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Objective. To explore an inpainting method that can balance texture details and visual observability to eliminate the specular
reflection (SR) regions in the colposcopic image, thus improving the accuracy of clinical diagnosis for cervical cancer.Methods. (1)
To ensure smoothness, Gaussian Blur and filling methods are applied to the global image. (2) Striving to preserve the anatomical
texture details of the colposcopic image as much as possible, the exemplar-based method is applied to local blocks. (3) *e
colposcopic images inpainted in the previous two steps are integrated, so that important information of non-SR regions is
preserved based on eliminating SR regions. Results. In the subjective visual assessment of inpainting results, the average of 3.55
ranks first in the five comparison sets. As to the clinical test, comparing the diagnosis results of 6 physicians before and after
eliminating SR regions, the average accuracy of two kinds of classifications increased by 1.44% and 2.03%, respectively.
Conclusions. *is method can effectively eliminate the SR regions in the colposcopy image and present a satisfactory visual effect.
Significance. As a preprocessing method for computer-aided diagnosis systems, it can also improve physicians’ accuracy in
clinical diagnosis.

1. Introduction

According to World Health Organization (WHO) Global
Cancer Statistics Report in 2018, cervical cancer ranked
fourth in both incidence and mortality [1]. *e latest sta-
tistics from the US indicate that cervical cancer remains the
second leading cause of cancer deaths among women aged
20 to 39 years old [2], posing a severe threat to women’s
health. Clinical studies have confirmed that persistent high-
risk human papillomavirus virus (HR-HPV) infection is the
leading cause of the development of cervical cancer. It takes
years or even decades for patients with persistent HR-HPV
infection to develop from HPV infection to cervical cancer,
and they also experience a long precancerous stage (CIN1,
CIN2, and CIN3) [3], during which clinicians can early

detect, treat, and remove the affected tissues to prevent
cervical cancer [4]. Despite the continued development of
the HPV vaccine, its popularity cannot meet current needs
due to its price and geographical differences. *erefore, a
large-scale and standardized cervical cancer screening
program for the general population is one of the most ef-
fective ways to reduce the incidence andmortality of cervical
cancer.

Currently, there are three mainstream screening
methods: pap cytology, colposcopy, and biopsy [5]. Among
them, colposcopy has become a critical assistant tool for
cervical cancer screening due to its simple operation and low
cost. Colposcopy is an optical instrument that can adjust the
light source to penetrate the tissue, magnify the cervical
epithelium and blood vessels, and discover potential cervical
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lesions and evaluate them. *erefore, when the light from
the camera flash irradiates the cervical tissue during the
colposcopy, some specular reflection (SR) regions often
appear in colposcopic images due to the presence of
physiological mucus on the surface of the cervical tissue [6].
As shown in Figure 1, in the colposcopic image, these SR
regions have similar characteristics as the acetic white (AW)
regions [7], which are essential tissue changes in lesion
regions after the application of acetic acid. In addition, if the
surface color, texture features, and saturation of the cervical
tissue are weakened, the images will show high brightness
and low saturation. It will result in the uneven appearance of
cervical epithelial tissue and even complete loss of surface
information. *is phenomenon also interferes with the
recognition, segmentation, and classification of cervical le-
sions by the computer, thereby reducing the accuracy of the
cervical intelligent assistant diagnosis system. In practical
applications, the preprocessing of the colposcopic image to
eliminate SR regions has become an essential task for the
intelligent diagnosis of cervical lesions.

2. Related Work

At present, many researches on the intelligent diagnosis of
colposcopic images do not consider the impact of SR regions
[8, 9] or just perform simple threshold processing to
eliminate reflective pixels. Only a few studies on the rec-
ognition and classification of cervical lesions have consid-
ered the interference of SR regions.

Two main directions in the research on SR regions’
elimination in natural images: one is the dichromatic re-
flection model (DRM) based on physical methods to au-
tomatically eliminate SR regions [10, 11]. It defines the color
as a linear combination of object color and highlight color
[12]. Another is to use polarization filters to determine SR
regions [13] and then performs analysis and statistics based
on the integration of multiview color and polarization
information.

Since the colposcopic image contains many regions with
similar colors but different intensities and textures [14], the
above method cannot be fully applied to eliminating SR
regions of the colposcopic image. *e problem of SR regions
has always been a bottleneck restricting the development of
automatic extraction algorithms in the colposcopic image.

Most researchers have explored different color spaces.
Van et al. [15] expressed the pixel distribution in the image
as a Gaussian mixture model in the RGB color space and
then distinguished SR pixels and non-SR pixels, while Praba
et al. [16] performed Gaussian mixture modeling in the HIS
space. Langer et al. [17] and Das et al. [18–20] performed
adaptive threshold detection in RGB color space.*e former
mainly used the R channel, but the latter used the inter-
section of the three channels. *en, the smoothest inter-
polation and filling were performed, respectively, by the
Laplacian equation. Gordon et al. [21] detected high-
brightness and low-saturation regions with fixed thresholds
and selected SR candidate regions to continuously refine the
pixel range in the S-V space mapped from HSV color space.
Zimmerman et al. [14] also adopted the same mapping space

but loosened the threshold to determine SR regions and
non-SR regions more reasonably. Besides, they added the
Gaussian distribution description to them and then used the
iterative filling method to repair. *is method requires high
prior knowledge and has difficulties in actual operation.
Meslouhi et al. also detected SR features in HSV color space
initially [22] but later converted to planar XYZ color space,
where SR regions were effectively detected by a simple
automatic luminance-chromaticity comparison [23]. Here,
the DRM described previously was applied. As for the
inpainting, they introduced a multiresolution inpainting
technique (MIT), which fully considers the different levels of
details in a colposcopic image, but the method’s stability
needs to be verified. Kudva et al. [24] innovatively combined
the SR features of HSV, RGB, and Lab color spaces to detect
SR regions. *eir results were stable and accurate, but the
repair method was not precise.

It is worth noting that colposcopic images have many
similarities with other endoscopic images, so some standard
research methods can be applied to the problem of elimi-
nating SR regions in the colposcopic images. Colonoscopy
[25], thoracoscopy [26], laparoscopy [27], and more re-
searches on eliminating SR regions in these images [28, 29]
can be used for reference. In the report of Wang et al. [30],
they used Arnold’s method [25] in colonoscopy images and
combined it with the exemplar-based method to eliminate
SR regions in colposcopic images, showing better effect.

*ere is no ground truth without SR regions in the
endoscopic image. *e irregular distribution of SR pixels
makes accurate manual segmentation time-consuming and
labor-intensive. And manual annotation is highly dependent
on experts, which increases the difficulty of quantitative
analysis of the results related to SR regions elimination and
limits the application of deep learning in this study, so there
are relatively few studies on deep learning for eliminating SR
regions in these images [31, 32].

Overall, eliminating SR regions in colposcopic images
focuses on the extraction and detection of luminance and
chrominance features in different color spaces, and
inpainting methods are used to eliminate them. However,
these methods fail to effectively balance the visual visibility
and detailed preservation to better meet the subsequent
processing by computers and clinical diagnosis.

*is paper is a further study based on our previous
studies [30]. We propose a method to eliminate SR regions
based on the integration of global and local features in
colposcopic images, which solves the problem that SR

Cervix
region

SR
regions

AW
regions

Cervical
orifice

Figure 1: Features of cervical lesions under colposcopy.
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regions cannot be wholly eliminated to retain the texture as
much as possible. Moreover, through integrating global and
local information, the overall visual observability of images
is enhanced.

In the experimental part, we thoroughly investigate our
method and test its performance from different angles. *e
results show that this method can better eliminate SR regions
in colposcopic images and improve clinicians’ diagnostic
accuracy. *e contributions of this paper are summarized as
follows:

(1) We comprehensively consider the preservation of
texture details and the overall visual observability
after eliminating SR regions

(2) We propose a method to eliminate SR regions based
on integrating the global and local information of the
colposcopic image

3. Materials and Methods

Since SR regions of colposcopic images are similar to AW
regions, it is not easy to directly eliminate them from
chromaticity. Researchers usually detect SR regions by
brightness and refine the detection by combining absolute
pixels and relative pixels. However, when the detection is
good, the inpainting often causes the overall image to be
excessively smooth. *e other way is to consider the texture
details of colposcopic images, but the elimination of SR
regions is incomplete, resulting in remaining highlight
speckle. *ese two methods are not sufficiently successful in
terms of visual observability. When the details of the lesion
area are strictly required in clinical diagnosis, they will
interfere with the physicians. With all of the above, we
combine Arnold’s method [25] with the exemplar-based
method to eliminate SR regions of colposcopic images. At
first, the original colposcopic image is smoothed by the
global application of Arnold’s method. *en, the colpo-
scopic image is reconstructed after subblocking locally using
the exemplar-based method to eliminate SR regions of each
block finely. Finally, two images obtained in the previous
steps are integrated. *e overall process of our method is
shown in Figure 2.

3.1. Preprocessing. Besides the cervical region diagnosed by
physicians, there is other information in colposcopic images,
including vaginal walls and other noncervical anatomy, tools
(such as speculum and swabs), textual marks, and other
marks superimposed on film. *e elimination of SR regions
is mainly aimed at the cervical region, so our SR region
inpainting method is more meaningful on the preliminary
preprocessing of original images.

Our data set is prenormalized. Most of the noncervical
areas in original colposcopic images are trimmed, and all
images are resized to a size of 224× 224 for the elimination of
SR regions. In addition, to further understand whether there
is a difference in images with different grades of the cervical
lesion after eliminating SR regions, our data set is classified
by lesion grade, and the final data sample is shown in
Figure 3.

3.2. Stage 1: Global Processing. In the global processing, we
aim at fine detection and smooth filling by learning from the
method of automatic segmentation and inpainting of SR
regions in colonoscopy images proposed by Arnold.

