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The bridge of artificial intelligence to cardiovascular medicine has opened up new avenues for novel diagnostics that may
significantly enhance the cardiology care pathway. Cardiac phase space analysis is a noninvasive diagnostic platform that
combines advanced disciplines of mathematics and physics with machine learning. Thoracic orthogonal voltage gradient (OVG)
signals from an individual are evaluated by cardiac phase space analysis to quantify physiological and mathematical features
associated with coronary stenosis. The analysis is performed at the point of care without the need for a change in physiologic
status or radiation. This review will highlight some of the scientific principles behind the technology, provide a description of
the system and device, and discuss the study procedure, clinical data, and potential future applications.

1. Background

Cardiovascular disease is the leading cause of death world-
wide. Thus, accurate diagnosis in patients with suspected cor-
onary artery disease (CAD) is critical in clinical medicine. For
the majority of patients, standard of care assessment for CAD
begins with a functional stress test. In the United States alone,
millions of stress tests are performed on an annual basis to
evaluate patients with suspected CAD. However, this pathway
has been reported to have low diagnostic yield at the time of
invasive coronary angiography (ICA) [1]. Obstructive CAD
was noted in less than half of patients undergoing exercise
treadmill testing, stress echocardiography, single-photon
emission computed tomography (SPECT) imaging, and stress
cardiac magnetic resonance imaging at the time of their ICA
in a contemporary analysis from the National Cardiovascular
Data Registry (NCDR) of more than 385,000 patients from
>1,100 United States hospitals [2]. Noninvasive testing has
demonstrated similar prediction of obstructive CAD com-

pared to clinical factors [2]. Moreover, a recent study of over
15,000 patients found that among patients referred for ICA,
those with a positive stress test were less likely to have obstruc-
tive CAD and receive revascularization compared to those
either with a negative stress test or no testing at all [3].

The bridge of artificial intelligence to cardiovascular med-
icine has opened up new avenues for novel cardiovascular
diagnostics that may significantly enhance the care of patients
[4–6]. Unlike traditional imaging modalities to assess for
CAD, cardiac phase space analysis (cPSA) is a dynamic assess-
ment that captures data related to electrical signals over con-
secutive cardiac cycles which is unique to a given individual
[7]. The resultant thoracic phase signals are analyzed by cPSA
to quantify physiological andmathematical features associated
with coronary stenosis without the need for a change in phys-
iologic status such as stress-induced vasodilation.

cPSA is an easy-to-use, portable device utilized at the
point-of-care without radiation, contrast, or patient prepara-
tion. This review will highlight some of the scientific
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principles behind the technology, provide a description of the
system and device, and discuss the study procedure, clinical
data, and potential future applications.

2. Cardiac Phase Space Analysis

2.1. Signal Acquisition. Two sources of time series data are
simultaneously acquired from each subject: (i) orthogonal
voltage gradient (OVG) signals and (ii) photoplethysmogra-
phy (PPG) signals. These signals are collected with a sampling
rate of 8 kHz using a specialized instrument (both hardware
and firmware), shown in Figure 1. Signals are acquired for
3.5 minutes, resulting in a short overall procedure time, con-
ducive to an outpatient-based single visit clinical assessment.
Signal quality scores quantified nonbiological interference that
could affect the performance of subsequent analyses. The
OVG signal is assessed for powerline interference (60Hz
based on the main frequency in North America) and excessive
frequency content greater than 170Hz (high-frequency noise).
Additionally, the quality of the PPG signal is assessed through
quantifying the segments of the signal affected by jumps and
dropouts (abrupt jump noise) and epochs that do not have
dynamic variations reflecting the change in the blood flow vol-
ume changes (railing noise). Signals exceeding the threshold
for any of the described scores are excluded, and signals pass-
ing the quality assessment are preconditioned by removing
baseline wander and filtering the high-frequency noise and
powerline interference.

2.2. Photoplethysmography (PPG). PPG is used to optically
measure the variations of the volume of blood perfusing the
tissue. In this measurement modality, a specific wavelength
of light is emitted from an LED illuminating the tissue (e.g.,
skin, subcutaneous tissue, and fat); the intensity of this light
after passing through the tissue (in this case, fingertip) is then
registered by photodetectors. The amount of light absorbed
by the interrogated tissue depends on the volume of the
blood. This variation is observed in the PPG signals and
can provide valuable information with regard to, among
other things, to cardiac activity.

The PPG signals can be used for various purposes such as
monitoring the blood oxygen saturation level when two light
sources are used as well as for measuring and analyzing heart

rate variability. The PPG signals are recorded using a sensor
with red and near-infrared light sources. These PPG wave-
forms are then employed for analysis and feature extraction.

2.3. Orthogonal Voltage Gradient (OVG). The three-
dimensional OVG measures the electrical activity, the prod-
uct of the action potential generation, of the heart. There
are various configurations of the leads that can be used to
obtain such signals. With the signal acquisition device con-
figuration shown in Figure 1, seven leads are used which
result in three orthogonal channels, denoted X, Y , and Z.
These signals are measured in the patient’s coronal, sagittal,
and transverse planes, respectively.

2.4. Machine Learning.Measurements of the signals are made
using Phase Space mathematics and other mathematical
approaches such as dynamical system analysis to create a set
of measurements or features. These features are then paired
with the corresponding “ground truth labels” (actual catheter-
ization results) to form the input to the machine learning
(ML) models. Many types of ML models can be applied to
these data (Random Forests, Neural Networks, Genetic Algo-
rithms, and Support Vector Machines), but the choice(s) of
ML method can drive specific settings of the data set and
parameters to be evaluated. A standard example of a ML cam-
paign: the data are split into training-validation and test sets
(usually 80% training 20% validation but this can be adjusted
from campaign to campaign). The training-validation set is
used to train and fine-tune several machine learning models
using 5-fold cross-validation. To find an optimal set of hyper-
parameters for each model, a grid search is performed over a
range of hyperparameters. Then, using the average AUC of
100 runs as the performance metric, the set of hyperpara-
meters that results in the highest validation AUC is selected
for each model. The models are ranked by performance on
the validation dataset. In the final step, the selected models
are trained on the entire train-validation set, and their AUC
performance on the held-out naïve test set is assessed.

2.5. System and Device Description (Figure 1). The cPSA Sys-
tem is a medical device system that uses novel features and
machine-learned algorithms to analyze phase signals and
assess the presence of significant epicardial CAD. The first

(a) (b)

Figure 1: Data acquisition setup: (a) signal acquisition device and (b) patient and electrodes/lead placement and PPG configurations.
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element is the Phase Signal Acquisition (PSAQ) System. The
PSAQ includes the phase signal recorder (PSR) and the phase
signal data repository (PSDR). The PSR is a hand-held
instrument that acquires and transmits resting phase signals
along with additional patient-specific information such as
gender and age. The cloud-based PSDR accepts, stores, and
allows retrieval of the signals as well as patient-specific infor-
mation. The second element is a CAD analytical engine
(CAD AE). Utilizing machine-learned algorithms, the CAD
AE processes and evaluates the phase signals from approxi-
mately 10 million data points to assess the presence and sig-
nificance of CAD. The final element is the health care
provider (HCP) Web Portal that the clinician utilizes to
interpret images, review results, and generate a report. The
results are subsequently displayed as a phase space analysis
model, and the report can be saved as a record for inclusion
in the patient’s electronic medical record.

2.6. Study Procedure. Signals are acquired utilizing the hand-
held PSR device via seven sensors positioned on the chest and
back and a PPG sensor clipped to a finger. Phase signal data
are collected for approximately 3 minutes, and the data is
then transmitted wirelessly to the cloud based PSDR. An ana-
lytic engine, consisting of software based on the machine-
learned algorithms, analyzes the acquired data and generates
predictions of physiological status. The results are made
available through a secure web portal.

2.7. Clinical Data. The primary objective of the Coronary
Artery Disease Learning and Algorithm Development
(CADLAD) trial was designed to collect resting phase signals
from eligible subjects using the PSR prior to ICA to machine
learn and test an algorithm for detecting the presence of sig-
nificant CAD in symptomatic patients [7]. In addition,
machine-learned algorithms were developed and tested to

Table 1: Demographics of population.

Characteristics Development (n = 512) Verification (n = 94) p value

Mean age, years (range) 61:5 ± 10:7 59:0 ± 9:8 0.04

Male (%) 60.2% 69.1% 0.11

Female (%) 39.8% 30.9% 0.11

Mean BMI (range) 31:3 ± 7:0 32:5 ± 7:6 0.14

Diabetes mellitus (%) 31.4% 35.1% 0.47

Hypertension (%) 72.9% 75.5% 0.70

Hypercholesterolemia/hyperlipidemia (%) 71.3% 70.2% 0.90

Angiographic results = CADnegative (%) 69.1% 73.4% 0.46

Angiographic results = CADpositive (%) 30.9% 26.6% 0.46

Reproduced with permission (Stuckey TD, et al. PLOS ONE. 2018).

Table 2: Detecting flow-limiting CAD. Machine-learned predictor (cPSTA) compared to exercise SPECT [8] and exercise ECG [8, 9].

Test Sensitivity range Specificity range

Rest cPSTA (N = 94)∗ 92% (95% CI = 74% to 100%) 62% (95% CI = 51% to 74%)

Exercise SPECT 82-88% 70-88%

Exercise ECG 54-75% 64-75%

Reproduced with permission (Stuckey TD, et al. PLOS ONE. 2018).

CAD negativeCAD positive

3D phase space residue projection

Different projections
of the phase space
residue of above

Figure 2: Phase Space (PS) Residues from a CAD positive subject and CAD negative subject. The PS Residues are 3D computation objects
generated from the difference of the actual signal from the modelled signal in three dimensions. These objects can be evaluated geometrically
to produce features (such as surface area or volume). The coloring can represent another measurable dimension. Here, the images are colored
by where in the depolarization/repolarization cycle the point difference comes from. The top image is a single projection of the 3D PS Residue
image. The 6 smaller projections are different views of the larger object.
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identify the location of significant CAD. Demographics and
patient characteristics for the studied population are shown
in Table 1. With the aim of a generalized machine-learned
algorithm in mind, a broad cross section of clinical practices
at twelve enrolling centers throughout the United States,
representing a diverse array of facilities providing care to
patients with heart disease, were utilizedas investigational
sites. First, OVG signals were paired with clinical outcomes
data to develop machine-learned algorithms for the assess-
ment of significant CAD. Subsequently, a blinded paired
comparison of the machine-learned algorithm was performed
against the “gold standard” (ICA) for assessment of CAD. Sig-
nificant CAD was defined as a diameter reduction ≥ 70% or at
least one lesion with reduced fractional flow reserve (FFR) of
≤0.80 at the time of ICA. Initial results from the CADLAD
trial included 606 participants. The machine-learned algo-
rithm cohort consisted of phase signals from 512 patients with
94 patients serving as the verification cohort. Blindly testing
the cPSA System in the naïve verification cohort demonstrated
a sensitivity of 92% (95% CI: 74%-100%) and specificity of
62% (95% CI: 51%-74%) for the assessment of significant
CAD, which is comparable to commonly performed standard
of care functional testing (Table 2) [7–9]. The negative predic-
tive value (NPV) was 96% (95% CI: 85%-100%), and the PPV
was 46% (95% CI: 33%-62%) [7]. In order not to miss signifi-
cant CAD in clinical practice, the system was optimized
(threshold chosen using the AUC-ROC curve) to maximize
safety and therefore sensitivity. The specificity of 62% remains
comparable to other functional tests [7]. Figure 2 presents
cases of patients with and without CAD.

Conventional diagnostic pathways for detecting CAD are
less accurate in women than men. Preliminary data from the
CADLAD trial revealed that the diagnostic performance of
cPSA for women compared to men was equivalent if not
superior demonstrating an overall area under the receiver-
operator characteristic curve (AUC) (0.82 (0.60-0.96) vs.
0.76 (0.62-0.86)), sensitivity (100% (100%-100%) vs. 83%
(56%-95%)), specificity (73% (42%-92%) vs. 64% (49%-
76%)), and NPV (100% (100%-100%) vs. 91% (76%-97%)),
respectively (p = ns for all).

When stratified by age, initial data from the CADLAD
trial demonstrates comparable diagnostic performance of
cPSA for those <65 years of age and≥65 years of age with an
overall AUC (0.79 (0.66-0.88) vs. 0.72 (0.50-0.88)), sensitivity
(100% (100%-100%) vs. 86% (56%-100%)), specificity (63%
(49%-75%) vs. 67% (40%-88%)), and NPV (100% (100%-
100%) vs. 83% (50%-100%)), respectively (p = ns for all).

In addition, those with obesity (bodymass index ≥ 30 kg/
m2) had similar diagnostic performance with cPSA compared
to subjects without obesity (bodymass index < 30 kg/m2)
demonstrating an overall AUC (0.78 (0.64-0.88) vs. 0.80
(0.62-0.92)), sensitivity (83% (46%-100%) vs. 92% (50%-
100%)), specificity (67% (51%-79%) vs. 67% (44%-84%)),
and NPV (94% (79%-100%) vs. 94% (68%-100%)), respec-
tively (p = ns for all).

SPECT is the most ubiquitous functional stress test per-
formed in the United States. In the CADLAD trial, SPECT
was performed in a subgroup of 607 subjects prior to their
ICA. Positive SPECT results were compared to the

machine-learned cPSA algorithm using ICA as the reference
standard. Overall sensitivity (86% (81%-91%) vs. 92% (86%-
96%)), specificity (23% (19%-27%) vs. 33% (27%-39%)), PPV
(36% (32%-41%) vs. 42% (36%-48%)), and NPV (77% (68%-
84%) vs. 89% (81%-95%)) were comparable between SPECT
and cPSA, respectively (p = ns for all).

2.8. Future Directions. The bridge of AI utilizing cPSA and
cardiovascular medicine has a very bright future. The same
principles and methods developed for assessment of CAD
can be utilized for other cardiovascular conditions. Ongoing
clinical research with cPSA in pulmonary hypertension and
left ventricular end diastolic pressure are underway. As a
society, we need to assure these algorithms and others devel-
oped are used wisely. Thus, larger and more heterogeneous
data sets are required in order to limit bias and increase the
generalizability in patient populations such as women and
minority groups [10–12].

3. Conclusion

Features extracted from thoracic phase signals can be
employed in machine learning to develop final mathematical
predictors that assess the presence of significant CAD. Per-
formance of the cPSA appears comparable to the most com-
monly employed functional stress tests without the need for
ionizing radiation, contrast media, or stress (exercise or
pharmacological) and requires minimal patient time.
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Background. In the United States, functional stress testing is the primary imaging modality for patients with stable symptoms
suspected to represent coronary artery disease (CAD). Coronary computed tomography angiography (CTA) is excellent at
identifying anatomic coronary artery disease (CAD). The application of computational fluid dynamics to coronary CTA allows
fractional flow reserve (FFR) to be calculated noninvasively (FFRCT). The relationship of noninvasive stress testing to coronary
CTA and FFRCT in real-world clinical practice has not been studied. Methods. We evaluated 206 consecutive patients at Loyola
University Chicago with suspected CAD who underwent noninvasive stress testing followed by coronary CTA and FFRCT when
indicated. Patients were categorized by stress test results (positive, negative, indeterminate, and equivocal). Duke treadmill score
(DTS), METS, exercise duration, and chest pain with exercise were analyzed. Lesions ≥ 50%stenosis were considered positive by
coronary CTA. FFRCT < 0:80 was considered diagnostic of ischemia. Results. Two hundred and six patients had paired
noninvasive stress test and coronary CTA/FFRCT results. The median time from stress test to coronary CTA was 49 days.
Average patient age was 60.3 years, and 42% were male. Of the 206 stress tests, 75% were exercise (70% echocardiographic, 26%
nuclear, and 4% EKG). There were no associations of stress test results with CAD > 50% or FFRCT < 0:80 (p = 0:927 and p =
0:910, respectively). Of those with a positive stress test, only 30% (3/10) had CAD > 50% and only 50% (5/10) had FFRCT < 0:80.
Chest pain with exercise did not correlate with CAD > 50% or FFRCT < 0:80 (p = 0:66 and p = 0:12, respectively). There were no
significant correlations between METS, DTS, or exercise duration and FFRCT (r = 0:093, p = 0:274; r = 0:012, p = 0:883; and r =
0:034, p = 0:680; respectively). Conclusion. Noninvasive stress testing, functional capacity, chest pain with exercise, and DTS are
not associated with anatomic or functional CAD using a diagnostic strategy of coronary CTA and FFRCT.
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1. Introduction

In the United States, functional stress testing is the primary
imaging modality for patients with stable symptoms sus-
pected to represent coronary artery disease (CAD). Metrics
of functional capacity derived from stress tests such as
exercise duration, metabolic equivalents (METS), and Duke
treadmill score (DTS), an index that provides information
calculated using data from exercise treadmill EKG, are com-
monly reported and incorporated in clinical decision-making
to determine the presence of CAD [1]. However, functional
stress testing has been shown to have low diagnostic yield
at the time of ICA and, consequently, is no longer recom-
mended as the first line diagnostic testing in the National
Institute for Health and Care Excellence (NICE) guidelines
for the assessment of recent onset chest pain [2]. The neces-
sity of improved methods for the noninvasive evaluation of
CAD was highlighted in a retrospective study of the National
Cardiovascular Data Registry, which demonstrated that only
37.6% of the 398,978 patients without known CAD who
underwent ICA had obstructive CAD, and having a positive
noninvasive stress test only increased the rate of obstructive
disease from 35% to 41% [3].

