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Cellular senescence is a state of irreversible cell proliferation arrest induced by various stressors including telomere attrition, DNA
damage, and oncogene induction. While beneficial as an acute response to stress, the accumulation of senescent cells with
increasing age is thought to contribute adversely to the development of cancer and a number of other age-related diseases,
including neurodegenerative diseases for which there are currently no effective disease-modifying therapies. Non-cell-
autonomous effects of senescent cells have been suggested to arise through the SASP, a wide variety of proinflammatory cytokines,
chemokines, and exosomes secreted by senescent cells. Here, we report an additional means of cell communication utilised by
senescent cells via large numbers of membrane-bound intercellular bridges—or tunnelling nanotubes (TNTs)—containing the
cytoskeletal components actin and tubulin, which form direct physical connections between cells. We observe the presence of
mitochondria in these TNTs and show organelle transfer through the TNTs to adjacent cells. While transport of individual
mitochondria along single TNTs appears by time-lapse studies to be unidirectional, we show by differentially labelled co-culture
experiments that organelle transfer through TNTs can occur between different cells of equivalent cell age, but that senescent cells,
rather than proliferating cells, appear to be predominant mitochondrial donors. Using small molecule inhibitors, we demonstrate
that senescent cell TNTs are dependent on signalling through the mTOR pathway, which we further show is mediated at least in
part through the downstream actin-cytoskeleton regulatory factor CDC42. These findings have significant implications for the
development of senomodifying therapies, as they highlight the need to account for local direct cell-cell contacts as well as the
SASP in order to treat cancer and diseases of ageing in which senescence is a key factor.

1. Introduction

Intercellular communication is crucial in regulating cellular
function, for example, in response to environmental or
intracellular stress. Such interplay has historically been
thought to be coordinated through the secretion of soluble
factors including chemokines, cytokines, growth factors,
and hormones, and their recognition by cell surface receptors
or through the secretion and internalisation of extracellular
vesicles. However, recent evidence suggests that an alterna-
tive form of cell-cell communication can be mediated
through intercellular membrane connections. Such connec-

tions, termed tunnelling nanotubes (TNTs) or intercellular
bridges, have been characterised as long, fragile, open-ended
and transient protrusions which mediate membrane continu-
ity between connected cells. Since their initial description [1],
nanotubes have been observed connecting cells of the same or
different cell types, with a particular prevalence detected in
immune cells including macrophages, monocytes and NK
cells [2]. The cargo shuttled within nanotubes includes nutri-
ents, sterols, plasma membrane components, signalling mole-
cules, proteins, RNA species and ions that passively diffuse
between connected cells, alongside larger cargos such as whole
organelles or protein complexes that require transport by
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myosin motors [3]. Nanotubes may play important physio-
logical functions, for example, in osteoclast differentiation
[4], and have been observed in vivo, both in murine mye-
loid cells in the cornea [5] and in human malignant pleural
mesothelioma [6].

Intercellular bridges can form either by protrusion elon-
gation, where one cell extends filopodia-like protrusions
which subsequently connect with a second nearby cell, or
by cell dislodgement, where two cells which are initially close
move apart, leaving behind a long, thin membrane connec-
tion [2]. Both result in the formation of nanotubes with
diameters ranging from 50 to 1500 nm, spanning tens to
hundreds of microns between connected cells. Actin fila-
ments (together with myosin) are present in “thin” TNTs,
while “thick” TNTs additionally contain microtubules,
raising the possibility that cytoskeletal composition could
control TNT cargo transport through size exclusion [7].
Given the universal requirement for F-actin in bridge struc-
tures, it is unsurprising that regulators of actin cytoskeletal
dynamics including Rac1, CDC42, and their respective
downstream effectors WAVE and WASP are also implicated
in bridge formation, as well as the myosin motor protein
Myo10 [8]. CDC42 expression, which also regulates filopodia
formation, appears important for both bridge elongation and
intercellular cargo transport [9].

Intercellular communication through TNTs may repre-
sent a cellular response to stress, potentially allowing rescue
through transfer of functional components from undamaged
cells nearby. Consistent with this, both oxidative stress and
DNA damage are associated with increased TNT formation
[10], in a manner dependent on p53 [11]. Stressed cells
appear to “reach out” to unstressed cells [11], and transfer
of mitochondria from healthy neighbouring cells to stressed
cells via TNTs has been speculated to serve as a rescue
mechanism for stress tolerance. For example, intercellular
mitochondrial transport allows survival of cancer cells
experiencing loss of mitochondrial functionality [12]. As well
as providing rescue from metabolic failure or mitochondrial
dysfunction, mitochondrial transfer via TNTs has even been
reported to result in cellular reprogramming [13]. Nanotube
formation may also be involved in the induction of apopto-
sis, as the death signal Fas ligand has been noted to be shut-
tled via TNTs in T lymphocytes to induce cell death in
target cells [14].

Stress is therefore associated with TNT formation, but
cellular stress is also a known driver of cell senescence
(reviewed by [15]). It is hence noteworthy that intercellular
membrane connections have been observed to increase upon
induction of cell senescence, with transfer of cytoplasmic
proteins preferentially from senescent cells to natural killer
(NK) cells in co-culture [16], resulting in increased NK cell
activation and cytotoxicity. Proteomic analysis of the trans-
ferred cargo showed transfer of proteins implicated in actin
reorganisation. In particular, CDC42 was reported to be sub-
stantially upregulated and highly active in senescent versus
proliferating fibroblasts, while its inhibition substantially
reduced protein transfer and NK cytotoxicity [16].

Here, we set out to investigate the composition and role
of intercellular bridges in cell senescence and whether the

bridges are capable of supporting transfer of organelles
between cells. We report a high prevalence of membrane-
bound TNTs formed by senescent cells, containing both actin
and tubulin. We further show that mitochondria can be
transferred through these bridges and that mTOR signalling
and CDC42-mediated actin organisation pathways are criti-
cal for organelle transfer through tunnelling nanotubes in
senescent cells. These findings highlight a potential target
for new therapies directed against senescent cells.

2. Materials and Methods

2.1. Cell Culture. HF043 neonatal foreskin fibroblasts
(Dundee C l products) were verified to be primary diploid
human fibroblasts, uncontaminated with any known lab cell
line, by short tandem repeat analysis (Porton Down, UK).
IMR90 ER:RAS fibroblasts (16-week female foetal lung fibro-
blasts) were a gift from Prof. Peter Adams (University of
Glasgow, UK, and Sanford Burnham Prebys Medical Discov-
ery Institute, La Jolla, USA). Cells were cultured in DMEM
(D5796, Gibco) supplemented with 10% heat-inactivated
FCS (Gibco) for HF043 or 1mM sodium pyruvate (Gibco)
and 20% FCS for IMR90 ER:RAS fibroblasts. (Media were
not supplemented with antibiotics.) Cells were subcultured
once they reached ~70% confluence as assessed using a digi-
tal EVOS microscope (Thermo Fisher), by washing in PBS
(Sigma), 3-5 minute incubation with TrypLE Express trypsin
(Thermo Fisher), and dilution and gentle trituration in com-
plete media. Cell viability and number were assessed using a
T4 Cellometer (Nexcelom), from which population dou-
blings were subsequently calculated as PD = ðlog ½number
harvested/number seeded�Þ/log ð2Þ. Cells were seeded at 4-8
× 103 cells/cm2 in filter-capped flasks or multiwell plates
(Greiner) and incubated with complete media in a humidi-
fied incubator at 37°C in 5% CO2 and 20% O2. Cells were reg-
ularly inspected by phase contrast microscopy for cell health
and tested for mycoplasma contamination by PCR according
to the method of Uphoff and Drexler [17, 18].

2.2. Drug Treatments. All drugs used were reconstituted and
stored as directed by the supplier (etoposide, 4-
hydroxytamoxifen (4-OHT), mitomycin C, and CASIN—all
from Sigma-Aldrich; AZD8055—Selleckchem). For routine
drug treatment, cells were seeded in complete media and
allowed to bed down overnight, before media were aspirated
and replaced with drug-supplemented complete media. For
drug treatment in co-culture assays, cells were seeded directly
into drug-supplemented complete media. Optimum concen-
trations and dosing periods for induction of senescence with-
out cell killing were selected according to previously
published experiments [19–22].

2.3. Induction and Assessment of Senescence

2.3.1. Replicative Senescence (RS). The primary human fibro-
blast line HF043 was grown in continuous culture until rep-
licative exhaustion. Cells were determined to be replicatively
senescent when populations fulfilled each of the following
criteria: failure to increase the cell number within >2 weeks,
a cumulative population doubling number of >85, and
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positive SA-β-gal staining according to the manufacturer’s
instructions (Cell Signaling Technology #9860S). The secre-
tion of IL-6, a canonical SASP factor, and upregulation of
p21CDKN1 (see Supplementary Figures S1, S2, and S3) were
assessed as additional readouts of senescence (see [23] for
western blotting conditions and [20] for ELISA protocol).

2.3.2. DNA Damage-Induced Senescence (DDIS). Cells were
treated for 7 days with 20μM etoposide or 10 nMmitomycin
C and verified as senescent by SA-β-gal staining and mor-
phological assessment, as well as upregulation of p21CDKN1

(Supplementary Figures S2 and S3). Cells at low CPD (<50)
were always used for DNA damage-induced senescence to
avoid confounding effects of replicative senescence.

2.3.3. Oncogene-Induced Senescence (OIS). IMR90 ER:RAS
cells were incubated with 1μM 4-OHT for 7 days and
assessed for senescence induction by SA-β-gal staining, mor-
phological assessment (Supplementary Figure S2), and
failure to re-proliferate.

2.4. Fluorescence Staining. For live imaging of mitochondria,
cells were incubated for 30 minutes with MitoTracker Green
FM or MitoTracker Red (1 : 1000 v/v dilution of 1mM stock)
according to the manufacturer’s instructions (Invitrogen
Molecular Probes), in complete media at 37°C in the dark.
Media were replaced before imaging to avoid fluorescent
flare. Alternatively, cells were incubated overnight with a
GFP-BacMam probe for mitochondria (GFP fused to the
leader sequence of E1 α pyruvate dehydrogenase) according
to the manufacturer’s instructions (CellLight, Invitrogen).
For co-culture experiments, cells were stained with the
appropriate label, washed 3x in PBS, and harvested by trypsin
treatment (as above) before reseeding at 1 : 1 ratios. To assess
potential confounding dye leakage, conditioned media were
harvested at 24 h from stained cells and incubated for ≥24 h
with control unstained cells.

For analysis of fixed samples, mitochondria were stained
for mitochondrial-specific TFAM and analysed by immuno-
fluorescence. Briefly, cells were washed in PBS, fixed in 3.7%
formaldehyde (10minutes, RT), washed twice in PBS, blocked
in 5% donkey serum (Dako) in PBS, and incubated with the
primary antibody (α-TFAM (mouse) Ab, Abnova B01P)
diluted 1 : 200 in PBS containing 0.3% Triton X-100 v/v and
1% BSA w/v, at 4°C overnight in a humidified chamber. Cells
were then washed twice in PBS and incubated with the sec-
ondary antibody (Alexa Fluor 488 α-mouse IgG (donkey),
Invitrogen A-2102); 2 hours, RT in the dark, and 1 : 500 in a
dilution buffer as for the primary antibody. Cells were washed
twice in PBS and DNA-counterstained before imaging.

For F-actin staining, cells were washed in PBS, fixed in
3.7% v/v formaldehyde in PBS (10 minutes, RT) before wash-
ing in PBS, and then incubated for 40 minutes with FITC-
phalloidin (6.6 nM in PBS, Molecular Probes, Thermo
Fisher). Cells were then washed in PBS and imaged.

For tubulin staining, cells were incubated with Tubulin
Tracker Green diluted in complete media according to the
manufacturer’s instructions (30 minutes, 37°C, Thermo
Fisher), media were replaced, and cells were imaged live.

Plasma membranes were labelled by incubating cells with
1 : 250 wheat germ agglutinin (WGA, v/v) conjugated with
the fluorophore FITC or rhodamine (Vector Labs), either live
in complete media (immediately after staining to avoid
WGA-induced cytotoxicity) or after 3.7% formaldehyde fixa-
tion in PBS (without permeabilisation). Our optimisation
studies comparing live imaging with fixed cells suggested that
while fixation improved the sharpness of cell staining, it did
so without disrupting the intercellular bridge structures (data
not shown).

DNA was stained using NucBlue Live (Hoechst 33342)
according to the manufacturer’s instructions (20 minutes, 1
drop/ml, and RT, Thermo Fisher) or using Hoechst 33342
within mounting dye (VECTASHIELD, Vector Labs) for
fixed cells, with 1 drop of the mounting medium used for
coverslip mounting.

2.5. Microscopy. Phase contrast microscopy was performed
using a digital EVOS Core microscope (Thermo Fisher),
with scale bars added to images using a graticule. Phase
contrast microscopy was used for routine assessment of
cells to determine % confluence before subculturing, as well
as for morphological analysis. Fluorescence microscopy was
performed using a ZOE fluorescent cell imager (Bio-Rad),
with scale bars added automatically. For time-lapse imag-
ing, the field of view was locked and images taken at 5-
10min intervals, timed according to a stopwatch. Within
individual experiments, optical gain was fixed at the outset
of image acquisition to ensure image-to-image comparability.
Between experiments, brightness and (where stated) sharpness
were normalised across different samples within PowerPoint.
Where necessary, Fiji software was used to enhance colour
discrimination.

2.6. Statistical Analysis. GraphPad Prism 9 statistical analysis
package was used to perform statistical tests. For compari-
sons between >2 samples, ANOVAs (analysis of variance)
were performed, with Tukey’s tests to compare the means
of each sample. All graphs show mean values with standard
deviations (as error bars), calculated from n ≥ 3 independent
experiments or from technical triplicates from representative
experiments of n ≥ 3 unless otherwise stated.

3. Results

3.1. Intercellular Bridges Connect Senescent Cells. To examine
whether intercellular bridges are associated with cell senes-
cence, we induced replicative senescence (RS) in primary
human skin fibroblasts (HF043) by longitudinal continuous
cell culture (serial passaging) or induced DNA damage-
induced senescence (DDIS) by treating cells with etoposide
for 7 days (see Materials and Methods). In parallel, we
treated IMR90 ER:RAS lung fibroblasts with tamoxifen (4-
OHT) to trigger oncogene-induced senescence (OIS) and
compared these with proliferating control cells. As expected,
the proliferating cells showed characteristic spindle-like
morphology, relatively small size and were mononuclear
(Figure 1(a)), while the senescent cells by contrast were
greatly enlarged, contained granular inclusions, and were
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often multinucleated with prominent nucleoli, and cell
margins were poorly defined under phase contrast optics
(Figure 1(b)).

We observed by phase contrast microscopy a substantial
number of long, thin structures of considerable length (tens
to hundreds of microns) directly connecting nearby cells
within senescent populations of both skin (HF043) and lung
(IMR90) fibroblasts, irrespective of the mode of senescence
induction (Figure 1(b), bridges indicated by black arrows).
The bridge-like structures that we observe in the senescent
cell populations were infrequent within proliferating control
populations (Figure 1(a)), in agreement with previous data,
suggesting that nanotube formation occurs in response to
cellular stress [16], since senescence is a stress response.
We further noted a number of swellings at various points
along the nanotubes (red arrows, Figure 1(b)). These appear
similar to protrusions previously described as “gondolas”
within nanotubes, which are thought to be associated with
the transport of large cargo [24] including organelles such
as mitochondria.

3.2. Bridges Are Membrane-Bound and Contain Actin and
Tubulin. To determine whether the observed senescent cell
bridges are membrane-bound, we stained cells with FITC-
conjugated lectin wheat germ agglutinin (WGA) to assess
the presence of the sugar O-GlcNAc, which is prevalent on
mammalian membranes; DNA was counterstained with

NucBlue Live. From Figure 2(a), multiple membrane-
bound (WGA-positive) protrusions can be seen to extend
between the senescent cells towards their neighbours, in such
a way that the cells appear to form a “network” of intercon-
nected cells rather than discrete cells. The diameter of such
connections varied from ultrafine bridges (Figure 2(b))
reminiscent of “thin” TNTs to larger diameter bridges
(Figure 2(c)) that appear consistent with previously described
“thick” TNTs [7].

To determine whether these structures represent actin-
stabilised tunnelling nanotubes (TNTs), formaldehyde-fixed
cells were costained with rhodamine-WGA (for membranes)
and FITC-phalloidin for actin and counterstained with Nuc-
Blue Live for DNA (Figure 3(a)) or imaged live with Tubulin
Tracker Green to identify polymerised tubulin (Figure 3(b)).
Fluorescence microscopy demonstrated that the intercellular
bridges contain actin (Figure 3(a)) and tubulin (Figure 3(b));
in both cases, the bridges stained positively with rhodamine-
WGA, demonstrating the presence of O-GlcNAc, orthogo-
nally confirming with a different dye our observations in
Figure 2. These data suggest that senescent fibroblasts form
intercellular nanotubes that contain actin and/or tubulin.

3.3. Mitochondria Are Present in Senescent Cell TNTs. As
signalling hubs and the major source of oxidative stress,
mitochondria play an important role in senescence [25].
Senescent cells exhibit dramatic increases in mitochondrial
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Figure 1: Senescent cells are connected by thin intercellular contacts in vitro. (a) Phase contrast images of proliferating HF043 fibroblasts at
low cumulative population doubling (CPD < 40) and vehicle control proliferating IMR90 ER:RAS fibroblasts. (b) HF043 fibroblasts that have
undergone replicative senescence (RS, CPD > 90) or DNA damage-induced senescence (DDIS, following 7-day 20 μΜ etoposide treatment),
together with oncogene-induced senescent (OIS, 7-day 4-OHT) ER:RAS fibroblasts (right panels are enlarged inset regions from left panels).
Black arrows indicate examples of intercellular bridges, and red arrowheads indicate bulky protrusions within the bridges. Representative data
shown of n > 3 experiments. Scale bar 100 μm.
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load [21], possibly to compensate for mitochondrial dysfunc-
tion, and the mitochondrial network becomes increasingly
reticular through resistance to mitochondrial fission and
mitophagy [26].

To ask whether the senescent cell TNTs are capable of
transporting mitochondria, we labelled mitochondria in
senescent fibroblasts (RS and DDIS in HF043 and OIS in
IMR90, as above) with fluorescent dye. To avoid labelling
bias, we compared a variety of mitochondrial dyes including
the live stains MitoTracker Green, MitoTracker Red, and
CellLight Mitochondria-GFP BacMam, where GFP is local-
ised to mitochondria through fusion of GFP with the leader
sequence from E1 alpha pyruvate dehydrogenase. We also
examined staining patterns of the mitochondrial transcrip-
tion factor TFAM in fixed samples. In all cases, cell mem-
branes were stained with fluorescent WGA (dye colour
indicated in labels of Figure 4).

As shown in Figure 4, we observed small foci (Figures 4(a)
and 4(c)) or even reticular networks (Figures 4(b) and 4(d))

positive for mitochondrial staining in a substantial proportion
of intercellular bridges, irrespective of the mitochondrial stain
used, the mode of senescence induction, or whether cells were
imaged live or fixed, showing the presence of mitochondria
within TNTs of senescent cells.

3.4. Senescent Cell Tunnelling Nanotubes Support Intercellular
Mitochondrial Transport. The mitochondria present in inter-
cellular bridges may arise simply through a chance peripheral
distribution at the time and subcellular location of bridge for-
mation; alternatively, they could represent cargo being trans-
ported through the bridges, as previously suggested [12].
Hence, to assess whether the observed mitochondria were
static or mobile within these intercellular bridges, time-lapse
fluorescence microscopy of replicatively senescent HF043
fibroblasts stained with MitoTracker Red was conducted.

Mitochondrial motility was observed within minutes of
staining, andmitochondria were seen to track along intercellu-
lar bridges, as seen in representative still images of time-lapse

100 𝜇m

(a)

(b) (c)

Figure 2: Intercellular bridges are membrane-bound and occur at a high frequency between senescent cells. (a) HF043 fibroblasts cultured to
replicative senescence and imaged live with FITC-WGA (green) to highlight membrane-associated O-GlcNAc and NucBlue Live for DNA
(blue). (b, c) Magnified images of thin bridges (b) and larger diameter bridges (c). Images in (b, c) have been recoloured in grayscale and
sharpness-enhanced to show the bridges more clearly.
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microscopy (Figure 5; see also Supplementary Video (available
here)). All movement detected for individual mitochondrial
puncta was unidirectional, with an average speed of ~1
μm/minute within the observation period; the total distance
travelled by the mitochondria in the example shown in
Figure 5 was ~60μm within 70 minutes.

These observations suggest that mitochondria are able to
move within senescent intercellular bridges over the time-
scale of minutes to hours. The observation of unidirectional
movement suggests that mitochondrial motility may be reg-
ulated, rather than occurring by passive diffusion, possibly
involving motor proteins acting on the underlying cytoskele-
tal framework of actin and/or tubulin.

3.5. Co-culture Demonstrates Transfer of Mitochondria
between Cells. To investigate whether this putative mitochon-
drial transport resulted in the transfer of mitochondria
between cells, we next conducted a co-culture assay where
separate populations of cells were stained with MitoTracker
Green and MitoTracker Red, respectively, then thoroughly
washed before harvesting and co-seeding at a 1 : 1 ratio (sche-
matic shown in Figure 6(a), with images of co-seeded cells
immediately after plating shown in Figure 6(b)).

To exclude the possibility of MitoTracker dye carry-over
between different cell populations in co-culture experiments
through dye leakage into the medium, conditioned medium
(CM) controls were included in each experiment whereby
media were harvested after 24 hours of exposure to stained
cells (with either MitoTracker Green or MitoTracker Red,
shown simply as “MitoTracker” in schematic Figure 6(c)),
followed by incubation with unstained cells for 24 hours with
inspection for any fluorescent signal by microscopy; no evi-
dence of dye leakage was detected (Figure 6(d)).

Having optimised and verified labelling and co-culture
conditions as shown in Figure 6, we then assessed whether

mitochondria were transferred between differentially labelled
cell populations. One population of HF043 cells was labelled
with MitoTracker Red (MT red) and another with Mito-
Tracker Green (MT green), harvested, co-seeded at 1 : 1,
and then imaged after 24 hours. Any transfer of mitochondria
between cells of different populations might be visualised as
discrete puncta of the opposite dye colour, as shown in the
schematic (Figure 7(a)). Indeed, such puncta were detected
in a number of co-cultured cells (white arrows, Figure 7(b)),
irrespective of the MitoTracker dye used. In co-cultures of
senescent cells, we also observed what appear to be mitochon-
drial reticular networks extending through TNTs between
cells over considerable distances (>100μm, white arrows
Figure 7(c)), with large senescent “donor” cells also appearing
to accept mitochondria from oppositely stained cell popula-
tions (yellow arrows, Figure 7(c)). We further observed
instances where TNTs were stained with both red and green,
suggesting formation by fusion of TNTs extruded from sepa-
rate cells (blue arrow, Figure 7(c)). Mitochondria were also
transferred through TNTs from labelled DDIS cells to unla-
belled proliferating cells (Figures 7(d) and 7(e)).

3.6. Mitochondria Pass from Senescent Cells to Proliferating
Cells and Vice Versa. Intercellular mitochondrial transfer
has been hypothesised as a rescue mechanism for stressed
cells, including cancer cells that have lost mitochondrial
functionality [12]. To determine whether, like stressed cancer
cells, senescent cells can accept mitochondria from healthy
proliferating cells, we conducted co-culture experiments
between populations of proliferating and senescent cells, with
“red”-stained proliferating cells co-cultured with “green”-
stained proliferating cells (PRO-PRO), “red” senescent cells
with “green” senescent cells (SEN-SEN), or proliferating
and senescent (PRO-SEN) co-cultures (using both colour
combinations to eliminate any effect of dye bias)—dye

Membrane F-actin Merge

(a)

Membrane Tubulin Merge

(b)

Figure 3: Intercellular contacts between senescent cells contain actin and tubulin. Replicatively senescent HF043 fibroblasts (CPD > 90) were
(a) fixed and stained with rhodamine-WGA (membrane, purple), FITC-phalloidin (F-actin, green), and NucBlue Live (DNA, blue) or (b)
imaged live with rhodamine-WGA (membrane, purple) and Tubulin Tracker Green (microtubules, green) prior to analysis by
fluorescence microscopy. n = 3, representative images shown. Arrows indicate examples of intercellular bridges. Images have been false-
coloured from the original red/green in Fiji to improve dye discrimination. Scale bar 100μm.
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colours are indicated in labels of Figure 8. Nuclei were coun-
terstained using the live dye NucBlue Live prior to imaging.

After 24 hours of co-culture, we observed puncta of
oppositely stained mitochondria within both proliferating
and senescent fibroblasts, regardless of which population
was stained with MitoTracker Green or MitoTracker Red
(Figure 8(a)), as well as mitochondria-loaded bridges span-
ning alternately stained “red” and “green” cells, suggesting
that mitochondria have been transferred between different
cells, with proliferating and senescent cell populations able
to act both as mitochondrial donors and acceptors. However,
quantification of the extent of mitochondrial transfer shows
that proliferating cells rarely act as mitochondrial donors,
both in co-cultures with other proliferating cells and when
co-cultured with senescent cells (Figure 8(b)). However,

mitochondrial transfer by senescent cells occurred at equiva-
lent levels whether the acceptor cells were proliferating or
senescent. We verified that mitochondrial transfer direction
was not an artefact of the MitoTracker dye used (Supplemen-
tary Figure S4), supporting the conclusion that senescent
cells are major mitochondrial donors.

Taken together, our results suggest that tubulin- and
actin-based intercellular bridges may constitute an important
mechanism of mitochondrial transfer and thus intercellular
communication for senescent cells, and this transfer may
occur from senescent to proliferating cells within a tissue.

3.7. Direct Intercellular Communication in Senescence Is
Regulated by mTOR and CDC42 Signalling. Intercellular
bridge structures between cancer cells have been reported

HF043 (RS)

(a) (d)

(b)

(c) (e)

WGA mitoT DNA

WGA mitoT DNA

WGA mitoGFP DNA

IMR90 (OIS)

WGA mitoT DNA

HF043 (DDIS)

WGA TFAM DNA

Figure 4: Mitochondria are present within senescent intercellular contacts. (a–c) Replicatively senescent HF043 fibroblasts were stained with
(a) fluorescein-WGA and MitoTracker Red (mitoT), (b) rhodamine-WGA and MitoTracker Green (mitoT), and (c) rhodamine-WGA and
CellLight Mitochondria-GFP BacMam (mitoGFP). (d) IMR90 ER:RAS cells induced to undergo oncogene-induced senescence (OIS) by 7 d
treatment with 4-OHT were stained with fluorescein-WGA and MitoTracker Red (mitoT). Cells in (a–d) were imaged live. (e) HF043
fibroblasts treated for 7 d with mitomycin C to drive DNA damage-induced senescence (DDIS) were fixed and stained with anti-TFAM
primary antibody, with Alexa Fluor 488 secondary antibody and rhodamine-WGA. Arrows indicate mitochondria within contacts. n ≥ 3.
DNA stained with NucBlue Live. Scale bar 100μm.
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to be regulated by mTOR signalling [6], while actin regu-
latory factors have been implicated in senescent cell TNTs
[16]. We therefore tested whether the intercellular bridges
observed here are regulated by CDC42 or mTOR signal-
ling, using the pharmacological inhibitors CASIN and
AZD8055 to inhibit CDC42 and mTOR, respectively, in
both the senescent and proliferating cell populations. As
an ATP-competitive mTOR inhibitor, AZD8055 impacts
not only pathways regulated by mTORC1 (such as transla-
tion and autophagy) but also those controlled by mTORC2,
including actin polymerisation (e.g., [21]).

Populations of proliferating or senescent HF043 fibro-
blasts which had undergone either replicative senescence
(RS) or DNA damage-induced senescence (DDIS) through

7-day treatment with 20μM etoposide were exposed to the
CDC42 inhibitor CASIN at 2μM, pan-mTOR inhibitor
AZD8055 [21] at 70 nM, or DMSO (vehicle control) for 24
hours prior to fixation with formaldehyde. Cells were then
stained with fluorescein-WGA for cell membranes and
NucBlue Live for nuclear DNA. The number of intercellular
bridges connected at both ends was counted manually, and
the number per cell was determined by normalising against
nuclear number (Figure 9(a)).

We observed significantly more intercellular bridges
within senescent (RS and DDIS) compared with proliferating
control populations (PRO, Figure 9(a)), with an average of
~0.5 bridges per replicatively senescent (RS) cell. While a
substantial proportion of cells exhibited several connections,
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Figure 5: Mitochondria are motile within senescent intercellular bridges. (a) Replicatively senescent HF043 fibroblasts were stained with
MitoTracker Green, rhodamine-WGA (red), and NucBlue Live (for DNA) and imaged live using time-lapse fluorescence microscopy, with
time points following the start of the observation period indicated in minutes. The white dotted circle highlights a MitoTracker Green-
positive punctum within a TNT. Representative images shown of n = 3 experiments. Scale bar 100μm. (b) Magnification of TNT with
position of moving MitoTracker-positive puncta indicated by arrows (see also Supplementary Video (available here)).
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others had none. Notably, disruption of CDC42 signalling
upon CASIN treatment, or inhibition of mTOR signalling
with AZD8055, each significantly reduced the number of
bridges between senescent cells, both in replicatively senes-
cent populations and those induced by DNA damage
(Figure 9(a)); representative fluorescence images of treated
RS cells are shown in Figure 9(b). The very low frequency of
bridges on treatment precluded analysis of the number of
mitochondrial puncta transferred. The observed reduction in
bridges was not due to toxicity at the drug doses used, as cell

numbers were not diminished (as assessed by manual inspec-
tion). However, drug treatment did lead to lower apparent bio-
chemical reducing capacity as measured by alamarBlue assays
(Supplementary Figure S5), potentially because of decreased
cell size following drug-induced structural rearrangements
of the actin cytoskeleton (e.g., [21]). We further observed
that the reduction in bridge number occurred in a dose-
dependent manner (Supplementary Figure S6), strongly
suggesting that mTOR and CDC42 are centrally important
in TNT formation and/or stability.

Seed 1:1
+

MT green MT red

(a)

MT green MT red Merge

(b)

MitoTracker Conditioned medium

24 h

Fluorescence?

24 h

(c)

MT green MT red CM

(d)

Figure 6: Co-culture assay for analysis of intercellular mitochondrial transfer. (a) Schematic of the co-culture setup. HF043 fibroblasts were
stained with MitoTracker Green (MT green) or MitoTracker Red (MT red), washed thoroughly, and then seeded into co-culture at a 1 : 1
ratio. (b) Cells were imaged immediately after co-plating (proliferating cells shown). (c) Schematic of assay for dye leakage: cells were
stained for 30min with MitoTracker Green or Red, media replaced, and incubated for 24 h to generate conditioned medium (CM). This
CM was then harvested and incubated with unstained cells for 24 h prior to fluorescence microscopy. (d) Representative images of
proliferating cells stained with MitoTracker Green or MitoTracker Red or unstained cells incubated for 24 hours with conditioned media
(CM) harvested from stained cells. n ≥ 3. Scale bar 100 μm.
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Figure 7: Mitochondrial transfer between co-cultured cells. (a) Schematic of co-culture experiment. One cell population is labelled by
incubation with MitoTracker (MT) red and another with MT green for 30min. Following washing and harvesting, the differently labelled
cells are seeded at a 1 : 1 ratio and co-cultured for 24 h prior to fluorescence microscopy analysis. (b) Examples of mitochondrial puncta
arising through the transfer between co-cultured cells (white arrows). (c) Example of TNTs that appear to contain reticular mitochondria.
White arrows indicate TNTs arising from cells labelled with MitoTracker Red, and yellow arrows indicate those arising from cells labelled
with MitoTracker Green. The blue arrow indicates a TNT that appears to be formed by the fusion of a bridge between two differently
labelled cells. (d) Schematic showing co-culture between cells labelled with MitoTracker (MT) Green and unlabelled cells. (e)
Representative image of co-culture with an MT green-labelled cell that has undergone mitomycin C-induced senescence (DDIS) and
unlabelled proliferating cells (rhodamine-WGA was used subsequently to highlight cell membranes). White arrows indicate the presence
of green mitochondrial puncta being transferred to a cell without mitochondrial labelling. Scale bar 100 μm.
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Figure 8: Intercellular mitochondrial transfer occurs between both proliferating and senescent cells. (a) Co-cultures of proliferating (PRO) or
replicatively senescent (SEN) HF043 fibroblasts pre-stained with MitoTracker Green or Red were set up as in Figure 6(a) and imaged
following 24 hours of co-incubation. Arrows indicate intercellular bridges or puncta of transferred mitochondria. DNA was stained with
NucBlue Live immediately prior to analysis. Scale bar 100μm. (b) Quantification of the mitochondrial transfer between proliferating
(PRO) and senescent (SEN) cells. One-way ANOVA, ns = not significant. ∗∗∗p = 0:0002, ∗∗∗∗p < 0:0001 (n = 16 for PRO-PRO and SEN-
SEN, n = 9 for each of PRO-SEN and SEN-PRO).
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4. Discussion

Entry into senescence is accompanied by development of a
number of distinctive phenotypes including epigenetic alter-
ations, lysosomal and mitochondrial dysfunction, proinflam-
matory secretion through the SASP, and morphological
alterations including hypertrophy and changes to actin orga-
nisation networks. Furthermore, senescent cells are highly
communicative, alerting immune cells to their presence for
clearance [27] and regulating the proliferative capacity of
surrounding healthy or cancerous cells positively and nega-
tively [28, 29]. While this interplay has largely been attrib-
uted to secretion of exosomes and SASP factors, we show a
high prevalence of intercellular bridges between senescent
cells that may also be important in mediating these effects.

4.1. Supercellularity in Senescence? While intercellular nano-
tubes appear to constitute a highly localised form of commu-
nication, it is important to note that these bridges often do
not just connect two cells but instead can form networks
extending direct cell communication over larger distances.
Indeed, we have observed cellular networks that appear

almost syncytial in nature, with multiple connections
between multiple cells (e.g., Figure 2). Hence, by allowing
the transport of cargo including whole organelles such as
mitochondria between connected cells, intercellular nano-
tubes may create temporary syncytia or “supercellularity.”
Notably, syncytia are permanently created through cell-cell
fusion, an essential event in a number of developmental
and physiological processes, such as mammalian muscle
and osteoclast function, and in the formation of the placental
syncytiotrophoblast, a giant cell of ~12m2 surface area [30].
Intriguingly, cell fusion events have been linked to cellular
senescence: the placental syncytiotrophoblast itself shows a
number of markers of senescence [30], while expression of
fusogens such as endogenous retroviral ERVWE1 or measles
virus induces cell fusion and induction of cell cycle arrest and
senescence [31]. Through induction of senescence, fused cells
co-ordinate a protection strategy to prevent division of mul-
tinucleated cells, while maintaining cell viability through
resisting apoptosis, which may be important within the pla-
cental syncytiotrophoblast throughout pregnancy [31] and
in other physiological contexts such as bone and muscle. It
is interesting to speculate that through direct intercellular
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Figure 9: CDC42 and mTOR signalling are required for the formation of intercellular bridges in senescent cells. (a) HF043 fibroblasts that
had undergone replicative senescence (RS, cumulative population doubling ≥ 90), DNA damage-induced senescence (DDIS, following 7-day
treatment with 20μMetoposide), and proliferating (PRO) control cell populations at low cumulative population doubling (CPD) were treated
with the mTOR inhibitor AZD8055 (70 nM) or the CDC42 inhibitor CASIN (2 μM) for 24 hours before fixation and staining with
fluorescein-WGA (green, for membranes) and NucBlue Live (for DNA). Intercellular bridges were manually quantified from >50 cells per
replicate (n = 3). ∗∗p < 0:05, ∗∗∗p < 0:001. (b) Representative images of the control and drug-treated replicatively senescent fibroblasts.
Arrows indicate intercellular bridges (TNTs). Scale bar = 100 μm.
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nanotubes, senescent cells could also relay danger signals to
neighbouring cells and co-ordinate induction of paracrine
senescence, just as cell fusion may induce senescence in syn-
cytia. It will be of interest to assess the degree of electrical
continuity between such connected senescent cells, as direct
cytoplasmic bridges large enough for passage of mitochon-
dria negate the need for other junctional structures such as
gap junctions. Membrane potentials have been reported to
be very low in senescence [32], and this may have implica-
tions for the low propensity of senescent cells to undergo
apoptosis. Direct cell-cell contacts leading to supercellularity
are therefore of particular interest in senescence and in devel-
opment of senomodifying therapies.