Arnold [25] proposed that, based on threshold segmen-
tation of color images to detect SR regions, the nonlinear
filtering method is used to divide the highlight pixels into two
categories: significantly strong and slightly nonstrong. More
accurate detection is performed gradually to avoid the influ-
ence of the background brightness. Here, according to the
characteristics of high brightness and low color saturation in SR
regions of colposcopic images, YUV color space transforma-
tion is performed on the image before the original algorithm to
obtain the high-brightness component Y (CY). *en, SR pixels
are roughly and finely detected in two modules. *e overall
detection process of this part is shown in Figure 4. Refer to
literature [25] for specific methods.

In Arnold’s method [25], the gradient feature is used to
limit bright non-SR regions. For colposcopic images, SR re-
gions are usually small bright spots, while AW regions are
larger white patches.*us, to prevent certain AW regions from
being recognized as SR pixels, we mainly limit the final de-
tection regions based on the size and the brightness threshold.

For inpainting, Arnold eliminates SR regions from two
levels [25]. In the first, within a certain distance of the
detected edge, all the detected SR regions are replaced by the
centroid color of the pixel to obtain a new modified image.
*en, the modified image is filtered using the Gaussian
kernel (σ � 8). Finally, a robust and smooth image without
SR regions is output. For the second level, a smooth weighted
mask is achieved by adding a nonlinear attenuation over the
contour of SR regions.

As mentioned in this literature, the larger SR regions in
the image will be very blurred vision due to Gaussian Blur.
For the diagnosis of colposcopic images, the requirements
for texture details are strict, so if such a large blurred area
appears, it will have a terrible effect in clinical practice. To
solve this problem, we will introduce the exemplar-based
method in the local processing, getting better texture details.

3.3. Stage 2: Local Processing. Local processing is mainly
aimed at excessive smoothness and lack of texture details
after global processing. In the previous work, we used the
exemplar-based method proposed by Criminisi et al. [33]
and found that this inpaintingmethod can effectively inpaint
the texture details in SR regions of colposcopic images.
*erefore, we still use the exemplar-based method in this
stage to balance the oversmoothing problem.

*e distribution of SR regions in colposcopic images is
random and uncertain. If we want to eliminate the SR region
locally, the simplest solution is to block the overall image and
then detect and inpaint SR regions in each block. *e image
is effectively processed in this way, and blocks without SR
regions can be directly skipped, which reduces the time
consumption to a certain extent. For the block with SR
regions, the proportion of SR regions in the block is larger
than the original proportion in the global image. Fortu-
nately, the exemplar-based method works well for such a
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relatively large area. In addition, when inpainting SR regions
in each block, the interference from other global information
is less, the confidence is higher, and the processing of texture
detail is better. Next, we will elaborate on the detection and
inpainting methods in local processing in detail.

3.3.1. SR Regions Detection. We require fine detection in the
global processing, but our primary goal is to preserve the
texture details of the image in the local processing. *erefore,
we do not require precision in detecting SR regions in this part,
and we require the texture details to be continuous as much as
possible after inpainting. *is can improve the visual ob-
servability of the colposcopic image. Based on the above
considerations and the time consumption, we choose amethod
that uses the color characteristics of SR regions [23].

Firstly, image enhancement is performed. Since the chro-
maticity difference between SR regions and AW regions in the
colposcopic image is small, we target the chromaticity en-
hancement in the HSV color space. *is nonlinear filter is
defined as follows:

R′

G′
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*en, the pixel luminance (y) and the color luminance of
the entire image (Yglobal) are compared, and the set of pixels
meeting the following conditions is defined as SR regions for
local detection:

y>� ωYglobal � ω
Y

X + Y + Z
. (2)

Input

Original image
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Figure 2: *e flowchart of the proposed method.
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Figure 3: Data samples.
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Figure 4: *e flowchart of global SR detection.
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Here, we give Yglobal a coefficient with the value of ω
because we do not focus too much on the small highlight
pixels in the local processing, but rather inpaint the relatively
large SR regions to present an excellent visual effect. Such a
process of increasing the brightness threshold also shortens
the subsequent inpainting time. *e selection of this coef-
ficient will be specified in the experimental section.

3.3.2. Inpainting. *e image inpainting algorithm based on
the exemplar-based method uses the pitch as the basic unit.
It uses a pixel value and a confidence value to represent the
centre pixel of this pitch. After giving a priority value to it,
the filling order is determined by the weight value. *e best
matching pitch is based on a certain matching principle to
fill the texture and structure information.

*e basic model of the exemplar-based method to
inpaint SR regions in the colposcopic image is shown in
Figure 5. Here, I represents the whole image, Ω is the region
to be inpainted, zΩ is its boundary, and the pixel p is a point
on the zΩ boundary. Ψp is a rectangular neighborhood
centred on the point p. Φ� I−Ω is the non-SR regions.

*e inpainting process is as follows:

(1) Determine the boundary of the SR region in the
colposcopic image. *is can provide the necessary
initial information to make the inpainting gradually
move from the boundary to the centre.

(2) Calculate the priority of the target pixel p. It aims to
determine the pitch to be inpainted in the SR region.
*e calculation formula is as follows:

P(p) � C(p)D(p). (3)

C (p) is the confidence item used to measure the
completeness of the information in the neighbor-
hood of pixel p. A more significant value indicates
that the neighborhood of pixel p contains more
available information. D (p) is the data item used to
measure the location of pixel p. *e greater the value
is, the closer pixel p is to the decisive edge. *e pitch
with a higher priority value and the continuous edge
will be filled in earlier to preserve the texture and
structure information in SR regions.
*e confidence item and data item are expressed as
follows:

C(p) �
􏽐q∈ψp∩(1−Ω)C(p)

ψp

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
, (4)

D(p) �
∇I⊥p · np

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

α
. (5)

In the formula, |Ψp| is the area of Ψp, α is the
normalization factor, np is the standard unit vector of
the pixel p in the boundary direction, and ⊥ rep-
resents the orthogonal operator.

(3) Select the block that best matches the SR region in
the known regionΦ of the colposcopic image and fill

it. According to the Sum of Squared Difference (SSD)
matching principle, find the most similar pitch to
copy its structure and texture information.*e filling
result is defined as

ψ􏽢q � argψq∈Φmin d ψ􏽢p,ψq􏼒 􏼓. (6)

Here, d(ψ􏽢p,ψq) is the sum of the squares of the
differences between the corresponding pixel values
in the two pitches, i.e., the relative distance.*e pitch
ψ􏽢q with the smallest distance is selected as the best
matching pitch of ψ􏽢p, and the known relevant in-
formation in ψ􏽢q is filled into the position of the SR
region in the pitch ψ􏽢p.

(4) Update the confidence value of the corresponding
pixel in the SR region. *e pixel confidence values
C(􏽥p) of the filled parts of the pitch ψ􏽢p are all replaced
by the confidence value C(􏽥p) at the centre point 􏽢p of
the pitch. *e above steps are continued to be re-
peated after filling until all SR regions are finally
eliminated.

3.4. Stage 3: Integration. After the first and second stages,
two images focusing on global smoothing and local texture
are obtained. *e work of this stage is to integrate them
effectively.

*e colposcopic image is a color image with R, G, and B
color channels. If these two images are simply added linearly
in the RGB color space, the desired visual effect cannot be
achieved. On the contrary, the noise information introduced
in the previous inpainting process will be amplified.
*erefore, we continue to analyze the colposcopic image
itself and find a breakthrough in terms of luminance-
chromaticity. At first, both images are converted to the HSV
color space, which also contains three components, i.e., Hue
(H), Saturation (S), and Value (V). Such color space is more
similar to the way humans perceive colors. *en, we
compare the three-component values of each pixel in the two
images and reserve pixels that meet the following conditions:

Figure 5: *e model of exemplar-based method for SR regions
inpainting.
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Hnew � max Hglobal, Hblock􏼐 􏼑

Snew � max Sglobal, Sblock􏼐 􏼑

Vnew � max Vglobal, Vblock􏼐 􏼑

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

. (7)

*e matrix of all the reserved pixels is the image we
finally hope to output. Note here that, for the value of V, we
also choose amore significant value instead of suppressing it,
because this V here is different from SR regions that we want
to eliminate in this paper. Here, we assume that SR regions
have been eliminated, so the value of V more affects the
brightness of the whole image. Moreover, appropriately
increasing the contrast between light and shade can enhance
the stereoscopy and the image’s visual effect.

4. Results

Our experiment is divided into three sections. In Section 4.1,
we set and adjust several essential parameters in eliminating
SR regions. In Section 4.2, we evaluate the effect of
inpainting, respectively. Finally, we invite clinicians to
conduct clinical evaluation and verification in Section 4.3.
All sections involving computer processing are performed
on Matlab2018b. *e CPU is Intel i7-8700K (3.20GHz), and
the memory is 8.00GB.

4.1. Parameters Setting. In this section, we discuss the set-
tings of several important parameters to study their impact
on performance. 150 image samples (Normal, CIN1, CIN2,
CIN3, Cancer, 30 in each kind) from Fujian Provincial
Maternity and Children’s Hospital are selected for verifi-
cation. *e patient information in images is processed for
concealment.

4.1.1. Block Numbers. An innovation of this paper is the
integration of global and local information, so the regulation
of local scope has become a fundamental research problem
of this method. In this paper, we mainly deal with local
information in the form of blocks, so the determination of
the local scope is controlled by the number of blocks. Under
the condition of ensuring that other parameters are the
same, we conduct five sets of experiments with the number
of blocks of 1, 4, 9, 16, and 25 on the colposcopic image and
compare the effects of detection and inpainting in turn.

As shown in Figure 6, the first column is the original
image and its SR regions mask. *e following columns are
SR regions detected in combination with different block
numbers and corresponding inpainted images. In order to
enhance the readability, we have also labelled the details in
the figure.

4.1.2. )e Coefficient of Local Detection. In the local pro-
cessing, we choose a simple brightness threshold of the color
image. *e threshold value directly affects the positioning of
SR regions during the local processing and then affects their
subsequent inpainting.