Coronary computed tomographic angiography (CTA)
has emerged as an excellent noninvasive test for detecting
CAD. However, the identification of CAD alone is insuffi-
cient as the relationship between coronary stenosis and ische-
mia is complex and frequently discordant. Over the past few
years, there has been strong interest in computing fractional
flow reserve (FFR) noninvasively using coronary CTA [4].
The application of computational fluid dynamics (CFD) to
resting coronary CTA datasets allows FFR to be calculated
noninvasively (FFRCT). The emergence of FFRCT provides a
noninvasive test that yields both anatomic and functional
data and has been validated through a number of accuracy
studies [5, 6]. Furthermore, several studies now suggest that
FFRCT leads to the reduction of unnecessary ICA in patients
with CAD [7–9].

We sought to determine the relationship between nonin-
vasive stress testing, metrics of functional capacity, DTS, and
chest pain with exercise and anatomic or functional CAD
using a diagnostic strategy of coronary CTA and FFRCT.

2. Methods

2.1. Study Population. We retrospectively evaluated 597 con-
secutive patients at Loyola University Chicago with suspected
CAD who underwent coronary CTA at the treating physi-
cian’s discretion. Patients with known CAD were excluded
from the analysis, and no patients underwent revasculariza-
tion between stress testing and coronary CTA. Of those
patients, 206 had paired noninvasive stress testing and coro-
nary CTA/FFRCT and were included in the analysis. The
median time between coronary CTA and stress testing was
49 days.

Due to the retrospective nature of this study, the ordering
physicians were not blinded to the results of either the
coronary CTA or noninvasive stress test. The coronary CTA
studies were read by cardiology attendings with board certifi-

cation in cardiovascular CT imaging, with support from diag-
nostic radiology for extracardiac pathology. Exercise treadmill
EKGs and stress echocardiograms (exercise and pharmacolog-
ical) were read by cardiology attendings with board certification
in echocardiography. Nuclear stress tests were interpreted by
nuclear medicine attendings with board certification in nuclear
cardiology.

Coronary artery lesions with ≥50% stenosis were consid-
ered positive by coronary CTA whereas FFRCT ≤ 0:80 at the
distal vessel tip was considered diagnostic of ischemia.
Modalities of noninvasive stress testing included exercise
treadmill EKG, stress echocardiogram (exercise and pharma-
cological), and single-photon emission computed tomogra-
phy myocardial perfusion imaging (SPECT-MPI [exercise
and pharmacological]). Patients were categorized by stress
test results (positive, negative, indeterminate, and equivocal).
The definition of a positive stress test depended on the stress
modality and is described in detail for each below. Patients
with discordant stress EKG compared with stress imaging
were considered to have equivocal stress tests (i.e., abnormal
stress EKG but normal stress echocardiographic images).
Indeterminate stress tests were defined as patients who failed
to achieve target heart rate or had uninterpretable exercise
stress imaging.

2.2. Exercise Treadmill EKG. A symptom-limited standard
exercise treadmill test (ETT) was conducted, using the Bruce
or modified-Bruce protocol. Patients with the following
resting EKG changes were excluded: preexcitation (Wolff-
Parkinson-White) syndrome, electronically paced ventricu-
lar rhythm, greater than 1mm of resting ST depression, or
complete left bundle branch block. The test was preceded
by 48-hour discontinuation of β-blockers, calcium antago-
nists, and long-lasting nitrates. The patients were monitored
continuously during the test with 12-lead EKG. Exercise
duration, METS, chest pain during exercise, arrhythmia,
and hypertensive response with stress and ST segment
changes were recorded. A positive exercise treadmill EKG
was defined as greater than or equal to 1mm of horizontal
or downsloping ST-segment depression or elevation for at
least 60 to 80 milliseconds after the end of the QRS complex
in 2 or more contiguous leads [10]. Arrhythmia that occurred
during exercise included premature ventricular contractions,
ventricular tachycardia/fibrillation, or supraventricular tachy-
cardia. A systolic blood pressure > 220mmHg for men or
>210mmHg for women was considered a hypertensive
response. Duke treadmill score was calculated using the
following equation: DTS = exercise time − ð5 × STdeviationÞ
− ð4 × exercise anginaÞ, with 0 = none, 1 = non-limiting, and
2 = exercise limiting angina. Patients were further categorized
into low risk (score > 5), intermediate risk (score between 4
and -11), and high risk (score < −11) DTS [11].

2.3. Stress Echocardiogram. Stress echocardiograms were per-
formed following the guidelines of the American Society of
Echocardiography [11]. For stress echocardiography with
treadmill testing, the Bruce protocol was utilized and images
were obtained at rest, immediately after peak exercise, and
at recovery. The patient exercised at 3-minute stages of
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progressively increasing difficulty until exercise-limiting
symptoms, or significant abnormalities in blood pressure,
heart rhythm, or ST segments were noted. Postexercise images
were obtained as soon as possible and ideally within 1 minute.
An ischemic response to exercise was defined by the develop-
ment of a new wall motion abnormality in a segment with
normal function at rest, worsening of function with stress in
a segment with a resting wall motion abnormality, increase
in the ventricular cavity size with exercise, or a decrease in
the ejection fraction compared with rest [11].

2.4. Single-Photon Emission Computed TomographyMyocardial
Perfusion Imaging. SPECT-MPI was acquired following the
guidelines of the American Society of Nuclear Cardiology
[12]. Similar to stress echocardiography, patients who under-
went exercise SPECT-MPI followed the Bruce protocol and
were continuously monitored during the exercise test and for
at least 5 minutes into the recovery phase. A 12-lead EKG
was obtained at every stage of exercise, at peak exercise, and
at the termination or recovery phase. The heart rate and blood
pressure were recorded at least every 3 minutes during exercise,
at peak exercise, and for at least 5 minutes into the recovery
phase. The radiopharmaceutical was injected as close to peak
exercise as possible. An abnormal response to stress was a
perfusion defect within one or more of the 17-segment heart
model territories compared to rest. In addition, an increase in
the ventricular cavity with stress was considered an abnormal
ischemic response.

2.5. Coronary CTA Acquisition and Analysis. Coronary CTA
was performed with electrocardiographic gated prospective
or retrospective gating on ≥64 detector row scanners (Siemens
Sensation Cardiac 64, Siemens Medical Solutions, Malvern,
Pennsylvania; Discovery HD 750, GE Healthcare, Milwaukee,
USA; Revolution CT 256-row, GE Healthcare, Milwaukee,
USA) in accordance with the Society of Cardiovascular Com-
puted Tomography (SCCT) guidelines [13]. Oral, and when
needed, intravenous beta-blocker was administered to achieve
a target heart rate (HR) of 60 beats per minute (bpm). Sublin-
gual nitroglycerin 0.4-0.8mg was given approximately 5
minutes prior to contrast administration. CTA datasets were
interpreted using a commercially available dedicated worksta-
tion (Aquarius 3D Workstation, TeraRecon, San Mateo, CA,
USA). A coronary lesion with ≥50% diameter of stenosis by
the interpreting physician was considered obstructive on
coronary CTA [14–16]. Coronary vessel branches for the left
anterior descending, left circumflex, and right coronary arter-
ies were categorized according to the SCCT guidelines.

2.6. Computation of FFRCT. FFRCT analysis was performed by
HeartFlow Inc. (Redwood City, California) as previously
described [17]. After semiautomated segmentation of the epi-
cardial coronary arteries and determination of left ventricular
mass, calculations of FFRCT were performed by CFD model-
ing. Three-dimensional (3D) blood flow modeling of the
coronary arteries was performed, with blood modeled as a
Newtonian fluid using incompressible Navier–Stokes equa-
tions and solved subject to appropriate initial and boundary
conditions using a finite element method on a parallel super-

computer. Coronary blood flow was simulated under condi-
tions modeling intravenous adenosine-mediated coronary
hyperemia. A positive FFRCT was defined as the distal tip
value < 0:80 in a vessel of diameter > 1:8mm.

2.7. Statistical Analysis. Baseline characteristics of the selected
subjects were calculated and presented as frequencies and per-
centages for categorical variables and mean ± SD for continu-
ous variable. General descriptive statistics (means, standard
deviations, and frequencies) were used to summarize patient
characteristics and stress-test results for the entire cohort
and separately for each group. Student’s t-test were used to
compare associations of continuous variables, and chi-sq test
or Fisher’s exact test was used to compare associations of cat-
egorical variables. Pearson’s correlation coefficients estimated
correlation between continuous predictors and continuous
FFR-CT. All analyses were performed using SAS Proprietary
software (version 9.2, SAS Institute, Cary, North Carolina).

3. Results

206 patients had a noninvasive stress test and coronary
CTA/FFRCT result. Using the Diamond–Forrester score,
86.1% of patients were at an intermediate clinic risk. Associa-
tions between clinical characteristics, functional capacity, stress
test findings, and FFRCT results with CAD > 50% are outlined
in Table 1. The average patient age was 60.3 years, and 42%
of the cohort were male. The average patient BMI was
29.5 kg/m2. Older age, hypertension, hyperlipidemia, and FF
RCT < 0:80 were all significantly associated with CAD > 50%.
Arrhythmia and hypertensive response with stress, DTS,
METS, and exercise duration were not associated with CAD
> 50% (p = 0:66, p = 0:70, p = 0:59, p = 0:07, and p = 0:25,
respectively). Furthermore, the development of chest pain
during exercise did not correlate with CAD > 50% (p = 0:66).

Table 2 outlines clinical characteristics, functional capacity,
stress test findings, and the association with FFRCT. Hyperlipid-
emia was associated with positive FFRCT (p = 0:007, Table 2).
Arrhythmia and hypertensive response with stress, DTS,
METS, and exercise duration were not associated with positive
FFRCT (p = 0:56, p = 0:53, p = 0:30, p = 0:90, and p = 0:54,
respectively). Development of chest pain during the stress test
was not associated with positive FFRCT (p = 0:121, Table 2).

Of the 206 stress tests performed, 75% were exercise (70%
echocardiographic, 26% nuclear, and 4% EKG alone). Thirty-
four percent of patients had an abnormal ETT with ≥1mm
ST depression, but this was not associated with anatomic or
functional CADon CTA and FFRCT (p = 0:12 and p = 0:20,
respectively). There was no association between stress test
results (positive, negative, equivocal, or indeterminate) and
positive CAD > 50% (p = 0:91) or FFRCT < 0:80 (p = 0:927)
(Table 3, Figure 1). Of those with a positive stress test, only
30% (3/10) had CAD > 50% and only 50% (5/10) had FF
RCT < 0:80 (p = 0:910 and p = 0:927, respectively). Of those
with a negative stress test, 40% (31/77) had CAD > 50% and
48% (37/77) had FFRCT < 0:80 (p = 0:910 and p = 0:927,
respectively). There was no significant correlation between
METS, DTS, or exercise duration and FFRCT (r = 0:093, p =
0:274; r = 0:012, p = 0:883; r = 0:034, p = 0:680, respectively)
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(Figures 2–4). Tables 1 and 2 in the supplementary section
outline patient characteristics and stress test findings stratified
by CAD severity ranges.

4. Discussion

We identified a number of important findings:

(1) In this real-world clinical cohort, positive stress test-
ing in patients without known CAD was not

Table 1: Patient characteristics and associations with CAD > 50%.

Patient characteristics Total, N = 206, n (%) CAD > 50%, N = 79, n (%) CAD < 50%, N = 127, n (%) p value∗

Age, mean (SD) 60.3 (11.5) 62.9 (11.5) 58.7 (11.2) 0.011

BMI, mean (SD) 29.5 (5.6) 30 (5.4) 29.2 (5.7) 0.316

Male 87 (42) 36 (46) 51 (40) 0.444

Diabetes 38 (18) 19 (24) 19 (15) 0.102

HPL 145 (70) 63 (80) 82 (65) 0.020

HTN 135 (66) 63 (80) 72 (57) 0.001

Chest pain during study 14 (7) 6 (8) 8 (6) 0.660

Arrhythmia∗∗ 60 (30) 24 (32) 36 (29) 0.658

Hypertensive response 15 (8) 5 (7) 10 (8) 0.699

ST depression ≥ 1mm 71 (34) 22 (28) 49 (39) 0.115

DTS: intermediate risk 74 (50) 25 (51) 49 (50) 0.907

DTS: low risk 73 (50) 24 (49) 49 (50)

Duke treadmill score, mean (SD) 4.8 (4.8) 4.5 (4.7) 5 (4.9) 0.590

METS score, mean (SD) 10.3 (3.4) 9.6 (3.4) 10.7 (3.4) 0.065

Exercise duration 8.6 (3.3) 8.2 (3.3) 8.9 (3.3) 0.249

FFR-CT:

FFR-CT < 0:80 94 (46) 54 (68) 40 (31) <0.001
∗p value calculated with t-test, chi-sq test, or Fisher’s exact test, where appropriate. ∗∗58 PVCs and 2 NSVT/VT.

Table 2: Patient characteristics and associations with FFR-CT < 0:80.

Patient characteristics Total, N = 206, n (%) FFR-CT < 0:80, N = 94, n (%) FFR-CT > 0:80, N = 112, n (%) p value∗

Age, mean (SD) 60.3 (11.5) 61 (12.3) 59.7 (10.7) 0.421

BMI, mean (SD) 29.5 (5.6) 29.4 (4.9) 29.6 (6.1) 0.782

Male 87 (42) 43 (46) 44 (39) 0.350

Diabetes 38 (18) 20 (21) 18 (16) 0.337

Hyperlipidemia 145 (70) 75 (80) 70 (63) 0.007

HTN 135 (66) 65 (69) 70 (63) 0.317

Chest pain during study 14 (7) 9 (10) 5 (5) 0.121

Arrhythmia∗∗ 60 (30) 29 (32) 31 (28) 0.563

Hypertensive response 15 (8) 8 (9) 7 (6) 0.526

ST depression ≥ 1mm 71 (34) 28 (30) 43 (38) 0.196

DTS: intermediate risk 74 (50) 29 (45) 45 (54) 0.284

DTS: low risk 73 (50) 35 (55) 38 (46)

Duke treadmill score, mean (SD) 4.8 (4.8) 5.3 (5) 4.5 (4.7) 0.297

METS score, mean (SD) 10.3 (3.4) 10.4 (3.6) 10.3 (3.3) 0.902

Exercise duration 8.6 (3.3) 8.8 (3.3) 8.5 (3.2) 0.536
∗p value calculated with t-test, chi-sq test, or Fisher’s exact test, where appropriate. ∗∗58 PVCs and 2 NSVT/VT.

Table 3: Percentage of CAD > 50% and FFRCT < 0:80 by stress test
result.

