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Compressed sensing can recover sparse signals using a much smaller number of samples than the traditional Nyquist sampling
theorem. Block sparse signals (BSS) with nonzero coefficients occurring in clusters arise naturally in many practical scenarios.
Utilizing the sparse structure can improve the recovery performance. In this paper, we consider recovering arbitrary BSS with a
sparse Bayesian learning framework by inducing correlated Laplacian scale mixture (LSM) prior, which can model the
dependence of adjacent elements of the block sparse signal, and then a block sparse Bayesian learning algorithm is proposed
via variational Bayesian inference. Moreover, we present a fast version of the proposed recovery algorithm, which does not
involve the computation of matrix inversion and has robust recovery performance in the low SNR case. The experimental
results with simulated data and ISAR imaging show that the proposed algorithms can efficiently reconstruct BSS and have
good antinoise ability in noisy environments.

1. Introduction

Compressed sensing (CS) [1] provides a new sampling and
reconstruction paradigm, which can recover sparse signals
from linear measurements:

y =Φx + n, ð1Þ

where Φ ∈ RM×NðM <NÞ is the measurement matrix, y ∈ RM

is the measurement vector, x ∈ RN is the sparse signal, and
n ∈ RM is the additive noise. Many recovery algorithms have
been presented to reconstruct sparse signals, including
orthogonal matching pursuit (OMP) [2] and sparse Bayesian
learning (SBL) [3].

In some signal processing applications such as ISAR
imaging [4] and gene expression levels [5], there are many
sparse signals with block structural features; i.e., nonzero
elements are often clustered. Inducing structural a priori
can largely improve the reconstruction performance. There-
fore, to improve the reconstruction effect of block sparse sig-
nals (BSS), many algorithms are proposed. For instance,
Block-OMP [6] and Block-StOMP [7] are OMP-based
approaches. Meanwhile, some block recovery algorithms

based on the Bayesian compressed sensing framework are
presented, including block sparse Bayesian learning (BSBL)
[8], Cluss-MCMC [9], model-based Bayesian CS via local
beta process (MBCS-LBP) [10], and pattern-coupled sparse
Bayesian learning (PC-SBL) [11]. Among these recovery
algorithms, Bayesian algorithms have parameter learning
ability and can be applied to recovery arbitrary signals with
unknown sparse structures by flexibly imposing different
sparse prior models.

In [12], Zhang et al. have proposed an expectation-
maximization-based variational Bayesian (EM-VB) infer-
ence method, which utilizes the Laplacian scale mixture
(LSM) model as a sparse prior; i.e., it is assumed that the
sparse signal obeys the Laplacian prior because the Laplacian
distribution can represent sparseness well. Based on this
model, for the BSS with unknown block information, this
paper proposes a block Bayesian recovery algorithm by
inducing a correlated LSM prior model, which uses the
dependence between neighboring elements of the BSS. Fur-
thermore, to improve the computational efficiency of the
proposed recovery algorithm, a fast version without matrix
inversion is presented, which is suitable for noisy environ-
ments, especially in the low SNR case. The experimental
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results on simulated data and ISAR imaging show that the
proposed algorithms have a good reconstruction effect on
BSS and can resist noise in noisy environments.

The remainder of this paper is organized as follows. In
Section 2, a correlated LSM prior model for BSS is given.
Then, the proposed block Bayesian recovery algorithm and
the fast version are derived in Section 3. Simulation experi-
ments are presented in Section 4. Finally, we conclude this
paper in Section 5.

2. Signal Model

In the framework of sparse Bayesian learning, for themeasure-
ment model shown in (1), the noise n is generally assumed to
obey a Gaussian prior distribution N ðn ∣ 0, γ−1IMÞ, and a
Gamma distribution for the hyperparameter γ is

p γ ; a, bð Þ = G γ ; a, bð Þ = ba

Γ að Þ γ
a−1 exp −bγð Þ, ð2Þ

where ΓðaÞ = Ð +∞0 xa−1 exp ð−xÞdx. The sparse signal x is
usually assumed to obey a sparse prior distribution. In the
LSM layered prior model [12], the sparse signal x is supposed
to follow a Laplacian prior distribution:

p x ∣ λð Þ =
YN
n=1

La xn ∣ 0, λnð Þ =
YN
n=1

1
2λn

exp −
xnj j
λn

� �
, ð3Þ

where λnðn = 1,⋯,NÞ is the scale parameter of the Laplacian
distribution for each element in the signal. Since the Inverse-
Gamma (IG) distribution is conjugated to Laplacian distribu-
tion, the LSM model assumes that the scale parameter λn
obeys the IG distribution as follows:

p λ ; c, dð Þ =
YN
n=1

IG λn ; c, dð Þ =
YN
n=1

dc

Γ cð Þ λ
−c−1
n exp −

d
λn

� �
:

ð4Þ

In the above model, each hyperparameter λn controls the
corresponding signal element xn individually and each signal
element is considered to be independent. Considering that
nonzero elements of BSS appear in clusters, this requires a
more appropriate model for BSS. For the BSS whose structure
prior information is unknown, the PC-SBL algorithm [11]
assumes that the hyperparameters of adjacent elements have
a certain influence on its sparsity. Inspired by the PC-SBL,
we assume that the block sparse signal x obeys the following
correlated Laplacian prior distribution, i.e.,

p x ∣ λð Þ =
YN
n=1

La xn ∣ 0, λn−1, λn, λn+1ð Þ

=
YN
n=1

1/λnð Þ + β 1/λn−1ð Þ + β 1/λn+1ð Þ
2

exp

� −
1
λn

+ β
1

λn−1
+ β

1
λn+1

� �
xnj j

� �
,

ð5Þ

where the parameter β ∈ ½0, 1� indicates the degree of correla-
tion between adjacent elements in the signal. It can be seen
from (5) that the element xn is affected by its own hyperpara-
meter λn and the neighboring ones λn−1 and λn+1. For the
elements at both ends x1 and xN , let λ0 = 0 and λN+1 = 0.
The model (5) makes use of the feature of the block sparse
signal, in which the scale parameters λ still obey the IG
distribution shown in (4).

3. Block Bayesian Recovery Algorithms

In Bayesian inference, given observation y, it needs to
derive the posterior probability density for all unknown
parameters pðx, λ, γ ∣ yÞ∝ pðy ∣ x, γÞpðx ∣ λÞpðλÞpðγÞ. Varia-
tional Bayesian inference is a widely used method to approx-
imately solve the maximization of a posteriori, which
assumes that the variables x, λ, and γ are independent of each
other. Let θ = fx, λ, γg, and then

p θ ∣ yð Þ ≈ q θð Þ =
Y
i

q θið Þ = q xð Þq λð Þq γð Þ: ð6Þ

For each of these latent variables, the approximate poste-
rior distribution may be computed in an alternating manner
as follows:

q θið Þ =
exp ln p y, θð Þh iq θkð Þ,k≠i

� �
Ð
exp ln p y, θð Þh iq θkð Þ,k≠i

� �
dθi

, ð7Þ

where h·iqðθkÞ,k≠i represents the expected operation with
respect to the distributions qðθkÞ, k ≠ i. According to (7),
the proposed reconstruction algorithm is derived by alter-
nately learning the updating rules of these latent variables.

Firstly, the approximate posterior distribution qðxÞ is

ln q xð Þ∝ ln p y ∣ x, γð Þ + ln p x ∣ λð Þh iq λð Þq γð Þ, ð8Þ

where pðy ∣ x, γÞ is a Gaussian distribution N ðΦx, γ−1IMÞ
and pðx ∣ λÞ is a Laplacian distribution shown by (5). Since
these two distributions are not conjugated, a direct solution
is difficult. Similar to [12], let

L xð Þ = − ln p y ∣ x, γð Þ + ln p x ∣ λð Þh iq λð Þq γð Þ ∝
γh i
2

y −Φxk k22

+ 〠
N

n=1

1
λn

+ β
1

λn−1
+ β

1
λn+1

� �
xnj j:

ð9Þ

The maximum a posteriori (MAP) estimate of the signal
x can be obtained by x̂MAP = arg minxfLðxÞg. The derivative
of LðxÞ is

∇xL xð Þ = γh iΦTΦ +D
� 	

x − γh iΦTy, ð10Þ
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where

D = diag
1
λn

� �
+ β

1
λn−1

� �
+ β

1
λn+1

� �� �
1
xnj j


 �
, ð11Þ

and diag ½⋅� denotes a diagonal matrix with the elements in
the bracket. Let the derivative be equal to zero and get the
approximate MAP estimate:

x̂MAP = γh i γh iΦTΦ +D
� 	−1ΦTy: ð12Þ

So the posterior distribution can be approximated by
using the second-order Taylor expansion around x̂MAP, i.e.,

ln q xð Þ ≈ ln q x̂MAPð Þ + 1
2

x − x∧MAPð ÞTH x̂MAPð Þ x − x̂MAPð Þ,
ð13Þ

where Hðx̂MAPÞ ≈ −ðhγiΦTΦ +DÞ. After similar simplifica-
tion in [12], qðxÞ can be approximated to obey the Gaussian
distribution N ðx ∣ μ, ΣoÞ with the mean μ = hγiΣoΦTy and

covariance matrix Σo = ðhγiΦTΦ +DÞ−1. Due to that, there
exists some approximation in the above derivation of the
posterior distribution qðxÞ; the sparsity of the signal may
be underestimated. So a parameter α ∈ ½0:5, 1� is introduced
into the computation of the covariance matrix. Thus, qðxÞ
is approximated to be the following Gaussian distribution:

q xð Þ ≈N x ∣ μ, Σð Þ, ð14Þ

where the mean and covariance matrix, respectively, are

μ = γh iΣΦTy,

Σ = γh iΦTΦ + αD
� 	−1

:
ð15Þ

Secondly, the approximate posterior distribution qðλÞ is

ln q λð Þ∝ ln p λð Þ + ln p x ∣ λð Þh iq xð Þ = ln p λð Þ + ln p x ∣ λð Þh iq xð Þ:

ð16Þ

From (4) and (5), we have

ln p λð Þ∝ 〠
N

n=1
c + 1ð Þ ln 1

λn
−

d
λn

� 

, ð17Þ

ln p x ∣ λð Þh iq xð Þ ∝ 〠
N

n=1
ln

1
λn

+ β
1

λn−1
+ β

1
λn+1

� ��

−
1
λn

+ β
1

λn−1
+ β

1
λn+1

� �
xnj jh i




= 〠
N

n=1
ln

1
λn

+ β
1

λn−1
+ β

1
λn+1

� ��

− xnj jh i + β xn−1j jh i + β xn+1j jh ið Þ 1
λn




≥ 〠
N

n=1
ln

1
λn

− xnj jh i + β xn−1j jh i + β xn+1j jh ið Þ 1
λn

� 

:

ð18Þ
So qðλÞ can be approximated as

ln q λð Þ∝ 〠
N

n=1
c + 1ð Þ + 1½ � ln 1

λn

�

− xnj jh i + β xn−1j jh i + β xn+1j jh ið Þ + d½ � 1
λn



:

ð19Þ

Therefore, qðλÞ obeys an Inverse-Gamma distribution:

p λ ;~c, ~d
� �

=
YN
n=1

IG λn ;~c, ~dn
� �

, ð20Þ

with

~c = c + 1,
~dn = xnj jh i + β xn−1j jh i + β xn+1j jh ið Þ + d:

ð21Þ

We can also obtain

1
λn

� �
=

~c
~dn

=
c + 1

xnj jh i + β xn−1j jh i + β xn+1j jh ið Þ + d
, ð22Þ

where hjxnji can be computed as follows according to [13]:

xnj jh i =
ffiffiffiffiffiffiffiffiffiffi
2Σn,n
π

r
exp −

μ2n
2Σn,n

� �
+ μnj j erf

ffiffiffiffiffiffiffiffiffiffi
μ2n

2Σn,n

s !
,

ð23Þ

and erf ðxÞ = ð2/ ffiffiffi
π

p ÞÐ x0e−t2dt is the error function.
Thirdly, the approximate posterior distribution of the

noise parameter qðγÞ is

ln q γð Þ∝ ln p γð Þ + ln p y ∣ x, γð Þh iq xð Þ ∝ a − 1 +
M
2

� �
ln γ

−
y −Φxk k22

� �
2

+ b

 !
γ:

ð24Þ
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So qðγÞ obeys the Gamma distribution:

q γð Þ = G γ ; ~a, ~b
� �

, ð25Þ

with

~a = a + M
2
,

~b =
y −Φxk k22

� �
2

+ b,
ð26Þ

Input: y,Φ, ε, Max iter, β, α.
Initialize: μ0, λ, γ, a, b, c, d
While kμt+1 − μtk2 > ε or t ≤Max iter do
Update:
(1) Compute the mean μ and the covariance matrix Σ by (15) and (11).
(2) Compute λ−1 according to (22) and (23).
(3) Compute γ via (27).
Output: x̂ = μ

Algorithm 1: Block EM-VB.

Input: y,Φ, ε, Max iter, β, α
Initialize: μ0, λ, γ, a, b, c, d
While kμt+1 − μtk2 > ε or t ≤Max iter do
Update:
(1) Compute the mean μi and the variance σ2i ði = 1, 2,⋯,NÞ, sequentially by (35).
(2) Compute λ−1 according to (22) and (23).
(3) Compute γ via (27) and (36).
Output: x̂ = μ

Algorithm 2: Fast Block EM-VB.
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Figure 1: The support recovery rate versus the sparsity in the noiseless case when (a) M = 30 and (b) M = 40.
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and we can obtain

γh i = ~a
~b
=

a + M/2ð Þ
y −Φxk k22

� �
/2

� 	
+ b

, ð27Þ

where hky −Φxk22i = ky −Φμk22 + Tr½ΣΦTΦ� and Trð⋅Þ is
the trace of a matrix.

Therefore, the whole process of the proposed algorithm
is summarized in Algorithm 1, where ε is the preset error
that can be tolerated. The proposed algorithm can be
regarded as an extension of the EM-VB algorithm for the
recovery of BSS, which is termed the Block EM-VB algo-
rithm. It has an additional parameter α except for the block

parameter β. When α = 1 andβ = 0, the Block EM-VB
algorithm reduces to the EM-VB. The parameters α in (15)
and β in (22) have great influences on the recovery perfor-
mance of the Block EM-VB. It is appropriate to set α < 1
to void underestimation of the support set if the sparsity of
the signal is larger, while larger α can suppress nonzero sig-
nal elements and has certain antinoise capacity in noisy
environments. For the choice of β, it is similar that larger
β may enhance the influence between adjacent elements
and could suppress the nonzero values to make the signal
more sparse in noisy environments.

Remark 1. From (23), it can be seen that the computation of
hjxnji is related to the erf ðxÞ involving integral operation. In
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Figure 2: The success rate vs. the sparsity level in the noiseless case when (a)M = 30 and (b) M = 40.
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Figure 3: The success rate vs. the number of measurements in the noiseless case when (a) K = 20 and (b) K = 25.
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practice, to reduce the complexity, erf ðxÞ can be calculated
by utilizing some approximation equations such as

erf xð Þ ≈ 1 − e−4x
2/π 1 +

8x4

π

1
3
−

1
π

� �
 �� 
1/2

: ð28Þ

From the process of the Block EM-VB algorithm, it can
be seen that its complexity is almost the same as that of
the PC-SBL.

The proposed Block EM-VB algorithm involves the
matrix inversion shown in (15), which is the main computa-

tional complexity. It is better to consider the fast version of
the proposed algorithm. To void computation of the inverse
of the matrix, we can use the following approximate poste-
rior distribution, which is expressed as

p θ ∣ yð Þ ≈ q θð Þ =
YN
i=1

q xið Þq λð Þq γð Þ: ð29Þ

That is to say, it assumes the independence on the poste-
rior of each coefficient element of the signal. Similarly, by
using (7), we can alternately learn the updating rules of these
latent variables.
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Figure 4: The reconstructed signal by different algorithms when N = 100, M = 50, K = 25, and SNR = 10 dB. (a) Original signal, (b)
reconstructed signal by PC-SBL with NMSE = 0:2362, (c) reconstructed signal by Block EM-VB with NMSE = 0:2184, and (d)
reconstructed signal by Fast Block EM-VB with NMSE = 0:1092.
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Figure 5: The NMSE vs. the sparsity level when SNR = 10 dB and (a) M = 40 and (b) M = 50.
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Firstly, the approximate posterior distribution qðxiÞ
ði = 1, 2,⋯,NÞ is

ln q xið Þ∝ ln p y ∣ x, γð Þ + ln p xi ∣ λi−1, λi, λi+1ð Þh iq γð Þq λð Þq xjð Þ j≠i ,

ð30Þ

where pðy ∣ x, γÞ =N ðΦx, γ−1IMÞ and pðxi ∣ λi−1, λi, λi+1Þ
= ððð1/λiÞ + βð1/λi−1Þ + βð1/λi+1ÞÞ/2Þ exp ð−ðð1/λiÞ + βð1/
λi−1Þ + βð1/λi+1ÞÞjxijÞ. Let

l xið Þ = − ln p y ∣ x, γð Þ + ln p xi ∣ λi−1, λi, λi+1ð Þh iq γð Þq λð Þq xjð Þ j≠i ∝
γh i
2

y −Φxk k22
� �

q xjð Þ j≠i

+
1
λi

+ β
1

λi−1
+ β

1
λi+1

� �
xij j∝ γh i

2
−2yTΦx + xTΦTΦx
� �

q xjð Þ j≠i

+
1
λi

+ β
1

λi−1
+ β

1
λi+1

� �
xij j∝ γh i

2
−2yTφixi + φT

i φix
2
i + 2xiφT

i 〠
j≠i
φj xj
� � !

+
1
λi

+ β
1

λi−1
+ β

1
λi+1

� �
xij j,

ð31Þ

where φi is the i-th column of Φ. The derivative of lðxiÞ is

∇xi
l xið Þ = γh i

2
−2yTφi + 2φT

i φixi + 2φT
i 〠
j≠i
φj xj
� � !

+
1
λi

+ β
1

λi−1
+ β

1
λi+1

� �
xi
xij j :

ð32Þ

Let ∇xi
lðxiÞ = 0 and obtain the following approximate

MAP estimate:

~xi = γh i γh iφT
i φi +

1
λi

+ β
1

λi−1
+ β

1
λi+1

� �
1
xij j

� �−1
y −〠

j≠i
φj xj
� � !T

φi:

ð33Þ

Similarly, qðxiÞ is approximated to obey the following
Gaussian distribution:

q xið Þ ≈N xi ∣ μi, σ
2
i

� 	
, ð34Þ

where

μi = γh iσ2i y −〠
j≠i
φj xj
� � !T

φi,

σ2i = γh iφT
i φi +

1
λi

+ β
1

λi−1
+ β

1
λi+1

� �
α

xij j
� �−1

,

ð35Þ
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Figure 6: The NMSE vs. the number of measurements when SNR = 10 dB and (a) K = 20 and (b) K = 25.
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in which a parameter α is also introduced to avoid
underestimation of the sparsity of the signal. Thus, hxii = μi
ði = 1, 2,⋯,NÞ can be computed in a sequential manner.

Secondly, the approximate posterior distribution qðλÞ
still obeys an Inverse-Gamma distribution shown in (20)
and the computation of hλ−1i is the same as (22).

Thirdly, the approximate posterior distribution qðγÞ
obeys the Gamma distribution Gðγ ; ~a, ~bÞ and we can obtain
hγi = ~a/~b = ða +M/2Þ/ðhky −Φxk22i/2 + bÞ, where

y −Φxk k22
� �

= y −Φμk k22 + Tr ΣΦTΦ
� �

= y −Φμk k22 + 〠
N

i=1
σ2
i φ

T
i φi,

ð36Þ

and μ = ðμ1, μ2,⋯, μNÞT and Σ ≜ diag ½σ2i �.
Compared with the Block EM-VB algorithm, the above

algorithm has low computational complexity due to without
matrix inversion in each iteration. It can be called Fast Block
EM-VB, and its process is summarized in Algorithm 2. In
noisy environments, the correlations between adjacent signal
elements may be weakened, especially in the low SNR case,
so it is appropriate to assume independence on the posterior
of each coefficient element, which implies that the Fast
Block EM-VB is suitable to recover the BSS under the
low SNR case.

4. Simulation Experiments

In this section, some simulation experiments are carried out
to demonstrate the performances of the proposed Block
EM-VB algorithm and its fast version. A comparison with
other algorithms such as EM-VB [12] and PC-SBL [11] is
also given.

4.1. Performance Analysis via Simulated Data. In the follow-
ing simulation, let the length of the sparse signal be N = 100,
and an arbitrary block Gaussian sparse signal is randomly
generated with its nonzero entries randomly distributed in
B = 3 blocks, and the measurement matrix is a random
Gaussian matrix. The number of Monte Carlo simulations
is 200. The parameters in EM-VB and in the Block EM-VB
and its fast version are set as a = b = c = d = 10−6, Max iter =
200, and ε = 10−5. The parameters α and β in the Block
EM-VB and its fast version will be set adaptively according
to the noiseless and noisy cases because their performances
are sensitive to the choice of α and β. The parameters of
PC-SBL are set the same as those in [11].

First, we discuss the influences of two parameters α and
β on the performance of the proposed Block EM-VB and
make a comparison with the EM-VB, which is a special case
of the Block EM-VB when α = 1 andβ = 0. To demonstrate
the effect of these two parameters, the performances of the
Block EM-VB with α = 0:7 andβ = 0 and α = 1 andβ = 0:5
are also given. The support recovery rate is used to evaluate
the performance of the Block EM-VB algorithm with differ-
ent parameters. The recovered support of the sparse signal is
defined as supp ðx̂Þ = fi,∣x̂i∣>0:001g, and then the support

recovery rate is defined by ∣supp ðx̂Þ ∩ supp ðxÞ ∣ / ∣ supp ðx̂Þ
∪ supp ðxÞ ∣ , where j⋅j denotes the number of elements in a
set. If the overlap between the estimated support and the true
support is more, the recovery rate is closer to 1. Figure 1 plots
the support recovery rates of different algorithms versus the
sparsity level K when the number of measurements is
M = 30 and M = 40, respectively. It can be seen that the
parameters of the Block EM-VB algorithm have an important
influence on the recovery performance. The appropriate
parameter α < 1 can avoid the underestimation of the support
of the sparse signals, and the block parameter β > 0 is helpful
to recover the block sparse signals. Thus, the proposed Block
EM-VB algorithmwith appropriate parameters has better per-
formance than the EM-VB.

Then, we make a comparison between the Block EM-VB
and its fast version with the PC-SBL. In the noiseless case, the
success rate is used to evaluate the performances of these differ-
ent algorithms. When a trial satisfies kx̂‐xk22/kxk22 < 10−6, it is
regarded as a successful trial. The success rate is defined as
the percentage of successful trials in the total of independent
trials. In the noisy case, the reconstruction performance of each
algorithm is evaluated by the normalized mean square error
(NMSE), where NMSE = kx̂‐xk22/kxk22.

In the noiseless case, let α = 0:7 andβ = 0:5 in the Block
EM-VB and α = 0:5 andβ = 0:5 in the Fast Block EM-VB.
Figure 2 plots the success rate of individual recovery algorithm
versus the sparsity level K when the number of measurement
is M = 30 and M = 40, respectively. Then, let the sparsity
K = 20 and K = 25, and the success rate of each algorithm ver-
sus the number ofmeasurementsM is shown in Figure 3. From
these results, it is observed that the Block EM-VB is superior to
the PC-SBL when the number of measurements is less or the
sparsity is smaller. The Fast Block EM-VB is inferior to these
two algorithms due to the independent assumption.

Then, we consider the noisy case where the Gaussian
noise is added to the measurements with the signal-to-
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Figure 8: The average runtimes vs. the length of signal N .
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noise ratio (SNR) defined as 20 log10ðkΦxk2/knk2Þ. It
should be noted that the setting of parameter α in the pro-
posed algorithms needs to consider the trade-off between
removing the noise and maintaining the nonzero elements
of the signal. A larger value of α tends to suppress noise
while losing the nonzero values of the signal. Compared with
the Block EM-VB, the fast version needs to select smaller
α to ensure the recovery of nonzero elements of the
sparse signal because of its inherent denoising ability.
Let SNR = 10 dB and α = 0:85 and β = 0:5 in the Block

EM-VB and α = 0:5 andβ = 0:5 in the Fast Block EM-VB.
The reconstruction results of different algorithms when
K = 25 and M = 50 are given in Figure 4. It can be seen
that the Block EM-VB algorithm and its fast version have
better reconstruction performance than the PC-SBL in the
low SNR environment.

The NMSE of each algorithm versus the sparsity K in the
case of SNR = 10 dB is shown in Figure 5, where the num-
bers of measurements are given as M = 40 and M = 50,
respectively. Figure 6 plots the NMSE of individual recovery
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Figure 9: Reconstructed images with different algorithms (the left column is the noiseless case, and the right column is the noisy case).
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algorithm versus the number of measurementsM in the case
of SNR = 10 dB, where K = 20 and K = 25, respectively. It
can be found that the Block EM-VB algorithm is superior
to the PC-SBL when the number of the measurements is
larger or the sparsity is less, and the latter is better than
the former when the number of the measurements is less
and the sparsity is larger. It is also observed that the Fast
Block EM-VB is better than the Block EM-VB when the
number of measurements is less or the sparsity is larger. In
addition, it is shown that the Fast Block EM-VB outperforms
the PC-SBL when the sparsity is less or the number of the
measurements is larger.

The performances of each algorithm in different SNR
cases are shown in Figure 7, where K = 20 and M = 50. For
the Block EM-VB, the parameters β = 0:5 and α is set to vary
with the SNR, i.e., α = 0:85 when the SNR varies from 0dB
to 15dB, α = 0:75 when the SNR changes from 20dB to
25 dB, and α = 0:73 for the case of 30 dB. The parameters
in the Fast Block EM-VB algorithm are still set as α = 0:5
and β = 0:5. From Figure 7, it can be seen that the Block
EM-VB algorithm and the fast version have good recon-
struction performance in the case of low SNR when
compared with the PC-SBL. The Fast Block EM-VB
especially has robust recovery performance in respect of
noise immunity.

Finally, the average runtimes of these algorithms versus
the length of signals N by 5 independent trials are given in
Figure 8, where M =N/2, K =N/10, SNR = 10 dB, and the
number of nonzero blocks B = K/5. It validates that the
Block EM-VB almost has considerable computational
complexity as the PC-SBL and the Fast Block EM-VB has
the highest computational efficiency compared with other
recovery algorithms, which makes it have a potential advan-
tage in practical application.

4.2. Application in ISAR Imaging. The inverse synthetic
aperture radar (ISAR) imaging is appropriately implemented
under the framework of sparse signal recovery due to the
sparse characteristic of the target [14]. In this experiment,
the “Yak-42” dataset is used, in which the number of range
cells is 256 and the number of pulses is 256. 128 pulses are
randomly sampled to simulate the sparse aperture data.
Here, we use the MATLAB code provided in [14], where
the PC-SBL adopts a pruning operation. For a fair compari-
son, the proposed Block EM-VB and the fast version also use
a similar pruning operation and the parameters in these two
algorithms are set as Max iter = 200 and ε = 10−6. Image
entropy is usually used to measure image quality in ISAR
imaging. The smaller image entropy means better recon-
struction performance. The image entropy is defined as

Entropy = −〠
i

〠
j

x i, jð Þj j2
E

 !
log

x i, jð Þj j2
E

 !
, ð37Þ

where E =∑i∑jjxði, jÞj2 is the energy of the radar image x.
Here, the image is reconstructed by each range cell.

Figures 9(a), 9(c), and 9(e) give the reconstruction results
of these algorithms in the noiseless case, where we set

α = 1 andβ = 1 for the Block EM-VB and α = 0:8 andβ = 1
for the Fast Block EM-VB. In the noisy case, the data are cor-
rupted by additive Gaussian noise and let α = 0:85 andβ = 1
for the Block EM-VB and α = 0:6 and β = 1 for the Fast Block
EM-VB. Figures 9(b), 9(d), and 9(f) demonstrate the results
in the case of SNR ≈ 3 dB (the noise variance γ−1 = 0:0025).
The entropy values of these algorithms are shown in
Table 1. From these reconstruction results, it can be seen that
the image obtained by the Block EM-VB and its fast version
has better quality in the noisy case, which implies that the
Block EM-VB and its fast version have strong noise immu-
nity ability. Table 2 gives the corresponding runtimes of these
algorithms, which demonstrates that the Fast Block EM-VB
has the highest computational efficiency and can be used in
real-time processing.

5. Conclusions

Considering the clustered structural features of nonzero
elements of block sparse signals, this paper proposes the
Block EM-VB algorithm for signal recovery, which is based
on a correlated LSM model. Furthermore, a fast version of
the Block EM-VB is presented, which can recover the block
sparse signals with lower computational complexity because
of no inversion in each iteration. Experimental results with
simulation data and ISAR imaging demonstrate that the
Block EM-VB and its fast version have good BSS reconstruc-
tion performance and noise tolerance capability, especially
in the low SNR scenarios, which implies that the proposed
algorithms can be potentially applied in various signal pro-
cessing fields.
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Table 2: Comparison of the runtimes (s) of different algorithms.

PC-SBL Block EM-VB Fast Block EM-VB

Noiseless 27.7130 7.8391 3.3582

Noisy 30.3940 31.6483 6.8828

Table 1: The PSNR results of different algorithms.

PC-SBL Block EM-VB Fast Block EM-VB

Noiseless 5.6384 5.3275 5.4201

Noisy 5.5457 5.0689 5.0059
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A joint processing of direction of arrival (DOA) and signal separation for planar array is proposed in this paper. Through sensor
array processing theory, the output data of a planar array can be reconstructed as a parallel factor (PARAFAC) model, which can
be decomposed with the trilinear alternating least square (TALS) algorithm. Aiming at the problem of slow speed on convergence
for the standard PARAFAC method, we introduce the propagator method (PM) to accelerate the convergence of the TALS
method and propose a novel method to jointly separate signals and estimate the corresponding DOAs. Given the initial angle
estimates with PM, the number of iterations of TALS can be reduced considerably. The experiments indicate that our method
can carry out signal separation and DOA estimation for typical modulated signals well and remain the same performance as
the standard PARAFAC method with lower computational complexity, which verifies that our algorithm is effective.

1. Introduction

Signal separation and direction of arrival (DOA) estimation
are significant themes in signal processing and have been
investigated in various engineering fields including wireless
communication, navigation, radar, and sonar [1–5]. As funda-
mental issues for signal processing, they have sparked consid-
erable attention of researchers for decades. These two
problems involve multiple signals and sensors which receive
a mixture of signals [6]. The goal of DOA estimation is to find
the source signal location, while the signal separation is aimed
at extracting desired source signals. Through the years, many
classical methods have been developed to solve these prob-
lems. For DOA estimation, subspace-based methods like
MUSIC and ESPRIT have been widely adopted [7, 8]. The
conventional nonparametric Fourier-based methods have also
been further developed [9], and the emerging sparse
reconstruction-based methods like orthogonal matching
pursuit (OMP) and sparse Bayesian inference (SBI) are intro-
duced into DOA estimation [10, 11]. For signal separation, the
researches focus primarily on blind source separation (BSS)
methods, where independent component analysis (ICA) and

Joint Approximative Diagonalization of Eigen matrix (JADE)
method are the most famous among these methods [12, 13]
and have been widely applied in the separation of speech
and medical signals.

Compared with conventional DOA methods, BSS
methods do not require much waveform prior information
and are capable of identifying the transmission parameters
based on the mixture signals, which has aroused an amount
of attention of researchers. Many researchers study to apply
blind separation algorithms into array signal model and
have made lots of works. A combined complex blind source
separation DOA estimation and signal recovery method was
proposed for uniform linear array (ULA) in [14], which
obtains better performance by exploiting BSS to estimate the
arraymanifold. In [15], a blindDOA estimationmethod based
on the JADE algorithm was proposed, which introduces
fourth-order cumulant and has great performance in multi-
path environment. In [16], the chaotic adaptive firework algo-
rithm was applied for solving the problem of radar emitter
mixed signal. In [17], a new EM-based method for broadband
DOA estimation and BSS was proposed, which reduces the
complexity of traditional methods. In [18], a method based
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on eigenvalue decomposition for DOA estimation and blind
separation of narrow-band independent signals was presented.
The above studies were discussed for ULA geometry and did
not involve more complex array structures like planar arrays
which are more practical in actual applications.

In recent years, tensor technique has taken off in the field
of data analysis and signal processing [19], in which trilinear
decomposition or the parallel factor (PARAFAC) technique
has been extensively investigated in radar and wireless com-
munication fields especially [20–24]. PARAFAC is a com-
mon model for low-rank decomposition of a tensor, whose
computation can be completed by alternating least squares
(ALS). Many models in array signal processing can be repre-
sented as trilinear models, which enables us to utilize the tri-
linear alternating least square (TALS) algorithm to achieve
parameter estimation and signal separation. The authors in
[25, 26] studied multiparameter estimation in bistatic
multiple-input multiple-output (MIMO) radar and pro-
posed a joint direction of departure (DOD) and direction
of arrival (DOA) estimation using the PARAFAC model.
In [27], the authors proposed a novel 2D-DOA estimation
for trilinear decomposition-based monostatic cross MIMO
radar. In [28], a joint DOA and carrier frequency estimation
of narrow-band sources was proposed using the unitary
PARAFAC method. These methods based on TALS can
separate source signals and obtain automatically paired
parameters without spectral peak search, but have relatively
high computational complexity. It can be seen that PAR-
AFAC has a great potential in DOA estimation and signal
separation, but its shortcoming is the standard PARAFAC
method has slow speed on convergence.

Motivated by the works mentioned above, in this paper,
under the basic framework of PARAFAC, we propose a
method of joint two-dimensional DOA estimation and sig-
nal separation for planar arrays. We first model the output
of a planar array as the PARAFAC model and then utilize
the propagator method (PM) to initialize the updated matri-
ces in the TALS method, which effectively simplifies the
complexity of the algorithm. Next, perform the TALS
algorithm until convergence. Finally, acquire the 2D-DOA
estimates and separated signals from the direction matrices
and the source matrix which is estimated by TALS. The
proposed method can achieve signal separation and DOA
estimation for typical modulated signals well and remains
the same performance as the standard PARAFAC method
but with lower complexity. The experimental results verify
the effectiveness of our algorithm.

We briefly summarize our main contributions as follows:

(1) We model the output of the uniform rectangular
array and reconstruct it into the PARAFAC model

(2) We propose the fast-PARAFAC decomposition
method for joint 2D-DOA estimation and signal sep-
aration, which utilizes PM to initialize the updated
matrices in TALS and accelerate convergence

(3) The proposed method has better performance of
DOA estimation than 2D-PM and 2D-ESPRIT and
can accurately separate the source signals with lower

complexity compared with the standard PARAFAC
approach

(4) The proposed method can obtain separated signals
and corresponding DOA estimates without an addi-
tional pairing procedure

The outline of this paper is given as follows. We discuss
the data model for uniform planar array and introduce the
PARAFAC model briefly in Section 2. In Section 3, the
proposed algorithm is described in detail. In Section 4, the
complexity analysis and advantages of the proposed method
are provided. The results of numerical simulations are given
in Section 5, and conclusions are drawn in Section 6.

1.1. Notation. Lower-case and upper-case boldface letters
denote vectors and matrices. ℂ denotes the sets of complex
numbers. The superscripts ð⋅ÞT , ð⋅Þ∗, and ð⋅ÞH represent the
transpose, complex conjugate, and conjugate transpose of a
vector or matrix, respectively. diag ð⋅Þ denotes a diagonal
matrix that consists of the elements of the matrix. ⊗ denotes
the Kronecker product. Dmð⋅Þ denotes a diagonal matrix
whose diagonal elements are defined with the m-th row of
the matrix. angleð⋅Þ denotes phase angle operator. k⋅k2 and
k⋅kF denote the ℓ2 and Frobenius norms. ð⋅Þ−1 and ð⋅Þ+ stand
for the inverse and pseudo-inverse of a matrix.

2. Data Model

Consider a uniform rectangular array (URA) containing N ×
M sensors as depicted in Figure 1, where N and M are the
numbers of elements along the x-axis and y-axis. The interele-
ment spacings along both the x-axis and y-axis of the array are
taken as half the wavelength of the waves, dx = dy = λ/2.

Assume that K uncorrelated far-field signals individually
impinge on the array from fðθk, ϕkÞjk = 1, 2,⋯, Kg, where
θk and ϕk are the corresponding elevation and azimuth
angles of the k-th signal (K <N ×M, θk ∈ ð0, 90°Þ, and ϕk
∈ ð0, 180°Þ). The output of the rectangular array can be
represented as follows [29]:

~X =AS +N, ð1Þ

where ~X ∈ℂNM×L is the output data with noise; L denotes
the number of snapshots; S = ½s1, s2,⋯, sK �T ∈ℂK×L is the
signal matrix of L snapshots; N ∈ℂNM×L is the additive white
Gaussian noise matrix. The array manifold matrix A ∈
ℂNM×K consists of the steering vectors and is given by [29]

A = ay υ1ð Þ ⊗ ax u1ð Þ, ay υ2ð Þ ⊗ ax u2ð Þ,⋯, ay υKð Þ ⊗ ax uKð Þ� �
,

ð2Þ

where uk = sin θk cos ϕk and υk = sin θk sin ϕk; axðukÞ and
ayðυkÞ are the steering vectors of the array, which can be rep-
resented as [30]
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ax ukð Þ = 1, exp −j2πdxuk
λ

� �
,⋯, exp −j2π N − 1ð Þdxuk

λ

� �� �T
,

ay υkð Þ = 1, exp
−j2πdyυk

λ

� �
,⋯, exp

−j2π M − 1ð Þdyυk
λ

� �� �T
:

ð3Þ

More compactly, (2) can be also written as

A =

AxD1 Ay

� 	
AxD2 Ay

� 	
⋮

AxDM Ay

� 	

2666664

3777775, ð4Þ

where Ax = ½axðu1Þ, axðu2Þ,⋯, axðuKÞ� and Ay = ½ayðυ1Þ, ay
ðυ2Þ,⋯, ayðυKÞ�.

Before further describing the data model, we need to
introduce the definition of the tensor outer product and
the parallel factor (PARAFAC) model [22].

Definition 1 (Outer product [19]). The outer product of
three vectors, a ∈ℂM×1, b ∈ℂN×1, and c ∈ℂL×1, denoted by
ða ∘ b ∘ cÞ, is a M ×N × L tensor whose elements are defined
by ða ∘ b ∘ cÞm,n,l = ambncl.

Definition 2 (PARAFAC [19]). The PARAFAC model is also
known as the trilinear decomposition model. A canonical
PARAFAC decomposition of a three-order tensor X ∈
ℂM×N×L can be expressed as

X = 〠
F

f=1
af ∘ bf ∘ cf , ð5Þ

where af , bf , and cf stand for the f -th columns of matrices

A ∈ℂM×F , B ∈ℂN×F , and C ∈ℂL×F . For a 3-way tensor X,
define its sliced matrices Xm ∈ℂN×L, Xn ∈ℂL×M , and Xl ∈

ℂM×N with the element Xmðn,lÞ =Xnðl,mÞ =Xlðm,nÞ =Xm,n,l.

Then, Xm = BDmðAÞCT can be viewed as “slicing” the 3-D
array in a series of “slabs” (2-D arrays) and similarly for
others [21].

Based on the PARAFAC model, the noiseless received
data for URA can be written as [22]

Xm =AxDm Ay

� 	
S: ð6Þ

Due to the symmetry of the PARAFAC model, the other
two slice matrices can be obtained.

Yn = STDn Axð ÞAT
y , ð7Þ

Zl =AyDl ST
� 	

AT
x : ð8Þ

Define X, Y, and Z as the results of the concatenation of
matrices Xm, Yn, and Zl, respectively, and then, the noise-
free received signal matrices X, Y, and Z can be represented
as follows:

X =

X1

X2

⋮

XM

2666664

3777775 =

AxD1 Ay

� 	
AxD2 Ay

� 	
⋮

AxDM Ay

� 	

2666664

3777775S,

Y =

Y1

Y2

⋮

YN

2666664

3777775 =

STD1 Axð Þ
STD2 Axð Þ

⋮

STDN Axð Þ

2666664

3777775AT
y ,

Z =

Z1

Z2

⋮

ZL

2666664

3777775 =

AyD1 ST
� 	

AyD2 ST
� 	

⋮

AyDL ST
� 	

2666664

3777775AT
x :

ð9Þ

Note that in this paper, we assume that there is no
mutual coupling across the sensors. In fact, mutual coupling
will degrade the performance of the algorithms. The recent
researches in the presence of mutual coupling can be found
in [31].

3. The Proposed Algorithm

We show how to perform signal separation and DOA esti-
mation using our proposed algorithm in this section. The
standard PARAFAC suffers from expensive computation
cost due to slow convergence. To handle this problem, we
introduce the propagator method (PM) to accelerate TALS
by providing the initial angle estimates. Then, alternately
update the LS estimates of S, Ay, and Ax until they converge.

Source

…

O

x

y

z

𝜃

𝜑

dy

d x

M

Figure 1: Geometry of URA with N ×M sensors. The circle
represents a signal source at far field, and the solid points
represent the sensors.
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Finally, obtain the separated signals and the corresponding
DOA estimates.

Note that in practice, we need to estimate the number of
sources from the received signal first. In this study, we
assume that the number of sources is known in advance.

3.1. Initialization with Propagator Method. By exploiting the
property of rotational invariance, the propagator method
can achieve the angle estimation with relatively low com-
plexity [32, 33].

First, compute the data covariance matrix R̂ using the
received signal data in (1) and partition it as follows [33]:

R̂ = Ĝ, Ĥ
� �

, ð10Þ

where Ĝ ∈ℂMN×K is the first column to the K-th column of
R̂ and Ĥ ∈ℂMN×ðMN−KÞ stands for the remaining columns.

Then, we can estimate the propagator P by

P̂ = G∧HG
� 	−1G∧HH, ð11Þ

Define [33]

P̂c =
IK
P∧H

" #
=

Ax

AxΦy

⋮

AxΦM−1
y

2666664

3777775A−1
x , ð12Þ

where Φy = diag fexp ð−j2πdyυ1/λÞ,⋯, exp ð−j2πdyυK /λÞg
and IK denotes a K-order identity matrix.

The estimates bυk0 of υk can be obtained by partitioning
the matrix P̂c and eigenvalue decomposition.

After reconstructing the matrix P̂c, another matrix P̂cs
can be obtained by

P̂cs =

Ay

AyΦx

⋮

AyΦN−1
x

2666664

3777775A−1
x , ð13Þ

whereΦx = diag fexp ð−j2πdxu1/λÞ,⋯, exp ð−j2πdxuK /λÞg.
The estimates ûk0 of uk can also be obtained by a
similar method.

3.2. Trilinear Alternating Least Square. Trilinear alternating
least square (TALS) is the most common method for trilin-
ear model decomposition [21, 22]. The standard TALS algo-
rithm utilizes random matrices as the initial load matrices,
which usually converges slowly. In this part, the initial esti-
mates ûk0 and bυk0 provided by PM are used to construct
the matrices A∧x

ð0Þ and A∧y
ð0Þ as initial matrices.

Recall that we assume noise is additive Gaussian noise,
and it is reasonable to employ the least square principle to
estimate S, Ax, and Ay . The estimation of the matrix S can

be conducted by minimizing the following quadratic cost
function [21]:

min
S∧ nð Þ

~X1

~X2

⋮
~XM

2666664

3777775 −

A∧x
n−1ð ÞD1 A∧y

n−1ð Þ

 �

A∧x
n−1ð ÞD2 A∧y

n−1ð Þ

 �
⋮

A∧x
n−1ð ÞDM A∧y

n−1ð Þ

 �

2666666664

3777777775
S∧ nð Þ

��������������

��������������
F

,

ð14Þ

where ~Xm denotes the data matrix Xm with noise, m = 1, 2,
⋯,M; A∧x

ðn−1Þ and A∧y
ðn−1Þ denote the estimates of Ax

and Ay obtained from (n − 1)-th iteration.
Then, the LS estimate of S can be obtained as [21]

S∧ nð Þ =

A∧x
n−1ð ÞD1 A∧y

n−1ð Þ

 �

A∧x
n−1ð ÞD2 A∧y

n−1ð Þ

 �
⋮

A∧x
n−1ð ÞDM A∧y

n−1ð Þ

 �

2666666664

3777777775

+
~X1

~X2

⋮
~XM

2666664

3777775: ð15Þ

The LS fitting for Ay is similar to S.

min
A∧y

nð Þ

~Y1

~Y2

⋮
~YN

2666664

3777775 −

S∧T nð ÞD1 A∧x
n−1ð Þ


 �
S∧T nð ÞD2 A∧x

n−1ð Þ

 �
⋮

S∧T nð ÞDN A∧x
n−1ð Þ


 �

2666666664

3777777775
A∧T nð Þ

y

��������������

��������������
F

,

ð16Þ

where ~Yn denotes the data matrix Yn with noise, n = 1, 2,
⋯,N ; S∧ðnÞ denotes the estimate of S according to (15).

Then, the LS estimate of Ay can be represented as

ÂT nð Þ
y =

S∧T nð ÞD1 A∧x
n−1ð Þ


 �
S∧T nð ÞD2 A∧x

n−1ð Þ

 �
⋮

S∧T nð ÞDN A∧x
n−1ð Þ


 �

2666666664

3777777775

+
~Y1

~Y2

⋮
~YN

2666664

3777775: ð17Þ
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Similarly, the LS fitting for Ax is

min
A∧x

nð Þ

~Z1

~Z2

⋮
~ZL

2666664

3777775 −

A∧y
nð ÞD1 S∧T nð Þ


 �
A∧y

nð ÞD2 S∧T nð Þ

 �
⋮

A∧y
nð ÞDL S∧T nð Þ


 �

2666666664

3777777775
A∧T nð Þ

x

��������������

��������������
F

, ð18Þ

where ~Zl denotes the data matrix Zl with noise, l = 1, 2,⋯, L,
and A∧y

ðnÞ is the estimate of Ây according to (17).
The estimate of Ax can be expressed as

A∧T nð Þ
x =

A∧y
nð ÞD1 S∧T nð Þ


 �
A∧y

nð ÞD2 S∧T nð Þ

 �
⋮

A∧y
nð ÞDL S∧T nð Þ


 �

2666666664

3777777775

+
~Z1

~Z2

⋮
~ZL

2666664

3777775: ð19Þ

According to (15), (17), and (19), we can repeatedly
update the estimates of S, Ay , and Ax until convergence.
Because of the utilization of PM, the proposed algorithm fast
converges to the final estimates of S, Ax, and Ay, noted as Ŝf ,
Âf x, and Âf y . At this point, the task of signal separation is
complete. The last part is to perform DOA estimation.

It is worth noting that the TALS algorithm outlined
above contains only the simplest steps. Some techniques,
like line search [34, 35], can be coupling with the basic
TALS algorithm, which may improve the rate of conver-
gence further. There is no universally accepted most effi-
cient TALS algorithm for all of the problems. We use the
basic implementation of TALS for our issues and compare
the complexity of our method with line search schemes
[34, 35] in Section 5.

3.3. DOA Estimation. First, we normalize the column vectors
of Âf x and Âf y and make the first element of the column to
equal one. Then, compute the phase vector rx by

rx = −angle axkð Þ = 0, 2πdx
λ

,⋯, 2π N − 1ð Þdx
λ

� �T
uk, = Bxuk,

ð20Þ

where axk denotes the k-th column vector of Âf x after
normalization.

According to LS criterion, calculate the estimates of
uk by

ûk = B+
x rx: ð21Þ

In a similar way, we can also get the estimates bυk of
υk by the following expressions:

bυk = B+
y ry, ð22Þ

where ry is another phase vector defined as

ry = −angle ayk
� 	

= 0,
2πdy
λ

,⋯,
2π M − 1ð Þdy

λ

� �T
υk, = Byυk,

ð23Þ

where ayk denotes the k-th column vector of Âf y after
normalization.

Finally, the estimates of θk and ϕk can be calculated by

bθk = arcsin ûk + jbυkj jð Þ, ð24Þ

bϕk = angle ûk + jbυkð Þ, ð25Þ
where j⋅j denotes the modulus of the complex number andbθk and bϕk are the estimates of the elevation and azimuth
angles of the k-th signal.

Note that there are the same permutation effects for the
estimationof Ŝf , Âf x, and Âf y during theTALSdecomposition,

so the final estimates, bθk and bϕk, are automatically paired.

3.4. The Procedure of the Proposed Algorithm. We summa-
rize the major steps of our algorithm as follows:

Step 1. Exploit the propagator method to calculate the initial
estimates ûk0 and bυk0 of uk, υk.
Step 2. According to the PARAFAC models (6)–(8), reshape
the received signal data to acquire the data matrices ~X, ~Y,
and ~Z.

Step 3. Construct the direction matrices Âx and Ây with ûk0
and bυk0 and use them as initial matrices.

Step 4. According to (15), (17), and (19), update the esti-
mates of S, Ay, and Ax alternately from the data matrices
~X, ~Y, and ~Z until convergence.

Step 5. According to (20)-(25), calculate the DOA estimates

of separated signals, bθk and bϕk.

4. Performance Analysis

4.1. Complexity Analysis. Since complex multiplication
requires the most computation time and resources, we
use the time of complex multiplication to evaluate the
complexity of the algorithm. The algorithm proposed in
this paper adopts PM for initial estimation, whose com-
plexity is Oð5K3 + 2K2L + 3K2NðM − 1Þ + 3K2MðN − 1Þ +
ðNM − KÞKLÞ. The complexity of the TALS method is
related to the number of iterations and the complexity of a
single iteration, and the complexity of each iteration is easily
obtained as Oð3K3 + 3NMKL + 2K2ðNM +NL +MLÞÞ. The
number of iterations is affected by many factors such as array
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size, iteration accuracy, and signal type. Define the number of
iterations is T, and the total computational complexity is OðT
ð3K3 + 3NMKL + 2K2ðNM +NL +MLÞÞÞ. Therefore, the
complexity of the proposed method is Oð5K3 + 2K2L + 3K2N
ðM − 1Þ + 3K2MðN − 1Þ + ðNM − KÞKL + Tð3K3 + 3NMKL
+ 2K2ðNM +NL +MLÞÞ. Due to PM initialization, the itera-
tions of the proposed method are greatly reduced compared
with the standard PARAFAC method, which we can see in
the next section.

4.2. Advantages. The advantages of the proposed algorithm
are as follows:

(1) The proposed method has lower computational cost
than the standard PARAFAC method due to intro-
ducing PM

(2) The proposed method outperforms 2D-ESPRIT and
2D-PM in the aspect of angle estimation perfor-
mance for planar array

(3) The proposed method can obtain separated signals
and corresponding DOA estimation without an
additional pairing procedure

5. Simulation Results

In this section, we employ a URA equipped with 8 × 8
sensors to illustrate the improvement of the performance
of 2D DOA estimation and signal separation of the proposed
algorithm.

Suppose there are K = 3 typical modulated signals
impinging on the array simultaneously, which are single-
frequency signal s1ðtÞ = cos ð2π × 5 × 106tÞ, linear frequency
modulated signal s2ðtÞ = cos ðπ × 1012t2 + 2π × 2 × 106tÞ,

and amplitude modulated signal s3ðtÞ = cos ð2π × 3 × 105tÞ
sin ð2π × 5 × 106tÞ. The DOAs of the signals are ðθ1, ϕ1Þ =
ð10°, 15°Þðθ2, ϕ2Þ = ð20°, 25°Þ, and ðθ3, ϕ3Þ = ð30°, 35°Þ, and
the sampling frequency is 100MHz. The noiseless source
signal waveforms are demonstrated in Figure 2.

To assess the performance of DOA estimation, root
mean square error (RMSE) is used,

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
CK

〠
C

c=1
〠
K

k=1
α∧k,c − αkð Þ2

vuut , ð26Þ
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Figure 2: The source signal waveform. (L = 800).
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where C is the total number of Monte-Carlo trials, αk is the
true value of the elevation or azimuth angle of k-th signal,
and bαk,c is the estimate of the angle αk in the c-th trial. For
each simulation, we set C = 1000. The signal to noise ratio
is defined by SNR = 10 log10ðkXk2F/kNk2FÞ, where X is noise-

less received data matrix and N is zero-mean white Gaussian
noise matrix.

Besides, to qualify the performance of signal separation,
the average similar coefficient between the source signal
and the separated signal is adopted,
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Figure 5: RMSE performance of different algorithms versus SNR (L = 800).

0 5 10 15 20 25
SNR (dB)

0

0.005

0.01

0.015

0.02

1-
𝜌

0.025

0.03

0.035

0.04

0.045

PARAFAC
PM-PARAFAC

2D-PM
2D-ESPRIT

Figure 6: Performance of signal separation of different algorithms
versus SNR (L = 800).

0 200 400 600 800
Sample

–1

0

1

A
m

pl
itu

de

Signal 1

0 200 400 600 800
Sample

–1

0

1

A
m

pl
itu

de

Signal 2

0 200 400 600 800
Sample

–1

0

1

A
m

pl
itu

de

Signal 3

Figure 7: Separated signals by the proposed algorithm (L = 800,
SNR = 5 dB). Red line denotes the separated signal, and black line
denotes the estimation error.
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ρ = 1
CK

〠
C

c=1
〠
K

k=1

skŝHk,c
�� ��ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
skk k22 ŝk,c

�� ��2
2

q , ð27Þ

where sk is the k-th source signal and ŝk,c is the correspond-
ing estimate in the c-th trial.

5.1. Convergence Analysis. In Figure 3, we give the result of
the mean CPU time and mean number of iterations based
on our algorithm and other PARAFAC algorithm, where L
= 800. PARAFAC and PM-PARAFAC denote the standard
PARAFAC without modification and our algorithm, respec-
tively. Besides, we also compare our method with line search
schemes as “LS-PARAFAC” [34] and “ELSCS-PARAFAC”
[35]. Owing to the initialization with PM, the mean CPU
time and the mean number of iterations required are
reduced considerably. The standard PARAFAC requires
153.2 iterations on average, while the proposed algorithm
requires 10.8 iterations, which means that the proposed algo-
rithm is ten times faster than the standardPARAFAC. It canalso
be seen that LS-PARAFAC and ELSCS-PARAFAC are faster
than the standard PARAFAC but slower than our algorithm.

Define the sum of squared residuals SSR =∑N
n=1∑

M
m=1

∑L
l=1½~Xn,m,l −∑K

k=1A∧xðn, kÞA∧yðm, kÞS∧ðk, lÞ�2 and DSSR =
jSSRi − SSRi−1j/SSRi−1, where SSRi is the SSR after the i-th
iteration. Figure 4 shows typical curves of the evolution
of DSSR, where SNR = 10 and L = 800. We can also
observe that the proposed method has faster convergence
in Figure 4.

As mentioned in Section 4, the complexity of the TALS
method is related to many factors, like the scale of the array,
the signal-to-noise ratio, and the types of signals. Although a

slight change in configures can cause a significant difference
in the execution time, the proposed method can always
reduce the computational cost compared with the standard
TALS method.

5.2. Comparison of Performance. To verify the improve-
ment of the proposed algorithm, the proposed method
is compared with 2D-PM, 2D-ESPRIT, and the standard
PARAFAC method. Note that the original 2D-PM and
2D-ESPRIT do not have the capability of signal separa-
tion, so we use their results of DOA estimation to con-
struct the matrix A in (1) and compute the LS estimate
of S by Ŝ =A+ ~X.

As shown in Figure 5, it is evident that our method
has the same angle estimation performance as the stan-
dard PARAFAC method, which surpasses 2D-ESPRIT
and 2D-PM.

Figure 6 shows the performance of signal separation of
different algorithms with different SNR. From Figure 6,
the signal separation performance of our algorithm, stan-
dard PARAFAC method, and 2D-ESPRIT are approxi-
mately the same with different SNR, while the 2D-PM
algorithm has a slightly weaker signal separation perfor-
mance with low SNR. Figure 7 is the separated signal dia-
gram by the proposed algorithm. From Figure 7, it can be
seen that the error between the source signal and the sep-
arated signal is very small, which is consistent with the
high average similarity coefficient observed in Figure 6.

Figure 8 illustrates the DOA estimation performance as a
function of SNR with different numbers of snapshots. It is
seen from Figure 8 that when the number of snapshots L
increases, angle estimation performance can be improved.
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Figure 8: RMSE performance with different values of L versus SNR.
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Figure 9 presents the performance of signal separation as
a function of SNR with different numbers of snapshots. As
seen from Figure 9, the average similar coefficients with dif-
ferent numbers of snapshots are close and increase with
increasing of SNR.

6. Conclusions

In this paper, a joint processing of direction of arrival estima-
tion and signal separation for planar array based on the fast-
PARAFACmodel is proposed. Wemodel the output of planar
array as the PARAFAC model and combine PM with the
TALS method for DOA estimation and signal separation.
The angle estimates by PM are used for the initialization of
the TALS method. Then, the TALS method is used to separate
the source signal and accurately estimate DOA. The proposed
method not only inherits the advantages of the TALS method
in signal separation but also takes advantage of the low com-
plexity of the PM algorithm, which greatly reduces the total
iterations of the standard PARAFAC algorithm. The results
show that, as compared with the conventional DOA estima-
tion approaches such as the 2D-PM and 2D-ESPRIT algo-
rithm, the proposed method has better performance in signal
separation and DOA estimation for planar array.
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The gridless one-bit direction of arrival (DOA) estimator is proposed to estimate electromagnetic (EM) sources on a nested
cross-dipole array, and the multiple measurement vectors (MMV) mode is introduced to improve the reliability of parameter
estimation. The gridless method is based on atomic norm minimization, solved by alternating direction multiplier method
(ADMM). With gridless method used, sign inconsistency caused by one-bit measurements and basis mismatches by
traditional grid-based algorithms can be avoided. Furthermore, the reconstructed denoising measurements with fast
convergence and stable recovery accuracy are obtained by ADMM. Finally, spatial smoothing root multiple signal
classification (SSRMUSIC) and dual polynomial (DP) methods are used, respectively, to estimate the DOAs on the
reconstructed denoising measurements. Numerical results show that our method one-bit ADMM-SSRMUSIC has a better
performance than that of one-bit SSRMUSIC used directly. At low signal to noise ratio (SNR) and low snapshot, the one-
bit ADMM-DP has an excellent performance which is even better than that of unquantized MUSIC. In addition, the
proposed methods are also suitable for both completely polarized (CP) signals and partially polarized (PP) signals.

1. Introduction

Since electromagnetic (EM) source signal carries the com-
plete information buried in the fields, the direction finding
of the EM source signal has a wide application. For instance,
the direction of arrival (DOA) estimation of EM source sig-
nals was solved, respectively, by rotational invariance tech-
nique (ESPRIT) algorithm [1–3], maximum likelihood
(ML) algorithm [4], and multiple signal classification-
(MUSIC-) based solution [5]. The performance of parameter
estimation is closely related to the array structures [6]. For a
uniform linear array (ULA), N sensors can only restore N
− 1 sources at most [7, 8]. As a result, a large-scale ULA is
needed for estimating multiple source signals, and the power
consumption of analog-to-digital converters (ADC)
increases exponentially.

A sparse array is a viable alternative, which can generate
virtual sensors by using the position relation among physical
sensors and obtain more degree of freedoms (DOFs). Sparse
arrays mainly include minimum redundancy arrays (MRA)
[9], nested arrays [10], coprime arrays [11], and other sparse

arrays based on them [12, 13]. The reversed and shift sparse
array based on the difference and sum coarray is proposed
for longer consecutive virtual array [14]. A novel sparse
array with displaced multistage cascade subarrays is pro-
posed to obtain high DOF [15]. [16] increases the DOF by
using synthetic aperture technology and the concept of dif-
ference coarray. Moreover, the nested array is widely con-
cerned for its unique and continuous virtual array elements
and simple construction [17]. In [18], a nested cross-dipole
array is used to estimate the DOA of EM source signals with
spatial smoothing MUSIC (SS-MUSIC). Nevertheless, the
hardware cost of ADC is still at a high level for large-scale
nested cross-dipole arrays. One-bit measurements are popu-
lar to decline the consumption [19–21]. In [22], one-bit SS-
MUSIC is proposed for DOA estimation of EM source
signals.

In [23], the authors present that sign inconsistency are
induced by one-bit measurements with additive noises and
an atomic norm minimization with a linear loss function
can overcome the shortage. Meanwhile, as a gridless method,
atomic norm minimization can avoid the basis mismatches
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caused by discretization of the signal parameter space [24,
25]. The alternating direction multiplier method (ADMM)
is proposed to solve the atomic norm minimization with
one-bit quantization in the single measurement vector
(SMV) model [23, 26, 27]. ADMM has lower computational
complexity and higher convergence speed compared with
the semidefinite programming (SDP) [28].

In this paper, the atomic norm minimization with
ADMM is extended for reconstructing the one-bit EM
source signals using a nested cross-dipole array. The multi-
ple measurement vectors (MMV) model is used instead of
the SMV model. The MMV model has a higher success rate
to reconstruct unknown signals compared with that of the
SMV model. And then, two DOA estimation methods based
on the constructed denoising measurements are proposed,
spatial smoothing root-MUSIC (SSRMUSIC) algorithm
[22] and dual polynomial (DP) method [23, 29]. In order
to highlight the advantage of ADMM in signal reconstruc-
tion, SSRMUSIC algorithm with constructed denoising mea-
surements will be compared with ordinary one-bit
SSRMUSIC algorithm. And SSRMUSIC is robust in high
SNR and multiple snapshots, but with the decrease of SNR
and snapshot number, its resolution decreases rapidly.
Therefore, the DP method is introduced for high recovery
accuracy in low SNR and low snapshot. The main contribu-
tions of this paper are as follows: (1) The formulas of one-bit
ADMM are derived to estimate DOAs of EM source signals
using a nested cross-dipole array, and the MMV model is
used instead of SMV to improve estimation accuracy. (2)
With the gridless method based on atomic norm used, the
sign inconsistency caused by one-bit quantization and basis
mismatches by grid discretization are both avoid. (3) Two
methods, SSRMUSIC and DP method, are used to solve
the proposed problem, respectively. Simulation results show
that one-bit ADMM SSRMUSIC has a better performance
than that of one-bit SSRMUSIC used directly, while one-
bit ADMM DP has an excellent performance in the situation
of low signal to noise ratio (SNR) and low snapshot. (4)
Most of the algorithms [30–32] for estimating the space
parameters of both completely polarized (CP) signals and
partially polarized (PP) signals are not universal. Our pro-
posed algorithms are suitable for both CP signals and PP
signals.