As mentioned above, our local detection is controlled by
the brightness y. *erefore, y is treated with four different
coefficients of 1.0, 1.1, 1.2, and 1.3, respectively, when the
other parameters are the same. *e corresponding results of
detection are shown in Figure 7. Since the direct effect of this
coefficient on inpainting is not obvious, here is not the
comparison of inpainting. Similarly, the individual details
are marked in the figure.

4.2. Inpainting Evaluation. To evaluate the inpainting effect,
we first show eliminating results of different lesion grades in
our colposcopic image dataset and then extract some lit-
erature Atlas to compare several processing methods’ sub-
jective visual evaluation grades.

4.2.1. )e Preliminary Results. *is section shows some
experimental results to intuitively reflect the processing
effect of our method in different grades of colposcopic
images in this paper. As shown in Figure 8, images of
different categories are ranked in row order, namely,
Normal, CIN1, CIN2, CIN3, and cancer from top to bottom,
with an example for each category. From left to right, the
sequence from left to right is the resulting image of the
original image, Arnold’s method, Criminisi’s method, the
simple combination of the former two methods (Global
A +C), and our proposed method integrated global and local
information.

4.2.2. Subjective Visual Evaluation. In clinical practice,
colposcopic images have no ground truth without SR regions
in the real sense, so an objective quantitative evaluation
cannot be effectively carried out. *us, we construct an
independent user study to provide honest feedback and
quantify subjective evaluation.

Firstly, from 16 pieces of literature
[17, 18, 21–23, 25, 26, 28, 31, 32, 34–39] concerning SR
elimination from endoscopic images, we extracted 50 images
accompanied by their corresponding result images as a new
dataset, called Ref_set. Due to the limited research spe-
cializing in SR regions elimination of colposcopic images, we
extended the images to a broader range of endoscopic
images, including some colonoscopic and laparoscopic
images. *en, four comparison sets were generated from
Ref_set using four methods, including Arnold’s method,
Criminisi’s method, the simple combination of the former
two methods, and our proposed method integrated global
and local information. Moreover, the result images in those
pieces of literature were taken as another comparison set
(Ref results), so a total of five comparison sets were used for
subjective visual evaluation. Next, we invited 10 testers with
basic knowledge of medical anatomy (Group 1) and 10
testers with experience in computer image processing
(Group 2).*ey were required to perform a subjective visual
evaluation for each image independently according to their
own needs and feelings. *e only instruction we gave during
the evaluation is as follows: based on SR inpainting, com-
prehensive visual perception should be used to make a
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quality rating (1 represents the worst quality, 5 represents the
best quality). Finally, we make a statistical analysis of the
evaluation results.

*e average scores of the 1000 trials are shown in Table 1,
and the specific results of the two kinds of participants are
separately analyzed. In Figure 9, we also offer the corre-
sponding scatter plots of the five processing methods and the
average score of each participant.

4.3. Clinical Test. *e ultimate goal of medical image pro-
cessing is to help clinicians improve diagnosis efficiency, so
we also perform clinical verification on our method in this
paper.

Firstly, we select 300 colposcopic images, including 65
normal or inflammatory samples, 65 CIN1 samples, 60 CIN2
samples, 60 CIN3 samples, and 50 cervical cancer samples.
Next, SR regions are eliminated by the proposed method.
*en, we randomly mix 300 original images and 300
inpainting images with no SR regions to form an evaluation
dataset containing 600 images. Finally, we invite 6 colpo-
scopy physicians to make the independent diagnosis.

In the analysis results, we reseparate the original images
from the inpainting images and calculate the accuracy of
each physician’s diagnosis of colposcopic images before and
after eliminating SR regions. In addition, based on the
practical clinical significance, we conduct two kinds of
classifications: two categories (Normal & Lesion) and four
categories (Normal & LSIL &HSIL & Cancer).*e statistical
results are shown in Table 2. It can be seen that, after

eliminating SR regions of colposcopic images, the overall
accuracy of physicians is improved to a certain extent. *e
accuracy of the highest one is increased by 5%.*e results of
the two categories mainly show positive effects, while the
negative impact is slightly increased in the more refined four
categories.

5. Discussion

*is paper proposes a method to eliminate SR regions of
colposcopic images and conduct various experimental tests
on its performance in many aspects.

In the parameters section, we explore the number of
blocks and local detection coefficients. In Figure 6, we focus
on the comparison of several details of the labels. When the
number of blocks is 9 and 16, the overall image restoration
effect is better, but the restoration of 9 blocks takes less time.
*erefore, for our dataset, in combination with the time and
final effect, we believe that the performance is the best when
the number of blocks is set to 9. As shown in Figure 7, with
the continuous increase of the coefficient, the detected re-
gion decreases, and some SR regions with scattered distri-
bution are lost. However, the refinement of the details is
more in line with the actual SR regions positioning in the
image, such as the region circled by the ellipse in the lower
right corner. To balance the above two points, we apply a
local detection coefficient of 1.2 to our dataset.

*e overall effect of eliminating SR regions in colpo-
scopic images is verified by subjective visual evaluation from
the computer and medical perspectives to make up for the

Original Block 1 Block 4 Block 9 Block 16 Block 25

Figure 6: Comparation of the number of blocks.

Original ω = 1.0 ω = 1.1 ω = 1.2 ω = 1.3

Figure 7: Comparison of local detection threshold coefficients.
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defect of comparative evaluation of no ground truth as much
as possible. *e evaluation results in Table 1 show that our
method of integrating global and local information for
eliminating SR regions in colposcopic images has the best
performance from the computer processing perspective.
And the effect is the same as that in the published literature
from a medical standpoint. Overall, the proposed method
has sound visual effects. In Figure 9, the red dots repre-
senting the proposed method are kept at the top of each

Normal

CIN1

CIN2

CIN3

Cancer

Original Arnold’s Criminisi’s Global A + C �e proposed

Figure 8: Experimental results of different grades of lesions.

Table 1: Subjective visual evaluation score.

Arnold’s Criminisi’s Ref
results

Global
A+C

*e
proposed

Group 1 3.28 3.43 3.63 3.56 3.63
Group 2 2.47 2.81 3.41 3.45 3.48
Average 2.88 3.12 3.52 3.51 3.55
Bold values represent the best data in each group.
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Figure 9: Scatter plot of subjective visual evaluation.
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group. In a sense, this small-scale experiment makes up for
the lack of ground truth to make the effective quantitative
evaluation in eliminating SR regions in the colposcopic
image and provides additional support for our method of
integrating global and local information to eliminate SR
regions.

As for clinical testing, in response to the increase in
the negative impact of the four categories, we further
conduct statistics on each of the four categories’ accuracy
and observe that the negative effect is concentrated in the
Cancer category. We have feedback communication with
the physicians about this result and learned that, to avoid
overdiagnosis in clinical diagnosis, the physicians would
maintain a conservative attitude toward a diagnosis in
most cases. Ultimately, the pathological biopsy result is
taken as the gold standard. Physicians often tend to make
a conservative diagnosis for the images after eliminating
SR regions due to insufficient brightness. *is feedback
also arouses our thinking. Besides the improvement of
the method, the clinical application of SR elimination
from colposcopic images should focus on the needs of
physicians. In the process of colposcopy, when physi-
cians find that the SR regions in the collected image
interfere with the lesion diagnosis, they can select the
operation of SR elimination in real-time and can also
perform the comparison before and after eliminating SR
regions, thus increasing the accuracy of the clinician’s
diagnosis.

In addition, some endoscopic datasets are involved in the
detection and inpainting evaluations in this paper. *e
relevant evaluation results are good, proving that themethod
has a long-lasting effect not only for the targeted restoration
of SR regions in colposcopic images, but also for other
similar endoscopic images.

6. Conclusions

We introduce a method of eliminating SR regions by in-
tegrating the global and local information of colposcopic
images in this paper. Our method preserves and constructs
the texture and structure information in SR regions as much
as possible, thus increasing the visual observability of the
image. Many results have been achieved in computer and
clinical tests. In contrast to experiments on eliminating SR
regions in endoscopic images, our method still has good

performance, so it has potential value for similar visual tasks
of this kind of image.
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*e purpose of medical image registration is to find geometric transformations that align two medical images so that the
corresponding voxels on two images are spatially consistent. Nonrigid medical image registration is a key step in medical image
processing, such as image comparison, data fusion, target recognition, and pathological change analysis. Existing registration
methods only consider registration accuracy but largely neglect the uncertainty of registration results. In this work, a method
based on the Bayesian fully convolutional neural network is proposed for nonrigid medical image registration. *e proposed
method can generate a geometric uncertainty map to calculate the uncertainty of registration results. *is uncertainty can be
interpreted as a confidence interval, which is essential for judging whether the source data are abnormal. Moreover, the proposed
method introduces group normalization, which is conducive to the network convergence of the Bayesian neural network. Some
representative learning-based image registration methods are compared with the proposed method on different image datasets.
Experimental results show that the registration accuracy of the proposed method is better than that of the methods, and its
antifolding performance is comparable to that of fast image registration and VoxelMorph. Furthermore, the proposedmethod can
evaluate the uncertainty of registration results.

1. Introduction

Image registration is an image-processing process that aligns
two or more images of the same scene captured at different
times and different perspectives or by using different sensors
[1, 2]. Nonrigid medical image registration is a key step in
medical image processing. In clinical diagnosis, it can judge
a patient’s progress by aligning the brainmagnetic resonance
images of the patient with Alzheimer’s disease at different
periods [3, 4]. In tumor surgery, rapid medical image reg-
istration can aid doctors in surgical navigation [5–7]. In
demography research, image registration is helpful for
studying differences in the brain tissue structures of people
from different countries.

