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Review Article
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Oil palm has become one of the largest plantation industries in Malaysia, but the constraints in terms of manpower and time to
monitor the development of this industry have caused many losses in terms of time and expense of oil palm plantation
management. The introduction to the use of drone technology will help oil palm industry operators increase the effectiveness
in the management of oil palm cultivation and production. In addition, knowledge gaps on drone technology were identified,
and suggestions for further improvement could be implemented. Therefore, this study reviews the application and potential of
drone technology in oil palm plantation, and the limitation and potential of the methods will be discussed.

1. Introduction

Oil palm has become one of the country’s main sources of
income apart from rubber and paddy cultivation. It has also
dominated the world’s vegetable oil producers such as soy-
bean, rapeseed, and sunflower by more than 35%. At the
present time, Malaysia and Indonesia have become the
world’s leading oil palm growing countries [1]. Furthermore,
Malaysia has become the second largest exporter of palm oil
and its related products. In 2020, Malaysia’s palm oil pro-
duction was projected to reach about 20 million tonnes
(350,000 barrels per day) with total export revenue about
RM72.30 billion. In terms of planting, oil palm is suitable
for planting in areas that have sunlight between 5 and 7
hours every day. They required temperature as above as 18
Celsius with an optimum temperature between 28 and 32
Celsius [2], while the optimal rainfall distribution is between
2000 nm and 3000nm [3].

However, an increase in demand requires more modern
approaches and technologies to be adopted in a sustainable

manner to increase the production. The development of
information and communication technology (ICT), espe-
cially the Internet of things (IoT) including drone technol-
ogy which provides mapping and data analysis services,
can provide more accurate and effective information for
precision agriculture technology. In general, IoT technology,
especially drones, can collect and process information
obtained from various sources and can help in collecting
weather information, soil profile, and drainage, and at the
same time, manage all crops in a more efficient way [4–7].
In plantation, drone technology is being utilized to monitor
large plantation area due to its success in photography, aerial
mapping, and surveillance [8, 9].

Drone which is also known as unmanned aerial vehicle
(UAV) is an aircraft that has no human pilot on board to
navigate the vehicle [10, 11]. Despite not having a pilot, it
still can fly thousands of kilometers, into confined space,
and fly remotely and autonomously [12]. It can carry lethal
or nonlethal payloads [13]. Drone technologist classified
drones based on its aerial platform. There are four major
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types of drones such as multirotor [14–19], fixed-wing
[20–22] single rotor helicopter [23], and fixed-wing hybrid
VTOL (vertical take-off and landing) [24]. Drones were first
made by the Austrians in 1849 using explosive-filled bal-
loons for military use which has been well known for nearly
150 years [25].

The first civilian drone was produced in the 80s in Japan
at the request of the Minister of Agriculture, Forestry, and
Fisheries [26]. The difference between civilian and military
drones can be seen in terms of the size of the engine and
its capability where civilian drones are powered by electric
motors while military drones are powered by internal com-
bustion engines. Most public drones are used for mapping
and imaging [27].

Drones with specialized sensors (Figure 1), or drones
that work in tandem with IoT, can record high-resolution
photographs and help monitor a variety of vegetation prop-
erties. Aside from that, many sensors might be used in the
agricultural sector [28]. However, the selection of type of
sensors to be incorporated into the drone or UAV highly
depends on the low payload capacity and the usage of minor
platforms. Commonly, the main criteria that a sensor must
meet to capture high resolution image are an acceptable
weight with appropriate size and to utilize enough energy.
In addition, different types of sensors can monitor specific
parameters such as the color and texture of vegetation and
the geometric outline of agriculture crops. Furthermore, cer-
tain sensors can monitor plant biomass, vegetation health,
and other critical agricultural properties at various phases
of plant development. This data can also be utilized to mon-
itor utilizing certain wavelengths of radiation [29].

The function of each sensor is depending on the function
of its thermal sensor to obtain data on the relative temperature
of a surface and is widely used for the purpose of designing
irrigation and drainage systems in the plantation sector.
Multispectral sensors are usually used to produce normalized
difference vegetation index (NDVI) images that help to distin-
guish between cultivated areas and vacant land [30]. It can also
detect crops that are under pressure by obtaining data on plant
fertility levels. On the other hand, hyperspectral sensors have
several hundred bands that are commonly used to obtain
and process information from the electromagnetic spectrum
in each pixel of the image taken. However, for light detection
and ranging (LiDAR) sensor, it was usually utilized to obtain
the slope elevation and structural data [31].

This article was written to highlight an overview of the
use of drones’ technology in the oil palm industry its weak-
nesses and recommend further research to enhance the
capabilities of more effective drone technology in the oil
palm industry. The following section reviewed a list of drone
applications in a wide range of oil palm management and
monitoring, accompanied by its lapses or gaps and recom-
mendation for improvement of the drone technology in
the oil palm industry.

2. Drone Capabilities: Endurance and Range

Drone configurations and features are varying according to
the platform and mission requirements. There are various

classifications for drones that focus on different parameters
that can be found in the literature reported by Hassanalian
and Abdelkefi [36]. The advantages of each drone always
depend on the user demand. For instance, in scientific
research, the drone was classified based on characteristics
such as size, duration, range, and durability [37]. According
to Arjomandi [38], drones are also classified according to
weight, flight distance, wingspan, maximum altitude, and
engine capability. For example, heavy drones are for those
over 2000 kg, heavy with a weight between 200 kg and
2000 kg, medium with a weight between 50 kg and 200 kg,
and light (5 kg-50 kg) and minidrones with weight less than
5 kg as shown in Table 1.

Drone endurance is described as the total duration during
take-off. For an electric fixed-wing helicopter or quadrotor,
this is primarily associated with the battery’s capacity as well
as the ability of the motor to produce current to keep the heli-
copter on air. There are several factors that can be used to
determine the endurance; however, a simple endurance com-
putation can be estimated using the below equation [39].

Endurance hrsð Þ = Battery Capacity Ahð Þ
Current Ampsð Þ : ð1Þ

The endurance of the helicopter depends largely on its
size, weight, and the weight of the payload. For instance, a
macrofixed-wing aircraft with a large wingspan will have lon-
ger endurance compared to a miniquadrotor. Another key
point is that the endurance also will have a factor on the range
of the aircraft. The distance with an uncrewed aerial vehicle
can go is known as its range. Furthermore, the range of the air-
craft is dependent on the amount of current that is being
applied for the aircraft to be lifted, the endurance itself, flight
speed, and the aerodynamic performance which can be deter-
mined by using the range of a drone.Meanwhile, the range can
be calculated by calculating the fixed-wing and quadrotor by
the equation below [39].

Range milesð Þ = kV:V:60:Pitch
12:5260 Endurance hrsð Þ, ð2Þ

where kV is the amount of revolutions per minute, the motor
will turn when 1V was applied to the motor, pitch is the pitch
(in inches) of the propeller on the UAV, and the endurance is
the amount of time in hours the aircraft can stay in the air.

This equation will enable a rough calculation of the total
UAV’s range. However, to effectively estimate the range, fac-
tors like wing area, weight, and the coefficient of lifting of the
air foil used on the helicopter will be crucial.

3. Application of Drone in Oil Palm Plantation

Malaysia is the world’s second largest exporter after Indone-
sia with about 5.08 million ha of oil palm plantations. Most
of the plantations are owned by private farmers who work
on a small scale [41]. They desperately need an autonomous
platform with an affordable price for the use of monitoring,
inventory, crop yield assessment, spraying, health assessment,
and disease detection. The capability of drone technology in
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taking high-resolution aerial photographs has changed the
way oil palm cultivation into more economical [42]. Conven-
tional methods have been replaced with the use of drone tech-

nology [43, 44] that can provide more quick and accurate
information to help in making smart decisions. Drone tech-
nology which is an emerging technology is capable of provid-
ing significant functions in precision agriculture and smart
farming, to enable the increases in long-term production
[45] by the acquisition of real-time environmental data. Drone
is one of the breakthroughs for smart and precision agriculture
farming, which is utilized for monitoring vast and cultivated
lands and provides practical solutions for precision farming
[5, 29]. With that, the main purpose of precision farming to
optimize yields and maintain sustainable crop production
capacity based on crop monitoring and crop health assess-
ment [44] can be effectively achieved.

By recording high spatial and temporal resolution
photos, drone can be vastly utilized in a wide range of

(a) (b)

Green

Red-edgeRed

Blue

Near-infraed
Near-infraed

(c) (d)

Figure 1: Examples of sensors used by UAVs for PA: (a) thermal sensor [32], (b) RGB sensor [33], (c) multispectral sensor [34], and (d)
hyperspectral sensor [35].

Table 1: The proposed drones’ categorization by [38] based on
their weight.

Designation Weight range

Extremely heavy > 2000 kg

Heavy 200 kg ≤ 2000 kg
Medium >50 kg ≤ 200 kg
Light >5 kg ≤ 50 kg
Mikro ≤ 5 kg

3Journal of Sensors



applications, including crop management. Through photo-
graphs, it can intelligently, simply, and cost-effectively mon-
itor crop and vegetation factors. UAVs for crop monitoring
and management will provide opportunities for the farmers
to monitor, map, and survey a diverse range of crops, located
in many countries around the world [46]. Recently, globally,
many have been considering using drone for agriculture
purposes for crop irrigation [47] and growth for yield esti-
mation, health determination, disease detection [47], and
for spraying [48].

Drone technology has bridged the gap between ground
base observation and satellite data, and it has increased its
capabilities in terms of crop monitoring, yield mapping, soil
profile and soil property mapping, crop health, and disease
monitoring and spraying [40]. This technology is easy-to-
operate, flexible, and in addition, low-cost drone has greatly
revolutionized smart farming technology from the beginning
of the planting process up to the harvesting. Drones can
also provide live data from various types of sensors as
shown in Figure 2 (multispectral, near infrared reflectance
(NIR), LiDAR etc.), with high resolutions imagery up to
less than one centimeter per pixel. With this information,
it can help a lot in replanting planning, oil palm data cen-
sus for inventory data, calculation of land use, distance
between crops, canopy size, oil palm height, and crop den-
sity. With all the data and information, it is very useful in
the development of support systems in decision-making
and estimating plantation management-based results.
Figure 3 suggests the suitability of each sensor usage at var-
ious stages of cultivation in order to obtain relevant data
and information, and Table 2 shows summary of drone
application in plantation.

3.1. Oil Palm Plantation Inventory. In most underdeveloped
countries, land registration is a big problem such as in
Malaysia. Failures in land registration caused many difficulties
such as title disputes, control, and distribution of aid such as
pesticides and fertilizers. Land registration in the form of ter-
restrial measurements is projected to be addressed in the next
decades. For urban planners, monitoring urban development
has become a vital issue. Drone technology is an alternative
step to speed both processes because it is a unique instrument
that can fly without a human operator on board and conduct
sophisticated and viable duties such as monitoring, cadastre,
and earthwork analysis. The photogrammetry method used
in drone is to obtain an ortho map.

3D mapping is an integral part of geological surveying
[61]. Recently, drone usage for visual surveying through
the generation of 3D images of sites has become a necessity
[62]. Drone’s technologies can acquire high-resolution
images converted into 3D surface models used for topo-
graphic mapping, volumetric calculations, or showing the
site in the 3D format [63].

Drone technology for the oil palm plantation industry
includes all relevant information, including crop density,
drainage, crop area, and basic infrastructure information
such as plantation road network, and crop yield estimates.
Figure 4 shows the images and information on the inventory
using drone technology.

Drone is capable of capturing the crown formation of
palm trees images by using high spatial resolution images.
Here, it uses the template matching algorithms to detect
the object’s boundary of the image as a criteria [64]. In some
instances, the problem of image distortion or occlusion can
be overcome by using the method of object base analysis to
reduce the influence of scale and geometry of objects
through segmentation [56]. However, parameter selection
will result in inaccurate detection in trees. To obtain the best
inventory information, the use of satellite images with fine
resolution is particularly suitable for large areas of oil
palm [57].

Nevertheless, the limitations of satellite data such as fre-
quency of public coverage, cost, and time make it less suit-
able for the estimation of structural parameters. In order to
improve accessibility, low operating costs, and enhance
usage, the development of lightweight drone platforms was
developed as an effective mechanism in oil palm plantation
management. For this development, the UAV teams had
been established by major commercial oil palm companies
for a routine acquisition of aerial imagery [65].

3.2. Tree Counting. Tree counting is vital for estimation of
yield, observation, replanting, and layout preparation. Nev-
ertheless, it is costly, labor-intensive, and prone to human
error when done in the field. Furthermore, due to the vari-
ability of the plantations, most plantations used to estimate
cost estimates by multiplication of the total location by the
amount of palms per hectare, which is inaccurate because
of the diverse land mass such as hilly, undulating, or flat
and presents of natural features such as river, land, or forest.
Remote sensing was a possible option for seeing the planta-
tion area and automatically counting the trees to solve this
problem.

In the mid-1980s, studies into automatic detection of
trees and feature extraction from digital imagery began. Pinz
[66] offered aerial imaging utilizing a vision expert system;
although, various detection methods have been proposed.
This system powers the centrifuge. The center of the tree
crown was successfully detected using this approach, and
the radius was estimated using local brightness, followed
by the valleys between the tree crowns using ground sam-
pled distance digital aerial images.

Individual trees, on the other hand, were detected using
software. To distinguish individual trees, Woodham and Pol-
lock [67] use model-based template matching approaches.
Kattenborn et al. [59] proposed a method for automatically
detecting single palm trees using photogrammetric point
clouds (Figure 5).

VisualSFM was used to process single camera images
with a structure from a motion tool chain. Each image was
divided into three categories: palms, shrubs/trees, and the
ground. A multiscale dimensionality criterion were utilized
to train and evaluate the data set for classification purposes,
in which the classifier was set in a separate scale factor. Palm
trees and their ground soil were classified using point cloud
local dimensionality features. Algorithms are limited while
training a classifier for a dataset. Because training a classifier
takes time and requires more computer resources for each
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type of tree species, the classifier must be coached before
detecting trees.

For this study, a structure from the motion toolchain
with VisualSFM was used to process single-camera images.
The images were classified into three classes: palm, shrubs/
trees, and ground. For classification, a multiscale dimension-
ality criterion was used whereby the classifier was set to a
different scale factor that trained and tested the data set.
Local dimensionality characteristics of point clouds were
applied to classify palm trees and their ground soil. Training
a classifier for a dataset leads to a constraint for algorithms.
Since training a classifier is time-consuming and needs more
computational power for each tree species, one must coach
the classifier before detecting trees.

Mansur et al. [68] utilized drone data capture and spatial
filtering to acquire data for counting oil palm tree using
ground control points. They used the concept of crown geom-
etry and vegetation response to radiation in their research. A
spatial convolution processing approach, such as a low pass fil-
ter, was used to detect the tree crown in the enlarged image.
After applying a spatial filter to the data set, morphological
analysis was used to perform object extraction, image filtering,
and image segmentation processes.

Wang et al. [69] improved on Brandtberg and Walter
[70] work by first using edge detection methods to detect
the boundaries of tree crowns, then intersecting the results
of local nonmaximum suppression on grey level images
and local maximum values of morphological transformed
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Figure 3: Schematic overview showed the different ways to extract spatial information in the areas, the useful platforms and the optimal
UAV sensors, throughout a growing season of a crop. The optimal sensors for UAVs were also shown. Abbreviations: RGB: red-green–
blue [60].
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distance between pixels. By combining the two methods, a
decent estimate of the treetops was obtained, which were
subsequently tallied using contour-based methods. The pres-
ence of background objects, such as buildings and roads,
however, causes this method to fail.

3.3. Drone for Spraying. In the present era, various develop-
ments in precision agriculture are being carried out to
increase the crop productivity. For example, in the develop-
ing countries like India, over 70% of the rural people who
depends upon the agriculture fields need to be feed. How-
ever, their agriculture fields often face dramatic losses due
to the plant diseases. These diseases either come from the
pests or insets, which have possibilities to reduce the produc-

tivity of the crops. Pesticides and fertilizers were used to kill
the insects and pests to enhance the crop quality. Hence, the
WHO (World Health Organization) has estimated one
million cases of ill caused by the pesticides spraying activity
in the field. Therefore, precision agriculture to cater the
growing population is so demanding. In precision agricul-
ture, the drone’s technology is being utilized to spray the
pesticides to avoid the health problems of the users when
they spray manually. Drones can be operated easily for this
purpose [71]. This system was first developed in Japan in
the 1980s, by the combination of unmanned aircraft with
small pesticide tanks [72]. Today’s drones were developed
to be able to lift big tanks with up to 10 liters of capacity.
Furthermore, the rate of liquid discharge could be set to

Table 2: Summary of drone application in plantation.

Literature work Objective Task Technical characteristics and payload

[49] [50] To detect the drainage pipe For a monitoring purposes VIS-C, MS, and TIR camera

[51] To monitor the vegetation level For a monitoring purposes

Camera
GNSS
IMU
LiDAR

Multispectral

[52] Monitoring vegetation state For a monitoring purposes

Camera
Compass

First person view platform
FlightCTRL
GPS system
GSM modem
Magnetic

Multispectral
NaviCtTRL

[53] Evaluation water stress For a monitoring purposes

3-axis accelerometer
8 GPS system
Digital compass

FlightCtrl
NaviCtrl

Pressure sensor
Storing device
Thermal sensor

[54] Monitoring vegetation state For a monitoring purposes

IMU
LiDAR

Multispectral sensor
Single-board computer

[55] Spraying with consideration of climate conditions For a spraying process Spraying device

[56] Spraying fruits and trees For a spraying process

Barometer
IMU

Magnetometer
Multispectral sensor

Servos
Spraying device

[57] Estimating chlorophyll density For a monitoring purposes

Autonomous power supply
Control switches
GPS system

Hyperspectral sensor
LCD screen
Storing device

[58] Oil palm harvest prediction For a data acquisition 20.2 mega pixel digital camera

[59] Palm tree detection For a data acquisition Panasonic Lumix G3 with a 20mm lens

6 Journal of Sensors



one liter per minute that makes it possible to cover a large
area in 10 minutes. Also, drone-based spraying platform
integrated with an aerial crop monitoring process will be
able to provide efficient and accurate use of the agrochemical
products. This will reduce the number of agrochemical
products usage and is also a part of environmental protec-
tions. According to Zhang et al. [73], drones using M-18B

and Thrust 510G model can fly at heights of five meters
and four meters, respectively. He found that height differ-
ences had a significant effect for effective and uniformity
spray on crops. Meanwhile, Kurkute et al. [74] used a quad-
copter (4 rotor drone), which uses a universal spraying
mechanism to spray liquid and solid contents. The author
reported different control systems for agricultural purposes
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Figure 4: Mapping and inventory of oil palm plantation tree counting analysis [40].

Figure 5: Automatic single palm tree detection using photogrammetric point clouds [59]. Palm: red; other vegetation: blue; ground: green
(center) with modeled palms (bottom). Green shapes represent the convex hull of the crown, vertically surrounded by crown margins
(purple). Yellow cones represent the top (z) and the position (x, y).
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and found that the Atmega 644PA model is the most suit-
able and efficient drone. Meanwhile, Sadhana et al. [75] used
a different approach in developing drone modules for sim-
pler pesticide spraying mechanisms in improving yields as
well as crop protection. By using a quadcopter drone, the
author identified it that it was able to carry a load of 1 kg
and use to spray pesticides at a height as shown in
Figure 6. In this study, the author detected that the quadcop-
ter drone was operated by Arduino UNO AT mega328 sys-
tem and brushless direct current (BLDC), electronic speed
control (ESC), MPU-6050 consisting of MEMS accelerome-
ter, and MEMS gyro in one chip, radio receiver, and LiPo
battery.

Kedari et al. [77], also used quadcopter drones that is
suitable for indoor and outdoor crops. It is an autonomous
flight that sprays pesticides as well as fertilizers using
Android devices as well as Bluetooth that operates in real
time. It can be used in agricultural sectors to reduce the time
and the hazardous effects that can present during spraying of
pesticides and fertilizers.

3.4. Biomass Estimation. A major requirement for precision
farming is to monitor biomass which is an important step
throughout the oil palm tree life circle [5, 78]. However,
due to the presence of natural influences, precision farming
must be modeled to determine the level of nutrient supply,
water availability, soil quality, and healthiness because these
parameters will contribute to the oil palm biomass. In preci-
sion farming, an effective management of the oil palm bio-
mass need to be considered. Modeling the yield of a field
through a satellite image by stratification often turns out to
be mostly outdated, too cloudy, and not available for specific
dates as of when needed. Another downside of the method is
in field measurements, as it is hard to replicate and to cover
wide plantation area that has too many plots. Besides that, it
can hardly take care of small segment of the field apart from
the cost and labor-intensive that is required for the whole
process. Conclusively, it is an expensive venture that does
not bring a perfect solution in biomass modeling. However,
dynamic progression of drone systems enables to join air-
borne surveying with precision and resolution of terrestrial
methods [63, 79, 80]. With this, drones became advanta-
geous in biomass monitoring for oil palm modelling assess-
ments via photos taken by consumer-grade RGB camera

mounted on a small octocopter [81]. Further, some scholars
use multispectral cameras, e.g., near-infrared in addition to
RGB [82].

Tree geometric parameters from an orchard can also be
estimated from data collected from the drone [83, 84]. By
using an information collected from the drone, one acquired
the crop parameters such as biomass that plays a significant
part in yield forecast and in optimizing plantation manage-
ment. Biomass can be assessed through spectral reflectance
measurements [85] from space [86, 87] and from the air
[88, 89]. Nevertheless, these measurements frequently con-
sist of refined and costly apparatus that necessary for vigilant
standardization. Drones occasionally denoted as remotely
piloted aerial systems (RPAS) or unmanned aerial systems
(UAS) actually are the evolving implements to be used for
small-scale remote sensing [78, 89, 90]. UAVs can be used
for oil palm biomass modeling, for instance, crop status
investigation using near-infrared or thermal data. Figure 7
below shows the research methods that was summarized
with reference to some previous research.

3.5. Crop Growth Monitoring and Yield Estimations. The
combination of real-time remote sensing images and infor-
mation from related sensors can provide information that
can increase plantation productivity through the mapping
of spatial information changes in the field. Information on
the status of the cultivation area such as soil profile and crop
fertility can help in fertilization planning, watering schedule,
weather analysis data, and also crop yield estimates. The col-
lection of all this information by using drone technology can
provide a more effective management plan [86].

Bura et al. [58] used drone technology in predicting the
yield of oil palm harvest, by dividing the study into two
stages, namely, by the configuration of the drone system
and in the image processing for predicting the yield of oil
palm harvest. The drone system configuration included the
use of an X-8 airframe with Pixhawk control system, electric
motor, and 20.2 mega pixel digital camera RGB (red, green,
and blue) sensor. High-resolution images were once taken at
a 6-year-old oil palm plantation in North Sumatra. The
resulting image was used to calculate the forecast of crop
yield by using the number of crops. The estimated harvest
for that particular area was detected as an average of 50.5
tonnes per hectare per year, which is more than the manage-
ment company’s estimation at 23 tonnes per hectare per
year.

An accurate early yield prediction is beneficial to farmers
as well as the plantation industry. With drone technology,
the use of high-resolution sensors can map accurate crop
information such as crop height, canopy cover, and crop dis-
tribution, which can be used to predict crop yields. Distribu-
tion using RGB sensors [92, 93] and multispectral sensors
[94, 95] is used to predict crop yields.

Drones can be used to observe the crop with different
indices. It can also cover large parcel of land in a single flight
using either thermal or multispectral cameras [79, 96]. It will
capture the reflectance of the vegetation canopy mounted
beneath the quadcopter. The camera captures one image
per second and records it in the memory and transferred

Figure 6: Drone for crop spraying [76].
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to the ground station via wireless telemetry that uses MAV-
LINK protocol. The images were recorded in visible five
brands with contradicting wave lengths, for example, blue
wavelength 440-510nm, (ii) green wavelength 520-590 nm,
(iii) red-wavelength 630-685nm, (iv) red-edge wavelength
690-730 nm, and (v) near-infrared wavelength 760-850nm.
The data retrieved from the multispectral camera through
telemetry was analyzed using the geographic indicator
NDVI [97–99] that was represented in the equation below.

NDVI = RNIR–RREDð Þ
RNIR+RREDð Þ , ð3Þ

where RNIR represents the reflectance of the near-
infrared band, and RRED is the reflectance of the red band.
A computation value of -1 to +1, or close to 0 (zero), means
that there is no vegetation on the crop, and a value close to
+1 (0.8 to 0.9) signifies that the highest density of green
leaves was grown on the crops. For these results, farmers
can effectively point out the spot to spray pesticides and
fertilizer. The equipped GPS (Global Positioning System)
module will manage the GPS coordinates of each acquired
image. The GPS coordinates of the image are then saved in
the UAV to pesticides or fertilizer spraying simultaneously
without control.

There are various types of drone that were invented for
agriculture purposes. Drones such as the DJI Agras MG-1
[100] were designed to apply liquid pesticides, fertilizers,
and herbicides. On the other hand, multispectral and hyper-

spectral aerial and satellite imagery used to create NDVI
maps will help differentiate the soil from grass or forest
and detect plants under stress and differentiate between
crops and plant growth stages. There are strong correlations
between NDVI data measured at certain point with the crop
yield and plant growth stages [101]. Hence, tracking the
plant growth will help provide an accurate estimation of
the crop yield and address any plant growth issues earlier.
For the purpose of obtaining soil profile and plant fertility
by using drones, suitable sensors used are multispectral,
hyperspectral, and infrared sensors. Agricultural informa-
tion with a combination of NDVI data with crop-water
stress index (CWSI) and canopy-chlorophyll content index
(CCCI) can provide more accurate results. The response of
the plant leaf reflection to the sensor can provide informa-
tion on the fertility level of the plant whether it is a state of
dehydrate or stress (Figure 8). The information can also dis-
tinguish between cultivated areas and non-crops.

Forecasting plantation production is something that is
important in this industry. Drone technology promises the
accuracy of information obtained through the use of appro-
priate sensors in the collection of images and data such as
RGB and multispectral sensors to estimate crop densities
and biomass. Through appropriate analysis of the method,
the accuracy of the yield estimation can be improved.

3.6. Crop Health Monitoring. In precision agriculture appli-
cation, the most common technique to assess vegetation
health is remote sensing techniques and image analytics.
Meanwhile, one of the most widely used RS approach is
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aerial inspection, using satellite acquired imagery and
manned aircrafts, as well as drones [102, 103]. In the context
of precision agriculture, exploring satellite images is a big
investment for a typical farmer, and sometimes, their quality
and resolution are not acceptable and technical. However,
conversely to previous cases, aerial photos acquired by
manned aircrafts reveals a more acceptable quality com-
pared to satellite images. On the other hand, drone is less
cost-effective and can provide high-resolution images.
Drone, an unmanned aircraft, will be operated remotely by
an operator. It can carry several cameras such as multispec-
tral and hyperspectral that acquire aerial photos. More so,
these images will be used for the extraction of vegetation
indices that allows farmers to inspect crop variability and
stress conditions constantly.

Duan et al. [104] used the application of NDVI in mon-
itoring plant growth. This NDVI technique calculated pho-
tosynthetic and assessing the canopy status of green plants.
He used a multispectral sensor (RedEdge) at low flight alti-
tudes to record images from various bands from various
stages of plant growth with a transformation ratio measured
between the reflectance measured at the red wavelength
range and NIR wavelength range. With all the data obtained
from multispectral sensors and field verification using hand-
held sensors (e.g., Green Seeker), this range of information
had assisted in the development process of crop growth
mechanisms.

Reinecke and Prinsloo et al. [97] were more focus in
studying the capabilities and limitations of drones in maxi-
mizing crop yields and crop management. By using two
drone camera technologies, namely, UVIRCO and Aerobic,
his study concluded that many farmers invested in drone
technology to improve their crop management capabilities.
It is because his technology has the ability to produce digital
maps that can provide crop information such as crop health,
crop loss, irrigation system, and crop spraying.

Kerkech et al. [105] used a convolutional neural network
(CNN) system and color information to detect plant health
status. CNN used diverse color space with various crop
indexes with a combination of the information analyzed
using six methods: capture the image, divide the image into
blocks, create two sliding window schemes, color conversion
from RGB to HSV, and separate the intensity information

chrominance by using LAB and YUV. The results were clas-
sified according to healthy plant, potentially diseased and
diseased plant classes, mapping disease plant generation,
postprocessing steps such as mathematical morphology,
removal of small areas, contour detection, and overlapping
disease maps on RGB images.

3.7. Pest and Disease Detection. The detection of pest and
disease has become a significant concern in oil palm planta-
tion. This is a result of timely detection of pest and disease
that can be of help in prevention of an outbreak. The most
common disease in the oil palm industry is caused by Gano-
derma boninensis. This disease often causes huge losses in oil
palm management. A fungal disease internally rots the oil
palms trunk, and this makes it to be fundamentally vulnera-
ble and collapse due to strong wind [106]. It is a highly con-
tagious disease. However, in the early stage, the infected
palms often show sign till it deteriorates. If the diseases
invested oil palms can be identified earlier, it can be quaran-
tine and remove properly to prevent the spread of this dis-
ease to other plants [107]. Using remote sensing and UAV
imagery system, the status of palms can be assessed on the
basis of the signs shown at given spots earlier, and the dis-
eases or pest infestation can be diagnosed as soon as possible
[108]. On the basis of research hypothesis, oil palm infected
by Ganoderma will show noticeable signs at the beginning;
therefore, several researches were carried out to remove the
oil palms infected with Ganoderma from the plantation at
the early phase of infection. The use of NIR cameras inte-
grated in the UAV able implies the high reflectance of vege-
tation in the NIR region that is invisible to the human eye.
This can be used to demonstrate the health of a particular
plant. The RGB and NIR images coupled with geographic
information system (GIS) analysis will be successfully used
to monitor Ganoderma BSR in oil palm plantation.

Day by day, chemical usage is increasing, which has led
to the environmental impact and health risk aspect on the
user and has become crucial to be considered. Indeed, che-
micals may threat the important inhabitants that live around
the areas. Furthermore, pesticides are also being adopted by
crop and natural resources like water and soil and result to
some concealed substances in the food chain. This can also
increase the risk for both livestock and humans. However,
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by autonomous precision agriculture, these effects can be
controlled. Additives, like fertilizer and pesticides, are
sprayed when necessary, rather than being sprayed over a
vast or specific area that crucially need will be identified
beforehand through drones in agriculture. Many vegetation
indexes involving several data characteristics such as the
NDVI have been developed. Unique camera systems capable
of acquiring data from an invisible part of the electromag-
netic spectrum known as NIR and extract adequate informa-
tion, which includes the presence of algae in the rivers or oil
spills near costs, were developed [109]. Currently, drone
usage has recently been introduced for big areas to inspect
and target areas that need to be irrigated and fertilized
[110]. This approach can be time saving for agronomists,
water resources, and minimize chemical application. This
type of farming method has the tendency to improve of crop
production and quality. Specifically, lack of water, nutrient
stress, or diseases can also be recorded and localized.

Furthermore, an object-based image analysis (OBIA)
was performed to classified oil palms in a selected area into
three categories such as healthy, moderately infected, and
severely infected. These results showed that the OBIA can
be used to analyzed multispectral images of oil palms to
detect moderate and severe infection of Ganoderma disease.
Izzudin et al. [111] stated that the Ganoderma disease sever-
ity index (GDSI) can be obtained from the aerial images of
the infected oil palms. Through this, the detection of early
infection of Ganoderma has become more feasible with an
advanced algorithms and classifiers which incorporated with
multispectral and hyperspectral aerial images application.

Detection of pest hotspots using drones is known as
sensing drones, while drones used for precision distribution
are known as actuation drones. Both types of drones could
be used together to initiate a communication to establish a
closed-loop (integrated pest management) IPM solution
(Figure 9). Using drones in precision pest management are

very cost-effective and reduce harm to the environment.
Meanwhile, sensing drones could reduce the time required
to scout for pests, while actuation drones could reduce the
costs of dispensing natural enemies [37, 112].