The rest of this paper is structured as follows. Section 2
describes the signal model of a nested cross-dipole array.
The one-bit quantization model and difference coarray are
introduced in Section 3. Section 4 presents the atomic norm
minimization for the MMV model. The one-bit ADMM for-
mulas and two methods for DOA estimation are also derived
in Section 4. Simulation results are given and analysed to
verify the efficiency and accuracy of the proposed algorithms
in Section 5. Section 6 summarizes this paper.

Notations are as follows: RfXg and IfXg are real part
and imaginary part of X, respectively. IM is the identity
matrix by M ×M and TðuÞ denotes the Toeplitz matrix
whose first column is u.TrðXÞ, det ðXÞ, hXiR, vecðXÞ, and
EðXÞ present the trace, the determinant, the real inner prod-
uct, the vectorization, and the expectation of X, respectively.
X†, XH , XT , and X∗ denote the Moore-Penrose pseudoin-

verse, the conjugate transpose matrix, the transpose, and
the conjugation of X, respectively. conjð⋅Þ means the conju-
gate operation on each entry of a vector or a matrix. e1 is a
vector where the first element is 1, and the rest are 0. inf ð⋅
Þ means the infimum operator. convðAÞ is the convex hull
of A . k⋅k∗A is the dual atomic norm.

2. Signal Model

Suppose that K narrowband EM source signals impinge onto
a nested cross-dipole array, the sensors with locations fd1d
, d2d,⋯, dMdg, dm ∈ S,m = 1,⋯,M. M is the number of
elements, M =M1 +M2. The unit interelement spacing d is
usually set as half-wavelength. The signal model is shown
in Figure 1. Each cross-dipole consists of two dipoles parallel
to the x-axis and y-axis, respectively [18]. Consequently, the
received signals for x-axis and y-axis at sensor m can be
given by

x l½ �
m tð Þ = 〠

K

k=1
B l½ �
k s

l½ �
k tð Þam θk

� �
+ n l½ �

m tð Þ l = x, y, ð1Þ

where θk and θk denote the DOA and the normalized DOA
of the kth source, respectively. θk ∈ ½−π/2, π/2�, θk = sin θk/2,
and θk ∈ ½−1/2, 1/2�. amðθkÞ = ej2πθkdm is the spatial response

of the mth dipole for the kth source. B½l�
k and s½l�k ðtÞ present

the cross-dipole response and signal for l-axis of the kth

source. Moreover, B½x�
k = −1 and B½y�

k = cos ðarcsin 2θkÞ. n½l�mðt
Þ is the noise component for l-axis at the mth sensor. When

x-axis and y-axis are considered simultaneously, x½l�mðtÞ, n½l�mð
tÞ, and s½l�k ðtÞ can be written as vectors: xmðtÞ =
½x½x�m ðtÞ, x½y�m ðtÞ�T , nmðtÞ = ½n½x�m ðtÞ, n½y�m ðtÞ�T , and skðtÞ =
½s½x�k ðtÞ, s½y�k ðtÞ�T . The covariance of skðtÞ is given by [4].

Rsk = E sk tð ÞsHk tð Þ� �
=
p2kUP

2
I2 + p2kCPΦ αkð Þw βkð ÞwH βkð ÞΦH αkð Þ,

ð2Þ

where

Φ αkð Þ =
cos αkð Þ sin αkð Þ
−sin αkð Þ cos αkð Þ

" #
, ð3Þ

w βkð Þ = cos βkð Þ j sin βkð Þ½ �T , ð4Þ

with αk ∈ ð−π/2 , π/2 Þ and βk ∈ ð−π/4 , π/4 Þ being the polar-
ization orientation angle and polarization ellipticity angle,
respectively. p2kCP and p2kUP

denote the power of the kth source
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of CP signals and unpolarized (UP) signals, respectively. The
degree of polarization (DOP) of skðtÞ can be calculated from
the Rsk

.

ηk = 1 −
4 det Rsk

� �
Tr Rsk

� �� �2
" #1/2

: ð5Þ

Moreover, ηk is defined as the ratio of CP component
power to total signal power [4].

ηk =
p2kCP

p2kCP + p2kUP

: ð6Þ

The DOPs of CP signals and UP signals are ηk = 1 and
ηk = 0, respectively, and that of PP signals is ηk ∈ ð0, 1Þ. CP
signal of the kth source is expressed as

sk tð Þ =
cos φk

ejψk sin φk

" #
~sk tð Þ, ð7Þ

where φk ∈ ½0, π/2� and ψk ∈ ð−π, π� are polarization param-
eters, representing auxiliary polarization angle and the aux-
iliary polarization phase difference, respectively [20]. The
covariance matrix Rsk

of CP signals and UP signals are all
rank 2. Since PP signals can be expressed as the superposi-
tion of CP signals and UP signals, PP signals of the kth
source can be expressed as

sk tð Þ = ffiffiffiffiffi
ηk

p cos φk

ejψk sin φk

" #
+

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ηk
2

r
β1 tð Þ
β2 tð Þ

" #( )
~sk tð Þ:

ð8Þ

Both β1ðtÞ and β2ðtÞ are Gaussian random processes
with zero mean. The covariance matrix Rsk

of PP signals is
rank deficient.

Consider the dipoles measurements of x-axis and y-axis,
Equation (1) can be written as

x l½ �
S tð Þ = 〠

K

k=1
B l½ �
k s

l½ �
k tð ÞaS θk

� �
+ n l½ �

S tð Þ l = x, y, ð9Þ

where x½l�S ðtÞ = ½x½l�1 ðtÞ,⋯, x½l�MðtÞ� is the array response of l
-axis, aSðθkÞ = ½a1ðθkÞ,⋯,aMðθkÞ�

T
is the steering vector,

and n½l�S ðtÞ = ½n½l�1 ðtÞ,⋯, n½l�MðtÞ�
T
denotes the additive noise

of l-axis. Moreover, the source signals fs½l�1 ðtÞ,⋯, s½l�K ðtÞg are
assumed to be independent random Gaussian processes.

The additive noise n½l�
S ðtÞ is an independent additive complex

white Gaussian process with distribution CN ð0, ðσ½l�Þ2IMÞ.
The covariance of x½l�S ðtÞ is

Rx l½ �
S

= E x l½ �
S tð Þ x l½ �

S tð Þ
� �H	 


= 〠
K

k=1
p l½ �
k

� �2
a l½ �
S θk
� �

a l½ �
S θk
� �� �H

+ σ l½ �
� �2

IM ,
ð10Þ

where ðp½l�k Þ
2
and ðσ½l�Þ2 denote the source power and noise

power of the kth source of l-axis, respectively.

3. One-Bit Quantization

The one-bit quantizer can be implemented by a sign opera-
tion, which is defined as

sign xð Þ =
−1, x ≤ 0,

1, x > 0:

(
ð11Þ

After one-bit quantizer, only the symbol information is
left. Although the one-bit quantizer does not reduce the
computational complexity, it greatly reduces the hardware
consumption compared with the unquantized algorithm.
Equation (9) is modified as

y l½ �
S tð Þ = 1ffiffiffi

2
p sign R x l½ �

S tð Þ
n o� �h

+ j sign I x l½ �
S tð Þ

n o� �i
:

ð12Þ

The factor 1/
ffiffiffi
2

p
normalizes the power of y½l�S ðtÞ [19]. y½x�S

and y½y�S are rewritten as Y½x�
S and Y½y�

S in multiple snapshots.

The covariance matrices corresponding to Y½x�
S and Y½y�

S are
approximated by the sample covariance, expressed as R̂Y½x�

S

and R̂Y½y�
S

, respectively.

R̂Y l½ �
S

=
1
N
〠
N

n=1
Y l½ �
S nð Þ Y l½ �

S nð Þ
� �H

: ð13Þ

We combine the DOA estimation with the difference
coarray instead of the original array. The number of

... ...
M1−1

d
0 1 M2−10

Signal

(M1+1)d

1
y

z

x

𝜃

Figure 1: Nested array of cross-dipoles [22].
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estimable sources is closely related to the structure of the
array. The difference coarray corresponding to S is defined
as D = fdi − djj∀di, dj ∈ Sg. Specifically, the difference coar-
ray of the nested array can be expressed
asD = f1 −M2ðM1 + 1Þ,⋯, 0,⋯,M2ðM1 + 1Þ − 1g. Dmax =
M2ðM1 + 1Þ − 1, where Dmax is the maximum number of
DOFs [10]. The difference coarray thus occurs naturally in
problems involving second-order statistics of the received
signals [10]. The one-bit autocorrelation vectors of the dif-
ference coarray D for the x-axis and y-axis are defined as fol-
lows:

y l½ �
D = J†vec R̂Y l½ �

S

� �
: ð14Þ

The definition of binary matrix J is the same as [33],

with size jSj2 − by − jDj. The columns of J satisfy hJi:,~d =
½vecð~Jð~dÞÞ�T , ~d ∈D, where ~Jð~dÞ ∈ f0, 1g∣S∣×∣S∣ is given by

~J ~d
� �D E

di ,dj

=
1, if di − dj = ~d,

0, otherwise:

(
∀di, dj ∈ S ð15Þ

4. The Proposed Methods

4.1. One-Bit Multiple Snapshots Model with Atomic Norm
Minimization. The atomic norm is used to find the mini-
mum number of atoms in the continuous parameter space;
then, the basis mismatches by grid discretization will be
avoided. And the linear loss function with characteristics of
one-bit quantization will overcome the sign inconsistency
caused by one-bit quantization. In order to make use of

the joint sparsity between y½x�D and y½y�D , the following defini-
tion is given:

Y = y x½ �
D , y y½ �

D

h i
: ð16Þ

In Equation (16), Y is defined as the multiple snapshots
(two snapshots) measurements. Let X be the denoising sig-
nal of Y and defines an atom to represent X as

A f , bð Þ = aD fð ÞbH ∈A , ð17Þ

where f ∈ ½0, 1Þ, b ∈ℂL, kbk2 = 1, and A is the set of atoms.
We assume that no element A ∈A lies in the convex hull
of the other elements convðA \AÞ, i.e., the elements of A
are the extreme points of convðAÞ [34]. A is defined as

A = A f , bð Þ ∣ f ∈ 0, 1½ Þ, bk k2 = 1
� �

, ð18Þ

where A is regarded as an infinite dictionary to describe the
continuous changing parameters, and the atom of A is the
basic unit to construct X. kXkA ,0 is defined to represent

the minimum number of atoms describing X [29].

Xk kA ,0 = inf
K

X = 〠
K

k=1
ckA f k, bkð Þ, ck ≥ 0

( )
: ð19Þ

Since the minimization of Equation (19) is a NP prob-
lem, we consider the convex relaxation of kXkA ,0, denoted
by kXkA . kXkA denotes the gauge of A , and the gauge func-
tion can be defined as [35, 36].

Xk kA = inf t > 0 : X ∈ t conv Að Þf g

= inf 〠
k

ck X =〠
k

ck






 A f k, bkð Þ, ck ≥ 0
( )

,
ð20Þ

where kXkA is called the atomic norm of X, which actually
adds a sparse constraint to A but without discretization.

Considering the characteristics of one-bit quantization,
and to ensure consistent recovery and constrain the signals
to the unit ball, a linear loss function is proposed to recover
the signals.

arg min
XR ,XS

−
1

2 Dj j Y l
^

R

� �T

X l
^

R + Y l
^

S

� �T

X l
^

S

 !
+ τ Xk kA ,

s:t: X l
^

R

���� ����
1
+ X l

^

S

���� ����
1
≤ 1,

ð21Þ

where l ∈ L, τ is regularization parameter, which is defined as

τ = c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L log Dj j

p
, ð22Þ

where scale factor c = 0:358. It can be seen from Equation
(16) that Equation (21) can be transformed into a matrix
equation with dimension of 2 × 2 when L = 2. It is easy to
know that only diagonal elements play an important role.
Then, Equation (21) can be transformed into the formula
about trace.

arg min
XR ,XS

−
1

2 Dj jTr YT
RXR + YT

SXS

� �
+ τ Xk kA ,

s:t: Tr YT
RXR + YT

SXS

� �
≤ Tr I2ð Þ:

ð23Þ

Equation (23) can be solved by the SDP problem.

arg min
XR ,XS

−
1

2 ∣D ∣
Tr YT

RXR + YT
SXS

� �
+
τ

2
Tr T uð Þð Þ + Tr Wð Þ½ �,

s:t:
T uð Þ XR + jXS

XR + jXSð ÞH W

" #
≥ 0,

Tr YT
RXR + YT

SXS

� �
≤ Tr I2ð Þ:

ð24Þ
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The SDP problem can be solved by CVX [35]. However,
the convergence speed of SDP is very slow.

4.2. ADMM for One-Bit Multiple Snapshot Model. In order
to speed up the convergence speed and protect the accuracy
of signal reconstructed, Equation (23) can also be solved by
ADMM.

arg min
XR ,XS

−
1

2 Dj jTr YT
RXR + YT

SXS

� �
+
τ

2
Tr T uð Þð Þ + Tr Wð Þ½ �,

s:t: Z =
T uð Þ XR + jXS

XR + jXSð ÞH W

" #
,

Z ≥ 0,

Tr Gð Þ = Tr I2ð Þ − Tr YT
RXR

� �
− Tr YT

SXS

� �
,

Tr Gð Þ ≥ 0:
ð25Þ

Z, Λ, and W are Hermitian matrices, TrðGÞ is the dual
variable, and the augmented Lagrangian corresponding to
the above formula is

L XR,XS,W,Λ, Z, Tr Gð Þ, u, γð Þ
= −

1
2 Dj jTr YT

RXR + YT
SXS

� �
+
τ

2
Tr T uð Þð Þ + Tr Wð Þ½ �

= Λ, Z −
T uð Þ XR + jXS

XR + jXSð ÞH W

" #* +

=
ρ

2
Z −

T uð Þ XR + jXS

XR + jXSð ÞH W

" #�����
�����
2

F

= γTr G − I2 + YT
RXR + YT

SXS

� �
=
ρ

2
G − I2 + YT

RXR + YT
SXS

�� ��2
F
,

ð26Þ

where γ is the dual variable and ρ is the penalty parameter.
Note that

Z =
Z0 Z1

Z2 Z3

" #
=

Z0 Z1R + jZ1S

Z1R + jZ1S

� �H Z3

24 35, ð27Þ

Λ =
Λ0 Λ1

Λ2 Λ3

" #
=

Λ0 Λ1R + jΛ1S

Λ1R + jΛ1S

� �H Λ3

24 35: ð28Þ

ADMM has the following update steps:

Xt+1
R ,Xt+1

S ,Wt+1, ut+1
� �

= arg min L
X,W,u

XR,XS,W, u,Λt , Zt , Tr Gð Þt , γt� �
,

ð29Þ

Zt+1, Tr Gð Þt+1� �
= arg min L

Z,Tr Gð Þ
Xt+1

R ,Xt+1
S ,Wt+1, ut+1,Λt , Zt , Tr Gð Þ, γt� �

,

ð30Þ

Λt+1 =Λt + ρ Zt+1 −
T ut+1
� �

Xt+1
R + jXt+1

S

� �H Xt+1
R + jXt+1

S

Wt+1

24 350@ 1A,

ð31Þ
γt+1 = γt + ρTr Gt+1 − I2 + YT

RX
t+1
R + YT

SX
t+1
S

� �
: ð32Þ

The closed form expressions updated with the iteration
times t can be obtained.

Xt+1
R = ρI Dj j +

ρ

2
YRYT

R

� �−1 1
4 Dj j +

τ

2

� �
YR + ρZt

R +Λt
1R +

ρ

2
YRGt

� �
,

ð33Þ

Xt+1
S = ρI Dj j +

ρ

2
YSYT

S

� �−1 1
4 Dj j +

τ

2

� �
YS + ρZt

S +Λt
1S +

ρ

2
YSGt

� �
,

ð34Þ

Wt+1 = 1
2
Zt
3 +

1
2

Zt
3

� �H + 1
ρ

Λt
3 −

τ

2
I2

� �
, ð35Þ

ut+1 =
1
ρ
⋅Ψ ⋅ conj G Λt

0
� �

+ ρG Zt
0

� �
−
τ

2
Dj je1

� �
, ð36Þ

where a =GðAÞ is the mapping of a matrix to a vector,
where the ith entry in a is the sum of all entries Aj,~j’s of A,
satisfying j −~j + 1 = ~d [29]. Ψ is a diagonal matrix with diag-
onal elements Ψ~d,~d = 1/ð∣D∣−~d + 1Þ, ~d = 1,⋯, ∣D ∣ . The
update of TrðGÞ is expressed as

Tr Gð Þt+1 = Tr 1 −
τ

ρ

� �
I2 − YT

RX
t+1
R

	 
	 

+
: ð37Þ

Let

Ψt =
T ut+1
� �

Xt+1
R + jXt+1

S

Xt+1
R + jXt+1

S

� �H Wt+1

24 35 −
1
ρ
Λt , ð38Þ

and Ut diag ðfσt~dgÞðUtÞH is the eigenvalue decomposition of

Ψt . Then, the updated closed form expression of Z can be
given as

Zt+1 =Ut diag σt
~d

� �� �
Ut� �H

: ð39Þ

The reconstructed denoising measurements X̂ can be
obtained through the aforementioned closed form expres-
sions. Next, two specific DOA estimation methods for the
X̂ will be introduced: SSRMUSIC algorithm and DP method.

4.3. One-Bit ADMM-SSRMUSIC Algorithm. One-Bit
ADMM-SSRMUSIC first utilizes one-bit ADMM to recon-
struct the measurements X̂ and then estimates DOAs by
SSRMUSIC. SSRMUSIC is the algorithm that obtains the
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covariance matrix with full rank by spatial smoothing [37]
firstly and then finds the directions by Root-MUSIC [38].
In order to find directions by Root-MUSIC, X̂ will be
divided into ~L subarrays, where ~L = ∣D ∣ −Dmax. The subarray
can be expressed as X̂~l ,~l = 1,⋯, ~L. The full-rank covariance
matrix can be obtained by the above operations.

R̂X̂~l
=
1
~L
〠
~L

~i

E X̂~lX̂
H
~l

� �
: ð40Þ

Then, the DOAs can be estimated by Root-MUSIC based
on Equation (40). The subspace algorithm is a very classical
and well-known DOA estimation method, so we will not
introduce the subspace algorithm in detail but focus on the
DP method.

4.4. One-Bit ADMM-DP Algorithm. The first step of one-bit
ADMM-DP is the same as one-bit ADMM-SSRMUSIC and
then estimates DOAs by the DP method. Each norm has a
corresponding dual norm. Compared with the original
norms, dual norms have several useful properties and are
widely used in many problems. The DP method transforms
the optimal solution of the original problem to that of the
dual problem. We can obtain the frequency support set
and estimate the DOA [23, 29].

The Lagrangian corresponding to Equation (23) is

L XR,XI , Tr Gð Þð Þ = τ Xk kA −
1

2 Dj jTr YT
RXR + YT

SXS

� �
+ Tr Gð Þ Tr YT

RXR + YT
SXS

� �
− Tr I2ð Þ� �

:

ð41Þ

The dual function of Equation (41) is as follows:

g Tr Gð Þð Þ = inf
XR ,XS

L XR,XS, Tr Gð Þð Þ
= −2Tr Gð Þ + inf

XR ,XS

τ Xk kA + Tr Gð ÞTr YT
RXR+YT

SXS

���
−

1
2 ∣D ∣

Tr YT
RXR + YT

SXS

� �

= −2Tr Gð Þ + inf

XR ,XS

τ Xk kA −
1

2 ∣D ∣
− Tr Gð Þ

� �
Tr Y,Xh iR½ �

	 

= −2Tr Gð Þ + inf

XR ,XS

τ Xk kA −
1

2 ∣D ∣
− Tr Gð Þ

� �
Y∗,X

� �
R

	 

= −2Tr Gð Þ + I ϖ: ϖk k∗A≤τf g ~X

� �
,

ð42Þ

where ~X = ð1/2 ∣D∣−TrðGÞÞY∗. IAð⋅Þ is an indicator func-
tion; the following formula can also be expressed as

I ϖ: ϖk k∗A≤τf g ~X
� �

=
0, ~X

�� ��∗
A
≤ τ,

−∞, otherwise:

(
ð43Þ

From Equations (42) and (43), we have τkXkA −
h~X,XiR ≤ 0,

τ Xk kA ≤ ~X,X
� �

R
: ð44Þ

The dual atomic norm is defined as

~X
�� ��∗

A
= sup

Xk kA≤1
~X,X
� �

R
= sup

A∈A
~X,A
� �

R
: ð45Þ

From the definition of dual atomic norm and k~Xk∗A ≤ τ,
we can obtain

~X,X
� �

R
≤ ~X
�� ��∗

A
Xk kA ≤ τ Xk kA : ð46Þ

From Equations (44) and (46), we have h b~X , X̂iR = τ
kX̂kA . It can be seen from Equations (17), (19), and (20),
that Âð f , bÞ = âDð f ÞbH , X̂ =∑K

k=1ckÂð f k, bkÞ,
kX̂kA =∑ck. Finally,

b~X , âD fð Þ
D E

R
= τ: ð47Þ

As a result, the signal frequencies can be recovered and
DOAs can be estimated from Equation (47).

5. Simulation Results

Considering the nested array S = f1, 2, 3, 4, 5, 6, 12, 18, 24,
30g, the difference array corresponding to S is D = f0,±1,±
2,⋯,±29g. φk = ½0, π/2� and ψk = ½−π, π� are obtained ran-
domly. p2k = 1 and SNR = 10 log ð∑K

k=1p
2
k/2kσ2Þ = 10 log ð1/2

σ2Þ. The performance of the DOA estimation is measured
by the mean-square error (MSE) as

MSE =
1
RK

〠
R

r

〠
K

k

θ∧r,k − θk
� �2

, ð48Þ

where R means Monte Carlo runs, R = 500.
In order to show the advantages of the combination of

the nested cross-dipole array and one-bit ADMM, the spatial
spectrums are used to show the maximum number of
sources that can be estimated. Figure 2 shows two spatial
spectrums obtained by one-bit ADMM-SS-MUSIC and
one-bit SS-MUSIC, respectively. One-bit ADMM-SS-
MUSIC first reconstructs denoising measurements with
one-bit ADMM and then estimates DOAs by SS-MUSIC,
while one-bit SS-MUSIC estimates DOAs directly by SS-
MUSIC [22]. The number of snapshots N = 100 and SNR
= 0dB. The number of sources K =Dmax = 29. The sources
are uniformly distributed on ½−0:49, 0:49�. Assuming that
there are five CP signals, six UP sources, and eighteen PP
signals, let the DOP of six PP signals are ηk = 0:25 and that
of six PP signals are ηk = 0:5,; the rest of PP signals are ηk
= 0:75. We can see that 29 sources are completely estimated
by one-bit ADMM-SS-MUSIC. Obviously, K = 29 > jSj = 10
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. One-bit SS-MUSIC can only roughly estimate less than 29
sources, and the angle deviation is larger than one-bit
ADMM-SS-MUSIC. It can infer that the algorithm will esti-
mate more sources and improve the reliability if the signal is
reconstructed by one-bit ADMM firstly.

Next, we consider the following DOA estimation
algorithms:

(1) One-bit ADMM-SSRMUSIC: the gridless algorithm
proposes in this paper
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(2) One-bit ADMM-DP: the gridless algorithm proposes
in this paper

(3) One-bit SSRMUSIC: the method describes in [22],
which finds directions directly by one-bit SS-Root-
MUSIC

(4) Unquantized MUSIC: the method describes in [18],
which is an unquantized method, and estimates
DOAs by SS-MUSIC

Figure 3 illustrates the MSEs and Cramer-Rao bounds
(CRBs) [22] versus the SNR with N = 100, K = 5, and θk ∈
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f−0:4,−0:2, 0, 0:2, 0:4g. The sources are divided into one CP
signal, one UP signal, and three PP signals with ηk = f0,
0:25, 0:5, 0:75, 1g. If there is no special explanation, θk and
ηk of the sources will not change in the next simulation. It
can be seen from Figure 3 that one-bit ADMM-DP has
higher estimation accuracy than one-bit ADMM-
SSRMUSIC and one-bit SSRMUSIC at low SNR. The accu-
racy of one-bit ADMM-DP even exceeds the unquantized
MUSIC when SNR is near -12 dB. When SNR is less than
about 9 dB, one-bit ADMM-DP has better performance than
one-bit ADMM-SSRMUSIC. The accuracy of one-bit
ADMM-SSRMUSIC is much higher than that of one-bit
SSRMUSIC at low SNR, and the accuracy gap between them
gradually decreases with SNR increasing. Obviously, ADMM
is very effective for improving the accuracy of DOA estima-
tion, especially at low SNR.

Figure 4 illustrates the MSEs and CRBs versus the num-
ber of snapshots with SNR = −6 dB, K = 5. In the range of
N = 10 to N = 60, the estimation accuracy of one-bit
ADMM-DP is higher than that of the other three algorithms.
In addition, when the number of snapshots is less than about
80, one-bit ADMM-DP has better performance than one-bit
ADMM-SSRMUSIC. It can be seen that the DP method is
robust in the low snapshot. Besides, the accuracy of one-bit
ADMM-SSRMUSIC and unquantized MUSIC is very close
between N = 100 and N = 300. It reveals that the one-bit
ADMM-SSRMUSIC and unquantized MUSIC have compa-
rable performance in certain SNR and snapshot ranges.
One-bit ADMM-SSRMUSIC and one-bit SSRMUSIC have
almost the same recovery accuracy between N = 10 and N
= 40, but the estimation accuracy of one-bit ADMM-
SSRMUSIC is higher than that of one-bit SSRMUSIC with
the increase of the number of snapshots. It can be recognized
that the introduction of ADMM greatly improves
performance.

Figure 5 shows the probability of a successful detection
(PSD) versus the SNR with N = 100, K = 5. The PSD of the
algorithms proposed in this paper (one-bit ADMM-
SSRMUSIC and one-bit ADMM-DP) is higher than one-
bit SSRMUSIC. In particular, one-bit ADMM-SSRMUSIC
can achieve a 100% success rate at low SNR.

6. Conclusion

The one-bit ADMM on a nested cross-dipole array with the
MMV model is used to estimate the DOAs of EM sources in
this paper. Based on the properties of the cross-dipole array,
one-bit ADMM is applied to the x-axis and y-axis dipole
array and extended to the MMV model for solving the
atomic norm minimization, the sign inconsistency will be
solved and the basis mismatch will be avoided finally. The
reconstructed signal denoising measurements will be
obtained via one-bit ADMM. Finally, the SSRMUSIC algo-
rithm and DP method are derived to estimate DOAs by
the reconstructed denoising measurements. The simulation
results show that the proposed algorithms are robust to
DOA estimation of CP signals and PP signals, and ADMM
is an effective method to improve the accuracy of DOA esti-

mation. The one-bit ADMM-SSRMUSIC has a better per-
formance than the one-bit SSRMUSIC in DOA estimation.
Moreover, the accuracy of one-bit ADMM-DP is even sur-
passing that of unquantized MUSIC at low SNR and low
snapshot.

Data Availability

No data were used to support this study.

Conflicts of Interest

The authors declare that there is no conflict of interest
regarding the publication of this paper.

Acknowledgments

The study was supported by the Key Research and Develop-
ment Program of Hainan Province (grant number 230
ZDYF2019011), the National Natural Science Foundation
of China (grant numbers 61701144, 61861015 231, and
61961013), the Program of Hainan Association for Science
and Technology Plans to Youth R&D 232 Innovation under
grant number QCXM201706, the scientific research projects
of University in Hainan Province 233 under grant number
Hnky2018ZD-4, the Young Elite Scientists Sponsorship Pro-
gram by CAST under grant number 234 2018QNRC001, the
Collaborative Innovation Fund of Tianjin University and
Hainan University under grant number 235
HDTDU201906, and the Scientific Research Setup Fund of
Hainan University under grant number KYQD(ZR)1731
and National Natural Science Foundation of China
(61701144, 61801076, and 61701533).

References

[1] J. Li and R. T. Compton, “Angle and polarization estimation
using ESPRIT with a polarization sensitive array,” IEEE Trans-
actions on Antennas and Propagation, vol. 39, no. 9, pp. 1376–
1383, 1991.

[2] J. Li and R. T. Compton, Angle estimation using a polarization
sensitive array, vol. 1, Antennas and Propagation Society Sym-
posium 1991 Digest, London, Ontario, Canada, 1991.

[3] J. Li, “On polarization estimation using a polarization sensitive
array,” in IEEE Sixth SP Workshop on Statistical Signal and
Array Processing, pp. 465–468, Victoria, BC, Canada, 1992.

[4] J. He, M. O. Ahmad, and M. N. S. Swamy, “Near-field localiza-
tion of partially polarized sources with a cross-dipole array,”
IEEE Transactions on Aerospace and Electronic Systems,
vol. 49, no. 2, pp. 857–870, 2011.

[5] K. Wang, J. He, T. Shu, and Z. Liu, “Localization of mixed
completely and partially polarized signals with crossed-dipole
sensor arrays,” Sensors, vol. 15, no. 12, pp. 31859–31868, 2015.

[6] C. L. Liu and P. P. Vaidyanathan, “One-bit sparse array DOA
estimation,” 2017 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. , 20173126–3130,
2017.

[7] R. Schmidt, “Multiple emitter location and signal parameter
estimation,” IEEE Transactions on Antennas and Propagation,
vol. 34, no. 3, pp. 276–280, 1986.

9Wireless Communications and Mobile Computing



[8] R. Roy and T. Kailath, “ESPRIT-estimation of signal parame-
ters via rotational invariance techniques,” IEEE Transactions
on Acoustics, Speech, and Signal Processing, vol. 37, no. 7,
pp. 984–995, 1989.

[9] A. Moffet, “Minimum-redundancy linear arrays,” IEEE Trans-
actions on Antennas and Propagation, vol. 16, no. 2, pp. 172–
175, 2003.

[10] P. Pal and P. P. Vaidyanathan, “Nested arrays: a novel
approach to array processing with enhanced degrees of free-
dom,” IEEE Transactions on Signal Processing, vol. 58, no. 8,
pp. 4167–4181, 2010.

[11] P. P. Vaidyanathan and P. Pal, “Sparse sensing with co-prime
samplers and arrays,” IEEE Transactions on Signal Processing,
vol. 59, no. 2, pp. 573–586, 2011.

[12] P. Pal and P. P. Vaidyanathan, “Coprime sampling and the
music algorithm,” in 2011 Digital Signal Processing and Signal
Processing Education Meeting (DSP/SPE)}, pp. 289–294, 2011.

[13] S. Qin, Y. D. Zhang, and M. G. Amin, “Generalized coprime
array configurations for direction-of-arrival estimation,” IEEE
Transactions on Signal Processing, vol. 63, no. 6, pp. 1377–
1390, 2015.

[14] A. Cui, T. Xu, and W. Yu, “An array interpolation based com-
pressive sensing DOA method for sparse array,” in 2019 3rd
International Conference on Imaging, Signal Processing and
Communication (ICISPC), pp. 24–27, 2019.

[15] Y.-k. Zhang, H.-y. Xu, R. Zong, B. Ba, and D.-m. Wang, “A
novel high degree of freedom sparse array with displaced mul-
tistage cascade subarrays,” Digital Signal Processing, vol. 90,
pp. 36–45, 2019.

[16] S. Li and X. P. Zhang, “A new approach to construct virtual
array with increased degrees of freedom for moving sparse
arrays,” IEEE Signal Processing Letters, vol. 27, pp. 805–809,
2020.

[17] J. Shi, F. Wen, and T. Liu,NestedMIMO Radar: Coarrays, Ten-
sor Modeling and Angle Estimation, IEEE Transactions on
Aerospace and Electronic Systems, 2020.

[18] J. He, Z. Zhang, T. Shu, and W. Yu, “Direction finding of mul-
tiple partially polarized signals with a nested cross-diople
array,” IEEE Antennas and Wireless Propagation Letters,
vol. 16, pp. 1679–1682, 2017.

[19] L. Pan, S. Xiao, and B. Li, “Continuous-time signal recovery
from 1-bit multiple measurement vectors,” AEU-International
Journal of Electronics and Communications, vol. 76, pp. 132–
136, 2017.

[20] T. Chen, M. Guo, and X. Huang, “Direction finding using
compressive one-bit measurements,” IEEE Access, vol. 6,
pp. 41201–41211, 2018.

[21] Y. Gao, D. Hu, Y. Chen, and Y.Ma, “Gridless 1-b DOA estima-
tion exploiting SVM approach,” IEEE Communications Let-
ters, vol. 21, no. 10, pp. 2210–2213, 2017.

[22] Z. Cheng, S. Chen, and Q. Shen, “Direction finding of electro-
magnetic sources on a sparse cross-dipole array using one-bit
measurements,” IEEE Access, vol. 8, pp. 83131–83143, 2020.

[23] Z. Wei, W.Wang, and F. Dong, “Gridless one-bit direction-of-
arrival estimation via atomic norm denoising,” IEEE Commu-
nications Letters, vol. 24, no. 10, pp. 2177–2181, 2020.

[24] G. Tang, B. N. Bhaskar, and P. Shah, “Compressed sensing off
the grid,” IEEE Transactions on Information Theory, vol. 59,
no. 11, pp. 7465–7490, 2013.

[25] L. Wan, X. Kong, and F. Xia, “Joint range-Doppler-angle esti-
mation for intelligent tracking of moving aerial targets,” IEEE
Internet of Things Journal, vol. 5, no. 3, pp. 1625–1636, 2018.

[26] F. Wen and J. Shi, “Fast direction finding for bistatic EMVS-
MIMO radar without pairing,” Signal Process, vol. 173,
p. 107512, 2020.

[27] X. Wang, M. Huang, and L. Wan, Joint 2D-DOD and 2D-DOA
Estimation for Coprime EMVS-MIMO Radar, Circuits, Sys-
tems, and Signal Processing, accept, 2020.

[28] S. Boyd, N. Parikh, and E. Chu, “Distributed optimization and
statistical learning via the alternating direction method of mul-
tipliers,” Foundations and Trends in Machine Learning, vol. 3,
no. 1, pp. 1–122, 2010.

[29] Y. Li and Y. Chi, “Off-the-grid line spectrum denoising and
estimation with multiple measurement vectors,” IEEE Trans-
actions on Signal Processing, vol. 64, no. 5, pp. 1257–1269,
2016.

[30] Wong, L. Li, and Zoltowski, “Root-MUSIC-based direction-
finding and polarization estimation using diversely polarized
possibly collocated antennas,” IEEE Antennas and Wireless
Propagation Letters, vol. 3, pp. 129–132, 2004.

[31] Y. Merah, S. Miron, and D. Brie, “A generalized acquisition
scheme for vector cross-product direction finding with spa-
tially spread vector-sensor components,” 2013 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing,
2013, pp. 3977–3980, Vancouver, BC, 2013.

[32] D. Rahamim, J. Tabrikian, and R. Shavit, “Source localization
using vector sensor array in a multipath environment,” IEEE
Transactions on Signal Processing, vol. 52, no. 11, pp. 3096–
3103, 2004.

[33] C. Liu and P. P. Vaidyanathan, “New Cramer-Rao bounds for
coprime and other sparse arrays,” 2016 IEEE Sensor Array and
Multichannel Signal Processing Workshop (SAM), pp. , 20161–
5, 2016.

[34] V. Chandrasekaran, B. Recht, P. A. Parrilo, and A. S. Willsky,
“The convex geometry of linear inverse problems,” Founda-
tions of Computational Mathematics, vol. 12, no. 6, pp. 805–
849, 2012.

[35] R. T. Rockafellar, Convex Analysis, Princeton University Pre,
1970.

[36] F. F. BONSALL, “A general atomic decomposition theorem
and Banach's closed range theorem,” Quarterly Journal of
Mathematics, vol. 42, no. 1, pp. 9–14, 1991.

[37] M. L. McCloud and L. L. Scharf, “A new subspace identifica-
tion algorithm for high-resolution DOA estimation,” IEEE
Transactions on Antennas and Propagation, vol. 50, no. 10,
pp. 1382–1390, 2002.

[38] B. D. Rao and K. V. S. Hari, “Performance analysis of root-
music,” IEEE Transactions on Acoustics, Speech, and Signal
Processing, vol. 37, no. 12, pp. 1939–1949, 1989.

10 Wireless Communications and Mobile Computing



Research Article
Compressed Sensing-Based Range-Doppler Processing Method for
Passive Radar

Xia Bai , Hejing Guo, Juan Zhao, and Tao Shan

School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China

Correspondence should be addressed to Xia Bai; bai@bit.edu.cn

Received 9 February 2021; Accepted 9 July 2021; Published 23 July 2021

Academic Editor: Liangtian Wan

Copyright © 2021 Xia Bai et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Passive radar (PR) systems use the existing transmitters of opportunity in the environment to perform tasks such as detection,
tracking, and imaging. The classical cross-correlation based methods to obtain the range-Doppler map have the problems of
high sidelobe and limited resolution due to the influence of signal bandwidth. In this paper, we propose a novel range-Doppler
processing method based on compressed sensing (CS), which performs sparse reconstruction in range and Doppler dimensions
to achieve high resolution and reduces sidelobe without excessive computational burden. Results from numerical simulations
and experimental measurements recorded with the Chinese standard digital television terrestrial broadcasting (DTTB) based PR
show that the proposed method successfully handles the range-Doppler map formatting problem for PR and outperforms the
existing CS-based PR processing methods.

1. Introduction

Passive radar [1] (PR) is a kind of radar system which uses
the existing transmitters of opportunity (such as FM [2, 3],
GSM [4], and DVB-T [5, 6]) in space to achieve target detec-
tion and tracking and other tasks without special deployment
or installation of transmitters. In recent years, PR has been
widely concerned in the military and commercial fields
because of advantages in terms of low-cost implementation,
confidentiality, strong antijamming, and reduced electro-
magnetic pollution to the environment.

In this study, we mainly focus on the generation of a pas-
sive radar range-Doppler (RD) map. Based on the matched
filtering theory, the classical method uses the cross-
ambiguity function (CAF) and fast Fourier transform (FFT)
to calculate RD response. However, the classical method
faces some challenges. On the one hand, the generated RD
map has a high sidelobe level, which may get false target posi-
tion and Doppler frequency. On the other hand, the signal
bandwidth of passive radar is usually narrow compared to
that of active radar. It limits range resolution, and this limita-
tion leads to undesirable performance in various applications
[7]. In order to improve the range resolution of PR, the mul-

tiple broadcast channels from a single transmitter were
exploited [8–10], which can be implemented only when the
multiband system is used. Besides, a longer integration time
can improve the Doppler resolution. But that would cause
migration phenomena during integration and require com-
plex compensation [11, 12].

In recent years, the application of compressed sensing
(CS) has been considered in passive radar. CS is a sparse sig-
nal processing technology [13, 14], which can reduce the
amount of sampling data and use a small number of mea-
surements to achieve excellent signal reconstruction. CS has
been widely used in the field of radar signal processing; it
has great potential in improving resolution [15, 16]. With
the increasing attention in the field of PR, the RD map of tar-
gets for PR can be formulated as a sparse recovery problem,
and the works related to CS-based PR processing have been
published [17–19]. In [17, 18], a normal CS-based PR pro-
cessing scheme was proposed to achieve better range and
Doppler resolutions. Due to the fact that the dictionary is
composed of the template signals with discrete delays and
Doppler shifts, this method has high reconstruction accu-
racy, but it needs a large amount of storage and calculations.
[19] proposed a RD map generation algorithm for PR. The
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extended orthogonal matching pursuit (EOMP) algorithm is
employed to obtain the Doppler frequency with an improved
resolution and a reduced sidelobe level. But one-dimensional
cross-correlation is used to obtain the range compressed pro-
file, which is the same as the classical method.

In this paper, we propose a novel range-Doppler process-
ing method for PR. CS is applied to the range domain and
Doppler domain, respectively, which no longer requires huge
storage space occupied by the dictionary. In addition, our
contributions are the following. (1) In the Doppler dimen-
sion, considering the sparse characteristics of the signal, we
present a modified OMP algorithm based on the multiple
measurement vector (MMV) [20] model to improve the pro-
cessing ability. (2) In the range dimension, we use the Fourier
dictionary in the range-frequency domain, which can easily
achieve high-resolution range estimation. Furthermore, a
global search is to find the most relevant atom of the dictio-
nary matrix for sparse reconstruction of the RD map, which
can be treated as another way to use EOMP.

The rest of this paper is organised as follows. A brief sig-
nal model of PR is introduced in Section 2. In Section 3, a
novel theoretical derivation of CS-based RD map generation
for PR is presented. The comparison with other processing
methods is also discussed in this section. Section 4 demon-
strates experimental results using the simulated data and
the real data. Finally, Section 5 concludes this work.

2. Passive Radar Geometry and Signal Model

Figure 1 schematically illustrates a typical passive radar
geometry, where the system is composed of transmitting sta-
tion T and receiving station R. It is assumed that there is a
moving target P in the scene. RT , RR, and RL represent the
transmitter-target, receiver-target, and transmitter-receiver
distances. v is the velocity vector of the moving target. β is
the bistatic angle. ϕ is the angle between the vector v and
the bistatic angle. θT is the emission angle, and θR is the target
observation angle.

The PR receiver consists of two channels, the reference
channel and surveillance channel. The reference channel
gathers a time-delayed version of the transmitted waveform,
and the surveillance channel records the signals scattered
from targets. Let the transmitted waveform be represented
by xTðtÞ, then the signal collected by the reference channel
can be written as

x tð Þ = ArxT t − τLð Þ + nr tð Þ, ð1Þ

where Ar is the complex amplitude, τL = RL/c represents the
time delay, and nrðtÞ represents the thermal noise in the ref-
erence channel.

Admittedly, the surveillance channel also contains direct
signal and multipath in practice. Here, we assume that distur-
bance has been removed [21–24], and then, the response of
the moving target P can be expressed as

y tð Þ = AxT t − τp
� �

exp j2πf pt
� �

+ n tð Þ, ð2Þ

where A is the complex amplitude, τp is the bistatic time
delay corresponding to the target location, f p is the Doppler
frequency shift related to the target velocity, and nðtÞ is the
thermal noise in the surveillance channel. According to the
geometric relationship between the target and the bistatic
radar system, the time delay and instantaneous Doppler fre-
quency of the target can be expressed as [25]

τp =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
R + R2

L + 2RRRL sin θR
p

+ RR

c
,

f p =
2v
λ

cos ϕð Þ cos β

2

� �
:

ð3Þ

Considering an observation scene consisting of K scatter-
ing points, a generalized expression of the surveillance signal
can be written as

y tð Þ = 〠
K

k=1
AkxT t − τkð Þ exp j2πf ktð Þ + n tð Þ, ð4Þ

where Ak, f k, and τk are the complex amplitude, the bistatic
time delay, and the Doppler frequency shift of the kth scatter-
ing point. To simplify the analysis, the thermal fluctuations
nrðtÞ and nðtÞ are neglected, Ar is set to 1, and τL is set to
0. Then, the surveillance signal can be rewritten as

y tð Þ = 〠
K

k=1
Akx t − τkð Þ exp j2πf ktð Þ: ð5Þ

It should be noted that this simplification has no signifi-
cant impact. For example, the condition τL = 0 can be satis-
fied as long as the reference signal is added a corresponding
time delay.

3. CS-Based Processing for PR

In this section, we present our investigation of the following
CS-based method to form a range-Doppler map with passive
radar data.

3.1. Signal Preprocessing. The surveillance signal and the ref-
erence signal first need to be divided into multiple short seg-
ments [26], as shown in Figure 2. It means that the Doppler
frequency change within a segment interval is ignored.

RT
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𝜃T
–𝜃R
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Figure 1: Simplified bistatic geometry for passive radar.
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Input: surveillance signal Fyn sub ∈ℂMsub×N

dictionary Ψf sub =
½Ψð1Þ

f sub
,⋯,ΨðlÞ

f sub
,⋯,ΨðNÞ

f sub
� ∈ℂMsub×MgridN

sparsity K
residual threshold Th1

Initialize: iteration count k = 0
residual matrix R = Fyn sub

estimate support collection Λ =∅
coefficient matrix a = 0Mgrid×N

While k ≤ K or kRkkF > Th1 do k = k + 1
(Identification)

vk ⟵ argmaxð∑N
l=1jðΨðlÞ

f subÞ
H
FðlÞyn subjÞ, where vk is

the column index of the largest element in

Ψ ðlÞ
f sub

H
FðlÞyn sub

(Update Index Support) Λk =Λk−1 ∪ vk;

(Estimation) ŵΛk =Ψ ðlÞ
f sub½Λk�†FðlÞyn sub, where ð·Þ†

represents the pseudo-inverse of the matrix,aðΛk, nÞ =
ŵΛk ,
(Update Residual)

ðRkÞðlÞ = FðlÞyn sub −ΨðlÞ
f sub

½Λk�ŵΛk .

Output coefficient matrix a
End

Algorithm 1: Pseudocode of modified MMV-OMP algorithm for Doppler reconstruction.

Input: surveillance signal after Doppler processing
ðFym subÞT ∈ℂNsub×Mgrid

dictionary Ψτ sub ∈ℂ
Nsub×Ngrid

sparsity Q
residual threshold Th2

Initialize: iteration count q = 0
residual matrix r = ðFym subÞT
estimate support collection L = 0Q×Mgrid

coefficient matrix α′ = 0Ngrid×Mgrid

While q ≤Q or krkkF > Th2 do q = q + 1
(Identification) ½uq, bq�⟵ arg max jΨτ sub

Hrj,where uq
and bq are the row index and column index of the largest

element in jΨτ sub
Hrj;

(Update Index Support) Lðq, bqÞ = uq;
P = nonzerosfL½bq�g,where nonzerosf•g represents
non-zero elements in the vector;
(Estimation) γ =Ψτ sub½P�†Fym sub½bq�, where ð·Þ†
represents the pseudo-inverse of the matrix, α′½P, bq� = γ;
(Update Residual) r½bq� = Fym sub½bq� −Ψτ sub½P�γ.

Output coefficient matrix α = ðα′ÞT
End

Algorithm 2: Pseudocode of EOMP algorithm for range reconstruction.

4 Wireless Communications and Mobile Computing



Let t = τ +mT (where T is the segment interval); t can be
called slow time. τ represents time delay, which is called fast
time. Now, the surveillance signal is expressed as follows:

y τð Þ = 〠
K

k=1
Akx τ − τk +mTð Þ exp j2πf kτð Þ exp j2πf kmTð Þ

≈ 〠
K

k=1
Akx τ − τk +mTð Þ exp j2πf kmTð Þ,

ð6Þ

where m = 0, 1,⋯,M − 1 is the slow time index and M
denotes the number of segments. The two-dimensional dis-
crete form of (6) can be expressed as

y m, nð Þ = 〠
K

k=1
Akx nΔτ − nkΔτ +mTð Þ exp j2πf kmTð Þ, ð7Þ

where Δτ is the sampling time interval and τk = nkΔτ. n = 0
, 1,⋯,N − 1 is the fast time index, and N denotes the sample
number of each segment. Similarly, the discrete representa-
tion of the reference signal is expressed as

x m, nð Þ = x nΔτ +mTð Þ: ð8Þ

3.2. Sparse Reconstruction of Doppler Domain. By taking an
FFT of xðm, nÞ with respect to n, we have

Fxn m, lð Þ = 〠
N−1

n=0
x m, nð Þ exp −j2πlΔf nnΔτð Þ = 〠

N−1

n=0
x m, nð Þ exp −jl

2π
N

n
� �

,

ð9Þ

where Δf n = 1/ðNΔτÞ is the range-frequency bin size and
l is the range-frequency index. Similarly, after performing an
FFT of yðm, nÞ with respect to n, we can obtain

Fyn m, lð Þ = 〠
N−1

n=0
y m, nð Þ exp −j2πlΔf nnΔτð Þ

= 〠
K

k=1
AkFxn m, lð Þ exp −j2πlΔf nnkΔτð Þ exp j2πf kmTð Þ

= 〠
K

k=1
AkFxn m, lð Þ exp −jl

2π
N

nk

� �
exp j2πf kmTð Þ:

ð10Þ
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Figure 4: Flowchart of the proposed method.

Table 1: CS-PR method comparison.

Methods Original method Feng et al.’s method Proposed method

Signal model rD : yvec =ΨrDαvec D : yr =ΨDα
D : Fyn sub

lð Þ =Ψ lð Þ
f suba lð Þ

r : Fym sub =Ψτ subα

Dictionary size
ΨrD

MsubNsub ×MgridNgrid
� � ΨD Msub ×Mgrid

� � D : Ψ lð Þ
f sub Msub ×Mgrid

� �
r : Ψτ sub Nsub ×Ngrid

� �
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In order to make a sparse representation of the range-

frequency bins, a Doppler dictionary ΨðlÞ
f ∈ℂM×Mgrid is con-

structed as

Ψ lð Þ
f = ψ

lð Þ
1 ⋯ ψ lð Þ

q ⋯ ψ
lð Þ
Mgrid

h i
,

ψ lð Þ
q = Fxn m, lð Þ exp j

2π
Mgrid

qm

 !
, m = 0, 1,⋯,M − 1,

ð11Þ

where Mgrid denotes the number of the Doppler grid. And
then, (10) can be expressed as

Fyn m, lð Þ = 〠
K

k=1
AkFxn m, lð Þ exp −jl

2π
N

nk

� �
exp j

2π
Mgrid

qkm

 !
,

ð12Þ

where qk = f k/Δf q and Δf q = 1/ðMgridTÞ represent the size of
the Doppler grid. From this, we may know that Mgrid =M
makes the same resolution level as the classical method, Δ
f q = Δf = 1/ðMTÞ, and the larger Mgrid can generate higher
Doppler resolution.

For each range-frequency bin l, (12) can be rewritten as

Fyn lð Þ =Ψ lð Þ
f a lð Þ, ð13Þ

where

Fyn lð Þ = Fyn 0, lð Þ ⋯ ⋯ Fyn M − 1, lð Þ	 
T ,
a lð Þ = a1 ⋯ aq ⋯ aMgrid

h iT
:

ð14Þ

There are K nonzero elements in aðlÞ, when the scattering
points make different Doppler frequency shifts. And then,
the positions and amplitude values are, respectively,

qk =
f k
Δf q

, k = 1, 2,⋯, K ,

aqk = Ak exp −jl
2π
N

nk

� �
, k = 1, 2,⋯, K:

ð15Þ

If there are the same Doppler frequencies, then the num-
ber of nonzero elements becomes smaller. In turn, the
complex amplitude is the sum of all coefficients related to
the same Doppler.

According to the CS theory, the sparsity of the signal
ensures the feasibility of reducing the amount of data. The

MMV-OMP

EOMP
EOMP

2

1

Msub

Mgrid

Mgrid

Nsub

Nsub

Ngrid

𝛹f_sub

𝛹𝜏_sub

Λk

𝛹𝜏_sub

Figure 5: The diagram of signal reconstruction.

Table 2: Frame structure of DTTB signal.

Frame head System information Data

DTTB 945 symbols 36 symbols 3744 symbols

Table 3: System parameter.

Parameters Symbol Value

Carrier frequency f c 674MHz

Bandwidth B 7.56MHz

Sample frequency f s 10MHz

Number of segments M 512

Sample number N 256

Number of range grid Mgrid 50

Number of Doppler grid Ngrid 20
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sensing matrix obtained by multiplying the measurement
matrix Φ and the Doppler dictionary (sparse basis matrix)

ΨðlÞ
f needs to satisfy the restricted isometric property (RIP).

The commonly used measurement matrices are the random
Gaussian matrix and partial random unit matrix. In order
to facilitate the practical operation, we adopt the method of
random extraction of data, which can be expressed as

Fyn sub
lð Þ =ΦmFyn lð Þ =ΦmΨ

lð Þ
f a lð Þ =Ψ lð Þ

f suba lð Þ, ð16Þ

whereΦm ∈ℝMsub×M is a partial random unit matrix. In order
to obtain the coefficient vector aðlÞ, (16) needs to be solved.
Due to the sparseness of the coefficient vector, it is equivalent
to solving the following minimum norm problem:

a∧ lð Þ = arg min a lð Þ
��� ���

0
s:t:Fyn sub

lð Þ =Ψ lð Þ
f suba lð Þ: ð17Þ

There are many methods to solve (17). The greedy algo-
rithm is widely used in practical application because of its
excellent geometric interpretation, good reconstruction
effect, and fast reconstruction speed. The most representative
greedy algorithm is the OMP algorithm. Considering the
consistency of signal models of multiple range-frequency
bins, the same operation can be carried out for each range-
frequency bin. That is to say, it can solve aðlÞ through OMP
under the single measurement vector (SMV) model accord-

ing to Fyn sub
ðlÞ and ΨðlÞ

f sub, respectively.
We note that 13 is independent of l. It is found that the

positions of nonzero elements of aðlÞ in multiple range-

frequency bins are the same; that is, the support set of each
sparse coefficient vector is the same. This feature means that
it can be considered an MMV model (see Figure 3), and we
can use the joint sparsity to improve reconstruction perfor-
mance. However, the existing OMP algorithm under the
MMV model cannot be directly applied. Considering that

ΨðlÞ
f sub is different for passive radar data, a modified version

of MMV-OMP is proposed here. The pseudocode is shown
in Algorithm 1. In order to facilitate the derivation, the matrix
a = ½a∧ð1Þ,⋯,a∧ðlÞ,⋯,a∧ðNÞ� which is obtained by the modified
MMV-OMP algorithm will be rewritten as Fymðq, lÞ.
3.3. Sparse Reconstruction of Range Domain. After Doppler
reconstruction, the two-dimensional data can be expressed as

Fym q, lð Þ =
〠
k

Ak exp −jl
2π
N

nk

� �
, q = qk,

0, q ≠ qk:

8><
>: ð18Þ

It can be seen from (18) that the signal is independent of
Doppler frequency bin q. Therefore, the same time-delay dic-
tionary Ψτ ∈ℂ

N×Ngrid can be constructed for each Doppler
bin, which can be expressed as

Ψτ = ψ1 ⋯ ψn
′ ⋯ ψNgrid

h i
,

ψn
′ = exp −j

2π
Ngrid

n′l
 !

, l = 0, 1,⋯,N − 1,
ð19Þ
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Figure 6: Result obtained by CAF: (a) the original scene; (b) RD map.

Table 4: Target scenario parameters.

Parameters Target 1
Target 2

Scatterer point 1 Scatterer point 2 Scatterer point 3

Target location index 10 26 28 30

Doppler bin 4 -4 -4 -4

Amplitude 1 0.7 0.9 1
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where Ngrid denotes the number of time-delay (range)
grids. So, the signal of qth Doppler bin can be expressed as

Fym qð Þ =Ψτα
qð Þ, ð20Þ

where

Fym qð Þ = Fym q, 0ð Þ ⋯ ⋯ Fym q,N − 1ð Þ	 
T ,
α qð Þ = α1 ⋯ αn′ ⋯ αNgrid

h iT
:

ð21Þ

In whole range-Doppler plane, there are K nonzero ele-
ments ðK<<MgridNgridÞ, and the positions and amplitude
values are, respectively,
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Figure 7: RD maps obtained by (a, b) original CS-PR method, K = 4; (c, d) Feng et al.’s method, K = 4; (e, f) proposed method, K =Q = 4;
(a, c, e) with full samples; (b, d, f) with partial samples (1/4).
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n′k =
τk
Δτ′

, k = 1, 2,⋯, K ,

αn′k = Ak, k = 1, 2,⋯, K ,
ð22Þ

where Δτ′ = ΔτðN/NgridÞ. It was obvious that Ngrid =N
makes the same or better resolution level as the classical
method; the larger Ngrid can generate finer range resolution.

Similarly, the signal is randomly extracted, and the obser-
vation equation can be expressed as

Fym sub
qð Þ =ΦnFym qð Þ =ΦnΨτα qð Þ =Ψτ subα qð Þ, ð23Þ

where Φn ∈ℝNsub×N is a partial random unit matrix. It is
important to note that the randomness has a constraint.
For range-frequency bins, the frequency range is determined
by the sampling rate f s, which usually satisfies f s ≥ B (B is the
signal bandwidth). This means that some range-frequency
bins contain invalid information. Therefore, the random
extraction only considers the effective part of the signal
bandwidth.

The coefficient vector αðqÞ can be solved as follows:

α∧ qð Þ = arg min α qð Þ
��� ���

0
s:t:Fym sub

qð Þ =Ψτ subα
qð Þ: ð24Þ

To effectively solve the problem, we utilize a sparse
matrix recovery algorithm. Its pseudocode is described in
Algorithm 2, which can be seen as another way of using
EOMP. Similarly, the matrix α = ½α∧ð1Þ,⋯,α∧ðqÞ,⋯,
α∧ðMgridÞ�T is rewritten as Iymðq, n′Þ.

The signal processed by the reconstruction algorithm can
be expressed as

Iym q, n′
� �

=
Ak, q = qk, n′ = nk′ ,
0, others:

(
ð25Þ

Obviously, (25) is the distribution of the scattering coef-
ficient in the time-delay Doppler grid. Therefore, based on
the above analysis, we can see that the range-Doppler map
for passive radar can be obtained by using the proposed
CS-based processing method.

3.4. Summary of Method Flow. In order to intuitively show
the processing technique, the flowchart of the proposed
method is shown in Figure 4. The steps are briefly summa-
rized as follows.

Step 1. After segmentation of reference signal and surveil-
lance signal, perform FFT on xðm, nÞ and yðm, nÞ in the fast
time n direction, respectively.

Step 2.According toΦm, construct Doppler dictionaryΨf sub
by using the reference signal of the range-frequency domain
and observation vector Fyn sub by using the surveillance signal
of the range-frequency domain, and then perform

Algorithm 1 (MMV-OMP) to reconstruct Doppler frequency
distribution.

Step 3. According to Φn, construct time-delay dictionary
Ψτ sub and observation matrix Fym sub, and then perform
Algorithm 2 (EOMP) to reconstruct range-Doppler map.

There are two points which remain to be explained. In
Step 2, we actually only need to process Nsub range-
frequency bins related to Φn. In addition, the grid sizes
(Δf q, Δτ′) and grid numbers (Mgrid, Ngrid) of dictionaries
(Ψf sub, Ψτ sub) can be set in accordance with the actual
condition.

3.5. Comparative Analysis. We compare the proposed
method with the time-delay/Doppler combination
dictionary-based CS-PR method (named as original method
here) presented in [17, 18] and Feng et al.’s method presented
in [19]. Table 1 demonstrates the signal model, dictionary
size of the original method, Feng et al.’s method, and the pro-
posed method, respectively.

The major difference among these three methods lies in
the signal model and method implementation. In the original
method, the reflectivity map matrix is reconstructed by a cas-
cade of 1-D CS reconstruction. All measurements are stacked
into a single observation vector yvec, the state of each time-
delay/Doppler combination is stacked into the state vector
αvec, and the dictionaryΨrD by discretizing the delay Doppler
plane on a grid takes up the most memory. The size is Msub
Nsub ×MgridNgrid, which leads to the memory occupation
being too large and the computational burden being huge.

In both Feng et al.’s method and the proposed algorithm,
the range reconstruction and the Doppler reconstruction are
separately completed, which means that the dictionaries ΨD,

ΨðlÞ
f sub, Ψτ sub have much smaller size. The difference

between the two methods is that the former only uses CS to
estimate Doppler frequency while the latter uses CS in both
directions, even though the use of EOMP is sameness. We
can obtain high-resolution capability in the range coordinate.
This is just what Feng et al.’s method does not have.

In addition, we can consider the fact that the input of
EOMP is the output of MMV-OMP, which records the sup-
port set information. Therefore, the input data size of EOMP
can be adjusted according to the size of the support set. As
shown in Figure 5, there are two execution modes to obtain
the range-Doppler map. The second execution mode can
further reduce the computational burden due to the small
amount of data.

Table 5: Run times for different CS-PR methods.

Methods Full samples Partial samples

Original method 3.365 s 0.615 s

Feng et al.’s method 0.069 s 0.054 s

Proposed method 0.161 s 0.123 s
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Figure 10: Gram matrices of refined dictionaries (Δf q = Δf /2, Δτ′ = Δτ/2): (a) Gf; (b) Gτ.
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Figure 8: Range profiles obtained by different methods: (a) target 1; (b) target 2.
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Figure 9: Gram matrices of original dictionaries (Δf q = Δf , Δτ′ = Δτ): (a) Gf; (b) Gτ.
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4. Experimental Results

In this section, we present experimental results with simu-
lated data and real data. The effectiveness of the proposed
processing method is demonstrated.

4.1. Simulation Data. We have conducted numerical experi-
ments to investigate the performance of the proposed pro-
cessing method. A digital television terrestrial broadcasting
(DTTB) signal is simulated. The frame structure of signal is
shown in Table 2, which includes frame header (945 sym-
bols) and frame body (3780 symbols).

The parameters used in the simulation experiment are
shown in Tables 3 and 4. In the observation scene, the reflec-
tion mechanisms are assumed to be a point-like target (target
1) and a line-like target (target 2). Target 2 consists of three
scatterer points, which are located in the same Doppler bin
and become neighbors in the range direction.

At the beginning, the result obtained by the classical CAF
is shown in Figure 6. As can be seen from Figures 6(a) and
6(b), the CAF can achieve the target scene recovery, but the
reconstructed map is out of clarity due to the large sidelobes.

On the contrary, the CS-PR methods can be used to remove
the sidelobes. The processing results by using the CS-PR
methods listed in Table 1 are shown in Figure 7, which are
the RD maps obtained by using full samples and partial sam-
ples from the same scenario. For the partial sample case, in
order to ensure the same amount of data, the original method
and the proposed method perform one-half data undersam-
pling processing in the range direction and Doppler direc-
tion, respectively, while Feng et al.’s method only performs
one-quarter data undersampling processing in the Doppler
direction.

Figure 7 demonstrates that these processing methods
based on CS can effectively suppress the sidelobe. The
run times of different methods are summarized in
Table 5. Apparently, the original CS-PR method uses much
longer running time than the other two methods, due to
the usage of the dictionary by the discretizing RD plane.
In order to more intuitively observe the effect of different
methods on the sidelobe suppression, the range profiles
obtained by different methods are shown in Figure 8. From
the figures, it shows that Feng et al.’s method cannot
clearly identify the scatterer points in the range direction.
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Figure 11: Result obtained by the proposed method with fine grid: (a) refining grid with 2 × 2; (b) RD map.
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Figure 12: Results of sparse reconstruction of Doppler domain (SNR = 10 dB) by (a) SMV-OMP and (b) MMV-OMP.
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It indicates that the range resolution of the method is lim-
ited, even though its run time is the least. Fortunately, the
proposed processing method can reconstruct the target
scene with a good performance both in accuracy and in
computational efficiency.

