖 = 0. Some techniques of establishing the error bounds in
[13] can help us analyze how precisely the iterate satisfies the
optimality conditions when the proposed stopping criterion
is satisfied with a tolerance 𝜖 > 0.

Lemma 4. Let (𝑥∗
1
, 𝑥∗
2
, 𝑥∗
3
, 𝜆∗) be the solution of the problem

(19), and let 𝜆∗ be a corresponding Lagrange multiplier
associated with the linear constraint. Then, the sequence
{(𝑥𝑘
1
, 𝑥𝑘
2
, 𝑥𝑘
3
, 𝜆𝑘)} generated by (20) satisfies

(𝜆
𝑘
− 𝜆
∗
)
𝑇

(

3

∑
𝑖=1

𝐴 𝑖𝑥
𝑘+1

𝑖
− 𝑏)

≥

3

∑
𝑖=1

(𝑥
𝑘+1

𝑖
− 𝑥
∗

𝑖
)
𝑇

(𝐵
𝑇

𝑖
𝜉
𝑘+1

𝑖
− 𝐵
𝑇

𝑖
𝜉
∗

𝑖
)

+ 𝛽

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

3

∑
𝑖=1

𝐴 𝑖𝑥
𝑘+1

𝑖
− 𝑏

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

+ 𝛽(𝐴1𝑥
𝑘+1

1
− 𝐴1𝑥

∗

1
)
𝑇

× [𝐴2𝑥
𝑘

2
− 𝐴2𝑥

𝑘+1

2
+ (𝐴3𝑥

𝑘

3
− 𝐴3𝑥

𝑘+1

3
)]

+ 𝛽(𝐴2𝑥
𝑘+1

2
− 𝐴2𝑥

∗

2
)
𝑇

(𝐴3𝑥
𝑘

3
− 𝐴3𝑥

𝑘+1

3
) .

(24)

Proof. By invoking the first-order optimality condition for
the 𝑥𝑘+1
𝑖

-related subproblem in (20), for any 𝑥𝑖 ∈ X𝑖, 𝑖 =

1, 2, 3, we get

(𝑥1 − 𝑥
𝑘+1

1
)
𝑇

{𝐵
𝑇

1
𝜉
𝑘+1

1

−𝐴
𝑇

1
[𝜆
𝑘
− 𝛽 (𝐴1𝑥

𝑘+1

1
+ 𝐴2𝑥

𝑘

2
+ 𝐴3𝑥

𝑘

3
− 𝑏)]}

≥ 0,

(𝑥2 − 𝑥
𝑘+1

2
)
𝑇

{𝐵
𝑇

2
𝜉
𝑘+1

2
− 𝐴
𝑇

2

× [𝜆
𝑘
− 𝛽 (𝐴1𝑥

𝑘+1

1
+ 𝐴2𝑥

𝑘+1

2
+ 𝐴3𝑥

𝑘

3
− 𝑏)]}

≥ 0,
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(𝑥3 − 𝑥
𝑘+1

3
)
𝑇

{𝐵
𝑇

3
𝜉
𝑘+1

3
− 𝐴
𝑇

3

× [𝜆
𝑘
− 𝛽 (𝐴1𝑥

𝑘+1

1
+ 𝐴2𝑥

𝑘+1

2
+ 𝐴3𝑥

𝑘+1

3
− 𝑏)]}

≥ 0.

(25)

Setting 𝑥𝑖 = 𝑥∗
𝑖
(𝑖 = 1, 2, 3) in (25), we have

(𝑥
∗

1
− 𝑥
𝑘+1

1
)
𝑇

{𝐵
𝑇

1
𝜉
𝑘+1

1

−𝐴
𝑇

1
[𝜆
𝑘
− 𝛽 (𝐴1𝑥

𝑘+1

1
+ 𝐴2𝑥

𝑘

2
+ 𝐴3𝑥

𝑘

3
− 𝑏)]}

≥ 0,

(𝑥
∗

2
− 𝑥
𝑘+1

2
)
𝑇

{𝐵
𝑇

2
𝜉
𝑘+1

2
− 𝐴
𝑇

2

× [𝜆
𝑘
− 𝛽 (𝐴1𝑥

𝑘+1

1
+ 𝐴2𝑥

𝑘+1

2
+ 𝐴3𝑥

𝑘

3
− 𝑏)]}

≥ 0,

(𝑥
∗

3
− 𝑥
𝑘+1

3
)
𝑇

{𝐵
𝑇

3
𝜉
𝑘+1

3
− 𝐴
𝑇

3

× [𝜆
𝑘
− 𝛽 (𝐴1𝑥

𝑘+1

1
+ 𝐴2𝑥

𝑘+1

2
+ 𝐴3𝑥

𝑘+1

3
− 𝑏)]}

≥ 0.

(26)

On the other hand, setting (𝑥1, 𝑥2, 𝑥3) = (𝑥
𝑘+1

1
, 𝑥
𝑘+1

2
, 𝑥
𝑘+1

3
) in

(21), it follows that

(

𝑥
𝑘+1

1
− 𝑥∗
1

𝑥𝑘+1
2

− 𝑥∗
2

𝑥𝑘+1
3

− 𝑥∗
3

)

𝑇

(

𝐵𝑇
1
𝜉∗
1
− 𝐴𝑇
1
𝜆∗

𝐵𝑇
2
𝜉∗
2
− 𝐴𝑇
2
𝜆∗

𝐵𝑇
3
𝜉∗
3
− 𝐴𝑇
3
𝜆∗

) ≥ 0. (27)

Adding (26) and (27), we obtain

(𝑥
𝑘+1

1
− 𝑥
∗

1
)
𝑇

{(𝐵
𝑇

1
𝜉
∗

1
− 𝐵
𝑇

1
𝜉
𝑘+1

1
) − 𝐴
𝑇

1
(𝜆
∗
− 𝜆
𝑘
)

−𝛽𝐴
𝑇

1
(𝐴1𝑥
𝑘+1

1
+ 𝐴2𝑥

𝑘

2
+ 𝐴3𝑥

𝑘

3
− 𝑏)} ≥ 0,

(𝑥
𝑘+1

2
− 𝑥
∗

2
)
𝑇

{(𝐵
𝑇

2
𝜉
∗

2
− 𝐵
𝑇

2
𝜉
𝑘+1

2
) − 𝐴
𝑇

2
(𝜆
∗
− 𝜆
𝑘
)

−𝛽𝐴
𝑇

2
(𝐴1𝑥
𝑘+1

1
+ 𝐴2𝑥

𝑘+1

2
+ 𝐴3𝑥

𝑘

3
− 𝑏)} ≥ 0,

(𝑥
𝑘+1

3
− 𝑥
∗

3
)
𝑇

{(𝐵
𝑇

3
𝜉
∗

3
− 𝐵
𝑇

3
𝜉
𝑘+1

3
) − 𝐴
𝑇

3
(𝜆
∗
− 𝜆
𝑘
)

−𝛽𝐴
𝑇

3
(𝐴1𝑥
𝑘+1

1
+ 𝐴2𝑥

𝑘+1

2
+ 𝐴3𝑥

𝑘+1

3
− 𝑏)}

≥ 0.

(28)

With the rearrangement of the above inequalities, we derive
that

(𝑥
𝑘+1

1
− 𝑥
∗

1
)
𝑇

𝐴
𝑇

1
(𝜆
𝑘
− 𝜆
∗
)

≥ (𝑥
𝑘+1

1
− 𝑥
∗

1
)
𝑇

(𝐵
𝑇

1
𝜉
𝑘+1

1
− 𝐵
𝑇

1
𝜉
∗

1
)

+ 𝛽(𝐴1𝑥
𝑘+1

1
− 𝐴1𝑥

∗

1
)
𝑇

(

3

∑
𝑖=1

𝐴 𝑖𝑥
𝑘+1

𝑖
− 𝑏)

+ 𝛽(𝐴1𝑥
𝑘+1

1
− 𝐴1𝑥

∗

1
)
𝑇

× [(𝐴2𝑥
𝑘

2
− 𝐴2𝑥

𝑘+1

2
) + (𝐴3𝑥

𝑘

3
− 𝐴3𝑥

𝑘+1

3
)] ,

(𝑥
𝑘+1

2
− 𝑥
∗

2
)
𝑇

𝐴
𝑇

2
(𝜆
𝑘
− 𝜆
∗
)

≥ (𝑥
𝑘+1

2
− 𝑥
∗

2
)
𝑇

(𝐵
𝑇

2
𝜉
𝑘+1

2
− 𝐵
𝑇

2
𝜉
∗

2
)

+ 𝛽(𝐴2𝑥
𝑘+1

2
− 𝐴2𝑥

∗

2
)
𝑇

(

3

∑
𝑖=1

𝐴 𝑖𝑥
𝑘+1

𝑖
− 𝑏)

+ 𝛽(𝐴2𝑥
𝑘+1

2
− 𝐴2𝑥

∗

2
)
𝑇

(𝐴3𝑥
𝑘

3
− 𝐴3𝑥

𝑘+1

3
) ,

(𝑥
𝑘+1

3
− 𝑥
∗

3
)
𝑇

𝐴
𝑇

3
(𝜆
𝑘
− 𝜆
∗
)

≥ (𝑥
𝑘+1

3
− 𝑥
∗

3
)
𝑇

(𝐵
𝑇

3
𝜉
𝑘+1

3
− 𝐵
𝑇

3
𝜉
∗

3
)

+ 𝛽(𝐴3𝑥
𝑘+1

3
− 𝐴3𝑥

∗

3
)
𝑇

(

3

∑
𝑖=1

𝐴 𝑖𝑥
𝑘+1

𝑖
− 𝑏) .

(29)

Adding the above inequalities (29), we have

(𝜆
𝑘
− 𝜆
∗
)
𝑇

(

3

∑
𝑖=1

𝐴 𝑖𝑥
𝑘+1

𝑖
− 𝑏)

≥

3

∑
𝑖=1

(𝑥
𝑘+1

𝑖
− 𝑥
∗

𝑖
)
𝑇

(𝐵
𝑇

𝑖
𝜉
𝑘+1

𝑖
− 𝐵
𝑇

𝑖
𝜉
∗

𝑖
) + 𝛽

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

3

∑
𝑖=1

𝐴 𝑖𝑥
𝑘+1

𝑖
− 𝑏

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

+ 𝛽(𝐴1𝑥
𝑘+1

1
− 𝐴1𝑥

∗

1
)
𝑇

[(𝐴2𝑥
𝑘

2
− 𝐴2𝑥

𝑘+1

2
)

+ (𝐴3𝑥
𝑘

3
− 𝐴3𝑥

𝑘+1

3
)]

+ 𝛽(𝐴2𝑥
𝑘+1

2
− 𝐴2𝑥

∗

2
)
𝑇

(𝐴3𝑥
𝑘

3
− 𝐴3𝑥

𝑘+1

3
) .

(30)

The proof is complete.

Hereafter, we define a matrix which will make the nota-
tion of proof more succinct. More specifically, let

𝑀 = (

(

2𝛽𝐴𝑇
1
𝐴1 0 0 0

0 2𝛽𝐴𝑇
2
𝐴2 0

0 0 2𝛽𝐴𝑇
3
𝐴3 0

0 0 0
1

𝛽
𝐼

)

)

. (31)
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Obviously, 𝑀 is a positive semidefinite matrix, only for
analysis convenience; we denote

‖𝑢‖
2

𝑀
= 2𝛽 (

󵄩󵄩󵄩󵄩𝐴1𝑥1
󵄩󵄩󵄩󵄩
2
+
󵄩󵄩󵄩󵄩𝐴2𝑥2

󵄩󵄩󵄩󵄩
2
+
󵄩󵄩󵄩󵄩𝐴3𝑥3

󵄩󵄩󵄩󵄩
2
) + ‖𝜆‖

2

1/𝛽
.

(32)

Lemma 5. Let 𝑢∗ = (𝑥∗
1
, 𝑥∗
2
, 𝑥∗
3
, 𝜆∗) be a solution of

MVI(U, 𝑄), and let the sequence {(𝑥𝑘
1
, 𝑥𝑘
2
, 𝑥𝑘
3
, 𝜆𝑘)} be generated

by (20). Then, one has

󵄩󵄩󵄩󵄩󵄩
𝑢
𝑘+1

− 𝑢
∗󵄩󵄩󵄩󵄩󵄩

2

𝑀
≤
󵄩󵄩󵄩󵄩󵄩
𝑢
𝑘
− 𝑢
∗󵄩󵄩󵄩󵄩󵄩

2

𝑀

+

3

∑
𝑖=1

3𝛽
󵄩󵄩󵄩󵄩󵄩
𝐴 𝑖𝑥
𝑘+1

𝑖
− 𝐴 𝑖𝑥

∗

𝑖

󵄩󵄩󵄩󵄩󵄩

2

− 2

3

∑
𝑖=1

𝜇𝑖
󵄩󵄩󵄩󵄩󵄩
𝐵𝑖𝑥
𝑘+1

𝑖
− 𝐵𝑖𝑥
∗

𝑖

󵄩󵄩󵄩󵄩󵄩

2

.

(33)

Proof. From (20) and Lemma 4, we have

󵄩󵄩󵄩󵄩󵄩
𝜆
𝑘+1

− 𝜆
∗󵄩󵄩󵄩󵄩󵄩

2

1/𝛽
=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝜆
𝑘
− 𝜆
∗
− 𝛽(

3

∑
𝑖=1

𝐴 𝑖𝑥
𝑘+1

𝑖
− 𝑏)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

1/𝛽

=
󵄩󵄩󵄩󵄩󵄩
𝜆
𝑘
− 𝜆
∗󵄩󵄩󵄩󵄩󵄩

2

1/𝛽

− 2(𝜆
𝑘
− 𝜆
∗
)
𝑇

(

3

∑
𝑖=1

𝐴 𝑖𝑥
𝑘+1

𝑖
− 𝑏)

+ 𝛽

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

3

∑
𝑖=1

𝐴 𝑖𝑥
𝑘+1

𝑖
− 𝑏

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩󵄩
𝜆
𝑘
− 𝜆
∗󵄩󵄩󵄩󵄩󵄩

2

1/𝛽

− 2

3

∑
𝑖=1

(𝑥
𝑘+1

𝑖
− 𝑥
∗

𝑖
)
𝑇

(𝐵
𝑇

𝑖
𝜉
𝑘+1

𝑖
− 𝐵
𝑇

𝑖
𝜉
∗

𝑖
)

− 𝛽

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

3

∑
𝑖=1

𝐴 𝑖𝑥
𝑘+1

𝑖
− 𝑏

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

− 2𝛽(𝐴1𝑥
𝑘+1

1
− 𝐴1𝑥

∗

1
)
𝑇

× (

3

∑
𝑖=2

(𝐴 𝑖𝑥
𝑘

𝑖
− 𝐴 𝑖𝑥

𝑘+1

𝑖
))

− 2𝛽(𝐴2𝑥
𝑘+1

2
− 𝐴2𝑥

∗

2
)
𝑇

(𝐴3𝑥
𝑘

3
− 𝐴3𝑥

𝑘+1

3
) .

(34)

Since

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

3

∑
𝑖=1

(𝐴 𝑖𝑥
𝑘+1

𝑖
− 𝐴 𝑖𝑥

∗

𝑖
)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

=

3

∑
𝑖=1

󵄩󵄩󵄩󵄩󵄩
𝐴 𝑖 (𝑥
𝑘+1

𝑖
− 𝑥
∗

𝑖
)
󵄩󵄩󵄩󵄩󵄩

2

+ ∑
𝑖 ̸=𝑗

(𝐴 𝑖 (𝑥
𝑘+1

𝑖
− 𝑥
∗

𝑖
))
𝑇

𝐴𝑗 (𝑥
𝑘+1

𝑗
− 𝑥
∗

𝑗
) ,

(35)

and 𝐴1𝑥
∗

1
+ 𝐴2𝑥

∗

2
+ 𝐴3𝑥

∗

3
= 𝑏, we can get

− 𝛽

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

3

∑
𝑖=1

𝐴 𝑖𝑥
𝑘+1

𝑖
− 𝑏

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

= −𝛽

3

∑
𝑖=1

󵄩󵄩󵄩󵄩󵄩
𝐴 𝑖 (𝑥
𝑘+1

𝑖
− 𝑥
∗

𝑖
)
󵄩󵄩󵄩󵄩󵄩

2

− 𝛽 ∑
𝑖 ̸=𝑗

(𝐴 𝑖 (𝑥
𝑘+1

𝑖
− 𝑥
∗

𝑖
))
𝑇

𝐴𝑗 (𝑥
𝑘+1

𝑗
− 𝑥
∗

𝑗
) .

(36)

Using Cauchy-Schwarz inequality, we have

− 2𝛽(𝐴1𝑥
𝑘+1

1
− 𝐴1𝑥

∗

1
)
𝑇

(

3

∑
𝑖=2

(𝐴 𝑖𝑥
𝑘

𝑖
− 𝐴 𝑖𝑥

𝑘+1

𝑖
))

− 2𝛽(𝐴2𝑥
𝑘+1

2
− 𝐴2𝑥

∗

2
)
𝑇

(𝐴3𝑥
𝑘

3
− 𝐴3𝑥

𝑘+1

3
)

= −2𝛽(𝐴1𝑥
𝑘+1

1
− 𝐴1𝑥

∗

1
)
𝑇

(𝐴2𝑥
𝑘

2
− 𝐴2𝑥

∗

2
)

+ 2𝛽(𝐴1𝑥
𝑘+1

1
− 𝐴1𝑥

∗

1
)
𝑇

(𝐴2𝑥
𝑘+1

2
− 𝐴2𝑥

∗

2
)

− 2𝛽(𝐴1𝑥
𝑘+1

1
− 𝐴1𝑥

∗

1
)
𝑇

(𝐴3𝑥
𝑘

3
− 𝐴3𝑥

∗

3
)

+ 2𝛽(𝐴1𝑥
𝑘+1

1
− 𝐴1𝑥

∗

1
)
𝑇

(𝐴3𝑥
𝑘+1

3
− 𝐴3𝑥

∗

3
)

− 2𝛽(𝐴2𝑥
𝑘+1

2
− 𝐴2𝑥

∗

2
)
𝑇

(𝐴3𝑥
𝑘

3
− 𝐴3𝑥

∗

3
)

+ 2𝛽(𝐴2𝑥
𝑘+1

2
− 𝐴2𝑥

∗

2
)
𝑇

(𝐴3𝑥
𝑘+1

3
− 𝐴3𝑥

∗

3
)

≤ 2𝛽
󵄩󵄩󵄩󵄩󵄩
𝐴1𝑥
𝑘+1

1
− 𝐴1𝑥

∗

1

󵄩󵄩󵄩󵄩󵄩

2

+ 𝛽
󵄩󵄩󵄩󵄩󵄩
𝐴2𝑥
𝑘+1

2
− 𝐴2𝑥

∗

2

󵄩󵄩󵄩󵄩󵄩

2

+ 𝛽
󵄩󵄩󵄩󵄩󵄩
𝐴2 (𝑥

𝑘

2
− 𝑥
∗

2
)
󵄩󵄩󵄩󵄩󵄩

2

+ 2𝛽
󵄩󵄩󵄩󵄩󵄩
𝐴3 (𝑥

𝑘

3
− 𝑥
∗

3
)
󵄩󵄩󵄩󵄩󵄩

2

+ 𝛽 ∑
𝑖 ̸=𝑗

(𝐴 𝑖 (𝑥
𝑘+1

𝑖
− 𝑥
∗

𝑖
))
𝑇

𝐴𝑗 (𝑥
𝑘+1

𝑗
− 𝑥
∗

𝑗
) .

(37)
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Substituting (36) and (37) into (34), we get

󵄩󵄩󵄩󵄩󵄩
𝜆
𝑘+1

− 𝜆
∗󵄩󵄩󵄩󵄩󵄩

2

1/𝛽
≤
󵄩󵄩󵄩󵄩󵄩
𝜆
𝑘
− 𝜆
∗󵄩󵄩󵄩󵄩󵄩

2

1/𝛽
+ 2𝛽

3

∑
𝑖=1

󵄩󵄩󵄩󵄩󵄩
𝐴 𝑖 (𝑥
𝑘

𝑖
− 𝑥
∗

𝑖
)
󵄩󵄩󵄩󵄩󵄩

2

+ 𝛽

3

∑
𝑖=1

󵄩󵄩󵄩󵄩󵄩
𝐴 𝑖 (𝑥
𝑘+1

𝑖
− 𝑥
∗

𝑖
)
󵄩󵄩󵄩󵄩󵄩

2

− 2

3

∑
𝑖=1

(𝑥
𝑘+1

𝑖
− 𝑥
∗

𝑖
)
𝑇

(𝐵
𝑇

𝑖
𝜉
𝑘+1

𝑖
− 𝐵
𝑇

𝑖
𝜉
∗

𝑖
) .

(38)

Since 𝑓𝑖 is strongly convex, from the strong monotonicity
of the subdifferentialmapping 𝜕𝑓𝑖 (with themodulus 𝜇𝑖), then
we have

(𝑥
𝑘+1

𝑖
− 𝑥
∗

𝑖
)
𝑇

(𝐵
𝑇

𝑖
𝜉
𝑘+1

𝑖
− 𝐵
𝑇

𝑖
𝜉
∗

𝑖
)

= (𝐵𝑖𝑥
𝑘+1

𝑖
− 𝐵𝑖𝑥
∗

𝑖
)
𝑇

(𝜉
𝑘+1

𝑖
− 𝜉
∗

𝑖
) ≥ 𝜇𝑖

󵄩󵄩󵄩󵄩󵄩
𝐵𝑖𝑥
𝑘+1

𝑖
− 𝐵𝑖𝑥
∗

𝑖

󵄩󵄩󵄩󵄩󵄩

2

,

(39)

where 𝜉∗
𝑖
∈ 𝜕𝑓𝑖(𝐵𝑖𝑥

∗

𝑖
), 𝜉𝑘+1
𝑖

∈ 𝜕𝑓𝑖(𝐵𝑖𝑥
𝑘+1

𝑖
), for any 𝑖 ∈ {1, 2, 3}.

By using the notion of ‖𝑢𝑘+1 − 𝑢∗‖
2

𝑀
, from (38) we have

󵄩󵄩󵄩󵄩󵄩
𝑢
𝑘+1

− 𝑢
∗󵄩󵄩󵄩󵄩󵄩

2

𝑀

=
󵄩󵄩󵄩󵄩󵄩
𝜆
𝑘+1

− 𝜆
∗󵄩󵄩󵄩󵄩󵄩

2

1/𝛽

+ 2𝛽

3

∑
𝑖=1

󵄩󵄩󵄩󵄩󵄩
𝐴 𝑖(𝑥
𝑘+1

𝑖
− 𝑥
∗

𝑖
)
󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩󵄩
𝜆
𝑘
− 𝜆
∗󵄩󵄩󵄩󵄩󵄩

2

1/𝛽
+ 2𝛽

3

∑
𝑖=1

󵄩󵄩󵄩󵄩󵄩
𝐴 𝑖(𝑥
𝑘

𝑖
− 𝑥
∗

𝑖
)
󵄩󵄩󵄩󵄩󵄩

2

+ 3𝛽

3

∑
𝑖=1

󵄩󵄩󵄩󵄩󵄩
𝐴 𝑖(𝑥
𝑘+1

𝑖
− 𝑥
∗

𝑖
)
󵄩󵄩󵄩󵄩󵄩

2

− 2

3

∑
𝑖=1

𝜇𝑖
󵄩󵄩󵄩󵄩󵄩
𝐵𝑖𝑥
𝑘+1

𝑖
− 𝐵𝑖𝑥
∗

𝑖

󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩󵄩
𝑢
𝑘
− 𝑢
∗󵄩󵄩󵄩󵄩󵄩

2

𝑀
+

3

∑
𝑖=1

3𝛽
󵄩󵄩󵄩󵄩󵄩
𝐴 𝑖𝑥
𝑘+1

𝑖
− 𝐴 𝑖𝑥

∗

𝑖

󵄩󵄩󵄩󵄩󵄩

2

− 2

3

∑
𝑖=1

𝜇𝑖
󵄩󵄩󵄩󵄩󵄩
𝐵𝑖𝑥
𝑘+1

𝑖
− 𝐵𝑖𝑥
∗

𝑖

󵄩󵄩󵄩󵄩󵄩

2

.

(40)

The proof is complete.

Theorem 6. Under Assumption 1, for any

0 < 𝛽 < min
1≤𝑖≤3

{
2𝜇𝑖

3𝑛2
𝑖

} , (41)

the sequence {(𝑥𝑘
1
, 𝑥𝑘
2
, 𝑥𝑘
3
, 𝜆𝑘)} generated by (20) converges to a

solution of MVI(U, 𝑄).

Proof. From Lemma 5, we have

󵄩󵄩󵄩󵄩󵄩
𝑢
𝑘+1

− 𝑢
∗󵄩󵄩󵄩󵄩󵄩

2

𝑀
≤
󵄩󵄩󵄩󵄩󵄩
𝑢
𝑘
− 𝑢
∗󵄩󵄩󵄩󵄩󵄩

2

𝑀
+

3

∑
𝑖=1

3𝛽
󵄩󵄩󵄩󵄩󵄩
𝐴 𝑖𝑥
𝑘+1

𝑖
− 𝐴 𝑖𝑥

∗

𝑖

󵄩󵄩󵄩󵄩󵄩

2

− 2

3

∑
𝑖=1

𝜇𝑖
󵄩󵄩󵄩󵄩󵄩
𝐵𝑖𝑥
𝑘+1

𝑖
− 𝐵𝑖𝑥
∗

𝑖

󵄩󵄩󵄩󵄩󵄩

2

,

(42)

where

0 < 𝛽 < min
1≤𝑖≤3

{
2𝜇𝑖

3𝑛2
𝑖

} . (43)

From Assumption 1, it follows that

󵄩󵄩󵄩󵄩󵄩
𝐴 𝑖𝑥
𝑘+1

𝑖
− 𝐴 𝑖𝑥

∗

𝑖

󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝐴 𝑖

󵄩󵄩󵄩󵄩
2󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘+1

𝑖
− 𝑥
∗

𝑖

󵄩󵄩󵄩󵄩󵄩

2

≤ 𝑛
2

𝑖

󵄩󵄩󵄩󵄩󵄩
𝐵𝑖𝑥
𝑘+1

𝑖
− 𝐵𝑖𝑥
∗

𝑖

󵄩󵄩󵄩󵄩󵄩

2

, 𝑖 = 1, 2, 3.

(44)

Consequently,

󵄩󵄩󵄩󵄩󵄩
𝑢
𝑘+1

− 𝑢
∗󵄩󵄩󵄩󵄩󵄩

2

𝑀
≤
󵄩󵄩󵄩󵄩󵄩
𝑢
𝑘
− 𝑢
∗󵄩󵄩󵄩󵄩󵄩

2

𝑀

+

3

∑
𝑖=1

(3𝛽 −
2𝜇𝑖

𝑛2
𝑖

)
󵄩󵄩󵄩󵄩󵄩
𝐴 𝑖𝑥
𝑘+1

𝑖
− 𝐴 𝑖𝑥

∗

𝑖

󵄩󵄩󵄩󵄩󵄩

2

.

(45)

From (45), we have

󵄩󵄩󵄩󵄩󵄩
𝑢
𝑘+1

− 𝑢
∗󵄩󵄩󵄩󵄩󵄩

2

𝑀
≤
󵄩󵄩󵄩󵄩󵄩
𝑢
𝑘
− 𝑢
∗󵄩󵄩󵄩󵄩󵄩

2

𝑀
≤ ⋅ ⋅ ⋅ ≤

󵄩󵄩󵄩󵄩󵄩
𝑢
0
− 𝑢
∗󵄩󵄩󵄩󵄩󵄩

2

𝑀
< +∞,

(46)

which means that the generated sequence {𝑢𝑘} is bounded.
Furthermore, it follows that

+∞

∑
𝑘=0

{

3

∑
𝑖=1

(2
𝜇𝑖

𝑛2
𝑖

− 3𝛽)
󵄩󵄩󵄩󵄩󵄩
𝐴 𝑖𝑥
𝑘+1

𝑖
− 𝐴 𝑖𝑥

∗

𝑖

󵄩󵄩󵄩󵄩󵄩

2

}

≤

+∞

∑
𝑘=0

{
󵄩󵄩󵄩󵄩󵄩
𝑢
𝑘
− 𝑢
∗󵄩󵄩󵄩󵄩󵄩𝑀

−
󵄩󵄩󵄩󵄩󵄩
𝑢
𝑘+1

− 𝑢
∗󵄩󵄩󵄩󵄩󵄩𝑀

} < +∞,

(47)

which means that

lim
𝑘→+∞

3

∑
𝑖=1

󵄩󵄩󵄩󵄩󵄩
𝐴 𝑖𝑥
𝑘+1

𝑖
− 𝐴 𝑖𝑥

∗

𝑖

󵄩󵄩󵄩󵄩󵄩

2

= 0. (48)

Therefore, we have

lim
𝑘→+∞

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

3

∑
𝑖=1

𝐴 𝑖𝑥
𝑘+1

𝑖
− 𝑏

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

= 0. (49)

Since ‖𝐴 𝑖‖ is nonzero and bounded, from (48) we have

lim
𝑘→+∞

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘+1

𝑖
− 𝑥
∗

𝑖

󵄩󵄩󵄩󵄩󵄩
= 0, ∀𝑖 = 1, 2, 3. (50)

Since {𝑢𝑘} is bounded, {𝜆𝑘} has at least one cluster point, say
𝜆. Let {𝜆𝑘𝑗} be the corresponding subsequence that converges
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to 𝜆. Taking a limit along this subsequence in (25) and (49),
we obtain 𝜉∗

𝑖
∈ 𝜕𝑓𝑖(𝐵𝑖𝑥

∗

𝑖
),

(𝑥𝑖 − 𝑥
∗

𝑖
)
𝑇
(𝐵
𝑇

𝑖
𝜉
∗

𝑖
− 𝐴
𝑇

𝑖
𝜆) ≥ 0, ∀𝑥𝑖 ∈ X𝑖, 𝑖 = 1, 2, 3,

3

∑
𝑖=1

𝐴 𝑖𝑥
∗

𝑖
− 𝑏 = 0,

(51)

which follows that 𝜆 is an optimal Lagrange multiplier. Since
𝜆∗ is arbitrary, we can set 𝜆∗ = 𝜆 in (46) and conclude
that the whole generated sequence converges to a solution of
MVI(U, 𝑄).

5. Conclusions

In this paper, we extend the convergence analysis of the
ADMM for the separable convex optimization problem with
strongly convex functions to the case in which the individual
functions are composites of strongly convex functions with a
linear transform. Under further assumptions, we established
the global convergence of the algorithm.

It should be admitted that although some problems
arising from applications such as traffic assignment fall into
our analysis, the problems considered here are too special.
Thus, it is far away to solve the open problem of convergence
of the ADMM with more than three blocks.
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We present an efficient method for solving linearly constrained convex programming. Our algorithmic framework employs an
implementable proximal step by a slight relaxation to the subproblem of proximal point algorithm (PPA). In particular, the stepsize
choice condition of our algorithm is weaker than some elegant PPA-type methods. This condition is flexible and effective. Self-
adaptive strategies are proposed to improve the convergence in practice. We theoretically show under mild conditions that our
method converges in a global sense. Finally, we discuss applications and perform numerical experiments which confirm the
efficiency of the proposed method. Comparisons of our method with some state-of-the-art algorithms are also provided.

1. Introduction

In this paper, we consider the following generic convex pro-
gramming:

min {𝜃 (𝑥) | 𝐴𝑥 = 𝑏 (or𝐴𝑥 ≥ 𝑏) , 𝑥 ∈ X} , (1)
where 𝜃(𝑥) : R𝑛 → R is a convex (not necessary smooth)
function,𝐴 ∈ R𝑚×𝑛, 𝑏 ∈ R𝑚, andX ⊂ R𝑛 is a closed convex
set. Problem (1) generalizes a wide range of problems that fre-
quently arise in signal and image processing and reconstruc-
tion, mechanics, statistics, operations research, and other
fields, for example, basis pursuit [1–4], nearest correlation
matrix [5–7], matrix completion problem [2, 3, 8–10], and so
forth. Before we begin, some assumptions should be pre-
sented for problem (1).

Assumption 1. The solution set of (1) is denoted byX∗, and it
is assumed to be nonempty.

Assumption 2. The objective function is simple. This means
that, for a given constant 󰜚, the following proximal problem
admits a closed-form solution or can be solved efficientlywith
high precision:

min
𝑥∈X

𝜃 (𝑥) +
󰜚

2
‖𝑥 − 𝑎‖

2
, (2)

where 𝑎 is any given vector. At first sight, this assumption
seems to be quite restrictive, but this is indeed for many
problems in practice. For example, nuclear norm function in
matrix completion problem, 𝑙1-norm function in basis pur-
suit problem, and so forth.

Many fundamental methods have been developed over
the past decades to solve problem (1). Proximal point algo-
rithm (PPA) is one of the leading approaches for solving
convex optimization problems. It is earlier used for reg-
ularized linear equations and has been applied to convex
optimization byMartinet [11].There are some significant the-
oretical achievements [12–19] in the field of PPA for convex
optimization and monotone variational inequalities (VIs).
Nowadays, it is still the object of intensive investigation [20]
and leads to a variety of primal and dual methods. Common
to PPA and its variants is the difficulty of their subproblems;
this restricts the practical interest. Augmented Lagrangian
method (ALM) [21] is a powerful method for linearly con-
strained problems. It can be regarded as a variant of PPA
applied to the dual problem of (1). However, with the addi-
tional regularized term ‖𝐴𝑥 − 𝑏‖

2, its subproblems require an
inverse operator of the form (𝐼+(1/𝑠)𝐴𝑇𝐴)

−1 which is hard to
implement in some cases. Particularly,𝐴𝑇𝐴 is general or large
scale, so the computation of inverse operator may fail. Hence,
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ALM is not sufficiently competitive when the objective func-
tion 𝜃(𝑥) is “simple.” Extragradient method (EGM) [22] is
a practical method for (1) which employs the information of
current iteration. In fact, EGM is an explicit type method and
requires two calls to the gradient per iteration; therefore, it
might suffer slow convergence. Recently, He and Yuan [23]
proposed a contraction method based on PPA (PPA-CM) to
solve (1), which is elegant and simple. Inspired by PPA-CM,
a Lagrangian PPA-based (LPPA) contraction method is pre-
sented in [24] which employs an asymmetrical proximal term
[25]. These two PPA-based methods have nice convergence
properties that are similar inmanyways to PPA, but they both
require a quite restrictive condition for convergence and are
sensitive to the initial choice of stepsizes.

In this paper, we focus on development of PPA-type
method for solving (1). Based on LPPA, we propose a general
self-adaptive relaxed-PPA method (SRPPA) which is simple
yet efficient. Our algorithm capitalizes certain features of
PPA, hence, we term it relaxed-PPA. The proposed algorithm
has several nice fronts. First, our method is a PPA-type
method with asymmetrical linear term, which is clearly a dif-
ferent nature to classical PPA. It relaxes the jointly structure of
subproblem to a tractable one. Second, we provide two simple
search directions for new iterate. Third, the stepsize choice
is flexible, and the condition for convergence guarantee is
weaker than both PPA-CM and LPPA. Finally, simple adap-
tive strategies are employed to choose stepsize, and this
appealing aspect is significantly important in practice. We
also demonstrate that our method is relevant for various
applications whose practical success is made possible by our
efficient algorithm.

This paper is organized as follows. In Section 2, we pro-
vide some notations and preliminaries which are useful for
subsequent analysis. In Section 3, we review some related
works. The general relaxed-PPA and its variant are formally
presented in Section 4. Self-adaptive strategies to choose
stepsize are also described. Next, in Section 5, the conver-
gence analysis is provided. In Section 6, we present some
concrete applications of (1) and elaborate on the implemen-
tation of our method; preliminary numerical results are also
reported to verify the efficiency of our proposed method.
Finally, in Section 7, we conclude the paper with a discussion
about the future research directions.

2. Preliminaries

In this section, we first establish some important notations
used throughout this paper.Then, we describe the variational
inequality formulation of (1) which is convenient for the con-
vergence analysis.

𝜕𝜃(𝑥) denotes the subdifferential set of the convex func-
tion 𝜃(𝑥):

𝜕𝜃 (𝑥) := {𝑑 ∈ R
𝑛
| 𝜃 (𝑦) − 𝜃 (𝑥) ≥ 𝑑

𝑇
(𝑦 − 𝑥) , ∀𝑦 ∈ R

𝑛
} ,

(3)

and 𝑑 ∈ 𝜕𝜃(𝑥) is called a subgradient of 𝜃(𝑥), see [26]. Let
𝑓(𝑥) ∈ 𝜕𝜃(𝑥) and 𝑓(𝑦) ∈ 𝜕𝜃(𝑦), by the convexity of the func-
tion 𝜃, we have

(𝑥 − 𝑦)
𝑇
(𝑓 (𝑥) − 𝑓 (𝑦)) ≥ 0, ∀𝑥, 𝑦 ∈ R

𝑛
, (4)

which indicates that the mapping 𝑓 is monotone.
Now, we show that (1) can be characterized by a vari-

ational inequality; see, for example, [27]. By attaching a
Lagrange multiplier vector 𝜆 ∈ Λ to the linear constraint
𝐴𝑥 = 𝑏 (or𝐴𝑥 ≥ 𝑏), the Lagrangian function of (1) is

𝐿 (𝑥, 𝜆) = 𝜃 (𝑥) − 𝜆
𝑇
(𝐴𝑥 − 𝑏) ; (5)

here,

Λ = {
R𝑚, for the equality constraints 𝐴𝑥 = 𝑏,
R𝑚
+
, for the inequality constraints 𝐴𝑥 ≥ 𝑏,

(6)

and 𝐿(𝑥, 𝜆) is defined on X × Λ. Then, by the optimality
condition, we can easily see that (1) amounts to finding a pair
of (𝑥∗, 𝜆∗) which satisfies

𝑥
∗
∈ X, (𝑥 − 𝑥

∗
)
𝑇
{𝑓 (𝑥
∗
) − 𝐴
𝑇
𝜆
∗
} ≥ 0, ∀𝑥 ∈ X,

𝜆
∗
∈ Λ, (𝜆 − 𝜆

∗
)
𝑇
(𝐴𝑥
∗
− 𝑏) ≥ 0, ∀𝜆 ∈ Λ,

(7)

where 𝑓(𝑥∗) ∈ 𝜕𝜃(𝑥∗). Denoting

𝑢 = (
𝑥

𝜆
) , 𝐹 (𝑢) = (

𝑓 (𝑥) − 𝐴
𝑇𝜆

𝐴𝑥 − 𝑏
) , Ω = X × Λ,

(8)

the system (7) can be characterized by the following varia-
tional inequality denoted by VI(Ω, 𝐹):

𝑢
∗
∈ Ω, (𝑢 − 𝑢

∗
)
𝑇
𝐹 (𝑢
∗
) ≥ 0, ∀𝑢 ∈ Ω. (9)

Recalling the monotonicity of 𝑓, it is easy to get that VI(Ω, 𝐹)
(9) is monotone. Since the solution set of (1) is assumed to be
nonempty, the solution set of VI(Ω, 𝐹), denoted byΩ∗, is also
nonempty. Our analysis will be built upon this equivalent VI
formulation.

3. The Existing Related Methods

There are basically two lines of research for VI(Ω, 𝐹) (9),
either deal with it by implicit methods that are in general
computationally intractable or concentrate on relaxing it with
explicit methods. In this section, we first briefly review the
well-known classical PPA and EGM. And then, PPA-CM [23]
and LPPA [24] are discussed, which will provide motivation
for our general self-adaptive relaxed-PPA.

3.1. Classical PPA for the Equivalent Variational Inequality.
PPA and its variants are implicit methods which have fast
asymptotical convergence rate and produce highly accurate
solutions. At each iteration, the subproblem of classical PPA
consists of a regularized term, which can be expressed as
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follows: given any iterate 𝑢𝑘 = (𝑥𝑘, 𝜆𝑘), find 𝑢̃𝑘 = (𝑥𝑘, 𝜆̃𝑘) ∈ Ω
such that

𝑢̃
𝑘
∈ Ω, (𝑢 − 𝑢̃

𝑘
)
𝑇

{𝐹 (𝑢̃
𝑘
) + 𝑟 (𝑢̃

𝑘
− 𝑢
𝑘
)} ≥ 0, ∀𝑢 ∈ Ω.

(10)

Then, the update step is taken as follows:

𝑢
𝑘+1

= 𝑢
𝑘
− 𝛾 (𝑢

𝑘
− 𝑢̃
𝑘
) , 𝛾 ∈ (0, 2) . (11)

PPA has a nice convergence property

󵄩󵄩󵄩󵄩󵄩
𝑢
𝑘+1

− 𝑢
∗󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩󵄩
𝑢
𝑘
− 𝑢
∗󵄩󵄩󵄩󵄩󵄩

2

− 𝛾 (2 − 𝛾)
󵄩󵄩󵄩󵄩󵄩
𝑢
𝑘
− 𝑢̃
𝑘󵄩󵄩󵄩󵄩󵄩

2

. (12)

Although classical PPA is conceptually appealing, subprob-
lem (10) presents certain computational challenges. More
specifically, primal variable 𝑥 and dual variable 𝜆 are tied
together, and their subproblems are treated as a joint problem.
In most cases, this joint subproblem may be as difficult as the
original problem (9). As a result, PPA is “conceptual” rather
than implementable. It lacks capability in exploiting potential
decomposable/specific structure of subproblem. Variants of
classical PPA have been explored in the literature, in order to
solve the proximal subproblem (10), inexactly, see, for exam-
ple, [14, 15, 17, 19]. Unfortunately, inexact variants take expen-
sive computation for obtaining approximative solutions.

3.2. The Methods Based on the Simplest Relaxation. To over-
come the drawbacks of the classical PPA, it is instinctive to
relax subproblem (10) to a solvable one.Themost straightfor-
ward and simplest relaxation is to replace 𝐹(𝑢̃𝑘)with 𝐹(𝑢𝑘) in
the proximal subproblem (10), which amounts to the follow-
ing subproblem:

𝑢̃
𝑘
∈ Ω, (𝑢 − 𝑢̃

𝑘
)
𝑇

{𝐹 (𝑢
𝑘
) + 𝑟 (𝑢̃

𝑘
− 𝑢
𝑘
)} ≥ 0, ∀𝑢 ∈ Ω.

(13)

The solution of the relaxed problem (13) is given by 𝑢̃𝑘 =
𝑃Ω[𝑢
𝑘 − (1/𝑟)𝐹(𝑢𝑘)]. It is clear that methods with such

relaxation are explicit type methods. However, 𝑢̃𝑘 cannot be
accepted directly as the new iterate. Using the terminology
“predictor-corrector,” such point can be viewed as a predictor.
Here, we list two simple methods which employ predictor 𝑢̃𝑘
to obtain corrector as the new iterate.

(i) The extragradient method (EGM) updates the new
iterate (corrector) by

𝑢
𝑘+1

= 𝑃Ω [𝑢
𝑘
−
1

𝑟
𝐹 (𝑢̃
𝑘
)] . (14)

(ii) The projection and contraction methods (PCM) [28–
30] perform update as follows:

𝑢
𝑘+1

= 𝑢
𝑘
− 𝛾𝛼
∗

𝑘
𝑑
𝑘 or 𝑢

𝑘+1
= 𝑃Ω [𝑢

𝑘
−
𝛾𝛼∗
𝑘

𝑟
𝐹 (𝑢̃
𝑘
)] ,

(15)

where

𝑑
𝑘
= (𝑢
𝑘
− 𝑢̃
𝑘
) −

1

𝑟
(𝐹 (𝑢
𝑘
) − 𝐹 (𝑢̃

𝑘
)) ,

𝛼
∗

𝑘
=
(𝑢𝑘 − 𝑢̃𝑘)

𝑇

𝑑𝑘

󵄩󵄩󵄩󵄩𝑑
𝑘󵄩󵄩󵄩󵄩
2

.

(16)

The sequence {𝑢𝑘} generated by the above mentioned EGM
or PCM satisfies

󵄩󵄩󵄩󵄩󵄩
𝑢
𝑘+1

− 𝑢
∗󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩󵄩
𝑢
𝑘
− 𝑢
∗󵄩󵄩󵄩󵄩󵄩

2

− 𝑐
󵄩󵄩󵄩󵄩󵄩
𝑢
𝑘
− 𝑢̃
𝑘󵄩󵄩󵄩󵄩󵄩

2

, 𝑐 > 0, (17)

which is similar to PPA. Both EGMandPCMuse the simplest
relaxation to obtain 𝑢̃

𝑘 in 𝑘th iteration, hence are compu-
tationally practical. These methods have appealing practical
aspects; however, such simplest relaxation does not exploit
the inner structure of VI(Ω, 𝐹) (9).This observation prompts
the need for dedicated relaxations.

3.3. PPA-Type Contraction Method. The algorithms that are
closely related to ours are PPA-CM [23] and LPPA [24]. The
PPA-CM obtains the predictor 𝑢̃𝑘 by solving the following
subproblem: find (𝑥𝑘, 𝜆̃𝑘) ∈ Ω such that

𝑢̃
𝑘
∈ Ω, (𝑢 − 𝑢̃

𝑘
)
𝑇

{𝐹 (𝑢̃
𝑘
) + 𝑆 (𝑢̃

𝑘
− 𝑢
𝑘
)} ≥ 0, ∀𝑢 ∈ Ω,

(18)

where

𝑆 = (
𝑟𝐼𝑛 −𝐴𝑇

−𝐴 𝑠𝐼𝑚
) . (19)

And perform the update

𝑢
𝑘+1

= 𝑢
𝑘
− 𝛾 (𝑢

𝑘
− 𝑢̃
𝑘
) , 𝛾 ∈ (0, 2) . (20)

The framework of LPPA is as follows:

𝑢̃
𝑘
∈ Ω, (𝑢 − 𝑢̃

𝑘
)
𝑇

{𝐹 (𝑢̃
𝑘
) +𝑀(𝑢̃

𝑘
− 𝑢
𝑘
)} ≥ 0, ∀𝑢 ∈ Ω,

(21)

where

𝑀 = (
𝑟𝐼𝑛 𝐴𝑇

0 𝑠𝐼𝑚
) . (22)

And the new iterate is defined by

𝑢
𝑘+1

= 𝑢
𝑘
− 𝛾𝛼𝑀(𝑢

𝑘
− 𝑢̃
𝑘
) , 𝛾 ∈ (0, 2) . (23)

Both procedures are simple and can solve subproblem effi-
ciently; but their nice convergence results require a quite
restrictive condition, that is; 𝑟𝑠 > ‖𝐴𝑇𝐴‖ in PPA-CM and
𝑟𝑠 > (1/2)‖𝐴𝑇𝐴‖ in LPPA, respectively. The stepsizes 𝑟, 𝑠 are
directly determined by such condition; hence, it is important
to estimate ‖𝐴𝑇𝐴‖. Overestimationmay lead to poor stepsizes
and slow convergence, while underestimation may result in
divergence. In addition, they are both quite sensitive to the
choice of 𝑟, 𝑠. To overcome those drawbacks, we propose a
general self-adaptive relaxed-PPA, and as mentioned earlier,
it can provide improved guarantee for convergence and has
potential progress in the choice of stepsize. Furthermore, self-
adaptive strategies are designed to improve performance.
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Step 1. Initialization. Let 𝛾 ∈ (0, 2) and pick (𝑥0, 𝜆0) ∈ R𝑛 × Λ, set 𝑘 = 0.
Step 2. Predictor. Let

𝑥
𝑘
= Argmin{𝜃(𝑥) + 𝑟

2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑥 − [𝑥

𝑘
+
1

𝑟
𝐴
𝑇
𝜆
𝑘
]
󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

| 𝑥 ∈ X}, (∗)

and
𝜆̃𝑘 = 𝑃Λ [𝜆

𝑘 −
1

𝑠
(𝐴𝑥𝑘 − 𝑏)]. (∗∗)

Step 3. If the stepsizes 𝑟 and 𝑠 are chosen satisfying
𝜑(𝑢
𝑘
, 𝑢̃
𝑘
) ≥

1

4

󵄩󵄩󵄩󵄩󵄩
𝑑(𝑢
𝑘
, 𝑢̃
𝑘
)
󵄩󵄩󵄩󵄩󵄩

2

𝐺
, (#)

then go to Step 4. Otherwise, increase 𝑟, 𝑠 and go back to Step 2.
Step 4. Corrector and updating

𝑢𝑘+1 = 𝑢𝑘 − 𝛼𝑘𝐺
−1𝑀(𝑢𝑘 − 𝑢̃𝑘). ($)

Step 5. Adjustment

(𝑟, 𝑠) =
{

{

{

(
𝑟

2
,
𝑠

2
) , if 𝜑(𝑢𝑘, 𝑢̃𝑘) ≥ 𝜅 ∗ 󵄩󵄩󵄩󵄩󵄩𝑑(𝑢

𝑘
, 𝑢̃
𝑘
)
󵄩󵄩󵄩󵄩󵄩

2

𝐺
;

(𝑟, 𝑠), otherwise.
Here 𝜅 > 4.

Set 𝑘 := 𝑘 + 1.

Algorithm 1: General primal-dual relaxed-PPA method.

Step 1. Initialization. Let 𝛾 ∈ (0, 2) and pick (𝑥0, 𝜆0) ∈ R𝑛 × Λ, set 𝑘 = 0.
Step 2. Predictor. Let

𝜆̃𝑘 = 𝑃Λ [𝜆
𝑘 −

1

𝑠
(𝐴𝑥𝑘 − 𝑏)], (†)

and

𝑥
𝑘
= Argmin{𝜃(𝑥) + 𝑟

2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑥 − [𝑥

𝑘
+
1

𝑟
𝐴
𝑇
𝜆̃
𝑘
]
󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

| 𝑥 ∈ X}. (††)

Step 3. If the stepsize 𝑟 and 𝑠 are chosen satisfying
𝜑 (𝑢𝑘, 𝑢̃𝑘) ≥

1

4

󵄩󵄩󵄩󵄩󵄩
𝑑 (𝑢𝑘, 𝑢̃𝑘)

󵄩󵄩󵄩󵄩󵄩

2

𝐺
, (‡)

then go to Step 4. Otherwise, increase 𝑟, 𝑠 and go back to Step 2.
Step 4. Corrector and updating

𝑢𝑘+1 = 𝑢𝑘 − 𝛼𝑘𝐺
−1𝑀(𝑢𝑘 − 𝑢̃𝑘). (∧)

Step 5. Adjustment

(𝑟, 𝑠) =
{

{

{

(
𝑟

2
,
𝑠

2
) , if 𝜑 (𝑢𝑘, 𝑢̃𝑘) ≥ 𝜅 ∗ 󵄩󵄩󵄩󵄩󵄩𝑑 (𝑢

𝑘
, 𝑢̃
𝑘
)
󵄩󵄩󵄩󵄩󵄩

2

𝐺
;

(𝑟, 𝑠), otherwise.
Here 𝜅 > 4.

Set 𝑘 := 𝑘 + 1.

Algorithm 2: General dual-primal relaxed-PPA method.

4. The General Self-Adaptive
Relaxed PPA-Method

In this section, we weave together the ideas of the previous
section to present general self-adaptive relaxed-PPA method
(SRPPA) which ismostly inspired by LPPA [24]. At first sight,
the predictor applied in SRPPA is much the same as LPPA,
but the stepsize choice condition for convergence is quite dif-
ferent; moreover, we prove that it is weaker than LPPA. Self-
adaptive strategies are elaborately designed to ensure the
robustness of our algorithm. Two simple yet efficient con-
structions of new iterate are also presentedwhichwill provide
some inspirations for designing various search directions.