4.2. Pathological Relevance of Direct Intercellular Contacts.
While the data we present here suggest that a substantial
proportion of senescent cells formed direct cell-cell bridges
which can mediate intercellular mitochondrial transfer, it is
important to note that these data were acquired in 2-
dimensional in vitro cell culture of primary human skin
and lung fibroblasts. While further work is undoubtedly
required to probe the physiological relevance of these find-
ings, previous in vivo work has shown that intercellular con-
tacts can both rescue compromised cells and spread disease
or infection, suggesting context-dependent function or
exploitation by invading pathogens. Indeed, TNTs between
tumour cells can play important roles in pathogenesis and
invasion, for example, through intercellular transfer of the
P-glycoprotein drug efflux pump to propagate multidrug
resistance [33], together with intercellular mitochondrial
transport for cellular rescue. TNTs have been implicated in
the intercellular spread of pathogens such as HIV [34], influ-
enza [35], and herpes viral particles as well as prions [36].
Importantly, in the context of age-related diseases, protein
aggregates implicated in neurodegenerative diseases, including
polyglutamine aggregates [37], α-synuclein [11, 38], and tau
[39], have alsobeen reported tobepassedbetween cells through
TNTs. The impact of intercellular tunnelling nanotubes is
therefore likely to be determined by both the transferred cargo
as well as the types and states of the connected cells.

4.3. Possible Roles of Mitochondrial Transfer through TNTs.
Mitochondria are important signalling hubs for oxidative
stress, apoptosis, and senescence. While we note here transfer
of mitochondria between cells, we did not address the func-
tional status of the transferred mitochondria. Senescent cells
are known to accumulate dysfunctional mitochondria, and
previous reports suggest that healthy mitochondria may be
preferentially transferred to stressed cells [12]. Measuring
the O2 consumption and activity of individual ETC compo-
nents in senescent and proliferating cells following co-
culture would therefore be informative as to whether healthy
or dysfunctional mitochondria are preferentially transferred.
Another important line of enquiry is whether the nanotube
structures that senescent cells make with NK cells [12] also
participate in intercellular mitochondrial transfer, as well as
analysing the impact of direct interaction between senescent
and proliferating cells, e.g., through analysis of proliferation
capacity in co-cultures with direct contact compared with

barrier trans-well formats. Moreover, it will be important to
investigate the role of these intercellular connections in a
physiologically relevant model, for example, in 3D culture
formats such as hydrogels of appropriate rigidity reflecting
“young” and “old” tissue structures. Indeed, recently pub-
lished data analysing TNT formation in mesenchymal stem
cell (MSC) spheroids showed intercellular transfer of cyto-
solic dyes, and intriguingly, inclusion of low passage MSCs
with high passage cells was seen to abrogate p16 expression
in spheroids, dependent on TNT formation. Hence, in this
context, TNTs appear to rescue the proliferation potential
of high passage cells, potentially overcoming senescence
induction [16].

4.4. Role of Cell-Cell Communication in Senescence. While
senescent cells are known to accumulate in tissues with chro-
nological age and within tumours, they also play important
roles in development, tissue regeneration, and wound heal-
ing. Furthermore, the profile of cytokines, chemokines,
matrix remodelling enzymes and growth factors secreted in
the SASP is highly heterogeneous between cell types and
modes of senescence induction, perhaps underpinning the
range of different paracrine responses to local induction of
senescence. In these different physiological contexts, it is
highly likely that senescent cells could exert a number of dif-
ferent impacts through direct intercellular bridges. Indeed, it
is possible that within a tumour, intercellular bridges could
participate in both rescuing cancer cells with dysfunctional
mitochondria, but also in facilitating communication
between the senescent and immune cells to promote immune
surveillance [16]. It is also important to note that senescent
cells have actually been shown to evade immune surveillance,
for example, by HLA-E upregulation [40]; thus, TNTs may
enable evasion of immune detection through shuttling of
surface markers. Moreover, direct connections between
senescent cells and proliferating neighbours may provide an
additional means for spread of senescence—possibly even
in the absence of secreted SASP factors that can induce
bystander senescence. Therapies that focus on suppressing
the SASP may therefore not be sufficient to ameliorate dam-
aging aspects of senescent cell accumulation in cancer and
ageing, and may additionally need to include approaches to
disrupt direct cell-cell contacts through TNTs.

4.5. Targeting Intercellular Tunnelling Nanotubes in
Human Disease. Proteins that promote actin polymerisa-
tion and stabilisation play an important role in facilitating
direct cell-cell contact via membrane-bound bridges [16].
Using co-culture assays and live cell imaging, we report
here that not only do these bridges increase in frequency
in senescence resulting from various stresses (replicative
exhaustion, DNA damage, or oncogene activation), but
that they are regulated by mTOR and CDC42 signalling,
and facilitate direct intercellular mitochondrial transfer.
Importantly, CDC42 may act downstream of constitutive
mTOR activity in senescence.

While intercellular bridges may play important roles in
physiological processes requiring cell-cell communication,
such as aiding NK-mediated recognition of senescent cells
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[31], the pathological effects of cell-cell bridges may be ame-
nable to therapeutic intervention. CDC42 signalling, impli-
cated in the actin organisation network, is reported to be
elevated in senescent versus proliferating cells and to promote
premature ageing [41] and, as we show here, is necessary for
TNT formation and/or stability. Actin cytoskeletal rearrange-
ments, regulated bymTOR- andCDC42-dependent pathways,
are also likely to play a role in the enlarged, flattenedmorphol-
ogy observed for senescent cells in vitro [21], as well as enlarge-
ment in vivo [42], and our results show that senescent cells have
higher numbers of TNTs than proliferating cells.

The importance of CDC42 and mTOR in senescence
may therefore extend beyond regulating the SASP [43,
44] and the biogenesis and secretion of exosomes [45],
to promoting direct intercellular communication through
the formation of direct cell-cell communication channels.
Consequently, our findings highlight mTOR signalling as
critical in directing the non-cell-autonomous roles of cellular
senescence and further emphasise its validity as a therapeutic
target for senomodifying therapies, building on reports of
beneficial effects of mTOR inhibitors on senescence pheno-
types in vitro [21] and longevity and health in vivo [46,
47]. It is tempting to speculate that the utility of mTOR
inhibitors in a number of age-related diseases (reviewed in
[48]) including Alzheimer’s disease ([49]; reviewed in [50])
and immune senescence [51], as well as their ability to
improve ageing human skin structure [52], may be at least
in part through actin cytoskeletal modulation that impacts
TNT formation.

Reducing TNT formation or stability through mTOR or
CDC42 inhibition may be a useful therapeutic approach in
cancer as well as in ageing, for example, through blocking
the transfer of healthy mitochondria from bystander cells to
rescue dysfunctional tumour cells, or through blocking the
spread of drug resistance channels. Indeed, neutralising anti-
bodies against the adhesion molecule ICAM-1 in T cell acute
lymphoblastic leukaemia were shown to block the transfer of
healthy mitochondria from MSCs, thereby causing an
increase in chemotherapy-induced cancer cell death [53].
This approach may also be important in preventing the
spread of pathogens such as HIV or protein aggregates impli-
cated in neurodegeneration: inhibiting nanotube formation
with latrunculin B was shown to prevent the spread of α-
synuclein through healthy astrocytes in a model of Parkin-
son’s disease propagation [54].

Alternatively, it may be possible to exploit the beneficial
properties of nanotubes, for example, in treating diseases of
organelle dysfunction or by using intercellular mitochon-
drial transfer as a rescue strategy for compromised cells
during stroke, when ischaemic stress conditions may stimu-
late nanotube formation. In such circumstances, it may be
possible to further promote nanotube formation by supply-
ing a treatment that induces ROS, stabilizes microtubules or
actin networks, or through inducing increased expression of
trafficking adaptors in the mitochondria “donor” cells. It
may even be possible to exploit intercellular nanotubes as
a drug delivery pathway in cancer therapy, as nanoparticles
have been shown to be loaded into and move through
TNTs [55].

5. Conclusions

In conclusion, we have demonstrated here a high prevalence
of intercellular bridges (also called tunnelling nanotubes
(TNTs)) between senescent cells, which are membrane-
bound and supported by a cytoskeleton containing actin
and possibly also microtubules. Such bridges allow transfer
of large cargo including mitochondria between cells. The
dependence of such bridges on mTOR and CDC42 makes
them amenable to small molecule intervention, providing
additional therapeutic strategies to modulate senescent cell
behaviour in both age-related diseases and cancer.
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Supplementary Materials

Supplementary Video: time-lapse video microscopy of mito-
chondrial transfer via TNTs in replicatively senescent HF043
fibroblasts stained with MitoTracker Green, rhodamine-
WGA, andNucBlue Live (forDNA). Scale bar 32μm.Note: still
images from this video are shown in Figure 5. Supplementary
Figure S1: growth curve of primary skinfibroblasts.HF043 cells
were continuously cultured until replicative senescence at
cumulative population doubling ðCPDÞ ≥ 86. Each point
represents harvesting and reseeding of cells under continuous
cultivation, when cell numbers are counted to calculate
CPD. Supplementary Figure S2: markers of senescence.
Proliferating and senescent cells were verified by bothmorpho-
logical analysis under phase contrast microscopy and staining
for senescence-associated beta-galactosidase (SA-β-gal). For
replicative senescence, proliferating HF043 cells at CPD < 40
and senescent cells at CPD ~ 87. For DNA damage-induced
senescence, proliferating HF043 skin fibroblasts at low CPD
were treated with etoposide (see Materials and Methods); for
oncogene-induced senescence, proliferating IMR90 ER:RAS
cells were treatedwith 4-hydroxytamoxifen (4-OHT) to induce
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RAS expression. CTRL=control. Scale bar 50μm. Supplemen-
tary Figure S3: markers of senescence. (A, B) IL-6 SASP factor
secretion is elevated in senescent versus proliferating cells.
(A) Standard curve for IL-6 ELISA using purified recombinant
IL-6. (B)Measurement of IL-6 inproliferating (PRO) and repli-
catively senescent (SEN) cells by ELISA (n = 3, mean ± SD).
(C)Upregulationof p21 in senescent cells. Representativewest-
ern blotting of p21CDKN1 and loading control GAPDH in pro-
liferating (PRO) cells with (+) or without (-) DNA damaging
agent etoposide to induce DDIS, and replicatively senescent
(SEN) cells without etoposide treatment. Supplementary Fig-
ure S4: senescent cells are the major donors for mitochondrial
transfer. Cells were prelabelled with MitoTracker Green or
MitoTracker Red as in the main text and co-cultured at a 1 : 1
ratio. (A) Enlarged areas from cells in Figures 4 and 7, showing
transfer of both the red and green mitochondria between cells.
Scale bar 50μm. (B) Transfer of mitochondria quantified by
MitoTracker dye colour of the donor and recipient; bars
coloured by the MitoTracker label of recipient cells; the Mito-
Tracker label of the donor and recipient is indicated by colour
below each column (MitoTracker Green shown in green and
MitoTracker Red shown in red). P=proliferating; S= replica-
tively senescent. One-way ANOVA. ns=not significant. ∗∗∗p
= 0:0002. (C) Violin plot of quantification of mitochondrial
donation, according to the percentage of recipient cells stained
withMitoTrackerRed (R) showingdonatedMitoTrackerGreen
(G) foci (%R cells with G mt) and the percentage of recipient
cells stained with MitoTracker Green (G) showing donated
MitoTracker Red (R) foci (i.e., %G cells with R mt). Two-way
ANOVA. ns=not significant. ∗∗∗∗p < 0:0001. Mean, 25th and
75th centiles, and individual data points are shown. mt=mito-
chondria. Supplementary Figure S5: dose-response curves for
cells treated with (A) AZD8055 or (B) CASIN at concentrations
from 0 to 10,000nM. Cell reducing capacity, often used as a
proxy for cell viability, was assessed by alamarBlue staining.
Note: 0nM not shown as data are plotted on a log scale; values
are normalised to zero drug control, taken as 100%. Drug doses
were tested on proliferating (PRO) cells as well as replicatively
senescent (RS) and DDIS cells induced by etoposide treatment
(ETOP). Mean and SD are shown from n = 3. Supplementary
Figure S6: intercellular bridge formation is sensitive to CDC42
inhibition in a dose-dependent manner. HF043 fibroblasts at
CPD 71were incubated with 0, 1, 2, and 5μmCASIN, an inhib-
itor of CDC42 for 24h, and then stained with FITC-WGA
(green), rhodamine-phalloidin (actin, red), and NucBlue Live
for DNA (blue). Scale bar 100μm. (Supplementary Materials)
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The function and mechanism underlying the suppression of human osteosarcoma cells by ginsenoside-Rg5 (Rg5) was investigated
in the present study. MG-63, HOS, and U2OS cell proliferation was determined by MTT assay after Rg5 treatment for 24 h. Rg5
inhibited human osteosarcoma cell proliferation effectively in a dose-dependent manner. The range of effective inhibitory
concentrations was 160-1280 nM. Annexin V-FITC and PI double-staining assay revealed that Rg5 induced human
osteosarcoma cell apoptosis. Western blotting, qRT-PCR, and FACS experiments revealed that Rg5 inhibited human
osteosarcoma cells via caspase-3 activity which was related to the LC3-mediated autophagy pathway. Rg5 decreased the
phosphorylation of PI3K, Akt, and mTORC1 activation. In contrast, LC3-mediated autophagy and caspase-3 activity increased
significantly. A PI3K/AKT stimulator, IGF-1, reversed Rg5-induced cell autophagy and apoptosis in MG-63 cells. Collectively,
the current study demonstrated that Rg5 induced human osteosarcoma cell apoptosis through the LC3-mediated autophagy
pathway. Under physiological conditions, activation of PI3K/AKT/mTORC1 inhibits LC3 activity and caspase-3-related cell
apoptosis. However, Rg5 activated LC3 activity by inhibiting the activation of PI3K/AKT/mTORC1. The present study indicated
that Rg5 could be a promising candidate as a chemotherapeutic agent against human osteosarcoma.

1. Introduction

Osteosarcoma (OS) causes a 2.4% death rate in child can-
cers, which is a fatal malignancy in pediatric patients [1].
The 5-year survival rate is no more than 70% because there
are limited effective therapies except for surgical treatment
[2]. OS is believed to be derived from malignant mesenchy-
mal stem cells of the long bones [3–6]. Chemotherapy is still
suitable for patients who are not suitable for surgery.
However, side effects and drug resistance limited the use of
chemotherapy drugs [7]. Herbal medicines and natural prod-

ucts have drawn increasing attention tonovel anticancer agents
because of the outstanding effectiveness and safety [8–10].

Ginseng has been used for over 2,000 years in various
countries in East Asia, including Korea, China, Japan, and
Vietnam [11]. Ginsenosides are the most effective compo-
nents in ginseng. Rg5 is a minor ginsenoside but exhibits a
superior pharmaceutical effect comparing with other major
ginsenosides [12–14]. Rg5 promoted breast cancer cell apo-
ptosis and inhibited cell proliferation by activating the
AMPK pathway [15–17]. Through inducing G2/M phase cell
cycle arrest and ROS-mediated MAPK activity, Rg5 inhibit
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human gastric cancer cell proliferation [18]. Rg5 also
suppressed proliferation and promoted the apoptosis of
human esophageal cancer cells and human hepatoma HepG2
cells [19, 20]. Additionally, inhibiting the AKT signaling
pathway and downregulating BCL2 expression is the main
mechanism of Rg5 on inhibition of retinoblastoma cells
[21]. Therefore, Rg5 may serve as a chemosensitizer for
reversing multidrug resistance [22].

Autophagy is considered to be an important cellular
metabolic process [23, 24]. The function of autophagy regu-
lates cell fate via different mechanisms [25, 26]. There is no
study on the function of Rg5 on human osteosarcoma cells
and the related mechanisms from now on. The current study
investigated whether ginsenoside Rg5 induce the osteosar-
coma cell apoptosis and the potential mechanisms. These
findings may contribute to further understand the inhibitory
effect of Rg5 against human osteosarcoma cell proliferation,
as well as highlight the possibility of Rg5 as therapeutic
agents for human osteosarcoma.

2. Material and Methods

2.1. Reagents. Rg5 was purchased from the Yuanye Pharma-
ceutical Company (#P186763-78-0, Shanghai, China). Rg5
was dissolved in dimethylsulfoxide (DMSO, #D8370, Solar-
bio, Beijing, China) at 100mM and stored at -20°C. MTT
(#M2003) and RNase (#R4875) were purchased from Sigma
(Shanghai, China). Annexin V/PI kit was purchased from
BD company (#556547, Franklin Lakes, NJ, USA). LC3
siRNA reagent kit (#6215), the primary and second anti-
bodies used in western blotting, was purchased from CST
(Boston, MA, USA). DMEM cell culture medium (#12491-
023), FBS (#10099141), antibiotic for cell culture
(#10378016), and trypsin (#25300054) were from GIBCO
(Grand Island, NY, USA).

2.2. Cell Proliferation Assay. HOS, MG-63, and U2OS were
purchased from ATCC in Shanghai of China. 5 × 104 cells
were seeded in a 96-well plate for 24 h, then treated with
Rg5 (0, 10, 20, 40, 80, 160, 320, 640, and 1280 nM) for
another 24h for MTT assay. MTT (1.0mg/mL) was added
to each well, and the cells were incubated for 4 h. The MTT
solution was then aspirated, and 100μL DMSO was then
added. The 96-well plates were read using a microplate spec-
trophotometer (Synergy H1, BioTek, USA) at 540nm. The
inhibition percentage was calculated as ð1 − the value in
experimental group/the value in the control groupÞ × 100%.

2.3. FCM Experiment. Annexin V-FITC and PI double stain-
ing flow cytometry analyses were employed to assess cell
apoptosis. MG-63, HOS, and U2OS cells were collected on
the experimental endpoint. Cell apoptosis was analyzed using
a flow cytometer (FACScan; BD Biosciences, Franklin Lakes,
NJ, USA) with FlowJo 7.6 FACS analysis software (FlowJo
LLC, Ashland, OR, USA). For LC3 staining, cells were stained
with FITC-conjugated mouse anti-human LC3 (#bs-8878R,
BIOSS). All antibodies were 100-fold dilutions and incubated
in 4°C for 15mins.

2.4. Western Blotting. Cell total protein was extracted, and the
protein concentration was determined according to the
manufacturer’s protocol. A total of 5-40μg cell total protein
was separated by 10% SDS-PAGE and then electrophoreti-
cally transferred to polyvinylidene fluoride membranes
(0.45μm; EMD Millipore, Billerica, MA, USA) and blocked
at 37°C for 1 h with 5% skim milk in Tris-buffered saline
(TBS) with Tween-20 (0.1%). Caspase-3 (#9662), cleaved
caspase-3 (#9661), LC3 (#4108), PI3K (#4225), p-PI3K
(#13857), AKT (#4691), p-AKT (#4060), mTOR (#2972),
Raptor (#2280), and β-actin (#4970) expression levels were
determined semiquantitatively by densitometric analysis
with the Quantity One software (V4.62, Bio-Rad Laborato-
ries, Inc., Hercules, CA, USA).

2.5. qPCR Experiment. Total cellular RNA was isolated by
TRIzol (Invitrogen, Carlsbad, USA). Total RNA was tran-
scribed to cDNA by a reverse transcription kit (TransGen,
Beijing, China). qRT-PCR was conducted using the Fast Start
Universal SYBR Green Master (ROX) kit (Roche, Shanghai,
China). Reactions were performed using 3μL of cDNA in a
20μL reaction volume and the following thermal cycle pro-
file: 10 seconds for predenaturation at 94°C, 5 seconds for
denaturation at 94°C, and 30 seconds for extension at 60°C,
for 40 cycles. The primer sequences are shown as follows:
LC3 sense, 5′-GACCATCTGGTTCAGGTTCC-3′, and anti-
sense, 5′-ACATTCCCG AAACTCAGTCG-3′; caspase-3
sense, 5′-CCTCTGACTTCCAGGTGGTCT-3′, and anti-
sense, 5′-TTCGTTGTGTTGCTGTAGCCAAA-3′; and
GAPDH sense, 5′-CCAGGTGGTCTCCTCTGACTT-3′,
and antisense, 5′-GTTGCTGTAGCCAAATTCGTTGT-3′.
All primers were synthesized by Shanghai Sangon in China.
The length of caspase-3 is 159 bp, and the PCR products were
analyzed by agarose gel electrophoresis.

2.6. RNA Interference Experiment. The sequence of LC3-
specific small interfering RNA (siRNA) reagent and the
scramble control (GenePharma, Shanghai, China) is as
follows: LC3 siRNA sense, 5′-GUGCAUCAGAUUUC
ATT-3′, and antisense, 5′-UGAAAAGC UCUGCACTT-3′;
scramble sense, 5′-GCUCAUCATTGUGCAGA-3′, and
antisense, 5′-UGAGCCACTUGAAAUCT-3. The MG-63
cell line was planted in a 12-well plate at a 5 × 104/mL
density and was transfected with 50 pmol of LC3 siRNA
or scramble control using Lipofectamine 2000 (Life Tech-
nologies, Gaithersburg, MD, USA) and then incubated
for 6 h. LC3 expressions were detected using a western
blotting experiment.

2.7. Statistical Analysis. All data are shown as Mean ±
StandardDeviation (M± SD) and analyzed using the
D’Agostino and Pearson omnibus normality test with at
least three independent repetitions. Mean values were
compared using either a paired t-test (two groups) or
ANOVA (more than two groups). p < 0:05 were considered
to be significant.
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Figure 1: Continued.
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3. Results

3.1. Rg5 Inhibited Cell Growth and Induced Human
Osteosarcoma Cell Apoptosis. MG-63, HOS, and U2OS cells
were treated with Rg5 (0, 10, 20, 40, 80, 160, 320, 640, and
1280 nM) for 24h; cell proliferation was determined by
MTT assay (Figure 1(a)). Rg5 significantly inhibited the
growth of MG-63 cells at doses of 80-1280 nM (p < 0:01).
The susceptibility of HOS cells to Rg5 was slightly weaker
than MG-63 cells. The range of effective inhibitory concen-
trations was 160-1280 nM (p < 0:01). The susceptibility of
U2OS is similar with MG-63 cells, and the range of effec-
tive inhibitory concentrations was 80-1280 nM (p < 0:001).
Based on the MTT results, we chose 160nM of Rg5 as
the working concentration for apoptosis detection after
24 h treatment. The numbers of apoptotic cells ranged
from 4:5 ± 0:8% to 29:9 ± 3:1% in MG-63 cells
(Figure 1(b), p < 0:001), 3:4 ± 0:9% to 32:3 ± 3:9% in HOS
cells (Figure 1(c), p < 0:001), and 4:6 ± 1:1% to 27:2 ± 3:5
% in U2OS cells (Figure 1(d), p < 0:001).

3.2. Rg5 Inhibited Human Osteosarcoma Cells via Caspase-3
Activity Related to the LC3 Autophagy Pathway.MG-63 cells,
as a representative cell of osteosarcoma, were chose for the
mechanism study. MG-63 cells were treated with Rg5 (160
nM) for 12h. Caspase-3 and LC3 autophagy-related protein
was detected by western blotting, qRT-PCR, or FACS. The

ratio of LC3-II/LC3-I increased approximately 3-fold after
Rg5 treatment (Figures 2(a) and 2(b), p < 0:01), accompanied
by cleaved caspase-3 activity (Figures 2(a) and 2(c), p < 0:01).
Caspase-3 gene expression was also confirmed by qRT-PCR
experiments (Figure 2(d), p < 0:01). Fluorescence-labeled
flow cytometry for LC3 expression showed that Rg5 signifi-
cantly increased the mean fluorescence intensity (MFI) of
LC3 in MG-63 cells (Figures 2(e) and 2(f), 960 ± 50 vs.
450 ± 30, p < 0:01).

3.3. Inhibition of Autophagy Reduced Rg5-Induced Caspase-3
Activity and Cell Apoptosis. 3-MA acts as an inhibitor of
autophagy. 5mM 3-MA alone or combining with 160nM
Rg5 was used to treat MG-63 cells for 12h and for caspase-
3 and LC3 autophagy-related protein detection by western
blotting, qRT-PCR, or FACS. The ratio of LC3-II and LC3-
I was reduced when 3-MA was added to the Rg5 treatment
system (Figures 3(a) and 3(b), p < 0:01). The inhibition effect
of 3-MA on LC3-mediated autophagy was also confirmed by
fluorescence-labeled flow cytometry (Figures 3(e) and 3(f),
p < 0:01). Interestingly, when LC3 activity was blocked by
3-MA, caspase-3 activity was also reduced at the protein level
(Figure 3(c), p < 0:01) compared with Rg5 alone. Further-
more, cell apoptosis staining assays showed that 3-MA
decreased Rg5-induced MG-63 cell apoptosis (Figures 3(e)
and 3(f), p < 0:01).
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Figure 1: Rg5 inhibited human osteosarcoma cell growth and induced apoptosis. (a) MG-63 cells, HOS cells, and U2OS cell vitality were
tested by MTT after 24 h treatment of Rg5 with various doses. The concentration for flow cytometric experiment is 160 nM.
Representative figures and statistical analysis of the percentage of apoptotic cells in MG-63 (b), HOS (c), and U2OS (d) cells. The data are
shown as M± SD (n = 3, ∗p < 0:05, ∗∗p < 0:01, and ∗∗∗p < 0:001 vs. control).
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Figure 2: Rg5 inhibitedMG-63 cells via caspase-3 activity that was related to the LC3-mediated autophagy pathway. MG-63 cells were treated
with 160 nM of Rg5, and total proteins were extracted. The expression levels related proteins were detected by western blotting, qRT-PCR, or
FACS. (a) Representative image of proteins detected by western blotting. The ratio of LC3-II/LC3-I (b) and cleaved caspase-3/caspase-3 (c) in
MG-63 cell. (d) The relative gene expression of caspase-3. (e, f) The MFI of LC3 detected by FACS. The data are shown as M± SD (n = 3,
∗∗p < 0:01 vs. control).
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Figure 3: Inhibition of autophagy reduced Rg5-induced caspase-3 activity and cell apoptosis. 5mM 3-MA combining or alone with 160 nM
Rg5 was used to treat MG-63 cells for 12 h and for caspase-3 and LC3 autophagy-related protein detection by western blotting or FACS. (a)
Representative image of proteins detected by western blotting. (b) The ratio of LC3-II/LC3-I in MG-63 cells. (c) The ratio of cleaved caspase-
3/caspase-3 in MG-63 cells. (d) The MFI of LC3 in MG-63 cells detected by FACS. (e, f) MG-63 cell apoptosis detected by FACS. The data are
shown as M± SD (n = 3, nsp > 0:05, #p < 0:05, 3-MA treatment comparing with control; ∗p < 0:05, ∗∗p < 0:01 vs. control).
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Figure 4: Silencing LC3 affects Rg5-induced tumor cell apoptosis. LC3 protein and gene expression were detected by western blot (a, b) and
qRT-PCR experiments (c) when the LC3 expression was silenced by RNAi in MG-63 cells. (d, e) The MFI of LC3 in MG-63 cells detected by
FACS. (f) MG-63 cell apoptosis detected by FACS. The data are shown as M± SD (n = 3, nsp > 0:05, ∗∗p < 0:01 vs. control).
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Figure 5: Continued.
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Figure 5: The PI3K/AKT/mTORC1 pathway is involved in Rg5-induced human osteosarcoma cell autophagy activation. (a) Representative
image of proteins detected by western blotting at 12 h and 24 h after the treatment. (b) Phosphorylated PI3K, Akt, and TORC1 inMG-63 cells.
(c) The ratio of LC3/β-actin in MG-63 cells. (d) The ratio of cleaved caspase-3/caspase-3 in MG-63 cells. (e, f) Phosphorylated PI3K, Akt, and
TORC1 in MG-63 treated with IGF-1 were detected by WB at 24 h after the treatment. (g) The ratio of LC3/β-actin in MG-63 cells. (h) The
ratio of cleaved caspase-3/caspase-3 in MG-63 cells. The data are shown as M± SD (n = 3, #p < 0:05 IGF treatment comparing with control;
nsp > 0:05, ∗p < 0:05, ∗∗p < 0:01 vs. control).
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Figure 6: The PI3K/AKT/mTORC1 pathway is involved in Rg5-induced human MG-63 cell apoptosis. (a, b) Cell apoptosis of MG-63 cells
treated with Rg5 alone or together with IGF-1 was examined by FACS. The data are shown as M± SD (n = 3, nsp > 0:05, IGF treatment
comparing with control, ∗∗p < 0:01, ∗∗∗p < 0:001 vs. control).
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3.4. Silencing LC3 Affects Rg5-Induced Tumor Cell Apoptosis.
LC3 protein and gene expression were decreased significantly
by western blot (Figures 4(a) and 4(b), p < 0:01) and qRT-
PCR experiments (Figure 4(c), p < 0:01) when the LC3
expression was silenced by RNAi in MG-63 cells. The MFI
level of LC3 also decreased significantly (Figures 4(d) and
4(e), p < 0:01). The numbers of apoptotic cells decreased
significantly in LC3-silenced MG-63 cells compared to those
of the control cells (Figure 4(f), p < 0:01). These results
proved that the LC3 autophagy pathway is a key factor in
MG-63 cell apoptosis initiated by Rg5.

3.5. The PI3K/AKT/mTORC1 Pathway Is Involved in Rg5-
Induced Human Osteosarcoma Cell Autophagy Activation
and Apoptosis.mTORC1 is a complex consisting of four pro-
teins, including mTOR, Raptor, GβL, and DEPTOR [27].
Downregulation of phosphorylated PI3K (p < 0:05) and
phosphorylated Akt (p < 0:05) and upexpression of Raptor
(p < 0:01), meaning of mTORC1 activation, unless the stable
expression of mTOR, were observed by western blot assay on
MG-63 cell treatment with Rg5 for 12 h and 24 h in
Figures 5(a) and 5(b). In contrast, LC3-mediated autophagy
(Figures 5(a) and 5(c), p < 0:01) and caspase-3 activity
(Figures 5(a) and 5(d), p < 0:01) increased significantly when
MG-63 cells were treated with Rg5. To further confirm that
Rg5 induced LC3-mediated autophagy and caspase-3 activity
by inhibiting PI3K/AKT/mTOR phosphorylation, we used
the PI3K activator IGF-1 combined with Rg5 treatment in
MG-63 cells. Not surprisingly, IGF-1 reversed the Rg5-
induced reduction in PI3K, Akt, and Raptor activation
(Figures 5(e) and 5(f), p < 0:01). Moreover, the LC3 and
caspase-3 activity decreased when IGF-1 was added com-
pared with that of Rg5 treatment alone (Figures 5(g) and
5(h), p < 0:01). Cell apoptosis was evaluated by Annexin V-

FITC and PI double-staining. As shown in Figures 6(a) and
6(b), the numbers of apoptotic cells decreased significantly
when IGF-1 was used together with Rg5 (p < 0:01). These
results indicated that Rg5 inhibited the PI3K/AKT/mTORC1
pathway and then induced human osteosarcoma cell autoph-
agy activation and cell apoptosis.

4. Discussion and Conclusion

Osteosarcoma (OS) causes a 2.4% death rate in child
cancers worldwide. At present, there remain a number of
side effects of chemotherapeutic drugs in human osteosar-
coma treatment [28]. Natural medicines have some advan-
tage in the cancer treatment to overcome the associated
side effects [8]. So the increasing interest has drawn more
and more attention for novel anticancer agents from natu-
ral products [9].

The present study investigated the antiproliferative and
apoptosis-inducing effects of ginsenoside Rg5 on human
osteosarcoma cells. MG-63, HOS, and U2OS were chose as
target cells. Rg5 inhibited MG-63, HOS, and U2OS cell pro-
liferation at concentrations ranging from 80 to 1280 nM.
The susceptibility of HOS cells to Rg5 was slightly weaker
than that of MG-63 and U2OS cells. Cell apoptosis was
closely related to cell proliferation inhibition [29, 30]. FACS
experiment revealed that Rg5 significantly induced human
osteosarcoma cell apoptosis. To observe the mechanism of
Rg5 on osteosarcoma cell apoptosis, the caspase-3 gene was
detected. As expected, Rg5 significantly increased the activa-
tion of caspase-3. Autophagy is considered to be an impor-
tant cellular metabolic process [24]. The function of
autophagy can regulate cell fate via different mechanisms
[25, 31]. The present study revealed that the ratio of LC3-
II/LC3-I increased approximately 3-fold after Rg5 treatment,

Activating molecules

Rg5
P

P

PI3K

AKT

mTORC1

LC3-II LC3-I

Active
caspase-3

Apoptosis

Autophagy

Figure 7: Schematic outline of ginsenoside Rg5 inhibits the human osteosarcoma cell through LC3 autophagy-related apoptosis. Under
physiological conditions, the activation of PI3K/AKT/mTORC1 could inhibit the LC3 activity and caspase-3-related cell apoptosis. But
Rg5 activated LC3 activity through inhibiting the phosphorylation of PI3K/AKT/mTORC1 to inhibit the human osteosarcoma cell
proliferation and induce cell apoptosis.
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accompanied by cleaved caspase-3 activity. These results sug-
gest that autophagy may be associated with caspase-3-related
cell apoptosis. 3-MA, an LC3-mediated autophagy inhibitor,
was used to treat MG-63 cells combining with Rg5. As
expected, cleaved caspase-3 activity and cell apoptosis were
significantly reduced when LC3-mediated autophagy was
inhibited by 3-MA. This mechanism was also confirmed in
LC3 RNA-silenced MG-63 cells.

More and more novel anticancer agents from natural
products have been used in osteosarcoma treatment. Sapio
et al. demonstrate that CGA acts as an anticancer molecule
affecting the cell cycle and provoking cell growth inhibition
mainly by apoptosis induction by ERK1/2 activation [32].
They also reported AdipoR affected osteosarcoma cell cycle
and cell death in the mTORC1 pathway [33]. Akt signaling
pathways are responsible for antiproliferative actions in some
cells [34]. Although there is no study on Rg5 on the Akt sig-
naling pathway, a previous study revealed that Rg3 attenuates
lipopolysaccharide-induced acute lung injury via activation
of the PI3K/AKT/mTOR pathway [35]. To further verify
which signaling molecules are related to MG-63 cell autoph-
agy and apoptosis, the current study examined the expression
of MAPK components and AKT using western blotting.
Downregulation of phosphorylated PI3K, phosphorylated
Akt, and phosphorylated TORC1 was observed using west-
ern blotting after 12 h and 24 h treatment of MG-63 cells with
Rg5. In contrast, LC3 autophagy and caspase-3 activity
increased significantly. To further confirm that Rg5 induced
LC3-mediated autophagy and caspase-3 activity by inhibiting
PI3K/AKT/mTOR phosphorylation, we used the PI3K acti-
vator IGF-1 combined with Rg5 treatment in MG-63 cells.
LC3 and caspase-3 activity decreased when IGF-1 was added
compared with that of Rg5 treatment alone. Cell apoptosis,
cell migration ability, and invasion ability decreased signifi-
cantly when IGF-1 was used together with Rg5. These results
revealed that Rg5 inhibited the PI3K/AKT/mTORC1 path-
way, induced human osteosarcoma cell autophagy activation,
and induced cell apoptosis.

In conclusion, these data demonstrated that Rg5 inhib-
ited proliferation and induced apoptosis through the LC3
autophagy pathway. Under physiological conditions, the
activation of PI3K/AKT/mTORC1 could inhibit the LC3
activity and caspase-3-related cell apoptosis. But Rg5 acti-
vated LC3 activity through inhibiting the phosphorylation
of PI3K/AKT/mTORC1 (Figure 7). The present study indi-
cated that Rg5 could be a promising candidate as a chemo-
therapeutic agent against human osteosarcoma.
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Osteoarthritis (OA) is a chronic joint disease characterized by cholesterol accumulation in chondrocytes, cartilage degeneration, as
well as extracellular matrix (ECM) destruction, and joint dysfunction. Curcumin, a chemical that can reduce cholesterol levels in
OA patients, also can inhibit the progression of OA. However, a high concentration of curcumin may also trigger apoptosis in
normal chondrocytes. Besides curcumin, probucol that is found can also effectively decrease the cholesterol level in OA patients.
Considering that high cholesterol is a risk factor of OA, it is speculated that the combination treatment of curcumin and
probucol may be effective in the prevention of OA. To investigate the possible effects of such two chemicals on OA
pathophysiology, chondrocyte apoptosis and autophagy behavior under inflammatory cytokine stress were studied, and
specifically, the PI3K-Akt-mTOR signaling pathway was studied. Methods. Cell proliferation, colony formation, and EdU assay
were performed to identify the cytotoxicity of curcumin and probucol on chondrocytes. Transwell assay was conducted to
evaluate chondrocyte migration under TNF-α inflammation stress. Immunofluorescence, JC-1, flow cytometry, RT-PCR, and
western blot were used to investigate the signal variations related to autophagy and apoptosis in chondrocytes and cartilage. A
histological study was carried out on OA cartilage. Glycosaminoglycan (GAG) release was determined to evaluate the ECM
degradation under stress. Results. Compared with a single intervention with curcumin or probucol, a combined treatment of
these two chemicals is more effective in terms of protecting chondrocytes from stress injury induced by inflammatory cytokines.
The promoted protection may be attributed to the inhibition of apoptosis and the blockage of the autophagy-related
PI3K/Akt/mTOR pathway. Such results were also verified in vitro by immunofluorescence staining of OA chondrocytes and
in vivo by immunohistochemistry staining of cartilage. Besides, in vivo studies also showed that when applied in combination,
curcumin and probucol could block the PI3K-AKT-mTOR signaling pathway; promote COL-II expression; suppress P62,
MMP-3, and MMP-13 expression; and inhibit TNF-α-stimulated cartilage degradation. Moreover, the combined medication
could help reduce the release of ECM GAGs in OA cartilage and alleviate the severity of OA. Conclusion. A combined treatment
of curcumin and probucol could be used to protect chondrocytes from inflammatory cytokine stress via inhibition of the
autophagy-related PI3K/Akt/mTOR pathway both in vitro and in vivo, which might be of potential pharmaceutical value for
OA prevention and therapy.
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1. Introduction

OA is a chronic inflammatory disease closely related to carti-
lage degeneration. Researchers have found that a high level of
total cholesterol is related to the OA process. Specifically, in a
prospective cohort study, total cholesterol and triglycerides
are verified to be associated with new bone marrow lesion
formation in asymptomatic middle-aged women [1] and
result in cartilage defect and OA eventually. Another possible
explanation could be lipid embolism caused by serum choles-
terol, which may cause osteonecrosis leading to OA.