CAD
Negative
N = 77

Equivocal
N = 97

Positive
N = 10

Indeterminate
N = 22 p value

<50% 46 (59.7%) 61 (62.9%) 7 (70%) 13 (59.1%)
0.910

>50% 31 (40.3%) 36 (37.1%) 3 (30%) 9 (40.9%)

FFRCT

>0.80 40 (51.9%) 55 (56.7%) 5 (50%) 12 (54.5%)
0.927

<0.80 37 (48.1%) 42 (43.3%) 5 (50%) 10 (45.5%)
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associated with anatomic or functional CAD using a
diagnostic strategy of coronary CTA and FFRCT

(2) Exercise duration, exercise capacity/achieved work-
load, and DTS were not correlated with anatomic or
functional CAD

(3) There was no association between chest pain with
exercise and anatomic and functional CAD

(4) Coronary CTA and FFRCT identified CAD in at-risk
patients with equivocal stress tests

For over four decades, functional stress testing has served
as the standard cardiovascular diagnostic pathway for those
with stable symptoms suggestive of CAD, although it has
been reported to have low diagnostic yield at the time of
ICA with approximately two-thirds of patients with a
positive stress test having no obstructive CAD and 28% of
patients with a negative stress test having CAD [3]. An
analysis frommore than 385,000 patients from >1100 United
States hospitals noted that less than half of patients undergo-
ing exercise-treadmill testing, stress echocardiography, and
SPECT imaging, prior to their ICA, were found to have
obstructive CAD [18]. Noninvasive testing made a similar
prediction of obstructive CAD compared to clinical factors.
In addition, a Duke University study of over 15,000 patients
found that among patients referred for ICA, those with a
positive stress test were less likely to have obstructive CAD
compared to those with either a negative stress test or no test-
ing at all [19]. Recently, the NIH-funded international ISCHE-
MIA trial demonstrated that in patients with moderate-severe
ischemia on functional stress testing, over 14% demonstrated
no obstructive CAD on coronary CTA [20]. Coronary CTA
has become an established diagnostic modality for the assess-
ment of CAD [14–16, 21]. It is a sensitive study, reliably con-
firms the absence of CAD, and aids in the identification of
nonobstructive CAD for which providers can institute optimal
medical therapy to reduce cardiac events [22]. In themulticen-
ter randomized controlled trial SCOT-HEART, the use of
coronary CTA in addition to standard care in patients with
stable chest pain resulted in a significantly lower rate of death
from heart disease or nonfatal myocardial infarction (MI)
than standard care alone [23]. Similar to prior studies, in our
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analysis, stress testing positivity did not accurately identify
obstructive CAD. Only 30% of patients with a positive stress
test had obstructive CAD. In addition, of those with a negative
stress test, 40% had obstructive CAD.

Similar to ICA, coronary CTA alone does not allow for the
interpretation of functional importance of intermediate
stenoses. It is well known that there is poor correlation
between the angiographic severity of a coronary stenosis and
its functional significance and numerous studies have shown
that FFR is better at identifying lesions responsible for ische-
mia and improves outcomes when guiding revascularization
[24]. The addition of FFRCT has improved the performance
of coronary CTA for the diagnosis of clinically important
CAD [5, 25]and decreases the need for ICA [26, 27]. In our
analysis, approximately 50% of patients with a negative stress

test had a positive FFRCT in at least one epicardial coronary
artery. Importantly, only 50% of patients with a positive stress
test had a positive FFRCT.

Despite its rather low sensitivity for the predication of
obstructive CAD, functional capacity, as assessed by ETT, is
often regarded as one of the most important prognostic
variables [28, 29]. In a seminal work by McNeer et al., patients
with poor functional capacity were more likely to have
anatomic CAD and worse survival [30]. Whether patients with
a high exercise capacity are at a low risk for functional CAD as
assessed by FFRCT is unknown. In this analysis, patients had
excellent functional capacity, achieving on average 10 METS
with a mean exercise duration > 8 minutes. Patients with
CAD > 50% had similar functional capacity to those with
CAD < 50% disease. Likewise, patients with positive FFRCT
had similar achieved workload and exercise duration to those
with negative FFRCT. In addition, there were no significant cor-
relations between METS, or exercise duration and FFRCT.

Although the DTS has been shown to predict adverse
outcome and mortality, this analysis did not find an associa-
tion of DTS with anatomic or functional CAD as assessed by
coronary CTA and FFRCT. On average, study patients had a
low risk DTS. The mean DTS for our cohort was 4.8, with
55% of patients being low annual risk and 45% intermediate
risk of death [31]. Although we did not assess mortality,
patients with a low DTS may be mistakenly inferred to have
nonsignificant CAD translating to a missed opportunity for
medical optimization and improved outcomes. Both low
and intermediate DTS patients had similar rates of CAD >
50% and/or FFRCT < 0:80, highlighting that the low and
intermediate DTS may not be associated with anatomic and
functional extent of CAD. Consistent with a prior study
using invasive FFR, in our analysis, there was no significant
correlation between numerical DTS and FFRCT [32].

Many patients experience MI without any prior symp-
toms. In a study of over 9000 patients who were free of car-
diovascular disease at baseline from the Atherosclerosis
Risk in Communities study, >45% of incident MI were
asymptomatic in nature [33]. These individuals often lack
medical treatments that may prevent subsequent adverse
outcomes, including a second MI or even death [34]. In addi-
tion, the prognosis of patients with asymptomatic MI is sim-
ilar, if not worse, than those with clinically evident MI [35].
Various coronary CTA studies in asymptomatic individuals
have identified a significant number of patients with prog-
nostically important CAD [36, 37]. Interestingly, in our
study, there was no correlation between chest pain during
the stress test and anatomic or functional CAD. A coronary
CTA and FFRCT diagnostic strategy may play a critical role
in identifying and treating these at-risk patients.

Patients with equivocal or discordant stress test findings
represent a unique patient population and often present a
challenge for the treating physician. In fact, this group repre-
sents the largest portion of our stress patients with 47% of
patients having an equivocal stress test. Of all the equivocal
stress tests, 37% had CAD > 50% and 43% had FFRCT <
0:80. Patients with discordant or equivocal stress results have
an excess risk for adverse cardiac events. In a recent large
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single-center study, researchers analyzed >15,000 patients
undergoing stress testing and found that patients with equiv-
ocal stress tests had higher rates of major adverse cardiac
events compared to patients with negative stress findings
[19]. Coronary CTA and FFRCT may play an important role
in the diagnosis and management of patients with equivocal
stress tests.

5. Limitations

Coronary flow reserve has been associated with exercise
capacity and was not assessed in this study. Coronary micro-
vascular dysfunctionmay have been a reason for reduced exer-
cise capacity in patients who have no apparent anatomic or
functional epicardial CAD. Stress testing and coronary CTA
did not occur on the same day, and it remains possible that
CAD could have progressed between study dates. This
remains unlikely since there was only a median 49-day differ-
ence between study modalities, and no patients underwent
revascularization between tests. This is a single-center retro-
spective study with a limited sample size. Females represented
58% of the study population, which is higher compared to
many CAD clinical trials. Recently, FFRCT was noted to differ
between sexes as women have a higher FFRCT for the same
degree of stenosis [38]. In FFRCT-positive CAD, women had
less obstructive CAD. Further study is needed comparing
gender specific differences of stress test findings to anatomic
or functional extent of CAD. In addition, the average
BMI of our population was 30kg/m2, which is more typical
of the United States population compared to individuals in
other geographic areas of the world, and may have
impacted our findings. Finally, given the retrospective
nature of this study, the choice of stress modality and sub-
sequent referral to CTA is complex for which not all con-
founding variables can be accounted for and could have
led to the potential of inclusion bias. Therefore, the results
of this analysis are hypothesis generating and larger analy-
ses are needed to definitively address the association of
stress parameters with anatomic and functional epicardial
CAD.

6. Conclusion

Stress testing results, metrics of functional capacity, chest
pain with exercise, and low-intermediate DTS are not associ-
ated with anatomic or functional CAD by coronary CTA and
FFRCT.
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Echocardiography represents a first level technique for the evaluation of coronary artery disease (CAD) which supports clinicians in
the diagnostic and prognostic workup of these syndromes. However, visual estimation of wall motion abnormalities sometimes fails
in detecting less clear or transient myocardial ischemia and in providing accurate differential diagnosis. Speckle tracking
echocardiography (STE) is a widely available noninvasive tool that could easily and quickly provide additive information over
basic echocardiography, since it is able to identify subtle myocardial damage and to localize ischemic territories in accordance to
the coronary lesions, obtaining a clear visualization with a “polar map” useful for differential diagnosis and management.
Therefore, it has increasingly been applied in acute and chronic coronary syndromes using rest and stress echocardiography,
showing good results in terms of prediction of CAD, clinical outcome, left ventricular remodeling, presence, and quantification
of new/residual ischemia. The aim of this review is to illustrate the current available evidence on STE usefulness for the
assessment and follow-up of CAD, discussing the main findings on bidimensional and tridimensional strain parameters and
their potential application in clinical practice.

1. Background

It is widely known that echocardiography is an essential sup-
porting tool for clinicians in the evaluation of coronary artery
disease (CAD). Its application could vary between acute and
chronic coronary syndromes (ACS and CCS); however, it has
shown not only to aid diagnosis but also to provide useful
prognostic information in this clinical setting.

The gradual introduction of speckle tracking echocardi-
ography (STE) into clinical practice and its validation for
diagnosis and risk stratification in different cardiac disease
[1–4] with a great feasibility [5] have allowed to appreciate
its potential additive value also for patients with CAD [6].

In fact, speckle tracking analysis is capable to assess typ-
ical ischemic subendocardial damage through several param-
eters: longitudinal strain (LS), which is the most used STE
parameter to assess the early affection of subendocardial

fibers of all cardiac chambers; bull’s eye representation of left
ventricular global LS (LVGLS) that provides a regional eval-
uation of LV injury according to coronary vascularization
territories and the specific analysis of endocardial wall defor-
mation properties with the three-layer analysis [7]. These
tools could be useful to promptly guide diagnosis in uncer-
tain cases of ACS and to provide early detection of CCS.
Moreover, speckle tracking analysis could be performed on
stress echocardiography (SE) images to assess subtle myocar-
dial damage in case of doubtful stress test results or to assess
myocardial viability [8]. STE was also shown to be a marker
of myocardial fibrosis [9]; therefore, it could represent a non-
invasive marker of myocardial postischemic scar.

The present review is aimed at providing an overview of
the different clinical applications of sSTE for the evaluation
of CAD, highlighting benefits and challenges of its inclusion
in the diagnostic and prognostic workup of ACS and CCS.
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2. CAD Diagnosis

The latest European Society of Cardiology (ESC) guidelines
for the diagnosis and management of non-ST-elevation
ACS [10] (NSTE-ACS) and CCS [11] suggest the use of
speckle tracking to support diagnosis in patients referred to
echocardiography for clinical suspicion of ischemic disease
and absence of visual wall motion abnormalities. In fact, high
sensitivity and specificity (86% and 73%, respectively) were
reported for cutoff values of LVGLS > −18:8% and of LV
global circumferential strain ðGCSÞ > −21:7% (87% and
76%, respectively) to detect significant coronary stenosis in
patients with chest pain and inconclusive electrocardio-
graphic (ECG) and blood test results [12], providing an addi-
tive value to the wall motion score index (WMSI).

Accordingly, a meta-analysis including 1385 patients ana-
lyzed LVGLS ability to reveal CAD, showing satisfactory
results for this noninvasive marker. The mean values of
LVGLS for those with and without CAD were -16.5% [95%
confidence interval (CI): -15.8% to -17.3%] and -19.7% [95%
CI: -18.8% and -20.7%]. Moreover, abnormal LVGLS detected
moderate-to-severe CAD with a pooled 74.4% sensitivity,
72.1% specificity, 2.9 positive likelihood ratio, and 0.35 nega-
tive likelihood ratio. The area under the curve (AUC) and
diagnostic odds ratio (OR) were 0.81 and 8.5, respectively [13].

What is more, LVGLS bull’s eye polar maps offer an easy
and quick assessment of regional distribution of myocardial
necrosis through regional LS: the division in 17 wall segments
from the apex to base and the visualization of a circum-
scribed blue area in specific segments allow to determine
the distribution of blood flow-abnormalities according to
the culprit coronary artery (Figure 1). Moreover, regional
LS can be useful for the differential diagnosis between ACS
and Takotsubo syndrome, which has typical LV strain pat-
terns of the polar map with exclusive involvement of apical
segment, and between ACS and acute myocarditis, in which
polar map is quite different from that of acute myocardial
infarction (AMI) since the impaired areas do not follow a
typical coronary topographic localization [12].

Some authors claim that the analysis of LV regional func-
tion by segmental LS is not recommended because of less reli-
ability and large intervendor and interobserver variabilities
[14]. Therefore, it would be reasonable to use regional strain
distribution to overall assess typical patterns in order to guide
diagnosis, rather than evaluating the numerical segment-
specific strain values, and prefer using LVGLS as the diagnos-
tic index [1]. Moreover, high heart rate, lack of ECG tracing,
and poor acoustic window (a frequent circumstance in acute
settings with limited patients’ movement and collaboration)
strongly limit its application in the acute phase.

Therefore, in the last years, advanced imaging modalities
have been proposed for the evaluation of CAD: while cardiac
computed tomography (CCT) use has been recommended in
the last ESC guidelines [10, 11] and National Institute for
Health and Care Excellence (NICE) for younger patients with
chest pain and low pretest probability of CAD, due to its
greater anatomic insights and high negative predictive value
(NPV) [15], cardiac magnetic resonance could be preferred
for prognostic purposes in ACS and CCS [16]. In fact, in a

cohort of 206 patients, the application of CCT, as first- or
second-line investigation, allowed to spare 42.6% unneces-
sary invasive coronary angiography (ICA) and 63.7% of addi-
tional functional test (when used as first-line exam) [17].
However, CCT pitfalls still remain high costs and have low
availability and a need of a specific trained team of operators
and clinicians.

Of note, 103 patients with chest pain who underwent multi-
modality imaging evaluation with stress/rest echocardiography
and CCT and LVGLS showed comparable results with CCT
for the exclusion of CAD, since patients who had abnormal
CCT had lower resting and peak stress GLS then those with
normal CCT (14:85% ± 3:05 vs 17:99% ± 2:88, p ≤ 0:001;
14:89% ± 3:35 vs 18:44% ± 4:27, p = 0:007, respectively) [18].

2.1. Acute Coronary Syndromes. Being low time-consuming
and easy to perform, STE could be applied also in acute set-
tings, either before ICA, in case of uncertain diagnosis, or
after revascularization for further risk stratification, if avail-
able. In patients hospitalized in a coronary care unit, the
reduction of regional LV LS has shown to identify epicardial
coronary lesions detected with subsequent ICA; moreover, its
calculation after revascularization showed to predict the
extension of myocardial necrosis due to the recent ischemia,
of LV remodeling, and of postprocedural short-term and
long-term complications, such as heart failure (HF) [19–22].

Noteworthy, LVGLS was demonstrated to be more accu-
rate than WMSI in identifying NSTE-ACS patients with
acute coronary occlusion who may benefit from urgent
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Figure 1: Bull’s eye polar map representation of regional global
longitudinal strain according to specific territories of coronary
artery vascularization on a 17-segments model. The “blue”
segments represent the ischemic area. ANT: anterior; SEPT: septal;
ANT_SEPT: anteroseptal region; CX: circumflex coronary artery;
INF: inferior; LAD: left anterior descending coronary artery; LAT:
lateral; POST: posterior; RCA: right coronary artery.
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reperfusion therapy [23]. This represents an important gate-
way function of STE, which has been considered in the new-
est NSTE-ACS guidelines [10].

Particularly, LV LS polar maps are able to define the
extension and localization of transmural necrosis with nonvi-
able myocardium after AMI [24].

A study investigating the diagnostic power of LVGLS and
territorial LV LS to predict CAD in patients with suspected
NSTE-ACS and normal global/regional systolic function
showed that GLS was significantly impaired in patients with
significant coronary artery stenosis than those without
(16:7 ± 3:4% vs. 22:4 ± 2:9%, p < 0:001) [25] and that territo-
rial LS was able to identify the localization of coronary steno-
sis (left anterior descending artery (LAD), left circumflex
artery (CX), and right coronary artery (RCA)); this suggests
an incremental diagnostic value of GLS over the visual echo-
cardiographic assessment of wall motion. Moreover, GLS >
−19:7% showed AUC = 0:92, 81% sensitivity, and 88% spec-
ificity for detecting a significant stenosis (p < 0:001).