4.1. General Relaxed-PPA Method. The general primal-dual
relaxed-PPA method with implementable structure for (1) is

summarized in Algorithm 1. Note that the order of 𝑥 and 𝜆
can be changed to obtain a variant, which is summarized in
Algorithm 2.Our relaxed-PPA is intended to blend the imple-
mentable properties of EGM (or PCM) with the fast conver-
gence performance of PPA. Now, it is helpful to introduce
additional notations that will be used in the rest of this paper.
Let 𝐺 be a positive symmetry definite matrix (we will specify
it later),

𝑀 = (
𝑟𝐼𝑛 𝐴𝑇

0 𝑠𝐼𝑚
) , 𝐻 = (

𝑟𝐼𝑛 0

0 𝑠𝐼𝑚
) , (24)

𝑑 (𝑢
𝑘
, 𝑢̃
𝑘
) = 𝐺

−1
𝑀(𝑢
𝑘
− 𝑢̃
𝑘
) , (25)

𝜑 (𝑢
𝑘
, 𝑢̃
𝑘
) = (𝑢

𝑘
− 𝑢̃
𝑘
)
𝑇

𝑀(𝑢
𝑘
− 𝑢̃
𝑘
) . (26)
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The relaxed-PPA described here involves two steps. First, we
solve the relaxed subproblem (∗), (∗∗) to obtain predictor,
which is nice and efficient for the nature of the problemunder
study. Note that the 𝑥-predictor step (∗) involves minimizing
𝜃 plus a convex quadratic function, and under Assumption 2,
it can be efficiently solved or it admits a closed form solution.
And then, 𝜆-predictor step (∗∗) is just a projection onto Λ
which is tractable and computationally efficient. It is clear that
the prediction step employs a Gauss-Seidel manner to update
information efficiently. The correction step ($) only involves
matrix-vector multiplication which is very simple and
straightforward.

Remark 3. Wefirstmake some insight into the correction step
inAlgorithm 1.Theobtained 𝑢̃𝑘 plays nodirect role as the new
iterate. Instead, we need some kind of “corrector” defined in
($). Although matrix 𝐺 in ($) is just a required positive sym-
metry definite, our goal here is to fully integrate the informa-
tion of 𝑢𝑘 and 𝑢̃𝑘 to construct effective, simple search direc-
tion𝐺−1𝑀(𝑢𝑘 − 𝑢̃𝑘) for the corrector. Based on this consider-
ation, we elaborately provide two simple choices of 𝐺.

Case 1. It is natural to set 𝐺 = 𝐻 to induce a simple update
form. Then, it is easy to get that

(
𝑥
𝑘+1

𝜆𝑘+1
) = (

𝑥𝑘

𝜆𝑘
) − 𝛼𝑘(

𝑥𝑘 − 𝑥𝑘 +
1

𝑟
𝐴𝑇 (𝜆𝑘 − 𝜆̃𝑘)

𝜆𝑘 − 𝜆̃𝑘
). (27)

Case 2. Let 𝐺 = 𝑀𝐻−1𝑀𝑇. This case is a little less intuitive,
but it can lead to a simple update form as well as Case 1. The
underlying derivation is a little more complicate. Applying 𝐺
in ($), we get

𝑢
𝑘+1

= 𝑢
𝑘
− 𝛼𝑘𝑀

−𝑇
𝐻𝑀
−1
𝑀(𝑢
𝑘
− 𝑢̃
𝑘
)

= 𝑢
𝑘
− 𝛼𝑘𝑀

−𝑇
𝐻(𝑢
𝑘
− 𝑢̃
𝑘
) .

(28)

Recalling𝑀 is a lower triangular matrix, by the fact that
its inverse is also a lower triangular, we have

𝐺
−1
𝑀 = 𝑀

−𝑇
𝐻 = (

𝐼𝑛 0

−
𝐴

𝑠
𝐼𝑚

). (29)

Plugging the previous relationship to (31), we have

(
𝑥𝑘+1

𝜆𝑘+1
) = (

𝑥𝑘

𝜆𝑘
) − 𝛼𝑘(

𝑥𝑘 − 𝑥𝑘

𝜆𝑘 − 𝜆̃𝑘 −
1

𝑠
𝐴 (𝑥𝑘 − 𝑥𝑘)

) . (30)

In fact, this is a scheme of Gaussian back substitution.
Both cases only involve one matrix-vector multiplication

whichmakes the update form simple. And the computational
cost is usually inexpensive.

Remark 4. We now study the subproblem described in (∗),
(∗∗), and the stepsize choice condition (#). For easy analysis,
we characterize (∗), (∗∗) as the following VI formulation.

Find (𝑥𝑘, 𝜆̃𝑘) ∈ Ω such that

(
𝑥 − 𝑥𝑘

𝜆 − 𝜆̃𝑘
)

𝑇

{(
𝑓 (𝑥𝑘) − 𝐴𝑇𝜆̃𝑘

𝐴𝑥𝑘 − 𝑏
) + (

𝑟𝐼𝑛 𝐴𝑇

0 𝑠𝐼𝑚
)(

𝑥
𝑘 − 𝑥𝑘

𝜆̃𝑘 − 𝜆𝑘
)}

≥ 0, ∀ (
𝑥

𝜆
) ∈ Ω,

(31)

and its compact form

𝑢̃
𝑘
∈ Ω, (𝑢 − 𝑢̃

𝑘
)
𝑇

{𝐹 (𝑢̃
𝑘
) +𝑀(𝑢̃

𝑘
− 𝑢
𝑘
)} ≥ 0,

∀𝑢 ∈ Ω.

(32)

We observe that subproblem (32) is similar to (10) in PPA,
except for the construction of asymmetrymatrix𝑀. As men-
tioned before, (32) is the same as the prediction subproblem
in [24]. Even though they are closely related, the stepsize
choice here is quite different. We provide more specific and
weaker condition for stepsize 𝑟, 𝑠. It is clear that condition (#)
does not need prior knowledge of matrix 𝐴. Furthermore, it
only involves matrix-vector multiplication, and so, it is easy
to verify, and it is amenable to large-scale𝐴. If 𝑟, 𝑠 fail to meet
this convergence condition (#), one should appropriately
increase 𝑟, 𝑠. In the following subsection, we will elaborate
on the self-adaptive strategies to increase the stepsizes. At
this point, condition (#)may be seen somewhat unmotivated.
Some insight into this will be provided later, as we proceed
with the convergence analysis. The convergence condition in
[24] has a quite different feature: 𝑟, 𝑠 satisfy

𝑟𝑠 ≥
1

2

󵄩󵄩󵄩󵄩󵄩
𝐴
𝑇
𝐴
󵄩󵄩󵄩󵄩󵄩
. (33)

It is stronger than condition (#). The following lemma is
devoted to the proof of this result.

Lemma 5. Let {𝑢𝑘} be the sequence generated by Algorithm 1,
𝐻, 𝑑(𝑢𝑘, 𝑢̃𝑘), and 𝜑(𝑢𝑘, 𝑢̃𝑘) defined in (24), (25), and (26),
respectively. Suppose that condition (33) is satisfied. Then, con-
dition (#) holds immediately.

Proof. Note that

𝜑 (𝑢
𝑘
, 𝑢̃
𝑘
) = 𝑟

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘
− 𝑥
𝑘󵄩󵄩󵄩󵄩󵄩

2

+ 𝑠
󵄩󵄩󵄩󵄩󵄩
𝜆
𝑘
− 𝜆̃
𝑘󵄩󵄩󵄩󵄩󵄩

2

+ (𝜆
𝑘
− 𝜆̃
𝑘
)
𝑇

𝐴(𝑥
𝑘
− 𝑥
𝑘
) .

(34)

Recall thatmatrix𝐺described inAlgorithm 1 can be designed
in two different cases.

Case 1. If 𝐺 = 𝐻, we immediately have

󵄩󵄩󵄩󵄩󵄩
𝑑 (𝑢
𝑘
, 𝑢̃
𝑘
)
󵄩󵄩󵄩󵄩󵄩

2

𝐺
=
󵄩󵄩󵄩󵄩󵄩
𝑢
𝑘
− 𝑢̃
𝑘󵄩󵄩󵄩󵄩󵄩

2

𝐻
+
1

𝑟

󵄩󵄩󵄩󵄩󵄩
𝐴
𝑇
(𝜆
𝑘
− 𝜆̃
𝑘
)
󵄩󵄩󵄩󵄩󵄩

2

+ 2(𝜆
𝑘
− 𝜆̃
𝑘
)
𝑇

𝐴(𝑥
𝑘
− 𝑥
𝑘
) .

(35)
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According to Cauchy-Schwarz inequality, we get

𝜑 (𝑢
𝑘
, 𝑢̃
𝑘
) −

1

4

󵄩󵄩󵄩󵄩󵄩
𝑑 (𝑢
𝑘
, 𝑢̃
𝑘
)
󵄩󵄩󵄩󵄩󵄩

2

𝐺

=
3

4

󵄩󵄩󵄩󵄩󵄩
𝑢
𝑘
− 𝑢̃
𝑘󵄩󵄩󵄩󵄩󵄩

2

𝐻
−
1

4𝑟

󵄩󵄩󵄩󵄩󵄩
𝐴
𝑇
(𝜆
𝑘
− 𝜆̃
𝑘
)
󵄩󵄩󵄩󵄩󵄩

2

+
1

2
(𝜆
𝑘
− 𝜆̃
𝑘
)
𝑇

𝐴(𝑥
𝑘
− 𝑥
𝑘
)

≥
3

4

󵄩󵄩󵄩󵄩󵄩
𝑢
𝑘
− 𝑢̃
𝑘󵄩󵄩󵄩󵄩󵄩

2

𝐻
−
1

4𝑟

󵄩󵄩󵄩󵄩󵄩
𝐴
𝑇
(𝜆
𝑘
− 𝜆̃
𝑘
)
󵄩󵄩󵄩󵄩󵄩

2

−
1

4
(2𝑟

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘
− 𝑥
𝑘󵄩󵄩󵄩󵄩󵄩

2

+
1

2𝑟

󵄩󵄩󵄩󵄩󵄩
𝐴
𝑇
(𝜆
𝑘
− 𝜆̃
𝑘
)
󵄩󵄩󵄩󵄩󵄩

2

)

=
𝑟

4

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘
− 𝑥
𝑘󵄩󵄩󵄩󵄩󵄩

2

+
3𝑠

4

󵄩󵄩󵄩󵄩󵄩
𝜆
𝑘
− 𝜆̃
𝑘󵄩󵄩󵄩󵄩󵄩

2

−
3

8𝑟

󵄩󵄩󵄩󵄩󵄩
𝐴
𝑇
(𝜆
𝑘
− 𝜆̃
𝑘
)
󵄩󵄩󵄩󵄩󵄩

2

≥
𝑟

4

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘
− 𝑥
𝑘󵄩󵄩󵄩󵄩󵄩

2

.

(36)

The last inequality follows directly from condition (33).

Case 2. If 𝐺 = 𝑀𝐻−1𝑀𝑇, by the definition of 𝑑(𝑢𝑘, 𝑢̃𝑘), we
obtain

󵄩󵄩󵄩󵄩󵄩
𝑑 (𝑢
𝑘
, 𝑢̃
𝑘
)
󵄩󵄩󵄩󵄩󵄩

2

𝐺
= (𝑢
𝑘
− 𝑢̃
𝑘
)
𝑇

𝑀
𝑇
𝐺
−1
𝑀(𝑢
𝑘
− 𝑢̃
𝑘
)

=
󵄩󵄩󵄩󵄩󵄩
𝑢
𝑘
− 𝑢̃
𝑘󵄩󵄩󵄩󵄩󵄩

2

𝐻
.

(37)

Then, we get

𝜑 (𝑢
𝑘
, 𝑢̃
𝑘
) −

1

4

󵄩󵄩󵄩󵄩󵄩
𝑑 (𝑢
𝑘
, 𝑢̃
𝑘
)
󵄩󵄩󵄩󵄩󵄩

2

𝐺

=
3

4

󵄩󵄩󵄩󵄩󵄩
𝑢
𝑘
− 𝑢̃
𝑘󵄩󵄩󵄩󵄩󵄩

2

𝐻
+ (𝜆
𝑘
− 𝜆̃
𝑘
)
𝑇

𝐴(𝑥
𝑘
− 𝑥
𝑘
)

≥
3

4

󵄩󵄩󵄩󵄩󵄩
𝑢
𝑘
− 𝑢̃
𝑘󵄩󵄩󵄩󵄩󵄩

2

𝐻
−
1

2

4𝑟

3

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘
− 𝑥
𝑘󵄩󵄩󵄩󵄩󵄩

2

−
1

2

3

4𝑟

󵄩󵄩󵄩󵄩󵄩
𝐴
𝑇
(𝜆
𝑘
− 𝜆̃
𝑘
)
󵄩󵄩󵄩󵄩󵄩

2

=
𝑟

12

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘
− 𝑥
𝑘󵄩󵄩󵄩󵄩󵄩

2

+
3𝑠

4

󵄩󵄩󵄩󵄩󵄩
𝜆
𝑘
− 𝜆̃
𝑘󵄩󵄩󵄩󵄩󵄩

2

−
3

8𝑟

󵄩󵄩󵄩󵄩󵄩
𝐴
𝑇
(𝜆
𝑘
− 𝜆̃
𝑘
)
󵄩󵄩󵄩󵄩󵄩

2

≥
𝑟

12

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘
− 𝑥
𝑘󵄩󵄩󵄩󵄩󵄩

2

.

(38)

Thefirst inequality follows from theCauchy-Schwarz ine-
quality, and the last one follows directly from condition (33).

Note that, in both cases, we have that condition (#) holds
if 𝑟𝑠 ≥ (1/2)‖𝐴𝑇𝐴‖.

Condition (33) is not only stronger than Condition (#),
but it also requires that matrix 𝑀 is positive semidefinite,
while condition (#) does not. Furthermore, condition (33)
may require the explicit expression of 𝐴 or knowledge of
‖𝐴
𝑇𝐴‖. Despite these drawbacks, condition (33) is appealing

to the problems in which ‖𝐴𝑇𝐴‖ is known beforehand or easy
to compute/obtain. For instance, 𝐴 is small scale, an identity
matrix or a projection operator, and so forth. It is clear that
both condition (#) and (33) are more flexible than the one
in PPA-CM [23]. The most aggressive condition (#) may lead

to further improvement in stepsize choice. Moreover, it is
worthwhile to notice that condition (#) is elegantly designed
and provides 𝜑(𝑢𝑘, 𝑢̃𝑘) with favourable property. In fact, for
general matrix 𝐺, condition (#) also can guarantee conver-
gence.

Remark 6. The update stepsize 𝛼𝑘 plays an important role
here. In fact, it can be regarded as an optimal stepsize which
will be illustrated in the following section.

Remark 7. We should restrict the adjustment in Step 5 of
Algorithm 1 within a limited number to avoid divergence.

In Algorithm 1, we carry out the 𝑥-predictor before
performing 𝜆-predictor. The roles of 𝑥 and 𝜆 are symmetric;
hence, sweeping the order will not break the Gauss-Seidel
structure. We switch 𝑥 and 𝜆 and obtain a variant of relaxed-
PPA with the order of the 𝑥-predictor step and 𝜆-predictor
step reversed.This variant is illustrated in Algorithm 2. How-
ever, there is no a priori information to knowwhich algorithm
is superior. Here, we let

𝑀 = (
𝑟𝐼𝑛 0

−𝐴 𝑠𝐼𝑚
) . (39)

4.2. Adaptive Enhancements. Both PPA-CM and LPPA
employ fixed stepsizes 𝑟, 𝑠. Experiments reveal that they will
suffer slow convergence when stepsizes 𝑟, 𝑠 are chosen inap-
propriately. A natural question is, how to choose the proper
initial stepsizes 𝑟, 𝑠. Here, we propose self-adaptive strategies
with the goal of improving the convergence in practice, aswell
asmaking performance less dependent on the initial choice of
stepsizes. Our strategies dynamically incorporate the infor-
mation of the current iteration to perform more informative
choice of stepsizes for the next iteration [31]. When doing so,
the algorithmwill be adaptive and free from the initial choice.
Denote

(
𝑑
𝑘

𝑥

𝑑𝑘
𝜆

) = (
(𝑥𝑘 − 𝑥𝑘) +

1

𝑟
𝐴𝑇 (𝜆𝑘 − 𝜆̃𝑘)

𝜆𝑘 − 𝜆̃𝑘
) , (40)

and then, (31) can be rewritten as

(
𝑥 − 𝑥𝑘

𝜆 − 𝜆̃𝑘
)

𝑇

{(
𝑓 (𝑥𝑘) − 𝐴𝑇𝜆̃𝑘

𝐴𝑥𝑘 − 𝑏
) − (

𝑟𝐼𝑛 0

0 𝑠𝐼𝑚
)(

𝑑𝑘
𝑥

𝑑𝑘
𝜆

)} ≥ 0,

∀ (
𝑥

𝜆
) ∈ Ω.

(41)

Under 𝐻-norm, the quantity 𝑑𝑘
𝑥
can be viewed as a residual

for the dual feasibility condition, and 𝑑𝑘
𝜆

can be viewed as
a primal residual. These two residuals converge to zero as
relaxed-PPA proceeds. Note that

󵄩󵄩󵄩󵄩󵄩
𝑑
𝑘

𝑥

󵄩󵄩󵄩󵄩󵄩

2

𝑟
= 𝑟

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘
− 𝑥
𝑘󵄩󵄩󵄩󵄩󵄩

2

+ 2(𝑥
𝑘
− 𝑥
𝑘
)
𝑇

𝐴
𝑇
(𝜆
𝑘
− 𝜆̃
𝑘
)

+
1

𝑟

󵄩󵄩󵄩󵄩󵄩
𝐴
𝑇
(𝜆
𝑘
− 𝜆̃
𝑘
)
󵄩󵄩󵄩󵄩󵄩

2

,

󵄩󵄩󵄩󵄩󵄩
𝑑
𝑘

𝜆

󵄩󵄩󵄩󵄩󵄩

2

𝑠
= 𝑠

󵄩󵄩󵄩󵄩󵄩
𝜆
𝑘
− 𝜆̃
𝑘󵄩󵄩󵄩󵄩󵄩

2

.

(42)
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If 󵄩󵄩󵄩󵄩󵄩𝑑
𝑘

𝑥

󵄩󵄩󵄩󵄩󵄩

2

𝑟
≥ 𝜏1

󵄩󵄩󵄩󵄩󵄩
𝑑𝑘
𝜆

󵄩󵄩󵄩󵄩󵄩

2

𝑠

𝑟 := 𝑟; 𝑠 := 𝑠 ∗ 2;
else if 𝜏2

󵄩󵄩󵄩󵄩󵄩
𝑑𝑘
𝑥

󵄩󵄩󵄩󵄩󵄩

2

𝑟
≤
󵄩󵄩󵄩󵄩󵄩
𝑑𝑘
𝜆

󵄩󵄩󵄩󵄩󵄩

2

𝑠

𝑟 := 𝑟 ∗ 2; 𝑠 := 𝑠;
else
𝑟 := 𝑟 ∗ 1.5; 𝑠 := 𝑠 ∗ 1.5.

Algorithm 3: Adaptation-I.

if 𝑟󵄩󵄩󵄩󵄩󵄩𝑥
𝑘
− 𝑥
𝑘󵄩󵄩󵄩󵄩󵄩

2

≥ 𝜏1 (𝑠
󵄩󵄩󵄩󵄩󵄩
𝜆
𝑘
− 𝜆̃
𝑘󵄩󵄩󵄩󵄩󵄩

2

+
1

𝑟

󵄩󵄩󵄩󵄩󵄩
𝐴
𝑇
(𝜆
𝑘
− 𝜆̃
𝑘
)
󵄩󵄩󵄩󵄩󵄩

2

)

𝑟 :=
𝑟

2
; 𝑠 =

𝜇
󵄩󵄩󵄩󵄩󵄩
𝐴𝐴𝑇

󵄩󵄩󵄩󵄩󵄩

𝑟
;

else if 𝜏2𝑟
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘
− 𝑥
𝑘󵄩󵄩󵄩󵄩󵄩

2

≤ (𝑠
󵄩󵄩󵄩󵄩󵄩
𝜆
𝑘
− 𝜆̃
𝑘󵄩󵄩󵄩󵄩󵄩

2

+
1

𝑟

󵄩󵄩󵄩󵄩󵄩
𝐴
𝑇
(𝜆
𝑘
− 𝜆̃
𝑘
)
󵄩󵄩󵄩󵄩󵄩

2

)

𝑠 :=
𝑠

2
; 𝑟 =

𝜇
󵄩󵄩󵄩󵄩󵄩
𝐴𝐴𝑇

󵄩󵄩󵄩󵄩󵄩

𝑠
;

else
𝑟 := 𝑟; 𝑠 := 𝑠.

Algorithm 4: Adaptation-II.

And this implies that small values of 𝑠 tend to reduce the
primal residual but have potential to enlarge violations of
dual feasibility and tend to produce larger dual residual. This
observation motivates us to balance primal and dual residu-
als. When condition (#) fails, we increase stepsizes 𝑟, 𝑠 prop-
erly according to the adaptation shown in Algorithm 3.

Here, 𝜏1 > 1, 𝜏2 > 1. This adaptation strategy increases 𝑠
when the dual residual ‖𝑑𝑘

𝑥
‖
2

𝑟
appears large compared to the

primal residual ‖𝑑𝑘
𝜆
‖
2

𝑠
and increases 𝑟 when the dual residual

‖𝑑𝑘
𝑥
‖
2

𝑟
seems too small relative to the primal residual ‖𝑑𝑘

𝜆
‖
2

𝑠
.

As mentioned, condition (33) is stronger than condition
(#). If one chooses condition (33), our RPPA also converges.
It must have predetermined stepsizes satisfying 𝑟𝑠 = 𝜇‖𝐴𝑇𝐴‖
(here, 𝜇 ≥ 0.5). However, there is no priority knowledge of
the choice of individual 𝑟 or 𝑠. Here, we can also adjust 𝑟, 𝑠
automatically when choosing condition (33). Intuitively, we
consider expansion of the entire residual under𝐻-norm:

󵄩󵄩󵄩󵄩󵄩
𝑑
𝑘

𝑥

󵄩󵄩󵄩󵄩󵄩

2

𝑟
+
󵄩󵄩󵄩󵄩󵄩
𝑑
𝑘

𝜆

󵄩󵄩󵄩󵄩󵄩

2

𝑠

= 𝑟
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘
− 𝑥
𝑘󵄩󵄩󵄩󵄩󵄩

2

+ 𝑠
󵄩󵄩󵄩󵄩󵄩
𝜆
𝑘
− 𝜆̃
𝑘󵄩󵄩󵄩󵄩󵄩

2

+
1

𝑟

󵄩󵄩󵄩󵄩󵄩
𝐴
𝑇
(𝜆
𝑘
− 𝜆̃
𝑘
)
󵄩󵄩󵄩󵄩󵄩

2

+ 2(𝑥
𝑘
− 𝑥
𝑘
)
𝑇

𝐴
𝑇
(𝜆
𝑘
− 𝜆̃
𝑘
) ;

(43)

there are three terms involving 𝑟or 𝑠, andwe intend to balance
these terms. For fixed 𝜇, take 𝑠 = (𝜇/𝑟)‖𝐴𝐴𝑇‖; then

𝑠
󵄩󵄩󵄩󵄩󵄩
𝜆
𝑘
− 𝜆̃
𝑘󵄩󵄩󵄩󵄩󵄩

2

=
𝜇

𝑟

󵄩󵄩󵄩󵄩󵄩
𝐴𝐴
𝑇󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝜆
𝑘
− 𝜆̃
𝑘󵄩󵄩󵄩󵄩󵄩

2

. (44)

Applying (44) into (43), clearly we have

󵄩󵄩󵄩󵄩󵄩
𝑑
𝑘

𝑥

󵄩󵄩󵄩󵄩󵄩

2

𝑟
+
󵄩󵄩󵄩󵄩󵄩
𝑑
𝑘

𝜆

󵄩󵄩󵄩󵄩󵄩

2

𝑠

= 𝑟
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘
− 𝑥
𝑘󵄩󵄩󵄩󵄩󵄩

2

+
1

𝑟
(𝜇

󵄩󵄩󵄩󵄩󵄩
𝐴𝐴
𝑇󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝜆
𝑘
− 𝜆̃
𝑘󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩
𝐴
𝑇
(𝜆
𝑘
− 𝜆̃
𝑘
)
󵄩󵄩󵄩󵄩󵄩

2

)

+ 2 (𝑥
𝑘
− 𝑥
𝑘
)
𝑇

𝐴
𝑇
(𝜆
𝑘
− 𝜆̃
𝑘
) .

(45)

Now, we consider adjusting stepsize to balance 𝑟‖𝑥𝑘 − 𝑥𝑘‖
2

and (1/𝑟)(𝜇‖𝐴𝐴𝑇‖‖𝜆𝑘 − 𝜆̃𝑘‖
2

+ ‖𝐴𝑇(𝜆𝑘 − 𝜆̃𝑘)‖
2

) and obtain
another adaptation strategy (see Algorithm 4).

It is worth noting that too many adjustments of stepsizes
by Algorithm 4might cause the algorithm to diverge in prac-
tice, and we therefore restrict these adaptations within a lim-
ited number of iterations. If one chooses Algorithm 4, there is
no need to carry out Step 5 in Algorithm 1 (or Algorithm 2).
These techniques embedded into relaxed-PPA automatically
choose a “better” stepsize for the next iteration.

5. Convergence Analysis

In this section, we analyze convergence of our primal-dual
relaxed-PPA.The convergence analysis of dual-primal scheme
can follow a similar procedure.

Let 𝑢∗ = (𝑥∗, 𝜆∗) be any solution point, setting 𝑢 = 𝑢∗ in
(32) yields

(𝑢̃
𝑘
− 𝑢
∗
)
𝑇

𝑀(𝑢
𝑘
− 𝑢̃
𝑘
) ≥ (𝑢̃

𝑘
− 𝑢
∗
)
𝑇

𝐹 (𝑢̃
𝑘
) . (46)
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Since 𝑢̃𝑘 ∈ Ω, we have (𝑢̃𝑘 − 𝑢∗)𝑇𝐹(𝑢∗) ≥ 0. Consequently,
by using the monotonicity of 𝐹, the right hand side of (46) is
nonnegative, and thus

(𝑢̃
𝑘
− 𝑢
∗
)
𝑇

𝑀(𝑢
𝑘
− 𝑢̃
𝑘
) ≥ 0. (47)

Now, we are writing the update as

𝑢 (𝛼) = 𝑢
𝑘
− 𝛼𝑑 (𝑢

𝑘
, 𝑢̃
𝑘
) (48)

and

𝜗 (𝛼) :=
󵄩󵄩󵄩󵄩󵄩
𝑢
𝑘
− 𝑢
∗󵄩󵄩󵄩󵄩󵄩

2

𝐺
−
󵄩󵄩󵄩󵄩𝑢 (𝛼) − 𝑢

∗󵄩󵄩󵄩󵄩
2

𝐺
,

𝑞 (𝛼) = 2𝛼(𝑢
𝑘
− 𝑢̃
𝑘
)
𝑇

𝐺𝑑 (𝑢
𝑘
, 𝑢̃
𝑘
) − 𝛼
2󵄩󵄩󵄩󵄩󵄩
𝑑 (𝑢
𝑘
, 𝑢̃
𝑘
)
󵄩󵄩󵄩󵄩󵄩

2

𝐺
.

(49)

Here, 𝜗(𝛼) can be viewed as a progress function. The follow-
ing lemma shows that 𝑞(𝛼) is a lower bound of 𝜗(𝛼).

Lemma 8. Let 𝜗(𝛼) and 𝑞(𝛼) be defined in (49); then one has

𝜗 (𝛼) ≥ 𝑞 (𝛼) . (50)

Proof. Let 𝑢∗ be any solution, from the definition of 𝑢(𝛼), we
have

𝜗 (𝛼) =
󵄩󵄩󵄩󵄩󵄩
𝑢
𝑘
− 𝑢
∗󵄩󵄩󵄩󵄩󵄩

2

𝐺
−
󵄩󵄩󵄩󵄩󵄩
(𝑢
𝑘
− 𝑢
∗
) − 𝛼𝑑 (𝑢

𝑘
, 𝑢̃
𝑘
)
󵄩󵄩󵄩󵄩󵄩

2

𝐺

= 2𝛼(𝑢
𝑘
− 𝑢
∗
)
𝑇

𝐺𝑑 (𝑢
𝑘
, 𝑢̃
𝑘
) − 𝛼
2󵄩󵄩󵄩󵄩󵄩
𝑑 (𝑢
𝑘
, 𝑢̃
𝑘
)
󵄩󵄩󵄩󵄩󵄩

2

𝐺
.

(51)

Applying (47) to the first term of (51) gives

(𝑢
𝑘
− 𝑢
∗
)
𝑇

𝐺𝑑 (𝑢
𝑘
, 𝑢̃
𝑘
) = (𝑢

𝑘
− 𝑢̃
𝑘
)
𝑇

𝐺𝑑 (𝑢
𝑘
, 𝑢̃
𝑘
)

+ (𝑢̃
𝑘
− 𝑢
∗
)
𝑇

𝐺𝑑 (𝑢
𝑘
, 𝑢̃
𝑘
)

≥ (𝑢
𝑘
− 𝑢̃
𝑘
)
𝑇

𝐺𝑑 (𝑢
𝑘
, 𝑢̃
𝑘
) .

(52)

Substituting (52) into (51), we immediately obtain the asser-
tion.

We note that 𝑞(𝛼) is a quadratic function of 𝛼 and it is
natural to maximize 𝑞(𝛼) to obtain an “optimal” 𝛼:

𝛼
∗

𝑘
=
(𝑢𝑘 − 𝑢̃𝑘)

𝑇

𝐺𝑑 (𝑢𝑘, 𝑢̃𝑘)

󵄩󵄩󵄩󵄩𝑑 (𝑢
𝑘, 𝑢̃𝑘)

󵄩󵄩󵄩󵄩
2

𝐺

. (53)

We now show that the “optimal” 𝛼∗
𝑘
is bounded above from

zero in the following Lemma.

Lemma 9. Let sequence {𝑢𝑘} be produced by Algorithm 1, 𝛼∗
𝑘

defined in (53); then, one has

𝛼
∗

𝑘
≥
1

4
> 0. (54)

Proof. Using the definition of 𝛼∗
𝑘
in (53), we have, for all 𝑘,

𝛼
∗

𝑘
=

𝜑 (𝑢𝑘, 𝑢̃𝑘)

󵄩󵄩󵄩󵄩𝑑 (𝑢
𝑘, 𝑢̃𝑘)

󵄩󵄩󵄩󵄩
2

𝐺

≥
1

4
. (55)

The inequality follows from condition (#).

Setting 𝛼 = 𝛼𝑘 = 𝛼
∗

𝑘
𝛾 in (50) yields

󵄩󵄩󵄩󵄩󵄩
𝑢
𝑘+1

− 𝑢
∗󵄩󵄩󵄩󵄩󵄩

2

𝐺
≤
󵄩󵄩󵄩󵄩󵄩
𝑢
𝑘
− 𝑢
∗󵄩󵄩󵄩󵄩󵄩

2

𝐺

− 𝛾 (2 − 𝛾) 𝛼
∗

𝑘
(𝑢
𝑘
− 𝑢̃
𝑘
)
𝑇

𝐺𝑑 (𝑢
𝑘
, 𝑢̃
𝑘
) .

(56)

Combining Lemmas 8 and 9, we immediately obtain the fol-
lowing convergence theorem.

Theorem 10. Let sequence {𝑢𝑘} be produced by Algorithm 1;
then one gets

󵄩󵄩󵄩󵄩󵄩
𝑢
𝑘+1

− 𝑢
∗󵄩󵄩󵄩󵄩󵄩

2

𝐺
≤
󵄩󵄩󵄩󵄩󵄩
𝑢
𝑘
− 𝑢
∗󵄩󵄩󵄩󵄩󵄩

2

𝐺
−
𝛾 (2 − 𝛾)

16

󵄩󵄩󵄩󵄩󵄩
𝑑 (𝑢
𝑘
, 𝑢̃
𝑘
)
󵄩󵄩󵄩󵄩󵄩

2

𝐺
. (57)

Theorem 11. Let sequence {𝑢𝑘} be generated by Algorithm 1.
Then, {𝑢𝑘} converges to some 𝑢∞ which is a solution of
𝑉𝐼(Ω, 𝐹) (9).

Proof. First, for each 𝑢 ∈ Ω, we have

(𝑢 − 𝑢̃
𝑘
)
𝑇

𝐹 (𝑢̃
𝑘
) ≥ (𝑢 − 𝑢̃

𝑘
)
𝑇

𝑀(𝑢
𝑘
− 𝑢̃
𝑘
) . (58)

It follows from (57) that {𝑢𝑘} is a bounded sequence and

lim
𝑘→∞

󵄩󵄩󵄩󵄩󵄩
𝑢
𝑘
− 𝑢̃
𝑘󵄩󵄩󵄩󵄩󵄩𝐺

= 0. (59)

Consequently, {𝑢̃𝑘} is also bounded. Since
lim𝑘→∞‖𝑢

𝑘 − 𝑢̃𝑘‖𝐺 = 0, it follows from (58) that

lim
𝑘→∞

(𝑢 − 𝑢̃
𝑘
)
𝑇

𝐹 (𝑢̃
𝑘
) ≥ 0, ∀𝑢 ∈ Ω. (60)

Because {𝑢̃𝑘} is bounded, it has at least a cluster point. Let
𝑢∞ be a cluster point of {𝑢̃𝑘} and let the subsequence {𝑢̃𝑘𝑗}
converge to 𝑢∞. It follows that

lim
𝑗→∞

(𝑢 − 𝑢̃
𝑘
𝑗)
𝑇

𝐹 (𝑢̃
𝑘
𝑗) ≥ 0, ∀𝑢 ∈ Ω, (61)

and consequently,

(𝑢 − 𝑢
∞
)
𝑇
𝐹 (𝑢
∞
) ≥ 0. ∀𝑢 ∈ Ω. (62)

This means that 𝑢∞ is a solution of VI(Ω, 𝐹). Note that the
inequality (57) is true for all solution points of VI(Ω, 𝐹), and
hence, we have

󵄩󵄩󵄩󵄩󵄩
𝑢
𝑘+1

− 𝑢
∞󵄩󵄩󵄩󵄩󵄩

2

𝐺
≤
󵄩󵄩󵄩󵄩󵄩
𝑢
𝑘
− 𝑢
∞󵄩󵄩󵄩󵄩󵄩

2

𝐺
, ∀𝑘 ≥ 0. (63)

Since 𝑢̃𝑘𝑗 → 𝑢∞ (𝑗 → ∞) and 𝑢𝑘 − 𝑢̃𝑘 → 0 (𝑘 → ∞), for
any given 𝜀 > 0, there exists an integer 𝑙 > 0 such that

󵄩󵄩󵄩󵄩󵄩
𝑢̃
𝑘
𝑙 − 𝑢
∞󵄩󵄩󵄩󵄩󵄩𝐺

<
𝜀

2
,

󵄩󵄩󵄩󵄩󵄩
𝑢
𝑘
𝑙 − 𝑢̃
𝑘
𝑙
󵄩󵄩󵄩󵄩󵄩𝐺

<
𝜀

2
. (64)

Therefore, for any 𝑘 ≥ 𝑘𝑙, it follows from (63) and (64) that
󵄩󵄩󵄩󵄩󵄩
𝑢
𝑘
− 𝑢
∞󵄩󵄩󵄩󵄩󵄩𝐺

≤
󵄩󵄩󵄩󵄩󵄩
𝑢
𝑘
𝑙 − 𝑢
∞󵄩󵄩󵄩󵄩󵄩𝐺

≤
󵄩󵄩󵄩󵄩󵄩
𝑢
𝑘
𝑙 − 𝑢̃
𝑘
𝑙
󵄩󵄩󵄩󵄩󵄩𝐺
+
󵄩󵄩󵄩󵄩󵄩
𝑢̃
𝑘
𝑙 − 𝑢
∞󵄩󵄩󵄩󵄩󵄩𝐺

≤ 𝜀.

(65)

This implies that the sequence {𝑢𝑘} converges to 𝑢∞, which is
a solution of VI(Ω, 𝐹) (9).
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Table 1: Comparison of behaviours of four SRPPAs.

𝐴 SPDRPPAG1-I SDPRPPAG1-I SPDRPPAG2-I SDPRPPAG2-I
𝑛 It. CPU It. CPU It. CPU It. CPU
500 360 0.13 241 0.13 513 0.19 875 0.26
1500 379 1.32 259 0.89 387 1.72 594 2.04
2500 501 4.39 343 3.01 429 4.93 648 5.72
3500 399 6.65 325 5.57 663 14.44 1089 18.02
4500 389 12.13 457 14.47 493 20.61 991 31.26
5500 515 24.21 462 21.97 497 30.88 813 38.43
6500 449 25.01 423 23.41 456 33.42 932 51.62
7500 520 45.72 473 41.79 724 63.06 886 77.91

6. Applications and Preliminary
Numerical Experiments

The general self-adaptive relaxed-PPA (SRPPA) offers a
flexible framework for solving many interesting problems.
We illustrate our algorithm with different applications: basis
pursuit problem, nearest correlation matrix problem. In this
section, we describe the results of experiments whose goal is
to demonstrate the efficiency of general relaxed-PPA (RPPA)
and its self-adaptive version. To that end, we compare RPPA
with certain state-of-the-art algorithms on different prob-
lems. Our experiments focus on efficiency and speed of con-
vergence and evaluate the methods in terms of their number
of iterations and computational times.

All the codes were written byMatlab R2009b version, and
all the numerical experiments were performed on a Lenovo
desktop computer with Intel (R) Core (TM) i5 CPU with
3.2GHz and 3.5GB RAM.

6.1. Basis Pursuit Problem. Basis pursuit (BP) finds signal
representations in overcomplete dictionaries by equality-
constrained 𝑙1 minimization problem. Formally, one solves
the problem

min {‖𝑥‖1𝐴𝑥 = 𝑏, 𝑥 ∈ R
𝑛
} . (66)

And here, ‖ ⋅ ‖1 denotes the 𝑙1 norm defined as ‖𝑥‖1 :=

∑
𝑛

𝑖=1
|𝑥𝑖|. BP is a fundamental problem in image processing

andmodern statistical signal processing, particularly the the-
ory of compressed sensing; see, for example, [1–4] for inten-
sive study. We now discuss our approach to BP problem of
over-complete representations. Our experiments in this sub-
section use synthetic data which were mainly designed to
illustrate the nice performance of our RPPA. The synthetic
problem that we test here is similar to the one employed in
[32]. We generate the data as follows: matrix 𝐴 is a random
𝑚 × 𝑛 matrix, with Gaussian i.i.d. entries of zero mean and
variance 1, with 𝑚 = 𝑛/2. 𝑥original ∈ 𝑅

𝑛 is the original sparse
signal, constructed with𝑚/5 nonzero values, randomly from
standard normal distribution. We use 𝑥original to generate the
measurements as 𝑏 = 𝐴𝑥original. It is desirable to use test
problems that have a precisely known solution. In fact, when
𝑥original is very sparse, it is the solution to the minimization
problem (66). Hence, in our synthetic problem, 𝑥original is
exactly the solution.

In our first experiment, we compared general RPPA using
two different 𝐺’s mentioned in Section 4.1. For BP problem,
we use condition (#) and Algorithm 3. Since 𝐴 constructed
here is a general random matrix, and when 𝐴 is large scale,
‖𝐴
𝑇𝐴‖might be obtained costly. A simple stopping criterion

err . = 󵄩󵄩󵄩󵄩󵄩𝑥
𝑘
− 𝑥original

󵄩󵄩󵄩󵄩󵄩
≤ Tol (67)

was used in this experiment, and the stopping tolerance Tol
was set to 10−10. In all the tests, initial stepsizes were set as 𝑠 =
10, 𝑟 = 1, the primal variable 𝑥0 was initialized as zeros(𝑛, 1),
and the dual 𝜆0 was ones(𝑚, 1) inMatlab. Table 1 summarizes
the performance of general SRPPA. Here, SPDRPPAG𝑖-
I(SPDRPPAG𝑖-II) denotes self-adaptive primal-dual RPPA
with Algorithm 3 (Algorithm 4), 𝐺 = 𝐻, if 𝑖 = 1, and 𝐺 =

𝑀𝐻
−1𝑀𝑇, if 𝑖 = 2. DPRPPA (DPRPPA) denotes dual-primal

RPPA version.
Basically, SRPPAs converge very quickly and achieved

tight error 10−10 in a few hundred iterations. For this exper-
iment, one can see that SDPRPPAG1-I is fastest in all cases.
Both SDPRPPAG1-I and SPDRPPAG1-I are Gaussian type
methods, with 𝐺 = 𝐻, and they exhibit very similar
performance. SDPRPPAG2-I and SPDRPPAG2-I with 𝐺 =

𝑀𝐻
−1𝑀𝑇 are Gaussian back substitute form methods and

perform a little slower than Gaussian type methods. We also
plot a figure to graphically illustrate the performance of four
SRPPAs. Figure 1 shows the results from the test with 𝑛 =

1000 and 𝑛 = 6000, depicting error versusCPU time.Quality-
wise, SPDRPPAG1-I was on par with SDPRPPAG1-I.

In the second experiment, we compare the performance
of SPDRPPAG1-I with TFOCS (source code can be found
at http://cvxr.com/tfocs/) [32], ADMM (source code can
be found at http://www.stanford.edu/∼boyd/papers/admm/)
[33], and PPA-CM. To make the comparison independent of
the stopping criterion for each algorithm, we first run TFOCS
to get its solution 𝑥 TFOCS and set a benchmark error

benchmark err . = 󵄩󵄩󵄩󵄩󵄩𝑥TFOCS − 𝑥original
󵄩󵄩󵄩󵄩󵄩2

(68)

and then runother algorithmsuntil they obtain smaller errors
than this benchmark. TFOCS was stopped upon

󵄩󵄩󵄩󵄩󵄩
𝑥𝑘+1 − 𝑥𝑘

󵄩󵄩󵄩󵄩󵄩

max {1, 󵄩󵄩󵄩󵄩𝑥𝑘+1
󵄩󵄩󵄩󵄩}

≤ Tol. (69)
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Figure 1: Comparing SRPPAs applied to BP problem with 𝑛 = 1000 (a) and 𝑛 = 6000 (b).The horizontal axis gives the CPU time; the vertical
axis gives the error between the solution and the original.

Table 2: Performance of different iterative methods.

𝐴 TFOCS ADMM PPA-CM SPDRPPAG1-I
𝑛 It./CPU Err. It./CPU Err. It./CPU Err. It./CPU Err.
512 1681/4.16 7.5𝑒 − 10 492/0.67 5.0𝑒 − 10 1027/1.41 6.2𝑒 − 10 391/0.10 4.0𝑒 − 10

1024 406/1.68 3.7𝑒 − 10 274/0.53 3.0𝑒 − 10 848/0.76 2.3𝑒 − 10 214/0.28 3.0𝑒 − 10

2048 507/4.01 4.4𝑒 − 9 607/3.93 2.9𝑒 − 9 804/3.65 4.0𝑒 − 9 239/1.49 3.9𝑒 − 9

4096 933/19.50 2.6𝑒 − 9 1070/27.47 2.1𝑒 − 9 845/15.09 2.3𝑒 − 9 422/9.84 2.3𝑒 − 9

4200 461/9.91 2.1𝑒 − 9 916/25.48 1.8𝑒 − 9 868/16.27 2.1𝑒 − 9 391/9.44 1.5𝑒 − 9

4300 451/9.74 2.2𝑒 − 9 464/20.37 1.6𝑒 − 9 884/16.91 2.1𝑒 − 9 429/10.54 2.1𝑒 − 9

4600 505/12.37 1.36𝑒 − 9 2155/56.45 1.2𝑒 − 9 863/18.95 1.2𝑒 − 9 425/11.89 1.1𝑒 − 9

4700 801/20.15 1.3𝑒 − 11 1517/45.37 8.2𝑒 − 12 1102/34.27 1.2𝑒 − 11 425/14.20 1.1𝑒 − 11

5500 407/13.64 2.4𝑒 − 6 —/— — 546/20.13 1.9𝑒 − 6 308/12.40 2.0𝑒 − 6

6500 1257/56.11 1.5𝑒 − 5 —/— — 508/26.48 1.4𝑒 − 5 308/17.22 1.3𝑒 − 5

7500 801/81.42 1.1𝑒 − 12 —/— — 1313/813.52 1.1𝑒 − 12 522/69.52 1.1𝑒 − 12

8500 842/107.18 2.3𝑒 − 7 —/— — 724/100.36 2.2𝑒 − 7 542/83.07 2.2𝑒 − 7

Since we found that Tol = 10−12 is small enough to guarantee
very high accuracy, we set Tol = 10−12 in TFOCS.The param-
eters of TFOCS and ADMM were taken with their defaults.
To guarantee the convergence, fixed stepsizes 𝑟, 𝑠 were set to
𝑠 = 100, 𝑟 = 1.01 ∗ ‖𝐴𝐴𝑇‖/𝑠 for PPA-CM. In SPDRPPAG1-I,
we also choose the same convergence condition (#) and initial
step size 𝑠 = 10, 𝑟 = 1 as the previous experiment. We varied
the size of 𝐴 from 𝑛 = 512 (𝑚 = 𝑛/2) to 𝑛 = 8500. The
results of this experiment are summarized in Table 2. There,
we report the run time in seconds, the number of iterations,
and the error of the recovery solution. In Table 2, “—” means
“out of memory.”

We observe from Table 2 that four algorithms reach
high accuracy around 10

−9. SPDRPPAG1-I is about two
times faster than the first-order method implemented in
the TFOCS package, and moreover, it usually outperforms
TFOCS in terms of iterations. For medium size problems,
SPDRPPAG1-I is clearly faster than ADMM. Even for small
size problems, SPDRPPAG1-I shows its superior perform-
ance. The main reason lies in that ADMM computed (𝐼 +

𝐴𝐴
𝑇)
−1 to solve its subproblem exactly which would take

expensive computational cost. Not surprisingly, the general
SPDRPPAG1-I performs better than the primary PPA-CM.
Here, the total iterations of SPDRPPAG1-I are less than 50%
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Figure 2: CPU times as a function of the initial stepsize 𝑠 for PPA-CM, LPPA, and SDPRPPAG1-II. The plot on the left is for 𝑛 = 500, while
the plot on the right is for 𝑛 = 1000.

of PPA-CM.Aswe havementioned, “optimal” update stepsize
𝛼𝑘 and more flexible condition for convergence may pro-
vide SPDRPPAG1-I improved performance. SPDRPPAG1-I is
faster than PPA-CM in terms of CPU times. However, the
superiority of CPU time is not so significant as iteration
number. For the cases 𝑛 = 4300, it is just about 62% of PPA-
CM. This is not particularly surprising; compared to PPA-
CM, SPDRPPAG1-I has to take extra computation for con-
vergence condition and “optimal” 𝛼𝑘 in each iteration.

6.2. Nearest Correlation Matrix Problem. The nearest corre-
lation matrix problem is solving the problem

min {1
2
‖𝑋 − 𝐶‖

2

𝐹
| diag (𝑋) = 𝑒, 𝑋 ∈ 𝑆

𝑛

+
} , (70)

where 𝑒 ∈ R𝑛 is the vector whose entries are all 1𝑠, 𝑆𝑛
+
denotes

the cone of positive definite symmetric matrices, diag(𝑋) is
the vector of diagonal elements of 𝑋, and ‖ ⋅ ‖𝐹 denotes the
matrix Fröbenius norm ‖𝑋‖𝐹 = trace (𝑋𝑇𝑋)1/2.

Here, we apply PPA-CM, LPPA, and SDPRPPA1-II for
solving (70). The standard Matlab Mex interface mexsvd
is used to conduct the eigenvalue decomposition. We con-
structed test data sets and stopping criterion like those of
[24]. As mentioned in the prequel, we expect our SRPPA to
produce robust performance. To assess the effectiveness of the
adaptive strategies proposed in Section 6, we nowmove on to
the description of experiments that focus on the conse-
quences of the initial stepsizes. For investigating, we used

dimensions 𝑛 ∈ {500, 1000} and varied 𝑠 from 0.05 to 100,
and initial points were set to 0 in all cases. Note that𝐴 = 𝐼; we
fixed 𝑟 = 1.01/𝑠 for PPA-CM, 𝑟 = 0.65/𝑠 for LPPA and chose
𝑟 = 0.65/𝑠 as initial start for SDPRPPAG1-II. Since the exper-
iments with other values of 𝑛 give qualitatively similar results,
we therefore do not plot those results to avoid clutter in the
figures. The respective numerical results are plotted in
Figure 2.

It is clear that, for PPA-CM and LPPA, the convergence
performance was a result of the stepsize selection. They are
both fairly sensitive to initial stepsize 𝑠 (or 𝑟). The results
confirm that, with inappropriate stepsizes, both PPA-CM
and LPPA become significantly slow. SDPRPPAG1-II yields
significantly robust performance with adaptive strategy. And
it is independent of the initial stepsizes and illustrates its
superior performance. Furthermore, SDPRPPAG1-II yields
competitive results even when PPA-CM and LPPA chose the
“good” initial stepsize.This underlies the importance of adap-
tive strategy in producing good performance. Of course, care
should be taken. For instance, the cost of computing optimal
stepsize 𝛼𝑘 here is negligible, compared to the computation
of SVD; when they are more costly, general LPPA will be
expected to perform slower than PPA-CM.

7. Conclusions

In this paper, we proposed an efficient general self-adaptive
relaxed-PPA method for linearly constrained convex pro-
gramming and provided theoretical convergence analysis for
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this method. The stepsizes choice condition is flexible and
simple. Self-adaptive strategies are provided to make our
method more efficient and robust. Experiments of the
method in comparison to other state-of-art methods are pro-
vided to confirm the efficiency of the proposed method. Our
numerical results suggest that SRPPA is effective and simple
to implement. There are a few directions for further research,
but we list here only two. The first is the question of whether
wemaymodify the algorithm toworkwithmore general con-
strained convex problems. Second, we aim to provide various
relaxations of the subproblem for the practical purpose.
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[22] G. M. Korpelevič, “An extragradient method for finding saddle
points and for other problems,” Èkonomika i Matematicheskie
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The basic motivation of this paper is to extend, generalize, and improve several fundamental results on the existence (and
uniqueness) of coincidence points and fixed points for well-known maps in the literature such as Kannan type, Chatterjea type,
Mizoguchi-Takahashi type, Berinde-Berinde type, Du type, and other types from the class of self-maps to the class of non-self-maps
in the framework of the metric fixed point theory. We establish some fixed/coincidence point theorems for multivalued non-self-
maps in the context of complete metric spaces.

1. Introduction

During the last few decades, the celebrated Banach contrac-
tion principle, also known as the Banach fixed point theorem
[1], has become one of the core topics of appliedmathematical
analysis. As a consequence, a number of generalizations,
extensions, and improvement of the praiseworthy Banach
contraction principle in various direction have been explored
and reported by various authors; see, for example, [2–30] and
the references therein. In parallel with the Banach contraction
principle, Kannan [5] andChatterjea [6] created, respectively,
different type, fixed point theorems as follows.