It is known that the CS approach offers great potential for
better resolution by using a finer dictionary. The grid sizes
are set to be the same as CAF in previous experiments
(Δf q = Δf , Δτ′ = Δτ). Now, the Doppler grid and time-delay

grid are only half the original size (Δf q = Δf /2, Δτ′ = Δτ/2).
As the grid is refined, the challenge is that the dictionary cor-
relation will increase, which may lead to the performance
degradation for CS. The Gram matrix is used to verify the
dictionary coherence, and results are depicted in Figures 9
and 10. Gf =ΨH

f subΨf sub and Gτ =ΨH
τ subΨτ sub represent

Gram matrices in Doppler direction and range direction,
respectively. As can be seen from Figures 9 and 10, each
Gram matrix is close to the unit matrix. Due to this coher-
ence characteristic, CS is able to produce superresolution
radar images. Figure 11 shows the RD map obtained by the
proposed method when the grid is refined. It is observed that
the resolution improvement is achieved by utilizing a fine
grid.

In order to demonstrate the advantages of OMP under
the MMV model, we compare the Doppler reconstructions
by SMV-OMP and MMV-OMP at different signal-to-noise
ratios (SNR). The values of SNR are 10 dB, 0 dB, and −10
dB. The parameters of target 1 use the following settings.
The location index is 10, the Doppler bin is 4, and the ampli-
tude is 0.3. Other parameters remain unchanged. The results
are shown in Figures 12–14. For SMV-OMP, there are a
number of Doppler reconstruction errors, which will lead
to insufficient energy accumulation in the range direction.
Figure 15 shows the final RD maps when SNR is −10 dB. It
can be found that target 1 is not visible in the RD map
obtained by SMV-OMP. On the contrary, MMV-OMP has
robust performance because it considers the information of
multiple observations.

4.2. Real Data.We use real data from an DTV-based PR sys-
tem to further verify the proposed method. The parameters
used are shown in Table 6. We obtain results for CAF and
the proposed method. The RD map obtained by the CAF
approach is shown in Figure 16; Figures 17 and 18 show
the results of CS reconstruction if 25% of the full data is used.
In comparison to the CAF, the proposed method shows good
performance owing to CS.
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Figure 14: Results of sparse reconstruction of Doppler domain (SNR = −10 dB) by (a) SMV-OMP and (b) MMV-OMP.
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Figure 13: Results of sparse reconstruction of Doppler domain (SNR = 0 dB) by (a) SMV-OMP and (b) MMV-OMP.
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Figure 16: RD map obtained by CAF.
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Figure 17: RD map obtained by the proposed method.

Table 6: System parameters.

Parameters Symbol Value

Carrier frequency f c 674MHz

Bandwidth B 7.56MHz

Sample frequency f s 10MHz

Number of segments M 2048

Sample number N 2048

Number of range grid Mgrid 50

Number of Doppler grid Ngrid 200
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Figure 18: RDmap obtained by the proposed method with fine grid.
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Figure 15: RD maps (SNR = −10 dB) obtained by (a) SMV-OMP and (b) MMV-OMP.
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For a more illustrative comparison, two cuts are made
along the location of the target in the range and Doppler
directions shown in Figures 19(a) and 19(b). The proposed
method has a considerably lower sidelobe level than the
CAF and indeed allows for improved range and Doppler
resolutions by the fine gridding.

5. Conclusion

In this paper, the problem of compressed sensing-based
range-Doppler processing for passive radar is investigated.
In order to reduce the sidelobes and improve the resolution,
we have proposed a novel CS-PR method, in which the mod-
ified MMV-OMP algorithm is used to perform sparse recon-
struction of Doppler dimension, and then, the EOMP
algorithm is used to perform sparse reconstruction of range
dimension. Compared to previous CS-PR methods, we can
achieve a high-quality reconstruction of the range-Doppler
map of target scenario and do not suffer from the heavy com-
putational burden. The effectiveness of the proposed method
is verified by experiments with simulated data and real data.
The improved resolution capability will be helpful to widen
the extent of application.
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In this paper, we investigate the issue of direction-of-arrival (DOA) estimation of multiple signals in coprime arrays. An algorithm
based onmultiple signal classification (MUSIC) and forward and backward spatial smoothing (FBSS) is used for DOA estimation of
this signal caused by multipath and interference. The large distance between adjacent elements of each subarray in the coprime
arrays will bring phase ambiguity issues. According to the feature of the coprime number, the ambiguity problem can be
eliminated. The correct DOA estimation can be obtained by searching for the common peak of the spatial spectrum and finding
the overlapping peaks in the MUSIC spectrum of the two subarrays. For the rank deficit problem caused by the coherent signal,
the FBSS algorithm is used for signal preprocessing before the MUSIC algorithm. Theoretical analysis and simulation results
show that the algorithm can effectively solve the rank deficiency and phase ambiguity problems caused by coherent signals and
sparse arrays in the coprime arrays.

1. Introduction

Array signal processing is a branch of the signal processing
field and is widely used in radar, sonar, satellite, wireless
communications, seismology, and other fields [1, 2]. Array
signal processing is based on a group of spatially arranged
array antennas to process the signal [3]. The purpose of array
signal processing is to enhance useful target signals, suppress
noise, and obtain signal spatial information. Compared with
a single antenna, the use of an antenna array has outstanding
advantages in terms of spatial resolution, receiving sensitivity,
and anti-interference [4]. Thus, array signal processing has
made rapid progress in research and engineering applications
in the past 30 years [5].

DOA estimation of space signal is a basic problem in
array signal processing. DOA estimation is to estimate the
direction of arrival of the signal by receiving the target echo
data through the array antenna in the noise or interference
environment. And it is a kind of direction-finding technique
[6, 7]. In wireless communication, accurate DOA estimation
of the signal source can improve communication quality [8].
And it can improve physical layer security combined with

beamforming technology [9]. In radar target detection,
DOA estimation is the basis for achieving high-precision
direction finding [10]. Therefore, it is of great significance
to study how to improve the accuracy of DOA estimation.
The performance of DOA estimation is determined by the
resolution, accuracy, the number of distinguishable targets,
etc. [11]. In response to these aspects, corresponding theoret-
ical and applied research has been carried out at home and
abroad, which has enabled the rapid development of DOA
estimation theory [12–14].

The past researches have proposed a large number of
DOA estimation algorithms for different array models, such
as the uniform linear array, L-shaped linear array, and uni-
form circular array [15–17]. In the traditional array structure,
the angle ambiguity is avoided by setting the spacing of array
elements no more than half wavelength. However, when the
frequency of the received signal is high, too small array
element spacing will cause larger mutual coupling, and the
physical array layout is difficult to achieve. At the same time,
high resolution means a larger array aperture, and more
physical array elements will further increase the system cost
and complexity. Sparse arrays can overcome the structural
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limitations of traditional arrays by increasing the array ele-
ment spacing [18] and thus have been developed and widely
used, such as the Minimum Redundancy Array (MRA) [19,
20], Nested Array (NA), and coprime array (CPA) [21–23].

The coprime formation is composed of two subarrays,
and the spacing between the subarrays is mutually prime
[24]. Compared with the traditional uniform array, the
element spacing of the coprime array is greater than half a
wavelength. The increase in the element spacing brings the
advantages of an increase in the array aperture and a signifi-
cant reduction in the mutual coupling effect between
elements and significantly improves the estimation accuracy
and resolution [25]. The DOA of two uniform subarrays of
the coprime array is estimated, respectively. According to
the relatively prime characteristics of the element spacing of
the two subarrays, it is proved that the DOA estimation
results of the two subarrays are unique [26, 27]. The coprime
array which does not reduce the array aperture of the original
array is simple to implement, and the estimation accuracy is
greatly improved compared with the uniform array with the
same number of antennas [28–30].

DOA estimation algorithms mainly include traditional
beamforming, subspace algorithm, and maximum likelihood
estimation [31–33]. Among them, the beamforming method
has larger error and low resolution; the maximum likelihood
algorithm uses the probability distribution of the signal and
adopts the high-dimensional search method, which has a
large amount of computation. The subspace algorithm uses
the orthogonality of signal and noise subspace to realize angle
estimation, which requires less computation but cannot
process coherent signals [34]. Generally, the minimum res-
olution that can be achieved under a certain array length is
called the Rayleigh Resolution Limit, and the method that
exceeds the Rayleigh Resolution Limit is called the superre-
solution algorithm. Multiple signal classification (MUSIC)
proposed in 1979 and estimating signal parameters via
rotational invariance techniques (ESPRIT) proposed in
1986 belong to subspace algorithm and are also early clas-
sical superresolution methods [35, 36]. No matter the
MUSIC algorithm or ESPRIT algorithm, it is necessary for
the array element to receive the uncorrelated signal. At this
time, the covariance matrix of the source is a full rank
matrix, so that the covariance matrix of the signal can be
eigendecomposed and the signal subspace and noise sub-
space can be distinguished.

Most signals are coherent signals in the actual application
environment because of the multipath effect and complex
transmission channel [37, 38]. For early DOA estimation
algorithms such as MUSIC and ESPRIT, they are all based
on subspace for DOA estimation. When the received signal
is correlated, the eigenvector corresponding to the source sig-
nal cannot be obtained by decomposing the subspace eigen-
values. Therefore, DOA estimation of coherent source
signals has always been a difficult problem, which is also
the focus of spectral estimation. In order to distinguish
coherent signals accurately, the spatial smoothing method,
singular value decomposition method (SVDmethod), matrix
decomposition method (MD method), and Toeplitz method
are developed [39–41].

In this paper, the MUSIC algorithm and the FBSS algo-
rithm are combined to estimate the DOA of coherent signals
based on the coprime matrix model under the condition of
multipath and interference, and the formulas to solve the sig-
nal coherence and angle ambiguity under the coprime matrix
are given. Finally, the DOA estimation method for coherent
signals is simulated, and the simulation results show the
effectiveness of the method.

The remainder is given as follows: Section 2 outlines the
basic array signal model of the coprime array. In Section 3,
the proposed method for coherent target DOA estimation
based on coprime arrays is presented, and the problem of
phase ambiguity and rank deficiency is discussed together
with its elimination method. Numerical simulations and con-
clusions are presented in Sections 4 and 5, respectively.

Notations. Throughout the paper, we use the lowercase
(uppercase) boldface symbols to represent vectors (matrices).
ð⋅ÞT and ð⋅ÞH denote the transpose and the conjugate trans-
pose, respectively. IN denotes N ×N identity matrix, diag ð⋅Þ
denotes the diagonal matrix operator, and E½⋅� denotes the
expectation operator.

2. Array Signal Model

The coprime array is a sparse array constructed by using the
property of a coprime number. It is composed of two uni-
form linear arrays. Assuming that the number of subarray
elements is M and N , the spacing between two subarrays is
Nλ/2 and Mλ/2, respectively, where M and N are coprime
integers and λ represents the wavelength of the received sig-
nal. The first element of the two subarrays coincides, which is
also called the reference element. The coprime array contains
a total of elements, and the positions of M +N − 1 elements,
and the positions of the elements are

d = Nm
λ

2

� �
∪Mn

λ

2

� �� �
, ð1Þ

where 0 ≤m ≤M − 1, 0 ≤ n ≤N − 1:
Figure 1(a) is a schematic diagram of the structure of a

coprime array with M +N − 1 elements. For the convenience
of analysis, the coprime matrix is divided into two subarrays,
in which the black dot represents subarray 1 and the hollow
dot represents subarray 2, as shown in Figure 1(b). In fact, the
two subarrays are in a straight line and share the first element.

It is assumed that there are far-field narrow-band signals
from different directions in the space, the incident angle is
θk, k = 1, 2, 3,⋯, K , and the output noise of each element is
a complex Gaussian distribution with zero mean value, which
are independent of each other and have the same average
power σ2. The output of themth element can be expressed as

xm tð Þ = 〠
K

k=1
a θkð Þsk tð Þ + nm tð Þ: ð2Þ
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If the first element is selected as the reference element, the
output of the subarray with M elements is

xM tð Þ =AM θð Þs tð Þ + nM tð Þ, ð3Þ

where AMðθÞ = ½aMðθ1Þ, aMðθ2Þ,⋯, aMðθKÞ�. The steering
vector of the Kth source is expressed as

aM θKð Þ = 1, e−jNπ sin θK ,⋯, e−jN M−1ð Þπ sin θK
h iT

: ð4Þ

Source vector sðtÞ = ½s1ðtÞ, s2ðtÞ,⋯, sKðtÞ�T . Similarly, the
output of the subarray with N elements is

xN tð Þ =AN θð Þs tð Þ + nN tð Þ, ð5Þ

where ANðθÞ = ½aNðθ1Þ, aNðθ2Þ,⋯, aNðθKÞ�. The steering
vector of the Kth source is expressed as

aN θKð Þ = 1, e−jMπ sin θK ,⋯, e−jM N−1ð Þπ sin θK
h iT

: ð6Þ

Because the noise is independent of each other, the noise
and the signal are independent of each other, the covariance
matrix of the noise is σ2I, and the covariance matrix of the
output of the two subarrays:

RM = E xMxMH� �
=AME ssH

� �
AM

H + σ2IM ,AMRssAM
H + σ2IM ,

RN =ANRssAN
H + σ2IN :

ð7Þ

In the DOA estimation based on the coprime array, the
array aperture is greatly expanded by the construction of a
virtual array model. At the same time, the ranks of covariance
matrices constructed by different methods are also different,
but generally, the virtual array degree of freedom of the
coprime array is far greater than that of the physical array.
The degree of freedom is an important sign that the antenna
array can estimate the number of targets or sources. The
higher the degree of freedom is, the more sources the array
can estimate. Besides, the degree of freedom is proportional

to the estimation accuracy. Generally, the higher the degree
of freedom is, the higher the positioning accuracy will be.

3. DOA Estimation of Coherent Signals

Due to the interference effect of coherent signals, the number
of subspaces processed by the ordinary DOA estimation
algorithm will be reduced and affect the direction-finding
accuracy. However, the FBSS algorithm does not appear in
such a situation. Based on this idea, we decompose the
coprime array into two uniform subarrays. For each subarray,
the FBSS algorithm and the traditional MUSIC algorithm are
combined to process the coherent signal. By analyzing the
DOA results of the two subarrays, the correct target angle
can be obtained, and the problem of rank deficiency caused
by phase ambiguity and coherent signal is solved.

3.1. Spatial Smoothing on Subarrays. Coherent signals are
easily generated in signal transmission due to the complex
space environment. The appearance of coherent sources
may lead to serious degradation of DOA estimation perfor-
mance. In the traditionalMUSIC algorithm based on subspace,
the covariance matrix of the received data needs to be full rank,
but the covariance matrix of the coherent source is not full
rank, the signal eigenvectors diverge into the noise subspace,
and the singular value decomposition cannot completely dis-
tinguish the signal subspace from the noise subspace, which
leads to deterioration of DOA estimation performance.

The basic idea of the spatial smoothing algorithm is to
divide the array into several overlapping subarrays and use
the covariance matrix of the received data of subarrays to
replace the original covariance matrix. By sacrificing a certain
effective array aperture, the covariance matrix of the received
data is restored to full rank, so as to achieve the preprocessing
operation of decoherence.

The covariance matrix uses the autocorrelation relation-
ship between signals to extract information. In practical
applications, the maximum likelihood function of the covari-
ance matrix is usually calculated by selecting a large enough
number of snapshots to approximate the ideal covariance
matrix. In this case, the estimated covariance matrix of the
output data can be expressed as

Co-prime array

N𝜆/2

M𝜆/2 M𝜆/2

N𝜆/2

M+N–1

(a) An example of coprime array

Subarray 1

Subarray 2

1 2 3 4 M–1

1 2 3 N–1

N𝜆/2

M𝜆/2

(b) Two coprime uniform linear subarrays

Figure 1: Basic structure of coprime linear array.
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RM = 1
L
〠
L

l=1
xM lð ÞxHM lð Þ,

RN
1
L
〠
L

l=1
xN lð ÞxHN lð Þ:

ð8Þ

As shown in Figure 2, consider the subarray with the
number of M elements and the spacing of Nλ/2 in the
coprime matrix. Under the forward space smoothing
algorithm, the equidistant linear array is divided into L sub-
arrays by sliding, and each subarray has n elements, where
n =M − L + 1.

In this case, the output of the first forward subarray can
be expressed as

x fl tð Þ = xl tð Þ, xl+1 tð Þ,⋯, xl+n−1 tð Þ½ �T =AMDl−1s tð Þ + nl tð Þ 1 ≤ l ≤ Lð Þ,
ð9Þ

where AM = ½aMðθ1Þ, aMðθ2Þ,⋯, aMðθKÞ� is the n ∗ K
dimension direction matrix and aMðθÞ is the n-dimension
guidance vector. D = diag ðejð2πNd/λÞ sin θ1 , ejð2πNd/λÞ sin θ2 ,⋯,
ejð2πNd/λÞ sin θK Þ is a rotation-invariant matrix between
subarrays.

The covariance matrix of the lth forward submatrix can
be expressed as

Rf
l = E x fl tð Þx fl tð ÞH

h i
=AMDl−1RS Dl−1

� 	H
AH

M + σ2I: ð10Þ

The forward spatial smoothing covariance matrix is
defined as

Rl =
1
L
〠
L

l=1
Rf
l : ð11Þ

Similarly, if the subarray is divided from the last element
of the array, the covariance matrix of backward spatial
smoothing can be obtained as follows:

Rb =
1
L
〠
L

l=1
Rb
l : ð12Þ

Because the backward smooth array is the conjugate
reverse order of the forward smooth array, the relation
between Rb and Rl is the conjugate reverse order invariant.
Although the one-way smoothing algorithm can solve the
problem of coherent signals, it sacrifices more array aperture.
The FBSS algorithm can increase the number of estimable
cells by simultaneously performing forward and backward
smoothing. The covariance matrix is the average of forward
smoothing and backward smoothing covariance matrices

Rf b =
1
2 Rf + Rb


 �
: ð13Þ

3.2. DOA Estimation of Subarrays. The MUSIC algorithm is

the most classic superresolution DOA estimation algorithm,
which obtains the cell direction by searching the spectrum
peak in the spatial domain. Compared with multidimen-
sional algorithms such as maximum likelihood (ML) and
weighted subspace fitting (WSF), the algorithm has less com-
putation. The basic idea of the MUSIC algorithm is to eigen-
decompose the covariance matrix of the array output data to
obtain the signal subspace corresponding to the signal com-
ponent and the noise subspace orthogonal to the signal com-
ponent and then use the orthogonality of the two subspaces
to estimate the signal parameters.

The covariance matrices of the two submatrices are
eigendecomposed, respectively, to obtain

RM =USM〠
SM

USM
H +UNM〠

NM

UNM
H,

RM =USN〠
SN

USN
H +UNN〠

NN

UNN
H:

ð14Þ

Among them, matrices USM ∈ℂM∗K and USN ∈ℂN∗K are
the signal subspaces formed by the eigenvectors corresponding
to K large eigenvalues in R̂M and R̂N , matrices ∑SM ∈ℂK∗K

and ∑SN ∈ℂK∗K are the diagonal matrices formed by K large
eigenvalues in R̂M and R̂N , matrices UNM ∈ℂM∗ðM−KÞ and
UNN ∈ℂM∗ðN−KÞ are the noise subspaces formed by the eigen-
vectors corresponding to M − K and N − K small eigenvalues
in R̂M and R̂N , and the matrices ∑NM and ∑NN are diagonal
matrices composed of M − K and N − K small eigenvalues in
R̂M and R̂N , respectively (these small eigenvalues are equal,
which is the noise power σ2).

Under ideal conditions, the signal subspace US and the
noise subspace UN are orthogonal to each other, so the array
flow pattern vector aHðθÞ corresponding to the signal sub-
space is also orthogonal to the noise subspace UN , namely,

aH θð ÞUN = 0: ð15Þ

In practice, the steering vector and the noise subspace can-
not be completely orthogonal due to the existence of other
noises. Usually, the minimum optimization search process is
used to find the minimum value to realize the direction-of-
arrival estimation. This process can be expressed as

θMUSIC = argθ min aH θð ÞÛNÛ
H
Na θð Þ: ð16Þ

Based on the orthogonality between the signal subspace
and the noise subspace, the spectral function of the MUSIC
space power spectrum of the two subarrays can be
expressed as

PMUSIC M = 1
aHM θð ÞÛMÛ

H
MaM θð Þ

,

PMUSIC N = 1
aHN θð ÞÛNÛ

H
NaN θð Þ

:

ð17Þ

Among them, the value θ range is generally ð−π/2, π/2Þ.
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The accurate DOA estimate can be obtained by searching
for the coincident peaks of the two subarray spectral func-
tions of the coprime array.

3.3. Ambiguity Elimination. The calculation formula of phase
defuzzification for incoherent sources is given in Reference
[31]. For coherent sources, if there is phase ambiguity after
using the spatial smoothing algorithm for the subarray with
M elements, it can be seen from (13) that the steering vector
between the real angle θk and the blurred angle θk should be
equal, that is,

AM θkð Þ = AM θk
� 	

,

exp −jNπ sin θkð Þð Þ = exp −jNπ sin θk
� 	� 	

:

ð18Þ

After simplification, we get

sin θkð Þ − sin θk
� 	

= 2PM

N
, ð19Þ

where PM is a nonzero integer, θk, θk ∈ ð−π/2, π/2Þ. For any θk
and θk, it must satisfy jsin ðθkÞ − sin ðθkÞj < 2, that is, j2P/Nj
< 2. The value range of PM can be −ðN − 1Þ, −ðN − 2Þ,⋯,
−1, 1,⋯,N − 1; there are 2ðN − 1Þ values in total. Consider
that θk and θk can be exchanged. In addition to the real
angle, there are N − 1 fuzzy angles. That is to say, for a
single subarray M whose element spacing is Nλ/2 in the
coprime array, there must be phase ambiguity. There are
N peaks in the MUSIC spectrum using spatial smoothing,
and the N − 1 peaks correspond to the fuzzy angle.

In the same way, when considering the single subarray N
whose element spacing is Mλ/2 in the coprime array, the
fuzzy angle needs to meet the requirement:

sin θkð Þ − sin θk
� 	

= 2PN

M
: ð20Þ

The value range of PN can be −ðM − 1Þ, −ðM − 2Þ,⋯,−1,

1,⋯,M − 1. Combined with (19), the condition of phase
ambiguity is obtained as follows:

2PM

N
= 2PN

M
: ð21Þ

After simplification, we can getNPN =MPM . SinceM and
N are relatively prime, it cannotmake the equation hold in the
range of value; that is to say, θk does not exist and there is no
angle ambiguity. Therefore, the unique DOA estimation can
be determined by using the spatial smoothing algorithm and
MUSIC algorithm, respectively, for the subarrays of the
coprime array, and then finding the overlapped peaks in the
two groups of spectrum.

3.4. Complexity Analysis. The spatial smoothing algorithm,
SVD algorithm, and Toeplitz algorithm can process coherent
signals well, and the computational complexity of these three
decoherence algorithms increases gradually. At present, the
spatial smoothing algorithm has the least amount of compu-
tation; that is, the time of DOA processing is the shortest. In
addition, spatial smoothing technology is also more mature,
which is a more practical algorithm for processing coherent
signals. The uniform linear array withM elements can distin-
guish 2M/3 coherent targets by using the spatial smoothing
algorithm. And the virtual element number of the coprime
array with two subarray elementsM andN isOðMNÞ. There-
fore, Oð2MN/3Þ coherent targets can be distinguished by the
coprime array with this algorithm. In the same case, only O
ð2ðM +N − 1Þ/3Þ coherent targets can be distinguished by
the uniform linear array with this algorithm.

4. Simulation Results

In this section, we have carried out the corresponding simu-
lation analysis to prove the effectiveness of FBSS and MUSIC
algorithms for coherent signals under the coprime array
model. In the simulation process, the number of elements
of two subarrays of the coprime array is M = 7 and N = 5,
and the spacing between elements is 5λ/2 and 7λ/2, where
λ is half wavelength. For a fair comparison, a 12 uniform lin-
ear array with half-wavelength spacing is also simulated with
the FBSS and MUSIC algorithms. Consider two coherent sig-
nals in the space, which are incident from 0° and 30° to the

Forward spatial smoothing 

Backward spatial smoothing 

1 2 ... N ...M–N+1 M

Subarray L
Subarray L–1

N+1

Subarray 1

Subarray 1
Subarray 2

Subarray L

Figure 2: Schematic diagram of FBSS algorithm.
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coprime array, respectively, and the noise is Gaussian
white noise. The searching steps for all methods are set
to be 0:02°.

4.1. Spatial Spectrum. We then show the spatial spectrum
using FBSS and MUSIC algorithms in Figure 3, where
we assume the signal to noise (SNR) as 10 dB and snap-
shot n = 200. The red spectral line is the subarray spectrum
with M = 7, and the blue spectral line is the subarray spec-
trum with N = 5. It can be seen from the previous derivation
that phase ambiguity will be generated when using spatial
smoothing and MUSIC algorithm for a single subarray of
coprime array. For a subarray with an element spacing
of Nλ/2, estimating a DOA will produce N − 1 ambiguity
angles. Therefore, the subarray with M = 7 has 10 peaks, 8
of which are fuzzy angles. And the subarray with N = 5 has

14 peaks, 12 of which are fuzzy angles. However, the com-
mon spectral peak formed by the two subarrays is only at 0°
and 30°, which proves the correctness of the algorithm for
DOA estimation of coherent signals.

Under this condition, we further compare the DOA
estimation spectrum of 11 elements uniform linear array
and coprime array. The specific results are shown in
Figure 4. Through the comparison of DOA estimation
spectrum peaks, we can intuitively find that two coherent
signals, whether uniform linear array or coprime array,
can be well distinguished. But the coprime array is better
than the uniform linear array in suppressing interference.
Because the number of virtual elements of the coprime
array is much larger than that of the uniform linear
array, it has a higher degree of freedom and better esti-
mation performance.
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Figure 3: Spatial spectrum of DOA estimation simulation of two subarrays for coherent sources.
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4.2. Root Mean Square Error (RMSE). In this simulation, we
study the RMSE performance of the two arrays under differ-
ent configurations. The root mean square error (RMSE) of
the estimates is defined as the performance metric:

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

NK
〠
N

n=1
〠
K

k=1
θk − θ

ið Þ
k

� 	h ivuut , ð22Þ

where N0 denotes the times of Monte-Carlo simulations

and θ
ðiÞ
k and θk are the estimate and real values of the k

th DOA for the nth trial, n = 1, 2, 3,⋯,N . The targets
are located at θ1 = 10°, θ2 = 20°, θ3 = 30°, and θ1, θ2 are
coherent signals. For each simulation scenario, S = 500
rounds of Monte-Carlo runs are conducted. The Cramer-
Rao bound (CRB) is plotted as a benchmark.

Figure 5 depicts the RMSEs of different configurations in
terms of SNR, where the number of snapshots is 200. In
Figure 6, we compare the RMSEs of the two arrays versus
the number of snapshots, where the SNR is set as 5 dB. It is
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Figure 5: RMSE versus the number of snapshots.
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obvious that the performance of all these configurations
improves with the increase of the SNR and number of
snapshots. But the performance of the coprime array is
better than that of the uniform linear array in any case.
Even in the case of low snapshot number and low signal-
to-noise ratio, the coprime array can also show good
DOA estimation performance.

Although the phase ambiguity of a single subarray of the
coprime array is caused by the large element spacing, accu-
rate DOA estimation can be achieved by comparing the peak
values of the two subarrays. Through the simulation experi-
ment, we can see that compared with the uniform linear
array, the coprime array using the spatial smoothing algo-
rithm greatly improves the resolution and reduces the com-
putational complexity.

5. Conclusions

In this paper, we use FBSS and MUSIC algorithms for DOA
estimation of coherent signals based on the structure of
coprime arrays, where the spatial spectrum of each decom-
posed subarray can generate spectral peaks at the actual
DOAs and multiple ambiguous DOAs simultaneously. And
we solve the phase ambiguity by finding the common spectral
peaks in the spectrum of the two subarrays. Theoretical anal-
ysis and simulation results show that the algorithm can effec-
tively process DOA estimation of coherent signals, and the
coprime array has better performance than the uniform lin-
ear array. However, some spatial degrees of freedom are
sacrificed when using the spatial smoothing algorithm.
How to increase the spatial degrees of freedom and improve
the direction-finding accuracy under low snapshot numbers
will be our further research direction.
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A partial dictionary based direction of arrival (DOA) estimation method which addresses the off-grid problem and exploits
combined coprime and nested array (CCNA) is proposed. Compared to general coprime array, CCNA yields two sparse coprime
subarrays in the coarray domain by adding a third subarray in the physical-array domain. To ensure the DOA estimation
performance, the subarray with larger aperture is chosen, and the cyclic phase ambiguity caused by the sparse subarray allows
partial dictionary covering arbitrary cycle to represent the whole atoms, and then, the off-grid sparse reconstruction method is
developed to amend the grid mismatch. After the sparse recovery and off-grid compensation, ambiguous DOA estimations can
be eliminated by substituting the estimations into the whole virtual array. Multiple simulations verify that the proposed
algorithm outperforms the other state-of-the-art methods in terms of DOA estimation accuracy and angular resolution.

1. Introduction

Direction of arrival (DOA) estimation using antenna array is
an important issue in many systems, e.g., radar, sonar, and
wireless communication [1–5]. Compared to conventional
subspace based methods, sparse representation based DOA
estimation methods have been attractive since they can
provide higher resolution and require fewer samples [6],
and many effective sparse representation based methods have
been proposed. The greedy methods [7, 8] require the prior
information of source number and are sensitive to the noise,
and the l1-norm based algorithms, such as the l1-norm singu-
lar value decomposition (l1-SVD) method [9], sparse recovery
using weighted subspace fitting (SRWSF) method [10], sparse
representation of array covariance vector (SRACV) method
[11], and sparse iterative covariance-based estimation (SPICE)
method [12], can reduce the sensitivity to noise and estimate
the angles via convex optimization. However, these methods
discretize the whole spatial range into a grid, which will result
in performance degradation when the sources are not exactly
located on the grid, i.e., the grid mismatch problem [13]. In

[14], the off-grid sources were considered and estimated by
introducing grid offsets in the sparse Bayesian inference
(SBI). Based on the joint sparsity between original signal and
the grid mismatch variables, joint sparse recovery method
was proposed in [15]. Meanwhile, the grid-less methods are
developed to directly recover the covariance matrix based on
atomic norm or nuclear norm minimization [16, 17]. How-
ever, these methods only concentrate on the physical array
model, which has limited degree of freedom (DOF).

Sparse array design has been developed to increase the
virtual DOF in the difference coarray domain. Nested array
was proposed in [18], which can generate OðN2Þ DOF in
the difference coarray domain with only OðNÞ physical
antennas [19, 20]. Nested array can also be applied in radar
system to increase the virtual DOF and enhance the spatial
resolution [21]. However, the nested array has a dense
subarray, which suffers from the mutual coupling problem.
Coprime array [22], another well-known sparse array, was
proposed to reduce the mutual coupling influence. With
OðM +NÞ sparsely spaced physical antennas, coprime
array can achieve OðMNÞ DOF [23], which is generally
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nonuniform, and the coarray has more holes compared to
that of nested array. Therefore, many works are developed
to modify the coprime array to generate more continuous
virtual elements in the coarray domain, such as the aug-
mented coprime array (ACA) [24], generalized coprime
array (GCA) [25], and thinned coprime array (TCA)
[26]. To deal with the one-snapshot situation in the coar-
ray domain, sparse representation based methods have
also been introduced for sparse array [27–29]. For off-
grid sources, a joint reconstruction method named joint
LASSO (JLASSO) was proposed in [30], which can exploit
the large DOF in the coarray domain of coprime array
and amend the grid mismatch via joint sparse recovery.
However, the computation complexity is very high due
to the dictionary covering whole spatial range.

There is also another way to utilize coprime array, i.e.,
the separate processing of the two subarrays of coprime
array, and the unique estimation is determined from the
coincide results from the two subarrays, such as the com-
bined multiple signal classification (MUSIC) method [31],
partial search MUSIC method [32], root MUSIC method
[33], and combined estimation of signal parameters via
rotational invariance technique (ESPRIT) based method
[34]. However, as the subarrays are processed separately in
the physical-array domain, the exploited DOF is limited,
and an alternative way is to transform the coprime relation-
ship into the coarray domain [35]. A combined coprime and
nested array (CCNA) geometry, which is obtained by add-
ing a third subarray nested to both of the two subarrays,
was proposed in [36], where the coprime subarrays are
transformed into the coarray domain to achieve large aper-
ture and DOF. However, the utilized MUSIC method results
in aperture loss.

In this paper, we propose an off-grid DOA estimation
method, which requires only partial dictionary based on
CCNA. Due to the nested relationship within the subarrays,
the two virtual subarrays are still sparse but uniform after
the vectorization of the covariance matrices. Different with
conventional schemes, we adopt the subarray with larger
aperture for DOA estimation to avoid the negative effective
brought by the smaller subarray. The sparsity of the virtual
array enables partial dictionary covering partial spatial range
to represent the whole-range atoms. Meanwhile, the off-grid
sparse reconstruction method is developed to amend the grid
mismatch. Finally, ambiguous DOA estimations can be elim-
inated based on coprime-ness by substituting the estimations
into the whole virtual array. Numerical simulations show
that the proposed algorithm outperforms the ACA method
[24], partial search (PS) MUSIC [32], root MUSIC method
[33], and CCNA with root MUSIC [36] in terms of estima-
tion accuracy and angular resolution.

Notation: ð:ÞT , ð:Þ∗, ð:ÞH , and ð:Þ+ denote transposition,
conjugation, conjugate-transposition, and pseudo-inversion,
respectively. E½:� and vecð:Þ denote the operations of expecta-
tion and vectorization, respectively. diag ðaÞ is a diagonal
matrix with vector a being the diagonal elements, and Ip is
a p × p identity matrix. k⋅k2 means l2 norm, and angleðaÞ
means the phase of a. ⊗ , ∘, and ./ denote kronecker product,
Khatri_rao product, and element-wise division, respectively.

2. Data Model

Figure 1 shows the structure of CCNA, which is composed of
three subarrays. Subarray 1 and subarray 2 form the original
coprime array, where M and N are coprime integers. The
third subarray is arranged along the negative side with L
elements and interelement spacing being MNd, where d is
the unit spacing, which is generally set as half-wavelength.
It is also indicated that subarray 1 and subarray 3 form a
nested array with the minimum interelement spacing being
Nd, and subarray 1 and subarray 3 form another nested array
with the minimum interelement spacing beingMd. The total
antenna number of CCNA is M +N + L − 2 as the subarrays
share the same element in the origin.

Assume that there are K plane waves impinging upon the
array with DOAs being θk, k = 1,⋯, K , which is angle
between the wave line and Z axis. Then, the outputs of the
subarrays are expressed as

x1 tð Þ =A1s tð Þ + n1 tð Þ,
x2 tð Þ =A2s tð Þ + n2 tð Þ,
x3 tð Þ =A3s tð Þ + n3 tð Þ,

ð1Þ

where sðtÞ = ½s1ðtÞ,⋯, sKðtÞ�T ∈ CK×1 is the signal vector. n1
ðtÞ, n2ðtÞ, and n3ðtÞ are the additive white Gaussian noise
(AWGN) vectors with the same noise power σ2. A1 = ½a1ðθ1Þ,
⋯, a1ðθKÞ�, A2 = ½a2ðθ1Þ,⋯, a2ðθKÞ�, and A3 = ½a3ðθ1Þ,⋯, a3
ðθKÞ� denote the direction matrices of subarray 1, subarray 2,
and subarray 3, respectively. The columns are the corresponding
steering vectors, which are expressed as

a1 θkð Þ = 1, e−jNπ sin θk ,⋯, e−j M−1ð ÞNπ sin θk
h iT

, k = 1,⋯, K ,

a2 θkð Þ = 1, e−jMπ sin θk ,⋯, e−j N−1ð ÞMπ sin θk
h iT

, k = 1,⋯, K ,

a3 θkð Þ = 1, ejMNπ sin θk ,⋯, ej L−1ð ÞMNπ sin θk
h iT

, k = 1,⋯, K:

ð2Þ

Nd

Md M

N

Subarray 1

Subarray 2

Z

Subarray 3

L

MNd

Figure 1: The structure of CCNA.
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3. Partial Dictionary Based Off-Grid DOA
Estimation Method

3.1. Sparse Representation Using Partial Dictionary. Combine
the outputs of subarray 1 and subarray 3 to form the first

nested array y1ðtÞ = ½x1TðtÞ, x3TðtÞ�T , whose covariance
matrix is

R1 = E y1 tð ÞyH1 tð Þ� �
=An1RsAH

n1 + σ2IM+L−1, ð3Þ

where An1ðtÞ = ½A1
TðtÞ,A3

TðtÞ�T is the combined direction
matrix and Rs = E½sðtÞsHðtÞ� = diag ðσ12,⋯, σK 2Þ is a diago-
nal matrix containing signal powers. To obtain the virtual
array in the coarray domain, the vectorization of the covari-
ance matrix is

r1 = vec R1ð Þ = A∗
n1 ∘An1ð Þp + σ2vec IM+L−1ð Þ, ð4Þ

where p = ½σ12,⋯, σK 2�T . Due to the nested relationship,
there are 2LM − 1 continuous elements located from −ðLM
− 1ÞNd to ðLM − 1ÞNd in the virtual array with interele-
ment spacing being Nd [36]. After selecting continuous ele-
ments from r1, then, we obtain

rs1 =Ws1r1 =As1p + σ2e1, ð5Þ

whereWs1 is the selecting matrix and e1 denotes the column
vector after the same selecting operation from vecðIM+L−1Þ.
As1 = ½as1ðθ1Þ, as1ðθ2Þ,⋯,as1ðθKÞ� is the direction matrix of
the continuous part, where

Similar with the steps from Eq. (3) to Eq. (5), we can
obtain another virtual array from the overall output of subar-
ray 2 and subarray 3, which can be expressed as

rs2 =As2p + σ2e2, ð7Þ

where e2 denotes a column vector after the selecting opera-
tion andAs2 = ½as2ðθ1Þ, as2ðθ2Þ,⋯,as2ðθKÞ� is the direction
matrix corresponding to an ð2LN − 1Þ-element array located
from −ðLN − 1ÞMd to ðLN − 1ÞMd with interelement spac-
ing being Md. The steering vector is

Now, the two virtual coprime subarrays in Eq. (5) and Eq.
(7) are obtained, and the large interelement spacing will
result in parameter estimation ambiguity problem. However,
our method will in turn exploit the phase ambiguity to reduce
the complexity and then eliminate the ambiguity based on
the coprime-ness between M and N . Suppose M >N , then
the first subarray in Eq. (5) achieves larger aperture than that
in Eq. (7), so we choose rs1 to estimate the DOA for better
estimation performance.

As the virtual output has only one snapshot, sparse repre-
sentation framework will be established to avoid the aperture
loss caused by the spatial smoothing [24]. Discretize the

whole spatial range as a grid eθ1, eθ2,⋯, eθPðP≫ KÞ, and
suppose that all the true DOAs fall in the grid, i.e., the dictio-

naryΩ = ½as1ðeθ1Þ,⋯, as1ðeθPÞ, e1� contains the columns ofAs1,
then Eq. (5) can be rewritten in a sparse form as

rs1 =Ωρ, ð9Þ

where ρ ∈ℂðP+1Þ×1 is a sparse vector, whose elements corre-

sponding to the true DOAs keep the same with those in p
and last element is noise power σ2. After sparse recovery, the
positions of nonzero elements (except the last element) in ρ
will give the estimations of the DOAs. However, as the inter-
element spacing of the virtual array isNd, which is larger than
half-wavelength, then there are phase ambiguities in Ω. To

clearly elaborate this problem, let zp = e−jNπ sineθp ; then, zp
determines the uniqueness of as1ðeθpÞ due to the Vander-

monde structure, i.e., if zp = zq, then as1ðeθpÞ = as1ðeθqÞ.
AsN > 1, there is a cyclic phase ambiguity in zp. Except foreθp, there are other ðN − 1Þ angles eθp,n, n = 2,⋯,N satisfying

e−jNπ sineθp,n = zp, n = 2,⋯,N: ð10Þ

It can be derived from Eq. (10) that the relationship

between eθp and eθp,n, n = 2,⋯,N is

as1 θkð Þ = e−j LM−1ð ÞNπ sin θk ,⋯,e−jNπ sin θk , 1, ejNπ sin θk ,⋯, ej LM−1ð ÞNπ sin θk
h iT

, k = 1,⋯, K: ð6Þ

as2 θkð Þ = e−j LN−1ð ÞMπ sin θk ,⋯,e−jMπ sin θk , 1, ejMπ sin θk ,⋯, ej LN−1ð ÞMπ sin θk
h iT

, k = 1,⋯, K: ð8Þ
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sin eθp,n = sin eθp − 2m
N

, n = 2,⋯,N , ð11Þ

where m is an integer making sin eθp,n locate at the range [-1,
1]. If angles eθp,n, n = 2,⋯,N are also located in the grid eθ1,eθ2,⋯, eθP, then eθp and eθp,n, n = 2,⋯N will provideN identical
columns in the dictionary matrix Ω due to Eq. (10). This will
not only cause the estimation ambiguity but may also make
the sparse recovery fail. However, we can in turn exploit the
ambiguity to reduce the size of the dictionary and then reduce
the complexity of sparse recovery accordingly.

From Eq. (11), it is shown that the N solutions sin eθp and
sin eθp,n, n = 2,⋯,N are uniformly distributed among the
range [-1, 1] following a circle 2/N . An example is shown

in Figure 2, where sin eθp = 0:5 and N = 3, then other two

solutions are sin eθp,2 = −1/6 and sin eθp,3 = −5/6, respectively.
It is also shown by the dashed lines in Figure 2 that if we
divide the whole range into N cycles with width being 2/N ,
then there is only one solution in one cycle based on Eq.
(11). As these solutions provide identical atoms in the dictio-
nary, we can choose one cycle as a representative to con-
struct the dictionary. Without loss of generality, we choose
range ½−1/N , 1/N�, and the angle range is ½arcsin ð−1/NÞ,
arcsin ð1/NÞ�, whose corresponding dictionary is denoted
by Ωsub; then, the sparse form in Eq. (9) becomes

rs1 =Ωsubρ, ð12Þ

where ρ ∈ℂðP+1Þ×1 is a K-sparse vector, whose elements cor-
responding to the true steering vectors (maybe not the true
DOAs) keep the same with those in p, and the others are
zero (except the last element). For example, as shown in
Figure 2, the true solution is 0.5, and the representative solu-
tion in the partial dictionary Ωsub is -1/6.

Due to Eq. (12), the phase ambiguity in the dictionary can
be avoided now. Meanwhile, as now the size of the dictionary
Ωsub is only 1/N of its original size, the computation com-
plexity of sparse recovery can be reduced.

3.2. Off-Grid Sparse Representation Framework. Now a par-
tial dictionary based sparse representation framework is
established, but it is built based on the assumption that the
true DOAs or their representative angles are located in the
grid. However, the angles are very likely to lie off the discretized
grid, no matter how fine the grid is defined. Off-grid sources
will bring in grid mismatch problem and degrade the sparse
recovery performance significantly. In this section, we take
the off-grid problem into account and reformulate the sparse
representation to enhance the robustness to grid mismatch.

Within the range ½arcsin ð−1/NÞ, arcsin ð1/NÞ�, we

denote the uniformly sampled grid as eθ1, eθ2,⋯, eθQ with adja-
cent interval being g. Then, the true DOA or its representa-

tive angle θk can be represented by a nearest grid eθq,k plus
an offset αk, which is among the range ½−g/2, g/2�. Based on
first order Taylor expansion around the grid [14], the true
steering vector can be approximately expressed as

as1 θk
� �

≈ as1 eθq,k� �
+
∂as1 eθq,k� �

∂eθq,k αk, ð13Þ

where αk = θk − eθq,k. Then, Eq. (12) is revised as

rs1 = Ωsub +Ωsub′ Λ
� �

ρ, ð14Þ

where Ωsub′ = ½∂as1ðeθ1Þ/∂eθ1,⋯, ∂as1ðeθQÞ/∂eθQ, e1�, Λ = diag
ðβÞ, and

β qð Þ = αk, ifeθq,k =eθq, k = 1,⋯, K
0, others

(
, q = 1,⋯,Q: ð15Þ

Let ω =Λρ, then it is easy to verify that ω and ρ are
joint sparse [30]. So the off-grid sparse formulation can
be expressed as

min hk k2,1
s:t: rs1 =Ωsubρ +Ωsub′ ω

−
g
2 ρ ≤ ω ≤

g
2 ρ,

ð16Þ

where h = ½ρT , ωT �T , and khk2,1 =∑Q
i=1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2i + ω2

i

p
, where ρi

means the i-th element of ρ. It should be noted that the
covariance matrix in Eq. (3) can only be estimated via
finite snapshots

R̂1 =
1
T

� �
〠
T

t=1
y1 tð ÞyH1 tð Þ, ð17Þ

where T denotes the snapshot number. So the sparse
form in Eq. (16) is not robust due to the residual error.
Use Δr1 to denote the deviation of r1 in Eq. (6), then
according to [37], Δr1 follows asymptotic normal distri-
bution with zero mean and covariance matrix being 1/
TðRT

1 ⊗ R1Þ

Δr1 ∼AsN 0, 1
T

RT
1 ⊗ R1

	 
� �
: ð18Þ

-1 1

–5/6 –1/6 0.5

2/N = 2/3

True solutionAmbiguous solutions

–1/3 1/3

Cycle

Figure 2: The relationship between the real and ambiguous
solutions.
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After selecting operation

Δrs1 ∼AsN 0, 1
T
Ws1 RT

1 ⊗ R1
	 


Ws1
H

� �
: ð19Þ

Define weight matrixW = ð1/TÞWs1ðRT
1 ⊗ R1ÞWs1

H , then

W−1/2Δrs1 ∼AsN 0, I2LM−1ð Þ: ð20Þ

From Eq. (20), kW−1/2Δrs1k22 follows an asymptotic chi-
square distribution with 2LM − 1 DOF. Consequently, the
enhanced sparse recovery problem can be formulated as

min: hk k2,1
s:t: W∧−1/2 rs1 −Ωsubρ −Ωsub′ ω

� ���� ���
2
≤ ξ

−
g
2 ρ ≤ ω ≤

g
2 ρ,

ð21Þ

where Ŵ = ð1/TÞWs1ðR̂T
1 ⊗ R̂1ÞWs1

H is the approximate
weight matrix;ξ is the up bound of the fitting error, which
can be set as ξ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
chi2invð1 − p, 2LM − 1Þp

[11], where chi2
invð1 − p, 2LM − 1Þ denotes the inverse cumulative distribu-
tion function that makes the inequality holds with a probabil-
ity ð1 − pÞ. Generally, it is enough to set p = 0:001 to make it
nearly a sure event.

After solving Eq. (21) via CVX [38, 39], we can obtain the
estimations of ρ and ω, which are denoted as bρ and bω ,
respectively.

3.3. Ambiguity Elimination. The positions of nonzero ele-
ments in the first Q elements of bρ and bω give the initial

DOA estimations eθq,k, k = 1,⋯, K , which are the grids near-

est to the true DOAs or their representative angles. Besides,
the offset vector can be obtained via

β = diag bρ:/bωð Þ, ð22Þ

where ./ means element-wise division. Then, the angles are
obtained via

θk = eθq,k + αk, k = 1,⋯, K , ð23Þ

where the offsets αk, k = 1,⋯, K are obtained from the first Q
elements of β in Eq. (22).

Now, the angles are estimated with offsets being compen-
sated, but the angles in Eq. (23) may be true DOAs and also
may be representative angles. As been discussed in Eq. (10)
and Eq. (11), there are totally N angles including θk sharing
the same atom, and their relationship is

sin θk,n = sin θk −
2m
N

, n = 2,⋯,N , ð24Þ

where m is an integer making sin θk,n locate at the
range [-1, 1].

To determine the unique DOA without ambiguity, we
substitute theN angles in Eq. (24) into the whole virtual array

max anHr, ð25Þ

where r = ½rs1T , rs2T �T and an = ½as1Tðθk,nÞ, as2Tðθk,nÞ�
T
. Due

to the coprime relationship between the two subarrays, the
unique DOA can be determined from the coincide results
from the two subarrays. Consequently, if the whole array
containing both two subarrays is exploited, unique angle is
determined by finding the maximum value in Eq. (25).
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Figure 3: Angle estimation accuracy comparison versus SNR.

5Wireless Communications and Mobile Computing



For the complexity, the proposed method only requires
partial dictionary, and the main complexity lies in the
construction of two covariance matrices and sparse recov-
ery. The total number of complex multiplications is about
ððM + L − 1Þ2 + ðN + L − 1Þ2ÞT + ð2LM − 1Þn3 +Nð2LM + 2
LN − 2Þ, where n denotes the dictionary size. The proposed
method has lower complexity than peak search method
[24] and other sparse representation methods that require
whole dictionary [27–30]. Compared to DOA estimation
methods with closed-form solution, e.g., ESPRIT and root-
MUSIC, the proposed method costs more but achieves better

estimation performance, which will be verified in the simula-
tion section below.

4. Simulation Results

In the simulations, the CCNA is configured with M = 4,
N = 3, and L = 3. T = 500 snapshots are collected to esti-
mate the covariance matrix, and the root mean square
error (RMSE) is defined below to measure the DOA esti-
mation performance
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Figure 4: Angle estimation accuracy comparison versus snapshot number (SNR = 10 dB).
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Figure 5: Angle estimation results of closely spaced sources (SNR = 0 dB).
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RMSE = 1
K
〠
K

k=1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
D
〠
D

i=1
θ∧k,i − θkð Þ2�

vuut , ð26Þ

where bθk,i denotes the estimations of θk of the i-th Monte
Carlo trial and D = 200 trials are carried out.

With the measurement of RMSE, Figures 3 and 4 present
the angle estimation accuracy comparisons between the
proposed algorithm and other methods versus SNR and
snapshot number, respectively. The ACA method [24], PS-
MUSIC using prototype coprime array [32], root-MUSIC
method using prototype coprime array [33], and root-
MUSIC using CCNA [36] all adopt the same number of
physical antennas with the proposed method for fair compar-
ison. It is indicated from Figures 3 and 4 that the proposed
algorithm outperforms the other methods, and the main rea-
sons include (1) the virtual subarray with larger aperture is
chosen to avoid the negative effect from the smaller subarray,
and (2) the off-grid sparse representation is established to
amend the grid mismatch problem. The PS-MUSIC has the
worst performance, especially with low SNR, as it has the
additional pairing problem, and it utilizes the data from the
physical array, which has limited DOF.

To test the resolution performance of the algorithms, we
choose two closely spaced sources with angles being θ1 = 10∘
and θ2 = 12∘, respectively. Figure 5 shows the estimation
results of the algorithms over 20 trials with SNR = 0dB. It
is indicated that the proposed method can always clearly
identify the two sources, while the other methods have big
deviations. Consequently, the proposed method achieves
the best angular resolution.

5. Conclusions

An off-grid DOA estimation method exploiting CCNA is
proposed. Based on the nested relationships within the three
subarrays, two virtual coprime subarrays are obtained firstly
in the coarray domain. Thereafter, subarray with larger aper-
ture is chosen for enhanced estimation performance, and
cyclic phase ambiguity is exploited to reduce the size of the
dictionary. Meanwhile, off-grid sparse reconstruction
method is established to amend the grid mismatch. Finally,
DOA is uniquely determined by substituting the ambiguous
into the whole array. Compared to other methods with sim-
ulations, the proposed approach is verified that it has better
DOA estimation performance and angular resolution.
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Tactical ad hoc networks (TANET) accomplish the corresponding tasks via a hopeful device-to-device connection mechanism for
data transmission and resource management without a centralized foundation. Software-defined networking (SDN) provides an
evolution from the previous networks by decoupling the network control from data forwarding and providing a novel paradigm
for network handling. Nevertheless, a SDN-based strategy in TANET leads to various novel problems since the primary
construction cannot be employed in mobile ad hoc networks anymore. In this paper, a new SDN-based structure is constructed
for TANET. Then, both delay and energy consumption (EC) are utilized to model the controller deployment and data-plane
assignment problems, by which quality-of-service (QoS) guarantees are realized. Afterwards, mixed-integer programming (MIP)
is adopted to solve the mentioned model. Finally, according to the experimental outcomes, it can be observed that the presented
approach ensures the data-plane delay and optimizes the EC.

1. Introduction

With the increasing growth of the technology of wireless
communications, data traffic transmitted through wireless
networks is continuously increasing. Wireless mobile com-
munication networks commonly contain wireless local area
networks, cellular networks, mobile ad hoc networks, wire-
less mesh networks, etc. Local traffic may be caused when
the source and the destination are close. In popular network
situations, local traffic transmission and redistribution can be
realized from the cellular network to the main structure. As a
more suitable strategy, a distributed organization for devices
can be realized using device-to-device technologies. Lack of
centralized foundation leads to independent operation, mak-
ing routing decisions, and dynamic adaptation of each node
to topology variations in a mobile network. The mentioned
features lead to significant achievements for mobile ad hoc
networks in a tactical network scenario, in other words, tac-
tical ad hoc networks (TANET) [1].

As a hopeful novel pattern, software-defined networking
(SDN) makes a remarkable change in the construction and

operation of communication networks. Due to its universal
view on the whole network, the centralized SDN controller
leads to a remarkable improvement in its service quality
and management of resources. SDN adopts task-specific
benchmark and necessary to know restrictions within the
tactical networks to make globally optimal routing decisions
and provide data transmission. The SDN has been employed
in ad hoc networks to improve efficiency and flexibility [2].
In comparison to the traditional distributed routing proce-
dures (like optimized link state routing, OLSR), the SDN-
enabled structure leads to lower response delay, superior
throughput, and energy consumption (EC).

SDN provides an improvement in management intelli-
gence and flexible control in TANET. Nevertheless, due to
the distribution of resources and management in mobile ad
hoc networks, employing a centralized SDN pattern in
TANET (i.e., software-defined tactical ad hoc networks,
SD-TANET) might be complicated. For the SDN unit’s
proper operation, specific communications should be estab-
lished among controllers and data-plane services using net-
work state data (e.g., topology discovery) and flow tables.
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The mentioned communications can be influenced in
TANET due to the low transfer rates and unreliable link con-
nection. Due to the intrinsic limitations for devices in SD-
TANET, the controllers should be distributed within the net-
work to achieve superior performance and reliability.

A redundancy is incorporated into the control plane to
overcome the mentioned deficiencies and guarantee the
connection reliability among data-plane nodes and con-
trollers. In a large-scale SD-TANET, multiple controller
deployment can be considered an appropriate approach.
Due to the critical role of the SDN controller within the
network and the movement of the energy-intensive func-
tions from nodes to the controller, the SDN controller’s
optimum deployment has a considerable impact on
decreasing the response delay and EC. An essential issue
here is to decide where to locate multiple controllers in
the network. This decision is able to significantly affect
the efficiency of the SDN-based TANET.

The other sections of the present article are classified
as given below: Section 2 is allocated to the relevant stud-
ies, which employ SDN in mobile ad hoc networks and
the issues of wireless controller deployment. In Section 3,
the presented design and SDN-based TANET are intro-
duced, which are adopted to describe the deployment issue
of controllers and the data-plane assignment to the con-
trollers in Section 4. The solution of the mentioned model
is given in Section 5, and the presented approach is eval-
uated through a practical dataset. The obtained conclu-
sions are drawn in Section 6.

2. Relevant Studies

Current controller software, including ONOS [3] and the
software switch Open vSwitch [4], could be implemented
on various instruments, even certain weightless network
ones. This makes it feasible to employ SDN in mobile ad
hoc networks. Besides, various controller deployment
approaches can be realized using common software
execution.

In [5], the authors introduced a feasible implementa-
tion of an SDN-based MANET (namely, mobile ad hoc
networks) and characterized the developed software com-
ponents. The authors in [6] constructed a framework
and a related prototype for SDN-based quality manage-
ment, which provides high flexibility via novel flow man-
agement rules at preparation time and can appropriately
handle node join/leave events. We see in [1] a structure
constructed for SDN-based mobile ad hoc networks in
the tactical area and illustrated the difficulties caused via
the ad hoc and coalition network ambience. In [7], the
technology of SDN has been employed for the ad hoc sen-
sor networks of flying, and a clustering structure with a
clustered controller of SDN is constructed to realize hier-
archical management and integrated dispatch. In [8], a
flexible procedure has been presented, which could
dynamically select to route under the controller’s com-
mands or make routing choices through a distributed
approach. The mentioned studies demonstrate the possi-

bility of employing SDN in ad hoc networks and its func-
tionality aspects in tactical field networks.

Controller deployment problem (CPP) can spread out a
fair quantity of controllers at optimum positions. Several
studies have been performed about wired networks based
on various targets and limitations. Nodal mobility and chan-
nel uncertainty are two essential features of the wireless net-
work, imposing unique CPP in software-defined wireless
networks (SDWN) [9]. The CPP issue has been considered
in SDWN in various studies.

The authors in [10] presented a TDMA-based control-
ler, in which wireless control plane and southbound inter-
faces have been considered to diminish the quantity of
controllers in a specified controller reaction time. We see
in [11] a novel assessment named transparency and opti-
mized multiple goals taking channel conflict and packet
loss in wireless networks. In [12], the authors verified
the influence of delayed state data and constructed a
deployment structure of dynamic controller, where delayed
queue length data has been utilized to relocate the
controller.

The data mentioned above give us the possibilities of not
only employing SDN in TANET but also implementing CPP
with wireless links. Although the CPP with delay or packet
loss guarantee in a wireless scenario has been studied, the
issue with multiple QoS constraints has not been involved
yet. In particular, EC constraint is a crucial QoS guarantee
for both controllers and data nodes in wireless mobile net-
works. Thus, in addition to channel conflict, both delay and
EC are considered in this paper, which is our major contribu-
tion as well.

3. The SD-TANET Structure

The constructed structure of SDN-based TANET and their
operation is illustrated in the current section. An appro-
priate MAC layer should be selected in the data plane
for the TANET organization. Unlicensed bands without
centralized coordination determine the mentioned selec-
tion rule for the MAC protocol. Based on [5], IEEE
802.11 P2P mode independent basic service set (IBSS) is
the ad hoc mode standard of IEEE 802.11, providing com-
plete control on the upper layers, which is necessary for
the utilized method.

Although the SDN is founded on the decoupling of the
data and control planes, it is more reasonable to employ a
hybrid structure in the SD-TANET for the control plane.
In a hybrid structure, data transmission via data-plane
nodes could be realized using the flow tables transmitted
via controllers. If the target node is undetectable or the
flow tables are not updated by the controller, the old flow
tables could be neglected via the data-plane nodes, and
messages can be transmitted via distributed routing rules.
This design kind causes data-plane nodes to create distrib-
uted routing choices to improve the control plane’s
redundancy.

Further necessity in this architecture is to employ two
distinct frequency bands to split network control and data
sending, enhancing the scalability and performance. The
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“in-band” phrase is employed for point-to-point data trans-
fer among distributed devices, while the “out-of-band”
phrase is utilized for point-to-multipoint control signaling
among the controller and distributed devices [13, 14].
Figure 1 describes the details of the hybrid structure, which
consists of a global controller and some local controllers,
forming the control plane.

An instrument with adequate processing of data abili-
ties is able to operate as the local controller, deployed on
a portable wireless foundation or SDN-based mobile
instruments. It combines link-state data with local topol-
ogy from all corresponding distributed instruments. The
global controller provides a general perspective of the net-
work and preprocesses link-state data with a centralized
strategy. It can be spread out in an edge computing center
like the center of commanding in the networks of tactical

field. The local controller operates as a link connecting the
global controller to distributed devices. Optimal routing
tables obtained via the global controller are sent via the
local controller. The local controller can perform the over-
all control under a global controller’s failure or real-time
response requirements. The routing of devices can be real-
ized using their processed data.

4. System Model and Strategy

The control plane consists of the controllers’ deployment and
the data-plane nodes’ assignment. The network, especially
the response delay and EC for transmission and synchroniza-
tion, can be effectively influenced by the control-plane struc-
ture. The following challenges can be solved using the
presented methodology: (1) the number of controllers; (2)

Control

Out-of-band control
In-band data

Control

Global controller

Synchronization

Synchronization

Local controller

Link state information

UAV
Mobile
wireless
device

D2D data
forwarding

Control signal

Control signal

Figure 1: The SD-TANET structure, where the mobile wireless instruments and unmanned aerial vehicles (UAV) with SDN capability create
the data plane.

Input: The network topology, the objective function and
the constraints
Output: The optimal controller location and assignment <x,
Y>
1. C←Φ
2. Initialize x, Y
3. For n=1 to Nc do
4. x ← place(xn) //calculated by CPLEX
5. Y ← assign(xn, ysn) //optimal assignment
6. Calculate αDðyÞ + Eðx, yÞ
7. End
8. C ← arg minx,yαDðyÞ + Eðx, yÞ
9. Return <x, Y>

Algorithm 1: The controller deployment and data-plane assignment.
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the controller position; and (3) the assignment of data-plane
nodes to the controller.

A network is described with GðN , EÞ. Suppose that the
data-plane nodes and controllers are indicted with the set
N . The wireless connection among data-plane nodes and
controller is described by set E.

As shown in Figure 1, the smartphones and unmanned
aerial vehicles (UAV) could be described via data-plane
nodes if they are SDN-consistent and support the MAC
layer explained in the prior section. Virtual SDN switches
can be simulated with the network nodes. The mentioned
mobile ad hoc nodes and the controller set are denoted by

S = fs1, s2,⋯, skg, and C = fc1, c2,⋯, ctg, respectively. Con-
sider that all TANET nodes can operate as a controller. A
series of nodes with sufficient resources that are able to
operate as a controller is denoted by Nc ⊆N .

Now, xc ∈ f0, 1g is defined as binary decision variables,
as the following (1), indicating whether a local controller
is positioned at node c ∈Nc. The mentioned variables
can be employed to develop a controller deployment
approach.

x = xn ∈ 0, 1f g: n ∈Nð Þ: ð1Þ
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Since a controller should be positioned at a node with
sufficient resources, the following condition should be ful-
filled:

xn = 0, ∀n ∉Nc: ð2Þ

The presented approach should determine the assign-
ment of data-plane nodes to controllers. This implies that
an appropriate controller must be selected to manage it. In
a similar manner, decision variables ysc ∈ f0, 1g indicate
whether a node s ∈ S corresponds to the controller at c ∈
Nc and ysc = 1 or not ysc = 0. The assignment rule is
described as

y = ysc ∈ 0, 1f g: s ∈ S, c ∈Ncð Þ: ð3Þ

Since any data-plane node must be devoted to an indi-
vidual controller at a determined time, the following con-
straint should be satisfied:

〠
c∈Nc

ysc = 1, ∀s ∈ S: ð4Þ

As another constraint, if node s corresponds to con-
troller c, controller c should be necessarily positioned
there. Thus, the following constraint should be fulfilled:

ysc ≤ xc, ∀s, c ∈N: ð5Þ

The presented controller deployment and assignment
strategy’s primary purpose is to decrease the reaction delay
and the communication overhead for state data collection

and synchronization. Then, the model of delay and over-
head can be studied.