Myocardial strain by echocardiography may also facil-
itate the exclusion of significant coronary artery stenosis
among patients presenting with suspected NSTE-ACS with
unremarkable ECG findings and normal cardiac bio-
markers [1]. In a study on patients referred to the emer-
gency department with suspected NSTE-ACS, LVGLS
was superior to conventional echocardiographic parame-
ters in distinguishing patients with and without significant
coronary artery stenosis (>50% luminal narrowing), with
high sensitivity and NPV (AUC = 0:87, 93% sensitivity
and 78% specificity, 0.74 positive predictive value (PPV),
0.92 NPV) [26]. Another research revealed that GLS and
GRACE ACS risk scores were independent predictors of
CAD at multivariate analysis (GLS: OR = 0:51, p < 0:001;
GRACE score: OR = 0:93, p = 0:007) in patients with typi-
cal chest pain with unstable angina characteristics and a
typical rise and/or fall of cardiac biomarkers, aiding in
the diagnosis of NSTE-ACS [27].

LVGLS diagnostic value and capability to define myocar-
dial infarction size were assessed in a meta-analysis including
eleven studies and 765 patients, which compared LVGLS to late
gadolinium enhancement (LGE) as a reference method [28].
Pooled estimates of GLS revealed a sensitivity and specificity
of 77% and 86%, respectively, with an AUC = 0:70. As for the
transmurality of the infarction (50% of myocardium involved
was used as cutoff value), GLS showed a sensitivity and specific-
ity of 76% and 79%, respectively, and an AUC of 0.65. These
results suggest that STE could also be used as noninvasive diag-
nostic parameter to assess myocardial infarction area.

In addition, the analysis of LV torsion by STE has shown
surprising results in patients with AMI: there is a direct cor-
relation between torsion values and the area of the extension
of myocardial infarction [29]; experimental models showed
how LV torsion properties was preserved or mildly reduced
for subendocardial ischemia, while being largely reduced in
case of transmural ischemia. Of note, it was also considerably
reduced 10 minutes after LAD occlusion (p<0.05) [30–32].
Accordingly, other authors described a clear improvement
of LV torsion after percutaneous coronary intervention
(PCI) [33].

2.1.1. Takotsubo Syndrome. In Takotsubo syndrome (TTS)
there is a transient reduction of myocardial perfusion with-
out coronary atherosclerotic lesions, in which etiology, prob-
ably associated with emotional stress and high catecholamine
and serotonin levels [34], is still a matter of research [35]; this
could cause temporary LV systolic dysfunction which could
mimic ACS. Typically, kinetic abnormalities are focused on
the apical region (with hypo-, a-, or dyskinesia of midapical
myocardial segments, sometimes associated with hypokinetic
mid-segments) preserving the basal region (identifying the
so-called “apical ballooning”), last few days, and then com-
plete recovery [36]. Echocardiography has a pivotal role in
identifying and in monitoring this regional kinetic impair-
ment and overall cardiac function, in order to guide the diag-
nostic and therapeutic approach.

As for STE in TTS, its reduction is “circular” rather than
being confined to a specific coronary region and LV twistin-
g/untwisting properties are impaired in the acute phase [36].

It has been shown to accurately identify the recovery of
myocardial dysfunction in patients with TTS 1 month after
the acute phase as compared to patients with AMI [37].
However, more data are required in this field.

2.2. Stable CAD. To date, stable CADwas the major setting of
investigation of STE among myocardial ischemic disease.
Particularly, the importance of the reduction of LVGLS has
been shown with rest and SE in both symptomatic and
asymptomatic patients for the prediction of significant
CAD [8, 38, 39].

As for rest echocardiography, GLS > −18% was prevalent
in those with significant coronary lesions among 216 patients
undergoing ICA for suspected CAD (p < 0:0001), with a
91.1% sensitivity, 63% specificity, 80.4% PPV, 81% NPV,
and 80.5% accuracy for the detection of significant CAD
[40]. In a similar cohort, a stratification of results for one-
(AUC 0.95 for GLS> -18.44%), two- (AUC 0.9 for GLS> -
17.35%), and three- (AUC 0.68 for GLS> -15.33%) vessel
CAD was performed; moreover, segmental LV LS predicted
the localization of the affected vessel (p ≤ 0:001) and had an
inverse correlation with SYNTAX score that was significant
for high and intermediate score (p ≤ 0:001) and nonsignificant
for low score (p = 0:05) [41]. Another study of 211 subjects
excluding patients with diabetes mellitus assessed the accuracy
of GLS > −19% to identify coronary-specific critical stenosis
[stenosis ≥ 70% in ≥1 epicardial coronary artery (≥50% in left
main coronary artery)]; AUC to detect ICA stenosis was 0.818
for CX, 0.764 for LAD, and 0.723 for RCA, respectively [42].

These results confirmed the additive value of STE for the reli-
able detection and localization of ischemic myocardium accord-
ing to coronary perfusion territories also for the study of CCS.

Radwan and Hussein showed a decrease of GLS parallel
with an increasing number of coronary vessels involved in
patients with stable angina and a significant positive correla-
tion between GLS and LV ejection fraction (EF) (r = 0:33; p
= 0:036); they presented a slightly inferior cutoff for GLS
than other studies (GLS > −15:6% had AUC 0.88, 95% for
the prediction of significant CAD; p ≤ 0:001), probably due
to the higher cutoff of coronary stenosis considered to define
significant CAD (>70% narrowing) [43].
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Furthermore, two studies analyzed GLS performance in
patients with normal global and/or regional wall motion on
basic rest echocardiography who subsequently underwent
ICA. The first study demonstrated a significant inverse correla-
tion between GLS and SYNTAX score values (r2 = 0:38, p <
0:001) and identified an optimal cutoff value of GLS > −13:95
% to detect high severity coronary stenosis (sensitivity = 71%,
specificity = 90%, p < 0:001) [44]; the second one found an
impaired systolic function byGLS and radial strain despite nor-
mal wall motion in patients with multivessel CAD [45].

Biering-Sørensen et al. studied 296 patients with stable
angina pectoris, no previous CAD, and normal LV EF, find-
ing that GLS was an independent predictor of CAD after
multivariable adjustment for baseline data, exercise test,
and conventional echocardiography (OR = 1:25, p = 0:016
per 1% decrease) and was able to provide an additive accu-
racy value to exercise test alone (AUC = 0:84 for exercise
test + GLS versus 0.78 for exercise test; p = 0:007) [46].
Again, regional LS identified which coronary artery was ste-
notic, which was also confirmed in another study conducted
in younger patients (mean age 51 ± 8:7 years) with suspected
CAD [47].

2.2.1. Three-Layer Analysis. As previously mentioned, the
additional analysis of three myocardial wall layers (epicardial,
midwall, and endocardial strains) by STE could be enlighten-
ing in patients with CAD, due to the peculiar distribution of
ischemic damage starting form endocardium and then reach-
ing the epicardium in the case of transmural myocardial
infarction, also providing further insights for differential diag-
nosis (e.g., endocardial/transmural ischemia, endocardial
ischemia/no ischemia, and acute myocarditis).

Therefore, several authors focused on the use of a layer-
specific strain in patients with CAD, with greater utilization
of circumferential and radial strain for a more reliable delin-
eation of the layers.

Particularly, Liu et al. applied receiver operating charac-
teristic (ROC) curves to assess the performance of three-
layers STE analysis in patients with NSTE-ACS, showing that
endocardial GLS and territorial LAD LS were significantly
better markers (AUC = 0:91 and 0.87, respectively) of signif-
icant LAD stenosis than that in the mid-myocardial and epi-
cardial layers in these patients [48].

Three studies also evaluated whether layer-specific cir-
cumferential strain analysis can identify scars and transmural
myocardial infarction, reaching good results also after com-
parison with CMR [49–51].

Conversely, other authors found that epicardial and mid-
myocardial LVGLS had a significantly higher diagnostic per-
formance compared to endocardial GLS for the prediction of
significant CAD (>70% coronary stenosis) in 285 patients
with clinically suspected stable angina, normal EF, and no
previous cardiac history [39].

Therefore, the use of three-layer analysis by STE for the
assessment of coronary lesions is still controversial and its
results should be taken with caution.

As an attempt to enhance diagnostic accuracy in stable
CAD patients, many authors combined the use of physical/-
pharmacological SE and three-layer STE.

2.2.2. Stress Echocardiography. The application of STE to
stress echocardiography is still debated, since its feasibility
could be limited by high heart rate and poor acoustic window
due to patients’ position; in fact, it lacks standardization
and/or reference cutoffs and strongly depends on the opera-
tor’s experience [1]. However, to date, there is mounting evi-
dence supporting its use in clinical practice [3, 52].

The first studies with dobutamine SE showed that LV
strain was comparable to WMSI for the diagnosis of CAD
[53]. Later, LV strain showed a greater predictive value than
WMSI for significant coronary artery stenoses in patients
with stable CAD undergoing dobutamine SE: in one study,
reduced GLS during high dobutamine dose had an AUC of
0.81 (sensitivity 89.4%, specificity 64.7%) vs. 0.78 for WMSI
[54]; in another study, GLS had an AUC of 0.95 (sensitivity
94%, specificity 92%) to identify significant CAD (defined
as ≥70% diameter stenosis on coronary angiography vali-
dated as hemodynamically significant by adenosine CMR)
[55]. Furthermore, recovery LVGLS was the strongest predic-
tor of obstructive CAD and was associated with positron
emission tomography findings (extent, localization, and
depth of myocardial ischemia) [56].

Accordingly, Park et al. found that endocardial LVGLS
> −16% at recovery phase during dobutamine SE was an
important predictor of significant CAD, considerably
increasing sensitivity, specificity, PPV, and NPV of visual
assessment alone (91%, 91%, 79%, and 96%, respectively,
vs. 48%, 83%, 52%, and 81%, respectively) [57].

Nishi et al. demonstrated an association between layer-
specific regional LV LS during exercise stress and functionally
significant CAD as confirmed by invasive fractional flow
reserve in stable patients. Moreover, the combination of endo-
cardial LV LS and percent change in the endocardial-to-
epicardial LV LS ratio at early recovery phase offered an incre-
mental diagnostic value to visual estimation of LVwall motion
for the detection of the ischemic territory (AUC = 0:75 vs. 0.61
of visual estimation alone, p = 0:006) [58].

In 132 patients undergoing adenosine SE and ICA, endocar-
dial, midventricular, and epicardial LVGLS had similar diagnos-
tic values, with high specificity, even though showing modest
sensitivity, which could limit its clinical application [59].

An important use of STE during stress echocardiography
in clinical practice could be the assessment of subtle myocar-
dial injury in patients with cardiovascular risk factors [60].

Interestingly, two researches evaluated the use of STE during
SE in almost-entirely women cohorts: the first one found signif-
icantly impaired values of GCS, global radial strain and strain
rate, and GLS in patients with angiographically confirmed
CAD and a positive exercise stress echocardiography as com-
pared with controls, showing that a combination of GLS, GCS,
and standard deviation of the longitudinal strain time-to-peak
had very high accuracy for the detection of CAD (AUC = 0:96
, sensitivity 97%, specificity 86%) [61]. The other study assessed
whether STE during SE could help in the diagnosis of microvas-
cular angina, showing that the most discriminative parameter
for microvascular angina during SE was GCS [62].

2.2.3. The Choice between Global and Regional Strain. Even
though the abovementioned studies showed a valuable
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diagnostic power of LVGLS for the study of CAD, since a
reduction of LVGLS in patients with typical angina is highly
suggestive of CAD, the key for the diagnosis of stable CAD is
represented by the additive value of regional strain analysis.
However, it is characterized by high variability making its
interpretation more challenging and requiring experience,
also considering that its sensitivity could vary among differ-
ent LV segments depending on their location and their echo-
cardiographic visualization (often limited by poor acoustic
window) [63]. This is why many authors chose to use more
easily and rapidly performing LVGLS that we endorse in
order to avoid under- or overestimation of myocardial dam-
age; however, we recommend the integration of STE with
clinical data to enhance diagnostic probability.

3. Prognosis

The evaluation of patients with acute and chronic CAD using
STE has shown to improve the prognostic assessment of
these patients, particularly those with preserved EF, as STE
is able to predict cardiac dysfunction prior to EF reduction
[64]. This is a crucial point, since the development of HF
and cardiac death as a consequence of AMI strongly depends
on the extent of myocardial damage.

First of all, STE has shown an association with after-ACS
event clinical outcome in different studies: a LVGLS > −13%
measured during the index hospitalization was a predictor of
event-free survival in a cohort of both STE-ACS and NSTE-
ACS [65], while LVGLS > −14% predicted admissions for
acute HF and cardiovascular mortality in patients with
AMI [66].

In 70 patients with NSTE-ACS < 72 hours, an impaired
baseline LVGLS and its lack of improvement 24 hours after
coronary revascularization were associated with negative
LV remodeling (defined as lack of improvement of LV func-
tion, with increase in LV end-diastolic volume ≥ 15%)
(OR = 4:3, p < 0:0001;OR = 1:45, p < 0:01, respectively) [21].

Moreover, in a large study of patients with recent AMI,
LVGLS and strain rate were significantly and independently
correlated with all-cause mortality, reinfarction, revasculari-
zation, and HF hospitalization at 3-year follow-up
(OR = 4:5 for LVGLS < −15:1% and 4.4 for LV strain rate >
−1:06 s-1), and LVGLS was superior to LV EF and WMSI
after multivariate analysis [67].

Furthermore, van Mourik et al. demonstrated the addi-
tional value of STE over visual echocardiographic evaluation
for the accuracy in the detection of postinfarct scars in a
cohort of patients analyzed around 110 days after STE-ACS
[68]. An early assessment of residual ischemic injury and
myocardial viability after AMI can help to optimize the ther-
apeutic management in order to prevent serious complica-
tions, such as LV remodeling with development or
progressive worsening of HF, arrhythmias and sudden car-
diac death, or to identify patients to refer for cardiac surgery,
LV mechanical assistance treatment, or preventive intracar-
diac defibrillator implantation.

Importantly, the evaluation of transmurality of myocar-
dial ischemia and the degree of endocardial damage play an
important role in the prognosis of CAD not only in the acute

phase but also during follow-up, in which STE could be of
great utility for its high availability and rapidity of execution.

In fact, Joyce et al. used STE for the evaluation of 105 first
STE-ACS patients treated with primary PCI at baseline and
during follow-up (together with 3-month SE and 1-year
ICA); they found that patients with significant angiographic
CAD at 1-year had greater worsening in global LVGLS dur-
ing SE from rest to peak ð−16:8 ± 0:5% to −12:6 ± 0:5%)
compared with patients without significant CAD ð−16:6 ±
0:4% to −14:3 ± 0:3%), with an optimal cutoff of global
variation ≥ 1:9% (AUC 0.70; sensitivity, 87%; specificity,
46%); higher segmental ΔGLS was independently associated
with significant CAD (OR 1.1) [69].

Also, a prospective study comparing 94 patients with a
first AMI and 137 patients with stable CAD, all of whom
had undergone coronary revascularization, showed that in
stable CAD patients, the addition of endocardial LVGCS >
−20% to baseline characteristics and EF into a regression
model significantly improved the prediction of cardiac events
(AUC = 0:86, sensitivity: 79%, specificity: 84%); conversely,
the same analysis in AMI patients was unsuccessful to
increase the predictive power for cardiac events [70].

Notably, in a small population of after-STE-ACS, three-
layer STE was applied to assess the strain gradient between
the three layers as a marker of irreversible transmural dam-
age and of myocardial viability, with ROC curves endocardial
LS having an AUC = 0:69 and strain gradient having an
AUC = 0:73 for myocardial viability [71].

4. Postsystolic Shortening

Some authors consider the calculation of postsystolic short-
ening (PSS) during strain analysis in patients with CAD as
equally or more important to commonly used LV strain,
since its presence is a characteristic feature of myocardial
ischemic dysfunction [72].

PSS is defined as myocardial shortening that occurs after
end-systole and is observed mainly during isovolumic relax-
ation [73]. This relies on the fact that regional contraction of
the myocardium depends not only by inherent contractility
of the concerned myocardium but also by tension from the
surrounding myocardium. Therefore, in case of reduced
regional contractility because of ischemia, the amplitude of
shortening during ejection time decreases, and early systolic
lengthening (ESL) and PSS are observed in the ischemic
myocardium.

In some case of myocardial ischemia when regional wall
motion abnormalities are not seen on visual assessment, the
analysis of the LV strain curve show PSS, appearing as the
peak of regional LS that occurs after aortic valve closure
(AVC).