Theorem 1 (Kannan). Let (𝑋, 𝑑) be a complete metric space,
𝑇 : 𝑋 → 𝑋 is a single-valued map, and 𝛾 ∈ [0, 1/2). Assume
that

𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝛾 [𝑑 (𝑥, 𝑇𝑥) + 𝑑 (𝑦, 𝑇𝑦)] ∀𝑥, 𝑦 ∈ 𝑋. (1)

Then 𝑇 has a unique fixed point in𝑋.

Theorem 2 (Chatterjea). Let (𝑋, 𝑑) be a complete metric
space, 𝑇 : 𝑋 → 𝑋 is a single-valued map, and 𝛾 ∈ [0, 1/2).
Assume that

𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝛾 [𝑑 (𝑥, 𝑇𝑦) + 𝑑 (𝑦, 𝑇𝑥)] ∀𝑥, 𝑦 ∈ 𝑋. (2)

Then 𝑇 has a unique fixed point in𝑋.

The characterization of the renowned Banach fixed point
theorem in the setting of multivalued maps is one of the
most outstanding ideas of research in fixed point theory. The
remarkable examples in this trend were given by Nadler [2],
Mizoguchi and Takahashi [3], andM. Berinde andV. Berinde
[4]. On the other hand, investigation of the existence of a
fixed point of non-self-maps under certain condition is an
interesting research subject of metric fixed point theory, see,
for example, [19–27], and references therein.

The following attractive result was reported byM.Berinde
and V. Berinde [4] in 2007.

Theorem 3 (M. Berinde and V. Berinde). Let (𝑋, 𝑑) be a
complete metric space, 𝑇 : 𝑋 → CB(𝑋) a multivalued map,
𝜑 : [0,∞) → [0, 1) anMT-function (i.e., lim sup

𝑠→ 𝑡+
𝜑(𝑠) <

1 for all 𝑡 ∈ [0,∞)), and 𝐿 ≥ 0. Assume that

H (𝑇𝑥, 𝑇𝑦) ≤ 𝜑 (𝑑 (𝑥, 𝑦)) 𝑑 (𝑥, 𝑦) + 𝐿𝑑 (𝑦, 𝑇𝑥)

∀𝑥, 𝑦 ∈ 𝑋.
(3)

Then 𝑇 has a fixed point in𝑋.

If we take 𝐿 = 0 in Theorem 3, then we conclude the
remarkable result of Mizoguchi and Takahashi [3] which is
a partial answer of problem 9 in [8].
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Theorem 4 (Mizoguchi and Takahashi). Let (𝑋, 𝑑) be a
complete metric space, 𝑇 : 𝑋 → CB(𝑋) a multivalued map,
and 𝜑 : [0,∞) → [0, 1) anMT-function. Assume that

H (𝑇𝑥, 𝑇𝑦) ≤ 𝜑 (𝑑 (𝑥, 𝑦)) 𝑑 (𝑥, 𝑦) ∀𝑥, 𝑦 ∈ 𝑋. (4)

Then 𝑇 has a fixed point in𝑋.

Recently, Du [12] established the following theorem
which is an extension of Theorem 3 and henceTheorem 4.

Theorem 5 (Du). Let (𝑋, 𝑑) be a complete metric space, 𝑇 :

𝑋 → CB(𝑋) a multivalued map, 𝜑 : [0,∞) → [0, 1) an
MT-function and ℎ : 𝑋 → [0,∞) a function. Assume that

H (𝑇𝑥, 𝑇𝑦) ≤ 𝜑 (𝑑 (𝑥, 𝑦)) 𝑑 (𝑥, 𝑦) + ℎ (𝑦) 𝑑 (𝑦, 𝑇𝑥)

∀𝑥, 𝑦 ∈ 𝑋.
(5)

Then 𝑇 has a fixed point in𝑋.

The basic objective of this paper is to investigate the
existence of coincidence and fixed points ofmultivalued non-
self-maps under the certain conditions in the setting ofmetric
spaces.The presented results generalize, improve, and extend
several crucial and notable results that examine the existence
of the coincidence/fixed point of well-known maps such as
Kannan type, Chatterjea type, Mizoguchi-Takahashi type,
Berinde-Berinde type, Du type, and other types in the context
of complete metric spaces.

2. Preliminaries

Let (𝑋, 𝑑) be a metric space. For each 𝑥 ∈ 𝑋 and 𝐴 ⊆

𝑋, let 𝑑(𝑥, 𝐴) = inf𝑦∈𝐴𝑑(𝑥, 𝑦). Denote by N(𝑋) the class
of all nonempty subsets of 𝑋 and CB(𝑋) the family of all
nonempty closed and bounded subsets of 𝑋. A functionH :

CB(𝑋) ×CB(𝑋) → [0,∞) defined by

H (𝐴, 𝐵) = max{sup
𝑥∈𝐵

𝑑 (𝑥, 𝐴) , sup
𝑥∈𝐴

𝑑 (𝑥, 𝐵)} (6)

is said to be the Hausdorff metric on CB(𝑋) induced by
the metric 𝑑 on 𝑋. It is also known that (CB(𝑋),H) is a
complete metric space whenever (𝑋, 𝑑) is a complete metric
space.

Let 𝐾 be a nonempty subset of 𝑋, 𝑔 : 𝐾 → 𝑋 a single-
valued map, and 𝑇 : 𝐾 → N(𝑋) a multivalued map. A
point 𝑥 in 𝑋 is a coincidence point of 𝑔 and 𝑇 if 𝑔𝑥 ∈ 𝑇𝑥.
If 𝑔 = 𝑖𝑑 is the identity map, then 𝑥 = 𝑔𝑥 ∈ 𝑇𝑥 and call
𝑥 a fixed point of 𝑇. The set of fixed points of 𝑇 and the set
of coincidence point of 𝑔 and 𝑇 are denoted by F𝐾(𝑇) and
COP𝐾(𝑔, 𝑇), respectively. In particular, if 𝐾 ≡ 𝑋, we use
F(𝑇) and COP(𝑔, 𝑇) instead of F𝐾(𝑇) and COP𝐾(𝑔, 𝑇),
respectively. Throughout this paper, we denote by N, and R,
the set of positive integers and real numbers, respectively.

Let 𝑓 be a real-valued function defined on R. For 𝑐 ∈ R,
we recall that

lim sup
𝑥→𝑐+

𝑓 (𝑥) = inf
𝜀>0

sup
𝑐<𝑥<𝑐+𝜀

𝑓 (𝑥) . (7)

Definition 6 (see [9–18]). A function 𝜑 : [0,∞) →

[0, 1) is said to be an MT-𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 (or R-𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛) if
lim sup

𝑠→ 𝑡+
𝜑(𝑠) < 1 for all 𝑡 ∈ [0,∞).

It is evident that if 𝜑 : [0,∞) → [0, 1) is a nondecreasing
function or a nonincreasing function, then 𝜑 is an MT-
function. So the set of MT-functions is a rich class. An
example which is not an MT-function is given as follows.
Let 𝜑 : [0,∞) → [0, 1) be defined by

𝜑 (𝑡) :=
{

{

{

sin 𝑡
𝑡
, if 𝑡 ∈ (0, 𝜋

2
]

0, otherwise.
(8)

We note that 𝜑 is not an MT-function, since
lim sup

𝑠→0+
𝜑(𝑠) = 1.

In what follows that, we recall some characterizations of
MT -functions proved first by Du [12].

Theorem 7 (see [12]). Let 𝜑 : [0,∞) → [0, 1) be a function.
Then the following statements are equivalent.

(a) 𝜑 is anMT-function.

(b) For each 𝑡 ∈ [0,∞), there exist 𝑟(1)
𝑡
∈ [0, 1) and 𝜀(1)

𝑡
> 0

such that 𝜑(𝑠) ≤ 𝑟(1)
𝑡

for all 𝑠 ∈ (𝑡, 𝑡 + 𝜀(1)
𝑡
).

(c) For each 𝑡 ∈ [0,∞), there exist 𝑟(2)
𝑡
∈ [0, 1) and 𝜀(2)

𝑡
> 0

such that 𝜑(𝑠) ≤ 𝑟(2)
𝑡

for all 𝑠 ∈ [𝑡, 𝑡 + 𝜀(2)
𝑡
].

(d) For each 𝑡 ∈ [0,∞), there exist 𝑟(3)
𝑡
∈ [0, 1) and 𝜀(3)

𝑡
> 0

such that 𝜑(𝑠) ≤ 𝑟(3)
𝑡

for all 𝑠 ∈ (𝑡, 𝑡 + 𝜀(3)
𝑡
].

(e) For each 𝑡 ∈ [0,∞), there exist 𝑟(4)
𝑡
∈ [0, 1) and 𝜀(4)

𝑡
> 0

such that 𝜑(𝑠) ≤ 𝑟(4)
𝑡

for all 𝑠 ∈ [𝑡, 𝑡 + 𝜀(4)
𝑡
).

(f) For any nonincreasing sequence {𝑥𝑛}𝑛∈N in [0,∞), one
has 0 ≤ sup

𝑛∈N𝜑(𝑥𝑛) < 1.
(g) 𝜑 is a function of contractive factor; that is, for any

strictly decreasing sequence {𝑥𝑛}𝑛∈N in [0,∞), we have
0 ≤ sup

𝑛∈N𝜑(𝑥𝑛) < 1.

3. Existence Theorems of Coincidence Points
and Fixed Points for Multivalued Non-Self-
Maps of Kannan Type and Chatterjea Type

In this section, we prove the existence of coincidence
points and fixed points of multivalued non-self-maps of
Kannan type and Chatterjea type. For this purpose, we first
established a new intersection theorem of COP𝐾(𝑔, 𝑇) and
F𝐾(𝑇) for multivalued non-self-maps in complete metric
spaces.

Theorem 8. Let (𝑋, 𝑑) be a complete metric space, 𝐾 a
nonempty closed subset of𝑋, 𝑇 : 𝐾 → CB(𝑋) a multivalued
map and 𝑔 : 𝐾 → 𝑋 a continuous self-map. Suppose that

(D1) 𝑇𝑥 ∩ 𝐾 ̸= 0 for all 𝑥 ∈ 𝐾,
(D2) 𝑇𝑥 ∩ 𝐾 is 𝑔-invariant (i.e., 𝑔(𝑇𝑥 ∩ 𝐾) ⊆ 𝑇𝑥 ∩ 𝐾) for

each 𝑥 ∈ 𝐾,
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(D3) there exist a function ℎ : 𝐾 → [0,∞) and 𝛾 ∈ [0, 1/2)
such that

H (𝑇𝑥, 𝑇𝑦 ∩ 𝐾)

≤ 𝛾 [𝑑 (𝑥, 𝑇𝑥 ∩ 𝐾) + 𝑑 (𝑦, 𝑇𝑥 ∩ 𝐾) + 𝑑 (𝑦, 𝑇𝑦 ∩ 𝐾)]

+ ℎ (𝑦) 𝑑 (𝑔𝑦, 𝑇𝑥 ∩ 𝐾)

∀𝑥, 𝑦 ∈ 𝐾.

(9)

ThenCOP𝐾(𝑔, 𝑇) ∩F𝐾(𝑇) ̸= 0.

Proof. Since 𝐾 a nonempty closed subset of 𝑋 and 𝑋 is
complete, (𝐾, 𝑑) is also a complete metric space. Let 𝑥 ∈ 𝐾.
Put 𝑘 = 𝛾/(1 − 𝛾) and 𝜆 = (1 + 𝑘)/2. So 0 ≤ 𝑘 < 𝜆 < 1. Let
𝑦 ∈ 𝑇𝑥∩𝐾 be arbitrary.Then 𝑑(𝑦, 𝑇𝑥 ∩𝐾)) = 0. By (D2), we
have 𝑑(𝑔𝑦, 𝑇𝑥 ∩ 𝐾) = 0. Hence (9) implies

H (𝑇𝑥, 𝑇𝑦 ∩ 𝐾)

≤ 𝛾 [𝑑 (𝑥, 𝑇𝑥 ∩ 𝐾) +H (𝑇𝑥, 𝑇𝑦 ∩ 𝐾)]

∀𝑦 ∈ 𝑇𝑥 ∩ 𝐾.

(10)

Inequality (10) shows that

𝑑 (𝑦, 𝑇𝑦 ∩ 𝐾) ≤H (𝑇𝑥, 𝑇𝑦 ∩ 𝐾)

≤ 𝑘𝑑 (𝑥, 𝑇𝑥 ∩ 𝐾) < 𝜆𝑑 (𝑥, 𝑦)

∀𝑦 ∈ 𝑇𝑥 ∩ 𝐾.

(11)

Let 𝑥 ∈ 𝐾 be given. Take 𝑥1 = 𝑥. By (D1),𝑇𝑥1∩𝐾 ̸= 0. Choose
𝑥2 ∈ 𝑇𝑥1 ∩ 𝐾. If 𝑥2 = 𝑥1, then 𝑥1 ∈ F𝐾(𝑇) and hence 𝑔𝑥1 ∈
𝑇𝑥1 from (D2). Hence 𝑥1 ∈ COP𝐾(𝑔, 𝑇) ∩F𝐾(𝑇) and the
proof is finished. Otherwise, if 𝑥2 ̸= 𝑥1, then 𝑑(𝑥1, 𝑥2) > 0. By
(11), we have

𝑑 (𝑥2, 𝑇𝑥2 ∩ 𝐾) < 𝜆𝑑 (𝑥1, 𝑥2) , (12)

which implies that there exists 𝑥3 ∈ 𝑇𝑥2 ∩ 𝐾 such that

𝑑 (𝑥2, 𝑥3) < 𝜆𝑑 (𝑥1, 𝑥2) . (13)

Next, by (11) again, there exists 𝑥4 ∈ 𝑇𝑥3 ∩ 𝐾 such that

𝑑 (𝑥3, 𝑥4) < 𝜆𝑑 (𝑥2, 𝑥3) . (14)

By induction, we can obtain a sequence {𝑥𝑛} in𝐾 satisfying

𝑥𝑛+1 ∈ 𝑇𝑥𝑛 ∩ 𝐾, (15)

𝑑 (𝑥𝑛+1, 𝑥𝑛+2) < 𝜆𝑑 (𝑥𝑛, 𝑥𝑛+1) . (16)

By (16), we have

𝑑 (𝑥𝑛+1, 𝑥𝑛+2) < 𝜆𝑑 (𝑥𝑛, 𝑥𝑛+1)

< 𝜆
2
𝑑 (𝑥𝑛−1, 𝑥𝑛)

< ⋅ ⋅ ⋅

< 𝜆
𝑛
𝑑 (𝑥1, 𝑥2) , for 𝑛 ∈ N.

(17)

Let 𝜌𝑛 = (𝜆𝑛−1/(1 − 𝜆))𝑑(𝑥1, 𝑥2), 𝑛 ∈ N. For 𝑚, 𝑛 ∈ N with
𝑚 > 𝑛, we have

𝑑 (𝑥𝑛, 𝑥𝑚) ≤

𝑚−1

∑
𝑗=𝑛

𝑑 (𝑥𝑗, 𝑥𝑗+1) < 𝜌𝑛. (18)

Since 0 < 𝜆 < 1, lim𝑛→∞𝜌𝑛 = 0 and hence
lim𝑛→∞ sup{𝑑(𝑥𝑛, 𝑥𝑚) : 𝑚 > 𝑛} = 0. This proves that {𝑥𝑛}
is a Cauchy sequence in 𝐾. By the completeness of 𝐾, there
exists V ∈ 𝐾 such that 𝑥𝑛 → V as 𝑛 → ∞. By (15) and (D2),
we have

𝑔𝑥𝑛+1 ∈ 𝑇𝑥𝑛 ∩ 𝐾 for each 𝑛 ∈ N. (19)

Since 𝑔 is continuous and lim𝑛→∞𝑥𝑛 = V, we have

lim
𝑛→∞

𝑔𝑥𝑛 = 𝑔V. (20)

Since the function 𝑥 󳨃→ 𝑑(𝑥, 𝑇V) is continuous, by (9), (15),
(19), and (20), we get

𝑑 (V, 𝑇V ∩ 𝐾)

= lim
𝑛→∞

𝑑 (𝑥𝑛+1, 𝑇V ∩ 𝐾)

≤ lim
𝑛→∞

H (𝑇𝑥𝑛, 𝑇V ∩ 𝐾)

≤ lim
𝑛→∞

{𝛾 [𝑑 (𝑥𝑛, 𝑇𝑥𝑛 ∩ 𝐾) + 𝑑 (V, 𝑇𝑥𝑛 ∩ 𝐾)

+𝑑 (V, 𝑇V ∩ 𝐾)]

+ℎ (V) 𝑑 (𝑔V, 𝑇𝑥𝑛 ∩ 𝐾)}

≤ lim
𝑛→∞

{𝛾 [𝑑 (𝑥𝑛, 𝑥𝑛+1)

+𝑑 (V, 𝑥𝑛+1) + 𝑑 (V, 𝑇V ∩ 𝐾)]

+ℎ (V) 𝑑 (𝑔V, 𝑔𝑥𝑛+1)}

= 𝛾𝑑 (V, 𝑇V ∩ 𝐾) ,

(21)

which implies 𝑑(V, 𝑇V ∩ 𝐾) = 0. By the closedness of 𝑇V, we
have V ∈ 𝑇V ∩ 𝐾. From (D2), 𝑔V ∈ 𝑇V ∩ 𝐾 ⊆ 𝑇V. Hence we
verify V ∈ COP𝐾(𝑔, 𝑇) ∩F𝐾(𝑇). The proof is complete.

Theorem 9. In Theorem 8, if condition (D3) is replaced with
one of the following conditions:

(K1) there exist a function ℎ : 𝐾 → [0,∞) and 𝛾 ∈ [0, 1/2)
such that

H (𝑇𝑥, 𝑇𝑦 ∩ 𝐾)

≤ 𝛾 [𝑑 (𝑥, 𝑇𝑥 ∩ 𝐾)

+𝑑 (𝑦, 𝑇𝑥 ∩ 𝐾) + 𝑑 (𝑦, 𝑇𝑦 ∩ 𝐾)]

+ ℎ (𝑦) 𝑑 (𝑔𝑦, 𝑇𝑥) ∀𝑥, 𝑦 ∈ 𝐾,

(22)
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(K2) there exist a function ℎ : 𝐾 → [0,∞) and 𝛾 ∈ [0, 1/2)
such that

H (𝑇𝑥, 𝑇𝑦 ∩ 𝐾)

≤ 𝛾 [𝑑 (𝑥, 𝑇𝑥 ∩ 𝐾) + 𝑑 (𝑦, 𝑇𝑥) + 𝑑 (𝑦, 𝑇𝑦 ∩ 𝐾)]

+ ℎ (𝑦) 𝑑 (𝑔𝑦, 𝑇𝑥 ∩ 𝐾) ∀𝑥, 𝑦 ∈ 𝐾,

(23)

(K3) there exist a function ℎ : 𝐾 → [0,∞) and 𝛾 ∈ [0, 1/2)
such that

H (𝑇𝑥, 𝑇𝑦 ∩ 𝐾)

≤ 𝛾 [𝑑 (𝑥, 𝑇𝑥 ∩ 𝐾) + 𝑑 (𝑦, 𝑇𝑥) + 𝑑 (𝑦, 𝑇𝑦 ∩ 𝐾)]

+ ℎ (𝑦) 𝑑 (𝑔𝑦, 𝑇𝑥) ∀𝑥, 𝑦 ∈ 𝐾,

(24)

(K4) there exist a function ℎ : 𝐾 → [0,∞) and 𝛾 ∈ [0, 1/2)
such that

H (𝑇𝑥, 𝑇𝑦 ∩ 𝐾)

≤ 𝛾 [𝑑 (𝑥, 𝑇𝑥) + 𝑑 (𝑦, 𝑇𝑥 ∩ 𝐾) + 𝑑 (𝑦, 𝑇𝑦 ∩ 𝐾)]

+ ℎ (𝑦) 𝑑 (𝑔𝑦, 𝑇𝑥 ∩ 𝐾) ∀𝑥, 𝑦 ∈ 𝐾,

(25)

(K5) there exist a function ℎ : 𝐾 → [0,∞) and 𝛾 ∈ [0, 1/2)
such that

H (𝑇𝑥, 𝑇𝑦 ∩ 𝐾)

≤ 𝛾 [𝑑 (𝑥, 𝑇𝑥) + 𝑑 (𝑦, 𝑇𝑥 ∩ 𝐾) + 𝑑 (𝑦, 𝑇𝑦 ∩ 𝐾)]

+ ℎ (𝑦) 𝑑 (𝑔𝑦, 𝑇𝑥) ∀𝑥, 𝑦 ∈ 𝐾,

(26)

(K6) there exist a function ℎ : 𝐾 → [0,∞) and 𝛾 ∈ [0, 1/2)
such that

H (𝑇𝑥, 𝑇𝑦 ∩ 𝐾)

≤ 𝛾 [𝑑 (𝑥, 𝑇𝑥) + 𝑑 (𝑦, 𝑇𝑥) + 𝑑 (𝑦, 𝑇𝑦 ∩ 𝐾)]

+ ℎ (𝑦) 𝑑 (𝑔𝑦, 𝑇𝑥 ∩ 𝐾) ∀𝑥, 𝑦 ∈ 𝐾,

(27)

(K7) there exist a function ℎ : 𝐾 → [0,∞) and 𝛾 ∈ [0, 1/2)
such that

H (𝑇𝑥, 𝑇𝑦 ∩ 𝐾)

≤ 𝛾 [𝑑 (𝑥, 𝑇𝑥) + 𝑑 (𝑦, 𝑇𝑥) + 𝑑 (𝑦, 𝑇𝑦 ∩ 𝐾)]

+ ℎ (𝑦) 𝑑 (𝑔𝑦, 𝑇𝑥) ∀𝑥, 𝑦 ∈ 𝐾.

(28)

ThenCOP𝐾(𝑔, 𝑇) ∩F𝐾(𝑇) ̸= 0.

Proof. It is obvious that any of these conditions (K1)–(K7)
implies condition (D3) as in Theorem 8. So the desired
conclusion follows fromTheorem 8 immediately.

The following fixed point theorem for multivalued non-
self-maps of generalized Kannan type can be established
immediately from Theorem 9 for 𝑔 ≡ 𝑖𝑑 (the identity
mapping).

Theorem 10. Let (𝑋, 𝑑) be a complete metric space, 𝐾 a
nonempty closed subset of 𝑋, and 𝑇 : 𝐾 → CB(𝑋) a
multivalued map. Suppose that 𝑇𝑥 ∩ 𝐾 ̸= 0 for all 𝑥 ∈ 𝐾 and
one of the following conditions holds:

(P1) there exist a function ℎ : 𝐾 → [0,∞) and 𝛾 ∈ [0, 1/2)
such that

H (𝑇𝑥, 𝑇𝑦 ∩ 𝐾)

≤ 𝛾 [𝑑 (𝑥, 𝑇𝑥 ∩ 𝐾) + 𝑑 (𝑦, 𝑇𝑥 ∩ 𝐾) + 𝑑 (𝑦, 𝑇𝑦 ∩ 𝐾)]

+ ℎ (𝑦) 𝑑 (𝑦, 𝑇𝑥 ∩ 𝐾) ∀𝑥, 𝑦 ∈ 𝐾,

(29)

(P2) there exist a function ℎ : 𝐾 → [0,∞) and 𝛾 ∈ [0, 1/2)
such that

H (𝑇𝑥, 𝑇𝑦 ∩ 𝐾)

≤ 𝛾 [𝑑 (𝑥, 𝑇𝑥 ∩ 𝐾) + 𝑑 (𝑦, 𝑇𝑥 ∩ 𝐾) + 𝑑 (𝑦, 𝑇𝑦 ∩ 𝐾)]

+ ℎ (𝑦) 𝑑 (𝑦, 𝑇𝑥) ∀𝑥, 𝑦 ∈ 𝐾,

(30)

(P3) there exist a function ℎ : 𝐾 → [0,∞) and 𝛾 ∈ [0, 1/2)
such that

H (𝑇𝑥, 𝑇𝑦 ∩ 𝐾)

≤ 𝛾 [𝑑 (𝑥, 𝑇𝑥 ∩ 𝐾) + 𝑑 (𝑦, 𝑇𝑥) + 𝑑 (𝑦, 𝑇𝑦 ∩ 𝐾)]

+ ℎ (𝑦) 𝑑 (𝑦, 𝑇𝑥 ∩ 𝐾) ∀𝑥, 𝑦 ∈ 𝐾,

(31)

(P4) there exist a function ℎ : 𝐾 → [0,∞) and 𝛾 ∈ [0, 1/2)
such that

H (𝑇𝑥, 𝑇𝑦 ∩ 𝐾)

≤ 𝛾 [𝑑 (𝑥, 𝑇𝑥 ∩ 𝐾) + 𝑑 (𝑦, 𝑇𝑥) + 𝑑 (𝑦, 𝑇𝑦 ∩ 𝐾)]

+ ℎ (𝑦) 𝑑 (𝑦, 𝑇𝑥) ∀𝑥, 𝑦 ∈ 𝐾,

(32)

(P5) there exist a function ℎ : 𝐾 → [0,∞) and 𝛾 ∈ [0, 1/2)
such that

H (𝑇𝑥, 𝑇𝑦 ∩ 𝐾)

≤ 𝛾 [𝑑 (𝑥, 𝑇𝑥) + 𝑑 (𝑦, 𝑇𝑥 ∩ 𝐾) + 𝑑 (𝑦, 𝑇𝑦 ∩ 𝐾)]

+ ℎ (𝑦) 𝑑 (𝑦, 𝑇𝑥 ∩ 𝐾) ∀𝑥, 𝑦 ∈ 𝐾,

(33)

(P6) there exist a function ℎ : 𝐾 → [0,∞) and 𝛾 ∈ [0, 1/2)
such that

H (𝑇𝑥, 𝑇𝑦 ∩ 𝐾)

≤ 𝛾 [𝑑 (𝑥, 𝑇𝑥) + 𝑑 (𝑦, 𝑇𝑥 ∩ 𝐾) + 𝑑 (𝑦, 𝑇𝑦 ∩ 𝐾)]

+ ℎ (𝑦) 𝑑 (𝑦, 𝑇𝑥) ∀𝑥, 𝑦 ∈ 𝐾,

(34)
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(P7) there exist a function ℎ : 𝐾 → [0,∞) and 𝛾 ∈ [0, 1/2)
such that

H (𝑇𝑥, 𝑇𝑦 ∩ 𝐾)

≤ 𝛾 [𝑑 (𝑥, 𝑇𝑥) + 𝑑 (𝑦, 𝑇𝑥) + 𝑑 (𝑦, 𝑇𝑦 ∩ 𝐾)]

+ℎ (𝑦) 𝑑 (𝑦, 𝑇𝑥 ∩ 𝐾) ∀𝑥, 𝑦 ∈ 𝐾,

(35)

(P8) there exist a function ℎ : 𝐾 → [0,∞) and 𝛾 ∈ [0, 1/2)
such that

H (𝑇𝑥, 𝑇𝑦 ∩ 𝐾)

≤ 𝛾 [𝑑 (𝑥, 𝑇𝑥) + 𝑑 (𝑦, 𝑇𝑥) + 𝑑 (𝑦, 𝑇𝑦 ∩ 𝐾)]

+ ℎ (𝑦) 𝑑 (𝑦, 𝑇𝑥) ∀𝑥, 𝑦 ∈ 𝐾.

(36)

ThenF𝐾(𝑇) ̸= 0.
As a consequence ofTheorem 10, we obtain the following

generalized Kannan type fixed point theorems for multival-
ued maps.

Corollary 11. Let (𝑋, 𝑑) be a complete metric space, 𝐾 a
nonempty closed subset of 𝑋, and 𝑇 : 𝐾 → CB(𝑋) a
multivalued map. Suppose that 𝑇𝑥 ∩ 𝐾 ̸= 0 for all 𝑥 ∈ 𝐾 and
there exists 𝛾 ∈ [0, 1/2) such that

H (𝑇𝑥, 𝑇𝑦 ∩ 𝐾) ≤ 𝛾 [𝑑 (𝑥, 𝑇𝑥 ∩ 𝐾) + 𝑑 (𝑦, 𝑇𝑦 ∩ 𝐾)]

∀𝑥, 𝑦 ∈ 𝐾.
(37)

ThenF𝐾(𝑇) ̸= 0.

Remark 12. (a) If 𝐾 = 𝑋 in Corollary 11, then we can obtain
a multivalued version of Kannan’s fixed point theorem [5].

(b) Theorems 8–10 and Corollary 11 all extend and
generalize Kannan’s fixed point theorem.

Theorem 13. Let (𝑋, 𝑑) be a complete metric space, 𝐾 a
nonempty closed subset of𝑋, 𝑇 : 𝐾 → CB(𝑋) a multivalued
map, and 𝑔 : 𝐾 → 𝑋 a continuous self-map. Suppose that
conditions (D1) and (D2) as in Theorem 8 hold. If there exist
ℎ : 𝐾 → [0,∞) and 𝛾 ∈ [0, 1/2) such that

H (𝑇𝑥, 𝑇𝑦 ∩ 𝐾)

≤ 𝛼 [𝑑 (𝑥, 𝑇𝑦 ∩ 𝐾) + 𝑑 (𝑦, 𝑇𝑥 ∩ 𝐾)]

+ ℎ (𝑦) 𝑑 (𝑔𝑦, 𝑇𝑥 ∩ 𝐾) ∀𝑥, 𝑦 ∈ 𝐾.

(38)

ThenCOP𝐾(𝑔, 𝑇) ∩F𝐾(𝑇) ̸= 0.

Proof. Let 𝑥 ∈ 𝐾. Since 𝛼 ∈ [0, 1/2), by the denseness of R,
we can find 𝛽 > 0 such that 𝛼 < 𝛽 < 1/2. Let 𝑦 ∈ 𝑇𝑥 ∩ 𝐾 be
arbitrary.Then 𝑑(𝑦, 𝑇𝑥∩𝐾) = 0. By (D2), we have 𝑑(𝑔𝑦, 𝑇𝑥∩
𝐾) = 0. Hence (38) has been reduced to

𝑑 (𝑦, 𝑇𝑦 ∩ 𝐾) ≤H (𝑇𝑥, 𝑇𝑦 ∩ 𝐾)

≤ 𝛼𝑑 (𝑥, 𝑇𝑦 ∩ 𝐾)

< 𝛽𝑑 (𝑥, 𝑇𝑦 ∩ 𝐾) ∀𝑦 ∈ 𝑇𝑥 ∩ 𝐾.

(39)

Let 𝑥 ∈ 𝐾 be given. Take 𝑥1 = 𝑥. By (D1),𝑇𝑥1∩𝐾 ̸= 0. Choose
𝑥2 ∈ 𝑇𝑥1 ∩ 𝐾. If 𝑥2 = 𝑥1, then 𝑥1 ∈ F𝐾(𝑇) and hence 𝑔𝑥1 ∈
𝑇𝑥1 from (D2). Hence 𝑥1 ∈ COP𝐾(𝑔, 𝑇) ∩F𝐾(𝑇) and the
proof is finished. Otherwise, if 𝑥2 ̸= 𝑥1, then 𝑑(𝑥1, 𝑥2) > 0. By
(39), we have

𝑑 (𝑥2, 𝑇𝑥2 ∩ 𝐾) < 𝛽𝑑 (𝑥1, 𝑇𝑥2 ∩ 𝐾) , (40)

which implies that there exists 𝑥3 ∈ 𝑇𝑥2 ∩ 𝐾 such that

𝑑 (𝑥2, 𝑥3) < 𝛽𝑑 (𝑥1, 𝑇𝑥2 ∩ 𝐾)

≤ 𝛽𝑑 (𝑥1, 𝑥3)

≤ 𝛽 [𝑑 (𝑥1, 𝑥2) + 𝑑 (𝑥2, 𝑥3)] .

(41)

Let 𝛾 = 𝛽/(1 − 𝛽). Then 𝛾 ∈ (0, 1) and the last inequality
implies

𝑑 (𝑥2, 𝑥3) < 𝛾𝑑 (𝑥1, 𝑥2) . (42)

Continuing in this way, we can construct inductively a
sequence {𝑥𝑛}𝑛∈N in𝐾 satisfying

𝑥𝑛+1 ∈ 𝑇𝑥𝑛 ∩ 𝐾,

𝑑 (𝑥𝑛+1, 𝑥𝑛+2) < 𝛾𝑑 (𝑥𝑛, 𝑥𝑛+1)
(43)

for each 𝑛 ∈ N. Using a similar argument as in the proof of
Theorem 8, we have the following:

(i) 𝑥𝑛+1 ∈ 𝑇𝑥𝑛 ∩ 𝐾;

(ii) {𝑥𝑛} is a Cauchy sequence in 𝐾;

(iii) there exists V ∈ 𝐾 such that 𝑥𝑛 → V as 𝑛 → ∞;

(iv) 𝑔𝑥𝑛+1 ∈ 𝑇𝑥𝑛 ∩ 𝐾 for each 𝑛 ∈ N;

(v) lim𝑛→∞𝑔𝑥𝑛 = 𝑔V.

By (38), we get

𝑑 (V, 𝑇V ∩ 𝐾)

= lim
𝑛→∞

𝑑 (𝑥𝑛+1, 𝑇V ∩ 𝐾)

≤ lim
𝑛→∞

H (𝑇𝑥𝑛, 𝑇V ∩ 𝐾)

≤ lim
𝑛→∞

{𝛼 [𝑑 (𝑥𝑛, 𝑇V ∩ 𝐾) + 𝑑 (V, 𝑇𝑥𝑛 ∩ 𝐾)]

+ℎ (V) 𝑑 (𝑔V, 𝑇𝑥𝑛 ∩ 𝐾)}

≤ lim
𝑛→∞

{𝛼 [𝑑 (𝑥𝑛, 𝑇V ∩ 𝐾) + 𝑑 (V, 𝑥𝑛+1)]

+ℎ (V) 𝑑 (𝑔V, 𝑔𝑥𝑛+1)}

= 𝛼𝑑 (V, 𝑇V ∩ 𝐾) ,
(44)

which implies 𝑑(V, 𝑇V ∩ 𝐾) = 0. By the closedness of 𝑇V, we
have V ∈ 𝑇V ∩ 𝐾. By (D2), 𝑔V ∈ 𝑇V ∩ 𝐾 ⊆ 𝑇V and hence
V ∈ COP𝐾(𝑔, 𝑇) ∩F𝐾(𝑇). The proof is complete.
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Theorem 14. InTheorem 13, if inequality (38) is replaced with
one of the following inequalities:

(C1)

H (𝑇𝑥, 𝑇𝑦 ∩ 𝐾)

≤ 𝛼 [𝑑 (𝑥, 𝑇𝑦 ∩ 𝐾) + 𝑑 (𝑦, 𝑇𝑥 ∩ 𝐾)]

+ ℎ (𝑦) 𝑑 (𝑔𝑦, 𝑇𝑥) ∀𝑥, 𝑦 ∈ 𝐾,

(45)

(C2)

H (𝑇𝑥, 𝑇𝑦 ∩ 𝐾)

≤ 𝛼 [𝑑 (𝑥, 𝑇𝑦) + 𝑑 (𝑦, 𝑇𝑥 ∩ 𝐾)]

+ℎ (𝑦) 𝑑 (𝑔𝑦, 𝑇𝑥 ∩ 𝐾) ∀𝑥, 𝑦 ∈ 𝐾,

(46)

(C3)

H (𝑇𝑥, 𝑇𝑦 ∩ 𝐾)

≤ 𝛼 [𝑑 (𝑥, 𝑇𝑦) + 𝑑 (𝑦, 𝑇𝑥 ∩ 𝐾)]

+ ℎ (𝑦) 𝑑 (𝑔𝑦, 𝑇𝑥) ∀𝑥, 𝑦 ∈ 𝐾,

(47)

(C4)

H (𝑇𝑥, 𝑇𝑦 ∩ 𝐾)

≤ 𝛼 [𝑑 (𝑥, 𝑇𝑦 ∩ 𝐾) + 𝑑 (𝑦, 𝑇𝑥)]

+ ℎ (𝑦) 𝑑 (𝑔𝑦, 𝑇𝑥 ∩ 𝐾) ∀𝑥, 𝑦 ∈ 𝐾,

(48)

(C5)

H (𝑇𝑥, 𝑇𝑦 ∩ 𝐾)

≤ 𝛼 [𝑑 (𝑥, 𝑇𝑦 ∩ 𝐾) + 𝑑 (𝑦, 𝑇𝑥)]

+ℎ (𝑦) 𝑑 (𝑔𝑦, 𝑇𝑥) ∀𝑥, 𝑦 ∈ 𝐾,

(49)

(C6)

H (𝑇𝑥, 𝑇𝑦 ∩ 𝐾)

≤ 𝛼 [𝑑 (𝑥, 𝑇𝑦) + 𝑑 (𝑦, 𝑇𝑥)]

+ ℎ (𝑦) 𝑑 (𝑔𝑦, 𝑇𝑥 ∩ 𝐾) ∀𝑥, 𝑦 ∈ 𝐾,

(50)

(C7)

H (𝑇𝑥, 𝑇𝑦 ∩ 𝐾)

≤ 𝛼 [𝑑 (𝑥, 𝑇𝑦) + 𝑑 (𝑦, 𝑇𝑥)]

+ℎ (𝑦) 𝑑 (𝑔𝑦, 𝑇𝑥) ∀𝑥, 𝑦 ∈ 𝐾,

(51)

thenCOP𝐾(𝑔, 𝑇) ∩F𝐾(𝑇) ̸= 0.

Applying Theorem 14, we can prove the following fixed
point theorems for multivalued maps of generalized Chatter-
jea type.

Theorem 15. Let (𝑋, 𝑑) a complete metric space, 𝐾 a
nonempty closed subset of 𝑋, and 𝑇 : 𝐾 → CB(𝑋)

a multivalued map. Suppose that 𝑇𝑥 ∩ 𝐾 ̸= 0 for all 𝑥 ∈ 𝐾 and
one of the following conditions holds:

(Q1) there exist a function ℎ : 𝐾 → [0,∞) and 𝛾 ∈ [0, 1/2)
such that

H (𝑇𝑥, 𝑇𝑦 ∩ 𝐾)

≤ 𝛼 [𝑑 (𝑥, 𝑇𝑦 ∩ 𝐾) + 𝑑 (𝑦, 𝑇𝑥 ∩ 𝐾)]

+ ℎ (𝑦) 𝑑 (𝑦, 𝑇𝑥 ∩ 𝐾) ∀𝑥, 𝑦 ∈ 𝐾,

(52)

(Q2) there exist a function ℎ : 𝐾 → [0,∞) and 𝛾 ∈ [0, 1/2)
such that

H (𝑇𝑥, 𝑇𝑦 ∩ 𝐾)

≤ 𝛼 [𝑑 (𝑥, 𝑇𝑦 ∩ 𝐾) + 𝑑 (𝑦, 𝑇𝑥 ∩ 𝐾)]

+ ℎ (𝑦) 𝑑 (𝑦, 𝑇𝑥) ∀𝑥, 𝑦 ∈ 𝐾,

(53)

(Q3) there exist a function ℎ : 𝐾 → [0,∞) and 𝛾 ∈ [0, 1/2)
such that

H (𝑇𝑥, 𝑇𝑦 ∩ 𝐾)

≤ 𝛼 [𝑑 (𝑥, 𝑇𝑦) + 𝑑 (𝑦, 𝑇𝑥 ∩ 𝐾)]

+ ℎ (𝑦) 𝑑 (𝑦, 𝑇𝑥 ∩ 𝐾) ∀𝑥, 𝑦 ∈ 𝐾,

(54)

(Q4) there exist a function ℎ : 𝐾 → [0,∞) and 𝛾 ∈ [0, 1/2)
such that

H (𝑇𝑥, 𝑇𝑦 ∩ 𝐾)

≤ 𝛼 [𝑑 (𝑥, 𝑇𝑦) + 𝑑 (𝑦, 𝑇𝑥 ∩ 𝐾)]

+ ℎ (𝑦) 𝑑 (𝑦, 𝑇𝑥) ∀𝑥, 𝑦 ∈ 𝐾,

(55)

(Q5) there exist a function ℎ : 𝐾 → [0,∞) and 𝛾 ∈ [0, 1/2)
such that

H (𝑇𝑥, 𝑇𝑦 ∩ 𝐾)

≤ 𝛼 [𝑑 (𝑥, 𝑇𝑦 ∩ 𝐾) + 𝑑 (𝑦, 𝑇𝑥)]

+ℎ (𝑦) 𝑑 (𝑦, 𝑇𝑥 ∩ 𝐾) ∀𝑥, 𝑦 ∈ 𝐾,

(56)

(Q6) there exist a function ℎ : 𝐾 → [0,∞) and 𝛾 ∈ [0, 1/2)
such that

H (𝑇𝑥, 𝑇𝑦 ∩ 𝐾)

≤ 𝛼 [𝑑 (𝑥, 𝑇𝑦 ∩ 𝐾) + 𝑑 (𝑦, 𝑇𝑥)]

+ℎ (𝑦) 𝑑 (𝑦, 𝑇𝑥) ∀𝑥, 𝑦 ∈ 𝐾,

(57)

(Q7) there exist a function ℎ : 𝐾 → [0,∞) and 𝛾 ∈ [0, 1/2)
such that

H (𝑇𝑥, 𝑇𝑦 ∩ 𝐾)

≤ 𝛼 [𝑑 (𝑥, 𝑇𝑦) + 𝑑 (𝑦, 𝑇𝑥)]

+ℎ (𝑦) 𝑑 (𝑦, 𝑇𝑥 ∩ 𝐾) ∀𝑥, 𝑦 ∈ 𝐾,

(58)
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(Q8) there exist a function ℎ : 𝐾 → [0,∞) and 𝛾 ∈ [0, 1/2)
such that

H (𝑇𝑥, 𝑇𝑦 ∩ 𝐾)

≤ 𝛼 [𝑑 (𝑥, 𝑇𝑦) + 𝑑 (𝑦, 𝑇𝑥)]

+ℎ (𝑦) 𝑑 (𝑦, 𝑇𝑥) ∀𝑥, 𝑦 ∈ 𝐾.

(59)

ThenF𝐾(𝑇) ̸= 0.
The following result is a generalized Chatterjea’s type

fixed point theorem formultivaluedmaps in complete metric
spaces.

Corollary 16. Let (𝑋, 𝑑) be a complete metric space, 𝐾 a
nonempty closed subset of 𝑋, and 𝑇 : 𝐾 → BC(𝑋) a
multivalued map. Suppose that 𝑇𝑥 ∩ 𝐾 ̸= 0 for all 𝑥 ∈ 𝐾 and
there exists 𝛾 ∈ [0, 1/2) such that
H (𝑇𝑥, 𝑇𝑦 ∩ 𝐾) ≤ 𝛼 [𝑑 (𝑥, 𝑇𝑦) + 𝑑 (𝑦, 𝑇𝑥)] ∀𝑥, 𝑦 ∈ 𝑋.

(60)
ThenF𝐾(𝑇) ̸= 0.

Remark 17. (a) If 𝐾 = 𝑋 in Corollary 16, then we can obtain
a multivalued version of Chatterjea’s fixed point theorem [6].

(b) Theorems 13–15 and Corollary 16 all improve and
generalize Chatterjea’s fixed point theorem.

4. New Coincidence and Fixed Point Results
for Various Multivalued Non-Self-Maps:
Mizoguchi-Takahashi Type,
Berinde-Berinde Type, and Du Type

In this section, we prove some coincidence and fixed
point theorems formultivalued non-self-maps ofMizoguchi-
Takahashi type, Berinde-Berinde type, and Du type.

Recall first the following auxiliary result.

Lemma 18 (see [9, Lemma 2.1]). Let 𝜑 : [0,∞) → [0, 1) be
anMT-function. Suppose that 𝜅 : [0,∞) → [0, 1) is defined
by 𝜅(𝑡) = (1 + 𝜑(𝑡))/2. Then, 𝜅 is also anMT-function.

Theorem 19. Let (𝑋, 𝑑) be a complete metric space, 𝐾 a
nonempty closed subset of𝑋, 𝑇 : 𝐾 → BC(𝑋) a multivalued
map, and 𝑔 : 𝐾 → 𝑋 be a continuous self-map. Suppose
that conditions (D1) and (D2) as in Theorem 8 hold. If there
exist an MT-function 𝜑 : [0,∞) → [0, 1) and a function
ℎ : 𝐾 → [0,∞) such that

H (𝑇𝑥, 𝑇𝑦 ∩ 𝐾) ≤ 𝜑 (𝑑 (𝑥, 𝑦)) 𝑑 (𝑥, 𝑦)

+ ℎ (𝑦) 𝑑 (𝑔𝑦, 𝑇𝑥 ∩ 𝐾) ∀𝑥, 𝑦 ∈ 𝐾,

(61)
thenCOP𝐾(𝑔, 𝑇) ∩F𝐾(𝑇) ̸= 0.

Proof. Since 𝐾 is a nonempty closed subset of 𝑋 and 𝑋 is
complete, (𝐾, 𝑑) is also a complete metric space. Note first
that for each 𝑥 ∈ 𝐾, by (D2), we have 𝑑(𝑔𝑦, 𝑇𝑥 ∩ 𝐾) = 0 for
all 𝑦 ∈ 𝑇𝑥 ∩ 𝐾. So, for each 𝑥 ∈ 𝐾, by (61), we obtain
𝑑 (𝑦, 𝑇𝑦 ∩ 𝐾) ≤ 𝜑 (𝑑 (𝑥, 𝑦)) 𝑑 (𝑥, 𝑦) ∀𝑦 ∈ 𝑇𝑥 ∩ 𝐾.

(62)

Define 𝜅 : [0,∞) → [0, 1) by 𝜅(𝑡) = (1 + 𝜑(𝑡))/2. Then, by
Lemma 18, 𝜅 is also an MT-function. Let 𝑥 ∈ 𝐾 be given.
Take 𝑥1 = 𝑥. Since 𝑇𝑥1 ∩ 𝐾 ̸= 0 from (D1), we can choose
𝑥2 ∈ 𝑇𝑥1 ∩ 𝐾. If 𝑥2 = 𝑥1, then 𝑥1 ∈ F𝐾(𝑇) and hence
𝑔𝑥1 ∈ 𝑇𝑥1 from (D2). Thus, 𝑥1 ∈ COP𝐾(𝑔, 𝑇) ∩ F𝐾(𝑇)
and hence we achieved the result. Now, suppose that 𝑥2 ̸= 𝑥1;
that is, 𝑑(𝑥1, 𝑥2) > 0. By (62), we have

𝑑 (𝑥2, 𝑇𝑥2 ∩ 𝐾) ≤ 𝜑 (𝑑 (𝑥1, 𝑥2)) 𝑑 (𝑥1, 𝑥2)

< 𝜅 (𝑑 (𝑥1, 𝑥2)) 𝑑 (𝑥1, 𝑥2) ,
(63)

which implies that there exists 𝑥3 ∈ 𝑇𝑥2 ∩ 𝐾 such that

𝑑 (𝑥2, 𝑥3) < 𝜅 (𝑑 (𝑥1, 𝑥2)) 𝑑 (𝑥1, 𝑥2) . (64)

Next, by (62) again, there exists 𝑥4 ∈ 𝑇𝑥3 ∩ 𝐾 such that

𝑑 (𝑥3, 𝑥4) < 𝜅 (𝑑 (𝑥2, 𝑥3)) 𝑑 (𝑥2, 𝑥3) . (65)

Iteratively, we can obtain a sequences {𝑥𝑛} in 𝐾 satisfying

𝑥𝑛+1 ∈ 𝑇𝑥𝑛 ∩ 𝐾, (66)

𝑑 (𝑥𝑛+1, 𝑥𝑛+2) < 𝜅 (𝑑 (𝑥𝑛, 𝑥𝑛+1)) 𝑑 (𝑥𝑛, 𝑥𝑛+1) (67)

for each 𝑛 ∈ N. Since 𝜅(𝑡) < 1 for all 𝑡 ∈ [0,∞), by (ii), we
know that {𝑑(𝑥𝑛, 𝑥𝑛+1)} is strictly decreasing in [0,∞). Since
𝜅 is anMT-function, by (g) of Theorem 7, we obtain

0 < 𝑑 (𝑥1, 𝑥2) ≤ sup
𝑛∈N

𝜅 (𝑑 (𝑥𝑛, 𝑥𝑛+1)) < 1. (68)

Let 𝛾 := sup
𝑛∈N𝜅(𝑑(𝑥𝑛, 𝑥𝑛+1)). So 𝛾 ∈ (0, 1). By (67), we have

𝑑 (𝑥𝑛+1, 𝑥𝑛+2) < 𝜅 (𝑑 (𝑥𝑛, 𝑥𝑛+1)) 𝑑 (𝑥𝑛, 𝑥𝑛+1)

≤ 𝛾𝑑 (𝑥𝑛, 𝑥𝑛+1)

< 𝛾
2
𝑑 (𝑥𝑛−1, 𝑥𝑛)

< ⋅ ⋅ ⋅

< 𝛾
𝑛
𝑑 (𝑥1, 𝑥2) , for 𝑛 ∈ N.

(69)

Let 𝛼𝑛 = (𝛾𝑛−1/(1 − 𝛾))𝑑(𝑥1, 𝑥2), 𝑛 ∈ N. For 𝑚, 𝑛 ∈ N with
𝑚 > 𝑛, we have

𝑑 (𝑥𝑛, 𝑥𝑚) ≤

𝑚−1

∑
𝑗=𝑛

𝑑 (𝑥𝑗, 𝑥𝑗+1) < 𝛼𝑛. (70)

Since 0 < 𝛾 < 1, lim𝑛→∞𝛼𝑛 = 0 and hence
lim𝑛→∞ sup{𝑑(𝑥𝑛, 𝑥𝑚) : 𝑚 > 𝑛} = 0. This proves that {𝑥𝑛}
is a Cauchy sequence in 𝐾. By the completeness of 𝐾, there
exists V ∈ 𝐾 such that 𝑥𝑛 → V as 𝑛 → ∞. Thanks to (66)
and (D2), we have

𝑔𝑥𝑛+1 ∈ 𝑇𝑥𝑛 ∩ 𝐾 for each 𝑛 ∈ N. (71)

Since 𝑔 is continuous and lim𝑛→∞𝑥𝑛 = V, we have

lim
𝑛→∞

𝑔𝑥𝑛 = 𝑔V. (72)
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Since the function 𝑥 󳨃→ 𝑑(𝑥, 𝑇V) is continuous, by (61), (66),
and (72), we get

𝑑 (V, 𝑇V ∩ 𝐾)

= lim
𝑛→∞

𝑑 (𝑥𝑛+1, 𝑇V ∩ 𝐾)

≤ lim
𝑛→∞

H (𝑇𝑥𝑛, 𝑇V ∩ 𝐾)

≤ lim
𝑛→∞

{𝜑 (𝑑 (𝑥𝑛, V)) 𝑑 (𝑥𝑛, V) + ℎ (V) 𝑑 (𝑔V, 𝑔𝑥𝑛+1)} = 0,
(73)

which implies 𝑑(V, 𝑇V ∩ 𝐾) = 0. By the closedness of 𝑇V, we
have V ∈ 𝑇V ∩ 𝐾. By (D2), 𝑔V ∈ 𝑇V ∩ 𝐾 ⊆ 𝑇V and hence
V ∈ COP𝐾(𝑔, 𝑇) ∩F𝐾(𝑇). The proof is complete.

