
Journal of Healthcare Engineering

Machine Learning for Physiological
Data Analytics

Lead Guest Editor: Yatao Zhang
Guest Editors: Peng Li and Jingyu Shao

 



Machine Learning for Physiological Data
Analytics



Journal of Healthcare Engineering

Machine Learning for Physiological
Data Analytics

Lead Guest Editor: Yatao Zhang
Guest Editors: Peng Li and Jingyu Shao



Copyright © 2023 Hindawi Limited. All rights reserved.

is is a special issue published in “Journal of Healthcare Engineering.” All articles are open access articles distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.



Associate Editors
Xiao-Jun Chen  , China
Feng-Huei Lin  , Taiwan
Maria Lindén, Sweden

Academic Editors
Cherif Adnen, Tunisia
Saverio Affatato  , Italy
Óscar Belmonte Fernández, Spain
Sweta Bhattacharya  , India
Prabadevi Boopathy  , India
Weiwei Cai, USA
Gin-Shin Chen  , Taiwan
Hongwei Chen, USA
Daniel H.K. Chow, Hong Kong
Gianluca Ciardelli  , Italy
Olawande Daramola, South Africa
Elena De Momi, Italy
Costantino Del Gaudio  , Italy
Ayush Dogra  , India
Luobing Dong, China
Daniel Espino  , United Kingdom
Sadiq Fareed  , China
Mostafa Fatemi, USA
Jesus Favela  , Mexico
Jesus Fontecha  , Spain
Agostino Forestiero  , Italy
Jean-Luc Gennisson, France
Badicu Georgian  , Romania
Mehdi Gheisari  , China
Luca Giancardo  , USA
Antonio Gloria  , Italy
Kheng Lim Goh  , Singapore
Carlos Gómez  , Spain
Philippe Gorce, France
Vincenzo Guarino  , Italy
Muhammet Gul, Turkey
Valentina Hartwig  , Italy
David Hewson  , United Kingdom
Yan Chai Hum, Malaysia
Ernesto Iadanza  , Italy
Cosimo Ieracitano, Italy

Giovanni Improta  , Italy
Norio Iriguchi  , Japan
Mihajlo Jakovljevic  , Japan
Rutvij Jhaveri, India
Yizhang Jiang  , China
Zhongwei Jiang  , Japan
Rajesh Kaluri  , India
Venkatachalam Kandasamy  , Czech
Republic
Pushpendu Kar  , India
Rashed Karim  , United Kingdom
Pasi A. Karjalainen  , Finland
John S. Katsanis, Greece
Smith Khare  , United Kingdom
Terry K.K. Koo  , USA
Srinivas Koppu, India
Jui-Yang Lai  , Taiwan
Kuruva Lakshmanna  , India
Xiang Li, USA
Lun-De Liao, Singapore
Qiu-Hua Lin  , China
Aiping Liu  , China
Zufu Lu  , Australia
Basem M. ElHalawany  , Egypt
Praveen Kumar Reddy Maddikunta  ,
India
Ilias Maglogiannis, Greece
Saverio Maietta  , Italy
M.Sabarimalai Manikandan, India
Mehran Moazen  , United Kingdom
Senthilkumar Mohan, India
Sanjay Mohapatra, India
Rafael Morales  , Spain
Mehrbakhsh Nilashi  , Malaysia
Sharnil Pandya, India
Jialin Peng  , China
Vincenzo Positano  , Italy
Saeed Mian Qaisar  , Saudi Arabia
Alessandro Ramalli  , Italy
Alessandro Reali  , Italy
Vito Ricotta, Italy
Jose Joaquin Rieta  , Spain
Emanuele Rizzuto  , Italy

https://orcid.org/0000-0002-0298-4491
https://orcid.org/0000-0002-2994-6671
https://orcid.org/0000-0003-3615-6085
https://orcid.org/0000-0002-6082-164X
https://orcid.org/0000-0002-4075-1517
https://orcid.org/0000-0003-3368-7470
https://orcid.org/0000-0003-0199-1427
https://orcid.org/0000-0003-0774-1453
https://orcid.org/0000-0002-6093-7124
https://orcid.org/0000-0001-7608-5619
https://orcid.org/0000-0002-7269-9725
https://orcid.org/0000-0003-2967-9654
https://orcid.org/0000-0001-6379-6841
https://orcid.org/0000-0002-3025-7689
https://orcid.org/0000-0003-4100-8765
https://orcid.org/0000-0002-5643-0021
https://orcid.org/0000-0002-4862-2277
https://orcid.org/0000-0001-5233-5687
https://orcid.org/0000-0002-1813-7641
https://orcid.org/0000-0002-9488-0605
https://orcid.org/0000-0003-1546-3721
https://orcid.org/0000-0001-8453-5368
https://orcid.org/0000-0002-7656-4000
https://orcid.org/0000-0002-7291-4990
https://orcid.org/0000-0002-9485-1687
https://orcid.org/0000-0002-9065-802X
https://orcid.org/0000-0002-9160-6846
https://orcid.org/0000-0002-4558-9803
https://orcid.org/0000-0003-3772-4814
https://orcid.org/0000-0003-2073-9833
https://orcid.org/0000-0002-2353-8853
https://orcid.org/0000-0002-0896-0650
https://orcid.org/0000-0002-2977-8997
https://orcid.org/0000-0002-1267-493X
https://orcid.org/0000-0001-8365-1092
https://orcid.org/0000-0002-9167-0661
https://orcid.org/0000-0002-9227-8549
https://orcid.org/0000-0003-3480-4851
https://orcid.org/0000-0003-0145-7136
https://orcid.org/0000-0001-8849-5228
https://orcid.org/0000-0003-4843-4441
https://orcid.org/0000-0002-5900-6541
https://orcid.org/0000-0003-4209-2495
https://orcid.org/0000-0002-8784-7540
https://orcid.org/0000-0002-9951-2975
https://orcid.org/0000-0002-9327-8030
https://orcid.org/0000-0003-0099-8299
https://orcid.org/0000-0002-1797-0762
https://orcid.org/0000-0001-6955-9572
https://orcid.org/0000-0002-4268-3482
https://orcid.org/0000-0003-4358-3739
https://orcid.org/0000-0002-0639-7067
https://orcid.org/0000-0002-3364-6380
https://orcid.org/0000-0003-2314-6128


Dinesh Rokaya, ailand
Sébastien Roth, France
Simo Saarakkala  , Finland
Mangal Sain  , Republic of Korea
Nadeem Sarwar, Pakistan
Emiliano Schena  , Italy
Prof. Asadullah Shaikh, Saudi Arabia
Jiann-Shing Shieh  , Taiwan
Tiago H. Silva  , Portugal
Sharan Srinivas  , USA
Kathiravan Srinivasan  , India
Neelakandan Subramani, India
Le Sun, China
Fabrizio Taffoni  , Italy
Jinshan Tang, USA
Ioannis G. Tollis, Greece
Ikram Ud Din, Pakistan
Sathishkumar V E  , Republic of Korea
Cesare F. Valenti  , Italy
Qiang Wang, China
Uche Wejinya, USA
Yuxiang Wu  , China
Ying Yang  , United Kingdom
Elisabetta Zanetti  , Italy
Haihong Zhang, Singapore
Ping Zhou  , USA

https://orcid.org/0000-0003-2850-5484
https://orcid.org/0000-0001-7298-7930
https://orcid.org/0000-0002-9696-1265
https://orcid.org/0000-0002-6407-5090
https://orcid.org/0000-0001-8520-603X
https://orcid.org/0000-0003-2066-8836
https://orcid.org/0000-0002-9352-0237
https://orcid.org/0000-0003-3215-1375
https://orcid.org/0000-0002-8271-2022
https://orcid.org/0000-0002-4961-2054
https://orcid.org/0000-0002-9041-4471
https://orcid.org/0000-0002-1362-6040
https://orcid.org/0000-0003-4121-6126
https://orcid.org/0000-0002-4394-2677


Contents

Tidal Volume Level Estimation Using Respiratory Sounds
Lurui Wang   and Zhongwei Jiang 

Research Article (12 pages), Article ID 4994668, Volume 2023 (2023)

MCFN: A Multichannel Fusion Network for Sleep Apnea Syndrome Detection
Xingfeng Lv  , Jinbao Li  , and Qianqian Ren 

Research Article (11 pages), Article ID 5287043, Volume 2023 (2023)

Atrial Fibrillation Detection with Low Signal-to-Noise Ratio Data Using Artificial Features and
Abstract Features
Zhe Bao  , Dong Li  , Shoufen Jiang  , Liting Zhang  , and Yatao Zhang 

Research Article (11 pages), Article ID 3269144, Volume 2023 (2023)

https://orcid.org/0000-0002-4701-9812
https://orcid.org/0000-0003-3772-4814
https://orcid.org/0000-0001-9435-2637
https://orcid.org/0000-0002-2432-8807
https://orcid.org/0000-0003-1171-7018
https://orcid.org/0000-0002-6830-2748
https://orcid.org/0000-0003-2294-577X
https://orcid.org/0000-0001-5655-5441
https://orcid.org/0000-0001-5175-1873
https://orcid.org/0000-0002-6152-0806


Research Article
Tidal Volume Level Estimation Using Respiratory Sounds

Lurui Wang and Zhongwei Jiang

Graduate School of Science and Engineering, Yamaguchi University, Yamaguchi, Japan

Correspondence should be addressed to Zhongwei Jiang; jiang@yamaguchi-u.ac.jp

Received 20 August 2022; Revised 19 October 2022; Accepted 24 November 2022; Published 16 February 2023

Academic Editor: Yatao Zhang

Copyright © 2023 Lurui Wang and Zhongwei Jiang. Tis is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in anymedium, provided the original work is
properly cited.

Respiratory sounds have been used as a noninvasive and convenient method to estimate respiratory fow and tidal volume.
However, current methods need calibration, making them difcult to use in a home environment. A respiratory sound analysis
method is proposed to estimate tidal volume levels during sleep qualitatively. Respiratory sounds are fltered and segmented into
one-minute clips, all clips are clustered into three categories: normal breathing/snoring/uncertain with agglomerative hierarchical
clustering (AHC). Formant parameters are extracted to classify snoring clips into simple snoring and obstructive snoring with the
K-means algorithm. For simple snoring clips, the tidal volume level is calculated based on snoring last time. For obstructive
snoring clips, the tidal volume level is calculated by the maximum breathing pause interval. Te performance of the proposed
method is evaluated on an open dataset, PSG-Audio, in which full-night polysomnography (PSG) and tracheal sound were
recorded simultaneously. Te calculated tidal volume levels are compared with the corresponding lowest nocturnal oxygen
saturation (LoO2) data. Experiments show that the proposed method calculates tidal volume levels with high accuracy and
robustness.

1. Introduction

Sleep quality and sleep time are both important for human
health. Sleep quality is the measurement of how restful and
restorative the sleep process proceeds. Enough sleep hours
do not necessarily guarantee to get the most restful type of
sleep. More than 80 sleep disorders are known to afect sleep
quality. Among all these factors that cause poor sleep quality,
sleep-related breathing disorders (SRBD) is the second one
of all sleep-related disorders (the frst one is insomnia) [1].
SRBD is the condition of abnormal and difcult respiration
during sleep, which has efects on the balance of oxygen and
carbon dioxide in the blood. Tidal volume is one of the
parameters for monitoring respiratory ventilation and
pulmonary function. Tidal volume is the amount of air that
moves in or out of the lungs with each respiratory cycle. Te
normal tidal volume is around 500mL in an average healthy
adult male and approximately 400mL in a healthy female.
Te tidal volume during sleep can be measured by many
methods, such as polysomnography (PSG) and inductance
plethysmography [2]. However, these methods are

expensive, require a specialized operation, and cause un-
comfortable sleeping. Terefore, there is a need for a non-
intrusive, easy-operating method that can be used in a home
environment. Te acoustic method is getting popular in
respiration monitoring as it only involves acquiring and
processing respiratory sound signals to estimate tidal vol-
ume.Te development of smartphones and wearable devices
also made it possible tomonitor respiration and tidal volume
during sleep. Monitoring respiratory quality using re-
spiratory sound is becoming a hotspot in recent years.