Hypertension, obesity, abnormal blood lipids, and high
cholesterol, such conditions known as “metabolic syndrome”
[2] are common among OA patients. The interrelationship
between high cholesterol levels and increased risk of OA
has been studied extensively in recent years [3, 4], and previ-
ous reports have shown that inhibition of de novo cholesterol
synthesis may provide better OA remiment outcome [5, 6].
In this context, OA should be considered as a syndrome
rather than merely a joint disease.

Autophagy is an important self-maintenance mechanism
by which a cell protects itself when facing harmful stress [7].
Active autophagy is related to cholesterol effluent, and it can
delay disease progress to a certain alleviated extent. Specifi-
cally, nitro-oleic acid, a ligand of CD36, reduces cholesterol
accumulation by modulating fluidized LDL uptake and
cholesterol efflux in RAW264.7 macrophages, and FGF21
induces autophagy-mediated cholesterol efflux to inhibit
atherogenesis via the upregulation of RACK1 [8].

However, autophagy activity tends to drop in several cells
and tissues with age. In OA chondrocytes, autophagy
markers decrease significantly [9], accompanying with dys-
functional autophagy, enhanced apoptosis, and less migra-
tion [10]. Therefore, chemicals that can regulate autophagy
in chondrocytes and stabilize the cholesterol level may be of
potential medication value for OA prevention and therapy.

Curcumin, a diferuloylmethane, is extracted from the
root of Curcuma longa [11]. In China and India, Curcuma
longa has been used as a medicinal herb with a long history.
Recent research indicated that curcumin can function to
reduce cholesterol levels [12]. Additionally, previous authors
have verified that curcumin can promote autophagy and
reduce apoptosis in several cells [13]. Moreover, probucol,
another cholesterol regulator, can also activate autophagy
and inhibit apoptosis in nerve cells by blocking PI3K/Akt/m-
TOR signals [14]. Since autophagy takes an important role in
chondrocyte physiology, and the PI3K/Akt/mTOR pathway
is essential in regulating autophagy in OA patients [15], we
speculated that curcumin and probucol may be of potential
value for OA prevention. In the present study, these two
chemicals were applied together to investigate their effects
on chondrocytes in vitro and on cartilage in vivo.

2. Materials and Methods

2.1. Animals. Healthy male Sprague Dawley rats from the
Animal Experimental Center of Wuhan University (Wuhan,
China) were involved in this study. The rats were fed under
specific pathogen-free conditions at a constant room temper-

ature (24°C) and relative humidity (45%–55%). All rats had
free access to sterile food and water and lived under a
light/dark cycle of 12 h. The present study was approved
by the Laboratory Animal Welfare & Ethics Committee,
Renmin Hospital of Wuhan University. Efforts were made
to minimize animal suffering in the study.

2.2. Reagents. The reagents included DMEM/F12 high
glucose (Hyclone, Utah, USA), penicillin (Hyclone, Utah,
USA), streptomycin (Hyclone, Utah, USA), curcumin
(Bellancom, Beijing, China), trypsin (Google Biotechnology,
Wuhan, China), collagenase-II, bovine serum albumin
(BSA), probucol (Sigma-Aldrich, St. Louis, MO, USA), Key-
Fluor488 Click-iT EdU kits, DAPI, (KeyGEN BioTECH,
Nanjing, China), AnnexV-PI kits (BD, USA), Counting Kit-
8 (CCK-8) reagents, goat serum (Beyotime Institute of Bio-
technology, Shanghai, China), TNF-α (Peprotech, Inc.,
Suzhou, China), Caspase-3, Bcl-2, Lc3, Bax, PI3K, p-PI3K,
Akt, p-Akt, mTOR, p-mTOR, GADPH, Berclin-1, COL-II,
P62, FITC, Cy3, MMP-3, JC-1 assay kits (Abcam, USA), TRI-
zol reagents (Invitrogen, Thermo Fisher Scientific, Inc. USA),
a RevertAid First Strand cDNA Synthesis kit (Fermentas;
Thermo Fisher Scientific, Inc. USA), MMP detection kits
(Solarbio Science & Technology, Beijing, China), and chemi-
luminescent luminol reagent (Santa Cruz Biotechnology,
Texas, USA).

2.3. Chondrocyte Culture and Identification. Briefly, cartilage
was extracted from the knee joints of 35male Sprague-Dawley
rats (4 weeks, weighing 140 ± 10 g). Cartilage samples were
minced into thin slices (1mm3) and digested with 3ml of
0.25% trypsin for 40min followed by further treatments with
type II collagenase for another 6 h. Chondrocytes were then
been centrifuged and collected. Subsequently, the isolated
chondrocytes were cultured in 5ml of DMEM/F12 with 20%
fetal bovine serum and incubated at 37°C in 5% CO2.

2.4. CCK-8 Assay. To determine the appropriate study
concentration of probucol and curcumin for further investi-
gation in the subsequent experiments, cell viability was
detected by the CCK-8 test. The chondrocytes were first cul-
tured in a 96-well plate, and CCK-8 reagents were added,
which was incubated at 37°C for another 2 h. The chondro-
cyte viability was detected by OD 450nm with an automatic
microplate reader. All studies were conducted in triplicate.

2.5. Cell Groups. Based on the above CCK-8 results, cells were
randomly divided into five groups (n = 3): control, TNF-ɑ,
TNF-ɑ+curcumin (50μM), TNF-ɑ+probucol (100μM),
and TNF-ɑ+probucol (50μM)+ curcumin (25μM). After
excluding other cytokines or growth factors, TNF-α aqueous
solution (20ng/ml) was mixed with normal chondrocytes to
mimic the inflammatory cytokine environment in OA [16].
36 h later, curcumin, probucol, or both of them were added,
and the chondrocytes were further incubated for another 24 h.

2.6. Flow Cytometry of Annexin V-FITC-PI Staining. The
apoptosis rates of chondrocytes were measured with an
AnnixV-PI apoptosis detection kit. In short, the chondro-
cytes were held at 25°C for 15min and treated with PI
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solution (5μl) and FITC-labeled annexin V (5μl) for 10min
in the dark. The apoptosis rates were evaluated with a flow
cytometer (BD Biosciences, USA).

2.7. Colony Formation Assay. The chondrocytes were placed
on a six-well plate and mixed with curcumin and probucol
at predescribed concentrations. After that, the cells were
incubated for another two weeks without curcumin and pro-
bucol. Subsequently, the colonies were fixed with methanol,
stained with Wright-Giemsa solution, and counted for their
numbers [17].

2.8. Transwell Migration Assay. Transwell assays were used
to evaluate cell migration. First, the transwell chambers were
washed with serum-free medium, and chondrocytes were
cultured in DMEM medium with 10% FBS as the chemical
attractant. After incubation for 48h, cells attached to the
membrane were discarded, and those entering the lower mem-
brane were fixed with methanol and stained with 0.2% crystal
violet. Under a microscope (×200), the cells invaded by the
matrix gel in 5 random fields of view were photographed.

2.9. JC-1 for Mitochondrial Membrane Permeability (MMP)
Assessment. An MMP detection kit was used to evaluate the
MMP in chondrocytes. After the chondrocytes were washed
with PBS, 800μl of JC-1 working fluid was mixed with the
chondrocytes and stained at 37°C for 25 minutes. Subse-
quently, 2ml of medium containing serum was added to
the working fluid after staining. The red-green fluorescence
ratio was measured by a FACS Caliber flow cytometer

(Becton, Dickinson, and Company) and an Olympus fluores-
cence microscope (Olympus Corporation, Japan).

2.10. EdU Incorporation Assay. Chondrocyte proliferation
was assessed by a keyFluor488 Click-iT-EdU kit. First, the
chondrocytes were placed in a six-well plate, and 100μl of
EdU was added into the plate, followed by incubation at
37°C for 2 h. Second, the cells were fixed with 4% paraformal-
dehyde at room temperature, washed with BSA containing
3% glycine, and incubated with 0.5% TritonX-100 and 1×
click-it reaction solution in the dark at room temperature.
Last, Hoechst 33342 was added to the six-well plate, and
the whole plate was placed in a dark environment for 20
minutes and then washed three times with PBS. The stained
cells were observed with a fluorescence microscope.

2.11. Reverse Transcription Quantitative Polymerase Chain
Reaction (RT-PCR). TRIzol reagents were used to isolate the
total RNA from chondrocytes. To determine the expression
levels of inflammation-related genes, first-strand comple-
mentary cDNA chains were synthesized using the RevertAid
First Strand cDNA Synthesis kit (Fermentas; Thermo Fisher
Scientific, Inc.). Quantitative PCR was performed for 40
cycles in a StepOnePlus device (Applied Biosystems;
Thermo Fisher Scientific, Inc.), and each cycle contained
temperature at 95°C for 10 secs, followed by 5 seconds at
95°C and 20 seconds at 60°C. The additional primers were
as follows: COL2, 5′-CTTAGGACAGAGAGAGAAGG-3′;
Rev, 5′-ACTCTGGGTGGCAGAGTTTC-3′; MMP-3, 5′
-TTTGGCCGTCTCTTCCATCC-3′; Rev, 5′-GGAGGC
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Figure 1: Probucol and curcumin enhance chondrocyte proliferation. (a) Cell viability at different probucol concentrations. (b) Cell viability
at different curcumin concentrations. (c) Cell viability at different curcumin-probucol concentrations. (d) After incubated in 96-well plates,
the cells were subsequently treated with curcumin and probucol. Cell proliferation in the control, OA, OA+ curcumin, OA+probucol, and
OA+ curcumin + probucol groups was measured by colony formation assays. (e) Statistical analysis of the number of chondrocyte colonies.
(f) Compared with the OA group, more EdU-labeled cells exhibited red fluorescence in the curcumin and probucol groups. Therefore, when
applied together, curcumin and probucol would significantly reduce the number of EdU-labeled cells compared with either the curcumin or
probucol groups. All cell nuclei displayed blue fluorescence with Hoechst33342 staining (magnification ×200). (g) The relative ratio of EdU-
positive cells in the curcumin + probucol group was significantly higher than the other four groups at 24 h. The data are shown as the
means ± SD. & and ∗ indicate P ≤ 0:01 and 0.05 vs. OA, respectively. All experiments were carried out three times.
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Figure 2: Continued.
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CCAGAGTGTGAATG-3′; MMP-13, 5′-GG AGCATG
GCGACTTCTAC-3′; Rev, 5′-GAGTGCTCCAGGGTCC
TT; GADPH, 5′-CTCAACTACATGGTCTACATGTTC
CA-3′; and Rev, 5′-CTTCCCATTCTCAGCCTTGACT-3′.
GADPH was used as an internal reference. Moreover, the
2-ΔΔCq method was employed to calculate the relative
levels of mRNA expression.

2.12. Western Blot. To extract the total proteins from the
chondrocytes, organophosphorus inhibitors, protease inhib-
itors, and RIPA lysates were mixed at a ratio of 1 : 1 : 50. The
proteins were separated by electrophoresis and transferred
to polyvinylidene fluoride membranes, which were sealed
for one hour. After that, a primary antibody was added to
the membranes, which were then washed three times with
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Figure 2: Probucol and curcumin can reduce chondrocyte apoptosis. (a) Probucol and curcumin inhibit apoptosis in chondrocytes. (b) The
cell apoptosis rate significantly decreased after a treatment of curcumin + probucol for 24 h. (c) Bcl-2 and Bax protein concentration in
chondrocytes (from Western blot assays). (d) Analysis of Bax expression based on the Western blot results. (e) Analysis of Bcl-2
expression based on the Western blot results. The data are shown as the means ± SD. & and ∗ indicate P ≤ 0:01 and 0.05 vs. OA,
respectively. All experiments were carried out three times.
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Figure 3: Probucol and curcumin enhance chondrocyte invasion. (a) Photographs of chondrocytes taken under a microscope (magnification
×200). (b) The migration rates were calculated based on the number of chondrocytes. The data are shown as means ± SD. & and ∗ indicate
P ≤ 0:01 and 0.05 vs. OA, respectively. All experiments were carried out three times.
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Figure 4: Continued.
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TBST and incubated with horseradish peroxidase-labeled
anti-rabbit goat IgG for 1 hour. Subsequently, the mem-
branes were washed with TBST again, and the protein bands
were observed with chemiluminescent luminol reagent
(Santa Cruz Biotechnology, Inc.) and an Image Lab quanti-

tative analysis system (Bio-Rad Laboratories Inc.). The
relative protein levels were compared by normalizing to
GADPH. The primary antibodies were as follows: Bcl-2,
Bax, Beclin-1, LC3, mTOR, PI3K, Akt, p-Akt, p-PI3K, p-
mTOR, and GAPDH.
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Figure 4: Probucol and curcumin increase the mitochondrial membrane potential of chondrocytes. (a) Changes in the chondrocyte MMP
were observed by fluorescence microscopy (magnification ×200). Red fluorescence suggested normal MMP and green fluorescence
indicated MMP decrease or loss. (b) The JC-1 ratios were calculated based on the number of chondrocytes. (c and d) Quantitative PNS
analysis on Δψ m of chondrocytes. The data are shown as the means ± SD. & and ∗ indicate P ≤ 0:01 and 0.05 vs. OA, respectively. All
experiments were carried out three times.
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Figure 5: Continued.
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Figure 5: Probucol and curcumin inhibited OA by targeting the PI3K/Akt/mTOR pathway in chondrocytes. (a–f) Western blot results for
quantitative analysis of PI3K, p-PI3K, Akt, p-Akt, mTOR, and p-mTOR protein expression in chondrocytes. The data are shown as the
means ± SD. & and ∗ indicate P ≤ 0:01 and 0.05 vs. OA, respectively. All experiments were carried out three times.
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Figure 6: (a and b) Immunofluorescence staining revealed the amount of P62 protein in the chondrocytes. The data are shown as the
means ± SD. & and ∗ indicate P ≤ 0:01 and 0.05 vs. OA, respectively. All experiments were carried out three times.
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Figure 7: Continued.
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2.13. OA Animal Model In Vivo Study. SD rats (8 weeks old,
weighing 250-280 g) were randomly divided into five groups,
which are denoted as control (n = 12), OA (n = 12), OA
+50mg/kg curcumin (n = 12), OA+100mg/kg probucol
(n = 12), and OA+75mg/kg curcumin-probucol (n = 12).
The specific dosages were determined according to the earlier
literature [18]. A rat OA model was created by excising the
medial meniscus and the anterior cruciate ligament of the
rats’ right knee. Four weeks later, the groups with medica-
tions were treated with curcumin and probucol intramuscu-
lar injections once every three days for a total of 8 weeks,
while the OA and the control groups were injected with
normal saline. All rats were sacrificed after 3 months.

2.14. Immunofluorescence and Immunohistochemistry. After
washed with PBS, the cartilage tissues and chondrocytes were
fixed with paraformaldehyde for 12 h at 4°C and then dehy-
drated in 30% sucrose solution. Next, the tissues were sliced
into pieces of 10μM and incubated with P62 and COL-II at
room temperature for 1 h. Subsequently, the section slices
were then immunostained with FITC or Cy3-labeled second-
ary antibodies for 1 h, and DAPI was applied to counterstain
the nuclei for 5min. The sections were then incubated over-
night with the primary antibodies for MMP-3 or MMP-13 at
4°C, and they were then incubated with biotinylated second-
ary antibodies. All sections were observed under an Olympus
fluorescence microscope mentioned above. The proportions
of stain-positive cells in the samples were analyzed by Image
Pro Plus 6.0 (Media Cybernetics, Inc., USA).

2.15. Glycosaminoglycan Release Assay. Papain-digested
cartilage explants and their defrosted supernatants were
examined in 96-well plates using the dimethyl methylene
blue (DMMB) method [16]. Briefly, each sample was diluted
in distilled water to a total volume of 40μl per well in tripli-
cate. Shark chondroitin sulfate (Sigma-Aldrich) was used as
a standard (0-70 ng). DMMB solution (200μl) was added to
each well, and the whole plate was immediately transferred
to a Multiskan Ascent Scanner (Thermo Labsystems,

Basingstoke, UK) with Ascent Software (version 2.6, Thermo
Labsystems, Finland). Total GAG release was observed from
a spectrophotometric reading of the digested cartilage and
its supernatants at 540nm. For each well, the percentage of
GAG release was calculated by dividing the GAG readings
from the supernatants by the total GAG release.

2.16. Statistical Analysis. For each group, the data are
expressed asmeans ± SD. Intragroup differences were assessed
with Student’s t-test and one-way analysis of variance by SPSS
16.0 (SPSS, Inc., USA) followed by a Bonferroni posthoc cor-
rection for multiple testing with GraphPad Prism (version
7.04; GraphPad Software, Inc., USA). Specifically, differences
with P < 0:05 were considered statistically significant.

3. Results

3.1. Effects of Probucol and Curcumin on Chondrocyte
Proliferation. CCK-8 was used to detect chondrocyte activity.
The most appropriate concentrations of probucol and curcu-
min to counteract inflammatory cytokine stress were found
to be 100μM and 50μM, respectively (Figures 1(a) and
1(b)). It is noteworthy that both these substances could pro-
mote chondrocyte proliferation in a dose-dependent manner.
Here, we chose these substances at optimal concentrations of
12.5%, 25%, 50%, and 100% to the most appropriate concen-
tration for combinations [10]. Considering the possible
reported side effects of such substances [19], a combination
of curcumin 25μM+probucol 50μM was used in this study,
and the results suggest that such a combination can promote
chondrocyte proliferation (Figures 1(c)). Colony formation
assays further confirmed that they play a promotive role in
chondrocyte proliferation (Figures 1(d) and 1(e)), and such
effect is in a synergistic way by the two chemicals. In the
EdU assays with TNF-α treatment, the chondrocytes showed
a low proliferation ratio. However, after treating with 50μM
curcumin or 100μM probucol, the proliferation ratio got
increased; and with the combined treatment, such increase-
ment became more significant (Figures 1(f) and 1(g)).
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Figure 7: Probucol and curcumin treat OA in vitro and in vivo. (a–c) Quantification results of COL-II and MMP-3 proteins are shown by
immunohistochemistry staining (magnification ×200). (d–f) The RT-PCR results for COL-II, MMP-3, and MMP-13. & and ∗
indicate P ≤ 0:01 and 0.05 vs. OA, respectively. All experiments were carried out three times.
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Figure 8: Continued.
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3.2. Effects of Probucol and Curcumin on Apoptosis and
Apoptosis-Related Genes in Chondrocytes. AnnexV/PI was
used to detect chondrocyte apoptosis. It was found that
TNF-α induced chondrocyte apoptosis (34:92% ± 0:75%).
However, with 50μM curcumin or 100μM probucol addi-
tion, the TNF-α-induced apoptosis percentages dropped to
23:58% ± 0:6% and 23:49% ± 0:55%, respectively. Moreover,
the apoptosis ratio of chondrocytes decreased significantly
to 17:45% ± 0:45% in the curcumin + probucol group
(Figures 2(a) and 2(b)).

Besides the apoptosis-inducing effects, TNF-α can also
downregulate the expression of the Bax gene while upregulat-
ing Bcl-2 expression. Compared with the OA group, both the
curcumin and probucol groups showed lower Bax expres-
sion, and the expression of Bcl-2 in these two groups was
higher than that in the TNF-α group. Furthermore, the
expression of apoptosis-related proteins was significantly
lower in the curcumin + probucol group compared with the
TNF-α group (Figures 2(c)–2(e)). All experiments were car-
ried out three times.

3.3. Effects of Probucol and Curcumin on Chondrocyte
Migration. Transwell assays were used to observe cell migra-
tion, and TNF-α has been verified to reduce the mobility of
chondrocytes. Compared with the TNF-α group, the curcu-
min and probucol groups were found to promote chondrocyte
migration, and such promotive effect became more significant
in the curcumin + probucol group. Eventually, chondrocyte
mobility in the curcumin + probucol group was similar to that
of normal chondrocytes (Figures 3(a) and 3(b)).

3.4. Effects of Probucol and Curcumin on the Mitochondria in
Chondrocytes.Mitochondria play an important role in energy
production, cell signal transduction, cell differentiation, and
apoptosis. The mitochondrial membrane potential (Δψ m)
is an important parameter of mitochondrial function, which
is used as an indicator of cell viability and usually changes
when apoptosis occurs. The effects of probucol and curcumin
on OA chondrocytes were influenced by apoptosis, which
depends on mitochondria. JC-1 assays were performed to
measure Δψ m. In a JC-1 assay, dyes would stay in the cyto-
plasm and emit green fluorescence in apoptotic cells; while in
normal cells, dyes would gather in the mitochondria and emit
red fluorescence. The results showed that the green fluores-
cence was brighter in the TNF-α group, suggesting that
TNF-α can reduce Δψm of chondrocytes and induce apopto-
sis. However, curcumin and probucol can increase Δψ m,
and such increases in the two substances were found to be
synergistic by flow cytometry (Figures 4(a)–4(d)). All exper-
iments were carried out three times.

3.5. Effects of Probucol and Curcumin on the Activity of
Autophagy-Related Proteins and the Autophagy-Related
PI3K/Akt/mTOR Pathway. PI3K/Akt/mTOR is an important
pathway in autophagy. To study the effects of curcumin and
probucol on the expression of autophagy-related proteins,
chondrocytes were cultured for 24 hours, then TNF-α,
TNF-α+50μM curcumin, TNF-α+100μM probucol, and
TNF-α+50μM probucol +25μM curcumin were mixed with
the chondrocytes and incubated for 24 hours. Western blot
assays were used to evaluate the expression of PI3K, p-
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Figure 8: Probucol and curcumin treat OA cartilage by targeting the PI3K-Akt-mTOR pathway. (a–d) Western blot and quantification
results of PI3K, p-PI3K, AKT, p-AKT, mTOR, and p-mTOR proteins in rat articular cartilage. (e and f) Quantification results of
apoptosis-related proteins (Caspase-3 and Bax) and antidegradation proteins. (g and h) Quantitative results of autophagy-related protein
expression (beclin-1 and LC3). & and ∗ indicate P ≤ 0:01 and 0.05 vs. control, respectively. All experiments were carried out three times.
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PI3K, Akt, mTOR, p-Akt, p-mTOR, and autophagy-related
proteins, such as LC3 and beclin-1. Besides, the autophagy-
related factor P62 was detected by immunofluorescence.
Compared with the OA group, probucol and curcumin could
significantly reduce the phosphorylation degrees of p-PI3K,
p-Akt, and p-mTOR, while significantly increasing the
amount of autophagy-related proteins (Figures 5(a)–5(f)).
Such effects became stronger when the two substances were
applied together. Immunofluorescence showed that the
expression of P62 decreased significantly. Therefore, the
results suggested that probucol and curcumin regulate the
mTOR signaling pathway through the PI3K-Akt pathway
to promote autophagy and inhibit apoptosis of chondrocytes
(Figures 6(a) and 6(b)).

3.6. Effects of Probucol and Curcumin on the Metabolism of
Cartilage ECM. Subsequently, the effects of probucol and
curcumin on inflammatory factors in experimental animals
were investigated. The immunohistochemistry assays and
RT-PCR verified the expression of ECM-related genes,
namely, COL-II, MMP-13, and MMP-3. RT-PCR confirmed
that the expression of MMP-13 and MMP-3 was induced by
TNF-α, but the expression of COL-II was inhibited. How-
ever, both probucol and curcumin could significantly inhibit
the degradation of COL-II while suppressing the expression
of MMP-3 and MMP-13, and the combined administration
of the two chemicals can inhibit the expression of inflamma-
tory genes in OA chondrocytes (Figures 7(a)–7(f)). More-
over, 3BDO was used to verify the therapeutic effects of
probucol and curcumin as potential antagonists for mTOR
signaling. As is seen in the figures below, 3BDO, an agonist
of the PI3K-Akt-mTOR pathway, could enhance the expres-
sion of p-PI3K/PI3K, p-AKT/AKT, and p-mTOR/mTOR,
but curcumin-probucol acted as antagonists against 3BDO
(Figures 8(a)–8(h)).

3.7. Effects of Curcumin and Probucol on GAG Release. Lastly,
compared to control, GAG release was reported to show a
significant increase in OA chondrocytes. The results from
this study suggested that probucol or curcumin could reduce
OA-stimulated GAG release when applied alone. However,
the combined administration of such two substances via
intramuscular injection could significantly (P < 0:001)
reduce the percentage of OA-stimulated GAG release to a
level similar to control (Figure 9). As a result, it is fair to infer
that the combined medication of curcumin and probucol
could inhibit OA by reducing GAG Release.

4. Discussion

One reason why only modest benefit can be obtained from
early antiproinflammation cytokine therapy for OA treatment
is because of the “one size-fits–fits-all” approach [20, 21].
Actually, from a clinical point of view, OA exhibits great etio-
logical heterogeneity, which was not addressed in those early
studies [22]. However, increasing evidence suggests that new
OA therapies require a paradigm shift that considers OA as
a complex and heterogeneous disease involving interactions
among multiple organ systems, not merely a joint disease.

Hypercholesterolemia can lead to severe metabolic
diseases; such mellitus characteristics increase the risk of
OA [20]. The possible mechanisms behind such phenome-
non may be explained as follows [22]: (1) as cholesterol is
the primary component of cell membrane, its variations can
alter the membrane fluidity and compromise its function.
Specifically, the ABCA1 gene, which is involved in choles-
terol reverse transport [23], mediates lipid efflux from cells,
and changes in this gene may be relevant to OA; (2) hyper-
cholesterolemia may impair mitochondrial function and
increase oxidative stress, leading to the progress of OA [24].
Regulation of cholesterol levels in chondrocytes can help
maintain normal mitochondrial functions; (3) in hypercho-
lesterolemia, the accumulation of LDL-based lipoproteins in
the cartilage ECM also can trigger inflammation. Again, the
ABCA1 gene is involved in this process.

The catabolic environment in OA is favored for chondro-
cyte apoptosis, and it restricts autophagy, which plays a phys-
iologically protective role from harmful stress. The activation
of the PI3K/Akt/mTOR pathway not only promotes the
expression of P62, an autophagy-related factor, but also
affects the expression of apoptosis factors (Bcl-2 and Bax).
Besides, this pathway is also involved in the activation of
inflammation. Such effects eventually lead to higher MMP-
3 and MMP-13 expression in chondrocytes and cartilage.
Moreover, the expression of COL-II, a synthetic factor of
ECM, is inhibited by the activation of the PI3K-Akt-mTOR
pathway, promoting the development of OA [17]. Therefore,
inhibiting this pathway is of particular importance for OA
therapy [25].

At present, some cholesterol regulatory drugs can inhibit
the synthesis of cholesterol, thus, being of potential therapeu-
tic significance for OA [26]. Curcumin and probucol were
both reported as cholesterol regulators [27, 28]. Specifically,
curcumin can inhibit cholesterol metabolism, while probucol
can be used to treat atherosclerosis by inhibiting TNF-α-
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Figure 9: The percentage of cartilage GAG released into the medium
at various curcumin and probucol concentrations. & and ∗ indicate
P ≤ 0:01 and 0.05 vs. control, respectively. All experiments were
carried out three times.
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induced cholesterol metabolism [29]. Moreover, the two
substances have both been reported to inhibit the
PI3K/Akt/mTOR pathway [30, 31], and the PI3K pathway
is involved in the regulation of mitochondrial activity and
ROS production [32]. Specifically, curcumin can regulate
several signal transcription pathways and function primarily
by inhibiting the activity of NF-ƙB, a transcription factor
associated with inflammation [33]. And probucol can inhibit
atherosclerosis in mice by promoting ECM production [34].
In addition, curcumin treats OA by maintaining the levels of
ECM-related factors, mainly COL-II and Sox-9 [35]. Based
on these previously published findings, the two chemicals
were investigated as potential candidates for OA therapy in
the present study, and TNF-α was selected as the inflamma-
tory stress cytokine of the chondrocytes.

In the present study, reduced autophagy and increased
apoptosis in chondrocytes were observed after TNF-ɑ stimu-
lation, which is inconsistent with the results from Shakeri’s
report [36]. With combined administration of curcumin
and probucol, autophagy was promoted and apoptosis was
suppressed, indicating their protective effects on chondro-
cytes. However, aside from proliferation and apoptosis, cell
migration also plays an important role in biological pro-
cesses, and chondrocyte migration is especially necessary
for cartilage repair [37, 38]. Previous researches have shown
that chondrocytes migrate in vitro in response to chemoat-
tractant factors, such as cytokines, growth factors, and
ECM components. The dysfunctional migration of chondro-
cytes leads to their aggregation in OA and changes in ECM
components [39]. However, in this study, curcumin and
probucol were verified to promote chondrocyte migration,
further suggesting their therapeutic potential for OA.

To explore the signaling pathways involved in curcumin-
probucol treatment, further studies with 3BDO, a
PI3K/AKT/mTOR signaling pathway agonist, were
conducted. The results confirmed that curcumin and
probucol antagonize 3BDO and thereby inhibiting the
PI3K/AKT/mTOR signaling pathway, alleviating cartilage
destruction in OA. Besides, morphological studies on carti-
lage were also performed to evaluate cartilage degeneration
in vivo, and the results further verified the protective effects
of such two substances on the cartilage matrix. Moreover,
when applied alone, both curcumin and probucol can pro-
mote the expression of COL-II in ECM while inhibiting the
expression of MMP-3 and MMP-13. A combined adminis-
tration of such two chemicals would produce synergistic
protective effects, and such findings were verified both
in vitro and in vivo.

Curcuma longa, from which curcumin is extracted, has a
history of thousands of years in Asian countries as a dietary
spice and a therapeutic agent [40]. However, it was not until
the mid-20th century that the biological properties of curcu-
min were scientifically identified [41]. Recent researches
suggested that curcumin might take function in OA therapy
[42–46]. Moreover, Henrotin et al. stated that even curcumin
has not been considered as a recommended intervention for
OA treatments, yet it still should be investigated for its safety
and efficacy [22]. Some recent publications verified that
different cell types have its specific permeability characteris-

tics towards curcumin intake, and different intracellular
curcumin concentrations might control its performance
in vivo [23, 24]. In vitro experiments verified that 20μM
curcumin would not bring toxicity to human articular carti-
lage [45]. However, at a concentration of 50μM, it will lead
to a decrease in the survival rate of chondrocytes [46, 47].In
our study, the optimal curcumin concentration to treat OA
was determined to be 50μM, but due to the potential consid-
erable toxicity to normal chondrocytes at such concentration
[48], caution still must be taken when applying curcumin for
clinical treatment of OA.

Furthermore, lower aggrecan loss in IL-1β-stimulated
articular cartilage explants has been reported to occur at a
curcumin concentration no lower than 100μM [49]. Addi-
tionally, it was reported that probucol would also bring side
effects, such as ventricular arrhythmia, torsades de pointes,
and syncope [50]. Probucol can induce long-term QT syn-
drome by blocking the ethera-go-go-related genes [36].
Moreover, the bioavailability of curcumin is also very low
because of its rapid metabolism, poor solubility and stability
in aqueous solutions, and extensive binding to plasma pro-
teins. A pharmacokinetic study suggested that curcumin is
not absorbed adequately from the gastrointestinal tract. The
peak serum concentration of curcumin was found to be only
1.77μM even with the highest dose of 8000mg/day [51],
which means its serum concentration in people who take in
only 2 grams of curcumin is nearly undetectable [40]. In this
study, the dosages of both chemicals were carefully designed
to avoid possible side effects; meanwhile, we intended to
verify whether the substances would still bring protective
effects on chondrocytes and cartilage at such low concentra-
tions. In this study, curcumin dosages that are close to its
actual concentration in the human body were applied even
though they are not enough to protect the cartilage in terms
of total maintenance of proteoglycans. However, the results
still suggested that a combined administration of the two
chemicals can enhance the autophagy of chondrocytes, pro-
mote their proliferation, inhibit their apoptosis, increase
their migration, and maintain their mitochondrial functions
and the stability of the cartilage ECM by inhibiting the
PI3K/Akt/mTOR pathway, and these findings had been
confirmed in our in vivo animal studies.

Cholesterol regulatory drugs have various functions
related to immune regulation and cartilage protection [52],
and they may be promising candidates to alleviate cartilage
degeneration. However, there are still several questions to
be resolved, and the most important one is to what extent
should cholesterol levels be lowered so that they can be
always maintained at the level required for the stability of
the internal cartilage environment. Besides, OA patients
should be further categorized into different phenotypes based
on their cholesterol metabolism situation.

In summary, OA patients are frequently accompanied
with metabolic disorders, so it is necessary to regard the
pathological mechanisms of OA as a metabolic disorder
syndrome. Apart from their effects in regulating cholesterol
levels, curcumin and probucol can also maintain chondro-
cyte stability by balancing cell autophagy and apoptosis.
Moreover, lowering cholesterol levels by medication or
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changing food intake and lifestyle is one of the fundamentals
to prevent the onset and progression of OA, and a combined
administration of curcumin and probucol is promising for
OA prevention and treatment.
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The mTOR pathway, a major signaling pathway, regulates cell growth and protein synthesis by activating itself in response to
upstream signals. Overactivation of the mTOR pathway may affect the occurrence and development of cancer, but no specific
treatment has been proposed for targeting the mTOR pathway. In this study, we explored the expression of mTOR pathway
genes in a variety of cancers and the potential compounds that target the mTOR pathway and focused on an abnormal type of
cancer, kidney renal clear cell carcinoma (KIRC). Based on the mRNA expression of the mTOR pathway gene, we divided KIRC
patient samples into three clusters. We explored possible therapeutic targets of the mTOR pathway in KIRC. We predicted the
IC50 of some classical targeted drugs to analyze their correlation with the mTOR pathway. Subsequently, we investigated the
correlation of the mTOR pathway with histone modification and immune infiltration, as well as the response to anti-PD-1 and
anti-CTLA-4 therapy. Finally, we used a LASSO regression analysis to construct a model to predict the survival of patients with
KIRC. This study shows that mTOR scores can be used as tools to study various treatments targeting the mTOR pathway and
that we can predict the recovery of KIRC patients through the expression of mTOR pathway genes. These research results can
provide a reference for future research on KIRC patient treatment strategies.

1. Introduction

Renal cell carcinoma (RCC) is the eighth most common
malignant tumor in the United States [1]. The estimated inci-
dence of kidney cancer in 2020 was 74,000. The typical symp-
toms of kidney cancer patients, such as pain, lumps, and
hematuria, account for only 10% of cases [2]. Due to the kid-
ney’s ability to compensate when there is damage, it is usually
impossible to detect the loss of kidney function early. There-
fore, RCC is clinically insidious in terms of the development
of the disease. Approximately one-third of patients have met-
astatic disease at the time of diagnosis, and patients with
locally advanced kidney cancer have a 40% risk of recurrence
after tumor resection [3, 4]. The development of targeted
therapy and immunotherapy in the past decade has filled

the gap in the treatment of advanced kidney cancer.
Although the tumor response rate to these drugs is relatively
high, most patients eventually experience cancer progression.
For current treatments, the emergence of drug resistance is a
major challenge, forcing us to reconsider the treatment of
RCC [5].

Current studies have shown that the emergence of drug
resistance is related to the existence of tumor stem cells and
the activation of other pathways [6]. The mechanisms
include the activation of the WNT-β-catenin, TP53, c-Met,
and VEGF/angiogenesis signaling pathways [7–9]. In addi-
tion, although the current tumor research has made unprec-
edented progress in cancer genetics, we have not yet reached
a unified view of genetics, for example, combining gene
mutations, copy number variations, driving pathways, and
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other aspects to overcome tumors [10]. Here, we analyzed
gene mutations, copy number changes, gene expression,
and gene prognosis correlation results of 33 tumors from
The Cancer Genome Atlas (TCGA). We combined this anal-
ysis with functional research to dissect the components that
identify specific temporal events that reflect the complexity
of the mTOR signaling pathway.