With the advances in medical image registration tech-
nology, various registration methods have been developed,

such as elastic body models [8–10], viscous fluid flowmodels
[11–13], diffusion models [14], curvature registration [15],
statistical parameter mapping [16], free-form deformation
with b-spline [17], discrete method [18, 19], and demons
[20] for registration model construction. Many optimization
algorithms have also been devised, such as gradient descent
methods [21], conjugate gradient methods [22, 23], Powell’s
conjugate direction method [24, 25], quasi-Newtonmethods
[26, 27], Gauss–Newton method [28, 29], and stochastic
gradient descent methods [30, 31]. Similarity measurement
methods, such as the sum of squared differences [32], the
sum of absolute differences, cross-correlation [33], and
mutual information [34], have been proposed.

However, traditional registration methods face real-time
challenges. Large amounts of input data must be processed
when performing nonrigid registrationmodeling on 3D data
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with high resolution, a step that requires a long time. *e
optimization part usually uses an iterative algorithm,
thereby further increasing the total time needed to obtain the
final result [35].

With the development of deep learning, several re-
searchers have proposed deep neural networks to learn
features of unregistered images. Registration methods based
on deep learning can be supervised [36, 37] or unsupervised
[38–40]. Most supervised registration methods rely on an-
atomical labels. However, marking anatomical labels is
difficult, a step that not only consumes a lot of time of
experts but also sometimes hardly guarantees accuracy. In
practice, supervised registration methods are restricted. In
their place, some scholars have proposed unsupervised
medical image registration methods.

Several unsupervised medical image registration
methods have been proposed. VoxelMorph, a recently
proposed unsupervised learning-based method for de-
formable medical image registration, has a better regis-
tration accuracy and a faster speed than other registration
methods [41]. Some researchers combined the advantages
of classical methods and learning-based methods to
produce a probabilistic generative model and derive a
diffeomorphic inference algorithm [42]. A registration
method called fast image registration (FAIM) for 3D
medical image registration has been proposed. Compared
with the registration network based on U-net, FAIM has
fewer trainable parameters to obtain a higher registration
accuracy. In addition, FAIM has less irreversible regions
because of the penalty loss for negative Jacobian deter-
minants [43]. Some scholars recently proposed the Pro-
bab-Mul registration method, which is a feature-level
probability model that can perform regularization on the
hidden layers of two deep convolutional neural networks
[44].

*e focus of the present study is mainly on the accuracy
of registration methods and barely on the uncertainty of
their registration results. *e uncertainty of registration
results is very important in clinical applications as it can be
used to judge whether the registration result is meaningful.
For example, if a model is modeling normal human brain
images, it will never see abnormal brain images that have
brain tumors, malformations, and edema. When the un-
certainty of a registration result is higher than a certain
threshold, the source image can be judged as an abnormal
brain image. During testing, the Bayesian neural network
can obtain the uncertainty of results. Bayesian neural net-
works are used in autonomous driving, classification tasks,
and segmentation tasks. Some researchers recently applied
Bayesian neural networks to image registration. Deshpande
et al. employed a Bayesian deep learning approach for de-
formable medical image registration. *ey reported that this
approach has a better performance than existing state-of-
the-art approaches [45]. Khawaled et al. developed a fully
Bayesian framework for unsupervised deep learning-based
deformable image registration. *eir approach provided
better estimates of the deformation field, thereby improving
registration accuracy [46]. However, these aforementioned
methods do not sufficiently consider and discuss the

uncertainty of registration results. Furthermore, they are
suitable for 2D images only.

In this paper, a method based on Bayesian fully con-
volutional networks is proposed for image registration. *e
proposed method generates a geometric uncertainty map to
measure the uncertainty of registration results. *us, when
the source image obtained is abnormal data, the model will
provide a hint that the source image is problematic instead of
immediately accepting the registration result of the model.
Group normalization (GN) is also added in networks. GN
groups channel similar features into one group. Hence, GN
can make the model easier to optimize and converge to
improve registration accuracy. *e performance of the
registration model in evaluating uncertainty is determined.

*is paper is organized as follows. Section 2 introduces
the principle of the proposedmethod. Section 3 describes the
experimental setup. Section 4 discusses the experimental
results. Finally, Section 5 summarizes the results of the study
and considers directions for future work.

2. Methods

Figure 1 presents an overview of the proposed method. We
used CNN to model the function gc(S, T) � u, where c is the
parameter of the convolutional layers, S is the source image,
T is the target image, and u is the displacement field between
the source image and the target image. S and T are defined
over a 3D spatial domainΩ ⊂ R3. For each voxel p ∈Ω, u(p)

is the displacement, where the map ϕ � Id + u is formed
using an identity transform and u.*e network takes S and T
as the input and uses a set of parameters c to calculate ϕ. We
used a spatial transformation function to warp S to S ∘ϕ and
evaluate the similarity between S ∘ϕ and T. During testing,
given the images T and S of the test set, we obtained the
registration field by evaluating gc(S, T).

2.1. Architecture. In this section, the architecture of the
convolutional neural network used in the proposed method
is described in detail (Figure 2). During training, the moving
image and the target image are stacked together as the input
fed into the Bayesian fully convolutional network module
(BFCNM) [43]. *e first layer is inspired by Google’s in-
ception module. *e purpose of this layer is to compare and
capture information on different spatial scales of later
registration. Parametric rectified linear unit [47] activation is
utilized at the end of each convolution block, and linear
activation is employed in the last layer to generate the
displacement field. Instead of inserting max-pooling layers, a
kernel stride of 2 is used to reduce image size. *ree “add”
skip connections are present in downsampling and
upsampling [43]. *e “add” skip connection is conducive to
the fusion of upsampling information and its corresponding
downsampling information. During the upsampling phase,
two Bayesian blocks are used. *e Bayesian blocks are
composed of a transposed convolutional layer, a convolu-
tional layer, PReLU, a group normalization layer, and a
Dropout layer. *e detail of the Bayesian block is shown in
Figure 2(b). In this paper, Monte Carlo Dropout (MC-
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Dropout) is introduced; it is interpreted as a Bayesian ap-
proximation of Gaussian processes.

2.2. Spatial Transformation Function. *e spatial transfor-
mation function uses the ϕ generated by BFCNM to
resample S and obtain the warped image S ∘ϕ. *e proposed
method learns the optimal parameter values by minimizing
the difference between S ∘ϕ and T. A differentiable operation
is constructed on the basis of the spatial transformer net-
work [41, 48] via the standard gradient-based method to
calculate S ∘ϕ. For each voxel p, a voxel position
p′ � p+ u(p) is calculated in the source image. *e image
values are only defined in integer positions. *us, linear
interpolation is performed at eight adjacent voxels:

S ∘ϕ(p) � 􏽘

q∈Z p′( )

S(q) 􏽙

d∈ x,y,z{ }

1 − pd
′ − qd

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑.

(1)

where Z(p′) is the voxel neighbors of p′ and d is iterated in
the dimension of Ω. Errors can be backpropagated during
the optimization process because gradients or subgradients
can be calculated.

2.3. Loss Function. *e total training loss is the sum of an
image dissimilarity term Limage and the regularization terms,
as shown in Table 1. *e loss function [43] is defined as
follows:

Ltotal � Limage(S, T) + αR1(u) + βR2(u). (2)

*e main loss Limage with cross-correlation (CC) in this
paper is for the similarity between the warped source image
and the target image. *e definition of CC is as follows:

CC(t, s ∘ϕ) �
􏽐x∈Ω(t(x) − t(x))(s ∘ϕ(x) − s ∘ϕ(x))􏼐 􏼑

2

􏽐x∈Ω(t(x) − t(x))
2

􏼐 􏼑 􏽐x∈Ω(s ∘ϕ(x) − s ∘ϕ(x))
2

􏼐 􏼑
,

(3)

where t(x) is the grey value of the target image, t(x) is the
average grey value of the target image, s ∘ϕ(x) is the grey
value of the warped image, and s ∘ϕ(x) is the average grey
value of the warped image.

*e first regularization term R1 regularizes the overall
smoothness of the predicted displacements. *e parameter
of the regular term is α, and its value is always 1.*e purpose
of the second regularization is to penalize transformations
that have many negative Jacobian determinants. *e pa-
rameter of the regular term is β. *e transformations of all
nonnegative Jacobian determinants will not be penalized. If
the Jacobian determinant is negative, then the transfor-
mation result will be folded, which is physically unrealistic.

2.4. Group Normalization. Group normalization (GN) is a
feature-normalization technique that is inserted into the
architecture of deep neural networks as a trainable process.
*e purpose of GN is to reduce internal covariant shifts. With
training iterations, the distribution of features often contin-
uously changes. Under this condition, the parameters in the

convolutional layer must be continuously updated to adapt to
the changes in distribution. GN normalizes the feature to a
fixed distribution (mean value is zero, and the standard
deviation is 1) and then adjusts the feature to an ideal dis-
tribution, which is learned in the training process [48].

Here, x is the feature computed by a layer, and i is an
index. In the case of 3D images, i � (iN, iC, iD, iH, iW) is a 5D
vector indexing the features in (N, C, D, H,W) order, where
N is the batch axis; C is the channel axis; andD,H, andW are
the spatial depth, height, and width axes, respectively.

Formally, the group normalization layer must compute
for mean µ and standard deviation σ in a set Si. Si is a group
and defined as follows:

Si � k|kN � iN, ⌊
kC

C/G
⌋ � ⌊

iC

C/G
⌋􏼨 􏼩, (4)

where G is the number of groups, which is a predefined
hyperparameter; C/G is the number of channels in each
group; ⌊ · ⌋ represents floor operation; 􏼄kC/(C/G)􏼅 � 􏼄iC/
(C/G)􏼅 means that the indexes i and k are in the same group
of channels, assuming that each group of channels is stored
in sequential order along theC axis; and Si contains all voxels
along the (D, H, W) axes and along with a group of (C/G)

channels.
*e mean μi and standard deviation σi of Si are com-

puted as follows:

μi �
1
m

􏽘
k∈Si

xk,

σi �

����������������

1
m

􏽘
k∈Si

xk − μi( 􏼁
2

+ ε

􏽶
􏽴

,

(5)

where ε is a small constant, and m is the size of set Si. GN
then performs the following computation:

􏽢xi �
1
σi

xi − μi( 􏼁, (6)

GN learns a per-channel linear transform to compensate
for the possible loss of representational ability:

yi � c􏽢xi + β, (7)

where c and β are trainable scale and shift, respectively.
Given the Si in (4), the GN layer is defined by equations
(5)–(7). Specifically, the voxels in the same group are
normalized by the same μi and σi. GN also learns the c and β
of each channel.