Many researchers have focused on analyzing the cor-
relation between respiratory sound and respiratory airfow
due to its potential for assessing snoring risk and estimating
tidal volume. Various models or algorithms are proposed to
estimate respiratory fow through respiratory sounds.
Gavriely and Cugell proposed that the breath-sound am-
plitude (BAS) and fow (F) generally follow a 1.75-power
relationship [3]. Yap and Moussavi proposed a method to
use average power and an exponential model to estimate
respiratory fow through tracheal sound, which reached an
estimation error of 5.8± 3.0% [4]. Reljin et al. used the
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blanket fractal dimension (BFD) as the parameter for esti-
mating the tidal volume from tracheal sounds recorded by
an Android smartphone, the smallest normalized root-
mean-squared error of 15.877%± 9.246% was obtained with
the BFD and exponential model [5]. Yadollahi andMoussavi
extracted the average power, the logarithm of the variance,
and the logarithm of the envelope of tracheal sound as
a feature, they compared the ability of these features to ft the
fow-sound relationship, suggesting that the logarithm of the
variance is the best feature to describe the fow-sound re-
lationship with a linear model [6]. Other studies indicated
that the Shannon entropy and sound variance also have an
exponential relationship with the respiratory fow [7, 8].
Most of these papers indicate that the fow rate and re-
spiratory sound amplitude follow a power law. Tis re-
lationship used to estimate the respiratory fow rate can be
presented in the following equation:

logFest � C1log(E) + C2. (1)

Fest is the estimated fow rate (L/min), E is the re-
spiratory sound amplitude, and C1 and C2 are the co-
efcients. C1 and C2 are determined by the human upper
airway structure and can be calculated via a few breaths
with a known fow rate for each participant, this pro-
cedure is called calibration. Current methods require
calibration to determine the model coefcients C1 and C2.
Yadollahi and Moussavi found that the parameters of the
fow-sound relationship during sleep and wakefulness are
diferent [9]. Terefore, for monitoring the tidal volume
during sleep, the model parameters should be calibrated
with sleep respiratory sounds.

However, these methods mentioned above are only
applied to normal respiration, and calibration is needed for
each case. Furthermore, these methods had not worked well
for respiration during snoring. During snoring, the sound
amplitude is higher than normal breathing, on contrary, the
respiratory airfow is lower than normal breathing.Temain
reason is that the upper airway is usually collapsed or
obstructed, and is highly variable during snoring. Respira-
tion monitoring during snoring is important as it greatly
afects sleep quality. During snoring, the upper airway is
partially or completely blocked, and the respiratory airfow is
limited or vanishes. Snoring usually leads to intermittent
hypoxemia (IH), hypercapnia, arousal, hypertension, and
sleep fragmentation. In this paper, a qualitative tidal volume
estimation by a respiratory sound signal is proposed. It only
used respiratory sound for analysis and does not need
calibration. Terefore, the respiratory sound data could be
easily collected by recording equipment and could be used in
a home environment.

Te proposed method consists of 4 main steps. First, the
respiratory sounds are preprocessed into clips. Second, all
clips are clustered into the normal breathing/snoring/un-
certain categories with agglomerative hierarchical clustering
(AHC). Tird, the snoring clips are classifed into simple
snoring and apneic snoring with the K-means algorithm
based on formant parameters and time domain parameters.
Finally, the maximum breathing pause interval (MBPI) is

calculated for apneic snoring clips to set the tidal volume to
a medium or low level. Te last time is calculated for simple
snoring to set the tidal volume to a high- or medium-level.
All the predictions are compared with LoO2 (lowest noc-
turnal oxygen saturation) to evaluate the performance. All
steps are unsupervised and do not need any calibration. Te
fow of the proposed method is shown in Figure 1.

2. Materials and Methods

Te tracheal sounds are extracted from the PSG-Audio
dataset. Te dataset comprises 212 polysomnograms along
with synchronized tracheal sound. Te dataset contains edf
fles comprising polysomnogram signals and rml fles
containing all annotations by the medical team [10]. Te edf
fles contain 20 channels, the SpO2 (blood oxygen saturation
level, in channel 15) and tracheal sound (in channel 19) data
are extracted from the edf fles for analysis. Te SpO2
measures the amount of oxygen in the blood. Te corre-
sponding respiratory events (obstructive apnea/mixed ap-
nea/hypopnea) are extracted from the rml fles. Te
sampling frequency of SpO2 and tracheal sound is 1Hz and
48000Hz, respectively. A fve minutes data clip is shown in
Figure 2.

2.1. Agglomerative Hierarchical Clustering

2.1.1. Processing. Te frst step of preprocessing is fltering and
denoising. As the respiratory sound energy of healthy people is
usually concentrated in the low-frequency range of [50, 2500]
Hz, a 50–2500Hz Butterworth bandpass flter is used to flter
noise. Te sampling rate of recording fles is downsampled to
5000Hz.Te second step of preprocessing is segmentation.Te
duration of the clip length is settled by considering the micro
and the macro aspect. One clip should be short enough to
separate each breathing stage; therefore, the audio signal in one
clip is stable.Te length of the clip is better to be cut with 5 to 10
breath periods for analysis.Te usual breath period during sleep
is 3 to 6 seconds. Te length of 30 seconds to 60 seconds is
considerable. Furthermore, considering the time of apnea in
a serious case, it usually takes more than 30 seconds. In this
paper, the length of segmentation is set at 60 seconds.

2.1.2. Feature Extraction. According to research about the
human hearing mechanism, the human ear has diferent
hearing sensitivity to sound waves of diferent frequencies.
Te human ear has a higher resolution of low-frequency
sounds than high-frequency sounds. Te Mel scale is
a mapping from the human auditory perceived frequency to
the actual frequency of the sound. By converting the fre-
quencies to the Mel scale, features can better match the
human auditory perception [6]. Te Mel scale describes the
nonlinear characteristics of the human ear frequency, and its
relationship with frequency can be approximated by the
following equation.

Mel(f) � 2595∗ log10
f

700
+ 1􏼠 􏼡, (2)
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f is the frequency in Hertz.
Te Mel-scale Frequency Cepstral Coefcients (MFCC) is

a cepstral parameter extracted in the Mel-scale frequency
domain [11]. MFCC were extracted from each clip fle as the
feature. Te MFCC extraction algorithm usually includes
windowing the signal into frames, and applying the fast Fourier
transform (FFT) on frames to get the short-time Fourier
transform spectrum (STFT). Ten, the STFT spectrum was
fltered withMel-flter banks to get theMel-spectrum, theMel-
spectrum was transformed into Mel-frequency cepstrum by
taking the logarithm and then followed by applying the discrete
cosine transform (DCT) to get MFCC coefcients. Te MFCC

feature vector describes the power spectral envelope of a single
frame. Figure 3 shows the waveform, the Mel-spectrum, and
the MFCC of a snoring sound clip with a duration of
60 seconds.

2.1.3. Similarity Calculation. Te MFCC of each clip is
a two-dimensional matrix, each column presents for a frame,
and each row in the matrix corresponds to the Mel-
frequency cepstral coefcients for the corresponding
frame. As the respiratory sound signal is quasiperiodic, the
MFCC matrix can be averaged by each row to get a one-
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Figure 1: Te fow of the proposed method.
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Figure 2: Data extracted from PSG-audio: (a) SpO2; (b) Tracheal sound; (c) Respiratory events.
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dimension vector. As a vector can be presented as a point in
a high-dimension space by its Cartesian coordinates, the
MFCC matrix can be presented as points in a high-
dimension space. Te distance between the two clips can
be measured by the distance between these two points. Based
on our experiences, the Euclidean distance gave the most
satisfying cluster result. Te Euclidean distance between two
points in Euclidean space is the length of a line segment
between the two points. In general, if p and q are two points
in n-dimensional Euclidean space, then the distance between
them can be calculated by the following equation:

d(p, q) �

���������������������������������

p1 − q1( 􏼁
2

+ p2 − q1( 􏼁
2

+ · · · + pn − qn( 􏼁
2

􏽱

.

(3)

2.1.4. Agglomerative Hierarchical Clustering. Hierarchical
clustering is a method of cluster analysis that can discover the
structure of the dataset in an unsupervised way. It seeks it-
erativelymerging nodes into bigger clusters (agglomerative), or
divisive clustering nodes in the inverse (divisive) to build
a hierarchy of all data. Agglomerative hierarchical clustering
(AHC) is the most common type of hierarchical clustering [12,
13]. Pairs of clusters are successively merged until all clusters
have been merged into one big cluster that contains all objects.
At each iteration, two nodes or clusters, which have the
minimum distance are merged. Te result is a tree-based
representation of all the objects, named a dendrogram. Te
number of clusters needs to be set before the algorithm begins.

A 120minutes length fle (2 hours) was selected from
all the data and segmented into 60 seconds length clips for
demonstration; therefore, 120 clips were used in the
experiments. Te STFT spectrum window length is
1000 ms with an overlap of 500 ms. Te 40 Mel-scale
flters were set in MFCC extraction. Te distance ma-
trix size is a symmetry matrix with a size of (120, 120). Te
dendrogram of the clustering result is shown in Figure 4.
Based on the structure of the dendrogram, the dendro-
gram was divided into 3 clusters. Cluster 1, cluster 2, and
cluster 3 are presented with cyan, magenta, and yellow,
respectively. Te dendrogram is shown in Figure 4, and
the dendrogram is truncated for showing the main
structure for the better visualization efect. Te properties
of each cluster are listed in Table 1.

One clip was chosen from each cluster as an example
for analysis. Te waveform and Mel-spectrum of exam-
ples present for each example are shown in Figure 5.
Figure 5(a) is a spectrum of snoring. Te snoring sounds
are almost the same in amplitude and evenly spaced, the
pitch of the snoring sound is in the low-frequency range
and corresponds to a fundamental frequency with as-
sociated harmonics, and inspiratory is louder than ex-
piratory. Figure 5(b) is a spectrum of normal respiration.
It is characterized by a broader spectrum and is audible
both during the inspiratory and expiratory phases.
Figure 5(c) is a spectrum of uncertain types. Te signal is
very weak, and its spectrum has almost equal energy at
frequencies below 2000 Hz. It is mixed with the weak
breath, but the signal level is insufcient for analysis.
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Figure 3: Spectrum of a snoring sound clip. (a) Te waveform; (b) the Mel-spectrum; (c) MFCC.
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2.2. Snoring Classifcation Based on K-Means Algorithm.
Snoring occurs when the upper airways collapse, air moves
around the foppy tissue near the back of the throat, and causes
the tissue to vibrate. Simple snoring (also called benign snoring)
occurswhen there is a partial collapse of the soft tissues. As such,
simple snoring is generally not considered a health threat.
Apneic Snoring (also called obstructive sleep apnea-related
snoring) is caused by partial or complete obstruction of the
airway, and apneic snoring causes a partial or complete airfow
stop, resulting in little or no oxygen going to the blood [14, 15].
For the apneic snoring, at the end of the obstruction, the closed
upper airway is suddenly opened, and the pressures of the upper
and lower airfows are suddenly balanced, causing the upper
airway to repeat multiple openings and closings in a short
period, producing a popping sound. Te collapse degree and
resistance of the upper airway may vary greatly from the be-
ginning to the end of inspiration, thus, afecting the vibration of
the upper airway tissue [16]. Te snoring sounds in patients
with obstructive sleep apnea and with simple snoring have
diferent characteristics and efects on breath quality. It is es-
sential to discriminate between these two diferent types of
snoring for evaluating the infuence on tidal volume.