3.8. Weed Mapping and Management. Biotic threats such as
weeds, insects, bacteria, fungi, and viruses are major factors
influencing crop quality and yield. Weed problems are the
main threat causing huge losses in crop yields globally
[113]. Weeds are the main competitors for crops in obtain-
ing their nutrients [114], light [115], space [116], and water
[117]. Besides that, the weeds’ formation of toxic molecules
and chemical signals will also interfere with crop develop-
ment [118].

Drone technology is very suitable in weed detection, and
the main advantage of drones in comparing to the conven-
tional conditions in shorter time and optimal control of
resistance on crops planted in rows [119] is to increase the
effectiveness of drone usage for this purposes. In just a few
minutes, a drone can be able to collect data covering several
acres of area and provide images to detect the weed patches
[120]. Later, those images will be processed using deep neu-
ral networks [121], convolutional neural networks, and
OBIA [29, 60]. The final data will be concluded in three
types of sensors such as RGB, multispectral, and hyperspec-
tral sensors.

Weed infections in farm areas are usually uneven, and
drone technology systems offer the best methods to map
weeds and provide site-specific weed management (SSWM)
methods. Two methods of weed detection are used, namely,
the detection of spectral band differences between weeds and
crops, and the second is the use of remote sensing data that
is not from a multitemporal drone [122]. By using a drone
application, the data obtained can be processed by super-
vised classification method only by using RGB sensors if
the difference of the spectral signal is successfully identified
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Figure 9: Drone used for detection of pest hotspots adapted from [37, 112].
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between weeds and plants [123, 124] as it can produce a map
that can pinpoint the location for herbicide spraying [125].
However, there is no guarantee that it can be fully resolved
[126]; drone handling techniques and related tools such as
accurate and fast field data support can help in effective solu-
tions in a timely manner [127]. The second approach is for
early monitoring at the beginning of the crop development
using high-resolution images drones and a unique method
called OBIA. This method analyzes nonpixel objects like
the traditional method, and the RGB sensors are very suit-
able to use because their spatial resolution exceeds the spec-
tral resolution [128]. Using the latest technology can save a
lot of labor and time identifying weeds and their eradication
methods [129, 130]. This drone technology has been shown
to significantly reduce the use of poisons without affecting
crop yields [122]. In the future, high-resolution hyperspectral
with a combination of spectral discrimination and OBIA will
be utilized effectively. Figure 10 shows the weed management
phase in a plantation system using drone technology.

3.9. Irrigation Management. In recent years, crop irrigation
information can be obtained through satellite remote sens-
ing images from various platforms as it has an advantage
in terms of crop coverage area. However, the problem of
public coverage and satellite remote sensing that is not in
the orbital position during the plant development stage
affects drone technology’s use completely [132]. Izzuddin
et al. [133] proposed an installation of thermal infrared sen-
sor on a drone to enable the system to obtain the canopy
temperature as this sensor is lighter and can produce more
stable information; however, it will easily influence by air
temperature and human activity [134] compared to multi-
spectral sensors.

Besides that, drones equipped with thermal cameras can
detect possible pooling or leaks in any irrigation system. A
single high-resolution integrated with geolocated map of
the field will highlight stressed areas. This map can also be
used in the context of variable rate irrigation (VRI) applica-
tions. VRI applications can optimize the irrigation system

around the fields and automate the process based on data
collected by sensors, maps, and GPS [135]. It can also con-
tribute to identifying the water pollution around courses
and bodies and consequent degradation of water-related
ecosystems that might raise due to usage of agricultural che-
micals that seep into nearby water system. Furthermore,
drone application can also observe serious soil degradation,
which threatens plant productivity [136].

4. Challenges of Drone Application/Limitations

The use of drone technology for the plantation sector is
among the main challenges. The cost of procuring drones,
sensors and related materials, flight time, limited payload,
and frequently changing regulations by the relevant authori-
ties increases the chances of utilizing the drone effectiveness.
More comprehensive information on the opportunities and
challenges of drone application for the plantation and envi-
ronmental sectors were effectively discussed by Hardin and
Jensen [137], Zhang and Kovacs [138], and Ken and Hugen-
holtz [139].

4.1. Regulations. Drones equipped with the right sensors can
aid a farmer to navigate the location in the fields, observe it,
and generate statistics data related to the health and status of
the crops. Under the Department of Civil Aviation (DCA)
regulations, all measurements and observations done using
a drone must fall within the drone operator’s visual line of
sight (VLOS). The problem in drone application is most
larger farms have larger VLOS distance. It is impossible to
conduct multiple operations continuously and stitch the
multiple images together into a larger map as this will take
a lot of time and need technical expertise. Moreover, the
use of UAVs for agriculture is more commercial-based,
and all relevant legislation and national rules should be
followed.

4.2. Operating Time. For legal and safety purposes, drones
need to have an active pilot. Using a drone in agriculture
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Figure 10: Weed management phase in a plantation system using drone technology [131].
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does not facilitate multitasking. There must be someone to
be present if something goes wrong. Even if a farmer is exe-
cuting an autopilot flight, the pilot cannot walk away to take
care of something else.

A common problem that usually arises is the estimation
of the flight durations as it usually affects ideal conditions. A
software may predict a time of flight based on a given area of
interest, but in real conditions, it may take four or five times
longer than the software prediction. Besides that, once the
images are acquired, it need to be processed and analyzed
to extract all the useful information. With an average super-
computer, few hours will be taken to analyze thousands of
photos.

4.3. Disadvantages of the Use of UAVs. Though drone appli-
cations for precision agriculture are growing, there is a num-
ber of barriers to their successful widespread adoption.
Various issues must be considered when employing a drone,
and these includes the path-planning process that does not
utilize an expert pilot, the high-speed ultra-low scenario,
data downloading task in real-time application, size, and
payload to prevent bottlenecks and software for automatic
analysis [138]. Another deterrent to invest in drone applica-
tions is the high cost of purchasing an unmanned aerial
system. On the other side, the lack of a consistent workflow
encourages stakeholders to use ad hoc procedures for imple-
menting precision applications. Furthermore, because preci-
sion agriculture necessitates data-intensive techniques for
utilization of the collected images, qualified personnel and
professionals are frequently required as a result, and an aver-
age farmer may require training or the assistance of an
expert to assist with picture processing, thereby increasing
the cost. Therefore, each farmer with a few and tiny agricul-
tural lands may be unable to use drone technologies. Hence,
stakeholders with vast cultivated areas who has higher profit
rates can use more advanced and expensive drone manage-
ment systems. The most industrial drones have a shorter
flight duration, ranging from 20min to 1 h, which can only
cover restricted area at each flight. On the other hand,
longer-flying drones are more costly. Furthermore, the suc-
cessful utilization of drones is influenced by the weather.
The flight should be postponed, for example, on a very bad
day. The weight and size of the sensors in the low-cost drone
are the drone’s other restrictions such as smaller and
medium-sized drones are usually less steady and precise,
and less powerful engines and low-cost drones have diffi-
culty reaching a specific altitude [140].

5. Conclusion and Recommendations

Precision agriculture has incorporated cutting-edge technol-
ogies to boost crop output over the last decade. These tech-
nologies are important in situations where it is impossible to
spray chemicals on crops due to a lack of labor. This method
also makes the work of spraying easier and faster. The sug-
gested solution explains how to monitor crops using a mul-
tispectral camera mounted on a drone. The camera gathers
photographs, and the geographic indicator analyzes them
throughout a single trip. It may be easier to pinpoint the

areas that require pesticide or fertilizer application based
on the findings. The pesticides will be sprayed by the drone
sprinkling system using GPS coordinates exclusively on
affected regions where the NDVI has identified no vegeta-
tion. This could help cut down on resource waste like water
and chemicals. Precision agriculture with drones is still in its
early stages, and drone technology for agriculture applica-
tions has room for improvement. Enhanced image process-
ing approach, less costly, minimum flight duration, new
sensor designs, batteries, low volume sprayers, and nozzle
types are all expected to be examined as drone technology
advances. Drones based on remote sensing for agricultural
applications should be the subject of a large number of
experimental research. In the not-too-distant future, these
systems will be more prominent in precision agriculture
and environmental monitoring.
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Forest conservation is crucial for the maintenance of a healthy and thriving ecosystem. The field of remote sensing (RS) has been
integral with the wide adoption of computer vision and sensor technologies for forest land observation. One critical area of interest
is the detection of active forest fires. A forest fire, which occurs naturally or manually induced, can quickly sweep through vast
amounts of land, leaving behind unfathomable damage and loss of lives. Automatic detection of active forest fires (and burning
biomass) is hence an important area to pursue to avoid unwanted catastrophes. Early fire detection can also be useful for
decision makers to plan mitigation strategies as well as extinguishing efforts. In this paper, we present a deep learning
framework called Fire-Net, that is trained on Landsat-8 imagery for the detection of active fires and burning biomass.
Specifically, we fuse the optical (Red, Green, and Blue) and thermal modalities from the images for a more effective
representation. In addition, our network leverages the residual convolution and separable convolution blocks, enabling deeper
features from coarse datasets to be extracted. Experimental results show an overall accuracy of 97.35%, while also being able to
robustly detect small active fires. The imagery for this study is taken from Australian and North American forests regions, the
Amazon rainforest, Central Africa and Chernobyl (Ukraine), where forest fires are actively reported.

1. Introduction

Forests, lands dominated by trees, cover approximately 4 bil-
lion hectares of the earth’s land area [1]. This is equivalent to
around 29% of the earth. Forest management and conserva-
tion are therefore essential tasks for sustaining biodiversity
at global scale [2]. Forest fires, which can be manmade or
naturally occurring, are events that can threaten our planet
leaving behind catastrophic circumstances such as damages
and losses [3–7]. Forest fires have long-term devastating
effects on ecosystems such as destroying vegetation dynam-

ics, emission of greenhouse gases, loss of wildlife habit, and
also devastation of land covers [8–11]. Therefore, accurate
and timely detection of active forest fires is critical to mini-
mize and/or prevent such hazards.

In recent years, advanced remote sensing (RS) technolo-
gies have been adopted to monitor and observe the earth and
land covers, which can be on a large scale [12–15]. Availabil-
ity of high spatio-temporal resolution data and multispectral
imagery allow tremendous applications of forest monitoring
such as burned area mapping [7], active fire detection [11,
16], burning biomass detection [17, 18], and forest
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disturbance monitoring [19, 20]. It is worth noting that one
widely and freely available RS data source can be used for all
the tasks, which are imagery form Landsat satellites.

Active fire detection is an important application of RS in
forest monitoring. The active fire detection and analysis can
be used in many applications such as source point pollution
in air quality analysis, initial seed point in burned area map-
ping, and prediction of growth and spread of active fires
[21]. Until now, many researchers detect active fires using
multispectral satellite imagery, assisted by computer algo-
rithms. For instance, Wooster and Nightingale [4] presented
an active fire detection method based on Sentinel-3 imagery
using Land Surface Temperature Radiometer (LSTR) near
nadir scans and fire characterization (potential fire pixel
classification) through middle infrared radiance calculation
method. Cruz et al. [22] proposed a fire detection method
according to color index. Their method was based on classi-
fication of vegetation to detect the smoke and fire flames.
They claimed their method could be applied in real-time
using unnamed aerial vehicle (UAV) dataset. Schroeder
et al. [23] studied active fire detection by exploiting Visible
Infrared Imaging Radiometer Suite (VIIRS) sensor data
375 (m). Their method deployed a contextual algorithm
built on the heritage MODIS (MODerate Resolution Imag-
ing Spectroradiometer) fire and thermal anomaly product.
Jang et al. [24] designed forest fire detection algorithm based
on Himawari-8 geostationary satellite data for detection of
fire candidate pixels with thresholding based on multi-
temporal analysis. Jiao et al. [25] proposed a deep learning
based forest detection algorithm based on UAV dataset.
They used YOLOV3 (You Only Look Once version 3),
RGB (Red, Green, and Blue) imagery. They reported the
potential of YOLOV3 in detection of location of active fires.
Yuan et al. [26] designed an active fire detection framework
based on UAV imagery for forest areas. Their method was
deployed in three stages: (1) color detection for forest candi-
date pixels, (2) motion detection for reducing false alarm
pixels, and (3) classification fires pixels based on extracted
features (direction and magnitude). Schroeder et al. [21]
detected the active fire by using Landsat-8 imagery for both
daytime and nighttime fires. They applied thresholding
short-wave infrared, optical and near infrared bands.
Amraoui et al. [27] presented the active fire detection based
on Meteosat-8/SEVIRI (Spinning Enhanced Visible and
Infrared Imager) dataset. The fire detection in this frame-
work as following: (1) mask non-target object (water, desert,
urban), (2) identification high potential pixels based on
thresholding brightness temperature and solar zenith angle,
(3) removing contaminated pixels (cloud pixels, sun glint,
highly reflective surfaces) by thresholding spectral and ther-
mal bands, and (4) making decision on obtained potential
fire pixels by obtained contextual information. Chen et al.
[28] proposed a Convolutional Neural Network (CNN)
based forest fire detection method using UAV dataset. In
their framework after dataset capturing, some pre-
processing such as histogram equalization, low-pass filtering
was conducted and then, the CNN network with seven con-
volution layers and some hidden layers were utilized for
binary classification. Gargiulo et al. [29] designed a fusion

framework for active fire detection using Sentinel-2 imagery
and CNN to improve the spatial resolution Short Wave
Infrared (SWIR) bands toward 10m resolution. They
enhanced the spatial resolution of SWIR bands and
improved the performance of active fire detection. Lin
et al. [30] proposed an active fire detection framework using
FengYun-2G dataset. The active fire detection procedure in
this framework was based on comparing predicted value
and observed value. That algorithm deployed image analysis
for reducing false alarm pixels and temporal analysis for
confirming fire pixels. Zhang et al. [31] investigated the
active fire detection based on VIIRS dataset. This method
was applied in 5 steps: (1) initial data screening by thresh-
olding spectral and thermal bands, (2) data partitioning,
(3) the detection of thermal anomaly pixels, (4) contextual
analysis, (5) confirmed thermal anomaly pixels based on
thresholding of the view zenith and solar zenith angles.

Similarly, there are many active fire detection frame-
works exploiting RS datasets. In general, active fire detection
methods based on traditional fire detection methods can be
applied based three basic principles [32]: (1) detection of
hot-temperature pixels using thresholding methods, (2)
context-based methods where hot-temperature pixels are
compared with the background, and (3) detection of fire
pixels based on generated smoke and moving fire plumes.
Generally, these active detection methods using RS imagery
face their own respective challenges. Thresholding methods
tend to fail due to tremendously varying environmental con-
ditions and air temperature. Air temperature variations orig-
inating from various factors such as shadow, clouds, wind,
illumination angle, seasonal variation, and climate change,
can also be a problem for contextual methods. Then, small
fires make smoke and non-fire objects detection problem-
atic, especially when dealing with medium and low-
resolution RS dataset (i.e. VIRIIS, and MODIS, Sentinel-3).
It is also worth mentioning that most of the aforementioned
methods rely on traditional machine learning classification,
which requires feature engineering.

As one of the widely used RS data, Landsat-8 satellite data
was selected for this research. The dataset has higher spatial res-
olution compared to other modalities such as MODIS, VIRIIS,
and Sentinel-3. Landsat-8 also allows improved affordability in
detecting small fires as the high-resolution imagery allows for a
potentially more improved discrimination capabilities. To min-
imize the challenges mentioned above (pertaining to datasets),
it is necessary to design an advancemethod for active fire detec-
tion. Therefore, this research presents a novel active fire detec-
tion method based on deep learning. This method combines
the RGB and Thermal images from Landsat-8 satellite imagery.
The proposed deep learning framework has two-stream chan-
nels and can detect deep features by exploiting the prowess of
its convolutional neural network architecture. The key contri-
butions of this research are presented as follows:

(a) Presenting a framework for active fire detection based
on deep learning called active-fire-net (Fire-Net).

(b) High efficiency against detection of small fires using
freely available data
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(c) Taking advantages of deep features that combined
spatial and spectral features instead of single spectral
features

(d) Accurate and automatic detection of active fires with
the potential of being applied as real time

(e) Taking advantages of residual and depth-wise and
separable convolution block

(f) Introducing novel loss function for imbalancing
problems

(g) Testing the transferability of training datasets

2. Study area

Table 1 describes the five study areas selected for active fire
detection. Generally, the areas cover North America, Austra-
lia, the Amazon rainforest, Central Africa and Chernobyl
(Ukraine). Different areas were selected due to the varying
climate conditions, temperature affecting the thermal bands
and also forest density. This allows for a variety of data to be
analyzed with the hope of producing a more generalized
model. The Fire-Net model utilizes training data from the
active fires in North America and Australia. Model testing
is done on the Central Africa, Brazil, Chernobyl and also
data from Australia (the parts were not involved in training).
[33]. The North American’s forest includes 4 regions
(Figure 1(a)) where the active fires were reported in 2013-
2014. The Australian forests, which had average temperature
of 19°C and humidity of 62%, were obtained in June 2019
where the southern and eastern parts of Australia exhibited
intense wildfire. The area includes 6 sub-regions with active
fires in 2019-2020 (Figure 1(b)). The third study area is part
of the Amazon rainforest, whose average humidity and tem-
perature are 76% and 18.5°C, respectively. The fourth study
area is that of north-central Africa wildfires (occurred in
December 2018), which was caused by human activity. The
average of humidity and temperature of this study area are
72% and 25°C, respectively. The fifth study area belongs to
Chernobyl, Ukraine. The wildfires began in April 2020,
which was spread quickly by wind. At the time of wildfire,
the scene was mostly cloudy. Due to variations temperature
and presence of cloud, this case study was chosen to evaluate
the performance of proposed methodology against men-
tioned factors. The average of humidity and temperature
are 46% and 9°C, respectively.

2.1. Landsat-8 Dataset. The Landsat-8 satellite sensor was
designed by NASA (National Aeronautics and Space
Administration) and was launched on into orbit in February
2013. This sensor is able to capture data in 11 spectral bands
with spatial resolutions of 15 meters (panchromatic), 30
meters (visible, NIR, and SWIR), and 100 meters (thermal).
Furthermore, this sensor collects dataset form Earth with a
temporal resolution of 16-days. Since this study requires 4
spectral bands (R, G, B, and thermal), we chose the standard
terrain corrected Level 1T datasets.

2.2. Inventory data. The inventory (sample) data is meant as
training images (maps and images) for the proposed super-
vised Fire-net network. The quality and quantity of sample
data are the most important factors to obtain promising
result. Therefore, we carefully identified the location of
active fires from related resources such as [34, 35]. This
was mainly done through visual inspection guided by expert
knowledge to generate the reference data. The correspond-
ing active fire locations were then extracted from Landsat-
8 datasets for training (65% of the samples), validating
(15% of the samples), and testing (20% of the samples). In
this research 722 patches were generated with the size of
256× 256 pixels representing the training, validation, and
testing datasets by 469, 109, and 144 patches, respectively.

3. Methodology

Out of five study areas, two regions were selected as the
training and validation samples for the Fire-Net deep learn-
ing algorithm and multi-scale residual learning networks
(MSR-U-Net). This two-streamed pixel classification deep
learning-based (Fire-Net) method was proposed to detect
active fires from Landsat-8 imagery. This network uses the
encoder-decoder architecture for active fire detection. Due
to the unique structure of active fires and spatial resolution
of the Landsat-8 dataset, a two-stream deep feature extractor
architecture is proposed. This means that the Fire-Net
framework consists of two deep feature extractor channels.
The first channel is meant to detect the active fires whereas
the second channel for background and non-fire objects
detection. The general overview of Fire-Net is presented in
Figure 2.

For dataset preparation, the Landsat-8 images are pre-
processed and converted into image patches. Image patches
can suppress speckle noise and optimize segmentation. Basi-
cally, we divide each image into a grid of patches, specifi-
cally, 256 × 256 in size. Since we are considering 4-bands,
the total number of 256 × 256 images are 4. As with any
other machine learning algorithm, we divide the dataset into
three parts: (1) training dataset, (2) validation dataset, and
(3) testing dataset. The training and validation datasets
(which form what is called the development set) were used
to discover the optimal weights for the entire network. For
this work, we defined the stopping condition as 250-
epochs. The testing dataset was used to evaluate the
trained-and-validated network where seven metrics were
calculated. Finally, the trained network is deployed to detect
the active fires through the second (Australian Wildfire, the
parts were not involved in training), third (Amazon rainfor-
est), forth (Central Africa), and fifth study areas (Cherno-
byl). The next subsection presents the details of Fire-Net
deep learning architectures.

3.1. Image Pre-processing. For the landsat-8 L1-T product
some pre-processing as radiometric correction and orthorec-
tification were conducted. The atmospheric correction was
also done by Fast Line-of-sight Atmospheric Analysis of
Hypercubes (FLAASH) modules. Besides, the thermal bands
need to convert into radiance and then to brightness
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temperature. The final step was splitting data to small
patches with size of 256× 256 pixels to be fed into Fire-Net.

3.2. Proposed Deep Learning Architecture (Fire-Net). A two-
stream feature deep learning method was proposed for forest
fire detection. This architecture is based on multiscale-
residual convolution layers where it takes the advantage of
the point/depth-wise convolution, residual, and multiscale
convolution blocks. The multiscale block increases the
robustness of Fire-Net against size variations [36]. This
allows Fire-Net to improve detection performance of small
fires. The residual blocks also has been shown to prevent
the vanishing gradient problem and also affords efficiency
equal to that of a deeper network [37]. The depth/point-wise
convolutions furthermore are cheaper operators that effec-
tively reduce the number of model parameters and computa-
tional cost [38]. The Fire-Net architecture is presented by
Figure 3 in two-streams for deep feature extraction. Firstly,
the shallow features are extracted by the multiscale 2D con-
volutional layers. Next, the extracted deep features are fed to
each deep feature extractor channels. Since small fires can
cover small areas, we used up-sampling with a rate of two
for the first channel before extracting the deep features. This
stream combined residual block and multiscale residual
block for extracting deep features. Simultaneously, the sec-
ond channel was discovered by the deep features from the
original resolution dataset by combing the residual block
and multiscale residual block that are presented by
Figure 4. Then, the extracted deep features from two layers
were fused by the summation operator. Finally, the extracted
features were fed to 2D-convlotution layer as a single feature
map to decide on the final class label (active fire or not). The
details of Fire-Net architecture are explained in next sub-
sections.

3.2.1. Convolution Layers. In CNN, the main task of the con-
volution layers is to extract high level deep features from the
input dataset [39, 40]. For a convolutional layer in the l-th
layer, the computation is expressed according to equation
(1) [41].

yl = g wlxl−1
� �

+ bl ð1Þ

where x is the input data from layer l − 1; g is the activation
function; w is the weighted template; and b is the bias vector.

In 2D convolution layer, the output of the jth feature
map (f ) in ith layer at the spatial location ðx, yÞ can be com-

puted using equation (2) [41].
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〠
Si−1

s=0
Wr,s

i,j v
x+rð Þ y+sð Þ
i−1,m

 !
ð2Þ

where m is the feature cube connected to the current fea-
ture cube in the ði − 1Þth layer; W is the ðr, sÞth value of the
kernel connected to the mth feature cube in the preceding
layer; and R, and S are the length and width of the convolu-
tion kernel size, respectively.

The Fire-Net architecture employs three strategies: (1)
consistent with [36], we make use of multiscale kernel con-
volution (i.e. different kernel size convolutions) to ensure
robustness against variations in scale [42], (2) we prevent
the problem of vanishing or exploding gradient by utilizing
residual blocks (or skip connection) layers, which allows
the gradient to be directly back-propagated to earlier layers
[43], and (3) Depth/Point-wise convolution block: this kind
of convolution layer considers only a single filter for each
input feature [44, 45]. Figure 5 represents the main differ-
ences of standard and depth/point-wise convolution layers.

The loss function used for measuring the training error is
based on predicted value of true value [46]. This research is
used a hybrid loss function (Equation (3)) is known weight-
binary-cross-entropy-dice (WBCED) loss function that it is
more efficient for small targets [47]. The WBCED loss func-
tion is combined dice loss (Equation (4)) and weighted cross
entropy loss (Equation (5)) that can be defined between pre-
dicted value (p) of true value (y) as following:

LossWBCED = Lossweighted binary cross entropy + LossDice ð3Þ

LossDice = 1 − 2∑y × p
∑y+∑p ð4Þ

Lossweighted binary cross entropy = −w y log pð Þ + 1 − yð Þ log 1 − pð Þð Þ
ð5Þ

Lossbinary cross entropy = − y log pð Þ + 1 − yð Þ log 1 − pð Þð Þ ð6Þ

w =
∑s

i=1∑
t
j=1xi,j

e−5× Mask−0:5j j/∑e−5× Mask−0:5j j
ð7Þ

where Mask is obtained by overage pooling of reference map
furthermore, s, t are width and length of Mask.

The Fire-Net architecture is trained by an Adaptive
Moment Estimation (Adam) optimizer [48] through

Table 1: The descriptions of datasets for five study areas.

Case study Date Description

North American 2013-08-31,2014-09-19 Training, and validation

Australian wildfire
2019-09-03,2019-10-19, 2019-10-21,2019-10-28, 2019-11-06,
2019-11-13,2019-12-08, 2019-12-15,2019-12-31,2020-02-01

Training, validation, and testing

Amazon rainforest 2019-08-25 Testing the transferability

Central Africa 2019-01-04,2018-12-19, and 2018-12-19 (different area) Testing the transferability

Chernobyl 2020-04-10 Testing the transferability
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backpropagation where weights were initialized using the
Golorot initializer [49]. The hyperparameters for training
Fire-Net is as follows:

(i) Batch-size =7-patches

(ii) Learning rate = 10−3

(iii) Number of Epochs =250

The shuffle technique was used during training process.
Fire-Net was implemented on Tensorflow v2.4.1 and Keras
v2.4.3.

3.2.2. Evaluation Indices/methods or accuracy assessment.
We performed two types of evaluation for Fire-Net. Firstly,
visual analysis was performed where the results were com-
pared with reference data. Next, we calculated seven quality
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Figure 1: Location of active fire in (a) the USA, (b) Australia.
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indices namely overall accuracy (OA), recall, precision false
positive rate (FPR), miss-detection (MD), F1-score, and
kappa coefficient (KC). More details of these indices can be
found in [41]. We also performed a comparison between
Fire-Net with an established CNN, namely the MSR-U-
Net. The main reason is due to MSR-U-Net’s similarity to
Fire-Net in combining multi-scale kernel convolution filters
with residual blocks deep features extraction [50, 51]. MSR-
U-Net also uses an encoder-decoder structure for exploring
deep features. For a detailed evaluation of Fire-Net’s effi-
ciency, 5 machine learning methods (K-Nears-Neighbor
(KNN), Support Vector Machine (SVM), Multi-Layer Per-
ceptron (MLP), Random Forest (RF), and Extreme Gradient
Boosting (XGBoost)) were used for comparing fire detection
results. Brief explanations of each algorithm are provided in
the following:

(1) KNN: This is a simple non-parametric classifier.
Without any assumption about the dataset, KNN
classifies the data based on each data point’s neigh-
bors. This research used the Euclidian metric and
the numbers of neighbors were set to 4

(2) SVM: The SVM is a supervised machine learning
classifier that is widely used in RS. The main idea
behind SVM is to find a hyperplane that best sepa-
rates a dataset into two-classes. Although in its orig-
inal form, the SVM is meant for binary classification,
it can still be used for multi-class classification tasks.
In general, a kernel function is used to generate a
nonlinear decision boundary in the feature space.
In this work, we empirically tuned two of the SVM
parameters, which are the penalty coefficient and
the (Radial Basis) kernel parameter. They were set
to 101 and 103, respectively

(3) MLP: This classifier is a supplement of a feed for-
ward neural network. The MLP has several hidden
layers where each has several neurons. The neurons
are trained using the back propagation learning algo-
rithm. We constructed a two hidden-layer MLP with
40 and 30 neurons in the first and second layers,
respectively

(4) RF: RF is a supervised learning classifier consisting of
an ensemble of decision trees where the final deci-
sion is obtained by majority voting. RF is trained
by a bagging method where the gist of bagging is
the combination of learning models that improves
overall classification results. This algorithm has two
main parameters i.e. number of trees and number
of features to split. Each were set to 93 and 3,
respectively

(5) XGBoost: XGBoost is a decision-tree-based ensem-
ble supervised learning method, based on the gradi-
ent boosting framework. Several parameters need to
be tuned for this classifier, namely number of esti-
mators (set to 105), max-depth (set to 4), eta (set
to 0.03), min-child-weight (set to 1), subsample (set
to 0.8) and colsample-bytree (set to 0.8).

4. Results

This section explains the experimental setup and results of
the proposed active fire detection algorithm (Fire-Net).
The dataset we used contains 22 tiles of Landsat-8 images
covering the first and second study areas (i.e. North USA
and Australia). From the 22 tiles, 14 tiles were used for train-
ing, 3 tiles for validation, and 5 tiles for testing. For the ease
of processing, the 22 tiles were split into small patches in size
of 256× 256. At the end, to check the transferability of the
Fire-Net method it was tested on other study areas (i.e. the
Amazon rainforest, Central Africa and Chernobyl).

4.1. Australian Forest. The results of the Australian’s forest
fire detection, by methods, are presented by Figures 6(b)
and 6(c). Visually, both deep learning methods managed to
detect fire areas. However, misclassification occurred in the
patch boundaries for MSR-U-Net (Figure 6(b)). Based on
the evaluation metrics, the main difference between the
two networks were in detection of active fires with low MD
and FPR rates. Many false positive pixels were detected using
MSR-U-Net, while Fire-Net had lower false positives.

The numerical results of active fire detection for the first
test are presented in Table 2(a). Fire-Net outperformed
MSR-U-Net with a higher overall accuracy of 99.95%, preci-
sion of 97.94%, F1-Score of 97.57%, and KC of 0.975 indices.
MSR-U-Net exhibited a lower rate of MD (near 0%), while
considerably showing a higher FPR compared to Fire-Net.
There is however a trade-off between detecting fire pixels
and non-fire pixels. The Fire-Net model has lower error
rates for active fire detection whereas MSR-U-Net has lower
MD rates but higher FPR rates. The ideal situation is when a
method can effectively detect both fire and non-fire pixels
with lowest error. The numerical results for active fire detec-
tion by the other machine learning algorithms are presented
in Table 3(a). Although the SVM had the most accurate OA
(99.03%), its performances against the other indices of Pre-
cision, Recall and F1-Score were low. The MD index
(99.98%) for SVM revealed that it could not effectively detect
active fires. RF and XGBOOST on the other hand showed
good performance compared to the other algorithms. In all

Landsat-8 Reference data 

Data preparation

Model training

Model evaluation

Trained model

Prediction

Active fire map

Training/validation

Testing

Step I

Step II

Step III

Figure 2: Overview of general framework of active fire detection.

6 Journal of Sensors



however, Fire-Net outperformed all these algorithms where
they lacked the robustness, correctness, and certainty against
the 7 evaluation metrics.

4.2. Central Africa Forest Fire. The result of active fire detec-
tion for Central Africa is presented in Figures 6(f) and 6(g).
It shows background from foreground segmentation for
each scene. For this case study, the active fire areas were
small compared to the north of USA and Australia. Both
methods were able to detect active fires with cases of
misclassifications.

Fire pixels can be seen when zooming into Figures 7(b)
and 7(c). Compared to MSR-U-Net, Fire-Net provides more
fitting segmentations, covering more relevant areas of fire
areas. This indicates that Fire-Net detects almost all relevant
fire pixels that were not detected by MSR-U-Net.