It can be seen from Figure 1 that control and data planes
send control signals and status data through wireless links.
Any wireless link is related to probability psc, which defines
the probability that a message can be successfully transmitted
on the mentioned link. psc is dependent on the model of wire-
less channel that considers a combined path loss and sha-
dowing model, presented through [15].

psc =Q
Pmin − Pt + 10 lg k − 10γ lg d/d0ð Þð Þ

σψdB

 !
: ð6Þ

Q describes the probability that a Gaussian random vari-
able x with the zero mean and the unit variance can be higher
than z:

Q zð Þ ≜ p x > zð Þ =
ð∞
z

1ffiffiffiffiffiffi
2π

p e−y
2/2dy: ð7Þ

Pmin defines the least delivered power, Pt denotes the
transmitted power, k indicates a nondimensional parameter
that is related to the features of antenna and the mean atten-
uation of channel, γ denotes the path loss exponent, d
describes the distance among the controller and the corre-
sponding data-plane nodes, and d0 denotes the reference dis-
tance for the antenna far field [15]. Their corresponding
values could be calculated to approximate either an experi-
mental or analytical model. ψdB describes a Gaussian-
distributed stochastic variable with zero mean and variance
σψdB

.

0

0.01

0.02

0.03

0.04

0.05

0.06

Av
er

ag
e e

ne
rg

y 
co

ns
um

pt
io

n 
(J

)

k-median
MIP

10−2 10−1 100 101
𝛼

Figure 4: Comparison with the k-median approach.

5Wireless Communications and Mobile Computing



Within the situation where the messages transmitted via
the source, including data-plane nodes or controller, was
not effectively sent to the receiver, the quantity of retransmis-
sion is indicated by nsc, where its distribution is described as

Pr nsc = if g = psc 1 − pscð Þi−1, i ∈ 1, 2, 3,⋯f g: ð8Þ

The nodes controlled by ci are indicated by si,ci . Now, the
rate of data transfer of the wireless link rðci, si,ciÞ could be
obtained as

ri ci, si,ci
� �

= B log2 1 +
pt cið Þh ci, si,ci

� �
σ2 + I ci, si,ci

� �
 !

: ð9Þ

ηi describes the communication traffic used by upgrading
the flow tables. hðci, si,ciÞ indicates the channel gain among
controller ci and node si,ci given via ci, where it can be com-
puted as h = d−γ. B describes the bandwidth of the channel,
and σ2 indicates the white Gaussian noise variance.

The transfer delay among data-plane nodes and control-
ler is given by

tsc =
ηi

ri ci, si,ci
� � : ð10Þ

Now, the expected transfer delay can be obtained as 2tsc
/psc.

According to the above analysis, the overall response
delay can be obtained as

D yð Þ =〠
s∈S

〠
c∈Nc

ysc
2tsc
psc

� �
: ð11Þ

As for EC, we mainly assume the energy used by the data
exchange among data-plane nodes and controllers and the
synchronization among controllers. The mentioned two
kinds of EC are influenced by the controller deployment,
illustrated individually.

The communication overhead of the assignment of node
s to controller c is indicated through wα

sc. Assignment over-
head is described as

Wα yð Þ =〠
s∈S

〠
c∈Nc

yscw
α
sc: ð12Þ

Increasing the data-plane nodes managed by the control-
ler increases the number of messages exchanged with other
controllers. The overhead produced through the fixed rate
messages exchange among controller m and n is indicated
by wcon

mn , while the extra cost related to the controllerm’s load
is denoted by wadd

mn .
In a multicontroller network, controllers communicate

data with each other using a consensus protocol for synchro-
nization. Based on [16], various consensus approaches may
be employed by several controllers to attain synchronization

goals. According to the presented structure, the leader-based
case is discussed here.

In the leader-based approach, controllers just exchange
data with the leader. The leader-based overhead can be
described as

W lb x, yð Þ = 〠
m∈Nc

〠
n∈Nc

xm wlb con
mn +wlb add

mn 〠
s∈S

ysm

 !
: ð13Þ

According to the mentioned analysis, the overall over-
head can be obtained as

W x, yð Þ =Wα yð Þ +W lb x, yð Þ: ð14Þ

Considering the energy utilized through the abovemen-
tioned transition overhead, according to [17], the following
EC model can be obtained, which describes the EC of the
transmission of k bit/s information:

Et k, dð Þ =
k Eelec + εfsd

2� �
, d < dmax,

k Eelec + εampd
4� �
, d ≥ dmax,

(
ð15Þ

where Eelec = 50 nJ/bit, εfs = 10 pJ/bit/m2, and εamp = 0:0013
pJ/bit/m4 describe the energy parameters of the amplifier of
power with various distances. The maximum communica-
tion radius is obtained as dmax =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εfs/εamp

p
. The whole EC

for transition and synchronization is given by

E x, yð Þ =W x, yð Þ + Eelec + εfsd
2� �
: ð16Þ

It is evident that the outspread deployment of more con-
trollers within the network decreases the reaction delay
because nodes can be managed at a lower distance. Neverthe-
less, the dense deployment of a smaller number of controllers
decreases the EC for multicontroller synchronization. The
mentioned two assessments are inconsistent and cannot be
diminished at a similar time. Thus, an appropriate deploy-
ment approach should be obtained to make a balance
between delay and EC and obtain the minimum attainable
response delay and consumption. The weight parameter α
> 0 is chosen to balance between the mentioned two assess-
ments and optimizing the controller deployment and assign-
ment through solving the given minimization problem.

minx,yαD yð Þ + E x, yð Þ
subject to  1‐5ð Þ:

ð17Þ

The standard linearization can be utilized to convert the
problem (17) to a Mix-Integer Programming (MIP) problem.
Now, a mathematical optimizer like CPLEX can be adopted
for its solution [18]. The results can be obtained using Algo-
rithm 1. It is performed on the global controller for a con-
stant time range.

6 Wireless Communications and Mobile Computing



5. Numerical Simulations

In the current section, the presented approach’s efficiency is
evaluated through the mobile ad hoc networking interopera-
bility and cooperation (MANIAC) datasets [19]. The ONOS
is assumed to serve as the studied controller because it pro-
vides the deployment of a multicontroller. Mininet-WiFi is
employed to perform simulations on similar topology in
MANIAC to evaluate whether the presented approach can
satisfy the desired goals. Mininet-WiFi incorporates novel
categories to provide the possible addition of the mentioned
wireless mobile devices in a Mininet network framework
[20]. Moreover, measurements can be obtained through an
actual traffic overhead and delay in a simulated approach
[21].

The model parameters are chosen as an out-of-door
ambient combining with a path loss and shadow channel
for (6), k = −31:54dBm, Pt = 24 dBm, Pmin = −115dBm, γ =
3:7, σψdB

= 3:65dBm, and d0 = 50m [15]. And B = 5MHz

and σ2 = −100dBm for (9). The packet scale η of the
requested flow tables is chosen as 1500 bytes. The traffic of
controller nodes and synchronization of controller-
controller are utilized to generate the overhead. A certain
amount is related to the controllers’ type and their corre-
sponding distance. The mathematical relations correspond-
ing to the obtained overhead are utilized to obtain the EC.
The CPLEX optimizer is adopted to solve the optimization
problem.

Various controller deployment approaches are con-
structed based on the k-median clustering technique for opti-
mizing the delay among data-plane nodes and controllers.
The presented approach is compared with the k-median
approach. As k-median considers the quantity of controllers
as an initial data, a similar quantity of controllers is chosen
for the comparison.

As shown in Figure 2, the presented approach can set the
quantity of controllers corresponding to the parameter of
weight α. The weight parameter α denotes the same as that
in (17). Increasing the weights of delay leads to more control-
lers in the vicinity of nodes. According to Figure 3, there is a
trade-off between delay and EC. As shown in Figure 4, lower
EC can be obtained through the presented approach than the
k-median clustering approach. The MIP in this figure repre-
sents our presented approach since it has been converted to a
MIP problem.

When the EC weights increase, the presented approach
prefers to place the smaller number of controllers to reduce
the intercontroller and controller-node communications
and EC. When the response delay is more significant, the
number of controllers positioned near the nodes to attain a
controller with a lesser reaction delay is more. According to
simulation outcomes, the presented approach can make a
balance between delay and EC and regulate the proper quan-
tity of controllers.

6. Conclusions

In the current work, the controller deployment issue is veri-
fied in the SDN-based TANET. A structure of SDN-based

mobile ad hoc networks is constructed. Now, an optimal con-
trollers’ deployment is developed for delay guarantee and
optimal EC. Simulation results indicate significant efficiency
in decreasing delay and EC. According to the presented
approach, there is a trade-off between two assessments in
various preferences. The hybrid control in the mentioned
framework and controller deployment can be considered as
future works.
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A GPS sparse multipath signal estimation method based on compressive sensing is proposed. A new 0 norm approximation
function is designed, and the parameter of the approximate function is gradually reduced to realize the approximation of 0
norm. The sparse signal is reconstructed by a modified Newton method. The reconstruction performance of the proposed
algorithm is better than several commonly reconstruction algorithms at different sparse numbers and noise intensities. The GPS
sparse multipath signal model is established, and the sparse multipath signal is estimated by the proposed reconstruction
algorithm in this paper. Compared with several commonly used estimation methods, the estimation error of the proposed
method is lower.

1. Introduction

In wireless communication system, due to the influence of
scattering or reflection, radio wave may reach the receiver
through multiple different paths, so that the received signal
at the receiver is the superposition of multiple signals. The
multipath interference is inevitable, which is one of the main
reasons that affect the performance of GNSS receiver. It will
lead to the distortion of the autocorrelation waveform of
the pseudocode and affect the detection of the coherent peak,
thus reducing the positioning accuracy of the receiver. It is
necessary to detect the multipath signals [1, 2].

Candès et al. [3] and Donoho [4] proposed the theory of
compressive sensing (CS) in 2006, which can sample the
sparse signal at low sampling rate. Currently, the research
and application fields of CS include radar signal arrival angle
estimation [5, 6], satellite navigation signal processing [7–9],
and sparse radar design [10–13]. The CS signal reconstruc-
tion needs to recover the original high-dimensional signal
from a small amount of measurement data. There are several
kinds of reconstruction algorithms. The relaxation algorithm

transforms 0 norm into 1 norm. It converts the problem into
a convex optimization problem which is easy to be solved
[14, 15]. The greedy algorithm has the advantages of simple
calculation and easy implementation. However, the recon-
struction accuracy is not high and the sparse number is
needed [16, 17]. In recent years, some 0 norm approximate
solution algorithms have been developed, which transform
the 0 norm into mathematical analyzable approximation
functions. The sparse signal is reconstructed by a gradient
method, Newton method, or other optimization methods
[18, 19]. This method can reduce the difficulty of signal
reconstruction and obtain better results.

A new 0 norm approximation function is proposed. The
sparse reconstruction problem of CS is translated into a
Lagrange multiplier problem. It gradually reduces the param-
eters and reconstructs the original signal by the modified
Newton method. A GPS sparse multipath signal model is
established, and the estimation of GPS sparse multipath sig-
nal is realized by using the approximate function which is
proposed in this paper. The rest of this paper is organized
as follows. In Section 2, the GPS sparse multipath model is
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introduced. Section 3 analyzes the proposed 0 norm approx-
imate function and reconstruction method. Sections 4 and 5
give the reconstruction and estimation results of the new pro-
posed method. Finally, the paper is concluded in Section 6.

2. GPS Sparse Multipath Model

Assuming that the GPS receiver has accurately tracked the
carrier frequency of the receiver signal and stripped the car-
rier, the received multipath signal in one navigation message
can be expressed as

r tð Þ = 〠
L

k=1
Aks t − τkð Þejϕk + n tð Þ: ð1Þ

In the formula, Ak, τk, and ϕk are the amplitude, delay
time, and phase of the multipath signal, respectively. sðtÞ is
the spread spectrum code, and nðtÞ is the noise [20]. The cor-
responding signals of all sampling points can be obtained by
cyclic shift, so the upper formula can be represented as a
matrix form:

r = Sa + n, ð2Þ

where S = ½sτ1 , sτ2 ,⋯, sτN � and ak = Ake
jϕk . When there are

multipath signals, the vector values equal to the amplitude
value of the multipath signal, and the other values are 0.
The vector a can be represented as

a i½ � =
ak, if τi = τk,

0, elsewhere:

(
ð3Þ

The length of a GPS spread spectrum chip is 1/1023ms.
Suppose the sampling frequency of the GPS signal is
51.15MHz. So there are 50 sampling points in a chip. Assum-
ing that the number of multipath in a chip is 3; that is to say,
three elements are not 0 and the others are 0. r is a sparse vec-
tor. The GPS multipath signal represented by formula (3) is a
sparse model.

There are many GPS multipath estimation methods. In
reference [21], a TK operator method is easy to implement
but the estimation effect is not ideal in strong noise environ-
ment. The method based on maximum likelihood (ML) esti-
mation is proposed in reference [22]. The ML method is
improved, and the Generalized Likelihood Ratio (GLRT) is
used to improve the performance of the estimation [23].
The MEDLL is used to analyze the signal, and the effect of
MEDLL is good, but the method is complex [24]. There are
other wavelet-based analysis methods and so on [25, 26].
These methods estimate GPS multipath signals without con-
sidering the sparse characteristics of GPS multipath. If sparse
constraints are added to the estimation, the performance of
multipath estimation can be improved theoretically.

3. New 0 Norm Approximation Function

3.1. Design of Approximate 0 Norm.Donoho et al. proposed a
CS-based sparse reconstruction method for magnetic reso-

nance imaging (MRI) images [27]. Instead of 0 norm, 1 norm
is used to reconstruct the MRI images. The 1 norm is chan-
ged to the following formula:

xk k1 ≈ 〠
N

i=1
x2i + p
� �1/2

: ð4Þ

In the formula, p is a small positive constant. The approx-
imate formula is used to transform the nondifferential 1
norm into a differentiable function. Then, the MRI image is
reconstructed by using the optimization algorithm. A CS
reconstruction algorithm based on 0 norm approximation
function is proposed [18]. The approximation function is a
Gaussian function:

xk k0 = lim
σ→0

〠
N

i=0
exp −

x2i
2σ2

� �
: ð5Þ

The function realizes the approximate expression of 0
norm by decreasing the parameter σ gradually. Then, the
sparse signal is reconstructed by the gradient method. Both
methods convert a nonconvex 0 norm problem to a convex
function which has some deviation in principle. Further-
more, the parameter p of formula (4) remains unchanged,
and the reconstruction may have some deviation.

Based on the approximation of 0 norm given by Donoho
and Gaussian function, a new approximate function is pro-
posed. The coefficient 1/2 is changed to p/2 by modifying
the approximation of 1 norm given by Donoho. An approx-
imate 0 norm can be obtained when the coefficient p
decreases gradually to 0. The designed 0 norm approxima-
tion function is

xk k0 = lim
p→0

〠
N

i=0
x2i + p2
� �p/2

: ð6Þ

The model has only one parameter, and the approximate
function is a smooth differentiable function. So the gradient
and Hessian matrix of the function can be obtained, which
facilitates the solution of the model.

3.2. Sparse Signal Reconstruction Based on Approximate 0
Norm. Based on the proposed approximation function, the
CS reconstruction problem can be described as the following
mathematical constraint expression:

min
x

lim
p→0

〠
N

i=0
x2i + p2
� �p/2

s:t: y =Φx:
ð7Þ

Φ ∈ Rm×n is a measurement matrix. In reference [18], the
gradient method is used to reconstruct the sparse signal. The
descending direction is “zigzag,” which affects the efficiency
of reconstruction. In this paper, the Newton method is used
to reconstruct the sparse signal for improving the efficiency
[28, 29]. Newton’s method requires positive definite Hessian
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matrix, so the Hessian matrix needs to be modified in itera-
tion. The CS reconstruction problem is transformed into a
Lagrange solution model:

min
x

f =
1
2

Φx − yk k2 + λ〠
N

i=0
x2i + p2
� �p/2

: ð8Þ

y is Lagrange multiplier. The gradient of formula (8) is

g =ΦT Φx − yð Þ + λ

p x21 + p2
� �p/2−1

x1

:

:

p x2N + p2
� �p/2−1

xN

2
6666664

3
7777775
: ð9Þ

The Hessian matrix of formula (8) is obtained by deriva-
tion of expression (9):

H =ΦTΦ + λ ∗

u1 0 ⋯ 0

0 u2 ⋯ 0

: : : :

0 0 ⋯ uN

2
666664

3
777775: ð10Þ

ui = pðx2i + p2Þp/2−2½ðp − 1Þx2i + p2�. When p = 1, ui is a
positive value, so the Hessian matrix is a positive definite
matrix. That is to say, the function is a convex function.
The value p = 1 can be used as the starting point of iteration.
According to Newton’s method, the iterative formula can be
expressed as

xk+1 = xk + αkdk, ð11Þ

dk = −H−1gk−1: ð12Þ
In the formula ((11) and (12)), αk is the scale factor and

dk is the direction of gradient descent. gk−1 is the gradient
of the k − 1 iteration which can be obtained by formula (9).
In the iteration, ui may be a negative value in formula (10).
Formula (12) requires a positive definite Hessian matrix. It
needs to modify the value ofui to guarantee a positive definite

matrix in the iteration. The modification formula is

ui =
ui, if ui > δ > 0,

δ, else:

(
ð13Þ

δ is a very small positive value which ensures the Hessian
matrix is a positive definite matrix. The empirical value is
10‐5. The initial value of the parameter p in the approximate
function is 1. The value is decreased in iteration according to
the following formula:

pk = cpk−1, k = 1,⋯, J: ð14Þ

It can obtain better reconstruction effect when c belong to
ð0:5, 1Þ.

The general idea of sparse reconstruction algorithm in
this paper is given as below. The reconstruction has two
search processes. For each given value pk in the external loop,
an optimal value is obtained by the modified Newton
method. An upgrading value is gotten by decreasing p grad-
ually. Then, pk in the outer loop is reduced to the value pk+1
, and the new optimal value is searched again according to
the previous optimal solution. The sparse solution is found
iteratively. The implementation steps of this reconstruction
Algorithm 1 are as follows:

3.3. Convergence Analysis of Approximate Function. In this
section, the convergence of the algorithm is analyzed. In
order to facilitate the analysis, a lemma is first introduced.

Lemma 1. Suppose that A ∈ Rm×n is a Unique Representation
Property (URP) matrix. All m ×m submatrixes have inverse
matrix [30]. A vector s = ½s1, s2,⋯, sn�T belongs to zero space
of A. If more than n −m elements converge to 0 in the vector,
then the vector converges to 0.

Proof. Suppose that A has been normalized by a column vec-
tor. For any γ > 0, Iγ is a subscript set that all the correspond-
ing si are larger than γ. Â is a submatrix which is composed of
the columns corresponding to the subscript set.

Because A is a URP matrix, each column satisfies the lin-
ear independence. The matrix Â has a left inverse matrix.
M =max fkA∧−1kg; jIγj is defined as the number of

Input: random measurement matrix Φ, measurement value y;
Output: reconstruction signal xR;
(1) Initialization: Set the initial parameter: p0, λ, c, αk, Total iteration times J , inner iteration Lk, reconstruction error threshold ε, the
signal initial value x0 = 0, external iteration count k, internal iteration count t;
(2) The external iteration: if k > J , turn to step 5. Otherwise, xk is calculated by Newton method;
(3) The internal iteration: t = t + 1, if t > Lk, the internal iteration is over and turn to the next step. Otherwise, calculate xtk by xk and p

t
k

which decrease gradually. If Ek
t = norm ðHk

t Þ < ε, turn to the next step;
(4) pk+1 = pk, k = k + 1, and turn to step 2, searching the optimal value based on xtk;
(5) All the iteration is over and get the sparse solution xR = xtk;
Output2: There is no satellite in the line of sight.

Algorithm 1: GPS sparse multipath signal estimation based on compressive sensing.
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elements in the subscript set. From the known conditions,

As = 〠
m

i=1
siai = 〠

i∈Iγ

siai + 〠
i∉Iγ

siai: ð15Þ

So

〠
i∈Iγ

siai = −〠
i∈Iγ

siai: ð16Þ

There are 2 norms for the upper formulas:

X = x1, x2,⋯, xL½ � ∈ RN×L = 〠
i∉Iγ

γ = n − Iγ
�� ��� �

γ ≤ nγ: ð17Þ

Â = ½ai�, i ∈ Iγ; rewrite the upper formula to a matrix
form:

〠
i∈Iγ

siai =Asi∈Iγ ⇒ si∈Iγ
��� ���

2
= A∧−1〠

i∈Iγ

siai

������
������
2

≤ A∧−1�� ��
2 〠

i∈Iγ

siai

������
������
2

≤ A∧−1�� ��
2nγ:

ð18Þ

And ksk2 ≤ ksi∈Iγk2 + ksi∉Iγk2 ≤ ðkA∧−1k2 + 1Þnγ, so

sk k2 ≤ A∧−1�� ��
2 + 1

� 	
nγ ≤ M + 1ð Þnγ: ð19Þ

Proof of lemma 1 is over.

Corollary 2. Suppose that A ∈ Rm×n is a URP matrix and the
equation y =As has a sparse solution. If there is another solu-
tion ~s = ð~s1,~s2,⋯,~snÞT and k~sk0 = k <m/2, the vector con-
verges to 0.

The proof of corollary can be drawn from the lemma.
Because 0 ≤ k~s − s0k0 ≤ 2k <m, more than n −m elements
are 0, and ~s − s0 belongs to the zero space of A. The matrix
is a URP matrix, so the difference vector ~s − s0 converges to
0. That is to say, the sparse solution is unique.

For the approximate function proposed in this paper, sup-
pose that ζ is a very small positive number. If γ = ±ð1 − ζÞ1/p,
for a given jγj ≤ jsij ≤ 1, the following equations hold:

lim
p→0

f p sið Þ = lim
p→0

s2i + p2
� �p/2 ≥ 1 − ζð Þ2/p

� 	p/2
≈ 1: ð20Þ

Because the range of p is ð0, 1�, so j1 − ζj1/p < j1 − ζj < 1.
For a very small coefficient si in the vector, the value of the pro-
posed function is approximately 1.

For any given γ = ±ð1 + ζÞ1/p, the following equations
hold:

lim
p→0

f p sið Þ = lim
p→0

s2i + p2
� �p/2 = lim

p→0
1 + ζð Þ2/p + p2

� 	p/2

= lim
p→0

1 + ζð Þ 1 +
p2

1 + ζð Þ2/p
 !p/2

≈ 1:
ð21Þ

For all coefficients which are greater than 1, the function
values are approximately 1. Therefore, the proposed approx-
imate function in this paper realizes the function of 0
norm.

The above analysis theoretically ensures that the approx-
imate function can find the sparse solution of the signal. The
constraint condition k <m/2 is a sufficient rather than a nec-
essary condition, and the constraint condition is strong. If
this condition is not satisfied in practical application, the
algorithm can reconstruct the sparse signal also, but the
probability of reconstruction is very low.

4. Simulation Experiment of
Reconstruction Algorithm

Three experiments are designed to verify the feasibility and
effectiveness of the algorithm. In experiment 1, the measure-
ment matrix is fixed. The reconstruction performance is ana-
lyzed at different sparse numbers. Antinoise performance is
analyzed in experiment 2. The running time of the algorithm
is also an important standard to test the algorithm. Experi-
ment 3 analyzes the running time of algorithm.

4.1. Different Sparse Numbers. According to the proposed
approximate function, a CS reconstruction model is defined
as

min
s
lim
p→0

〠
N

i=0
s2i + p2
� �p/2

s:t:  y −Φsk k2 < ε:

ð22Þ

In order to compare the reconstruction effect, the pro-
posed algorithm is compared with OMP, Donoho method
(1 norm) [27], and the reference [18] algorithm (SL0). The
noise type is zero mean Gaussian white noise, and the noise
variance is 0.01 in experiment 1. The measurement matrix
is Φ ∈ R200×500. The length of measurement value and sparse
signal is fixed at 200 and 500, respectively. The simulation
is run 1000 times at each sparse number, and the total recon-
struction times are counted if the signal-to-noise ratio (SNR)
of the reconstructed signal is greater than 25 dB. The experi-
mental results are shown in Table 1.

As can be seen from Table 1, each algorithm can recon-
struct the signal completely when the sparse number is less
than 50. When the sparse number is greater than 130, the
reconstruction SNR of all algorithms are less than 25 dB.
When the sparse number increases, the successful recon-
struction times of the proposed algorithm in this paper are
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greater than other algorithms. For example, when the num-
ber of nonzero data reaches 120, there are still 7 times recon-
structed signals with SNR above 25dB, but SL0 algorithm
only has 3 times and 1 norm and the OMP algorithm can
no longer reconstruct the signal above 25 dB. Comparing
the data in Table 1, the reconstruction effect algorithm pro-
posed in this paper is better.

4.2. Robust Analysis of the Proposed Algorithm. The robust
analysis of the proposed algorithm is analyzed at different
noise intensities in experiment 2. The noise variance is
[0.01, 0.02, 0.03, 0.04]. The other parameters are consistent
with experiment 1. The average value of the reconstructed
SNR is obtained from 1000 experiments. The experimental
results are shown in Table 2.

From Table 2, it can be seen that the reconstruction SNR
is above 25 dB at low sparse number when the noise variance
is 0.01 and 0.02. The proposed algorithm is effective. The
reconstruction SNR can reach 25.272 dB when the sparse
number is 100 and noise variance is 0.01. The proposed algo-
rithm shows strong robustness. However, when the noise
variance is 0.04, the reconstruction effect of this algorithm
is not ideal.

4.3. Average CPU Time of Algorithm. The reconstruction
time is an important index to estimate the algorithm. The
experimental parameter is designed as follows: the measure-
ment matrixΦ ∈ Rm×n,m/n = 0:4, and sparse numberm = 4k.
According to the previous experiments, this numerical set-
ting can effectively reconstruct sparse signals in a noiseless
environment. The length of the signal is constantly adjusted,
and the CPU times for each of the algorithms averaged over
100 trials are tabulated in Table 3.

From Table 3, it can be found that the running time of
several algorithms is close when the total length of the signal
is less than 2000 sampling points. However, when the signal
length reaches 4000, the reconstruction CPU time of OMP
is almost twice that of the proposed algorithm. For high-
dimensional matrix, the pseudoinverse calculation of the
matrix in the OMP algorithm takes too much time. SL0 is
solved by the optimal gradient method which appears “zig-
zag” when finding the optimal value. This reduces the effi-
ciency of finding the optimal solution. In this paper, the
modified Newton method is used to improve the reconstruc-
tion speed. According to Table 3, the algorithm is faster than
the other algorithms, so the algorithm is more suitable for
high-dimensional signal processing.

5. GPS Sparse Multipath Signal Estimation

The GPS sparse multipath model is given in formula (3). The
sparse multipath signal is estimated by CS theory in this sec-
tion. First, the GPS signal is measured by measurement
matrix Φ ∈ Rm×n:

z =Φr =ΦSa +Φn: ð23Þ

Then, sparse multipath signal is estimated by using the 0
norm approximation function which is proposed in this
paper:

min
a

f að Þ = 1
2

ΦSa − zk k2 + λ〠
N

i=0
a2i + p2
� �p/2

: ð24Þ

The multipath model discussed in this paper is based on
the following assumptions [31, 32]:

(1) The transmission delay of the nondirect signal is
greater than that of the direct signal, which is in line
with the actual model. The nondirect signal is often
formed by refraction or reflection which takes more
time

(2) The amplitude of nondirect signal is lower than that
of the direct signal. In the shelter or indoor environ-
ment, this assumption is generally not true which
needs to estimate multipath with an additional
method. But this situation is beyond the scope of this
paper which is not analyzed here

(3) In this paper, the multipath delay in on chip is only
considered. That is to say, the multipath delay is lim-
ited to one chip

(4) Multiple sparse values may be estimated due to noise
interference. Assuming that the number of sparse
multipath is known, the maximum sparse value is
selected as the multipath signal. The small sparse
values is considered as noise and excluded

5.1. Comparison of Different Sparse Multipath Estimation
Methods. The TK operator [21] and ML estimate method
[22] are selected to estimate the multipath signal. Assuming
that the GPS signal has two nondirect signals. The direct sig-
nal delay is 0, and the normalized amplitude is 1. The delay
time of the nondirect signal changes randomly in a chip.
The ranges of absolute amplitude vary randomly between
0.2 and 0.8. The GPS signal length is 1ms and sampling rate
is 51.15MHz. The SNR of correlation result is 35 dB. The
compression rate is m/n = 0:4. The estimation results of dif-
ferent methods are shown in Figure 1. The amplitude of
two random nondirect signals is (0.6, 0.4), and the position
is (0.2, 0.58) chip.

From Figure 1, three methods can correctly estimate the
multipath signal delay with some deviation in magnitude.
The TK operator and ML estimate method can correctly find
multipath signals. Due to noise interference, the estimation
amplitude deviation of multipath signals is large, and the

Table 1: Successful times at different sparse numbers.

Sparse
number

50 60 70 80 90 100 110 120 130

OMP 1000 998 981 944 729 228 25 0 0

1 norm 1000 1000 995 978 864 403 96 0 0

SL0 1000 1000 1000 996 947 429 185 3 0

This paper 1000 1000 1000 1000 981 506 227 7 0
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estimated values of nonsparse positions fluctuate greatly
which result in more fake multipath signals. The CS estima-
tion method proposed in this paper adds sparse prior infor-
mation, the estimated multipath signal is consistent with
the simulation signal position, and the estimated multipath
signal amplitudes are close to the real multipath signal.

ML and TK operators are not effective because of noise
interference. After the multipath estimation of the signal,
some detection algorithm is used to detect it, and the false
multipath signal is excluded in practical application. For
example, the GLRT criterion is used to analyze the estimated
multipath signal in reference [23]. The proposed CS method
adds sparse constraints and selects the largest signal as a
sparse multipath signal. It can be seen from Figure 1 that
the performance is better than that of ML and TK operators.
It is unfair to compare the CS estimation method with the
common methods, so it only compares the method of this

paper with the method based on the CS theory in the subse-
quent performance analysis.

5.2. Multipath Signal Estimation Based on CS. It is mainly
affected by three factors: noise, sparse number (number of
multipath), and measurement matrix dimension m to esti-
mating multipath signal based on CS. This section analyzes
the estimated effect from these aspects. First, the sparse esti-
mation results based on CS are analyzed by an experiment.
1ms GPS signal is selected with sampling rate 40.92MHz.
The sparse number is set to 4, and the delay of nondirect sig-
nal varies randomly in a chip. The absolute amplitude varies
randomly between 0.2 and 0.8. The delay and amplitude are
uniformly distributed. SNR is set to 0 dB. Compression ratio
m/n is 0.5. In the simulation, assuming that the number of
sparse multipath is known, the estimated results of the pro-
posed method are shown in Figure 2. In a strong noise envi-
ronment, the amplitude of the multipath signal and the
position of the multipath signal may be deviated. Multipath
signal estimation error is used to evaluate the estimation
results, which is defined as

Error = 1
K
〠
N

i=1
ai − âij j: ð25Þ

In the formula,N is the total number of sampling point of
a chip. K is a sparse number. ai and âi represent real and esti-
mated multipath signals, respectively. All multipath signal
amplitudes are normalized. It can be seen from Figure 2 that
if the position and phase of the estimated signal are consis-
tent with the real multipath signal, the estimation error is
small. If the position or phase of estimated signal is different
from the real signal, the real value and the estimated value are
counted into error. Formula (25) can objectively evaluate the
estimated performance.

The multipath estimation effect is analyzed at different
multipath numbers and noise intensities in experiment 1.
The measurement matrix is fixed and m/n = 0:3. The SNR
and sparse number vary from -20 dB to 20 dB and 2-8,
respectively. The other parameters are set as above. The
experiment repeats 100 times at each sparse number. The
average estimation error is shown in Figure 3. From the fig-
ure, it can be found that the estimation error increases when
the sparse number increase. It is consistent with the CS the-
ory that the reconstruction effect decreases with the increase
of sparsity at the same measurement matrix. The best estima-
tion effect is obtained when there is only one nondirect

Table 2: Robust analysis of the proposed algorithm.

Noise variance
Sparse number

40 50 60 70 80 90 100 110

0.01 33.108 32.689 32.179 31.574 31.129 29.956 25.272 14.594

0.02 26.785 26.777 26.510 26.280 26.139 25.003 19.559 11.744

0.03 20.602 20.693 20.678 20.652 20.411 19.488 15.945 9.897

0.04 16.952 16.920 16.827 16.747 16.570 14.910 11.887 7.680

Table 3: Reconstruction CPU time of different algorithms (second).

Algorithm
Signal length

500 1000 2000 3000 4000

OMP 0.160 0.262 1.816 9.095 21.696

1 norm 0.245 0.258 1.365 6.220 15.461

SL0 0.261 0.322 1.313 5.998 14.669

This paper 0.204 0.270 1.299 5.881 11.577
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Figure 1: Estimation results of different methods.
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multipath signal. The reconstruction becomes unstable when
K = 8.

When the multipath number is fixed, the influence of
measurement matrix is analyzed in experiment 2. The multi-
path number is set to 6. The column of the matrix remains
unchanged, and m/n range from 0.2 to 0.8. The other related
parameters are set in the same experiment 1. The experiment
repeats 100 times at each m/n. The average estimation error
is shown in Figure 4. The estimation error will be relatively
reduced when the number of random measurement is
increased, which can retain more information of sparse sig-
nal. The estimation effect is not good when the SNR is less
than 0dB.

The reconstruction algorithm has some effect on sparse
signal reconstruction in CS, which also has some influence
on sparse multipath estimation. The OMP, 1 norm, and

SL0 are selected to estimate the multipath signal. The estima-
tion effect of different algorithms is analyzed in experiment 3.
The sparse number of signal is set to 5. The m/n of the mea-
surement matrix is 0.5. The GPS signal length is 1ms with
40.92MHz sampling rate. The experiment repeats 100 times
at each SNR, and the average estimation error is shown in
Figure 5. The estimation error of all methods is large at low
SNR.When the SNR is higher than 0 dB, the estimation effect
is good. As the SNR increases, three multipath estimation
errors based on optimization algorithms are slightly lower
than OMP methods.

From the three experiments, it can be seen that the sparse
multipath signal can be estimated by the CS method effec-
tively. When the SNR is low, the estimation effect is poor.
For example, the CS method cannot estimate the multipath
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signal at -20 dB strong noise interference. As the SNR
increases, the estimation error decreases. When the SNR is
higher than 5dB, the estimated multipath signal is basically
consistent with the added multipath signal. In this paper,
the length of GPS signal is 1ms. In practical application,
the SNR can be improved by increasing the GPS signal length
because the time of navigation message is 20ms, which can
obtain lower estimation error than 1ms.

6. Conclusions

In this paper, we proposed a new GPS multipath signal esti-
mation method based on CS. A new 0 norm approximate
function is proposed. The sparse signal can be reconstructed
by using the modified Newton method. A large number of
simulation results show that the new method can reconstruct
the sparse signal effectively at different sparse numbers and
SNR. The reconstruction performance of the proposed algo-
rithm is better than OMP and other optimization algorithms.
The GPS signal sparse multipath model is established. The
GPS multipath signal can be estimated by the proposed
method in this paper. The estimation result is better than
the TK and ML method and other CS reconstruction
methods. Because there are 20 periods of spread spectrum
code in a navigation message, the SNR can be improved by
accumulating for a long time, and then, the estimation effect
can be improved. Our research team will continue to delve
into how to improve the estimation effect of this method.
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In this paper, the low-complexity tensor completion (LTC) scheme is proposed to improve the efficiency of tensor completion. On one
hand, the matrix factorization model is established for complexity reduction, which adopts the matrix factorization into the model of
low-rank tensor completion. On the other hand, we introduce the smoothness by total variation regularization and framelet
regularization to guarantee the completion performance. Accordingly, given the proposed smooth matrix factorization (SMF)
model, an alternating direction method of multiple- (ADMM-) based solution is further proposed to realize the efficient and
effective tensor completion. Additionally, we employ a novel tensor initialization approach to accelerate convergence speed. Finally,
simulation results are presented to confirm the system gain of the proposed LTC scheme in both efficiency and effectiveness.

1. Introduction

As a high-order generalization of vector and matrix, tensor
can show complicated structures of high-order data more
clearly. With the tensor form, we can understand the internal
connection of data from a higher level perspective. Thus,
tensor is widely applied in several fields like signal recon-
struction [1], signal processing [2–5], image recovery [6],
and video inpainting [7].

The purpose of low-rank tensor completion (LRTC) is to
estimate missing entries and recover the incomplete tensor
data, which takes advantage of the low rank prior to estimate
the missing data. Optimization problem LRTC can be ordi-
narily formulated as follows:

min
X

rank Xð Þ,
s:t:XΩ =T Ω:

ð1Þ

Here, X is the target tensor, and T is the available data; Ω is
observed entries index. The constraint XΩ =T Ω is to keep
the entries of X in Ω consistent with T .

It is obvious that minimizing the tensor rank is the funda-
mental problem of LRTC. However, there is no uniform def-
inition of the tensor rank. CP-rank [8] and Tucker-rank [9]

are two commonly used definitions, which lie in the
corresponding decompositions, CP decomposition [10], and
Tucker decomposition [11]. Moreover, the problem of calcu-
lating CP-rank is NP-hard, and it has no relevant relaxation.

Although minimizing Tucker-rank is still NP-hard, it can
be relaxed by sum of nuclear norm (SNN) since it is the tight-
est surrogate of matrix rank. Based on this property of
Tucker-rank, Liu et al. [12] developed a theoretical frame-
work for LRTC, and the definition of the nuclear norm for
tensors is formed as follows:

Xk k∗ = 〠
N

i=1
ωi X ið Þ
��� ���

∗
: ð2Þ

Here, XðiÞ is the mode-i unfolding matrix of X , kXk∗ pre-

sents the nuclear norm of XðiÞ, and ωi ≥ 0 (∑N
i=1ωi = 1, i = 1,

2,⋯,N) denotes the corresponding weight value of XðiÞ.
Then, the LRTC model can be written as

min
X

〠
N

i=1
ωi X ið Þ
��� ���

∗
,

s:t:XΩ =T Ω:

ð3Þ
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As shown in (3), the LRTC problem is divided into a series of
matrix nuclear norm minimization. Through unfolding the
target tensor, the matrices are formed to be optimized. In
order to resolve (3), SiLRTC, HaLRTC, and FaLRTC were
proposed by Liu as the solution for LRTC [12]. Unfortu-
nately, all these algorithms require to compute singular
value decomposition (SVD) iteratively, which is complex-
ity exhausted. Considering this difficulty, Liu and Shang
[13] applied matrix factorization to the SNN model to reduce
the scale of matrices requiring SVD (see details in Section 2).

min
Li ,RiX

〠
N

i=1
ωi Rik k∗, i = 1,⋯,N ,

s:t:X ið Þ = LiRi,XΩ =T Ω,
ð4Þ

where Li ∈ StðIi, siÞ, Ri ∈ℝ
si×
Q

j≠i
I j , and StðIi, siÞ denote the

Stiefel manifold, and si > ri is a given upper bound of rank.
In this paper, we use SNN combined with matrix factorization
to utilize the low-rankness feature of tensors and improve the
efficiency of LRTC.

Additionally, only considering low-rankness factor is not
adequate for LRTC, which results in inevitable performance
degradation with the decrement of the sampling rate [14,
15]. Apart from the low rankness of tensor, smoothness is
also a significant attribute in real world data. For instance,
spectral signals [16] and natural pictures and videos [17] gen-
erally have this property. Total variation (TV) [18] is com-
monly applied as constraints to ensure smoothness. The
application of TV in image processing has been proved that
it can effectively encourage the smooth prior [4, 19, 20].

For the purpose of improving the quality of tensor com-
pletion, Yokota and Hontani [21] proposed LRTV-PDS to
minimize SNN and TV simultaneously as:

min
X

ρ Xk k∗ + 1 − ρð Þ Xk kTV,

s:t:vmin ≤X ≤ vmax, XΩ −T Ωk k2F ≤ δ,
ð5Þ

where ρ is the trade-off connecting the SNN and TV term
and δ is the noise threshold parameter. The first constraint
restricts the recovered data in a range, ½vmin, vmax�. The sec-
ond constraint means that the output tensor and original ten-
sor are usually the same at observed entries. Considering the
effect of noise, some deviation within a certain range is
allowed.

As another commonly used definition of tensor rank, CP-
rank is also widely utilized in LRTC. On the basis of CP
decomposition, Yokota et al. [22] considered TV as the
smoothness constraint along with the CP-rank and proposed
the smooth PARAFAC tensor completion (SPC) method to
achieve better result of tensor completion when the sampling
rate is exceedingly low.

However, the TV regularization usually leads to staircase
effect [23], which may cause the possible loss of information
and geometric features in practice. For this reason, the frame-
let regularization can be further applied to avoid the possible
performance degradation. More precisely, as a generation of

the orthogonal basis, framelet effectively relaxes the restric-
tion of the orthogonality and linear independence so that
the valuable information and geometric features can be well
preserved by the introduced redundancy [24]. In this paper,
the framelet is applied to exploit the smoothness and pre-
serve more details.

Considering SNN, matrix factorization, framelet, and TV
simultaneously, we propose a novel model for tensor comple-
tion, which is named smooth matrix factorization (SMF).
The SMF model is formulated as

min
X

〠
N

i=1
ωi R ið Þ
��� ���

∗
+ λ1 WXT

3ð Þ
��� ���

1,1
+ λ2 DSX 3ð Þ

��� ���
1,1
,

s:t:XΩ =T Ω, X ið Þ = LiRi, Li ∈ St Ii, sið Þ, i = 1,⋯,N:

ð6Þ

Here, λ1 and λ2 are adjustable parameters to balance SNN,
framelet, and TV. Besides W indicates framelet transforma-
tion, DS denotes the difference matrix, and l1,1-norm is the
sum of absolute values of the matrix elements.

In addition, we notice that how to initialize the observed
tensor can affect the efficiency and effectiveness of tensor
completion. Most of these existing works only focus on opti-
mizing the model and ignore initializing the tensor before
iteration algorithm. There are two commonly used initializa-
tion methods: one is to set the unknown values as zero; the
other is to set them as the average of all observed values. Dif-
ferent from the existing simple methods, our proposed ini-
tialization method considers the location of the known data
and expands the known data around until the entire tensor
is completed. Through the rough estimation of unknown
data, we get a more accurate initial tensor, which can acceler-
ate the convergence speed of solution.

In summary, the low-complexity tensor completion
(LTC) scheme is proposed to improve the efficiency of LRTC.
The proposed LTC mainly consists of two parts—the SMF
model and the alternating direction method of multiple-
(ADMM-) based solution. Specifically, the matrix factoriza-
tion is introduced into the SNN to exploit the low rankness
of the entire tensor. By factorizing matrices, the computa-
tional complexity in calculating SVD can be significantly
reduced, which leads to efficiency improvement. Then, to
guarantee the effectiveness of tensor completion, the TV is
used to exploit the smoothness globally. After that, the fra-
melet is further applied to further ensure the smoothness
and preserve the information due to its redundancy. With
respect to the proposed SMF model, we also give an effective
ADMM-based algorithm to solve it. Additionally, we pro-
pose a novel initialization approach to accelerate conver-
gence speed. On the basis of natural data, such as color
image and grayscale video, the experimental results show
our LTC scheme can achieve a better trade-off between per-
formance and complexity for LRTC.

Compared with the existing works, the contributions of
this paper are mainly three folds:

(i) By concurrently utilizing the low-rank and smooth
properties, we propose an advanced model for low-
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rank tensor completion. Besides, matrix factorization
is introduced to this model to save calculation cost

(ii) We propose an effective tensor initialization
approach, which can get a better start point for ten-
sor completion to accelerate the convergence speed

(iii) An ADMM-based algorithm is developed to resolve
the new SMF model. As shown in the result of
numerical experiments, our method can clearly
improve the effectiveness of LRTC

The rest of this paper is structured as follows: Firstly, we
present some notations that this work needs in Section 2.
Then, we propose the LTC scheme which consists of the
SMF model and the corresponding ADMM-based solution
in Section 3. Afterwards, the performance of LTC is evaluated
and compared with other competing methods in Section 4.
Finally, the conclusions are given in Section 5.

2. Preliminary

In this section, several basic notations and relevant defini-
tions this work needs are shown [25].

2.1. Tensor Basics. Here, we use different fonts to distinguish
data formats. For instance, we write vectors as x, matrices as
X, and tensors as X . The ði1, i2,⋯,iNÞ − th component of
X ∈ℝI1×I2×⋯×IN is denoted as xi1,i2,⋯,iN .

The inner product of two tensors A and B is formu-
lated as

A ,Bh i = 〠
i1i2⋯iN

ai1i2⋯iN
bi1i2⋯iN

: ð7Þ

As the corresponding norm to the inner product, the
definition of Frobenius norm of tensor A is then given as

Ak kF =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A ,Ah i

p
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
〠

i1i2⋯iN

ai1i2⋯iN

�� ��2s
: ð8Þ

The fiber of the tensor X is a vector obtained by fixing
each index except one. The mode-n fiber is denoted as
Xði1,⋯,in−1, : ,in+1,⋯,iNÞ. The mode-n unfolding of tensor

X ∈ℝI1×I2×⋯×IN is represented as XðnÞ ∈ℝ
In×
Q

i≠n
Ii . Addi-

tionally, we denote the inverse operator of unfolding as
“fold.” For example, the operation of fold a matrix into a
tensor is written as X = foldnðXðnÞÞ.
2.2. Matrix Factorization. Given a low-rank tensor X ∈
ℝI1×I2×⋯×IN with rank ðr1, r2,⋯,rNÞ, the mode-i unfolding

XðiÞ ∈ℝ
Ii×
Q

j≠i
I j can be factorized into the form X = LiRi,

i = 1,⋯,N , where Li ∈ StðIi, siÞ, RðiÞ ∈ℝ
si×
Q

j≠i
I j , and StðIi,

siÞ = fB ∈ℝIi×si : BTB = Ig represent the Stiefel manifold, the
collection of all orthonormal Ii × si matrices, and si > ri is a
designated constraint of rank, i = 1,⋯,N. By introducing
matrix factorization, we have the following property of tensor
nuclear norm:

X ið Þ
��� ���

∗
= LiRik k∗ = Rik k∗, i = 1,⋯,N: ð9Þ

Thus, the SNNminimization problem (3) can be rewritten
with smaller scale matrices as follows to reduce computational
complexity:

min
Li ,RiX

〠
N

i=1
ωi Rik k∗,

s:t: X ið Þ = LiRi, Li ∈ St Ii, sið Þ,
XΩ =T Ω, i = 1,⋯,N:

ð10Þ

2.3. Framelet. In the discrete setting, the framelet transform is
denoted as a linear operator W ∈ℝk×mn. For instance, Wf
means that the framelet transform operator W is applied to
the image data, which rearranged as a vector f ∈ℝmn. On
the basis of the unitary extension principle,W denotes the fra-
melet transformmatrix satisfyingWTW = I. In this paper, the
piecewise linear B-spline framelets constructed by [26] is
applied to exploit the smoothness and preserve details in
tensor completion.

3. The Proposed LTC Scheme

In this section, the LTC scheme is proposed, which consists
of the SMF model, the tensor initialization method, and the
ADMM-based algorithm.

3.1. The Proposed SMF Model. Considering a 3rd-order ten-
sor X ∈ℝn1×n2×n3 , the proposed SMF model is as follows:

min
X

〠
3

i=1
ωi R ið Þ
��� ���

∗
+ λ1 WXT

3ð Þ
��� ���

1,1
+ λ2 DSX 3ð Þ

��� ���
1,1
,

s:t:XΩ =T Ω, X ið Þ = LiRi, Li ∈ St Ii, sið Þ, i = 1, 2, 3:

ð11Þ

Here, λ1 and λ2 are regularization parameters, X is the
object tensor, and T Ω is the incomplete input tensor, and
Ω is the set of indices of available data in T .

Typically, the SMFmodel contains twomain terms—SNN
with matrix factorization and smoothness constraints.

The first term, SNN with matrix factorization, can exploit
the low-rank property. The goal of introducing SNN is to
exploit the globally multidimensional structure, which is
the basic of LRTC. Based on the introduced SNN, matrix
factorization is further applied to save calculation cost. The
purpose of introducing matrix factorization in SNN is to
improve the efficiency. Given a low-rank tensor X ∈
ℝI1×I2×⋯×IN with rank ðr1, r2,⋯,rNÞ, the mode-i unfolding

XðiÞ ∈ℝ
Ii×
Q

j≠i
I j can be factorized into the form X = LiRi,

i = 1,⋯,N . Then, the SNN problem can be rewritten with
smaller scale matrices to reduce computational complex-
ity. For example, the computational complexity of SVD
of X (X ∈ℝm×n, rank ðXÞ = r) is Oðm2n +mn2Þ. By
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introducing matrix factorization, the cost of computing
SVD can be reduced to Oðm2s +ms2Þ, r < s≪ n [13].

The second term, smoothness constraints, contains the
total variation regularization and the framelet regulariza-
tion, which are used for a better performance of tensor
completion.

The total variation regularization kDSXð3Þk1,1 is used to

exploit piecewise smoothness along the mode-3 unfolding
of X , where Ds is the difference matrix

Ds =

−1 1 ⋯ 0 0

0 −1 ⋯ 0 0

⋮ ⋮ ⋱ ⋮ ⋮

0 0 ⋯ −1 1

1 0 ⋯ 0 −1

0
BBBBBBBB@

1
CCCCCCCCA
: ð12Þ

The TV regularization is used to make the third dimension of
the recovered tensor smooth to improve the efficiency of ten-
sor completion.

The framelet regularization kWXT
ð3Þk1,1 retains details in

spatial domain. Here, W denotes the framelet transform
matrix satisfying WTW = I. The framelet regularization can
further ensure the output tensor smooth and preserve the
details due to its redundancy.

In summary, SMF exploits the global low-rank property
and the smoothness prior along both the spatial and third
mode. As shown in experiments, SNN with matrix factoriza-
tion term, total variation regularization, and framelet regu-
larization, the three parts of SMF take advantage of these
two properties to improve the efficiency and effectiveness of
tensor completion.

3.2. The Tensor Initialization Method. In order to improve
the efficiency of tensor completion, we initialize the incom-
plete tensor to get a better start point for subsequent data
processing. Considering the location of known data, the main
idea of our tensor initialization method is expanding the
known data around until the entire tensor is completed.

Here, we use a specific example to illustrate our tensor
initialization method. Considering an incomplete color
image which is denoted as X ∈ℝn1×n2×n3 , we make a rough
estimate of missing data by assigning the value of each
known pixel to the unknown pixels around it. In other words,
by averaging the known values adjacent each unknown pixel,
the value of the pixel is initialized. For example, if xi,j,k is
unknown and two adjacent pixels, xi−1,j,k and xi,j+1,k, are
observed, we can set xi,j,k as 0:5ðxi−1,j,k + xi,j+1,kÞ. All
unknown pixels observed with adjacent pixels can be initial-
ized in this way.

Here, we introduce the operatorH = PðXÞ, which means

H i, j, kð Þ =
1, if X i, j, kð Þ ≠ 0,

0, if X i, j, kð Þ = 0,

(
ð13Þ

which is used to project the original tensor to the binarized
tensor.

In this step, we have completed an expansion of the
known pixels, and the pixels initialized this time will be con-
sidered as known in next expansion. Then, we repeat this
expansion process until the entire tensor is filled. The pro-
posed tensor initialization method is detailed in Algorithm 1.

3.3. The Proposed ADMM-Based Algorithm. Here, we design
an effective ADMM-based algorithm to resolve the convex
problem. In particular, we introduce two additional variables
M, N, and the model (11) can be equivalently transformed to
the following formulation:

min
Li ,Ri ,X

〠
3

i=1
ωi Rik k∗ + λ1 Mk k1,1 + λ2 Nk k1,1,

s:t: X ið Þ = LiRi, Li ∈ St Ii, sið Þ, i = 1, 2, 3,

M =WXT
3ð Þ,N =DSX 3ð Þ,XΩ =T Ω,

ð14Þ

where M ∈ℝn1n2×n3 and N ∈ℝn3×n1n2 . By introducing matri-
ces M and N , we separate blocks of variables and the aug-
mented Lagrangian function of (14) becomes:

L Li, Ri,X ,M,Nð Þ = 〠
3

i=1
ωi Rik k∗ +

β1
2

X ið Þ − LiRi

��� ���2
F

� �

+ λ1 Mk k1,1 + WXT
3ð Þ −M,Ψ

D E
+
β2
2

WXT
3ð Þ −M

��� ���2
F
+ λ2 Nk k1,1

+ DSX 3ð Þ −N ,Θ
D E

+
β3
2

DSX 3ð Þ −N
��� ���2

F
,

s:t:Li ∈ St Ii, sið Þ, i = 1, 2, 3,XΩ =T Ω, ð15Þ

where Ψ and Θ are the Lagrange multipliers and β1, β2,
and β3 are the penalty parameters. Based on ADMM, we
can divide the problem (15) into subproblems which are eas-
ier to deal with in smaller sizes.

For the purpose of facilitating the analysis of time com-
plexity in the proposed ADMM-based algorithm, we assume
that s =max ðs1, s2, s3Þ, X ∈ℝn1×n2×n3 , and n1 ≥ n2 ≥ n3.

The first subproblem optimizes the variable Li, which is
presented as:

Lk+1i = arg min
Li

Xk
ið Þ − LiR

k
i

��� ���2
F
,

s:t:Li ∈ St Ii, sið Þ:
ð16Þ

Through solving this subproblem with the orthogonality
constraint, the optimal Li is calculated. Following [27, 28],
the optimal solution is given by:

Lk+1i =QR Xk
ið Þ Rk

i

� �T� �
: ð17Þ

The cost of computing L is Oðs2n1Þ.
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The second subproblem optimizing the variable Ri can be
calculated as follows:

Rk+1
i = arg min

Ri

ωi Rik k∗ +
β1
2

Xk
ið Þ − Lk+1i Ri

��� ���2
F
: ð18Þ

Then, Rk+1
i is the optimal solution to the subproblem (18)

if and only if

0 ∈ ωi∂ Rk+1
i

��� ���
∗
+ β1 Lk+1i

� �T
Lk+1i Rk+1

i − Xk
ið Þ

� �
, ð19Þ

where ∂k⋅k∗ is the subdifferential of k⋅k∗. Considering the

property of Lk+1i , ðLk+1i ÞTLk+1i = Is, the formula can be trans-
formed as

0 ∈ ωi∂ Rk+1
i

��� ���
∗
+ β1 Rk+1

i − Lk+1i

� �T
Xk

ið Þ

� �
: ð20Þ

Obviously, the formula (20) also needs to be satisfied by
the optimal solution Ri for the following convex problem:

arg min
Ri

ωi Rik k∗ +
β1
2

Ri − Lk+1i

� �T
Xk

ið Þ

����
����
2

F

: ð21Þ

Therefore, Rk+1
i is also the solution to the subproblem

(21), which has an explicit solution.

Rk+1
i = SVTωi/β1

Lk+1i

� �T
Xk

ið Þ

� �
: ð22Þ

Here, SVTτð⋅Þ is a singular value thresholding operator
defined by SVTτðXÞ =U diag ½max ðσ − τ, 0Þ�VT , the SVD
of X is given by Q =U diag ðfσig1≤i≤rÞVT . The complexity
of computing R is Oðsn21n22Þ.

The third subproblem about M related to framelet regu-
larization can be written as:

Mk+1 = arg min
M

λ1 Mk k1,1 + W Xk
3ð Þ

� �T
−M,Ψ

	 


+
β2
2

W Xk
3ð Þ

� �T
−M

����
����
2

F

= arg min
M

λ1 Mk k1,1

+
β2
2

W Xk
3ð Þ

� �T
−M +

Ψ

β2

����
����
2

F

:

ð23Þ

This problem has an explicit optimal solution

Mk+1 = Sλ1/β2
W Xk

3ð Þ
� �T

+
Ψ

β2

� �
, ð24Þ

where Sμð⋅Þ is a soft-thresholding operator written as:

Sμ xð Þ =
0, if ∣x∣ ≤ μ,

sign xð Þ ∣x∣−μð Þ, if ∣x∣ > μ:

(
ð25Þ

The cost of calculating WXT
ð3Þ is Oðla2n1n2n3Þ. Here, l

denotes the framelet level and a denotes filter number, then
the cost of calculating M is Oðlm2n1n2n3Þ.

Input: The observed tensor T ∈ℝn1×n2×n3 .
Output: The initialized tensor X .
1: X =T ,Xnext =X

2: while 0 exists in Xdo
3: H = PðXÞ
4: for k = 1 to n3 do
5: for i = 1 to n1 do
6: for j = 1 to n2 do
7: if Xði, j, kÞ = 0 then
8: αsum =Hði − 1, j, kÞ +Hði, j + 1, kÞ +Hði + 1, j, kÞ +Hði, j − 1, kÞ
9: if αsum ≠ 0 then

10:

Xnextði, j, kÞ = ðhi−1, j,k/αsumÞXði − 1, j, kÞ +
ðhi,j+1,k/αsumÞXði, j + 1, kÞ + ðhi+1,j,k/αsumÞXði + 1, j, kÞ +

ðhi,j−1,k/αsumÞXði, j − 1, kÞ
11: end if
12: end if
13: end for
14: end for
15: end for
16: X =Xnext
17:end while
18:return X

Algorithm 1: The Proposed Tensor Initialization Method.
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The fourth subproblem about N concerning total varia-
tion regularization can be calculated as follows:

Nk+1 = arg min
N

λ2 Nk k1,1 + DSX
k
3ð Þ −N ,Θ

D E
+
β3
2

DSX
k
3ð Þ −N

��� ���2
F

= arg min
N

λ2 Nk k1,1 +
β3
2

DSX
k
3ð Þ −N +

Θ

β3

����
����
2

F

,

ð26Þ

which has an explicit solution

Nk+1 = Sλ2/β3
DSX

k
3ð Þ +

Θ

β3

� �
: ð27Þ

The cost of computing N is Oðn1n2n23Þ.
The final subproblem optimizingX can be formulated as:

Xk+1
Ωc = arg min

X

〠
3

i=1

β1
2

X ið Þ − LiRi

��� ���2
F

� �

+
β2
2

WXkT
3ð Þ −M +

Ψ

β2

����
����
2

F

+
β3
2

DSX
k
3ð Þ −N +

Θ

β3

����
����
2

F

:

ð28Þ

We can update X as follows:

Xk+1
Ωc = 〠

i

foldi inv β1I + β2I + β3D
T
s Ds

� ��
∗ β1L

k+1
i Rk+1

i

� 

+ β2 WT M −
Ψ

β2

� �
 �T
+
β3D

T
s N − Θ/β3ð Þð Þ

N

!
Ωc

,

Xk+1
Ω =T Ω: ð29Þ

The cost of calculating X is Oðsn1n2n3 + lm2n1n2n3 +
n1n2n

2
3 + n31Þ.

According to ADMM, the multipliers Ψ and Θ are
updated as

Ψk+1 =Ψk + β2 W Xk+1
3ð Þ

� �T
−Mk+1

� �
,

Θk+1 =Θk + β3 DSX
k+1
3ð Þ −Nk+1

� �
:

ð30Þ

To summarize, the proposed iterative ADMM-based
algorithm for solving the SMF model in (11) is outlined in
Algorithm 2. The computing complexity of L, R, M, N , and
X at each iteration is Oðsn21n22 + lm2n1n2n3 + n31Þ.
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Figure 1: Isosurface of synthetic data and completed results of
MFTC and LTC.

Input: The initialized tensor T , index set Ω, parameters λ1, λ2, β1, β2, andβ3.
Output: The completed tensor X .

1: initialize:

X0 =T , L0i = eyeðIi, siÞ, R0
i = rand ðsi,Πi≠jI jÞ,

i = 1, 2, 3,M0,N0, ψ0 and

Θ0 initialized to 0, k = 0, kmax = 300:
2: while not converged and k < kmax do
3: for i = 1 to 3 do
4: Lk+1i via (17)
5: Rk+1

i via (22)
6: end for
7: Mk+1 via (24)
8: Nk+1 via (27)
9: Xk+1 via (29)
10: ψk+1,Θk+1 via (30)
11: end while
12: return Xk+1

Algorithm 2: The Proposed ADMM-based Algorithm for Solving the SMF Model in (11).
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4. Numerical Experiments

In this part, several experiments are conducted on one syn-
thetic and some visual data to demonstrate the performance

of our proposed LTC scheme. We also compare it with
another four state-of-the-art algorithms: MFTC [13],
HaLRTC [12], LRTV-PDS [21], and SPC [22]. Here, we
notice that MFTC and HaLRTC only use Tucker-rank to

Table 1: The PSNR and SSIM values of five LRTC algorithms on image data.

Image MR
PSNR SSIM

LTC MFTC HaLRTC PDS SPC LTC MFTC HaLRTC PDS SPC

Lena

70% 28.36 22.46 24.96 28.11 28.83 0.8784 0.6738 0.7523 0.8656 0.8880

80% 26.82 20.17 21.51 26.06 27.46 0.8274 0.5603 0.5834 0.8095 0.8473

90% 24.21 16.90 17.54 23.11 25.44 0.7329 0.4043 0.3875 0.7083 0.7744

Giant

70% 24.16 20.59 20.36 23.09 25.26 0.8145 0.6949 0.7123 0.7762 0.8476

80% 22.59 18.48 17.30 21.31 23.55 0.7359 0.5612 0.5780 0.6810 0.7781

90% 20.41 15.26 13.91 19.22 21.52 0.5934 0.3578 0.3722 0.5340 0.6580

Pepper

70% 29.26 24.73 24.47 30.87 30.38 0.9426 0.8633 0.8440 0.9682 0.9521

80% 27.64 22.05 19.80 28.74 29.08 0.9109 0.7709 0.6721 0.9445 0.9338

90% 25.09 18.10 15.85 25.32 27.00 0.8420 0.5807 0.4811 0.8765 0.8944

Airplane

70% 27.55 25.03 26.16 27.53 28.10 0.9276 0.8630 0.9010 0.9476 0.9278

80% 25.99 22.71 22.61 25.70 27.10 0.8857 0.7787 0.7938 0.9064 0.9042

90% 23.59 19.51 19.11 23.07 25.49 0.8059 0.6256 0.6261 0.8069 0.8584

LTCObserved MFTC HaLRTC PDS SPC

Figure 2: The recovered color image by five tensor completion methods with MR = 70%, 80%, 90%.