Theorem 20. InTheorem 19, if inequality (61) is replaced with
the following inequality:

H (𝑇𝑥, 𝑇𝑦 ∩ 𝐾)

≤ 𝜑 (𝑑 (𝑥, 𝑦)) 𝑑 (𝑥, 𝑦) + ℎ (𝑦) 𝑑 (𝑔𝑦, 𝑇𝑥)

∀𝑥, 𝑦 ∈ 𝐾.

(74)

ThenCOP𝐾(𝑔, 𝑇) ∩F𝐾(𝑇) ̸= 0.

Corollary 21. Let (𝑋, 𝑑) be a complete convex metric space,
𝐾 a nonempty closed subset of 𝑋, 𝑇 : 𝐾 → BC(𝑋) a
multivalued map, and 𝑔 : 𝐾 → 𝑋 a continuous self-map.
Suppose that

(i) 𝑇𝑥 ∩ 𝐾 ̸= 0 for all 𝑥 ∈ 𝐾,
(ii) 𝑇𝑥 ∩ 𝐾 is 𝑔-invariant (i.e., 𝑔(𝑇𝑥 ∩ 𝐾) ⊆ 𝑇𝑥 ∩ 𝐾) for

each 𝑥 ∈ 𝐾,
(iii) there exist anMT-function 𝜑 : [0,∞) → [0, 1) and

𝐿 ≥ 0 such that
H (𝑇𝑥, 𝑇𝑦 ∩ 𝐾)

≤ 𝜑 (𝑑 (𝑥, 𝑦)) 𝑑 (𝑥, 𝑦) + 𝐿𝑑 (𝑔𝑦, 𝑇𝑥 ∩ 𝐾) ∀𝑥, 𝑦 ∈ 𝐾.

(75)

ThenCOP𝐾(𝑔, 𝑇) ∩F𝐾(𝑇) ̸= 0.

Corollary 22. Let (𝑋, 𝑑) be a complete convex metric space,
𝐾 a nonempty closed subset of 𝑋, 𝑇 : 𝐾 → BC(𝑋) a
multivalued map, and 𝑔 : 𝐾 → 𝑋 a continuous self-map.
Suppose that

(i) 𝑇𝑥 ∩ 𝐾 ̸= 0 for all 𝑥 ∈ 𝐾,
(ii) 𝑇𝑥 ∩ 𝐾 is 𝑔-invariant (i.e. 𝑔(𝑇𝑥 ∩ 𝐾) ⊆ 𝑇𝑥 ∩ 𝐾) for

each 𝑥 ∈ 𝐾,
(ii) there exist anMT-function 𝜑 : [0,∞) → [0, 1) and

𝐿 ≥ 0 such that
H (𝑇𝑥, 𝑇𝑦 ∩ 𝐾)

≤ 𝜑 (𝑑 (𝑥, 𝑦)) 𝑑 (𝑥, 𝑦) + 𝐿𝑑 (𝑔𝑦, 𝑇𝑥) ∀𝑥, 𝑦 ∈ 𝐾.

(76)

ThenCOP𝐾(𝑔, 𝑇) ∩F𝐾(𝑇) ̸= 0.
As a direct consequence ofTheorems 19 and 20, we obtain

the following fixed point result for multivalued non-self-
maps of Du type in complete metric spaces.

Theorem 23. Let (𝑋, 𝑑) be a complete convex metric space,
𝐾 a nonempty closed subset of 𝑋, and 𝑇 : 𝐾 → BC(𝑋) a
multivalued map. Suppose that 𝑇𝑥 ∩ 𝐾 ̸= 0 for all 𝑥 ∈ 𝐾, and
one of the following conditions holds:

(W1) there exist anMT-function 𝜑 : [0,∞) → [0, 1) and
a function ℎ : 𝐾 → [0,∞) such that

H (𝑇𝑥, 𝑇𝑦 ∩ 𝐾)

≤ 𝜑 (𝑑 (𝑥, 𝑦)) 𝑑 (𝑥, 𝑦) + ℎ (𝑦) 𝑑 (𝑦, 𝑇𝑥 ∩ 𝐾) ∀𝑥, 𝑦 ∈ 𝐾,

(77)

(W2) there exist anMT-function 𝜑 : [0,∞) → [0, 1) and
a function ℎ : 𝐾 → [0,∞) such that

H (𝑇𝑥, 𝑇𝑦 ∩ 𝐾)

≤ 𝜑 (𝑑 (𝑥, 𝑦)) 𝑑 (𝑥, 𝑦) + ℎ (𝑦) 𝑑 (𝑦, 𝑇𝑥) ∀𝑥, 𝑦 ∈ 𝐾.

(78)

ThenF𝐾(𝑇) ̸= 0.

Proof. Let 𝑔 = 𝑖𝑑 be the identity map. It is easy to verify
that all the conditions of Theorem 19 (or Theorem 20) are
satisfied. Hence the conclusion follows from Theorem 19 (or
Theorem 20).

The following fixed point theorems for multivalued non-
self-maps of generalized Berinde-Berinde type and general-
ized Mizoguchi-Takahashi type are established immediately
fromTheorem 23.

Corollary 24. Let (𝑋, 𝑑) be a complete convex metric space,
𝐾 a nonempty closed subset of 𝑋, and 𝑇 : 𝐾 → BC(𝑋) a
multivalued map. Suppose that

(i) 𝑇𝑥 ∩ 𝐾 ̸= 0 for all 𝑥 ∈ 𝐾,
(ii) there exist anMT-function 𝜑 : [0,∞) → [0, 1) and

𝐿 ≥ 0 such that

H (𝑇𝑥, 𝑇𝑦 ∩ 𝐾)

≤ 𝜑 (𝑑 (𝑥, 𝑦)) 𝑑 (𝑥, 𝑦) + 𝐿𝑑 (𝑦, 𝑇𝑥 ∩ 𝐾) ∀𝑥, 𝑦 ∈ 𝐾.

(79)

ThenF𝐾(𝑇) ̸= 0.

Corollary 25. Let (𝑋, 𝑑) be a complete convex metric space,
𝐾 a nonempty closed subset of 𝑋, and 𝑇 : 𝐾 → BC(𝑋) a
multivalued map. Suppose that

(i) 𝑇𝑥 ∩ 𝐾 ̸= 0 for all 𝑥 ∈ 𝐾,
(ii) there exist anMT-function 𝜑 : [0,∞) → [0, 1) and

𝐿 ≥ 0 such that

H (𝑇𝑥, 𝑇𝑦 ∩ 𝐾)

≤ 𝜑 (𝑑 (𝑥, 𝑦)) 𝑑 (𝑥, 𝑦) + 𝐿𝑑 (𝑦, 𝑇𝑥) ∀𝑥, 𝑦 ∈ 𝐾.

(80)

ThenF𝐾(𝑇) ̸= 0.
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Corollary 26. Let (𝑋, 𝑑) be a complete convex metric space,
𝐾 a nonempty closed subset of 𝑋, and 𝑇 : 𝐾 → BC(𝑋) a
multivalued map. Suppose that

(i) 𝑇𝑥 ∩ 𝐾 ̸= 0 for all 𝑥 ∈ 𝐾,
(ii) there exists anMT-function𝜑 : [0,∞) → [0, 1) such

that

H (𝑇𝑥, 𝑇𝑦 ∩ 𝐾)

≤ 𝜑 (𝑑 (𝑥, 𝑦)) 𝑑 (𝑥, 𝑦) ∀𝑥, 𝑦 ∈ 𝐾.
(81)

ThenF𝐾(𝑇) ̸= 0.

Remark 27. (a) If 𝐾 = 𝑋 in Theorem 23, then we can obtain
Du’s fixed point theorem [12, Theorem 2.6].

(b) Theorems 19, 20 and 23, and Corollaries 21–26 all
generalize and improve Du’s fixed point theorem, Berinde-
Berinde’s fixed point theorem, Mizoguchi-Takahashi’s fixed
point theorem, Nadler’s fixed point theorem, and Banach’s
contraction principle.
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This paper deals with design algorithms for the split variational inequality and equilibrium problems. Strong convergence theorems
are demonstrated.

1. Introduction

Let H be a real Hilbert space. Let C and Q be two nonempty
closed convex subsets of H. Consider the following problem.

Problem 1. Find a point 𝑢§ ∈ C such that

Ψ(𝑢
§
) ∈ Q. (1)

This problem is called split feasibility problem when
Ψ is a bounded linear operator. In this case, Problem 1
can be applied to many practical problems such as signal
processing and image reconstruction. Specifically, we can find
the prototype of Problem 1 in intensity-modulated radiation
therapy; see, for example, [1–3]. Based on this relation, many
mathematicians were devoted to study the split feasibility
problem and develop its iterative algorithms. Related works
can be found in [4–8] and the references therein.

Let A, Ψ : C → H be two mappings. Consider the vari-
ational inequality of finding 𝑢† ∈ C, Ψ(𝑢†) ∈ C such that

⟨A𝑢
†
, Ψ (𝑢) − Ψ (𝑢

†
)⟩ ≥ 0, (2)

for all Ψ(𝑢) ∈ C. We use VI(A, Ψ) to denote the set of
solutions of (2). Variational inequality problems have import-
ant applications in many fields such as elasticity, optimiza-
tion, economics, transportation, and structural analysis, and
various numerical methods have been studied by many
researchers; see, for instance, [9–17].

Let 󰜚 : C ×C → R be an equilibrium bifunction; that is,
󰜚(𝑢, 𝑢) = 0 for each 𝑢 ∈ C. Consider the equilibrium problem
which is to find 𝑢∗ ∈ C such that

󰜚 (𝑢
∗
, V) ≥ 0, ∀V ∈ C. (3)

Denote the set of solutions of (3) by EP(󰜚,C). The equi-
librium problems include fixed point problems, optimization
problems, and variational inequality problems as special
cases. Some algorithms have been proposed to solve the equi-
librium problems; see, for example, [18–22]. Thus it is an
interesting topic associated with algorithmic approach to
the variational inequality and equilibrium problems. In this
paper, our main purpose is to study the following split prob-
lem involved in the variational inequality and equilibrium
problems. Find a point 𝑥♮ such that

𝑥
♮
∈ VI (A, Ψ) ,

Ψ (𝑥
♮
) ∈ EP (󰜚,C) .

(4)

We are devoted to study (4) with operator Ψ being a
nonlinear mapping. For this purpose, we develop an iterative
algorithm for solving the split problem (4). We can compute
𝑥
♮ iteratively by using our algorithm. Convergence analysis is

given under some mild assumptions.

2. Basic Concepts

Let C be a nonempty closed convex subset of a real Hilbert
space H. An operator B : C → H is said to be

(i) monotone 󴀀󴀤 ⟨𝑢 − V,B𝑢 − BV⟩ ≥ 0 for all 𝑢, V ∈ C;
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(ii) strongly monotone 󴀀󴀤 ⟨𝑢 − V,B𝑢 − BV⟩ ≥ 𝜁‖𝑢 − V‖2

for some constant 𝜁 > 0 and for all 𝑢, V ∈ C;
(iii) inverse-strongly monotone 󴀀󴀤 ⟨𝑢 − V,B𝑢 − BV⟩ ≥

𝜍‖B𝑢 − BV‖2 for some 𝜍 > 0 and for all 𝑢, V ∈ C; in
this case, B is called 𝜍-inverse strongly monotone;

(iv) 𝜍-inverse strongly 𝜃-monotone 󴀀󴀤 ⟨𝜃(𝑢) − 𝜃(V),B𝑢 −
BV⟩ ≥ 𝜍‖B𝑢 − BV‖2 for all𝑢, V ∈ C and for some 𝜍 > 0,
where 𝜃 : C → C is a mapping.

A mapping 𝜗 : C → H is said to be

(i) nonexpansive 󴀀󴀤 ‖𝜗𝑢 − 𝜗V‖ ≤ ‖𝑢 − V‖ for all 𝑢, V ∈ C;
(ii) firmly nonexpansive 󴀀󴀤 ‖𝜗𝑢 − 𝜗V‖2 ≤ ⟨𝑢− V, 𝜗𝑢 − 𝜗V⟩

for all 𝑢, V ∈ C;
(iii) 𝐿-Lipschitz continuous 󴀀󴀤 ‖𝜗𝑢 − 𝜗V‖ ≤ 𝐿‖𝑢 − V‖ for

some constant 𝐿 > 0 and for all 𝑢, V ∈ C. In such a
case, 𝜗 is said to be 𝐿-Lipschitz continuous.

In the sequel, we use Fix(𝜗) to denote the set of fixed points
of 𝜗.

LetA : H → 2
H be a multivalued mapping.The effective

domain of A is denoted by dom(A). A is said to be

(i) monotone 󴀀󴀤 ⟨𝑥−𝑦, 𝑢− V⟩ ≥ 0 for all 𝑥, 𝑦 ∈ dom(A),
𝑢 ∈ A𝑥, and V ∈ A𝑦;

(ii) maximal monotone 󴀀󴀤 A is monotone and its graph
is not strictly contained in the graph of any other
monotone operator on H.

A function𝑓 : H → R is said to be convex if for any𝑢, V ∈
H and for any 𝜏 ∈ [0, 1],𝑓(𝜏𝑢+(1−𝜏)V) ≤ 𝜏𝑓(𝑢)+(1−𝜏)𝑓(V).

Let projC : C → H be the metric projection fromH onto
C. It is known that projC satisfies the following inequality:

⟨𝑥 − projC𝑥, 𝑦 − projC𝑥⟩ ≤ 0. (5)

for all 𝑥 ∈ H and 𝑦 ∈ C. From this characteristic inequality,
we can deduce that projC is firmly nonexpansive.

3. Useful Lemmas

In this section, we present several lemmas which will be used
in the next section.

Lemma 2 (see [19]). LetC be a nonempty closed convex subset
of a real Hilbert space H. Let 󰜚 : C × C → R be a bifunction.
Assume that 󰜚 satisfies the following conditions:

(F1) 󰜚(𝑢, 𝑢) = 0 for all 𝑢 ∈ C;
(F2) 󰜚 is monotone, that is, 󰜚(𝑢, V) + 󰜚(V, 𝑢) ≤ 0 for all
𝑢, V ∈ C;
(F3) for each 𝑢, V, 𝑤 ∈ C, lim𝑡↓0󰜚(𝑡𝑤 + (1 − 𝑡)𝑢, V) ≤
󰜚(𝑢, V);
(F4) for each 𝑢 ∈ C, V 󳨃→ 󰜚(𝑢, V) is convex and lower
semicontinuous.

Let 𝜛 > 0 and 𝑢 ∈ C. Then there exists 𝑤 ∈ C such that

󰜚 (𝑤, V) +
1

𝜛
⟨V − 𝑤,𝑤 − 𝑢⟩ ≥ 0, ∀V ∈ C. (6)

Set ϝ𝜛(𝑢) = {𝑤 ∈ C : 󰜚(𝑤, V) + (1/𝜛)⟨V − 𝑤,𝑤 − 𝑢⟩ ≥ 0 for all
V ∈ C}. Then one have the following:

(i) ϝ𝜛 is single valued and ϝ𝜛 is firmly nonexpansive,
(ii) EP(󰜚,C) is closed and convex and EP(󰜚,C) = Fix(ϝ𝜛).

Lemma3 (see [23]). LetC be a nonempty closed convex subset
of a real Hilbert space H. For 𝑥 ∈ H, let the mapping ϝ𝜛 be the
same as in Lemma 2. Then for 𝜇, ] > 0 and 𝑥 ∈ H, one has

󵄩󵄩󵄩󵄩󵄩
ϝ𝜇 (𝑥) − ϝ] (𝑥)

󵄩󵄩󵄩󵄩󵄩

2

≤
𝜇 − ]
𝜇

⟨ϝ𝜇 (𝑥) − ϝ] (𝑥) , ϝ𝜇 (𝑥) − 𝑥⟩ .

(7)

Lemma 4 (see [24]). Let {𝑢𝑛} and {V𝑛} be two bounded
sequences in a Banach space E, and let {𝜅𝑛} be a sequence
in [0, 1] satisfying 0 < lim inf𝑛→∞𝜅𝑛 ≤ lim sup

𝑛→∞
𝜅𝑛 <

1. Suppose 𝑢𝑛+1 = (1 − 𝜅𝑛)V𝑛 + 𝜅𝑛𝑢𝑛 for all 𝑛 ≥ 0

and lim sup
𝑛→∞

(‖V𝑛+1 − V𝑛‖ − ‖𝑢𝑛+1 − 𝑢𝑛‖) ≤ 0. Then,
lim𝑛→∞‖𝑢𝑛 − V𝑛‖ = 0.

Lemma5 (see [25]). LetC be a nonempty closed convex subset
of a real Hilbert space H. Let S : C → C be a nonexpansive
mapping with Fix(S) ̸= 0. Then S is demiclosed on C.

Lemma 6 (see [26]). Let {𝑎𝑛} ⊂ [0,∞) be a sequence. Assume
that 𝑎𝑛+1 ≤ (1 − 𝛾𝑛)𝑎𝑛 + 𝛿𝑛𝛾𝑛, where {𝛾𝑛} is a sequence in
(0, 1), and {𝛿𝑛} is a sequence satisfying ∑∞

𝑛=1
𝛾𝑛 = ∞ and

lim sup
𝑛→∞

𝛿𝑛 ≤ 0 (or ∑
∞

𝑛=1
|𝛿𝑛𝛾𝑛| < ∞). Then lim𝑛→∞𝑎𝑛 =

0.

4. Main Results

In this section, we firstly present our problem and algorithm
constructed. Consequently, we give the convergence analysis
of the presented algorithm.

Problem 7. LetC be a nonempty closed convex subset of a real
Hilbert space H. Assume that

(1) Ψ : C → C is a weakly continuous and 𝜁-strongly
monotone mapping such that 𝑅(Ψ) = C;

(2) A : C → H is an 𝜍-inverse strongly Ψ-monotone
mapping;

(3) 󰜚 : C × C → R is a bifunction satisfying conditions
(F1)–(F4) in Lemma 2.

Our objective is to

find 𝑥♮ ∈ VI (A, Ψ) such that Ψ(𝑥♮) ∈ EP (󰜚,C) . (8)

We use Υ to denote the set of solutions of (8). In
the following, we assume that Υ is nonempty. For solving
Problem 7, we introduce the following algorithm.

Algorithm 8.
Step 0 (initialization). Let

𝑢0 ∈ C. (9)



Abstract and Applied Analysis 3

Step 1. For given {𝑢𝑛}, let the sequence {V𝑛} be generated
iteratively by

V𝑛 = projC (Ψ (𝑢𝑛) − 𝜇𝑛A𝑢𝑛) , 𝑛 ≥ 0, (10)

where projC is themetric projection and {𝜇𝑛} is a real number
sequence.

Step 2. For given {V𝑛}, find {𝑧𝑛} such that

󰜚 (𝑧𝑛, 𝑦) +
1

𝜛𝑛
⟨𝑦 − 𝑧𝑛, 𝑧𝑛 − (1 − 𝛼𝑛) V𝑛⟩ ≥ 0, ∀𝑦 ∈ C,

(11)

where {𝜛𝑛} ⊂ (0,∞) and {𝛼𝑛} ⊂ [0, 1] are two real number
sequences.

Step 3. For the previous sequences {𝑢𝑛} and {𝑧𝑛}, let the (𝑛 +
1)th sequence {𝑢𝑛+1} be generated by

Ψ (𝑢𝑛+1) = 𝜅𝑛Ψ (𝑢𝑛) + (1 − 𝜅𝑛) 𝑧𝑛, 𝑛 ≥ 0, (12)

where {𝜅𝑛} ⊂ [0, 1] is a real number sequence.

Theorem 9. Assume that the following conditions are satis-
fied:

(𝐶1) lim𝑛→∞𝛼𝑛 = 0 and ∑𝑛 𝛼𝑛 = ∞;
(𝐶2) 0 < lim inf𝑛→∞𝜅𝑛 ≤ lim sup

𝑛→∞
𝜅𝑛 < 1;

(𝐶3) 𝜛𝑛 ∈ (𝜂1, 𝜂2) ⊂ (0,∞), 𝜇𝑛 ∈ (𝜉1, 𝜉2) ⊂ (0, 2𝜍),
and 𝜁 ∈ (0, 2𝜍);
(𝐶4) lim𝑛→∞(𝜇𝑛+1 − 𝜇𝑛) = 0 and lim𝑛→∞(𝜛𝑛+1 −
𝜛𝑛) = 0.

Then the sequence {𝑢𝑛} generated by Algorithm 8 converges
strongly to 𝑥∗ ∈ Υ.

Proof. Let ̆𝑥 ∈ Υ. Hence ̆𝑥 ∈ VI(A, Ψ) and Ψ( ̆𝑥) ∈ EP(󰜚,C),
noting that ̆𝑥 ∈ VI(A, Ψ) implies Ψ( ̆𝑥) = projC(Ψ( ̆𝑥) − ]A ̆𝑥)

for all ] > 0. HenceΨ( ̆𝑥) = projC(Ψ( ̆𝑥) − 𝜇𝑛A ̆𝑥) for all 𝑛 ≥ 0.
Thus, from (10), we have
󵄩󵄩󵄩󵄩V𝑛 − Ψ ( ̆𝑥)

󵄩󵄩󵄩󵄩
2

=
󵄩󵄩󵄩󵄩projC (Ψ (𝑢𝑛) − 𝜇𝑛A𝑢𝑛) − projC (Ψ ( ̆𝑥) − 𝜇𝑛A ̆𝑥)

󵄩󵄩󵄩󵄩
2

≤
󵄩󵄩󵄩󵄩(Ψ (𝑢𝑛) − 𝜇𝑛A𝑢𝑛) − (Ψ ( ̆𝑥) − 𝜇𝑛A ̆𝑥)

󵄩󵄩󵄩󵄩
2

=
󵄩󵄩󵄩󵄩Ψ (𝑢𝑛) − Ψ ( ̆𝑥)

󵄩󵄩󵄩󵄩
2
− 2𝜇𝑛 ⟨A𝑢𝑛 − A ̆𝑥, Ψ (𝑢𝑛) − Ψ ( ̆𝑥)⟩

+ 𝜇
2

𝑛

󵄩󵄩󵄩󵄩A𝑢𝑛 − A ̆𝑥
󵄩󵄩󵄩󵄩
2

≤
󵄩󵄩󵄩󵄩Ψ (𝑢𝑛) − Ψ ( ̆𝑥)

󵄩󵄩󵄩󵄩
2

−2𝜇𝑛𝜍
󵄩󵄩󵄩󵄩A𝑢𝑛 − A ̆𝑥

󵄩󵄩󵄩󵄩
2
+ 𝜇
2

𝑛

󵄩󵄩󵄩󵄩A𝑢𝑛 − A ̆𝑥
󵄩󵄩󵄩󵄩
2

≤
󵄩󵄩󵄩󵄩Ψ (𝑢𝑛) − Ψ ( ̆𝑥)

󵄩󵄩󵄩󵄩
2
+ 𝜇𝑛 (𝜇𝑛 − 2𝜍)

󵄩󵄩󵄩󵄩A𝑢𝑛 − A ̆𝑥
󵄩󵄩󵄩󵄩
2
.

(13)

Condition (𝐶3) and (13) imply that
󵄩󵄩󵄩󵄩V𝑛 − Ψ ( ̆𝑥)

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩Ψ (𝑢𝑛) − Ψ ( ̆𝑥)

󵄩󵄩󵄩󵄩 . (14)

From Lemma 2 and (11), we get 𝑧𝑛 = ϝ𝜛
𝑛

(1 − 𝛼𝑛)V𝑛 for all
𝑛 ≥ 0. Since Ψ( ̆𝑥) ∈ EP(󰜚,C), from Lemma 2 we deduce that
Ψ( ̆𝑥) = ϝ𝜛

𝑛

Ψ( ̆𝑥) for all 𝑛 ≥ 0. So,

󵄩󵄩󵄩󵄩𝑧𝑛 − Ψ ( ̆𝑥)
󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩󵄩
ϝ𝜛
𝑛

(1 − 𝛼𝑛) V𝑛 − ϝ𝜛
𝑛

Ψ ( ̆𝑥)
󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩(1 − 𝛼𝑛) V𝑛 − Ψ ( ̆𝑥)

󵄩󵄩󵄩󵄩

≤ (1 − 𝛼𝑛)
󵄩󵄩󵄩󵄩V𝑛 − Ψ ( ̆𝑥)

󵄩󵄩󵄩󵄩 + 𝛼𝑛 ‖Ψ ( ̆𝑥)‖

by (14)

≤ (1 − 𝛼𝑛)
󵄩󵄩󵄩󵄩Ψ (𝑢𝑛) − Ψ ( ̆𝑥)

󵄩󵄩󵄩󵄩 + 𝛼𝑛 ‖Ψ ( ̆𝑥)‖ .

(15)

It follows that

󵄩󵄩󵄩󵄩Ψ (𝑢𝑛+1) − Ψ ( ̆𝑥)
󵄩󵄩󵄩󵄩

≤ 𝜅𝑛
󵄩󵄩󵄩󵄩Ψ (𝑢𝑛) − Ψ ( ̆𝑥)

󵄩󵄩󵄩󵄩 + (1 − 𝜅𝑛)
󵄩󵄩󵄩󵄩𝑧𝑛 − Ψ ( ̆𝑥)

󵄩󵄩󵄩󵄩

≤ 𝜅𝑛
󵄩󵄩󵄩󵄩Ψ (𝑢𝑛) − Ψ ( ̆𝑥)

󵄩󵄩󵄩󵄩

+ (1 − 𝜅𝑛) (1 − 𝛼𝑛)
󵄩󵄩󵄩󵄩Ψ (𝑢𝑛) − Ψ ( ̆𝑥)

󵄩󵄩󵄩󵄩

+ (1 − 𝜅𝑛) 𝛼𝑛 ‖Ψ ( ̆𝑥)‖

= [1 − (1 − 𝜅𝑛) 𝛼𝑛]
󵄩󵄩󵄩󵄩Ψ (𝑢𝑛) − Ψ ( ̆𝑥)

󵄩󵄩󵄩󵄩

+ (1 − 𝜅𝑛) 𝛼𝑛 ‖Ψ ( ̆𝑥)‖ .

(16)

By induction

󵄩󵄩󵄩󵄩Ψ (𝑢𝑛) − Ψ ( ̆𝑥)
󵄩󵄩󵄩󵄩 ≤ max {󵄩󵄩󵄩󵄩Ψ (𝑢0) − Ψ ( ̆𝑥)

󵄩󵄩󵄩󵄩 , ‖Ψ ( ̆𝑥)‖} .

(17)

Hence, {Ψ(𝑢𝑛)} is bounded. Since Ψ is 𝜁-strongly monotone,
we can get 𝜁‖𝑢𝑛 − ̆𝑥‖ ≤ ‖Ψ(𝑢𝑛) − Ψ( ̆𝑥)‖. So, ‖𝑢𝑛 − ̆𝑥‖ ≤

(1/𝜁)‖Ψ(𝑢𝑛) − Ψ( ̆𝑥)‖ ≤ (1/𝜁)max{‖Ψ(𝑢0) − Ψ( ̆𝑥)‖, ‖Ψ( ̆𝑥)‖}.
This implies that {𝑢𝑛} is bounded. Next, we show ‖𝑢𝑛+1 −

𝑢𝑛‖ → 0. From 𝑧𝑛 = ϝ𝜛
𝑛

(1 − 𝛼𝑛)V𝑛, we have

󵄩󵄩󵄩󵄩𝑧𝑛+1 − 𝑧𝑛
󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩󵄩
ϝ𝜛
𝑛+1

(1 − 𝛼𝑛+1) V𝑛+1 − ϝ𝜛
𝑛

(1 − 𝛼𝑛) V𝑛
󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
ϝ𝜛
𝑛+1

(1 − 𝛼𝑛+1) V𝑛+1 − ϝ𝜛
𝑛+1

(1 − 𝛼𝑛) V𝑛
󵄩󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩
ϝ𝜛
𝑛+1

(1 − 𝛼𝑛) V𝑛 − ϝ𝜛
𝑛

(1 − 𝛼𝑛) V𝑛
󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩(1 − 𝛼𝑛+1) V𝑛+1 − (1 − 𝛼𝑛) V𝑛

󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩
ϝ𝜛
𝑛+1

(1 − 𝛼𝑛) V𝑛 − ϝ𝜛
𝑛

(1 − 𝛼𝑛) V𝑛
󵄩󵄩󵄩󵄩󵄩
.

(18)
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Using Lemma 3, we obtain

󵄩󵄩󵄩󵄩󵄩
ϝ𝜛
𝑛+1

(1 − 𝛼𝑛) V𝑛 − ϝ𝜛
𝑛

(1 − 𝛼𝑛) V𝑛
󵄩󵄩󵄩󵄩󵄩

2

≤
𝜛𝑛+1 − 𝜛𝑛

𝜛𝑛+1

× ⟨ϝ𝜛
𝑛+1

(1 − 𝛼𝑛) V𝑛

− ϝ𝜛
𝑛

(1 − 𝛼𝑛) V𝑛, ϝ𝜛
𝑛+1

(1 − 𝛼𝑛) V𝑛

− (1 − 𝛼𝑛) V𝑛⟩

≤

󵄨󵄨󵄨󵄨𝜛𝑛+1 − 𝜛𝑛
󵄨󵄨󵄨󵄨

𝜛𝑛+1

󵄩󵄩󵄩󵄩󵄩
ϝ𝜛
𝑛+1

(1 − 𝛼𝑛) V𝑛 − ϝ𝜛
𝑛

(1 − 𝛼𝑛) V𝑛
󵄩󵄩󵄩󵄩󵄩

×
󵄩󵄩󵄩󵄩󵄩
ϝ𝜛
𝑛+1

(1 − 𝛼𝑛) V𝑛 − (1 − 𝛼𝑛) V𝑛
󵄩󵄩󵄩󵄩󵄩
.

(19)

Then

󵄩󵄩󵄩󵄩󵄩
ϝ𝜛
𝑛+1

(1 − 𝛼𝑛) V𝑛 − ϝ𝜛
𝑛

(1 − 𝛼𝑛) V𝑛
󵄩󵄩󵄩󵄩󵄩

≤

󵄨󵄨󵄨󵄨𝜛𝑛+1 − 𝜛𝑛
󵄨󵄨󵄨󵄨

𝜛𝑛+1

󵄩󵄩󵄩󵄩󵄩
ϝ𝜛
𝑛+1

(1 − 𝛼𝑛) V𝑛 − (1 − 𝛼𝑛) V𝑛
󵄩󵄩󵄩󵄩󵄩
.

(20)

By condition (𝐶3), we have 𝜛𝑛 > 𝜂1 > 0. So,

󵄩󵄩󵄩󵄩𝑧𝑛+1 − 𝑧𝑛
󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩(1 − 𝛼𝑛+1) V𝑛+1 − (1 − 𝛼𝑛) V𝑛

󵄩󵄩󵄩󵄩

+

󵄨󵄨󵄨󵄨𝜛𝑛+1 − 𝜛𝑛
󵄨󵄨󵄨󵄨

𝜛𝑛+1

×
󵄩󵄩󵄩󵄩󵄩
ϝ𝜛
𝑛+1

(1 − 𝛼𝑛) V𝑛 − (1 − 𝛼𝑛) V𝑛
󵄩󵄩󵄩󵄩󵄩

≤ (1 − 𝛼𝑛+1)
󵄩󵄩󵄩󵄩V𝑛+1 − V𝑛

󵄩󵄩󵄩󵄩

+
󵄨󵄨󵄨󵄨𝛼𝑛+1 − 𝛼𝑛

󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩V𝑛
󵄩󵄩󵄩󵄩 +

󵄨󵄨󵄨󵄨𝜛𝑛+1 − 𝜛𝑛
󵄨󵄨󵄨󵄨

𝜂1

×
󵄩󵄩󵄩󵄩󵄩
ϝ𝜛
𝑛+1

(1 − 𝛼𝑛) V𝑛 − (1 − 𝛼𝑛) V𝑛
󵄩󵄩󵄩󵄩󵄩
.

(21)

From (10), we have

󵄩󵄩󵄩󵄩V𝑛+1 − V𝑛
󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩projC (Ψ (𝑢𝑛+1) − 𝜇𝑛+1A𝑢𝑛+1)

−projC (Ψ (𝑢𝑛) − 𝜇𝑛A𝑢𝑛)
󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩Ψ (𝑢𝑛+1) − 𝜇𝑛+1A𝑢𝑛+1

− (Ψ (𝑢𝑛) − 𝜇𝑛+1A𝑢𝑛)
󵄩󵄩󵄩󵄩 +

󵄨󵄨󵄨󵄨𝜇𝑛+1 − 𝜇𝑛
󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩A (𝑢𝑛)

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩Ψ (𝑢𝑛+1) − Ψ (𝑢𝑛)

󵄩󵄩󵄩󵄩 +
󵄨󵄨󵄨󵄨𝜇𝑛+1 − 𝜇𝑛

󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩A (𝑢𝑛)

󵄩󵄩󵄩󵄩 .

(22)

Therefore,

󵄩󵄩󵄩󵄩𝑧𝑛+1 − 𝑧𝑛
󵄩󵄩󵄩󵄩 ≤ (1 − 𝛼𝑛+1)

󵄩󵄩󵄩󵄩Ψ (𝑢𝑛+1) − Ψ (𝑢𝑛)
󵄩󵄩󵄩󵄩

+
󵄨󵄨󵄨󵄨𝛼𝑛+1 − 𝛼𝑛

󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩V𝑛
󵄩󵄩󵄩󵄩 +

󵄨󵄨󵄨󵄨𝜇𝑛+1 − 𝜇𝑛
󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩A (𝑢𝑛)

󵄩󵄩󵄩󵄩

+
1

𝜂1

󵄨󵄨󵄨󵄨𝜛𝑛+1 − 𝜛𝑛
󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩󵄩
ϝ𝜛
𝑛+1

(1 − 𝛼𝑛) V𝑛 − (1 − 𝛼𝑛) V𝑛
󵄩󵄩󵄩󵄩󵄩
.

(23)

It follows that

󵄩󵄩󵄩󵄩𝑧𝑛+1 − 𝑧𝑛
󵄩󵄩󵄩󵄩 −

󵄩󵄩󵄩󵄩Ψ (𝑢𝑛+1) − Ψ (𝑢𝑛)
󵄩󵄩󵄩󵄩

≤
󵄨󵄨󵄨󵄨𝛼𝑛+1 − 𝛼𝑛

󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩V𝑛
󵄩󵄩󵄩󵄩 +

󵄨󵄨󵄨󵄨𝜇𝑛+1 − 𝜇𝑛
󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩A (𝑢𝑛)

󵄩󵄩󵄩󵄩

+
1

𝜂1

󵄨󵄨󵄨󵄨𝜛𝑛+1 − 𝜛𝑛
󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩󵄩
ϝ𝜛
𝑛+1

(1 − 𝛼𝑛) V𝑛 − (1 − 𝛼𝑛) V𝑛
󵄩󵄩󵄩󵄩󵄩
.

(24)

Since lim𝑛→∞𝛼𝑛 = 0, lim𝑛→∞(𝜇𝑛+1 − 𝜇𝑛) = 0, and
lim𝑛→∞(𝜛𝑛+1−𝜛𝑛) = 0 and the sequences {Ψ(𝑢𝑛)}, {𝑧𝑛}, {V𝑛},
and {A𝑢𝑛} are bounded, we deduce that

lim sup
𝑛→∞

(
󵄩󵄩󵄩󵄩𝑧𝑛+1 − 𝑧𝑛

󵄩󵄩󵄩󵄩 −
󵄩󵄩󵄩󵄩Ψ (𝑢𝑛+1) − Ψ (𝑢𝑛)

󵄩󵄩󵄩󵄩) ≤ 0. (25)

Applying Lemma 4, we obtain

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑧𝑛 − Ψ (𝑢𝑛)
󵄩󵄩󵄩󵄩 = 0. (26)

Thus,

lim
𝑛→∞

󵄩󵄩󵄩󵄩Ψ (𝑢𝑛+1) − Ψ (𝑢𝑛)
󵄩󵄩󵄩󵄩 = lim
𝑛→∞

(1 − 𝜅𝑛)
󵄩󵄩󵄩󵄩𝑧𝑛 − Ψ (𝑢𝑛)

󵄩󵄩󵄩󵄩 = 0.

(27)

This together with the 𝜁-strong monotonicity of Ψ implies
that

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑢𝑛+1 − 𝑢𝑛
󵄩󵄩󵄩󵄩 = 0. (28)

From (13) and (16), we derive

󵄩󵄩󵄩󵄩Ψ (𝑢𝑛+1) − Ψ ( ̆𝑥)
󵄩󵄩󵄩󵄩
2

≤ 𝜅𝑛
󵄩󵄩󵄩󵄩Ψ (𝑢𝑛) − Ψ ( ̆𝑥)

󵄩󵄩󵄩󵄩
2
+ (1 − 𝜅𝑛)

󵄩󵄩󵄩󵄩𝑧𝑛 − Ψ ( ̆𝑥)
󵄩󵄩󵄩󵄩
2

≤ 𝜅𝑛
󵄩󵄩󵄩󵄩Ψ (𝑢𝑛) − Ψ ( ̆𝑥)

󵄩󵄩󵄩󵄩
2
+ (1 − 𝜅𝑛)

× [(1 − 𝛼𝑛)
󵄩󵄩󵄩󵄩V𝑛 − Ψ ( ̆𝑥)

󵄩󵄩󵄩󵄩
2
+ 𝛼𝑛‖Ψ ( ̆𝑥)‖

2
]
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≤ (1 − 𝜅𝑛)

× [(1 − 𝛼𝑛)
󵄩󵄩󵄩󵄩(Ψ (𝑢𝑛) − 𝜇𝑛A𝑢𝑛) − (Ψ ( ̆𝑥) − 𝜇𝑛A ̆𝑥)

󵄩󵄩󵄩󵄩
2

+𝛼𝑛‖Ψ ( ̆𝑥)‖
2
] + 𝜅𝑛

󵄩󵄩󵄩󵄩Ψ (𝑢𝑛) − Ψ ( ̆𝑥)
󵄩󵄩󵄩󵄩
2

≤ 𝜅𝑛
󵄩󵄩󵄩󵄩Ψ (𝑢𝑛) − Ψ ( ̆𝑥)

󵄩󵄩󵄩󵄩
2
+ (1 − 𝜅𝑛) (1 − 𝛼𝑛)

× (
󵄩󵄩󵄩󵄩Ψ (𝑢𝑛) − Ψ ( ̆𝑥)

󵄩󵄩󵄩󵄩
2
+ 𝜇𝑛 (𝜇𝑛 − 2𝜍)

󵄩󵄩󵄩󵄩A𝑢𝑛 − A ̆𝑥
󵄩󵄩󵄩󵄩
2
)

+ 𝛼𝑛‖Ψ ( ̆𝑥)‖
2

≤
󵄩󵄩󵄩󵄩Ψ (𝑢𝑛) − Ψ ( ̆𝑥)

󵄩󵄩󵄩󵄩
2

+ (1 − 𝜅𝑛) (1 − 𝛼𝑛) 𝜇𝑛 (𝜇𝑛 − 2𝜍)
󵄩󵄩󵄩󵄩A𝑢𝑛 − A ̆𝑥

󵄩󵄩󵄩󵄩
2

+ 𝛼𝑛‖Ψ ( ̆𝑥)‖
2
.

(29)

Hence,

(1 − 𝜅𝑛) (1 − 𝛼𝑛) 𝜇𝑛 (2𝜍 − 𝜇𝑛)
󵄩󵄩󵄩󵄩A𝑢𝑛 − A ̆𝑥

󵄩󵄩󵄩󵄩
2

≤
󵄩󵄩󵄩󵄩Ψ (𝑢𝑛) − Ψ ( ̆𝑥)

󵄩󵄩󵄩󵄩
2
−
󵄩󵄩󵄩󵄩Ψ (𝑢𝑛+1) − Ψ ( ̆𝑥)

󵄩󵄩󵄩󵄩
2

+ 𝛼𝑛‖Ψ ( ̆𝑥)‖
2

≤ (
󵄩󵄩󵄩󵄩Ψ (𝑢𝑛) − Ψ ( ̆𝑥)

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩Ψ (𝑢𝑛+1) − Ψ ( ̆𝑥)

󵄩󵄩󵄩󵄩)

×
󵄩󵄩󵄩󵄩Ψ (𝑢𝑛+1) − Ψ (𝑢𝑛)

󵄩󵄩󵄩󵄩 + 𝛼𝑛‖Ψ ( ̆𝑥)‖
2
.

(30)

Since 𝛼𝑛 → 0, ‖Ψ(𝑢𝑛+1) −Ψ(𝑢𝑛)‖ → 0, and lim inf𝑛→∞(1 −
𝜅𝑛)(1 − 𝛼𝑛)𝜇𝑛(2𝜍 − 𝜇𝑛) > 0, we obtain

lim
𝑛→∞

󵄩󵄩󵄩󵄩A𝑢𝑛 − A ̆𝑥
󵄩󵄩󵄩󵄩 = 0. (31)

Set 𝑦𝑛 = Ψ(𝑢𝑛) − 𝜇𝑛A𝑢𝑛 − (Ψ( ̆𝑥) − 𝜇𝑛A ̆𝑥) for all 𝑛. By using
the firm nonexpansivity of projection, we get

󵄩󵄩󵄩󵄩V𝑛 − Ψ ( ̆𝑥)
󵄩󵄩󵄩󵄩
2

=
󵄩󵄩󵄩󵄩projC (Ψ (𝑢𝑛) − 𝜇𝑛A𝑢𝑛)

2

− projC (Ψ ( ̆𝑥) − 𝜇𝑛A ̆𝑥)
󵄩󵄩󵄩󵄩
2

≤ ⟨𝑦𝑛, V𝑛 − Ψ ( ̆𝑥)⟩

=
1

2
{
󵄩󵄩󵄩󵄩𝑦𝑛
󵄩󵄩󵄩󵄩
2
+
󵄩󵄩󵄩󵄩V𝑛 − Ψ ( ̆𝑥)

󵄩󵄩󵄩󵄩
2
−
󵄩󵄩󵄩󵄩𝑦𝑛 − V𝑛 + Ψ ( ̆𝑥)

󵄩󵄩󵄩󵄩
2
}

≤
1

2
{
󵄩󵄩󵄩󵄩Ψ (𝑢𝑛) − Ψ ( ̆𝑥)

󵄩󵄩󵄩󵄩
2
+
󵄩󵄩󵄩󵄩V𝑛 − Ψ ( ̆𝑥)

󵄩󵄩󵄩󵄩
2

−
󵄩󵄩󵄩󵄩Ψ (𝑢𝑛) − V𝑛 − 𝜇𝑛 (A𝑢𝑛 − A ̆𝑥)

󵄩󵄩󵄩󵄩
2
}

=
1

2
{
󵄩󵄩󵄩󵄩Ψ (𝑢𝑛) − Ψ ( ̆𝑥)

󵄩󵄩󵄩󵄩
2
+
󵄩󵄩󵄩󵄩V𝑛 − Ψ ( ̆𝑥)

󵄩󵄩󵄩󵄩
2

−
󵄩󵄩󵄩󵄩Ψ (𝑢𝑛) − V𝑛

󵄩󵄩󵄩󵄩
2
− 𝜇
2

𝑛

󵄩󵄩󵄩󵄩A𝑢𝑛 − A ̆𝑥
󵄩󵄩󵄩󵄩

+2𝜇𝑛 ⟨Ψ (𝑢𝑛) − V𝑛,A𝑢𝑛 − A ̆𝑥⟩ } .

(32)

It follows that
󵄩󵄩󵄩󵄩V𝑛 − Ψ ( ̆𝑥)

󵄩󵄩󵄩󵄩
2
≤
󵄩󵄩󵄩󵄩Ψ (𝑢𝑛) − Ψ ( ̆𝑥)

󵄩󵄩󵄩󵄩
2
−
󵄩󵄩󵄩󵄩Ψ (𝑢𝑛) − V𝑛

󵄩󵄩󵄩󵄩
2

+ 2𝜇𝑛
󵄩󵄩󵄩󵄩Ψ (𝑢𝑛) − V𝑛

󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩A𝑢𝑛 − A ̆𝑥

󵄩󵄩󵄩󵄩 .

(33)

From (29) and (32), we have

󵄩󵄩󵄩󵄩Ψ (𝑢𝑛+1) − Ψ ( ̆𝑥)
󵄩󵄩󵄩󵄩
2

≤ 𝜅𝑛
󵄩󵄩󵄩󵄩Ψ (𝑢𝑛) − Ψ ( ̆𝑥)

󵄩󵄩󵄩󵄩
2
+ (1 − 𝜅𝑛)

× [(1 − 𝛼𝑛)
󵄩󵄩󵄩󵄩V𝑛 − Ψ ( ̆𝑥)

󵄩󵄩󵄩󵄩
2
+ 𝛼𝑛‖Ψ ( ̆𝑥)‖

2
]

≤ 𝜅𝑛
󵄩󵄩󵄩󵄩Ψ (𝑢𝑛) − Ψ ( ̆𝑥)

󵄩󵄩󵄩󵄩
2
+ (1 − 𝛼𝑛) (1 − 𝜅𝑛)

×
󵄩󵄩󵄩󵄩Ψ (𝑢𝑛) − Ψ ( ̆𝑥)

󵄩󵄩󵄩󵄩
2
− (1 − 𝜅𝑛)

󵄩󵄩󵄩󵄩Ψ (𝑢𝑛) − V𝑛
󵄩󵄩󵄩󵄩
2

+ (1 − 𝜅𝑛) 𝛼𝑛‖Ψ ( ̆𝑥)‖
2
+ 2𝜇𝑛 (1 − 𝜅𝑛)

×
󵄩󵄩󵄩󵄩Ψ (𝑢𝑛) − V𝑛

󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩A𝑢𝑛 − A ̆𝑥

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩Ψ (𝑢𝑛) − Ψ ( ̆𝑥)

󵄩󵄩󵄩󵄩
2
− (1 − 𝜅𝑛)

󵄩󵄩󵄩󵄩Ψ (𝑢𝑛) − V𝑛
󵄩󵄩󵄩󵄩
2

+ 2𝜇𝑛
󵄩󵄩󵄩󵄩Ψ (𝑢𝑛) − V𝑛

󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩A𝑢𝑛 − A ̆𝑥

󵄩󵄩󵄩󵄩 + 𝛼𝑛‖Ψ ( ̆𝑥)‖
2
.

(34)

Then, we obtain

(1 − 𝜅𝑛)
󵄩󵄩󵄩󵄩Ψ (𝑢𝑛) − V𝑛

󵄩󵄩󵄩󵄩
2

≤ (
󵄩󵄩󵄩󵄩Ψ (𝑢𝑛) − Ψ ( ̆𝑥)

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩Ψ (𝑢𝑛+1) − Ψ ( ̆𝑥)

󵄩󵄩󵄩󵄩)

×
󵄩󵄩󵄩󵄩Ψ (𝑢𝑛+1) − Ψ (𝑥𝑛)

󵄩󵄩󵄩󵄩

+ 2𝜇𝑛
󵄩󵄩󵄩󵄩Ψ (𝑢𝑛) − V𝑛

󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩A𝑢𝑛 − A ̆𝑥

󵄩󵄩󵄩󵄩 + 𝛼𝑛‖Ψ ( ̆𝑥)‖
2
.

(35)

Since lim𝑛→∞𝛼𝑛 = 0, lim𝑛→∞‖Ψ(𝑢𝑛+1) − Ψ(𝑢𝑛)‖ = 0, and
lim𝑛→∞‖A𝑢𝑛 − A ̆𝑥‖ = 0, we deduce that

lim
𝑛→∞

󵄩󵄩󵄩󵄩Ψ (𝑢𝑛) − V𝑛
󵄩󵄩󵄩󵄩 = 0. (36)

Next, we prove lim sup
𝑛→∞

⟨Ψ(𝑥∗), V𝑛 − Ψ(𝑥
∗)⟩ ≥ 0, where

𝑥∗ satisfies (GVI): ⟨Ψ(𝑥∗), Ψ(𝑥) − Ψ(𝑥∗)⟩ ≥ 0, for all 𝑥 ∈ Υ
(note thatΨ is 𝜁-stronglymonotone;we can easily deduce that
the solution of (GVI) is unique). We take a subsequence {V𝑛

𝑖

}

of {V𝑛} such that

lim sup
𝑛→∞

⟨Ψ (𝑥
∗
) , V𝑛 − Ψ (𝑥

∗
)⟩

= lim
𝑖→∞

⟨Ψ (𝑥
∗
) , V𝑛

𝑖

− Ψ (𝑥
∗
)⟩

= lim
𝑖→∞

⟨Ψ (𝑥
∗
) , Ψ (𝑢𝑛

𝑖

) − Ψ (𝑥
∗
)⟩ .

(37)

By the boundedness of {𝑢𝑛
𝑖

}, we can choose a subsequence
{𝑢𝑛
𝑖𝑗

} of {𝑢𝑛
𝑖

} such that 𝑢𝑛
𝑖𝑗

→ 𝑧weakly. For the convenience,
wemay assume that 𝑢𝑛

𝑖

⇀ 𝑧.This implies thatΨ(𝑢𝑛
𝑖

) ⇀ Ψ(𝑧)

due to the weak continuity of Ψ. Now, we show 𝑧 ∈ Υ. We
firstly show Ψ(𝑧) ∈ EP(󰜚,C).
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Note that 𝜛𝑛 ∈ (𝜂1, 𝜂2). Then we choose a subsequence
{𝜛𝑛
𝑖

} of {𝜛𝑛} such that lim𝑖→∞𝜛𝑛
𝑖

= 𝜛 ∈ (𝜂1, 𝜂2). From (26)
and (36), we deduce that ‖𝑧𝑛−V𝑛‖ = ‖ϝ𝜛

𝑛

(1−𝛼𝑛)V𝑛−V𝑛‖ → 0.
Thus, ‖𝑧𝑛

𝑖

−V𝑛
𝑖

‖ = ‖ϝ𝜛
𝑛𝑖

(1−𝛼𝑛
𝑖

)V𝑛
𝑖

−V𝑛
𝑖

‖ → 0. FromLemma 2,
we know that ϝ𝜛 is nonexpansive. By demiclosed principle
(Lemma 5), we get immediately that Ψ(𝑧) ∈ Fix(ϝ𝜛) =

EP(󰜚,C).
Next we prove 𝑧 ∈ VI(A, Ψ). Set

𝑅V = {
AV + 𝑁𝐶 (V) , V ∈ 𝐶,
0, V ∉ 𝐶.