Table 2(b) shows the accuracy assessments for both net-
works. The results indicate that both methods performed
well in detecting non-fire pixels, while their accuracies
decreased when detecting fire pixels. For this dataset, the
MD rate is high and both networks focused on non-fire
pixels. The low values of KC indicate the decrease of perfor-

mance reliability of both networks. Table 3(b) shows the
quantitative evaluations for 5 machine learning methods to
detect active fires. Accordingly, most of them were successful
in detection of non-active fires as indicated by FPR values
lower than 1%. Moreover, the lower Precision and F1-
Scores values show that consistency and balance among all
7 evaluation metrics were not seen amongst those 5 methods
compared with Fire-Net.

4.3. Brazilian’s Forest Fire. The active fire maps for Brazil’s
forest produced by the different methods are illustrated in
Figures 6(j) and 6(k). The southern part of the region was
mainly classified as having active fires. Seemingly, both
methods generated active fires map with lowest error.

Figures 7(g) to 7(i) presents a closer look of the active
fire areas. Figure 7(i) is the active fire map generated by
Fire-Net. It is comparable and as complete as the one pro-
duced by MSR-U-NET. The Accuracy assessment for the
generated fires maps are presented in Table 2(c). It can be
seen that both methods successfully detected the fires, with
Fire-Net outperforming MSR-U-Net. Fire-Net’s precision is
95.98%, recall 98.04%, near zero-FPR, and an F1-Score of

2D-multi-scale-shallow-block 2D-multi-scale-residual-block 2D-residual-block 2D-convolution-block 2D-upsampling-block 2D-max-pooling-block

In
pu

t d
at

a

Figure 3: The training process for active fire detection.
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Figure 4: Three convolution blocks in the Fire-Net architecture.
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97.0%. The numerical assessments for the 5 machine learn-
ing algorithms are shown in Table 3(c). OA was mostly
equal for all at approximately 99%. Precision on the other
hand were lower than 60% with low FPR rates (below 1%)
and higher MD rates. These indicate weak active fire detec-

tion. Therefore, the 5 machine learning methods were not
comparable with Fire-Net in this region.

4.4. Chernobyl’s Forest Fire. Figures 6(n) and 6(o) shows
both network’s fire detection performance in the Chernobyl

(a) Standard Convolution (b) Point-Wise Convolution

(c) Depth-Wise Convolution

Figure 5: Comparison of three convolution layers in the Fire-Net architecture.
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forest. Note that fire detection in this region is challenging
due to the presence of high clouds and fires of small sizes.
Nonetheless, both networks performed well with MSR-U-
Net failing to detect a small number of active fires
(Figures 7(j)–7(m)). As with the other regions, Fire-Net
showed higher precision, recall, and f1-Score. However, we
posit that the diversity of the terrain might be the cause for
higher MD rates compared to FPR. The results of active fire
detection using the 5 machine learning methods are pre-
sented in Table 3(d). OAs exceeding 99% for KNN, RF,
and XBGOOST, with an added low FPR (below 1%) indi-
cates accurate active fire detection. However, SVM and
MLP were successful in the mapping of non-active fires.
Again, based on the 7 evaluation metrics, the Fire-Net
method showed its superiority.

5. Discussion

5.1. Accuracy. Timely detection of active fires is critical for
disaster management. This research proposes a deep net-
work called Fire-Net for active forest fire detection based
on optical RGB and thermal dataset. The accuracy of the
network was evaluated based on 4 different case study areas.
Furthermore, Fire-Net’s results were also compared against

the established MSR-U-Net deep neural network. The evalu-
ation metrics and visual inspection of active fire detection
results showed that the proposed method outperformed
the MSR-U-Net and exhibited higher accuracy in detection
of fire and non-fire pixels. For a more detailed analysis,
Fire-Net was compared against 5 other popular machine
learning algorithms. It was discovered that MLP, RF, SVM,
KNN, and XGBOOST required a relatively small number
of samples, with the exception that several parameters must
be tuned for optimal classification. Despite good perfor-
mance, all these methods require manual handcrafted fea-
tures which is laborious and time-consuming.

As for the evaluation metrics, Recall is an evaluation
metric that finds true positive (TP) pixels. The mean of recall
of the Fire-Net algorithm was 92.64% while MSR-U-Net was
86.25%. This indicates Fire-Net’s superiority in detecting
more TP pixels. On the other hand, precision is a metric that
describes a model’s ability to identify positive pixels. In our
study, Fire-Net had a precision of 93%, indicating high-
confidence in detection of active fire pixels. MSR-U-Net on
the other hand only had a precision of under 67%. Although
Fire-Net clearly has higher precision and recall scores, the
F1-Score is important to measure as well since it provides
a harmonic mean of precision and recall. With regards to

Study
area

True color
composite MSR-U-net Proposed

method Reference map

Australian’s
forest

(a) (b) (c) (d)

Central
africa’s

forest in
2018-12-19

(e) (f) (g) (h)

Brazil’s
forest

(i) (j) (k) (l)

Chernobyl
in ukraine

(m) (n) (o) (p)

Figure 6: The result of active fire detection and red and green are fire and non-fire, respectively.
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this metric, Fire-Net had a score of more than 93% com-
pared to MSR-U-Net at 67%. The high rate of F1-Scores
expresses the model has either the high believable and high
ability in prediction of TP pixels. The OA index is one of
the most common factors in quantity assessment. This index
associates the relation among TN and TP pixels with all
pixels. The OA proposed Fire-Net algorithm is more than
99% in all datasets. This subject shows the proposed method
has high performance in prediction TP and true negative

(TN) pixels. The KC measures the reliability of model in
classification that mainly, the proposed method was pro-
vided the moderated level.

MD and FPR are two metrics that should be low for
effective active fire detection. This is especially true for MD
because undetected fire pixels are more costly than labeling
false detections. Our results show that Fire-Net’s average
MD is at 8% with an FPR of 0.0001%. MSR-U-Net on the
other hand had an average of MD rate more than 14% with

Table 2: Accuracy assessment of active fire detection (Comparison of Fire-Net and MSR-U-Net).

Method OA (%) Precision (%) Recall (%) FPR (%) MD (%) F1-score (%) KC

(a) Australian’s Forest

MSR-U-net 94.73 16.55 100 4.91 0.00 28.40 0.272

Fire-net 99.95 97.94 97.20 0.02 2.79 97.57 0.975

(b) Central Africa’s Forest in 2018-12-19

MSR-U-net 99.99 72.91 70.70 0.0001 29.29 71.79 0.429

Fire-net 99.99 84.06 77.27 0.00007 22.72 80.52 0.429

(c) Brazil‘s forest

MSR-U-net 99.99 86.14 87.15 0.001 12.85 86.64 0.429

Fire-net 99.99 95.98 98.04 0.0004 1.95 97.00 0.429

(d) Chernobyl

MSR-U-net 99.99 86.14 87.15 0.004 15.45 81.96 0.429

Fire-net 99.99 95.98 98.04 0.0006 4.58 97.24 0.429

Table 3: Accuracy assessment of active fire detection (Comparison of five common Classification methods).

Method OA (%) Precision (%) Recall (%) FPR (%) MD (%) F1-score (%) KC

(a) Australian’s Forest

MLP 99.02 0.00 0.00 0.009 100 0.00 0.00

KNN 97.13 25.13 99.63 2.88 0.37 40.14 0.391

RF 96.29 20.66 100 3.73 0.00 34.24 0.331

SVM 99.03 14.28 0.01 0.001 99.98 0.03 0.03

XGBOOST 96.29 20.66 100 3.73 0 34.24 0.331

(b) Central Africa’s Forest in 2018-12-19

MLP 99.48 0.00 0.00 0.51 100 0.00 0.1964

KNN 99.99 79.95 70.20 0.01 29.79 72.96 0.4293

RF 99.99 57.47 75.75 0.02 24.24 65.35 0.4293

SVM 99.99 0 0 0 100 0 0.4293

XGBOOST 99.99 57.47 75.75 0.02 24.24 65.35 0.4293

(c) Brazil‘s Forest

MLP 99.64 0.002 0.08 0.34 99.91 0.34 0.1426

KNN 99.99 60.16 91.77 0.006 8.22 0.006 0.4294

RF 99.98 49.93 98.19 0.011 1.80 66.20 0.4294

SVM 99.98 50.00 0.02 0.00 99.97 0.04 0.4292

XGBOOST 99.98 49.93 98.19 0.011 1.80 66.20 0.4294

(d) Chernobyl

MLP 99.99 0 0 1.27 100 0 0.2705

KNN 99.99 83.84 75.60 0.00 24.39 79.51 0.4293

RF 99.99 70.35 91.17 0.00 8.83 79.42 0.4293

SVM 99.99 0 0 0 100 0 0.4293

MLP 99.99 70.35 91.17 0.00 8.83 79.42 0.4293
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a mean FPR of 1%. Essentially, precision, recall, and the F1-
Scores significantly improved by the Fire-Net algorithm
within all study areas. From the valuations, the 5 machine
learning algorithms showed high performance, mainly in
mapping non-fire areas. They however failed to map active
fires. In comparison to the deep networks (especially to
Fire-Net), all 5 machine learning methods had lower success
rates. Fire-Net showed the highest precision for the active

fire detection task. Recently, more research has been done
for active fire detection based on RS imagery. Table 4 pre-
sents the obtained results by other active fire detection
methods.

There are some products for active fire detection as glob-
ally that they mainly are generated by MODIS, VIIRIS (Vis-
ible Infrared Imaging Radiometer Suite), and NOAA
(National Oceanic and Atmospheric Administration)

Study
area

True color composite MSR-U-Net Proposed method

Central
africa’s
forest

(a) (b) (c)

(d) (e) (f)

Brazil

(g) (h) (i)

Chernoby
l in

ukraine

(j) (k) (m)

Figure 7: The zoom active fire area and red and green are fire and non-fire, respectively.

Table 4: Comparison of performance proposed Fire-Net algorithm with other fire detection methods.

Index Method Dataset

Saeed, et al. [40] OA: 99(%) Deep learning based Close rage dataset

Jang, Kang, Im, Lee, Yoon and Kim [17]
Precision:
93.08

RF and threshold based
Himawari-8 geostationary satellite

data

Jiao, Zhang, Xin, Mu, Yi, Liu and Liu [18]
Precision: 83
FPR: 3.2

Deep learning
(YOLOv3)

UAV dataset

Schroeder, Oliva, Giglio, Quayle, Lorenz and Morelli
[14]

FPR: 0.2 Thresholding based Landsat 8

Lin, Chen, Li, Yu, Jia, Zhang and Liang [23]
OA: 54
MD: 78

Contextual based FengYun-2G S-VISSR data

Proposed fire-net

Precision:
93.49

FPR: 0.0001
OA: 99.98

Deep learning based Landsat 8
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sensors. Oliva and Schroeder [52] investigated the active fire
product based on VIIRS dataset by comparing the Landsat-8
dataset. The result of mentioned study shows the accuracy of
this product depend on size fires as the accuracy of product
covers ranges 7% through 100%. Furthermore, Giglio et al.
[53] had investigated the performance of collection six
MODIS active fire products. The numerical results had
shown the FPR rate of this product is nearby 2.4%.

One of most important issue of deep learning method is
balancing dataset. The fire areas cover very small areas while
the non-fire areas are dominant in the scene. Therefore, for
solving this issue we introduced novel loss function. This
loss function combines dice-loss and weighted-binary
cross-entropy.

5.2. Feature Extraction. More active fire detection methods
focus on spectral features and contextual information [30].
The ability of deep learning methods for feature extraction
have been proven by many researches [12, 40, 42, 43, 54].
The deep learning methods are able to detect deep features
containing various spectral/spatial features. The quality and
quantity of active fire methods based on manual hand
crafted features is the main challenge in traditional active fire
detection methods. The deep learning methods can extract
deep informative features in an automatic manner. It is
worth noting that the proposed method used only four
coarse bands (Red, Green, Blue, and thermal). These bands
are the most common bands and widely available data in
most RS satellite imagery. Therefore, this methodology can
be deployed by other satellites with higher temporal resolu-
tion in active fire detection and forest management for real
time and continuous fire monitoring.

5.3. Transferability. Most of the proposed active fire detec-
tion methods are based on thresholding [21, 24, 55]. Due
to different environmental conditions and diversity in forest
layouts, it is impractical to fix constant threshold values for
decision making. From deep learning point of view, both
the methods are based on deep learning, which does not
require hardcoding threshold values. Instead, during the
training step, each network discovers the best weights con-
necting each node through an optimization process. The
transferability is clearly shown with high accuracy for all
regions.

6. Conclusion

Early detection of active forest fires is critical to determine
the starting point of the fire for effective emergency
responses. In this study, active fire detection was performed
on a medium spatial resolution dataset (Landsat-8 imagery)
where the extent of active fires was very low. A deep CNN
(Fire-Net) was proposed in this work to detect active forest
fires in various regions. Specifically, the USA and Australia
regions were used to train the network whereas testing was
done for Africa, Brazil, Ukraine, Australia (the parts was
not involved in training) regions. The results depicted a high
transferability of the proposed method. Then, the Fire-Net
was compared with another state-of-the-art deep network,

i.e., MSR-U-Net and other common machine learning algo-
rithms. The results for active fire detection were qualitatively
and quantitatively assessed. The performance evaluations
showed there was a trade-off between active fire and non-
active fires detection. Due to the extent of active fires in
small areas, most of the machine learning algorithms could
not detect active fires. The high accuracies measured by
OA index for these algorithms, were mostly for non-fire
zones. The other indices namely precision, KC, and F1-
score for these models were low for the detection of active
fires. In contrast, the proposed Fire-Net method showed
high efficacy for both active and non-active fire detection.
Here, small active fires were detected with high accuracy
and low miss detection rates. The efficiency of Fire-Net orig-
inated in its architecture and convolution layers structure
enabling high level and informative features extraction.
Experimental results indicate that Fire-Net: (1) has higher
accuracy, (2) obtains higher sensitivity to small active fires,
(3) the proposed method can be applied as real time process-
ing due to high transferability. Future work will be based on
using geostationary satellite imagery for rapid monitoring of
active fires to provides high temporal resolution for fast
monitoring in a larger scale.
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Street greening, an indispensable element of urban green spaces, has played an important role in beautifying the environment,
alleviating the urban heat island effect, and improving residents’ comfort. Vegetation coverage is a common index used for
measuring street greening. However, there are some shortcomings in the traditional evaluation methods of vegetation coverage.
Part of the vegetation coverage cannot be determined from a two-dimensional perspective, such as shrubs and green walls. In
this paper, the Sentinel-2 image was used to extract the street fractional vegetation cover (SFVC) and the Baidu street view
panoramas were used to extract the green view index (GVI). To overcome the lack of a single perspective from the street
vegetation coverage evaluation, the above two indices were merged to construct a comprehensive street greening evaluation
index (CSGEI). The research area is the Longhua District of Shenzhen city in Southern China. All three indices were divided
into five classes using natural breakpoint methods based on previous research experience. The results showed that Baidu street
view panoramas could effectively identify shrubs and green walls that were deficient in the Sentinel-2 image. The GVI is a
supplement to the street vegetation coverage. The SFVC and GVI were divided into five classes, from L1 to L5 implying a
gradual increase in the percentage of the vegetated area. The result has shown that the SFVC was in the L1, accounting for
53.68%. After index merging, the process of accounting for the L1 decreased to 31.29%. The multiperspective integrated CSGEI
could comprehensively measure the distribution information of street greening and guide the planning and management of
urban green landscapes.

1. Introduction

A forest is an ecosystem of trees and countless forms of bio-
diversity [1]; rapid urbanization and land-use changes near
cities have led to changes in the forest structure and compo-
sition [2]. Therefore, the urban forest has an influence on the
forest near cities. As an essential element of the urban forest,
street greening has the functions of purifying the air, divid-
ing traffic routes, preventing fire, and beautifying cities [3].
Street greening is very important to improve citizens’ satis-
faction with their living environment and promote sustain-
able urban development [4]. Urban street green spaces are
divided into four functions—beautification function, ecolog-
ical environment function, leisure activity function, and
landscape culture function. With these functions, urban
street green spaces directly or indirectly provide all city-
related services [5]. Urban street green spaces have impor-
tant relationships with mental health, air pollution, and
travel behavior [6–8]. From multiple perspectives, therefore,

the qualitative and quantitative analyses of city street green-
ing are of great significance.

With the development of high-resolution remote sensing
technology, images, which contain rich information on
ground objects and complex spatial relationships, are char-
acterized by high dimensionality, high resolution, and large
amounts of data. Thus, remote sensing technology has
become a method for extracting urban street green spaces
[9]. The vegetation index is calculated by the linear and non-
linear combination of multispectral data obtained by remote
sensors. Different vegetation indices, such as the ratio vege-
tation index (RVI), difference vegetation index (DVI), and
normalized differential vegetation index (NDVI), are
obtained by different combinations of measured values in
different bands. The vegetation index is a simple and effec-
tive algorithm for quantitative and qualitative evaluations
of vegetation cover, vitality, and growth dynamics, among
other applications [10]. The vegetation index plays an
important role in vegetation extraction and monitoring
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[11]. Compared with traditional urban green space measure-
ment methods such as field surveys, questionnaire surveys,
and statistical analysis, the vegetation index has the charac-
teristic of high efficiency. Additionally, the problem of the
high cost of LIDAR data and 3D laser point cloud data
[12, 13] will be avoided. The NDVI is a better index of veg-
etation growth status and vegetation coverage factors, but it
is easily saturated and has low vegetation coverage area noise
problems such as incompleteness. Fractional vegetation
cover (FVC) is generally defined as the percentage of the
vegetation vertical projection area to ground cover in the
observation area. It is one of the essential indices describing
the surface vegetation cover [14]. It is a quantitative descrip-
tion with the combination of the NDVI and pixel dichotomy
model. FVC plays a vital role in vegetation monitoring and
ecosystem change [15]. The high-resolution remote sensing
images and other ground observation data have been applied
to the extraction of large-scale urban green spaces, such as
urban forests and green space parks. Although the resolution
of the images is constantly improving, there is still a problem
of low accuracy in the extraction of single-plant vegetation
on both sides of the street. It is impossible to observe green
walls, shrubs, and lawns under vegetation coverage.

The concept of the green view index (GVI) originated in
Japan, and it is a physical quantity used to measure the level
of urban greening. It became one of the conventional green-
ing evaluation indices identified by the Japanese government
in 2004 [16]. Unlike vegetation cover, GVI as a pedestrian
perspective measure of greenery has been widely used in var-
ious fields, such as urban traffic, socioeconomics, and resi-
dents’ health [17–20]. With the development of the
Internet, street view images appear in public view. Street
view images from Google, Baidu, and Tencent [21–26] have
been used to study the spatial changes in urban streets. Street
view images have the characteristics of wide coverage and
directly reflect urban facade information. Thus, it is an
important data source for extracting the GVI [27]. The effi-
ciency and accuracy of GVI extracted from street view
images in measuring street greenery has led more and more
scholars to study GVI [28]. Traditional extraction of GVI
has been divided into manual overlay, HSL color space,
and interband calculations. Semantic segmentation refers
to a process of assigning a semantic label (e.g., car and peo-
ple) to each pixel of an image [29]. With semantic segmen-
tation achieving good segmentation results in all fields, the
extraction of the GVI has changed from traditional extrac-
tion [30, 31] to semantic segmentation [32]. Chen et al.
[33] carried out research on the GVI and vegetation cover-
age extracted from remote sensing images, which realized
the multidimensional observation of urban street greening;
the NDVI, leaf area index (LAI), and GVI are used to evalu-
ate street greening from districts and blocks. Kumakoshi
et al. [34] put forward the standardization green view index
(sGVI), combined with NDVI, which was used to analyze
the greening distribution. Based on spatial domain interpo-
lation, Cao et al. [35] combined street view images with
aerial images to realize urban land use classification. Yu
et al. [36] carried out a study on urban street greening; it
had found that the correlation between the GVI and NDVI

was reduced with the increase in buffer radius. However,
the method to measure greening from a vertical view, such
as the vegetation index, could only describe the greening
from one description. Using GVI to measure greening in a
horizontal view, it is possible to describe the greening
around the sample points. The LIDAR data and 3D laser
point cloud data are more suitable to measure the three-
dimensional greening; this is only used in a small study area
because of the high cost. Nevertheless, previous studies have
considered only the correlation between the GVI and other
vegetation indices; it has shown that the correlation was
decreased with the distance. But it has not yet built an urban
street vegetation three-dimensional observation model to
quantitatively describe the street greening from multiview.

Accordingly, street view image and remote sensing data
complement and verify each other in the scope, scale,
precision, and dimension of greening quantification. This
research innovatively proposed a comprehensive street
greening evaluation index (CSGEI) to measure street green-
ing from a multiview. Therefore, the impact on forest man-
agement of the near city’s urban street green space could be
explored.

2. Study Area and Materials

2.1. Study Area. Shenzhen, as an important economic and
political center in the Guangdong-Hong Kong-Macao
Greater Bay Area, is one of the fastest-growing urbanized
areas in South China. Figure 1 shows the location of the
Shenzhen Longhua District. Shenzhen is located in a low-
latitude area with a typical subtropical marine climate, abun-
dant rainfall, mild climate, and long hours of sunshine, so
the impact on the green vegetation with the change of sea-
sons is less. It has an average altitude of 70 to 120 meters
above sea level. The annual mean temperature is 22.3°C,
the maximum temperature is 36.6°C, and the minimum
temperature is 1.4°C. The rainy season is from May to
September every year, and the average annual rainfall is
1,924.7mm. Therefore, it is a suitable location to analyze
urban street greening by using street view images. Longhua
District is located in the geographical center of Shenzhen
and is the central axis of Shenzhen’s development. As a large
industrial district, its total area is 175.6 km2. Moreover, it is
located south of the Tropic of Cancer. In recent years, Long-
hua District, with the goal of “a modern, international and
innovative new city with the central axis,” has continued to
improve the quality of its ecological environment and built
the first “Talent Greenway” demonstration section in China.
The Longhua District of Shenzhen city is typical of Chinese
cities due to its high-density urban construction space and
green space.

2.2. Materials

2.2.1. Baidu Street View Panoramas. As a kind of data stor-
ing spatial information, street view images emphasize
human perception while expressing the local characteristics
of the streetscape. In contrast to the top-down observation
of remote sensing images, street view images quantitatively
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measure the effect of street facades [37]. The street view
images are electronic maps based on the actual landscape.
These maps provide rich and extensive street view images
containing a wealth of information about city streets. As a
result, street view images have become important data for
assessing the visual perception of city streets. In most cities
in China, the streets have already been covered by the street
view and the Baidu street view panoramas with high cover-
age were selected for the data in this study. The Baidu Map
Street View metadata application programming interface
(API) stores panoramic images covering street sites at 360°

horizontally and 180° vertically, and it is freely accessible
online to everyone. To depict the street greenery in the study
area, the road network data of Longhua District were down-
loaded through OpenStreetMap (OSM) and the centerlines
of the road network were extracted in ArcGIS. This study
used the Baidu Map Street View API to download Baidu
street view panoramas, and sampling was carried out with

an interval of 50m in the centerlines of the road network.
The Baidu street view panorama is a 360° surround image
generated by stitching together. The pictures are taken by
horizontal and vertical cameras, as shown in Figure 2. The
direction indicated by the arrow is the forward direction,
and the 360° surrounding image around the simulated per-
son has been formed at the observation point. A total of
7,466 Baidu street view panoramas were downloaded in this
study, and Figure 3 shows the distribution of sampling
points of Baidu street view panoramas.

However, due to the distortion characteristics of the pan-
oramic images, a python program has been used to extract
the part of the panoramic images which is equivalent to
the pedestrian’s viewpoint with low distortion. By this
method, the cropping of 7466 images was completed in just
one day. The Baidu street view panoramas provide the lon-
gitude, latitude, and date of images. Because the image is
updated every 2–3 years, the Baidu street view panoramas
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Figure 1: Location of the study area. (a–c) Is the geographical location of Guangdong, Shenzhen, and Longhua District of China. (d) Is an
enlarged image of Longhua District.
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used in this study were taken from 2013 to 2019. The images
collected in 2017–2019 were used as the primary data, and
other years were used as supplementary data.

2.2.2. Sentinel Data. Sentinel-2 is the 2nd satellite launched in
the Copernicus program, with high resolution, wide mowing
width, and a short revisit period. It has a good advantage in
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Figure 2: The Baidu street view panorama and its observation view, where the red point represents the observation point and the arrow
represents the forward direction.
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Figure 3: Distribution of sampling points in Longhua District, with 50m intervals between adjacent points. (a) An enlarged view of the
white boxed area on (b).
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global change monitoring and the analysis of emergent
events [38]. Sentinel-2 carries a multispectral imager (MSI)
covering 13 spectral bands with ground resolutions of
10m, 20m, and 60m. The range is from visible to near infra-
red to shortwave infrared, with different spatial resolutions.
Among the optical data, Sentinel-2 is the only satellite with
three wavelengths in the red range for effective monitoring
vegetation information. Level-2A data of Sentinel-2 were
downloaded on the Google Earth Engine (GEE) platform.
Statistically, the Baidu street view panoramas were from
2013–2019. To reduce the error when fusing the two types
of data, the image was selected when it contained less than
5% clouds between 2013 and 2019. The data in October
2018 were used for measuring urban street greening from
the vertical perspective.

3. Methodology

The image of Sentinel-2 was used as the horizontal data. The
street fractional vegetation cover was extracted by the com-
bination of the NDVI and image dichotomy. The threshold
of vegetation and nonvegetation was automatically deter-
mined using the Otsu method. By this method, the oversat-
uration problem of the NDVI is eliminated. The proportion
of vegetation pixels in the buffer was calculated. The width

of the buffer was determined by the road classes. The street
fractional vegetation cover (SFVC) could be calculated. The
Baidu street view panoramas were used as the vertical data.
The semantic segmentation of the FCN-8s network was used
to extract the GVI. The two indices were graded into five cat-
egories. The comprehensive street greening evaluation index
(CSGEI) was constructed by fusing the indices. The research
route of this paper is shown in Figure 4.

3.1. Extraction of Fractional Vegetation Coverage Based on
the Otsu Method. The near-infrared wavelengths contained
in the remote sensing images have higher reflectivity and
absorptivity to vegetation. NDVI was calculated from the
NIR band and the R band of the Sentinel-2 to quantify the
urban green space in this research. Before NDVI calculation,
the Sentinel-2 should be preprocessed such as atmospheric
correction and radiometric calibration. The NDVI is the
spectral information of ground objects received by remote
sensing sensors to reflect the condition of surface vegetation.
In this paper, the FVC was estimated quantitatively based on
the NDVI. The NDVI value of a pixel is expressed as the
information contributed by the green vegetation part and
the uncovered (bare soil) part. Therefore, the formula for
calculating the FVC using NDVI is shown in equation (1)
as follows:

Sentinel-2 Road network data Baidu street view
panorama

Data preprocess 

Image
cropping Data cleaning

Semantic segmentation
with FCN-8s
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Extract the
middle line
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Greeen view index

Correlation analysis

Analysis of the CSGEI
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CSGEI Road’s CSGEI Road classes’

CSGEI

Constructing comprehensive street
greening evaluation index (CSGEI)
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Fractional vegetation
coverage
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Non-vegetation Vegetation

Street fractional
vegetation cover
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Figure 4: Study route.
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NDVI =
NIR − R
NIR + R

,

FVC =
NDVI −NDVIsoil
NDVIveg −NDVIsoil

,
ð1Þ

where NIR is the near-infrared band and R is the red
band, NDVI is the normalized differential vegetation index,
with a value between −1 and 1, NDVIsoil is the NDVI value
of the area completely covered by bare soil or no vegetation,
NDVIveg is the NDVI value of the area completely covered
by vegetation, and FVC is the fractional vegetation cover.

For most types of land, NDVIsoil represents the theoret-
ical value of the bare soil surface and NDVIveg is the maxi-
mum value of the entire vegetation image. However, the
value of NDVIveg changes with time and space, so NDVIveg
and NDVIsoil cannot be chosen as fixed values. NDVIveg
and NDVIsoil are determined by the maximum and mini-
mum values of a given confidence interval. By analyzing
the Sentinel-NDVI data and considering the actual condi-
tion of vegetation cover in the study area, the NDVI value
corresponding to a frequency of 5% was taken as NDVIsoil;
it is in the annual maximum synthetic NDVI frequency
accumulation table, and the NDVI value with a cumulative
frequency of 95% was taken as NDVIveg.

The Otsu algorithm [39] is an adaptive threshold seg-
mentation algorithm based on the principles of probabilistic
statistics and was proposed by the Japanese scholar Zhe-
nyuki Otsu in 1979. The basic idea is to divide the image
gray value into two parts: background and target. The gray
value that maximizes the variance between classes is selected
as the optimal threshold. If the variance between classes is
more significant, the probability of misclassification of the
two classes is more negligible. Due to the excellent segmen-
tation effect, it is widely used in image thresholding. The
optimal FVC threshold was selected based on the Otsu algo-
rithm to achieve street vegetation information extraction in
the Longhua District.

In this paper, the sampling points were taken as the cen-
ter of the circle to create the buffer zones and it was affected
by the road width of different road classes. The maximum
width of a single lane and the number of two-way vehicle
lanes were taken as the reference to establish a buffer zone
of sampling points. The maximum width of the vehicle lanes
and the radius of the buffer area are shown in Table 1. Since

the buffers were created according to the width of the vehicle
lanes, for lanes less than 25m wide, 25m was used as the
minimum buffer radius. (Because there is partial scenery
overlap between two adjacent Baidu street view panoramas,
1/2 of the sampling interval was selected as the minimum
buffer radius. The reason is to ensure that the vertical vege-
tation between the two adjacent sampling points in the
Sentinel-2 image was the same as that in the Baidu street
view panoramas.) Based on the percentage of vegetation in
the buffer area, the street fractional vegetation coverage
(SFVC) was constructed. The SFVC calculation formula is
shown in equation (2).

SFVC =
areab−g
areab

× 100%, ð2Þ

where SFVC is the street fractional vegetation coverage at
the sampling points. Areab−g is the number of green vegeta-
tion image pixels in the buffer zone. Areab is the total num-
ber of image pixels in the buffer.

The SFVC was classified into five levels according to the
natural breakpoint grading method, from L1 to L5 which
means that the area of vegetation in the buffer zone is grad-
ually increasing. The classification criteria are shown in
Table 2.

3.2. Extraction of the GVI Based on FCN-8s. A good GVI
attracts pedestrians, and the primary factors affecting urban
street greening are the canopy size, the type of trees, the
arrangement of street trees, and the arrangement of plants
in the pedestrian path. This research used the Baidu street
view panoramas to extract vegetation for GVI calculation.
Because the street view images only have three bands: red,
yellow, and blue, it is impossible to accurately separate veg-
etation from artificial green. It is still difficult to extract green
vegetation from street view images quickly and accurately.

Table 1: Shenzhen road class table and sampling point buffer radius.

OSM Road classes Number of motor vehicles Lane width (max. width) Buffer radius (m)

Motorway Elevated and expressway 4 bars–8 bars 3.5 (3.75) 60

Secondary
Urban main roads 6 bars 3.25 (3.5) 42

Primary

Tertiary Urban secondary roads 4 bars 3.25 26

Residential
Urban feeder roads 2 bars 3.25 25

Unclassified

Cycleway Cycle path 25

Table 2: SFVC evaluation level classification.

SFVC Grade of SFVC

[0, 9.02] L1

(9.02, 25.79] L2

(25.79, 46.33] L3

(46.33, 75.97] L4

(75.97, 100] L5
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Semantic segmentation is an advanced image pixel classifica-
tion method that divided the image into several parts (e.g.,
buildings, sky, and greenery) by pixels and needs. It extracts
numerous elements from the Baidu street view panoramas.
The combination of the Baidu street view panoramas and
semantic segmentation has also been described as the street
green landscapes from a pedestrian perspective. A fully con-
volutional network (FCN) is based on a convolutional neural
network (CNN) that removes the fully connected layer and
adds the deconvolution layer while proposing the idea of a
jump structure to solve the image semantic segmentation
problem. The FCN-8s was used for semantic segmentation
of the Baidu street view panoramas. It is more efficient and
avoids the problem of double calculation and wasted space
caused by using the neighborhood. Previous studies have
shown that FCN performs well in street view image segmen-
tation [40, 41]. FCN-8s has 5 convolutional layers. Unlike
traditional convolutional layers that use only large convolu-
tional kernels for one convolution, each convolutional layer
of FCN-8s uses 3 × 3 small convolutional kernels for multi-
ple convolutions. The FCN-8s network used in this paper
was trained on the ADE_20K dataset, which performed well
in the Pascal visual object class. The setting of FCN-8s is
shown in Table 3 [42]. In combination with the Baidu street
view panoramas, it could predict the semantic properties of
each pixel in the image.