LTCObserved MFTC HaLRTC PDS SPC

Figure 3: The different recovered color images by five tensor completion methods with MR = 80%.
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exploit the low-rank prior, while LRTV-PDS and SPC use
Tucker-rank and CP-rank, respectively. Besides, both of
them are expected to achieve better results on visual data
for considering TV term as the smoothness constraint. To
measure the estimated accuracy of completed tensor data,
peak signal-to-noise ratio (PSNR) and structural similarity
index (SSIM) are employed as quality metrics. The PSNR is
defined as 10 log10ðMAX2/MSEÞ. Here, MAX is the max of

whole data, and MSE is formulated as kX̂ −X0k2F/N . The
SSIM estimates the resemblance of images in luminance,
contrast, and structure. The relative change is defined as
RelCha = kXk+1 −XkkF/kXkF , which is set as stopping cri-

terion of all five algorithms. In the following experiments, if
the relative change is smaller than the tolerance 10−5 during
the iteration, we terminate the iterative process and output
Xk as the recovered tensor.

4.1. Synthetic Data Completion. Here, we apply our LTC
scheme and MFTC on synthetic data.

Figure 1 displays a visualization of a synthetic tensor and
the corresponding results of tensor completion achieved by
MFTC and LTC. We use four Gaussian functions to get the
synthetic 3rd-order tensor. By randomly removing 80% of
the voxels, we get the incomplete tensor. Compared to the
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Figure 4: Comparison of performances by five LRTCmethods on the color image. (a) Comparison of PSNR, (b) comparison of SSIM, and (c)
comparison of running time.
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results of MFTC and LTC, it is obvious that only low-rank
assumption is not enough for highly missing data, and
smoothness constraints can effectively improve the perfor-
mance of tensor completion.

4.2. Color Images Completion. In this part, we compare the
performance of MFTC, HaLRTC, PDS, SPC, and the pro-
posed LTC on four color images “Lena,” “Giant,” “Pepper,”
and “Airplane.” The incomplete images are generated by ran-
domly deleting elements. In color image data completion, the
missing ratios (MRs) are set as 70%, 80%, and 90%. The qual-
ity metrics of recovered images completed by five methods
are listed in Table 1. From Table 1, it is obvious that LTC
achieves high quality metrics values and performs better than
other LRTC algorithms except SPC.

Figure 2 presents the results of color image “Lena” recov-
ered by MFTC, HaLRTC, PDS, SPC, and LTC with different
missing ratios. The MRs are set as 70%, 80%, and 90%. From
Figure 2, it can be observed that the quality of the completed
images byMFTC and HaLRTC becomes worse as the missing
ratio increases, while the results obtained by PDS, SPC, and
LTC still contain most information of the original image.

Figure 3 presents the recovered color images “Lena,”
“Giant,” “Pepper,” and “Airplane” completed by MFTC,
HaLRTC, PDS, SPC, and LTC with MR = 80%. Obviously,
we can see that methods with smoothness constraints (PDS,
SPC, and LTC) perform better than those only considering
low-rank prior (MFTC, HALRTC) for different color images.

Figure 4 shows performance comparison of color image
“Lena” by MFTC, HaLRTC, PDS, SPC, and LTC in PSNR,
SSIM, and running time. The MRs are set as 50%, 60%,
70%, 80%, and 90%, respectively. We can see that PDS,
SPC, and LTC are superior to MFTC and HaLRTC in terms
of PSNR and SSIM. With MR increasing, the advantage of
methods with smoothness constraints becomes more promi-
nent. While ensuring the performance, LTC achieves about
80% running time reduction compared to PDS and SPC,
which implies that introducing matrix factorization indeed
improves the efficiency of tensor completion.

In order to analyze the effect of parameters λ1 and λ2, we
evaluate the performance of the recovered color image

“Lena” by LTC with MR = 70%. Figure 5 shows the change
of the PSNR values for different values of λ1 and λ2. It is
observed that both λ1 and λ2 evidently effect the tensor com-
pleted results of our proposed LTC scheme. Additionally, the
LTC achieves higher PSNR values when λ1 = 10, λ2 = 10.

To compare the convergence behavior of LTC with or
without tensor initialization, we display the relative change
(RelCha) values of the recovered color image “Lena” with
MR = 90% in Figure 6. It is observed that the RelCha value
of LTC with tensor initialization decreases faster than LTC
without tensor initialization, which proves the effectiveness
of our proposed tensor initialization method to accelerate
the convergence speed.

4.3. Video Completion. Here, two videos: “suzie” and “hall”
are tested, and only the first 30 frames of each video are used
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Figure 5: The PSNR values with different values of parameters λ1 and λ2.
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completion.
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for tensor completion. The size of videos for LRTC is 144 ×
176 × 30.

Figure 7 shows the 10th frame in two videos recovered by
five tensor completion methods with MRs = 70% and 80%,
which presents the visual results of recovered videos. Obvi-
ously, the videos recovered by PDS, SPC, and LTC are visu-
ally superior to MFTC and HaLRTC. Definitely, SPC and
LTC has a better performance to complete the video for pre-

serving details well, while some parts of recovered video by
PDS are still blurry.

Figure 8 presents the PSNR and SSIM values of each
frame of completed video “suzie” by five algorithms with
MRs = 60%, 70% and 80%, which shows the performance
comparison more straightforward. From curves in Figure 8,
we can conclude that SPC and LTC are better than other
algorithms in both stability and effectiveness.

Observed MFTC HaLRTC PDS SPC LTC

Figure 7: The single frame of recovered videos by five tensor completion methods with MR = 70%, 80%.
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Figure 9 shows performance comparison of tensor com-
pletion for video “suzie” by our proposed LTC and the com-
paring four algorithms in PSNR, SSIM, and running time.
The MRs are set as 40%, 50%, 60%, 70%, and 80%, respec-
tively. Apparently, PDS, SPC, and LTC perform better than
MFTC and HaLRTC when the MR is high. While ensuring
the performance, LTC achieves about 90% and 50% running
time reduction compared to SPC and PDS, respectively. It
means that introducing matrix factorization can effectively
reduce the running time of recovering incomplete videos.

5. Conclusion

In this paper, we propose a low-complexity tensor comple-
tion scheme. Our model takes advantage of SNN to exploit
the low-rankness, TV and framelet to recover details and
characterize the smoothness, and matrix factorization to
improve the efficiency. Besides, a novel tensor initialization
method is proposed to accelerate convergence speed.
Moreover, an efficient ADMM-based algorithm is developed
to solve the SMF model. The numerical experiments on
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Figure 9: Comparison of performances by five LRTC methods on the video. (a) Comparison of PSNR, (b) comparison of SSIM, and (c)
comparison of running time.
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synthetic and real-world data demonstrate both the efficiency
and effectiveness of proposed LTC scheme for tensor
completion. Smoothing constraints for higher-dimensional
data will be the research direction of tensor completion in
the future.
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There is inevitable polarization angle deviation between the target echo signal and the direct path signal of illuminator of
opportunity (IO) in passive radar. In order to investigate the potential performance loss in target detection induced by the
random deviation, small unmanned aerial vehicle (UAV) detection experiments with digital television terrestrial multimedia
broadcasting- (DTMB-) based passive radar are conducted in this paper. Experimental results show that the polarization angles
of the clutter signal and target echo signal are inconsistent. When the polarization diversity technology is used to suppress the
clutter signal, the processing performance of the target echo signal may be reduced. On the premise that clutter is effectively
suppressed by the processing algorithm, polarization synthesis can maximize the target echo signal processing gain. The
effectiveness of the target localization algorithm combining time difference of arrival (TDOA) and direction of arrival (DOA) is
also verified with polarization diversity reception in this paper.

1. Introduction

Passive radar is a type of special bistatic or multistatic radar
which exploits the existing electromagnetic signals in space
as illuminators of opportunity (IOs) and realizes target
detection and localization through passive reception. As its
features of no dedicated transmitter and no frequency assign-
ment, passive radar has attracted wide attention from acade-
mia and industry. FM radio [1, 2], digital TV [3, 4], mobile
communications [5, 6], Wi-Fi [7, 8], WiMAX [9–11], satellite
communications [12, 13], and many other IOs have been
exploited for passive radar, which makes it achieve remark-
able development over the years.

The IOs are not purposely designed for target detection;
as a result, passive radar needs complicated signal processing
to ensure its performance. However, the cost of signal pro-
cessing has been greatly reduced with the development of
high-performance computing technology. Furthermore, the
development of software-defined radio technology makes
passive radar be developed towards software-defined radar.
The passive radar researchers only need to focus on algo-

rithms rather than hardware platforms, which greatly pro-
motes the iterative evolution of passive radar processing
algorithms. The signal processing of passive radar has
approached its ultimate performance at present, and it is
urgent to find new ways to improve the performance of
passive radar.

In recent years, polarization diversity is generally consid-
ered a feasible way to further improve the passive radar
performance [1, 14–18]. However, most studies focused on
realizing clutter suppression by taking advantage of polariza-
tion diversity technology. While the clutter signal is effec-
tively suppressed, the detection performance of the target
echo signal may be limited by the polarization angle devia-
tion between the clutter signal and the echo signal.

In order to verify the performance of the polarization
diversity-based echo signal detection, field experiments with
dual-polarization reception are carried out in this paper.
The digital television terrestrial multimedia broadcasting
(DTMB) signal is exploited as the IO signal while the
unmanned aerial vehicle (UAV) of DJI Mavic 2 is selected
as the target. DTMB is an international terrestrial high-
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definition television broadcasting standard led by China. The
bandwidth of the DTMB signal is about 8MHz while the
transmission power is usually between 300 and 1000 watts.

The rest of this paper is organized as follows. Section 2
introduces the signal model for passive radar in detail.
Section 3 analyzes the polarization diversity for clutter
suppression and target detection, together with the
polarization-induced problem. Section 4 discusses the
experimental process and results. Finally, conclusions and
future work are summarized in Section 5.

2. Signal Model for Passive Radar

2.1. Signal Model for Receiving Channels. A passive radar
system generally consists of two synchronous receiving chan-
nels, which are called the reference channel and surveillance
channel, respectively. The received signal xrðtÞ of the refer-
ence channel can be described as

xr tð Þ = Cr ⋅ s tð Þ + 〠
L

i=1
Cr,i ⋅ s t − τið Þ +wr tð Þ, ð1Þ

where sðtÞ is the pure signal transmitted by the IO source, Cr
is the amplitude, L is the number of multipath reflection, Cr,i
and τi are the amplitude and time delay of the ith multipath,
respectively, and wrðtÞ is the noise in the reference channel.
xrðtÞ usually has a high signal-to-noise ratio (SNR) as the ref-
erence antenna is in the direction of the IO when the passive
radar is in operation. Especially for the digital modulated
signal, we can reconstruct the pure signal sðtÞ from xrðtÞ by
means of demodulation and remodulation [4]; (1) can then
be simply rewritten as

xr tð Þ ≈ Cr ⋅ s tð Þ: ð2Þ

The received signal xsðtÞ of the surveillance channel can
be written as

xs tð Þ = 〠
Nc

i=0
Cs,i ⋅ s t − τs,ið Þ + 〠

Nc+Ns

i=Nc+1
Cs,i ⋅ s t − τs,ið Þ + 〠

Nm

i=1
Cm,i ⋅ s

� t − τm,ið Þej2πf it +ws tð Þ ;
ð3Þ

in (3), Cs,i and τs,i are the amplitude and time delay of the ith
stationary object echo (including multipath), respectively,
and i = 0 is for the direct path signal (DPS) received from
the side lobe of the surveillance antenna. Cm,i, τm,i, and f i
are the amplitude, time delay, and Doppler frequency of the
ith moving target echo, respectively. Nc is the number of clut-
ter echoes (excluding the DPS), Ns is the number of station-
ary targets, Nm is the number of moving targets, and wsðtÞ is
the noise in the surveillance channel.

2.2. Signal Model for Clutter Suppression. The energy of the
target echo is far weaker than that of clutter in passive radar.
Clutter suppression is crucial for the operation of passive
radar as it may mask target echoes. The least-squares (LS)

matrix solution, sometimes referred to as the extensive can-
celation algorithm (ECA) or direct matrix inversion (DMI),
is a widely used method as its inherently parallel algorithm
structure that can be perfectly accelerated by hardware
implementation [19, 20]. According to (3), the signal model
for the surveillance channel can be written in a discrete form
after sampling as

xs nð Þ = xc nð Þ + xt nð Þ +ws nð Þ

= 〠
Kc

i=0
Cs,i ⋅ s n − ið Þ + xt nð Þ +ws nð Þ,

ð4Þ

where xcðnÞ, xtðnÞ, and wsðnÞ are the discrete form of clutter
echoes, target echoes (both stationary and moving), and
noise, respectively. sðnÞ is the discrete form of sðtÞ, Kc is the
maximum integer number corresponding to a signal delay
in samples of the clutter echoes, and (4) can be rewritten in
a compact matrix form as

Xs = S ⋅Cs + Xt +Ws ; ð5Þ

in (5),

Xs = xs nð Þ xs n + 1ð Þ ⋯ xs n +Nð Þ½ �T , ð6Þ

S =

s nð Þ s n − 1ð Þ ⋯ s n − Kcð Þ
s n + 1ð Þ s nð Þ ⋯ s n − Kc + 1ð Þ

⋮ ⋮ ⋱ ⋮

s n +Nð Þ s n +N − 1ð Þ ⋯ s n +N − Kcð Þ

2666664

3777775, ð7Þ

Cs = Cs,0 Cs,1 ⋯ Cs,Kc

� �T , ð8Þ

Xt = xt nð Þ xt n + 1ð Þ ⋯ xt n +Nð Þ½ �T , ð9Þ

Ws = ws nð Þ ws n + 1ð Þ ⋯ ws n +Nð Þ½ �T , ð10Þ

where N is the number of available samples and ½·�T indicates
matrix transposition.

The ECA-based solution is first to solve the following
optimization problem:

min
C

J = Xs − S ⋅ Ck k2: ð11Þ

The solution of (11) can be found by calculating the
pseudoinverse of S:

C = SHS
� �−1SHXs, ð12Þ

where ½·�H indicates matrix conjugate transposition. The
calculated coefficient vector C represents estimated values
of the clutter amplitudes for successive delays of the reference
signal. Then, the clutter suppression can be expressed as

Xrem = Xs − S ⋅ C ; ð13Þ

in (13),
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Xrem = xrem nð Þ xrem n + 1ð Þ ⋯ xrem n +Nð Þ½ �T
ð14Þ

is the residual target echo signal vector after clutter
cancellation.

For the operation of passive radar, a substitution of xrðtÞ
for sðtÞ is usually valid due to the high SNR. As a result, the
clutter suppression in practice is performed as

Xrem = Xs − Xr XH
r Xr

� �−1XH
r Xs ; ð15Þ

in (15),

Xr =

xr nð Þ xr n − 1ð Þ ⋯ xr n − Kcð Þ
xr n + 1ð Þ xr nð Þ ⋯ xr n − Kc + 1ð Þ

⋮ ⋮ ⋱ ⋮

xr n +Nð Þ xr n +N − 1ð Þ ⋯ xr n +N − Kcð Þ

2666664

3777775,
ð16Þ

where xrðnÞ is the discrete form of xrðtÞ.
2.3. Signal Model for Target Detection and Localization.
Target detection in passive radar is achieved by applying a
cross-ambiguity function (CAF) to the residual target echo
and the time-Doppler shifted visions of the reference signal.
The calculation process is defined as

ψ l, kð Þ = 〠
N−1

n=0
xrem nð Þx∗r n − lð Þe−j2πnk/N ; ð17Þ

by maximizing the CAF, the bistatic parameter pair of the
strongest target echo signal can be estimated as

lt , ktð Þ = arg max
l,k

ψ l, kð Þj j ; ð18Þ

then, the estimated time delay τt and Doppler-shift f t can be
derived as

τt =
lt
f s
,

f t = kt
f s
N
:

ð19Þ

The time difference of arrival (TDOA) measurement
method for finding a target position has been widely used
in the presence of multiple transmitters or multiple receivers
[21–24]. The main target localization method used for
bistatic passive radar is based on the measurements of bistatic
range and direction of arrival (DOA) [25–31]. Different from
the beamforming-based DOA estimation technique, a 2-D
interferometric approach is exploited to estimate the DOA
of the target echo in this paper. Though the beamforming
technique can enhance the signal-to-disturbance ratio, the

interferometric approach is simple and sufficient to verify
the superiority of polarization diversity.

According to (17) and (18), the CAF results of the M
surveillance channels can be described as

ψ lt , ktð Þ = ψ0 lt , ktð Þ ψ1 lt , ktð Þ ⋯ ψM−1 lt , ktð Þ½ �T

= a d, αð Þ 〠
N−1

n=0
xrem nð Þx∗r n − ltð Þe−j2πnkt /N ,

ð20Þ

where aðd, αÞ = ½a0ðd0, αÞ, a1ðd1, αÞ,⋯, aM−1ðdM−1, αÞ�T is
the steering vector of the antenna array, dm ðm = 0, 1,⋯,
M − 1Þ is the distance difference between the mth and
the reference antenna elements, and α is the DOA of the
target echo. Therefore, DOA estimation based on the
CAF results is completely equivalent to the interferometer
direction finding.

Figure 1 shows the bistatic plane within a 2-D coordinate
system, where the coordinates of receiver, transmitter, and
target are ðxR, yRÞ, ðxT , yTÞ, and ðxi, yiÞ, respectively. With-
out loss of generality, we can set ðxR, yRÞ as ð0, 0Þ for
simplification. Then, the baseline L can be calculated from
the known positions of both receiver and transmitter as

L =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xT 2 + yT 2

p
; ð21Þ

the range between the transmitter and the target RT can be
derived from the unknown position of the target and the
known transmitter as

RT =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xT − xið Þ2 + yT − yið Þ2

q
; ð22Þ

similarly, RR shown in Figure 1 can be described as

RR =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi2 + yi2

p
; ð23Þ

with the estimations of time delay τt and target echo DOA α,
additional equations can be obtained as

x

y

Transmitter
(xT, yT)

Receiver
(xR, yR)

Target
(xi, yi)

L

RTRR

𝜶

Figure 1: Bistatic plane within a 2-D coordinate system.
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c ⋅ τt = RT + RR − L,

tan α = yi
xi
,

8<: ð24Þ

where c is the speed of propagation.
The closed-form localization result can be realized by

solving (22), (23), and (24) as

xi =
c ⋅ τt ⋅ 2L + c ⋅ τtð Þ cos α

2 L + c ⋅ τtð Þ − 2xT − 2yT sin α
,

yi =
c ⋅ τt ⋅ 2L + c ⋅ τtð Þ sin α

2 L + c ⋅ τtð Þ − 2xT − 2yT sin α
:

8>>><>>>: ð25Þ

3. Polarization Diversity and Problem Analysis

There is inevitable polarization angle deviation between the
echo signal and the incident signal. The effects of polarization
have not been taken into account in the signal model above.
When the polarization angle is present, (3) can be rewritten as

xs tð Þ = 〠
Nc

i=0
Cs,i ⋅ s t − τs,ið Þ ⋅ cos θs,i + 〠

Nc+Ns

i=Nc+1
Cs,i ⋅ s t − τs,ið Þ ⋅ cos θs,i

+ 〠
Nm

i=1
Cm,i ⋅ s t − τm,ið Þej2πf it ⋅ cos θm,i +ws tð Þ,

ð26Þ

where θs,i and θm,i are the polarization angles of the ith station-
ary object echo and the ith moving object echo, respectively,
and they are parameters that we can control under polariza-
tion diversity reception.

Most of the IOs for passive radar are transmitted by hor-
izontal or vertical polarization antennas. Assume we use an
orthogonal dual-polarized antenna as the surveillance
antenna, the received signal vector can be described as

X nð Þ =
x0∘ nð Þ
x90∘ nð Þ

" #
=

cos θ
sin θ ⋅ ejφ

" #
xs nð Þ, ð27Þ

where x0°ðnÞ is one output of the dual-polarized antenna and
x90°ðnÞ is the other, θ is the polarization angle determined by
the antenna, and φ is the phase difference between the two
orthogonal channels. After polarization diversity reception,
the arbitrary polarization angle can be realized by polariza-
tion synthesis as follows:

x̂s n, ϑ, ϕð Þ = cos ϑ sin ϑ ⋅ ejϕ
� �∗ x0∘ nð Þ

x90∘ nð Þ

" #

= cos ϑ sin ϑ ⋅ e−jϕ
� � cos θ

sin θ ⋅ ejφ

" #
xs nð Þ

= cos ϑ cos θ + sin ϑ sin θ ⋅ ej φ−ϕð Þ
� �

⋅ xs nð Þ ;
ð28Þ

in (28), ½·�∗ indicates the conjugate operation. By substituting
ϕ = φ in (28), we obtain

x̂s n, ϑð Þ = cos θ − ϑð Þ ⋅ xs nð Þ, ð29Þ

which means that the polarization angle has changed. We can
then rewrite (15) as

Xrem ϑ, ϕð Þ = X̂s − Xr XH
r Xr

� �−1XH
r X̂s: ð30Þ

The essence of clutter suppression by taking advantage of
polarization diversity technology can be expressed as

min
ϑ,ϕ

J = Xrem ϑ, ϕð Þk k2 ; ð31Þ

the optimal polarization synthesis parameter pair for clutter
suppression can be described as

θc, φcð Þ = arg min
ϑ,ϕ

Xrem ϑ, ϕð Þk k2: ð32Þ

On the premise that clutter can be effectively suppressed
by a processing algorithm, target detection in passive radar
will only depend on the CAF operation. The optimal
polarization synthesis parameter pair for the ðlt , ktÞ target
detection can be obtained as

θt , φtð Þ = arg max
ϑ,ϕ

bψ lt , kt , ϑ, ϕð Þ		 		
= arg max

ϑ,ϕ
〠
N−1

n=0
xrem n, ϑ, ϕð Þx∗r n − ltð Þe−j2πnkt /N

					
					,
ð33Þ

where xremðn, ϑ, ϕÞ is the element of Xremðϑ, ϕÞ.
Therefore, when the parameter pairs of ðθc, φcÞ and ðθt ,

φtÞ are inconsistent, clutter suppression based on the polari-
zation diversity technology will result in performance loss for
the target detection.

4. Experimental Analysis

In order to verify the theoretical analysis above, we conduct
an experimental system which consists of a reference
antenna, surveillance antenna, software-defined radio
(SDR) receiver, and heterogeneous computing platform.
The experimental antenna system is shown in Figure 2. It is
mainly composed of a vertical polarization antenna and a
dual-polarized antenna.

4.1. Reference Signal Reconstruction. It can be clearly seen
from Figure 2 that the DTMB transmitting antenna is visible
to the reference antenna. Therefore, the reference signal has a
high SNR. Further, reference signal reconstruction is adopted
to remove the inevitable multipath and noise. The channel
decoding and coding operations are omitted in our process-
ing due to the high SNR, and the whole reference signal
reconstruction process is given in Figure 3.
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Matched filtering is first performed to reduce intersymbol
interference for the received signal. Then, synchronization,
channel estimation and equalization, OFDM demodulation,
and other operations are carried out in turn.

Amultichannel synchronous SDR receiver is used for sig-
nal acquisition, which can turn the radio frequency and sam-
pling rate flexibly. The carrier frequency of the DTMB signal
exploited in our experiments is 754MHz, and the used sam-
pling rate is 30.24MHz, which means that the oversampling
rate is 4. The duration of the reference signal used for
demodulation is 0.1 s. Figure 4 shows the obtained one-
frame constellation after OFDM demodulation. According
to the DTMB standard, the frame body of the DTMB signal
consists of two different types of symbols, the system infor-
mation (SI) symbol and the streaming data symbol. The SI
symbol is mapped to the BPSK constellation fixedly while
the streaming data symbol can be mapped to one of the

4QAM, 16QAM, 32QAM, and 64QAM constellations. Both
the BPSK and 16QAM constellations can be seen in
Figure 4, in which all the constellation points are focused.

After constellation demapping and deinterleave, we make
a hard decision to recover the transmitted bit sequence.
Finally, the recovered bit sequence is processed by the oper-
ations of interleave, constellation mapping, OFDM modula-
tion, framing, and shaping filtering, which are the same as
the transmitter, to reconstruct the pure reference signal.

4.2. Target Detection. The DJI Mavic 2 UAV, which has
unfold dimensions of 322mm × 242mm × 84mm is used as
the target to be detected in our experiments. The clutter sup-
pression is first conducted by using the ECA-based solution
with the reconstructed reference signal and one of the dual-
polarized echo signals, and the result is given in Figure 5. It
shows that a suppression capacity of about 30 dB is achieved.
Since the reconstructed reference signal cannot be consistent
with the clutter components in terms of frequency deviation
and time delay variation, the residual signal still has some
noise components.

The decimation filter and fast Fourier transform (FFT)
are used after clutter suppression to realize the CAF opera-
tion as (17). The detailed schematic is shown in Figure 6.

The obtained bistatic Rang-Doppler (RD) map after the
CAF processing is shown in Figure 7. As can be seen, there
is an obvious target that the bistatic range equals 119.05m
and the bistatic Doppler frequency equals 35Hz.

4.3. Polarization Diversity for Clutter Suppression. In the clut-
ter signal, the polarization angle of the DPS component is dif-
ferent from that of the multipath components. Therefore, we
cannot suppress every component by the way of polarization
diversity.

We evaluate the power of the polarization synthesized
signal as (28). When −180° ≤ θ ≤ 180° and −180° ≤ φ ≤ 180°,
the obtained signal power is shown in Figure 8. For different
polarization parameter pairs, the power of the synthesized
signal can differ by larger than 10.5 dB.

Reference
antenna

DTMB
transmitter 

Surveillance
antenna 

Figure 2: The experimental antenna system.

Matched filtering

Synchronization

Channel estimation and
equalization

OFDM demodulation

Constellation de-mapping
and deinterleave

Interleave and
constellation mapping

OFDM
modulation

Framing

Shaping filtering

Hard decision

Received signal Reconstructed signal

Figure 3: Reference signal reconstruction process.
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There are four maximums and four minimums in the
range of [-180°, 180°] due to the symmetry of trigonometric
functions. Then, we narrow the range to [-90°, 90°] and
obtain the partial but complete results shown in Figure 9.
In this range, the synthesized signal gets its maximum value
with the parameter pair ðθ, φÞ at ð28°, −32°Þ while its mini-

mum value is at ð−62°, −32°Þ. As a result, the value of -32°

is the estimation of the phase difference between the two
orthogonal channels, and the estimated value of 28° is treated
as the equivalent polarization angle of the composite clutter
signal. The optimal polarization angle used for clutter sup-
pression has a value of -62° in our experiments.

4.4. Polarization Diversity for Target Detection. The target
detection performance under different polarization angles is
also evaluated in our experiments. Since different polariza-
tion angles may result in different residual noise components
by the ECA-based solution, the SNR of the RDmap defined is
used in the evaluation:

SNRt =
ψ τt , f tð Þj j

mean
τ,f

ψ τ, fð Þj j : ð34Þ

The obtained normalized SNRt map is shown in
Figure 10.
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It shows that SNRt gets its maximum value with the
parameter pair ðθ, φÞ at (-49°, -32°) while its minimum value
at (41°, -32°), and the difference between the maximum and
minimum is larger than 11.5 dB. As the phase difference
between the two orthogonal channels is only related to the
receiver, it can be seen that the value of φ for the extremum
in Figure 10 is the same as that in Figure 9. However, the
polarization angle of -49° for the maximum of SNRt is incon-
sistent with the optimal value of -62° for clutter suppression.
As a result, it proves that clutter suppression based on the
polarization diversity technology may result in performance
loss for the target detection due to the randomness of the
polarization angle difference.

Table 1 shows the obtained normalized SNRt with several
polarization angles we are interested in. We only use one of
the dual-polarization echo signals in the case of θ = 0°. As
the noises in the two orthogonal polarized channels are not

correlated with each other, the random noise components
will be superimposed after polarization synthesis. In addition
to the random noise, the clutter signal and target echo signal
in the synthesized signal are affected dramatically by
changing the polarization angle parameter. Only when the
polarization angle adopted in the polarization synthesis
matches the actual signal polarization angle, the SNR of the
synthesized signal can be maximized. Table 1 shows that
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Table 1: Comparison of SNRt .

θ φ Normalized SNRt (dB)

0° 0° -1.22287

28° -32° -3.19481

-62° -32° -0.58790

-49° -32° 0
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polarization matching has a performance improvement of
about 1.22 dB compared with single-polarization reception
in our experiments.

As the stability of the ECA-based clutter suppression
algorithm is related to the calculating precision of matrix
operation, the effect of clutter suppression will not change
with the amplitude of the clutter signal in a certain range.
The algorithm always works within the stable range in our
experiments, and the clutter signal can be well suppressed
at all the polarization angles. Although there is a performance
improvement of up to 2.61 dB compared to 28° at -62°, we
need to point out that this is not the reason for better clutter
suppression; the theoretical reason is that this polarization
angle is closer to the actual polarization angle of -49°. When
the clutter signal is too strong for the ECA algorithm to work
normally, polarization diversity is an effective way to increase
the additional capacity for clutter suppression. Though there
may be performance loss for target detection, it is worthful
for the normal operation of the system.

4.5. Target Localization. A small antenna array which con-
sists of three elements is exploited to estimate the DOA of
the UAV echo. Figure 11 shows the configuration of the
antenna array, which consists of three antenna elements.
Each antenna element is orthogonally dual-polarized as
shown in the figure, where H represents horizontal polariza-
tion and V represents vertical polarization. The spacing is
28 cm for Element 0 and Element 1, while it is 42 cm for Ele-
ment 1 and Element 2. Since a virtual spacing of 14 cm can be
constructed by this nonuniform linear array, which is below
the half-wavelength of about 20 cm in our experiments, it will
not lead to the cyclically ambiguous problem in DOA estima-
tion. For each dual-polarized element, we conduct polariza-
tion synthesis, clutter suppression, and TDOA estimation
separately. The three processing results are further used for
DOA estimation. The positioning result of the target is finally
obtained after both TDOA and DOA estimations.

The essence of the 2-D interferometer direction finding is
to determine the direction of the signal source by the phase
difference formed by the received signal on different antenna
elements. The wave-path difference between the two antenna
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elements will cause the phase difference. Though the polari-
zation angle is random, it is not instantaneous. As a result,
we use the same value for the parameter of θ in polarization
synthesis of all the three dual-polarized antenna elements.
Since the parameter of φ is mainly related to different chan-
nels of the receiver, we use the premeasured values for it.
We search optimal DOA estimation between -90° and 90°.
The result of the direction finding at a certain moment is
shown in Figure 12, which shows an optimal estimation of
about 20°.

The combination of TDOA and DOA as (25) is adopted
to locate the UAV. Figure 13 shows the positioning result
of the UAV in a certain continuous time, which is consistent
with its actual flight path in the experiments. The two obvi-
ous discontinuous sudden changes in Figure 13 are caused
by the range resolution of the signal, which is about 39.68m.

Figure 13 shows that the direction finding and localiza-
tion of the echo signal can still be realized after polarization
synthesis, which verifies the validity of the localization algo-
rithm in passive radar with polarization diversity reception.
The positioning distance may increase significantly at some
polarization angles through polarization synthesis. However,
since there is only 1.22 dB performance improvement in tar-
get detection compared with single-polarization reception in
our experiments, the positioning distance will not increase
obviously.

5. Conclusion

We have established an experimental system to evaluate the
adverse effect of polarization angle on passive radar. By ana-
lyzing the experimental data, the necessity of polarization
diversity to ensure the target detection performance is
revealed. The effect of polarization diversity on clutter sup-
pression is significant; especially when the clutter signal is
strong, it is necessary to increase the additional suppression
capacity through polarization diversity for the normal opera-
tion of the system. However, when the clutter suppression
algorithm is sufficient to suppress the clutter, the significance
of the polarization diversity will lie in matching the polariza-
tion angle of the target echo signal. When the two perfectly
match, the maximum SNR of the target echo signal will be
achieved, and the system will have the optimal target detec-
tion performance. The target localization capacity under
polarization synthesis for multichannel is also investigated.
We will further study the adaptive polarization synthesis
strategy to achieve a compromise between clutter suppres-
sion and target detection.
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In filter bank multicarrier with offset quadrature amplitude modulation (FBMC/OQAM) systems, a large pilot overhead is required
due to the existence of the imaginary interference. In this paper, we present an approach to reduce the pilot overhead of channel
estimation. A part of pilot overhead is used for transmitting data, and compensating symbols are required and designed to
remove the imaginary interference. It is worthwhile to point out that the power of compensating symbols can be helpful for data
recovery; hence, the proposed approach decreases the overhead of pilots significantly without the cost of additional pilot energy.
In addition, the proposed scheme is extended into multiple input multiple output systems without the performance loss.
Compared with the conventional preamble consisting of 3 columns symbols, the pilot overhead is equivalent to 2 column
symbols in the proposed preamble. To verify the proposed preamble, numerical simulations are carried out with respects to bit
error ratio.

1. Introduction

Currently, filter bank multicarrier with offset quadrature
amplitude modulation (FBMC/OQAM) has been considered
as a potential alternative [1–4] to the conventional orthogo-
nal frequency division multiplexing (OFDM). In the past sev-
eral years, FBMC/OQAM and other filter-based waveforms
have been studied to overcome the disadvantages of OFDM.
This paper focuses on the FBMC/OQAM technique and
presents an effective solution to the channel estimation with
low pilot overhead.

Unlike in OFDM, channel estimation in FBMC/OQAM
is not a straightforward mission, which is related to that the
waveform synthesis and analysis of FBMC/OQAM are not
same as that of OFDM. Since the orthogonality condition
only is met in real field [2, 5], FBMC/OQAM systems trans-
mit real-valued symbols obtained by the real and imaginary

parts of complex-valued QAM symbols, and there exists
imaginary interferences among the transmitted real-valued
symbols, called the intrinsic imaginary interference [6]. For
the channel estimation, the imaginary interference has a cru-
cial effect on the pilot design. The imaginary interference has
to be eliminated to ensure the good system performance [7].
In particular, while in OFDM receiver data/pilot symbols
that are perfectly separated after applying the FFT, the signal
samples from the output of the analysis filter in an FBMC/O-
QAM receiver are subject to intersymbol interference (ISI),
both along the time and frequency/subcarriers. ISI-free sym-
bols could be achieved after the channel equalization and the
operation of taking the real parts. In the absence of the chan-
nel, ISI appears as an imaginary component that adds to the
real-valued data symbols which are carried by the FBMC/O-
QAM waveform, which has to be considered in the pilot
design.
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To avert the imaginary interference, a direct method is
to disable the symbols surrounding the pilots, which results
in a reduced spectral efficiency. By applying the following
method, this spectral efficiency loss could be avoid [8].
One dummy symbol is set adjacent to the pilot to eliminate
the imaginary interference of the FBMC/OQAM system.
This dummy symbol was then called auxiliary pilot (AP)
in [9]. Although it is helpful to remove the imaginary inter-
ference to pilots, the AP method effectively increases the
transmit power. A more complex approach, but more effi-
cient in terms of transmit power, was proposed in [10].
The data symbols surrounding pilots are performed by a
linear coding so that the data symbols do not produce any
imaginary interference. Nevertheless, to completely remove
the imaginary interference, a long code length is required
in the coding scheme, which in turn increases a large com-
plexity at both of the transmitter and the receiver. In addi-
tion, it also introduces other complications, which are
discussed in [11]. In [12], the authors presented the inter-
ference approximation method (IAM), in which it was
revealed that the channel estimation performance is decided
by the so-called pseudopilot power consisting of pilot and
the imaginary interference from adjacent data. Afterwards,
the modified versions of IAM were presented to improve
the pseudopilot power by employing imaginary-valued
pilots, i.e., IAM-C [13] and IAM-I [14]. However, it should
be noted that the existing IAM-based methods require 3
columns real-valued symbols as pilot overhead to achieve
the channel estimation. To reduce the pilot overhead of
IAM-based schemes, the iterative algorithm was proposed
to eliminate the imaginary interference for channel estima-
tion [15]. Nevertheless, it suffers from the problems of high
computational complexity. In [16], the authors proposed
the pairs of the real pilots (POP) method, with only 2
columns pilots. However, by reason of the bad ability of
against noise, the POP method exhibits poor channel
estimation performance compared with the conventional
IAM-based methods.

In this paper, we present an approach to reduce the
pilot overhead of channel estimation in FBMC/OQAM sys-
tems. Compared with the conventional pilot structures, a
part of pilot overhead is used for transmitting data, and
compensating symbols are required and designed to elimi-
nate the imaginary interference from data. Note that it is
proven that the power of compensating symbols can be
helpful for data recovery; hence, the proposed approach
decreases the overhead of pilots significantly without the
cost of additional pilot energy. Compared with the conven-
tional methods with 3 columns pilots, the proposed scheme
only requires 2 columns pilots for the channel estimation.
In addition, the proposed approach is extended into multi-
ple input multiple output- (MIMO-) based FBMC (MIMO-
FBMC) systems.

The rest of this paper is organized as follows. The IAM
method is briefly introduced in Section 2. The proposed
approach is presented in Section 3, followed by the corre-
sponding algorithm. Then, the proposed scheme is extended
into MIMO-FBMC systems in Section 4. Section 5 shows the
simulations, and Section 6 is the conclusions.

2. Channel Estimation with the IAM Method in
FBMC/OQAM Systems

2.1. SystemModel. As depicted in Figure 1, the diagram block
of FBMC/OQAM transceiver is presented, in which M sub-
carriers are considered in the FBMC/OQAM system with
the subcarrier spacing 1/M. Note that the complex-valued
data symbols have the interval of M samples in time, and
by partitioning each complex-valued symbol, a pair of PAM
symbols are obtained. The PAM symbols are denoted by
dm,n, with m the subchannel index and n the time index. In
addition, dm,2�n and dm,2�n+1, i.e., the real and imaginary parts
of a QAM symbol, have the interval of M/2 samples in time.
g½l� is the prototype filter and spans over the time interval 0
≤ l ≤ KM − 1, where K is the overlapping factor and is
supposed to be a positive integer. It is further assumed that
the filter g½l� is even and symmetric around its center, hence,
g½l� = g½KM − 1 − l� for 0 ≤ l ≤ KM − 1.

Following Figure 1, the transmitted signal is [17]

s l½ � = 〠
M−1

m=0
〠
n∈ℤ

dm,ng l − n
M
2

� �
ej2πml/Mejπ m+nð Þ/2, ð1Þ

where M stands for the subcarrier number. dm,n repre-
sents one transmitted symbol of position ðm, nÞ, with only
real value.

Then, the signal at the receive antenna is obtained

r k½ � = h l½ � ∗ s l½ � + η l½ �, ð2Þ

where the sign∗ is the convolution operator. h½l� represents
themultipath channel, and there exists a channel noise η½l�, sat-
isfying the Gaussian distribution with variance σ2 [18–20].

Then, demodulations at the receiver can be written as

d̂m,n = 〠
∞

l=−∞
r l½ �g l − n

M
2

� �
e−j2πml/Me−jπ m+nð Þ/2: ð3Þ

Then, an operator of taking real part is required.

R d̂m,n
n o

= dm,n: ð4Þ

Note that channel estimation is necessary in the
FBMC/OQAM system under the multipath channel.

2.2. The IAM Method. In [12], the IAM method with 3 col-
umn pilots has been presented for the channel estimation
in FBMC/OQAM systems. The estimation model of IAM
can be obtained [12]:

d̂m,n ≈ hm,n dm,n + d ∗ð Þ
m,n

� �
+ ηm,n, ð5Þ

where d̂m,n is the demodulation at the receiver of
FBMC/OQAM. hm,n stands for frequency-domain channel
at m-th subcarrier, which is supposed quasi-invariant in the
time domain in this paper, i.e.,
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hm,n ≈ hm,0 = 〠
L−1

k=0
h k½ �e−2jπmk/M , ð6Þ

with the maximum channel delay spread of L. The imag-
inary interference dð∗Þm,n is written as

d ∗ð Þ
m,n =〠

Ω

dm,nξ
m,n
m+p,n+q, ð7Þ

with Ω = fðp, qÞ ∣ jpj, jqj ≤ 1andðp, qÞ ≠ ð0, 0Þg, and the
imaginary interference factor, ξm,n

m+p,n+q, is defined as

ξm,n
m+p,n+q = ξ0,0p,q = 〠

∞

l=−∞
g l½ �g l + q

M
2

� �
ej2πpl/Mejπ p+qð Þ/2: ð8Þ

And the noise term ηm,n is

ηm,n = 〠
∞

l=−∞
η l½ �g l − n

M
2

� �
e−j2πml/Me−jπ m+nð Þ/2: ð9Þ

Then, the IAM channel estimation is written as [12]

ĥm,n =
d̂m,n

dm,n + d ∗ð Þ
m,n

= hm,n +
ηm,n

dm,n + d ∗ð Þ
m,n

: ð10Þ

Figure 2(a) depicts the existing preamble of IAM, i.e.,
dm,0 = dm,2 = 0 with m = 0, 1,⋯,M − 1, d4l,1 = d4l+1,1 = 1,
and d4l+2,1 = d4l+3,1 = −1 with l = 0, 1,⋯,M/4 − 1. Note that
it is well known that the interval of an FBMC/OQAM symbol
is only half of that of an OFDM symbol. Therefore, the pilot
overhead in FBMC/OQAM systems is 1.5 times of that clas-
sical OFDM systems.

2.3. POP Method. The POP method is another preamble-
based channel estimation method in [16]. As shown in
Figure 2(b), only two columns of real-valued pilots are
required in the POP method, i.e., d2k,0 = 1, d2k+1,1 = −1 with
k = 0, 1,⋯,M/2 − 1, and dm,1 = 0 with m = 0, 1,⋯,M − 1.

Suppose ðm1, n1Þ, ðm2, n2Þ is the time-frequency posi-
tions of two symbols. The channel estimation by POP can
be written as
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Figure 1: The FBMC/OQAM system diagram.
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Figure 2: The conventional preamble and the proposed preamble in FBMC/OQAM.
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R hm1,n1
� �

=
R d̂m1,n1

� �
+ C ·I d̂m1,n1

� �
dm1,n1

,

I hm1,n1
� �

= C ·R hm1,n1
� �

,

8>><
>>: ð11Þ

where Rð·Þ and Ið·Þ are the operators of taking the real
part and the imaginary part, respectively. C is the ratio
between the imaginary part and the real part of hm1,n1 ,

C =
dm2,n2 ·R d̂m1,n1

� �
− dm1,n1 ·R d̂m2,n2

� �
dm1,n1 ·I d̂m2,n2

� �
− dm2,n2 ·I d̂m1,n1

� � : ð12Þ

Then, the channel coefficients have been estimated. This
approach does not require any knowledge of the prototype
function and could be adopted as preamble-based method
and also as a scattered-based channel estimation method.

3. Proposed Channel Estimation Scheme for
FBMC/OQAM Systems

3.1. Preamble Structure of the Proposed Scheme. Figure 3
depicts the proposed preamble structure, where dm,1,m = 0,
1,⋯,M − 1 are pilot symbols. Different from Figure 2(a), a
part time-frequency resources of the first and the third col-
umns are used to transmit additional data symbols (ADS),
i.e., u = ½u0, x1,⋯,uM−1�T with u2m = a2m,2 and u2m+1 =
a2m+1,0. To eliminate the imaginary interference, compensat-

ing pilot symbols (CPS) are required, i.e., v =
½v0, v1,⋯,vM−1�T with v2m = a2m,0 and v2m+1 = a2m+1,2. Accord-
ing to the criteria that the imaginary interferences from ADS
and CPS should be mutually canceling, v can be designed by

ΦHu +ΩHv = 0, ð13Þ

where H represents the diagonal matrix with m-th diago-
nal element hm,0, and

Φ =

ξ0,10,2 ξ0,11,0 ξ0,12,2 ⋯ ξ0,1M−1,0

ξ1,10,2 ξ1,11,0 ξ1,12,2 ⋯ ξ1,1M−1,0

ξ2,10,2 ξ2,11,0 ξ2,12,2 ⋯ ξ2,1M−1,0

⋮ ⋮ ⋮ ⋱ ⋮

ξM−1,1
0,2 ξM−1,1

1,0 ξM−1,1
2,2 ⋯ ξM−1,1

M−1,0

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA
, ð14Þ

Ω =

ξ0,10,0 ξ0,11,2 ξ0,10,2 ⋯ ξ0,1M−1,2

ξ1,10,0 ξ1,11,2 ξ1,12,0 ⋯ ξ1,1M−1,2

ξ2,10,0 ξ2,11,2 ξ2,12,0 ⋯ ξ2,1M−1,2

⋮ ⋮ ⋮ ⋱ ⋮

ξM−1,1
0,0 ξM−1,1

1,2 ξM−1,1
2,0 ⋯ ξM−1,1

M−1,2

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA
: ð15Þ

Then, it is obtained as

v = −H−1Ω−1ΦHu: ð16Þ

It should be noted that (16) cannot be used to design CPS
directly due to the fact that it is difficult to obtain H at the
transmitter.

It is proven that Ω−1Φ is a unitary matrix in the appen-
dix. Let αmn be the ðm, nÞ-th entry of Ω−1Φ, and it can be
obtained as

〠
M−1

n=0
αmnj j2 = 1,

〠
n

αmnj j2 ≈ 0:9991, ∣m − n∣ ≤ 3, ∣m − n∣ ≥M − 3:

8>>><
>>>: ð17Þ

Thus, it can be concluded that αmn ≈ 0 for M − 3 > ∣m −
n ∣ >3.

In addition, define C =H−1Ω−1ΦH, and its ðm, nÞ-th ele-
ment is Cmn = ðhm,0/hn,0Þβmn, which is close to zero for M
− 3 > ∣m − n ∣ >3. Then, it can be assumed that Hm,0/Hn,0 ≈
1 for ∣m − n ∣ ≤3 or ∣m − n ∣ ≥M − 3. Therefore, Cmn ≈ βmn
and v can be obtained by

v = −Ω−1Φu: ð18Þ

3.2. Data Recovery of ADS. In this subsection, it is proven that
the CPS is helpful for data recovery of ADS. Therefore, the
ADS has the similar ability to fight against the noise com-
pared with data symbols as we can see below.

Data symbols

: Compensating pilot symbols (CPS)

: Additional data symbols (ADS)
: Pilot symbols

Time index
0 1 2

0
1
2

m – 1

m + 1

Fr
eq

ue
nc

y 
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de
x m

Figure 3: The proposed pilot structure in FBMC/OQAM.
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According to (5), the demodulation of v and u is

u =H u + u ∗ð Þ
� �

+ ηu,

v =H v + v ∗ð Þ
� �

+ ηv ,

8><
>: ð19Þ

where uð∗Þ and vð∗Þ are the imaginary interference,

respectively, i.e., uð∗Þ = ½uð∗Þ0 , uð∗Þ1 ,⋯,uð∗ÞM−1�
T
, in which uð∗Þ2k =

dð∗Þ2k,2 and uð∗Þ2k+1 = dð∗Þ2k+1,0, vð∗Þ = ½vð∗Þ0 , vð∗Þ1 ,⋯,vð∗ÞM−1�
T
, in which

vð∗Þ2k = dð∗Þ2k,0 and vð∗Þ2k+1 = dð∗Þ2k+1,2. η
u = ½ηu0 , ηu1 , ηu3 ,⋯,ηuM−1�T with

ηu2i = η2i,2 and ηu2i+1 = η2i+1,0. ηv = ½ηv0, ηv1, ηv2,⋯,ηvM−1�T with
ηv2i = η2i,0 and ηv2i+1 = η2i+1,1.

According to (18), we have

u = −Ω−1Φ
� �−1

v: ð20Þ

Let u = ð−Ω−1ΦÞ−1v, and it is obtained

u = −Ω−1Φ
� �−1

H v + v ∗ð Þ
� �

+ −Ω−1Φ
� �−1

ηv

= −Ω−1Φ
� �−1

H v + v ∗ð Þ
� �

+ ~η:
ð21Þ

When the channel noise vanishes, we have RðH−1uÞ ≈
ð−Ω−1ΦÞ−1v = u =RðH−1uÞ. Then, 1/2u + 1/2u will be the
input of channel equalizer instead of u, since the noise vari-
ance will be reduced half after the linear combination. By this

way, the ADS has similar capability to fight against the noise
compared with the data symbols.

4. Channel Estimation in MIMO-FBMC

In this section, the proposed scheme in Section 3 can be easily
extended into MIMO-FBMC systems with Nt transmit
antennas and Nr receive antennas, as shown in Figure 4.
Denote the symbol of the t-th transmit antenna as dtm,n,
and let hr,tm be the channel frequency response between the r
-th receive antenna and the t-th transmit antenna at the m
-th subcarrier.

Without loss of generality, Nt is set to 2 in this section for
simplicity. As is well known, the imaginary interference
exists among the FBMC/OQAM symbols [12]. When there
exists the imaginary interference between different antennas,
it is difficult for one user to perform the channel estimation
since the imaginary interference from other users is not avail-
able. Therefore, the key of the preamble design in MIMO-
FBMC systems is the imaginary interference cancelation
between antennas. Figure 5(a) depicts the conventional pre-
ambles on the two transmit antennas in MIMO-FBMC sys-
tems. Zeros are placed in the first and third columns to
avert imaginary interference from data. It should be noted
that nonzero pilots only locate in a part of subcarriers to
ensure no imaginary interference between antennas, i.e., d4p
, p = 0, 1,⋯,M/4 − 1 is a nonzero pilot for the first transmit
antenna, and d4p+2, p = 0, 1,⋯,M/4 − 1 is a nonzero pilot
for the second transmit antenna. In our proposed preambles,
in Figure 5(b), the nonzero pilots in the second column are
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Figure 5: Proposed preamble in MIMO-FBMC systems.
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Figure 4: The MIMO-FBMC system model.
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the same as the conventional preambles. Differently, half of
subcarriers in the first and third columns are placed by data
symbols, improving the spectral efficiency. To eliminate the
imaginary interference, compensating pilot symbols are
required and designed according to (16) in Section 3. There-
fore, compared with the conventional preambles, the pilot
overhead of the proposed preamble is reduced by 1/3.

At the receiver, the demodulation of the r-th receive
antenna is obtained

yrm0,n0 = 〠
Nt

t=1
hr,tm0

dtm0,n0 +〠hr,tm dtm,nξ
m0,n0
m,n|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

Itm0,n0

2
66664

3
77775 + ηrm0,n0 , ð22Þ

where noise ηrm0,n0 satisfies the Gaussian distribution with

mean 0 and variance σ2. Itm0,n0 is the imaginary interference

term to the transmit symbol dtm0,n0 .
As mentioned above, the imaginary interference between

antennas can be removed completely. Then, for the proposed
preambles in Figure 5(b), equation (22) can be rewritten as

yr4p,1 = hr,14p d
1
4p,1 + ηr4p,1,

yr4p+2,1 = hr,24p+2d
2
4p+2,1 + ηr4p+2,1,

ð23Þ

p = 0, 1,⋯,M/4 − 1: ð24Þ
Accordingly, the channel estimation in MIMO-FBMC

systems can be obtained as

hr,14p =
yr4p,1
d14p,1

, ð25Þ

hr,24p+2 =
yr4p+2,1
d24p+2,1

, p = 0, 1,⋯,M/4 − 1: ð26Þ

Then, the simple linear interpolation is performed on hr,14p
and hr,24p+2 to obtain the channel estimation of all subcarriers,
respectively. It should be noted that our proposed approach
could decrease the overhead of pilots significantly without
the cost of additional pilot energy. Although the CPS symbols
consume energy, it will be completely used for symbol recov-
ery as presented in Subsection 3.2.

5. Simulation Results

In this section, we evaluate the performance of the proposed
channel estimation approaches that are presented in this
paper through computer simulations. The FBMC/OQAM
system employs the PHYDYAS filter [17] and the overlap
parameter K = 4. The multipath channel model is simulated,
i.e., SUI proposed by the IEEE 802.16 broadband wireless
access working group [21]. In simulations, the following
parameters are considered.

(i) Subcarrier number: 2048

(ii) Sampling rate (MHz): 30:72
(iii) Path number: 3
(iv) Delay of path (μs): 0, 0,4, 0.9
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Figure 6: MSE of the proposed scheme.

6 Wireless Communications and Mobile Computing



(v) Power delay profile (dB): 0, -5, -10

(vi) Modulation: 4QAM

(vii) Channel coding: convolutional coding [12]

For comparison, we also give the performance of POP
[16], which only requires two columns of pilots.

Figures 6 and 7 show the MSE and BER performances of
the proposed approach. It can be easily seen that obvious
performance loss is observed in the conventional POP
method. As presented in [16], the performance of POP
depends on a random power that could be close to zero
sometimes, leading to a poor performance. In addition,
the proposed scheme can achieve the same MSE and BER
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Figure 7: BER of the proposed scheme.
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Figure 8: BER of the proposed scheme in MIMO-FBMC with 2 transmit antennas and 2 receive antennas.
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performances as the IAM method, which indicates that the
imaginary interference between pilots and data symbols can
be eliminated completely in the proposed scheme. It should
be noted that only two columns pilots are needed in the
proposed scheme, while the conventional preamble requires
three columns of pilots. Therefore, better spectral efficiency
can be achieved by our proposed channel estimation
approach.

Figure 8 shows BER of the proposed approach in
MIMO-FBMC systems, in which both of Nt and Nr are
set to 2. The proposed 2-column preamble can achieve
similar BER compared to the conventional 3-column
preamble, which demonstrates the effectiveness of the pro-
posed scheme. It should be noted that our proposed
scheme can reduce the pilot overhead significantly without
the cost of additional pilot energy. Although the CPS sym-
bols consume energy as shown in Figures 3 and 5, it will
be completely used for symbol recovery as presented in
Subsection 3.2.

6. Conclusions

In this paper, an approach was presented for the pilot over-
head reduction in the channel estimation of FBMC/OQAM
systems. Compared with the conventional methods with 3
columns pilots, the proposed scheme only requires 2 column
pilots. In addition, the proposed approach was also extended
into MIMO-FBMC systems. It was also proven that our
proposed approach could decrease the overhead of pilots
significantly without the cost of additional pilot energy and
performance loss. Simulations have been done to verify the
effectiveness of the proposed approach.

Appendix

From (8), we have ζ0,00,1 = −ζ0,00,−1 = g and ζ0,01,1 = ζ0,01,−1 = ζ0,0−1,1
= ζ0,0−1,−1 = ζ0,0M−1,−1 = ζ0,0−M+1,1 = f where g, f are imaginary-
valued and constant. Furthermore, when M − 1 > ∣p ∣ >1
or ∣q ∣ >1, ζm,n

m+p,n+q ≈ 0 [12]. Thus, (14) and (15) can be
rewritten as

Φ =

g f 0 0 0 ⋯ 0 f

f −g f 0 0 ⋯ 0 0
0 f g f 0 ⋯ 0 0
0 0 f −g f ⋯ 0 0
0 0 0 f g ⋯ 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮

0 0 0 0 0 ⋯ g f

f 0 0 0 0 ⋯ f −g

0
BBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCA

, ðA:1Þ

Ω =

−g f 0 0 0 ⋯ 0 f

f g f 0 0 ⋯ 0 0
0 f −g f 0 ⋯ 0 0
0 0 f g f ⋯ 0 0
0 0 0 f −g ⋯ 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮

0 0 0 0 0 ⋯ −g f

f 0 0 0 0 ⋯ f g

0
BBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCA

, ðA:2Þ

respectively.
In addition, let

G =

g 0 0 0 0 ⋯ 0 0
0 −g 0 0 0 ⋯ 0 0
0 0 g 0 0 ⋯ 0 0
0 0 0 −g 0 ⋯ 0 0
0 0 0 0 g ⋯ 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮

0 0 0 0 0 ⋯ g 0
0 0 0 0 0 ⋯ 0 −g

0
BBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCA

, ðA:3Þ

denote anM ×M diagonal matrix and F =Φ −G. There-
fore, we have

Φ = F +G,
Ω = F −G:

(
ðA:4Þ

Note that G† = −G and F† = −F since both of g and f are
imaginary-valued, where ð·Þ† is the Hermitian transpose
operation. For the even subcarrier M, it can be easily
obtained FG + GF = 0 where 0 is the zero matrix. Then, we
have

FF + GG = FF +GG,
FF +GG + FG +GF = FF +GG − FG − GF,

F +Gð Þ F +Gð Þ = F − Gð Þ F −Gð Þ,
F +Gð Þ F −Gð Þ−1 = F + Gð Þ−1 F − Gð Þ,

ΦΩ−1 =Φ−1Ω:

ðA:5Þ

Based on the equations ðΩ−1ΦÞ† =Φ†ðΩ†Þ−1 =ΦΩ−1

and ðΩ−1ΦÞ−1 =Φ−1Ω, we have

Ω−1Φ
� �† = Ω−1Φ

� �−1
: ðA:6Þ
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Then,

Ω−1Φ
� �† Ω−1Φ

� �
= Ω−1Φ
� �

Ω−1Φ
� �† = I: ðA:7Þ

Finally, we can obtain that Ω−1Φ is a unitary matrix.

Data Availability

The data used to support the findings of this study are avail-
able from the corresponding author upon request.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

This work was financially supported in part by the National
Science Foundation of China with Grant number 62001333,
Nature Science Foundation of Southwest University of
Science and Technology with Grant number 18zx7142, and
the Scientific Research Fund of Beijing Information Science
and Technology University with Grant number 2025018.

References

[1] D. Kong, D. Qu, and T. Jiang, “Time domain channel estima-
tion for OQAM-OFDM systems: algorithms and performance
bounds,” IEEE Transactions on Signal Processing, vol. 68, no. 2,
pp. 322–330, 2014.

[2] P. Siohan, C. Siclet, and N. Lacaille, “Analysis and design of
OFDM/OQAM systems based on filterbank theory,” IEEE
Transactions on Signal Processing, vol. 50, no. 5, pp. 1170–
1183, 2002.

[3] R. Nissel and M. Rupp, “Pruned DFT-spread FBMC: low
PAPR, low latency, high spectral efficiency,” IEEE Transac-
tions on Communications, vol. 66, no. 10, pp. 4811–4825, 2018.

[4] R. Zakaria, D. Silva, and D. le Ruyet, “Lattice-reduction-aided
equalization for MIMO-FBMC systems,” IEEE Communica-
tions Letters, vol. 8, no. 1, pp. 101–104, 2019.

[5] H. Wang, “Low-Complexity MIMO-FBMC sparse channel
parameter estimation for industrial big data communications,”
IEEE Transactions on Industrial Informatics, vol. 17, no. 5,
pp. 3422–3430, 2021.

[6] D. Kong, J. Li, K. Luo, and T. Jiang, “Reducing pilot overhead:
channel estimation with symbol repetition in MIMO-FBMC
systems,” IEEE Transactions on Communications, vol. 68,
no. 12, pp. 7634–7646, 2020.

[7] S. Hu, Z. Liu, Y. L. Guan, C. Jin, Y. Huang, and J. M. Wu,
“Training sequence design for efficient channel estimation in
MIMO-FBMC systems,” IEEE Access, vol. 5, pp. 4747–4758,
2017.

[8] J. P. Javaudin, D. Lacroix, and A. Rouxel, “Pilot-aided channel
estimation for OFDM/OQAM,” in The 57th IEEE Semiannual
Vehicular Technology Conference, 2003. VTC 2003-Spring,
pp. 1581–1585, Jeju, Korea (South), April 2003.

[9] T. H. Stitz, T. Ihalainen, A. Viholainen, andM. Renfors, “Pilot-
based synchronization and equalization in filter bank multi-
carrier communications,” EURASIP Journal on Advances in
Signal Processing, vol. 2010, no. 1, 2010.

[10] C. Lele, R. Legouable, and P. Siohan, “Channel estimation with
scattered pilots in OFDM/OQAM,” in 2008 IEEE 9th Work-
shop on Signal Processing Advances in Wireless Communica-
tions, pp. 286–290, Recife, Brazil, July 2008.

[11] W. Cui, D. Qu, T. Jiang, and B. Farhang-Boroujeny, “Coded
auxiliary pilots for channel estimation in FBMC-OQAM sys-
tems,” IEEE Transactions on Vehicular Technology, vol. 65,
no. 5, pp. 2936–2946, 2016.

[12] C. Lélé, J. P. Javaudin, R. Legouable, A. Skrzypczak, and
P. Siohan, “Channel estimation methods for preamble-based
OFDM/OQAM modulations,” European Transactions on
Telecommunications, vol. 19, no. 7, pp. 741–750, 2008.

[13] J. Du and S. Signell, “Novel preamble-based channel estima-
tion for OFDM/OQAM systems,” in 2009 IEEE International
Conference on Communications, Dresden, Germany, June
2009.

[14] C. Lélé, P. Siohan, and R. Legouable, “2 dB better than CP-
OFDM with OFDM/OQAM for preamble-based channel esti-
mation,” in 2008 IEEE International Conference on Communi-
cations, pp. 1302–1306, Beijing, China, May 2008.

[15] P. Singh, H. B. Mishra, A. K. Jagannatham, and K. Vasudevan,
“Semi-blind, training, and data-aided channel estimation
schemes for MIMO-FBMC-OQAM systems,” IEEE Transac-
tions on Signal Processing, vol. 67, no. 18, pp. 4668–4682, 2019.

[16] C. Lélé, P. Siohan, R. Legouable, and J.-P. Javaudin, “Preamble-
based channel estimation techniques for OFDM/OQAM over
the powerline,” in 2007 IEEE International Symposium on
Power Line Communications and Its Applications, pp. 59–64,
Pisa, Italy, March 2007.

[17] D. Kong, X. Zheng, Y. Zhang, and T. Jiang, “Frame repetition:
a solution to imaginary interference cancellation in FBMC/O-
QAM systems,” IEEE Transactions on Signal Processing,
vol. 68, pp. 1259–1273, 2020.

[18] P. Liu, S. Jin, T. Jiang, Q. Zhang, and M. Matthaiou, “Pilot
power allocation through user grouping in multi-cell massive
MIMO systems,” IEEE Transactions on Communications,
vol. 65, no. 4, pp. 1561–1574, 2017.

[19] D. Kong, X.-G. Xia, P. Liu, and Q. Zhu, “MMSE channel esti-
mation for two-port demodulation reference signals in new
radio,” Science China Information Sciences, vol. 64, no. 6, 2021.

[20] Y. Zhang, D. Wang, J. Wang, and X. You, “Channel estimation
for massive MIMO-OFDM systems by tracking the joint
angle-delay subspace,” IEEE Access, vol. 4, pp. 10166–10179,
2016.

[21] D. Kong, Y. Xu, G. Song, J. Li, and T. Jiang, “A CP reduction
scheme based on symbol repetition for narrow-band IoT sys-
tems,” IEEE Internet of Things Journal, 2021.