The mostly used parameter to quantify PSS is postsystolic
index, which is calculated as follows: ð½peak postsystolic
strain� − ½end‐systolic strain�Þ/ðpeak strain ormaximum
strain change during the cardiac cycleÞ, showing the ratio of
the amplitude of PSS to total shortening. The time from aor-
tic valve closure to peak postsystolic strain is used as another
parameter [74].
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The assessment of PSS is valuable in identifying acute
ischemia, because PSS occurs in the myocardium with
regional contractile dysfunction [75]. It was found to be a
reliable index for the diagnosis of CAD, at rest and during
SE [46], and also to be associated with prognosis in patients
with stable angina [76].

5. Other Cardiac Chambers

Even though the most studied cardiac chamber for the eval-
uation of CAD is the LV, representing the largest part of
myocardium and being responsible of cardiac pump function
and output, the other cardiac chambers could be either
directly involved in ischemic cardiac damage (particularly,
left atrium (LA) in the case of CX lesions and right ventricle
(RV) in the case of RCA) or secondarily affected due to post-
ischemic acute or chronic HF [77].

As the application of STE to LA and RV has been increas-
ingly performed for the evaluation of HF, valvular disease,
hypertension, etc. [78–80] showing great feasibility regard-
less of the operator’s experience [81], it has also recently been
extended to patients with CAD.

5.1. Left Atrial Strain in CAD. In 68 patients with AMI
treated with emergent or urgent PCI, peak atrial longitudinal
strain (PALS) was lower in patients with a CX culprit lesion
than those with culprit lesions in other vessels, whereas the
LA volume index did not show any difference. This confirms
the importance of LA strain over dimensional measures for
the early diagnosis of myocardial damage [82].

In a small study involving patients with stable CAD
undergoing ICA, PALS and peak atrial contraction strain
(PACS) were significantly reduced in patients with
SYNTAX score ≥ 33; notably, these parameters had a close
negative correlation with such parameter (r = 0:861; p <
0:001) [83]. LA strain was also related to clinical outcome
in a cohort of patients with AMI undergoing PCI [84].

Meanwhile, in patients with typical Takotsubo syndrome
who underwent transthoracic-Doppler echocardiography dur-

ing the acute phase and at follow-up (32 ± 18 days later), PALS
was transiently impaired at baseline and was associated to in-
hospital complications. Moreover, LA strain improved parallel
to the dynamic improvement of LV GLS, following the typical
feature of a transient myocardial damage of the disease [85].

5.2. Right Ventricular Strain in CAD. As previously men-
tioned, RV dysfunction was found by STE in 87 patients with
CAD involving RCA, in whom free wall RV LS was an inde-
pendent predictor of RCA involvement at multivariate anal-
ysis (OR = 1:07; 95%; p = 0:02) [86]. Therefore, it could be
used as a reliable marker of RV dysfunction in patients with
inferior AMI.

Moreover, RV involvement has shown significant prog-
nostic consequences in CAD: patients with acute MI compli-
cated by cardiogenic shock showed a worse prognosis if RV
dysfunction by echocardiography was present [87]. Antoni
et al. also showed that a reduction of RV strain was an inde-
pendent predictor of death, reinfarction, and HF hospitaliza-
tion (hazard ratio = 1:08) in patients with AMI treated with
PCI; finally, RV strain provided an incremental value to clin-
ical information, infarct characteristics, LV function, and
RVFAC [88].

6. 3D Strain

The advances in cardiac imaging and the development of
new devices have led to more availability of three-
dimensional (3D) echocardiography, which provides further
insights on cardiac anatomy and is considered superior to 2D
echocardiography for the assessment of cardiac geometry.
However, 3D strain value in clinical practice is still debatable,
also due to vendor-dependency and the lack of standardization.

However, recent studies suggested a potential role of 3D
strain for the evaluation of patients with stable and unstable
CAD.

A recent investigation involving 255 STE-ACS patients
undergoing PCI demonstrated that 3D-LVGLS was the
strongest predictor of LV reverse remodeling (OR = 1:43, p

Table 1: Medium cutoff values of strain parameters for diagnosis and prognostic assessment of coronary artery disease based on the available
literature.

Diagnosis Prognosis
Acute Chronic Acute Chronic

GLS -17.82% [12, 13, 26, 27]
-17.41% [37, 39, 41–43]
SE: -16.75% [55, 56, 58]

-13.32% [20, 21, 64–66] —

GCS -17.35% [12, 19] — -13% [19] -20% [69]

GRS — — — —

Regional LS — -20.45% [44, 64] —

Torsion 1.39 degrees/cm — — —

PSS -13.9% [73]

PALS — — — —

fwRVLS — — — —

3D strain echocardiography
3D GLS: -11.75% [89, 90]

3D GAS: -21% [90]

fwRVLS: free-wall RVLS; GAS: global area strain; GCS: global circumferential strain; GLS: global longitudinal strain: GRS: global radial strain; PALS: peak atrial
longitudinal strain; PSS: post systolic-shortening; SE: stress echocardiography.
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= 0:02) and major adverse cardiac events (OR = 1:44, p <
0:0001), being superior to bidimensional LVGLS for the pre-
diction of outcome [89]. Similar results on 3D strain as the
index of future LV reverse remodeling were showed in
another STE-ACS cohort [90].

Moreover, in patients with NSTE-ACS, 3D STE performed
prior to ICA showed that 3D GLS > −13:50% could detect
those with significant coronary disease (AUC = 0:84) [91].

Finally, in 130 patients with stable angina pectoris, 3D
GLS was correlated with Gensini score, with 88.9% sensitivity
and 92.9% specificity being observed for aGLS > −10%; while
global area strain (GAS), a new feature of 3D echocardiogra-
phy which integrates longitudinal and circumferential defor-
mation, had 97.2% sensitivity and 88.1% specificity for a
cutoff value > −21% to detect critical CAD (estimated as
Gensini score ≥ 20) [92].

Despite these promising results, the diagnostic value of
3D GLS was lower than that of 2D GLS in a recent meta-

analysis on the detection of myocardial infarction size [28];
this suggests that more consolidated researches are war-
ranted to define the 3D usefulness in this clinical setting.

7. Limitations

The major limitation of STE is the lack of defined cutoff
values for its confident use in different clinical settings.
Table 1 shows medium cutoff values of several strain param-
eters proposed in the aforementioned studies on patients
with CAD; however, these values need an external validation
to become generalizable; LA and RV strain cutoffs require
further research to be identified. Vendor dependency could
be considered partially solved after the publication of the
European Association of Cardiovascular Imaging (EACVI)
standardization documents for all chambers’ deformation
imaging [93]. Also, negative values of LV and RV strain are
currently matter of discussion, since the use of negative

Table 2: Benefits and drawbacks of using speckle tracking echocardiography for the evaluation of coronary artery disease.

Advantages Disadvantages

Noninvasive
Lack of standardization and defined cutoff values

Availability and repeatability

Rapidity Operator-dependence

Portability Acoustic window-dependence

Low costs Challenging in case of high heart rate and arrhythmias

Semiautomatic and angle-independent (more reliable than 2D-echo) Lower spatial resolution than other imaging methods

Early diagnosis with regional localization of myocardial injury

Differential diagnosis with bull eye-specific patterns

Symptoms
Angina or equivalent 

Acute

ECG, troponin Phisical examination
ECG
Echocardiography

+STE

Positive for
suspected CCS 

Stress tests
and/or ICA

Diagnosis of subtle LV injury
(+ 3-layer analysis)

No

Revascularization

Follow up 
Cardiologic visit, ECG, bloodtests, rest/stress ECHO

+STE
-myo cardial viability

STE-ACS or very-
high/high risk NSTE-ACS 

ICA

Low risk NSTE-ACS or 
unstable angina

Echocardiography
+ STE

INCONCLUSIVE

New WMA
Reduced GLS with typical
regional and/or 3-layer 
distribution
Risk stratification

Revascularization

Chronic

Yes

+

–

No
Yes

-detectionof new or residual ischemia

Risk stratification and
follow-up timing 

Figure 2: Potential integration of speckle tracking echocardiography as additive tool in diagnostic and follow-up algorithms of acute and
chronic coronary syndromes. Large prospective studies are needed to validate this algorithm and investigate its impact on clinical outcome.
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values could result in some confusion, especially when it
comes to expressing majority and minority criteria, or could
expose to important mistakes during the data collection for
missing minus typing. We agree with this opinion and
understand the choice of some authors to report absolute
values in their research papers; however, in our personal
practice, we still prefer to use negative values of ventricular
strain since it currently is the most standardized method
based on the international committee documents. Moreover,
the use of a negative sign is important to differentiate ventric-
ular strain, which describes contractile function, being nega-
tive in order to reflect myocardial fiber shortening, from left
atrial strain, which describes relaxation properties as myocar-
dial fiber distension.

Furthermore, STE maintains the common limitations of
bidimensional echocardiographic measures, such as image
quality, operator dependency, and load dependency (lower
than LV EF). These limitations could be overcome by the
use of 3D echocardiography. However, validated data and
standardization among different vendors are necessary to
extend its applicability beyond research purposes. Table 2
resumes the benefits and drawbacks of using STE for the
study of CAD.

8. Conclusions

Beyond ECG and biomarkers, echocardiography is a mile-
stone for the evaluation of CAD in acute and chronic settings.
STE could provide an additive value over visual wall motion
assessment both for diagnostic and prognostic assessment,
and the inclusion of LVGLS in clinical diagnostic workup
of these patients is supported by plenty of evidence and clear
advantages overweighing the intrinsic limitations of STE
technique (Figure 2). However, further studies are needed
to confirm the potential value of other chambers’ strain.
Future experts’ consensus to identify reference values of LV
strain parameters in CAD is highly expectable for a definitive
standardization of their use.
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The recently published 2019 guidelines on chronic coronary syndromes (CCS) focus on the need for noninvasive imaging
modalities to accurately establish the diagnosis of coronary artery disease (CAD) and assess the risk of clinical scenario
occurrence. Appropriate patient management should rely on controlling symptoms, improving prognosis, and guiding each
therapeutic strategy as well as monitoring disease progress. Among the noninvasive imaging modalities, cardiovascular magnetic
resonance (CMR) has gained broad acceptance in past years due to its unique features in providing a complete assessment of
CAD through data on cardiac anatomy and function and myocardial viability, with high spatial and temporal resolution and
without ionizing radiation. In detail, evaluation of the presence and extent of myocardial ischemia through stress CMR (S-
CMR) has shown a high rule-in power in detecting functionally significant coronary artery stenosis in patients suspected of
CCS. Moreover, S-CMR technique may add significant prognostic value, as demonstrated by different studies which have
progressively evidenced the valuable power of this multiparametric imaging modality in predicting adverse cardiac events. The
latest scientific progress supports a greater expansion of S-CMR with improvement of quantitative myocardial perfusion
analysis, myocardial strain, and native mapping within the same examination. Although further study is warranted, these
techniques, which are currently mostly restricted to the research field, are likely to become increasingly prevalent in the clinical
setting with the scope of increasing accuracy in the selection of patients to be sent to invasive revascularization. This review
investigates the diagnostic and prognostic role of S-CMR in the context of CAD, by analysing a strong, long-standing, scientific
evidence together with an appraisal of new advanced techniques which may potentially enrich CADmanagement in the next future.

1. Introduction

Coronary artery disease (CAD) is a widespread clinical phe-
nomenon associated with different clinical entities, which
involves a large burden on the healthcare system with an
increasing need for objective diagnostic tests to both confirm
the diagnosis and assess the event risk [1–4]. In 2019, the
European Society of Cardiology (ESC) published the guide-
lines on the diagnosis and management of chronic coronary

syndromes (CCS), which represent a relevant step by intro-
ducing innovative changes mostly in the diagnostic workup
of suspected obstructive CAD. Noninvasive imaging methods,
either functional tests or anatomical imaging, represent indis-
pensable tools for appropriate management of patients with
known or suspected CAD, by providing adequate detection
of the disease, guiding therapy, and predicting outcome. Stress
CMR (S-CMR) is a functional imaging test that has been
widely recognized in the past few years as an accurate, well-
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validated, nonionizing technique [5–7]. The possibility of a
multiparametric approach in each S-CMR study, from repro-
ducible evaluation of cardiac function and scar detection to an
accurate definition of myocardial ischemia in hemodynami-
cally relevant coronary stenosis and microvascular dysfunc-
tion, has made S-CMR an appealing noninvasive modality
for comprehensive assessment of CAD.

2. Clinical Applications and
Technical Approach

According to the latest version of the guidelines, the diagnos-
tic approach of CAD should be primarily based on the clini-
cal likelihood of the disease, and the choice for the initial
diagnostic test, either noninvasive imaging as a “gatekeeper”
to invasive coronary angiography (ICA) or direct ICA,
should be based on clinical risk assessment, patient charac-
teristics, local expertise, and test availability [8].

Noninvasive imaging methods, either functional tests,
such as S-CMR, or anatomical imaging, such as cardiac com-
puted tomography angiography (CCTA), are recommended
in Class Ib as the initial tests for diagnosing CAD in symp-
tomatic patients in whom obstructive CAD cannot be
excluded by clinical assessment alone [9]. Of note, each
imaging test has a different performance in ruling in or ruling
out obstructive CAD, which should also be taken into
account in the initial workup.

Functional imaging methods include myocardial perfu-
sion imaging with single-photon emission computed tomog-
raphy (SPECT), positron emission computed tomography
(PET), stress echocardiography, and S-CMR. These modali-
ties, although possibly missing subclinical atherosclerosis,
typically have better rule-in power and have shown higher
specificity for the detection of hemodynamically significant
coronary stenosis than anatomical imaging with CCTA, by
leading to fewer referrals for ICA compared with a strategy
relying on anatomical imaging or exercise ECG only [10].

S-CMR can detect myocardial ischemia, thus functionally
significant CAD, through evaluation of perfusion defects or
ischemic wall motion abnormalities (WMA) provoked by
exercise or pharmacological stress. S-CMR protocol should
be performed according to the latest update of the S-CMR
guidelines [11] and briefly implies a rest and stress phase,
with final late gadolinium enhancement (LGE) sequences.

Vasodilators are the most commonly used stress agents
(adenosine, dipyridamole, and regadenoson) which com-
monly induce myocardial ischemia through a “steal phenom-
enon” and loss of autoregulation mechanism, thus leading to
perfusion defects [12]. In case of perfusion imaging, a first-
pass perfusion technique using a saturation-prepared T1-
weighted fast gradient echo sequence is performed at peak
myocardial stress during contemporary gadolinium contrast
agent injection. If dipyridamole is used, additional cine
sequences are exploited due to its longer half-life [13].

In opposition, inotropic agents, such as dobutamine, act
by improving heart rate and only cine sequences are acquired
at maximal stress for detection of regional WMA to unmask
myocardial ischemia. Hence, each S-CMR examination can
be classified as either normal (absence of stress perfusion

defect in at least 1 myocardial segment free from LGE) or
positive for ischemia (reversible myocardial perfusion defect
alone or combined with WMA in at least 1 myocardial seg-
ment without corresponding LGE, as shown in Figure 1).

Actually, the recent 2019 guidelines recommend S-CMR
(Class Ib) preferentially in patients with higher clinical likeli-
hood of CAD or with a history of revascularization, in whom
a functional evaluation of ischemia together with myocardial
viability would be most useful, as also supported by cost-
effectiveness data [14]. On the other hand, anatomical imag-
ing with CCTA is recommended as first-line test (Class Ib) in
suitable patients with low to intermediate clinical likelihood
of CAD or no history of CAD, due to its highest rule-out
capability [9].

This represents a relevant change compared to the previ-
ous version of the guidance, where stress imaging was recom-
mended in patients with stable CAD as the first preferred
diagnostic option (Class Ib), while CCTA was given only a
Class IIa indication as an alternative test for ruling out signif-
icant CAD in selected patients [15].

If recent strong evidences [16, 17] have favoured in
Europe a relevant spin-off of CCTA in the field of CCS
against functional imaging [18, 19], numerous data have
underlined the excellent sensibility and specificity of S-
CMR in CAD diagnosis and patient risk classification with
a long-standing scientific evidence [20, 21].

3. Diagnostic Role of Stress CMR

Numerous studies have reported a high diagnostic accuracy
of noninvasive imaging modalities in detecting significant
obstructive CAD against clinical gold standards, angiograph-
ically determined luminal coronary stenosis and fractional
flow reserve (FFR) [22–28].

Concerning S-CMR, there is a wide body of scientific evi-
dence that has strengthened its position, and S-CMR has
shown excellent diagnostic performance in the detection of
CAD, both for hemodynamically significant coronary steno-
sis and microvascular dysfunction [29, 30]. Many of these
studies regarding the diagnostic performance of S-CMR are
listed in Table 1.