The Japanese scholar Yoji Aoki proposed that when the
GVI is higher than 25%, pedestrians have a good feeling
about the greenery of the street. When the GVI is higher
than 50%, pedestrians have the psychology of very splendid
greenery. Thus, Natsuhi Origahara divided the GVI evalua-
tion into five classes, as shown in Table 4 [43]. From L1 to
L5 means that the green vegetation is becoming more and
more intense for pedestrians. In recent years, the GVI has
been widely used in various aspects of street greening calcu-
lation and evaluation. Due to the limitation of the sampling
angle and sampling amount, the Baidu street view pano-
ramas were used directly to extract and measure the GVI.
Therefore, the calculation of the GVI was slightly different.
The calculation of the GVI in this paper is shown in equa-
tion (3) as follows:

GVI =
areag
areat

× 100%, ð3Þ

where GVI is the green view index of the sampling points,
areag is the total number of green vegetation pixels in Baidu
street view panoramas, and areat is the total number of image
pixels in the Baidu street view panoramas.

3.3. Constructing the Comprehensive Street Greening
Evaluation Index. This paper obtains the distribution map
of street vegetation coverage in the buffer zone based on
Sentinel-2 data. However, the green vegetation on the walls
and the lawn under the tree canopy cannot be reflected by
remote sensing images. Using the Baidu street view pano-
ramas as the data extracts the GVI, the vegetation distribu-
tion of the sampling points could be described from the
pedestrian’s perspective. The combination of the vegetation

coverage extracted from the Sentinel-2 data essentially com-
pensates for the disadvantage of the lack of vegetation from a
single viewpoint. The SFVC at the Baidu street view
panorama sampling points was analyzed with the GVI by
Pearson’s correlation coefficient; the calculation formula of
the Pearson’s correlation is shown in equation (4) as follows:

ρXY =
∑n

i=1 Xi − E Xð Þð Þ Yi − E Yð Þð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑n
i=1 Xi −ð E Xð Þð Þ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑n
i=1 Yi −ð E Yð Þð Þ2

q
, ð4Þ

where n is the number of sampling points (7466), Xi is the
GVI value at the ith sampling point, Yi is the SFVC value
at the ith sampling point, X and Y are the values of two var-
iables (GVI and SFVC), and ρXY is Pearson’s correlation
coefficient between the GVI and the SFVC.

When ρXY>0, the two indices are positively correlated.
In contrast, the two indices are negatively correlated and
the larger the absolute value of ρXY is, the stronger the cor-
relation between the two indices is. The correlation was cal-
culated to be 0.52, which indicates a weak correlation. Based
on the above knowledge, the GVI was fused with the SFVC
for rank classification and the original data were converted
to between [0,1] based on the maximum-minimum normal-
ization formula to construct the CSGEI. The expressions are
shown in equation (5) as follows:

CSGEI = GVIlevel + SFVClevel,

CSGEI =
CSGEI − CSGEImin

CSGEImax − CSGEImin
,

ð5Þ

where GVIlevel is the level of GVI at the sampling points,
SFVClevel is the level of SFVC at the sampling point, and
CSGEI is the comprehensive street greening evaluation
index.

Therefore, the SFVC and GVI were divided into five
levels, from L1 to L5, and the value of the level was an inte-
ger ranging from 1 to 5. The higher the level is, the better the

Table 3: The setting of FCN-8s.

Name Parameter

Scanning window 500 × 500
Learning rate 0.1

The early stopping minimum learning rate 0.001

Batch size 32

Table 4: GVI evaluation level classification.

GVI Grade of GVI

[0, 5] L1

(5, 15] L2

(15, 25] L3

(25, 35] L4

(35, 100] L5
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vegetation greening effect is. The final CSGEI value ranges
were from 0 to 100.

4. Results

4.1. Analysis of the Distribution and Characteristics of SFVC.
The combination of the NDVI and pixel dichotomy was
used to extract the fractional vegetation coverage of the
Longhua District. The threshold value of FVC was deter-
mined by the Otsu method as 0.48. The result of the frac-
tional vegetation coverage of the Longhua District is shown
in Figure 5. Constructing the buffer range of sampling points
of different road levels, the SFVC of sampling points was
obtained. The result of the SFVC index was spatialized and
displayed in Figure 6. The street fractional vegetation cover-
age in Longhua District was inadequate, and the SFVC index
in L1 accounts for 53.68%. The lowest street SFVC index was
found for Tao Yuan road, whose average SFVC was 0%, but
the GVI for Tao Yuan Road was 10.91%. Huan Guan Nan
road, with the lowest street SFVC, had a mean SFVC of
4.40%, and the SFVC index was as high as 93.24% for Yang
Tai Shan Greenway with a high street GVI. Thus, the SFVC
of this vertical angle is not able to identify the features under
the large vegetation cover, such as roads and houses.

4.2. Analysis of the Distribution and Characteristics of GVI.
The FCN-8s network was used for the semantic segmenta-
tion of 7466 Baidu street view panoramas. The network
model of FCN-8s obtained 81.44% accuracy on the training
dataset and 66.83% accuracy on the test dataset. To further
verify the accuracy of the semantic segmentation extraction
results, 100 images were randomly selected in this paper
and green vegetation was extracted by three methods: man-
ual recognition, K-means algorithm, and FCN-8s semantic
segmentation. The manual recognition used Photoshop’s
magic to extract the green vegetation. Two evaluation met-
rics were used to compare green vegetation extraction: the
mean pixel accuracy (MPA) was used to measure the pro-
portion of pixels correctly labeled as vegetation to the total
pixels, and the formula is shown in equation (6). The mean
intersection over union (MIoU) was used to measure the
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Table 5: Semantic segmentation evaluation index results and
accuracy comparison.

Splitting method MPA (%) MIoU (%) Time (s)

Reference data 84.45 76.38 60

FCN-8s semantic segmentation 88.08 76.88 5

K-means algorithm 65.01 44.87 30
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accuracy of vegetation pixels being correctly labeled, and the
formula is shown in equation (7). These measures are usu-
ally used to evaluate the accuracy of classification results.
Table 5 shows the accuracy of the semantic segmentation
results compared with the reference data. Figure 7 shows
the comparison between the results of semantic segmenta-
tion and the other methods’ results. For the scattered
branches and leaves of trees, there was a misclassification
at the edge of the segmentation results. The K-means algo-
rithm has lots of misclassification in buildings and vegetation.
The red boxes in the figures represent the locations where the
two segmentation results were different. In general, the seg-
mentation method used in this study meets the needs of this
experiment and saves time for manual recognition.

MPA = 1
k
×

∑k
i=1TPi + TNi

∑k
i=1TPi + TNi + FPi + FNi

, ð6Þ

MIoU =
1
k
× 〠

k

i=1

TPi
TPi + FPi + FNi

+
TNi

TNi + FNi + FPi
,

ð7Þ

where k is the number of images, TPi is true positive identified
vegetation pixels of image i, TNi is true negative rejected veg-
etation pixels of image i, FPi is false positive identified vegeta-
tion pixels of image i, and FNi is false negative rejected
vegetation pixels of image i.

The analysis of the GVI among the streets in Longhua
District showed that the minimum value of the street GVI
was 0, while the maximum value was as high as 82.66%.
The difference in the value of the GVI among the streets
was noticeable. (Streets with fewer than 10 sampling
points were not analyzed in this paper.) The GVI results
of Longhua District are displayed spatially, and the result
is shown in Figure 8. The street with the highest GVI
value was Cui’an road, whose average GVI value was as
high as 50.83%, followed by those of Yangtaishan Green-
way, South Sili road, Lanjing road, and Kesheng road.
However, the overall green distribution of the Yangtaishan
Greenway was higher than that of the Cui’an road. It pro-
vides a good visual experience for cyclists as a cycle path.
The lowest GVI value was found for Shiqing avenue, with
an average street GVI of 5.42%. The street GVI distribu-
tion in Longhua District showed a low middle and high
periphery. It was influenced by the greenways covering

(a) Original image (b) FCN-8s semantic segmentation

(c) Manual recognition (d) K-means algorithm

Figure 7: Comparison of the results of semantic segmentation of vegetation and nonvegetation.
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the southwestern part of the study area, where the GVI
was higher than that in the city center.

4.3. Analysis of the Distribution and Characteristics of the
CSGEI. The normalized CSGEI in this paper achieved the
observation and analysis of street greening in Longhua Dis-
trict from multiple perspectives. In this paper, the normal-
ized CSGEI was divided into five classes; the result is
shown in Figure 9. From L1 to L5 means that the distribu-
tion of street vegetation becomes better and better. The
statistical analysis of the three indices of each street
showed that the GVI was higher than SFVC on the follow-
ing roads: Guanle road, Si Li south road, Lanqing first
road, Longhua Square second road, Jinlong road, and Feng
Guan road. The SFVC is higher than the GVI in the Min-
glang road, Yangtaishan Greenway, Nanping Express,
Crushed Stone road separate interchange, and Fulong road.
The CSGEI integrated the two indices and avoided the dis-
advantage of generalization in the description of street
greening.

The index after integration showed that the comprehen-
sive greening of Yangtaishan Greenway, Cui’an road, Lanj-
ing road, Kesheng road, and Minglang road was higher
and the difference between the two indices was smaller on

the roads of Cui’an road, Lanjing road, and Kesheng road.
The greening distribution of Longhua District showed the
phenomenon in which low greening was located at the cen-
ter and high greening was located in the periphery.
Figure 10(a) shows the distribution of the SFVC index for
each class of roads. It has been seen from the figure that
for urban secondary roads, urban main roads, and urban
feeder roads, which are widely distributed in the inner city,
the SFVC index at the lower level accounted for a higher
proportion. The reasons for the above phenomenon are
attributed to two points: one is due to scattered vegetation
planting in the inner city, and the other is that the resolution
of Sentinel-2 is low resulting in a single piece of vegetation
failing to be identified by Sentinel-2. As shown in
Figure 10(b), the different levels of the GVI for urban trunk
roads, urban secondary roads, and urban feeder roads were
evenly distributed, while L5 of the GVI cycle path accounted
for more than 80%, which was in line with the characteristics
of the cycle path design. According to the road network data
of OSM to study the streets in Longhua District, the sam-
pling points were divided into five categories. As shown in
Figure 10(c), the CSGEI for service and entertainment of
the cycle path was higher. It could provide a good visual sen-
sation to pedestrians, and it was also conducive to
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maintaining the ecological environment. According to the
correlation analysis of the GVI and SFVC index among dif-
ferent classes of roads, the lowest correlation coefficient was
0.38 for the cycle path, followed by 0.39 for elevated and
expressways and 0.64 for urban feeder roads, and the overall
correlation coefficient was low. This paper used a random
sampling method to evaluate the CSGEI. The result is shown
in Figure 11.

5. Discussion

The multiview data from the horizontal and vertical view has
provided a new direction for extracting urban street green-
ing. Different visual effects in green perception could be
obtained from two azimuth data; it is helpful to realize the
quantitative analysis of urban street greening. Considering

that the grade of the road was divided into five classes, three
pictures of five kinds of classes were randomly selected to
verify the CSGEI. Combining the pictures and data analysis,
it was seen that the GVI was higher than the SFVC index in
the greening of urban secondary roads, urban main roads,
and urban feeder roads. Figure 11 shows that the vegetation
distribution of urban secondary roads was dominated by
rows or a single vegetation distribution on both sides of
the street. This distribution resulted in the vegetation cover-
age extraction from Sentinel-2 data having the phenomenon
of missing fractions affected by the resolution. The SFVC
index in the elevated and expressway was significantly
higher than that in the GVI. The same phenomenon was
observed for the cycle path, where the SFVC index of the
cycle path was higher than the GVI by as much as 95.83%.
The street vegetation coverage extracted from Sentinel-2
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Figure 10: Analysis of three indices for different classes of roads, where (a) is SFVC, (b) is GVI, (c) is CSGEI, i is urban secondary roads, ii is
urban main roads, iii is urban feeder roads, iv is the elevated and expressway, and v is the cycle path.
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data covered the ground objects under the trees due to the
shading of trees. As a result, the description of two-
dimensional greening was more than the actual description.
The 53.68% SFVC was at the L1 level which was less than 9.
02% and almost all urban main roads and urban secondary
roads. The GVI extracted from the Baidu street view pano-
ramas could effectively identify shrubs and green walls and
complement street vegetation coverage. An SFVC in L1
showed a significant increase of approximately 76.67%. After
the indices merged, the process of accounting for L1
decreased to 31.29% and the distribution of street greening
was in line with the actual situation.

The result has been compared with similar studies [26,
36, 44]. Similarly, a correlation has been found between the
GVI and the NDVI in this paper. Different from the previ-
ous study, the sample buffer determined by road width was
used as the unit to extract the NDVI. The Sentinel-2 is much
easier to obtain than LIDAR. Another dimension, the verti-
cal view, has been added to the measurement of urban street
green space. The CSEGI could achieve the quantitative eval-
uation in the urban street space. In addition, it has been con-
firmed that semantic segmentation is well used in extracting
street view images.

However, there are still shortcomings in this paper. For
horizontal street greening extracting, the resolution of
Sentinel-2 is 10m and it is not able to recognize the young
trees. For vertical street greening extracting, there is no guar-
antee that street view data was acquired on the same day. In
addition, the time span of the Baidu street view panoramas
cannot guarantee the same acquisition time as Sentinel-2.
The evaluation of street greening at multiple scales from
the point, line, and polygon will be realized in future studies.

6. Conclusions

This study used a combination of Baidu street view pano-
ramas and Sentinel-2 to extract and analyze the three-
dimensional greening information of streets. The results
showed that the Baidu street view panoramas and Sentinel-
2 could provide two perspectives of street greening distribu-
tion. The combination of the two kinds of data was an
effective method for evaluating and analyzing street green-
ing. The higher polarization of SFVC compared to GVI is
mainly due to the low resolution of Sentinel-2 images and
the poor uniformity of vegetation distribution on both sides
of the street. The spatial distribution of the GVI showed the
characteristics of being low in the middle and high in the
periphery due to the buildings and sidewalks in the central
city, which occupy part of the greenery space. The CSGEI
evaluated street greening from two perspectives, reducing
the workload of a large-scale questionnaire survey. Com-
bined with the Sentinel-2 image, this approach compensated
for the deficiency of single-angle observations of vegetation
in the Baidu street view panoramas and the inconsistency
of the Baidu street view panorama acquisition time. The
results showed that street view images could identify lawns,
shrubs, and roads under the tree canopy in remote sensing
images. Remote sensing images could be used to describe
the lateral growth of trees in the Baidu street view pano-

ramas to objectively evaluate the greening level of the street
at the observation point. The CSGEI proposed in this paper
could merge the two perspectives of street greening evalua-
tion levels. As the street view images are updated, the latest
data will be used to measure the urban green space, enabling
monitoring of the three-dimensional changes in street
greening. The index helps to identify the streets lacking
greening and to formulate corrective measures in a targeted
manner. It would provide important references for street
greening planners.
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Tree position plays an important role in research on forest resources and ecological functions, and quickly and accurately obtaining
tree position data has long been the focus of investigators. However, the classical method is time-consuming and laborious; thus, a
convenient method of measuring tree position is needed. The primary achievements of this study include the following: (1) a
device was designed for precise location of trees; (2) a new location algorithm was proposed for pentagonal localization based on
the received signal strength indication and ultrawideband technology; and (3) a PC software application was developed for
automatically storing and uploading tree position data. The device was applied to 10 circular plots with a diameter of 24m to test
the positioning speed and accuracy. The results showed that the tree positions could be accurately estimated. On the x- and y-axes,
the biases were -3.94 and 3.36 cm, respectively, and the root mean square errors (RMSEs) were 28.39 and 28.53 cm, respectively.
The mean error (Ed) between the estimated and reference distances was 36.13 cm, and the standard deviation was 16.67 cm. The
device is inexpensive and easy to use and carry in the field; thus, it is suitable for locating trees in environments with complex terrain.

1. Introduction

Tree position measurements are of great significance in forest
resource investigations. The rapid and accurate acquisition of
tree position in sample plots is helpful for predicting the
growth of tree DBH and population development trends
and has important ecological significance for revealing the
relationship between trees and tree species [1, 2]. Traditional
measurements use a box compass combined with tapes or a
laser distance meter. The measurement process is time-
consuming and laborious, and the data are read and recorded
manually, which is inefficient and easily confounded, thus
seriously restricting the quality and efficiency of acquiring
tree positions in sample field surveys [3–7]. Developing a
method of improving the quality and efficiency of tree
position information acquisition has long been an issue for
forestry researchers [8–10].

In recent years, many devices and methods have been
developed for locating trees in sample plots. The Haglöf
Postex® Laser uses ultrasonic solution for tree position mea-
surement; however, due to the short distance of ultrasonic
measurement, the size of the sample plot will be limited
[11]. The global navigation satellite system (GNSS) [12–15]
can provide positioning coordinate information in most
environments. However, signal attenuation or even signal
disappearance occurs in stands with high canopy density,
which is also greatly affected by the density of trees in
the sample plot [16–18]. Total stations are a type of pre-
cise electronic survey system with a mapping instrument
that integrates rangefinders, electronic theodolites, and
microprocessors [19]. Such systems provide an effective
method for locating trees on the sample plot but have
some disadvantages, such as inconvenience, complicated
operation, and expensive price. Terrestrial laser scanning
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(TLS), also known as ground-based light detection and
ranging (LiDAR) [20–24], has been applied for the extrac-
tion of various forestry attributes [25–28]; however, due to
some operational and performance limitations, laborious
carrying and installation, and complex data processing,
TLS cannot be widely used [29, 30]. Close-range photo-
grammetry (CRP) [31–33] and smartphones with time of
flight (TOF) [34–36] cameras have also been applied to
obtain tree locations; however, they are highly susceptible
to stand density, surface vegetation, and light intensity
and require specialized knowledge to handle complex
point cloud computing [37]. Therefore, there are some
limitations to applying these devices and methods for
determining the position of trees.

Advances in sensing technology have led to the devel-
opment of devices for precisely locating trees in the field.
Ultrawideband (UWB) technology [38–42] is a kind of
communication technology that uses discontinuous less-
than-nanosecond pulses without carriers and has the
advantages of a high transmission rate, strong multipath
resolution, strong anti-interference ability, and strong pen-
etration ability. It has been widely used in the determina-
tion of distance and position. Compared with other
wireless communication technologies (Wi-Fi, ZigBee,
etc.), it has higher precision [43–45].

In this paper, a measurement device using UWB sen-
sors was developed for accurate positioning, rapid mea-
surement recording, automatic transmission, and
processing of trees, and it has the advantages of low cost
and ease of carrying.

2. System Design

2.1. Design of the Main Device. The device is mainly com-
posed of a base station and a mobile station, as shown
in Figure 1. The base station consists of a supporting tri-
pod and five 1m long poles with a UWB module on
top. The poles and supporting tripod can be folded and
shrunk, which facilitates the carrying of the device by sur-
vey crews in the field. Mobile station is the location tag.
Table 1 describes the components used by the device
and their main properties. The circuit of the base station
is mainly composed of a microprocessor, power module,
gyroscope module, compass module, UWB module, and
display screen. The circuit of the mobile station is mainly
composed of a microprocessor, power module, UWB
module, secure digital memory card (SD card), Bluetooth
module, button, and display screen. The device uses an
8-bit microprocessor, which is high speed and low cost
and has strong anti-interference. The power module is
composed of a lithium battery, a power management chip,
and a switch. The lithium battery is used as the supply
power to the system components, and the power manage-
ment chip can protect the lithium battery and other cir-
cuits from overcurrent. The gyroscope module is used to
collect the location information of the base station. The
compass module is used to collect the azimuth informa-
tion. The base station is equipped with five UWB modules,
and the mobile station is equipped with one UWB module

to measure the distance between the mobile station and
the base station. The display screen displays the measure-
ment information, the SD card stores the distance and
location coordinate data collected by the mobile station,
and the Bluetooth module transmits the data between
the mobile station and host computer.

2.2. Principle of UWB Ranging. To accurately measure the
distances, the UWB sensor based on the double-sided two-
way ranging (DS-TWR) principle [46, 47] was selected. Due
to the error introduced by clock deviation in single-sided
two-way ranging (SS-TWR) [48, 49] measurement, DS-
TWR adds another round of communication on the basis
of SS-TWR to compensate for the error introduced through
two communication times and increase the accuracy of rang-
ing. The principle is shown in Figure 2, and the formula is
shown in

D = c × Tprop = c ×
Tround1 × Tround2 − Treply1 × Treply2
Tround1 + Tround2 + Treply1 + Treply2

, ð1Þ

where Node A and Node B are communication nodes, D is
the distance between Node A and Node B, Tprop is the time
for the wireless pulse signal to travel in the air, c is the speed
of light, Tround1 is the total time of Node A receiving and
sending pulses in the first round of communication, Treply1
is the waiting time of Node B in the first round of communi-
cation, Tround2 is the total time required for Node B to receive
and send pulses in the second round of communication, and
Treply2 is the waiting time of Node A in the second round of
communication.

2.3. Design of Software Process. The software was designed to
acquire the distances between the base station and the mobile
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Figure 1: Main device and its components: 1: display panel; 2: keys; 3:
UWB casings; 4: metal folding pieces; 5: carbon fibers; 6: fixing knobs;
7: printed circuit board (PCB); 8: level adjusting knob; 9: rotary locks;
10: fixing card buckle; 11: limit card buckles; 12: rubber pads.
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Table 1: Descriptive statistics of the device’s components1.

Component Chip model/type Interface type Parameter Function

Microprocessor STC15W4K56S4
Digital, serial port, SPI,

etc.
SRAM: 4KB; flash: 56KB data

processing
Microprocessor

Power management
circuit

TP4056, AMS1117,
etc.

Digital, power
Input: 3.7 V-4.2 V, 5V; output: 5 V,

3.3 V
Power management

Battery Lithium battery Power 4000mAh Power supply

Gyroscope module JY901B Serial port Resolution: 0.01° Attitude measurement

Compass module GY-26 Serial port Resolution: 0.1° Azimuth measurement

UWB module D-DWM-PG1.7 Serial port Resolution: 1 cm; range: 0-50m Distance measurement

Display OLED SPI 128 × 64 pixels Data display

Keyboard PVC Digital 6 keys Data recording

SD card Micro SD SPI 2GB Data storage

Bluetooth HC-06 Serial port Range: 0-15m
COMM with upper

computer
1SPI: serial peripheral interface; SRAM: static random-access memory; KB: kilobyte; V: voltage; mAh: milliampere-hour; GB: gigabyte; COMM:
communication.

RX

Time
Tround1

Tprop

Treply1

Treply2

Tround2

TpropTprop

RXRX TX

TX

Node A

Node B

TX

Figure 2: Scheme of double-sided, two-way ranging (DS-TWR).

Figure 3: Host computer interface.
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station and to calculate the positioning coordinates, key con-
trol, and data management, as shown in Figure 3. The GUI
enables investigators to read device information, calculate
data statistics, and export data to facilitate data processing
and analysis. The general flow of the software is shown in
Figure 4, which is divided into three stages: preparation, mea-
surement, and upload. During the measurement, the tree
number and the corresponding position information can be
automatically completed.

3. Materials and Methods

3.1. Study Area. The test site chosen here was Zhejiang A and
F University, Hangzhou, China (30°15′N, 119°43′E). A total
of 10 circular plots with a diameter of 24m (371 trees in total)

were measured (a circular plot with a radius of 11.28m is
usually used in forest surveys in South China; therefore, we
set the radius as 12m). The surfaces were mainly covered
by leaf litter in plots 1 to 6 and denser weeds in plots 7 to
10 (Table 2).

3.2. Methods

3.2.1. Measurement Process Design. To test the positioning
accuracy, the reference data measured using theodolite with
a laser rangefinder were compared with the data measured
by the device. All measurements used the local east, north,
up (ENU) coordinate system. The measurement operation
for theodolite with a laser rangefinder and the device are
shown in Figures 5 and 6, respectively. Poles B and C of the
device pointing to the north and east were the positive y-

Delete?
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Sample number
add one

Tree number
add one

Continue
measuring?

Save current
data

Delete the
previous data

Upload data?
N Y

Y

Y

Y

Y

N

N

N

N

Bluetooth
connected?

Bluetooth
connection Successfully? Send data?

Finish?

End

Uploading

Measurement
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Bluetooth
choose

Start

Initialize

N

Y

Proper
placement?

Place base
station

Mobile station
interface

Modify
the number

Distance
acquisition

Coordinate
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Set
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Y

N
Y Y

N
Y

N
Mean? Record?

Figure 4: Flowchart of the system.
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and x-axes, respectively. Pole A was the positive z-axis. The
device measurement process was as follows.

(1) The base station was placed in the center of the
circle plot. According to the gyroscope data, the
station was adjusted to the horizontal position and
then pole B was moved to the north according to the
compass data

(2) The plot ID was set on the mobile station

(3) We placed the mobile station at the measuring position
of the trees (1.3m above the ground), pressed the
record button, and recorded the position data. To
ensure that the measured value is close to the reference
value, the survey crew can press the average key for
multiple samplings. Finally, the average value is auto-
matically calculated. The actual operation is shown in
Figure 7

Table 2: Descriptive statistics of the sample plot2.

Plot Number of trees Dominant species Slope (°)

1 27 S1 0.9

2 30 S1, S2, S3 1.9

3 36 S1, S3, S4, S5, S6 4.8

4 51 S3, S4, S11, S12 5.8

5 34 S3, S5, S6 2.5

6 30 S1, S3, S6 4.9

7 45 S1, S3, S4, S7 12.6

8 37 S5, S8, S9 14.1

9 35 S3, S4, S5, S10, S13 13.8

10 46 S5, S10, S13 12.1
2S1: soapberry; S2: southern magnolia; S3: camphor tree; S4: tulip tree; S5:
Michelia alba; S6: pine tree; S7: Dalbergia hupeana; S8: Ormosia hosiei; S9:
Ginkgo biloba; S10: Chinese parasol; S11: Michelia maudiae; S12: Celtis
sinensis; S13: Zelkova schneideriana.

Figure 5: The theodolite with a laser rangefinder measurement.

Figure 6: Placement of the device.
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Figure 8: A diagram of pentagonal localization. ∣OA ∣ = ∣OB ∣ = ∣
OC ∣ = ∣OD∣ = ∣OE∣ = 1m.

Figure 7: Position of the tree. On the display screen, 1 is the tree
code and sampling number, 2 is the coordinates, 3 is the distances
between the base stations and the mobile station, 4 is the delete
key, 5 is the page key, 6 is the record key, and 7 is the average key.
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(4) After measuring the position of trees in the plot, the
data were uploaded to the host computer for statisti-
cal analysis

3.2.2. Estimation Method of Tree Position. The distances
between Pn and each antenna anchor point are shown in
Figure 8.

Taking OC as the positive x-axis, OB as the positive y
-axis, and OA as the positive z-axis, the coordinates of points
A–E can be obtained:

XA, YA, ZAð Þ = 0, 0, 1ð Þ,
XB, YB, ZBð Þ = 0, 1, 0ð Þ,
XC, YC, ZCð Þ = 1, 0, 0ð Þ,
XD, YD, ZDð Þ = 0,−1, 0ð Þ,
XE, YE, ZEð Þ = −1, 0, 0ð Þ:

ð2Þ

Assuming that the Pn coordinates are ðXn, Yn, ZnÞ,
the distance between Pn and each anchor point is as
follows:

APn =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn − XAð Þ2 + Yn − YAð Þ2 + Zn − ZAð Þ2

q

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

2 + Yn
2 + Zn − 1ð Þ2

q
,

ð3Þ

BPn =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn − XBð Þ2 + Yn − YBð Þ2 + Zn − ZBð Þ2

q

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

2 + Yn − 1ð Þ2 + Zn
2

q
,

ð4Þ

CPn =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn − XCð Þ2 + Yn − YCð Þ2 + Zn − ZCð Þ2

q

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn − 1ð Þ2 + Yn

2 + Zn
2

q
,

ð5Þ

DPn =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn − XDð Þ2 + Yn − YDð Þ2 + Zn − ZDð Þ2

q

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

2 + Yn + 1ð Þ2 + Zn
2

q
,

ð6Þ
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Figure 9: Position estimation using (a) pentagonal localization and (b) trilateration localization.
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EPn =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn − XEð Þ2 + Yn − YEð Þ2 + Zn − ZEð Þ2

q

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn + 1ð Þ2 + Yn

2 + Zn
2

q
:

ð7Þ

In Equations (3)–(7), any four equations can be used
to determine the Pn coordinates.

As shown in Figure 9(a), in practical applications, the
UWB wireless signal will be obstructed and experience inter-
ference by the surrounding environment, such as the trunks,
branches, and leaves, resulting in signal attenuation [50, 51]
and slightly longer communication time; therefore, the APn,
BPn, CPn, DPn, and EPn values are slightly greater than the
actual values and do not intersect at a common point. To
achieve accurate positioning and mitigate the influence of
signal attenuation on ranging, some scholars have proposed
using trilateration and quadrilateral localization for corre-
sponding positioning depending on the received signal
strength indication (RSSI) [52, 53].

According to the principles of trilateration [54, 55] and
quadrilateral localization [56], 10 sets of pairwise intersecting
spheres can be developed from Figure 9(a) for triangular
localization. Take Figure 9(b) as an example, where three
spheres A, C, and D intersect in pairs and the intersection
is three planes (FGP1, HIP1, and JKP1). The plane equation

can be obtained by subtracting Equations (3), (5), and (6)
in pairs:

2 XC − XAð ÞXn + 2 YC − YAð ÞYn + 2 ZC − ZAð ÞZan
= APn

2 + XC
2 + YC

2 + ZC
2 − CPn

2 − XA
2 − YA

2 − ZA
2,

2 XD − XAð ÞXn + 2 YD − YAð ÞYn + 2 ZD − ZAð ÞZn
= APn

2 + XD
2 + YD

2 + ZD
2 −DPn

2 − XA
2 − YA

2 − ZA
2,

2 XD − XCð ÞXn + 2 YD − YCð ÞYn + 2 ZD − ZCð ÞZn
= CPn

2 + XD
2 + YD

2 + ZD
2 −DPn

2 − XC
2 − YC

2 − ZC
2:

ð8Þ

In addition, because the three planes intersect in pairs, three
lines L1, L2, and L3 can be obtained by pairwise combination in
Equation (8). The three lines intersect at point P1, and the coor-
dinates of P1 ðX1, Y1, Z1Þ can be obtained according to Equa-
tion (8). In the same way, the coordinates of the other nine
combinations can be obtained: P2 ðX2, Y2, Z2Þ, P3 ðX3, Y3,
Z3Þ, P4 ðX4, Y4, Z4Þ, P5 ðX5, Y5, Z5Þ, P6 ðX6, Y6, Z6Þ, P7 ðX7,
Y7, Z7Þ, P8 ðX8, Y8, Z8Þ, P9 ðX9, Y9, Z9Þ, and P10 ðX10, Y10,
Z10Þ. As trees are located according to two-dimensional coor-
dinates [33, 57], the coordinates of Pn ðXn, YnÞ only need to
be obtained to locate trees in the sample plot:

where

etc. are the weighting coefficients.

3.2.3. Accuracy Evaluation. The reference value of the tree
position was also measured and converted into the xoy plane

coordinate system. First, the DBH was measured at 1.3m
using tape. Then, half of the tree DBH values were added to
the reference and estimated position values of the plane coor-
dinates in the y-axis and x-axis directions, respectively.