9Wireless Communications and Mobile Computing



Research Article
High-Resolution ISAR Imaging Based on Improved Sparse Signal
Recovery Algorithm

Junjie Feng ,1 Yinan Sun,2 and XiuXia Ji 3

1School of Physics and Electrical Engineering, Liupanshui Normal University, Liupanshui, Guizhou, China
2Wuhan University, School Electronic Information, Wuhan 430072, China
3Nanjing Vocational College of Information Technology, Nanjing 210023, China

Correspondence should be addressed to Junjie Feng; fhzy0929@163.com

Received 31 January 2021; Revised 1 March 2021; Accepted 20 March 2021; Published 2 April 2021

Academic Editor: Liangtian Wan

Copyright © 2021 Junjie Feng et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In order to solve the problem of high-resolution ISAR imaging under the condition of finite pulses, an improved smoothed L0 norm
(SL0) sparse signal reconstruction ISAR imaging algorithm is proposed. Firstly, the ISAR imaging is transformed into the
optimization problem of minimum L0 norm. Secondly, a single-loop structure is used instead of two loop layers in SL0
algorithm which increases the searching density of variable parameter to ensure the recovery accuracy. Finally, the compared
step is added to ensure the optimization solution along the steepest descent gradient direction. The experimental results show
that the proposed algorithm has better imaging effect.

1. Introduction

Inverse synthetic-aperture radar (ISAR) has the characteris-
tics of all-weather, all-time, long-range, and high-resolution
which is widely used in military and civil fields, such as to
detect, locate, track, and estimate the parameters of the target
[1–4]. The range and azimuth resolution of ISAR imaging are
related to radar system bandwidth and imaging accumula-
tion angle, respectively. The range resolution is usually
improved by increasing the bandwidth of the transmitted
signal, and the azimuth resolution is improved by increasing
the observation angle range. In a long observation time, the
scattering characteristics of noncooperative moving targets
change greatly, and there may be a large Doppler time-vary-
ing, which is not conducive to imaging and makes it difficult
to improve the azimuth resolution. So implementing imaging
in a short time duration is meaningful.

In recent years, compressive sensing (CS) has become
very popular in signal processing [5–8]. It is a new signal pro-
cessing theory proposed by Donoho which is developed from
the theory of signal sparse decomposition and approxima-
tion. The theory shows that as long as the signal is compress-

ible or sparse in a certain transform domain, the original
signal can be reconstructed with a small number of sampled
signals. It is a technique proposed to improve signal separa-
tion ability using a prior sparse property information of the
signal.

In radar imaging, the targets are generally composed of
strong scattering points, which are sparsely distributed in
the imaging region. So radar signal processing based on
compressive sensing theory has been widely studied [9–
12], such as SAR imaging [13], ISAR imaging [14, 15],
and MIMO radar imaging [16]. The CS theory is not sensi-
tive to data loss, which can effectively improve the imaging
problem of radar imaging system in the case of data loss
and improve the signal processing ability. The Bayesian
sparse signal reconstruction ISAR imaging algorithm based
on hierarchical prior model correlation prior is proposed in
[17], which can obtain better focusing effect in noisy envi-
ronment. However, the algorithm is computational com-
plexity. By using the sparsity of ISAR target in azimuth
direction, the target image can be obtained by solving the
L1 norm minimization in [18]. Combination of local spar-
sity constraint and nonlocal total variation is discussed in
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[19]. A two-dimensional structure mode-coupled Bayesian
(PC-SBL) ISAR imaging algorithm is proposed in [20],
which can realize high-resolution ISAR imaging, but the
algorithm has a large amount of computation, which is
not conducive to real-time imaging.

Mohimani et al. proposed the smoothed L0 norm
sparse signal recovery algorithm by using the continuous
Gaussian function sequence with parameters as smoothing
function to approximate the minimum L0 norm [21]. The
steepest descent method and gradient projection principle
by a double-layer loop is used to obtain the optimal solu-
tion. The outer layer establishes a sequence from large to
small, and the inner layer uses the steepest descent
method to obtain the approximate solution. The recon-
struction speed of the algorithm is 2-3 times faster than
basis pursuit algorithm when it has the same accuracy.

In order to achieve high-resolution ISAR imaging under
the condition of finite pulses, an ISAR imaging algorithm
with single-loop structure compared to SL0 sparse signal
recovery algorithm is proposed. The imaging problem is
transformed to a minimum L0 norm optimization problem
to achieve high-resolution ISAR imaging. The steepest
descent method should reduce the cost function at every
step, but it is not really along the descending direction in
the actual solving process. Therefore, in the above algo-
rithm, the step of checking whether to descend is added
in each iteration. If not, the midpoint of the previous point
and the current point is taken for correction to ensure that
the search direction is along the steepest descent direction.
By using the improved algorithm, ISAR imaging is more
intensive with limited pulse numbers. Real data ISAR
images obtained using the proposed method is competitive
to the several popular methods.

The paper is organized as follows. “ISAR Imaging Model”
introduces the ISAR sparse imaging model. In “ISAR Imag-
ing Algorithm,” the proposed reconstruction algorithm is
introduced in detail. Simulation and real data ISAR imaging
results are presented in “Experimental Results.” Finally,
“Conclusion” provides the conclusion.

2. ISAR Imaging Model

Assuming that the target is located in far field, the radar
transmits linear frequency modulization signal as

y tð Þ = exp j2π f0t +
1
2 μ0t

2
� �� �

t ∈ −
T
2 ,

T
2

� �
, ð1Þ

where f0 is the center frequency, μ0 is the slope, and T is the
pulse period. Then, the complex echo signal of scattering
point Pðx, yÞ is

y tð Þ = σe−j2πf0τ tð Þ+jπμ0 t−τ tð Þð Þ2 , ð2Þ

where τðtÞ is time delay and σ is signal amplitude. After
range compression, the signal can be expressed as

y tð Þ = σ exp −j2πf0τ tð Þð Þ sin c μ0T t − τ tð Þð Þð Þ: ð3Þ

After the envelope compensation, the target rotates
around the coordinate axis at a constant angular velocity
ω. Assuming the initial position of the scattering point is
ðx0, y0Þ, the time delay is mainly determined by x0 sin ðω
tÞ + y0 cos ðωtÞ. After the Taylor expansion, x0 sin ðωtÞ +
y0 cos ðωtÞ is expressed as

x0 sin ωtð Þ + y0 cos ωtð Þ ≈ y0 + x0ωt: ð4Þ

Then, τðtÞ ≈ τ0 + ð2ðy0 + x0ωtÞ/cÞ, where c is light
speed. The echo signal of range unite τ0 + ð2y0/cÞ is

y tð Þ = σe−
− j4πx0ωt

λ , ð5Þ

where λ = c/f0 is the wavelength. After discretization, the
above formula can be written as

y nð Þ = σα nð Þ, ð6Þ

where αðnÞ = ej2πf dn, f d = −2x0ωd/λ, and dt is the sampling
interval. The received signal is written as a matrix; then

y =Φx + n, ð7Þ

where x is the vector composed of scattering coefficient σ
and Φ is sparse matrix.

To solve x, the following sparse optimization strategy is
used:

min
x

xk k0
s:t: y −Φxk k2 < τ,

ð8Þ

where τ is a small constant which is related to the noise var-
iance. The ISAR imaging problem is transformed into the
reconstruction problem of formula (8).

3. ISAR Imaging Algorithm

To solve x, the smoothed L0 norm algorithm is proposed
in [21]. The Gauss sequence FσðxÞ =∑i exp ð−x2i /σÞ is
used to approach the L0 norm. The minimum L0 norm
can be obtained by gradually reducing the value of control
parameter σ. A two-layer method was proposed to solve
the sparse signal recovery problem in the algorithm. In
order to further improve the reconstruction effect of
sparse signal, the one-order negative exponential function
sequence GσðxÞ =∑i exp ð−jxij/σÞ is proposed as smoothed
function to approach L0 norm in the paper. When σ
⟶∞, GσðxÞ approximates L1 norm. When σ⟶ 0, Gσ
ðxÞ approximates L0 norm. Therefore, the sparse solution
can be searched with high probability at the beginning of
iteration.

In the double-loop structure of SL0 algorithm, the solu-
tion of σ = σj is only as the initial value of σ = σj+1, so it is
not necessary to solve the exact solution of σ = σj in the
inner loop. Therefore, the sparse signal reconstruction
algorithm in this paper cancels the inner loop step and
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adopts the single loop instead of the double-loop structure
in SL0 algorithm [52], the interval between control param-
eters σj and σj+1 is reduced, only one gradient descent
method is used to solve the minimum value of the cost
function, and then the solution of x is given as the initial
value of σ = σj+1. Due to the solution obtained by the stee-
pest descent method is not necessarily in the feasible solu-
tion region, it is necessary to project the solution obtained
by each iteration into the feasible solution region using the
projection method. The proposed algorithm is called the
improved single-loop smoothed L0 norm (ISSL0) algo-
rithm. The ISSL0 algorithm can be expressed as follows:

Initialization is as follows:

(1) Let x̂0 be equal to the minimum L2 norm solution of

y =Φx, obtained by x̂0 =ΦHðΦΦHÞ−1y
(2) Choose a suitable decreasing sequence for fσg, ½σ1,

σ2,⋯,σJ �
for j = 1,⋯, L

(i) Let σ = σj and β = L − l + 1/L

(ii) Minimize the function GσðxÞ on the feasible set x
= fx : jΦx − yj < εg

(iii) Let δ be the gradient of GσðxÞ
(iv) For x, let x1 ⟵ x − μσδ

(v) If jΦx1 − yj > ε, project x back into the feasible set:

x1 ⟵ x1 +ΦH ΦΦH� �−1
y −Φx1ð Þ ð9Þ

(vi) Compare step

While Gσðx1Þ >GσðxÞ

x2 = x + x1ð Þ/2 ð10Þ

update Gσðx2Þ
If Gσðx2Þ < GσðxÞ

x = x2 ð11Þ

(vii) x̂ j = x.

(3) Final solution is x = x̂ J .
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Figure 1: Computation costs of different algorithms.
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Figure 2: Correct position estimation of different algorithms.
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Figure 3: MSE of different algorithms.
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The steepest descent method should reduce the cost func-
tion at every step, but it is not the descending direction in the
actual solution process. Therefore, in the above algorithm,
the step of checking whether to descend is added in the pro-
cess of each iteration. If not, the midpoint of the previous
point and the current point are taken for correction to ensure
that the search direction is along the steepest descent direc-
tion. By using the single loop and compared step, the algo-
rithm ensures the reconstruction accuracy and the
computation amount cannot increase. The choice of step size
factor in the steepest descent method is important. For a large
step size, it may not converge, but for a very small step size,
the computation efficiency is low. The step size should
decrease when the searching point approaches the minimum
solution. For search step factor, because the search point is
far away from the minimum value point at the initial value,
a larger step size is selected. When the search point is gradu-
ally close to the minimum value, the search step size should
be gradually reduced. Regulatory factors are used to adjust
the step; let μ = βðmax ðjxjÞ/LÞ.

4. Experimental Results

4.1. Simulation 1: One-Dimensional Sparse Signal Recovery.
In order to verify the reconstruction performance of the
algorithm, the paper tests the algorithm through the
MATLAB processing platform. The signal model with
noise is y =Φx + n, where Φ is constructed by selecting

its components from Nð0, 1Þ and x is the sparse signal,
the nonzero elements of sparse signal consist of random
signal ±1. For the SL0 method, the numbers of outer loop
and inner loop are 20 and 10, respectively. For the ISSL0
algorithm, the loop number is 200. For the ISSL0 algo-
rithm, the loop number is 200. The experiment was imple-
mented 100 times. The MSE is defined as ð1/NÞkx − x∧k2.
Changing the sparsity ratio of the signal, the curve of
reconstruction time, correction rate, and MSE for different
algorithms of sparse signal are shown in Figures 1–3. As
can be seen from Figure 1, the ISSL0 algorithm takes more
time than the OMP [22] algorithm and SL0 algorithm and
shorter than the Laplace [23] algorithm. From Figures 2
and 3, we can see that the performances of ISSL0 algo-
rithm are competitive with other algorithms.

4.2. Simulation 2: ISAR Imaging Using Real Data.A set of real
data of the Yak-42 plane is used to demonstrate the perfor-
mance of the proposed ISAR imaging algorithm. The related
parameter descriptions of the radar data are listed as follows:
the carrier frequency is 10GHz with signal bandwidth of
400MHz, and the range resolution is 0.375m. The center
carrier frequency is 5.52GHz, and the pulse repetition fre-
quency is 50Hz. 256 echo pulses are selected as experimental
data. 16, 32, and 64 pulses are implemented. For the SL0
method, the numbers of outer loop and inner loop are 20
and 10, respectively. For the ISSL0 algorithm, the loop num-
ber is 200. The simulation results are compared visually and
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Figure 4: ISAR images using 16 pulses. (a) OMP. (b) Laplace. (c) SL0. (d) ISSL0.
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Figure 5: ISAR images using 32 pulses. (a) OMP. (b) Laplace. (c) SL0. (d) ISSL0.

50 100 150 200
50

100

150

200

(a)

50 100 150 200
50

100

150

Ra
ng

e (
m

)

200

Doppler (Hz)

(b)

50 100 150 200
50

100

150

200

(c)

50 100 150 200
50

100

150

Ra
ng

e (
m

)

200

Doppler (Hz)

(d)

Figure 6: ISAR images using 64 pulses. (a) OMP. (b) Laplace. (c) SL0. (d) ISSL0.
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quantitatively to those images obtained by OMP, Laplace,
SL0, and ISSL0 algorithms in Figures 4–6. It is noticeable that
more amounts of pulses generally lead to better imagery
results. When the number of pulses is 64, the four sparse
signal reconstruction algorithms are better. For the SL0 algo-
rithm, when 16 and 32 pulses are used, some information of
scattered points is missing. When the number of pulses is
small, a large number of false scattering points appear in
the OMP and Laplace algorithms. Regardless of the number
of pulses, the ISSL0 algorithm keeps the aircraft in a good
shape without false scattered points, and the geometric repre-
sentation of the target is clear.

5. Conclusion

One improved sparse signal recovery ISAR imaging algo-
rithm is proposed to ISAR imaging. A single-loop structure
is proposed to solve the optimal solution. The revised step
is added to ensure the searching direction is decrease com-
pared to the traditional smoothed L0 norm recovery algo-
rithm. The experiment results verify that the proposed
algorithm can improve ISAR imaging quality.
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The compressive array method, where a compression matrix is designed to reduce the dimension of the received signal vector, is an
effective solution to obtain high estimation performance with low system complexity. While sparse arrays are often used to obtain
higher degrees of freedom (DOFs), in this paper, an orthogonal dipole sparse array structure exploiting compressive measurements
is proposed to estimate the direction of arrival (DOA) and polarization signal parameters jointly. Based on the proposed structure,
we also propose an estimation algorithm using the compressed sensing (CS) method, where the DOAs are accurately estimated by
the CS algorithm and the polarization parameters are obtained via the least-square method exploiting the previously estimated
DOAs. Furthermore, the performance of the estimation of DOA and polarization parameters is explicitly discussed through the
Cramér-Rao bound (CRB). The CRB expression for elevation angle and auxiliary polarization angle is derived to reveal the limit
of estimation performance mathematically. The difference between the results given in this paper and the CRB results of other
polarized reception structures is mainly due to the use of the compression matrix. Simulation results verify that, compared with
the uncompressed structure, the proposed structure can achieve higher estimated performance with a given number of channels.

1. Introduction

In a traditional scalar sensor array, the time delay of the
phased array is used to estimate the direction of arrival
(DOA). In the practical application environment, however,
the signal to be detected usually has certain polarization char-
acteristics. The polarization sensitive array [1–3] can be used
to obtain and utilize the spatial and polarization domain
information of the signal source comprehensively, which lays
a physical foundation for improving the overall performance
of the array signal processing. Therefore, the concept of
polarization is extended to wireless communication [4],
radar systems [5], and many other fields of space science
[6]. At present, the research on polarization parameter esti-
mation mainly focuses on how to improve the estimation
performance, such as estimation accuracy and degree of free-
dom (DOF). As the polarized state of a signal varies with
polarization diversity, only if the polarization direction of a
single antenna matches with the incoming wave, all energy
of the incoming wave can be received; otherwise, the loss of

energy will occur [7]. Since a dual-polarized antenna [8, 9]
can receive the signal energy along the horizontal and vertical
branches, it can increase the receiving efficiency of signals.

To obtain a higher number of DOFs under the pre-
mise of a given number of sensors, sparse array structures
[10–12] have been proposed under the coarray framework,
which generate equivalent virtual array elements via extract-
ing the correlation information of received signals. On the
one hand, the nested array [11] can generate a difference
coarray with all continuous lags, which is very useful for spa-
tial smoothing-based estimation algorithms. However, since
one subarray has the sensors placed with a half wavelength,
the mutual coupling effects will compromise the estimation
performance. In [13], a sparse nested array has been pro-
posed, where the interelement spacing of the dense subarray
is extended to suppress mutual coupling effects. The diversely
polarized dipoles are used to further improve estimation per-
formance. Moreover, the spatially spread orthogonal dipoles
are exploited in the sparse nested array in [14], where a pas-
sive direction finding structure with high accuracy has been
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proposed. Then, [15] further takes spatially spread square
acoustic vector sensors into account, thus constructing a
high-accuracy DOA estimation structure for an underdeter-
mined case. On the other hand, the coprime array [12] can
suppress the mutual coupling effect by using two sparse uni-
form linear arrays (ULA). In general, for a coprime array
composed of anM-element subarray and an N-element sub-
array, up to 2M +N − 2 uncorrelated sources can be distin-
guished. Therefore, the coprime array and its related
improved structures [16] are also introduced into other radar
structures [17]. In addition, [18] proposed an adaptive beam-
forming approach based on the coprime array, where the
output performance is improved.

The DOA parameters, including the azimuth and eleva-
tion angle, are of great importance in many applications,
especially the unmanned driving technology [19] which is
one of the current hot research issues. Thus, different cata-
logs of DOA estimation methods have been proposed, for
instance, the subspace methods [7], deep learning methods
[20], and sparse reconstruction methods [21]. The compres-
sive sensing (CS) theory is the kernel of sparse reconstruction
methods. However, CS is first used in time domain to break
through the limitation of the Nyquist Sampling Theorem
[22], since a high sampling rate is usually required for wide-
band signals, thus leading to a high cost of analog-to-digital
converters (ADCs). To be specific, if the number of nonzero
elements in a vector is much less than that of the zero ele-
ments, then this vector is regarded as a sparse vector and
can be recovered from a small sample set. Thus, the sam-
pling rate is dramatically reduced. Then, as the polarization
sensitive array develops, several DOA and polarization joint
estimation algorithms have been proposed [23–25]. More-
over, in addition to the estimation algorithms, the CS has
also been used in system design. The DOA estimation sys-
tem exploiting compressive measurements can dramatically
reduce the complexity and the computational burden. For
example, the compressive measurement method has found
many applications in the coprime arrays [26], one-bit quan-
tization [27], modulated wideband converter [28], and
MIMO radar [29].

Motivated by the above facts, in this paper, we mainly
consider the orthogonal dipole antennas and propose a com-
pressive measurement-based orthogonal dipole sparse array
structure for the joint estimation of signal parameters. It is
worth noting that there is no demand on the receive array
structure, meaning that all kinds of dipole sparse array can
be used. Based on the proposed structure, we first estimate
the DOAs using a CS-based approach, and then the esti-
mated DOAs are utilized to analyze the polarization param-
eters by a least-square estimation approach. In [24], the CS-
based joint estimation of DOA and polarization parameters
is proposed using a sparse array consisting of dual-
polarized antenna elements. However, we would like to
emphasize the contribution of this paper, as well as the differ-
ence with [24]:

(a) In this paper, a two-dimensional polarization signal
model is established, in which the azimuth angle
and elevation angle are both taken into account,

while [24] only considers the one-dimensional case,
that is, only the azimuth angle is included in the sig-
nal model. In addition, it should be noted that a steer-
ing vector matrix ψðθk, ϕk, γk, ηkÞ is introduced into
the signal model to describe the coherent structure
in the polarizational and spatial domains

(b) The compression measurement method is applied to
the proposed structure to compress the signal dimen-
sion by introducing a compression matrix Φ, there-
fore effectively reducing the number of channels
required for subsequent digitization operations

(c) Considering that the Cramér-Rao bound (CRB) indi-
cates the lower bound of the estimation error for an
unbiased system, we first derive the CRB expression
for the elevation angle and auxiliary polarization
angle of the proposed structure. Then, theoretical
performance analysis and simulation verification
are made via the CRB expression in this paper

Note that we use the CS theory twice in this paper. One is
in the system design part, in order to reduce the dimension of
received signal vector. The other is in the DOA estimation
algorithm, where the group sparsity is used to obtain an
improved number of DOF. Using the proposed structure,
the number of channels is effectively controlled, thus reduc-
ing the hardware cost. In addition, although the compression
leads to a degradation on the estimation performance, the
proposed structure still outperforms the conventional dipole
sparse array with the same number of channels, which can be
clearly observed from both the theoretical derived CRB
expression and the experimentally obtained root mean
square error (RMSE). Therefore, the proposed structure also
provides a flexible alternative option for low complexity
polarization sensitive array with a relatively high estimation
performance. Numerical simulations are conducted to exam-
ine the performance of the proposed structure.

The following of this paper is organized as follows: In
Section 2, we build the system model of the proposed struc-
ture. Then, a CS-based algorithm is proposed in Section 3
to jointly estimate the DOAs and polarization parameters.
In Section 4, the CRB expression for the estimation of DOAs
and polarization parameters of the proposed structure is
derived. Numerical simulation results are shown in Section
5, where the corresponding analysis is given simultaneously.
Finally, Section 6 concludes the whole paper.

2. System Model of the Proposed Structure

First, we would like to briefly review the receiving model of
the polarization signals. Polarization sensitive receive array
is composed of L orthogonal dipoles, each of which is aligned
with the y-axis in the Cartesian coordinate system. For the
sake of convenience, the set S = fdy1, dy2,⋯, dyLg is used to
represent the positions of the sensors arranged in ascending
order, and the antenna at the origin is assumed to be the ref-
erence, i.e., dy1 = 0. It is noted that the sensors can be sparsely
placed. For instance, the sensors can be arranged as an
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extended coprime array according to set S = fðBad, 0 ≤ a ≤
2A − 1Þ ∪ ðAbd, 0 ≤ b ≤ B − 1Þg, where A and B are a pair of
coprime integers. As shown in Figure 1, the signal from each
dipole is processed separately; therefore, the array is divided
into two subarrays according to the polarization receiving
direction of the dipole:

(a) All dipoles pointing in the direction of the x-axis con-
stitute Subarray 1

(b) All dipoles pointing in the direction of the y-axis con-
stitute Subarray 2

Assume K narrow-band transverse electromagnetic
(TEM) waves impinge upon the polarization sensitive array
from the azimuth angle θk and elevation angle ϕk, where θk
∈ ½0, π� and ϕk ∈ ½−2/π, 2/π�. It is assumed that each signal
has an arbitrary elliptical electromagnetic polarization. The
polarization of a TEM wave is often specified by two real
parameters, namely, the auxiliary polarization angle γk
(γk ∈ ½0, π/2�) and the polarization phase difference ηk
(ηk ∈ ½−π, π�). The signal vector received by the polarization
sensitive array, which has the dimension of Lo = 2L, is
expressed as

x tð Þ = 〠
K

k=1
ψ θk, ϕk, γk, ηkð Þ ⊗ u θk, ϕkð Þ½ �sk tð Þ + n tð Þ

=As tð Þ + n tð Þ,
ð1Þ

where we use ⊗ to denote the Kronecker product. Denote
uðθk, ϕkÞ as the L-dimensional spatial steering vector of the
kth signal, expressed as

u θk, ϕkð Þ = e
j2πdy1 sin θk sin ϕk

λ ,⋯, e
j2πdyL sin θk sin ϕk

λ

� �T
, ð2Þ

in which λ is the signal wavelength. For simplicity of notation,
we denote uðθk, ϕkÞ as uk. A vector matrix ψðθk, ϕk, γk, ηkÞ
which describes the polarization information of incoming sig-
nals is defined as follows:

ψ θk, ϕk, γk, ηkð Þ = ψk = Ξθk ,ϕkhγk ,ηk , ð3Þ

where Ξ and h are defined as

Ξθk ,ϕk =
−sin θk cos ϕk cos θk
cos θk cos ϕk sin θk

2664
3775,

hγk ,ηk =
cos γk

sin γke
jηk

2664
3775,

ð4Þ

respectively. Thus, A = ½ψ1 ⊗ u1, ψ2 ⊗ u2,⋯, ψK ⊗ uK � is the
manifold matrix of polarization received signal, and sðtÞ =
½s1ðtÞ, s2ðtÞ,⋯, sKðtÞ�T is the complex envelope. Noise vector
nðtÞ is assumed to be the zero mean complex Gaussian pro-
cesses, where each of its entries is statistically independent.

Then, let x1ðtÞ be the signal received on Subarray 1 and
x2ðtÞ the signal received on Subarray 2. Then, replace ψkð1Þ
and ψkð2Þ with ψxk and ψyk, respectively. The received signal
vector of subarrays are expressed as

x1 tð Þ = 〠
K

k=1
ψxk ⊗ uk½ �sk tð Þ + n1 tð Þ =A1s tð Þ + n1 tð Þ,

x2 tð Þ = 〠
K

k=1
ψyk ⊗ uk
h i

sk tð Þ + n2 tð Þ =A2s tð Þ + n2 tð Þ:

ð5Þ

The proposed orthogonal dipole sparse array structure
exploiting compressive measurements method is shown in
Figure 2. The core principle of the compressive measurement
method is to insert a combining network consisting of phase
shifters and accumulators at the antenna outputs before sub-
sequent digitization operations, which is equivalent to intro-
ducing a compression matrix Φ ∈ℂM×L (M < L) for linear
operations mathematically. In this way, the received signal
vector in the L-dimension is compressed to M-dimension
and then output for subsequent signal processing [30].

It should be noted that the entries in the compression
matrix are usually randomly selected from independent iden-
tically distributed parameters, and it is assumed that no addi-
tional noise is introduced during the compression process. In
order to avoid information loss caused by data compression,
the compression matrix can be optimized by various
methods [27, 31, 32]. In this paper, Φ is selected to satisfy
row-orthonormal, namely, ΦΦH = IM .

Then, the received signal vector of each subarray after
compression is expressed as

y1 tð Þ =Φ 〠
K

k=1
ukψxksk tð Þ + n1 tð Þ

" #
= �A1s tð Þ + �n1 tð Þ,

y2 tð Þ =Φ 〠
K

k=1
ukψyksk tð Þ + n2 tð Þ

" #
= �A2s tð Þ + �n2 tð Þ:

ð6Þ

x

y

z

O

L1 2𝜃

𝜙

Figure 1: Schematic diagram of electromagnetic wave propagation.
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Stacking the received vectors into a column vector yields

y tð Þ = ~As tð Þ + ~n tð Þ, ð7Þ

where yðtÞ = ½yT1 ðtÞ, yT2 ðtÞ�T and ~A = ½�AT
1 , �A

T
2 �

T
is the steering

vector after compression with the kth term being

~ak = ψk ⊗ ~uk = ψxk, ψyk

h iT
⊗ Φuk½ �: ð8Þ

In addition, ~n = ½�nT1 ðtÞ, �nT2 ðtÞ�T is the noise vector after
compression.

Therefore, for the proposed structure, the length of the
compressive received signal vector is 2M, while the length
of conventional sparse dipole array with the same configura-
tion is 2L. Assume that the number of snapshots is T . When
the signal snapshots are used to compute the covariance
matrix, the computational complexity of the proposed struc-
ture is Oð4TM2Þ, while that of the conventional sparse dipole
array is Oð4TL2Þ.

3. Signal Parameter Estimation Approach

Since two-dimensional DOA estimation based on linear
array cannot be realized, it is generally assumed that the
signals and the linear array are in the yz plane, that is,
the azimuth angle θk = π/2. To avoid three-dimensional
parameters, we search for ϕk, γk, and ηk; [24] proposed a dif-
ferent reformulation, where a CS-based approach is first used
to estimate the DOAs, and then the polarization parameters
are estimated utilizing the estimated DOAs and a least-
square estimation approach. In this paper, the above method
is improved and applied to the proposed structure.

We start with the array output covariance matrix Ryy =
E½yðtÞyHðtÞ�. The self-lag covariance matrix for the data vec-
tor yðiÞðtÞ and the cross-lag covariance matrix between yðiÞðtÞ
and yðjÞðtÞ can be obtained as

R ið Þ
yy =Φ Uψ ið ÞRssψ ið ÞHUH + pnIL

� �
ΦH ,

R i,jð Þ
yy =ΦUψ ið ÞRssψ jð ÞHUHΦH , ð9Þ

respectively (1 ≤ i ≠ j ≤ 2), with Rss representing the source
covariance matrix and pn indicating the noise power. In addi-
tion, U = ½u1, u2,⋯, uK � is a spatial phase matrix with L × K
dimension.

We denote the vectorized form ofRyy as ryy , which can be
regarded as a received data vector at a virtual array with an
extended coarray aperture. On the basis of the matrix algo-
rithm, the vectorization covariance matrix of different subar-
rays are calculated as

r ið Þ
yy =Φ0 U∗ ⊙Uð Þvec ψ ið ÞRssψ ið ÞH� �

+ pn~iL2
h i

,

r i,jð Þ
yy =Φ0 U∗ ⊙Uð Þvec ψ ið ÞRssψ jð ÞH� �

, ð10Þ

in which we denote ðΦ∗ ⊗ΦÞ ∈ℂM2×L2 as Φ0 for notational
simplicity. A matrix U∗ ⊙U = ½u∗1 ⊗ u1,⋯, u∗K ⊗ uK � that
leads to a series of virtual array elements is defined, and the
Khatri-Rao product is denoted by ⊙ . Define a set of integers
D = fdyα − dyβjdyα, dyβ ∈ Sg to represent the locations of vir-
tual sensors and arrange them in ascending order. Then, the
corresponding array manifold can be represented as UD =
½uD1, uD2,⋯, uDK �.

The vectorized covariance matrices are stacked and sim-
plified as

r 1ð Þ
yy

r 1,2ð Þ
yy

r 2,1ð Þ
yy

r 2ð Þ
yy

26666666664

37777777775
=

Φ0 U∗ ⊙Uð Þp 1ð Þ

Φ0 U∗ ⊙Uð Þp 1,2ð Þ

Φ0 U∗ ⊙Uð Þp 2,1ð Þ

Φ0 U∗ ⊙Uð Þp 2ð Þ

2666666664

3777777775
+

pnΦ0~iL2
0
0

pnΦ0~iL2

2666666664

3777777775
, ð11Þ

where~iL2 = vecðILÞ and the k-th item containing signal power
is represented as

p 1ð Þ
k = pk cos γkð Þ2, ð12Þ

p 2ð Þ
k = pk cos ϕk sin γkð Þ2, ð13Þ

Signal
parameter
estimation

Front-end chain M

... ...

...
...

...

Front-end chain 2

Front-end chain 1

Combining
network

𝛷

Pointing in
the

x-axis
Subarray 1

s1 (t) x1
(1) (t) y(1) (t)

y(2) (t)

y(M) (t)

x1
(L) (t)

x2
(1) (t)

x2
(L) (t)

s2 (t)

s
K
 (t)

K
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L-element orthogonal
dipole coprime array

Figure 2: System model of the proposed compressive measurement-based orthogonal dipole sparse array structure.
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p 1,2ð Þ
k = −pk cos ϕk sin γk cos γke−jηk , ð14Þ

p 2,1ð Þ
k = pk cos ϕk sin γk cos γkejηk : ð15Þ

Discretizing the spatial domain ΩP,Q (P,Q≫ K) into a
grid, let dgridðθp, ϕqÞ (1 ≤ p ≤ P, 1 ≤ q ≤Q) represent the steer-
ing vector. Thus, the discretized array manifold correspond-
ing to this grid can be obtained as

Ggrid,i =Φ0 d∗grid θ1, ϕ1ð Þ ⊗ dgrid θ1, ϕ1ð Þ,⋯, d∗grid θP, ϕQ
� �

⊗ dgrid θP, ϕQ
� �i

:
h

ð16Þ

It can be known that there is a γk (k ∈ ½1, K�) such that
sin γk ⟶ 0 or cos γk ⟶ 0. In this case, pð1,2Þ and pð2,1Þ
approach zero simultaneously due to the item sin γk cos γk.
Thus, using pð1,2Þ and pð2,1Þ has no improvement on the esti-
mation performance. Meanwhile, the computational com-
plexity is increased. However, it is impossible for ðcos γkÞ2
and ðsin γkÞ2 to be equal to zero at the same time. Thus, both
pð1Þ and pð2Þ can be utilized for DOA estimation, and we have

r = ~Ggridp + pn~I = ~G~p, ð17Þ

where r = ½ðrð1Þyy Þ
T , ðrð2Þyy Þ

T �T , p = ½ðpð1ÞÞT , ðpð2ÞÞT �T , ~I = diag
fΦ0vecðILÞ,Φ0vecðILÞg, and ~Ggrid = diag fGgrid,1,Ggrid,2g.
The nonzero entries of pð1Þ and pð2Þ share the same support
corresponding to the same grid. Thus, to utilize the group
sparsity, hereby we define a sparse vector ξð~pÞ as the ℓ2
-norm of each row in the matrix ½pð1Þ, pð2Þ�. The group
LASSO algorithm [21] is utilized to solve the group sparsity
problem, and the minimization problem is as follows:

b~p = argminb~p
1
2 ∥r −

~Ggrid~p∥2 + μ0∥ξ ~pð Þ∥1: ð18Þ

The nonzero items in b~p at its respective positions are the
estimated DOAs.

The estimated elevation angle is denoted as bϕ =
½bϕ1,⋯, bϕK �

T
, and the estimation of the array manifold is

defined as Ĝ =Ggrid ∈ℂM2×K , which is used for the next polar-

ization parameter estimation. Then, the vectors pð1Þ, pð1,2Þ,
pð2,1Þ, and pð2Þ which contain the polarization parameters
can be obtained using the following least-square estimation:

p̂ i,jð Þ = ĜHĜ
h i−1

ĜHr i,jð Þ, i, j = 1, 2, ð19Þ

where the kth item is expressed in (12)–(15). Simplifying the
above equations, we have the following equations:

cos 2γkð Þ =
p̂ 1ð Þ
k − p̂ 2ð Þ

k / cos bϕk

� �2
� 	

pk
,

cos ηkð Þ sin 2γkð Þ = p̂ 2,1ð Þ
k − p̂ 1,2ð Þ

k

pk cos bϕk

:

ð20Þ

The estimated polarization phase difference bηk can be
obtained by expressing sin ð2γkÞ in terms of cos ð2γkÞ,
whereas the estimated auxiliary polarization angle can be cal-
culated by the following equation:

bγk =
1
2 atan2 p̂ 2ð Þ

k /p̂ 1ð Þ
k




 


1/2, cos bϕk

� �
: ð21Þ

Thus, the joint estimation of DOA and polarization
parameters is completed. The procedure of the proposed algo-
rithm is summarized in Algorithm 1.

4. The Cramér-Rao Bound Analysis

Since the linear array is exploited, without loss of generality,
the azimuth angle θk and polarization phase difference ηk are
set as π/2, thus limiting the DOAs to the yz plane and the
polarization state to the same great circle orbit of Poincare
sphere. The CRB [33] provides a lower bound on the covari-
ance matrix of any unbiased estimator. In fact, under mild
regularity conditions, the maximum likelihood estimator
achieves the CRB asymptotically, as the number of snapshots
tends to infinity. Given T independent samples of a zero
mean Gaussian process yðtÞ whose statistics depend on a
parameter vector α

α = ΩT , YT , pT , p 1ð Þ
n , p 2ð Þ

n

h iT
, ð22Þ

with Ω = ½ϕ1, ϕ2,⋯, ϕK �T , Y = ½γ1, γ2,⋯, γK �T , and p =
½p1, p2,⋯, pK �T , the CRB is obtained by the inverse of the
Fisher informative matrix (FIM) [34].

CRB αð Þ = 1
T

GHΠ⊥
ΔG

� �−1, ð23Þ

in which

G =M
∂ryy
∂ϕ1

,⋯,
∂ryy
∂ϕK

,
∂ryy
∂γ1

,⋯,
∂ryy
∂γK

� �
, ð24Þ

Δ =M
∂ryy
∂p1

,⋯,
∂ryy
∂pK

,
∂ryy
∂p 1ð Þ

n

,
∂ryy
∂p 2ð Þ

n

" #
, ð25Þ

and M = ðRT
yy ⊗ RyyÞ−ð1/2Þ.
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Then, denote diag fΦ,Φg asΨ ∈ℂ2M×2L, and vectorizing
Ryy yields

ryy = ~A∗ ⊗ ~A
� �

vec Rssð Þ + vec Rnnð Þ: ð26Þ

Expand ð~A∗ ⊗ ~AÞ as ∑K
k=1 ½ðψk ⊗ ~ukÞ∗ ⊗ ðψk ⊗ ~ukÞ�, so

that the ryy is finally simplified to the following form due to
space limitation:

ryy = 〠
K

k=1
V0HkΓkJuDkpk +V0pnvec ILo

� �
: ð27Þ

Several definitions are given to illustrate the vectorized
results in (27):

V0 =Ψ∗ ⊗Ψ,

Hk =
h∗k 1ð ÞIL

h∗k 2ð ÞIL

2664
3775 ⊗

hk 1ð ÞIL
hk 2ð ÞIL

2664
3775,

Γk =
−IL

cos ϕkIL

2664
3775 ⊗

−IL
cos ϕkIL

2664
3775:

ð28Þ

Besides, the binary matrix J has the definition as follows:

<J>:,d = vec I dð Þð Þ, d ∈D, ð29Þ

where IðdÞ satisfies

<I dð Þ>a,b =
1, if a − b = d,
0, otherwise:

(
ð30Þ

Thus, by utilizing the relationship u∗k ⊗ uk = JuDk, uk and
uDk can be bridged.

Taking the derivatives of ryy with respect to the DOA,
polarization, signal power, and noise power, we have follow-
ing results:

∂ryy
∂ϕk

= 2V0HkΓ′kJukpk + jπV0HkΓkJ diag Dð Þ cos ϕkukpk,

ð31Þ

∂ryy
∂γk

=V0 H′k + H′k
� �∗h i

ΓkJukpk, ð32Þ

∂ryy
∂pk

=V0HkΓkJuk, ð33Þ

∂ryy
∂p 1ð Þ

n

=V0vec
IL 0
0 0

2664
3775

0BB@
1CCA,

∂ryy
∂p 2ð Þ

n

=V0vec
0 0
0 IL

2664
3775

0BB@
1CCA,

ð34Þ

procedure polarization signal parameter estimation
Initialize rðiÞyy ⟵ vecðRðiÞ

yy Þ, rði,jÞyy ⟵ vecðRði,jÞ
yy Þ

for ðθp, ϕqÞ, 1 ≤ p ≤ P, 1 ≤ q ≤Qdo
~Ggrid ⟵Φ0½d∗gridðθ1, ϕ1Þ ⊗ dgridðθ1, ϕ1Þ,⋯, d∗gridðθP , ϕQÞ ⊗ dgridðθP , ϕQÞ�b~p ⟵ argmin

~p
1/2∥r − ~Ggrid~p∥2 + μ0∥ξð~pÞ∥1

end

if b~p i ≠ 0, i ∈ ½1,Q�
then bϕk ⟵ the position of b~p i, k = 1,⋯, K

end

for bϕk ∈ ½bϕ1,⋯, bϕK �, pk ∈ ½p1,⋯, pK � do
cos ð2γkÞ⟵ p̂ð1Þk − ðp̂ð2Þk /ðcos bϕkÞ

2Þ/pk
cos ðηkÞ sin ð2γkÞ⟵ p̂ð2,1Þk − p̂ð1,2Þk /pk cos bϕkbγk ⟵ 1/2atan2fjp̂ð2Þk /p̂ð1Þk j1/2, cos bϕkg

end

return bϕ ⟵ ½bϕ1,⋯, bϕK �
T
, bη ⟵ ½bη1,⋯, bηK �T , bγ ⟵ ½bγ1,⋯, bγK �T

end procedure

Algorithm 1: Procedure of the proposed algorithm.
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where

Γ′k =
0

−sin ϕkIL

2664
3775 ⊗

−IL
cos ϕkIL

2664
3775 +

−IL
cos ϕkIL

2664
3775 ⊗

0
−sin ϕkIL

2664
3775,

H′k = −

sin γkIL
j cos γkIL

2664
3775 ⊗

cos γkIL
j sin γkIL

2664
3775:
ð35Þ

Substituting (31)–(34) into (23), (24), and (25) leads to
the CRB for the proposed structure.

5. Simulation Results

Throughout our simulations, the 10-element coprime array
with A = 3 and B = 5 is considered. Without additional
instructions, we assume the channel number after compres-
sion is M = 8, and Φ ∈ℂ8×10 is generated from the standard
complex Gaussian distribution. The incident signal is gener-
ated uniformly in the range of ϕk ∈ ½−40∘, 50∘� with θk = π/2,
and the auxiliary polarization angle and polarization
phase difference are evenly distributed in γk ∈ ½5∘, 85∘� and
ηk ∈ ½−120∘, 150∘�. Under the condition that SNR = 5dB and
1, 000 snapshots, the elevation angle is estimated using the
CS-based approach. The angle range from −60∘ to 60∘ is uni-
formly divided into grids with a 0:1∘ searching step.

The signal parameter estimation results of 17 sources
using the proposed structure are shown in Figure 3, where
the actual parameter values are marked in red. Compared
with the results in [24], the proposed structure with channel
number compression can still correctly analyze 17 signals
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Figure 3: Signal parameter estimation of the proposed structure (SNR = 5 dB and 1,000 snapshots).
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with 10 physical elements. Then, the variation of CRB
derived with the number of sources is simulated to verify
the DOF that the proposed structure can obtain. To further
analyze the estimation performance of the proposed struc-
ture, the following coprime array configurations are consid-
ered as the comparison structure: (a) the proposed
structure with L = 10,M = 8; (b) the 10-element coprime
array with the compression matrix Φ is equal to a unit
matrix, that is, without compression, denoted as dipole
coprime array 1; and (c) the 8-element coprime array with
A = 2 and B = 5, namely, L =M = 8, denoted as dipole
coprime array 2, in which the idea of the CACIS configura-
tion idea proposed in [35] is used for reference.

Figure 4 describes the CRB curves of ϕ and γ versus the
number of sources when taking 1,000 snapshots at 10 dB
SNR. When the compression ratio is L/M = 1:25, the DOFs
obtained by the proposed structure is not much less than that
obtained by an uncompressed structure with the same num-
ber of physical elements, namely, dipole coprime array 1.
However, compared with dipole coprime array 2 with the
same number of channels, the proposed structure can resolve
more uncorrelated signal sources, showing the superiority of
the proposed structure for the number of DOFs.

The RMSE versus SNR of the comparison structure is
shown in Figure 5. The CRB (ϕ) and CRB (γ) of the three
array configurations are presented by dash lines. The order
of RMSE depicted by solid lines is consistent with that of
CRB shown in Figure 4. It can be observed in Figure 4 that
the downward trend of the RMSE curves can also fit the
CRB curves well, while in Figure 4, the RMSE curves tend
to be flat as the SNR increases since the search step is limited
by the RIP criterion. Due to the largest number of channels,
the estimation accuracy of dipole coprime array 1 is the high-
est among the three configurations, while the computational
complexity is also the highest. In the case of the same number
of channels, the proposed structure has a lower RMSE than

dipole coprime array 2. In general, from the perspective of
the number of inequalities, dimensionality reduction can
inevitably lead to a decrease in estimation performance, such
as DOF and estimation accuracy. In order to achieve the pur-
pose of avoiding excessive system complexity, better estima-
tion performance can be obtained by using the proposed
structure for DOA estimation, which also verifies our previ-
ous analysis. On the other hand, in Figure 4, it can be
observed that, in a low SNR region, the performance of the
proposed structure is almost the same as that of the dipole
coprime array 2, indicating that the compressive
measurement-based structure has no significant improve-
ment on the estimation of polarization parameters. However,
in a large SNR region, the accuracy of the proposed structure
approaches the dipole coprime array 1. We must note that
this improvement is mainly caused by limitation of the step
of the searching grid. To be specific, as the SNR increases,
the estimation performance achieves the ceiling of current
searching step, thus leading to the phenomenon that the pro-
posed structure has almost the same performance as dipole
coprime array 1. Theoretically speaking, by observing the
CRB curves shown in Figures 3 and 4, the improvement on
the estimation of polarization parameters is negligible.

6. Conclusion

In this paper, we proposed a compressive measurement-based
orthogonal dipole sparse array structure, which can be used
for high-performance signal parameter estimation with a
small number of given elements. In the joint estimation algo-
rithm of DOA and polarization parameters, the CS-based
algorithm and the least-square estimation method were
adopted. Then, based on compressive measurements, we
derived the CRB expression for the elevation angle and auxil-
iary polarization angle. By comparing to the array configura-
tions with the unit matrix as the compression matrix, we
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Figure 5: RMSE versus SNR (1,000 snapshots).
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considered the CRB curves versus the number of independent
signal sources and SNR. Thus, we come to the conclusion that,
under the condition that we control the system complexity by
reducing the number of channels, better parameter estimation
performance can be obtained by the proposed orthogonal
dipole array structure, especially for the estimation of DOAs.
Simulation results also verified the theoretical analysis.
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A novel two-phase method for two-dimensional (2D) direction-of-arrival (DOA) estimation with L-shaped array based on
decoupled atomic norm minimization (DANM) is proposed in this paper. In the first phase, given the sample crosscorrelation
matrix, the gridless DANM technique considering the noise and finite snapshots effects is employed to exploit the structure and
sparse properties of the crosscorrelation matrix. The resulting DANM-based algorithm not only enables the crosscorrelation
matrix reconstruction (CCMR) but also reconstructs the covariance matrix of the L-shaped array. Hence, sequentially, in the
second phase, the conventional 2D DOA estimators for the L-shaped array can be adopted for the angle estimation. With
appropriate 2D DOA estimators, the resulting proposed algorithms can not only achieve better performance but also detect
more source number, compared with conventional crosscorrelation-based DOA estimators. Moreover, the proposed method,
termed CCMR-DANM, not only has blind characteristic that it does not require the prior information of source numbers but
also is more efficient than the existing CCMR-based counterparts. Numerical simulations demonstrate the effectiveness and
outperformance of the proposed method.

1. Introduction

The problem of two-dimensional (2D) direction-of-arrival
(DOA) estimation plays an important role in array signal
processing and has attracted much interest in the area of
wireless communications, radar and sonar [1–7]. For 2D
DOA estimation, many array structures, such as rectangu-
lar arrays, circular arrays, and L-shaped arrays, have been
developed. Among these arrays, since the L-shaped array
can achieve better estimation performance than others, it
has attracted a lot of attentions and many corresponding algo-
rithms for 2DDOA estimation have been proposed in last sev-
eral decades [8–15]. Moreover, these algorithms can be
divided into three categories. The first is to separately estimate
the angles corresponding to each uniform linear subarray

based on the covariance matrix of each subarray with conven-
tional 1D DOA estimators, such as MUSIC [16] and ESPRIT
[17]. However, an extra pairing operation is needed in these
algorithms [18]. The second is to jointly estimate the two
angles based on the covariance matrix of the L-shaped array.
They can detect more source numbers than the first ones
and do not need an extra pairing [8, 9]. The last is based
on the crosscorrelation of the L-shaped array, which is nat-
urally contaminated by less noise, compared with the covari-
ance matrix. As a result, the corresponding algorithms can
achieve a better performance in low signal-to-noise ratio
(SNR) [10–15]. It is worth noting that in practical applica-
tions, all these three kinds of methods need the prior infor-
mation of source numbers and are employed with sample
matrices (no matter the sample covariance matrices or the
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sample crosscorrelation matrices). Note that the sample
matrix is calculated from finite collected snapshots of the
observed signals which is contaminated with additive noise.
Hence, the sample matrix cannot equip the ideal structure
of the ideal matrix, which leads to performance degradation
especially in low SNR and small number of snapshots [19].

To overcome these disadvantages, the basic idea is to first
reconstruct the ideal matrix from the sample matrix before
employing DOA estimation methods. Inspired by this
thought, several crosscorrelation matrix reconstruction-
(CCMR-) based methods are proposed. Specifically, cross-
correlation atomic norm minimization (CC-ANM) utilising
the 2D ANM technique [20] for CCMR is proposed in [21].
And [22] grafts the covariance fitting criterion [23] for
CCMR and proposes a crosscorrelation gridless sparse
iterative covariance-based estimation (CC-GLS) method.
However, a high-dimensional two-level Toeplitz matrix is
needed to be constructed in both methods, which leads to
high computational complexity [18]. In contrast, we propose
an efficient decoupled ANM- (DANM-) based method for
CCMR in [24], while the method does not consider the finite
snapshot effect, which results in performance degradation in
practical applications.

In this paper, given the sample crosscorrelation matrix,
the DANM technique [18] considering the noise and finite
snapshots effects is employed to exploit the structure and
sparse properties of the crosscorrelation matrix. Moreover,
the resulting DANM-based algorithm not only enables the
crosscorrelation matrix reconstruction but also reconstructs
the covariance matrix of the L-shaped array. Hence, the
conventional 2D DOA estimators for the L-shaped array
can be sequentially adopted for the angle estimation. The
proposed two-phase method is more computationally effi-
cient than the aforementioned two CCMR-based methods
and can achieve better estimation performance compared
with traditional crosscorrelation-based methods. Numerical
simulations demonstrate the effectiveness and outperfor-
mance of the proposed method.

The rest of this paper is organized as follows. Section 2
presents the signal model and problem formulation for 2D
DOA estimation with L-shaped array. Section 3 proposes
an efficient DANM-based two-phase method for crosscorre-
lation and DOA estimation. Section 4 discusses the computa-
tional complexity and extends the proposed method to the
sparse L-shaped array cases. Section 5 presents simulation
results, followed by conclusions in Section 6.

Throughout this paper, a, a and A denote a scalar, a
vector, and a matrix, respectively. TrðAÞ denotes the trace
of A. TðaÞ denotes the Hermitian Toeplitz matrix with the
first column being a. diag ðAÞ is a column vector formed
from the elements of the main diagonal of A and diag ðaÞ
generates a diagonal matrix with the diagonal elements con-
structed from a. vecð·Þ stacks all the columns of a matrix into
a vector. Ia is an a-size identity matrix, and IΩ is a selection
matrix with index set Ω. 0a and 1a are the a × 1 zeros and
one vectors, respectively. ⊗ is the Kronecker product. Ef·g
denotes expectation, and Varð·Þ denotes variance. We use
ð·ÞT , ð·Þ∗, and ð·ÞH to denote the transpose, the conjugate,
and the conjugate transpose operation, respectively.

2. Problem Formulation

Consider K far-field narrowband source signals fsiðtÞgKi=1
impinging on an L-shaped array from distinct directions at
element angles fϕigKi=1 and azimuth angles fθigKi=1, as shown
in Figure 1. The L-shaped array consists of two ULAs of M
omnidirectional sensors which are uniformly spaced with a
spacing of d along the x axis and y axis, respectively. The
observed signals of the L-shaped array can be expressed
as [24]

x tð Þ =Axs tð Þ + nx tð Þ,
y tð Þ =Ays tð Þ + ny tð Þ, t = 1, 2,⋯, L,

ð1Þ

where t indexes the snapshot; L denotes the number of
collected snapshots; and sðtÞ, nxðtÞ, and nyðtÞ denote the
vector of source signals and the vector of additive noise
corresponding to the x subarray and y subarray at the
snapshot t, respectively. Ax = ½axðθ1, ϕ1Þ,⋯, axðθK , ϕKÞ�
and Ay = ½ayðθ1, ϕ1Þ,⋯, ayðθK , ϕKÞ� are the array manifold
matrices of the x subarray and the y subarray, whose ith
columns are the steering vectors of the ith source which
satisfy

ax θi, ϕið Þ = 1, e−j2π1/2 cos θið Þ sin ϕið Þ,⋯, e−j2π1/2 M−1ð Þ cos θið Þ sin ϕið Þ
h iT

,

ay θi, ϕið Þ = 1, e−j2π1/2 sin θið Þ sin ϕið Þ,⋯, e−j2π1/2 M−1ð Þ sin θið Þ sin ϕið Þ
h iT

:

ð2Þ

Herein, the spaced distance d is assumed to be equal to
half of the wavelength λ. Moreover, let f i,1 = ð1/2Þ cos ðθiÞ
sin ðϕiÞ, f i,2 = ð1/2Þ sin ðθiÞ sin ðϕiÞ and Ω = fð f1,1, f1,2Þ,
⋯, ð f K ,1, f K ,2Þg denote the frequencies that correspond to
the direction on x and y axes and the set of corresponding
frequencies, respectively. Note that f f i,1, f i,2g⟷ fθi, ϕig is
the one-to-one mapping. Once the estimation of f f i,1, f i,2g
is obtained, the corresponding fθi, ϕig can be retrieved as

bϕ i = arcsin 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f∧i,1

2 + f∧i,2
2

q� �
,

bθ i = arccos
f̂ i,2
f̂ i,1

 !
:

ð3Þ

Hence, in the following paper, we consider estimation
of f f i,1, f i,2g instead of fθi, ϕig for notational simplicity.
Moreover, in this paper, the source signals sðtÞ are assumed
uncorrelated with each other and the noise nxðtÞ and nyðtÞ
are i.i.d. additive white Gaussian random processes satisfy-
ing N ð0, σ2IMÞ and are statistically independent of sðtÞ.
Therefore, under the above assumptions, we have the
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crosscorrelation matrix between xðtÞ and yðtÞ can be
expressed as

Rxy = E x tð ÞyH tð Þ� �
=AxRsAy +N1 = Rc +N1

= 〠
K

i=1
riax f i,1
� �

aHy f i,2
� �

+N1,
ð4Þ

where N1 is the matrix with only the first element of main
diagonal being σ2 and zero otherwise. Rs = diag frg is
the source correlation matrix with r = ½r1,⋯, rK �T ≥ 0,
i.e., EðjsiðtÞj2Þ = ri. Rc =AxRsAy is the noise-free cross-
correlation matrix, while, in practical applications, Rxy

can only be estimated from the finite L snapshots by
R̂xy = 1/L∑L

t=1 xðtÞyHðtÞ, which not only is contaminated
by the noise but also contains errors caused by the finite
snapshot effect. The goal of this paper is to recover the
noise-free crosscorrelation matrix Rc and then the
unknown 2D DOAs fθi, ϕigi from the sample crosscor-
relation matrix R̂xy .

3. Proposed Method

In this section, we propose an efficient DANM-based cross-
correlation and DOA estimation method for L-shaped array.
To this end, the standard DANM technique is firstly pre-
sented. Then, the sparse representation of the noise-free
crosscorrelation matrix is presented, which enables the
DANM technique to exploit its sparse property. Further,
simultaneously considering the noise and finite snapshot
effects, and the structure property of the crosscorrelation
matrix, we propose the original DANM-based formulation
for CCMR which is intractable since the structure constraint.
To make the formulation tractable, an effective relaxation is
proposed. Moreover, an estimation error constraint leading
to easy setting of the user-specific parameter is also proposed.

3.1. Prior Art: DANM Technique. We now review the stan-
dard DANM technique for harmonic retrieval. Define a
matrix Z as

Z = 〠
K

k=1
αkax f k,1

� �
aHy f k,2
� �

, ð5Þ

where αk ∈ℂ. Then, based on (5), a matrix-form atom set of
infinite size is defined as [18, 15]

A = ax f1ð ÞaHy f2ð Þ ∣ f1, f2 ∈ −
1
2
,
1
2

	 �
 �
: ð6Þ

Accordingly, the atomic norm of Z over the atom setA is
defined as

∥Z∥A = inf 〠
k

αkj j ∣〠
k

αkax f k,1
� �

aHy f k,2
� �

, ax f k,1
� �

aHy

(

� f k,2
� �

∈A ; αk ∈ℂ
)
,

ð7Þ

which seeks the sparsest (under l1-norm measure) decompo-
sition of Z overA . Consider the matrix Z is contaminated by
the noise matrixN and the matrix at hand is Ẑ = Z +N. Then,
according to the DANM theory [18, 25], the atomic decom-
position yields the true structure in (5), through the following
DANM formulation:

~Z = arg min
Z

Zk kA s:t: Ẑ − Z
�� ��2

F
≤ η, ð8Þ

where η is a user-specified parameter for error tolerance.
Moreover, (8) is equivalent to the following semidefinite pos-
itive (SDP) formulation

~z1, ~z2, ~Z
n o

= arg min
z1,z2,Z

1
2M

Tr T z1ð Þð Þ + Tr T z2ð Þð Þð Þ

s:t: Ẑ − Z
�� ��2

F
≤ η

T z1ð Þ Z
ZH T z2ð Þ

" #
≽ 0:

ð9Þ

3.2. Standard DANM-Based Formulation for CCMR. Note
that Rc =∑K

i=1 riaxð f i,1ÞaHy ð f i,2Þ. Apparently, Rc has a sparse
linear atomic representation over the matrix-form atom set
in (6). And we introduce a new matrix-form atomic norm

Rck k+A = inf 〠
i

ri ∣〠
i

riax f i,1
� �

aHy f i,2
� �

, ax f i,1
� �

aHy

(

� f i,2
� �

∈A ; ri ≥ 0,∀i
)
:

ð10Þ

Note that this norm differs from the original atomic
norm of the standard DANM in (7), because of the extra con-
straint r ≥ 0.

x

y

z

1 2 M

2

M

Source

𝜙

𝜃

Figure 1: L-shaped array configuration.
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Given Rc, it is possible to retrieve the components fri,
f i,1, f i,2g of its sparest representation by calculating its atomic
norm. Considering the obtained at hand is the sample cross-
correlation containing the estimation error, it boils down to

~Rc = arg min
Rc

Rck k+A
s:t: F R̂xy, Rc


 �
≤ β:

ð11Þ

where FfR̂xy, Rcg is the function quantifying the estimation
error and β indicates the error tolerance threshold. It is sim-
ilar to the DANM formulation introduced in (8), but defined
on the norm k·k+A instead of k·kA . To show the intricacy of
this difference, we rewrite (11) in the following equivalent
form:

~Rc,~r

 �

=min
Rc ,r

Rck kA = rk k1 ð12aÞ

s:t: F R̂xy, Rc


 �
≤ β ð12bÞ

Rc =Ax diag rð ÞAH
y ð12cÞ

r ≥ 0: ð12dÞ

Note that (12c) is implicit in the objective function (11)
but becomes an explicit constraint because of the new non-
negative constraint (12d). Without (12d), the SDP imple-
mentation of the DANM in (9) can be used to reformulate
(12) into a convex problem. However, because of the extra
constraint on r in (12d), this problem becomes intractable,
because r is intertwined with the other variableRc in the form
of (12c).

3.3. Effective Relaxation. To solve (12) in a tractable manner,
we seek to relax r ≥ 0 to an effective form with respect to Rc.
To this end, we note that

Rc : ,1ð Þ = 〠
K

i=1
riax f i,1
� �

,

Rc 1, :ð ÞH = 〠
K

i=1
riay f i,2
� �

,

ð13Þ

where Rcð: ,1Þ and Rcð1, :Þ denote the first column and the
first row ofRc, respectively. Moreover, according to the prop-
erty of Toeplitz matrices [26], if r ≥ 0, we have

T Rc : ,1ð Þð Þ ≽ 0,
T Rc 1, :ð ÞH� �

≽ 0:
ð14Þ

Adopting (14) to replace (12d) and reformulating
(12a)–(12c) into the original decoupled SDP form in (9),
we reach the following effective SDP relaxation for (11):

~u1, ~u2, ~Rc


 �
= arg min

u1,u2,Rc

1
2M

Tr T u1ð Þð Þ + Tr T u2ð Þð Þð Þ

s:t: F R̂xy, Rc


 �
≤β

T Rc : ,1ð Þð Þ ≽ 0, T Rc 1, :ð ÞH� �
≽ 0

T u1ð Þ Rc

Rc
H T u2ð Þ

" #
≽ 0:

ð15Þ

With an appropriate definition ofFfR̂xy, Rcg and β, (18)
can be solved successfully via off-the-shelf convex solvers,
such as CVX [27].

3.4. Estimation Error Constraint. To define a niceFfR̂xy, Rcg
which leads to easy setting of β, we denote the estimation
error matrix as

E = R̂xy − Rc: ð16Þ

Denote by εp,q the ðp, qÞth element of the estimation error
matrix E; then, one has the following proposition:

Proposition 1. For adequately large L, and ∀p + q − 2 > 0, εp,q
is approximately circular complex Gaussian distributed with
zero mean, and the variance is

Var εp,q
� �

=
1
L

〠
K

i=1
ri + σ2

 !2

− 〠
K

i=1
r2i

( )
:

p + q − 2 > 0, 1 ≤ p, q ≤M:

ð17Þ

Proof. Note that R̂xy is estimated from the L collected

snapshots. Denote R̂p,q as the ðp, qÞth element of R̂xy . xpðtÞ,
yqðtÞ, siðtÞ, nxðpÞðtÞ, and nyðqÞðtÞ are similarly defined. We
have ∀p + q − 2 > 0,

R̂p,q =
1
L
〠
L

t=1
xp tð Þy∗q tð Þ = 1

L
〠
L

t=1
〠
K

i=1
si tð Þe−j2π p−1ð Þf i,1 + nx pð Þ tð Þ

 !

� 〠
K

j=1
s∗j tð Þej2π q−1ð Þf j,2 + n∗y qð Þ tð Þ

 !