(38)

By [27], we know that𝑅 is maximalΨ-monotone. Let (V, 𝑤) ∈
𝐺(𝑅). Since 𝑤 − AV ∈ 𝑁𝐶(V) and 𝑢𝑛 ∈ 𝐶, we have ⟨Ψ(V) −
Ψ(𝑢𝑛), 𝑤 −AV⟩ ≥ 0. Noting that V𝑛 = projC(Ψ(𝑢𝑛) − 𝜇𝑛A𝑢𝑛),
we get

⟨Ψ (V) − V𝑛, V𝑛 − (Ψ (𝑢𝑛) − 𝜇𝑛A𝑢𝑛)⟩ ≥ 0. (39)

It follows that

⟨Ψ(V) − V𝑛,
V𝑛 − Ψ (𝑢𝑛)

𝜇𝑛
+ A𝑢𝑛⟩ ≥ 0. (40)

Then,

⟨Ψ (V) − Ψ (𝑢𝑛
𝑖

) , 𝑤⟩

≥ ⟨Ψ (V) − Ψ (𝑢𝑛
𝑖

) ,AV⟩

≥ ⟨Ψ (V) − Ψ (𝑢𝑛
𝑖

) ,AV⟩

−⟨Ψ (V) − V𝑛
𝑖

,
V𝑛
𝑖

− Ψ (𝑢𝑛
𝑖

)

𝜇𝑛
𝑖

⟩

− ⟨Ψ (V) − V𝑛
𝑖

,A𝑢𝑛
𝑖

⟩

= ⟨Ψ (V) − Ψ (𝑢𝑛
𝑖

) ,AV − A𝑢𝑛
𝑖

⟩

+ ⟨Ψ (V) − Ψ (𝑢𝑛
𝑖

) ,A𝑢𝑛
𝑖

⟩

−⟨Ψ (V) − V𝑛
𝑖

,
V𝑛
𝑖

− Ψ (𝑢𝑛
𝑖

)

𝜇𝑛
𝑖

⟩

− ⟨Ψ (V) − V𝑛
𝑖

,A𝑢𝑛
𝑖

⟩

≥ −⟨Ψ (V) − V𝑛
𝑖

,
V𝑛
𝑖

− Ψ (𝑢𝑛
𝑖

)

𝜇𝑛
𝑖

⟩

− ⟨Ψ(𝑢𝑛
𝑖

) − V𝑛
𝑖

,A𝑢𝑛
𝑖

⟩ .

(41)

Since ‖Ψ(𝑢𝑛
𝑖

)−V𝑛
𝑖

‖ → 0 andΨ(𝑢𝑛
𝑖

) ⇀ Ψ(𝑧), we deduce that
⟨Ψ(V)−Ψ(𝑧), 𝑤⟩ ≥ 0 by taking 𝑖 → ∞ in (41).Thus, 𝑧 ∈ 𝑅−10

by the maximal Ψ-monotonicity of 𝑅. Hence, 𝑧 ∈ VI(A, Ψ).
Therefore, 𝑧 ∈ Υ. From (37), we obtain

lim sup
𝑛→∞

⟨Ψ (𝑥
∗
) , V𝑛 − Ψ (𝑥

∗
)⟩

= lim
𝑖→∞

⟨Ψ (𝑥
∗
) , Ψ (𝑢𝑛

𝑖

) − Ψ (𝑥
∗
)⟩

= ⟨Ψ (𝑥
∗
) , Ψ (𝑧) − Ψ (𝑥

∗
)⟩ ≥ 0.

(42)

From (12), we have
󵄩󵄩󵄩󵄩Ψ (𝑢𝑛+1) − Ψ (𝑥

∗
)
󵄩󵄩󵄩󵄩
2

≤ 𝜅𝑛
󵄩󵄩󵄩󵄩Ψ (𝑢𝑛) − Ψ (𝑥

∗
)
󵄩󵄩󵄩󵄩
2

+ (1 − 𝜅𝑛)
󵄩󵄩󵄩󵄩(1 − 𝛼𝑛) V𝑛 − Ψ (𝑥

∗
)
󵄩󵄩󵄩󵄩
2

≤ 𝜅𝑛
󵄩󵄩󵄩󵄩Ψ (𝑢𝑛) − Ψ (𝑥

∗
)
󵄩󵄩󵄩󵄩
2
+ (1 − 𝜅𝑛)

× [(1 − 𝛼𝑛)
󵄩󵄩󵄩󵄩V𝑛 − Ψ (𝑥

∗
)
󵄩󵄩󵄩󵄩
2

− 2𝛼𝑛 (1 − 𝛼𝑛) ⟨Ψ (𝑥
∗
) , V𝑛 − Ψ (𝑥

∗
)⟩

+ 𝛼
2

𝑛

󵄩󵄩󵄩󵄩Ψ (𝑥
∗
)
󵄩󵄩󵄩󵄩
2
]

≤ 𝜅𝑛
󵄩󵄩󵄩󵄩Ψ (𝑢𝑛) − Ψ (𝑥

∗
)
󵄩󵄩󵄩󵄩
2
+ (1 − 𝜅𝑛)

× [(1 − 𝛼𝑛)
󵄩󵄩󵄩󵄩Ψ (𝑢𝑛) − Ψ (𝑥

∗
)
󵄩󵄩󵄩󵄩
2
− 2𝛼𝑛 (1 − 𝛼𝑛)

× ⟨Ψ (𝑥
∗
) , V𝑛 − Ψ (𝑥

∗
)⟩ + 𝛼

2

𝑛

󵄩󵄩󵄩󵄩Ψ (𝑥
∗
)
󵄩󵄩󵄩󵄩
2
]

= [1 − (1 − 𝜅𝑛) 𝛼𝑛]
󵄩󵄩󵄩󵄩Ψ (𝑢𝑛) − Ψ (𝑥

∗
)
󵄩󵄩󵄩󵄩
2
+ (1 − 𝜅𝑛) 𝛼𝑛

× {2 (1 − 𝛼𝑛) ⟨−Ψ (𝑥
∗
) , V𝑛 − Ψ (𝑥

∗
)⟩

+ 𝛼𝑛
󵄩󵄩󵄩󵄩Ψ (𝑥

∗
)
󵄩󵄩󵄩󵄩
2
} .

(43)

Using Lemma 6, we conclude that Ψ(𝑢𝑛) → Ψ(𝑥∗), and
hence 𝑢𝑛 → 𝑥∗. This completes the proof.
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We study the existence and uniqueness of coincidence point for nonlinear mappings of any number of arguments under a weak
(𝜓, 𝜑)-contractivity condition in partial metric spaces. The results we obtain generalize, extend, and unify several classical and
very recent related results in the literature in metric spaces (see Aydi et al. (2011), Berinde and Borcut (2011), Gnana Bhaskar and
Lakshmikantham (2006), Berzig and Samet (2012), Borcut andBerinde (2012), Choudhury et al. (2011), Karapınar and Luong (2012),
Lakshmikantham and Ćirić (2009), Luong andThuan (2011), and Roldán et al. (2012)) and in partial metric spaces (see Shatanawi
et al. (2012)).

1. Introduction

The notion of coupled fixed point was introduced by Guo
and Lakshmikantham [1] in 1987. In a recent paper, Gnana
Bhaskar and Lakshmikantham [2] introduced the concept
mixed monotone property for contractive operators of the
form 𝐹 : 𝑋 × 𝑋 → 𝑋, where 𝑋 is a partially ordered
metric space, and then established some coupled fixed-point
theorems. After that,many results appeared on coupled fixed-
point theory in different contexts (see, e.g., [3–6]). Later,
Berinde andBorcut [7] introduced the concept of tripled fixed
point and proved tripled fixed-point theorems using mixed
monotone mappings (see also [8–10]).

Very recently, Roldán et al. [11] proposed the notion of
coincidence point between mappings in any number of vari-
ables and showed some existence and uniqueness theorems
that extended the mentioned previous results for this kind of
nonlinear mappings, not necessarily permuted or ordered, in
the framework of partially ordered complete metric spaces,
using a weaker contraction condition, that also generalized
other works by Berzig and Samet [12], Karapınar and Berinde
[13].

Partial metric spaces were firstly introduced byMatthews
in [14] as an attempt to generalize the metric spaces by
establishing the condition that the distance between a point

to itself (which is not necessarily zero) is less or equal
than the distance between that point and another point
of the space. In the mentioned papers, Matthews studied
topological properties of partial metric spaces and stated a
modified version of a Banach contraction mapping principle
on this kind of spaces. After Matthews’ pioneering work, the
theory of partial metric spaces and particularly the field of
fixed-point theorems have expansively been developed due
to the increasing interest in this area and motivated by its
possible applications (see [15, 16] and references therein).

In this paper, our main aim is to study a weaker con-
tractivity condition for nonlinearmappings of any number of
arguments. This condition can be particularized in a variety
of forms that let us extend the previously mentioned results
and other recent ones in this field (see [2, 5, 7, 9, 11, 12, 16–
20]). We also notice that our results cannot be obtained by
the very recent paper of Haghi et al. [21] (for more details see
Remark 26).

2. Preliminaries

Preliminaries and notation about coincidence points can also
be found in [11]. Let 𝑛 be a positive integer. Henceforth,𝑋will
denote a nonempty set, and𝑋𝑛 will denote the product space
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𝑋𝑛 = 𝑋 × 𝑋× 𝑛. . . ×𝑋. Throughout this paper, 𝑚 and 𝑘 will
denote nonnegative integers and 𝑖, 𝑗, 𝑠 ∈ {1, 2, . . . , 𝑛}. Unless
otherwise stated, “for all 𝑚” will mean “for all 𝑚 ≥ 0”, and
“for all 𝑖” will mean “for all 𝑖 ∈ {1, 2, . . . , 𝑛}”. LetR+

0
= [0,∞[.

A metric on 𝑋 is a mapping 𝑑 : 𝑋 × 𝑋 → R satisfying,
for all 𝑥, 𝑦, 𝑧 ∈ 𝑋:

(i) 𝑑(𝑥, 𝑦) = 0 if, and only if, 𝑥 = 𝑦;
(ii) 𝑑(𝑥, 𝑦) ≤ 𝑑(𝑧, 𝑥) + 𝑑(𝑧, 𝑦).
From these properties, we can easily deduce that𝑑(𝑥, 𝑦) ≥

0 and 𝑑(𝑦, 𝑥) = 𝑑(𝑥, 𝑦) for all 𝑥, 𝑦 ∈ 𝑋. The last requirement
is called the triangle inequality. If 𝑑 is a metric on 𝑋, we say
that (𝑋, 𝑑) is ametric space (for short, an MS).

Definition 1 (see [22]). A triple (𝑋, 𝑑, ≤) is called a partially
ordered metric space if (𝑋, 𝑑) is a MS and ≤ is a partial order
on𝑋.

Definition 2 (see [2]). An orderedMS (𝑋, 𝑑, ≤) is said to have
the sequential 𝑔-monotone property if it verifies

(i) if {𝑥𝑚} is a nondecreasing sequence and {𝑥𝑚}
𝑑
󳨀→ 𝑥,

then 𝑔𝑥𝑚 ≤ 𝑔𝑥 for all𝑚;

(ii) if {𝑦𝑚} is a nonincreasing sequence and {𝑦𝑚}
𝑑
󳨀→ 𝑦,

then 𝑔𝑦𝑚 ≥ 𝑔𝑦 for all𝑚.

If 𝑔 is the identity mapping, then 𝑋 is said to have the
sequential monotone property.

Henceforth, fix a partition {𝐴, 𝐵} of two non-empty
subsets ofΛ 𝑛 = {1, 2, . . . , 𝑛}; that is,𝐴∪𝐵 = Λ 𝑛 and𝐴∩𝐵 = 0.
We will denote

Ω𝐴,𝐵 = {𝜎 : Λ 𝑛 → Λ 𝑛 : 𝜎 (𝐴) ⊆ 𝐴 and𝜎 (𝐵) ⊆ 𝐵} ,

Ω
󸀠

𝐴,𝐵
= {𝜎 : Λ 𝑛 → Λ 𝑛 : 𝜎 (𝐴) ⊆ 𝐵 and𝜎 (𝐵) ⊆ 𝐴} .

(1)

If (𝑋, ≤) is a partially ordered space, 𝑥, 𝑦 ∈ 𝑋, and 𝑖 ∈ Λ 𝑛, we
will use the following notation:

𝑥≤𝑖 𝑦 ⇐⇒ {
𝑥 ≤ 𝑦, if 𝑖 ∈ 𝐴,
𝑥 ≥ 𝑦, if 𝑖 ∈ 𝐵.

(2)

Let 𝐹 : 𝑋𝑛 → 𝑋 and 𝑔 : 𝑋 → 𝑋 be two mappings.

Definition 3 (see [11]). One says that 𝐹 and 𝑔 are commuting
if 𝑔𝐹(𝑥1, . . . , 𝑥𝑛) = 𝐹(𝑔𝑥1, . . . , 𝑔𝑥𝑛) for all 𝑥1, . . . , 𝑥𝑛 ∈ 𝑋.

Definition 4 (see [11]). Let (𝑋, ≤) be a partially ordered
space. One says that 𝐹 has the mixed 𝑔-monotone property
(with respect to {𝐴, 𝐵}) if 𝐹 is 𝑔-monotone nondecreasing in
arguments of𝐴 and𝑔-monotone nonincreasing in arguments
of 𝐵; that is, for all 𝑥1, 𝑥2, . . . , 𝑥𝑛, 𝑦, 𝑧 ∈ 𝑋 and all 𝑖,

𝑔𝑦 ≤ 𝑔𝑧

󳨐⇒ 𝐹 (𝑥1, . . . , 𝑥𝑖−1, 𝑦, 𝑥𝑖+1, . . . , 𝑥𝑛)

≤𝑖 𝐹 (𝑥1, . . . , 𝑥𝑖−1, 𝑧, 𝑥𝑖+1, . . . , 𝑥𝑛) .

(3)

Henceforth, let 𝜎1, 𝜎2, . . . , 𝜎𝑛, 𝜏 : Λ 𝑛 → Λ 𝑛 be 𝑛 + 1

mappings from Λ 𝑛 into itself, and let Φ be the (𝑛 + 1)-tuple
(𝜎1, 𝜎2, . . . , 𝜎𝑛, 𝜏).

Definition 5 (see [11]). A point (𝑥1, 𝑥2, . . . , 𝑥𝑛) ∈ 𝑋
𝑛 is called

a Φ-coincidence point of the mappings 𝐹and 𝑔 if

𝐹 (𝑥𝜎
𝑖
(1), 𝑥𝜎

𝑖
(2), . . . , 𝑥𝜎

𝑖
(𝑛)) = 𝑔𝑥𝜏(𝑖) ∀𝑖. (4)

If 𝑔 is the identity mapping on 𝑋, then (𝑥1, 𝑥2, . . . , 𝑥𝑛) ∈ 𝑋
𝑛

is called a Φ-fixed point of the mapping 𝐹.

Remark 6. If 𝐹 and 𝑔 are commuting and (𝑥1, 𝑥2, . . . , 𝑥𝑛) ∈
𝑋𝑛 is a Φ-coincidence point of 𝐹 and 𝑔, then (𝑔𝑥1,

𝑔𝑥2, . . . , 𝑔𝑥𝑛) also is a Φ-coincidence point of 𝐹 and 𝑔.

Definition 7 (see [14]). A partial metric on 𝑋 is a mapping
𝑝 : 𝑋 × 𝑋 → R+

0
verifying, for all 𝑥, 𝑦, 𝑧 ∈ 𝑋:

(𝑃1) 𝑝(𝑥, 𝑥) ≤ 𝑝(𝑥, 𝑦);

(𝑃2) 𝑝(𝑥, 𝑥) = 𝑝(𝑥, 𝑦) = 𝑝(𝑦, 𝑦) ⇒ 𝑥 = 𝑦;

(𝑃3) 𝑝(𝑥, 𝑦) = 𝑝(𝑦, 𝑥);

(𝑃4) 𝑝(𝑥, 𝑧) + 𝑝(𝑦, 𝑦) ≤ 𝑝(𝑥, 𝑦) + 𝑝(𝑦, 𝑧).

In this case, (𝑋, 𝑝) is a partial metric space (for short, a PMS).

Example 8 (see, e.g., [14]). Let𝑋 = R+
0
, and define 𝑝 on𝑋 by

𝑝(𝑥, 𝑦) = max{𝑥, 𝑦} for all 𝑥, 𝑦 ∈ 𝑋. Then, (𝑋, 𝑝) is a partial
metric space.

Example 9 (see [14]). Let 𝑋 = {[𝑎, 𝑏] : 𝑎, 𝑏 ∈ R, 𝑎 ≤ 𝑏}, and
define 𝑝([𝑎, 𝑏], [𝑐, 𝑑]) = max{𝑏, 𝑑} −min{𝑎, 𝑐}. Then, (𝑋, 𝑝) is
a partial metric space.

Example 10 (see [14]). Let 𝑋 = [0, 1] ∪ [2, 3], and define 𝑝 :

𝑋 × 𝑋 → R+
0
by

𝑝 (𝑥, 𝑦) = {
max {𝑥, 𝑦} , if {𝑥, 𝑦} ∩ [2, 3] ̸= 0,
󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨 , if {𝑥, 𝑦} ⊂ [0, 1] .
(5)

Then, (𝑋, 𝑝) is a partial metric space.

Example 11 (see, e.g., [23, 24]). Let (𝑋, 𝑑) and (𝑋, 𝑝) be
a metric space and a partial metric space, respectively.
Functions 𝜌𝑖 : 𝑋 × 𝑋 → R+

0
(𝑖 ∈ {1, 2, 3}) given by

𝜌1 (𝑥, 𝑦) = 𝑑 (𝑥, 𝑦) + 𝑝 (𝑥, 𝑦) ,

𝜌2 (𝑥, 𝑦) = 𝑑 (𝑥, 𝑦) +max {𝑢 (𝑥) , 𝑢 (𝑦)} ,

𝜌3 (𝑥, 𝑦) = 𝑑 (𝑥, 𝑦) + 𝑎,

(6)

define partial metrics on 𝑋, where 𝑢 : 𝑋 → R+
0
is an

arbitrary function and 𝑎 ≥ 0.
Obviously, if (𝑋, 𝑑) is a MS and we define 𝑝 = 𝑑, then

(𝑋, 𝑝) is a PMS. Indeed, a partial metric 𝑝 on𝑋 verifies

(i) 𝑝(𝑥, 𝑦) = 0 ⇒ 𝑥 = 𝑦;

(ii) 𝑝(𝑥, 𝑦) = 𝑝(𝑦, 𝑥);

(iii) 𝑝(𝑥, 𝑧) ≤ 𝑝(𝑥, 𝑦) + 𝑝(𝑦, 𝑧),
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but the condition 𝑝(𝑥, 𝑥) = 0 does not necessarily hold. For a
partial metric 𝑝 on 𝑋, the mappings 𝑑𝑝, 𝑑𝑚 : 𝑋 × 𝑋 → R+

0

given by

𝑑𝑝 (𝑥, 𝑦) = 2𝑝 (𝑥, 𝑦) − 𝑝 (𝑥, 𝑥) − 𝑝 (𝑦, 𝑦) ,

𝑑𝑚 (𝑥, 𝑦) = max {𝑝 (𝑥, 𝑦) − 𝑝 (𝑥, 𝑥) , 𝑝 (𝑦, 𝑦) − 𝑝 (𝑦, 𝑦)}

= 𝑝 (𝑥, 𝑦) −min {𝑝 (𝑥, 𝑥) , 𝑝 (𝑦, 𝑦)} ,
(7)

for all 𝑥, 𝑦 ∈ 𝑋, are (usual) metrics on 𝑋. On a PMS, the
concepts of convergence, Cauchy sequences, completeness,
and continuity are defined as follows.

Definition 12 (see [14, 25, 26]). Let {𝑥𝑚} be a sequence on a
PMS (𝑋, 𝑝).

(i) {𝑥𝑚} 𝑝-converges to𝑥 ∈ 𝑋 (and onewill write {𝑥𝑚}
𝑝

󳨀→

𝑥) if 𝑝(𝑥, 𝑥) = lim𝑚→∞𝑝(𝑥, 𝑥𝑚).
(ii) {𝑥𝑚} is called 𝑝-Cauchy if lim𝑚,𝑚󸀠→∞𝑝(𝑥𝑚, 𝑥𝑚󸀠)

exists (and it is finite).
(iii) (𝑋, 𝑝) is said to be 𝑝-complete if every 𝑝-Cauchy

sequence {𝑥𝑚} in 𝑋 𝑝-converges to a point 𝑥 ∈ 𝑋

such that 𝑝(𝑥, 𝑥) = lim𝑚,𝑚󸀠→∞𝑝(𝑥𝑚, 𝑥𝑚󸀠).
(iv) A mapping 𝑓 : 𝑋 → 𝑋 is said to be 𝑝-continuous at

𝑥0 ∈ 𝑋 if, for every 𝜀 > 0, there exists 𝛿 > 0 such that
𝑓(𝐵𝑝(𝑥0, 𝛿)) ⊆ 𝐵𝑝(𝑓(𝑥0), 𝜀).

We have used the previous notation because we need to
distinguish between 𝑝-convergence and 𝑑𝑝-convergence on
𝑋 and usual convergence for real sequences.

Lemma 13 (see [14, 25, 26]). Let {𝑥𝑚} be a sequence on a PMS
(𝑋, 𝑝).

(1) {𝑥𝑚} is 𝑝-Cauchy if, and only if, it is 𝑑𝑝-Cauchy.

(2) {𝑥𝑚}
𝑑
𝑝

󳨀󳨀→ 𝑥 if, and only if, {𝑥𝑚}
𝑝

󳨀→ 𝑥 and 𝑝(𝑥, 𝑥) =
lim𝑚,𝑚󸀠→∞𝑝(𝑥𝑚, 𝑥𝑚󸀠); that is,

{𝑑𝑝 (𝑥𝑚, 𝑥)} 󳨀→ 0 ⇐⇒ 𝑝 (𝑥, 𝑥)

= lim
𝑚→∞

𝑝 (𝑥, 𝑥𝑚) = lim
𝑚,𝑚󸀠→∞

𝑝 (𝑥𝑚, 𝑥𝑚󸀠) .
(8)

(3) (𝑋, 𝑝) is complete if, and only if, the MS (𝑋, 𝑑𝑝) is
complete.

(4) If {𝑥𝑚}
𝑝

󳨀→ 𝑥 and𝑝(𝑥, 𝑥) = 0, then lim𝑚→∞𝑝(𝑥𝑚, 𝑦) =
𝑝(𝑥, 𝑦) for all 𝑦 ∈ 𝑋.

3. Auxiliary Results

We will use the following results about real sequences in the
proof of our main theorems.

Lemma 14. Let {𝑎1
𝑚
}𝑚∈N, . . . , {𝑎

𝑛

𝑚
}𝑚∈N be 𝑛 real lower bounded

sequences such that {max(𝑎1
𝑚
, . . . , 𝑎𝑛

𝑚
)}𝑚∈N → 𝛿. Then, there

exists 𝑖0 ∈ {1, 2, . . . , 𝑛} and a subsequence {𝑎
𝑖
0

𝑚(𝑘)
}𝑘∈N such that

{𝑎
𝑖
0

𝑚(𝑘)
}𝑘∈N → 𝛿.

Proof. Let 𝑏𝑚 = max(𝑎1
𝑚
, 𝑎2
𝑚
, . . . , 𝑎𝑛

𝑚
) for all𝑚. As {𝑏𝑚} is con-

vergent, it is bounded. As 𝑎𝑖
𝑚
≤ 𝑏𝑚 for all𝑚 and 𝑖, then every

{𝑎𝑖
𝑚
} is bounded.As {𝑎1

𝑚
}𝑚∈N is a real bounded sequence, it has

a convergent subsequence {𝑎1
𝜎
1
(𝑚)
}𝑚∈N → 𝑎1. Consider the

subsequences {𝑎2
𝜎
1
(𝑚)
}𝑚∈N, {𝑎

3

𝜎
1
(𝑚)
}𝑚∈N, . . . , {𝑎

𝑛

𝜎
1
(𝑚)
}𝑚∈N; that

are 𝑛 − 1 real bounded sequences and the sequence
{𝑏𝜎
1
(𝑚)}𝑚∈N that also converges to 𝛿. As {𝑎2

𝜎
1
(𝑚)
}𝑚∈N is a

real bounded sequence, it has a convergent subsequence
{𝑎2
𝜎
2
𝜎
1
(𝑚)
}𝑚∈N → 𝑎2. Then, the sequences {𝑎3

𝜎
2
𝜎
1
(𝑚)
}𝑚∈N,

{𝑎4
𝜎
2
𝜎
1
(𝑚)
}𝑚∈N, . . ., {𝑎

𝑛

𝜎
2
𝜎
1
(𝑚)
}𝑚∈N also are 𝑛 − 2 real bounded

sequences, {𝑎1
𝜎
2
𝜎
1
(𝑚)
}𝑚∈N → 𝑎1, and {𝑏𝜎

2
𝜎
1
(𝑚)}𝑚∈N → 𝛿.

Repeating this process 𝑛 times, we can find 𝑛 subsequences
{𝑎1
𝜎(𝑚)

}𝑚∈N, {𝑎
2

𝜎(𝑚)
}𝑚∈N, . . ., {𝑎

𝑛

𝜎(𝑚)
}𝑚∈N (where 𝜎 = 𝜎𝑛 ⋅ ⋅ ⋅ 𝜎1)

such that {𝑎𝑖
𝜎(𝑚)

}𝑚∈N → 𝑎𝑖 for all 𝑖. And {𝑏𝜎(𝑚)}𝑚∈N → 𝛿.
But

{𝑏𝜎(𝑚)}𝑚∈N = {max (𝑎𝑛
𝜎(𝑚)

, . . . , 𝑎
𝑛

𝜎(𝑚)
)}
𝑚∈N

󳨀→ max (𝑎1, . . . , 𝑎𝑛) ,
(9)

so 𝛿 = max(𝑎1, . . . , 𝑎𝑛), and there exists 𝑖0 ∈ {1, 2, . . . , 𝑛} such
that 𝑎𝑖

0

= 𝛿. Therefore, there exists 𝑖0 ∈ {1, 2, . . . , 𝑛} and a
subsequence {𝑎𝑖0

𝜎(𝑚)
}𝑚∈N such that {𝑎𝑖0

𝜎(𝑚)
}𝑚∈N → 𝑎𝑖

0

= 𝛿.

Lemma 15. Let {𝑎𝑚}𝑚∈N be a sequence of nonnegative real
numbers which has not any subsequence converging to zero.
Then, for all 𝜀 > 0, there exist 𝛿 ∈]0, 𝜀[ and 𝑚0 ∈ N such
that 𝑎𝑚 ≥ 𝛿 for all𝑚 ≥ 𝑚0.

Proof. Suppose that the conclusion is not true. Then, there
exists 𝜀0 > 0 such that, for all 𝛿 ∈]0, 𝜀0[, there exists 𝑚0 ∈ N

verifying 𝑎𝑚
0

< 𝛿. Let 𝑘0 ∈ N be such that 1/𝑘0 < 𝜀0. For all
𝑘 ∈ N, take 𝛿𝑘 = 1/(𝑘+𝑘0) ∈ ]0, 𝜀0[. Then, there exists𝑚(𝑘) ∈
N verifying 0 ≤ 𝑎𝑚(𝑘) < 𝛿𝑘 = 1/(𝑘 + 𝑘0). Taking limit when
𝑘 → ∞, we deduce that lim𝑘→∞𝑎𝑚(𝑘) = 0. Then, {𝑎𝑚} has a
subsequence converging to zero (maybe, reordering {𝑎𝑚(𝑘)}),
but this is a contradiction.

Lemma 16. If {𝑥𝑚}𝑚∈N is a sequence in a MS (𝑋, 𝑑) that is
not Cauchy, then there exist 𝜀0 > 0 and two subsequences
{𝑥𝑚(𝑘)}𝑘∈N and {𝑥𝑛(𝑘)}𝑘∈N such that, for all 𝑘 ∈ N,

𝑘 < 𝑚 (𝑘) < 𝑛 (𝑘) < 𝑚 (𝑘 + 1) ,

𝑑 (𝑥𝑚(𝑘), 𝑥𝑛(𝑘)) ≥ 𝜀0, 𝑑 (𝑥𝑚(𝑘), 𝑥𝑛(𝑘)−1) < 𝜀0.
(10)

Proof. We know that

{𝑥𝑚} is Cauchy

⇐⇒ [∀𝜀 > 0, ∃ 𝑛0 ∈ N : (𝑚, 𝑛 ≥ 𝑛0 󳨐⇒ 𝑑 (𝑥𝑚, 𝑥𝑛) < 𝜀)] .

(11)

If this condition is not true, then

∃𝜀0 > 0 : (∀𝑛0 ∈ N, ∃𝑚, 𝑛 ≥ 𝑛0 such that 𝑑 (𝑥𝑚, 𝑥𝑛) ≥ 𝜀0) .
(12)
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Let 𝑛0 = 2.Then, there exists𝑚1, 𝑛1 ∈ N such that𝑚1, 𝑛1 ≥ 𝑛0
and 𝑑(𝑥𝑚

1

, 𝑥𝑛
1

) ≥ 𝜀0. Let 𝑚(1) = min(𝑚1, 𝑛1) ≥ 𝑛0 = 2 > 1,
and consider the numbers

𝑑 (𝑥𝑚(1), 𝑥𝑚(1)+1) ,

𝑑 (𝑥𝑚(1), 𝑥𝑚(1)+2) , . . . , 𝑑 (𝑥𝑚(1), 𝑥max(𝑚
1
,𝑛
1
)) .

(13)

Since 𝑑(𝑥𝑚(1), 𝑥max(𝑚
1
,𝑛
1
)) = 𝑑(𝑥𝑚

1

, 𝑥𝑛
1

) ≥ 𝜀0, between the
previous numbers there exists a first nonnegative integer
𝑛(1) ∈ {𝑚(1) + 1,𝑚(1) + 2, . . . ,max(𝑚1, 𝑛1)} such that
𝑑(𝑥𝑚(1), 𝑥𝑛(1)) ≥ 𝜀0 but 𝑑(𝑥𝑚(1), 𝑥𝑗) < 𝜀0 for all 𝑗 ∈

{𝑚(1), 𝑚(1)+1, . . . , 𝑛(1)−1}. In particular, 𝑑(𝑥𝑚(1), 𝑥𝑛(1)−1) <
𝜀0.

Now, let 𝑛0 = 𝑛(1) + 1. Then, there exists 𝑚2, 𝑛2 ∈ N

such that 𝑚2, 𝑛2 ≥ 𝑛(1) + 1 and 𝑑(𝑥𝑚
2

, 𝑥𝑛
2

) ≥ 𝜀0. Let 𝑚(2) =
min(𝑚2, 𝑛2) ≥ 𝑛0 = 𝑛(1)+1 > 𝑛(1), and consider the numbers

𝑑 (𝑥𝑚(2), 𝑥𝑚(2)+1) ,

𝑑 (𝑥𝑚(2), 𝑥𝑚(2)+2) , . . . , 𝑑 (𝑥𝑚(2), 𝑥max(𝑚
2
,𝑛
2
)) .

(14)

Since 𝑑(𝑥𝑚(2), 𝑥max(𝑚
2
,𝑛
2
)) = 𝑑(𝑥𝑚

2

, 𝑥𝑛
2

) ≥ 𝜀0, between the
previous numbers there exists a first nonnegative integer
𝑛(2) ∈ {𝑚(2) + 1,𝑚(2) + 2, . . . ,max(𝑚2, 𝑛2)} such that
𝑑(𝑥𝑚(2), 𝑥𝑛(2)) ≥ 𝜀0 but 𝑑(𝑥𝑚(2), 𝑥𝑗) < 𝜀0 for all 𝑗 ∈

{𝑚(2), 𝑚(2)+1, . . . , 𝑛(2)−1}. In particular, 𝑑(𝑥𝑚(2), 𝑥𝑛(2)−1) <
𝜀0.

Repeating this process, we can find two subsequences
{𝑥𝑚(𝑘)} and {𝑥𝑛(𝑘)} such that, for all 𝑘 ∈ N:

𝑘 < 𝑚 (𝑘) < 𝑛 (𝑘) < 𝑚 (𝑘 + 1) ,

𝑑 (𝑥𝑚(𝑘), 𝑥𝑛(𝑘)) ≥ 𝜀0, 𝑑 (𝑥𝑚(𝑘), 𝑥𝑛(𝑘)−1) < 𝜀0.
(15)

Definition 17. Let Ψ be the family of all continuous, nonde-
creasing mappings 𝜓 : R+

0
→ R+
0
such that 𝜓(𝑡) = 0 if, and

only if, 𝑡 = 0.

These mappings are known as altering distance func-
tions (see [27]). Note that every selected 𝜓 ∈ Ψ

commutes with max; that is, 𝜓(max(𝑠1, 𝑠2, . . . , 𝑠𝑁)) =

max(𝜓(𝑠1), 𝜓(𝑠2), . . . , 𝜓(𝑠𝑁)) for all 𝑠1, 𝑠2, . . . , 𝑠𝑁 ∈ [0,∞).

Lemma 18. If 𝜓 ∈ Ψ and lim𝑚→∞𝜓(𝑎𝑚) = 0, then
lim𝑚→∞𝑎𝑚 = 0.

Proof. As there exists 𝜓(𝑎𝑚), then 𝑎𝑚 ∈ dom𝜓 = [0,∞[.
If the conclusion is not true, there exists 𝜀0 > 0 such that,
for all 𝑛0 ∈ N, there exists 𝑛 ≥ 𝑛0 verifying 𝑎𝑛 ≥ 𝜀0.
This means that {𝑎𝑚} has a subsequence {𝑎𝑚(𝑘)}𝑘 such that
𝑎𝑚(𝑘) ≥ 𝜀0. As 𝜓 is nondecreasing, 𝜓(𝜀0) ≤ 𝜓(𝑎𝑚(𝑘)) for all
𝑘 ∈ N. Therefore, {𝜓(𝑎𝑚)}𝑚 has a subsequence {𝜓(𝑎𝑚(𝑘))}𝑘
lower bounded by 𝜓(𝜀0) > 0, but this is impossible since
lim𝑚→∞𝜓(𝑎𝑚) = 0.

With regards to coincidence points, it is possible to con-
sider the following simplification. If 𝜏 is a permutation ofΛ 𝑛,
and we reorder (4), then we deduce that every coincidence

point may be seen as a coincidence point associated to the
identity mapping on Λ 𝑛 (see, for instance, [28]).

Lemma 19. Let 𝜏 be a permutation of Λ 𝑛, and let Φ =

(𝜎1, 𝜎2, . . . , 𝜎𝑛, 𝜏) and Φ󸀠 = (𝜎𝜏−1(1), 𝜎𝜏−1(2), . . . , 𝜎𝜏−1(𝑛), 𝐼Λ
𝑛

).
Then, a point (𝑥1, 𝑥2, . . . , 𝑥𝑛) ∈ 𝑋𝑛 is a Φ-coincidence point
of the mappings 𝐹 and 𝑔 if, and only if, (𝑥1, 𝑥2, . . . , 𝑥𝑛) is aΦ󸀠-
coincidence point of the mappings 𝐹 and 𝑔.

Therefore, in the sequel, without loss of generality,
we will only consider Υ-coincidence points where Υ =

(𝜎1, 𝜎2, . . . , 𝜎𝑛), that is, that verify 𝐹(𝑥𝜎
𝑖
(1), 𝑥𝜎

𝑖
(2), . . . , 𝑥𝜎

𝑖
(𝑛)) =

𝑔𝑥𝑖 for all 𝑖. We also show some preliminary results on PMS.

Lemma 20. Let {𝑥𝑚} be a sequence on a PMS (𝑋, 𝑝), and let
𝑥 ∈ 𝑋.

(1) If {𝑥𝑚}
𝑝

󳨀→ 𝑥 and 𝑝(𝑥, 𝑥) = 0, then {𝑥𝑚}
𝑑
𝑝

󳨀󳨀→ 𝑥,
{𝑑𝑝(𝑥𝑚, 𝑦)} → 𝑑𝑝(𝑥, 𝑦) and {𝑝(𝑥𝑚, 𝑦)} → 𝑝(𝑥, 𝑦)

for all 𝑦 ∈ 𝑋.

(2) If {𝑥𝑚}
𝑑
𝑝

󳨀󳨀→ 𝑥 and {𝑝(𝑥𝑚, 𝑥𝑚)} → 0, then 𝑝(𝑥, 𝑥) = 0.

Proof. (1) Since 0 ≤ 𝑝(𝑥𝑚, 𝑥𝑚) ≤ 𝑝(𝑥, 𝑥𝑚) and
lim𝑚→∞𝑝(𝑥, 𝑥𝑚) = 𝑝(𝑥, 𝑥) = 0, then lim𝑚→∞𝑝(𝑥𝑚, 𝑥𝑚)
= 0. Therefore, lim𝑚→∞𝑑𝑝(𝑥, 𝑥𝑚) = lim𝑚→∞(2𝑝(𝑥, 𝑥𝑚) −

𝑝(𝑥, 𝑥) − 𝑝(𝑥𝑚, 𝑥𝑚)) = 0, so {𝑥𝑚}
𝑑
𝑝

󳨀󳨀→ 𝑥. Since 𝑑𝑝 is
continuous, then {𝑑𝑝(𝑥𝑚, 𝑦)} → 𝑑𝑝(𝑥, 𝑦) for all 𝑦 ∈ 𝑋, and
item 4 of Lemma 13 implies that {𝑝(𝑥𝑚, 𝑦)} → 𝑝(𝑥, 𝑦).

(2) Item 2 of Lemma 13 shows that 𝑝(𝑥, 𝑥) =

lim𝑚,𝑚󸀠→∞𝑝(𝑥𝑚, 𝑥𝑚󸀠) = lim𝑚→∞𝑝(𝑥𝑚, 𝑥𝑚) = 0.

Remark 21. Although the limit in a MS is unique, the 𝑝-limit
in a PMS is not necessarily unique. For instance, let (𝑋, 𝑝)
as in Example 10. Then, (𝑋, 𝑝) is a complete PMS (see [14]).

Consider 𝑥𝑚 = 2.5−1/(2𝑚) for all𝑚 ∈ N.Then, {𝑥𝑚}
𝑑
𝑝

󳨀󳨀→ 2.5

but {𝑥𝑚}
𝑝

󳨀→ 𝑥0 whenever 𝑥0 ∈ [2.5, 3].

Definition 22. Let𝑁 ∈ N, let (𝑋, 𝑝) be a PMS, let 𝐺 : 𝑋𝑁 →

𝑋 be a mapping, and let 𝑌0 = (𝑥1, 𝑥2, . . . , 𝑥𝑁) ∈ 𝑋𝑁. We
will say that 𝐺 is 𝛼𝑝-continuous at 𝑌0 if, for all sequences

{𝑥1
𝑚
}, {𝑥2
𝑚
}, . . . , {𝑥𝑁

𝑚
} on 𝑋 such that {𝑥𝑖

𝑚
}
𝑝

󳨀→ 𝑥𝑖 for all 𝑖 ∈
{1, 2, . . . , 𝑁}, 𝑝(𝑥𝑖, 𝑥𝑖) = 0 for all 𝑖 ∈ {1, 2, . . . , 𝑁} and
{𝑝(𝐺(𝑥1

𝑚
, 𝑥2
𝑚
, . . . , 𝑥𝑁

𝑚
), 𝐺(𝑥1

𝑚
, 𝑥2
𝑚
, . . . , 𝑥𝑁

𝑚
))} → 0, we have

that {𝐺(𝑥1
𝑚
, 𝑥2
𝑚
, . . . , 𝑥𝑁

𝑚
)}
𝑝

󳨀→ 𝐺(𝑌0) and 𝑝(𝐺(𝑌0), 𝐺(𝑌0)) = 0.
Onewill say that𝐺 is𝛼𝑝-continuous if it is continuous at every
point 𝑌0 ∈ 𝑋

𝑁.

Lemma 23. If (𝑋, 𝑝) is a PMS, and 𝐺 : 𝑋
𝑁

→ 𝑋 is 𝑑𝑝-
continuous at 𝑌0 ∈ 𝑋𝑁, then 𝐺 is 𝛼𝑝-continuous at 𝑌0.

Proof. Let {𝑥1
𝑚
}, {𝑥2
𝑚
}, . . . , {𝑥𝑁

𝑚
} sequences on 𝑋

such that {𝑥𝑖
𝑚
}
𝑝

󳨀→ 𝑥𝑖 for all 𝑖 ∈ {1, 2, . . . , 𝑁},
𝑝(𝑥𝑖, 𝑥𝑖) = 0 for all 𝑖 ∈ {1, 2, . . . , 𝑁}, and
{𝑝(𝐺(𝑥1

𝑚
, 𝑥2
𝑚
, . . . , 𝑥𝑁

𝑚
), 𝐺(𝑥1

𝑚
, 𝑥2
𝑚
, . . . , 𝑥𝑁

𝑚
))} → 0. Item 1



Abstract and Applied Analysis 5

of Lemma 20 implies that {𝑥𝑖
𝑚
}
𝑑
𝑝

󳨀󳨀→ 𝑥𝑖 for all 𝑖 ∈ {1, 2, . . . , 𝑁}.
Since 𝐺 is 𝑑𝑝-continuous at 𝑌0 = (𝑥1, 𝑥2, . . . , 𝑥𝑁), then

{𝐺(𝑥1
𝑚
, 𝑥2
𝑚
, . . . , 𝑥𝑁

𝑚
)}

𝑑
𝑝

󳨀󳨀→ 𝐺(𝑥1, 𝑥2, . . . , 𝑥𝑁). Item 2 of
Lemma 13 assures us that {𝐺(𝑥1

𝑚
, . . . , 𝑥𝑁

𝑚
)}
𝑝

󳨀→ 𝐺(𝑥1, . . . , 𝑥𝑁)

and

𝑝 (𝐺 (𝑥1, 𝑥2, . . . , 𝑥𝑁) , 𝐺 (𝑥1, 𝑥2, . . . , 𝑥𝑁))

= lim
𝑚,𝑚󸀠→∞

𝑝 (𝐺 (𝑥
1

𝑚
, 𝑥
2

𝑚
, . . . , 𝑥

𝑁

𝑚
) , 𝐺 (𝑥

1

𝑚󸀠
, 𝑥
2

𝑚󸀠
, . . . , 𝑥

𝑁

𝑚󸀠
))

= lim
𝑚→∞

𝑝 (𝐺 (𝑥
1

𝑚
, 𝑥
2

𝑚
, . . . , 𝑥

𝑁

𝑚
) , 𝐺 (𝑥

1

𝑚
, 𝑥
2

𝑚
, . . . , 𝑥

𝑁

𝑚
)) = 0.

(16)

Then, 𝐺 is 𝛼𝑝-continuous at 𝑌0.

4. Main Results

In the following result, we show sufficient conditions to
ensure the existence of Υ-coincidence points, where Υ =

(𝜎1, 𝜎2, . . . , 𝜎𝑛).

Theorem24. Let (𝑋, 𝑝) be a complete PMS, and let ≤ a partial
order on𝑋. Let Υ = (𝜎1, 𝜎2, . . . , 𝜎𝑛) be an 𝑛-tuple of mappings
from {1, 2, . . . , 𝑛} into itself verifying 𝜎𝑖 ∈ Ω𝐴,𝐵 if 𝑖 ∈ 𝐴 and
𝜎𝑖 ∈ Ω

󸀠

𝐴,𝐵
if 𝑖 ∈ 𝐵. Let 𝐹 : 𝑋𝑛 → 𝑋 and 𝑔 : 𝑋 → 𝑋 be two

mappings such that 𝐹 has the mixed 𝑔-monotone property on
𝑋, 𝐹(𝑋𝑛) ⊆ 𝑔(𝑋) and 𝑔 is 𝛼𝑝-continuous and commuting with
𝐹. Assume that there exist 𝜓, 𝜑 ∈ Ψ such that

𝜓 (𝑝 (𝐹 (𝑥1, 𝑥2, . . . , 𝑥𝑛) , 𝐹 (𝑦1, 𝑦2, . . . , 𝑦𝑛)))

≤ 𝜓(max
1≤𝑖≤𝑛

𝑝 (𝑔𝑥𝑖, 𝑔𝑦𝑖)) − 𝜑 (max
1≤𝑖≤𝑛

𝑝 (𝑔𝑥𝑖, 𝑔𝑦𝑖)) ,
(17)

for which 𝑔𝑥𝑖 ≤𝑖 𝑔𝑦𝑖 for all 𝑖. Suppose either 𝐹 is 𝛼𝑝-
continuous or (𝑋, 𝑑𝑝, ≤) has the sequential 𝑔-monotone
property. If there exist 𝑥1

0
, 𝑥2
0
, . . . , 𝑥𝑛

0
∈ 𝑋 verifying

𝑔𝑥𝑖
0
≤𝑖 𝐹(𝑥

𝜎
𝑖
(1)

0
, 𝑥
𝜎
𝑖
(2)

0
, . . . , 𝑥

𝜎
𝑖
(𝑛)

0
) for all 𝑖, then 𝐹 and 𝑔 have,

at least, one Υ-coincidence point.

Proof. The proof is divided into seven steps. The first two
steps are the same as in the proof of Theorem 9 in [11], since
the contractivity condition does not play any role in these
parts of the proof.

Step 1.There exist 𝑛 sequences {𝑥1
𝑚
}𝑚≥0, {𝑥

2

𝑚
}𝑚≥0, . . . , {𝑥

𝑛

𝑚
}𝑚≥0

such that 𝑔𝑥𝑖
𝑚+1

= 𝐹(𝑥𝜎𝑖(1)
𝑚

, 𝑥𝜎𝑖(2)
𝑚

, . . . , 𝑥𝜎𝑖(𝑛)
𝑚

) for all𝑚 and all 𝑖.

Step 2. 𝑔𝑥𝑖
𝑚
≤𝑖 𝑔𝑥
𝑖

𝑚+1
for all 𝑚 and all 𝑖.

Step 3. We claim that {𝑝(𝑔𝑥𝑖
𝑚
, 𝑔𝑥𝑖
𝑚+1

)}𝑚≥0 → 0 for all 𝑖 (i.e.,
{max1≤𝑗≤𝑛𝑝(𝑔𝑥

𝑗

𝑚
, 𝑔𝑥
𝑗

𝑚+1
)}𝑚≥0 → 0).

Indeed, define 𝛿𝑚 = max1≤𝑗≤𝑛𝑝(𝑔𝑥
𝑗

𝑚
, 𝑔𝑥
𝑗

𝑚+1
) for all 𝑚. As

𝑔𝑥𝑖
𝑚
≤𝑖 𝑔𝑥
𝑖

𝑚+1
for all 𝑚 and all 𝑖, then condition (17) implies

that, for all𝑚 ≥ 1 and all 𝑖:

𝜓 (𝑝 (𝑔𝑥
𝑖

𝑚
, 𝑔𝑥
𝑖

𝑚+1
))

= 𝜓 (𝑝 (𝐹 (𝑥
𝜎𝑖(1)

𝑚−1
, 𝑥
𝜎𝑖(2)

𝑚−1
, . . . , 𝑥

𝜎𝑖(𝑛)

𝑚−1
) , 𝐹 (𝑥

𝜎𝑖(1)

𝑚
, 𝑥
𝜎𝑖(2)

𝑚
, . . . , 𝑥

𝜎𝑖(𝑛)

𝑚
)))

≤ 𝜓(max
1≤𝑗≤𝑛

𝑝 (𝑔𝑥
𝜎𝑖(𝑗)

𝑚−1
, 𝑔𝑥
𝜎𝑖(𝑗)

𝑚
)) − 𝜑(max

1≤𝑗≤𝑛
𝑝 (𝑔𝑥

𝜎𝑖(𝑗)

𝑚−1
, 𝑔𝑥
𝜎𝑖(𝑗)

𝑚
))

≤ 𝜓(max
1≤𝑗≤𝑛

𝑝 (𝑔𝑥
𝑗

𝑚−1
, 𝑔𝑥
𝑗

𝑚
)) = 𝜓 (𝛿𝑚−1) .

(18)

Therefore, for all 𝑚 ≥ 1, 𝜓(𝛿𝑚) = 𝜓(max1≤𝑖≤𝑛
𝑝(𝑔𝑥𝑖
𝑚
, 𝑔𝑥𝑖
𝑚+1

)) = max1≤𝑖≤𝑛𝜓(𝑝(𝑔𝑥
𝑖

𝑚
, 𝑔𝑥𝑖
𝑚+1

)) ≤ 𝜓(𝛿𝑚−1).
This means that the sequence {𝜓(𝛿𝑚)}𝑚≥1 is nonincreasing
and lower bounded. Hence, it is convergent; that is, there
exists Δ ≥ 0 such that {𝜓(𝛿𝑚)}𝑚≥1 → Δ. We are going to
show that Δ = 0. Since

{max
1≤𝑖≤𝑛

𝜓 (𝑝 (𝑔𝑥
𝑖

𝑚
, 𝑔𝑥
𝑖

𝑚+1
))}
𝑚

= {𝜓(max
1≤𝑖≤𝑛

𝑝 (𝑔𝑥
𝑖

𝑚
, 𝑔𝑥
𝑖

𝑚+1
))}
𝑚

= {𝜓 (𝛿𝑚)}𝑚 󳨀→ Δ,

(19)

Lemma 14 assures that there exist 𝑖0 ∈ {1, 2, . . . , 𝑛} and a sub-
sequence {𝜓(𝑝(𝑔𝑥

𝑖
0

𝑚(𝑘)
, 𝑔𝑥
𝑖
0

𝑚(𝑘)+1
))}𝑘 such that {𝜓(𝑝(𝑔𝑥𝑖0

𝑚(𝑘)
,

𝑔𝑥
𝑖
0

𝑚(𝑘)+1
))}𝑘 → Δ. Repeating (18), for all 𝑘 ≥ 1,

𝜓 (𝑝 (𝑔𝑥
𝑖
0

𝑚(𝑘)
, 𝑔𝑥
𝑖
0

𝑚(𝑘)+1
))

≤ 𝜓(max
1≤𝑗≤𝑛

𝑝 (𝑔𝑥
𝜎
𝑖0
(𝑗)

𝑚(𝑘)−1
, 𝑔𝑥
𝜎
𝑖0
(𝑗)

𝑚(𝑘)
))

− 𝜑(max
1≤𝑗≤𝑛

𝑝 (𝑔𝑥
𝜎
𝑖0
(𝑗)

𝑚(𝑘)−1
, 𝑔𝑥
𝜎
𝑖0
(𝑗)

𝑚(𝑘)
)) .

(20)

Consider the sequence

{max
1≤𝑗≤𝑛

𝑝(𝑔𝑥
𝜎
𝑖0
(𝑗)

𝑚(𝑘)−1
, 𝑔𝑥
𝜎
𝑖0
(𝑗)

𝑚(𝑘)
)}
𝑘≥1

. (21)

Suppose that this sequence has no subsequence converging to
zero. Using 𝜀 = 1, Lemma 15 assures us that there exists 𝛿󸀠 ∈
]0, 1[ and 𝑘0 ∈ N such that max1≤𝑗≤𝑛𝑝(𝑔𝑥

𝜎
𝑖0
(𝑗)

𝑚(𝑘)−1
, 𝑔𝑥
𝜎
𝑖0
(𝑗)

𝑚(𝑘)
) ≥ 𝛿󸀠

for all 𝑘 ≥ 𝑘0. It follows that

−𝜑(max
1≤𝑗≤𝑛

𝑝 (𝑔𝑥
𝜎
𝑖0
(𝑗)

𝑚(𝑘)−1
, 𝑔𝑥
𝜎
𝑖0
(𝑗)

𝑚(𝑘)
)) ≤ −𝜑 (𝛿

󸀠
) ∀𝑘 ≥ 𝑘0.