Formant frequencies represent the resonance frequen-
cies of the airways and change with the upper airway
anatomy. A formant is the broad spectral maximum pro-
duced by an acoustic resonance of the human vocal tract
[17]. Formants represent the direct source of pronunciation
information, and the extraction and trajectory tracking of

formants play an important role in speech recognition and
speech synthesis. Te formants F1–F3 are the three lowest
resonant frequencies of the vocal tract. F1 is associated with
the degree of pharyngeal constriction and the height of the
tongue. F2 refects the degree of the tongue’s relative ad-
vancement position to its neutral position. F3 is related to
the degree of lip rounding. Among F1–F3, F1 carries more
information than others as it is associated with severity of
apnea. Like speech pronunciation, snoring sounds are also
produced depending on the shape and physical conditions of
the upper airway, the formant of snoring can be extracted as
a snoring feature [18]. Ng et al. proposed that apneic snoring
has a high formant frequency than simple snoring in F1, and
a threshold value of F1� 470Hz can be used to distinguish
apneic snoring from simple snoring [19]. Sola Soler et al.
suggested that the formant standard deviation of OSA
snoring is higher than simple snoring [20].

Tese studies used the formant parameters to distinguish
simple snoring from apneic snoring, and all emphasized the
decisive role of F1. However, some cases may be misjudged
by these methods. Te reason is that the diference between
the speech formant and the snoring formant is not con-
sidered. Te most important formant analysis in speech
processing is the formant tracks. Te spacing between the
word formant is not taken into consideration in speech
processing. On the contrary, in applications such as speech
recognition, the efect of spacing needs to be eliminated.Te
frequently used methods are dynamic time warping (DWT).
By locally scaling the speech sequence, DWT eliminates the
infuence of speech rate and word spacing, so that the
morphology of the two speech sequences is as consistent as
possible, and the maximum possible similarity is obtained.
But in snoring recognition, the interval between breathing is
an important parameter as it is associated with airfow re-
duction time, and the interval of apneic snoring is usually
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Table 1: Characteristics of each cluster.

Cluster no Property Clip number
1 Snoring 94
2 Normal respiratory 12
3 Uncertain 14
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larger and more irregular than simple snoring. To solve this
problem, this paper extracted the standard deviation of the
formant interval, together with the standard deviation of the
formant frequencies as parameters, and used the K-means
algorithm to discriminate between simple snoring and ob-
structive snoring by unsupervised clustering. K-means
clustering is an unsupervised learning algorithm, it
groups the unlabeled dataset into diferent clusters [21]. K
defnes the number of predefned clusters that need to be
created in the process, here the K is set as 2.

Te linear predictive analysis (LPC) method is one of the
fast and more efective formant frequency estimation
methods. Te system function of the human vocal tract can
be uniquely determined by a set of linear prediction co-
efcients, so the efect of vocal tract modulation can be
estimated through LPC analysis. Te formant of snoring can
be obtained. Te sound signals were windowed with
a Hamming window of 20ms with 50% overlap. In each
window, a 14th-order LPC analysis is performed, and the
LPC parameters were calculated via the Yule–Walker
autoregressive method with the Levinson–Drubin recursive
procedure. Te standard deviation of F1 frequencies and the
standard deviation of F1 interval are extracted to form a 2-
dimensional feature vector. Te snoring cluster result is
shown in Figure 6. Te apneic snoring and simple snoring
are marked with red and cyan dots, respectively. After K-
means clustering, the snoring cluster result of AHC is di-
vided into 2 subclusters: cluster 0 and cluster 1.Te property
of all 4 clusters is shown in Table 2. Te spectrum of the
example clip chosen from cluster 0 and cluster 1 is shown in
Figure 7, the formant is displayed with black dots on the
spectrum.

2.3. Tidal Volume Level Estimation. For each cluster, dif-
ferent parameters are extracted and the corresponding tidal
volume levels are determined based on these parameters.
Te tidal volume levels are divided into three grades: high,
medium, and low. Te tidal volume level is calculated for
each cluster.

Cluster 2 contains the normal breathing clips, although
there are fuctuations during normal respiration, the tidal
volume levels of normal breathing can roughly be set as high.

Cluster 1 contains simple snoring. According to Hof-
stein’s research, simple snoring does not cause a sustained
deterioration of MnO2 (mean nocturnal oxygen saturation)
but cause signifcantly the variability of LoO2 (lowest noc-
turnal oxygen saturation) [22]. Based on this research, the
tidal volume level during simple snoring beginning is similar
to normal respiration, but after a certain duration, the
fuctuation of nocturnal oxygen saturation increases and
deteriorates ventilation quality at a moderate level. Although
the accurate SpO2 drop time is not clear, according to the
research by Gruber, the interval to equilibration of oxygen
saturation is within 4.5minutes [23]. Terefore, the SpO2
drop threshold is set at 4minutes, meaning that when the
normal breathing ends and simple snoring starts, after
approximately 4minutes, the SpO2 drops to a medium level
with high probability.

Cluster 0 contains apneic snoring. Te breathing pause
lasts longer than normal breathing during apnea. Based on
the research by Ma et al., nocturnal hypoxemia severity is
proportional to the pause time [24]. To evaluate the severity
of hypoxemia, the maximum breathing pause interval
(MBPI) is calculated as a parameter. According to the apnea
defnition, the threshold to distinguish the low/medium
grade of apneic snoring is set to 10 seconds. Te criterion for
tidal volume level estimation is listed in Table 3.

3. Results and Discussion

Te SpO2 is a reading that shows the amount of oxygen
available in human blood to deliver to the heart, brain,
lungs, and other muscles and organs. Te LoO2 (lowest
nocturnal oxygen saturation) is the lowest SpO2 value
during a certain time and has a high correlation with tidal
volume. Te LoO2 is divided into 3 levels: large than 95%
is considered a high level, less than 90% is considered low
(hypoxemia), and between 95% and 90% is considered
medium (mild) hypoxemia. Te summarized results are
shown in Figure 8. Te frst row is the clustering result,
the x-axis represents the clip index, and each clip is
60 seconds in length. Each clip is classifed into apneic
snoring/simple snoring/breathing/uncertain types. Te
second row is the tidal volume level calculated by the
proposed algorithm. Te third row is the LoO2, which is
divided into high/medium/low levels, and the uncertain
level corresponds to the uncertain clustering type. Te
fourth row is the SpO2 level that is used to calculate the
third row.

Six clips were selected as representatives, which are
shown in Figure 9. Figure 9(a) is a normal respiration state at
the 13th minute, the corresponding SpO2 is stable and LoO2
is above 95%. Figure 9(b) is apneic snoring with MBPI≤ 10
at the 19th minute, the SpO2 fuctuates, and LoO2 is between
95% and 90%. Figure 9(c) is apneic snoring with MBPI> 10
at the 20th minute, the SpO2 fuctuates dramatically, and
LoO2 is below 90%. Figure 9(d) is simple snoring at the 16th
minute, the SpO2 is at a high level as in (a). Figure 9(e) is
simple snoring at the 43th minute, the SpO2 drops slightly,
and the LoO2 drops to between 95% and 90%. Figure 9(f ) is
an uncertain case by which the signal is insufcient to
calculate the SpO2 level.

Te accuracy is calculated by equation (4). Six patients
with diferent apean-hypopnea index (AHI) were selected to
test the efectiveness and robustness of the proposed
method. AHI is defned as the number of apnea or hypopnea
per hour during sleep. It is used as a parameter for the
evaluation of the OSA severity. AHI less than 15 is con-
sidered mild apnea. AHI between 15 and 30 denotes
moderate apnea, while a greater than 30 is considered severe.
Te characteristic of selected data and algorithm perfor-
mance are shown in Table 4.Te algorithm accuracy is 88.3%
in the group with mild apnea. As for the moderate apnea
group, the algorithm accuracy slightly drops to 85.8%. In the
severe apnea group where the sound signal contains ambient
noise, the algorithm accuracy is still above 83%.
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Table 2: Characteristics of after SS/AS classifcation.

Cluster no Property Clip number
0 Apneic snoring (AS) 29
1 Simple snoring (SS) 65
2 Normal respiration 12
3 Uncertain 14
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Table 3: Te criterion for tidal volume calculation.

Cluster no Property Criterion Breathing quality

0 Apneic snoring MBPI≤ 10 second Medium
MBPI> 10 second Low

1 Simple snoring Last time< 4minutes High
Last time≥ 4minutes Medium

2 Normal respiration All High
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Figure 9: Te representative state in prediction result. (a) Normal respiration; (b) apneic snoring with MBPI≤ 10; (c) apneic snoring with
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Accuracy �
correct prediction number

total number − uncertain number
. (4)

4. Conclusion

In this study, a tidal volume level predictionmethod is proposed
based on unsupervised clustering and snoring parameters. Tis
method can provide a coarse-grained tidal volume level esti-
mation that does not need any calibration. In addition, this
method can be used for sleep breathing monitoring in a home
environment. However, the accuracy of the method in this
study is not very well because noise such as ambient noise will
cause misjudgement, also breathing during sleep is afected by
many other factors such as sleep position, pulmonary disease,
and body movement, these factors cannot be captured by
breathing sound. We are going to improve the performance by
incorporating other factors in the future.
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Sleep apnea syndrome (SAS) is the most common sleep disorder which afects human life and health. Many researchers use deep
learning methods to automatically learn the features of physiological signals. However, these methods ignore the diferent efects
of multichannel features from various physiological signals. To solve this problem, we propose a multichannel fusion network
(MCFN), which learns the multilevel features through a convolution neural network on diferent respiratory signals and then
reconstructs the relationship between feature channels with an attention mechanism. MCFN efectively fuses the multichannel
features to improve the SAS detection performance. We conducted experiments on the Multi-Ethnic Study of Atherosclerosis
(MESA) dataset, consisting of 2056 subjects. Te experiment results show that our proposed network achieves an overall accuracy
of 87.3%, which is better than other SAS detection methods and can better assist sleep experts in diagnosing sleep disorders.

1. Introduction

Sleep apnea syndrome (SAS) is a common sleep-breathing
disorder characterized by repetitive events of complete or
partial cessation of breathing during sleep [1]. SAS often
occurs in men and women aged 30 to 60 years or older [2].
Te main symptoms of SAS are daytime sleepiness, tired-
ness, inattention, and so on. Most SAS patients are undi-
agnosed and untreated which may lead to health problems
such as heart and brain diseases [3–6].

SAS includes two important sleep events: obstructive
sleep apnea (OSA) and hypopnea. According to an Amer-
ican Academy of Sleep Medicine (AASM) manual [7], OSA
is scored when there is a 90% or more reduction in the
prevent baseline of the airfow amplitude. However, there is
a continued respiratory efort in the thoracic and abdominal
belts. Hypopnea is scored when there is a 30% or more
reduction in the preevent baseline of the airfow and 3% or
more signifcant oxygen desaturation from the preevent
baseline. Every OSA and hypopnea event lasts longer than

10 s. Normal sleep is scored when there is no OSA and
hypopnea event or their duration time is less than 10 s.

Diagnosing SAS traditionally uses polysomnography
(PSG), which is the gold standard. PSG can measure several
signals, such as respiratory, electrocardiography (ECG),
blood oxygen saturation, electroencephalography (EEG),
and body movement signals. However, it is expensive and
inconvenient because the patients need to attach a variety of
sensors to their bodies. Moreover, it is time-consuming due
to the manual analysis of signals. Terefore, it is necessary to
propose alternative methods to automatic SAS detection
using fewer physiological signals.

Various physiological signals have been used to detect
sleep events [8–10]. Among these signals, respiratory signals
can directly refect the breathing situation during sleep [11].
Te respiratory signal can be measured directly from the
airfow sensor and thoracic and abdominal belts. Some
methods have been used for SAS detection, such as
threshold, support vector machine (SVM), logical regression
(LR), and k nearest-neighbor (k-NN) [12–16]. Tese
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methods extracted the time domain, frequency domain, and
other nonlinear features from physiological signals. How-
ever, manual feature extraction is difcult to perform in
noisy signals and requires domain knowledge.