In 2001, Schwitter et al. presented one of the first multi-
slice approach studies on perfusion S-CMR in an unselected
study population and demonstrated for S-CMR a sensitivity
and specificity of 91% and 94%, respectively, for the detection
of CAD by S-CMR using PET as gold standard, and a sensi-
tivity and specificity of 87% and 85%, respectively, using
quantitative coronary angiography (stenosis > 50%) as gold
standard [31]. These results initially sustained the role of per-
fusion CMR as a reliable modality for the detection of CAD
in comparison to other perfusion modalities, with the addi-
tional capacity of identifying even subendocardial defects,
which are currently missed by SPECT.

A large meta-analysis by Nandalur et al. involving 1183
patients further enhanced the emerging role of S-CMR in
the diagnosis of CAD by showing a sensitivity of 91% and a
specificity of 81% for perfusion CMR and a sensitivity of
83% and specificity of 86% for stress-induced WMA in a
per patient analysis, respectively [32].
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Figure 1: Continued.
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Different trials investigated the diagnostic accuracy of S-
CMR versus SPECT, a still worldwide used technique that
historically has represented the gold standard for myocardial
perfusion assessment.

The MR-IMPACT trial in 2008 was a multicentre, multi-
vendor, randomized trial that determined in 241 patients the
diagnostic performance of adenosine perfusion-CMR in
comparison to SPECT for the detection of CAD, with ICA
as the reference standard. Perfusion-CMR at the optimal
contrast dose had similar performance as SPECT studies in
patients with the same dose (area under ROC curve (AUC):
0:86 ± 0:06 vs. 0:75 ± 0:09 for SPECT, p = 0:12), but with
even superior diagnostic performance when compared to
the entire SPECT population (AUC: 0:67 ± 0:05, n = 212; p
= 0:013). Schwitter et al. were therefore able to demonstrate
how S-CMR could at least represent a valuable alternative to
SPECT for CAD detection [33].

These evidences were later supported by the larger MR-
IMPACT II trial, which involved 533 patients among 33 cen-
tres. Patients were evaluated by S-CMR and gated-SPECT
before ICA. Both tests showed a nonsignificant difference in

terms of percentage of not-evaluable tests (5.6% versus
3.7%, respectively, p = 0:21) while S-CMR showed a superior
sensitivity in detecting CAD compared to SPECT (sensitivity
score of 0.69 and 0.59, respectively, p = 0:024), but with a
lower specificity (specificity scores of 0.61 and 0.72, respec-
tively, p = 0:038) [34]. The overall superiority of S-CMR over
SPECT and gated-SPECT for the detection of CAD was dem-
onstrated (AUC 0.75 vs. 0.65 vs. 0.69) with significant differ-
ence (p = 0:0004 and p = 0:018) [35].

Of note, MR-IMPACT trials were performed on a
selected population with a relatively high pretest probability
of disease, which is not the typical population referred for
noninvasive stress tests in clinical practice. However, all tests
were performed in all patients to avoid testing bias.

A powerful and direct comparison between S-CMR and
SPECT was additionally provided by the CE-MARC study
in 2012. This was a large, prospective, multicentre trial that
involved a cohort of 628 patients with suspected angina,
who prospectively underwent S-CMR, SPECT, and ICA (ref-
erence standard) examinations in a period of 4 weeks with
later follow-up till 5 years. Of note, the S-CMR examination

(i)

Figure 1: A 60-year-old woman: new-onset angina in previous myocardial infarction and PCI of right coronary artery; LGE sequences (a–c)
showed subendocardial inferolateral fibrosis (ischemic pattern); after regadenoson administration, matching rest (d–f) and stress perfusion
sequences (g–i) septal reversible perfusion defect was detected. Invasive coronary angiography confirmed subocclusive left descending
anterior coronary artery stenosis.

Table 1: Characteristics of defined studies regarding the diagnostic performance of stress perfusion cardiovascular magnetic resonance.

Author Reference N Sensitivity (%) Specificity (%) Year

Schwitter et al. [31] S-CMR vs. ICA 48 87% 85% 2001

Nandalur et al. [32] S-CMR vs. ICA (meta-analysis) 1183 91% 81% 2007

Schwitter et al. [33] S-CMR and SPECT vs. ICA 234 67% 85% 2008

Greenwood et al. [36] S-CMR and SPECT vs. ICA 752 86% 83% 2012

Schwitter et al. [35] S-CMR and SPECT vs. ICA 533 75% 59% 2013

Greenwood et al. [37] S-CMR and SPECT vs. ICA 235 88% 83% 2014

Takx et al. [41] S-CMR vs. FFR-ICA (meta-analysis) 798 89% 87% 2015

Danad et al. [38] S-CMR vs. FFR-ICA (meta-analysis) 3788 90% 94% 2017

Pontone et al. [42] S-CMR vs. FFR-ICA (meta-analysis) 1085 87% 88% 2019

S-CMR: stress cardiovascular magnetic resonance; ICA: invasive coronary angiography; SPECT: single-photon emission computed tomography; FFR-ICA:
fractional flow reserve derived from invasive coronary angiography.
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included a multiparametric protocol with rest and stress
(adenosine) perfusion, cine imaging, 3D coronary MR angi-
ography, and LGE. In this study, Greenwood et al. demon-
strated a significantly higher sensitivity and negative
predictive value of S-CMR compared to SPECT (86% vs.
66%, 90% vs. 79%, respectively, p < 0:0001), but with similar
specificity and positive predictive values (83% vs. 82%, 77%
vs. 71%, respectively, p = 0:916 and p = 0:061) for detecting
significant coronary artery stenosis. Furthermore, S-CMR
showed a higher AUC than SPECT (0.89 versus 0.79; p <
0:0001) independently of the threshold used to define the
presence of obstructive CAD (50% or 70% coronary artery
stenose) and regardless of the extension of vessel disease [36].

In detail, a subsequent gender-based subanalysis of the
CE-MARC trial showed greater sensitivity of S-CMR than
SPECT in both genders, and differently from SPECT, there
were no relevant gender differences in the diagnostic accu-
racy [37].

Different meta-analyses have also evaluated the diagnos-
tic accuracy of S-CMR in identifying CAD by using invasive
FFR as reference standard.

In a meta-analysis by Danad et al., S-CMR had the high-
est performance for the diagnosis of hemodynamically signif-
icant CAD on both a per-vessel (AUC 0.97) and per-patient
(AUC 0.94) basis, due to excellent sensitivity and specificity.
Anatomical evaluation with CCTA and ICA yielded lower
specificity, with functional assessment of coronary athero-
sclerosis by stress echo, SPECT, and FFR-CT improving
accuracy [38].

Other data from meta-analyses showed that S-CMR sen-
sitivities and specificities ranged between 89% and 91% and
81% and 86%, respectively [39–41].

Pontone et al. in 2019 compared the diagnostic perfor-
mance of noninvasive tests using invasive FFR as a reference
standard for CAD, including 77 studies. S-CMR showed a
higher sensitivity in detecting functionally significant CAD
(81%) than stress perfusion CT combined with CCTA
(79%), stress perfusion CT (77%), stress echo (72%), and
SPECT (64%), despite being inferior to CCTA (88%), FFR-
CT (85%), and PET (85%). However, S-CMR showed a
higher test performance to identify patients that needed sub-
sequent invasive coronary artery procedures (91%) [42].

Of note, the majority of scientific studies on the diagnos-
tic performance of S-CMR have been performed on adeno-
sine perfusion stress tests, which actually represent the
mainstay of S-CMR.

Little scientific evidence exists on other vasodilator
agents, such as dipyridamole and regadenoson.

Compared to adenosine, dipyridamole demonstrated
reduced sensitivity (86% versus 90%; p = 0:022) and similar
specificity (77% versus 81%; p = 0:065) for diagnosing coro-
nary stenosis ≥ 50% on ICA, but provided additional infor-
mation by evaluating both perfusion and wall motion
abnormalities [43].

Regadenoson and adenosine achieved equivalent vasodi-
lator stress and myocardial perfusion reserve (MPR), but the
latter is cheaper and better tolerated [44, 45].

Regarding dobutamine as a stress agent, although it is the
only technique that has offered a comparative performance

against dobutamine stress echocardiography [46], it is still
less used than vasodilator stressors that allow a simpler and
safer vasodilatory myocardial perfusion. In a meta-analysis
of 37 studies involving 2191 patients, dobutamine-induced
RWMA demonstrated a sensitivity of 0.83 and a specificity
of 0.86 on the patient level for revealing angiographically sig-
nificant CAD (luminal stenosis ≥ 50%), with higher specific-
ity when assessed on the vessel level (0.93) [32]. However,
the diagnostic accuracy of wall motion abnormalities
induced by dobutamine S-CMR is significantly influenced
by LV geometry, with the lowest performance in patients
with increased LV concentricity compared to those with nor-
mal geometry and eccentric hypertrophy (0.73 versus 0.87
versus 0.90, respectively) in detecting coronary stenosis ≥ 70
% [47].

All these data have provided a defined role of S-CMR in
the diagnosis of known or suspected CAD, with a high accu-
racy in relation to both coronary artery assessment and func-
tional examinations, in particular SPECT.

4. Prognostic Role of Stress CMR

To allow appropriate management of CAD patients, a reli-
able prognostic assessment with information on patient out-
come should be provided.

4.1. Myocardial Ischemia. Functional evidence of ischemia
remains the major criterion for prognostically relevant
CAD [48–50]. In 2011, a study by Krittayaphong et al.
assessed the prognostic value of combined myocardial perfu-
sion CMR and LGE, thus identifying myocardial ischemia as
the strongest predictor for hard cardiac events and major
adverse cardiac events (MACE) among patients with known
or suspected CAD [51]. Buckert et al. in a large, consecutive,
and thereby unselected population of patients presenting
with stable angina pectoris reported how patients with
reversible perfusion defects significantly showed more car-
diac deaths (p < 0:0001) and nonfatal myocardial infarction
(p = 0:001) than in the control group. Again, myocardial
ischemia resulted as the strongest independent predictor for
adverse events, with a high negative predictive value in the
absence of a perfusion deficit [52]. Recently, Heitner et al.,
in a multicentre study involving 9151 patients followed up
for up to 10 years, demonstrated that patients with positive
perfusion S-CMR tests had significantly higher annual mortal-
ity rates, compared to those with normal tests. Additionally,
there was a relevant improvement in predicting adverse events
(p < 0:001) when positive perfusion S-CMR was included as a
variable in Cox regression models [53].

Currently, the exact definition of ischemic burden and
thresholds for initiating revascularization remains a subject
of considerable interest, since the extent of ischemia was
proved to be directly related to the number of subsequent
CAD events [54]. Observational data indicated that medical
therapy alone may be associated with a reduced risk of death
compared with revascularization in patients with less exten-
sive ischemia (<10% of the myocardium), while a more
severe ischemia extent (≥10% of the myocardium) demon-
strated a reduced risk of CAD and all-cause death with
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coronary revascularization compared with medical therapy
[55]. A threshold of ≥10% ischemic myocardium was identi-
fied to define treatment effectiveness [56]. In 2017, Vincenti
et al. performed a prospective study in 1024 patients with
known or suspected CAD who were referred for perfusion
CMR to detect myocardial ischemia. Data evidenced how
an ischemia burden involving ≥1.5 ischemic segments was
the strongest predictor of hard clinical events, and the
authors concluded that patients with zero or 1 ischemic seg-
ment could be safely deferred to revascularization [57]. Con-
cerning the ischemia extent, a technical advantage of S-CMR
over SPECT relies on its higher spatial resolution
(3mm × 3mm vs. 10mm × 10mm in-plane spatial resolu-
tion), which allows recording of smaller myocardial areas of
hypoperfusion resulting in an even better diagnostic perfor-
mance [58].

Recently, the MR-INFORM study has suggested S-CMR
as a selection criterion for patients to be initiated to revascu-
larization. This is a large, multicentre, randomized controlled
clinical effectiveness trial that randomized 918 patients with
suspected CAD to a myocardial perfusion CMR-based strat-
egy or an FFR-based strategy. In the results, S-CMR was asso-
ciated with a significantly higher reduction of invasive
revascularization procedures than FFR (35.7% vs. 45.0%, p =
0:005), while the percentage of patients free from angina at
12 months did not differ significantly between the two groups
(49.2% for S-CMR versus 43.8% for FFR, p = 0:21), thus repre-
senting noninferiority of S-CMR versus FFR in predicting
MACE [59].

4.2. LGE and EF%. Another advantage of S-CMR is based on
its ability to give complementary information on cardiac
function and myocardial viability, eventually supported by
advanced deep learning-based analysis methods [60], which
could additionally provide prognostic information [61].

Low left ventricular ejection fraction (LVEF) has tradi-
tionally represented a marker of poor outcome in post-MI
patients, with LVEF ≤ 35% denoting high-risk patients who
require more aggressive management [62]. Moreover, the
prognostic role of LGE in the field of CAD has also been
extensively assessed [63]. In a retrospective, multicentre
study by Kwong et al. in 2019, among 2349 patients with sta-
ble chest pain, the absence of LGE, as well as of myocardial
ischemia, was related to a low incidence of cardiac events
(<1%), reduced need for coronary revascularization (1-3%),
and low spending on subsequent ischemia follow-up [64].
Among STEMI patients, early or deferred CMR provided
equivalent and powerful stratification strategies for outcome
prediction [65].

If large data support consistent and robust prognostic
CAD stratification by adenosine S-CMR, fewer studies have
investigated the usefulness of dipyridamole S-CMR for pre-
dicting adverse clinical events. In 2016, Pontone et al. dem-
onstrated how dipyridamole stress CMR could predict
adverse outcomes in 793 consecutive patients symptomatic
for chest pain irrespectively of the amount of LGE, thus sug-
gesting a relevant prognostic value of dipyridamole S-CMR
by allowing the assessment of both key phases (perfusion
and wall motion) of the ischemic cascade. Patients with nor-

mal dipyridamole S-CMR had a low annual hard event rate
(1.8%) in comparison with patients with an abnormal perfu-
sion defect alone (3.6%) or patients with perfusion defect
plus WMA (9.4%) [66].

Strong evidence, therefore, is available demonstrating the
value of S-CMR in excluding prognostically relevant ische-
mia, although it is an ideal test to exclude relevant disease
in patients with known or suspected CAD.

5. Advanced Diagnostic and Prognostic
Goals for Stress CMR

Since symptoms among patients with CAD are often not uni-
form and atypical, objective, thus reproducible, diagnostic
tests are advisable to both confirm the diagnosis and assess
the event risk.

5.1. Quantitative Perfusion. Commonly, the analysis of S-
CMR image data is performed visually, and semiquantitative
and quantitative perfusion techniques are mainly restricted
to the research field [67], despite their potential clinical util-
ity. Although quantitative approaches are more time-con-
suming, they provide very high accuracy in detecting
segmental and global impaired myocardial perfusion and
may help discriminate diagnosis in particular cases such as
multivessel coronary disease, microvascular dysfunction, or
suspicion of inadequate vasodilator response [68, 69].

Newer techniques allow direct quantification of the signal
from the myocardium during first-pass perfusion and reflect
the absolute value of myocardial blood flow in each pixel of
the image data. Different approaches such as the Fermi
model, uptake model, 1-compartment model, model-
independent deconvolution method, and 2 model-
independent methods have been proposed and have been
shown to have similar diagnostic performance [70]. They
would advantageously permit fully automated workflow,
pixel-wise flow calculation, single-bolus contrast injection,
and rapid processing, allowing an easier performable quanti-
tative analysis [71, 72].