(22)
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Then, (20) says to us

𝜓 (𝑝 (𝑔𝑥
𝑖
0

𝑚(𝑘)
, 𝑔𝑥
𝑖
0

𝑚(𝑘)+1
))

≤ 𝜓(max
1≤𝑗≤𝑛

𝑝 (𝑔𝑥
𝜎
𝑖0
(𝑗)

𝑚(𝑘)−1
, 𝑔𝑥
𝜎
𝑖0
(𝑗)

𝑚(𝑘)
))

− 𝜑(max
1≤𝑗≤𝑛

𝑝 (𝑔𝑥
𝜎
𝑖0
(𝑗)

𝑚(𝑘)−1
, 𝑔𝑥
𝜎
𝑖0
(𝑗)

𝑚(𝑘)
))

≤ 𝜓(max
1≤𝑗≤𝑛

𝑝 (𝑔𝑥
𝜎
𝑖0
(𝑗)

𝑚(𝑘)−1
, 𝑔𝑥
𝜎
𝑖0
(𝑗)

𝑚(𝑘)
)) − 𝜑 (𝛿

󸀠
)

≤ 𝜓 (𝛿𝑚(𝑘)−1) − 𝜑 (𝛿
󸀠
) .

(23)

Taking limit in 𝑘, we deduce that Δ ≤ Δ − 𝜑(𝛿󸀠) < Δ,
which is impossible.Therefore, the sequence in (21)must have
a subsequence {max1≤𝑗≤𝑛𝑝(𝑔𝑥

𝜎
𝑖0
(𝑗)

𝑚󸀠(𝑘)−1
, 𝑔𝑥
𝜎
𝑖0
(𝑗)

𝑚󸀠(𝑘)
)}𝑘≥1 converging

to zero. Since 𝜓 and 𝜑 are continuous, taking limit when
𝑘 → ∞ in (20) using this subsequence, we deduce that
0 ≤ Δ ≤ 𝜓(0) − 𝜑(0) = 0, so Δ = 0. Then, we have
just proved that Δ = 0. Therefore, {𝜓(𝛿𝑚)}𝑚≥1 → Δ = 0,
and Lemma 18 assures that {𝛿𝑚}𝑚≥1 → 0, which means that
{𝑝(𝑔𝑥𝑗

𝑚
, 𝑔𝑥
𝑗

𝑚+1
)} → 0 for all 𝑗 since 0 ≤ 𝑝(𝑔𝑥𝑗

𝑚
, 𝑔𝑥
𝑗

𝑚+1
) ≤ 𝛿𝑚

for all𝑚 and all 𝑗.

Step 4. {𝑝(𝑔𝑥𝑖
𝑚
, 𝑔𝑥𝑖
𝑚
)}𝑚≥0 → 0 for all 𝑖 (i.e., {max1≤𝑗≤𝑛

𝑝(𝑔𝑥𝑗
𝑚
, 𝑔𝑥𝑗
𝑚
)}𝑚≥0 → 0). It is the same proof of Step 3.

Since𝑑𝑝(𝑔𝑥
𝑖

𝑚
, 𝑔𝑥
𝑖

𝑚+1
) = 2𝑝(𝑔𝑥

𝑖

𝑚
, 𝑔𝑥
𝑖

𝑚+1
)−𝑝(𝑔𝑥

𝑖

𝑚
, 𝑔𝑥
𝑖

𝑚
)−

𝑝(𝑔𝑥𝑖
𝑚+1

, 𝑔𝑥𝑖
𝑚+1

) for all 𝑚 and 𝑖, joining Steps 3 and 4, it
follows that

{𝑑𝑝 (𝑔𝑥
𝑖

𝑚
, 𝑔𝑥
𝑖

𝑚+1
)} 󳨀→ 0 ∀𝑖. (24)

Step 5. Every sequence {𝑔𝑥𝑖
𝑚
}𝑚≥0 is 𝑑𝑝-Cauchy. We reason

by contradiction. Suppose that {𝑔𝑥𝑖1
𝑚
}𝑚≥0, . . . , {𝑔𝑥

𝑖
𝑠

𝑚
}𝑚≥0 are

not 𝑑𝑝-Cauchy (𝑠 ≥ 1) and {𝑔𝑥𝑖𝑠+1
𝑚
}𝑚≥0, . . . , {𝑔𝑥

𝑖
𝑛

𝑚
}𝑚≥0 are

𝑑𝑝-Cauchy, being {𝑖1, . . . , 𝑖𝑛} = {1, . . . , 𝑛}. By Lemma 16, for
all 𝑟 ∈ {1, 2, . . . , 𝑠}, there exists 𝜀𝑟 > 0 and subsequences
{𝑔𝑥
𝑖
𝑟

𝑚
𝑟
(𝑘)
}𝑘∈N and {𝑔𝑥𝑖𝑟

𝑛
𝑟
(𝑘)
}𝑘∈N such that

𝑘 < 𝑚𝑟 (𝑘) < 𝑛𝑟 (𝑘) ,

𝑑𝑝 (𝑔𝑥
𝑖
𝑟

𝑚
𝑟(𝑘)
, 𝑔𝑥
𝑖
𝑟

𝑛
𝑟(𝑘)
) ≥ 𝜀𝑟,

𝑑𝑝 (𝑔𝑥
𝑖
𝑟

𝑚
𝑟(𝑘)
, 𝑔𝑥
𝑖
𝑟

𝑛
𝑟(𝑘)−1

) < 𝜀𝑟, ∀𝑘 ∈ N.

(25)

Now, let 𝜀0 = max(𝜀1, . . . , 𝜀𝑠) > 0 and 𝜀󸀠
0
= min(𝜀1, . . . , 𝜀𝑠) >

0. Since {𝑔𝑥𝑖𝑠+1
𝑚
}𝑚≥0, . . . , {𝑔𝑥

𝑖
𝑛

𝑚
}𝑚≥0 are 𝑑𝑝-Cauchy, for all 𝑗 ∈

{𝑖𝑠+1, . . . , 𝑖𝑛}, there exists 𝑛
𝑗

1
∈ N such that if𝑚,𝑚󸀠 ≥ 𝑛

𝑗

1
, then

𝑑𝑝(𝑔𝑥
𝑗

𝑚
, 𝑔𝑥
𝑗

𝑚󸀠
) < 𝜀󸀠
0
/8. Since {𝑝(𝑔𝑥𝑗

𝑚
, 𝑔𝑥𝑗
𝑚
)} → 0 by Step 4,

there exists 𝑛𝑗
2
∈ N such that if 𝑚 ≥ 𝑛

𝑗

2
, then 𝑝(𝑔𝑥𝑗

𝑚
, 𝑔𝑥𝑗
𝑚
) <

𝜀󸀠
0
/8. Define 𝑛0 = max𝑗∈{𝑖

𝑠+1
,...,𝑖
𝑛
}(𝑛
𝑗

1
, 𝑛
𝑗

2
). If𝑚,𝑚󸀠 ≥ 𝑛0, then

0 ≤ 𝑝 (𝑔𝑥
𝑗

𝑚
, 𝑔𝑥
𝑗

𝑚󸀠
)

=
𝑑𝑝 (𝑔𝑥

𝑗

𝑚
, 𝑔𝑥
𝑗

𝑚󸀠
) + 𝑝 (𝑔𝑥𝑗

𝑚
, 𝑔𝑥𝑗
𝑚
) + 𝑝 (𝑔𝑥

𝑗

𝑚󸀠
, 𝑔𝑥
𝑗

𝑚󸀠
)

2

<
𝜀󸀠
0
/8 + 𝜀󸀠

0
/8 + 𝜀󸀠

0
/8

2
=
3𝜀󸀠
0

16
<
𝜀󸀠
0

4
.

(26)

Therefore, we have proved that there exists 𝑛0 ∈ N such that
if𝑚,𝑚󸀠 ≥ 𝑛0, then

𝑑𝑝 (𝑔𝑥
𝑗

𝑚
, 𝑔𝑥
𝑗

𝑚󸀠
) <

𝜀󸀠
0

4
, 𝑝 (𝑔𝑥

𝑗

𝑚
, 𝑔𝑥
𝑗

𝑚󸀠
) <

𝜀󸀠
0

4
,

∀𝑗 ∈ {𝑖𝑠+1, . . . , 𝑖𝑛} .

(27)

Next, let 𝑞 ∈ {1, 2, . . . , 𝑠} such that 𝜀𝑞 = 𝜀0 =

max(𝜀1, . . . , 𝜀𝑠). Let 𝑘1 ∈ N such that 𝑛0 < 𝑚
󸀠

𝑞
(𝑘1), and define

𝑚(1) = 𝑚𝑞(𝑘1). Consider the numbers 𝑚(1) + 1,𝑚(1) +

2, . . . , 𝑛𝑞(𝑘1) until finding the first positive integer 𝑛(1) >

𝑚(1) verifying

max
1≤𝑟≤𝑠

𝑑𝑝 (𝑔𝑥
𝑖
𝑟

𝑚(1)
, 𝑔𝑥
𝑖
𝑟

𝑛(1)
) ≥ 𝜀0, 𝑑𝑝 (𝑔𝑥

𝑖
𝑗

𝑚(1)
, 𝑔𝑥
𝑖
𝑗

𝑛(1)−1
) < 𝜀0,

∀𝑗 ∈ {1, 2, . . . , 𝑠} .

(28)

Now let 𝑘2 ∈ N such that 𝑛(1) < 𝑚𝑞(𝑘2), and define 𝑚(2) =
𝑚𝑞(𝑘2). Consider the numbers𝑚(2) + 1,𝑚(2) + 2, . . . , 𝑛𝑞(𝑘2)
until finding the first positive integer 𝑛(2) > 𝑚(2) verifying

max
1≤𝑟≤𝑠

𝑑𝑝 (𝑔𝑥
𝑖
𝑟

𝑚(2)
, 𝑔𝑥
𝑖
𝑟

𝑛(2)
) ≥ 𝜀0, 𝑑𝑝 (𝑔𝑥

𝑖
𝑗

𝑚(2)
, 𝑔𝑥
𝑖
𝑗

𝑛(2)−1
) < 𝜀0,

∀𝑗 ∈ {1, 2, . . . , 𝑠} .

(29)

Repeating this process, we can find sequences such that, for
all 𝑘 ≥ 1,

𝑛0 < 𝑚 (𝑘) < 𝑛 (𝑘) < 𝑚 (𝑘 + 1) ,

max
1≤𝑟≤𝑠

𝑑𝑝 (𝑔𝑥
𝑖
𝑟

𝑚(𝑘)
, 𝑔𝑥
𝑖
𝑟

𝑛(𝑘)
) ≥ 𝜀0,

𝑑𝑝 (𝑔𝑥
𝑖
𝑗

𝑚(𝑘)
, 𝑔𝑥
𝑖
𝑗

𝑛(𝑘)−1
) < 𝜀0, ∀𝑗 ∈ {1, 2, . . . , 𝑠} .

(30)

Note that by (27), 𝑑𝑝(𝑔𝑥
𝑖
𝑟

𝑚(𝑘)
, 𝑔𝑥
𝑖
𝑟

𝑛(𝑘)
), 𝑑𝑝(𝑔𝑥

𝑖
𝑟

𝑚(𝑘)
, 𝑔𝑥
𝑖
𝑟

𝑛(𝑘)−1
) <

𝜀󸀠
0
/4 < 𝜀0/2 for all 𝑟 ∈ {𝑠 + 1, 𝑠 + 2, . . . , 𝑛}, so

max
1≤𝑗≤𝑛

𝑑𝑝 (𝑔𝑥
𝑗

𝑚(𝑘)
, 𝑔𝑥
𝑗

𝑛(𝑘)
) = max
1≤𝑟≤𝑠

𝑑𝑝 (𝑔𝑥
𝑖
𝑟

𝑚(𝑘)
, 𝑔𝑥
𝑖
𝑟

𝑛(𝑘)
) ≥ 𝜀0,

𝑑𝑝 (𝑔𝑥
𝑖

𝑚(𝑘)
, 𝑔𝑥
𝑖

𝑛(𝑘)−1
) < 𝜀0,

(31)
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for all 𝑖 ∈ {1, 2, . . . , 𝑛} and all 𝑘 ≥ 1. Furthermore, for all 𝑗,

2𝑝 (𝑔𝑥
𝑗

𝑚(𝑘)−1
, 𝑔𝑥
𝑗

𝑛(𝑘)−1
) − 𝑝 (𝑔𝑥

𝑗

𝑚(𝑘)−1
, 𝑔𝑥
𝑗

𝑚(𝑘)−1
)

− 𝑝 (𝑔𝑥
𝑗

𝑛(𝑘)−1
, 𝑔𝑥
𝑗

𝑛(𝑘)−1
)

= 𝑑𝑝 (𝑔𝑥
𝑗

𝑚(𝑘)−1
, 𝑔𝑥
𝑗

𝑛(𝑘)−1
)

≤ 𝑑𝑝 (𝑔𝑥
𝑗

𝑚(𝑘)−1
, 𝑔𝑥
𝑗

𝑚(𝑘)
) + 𝑑𝑝 (𝑔𝑥

𝑗

𝑚(𝑘)
, 𝑔𝑥
𝑗

𝑛(𝑘)−1
)

≤ 𝑑𝑝 (𝑔𝑥
𝑗

𝑚(𝑘)−1
, 𝑔𝑥
𝑗

𝑚(𝑘)
) + 𝜀0.

(32)

Therefore, for all 𝑗 and all 𝑘,

𝑝 (𝑔𝑥
𝑗

𝑚(𝑘)−1
, 𝑔𝑥
𝑗

𝑛(𝑘)−1
)

≤ (𝜀0 + 𝑑𝑝 (𝑔𝑥
𝑗

𝑚(𝑘)−1
, 𝑔𝑥
𝑗

𝑚(𝑘)
) + 𝑝 (𝑔𝑥

𝑗

𝑚(𝑘)−1
, 𝑔𝑥
𝑗

𝑚(𝑘)−1
)

+𝑝 (𝑔𝑥
𝑗

𝑛(𝑘)−1
, 𝑔𝑥
𝑗

𝑛(𝑘)−1
)) × 2

−1
.

(33)

Next, for all 𝑘, let 𝑖(𝑘) ∈ {1, 2, . . . , 𝑠} be an index such that

𝑑𝑝 (𝑔𝑥
𝑖(𝑘)

𝑚(𝑘)
, 𝑔𝑥
𝑖(𝑘)

𝑛(𝑘)
) = max
1≤𝑟≤𝑠

𝑑𝑝 (𝑔𝑥
𝑖
𝑟

𝑚(𝑘)
, 𝑔𝑥
𝑖
𝑟

𝑛(𝑘)
)

= max
1≤𝑗≤𝑛

𝑑𝑝 (𝑔𝑥
𝑗

𝑚(𝑘)
, 𝑔𝑥
𝑗

𝑛(𝑘)
) ≥ 𝜀0.

(34)

Then, for all 𝑘,

𝑝 (𝑔𝑥
𝑖(𝑘)

𝑚(𝑘)
, 𝑔𝑥
𝑖(𝑘)

𝑛(𝑘)
)

= (𝑑𝑝 (𝑔𝑥
𝑖(𝑘)

𝑚(𝑘)
, 𝑔𝑥
𝑖(𝑘)

𝑛(𝑘)
) + 𝑝 (𝑔𝑥

𝑖(𝑘)

𝑚(𝑘)
, 𝑔𝑥
𝑖(𝑘)

𝑚(𝑘)
)

+𝑝 (𝑔𝑥
𝑖(𝑘)

𝑛(𝑘)
, 𝑔𝑥
𝑖(𝑘)

𝑛(𝑘)
)) × 2

−1
≥
𝜀0

2
.

(35)

Applying the contractivity condition (17), it follows, for all 𝑘,

0 < 𝜓(
𝜀0

2
)

≤ 𝜓 (𝑝 (𝑔𝑥
𝑖(𝑘)

𝑚(𝑘)
, 𝑔𝑥
𝑖(𝑘)

𝑛(𝑘)
))

≤ 𝜓(max
1≤𝑗≤𝑛

𝑝 (𝑔𝑥
𝜎
𝑖(𝑘)
(𝑗)

𝑚(𝑘)−1
, 𝑔𝑥
𝜎
𝑖(𝑘)
(𝑗)

𝑛(𝑘)−1
))

− 𝜑(max
1≤𝑗≤𝑛

𝑝 (𝑔𝑥
𝜎
𝑖(𝑘)
(𝑗)

𝑚(𝑘)−1
, 𝑔𝑥
𝜎
𝑖(𝑘)
(𝑗)

𝑛(𝑘)−1
)) .

(36)

Consider the sequence:

{max
1≤𝑗≤𝑛

𝑝 (𝑔𝑥
𝜎
𝑖(𝑘)
(𝑗)

𝑚(𝑘)−1
, 𝑔𝑥
𝜎
𝑖(𝑘)
(𝑗)

𝑛(𝑘)−1
)}
𝑘≥1

. (37)

If this sequence has a subsequence that converges to zero,
then we can take limit when 𝑘 → ∞ in (36) using this
subsequence, so that we would have 0 < 𝜓(𝜀0/2) ≤ 𝜓(0) −

𝜑(0) = 0, which is impossible since 𝜀0 > 0. Therefore,
the sequence (37) has no subsequence converging to zero. In
this case, taking 𝜀0 > 0 in Lemma 15, there exist 𝛿 ∈]0, 𝜀0[

and 𝑘0 ∈ N such that max1≤𝑗≤𝑛𝑝(𝑔𝑥
𝜎
𝑖(𝑘)
(𝑗)

𝑚(𝑘)−1
, 𝑔𝑥
𝜎
𝑖(𝑘)
(𝑗)

𝑛(𝑘)−1
) ≥

𝛿, for all 𝑘 ≥ 𝑘0. It follows that, for all 𝑘 ≥ 𝑘0,
−𝜑(max1≤𝑗≤𝑛𝑝(𝑔𝑥

𝜎
𝑖(𝑘)
(𝑗)

𝑚(𝑘)−1
, 𝑔𝑥
𝜎
𝑖(𝑘)
(𝑗)

𝑛(𝑘)−1
)) ≤ −𝜑(𝛿). Thus, by (36),

0 < 𝜓(
𝜀0

2
)

≤ 𝜓(max
1≤𝑗≤𝑛

𝑝 (𝑔𝑥
𝜎
𝑖(𝑘)
(𝑗)

𝑚(𝑘)−1
, 𝑔𝑥
𝜎
𝑖(𝑘)
(𝑗)

𝑛(𝑘)−1
))

− 𝜑(max
1≤𝑗≤𝑛

𝑝 (𝑔𝑥
𝜎
𝑖(𝑘)
(𝑗)

𝑚(𝑘)−1
, 𝑔𝑥
𝜎
𝑖(𝑘)
(𝑗)

𝑛(𝑘)−1
))

≤ 𝜓(max
1≤𝑗≤𝑛

𝑝 (𝑔𝑥
𝜎
𝑖(𝑘)
(𝑗)

𝑚(𝑘)−1
, 𝑔𝑥
𝜎
𝑖(𝑘)
(𝑗)

𝑛(𝑘)−1
)) − 𝜑 (𝛿)

≤ 𝜓(max
1≤𝑗≤𝑛

𝑝 (𝑔𝑥
𝑗

𝑚(𝑘)−1
, 𝑔𝑥
𝑗

𝑛(𝑘)−1
)) − 𝜑 (𝛿) .

(38)

Fix any 𝛾 > 0 and we are going to prove that 𝜓(𝜀0/2) +𝜑(𝛿) ≤
𝜓(𝜀0/2 + 𝛾). Indeed, by Step 3 and (24), since

{max
1≤𝑖≤𝑛

𝑝 (𝑔𝑥
𝑖

𝑚(𝑘)−1
, 𝑔𝑥
𝑖

𝑚(𝑘)−1
)} ,

{max
1≤𝑖≤𝑛

𝑝 (𝑔𝑥
𝑖

𝑛(𝑘)−1
, 𝑔𝑥
𝑖

𝑛(𝑘)−1
)} ,

{max
1≤𝑖≤𝑛

𝑑𝑝 (𝑔𝑥
𝑖

𝑚(𝑘)−1
, 𝑔𝑥
𝑖

𝑚(𝑘)
)}

(39)

are sequences converging to zero, we can find 𝑚1 ∈ N such
that if𝑚(𝑘) ≥ 𝑚1, then

max
1≤𝑖≤𝑛

𝑝 (𝑔𝑥
𝑖

𝑚(𝑘)−1
, 𝑔𝑥
𝑖

𝑚(𝑘)−1
) ≤

𝛾

2
,

max
1≤𝑖≤𝑛

𝑝 (𝑔𝑥
𝑖

𝑛(𝑘)−1
, 𝑔𝑥
𝑖

𝑛(𝑘)−1
) ≤

𝛾

2
,

max
1≤𝑖≤𝑛

𝑑𝑝 (𝑔𝑥
𝑖

𝑚(𝑘)−1
, 𝑔𝑥
𝑖

𝑚(𝑘)
) ≤

𝛾

2
.

(40)

Therefore, (33) implies that, for all 𝑗 and for all 𝑘 such that
𝑚(𝑘) > 𝑚1,

𝑝 (𝑔𝑥
𝑗

𝑚(𝑘)−1
, 𝑔𝑥
𝑗

𝑛(𝑘)−1
)

≤ (𝜀0 + 𝑑𝑝 (𝑔𝑥
𝑗

𝑚(𝑘)−1
, 𝑔𝑥
𝑗

𝑚(𝑘)
) + 𝑝 (𝑔𝑥

𝑗

𝑚(𝑘)−1
, 𝑔𝑥
𝑗

𝑚(𝑘)−1
)

+𝑝 (𝑔𝑥
𝑗

𝑛(𝑘)−1
, 𝑔𝑥
𝑗

𝑛(𝑘)−1
)) × 2

−1

≤
𝜀0 + 𝛾/2 + 𝛾/2 + 𝛾/2

2
=
𝜀0

2
+
3𝛾

4
<
𝜀0

2
+ 𝛾.

(41)

Then, (38) guarantees that 0 < 𝜓(𝜀0/2) ≤ 𝜓(max1≤𝑗≤𝑛
𝑝(𝑔𝑥
𝑗

𝑚(𝑘)−1
, 𝑔𝑥
𝑗

𝑛(𝑘)−1
)) − 𝜑(𝛿) ≤ 𝜓(𝜀0/2 + 𝛾) − 𝜑(𝛿). This

means that 𝜓(𝜀0/2) + 𝜑(𝛿) ≤ 𝜓(𝜀0/2 + 𝛾) for all 𝛾 > 0.
If we take 𝛾 = 1/𝑚 > 0 (where 𝑚 ∈ N), we deduce that
𝜓(𝜀0/2) + 𝜑(𝛿) ≤ 𝜓(𝜀0/2 + 1/𝑚) for all 𝑚 ∈ N. Since 𝜓 is
continuous, we have that 𝜓(𝜀0/2) + 𝜑(𝛿) ≤ 𝜓(𝜀0/2), which is
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impossible since 𝜑(𝛿) > 0. This contradiction finally proves
that every sequence {𝑔𝑥𝑖

𝑚
}𝑚≥0 is 𝑑𝑝-Cauchy.

Since 𝑋 is 𝑝-complete, then 𝑋 is 𝑑𝑝-complete (item 3
of Lemma 13). Then, there exist 𝑥1, 𝑥2, . . . , 𝑥𝑛 ∈ 𝑋 such

that {𝑔𝑥𝑖
𝑚
}
𝑑
𝑝

󳨀󳨀→ 𝑥𝑖 for all 𝑖. Furthermore, 𝑝(𝑥𝑖, 𝑥𝑖) =
lim𝑚,𝑚󸀠→∞𝑝(𝑔𝑥

𝑖

𝑚
, 𝑔𝑥𝑖
𝑚󸀠
) = lim𝑚→∞𝑝(𝑔𝑥

𝑖

𝑚
, 𝑔𝑥𝑖
𝑚
) = 0

for all 𝑖. Since 𝑔 is 𝛼𝑝-continuous, then {𝑔𝑔𝑥𝑖
𝑚
}
𝑝

󳨀→ 𝑔𝑥𝑖
and 𝑝(𝑔𝑥𝑖, 𝑔𝑥𝑖) = 0 for all 𝑖. Item 1 of Lemma 20

shows that {𝑔𝑔𝑥𝑖
𝑚
}
𝑑
𝑝

󳨀󳨀→ 𝑔𝑥𝑖 for all 𝑖. Therefore, for
all 𝑖, lim𝑚→∞𝑝(𝑔𝑔𝑥

𝑖

𝑚+1
, 𝑔𝑔𝑥𝑖
𝑚+1

) = lim𝑚,𝑚󸀠→∞
𝑝(𝑔𝑔𝑥𝑖

𝑚+1
, 𝑔𝑔𝑥𝑖
𝑚󸀠+1

) = 𝑝(𝑔𝑥𝑖, 𝑔𝑥𝑖) = 0.
Moreover, for all 𝑚 and all 𝑖, 𝑔𝑔𝑥𝑖

𝑚+1
= 𝑔𝐹(𝑥𝜎𝑖(1)

𝑚
, 𝑥𝜎𝑖(2)
𝑚

,

. . . , 𝑥𝜎𝑛(𝑛)
𝑚

) = 𝐹(𝑔𝑥𝜎𝑖(1)
𝑚

, 𝑔𝑥𝜎𝑖(2)
𝑚

, . . . , 𝑔𝑥𝜎𝑖(𝑛)
𝑚

).

Step 6. Suppose that 𝐹 is 𝛼𝑝-continuous. In this case, we know

that {𝑔𝑥𝑖
𝑚
}
𝑝

󳨀→ 𝑥𝑖 and 𝑝(𝑥𝑖, 𝑥𝑖) = 0 for all 𝑖 and

{𝑝 (𝐹 (𝑔𝑥
𝜎
𝑖
(1)

𝑚
, 𝑔𝑥
𝜎
𝑖
(2)

𝑚
, . . . , 𝑔𝑥

𝜎
𝑖
(𝑛)

𝑚
) ,

𝐹 (𝑔𝑥
𝜎
𝑖
(1)

𝑚
, 𝑔𝑥
𝜎
𝑖
(2)

𝑚
, . . . , 𝑔𝑥

𝜎
𝑖
(𝑛)

𝑚
))}

= {𝑝 (𝑔𝑔𝑥
𝑖

𝑚+1
, 𝑔𝑔𝑥
𝑖

𝑚+1
)} 󳨀→ 0,

(42)

which implies that {𝐹(𝑔𝑥𝜎𝑖(1)
𝑚

, 𝑔𝑥𝜎𝑖(2)
𝑚

, . . . , 𝑔𝑥𝜎𝑖(𝑛)
𝑚

)}
𝑝

󳨀→

𝐹(𝑥𝜎
𝑖
(1), 𝑥𝜎

𝑖
(2), . . . , 𝑥𝜎

𝑖
(𝑛)) and 𝑝(𝐹(𝑥𝜎

𝑖
(1), . . . , 𝑥𝜎

𝑖
(𝑛)),

𝐹(𝑥𝜎
𝑖
(1), . . . , 𝑥𝜎

𝑖
(𝑛))) = 0 for all 𝑖. Item 1 of Lemma 20

assures us that, for all 𝑖,

{𝑔𝑔𝑥
𝑖

𝑚+1
} = {𝐹 (𝑔𝑥

𝜎
𝑖
(1)

𝑚
, 𝑔𝑥
𝜎
𝑖
(2)

𝑚
, . . . , 𝑔𝑥

𝜎
𝑖
(𝑛)

𝑚
)}

𝑑
𝑝

󳨀→ 𝐹(𝑥𝜎
𝑖
(1), 𝑥𝜎

𝑖
(2), . . . , 𝑥𝜎

𝑖
(𝑛)) .

(43)

Since the limit in a MS is unique, we deduce that
𝐹(𝑥𝜎

𝑖
(1), 𝑥𝜎

𝑖
(2), . . . , 𝑥𝜎

𝑖
(𝑛)) = 𝑔𝑥𝑖 for all 𝑖, so (𝑥1, 𝑥2, . . . , 𝑥𝑛) is

a Υ-coincidence point of 𝐹 and 𝑔.

Step 7. Suppose that (𝑋, 𝑑𝑝, ≤) has the sequential 𝑔-monotone
property. In this case, by Step 2, we know that 𝑔𝑥𝑖

𝑚
≤𝑖 𝑔𝑥
𝑖

𝑚+1

for all𝑚 and all 𝑖. This means that the sequence {𝑔𝑥𝑖
𝑚
}𝑚≥0 is

monotone. As {𝑔𝑥𝑖
𝑚
}
𝑑
𝑝

󳨀󳨀→ 𝑥𝑖, we deduce that 𝑔𝑔𝑥
𝑖

𝑚
≤𝑖 𝑔𝑥𝑖 for

all𝑚 and all 𝑖. This condition implies that, for all𝑚 and all
𝑗,

either [𝑔𝑔𝑥
𝜎
𝑗
(𝑖)

𝑚 ≤𝑖 𝑔𝑥𝜎
𝑗
(𝑖) ∀𝑖] or [𝑔𝑥𝜎

𝑗
(𝑖) ≤𝑖 𝑔𝑔𝑥

𝜎
𝑗
(𝑖)

𝑚 ∀𝑖]

(44)

(the first case occurs when 𝑗 ∈ 𝐴 and the second one when
𝑗 ∈ 𝐵). Then, by (17), for all 𝑗,

𝜓(𝑝 (𝑔𝑔𝑥
𝑗

𝑚+1
, 𝐹 (𝑥𝜎

𝑗
(1), 𝑥𝜎

𝑗
(2), . . . , 𝑥𝜎

𝑗
(𝑛))))

= 𝜓 (𝑝 (𝐹 (𝑔𝑥
𝜎
𝑗
(1)

𝑚 , 𝑔𝑥
𝜎
𝑗
(2)

𝑚 , . . . , 𝑔𝑥
𝜎
𝑗
(𝑛)

𝑚 ) ,

𝐹 (𝑥𝜎
𝑗
(1), 𝑥𝜎

𝑗
(2), . . . , 𝑥𝜎

𝑗
(𝑛))) )

≤ 𝜓(max
1≤𝑖≤𝑛

𝑝 (𝑔𝑔𝑥
𝜎
𝑗
(𝑖)

𝑚 , 𝑔𝑥𝜎
𝑗
(𝑖)))

− 𝜑(max
1≤𝑖≤𝑛

𝑝 (𝑔𝑔𝑥
𝜎
𝑗
(𝑖)

𝑚 , 𝑔𝑥𝜎
𝑗
(𝑖)))

≤ 𝜓(max
1≤𝑖≤𝑛

𝑝 (𝑔𝑔𝑥
𝑖

𝑚
, 𝑔𝑥𝑖)) .

(45)

Since {𝑔𝑔𝑥𝑖
𝑚
}
𝑑
𝑝

󳨀󳨀→ 𝑔𝑥𝑖 for all 𝑖, then

lim
𝑚→∞

𝑝 (𝑔𝑔𝑥
𝑖

𝑚
, 𝑔𝑥𝑖) = 𝑝 (𝑔𝑥𝑖, 𝑔𝑥𝑖) = 0 ∀𝑖. (46)

Therefore, lim𝑚→∞(max1≤𝑖≤𝑛𝑝(𝑔𝑔𝑥
𝑖

𝑚
, 𝑔𝑥𝑖)) = 0. Tak-

ing limit when 𝑚 → ∞ in (45), we deduce that
lim𝑚→∞𝜓(𝑝(𝑔𝑔𝑥

𝑗

𝑚+1
, 𝐹(𝑥𝜎

𝑗
(1), 𝑥𝜎

𝑗
(2), . . . , 𝑥𝜎

𝑗
(𝑛)))) = 0 for all

𝑗. As 𝜓 ∈ Ψ, Lemma 18 guarantees that

lim
𝑚→∞

𝑝 (𝑔𝑔𝑥
𝑗

𝑚+1
, 𝐹 (𝑥𝜎

𝑗
(1), 𝑥𝜎

𝑗
(2), . . . , 𝑥𝜎

𝑗
(𝑛))) = 0 ∀𝑗.

(47)

Finally, for all 𝑗,

𝑑𝑝 (𝑔𝑥𝑗, 𝐹 (𝑥𝜎
𝑗
(1), 𝑥𝜎

𝑗
(2), . . . , 𝑥𝜎

𝑗
(𝑛)))

= 2𝑝 (𝑔𝑥𝑗, 𝐹 (𝑥𝜎
𝑗
(1), 𝑥𝜎

𝑗
(2), . . . , 𝑥𝜎

𝑗
(𝑛))) − 𝑝 (𝑔𝑥𝑗, 𝑔𝑥𝑗)

− 𝑝 (𝐹 (𝑥𝜎
𝑗
(1), 𝑥𝜎

𝑗
(2), . . . , 𝑥𝜎

𝑗
(𝑛)) ,

𝐹 (𝑥𝜎
𝑗
(1), 𝑥𝜎

𝑗
(2), . . . , 𝑥𝜎

𝑗
(𝑛)))

≤ 2𝑝 (𝑔𝑥𝑗, 𝐹 (𝑥𝜎
𝑗
(1), 𝑥𝜎

𝑗
(2), . . . , 𝑥𝜎

𝑗
(𝑛)))

≤ 2 [𝑝 (𝑔𝑔𝑥
𝑖

𝑚
, 𝐹 (𝑥𝜎

𝑗
(1), 𝑥𝜎

𝑗
(2), . . . , 𝑥𝜎

𝑗
(𝑛))) 𝑝 (𝑔𝑥𝑗, 𝑔𝑔𝑥

𝑖

𝑚
)

+𝑝 (𝑔𝑔𝑥
𝑖

𝑚
, 𝐹 (𝑥𝜎

𝑗
(1), 𝑥𝜎

𝑗
(2), . . . , 𝑥𝜎

𝑗
(𝑛)))] .

(48)

Using (46) and (47), we conclude that 𝑑𝑝(𝑔𝑥𝑗,

𝐹(𝑥𝜎
𝑗
(1), 𝑥𝜎

𝑗
(2), . . . , 𝑥𝜎

𝑗
(𝑛))) = 0 for all 𝑗.

Remark 25. In the previous theorem, if the image Im 𝑑 of the
metric 𝑑 is not the whole set [0,∞[, then 𝜓 and 𝜑 can only
be defined on Im 𝑑, and we can consider a wider range of
mappings since it is only necessary to impose that they are
continuous and nondecreasing on Im 𝑑.
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Remark 26. We notice also that our paper cannot be deduced
from the recent interesting paper ofHaghi et al. [21] on partial
metric space. In fact, we use a partial order ≤. Then, we only
suppose (17) for which 𝑔𝑥𝑖 ≤𝑖 𝑔𝑦𝑖 for all 𝑖 (not necessarily on
points which are not comparable). Further, we use a self-map
𝑔 : 𝑋 → 𝑋 which implies that

𝑃 (𝐴, 𝐵) = max
1≤𝑖≤𝑛

𝑝 (𝑔𝑎𝑖, 𝑔𝑏𝑖) ,

𝐴 = (𝑎1, 𝑎2, . . . , 𝑎𝑛) , 𝐵 = (𝑏1, 𝑏2, . . . , 𝑏𝑛) ∈ 𝑋
𝑛

(49)

is not necessarily a partial metric on𝑋𝑛. For instance, let𝑋 =

R+
0
= [0,∞) provided with its usual partial order and the

partial metric 𝑝(𝑥, 𝑦) = max(𝑥, 𝑦). Consider

𝑔𝑥 = {
0, if 0 ≤ 𝑥 ≤ 1,
𝑥 − 1, if 𝑥 > 1.

(50)

Then, 𝑔 is continuous, but

𝑃 ((0, 0, . . . , 0) , (0, 0, . . . , 0))

= 𝑃 ((1, 1, . . . , 1) , (0, 0, . . . , 0))

= 𝑃 ((1, 1, . . . , 1) , (1, 1, . . . , 1)) = 0,

(51)

but (0, 0, . . . , 0) ̸= (1, 1, . . . , 1). Then, 𝑃 does not verify the
axiom 𝑝(𝑥, 𝑥) = 𝑝(𝑥, 𝑦) = 𝑝(𝑦, 𝑦) ⇒ 𝑥 = 𝑦. Therefore,
we cannot apply Theorem 2.4 on Haghi et al. [21].

As a result, we cannot useTheorem 2.7 in [21] since 𝑇 has
an influence in −𝜑(max{𝑝(𝑥, 𝑦), 𝑝(𝑦, 𝑇𝑦)}), and ourmapping
𝐹 has not a role in the left side of (17).

5. Consequences

Remark 27. Theorem 9 in [11] is an easy consequence of
Theorem 24 if we take 𝑝 = 𝑑, 𝜓(𝑡) = 𝑡, and 𝜑(𝑡) = (1 − 𝑘)𝑡 for
all 𝑡 ∈ R+

0
.

In the next result, let Γ0 be the family of all nondecreasing
on each argument, continuous mappings 𝜙 : [0,∞[

𝑛
→ R+
0

verifying 𝜙(𝑥1, 𝑥2, . . . , 𝑥𝑛) = 0 if, and only if, 𝑥1 = 𝑥2 = ⋅ ⋅ ⋅ =

𝑥𝑛 = 0. Examples of such mappings are the following, where
𝑘 > 0, 𝛼𝑖 > 0 and 𝑛𝑖 ∈ N for all 𝑖.

(i) 𝜙(𝑥1, . . . , 𝑥𝑛) = 𝑘max1≤𝑖≤𝑛𝑥𝑖.
(ii) 𝜙(𝑥1, . . . , 𝑥𝑛) = ∑

𝑛

𝑖=1
𝛼𝑖𝑥
𝑛
𝑖

𝑖
.

(iii) 𝜙(𝑥1, . . . , 𝑥𝑛) = 𝑚√𝛼1𝑥21 + ⋅ ⋅ ⋅ + 𝛼𝑛𝑥2𝑛.

Lemma 28. Let 𝜙 ∈ Γ0, and define 𝜑 : R+
0

→ R+
0
as

𝜑(𝑡) = min(𝜙(𝑡𝑒1), 𝜙(𝑡𝑒2), . . . , 𝜙(𝑡𝑒𝑛)) for all 𝑡 ≥ 0, where
{𝑒1, 𝑒2, . . . , 𝑒𝑛} is the usual basis of R𝑛. Then, 𝜑 ∈ Ψ and
𝜑(max1≤𝑖≤𝑛𝑥𝑖) ≤ 𝜙(𝑥1, 𝑥2, . . . , 𝑥𝑛) for all 𝑥1, 𝑥2, . . . , 𝑥𝑛 ∈ R+

0
.

Proof. First part is clear. If 𝑥𝑖
0

= max1≤𝑖≤𝑛𝑥𝑖, then
𝜙(𝑥𝑖

0

𝑒𝑖
0

) = 𝜙(0, 0, . . . , 0, 𝑥𝑖
0

, 0, . . . , 0) ≤ 𝜙(𝑥1, 𝑥2, . . . ,

𝑥𝑖
0
−1, 𝑥𝑖

0

, 𝑥𝑖
0
+1, . . . , 𝑥𝑛) = 𝜙(𝑥1, 𝑥2, . . . , 𝑥𝑛). Therefore,

𝜑(max1≤𝑖≤𝑛𝑥𝑖) = 𝜑(𝑥𝑖
0

) ≤ 𝜙(𝑥𝑖
0

𝑒𝑖
0

) ≤ 𝜙(𝑥1, 𝑥2, . . . , 𝑥𝑛).

Corollary 29. Thesis of Theorem 24 also holds if one replaces
the contractivity condition (17) by any of the following list (for
which 𝑔𝑥𝑖≤𝑖𝑔𝑦𝑖 for all 𝑖).

(A) This condition can be found in [11] and [12], there exist
𝜓 ∈ Ψ and 𝜙 ∈ Γ0 such that

𝜓 (𝑝 (𝐹 (𝑥1, 𝑥2, . . . , 𝑥𝑛) , 𝐹 (𝑦1, 𝑦2, . . . , 𝑦𝑛)))

≤ 𝜓(max
1≤𝑖≤𝑛

𝑝 (𝑔𝑥𝑖, 𝑔𝑦𝑖))

− 𝜙 (𝑝 (𝑔𝑥1, 𝑔𝑦1) , . . . , 𝑝 (𝑔𝑥𝑛, 𝑔𝑦𝑛)) .

(52)

(B) In [17], there exist 𝜓, 𝜑 ∈ Ψ and 𝛽1, 𝛽2, . . . , 𝛽𝑛 ∈ [0, 1]
such that 𝛽1 + 𝛽2 + ⋅ ⋅ ⋅ + 𝛽𝑛 ≤ 1 and

𝜓 (𝑝 (𝐹 (𝑥1, 𝑥2, . . . , 𝑥𝑛) , 𝑝 (𝑦1, 𝑦2, . . . , 𝑦𝑛)))

≤ 𝜓(

𝑛

∑
𝑖=1

𝛽𝑖𝑝 (𝑔𝑥𝑖, 𝑔𝑦𝑖)) − 𝜑(max
1≤𝑖≤𝑛

𝑝 (𝑔𝑥𝑖, 𝑔𝑦𝑖)) .
(53)

(C) There exist 𝜓, 𝜑 ∈ Ψ and 𝛼1, 𝛼2, . . . , 𝛼𝑛 > 0 such that

𝜓 (𝑝 (𝐹 (𝑥1, 𝑥2, . . . , 𝑥𝑛) , 𝐹 (𝑦1, 𝑦2, . . . , 𝑦𝑛)))

≤ 𝜓(max
1≤𝑖≤𝑛

𝑝 (𝑔𝑥𝑖, 𝑔𝑦𝑖)) − 𝜑(

𝑛

∑
𝑖=1

𝛼𝑖𝑝 (𝑔𝑥𝑖, 𝑔𝑦𝑖)) .
(54)

(D) In [2, 7, 9], there exist 𝜓 ∈ Ψ, 𝛼1, 𝛼2, . . . , 𝛼𝑛 > 0, and
𝛽1, 𝛽2, . . . , 𝛽𝑛 ≥ 0 such that 𝛽1 + 𝛽2 + ⋅ ⋅ ⋅ + 𝛽𝑛 ≤ 1 and

𝜓 (𝑝 (𝐹 (𝑥1, 𝑥2, . . . , 𝑥𝑛) , 𝐹 (𝑦1, 𝑦2, . . . , 𝑦𝑛)))

≤ 𝜓(

𝑛

∑
𝑖=1

𝛽𝑖𝑝 (𝑔𝑥𝑖, 𝑔𝑦𝑖)) −

𝑛

∑
𝑖=1

𝛼𝑖𝑝 (𝑔𝑥𝑖, 𝑔𝑦𝑖) .
(55)

(E) In [5], there exist 𝜓 ∈ Ψ and 𝛼1, 𝛼2, . . . , 𝛼𝑛 > 0 such
that

𝜓 (𝑝 (𝐹 (𝑥1, 𝑥2, . . . , 𝑥𝑛) , 𝐹 (𝑦1, 𝑦2, . . . , 𝑦𝑛)))

≤ 𝜓(
1

𝑛

𝑛

∑
𝑖=1

𝑝 (𝑔𝑥𝑖, 𝑔𝑦𝑖)) −

𝑛

∑
𝑖=1

𝛼𝑖𝑝 (𝑔𝑥𝑖, 𝑔𝑦𝑖) .
(56)

(F) In [19, 20], there exist 𝜓, 𝜑 ∈ Ψ such that 𝜓 is
subadditive (𝜓(𝑠+ 𝑡) ≤ 𝜓(𝑠)+𝜓(𝑡) for all 𝑡, 𝑠 ∈ [0,∞))

and

𝜓 (𝑝 (𝐹 (𝑥1, 𝑥2, . . . , 𝑥𝑛) , 𝐹 (𝑦1, 𝑦2, . . . , 𝑦𝑛)))

≤
1

𝑛
𝜓(

𝑛

∑
𝑖=1

𝑝 (𝑔𝑥𝑖, 𝑔𝑦𝑖)) − 𝜑(max
1≤𝑖≤𝑛

𝑝 (𝑔𝑥𝑖, 𝑔𝑦𝑖)) .
(57)

Of course, it is also interesting to particularize all the
previous items to the following cases: 𝜓(𝑡) = 𝜆𝑡 (where 𝜆 >

0), 𝜑(𝑡) = 𝜇𝑡 (where 𝜇 > 0), or 𝑔𝑥 = 𝑥 for all 𝑥 ∈ 𝑋.

Proof. (A) By Lemma 28, there exists 𝜑 ∈ Ψ such
that −𝜙(𝑥1, 𝑥2, . . . , 𝑥𝑛) ≤ −𝜑(max1≤𝑖≤𝑛𝑥𝑖) for all
𝑥1, 𝑥2, . . . , 𝑥𝑛 ∈ [0,∞[, so (52) implies (17). (B) It is obvious
that ∑𝑛

𝑖=1
𝛽𝑖𝑝(𝑔𝑥𝑖, 𝑔𝑦𝑖) ≤ (∑

𝑛

𝑖=1
𝛽𝑖)max1≤𝑗≤𝑛𝑝(𝑔𝑥𝑗, 𝑔𝑦𝑗) ≤

max1≤𝑗≤𝑛𝑝(𝑔𝑥𝑗, 𝑔𝑦𝑗), so (53) implies (17). (C) We only
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take 𝜙(𝑥1, 𝑥2, . . . , 𝑥𝑛) = 𝜑(∑
𝑛

𝑖=1
𝛼𝑖𝑥𝑖) in item (A). (D) It

is a mixture of (B) and (C). (E) It is a particular case of
(D) where 𝛽𝑖 = 1/𝑛 for all 𝑖. (F) If 𝜓 is subadditive, then
(1/𝑛)𝜓(𝑡) ≤ 𝜓(𝑡/𝑛) for all 𝑡 ≥ 0, so we may choose 𝛽𝑖 = 1/𝑛

for all 𝑖 in (B).

6. Uniqueness of Υ-Coincidence Points

Consider on the product space𝑋𝑛 the following partial order:
for (𝑥1, 𝑥2, . . . , 𝑥𝑛), (𝑦1, 𝑦2, . . . , 𝑦𝑛) ∈ 𝑋

𝑛,

(𝑥1, 𝑥2, . . . , 𝑥𝑛) ≤ (𝑦1, 𝑦2, . . . , 𝑦𝑛) ⇐⇒ 𝑥𝑖 ≤𝑖 𝑦𝑖, ∀𝑖. (58)

We say that (𝑥1, 𝑥2, . . . , 𝑥𝑛) and (𝑦1, 𝑦2, . . . , 𝑦𝑛) are compara-
ble if (𝑥1, 𝑥2, . . . , 𝑥𝑛) ≤ (𝑦1, 𝑦2, . . . , 𝑦𝑛) or (𝑥1, 𝑥2, . . . , 𝑥𝑛) ≥
(𝑦1, 𝑦2, . . . , 𝑦𝑛).

Theorem 30. Under the hypothesis of Theorem 24,
assume that for all Υ-coincidence points (𝑥1, 𝑥2, . . . , 𝑥𝑛),
(𝑦1, 𝑦2, . . . , 𝑦𝑛) ∈ 𝑋𝑛 of 𝐹 and 𝑔 there exists
(𝑢1, 𝑢2, . . . , 𝑢𝑛) ∈ 𝑋𝑛 such that (𝑔𝑢1, 𝑔𝑢2, . . . , 𝑔𝑢𝑛) is
comparable, at the same time, to (𝑔𝑥1, 𝑔𝑥2, . . . , 𝑔𝑥𝑛) and to
(𝑔𝑦1, 𝑔𝑦2, . . . , 𝑔𝑦𝑛).

Then, 𝐹 and 𝑔 have a unique Υ-coincidence point (𝑧1, 𝑧2,
. . . , 𝑧𝑛) ∈ 𝑋

𝑛 such that 𝑔𝑧𝑖 = 𝑧𝑖 for all 𝑖.

Proof. From Theorem 24, the set of Υ-coincidence points of
𝐹 and 𝑔 is nonempty. The proof is divided into two steps.

Step 1. We claim that if (𝑥1, 𝑥2, . . . , 𝑥𝑛), (𝑦1, 𝑦2, . . . , 𝑦𝑛) ∈ 𝑋𝑛

are two Υ-coincidence points of 𝐹 and 𝑔, then

𝑔𝑥𝑖 = 𝑔𝑦𝑖 ∀𝑖. (59)

Let (𝑥1, 𝑥2, . . . , 𝑥𝑛), (𝑦1, 𝑦2, . . . , 𝑦𝑛) ∈ 𝑋𝑛 be two Υ-
coincidence points of 𝐹 and 𝑔, and let (𝑢1, 𝑢2, . . . , 𝑢𝑛) ∈ 𝑋𝑛

be a point such that (𝑔𝑢1, 𝑔𝑢2, . . . , 𝑔𝑢𝑛) is comparable, at the
same time, to (𝑔𝑥1, 𝑔𝑥2, . . . , 𝑔𝑥𝑛) and to (𝑔𝑦1, 𝑔𝑦2, . . . , 𝑔𝑦𝑛).
Using (𝑢1, 𝑢2, . . . , 𝑢𝑛), define the following sequences. Let
𝑢𝑖
0

= 𝑢𝑖 for all 𝑖. Reasoning as in Theorem 24, we can
determine sequences {𝑢1

𝑚
}𝑚≥0, {𝑢

2

𝑚
}𝑚≥0, . . . , {𝑢

𝑛

𝑚
}𝑚≥0 such

that 𝑔𝑢𝑖
𝑚+1

= 𝐹(𝑢𝜎𝑖(1)
𝑚

, 𝑢𝜎𝑖(2)
𝑚

, . . . , 𝑢𝜎𝑖(𝑛)
𝑚

) for all 𝑚 and all 𝑖. We
are going to prove that 𝑔𝑥𝑖 = lim𝑑𝑝

𝑚→0
𝑔𝑢𝑖
𝑚
= 𝑔𝑦𝑖 for all 𝑖, so

(59) will be true.
Firstly, we reason with (𝑔𝑢1, 𝑔𝑢2, . . . , 𝑔𝑢𝑛) and

(𝑔𝑥1, 𝑔𝑥2, . . . , 𝑔𝑥𝑛), and the same argument holds
for (𝑔𝑢1, 𝑔𝑢2, . . . , 𝑔𝑢𝑛) and (𝑔𝑦1, 𝑔𝑦2, . . . , 𝑔𝑦𝑛). As
(𝑔𝑢1, 𝑔𝑢2, . . . , 𝑔𝑢𝑛) and (𝑔𝑥1, 𝑔𝑥2, . . . , 𝑔𝑥𝑛) are
comparable, we can suppose that (𝑔𝑢1, 𝑔𝑢2, . . . , 𝑔𝑢𝑛) ≤

(𝑔𝑥1, 𝑔𝑥2, . . . , 𝑔𝑥𝑛) (the other case is similar); that is,
𝑔𝑢𝑖
0

= 𝑔𝑢𝑖 ≤𝑖 𝑔𝑥𝑖 for all 𝑖. Using that 𝐹 has the mixed
𝑔-monotone property and reasoning as in Theorem 24, it is
possible to prove that 𝑔𝑢𝑖

𝑚
≤𝑖 𝑔𝑥𝑖 for all 𝑚 ≥ 1 and all 𝑖. This

condition implies that, for all 𝑗 and all𝑚 ≥ 1

either [𝑔𝑢
𝜎
𝑗
(𝑖)

𝑚 ≤𝑖 𝑔𝑥𝜎
𝑗
(𝑖)∀𝑖] or [𝑔𝑥𝜎

𝑗
(𝑖) ≤𝑖 𝑔𝑢

𝜎
𝑗
(𝑖)

𝑚 ∀𝑖] .