Deep learning networks are alternatives as they can
learn informative features without prior domain knowl-
edge. Many researchers use long- and short-term memory
(LSTM) and convolutional neural networks (CNNs) to
classify physiological signals [17–32]. In particular, CNN is
a popular class of deep learning networks that can auto-
matically learn and fnd features from physiological signals.
Haidar et al. [22] have demonstrated the efcacy of CNN
models in classifying apnea or hypopnea events using
airfow respiratory signals, with an accuracy of 77.6%.
When a wavelet spectrogram of airfow respiratory signals
input the network, the accuracy was 79.8%. If we use ab-
dominal and thoracic respiratory signals simultaneously,
the performance can reach 83.5% [23]. Urtnasan et al. [24]
proposed a method for automated OSA detection from a
single-lead ECG using CNN. Choi et al. [25] used CNN and
a single-channel nasal pressure signal to detect the real-
time apnea-hypopnea event. Nasal pressure signals were
adaptively normalized and segmented by sliding a 10 s
window at 1 s intervals. Many researchers use the LSTM
model for SAS detection to learn the temporal features of
sleep events. Van Steenkiste et al. [26] used LSTM to detect
sleep apnea from raw respiratory signals, obtaining 77.2%
accuracy. Elmoaqet et al. [27] used LSTM and bidirectional
long-short-term memory (Bi-LSTM) to detect three sleep
events and got an average accuracy of 83.6%. Yu et al. [32]
proposed a method of sleep staging based on EEG signals
combined with sleep apnea-hypopnea syndrome classif-
cation, which signifcantly reduced the rate of false posi-
tives that appear in the waking period. Te data
preprocessed by the sliding window were manipulated by
LSTM and CNN to identify distinct various sleep events.
Although these networks can automatically extract and
learn deep-level features from physiological signals, there
are still some shortcomings. First, they only focus on
extracting deep features, ignoring the efect of shallow
features, which can provide rich information for sleep
events. Our initial conference paper solved this problem
using a multilevel feature fusion network in [33]. Second,
these networks did not consider the impact of channel
features obtained by diferent respiratory signals. Some
channel features can clearly distinguish sleep events, while
others have little efect on SAS detection. We propose a
multichannel fusion network (MCFN) to address this
problem. MCFN efectively utilizes the shallow features of
respiratory signals and fuses the multichannel features by
an attention mechanism. We design a multichannel fusion
block to calibrate the feature channel of various respiratory
signals adaptively. Since the signifcance of each respiratory
signal feature channel is diferent, this block can auto-
matically obtain the importance of each feature channel,
selectively enhance the useful channel feature, and restrain
the useless ones. We evaluate our proposed network on a
publicly available dataset with 2056 subjects. Te MCFN
can achieve an overall accuracy of 87.3%.

2. Material and Methods

MCFN can efectively fuse the features of diferent levels and
channels. Tis network mainly includes signal preprocess-
ing, multilevel feature concatenation, and multichannel
attention fusion. We show the framework in Figure 1. First,
we segment the various respiratory signals into a series of the
30 s length of epochs. Te preprocessing block standardizes
the respiratory signals, and each epoch is labeled as an event
of OSA, hypopnea, and normal sleep according to the AASM
guidelines. Second, the multilevel feature concatenation
block obtains abundant features from shallow and deep
layers through skip connections. Shallow features also
contain some valuable identifcation information. Tird, the
multichannel fusion block uses an attention mechanism to
learn diferent weights. Te channel features that signif-
cantly afect SAS detection can obtain larger weights; oth-
erwise, they get smaller weights. Finally, the feature vectors
are input into two convolution layers and the max-pooling
layer. Te sleep classifcation is performed in the fully
connected layer by sigmoid activation functions. In the
following subsections, we detail the main block of this
network.

2.1. Dataset. We conducted our experiments on a large
dataset called the Multi-Ethnic Study of Atherosclerosis
(MESA) [28, 29].Tis dataset is retrieved from the National
Sleep Research Resource (NSRR). NSRR is a new National
Heart, Lung, and Blood Institute resource designed to
provide extensive data resources to the sleep research
community. MESA contains PSG recordings of 2056
subjects. Te subjects, aged 45 to 84, come from diferent
ethnic groups, including black, white, Hispanic, and
Chinese men and women. Each PSG recording included
various physiological signals such as EEG, respiration
signals, and ECG. Our network only used three types of
respiratory signals extracted from nasal thermal sensors
and conductive belts around the thorax and abdomen. Te
sampling frequency of these signals is 32Hz. Sleep experts
labeled the start time and duration time of OSA and
hypopnea events.

2.2. Data Preprocessing. In our network, three types of re-
spiratory signals need to be preprocessed. First, we delete
some subjects from the dataset which only contain normal
sleep events. Second, due to diferent detection environ-
ments and equipment, the amplitude of each respiratory
signal is very diferent. Terefore, the respiratory signal is
individually standardized by subtracting the mean and di-
viding it by the standard deviation. Finally, according to the
time of each sleep event, each 30 s epoch was labeled as OSA,
hypopnea, or normal sleep event. If the epoch contains only
obstructive sleep apnea or hypopnea lasting more than 10
seconds, it is labeled OSA or hypopnea. We excluded the
epoch with obstructive sleep apnea and hypopnea events
lasting more than 10 seconds. If an epoch contains ob-
structive sleep apnea or hypopnea events lasting less than 10
seconds, it is labeled as normal sleep.
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We also need to consider the balance classifcation of
sleep events in preprocessing blocks. Typically, sleep events
such as normal sleep are more thanOSA or hypopnea.When
learning a detection network with imbalanced classes, the
result detects the most frequent sleep events. One way to
address this issue is to employ balanced sampling. We
randomly select the same number from the majority sleep
event as the minority sleep event and then feed the network
with batches of data that contain as many epochs from each
sleep event.

2.3. Multilevel Feature Concatenation Block. A simple CNN
architecture has been used for SAS detection [23, 33]. It was
composed of convolution, pooling, and classifcation layers.
Te convolution layer extracts a feature map by applying a
flter to the input respiratory signal. Te pooling layer makes
the feature more distinct and reduces the amount of data.
Te convolution layer can flter out some high-frequency
information and make the signal smoother. In Figure 2, the
partial feature map of the airfow respiratory signal after four
convolution layers is shown. We fnd that with the increase
of convolution layers, the receptive feld of features becomes
larger, and more high-frequency information is fltered.
Although some networks use deep-level features to detect
SAS, some high-frequency features are lost. Multilevel
feature concatenation is realized through fve skip con-
nections to keep more high-frequency features in the
network.

Te multilevel feature concatenation block includes four
convolution layers, two pooling layers, fve skip connections,
and one concatenation. We detail the parameters of diferent
layers, which are summarized in Table 1. Each convolution

layer has 32 flters with a rectifed linear unit activation
function, and each max-pooling layer has a pool size of (1, 2)
with two strides. Te convolutional kernel size is (1, 3) with
three strides or (1, 2) with two strides. Following each
convolution and pooling layer, the features of this level are
obtained by average pooling to down-sampling. Ten, these
features are concatenated to generate multilevel feature
maps. Tese features include shallow and deep features and
provide more basic information.Tey can improve detection
performance.

2.4. Multichannel Attention Fusion Block. Diferent respi-
ratory signals such as airfow, thoracic, and abdominal have
additional predictive power for SAS detection [27]. We fuse
the multichannel features with an attention mechanism to
fully use multilevel features from three types of respiratory
signals. Tis block adaptively recalibrates channel-wise
feature responses by explicitly modeling interdependencies
between channels. It can learn to emphasize informative
features and restrain less useful ones selectively.

As shown in Figure 1, we obtain the C×W×H features
through the multilevel feature concatenation block, where C
is the number of channels, and each channel containsW×H
features. Each respiratory signal has 192 channels, and each
channel includes 1× 7 features. Te features of each respi-
ratory signal are concatenated to obtain 576 channel fea-
tures, which are the input of the multichannel attention
fusion block. We recalibrate the multichannel features as
follows.

First, the Fsq ( ) operation compresses the features along
the spatial dimension, turning each two-dimensional feature
channel into an actual number. Te global average pooling
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(b) Thoracic respiratory signal

(c) Abdominal respiratory signal
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Figure 1: Overall framework of MCFN for SAS detection.
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completes this operation to make the actual number have a
global receptive feld. Te output dimension is the same as
the number of input channels. Fsq (μc) is calculated as
follows:

zc � Fsq μc( 􏼁 �
1

H × W
􏽘

H

i�1
􏽘

W

j�1
μc(i, j), (1)

where μc represents the feature map of the c-th channel
feature map and i and j represent the row and column of the
feature map, respectively.

Second, the Fex ( ) operation is similar to the gate
mechanism in the recurrent neural network (RNN). Tis
operation can learn a nonlinear interaction between chan-
nels, and it can learn a nonmutually exclusive relationship.
Te operation is completed by two fully connected layers
(FC). Fex (z, W) is calculated as follows:

s � Fex(z, W) � σ W2δ W1, z( 􏼁( 􏼁, (2)

where δ refers to the ReLU function and the parameter W1
multiplied by Z is the frst FC layer. To limit model com-
plexity and aid generalization, dimensions are reduced

according to c/16 × c. A dimensionality-increasing layer
returns to the channel dimension of the transformation
output.

Xc � Fre uc, sc( 􏼁 � uc · sc. (3)

Finally, the Fre ( ) operation regards the output weight of
the excitation as the importance of each feature channel.
Ten, the original feature is recalibrated on the channel
dimension by weighting the previous feature by channel. Fre
(μc, sc) is calculated.where sc indicates the importance of the
feature channel, and μc represents the featuremap of channel
C.

After recalibration, there are 576 channel feature maps.
Te size of each feature map is 1× 7. After two convolutions
and one pooling operation, the convolution kernel sizes are
(1, 3) and (1, 2), and the strides are 3 and 2, respectively. Te
max-pooling size is (1, 2), and the stride is 2. Finally, the
fatten operation obtains the 576 features. Ten, two fully
connected layers and the sigmoid function output the
probability of each sleep event. According to the probability
value, this block outputs the sleep events.
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Figure 2: Feature maps of diferent convolution layers. (a) Airfow respiratory signal of OSA. (b) Feature map of the frst convolution layer.
(c) Feature map of the second convolution layer. (d) Feature map of the third convolution layer. (e) Feature map of the fourth convolution
layer.

Table 1: Parameters in multilevel feature fusion block.

Layer Size Stride #Filter Activation Dropout
Conv1 (1, 3) 3 32 ReLU ( ) 0.2
Conv2 (1, 2) 2 32 ReLU ( ) 0.2
Pooling (1, 2) 2 32 — —
Conv3 (1, 3) 3 32 ReLU ( ) 0.2
Conv4 (1,2) 2 32 ReLU ( ) 0.2
Pooling (1, 2) 2 32 — —
Concat — — 192 — —
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2.5. Performance Evaluation. We evaluate and compare the
performance of diferent methods using classifcation ac-
curacy, sensitivity (recall), specifcity, precision, and F1
score. Tey are defned as follows:

Accuracy �
TP + TN

TP + TN + FN + FP
× 100%,

Specif icity �
TN

TN + FP
× 100%,

Precision �
TP

TP + FP
× 100%,

Sensitivity(Recall) �
TP

TP + FN
× 100%,

F1 �
Precision∗Recall
Precision + Recall

× 100%,

(4)

where TP, FP, TN, and FN represent the number of true
positive, false positive, true negative, and false negative
epochs. Te proportion of the correctly identifed epochs is
measured by sensitivity. Specifcity refects the detection
efect of negative samples.

Te confusion matrix also is used. Each row of the
confusion matrix represents the epoch in actual labels, while
each column represents the epoch in the predicted labels.
We also standardized the confusionmatrix by rows to obtain
diferent probabilities. We use colors with diferent shades to
represent the probability. Te darker the color, the greater
the probability, vise versa.