Only few studies provide comparative data among
commonly used vasodilator agents regarding their hyper-
aemic effect. Vasu et al. determined the vasodilator power
of each stress agent through both rest and stress myocar-
dial blood flow (MBF) quantification [44]. In this analysis,
regadenoson showed a higher stress MBF than adenosine
and dipyridamole (3.58 vs. 2.81 vs. 2.78ml/min/g, respec-
tively, p < 0:001), with equivalent vasodilator effect to
adenosine (37.8 vs. 36.6μl/sec/g, p = NS) but with a persis-
tent higher effect than dipyridamole (37.8 vs. 32.6μl/sec/g,
p = 0:03) when corrected for heart rate. Therefore, based
on quantitative data, a comparable hyperaemic effect of
all stress agents could not be fairly assumed. Indeed, most
recently Kotecha et al. demonstrated how direct quantifi-
cation of MBF itself in adenosine stress studies provides
a more accurate evaluation of hyperaemia than traditional
splenic switch-off and blood pressure response [73], thus
encouraging further comparison among stress agents in
larger and randomized studies through MBF and coronary
flow quantification.
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5.2. Mapping Sequences. Multiple studies have enhanced the
increasing role of additional mapping sequences in CMR
protocols, and potentially, the application of mapping
sequences may help detect myocardial ischemia [74]. Stress
native T1-mapping T2-mapping could potentially target
changes in native myocardial T1 values under vasodilation
stress (“T1 reactivity”), which reflect alterations in myocar-
dial blood volume consequent to inducible ischemia [75,
76]. However, currently little evidence exists to allow an
affordable use of these sequences in S-CMR protocols, which
is still under research.

5.3. Feature-Tracking Analysis. Strain analysis has been
lastly demonstrated to provide useful information on the
presence of ischemia and on patient outcome in S-CMR
studies. As widely evidenced, myocardial strain imaging
allows quantification of subtle changes of LV function that
typically precede a reduction in LVEF [77]. Garg et al. in
2018 provided the first evidence that a reduction in global
longitudinal strain (GLS) at peak myocardial hyperaemic
stress could be related to the presence of a perfusion
defect in patients with suspected CAD [78]. Eventually a
protocol of S-CMR may be integrated with strain analysis,
without even significantly prolonging overall time acquisi-
tion, as shown in Figure 2.

Interestingly, Palmisano et al. evaluated both adenosine
S-CMR mapping and strain data in 28 patients with refrac-
tory angina who underwent a coronary sinus Reducer
implantation. After implantation, myocardial perfusion
along with longitudinal (−16 to −19%; p = 0:0192) and cir-
cumferential strain (−18 to −21%; p = 0:0017) improved,
without significant changes in radial, circumferential, and
longitudinal strain rate (p > 0:05) and native T1 and extracel-
lular volume (ECV) [79]. Advantages of both native mapping
and feature tracking could relate to the possibility of achiev-
ing a sensitive, noninvasive, quantitative measure of myocar-
dial ischemia and tissue alterations, even without the need for
contrast agents, which is desirable due to increasing age and

frequent concomitant renal disease in CAD patients. Poli
et al. have tested the feasibility and reliability of noncontrast
adenosine S-CMR T1 mapping in 58 patients under haemo-
dialysis treatment and proved excellent test-retest reliability
of rest and stress native T1 [80].

More scientific evidence is needed to prove the diagnostic
performance and risk stratification power of such quantita-
tive approaches. If these become more feasible and robust,
they will potentially impact routine CAD management.

6. Current Challenges of Stress CMR

6.1. Main Limitations. A major challenge of S-CMR in clini-
cal practice relies on its limited spatial coverage (only three
short-axis slices) in perfusion studies, which may miss the
presence of disease, compared to PET [81]. Perfusion S-
CMR also has reduced applicability in patients with cardiac
devices, which are increasingly prevalent, often due to large
susceptibility artefacts that significantly impact image qual-
ity, especially in perfusion studies [82]. Moreover, S-CMR
provides limited direct coronary stenosis analysis with
reduced spatial resolution in comparison to CCTA. Nonlin-
ear relationship between blood flow and tracer as well as
between tracer and image signal has been proved, with con-
trast agent nonlinearity further affecting myocardial ischemia
quantification [83].

Although S-CMR is commonly known as a safe tech-
nique due to its nonionizing effect, recent discussion has been
raised on the potential acute effect on leucocyte DNA in 1.5T
CMR studies. In a recent paper by Critchley et al., CMR was
demonstrated in both in vivo and in vitro studies not to cause
DNA double-strand breaks and not to cause loss of leucocyte
activity in vitro. However, CMR caused a relevant reduction
of leucocytes viability in vivo [84]. All these results might
raise suspicion for new detrimental effects of CMR, but larger
clinical studies should be provided to prove the clinical
impact of the described phenomenon.
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perfusion 

STRESS
feature-
tracking

REST
feature-
tracking
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first-pass
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wall
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Figure 2: A potential protocol for stress cardiovascular magnetic resonance integrated with feature tracking analysis in both rest and stress
phases.
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6.2. Comparison with Other Imaging Modalities Assessing
Myocardial Ischemia. The greatest applicability of CCTA in
relation to myocardial ischemia is based on its high spatial
resolution with precise evaluation of coronary stenosis and
plaque characterization, as outlined in a recent Consensus
Statement [85]. However, disadvantages of CCTA regard
the use of ionizing radiation, limited temporal resolution,
and low contrast-to-noise ratio, which may affect image qual-
ity together with beam and scatter artefacts [86].

PET represents the current technical standard for quanti-
tative perfusion imaging, and recently introduced tracers and
13N-ammonia cyclotrons have improved its clinical applica-
bility and cost-effectiveness [87]. Despite its technical appro-
priateness for assessment of myocardial ischemia, PET is
currently limited by reduced availability and lower spatial
resolution in comparison to S-CMR [88]. A hybrid PET-CT
approach may allow a more comprehensive study of complex
diseases, such as multivessel CAD [85]. In opposition,
SPECT is widely available in clinical practice and represents
the most frequently used modality for perfusion imaging.
Due to recent technological evolution, such as the introduc-
tion of new dedicated cameras and compartment modelling,
absolute values of MBF may be provided by SPECT with
improved sensitivity, even in patients with high BMI, previ-
ously considered challenging [89]. However, SPECT is also
an ionizing technique, with lower spatial resolution and
lower image quality with need for attenuation and motion
correction [90]. Stress echocardiography provides a rapid,
widely available, nonionizing evaluation of myocardial ische-
mia, with potential for bedside applications. But despite its
clinical usefulness, stress echocardiography is not applicable
for coronary stenosis severity analysis and actually lacks in
automated quantification of perfusion studies [91].

In conclusion, all these imaging modalities present differ-
ent advantages and disadvantages for myocardial perfusion
assessment, and the best clinical practice should be based on
the choice of themost appropriate test for each clinical presen-
tation, disease stage, and centre expertise and availability.

6.3. Future Perspectives.Current challenges and limitations of
S-CMRwill potentially be overcome in the next future thanks
to technical evolutions involving both study acquisition and
postprocessing phases, eventually leading to less time-
consuming and more cost-effective studies.

For example, multitasking CMR has been defined in a
study by Christodoulou et al. as a motion-resolved imaging
modality with multitime dimensions that can adequately
perform quantitative studies based on T1 and T2 relaxation
constants without need for cardiac and/or breathing syn-
chronization [92]. This may represent a future direction
for CMR and possibly also for stress studies, by providing
complete dataset of first-pass time-resolved native T1 map-
ping perfusion together with quantitative information on
oedema and fibrosis within a single sequence.

Another appraisal should be outlined on the evolving
role of deep-learning algorithms for fully automated quan-
tification of CMR data [93], possibly supported by super-
vision with a rapid and high-quality confirmation of
clinical images [94].

7. Conclusions

Accurate and informative diagnostic capability and prognos-
tic relevance are essential requirements for patient manage-
ment in the context of CAD, as underlined by the recent
2019 ESC guidelines on CCS. Among the available diagnostic
modalities, S-CMR showed an overall high sensitivity and
specificity for the detection of anatomically significant CAD
(90% and 80%, respectively) and functionally significant
CAD (89% and 87%, respectively). Appropriate selection of
patients who undergo S-CMR potentially provides further
strength to its diagnostic accuracy, which has been widely
validated in a large body of evidence and more recently dem-
onstrated clinical effectiveness in direct guiding revasculari-
zation in the presence of myocardial ischemia. Moreover, S-
CMR achieves valuable prognostic information that ranges
from the extent of myocardial ischemia itself and presence
and transmurality of myocardial scarring to the entity of left
ventricular remodelling and the impact on systolic function.
Finally, future data on quantitative, objective, and sensitive
parameters are expected to yield additional strength to S-
CMR in a real-world setting, thus delivering measurements
that are accurate and highly reproducible. Given its safety
and multiparametric assessment both in terms of diagnosis
and prognosis among CAD patients, S-CMR represents an
invaluable modality for validating the efficacy of treatment
as well as monitoring disease progress. However, despite
being a powerful tool, more evidence is needed, especially
for quantitative data, to directly translate S-CMR results into
routine clinical practice and to provide greater feasibility of a
customized patient-tailored approach.
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Cardiac computed tomography angiography (CCTA) is widely used as a diagnostic tool for evaluation of coronary artery disease
(CAD). Despite the excellent capability to rule-out CAD, CCTA may overestimate the degree of stenosis; furthermore, CCTA
analysis can be time consuming, often requiring advanced postprocessing techniques. In consideration of the most recent ESC
guidelines on CAD management, which will likely increase CCTA volume over the next years, new tools are necessary to
shorten reporting time and improve the accuracy for the detection of ischemia-inducing coronary lesions. The application of
artificial intelligence (AI) may provide a helpful tool in CCTA, improving the evaluation and quantification of coronary stenosis,
plaque characterization, and assessment of myocardial ischemia. Furthermore, in comparison with existing risk scores, machine-
learning algorithms can better predict the outcome utilizing both imaging findings and clinical parameters. Medical AI is
moving from the research field to daily clinical practice, and with the increasing number of CCTA examinations, AI will be
extensively utilized in cardiac imaging. This review is aimed at illustrating the state of the art in AI-based CCTA applications
and future clinical scenarios.

1. Introduction

Coronary computed tomography angiography (CCTA) rep-
resents an excellent tool for the evaluation of patients with
suspected stable coronary artery disease (CAD) [1–6]. There
is strong evidence in the literature that CCTA can accurately
rule out the presence of CAD, having a positive impact in
terms of prognosis and cost [7–11].

CCTA represents an important step in clinical manage-
ment of patients with suspected CAD; however, it is impor-
tant to keep in mind that the majority of CCTA results in
no evidence of significant CAD [12, 13]. Furthermore, the
presence of obstructive CAD on CCTA is not always associ-
ated with the development of myocardial ischemia [14].

The application of artificial intelligence (AI) in cardiac
radiology is aimed at facilitating the management of patients
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with suspected CAD ranging from diagnosis to prognostic
stratification [15]. In particular, the application of AI can
be helpful in reducing the time of image analysis and rule
out patients without evidence of significant disease that
may benefit from medical therapy [16]. Furthermore, it can
be helpful for detection of myocardial ischemia [17]. In terms
of prognostic stratification, AImay play a promising role, iden-
tifying algorithms that can stratify the risk of major adverse
cardiovascular events (MACE) with high accuracy [18].

2. Basic Concept of AI in Clinical Medicine

The AI industry has seen massive growth in a variety of fields
in the past decade, with the field of medicine not being an
exception. The basis of AI is mathematics and computer sci-
ence with the three main pillars being (1) big data, (2) high
performance computing infrastructure, and (3) algorithm
development. The exponential growth in digital storage capa-
bilities, data collection systems, and computing power
enabled AI applications in a wide variety of fields. The cur-
rent digital era leads to an increased amount of information,
which is beneficial to the development of AI algorithms. The
technological developments make it possible to develop algo-
rithms that are able to deal with the large amount of data and
complexity typical of the digital era we live in.

With AI currently entering the medical field, early stage
applications have mainly focused on automatization of med-
ical tasks; more recently, the focus has shifted towards prog-
nostication and risk prediction. Many studies investigate the
potential role of AI in supporting clinicians in their day-to-
day tasks, assisting in workflow optimization, quantification,
diagnosis and prognostication, and reporting. However,
many clinical AI applications are currently only used in a
research setting and are far from being implemented into
clinical practice. There are examples of successful AI imple-
mentation [19]. The Data Science Institute of the American
College of Radiology has published a list of all FDA cleared
AI algorithms for radiology purposes [20] with their state
of validation and clinical use. However, there are also exam-
ples of applications that are not ready for clinical utilization
[21, 22]. For example, Zech et al. assessed how well convolu-
tional neural networks (CNN) generalized across three hos-
pital systems for a simulated pneumonia screening task.
They found that their evaluated CNN performed systemati-
cally worse on unseen data from different hospitals compared
to the training set. In addition, they reported that the CNN
identified disease burden within hospital system and depart-
ment, which may confound predictions [21]. A thorough
clinical validation is essential for the acceptance and imple-
mentation of AI into clinical practice [22]. A study by Kim
et al. evaluated the validation of AI algorithms reported in
AI research papers from all medical fields, including radiol-
ogy, dermatology, and pathology. They reported that only
6% of all studies used external validation to assess AI algo-
rithm performance [22]. Since then, several guidelines have
been published to improve the validation process of medical
AI applications [23, 24]. Recently, we have seen an increase
in publications that externally validate industry developed
AI algorithms [25, 26]. In addition, regulations and guide-

lines regarding protection of patient privacy and cybersecu-
rity are also needed. Creating awareness and increasing
basic AI knowledge for clinicians are an essential step to pro-
mote wide AI acceptance among physicians and patients.

The European commission released a white paper on AI
in February 2020, including statements on the use of AI for
medical purposes [27, 28]. They state that current EU regula-
tions already provide a high level of protection through med-
ical device laws and data protection laws; however, they
proposed to add specific regulations including requirements
of training data, record-keeping of used datasets, transpar-
ency, robustness and accuracy, and human oversight. The
US counterpart, the U.S. Food and Drug Administration, also
released statements regarding the use of medical AI. While
application for medical assistance, such as quantification
applications, only requires a proof of equivalence to other soft-
ware (510(k)) [20, 29], application for clinical interpretation of
medical data is a more elaborate FDA approval (PMA).

Besides the legal framework for medical AI, there are
some ethical considerations that will play a key role [30].
With the use of medical data, issues such as gender, race, or
economical discrimination due to underrepresentation in
the training populations should be discussed and evaluated.
In addition, AI-based risk prediction and prognostication
can be used to limit the choice and coverage of healthcare
insurance in certain groups of patients or can affect impor-
tant life choices. Like every new technology in the medical
field, it is imperative to learn how to balance the benefits
and risks associated with a broad AI implementation and
how to democratize AI and make sure that everybody can
benefit equally from its use. The Joint European and North
American Multisociety task force discusses these issues in
detail, emphasizing that more research is needed on the
implementation of AI into clinical practice [31]. Figure 1
shows the process of DICOM images elaboration for devel-
opment of DL algorithm.

3. AI Application for the Evaluation of Coronary
Artery Stenosis

The grading and coronary segments involved with obstructive
of CAD have been associated with a worse prognosis [32].

Often assessment of CAD stenosis is time consuming,
requiring multiplanar reconstruction selection of the best
phase in the cardiac cycle for a correct assessment of coro-
nary arteries and depends on the experience of the reader
[15]. After the CTA analysis, results may be reported exten-
sively in the report following the guidelines of SCCT [33]
or in a structured patient-based approach identifying a spe-
cific CAD-RADS grading [34].

Zreik et al. developed a 3D CNN that was able to charac-
terize the plaque and evaluate the grading of stenosis [35].
The authors developed two models; the first one analyzed
the performance of the algorithm to differentiate patients
with/without obstructive CAD demonstrating a per-segment,
vessel, and patient accuracy of 0.94, 0.93, and 0.85, respec-
tively [35]. The second model was developed for identifica-
tion of no stenosis, no significant stenosis, and significant
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stenosis; the second model showed a per-segment, vessel, and
patient accuracy of 0.80, 0.76, and 0.75, respectively [35].

Kang et al. developed an AI technique based on a two-
step algorithm with a vector machine that was useful for
the evaluation of CAD stenosis [36]. On a population of 42
patients acquired with dual source CT, the algorithm was
able to identify the grade of stenosis in one second with a sen-
sitivity, specificity, and accuracy in the proximal and midseg-
ments of 93%, 95%, and 94%, respectively [36].

Yoneyama et al. evaluated the possibility to identify the
grading of coronary stenosis and its impact in terms of ische-
mia using a cohort of patients who underwent CCTA and
perfusion single photon emission computed tomography
(SPECT) [37]. The authors focused on the application of an
artificial neural network (ANN) with hybrid imaging
obtained by the combination of CCTA and myocardial per-
fusion SPECT [37]. Using this algorithm, the specificity, sen-
sitivity, and accuracy to identify coronary artery stenosis
>70% were 31%, 78%, and 67%, respectively [37].