(60)

Define 𝛽𝑚 = max1≤𝑖≤𝑛𝑝(𝑔𝑢
𝑖

𝑚
, 𝑔𝑥𝑖) for all 𝑚. Reason-

ing as in Theorem 24, it is not difficult to prove that

{𝛽𝑚}𝑚≥1 → 0 which means that lim𝑚→∞𝛽𝑚 =

lim𝑚→∞(max1≤𝑖≤𝑛𝑝(𝑔𝑢
𝑖

𝑚
, 𝑔𝑥𝑖)) = 0. As 0 ≤ 𝑝(𝑔𝑢𝑖

𝑚
, 𝑔𝑥𝑖) ≤

𝛽𝑚 for all 𝑚 and all 𝑖, we deduce that {𝑝(𝑔𝑢𝑖
𝑚
, 𝑔𝑥𝑖)}𝑚≥1 →

0 = 𝑝(𝑔𝑥𝑖, 𝑔𝑥𝑖) for all 𝑖; that is, {𝑔𝑢
𝑖

𝑚
}
𝑝

󳨀→ 𝑔𝑥𝑖 for all 𝑖. Item 1
of Lemma 20 shows that

{𝑔𝑢
𝑖

𝑚
}
𝑑
𝑝

󳨀→ 𝑔𝑥𝑖 ∀𝑖. (61)

If we had supposed that (𝑔𝑥1, 𝑔𝑥2, . . . , 𝑔𝑥𝑛) ≤ (𝑔𝑢1, 𝑔𝑢2,

. . . , 𝑔𝑢𝑛), we would have obtained the same property
(61). And as (𝑔𝑢1, 𝑔𝑢2, . . . , 𝑔𝑢𝑛) also is comparable to
(𝑔𝑦1, 𝑔𝑦2, . . . , 𝑔𝑦𝑛), we can reason in the same way to prove

that {𝑔𝑢𝑖
𝑚
}
𝑑
𝑝

󳨀󳨀→ 𝑔𝑦𝑖 for all 𝑖. Since the limit in a MS is unique,
𝑔𝑥𝑖 = 𝑔𝑦𝑖 for all 𝑖.

Let (𝑥1, 𝑥2, . . . , 𝑥𝑛) ∈ 𝑋𝑛 be a Υ-coincidence point of 𝐹
and 𝑔, and define 𝑧𝑖 = 𝑔𝑥𝑖 for all 𝑖. As (𝑧1, 𝑧2, . . . , 𝑧𝑛) =

(𝑔𝑥1, 𝑔𝑥2, . . . , 𝑔𝑥𝑛), Remark 6 assures us that (𝑧1, 𝑧2, . . . , 𝑧𝑛)
also is a Υ-coincidence point of 𝐹 and 𝑔.

Step 2. We claim that (𝑧1, 𝑧2, . . . , 𝑧𝑛) is the unique Υ-
coincidence point of 𝐹 and 𝑔 such that 𝑔𝑧𝑖 = 𝑧𝑖 for all 𝑖. It
is similar to Step 2 inTheorem 11 in [11].

It is natural to say that 𝑔 is injective on the set of all Υ-
coincidence points of 𝐹 and 𝑔when 𝑔𝑥𝑖 = 𝑔𝑦𝑖 for all 𝑖 implies
𝑥𝑖 = 𝑦𝑖 for all 𝑖when (𝑥1, 𝑥2, . . . , 𝑥𝑛), (𝑦1, 𝑦2, . . . , 𝑦𝑛) ∈ 𝑋

𝑛 are
twoΥ-coincidence points of𝐹 and 𝑔. For example, this is true
is 𝑔 is injective on𝑋.

Corollary 31. In addition to the hypotheses of Theorem 30,
suppose that 𝑔 is injective on the set of all Υ-coincidence points
of 𝐹 and 𝑔. Then, 𝐹 and 𝑔 have a unique Υ-coincidence point.

Proof. If (𝑥1, 𝑥2, . . . , 𝑥𝑛) and (𝑦1, 𝑦2, . . . , 𝑦𝑛) are two Υ-
coincidence points of 𝐹 and 𝑔, we have proved in (59) that
𝑔𝑥𝑖 = 𝑔𝑦𝑖 for all 𝑖. As 𝑔 is injective on these points, then,
𝑥𝑖 = 𝑦𝑖 for all 𝑖.

Corollary 32. In addition to the hypotheses of Theorem 30,
suppose that (𝑧𝜎

𝑖
(1), 𝑧𝜎

𝑖
(2), . . . , 𝑧𝜎

𝑖
(𝑛)) is comparable to

(𝑧𝜎
𝑗
(1), 𝑧𝜎

𝑗
(2), . . . , 𝑧𝜎

𝑗
(𝑛)) for all 𝑖, 𝑗. Then, 𝑧1 = 𝑧2 = ⋅ ⋅ ⋅ = 𝑧𝑛.

In particular, there exists a unique 𝑧 ∈ 𝑋 such that
𝐹(𝑧, 𝑧, . . . , 𝑧) = 𝑧, which verifies 𝑔𝑧 = 𝑧.

Proof. Let 𝑀 = max1≤𝑖,𝑗≤𝑛𝑝(𝑧𝑖, 𝑧𝑗), let 𝑗0, 𝑠0 ∈ {1, 2, . . . , 𝑛}

such that 𝑝(𝑧𝑗
0

, 𝑧𝑠
0

) = 𝑀, and let

Λ = max
1≤𝑖≤𝑛

𝑝 (𝑧𝜎
𝑗0
(𝑖), 𝑧𝜎

𝑠0
(𝑖)) ≤ 𝑀. (62)
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Fix 𝑗, 𝑠 ∈ {1, 2, . . . , 𝑛}. As (𝑧𝜎
𝑗
(1), 𝑧𝜎

𝑗
(2), . . . , 𝑧𝜎

𝑗
(𝑛)) is compara-

ble to (𝑧𝜎
𝑠
(1), 𝑧𝜎

𝑠
(2), . . . , 𝑧𝜎

𝑠
(𝑛)), then either 𝑧𝜎

𝑗
(𝑖)≤𝑖𝑧𝜎

𝑠
(𝑖) for all 𝑖

or 𝑧𝜎
𝑠
(𝑖)≤𝑖𝑧𝜎

𝑗
(𝑖) for all 𝑖. Since 𝑔𝑧𝑖 = 𝑧𝑖 for all 𝑖, we know that

either 𝑔𝑧𝜎
𝑗
(𝑖) ≤𝑖 𝑔𝑧𝜎

𝑠
(𝑖) for all 𝑖 or 𝑔𝑧𝜎

𝑠
(𝑖) ≤𝑖 𝑔𝑧𝜎

𝑗
(𝑖) for all 𝑖. In

any case, applying (17),

𝜓 (𝑀) = 𝜓 (𝑝 (𝑧𝑗
0

, 𝑧𝑠
0

))

= 𝜓 (𝑝 (𝑔𝑧𝑗
0

, 𝑔𝑧𝑠
0

))

= 𝜓 (𝑝 (𝐹 (𝑧𝜎
𝑗0
(1), 𝑧𝜎

𝑗0
(2), . . . , 𝑧𝜎

𝑗0
(𝑛)) ,

𝐹 (𝑧𝜎
𝑠0
(1), 𝑧𝜎

𝑠0
(2), . . . , 𝑧𝜎

𝑠0
(𝑛))))

≤ 𝜓(max
1≤𝑖≤𝑛

𝑝 (𝑔𝑧𝜎
𝑗0
(𝑖), 𝑔𝑧𝜎

𝑠0
(𝑖)))

− 𝜑(max
1≤𝑖≤𝑛

𝑝 (𝑔𝑧𝜎
𝑗0
(𝑖), 𝑔𝑧𝜎

𝑠0
(𝑖)))

= 𝜓 (Λ) − 𝜑 (Λ) ≤ 𝜓 (𝑀) − 𝜑 (Λ) .

(63)

If Λ > 0, then 𝜑(Λ) > 0, so 𝜓(𝑀) ≤ 𝜓(𝑀) − 𝜑(Λ) < 𝜓(𝑀),
which is impossible. Then, Λ = 0, and (63) implies that
𝜓(𝑀) ≤ 𝜓(Λ) − 𝜑(Λ) = 𝜓(0) − 𝜑(0) = 0, so 𝜓(𝑀) = 0.
Therefore, 𝑝(𝑧𝑖, 𝑧𝑗) = 0 for all 𝑖 and 𝑗.

Example 33. Let 𝑋 = R provided with its usual partial order
≤ and the partial metric 𝑝(𝑥, 𝑦) = max(|𝑥|, |𝑦|). Let 𝑛 ∈ N,
and let 𝑎1, 𝑎2, . . . , 𝑎𝑛 ∈ R \ {0} real numbers such that there
exist 𝑖0, 𝑗0 ∈ {1, 2, . . . , 𝑛} verifying 𝑎𝑖

0

< 0 < 𝑎𝑗
0

. Let𝑁 > |𝑎1|+

|𝑎2|+⋅ ⋅ ⋅+|𝑎𝑛|, and consider 𝐹(𝑥1, 𝑥2, . . . , 𝑥𝑛) = (𝑎1𝑥1+𝑎2𝑥2+
⋅ ⋅ ⋅ + 𝑎𝑛𝑥𝑛)/𝑁 and 𝑔𝑥 = 𝑥, for all 𝑥, 𝑥1, 𝑥2, . . . , 𝑥𝑛 ∈ 𝑋. Then,
𝐹 is monotone nondecreasing in those arguments for which
𝑎𝑖 > 0 and monotone nonincreasing in those arguments for
which 𝑎𝑖 < 0. Furthermore, taking 𝑘 = (|𝑎1| + |𝑎2| + ⋅ ⋅ ⋅ +

|𝑎𝑛|)/𝑁 ∈ (0, 1), it follows that
󵄨󵄨󵄨󵄨𝐹 (𝑥1, 𝑥2, . . . , 𝑥𝑛)

󵄨󵄨󵄨󵄨

≤

󵄨󵄨󵄨󵄨𝑎1
󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝑥1

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑎2
󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝑥2

󵄨󵄨󵄨󵄨 + ⋅ ⋅ ⋅ +
󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝑥𝑛

󵄨󵄨󵄨󵄨

𝑁

≤

󵄨󵄨󵄨󵄨𝑎1
󵄨󵄨󵄨󵄨 +

󵄨󵄨󵄨󵄨𝑎2
󵄨󵄨󵄨󵄨 + ⋅ ⋅ ⋅ +

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨

𝑁
max (󵄨󵄨󵄨󵄨𝑥1

󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨𝑥2

󵄨󵄨󵄨󵄨 , . . . ,
󵄨󵄨󵄨󵄨𝑥𝑛

󵄨󵄨󵄨󵄨)

= 𝑘max (󵄨󵄨󵄨󵄨𝑥1
󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨𝑥2

󵄨󵄨󵄨󵄨 , . . . ,
󵄨󵄨󵄨󵄨𝑥𝑛

󵄨󵄨󵄨󵄨) .

(64)

Therefore,

𝑝 (𝐹 (𝑥1, 𝑥2, . . . , 𝑥𝑛) , 𝐹 (𝑦1, 𝑦2, . . . , 𝑦𝑛))

= max (󵄨󵄨󵄨󵄨𝐹 (𝑥1, 𝑥2, . . . , 𝑥𝑛)
󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨𝐹 (𝑦1, 𝑦2, . . . , 𝑦𝑛)

󵄨󵄨󵄨󵄨)

≤ max (𝑘max (󵄨󵄨󵄨󵄨𝑥1
󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨𝑥2

󵄨󵄨󵄨󵄨 , . . . ,
󵄨󵄨󵄨󵄨𝑥𝑛

󵄨󵄨󵄨󵄨) ,

𝑘max (󵄨󵄨󵄨󵄨𝑦1
󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨𝑦2

󵄨󵄨󵄨󵄨 , . . . ,
󵄨󵄨󵄨󵄨𝑦𝑛

󵄨󵄨󵄨󵄨))

= 𝑘max
𝑖
(𝑝 (𝑥𝑖, 𝑦𝑖)) .

(65)

If 𝜓(𝑡) = 𝑡 and 𝜑(𝑡) = (1 − 𝑘)𝑡, all conditions of Theorems 24
and 30 (and Corollaries 31 and 32) are satisfied. Indeed, it is
clear that (0, 0, . . . , 0) is the unique fixed point of 𝐹.

The following example is based on Examples 1.9 and 2.2
in [29].

Example 34. Let 𝑋 = {0, 1, 2, 3, 4}, and let 𝑝 be the partial
metric on 𝑋 given by 𝑝(𝑥, 𝑦) = max(𝑥, 𝑦) for all 𝑥, 𝑦 ∈

𝑋. Then, (𝑋, 𝑝) is complete, and 𝑝 generates the discrete
topology on 𝑋 (indeed, 𝑑𝑝 is the Euclidean metric on 𝑋).
Consider on𝑋 the following partial order:

𝑥, 𝑦 ∈ 𝑋, 𝑥 ≤ 𝑦 ⇐⇒ 𝑥 = 𝑦 or (𝑥, 𝑦) = (0, 2) .

(66)

Consider 𝐹 : 𝑋𝑛 → 𝑋 and 𝑔 : 𝑋 → 𝑋 defined by

𝐹 (𝑥1, 𝑥2, . . . , 𝑥𝑛) = {
0, if 𝑥1, 𝑥2, . . . , 𝑥𝑛 ∈ {0, 1, 2} ,
1, otherwise,

𝑔𝑥 =

{{

{{

{

0, if 𝑥 = 0,
2, if 𝑥 ∈ {0.5, 1} ,
3, if 𝑥 ∈ {1.5, 2} .

(67)

It is not difficult to prove the following statements.

(1) 𝐹 and 𝑔 are 𝛼𝑝-continuousmappings (since 𝑑𝑝 gener-
ates the discrete topology on𝑋).

(2) 𝐹 and 𝑔 are commuting.

(3) If 𝑦, 𝑧 ∈ 𝑋 verify 𝑔𝑦 ≤ 𝑔𝑧, then either 𝑦, 𝑧 ∈

{0, 1, 2} or 𝑦, 𝑧 ∈ {3, 4}. Then, 𝐹 has the mixed (𝑔, ≤)-
monotone property on𝑋.

(4) If 𝑥1, 𝑥2, . . . , 𝑥𝑛, 𝑦1, 𝑦2, . . . , 𝑦𝑛 ∈ 𝑋 verify 𝑔𝑥𝑖 ≤𝑖 𝑔𝑦𝑖
for all 𝑖, then 𝐹(𝑥1, 𝑥2, . . . , 𝑥𝑛) = 𝐹(𝑦1, 𝑦2, . . . , 𝑦𝑛). In
particular, (17) holds (whatever 𝜓 and 𝜑; for instance,
𝜓(𝑡) = 2𝑡 and 𝜑(𝑡) = log(𝑡 + 1) for all 𝑡 ≥ 0).

For simplicity, henceforth, suppose that 𝑛 is even, and
let 𝐴 (resp., 𝐵) be the set of all odd (resp., even)
numbers in {1, 2, . . . , 𝑛}.

(5) For a mapping 𝜎 : Λ 𝑛 → Λ 𝑛, we use the notation
𝜎 ≡ (𝜎(1), 𝜎(2), . . . , 𝜎(𝑛)) and consider

𝜎𝑖 ≡ (𝑖, 𝑖 + 1, . . . , 𝑛 − 1, 𝑛, 1, 2, . . . , 𝑖 − 1) ∀𝑖. (68)

Then, 𝜎𝑖 ∈ Ω𝐴,𝐵 if 𝑖 is odd, and 𝜎𝑖 ∈ Ω
󸀠

𝐴,𝐵
if 𝑖 is even.

Let Υ = (𝜎1, 𝜎2, . . . , 𝜎𝑛).

(6) Take 𝑥𝑖
0
= 0 if 𝑖 is odd and 𝑥𝑖

0
= 2 if 𝑖 is even. Then,

𝑔𝑥𝑖
0
≤𝑖 𝐹(𝑥

𝜎
𝑖
(1)

0
, 𝑥
𝜎
𝑖
(2)

0
, . . . , 𝑥

𝜎
𝑖
(𝑛)

0
) for all 𝑖.

(7) (𝑋, 𝑑𝑝, ≤) has the sequential 𝑔-monotone property.

Therefore, we can apply Theorems 24 and 30, and Corol-
laries 31 and 32, to conclude that 𝐹 and 𝑔 have a unique Υ-
coincidence point, which is (0, 0, . . . , 0).
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[6] S. Shakeri, L. J. B. Ćirić, and R. Saadati, “Common fixed point
theorem in partially ordered 𝐿-fuzzymetric spaces,” Fixed Point
Theory and Applications, vol. 2010, Article ID 125082, 13 pages,
2010.

[7] V. Berinde and M. Borcut, “Tripled fixed point theorems for
contractive type mappings in partially ordered metric spaces,”
Nonlinear Analysis: Theory, Methods & Applications, vol. 74, no.
15, pp. 4889–4897, 2011.

[8] V. Berinde, “Approximating common fixed points of non-
commuting almost contractions in metric spaces,” Fixed Point
Theory, vol. 11, no. 2, pp. 179–188, 2010.

[9] M. Borcut and V. Berinde, “Tripled coincidence theorems for
contractive type mappings in partially ordered metric spaces,”
Applied Mathematics and Computation, vol. 218, no. 10, pp.
5929–5936, 2012.

[10] M. Turinici, “Product fixed points in ordered metric spaces,”
http://arxiv.org/abs/1110.3079 .

[11] A. Roldán, J. Mart́ınez-Moreno, and C. Roldán, “Multidimen-
sional fixed point theorems in partially ordered completemetric
spaces,” Journal of Mathematical Analysis and Applications, vol.
396, no. 2, pp. 536–545, 2012.

[12] M. Berzig and B. Samet, “An extension of coupled fixed point’s
concept in higher dimension and applications,” Computers &
Mathematics with Applications, vol. 63, no. 8, pp. 1319–1334,
2012.

[13] E. Karapınar and V. Berinde, “Quadruple fixed point theorems
for nonlinear contractions in partially ordered metric spaces,”
Banach Journal of Mathematical Analysis, vol. 6, no. 1, pp. 74–
89, 2012.

[14] S. G. Matthews, “Partial metric topology, general topology and
its applications,” in Proceedings of the 8th Summer Conference,
Queen’s College, vol. 728, pp. 183–197, Annals of the New York
Academy of Sciences, 1994.
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Thepurpose of this paper is to give a newmodified Ishikawa type iteration algorithm for commonfixed points of total asymptotically
strict pseudocontractive semigroups. Under the reduction of some conditions, both strong convergence and weak convergence of
the iteration algorithm are proved in Banach spaces with new methods of proofs, respectively. The main results presented in this
paper extend and improve the corresponding recent results of many others.

1. Introduction

Throughout this paper, we assume that 𝐸 is a real Banach
space with the norm ‖ ⋅ ‖, 𝐸∗ the dual space of 𝐸, ⟨⋅, ⋅⟩ the
duality between 𝐸 and 𝐸∗, and 𝐶 a nonempty closed convex
subset of 𝐸. R+ denotes the set of nonnegative real numbers
and N the natural number set. The mapping 𝐽 : 𝐸 → 2𝐸

∗

with

𝐽 (𝑥) = {𝑓
∗
∈ 𝐸
∗
: ⟨𝑥, 𝑓

∗
⟩ = ‖𝑥‖

2
,
󵄩󵄩󵄩󵄩𝑓
∗󵄩󵄩󵄩󵄩 = ‖𝑥‖} , 𝑥 ∈ 𝐸,

(1)

is called the normalized duality mapping.
Let𝑇 : 𝐶 → 𝐶 be a nonlinearmapping.𝐹(𝑇) denotes the

set of the fixed points of 𝑇.
As we know, a mapping 𝑇 : 𝐶 → 𝐶 is said to be pseudo-

contractive, if, for all 𝑥, 𝑦 ∈ 𝐶, there exists 𝑗(𝑥−𝑦) ∈ 𝐽(𝑥−𝑦),
such that

⟨𝑇𝑥 − 𝑇𝑦, 𝑗 (𝑥 − 𝑦)⟩ ≤
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩
2
. (2)

Variational inequalities introduced by Stampacchia in
the early sixties have had a great impact and influence
on the development of almost all branches of pure and
applied sciences and have witnessed an explosive growth in
theoretical advances, algorithmic development, and so forth.

Recently, some authors also studied the problem of finding
the solution set of variational inequalities and the common
element of the fixed point set for generalized nonexpansive
mappings in the framework of real Hilbert spaces and Banach
spaces. As is known to all, the variational inequality problem,
nonlinear optimization problem, and fixed point problem are
equivalent to each other under certain conditions.

In 2012, Chang et al. [1] introduced a more general class
of pseudocontractive mappings and studied the methods for
approximation of the split common fixed points.

Definition 1 (see [1]). (I) A mapping 𝑇 : 𝐶 → 𝐶 is said to be
(𝛾, 𝜇𝑛, 𝜉𝑛, 𝜙)-totally asymptotically strictly pseudocontrac-
tive, if there exist a constant 𝛾 ∈ [0, 1] and sequences {𝜇𝑛},
{𝜉𝑛} ⊂ [0,∞) with 𝜇𝑛 → 0 and 𝜉𝑛 → 0, such that, for all
𝑥, 𝑦 ∈ 𝐶,

󵄩󵄩󵄩󵄩𝑇
𝑛
𝑥 − 𝑇
𝑛
𝑦
󵄩󵄩󵄩󵄩
2
≤
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩
2
+ 𝛾

󵄩󵄩󵄩󵄩(𝐼 − 𝑇
𝑛
) 𝑥 − (𝐼 − 𝑇

𝑛
) 𝑦
󵄩󵄩󵄩󵄩
2

+ 𝜇𝑛𝜙 (
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩) + 𝜉𝑛, ∀𝑛 ≥ 1,

(3)

where 𝜙 : [0,∞) → [0,∞) is continuous and a strict
increasing function with 𝜙(0) = 0.

(II) A mapping 𝑇 : 𝐶 → 𝐶 is said to be (𝛾, 𝑘𝑛)-
asymptotically strictly pseudocontractive, if there exist
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a constant 𝛾 ∈ [0, 1) and a sequence 𝑘𝑛 ⊂ [1,∞) with
𝑘𝑛 → 1, such that

󵄩󵄩󵄩󵄩𝑇
𝑛
𝑥 − 𝑇
𝑛
𝑦
󵄩󵄩󵄩󵄩
2
≤ 𝑘𝑛

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩
2

+ 𝛾
󵄩󵄩󵄩󵄩(𝐼 − 𝑇

𝑛
)𝑥 − (𝐼 − 𝑇

𝑛
)𝑦
󵄩󵄩󵄩󵄩
2
, ∀𝑥, 𝑦 ∈ 𝐶.

(4)

Definition 2. (I) One-parameter familyT := {𝑇(𝑡) : 𝐶 → 𝐶,

𝑡 ≥ 0} is said to be a pseudocontractive semigroup on 𝐶, if
the following conditions are satisfied:

(a) 𝑇(0)𝑥 = 𝑥 for each 𝑥 ∈ 𝐶;
(b) 𝑇(𝑡 + 𝑠)𝑥 = 𝑇(𝑡)𝑇(𝑠)𝑥 for any 𝑡, 𝑠 ∈ R+ and 𝑥 ∈ 𝐶;
(c) the mapping 𝑡 → 𝑇(𝑡)𝑥 is continuous for any given

𝑥 ∈ 𝐶;
(d) for any 𝑡 ≥ 0, 𝑇(𝑡) is pseudocontractive; that is, for

any 𝑥, 𝑦 ∈ 𝐶, there exists 𝑗(𝑥 − 𝑦) ∈ 𝐽(𝑥 − 𝑦), such
that

⟨𝑇
𝑛
(𝑡) 𝑥 − 𝑇

𝑛
(𝑡) 𝑦, 𝑗 (𝑥 − 𝑦)⟩ ≤

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩
2
. (5)

(II) One-parameter family T := {𝑇(𝑡) : 𝐶 → 𝐶, 𝑡 ≥ 0}

is said to be strict pseudocontractive semigroup on 𝐶, if
the conditions (a)–(c) and the following condition (e) are
satisfied.

(e) For any 𝑥, 𝑦 ∈ 𝐶, there exist 𝑗(𝑥 − 𝑦) ∈ 𝐽(𝑥 − 𝑦) and
a bounded function 𝜂 : [0,∞) → [0,∞), such that,
for any 𝑡 ≥ 0,

⟨𝑇 (𝑡) 𝑥 − 𝑇 (𝑡) 𝑦, 𝑗 (𝑥 − 𝑦)⟩

≤
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩
2
− 𝜂 (𝑡)

󵄩󵄩󵄩󵄩(𝑥 − 𝑦) − (𝑇(𝑡)𝑥 − 𝑇(𝑡)𝑦)
󵄩󵄩󵄩󵄩
2
.

(6)

(III) T := {𝑇(𝑡) : 𝐶 → 𝐶, 𝑡 ≥ 0} is said to be asymp-
totically strict pseudocontractive semigroup, if the conditions
(a)–(c) and the following condition (f) are satisfied.

(f) There exist a bounded function 𝜂 : [0,∞) → [0,∞)

and a sequence 𝑘𝑛 ⊂ [1,∞) with 𝑘𝑛 → 1 as 𝑛 → ∞.
For any given 𝑥, 𝑦 ∈ 𝐶, there exists 𝑗(𝑥−𝑦) ∈ 𝐽(𝑥−𝑦)
such that for, any 𝑡 ≥ 0,

⟨𝑇
𝑛
(𝑡) 𝑥 − 𝑇

𝑛
(𝑡) 𝑦, 𝑗 (𝑥 − 𝑦)⟩

≤ 𝑘𝑛
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩
2
− 𝜂 (𝑡)

󵄩󵄩󵄩󵄩(𝑥 − 𝑦) − (𝑇
𝑛
(𝑡) 𝑥 − 𝑇

𝑛
(𝑡) 𝑦)

󵄩󵄩󵄩󵄩
2
.

(7)

Osilike and Akuchu [2] established an iterative scheme
for approximation of common fixed points of a finite family
of asymptotically pseudocontractive mappings. Miao et al.
[3] introduced an implicit iteration process for a finite
family of total asymptotically pseudocontractive maps. And
in recent years, many researchers focused on the convergence
of pseudocontractive and asymptotically strict pseudocon-
tractive semigroups; see [4–8] and their references. In [9, 10]

especially, the authors gave the modifiedMann type iteration
algorithm and studied its convergence.

Inspired and motivated by the above works, in this paper,
we give a new modified Ishikawa type iteration algorithm
for total asymptotically strict pseudocontractive semigroups.
Under the reducation of some conditions, we prove both
strong convergence and weak convergence of the iteration
algorithm by using the method of the subsequence of a sub-
sequence of the sequence {𝑥𝑛} in Banach spaces, respectively.
The results presented in this paper extend and improve the
corresponding recent results of many authors, such as [1, 7–
10].

2. Preliminaries

This section contains some definitions, notations, and lem-
mas, which will be used in the proofs of our main results in
the next section.

A Banach space 𝐸 is said to be smooth if the limit
lim𝑡→0((‖𝑥 + 𝑡𝑦‖ − ‖𝑥‖)/𝑡) exists for each 𝑥, 𝑦 ∈ {𝑥 ∈ 𝐸 :

‖𝑥‖ = 1}. It is well known that if 𝐸 is reflexive and smooth,
then the duality mapping 𝐽 is single valued.

A Banach space 𝐸 is said to have Opial condition if, for
any sequence {𝑥𝑛} ⊂ 𝐸 weakly convergent to 𝑥0 ∈ 𝐸,

lim inf
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥0
󵄩󵄩󵄩󵄩 < lim inf
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
󵄩󵄩󵄩󵄩 (8)

holds for any 𝑥 ̸= 𝑥0.
Amapping𝑇 is said to be demiclosed, if, for any sequence

{𝑥𝑛} ⊂ 𝐸, 𝑥𝑛 ⇀ 𝑦 and ‖(𝐼−𝑇)𝑥𝑛‖ → 0 imply that (𝐼−𝑇)𝑦 =
0.

Definition 3 (see [9]). One-parameterT := {𝑇(𝑡) : 𝐶 → 𝐶,

𝑡 ≥ 0} is said to be a (𝜂, {𝜇𝑛}, {𝜉𝑛}, 𝜙)-total asymptotically strict
pseudocontractive semigroup on 𝐶, if the conditions (a)–(c)
in Definition 2 and the following condition (g) are satisfied.

(g) There exist a bounded function 𝜂 : [0,∞) → [0,∞)

and sequences {𝜇𝑛} ⊂ [0,∞) and {𝜉𝑛} ⊂ [0,∞) with
𝜇𝑛 → 0, 𝜉𝑛 → 0, as 𝑛 → ∞. For any given 𝑥, 𝑦 ∈ 𝐶,
there exists 𝑗(𝑥 − 𝑦) ∈ 𝐽(𝑥 − 𝑦), such that

⟨𝑇
𝑛
(𝑡) 𝑥 − 𝑇

𝑛
(𝑡) 𝑦, 𝑗 (𝑥 − 𝑦)⟩

≤
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩
2
− 𝜂 (𝑡)

󵄩󵄩󵄩󵄩(𝑥 − 𝑦) − (𝑇
𝑛
(𝑡) 𝑥 − 𝑇

𝑛
(𝑡) 𝑦)

󵄩󵄩󵄩󵄩
2

+ 𝜇𝑛𝜙 (
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩) + 𝜉𝑛,

(9)

for any 𝑡 ≥ 0, for all 𝑛 ≥ 1, where 𝜙 : [0,∞) →

[0,∞) is continuous and strictly increasing function
with 𝜙(0) = 0.

A (𝜂, {𝜇𝑛}, {𝜉𝑛}, 𝜙)-total asymptotically strict pseudocon-
tractive semigroup is said to be uniformly Lipschitzian, if
there exists a bounded measurable function 𝐿 : [0,∞) →

(0,∞), such that
󵄩󵄩󵄩󵄩𝑇
𝑛
(𝑡) 𝑥 − 𝑇

𝑛
(𝑡) 𝑦

󵄩󵄩󵄩󵄩

≤ 𝐿 (𝑡)
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩 , ∀𝑥, 𝑦 ∈ 𝐶, 𝑡 ≥ 0, 𝑛 ∈ N.
(10)
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Remark 4. According to the definitions, it is obvious that a
pseudocontractive semigroup is a strict pseudocontractive
semigroupwith 𝜂(𝑡) = 0, and a strict pseudocontractive semi-
group is an asymptotically strict pseudocontractive semi-
group with 𝑘𝑛 = 1. An asymptotically strict pseudocontract-
ive semigroup is a (𝜂, {𝜇𝑛}, {𝜉𝑛}, 𝜙)-total asymptotically strict
pseudocontractive semigroupwith 𝜙(𝑡) = 𝑡2, 𝜇𝑛 = 𝑘𝑛−1, and
𝜉𝑛 = 0.

Definition 5 (see [11]). The normalized duality mapping 𝐽 of a
Banach space 𝐸 is said to be weakly sequential continuous; if
for all {𝑥𝑛} ⊂ 𝐸,𝑥𝑛 ⇀ 𝑥, then there exist 𝑗(𝑥𝑛) ∈ 𝐽(𝑥𝑛), 𝑗(𝑥) ∈
𝐽(𝑥) such that 𝑗(𝑥𝑛)⇀̇𝑗(𝑥), where weak convergence and
weak star convergence are denoted by⇀ and ⇀̇, respectively.

In order to prove the main results of this paper, the
following lemmas should be used.

Lemma 6 (see [4]). For any 𝑥, 𝑦 ∈ 𝐸, one has
󵄩󵄩󵄩󵄩𝑥 + 𝑦

󵄩󵄩󵄩󵄩
2
≤ ‖𝑥‖

2
+ 2 ⟨𝑦, 𝑗 (𝑥 − 𝑦)⟩ ,

∀𝑗 (𝑥 − 𝑦) ∈ 𝐽 (𝑥 − 𝑦) .

(11)

Lemma 7 (see [12]). Let {𝑎𝑛}, {𝑏𝑛}, and {𝛿𝑛} be the sequences
of R+, which satisfy

𝑎𝑛+1 ≤ (1 + 𝛿𝑛) 𝑎𝑛 + 𝑏𝑛, ∀𝑛 ≥ 1. (12)

If∑∞
𝑛=1

𝛿𝑛 < ∞, ∑∞
𝑛=1

𝑏𝑛 < ∞, then the limit lim𝑛→∞𝑎𝑛 exists.

3. Main Results

Theorem 8. Let 𝐶 be a nonempty closed convex subset of a
real Banach space 𝐸, and let T := {𝑇(𝑡) : 𝐶 → 𝐶, 𝑡 ≥ 0}

be a uniformly Lipschitzian and (𝜂, {𝜇𝑛}, {𝜉𝑛}, 𝜙)-total asymp-
totically strict pseudocontractive semigroup defined in Defini-
tion 3. Suppose that 𝐹(T) := ⋂𝑡≥0 𝐹(𝑇(𝑡)) ̸= 0 and there exists
a compact subset 𝐾 of 𝐸 such that ⋂𝑡≥0 𝑇(𝑡)(𝐶) ⊆ 𝐾. We
assume that there exist positive constants𝑀 and𝑀∗, such that
𝜙(𝑥) ≤ 𝑀∗𝑥2 for all 𝑥 ≥ 𝑀. Let {𝑥𝑛} be the sequence defined
by the modified Ishikawa type iteration algorithm:

𝑥1 ∈ 𝐶, chosen arbitrarily,

𝑦𝑛 = (1 − 𝛽𝑛) 𝑥𝑛 + 𝛽𝑛𝑇
𝑛
(𝑡) 𝑥𝑛,

𝑥𝑛+1 = (1 − 𝛼𝑛) 𝑥𝑛 + 𝛼𝑛𝑇
𝑛
(𝑡) 𝑦𝑛.

(13)

Then {𝑥𝑛} converges strongly to a common fixed point 𝑥∗ ∈

𝐹(T) in 𝐶, if the following conditions are satisfied:

(i) ∑∞
𝑛=1

𝛼2
𝑛
< ∞, ∑∞

𝑛=1
𝛼𝑛 = ∞, ∑∞

𝑛=1
𝛼𝑛𝜇𝑛 < ∞, and

∑
∞

𝑛=1
𝛼𝑛𝜉𝑛 < ∞;

(ii) 𝛽𝑛 → 0 as 𝑛 → ∞, ∑∞
𝑛=1

𝛼𝑛𝛽𝑛 < ∞;
(iii) 𝜂 = inf 𝑡≥0𝜂(𝑡) > 0, 𝐿 = sup

𝑡≥0
𝐿(𝑡) < +∞.

Proof. We divide the proof into four steps.
Step 1. Firstly, we prove that lim𝑛→∞‖𝑥 − 𝑝‖ exists for any
𝑝 ∈ 𝐹(T).

By the definitions of 𝑇(𝑡) and {𝑥𝑛}, we have

󵄩󵄩󵄩󵄩𝑇
𝑛
(𝑡) 𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 ≤ 𝐿
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 ,

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝
󵄩󵄩󵄩󵄩 =

󵄩󵄩󵄩󵄩(1 − 𝛽𝑛) 𝑥𝑛 + 𝛽𝑛𝑇
𝑛
(𝑡) 𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

≤ (1 − 𝛽𝑛)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 + 𝛽𝑛
󵄩󵄩󵄩󵄩𝑇
𝑛
(𝑡) 𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

≤ (1 − 𝛽𝑛 + 𝛽𝑛𝐿)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

≤ (1 + 𝐿)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 ,

󵄩󵄩󵄩󵄩𝑇
𝑛
(𝑡) 𝑦𝑛 − 𝑝

󵄩󵄩󵄩󵄩 ≤ 𝐿
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝

󵄩󵄩󵄩󵄩 ≤ 𝐿 (1 + 𝐿)
󵄩󵄩󵄩󵄩𝑥𝑛 + 𝑝

󵄩󵄩󵄩󵄩 .

(14)

This follows from that

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝
󵄩󵄩󵄩󵄩 =

󵄩󵄩󵄩󵄩(1 − 𝛼𝑛) 𝑥𝑛 + 𝛼𝑛𝑇
𝑛
(𝑡) 𝑦𝑛 − 𝑝

󵄩󵄩󵄩󵄩

≤ (1 − 𝛼𝑛)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 + 𝛼𝑛
󵄩󵄩󵄩󵄩𝑇
𝑛
(𝑡) 𝑦𝑛 − 𝑝

󵄩󵄩󵄩󵄩

≤ (1 − 𝛼𝑛)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 + 𝛼𝑛𝐿 (1 + 𝐿)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

≤ (1 + 𝐿 + 𝐿
2
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 ,

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥𝑛
󵄩󵄩󵄩󵄩 =

󵄩󵄩󵄩󵄩(1 − 𝛽𝑛) 𝑥𝑛 + 𝛽𝑛𝑇
𝑛
(𝑡) 𝑥𝑛 − 𝑥𝑛

󵄩󵄩󵄩󵄩

= 𝛽𝑛
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇

𝑛
(𝑡) 𝑥𝑛

󵄩󵄩󵄩󵄩

≤ 𝛽𝑛 (
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑇
𝑛
(𝑡) 𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩)

≤ 𝛽𝑛 (1 + 𝐿)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 ,

󵄩󵄩󵄩󵄩𝑇
𝑛
(𝑡) 𝑦𝑛 − 𝑥𝑛

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑇
𝑛
(𝑡) 𝑦𝑛 − 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

≤ (1 + 𝐿 + 𝐿
2
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 ,

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥𝑛
󵄩󵄩󵄩󵄩 =

󵄩󵄩󵄩󵄩(1 − 𝛼𝑛) 𝑥𝑛 + 𝛼𝑛𝑇
𝑛
(𝑡) 𝑦𝑛 − 𝑥𝑛

󵄩󵄩󵄩󵄩

≤ 𝛼𝑛
󵄩󵄩󵄩󵄩𝑇
𝑛
(𝑡) 𝑦𝑛 − 𝑥𝑛

󵄩󵄩󵄩󵄩

≤ 𝛼𝑛 (1 + 𝐿 + 𝐿
2
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 .

(15)

SinceT := {𝑇(𝑡) : 𝐶 → 𝐶, 𝑡 ≥ 0} is total asymptotically
strict pseudocontractive semigroup, for any point 𝑥𝑛+1 ∈ 𝐶

and 𝑝 ∈ 𝐹(T), by (9), we have

⟨𝑇
𝑛
(𝑡) 𝑥𝑛+1 − 𝑥𝑛+1, 𝑗 (𝑥𝑛+1 − 𝑝)⟩

≤ −𝜂 (𝑡)
󵄩󵄩󵄩󵄩𝑇
𝑛
(𝑡) 𝑥𝑛+1 − 𝑥𝑛+1

󵄩󵄩󵄩󵄩 + 𝜇𝑛𝜙 (
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝

󵄩󵄩󵄩󵄩) + 𝜉𝑛.

(16)

Since 𝜙 is an increasing function, it results in that 𝜙(𝑥) ≤
𝜙(𝑀), if 𝑥 ≤ 𝑀; 𝜙(𝑥) ≤ 𝑀∗𝑥2, if 𝑥 ≥ 𝑀. In either case, we
can obtain that

𝜙 (𝑥) ≤ 𝜙 (𝑀) +𝑀
∗
𝑥
2
. (17)
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Hence, by Lemma 6, we have
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝

󵄩󵄩󵄩󵄩
2

=
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝 + 𝛼𝑛 (𝑇

𝑛
(𝑡) 𝑦𝑛 − 𝑥𝑛)

󵄩󵄩󵄩󵄩
2

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩
2
+ 2𝛼𝑛 ⟨𝑇

𝑛
(𝑡) 𝑦𝑛 − 𝑇

𝑛
(𝑡) 𝑥𝑛, 𝑗 (𝑥𝑛+1 − 𝑝)⟩

+ 2𝛼𝑛 ⟨𝑇
𝑛
(𝑡) 𝑥𝑛 − 𝑇

𝑛
(𝑡) 𝑥𝑛+1, 𝑗 (𝑥𝑛+1 − 𝑝)⟩

+ 2𝛼𝑛 ⟨𝑇
𝑛
(𝑡) 𝑥𝑛+1 − 𝑥𝑛+1, 𝑗 (𝑥𝑛+1 − 𝑝)⟩

+ 2𝛼𝑛 ⟨𝑥𝑛+1 − 𝑥𝑛, 𝑗 (𝑥𝑛+1 − 𝑝)⟩

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩
2
+ 2𝛼𝑛𝐿

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥𝑛
󵄩󵄩󵄩󵄩 ⋅
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝

󵄩󵄩󵄩󵄩

+ 2𝛼𝑛
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥𝑛+1

󵄩󵄩󵄩󵄩 ⋅
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝

󵄩󵄩󵄩󵄩

− 2𝛼𝑛𝜂 (𝑡)
󵄩󵄩󵄩󵄩𝑇
𝑛
(𝑡)𝑥𝑛+1 − 𝑥𝑛+1

󵄩󵄩󵄩󵄩
2

+ 2𝛼𝑛
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥𝑛+1

󵄩󵄩󵄩󵄩 ⋅
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝

󵄩󵄩󵄩󵄩

+ 2𝛼𝑛𝜇𝑛𝜙 (
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝

󵄩󵄩󵄩󵄩) + 2𝛼𝑛𝜉𝑛

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩
2
+ 2𝛼𝑛𝛽𝑛𝐿 (1 + 𝐿) (1 + 𝐿 + 𝐿

2
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩
2

+ 2𝛼
2

𝑛
(1 + 𝐿 + 𝐿

2
)
2󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩
2

− 2𝛼𝑛𝜂 (𝑡)
󵄩󵄩󵄩󵄩𝑇
𝑛
(𝑡)𝑥𝑛+1 − 𝑥𝑛+1

󵄩󵄩󵄩󵄩
2

+ 2𝛼
2

𝑛
(1 + 𝐿 + 𝐿

2
)
2󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩
2

+ 2𝛼𝑛𝜇𝑛 [𝜙 (𝑀) +𝑀
∗
(1 + 𝐿 + 𝐿

2
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩
2
]

+ 2𝛼𝑛𝜉𝑛

= (1 + 𝛿𝑛)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩
2
+ 𝑏𝑛,

(18)

where 𝛿𝑛 = [2𝛼𝑛𝛽𝑛𝐿(1 + 𝐿) + 4𝛼2
𝑛
(1 + 𝐿 + 𝐿2) + 2𝑀∗𝛼𝑛𝜇𝑛]

(1 + 𝐿 + 𝐿2), 𝑏𝑛 = 2𝛼𝑛𝜇𝑛𝜙(𝑀) + 2𝛼𝑛𝜉𝑛.
By the conditions (i) and (ii), we have ∑∞

𝑛=1
𝛿𝑛 < ∞,

∑
∞

𝑛=1
𝑏𝑛 < ∞. Thus, by Lemma 7, we can obtain that

lim𝑛→∞‖𝑥𝑛 − 𝑝‖ exists.

Step 2. Now we prove that lim inf𝑛→∞‖𝑥𝑛 − 𝑇
𝑛(𝑡)𝑥𝑛‖ = 0.

From (18), we know that

2𝛼𝑛𝜂 (𝑡)
󵄩󵄩󵄩󵄩𝑇
𝑛
(𝑡) 𝑥𝑛+1 − 𝑥𝑛+1

󵄩󵄩󵄩󵄩
2

≤ (
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩
2
−
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝

󵄩󵄩󵄩󵄩
2
) + 𝛿𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩
2
+ 𝑏𝑛.

(19)

As 𝜂 = inf 𝑡≥0𝜂(𝑡) > 0, 𝐴 = sup
𝑛
‖𝑥𝑛 − 𝑝‖ < ∞, we can have

𝑚

∑
𝑛=1

2𝛼𝑛𝜂
󵄩󵄩󵄩󵄩𝑇
𝑛
(𝑡)𝑥𝑛+1 − 𝑥𝑛+1

󵄩󵄩󵄩󵄩
2

≤

𝑚

∑
𝑛=1

[(
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩
2
−
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝

󵄩󵄩󵄩󵄩
2
) + 𝛿𝑛𝐴

2
+ 𝑏𝑛]

≤
󵄩󵄩󵄩󵄩𝑥1 − 𝑝

󵄩󵄩󵄩󵄩
2
+ 𝐴
2
𝑚

∑
𝑛=1

𝛿𝑛 +

𝑚

∑
𝑛=1

𝑏𝑛.

(20)

Then,
∞

∑
𝑛=1

2𝛼𝑛𝜂
󵄩󵄩󵄩󵄩𝑇
𝑛
(𝑡) 𝑥𝑛+1 − 𝑥𝑛+1

󵄩󵄩󵄩󵄩
2

≤

∞

∑
𝑛=1

[(
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩
2
−
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝

󵄩󵄩󵄩󵄩
2
) + 𝛿𝑛𝐴

2
+ 𝑏𝑛]

≤
󵄩󵄩󵄩󵄩𝑥1 − 𝑝

󵄩󵄩󵄩󵄩
2
+ 𝐴
2
∞

∑
𝑛=1

𝛿𝑛 +

∞

∑
𝑛=1

𝑏𝑛 < ∞.

(21)

Since ∑∞
𝑛=1

𝛼𝑛 = ∞, then (21) implies that

lim inf
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑇
𝑛
(𝑡) 𝑥𝑛+1

󵄩󵄩󵄩󵄩 = 0. (22)

Otherwise, if lim inf𝑛→∞‖𝑥𝑛+1−𝑇
𝑛(𝑡)𝑥𝑛+1‖ = 𝑐 > 0, then

there exists an𝑁, such that ‖𝑥𝑛−𝑇
𝑛(𝑡)𝑥𝑛‖ ≥ 𝑐/2, when 𝑛 ≥ 𝑁.

So, we have

∞

∑
𝑛=1

2𝛼𝑛𝜂
󵄩󵄩󵄩󵄩𝑇
𝑛
(𝑡) 𝑥𝑛+1 − 𝑥𝑛+1

󵄩󵄩󵄩󵄩
2

=

𝑁

∑
𝑛=1

2𝛼𝑛𝜂
󵄩󵄩󵄩󵄩𝑇
𝑛
(𝑡)𝑥𝑛+1 − 𝑥𝑛+1

󵄩󵄩󵄩󵄩
2

+

∞

∑
𝑛=𝑁

2𝛼𝑛𝜂
󵄩󵄩󵄩󵄩𝑇
𝑛
(𝑡)𝑥𝑛+1 − 𝑥𝑛+1

󵄩󵄩󵄩󵄩
2

≥

𝑁

∑
𝑛=1

2𝛼𝑛𝜂
󵄩󵄩󵄩󵄩𝑇
𝑛
(𝑡) 𝑥𝑛+1 − 𝑥𝑛+1

󵄩󵄩󵄩󵄩
2
+
𝑐2

2𝜂

∞

∑
𝑛=𝑁

𝛼𝑛 = ∞.

(23)

This is in contradiction with (21).
Because

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇
𝑛
(𝑡) 𝑥𝑛

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥𝑛+1

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑇

𝑛
(𝑡) 𝑥𝑛+1

󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩𝑇
𝑛
(𝑡) 𝑥𝑛+1 − 𝑇

𝑛
(𝑡) 𝑥𝑛

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑇

𝑛
(𝑡) 𝑥𝑛+1

󵄩󵄩󵄩󵄩 + (1 + 𝐿)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥𝑛+1

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑇

𝑛
(𝑡) 𝑥𝑛+1

󵄩󵄩󵄩󵄩

+ 𝛼𝑛 (1 + 𝐿) (1 + 𝐿 + 𝐿
2
)𝐴

(24)

and lim𝑛→∞𝛼𝑛 = 0, we have

lim inf
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇
𝑛
(𝑡) 𝑥𝑛

󵄩󵄩󵄩󵄩 = 0. (25)

Step 3. Now we prove that lim inf𝑛→∞‖𝑥𝑛 − 𝑇(𝑡)𝑥𝑛‖ = 0.
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Consider
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑇 (𝑡) 𝑥𝑛+1

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
𝑥𝑛+1 − 𝑇

𝑛+1
(𝑡) 𝑥𝑛+1

󵄩󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩
𝑇
𝑛+1

(𝑡) 𝑥𝑛+1 − 𝑇 (𝑡) 𝑥𝑛+1
󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
𝑥𝑛+1 − 𝑇

𝑛+1
(𝑡) 𝑥𝑛+1

󵄩󵄩󵄩󵄩󵄩

+ 𝐿
󵄩󵄩󵄩󵄩𝑇
𝑛
(𝑡) 𝑥𝑛+1 − 𝑥𝑛+1

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
𝑥𝑛+1 − 𝑇

𝑛+1
(𝑡) 𝑥𝑛+1

󵄩󵄩󵄩󵄩󵄩

+ 𝐿 (
󵄩󵄩󵄩󵄩𝑇
𝑛
(𝑡) 𝑥𝑛 − 𝑇

𝑛
(𝑡) 𝑥𝑛

󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩𝑇
𝑛
(𝑡) 𝑥𝑛 − 𝑥𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥𝑛+1

󵄩󵄩󵄩󵄩)

≤
󵄩󵄩󵄩󵄩󵄩
𝑥𝑛+1 − 𝑇

𝑛+1
(𝑡) 𝑥𝑛+1

󵄩󵄩󵄩󵄩󵄩
+ 𝐿

󵄩󵄩󵄩󵄩𝑇
𝑛
(𝑡) 𝑥𝑛 − 𝑥𝑛

󵄩󵄩󵄩󵄩

+ 𝐿 (1 + 𝐿)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥𝑛+1

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
𝑥𝑛+1 − 𝑇

𝑛+1
(𝑡) 𝑥𝑛+1

󵄩󵄩󵄩󵄩󵄩
+ 𝐿

󵄩󵄩󵄩󵄩𝑇
𝑛
(𝑡) 𝑥𝑛 − 𝑥𝑛

󵄩󵄩󵄩󵄩

+ 𝛼𝑛𝐿 (1 + 𝐿) (1 + 𝐿 + 𝐿
2
)𝐴.

(26)

Since lim𝑛→∞𝛼𝑛 = 0 and (25), we have

lim inf
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇 (𝑡) 𝑥𝑛
󵄩󵄩󵄩󵄩 = 0. (27)

Thus, there exists a subsequence {𝑥𝑛
𝑘

} ⊆ {𝑥𝑛} such that

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩
𝑥𝑛
𝑘

− 𝑇 (𝑡) 𝑥𝑛
𝑘

󵄩󵄩󵄩󵄩󵄩
= 0. (28)

Step 4. Finally, we prove the sequence {𝑥𝑛} converges strongly
to a common fixed point of the semigroupT := {𝑇(𝑡) : 𝐶 →

𝐶, 𝑡 ≥ 0}.
Since 𝐾 is a compact subset of 𝐸 and ⋂𝑡≥0 𝑇(𝑡)(𝐶) ⊆ 𝐾,

just as the proof in [9, 10], there exists a subsequence {𝑥𝑛
𝑘𝑖

} ⊆

{𝑥𝑛
𝑘

} ⊆ {𝑥𝑛} ⊆ 𝐶, such that 𝑇(𝑡)𝑥𝑛
𝑘𝑖

→ 𝑥∗ ∈ 𝐾. From (28),
we have lim𝑛

𝑘𝑖
→∞‖𝑇(𝑡)𝑥𝑛

𝑘𝑖

− 𝑥𝑛
𝑘𝑖

‖ = 0, and

󵄩󵄩󵄩󵄩󵄩󵄩
𝑥𝑛
𝑘𝑖

− 𝑥
∗
󵄩󵄩󵄩󵄩󵄩󵄩
≤
󵄩󵄩󵄩󵄩󵄩󵄩
𝑥𝑛
𝑘𝑖

− 𝑇 (𝑡) 𝑥𝑛
𝑘𝑖

󵄩󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩󵄩
𝑇 (𝑡) 𝑥𝑛

𝑘𝑖

− 𝑥
∗
󵄩󵄩󵄩󵄩󵄩󵄩
󳨀→ 0.