Xn =

X1/ APn
2 + BPn

2 + CPn
2� �� �

+ X2/ APn
2 + BPn

2 +DPn
2� �� �

+ X3/ APn
2 + BPn

2 + EPn
2� �� �

+ X4/ APn
2 + CPn

2 +DPn
2� �� �

+ X5/ APn
2 + CPn

2 + EPn
2� �� �

+ X6/ APn
2 +DPn

2 + EPn
2� �� �

+ X7/ BPn
2 + CPn

2 +DPn
2� �� �

+ X8/ BPn
2 + CPn

2 + EPn
2� �� �

+ X9/ BPn
2 +DPn

2 + EPn
2� �� �

+ X10/ CPn
2 +DPn

2 + EPn
2� �� �

1/ APn
2 + BPn

2 + CPn
2� �� �

+ 1/ APn
2 + BPn

2 +DPn
2� �� �

+ 1/ APn
2 + BPn

2 + EPn
2� �� �

+ 1/ APn
2 + CPn

2 +DPn
2� �� �

+ 1/ APn
2 + CPn

2 + EPn
2� �� �

+ 1/ APn
2 +DPn

2 + EPn
2� �� �

+ 1/ BPn
2 + CPn

2 +DPn
2� �� �

+ 1/ BPn
2 + CPn

2 + EPn
2� �� �

+ 1/ BPn
2 +DPn

2 + EPn
2� �� �

+ 1/ CPn
2 +DPn

2 + EPn
2� �� �

Yn =

Y1/ APn
2 + BPn

2 + CPn
2� �� �

+ Y2/ APn
2 + BPn

2 +DPn
2� �� �

+ Y3/ APn
2 + BPn

2 + EPn
2� �� �

+ Y4/ APn
2 + CPn

2 +DPn
2� �� �

+ Y5/ APn
2 + CPn

2 + EPn
2� �� �

+ Y6/ APn
2 +DPn

2 + EPn
2� �� �

+ Y7/ BPn
2 + CPn

2 +DPn
2� �� �

+ Y8/ BPn
2 + CPn

2 + EPn
2� �� �

+ Y9/ BPn
2 +DPn

2 + EPn
2� �� �

+ Y10/ CPn
2 +DPn

2 + EPn
2� �� �

1/ APn
2 + BPn

2 + CPn
2� �� �

+ 1/ APn
2 + BPn

2 +DPn
2� �� �

+ 1/ APn
2 + BPn

2 + EPn
2� �� �

+ 1/ APn
2 + CPn

2 +DPn
2� �� �

+ 1/ APn
2 + CPn

2 + EPn
2� �� �

+ 1/ APn
2 +DPn

2 + EPn
2� �� �

+ 1/ BPn
2 + CPn
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+ 1/ BPn
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ð9Þ

1/ APn
2 + BPn

2 + CPn
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+ 1/ APn
2 + BPn
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+ 1
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2� �
ð10Þ
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According to Equations (11), (12), and (13), the bias, root
mean square error (RMSE), and straight-line distance error
between the estimation point and the reference point on
the x- and y-axes were calculated separately to evaluate the
accuracy of the method:

BIAS = ∑n
i=1 di −Dirð Þ

n
, ð11Þ

RMSE =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i=1 di −Dirð Þ2
n

r
, ð12Þ

Ed =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xi − Xirð Þ2 + Yi − Yirð Þ2

q
, ð13Þ

where di is the ith measured value, Dir is the ith reference
value, Xi and Yi are the ith estimates on the x-axis and y
-axis, respectively, Xir and Yir are the ith reference values
on the x-axis and y-axis, respectively, and n is the total num-
ber of measurements.

3.2.4. Efficiency Evaluation. To evaluate the efficiency of
measurement, the times required for traditional and device
measurement were recorded. To ensure that the two
methods worked in the same order, the trees were num-
bered prior to measurement. Using the theodolite with a
laser rangefinder measurement requires two people in a
group: one stands in the middle of the circle to operate
the theodolite with laser rangefinder correctly and then
records the distances and angles from the center of the

Estimated
Reference

(i)

Estimated
Reference

(j)

Figure 11: Comparisons of estimated and reference points: (a) plot 1; (b) plot 2; (c) plot 3; (d) plot 4; (e) plot 5; (f) plot 6; (g) plot 7; (h) plot 8;
(i) plot 9; (j) plot 10.

Table 3: Accuracy in the x-axis and y-axis directions estimated by
the device.

Plot
X (cm) Y (cm)

BIAS RMSE BIAS RMSE

1 -4.85 20.79 4.11 22.41

2 -3.97 24.10 2.23 21.09

3 -3.37 37.33 5.28 33.27

4 4.46 32.58 2.61 34.80

5 -6.99 29.19 -1.22 30.48

6 -8.05 27.85 2.74 27.90

7 -2.22 27.19 0.77 30.76

8 -6.39 28.50 1.35 30.02

9 -6.41 32.07 3.98 30.60

10 -1.65 24.34 9.34 23.93

Total -3.94 28.39 3.36 28.53

Table 4: Summary statistics of the error of the distance between
estimated and reference points.

Plot
Ed (cm)

Mean Max Min Std

1 26.63 58.53 1.39 15.01

2 29.28 59.79 1.03 12.97

3 46.63 73.55 5.27 18.05

4 43.36 80.65 12.16 19.81

5 37.86 82.73 4.33 18.66

6 35.57 77.81 8.92 17.01

7 37.54 63.60 6.03 16.63

8 37.49 77.11 7.64 17.55

9 40.72 81.30 10.75 17.52

10 31.38 71.01 8.79 13.44

Total 36.13 82.73 1.03 16.67
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circle plot (the angles to due north) and the other holds a
surveyor’s pole at the tree position. After the measurement
is completed, the data recorded on a paper form is entered
into the computer. When using the device for measure-
ments, one person performs ranging and recording
integration.

4. Results

4.1. Accuracy of Position Measurement. The error distribu-
tion and comparison results between the estimated points
and the reference points are shown in Figures 10 and 11,
respectively. The statistical results of the coordinate accuracy
on the x-axis and y-axis and the statistical results of the linear
distance errors between the estimated point and the reference
point are shown in Tables 3 and 4, respectively. The results
showed that the bias, RMSE, and total bias on the x- and y
-axes were –8.05 to 4.46 cm and –1.22 cm to 9.34 cm, 20.79
to 37.33 cm and 21.09 to 34.80 cm, and –3.94 and 3.36 cm,
respectively (Table 3). The mean Ed was 36.13 cm, the max-
imum Ed was 82.73 cm, the minimum Ed was 1.03 cm, and
the standard deviation was 16.67 cm (Table 4). The Ed range
of the estimated points and the reference points in the xoy
plane was 0 cm to 83 cm (Figure 10). Systematic error was
observed between the estimated values and the reference
values of each sample plot, although the total error was small
(Figure 11). The mean Ed values in the sample plots from 1 to
6 and 7 to 10 were 36.55 cm and 36.78 cm, respectively, indi-
cating that the slope of the measured sample plot had no sig-
nificant influence on the location.

4.2. Efficiency of Position Measurement. The measurement
times of the two methods are shown in Table 5. The results

showed that the mean measurement times were 22.37 and
69.76 s using the device and traditional methods, respectively.
The measurement efficiency can be increased more than
threefold using the proposed method.

5. Discussion

Tree position measurement is an important task in forest
resource surveys. In recent years, a large number of tree loca-
tion devices and methods have been reported. The Haglöf
Postex® Laser, which was similar to the developed device,
used an ultrasonic solution for position measurements, but
ultrasound had a short measurement range and was not suit-
able for measurements of large sample plots. In addition, the
device was not cheap [11]. Oveland et al. [18] proposed a
positioning scheme under relatively rough conditions using
a moving terrestrial laser scanner and GNSS. However, due
to the serious attenuation of GNSS signals under the crown,
this scheme was not suitable for accurate tree positioning;
moreover, the devices were also expensive. Gollob et al. [30]
located tree trunk positions using a terrestrial laser scanner;
however, the data processing was complex and the device
was hard to carry and thus was unsuitable for widespread
application in forestry. Fan et al. [33] estimated tree position
using an RGB-D smartphone combined with the simulta-
neous localization and mapping (SLAM) algorithm, and the
results showed that the biases on the x- and y-axes were the
same (-0.12 to 0.13m) while the RMSEs were 0.09m to
0.17m and 0.07m to 0.17m, respectively. Although this
method had high positioning accuracy, it was highly suscep-
tible to the influence of the surrounding environment and
requires professional training to handle the complex point
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Figure 12: Scatter plot between mean Ed and (a) stand density and (b) slope.

Table 5: Comparison of work efficiency.

Method Number of surveyors Times of measurement Total time (s) Mean time (s)

Theodolite with a laser rangefinder 2 1 25880.96 69.76

UWB device 1 1 8299.27 22.37
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cloud processing. Our device only used the RSSI algorithm
and pentagonal localization algorithm, which could be run
on STC15 (8-bit) microprocessors (price under $1) and had
much lower complexity in both time and space.

In this study, we designed a tree positioning device (cost
of approximately $250) using UWB sensors. To test the esti-
mation accuracy, we chose 10 circular plots with a diameter
of 24m to carry out our experiment. The results showed that
the x- and y-axes had biases of -8.05 to 4.46 cm and -1.22 cm
to 9.34 cm, respectively. The RMSEs of the x- and y-axes were
20.79 to 37.33 cm and 21.09 to 34.80 cm, respectively
(Table 3). The mean error (Ed) and standard deviation of
the distance between the estimated points and the reference
points were 36.13 and 16.67 cm, respectively (Table 4). In
terms of measurement efficiency, the traditional method
required two people to complete the work and the data need
to be recorded manually. However, the proposed device
could be operated by one person and equipped with corre-
sponding host computer software that integrated data mea-
surement, recording, and uploading. The mean times
required by the traditional method and the proposed device
were 69.76 s and 22.37 s, respectively (Table 5). The device
could locate trees accurately, and the measuring efficiency
could be improved by more than three times.

Although the proposed device accurately located trees,
considerable improvements remain to be made. For example,
the maximum distance between the two anchor points was 2
m, which precludes the device’s deployment in sample plots
with high stand density. Note that using the device to mea-
sure the tree position may be affected by the plot environ-
ment. Compared with the slope, the stand density was
more influential (Figure 12 and Table 2). In future research,
we will ensure the positioning precision to reduce the size
of the base station and conduct deeper research in a variety
of complex sample environments to identify methods that
can improve the positioning accuracy and reduce the impact
of the plot environment on ranging.

6. Conclusions

This paper reports a novel device that uses UWB sensor
technology to locate trees. It has a delicate mechanical
structure and is based on trilateration and quadrilateral
localization. A pentagonal localization algorithm was con-
structed to precisely locate trees. Through the host com-
puter software, it performs data measurement, recording,
and uploading integration, which increases the measure-
ment efficiency more than three times compared to the
traditional method.
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To reduce data acquisition cost, this study proposed a novel method of individual tree height estimation and canopy extraction
based on fusion of an airborne multispectral image and photogrammetric point cloud. A fixed-wing drone was deployed to
acquire the true color and multispectral images of a shelter forest. The Structure-from-Motion (SfM) algorithm was used to
reconstruct the 3D point cloud of the canopy. The 3D point cloud was filtered to acquire the ground point cloud and then
interpolated to a Digital Elevation Model (DEM) using the Radial Basis Function Neural Network (RBFNN). The DEM was
subtracted from the Digital Surface Model (DSM) generated from the original point cloud to get the canopy height model
(CHM). The CHM was processed for the crown extraction using local maximum filters and watershed segmentation. Then,
object-oriented methods were employed in the combination of 12 bands and CHM for image segmentation. To extract the tree
crown, the Support Vector Machine (SVM) algorithm was used. The result of the object-oriented method was vectorized and
superimposed on the CHM to estimate the tree height. Experimental results demonstrated that it is efficient to employ point
cloud and the proposed approach has great potential in the tree height estimation. The proposed object-oriented method based
on fusion of a multispectral image and CHM effectively reduced the oversegmentation and undersegmentation, with an increase
in the F-score by 0.12–0.17. Our findings provided a reference for the health and change monitoring of shelter forests as well.

1. Introduction

Shelter forests are considered the green barriers at the edge of
deserts, which are able to prevent land desertification and
provide wind proofing and sand fixation. Thus, they play
an indispensable role in enhancing the self-regulation ability
of the ecosystem and slowing down the expansion of land
desertification. With the degradation of shelter forests due
to man-made destruction and climate change, the prevention
of land desertification has become more urgent [1]. To
improve the ecological environment and reduce natural
disasters, the Chinese government has also successively
implemented ecological restoration projects aimed at pre-

venting land desertification, such as the Three-North Shelter-
belt Project (TNSP) and the Grain to Green Program (GGP)
[2, 3]. Therefore, monitoring the growth parameters of shel-
ter forests has become crucial. Among these parameters, tree
height is an important indicator of shelter forest structural
characteristics and is essential in the estimation of canopy
density and aboveground biomass [4, 5]. The rapid and accu-
rate extraction of tree heights of shelter forests is of great
significance to maintain desert ecosystems.

For the estimation of tree height, manual measurement
and satellite remote sensing methods cannot cater to the
needs of forestry management departments for monitoring
products, such as thematic maps of tree height. Traditionally,
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heights of individual trees are obtained using the ground
measurement method, in which the tree height is measured
with a laser range finder and other measuring equipment,
allowing higher accuracy of tree height measurement results
to be obtained, but consuming significant manpower and
material resources [6]. The rapid development of high-
resolution remote sensing technology not only improves
the efficiency of the tree height estimation but also provides
a wider range of data sources, including WorldView-2 [7]
and GF-2 [8], which have been used to prove the potential
of spaceborne satellite imagery in the estimation of tree
height. For satellite data, researchers use a high-precision
Digital Elevation Model (DEM) to assist in generating a can-
opy height model (CHM) [8–10]. But the drawbacks of DEM
are obvious: low data accuracy, the highest of which is only
30m [11], low resolution, and limited ability to display the
subtle changes in the topography and generate the CHM in
the forest area of the complex terrain. Xu et al. [12] built a
high-precision DEM from the point cloud generated by Light
Detection and Ranging (LiDAR) and then subtracted the
DEM from the DSM generated from the photogrammetric
point cloud to obtain CHM. LiDAR can penetrate the shelter
forest canopy to the interior and the ground through laser
echoes, thereby obtaining vertical forest structure informa-
tion, which is beneficial to generate a high-precision DEM.
However, the approach is neither economically optimal,
which is because the LiDAR data is more expensive and not
applicable in large-scale shelter forest monitoring. Further-
more, when there exist several influential factors, such as
clouds covering, the satellite data is difficult to deliver for-
estry monitoring products necessary for forestry manage-
ment at a specific time.

Unmanned aerial vehicle (UAV) images with a high
overlap rate can generate photogrammetric point clouds with
lower cost and higher economic benefits. The image data of
the shelter forest is updated in real time to guarantee large-
scale flight operations as planned. The CHM generated by a
UAV photogrammetric point cloud shows good perfor-
mance in the tree height estimation [13–15]. However, the
photogrammetric point cloud is generated by image match-
ing, and the forest structure is allowed to be reconstructed
only when the distance between trees is far enough to identify
the ground between and below the canopy. Moreover, the
CHM generated from a UAV photogrammetric point cloud
usually underestimates tree height [16, 17]. To meet eco-
nomic benefits and data requirements, obtaining high-
precision DEM through photogrammetric point clouds has
become a key issue. In the meantime, Radial Basis Function
Neural Network (RBFNN) with excellent spatial interpola-
tion ability provides the possibility for this. RBFNN has been
applied in hydrological data spatial interpolation prediction
[18], soil element interpolation [19], point cloud interpola-
tion [20], etc. Zhao et al. [20] used RBFNN to interpolate
the point cloud of LiDAR, and obtained the results that the
point cloud elevation prediction coefficient (R2) was 0.887,
and the root mean square error (RMSE) was 0.168m. The
RBFNN has a high prediction accuracy for spatial data, but
few studies applied it into the prediction of the elevation in
the photogrammetric point cloud. Therefore, this study

focuses on the applicability of generating DEM only based
on photogrammetric point clouds.

To date, many scholars have conducted researches on
individual tree height estimation methods under different
woodland scenarios based on the CHM generated by point
cloud data. Brieger et al. [21] used UAV photogrammetric
point cloud data to generate a CHM, selecting three types
of stand data about sparse deciduous forest, dense deciduous
forest, and dense mixed forest, and used local maximum fil-
ters (LMF) in variable window size for the tree height estima-
tion. Huang et al. [22] used photogrammetric point clouds to
generate the DEM and Digital Surface Model (DSM) through
Triangulated Irregular Network (TIN) interpolation to
obtain the CHM and estimated tree height with LMF. In leaf-
less and sparse forest areas, it is found to be difficult to recon-
struct the three-dimensional (3D) structure of the forest
areas, resulting in low accuracy of the tree height estimation.
In contrast, in forest areas with sufficient leaves, the accuracy
of tree height estimation is greatly improved, confirming the
significant potential of photogrammetric point clouds in the
estimation of individual tree heights of shelter forests. These
studies are based on the CHM generated by the point cloud
for individual tree height estimation, for which, irrespective
of the algorithm used, individual trees will be subject to over-
segmentation and undersegmentation [21, 23]. This is more
obvious in broad-leaved forests, in which the canopy of an
individual tree has multiple vertices and multiple maximum
values, which will cause oversegmentation.

Therefore, high accuracy of tree crown extraction is a
prerequisite for the high-precision tree height estimation.
The Object-Based Image Analysis (OBIA) uses the segmented
object as the basic classification unit, and makes full use of the
object’s spectrum and texture. Compared with the traditional
pixel-based classification method, it can effectively improve
the classification accuracy. Franklin [24] achieved the result
that overall classification accuracy of approximately 50%,
60%, and 80%, respectively, for nine commercial coniferous
trees by employing pixel-based unsupervised clustering,
supervised maximum likelihood classifications, and OBIA of
UAV-based multispectral imagery. No matter which classifi-
cation method is used, the accuracy of near-infrared spectros-
copy is better than using RGB band alone, which confirms that
multispectral data has an unique advantage over RGB in
describing the canopy. Thus, it is theoretically possible to com-
bine point clouds with multi/hyperspectral remote sensing
images to extract tree canopy to reduce the oversegmentation
and undersegmentation of individual trees.

In view of the above problems, our research objectives are
to solve the problem of low DEM accuracy due to tree canopy
occlusion by using RBFNN interpolation prediction, and to
combine point cloud with multispectral data by using OBIA
to reduce oversegmentation and undersegmentation of the
canopy. Three areas are selected for experimental verifica-
tion, and the main contributions of this work are listed as
follows:

(1) We have solved the problem of low DEM accuracy of
the current point cloud data of the photographic
point cloud in the forest with high canopy coverage
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(2) Compared with the tree crown extraction method
based on CHM alone, extracting the tree crown from
the multispectral images fusing DEM has obvious
advantages

2. Study Area and Materials

2.1. Study Area. We selected the Three North Shelter forest
area (45°10′N, 85°56′E) of 150 regiments in the north of
the Mosuowan reclamation area as the study area, which is
approximately 150 km north of Shihezi City, Xinjiang Uygur
Autonomous Region, China (Figure 1). The regiments are
located at the northern foot of the Tianshan Mountain and
the south edge of Gurbantunggut Desert in the Junggar Basin
and are surrounded by sand to the east, west, and north. The
shelter forest is planted in a wedge shape around the edge of
the desert, dominated mainly by deciduous broad-leaved for-
ests such as Ulmus pumila, Populus bolleana, Populus
euphratica, Elaeagnus angustifolia, andHaloxylon ammoden-
dron, all of which are known for their drought tolerance. In
addition, their strong windproof and sand fixation ability
make these tree species provide excellent sand fixation and
afforestation effects in arid desert areas. Furthermore, char-
acteristics of Ulmus pumila and Elaeagnus angustifolia, such
as large and dense canopy, diverse growth conditions, uneven
spatial distribution, and presence of additional green plants
(such as weeds) at the tree base, provide an opportunity to
test the accuracy of tree height estimation against a complex
background.

We selected three areas as the research area, and the char-
acteristics of the three areas of the shelterbelt are as follows:
(1) study area 1—mixed artificial forest consisting of Ulmus
pumila, Populus bolleana, Populus euphratica, and Elaeagnus
angustifolia, where the smaller spacing between the canopies
is dense forest, as shown in Figure 1(b); (2) study area
2—sparse pure forest consisting of Populus bolleana which
is mostly in good health, where the gap between the canopy
is large, as shown in Figure 1(c); and (3) study area 3—sparse
pure forest consisting of Populus bolleana which is mostly
not in good condition, where the gap between the canopy is
large, as shown in Figure 1(d).

2.2. Remote Sensing Data Acquisition. The UAV platform
used in this study was a fixed-wing UAV CW-20 produced
by JOUAV Company. It was equipped with a SONY-A7RII
visible light camera and a Micro MCA12 Snap multispectral
camera, which acquire visible light images and multispectral
images taken as the data sources of our study. The UAV has
the advantages of fully autonomous takeoff and rapid instal-
lation. It was a professional-level aerial survey UAV at a
cruising speed of 26–40m/s and with a battery life of 3 h. It
was operated by a GCS-202 ground station and CWCom-
mander software and used Real-Time Kinematic/Post Proc-
essed Kinematic (RTK/PPK) positioning technology. The
location information of the remote sensing images obtained
could reach centimeter-level accuracy, and such devices have
been widely used in the acquisition of remote sensing data for
large-scale agriculture and forestry in China. We selected
October 9, 2019 as the data acquisition date, and set a relative

flight height of 400m and the flight coverage area of the study
area as 8.48 square kilometers, which was to meet the
requirements of the high-precision photogrammetry point
cloud, according to the suggestion of a previous study in
[25]. The lateral direction and route overlap rate was set to
be 80% for the SONY-A7RII visible light camera, and the
spatial resolution was 0.05m. 1716 images were acquired to
create a point cloud. To meet stitching requirements, the
Micro MCA12 Snap multispectral cameras (Micro MCA12
Snap sensor band parameters are shown in Table 1) were at
the settings: line overlap rate of 60%, side overlap rate of
70%, relative flight height of 400m, and spatial resolution
of 0.2m. In addition, we set four radiation targets on the
ground, with reflectivity of 3%, 22%, 48%, and 64% for future
radiation correction.

2.3. Field Measurements. The field measurements were made
on October 7, 2019. The location (including latitude and lon-
gitude coordinates) of individual trees was recorded using the
geolocation function of the Aowei software which is based on
Google Maps. The health (good or bad condition) of each
tree was recorded, and multifunction laser distance measure-
ment instrument (BAOSHIAN-CS600VH) was used to mea-
sure the height of individual tree whose sampling situation is
shown in Figures 1(b)–1(d) and sampling number is shown
in Table 2. Besides, canopy sampling numbers (number of
manually delineated tree crowns in the study area) are shown
in Table 2.

The recorded geographic location was imported into
ArcGIS 10.6 software and any deviations were corrected.
According to the similarity of species and the overall similar-
ity between the forest stand structure of field data, including
tree cover, density, and planting type, three areas were
selected, so that the data would not be affected by the growth
of the shelter forest. All the field measurements of the shelter
forest for the three areas were collected within one week with
UAV data acquisition.

3. Methods

The technical workflow of this research is shown in Figure 2,
which includes the following steps.

3.1. Data Preprocessing. After the flight mission was com-
pleted, the Position and Orientation System (POS) data in
the base station was sorted and imported into Pix4Dmapper
4.4.10 software for processing. After feature extraction, image
matching, bundle adjustment, automatic triangulation, cam-
era self-checking, and optimize external parameters, the
image was preliminarily processed. A dense point cloud
based on Structure-from-Motion (SfM) was generated by
selecting the following parameters: the image scale was half
(the default value) with the multiscale option selected, point
density was set to be optimal, and the minimum number of
matches was 3. This operation resulted in a photogrammetric
point cloud data in LAS format and generated orthophotos
with a spatial resolution of 0.05m. Photogrammetric point
cloud was imported into Terrasolid software to go through
such processes: first, noise was removed from the point cloud
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data, and then the point cloud filtering was performed using
the TIN densification filteringmethod built into the Terrasolid
software to derive the ground point cloud. Using the generated
original photogrammetric point cloud, through Inverse Dis-
tance Weighted (IDW) interpolation operation of ArcGIS
10.6 software, a DSM of 0.2m resolution was generated.

The acquired original multispectral images were exported
in RAW format, and Tetracam PixelWrench2 software was
used to convert them into standard TIFF format raster image
data. The one-to-one correspondence between the POS and
the image was performed in the Pix4Dmapper 4.4.10 soft-
ware to obtain multispectral image data with 0.2m spatial

85°55'20"E

45
°1

0'0
"N

45
°1

0'2
0"

N
45

°1
0'4

0"
N

45
°1

0'4
0"

N
45

°1
0'2

0"
N

45
°1

0'0
"N

85°55'40"E 85°56'0"E 85°56'20"E 85°56'40"E 85°57'0"E 85°57'20"E 85°57'40"E 85°58'0"E

85°55'20"E 85°55'40"E 85°56'0"E 85°56'20"E
(a)

85°56'40"E 85°57'0"E 85°57'20"E 85°57'40"E 85°58'0"E

0 250 500
m

N
125

0 30 60 Legend

Sampling point
m

15 0 0 10 20 40m30 60 Legend

Sampling point

Legend
Sampling point

m15

(b) (c) (d)

Figure 1: Schematic diagram of the study area: (a) the area acquired by the unmanned aerial vehicle (UAV) visible light camera; (b) study area
1 and its sampling locations; (c) study area 2 and its sampling locations; (d) study area 3 and its sampling locations.

Table 1: The band feature parameters of the Micro MCA12 Snap sensor [26].

Band Wavelength (nm) Wavewidth (nm) Band characteristics

1 470 10 Distinguish vegetation and soil rock surface

2 515 10 Green wave peaks in the visible light spectrum

3 550 10 Sensitive to changes in water quality

4 610 10 Initial band of red light in the vegetation spectral reflection curve

5 656 10 Renormalized vegetation index

6 710 10 Red edge band of the vegetation spectral reflection curve

7 760 10 Red edge band of the vegetation spectral reflection curve

8 800 10 Normalized vegetation index

9 830 10 Different types of vegetation

10 860 10 Significantly correlated with plant total chlorophyll content

11 900 20 Calculation of the specific crop water sensitivity index

12 950 40 Calculate the water band index
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resolution. Radiometric correction was performed on ortho-
photos that had been stitched together, and the relationship
between the actual digital quantization value (DN) of the
UAVmultispectral image and the ground reflectance (Ref) is

Ref = DN × a + b, ð1Þ

where a is the scaling gain coefficient and b is the offset value.
According to the calibration equation, the DN values of

the four target images on the ground were calculated by
drawing the area of interest, corresponding to the standard
reflectance values of the four targets. The least square method
was used to fit the empirical linear model. This operation
provided the coefficients a and b of the UAV Micro
MCA12 Snap multispectrometer radiation calibration. Based
on the visible light image, 30–40 control points were selected,
and the corrected multispectral image data was geographi-
cally registered in ArcGIS 10.6 software for subsequent can-
opy segmentation.

3.2. RBFNN Predictive Interpolation Generates DEM.
RBFNN [27, 28] can usually be used for classification or spa-
tial data interpolation. Due to its advantages of simple struc-
ture, fast learning speed, and not easily falling into a local
minimum, it was often used in spatial data interpolation pre-
diction [29]. RBFNN has been applied to generate DEM
through the interpolation of airborne LiDAR point cloud,
which is also trying to generate DEM in the photogrammetric
point cloud [30]. Therefore, we used the network to take the
ground point cloud obtained by filtering as an input and
interpolated each point to generate the height value. RBFNN
is usually composed of an input layer, a hidden layer, and an
output layer (Figure 3).

The output formula is

f Ið Þ = 〠
m

i=1
WiDi Ið Þ: ð2Þ

We usually describe DiðIÞ as

Di Ið Þ = exp −
I − Cik k2
2r2i

� �
, ð3Þ

where f ðIÞ is the output layer function of RBFNN, Wi is the
weight of the sample i hidden neuron to the neuron of the
output layer, DiðIÞ uses the Gaussian function, Ci is the cen-
ter of the basis function in the sample i hidden layer neuron,
and ri is the width of the cell of the sample i hidden layer
neuron.

The DEM with a resolution of 0.2m was generated from
the ground point cloud which was produced by RBFNN
interpolation, and the CHM was obtained by subtracting it
from the DSM (Figure 4).

3.3. Multispectral Image Combined with CHM Canopy
Extraction. The selected three areas had a variety of features
such as bare soil, shadows, and weeds around the canopy,
which made it difficult to extract the canopy. In order to
describe the canopies of individual shelter forests, this study
proposed an OBIA method based on fusion of multisource
data (FMSD-OBIA) to identify the canopy. The traditional
pixel-based supervised classificationmethod is based on statis-
tical spectral features, in which the selected sample feature
values were clustered to obtain pixel-level classification results.
The improvement of image resolution resulted in the spectral
feature of a single pixel and the reduced texture information.
The OBIAmethod was based on the characteristics of spectral,
texture, shape, etc., divided into regions or sets, which was
more applicable to high-resolution image data. In this paper,
we used the multispectral sensor Micro MCA12 Snap
equipped with two bands of red edges. The red edges had a
high sensitivity to vegetation, which could reflect the spectral
characteristics of vegetation better, and had certain advantages
in the classification of vegetation. Twelve original bands and
the CHM were selected for combination, and the tree crown
was extracted based on the FMSD-OBIA method.

Segmentation and classification operations of FMSD-
OBIA were carried out in ENVI 5.3, including three main
steps: segmentation, merging, and supervised classification.
Reasonable segmentation and merging scales are very impor-
tant in FMSD-OBIA methods. If the scales of segmentation
are too large, results of the method will be subject to merge
and recognize smaller tree crowns, otherwise, results of the
methods will be subject to divide larger tree crowns into con-
siderable multiple parts and broken patches. In ENVI 5.3, the
edge algorithm was selected for segmentation, the full
lambda schedule algorithm was selected for merging, and
through repeated experiments, FMSD-OBIA parameters
were selected (Table 3). K-Nearest Neighbor (KNN) and
Support Vector Machine (SVM), the supervised versions of
the algorithms, were typically used in the following FMSD-
OBIA segmentation. SVM is an excellent small sample learn-
ing algorithm, which has shown good robustness in remote
sensing image classification. In this study, tree canopy and
other object (considered as background) were classified into
two categories, and the training samples (70% of all manually
delineated canopies) were selected by using the sigmoid ker-
nel function. The SVM algorithm performed the supervised
classification and obtained the crown vector image.

Table 2: Sampling statistics in the study area.

Study
area

Tree height sampling
number

Average tree height
(m)

Maximum tree
height (m)

Minimum tree
height (m)

Number of manually delineated tree
crowns

1 19 8.02 12.40 4.00 457

2 20 4.01 6.40 2.70 694

3 21 5.77 9.50 2.60 315

5Journal of Sensors



3.4. Canopy Extraction Based on CHM and Tree Height
Estimation. Based on the CHM, R-package ForestTools
(https://github.com/AndyPL22/ ForestTools, Plowright,
2020) [31] was used to complete the position detection and
canopy area division of individual shelter forests. We used
Variable Window Filter (VWF), a single-tree detection
function that is an LMF based on a dynamic circular mov-
ing window [32]. Since the crown size of different trees
was different, various linear functions were needed to be
used. The height value of pixels was used to estimate the
radius of the search window. According to the suggestion
of a previous study in [21], when the crown of trees was
narrow, a smaller search radius was suggested to be used,
while when the crown of trees was larger, a larger search
radius was suggested. Through repeated experiments, the

search radius of the study area was selected, as shown in
Table 4.