The mTOR pathway senses and integrates multiple intra-
cellular and environmental signals through two protein com-
plexes with different structures and functions: mTOR
complex 1 (mTORC1) and mTOR complex 2 (mTORC2)
[11, 12]. mTOR signaling is usually involved in regulating
cell survival, cell growth, cell metabolism, protein synthesis,
autophagy, and homeostasis [13]. In addition, mTOR nega-
tively regulates autophagy in different ways. The pathological
relevance of mTOR signal dysregulation has been explained
in many human diseases, especially in various human can-
cers. The mTOR signaling pathway has been reported to be
overactivated in more than 70% of cancers [14]. It has been
widely demonstrated in animal models and clinical cancer
patients in the past few years [15, 16]. The regulation of the
mTOR pathway is also affected by the positive and negative
regulators that cross-talk with it, such as phosphoinositide
3-kinase (PI3K)/AKT, mitogen-activated protein kinase
(MAPK), vascular endothelial growth factor (VEGF), nuclear
factor κB (NFκB) and p53, which form a more complex sig-
nal cascade [17].

Therefore, this study used the mutation, expression, and
clinical data from the TCGA database to analyze the CNV,
SNV, and gene expression status of mTOR signaling pathway
genes in 33 tumors and the relationship between each tumor
and patient prognosis. Surprisingly, most of the genes in the
mTOR pathway in clear cell renal cell carcinoma are protec-
tive for patient prognosis. To further explain this phenome-
non, we used bioinformatics methods to analyze the mTOR
pathway-related genes in kidney renal clear cell carcinoma
(KIRC). This study is aimed at systematically evaluating
mTOR pathway-related genes and the KIRC prognoses asso-
ciated with them. Through the expression pattern of mTOR
pathway-related genes in KIRC, the prognostic value and
impact on immune correlation can improve prognostic risk
stratification and promote treatment decisions in KIRC
patients.

2. Materials and Methods

2.1. Acquisition of Gene Data and Patient Clinical
Information Data. The mTOR pathway genes were identified
using the REACTOME dataset in the gene set enrichment
analysis (GSEA) website. We obtained 32 types of cancer
and 40 mTOR pathway genes. The CNV, SNV, and gene
expression data were downloaded from The Cancer Genome
Atlas (https://portal.gdc.cancer.gov) database [18, 19]. We
used the Perl language to analyze the data and TBtools to
visualize the results. The RNA-seq KIRC cohort included
72 normal samples and 539 cancer samples.

2.2. Connectivity Map Analysis (CMap) and Mechanism of
Action (MoA). To determine which target drugs are useful

for mTOR pathway therapy, we used the Broad Institute’s
Connectivity Map Build02 (CM), which allows users to pre-
dict compounds that can activate or inhibit tumors based
on the gene expression characteristics of different tumors
[20]. To further study the mechanism of action (MoA) and
drug targets related to the mTOR pathway, we conducted a
specific analysis using the Connectivity Map tool [10, 21].
We obtained 16 differential expression characteristics of
mRNA by performing differential expression analyses on
mTOR pathway gene expression samples. CMap is a method
similar to GSEA; it is based on the Kolmogorov-Smirnov
test’s pattern-matching strategy, which is used to find simi-
larities between differentially expressed genes (DEGs). Then,
we compared the DEG rankings to determine the positive or
negative regulatory relationship of the genes, thereby gener-
ating an enrichment score (ES) from -1 to 1, and finally
sorted the above scores based on all of the case data in the
database. For each cancer type, we obtained two tables that
applied the connection diagram findings to the expression
characteristics of the mTOR pathway. A p value < 0.05 was
used as an inclusion criterion to determine the average mean-
ingful compound of each tumor type. These compounds may
inhibit or activate the mTOR pathway in tumors. We use the
“GEOquery” package in R to get data from the Gene Expres-
sion Omnibus (GEO) database, the “xlsx,” “tidyverse,” “plyr,”
and “circlize” packages to process and analyze the data, and
the “pheatmap” package to plot the heat map.

2.3. Cluster Analysis Based on mTOR Scores. Because the gene
expression profile in the previously obtained data set had a
large variation, we constructed an mTOR-score model based
on mRNA expression to show the differential expression
between the samples. According to the expression of mRNA
in normal tissues, the expression statuses of the mRNA in the
tumor tissues were classified into three categories: mTOR
active (cluster1), normal (cluster2), and mTOR inactive
(cluster3). To further illustrate the relationship between gene
expression levels among these three clusters, a violin plot was
used to depict the enrichment score levels of the three clus-
ters. Statistical significance was set at p < 0:05. The “gplots”
package was used in RStudio for cluster analysis. We used
the “survival” package in RStudio to plot the survival curve
of the three clusters. A heat map was drawn by “pheatmap”
in RStudio to describe the relationship between the three
groups of clusters and the clinicopathological characteristics
of the KIRC patients. Statistical significance was set at
p < 0:05.

2.4. GDSC Database and pRRophetic Algorithm. The Geno-
mics of Drug Sensitivity in Cancer (GDSC) is the largest pub-
lic pharmacogenomics database (https://www.cancerrxgene
.org/). We used the GDSC database to predict the chemother-
apeutic response. We selected several classic and novel tar-
geted drugs to treat KIRC. We used the “pRRophetic”
package in R to perform the prediction process; a ridge
regression was used to estimate the half-maximal inhibitory
concentration (IC50) of the sample [22, 23]. We also used a
10-fold cross-validation based on the GDSC training set to
estimate the precision of the prediction. Except for “combat”
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and “allSoldTumours” tissue types, we set all parameters to
default. The repetitive expression of genes was summarized
as an average value. Statistical significance was set at
p < 0:05.

2.5. Classical Cancer-Related Genes and Histone
Modification. For the mTOR pathway, the differential
expression of known classical oncogenes and histone
modification-related genes leads to activation or inhibition
of the mTOR pathway. To explore the potential regulatory
mechanism of the mTOR pathway in KIRC, we examined
the expression levels of various oncogenes in three groups
of clusters in the form of a heat map to explore the influence
of differentially expressed oncogenes on the mTOR pathway.
Using the same approach, we also demonstrated the relation-
ship between the three clusters of mTOR pathways and two
gene types, SIRT and HDAC, which are involved in histone
modification. Statistical significance was set at p < 0:05.

2.6. Immune Cell Infiltration and Immunotherapy.We used a
single-sample gene set enrichment analysis combined with
the expression of related genes in the TCGA database to
quantify immune cells [24]. Then, a heat map expressing
the correlation between the two was drawn using the
“ggplot2” and “dplyr” packages in R. An ssGSEA analysis
can be applied to gene signals expressed by immune cell pop-
ulations in a single sample. Twenty-nine types of immune
cells and regulators used in this study involved innate and
adaptive immunity. Based on the results of ssGSEA, we
showed the correlation between mTOR scores and the
immune substances in Figure 1(e), where the area of a sphere
represents the degree of correlation. The color represents the
p value. R software packages “data.table,” “dplyr,” “tidyr,”
“ggplot2,” and “ggstatsplot” were used to analyze and plot
the figure. We then selected six classical immune regulators:
inflammation, promotion, parainflammation, T cell costimu-
lation, Tfh, and TIL. We used the “ggscatterstats” package to
draw the scatter diagram to represent their specific correla-
tions to the mTOR scores separately. PD-1 and CTLA-4 are
two types of immune regulatory factors related to T cell-
killing tumor cells [25–27]. The correlation between CTLA-
4, PD-1, and mTOR scores was demonstrated through a
visual correlation matrix analysis. The three graphs in the
upper right of Figure 1(k) correspond to correlation coeffi-
cients, while the three graphs in the lower left show a specific
correlation. Based on the correlation between PD-1, CTLA-4,
and mTOR scores, we hypothesized that immunotherapy
based on PD-1 and CTLA-4 would respond to the mTOR
pathway. TIDE and subclass mapping are two algorithms
used to predict a single sample’s response possibility or a sub-
type of immunotherapy [26–28]. Their source sites are http://
tide.dfci.harvard.edu/ and https://cloud.genepattern.org/gp.
TIDE was used to predict single-sample immune checkpoint
inhibitor response, and a submap was used to predict the
immunotherapy responses of the subtypes. We used a
Bonferroni correction to correct the p value of the test level.
Finally, the heat map was plotted using the “pheatmap” pack-
age. Statistical significance was set at p < 0:05.

2.7. Construction of the Prediction Model with a LASSO
Regression Analysis. We used “pheatmap” to describe the
expression levels of mTOR pathway genes in normal and
KIRC tissues. We used “corrplot” to describe the coexpres-
sion relationship between any two of the mTOR pathway
genes. A hazard ratio analysis was performed to analyze the
relationship between the pathway and progression of KIRC.
A LASSO regression curve using the “glmnet” package was
used to establish a risk model. Risk score =∑ni = 1
(Expi ∗ Coei); N , Coei, and Expi represent the gene number,
the regression correlation coefficient obtained by the LASSO
regression analysis, and the gene expression level, respec-
tively. We determined the cut-off value of each risk score in
the tumor group using the “survminer” package. We divided
the samples into high-risk and low-risk groups based on the
best cut-off values. We acquired the survival curve of the two
groups with the “survival” package in RStudio. Then, we used
the “survival-ROC” package to plot the ROC curve and get
the AUC value. We used a heat map to show the correlation
of clinicopathological features between the low-risk and
high-risk groups. Statistical significance was set at p < 0:05.

2.8. Validation of the Prediction Model and Nomogram. We
use the Sankey diagram plotted by the “ggalluvial” package
to show the multiple attributes of protective and risky genes
with statistical significance in an HR analysis. We obtained
protein-related information from the HPA website (https://
www.proteinatlas.org/) [29]. Univariate and multivariate
Cox regression analyses were used to show the correlations
between age, stage, grade, T (tumor), M (metastasis), and risk
score in the model. N (node) was not included in the analysis
because the sample quantity was not large enough to support
the study. All statistical analyses were performed using RStu-
dio. The nomogram was drawn by the “rms” package in R.
Finally, in order to make our conclusion more convincing,
we used KIRC clinical specimens to conduct immunohisto-
chemical experiments on the two key molecules involved in
the model, PRKAA2 and EIF4EBP1. A p value < 0.05 was
considered statistically significant.

3. Results

3.1. Widespread Genetic Mutations of mTOR Pathway Genes
in 32 Types of Cancer. Through the TCGA Pan-cancer Pro-
ject, copy number variation (CNV), single-nucleotide varia-
tion (SNV), and gene expression levels (Figure 2) of 40
types of mTOR pathway-related genes and in 32 cancer types
were studied. We downloaded the data from The Cancer
Genome Atlas (TCGA) database and analyzed them using
R [30]. We found that only a few types of cancer, such as
THCA, THYM, and PRAD, had almost no CNV gains or
CNV losses in mTOR pathway genes (Table S1, S2). In
addition, CNV of mTOR pathway genes are present in
most cancers. We also found that changes in SNV, the
mTOR pathway gene, were also predominant in most
cancers (Table S3). A large frequency of SNVs occurred in
UCEC, SKCM, and COAD. To further study the expression
of mTOR pathway genes in different cancers, we used
log2(FC) of the gene expression level between normal and
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cancer tissues. We found that most of the mTOR pathway-
related genes had a high expression level in most cancers,
except for a few genes such as CAB39L and PRKAA2,
which had a lower expression in most cancers compared to
normal tissues. This was also consistent with the conclusion
that mTOR is an oncogene-activated pathway (Table S4)
[31, 32]. We also examined gene mutations in KIRC, as
shown by the heat map. No large CNV or SNV values were
noted; the CNV frequency was lower than 0.4, and most of
the CNVs fluctuated around 0.2. For SNVs, the frequencies
of all other genes were lower than 0.02, except for mTOR,
which reached 0.06–0.08.

3.2. Connectivity Map (CMap) Analysis Identifying Potential
Compounds/Inhibitors That Can Target the mTOR
Pathway.We used Connectivity Map (CMap) [33], a system-
atic approach that is driven by data, to discover links between
genes, chemicals, and biological situations to search for com-
pounds and inhibitors that might target mTOR-related path-
ways (Figure 3(a)). According to the results and the actual
situation, most of these candidate compounds have been
reported to be used against cancer. Some of the candidate
compounds have been reported to directly or indirectly affect
the mTOR pathway. bergenin has been reported to have anti-
cancer effects in cervical cancer and bladder cancer [34, 35]
and to have a relationship with the mTOR pathway [36].
There have also been reports indicating that mepacrine has
anticancer effects [37] and that it is correlated with the
mTOR pathway [38].

The CMap mode-of-action (MoA) analysis of the 11
compounds revealed their action mechanisms (Figure 3(b)).

It is convenient to explore their common internal mecha-
nisms. Interestingly, each of these 11 compounds has a
separate anticancer mechanism of action: indoprofen (cyclo-
oxygenase inhibitor and prostanoid receptor antagonist);
mepacrine (cytokine production inhibitor, NFκB pathway
inhibitor, and TP53 activator), molindone (dopamine recep-
tor antagonist), depudecin (HDAC inhibitor), lovastatin
(HMGCR inhibitor), bergenin (interleukin inhibitor), zarda-
verine (phosphodiesterase inhibitor), rifabutin (protein syn-
thesis inhibitor), TTNPB (retinoid receptor agonist), fasudil
(Rho-associated kinase inhibitor), and buspirone (serotonin
receptor agonist). The corresponding action mechanisms
are shown in parentheses.

3.3. The Role of mTOR Genes in Cancer. The mammalian or
mechanistic target of rapamycin (mTOR) pathway plays a
vital role in cancer and regulates cell survival, metabolism,
growth, and protein synthesis [16]. The mTOR signaling
pathway has been reported to be overactivated in most
human cancers [39]. It has been reported that excessive acti-
vation of the mTOR pathway and abnormal cell metabolism
jointly lead to cancer occurrence [40]. We determined
whether the genes involved exists as risky genes or as protec-
tive genes based on the relationship between patient survival
rates and the mTOR pathway gene expression levels reported
in the TCGA database. A high expression of a gene that led to
an increased survival rate indicated that it was a protective
gene, while a high expression of a gene that caused a
decreased survival rate led it to be judged as a risky gene.
We used this method to analyze the survival landscape of
the mTOR pathway genes. As shown in the resulting figure,
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Figure 1: (a–c) Heat map showing that mTOR scores were associated with other signaling pathways in KIRC. (a) The correlation with
potentially targetable classical genes. (b) The correlation with sirtuin family genes. (c) The correlation with HDAC family genes. (d) Heat
map showing the correlation between mTOR pathway genes and substances related to immune filtering. Purple means positive and yellow
means negative. ∗p < 0:05 and ∗∗p < 0:01. (e) Plot showing the degree of correlation; the area of the sphere represents the abs(correlation),
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substances and the mTOR scores. It can be seen from the diagram that they are all negatively correlated. (k) The plot shows the
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more sensitive to PD-1 (the programmed cell death protein 1) inhibitors (nominal p value = 0.029).
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Figure 2: (a, b) The CNV frequencies of the 40 mTOR pathway genes are shown for the 32 tumor types. The color code bar refers to
differential gain or loss of copy numbers on the right side; purple indicates a CNV gain and yellow indicates a CNV loss. (c) The SNV
frequencies of the 40 mTOR pathway genes are shown for the 32 tumor types. The color code bar refers to the degree of SNV on the right
side, with blue representing a high frequency and yellow representing a low frequency. (d) There were changes in the expression of 40
mTOR pathway genes among the 32 different types of cancer. The color code bar shows the corresponding value of log2(FC) on the right side.
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Figure 3: Continued.
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since the mTOR pathway itself is a cancer pathway, related
genes are present as risky genes in most cancers
(Figure 3(c)). However, we found an interesting result indi-
cating that most mTOR-related genes exist as protective
genes in KIRC, which contradicts previous studies’ results.
Therefore, we focused on the relationship between mTOR-
related pathway genes and the survival rate of patients with
KIRC. We plotted the Kaplan-Meier curve (K-M curve) for
each of the statistically significant gene pathways based on
patient survival data, according to p < 0:05. The results
obtained are consistent with the conclusion of the survival
landscape of mTOR pathway genes (Figure 3(d)). This sug-
gests that there are still some underexplained roles of the
mTOR pathway in KIRC.

3.4. Cluster Analysis Based on mTOR Scores. To explore the
specific relationship between mTOR and KIRC patients, we
constructed an mTOR-score model based on the mRNA
expression of the 40 genes. According to the final mTOR-
score results, the patient samples were divided into three
clusters. cluster1: mTOR-active cluster; cluster2: normal clus-
ter; cluster3: mTOR-inactive cluster (Figure 4(a), Table S6).
We can also see the gene enrichment scores of the three
clusters through the violin plot: cluster1>cluster2>cluster3
(Figure 4(b)). It is worth mentioning that the quantity of
samples in cluster1 was relatively small compared to the
other two groups, which will influence the subsequent
experiments. After plotting the survival curves of the three
clusters, we found that the mTOR-inactive cluster had the

(d)

Figure 3: (a) Heat map shows each compound’s enrichment score for each cancer type from the CMap. These are ordered from right to left in
descending order of significant enrichment based on cancer type. The color bar refers to different enrichment scores: blue means positive and
red means negative. (b) Heat map showing themechanisms (column) shared by each compound (row) from the CMap. (c) Heat map showing
the survival landscape of the mTOR pathway genes, with blue representing risky genes and yellow representing protective genes. The grey bar
represents no statistical significance. (d) The survival curve of the statistically significant mTOR pathway genes in KIRC.
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Figure 4: Continued.
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lowest survival rate, the second cluster was the normal group,
and the mTOR-active cluster had the highest survival rate
(Figure 4(c)). This result supports the previously discovered
abnormal phenomenon that mTOR pathway-related genes
are mostly protective genes in KIRC. We then analyzed the
relationship between these three clusters and the
clinicopathological characteristics of KIRC patients, and the
results showed that T (tumor), M (metastasis), stage, grade,
and fustat, were related to the mTOR pathway (Figure 4(d)).
The mTOR pathway scores were generally protective. The
higher the mTOR score, the lower the grade and stage, and
the better the prognosis.

3.5. The Relationship between Classic Anticancer Drugs and
mTOR. To further explore the drug sensitivity between
mTOR clusters, we also conducted a GDSC drug sensitivity
analysis. Our research is mainly focused on drugs to treat
tumors, especially drugs for targeted therapy of kidney can-
cer and classical drugs for tumor research, such as metfor-
min. There have been reports that cancer can be targeted
with inhibitors of the mTOR pathway [41, 42]. At present,
there are many kinds of targeted anticancer drugs, but their

mechanisms of action are quite different. Pazopanib, sorafe-
nib, and sunitinib are three drugs that are multitarget kinase
inhibitors [43]. Gefitinib inhibits epidermal growth factor
receptor (EGFR) [44], bosutinib is a tyrosine kinase inhibitor
(TKI) [45], and axitinib inhibits the VEGF pathway [46].
Studies have also found a connection between the mTOR
pathway and temsirolimus and metformin [47, 48]. Metfor-
min, an antidiabetic drug, can also be used to prevent cancer
alone and in combination with other drugs, mainly by reduc-
ing glycemia to cut-off the PI3K/MAPK pathway, which is
involved in cell growth, or by activating the AMPK pathway,
targeting tumor metabolism angiogenesis, cancer stem cells,
and other pathways [49]. Therefore, it is necessary to explore
the correlation and mechanism between these targeted drugs
and the mTOR pathway.

We constructed a ridge regression model to predict the
IC50 of drugs (contained in the GDSC) against cancer cells
through the cell expression profile of the Genomics of Drug
Sensitivity in Cancer (GDSC) database; three clusters were
obtained through a cluster analysis. Using this method, we
can infer the relationship between these drugs and the mTOR
pathway genes (Figure 5). Considering p < 0:05 to indicate

Cluster

10

M⁎

T⁎⁎

Age
Fustat⁎
Futime
LAMTOR2
LAMTOR4
EIF4E8P1
AKT1S1
MLST8
RRAGC
STRADB
RHE8
PRKAB1
PRKAG1
RRAGA
RPS6
LAMTOR1
LAMTOR5
RRAGB
PRKAB2
YWHAB
CAB39
SLC38A9
RPS6KB1
EIF48
PRKAA2
PRKAA1
PRKAG2
RRAGD
CSB39L
EIF4E
LAMTOR3
PPM1A
AKT1
EIF4G1
MTOR
RPTOR
EEF2K
PRKAG3
TSC1
STRADA
TSC2
STK11
AKT2

Grade⁎
Stage⁎⁎

0

–10

M⁎

1

0

T⁎⁎

1

4

1

4
Stage⁎⁎

1

4
Grade⁎

30

80
Age

0

1
Fustat⁎

500

3500
Futime

Cluster
Cluster1
Cluster2

Cluster3

(d)

Figure 4: (a) Clustering of gene data from the TCGA database reveals three clusters. Upregulation of mTOR pathway genes was
demonstrated in cluster1, and downregulation of mTOR pathway genes was demonstrated in cluster3. In cluster2, mTOR pathway genes
were affected the least. The percentage of patients whose genes were altered is provided, showing the high frequency of changes in mTOR
pathway genes. (b) The Violin plot shows the enrichment score of the three clusters. The plot shows the enrichment scores of the three
clusters, from high to low, as cluster1, then cluster2, followed by cluster3. (c) The survival curves of the three clusters are shown in the
plot. Survival in cluster1 is higher than that in cluster2, and survival in cluster2 is higher than that in cluster3. (d) Heat map showing the
correlation between mTOR scores and the clinicopathological characteristics of KIRC patients. ∗p < 0:05, ∗∗p < 0:01, and ∗∗∗p < 0:001.
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Figure 5: Continued.
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statistical significance, the cluster-wise significance for each
drug was as follows: pazopanib—C1>C3; sorafenib—C2>C3;
sunitinib: C1>C3; nilotinib—C1>C3>C2; vorinos-
tat—C1>C3>C2; axitinib—C1>C3>C2; gefitinib—C2>C3;
temsirolimus—C1>C2>C3; lapatinib—no significance;
metformin—C1>C2>C3; bosutinib—C1>C3; tipipifar-
nib—C1>C2>C3. C1, C2, and C3 represent cluster1, cluster2,
and cluster3. The lower the IC50, the better the drug efficacy.
We can understand the therapeutic effects of the drugs in the
three clusters through this analysis method to assist in the
development of precise cancer treatments in the future.

3.6. The mTOR Pathway’s Destruction Is Related to the
Dysregulation of Several Potential Target Oncogenes and
Tumor Suppressor Genes. To further explore the potential
regulatory mechanism of the mTOR pathway in KIRC, we
studied the relationship between various well-known onco-
genes in KIRC and tumor suppressor genes in the three

mTOR pathway clusters. We found that the expression of
the HRAS, MYC, and VEGFA oncogenes in the inactive
group was significantly higher than that in the active group.
In comparison, the expression of tumor suppressor genes
VHL and PTEN in the inactive group was significantly lower
than that in the active group. The above results indicate that
the poor prognosis of the inactive group may be related to the
abnormal expression of these genes. The expression of onco-
genes BRAF, AKT1, KRASM, TOR, and PIK3CA in the
active group was significantly higher than that in the inactive
group.

In comparison, the expression of the tumor suppressor
gene TP53 in the active group was significantly lower than
that in the inactive group, indicating that the activation of
the mTOR pathway may be closely related to the participa-
tion of these genes. Interestingly, we found that the expres-
sion of EGFR, MYC, CCND1, CTNNB1, and STAT3 in the
normal group was significantly higher than that in the
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Figure 5: (a–l) The estimated IC50 for 12 types of common chemotherapeutic agents are shown in the plot for cluster1, cluster2, and cluster3.
The 12 types of chemotherapeutic agents are pazopanib, sorafenib, sunitinib, nilotinib, vorinostat, axitinib, gefitinib, temsirolimus, lapatinib,
metformin, bosutinib, and tipifarnib.
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inactive and active groups (Figure 1(a)). This special phe-
nomenon once again illustrates that mTOR plays different
roles in different stages of tumor development through the
degree of activation. Proper activation of the mTOR pathway
increases the expression of oncogenes, and pathway inhibi-
tion may cause downregulation of certain oncogenes’ expres-
sion levels, and at the same time activate other oncogenes
through the cross-talk pathway to cause tumor progression.
Although the biological mechanisms of these associations
may be complicated, the oncogenes mentioned above or
tumor suppressor genes may be potential targets for mTOR
signaling interruption in KIRC.

Recently, an increasing number of studies have found
that sirtuins are involved in various biological processes
related to tumorigenesis, such as changes in cancer-related
metabolic pathways, uncontrolled proliferation, genome
instability, and tumor microenvironment. In human cancers,
sirtuins are thought to play complex roles. Depending on the
type of cancer and the experimental conditions, they act as
both oncogenes and tumor suppressors [50, 51]. The analysis
of the transcriptomes of TCGA KIRC patients showed that
there is a strong correlation between abnormal sirtuin and
HDAC expression levels and the mTOR pathway. A recent
study found that the ethanol extract of Patrinia scabiosaefolia
induces the death of human renal cell carcinoma 786-O cells
via SIRT1 and mTOR signaling-mediated metabolic disrup-
tions [52]. SIRT5-mediated SDHA desuccinylation promotes
clear cell renal cell carcinoma tumorigenesis [53]. In addi-
tion, the SIRT family shows a differentially expressed organi-
zation in RCC. Among the seven SIRTs, SIRT1, SIRT3, and
SIRT6 can be used as tumor suppressors in KIRC [54]. In
our study, the expression of SIRT2, SIRT3, SIRT6, and SIRT7
in the inactive group was significantly higher than that in the
active group. In comparison, the expression of SIRT1, SIRT4,
and SIRT5 in the inactive group was significantly lower than
that in the active group (Figure 1(b)). In summary, these
results indicate that sirtuins and mTOR signaling pathways
may act synergistically to promote or inhibit multiple pro-
cesses in the progression of KIRC. Histone deacetylases
(HDACs) catalyze the removal of acetyl groups from lysine
residues on histones and nonhistone proteins and play a vital
role in regulating gene transcription [55]. Deacetylation of
histone tails induces chromatin condensation and allows
DNA to bind more tightly to the histone core, preventing
the transcription mechanism from reaching the promoter
region, thereby inhibiting transcription [56]. In this study,
we found that the expression of HDAC8, HDAC9, and
HDAC11 in the active group was significantly higher than
that in the inactive group. In comparison, the expression of
HDAC1, HDAC6, HDAC7, and HDAC10 in the active
group was significantly lower than that in the inactive group
(Figure 1(c)). At present, SIRT and HDAC inhibitors provide
new prospects for tumor treatment, and our research results
can further offer new directions for future tumor precision
treatment. For example, HDAC10 was almost not expressed
in the active group, but was abnormally high in the inactive
group. Therefore, the use of HDAC10 inhibitors may be
more beneficial to patients with inactivation of the mTOR
pathway (Figure 1(c)).

3.7. mTOR Pathway Implication in Immune Cell Infiltration
and in Immune Checkpoints Targeting Cancer Therapy. The
tumor microenvironment (TME) is a mixture of fluid, stro-
mal cells, immune cells, extracellular matrix molecules, and
various cytokines and chemokines. The cells and molecules
in the TME are dynamic in promoting tumor immune
escape, tumor growth, and metastasis [57, 58]. As a major
regulator of metabolism, mTOR signaling controls immune
cell biology in a cell type-specific manner. In addition, mTOR
activity needs to be adjusted to maintain proper immune
function [59]. To further study the relationship between the
mTOR pathway in KIRC and patient immunity, we first per-
formed a correlation analysis between the mTOR pathway
and immune cell infiltration. We found that many genes
related to the mTOR signaling pathway are associated with
the infiltration of multiple immune cells, especially RRAGC,
LAmTOR2, EIF4EBP1, PRKAB1, PRKAB2, and other genes,
among which RRAGC, LAmTOR2, and EIF4EBP1 were pos-
itively correlated with immune cell infiltration.

In contrast, PRKAB1 and PRKAB2 were negatively cor-
related with immune cell infiltration (Figure 1(d)). We fur-
ther used the “ggstatsplot package” in R to analyze the
relationship between the mTOR pathway score and immune
cell infiltration. The results showed that the mTOR score was
negatively correlated with various immune cell infiltrations,
such as T cell costimulation, parainflammation, Tfh, TIL,
and inflammation promotion (Figures 1(e)–1(j)). Immune
checkpoint blocking antibodies, including anti-CTLA-4 and
anti-PD-1, can induce tumor responses in a variety of tumor
types, including melanoma, non-small-cell lung cancer
(NSCLC), and kidney renal clear cell carcinoma (KIRC)
[60]. In addition, the therapeutic effect of immune check-
points may be related to the expression of CTLA-4 and PD-
1. In the correlation analysis, we found that the mTOR path-
way score is negatively correlated with CTLA-4 and PD-1
(Figure 1(k)), so it is potentially inferred that patients with
mTOR pathway inactivation may have higher expression of
CTLA-4 and PD-1 than patients with mTOR pathway activa-
tion. In addition to the TIDE prediction, we also used sub-
class mapping to compare the expression profiles of the two
subtypes (cluster1+cluster2 and cluster3) that responded to
immunotherapies [23]. We were delighted to see that the
mTOR-inactive cluster was more responsive to anti-PD-1
therapy (Figure 1(l)). Unfortunately, following a Bonferroni
correction of the results, the difference between the two
groups was not statistically significant (Figure 1(l)).

3.8. LASSO Regression to Establish the Prediction Model. We
found that 36 of 40 mTOR pathway genes were differentially
expressed by analyzing gene expression in 72 normal tissue
samples and 539 KIRC cancer tissues (Figure 6(a),
Table S7). We performed a hazard ratio analysis to show
the relationship between these gene pathways and the
progression of KIRC (Figure 6(b), Table S5). A
coexpression analysis was used to analyze the relationship
between gene pathways, and the results showed that there
were coexpression relationships among these genes
(Figure 6(c)). To explore the possibility of using the mTOR
pathway genes to build a model to predict KIRC patient
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Figure 6: (a) The expression of 40 mTOR pathway genes in KIRC patients. In the color bar on the right side, blue represents upregulation and
yellow represents downregulation. N (green) is the normal sample, T (red) is the tumor sample. ∗p < 0:05, ∗∗p < 0:01, ∗∗∗p < 0:001. (b) The
plot shows the hazard ratio (HR) analysis with 95% confidence intervals (CI) and p values for the mTOR pathway genes. (c) The plot shows
the result of the coexpression analysis of 40 mTOR pathway genes. Many of them were correlated in KIRC tissues. (d) The LASSO coefficient
profiles of mTOR pathway genes in KIRC. (e) Five genes were selected by LASSO Cox regression analysis. (j) The survival curve was obtained
based on this model. Blue and yellow correspond, respectively, to the high-risk group and the low-risk group. (f–i) ROC curves of 3, 5, 7, and
10 years; the AUCs of the curves are 0.692, 0.725, 0.778, and 0.794, respectively. (k) The correlation of five selected genes and the
clinicopathological characteristics in two groups. The color bar shows the expression of the genes. Blue represents upregulation, and
yellow represents downregulation. ∗p < 0:05, ∗∗p < 0:01, ∗∗∗p < 0:001.
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prognosis, we conducted a LASSO regression analysis
(Figures 6(d) and 6(e)) to establish the model. We selected
five genes as risk factors: PRKAA2, AmTOR3, STRADA,
EIF4EBP1, and RHEB. We used this model to divide the
sample into two groups: high-risk and low-risk groups based
on the best cut-off values of the risk scores. We plotted the
survival curves of the two groups, which showed that the
low-risk group predicted better survival than the high-risk
group (Figure 6(j)). A receiver operating characteristic
(ROC) curve analysis was then performed to analyze the
predictive prognostic performance of the new survival model
in KIRC patients. The 3-year survival had an area under the
curve (AUC) of 0.692; 5-year survival, AUC = 0:725; 7-year
survival, AUC = 0:778; and 10-year survival, AUC = 0:794
(Figures 6(f)–6(i)). Generally, an AUC value greater than 0.7
is considered predictive. We then used heat maps to
demonstrate the correlation between the model and the
pathological features of renal cell carcinoma. The results
show that M, T, stage, grade, and fustat were related to the
model we established (Figure 6(k)).

3.9. Validation of the Model and Representation Using a
Nomogram. We selected genes that were statistically signifi-
cant in the previous HR analyses. They were divided into
two groups according to risky genes and protective genes.
After the mulberry diagram was drawn to classify them, we
found that both AmTOR3 and PRKAA2, which are protec-
tive genes, were in the model and showed low expression
levels in KIRC tissues, while EIF4EBP1, a risky gene, was
highly expressed in KIRC tissues. In addition, we obtained
the immunohistochemical information of PRKAA2 and
EIF4EBP1 from the human protein atlas (HPA) website
[61] and verified the results of their gene expression at the
protein level (Figures 7(a) and 7(b)). In addition, the results
of immunohistochemistry experiments on the two molecules
PRKAA2 and EIF4EBP1 on our KIRC clinical specimens are
also consistent with the above results, and the corresponding
results are shown in Supplementary Materials Figure S1. We
then performed univariate and multivariate Cox regression
analyses and found that the risk model was a risk factor in
both regression analyses and was prominent in the
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Figure 7: (a, b) Sankey diagrams were plotted for two types of genes, risky and protective. Immunohistochemical images were obtained from
the HPA website for PRKAA2 and EIF4EBP1, which are representative of the two gene groups. (c) Univariate Cox analysis. (d) Multivariate
Cox analysis. (e) Nomogram of the model.
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multivariate Cox regression model (Table S8 and Table S9)
(Figures 7(c) and 7(d)). Finally, we used a nomogram to
predict the risk and prognosis of patients with KIRC. The
nomogram generated a total of nine rows (Figure 7(e)). The
second to the ninth rows were age, grade, stage, risk score,
total points, 5-year survival, 7-year survival, and 10-year
survival. From the second to the fifth lines, the patient
scores were found and added together to obtain the total
scores, corresponding to 5-, 7-, and 10-year survival.

4. Discussion

Rapamycin was first identified by Sehgel in 1964 [62], and its
two important target genes TOR1 and TOR2 were identified
in 1991 [63]. The mTOR protein was identified three years
later as a direct target of the rapamycin complex [64]. In
recent years, the mechanism of the mTOR pathway in the
human body has been gradually explored. It regulates various
cellular processes, including protein synthesis, growth,
metabolism, senescence, regeneration, and autophagy. At
present, the mTOR gene has been found to play a role in a
variety of diseases [65], such as neurological diseases [66–
70], tumors [39, 71–74], and diabetes [75, 76].

mTOR contains two complexes, mTORC1 and
mTORC2. mTORC1 promotes protein synthesis by phos-
phorylation of two key effectors, S6K1 and 4EBP, and
inhibits protein decomposition by blocking AMPK activation
of ULK1, thereby controlling cell growth and division. The
most important role of mTORC2 may be to activate AKT
to promote cell survival [39]. Both play important roles in
the occurrence and development of cancer. mTORC1 regu-
lates mutations in many oncogenic pathways, such as the
PI3K/AKT pathway and the Ras/Raf/Mek/Erk (MAPK)
pathway. Simultaneously, mTORC2 also affects cancer by
activating AKT, which promotes proliferation and sup-
presses apoptosis [15]. Drugs targeting mTOR have been
developed based on the above mechanism. First-generation
rapamycin and rapalog mainly downregulate the activation
of mTORC1 to S6K1 by inhibiting mTORC1 to reduce the
growth and proliferation of cancer cells. However, mTORC1
achieves a carcinogenic effect by inhibiting 4EBP, so the
effects from rapalogs are not ideal. Following this, second-
generation mTOR kinase inhibitors that simultaneously act
on mTORC1 and mTORC2 have also been developed. These
can compete with mTOR catalytic sites for ATP and selec-
tively inhibit mTORC1 and mTORC2 [16, 39]. At present,
there have been third-generation mTOR inhibitors targeting
more mTOR molecule binding sites, aiming at reducing
tumor resistance through stronger binding with mTOR
molecules [77].

In cancer, the mechanism of the mTOR pathway is more
complicated. The conclusions are as follows: (1) The
upstream signaling pathway overactivates the mTOR path-
way [78]. (2) The expression of the mTOR gene is modified
or regulated by miRNAs [79]. (3) The mTOR pathway gene
regulates the human immune system and causes the immune
escape of tumor cells [80, 81]. Based on the current research
results, we first chose to study the expression level of mTOR
pathway genes in cancer and their differential expression

levels. We then focused on some potential compounds that
may target the mTOR pathway, laying a foundation for
future studies. We then compared the mTOR pathway genes
in normal and cancer tissues to determine whether they exist
as risky or protective genes. In our results, we found an inter-
esting phenomenon: compared with other cancer types, the
mTOR pathway gene in KIRC mostly exists as a protective
gene, which is inconsistent with previous research results that
mTOR pathway overexpression can lead to the occurrence of
cancer. Therefore, we turned our attention to KIRC.