3. Experimental Results

Tis section presents the experimental setup and several ex-
perimental results designed to demonstrate the role of each
block. First, we showed the classifcation results of the MCFN
model, which proves that the model has better performance.
Second, we confrmed the efect of diferent respiratory signals
on diferent sleep event detections. Tey complement each
other in the SAS detection. Tird, we demonstrated the ad-
vantages of the multilevel feature concatenation block. Finally,
we confrmed that the attention mechanism efectively fuses
the multichannel features to improve performance.

3.1. Experimental Setup. Te proposed network was trained
and tested on the MESA dataset. After preprocessing, we
selected 1801 subjects from 2506 subjects. Tey included the
54517 OSA events, 209910 hypopnea events, and 2019760
normal sleep events. Te training and test set consisted of a
balanced number for each sleep event to prevent the model
from overftting to the majority number of the class. We
randomly selected 54517 sleep events from each sleep
classifcation and mitigated the class imbalance issue. Te
experiment chose 80% of the sleep events as the training set
and 20% as the testing set.

Te training and testing are conducted based on the
TensorFlow framework of Python 3.6. Te experiments used
the graphics card NVIDIA GTX 2080Ti GPU. Te proposed

network adopted the Adam optimization method and cross-
entropy as the loss function.Te initial learning rate is 1e− 3,
and the learning rate is 1e− 4 after 40 iterations. Te size of
the mini-batch is 400 sleep events. Te network had training
of 100 epochs.

3.2. SASDetection Performance ofMCFN. TeMCFNmodel
detects sleep events using three respiratory signals of the
chest, abdomen, and nasal airfow on the MESA dataset. Te
average accuracy is 87.3%, and the average F1 score is 87.3%.
Table 2 presents the detection performance of the model. We
found that the performance indexes of OSA sleep event
detection are the highest, recall can reach 93.7%, the F1 score
is 93.5%, and precision is 93.3%, indicating that the MCFN
model can achieve good performance in detecting OSA
events. Tere is a contradiction between the precision and
recall of normal sleep and hypopnea events, which the F1
score can measure. Te F1 scores of the two events are very
similar, with a diference of only 0.8%, indicating that the
performance of the MCFN model in detecting these two
events is the same. From the confusionmatrix, we found that
there are some misclassifcations between normal sleep and
hypopnea events, mainly because sometimes the waveforms
of the two events are very similar, but there are diferences in
amplitude.TeMCFNmodel can achieve good performance
in detecting OSA events. Te main reason is that the
waveform of the respiratory signal of OSA events is very
diferent from that of other events.

3.3. Te Efects of Tree Respiratory Signals. We used sen-
sitivity and specifcity to measure the efect of diferent
respiratory signals on various sleep events. Te sensitivity
measures the proportion of correctly identifed positives,
such as the percentage of OSA events correctly identifed as
having the event. Te specifcity measures the proportion of
correctly identifed negatives, such as the percentage of not
OSA correctly identifed as not having the event.

We show the sensitivity of airfow (Flow), thoracic
respiratory signal (Tor.), and abdominal respiratory signal
(Abdo.) in Figure 3. Te sensitivity of abdominal respi-
ration signal in detecting OSA and hypopnea sleep events is
81.39% and 73.05%, respectively. Te sensitivity of the
airfow respiration signals in detecting normal sleep events
is 72.9%, which was higher than the other respiratory
signals.

We show the specifcity in Figure 4. Te specifcity of the
airfow respiratory signal in detecting OSA was 93.72%, and
the specifcity of detecting hypopnea sleep events was
87.64%, which was 4.31% higher than that of the abdominal
respiratory signal. Te specifcity of abdominal respiratory
signals in detecting normal sleep events was 47.2%. Tese
experimental results show that diferent respiratory signals
play diferent roles in detecting various sleep events, so we
can use three respiratory signals simultaneously for SAS
detection.

To comprehensively evaluate the role of three respiratory
signals in detecting SAS, we show the accuracy in Figure 5.
We input single, two, and three respiratory signals into the
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MCFNmodel, respectively. It can fnd that the SAS detection
performance of single respiratory signals is the lowest. Te
accuracy of nasal airfow, abdominal, and thoracic

respiratory signals was 76.5%, 76.3%, and 74.0%, respec-
tively. When we combine the respiratory signals in pairs, the
accuracy improves to varying degrees compared with that of
single respiratory signals, such as the accuracy of combined
fow and thoracic respiratory signals which can reach 83.1%,
which is 6.6% higher than that of fow. Te detection ac-
curacy is the highest when the three respiratory signals are
combined, reaching 87.3%. Te detection accuracy im-
proved by 9.1%.

We fnd that the detection performance of the combined
respiratory signals is better than that of single respiratory
signals. Te three kinds of respiratory signals play diferent
roles in detecting sleep events. Te combination of multiple
respiratory signals can complement each other and improve
the SAS detection performance.

3.4. Multilevel Features Concatenation Block Improves
Performance. In this experiment, we investigate the infu-
ence of the multilevel feature concatenation block on
classifcation performances. First, to concatenate the features
of diferent levels, it is necessary to down-sample the shallow
features to get the same dimension. Tere are two methods
for down-sampling: average pooling and max pooling.
Trough the experiment, we fnd that the two methods have
little efect on the detection performance. We choose one
way randomly, and here we choose average pooling to re-
duce the dimension. Ten, by inputting diferent respiratory
signals into the model with only deep-level features or
multilevel features, the overall accuracy obtained is shown in
Figure 6.

We fnd that whether it is single respiratory signals or
combined respiratory signals, the detection accuracy using
multilevel features is higher than that using only deep
features. For airfow respiratory signals, the accuracy is only
improved by 0.2%, indicating that the other level’s features
provide less identifcation information. For thoracic respi-
ratory signals, the accuracy with only deep features was
71.1%, and the accuracy with multilevel features was 74.0%.
It increased by 2.9%, indicating low-level features of thoracic
respiratory signals which can provide rich identifcation
information and improve the detection performance. For
the combined respiratory signals, the accuracy can get
improvement.

Tis result shows that the multilevel features of various
respiratory signals have diferent efects on SAS detection.
Te complete learning features of thoracic and abdominal
respiratory signals can improve detection accuracy. In
contrast, the multilevel features of airfow respiratory signals
have little impact on performance.

Table 2: Confusion matrix and the per-class result of the MCFN model.

MCFN output Per-class result (%)
Normal Hypopnea OSA Precision Recall F1 score

Ground truth
Normal 4586 836 185 87.5 81.8 84.6

Hypopnea 574 4842 191 81.4 86.4 83.8
OSA 79 273 5255 93.3 93. 93.5

Bold values indicate the highest value of each performance index.
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3.5. Multichannel Features Fusion Block Improves
Performance. In this experiment, we investigated the in-
fuence of the relationship between diferent channel fea-
tures on classifcation performances. We take two types of
airfow and abdominal signals or three kinds of respiratory
signals as an example. Whether or not multichannel feature
fusion is used, Figure 7 shows the SAS detection confusion
matrix.

Comparing the confusion matrices (a) and (b), we fnd
that the correct classifcation probability of hypopnea events
increased from 0.78 to 0.83, increased by 0.05. Te correct
classifcation probability of OSA events rose from 0.92 to
0.94, increasing by 0.02. Te experimental results show that
the respiratory signal combined with abdominal and airfow
can extract rich features. After attention fusion, it can
strengthen useful features and suppress useless features to
improve performance. Te correct classifcation probability
of normal sleep events did not increase. Still, it decreased by
0.02, indicating that the extracted features by the two
combined signals are very similar.

Comparing the confusion matrices (a) and (c), we fnd
that the correct probability of each event classifcation in (c)
is greater than or equal to that in (a). Te experimental
results confrm that the classifcation performance of three
respiratory signals is better than that of two signals, which
further verifes that various respiratory signals can provide
richer information.

Comparing the confusion matrices (c) and (d), we fnd
that the correct probability of event classifcation in (d) is
greater than that in (c). Te correct classifcation probability
of hypopnea events increased from 0.82 to 0.86, an increase
of 0.04. Te correct probability of OSA event and normal
event classifcation has increased by 0.01. Te experimental
results confrm that the attention mechanism improves the
detection performance by fusing the multichannel features
of the three respiratory signals.

Te abovementioned experimental results confrm that
the multichannel attention fusion block can improve the
correct classifcation probability of hypopnea events and
OSA events. Te efect on normal sleep events is not very
signifcant, mainly because the waveform of such events is
relatively stable.

3.6. LearnedWeight for Each Channel Feature. Te attention
mechanism can learn diferent weights for the channel
features. Te experiment results verify that the channel
features of each respiratory signal have diferent efects on
SAS detection. Figure 8 shows the multichannel feature
weights of three respiratory signals. For the frst channel of
each respiratory signal, the channel weight of airfow re-
spiratory is 0.18, the channel weight of thoracic respiratory is
0.50, and the channel weight of abdominal respiratory is
0.16. For the 64th channel of each respiratory signal, the
channel weight of airfow respiratory is 0.50, the channel
weight of thoracic respiratory is 0.50, and the channel weight
of abdominal respiratory is 0.99. After multilevel feature
concatenation of each respiratory signal, the model can
obtain 192 channel features.Temultichannel feature fusion
block obtains 576 channel features. Te attention mecha-
nism learns the weight of each feature channel through
training.

From Figure 8, we can fnd that the weights of each
respiratory signal feature channel are diferent. For example,
the weights of fow respiratory signals channel features are
close to 1, and some are close to 0. Tese weights indicate
that varying levels of features have diferent efects on sleep
event detection. In addition, the weights of the feature
channels 0, 32, 64, 96, 128, and 160 are marked with special
graphics. Te importance of channel features at the same
level is also diferent.

Figure 9 shows the weight distribution of diferent re-
spiratory signal channel features. When the weight is less
than 0.25, the weight distribution of the three respiratory
signals is very similar, indicating that the number of weak
action feature channels is approximately equal. When the
weight is in the range of 0.25∼0.75, the number of feature
diagrams of airfow respiratory signal is signifcant, indi-
cating that the role of airfow respiratory signal is moderately
important. When the weight is more powerful than 0.75, the
number of the abdominal respiratory signals feature dia-
grams is large. Tis result indicates that these features
contribute the most to SAS detection and contain the most
identifying information. In addition, the Kolmogor-
ov–Smirnov (KS) test further determines whether the
channel weights of the two respiratory signals obey the same
distribution. Since the P values are less than 0.05, they belong
to diferent distributions. Terefore, each respiratory signal
learning channel feature has diferent efects on SAS de-
tection, which shows that the fusion of multiple respiratory
signals is essential.

 . Discussion

Several methods have been applied to automated sleep event
detection in previous studies. Tey can detect various sleep
events, such as OSA, hypopnea, normal sleep, central sleep
apnea (CSA), and mixed sleep apnea (MSA). Te detection
accuracy is compared with previous studies to evaluate the
efciency of MCFN.

Gutiérrez et al. [15] used a single airfow respiratory
signal and the AdaBoost method to obtain 86.5% accuracy.
Tey extracted features manually, detected normal sleep and
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sleep apnea events, and did not classify them in detail. Lin
et al. [13] explored the possibility of identifying sleep apnea
events, including OSA and CSA, by solely analyzing one or
both the thoracic and abdominal respiratory signals. Tey
introduced an adaptive nonharmonic model to model the
thoracic and abdominal movement signals. Ten, an SVM
method was applied to classify three categories of sleep
events. When features from the thoracic and abdominal
signals were combined, the overall classifcation accuracy
became 81.8%. Jiménez et al. [16] evaluated the comple-
mentarity of airfow and oximetry (SpO2) signals. Tey
assessed the utility of a multiclass AdaBoost classifer to
predict OSA severity in children.