Then, the marker-controlled Inverse Watershed Segmen-
tation (MCWS) method was used to explore the tree crown
size based on the detected tree crown vertices. The watershed
algorithm [33] was proposed by Vincent, whose basic idea
was to treat the image as a topographic map, in which each
gray value in the image represented the altitude of the point,
each local minimum value and its affected area represented
the water catchment basin, and the boundary formed a
watershed. However, images with irregular noise and gradi-
ents were prone to oversegmentation, so that a watershed
algorithm that incorporates prior labels was devised to
address this problem. The algorithm reversed the CHM, used
the crown vertex as the seed point, calculated the gradient of
each grid cell to the neighborhood, determined the contour
of the crown area, and set the minimum height of the single
tree minHeight parameter to 2m. Through the above opera-
tions, the tree crown extraction results were received.

The results obtained by the FMSD-OBIA method were
vectorized, and the vector image was superimposed on CHM
to get the acquired data (CHM+ tree crown extraction
results). The LMF algorithm was applied to the numerical sta-
tistics of each polygon (tree crown), whose maximum value
was the tree height.

3.5. Accuracy Evaluation of Tree Crown and Tree Height. In
order to further evaluate the generated crown maps, the
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Figure 2: Workflow of the height estimation of the shelter forest based on the UAV photogrammetry fusion multispectral image.
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multispectral images of the three areas were manually delin-
eated by an experienced researcher and then the resulting
manually delineated crown maps were used for space com-
parison with the model-generated crown maps. For the sake
of simplicity, the map automatically drawn by the extraction
model and the map drawn manually were called the target
map and the reference map, respectively. The reference
crowns near the image boundary had been removed and only
the remained crowns were used in the following evaluation.
According to the spatial relationship between all remaining
reference crowns and target segments, they were divided into
the following five categories [34, 35]:

(a) Crown matched: the target canopy map (canopy
extraction results of the model) and the reference
canopy map exceed 50% of each other, which was
regarded as a crown matched

(b) Crown nearly matched: the target canopy map and
the reference canopy map only exceed 50% of one
of them, which was regarded as a crown nearly
matched

(c) Crown missed: Both the target canopy map and the
reference canopy map were not within 50% of each
other, which was regarded to be a crown missed

(d) Crown merged: if there were multiple reference
crowns with more than half the area covered by a tar-
get canopy, the multiple reference crown maps were
taken as crowns merged in the automatic delineation

(e) Crown split: if there were multiple target segments
with more than half the area covered by a reference
crown, the reference crown map was considered a
crown split in the automatic delineation

Crown matched and crown nearly matched are consid-
ered to be the correct crown width extraction results and
recorded as True Positive (TP); crown missed and crown

merged are considered to be omission errors and recorded
as False Negative (FN); and crown split corresponds to com-
mission errors and is recorded as False Positive (FP). Then,
the crown extraction recall rate (recall), accuracy rate (preci-
sion), and F-score are defined as follows [36]:

recall = TP
TP + FN

× 100%, ð4Þ

precision =
TP

TP + FP
× 100%, ð5Þ

F − score = 2 ×
recall × precision
recall + precision

× 100%: ð6Þ

To estimate the tree height, the linear regression was
applied to analyze the estimation results of models and the
collected field measurements, and the coefficients of determi-
nation (R2) and Root Mean Square Error (RMSE) were
employed to quantitatively evaluate the accuracy of the esti-
mation. The value of R2 ranges between 0 and 1, a larger
value of which indicates that a good fitting effect is obtained.
The RMSE was used to measure the deviation between the
predicted value and the measured value, a smaller value of
which indicates that the error is small and the prediction
effect is good. The calculation formulae of R2 and RMSE
are as follows:

R2 = 1 −
∑n

i=1 yi − y∧ið Þ2
∑n

i=1 yi − �yð Þ2 , ð7Þ

RMSE =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i=1 y∧i − yið Þ2
n

,
r

ð8Þ

where ŷi is the predicted value of the sample i of the tree
height estimation model, yi is the measured value of the sam-
ple i of the shelter forest, �y is the mean value of the measured
sample, and n is the total number of samples.

4. Results

4.1. Analysis of the Results of Extracting the Crown of the
Individual Shelterbelt. The results of different methods for
extracting the canopy of three selected areas are shown in
Figure 5, which can be seen through the combination of field
sampling, photos, and visual observation. From the method

Legend
value

High: 15.11

Low: 0
(a) (b) (c)

Figure 4: Canopy height models of three study areas: (a) canopy height model of study area 1; (b) canopy height model of study area 2; (c)
canopy height model of study area 3.

Table 3: Parameter selection of object-oriented classification.

Study area Segmentation scale (pixel) Merging scale (pixel)

1 10 60

2 20 40

3 20 40
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of combination of LMF and MCWS in study area 1, a split-
ting of one tree crown into two (oversegmentation phenom-
enon) appeared and two tree crowns were merged into one
(undersegmentation phenomenon). Oversegmentation phe-
nomena also appeared in study areas 2 and 3, and there were
also many crowns missed. The canopy extracted by the
FMSD-OBIAmethod effectively solved the problems of over-
segmentation and undersegmentation phenomena in study
area 1, although undersegmentation phenomena in study
areas 2 and 3 still appeared, which had been reduced. Fur-
thermore, incidences of the crown omission phenomenon
also decreased. Overall, the FMSD-OBIA method was better
than the traditional method of the combination of LMF and
MCWS, and the crown extraction performance is also
improved.

In order to qualitatively evaluate the results of different
canopy extraction methods on the extraction accuracy of
individual canopies of the shelter forests in study area, we cal-
culated relevant evaluation indexes, as shown in Table 5. The
FMSD-OBIA method achieved good results in the three
study areas: the average F-score was above 0.89, while the
average F-score of the combination method of LMF and
MCWS did not exceed 0.8, with values between 0.75 and
0.79, indicating that the crown result of the FMSD-OBIA
method was more consistent with the actual shelter forest
crown result.

For study area 1, the sizes of the individual tree crowns in
the dense forest area were inconsistent, which posed a signif-
icant challenge to the method of combining LMF and
MCWS, and resulted in some individual trees with small
crowns missed or merged, with the healthy tree recall value
of 0.74 and the dead tree recall value of 0.70. Furthermore,
there were multiple local maxima in broad-leaved forests
(such as Ulmus pumila and Elaeagnus angustifolia), causing
individual trees to be divided into multiple trees. A total of
40 healthy trees and 19 dead trees were subject to overseg-
mentation, with precision values of 0.83 and 0.84, respec-
tively. The FMSD-OBIA method effectively reduced the
occurrence of these two phenomena: the recall values
increased by 0.12 and 0.16, and the oversegmentation phe-
nomenon decreased by 16 and 13 trees, respectively, hence
resulting in increases in the precision values by 0.08 and 0.11.

The healthy trees in study area 2 were compact but
sparse, comprised mostly of Populus bolleana. In addition,
the canopy area was small: the multispectral images with
0.2m spatial resolution were mostly 20–50 pixels, and the
canopy area was 0.8–2m2. The oversegmentation of all
methods was obviously reduced, and the precision value of
healthy trees was above 0.93. The recall values of the healthy
tree and the dead tree increased by 0.13 and 0.20 relative to

the method of combining LMF and MCWS, and the F
-score were increased by 0.09 and 0.16, respectively, which
demonstrated that the FMSD-OBIA method effectively
avoided the missing and merging of the trees.

There were more dead trees than healthy trees in study
area 3, which also had numerous shrubs under the trees. It
was difficult to distinguish trees using height information
alone. Multispectral images combined with height informa-
tion were used to extract crowns based on objects, effectively
removing shrubs from the crown images. The adhesion and
merging improved the recall and precision values, which
increased by 0.23 and 0.07, respectively, indicating that the
spectral information played a key role in extracting the
canopy.

4.2. The Accuracy Evaluation of the Tree Height Estimation
Model. Individual tree height was extracted using the method
proposed in this paper and compared to the field-based tree
height measurements with linear fitting in study areas 1 to
3 (Table 6). The RMSE values of the three types of the shelter
forest study area were different as shown in Table 6. It can be
noticed that the value of study area 3 was the highest, in
which there were the dead trees, with an RMSE of 1.03m.
The value of the mixed forest in study area 1 was the second
highest, which contained multiple tree species and a denser
shelter forest, with an RMSE of 0.68m. And the RMSE of
study area 2 was the lowest with a value of 0.30m, indicating
that the dead tree area without leaves resulted in a larger
error. We also analyzed the average value of the samples in
each study area and the estimated tree height. The results
are described as follows. The measured average tree height
in study area 1 was 8.02m and the estimated average tree
height was 7.6m. The average measured tree height in study
area 2 was 4.01m and the estimated average tree height was
3.7m. And the average measured tree height in research area
3 was 5.77m and the estimated average tree height was 5.1m.
The results can explain the overall underestimation of the
estimated tree height using the CHM. The underestimation
situation presented above had a difference in various types
of shelter forests, and the best estimation was acquired in a
vigorous and sparse forest (R2 = 0:93), with a high correla-
tion, nearly as great as the one acquired in mixed forest
(R2 = 0:91). The weakest correlation was obtained in a sparse
forest with many dead trees (R2 = 0:88), which showed the
difference in the ability of photogrammetric point clouds to
rebuild the canopies of different shelter forests.

Because we did not collect ground points, this study used
the original point cloud without the RBFNN interpolation.
And the DEM was directly generated from Pix4D software
to estimate the tree height for comparison, verifying the

Table 4: Search radius r of linear function for single tree detection.

Study area r xð Þ (m) Canopy characteristics

1 0:08x + 1:5 Mixed forests with inconsistent crown sizes

2 0:04x + 0:6 Sparse forest with small crown, tall trees, and good growth

3 0:04x + 0:6 Sparse forest with small crown and mostly dead trees

8 Journal of Sensors



feasibility and scientificity of RBFNN interpolation. It can be
seen from Table 6 that the accuracy of the tree height estima-
tion results after RBFNN interpolation was overall higher
than those of the other two methods. The error of the results
without RBFNN interpolation increased, and the correlation
of those decreased, which demonstrated the effectiveness of
RBFNN interpolation prediction. RBFNN interpolation can
be used to address the problem of low DEM accuracy of the
photogrammetric point cloud caused by the large canopy.
The canopy coverages of study areas 2 and 3 were small. After
RBFNN interpolation, R2 and RMSE were higher than the
other two methods (DEM generated without RBFNN inter-
polation and DEM directly generated by Pix4D software),
which proved that RBFNN was effective and feasible in pho-
togrammetric point cloud. On the whole, the tree height esti-
mation results of RBFNN interpolation were more accurate
and efficient.

5. Discussion

5.1. Analysis of the Results of Extracting the Crown of the
Individual Shelterbelt. Due to the discontinuous change of
the gray level of the pixels in the CHM, the segmentation
process will generate smaller segmentation units, and over-
segmentation and undersegmentation often occur. The
method based on combining spectral information with the
CHM and using an FMSD-OBIA method to extract the

crown, which considered the object the basic unit, is a better
approach than the traditional methods for the extraction of
the crown of a shelter forest. It effectively reduces the mis-
classification of the pixels of shelter forest crowns as other
feature categories. Thus, with more corrected information
(such as spectrum and height) related to the canopy extrac-
tion, the accuracy of the proposed model is improved, which
is consistent with the research results in [37].

The method based on combining LMF and MCWS had a
large difference in the crown extraction results in the three
study areas. The accuracy of the canopy extraction of the
sparse forest (in study area 2) was better than that of the
mixed dense forest (in study area 1), but the sparse forest in
study area 3 resulted in the worst extraction effect. The main
reason for the difference is the large difference in the charac-
teristics of the three types of shelter forest. In study area 3,
there were many withered (dead) trees, and the coverage area
was small; thus, the canopy vegetation features were not
obvious. In addition, the protection forest had large row
spacing and small density, which also made it difficult to
extract the canopy. If the canopy is too small to extract, the
phenomenon of omission error is more serious. Relatively,
the sparse forest in study area 2 had large line spacing and
low density, but the area of the crown width was appropriate,
which could be more easy to well distinguish the crown from
the background and thus result in a better extraction
accuracy.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5: The performance of different extraction methods on the crown of individual trees in the study area: (a–c) multispectral raw image
data for study areas 1-3 (the green polygonal area represents a reference drawing of the tree canopy drawn by experienced researchers); (d–f)
the red polygonal area is the crown extracted results using the method of combining LMF with MCWS in study areas 1-3; (g–i) the blue
polygonal area is the crown extracted results using the FMSD-OBIA method in study areas 1-3.
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In the mixed forest in study area 1, the large differences of
the crown size made it difficult to determine the search radius
of the VWF function into the procedure of individual tree
detection, causing the oversegmentation and omission error
of the extreme trees that were too large or too small. The
accuracy of the sample-based object-oriented method in all
three research areas was higher than that of the method of
the combination of LMF and MCWS. The canopy extraction
results were ideal, meaning that the canopy edges were better
identified and the tree crown information was completely
described. Regardless of whether it was a sparse forest or a
mixed forest, the emergence of the oversegmentation and
undersegmentation was reduced, and the overall accuracy
of the sparse forest with the FMSD-OBIA method was higher
than that of the mixed dense forest. Dead trees with smaller
crown areas had higher accuracy than the mixed dense forest
because, after adding spectral information, there was a cer-

tain difference between the dead tree and the surrounding
environment spectrum, which could be effectively distin-
guished. However, the best results cannot be obtained using
spectral information alone, which is 11%–14% lower than
the canopy extraction results of the study in [38].

In general, the FMSD-OBIA method for crown extrac-
tion can effectively solve the problems of oversegmentation
and undersegmentation. However, the study still has some
limitations. Although the object-oriented method had high
precision, the degree of automation was not ideal, as the
threshold needed to be set manually which were usually
obtained requiring a number of attempts Different parame-
ters also needed to be set as for different types of shelter forest
and especially in mixed forests, it was almost impossible to
define different canopy areas to get accurate boundary infor-
mation, contributing to the difference between the results of
the extraction of different canopy areas and the actual edges.
Therefore, a single optimal segmentation scale was not suit-
able for extracting tree crowns with large differences in crown
areas in the same image.

5.2. Analysis of Differences in the Tree Height Estimation of
Different Shelter Forest Types. In the study of using the
UAV photogrammetric point cloud to estimate the height
of individual trees for different types of shelter forest, the
availability of the DEM generated based on RBFNN interpo-
lation was confirmed. This approach has high estimation
accuracy and can be implemented economically. The method
would be replaced the point cloud data with the one obtained
by LiDAR or laser scanner. Existing studies have shown that
DEM accuracy will be affected by vegetation coverage, slope,
and interpolation algorithms [39]. The shelterbelt was
located on the edge of a desert, where the terrain was rela-
tively flat and the vegetation coverage was not large. The data
acquisition time was during the transition between autumn
and winter seasons. Studies in [40, 41] have shown that the
DEM is the most accurate in winter with low vegetation

Table 5: Evaluation of the accuracy of different extraction methods in the study areas.

Study area
number

Crown
extraction
method

Shelter forest
health situation

Crown
matched

Crown nearly
matched

Crown
missed

Crown
merged

Crown
split

Recall Precision
F

-score

1

a
Healthy 158 31 20 45 40 0.74 0.83 0.78

Dead 60 41 22 21 19 0.70 0.84 0.77

b
Healthy 194 39 8 29 24 0.86 0.91 0.88

Dead 83 51 13 9 7 0.86 0.95 0.90

2

a
Healthy 323 25 60 46 27 0.77 0.93 0.84

Dead 97 28 36 29 23 0.66 0.84 0.74

b
Healthy 389 31 27 19 15 0.90 0.97 0.93

Dead 144 32 17 11 9 0.86 0.95 0.90

3

a
Healthy 19 4 7 5 4 0.66 0.85 0.74

Dead 139 25 54 31 27 0.66 0.86 0.75

b
Healthy 27 6 1 2 3 0.92 0.92 0.92

Dead 189 38 15 18 16 0.87 0.93 0.90

a: the method of combination of LMF and MCWS; b: the method of FMSD-OBIA.

Table 6: Comparison of linear fitting accuracy evaluation of
different methods for estimating tree height.

Study
area

Method R2 RMSE
(m)

1

DEM (after RBFNN interpolation) 0.91 0.68

DEM (without RBFNN
interpolation)

0.47 1.48

DEM (Pix4D software) 0.50 1.93

2

DEM (after RBFNN interpolation) 0.93 0.30

DEM (without RBFNN
interpolation)

0.84 0.41

DEM (Pix4D software) 0.64 1.52

3

DEM (after RBFNN interpolation) 0.88 1.03

DEM (without RBFNN
interpolation)

0.60 1.68

DEM (Pix4D software) 0.45 2.01
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coverage. The CHM obtained by interpolation through the
RBFNN can theoretically get a more accurate tree height esti-
mation. Analyzing the actual tree height and estimating the
average tree height showed that the overall estimated tree
height was underestimated (between 0.3 and 0.7m). Nuijten
et al. [42] indicated that the tree height may be underesti-
mated when leaves have fallen. After the frost in October in
the northern Xinjiang region, the leaves of the shelterbelt
began to become yellow and gradually fell, while the vegeta-
tion coverage of the canopy also diminished, which led to
the overall underestimation phenomenon of tree heights.

The difference in tree height estimation of different shel-
terbelt types was mainly due to the acquisition and recon-
struction of photogrammetric point clouds. The image data
obtained from the UAV platform was affected by many fac-
tors in the reconstruction of the 3D canopy point cloud [13,
39, 43], including the UAV platform, sensors, image acquisi-
tion parameters, and protection forest type. This study
focused on the differences in the ability to reconstruct photo-
grammetric point clouds in different types of shelter forest,
selecting image data acquired on the same day, of the same
sort, and using the same flight platform, overlap rate, and
lighting conditions, to prevent these parameters from having
an impact on the reconstruction of the point cloud. Through
this research, it was found that the tree species and health sta-
tus of the shelter forest had different effects on the tree height
estimation. For dead trees without leaves (Populus bolleana,
sparse forest), the RMSE was 1.03m, and the correlation with
the measured data was lower than that of other types. The
dense mixed forest had a lower RMSE than the sparse forest
with more dead trees. The crown area of dead trees was sig-
nificantly smaller than that of healthy trees, and the vegeta-
tion information was not obvious, which made the
reconstruction of point clouds difficult. Generally speaking,
the higher the point cloud density, the more canopy informa-
tion was obtained; this was more conducive to the recon-
struction of canopy point cloud information, and higher
point cloud density can provide higher estimation accuracy
of tree height [44]. Dead trees had a small canopy and a lim-
ited number of point clouds. The lower canopy coverage
results in fewer features that can be extracted, which reduces
the ability to reconstruct the point cloud. This resulted in a
higher tree height estimation error, which is consistent with
the research results in [22].

6. Conclusions

This study proposed a novel method of individual tree height
estimation based on fusion of an airborne multispectral
image and photogrammetric point cloud and selected 3 areas
in the shelter forest for verification. The DEM generated after
RBFNN interpolation could meet the requirement of esti-
mating tree height, which confirmed that the photogrammet-
ric point cloud obtained by a CW-20 fixed-wing UAV,
equipped with SONY-A7RII camera, had the significant
potential for the estimation of tree height. The coverage
and health condition of protective forest canopies had a cer-
tain influence on the reconstruction of photogrammetric
point clouds. Dead trees had a small canopy area and no

physiological characteristics of healthy vegetation, so that
the SfM algorithm extracted fewer features from the images.
The FMSD-OBIA methods were employed in the combina-
tion of 12-bands and CHM increased the spectral informa-
tion of the shelterbelt forest canopy, effectively reduced the
phenomena of oversegmentation and undersegmentation,
increased the F-score by 0.12–0.17, and improved the accu-
racy of canopy extraction. The proposed method is effective
for estimating the tree height of individual trees of shelter
forests in a desert area but nonetheless requires further
improvement. The degree of automation of object-oriented
methods is not ideal, and there is definitely room for further
improvement of the accuracy and the speed of the canopy,
which can be replaced with deep learning methods. More-
over, the two types of forest stand data, from dense and
sparse forest areas, can be used to build a tree height growth
model based onmultiperiod image data, which will be helpful
to conduct health assessments to protect the desert forest and
provide an important reference for maintenance and
replacement.
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The survival of humanity is dependent on the survival of forests and the ecosystems they support, yet annually wildfires destroy
millions of hectares of global forestry. Wildfires take place under specific conditions and in certain regions, which can be studied
through appropriate techniques. A variety of statistical modeling methods have been assessed by researchers; however, ensemble
modeling of wildfire susceptibility has not been undertaken. We hypothesize that ensemble modeling of wildfire susceptibility is
better than a single modeling technique. This study models the occurrence of wildfire in the Brisbane Catchment of Australia,
which is an annual event, using the index of entropy (IoE), evidential belief function (EBF), and logistic regression (LR)
ensemble techniques. As a secondary goal of this research, the spatial distribution of the wildfire risk from different aspects such
as urbanization and ecosystem was evaluated. The highest accuracy (88.51%) was achieved using the ensemble EBF and LR
model. The outcomes of this study may be helpful to particular groups such as planners to avoid susceptible and risky regions in
their planning; model builders to replace the traditional individual methods with ensemble algorithms; and geospatial users to
enhance their knowledge of geographic information system (GIS) applications.

1. Introduction

Wildfires, alternatively termed forest fires, bushfires, wood-
land fires, and vegetation fires, boosted by wind and high
summer temperatures, are able to destroy entire forests faster
than they can be brought under control [1], causing irrevers-
ible, incalculable environmental, economic, and social dam-
age [2]. Wildfires cause direct forest degradation [3]. Like
the Australian wildfires 2020 [4] which a wide variety of forest

flora [5] and forest species [6] were destroyed within a very
short period of time. Soil nutrients loss is a long-lasting effect
[7, 8], which wildfires can bring into a region. Ecosystems
and biodiversity [9] such as bird nesting and habitats [10,
11] are also so vulnerable to wildfire phenomena. Destroying
watersheds [12] and reducing water quality [13, 14] are
destructive impacts of this disaster. Last but not least, impacts
on human settlements and health [15, 16] can be considered
as nonreturnable negative influence of wildfire disaster.
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A fundamental requirement in natural hazard manage-
ment is to accurately locate wildfire endangered regions
[17], meaning that to find the areas that have the highest
potential for future wildfire occurrence. Throughout proper
natural hazard management, wildfire can be controlled and
damages are minimized [18]. In fact, assessing the suscepti-
bility of a locality to wildfire occurrence is based on a specific
correlation among the historical wildfire events and its
related causing factors such as topographical, hydrological,
and geological [19].

Numerous approaches and algorithms have been used for
wildfire hazard mapping [20]. Recent studies have utilized
remote sensing (e.g., aerial photos, LiDAR data, and signals)
and thematic maps either directly or indirectly in conjunc-
tion with geospatial information systems (GIS), and they
have the potential to support assessments of wildfire risk
from a variety of aspects such as fuel load [21, 22], burn
severity [23], and intensity measurements [24, 25]. Probabil-
ity and susceptibility are foundational in the field of wildfire
research [26], being essential for risk, vulnerability, response,
and safety studies [27]. As a practical example, wildfire spa-
tiotemporal distributions can be derived from the suscepti-
bility over a period [28], in order to establish trends, which
can be monitored and projected into the future. The existing
methods used in wildfire probability mapping cover a variety
of algorithms. For instance, qualitative analytical hierarchy
process (AHP) and Mamdani fuzzy logic (MFL) methods
were used by Pourtaghi et al. [18]. Their outputs denoted that
the qualitative analysis might not be accurate as it was a
knowledge-based approach and differed from a person to
person. Linear and quadratic discriminant analysis, fre-
quency ratio (FR), and weights-of-evidence (WOE) were
used together with thirteen causative factors in a research
by Hong et al. [27], and the area under the curve (AUC) for
the forest fire susceptibility mapping did not exceed 82.2%.
Jaafari et al. [29] used five decision tree-based classifiers in
the wildfire mapping and reported a high level of perfor-
mance (AUC = 90%). However, decision tree-based models
are often computationally expensive in modeling and sensi-
tive to training the big data [30]. FR which is known as a sim-
ple and popular statistical algorithm was also utilized in
mapping the wildfire hazard [31]. In this study, however,
FR performance (AUC = 79:85%) was less effective compare
to Shannon’s entropy model (AUC = 83:16%). Support vec-
tor machine (SVM) as another popular algorithm was used
by Tien Bui et al. [32] to detect the most wildfire susceptible
areas in the Cat Ba National Park area (Vietnam) resulting to
an AUC of 87.5%. Pourghasemi et al. [33] produced the wild-
fire susceptibility maps based on evidential belief function
(EBF) and binary logistic regression (BLR) models. The vali-
dation of the result illustrated the outperformance of EBF
(AUC = 81:9%) over BLR (AUC = 74:3%). Wildfire suscepti-
bility mapping using sixteen conditioning factors, Gholam-
nia et al. [34] exploited machine learning (ML) methods
(e.g., artificial neural network (ANN), dmine regression
(DR), data mining (DM) neural, least angle regression
(LARS), multilayer perceptron (MLP), random forest (RF),
radial basis function (RBF), self-organizing maps (SOM),
SVM, and decision tree (DT)) and reported the highest

(88%) and lowest accuracy (65%) for RF and logistic regres-
sion (LR), respectively. Kalantar et al. [35] mapped the forest
fire susceptibility using three ML algorithms, namely, multi-
variate adaptive regression splines (MARS), SVM, and
boosted regression tree (BRT) with resampling techniques
in the training phase. They reported the resampling process
enhanced the modeling and BRT with an AUC of 91% out-
performed others. In this context, several ML methods, for
example, DT, have an inherent computational complexity,
requiring a number of preanalysis stages and significant pro-
cessing time [36]. Although the aforementioned studies
acquired satisfactory AUC, all the AUC values were less than
91% (majority between 74%-83%), and it motivated us to
investigate other algorithms and pursue the higher accuracy
for wildfire prediction.

It has been proven by some other researches such as Brun
et al. [37] and Podschwit et al. [38] that ensemble and multi-
model approaches might lead to much more accurate results.
Zhou [39] stated that ensemble modeling offers a state-of-
the-art learning approach, which has become a focus of
modeling research since the 1990s and has been shown to
produce results that are considerably more precise than using
a single method [40–43]. A study by Jaafari et al. [44] was
undertaken to examine and compare four hybrid (artificial
intelligence) methods against a single model in mapping
the wildfire probability in the Hyrcanian ecoregion, Iran.
Their finding proved up to18% increase of modeling accu-
racy using hybrid models rather than a single model. It is
apparent that any individual method, whatever its advan-
tages, has limitations. In ensemble modeling by appropriate
selection of two methods, it trains multiple algorithms and
subsequently combines them for analysis [45], then one can
reduce or eliminate the other one’s limitations, and vice versa
[46]. Hence, in the present study, the ensemble model was
proposed to improve the modeling and performance for
higher accuracy.

Alternatively, EBF is capable of fast data processing with-
out preassumptions [47]. Applied to wildfire susceptibility
mapping, a bivariate statistical analysis (BSA) approach
would be based on the comparison of a wildfire inventory
map as a dependent variable and a single input influencing
map (geology/wildfire, aspect/wildfire, altitude/wildfire,
etc.) [48]. In execution, the spatial correlation between wild-
fire inventory locations and each class of each wildfire
influencing factor would be measured. For instance, the
weights derived for the geology factor represent the impact
of each geology type on wildfire occurrence in the region.
In addition, multivariate statistical analysis (MSA) only
assesses the impact of factors on wildfire occurrences, rather
than the influence of each class. Using an ensemble modeling
approach, both the impact of classes and separate factors can
be assessed in a single integrated analysis. EBF and IoE are
classified as BSA approaches and extract the impact of each
class of every conditioning factor. Among various ways to
perform LR analysis, it is able to evaluate the impact of the
factor itself on the wildfire event irrespective of class impacts.
Thus, here, the ensemble analysis has the potential capability
of producing more reliable and accurate outcomes compare
to an individual algorithm. Although ensemble modeling
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has been utilized in the wildfire domain, there is a range of
other techniques that have not been tested in ensemble anal-
ysis yet. The research literature indicates applications of indi-
vidual EBF, index of entropy (IoE), and LR modeling, yet
their comparability and application in ensemble modeling
remain untested, in refining the derived wildfire susceptibil-
ity maps, as far as we can ascertain.

For this purpose, an ensemble approach to wildfire
modeling using IOE, EBF, and LR algorithm was introduced
and examined. The three algorithms were selected on the
basis of their relatively quick execution and comprehensibil-
ity, as well as the fact that they do not require specific dedi-
cated software [49]. To address the important factors in
bushfire occurrence in the Brisbane Catchment, Australia,
we evaluated and ranked the initial fourteen causative factors
(i.e., altitude, slope, aspect, curvature, topographic wetness
index (TWI), topographic position index (TPI), rainfall,
geology, soil, land use land cover (LULC), distance from riv-
ers, distance from roads, wind, and normalized difference
vegetation index (NDVI)). Especially, the study area faces
midsummer heatwave triggering fire conditions, and this
study could enlighten the sources of hazard for decision
makers to protect the species threatened with extinction
[50]. By producing more reliable susceptibility and risk maps,
this study would assist in wildfire management, forestry, and
strategies to local residents. We believed that combined into
an ensemble method, the accuracy can exceed the individual
outputs.

2. Study Area

The study area (the Brisbane catchment, Australia) is located
between 153°12′9.212″E 27°17′40.095″S and 152°22′
31.144″E 27°56′7.549″S (Figure 1), and its LULC is mainly
cropping, plantation forestry, and urban and rural areas. Its
climate is warm with two seasons, a dry winter and a hot
humid summer. Average temperature ranges from 9 to
12°C and 21 to 29.8°C, respectively. The ecoregion of the
study area is temperate broadleaf and mixed forest. However,
temperate forests experience a wide range of variability in
temperature and precipitation. In regions where rainfall is
broadly distributed throughout the year, deciduous trees
mix with species of evergreens. Species such as Eucalyptus
and Acacia typify the composition of the temperate broadleaf
and mixed forests in Australia. In Australia, the temperate
forests stretching from southeast Queensland to South Aus-
tralia enjoy a moderate climate and high rainfall that give rise
to unique eucalyptus forests and open woodlands. This
biome in Australia has served as a refuge for numerous plant
and animal species when drier conditions prevailed over
most of the continent. That has resulted in a remarkably
diverse spectrum of organisms with high levels of regional
and local endemism. Recently, record-breaking temperatures
and extreme events such as drought caused devastating wild-
fire across Australia, destroying million acres of species and
threatening human life (https://www.bloomberg.com/
graphics/2020-australia-fires/), which globally ranks Austra-
lia as the most prone country to wildfires [51]. Since there
is a very high possibility of wildfire danger in the dry season,

we used geographic data on the extent of the wildfires that
occurred from 2011 to 2019. Figure 1 shows the study area
along with the inventory of the extent of wildfires. Brisbane,
the capital of Queensland, is in the southeastern corner of
this state and is one of the predominant wildfire regions in
Australia.

3. Methodology

The mapping algorithms for wildfire susceptibility were
applied both individually and as an ensemble in this study.
The stepwise methodology flowchart in Figure 2 illustrates
different stages of this research. To achieve the primary aim
of the study (ensemble modeling), the first four steps were
implemented. Subsequently, the outcomes of these steps were
entered into the last stage to perform the secondary goal of
wildfire risk mapping. The analysis started with a random
selection of forest fire inventory points and will be explained
in Section 3.1.1. The training dataset, as the initial input, was
utilized in both methods of IoE and EBF, in order to evaluate
its correlation with influencing factors using the two
methods. For the second input to the BSA analysis, a set of
conditioning factors was used (Section 3.1.2). Section 3.2
describes the use of multicollinearity and Pearson’s correla-
tion analysis to eliminate some of the factors from the dataset
to avoid redundancy. In the third step, the BSA was under-
taken using both the IoE and EBF methods, and their final
susceptibility map was produced using MSA. Area under
curve (AUC) technique was used to evaluate the reliability
of the outcomes using the testing dataset (30%) (Section
3.6). Subsequently, as illustrated by the dashed arrow in the
flowchart, the derived BSA weights were used in ensemble
with the LR algorithm. The ensemble analysis was used to
produce the final wildfire susceptibility map. Thereafter, the
secondary goal of the study was initiated. The most suscepti-
ble wildfire class was overlaid on several vulnerability maps
derived from different sources. The aim is to show that the
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Figure 1: Study area and wildfire extent.