2.5. Bayesian Neural Network. In this section, the registra-
tion network based on Bayesian inference is introduced. *e
credibility of the results is important in solving medical

Table 1: Loss and regularization functions used.

Limage(S, T): 1 − CC(S ∘ϕ− 1, T)

Regularization :R1(u) � ‖Du‖2
Regularization :R2(u) � 0.5(|det(Dϕ− 1)| − det(Dϕ− 1))
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problems. Several researchers proposed a Bayesian neural
network by studying the uncertainty of deep learning
[49, 50]. *e Bayesian neural network is a statistical model
derived from the perspective of probability. *e parameters
in the model are initialized by an a priori distribution, and
the parameters are further optimized by Bayesian inference.
In the Bayesian neural network, given the data set D and
weightW, the datasetD contains data X and label Y.*e goal
of Bayesian neural network training is to optimize the pa-
rameters, that is, to seek the posterior distribution of weight
W. According to Bayesian criterion, the posterior distri-
bution of weight W is written as

p(W|D) �
p(D|W)p(W)

p(D)

�
p(y|x, W)p(W)

p(y|x)
,

(8)

where x and y are the data in the training set and the
corresponding label, respectively, and p(W) is the initial
value of the parameter (i.e., the prior distribution). *e
posterior distribution of the labels predicted by the Bayesian
neural network can then be calculated as follows [51]:

p y
∗
|x
∗
, D( 􏼁 � Ep(W|D) p y

∗
|x
∗
, W( 􏼁􏼂 􏼃

� 􏽚 p y
∗
|x
∗
, W( 􏼁p(W|D)dW.

(9)

In equation (9), the weight parameter W in the network
is used to predict the unknown distribution of label y∗. In
the Bayesian neural network model, the solution of the
posterior distribution p(W|D) of the parameters is the key
to the entire model. However, this solution is computa-
tionally intractable for neural networks of any size. *ere-
fore, many researchers use approximate methods to obtain
the solution [52, 53].

A common approach is to use variational inference to
approximate the posterior distribution of the weights. *is
method introduces the variational distribution qθ(W) of
weight w, which is parameterized on θ. *e approximate
posterior distribution qθ(W) is obtained by minimizing the
Kullback-Leibler (KL) divergence between qθ(W) and the
true posterior distribution p(W|D).

KL qθ(W)
����p(W|D)􏼐 􏼑. (10)

Minimizing KL divergence is equivalent to minimizing
the Negative Evidence Lower Bound (NELBO):

NELBO � Eqθ
[−log p(Y|X, W)]

+ KL qθ(W)
����p(W)􏼐 􏼑

� − 􏽚 qθ(W)log p(Y|X, W)dW

+ KL qθ(W)
����p(W)􏼐 􏼑,

(11)

with respect to the variational parameter θ. *e first term
(commonly referred to as the expected log-likelihood)
encourages qθ(W) to place its mass on the configurations

of the latent variable that explains the observed data.
However, the second term (referred to as prior KL) en-
courages qθ(W) to be similar to the prior distribution
p(W), preventing the model from overfitting. *e goal is
to develop an explicit and accurate approximation for the
expectation.

Our approach uses Bernoulli approximating variational
inference and Monte Carlo sampling [54]. In practice,
Dropout is used for Bayesian neural network approximation.

When Dropout [55] is applied to the output of a layer,
the output can be written as

a
DO
i � σ zi ⊙ Wiv( 􏼁( 􏼁. (12)

where, for a single Ki−1 dimensional input v, the ith layer of a
neural network with Ki units would output a Ki dimensional
activation vector; wi is the Ki × Ki−1 weight matrix; σ(·) is
the nonlinear activation function; ⊙ signifies the Hadamard
product; zi is a Ki dimensional binary vector with its ele-
ments drawn independently from z

(k)
i ∼ Bernoulli(pi)

k � 1,. . ., Ki; and pi is the probability of keeping the output
activation.

*e solution of the posterior distribution p(W|D) of the
parameters is further improved after introducing the Ber-
noulli distribution into the weight parameters of our model.
*e Monte Carlo sampling method is used to estimate the
first item in (11):

Eqθ
log p(Y|X, W) � 􏽘

N

n�1
􏽚 qθ(W)log p yn|xn, W( 􏼁

�
1
N

􏽘

N

n�1
log p yn|xn, 􏽢Wn􏼐 􏼑,

(13)

where W
∧

n is not the maximum posterior estimation but the
random variable realizations from the Bernoulli distribu-
tion; and W

∧
n ∼ qθ(W), which is the same as applying

Dropout to the weights of the network. For the second item
in equation (11) (i.e., KL term), the approximate solution is
given in the literature [56]. *e KL term has been shown to
be equivalent to 􏽐

L
i�1 ‖Wi‖

2
2. *us, equation (11) can be

rewritten as

NELBO � −
1
N

􏽘

N

n�1
log p yn|xn, 􏽢Wn􏼐 􏼑 + 􏽘

L

i�1
Wi

����
����
2
2. (14)

Equation (14) is the unbiased estimation of equation
(11). Interestingly, it is the same as the loss function used in
standard neural networks with L2 weight regularization, and
Dropout is applied to all weights of the network. *erefore,
training such a neural network with stochastic gradient
descent has the same effect as minimizing the KL term in
(10).*is scheme is similar to a Bayesian neural network and
can generate a set of parameters that can best explain the
observed data while preventing overfitting.

Predictions in this model follow (9) replacing the pos-
terior p(W|D) with the approximate posterior qθ(W). *e
integral can be approximated with Monte Carlo integration
[51, 54]:
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p y
∗
|x
∗
,D( 􏼁 ≈ 􏽚 p y

∗
|x
∗
, W( 􏼁qθ(W)dW

≈
1
T

􏽘

T

t�1
log p yn|xn, 􏽢Wt􏼐 􏼑

≈ pMC y
∗
|x
∗

( 􏼁,

(15)

where W
∧

t ∼ qθ(W), which means that, at test time, the
Dropout layers are kept active to keep the Bernoulli dis-
tribution over the network weights. *is integration is re-
ferred to as the Monte Carlo Dropout.

*e Monte Carlo Dropout reflects the need to conduct
multiple forward propagation processes on the same input.
In this manner, the output of “different network structures”
can be obtained under the action of Dropout during testing.
*e prediction results and the uncertainty of the model can
be obtained by calculating the average and statistical vari-
ance of these outputs. *e advantage of Bayesian deep
learning is that Monte Carlo Dropout can give a prediction
value and the confidence of the predicted value.

2.6. Measuring Model Uncertainty. Uncertainties in a net-
work are a measure of how certain the model is with its
prediction. In general, Bayesian modeling has two types of
uncertainty. Model uncertainty, also known as Epistemic
uncertainty, measures what the model does not know owing
to the lack of training data. *is uncertainty can be reduced
with more data. During testing, model uncertainty can
measure whether the testing data exists in the distribution of
the training data. Aleatoric uncertainty measures the noise
inherent in the observation data and cannot be reduced by
collecting more data [51].

By computing the result of stochastic forward passes of
the Bayesian neural network, the model’s confidence of its
output can be estimated. In this paper, the mean μ and the
standard deviation σ of all displacements produced by
Monte Carlo sampling are calculated. *e mean μ is used in
the registration image, whereas the standard deviation σ
provides an estimate of the uncertainty of registration re-
sults. *e mean μ of the displacement fields is calculated as
follows:

μ �
1
M

􏽘

M

i�1
yi, (16)

where M represents the number of Monte Carlo sampling
(M� 48 in this paper). yi represents the displacement field
sampled by ith. After calculating the mean value of the
displacement fields, the standard variance of the displace-
ment fields can be calculated as follows:

σ �

����������������

1
M − 1

􏽘

M

i�1
yi − μ( 􏼁

2

􏽶
􏽴

, (17)

where σ can be expressed as the uncertainty of registration
results.

3. Experiment

3.1. Experimental Setup. *e dataset we adopted herein was
created by Arno et al. who based it on a collection of 101 T1-
weighted MRIs from healthy subjects [57]. In this paper, we
used brain images from the four subsets of Mindboggle101,
namely, NKI-RS-22, NKI-TRT-20, MMRR-21, and OASIS-
TRT-20, for a total of 83 images. *ese images are already
warped to MNI152 space. Each image had a dimension of
182× 218×182, each of which we truncated to 144×180×144.
In the preprocessing stage, we utilized the FMRIB Software
Library (FSL) to perform affine registration on NKI-RS-22,
NKI-TRT-20, MMRR-21, and OASIS-TRT-20. We initially
normalized the voxel intensity of each brain image and then
normalized voxel intensity to 0–255. Finally, we performed a
registration test on the five main anatomical regions of the
cerebral cortex.

3.2. Evaluation Metrics

3.2.1. Dice Scores. If the registration field ϕ represents an
accurate correspondence, then the corresponding anatom-
ical regions in T and S ∘ ϕ should overlap well. *erefore, we
evaluated registration accuracy by using the Dice score. *e
Dice score is defined as follows [43]:

DICE �
2∗ |X∩Y|

|X| + |Y|
. (18)

3.2.2. Regularized Penalty Folding. We also evaluated the
regularity of deformation fields. Specifically, the Jacobian
matrix captures the local properties of ϕ around voxel p. We
counted all nonbackground voxels where the Jacobian de-
terminant det(∇ϕ)< 0 is negative [43]:

N ≔ 􏽘 δ(det(Dϕ)< 0), (19)

where δ(·) indicates that if it is true, then the return value is
1.