(29)

Hence we have that
󵄩󵄩󵄩󵄩𝑇 (𝑡) 𝑥

∗
− 𝑥
∗󵄩󵄩󵄩󵄩 = lim
𝑛
𝑘𝑖
→∞

󵄩󵄩󵄩󵄩󵄩󵄩
𝑥𝑛
𝑘𝑖

− 𝑇 (𝑡) 𝑥𝑛
𝑘𝑖

󵄩󵄩󵄩󵄩󵄩󵄩
= 0. (30)

That is, 𝑥∗ ∈ 𝐹(T).
Since, for any 𝑝 ∈ 𝐹(T), lim𝑛→∞‖𝑥𝑛 − 𝑝‖ exists,

lim𝑛
𝑘𝑖
→∞‖𝑥𝑛

𝑘𝑖

− 𝑥∗‖ = 0, and {𝑥𝑛
𝑘𝑖

} ⊆ {𝑥𝑛}, so we have
lim𝑛→∞‖𝑥𝑛 − 𝑝‖ = 0; that is, 𝑥𝑛 converges strongly to an
element 𝑥∗ = 𝑝 of 𝐹(T).

Remark 9. (a) If we take 𝛽𝑛 = 0 in themodified Ishikawa type
iteration algorithm (13), then (13) is called themodifiedMann
type iteration algorithm in many articles, such as in [9, 10].
(b) In Theorem 8, because there is no limit to 𝑡 of 𝑇(𝑡), so

our result is stronger and the conditions here are less than in
[9, 10]. For example, the conditions “for any bounded subset
𝐷 ⊂ 𝐶,

lim
𝑛→∞

sup
𝑥∈𝐷,𝑠∈R+

󵄩󵄩󵄩󵄩𝑇
𝑛
(𝑠 + 𝑡𝑛) 𝑥 − 𝑇

𝑛
(𝑡𝑛) 𝑥

󵄩󵄩󵄩󵄩 = 0” (31)

in [9, 10] can be removed in Theorem 8. (c) The condition
“there exists a compact subset𝐾 of𝐸 such that⋂𝑡≥0 𝑇(𝑡)(𝐶) ⊆
𝐾” does not look natural. But it easy to see that this condition
is established naturally whenwe assume𝐶 is a compact subset
of 𝐸. So, the result inTheorem 8 is still true if this condition is
replaced by the condition “let 𝐶 be a compact subset of 𝐸.” If
there is no compactness assumption, we can get the following
weak convergence theorem.

Theorem 10. Let 𝐸 be a reflexive Banach space satisfying the
opial condition and 𝐶 be a nonempty bounded closed convex
subset of 𝐸. Let T := {𝑇(𝑡) : 𝐶 → 𝐶, 𝑡 ≥ 0} be a uniformly
Lipschitzian and (𝜂, {𝜇𝑛}, {𝜉𝑛}, 𝜙)-total asymptotically strict
pseudocontractive semigroup defined by Definition 3. Suppose
that there exist positive constants𝑀 and𝑀∗, such that 𝜙(𝑥) ≤
𝑀∗𝑥2, for all 𝑥 ≥ 𝑀, and 𝐹(T) := ⋂𝑡≥0 𝐹(𝑇(𝑡)) ̸= 0. Let {𝑥𝑛}
be the sequence defined by (13). Then {𝑥𝑛} converges weakly
to a common fixed point 𝑥∗ ∈ 𝐹(T) in 𝐶, if the following
conditions are satisfied.

(i) ∑∞
𝑛=1

𝛼2
𝑛

< ∞, ∑∞
𝑛=1

𝛼𝑛 = ∞, ∑∞
𝑛=1

𝛼𝑛𝜇𝑛 < ∞,
∑
∞

𝑛=1
𝛼𝑛𝜉𝑛 < ∞.

(ii) 𝛽𝑛 → 0 as 𝑛 → ∞, and ∑∞
𝑛=1

𝛼𝑛𝛽𝑛 < ∞.

(iii) 𝜆 = inf 𝑡≥0𝜆(𝑡) > 0, 𝐿 = sup
𝑡≥0
𝐿(𝑡) < +∞.

Proof. It can be proved just like the proof in Theorem 8 that,
for each 𝑝 ∈ 𝐹(T), lim𝑛→∞‖𝑥𝑛 − 𝑝‖ exists, and, for all 𝑡 > 0,
𝑇(𝑡)𝑥𝑛 is bounded, lim inf ‖𝑇(𝑡)𝑥𝑛 − 𝑥𝑛‖ = 0. Thus, there
exists a subsequence {𝑥𝑛

𝑘

} ⊆ {𝑥𝑛} such that lim𝑛→∞‖𝑥𝑛
𝑘

−

𝑇(𝑡)𝑥𝑛
𝑘

‖ = 0.
Nowwe prove that 𝐼−𝑇(𝑡) is demiclosed at zero (see [11]).
Since𝐶 is a closed and convex subset of a reflexive Banach

space𝐸, there exists a subsequence {𝑥𝑛
𝑘𝑖

} ⊆ {𝑥𝑛
𝑘

} ⊆ {𝑥𝑛}, such
that 𝑥𝑛

𝑘𝑖

⇀ 𝑥∗ ∈ 𝐶.Without loss of generality, we can assume
that {𝑥𝑛} replaces {𝑥𝑛

𝑘𝑖

} now.
In the following, we prove that 𝑥∗ = 𝑇(𝑡)𝑥∗.
Firstly, we choose 𝛼 ∈ (0, 1/(1 + 𝐿)) and 𝑦𝑚 = (1 − 𝛼)𝑥 +

𝑇𝑚(𝑡)𝑥 for 𝑚 ≥ 1. Since 𝑇(𝑡) is uniformly Lipschitzian, we
have

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇
𝑚
(𝑡) 𝑥𝑛

󵄩󵄩󵄩󵄩 ≤

𝑚−1

∑
𝑘=0

󵄩󵄩󵄩󵄩󵄩
𝑇
𝑘
(𝑡) 𝑥𝑛 − 𝑇

𝑘+1
(𝑡) 𝑥𝑛

󵄩󵄩󵄩󵄩󵄩

≤

𝑚−1

∑
𝑘=0

𝐿
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇 (𝑡) 𝑥𝑛

󵄩󵄩󵄩󵄩

= 𝑚𝐿
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇 (𝑡) 𝑥𝑛

󵄩󵄩󵄩󵄩 󳨀→ 0, 𝑛 󳨀→ ∞.

(32)
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Because 𝑇(𝑡) is totally asymptotically strictly pseudocon-
tractive, we have
⟨(𝐼 − 𝑇

𝑚
(𝑡)) 𝑦𝑚, 𝐽 (𝑥 − 𝑦𝑚)⟩

= ⟨(𝐼 − 𝑇
𝑚
(𝑡)) 𝑦𝑚, 𝐽 (𝑥 − 𝑦𝑚) − 𝐽 (𝑥𝑛 − 𝑦𝑚)⟩

+ ⟨(𝐼 − 𝑇
𝑚
(𝑡)) 𝑦𝑚, 𝐽 (𝑥𝑛 − 𝑦𝑚)⟩

= ⟨(𝐼 − 𝑇
𝑚
(𝑡)) 𝑦𝑚, 𝐽 (𝑥 − 𝑦𝑚) − 𝐽 (𝑥𝑛 − 𝑦𝑚)⟩

+ ⟨(𝐼 − 𝑇
𝑚
(𝑡)) 𝑥𝑛, 𝐽 (𝑥𝑛 − 𝑦𝑚)⟩

+ ⟨(𝐼 − 𝑇
𝑚
(𝑡)) 𝑦𝑚 − (𝐼 − 𝑇

𝑚
(𝑡)) 𝑥𝑛, 𝐽 (𝑥𝑛 − 𝑦𝑚)⟩

= ⟨(𝐼 − 𝑇
𝑚
(𝑡)) 𝑦𝑚, 𝐽 (𝑥 − 𝑦𝑚) − 𝐽 (𝑥𝑛 − 𝑦𝑚)⟩

+ ⟨(𝐼 − 𝑇
𝑚
(𝑡)) 𝑥𝑛, 𝐽 (𝑥𝑛 − 𝑦𝑚)⟩

− 𝜂 (𝑡)
󵄩󵄩󵄩󵄩(𝐼 − 𝑇

𝑚
(𝑡)) 𝑥𝑛 − (𝐼 − 𝑇

𝑚
(𝑡)) 𝑦𝑚

󵄩󵄩󵄩󵄩
2

+ 𝜇𝑛𝜙 (
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦𝑛

󵄩󵄩󵄩󵄩) + 𝜉𝑛

≤ ⟨(𝐼 − 𝑇
𝑚
(𝑡)) 𝑦𝑚, 𝐽 (𝑥 − 𝑦𝑚) − 𝐽 (𝑥𝑛 − 𝑦𝑚)⟩

+ ⟨(𝐼 − 𝑇
𝑚
(𝑡)) 𝑥𝑛, 𝐽 (𝑥𝑛 − 𝑦𝑛)⟩

+ 𝜇𝑛 (𝑀 +𝑀
∗󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦𝑚

󵄩󵄩󵄩󵄩
2
) + 𝜉𝑛.

(33)

Since 𝑥𝑛 ⇀ 𝑥∗, lim𝑛→∞‖𝑥𝑛−𝑇(𝑡)𝑥𝑛‖ = 0 (note the 𝑥𝑛 of here
instead of 𝑥𝑛

𝑘𝑖

), and 𝐽 is weakly sequential continuous duality
mapping, we have

⟨(𝐼 − 𝑇
𝑚
(𝑡)) 𝑥
∗
− (𝐼 − 𝑇

𝑚
(𝑡)) 𝑦𝑚, 𝐽 (𝑥

∗
− 𝑦𝑚)⟩

≤ (1 + 𝐿)
󵄩󵄩󵄩󵄩𝑥
∗
− 𝑦𝑚

󵄩󵄩󵄩󵄩
2

≤ (1 + 𝐿) 𝛼
2󵄩󵄩󵄩󵄩𝑥
∗
− 𝑇
𝑚
(𝑡)𝑥
∗󵄩󵄩󵄩󵄩
2
.

(34)

Hence
󵄩󵄩󵄩󵄩𝑥
∗
− 𝑇
𝑚
(𝑡)𝑥
∗󵄩󵄩󵄩󵄩
2

= ⟨𝑥
∗
− 𝑇
𝑚
(𝑡) 𝑥
∗
, 𝐽 (𝑥
∗
− 𝑇
𝑚
(𝑡) 𝑥
∗
)⟩

=
1

𝛼
⟨𝑥
∗
− 𝑇
𝑚
(𝑡) 𝑥
∗
, 𝐽 (𝑥
∗
− 𝑦𝑚)⟩

=
1

𝛼
⟨𝑥
∗
−𝑇
𝑚
(𝑡) 𝑥
∗
−(𝑦𝑚− 𝑇

𝑚
(𝑡) 𝑦𝑚) , 𝐽 (𝑥

∗
− 𝑦𝑚)⟩

+
1

𝛼
⟨𝑦𝑚 − 𝑇

𝑚
(𝑡) 𝑦𝑚, 𝐽 (𝑥

∗
− 𝑦𝑚)⟩

≤ 𝛼 (1 + 𝐿)
󵄩󵄩󵄩󵄩𝑥
∗
− 𝑇
𝑚
(𝑡) 𝑥
∗󵄩󵄩󵄩󵄩
2

+
1

𝛼
(𝜇𝑚𝑀+ 𝜇𝑚𝑀

∗
(diam𝐶) + 𝜉𝑛) .

(35)

This implies that

𝛼 (1 − 𝛼 (1 + 𝐿))
󵄩󵄩󵄩󵄩𝑥
∗
− 𝑇
𝑚
(𝑡) 𝑥
∗󵄩󵄩󵄩󵄩
2

≤ 𝜇𝑚𝑀+ 𝜇𝑚𝑀
∗
(diam𝐶) + 𝜉𝑛, ∀𝑚 ∈ N.

(36)

Let𝑚 → ∞; thenwe have ‖𝑥∗−𝑇𝑚(𝑡)𝑥∗‖ → 0, as𝑚 → ∞,
for 𝜇𝑛 → 0, 𝜉𝑛 → 0. Hence, 𝑇𝑚(𝑡)𝑥∗ → 𝑥∗, as 𝑚 → ∞,
and 𝑇𝑚+1(𝑡)𝑥∗ → 𝑇(𝑡)𝑥∗. By the continuity of 𝑇(𝑡), we have
𝑇(𝑡)𝑥∗ = 𝑥∗.

Now, for the sequence {𝑥𝑛} generated by (13), we prove
that 𝑥𝑛 ⇀ 𝑥∗.

Suppose the contrary; if there exists another subsequence
{𝑥𝑛
𝑗

} ⊂ {𝑥𝑛}, such that 𝑥𝑛
𝑗

⇀ 𝑦∗ with 𝑦∗ ̸= 𝑥∗, then we have
that lim𝑛→∞‖𝑥𝑛 − 𝑥

∗‖ and lim𝑛→∞‖𝑥𝑛 − 𝑦
∗‖ exist. Since 𝐸

satisfies the Opial condition, we have

lim inf
𝑛
𝑘𝑖
→∞

󵄩󵄩󵄩󵄩󵄩󵄩
𝑥𝑛
𝑘𝑖

− 𝑥
∗
󵄩󵄩󵄩󵄩󵄩󵄩

< lim
𝑛
𝑘𝑖
→∞

󵄩󵄩󵄩󵄩󵄩󵄩
𝑥𝑛
𝑘𝑖

− 𝑦
∗
󵄩󵄩󵄩󵄩󵄩󵄩
= lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦
∗󵄩󵄩󵄩󵄩

= lim
𝑛
𝑗
→∞

󵄩󵄩󵄩󵄩󵄩󵄩
𝑥𝑛
𝑗

− 𝑦
∗
󵄩󵄩󵄩󵄩󵄩󵄩
< lim inf
𝑛
𝑗
→∞

󵄩󵄩󵄩󵄩󵄩󵄩
𝑥𝑛
𝑗

− 𝑥
∗
󵄩󵄩󵄩󵄩󵄩󵄩

= lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩 = lim inf
𝑛
𝑘𝑖
→∞

󵄩󵄩󵄩󵄩󵄩󵄩
𝑥𝑛
𝑘𝑖

− 𝑥
∗
󵄩󵄩󵄩󵄩󵄩󵄩
.

(37)

This is a contraction, which shows 𝑥∗ = 𝑦∗. Therefore, 𝑥𝑛 ⇀
𝑥∗ ∈ 𝐹(T). This completes the proof.

Remark 11. (a) Our results extend many other results that
have been proved for this important class of general pseu-
docontractive mappings. For example, we extend the total
asymptotically strict pseudocontractive mapping in [1] and
Lipschitzian pseudo-contraction semigroup in [8] to the
total asymptotically strict pseudocontractive semigroup. (b)
In addition, we study the weak convergence of the total
asymptotically strict pseudocontractive semigroup by using
the demiclosedness of 𝐼 − 𝑇(𝑡) which, in some way, extends
the result in [11] in Banach spaces. (c) And the method by
using the subsequence of a subsequence of the sequence {𝑥𝑛}
in this paper is different from the previous references.
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Recently, a worst-case 𝑂(1/𝑡) convergence rate was established for the Douglas-Rachford alternating direction method of
multipliers (ADMM) in an ergodic sense. The relaxed proximal point algorithm (PPA) is a generalization of the original PPA
which includes the Douglas-Rachford ADMM as a special case. In this paper, we provide a simple proof for the same convergence
rate of the relaxed PPA in both ergodic and nonergodic senses.

1. Introduction

The finite-dimensional variational inequality (VI), denoted
by VI(Ω, 𝐹), is to find a vector 𝑤∗ ∈ Ω such that

(𝑤 − 𝑤
∗
)
𝑇
𝐹 (𝑤
∗
) ≥ 0, ∀𝑤 ∈ Ω, (1)

where Ω is a nonempty closed convex set in R𝑛 and 𝐹 is
a monotone mapping from R𝑛 into itself. The solution set,
denoted by Ω∗ is assumed to be nonempty. We refer to [1–4]
for the pivotal roles of VIs in various fields such as economics,
transportation, and engineering.

As is well known, proximal point algorithm (PPA), which
was presented originally in [5] and mainly developed in [6,
7], is a well-developed approach to solving VI(Ω, 𝐹). Let 𝑤𝑘
be the current approximation of a solution of (1); then PPA
generates the new iterate 𝑤𝑘+1 ∈ Ω by solving the following
auxiliary VI:

(𝑤 − 𝑤
𝑘+1

)
𝑇

[𝐹 (𝑤
𝑘+1

) +
1

𝛽
(𝑤
𝑘+1

− 𝑤
𝑘
)] ≥ 0, (2)

where 𝛽 is a positive constant. Compared to themonotoneVI
(1), (2) is easier to handle since it is a stronglymonotoneVI. In
this paper, we focus on the relaxed proximal point algorithm
(PPA) proposed by Gol’shtein and Tret’yakov in [8], which

combines the PPA step (3a) with a relaxation step (3b) as
follows:

𝑤
𝑘
∈ Ω, (𝑤 − 𝑤

𝑘
)
𝑇

[𝐹 (𝑤
𝑘
) + 𝐺 (𝑤

𝑘
− 𝑤
𝑘
)] ≥ 0,

∀𝑤 ∈ Ω,

(3a)

𝑤
𝑘+1

:= 𝑤
𝑘
− 𝛾 (𝑤

𝑘
− 𝑤
𝑘
) , (3b)

where 𝛾 ∈ (0, 2) is a relaxation factor and 𝐺 is a symmetric
positive semidefinite matrix. In particular, 𝛾 is called an
under-relaxation factor when 𝛾 ∈ (0, 1) or an over-relaxation
factor when 𝛾 ∈ (1, 2), and the relaxed PPA reduces to
the original PPA (2) when 𝛾 = 1 and 𝐺 = (1/𝛽)𝐼. For
convenience, we still use the notation ‖𝑤‖2

𝐺
to represent the

nonnegative number 𝑤𝑇𝐺𝑤 in our analysis.
The Douglas-Rachford alternating direction methods of

multipliers (ADMM) scheme proposed by Glowinski and
Marrocco in [9] (see also [10]) is a commonplace tool to solve
the convexminimization problemwith linear constraints and
a separable objective function as follows:

min {𝜃1 (𝑥) + 𝜃2 (𝑦) | 𝐴𝑥 + 𝐵𝑦 = 𝑏, 𝑥 ∈ X, 𝑦 ∈ Y} , (4)

where 𝐴 ∈ R𝑚×𝑛1 , 𝐵 ∈ R𝑚×𝑛2 , 𝑏 ∈ R𝑚, X ⊆ R𝑛1 , and
Y ⊆ R𝑛2 are closed convex sets and 𝜃1: R

𝑛
1 → R and
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𝜃2: R
𝑛
2 → R are convex smooth functions. The iterative

scheme of ADMM for solving (4) at the 𝑘-th iteration runs as

𝑥
𝑘+1

∈ X,

(𝑥 − 𝑥
𝑘+1

)
𝑇

{∇𝜃1 (𝑥
𝑘+1

)

− 𝐴
𝑇
[𝜆
𝑘
− 𝐻(𝐴𝑥

𝑘+1
+ 𝐵𝑦
𝑘
− 𝑏)]} ≥ 0,

∀𝑥 ∈ X,

(5a)

𝑦
𝑘+1

∈ Y,

(𝑦 − 𝑦
𝑘+1

)
𝑇

{∇𝜃2 (𝑦
𝑘+1

)

− 𝐵
𝑇
[𝜆
𝑘
− 𝐻(𝐴𝑥

𝑘+1
+ 𝐵𝑦
𝑘+1

− 𝑏)]} ≥ 0,

∀𝑦 ∈ Y,

(5b)

𝜆
𝑘+1

:= 𝜆
𝑘
− 𝐻(𝐴𝑥

𝑘+1
+ 𝐵𝑦
𝑘+1

− 𝑏) , (5c)

where𝐻 := ℎ𝐼 and ℎ is a positive constant. As shown in [11],
ADMM can be regarded as an application of the relaxed PPA
with 𝛾 = 1 (i.e., the original PPA (2)) and

𝐺 = (

0 0 0

0 𝐵
𝑇𝐻𝐵 −𝐵𝑇

0 −𝐵 𝐻−1
) . (6)

Without further assumption on 𝐵, the matrix 𝐺 defined
previously can be guaranteed as a symmetric and positive
semidefinite matrix. Recently, He and Yuan in [12] have
shown a worst-case 𝑂(1/𝑡) convergence rate of the ADMM
scheme (5a), (5b), and (5c) in an ergodic sense. You et al. in
[13] have proved the same convergence rate of the Lagrangian
PPA-based contraction methods with nonsymmetric linear
proximal term in an ergodic sense. The purpose of this paper
is to establish the𝑂(1/𝑡) convergence rate of the relaxed PPA
(3a) and (3b) in both ergodic and nonergodic senses.

2. Preliminaries

In this section, we review somepreliminarieswhich are useful
for further discussions. More specially, we recall a useful
characterization on Ω∗, the variational reformulation of (4),
the relationship of the ADMM in [9, 10], and the relaxed PPA
in [8] for solving this variational reformulation.

First, we provide a useful characterization on Ω
∗ as

Theorem 2.3.5 in [14] andTheorem 2.1 in [12].

Theorem 1. The solution set of VI(Ω, 𝐹) is convex, and it can
be characterized as

Ω
∗
= ⋂
𝑤∈Ω

{𝑤 ∈ Ω : (𝑤 − 𝑤)
𝑇
𝐹 (𝑤) ≥ 0} . (7)

Based onTheorem 1, 𝑤 ∈ Ω can be regarded as an 𝜀-approx-
imation solution of VI(Ω, 𝐹) if it satisfies

sup
𝑤∈D

{(𝑤 − 𝑤)
𝑇
𝐹 (𝑤)} ≤ 𝜀, (8)

whereD ⊆ Ω is some compact set. As Definition 1 in [15], we
can take

D = BΩ (𝑤) := {𝑤 ∈ Ω | ‖𝑤 − 𝑤‖ ≤ 1} . (9)

In the following, we will give a variational reformulation
of (4). It is easy to see that the model (4) can be characterized
by a variational inequality problem: find 𝑤∗ = (𝑥∗, 𝑦∗, 𝜆∗) ∈

Ω := X ×Y ×R𝑚 such that

VI (Ω, 𝐹) : (𝑤 − 𝑤
∗
)
𝑇
𝐹 (𝑤
∗
) ≥ 0, ∀𝑤 ∈ Ω, (10a)

where

𝑤 = (

𝑥

𝑦

𝜆

) , 𝐹 (𝑤) = (

∇𝜃1 (𝑥) − 𝐴
𝑇𝜆

∇𝜃2 (𝑦) − 𝐵
𝑇𝜆

𝐴𝑥 + 𝐵𝑦 − 𝑏

) . (10b)

Note that the mapping 𝐹 is monotone since 𝜃1 and 𝜃2 are
convex. As shown in [11], the ADMM scheme (5a), (5b),
and (5c) is identical with the following iterative scheme in a
cyclical sense:

𝑥
𝑘
∈ X, (𝑥 − 𝑥

𝑘
)
𝑇

{∇𝜃1 (𝑥
𝑘
)

−𝐴
𝑇
[𝜆
𝑘
− 𝐻(𝐴𝑥

𝑘
+ 𝐵𝑦
𝑘
− 𝑏)]} ≥ 0,

∀𝑥 ∈ X,

(11a)

𝜆̃
𝑘
:= 𝜆
𝑘
− 𝐻(𝐴𝑥

𝑘
+ 𝐵𝑦
𝑘
− 𝑏) , (11b)

𝑦
𝑘
∈ Y, (𝑦 − 𝑦

𝑘
)
𝑇

{∇𝜃2 (𝑦
𝑘
)

− 𝐵
𝑇
[𝜆̃
𝑘
− 𝐻(𝐴𝑥

𝑘
+ 𝐵𝑦
𝑘
− 𝑏)] } ≥ 0,

∀𝑦 ∈ Y,

(11c)

𝑤
𝑘+1

= 𝑤
𝑘
− (𝑤
𝑘
− 𝑤
𝑘
) . (12)

Based on the definition (6) of the matrix 𝐺, we can rewrite
(11a), (11b), (11c), and (12) as a special case of the relaxed PPA
with 𝛾 = 1 immediately.

Lemma 2. For given 𝑤𝑘, let 𝑤𝑘 be generated by the ADMM
scheme (11a), (11b), and (11c). Then, one has

𝑤
𝑘
∈ Ω, (𝑤 − 𝑤

𝑘
)
𝑇

{𝐹 (𝑤
𝑘
) + 𝐺 (𝑤

𝑘
− 𝑤
𝑘
)} ≥ 0,

∀𝑤 ∈ Ω,

(13)

where 𝐹 and 𝐺 are defined by (10b) and (6), respectively.
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3. The Contraction of the Relaxed Proximal
Point Algorithm

In this section, we prove the contraction of the relaxed PPA.
First, we give an important lemma.

Lemma3. Let the sequences {𝑤𝑘} and {𝑤𝑘} be generated by the
relaxed PPA (3a) and (3b), and let 𝐺 be a symmetric positive
semidefinite matrix. Then, one has

(𝑤 − 𝑤
𝑘
)
𝑇

𝐹 (𝑤
𝑘
)

≥
1

2𝛾
(
󵄩󵄩󵄩󵄩󵄩
𝑤 − 𝑤

𝑘+1󵄩󵄩󵄩󵄩󵄩

2

𝐺
−
󵄩󵄩󵄩󵄩󵄩
𝑤 − 𝑤

𝑘󵄩󵄩󵄩󵄩󵄩

2

𝐺
)

+ (1 −
𝛾

2
)
󵄩󵄩󵄩󵄩󵄩
𝑤
𝑘
− 𝑤
𝑘󵄩󵄩󵄩󵄩󵄩

2

𝐺
, ∀𝑤 ∈ Ω.

(14)

Proof. First, using (3a), we have

(𝑤 − 𝑤
𝑘
)
𝑇

𝐹 (𝑤
𝑘
) ≥ (𝑤 − 𝑤

𝑘
)
𝑇

𝐺(𝑤
𝑘
− 𝑤
𝑘
) , ∀𝑤 ∈ Ω.

(15)

Since 𝑤𝑘 − 𝑤𝑘 = (𝑤𝑘 − 𝑤𝑘+1)/𝛾 (see (3b)), we have

(𝑤 − 𝑤
𝑘
)
𝑇

𝐺(𝑤
𝑘
− 𝑤
𝑘
) =

1

𝛾
(𝑤 − 𝑤

𝑘
)
𝑇

𝐺(𝑤
𝑘
− 𝑤
𝑘+1

) .

(16)

Thus, it suffices to show that

(𝑤 − 𝑤
𝑘
)
𝑇

𝐺(𝑤
𝑘
− 𝑤
𝑘+1

)

=
1

2
(
󵄩󵄩󵄩󵄩󵄩
𝑤 − 𝑤

𝑘+1󵄩󵄩󵄩󵄩󵄩

2

𝐺
−
󵄩󵄩󵄩󵄩󵄩
𝑤 − 𝑤

𝑘󵄩󵄩󵄩󵄩󵄩

2

𝐺
)

+ 𝛾 (1 −
𝛾

2
)
󵄩󵄩󵄩󵄩󵄩
𝑤
𝑘
− 𝑤
𝑘󵄩󵄩󵄩󵄩󵄩

2

𝐺
.

(17)

By setting 𝑎 = 𝑤, 𝑏 = 𝑤𝑘, 𝑐 = 𝑤𝑘, and 𝑑 = 𝑤𝑘+1 in the identity

(𝑎 − 𝑏)
𝑇
𝐺 (𝑐 − 𝑑)

=
1

2
(‖𝑎 − 𝑑‖

2

𝐺
− ‖𝑎 − 𝑐‖

2

𝐺
)

+
1

2
(‖𝑐 − 𝑏‖

2

𝐺
− ‖𝑑 − 𝑏‖

2

𝐺
) ,

(18)

we derive that

(𝑤 − 𝑤
𝑘
)
𝑇

𝐺(𝑤
𝑘
− 𝑤
𝑘+1

)

=
1

2
(
󵄩󵄩󵄩󵄩󵄩
𝑤 − 𝑤

𝑘+1󵄩󵄩󵄩󵄩󵄩

2

𝐺
−
󵄩󵄩󵄩󵄩󵄩
𝑤 − 𝑤

𝑘󵄩󵄩󵄩󵄩󵄩

2

𝐺
)

+
1

2
(
󵄩󵄩󵄩󵄩󵄩
𝑤
𝑘
− 𝑤
𝑘󵄩󵄩󵄩󵄩󵄩

2

𝐺
−
󵄩󵄩󵄩󵄩󵄩
𝑤
𝑘+1

− 𝑤
𝑘󵄩󵄩󵄩󵄩󵄩

2

𝐺
) .

(19)

On the other hand, using (3b), we have

󵄩󵄩󵄩󵄩󵄩
𝑤
𝑘
− 𝑤
𝑘󵄩󵄩󵄩󵄩󵄩

2

𝐺
−
󵄩󵄩󵄩󵄩󵄩
𝑤
𝑘+1

− 𝑤
𝑘󵄩󵄩󵄩󵄩󵄩

2

𝐺

=
󵄩󵄩󵄩󵄩󵄩
𝑤
𝑘
− 𝑤
𝑘󵄩󵄩󵄩󵄩󵄩

2

𝐺
−
󵄩󵄩󵄩󵄩󵄩
(𝑤
𝑘
− 𝑤
𝑘
) − (𝑤

𝑘
− 𝑤
𝑘+1

)
󵄩󵄩󵄩󵄩󵄩

2

𝐺

=
󵄩󵄩󵄩󵄩󵄩
𝑤
𝑘
− 𝑤
𝑘󵄩󵄩󵄩󵄩󵄩

2

𝐺
−
󵄩󵄩󵄩󵄩󵄩
(𝑤
𝑘
− 𝑤
𝑘
) − 𝛾 (𝑤

𝑘
− 𝑤
𝑘
)
󵄩󵄩󵄩󵄩󵄩

2

𝐺

= 𝛾 (2 − 𝛾)
󵄩󵄩󵄩󵄩󵄩
𝑤
𝑘
− 𝑤
𝑘󵄩󵄩󵄩󵄩󵄩

2

𝐺
.

(20)

Combining the last two equations, we obtain (17). The asser-
tion (14) follows immediately. The proof is completed.

With the proved lemma, we are now ready to show the
contraction of the relaxed PPA (3a) and (3b).

Theorem 4. Let the sequences {𝑤𝑘} and {𝑤𝑘} be generated by
the relaxed PPA (3a) and (3b), and let𝐺 be a symmetric positive
semidefinite matrix. Then, for any 𝑘 ≥ 0, one has

󵄩󵄩󵄩󵄩󵄩
𝑤
𝑘+1

− 𝑤
∗󵄩󵄩󵄩󵄩󵄩

2

𝐺

≤
󵄩󵄩󵄩󵄩󵄩
𝑤
𝑘
− 𝑤
∗󵄩󵄩󵄩󵄩󵄩

2

𝐺
− 𝛾 (2 − 𝛾)

󵄩󵄩󵄩󵄩󵄩
𝑤
𝑘
− 𝑤
𝑘󵄩󵄩󵄩󵄩󵄩

2

𝐺
, ∀𝑤

∗
∈ Ω
∗
.

(21)

Proof. Setting 𝑤 = 𝑤∗ in (14), we get

2𝛾(𝑤
∗
− 𝑤
𝑘
)
𝑇

𝐹 (𝑤
𝑘
)

≥
󵄩󵄩󵄩󵄩󵄩
𝑤
∗
− 𝑤
𝑘+1󵄩󵄩󵄩󵄩󵄩

2

𝐺
−
󵄩󵄩󵄩󵄩󵄩
𝑤
∗
− 𝑤
𝑘󵄩󵄩󵄩󵄩󵄩

2

𝐺

+ 𝛾 (2 − 𝛾)
󵄩󵄩󵄩󵄩󵄩
𝑤
𝑘
− 𝑤
𝑘󵄩󵄩󵄩󵄩󵄩

2

𝐺
.

(22)

On the other hand, since 𝐹 is monotone and 𝑤∗ ∈ Ω∗, we
have

0 ≥ (𝑤
∗
− 𝑤
𝑘
)
𝑇

𝐹 (𝑤
∗
) ≥ (𝑤

∗
− 𝑤
𝑘
)
𝑇

𝐹 (𝑤
𝑘
) . (23)

It follows from the previous two inequalities that

󵄩󵄩󵄩󵄩󵄩
𝑤
𝑘+1

− 𝑤
∗󵄩󵄩󵄩󵄩󵄩

2

𝐺
≤
󵄩󵄩󵄩󵄩󵄩
𝑤
𝑘
− 𝑤
∗󵄩󵄩󵄩󵄩󵄩

2

𝐺
− 𝛾 (2 − 𝛾)

󵄩󵄩󵄩󵄩󵄩
𝑤
𝑘
− 𝑤
𝑘󵄩󵄩󵄩󵄩󵄩

2

𝐺
. (24)

The proof is completed.

4. Ergodic Worst-Case 𝑂(1/𝑡)
Convergence Rate

In this section, we will establish an ergodic worst-case𝑂(1/𝑡)
convergence rate for the relaxed PPA in the sense that after 𝑡
iterations of such an algorithm, we can find 𝑤 ∈ Ω such that

(𝑤 − 𝑤)
𝑇
𝐹 (𝑤) ≤ 𝜀, ∀𝑤 ∈ BΩ (𝑤) , (25)

with 𝜀 = 𝑂(1/𝑡) andBΩ(𝑤) := {𝑤 ∈ Ω | ‖𝑤 − 𝑤‖𝐺 ≤ 1}.
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Theorem 5. Let {𝑤𝑘} and {𝑤𝑘} be the sequences generated by
the relaxed PPA (3a) and (3b), and let𝐺 be a symmetric positive
semidefinite matrix. For any integer number 𝑡 > 0, let

𝑤𝑡 :=
1

𝑡 + 1

𝑡

∑
𝑘=0

𝑤
𝑘
. (26)

Then, one has 𝑤𝑡 ∈ Ω and

(𝑤𝑡 − 𝑤)
𝑇
𝐹 (𝑤) ≤

1

2𝛾 (𝑡 + 1)

󵄩󵄩󵄩󵄩󵄩
𝑤
0
− 𝑤

󵄩󵄩󵄩󵄩󵄩

2

𝐺
, ∀𝑤 ∈ Ω. (27)

Proof. From (14), we have

(𝑤 − 𝑤
𝑘
)
𝑇

𝐹 (𝑤
𝑘
) +

1

2𝛾

󵄩󵄩󵄩󵄩󵄩
𝑤
𝑘
− 𝑤

󵄩󵄩󵄩󵄩󵄩

2

𝐺

≥
1

2𝛾

󵄩󵄩󵄩󵄩󵄩
𝑤
𝑘+1

− 𝑤
󵄩󵄩󵄩󵄩󵄩

2

𝐺
, ∀𝑤 ∈ Ω.

(28)

Since 𝐹 is monotone, from the previous inequality, we have

(𝑤 − 𝑤
𝑘
)
𝑇

𝐹 (𝑤) +
1

2𝛾

󵄩󵄩󵄩󵄩󵄩
𝑤
𝑘
− 𝑤

󵄩󵄩󵄩󵄩󵄩

2

𝐺

≥
1

2𝛾

󵄩󵄩󵄩󵄩󵄩
𝑤
𝑘+1

− 𝑤
󵄩󵄩󵄩󵄩󵄩

2

𝐺
, ∀𝑤 ∈ Ω.

(29)

Summing the inequality (29) over 𝑘 = 0, 1, . . . , 𝑡, we obtain

[(𝑡 + 1)𝑤 − (

𝑡

∑
𝑘=0

𝑤
𝑘
)]

𝑇

𝐹 (𝑤) +
1

2𝛾

󵄩󵄩󵄩󵄩󵄩
𝑤
0
− 𝑤

󵄩󵄩󵄩󵄩󵄩

2

𝐺

≥
1

2𝛾

󵄩󵄩󵄩󵄩󵄩
𝑤
𝑡+1

− 𝑤
󵄩󵄩󵄩󵄩󵄩

2

𝐺
≥ 0, ∀𝑤 ∈ Ω.

(30)

Since ∑𝑡
𝑘=0

1/(𝑡 + 1) = 1, 𝑤𝑡 is a convex combination of
𝑤0, 𝑤1, . . . , 𝑤𝑡 and thus 𝑤𝑡 ∈ Ω. Using the notation of 𝑤𝑡, we
derive

(𝑤 − 𝑤𝑡)
𝑇
𝐹 (𝑤) +

1

2𝛾 (𝑡 + 1)

󵄩󵄩󵄩󵄩󵄩
𝑤
0
− 𝑤

󵄩󵄩󵄩󵄩󵄩

2

𝐺
≥ 0, ∀𝑤 ∈ Ω.

(31)

The assertion (27) follows from the previous inequality
immediately.

It follows from Theorem 4 that the sequence {‖𝑤𝑘‖𝐺} is
bounded. According to (21), the sequence {‖𝑤𝑘‖𝐺} is also
bounded. Therefore, there exists a constant𝐷 > 0 such that

󵄩󵄩󵄩󵄩󵄩
𝑤
𝑘󵄩󵄩󵄩󵄩󵄩𝐺

≤ 𝐷,
󵄩󵄩󵄩󵄩󵄩
𝑤
𝑘󵄩󵄩󵄩󵄩󵄩𝐺

≤ 𝐷, ∀𝑘 ≥ 0. (32)

Recall that𝑤𝑡 is the average of {𝑤
0, 𝑤1, . . . , 𝑤𝑡}.Thus, we have

‖𝑤𝑡‖𝐺 ≤ 𝐷. For any𝑤 ∈ BΩ(𝑤𝑡) := {𝑤 ∈ Ω | ‖𝑤 − 𝑤𝑡‖𝐺 ≤ 1},
we get

(𝑤𝑡 − 𝑤)
𝑇
𝐹 (𝑤)

≤
1

2𝛾 (𝑡 + 1)

󵄩󵄩󵄩󵄩󵄩
𝑤
0
− 𝑤

󵄩󵄩󵄩󵄩󵄩

2

𝐺

≤
1

2𝛾 (𝑡 + 1)
(
󵄩󵄩󵄩󵄩󵄩
𝑤
0
− 𝑤𝑡

󵄩󵄩󵄩󵄩󵄩𝐺
+
󵄩󵄩󵄩󵄩𝑤𝑡 − 𝑤

󵄩󵄩󵄩󵄩𝐺)
2

≤
1

2𝛾 (𝑡 + 1)
(
󵄩󵄩󵄩󵄩󵄩
𝑤
0󵄩󵄩󵄩󵄩󵄩𝐺

+
󵄩󵄩󵄩󵄩𝑤𝑡

󵄩󵄩󵄩󵄩𝐺 +
󵄩󵄩󵄩󵄩𝑤𝑡 − 𝑤

󵄩󵄩󵄩󵄩𝐺)
2

≤
(2𝐷 + 1)

2

2𝛾 (𝑡 + 1)
.

(33)

Thus, for any given 𝜀 > 0, after at most 𝑡 := ⌈((2𝐷+1)2/2𝛾𝜀)−
1⌉ iterations, we have

(𝑤𝑡 − 𝑤)
𝑇
𝐹 (𝑤) ≤ 𝜀, ∀𝑤 ∈ BΩ (𝑤𝑡) , (34)

which means that 𝑤𝑡 is an approximate solution of VI(Ω, 𝐹)
with an accuracy of 𝑂(1/𝑡). That is, a worst-case 𝑂(1/𝑡)

convergence rate of the relaxed PPA in an ergodic sense is
established.

Note that this convergence rate is in an ergodic sense
and 𝑤𝑡 is a convex combination of the previous vectors
{𝑤0, 𝑤1, . . . , 𝑤𝑡} with equal weights. One may ask if we can
establish the same convergence rate in a nonergodic sense
directly for the sequence {𝑤𝑘} generated by the relaxed PPA
(3a) and (3b), and this is themain purpose of the next section.

5. Nonergodic Worst-Case 𝑂(1/𝑡)
Convergence Rate

This section shows that the relaxed PPA has a worst-case
𝑂(1/𝑡) convergence rate in a nonergodic sense. First, we
establish two important inequalities in the following lemmas.

Lemma6. Let the sequences {𝑤𝑘} and {𝑤𝑘} be generated by the
relaxed PPA (3a) and (3b), and let 𝐺 be a symmetric positive
semidefinite matrix. Then, one has

(𝑤
𝑘
− 𝑤
𝑘+1

)
𝑇

𝐺 [(𝑤
𝑘
− 𝑤
𝑘+1

) − (𝑤
𝑘
− 𝑤
𝑘+1

)] ≥ 0. (35)

Proof. Setting 𝑤 = 𝑤𝑘+1 in (3a), we have

(𝑤
𝑘+1

− 𝑤
𝑘
)
𝑇

[𝐹 (𝑤
𝑘
) + 𝐺 (𝑤

𝑘
− 𝑤
𝑘
)] ≥ 0. (36)

Note that (3a) is also true for 𝑘 := 𝑘 + 1, and thus we have

(𝑤 − 𝑤
𝑘+1

)
𝑇

[𝐹 (𝑤
𝑘+1

) + 𝐺 (𝑤
𝑘+1

− 𝑤
𝑘+1

)] ≥ 0,

∀𝑤 ∈ Ω.

(37)
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Setting 𝑤 = 𝑤𝑘 in the previous inequality, we obtain

(𝑤
𝑘
− 𝑤
𝑘+1

)
𝑇

[𝐹 (𝑤
𝑘+1

) + 𝐺 (𝑤
𝑘+1

− 𝑤
𝑘+1

)] ≥ 0. (38)

Adding (36) and (38) and using themonotonicity of 𝐹, we get
(35) immediately.

Lemma7. Let the sequences {𝑤𝑘} and {𝑤𝑘} be generated by the
relaxed PPA (3a) and (3b), and let 𝐺 be a symmetric positive
semidefinite matrix. Then, one has

(𝑤
𝑘
− 𝑤
𝑘
)
𝑇

𝐺{(𝑤
𝑘
− 𝑤
𝑘
) − (𝑤

𝑘+1
− 𝑤
𝑘+1

)}

≥
1

𝛾

󵄩󵄩󵄩󵄩󵄩
(𝑤
𝑘
− 𝑤
𝑘
) − (𝑤

𝑘+1
− 𝑤
𝑘+1

)
󵄩󵄩󵄩󵄩󵄩

2

𝐺
.

(39)

Proof. First, adding the term

{(𝑤
𝑘
− 𝑤
𝑘+1

) − (𝑤
𝑘
− 𝑤
𝑘+1

)}
𝑇

× 𝐺 {(𝑤
𝑘
− 𝑤
𝑘+1

) − (𝑤
𝑘
− 𝑤
𝑘+1

)}

(40)

to the both sides of (35), we get

(𝑤
𝑘
− 𝑤
𝑘+1

)
𝑇

𝐺{(𝑤
𝑘
− 𝑤
𝑘+1

) − (𝑤
𝑘
− 𝑤
𝑘+1

)}

≥
󵄩󵄩󵄩󵄩󵄩
(𝑤
𝑘
− 𝑤
𝑘+1

) − (𝑤
𝑘
− 𝑤
𝑘+1

)
󵄩󵄩󵄩󵄩󵄩

2

𝐺
.

(41)

Reordering (𝑤𝑘−𝑤𝑘+1)−(𝑤𝑘−𝑤𝑘+1) in the previous inequality
to (𝑤𝑘 − 𝑤𝑘) − (𝑤𝑘+1 − 𝑤𝑘+1), we get

(𝑤
𝑘
− 𝑤
𝑘+1

)
𝑇

𝐺{(𝑤
𝑘
− 𝑤
𝑘
) − (𝑤

𝑘+1
− 𝑤
𝑘+1

)}

≥
󵄩󵄩󵄩󵄩󵄩
(𝑤
𝑘
− 𝑤
𝑘
) − (𝑤

𝑘+1
− 𝑤
𝑘+1

)
󵄩󵄩󵄩󵄩󵄩

2

𝐺
.

(42)

Substituting the term 𝑤𝑘 − 𝑤𝑘+1 = 𝛾(𝑤𝑘 − 𝑤𝑘) (see (3b)) into
the left-hand side of the last inequality, we obtain (39). The
proof is completed.

Next, we prove that {‖𝑤𝑘 − 𝑤𝑘‖𝐺} is monotonically non-
increasing.

Theorem 8. Let the sequences {𝑤𝑘} and {𝑤𝑘} be generated by
the relaxed PPA (3a) and (3b), and let𝐺 be a symmetric positive
semidefinite matrix. Then, one has

󵄩󵄩󵄩󵄩󵄩
𝑤
𝑘+1

− 𝑤
𝑘+1󵄩󵄩󵄩󵄩󵄩𝐺

≤
󵄩󵄩󵄩󵄩󵄩
𝑤
𝑘
− 𝑤
𝑘󵄩󵄩󵄩󵄩󵄩𝐺

, ∀𝑘 ≥ 0. (43)

Proof. Setting 𝑎 = 𝑤𝑘−𝑤𝑘 and 𝑏 = 𝑤𝑘+1−𝑤𝑘+1 in the identity

‖𝑎‖
2

𝐺
− ‖𝑏‖
2

𝐺
= 2𝑎
𝑇
𝐺 (𝑎 − 𝑏) − ‖𝑎 − 𝑏‖

2

𝐺
, (44)

we obtain
󵄩󵄩󵄩󵄩󵄩
𝑤
𝑘
− 𝑤
𝑘󵄩󵄩󵄩󵄩󵄩

2

𝐺
−
󵄩󵄩󵄩󵄩󵄩
𝑤
𝑘+1

− 𝑤
𝑘+1󵄩󵄩󵄩󵄩󵄩

2

𝐺

= 2(𝑤
𝑘
− 𝑤
𝑘
)
𝑇

𝐺{(𝑤
𝑘
− 𝑤
𝑘
) − (𝑤

𝑘+1
− 𝑤
𝑘+1

)}

−
󵄩󵄩󵄩󵄩󵄩
(𝑤
𝑘
− 𝑤
𝑘
) − (𝑤

𝑘+1
− 𝑤
𝑘+1

)
󵄩󵄩󵄩󵄩󵄩

2

𝐺
.

(45)

Inserting (39) into the first term of the right-hand side of the
last equality and using 𝛾 ∈ (0, 2), we obtain

2(𝑤
𝑘
− 𝑤
𝑘
)
𝑇

𝐺{(𝑤
𝑘
− 𝑤
𝑘
) − (𝑤

𝑘+1
− 𝑤
𝑘+1

)}

−
󵄩󵄩󵄩󵄩󵄩
(𝑤
𝑘
− 𝑤
𝑘
) − (𝑤

𝑘+1
− 𝑤
𝑘+1

)
󵄩󵄩󵄩󵄩󵄩

2

𝐺

≥
2 − 𝛾

𝛾

󵄩󵄩󵄩󵄩󵄩
(𝑤
𝑘
− 𝑤
𝑘
) − (𝑤

𝑘+1
− 𝑤
𝑘+1

)
󵄩󵄩󵄩󵄩󵄩

2

𝐺

≥ 0.

(46)

The assertion (43) follows immediately.

With Theorems 4 and 8, we can prove the worst-case
𝑂(1/𝑡) convergence rate in a nonergodic sense for the relaxed
PPA.

Theorem 9. Let the sequences {𝑤𝑘} and {𝑤𝑘} be generated by
the relaxed PPA (3a) and (3b), and let𝐺 be a symmetric positive
semidefinite matrix. Then, for any integer 𝑡 ≥ 0, one has

󵄩󵄩󵄩󵄩󵄩
𝑤
𝑡
− 𝑤
𝑡󵄩󵄩󵄩󵄩󵄩

2

𝐺
≤

1

𝛾 (2 − 𝛾) (𝑡 + 1)

󵄩󵄩󵄩󵄩󵄩
𝑤
0
− 𝑤
∗󵄩󵄩󵄩󵄩󵄩

2

𝐺
, ∀𝑤

∗
∈ Ω
∗
.

(47)

Proof. Summing the inequality (21) over 𝑘 = 0, 1, . . . , 𝑡, we
obtain

𝛾 (2 − 𝛾)

𝑡

∑
𝑘=0

󵄩󵄩󵄩󵄩󵄩
𝑤
𝑘
− 𝑤
𝑘󵄩󵄩󵄩󵄩󵄩

2

𝐺

≤
󵄩󵄩󵄩󵄩󵄩
𝑤
0
− 𝑤
∗󵄩󵄩󵄩󵄩󵄩

2

𝐺
−
󵄩󵄩󵄩󵄩󵄩
𝑤
𝑡+1

− 𝑤
∗󵄩󵄩󵄩󵄩󵄩

2

𝐺

≤
󵄩󵄩󵄩󵄩󵄩
𝑤
0
− 𝑤
∗󵄩󵄩󵄩󵄩󵄩

2

𝐺
, ∀𝑤

∗
∈ Ω
∗
.

(48)

According to Theorem 8, the sequence {‖𝑤𝑘 − 𝑤𝑘‖𝐺} is
monotonically nonincreasing. Therefore, we have

(𝑡 + 1)
󵄩󵄩󵄩󵄩󵄩
𝑤
𝑡
− 𝑤
𝑡󵄩󵄩󵄩󵄩󵄩

2

𝐺
≤

𝑡

∑
𝑘=0

󵄩󵄩󵄩󵄩󵄩
𝑤
𝑘
− 𝑤
𝑘󵄩󵄩󵄩󵄩󵄩

2

𝐺
. (49)

The assertion (47) follows from (48) and (49) immediately.

Note that Ω∗ is convex and closed (see Theorem 1). Let
𝑑 := inf{‖𝑤0 − 𝑤∗‖𝐺 | 𝑤

∗ ∈ Ω∗}. Then, for any given 𝜀 > 0,
Theorem 9 shows that the relaxed PPA (3a) and (3b) needs at
most ⌈𝑑2/(𝜀𝛾(2−𝛾))−1⌉ iterations to ensure that ‖𝑤𝑡 − 𝑤𝑡‖2

𝐺
≤

𝜀. Recall that 𝑤𝑡 is a solution of VI(Ω, 𝐹) if ‖𝑤𝑡 − 𝑤𝑡‖2
𝐺
= 0.

In other words, if ‖𝑤𝑡 − 𝑤𝑡‖2
𝐺
= 0, we have 𝐺(𝑤𝑡 − 𝑤𝑡) = 0

since 𝐺 is a positive semidefinite matrix. And thus from (3a),
it follows that

(𝑤 − 𝑤
𝑡
)
𝑇

𝐹 (𝑤
𝑡
) ≥ 0, ∀𝑤 ∈ Ω, (50)

whichmeans that𝑤𝑡 is a solution of VI(Ω, 𝐹) according to (1).
A worst-case 𝑂(1/𝑡) convergence rate in a nonergodic sense
for the relaxed PPA (3a) and (3b) is thus established from
Theorem 9.
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6. Concluding Remarks

This paper established theworst-case𝑂(1/𝑡) convergence rate
in both ergodic and nonergodic senses for the relaxed PPA.
Recall that ADMM is a primal application of the relaxed PPA
with 𝛾 = 1. And thus ADMM also has the same worst-
case𝑂(1/𝑡) convergence rate in both ergodic and nonergodic
senses.
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