3Journal of Sensors

https://www.bloomberg.com/graphics/2020-australia-fires/
https://www.bloomberg.com/graphics/2020-australia-fires/


risk map can be varied based on the application and aim of
the analysis.

3.1. Data Used.An accurate wildfire-influencing factors data-
set together with precise detection of the wildfire-ravaged
locations are critical for probabilistic wildfire susceptibility
analysis. Both dataset’s precision has direct impact on
the final outcomes [52]. The characteristics, sources, and
descriptions of each dataset will be described in the fol-
lowing subsections.

3.1.1. Wildfire Inventory Dataset. Susceptibility analysis can
be undertaken through the assessment of similar past events
and their causative factors. A range of sources, such as in situ
mapping, historical records, reports, remote sensing, and
aerial photos can be used to prepare the inventory dataset
[53]. In this research, the wildfire inventory dataset was com-
piled by the Australian Bureau of Agricultural and Resource
Economics and Sciences (ABARES) for the National Forest
Inventory (NFI). The raw data was delivered in vector for-
mat. Each polygon contained details of the location, date,

and size of the burnt areas (Table 1). The inventory dataset
covers the wildfire records from 2011 to 2019. According to
Table 1, the year 2016 had the highest incidence of wildfire
covering 674,072 sqm. In this region, most of the wildfire
occurrences were located in the far north and the northeast
(Figure 1). Since the inventory data was in polygon format,
a random point selection technique was applied, however,
with few innovations as described below.

Unlike most of the previous studies [54–56], inventory
points were not selected in terms of the whole basin as this
would have overlooked the size of the burnt areas. As a pre-
paratory step, four areas of interest were defined (Figure 3)
around the inventory regions.

In the next step, the total area of the wildfire polygons
(the centroid of the fire) in each zone was measured. Finally,
wildfire random points, with respect to their areas, were
selected as listed in Table 2. We aimed to choose a total of
300 inventory points. So according to the total area of each
zone, the specific numbers of points were derived from them.
For instance, in zone 1, the percentage of the forest fire areas
with respect to the whole wildfire areas was 12%. Twelve
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percent of 300 points would be 36 points, which have been
randomly derived from this zone. For each fire event (poly-
gon), a buffer zone was generated to avoid marginal fire
region. Consequently, 300 nonfire samples were randomly
extracted from the remaining areas for modeling purpose.

Our training and testing datasets were created using the
space robustness technique, which divides the data into two
categories without considering the dates of the events [42].

Once 300 inventory points were acquired, 300 nonfire
points were compiled and the data was divided by random
selection from the total inventory points according to the
standard 70% training, 30% testing proportion [57–59].

3.1.2. Influencing Factors. Pourtaghi et al. [18] offers a good
review of these factors. Since there is no accepted framework
for dataset creation, many studies rely solely on data avail-
ability, expert knowledge, and literature [33, 60]. In this
study, the primary influencing factors were selected by the
traditional literature-based approach. Prior to the main anal-
ysis, a statistical multicollinearity analysis was performed on
the selected factors (Section 3.2). Our initial selected
influencing factors dataset consisted of altitude, slope, aspect,
curvature, TWI, TPI, rainfall, geology, soil, LULC, distance
from rivers, distance from roads, wind, and NDVI. These fac-
tors are the most cited and relevant according to the

Table 1: Record of the temporal wildfire occurrence in this study.

Date Suburb Area (sq m) Date Suburb Area (sq m) Date Suburb Area (sq m)

23/01/2019 Tingalpa 471 16/05/2017 Brighton 854 26/09/2016 Stretton 1044

23/01/2019 Tingalpa 4924 15/05/2017 Brighton 327 13/09/2016 Karawatha 188

5/11/2018 Calamvale 313 1/04/2017 Parkinson 256 8/09/2016 Karawatha 1258

5/11/2018 Calamvale 41 27/03/2017 Carina 6 8/09/2016 Karawatha 2051

18/09/2018 Mt Gravatt 462 27/03/2017 Carina 95 8/09/2016 Karawatha 919

15/09/2018 Mt Gravatt 8 27/03/2017 Carina 394 29/08/2016 Forest Lake 129

31/08/2018 Chermside 42762 27/03/2017 Parkinson 2078 15/08/2016 Bracken Ridge 309109

23/08/2018 Wynnum West 12027 8/03/2017 Hemmant 1035 15/08/2016 Bracken Ridge 48472

13/08/2018 Burbank 1236 25/02/2017 Drewvale 752 7/08/2016 Deagon 98079

26/07/2018 Chermside West 16365 12/02/2017 Hemmant 59 1/07/2016 Tarragindi 2924

22/06/2018 Murarrie 2892 11/02/2017 Tingalpa 1437 28/05/2016 Darra 45758

21/02/2018 Wakerley 3617 7/02/2017 Boondall 262056 15/05/2016 Karawatha 10947

20/02/2018 Wakerley 2942 6/02/2017 Hemmant 186 18/04/2016 Carina 281

20/02/2018 Ransome 368 6/02/2017 Hemmant 275 17/04/2016 Carina 2004

18/02/2018 Wynnum 1385 6/02/2017 Hemmant 266 4/04/2016 Drewvale 1426

10/02/2018 Wynnum West 3568 6/02/2017 Hemmant 271 25/03/2016 Wynnum West 158

29/01/2018 Karawatha 23121 3/02/2017 Hemmant 3460 26/01/2016 Karawatha 13089

9/01/2018 Hemmant 20542 3/02/2017 Hemmant 383 11/01/2016 Wynnum West 31494

30/12/2017 Karawatha 656 3/02/2017 Boondall 50254 24/11/2015 Wynnum West 47616

17/12/2017 Karawatha 98481 1/02/2017 Ransome 15722 1/11/2015 Wynnum West 2578

17/12/2017 Karawatha 4947 1/02/2017 Ransome 33 15/10/2015 Wynnum West 2479

17/12/2017 Karawatha 553 1/02/2017 Ransome 887 24/09/2015 Wynnum West 4722

5/12/2017 Stretton 8023 26/01/2017 Karawatha 5514 10/05/2015 Hemmant 107825

28/09/2017 Wakerley 552 19/01/2017 Karawatha 17353 15/11/2014 Karawatha 794

14/09/2017 Bracken Ridge 49892 19/01/2017 Karawatha 2880 2/11/2014 Ransome 181477

7/09/2017 Chermside 2415 24/12/2016 Ransome 3705 6/10/2014 Wynnum West 217331

7/09/2017 Chermside 1665 24/12/2016 Lota 71 3/09/2014 Hemmant 48449

5/09/2017 Sandgate 3818 23/12/2016 Ransome 447 12/01/2014 Wynnum West 47532

1/09/2017 Runcorn 653 22/12/2016 Stretton 1220 31/12/2013 Nudgee 244318

18/08/2017 Parkinson 3057 22/12/2016 Ransome 31815 29/12/2013 Karawatha 173032

18/08/2017 Rochedale 21753 21/12/2016 Stretton 1692 9/08/2013 Hemmant 194041

17/08/2017 Parkinson 1089 23/10/2016 Brighton 24533 25/09/2012 Hemmant 40043

16/08/2017 Parkinson 816 16/10/2016 Wynnum West 4845 15/09/2012 Wynnum West 17062

10/08/2017 Fitzgibbon 41071 14/10/2016 Hemmant 30668 15/09/2011 Wynnum West 72330

23/06/2017 Drewvale 47 13/10/2016 Hemmant 2200

16/05/2017 Brighton 951 29/09/2016 Karawatha 3546
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literature [18, 61, 62]. The factors were drawn from a vari-
ety of sources, which will be mentioned accordingly. A raw
dataset was used to derive the primary influencing factors.
This comprised (a) a digital elevation model (DEM) with
5-meter spatial resolution (produced from LiDAR data)
was used to compute altitude, slope, aspect, curvature,
TWI, and TPI; (b) soil map (1 : 250,000 scale) and geology
map (1 : 100,000 scale) were obtained from the CSIRO and
Australian government websites; (c) Landsat imagery which
was used to provide NDVI map; (d) roads and rivers net-
works; and (e) rainfall and wind information from the
meteorological stations. Through proper methods and con-
versions, each factor was prepared and imported to the GIS
environment.

Topography is one of the most influential factors in wild-
fire occurrence. Precipitation, temperature, sun exposure,
and wind are all related to the topography of the locality
[63]. Topography can affect wildfire in different ways. Slope,
aspect, and altitude influence solar radiation levels [64] and
impact on the fuel moisture content [65]. The wildfire spread
direction is often determined by topographical factors and
wind [66]. Topography, fuels, and climate are recognized as

the three main elements in wildfire creation, spread, and
intensity [67], with topography the most stable factor.

Altitude influences the wildfire behavior by affecting the
extent and timing of precipitation, seasonal drying of fuel,
and wind [68]. Higher temperature and lower rainfall in
lower lands cause fuels to dry faster. Slope affects fuel pre-
heating and, thus, the rate and direction of spread [69]. Fuel
preheating can be affected by the slope. Sharp slopes preheat
and dry upslope fuels, causing faster combustion [70]. There-
fore, during the wildfire event, slope defines the direction of
the spread [71]. Slope position and degree are both important
factors in the extent of wildfire spread. Usually, the largest
wildfires are initiated at the base of the slope. Additionally,
fires tend to spread faster up a slope than down one [72]. Fire
tends to move, and based on the landform types of the region,
it transfers in various ways [73]. For instance, narrow can-
yons are one the most dangerous forms of the land in the
event of wildfires [74]. In such a condition, a greater degree
of slope increases the destructive power of the wildfires.
The reason is this landform creates strong updrafts of air,
preheating the upslope fuels, thus, increasing the likelihood
of heat transfer. In some cases, if the valley is narrow enough,
it might initiate an outbreak of fire on the opposite side.

Aspect defines the direction of the slope. The impact of
aspect on fuel temperature and moisture is apparent [75].
Aspect controls the solar radiation received, which indirectly
influences the vegetation types and cover [76]. In the south-
ern hemisphere, north-facing slopes tend to have less vegeta-
tion and lighter fuel loads, particularly in lower-elevation
forests [77]. North slopes receive higher levels of solar radia-
tion and are consequently warmer, so fuels tend to dry out
sooner. On the other hand, south slopes contain more vege-
tation and, therefore, greater fuel quantities. The drying pro-
cess for these slopes is slower due to shadows. In the case of

Zone 3

Zone 1 Zone 2

Zone 4

Figure 3: Inventory points selection zones. The division lines are arbitrarily located.

Table 2: Selection of forest fire random points with respect to their
areas.

Map
zones

Forest fire
areas

Percentage of the forest
fire areas

Number of
random points

Zone 1 338360 12 36.00

Zone 2 1541738 54 162.00

Zone 3 54754 2 6.00

Zone 4 897361 32 96.00

Total 2832214 100 300.00
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wildfire occurrence, they cause more severe wildfire. Curva-
ture, which shows the morphology of topography, is another
influential factor in wildfire occurrence [78]. Positive, nega-
tive, and zero curvature values specify that the surface is con-
vex, concave, or flat, respectively [79]. One of the ways to
evaluate the impact of topography on the hydrological char-
acteristics of the region [80] is TWI. TWI shows the amount
of flow accumulation at any point in a drainage basin and the
downslope trend of the water by the power of gravity, and it
measures the slope and direction of hydrologic flow [81]. The
TWI thematic map was generated using the system for auto-
mated geo-scientific analyses (ArcGIS).

TWI = ln
α

tan β
, ð1Þ

where α is the cumulative up slope area draining through a
point, and tan β is the slope angle at the point [46]. Table 3
provides both detailed and general descriptions of soil types
in the study area. This information is useful for land manage-
ment and planning.

TPI defines or characterizes shapes such as canyons and
ridges [82]. This factor reflects the difference in elevation
between a focal cell and all cells in the neighborhood [83],
which can make a simple and useful means to classify the
landscape into morphological classes.

One of the characteristics of the study area that has a
direct and indirect influence on wildfire incidents is weather
condition [63]. Factors such as fire ignition potential, sever-
ity, heat transfer, and intensity are all associated with weather
condition [84]. Fuel moisture and humidity are directly asso-
ciated with the precipitation amount [85], while wind speed
affects heat transfer and direction [86].

LULC is considered a significant influencing factor for
wildfire, as well as for other natural hazards, such as flooding
and landslide [87]. In this research, the LULC factor, consist-
ing of 56 classes, was used to investigate the most influential
land cover type on wildfire.

In terms of wildfire, vegetation can be grouped into
ground fuels (e.g., roots) [88], surface fuels (e.g., grass) [89],
ladder fuels (e.g., small-size trees) [90], and crown fuels
(e.g., forest canopies) [91]. The wildfire combustion and
behavior are highly affected by the size, moisture, and chem-
ical content of the fuels [92]. Regarding the chemical content
of fuels, some vegetation-like shrubs contain volatile oils,
which make them to burn with higher intensity [93]. Shrubs
have small branches as well which can create long flame
lengths. Combustible biomass can be measured from a vari-
ety of sources. One of the main sources is NDVI. This factor
is determined by the density of vegetation in the area using
remote sensing [94]. As shown below, to calculate the NDVI
the near-infrared (NIR) and red channels of Landsat, imag-
ery was used.

NDVI = NIR − REDð Þ
NIR + REDð Þ : ð2Þ

3.2. Multicollinearity Analysis. As was mentioned, not all
causative factors were selected for the final modeling.

Although there is no framework available to define the most
influential factors, there are a number of statistical models
that can assist researchers in their data selection [95]. These
methods are able to statistically evaluate a group of factors
and highlight the least significant and/or the factors that have
duplicate impact. Through these assessments, redundant and
less-effective factors can be eliminated from the dataset to
decrease the computational time and complexity and
increase the functionality. The correlations between factors
were evaluated prior to the main analysis using Pearson’s
correlation coefficients [96] and variance inflation factors
(VIF) [97] to exclude multicollinearity [98], which causes
errors in analysis [99].

The degree of a factor’s interrelatedness with other
influencing factors can be calculated using VIF [100] and
represents the influencing factor’s estimated regression coef-
ficient accordingly. The square root of VIF shows the stan-
dard error for that factor. A VIF of 5 or 10 and greater
represents a multicollinearity problem in the dataset [95].

The Pearson’ correlation coefficients method evaluates
the correlation coefficient of two influencing factors, for
example, aspect (Sl) and geology (As) in wildfire occurrence
[101]. The correlation value is calculated by their covariance
divided by the product of their standard deviations (Eq. (3)).
A measured value greater than 0.7 indicates a high level of
collinearity in the dataset [95].

rSl:As = 〠
n

i=1

Sli − Sl
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑n
k=1 Sli − Sl

� �2
r

:
Asi −As

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑n
k=1 Asi −As

� �2
q

, ð3Þ

where Sl is the mean of Sl.
When either of these methods reaches their threshold

values, the collinearity should be reduced by eliminating
one or more factors from the analysis [97].

3.3. Bivariate Statistical Analysis (BSA). The two selected
BSA methods were IoE and EBF. The application of IoE is
based on the methodology proposed by Vlcko et al. [102],
in which the weight value for each factor is expressed as an
entropy index. The approach to EBF is based on the
Dempster-Shafer theory of evidence [103].

3.3.1. Index of Entropy Model (IoE). Entropy is an assess-
ment of the disorder, instability, imbalance, and uncertainty
of a system [104], and, according to Boltzmann’s principle,
the measurement of entropy of a system describes its ther-
modynamic state in terms of its degree of disorder. Shan-
non’s entropy model for information theory is regarded as
superseding Boltzmann’s principle [105]. Applying the
Shannon model of information, a weighted index of wildfire
hazard based on the environmental influencing factors can
be extracted.

Pij =
b
a
, ð4Þ
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Table 3: Description of soil units of the study area (based on Queensland soils and land systems) (source: http://researchbank.rmit.edu.au/).

Soil ID Detailed General

Fu3
Steep hilly to mountainous terrain on metasediments and phyllites rising to 2800 ft above
sea level: dominant soils on the slopes are shallow and stony leached loams (Um2.1), as

well as (Um5.2) loams.
Shallow and stony leached loams

Tb64

Rolling to hilly terrain with gentle to moderate slopes: dominant soils are hard, acidic, and
yellow (Dy3.41) and red (Dr3.41) mottled soils. Associated are hard alkaline yellow
(Dy3.43) and red (Dr3.43) mottled soils; sandy acidic yellow mottled soils (Dy5.41),

(Dy5.31), and (Dy5.81) and leached sands (Uc2.2), all containing large amounts of nodular
ironstone material, also with mottled clays, at depth below the (Uc2) soils.

Sandy and silty clay

Mp6
Low coastal basaltic plateaux and islands of Moreton Bay (about 50 ft above sea level):

dominant soils are red friable earths (Gn3. 11) on the gently undulating to flat ridge tops
with (Gn3. 14) soils on the beveled slopes of the ridges

Mixed grouping consisting of sand and
clay

NY3

Coastal plains, lower and middle reaches of river flood-plains, swamps, estuarine areas,
and tidal marshes, generally low-lying poorly drained areas subject to flooding: dominant
soils seem to be sandy-surfaced soils, friable acidic grey soils (Dg4.11), (Dg4.41), and
(Dg4.81); friable acidic yellow mottled soils (Dy5.11); and acidic grey friable earths

(Gn3.91). Associated soils are (Dg2.41), (Dd3.11), and (Db4.11).

Sandy soil

Tb65

Gently rolling areas of the subcoastal lowlands (less than 400 ft above sea level) with a
maximum relief of 50 ft between crests and valleys. The soil pattern is complex and

controlled by the lithology of the parent rock material. Dominant soils are deep-surfaced
loamy duplex (Dy3.41), (Dy3.42), (Dr3.41), and (Dr2.12) on sandstones.

Deep-surfaced loamy duplex

Mm2

Undulating landscape with linear gilgais on some slopes: crests and upper ridge slopes of
cracking red-brown clays (Ug5.37) or loamy soils with red clay subsoils (Dr2.33), passing
down the slope to cracking brown clays (Ug5.32) on gilgai puffs and cracking grey clays

(Ug5.23) in gilgai depressions.

Clay and loamy soil

MM9
Terraced valley plains: dominant soils are brown and grey cracking clays (Ug5.34),
(Ug5.39), and (Ug5.2) which occur on the third terrace with (Gn3.21), (Dy3.41), and

(Dy3.13) soils.
Sandstones and shales

Fu2
Hilly to steep hilly areas of metasediments and phyllites, traversed by narrow valley plains
along the streams: dominant soils are shallow and stony leached loams (Um2.12) and also

(Um5.2) loams.
Shallow stony loams

Cd3
Steep hilly to mountainous land: dominant soils seem to be leached sands (Uc2.12) and
siliceous sands (Uc1.21 and Uc1.22) on sandstones; grey cracking clays (Ug5.23) on shales;

and shallow red clays (Uf6.12) on basalt.
Sandy and clay soils

Sj12

Lower to middle reaches of stream flood-plains: dominant soils are hard, acidic yellow and
yellow mottled soils (Dy2.41) and (Dy3.41) with (Dd1.41) on the flat areas, together with

leached sands (Uc2.33 and Uc2.32) on low broad sandy banks. Other soils include
(Gn3.01) and (Uf6).

Leached sands

Mw30
Gently undulating area of tertiary sediments and igneous rocks: dominant soils are clay

loam to light clay texture.
Clay loam to light clay texture

Kb28
Low hilly terrain on basalts and sedimentary rocks: dominant soils are moderate and
shallow forms of dark cracking clays (Ug5.14, Ug5.12, and Ug5.13) on the slopes.

Dark cracking clays

Pl1

Hilly country of sandstones and intruded intermediate and basic rocks, rising to 800 ft
above sea level: dominant soils on the moderate to steep slopes are hard acidic red and
yellow soils (Dr3.41), (Dr2.41), and (Dy3.41) with some areas of (Dy3.43) and (Dr3.43)

soils.

Light sandy loam

Tb62
Undulating to hilly valley slopes flanking creek and river flood-plains: dominant soils on

the gentle to moderately steep slopes are hard acidic yellow mottled soils (Dy3.41),
(Dy3.21), and (Dy3.61).

Hard-setting loamy soils with mottled
yellow clayey subsoils

Kb12
Gently rolling areas of the subcoastal lowland (less than 400 ft above sea level) on altered
basic rocks; maximum relief is 50 ft between crests and valleys: dominant soils are shallow
dark cracking clays (Ug5.12) with hard neutral red and yellow soils (Dr2.12) and (Dy2.12).

Shallow dark cracking clays

8 Journal of Sensors

http://researchbank.rmit.edu.au/


Pij

� �

=
Pij

∑Sj
i=1Pij

, ð5Þ

Hj = −〠
Sj

i=1
Pij

� �

log2 Pij

� �

, j = 1,⋯, n, ð6Þ

H jmax = log2Sj, Sj − number of classes, ð7Þ

I j =
Hj max −Hj

Hj max
, ð8Þ

WJ = I jPij, ð9Þ
where a and b are the domain and wildfire percentages,
respectively, Pij denotes the density of the occurrence of
wildfire for every class of every influencing factor (e.g., each
type of geology), Hj and Hjmax denote the entropy values, I j
is the information coefficient, and Wj represents the calcu-
lated weight value for the specific influencing factor, without
consideration of the classes.

The final wildfire susceptibility map was generated by
summating the weighted products of the secondary paramet-
ric maps. The following equation was used to develop the
final wildfire susceptibility map from the IoE model.

Y = Altitude ∗Wj

� �

+ Slope ∗Wj

� �

+ Aspect ∗Wj

� �

�

+ Curvature ∗Wj

� �

+ TPI ∗Wj

� �

+ Rain ∗Wj

� �

+ Geology ∗Wj

� �

+ Soil ∗Wj

� �

+ LULC ∗Wj

� �

+ Distance fromRivers ∗Wj

� �

+ Distance fromRoads ∗Wj

� �

+ Wind Speed ∗Wj

� �

�

,

ð10Þ

where Y is the value of the wildfire susceptibility index.

3.3.2. Evidential Belief Function (EBF). The Dempster–Shafer
theory of evidence has been introduced by Dempster [106],

and the EBF method has been applied to other natural haz-
ards such as flooding [107] and landslide [108]. Its relevance
in natural hazard modeling is that it can accept uncertainty
and can integrate information from multiple sources of evi-
dence [109]. It is used for assessing the degree of probability
of the truth of a hypothesis, as well as for evaluating the near-
ness with which the evidence comes to proving the truth
[110]. Its functional parameters are the degrees of belief
(Bel), disbelief (Dis), uncertainty (Unc), and plausibility
(Pls) [111]. The proposition’s lower and upper limits of the
probability are denoted by Bel and Pls, respectively; the dif-
ference between belief and plausibility by Unc, which
describes ignorance [112]; and the belief that the proposition
is false based according to the evidence by Dis, where Dis =
1 − Pls or 1 −Unc – Bel, provided that Bel + Unc + Dis = 1.
In the situation where a class of an influencing factor does
not contain any wildfire event, Bel is equal to zero, and Dis
is reset to zero. Applied to wildfire occurrence, the EBF esti-
mates the spatial correlations among the classes of each con-
ditioning factor. An overlay of the inventory map on each
influencing factor layer displays the pixels that could contain
wildfire or nonwildfire influencing factors. A set of factors,
C = ðCi, i = 1, 2, 3,⋯, nÞ, which contains mutually exclusive
and exhaustive factors of Ci, was used in this study. The cal-
culation is performed using the equation:

Bel Cij

� �

=
WCij wildfireð Þ

∑n
j=1WCij non−wildfireð Þ

, ð11Þ

where the weight of Cij (e.g., weight of the first class of
altitude) is represented by WCijðwildfireÞ and supports the

belief that the existence of wildfire exceeds its absence.
WCijðnon−wildfireÞ denotes the weight of Cij that supports the

belief that wildfire absence exceeds its presence. EBF calcula-
tion requires several stages which are not explained in this
paper. A more detailed description can be found in Bui
et al. [113].

3.4. Multivariate Statistical Analysis (MSA). As stated, a BSA
method evaluates the impact of each class of each influencing

Table 3: Continued.

Soil ID Detailed General

LL6
Mountainous: steep slopes of loamy soils with an A2 horizon (Um4.2), yellow-brown

earths, (Gn2.44), and rock outcrops.
Loamy soils

Rh9
Steep hilly to mountainous: dominant soils seem to be dark-brown friable loam surface soil

underlain by light-red to brownish-red heavy but friable clay
Dark-brown friable loam surface

Me8
Low hilly area of tertiary sediments and igneous rocks: dominant soils are brown (Gn3.22)
and dark (Gn3.42) friable earths and shallow dark cracking clays (Ug5.12) on the deeply

altered igneous rocks.
Sediments and clay

Kd6
Valley plains: dominant soils are dark, cracking clays (Ug5.15 and Ug5.16). Associated are

areas of other soils, including (Dd1 .41) and (Dy2.41) on broad terraces.
Dark, cracking clays

Mg26
Plateaux and plateau remnants in mountainous country at moderate to high elevation
(>1000 ft): loamy soils, rolling hills of red friable porous earths (Gn4.11), and/or brown

friable porous earths (Gn4.31).
Crusty loamy soils
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factor on wildfire occurrence (e.g., the impact of different
types of geology on wildfire). In terms of our research objec-
tive, the most accurate BSA method will be selected to per-
form the ensemble modeling with LR. LR is one of the most
popular MSA methods to examine the multivariate regres-
sion relationship among a dependent factor (e.g., flooding)
and several independent influencing factors (e.g., altitude
and slope) [114].

For our research purposes, LR is used to measure the
wildfire probability in an area, based on a specific formula
created by the influencing factors and a dependent factor.
The method necessitates a dependent factor established by
values of 0 and 1, indicating the nonexistence or existence
of wildfire, respectively. The factor was created in ArcGIS
using the inventory dataset. To create this dataset, the origi-
nal influencing factors were reclassified using the BSA
weights derived from the most accurate method (either IoE
or EBF) in order to implement the ensemble modeling. Sub-
sequently, the dependent and reclassified influencing factors
were converted from raster to ASCII format as a requirement
of SPSS. LR was executed in the SPSS V.19 software environ-
ment. The logistic coefficients were derived and used as
inputs in the equation below tomeasure the final wildfire sus-
ceptibility map.

P = 1
1 + e−zð Þ , ð12Þ

where P is the wildfire probability in the range 0 to 1 on an S
-shaped curve. Z is the linear combination and it follows that
LR involves fitting an equation of the following form to the
data:

z = b0 + b1x1 + b2x2 + b3x3+⋯+bnxn, ð13Þ

where b0 is the constant intercept of the model, biði = 0,
1, 2,⋯, nÞ represents the weight coefficients of the LR
model for each factor, and xiði = 0, 1, 2,⋯, nÞ represents
the influencing factors [47].

3.5. Ensemble Modeling. For the purpose of the ensemble, the
weights derived from the more accurate BSA method (either
IoE or EBF) will be used to reclassify each wildfire influenc-
ing factor. Subsequently, the reclassified factors will be
entered into LR as input variables in order to perform the
MSA. The derived final wildfire susceptibility map will be
based on this ensemble modeling. Through this integration,
the weak points of BSA and MSA will be resolved, and the
outcome will be an integration of the two analyses.

3.6. Accuracy Assessment. Model validation is a fundamental
step in any natural hazards study [115]. The well-known area
under curve (AUC) technique has been used in many natural
hazard susceptibility mapping studies [116–118], producing
the prediction and success rates by means of a comprehen-
sive quantitative method [119]. The validation was achieved
by comparing the wildfire inventory data and derived proba-
bility maps. The wildfire probability map was initially parti-
tioned into classes of equal area, and these were then

ranked hierarchy from minimum to maximum value [95].
Prediction accuracy was evaluated qualitatively, using AUC
by sorting all cells in the study area into a hierarchy of calcu-
lated values, arranged in descending order, thus, ranking
each prediction. Hence, the values of cells were divided into
100 classes with 1% accumulation intervals. In the subse-
quent step, the presence of wildfire in each interval was mea-
sured using the ArcGIS “Tabulate area” tool. The success and
prediction curves denote the percentage of wildfire in each
probability class. The curve creation was implemented by
plotting the cumulative percentage of areas susceptible to
wildfire (from highest to lowest probability) on the x-axis
and the cumulative percentage of wildfire events on the y
-axis. The success and prediction curves determine the per-
centage of wildfire occurrence for each probability category;
the more wildfire events in categories of greater susceptibil-
ity, the steeper the AUC curve [95]. A perfect classification
occurs where AUC = 1, rather than one by chance where
AUC = 0:5. The 70% training and 30% testing points will be
used to generate the success and prediction rates, respec-
tively, as mentioned in Section 3.1.1. 210 wildfire inventory
points were used for training and the remaining 90 points
for testing.

4. Results and Discussion

4.1. Correlation Analysis. Multicollinearity among the wild-
fire influencing factors has been implemented. Tables 4 and
5 listed the VIF and Pearson’s correlation coefficient values,
respectively. As mentioned in the methodology section, a
VIF can be computed for each predictor in a predictive
model. A VIF value of 1 means that the wildfire influencing
factor is not correlated with other factors. The greater the
VIF value, the greater the association of the factors with other
factors is. A VIF above 5 indicates multicollinearity in the
dataset. Table 3 shows that the highest VIF values are 9.22
for NDVI and 6.32 for TWI factors which are above the
threshold. In the case of Pearson’s correlation, values greater

Table 4: Multicollinearity diagnosis indices for variables.

No. Influencing factors VIF

1 Altitude 3.42

2 Slope 4.37

3 Aspect 2.61

4 Curvature 1.71

5 TWI 6.32

6 TPI 3.99

7 Rainfall 1.09

8 Geology 4.98

9 Soil 4.11

10 LULC 1.38

11 River 1.82

12 Road 0.69

13 Wind 0.03

14 NDVI 9.22
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than 0.7 denote high collinearity. The diagonal elements
(bold text) are the correlations between each variable and
itself. Therefore, their value is always equal to 1. In Table 5,
the highest value of 0.9 derived between TWI and rainfall
represents a considerable collinearity. The second highest
collinearity of 0.8 was detected between LULC and NDVI.
Both outcomes of VIF and Pearson’s correlation analysis sug-
gest that by including TWI and NDVI in the analysis, the
problem of collinearity may arise. These outcomes show that
other factors of LULC and rainfall in the dataset already pro-
vided adequate information, which would merely be dupli-
cated if we include the TWI and NDVI.

The final selected wildfire influencing factors dataset
includes altitude (Figure 4(a)), slope (Figure 4(b)), aspect
(Figure 4(c)), curvature (Figure 4(d)), TPI (Figure 4(e)), rain
(Figure 4(f)), geology (Figure 4(g)), soil (Figure 4(h)), LULC
(Figure 4(i)), distance from river (Figure 4(j)), distance from
road (Figure 4(k)), and wind speed (Figure 4(l)). As it can be
seen in Figure 4, all the scaled influencing factors have been
classified due to the requirement of the BSA techniques.
The quantile method was used for the classification [120].
The advantage of quantile is that features are grouped equally
in each category (equal-sized subdivisions), with the least
external influence. Table 6 represents the statistics related
to the scaled wildfire influencing factors, such as minimum,
maximum, mean, and standard deviation. For instance, the
highest location in the study area has an altitude of 217m.
All the factors were transferred to IoE and EBF in order to
extract the correlations among their classes and wildfire
occurrence.