3.2.3. Uncertainty Evaluation Metrics. We adopted the
method proposed in the literature to evaluate uncertainty
performance [51]. We used metrics that incorporate the
ground truth label, model prediction, and uncertainty value
to evaluate the performance of such models in estimating
uncertainty. Figure 3 shows the required processing steps to
prepare these quantities for our metrics in a registration
example. We computed the map of correct and incorrect
values by matching the ground truth labels and the model
predictions. We converted the uncertainty map into a map
of certain and uncertain predictions by setting the uncer-
tainty threshold T, which varies between the minimum and
the maximum uncertainty values in the entire test set. *e
following indicators can reflect the characteristics of a good
uncertainty estimator.

Negative predictive value (NPV): in the output of certain
results by the model, NPV is the percentage of voxels that is
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correctly predicted and can be written as a conditional
probability:

NPV �
P(correct, certain)

P(certain)
�

TN
TN + FN

. (20)

True positive rate (TPR): if a model is making an in-
correct prediction, then the proportion of uncertain voxels is
called TPR. TPR can be written as a conditional probability:

TPR �
P(uncertain, incorrect)

P(incorrect)
�

TP
TP + FN

. (21)

Uncertainty accuracy (UA): UA is the overall accuracy of
uncertainty estimation and can be measured as the ratio of
the desired cases explained above (TP and TN) over all
possible cases:

UA �
P(correct, certain) + P(uncertain, incorrect)

P(correct) + P(incorrect)

�
TP + TN

TP + TN + FP + FN
.

(22)

Clearly, in all the metrics proposed above, higher values
indicate that the model performs better. *e values of these
metrics depend on the uncertainty threshold.

3.3. Baseline Methods. In the comparative study, we used
FSL, a comprehensive library of analytical tools for fMRI,
MRI, and diffusion tensor imaging brain imaging data, as the
baseline to perform an affine registration experiment with 12
degrees of freedom on the test set. We used the second
baseline symmetric normalization (SyN) with mutual in-
formation as a similarity measure in the publicly available
Advanced Normalization Tools (ANTs) software package
[58]. We also tested the recently developed CNN-based
methods, namely, VoxelMorph [41], FAIM [43], and Pro-
bab-Mul [44], and compared their performance with that of

the proposed method. *e hyperparameters of the CNN-
based methods were consistent. Finally, we adopted various
methods for ablation study. *e method that only adds GN
was denoted as Our-GN, and the method that only adds
Dropout was labeled as Our-DO. *ese two methods were
consistent with our method in terms of hyperparameter
settings.

3.4. Implementation. We divided the data set into training
and test image sets. *e training set consisted of all ordered
brain image pairs from the union of the NKI-RS-22, NKI-
TRT-20, and MMRR-21 subsets, which comprised 3906
pairs in total. *e test set consisted of all ordered pairs from
the OASIS-TRT-20 subset with 380 pairs in total. We trained
FAIM, VoxelMorph, Probab-Mul, and our method on all
pairs of images from the training set and then examined
their predicted deformations by using the pairs of images
from the testing set.

We implemented our method using Keras [59] with a
Tensorflow backend [60]. We used the Adam optimizer. We
trained three networks with the same hyperparameters:
batch size� 1, learning rate� 10− 4, epochs� 10, and α� 1.

4. Results and Discussion

In this experiment, we separately trained the proposed
networks with different β values. We optimized the pa-
rameters by the validation set and reported results in our test
set. *e predicted deformation field could not guarantee
diffeomorphism; therefore, the transformation of irrevers-
ible regions caused an image to “fold” on itself. In these
regions, the determinant of the Jacobian matrix of the de-
formation field was negative (Figure 4). However, spatial
folding is physically impossible; hence, this phenomenon
causes registration errors in clinical applications. *e fre-
quency of such errors limits the application of neural net-
works in image registration.
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Figure 3: Overview of the metrics for the evaluation of the uncertainty quality in a registration example.
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4.1. Dice Scores. *e mean Dice scores of the different
methods across all predicted labels with their corresponding
target labels are shown in Table 2. We selected five scales of
regularization strength β from 0 to 10−2. Results showed that
FSL was not suitable for fine registration because of its few
registration parameters in the affine registration with 12
degrees of freedom. ANT (SyN) is a nonrigid registration
method, and its registration accuracy was found to be higher
than that of affine registration. *e Dice scores of FAIM
slightly decreased as β increased, and its Dice scores were
higher than those of VoxelMorph. *e registration accuracy
of Probab-Mul was slightly better than that of FAIM. *e
proposed method achieved the highest registration accuracy
under all β values.

*e results of the ablation study revealed that the Dice
score of Our-GN was higher than FAIM by 2.8% on average
(Table 2). Experimental results showed that GN could im-
prove the accuracy of registration. Moreover, the registra-
tion accuracy of Our-DO was slightly lower than that of
FAIM (Table 2), illustrating that adding a Dropout layer had
little impact on registration accuracy.

When β takes 0, 10− 5, 10− 410− 3, and 10− 2, the Dice
scores of our method were higher than those of FAIM by
2.63%, 2.80%, 2.84%, 2.50%, and 3.37%, respectively, higher
than those of Probab-Mul by 2.31%, 2.49%, 2.55%, 2.05%,
and 2.88%, respectively, and higher than those of Vox-
elMorph by 4.78%, 5.17%, 5.27%, 5.21%, and 5.90%, re-
spectively (Table 2). *is result implied that inserting GN
layers into the network architecture could indeed enable the
network to learn better parameters and could make the
network easier to optimize and converge, thereby improving
registration accuracy. During training, we set epochs� 10,
and each epoch took about 100min to perform 2900
iterations.

Figure 5 presents the boxplot of the Dice scores of the five
main anatomical regions of the cerebral cortex when β� 10−3.
*e Dice scores of ANTs in each label were quite different,
indicating that ANTs were unstable. *e flatness of the
boxplots indicated that the stability of the proposed method
was comparable to that of other deep learning methods. *e
proposed method achieved the highest registration accuracy
in the five regions of the cerebral cortex.

Figure 6 shows the mean Dice scores corresponding to
the different β values of all methods. *e accuracy of the
proposed method was relatively consistent with different β
values and was higher than that of the other methods.

4.2. Data-Regularized Penalty Folding. Figure 7 visualizes
the effects of the second regularization term R2 (u), which
directly penalized “foldings” during training. β� 0 means
the regularization was not used, and multiple locations were
visible in the transformation whose Jacobian determinants
were negative. *e number of “foldings” voxels greatly re-
duced when β� 10−5. Only several “folding” voxels were
observed when β� 10−4. *e number of “folding” voxels was
almost eliminated when β� 10−3.

We listed the mean values of the number of voxels of
different methods whose Jacobian determinants were neg-
ative in Table 3. *e proposed method had a lower number
of “foldings” in the predicted deformations as β increased.

4.3. Uncertainty Measure. In this section, the performance
of the registration model in estimating uncertainty was
evaluated. Figure 8 shows the results of uncertainty evalu-
ation by the proposed method. In the experiment, the
Dropout rate of the Dropout layer was set to 0.5. During the
test, the Dropout layer was always on, and 48 Monte Carlo
samplings were performed. *e threshold T of the uncer-
tainty map had an impact on the uncertainty measure. We
set the threshold between 0 and 1 with an interval of 0.1. As
the threshold increased, the proportion of the uncertain part

(a) (b) (c) (d)

Figure 4:*e first and last images are the source and target images, respectively, and the third image is the deformed image produced by the
method. *e second image shows the values of the Jacobian determinant of the predicted deformation with “folding” locations (negative
determinant) marked in red. *e deformed grids illustrate parts of the deformation. (a) Source, (b) deformation, (c) deformed, and
(d) target.

Table 2: Mean Dice scores with different β values.

Mean Dice β� 0 β� 10− 5 β� 10− 4 β� 10− 3 β � 10− 2

FSL (Affine) 0.4357 — — — —
ANTs(SyN) 0.5139 — — — —
VoxelMorph 0.5255 0.5203 0.5165 0.5091 0.4908
FAIM 0.5470 0.5440 0.5408 0.5362 0.5161
Probab-Mul 0.5502 0.5471 0.5437 0.5407 0.5210
Our-DO 0.5459 0.5421 0.5380 0.5323 0.5149
Our-GN 0.5729 0.5709 0.5679 0.5591 0.5410
Our method 0.5733 0.5720 0.5692 0.5612 0.5498
Bold values mean the optimal dice score of all methods at the same β value.
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of the uncertainty map decreased; hence, the TPR curve
gradually decreased. *e maximum value of 0.756 in the
NPVmeasurement was obtained at the threshold of 0.1. *is
value slightly decreased as the threshold further increased
but still greater than 0.72. If the model was certain about its
prediction, then the accuracy of the prediction was higher.
Uncertainty accuracy was also the largest (0.77) when the
threshold was 0.1 and slightly declined as the threshold
further increased. It remained greater than 0.712. Uncer-
tainty accuracy is the overall accuracy of uncertainty mea-
surements. It shows the ratio of the cases we desired in all
possible cases. *e uncertainty accuracy of our model was
relatively high (Figure 8).

5. Conclusion

We developed an unsupervised 3D medical image regis-
tration method that uses Bayesian fully convolutional net-
works for registration. *e proposed method introduces
probability distributions for network weights and obtains
the uncertainty of registration results. We introduced GN
into the neural network architecture, which is conducive to

the optimization and convergence of the neural network.
*e experimental results showed that the proposed method
can obtain higher registration Dice scores than other state-
of-the-art models and achieve an antifolding performance
comparable to that of FAIM and VoxelMorph.*e proposed
method can also estimate the uncertainty of registration
results. Although penalty folding can reduce the irreversible
area of registration result, it cannot guarantee that the ir-
reversible area is zero. *us, the nonrigid registration of
diffeomorphism with high accuracy is one of our research
directions in the future.
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(a) (b) (c) (d)

Figure 7: Locations where det(∇ϕ)< 0 (marked in dark blue) with different β shown on one slice. Predictions were done using the proposed
method. (a) 0, (b) β� 10−5, (c) β� 10−4, and (d) β� 10−3.