Van Steenkiste et al. [26] used LSTM to detect normal
sleep and sleep apnea on large data sets, and the accuracy was
77.2%. Although the temporal correlation of sleep events was
considered, they ignored the relationship between diferent
channel features. Elmoaqet et al. [27] developed the LSTM
and Bi-LSTM framework to detect apnea events. Tey
evaluated the framework over three respiration signals:
airfow, nasal pressure (NPRE), and abdominal respiratory
inductance plethysmography. Tey used PSG recording of
17 patients with obstructive, central, and mixed apnea
events. Te average accuracy was 83.6%.

Barroso et al. [31] conducted the 13 bispectral features
from airfow. Te oxygen desaturation index ≥3% (ODI3)
was also obtained to evaluate its complementarity to the
bispectral analysis. Tey used the fast correlation-based flter
(FCBF) and a multilayer perceptron (MLP) to select the

feature and recognize the pattern. Te model reached 82.5%
accuracy for the typical cut-ofs of fve events per hour. Yu
et al. [32] proposed the SAS detection and classifcation
method, which uses C4/A1 single-channel EEG signal,
oronasal fow signal, and abdominal displacement signal.
Tey utilized LSTM-CNN to identify four distinct types:
normal sleep, hypopnea events, OSA, and CSA+MSA. Te
overall classifcation accuracy achieves 83.94%.

It is challenging to compare as they do not all use the
same database and the number of the same sleep classif-
cation. To make a comparison on the same dataset, we have
implemented the research of Haidar et al., who have carried
out a lot of analysis on the MESA dataset. In the beginning,
in [22], they got 77.6% accuracy with CNN by inputting
airfow respiratory signal. Later, in [23], they obtained 83.5%
accuracy by inputting three types of respiratory signals. All
the previously mentioned research studies are summarized
in Table 3. Considering the efect of shallow features on sleep
classifcation and the relationship between diferent channel
features in detecting sleep events, our experiment improved
the accuracy by 3.9%. Our network could not only detect
many types of sleep events but also improve accuracy.

5. Conclusion

We propose an MCFN model to detect OSA, hypopnea, and
normal sleep. Te model uses the multilevel feature con-
catenation block which can extract more rich information
and give full play to the role of shallow features. Ten, the
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Table 3: Performance comparison between MCFN and existing methods.

Signals Methods Patients Classify Accuracy (%)
Gutiérrez et al. [15] Flow AdaBoost 317 Apnea/normal 86.5
Lin et al. [13] Flow, Abdo. Tor. SVM 34 OSA/CSA/hypopnea 81.8
Jiménez et al. [16] Flow, SpO2 AdaBoost 974 OSA/normal 81.3
Haidar et al. [23] Flow, Abdo. Tor. CNN 2056 OSA/hypopnea/normal 83.4
Van Steenkiste et al. [26] Abdo. Tor. EDR LSTM 2100 Apnea/normal 77.2
Elmoaqet et al. [27] Flow, Abdo. NPRE LSTM/Bi-LSTM 17 OSA/CSA/MSA 83.6
Barroso et al. [31] Flow, ODI3 MLP 946 Apnea/normal 82.5
Yu et al. [32] EEG, fow, Abdo. LSTM_CNN 126 Normal/hypopnea/OSA/MSA 83.9
Ours Flow, Abdo. Tor. MCFN 2056 OSA/Hypopnea/normal 87.3
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model utilizes an attention mechanism to efectively fuse the
diferent level features of airfow, abdominal, and thoracic
respiratory signals. Te fusion block makes each channel
feature of three respiratory signals have diferent weights,
enhances the useful channel feature, and suppresses the
useless channel feature. Te experiments verifed that
multiple respiratory signals, multilevel features, multi-
channel fusion, and channel features afect SAS detection.
MCFNmodel improves SAS detection performance by using
the complementarity of various signals and the completeness
of features. Te detection accuracy is 87.3% on the MESA
dataset, which is better than the other methods. In future
research, we will try to study the efect of sleep apnea on
sleep staging.
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Detecting atrial fbrillation (AF) of short single-lead electrocardiogram (ECG) with low signal-to-noise ratio (SNR) is a key of the
wearable heart monitoring system. Tis study proposed an AF detection method based on feature fusion to identify AF rhythm
(A) from other three categories of ECG recordings, that is, normal rhythm (N), other rhythm (O), and noisy (∼) ECG recordings.
So, the four categories, that is, N, A, O, and ∼ were identifed from the database provided by PhysioNet/CinC Challenge 2017. Te
proposed method frst unifed the 9 to 60 seconds unbalanced ECG recordings into 30 s segments by copying, cutting, and
symmetry. Ten, 24 artifcial features including waveform features, interval features, frequency-domain features, and nonlinear
feature were extracted relying on prior knowledge. Meanwhile, a 13-layer one-dimensional convolutional neural network (1-D
CNN) was constructed to yield 38 abstract features. Finally, 24 artifcial features and 38 abstract features were fused to yield the
feature matrix. Random forest was employed to classify the ECG recordings. In this study, the mean accuracy (Acc) of the four
categories reached 0.857. Te F1 of N, A, and O reached 0.837. Te results exhibited the proposed method had relatively
satisfactory performance for identifying AF from short single-lead ECG recordings with low SNR.

1. Introduction

Atrial fbrillation (AF) is a disordered and rapid atrial
electrical activity characterized by supraventricular tachy-
arrhythmia. Its incidence increases with age, and millions of
people are afected by AF every year [1]. In practice, real-
time monitoring of cardiovascular disease is essential for
early warning of AF. At present, wearable electrocardiogram
(ECG) monitoring is the mainstream real-time monitoring
system [2], which can help patients get rid of discomfort and
time and place restrictions in the process of long-term health
monitoring. However, the ECG recordings collected by
wearable devices or mobile phones are easily contaminated
by the complex external environment so that their signal-to-
noise ratio (SNR) is low. Actually, many recordings with low
SNR cannot be used for diagnosis because of their poor
quality. Tus, the ECG recordings with low SNR also should
be identifed to avoid wasting clinical resources.

Traditional machine learning algorithms based on sta-
tistics were extensively used for data analysis [3–6]. Most of
the current studies on AF automatic analysis do not focus on
recognizing the noisy ECG recordings with low SNR.
Krasteva et al. [3] used the limited feature set and combined
with the optimized artifcial neural network to conduct four-
classifcation research on the CinC 2017 database. Good-
fellow et al. [4] extracted three types of features, that is,
template features, RRI features, and full waveform features
using step-by-step machine and classifed the CinC 2017
database into four categories. In general, previous studies
can be divided into machine learning methods based on
prior knowledge extracting artifcial features and deep
learning methods based on neural networks. Bin et al. [5]
extracted 30 features including AF features, morphological
features, and RR interval features from ECG recordings and
trained a decision tree model using AdaBoost.M2 algorithm
to realize AF detection. Datta et al. [6] extracted several
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categories of AF features, that is, morphological features,
HRV, frequency domain, and statistical features from
PhysioNet/CinC Challenge 2017 database. Tey frst
transformed a four-classifcation problem into two binary
classifcation problems because the performance of binary
classifer is better than that of single multi-class classifer and
then used a binary classifer to classify the two binary
classifcation problems. Finally, the ECG recordings were
divided into four categories, that is, normal, AF, other, and
noisy ECG recordings. Pham et al. [7] frst generated third-
order cumulant images from four categories of ECG re-
cordings and extracted 18 features including entropy fea-
tures and other texture-based features. Tey used multiple
classifers to classify the recordings into four categories, that
is, Nsr, Vfb, Af, and Afb. Te results exhibited random forest
achieved the best performance than other algorithms, that is,
KNN, J48 DT, PART rules, MLP, logistic regression, and
Gaussian naive Bayes. Parsi et al. [8] extracted seven new
features using the Poincare representation of the R-R in-
terval series and fused the new features with classical features
to predict the paroxysmal AF. Yue et al. [9] used frequency
slice wavelet transform (FSWT) to analyze the ECG seg-
ments and converted the obtained two-dimensional (2-D)
time-frequency matrix into a one-dimensional (1-D) feature
vector. Finally, fve machine learning methods were com-
pared to classify AF, among which the Gaussian-kernel
support vector machine has the best classifcation perfor-
mance. Te classical methods need a lot of artifcial features
that rely on the researchers’ experience. However, more
artifcial features are not always better because some are
redundant and may even descend classifcation accuracy.

Another method based on convolutional neural net-
work (CNN) is widely used in physiological signal analysis
[10, 11]. CNN can acquire implicit and abstract features
within the ECG recordings by the convolutions of various
structures without human intervention. Kachuee et al.
[12] proposed a deep CNN model for heartbeat classif-
cation, which can accurately classify fve diferent ar-
rhythmias with the AAMI EC57 standard. Andersen et al.
[13] proposed an end-to-end method combining recur-
rent neural network (RNN) and CNN to extract depth
features from RR interval and divide the ECG recordings
into AF and normal categories. Wang [14] designed an 11-
layer network architecture based on CNN and Elman
neural network to realize AF detection. By comparing
several advanced classifcation methods, the combination
of the two deep neural networks was confrmed to be
feasible. Fan et al. [15] designed a multiscale fusion CNN
structure to divide the ECG recordings into AF and
normal categories. Tey used flters of diferent sizes to
obtain features of diferent scales from 1-D ECG re-
cordings and classifed the recordings after feature fusion.
Zhang et al. [16] proposed a global hybrid multiscale CNN
which can fully extract features to realize the categories of
AF and normal recordings. Acharya et al. [17] designed a
9-layer CNN model to automatically identify fve heart-
beat categories in ECG recordings, and they also tested the
model in an original recording group and a noise at-
tenuation recording group.

Actually, with the adoption of wearable devices and
mobile phones, the ECG recordings collected using the
devices are easy to be contaminated by noise so that the
recordings cannot be used for clinical purpose because of
their poor quality. So, the noisy ECG recordings should
be recognized before diagnosing. Tus, it is necessary to
distinguish the acceptable ECG recordings and the noisy
ECG recordings from a large lot of ECG recordings with
low SNR. In previous studies, entropy helped identify the
inherent nonlinear property within the ECG recordings
and randomness [18]. Zhang et al. [19] calculated a
multiscale entropy of the ECG recordings for signal
quality assessment and further studied the sensitivity of
multiscale entropy on the ECG recordings with noise.
Pham et al. [7] extracted a large number of entropy
features to train classifers. Fu et al. [20] extracted dif-
ferent entropy features, that is, approximate entropy,
sample entropy, and fuzzy entropy to feed into machine
learning, that is., support vector machine (SVM), least-
squares SVM (LS-SVM), and long short-term memory
(LSTM) for assessing the quality of the ECG recordings.
Zhang et al. [21] proposed a permutation ratio entropy
(PRE) based on permutation entropy to identify random
components and inherent irregularities within time se-
ries. Te studies exhibited a satisfying performance of
entropy methods for identifying random components
and inherent irregularities within the recordings. Tus,
this study used the entropy feature, namely, PRE, to
identify the noisy ECG recordings and other ECG
recordings.

So, a novel method was proposed in this study, which
used feature fusion including artifcial features and abstract
features to extract comprehensive information within the
ECG recordings, and the entropy feature was also employed
to improve classifcation performance of the method for
noisy ECG recordings. In this study, Section 2 introduces
materials and methods, including data preparation, feature
extraction, and network architecture. Section 3 shows the
results of this research. Section 4 discusses the efectiveness
of this proposed method. Section 5 summarizes this work.

2. Materials and Methods

2.1. Database. Te publicly available database provided by
PhysioNet/CinC Challenge 2017 (CinC 2017) was used in
this study, and it contains four categories of ECG recordings,
that is, normal rhythm (N), AF rhythm (A), other rhythm
(O), and noisy (∼) ECG recordings. Tis database consisted
of 8528 single-lead ECG recordings ranging in length from
9 s to over 60 s and the ECG recordings sampled at 300Hz
[22]. All recordings were identifed by the clinical experts
and technicians. Among them, 5076 ECG recordings were
marked as N, 758 ECG recordings were marked as A, 2415
ECG recordings were marked as O, and 279 ECG recordings
were marked as ∼. Tese ECG waveforms are shown in
Figure 1.