4.2. Weights Derived from Correlation Analyses. Both IoE and
EBF were individually implemented, and the derived weights
are listed in Table 7. IoE was computed by considering the
frequency of different classes of influencing factors, which
significantly reduces the unevenness among the factors and,
therefore, provides a realistic and accurate metric of their

influence on wildfire occurrence. The result of the bivariate
analysis of IoE is shown by Pij values in Table 6.

In the case of EBF, the weights of the bivariate analysis
derived for each class were represented by the Bel value.
There were some similarities in the calculation of IoE and
EBF up to this point, implying that the values of Pij and Bel
were very close. However, this was not the case for the
remainder of the processing and the final probability map
creation. From this stage forward, there are specific equations
related to each method. Using these equations, the correla-
tion assessments were applied to the derived BSA weights
from IoE and EBF, and two wildfire probability maps were
produced. In order to avoid repeating the BSA values from
IoE and EBF, only IoE values will be discussed below.

The outcomes based on BSA values (IoE and EBF) denote
that the slope, in the last two ranges of 9.58-14.97 and 14.97-
76.38 degree, had the highest values of 0.296 and 0.164,
respectively. It is already known that fire on the steep slopes
tends to move faster and causes more severe burning. There-
fore, these classes of slope received higher weights. The high-
est derived value (0.248) of rainfall is for the smallest class of
rainfall ranging between 536.00-671.32mm. It is clear that
wildfire susceptibility increase by the decrease in rainfall
[121]. High rainfall and relative humidity contribute to fuel
moisture, which in turn reduces the probability of ignition.
With regard to altitude, the middle classes seem to have the
highest influence on wildfire occurrence. The class of 46.76-
57.95m with a BSA of 0.338 was detected as the most influ-
ential category. The spatial correlation between wildfire inci-
dence and altitude reveals that when the altitude increases,
the probability of wildfire decreases. This result is supported
by previous findings that low-elevation areas are more vul-
nerable to fire occurrence [122]. The relation between curva-
ture and wildfire probability revealed that the convex class
has the highest BSA value of 0.548. In the case of aspect,
the BSA value is highest for northeast-facing slopes with a
value of 0.229. As noted in Section 3.1.2, north-facing slopes

Table 5: Pearson correlations between pairs of forest fire influencing factors.

Influencing
factors

Altitude Slope Aspect Curvature TWI TPI Rainfall Geology Soil LULC River Road Wind NDVI

Altitude 1

Slope 0.3 1

Aspect 0.04 0.5 1

Curvature 0.02 0.003 −0.03 1

TWI 0.0001 0.007 0.08 0.6 1

TPI 0.0004 0.5 0.001 −0.009 −0.01 1

Rainfall 0.00006 0.004 −0.002 0.003 0.9 0.2 1

Geology 0.007 0.05 −0.2 0.0002 0.1 0.09 0.006 1

Soil 0.0008 0.006 0.03 0.01 0.0005 0.003 0.003 0.4 1

LULC 0.001 0.6 0.009 −0.2 −0.006 0.5 0.009 0.1 0.2 1

River 0.3 0.02 0.008 0.0001 0.6 0.0001 0.003 0.0002 −0.01 0.006 1

Road −0.001 0.001 0.3 0.0003 −0.009 0.4 0.5 0.0007 0.009 0.002 0.01 1

Wind −0.6 0.3 0.5 0.1 0.0001 0.00001 0.03 0.01 0.002 0.0008 0.0001 0.006 1

NDVI 0.004 0.05 0.003 0.2 0.004 0.4 0.0005 0.1 0.06 0.8 0.0005 0.02 0.0007 1
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Figure 4: Continued.
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Figure 4: Continued.
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Figure 4: Continued.
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Figure 4: Influencing factors consisting of (a) altitude, (b) slope, (c) aspect, (d) curvature, (e) TPI, (f) rain, (g) geology, (h) soil, (i) LULC, (j)
distance from river, (k) distance from road, and (l) wind speed.
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obtain more solar radiation and are consequently warmer, so
fuels tend to dry out sooner. This may be a logical explana-
tion for the derived weight for this aspect class. Results for
the TPI factor show that the ridge landform is relatively con-
ducive (highly susceptible) to wildfire occurrence. Wildfires
on ridges can burn in any direction and by wind can move
up through saddles and canyons. The steep slope runs off
the water faster and keeps a smaller amount of moisture con-
tent and ridge areas acted as a steep slope. Therefore, those
areas are more prone to the fire hazard if were covered by
vegetation. For distance to rivers, the highest wildfire proba-
bility is within distances 1,416.25–2,832.51. In the case of dis-
tance to roads, the distance of 240.99–481.99m to roads has
the highest susceptibility. Both distances to rivers and roads
were recognized as positive factors in this study, as they act
like barriers towards fire spread. There are features like lakes,
roads, and rivers, which act as barriers to wildfire spread
[123], preventing the continuity of fire in the area. Ridges
have a similar influence, acting like fuel breaks, interrupting
the continuation. Some landform types can influence pre-
vailing wind patterns by funneling air, wind speed, and,
thus, fire intensity [124]. The BSA weights for soil showed
clearly that the class of “Mp6” has the greatest effect on
wildfire occurrence. The dominant soil types of this class
are sand and clay, which usually have very low moisture
content. The geology types of “Granitoid” and “Miscella-
neous unconsolidated sediments” had the highest BSA
weights of 0.268 and 0.231, respectively. Regarding the
LULC factor, cropping received the highest weight of 0.252
among LULC types followed by residential. The class of
4.09–4.19 in wind factor had the highest value of 0.335.
The highest weights were derived for the classes that have
a very high influence in triggering wildfires due to clear rea-
sons that have been stated.

Table 7 also lists information regarding the MSA. In the
case of IoE, in addition to the derived BSA weights for each
class, this method also provided a relevant weight for each
influencing factor itself (Wj). LR weights represent the
MSA weights for each influencing factor derived from the
ensemble modeling of LR. This implies that the derived
weights from LR are according to the classified influencing
factors imported from BSA analysis. The findings based on
IoE revealed that the most important wildfire influencing fac-
tors affecting the wildfire distribution were soil (1.251) and

geology (0.623). LR ensemble MSA outcomes showed that
LULC and soil received the highest weights of 0.781 and
0.653, respectively. The soil characteristics and its effect on
forest fire were discussed in [83] and were consistent with
our finding. Apart from the topographic and geologic factors
(e.g., TPI and soil) influencing the bushfire in the region, it
was obvious that LULC played a major role as triggering fac-
tors. In detail, as it was revealed by BSA weighting values and
susceptibility map, cropping and residential areas gained
higher weight and were more susceptible to the fire risk
rather than other LULC. It highlighted that human activity
contributed to that hazard as well. The influence of the resi-
dence area as an important factor was in agreement with Tien
Bui et al. [32] and Kalantar et al. [35]. Therefore, more
detailed investigation is desirable by the management com-
mittee to find some of the reasons (e.g., cigarettes, grinding
activities, and power lines adjacency) in widening the bush-
fire in residential areas. Another detected human activity in
the area was cropping, and it needs to be carefully explored
according to the crops and process of cultivation. Some parts
of the cropping process might contribute to worsen the fire in
its intensity and speed such as intentional ignition for agri-
cultural clearing or wrapping the bunch of bananas in plastic
bag on the plant to reduce the ripening time, which can mag-
nify the fire as fuel. This could improve the decision upon
revising the process of cropping in those susceptible areas.

The IoE and LR methods demonstrated some similarities
and differences in outcomes in the analysis of the influencing
factors. TPI and soil were identified as considerable influenc-
ing factors in both models. Penman et al. [125] concluded
that on ridges with higher TPI, the probability of lightning
ignitions was higher which was in agreement with our out-
come. In IoE, geology is the second and curvature the third
most influential factor. Alternatively, in LR, after LULC,
slope is the most influential factor. Parente et al. [63] found
slope to be the main influencing factor. The LR outcome also
showed that rainfall has a high negative correlation with
wildfire occurrence for the weight of -0.326, implying that
as rainfall increases, the probability of wildfire occurrence
decreases. There is a conflict among theMSA weights derived
from IoE and ensemble LR for aspect. The derived values
were 0 and 0.781 from IoE and LR, respectively. It is well-
known that aspect has a considerable influence on a region’s
characteristics such as exposure to sunshine, wind direction,
precipitation, drying winds, and the morphologic structure
that has been associated with fire occurrences. Here, IoE
failed to indicate a strong association between aspect and
wildfire occurrence. This will be dealt with in the AUC
analysis.

In addition, in order to have a visual view of the location
of the burnt areas, a 3D map of the altitude and wildfire
inventories was produced and is presented in Figure 5. It
can be clearly seen that most of the burnt areas are located
on the slopes and in the north and northeast of the region.

4.3. Susceptibility Maps and Validations. The individual IoE
(Figure 6(a)) and EBF (Figure 6(b)) modeling and the ensem-
ble LR (Figure 6(c)) modeling were implemented. Three
wildfire probability index maps were generated. In order to

Table 6: Descriptive statistics of continuous parameters with
respect to forest fire locations map.

Influencing
factors

Minimum Maximum Mean
Standard
deviation

Altitude 0.038 217.09 26.29 44.91

Slope 0.0012 43.62 4.02 6.71

Curvature -31.72 37.37 0.019 2.23

Rainfall 788.84 886.45 823.07 29.12

River 0 9341.12 2273.05 1819.59

Road 0 1611.19 403.42 365.25

Wind 3.09 4.3 3.67 0.26

18 Journal of Sensors



Table 7: Spatial relationship between wildfire and wildfire influencing factors by IoE, EBF, and ensemble LR models.

IOE EBF LR
Influencing
factors

Classes Pij Pij

� �

Hj Hj max I j Wj Bel Dis Unc Coefficient

Slope (degree)

0–0.29 0.908 0.082

2.974 3.322 0.105 0.095

0.07 0.10 0.83

0.611

0.29–1.19 0.160 0.014 0.01 0.11 0.88

1.19–2.09 0.409 0.037 0.03 0.10 0.87

2.09–2.99 1.119 0.101 0.09 0.09 0.82

2.99–3.89 0.968 0.087 0.08 0.10 0.82

3.89–5.09 0.796 0.072 0.06 0.10 0.84

5.09–6.88 0.804 0.072 0.07 0.10 0.83

6.88–9.58 0.838 0.075 0.07 0.10 0.83

9.58–14.97 3.289 0.296 0.30 0.07 0.63

14.97–76.38 1.826 0.164 0.16 0.09 0.75

Rainfall

536.00–671.32 2.461 0.248

2.616 3.322 0.213 0.523

0.25 0.08 0.67

-0.326

671.32–738.99 0.882 0.089 0.08 0.10 0.82

738.99–767.69 2.364 0.238 0.24 0.08 0.68

767.69–800.51 2.405 0.242 0.25 0.08 0.67

800.51–831.26 0.837 0.084 0.07 0.10 0.83

831.26–847.66 0.269 0.027 0.02 0.10 0.88

847.66–859.96 0.361 0.036 0.03 0.10 0.87

859.96–876.36 0.201 0.020 0.01 0.10 0.89

876.36–896.87 0.144 0.014 0.01 0.10 0.89

896.87–1,058.85 0.000 0.000 0.00 0.11 0.89

Altitude (m)

0–10.41 0.469 0.051

2.742 3.322 0.175 0.082

0.04 0.10 0.86

0.062

10.41–21.61 0.858 0.093 0.08 0.10 0.82

21.61–29.99 0.215 0.023 0.02 0.10 0.88

29.99–38.38 1.580 0.171 0.16 0.09 0.75

38.38–46.76 1.715 0.185 0.18 0.09 0.73

46.76–57.95 3.129 0.338 0.36 0.06 0.58

57.95–71.93 0.210 0.023 0.02 0.11 0.87

71.93–94.31 0.434 0.047 0.04 0.10 0.86

94.31–139.05 0.259 0.028 0.02 0.10 0.88

139.05–675.96 0.377 0.041 0.03 0.10 0.87

Curvature

Concave 0.849 0.406

0.476 1.585 0.700 0.594

0.40 0.38 0.22

0.282Flat 0.097 0.046 0.04 0.33 0.63

Convex 1.146 0.548 0.54 0.28 0.18

Aspect
(direction)

Flat 0.000 0.000

2.579 3.170 0.186 0.001

0.00 0.11 0.89

0.303

North 1.523 0.201 0.20 0.10 0.70

Northeast 1.728 0.229 0.23 0.09 0.68

East 1.523 0.201 0.20 0.10 0.70

Southeast 0.129 0.017 0.01 0.12 0.87

South 0.156 0.021 0.01 0.12 0.87

Southwest 0.149 0.020 0.01 0.12 0.87

West 1.280 0.169 0.16 0.10 0.74

Northwest 1.074 0.142 0.14 0.10 0.76

TPI

Valley 1.923 0.241

2.173 2.585 0.159 0.306

0.24 0.12 0.64

0.408
Lower slope 0.262 0.033 0.03 0.17 0.80

Flat slope 0.036 0.004 0.00 0.27 0.73

Middle slope 1.981 0.248 0.24 0.16 0.60
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Table 7: Continued.

IOE EBF LR
Influencing
factors

Classes Pij Pij

� �

Hj Hj max I j Wj Bel Dis Unc Coefficient

Upper slope 1.769 0.221 0.22 0.14 0.64

Ridge 2.023 0.253 0.25 0.12 0.63

Distance from
river

0–333.23 0.115 0.012

2.926 3.322 0.119 0.014

0.01 0.10 0.89

0.002

333.23–833.08 0.261 0.027 0.02 0.11 0.87

833.08–1,416.25 1.308 0.134 0.13 0.09 0.78

1,416.25–2,082.72 2.288 0.234 0.24 0.08 0.68

2,082.72–2,832.51 1.809 0.185 0.18 0.09 0.73

2,832.51–3,665.59 0.836 0.086 0.08 0.10 0.82

3,665.59–4,665.30 0.744 0.076 0.07 0.10 0.83

4,665.30–6,081.55 1.520 0.156 0.15 0.09 0.76

6,081.55–8,247.58 0.711 0.073 0.07 0.10 0.83

8,247.58–21,160.47 0.169 0.017 0.01 0.10 0.89

Distance from
road

0–80.33 1.839 0.193

2.983 3.322 0.102 0.188

0.19 0.09 0.72

0.347

80.33–240.99 0.230 0.024 0.02 0.11 0.87

240.99–481.99 2.123 0.223 0.22 0.08 0.70

481.99–722.98 1.380 0.145 0.14 0.09 0.77

722.98–1,044.31 1.240 0.130 0.12 0.09 0.79

1,044.31–1,526.31 0.821 0.086 0.08 0.10 0.82

1,526.31–2,168.96 0.633 0.066 0.06 0.10 0.84

2,168.96–3,213.27 0.808 0.085 0.08 0.10 0.82

3,213.27–5,141.24 0.203 0.021 0.02 0.10 0.88

5,141.24–20,484.65 0.261 0.027 0.02 0.10 0.88

Soil

Fu3 2.391 0.110

2.060 4.322 0.523 1.251

0.08 0.04 0.88

0.653

Tb64 0.859 0.040 0.02 0.05 0.93

Mp6 3.316 0.153 0.11 0.04 0.85

NY3 11.355 0.524 0.65 0.02 0.33

Tb65 0.000 0.000 0.00 0.05 0.95

Mm2 0.000 0.000 0.00 0.05 0.95

MM9 0.000 0.000 0.00 0.05 0.95

Fu2 0.803 0.037 0.02 0.04 0.94

Cd3 0.000 0.000 0.00 0.05 0.95

Sj12 0.231 0.011 0.00 0.05 0.95

Mw30 2.729 0.126 0.09 0.04 0.87

Kb28 0.000 0.000 0.00 0.05 0.95

Pl1 0.000 0.000 0.00 0.05 0.95

Tb62 0.000 0.000 0.00 0.04 0.96

Kb12 0.000 0.000 0.00 0.05 0.95

LL6 0.000 0.000 0.00 0.04 0.96

Rh9 0.000 0.000 0.00 0.05 0.95

Me8 0.000 0.000 0.00 0.04 0.96

Kd6 0.000 0.000 0.00 0.05 0.95

Mg26 0.000 0.000 0.00 0.04 0.96

Geology

Alluvium 1.781 0.067

2.811 4.322 0.350 0.623

0.00 0.04 0.96

0.008
Sand 0.000 0.000 0.00 0.03 0.97

Miscellaneous unconsolidated sediments 6.171 0.231 0.25 0.03 0.72

Sedimentary rock 0.982 0.037 0.03 0.03 0.94
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Table 7: Continued.

IOE EBF LR
Influencing
factors

Classes Pij Pij

� �

Hj Hj max I j Wj Bel Dis Unc Coefficient

Basalt 0.218 0.008 0.00 0.03 0.97

Gabbroid 0.000 0.000 0.00 0.03 0.97

Granitoid 7.162 0.268 0.31 0.03 0.66

Arenite-mudrock 0.081 0.003 0.00 0.04 0.96

Felsites (lavas, clastics, and high-level
intrusives)

0.170 0.006 0.00 0.03 0.97

Mixed volcanic and sedimentary rocks 0.000 0.000 0.00 0.03 0.97

Mixed sedimentary rocks and mafites 0.151 0.006 0.00 0.03 0.97

Mudrock 1.894 0.071 0.06 0.03 0.91

Chert 0.000 0.000 0.00 0.03 0.97

Pelite 0.619 0.023 0.01 0.03 0.96

Arenite 0.116 0.004 0.00 0.04 0.96

Colluvium 1.868 0.070 0.06 0.03 0.91

Mafites (lavas, clastics, and high-level
intrusives)

0.000 0.000 0.00 0.03 0.97

Ferricrete 5.361 0.201 0.21 0.03 0.76

Arenite-rudite 0.159 0.006 0.00 0.03 0.97

Water bodies 0.000 0.000 0.00 0.03 0.97

Man-made deposits (tailings, land-fill, mine
dumps, etc.)

0.000 0.000 0.00 0.03 0.97

Rudite 0.000 0.000 0.00 0.03 0.97

Dioritoid 0.000 0.000 0.00 0.03 0.97

Carbonates (limestone or dolomite) 0.000 0.000 0.00 0.03 0.97

Ultramafic rock 0.000 0.000 0.00 0.03 0.97

Mixed mafites and felsites (mainly volcanics) 0.000 0.000 0.00 0.03 0.97

LULC

Reservoir/dam 0.000 0.000

2.956 5.833 0.493 0.000

0.00 0.03 0.97

0.781

Landfill 0.567 0.028 0.02 0.03 0.95

Sewage 0.000 0.000 0.00 0.03 0.97

Lake 0.000 0.000 0.00 0.03 0.97

Lake—conservation 0.000 0.000 0.00 0.03 0.97

Marsh/wetland—conservation 0.000 0.000 0.00 0.03 0.97

Estuary/coastal waters 0.000 0.000 0.00 0.03 0.97

Reservoir 0.000 0.000 0.00 0.03 0.97

River 0.000 0.000 0.00 0.03 0.97

Drainage channel/aqueduct 0.000 0.000 0.00 0.03 0.97

Marsh/wetland 1.282 0.063 0.04 0.03 0.93

National park 0.000 0.000 0.00 0.03 0.97

Natural feature protection 0.000 0.000 0.00 0.03 0.97

Other conserved area 0.000 0.000 0.00 0.03 0.97

Other minimal use 0.211 0.010 0.00 0.03 0.97

Defence 0.000 0.000 0.00 0.03 0.97

Residual native cover 0.834 0.041 0.03 0.03 0.94

Livestock grazing 0.067 0.003 0.00 0.06 0.94

Production forestry 0.000 0.000 0.00 0.03 0.97

Plantation forestry 0.000 0.000 0.00 0.03 0.97

Grazing modified pastures 0.000 0.000 0.00 0.03 0.97

Cropping 5.171 0.252 0.30 0.03 0.67
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Table 7: Continued.

IOE EBF LR
Influencing
factors

Classes Pij Pij

� �

Hj Hj max I j Wj Bel Dis Unc Coefficient

Hay and silage 0.000 0.000 0.00 0.03 0.97

Perennial horticulture 0.000 0.000 0.00 0.03 0.97

Land in transition 0.000 0.000 0.00 0.03 0.97

Seasonal horticulture 0.000 0.000 0.00 0.03 0.97

Irrigated modified pastures 0.000 0.000 0.00 0.03 0.97

Irrigated cropping 0.000 0.000 0.00 0.03 0.97

Irrigated perennial horticulture 0.000 0.000 0.00 0.03 0.97

Irrigated tree fruits 0.000 0.000 0.00 0.03 0.97

Irrigated vine fruits 0.000 0.000 0.00 0.03 0.97

Irrigated seasonal horticulture 0.000 0.000 0.00 0.03 0.97

Irrigated seasonal vegetables and herbs 0.000 0.000 0.00 0.03 0.97

Intensive horticulture 0.459 0.022 0.01 0.03 0.96

Intensive animal production 0.144 0.007 0.00 0.03 0.97

Dairy sheds and yards 0.000 0.000 0.00 0.03 0.97

Poultry farms 1.074 0.052 0.03 0.03 0.94

Manufacturing and industrial 0.182 0.009 0.00 0.03 0.97

Residential 4.698 0.229 0.25 0.00 0.75

Urban residential 0.000 0.000 0.00 0.03 0.97

Rural residential 0.161 0.008 0.00 0.04 0.96

Rural living 0.000 0.000 0.00 0.03 0.97

Services 3.705 0.181 0.17 0.03 0.80

Commercial services 0.033 0.002 0.00 0.03 0.97

Public services 0.000 0.000 0.00 0.03 0.97

Recreation and culture 1.909 0.093 0.07 0.03 0.90

Defence facilities—Urban 0.000 0.000 0.00 0.03 0.97

Utilities 0.000 0.000 0.00 0.03 0.97

Fuel powered electricity generation 0.000 0.000 0.00 0.03 0.97

Research facilities 0.000 0.000 0.00 0.03 0.97

Transport and communication 0.000 0.000 0.00 0.03 0.97

Airports/aerodromes 0.000 0.000 0.00 0.03 0.97

Roads 0.000 0.000 0.00 0.03 0.97

Railways 0.000 0.000 0.00 0.03 0.97

Mining 0.000 0.000 0.00 0.03 0.97

Quarries 0.000 0.000 0.00 0.03 0.97

Waste treatment and disposal 0.000 0.000 0.00 0.03 0.97

Wind (m/s)

3.00–3.29 0.331 0.017

2.580 3.322 0.223 0.074

0.01 0.10 0.89

0.102

3.29–3.40 0.173 0.009 0.00 0.10 0.90

3.40–3.49 0.397 0.021 0.01 0.10 0.89

3.49–3.59 0.488 0.026 0.02 0.11 0.87

3.59–3.69 0.554 0.029 0.02 0.11 0.87

3.69–3.79 1.713 0.090 0.08 0.08 0.84

3.79–3.89 1.800 0.095 0.08 0.09 0.83

3.89–4.09 1.989 0.105 0.09 0.09 0.82

4.09–4.19 6.373 0.335 0.36 0.09 0.55

4.19–5.00 5.198 0.273 0.28 0.09 0.63
∗Names and descriptions of the soil types have been listed in Table 3.
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create a susceptibility map, the probability index maps
should be classified. In this study, the probability maps were
classified using the quantile classification method and
grouped into relative categories of very low, low, moderate,
high, and very high susceptibilities of wildfire occurrence
(Figure 6).

Table 8 shows that the IoE and EBF proportions of the
very high wildfire susceptibility category are 10.25% and
13.52%, respectively, which is greater than that of LR
(6.56%). This implies that the LR ensemble model produced
less exaggerated outcomes, compared to the two individual
methods. The wildfire susceptibility map derived from the
ensemble model classified 68.34% of the total region as very
low susceptibility. However, the two individual methods,
IoE and EBF, detected 22.77% and 51.21%, respectively, as
“very low.” Regarding the LR ensemble model, the other
zones, high, moderate, low, and very low, were 3.78%,
9.23%, and 12.09%, respectively.

The AUC prediction accuracy of the two individual
methods and final ensemble model created by LR is displayed
in Figure 7. The greatest accuracy (88.51%) was recorded by
the ensemble method, while the least accuracy (75.32%) was
recorded by the individual IoE method. The AUC results
showed that the outcome of the ensemble analysis was more
reliable than that of the individual methods. Consequently,
the EBF technique robustness to exploit different variables
in the processing was proved. One of the advantages in the
EBF model is a calculation of the degrees of uncertainty in
the prediction along with belief and disbelief (Table 7) during
the process of generating probability mass functions [79].
The degrees of uncertainty and plausibility of a pixel (classi-
fied as fire event) can be measured quantitatively which could
not be achieved through other methods, and it is a fast algo-

rithm without heavy calculation and iteration [110]. The
closer value to 0.5 is recorded, and the higher uncertainty
of the class is considered. By looking at the uncertainty value
in Table 7, one can find how reliable the measurement is in
every single feature and evidence. Besides, the three exploited
algorithms do not require the assumption of normal distribu-
tion that provides robust operation for the complex events
modeling [110]. The simplicity of the EBF, IoE, and LR
makes them a great choice for modeling big data rather than
the iteration in ML. For instance, the LR has less parameters
to fine tune, while the SVM model requires optimizing the
kernel function, the penalty, and gamma parameters.

The risk and vulnerability can be performed for different
characteristics. Brisbane City Plan 2014 is a huge future
development plan of the Brisbane City Council that has a
variety of aspects. The city planners divided the region into
different zones based on specific topics. The class of “very
high” of the final wildfire susceptibility map derived from
ensemble modeling was extracted and overlaid on the Bris-
bane City Plan thematic layers. These layers illustrate the
spatial distributions of a variety of important species, fea-
tures, etc., in the city of Brisbane. Figure 8 illustrates different
risk maps. The single upper individual map represents only
the very high susceptibility zone. Subsequently, every pair
of maps in each row represents the vulnerability map and
its overlaid outcome with very high susceptibility zone. The
seven maps relate to (a) general zoning, (b) significant trees,
(c) critically endangered species, (d) heritage area, (e) indus-
trial areas, (f) freight route, and (g) koala habitat areas.

The following maps were prepared by overlaying the
aforementioned maps with the class of “very high” of the
wildfire susceptibility map derived from the ensemble model-
ing (Figure 8). The first wildfire risk likelihood map is related

N

N

Figure 5: 3D view from the northeast region of the study area with the burnt locations.
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Figure 6: Continued.
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to the general zoning map. As illustrated in the first row
(Figure 8(a)), the very high susceptibility zone is distributed
across general residential areas; consequently, it would be
efficient and reasonable if fire prevention strategies and man-
agement plans were organized based on these fire-risk zones.
The second row (Figure 8(b)) represents a significant tree
map. The overlaid risk map shows that very few portions
of those trees are located in the very high wildfire suscep-
tibility zone. Therefore, those species are not at very high
risk. In the third-row maps (Figure 8(c)), only a few of
the critically endangered species are located in the very
high susceptibility zone. In the case of the heritage area
(Figure 8(d)) in the fourth row, there are several areas in
the susceptible zone. Susceptible areas increase in the

industrial areas (Figure 8(e)) map in the fifth row, andmany
industrial regions are in the very high wildfire susceptibility
zone.

27°50′0″S

0 5 10
km

27°40′0″S

27°30′0″S

27°20′0″S

152°30′0″E 152°40′0″E 152°50′0″E 153°0′0″E 153°10′0″E

Forest fire susceptibility map (ensemble EBF_LR)
Very low
Low
Moderate

High
Very high
River (m)

S

N
EW

(c)

Figure 6: Susceptibility maps derived from three methods: (a) IoE, (b) EBF, and (c) ensemble EBF-LR.

Table 8: The distribution of the forest fire areas with respect to the
forest fire occurrence potential zones.

Forest fire susceptibility
mapping

IOE EBF
Ensemble IOE +

EBF
Area
(%)

Area
(%)

Area (%)

Very high 10.25 13.52 6.56

High 16.81 12.03 3.78

Moderate 12.32 13.07 9.23

Low 37.85 10.17 12.09

Very low 22.77 51.21 68.34
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Figure 7: Area under curve (AUC) chart, this technique evaluates
the reliability of the outcomes using the testing dataset.
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Freight routes (Figure 8(f)) which are usually used for
transportation and cargo services are presented in row six
and only the red routes occur in the very high susceptible
areas. The slightest disruption to such routes can have a seri-
ous impact on the total transportation of the region. The last
row illustrates the koala habitat areas (Figure 8(g)). This spe-
cies is very special in Australia and those areas which they
inhabit are ranked as very high wildfire susceptibility zone,
according to our analysis.

Our research indicates that a variety of elements are at
risk when wildfires vary. In some cases, the risk map gives
more information than the susceptibility map and may be
of more use to government agencies, councils, insurance
companies, and the inhabitants of risk areas. Wildfire man-
agement is a colossal undertaking and many aspects are
impractical. Therefore, the maps like those illustrated in
Figure 8 could assist organizations and individuals at risk.

The best policy strategies include preventative and mitigating
measures.

5. Conclusion

This research has focused on increasing the accuracy of wild-
fire susceptibility mapping through ensemble modeling.
Additionally, the importance of the application of suscepti-
bility mapping in risk analysis was evaluated and illustrated.
The mapping process was commenced with the structuring
and processing of two datasets: the inventory and influencing
factors. The IoE, EBF, and LR statistical methods were used
to perform BSA and MSA. The process calculated the statis-
tical weights for each wildfire influencing factor (e.g., geology
map) and the classes of each influencing factor (i.e., geology
types) to produce the final wildfire susceptibility map. IoE
and EBF ranked each class of each influencing factor, while

(a) (b)

(c) (d)

(e) (f)

(g)

Figure 8: Overlaid city plan maps with the class of “very high” susceptibility of wildfire. (a) General zoning. (b) Significant trees. (c) Critically
endangered species. (d) Heritage area. (e) Industrial areas. (f) Freight route. (g) Koala habitat areas.
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the influencing factors were classified according to their BSA
weights and entered into ensemble modeling using LR. The
final assessment of the accuracy of susceptibility maps
showed that the ensemble method produced a more reliable
outcome with an 88.51% prediction capability. The AUC
exceeded most of the previous research. It is a recommenda-
tion that precision in the composition of the raw datasets is
crucial, to realize the full potential of the increased accuracy
of an ensemble model. The selection of the most influential
classes and factors has a considerable impact on the result.

Additional information extracted from the analysis and
the derived weights confirmed that features such as rivers,
rock outcroppings, road networks, and water bodies can act
as fire barriers (fuel breaks). City planners can take advantage
of these natural and manmade features in controlling and
minimizing wildfires. Using the topographic map of a region,
these features can be easily located. The influencing factors
of slope, TPI, and soil have a significant impact on the
creation and location of the wildfire susceptible areas,
while land management practices have a considerable
impact on the magnitude and consequences of this phe-
nomenon. As described, fire risk analysis is an essential
practice protecting forest environment, where possible.
The zoning maps of a variety of demographic, topograph-
ical, and environmental aspects were overlaid onto the
“very high” wildfire susceptibility map, from which pro-
duced alternative risk information. It might improve the
human perception and understanding of the hazard. Man-
aging fire is vital for the protection of human dwellings
and environmental habitats. Wildfires are an annual
occurrence in Queensland, and preparations for prevention
and mitigation are invaluable. Hence, accurate identifica-
tion of the conditioning and triggering factors in the
region along with a risk map would enhance the mitiga-
tion strategies and plans, and it could pose minimum loss
and damages. Some strategies could be applied to replace
the wood with fire resistance lumber or metals for building
and construction in susceptible areas. In this study, irri-
gated cropping was classified as low and very low-prone
area to bushfire. This finding might be investigated as
future research and discussion over the potential and effect
of irrigation system to keep standard moisture in the soil
preventing the fuel source. Moreover, the vulnerable wild-
fire zones exhibiting with dry soil could raise the attention
and need more inspection in terms of the groundwater
sources and their quality. Our planned future research into
modeling wildfire will focus on comprehensive risk and
vulnerability assessment using a time series perspective of
the trend and extent of wildfire in the region.
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