Van Hamersvelt et al. developed an algorithm of AI that
evaluated the presence of significant CAD using a combined
approach of AI that analyzes the myocardium and compared
it with invasive FFR [38]. They found that a combined
approach was able to identify hemodynamically significant
CAD with an AUC of 0.76.

Two studies developed an automated approach of
CADRADS in clinical practice [16, 39].

Muscogiuri et al. evaluated the impact of a new deep
learning algorithm based on CNN for the classification of
CAD-RADS in a cohort of 288 patients who underwent
CCTA for a clinical indication [16]. The time of analysis
and accuracy for each of the following was extrapolated:
Model A (CAD-RADS 0 vs. CAD-RADS 1-2 vs. CAD-
RADS 3, 4, 5), Model 1 (CAD-RADS 0 vs. CAD − RADS >
0), and Model 2 (CAD-RADS 0-2 vs. CAD-RADS 3-5)
[16]. The sensitivity, specificity, negative predictive value,
positive predictive value, and accuracy of the models com-

pared to humans were the following: Model A, 47%, 74%,
77%, 46%, and 60%; Model 1, 66%, 91%, 92%, 63%, and
86%; and Model 2, 82%, 58%, 74%, 69%, and 71% [16]. The
average time of analysis of CNN was significantly shorter
compared to humans, with an average time of analysis
around 104 seconds [16]. This study highlights the possibility
to have an automatic discrimination between patients with
CAD − RADS > 0 with a high diagnostic accuracy and short
time. This is an important finding if we assume an increased
number of CCTA scans in the future, many of which may not
show CAD [12, 13]. A representative case showing the appli-
cation of the CAD-RADS software for detection of AI is
shown in Figure 2.

Another important application of automatic CAD-RADS
classification was shown by Huang et al. [39]. The authors
classified CAD-RADS using a deep learning algorithm and
subsequently correlated the results with the presence of arte-
rial breast calcification. The authors showed that the pres-
ence of high grade CAD-RADS was closely associated with
increased presence of breast arterial calcification [39]. This
finding is important because the assessment of breast arterial
calcification in screening for breast cancer can be utilized for
early identification of patients with CAD.

4. AI for Evaluation of Plaque Analysis

4.1. Calcium Score. Coronary Artery Calcium Score (CACS)
is an independent predictor of adverse cardiovascular
events [40–42].

CT images for the evaluation of calcium score are often
acquired using an ECG-gated, no contrast technique and seg-
mented calculating a calcium volume, and mass obtaining a
specific value of calcium score [43]. Currently, CACS is per-
formed by semiautomatic segmentation and despite a time
consuming approach is still the gold standard [44].

The evaluation of CACS using an AI algorithm can defi-
nitely speed up the time of reporting.

One of the first articles describing the evaluation of CACS
using an algorithm of AI was developed by Isgum et al. [45].
The authors analyzed the impact of the automated algorithm
on ECG-gated, noncontrast images, and identified coronary
calcification in 73.8% of cases and 93.4% of cases was cor-
rectly classified in the respective risk group [45].

Sandsted et al. evaluated the performance of an AI algo-
rithm for the evaluation of CACS compared to semiauto-
mated CACS [46]. The authors found a Spearman’s rank
correlation coefficient for Agatston Score, Calcium Volume
Score, and Calcium Mass Score between the AI algorithm
and semiautomatic approach of 0.935, 0.932, and 0.934,
respectively, while the intraclass correlations were 0.996,
0.996, and 0.991, respectively, [46].

Despite CACS traditionally being evaluated using ECG-
gated scans, recently, Takx et al. analyzed the impact of AI
for evaluation of CACS in non-ECG-gated and noncontrast
images acquired in a cohort of patients undergoing a CT
for lung cancer screening [47]. In a cohort of 1793 patients,
the authors analyzed the impact of an AI algorithm for detec-
tion of CACS. Despite a small percentage of the population
(44 patients representing the 2.5%) being excluded from the
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Figure 1: Streamline used for the development of images useful for
DL algorithm starting from DICOM images.
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study due to image quality, the authors found good reliabil-
ity with a weighted k of 0.85 for Agatston risk score
between the automated and reference scores [47]; however,
an underestimation in terms of volume of calcium was
observed in the automatic segmentation compared to man-
ual segmentation [47].

The combination of CACS analysis and lung cancer
screening can be a powerful combination in clinical practice
to identify patients that may benefit from therapy.

Wolterink et al. described the application of an auto-
mated algorithm for the evaluation of CAC in 250 patients
who underwent CCTA [48]. The authors described a

(a)

(b) (c)

Figure 2: A 54-year-old female patient scheduled for invasive coronary angiography. Reconstruction for CAD-RADS algorithm is shown in
(a). The algorithm provides a CAD − RADS = 0. This finding was confirmed on coronary angiography that shows no disease in the left
coronary artery (b) and right coronary artery (c).
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supervised approach and developed a CNN algorithm that
was able to identify CAC with a sensitivity of 0.72 and an
interclass correlation of 0.94 between CAC derived from
CCTA and standard evaluation of CAC [48]. This approach
may lead to radiation dose reduction.

Finally, Van Velzen et al. evaluated calcium scores from
different CT without contrast [49]. 7240 examinations were
analyzed from PET attenuation CT images and CT of the
chest demonstrating an intraclass correlation coefficient
ranging from 0.79 to 0.97 when compared with manual seg-
mentation [49]. An approach that is independent of ECG-
gated acquisition, allowing for automated analysis, represents
an important tool.

4.2. Plaque Phenotype. Assessment of plaque composition is
extremely important in CCTA reporting; indeed, identifica-
tion of fibrous or calcified plaques can be extremely impor-
tant for patient management [50]. Presence of calcified
plaques is associated with better outcome compared to
fibrous plaques, especially in the presence of high-risk plaque
characteristics [51].

The application of AI can facilitate and speed up the anal-
ysis of CCTA providing accurate information on plaque
analysis in a relative short time.

Zreik et al. developed an algorithm that was able to iden-
tify the plaque morphology and severity of stenosis [35].
From a sample size of 95 patients, the authors developed an
AI approach based on 3D CNN that extrapolated the charac-
teristics of plaque along the coronary arteries. Subsequently,
the images were tested on a smaller cohort composed of 65
patients showing an accuracy of 0.85 for differentiation
between plaque and no plaque while the accuracy for differ-
entiation between different types of plaque was 0.77 [35].

Another application of AI for identification of different
plaque types was developed by Dey et al. The authors devel-
oped an algorithm that automatically differentiated calcified
plaque (r: 0.88) and noncalcified plaque (r: 0.98) with a good
correlation compared to manual segmentation [52].

A different, combined approach of radiomics and
machine learning (ML) for the evaluation of plaque charac-
teristics has been demonstrated to characterize plaque [53].
Using radiomics, from standard images, it is possible to
obtain several parameters that can constitute the fingerprint-
ing of a plaque.

Kolossvary et al. evaluated the radiomic features of
plaques showing napkin ring sign (NRS) which has been
associated with poor outcome [54]. The authors describe
the parameter called “short-run low-gray-level emphasis”;
this parameter was able to identify plaque with NRS with
a better accuracy (AUC 0.89) compared to mean plaque
attenuation (AUC 0.75), the latter used in standard clinical
practice [54].

An ML approach can identify the presence of thin cap
fibroatheroma (TCFA) overcoming the technical limitation
of CCTA [53]. In particular, Masuda et al. analyzed the appli-
cation of an ML histogram for the identification of fibrous
and fatty or fibrous-fatty plaques compared to IVUS showing
an accuracy of 0.92, while standard parameters showed an
accuracy of 0.83 [55].

4.3. AI for the Assessment of Ischemia: CT-Derived Fractional
Flow Reserve and CT Perfusion. Recent research and develop-
ment in AI has been applied in multiple potential applications
of cardiac CT-derived myocardial ischemia assessments. Most
software applications herby deal with CT-derived fractional
flow reserve (FFR) for the detection of hemodynamically
significant CAD. Only few studies of AI applications using
CT perfusion have been published so far. In terms of CT-
FFR, ML solutions have been provided by only one vendor
[56, 57]. However, this approach is for research purposes
only. More recently, a commercially available software
application (DeepVessel FFR) has been introduced by Keya
Medical (Beijing, China) [58].

ML-based CT-FFR employs a multilayer neural network
framework that was trained and validated offline against the
former CFD approach by using a virtual dataset of 12.000
synthetic 3D coronary models [56]. The clinical validation
of the ML approach has been conducted in one multicenter
trial and several single-center studies in relation to CCTA
and invasive coronary angiography (ICA) assessing lesion-
specific ischemia. The MACHINE registry (Diagnostic
Accuracy of a Machine-Learning Approach to Coronary
Computed Tomographic Angiography - Based Fractional
Flow Reserve: Result from the MACHINE Consortium)
investigated ML-based CT-FFR in 351 patients with 525 ves-
sels from 5 sites in Europe, Asia, and the United States [57].
The diagnostic accuracy of ML-based CT-FFR was signifi-
cantly better when compared to that of CCTA (ML CT-
FFR 78% vs. cCTA 58%). Likewise, the AUC for identifying
hemodynamically significant CAD was superior for ML-
based CT-FFR (AUC: 0.84) in comparison to that of CCTA
alone (AUC: 0.69, p < 0:05). In accordance with the results
of the MACHINE registry, several single-center studies have
evaluated the diagnostic performance of ML-based CT-FFR,
reporting sensitivities and specificities ranging from 79% to
82% and 91% to 94%, respectively [59, 60]. ML-based CT-
FFR has also proven its feasibility in coronary calcification.
A recent study by Tesche et al. [61] investigated the impact
of coronary calcifications on the accuracy of ML-CT-FFR.
The authors reported a good but statistically significant dif-
ferent diagnostic performance of ML CT-FFR in heavily cal-
cified vessels in comparison to low-to intermediate ranges of
calcifications (AUC: 0.71 vs. 0.85, p = 0:04). Another sub-
study of the MACHINE registry assessed the impact of gen-
der on the diagnostic accuracy of ML CT-FFR with no
significant difference in the AUCs in men when compared
to that of women (AUC: 0.83 vs. 0.83, p = 0:89) [62]. Overall,
ML-based CT-FFR provides high diagnostic accuracy for the
assessment of lesion-specific ischemia. A representative case
is shown in Figure 3.

Only few studies have assessed the use of AI for CT per-
fusion. However, CT perfusion offers a field with great poten-
tial for the application of AI especially for automated
identification of perfusion defects and myocardial segmenta-
tion. Preliminary results have demonstrated an AUC of 0.73
by using different ML approaches for automated segmenta-
tion and delineation of the left ventricle when compared to
manual segmentation by an expert reader [63]. In another
investigation, Han and colleagues [64] used a gradient
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boosting classifier for supervised ML in resting myocardial
perfusion CT for the identification of lesion-specific ische-
mia. The authors showed a diagnostic accuracy, sensitivity,
and specificity of 68%, 53%, and 85% of CTP added
to cCTA stenosis > 70% for predicting hemodynamically sig-
nificant CAD.

5. AI in CCTA Prognostication

Focusing on outcome, there are several manuscripts that
show the impact of CAD depicted on CCTA and prognosis
[8, 65]. An algorithm based on AI can improve risk stratifica-
tion based on standard clinical parameters.

Motwani et al. evaluated the impact of an ML algorithm
for prognostic stratification in a large cohort of 10030 patients
with follow-up of 5 years and an endpoint of mortality [66]. A

total of 25 clinical parameters and 44 CCTA parameters were
evaluated for a correct assessment of mortality that occurred
in seven hundred and forty-five patients [66]. The ML algo-
rithm was superior compared to Framingham Risk Score

(a) (b) (c)

(d) (e)

Figure 3: Coronary CT angiography in a 54-year-old man without known coronary artery disease. (a) Automatically generated curved
multiplanar reformations showing >50% stenosis of the proximal LAD (arrow). (c) 3-Dimensional color-coded mesh shows a CT-FFR
value of 0.70, indicating ischemia of the underlying stenosis (arrow). (b, d) Color-coded automated plaque assessment of the lesion
demonstrating the predominantly calcified composition of the atherosclerotic atheroma. (e) Invasive coronary angiography confirms
obstructive stenosis of the LAD (arrow) with an FFR of 0.70.

Table 1: Impact of AI in CCTA.

Task Accuracy

Coronary artery stenosis ++/+++

Coronary calcium ++

Plaque phenotype ++

Detection of ischemia ++/+++

Prognosis ++/+++

AI: artificial intelligence; CCTA: coronary computed tomography
angiography.
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(FRS) or CCTA severity risk scores with an area under curve
(AUC) of 0.79 while FRS showed an AUC of 0.61, segment
stenosis score of 0.64, segment involved score of 0.64, and
modified Duke index of 0.62 [66].

Van Rosendael et al. developed a model for risk stratifica-
tion based on a population from the CONFIRM registry [67].
The primary endpoint was a composite of myocardial infarc-
tion and death, and the algorithm was able to predict the pri-
mary endpoint with an AUC of 0.77 versus the other scores
that ranged from 0.65 to 0.70.

Tesche et al., in a small cohort of patients, developed an
AI algorithm for risk stratification in patients who underwent
CCTA with follow-up of 5.4 years [18]. The authors found
that an ML approach showed an AUC of 0.96 for MACE,
higher compared to Agatston calcium score (AUC: 0.84),
segment involved score (AUC: 0.88), and segment stenosis
score (AUC: 0.89).

6. Future Perspectives

In CCTA, the role of AI may be important for further radia-
tion dose reduction [68] without impairment of image qual-
ity and help in CCTA reporting, evaluation of CAD burden,
myocardial ischemia, and assessment of prognosis [15]
(Table 1).

Human interpretation, despite their experience, is still
prone to fatigue. Furthermore, the time of training of expert
readers requires years of experience. The application of AI in

CCTA will not substitute the cardiac radiologist; rather, AI
will represent a helpful tool for reporting and prognostic
stratification. Indeed, following the ESC guidelines [7], over
the next few years, the requests for CCTA will increase.
Therefore, a helpful tool that can decrease the time of CCTA
analysis should be embraced.

Furthermore, CCTA analysis is moving toward a model
of precision medicine. The analysis of coronary stenosis
grading is not sufficient alone. A comprehensive CCTA
report needs to provide information regarding characteriza-
tion of plaque and its hemodynamical effect; furthermore,
the joint evaluation of clinical parameters can be helpful to
stratify the patients in terms of worse outcome and can be
helpful for individual treatment plans.

It is plausible that an algorithm will be composed for
automatic analysis of CCTA images followed by detection
of myocardial ischemia (Figure 4). Subsequently, the final
results of CCTA will be evaluated according to the clinical
parameters with an AI algorithm in order to obtain a
patient-based risk profile.

Strict legislation focused on the application of AI in car-
diac imaging will be necessary to clarify the medico-legal
aspects of the AI algorithm application. Furthermore, the
development of an AI algorithm implies the analysis of a
large amount of data; this aspect is extremely important if
we consider the legal aspects due to privacy.

All these aspects need to be clarified in the future before
we consider the application of AI in routine clinical practice.

CCTA

AI 
applications

ICA
If high clinical-imaging risk features
or functional imaging assessment
already available (Stress CMR, PET,
SPECT..)

CTP FFR-CT

Choice of test based on clinical
likelihood, patient characteristics and
preference, as well as local expertise

Testing for ischemia
(Stress CMR, PET, SPECT..)(e.g., CCTA

stenosis
degree and
plaque
morphology;
calcium score)

Negative test:
CAD ruled out

Functional CT-imaging assessment

AI applications:

(e.g., CT-FFRML;
analysis of myocardial perfusion from
rest CCTA acquisition)

Figure 4: Application of AI on CCTA in the clinical setting. First, CCTA images are processed using an AI algorithm; subsequently, the
patients can be further classified in three groups: patients without obstructive CAD, patients that need invasive coronary angiography, and
patients with stenosis that could benefit from functional imaging. In the cohort of patients classified to functional imaging such as CT
perfusion or CT-FFR, an algorithm of AI can be applied in order to speed up the process.
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7. Conclusion

In the future, AI will be integrated in the CCTA workflow. AI
applications will greatly benefit CCTA practice reducing the
reporting time and providing a more accurate quantitative-
based approach to CADmanagement, moving the entire field
in the direction of precision-based medicine. However,
before we can widely implement AI solutions in our clinical
practice, we need to carefully validate the algorithms in the
light of standards for good medical practice and new medical
device utilization and carefully address possible issues on
data protection, legal framework, and ethical principles.
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