Tis study used a data-balanced method based on the
imbalance of ECG recordings length, and the method ef-
fectively retained the critical information of the ECG
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recordings [23]. A QRS complex location algorithm was
used to locate the complex position and made the recording
length consistent by copying, cutting, and symmetry. In this
study, all recordings were segmented or flled to 30 s. Among
them, the ECG recordings with lengths greater than 30 s
were randomly segmented. Te recordings with lengths less
than 30 s were frst located to the QRS complex using the
Pan–Tompkins algorithm, then the initial downward de-
fection in the QRS complex was determined as the starting
point of the complex, and fnally the recording from the
starting point of the frst QRS complex to the starting point
of the last QRS complex was intercepted and copied until the
recording length was 30 s. After unifying the length of all
segments, nearly 80% of the segments were used as training
set and the remaining 20% as the test set.Te performance of
the proposed classifcation method was evaluated using the
remaining segments. Table 1 shows the details of the CinC
2017 database used in this study.

2.2. Outline of the Proposed Method. In this study, the ECG
recordings were frst unifed to the length of 30 s. Ten, 62
features were calculated, including 24 artifcial features, that
is, 8 waveform features, 11 interval features, 4 frequency-
domain features, and 1 nonlinear feature and 38 abstract
features extracted by a 13-layer 1-D CNN. Te abstract and
artifcial features constituted a feature vector for yielding the
fused feature matrix. Finally, a random forest [24] con-
taining 300 decision trees was employed to classify the AF
segments. Figure 2 shows the fowchart of the proposed
method.

2.3. Artifcial Features. In the feld of machine learning, the
use of artifcial features is essential. Based on a large
number of previous studies, this study used four types of

features, that is, waveform features, interval features, fre-
quency-domain features, and nonlinear feature without
discarding prior knowledge, and 24 specifc features were
calculated [4–8]. Table 2 shows the artifcial features used in
this study.

2.3.1. Waveform Features. In most cases, the number and
amplitude of R waves within the four categories of ECG
segments are signifcantly diferent, so the features based on
the number and amplitude of R waves were frst calculated.
Te Pan–Tompkins algorithm [25] was used to locate the R
waves of all ECG segments.Ten, the number of Rwaves and
amplitude of all R waves were obtained by the location of R
waves. Finally, the number of Rwaves was taken as one of the
features, and the basic amplitude features, that is, maximum,
minimum, mean, and median of R wave, in each segment
were calculated according to the amplitude of all R waves.
Suppose that there are N pieces of R waves in the time series.
Te r represents the amplitude of R wave. Terefore, the
amplitude of all R waves is defned as [r1, r2, r3. . .. . .rN], so
the maximum value of the amplitude is [r1, r2, r3. . .. . .rN]max,
the minimum value is [r1, r2, r3. . .. . .rN]min, and the mean
value is [r1, r2, r3. . .. . .rN]median.

In the analysis of time series, many time series exhibit
irregular distribution. Still, the distribution of the mean of
the series shows a certain regularity, which requires that
we must have an indicator to measure the relationship
between each point in the series and the mean. So, the
standard deviation was used to distinguish the pseudo law
of distribution in this study. Another waveform feature,
namely, the feature based on standard deviation, was also
calculated in this study. Suppose the time series with N
points is defned as [X1, X2, X3. . .. . .XN], and their mean
value is ‾X. Te standard deviation (S) is calculated as the
following:
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Figure 1: Examples of four categories of ECG recordings.
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where i takes a non-negative integer and starts from 1
until N. According to the defnition of S, the amplitude
standard deviation is also calculated as one of the
waveform features.

Based on the standard deviation, the skewness (SK)
and kurtosis (KU) of the segments were calculated. SK
represents the characteristic number of the asymmetry
degree of the probability density distribution curve rel-
ative to the average value, and KU represents the char-
acteristic number of the peak height of the probability
density distribution curve at the average value. SK is
calculated as the following:
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3
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3 . (2)

KU is calculated as the following:
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4 − 3. (3)

To sum up, 8 waveform features were extracted from the
ECG segments.

2.3.2. Interval Features. RR interval refers to the duration
between two adjacent R waves in ECG, and it can refect the
duration of one heart contraction. Tese features of RR
interval can refect whether a person’s heart rate is normal,
so heart rate can be calculated by the RR interval [26]. Te
heart rate of patients with AF or other abnormal hearts may
be irregular, and the RR interval may be too large, too
small, or unstable. Terefore, the relevant features of RR
interval, that is, maximum, minimum, mean, median, and
standard deviation of RR interval were calculated, and the
heart rate was also obtained from the RR interval as a
feature.

Heart rate (HR) is calculated as the following:

Input segment (30 s)

Abstract FeaturesArtificial Features
Waveform features

Interval features

Non-linear feature

Frequency domain features

Fusion Features

Random Forest Classifier

13-layer
1-D CNN

Figure 2: Flowchart of the proposed method.

Table 1: Details of the CinC 2017 database.

Category Recording Training set Test set Sampling frequency (Hz) Uniform length (s)
N 5076 4101 975

300 30A 758 619 139
O 2415 1916 499
∼ 279 208 71

4 Journal of Healthcare Engineering



HR �
60
R

. (4)

PR interval refers to the time interval from the starting
point of the P wave to the starting point of the QRS
complex on ECG. Some studies have used and proved the
efectiveness of PR interval for ECG classifcation
[3, 27, 28]. To get the PR interval, the P wave of the ECG
recording should be located. P wave is easy to detect in
regular ECG recordings, but it is difcult to detect in noise
environment because the change is not obvious. Terefore,
we used the P-wave detection method based on wavelet
transform proposed by Li et al [29]. Te PR interval was
then calculated. Too long, too short, or variable PR interval
represents diferent conditions of patients. Considering
that there may be diferent situations for separating other
classes in this database to locate these situations to the
greatest extent, the relevant features of PR interval, that is,
maximum, minimum, mean, median, and standard devi-
ation of PR interval were extracted in this study. Te
calculation methods of relevant features of PR interval are
the same as that of RR interval.

Finally, 6 features of RR interval and 5 features of PR
interval were extracted from the ECG segments.

2.3.3. Frequency-Domain Features. In most of machine
learning methods, frequency-domain features are usually
used to refect frequency and energy information within
the ECG recordings. In medical diagnosis or other ap-
plication scenarios, it can be used as a part of the feature
vector together with time-domain features and other
features to enrich the types of feature quantities and

improve the diagnostic accuracy [30]. In this study,
Fourier transform, a simple spectrum analysis method,
was selected to obtain the spectrum of the ECG segments
and the four frequency-domain features, that is, frequency
center of gravity, mean-square frequency, root mean
square frequency, and frequency variance were received
and applied to this study.

Assuming the frequency function is S (f), and S repre-
sents the spectrum and f represents the frequency of the
segment. Te frequency center of gravity (FC) is calculated
as follows:

FC �
􏽒
∞
0 fS(f)df

􏽒
∞
0 S(f)df

. (5)

Te mean-square frequency (MSF) is calculated as
follows:

MSF �
􏽒
∞
0 f

2
S(f)df

􏽒
∞
0 S(f)df

. (6)

Te root mean square frequency (RMSF) is calculated as
follows:

RMSF �
����
MSF

√
. (7)

Te frequency variance (FV) is calculated as follows:

FV �
􏽒
∞
0 (f − FC)

2
S(f)df

􏽒
∞
0 S(f)df

. (8)

Finally, 4 features of frequency domain were extracted
from the ECG segments.

Table 2: Artifcial features used in this study.

Feature type Name

Waveform features

Te number of R wave
Maximum amplitude of R wave
Minimum amplitude of R wave
Mean amplitude of R wave
Median amplitude of R wave

Amplitude standard deviation of R wave
SK
KU

Interval features

Maximum of RR interval
Minimum of RR interval
Mean of RR interval
Median of RR interval

Standard deviation of RR interval
HR maximum of PR interval
Minimum of PR interval
Mean of PR interval
Median of PR interval

Standard deviation of PR interval

Frequency-domain features

FC
MSF
RMSF
FV

Nonlinear feature PRE
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2.3.4. Nonlinear Feature. In some ECG classifcation
studies, nonlinear features are widely used, especially
various entropies are used to evaluate the complexity of
signals. Many entropies, that is, Shannon entropy and
permutation entropy, still cannot identify the nonlinear
features in the signal. PRE was employed in the proposed
method because it can identify nonlinear within ECG
recordings, and the details of the PRE are in Reference
[21]. Tis PRE can refect the amplitude diference be-
tween two adjacent data points of a certain time series.
Because it is sensitive to recording mutation and various
changes, the classical permutation entropy is often used
to measure the complexity of physiological recording
sequence. However, the original time series cannot be
measured by permutation entropy, so some details will be
lost. Furthermore, permutation entropy is based on the
ranking between data points, which also shows that
permutation entropy ignores the diferences between
adjacent data points. Comparing with the classical per-
mutation entropy, the PRE can refect the relationship
between adjacent data points by constructing the rela-
tionship matrix of adjacent elements and better refecting
the confusion degree of time series.

First, PRE constructs a new relationship matrix B to
represent the relationship between adjacent elements and
then calculates the number of new patterns c. Let B (i) be the
ith row vector of matrix B, and c (i) be the number of the ith
pattern. For B (i), when another vector B (j) of matrix B has
the same mode as B (i), c (i) increases by 1, and the two have
a high correlation; when each vector of matrix B represents a
new mode, the maximum total number of mode c is
n−m− 1. Finally, the total number of mode c contained in
matrix B can be obtained.

P i is the probability of pattern c (i), which is defned as
the following:

Pi �
c(i)

􏽐
k
j�1c(i)

, (9)

where k is the total number of patterns c, 1 ≤ k ≤ n −m − 1.
PRE is defned as the following:

PRE � − 􏽘
k

j�1
Pj ln Pj. (10)

2.4. 1-D CNN and Abstract Features. Actually, a deeper
network helps to extract deeper features within ECG
segments; however, the most severe problem of deeper
network was to use too many parameters, which would lead
to a large amount of memory and computing resources for
training and interference [31]. So, a 1-D CNN was directly
used to extract abstract features in this study which was
constructed from six pairs of convolutional layers and a
maximum pooling layer in our proposed feature extraction
network.

Larger convolution kernel size had been used on the frst
layer of convolution layers, and the convolution kernel size
rose stepwise as the number of layers increased. Table 3

shows architecture of the 13-layer 1-D CNN and its detailed
parameters. When an ECG segment was fed into the net-
work, the segment passed through 6 pairs of convolution
pooling layers. In order to obtain the abstract features, the
fnal full connection layer changed the dimension of the
output to get a 1× 38 vector which meant 38 abstract
features.

2.5. Fusion of Artifcial and Abstract Features. Artifcial
features and abstract features were fused, and a feature
vector of length 62 was constructed. Te vector was denoted
as [R1, R2, R3. . .R24, S1, S2, S3· · ·S38]T. Te Ri represents the
ith artifcial features, and i� 1, 2, . . ., 24.Te Sj represents the
jth abstract features, and j� 1, 2, . . ., 38. So, the feature
matrix is defned as the following:

R
1
1 · · · · · · R

N
1

⋮

R
1
24

S
1
1

⋮

⋱

⋮

R
N
24

S
N
1

⋮

S
1
38 · · · · · · S

N
38

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (11)

where N represents the number of input segments.

2.6. Random Forest. In CinC 2017, Zabihi et al. [32] and
Kropf et al. [33] used random forest to train the extracted
features to obtain classifcation results because random
forest is interpretable explain [34]. So, random forest was
employed in this study. Random forest is inherited to-
gether by several decision trees. Each decision tree is a
small classifer, and random forests synthesize all classi-
fcation voting results to determine the fnal output
categories.