= 〠
K

k=1

1
L
〠
L

t=1
sk tð Þj j2

 !
e−j2π p−1ð Þf k,1ej2π q−1ð Þf k,2

+
1
L
〠
L

t=1
〠
K

i=1
〠
K

j=1
j≠i

si tð Þs∗j tð Þe−j2π p−1ð Þf i,1ej2π q−1ð Þf j,2

+
1
L

〠
L

t=1
〠
K

i=1
si tð Þn∗y qð Þ tð Þe−j2π p−1ð Þf i,1 + 〠

K

j=1
s∗j tð Þnx pð Þ tð Þej2π q−1ð Þf j,2

 !" #

+
1
L
〠
L

t=1
nx pð Þ tð Þn∗y qð Þ tð Þ = R̂0

p,q + R̂1
p,q + R̂2

p,q + R̂3
p,q,

ð18Þ
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where R̂0
p,q, R̂

1
p,q, R̂

2
p,q, and R̂

3
p,q denote the first, the second, the

third, and the fourth summand. Note that EðR̂0
p,qÞ =∑K

i=1 ri
e−j2πðp−1Þf i,1ej2πðq−1Þf i,2 = Rcðp, qÞ, where Rcðp, qÞ is the ðp, qÞ
th element of Rc. Hence, the ðp, qÞth estimation error εp,q
can be appropriately estimated as εp,q = R̂1

p,q + R̂2
p,q + R̂3

p,q.
Since L is sufficiently large, εp,q is approximately circular
complex Gaussian distributed according to the central limit
theorem [28]. Moreover, as the incident signals and the addi-
tive noise are mutually independent, we can easily obtain that
the expectation of εp,q is

E εp,q
� �

= E R̂1
p,q

� �
+ E R̂2

p,q

� �
+ E R̂3

p,q

� �
= 0, ð19Þ

and the variance of εp,q is

Var εp,q
� �

= E R∧1
p,q

��� ���2� �
+ E R∧2

p,q

��� ���2� �
+ E R∧3

p,q

��� ���2� �
,

ð20Þ

where

E R∧1
p,q

��� ���2� �
=
1
L
〠
K

i=1
〠
K

j=1
j≠i

rir j =
1
L

〠
K

i=1
ri

 !2

− 〠
K

i=1
r2i

 !
,

E R∧2
p,q

��� ���2� �
=
1
L

〠
K

i=1
riσ

2 + 〠
K

j=1
rjσ

2

 !
=
2
L
〠
K

i=1
riσ

2,

E R∧3
p,q

��� ���2� �
=
1
L
σ4:

ð21Þ

Substituting (21) into (20), we can directly have (17).
Denote vecðEÞ as the vectorized estimation error matrix,

and note that the distribution property of ε1,1 is not defined
in Proposition 1; then, one has

E Jvec Eð Þk k22
� �

= 〠
M

p=1
〠
M

q=1,p+q−2>0
E εp,q
�� ��2� �

= M2 − 1
� �

Var ε2,1ð Þ,

ð22Þ

where Varðε2,1Þ is obtained by (20) and J = ½0M2 , IM2−1� is the
selection matrix by which Eðjε1,1j2Þ is dropped from E.
Hence, according to Proposition 1 and (22), we can define
the function FfR̂xy, Rcg as

F R̂xy ,Rc


 �
= Jvec R̂xy − Rc

� ��� ��2
2, ð23Þ

and then, β can be easily set as

β = μ M2 − 1
� �

Var ε2,1ð Þ
 �
, ð24Þ

where μ is a user-specific weighting factor permitting (24)
to be held in a high probability. It is worth noting that the
threshold β is influenced by various factors, such as the
variances of signals and noise, limited snapshots, and array
geometry. In contrast, μ just introduces a scale to the
threshold. Thus, μ has much smaller dynamic than β
and is easier to choose, which is verified in the Numerical
Results. In the following, an approximation of Varðε2,1Þ is
given.

Firstly,∑K
i=1 ri + σ2 can be well estimated by averaging the

diagonal elements of the observed covariance matrix along
the x and y axes. It is worth noting that since the first diago-
nal element is common among the covariance matrices, it
should be calculated only once. Hence, ∑K

i=1 ri + σ2 can be
estimated by

1
2M − 1ð Þ diag R∧xð Þ + diag R∧y

� �� �T1M − R̂y 1, 1ð Þ
n o

,

ð25Þ

where R̂x and R̂y denote the sample covariance matrix along
the x and y axes estimated from the L collected snapshots,
respectively. In practical implementation, the diagonal ele-
ments of R̂x can be calculated as diag ðR̂xÞ = diag ð1/L∑L

t=1
diag ðxðtÞÞdiag∗ðxðtÞÞÞ, as well as diag ðR̂yÞ. R̂yð1, 1Þ is the
ð1, 1Þth element of R̂y. Next, according to (4), the ðp, qÞth
(p + q − 2 > 0) element of Rxy as Rp,q can be expressed as

Rp,q =∑K
i=1 rie

j2πðp−1Þf i,1e−j2πðq−1Þf i,2 . Thus, the expectation of
the squared modulus of Rp,q is

E Rp,q
�� ��2n o

= 〠
K

i=1
r2i + 〠

K

i=1
〠
K

i′=1
i′≠i

riri′ × cos 2π p − 1ð Þ f i,1 − f i′1
� ��

+ 2π q − 1ð Þ f i′ ,2 − f i,2
� �Þ: ð26Þ

The term cos ð2πðp − 1Þð f i,1 − f i′1Þ + 2πðq − 1Þð f i′ ,2 −
f i,2ÞÞ varies for different p, q, i, i′. Moreover, the phase mod
ð2πðp − 1Þð f i,1 − f i′1Þ + 2πðq − 1Þð f i′ ,2 − f i,2Þ, 2πÞ is uni-
formly distributed in ½−π, πÞ with respect to uniform distri-
butions of f i,1 and f i,2 within ½−0:5,0:5Þ. Thus, the cosine
term has a mean of zero. Further, if we take the average of
the module of R̂p,q, ðp + q − 2 > 0Þ, the cosine term will be
eliminated and only the first term is retained. Hence, we
can approximate ∑K

i=1 r
2
i with the average of the module of

R̂p,q, ðp + q − 2 > 0Þ as

〠
K

i=1
r2i ≈

Jvec R̂xy

� ��� ��2
2

M2 − 1
� � : ð27Þ

Finally, substituting (25) and (27) into (17), the
approximation of Varðε2,1Þ is obtained, and then, β can
be determined via (24). With the obtained β and the func-
tion FfR̂xy, Rcg in (26), we have the proposed CCMR-

5Wireless Communications and Mobile Computing



based DANM (CCMR-DANM) method for L-shaped array
as follows:

~u1, ~u2, ~Rc


 �
= arg min

u1,u2,Rc

1
2M

Tr T u1ð Þð Þ + Tr T u2ð Þð Þð Þ

s:t: Jvec R̂xy − Rc

� ��� ��2
2≤β

T Rc : ,1ð Þð Þ ≽ 0, T Rc 1, :ð ÞH� �
≽ 0

T u1ð Þ Rc

Rc
H T u2ð Þ

" #
≽ 0:

ð28Þ

Compared with the SDP formulation of standard
DANM in (9), beside the error tolerance constraint, an
extra constraint in (14) is included in the proposed SDP
formulation. It is an effectiveness relaxation of the positive
constraint r ≥ 0, which is introduced by the prior informa-
tion of the crosscorrelation matrix. Moreover, the impor-
tance of this extra constraint is verified in simulations.

3.5. DOA Retrieval. By solving (28), we note that besides the
estimation of Rc, the estimation of Tðu1Þ and Tðu1Þ also are
obtained, which can be expressed in the form of an aug-
mented matrix as

RA =
T u1ð Þ Rc

RH
c T u2ð Þ

" #
: ð29Þ

Next, we develop three kinds of angle estimation
methods based on Tðu1Þ and Tðu2Þ, Rc, and RA, respectively.

First, since Tðu1Þ and Tðu2Þ contain the unknown angle
information, the Vandermonde decomposition-based
methods such as MUSIC and ESPRIT [17, 29, 30] can be
employed for angle estimation in each dimension. Of course,
a pairing operation needs to be done to finally obtain the
angle pairs [18].

Second, considering Rc as the noise-free crosscorrelation
matrix, conventional 2D DOA estimation algorithms based
on crosscorrelation [18–15] can be grafted with the proposed
CCMR-DANM method for angle estimation. In this paper,
we adopt the JSVD algorithm [10] as a representation for
comparison in simulations.

Last, according to the decoupled atomic norm theory [18,
25], we have

RA =
T u1ð Þ Rc

RH
c T u2ð Þ

" #
=

Ax

Ay

" #
1ffiffiffiffiffi
M

p Rs

Ax

Ay

" #H
=HRs′HH ,

ð30Þ

where H = ½AT
x ,AT

y �T and Rs′= ð1/ ffiffiffiffiffi
M

p ÞRs. Hence, the con-
ventional covariance-based 2D DOA estimation algorithms,
such as [8, 9], can be incorporated into the proposed
CCMR-DANM method.

Remark 2. Note that all the matrices we obtained through
(28) are low rank and their rank values are equal to the source
numbers. In the three kinds of proposed angle estimation
methods, either eigenvalue decomposition (EVD) or singular
value decomposition (SVD) is taken on these low-rank
matrices. Hence, we can determine the source numbers by
counting the number of eigenvalues or singular values, which
is larger than a predefined threshold, e.g., 0:05λmax , where
λmax is the maximum value of the eigenvalues. In this sense,
the proposed methods can be done in a blind mode without
knowing the source numbers a priori.

Remark 3. It is worth noting that the three kinds of proposed
angle estimation methods have different behaviors in terms
of estimation accuracy and computational complexity. The
first Vandermonde decomposition-based method is compu-
tationally efficient but requires an extra pairing operation.
The third RA-based method is relatively computational
expensive than the other two. The second crosscorrelation-
based method is not only computationally efficient but also
can achieve automatic pairing. Moreover, note that although
the proposed method works on sample crosscorrelation
matrix, the proposed method grafting with the RA-based
method can detect 2M − 1 sources, which is larger than that
of the conventional crosscorrelation-based DOA estimation
methods.

In summary, the proposed CCMR-DANM method is
widely applicable in practical implementations.

4. Discussions

Two related issues regarding the proposed solution in Section
3 are discussed in this section. First, the computational com-
plexity of the proposed method is analyzed and compared
with that of existing CCMR-based methods. Second, we
extend the proposed method to the sparse L-shaped array
cases.

4.1. Computational Complexity.Note that the CC-ANM, CC-
GLS, and the proposed method are all two-phase CCMR-
based methods. They have common operations in sample
crosscorrelation matrix construction and DOA estimation.
The only difference is the technique used for CCMR. Hence,
we only compare the computational complexities of the
CCMR operation in these three methods. According to Van-
denberghe and Boyd [31], the computational complexity for
solving the SDP formulation of (28) is OfðM2 + 2MÞ2
ð4MÞ2:5g. Moreover, the computational complexities of
CCMR in the proposed CCMR-DANM, CC-ANM, and
CC-GLS are listed in Table 1.

Further, Figure 2 presents the computational complexi-
ties of CCMR in different algorithms versus the number of
antennas at each subarray. Obviously, the proposed CCMR-
DANM has the least computational cost compared with
CC-ANM and CC-GLS when M > 4. Further, the computa-
tional gaps between the proposed and the other two algo-
rithms become large with the growth of the number of

6 Wireless Communications and Mobile Computing



antennas. Hence, the proposed method offers us a more effi-
cient choice for CCMR, especially with large M.

4.2. Extension to Sparse L-Shaped Array Cases. In the sparse L-
shaped array case, we consider there are two sparse linear
array (SLA) arranged along the x and y axes. Moreover, each
SLA is a subarray of a virtual ULA. In other words, the mani-
folds of the SLAs termed Ax′ and Ay′ can be expressed as [22]

Ax ′ = IΩx
Ax,

Ay ′ = IΩy
Ay ,

ð31Þ

where IΩx
is the selection matrix for the SLA in the axis with

Ωx being the index set indicating the index of remaining
antennas and IΩy

is similarly defined. Hence, we have

Rx ′y ′ = IΩx
Rc +N1ð ÞIHΩy

, ð32Þ

and sequentially, the error estimation matrix can be defined as

E′ = R̂x ′y ′ − IΩx
RcIΩy

: ð33Þ

Moreover, in this paper, we consider that the two SLAs are
two redundancy linear arrays [22], which means the virtual
crosscorrelation as Rxy can be fully determined by Rx ′y ′ . Fur-

ther, each element in E′ has similar distribution as that in E. In
other words, we can similarly defined the function FfR̂x ′y ′ ,
IΩx

RcIΩy
g and the tolerant bound β′ as those in (23) and

(24), respectively. Then, we have the proposed CCMR-
DANM for sparse L-shaped array as

~u1, ~u2, ~Rc


 �
= min

u1,u2,Rc

1
2M

Tr T u1ð Þð Þ + Tr T u2ð Þð Þð Þ

s:t: J′ vec R̂x ′y ′
� �

− IΩy
⊗ IΩx

� �
vec Rcð Þ

� ���� ���2
2
≤β′

T Rc : ,1ð Þð Þ ≽ 0, T Rc 1, :ð ÞH� �
≽ 0

T u1ð Þ Rc

Rc
H T u2ð Þ

" #
≽ 0,

ð34Þ

where J′ is similarly defined as J.

5. Numerical Results

In this section, we present numerical examples to verify the
effectiveness of the proposed method and evaluate the per-
formance of the proposed method for L-shaped array DOA
estimation. Unless specifically stated, in simulations, we con-
sider three source signals, i.e., K = 3, with DOAs (15°, 10°),
(25°, 20°), and (35°, 30°), impinge onto the L-shaped array
withM = 8. The number of collected snapshots L and Monte
Carlo trials N is set to 200 and 500, respectively. We use root
mean square error (RMSE) to evaluate DOA estimation pre-
cision of the proposed method with comparison to the
MUSIC algorithm for L-shaped array (replaced with MUSIC
hereafter), the JSVD [10], the CESA [12], the CC-GLS [22],
and the CRB [9]. We omit the CC-ANM for comparison
since it has similar estimation performance as CC-GLS and
it is more computationally expensive [22]. The RMSE of
the azimuth and elevation angle estimations is defined as

RMSE =
1
K
〠
K

i=1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N
〠
N

n=1
ϕ∧i,n − ϕi
� �2 + θ∧i,n − θið Þ2
h is

,

ð35Þ

where bϕ i,n and
bθ i,n denote estimates of ϕi and θi from the nth

trial, respectively.
First, to guarantee the proposed CCMR-DANM method

works in a best status, it is important to choose an appropri-
ate user-specific weighting factor μ. The RMSEs of the pro-
posed method with different μ versus SNR are presented in
Figure 3. The curves in Figure 3 indicate that with different
μ, the resulting proposed methods have different estimation
performance. Moreover, the proposed method equipped with
μ = 1 has the best performance. Hence, in following simula-
tions, we set μ = 1 to implement the proposed CCMR-
DANM method.

Next, let us evaluate the estimation performance of the
proposed CCMR-DANM method compared with the
aforementioned methods. Moreover, the proposed method
without the constraint (14), termed proposed w/o 2, is also
simulated for comparison. Figure 4 shows the RMSEs of
these methods versus SNR. As shown in Figure 4, the pro-
posed method is effective and outperforms both the conven-
tional L-shaped DOA estimation methods and the existing
gridless CCMR-based methods. Moreover, there is a nonne-
gligible gap between the proposed method and the proposed
w/o 2 method. It indicates that the performance of the pro-
posed method degrades greatly when the constraint in (14)
is dropped, which means the constraint in (14) is indispens-
able for the proposed method.

To further examine the performance, we present the
RMSEs of aforementioned methods versus the number of
snapshots with SNR = 0dB in Figure 5. The result likewise
indicates that the proposed method has better estimation
accuracy than the conventional methods. Combining the
estimation performance comparisons with the analysis in
Remark 2, we can conclude that the proposed method not
only has the better estimation performance compared with

Table 1: The computational complexities of CCMR in different
algorithms.

Algorithm Computational complexity

CC-ANM O 3M2 − 2M
� �2

M4:5
n o

CC-GLS O 2M2 − 2M
� �2

M4:5
n o

Proposed O M2 + 2M
� �2 4Mð Þ2:5
n o
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the conventional L-shaped DOA estimation methods but
also can be implemented without knowing the source num-
bers. Moreover, combining the estimation performance com-
parisons with the analysis of computational complexity in
Section 4.1, we can conclude that the proposed method not

only is more efficient but also has better estimation perfor-
mance, compared with the existing gridless CCMR-based
methods, such as CC-GLS and CC-ANM.

Last, let us consider the sparse L-shaped array cases.
Assume both of the SLAs are sampled from the 8 element
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Figure 2: The computational complexities of CCMR in different algorithms versus M.
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Figure 3: RMSE of the proposed method with different μ versus SNR.
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ULA with the selection matrix IΩ, where Ω = f1, 2, 4, 7, 8g.
And the same three source signals with DOAs (15°, 10°),
(25°, 20°), and (35°, 30°) impinge onto the sparse L-shaped

array. As shown in Figure 6, the 2D DOAs can be clearly
observed via the proposed method. In other words, the pro-
posed method is applicable to the sparse L-shaped array cases.
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Figure 4: RMSE versus SNR with L = 300.
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6. Conclusion

In this paper, a new CCMR-based two-phase method for
2D DOA estimation with L-shaped array via DANM is
proposed. In the first phase, the DANM technique simul-
taneously considering the noise and finite snapshot effects
and structure property is employed to reconstruct the
noise-free crosscorrelation matrix from the sample counter-
part. Then, in the second phase, conventional 2D DOA esti-
mation methods for L-shaped array can be adopted for 2D-
DOA estimation. Numerical simulations demonstrate the
effectiveness and outperformance of the proposed method.
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In recent years, indoor positioning systems (IPS) are increasingly very important for a smart factory, and the Lora positioning
system based on round-trip time (RTT) has been developed. This paper introduces the ranging characterization, RTT
measurement, and position estimation method. In particular, a particle filter localization method-aided Lora pseudorange fitting
correction is designed to solve the problem of indoor positioning; the cumulative distribution function (CDF) criteria are used
to measure the quality of the estimated location in comparison to the ground truth location; when the positioning error on the x
-axis threshold is 0.2m and 0.6m, the CDF with pseudorange correction is 61% and 99%, which are higher than the 32% and
85% without pseudorange correction. When the positioning error on the y-axis threshold is 0.2m and 0.6m, the CDF with
pseudorange correction is 71% and 99.9%, which are higher than the 52% and 94.8% without pseudorange correction.

1. Introduction

Indoor positioning systems are increasingly very important
for a smart factory, such as finding the location of workers,
goods, or vehicles [1–4]. However, the Global Positioning
System (GPS) is unable to provide the indoor positioning ser-
vice, which is commonly used for outdoor positioning. The
research on indoor positioning technologies has been con-
ducted for more than three decades, such as Radio Frequency
Identification (RFID) [5, 6], WiFi [7, 8], Ultra Wide Band
(UWB) [9–11], Pseudolite [12–14], Bluetooth [15], and Iner-
tial Navigation System (INS), but they may not be suitable for
Internet of Things (IoT) applications in terms of cost, appli-
cation mode, and terminal power consumption.

With the continuous progress of sensor and Internet of
Things [16, 17] technologies, increasing attention has been
paid to IPS using Lora WAN. Semtech has developed a Lora
positioning system based on round-trip time [18], which is
called the SX1280 transceiver. The SX1280 transceiver family

provides ultra-long-range communication in the 2.4GHz
band with a time-of-flight functionality; its radio is fully
compliant with all worldwide 2.4GHz radio regulations
including EN 300440, FCC CFR 47 Part 15 [19], and the Jap-
anese ARIB STD-T66 [20]. Very small wearable products to
track and localize assets in logistic chains and people for
safety can easily be designed thanks to the high level of inte-
gration and the ultralow current consumption which allows
the use of miniaturized batteries.

But the most difficult challenge for Lora indoor position-
ing is the ranging error caused by multipath in the indoor
environment. Liang et al. carry out the study focused on the
indoor propagation of the Lora signal, and the main contri-
bution of this work is to measure the round-trip time and
packet delivery ratio by changing send power, payload
length, and air rate in a multilevel building from the 1st floor
to the 12th floor [21]. Huynh and Brennan verify the UWB
transmission characteristics of an indoor RTT signal by gen-
erating synthetic received signals using ray tracing plus
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Rayleigh distributed random multipath clusters as well as
random amplitude and delay factors [22]. Staniec and Kowal
describe outcomes of measurement campaigns during which
the Lora performance was tested against a heavy multipath
propagation and a controlled [23], Lora configurational
space is divided into three distinct sensitivity regions: in the
white region, it is immune to both interference andmultipath
propagation; in the light-grey region, it is only immune to the
multipath phenomenon but sensitive to interference; and in
the dark grey region, Lora is vulnerable to both phenomena.

On the other hand, location based on a filtering algorithm
is the only effective solution currently known, and the Bayes-
ian filtering algorithm occupies an important role. In the
early days, the Kalman filter positioning algorithm is mainly
used to solve the problem achieving efficient state estimation
for linear Gaussian systems [24]. Moreover, to deal with
unwanted errors and nonlinear distortions, particle filter
(PF) is applied as a nonparametric filter to location, which
is recursive implementations of Monte Carlo-based statistical
processing [25–27] and performs well in localization effi-
ciency, stability, and accuracy.

In the following sections, a Lora indoor positioning sys-
tem is introduced, which overcomes the problem of long dis-
tance, low power consumption, and low cost. The main
contributions and research content of this paper are as fol-
lows: Firstly, a Lora-aided particle filter localization method
is designed to solve the problem of indoor positioning. Sec-
ondly, numerous experiments were carried out with real Lora
RTT measurement data to evaluate the performance of the
proposed approach; we used the CDF criteria to measure
the quality of the estimated location in comparison to the
ground truth location. The results show that the indoor posi-
tioning accuracy is improved obviously with the help of the
piecewise fitting correction method. At the same time, the
Lora indoor positioning system can achieve a positioning
accuracy of 1m under the condition of LOS.

2. Background and Related Work

2.1. Lora RTTMeasurement. In this paper, we focus on one of
the latest techniques called the RTT scheme-based ranging
and localization [28–30], which can give accurate measure-
ments by the time stamp from the initiator (Lora_A) to the
responder (Lora_B) with nanosecond resolution. Figure 1
shows the RTT measurement illustration; the pseudorange
measurement can be built as

ρAB = RAB + tr A − ts B, ð1Þ

ρBA = RBA + tr B − ts A, ð2Þ

where ρAB or ρBA is the pseudorange measurement between
Lora_A and Lora_B, RAB or RBA is the geometric range
between Lora_A and Lora_B, tr A is the clock offset of
Lora_A at the receiving time, ts A is the clock offset of
Lora_A at the transmitting time, tr B is the clock offset of
Lora_B at the receiving time, and ts B is the clock offset of
Lora_B at the transmitting time.

If the clock characteristics of Lora_A and Lora_B are sta-
ble, tr A = ts A and tr B = ts B at the adjacent time of receiving
and transmitting. The time-of-flight (ToF) measurements
can be written as

Tround = ρAB + Treply + ρBA = RAB + RBA + tr B

− ts A + tr A − ts B + Treply = RAB + RBA + Treply,
ð3Þ

where Tround is the time-of-flight (ToF) measurements of
Lora_A from Tx_A to Rx_A, T reply is the time difference of
Lora_B between Rx_B and Tx_B.

The geometric distance can be calculated by

RAB =
Tround‐Treply
� �

2 : ð4Þ

The pseudorange measurement can be built as

RAB =
Tround‐Treply
� �

2 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xA − xBð Þ2 + yA − yBð Þ2 + zA − zBð Þ2

q
+ ε,

ð5Þ
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Figure 1: RTT measurement illustration.
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Figure 2: Position estimation by four distance measurements.
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where xA, yA, and zA are the transmitting antenna coordi-
nates of Lora_A; xB, yB, and zB are the transmitting antenna
coordinates of Lora_B; and ε is measurement error.

2.2. Position Estimation. Four distance measurements of Lora
transceivers whose positions are known are used to deter-
mine the three-dimensional coordinates of an unknown
position [31], as shown in Figure 2. The position of user

(xu, yu, zu) can be calculated by

R1u =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1 − xuð Þ2 + y1 − yuð Þ2 + z1 − zuð Þ2

q
+ ε1u,

R2u =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − xuð Þ2 + y2 − yuð Þ2 + z2 − zuð Þ2

q
+ ε2u,

R3u =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x3 − xuð Þ2 + y3 − yuð Þ2 + z3 − zuð Þ2

q
+ ε3u,

R4u =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x4 − xuð Þ2 + y4 − yuð Þ2 + z4 − zuð Þ2

q
+ ε4u,

8>>>>>>>>>><
>>>>>>>>>>:

ð6Þ

where Riu is the pseudorange measurement ofAPi, i is the AP
index, and u is the user index, (xi, yi, zi) are the locations of
APi, and εiu is the measurement error of APi.

The geometric distance can be calculated by

Riu =
xu − xið Þxu + yu − yið Þyu + zu − zið Þzuffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xi − xuð Þ2 + yi − yuð Þ2 + zi − zuð Þ2
q

+ εiu = eix, eiy, eiz
h i xu

yu

zu

2
6664

3
7775 + εiu,

ð7Þ

where ½eix, eiy, eiz� is called a geometry matrix.
The observation equations of Lora RTT can be expressed

as the following matrix form:

R1u

R2u

⋮

R4u

2
666664

3
777775
=

e1x

e2x

e3x

e4x

e1y

e2y

e3y

e4y

������������

������������

e1z

e2z

e3z

e4z

2
6666664

3
7777775

xu

yu

zu

2
664

3
775 +

ε1u

ε2u

⋮

ε4u

2
666664

3
777775
: ð8Þ

The matrix on the right-hand side of Equation (8) is
defined as A and ε, and the two-column vectors on the left-
hand side are defined as b. Equation (8) can be written as

b = AX + ε: ð9Þ

If an initial value X0 is used for the solution-updating
process, the Newton-Raphson method is described

Table 1: Relationship between ranging error, clock error, and flight time.

Clock error Treply + RAB

� �
0.1 ppm 0.5 ppm 5 ppm 25 ppm

1.5 μs 1:5 × 10−4 ns 7:5 × 10−4 ns 7:5 × 10−3 ns 3:75 × 10−2 ns
10 μs 1:5 × 10−3 ns 7:5 × 10−3 ns 7:5 × 10−2 ns 3:75 × 10−1 ns
100 μs 1:5 × 10−2 ns 7:5 × 10−2 ns 7:5 × 10−1 ns 3:75 ns
1000 μs 1:5 × 10−1 ns 7:5 × 10−1 ns 7:5 ns 37:5 ns
10000 μs 1:5 ns 7:5 ns 75 ns 375 ns
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Figure 3: Ranging error under LOS.

0 10 20 30
−4

−2

0

2

4

6

8

10

True distance (m)

Ra
ng

in
g 

er
ro

r (
s)

Test1
Test2
Test3

Figure 4: Ranging error under NLOS.
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asX0 = ðxu,0, yu,0, zu,0Þ. The least-squares updated solution
can be represented as

ΔX = ATA
� �−1

ATb + ε: ð10Þ

Then, the position X1 can be updated iteratively accord-
ing to

X1 = X0 + ΔX: ð11Þ

It should be noted that the measurement error is consid-
ered Gaussian white noise, when using the least-squares
method.

3. Ranging Characterization of Lora

3.1. Clock Error. It is supposed that the clock offsets of devices
Lora_A and Lora_B are εA and εB; therefore, the ranging
error will increase with the increase of flight time. The equa-

tion of ranging error is as follows:

εt =
εA − εBð Þ

2 × Treply + RAB

� �
, ð12Þ

where εt is ranging error caused by the clock offsets.
If the clock error of Lora_A and Lora_B is the same,

Equation (12) can be written as

εt = εA × Treply + RAB

� �
: ð13Þ

It is supposed that the distance between the two Lora
nodes is between 10 meters and 5000 meters; then, RAB is
from 3ns to 1500 ns. The clock error of packaged crystal
oscillator (PCO) is generally more than 25 ppm, the temper-
ature compensated crystal oscillator (TCXO) is from 0.5 ppm
to 5ppm, and the oven-controlled crystal oscillator (OCXO)
may be less than 0.1 ppm. According to the above parame-
ters, we estimate the influence of clock error on Lora ranging
accuracy, as shown in Table 1. It can be found that TCXO
and OCXO are best used as the clock of the Lora positioning
system.
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Figure 5: Probability characterization: (a) histogram with a distribution fit and (b) normal probability plot.
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3.2. Ranging Accuracy and Characterization. The reflection
of the indoor environment to the Lora positioning signal is
very serious, for example, irregular room structure, walking
people, tables and chairs, and glass. Because of signal inter-
ference and multipath effect, Lora’s ranging error may be
non-Gaussian distribution. We collect the ranging data of
Lora under different conditions such as line-of-sight (LOS),
non-line-of-sight (NLOS), and human occlusion, which is
compared with the real distance to analyze the ranging
characterization.

Three sets of ranging data are collected under the LOS
condition; the ranging error of Lora is shown in Figure 3.
The average error is -0.61m, the maximum error is 1.2m,
and the minimum error is -5.24m. It can be found that the
ranging error of LOS has a linear trend, which can be cor-
rected by the polynomial fitting method.

Similarly, three sets of ranging data are collected under
the NLOS condition, such as using people’s bodies to block
Lora’s antenna; the ranging error of Lora is shown in
Figure 4. The average error is -0.01m, the maximum error
is 8.6m, and the minimum error is -3.32m. It can be found
that the ranging error of NLOS is much worse than that of
LOS; therefore, it is better to use the Lora indoor positioning
system under the condition of LOS.

In order to analyze the distribution characteristics of Lora
ranging error, the six groups of data collected above are com-
bined, as shown in Figure 5. Figure 5(a) shows the histogram
with a distribution fit, and Figure 5(b) is the normal probabil-
ity plot. It can be concluded that the probability distribution
of Lora ranging error is non-Gaussian white noise. Therefore,
it is necessary to use nonlinear filter to solve the location
problem.

The piecewise fitting correction method of LOS is used to
correct the Lora ranging value, as shown in Figure 6. The for-
mula of the piecewise fitting correction method can be
expressed as

R
_
= R + f Rð Þ, ð14Þ

f Rð Þ =

a10 + a11 × R, 0 ≤ R ≤ r1,
a20 + a21 × R, r1 < R ≤ r2,

    ⋮

am0 + am1 × R, rm−1 < R ≤ rm,

8>>>>><
>>>>>:

ð15Þ

where R is the pseudorange measurement of Lora, R
_

is the
corrected pseudorange, f ðRÞ is the correction function, a10

0
20

40

0

20

40
0

0.5

1

1.5

xy

z

(a)

0
20

40

0

20

40
0

0.5

1

1.5

xy

z

(b)

Figure 8: Indoor positioning system composed of four Lora transceivers: (a) HDOP and (b) GDOP in the projection area.
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Figure 9: Indoor positioning system composed of four Lora transceivers: (a) HDOP and (b) GDOP outside the projection area.
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and a11 are the linear correction factors, and rm−1 and rm are
the stages; the above data of LOS are divided into three sec-
tions; that is, m = 3.

3.3. Geometry Factor. The dilution of geometry precision
(GDOP) [32, 33] can be expressed as

cov ΔXð Þ = σ2
ε ⋅ ATA

� �−1
: ð16Þ

If ðATAÞ−1 is defined asH, the diagonal elements ofH are

as follows:

H =
xDOP2

yDOP2

zDOP2

2
664

3
775: ð17Þ

HDOP and GDOP can be defined as

HDOP =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xDOP2 + yDOP2

q
, ð18Þ

Table 2: Particle filter algorithm.

Process Content

Initialization Let Xi
1 ~ p X0ð Þ, i = 1,⋯,N , and wi

0 = 1/N
Iteration

(1) Measurement update For i = 1,⋯,N , wi
t = 1/ctð Þwi

t−1p Yt/Xi
t

� �
, where the normalization weight is given by ct =∑N

t=1w
i
t−1p Yt/Xi

t

� �
(2) Estimation The filtering density is approximated by p Xt/Ytð Þ ≈∑N

i=1w
i
tδ Xt − Xi

t

� �
,Xt ≈∑N

i=1w
i
tX

i
t

(3) Resampling
Optionally at each time, take N samples with replacement from the set Xi

t ,wi
t

� �N
i=1, where

the probability to take sample i is wi
t and let wi

t = 1/N

(4) Time update
Generate predictions according to the proposal distribution: Xi

t+1 ~ q Xt+1/Xi
t , Yt+1

� �
, and

compensate for the importance weight wi
t+1 =wi

t p Xi
t+1/Xi

t

� �
/q Xi

t+1/Xi
t , Yt+1

� �� �
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Figure 10: Experimental environment of Lora indoor positioning system.
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GDOP =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xDOP2 + yDOP2 + zDOP2

q
, ð19Þ

where xDOP2 means the dilution of precision (DOP)
for the x-coordinate and yDOP2 means the DOP for
the y-coordinate.

In order to analyze the influence of the geometry factor
on Lora positioning performance, a simulation of geometry
distribution is designed, which is composed of four Lora
transceivers. Suppose the length and width of the room are
40 meters and the height is 3 meters, as shown in Figure 7.
The HDOP of the indoor positioning system is given in
Figures 8(a) and 9(a); the GDOP of the indoor positioning
system is given in Figures 8(b) and 9(b). The results show
that four Lora transceivers can obtain the suitable geometric
distribution in their projection area, whoseHDOP and G
DOP are less than 1.2. However, outside the projection area,
the geometric distribution will deteriorate; HDOP and G
DOP will be greater than 2, which will make the positioning
error more than twice of the ranging error.

4. Methodology Based on Particle Filter

4.1. Recursive Bayesian Estimation. Applied nonlinear filter-
ing is based on discrete-time nonlinear state-space models
relating a hidden state Xt to the observations Yt , denote the
observations at time t by Yt = fy0,⋯, ytg, the Bayesian solu-

tion to compute the posterior distribution is given by

p
Xt

Yt−1

� 	
=
ð
p

Xt

Xt−1

� 	
p

Xt−1
Yt−1

� 	
dXt−1,

p
Xt

Yt

� 	
= p yt/Xtð Þp Xt/Yt−1ð Þ

p yt/Yt−1ð Þ ,

8>>><
>>>:

ð20Þ

where t is the time stamp, xt is the state variable, pðXt‐1/Yt‐1Þ
is the posterior probability distribution of the last moment,
pðXt/Xt‐1Þ is the state transition probability, pðXt/Yt‐1Þ is
the prior probability distribution, pðyt/XtÞ is the likelihood
function, and pðyt/Yt−1Þ is the normalization function.

4.2. Particle Filter. Supposed that N particles fXi
t ,wi

tgNi=1
from the posterior probability pðXt/YtÞ of the state can be
extracted, where Xi

t is the state of the particle,w
i
t is the weight

of the particle; then,

p
Xt

Yt

� 	
≈ 〠

N

i=1
wi

tδ Xt − Xi
t

� �
, ð21Þ

where δ is the Dirac delta function and N is the number of
particles.
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Figure 11: Static test without pseudorange correction: (a) positioning results, (b) x-axis positioning error, and (c) y-axis positioning error.
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The Sequential Importance Sampling (SIS) method is
used to calculate the weight of particles, which is written as

wi
t =wi

t−1
p Yt/Xi

t

� �
p Xi

t/Xi
t−1

� �
q Xi

t/Xi
t−1, Yt

� � : ð22Þ

The prior probability distribution is used as the impor-
tance density function:

q
Xi
t

Xi
t−1

, Yt

� 	
= p

Xi
t

Xi
t−1

� 	
: ð23Þ

Then, the formula for calculating the weight of particles is

wi
t =wi

t−1p
Yt

Xi
t

� 	
, ð24Þ

where t is time stamp, i is the number of particles, and w is
the weight of particles.

4.3. Particle Filter Implementation. The particle filter algo-
rithm is summarized in Table 2. Firstly, the state parameters
and weights of particles are initialized; secondly, the iterative
process of the particle filter algorithm is divided into four

steps, which includes measurement update, estimation,
resampling, and time update.

5. Experimental Results and Analysis

5.1. Experimental Setup. The performance of the Lora posi-
tioning system is evaluated in a room as shown in
Figure 10; the size of the room is about 25 meters long, 4
meters wide, and 2.5 meters high; and the antenna coordi-
nates of Lora are surveyed precisely with a total station.

5.2. Experimental Results. Figure 11 shows the static test
without pseudorange correction for the Lora positioning sys-
tem, Figure 11(a) is the positioning results, Figure 11(b) is the
x-axis positioning error, and Figure 11(c) is the y-axis posi-
tioning error. The average positioning error is 0.11m in the
x-axis and 0.07m in the y-axis, the maximum positioning
error is 1.25m in the x-axis and 0.59m in the y-axis, and
the standard deviation of the x-axis and y-axis errors is
0.42m and 0.18m, respectively.

Figure 12 shows the static test without pseudorange cor-
rection (the piecewise fitting correction method) for the Lora
positioning system, Figure 12(a) is the positioning results,
Figure 12(b) is the x-axis positioning error, and
Figure 12(c) is the y-axis positioning error. The average posi-
tioning error is 0.01m in the x-axis and 0.07m in the y-axis,
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Figure 12: Static test with pseudorange correction: (a) positioning results, (b) x-axis positioning error, and (c) y-axis positioning error.
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the maximum positioning error is 0.72m in the x-axis and
0.70m in the y-axis, and the standard deviation of the x
-axis and y-axis errors is 0.22m and 0.12m, respectively.

The positioning error in terms of the cumulative distribu-
tion function on the databases with and without pseudorange
correction is shown in Figure 13. When the positioning error
on the x-axis threshold is 0.2m and 0.6m, the CDF with
pseudorange correction is 61% and 99%, which are higher
than the 32% and 85% without pseudorange correction.
When the positioning error on the y-axis threshold is 0.2m
and 0.6m, the CDF with pseudorange correction is 71%
and 99.9%, which are higher than the 52% and 94.8% without
pseudorange correction.

6. Conclusions

The long-distance transmission of Lora wireless technology
makes it possible to be widely used in the smart factory; this
paper proposes Lora RTT measurement for indoor position-
ing, which has two key aspects of innovations: Firstly, a Lora-
aided particle filter localization method is designed to solve
the problem for indoor positioning. Secondly, numerous
experiments were carried out with Lora RTT measurement
data to evaluate the performance of the proposed approach;
we used the CDF criteria to measure the quality of the esti-
mated location in comparison to the truth location. The
results show that the indoor positioning accuracy is
improved obviously with the help of the piecewise fitting cor-
rection method. At the same time, the Lora indoor position-
ing system can achieve a positioning accuracy of 1m under
the condition of LOS. In the future, we will focus on Lora
indoor positioning and pseudorange correction under the
condition of NLOS.
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It is necessary to recognize the target in the situation of military battlefield monitoring and civilian real-time monitoring. Sparse
representation-based SAR image target recognition method uses training samples or feature information to construct an
overcomplete dictionary, which will inevitably affect the recognition speed. In this paper, a method based on monogenic signal
and sparse representation is presented for SAR image target recognition. In this method, the extended maximum average
correlation height filter is used to train the samples and generate the templates. The monogenic features of the templates are
extracted to construct subdictionaries, and the subdictionaries are combined to construct a cascade dictionary. Sparse
representation coefficients of the testing samples over the cascade dictionary are calculated by the orthogonal matching tracking
algorithm, and recognition is realized according to the energy of the sparse coefficients and voting recognition. The
experimental results suggest that the new approach has good results in terms of recognition accuracy and recognition time.

1. Introduction

As a new kind of reconnaissance remote sensing device, SAR
is widely used in aerial and space reconnaissance, monitor-
ing, and intelligent tracking of moving aerial targets [1–3].
UAVs are widely used in military surveillance, smart home
monitoring, and target tracking. UAV-borne SAR has
become an important development direction of UAV remote
sensing earth observation technology. In the situation of mil-
itary battlefield monitoring and smart cities monitoring, it is
necessary to classify and identify the target. SAR image target
recognition mainly refers to radar detection of targets, pro-
cessing of echo information, and determination of target
attributes, categories, or types. The spectral property for
SAR images is determined by the back-scattered signal that
is simply the back reflected part of the microwaves scattered
from the land cover. Since the back-scattered signal is very
weak, it is very difficult to distinguish different types of tar-
gets in SAR images. At the same time, the inherent speckle

noise will play a vital role in information extraction from
SAR images. Being affected by the inherent speckle noise,
SAR images are inferior in readability. In addition, the image
features change tremendously as slight fluctuations of
imaging parameters or the variation of surroundings which
will affect the accuracy and speed of SAR image target
recognition.

SAR image target recognition mainly consists of three
stages: image processing, feature extraction, and classifier
design. The purpose of image processing is to remove speckle
noise, segment SAR image, and make it easy to extract fea-
tures and recognize the image target. Feature extraction
directly affects the accuracy of SAR image target recognition.
Features used for image classification usually include princi-
pal component analysis (PCA), generalized 2-dimensional
principal component analysis (G2DPCA), independent com-
ponent analysis (ICA), and wavelet. For two-dimensional
images, monogenic signal perfectly reproduces the mono-
genic amplitude of the signal energy, monogenic phase of
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the signal structure information, and monogenic orientation
of the signal geometry information, which has been widely
used in the field of image processing [4–6].

Similarly, there are many classifiers for SAR image recog-
nition, such as support vector machine (SVM) [7], k-nearest
neighbor (KNN) [8], and neural network (NN) [9]. In the
above recognition algorithms, in order to ensure the recogni-
tion performance, KNN classifier theoretically requires an
infinite number of training samples, which is obviously diffi-
cult to meet in practical application. SVM classifier trans-
forms the linear inseparable problem into a linear divisible
problem by using spatial projection. The huge amount of
computation caused by training seriously affects the recogni-
tion speed of SAR image targets. NN classifier uses the train-
ing samples to learn the parameters and weights of training
networks. When the categories and numbers of training sam-
ples are large, the corresponding computation is also very
large, which will lead to the lack of convergence in the train-
ing process. Therefore, the research of SAR image target rec-
ognition algorithm urgently needs to inject new elements.

In recent years, sparse representation of image signals has
been widely concerned in the field of pattern recognition.
Wright J first proposed a sparse representation-based classi-
fier (SRC); it constructed an overcomplete dictionary with
multiple kinds of training samples with label information
and classified by using sparse representation coefficients of
testing samples on the dictionary [10]. Now, sparse represen-
tation has been widely applied to face recognition [11–13],
the direction of arrival estimation, tensor modeling and angle
estimation [14–16], and SAR image target recognition [17,
18]. Extended maximum average correlation height
(EMACH) filter is actually a kind of template filter; it is
widely applied to the recognition of specific military targets
because of its high matching ability and strong antinoise abil-
ity. EMACH combined with exponential wavelet fractal fea-
ture and G2DPCA feature is applied to target detection of
SAR image, and EMACH combined with G2DPCA feature
is used to complete SAR image target recognition.

SAR image target recognition algorithm based on sparse
representation is designed from two aspects. The one is using
dictionary learning to complete recognition. There are two
main methods; one is to train dictionaries directly to make
them discriminant. That is to say, the dictionary should be
designed according to the training sample and has certain
adaptability. If the features of training samples are directly
extracted to construct overcomplete dictionary, the dictionary
dimension is high and the redundancy is large, which will
affect the speed of testing samples recognition. The second is
to study and optimize the dictionary in order to improve its
recognition ability. For example, Literature [19] used discrim-
inant KSVD dictionary learning method to complete SAR
image target recognition. The other one is using sparse coeffi-
cient to complete recognition. Unlike training multicategory
dictionaries, this approach only requires training a whole dic-
tionary without paying attention to the category of each dictio-
nary. The recognition algorithm based on this method usually
needs to consider adding the recognition error to the cost
function when learning the dictionary, so that the trained dic-
tionary has good recognition ability.

In this paper, SAR image target recognition is also stud-
ied from the point of dictionary design and sparse coefficient
solving. EMACH filter is used to train samples and generate
template samples; the monogenic features of all templates
are extracted; three subdictionaries are generated according
to the monogenic amplitude, the monogenic phase, and the
monogenic orientation; the sparse coefficients of the testing
samples’ monogenic feature in each level dictionary are
solved; and the category of samples to be tested is determined
by the image reconstruction error.

The main contributions of this paper are summarized as
follows:

(1) The proposed SAR image target recognition method
uses sparse representation to identify SAR image tar-
get, which eliminates the need for additional suppres-
sion of speckle noise, reduces the steps of SAR image
processing and saves time

(2) The proposed SAR image target recognition method
uses three subdictionaries to construct an overcom-
plete cascade dictionary, and it obviously improves
the recognition speed in the precondition of ensuring
the recognition accuracy

The remainder of this paper is organized as follows. Section
2 gives a brief survey of the related works about SAR image tar-
get recognition method based on sparse representation. Section
3 describes the motivation and design of the proposed SAR
image recognition method which is the major contribution of
this paper. Experimental results and discussion are shown in
Section 4. Finally, the concluding remarks are given in Section 5.

2. SAR Image Recognition Based on
Sparse Representation

When sparse representation is originally used in face recog-
nition, an overcomplete dictionary is mainly constructed by
the training samples; the testing sample is expressed as a lin-
ear combination of atoms in the overcomplete dictionary.
The face image can be accurately recovered according to
the sparse representation coefficients, and the recognition
of the target is realized according to the distance metric
between the reconstructed image and the testing sample
image.

There are similarities and differences between SAR image
target recognition and face recognition. They are same in
constructing the overcomplete dictionary with the training
samples. If the testing sample can be represented linearly by
the atoms of the overcomplete dictionary, and the coefficient
of the corresponding target category in all the sparse repre-
sentation coefficients is large, then the representation of the
testing sample in the dictionary is sparse, and the recognition
discrimination is completed according to the energy charac-
teristics of the sparse representation coefficient. SAR image
target recognition method based on sparse representation
omits the reconstruction process in face recognition method.
The framework of the specific recognition method is shown
in Figure 1.
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In SAR image target recognition, it is assumed that there
are k class samples; column vector set Di = ½vi,1, vi,2,⋯,vi,ni �
∈ Rm×ni of matrix is composed of ni training samples of class
i target. Any kind of testing sample y ∈ Rm can be expressed
as a linear combination of the training samples.

y = αi,1vi,1 + αi,2vi,2+⋯+αi,nivi,ni , ð1Þ

where αi,j ∈ Rðj = 1, 2,⋯,niÞ is the coefficient of linear repre-
sentation of the testing sample in the dictionary.

If the class i of the testing sample y is unknown, all k class
n training sample sets are formed into matrix D, that is,

D = D1,D2,⋯Dk½ � = ν1,1, ν1,2,⋯νk,nk
� �

: ð2Þ

The linear representation of test sample y under all train-
ing samples is as follows.

y = α1,1v1,1 + α1,2v1,2+⋯+αk,nkvk,nk , ð3Þ

y =Dx̂, ð4Þ
where x̂ = ½0,⋯,0,⋯αi,1, αi,2,⋯αi,ni ,⋯,0,⋯,0�T ∈ Rn is a coef-
ficient vector.

In an ideal case, only the same type of training sample
factor as the testing sample may be nonzero in the x̂; the cor-
responding coefficient for the other class samples shall be 0.
Since the sparse coefficient x̂ contains the information of
the target category, the recognition of the target can be real-
ized by the solution of the formula y =Dx̂.

In the SAR image target recognition method based on
sparse representation, the structure of overcomplete dictio-
nary is very critical. The dictionary must be of low dimen-
sion, and the atoms of the dictionary should correspond to
the properties of the SAR image. At the same time, sparse
representation coefficients of different classes of targets over
the dictionary must be distinguishable.

Considering the above points, if the overcomplete dictio-
nary is composed of SAR image pixels, that is, the overcom-
plete dictionary is constructed directly by stretching the
central region of the image into a column vector. Because
of the high dimension of the dictionary, it will directly affect
the speed of solving the subsequent sparse representation
coefficients. The overcomplete dictionary can be constructed
by using the representation vector which can describe the
characteristics of SAR image target. Thus, it can reduce the

dimension of dictionary atoms and improve the speed of
sparse solution. In [20], G2DPCA features are used to con-
struct the overcomplete dictionary, which reduces the
dimension of extracted features, improves the recognition
performance, and has good robustness to the change of target
azimuth.

3. The Proposed SAR Image Target
Recognition Method

The above SAR image target recognition method based on
sparse representation takes the feature information extracted
by all categories of the training samples or the training sam-
ples as the atoms of the overcomplete dictionary. When the
number of the training samples is too large, the dictionaries
generated by these two methods are too large, which is bound
to affect the speed of recognition. In this paper, a cascade dic-
tionary is adopted, that is, subdictionaries are generated
according to the monogenic feature of the training samples
and the category of the sample to be determined by the
reconstruction error. For simplicity, the system framework
is divided into the following four stages: image processing,
EMACH train, feature extraction, and target recognition.
Explanation of each step is described below.

3.1. Image Processing. First of all, we extract the region con-
taining the target in the image and generate a new target
image based on the biggest scattering point of the target sec-
tion as the sample image. Since sparse representation can
effectively remove noise [21], there is no need for additional
noise removal of SAR images in this paper. Take T7 tank
image (138 × 138) with angle as a sample. Select the target
region of 45 × 45 contained in the center of the image as
the sample image (as shown in Figure 2).

It can be seen from the images before and after the pro-
cessing that the sample image after processing aims at
description on the target, the detail information of the target
has been enhanced, and the influence of the surrounding
clutters on the target is reduced.

3.2. EMACH Train. EMACH obtains a two-dimensional
function by training the sample image, and then, the correla-
tion response of the image is obtained after doing the corre-
lation operation with the image to be detected of the same
size, and the target is judged according to the intensity of
the response.

First input images of size 45 × 45 extend the pixel to a
one-dimensional vector xi with the length of 45 × 45 line by
line from left to right and from top to bottom. Define h as

Training
image

Image
processing

Construct over
complete dictionary 

Testing
image

Image
processing Sparse representation Output

category

Figure 1: The framework of SAR image target recognition based on sparse representation.
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the filter of EMACH. FFT2 () represents Fourier operation
and assign β ∈ ð0, 1Þ, M = FFTðmÞ, Xi = FFTðxiÞ, and i = 1,
2,⋯,N .

Cβ
x =

1
N
〠
N

i=1
xi − 1 − βð Þm½ �+ xi − 1 − βð Þm½ �, ð5Þ

Sβx =
1
N
〠
N

i=1
Xi − 1 − βð ÞM½ �+ Xi − 1 − βð ÞM½ �, ð6Þ

wherem is the mean value of xi. The symbol of “+” represents
matrix transposition.

J hð Þ = h+Cβ
x h

h+ I + Sβx
� �

h
: ð7Þ

When the value of formula (7) is maximum, h is the
EMACH filter.

In this paper, the sample image in MSTAR database is
processed. The templates are obtained using EMACH, and
all the images within the range of 12° azimuth are selected
to train a template, and 30 templates are trained for each type
of image, for a total of 150 templates. Figure 3 shows all
EMACH template images.

3.3. Feature Extraction. The traditional Gabor filter uses an
adjustable filter to filter amplitude and phase in different
directions and scale. Riesz transform is introduced in the
analysis of monogenic signal. The expression of the Riesz
transform kernel in the spatial domain is defined as

ηz = ηx , ηy
� �

=
x

2π zk k3 ,
y

2π zk k3
� 	

: ð8Þ

Suppose w = ðu, vÞ, u, v represent two coordinates in the
frequency domain, the frequency domain response of Log-
Gabor filter is

gLG wð Þ = exp
− log w/γ0ð½ �2
2 log σ/γ0ð½ �2

( )
, ð9Þ

where γ0 is the central frequency and σ is the scale of Log-
Gabor filter. Log-Gabor filters of different scales can be
obtained by modify σ.

The band communication number generated by the filter
of 2D image f can be expressed as

h = f ∗ F−1 gLG wð Þð Þ, ð10Þ

where ∗ is the convolution operator and F−1 represents the
inverse Fourier transform.

hx = h ∗ ηx , ð11Þ

hy = h ∗ ηy , ð12Þ
where h is the real part of monogenic transformation and hx
and hy are the two imaginary parts.

For a given image f , the monogenic amplitude A, the
monogenic phase ϕ, and the monogenic orientation θ can
be calculated by the following formula:

A =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 + h2x + h2y

q
, ð13Þ

ϕ = arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2x + h2y

q
h

0
@

1
A, ð14Þ

θ = arctan
hy
hx

� 	
: ð15Þ

Obtain the monogenic feature of the ind template image
with s scale of log-Gabor filter; it can be described as

Ai,1, ϕi,1, θi,1,Ai,2, ϕi,2, θi,2,⋯,Ai,S, ϕi,S, θi,S
n o

: ð16Þ

Pull the monogenic feature into one-dimensional vector
and normalize it:

Di = χi,1
A , χi,2

A ,⋯,χi,S
A , χi,1

ϕ , χi,2
ϕ ,⋯,χi,S

ϕ , χi,1
θ , χi,2

θ ,⋯,χi,S
θ

n o
:

ð17Þ

Assuming the total number of the training samples is n,
and the subdictionary Dk can be expressed as:

D1 = χ1,1
A , χ1,2

A ,⋯,χ1,S
A ,⋯,χn,1

A , χn,2
A ,⋯,χn,S

A

� �
, ð18Þ

D2 = χ1,1
ϕ , χ1,2

ϕ ,⋯,χ1,S
ϕ ,⋯,χn,1

ϕ , χn,2
ϕ ,⋯,χn,S

ϕ

n o
, ð19Þ

D3 = χ1,1
θ , χ1,2

θ ,⋯,χ1,S
θ ,⋯,χn,1

θ , χn,2
θ ,⋯,χn,S

θ

n o
: ð20Þ

(b) Sample image(a) Tank image

Figure 2: Image processing.
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(a) Template images of BRDM2

(b) Template images of 2S1

(c) Template images of T72

(d) Template images of SLICY

(e) Template images of ZSU234

Figure 3: Template images.
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Each subdictionary can be treated as a binary classifier,
cascading all subdictionaries into a cascading dictionary.

3.4. Target Recognition. In early research, ensembles were
shown empirically and theoretically to possess better accu-
racy than any single component classifier [22]. Since each
classifier can only classify the samples of corresponding cat-
egory, it can be considered a weak classifier. However, a plu-
rality of weak classifiers are cascaded to form a strong
classifier with strong recognition capability, and the cascade
classifier designed by the hierarchical structure can make
most of the samples of the previous categories be recognized
directly in the previous classifiers, and only a small part of
samples of the latter categories or the missed samples will
pass all the subclassifiers, and the recognition time can be
obviously reduced.

As stated earlier, the objective of this paper is to develop a
cascade classifier that will improve SAR image target recogni-
tion accuracy and reduce recognition time. For this purpose,
we trained three subdictionaries and then combined them
into a cascade dictionary. Because the final classifier uses
the cascade structure, the recognition performance of each
subclassifier is very important. In this paper, the subclassi-
fiers are designed based on the monogenic features, each
monogenic feature generates a subdictionary, the sparse coef-
ficient of the testing sample under each subdictionary is
obtained, the testing sample is reconstructed by the coeffi-
cient, and the sample category is determined by the recon-
struction error. The selection of reconstruction error has a
great influence on the recognition performance of subclassi-
fiers. In general, a larger reconstruction error threshold
results in a shorter recognition time, but a higher recognition
error rate is also generated. The reconstruction error thresh-
old selected in this paper is large. In this way, although there
are some samples missed recognition, the last voting mecha-
nism guarantees the correct recognition of this part of
samples.

The system framework of the proposed SAR image target
recognition method based on monogenic signal and sparse
representation is shown in Figure 4.

The main steps of the SAR image target recognition
method based on monogenic signal and cascade dictionary
are described below.

Step 1. Process the training samples.

Step 2. Train the samples with the EMACH filter and gener-
ate the template samples.

Step 3. Extract the monogenic features of the template sam-
ples, and generate subdictionaries Di ði = 1, 2, 3Þ according
to the monogenic amplitude, the monogenic phase, and the
monogenic orientation features.

Step 4. For any testing sample y ∈ Rm, the monogenic feature
is extracted as X = fA, φ, θg. Repeat the following steps until
the condition is met.

(i) For signal Xiði = 1, 2, 3Þ, use the improved orthogonal
matching pursuit algorithm to solve underdetermined
linear equations Xi =Diα, and find out the most
sparse coefficient α

min
α

αk k1s:t: y −Diαk k2 < ε: ð21Þ

(ii) Since all the atoms in the dictionary have labels, the
sum of coefficients of the k class can be calculated:

rk yð Þ = sum αk,i


 

� �

, i = 1, 2,⋯, nk: ð22Þ

(iii) Determine the category of testing sample according
to the sum of coefficients

identity yð Þ = arg max
k

rk yð Þð Þ: ð23Þ

(iv) If the category is the same as the previous category,
directly output category k and skip to Step 5; other-
wise, i = i + 1; if i > 3, skip to Step 5; otherwise, Step
4 is repeated

Step 5. If the testing sample falls into different categories
under the three subdictionaries, the category is determined
by the voting recognition according to the reconstruction
error.

identity yð Þ = arg min
k

Xi −Diαkj jð Þ: ð24Þ

4. Experimental Results and Analysis

In this section, we describe and discuss the experimental
results obtained on the study sites introduced in Section 3.
We carried out several experiments with the aim to supply
a complete analysis of the performance of the proposed
SAR image target recognition method. We investigate differ-
ent aspects: (i) we perform an experiment to evaluate the rec-
ognition accuracy of the proposed recognition method and
(ii) we perform an in-depth comparative analysis of the per-
formance of the proposed method with respect to the other
recognition methods.

4.1. Data Set Used for Experiments. The experimental data
used herein is from the SAR ground still data of the SAR
ground target high resolution provided by the Working
Group of the United States DARPA/AFRL MSTAR. As a
result of the SAR imaging, even if the target is same, the azi-
muth difference can cause the difference of the characteristic
information, and the difference of the azimuth angle can
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cause the difference between the postimaging targets, because
the training samples are required to contain all the imaging
data at different angles. The SAR image data in the MSTAR
database is comprehensive; the azimuth coverage of each tar-
get is from 0° to 360°. The experiment selects a subset of
MSTAR database, including five types of SAR images:
BRDM2, 2S1, T72, SLICY, and ZSU234. The imaging resolu-
tion of the image is 0:3m × 0:3m, and the azimuth range is
from 0° to 360°. In the experiments, the imaging data at 17°

are selected as the training samples, and the imaging data
when the angle is 15° are used as the testing samples. Since
some of the SAR images are noise polluted seriously from
certain angle, the amount of images sample for every single
target can be used is different. The amount of training sam-
ples and testing samples used in this experiment is shown
in Table 1.

In order to compare efficiency of proposed method, we
establish two characteristics as a comparison basis:

(i) Recognition accuracy: proportion of the testing sam-
ples correctly recognized by the algorithm.

(ii) Recognition time: the time it takes an algorithm to
complete a given task.

The experiment was conducted with Matlab-2012b
64bit, installed on windows 10 professional 64bit with an
Intel Core i7 Processor (8MCache, up to 3.90GHz), and
16GB of RAM.

4.2. Recognition Performance Analysis. The monogenic fea-
tures of each kind of sample images are extracted and
drawn into column vectors to form three subdictionaries
Diði = 1, 2, 3Þ, concatenate the subdictionaries, and form a
cascade classifier shown in Figure 4. For the testing sam-
ples, the region with 45 × 45 size of the target in the center
of the image is also selected to realize the segmentation,
and the recognition accuracy of each class of testing sam-
ples with the proposed method in this paper is shown in
Table 2.

The correct sample of primary recognition refers to the
samples that do not need to participate in the final voting
mechanism recognition, and the correct sample of voting
recognition refers to the samples that need to participate in
the final voting mechanism recognition, that is, the samples
that are missed in cascade recognition. Suppose the total
number of samples is N , correct sample number of primary

Monogenic
amplitud

Monogenic
phas

Monogenic
orientatio

Sparse
representation

Reconstruction
error

N

Y Y

Output
category

Category is same
N

Training stage

Testing stage

Image
processing

Testing
sample

Sparse
representation

Sparse
representation

Sub dictionary
(monogenic
amplitude)

Sub dictionary
(monogenic

phase)

Sub dictionary
(monogenic
orientation)

Image
processing

EMACH
Train

Training
samples

Monogenic signal representatio

Monogenic
amplitude

Monogenic
phase

Monogenic
orientationMonogenic

signal
representation

Determine
category

Determine
category

Determine
category

Category is the same
as previous category

Figure 4: The system framework of cascade structure classifier.
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recognition is n1, and correct sample number of voting rec-
ognition is n2.

Primaryrecognitionaccuracy =
n1
N

× 100%, ð25Þ

Voting recognition accuracy =
n2
N

× 100%, ð26Þ

Recognitionaccuracy =
n1 + n2

N
× 100%: ð27Þ

As can be seen from Table 2, in the design of the classifier,
because the reconstruction error threshold is large, about
10% of the samples are missed in the first recognition. How-
ever, because of the existence of voting mechanism, this part
of the missed samples has been correctly recognized at the
time of the final vote.

Additionally, in order to further assess the effectiveness of
the proposed recognition method, this paper compared it
with the other four methods including the traditional classi-
fiers, such as the SVM recognition method (method 1), the
KNN recognition method (method 2), the method with the
dictionary directly generated by image pixels (method 3),
and the method with the dictionary generated by G2DPCA
features in [20] (method 4).

In method 1, SVM is a small sample learning classifica-
tion method, which has strong generalization ability. Nonlin-
ear processing can be easily realized by introducing kernel
function mapping. Suppose monogenic feature is x = fx1, x2
,⋯xMg, whereM is the number of categories of the samples.
For the tagged training sets ðxi, yiÞ, i = 1, 2,⋯,M, yi ∈ f1,−1g
, SVM is to solve the following optimization problems.

min
w,b,η

1
2
wTw + C〠

K

i=1
ηi subject to yi w

T f xið Þ + b
� �

≥ 1 − ηiηi ≥ 0,

ð28Þ

where C is the penalty factor of the error term.
Usually, RBF kernel function is used to map the training

vector to high dimensional space.

K xk, xg
� �

= φ xkð ÞTφ xg
� �

= exp −γ xk − xg
�� ��2� �

> 0, ð29Þ

where γ is a nuclear factor. In this paper, the kernel function
selected is kðu, vÞ = exp ð−γku − vkÞ, γ = 5.

In method 2, KNN is a simple and effective technique for
objects classification according to the closest training exam-
ples in the feature space. KNN rates the neighbor of a test
sequence among the training sample and uses the class labels
of the nearest neighbor to predict the test vector class.

For the tagged training sets ðxi, yiÞ, yi ∈ f1,−1g, the
Euclidean distance is often used as the distance metric to
measure the similarity between two vectors.

d2 xi, xj
� �

= xi − xj
�� ��2 = 〠

d

k=1
xik − xjk
� �2

: ð30Þ

Parameter k represents the number of neighbors in a set
of training observations which are nearest to the given obser-
vation in validation or testing data set. Variation of this
parameter will affect the accuracy of each binary classifier
inside an expert. In this paper, parameter k = 5.

In method 3, the dictionary is constructed directly with
the image pixels. In method 4, the dictionary is constructed
directly with the G2DPCA feature.

Experimental results, for each data set, are represented
separately for all methods in Figure 5; the graphical represen-
tations of average recognition accuracy and the recognition
time are shown in Figures 6 and 7.

As can be seen from Figures 5 to 7, on the premise of the
same feature extraction, the recognition accuracy of the SVM
classifier is the lowest, and recognition time is the longest.
The other two classifiers include the cascade dictionary clas-
sifier designed in this paper and the classifier designed to
construct the dictionary with the monogenic features of the
samples. Their recognition rates are obviously higher than
that designed by the dictionary directly generated with the
image pixels. The recognition accuracy of the proposed
method, method 3, and method 4 are all higher than that of
SVM and KNN methods.