KIRC samples were divided into three clusters according
to their mTOR scores, which were based on their mRNA
expression levels. The three clusters represented three differ-
ent gene expression states in the mTOR pathway for the con-
venience of subsequent experiments. After plotting the
survival curves for the three clusters, we found that the
mTOR pathway gene expresses inactive clustering survival
rates, confirming our previous findings that mTOR is protec-
tive in KIRC. In fact, we also found relevant research reports
pertaining to this abnormal mTOR action. Zhong et al.
reported in the literature in October 2020 that mTOR
pathway-related genes were enriched in their low-risk group
of KIRC samples [82]. However, the reason for this phenom-
enon remains unclear. Based on the mechanism of mTOR
and previous studies on the mechanism of mTOR in KIRC
[83], we found that the activation of the mTOR pathway in
KIRC is still the cause of cancer development; however, our
results contradict the conclusion that mutations in the
mTOR pathway promote cancer progression. We studied
the mTOR pathway gene survival landscape in patients with
KIRC and found that more than half of the statistically signif-
icant mTOR pathway genes have a protective effect in KIRC.

There is a well-established system for targeted therapies
for KIRCs. The efficacy of targeted mTOR pathway therapies
for cancer is currently well established. The first of the afore-
mentioned three generations of mTOR inhibitors, everoli-
mus, is still widely used in the treatment of patients with
advanced renal cell carcinoma after the failure of sunitinib
or sorafenib. Therefore, we used CMap to look for potential
drugs to treat KIRC and performed a GDSC analysis to con-
firm the effects of some of the most common targeted mTOR
pathway gene drugs in KIRC therapy. We hope that these
analyses will help in the clinical treatment of KIRC. The
results showed that most targeted drug therapies for KIRC
are related to the impact of mTOR pathway gene expression
levels. These results could provide new insights into the
development of targeted drugs to treat KIRC in the future,
especially those that target the mTOR pathway.

Currently, research on immunotherapy for cancer is very
popular. The treatment of histone acetylation [84, 85] and
the enhancement of T cell-killing effects are relatively
accepted concrete means. By observing the expression of
some classical protooncogenes, tumor suppressor genes
(KRAS, VHL, and so on), and immune-related genes, espe-
cially histone acetylation, in the three clusters, we found the
effects of these genes in the mTOR pathway, and most of
the genes were positively or negatively correlated with the
mTOR pathway. However, the expression of some genes in
cluster1 (mTOR active) and cluster3 (mTOR inactive) was
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consistent and contrary to that in cluster2 (normal). Among
them, we found an interesting phenomenon: for example,
mTOR pathway upregulation or downregulation were both
related to low expression levels of MYC and EGFR. Mean-
while, HDAC8 exhibited the opposite: mTOR pathway
upregulation or downregulation were both related to its high
expression. For this nonlinear relationship, we speculate that
there are still undiscovered intermediate pathways between
the expression of the mTOR pathway and the expression of
such genes, which need to be further elucidated.

We observed a correlation between many immune-
infiltration-related factors and mTOR pathway genes. The
results showed that almost all immune-infiltration-related
factors were negatively correlated with mTOR. This indicates
that the activation of the mTOR pathway suppresses immune
infiltration of the body. Therefore, from the perspective of
immunity, the mTOR pathway is still a cancer pathway,
which cannot support the previous conclusions obtained by
studying the mTOR-score-related survival curve in KIRC.
These results indicate that the mechanism of the mTOR
pathway is not fully understood.

Immunotherapy for T cells has been the main treatment
method for KIRC, with PD-1 and CTLA-4 as the research
focus [25]. Inhibition of PD-1 and CTLA-4 increases T cell
killing. In our study of three mTOR-score clusters’ respon-
siveness to PD-1 and CTLA-4 inhibitor targets, we combined
cluster1 and cluster2 as mTOR-active clusters because of
the small size of cluster1, and we defined cluster3 as an
mTOR-inactive cluster. We were delighted to see that the
mTOR-inactive cluster was more likely to be responsive
to anti-PD-1 therapy. Unfortunately, following a Bonfer-
roni correction, the results were not statistically significant.

We then analyzed the differential expression of these 40
mTOR pathway genes in cancer and normal tissues and per-
formed an HR analysis and coexpression analysis of these
genes. Subsequently, five genes in the mTOR pathway genes
were screened using a LASSO regression to construct a model
to predict the survival rate of KIRC patients. We hope that
this prediction model will provide some help for future clin-
ical studies.
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Glioblastoma multiforme (GBM) is the most aggressive brain tumor. Drug resistance mainly drives GBM patients to poor prognoses
because drug-resistant glioblastoma cells highly defend against apoptotic insults. This study was designed to evaluate the effects of
cobalt chloride (CoCl2) on hypoxic stress, autophagy, and resulting apoptosis of human and mouse drug-resistant glioblastoma
cells. Treatment of drug-resistant glioblastoma cells with CoCl2 increased levels of hypoxia-inducible factor- (HIF-) 1α and
triggered hypoxic stress. In parallel, the CoCl2-induced hypoxia decreased mitochondrial ATP synthesis, cell proliferation, and
survival in chemoresistant glioblastoma cells. Interestingly, CoCl2 elevated the ratio of light chain (LC)3-II over LC3-I in TMZ-
resistant glioblastoma cells and subsequently induced cell autophagy. Analyses by loss- and gain-of-function strategies further
confirmed the effects of the CoCl2-induced hypoxia on autophagy of drug-resistant glioblastoma cells. Furthermore, knocking
down HIF-1α concurrently lessened CoCl2-induced cell autophagy. As to the mechanisms, the CoCl2-induced hypoxia decreased
levels of phosphoinositide 3-kinase (PI3K) and successive phosphorylations of AKT and mammalian target of rapamycin (mTOR)
in TMZ-resistant glioblastoma cells. Interestingly, long-term exposure of human chemoresistant glioblastoma cells to CoCl2
sequentially triggered activation of caspases-3 and -6, DNA fragmentation, and cell apoptosis. However, pretreatment with 3-
methyladenine, an inhibitor of autophagy, significantly attenuated the CoCl2-induced autophagy and subsequent apoptotic insults.
Taken together, this study showed that long-term treatment with CoCl2 can induce hypoxia and subsequent autophagic apoptosis
of drug-resistant glioblastoma cells via targeting the PI3K-AKT-mTOR pathway. Thus, combined with traditional prescriptions,
CoCl2-induced autophagic apoptosis can be clinically applied as a de novo strategy for therapy of drug-resistant GBM patients.

1. Introduction

Glioblastomamultiforme (GBM) is the most malignant brain
tumor. In the clinic, GBM patients are regularly cured with

standard surgical resection and successive concurrent che-
moradiotherapy [1]. Temozolomide (TMZ) is the first-line
chemotherapeutic drug for GBM [2]. Unfortunately, more
than 50% of GBM patients will ultimately exhibit drug
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resistance and recurrence [3]. Because GBM develops in the
brain, this cerebral location limits neurosurgeons’ perfor-
mance of completely removing tumors [4]. Moreover, glio-
blastoma cells possess unique features of rapid proliferation,
migration, and invasion [5]. Following surgery, residual glio-
blastoma cells existing on the periphery of a brain tumor can
speedily proliferate and invade other areas to recur as more-
aggressive brain tumors [4]. As a result, GBM patients usually
have very poor prognoses. Even if patients are energetically
cured, their average survival is only 12~18 months [6]. Until
now, chemoresistance is still a key challenge for therapy of
glioblastomas. Therefore, establishing de novo strategies to
overwhelm drug tolerance by GBM is an emergent and neces-
sary issue.

Mammalian cells require an adequate supply of oxygen
for energy production in order to support cell activities and
functions. Hypoxia is a condition in which there is an insuf-
ficient oxygen source in a region of the body [7]. Being
related to physiological and pathological situations, hypoxia
is highly associated with human health and diseases, espe-
cially in the brain [8, 9]. Throughout its entire lifespan, the
human brain is often threatened by cerebral hypoxia [10].
For example, prenatal hypoxia that occurs in a key stage of
brain formation may cause morphological variations in brain
structures that are involved in learning and memory and ulti-
mately affect development of cognitive functions. In ischemic
brain diseases, hypoxia can directly disrupt the integrity of
the blood-brain barrier (BBB), thus leading to vasogenic
edema, brain swelling, and neuronal injury [11]. Moreover,
cerebral hypoxia can also be induced by certain diseases, such
as asthma, that interfere with breathing and blood oxygena-
tion [12]. More attractively, hypoxia is also detected in solid
cancers, particularly in brain tumors [13]. Hypoxic condi-
tions may induce insults to glioblastoma cells. Otherwise, in
response to hypoxic stress, glioblastoma cells can produce
and excrete vascular endothelial growth factor (VEGF) to
stimulate neovascularization from preexisting blood vessels
[14]. In response to hypoxic stimuli, hypoxia-induced factor-
(HIF-) 1α, a subunit of heterodimeric HIF-1, can be signifi-
cantly upregulated and then functions as a representative tran-
scription factor to regulate downstream gene expressions [9,
15]. A number of studies disclosed the complexity and impor-
tance of the HIF-1α signaling pathway in hypoxia [16].
Accordingly, HIF-1α and its downstream targets are emerging
as novel therapeutic options for treating brain tumors.

Autophagy, a process of self-degradation and catabolism,
is generally considered to be a survival mechanism in
response to nutrient insufficiency-induced stress [17]. In
addition, autophagy participates in preventing certain dis-
eases, such as cancer, neuronal disorders, cardiomyopathy,
diabetes, liver disease, autoimmune diseases, and infections,
by engulfing damaged organelles and intracellular ribosomes
and protein aggregates into double-membraned autophago-
somes. Hypoxia can induce cell autophagy [18]. In the
hypoxic tissue microenvironment, adenosine monopho-
sphate- (AMP-) activated protein kinase (AMPK) is activated
due to an increase in the ratio of intracellular AMP and aden-
osine triphosphate (ATP) [19]. Subsequently, activated
AMPK can trigger cell autophagy through directly inducing

autophagy-associated light chain 3 (LC3) and indirectly sup-
pressing activity of the mammalian target of rapamycin
(mTOR) [13, 20]. When oxygen deprivation occurs in the tis-
sue microenvironment, HIF-1α is proximately induced and
then activated in response to hypoxic stress [21]. HIF-1α
can induce cell autophagy via inducing BNIP3 and LC3
expressions [22]. Traditionally, hypoxia-induced autophagy
is thought to promote tumor resistance [13]. In addition to
autophagy, hypoxic conditions can induce cell apoptosis
and necrosis in follicles of mammalian ovaries [18]. Our pre-
vious study showed that honokiol, an anticancer drug,
induces autophagic insults to neuroblastoma cells via activa-
tion of the phosphoinositide 3-kinase- (PI3K-) AKT-mTOR
and endoplasmic reticular (ER) stress/extracellular signal-
regulated kinase (ERK)1/2 signaling pathways [23]. More-
over, a longer period of treatment with honokiol led to
autophagy and the death of glioblastoma cells [24]. Our pre-
vious study also demonstrated that cobalt chloride (CoCl2),
an inducer of HIF-1α, can be used as a chemical hypoxia
model to induce autophagic death of human glioblastoma
cells via a p53-dependent mechanism [25]. More than 50%
of GBM patients ultimately exhibit chemoresistance, and
drug-resistant glioblastoma cells highly defend against apo-
ptotic insults [1]. In this study, we successfully isolated
human and mouse TMZ-resistant glioblastoma cells as our
experimental models to investigate whether or not a pro-
longed administration of hypoxia could induce autophagic
killing of drug-resistant glioblastoma cells and the possible
action mechanisms, focusing on the PI3K-AKT-mTOR
signaling pathway.

2. Materials and Methods

2.1. Selection and Culturing of Human and Mouse Drug-
Resistant Glioblastoma Cells. TMZ-sensitive human U87
MG and mouse GL261 cells were used for selection of
drug-resistant U87 MG-R and GL261-R glioblastoma cells
as described previously [26]. In brief, U87 MG and GL261
cells were seeded in 12-well tissue culture plates at a density
of 105 cells per well and maintained in Dulbecco’s modified
Eagle’s medium (DMEM; Gibco-BRL Life Technologies,
Grand Island, NY, USA) with 10% fetal bovine serum,
100μg/ml streptomycin sulfate, and 100U/ml penicillin
and cultured in a humidified incubator with 5% CO2 at
37°C. Glioblastoma cells were treated with 50μM TMZ for
2 days. Later, human U87 MG and mouse GL261 cells were
trypsinized and diluted 0.2~1.0-fold. Diluted cells were cul-
tured in DMEM with 100μM TMZ. Surviving cell colonies
were dissociated with trypsin and further grown in culture
medium containing 100μM TMZ. After sequential selection
of drug-resistant glioblastoma cell colonies, TMZ-tolerant
U87 MG-R and GL261-R cells were successfully selected.
Human normal astrocytes (HA-h) purchased from ScienCell
Research Laboratories (Carlsbad, CA, USA) were cultured in
astrocyte medium (ScienCell Research Laboratories).

2.2. Creation of Hypoxic Conditions and Drug Treatment.
Hypoxic conditions in drug-resistant U87 MG-R and
GL261-R glioblastoma cells were created by inducing HIF-1α
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expression following treatment with CoCl2 as described previ-
ously [25]. CoCl2, bought from Sigma (St. Louis, MO, USA),
was freshly dissolved in phosphate-buffered saline (PBS), con-
taining NaCl (0.14M), KCl (2.6mM), Na2HPO4 (8mM), and
KH2PO4 (1.5mM). TMZ-resistant U87 MG-R and GL261-R
glioblastoma cells were exposed to 100μM CoCl2 for 6, 12,
and 24h. Levels of HIF-1α were measured in order to confirm
hypoxic conditions in drug-resistant glioblastoma cells. Con-
trol cells received PBS only.

2.3. Analyses of Cell Morphology and Survival. Morphologies
and survival of human and mouse drug-sensitive and -resis-
tant glioblastoma cells were analyzed according to a previ-
ously described method [27]. Drug-resistant glioblastoma
cells (104 cells/well) were seeded in 12-well tissue culture
plates overnight. After drug treatment, cell morphologies
were observed and photographed using an inverted light
microscope (Nikon, Tokyo, Japan). Then, the cells were tryp-
sinized with 0.1% trypsin-EDTA. After centrifugation, glio-
blastoma cells were suspended in PBS buffer and stained
with a trypan blue dye. Fractions of living cells with white sig-
nals were visualized and counted with a light microscope
(Nikon).

2.4. Examination of Cell Proliferation. Proliferation of human
drug-resistant glioblastoma cells was assayed by analyzing
the incorporation of bromodeoxyuridine (BrdU) into geno-
mic DNA as described previously [28]. Glioblastoma cells
at 3 × 103 cells/well were seeded in a 96-well cell culture plate.
Following CoCl2 treatment, replicating glioblastoma cells were
reacted with 10mM BrdU for a further 2h. Then, human
drug-tolerant glioblastoma cells were fixed with 4% parafor-
maldehyde. A cell proliferation enzyme-linked immunosor-
bent assay (ELISA) kit purchased from Roche (Mannheim,
Germany) was used in this study to measure amounts of BrdU
incorporated into genomic DNA of glioblastoma cells. Signals
were read using a microplate photometer (Thermo Fisher Sci-
entific, Tewksbury, MA, USA) and statistically analyzed.

2.5. Assay of Mitochondrial NAD(P)H Oxidoreductase
Activity. A colorimetric method was carried out to examine
activities of mitochondrial NAD(P)H-dependent oxidore-
ductase enzymes in human drug-resistant glioblastoma cells
as described previously [29]. Briefly, human drug-resistant
glioblastoma cells were seeded in 96-well cell culture plates
at a density of 104 cells/well for 12h. After exposure to CoCl2,
TMZ-tolerant glioblastoma cells were cultured with fresh
DMEM containing 0.5mg/ml 3-(4,5-dimethylthiazol-2-yl)-
2,5-diphenyltetrazolium bromide for a further 3h. The for-
mazan products, metabolized by mitochondrial NAD(P)H
oxidoreductases, were then dissolved in DMSO. Dark-brown
signals were spectrophotometrically measured at 550nm
using a spectrophotometer (BioTek, Winooski, VT, USA).

2.6. Levels of Cellular ATP.A bioluminescence assay was con-
ducted to measure levels of cellular ATP in human TMZ-
resistant glioblastoma cells following the protocol of an
ATP determination kit (Molecular Probes, Eugene, OR,
USA) as described previously [30]. This assay was based on
the luciferase requirement for ATP to produce 560 nm illu-

minant signals. A multilabel counter, obtained from BMG
Labtech (Offenburg, Germany), was used to measure intensi-
ties of the illuminant light. Values were analyzed using the
Gen5 software (vers. 3.03, BMG Labtech).

2.7. Quantification of Autophagic Cells. Proportions of
autophagic cells were quantified by assessing acidic vesicular
organelles in drug-resistant glioblastoma cells as described
previously [23]. Following exposure to CoCl2, human and
mouse drug-resistant glioblastoma cells at a density of 105

cells/well were treated with 1μg/ml acridine orange for
20min. After that, these TMZ-tolerant glioblastoma cells
were harvested in DMEM without phenol red. A flow cyt-
ometer (Beckman Coulter, Fullerton, CA, USA) was used in
this study to quantify levels of acridine orange with green
and red fluorescence in glioblastoma cells. Intensities of fluo-
rescent signals were analyzed using software from Beckman
Coulter. 3-Methyladenine (3-MA), an inhibitor of autoph-
agy, and rapamycin, an inducer of autophagy, were pur-
chased from Sigma. 3-MA and rapamycin were dissolved in
dimethyl sulfoxide (DMSO). After pretreatment with 1mM
3-MA or 0.5μM rapamycin for 1 h, U87 MG-R and GL261-
R glioblastoma cells were then exposed to CoCl2. Control
cells received DMSO only.

2.8. Activities of Caspases-3 and -6. A fluorometric substrate
assay was conducted to quantify activation of caspases-3
and -6 in human and mouse TMZ-resistant glioblastoma
cells as described previously [31]. In brief, after CoCl2 treat-
ment, human and mouse drug-resistant glioblastoma cells
were lysed using a buffer containing Nonidet P-40 (1%),
NaCl (200mM), Tris/HCl (pH7.4, 20mM), leupeptin
(10mg/ml), aprotinin (0.27U/ml), and phenylmethylsulfo-
nyl fluoride (PMSF, 100mM). Cell extracts were incubated
with a specific fluorogenic peptide substrate at 50mM in a
cell-free system buffer containing HEPES (pH7.4, 10mM),
mannitol (220mM), sucrose (68mM), NaCl (2mM), KH2PO4
(2.5mM), ethylene glycol tetraacetic acid (0.5mM), MgCl2
(2mM), pyruvate (5mM), PMSF (0.1mM), and dithiothreitol
(1mM). DEVD and VEID are specific peptide substrates for,
respectively, detecting caspase-3 and -6 enzyme activities.
For fluorescent detection, the DEVD and VEID substrates
were conjugated with 7-amino-4-(trifluoromethyl)coumarin.
A spectrometer (BMG Labtech) was used to measure intensi-
ties of the fluorescent products metabolized by caspases-3 and
-6. Fluorescent values were examined using software from
BMG Labtech and statistically analyzed.

2.9. Quantification of DNA Fragmentation. DNA fragmenta-
tion in human and mouse drug-sensitive and -resistant glio-
blastoma cells was quantified using a cellular ELISA kit
(Boehringer Mannheim, Indianapolis, IN, USA) as described
previously [32]. In brief, TMZ-tolerant glioblastoma cells
were subcultured in 24-well tissue culture plates at a density
of 2 × 105 cells/well and labeled with BrdU for 12 h. Human
and mouse glioblastoma cells were then harvested and sus-
pended in culture medium. The cell suspension (100μl per
well) was added to 96-well tissue culture plates. Drug-
sensitive and -resistant glioblastoma cells were cultured
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under hypoxic conditions for various time periods in a
humidified incubator with 5% CO2 at 37

°C. Levels of BrdU-
labeled DNA in the cytoplasm were measured with a micro-
plate photometer (BMG Labtech) at 450nm. The data of
DNA fragmentation were then analyzed using software from
BMG Labtech.

2.10. Assay of Apoptotic Cells. Proportions of drug-sensitive
and -resistant glioblastoma cells under apoptotic insults were
examined according to a previously described method [33].
After drug administration, glioblastoma cells were harvested
and fixed in cold 80% ethanol. Following centrifugation and
washing, fixed glioblastoma cells were stained with propi-
dium iodide. A flow cytometer (Beckman Coulter) was used
to measure fluorescent signals with a 560nm dichroic mirror
and a 600nm bandpass filter. Intensities of these fluorescent
signals in glioblastoma cells were quantified with software
from Beckman Coulter.

2.11. Immunoblot Analysis. Immunoblot analyses were car-
ried out to immunodetect levels of HIF-1α, LC3-I, LC3-II,
PI3K, phosphorylated- (p-) and nonphosphorylated AKT
and mTOR, vimentin, and β-actin in drug-resistant glioblas-
toma cells as described previously [34]. After exposure to
hypoxia, lysates of drug-resistant glioblastoma cells were pre-
pared in ice-cold radioimmunoprecipitation assay (RIPA)
buffer, containing Tris-HCl (pH7.2, 25mM), Triton X-100
(1%), sodium dodecylsulfate (SDS, 0.1%), EDTA (1mM),
and NaCl (0.15M). A mixture of proteinase inhibitors, viz.,
leupeptin (5μg/ml), sodium orthovanadate (1mM), and
PMSF (1mM), was added to ice-cold RIPA buffer to prevent
protein degradation. A bicinchonic acid protein assay kit
purchased from Pierce (Rockford, IL, USA) was used to
quantify protein concentrations. Cell lysates were loaded into
SDS-polyacrylamide gel and electrophoretically separated.
Then, the proteins were electrophoretically transferred to
nitrocellulose membranes. Fiver percentage of on-fat milk
was used to block the membranes at 37°C for 1 h. HIF-1α
was immunodetected using a mouse monoclonal antibody
(mAb) against human HIF-1α (Cell Signaling Technology,
Danvers, MA, USA). LC3-I, LC3-II, PI3K, AKT, p-AKT,
mTOR, and p-mTOR were recognized using mAbs or poly-
clonal antibodies (pAbs) purchased from Cell Signaling
Technology. Cellular vimentin and β-actin proteins were
immunodetected using mouse mAbs against human vimen-
tin and mouse β-actin (Sigma), respectively. These immuno-
reactive protein bands were quantified with a digital imaging
system (Syngene, Cambridge, UK) as described previously
[35]. Intensities of these protein bands were analyzed using
β-actin as the internal loading control.

2.12. HIF-1α-Knockdown. An RNA interference (RNAi)
technique was applied in this study to knock down transla-
tion of HIF-1α as described previously [36]. HIF-1α small
interfering (si) RNA (sc-35561), scrambled siRNA (sc-
37007), and siRNA transfection medium (sc-36868) were
purchased from Santa Cruz Biotechnology (Santa Cruz,
CA, USA). At first, human TMZ-resistant glioblastoma cells
were cultured in antibiotic-free DMEM and maintained in a

humidified incubator with an atmosphere of 5% CO2 at 37
°C

for 24 h. After that, the HIF-1α siRNAs were diluted in
siRNA transfection medium, and a HIF-1α siRNA duplex
solution was added to the cells for transfection for 48 h. After
replacing the old medium with normal DMEM, human U87
MG-R cells were exposed to CoCl2. Scrambled siRNA was
applied as a negative control.

2.13. Statistical Analysis. Each value represses the mean ±
standard deviation ðSDÞ for at least three independent deter-
minations. Statistical analyses were carried out using a two-
way analysis of variance (ANOVA) and a post hoc Duncan’s
multiple-range test. Statistical differences were considered
significant at p < 0:05.

3. Results

3.1. Selection and Preparation of Human and Mouse Drug-
Resistant Glioblastoma Cells.Human andmouse glioblastoma
cells that were resistant to TMZ treatment were prepared
from their respective drug-sensitive brain tumor cells
(Figure 1). No difference in morphologies of human drug-
sensitive U87 MG and -resistant U87 MG-R cells was
observed (Figure 1(a)). Exposure to TMZ at 25, 50, 75, and
100μM for 72h caused significant 19%, 30%, 38%, and 51%
decreases in survival of human U87 MG cells, respectively
(Figure 1(b)). In contrast, treatment of human U87 MG-R
glioblastoma cells with various concentrations of TMZ for
72 h did not change cell survival. Furthermore, exposure of
U87 MG cells to 100μM TMZ for 72 h led to a significant
98% augmentation in DNA fragmentation (Figure 1(c)).
The DNA integrity of U87 MG-R glioblastoma cells was
not influenced by TMZ. Administration of TMZ at 100μM
for 72h led to a significant 48% elevation in apoptosis of
human U87 MG cells (Figure 1(d)). At the same treated con-
dition, TMZ did not trigger apoptosis of human U87 MG-R
cells. Moreover, TMZ induced DNA fragmentation and cell
apoptosis in drug-sensitive GL261 glioblastoma cells by
64% and 41%, respectively (Figures 1(e) and 1(f)). In com-
parison, treatment of mouse drug-resistant GL261-R glio-
blastoma cells with 100μM TMZ for 72 h did not trigger
DNA fragmentation or cell apoptosis.

3.2. Exposure of Human and Mouse TMZ-Resistant
Glioblastoma Cells to CoCl2 Increased Levels of HIF-1α and
Led to Cell Death. Effects of CoCl2 on hypoxic insults to
human TMZ-tolerant U87 MG-R cells were investigated
(Figure 2). Treatment with 100μM CoCl2 for 6 h augmented
levels of HIF-1α in U87 MG-R cells (Figure 2(a), top panel,
lane 1). At 12 and 24 h after hypoxic treatment, HIF-1α in
U87 MG-R cells were time-dependently elevated (lanes 3
and 4). β-Actin was measured as the internal loading stan-
dard (bottom panel). The protein band intensities were sta-
tistically analyzed (Figure 2(b)). Exposure to CoCl2 for 6,
12, and 24 h caused respective 2.4-, 2.9-, and 3.8-fold
increases in levels of HIF-1α in human U87 MG-R glioblas-
toma cells. In comparison, exposure of human U87 MG-R
cells to CoCl2 for 6, 12, and 24 h did not change levels of
vimentin (Fig. S1). Compared to the untreated group,
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treatment with CoCl2 for 6 h reduced cell numbers
(Figure 2(c)). After 12 and 24h, hypoxia induced more death
of human TMZ-tolerant glioblastoma cells. Moreover, our

survival analysis showed that treatment of human U87
MG-R cells with 100μM CoCl2 for 6, 12, and 24 h, respec-
tively, diminished cell survival by 19%, 31%, and 49%
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Figure 1: Selection and preparation of human drug-resistant glioblastoma cells. Human TMZ-tolerant U87 MG-R cells were selected from
TMZ-sensitive U87 MG cells. (a) Morphologies of U87 MG and U87 MG-R cells are shown. Glioblastoma cells were exposed to TMZ at 25,
50, 75, and 100 μM for 72 h. (b) Cell survival was assayed using a trypan blue exclusion method. (c, d) A cellular ELISA kit and a flow
cytometric method were used to quantify DNA fragmentation and apoptotic cells, respectively. Murine GL261 and GL261-R glioblastoma
cells were exposed to TMZ at 100 μM. (e, f) DNA fragmentation and apoptotic cells were analyzed. Data are expressed as the mean ± SD
for n = 6. ∗p < 0:05 vs. control and #p < 0:05 vs. U87 MG.
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(Figure 2(d)). The HIF-1α levels in mouse GL261-R glioblas-
toma cells increased 3.6-fold following treatment with
100μM CoCl2 for 24 h (Figure 2(e)). Exposure of mouse
GL261-R cells to CoCl2 led to a 46% reduction in cell survival
(Figure 2(f)).

3.3. Hypoxia Induced by CoCl2 Triggered Mitochondrial
Dysfunction, Proliferation Inhibition, and Cell Autophagy in
Human and Mouse Drug-Resistant Glioblastoma Cells.
Effects of the CoCl2-induced hypoxia insults to mitochon-
drial functions, cell proliferation, and cell autophagy were
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Figure 2: Effects of hypoxia induced by CoCl2 on levels of hypoxia-inducible factor- (HIF-) 1α and cell survival in human drug-resistant
glioblastoma cells. Human drug-tolerant U87 MG-R cells were selected from TMZ-sensitive U87 MG cells. U87 MG-R cells were treated
with hypoxia for 6, 12, and 24 h. (a) Levels of HIF-1α were immunodetected (top panel). β-Actin was analyzed as the internal control
(bottom panel). (b) These protein bands were quantified and statistically analyzed. (c) Cell morphology was observed and photographed.
(d) Cell survival was assayed with a trypan blue exclusion method. Mouse GL261-R glioblastoma cells were exposed to hypoxia for 24 h.
(e, f) Levels of HIF-1α and cell survival were analyzed. Data are expressed as the mean ± SD for n = 6. ∗p < 0:05 vs. control.
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consecutively determined (Figure 3). Activities of mitochon-
drial NAD(P)H enzymes in U87 MG-R cells decreased by
23%, 32%, and 44% following respective exposure to CoCl2
for 6, 12, and 24h (Figure 3(a)). Subsequently, treatment with
CoCl2 for 12 and 24h led to respective 25% and 40% reduc-

tions in cellular ATP levels (Figure 3(b)). Moreover, at 24h
after hypoxic administration, proliferation of human TMZ-
resistant glioblastoma cells had dropped by 56% (Figure 3(c)).

Remarkably, exposure of human drug-tolerant glioblas-
toma cells to CoCl2 for 24h induced the cells with acidic
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Figure 3: Effects of hypoxia induced by CoCl2 on mitochondrial NADH dehydrogenase activity, ATP levels, cell proliferation, cell autophagy,
and levels of light chain (LC)3-I and LC3-2 in human drug-resistant glioblastoma cells. Human TMZ-tolerant U87 MG-R cells were selected
from TMZ-sensitive U87 MG cells. U87 MG-R glioblastoma cells were treated with hypoxia for 6, 12, and 24 h. (a) Activity of mitochondrial
NADH dehydrogenase was assayed using a colorimetric method. (b) Levels of ATP were measured using a bioluminescence assay. (c) Cell
proliferation was measured by a thymidine incorporation assay. (d) Autophagic cells with acidic vesicular organelles were observed and
photographed using a fluorescent microscope (left panel) and quantified with flow cytometry (right panel). (e) Levels of LC3-I and LC3-II
were immunodetected (top panels). β-Actin was measured as the internal control (bottom panels). (f) These protein bands were
quantified and statistically analyzed. Mouse GL261-R glioblastoma cells were exposed to hypoxia for 24 h. (g) Autophagic cells were
quantified. Data are expressed as the mean ± SD for n = 6. ∗p < 0:05 vs. control.
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vesicles organelle (Figure 3(d), left panel). A flow cytometric
examination revealed that exposure to CoCl2 for 6h increased
acidic vesicular organelles in human drug-tolerant glioblas-
toma cells by 12% (right panel). Following CoCl2 treatment
for 12 and 24h, autophagic cells were, respectively, increased
26% and 38%. An immunoblot image shows that LC3-I and
-II in untreated U87 MG-R cells were detected (Figure 3(e),
top panels, lane 1). Administration of CoCl2 for 24h decreased
levels of LC3-I but increased amounts of LC3-II (lane 2). β-
Actin was immunodetected as the internal loading standard
(bottom panel). Hypoxic treatment decreased of LC3-I by
69% but increased of LC3-II by 240% in TMZ-resistant glio-

blastoma cells (Figure 3(f)). Meanwhile, the CoCl2-induced
hypoxia caused 39% of mouse GL261-R cells to undergo
autophagy (Figure 3(g)).

3.4. CoCl2 Induced Hypoxic Insults to Human Drug-Resistant
Glioblastoma Cells via a HIF-1α-Dependent Mechanism.
Loss- and gain-of-function strategies were conducted to con-
firm the effects of the CoCl2-induced hypoxia on autophagic
insults to TMZ-tolerant glioblastoma cells (Figures 4(a) and
4(b)). Administration of CoCl2 induced autophagy of human
drug-resistant U87 MG-R cells by 32% (Figure 4(a)). In the
control group, pretreatment with 3-MA alone did not trigger
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Figure 4: Effects of 3-methyladenine (3-MA), rapamycin (Rapa), and hypoxia-inducible factor- (HIF-) 1α knockdown on autophagy of
human drug-resistant glioblastoma cells. Human temozolomide- (TMZ-) resistant U87 MG-R glioblastoma cells were selected from TMZ-
sensitive U87 MG cells. (a, b) Human U87 MG-R glioblastoma cells were pretreated with 3-MA at 1mM or Rapa at 0.5 μM for 1 h and
then exposed to hypoxia for additional 24 h. Control cells received DMSO only. A flow cytometric method was carried out to quantify
autophagic cells. (c) Human U87 MG-R cells were treated with HIF-1α small interfering (si) RNA (HIF siRNA) for 48 h. Scrambled
siRNA was applied to control cells as the negative control (control). HIF-1α was immunodetected, and β-actin was analyzed as the
internal control. These protein bands were quantified and statistically analyzed. (d) Human U87 MG-R cells were pretreated with HIF-1α
siRNA and then exposed to hypoxia. Autophagic cells were quantified using flow cytometry. Data are expressed as the mean ± SD for n =
6. ∗p < 0:05 vs. control and #p < 0:05 vs. U87 MG.
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cell autophagy. However, administration of 3-MA attenuated
hypoxia-induced autophagic insults to human U87 MG-R
cells by 69% (Figure 4(a)). In contrast, pretreatment of
human drug-tolerant glioblastoma cells with rapamycin did
not influence cell autophagy (Figure 4(b)). Nevertheless, pre-
treatment with rapamycin increased hypoxia-induced
autophagic insults to U87 MG-R cells by 45%.

At the same time, roles of HIF-1α in CoCl2-induced
autophagy of human drug-resistant U87 MG-R glioblastoma
cells were further investigated (Figures 4(c) and 4(d)). Appli-
cation of HIF-1α small interfering (si) RNA to human U87
MG-R cells for 48h caused obvious attenuation of HIF-1α
levels compared to untreated cells (Figure 4(c), top panel).
Protein bands were quantified using β-actin as the loading
control, and the data were statistically analyzed. After appli-
cation of HIF-1α siRNA, levels of HIF-1α in human U87
MG-R cells were reduced by 83% (Figure 4(c), bottom panel).
The CoCl2-induced hypoxia triggered 35% of U87 MG-R
cells undergoing autophagy (Figure 4(d)). Application of
HIF-1α siRNA to human TMZ-resistant glioblastoma cells
did not trigger cell autophagy. In comparison, knocking
down HIF-1α translation concurrently suppressed 57% of
hypoxia-induced autophagic insults to human U87 MG-R
cells (Figure 4(d)).

3.5. The CoCl2-Induced Hypoxia Sequentially Decreased Levels
of PI3K and Subsequent Phosphorylation of AKT andmTOR in
Human Drug-Resistant Glioblastoma Cells.Molecular mecha-
nisms of CoCl2-induced insults to human TMZ-tolerant glio-
blastoma cells were further investigated (Figure 5). In the
control group, PI3K was immunodetected in human U87
MG-R glioblastoma cells (Figure 5(a), top panel, lane 1). In
contrast, administration of CoCl2 to human glioblastoma
cells obviously decreased levels of PI3K (lane 2). Intensities
of these protein bands were measured using β-actin as a load-
ing standard (bottom panel), and the data were statistically
analyzed (Figure 5(b)). Exposure to hypoxia caused a 77%
reduction in PI3K levels in human U87 MG-R cells
(Figure 5(b)). Consecutively, AKT phosphorylation in U87
MG-R cells was alleviated following exposure to CoCl2 com-
pared to the control group (Figure 5(c), top panel). AKT and
β-actin were measured as internal controls (bottom two
panels). The CoCl2-induced hypoxia diminished phosphory-
lation of AKT in human TMZ-resistant glioblastoma cells by
89% (Figure 5(d)). Consequently, hypoxia reduced mTOR
phosphorylation in human U87 MG-R cells (Figure 5(e),
top panel). mTOR and β-actin were measured as the internal
controls (bottom two panels). Exposure of human drug-
tolerant glioblastoma cells to hypoxia led to 91% repression
of mTOR phosphorylation (Figure 5(f)).