In this study, the classifcation of random forest in-
cluded training and testing, and the bootstrap method was
used to train the random forest. In the training process,
80% of the feature vectors were used as the training set,
and a group of decision trees was trained according to the
tags marked in the ECG recordings. Te remaining 20%
was used for testing. Te training process sets the max-
imum number of decision trees as 300, where each node
randomly selected features in the generation process.
Assuming that the number of the samples was n, the
number of features in the randomly selected feature subset
by the decision tree node at each segmentation was set as
default, that is, the square root of the total number of
features, that is,

�
n

√
. Te minimum number of samples

required for internal node division was set as 2, the
maximum depth of the decision tree was set as 40, and the
training ended when the maximum depth was reached.
Te above parameters were set to prevent overftting.
Finally, the classifcation category was determined by
averaging the classifcation voting results of all decision
trees.
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3. Results

3.1. Evaluation Indicators. In this study, accuracy (Acc),
precision, recall, and F1 were used to evaluate performance
of the proposed method.

Te Acc is calculated as the following:

Acc �
TP + TN

TP + FN + TN + FP
, (12)

where true positive (TP) represents the number of ECG
recordings in a given category that are correctly classifed as
the given category, false positive (FP) represents the number
of ECG recordings that other categories are misclassifed as
the given category, true negative (TN) represents the number
of ECG recordings that other categories are not classifed as
the given category but are classifed as the correct category,
and false negative (FN) represents the number of ECG re-
cordings that other categories are not classifed as the given
category and are not classifed as the correct category.

Te precision is calculated as the following:

precision �
TP

TP + FP
. (13)

Te recall is calculated as the following:

recall �
TP

TP + FN
. (14)

Like CinC 2017, the F1n, F1a, F1o, and F1p are defned as
the F1 score of theN,A,O, and ∼ categories, respectively, and
they are calculated as the following [22]:

F1n �
2 × Nn

􏽐 N + 􏽐 n
,

F1a �
2 × Aa

􏽐 A + 􏽐 a
,

F1o �
2 × Oo

􏽐 O + 􏽐 o
,

F1p �
2 × Pp

􏽐 P + 􏽐 p
.

(15)

Where Nn, Aa, Oo, and Pp represent the number of
predicted classifcations obtained by the proposed method
that are consistent with the actual reference classifcations of
ECG recordings. 􏽐N represents the number of recordings
whose reference classifcation is N and 􏽐n represents the
number of recordings whose predicted classifcation is N,
􏽐A represents the number of recordings whose reference
classifcation is A and 􏽐a represents the number of re-
cordings whose predicted classifcation is A, 􏽐O represents
the number of recordings whose reference classifcation is O
and 􏽐o represents the number of recordings whose pre-
dicted classifcation is O, and 􏽐P represents the number of
recordings whose reference classifcation is ∼ and 􏽐p rep-
resents the number of recordings whose predicted classif-
cation is ∼. Table 4 clearly showed the counting rules of the
above variables. Te total of F1 is defned according to the
rules of the CinC 2017 and it is obtained by taking the macro
average of the three scores, and it is defned as the following:

F1 �
F1n + F1a + F1o

3
. (16)

3.2. Results. In this study, 80% of the ECG segments were
used as training set, and the rest 20% were used as test set for
evaluating the proposed method. For the training set, we
used 10-fold cross-validation which randomly selected 90%
of the data for training and 10% for validation. Te results
are shown in Table 5. Te corresponding recall, precision,
and F1 of the N category achieved the highest 0.896, 0.910,
and 0.913 than that of other three categories, that is, A, O,
and ∼. In addition, the average of indicators of four cate-
gories, that is, recall, precision, and F1, is higher than 0.800,
at 0.816, 0.813, and 0.809, respectively.

Table 6 shows a confusion matrix of the proposed
method for the test set and the corresponding recall, pre-
cision, F1n, F1a, F1o, F1p, Acc, and F1. Te N category yields
the highest recall of 0.893, precision of 0.901, and F1n of 0.901
than other categories, that is, A, O, and ∼. Te∼ category
yields the lowest recall of 0.761, precision of 0.711, and F1p of
0.735 among all categories. In addition, the F1 and the Acc
reached 0.837 and 0.857, respectively.

Table 3: Architecture parameters of the 1-D CNN.

No. Layer Kernel size Kernel number Stride Output size
0 Input — — — 1× 3000
1 Convolution-1 5 4 1 4× 2996
2 Pooling — — 2 4×1498
3 Convolution-2 5 8 1 8×1494
4 Pooling — — 2 8× 747
5 Convolution-3 7 16 1 16× 741
6 Pooling — — 2 16× 370
7 Convolution-4 7 16 1 16× 364
8 Pooling — — 2 16×182
9 Convolution-5 9 32 1 32×174
10 Pooling — — 2 32× 87
11 Convolution-6 11 32 1 32× 77
12 Pooling — — 2 32× 38
13 FC — — — 1× 38
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Table 7 collected the results of some previous studies and
compared them with the results of the proposed method.
Te proposed method achieved the highest Acc of 0.857, F1p
of 0.735 than all studies and the highest F1 of 0.837 than all
studies except the F1 0.841 of Wang et al. [35]. Actually,
Wang et al. ignored the ∼ category of ECG recordings and
used only three categories of ECG recordings of the CinC
2017, that is, N, A, and O for classifcation. Zihlmann et al.
[39] combined LSTM and CNN to extract abstract features,
and the total F1 score reached 0.820.Te classifcation results
of ∼ category in the training process were low, and the F1p
was only 0.645.

4. Discussion

4.1. Evaluating Efectiveness of PRE for Noisy Recording
Recognition. Two feature schemes, that is, all features and
all features except the PRE were compared to evaluate the
efectiveness of the PRE for recognizing noisy ECG seg-
ments. Table 8 shows the comparison results for the two
feature schemes using this proposed method. Te Acc of
0.857, F1 of 0.837, and F1p of 0.735 for all features are
higher than for all features except the PRE. Te results
indicate the PRE helps to classify the noisy ECG segments
because the F1p of 0.735 for all features is higher than the
F1p of 0.679 for all features without PRE. Meanwhile, a
radar chart was also designed to show more clearly the
diferences between results of the two schemes. Figure 3
shows a radar map of results for the two feature schemes.

Te F1p for all features is obviously higher than that for all
features except the PRE.

PRE was an improvement based on permutation entropy
for identifying nonlinear chaotic character within time series
instead of randomness. In PRE, a new relationship matrix B
was constructed. Tis matrix was based on the relationship
between adjacent elements and can closely refect the gap
between two points, especially in complex signals. Te
generation of the new mode c can avoid the repeated
counting of the vector and was conducive to the complexity
analysis of the whole signal.Te ablation experiment showed
the PRE not only played a role in noise classifcation but also
helped the overall classifcation indicators.

4.2. Comparison of Efectiveness of Artifcial, Abstract, and
FusionFeatures. In this study, the corresponding Accs of the
three feature schemes, that is, artifcial features, abstract
features, and fusion features were also calculated to evaluate
the efectiveness of the schemes. Table 9 shows the corre-
sponding Accs of artifcial features, abstract features, and
fusion features. Te Acc of 0.820 was obtained for the
scheme using only artifcial features. Similarly, the Acc for
only abstract features generated by the 13-layer 1-D CNN
was the lowest 0.734 than that for all feature schemes.

Actually, deep learning can extract efective abstract
features with the support of a large amount of data. How-
ever, the existed ECG databases are small so that deep
learning algorithms cannot make full use of its power for

Table 4: Counting rules for some variables.

Predicted classifcation

Reference classifcation

N A O ∼ Total
N Nn 􏽐N
A Aa 􏽐A
O Oo 􏽐O
∼ Pp 􏽐P

Total 􏽐n 􏽐a 􏽐o 􏽐p

Table 5: Results of using 10-fold cross-validation against the training set.

Label Recall Precision F1n F1a F1o F1p
N 0.896 0.910 0.913 — — —
A 0.814 0.827 — 0.806 — —
O 0.808 0.788 — — 0.795 —
∼ 0.745 0.726 — — — 0.721
Average 0.816 0.813 0.809

Table 6: Confusion matrix of 1-DCNN for test set.

True
Predicted

Recall Precision F1n F1a F1o F1p Acc F1N A O ∼
N 871 13 83 8 0.893 0.908 0.901 — — —

0.857 0.837A 11 110 15 3 0.791 0.815 — 0.803 — —
O 72 7 409 11 0.820 0.796 — — 0.808 —
∼ 5 2 7 54 0.761 0.711 — — — 0.735 —
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acquiring abstract features. Te artifcial features were
summarized on the basis of expert experience and a large
number of experiments, and the features can refect infor-
mation within the ECG recordings. Terefore, abstract and
artifcial features were combined to make the model have the
advantages of both, thus improving the classifcation per-
formance of the model. After fusing artifcial features and
abstract features, the Acc was improved to the highest 0.857
among the Accs for all schemes. Te fusion features gave full
play to the advantages of the two types of features and can
more comprehensively refect the information in ECG re-
cordings, so fusion features can improve the classifcation
performance of such models.

5. Conclusions

In this study, an AF detection method that combined ar-
tifcial features with abstract features was proposed, and it
yielded the higher results, that is, Acc of 0.857, F1 of 0.837,
and F1p of 0.735 for the database provided by the CinC 2017
than the previous studies. In addition, the nonlinear feature,
that is, PRE, helps to identify the noisy ECG recordings from

Table 7: Comparison of classifcation results.

Author Year Database Feature extraction Task Method Acc F1p F1

Datta et al. [6] 2017 CinC 2017
AF DB

HRV, frequency domain, and statistical
features 4-Class Multilayer cascaded

binary classifers — — 0.830

Cao et al. [23] 2020 CinC 2017
AF DB Abstract features 3-Class 2-Layer LSTM 0.844 — 0.827

Zabihi et al.
[32] 2017 CinC 2017

AF DB
Time domain, frequency domain, time-
frequency domain, and nonlinear features 4-Class Random forest — 0.504 0.830

Kropf et al.
[33] 2017 CinC 2017

AF DB
Time-domain and frequency-domain

features 4-Class Random forest — 0.648 0.830

Wang et al.
[35] 2020 CinC 2017

AF DB Abstract features 3-Class DMSFNet — — 0.841

Gao et al. [36] 2021 CinC 2017
AF DB Abstract features 3-Class RTA-CNN 0.851 — —

Mahajan et al.
[37] 2017 CinC 2017

AF DB
Time domain, frequency domain, linear,

and nonlinear features 4-Class Random forest — — 0.780

Xiong et al.
[38] 2017 CinC 2017

AF DB Abstract features 4-Class CNN — — 0.820

Zihlmann et al.
[39] 2017 CinC 2017

AF DB Abstract features 4-Class CNN+LSTM 0.823 0.645 0.820

Gliner and
Yanav [28] 2018 CinC 2017

AF DB
Time-frequency domain, statistical
features, and morphological features 4-Class SVM — — 0.800

Athif et al. [40] 2018 CinC 2017
AF DB

Statistical features and morphological
features 4-Class SVM — — 0.780

Chen et al. [41] 2018 CinC 2017
AF DB

Morphological features and heart rate
variability features 4-Class XGBoost — — 0.810

Tis work 2022 CinC 2017
AF DB

Time domain, interval, frequency domain,
and nonlinear features and abstract

features
4-Class Fusion features + random

forest 0.857 0.735 0.837

Table 8: Comparison results for the two feature schemes.

Feature scheme
All features All features except the PRE

Acc 0.857 0.836
F1 0.837 0.822
F1p 0.735 0.679

All features
All features except PRE

Acc

F1

F1ρ

Figure 3: Radar map of results for the two feature schemes.

Table 9: Accs of three feature schemes, that is, artifcial features,
abstract features, and fusion features.

Feature scheme
Artifcial feature Abstract feature Fusion feature

Acc 0.820 0.734 0.857
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other recordings because the PRE can identify, to some
extent, nonlinear irregularities within the ECG recordings
instead of randomness caused by noise. Finally, the proposed
method exhibits relatively satisfed performance for the ECG
recordings with low SNR.
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