Table 3: Mean number of “folding” locations with different β values.

Mean N β� 0 β� 10− 5 β� 10− 4 β� 10− 3 β� 10− 2

VoxelMorph 33733 1400 232 60 13
FAIM 39377 1531 234 26 3
Probab-Mul 39905 1700 241 28 6
Our method 39842 1680 240 25 3
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Figure 8: Quantitative uncertainty estimation performance for registration task using the evaluation metrics. *e abscissa is the threshold
(T). *e ordinate is negative predictive value (NPV), true positive rate (TPR), and uncertainty accuracy (UA), respectively.
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3D/2D registration methods for image-guided interventions,”
Medical Image Analysis, vol. 16, no. 3, pp. 642–661, 2012.

[6] Y. Otake, M. Armand, R. S. Armiger et al., “Intraoperative
image-based multiview 2D/3D registration for image-guided
orthopaedic surgery: incorporation of fiducial-based C-arm
tracking and GPU-acceleration,” IEEE Transactions on
Medical Imaging, vol. 31, no. 4, pp. 948–962, 2012.

[7] M. Ferrant, “Serial registration of intraoperativeMR images of
the brain,”Medical Image Analysis, vol. 6, no. 4, pp. 337–359,
2002.

[8] I. Yanovsky, C. L. Guyader, A. Leow, P. *ompson, and
L. Vese, “Unbiased volumetric registration via nonlinear
elastic regularization,” in Proceedings of the Miccai Workshop
on Mathematical Foundations of Computational Anatomy,
New York, NY, USA, October 2008.

[9] C. Le Guyader and L. A. Vese, “A combined segmentation and
registration framework with a nonlinear elasticity smoother,”
Computer Vision and Image Understanding, vol. 115, no. 12,
pp. 1689–1709, 2011.

[10] C. Davatzikos, “Spatial transformation and registration of
brain images using elastically deformable models,” Computer
Vision and Image Understanding, vol. 66, no. 2, pp. 207–222,
1997.

[11] Y. Wang and L. H. Staib, “Physical model-based non-rigid
registration incorporating statistical shape information,”
Medical Image Analysis, vol. 4, no. 1, pp. 7–20, 2000.

[12] E. D’Agostino, F. Maes, D. Vandermeulen, and P. Suetens, “A
viscous fluid model for multimodal non-rigid image regis-
tration using mutual information,” Medical Image Analysis,
vol. 7, no. 4, pp. 565–575, 2003.

[13] M. C. Chiang, D. Leow, D. Klunder et al., “Fluid registration of
diffusion tensor images using information theory,” IEEE
Transactions on Medical Imaging, vol. 7, no. 4, pp. 42–456,
2008.

[14] H. Lombaert, L. Grady, X. Pennec, N. Ayache, and F. Cheriet,
“Spectral log-demons: diffeomorphic image registration with
very large deformations,” International Journal of Computer
Vision, vol. 107, no. 3, pp. 254–271, 2014.

[15] N. D. Cahill, J. A. Noble, and D. J. Hawkes, “Demons algo-
rithms for fluid and curvature registration,” in Proceedings of
the IEEE International Symposium on Biomedical Imaging:
from Nano to Macro, Boston, MA, USA, July 2009.

[16] J. Ashburner and K. J. Friston, “Voxel-based morphometry-
the methods,” NeuroImage, vol. 11, no. 6, pp. 805–821, 2000.

[17] D. Rueckert, L. I. Sonoda, C. Hayes, D. L. G. Hill, and
M. O. Leach, “Nonrigid registration using free-form defor-
mations: application to breast MR images,” IEEE Transactions
on Medical Imaging, vol. 18, no. 8, pp. 712–721, 2002.

[18] A. V. Dalca, A. Bobu, N. S. Rost, and P. Golland, “Patch-based
discrete registration of clinical brain images,” in Proceedings of
the International Workshop on Patch-based Techniques in
Medical Imaging, Athens, Greece, October 2016.

[19] B. Glocker, N. Komodakis, G. Tziritas, N. Navab, and
N. Paragios, “Dense image registration through MRFs and
efficient linear programming,” Medical Image Analysis,
vol. 12, no. 6, pp. 731–741, 2008.

[20] X. Pennec, P. Cachier, and N. Ayache, “Understanding the
“demon’s algorithm”: 3D non-rigid registration by gradient
descent,” in Proceedings of the International Conference on
Medical Image Computing and Computer-Assisted
Intervention, Cambridge, UK, September 1999.

[21] H. J. Johnson and G. E. Christensen, “Consistent landmark
and intensity-based image registration,” IEEE Transactions on
Medical Imaging, vol. 21, no. 5, pp. 450–461, 2002.

[22] G. Postelnicu, L. Zollei, and B. Fischl, “Combined volumetric
and surface registration,” IEEE Transactions on Medical Im-
aging, vol. 28, no. 4, pp. 508–522, 2019.

[23] A. A. Joshi, D. W. Shattuck, P. M. *ompson, and
R. M. Leahy, “Surface-constrained volumetric brain regis-
tration using harmonic mappings,” IEEE Transactions on
Medical Imaging, vol. 26, no. 12, pp. 1657–1669, 2007.

[24] J. P. W. Pluim, J. B. A. Maintz, and M. A. Viergever, “In-
formation measures in medical image registration,” IEEE
Transactions on Medical Imaging, vol. 23, no. 12, pp. 1508–
1516, 2004.

[25] R. Gan, A. Chung, and S. Liao, “Maximum distance-gradient
for robust image registration,” Medical Image Analysis,
vol. 12, no. 4, pp. 452–468, 2008.

[26] M. C. Seiler and F. A. Seiler, “Numerical recipes in C: the art
of scientific computing,” Risk Analysis, vol. 9, no. 3,
pp. 415–416, 1989.

[27] R. H. Byrd, J. Nocedal, and Y. X. Yuan, “Global convergence
of a CASS of Quasi-Newton methods on convex problems,”
SIAM Journal on Numerical Analysis, vol. 24, no. 5,
pp. 171–1190, 1987.

[28] B. T. T. Yeo, T. Vercauteren, P. Fillard, J. M. Peyrat, and
O. Clatz, “DT-REF in D: diffusion tensor registration with
exact finite-strain differential,” IEEE Transactions on Medical
Imaging, vol. 28, no. 12, pp. 1914–1928, 2019.

[29] B. T. T. Yeo, M. R. Sabuncu, T. Vercauteren, N. Ayache,
B. Fischl, and P. Golland, “Spherical demons: fast diffeo-
morphic landmark-free surface registration,” IEEE Transac-
tions on Medical Imaging, vol. 29, no. 3, pp. 650–668, 2010.

Journal of Healthcare Engineering 11



[30] P. Unser and M. Unser, “Optimization of mutual information
for multiresolution image registration,” IEEE Transactions on
Image Processing, vol. 9, no. 12, pp. 2083–2099, 2000.

[31] S. Klein, J. P. W. Pluim, M. Staring, and M. A. Viergever,
“Adaptive stochastic gradient descent optimisation for image
registration,” International Journal of Computer Vision,
vol. 81, no. 3, pp. 227–239, 2009.

[32] S. Ekström, F. Malmberg, H. Ahlström, J. Kullberg, and
R. Strand, “Fast graph-cut based optimization for practical
dense deformable registration of volume images,” Comput-
erized Medical Imaging and Graphics, vol. 84, Article ID
101745, 2020.

[33] B. Avants, C. Epstein, M. Grossman, and J. Gee, “Symmetric
diffeomorphic image registration with cross-correlation:
evaluating automated labeling of elderly and neurodegener-
ative brain,”Medical Image Analysis, vol. 12, no. 1, pp. 26–41,
2008.

[34] H. Y. Zhang, J. W. Zhang, and J. Z. Sun, “Registration method
for CT-MR image based on mutual information,” Transac-
tions of Tianjin University, vol. 13, no. 3, pp. 226–230, 2007.

[35] V. Villena-Martinez, S. Oprea, and M. Saval-Calvoet, “When
deep learning meets data alignment: a review on deep reg-
istration networks (DRNs),” 2020, https://arxiv.org/abs/2003.
03167.

[36] K. A. J. Eppenhof and J. P. W. Pluim, “Pulmonary CT reg-
istration through supervised learning with convolutional
neural networks,” IEEE Transactions on Medical Imaging,
vol. 38, no. 5, pp. 1097–1105, 2019.

[37] B. Wang, Y. Lei, S. Tian et al., “Deeply supervised 3D fully
convolutional networks with group dilated convolution for
automatic MRI prostate segmentation,” Medical Physics,
vol. 46, no. 4, pp. 1707–1718, 2019.

[38] B. D. de Vos, F. F. Berendsen, M. A. Viergever, H. Sokooti,
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Accurate pancreas segmentation from 3D CT volumes is important for pancreas diseases therapy. It is challenging to accurately
delineate the pancreas due to the poor intensity contrast and intrinsic large variations in volume, shape, and location. In this
paper, we propose a semiautomated deformable U-Net, i.e., DUNet for the pancreas segmentation. ,e key innovation of our
proposed method is a deformable convolution module, which adaptively adds learned offsets to each sampling position of 2D
convolutional kernel to enhance feature representation. Combining deformable convolution module with U-Net enables our
DUNet to flexibly capture pancreatic features and improve the geometric modeling capability of U-Net. Moreover, a nonlinear
Dice-based loss function is designed to tackle the class-imbalanced problem in the pancreas segmentation. Experimental results
show that our proposed method outperforms all comparison methods on the same NIH dataset.

1. Introduction

Pancreatic diseases are relatively hidden and difficult to
detect and cure, especially for pancreatic cancers, which have
high mortality rate worldwide [1]. Accurate pancreas seg-
mentation from 3D CT scans can provide assistance to
doctors in the diagnosis of pancreas diseases, such as vol-
umetric measurement and analysis for diabetic patients, as
well as surgical guidance for clinicians [2]. However, it is
challenging to segment the pancreas due to the large ana-
tomical variability in pancreas position, size, and shape
across patients (as shown in Figure 1). Moreover, the am-
biguous boundaries around the pancreas with its adjacent
structures further increase the difficulty of pancreas
delineation.