3.6. Hypoxia Induced by CoCl2 Triggered Autophagy and
Subsequent Apoptosis of Human and Mouse Drug-Resistant
Glioblastoma Cells. Treatment of human drug-resistant glio-
blastoma cells with CoCl2 enhanced the activity of caspase-3
by 2.5-fold (Figure 6(a)). Pretreatment with 3-MA did
change activation of caspase-3. Nonetheless, 3-MA lowered
hypoxia-induced caspase-3 activation by 62% (Figure 6(a)).
Sequentially, caspase-6 activity in human U87 MG-R glio-

blastoma cells increased 2.5-fold (Figure 6(b)). Pretreatment
with 3-MA alone did not affect caspase-6 activity but
attenuated CoCl2-triggered activation of caspase-6 by 52%.
Exposure to CoCl2 led to a 2.5-fold induction of DNA frag-
mentation in U87 MG-R cells (Figure 6(c)). In parallel, hyp-
oxia triggered 29% of human U87 MG-R cells to undergo
apoptosis (Figure 6(d)). Pretreatment with 3-MA did not
affect the DNA integrity or cell apoptosis. In contrast, pre-
treatment of human TMZ-tolerant glioblastoma cells with
3-MA caused significant 76% and 72% depressions in
hypoxia-induced DNA fragmentation and cell apoptosis,
respectively (Figures 6(c) and 6(d)). In addition, administra-
tion of hypoxia augmented caspase-3 activities by twofold in
mouse GL261-R cells (Figure 6(e)). Subsequently, exposure
of mouse drug-resistant GL261-R cells to CoCl2 caused a
significant 2.3-fold stimulation of DNA fragmentation
(Figure 6(f)). Accordingly, apoptotic insults to mouse drug-
resistant glioblastoma cells were induced by 31% after CoCl2
administration (Figure 6(g)).

3.7. Exposure to Hypoxia for 96 h Induced Apoptotic Insults to
Human Drug-Resistant Glioblastoma Cells without Affecting
Human Normal Astrocytes. Treatment of human U87
MG-R cells to CoCl2 for 96h decreased cell viability by
92% (Figure 7(a)). In addition, exposure to CoCl2 for 96h
caused 16% and 88% of human drug-resistant glioblastoma
cells undergoing autophagy and apoptosis, respectively
(Figures 7(b) and 7(c)). The safety of CoCl2 to human normal
HA-h astrocytes was then evaluated (Figures 7(d)–7(f)). Expo-
sure of HA-h cells to 100μM CoCl2 for 96h did not influence
cell viability (Figure 7(d)). In contrast, treatment with CoCl2
for 96h led to a slight 21% induction of HA-h cells undergoing
autophagy but did not trigger apoptotic insults (Figures 7(e)
and 7(f)).

4. Discussion

Administration of CoCl2 can induce hypoxic conditions and
consequent autophagic apoptosis of drug-resistant glioblas-
toma cells. In this study, we demonstrated that exposure to
CoCl2 could trigger hypoxic stress to human and murine
TMZ-resistant glioblastoma cells. In parallel, hypoxic condi-
tions disrupted mitochondrial ATP synthesis and induced
death of cells of these two drug-resistant glioblastoma cell
lines. In addition, hypoxia suppressed proliferation of human
TMZ-tolerant glioblastoma cells. GBM is the commonest
and most aggressive brain tumor [1]. Inopportunely, GBM
patients have very poor prognoses because most patients
eventually have become drug-resistant and recurrent [3].
To the present, TMZ is routinely used as the first-line drug
for treatment of GBM patients [2]. The malignance of glio-
blastomas can be elucidated because following surgery, resid-
ual glioblastoma cells can rapidly proliferate, migrate, and
invade to the other sites for development of new brain
tumors. Hypoxia is able to suppress proliferation and viabil-
ity of drug-sensitive glioblastoma cells [25]. In the present
study, we further identified the beneficial actions of the
CoCl2-induced hypoxic conditions to suppress proliferation
and survival of TMZ-resistant glioblastoma cells. As to the
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mechanisms, administration of hypoxic stress meaningfully
induced autophagy and subsequent apoptosis of human
and murine drug-resistant glioblastoma cells. In response to
malnutrition, cells can temporarily survive by activating a
process of self-degradation and catabolism, called autophagy
[17]. Autophagic cells will subsequently either survive or pro-
ceed to necrosis or apoptosis [17, 18]. Furthermore, autoph-
agy was also shown to be involved in the prevention of
certain diseases, including tumors [26]. The drug-resistant
glioblastoma cells highly defend against apoptosis. Recently,

we demonstrated advantages of a longer period of hypoxia
induced by honokiol, a multifunctional antitumor drug, on
the killing of human neuroblastoma cells and glioblastoma
cells via an autophagic apoptosis pathway [23–25]. Recently,
autophagic cell death has attracted researchers as a potential
method for cancer therapy. In this study, we provide serial
evidence to show the benefits of CoCl2-induced hypoxia of
killing drug-resistant glioblastoma cells through activating
an autophagic and subsequent apoptotic mechanism. As a
result, longer hypoxia induced by certain agents such as
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Figure 5: Signal-transducing mechanisms involved in hypoxia-induced autophagy of human drug-resistant glioblastoma cells. Human TMZ-
tolerant U87MG-R cells were selected from TMZ-sensitive U87MG cells. Human U87MG-R cells were treated with hypoxia for 24 h. (a, c, e)
Levels of phosphoinositide 3-kinase (PI3K), phosphorylated- (p-) AKT, and p-mammalian target of rapamycin (mTOR) were
immunodetected (top panels). β-Actin, AKT, and mTOR were analyzed as the internal controls for detection of PI3K, p-AKT, and p-
mTOR, respectively (bottom panels). (b, d, f) These immunorelated protein bands were quantified and statistically analyzed. Data are
expressed as the mean ± SD for n = 6. ∗p < 0:05 vs. control.
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Figure 6: Effects of 3-MA on hypoxia-induced cascade activation of caspases-3 and -6, DNA fragmentation, and cell apoptosis in human
drug-resistant glioblastoma cells. Human U87 MG-R glioblastoma cells were pretreated with 1mM 3-MA for 1 h. Then, the cells were
treated with hypoxia for 24 h. (a, b) Cascade activation of caspase-3 and caspase-6 were examined with a fluorometric substrate assay. (c,
d) DNA fragmentation and apoptotic cells were analyzed. Mouse GL261-R glioblastoma cells were exposed to hypoxia for 24 h. (e–g)
Caspase-3 activity, DNA fragmentation, and apoptotic cells were assayed. Data are expressed as the mean ± SD for n = 6. ∗p < 0:05 vs.
control and #p < 0:05 vs. U87 MG.

11Oxidative Medicine and Cellular Longevity



CoCl2 or honokiol may be clinically applied as a de novo
strategy for treating chemoresistance in malignant and recur-
rent glioblastomas via an autophagic apoptosis pathway.

Administration of CoCl2 led to hypoxic stress and conse-
quently induced insults to human and murine TMZ-resistant
glioblastoma cells. Drug-resistant glioblastoma cells used in
this study were prepared according to a continuous selection
protocol described in our previous study [37]. Compared to
chemosensitive human U87 MZ and mouse GL261 cells,
these two TMZ-resistant U87 MZ-R and GL261-R cell lines
have similar morphologies. Nevertheless, administration of
TMZ induced apoptotic insults to human and mouse TMZ-
sensitive glioblastoma cells but did not affect chemoresistant
cells. Fascinatingly, exposure to CoCl2 time-dependently
raises levels of HIF-1α in drug-resistant glioblastoma cells.
In the hypoxic microenvironment, HIF-1/2α, two transcrip-
tional factors, can be massively induced to regulate certain

gene expressions in response to oxygen deficiency-induced
stress [16]. CoCl2 can chelate Fe2+ ions in hemoglobin to
decrease the oxygen supply to cells [38]. Additionally,
administration of CoCl2 raises levels of cellular HIF-1α by
inhibiting the activity of prolyl-4-hydroxylase, a HIF-1α-spe-
cific proteinase [39]. Thus, CoCl2 can elevate levels of HIF-1α
in human and mouse TMZ-resistant glioblastoma cells and
induce intracellular hypoxic stress. At the same time, the
CoCl2-induced hypoxia diminished proliferation and sur-
vival of drug-resistant glioblastoma cells. In tumorigenesis,
hypoxia can stimulate the proliferation of tumor cells via a
HIF-1α-dependent transcriptional mechanism [40]. None-
theless, Dai et al. reported that in a CoCl2-induced hypoxic
microenvironment, proliferation and viability of PC-2 cells
were lessened, and the cells underwent apoptosis [41]. Our
previous studies also demonstrated the oppressive effects
CoCl2 on the proliferation and survival of drug-sensitive

Control Hypoxia
0.0

0.3

0.6

0.9

1.2

1.5

Ce
ll 

vi
ab

ili
ty

 (O
D

55
0 

nm
)

⁎

(a)

Control Hypoxia
0

20

40

60

A
ut

op
ha

gi
c c

el
ls 

(%
)

⁎

(b)

Control Hypoxia

A
po

pt
ot

ic
 ce

lls
 (%

)

0

20

40

60

80

100 ⁎

(c)

0.0

0.6

1.2

1.8

Control Hypoxia
Ce

ll 
vi

ab
ili

ty
 (O

D
55

0 
nm

)

(d)

A
ut

op
ha

gi
c c

el
ls 

(%
)

0

20

40

60

Control Hypoxia

⁎

(e)

A
po

pt
ot

ic
 ce

lls
 (%

)

0

5

10

15

20

Control Hypoxia

(f)

Figure 7: Effects of CoCl2 treatment for 96 h on viability, autophagy, and apoptosis of human drug-resistant glioblastoma cells and normal
astrocytes. (a–c) Human temozolomide- (TMZ-) resistant U87 MG-R glioblastoma cells and (d–f) human HA-h astrocytes were exposed to
CoCl2 for 96 h. (a, d) Cell viability was assayed using a colorimetric method. (b, e) Autophagic and (c, f) apoptotic cells were quantified using
flow cytometry. Each value represents the mean ± SD for n = 3. The symbol ∗ indicates that a value significantly (p < 0:05) differed from the
respective control group.
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glioblastoma cells [25]. In parallel, enzyme activity of mito-
chondrial NAD(P)H oxidoreductase and levels of cellular
ATP in human TMZ-resistant glioblastoma cells were
repressed following exposure to hypoxia. Thus, the CoCl2-
induced hypoxia suppressed proliferation and survival of
drug-resistant glioblastoma cells via lowering mitochondrial
ATP synthesis. However, the reasons explain the relation
between ATP reductions on suppression of cell proliferation
in hypoxia-treated drug-resistant glioblastoma cells need to
be further investigated.

Hypoxia induced by CoCl2 can trigger autophagy of
human and murine drug-resistant glioblastoma cells via a
HIF-1α-dependent pathway. Our flow cytometric analysis
of acidic vesicular organelles in human and mouse drug-
tolerant glioblastoma cells revealed that administration of
CoCl2 time-dependently induced autophagic insults. Simul-
taneously, the ratio of LC3-II over LC3-I significantly
increased after exposure to CoCl2. When the cells are under-
going autophagy, acidic vesicular organelles were formed [23,
42]. At the same time, the ratio of LC3-II over LC3-I was
enhanced. In this study, we further used gain- and loss-of-
function strategies to confirm the hypoxia-induced autoph-
agy of TMZ-resistant glioblastoma cells. As usual, 3-MA
and rapamycin were applied as a respective inhibitor and
an inducer of cell autophagy [43]. After administration of
3-MA and rapamycin to chemoresistant glioblastoma cells,
hypoxia-induced autophagic insults were, respectively, atten-
uated and enhanced. Thus, multiple lines of evidence showed
the action of the CoCl2-induced hypoxia in inducing autoph-
agy of drug-resistant glioblastoma cells, thereby inducing
autophagic insults to TMZ-resistant glioblastoma cells. More
interestingly, knocking down HIF-1α concurrently lowered
CoCl2-induced autophagic insults to human TMZ-resistant
glioblastoma cells. HIF-1α can induce cell autophagy via
inducing BNIP3 and LC3 expressions [22]. In addition, a
previous study reported that prolonged hypoxia induced
mitochondrial autophagy via activation of a HIF-1α/BINP3/-
Beclin-1/Atg5 mechanism [44]. In the present study, expo-
sure to CoCl2 led to consequent mitochondrial dysfunction.
As a result, one possible mechanism explaining CoCl2-
induced autophagy of human drug-resistant glioblastoma
cells is via triggering HIF-1α-dependent mitochondrial
autophagy. Being a potential target for cancer therapy,
autophagy has recently attracted attention of oncologic phy-
sicians and researchers [45]. Chemoresistance and recur-
rence are two critical factors driving malignance and poor
prognoses of GBM patients [6]. In this study, we provide
in vitro evidence to demonstrate the potential effects of pro-
longed hypoxia induced by CoCl2 for treating GBM by
inducing autophagic insults to drug-resistant glioblastomas.

Hypoxia induced by CoCl2 led to autophagy of human
drug-resistant glioblastoma cells through targeting the
PI3K-AKT-mTOR pathway. After exposure to CoCl2, levels
of PI3K in human TMZ-resistant glioblastoma cells were sig-
nificantly diminished. In tumorigenesis, PI3K is genetically
overexpressed or mutated in the brain, breasts, prostate,
stomach, colon, and endometrium [46]. So, targeting PI3K
was investigated as a new strategy for treating various types
of tumors such as breast cancer [47]. AKT is a downstream

target of PI3K. Our present data reveal that treatment with
CoCl2 decreased levels of AKT in human drug-tolerant glio-
blastoma cells. Hence, the hypoxia-induced downregulation
of AKT was due to suppression of PI3K production. Inhibi-
tion of the PI3K/AKT pathway is recognized as a new
weapon for fighting cancer incidence [46]. Our present data
prove the suppressive effects of CoCl2 against the prolifera-
tion of human TMZ-resistant glioblastoma cells. Thus, the
hypoxia-induced blockage of the PI3K-AKT pathway may
be beneficial for inhibiting the growth of chemoresistant glio-
blastomas. mTOR, a serine/threonine protein kinase, plays a
crucial role in the balance between catabolism and anabolism
[48]. Phosphorylation of mTOR, activated by the PI3K-AKT
pathway, can drive cellular catabolism and depress cell
autophagy [49]. In parallel with an interruption of the
PI3K/AKT pathway, CoCl2 weakened phosphorylation of
mTOR in human TMZ-resistant glioblastoma cells. Hence,
one possible mechanism explaining the CoCl2-induced
reduction in levels of phosphorylated mTOR in TMZ-
resistant glioblastomas is due to disruption of the PI3K-
AKT pathway. In addition to HIF-1α, HIF-2α is another
factor that can be upregulated by hypoxia [16]. Under hyp-
oxic conditions, the proteasome-dependent stability of HIF-
1/2α is involved in regulation of tumor-induced angiogenesis
and metastasis via the PI3K/AKT pathway [50]. In aggressive
neuroblastomas, Mohlin et al. reported that suppression of
HIF-2α by targeting PI3K/mTORC1 can improve therapeu-
tic efficacy [51]. This study demonstrated that knocking
down HIF-1α simultaneously attenuated hypoxia-induced
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Figure 8: Proposed signal-transducing pathways of hypoxia-
induced autophagy and subsequently apoptotic killing of human
drug-resistant glioblastoma cells. Treatment of human TMZ-
resistant glioblastoma cells with CoCl2 induces hypoxic insults by
suppressing phosphoinositide 3-kinase- (PI3K-) involved signal-
transducing phosphorylations of AKT and mammalian target of
rapamycin (mTOR). Consequently, long-period administration of
CoCl2 induced cascade activation of caspases-3 and -6, DNA
breakage, and apoptotic insults to human drug-resistant glioblastoma
cells.
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cell autophagy. Therefore, the CoCl2-induced hypoxia can
trigger autophagic insults to drug-resistant glioblastoma cells
via targeting the PI3K-AKT-mTOR pathway.

Hypoxia induced by CoCl2 triggered autophagic apopto-
sis of human and murine drug-resistant glioblastoma cells.
Prolonged exposure to CoCl2 of human and murine TMZ-
resistant glioblastoma cells induced cascade activation of
caspases-3 and -6, DNA fragmentation, and cell cycle arrest
at the sub-G1 phase. Caspase activation, DNA fragmented
damage, and cell cycle arrest are characteristic features
indicating that cells are undergoing apoptosis [52, 53]. Inter-
estingly, pretreatment of human TMZ-resistant glioblastoma
cells with 3-MA reduced hypoxia-induced autophagy. At the
same time, CoCl2-induced cascade activation of caspases-3
and -6, DNA breakage, and apoptosis in human TMZ-
tolerant glioblastoma cells were significantly lowered follow-
ing pretreatment with 3-MA. Autophagic cells will survive or
proceed to die [17, 18]. Our present data showed that pro-
longed administration of CoCl2 can induce autophagic
insults to TMZ-resistant glioblastoma cells, resulting in cell
death via an apoptotic mechanism. Autophagic cell death is
recognized as a separate form of cell death from cell apopto-
sis and necrosis [54]. Nonetheless, our present study showed
that CoCl2 can trigger autophagic apoptosis of human TMZ-
tolerant glioblastoma cells. Specific induction of apoptosis of
tumor cells can be applied as an anticancer mechanism for
cancer therapy [53]. However, GBM is a very aggressive
tumor because it is usually hard to induce apoptosis in glio-
blastoma cells by chemotherapeutic drugs [55]. Therefore,
hypoxia-induced autophagic apoptosis has the potential to
serve as an alternative strategy for therapy of brain tumors.

5. Conclusions

In this study, we successfully selected human and mouse
drug-resistant glioblastoma cells as our experimental models.
Exposure of human and mouse TMZ-resistant glioblastoma
cells to CoCl2 increased HIF-1α levels and induced hypoxic
stress and insults (Figure 8). Subsequently, prolonged hyp-
oxia induced by CoCl2 led to mitochondrial dysfunction.
Interestingly, administration of hypoxia elevated proportions
of drug-resistant glioblastoma cells with acidic organelles and
the ratio of cellular LC3-II over LC3-I. Loss- and gain-of-
function strategies were used to further demonstrate that
pretreatment with 3-MA and rapamycin, respectively, atten-
uated and enhanced consequent CoCl2-induced cell autoph-
agy. Importantly, knocking down HIF-1α translation using
RNAi concurrently diminished CoCl2-induced cell autoph-
agy. Thus, these manifold lines of evidence showed that
prolonged hypoxia induced by CoCl2 could trigger hypoxic
insults to human and mouse TMZ-resistant glioblastoma cells
via a HIF-1α-dependent mechanism. As to the mechanisms,
administration of CoCl2 decreased signal-transducing activa-
tion of PI3K and AKT (Figure 8). Successively, levels of phos-
phorylated mTOR in human drug-resistant glioblastoma cells
were reduced by CoCl2. Fascinatingly, prolonged administra-
tion of hypoxia sequentially induced cascade activation of
caspases-3 and -6, DNA fragmentation, and apoptotic insults
in TMZ-tolerant glioblastoma cells (Figure 8). Using 3-MA

to suppress CoCl2-induced autophagy simultaneously defended
against apoptotic damage. Therefore, this study showed that
prolonged hypoxia induced by CoCl2 can induce autophagic
apoptosis of drug-resistant glioblastoma cells via suppression
of the PI3K-AKT-mTOR pathway (Figure 8). To the present,
chemoresistance and recurrence are the most serious issues
and challenges for therapy of GBM patients. CoCl2-induced
hypoxia and subsequent autophagic apoptosis may be a de
novo strategy for treating glioblastomas. We are carrying
out a translational study to further confirm our in vitro
findings.
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Aging is a natural life process which leads to a gradual decline of essential physiological processes. For the liver, it leads to alterations
in histomorphology (steatosis and fibrosis) and function (protein synthesis and energy generation) and affects central
hepatocellular processes (autophagy, mitochondrial respiration, and hepatocyte proliferation). These alterations do not only
impair the metabolic capacity of the liver but also represent important factors in the pathogenesis of malignant liver disease.
Autophagy is a recycling process for eukaryotic cells to degrade dysfunctional intracellular components and to reuse the basic
substances. It plays a crucial role in maintaining cell homeostasis and in resisting environmental stress. Emerging evidence
shows that modulating autophagy seems to be effective in improving the age-related alterations of the liver. However, autophagy
is a double-edged sword for the aged liver. Upregulating autophagy alleviates hepatic steatosis and ROS-induced cellular stress
and promotes hepatocyte proliferation but may aggravate hepatic fibrosis. Therefore, a well-balanced autophagy modulation
strategy might be suitable to alleviate age-related liver dysfunction. Conclusion. Modulation of autophagy is a promising strategy
for “rejuvenation” of the aged liver. Detailed knowledge regarding the most devastating processes in the individual patient is
needed to effectively counteract aging of the liver without causing obvious harm.

1. Introduction

Life expectancy of the population increased substantially.
This is due to the development of medical technology and
general improvement of sanitary conditions, resulting in an
increase of the aging population. In 2019, there were about
703 million (9%) people aged 65 and above in the world. This
figure is expected to almost double to 1.5 billion (16%) by
2050 [1].

Age is one of the important risk factors for malignant
liver disease. Aging causes changes in hepatic morphology,
structure, and function with hepatic steatosis, fibrosis, and
impaired liver regeneration being the most prominent
features [2–5].

The liver is the pivotal metabolic organ, which is involved
in central metabolic activities such as lipid metabolism, glu-
coneogenesis, and protein synthesis [6, 7]. The age-related
changes do not only impair the function of the liver but also

represent a potential risk for the occurrence of malignant
liver diseases [2]. Therefore, clinicians face the problem of
how to eliminate or mitigate aging-related detrimental
changes in the liver.

Autophagy is a crucial mechanism for eukaryocytes to
recycle intracellular constituents. During the process of
autophagy, misfolded proteins or defective organelles are
degraded to basal components via the lysosomal pathway
for later reuse [8]. Autophagy contributes to liver homeosta-
sis through its role in ATP synthesis and organelle quality
control [9]. However, the level of hepatic autophagy gradu-
ally decreases with age [10, 11]. Aging affects autophagy
mainly via inhibition of adenosine monophosphate-
activated protein kinase (AMPK) activation, hypermethyla-
tion of autophagy-related genes, and accumulation of
lipofuscin. Lipofuscin is an intracellular brown-yellow pig-
ment granule, which accumulates within the lysosomal
compartment during cellular senescence [12–19]. If damaged
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cellular components or excess reactive oxygen species (ROS)
accumulate in cells, cellular homeostasis is disrupted and cel-
lular senescence is further accelerated [20].

In the last ten years, the role of autophagy in liver diseases
has attracted more and more attention. Accumulating evi-
dence shows that promoting autophagy effectively mitigates
hepatic steatosis, restores impaired liver regeneration,
reduces mitochondrial dysfunction, and alleviates ROS-
induced cellular injury. However, it may exacerbate the
progress of hepatic fibrosis. In this review, we describe the
role of autophagy in age-associated liver changes and suggest
how to modulate autophagy to rejuvenate the aging liver.

2. Autophagy

Autophagy is an intracellular degradation process. The
autophagy-related genes control the process in which eukar-
yocytes digest their damaged or superfluous components
such as misfolded proteins, damaged organelles, and patho-
gens via the lysosomal pathway [8, 21]. It conveys a prosurvi-
val effect allowing cells to maintain energy homeostasis and
accommodate cellular stressors such as excess ROS, anoxia,
and nutrient starvation [21, 22]. In contrast, excessive
autophagy may lead to cell death [23].

Autophagy can be classified into macroautophagy,
microautophagy, and chaperone-mediated autophagy
(CMA). The classification is based on the delivery route of
autophagy substrates involving different morphological
features. All three types of autophagy ultimately deliver
substrates to lysosomes for degradation and reutilization
(see Figure 1) [24, 25].

2.1. Different Types of Autophagy

2.1.1. Macroautophagy. The first step of macroautophagy is
the nucleation of phagophore (see Figure 2). Activation of
autophagy signaling molecules such as AMPK, mammalian
target of rapamycin (mTOR), or Unc-51 like autophagy
activating kinase 1 (ULK1) initiates the process.

The nucleus of the phagophore is derived from a subdo-
main of the endoplasmic reticulum (ER) called omegasome.
Omegasomes are rich in phosphatidylinositol-3-phosphate
(PI3P, a crucial lipid messenger for autophagy initiation)
[26, 27]. When nucleation is complete, the phagophore
enters a rapid growth phase. The most critical step in this
phase is membrane acquisition. Phagophores get in contact
with other organelles such as plasma membranes [28–30],
mitochondria [31], and Golgi complex [32, 33] which may
serve as potential membrane sources [34, 35]. Membranes
are transported from the donor organelle to the phagophore
via Atg9, a crucial transmembrane protein [36].

One of the key regulators that promote the nucleation of
phagophore is the ULK1 complex. This complex is composed
of ULK1, FAK family kinase interacting protein of 200kDa
(FIP200), autophagy-related protein 13 (Atg13), and Atg101
(see Figure 3) [37]. ULK1, a serine/threonine kinase, has sev-
eral downstream phosphorylation targets to promote the
formation of phagophores. FIP200 is supposed to act as a
“scaffolding molecule” in the ULK1 complex. Atg13 acts as
an adaptor in the complex to facilitate the interaction between
ULK1 and FIP200, and Atg13 boosts the activity of ULK1.
Atg101 plays an essential role in the stability and phosphoryla-
tion of Atg13 and ULK1 [38, 39]. Moreover, Atg101 promotes
the recruitment of downstream autophagic proteins [40].
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Figure 1: Three key types of autophagy in eukaryocytes: macroautophagy, microautophagy, and chaperone-mediated autophagy. They all
ultimately transport autophagic substrates to the lysosomes for degradation through different pathways prior to releasing the resulting
building blocks such as amino acids, fatty acids, and nucleotides back into the cytosol for cellular reuse.
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The ULK1 complex phosphorylates the components of
the class III PI3K (PI3K-3) complex. The PI3K-3 complex
is composed of Beclin-1, vacuolar protein sorting 34
(Vps34), Vps15, and Atg14 (see Figure 3). Beclin-1 is a core
constituent of the PI3K-3 complex. The phosphorylation of

Beclin-1 via ULK1 is considered to be required for activation
of the Atg14-bound Vps34 [41]. Vps34 produces PI3P in
phagophores and stabilizes the ULK1 complex. Vps15 is
essential for activation and maintaining the function of
Vps34 [40, 42]. Atg14 targets the PI3K-3 complex to the
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phagophore assembly site and promotes the extension of
phagophores [40].

The second step of macroautophagy is autophagosome
formation consisting of elongation and closure of the phago-
phore. The phagophores continuously elongate and capture
autophagic substrates in the cytosol. Ultimately, the phago-
phores form sealed double-membrane autophagosomes.

Microtubule-associated protein light chain 3 (LC3) is a
vital protein in this process. Cytosolic LC3 (LC3-I) is cova-
lently bound to phosphatidylethanolamine (PE) to form
lipidated LC3-II under the mediation of the Atg12-Atg5-
Atg16L complex. The Atg12-Atg5 conjugate enhances the
activity of Atg3 to promote the transfer of LC3 from Atg3
to PE. Atg16L specifies the site of the LC3-lipidation reac-
tion. LC3-II locates at the inner and outer membrane and
is crucial for the expansion and closure of the isolation
membrane [43–45]. Sequestosome-1 (SQSTM1, also known
as p62) is an autophagy receptor that recruits autophagic
substrates. It interacts with LC3 on the isolation membrane
via the LC3 interaction region and targets it to the autopha-
gosome [45–47].

The third step of macroautophagy is the fusion of autop-
hagosomes with lysosomes. Autophagosomes usually fuse
with lysosomes directly. However, they can also fuse with late
endosomes to form intermediate autophagic vacuoles called
amphisomes which then fuse with lysosomes to form autoly-
sosomes [48, 49].

Ras-related protein in brain 7 (Rab7) is a small GTPase
that is located in lysosomes and late endosomes [48]. It is
one of the key enzymes of membrane trafficking. For
autophagy, Rab7 promotes autophagosome clustering in the
perinuclear area and the fusion of autophagosomes with lyso-
somes, but the detailed molecular mechanism is still unclear
[50–54]. Syntaxin 17 (STX17) facilitates the fusion process as
well. STX17 is a SNARE protein that is located in the outer
membrane of completed autophagosomes. It interacts with
synaptosomal-associated protein 29 (SNAP-29) and vesicle-
associated membrane protein 8 (VAMP8) to form a STX17
complex. This complex facilitates the fusion of autophago-
somes and lysosomes [48, 55].

The final step of macroautophagy is degradation and
recycling of the enclosed autophagic substrates. The autoph-
agic substrates such as sequestered organelles and aggregated
proteins are degraded in autolysosomes via multiple lyso-
somal hydrolases. After degradation, the resulting monomers
such as amino acids, fatty acids, and nucleotides are released
to the cytosol through the action of lysosomal permeases for
cell reutilization [56].

Depending on the specific autophagy substrate, macroau-
tophagy can be further classified into lipophagy and mito-
phagy [57], described in detail below. There are also other
forms such as pexophagy, nucleophagy, and ribophagy,
which we are not explaining here.

The term “lipophagy” is used to describe the process of
autophagic degradation for lipid droplets (LDs) [58]. Lipo-
phagy was first observed in the fasting liver and is an
important process in lipid metabolism. It contributes to
lipid turnover not only in liver cells but also in various other
animal cells [59, 60]. Under normal physiological condi-

tions, lipophagy is regulated by the nutritional status of cells
via AMPK-mTOR pathways. During periods of starvation,
lipophagy is activated, allowing cells to utilize their fat
reserves [58].

Similar to the above, mitophagy is the process of selective
degradation for damaged or redundant mitochondria via
macroautophagy [61, 62]. Mitophagy plays a crucial role in
mitochondrial quality control and regeneration [63, 64].
Impaired mitophagy disrupts mitochondrial function, lead-
ing to the progressive accumulation of defective mitochon-
dria and eventual cell damage [62]. The Parkin-PINK1
pathway is the critical pathway regulating mitophagy. In
general, activated PINK1 facilitates Parkin to bind with
depolarized mitochondria to induce mitophagy [65]. We will
describe the mechanism of mitophagy mediated by this
pathway in detail in a subsequent section (Section 7.2).

2.1.2. Microautophagy. Unlike in macroautophagy, microau-
tophagy does not involve autophagosomes as a vehicle for
transporting autophagy substrates. In microautophagy,
intracellular substances are directly engulfed by the lysosome
membrane via invagination and then degraded within the
lysosomal lumen [66, 67]. The major function of microauto-
phagy is to maintain membrane homeostasis and organelle
size and promote cell survival under nitrogen restriction [68].

2.1.3. Chaperone-Mediated Autophagy. Chaperone-mediated
autophagy regulates the degradation of a selective population
of cytosolic proteins containing a specific KFERQ peptide
sequence [69]. It is estimated that about 30% of cytosolic
proteins contain this sequence motif [70].

Firstly, the molecular chaperone heat-shock cognate pro-
tein of 70 kDa (HSC70) recognizes and binds the substrate
protein. In a second step, the substrate proteins are trans-
ported into the lysosome under the mediation of lysosome-
associated membrane protein type 2A (LAMP-2A) for
degradation [71]. The selectivity of chaperone-mediated
autophagy results in degradation of specific motif proteins
only without interfering with other types of proteins.
Chaperone-mediated autophagy mainly facilitates protein
homeostasis and promotes cellular adaptation to stress [72].

Here, we mainly focus on macroautophagy which is the
most relevant form of autophagy within the hepatic aging
process.

2.2. Autophagy Participates in a Variety of Physiological
Metabolic Activities in the Liver. The role of autophagy in
liver physiology was discovered during the past ten years.
The main findings can be summarized as follows:

Under homeostatic condition: firstly, hepatic autophagy
degrades lipid droplets into free fatty acids (FFAs) which
are oxidized in mitochondria to promote ATP synthesis [6,
73]. It facilitates the energy homeostasis of hepatocytes. Sec-
ondly, hepatic autophagy promotes the removal of damaged
organelles. The accumulation of abnormal organelles leads to
hepatocyte swelling and hepatotoxicity [66, 74, 75]. Thirdly,
autophagy breaks down misfolded proteins into amino acids
which are used in the synthesis of new proteins [76]. Hepatic
autophagy may also convert amino acids to glucose via
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gluconeogenesis, which is an essential process for maintain-
ing blood glucose concentration [7].

Under stress conditions: the liver maintains a basal level
of autophagy which is substantially enhanced in response to
cellular metabolic stress. For example, starvation-induced
autophagy occurs primarily in the liver [6, 7]. A study on per-
fused rat livers showed that under basal-nutrient conditions,
the rate of protein degradation is about 1.5% of total liver
protein per hour, while under starvation, this rate could be
increased to about 4.5% [77].

Upon impairment of autophagy process: a number of
reports have shown that liver-specific autophagy deficiency
leads to significant hepatomegaly and liver injury in animals
[74, 75, 78]. In 2-month-old Atg5-deficient mice, the liver to
body weight ratio (LBWR) was about 2-fold that of control
mice, and the serum alanine aminotransferase (ALT) level
was about 8-fold higher [78]. These changes reflect the
important role of autophagy in the liver, which may be
related to the accumulation of abnormal organelles caused
by autophagy deficiency [74, 75].

Upon aging: hepatic autophagy activity gradually
decreases with age [10, 11, 79, 80], which may set the stage
for the occurrence of age-related liver diseases.

2.3. Autophagic Activity Declines with Age. Aging, the process
of becoming older, leads to spontaneous and inevitable
changes in the structure and function of organism over time.
This is mainly manifested in the degeneration of biological
structures, the decline in physiological functions, and the
reduction of stress adaptation [81, 82].

Aging leads to a decline of autophagy in a variety of
tissues such as the liver, brain, and ovary [10, 83–85]. For
instance, in aged mouse liver, the LC3 protein expression,
the number of hepatocytes with autophagic vacuoles, and
the total number of autophagic vacuoles in hepatocytes are
substantially reduced [86].

2.3.1. Aging Impairs the Activation Capacity of AMPK.
AMPK, the major energy-sensing kinase, activates various
catabolic processes. AMPK activation can effectively induce
the initiation of the autophagic process. Activated AMPK
triggers autophagy to facilitate energy generation in mito-
chondria and downregulates energy-demanding processes
such as cell division and protein synthesis to ensure cellular
energy homeostasis [87].

However, aging results in a significant decrease in the
activation capacity of AMPK. Reznick et al. [16] observed
in the skeletal muscle of old rats that activation of AMPK
induced by acute (5′-aminoimidazole-4-carboxamide-1-β-
D-ribofuranoside, exercise) or chronic (β-guanidinopropio-
nic acid) stimulation was significantly reduced compared
with young rats.

The age-related impairment of AMPK activation
impedes autophagosome formation, affects cellular homeo-
stasis, and further promotes the aging process via weakening
its inhibitory effect on mTOR [17, 18, 88].

2.3.2. Age-Related Lipofuscin Accumulation Impairs the
Degradation Efficiency of Lysosome. Lipofuscin is a brown-

yellow and autofluorescent pigment mainly composed of
oxidated protein and lipid residues [89]. The formation of
lipofuscin is primarily due to iron-catalyzed oxidation of pro-
tein and lipid macromolecules [90, 91]. Lipofuscin typically
accumulates in the lysosomes of postmitotic cells during
senescence.

Lysosomes are acidic organelles that contain multiple
hydrolytic enzymes. When lysosomes loaded with lipofuscin
accumulate in senescent cells, most of the lysosomal enzymes
are drawn from the Golgi apparatus to the lipofuscin-loaded
lysosomes. However, lysosomal enzymes degrade proteins
but are unable to degrade lipofuscin. As a result, the delivery
of enzymes to lipofuscin-loaded lysosomes is ineffective for
recycling the aggregated proteins. This imbalanced distribu-
tion reduces the availability of lysosomal enzymes in healthy
lysosomes, leading to a marked decrease in the lysosomal
degradation process [13–15].

Furthermore, the decreased turnover of dysfunctional
mitochondria (impaired mitophagy) due to lipofuscin accu-
mulation leads to a substantial increase in the generation of
reactive oxygen species (ROS). In turn, the increased oxida-
tive stress impairs autophagy via further impairment in
lysosomal function [92–96].

2.3.3. Aging Facilitates Hypermethylation of Autophagic
Genes. As mentioned before, Atg5 and LC3 are pivotal genes
governing the autophagic process [45, 97]. So far, it was
shown in two different compartments, macrophages and
ovaries, but not yet in the liver, that age-related hypermethy-
lation of Atg 5 and LC3 did lead to a downregulation of
autophagy.

Khalil et al. [19] observed that mRNA expression of Atg5
and LC3B was significantly reduced in bone marrow-derived
macrophages of aged mice. The promoter regions of Atg5
and LC3B were highly methylated compared to those in
young mice. Preventing methylation via methyltransferase
inhibitor, (2)-epigallocatechin-3-gallate (EGCG), or DNA
methyltransferase 2 (DNMT2) siRNA restored the expres-
sion of Atg5 and LC3B in the macrophages of aged mice. Li
et al. [83] observed also age-related hypermethylation of
autophagic genes, albeit in mouse ovaries: the mRNA and
protein expression of Atg5 and LC3B were significantly
decreased in the ovaries of aged rats. The promoter regions
of Atg5 and LC3B were highly methylated compared to those
in young rats. The authors pointed out that the observed
upregulation of DNA methyltransferase 3A/3B in the ovaries
of aged rats may lead to methylation of Atg5 and LC3B,
which in return may ultimately decrease autophagy activity.