A recognition method can not be considered superior to
other methods if it requires a great deal of time to yield rela-
tively small improvements. It can be seen from Figures 6 and
7 that by comparing the results of method 4 with that of the
proposed method, the recognition accuracy is slightly lower
than that of the method 4. However, the average recognition
time of method 4 is 19.14 seconds, while that of the proposed
method is only 10.75 seconds, the recognition speed is obvi-
ously improved. The main reason is that about 86% of the
samples are correctly identified at the first recognition and
do not need to pass the rest of the dictionaries. In method
4, all the testing samples need to do transvection with all
the atoms in the overcomplete dictionary, which obviously
slows down the recognition speed.

5. Conclusion

In order to solve the problem of higher dimension and larger
redundancy in constructing the dictionary with the training
samples, this paper proposed a SAR image target recognition
method based on monogenic signal and sparse representa-
tion. The main innovation points of this method is to train

Table 1: Experimental sample data set.

Target type Training sample Testing sample

BRDM2 298 274

2S1 299 274

T72 232 196

SLICY 299 288

ZSU234 299 274
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Table 2: The recognition accuracy of the proposed method.

BRDM2 2S1 T72 SLICY ZSU234

Total number of samples 274 274 196 288 274

Correct sample number of primary recognition 252 218 165 278 250

Primary recognition accuracy (%) 91.97 79.56 84.18 96.53 91.24

Correct sample number of voting recognition 11 42 20 5 10

Voting recognition accuracy (%) 4.01 15.33 10.20 1.73 3.65

Recognition accuracy (%) 95.98 94.89 94.38 98.26 94.89
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Figure 5: Recognition accuracy of different recognition methods.
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Figure 6: Recognition accuracy of different recognition methods.
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templates using EMACH filter, generate templates, construct
cascade dictionary with the monogenic features of various
templates, solve sparse representation coefficients of the test-
ing samples with the proved orthogonal matching pursuit
algorithm at each level of dictionary, and determine the cat-
egory of the testing samples by the reconstruction error of
the image. Through experimental results, we have demon-
strated that the proposed SAR image target recognition
method significantly improved the recognition speed in the
precondition of ensuring the recognition rate. Comparison
with the traditional dictionary directly generated by
G2DPCA feature based on sparse representation indicated
that the proposed SAR image recognition method was able
to improve the overall accuracy by up to 0.65% and shorten
recognition time by up to 43.83%.
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Existing greedy reconstruction algorithms require signal sparsity, and the remaining sparsity adaptive algorithms can be
reconstructed but cannot achieve accurate sparsity estimation. To address this problem, a blind sparsity reconstruction
algorithm is proposed in this paper, which is applied to compressed sensing radar receiver system. The proposed algorithm can
realize the estimation of signal sparsity and channel position estimation, which mainly consists of two parts. The first part is to
use fast search based on dichotomy search, which is based on the high probability reconstruction of greedy algorithm, and uses
dichotomy search to cover the number of sparsity. The second part is the signal matching and tracking algorithm, which is
mainly used to judge the signal position and reconstruct the signal. Combine the two parts together to realize the blind
estimation of the sparsity and the accurate estimation of the number of signals when the number of signals is unknown. The
experimental analyses are carried out to evaluate the performance of the reconstruction probability, the accuracy of sparsity
estimation, the running time of the algorithm, and the signal-to-noise ratio.

1. Introduction

With the continuous development of radar technology, the
electronic countermeasure environment has become increas-
ingly complex, and it will become more complex in the future
[1]. First, the analog-to-digital converter (ADC) sampling
rate limits the instantaneous bandwidth of the receiver [2].
The use of frequency agile signals requires radar receivers
to have increasingly wider instantaneous bandwidths. At
present, the development of high-rate ADCs is relatively slow
[3–5]. Second, in order to achieve full-probability reception,
radar receivers require increasingly hardware, the system is
more and more complex, and the volume is getting larger.
In order to meet the needs of modern electronic warfare, it
is necessary to solve the problems faced by digital channel-
ized receivers [6]. Donoho, Candes et al., Wan et al., and
Candes and Tao proved the theory of compressed sensing
in 2006 and proposed specific implementation algorithms
[7–10]. Compressed sensing is a new sampling method,
which is highly concerned in image processing, microwave

imaging, wireless communication, radar system, and bio-
medical engineering [11–18].

In recent years, an analog-to-information converter [19]
(AIC) has been proposed based on the compressed sampling
theory. The methods to achieve AIC include random demod-
ulation (RD) [20], multicoset sampling (MCS) [21], quadra-
ture compressed sampling (QuadCS) [22], and modulated
wideband converter (MWC) [23] structure. The under-
Nyquist sampling of the sparse signal can be realized at a
sampling rate much lower than the Nyquist theorem, and
the compressed sampled data of the signal can be obtained.
The modulation broadband converter is currently the most
mature multibranch compression sampling structure at.
Cohen et al. and Mishali et al. have completed the realization
of the hardware structure [24, 25].

Compressed sensing theory is mainly divided into three
parts: signal sparse representation, observation matrix, and
reconstruction algorithm. Signal sparse representation
means that the signal can be sparsely represented in a certain
transform domain. The observation matrix reduces the
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dimensionality of the signal through domain conversion.
Finally, it restores the original signal through a reconstruc-
tion algorithm [26]. The reconstruction algorithm is the most
important step in compressed sensing. The algorithm can be
divided into the following three categories: combination
algorithm, convex optimization algorithm, and greedy
matching pursuit algorithm [27]. The greedy matching pur-
suit algorithm has been widely studied due to its fast recon-
struction speed and small calculation amount.

Existing greedy matching pursuit algorithms mainly
include two types. The first category is greedy matching pur-
suit algorithms that require sparsity as a priori information,
mainly including matching pursuit (MP) [28], orthogonal
matching pursuit (OMP) [29], regularized orthogonal
matching pursuit (ROMP) [30], compressed sampling
matching pursuit (CoSaMP) [31], subspace pursuit (SP)
[32], and generalized orthogonal matching pursuit (gOMP)
[33] algorithms. The OMP algorithm is one of the simplest
matching pursuit algorithms. In each iteration, the atom with
the largest inner product of the observation matrix and the
residual is selected and added to the support set. Use the least
square method to update the residuals. Make the residual
continuously approach a certain value to achieve conver-
gence. The OMP algorithm guarantees the orthogonality of
iterations, but cannot guarantee the correctness of atoms.
So once the wrong atom is introduced, it will affect subse-
quent iterations. The CoSaMP algorithm adds backtracking
ideas when selecting atoms. Each time an atom is selected,
not only the atom is added to the support set, but also on
the wrong atom to delete. Although the CoSaMP algorithm
can improve the reconstruction probability and quickly com-
plete the iterations, as the algorithm increases in sparsity, the
reconstruction probability will drop sharply. The gOMP
algorithm finds multiple support sets each time, the method
of finding at most K times improves the probability of recon-
struction. However, the sparsity of the algorithm is greater
than K after the iteration.

The other is the adaptive algorithm that does not require
sparsity, mainly including stagewise orthogonal matching
pursuit (StOMP) [34], stagewise weak orthogonal matching
pursuit (SWOMP) [35], and sparsity adaptive matching pur-
suit (SAMP) [36] algorithms. There are three problems in the
aforementioned sparsity adaptive matching pursuit algo-
rithm. The first problem is that the StOMP and SWOMP
algorithms’ support concentration does not consider the
selection of the wrong atom, which leads to the limitation
of the reconstruction probability of the algorithm [37]. The
second problem is that although the SAMP algorithm has a
high reconstruction probability, it cannot accurately estimate
the sparsity of the signal during adaptive estimation due to
the limitation of the step size [38]. The third problem is that
SWOMP algorithm and SAMP algorithm are also susceptible
to noise in the signal. Therefore, it is necessary to design a
sparsity adaptive matching tracking algorithm that can accu-
rately estimate the signal sparsity and high reconstruction
probability in noisy radar signals.

This paper proposes a sparseness adaptive matching
tracking algorithm for radar receiver system based on com-
pressed sensing. Aiming at the problem of low reconstruction

probability of greedy matching pursuit algorithm. A
backtracking-based orthogonal matching pursuit BOMP
algorithm is designed using backtracking ideas. In each iter-
ation, the wrong atoms selected in the support set will be
eliminated. Compared with other greedy algorithms that
require sparsity, it has a higher reconstruction probability.
Aiming at the problem of sparsity estimation error. Utilizing
the principle of binary search, we devised a method sparsity
search. First, set an estimated value of sparsity continuously
and change the estimated value of sparsity through judgment
criteria. Finally, get an accurate estimated sparsity. The esti-
mated sparsity values are all based on high probability recon-
struction. At the same time, due to the characteristics of
binary search, it can quickly find the true value within a lim-
ited number of steps. For the noise problem in the signal,
joining residuals associated with the threshold, the ability
dynamically adapts to noise. The matching pursuit algorithm
proposed in this paper is compared with similar sparsity
adaptive algorithms, which improved the accuracy of output
signal-to-noise ratio, reconstruction probability, and sparsity
estimation.

The arrangement of this article is as follows. In the sec-
ond section, the system model of the compressed sensing
broadband receiver based on MWC is introduced. In the
third section, an orthogonal matching pursuit algorithm
based on backtracking is designed, which improves the
reconstruction probability. In the fourth section, a sparsity
adaptive reconstruction algorithm based on compressed
sensing is proposed. In the fifth section, the performance of
the algorithm is verified by simulation. Compare the recon-
struction probability, sparsity, and running time of several
adaptive algorithms under one-dimensional signal. Under
the radar signal, the algorithm SNR and sparsity estimation
and reconstruction probability are also analyzed. Finally,
our conclusions are given in the sixth section.

2. System Model

In this section, the system model of MWC compressed sam-
pling structure and sparse reconstruction algorithm will be
introduced. The structure design and working principle of
MWC compressed sampling wideband digital receiver are
introduced, including the introduction of mathematical
expressions and a brief description of the compressed sensing
reconstruction algorithm.

2.1. MWC Structure. The radar signal in space is often con-
tinuous. In this article, for the convenience of introduction,
the signal is set as a discrete signal under the Nyquist sam-
pling rate. This setting will not affect the result. The received
signal x½n� is first mixed with the pseudorandom sequence
~pm½n� to obtain the mixed signal ~xm½n�, and the mixed signal
is then passed through the corresponding low-pass filter h½n�
to obtain the filtered signal wm½n�. Finally, the signal is
extracted by Mp time and sent to the low-speed ADC for
samples to get ym½k�. The discrete compressed sampling
structure based on MWC receiver is shown in Figure 1.
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The discrete time domain of the radar received signal can
be expressed as follows:

x n½ � = s n½ � + η n½ �, 0 ≤ n ≤N: ð1Þ

Among them, s½n� is the effective signal component, η½n�
is the Gaussian white noise component in the signal, and N
represents the length of the signal. x½n� is a complex discrete
signal; in the Nyquist sampling rate f NYQ = 1/TNYQ, TNYQ
represents the period of Nyquist sampling, and the band-
width range is FNYQ ≜ ½−f NYQ/2, f NYQ/2�. The discrete-time
Fourier transform (DTFT) is x½n� and expressed as follows:

X ej2πfTNYQ
� �

= 〠
N−1

n=0
x n½ �e−j2πf nTNYQ : ð2Þ

It can be seen from Figure 1 that the structure containsM
parallel branches. Taking the mth path as an example, the
period of a periodic pseudorandom sequence pm½n� is Tp,
each period contains Mp = Tp f NYQ elements. The sequence
pm½n� can be expressed as follows:

pm n½ � =
~pm n½ � 0 ≤ n ≤Mp − 1

0 otherwise

(
: ð3Þ

The discrete Fourier series of the sequence ~pm½n� can be
expressed as follows:

~Pm n½ � = 1
Mp

〠
Mp−1

l=0
Pm lð Þej 2π/Mpð Þnl: ð4Þ

l represents the index number and 0 ≤ l ≤Mp − 1, and
PmðlÞ is the discrete Fourier transform coefficient of the
sequence pm½n�. The mixing rate of the signal and the
sequence is f p = 1/Tp = f NYQ/Mp. The sequence pm½n� will
be divided FNYQ into Mp segments. The interval of each
segment is the same f p. The position of each segment is called
an index. The range of the baseband spectrum segment is

Fp ≜ ½−f p/2, f p/2�. In order to avoid edge effects, there is a
need to meet f p ≥ B, where B represents the bandwidth of s½
n�. The discrete-time Fourier transform (DTFT) of the mixed
signal ~xm½n� is expressed as follows:

~Xm ej2πfTNYQ
� �

= 〠
N−1

n=0
x n½ � ⋅ ~pm n½ �e−j2πf nTNYQ

= 〠
N−1

n=0
x n½ � ⋅ 1

Mp
〠
Mp−1

l=0
Pm lð Þej 2π/Mpð Þnle−j2πf nTNYQ

=
1
Mp

〠
Mp−1

l=0
Pm lð ÞX ej2πfTNYQ f−l f pð Þ� �

:

ð5Þ

The mixed signal ~xm½n� is filtered by a low-pass filter h½n�.
The frequency response is Hðe−j2πf TNYQÞ. The cutoff fre-
quency of the low-pass filter is f p/2. The discrete-time Fou-
rier transform (DTFT) filtered signal wm½n� is expressed as
follows:

Wm ej2πfTNYQ
� �

= 〠
N−1

n=0
~xm n½ � ⋅ h n½ �e−j2πf nTNYQ

= ~Xm ej2πfTNYQ
� �

H ej2πfTNYQ
� �

=
1
Mp

〠
Mp−1

l=0
Pm lð ÞX ej2πfTNYQ f−l f pð Þ� �

, f ∈ Fp

0, f ∉ Fp

8>>><
>>>:

:

ð6Þ

After the signal passes through the low-pass filter, the
spectral components are within Fp ≜ ½−f p/2, f p/2�. But the
data rate of the signal is still f NYQ. The data rate can be
reduced by decimating the filtered signal. Use low-speed
ADC sampling to complete the decimation of the signal. Dec-
imation factor is Mp = f NYQ/f p. The discrete-time Fourier
transform (DTFT) of the sampled signal ym½k� is expressed
as follows:

Ym ej2πfTs

� �
= 〠

K−1

k=0
ym k½ �e−j2πf nTs

=
1
Mp

〠
Mp−1

l=0
Pm lð ÞX ej2πfTNYQ f−l f pð Þ� �

, f ∈ Fs:

ð7Þ

The output can be written in the form of a matrix; the
expression is as follows:

y fð Þ = Cz fð Þ, f ∈ Fs, ð8Þ

where yð f Þ is a column vector of lengthM. The mth element
is Ymðej2πf TsÞ, zð f Þ is a column vector of length Mp, and

↓MP

↓MP

↓MP

p
1
[n]

y
1
[k]

y
m
[k]

y
M
[k]

~

p
m
[n]

~

p
M
[n]

~

Low‑pass
filter 

Low‑pass
filter 

Low‑pass
filter 

x1[n]

x[n]

w1[n]

wm[n]

wM[n]

~

xm[n]
~

xM[n]
~

h[n]

h[n]

h[n]

Figure 1: Block diagram of MWC.
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the lth element is Xðej2πf TNYQð f−lpÞÞ. The linear combination
can be expressed as follows:

Pm lð Þ = 1
Mp

〠
Mp−1

l=0
pm n½ �e−j 2π/Mpð Þnl: ð9Þ

The observation matrix C is M ×Mp dimensional and
can be expressed as follows:

C =
PF
Mp

, ð10Þ

where P representsM ×Mp dimensional random matrix,
F represents Mp ×Mp dimensional discrete Fourier trans-

form matrix, Fl = ½1, ej2πl/Mp ,⋯, ej2πðMp−1Þl/Mp �T is a column
vector, and ð∙ÞT represents transpose. The expanded form
of the formula can be obtained.

Y1 ej2πfTs

� �

Y2 ej2πfTs

� �
⋮

YM ej2πfTs

� �

0
BBBBBBBBB@

1
CCCCCCCCCA

=
1
Mp

p1,0 ⋯ p1,Mp−1

⋮ ⋱ ⋮

pM,0 ⋯ pM,Mp−1

2
6664

3
7775

⋅

∣ ⋯ ∣ ⋯ ∣

F0 ⋯ Fl ⋯ FMp−1

∣ ⋯ ∣ ⋯ ∣

2
6664

3
7775

×

X ej2πfTNYQ f
� �

⋮

X ej2πfTNYQ f−l f pð Þ� �
⋮

X ej2πfTNYQ f− Mp−1ð Þf pð Þ� �

2
6666666666664

3
7777777777775
:

ð11Þ

The above formula is the frequency domain model of
MWC compressed sensing receiver, and the feasibility of this
structure is proved through mathematical deduction. There-
fore, the compressed sensing of signals can be realized
through the MWC structure.

2.2. Reconstruction Algorithm. The sampled signal model
obtained by using theMWC structure is the infinite measure-
ment vector (IMV) model. In theory, it takes countless itera-
tions to recover the original signal. Xu et al. proposed
continuous finiteness in literature [20]. The continuous-to-
finite (CTF) algorithm can convert the IMV model of the
MWC compressed sample signal into a multiple measure-
ment vector (MMV) model. The signal under this model
can be reconstructed from the original signal through the tra-

ditional reconstruction algorithm structure. The block dia-
gram of CTF algorithm implementation is shown in the figure.

As can be seen from Figure 2, first, use the sampled signal
y½k� to get the matrix Q, and the expression is as follows:

Q =
ð
f ∈Fs

y fð ÞyH fð Þdf = 〠
K

k=0
y kð ÞyT kð Þ, ð12Þ

which ð∙ÞH represents the conjugate transpose. Then, decom-
pose Q to get frame V . The expression is as follows:

Q =VVH : ð13Þ

Obtain the joint support set S according to the sparse
reconstruction of the vector V . The greedy matching pursuit
algorithm can find the index set S where the signal exists.
Using the sampling signal and the observation matrix, the
time-domain waveform zs½n� of each channel in the baseband
can be obtained. The expression is as follows:

ẑi n½ � = A†
i y n½ � i ∈ S,

0 i ∉ S,

(
ð14Þ

where ð∙Þ† represents the pseudoinverse. The reconstructed
signal x̂½n� can be finally obtained. The time domain expres-
sion is as follows:

x̂ n½ � = x̂ nTNYQ
� �

=〠
i∈S

~zi n½ � ∗ hi n½ �ð Þej2πif pnTNYQ : ð15Þ

h½n� is an ideal interpolation filter, and the rate is the
Nyquist sampling rate f NYQ. The greedy algorithm part will
be studied below.

3. BOMP

This section proposes a backtracking orthogonal match pur-
suit (BOMP) algorithm. The algorithm mainly improves the
OMP algorithm by three parts: threshold filtering, maximum
selection, and backtracking idea. First, threshold filtering is
used to calculate the inner product of the residual and the
matrix. Filter out all atoms whose inner product is greater
than the threshold ut and add these atoms to the support
set. Secondly, the backtracking idea is used to find the least
square solution using the support set. Through backtracking
idea, only some atoms in the support set are selected to form
a new support set. Finally, use the maximum selection. In
order to ensure that the number of atoms’ final output is
the same as the sparsity, t atoms are selected to form a new
support set during the tth backtracking. It is equivalent to
only adding one atom for each cycle of support concentra-
tion. After the cycle ends, there are only t atoms in the sup-
port set. Specific steps are as follows:

As seen in Algorithm 1, we need to enter A, y, and K .
Find the atom whose inner product is greater than the
threshold ut each time. Combine these atoms with the sup-
port set Λt−1 obtained in the previous cycle to obtain a new
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support set βt .Use the matrix and residuals corresponding to

the support set to find the least squares solution of bδ t .

Replace bθ t , At , and Λt and find the residual rt according tobθ t and At . Finally, judge whether the iteration is completed
through t and rt . Set ε=10−6. Set the threshold th = tskrsk2/
kyk2, where rs is the residual calculated last time, k∙k2 is
the 2 norms. ts ≥ 2 because the found atom needs to be
greater than twice the average.

In order to verify the reconstruction probability of the
BOMP algorithm, choose OMP, CoSaMP, and gOMP algo-
rithms to compare with the algorithm proposed in this paper.
The original signal x uses a Gaussian random signal, and the
signal length is N = 256. The observation matrix Φ is a
Gaussian random matrix, and the observation value M =
128. The interval of sparsity K is [35, 70], and the step size
is 5. Each sparsity is measured 1000 times. The same signal
is reconstructed by four algorithms. The reconstruction
probability under different sparsity is shown in Figure 3.

As shown in Figure 3, when the sparsity is greater than
30, the reconstruction probability of the OMP algorithm
begins to gradually decrease. The reconstruction probability
of CoSaMP algorithm, gOMP algorithm, and BOMP algo-
rithm is still good. When the sparsity is greater than 50, the
reconstruction probability of CoSaMP algorithm, gOMP
algorithm, and BOMP algorithm begins to decrease. The
reconstruction probability of BOMP algorithm is about
15% higher than that of gOMP algorithm. It can be seen that
the BOMP algorithm improves the reconstruction probabil-
ity. Regarding the reconstruction probability, the CoSaMP
algorithm eliminates the wrong atom every time the atom

is selected to prevent the wrong atom from affecting the
selection of subsequent atoms, so the reconstruction proba-
bility is better than the OMP algorithm. The gOMP algo-
rithm selects multiple atoms each time. According to the
conditions for stopping iteration, it can be known that theo-
retically at most SK atoms can be selected. The correct atom

Construct a frame 

y[k] for V
Solve V = CU for
sparest matrix U

Reconstruct joint support
S

j
S = ∪ supp(Uj)

y[k]

Figure 2: Block diagram of CTF algorithm.

Input:M ×Nmeasurement matrix A
N × 1 sampled measurement vector y

sparsity level K
Output: the estimated support set Λt

the nonzero values bθ t
Initialization: r0 = y, Λ0 = Ø, A0 = Ø, t = 1;
(1) Compute inner product ut = rt−1, aj, find greater than th from ut , and add the index values j to index set J0;
(2) βt =Λt−1 ∪ J0, αt =At−1 ∪ ajðj∊J0Þ
(3) Solve the least squares solution of y = αtbδ t and bδ t = ðαTt αtÞ−1αTt y;
(4) Replace bθ t、At , and Λt and find t maximum values from bδ t denoted by bθ t , αt number t columns denoted by At , and βt number t
columns denoted by Λt ;

(5) Update residual rt = y −At
bθ t = y −AtðAT

t AtÞ−1AT
t y;

(6) t = t + 1; if t ≤ K return (1); if t > K or rt < ε, stop iteration.

Algorithm 1: BOMP algorithm.
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set is a subset of the supporting set, thus further improving
the probability of reconstruction. For the BOMP algorithm,
it is finally achieved by selecting the best atom while contin-
uously removing the wrong atom. Improve the probability of
reconstruction.

4. DSAMP

This paper proposes a dichotomy-based sparsity adaptive
matching pursuit (DSAMP) algorithm for compressed sens-
ing broadband receivers. The algorithm mainly contains
two parts. The first part is a fast atom search based on
dichotomy. First, select the number of sparsity is 2n−1, in
order to achieve sparse coverage under high reconstruction
probability. The number of atoms selected for the first time
is n. After the preestimated sparsity, the unknown sparsity
problem becomes a known sparsity problem. Perform the
residual calculation on the basis of this sparsity. Use criteria
to determine the calculation results, then use the dichotomy
to change the preestimated sparsity according to the evalua-
tion results. The iteration is repeated until the dichotomy sat-
isfies the stop iteration condition or the residual calculation
of the nth atomic selection is completed. The sparsity when
the iteration is stopped is the sparsity finally estimated by
the algorithm. Find the true sparsity through this method.
The second part is the BOMP algorithm, which guarantees
that the reconstruction algorithm under a given sparsity has
a high reconstruction probability. At the same time, it can
ensure that the sparsity is the same as the number of atoms
in the support set.

Proposition 1. For the greedy matching pursuit algorithm, the
estimated sparsity K0, the real sparsity K , when K0 < K and
K0 ∈ K , the residual rt > ε; when K0 ≥ K and K ∈ K0, the
residual rt ≤ ε.

Proof.According to the principle of the greedy matching pur-
suit algorithm, rt is monotonically decreasing when the atom

selection is correct in the iteration process, and then accord-
ing to the iteration stop condition, it is obvious that the prop-
osition is correct.

In Algorithm 2, for the recovery algorithm, the number
of channelsM must be at least twice the sparsity K to recover
the original signal with high probability. Therefore, limit the
sparsity range of the algorithm ½0, 2n�, where n = <log2M −
1 > ð<∙>is roundÞ. In the first cycle, the number of atoms is
set to the midpoint of the entire range, which is 2n−1. Steps
(2)~(6) are BOMP algorithm, and it is mainly to calculate
the residual under the current sparsity and iterate under the
set sparsity. Steps (7)~(9) are to set K0, and use Proposition
1 to set K0. t < K0 indicates that the algorithm has completed
convergence ahead of time. The real sparsity is less than the
sparsity; at this time, the number of cycles is the estimated
sparsity. When i = n+1, it means that the last calculation is
completed, the estimated sparsity and support set are found,
and the iteration can be stopped. When i = n, the sparsity K0
has been selected for the last time. Satisfying rt < ε indicates
that the sparsity is the estimated sparsity. It can directly out-
put all residuals, sparsity, and support set. When rt < ε is not
satisfied, K0 plus 1 is the estimated sparsity. It is necessary to
recalculate the residual, sparsity, and support set under the
new sparsity. When t = K0, the algorithm has iterated K0
times. rt > ε indicates that the algorithm has not reached
the condition to stop iteration. It needs to update the esti-
mated sparsity K0 = K0 + 2n−1−i and continue to iterate. In
other cases, the iteration continues after updating the esti-
mated sparsity K0 = K0 − 2n−1−i.

5. Simulation Results

In this section, the performance of the algorithm is verified
through simulation of the algorithm. This article simulates
the algorithm in two situations. The first is to compare the
performance of the algorithm proposed in this paper with
several other algorithms in the case of one-dimensional

Input:M ×Nmeasurement matrix A
N × 1 sampled measurement vector y

Output: sparsity level t
the estimated support set Λt

the nonzero values bθ t
Initialization: i = 0,n = <log2M − 1 > ð<∙>is roundÞ,K0 = 2n−1
(1) i = i + 1, r0 = y, Λ0 = Ø, A0 = Ø, t = 1;
(2) Compute inner product ut = rt−1, aj, find greater than th from ut , and add the index values j to index set J0;

(3) βt =Λt−1 ∪ J0, αt =At−1 ∪ ajðj∊J0Þ; if βt =Λt−1, stop iteration; otherwise, solve the least squares solution of y = αtbδ t ,bδ t = ðαTt αtÞ−1αTt y;
(4) Replace bθ t、At , and Λt and find t maximum values from bδ t denoted by bθ t , αt number t columns denoted by At , and βt number t
columns denoted by Λt ;

(5) Update residual rt = y −At
bθ t = y −AtðAT

t AtÞ−1AT
t y;

(6) t = t + 1; if t ≤ K0 return (2); if t > K0 or rt < ε proceed to (7);
(7) If t < K0, stop iteration; if i = n + 1, stop iteration; if i = n, proceed to (8); if t = K0 proceed to (9);
(8) If rt > ε, K0 = K0 + 1, proceed to (1); otherwise, K0 = K0, stop iteration;
(9) If rt > ε, K0 = K0 + 2n−1−i, proceed to (1); otherwise, K0 = K0 − 2n−1−i, proceed to (1).

Algorithm 2: DSAMP algorithm.
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signals, mainly to verify the accuracy and running time of the
algorithm for the estimation of reconstruction probability
and sparsity. The other is to simulate under radar signals,
which mainly verifies that the algorithm can adapt to multi-
ple sparse signals under low signal-to-noise ratio and finally
simulates the signal-to-noise ratio of several algorithms.

5.1. One-Dimensional Signal Simulation. This experiment
mainly verifies the correctness of the one-dimensional signal,
including signal reconstruction error and sparsity estimation.
The signal x is a Gaussian random signal, the signal length is
N = 256, the observation value isM = 128, and the sparsity is
K = 51. The sparse locations are randomly selected. The
observation matrix Φ is a Gaussian random matrix.
Figure 4 is a one-dimensional signal reconstruction diagram
of the DSAMP algorithm, including the original signal,
reconstructed signal, and reconstruction error. Figure 5 is a

diagram of the true position and estimated position of the
sparse signal in Figure 4.

As shown in Figure 4, it can be seen that the error
between the reconstructed signal and the original signal is
εr < 1 × 10−13. It can be seen that the algorithm can accurately
reconstruct the original signal.

Figure 5 shows the position and estimated position of the
sparse signal when the sparsity is K = 51, respectively. It can
be seen that the estimated sparsity is the same as the real
sparsity of the signal, and the estimated position and the real
position are also the same. The algorithm can accurately esti-
mate the sparsity and the location of sparsity.

5.2. Sparsity Estimation Probability Diagram. In this experi-
ment, it is mainly compared with the sparsity adaptive algo-
rithms such as StOMP, SWOMP, and SAMP to illustrate the
advantages of the algorithm proposed in this paper. The
signal x is a Gaussian random signal, the signal length is
N = 256, the observation value is M = 128, the interval of
sparsity K interval is [1, 66], and the step size is 5. The sparse
locations are randomly selected. The observation matrixΦ is
a Gaussian random matrix. The sparse position is randomly
selected and performs 1000Monte Carlo experiments at each
sparsity. The matrix is a Gaussian random matrix. Figure 6 is
the reconstruction probability diagram of 1000 Monte Carlo
experiments under different sparsity. Figure 7 is the average
sparsity estimation diagram of 1000 Monte Carlo experi-
ments under different sparsity. Figure 8 is the average run-
ning time diagram of 1000 Monte Carlo experiments under
different sparsity.

As shown in Figure 6, when the sparsity is greater than
40, the reconstruction probability of the StOMP algorithm
and the SWOMP algorithm begins to decrease. The recon-
struction probability of SAMP algorithm and DSAMP algo-
rithm is still 100%. When the sparsity is greater than 56,
the StOMP and SWOMP algorithms cannot be recon-
structed. The reconstruction probability of SAMP algorithm
and DSAMP algorithm begins to decline, but the reconstruc-
tion probability of SAMP algorithm and DSAMP algorithm
is similar.
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Figure 4: One-dimensional signal reconstruction of BSAMP.
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As shown in Figure 7, the real K represents the real spar-
sity set, and the remaining four lines represent the corre-
sponding algorithms. When the sparsity is less than 45, the
SWOMP algorithm can accurately estimate the sparsity
when the sparsity is small, and as the sparsity increases, the
error of the estimated sparsity number gradually increases.
The number of sparsities estimated by the StOMP algorithm
changes with the number of real sparsities, but there is an
error with the real sparsity. When the sparsity is greater than
45, the sparsity estimated by the SWOMP algorithm has
exceeded 100, which is relatively close to the observed value
M. When the sparsity is greater than 45, the amount of spar-

sities estimated by the StOMP algorithm continues to
decrease. From Figure 6 can be seen that the reconstruction
probability of these two algorithms is decreasing under this
sparsity. When the sparsity is less than 51, due to the setting
of the step size of the SAMP algorithm, the amount of spar-
sity estimates each time is an integer multiple of 10. The
DSAMP algorithm can accurately estimate the number of
signal sparsity. When the sparsity is greater than 51, the
number of sparsity estimated by SAMP algorithm is not
changed, and the sparsity estimated by DSAMP algorithm
also has errors. It can be seen from Figure 6 that the recon-
struction probability of these two algorithms is rapidly
decreasing under this sparsity.

As shown in Figure 8, the average running time of the
StOMP algorithm and the SWOMP algorithm is relatively
short, the average running time of the DSAMP algorithm is
the longest, and the average running time of the SAMP algo-
rithm is between several algorithms. This is because the
StOMP algorithm and the SWOMP algorithm can select
multiple atoms in each iteration and can quickly complete
the iteration. The SAMP algorithm can select multiple atoms
in each iteration, but the iterative atoms are repeatedly
selected in the iteration, so the average running time is longer
than the StOMP algorithm and the SWOMP algorithm. The
DSAMP algorithm only adds one atom per iteration, so the
average running time is the longest.

5.3. Radar Signal Simulation. In this section of the experi-
ment, radar signals and MWC compressed sampling wide-
band digital receiver are used to simulate and verify the
algorithm proposed in this paper. Set the Nyquist sampling
frequency f NYQ = 20GHz of the signal, and the frequency
of the signal is f1 = 1:1GHz, f2 = 3:37GHz, and f3 = 5:13
GHz, the signal 1 is a linear frequency modulation signal,
the frequency modulation width is 50MHz, signals 2 and 3
are regular signals, the pulse width of the signal is t = 1:02
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us, the noise is Gaussian white noise, the signal-to-noise ratio
SNR = 10 dB, and the signal amplitude is A1 = 0:7, A2 = 0:5,
and A3 = 0:6. The parameter settings of the MWC com-
pressed sampling broadband digital receiver: the number of
sampling channels is M = 128, the periodic pseudorandom
sequence adopts a Bernoulli pseudorandom sequence of ±1,
the period length is MP = 255, the signal sampling time
is T = 10:2 us, and the original sampling point number is
N = 204000 points. Figure 9 is the radar signal reconstruc-
tion diagram of the compressed sampling broadband receiver
of MWC by the DSAMP algorithm, including the original
signal, the noise signal, and the reconstructed signal.
Figure 10 is the corresponding spectrogram.

As shown in Figure 9, the algorithm can estimate 3 sig-
nals and reduce the noise of the output signal in the recon-
struction process. As shown in Figure 10, the algorithm can
accurately estimate the position of the 3 signals. Since the real
signal is used in the simulation, the same spectrum will
appear in the position of the symmetrical spectrum. It can
be seen that the spectrum on the far left and right is the
LFM signal. The noise of the four reconstructed signals in
the middle is higher than that of the noise-added signal,
and all noises beyond the sparsity are eliminated. Therefore,
the algorithm has a certain effect on the improvement of
signal-to-noise ratio.

In order to prevent multiple signals from appearing in a
channel at the same time, the frequencies of the signals are
equally spaced. The initial frequency of the signal is, respec-
tively, f0 = 1:1555GHz, the interval between each signal is
0:315GHz, the interval of the number of signals is [1, 20],
and the step is one. The signal amplitude of is all set to
A1 = 0:7. Perform 1000Monte Carlo experiments under each
signal-to-noise ratio. Other conditions are the same as in
Figure 9. Figure 11 is a reconstruction probability diagram
of different numbers of signals. Figure 12 is an RMSE dia-
gram of sparsity. The simulations use root mean square error
(RMSE) to analyze the sparsity estimation performance,
expressed as follows:

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

〠
i=N

i=1
Ki − Kð Þ2

vuut , ð16Þ

where N is the times of independent Monte Carlo simula-
tions, Ki denotes the sparsity estimation, and K denotes real
sparsity.

Figures 11 and 12 are the results of the same experiment.
The basis for judging the successful reconstruction of the
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algorithm in Figure 11 is the intersection of the estimated
sparsity position and the real position. If the intersection is
the same as the real position, the reconstruction is considered
successful. It can be seen from Figure 11 that the reconstruc-
tion probability of SWOMP algorithm and SAMP algorithm
is better than DSAMP. The reconstruction probability of
StOMP algorithm drops sharply after the number of signals
is greater than 10. It can be seen from Figure 12 that the
RMSE of the SWOMP algorithm and the SAMP algorithm
is very large. It can be seen from Figure 12 that the RMSE
of the SWOMP algorithm and the SAMP algorithm is very
large. After the number of signals is greater than 3, it
decreases. The sparsity estimated by the SWOMP algorithm
is close to the observed valueM. When the number of signals
in the SAMP algorithm is greater than 2, the estimated spar-
sity is all 60. The RMSE of the StOMP algorithm rises sharply
after the number of signals is greater than 10. The RMSE of
the DSAMP algorithm has been kept within 5. The SWOMP
algorithm and SAMP algorithm can still maintain a recon-
struction probability above 0.7 when the number of signals
is 20. This is because the two algorithms continue to add
atoms to the atomic set until the stop iteration condition is
met. Although it can be reconstructed, it introduces a large
number of error atoms. When the number of signals in the
StOMP algorithm is greater than 10, the reconstruction prob-
ability drops rapidly and the RMSE rises rapidly, indicating
that the algorithm begins to fail at this time. The DSAMP
algorithm maintains a small RMSE when the reconstruction
probability decreases. This is because as the signal sparsity
increases, the accuracy of the algorithm sparsity estimation
decreases, but the estimated sparsity is still close to the
true sparsity.

Set the number of signals to one signal, the frequency of
the signal is selected randomly between [0, 10GHz]. The
signal-to-noise ratio SNR interval is [-15, 20], and the step
size is 5. Perform 1000 Monte Carlo experiments under
each signal-to-noise ratio. Other conditions are the same

as in Figure 9. Figure 13 is a simulation diagram of the
algorithm SNR.

As shown in Figure 13, the SWOMP algorithm and the
SAMP algorithm are not effective in improving the output
signal-to-noise ratio under low signal-to-noise ratio condi-
tions, while the DSAMP algorithm and StOMP algorithm
have a greater improvement in the output signal-to-noise
ratio under low signal-to-noise ratio conditions. It can be
seen from Figures 11 and 12 that the SWOMP algorithm
and the SAMP algorithm are in the case of low signal-to-
noise ratio. When the observation matrix is mixed, the noise
of all frequency bands is mixed into the baseband, which
causes the noise of the baseband signal to be strengthened,
and the number of signals recovered during reconstruction
is greater than the sparsity. Therefore, the output SNR is
lower than the input SNR under the condition of low SNR.
For DSAMP algorithm and StOMP algorithm, the sparsity
estimation is more accurate at low SNR. It is equivalent to fil-
tering out all the out-of-band noise of the signal, so the
signal-to-noise ratio is greatly improved. For a high signal-
to-noise ratio, the accuracy of the sparsity estimation of the
four algorithms increases, so the output signal-to-noise ratio
is improved. The DSAMP algorithm and the StOMP algo-
rithm have a relatively close output signal-to-noise ratio. This
is because the two algorithms have the same threshold setting
when selecting the threshold. The DSAMP algorithm can
have the advantage of improving the signal-to-noise ratio.

6. Conclusion

Adaptive sparsity estimation is necessary for wideband
receivers based on MWC compressed sampling in radar
systems. This paper proposes a sparsity adaptive matching
pursuit algorithm based on dichotomy. In the algorithm
proposed in this paper, there is no need to know the sparsity
of the signal in advance. We estimate the sparsity of the signal
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in a limited number of iterations through the dichotomy. It
can be seen through simulation that an accurate and adaptive
estimation of the sparsity of the signal is achieved. The orthog-
onal matching pursuit based on backtracking improves the
accuracy of supporting concentrated atoms and finally
improves the reconstruction probability of the algorithm.
Due to the algorithm’s accurate estimation of a single signal,
the noise introduced by error atoms is reduced during recon-
struction. Improve the signal-to-noise ratio of the algorithm
to the signal. As the sparsity increases, the algorithm can still
maintain a better reconstruction probability and more accu-
rate sparsity estimation. In the future, the running time of
the algorithm can be improved to reduce the calculation time
of the algorithm.
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Here, a high-precision mutual coupling coefficient estimation method is proposed that is more suitable for adaptive beamforming
than traditional algorithms. According to the relationship between the designed transition matrix and the signal, the proposed
algorithm selects the transition matrix corresponding to the high-power signal. The high-precision estimation of the mutual
coupling coefficient is obtained by using the selected transition matrix estimation, which yields relatively good estimation
accuracy for the mutual coupling coefficient when the desired signal-to-noise ratio (SNR) is low and relatively robust adaptive
beamforming with unknown mutual coupling. Simulation results demonstrate the validity of the proposed method.

1. Introduction

Signal processing technology, such as direction of arrival
(DOA) and robust adaptive beamforming (RAB), has been
widely used in radar, sonar, communication, etc. [1–7]. As
a kind of array error, mutual coupling seriously affects the
performance of various signal processing algorithms [8–11].
To avoid the influence of mutual coupling, a middle
subarray-based (MSB) approach is proposed in [12], and a
maximum interelement spacing constraint (MISC) array is
designed in [13]. In addition, many algorithms for calibrating
mutual coupling have been proposed. Since the mutual cou-
pling matrix (MCM) can be modeled as a banded symmetric
Toeplitz matrix for a uniform linear array (ULA), a subspace-
based method is proposed in [14], and a fourth-order cumu-
lant- (FOC-) based method is proposed in [15]. In addition,
an iterative autocalibration algorithm based on the eigende-
composition of the sampling covariance matrix for a uniform
circular array (UCA) is proposed to calibrate unknown
mutual coupling since the MCM has a complex symmetric
circular Toeplitz structure in a UCA in [16]. Furthermore, a
joint DOA estimation and mutual coupling self-calibration
for ULA-based bistatic multiple-input-multiple-output
(MIMO) radar is proposed in [17]. Based on [16], a parame-

ter estimation method for direction-dependent mutual cou-
pling is proposed in [18]. However, the MSB approach
reduces the degree of freedom (DOF) of the array, and the
complex structure of the MISC array increases the difficulty
of signal processing, while the subspace-based method in
[14] constructs a high-dimensional matrix, and the algorithms
proposed in [16, 18] both need an iterative process. To reduce
the computational complexity in estimating mutual coupling,
two low-complexity algorithms for direction-dependent
mutual coupling and direction-independent mutual coupling
were proposed in [19, 20], respectively.

To improve the robustness of adaptive beamforming in
the presence of unknown mutual coupling, a middle subar-
ray-plus-reconstruction-based (MSRB) method combining
the MSB algorithm with interference-plus-noise covariance
matrix (INCM) reconstruction [21] is proposed in [22].
However, the MSRB approach requires a large array aperture
for high performance. Similarly, the desired signal steering
vector with unknown mutual coupling is calibrated by using
the specific structure of the MCM, and the new beamfor-
mer is obtained by combining a diagonal loading beamfor-
mer with the desired signal steering vector estimation [11].
To reduce the computational load, a subspace-plus-recon-
struction-based (SRB) beamformer is then designed by
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incorporating the subspace-based mutual coupling coeffi-
cient estimation method [14], and INCM reconstruction is
designed in [10]. Obviously, the algorithms proposed in
[20] can be utilized to design beamformers to further reduce
the computational load. However, the algorithm proposed in
[20] cannot obtain a high accuracy for the mutual coupling
coefficients when there is a high power difference between
signals since the accuracy of the subspace-based method is
positively correlated with the signal-to-noise ratio (SNR).

To further improve the robustness of adaptive beam-
forming to unknown mutual coupling, a novel subspace-
based algorithm is proposed to estimate mutual coupling
coefficients and is utilized to design a novel adaptive beam-
former. Different from the algorithms proposed in [20], we
add the process of selecting several suitable transitional
matrices and calculating their inverses. After estimating a
group of transitional matrices, we select the transitional
matrix corresponding to the maximum spectral peak to esti-
mate the mutual coupling coefficient vector and the MCM.
Then, the signal steering vector is calibrated with the esti-
mated MCM. Finally, by combining the estimated MCM
and the INCM reconstruction, we propose a novel adaptive
beamforming algorithm. According to simulation, compared
with several existing approaches, the proposed mutual cou-
pling estimation method has a higher estimation accuracy,
especially in the case of SNR differences between several sig-
nals. The designed beamformer is more robust than the exist-
ing beamformer to mutual coupling.

2. Signal Mode

We assume that a ULA of N sensors is impinged by L nar-
rowband uncorrelated signals, and the noise is additive white
Gaussian noise. We assume that the signal and noise are sta-
tistically independent. When the direction-independent
mutual coupling effect is considered, the received snapshot
at the kth time instant can be expressed as

x kð Þ = xs kð Þ + n kð Þ = C〠
L

l=1
sl kð Þa θlð Þ + n kð Þ, ð1Þ

where xsðkÞ and nðkÞ stand for the N × 1 vector of the signal
and noise, respectively. θl is the lth signal DOA, and slðkÞ and
aðθlÞ ∈ℂN×1 are the corresponding complex envelope and
steering vector, respectively. C ∈ℂN×N denotes the MCM,
which can be molded as a banded symmetric Toeplitz matrix
for a ULA since the mutual coupling coefficients between the
elements are inversely proportional to their distance. In gen-
eral, we assume that the mutual coupling coefficient becomes
zero when the spacing of two elements exceeds an interele-
ment spacing of P; hence, the mutual coupling coefficient
vector and the MCM can be defined as

c = c0, c1, c2,⋯,cP−1½ �T ,
C = Toeplitz cN , cNð Þ,

ð2Þ

where c0 = 1 and cN = ½cT , 0�T ∈ℂN×1.

Recall that in Equation (1), the covariance matrix of xðkÞ
can be given by

R = E x kð ÞxH kð Þ� �
=CARsAHCH + σ2nIN , ð3Þ

where E½·� and ð⋅ÞH represent the expectation and conjugate
transpose, respectively. A = ½a1, a2,⋯,aL� ∈ℂN×L denotes the
manifold matrix, and Rs = diag ðσ21, σ2

2,⋯,σ2LÞ ∈ℝL×L is the
covariance matrix of signals, where σ2

l is the power of the l
th signal. σ2n is the power of the noise, and IN ∈ℝN×N is an
identity matrix.

In practice, the sampling covariance matrix is usually
used in lieu of the covariance matrix, and the sampling
covariance matrix R̂x can be expressed as

R̂x =
1
K
〠
K

k=1
x kð ÞxH kð Þ, ð4Þ

where K stands for the number of snapshots. After eigende-
composing R̂x, we can obtain

R̂x =UΛUH =UsΛsUH
s +UnΛnUH

n , ð5Þ

where U is the eigenvector matrix and Λ denotes the corre-
sponding eigenvalue matrix. Λs and Λn are diagonal matrices
that contain L large eigenvalues and the remaining small
eigenvalues, respectively. Us and Un are the corresponding
eigenvector matrices. In general, Us is called the signal sub-
space, and Un is called the noise subspace. Additionally,
fCaðθlÞgLl=1 can span the signal subspace.

For instance, when DOA estimation is performed using a
subspace algorithm, the spatial spectral function shown
below is usually used [13]:

P θð Þ = 1
aH θð ÞUnUH

n a θð Þ : ð6Þ

Obviously, if the MCM is unknown, the spectral peaks do
not correspond to the true DOA of the signals since Un is
orthogonal to CaðθÞ, not aðθÞ. That is, if C can be estimated,
then the DOA of signals can be estimated.

3. Proposed Algorithm

3.1. Mutual Coupling Coefficient Estimation. According to
the banded symmetric Toeplitz structure of MCM C, we
can obtain [19]

Ca θð Þ = T θð Þc, ð7Þ

where

T θð Þ = E1a θð Þ, E2 θð Þa θð Þ,⋯,EP θð Þa θð Þ½ �, ð8Þ
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where

Ep

� �
ij
=

1, if C½ �ij = cp

0, otherwise

(
, p = 0, 1,⋯, P − 1: ð9Þ

Based on the orthogonality between CaðθlÞ and the noise
subspace Un, we can obtain

aH θlð ÞCHUnUH
n Ca θlð Þ = 0: ð10Þ

Recall that Equations (7) and (10) can be rewritten as

cHQ θlð Þc = 0, ð11Þ

where QðθÞ is a transitional matrix and is defined as

Q θð Þ = TH θð ÞUnUH
n T θð Þ, ð12Þ

which is a P × P matrix, and its dimensions are smaller than
those of the transitional matrix in [11, 13].

When P ≤N − L, QðθÞ is a nonsingular matrix for a gen-
eral θ since the ranks of TðθÞ andUn are P and N − L, respec-
tively. However, if θ is one DOA of the incident signals, QðθÞ
is a singular matrix, and its determinant is zero [23]. When
QðθÞ is a singular matrix, we can find that Equation (11)
holds and that c is an eigenvector of the matrix QðθÞ corre-
sponding to the eigenvalue zero, since c is a nonzero vector.
That is to say, the degree of freedom of the proposed algo-
rithm is N − P.

Namely, the mutual coupling coefficient vector c can be
estimated by

cl =
vl min
vl min 1

, ð13Þ

ĉ =
1
L
〠
L

l=1
cl, ð14Þ

where vl min denotes the eigenvector corresponding to the
minimum eigenvalue of QðθlÞ, and vl min 1 is the first entry
of vl min.

From Equation (12), we can find that the matrix QðθlÞ
can be easily calculated by the known DOA of the incident
signals, but the DOAs are unknown. Hence, we construct a
new spectral function

Pdet θð Þ = 1
det Q θð Þ½ � , ð15Þ

where det ½⋅� stands for the determinant of a matrix. Finally,
QðθlÞ can be obtained through spectral peak searching since
the first L peaks correspond to fQðθlÞgLl=1.

Since the noise subspace is estimated by the sampling
covariance matrix, the correlation between the signal steering
vector and the signal subspace improves with increasing
SNR. Namely, as the SNR increases, the orthogonality of
the signal and noise subspace becomes more obvious. That

is, at a low SNR, the signal steering vector and the noise sub-
space may not be orthogonal, i.e.,

aH θrð ÞCHUnUH
n Ca θrð Þ ≠ 0, ð16Þ

where θr stands for the DOA corresponding to a signal with a
low SNR.

Further, we can obtain

cHQ θrð Þc ≠ 0: ð17Þ

Distinctly, c is not the eigenvector of the matrixQðθrÞ. In
other words, if there are two signals, one with a high SNR and
the other with a low SNR, such as an interference signal and a
desired signal simultaneously incident on an array, the esti-
mation accuracy decreases when Equations (13) and (14)
are used to estimate the mutual coupling coefficients. In this
case, we can eigendecompose onlyQmax corresponding to the
maximum peak of Equation (15); hence, the estimation of c
can be given by

ĉ =
vm−min
vm−min 1

, ð18Þ

where vm−min is the eigenvector corresponding to the mini-
mum eigenvalue of the matrix Qmax, and vm−min 1 is the first
entry of vm−min.

Obviously, when multiple incident SNRs are similar, the
use of Equation (18) to estimate the mutual coupling coeffi-
cients results in errors. However, in most cases, the SNRs of
incident signals are not the same. For example, in RAB, due
to the simultaneous existence of interference signals and the
desired signal, the estimation accuracy of mutual coupling
coefficients is higher when using Equation (18) than when
using Equations (13) and (14).

3.2. Adaptive Beamforming with Unknown Mutual Coupling.
Based on Equation (18), when there are one desired signal
and L interference signals, the received data can be calibrated
as

x̂ kð Þ = Ĉ−1x kð Þ = Ĉ−1C s0 kð Þa θ0ð Þ + 〠
L

l=1
sl kð Þa θlð Þ

" #

+ Ĉ−1n kð Þ ≈ s0 kð Þa θ0ð Þ + 〠
L

l=1
sl kð Þa θlð Þ + Ĉ−1n kð Þ:

ð19Þ

where Ĉ ≜ ToeplitzðĉN , ĉNÞ, ĉN = ½ĉT, 0�T ∈ℂN×1, θ0 is the
direction of the desired signal, and s0ðkÞ is the corresponding
signal complex envelope.

Recall that in Equation (3), the covariance matrix can be
rewritten as

Rx̂ = E x̂ kð Þx̂H kð Þ� �
= σ20a θ0ð ÞaH θ0ð Þ

+ 〠
L

l=1
σ2l a θlð ÞaH θlð Þ + σ2nĈ

−1Ĉ−H
:

ð20Þ
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Distinctly, after the received data are calibrated, the noise

covariance matrix is no longer σ2nIM but is σ2
nĈ

−1Ĉ−H
;

namely, the white Gaussian noise becomes nonwhite Gauss-
ian noise, which seriously affects the performance of the
beamformer. Therefore, we compensate for Rx̂ to obtain

~Rx̂ = R̂x̂ − bσ2
nĈ

−1Ĉ−H + bσ2
nIM , ð21Þ

where bσ2
n is the noise power estimate, which can be expressed

as

bσ2
n =

1
M − L − 1

〠
M

m=L+2

bλm, ð22Þ

where bλm (m = 1, 2,⋯,M) in descending order are the
eigenvalues of the sample covariance matrix R̂x̂. Similarly,
R̂x̂ is given by

R̂x̂ =
1
K
〠
K

k=1
x̂ kð Þx̂H kð Þ: ð23Þ

Further, the INCM can be reconstructed by [24]

~Ri+n = ~Rx̂ − bσ2
0a θ0ð ÞaH θ0ð Þ + γIM , ð24Þ

where γ is a diagonal loading factor set to further reduce the
impact of nonwhite Gaussian noise and bσ2

0 can be calculated
as

bσ2
0 =

1
aH θ0ð Þ~R‐1

x̂ a θ0ð Þ
: ð25Þ

Under the minimum variance distortionless response
principle for RAB, the weight vector is usually expressed as
[25]

wopt =
R−1
i+na θ0ð Þ

aH θ0ð ÞR−1
i+na θ0ð Þ , ð26Þ

where Ri+n denotes the ideal INCMwithout mutual coupling.
Using ~Ri+n in lieu of Ri+n yields

ŵopt =
~R−1
i+na θ0ð Þ

aH θ0ð Þ~R−1
i+na θ0ð Þ

: ð27Þ

However, Equation (11) cannot be used to estimate the
MCM whenM − L − 1 < P, since QðθÞ is a singular matrix
for any θ. Namely, the DOF of the proposed algorithm is lim-
ited for a fixed ULA.

The main computational load of the designed beamfor-
mer is caused by estimating mutual coupling coefficients.
The process of estimating mutual coupling coefficients con-
sists of two parts: one is the construction of spectral function,
and the other is the search of spectral peaks. Hence, the com-
putational load of the proposed method is approximately O

ðM3Þ + S ×OðP3Þ, where OðM3Þ is due to the construction
of spectral function, S ×OðP3Þ is caused by the search of
spectral peaks, and S is the number of spectral peak searches.

In other words, the proposed beamformer can be sum-
marized as follows:

Step 1. Estimate the covariance matrix R~x using Equation
(4), and eigendecompose it using Equation (5).

Step 2. Construct the transformation matrix and the tran-
sitional matrix using Equations (7) and (12), respectively.

Step 3. Estimate the transitional matrixQmax correspond-
ing to the highest SNR signal by searching for the highest
peak of Equation (15), and estimate the mutual coupling
coefficient vector using Equation (18).

Step 4. Reconstruct the INCM by calibrating the received
data and compensating for calibration errors using Equation
(24).

Step 5. Calculate the weight using Equation (27).

4. Simulations

In this section, we implement several simulations to validate
the effectiveness and superiority of the proposed algorithm.
A ULA with N = 12 elements spaced a half-wavelength apart
is used. The additive noise in the elements is modeled as spa-
tially and temporally independent complex Gaussian noise
with zero mean and unit variance. We assume that the
mutual coupling coefficient vector is

c = 1, 0:90e−jπ/3, 0:75ejπ/4, 0:45e−jπ/10, 0:15e−jπ/6
� �T

: ð28Þ

According to the previous analysis, an iterative algorithm
and two subspace-based methods without iteration are
selected for comparison, and the three algorithms are called
Liao’s method [14], Elbir’s method [18], and Wen’s method
[20]. In each trial, the number of angular sectors is selected
as 12, and ε = 10−4 in Elbir’s method. In addition, the
Cramér-Rao bound (CRB) of the real and imaginary parts
of the mutual coupling coefficients is provided in simula-
tions. Note that the calculation of CRB is performed as in
[26], and the CRB is modified to correspond to the real and
imaginary parts of the mutual coupling coefficients.

Example 1. The directions of the desired signal and two inter-
ferences are assumed to be 10°, -20°, and 40°, respectively, and
the corresponding SNR and interference-to-noise ratio (INR)
are set to 10 dB and 40 dB, respectively. The number of snap-
shots is 500, and 100Monte Carlo runs are performed. In this
experiment, the results of the estimation of mutual coupling
coefficients are listed in Table 1 (a single run). The proposed
method successfully estimates all mutual coefficients with
high accuracy. Figure 1 displays the root mean square error
(RMSE) of the real and imaginary parts of all mutual cou-
pling coefficients versus SNR and the number of snapshots,
where the RMSE is calculated by

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

M P − 1ð Þ 〠
M

m=1
〠
P−1

p=1
ŵp

m −wpð Þ2
vuut , ð29Þ
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whereM is the number of Monte Carlo runs, wp denotes the
real or imaginary part of cp, and ŵp

m stands for the estimated
value of wp in the mth trial.

Figure 1(a) displays the RMSE values of the estimation of
the real and imaginary parts of all the mutual coupling coef-
ficients versus the SNR. The RMSE of the real and imaginary
parts of all the mutual coupling coefficients versus the num-
ber of snapshots is shown in Figure 1(b). As we can see, the
mutual coupling coefficient estimation accuracy of the pro-
posed algorithm is always close to the CRB; when the differ-
ence in the signal power is large, the performance of the
proposed method is closer to the CRB, and the larger the dif-
ference is, the more obvious the advantage of the proposed
algorithm. However, when the power of each signal is similar,
the performance of the proposed method is worse than that
of Liao’s method and Wen’s algorithm but is still better than
that of Elbir’s algorithm. These results occur because when all
the signal powers are similar, the mutual coupling coeffi-
cients estimated by all the transitional matrices are close to
each other, and the mutual coupling coefficients obtained
using more information have higher accuracies. Additionally,
when the SNR of the desired signal is significantly higher
than the INR of the interference signal, the proposed method
still yields better performance.

Example 2. The performance of the proposed beamformer
and several classical robust adaptive beamformers, such
as LSMI, MSB, MSRB, and SRB, is investigated in this
example. In addition, the simulation compares a simplified
SRB (SSRB) beamformer obtained utilizing Wen’s method
to replace the mutual coupling coefficient estimation algo-
rithm in the SRB beamformer. The output signal-to-inter-
ference-plus-noise ratio (SINR) versus the SNR with the
number of snapshots fixed at 500 and the output SINR
versus the number of snapshots with the SNR fixed at
10 dB are analyzed. Figure 2(a) displays the output SINR
of different beamformers versus SNR, while Figure 2(b)
shows the output SINR of those approaches versus the num-
ber of snapshots.

In Figure 2, the output SINR of the proposed beamformer
is always close to the optimal SINR. In addition, at a high
SNR, its performance is close to that of the SRB beamformer
and SSRB beamformer, which is obviously better than that of
the other algorithms. However, at a low SNR, the perfor-
mance of the designed beamformer is obviously higher than
that of the SRB beamformer and the SSRB beamformer due

to the high-precision estimation of the mutual coupling
matrix. The performance of the MSRB beamformer is limited
by the array aperture and is always lower than that of the pro-
posed beamformer. In addition, the designed beamformer
has a faster convergence rate than the SRB beamformer and
SSRB beamformer and is always close to the optimal output
SINR.

Example 3. The performance of the designed beamformer
with the unknown direction error is analyzed in this example.
It is assumed that there is a random direction error of the
desired signal, and it is uniformly distributed in ½−2°, 2°� in
each trial. Namely, the direction error of the desired signal
changes from run to run but remains fixed in one trial. The
results are shown in Figure 3.

Compared with Figure 2, the performance of the pro-
posed beamformer, the SRB beamformer, and the SSRB
beamformer is basically unchanged in Figure 3 because these
three beamformers can estimate the desired signal direction
when estimating the mutual coupling coefficients. The per-
formance of the MSRB beamformer is only slightly degraded,
but that of the MSB beamformer is seriously degraded
because INCM reconstruction is utilized in the MSRB beam-
former but not in the latter. Note that the convergence rate of
the proposed beamformer is also very fast compared to those
of other beamformers.

Example 4. The performance of the designed beamformer
with incoherent local scattering.

The influence of incoherent local scattering is consid-
ered in this experiment. Generally, incoherent local scatter-
ing always occurs and seriously affects the performance of
the beamformer. Here, we assume that in the case of inco-
herent local scattering, the received desired signal can be
expressed as

xs kð Þ = a θ0ð Þs0 kð Þ + 〠
3

q=1
sq kð Þa θq

� �
, ð30Þ

where θqðq = 1, 2, 3Þ denotes the direction of the qth local
scattering signal and is subject to uniform distribution in
½θ0 − 2∘, θ0 + 2∘� and sqðkÞ and aðθqÞ are the corresponding
signal waveform and the steering vector, respectively. The
simulation results are shown in Figure 4.

Figure 4 displays the simulation result of each tested
beamformer with incoherent local scattering. Compared
with Figure 2, since local scattering signals disturb the sam-
pling covariance matrix, the performance of all tested
beamformers deteriorates to varying degrees, especially at
high SNRs. Since the incoherent scattering signal causes
serious errors in the estimation of the mutual coupling
coefficient at a high SNR, the performance of all algorithms
is seriously degraded at a high SNR. However, at a low
SNR, the influence of the incoherent scattered signal is small,
and the proposed algorithm only utilizes the highest power
signal to estimate mutual coupling coefficients; thus, the per-
formance of the proposed beamformer is always close to the
optimal output SINR. In addition, the convergence rate of

Table 1: Mutual coupling coefficient estimation (SNR = 10 dB).

Mutual coupling coefficients
Real part (α)

Imaginary part
(β)bα α bβ β

c1 0.4488 0.4500 -0.7766 -0.7794

c2 0.5288 0.5303 0.5284 0.5303

c3 0.4264 0.4280 -0.1392 0.1391

c4 0.1303 0.1299 -0.0742 -0.0750
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the proposed beamformer is very fast compared to those of
other beamformers.

5. Conclusion

In this paper, a modified subspace-based mutual coupling
coefficient estimation algorithm for beamforming is pro-
posed. The main contribution of this manuscript includes
two parts: (1) to improve the mutual coupling coefficient

estimation accuracy, we propose a strategy to improve
the estimation accuracy by choosing appropriate transition
matrices; (2) to improve the robustness of the beamformer to
unknown mutual coupling, a beamformer is designed com-
bining the calibrated steering vector and the interference-
plus-noise covariance matrix reconstruction method. The
proposed beamformer has superior performance than exit-
ing algorithms especially when there is a big power gap
between different interferences. Simulations demonstrate
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Figure 1: (a) RMSE of the mutual coupling coefficients versus SNR, K = 500, INR = 40 dB. (b) RMSE of the mutual coupling coefficients
versus the number of snapshots, SNR = 10 dB, INR = 40 dB.
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Figure 2: (a) Output SINR versus SNR, INR = 40 dB, K = 500. (b) Output SINR versus the number of snapshots, SNR = 10 dB, INR = 40 dB.
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the superiority of the modified subspace-based mutual cou-
pling coefficient estimation algorithm and the robustness of
the designed beamformer to unknown mutual coupling.
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