These results suggest that aging may blunt autophagy
activity by promoting the hypermethylation of autophagic
genes.

2.4. Main Pathways to Modulate Autophagy.We first give an
explanation of the key molecules regulating autophagy:
mTOR and its related complexes mTORC1 and mTORC2.
In the second step, we describe the autophagy regulatory
pathways.

mTOR is the major regulator of autophagy. It is a serine-
threonine kinase, which is involved in the regulation of

5Oxidative Medicine and Cellular Longevity



multiple cellular activities such as autophagy, cell growth,
proliferation, and metabolism [98]. The level of mTOR
expression is negatively correlated with the activity of
autophagy, e.g., inhibition of mTOR induces autophagy
remarkably. mTOR can interact with several binding
proteins to form two different protein complexes that are
referred to as mTOR complex 1 (mTORC1) and mTOR
complex 2 (mTORC2). The activity of mTOR is regulated
by multiple upstream factors such as AMPK, AKT, and
TSC1/2. Phosphorylation of AMPK and TSC1/2 inhibits
the activity of mTORC1, while AKT phosphorylation pro-
motes the activity of mTORC1 [99–101].

mTORC1, a rapamycin-sensitive protein complex, is
involved in regulating autophagy, cell growth, protein syn-
thesis, and ribosome biosynthesis [87, 98]. mTORC1 is regu-
lated by AMPK, which is actually one of the most important
upstream modulators of mTORC1. mTORC1 senses the cel-
lular energy status through AMPK. In addition, mTORC1
can sense the level of other cellular nutrients as well such as
amino acids, growth factors, and oxygen. mTORC1 has three
important downstream effectors: p70-S6 kinase (S6K), 4E-
binding protein (4E-BP), and ULK1. S6K1 and 4E-BP are
closely related to the regulation of protein synthesis and cell
growth [87, 98, 102], while ULK1 is an important regulator
of autophagosome formation (see Figure 3). In nutrient-
rich conditions, mTORC1 is activated and promotes cell
growth and proliferation by phosphorylating S6K and 4E-
BP. In contrast, activated mTORC1 phosphorylates and inac-
tivates of ULK1 to suppress autophagy [103–106].

mTORC2, a rapamycin-insensitive protein complex,
mainly regulates cell survival and modulates the actin cyto-
skeleton to organize the cell shape [87, 98, 107]. According
to Saxton and Sabatini, the critical role of mTORC2 is to
phosphorylate and activate AKT which facilitates cellular
survival and growth [98]. This view was further confirmed
by Kazyken et al. [108]. Kazyken et al. observed that the acti-
vation of AMPK phosphorylated and activated mTORC2 in
hepatocytes. In his experiments, AMPK-mediated activation
of mTORC2 was not induced by AMPK-mediated inhibition
of mTORC1, but that AMPK directly phosphorylated
mTORC2. The activation of AMPK by starvation stimulated
mTORC2 and its substrate AKT to facilitate cell survival. By
contrast, inactivation of AMPK, mTORC2, and AKT aggra-
vated cell apoptosis during starvation.

Now, we describe four critical autophagy modulating
pathways.

2.4.1. PI3K-AKT-mTOR. Phosphoinositide 3-kinase (PI3K)
is an intracellular phosphatidylinositol kinase. PI3K is
involved in a series of cellular events such as autophagy, apo-
ptosis, and proliferation. PI3K activation can effectively acti-
vate AKT. AKT is a serine/threonine protein kinase, it plays
an important role in cell growth, proliferation, and survival
[109]. mTOR acts as a downstream molecule of the PI3K-
AKT pathway.

Activation of PI3K by phosphorylation results in the pro-
duction of a second messenger-phosphatidylinositol-3,4,5-
triphosphate (PIP3), which binds to PDK1 (phosphoinosi-
tide-dependent kinase-1) and AKT. PDK1 phosphorylates

and activates AKT. There are three ways for activated AKT
to regulate mTOR. First, AKT phosphorylates mTOR directly,
thereby activating mTOR and inhibiting autophagy. Second,
AKT can phosphorylate and inactivate proline-rich AKT sub-
strate of 40 kilodaltons (PRAS40), a downstream target of
AKT that inhibits the activity of mTORC1, as well, thereby
activating mTORC1. Third, AKT enriches the Ras homolog
enriched in the brain (Rheb) via phosphorylating tuberous
sclerosis complex 1/2 (TSC1/2). Activated Rheb activates
mTOR to inhibit autophagy (see Figure 3) [101, 110–114].

2.4.2. AMPK-mTOR-ULK1. As mentioned above, AMPK is
considered to be a central cellular energy sensor. It is acti-
vated in response to energy stress [87].

AMPK regulates mammalian autophagy in two ways.
First, AMPK phosphorylation of TSC2 leads to the inactiva-
tion of Rheb, which in turn leads to the inactivation of
mTOR. mTOR inactivation restores the activity of ULK1
which is a critical initiator of autophagy. Second, AMPK
can phosphorylate ULK1 directly, which in turn facilitates
the formation of autophagosomes [12, 99, 104, 115–120].

2.4.3. p53-AMPK-mTOR. p53 is a tumor suppression protein.
It is mainly considered as a DNA sequence-specific transcrip-
tion factor, which is involved in activating proapoptosis, cell-
cycle arrest, and proautophagy genes [121, 122].

Emerging evidence suggests that p53 may bidirection-
ally regulate autophagy based on its subcellular localization.
The active p53 tetramer in the nucleus binds to the pro-
moter regions of multiple pro-autophagy-related genes such
as AMPK, TSC2, and damage-regulated autophagy modula-
tor (DRAM) to transactivate the expression of proauto-
phagy genes, thereby inducing autophagy [121, 123]. For
example, nuclear p53 can trigger autophagy in a DRAM
(a lysosomal protein that induces macroautophagy)-depen-
dent way [124]. Furthermore, nuclear p53 can inhibit
mTOR via the phosphorylation and activation of AMPK
to induce autophagy [125], whereas cytoplasmic p53
inhibits autophagy [123, 126].

Furthermore, p53 plays an important role in cell
senescence and proliferation. Activated p53 triggers the
expression of its downstream prosenescence molecules such
as p21 and E2F Transcription Factor 7 (E2F7). p21 is a
cyclin-dependent kinase (CDK) inhibitor that leads to p53-
dependent cell-cycle arrest and induces cell senescence.
E2F7 is a transcriptional repressor of E2F target genes and
is substantially upregulated during cellular senescence.
E2F7 inhibits the expression of mitogenic genes and cooper-
ates with retinoblastoma protein (RB) to promote cell cycle
arrest [123, 127–130].

2.4.4. Phosphoinositol Pathway. Inositol or inositol 1,4,5-tris-
phosphate (IP3) elimination can induce autophagy as well
[131, 132]. The activation of autophagy may be related to
the role of Ca2+ in energy metabolism.

The ER stores most of the intracellular Ca2+. After IP3
binds to the membrane IP3 receptor on the ER surface,
Ca2+ can be released from the ER. This process is thought
to be a requirement for maintaining the energy state of
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mitochondria since providing Ca2+ to mitochondria pro-
motes the production of nicotinamide adenine dinucleotide
(NADH) and energy. Conversely, inhibition of IP3 or IP3
receptors will result in a decrease in energy production. The
reduced energy level stimulates AMPK and triggers autoph-
agy through an mTOR-independent mechanism to maintain
cellular energy balance [12, 133, 134].

3. Age-Related Common Alterations in the Liver

The liver is the largest solid organ of the human body, and it
is mainly composed of 4 types of cells: hepatocytes, hepatic
stellate cells (HSCs), Kupffer cells (KCs), and liver sinusoidal
endothelial cells (LSECs).

Hepatocytes are the major parenchymal and functional
cells of the liver, accounting for about 70% of the total liver
cells. They perform multiple functions such as metabolic
(lipid, carbohydrate, and protein), detoxifying (xenobiotics),
and secretory (bile) functions to ensure metabolic
homeostasis.

The remaining 30% of hepatic cells are primarily HSCs,
LSECs, and KCs [135, 136]. HSCs are mainly involved in
the storage of vitamin A in lipid droplets (LDs) and regula-
tion of extracellular matrix and may affect sinusoidal blood
flow via their contractile properties [4, 137]. LSECs constitute
a permeable barrier within the liver sinusoids. They can pro-
mote the exchange of substances between the blood flow in
the sinusoids and the surrounding tissues [138, 139]. KCs
are resident hepatic macrophages. They are considered to
act as “pathogen-scavengers” that play a major role in the
immune and inflammatory response of the liver [140].

3.1. The Influence of Aging on Liver Cells.With age, the num-
ber of hepatocytes gradually decreases, the genome of hepa-
tocytes becomes unstable, and the number of polyploid
hepatocytes increases. Moreover, lipofuscin accumulation
and mitochondrial dysfunction also appear in senescent
hepatocytes [4, 141].

In addition, the number of HSCs increases, and the num-
ber of activated stellate cells, staining positive for α-smooth
muscle actin (αSMA, a stellate cell activation marker),
increases as well [4]. In LSECs, aging leads to a decrease in
the number and size of fenestrations, an increase in the depo-
sition of basal collagen, and thickening of the endothelium
[142] compromising the intercellular molecular exchange.
Moreover, the implications of aging on macrophages include
a decrease in phagocytosis and an increase in the secretion of
cytokines that lead to an inflammatory phenotype [4].

3.2. The Influence of Aging on Liver Morphology and
Structure. The molecular changes described above also lead
to changes on the macroscopical level. Age-associated
accumulation of lipofuscin in hepatocytes leads to a gradual
change in the color of the liver from light brown to dark
brown [143].

Age-associated decrease in the number and quality of
hepatocytes seems to cause a gradual decrease in the size
and perfusion of the liver [4, 143]. Wynne et al. [144]

reported a reduction of more than 40% when comparing a
young with an old liver (24 years versus 91 years).

Aging also affects hepatic morphology and liver regener-
ation as mentioned before. Steatosis and fibrosis progres-
sively appear in the aged liver [2–5]. A number of authors
(see Tables 1–4) are giving evidence that there is a close link
between autophagy and age-related diseases of the liver.
Autophagy plays an important role in these hepatic diseases
such as nonalcoholic fatty liver disease (NAFLD) and hepatic
cirrhosis but also in posthepatectomy liver failure due to
inadequate liver regeneration.

4. Liver Steatosis

The liver is the major organ of lipid metabolism. Hepatic
lipid metabolism is of central importance for the synthesis,
storage, secretion, and catabolism of triglycerides and fatty
acids [145]. Liver steatosis occurs upon disturbances of the
hepatic lipid metabolism, e.g., increased lipid synthesis or
decreased lipid degradation in the liver. Steatosis can
induce progressive hepatic pathological alterations, includ-
ing lobular inflammation, ballooning degeneration, and
fibrosis [146–149].

4.1. Aging is Associated with Development of Hepatic
Steatosis. The lipid metabolism capacity of the liver graduate
declines with age [150]. Steatosis can be observed in mouse
livers above the age of 12 months [151]. Steatosis and espe-
cially nonalcoholic fatty liver disease (NAFLD) are also often
observed in the human elderly population. NAFLD is charac-
terized as the presence of more than 5% of fat-laden hepato-
cytes in the absence of a competing cause of liver steatosis
[147]. According to a 2012 Rotterdam study, the overall prev-
alence of NAFLD was 35.1% in the elderly population aged
over 65 years old [152]. NAFLD may progress to nonalco-
holic steatohepatitis (NASH), liver cirrhosis, and eventually
liver cancer without effective intervention [153].

4.2. Hepatic Steatosis Also Impairs Autophagy. As mentioned
before, the autophagy activity declines with age [10, 11, 80].
The age-related accumulation of hepatic lipids, described
above, further impairs autophagic activity. This was nicely
illustrated in the study of Inami et al. [154]. They observed
in a mouse model of genetically induced obesity (ob/ob
mouse) that the p62 expression level was significantly
increased in the steatotic liver compared to the control group.
Furthermore, the rate of degradation for long-lived proteins,
the activity of cathepsin B/L (lysosomal proteases), and the
ratio of lysotracker red-stained autophagosomes were signif-
icantly lower in hepatocytes from ob/ob mice compared to
control mice. These results suggest that hepatic steatosis
impaired autophagy by impeding autophagosome acidifica-
tion and expression of proteolytic enzymes.

Moreover, autophagy is involved in the regulation of
cellular energy and nutrient metabolism. Conversely, energy
and nutrient levels modulate autophagy as well. For exam-
ple, during a period of starvation, lipophagy is activated to
provide the needed FFAs for ATP synthesis. In contrast,
adequate nutrition inhibits lipophagy since cells do not
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need FFAs as energy sources [58]. Overnutrition and obe-
sity can activate mTOR by inactivating AMPK, which
may blunt the ULK1 kinase complex and in turn inhibit
autophagy [155, 156].

4.3. Impaired Lipophagy Contributes to Accumulation of
Lipid Droplets in Hepatocytes. The process of converting lipid
droplets into FFAs, called lipolysis, includes two different

types: neutral lipolysis and acid lipolysis (also referred to as
lipophagy). Neutral lipolysis refers to that lipid droplet-
related triacylglycerols are hydrolysed by cytoplasmic lipases
at pH 7. In contrast, acid lipolysis refers to that LD-related
triacylglycerols are hydrolysed by lysosomal acid lipase at
pH 4.5-5 [157].

Singh et al. [158] observed that inhibition of hepatic
autophagy via 3-methyladenine (3-MA) treatment or Atg5

Table 1: Induction of autophagy reduces hepatic steatosis.

Recent scientific evidence that activating autophagy improves liver steatosis

Author year Research model
Autophagy
pathway

Autophagy
modulation

Enhanced
autophagy

Reduced
steatosis

Reduced
autophagy

Increased
steatosis

Tong et al.
[179] 2019

HFD-fed C57BL/6 mice;
ob/ob mice; primary mouse
hepatocytes; HepG2 cells

AMPK-mTOR
PPARδ

Chloroquine
Atg5-KD

LC3-II: +++
P62: —

TG: —
HE: —

P62: +++
TG: +++
HE: +++

Ren et al.
[176] 2019

HFD-fed C57BL/6 mice;
ob/ob mice;

Palmitate-stimulated
HepG2 cells

AMPK-TFEB
Catalpol

Chloroquine
LC3-II: +++
P62: —

TG: —
TC: —
HE: —

Oil Red O: —

TG: +++
TC: +++

Oil Red O: +++

Wang et al.
[180] 2019

HFD and MCDD-fed
C57BL/6J mice;

Palmitate-stimulated primary
mouse hepatocytes and

HepG2 cells

AMPK-SIRT1
Tangshen formula

SIRT1-KD
LC3-II: +++
P62: —

TG: —
TC: —
HE: —

Oil Red O: —

LC3-II: —
P62: +++

LDs: +++

Chu et al.
[181] 2019

Oleic acid-stimulated
HepG2 and LO2 cells

AMPK-mTOR
Akt-mTOR

Cherry anthocyanins
3-Methyladenine;

Atg5-KD

LC3-II: +++
P62: —

TG: —
TC: —

Oil Red O: —
LC3-II: —

TG: +++
TC: +++

Oil Red O: +++

Ohashi et al.
[182] 2019

HFD-fed male BALB/c mice
Not

investigated
Conophylline

LC3-II: +++
P62: —

TG: —
HE: —

Oil Red O: —

Liu et al.
[183] 2018

HFD-fed male SD rats;
Palmitate-stimulated L02 cells

COX-2
Celecoxib
Rapamycin
Chloroquine

LC3-II: +++
P62: —

TG: —
Oil Red O: —

LC3-II: —
P62: +++

TG: +++
Oil Red O: +++

Hong et al.
[184] 2018

Male ob/ob and C57BL/6 mice;
Palmitate-stimulated HepG2
cells and primary hepatocytes

SIRT1
Erythropoietin
SIRT1-KD

LC3-II: +++
TG: —

Oil Red O: —
LC3-II: —

TG: +++
Oil Red O: +++

Balachander
et al. [185]
2018

Oleic acid-stimulated
HepG2 cells

Not
investigated

Rosmarinic acid LC3-II: +++
TG: —
TC: —

Oil Red O: —

Li et al.
[186] 2017

HFD-fed male C57BL/6
mice; free fatty acid-stimulated

HepG2 cells

Atg16L1-
mediated

1,25(OH)2D3

3-Methyladenine

Atg16L1-KD

LC3-II: +++
P62: —

TG: —
TC: —
HE: —

Oil Red O: —

LC3-II: —
TG: +++
TC: +++

Oil Red O: +++

Tang et al.
[173] 2016

Chronic ethanol-fed male
C57BL/6J mice; oleic

acid and alcohol-stimulated
HepG2 cells

Not
investigated

Resveratrol
3-Methyladenine

LC3-II: +++
P62: —

TG: —
HDL-C: +++
LDL-C: —
LDs: —
HE: —

Oil Red O: —

LC3-II: —
P62: +++

TG: +++
Oil Red O: +++

Jung et al.
[187] 2015

HFD-fed male C57BL/6J mice;
Palmitate or tunicamycin-
stimulated HepG2 cells and
human primary hepatocytes

AMPK-
mediated

C1q/TNF-related
protein 9

Compound C
3-Methyladenine

LC3-II: +++
P62: —

TG: —
HE: —

Oil Red O: —

LC3-II: —
P62: +++

TG: +++
Oil Red O: +++

Zhang et al.
[188] 2015

HFD-fed 129/SvJ mice;
Palmitate-stimulated

HepG2 cells

cAMP-PRKA-
AMPK-SIRT1

Resveratrol
3-Methyladenine

LC3-II: +++
P62: —

TG: —
Oil Red O: —

LC3-II: —
P62: +++

TG: +++

+++: increase; —: decrease; KO: knockout; KD: knockdown; HFD: high-fat diet; MCDD: methionine choline-deficient diet; TG: triglyceride; TC: total
cholesterol; HDL-C: high-density lipoprotein cholesterol; LDL-C: low-density lipoprotein cholesterol; LDs: lipid droplets; PPARδ: peroxisome proliferator-
activated receptor δ; TFEB: transcription factor EB; cAMP: cyclic adenosine monophosphate; PRKA: protein kinase A; SIRT1: sirtuin 1; HE: hematoxylin
and eosin stain; Oil Red O: Oil Red O stain.
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Table 2: Autophagy performs a dual role in liver fibrosis.

(a) Recent scientific evidence that activating autophagy aggravates liver fibrosis

Author
year

Research model
Autophagy
pathway

Autophagy
modulation

Enhanced
autophagy

Increased fibrosis
Reduced
autophagy

Reduced fibrosis

Ma et al.
[217] 2020

CCl4-stimulated
male Norway
rats; platelet-
derived growth

factor-BB
(PDGF-BB)

stimulated LX-2
cells

Not
investigated

Small
heterodimer
partner

P62: +++
Atg12: —

SMA: —

Liu et al.
[218] 2019

CCl4 and BDL-
stimulated male

C57 mice

TGF-β1-
Smad3

Isorhamnetin
CCl4
BDL

LC3-II: +++
Beclin-1: +++

α-SMA: +++
Hydroxyproline: +++

PPAR-γ: —
HE: +++

Masson: +++

LC3-II: —
Beclin-1: —

α-SMA: —
Hydroxyproline: —

PPAR-γ: +++
HE: —

Masson:—

Meng et al.
[219] 2018

LX-2 cells
Not

investigated
Carvedilol
Rapamycin

LC3-II/I: +++ Cleaved PARP: —
Autophagic
flux: —

α-SMA: —
CCK-8: —
Bcl-2: —
Bax: +++

Cleaved PARP: +++

Feng et al.
[220] 2018

CCl4 and BDL-
stimulated male

C57 mice

TGFβ1-
Smad3

Salidroside
CCl4
BDL

LC3-II: +++
P62: —

Beclin-1: +++

α-SMA: +++
Hydroxyproline: +++

HE: +++
Masson:+++

LC3-II: —
P62: +++
Beclin-1: —

α-SMA: —
Hydroxyproline: —

HE: —
Masson:—

Wang et al.
[221] 2017

CCl4-stimulated
female BALB/c
mice; LX-2 cells

NF-κB

3-Methyladenine
Atg5-KD
Rapamycin

CCl4

LC3-II: +++
Beclin-1: +++

α-SMA: +++
TGF-β: +++
HE: +++

Masson: +++

LC3-II: —
Beclin-1: —

α-SMA: —
TGF-β: —
HE: —

Masson: —

Wu et al.
[222] 2017

CCl4 and BDL-
stimulated male

C57 mice

TGF-β1-
Smads

PI3K-AKT

Quercetin
CCl4
BDL

LC3-II: +++
P62: —

Beclin-1: +++

α-SMA: +++
Hydroxyproline: +++

HE: +++
Masson: +++

LC3-II: —
P62: +++
Beclin-1: —

α-SMA: —
Hydroxyproline: —

HE: —
Masson: —

Mao et al.
[223] 2015

CCl4 and BDL-
stimulated male
C57BL/6 mice;
HSC cell line

Not
investigated

Ghrelin
CCl4
BDL

LC3-II: +++
P62: —

α-SMA: +++
Hydroxyproline: +++

HE: +++
Masson: +++

LC3-II: —
P62: +++

α-SMA: —
Hydroxyproline: —

HE: —
Masson: —

Hernández-
Gea et al.
[201] 2012

CCl4 or TAA-
stimulated

C57BL/6 mice;
mouse hepatic
stellate cells;
mouse stellate
cell line JS1

Not
investigated

3-Methyladenine
Chloroquine
Atg5/7-KD

CCl4
TAA

LC3-II: +++
P62: —

IPF: +++
LC3-II: —
P62: +++

α-SMA: —
Sirius Red: —

Thoen et al.
[198] 2011

Balb/c mouse;
human and
mouse HSCs

Not
investigated

Bafilomycin A1
CCl4

Autophagic
flux: +++

a-SMA:+++
Autophagic
flux: —

SMA: —
PDGFR-β: —

EdU: —
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knockdown resulted in excessive accumulation of hepatic
lipids and triglycerides in mouse liver. Furthermore, they
investigated the rate of β-oxidation which is reflecting the
level of FFA produced by triglyceride (TG) hydrolysis. The
relative ratio of β-oxidation in Atg5-knockdown cells was
significantly reduced compared with control cells. This result
was consistent with the previous reduction in lipolysis. To
further prove that autophagy regulated liver lipid metabo-
lism, the authors measured the TG and cholesterol content
in hepatocytes of mice with hepatocyte-specific Atg7 knock-
down. They observed a significant increase in hepatic total
cholesterol and TG accumulation. In contrast, the ratio of
cholesterol in the lysosome was significantly reduced.

Subsequently, the role of lipophagy in promoting lipid
metabolism was also confirmed in zebrafish liver cells. Wang
et al. [159] observed the sequestered LDs in autophagic vac-
uoles of zebrafish liver cells by electron microscopy, thus
confirming the occurrence of lipophagy. Inhibition of
autophagy by chloroquine, a lysosomal acidification inhibitor
that blocks the fusion of autophagosomes and lysosomes
[160], significantly increased the LDs and TG content of
the liver cells. Moreover, the chloroquine-induced lipophagy
inhibition did also reduce the rate of β-oxidation
significantly.

The decline of lipophagy in the aged or steatotic liver
hinders the degradation of accumulated lipids in the liver
and reduces the supply of FFAs for lipid metabolism, both
further compromising cellular function [161, 162].

4.4. Impaired Mitophagy Leads to Decreased Mitochondrial
Turnover and Increased ROS Production. Hepatocytes are
rich in mitochondria which are the crucial organelles for lipid
metabolism. Each hepatocyte includes about 800 mitochon-
dria [163, 164]. Mitochondria act as the “energy plant” of
the cells. Fatty acids can undergo β-oxidation to generate
Coenzyme A (CoA), which enters the citric acid cycle
(CAC) and produces abundant NADH and flavin adenine
dinucleotide (FADH2). Both NADH and FADH2 enter the
oxidative phosphorylation process and generate large
amounts of ATP [163].

Ogrodnik et al. [165] observed that hepatocyte senes-
cence caused mitochondrial dysfunction and impaired the
capacity of fatty acid oxidation. This in return facilitated lipid
accumulation and promoted age-related hepatic steatosis.
Age-related mitochondrial dysfunction does not only affect
lipid metabolism and ATP synthesis but also leads to the pro-
duction of large amounts of reactive oxygen species (ROS).

Under normal physiological conditions, about 2% of oxy-
gen is used for the production of reactive oxygen species
[163, 166]. A basal level of ROS promotes cell survival and
repair. However, high levels of ROS are detrimental, since
they initiate fibrotic changes leading to structural impair-
ment of the liver. For example, ROS and other lipid peroxida-
tion products are activating hepatic stellate cells to produce
extracellular matrix proteins ultimately contributing to the
development of hepatic fibrosis. Besides, the increased ROS
levels further aggravate the impairment of lipid metabolism
finally resulting in hepatocyte apoptosis and hepatic inflam-
mation [167–169].

In brief, normal mitochondrial function is an important
basis for maintaining hepatic metabolism. However, the
age-associated impaired mitophagy in the liver leads to a
decrease in mitochondrial turnover rate [170]. The number
of dysfunctional mitochondria is increasing, which upregu-
lates ROS production and ultimately aggravates hepatic
steatosis (see Figure 4).

4.5. Restoring Autophagy Is Beneficial to Reduce Liver
Steatosis. Numerous studies demonstrated that promotion
of autophagy can effectively reduce lipid accumulation in
the liver (see Table 1). Therefore, promoting autophagy
may result in a novel therapeutic strategy to mitigate hepatic
steatosis [158, 171, 172].

The following studies focused on inducing autophagy to
reduce fat accumulation by using Resveratrol, Trehalose,
and Catalpol, but also commonly known autophagy inducers
such as rapamycin and carbamazepine.

Resveratrol is a natural polyphenol commonly found in
grapes. Tang et al. [173] observed that Resveratrol treatment
significantly enhanced the protein expression of LC3-II and

(b) Activating autophagy alleviates liver fibrosis

Author year Research model
Autophagy
pathway

Autophagy
modulation

Enhanced
autophagy

Reduced fibrosis
Reduced
autophagy

Increased fibrosis

Liu et al.
[224] 2018

CCl4-stimulated
male SD rats;
primary HSCs

Not
investigated

Catalpol

LC3-II: +++
P62: —

Beclin-1: +++
Atg5: +++

α-SMA: —
Hydroxyproline:

—
HE: —

Masson: —
Sirius Red: —

Ruart et al.
[214] 2018

CCl4-stimulated
C57BL/6 mice; LSECs

Not
investigated

Atg7-KO
LC3-II/I:

—
P62: +++

α-SMA: +++
Hydroxyproline: +++

Sirius Red: +++

Lodder et al.
[213] 2015

CCl4-stimulated mice;
Kupffer cells

Not
investigated

Atg5-KO
LC3-II: —
P62: +++

α-SMA: +++
Sirius Red: +++

+++: increase;—: decrease; KO: knockout; KD: knockdown; CCl4: carbon tetrachloride; TAA: thioacetamide; BDL: bile duct ligation; α-SMA: α-smooth muscle
actin; PPAR-γ: peroxisome proliferator-activated receptor γ; PARP: poly(ADP-ribose) polymerase; HE: hematoxylin and eosin stain; Masson: Masson’s
trichrome stain; PDGFR-β: platelet-derived growth factor receptor type-b; IPF: idiopathic pulmonary fibrosis; EdU: 5-ethynyl-2′-deoxyuridine; LSECs: liver
sinusoidal endothelial cells.
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Beclin-1, while p62 was reduced in C57BL/6J mice subjected
to ethanol diet, indicating that autophagy was activated. In
contrast, ethanol-induced steatosis was significantly allevi-
ated in Resveratrol-treated mice, mainly manifested by a
decrease of triglyceride, low density-lipoprotein cholesterol,
and an increase of high-density lipoprotein cholesterol.

Trehalose is a natural disaccharide, which is usually used
as a medical desiccant. Nowadays, it has attracted much

attention as a mTOR-independent autophagy inducer [12,
174]. DeBosch et al. [175] observed that Trehalose prevented
cells from taking up glucose via blocking glucose transporters
in the plasma membrane. Doing so, Trehalose treatment
induced a “starvation-like” condition triggering autophagy
even in the presence of nutrients. Activation of autophagy
alleviated accumulation of LDs in hepatocytes. This effect
was attributed at least partly to preventing hexose uptake

Table 3: The role of autophagy in liver regeneration remains controversial.

(a) Activating autophagy via the mTOR-independent pathway facilitates liver regeneration

Author year Research model Autophagy pathway
Autophagy
modulation

Enhanced
autophagy

Increased
regeneration

Reduced
autophagy

Reduced
regeneration

Guha et al.
[266] 2019

Mice; MEFs;
HEK293T cells

IPMK-AMPK-ULK1;
IPMK-AMPK-SIRT1

IPMK-KO LC3-II: —
Ki-67: —
Edu: —

Jia et al.
[267] 2019

Male SD rats Not investigated 70% PVL LC3-II: +++ Cyclin D1: +++

Liu et al.
[10] 2018

Male SD rats,
primary rat
hepatocytes

Not investigated
Young plasma
Wortmannin

3-Methyladenine

LC3-II: +++
p62: —

Ki-67: +++ LC3-II: — Ki-67: —

Wang et al.
[268] 2017

Male C57BL/6
mice; AML12

cell line
Not investigated

TSG-6
3-Methyladenine

LC3-II: +++
Atg3: +++
Atg7: +++

Ki-67: +++
LBWR: +++

LC3-II: —
Atg3: —
Atg7: —

CellTiter
Proliferation
Assay: —
LBWR: —

Lin et al.
[265] 2015

Male C57BL/6
mice

mTOR-independent
Amiodarone
Atg7-KD

LC3-II: +++
p62: —

Ki-67: +++
LBWR: +++

LC3-II: —
Atg7: —

Ki-67: —
LBWR: —

Cheng et al.
[251] 2015

Liver progenitor
cells

Not investigated

Beclin-1
overexpression
Beclin-1-KD
Atg5-KD

LC3-II: +++ PAS: +++

LC3-II: —
p62: +++
Beclin-1:

—
Atg5: —

PAS: —
CCK-8: —

Toshima
et al. [257]
2014

Mice Not investigated Atg5-KO
LC3-II: —
p62: +++
Atg5: —

BrdU: —

(b) Activating autophagy via the mTOR-dependent pathway impairs liver regeneration

Author year
Research
model

Autophagy
pathway

Autophagy modulation
Enhanced
autophagy

Reduced
regeneration

Reduced
autophagy

Increased
regeneration

Shi et al.
[269] 2018

Balb/c mice
mTOR-

dependent
Rapamycin

ASPP2-haploinsufficient
LC3-II: +++

PCNA: —
LBWR: —

LC3-II: —
p62: +++

PCNA: +++
LBWR: +++

Fouraschen et al.
[208] 2013

Male
C57BL/6J
mice

mTOR-
dependent

Rapamycin & steroid
dexamethasone

LC3-II: +++
PCNA: —
BrdU: —
LWRR: —

Kawaguchi et al.
[260] 2013

Male
C57BL/6J
mice

mTOR-
dependent

Temsirolimus
PCNA: —
LBWR: —

Espeillac et al.
[102] 2011

Male
C57BL/6J
mice

mTOR-
dependent

Temsirolimus BrdU: —

Palmes et al.
[258] 2008

Male Lewis
rats

mTOR-
dependent

Rapamycin Ki-67: —

Jiang et al.
[259] 2001

Male SD rats
mTOR-

dependent
Rapamycin LWRR: —

+++: increase; —: decrease; KO: knockout; KD: knockdown; IPMK: inositol polyphosphate multikinase; SIRT1: sirtuin 1; ULK1: Unc-51 like autophagy
activating kinase 1; PVL: portal vein ligation; LBWR: liver to body weight ratio; LWRR: liver-weight recovery rate; TSG-6: tumor necrosis factor-inducible
gene 6 protein; PAS: periodic acid–Schiff stain.
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and subsequently triggering the AMPK-ULK1 pathway.
Moreover, Trehalose significantly mitigated the accumula-
tion of triglycerides induced by fructose in primary hepato-
cytes. Similar results were observed in independent
experiments using the HepG2 cell line and mouse liver.

Catalpol is an iridoid glucoside mainly obtained from the
root of Rehmannia glutinosa. This drug is commonly used
for neurodegenerative diseases, e.g., Alzheimer’s disease.
Catalpol administration alleviated hepatic steatosis via
enhancing autophagy in both ob/ob mice and mice subjected
to a high-fat diet (HFD) as observed by Ren et al. [176]. They
also reported that Catalpol mitigated Palmitate-induced lipid
accumulation in HepG2 cells by activating autophagy via the
AMPK-Transcription Factor EB (TFEB) pathway. In con-
trast, treatment with the AMPK inhibitor (Compound C)
almost abolished the protective effect of Catalpol on lipid
accumulation in HepG2 cells, supporting the crucial role of
autophagy in hepatic steatosis.

Using other autophagy inducers as done by Lin et al.
[177] resulted in similar observations: they reported that
rapamycin and carbamazepine also relieved hepatic steatosis
in C57BL/6 mice by inducing autophagy. In contrast,
treatment of mice with autophagy inhibitors (chloroquine)
exacerbated hepatic steatosis and injury.

To our knowledge, there is no widely accepted pharma-
cological strategy for fatty liver disease. Many clinical guide-
lines recommended that exercise is an effective way to
improve nonalcoholic fatty liver disease. Recent studies dem-
onstrated that exercise may improve NAFLD through
enhancing autophagy as well. Chun et al. [178] reported that
exercise may trigger hepatic autophagy via regulating
muscle-derived myokines. First, postexercise reduction of
C1q/TNF-related protein 5 (CTRP5) inhibited the activity
of the mTORC1 to induce autophagy. Second, the increase
of irisin, a myokine secreted by skeletal muscle after exercise,
promoted the stimulation of AMPK. The subsequent

Table 4: Induction of autophagy alleviates hepatic mitochondrial dysfunction.

Recent scientific evidence that activating autophagy improves liver mitochondrial dysfunction

Author
year

Research model
Autophagy
pathway

Autophagy
modulation

Enhanced
autophagy

Improved
mitochondrial

function

Reduced
autophagy

Increased
mitochondrial
dysfunction

Li et al.
[307] 2020

HFD-fed male mice;
palmitic acid-stimulated
AML-12 cells; primary
human hepatocytes

PINK1-
Parkin

Cyanidin-3-O-
glucoside

PINK1: +++
Parkin: +++
p62: —

CPT1A: +++
SOD: +++

GSH-PX: +++
H2O2: —
MDA: —
IL-1B: —

Shan et al.
[308] 2019

Acetaminophen-stimulated
male C57/BL6 mice

PINK1-
Parkin

Rapamycin
Chloroquine

LC3-II/I: +++
p62: —

MA: —
IL-1B: —
NLRP3: —

p62: +++
IL-1B: +++
NLRP3: +++

Yu et al.
[309] 2019

Palmitic acid and
lipopolysaccharide-

stimulated HepG2 cells
PINK1

Liraglutide
3-Methyladenine

PINK1-KD

PINK1-FL: +++
Parkin: +++

ROS: —
IL-1B: —
NLRP3: —
ATP: +++

PINK1:— NLRP3: +++

Zhou et al.
[310] 2019

HFD-fed male mice; palmitic
acid-stimulated primary

hepatocytes

AMPK-
Parkin

Macrophage
stimulating 1-

KO

LC3-II/I: +++
Parkin: +++

ΔΨm: +++
ROS: —

Liu et al.
[311] 2018

HFD-fed male C57BL/J
mice; oleate/palmitate-
stimulated HepG2 cells

PINK1-
Parkin

Quercetin
LC3-II: +++
Parkin: +++

CPT1: +++
RCR: +++
ΔΨm: +++
MA: —

Zhou et al.
[300] 2018

HFD-fed C57BL/6J mice;
palmitic acid-stimulated
primary hepatocytes

Bnip3 Melatonin
LC3-II: +++
Atg5: +++

Beclin1: +++

ATP: +++
ΔΨm: +++
OCR: +++

Yu et al.
[299] 2016

Ethanol diet-fed
male C57BL/6J mice

AMPK-
ERK2

Quercetin
Parkin: +++
VDAC1: +++

ΔΨm: +++
MA: —

Williams
et al. [312]
2015

Ethanol administration
C57BL/6J mice

Parkin Parkin-KO MPG: —
RCR: —
COX: —
MA: —

+++: increase;—: decrease; KO: knockout; KD: knockdown; MA: morphological abnormalities; ERK2: extracellular signal-regulated kinase 2; VDAC1: voltage-
dependent anion channel 1; CPT1/1A: carnitine palmitoyltransferase 1/1A; PINK1-FL: PINK1 precursor; NLRP3: nucleotide-binding oligomerization domain,
leucine-rich repeat-containing receptor-containing pyrin domain 3; RCR: respiratory control ratio; COX: cytochrome c oxidase; MPG:mitophagosomes; Bnip3:
Bcl-2/E1B-19KD-interacting protein 3; OCR: oxygen consumption rate; H2O2: hydrogen peroxide; SOD: superoxide dismutase; GSH-PX: glutathione
peroxidase; MDA: malondialdehyde; GSSG: glutathione disulfide.
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activation of AMPK activated ULK1 resulting in enhanced
autophagy. Besides, exercise can also induce autophagy via
releasing Beclin-1 from its complex with B-cell lymphoma-
2 (Bcl2). As mentioned before, Beclin-1 can promote autoph-
agy via forming a PI3K-3 complex which is crucial for the
initiation of autophagosomes [133].

To sum up, activating autophagy removes dysfunctional
mitochondria, reduces ROS production, degrades excess
lipids, and promotes β-oxidation in the steatotic liver. There-
fore, modulating autophagy seems to be an effective strategy
in alleviating liver steatosis and preventing the development
of fatty liver diseases, possibly also suitable to treat age-
related steatosis.

5. Liver Fibrosis

Liver fibrosis is the consequence of an imbalance in the gen-
eration and degradation of extracellular matrix (ECM),
which is usually caused by acute or chronic liver damage
[189]. In essence, liver fibrosis is a wound healing response
to various liver injuries. Aging is considered as one of the
important risk factors for liver fibrosis [190]. Liver fibrosis
may gradually progress to liver cirrhosis in case of chronic
liver damage. At present, there is no effective clinical treat-
ment for liver fibrosis.

Hepatic stellate cells (HSCs) reside in the space of Disse
and account for about 5-8% of the total number of liver cells.
In a normal liver, most of the HSCs are at a quiescent state
with low proliferative activity [191, 192]. Activation of
hepatic stellate cells (HSCs) is now widely recognized as a
major driver for the initiation and progression of hepatic
fibrosis in rodents and humans [193]. Hepatic stellate cells
are usually activated when the liver undergoes injury. Acti-
vated HSCs are characterized by increasing proliferation,
chemotaxis, and contractility. Upon activation, they secrete
large amounts of fibrogenic factors that facilitate the genera-
tion of collagen. Excessive deposition of the extracellular
matrix is indicative of hepatic fibrosis [194–197].

Quiescent HSCs contain high amounts of cytoplasmic
LDs with triglyceride and retinyl esters. During the process
of HSC activation, LDs are degraded and activate HSCs to
secrete excessive amounts of the extracellular matrix proteins

such as collagen and fibronectin. Upon activation, HSCs
undergo a transformation from LD-rich cells to
myofibroblast-like cells, a process which is accompanied by
an upregulation of autophagic flux [198–200].

5.1. Autophagy Provides Energy for Activation of Hepatic
Stellate Cells via Lipid Degradation. Autophagy may provide
energy to promote the activation of HSCs [198–200]. This
view is supported by several independent authors.

Hepatic injury triggers autophagy which in turn pro-
moted ATP-production. Hernández-Gea et al. [201]
observed that hepatic injury induced by carbon tetrachloride
(CCl4) or thioacetamide (TAA) enhanced the autophagy
level in C57BL/6 mice. They established HSC-specific Atg7-
knockdown mice. After inducing chronic fibrosis using
CCl4 for 6 weeks in genetically modified and wild-type mice,
the collagen accumulation in Atg7-knockdown mice was sig-
nificantly decreased compared with control mice. Interest-
ingly, the number of α-SMA positive HSCs in Atg7-
knockdown animals was not significantly different from that
in control mice. However, the expression of total α-SMA pro-
tein in HSCs of Atg7-knockdown animals was significantly
reduced, indicating that the absence of Atg7 reduced the
expression of α-SMA in each HSC instead of affecting the
number of HSCs. In addition, Atg5/7 knockdown, as well
as pharmacological inhibition of autophagy through admin-
istration (3-MA or chloroquine), substantially reduced fibro-
genic mediators in mouse stellate cells. It is worth noting that
there was a significant increase in the number of LDs in
mouse stellate cells obtained after Atg5/7 knockdown,
respectively, 3-MA treatment.

Furthermore, 3-MA-mediated inhibition of autophagy
caused a substantial decrease in ATP levels of the cells. In
contrast, the administration of oleic acid in mouse stellate
cells enhanced ATP levels and abolished the reduction of
fibrogenesis mediated via inhibition of autophagy. These
results imply that autophagy facilitated the breakdown of
lipid droplets into FFAs in mouse stellate cells. Subsequently,
these FFAs are oxidized in mitochondria to generate ATP
needed for the activation of mouse stellate cells.

Moreover, Thoen et al. [198] found a significant elevation
in autophagy levels during HSC activation. In contrast,

Lipophagy

The relationship between autophagy, aging, and liver steatosis

Steatotic liver 

Mitochondrial
dysfunction

Lipids accumulationLipid breakdown

𝛽-Oxidation

Mitochondrial
turnover

Reduced ROS
generation

MitophagyAutophagy

Aging

Figure 4: Aging-related decline of autophagy activity leads to impaired lipid metabolism in the liver. Impaired autophagy results in decreased
lipid metabolism and in reduced mitochondrial turnover. These changes lead to the accumulation of lipid droplets in the hepatocytes and an
increase of ROS production, which contributes to the accumulation of fat in the liver ultimately resulting in hepatic steatosis.
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inhibition of autophagy prevented HSC activation. In more
detail, they treated HSCs with Bafilomycin A1, a V-ATPase
inhibitor preventing the acidification of lysosome and the
fusion of the autophagosome with lysosome [202, 203]. Bafi-
lomycin A1 treatment of HSCs resulted in a significant
decrease in α-SMA. The proliferation rate of Bafilomycin
A1-treated HSCs was reduced by approximately 6-fold com-
pared to control HSCs. In contrast, HSCs responded to acti-
vation when Bafilomycin A1 treatment was discontinued.

Inhibition of autophagy using chloroquine resulted in
similar observations. He et al. [204] demonstrated that chlo-
roquine attenuated CCl4-induced liver fibrosis in Sprague-
Dawley rats by inhibiting autophagy and thereby HSC
activation. Compared with the animals of the control group,
the expression levels of serum ALT, aspartate aminotransfer-
ase (AST), hydroxyproline (an extracellular matrix marker),
and α-SMA were significantly decreased in the chloroquine
group. In contrast to Hernández-Gea et al.’s findings, He
et al. observed that chloroquine-mediated autophagy inhibi-
tion improved liver injury as well. This additional finding
may be related to the fact that they did not only use a differ-
ent modeling method but also a different species of animals.

Taken together, these studies imply that induction of
autophagy promotes the initiation of liver fibrosis by degrad-
ing intracellular lipids to provide the energy needed for HSC
activation.

However, rapamycin, an autophagy inducer known for
its antiproliferative effect, had an opposite effect and reduced
hepatic fibrosis. In this case, the effect was attributed to the
antiproliferative effect on HSCs rather than to the
autophagy-inducing capacity suggesting the promotion of
fibrosis. For better illustration of this seemingly contradic-
tory effect, we describe the experimental observations
reported by Zhu et al. [205]. They investigated the effect of
rapamycin on hepatic stellate cells in Sprague-Dawley rats
with CCl4-induced liver fibrosis. In their hands, rapamycin
treatment reduced the extent of rat liver fibrosis induced by
CCl4 compared to the control group.

Further experiments revealed that rapamycin signifi-
cantly inhibited the proliferation of HSCs stimulated by the
platelet-derived growth factor. However, treating HSCs with
rapamycin did not significantly affect the expression of
ECM-related proteins. The inhibition of HSC proliferation
by rapamycin appeared to be the main reason for its allevia-
tion of liver fibrosis. This antiproliferative effect of rapamycin
on various cell types has been confirmed repeatedly in
different studies [206–208].

We will elucidate the mechanism conveying its antipro-
liferative effect in the next section dedicated to explain the
impact of aging and autophagy on liver regeneration later
in this review (Section 6.4).

5.2. Autophagy May Indirectly Reduce Fibrosis by
Ameliorating Liver Injury. Hepatic fibrosis is a common
result of different liver diseases such as NAFLD, alcoholic
hepatitis, and drug intoxication. Induction of autophagy is
currently considered to exert a therapeutic effect on these
hepatic diseases causing liver injury. For example, alcohol
abuse increases liver metabolic burden, induces accumula-

tion of lipid droplets, and impairs mitochondrial function
leading to increased oxidative stress. Autophagy may allevi-
ate alcohol-induced hepatic injury by selectively eliminating
dysfunctional mitochondria (mitophagy) and lipid droplets
(lipophagy) [209].

Moreover, intoxication with acetaminophen, a com-
monly antipyretic drug, can cause severe liver damage such
as acute hepatocyte necrosis and mitochondrial damage
[210]. Ni et al. [210] observed that rapamycin-induced
autophagy mitigated acetaminophen-induced hepatotoxicity
via eliminating impaired mitochondria in C57BL/6 mice. In
contrast, inhibition of autophagy using chloroquine aggra-
vated acetaminophen-induced hepatotoxicity.

5.3. The Effect of Modulating Autophagy on Liver Fibrosis Is
Dependent on Cell Types. Inhibition of autophagy may miti-
gate hepatic fibrosis by alleviating hepatocyte injury, by
reducing endothelial dysfunction, and by decreasing inflam-
matory cytokines synthesized and released from macro-
phages (see Figure 5) [211–214].

Here, we present the experiments of Lodder et al. [213]
for further illustration that autophagy inhibition via Atg5-
knockout aggravated fibrosis. Lodder et al. stated that macro-
phages were involved in promoting both inflammatory and
liver fibrogenesis by secreting cytokines such as ROS-
induced IL-1A/B. Compared with wild-type mice, Atg5-
knockdown mice subjected to treatment with CCl4
demonstrated higher levels of proinflammatory cytokines
IL-1A/B in the liver. Furthermore, mice with Atg5-
knockdown developed a higher degree of fibrosis compared
to wild-type animals. These mice also showed higher protein
level of fibrosis-related proteins such as α-SMA and mRNA
expression of fibrogenic-related genes such as matrix metal-
lopeptidase 9 (Mmp9), transforming growth factor beta 1
(TGF-β1), and serpine 1 in the liver. Administration of the
Atg5-knockout mice with recombinant interleukin-1 recep-
tor antagonist (IL-1RN) substantially reduced CCl4-induced
liver injury and fibrosis. Taken together, these results illus-
trate that autophagy attenuates liver fibrosis by reducing
the release of IL-1A/B.

Similarly, Ruart et al. [214] demonstrated that selective
autophagy suppression by cell-specific Atg7 knockdown in
endothelial cells exacerbated CCl4-induced liver fibrosis in
mice. Autophagy suppression decreased the ability of LSECs
to respond to oxidative stress and led to endothelial dysfunc-
tion, which in turn activated HSCs. The authors observed a
marked reduction in the porosity and number of fenestrae
in LSECs of Atg7-knockdown mice via scanning electron
microscopy. Besides, hydroxyproline and α-SMA expression
in mouse liver was increased, but there was no difference in
the expression of platelet-derived growth factor receptor beta
(PDGFR-β, a proliferation marker of HSCs). These results
reflected that the aggravation of liver fibrosis in Atg7-
knockdown mice may be due to EC-mediated activation
rather than proliferation of HSCs.

5.4. Selective Inhibition of Autophagy in HSC Appears to Be a
Promising Antifibrosis Strategy for the Aging Liver. As
explained above, autophagy has a dual role in the process of
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liver fibrosis (see Table 2). On the one hand, upregulation
of autophagy induces HSC activation, leading to the initi-
ation and progression of hepatic fibrosis. On the other
hand, upregulation of autophagy may also result in an
antifibrotic effect. However, the profibrotic effect of induc-
ing autophagy and thereby providing energy for HSC
activation seems to be more pronounced than the antifi-
brotic effect exerted by relieving cellular oxidative stress
and inflammation.

It is worth noting that basal autophagy takes place con-
tinuously in eukaryotes as it is essential for intracellular
homeostasis and cellular self-renewal [215, 216]. As the
autophagy activity in the aged liver declines, further inhibi-
tion of autophagy may cause serious adverse effects for the
liver and other organs. Therefore, only selective inhibition
of autophagy in HSCs appears to be a potentially effective
antifibrotic strategy.

6. Impaired Liver Regeneration

Unlike other visceral organs, the liver has an amazing
capacity for regeneration. It is the pathophysiological basis
for successful surgery such as liver resection and partial
liver transplantation. After rodents undergo 2/3 partial
hepatectomy (PH), the remaining liver tissue is almost
restored to its original volume and function in about 1-2
weeks [225, 226].

6.1. Liver Regeneration Is Mainly Accomplished by Two
Different Regenerative Mechanisms. Liver regeneration is
mainly achieved by two regenerative mechanisms: first, the
division of mature hepatocytes; second, the renewal and
differentiation of liver progenitor cells (LPCs) [12, 227].

The first mechanism of liver regeneration consists of
well-orchestrated hepatocyte proliferation, a sophisticated
process that includes three phases: the priming stage, prolif-
eration stage, and termination stage. In the priming stage,
quiescent hepatocytes shift from G0 to G1 phase within 4
hours after PH-induced stimulation in rodents [228]. In the

proliferation stage, hepatocytes are stimulated by several
mitogens such as hepatocyte growth factor (HGF) and trans-
forming growth factor-alpha (TGF-α) to cross the restriction
point of the G1 phase. Then, they enter the synthesis and
mitotic phase [229–234]. The termination stage starts once
liver mass is almost restored to its original level. Hepatocyte
proliferation ceases under the regulation of transforming
growth factor beta (TGF-β), activin, and interleukin-1A/B
(IL-1A/B) [226, 235–245].

The second mechanism is based on LPCs, which are
involved in the regeneration of animal livers under certain
conditions [246, 247]. LPCs are bipotent progenitor cells
that reside in the canal of Hering. When the liver is severely
injured or is chronically damaged, the remaining hepato-
cytes may not be able to meet the regenerative demand.
Then, LPCs will be activated and promote liver regenera-
tion via renewing and differentiating into hepatocytes and
cholangiocytes [248–251].

6.2. Aging Significantly Impairs Liver Regeneration. Aging
leads to a significant decrease in the regenerative capacity of
the liver in respect to hepatocyte proliferation as well as
LPC division and differentiation. In the aged liver, there are
fewer hepatocytes entering the S phase (about 30%)
compared with the young liver (90%-100%). Furthermore,
senescent hepatocytes enter the S phase more slowly [252].

Also, the responsiveness of LPCs to liver injury decreases
with age. For example, Cheng et al. reported that LPCs of
young mice are activated to proliferate following chronic
liver injury induced by a choline-deficient, ethionine-
supplemented (CDE) diet. However, LPCs in aged mice did
not respond effectively to the injury, leading to defective liver
regeneration. According to Cheng et al., hepatic stellate cells
of aged mice secreted more chemokine (C-X-C motif) ligand
7 (CXCL7) than those of young mice, attracting more neu-
trophils to infiltrate the liver. Neutrophil infiltration resulted
in excessive ROS production, thereby restraining the activa-
tion and proliferation of LPCs, which further impaired liver
regeneration [247].
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Figure 5: Autophagy plays a dual role in liver fibrosis. First, it promotes the initiation of fibrosis by providing the energy required for
activation of hepatic stellate cells. On the other hand, it alleviates liver fibrosis by improving the function and status of other hepatic cells
such as hepatocytes, endotheliocytes, and macrophages. ECs: endotheliocytes; HCs: hepatocytes; KCs: Kupffer cells.
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As described before, aging causes structural changes of
the liver such as steatosis and fibrosis. Both can be further
aggravated by the lifestyle of the patients, e.g., dietary over-
load or extensive alcohol consumption leading to NAFLD
and/or alcoholic fibrosis and even cirrhosis. Both NAFLD
and alcoholic cirrhosis are further impairing liver regenera-
tion substantially [253, 254]. The overall impaired regenera-
tive capacity of the aged liver leads to a remarkably increased
risk of hepatic failure after partial hepatectomy [255].

6.3. Autophagy Provides the Necessary Energy for Liver
Regeneration. Liver regeneration is an energy-intensive
process. The division and growth of hepatocytes require
abundant energy supply [256]. Hepatocytes are rich in
mitochondria, but liver resection can cause substantial
mitochondrial damage and decrease hepatocyte ATP
synthesis. Correspondingly, Toshima et al. reported a sig-
nificant decrease in ATP reserves within 6 h after liver
resection [257].

During the initial stage of liver regeneration, autophagy,
particularly mitophagy, is crucial for maintaining healthy
mitochondria to generate ATP. Mitophagy can selectively
eliminate dysfunctional mitochondria in order to reduce
ROS production, promote mitochondrial regeneration, and
facilitate ATP synthesis [62–64, 215]. This process contrib-
utes to the required energy and environment for liver regen-
eration (see Figure 6). However, the autophagy level in the
aged liver is significantly reduced. Therefore, appropriate
induction of autophagy seems to be a promising strategy to
promote regeneration, especially of the aged liver.

6.4. Autophagy Induced through the mTOR-Dependent
Pathway Impairs Liver Regeneration. As mentioned above,
autophagy can be activated by both mTOR-dependent path-
ways and mTOR-independent pathways. However, mTOR is
not only an essential regulator of autophagy but also a key

regulator of cell proliferation [12, 98]. Inhibiting mTOR
induces autophagy, but it also significantly impairs cell
proliferation.

For example, rapamycin, a classic mTOR inhibitor,
induces autophagy by inhibiting mTOR activity. Rapamycin
inhibits mTORC1 by forming a complex with FK506-
binding protein 12. This complex acts on downstream targets
to restrain protein synthesis and causes cell-cycle arrest by
preventing the transition from G1 to S phase [87, 258]. The
antiproliferative effect has been demonstrated in several
independent experiments regarding liver regeneration [208,
259]. Similar results have also been observed with other
mTOR inhibitors such as Temsirolimus [260]. Therefore,
activating autophagy by inhibiting mTOR activity does not
seem to be appropriate for facilitating liver regeneration
(see Figure 6).

6.5. Autophagy Induced through the mTOR-Independent
Pathway Appears to Promote Liver Regeneration. Activation
of autophagy without suppression of cell proliferation is a
better option for liver regeneration. Therefore, inducing
autophagy via the mTOR-independent pathway seems
promising in promoting liver regeneration (for more molec-
ular details, see also Xu et al. [12]). By now, the role of this
pathway for liver regeneration has been investigated by a
number of authors (see Table 3). They demonstrated that
the use of different mTOR-independent autophagy inducers
such as carbamazepine and amiodarone promoted liver
regeneration.

Carbamazepine is a common antiepileptic medication
that can be used to prevent and control seizures. It has
recently been shown to induce autophagy through depletion
of cytosolic inositol and AMPK activation. The depletion of
cytosolic inositol causes a decrease in basal IP3, which
reduces energy production via blocking mitochondrial
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Figure 6: The effect of autophagy on liver regeneration in the aged individual. Liver resection and aging lead to mitochondrial dysfunction.
Autophagy can degrade dysfunctional mitochondria and other cellular components to promote the synthesis of new organelles and energy
production, thereby facilitating liver regeneration. However, the induction of autophagy through the mTOR pathway impedes cell
proliferation. Therefore, inducing autophagy via the mTOR-independent pathway is more appropriate for promoting liver regeneration.
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calcium influx. The reduced energy level activates the
AMPK-ULK1 pathway to enhance autophagy [261, 262].

In 2013, Kawaguchi et al. [260] observed that carbamaz-
epine treatment substantially promoted hepatocyte prolifera-
tion after PH in mice through activation of mTOR and its
downstream factor S6K. Three proliferation indices, Ki-67,
5-Bromo-2′-Deoxyuridine (BrdU), and the Proliferating Cell
Nuclear Antigen (PCNA) index as well the LBWR levels,
were significantly increased on postoperative day 2 (POD2)
in carbamazepine-treated animals compared to control ani-
mals. On the contrary, the application of mTOR inhibitor
Temsirolimus abolished the effect of carbamazepine in pro-
moting hepatocyte proliferation, indicated by a marked
decrease in the protein expression of PCNA and LBWR of
animals on POD2.

Amiodarone is a potent antiarrhythmic medication that
is mainly used to promote the restoration of normal heart
rhythm. It is currently obtaining attention as an autophagy
inducer. Amiodarone treatment decreases intracellular Ca2+

concentration by inhibiting L-type Ca2+ channels at the
plasma membrane to block extracellular Ca2+ entry. Reduc-
ing intracellular Ca2+ concentration can induce autophagy
[132, 263, 264]. In 2015, Lin et al. [265] observed that amio-
darone could significantly induce autophagy via the mTOR-
independent pathway and boost liver regeneration. After PH,
LC3-II was significantly higher and p62 level lower in the
amiodarone-treated mice compared to the control mice.
The Ki-67, PCNA, cyclin D1 levels, and LBWR were substan-
tially increased, but the level of p21 decreased significantly in
amiodarone-treated mice, altogether demonstrating an
improved hepatic proliferative response. As a contrast, inhi-
bition of autophagy via chloroquine pretreatment or Atg7
knockdown deteriorated liver regeneration. Correspond-
ingly, decreased Ki-67, PCNA, cyclin D1, and LBWR and
increased TGF-β1 were observed in the autophagy-
suppressed mice.

Overall, selecting the appropriate pathway to induce
autophagy is essential for promoting liver regeneration.
Enhancing autophagy through the mTOR-dependent path-
way alone seems to be rather harmful to liver regeneration.
In contrast, inducing autophagy through the mTOR-
independent pathway does not affect cell proliferation.
Therefore, exploring novel mTOR-independent autophagy
inducers without obvious side effects has the great potential
to improve liver regeneration, especially in aged patients with
reduced autophagy.

7. Mitochondrial Dysfunction

Mitochondria are the sites of oxidative phosphorylation in
cells [270]. The synthesis of ATP through oxidative phos-
phorylation is one of the key functions of mitochondria.
This process is regulated by four respiratory chain com-
plexes, type I NADH dehydrogenase (complex I), succinate
dehydrogenase (complex II), CoQH2-cytochrome c reduc-
tase (complex III), cytochrome c oxidase (complex IV),
and another ATP synthase (complex V). All these com-
plexes are located on the inner membrane of mitochondria
[271–273]. Mitochondrial bioenergy is pivotal to maintain

liver function. Mitochondrial dysfunction can lead to
impaired energy metabolism and increased production of
reactive oxygen species, which in turn triggers cell senes-
cence and apoptosis [20, 274].

7.1. Aging Impairs the Function of Hepatic Mitochondria.
Evidence in human and animal liver manifests that aging
results in increased oxidative stress and decreased mitochon-
drial bioenergetics. Actually, mitochondrial dysfunction is
considered to be one of the crucial features of the aging
process.

One feature of mitochondrial dysfunction is the loss of
activity of mitochondrial enzymes. To give one example,
Navarro and Boveris [275] observed in aged rat livers that
the activity of key enzymes indicative of mitochondrial func-
tion decreased substantially compared to young rats. They
investigated type I NADH dehydrogenase (complex I), cyto-
chrome oxidase (complex IV), mitochondrial nitric oxide
synthase, and Mn-superoxide dismutase and reported a loss
of activity in these enzymes of about 30%, 24%, 47%, and
46%, respectively. The reduced activity of respiratory chain
complexes impaired energy synthesis of mitochondria in
the hepatocytes from aged rats. Yen et al. [276] used human
livers and confirmed that mitochondrial respiration was also
deficient in isolated mitochondria from the aging human
liver.

Other features of mitochondrial dysfunction are the
reduction of the mitochondrial membrane potential (ΔΨm)
and the increase of peroxide production. Sastre et al. [277]
used liver cells from agedWistar rats in comparison to young
rats and observed a 30% reduction in mitochondrial mem-
brane potential and a 23% increase in mitochondrial perox-
ide production. This was accompanied by an age-related
increase in size.

7.1.1. Age-Related Mitochondrial Dysfunction Is Associated
with the Accumulation of mtDNA Mutations. Mitochondria
contain their own genome, a 16.5 kb double-stranded circu-
lar molecule (mtDNA) which encodes 2 mammalian ribo-
somal RNAs, 22 transfer RNAs, and 13 proteins. The 13
proteins encoded by mtDNA are the constituent of respira-
tory chain enzymes [273, 278]. Mitochondrial dysfunction
is usually associated with mitochondrial DNA (mtDNA)
mutations.

mtDNA is located near the main site of ROS genera-
tion—the respiratory chain. ROS are a byproduct of oxidative
metabolism. It can induce oxidative damage to mtDNA and
is thought to be responsible for mtDNAmutations that accu-
mulate with aging [279, 280]. Vermulst et al. [281] estab-
lished a genetically modified animal that enhances the
expression of human catalase (a ROS scavenger). The level
of mtDNA mutations in heart and mouse embryonic fibro-
blasts (MEFs) of these animals was significantly lower than
in WT animals. This result demonstrated that oxidative
stress plays a negative role in mtDNA mutations. The cumu-
lative effect of ROS affects genetic information of mtDNA
causing point mutations, deletions, or duplications of
mtDNA [282]. Ultimately, the accumulation of mtDNA
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mutations and ROS leads to impaired respiratory chain activ-
ity and energy production [283].

In 2004, Trifunovic et al. [284] establishedmtDNAmuta-
tor mice that express a checking-deficient version of PolgA
(mtDNA polymerase gamma). The mtDNA mutator mice
successfully express a mtDNA mutant phenotype with an
about 4-fold increase in point mutations in the liver and a
concomitant increase of deleted mtDNAs. The lifespan of
mtDNA mutant mice was significantly shorter compared to
control animals. Phenotypic features related to aging such
as fertility did decline. In contrast, age-related impairments
like osteoporosis and anaemia did appear prematurely in
these animals. Moreover, the enzymatic activity of the respi-
ratory chain was decreased. These results suggest that
mtDNA mutations cause mitochondrial dysfunction and
aggravate the aging process.

But this view has also been challenged. In 2007, Vermulst
et al. [281] could not confirm that mtDNA mutations short-
ened the longevity of wild-type mice. Although the point
mutations of mtDNA in wild-type mice increased about 11-
fold with age, mitochondrial mutator mice could tolerate a
500-fold higher mutational burden than control mice with-
out any evident accelerated aging characteristics. It is worth
noting the authors pointed out that their technique can only
detect small deletion of mtDNA but not the large-scale
deletion of mtDNA.

Overall, the age-related ROS increase is considered to be
an important causal factor of mtDNA mutations. mtDNA
mutations substantially impair the efficiency of the respira-
tory chain and contribute to mitochondrial dysfunction.
However, whether mtDNA mutations directly accelerate
the aging process and affect human lifespan still needs
further investigation.

7.1.2. Aging Impairs Mitochondrial Dynamics. Mitochondria
are dynamic organelles that constantly undergo fission and
fusion to form network structures in cells. This process usu-
ally is termed mitochondrial dynamics (see Figure 7) [285,

286]. It is involved in regulating the morphology, distribu-
tion, and property of mitochondria [285, 287, 288].

Mammalian mitochondrial fusion is mainly mediated
by mitofusin 1 (Mfn1), Mfn2, and optic atrophy 1
(OPA1). All of them are dynamin-related GTPases, but
their function is different during mitochondrial dynamics.
Mfn1 and Mfn2 are involved in fusing the outer mem-
branes of mitochondria, while OPA1 is in charge of fusing
the inner membranes of mitochondria. Mammalian mito-
chondrial fission is mainly regulated by dynamin-related
protein 1 (Drp1). It interacts with his receptor proteins,
mitochondrial dynamics protein of 49 kDa (MiD49),
MiD51, fission 1 (Fis1), and mitochondrial fission factor
(Mff), to promote the constriction of mitochondrial
membrane and mitochondrial fission [285, 289].

Mitochondrial dynamics plays a vital role in mitochon-
drial quality control. Malfunctioning mitochondria may lose
their fusing capacity to prevent damaged mitochondria from
merging back into the mitochondrial network [289]. These
dysfunctional mitochondria will be degraded by mitophagy.
However, the age-dependent decline of mitophagy not only
inhibits the clearance of dysfunctional mitochondria but also
affects the mitochondrial biogenesis, leading to the gradual
accumulation of dysfunctional mitochondria [290].

7.2. Mitophagy Effectively Promotes Mitochondrial Turnover.
Dysfunctional mitochondria promote ROS generation. Mito-
phagy can selectively degrade damaged mitochondria, reduce
excessively produced ROS, facilitate mitochondrial
regeneration, and promote the survival of cells in stressful
environments [291, 292]. The serine/threonine kinase
PTEN-induced kinase 1(PINK1) and E3 ubiquitin ligase Par-
kin are considered to be two crucial factors that mediate
mitophagy.

PINK1 is thought to sense mitochondrial quality. It
includes a mitochondrial targeting sequence (MTS) and can
be recruited into mitochondria. In normal mitochondria,
PINK1 is translocated into the outer mitochondrial
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Figure 7: Mitochondrial dynamics mainly include mitochondrial fusion and fission. Mitochondria perform fusion and fission under the joint
regulation of multiple signals. (a) Mfn1 and Mfn2 regulate mitochondrial outer membrane fusion; OPA1 regulates mitochondrial inner
membrane fusion. (b) Fis1, Mff, MiD49, and MiD51 are anchored at the mitochondrial outer membrane to recruit Drp1 from the cytosol,
which facilitates that mitochondria contract and split into several mitochondria. MOM: mitochondrial outer membrane; MIM:
mitochondrial inner membrane.
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membrane through the translocase outer membrane (TOM)
complex and into the inner mitochondrial membrane with
the mediation of the translocase inner membrane (TIM)
complex. The MTS fragment of PINK1 is cleaved by the
mitochondrial processing peptidase (MPP) in the matrix.
Then, PINK1 is degraded by the proteasome system con-
trolled by presenilin-associated rhomboid-like protease
(PARL). This process regulates the concentration of PINK1
in normal mitochondria.

In damaged mitochondria, mitochondria depolarize due
to various injuries. This membrane potential is crucial for
TIM-mediated protein translocation. Based on that, most of
PINK1 is unable to enter the inner membrane and cannot be
degraded by PARL-mediated degradation. In consequence,
PINK1 accumulates on the outer mitochondrial membrane
and phosphorylates ubiquitin. Then, accumulated PINK1 is
activated via dimerization and autophosphorylation. Auto-
phosphorylation of the PINK1 at S228 and 402 sites occurs
after mitochondrial depolarization, which is thought to be a
precondition for recruiting Parkin. PINK1 phosphorylates
Parkin at the S65 site. PINK1/Parkin triggers autophagy via
recruitment of the autophagic-substrate proteins such as p62
and mitochondrial ubiquitination [65, 289, 293–298] to
eliminate damaged mitochondria (see Figure 8).

7.3. Enhancing Autophagy Is a Promising Way to Improve
Mitochondrial Function in the Aged Liver. Recent studies
revealed a number of interesting approaches in different
model organisms (see Table 4) suitable to improve mito-
chondrial function via enhancing autophagy. Here, we are
presenting the results of pharmacological upregulation using
quercetin, melatonin, urolithin 1, and tomatidine, and via
mTOR knockdown. Interestingly, they also improved the
longevity of the model organisms.

Quercetin administration upregulates mitophagy thereby
effectively reducing the impact of mitochondrial injuries as

reported by Yu et al. [299]. They observed that chronic etha-
nol diet administration caused significant damage to hepatic
mitochondria of C57BL/6J mice. Mitochondrial injury
mainly manifested as mitochondrial swelling, internal mem-
brane destruction, lack of cristae, rupture of the endoplasmic
reticulum, and decrease of mitochondrial membrane poten-
tial. Quercetin administration effectively reduced these
mitochondrial injuries by activating mitophagy. The mRNA
and protein expression of Parkin was significantly decreased
in the ethanol diet administration mice compared with con-
trol mice, while Parkin expression was significantly increased
after quercetin coadministration. These results reflect that
mitophagy activation exerts a crucial role in improving
hepatic mitochondrial dysfunction.

Melatonin, a hormone that is usually used to enhance
sleep quality, improved hepatic mitochondria function by
activating mitophagy as reported by Zhou et al. [300]. They
found that the protein expression of mitochondrial-LC3-II,
Atg5, and Beclin-1 in mouse primary hepatocytes was sub-
stantially decreased after treatment with palmitic acid but
significantly increased after treatment with melatonin.
Palmitic acid caused mitochondrial damage indicated by a
reduced oxygen consumption rate, decreased ATP synthesis,
and dissipation of mitochondrial membrane potential, while
melatonin effectively alleviated the above mitochondrial
dysfunctions.

Urolithin A, a bacterial metabolite of ellagic acids [301],
could trigger mitophagy in vivo and in vitro, as observed by
Ryu et al. [302, 303]. Urolithin A prevented the age-related
accumulation of damaged mitochondria in C. elegans, a
model organism used frequently in aging research, and pro-
longed their lifespan. In mammalian cells, urolithin A was
able to induce mitophagy and lead to an increase of
phospho-AMPKα. Furthermore, in rodents, urolithin A pro-
moted mitophagy leading to improved mitochondrial
biogenesis and mitochondrial function, which was indicated
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by the enhanced aerobic endurance and grip strength of the
animals.

Similarly, tomatidine, a steroidal alkaloid from unripe
tomato [304], did enhance longevity in C. elegans by induc-
ing mitophagy, as reported by Fang et al. [305]. Tomatidine
sustained mitochondrial homeostasis via regulating PINK-
1/DCT-1-dependent mitophagy and mitochondrial biogene-
sis. Besides, tomatidine could effectively relieve age-related
changes in C. elegans. For example, tomatidine substantially
improved the decline in age-related swimming scores in aged
C. elegans. Compared with the vehicle group, the score
increased by 48%.

Reducing mTOR expression via mTOR knockdown in
mice as performed by Wu et al. [306] prolonged the overall
lifespan by 20% compared to control animals. The mRNA
expression of p16 in the liver of aged mTOR-knockdown
mice was significantly lower than that of control animals.

These results from strikingly different experiments all
suggest that upregulation of autophagy seems to be effective
to alleviate age-related impairment.

8. Conclusion

Aging is a natural phenomenon that occurs in all eukaryotic
organisms. The aging process predisposes the liver to certain
histopathological lesions, to decreased metabolic function,
and to an impaired regenerative capacity. Accumulating evi-
dence suggests that autophagy is involved in a variety of
physiological and pathological events in the liver. Of concern
is that modulation of autophagy has different effects on
aging-induced changes in the liver (see Figure 9).

For liver steatosis: an appropriate boost in autophagy can
effectively promote lipid metabolism and reduce lipid accu-
mulation in hepatocytes. Inducing autophagy, e.g., Resvera-
trol may contribute to relieving the metabolic burden of the

aging liver as well as prevent or slow down the initiation
and progression of NAFLD, especially in elderly patients
with impaired autophagy.

For liver fibrosis: upregulation of autophagy appears to
provide the energy required for activation of hepatic stellate
cells in case of hepatic injury. However, the induction of
autophagy is also thought to be beneficial in reducing liver
cell injury. Reduction of liver cell injury may improve fibro-
sis, which is relatively limited compared to the direct profi-
brosis effect. Therefore, selective inhibition of autophagy in
hepatic stellate cells using, e.g., Atg5/7 knockdown seems to
be a promising experimental strategy to counteract liver
fibrosis in aged livers.

For impaired liver regenerative capacity: enhancement of
autophagy via the mTOR-independent pathway, e.g., amio-
darone, seems to be helpful. In this case, cell proliferation is
not affected but the energy required for hepatocyte division
and growth provided, thereby promoting liver regeneration.
This is of utmost benefit for elderly patients who desperately
need a life-saving liver resection.

For mitochondrial dysfunction: activation of autophagy
can effectively eliminate dysfunctional mitochondria and
promote mitochondrial regeneration. Both are of equal
importance for reducing ROS and facilitating hepatocyte sur-
vival. Adequate and healthy mitochondria in turn facilitate
the breakdown of hepatic lipids and provide energy to main-
tain liver function. Prevention or reversing mitochondrial
dysfunction by inducing autophagy, e.g., melatonin, could
be a promising therapeutic approach to improve mitochon-
drial respiration, especially for elderly patients.

With the development of autophagy research in the past
decade, numerous autophagy modulators have emerged.
Understanding the relationship between autophagy and
age-related hepatic changes may lead to novel strategies to
“rejuvenate” the aged liver. However, modulation of
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Figure 9: Autophagy plays different roles in age-related liver alterations. Enhancing autophagy may ameliorate aging-induced liver steatosis,
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20 Oxidative Medicine and Cellular Longevity



autophagy via pharmacological intervention is a promising
but double-edged treatment strategy. Therefore, to effectively
counteract liver aging without causing obvious harm, it is
necessary to evaluate the most destructive process in the indi-
vidual patient before modulating autophagy.
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