Traditional methods on abdominal pancreas segmen-
tation mainly have statistical shape models [3, 4] or multi-
atlas techniques [5, 6]. Wolz et al. proposed a fully auto-
mated method based on a hierarchical atlas registration and
weighting scheme for abdominal multiorgan segmentation
[6].,is method was evaluated on a database of 150 CTscans
and achieved Dice score of 70% for the pancreas. Karasawa

et al. exploited the vasculature around the pancreas to better
select atlases for pancreas segmentation [7]. ,is method
was evaluated on 150 abdominal CT scans and obtained an
average Dice score of 78.5%. However, the performance of
atlas-based methods highly relies on the selection of atlases
and the accuracy of the image registration algorithm. Above
all, it is difficult to select atlases that are general enough to
cover all variabilities in the pancreas across different
patients.

Convolutional networks [8, 9] have achieved great
success in medical image segmentation, which also boost the
performance of pancreas segmentation. U-Net [10], a se-
mantic segmentation architecture, attracted great attentions
from researchers by exploiting multilevel feature fusion. ,e
skip connections in U-Net are used to incorporate high-
resolution low-level feature maps from the encoding branch
into the decoding branch of U-Net to alleviate the important
information loss caused by successive downsampling and
then refine and recover target details. Namely, using skip
connections to fuse multilevel feature tensors can effectively
localize and segment target organs [11]. Many works [12–14]
have demonstrated that U-Net is a good framework for
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semantic segmentation tasks, especially for small datasets.
Since the pancreas is a small, soft organ in the abdomen,
most pancreas segmentation algorithms based on con-
volutional neural network (CNN) provide iterative algo-
rithms [15] in a coarse-to-fine manner to relieve the
interference of complex background. Roth et al. first pro-
posed a probabilistic bottom-up, coarse-to-fine approach for
pancreas segmentation [16] where a multilevel deep Con-
vNet model is utilized to learn robust pancreas features. Two
subsequent holistically nested segmentation networks
[17, 18] advanced this previous work [16]. Zhou et al.
presented a two-stage, fixed-point approach for the pancreas
segmentation, which utilized the predicted segmentations
from coarse model to localize and obtain smaller pancreas
regions, which were further refined by another model [14].
Yu et al. presented the recurrent saliency transformation
network to tackle the challenge of small organ segmentation
where a saliency transformation module is utilized to
connect coarse and fine stage to realize joint optimization
[19]. Cai et al. designed a convolutional neural network
equipped with convolutional LSTM to impose spatial con-
textual consistency constraints on successive image slices
[20]. Cai et al. [21] further improved the pancreas initial
segmentation in [20] by aggregating the multiscale, low-level
features and strengthened the pancreatic shape continuity by
bidirection recurrent neural network (BiRNN). Liu et al. [22]
used superpixel-based approach to obtain coarse pancreas
segmentations, which were then used to train five same-
architecture fully convolutional networks (FCNs) with
different loss functions to achieve accurate pancreas seg-
mentations. ,is method is evaluated on 82 public CT
volumes and achieved a Dice coefficient of 84.10 ± 4.91%.
Man et al. [23] proposed a two-stage method composed of
deep Q network (DQN) and deformable U-Net for the
pancreas segmentation, in which DQN is used to obtain
context-adaptive, coarse pancreas segmentations, which
were then input to deformable U-Net for refinement. Zhu
et al. [24] proposed a 3D coarse-to-fine network to segment
the pancreas. ,is 3D method outperformed the 2D

counterpart due to the full usage of the rich spatial infor-
mation along the long axial dimension. Some common
techniques such as dense connection [25], residual block,
and sparse convolution [26, 27] are also widely utilized to
segment the pancreas.

Google DeepMind proposed a spatial transformer [28],
which is the first work to allow neural networks learn the
transformation matrix from data and transform feature
maps spatially. Specifically, spatial transformer network
(STN) can globally deform feature maps through learned
transformations, such as scaling, cropping, rotation as well
as nonrigid deformation. Recently, Dai et al. proposed a
deformable convolution to get over the limitation of fixed
receptive field in standard convolution [29]. In detail,
convolutional kernel with explicit offsets learned from the
previous feature maps can adaptively change predefined
receptive field in order to extract more target features. ,e
specific deformable convolution is shown in Figure 2, in
which some standard convolution layers are first utilized to
learn and regress the deformation displacements for each
sampling point in the image, and then the learned dis-
placements are added to original sampling positions of the
2D convolution to enable network extract relevant and rich
features far from original fixed neighborhood [30]. Different
from STN [28], deformable convolution adopts a local and
dense, instead of global manner to warp feature maps.
Moreover, deformable convolution focuses on learning
explicit offset for each neuron instead of kernel weights.
Since the pancreas has various scales and shapes across
patients and traditional convolutional kernel cannot address
well on organs with high deformation due to the fixed re-
ceptive field, we believe deformable convolution is more
suitable for the task of pancreas segmentation [31].

In this paper, we propose a semiautomated deformable
U-Net model utilizing the power of U-Net and Deformable-
ConvNets. ,e proposed architecture for pancreas seg-
mentation has two merits. First, deep segmentation net-
works such as FCN [9], U-Net [10], and DeepLab [32] easily
suffer from confusion by the large, irrelevant background

(a) (b) (c)

Figure 1: Examples of 2D CT slices with pancreas annotations (red regions), showing the highly variable shape and size of pancreas. ,e
largest area of pancreas is less than 0.8% of entire slice while the smallest area is less than 0.1% (best viewed in color).
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information due to the small size of the pancreas in the entire
abdominal CT volume. Motivated by [14], we take a similar
strategy, i.e., first manually shrink the size of input image
and then refine the extracted pancreas regions by the pro-
posed deformable U-Net. ,e proposed method has the
capability to extract the geometry-aware features of the
pancreas with the help of deformable convolution. Second,
we propose a novel loss function, focal generalized Dice loss
(FGDL) function, to balance the size of foreground and
background and enhance the ability of network for small
organ segmentation. A conference version of this work was
published in ISICDM 2019 [33]. In this extended version, we
provide a more comprehensive description of literature
review and detailed analysis of the proposed method and
experimental investigation. ,e main modifications include
presenting and analyzing the difference between standard
convolution block and deformable convolution block (as
shown in Figure 3), adding and analyzing the visualization
results of the proposed DUNet (as shown in Figures 4 and 5),
as well as the comparison results between the proposed
DUNet and two baseline methods on the NIH dataset [34]
(as shown in Figure 6 and Table 1), adding more evaluation
metrics for testing the performance of the proposed DUNet
(as shown in (9)–(11)), conducting new experiment to
demonstrate the effectiveness of the proposed loss function
for pancreas segmentation (as shown in Table 2), discussing
advantages and limitations of the proposed DUNet, and
adding more references.

2. Materials and Methods

In this section, a semiautomated deformable U-Net is
proposed to segment the pancreas. Our method is built upon
U-Net, which employed skip connections to aggregate
multiple feature maps with the same resolution from dif-
ferent levels to recover the grained details lost in decoder
branch and thus strengthen the representative capability of
network. Since the pancreas only occupies a small fraction of
the whole scan and the large and complex background
information tends to interfere or confuse semantic seg-
mentation framework, such as U-Net [10], we followed
cascade-based methods [5, 12, 14], i.e., first localize target
regions and then refine the extracted regions. Specifically, we
first estimate the maximum and minimum coordinates of

the pancreas to approximately locate its and then input the
extracted pancreas regions to the refinement segmentation
model to improve segmentation accuracy. Here, we designed
a deformable U-Net (abbreviated as DUNet), as the re-
finement model. ,e key component in DUNet is de-
formable convolution, which can adaptively augment the
sampling grid by learning 2D offsets from each image pixel
according to the preceding feature maps. Incorporating
deformable convolution into the baseline U-Net can im-
prove the geometry-aware capability of U-Net. ,e overall
structure of the proposed method is shown in Figure 7.

2.1. Network Architecture. Our approach is an encoder-
decoder structure, designed for pancreas segmentation. As
shown in Figures 7 and 3, the proposed architecture includes
the standard convolution block, deformable convolution
block, skip connection, downsampling, and upsampling.
Considering that the deformable convolution block requires
a little more computing resources and the aim of deformable
convolution block is to help the network capture low-level,
discriminative details at various shapes and scales, in order
to balance the efficiency and accuracy, we experimentally
apply the deformable convolution in the second and third
layers of U-Net. Specifically, we replaced the standard
convolution block of the second and third layers in the
encoder, as well as the counterpart layers in the decoder with
deformable convolution block. Figure 3(b) shows the
component of deformable convolution block. Concretely,
each deformable convolution block is composed of con-
volutional offset layer, followed by convolution layer, BN
[35], and ReLU layer, in which convolutional offset layer
plays an important role in telling U-Net how to deform and
sample feature maps [36]. ,e advantage of deformable
convolution block is to utilize changeable receptive fields to
effectively learn pancreas features with various shapes and
scales.

Here, we describe the standard convolution and de-
formable convolution in detail. On the one hand, the
standard 2D convolution can be seen as the weighed sum
over a regular 2D sampling grid with weight W. For the 3 × 3
sized kernel with the dilation value of 1 (as shown in
Figure 8(a)), the sampling grid G in standard convolution
defines the receptive field size and can be given by

Whole image

Input patch Offset field Offsets Offset kernel

Deformable convolution
Output feature map

Figure 2: Illustration of 3 × 3 deformable convolution. Offset field is generated from the preceding feature maps, and the number of output
channels is 2N.

Journal of Healthcare Engineering 3



G � (−1, −1), (−1, 0), . . . , (0, 1), (1, 1){ }. (1)

,e value of each location p0 on the output feature map
Y can be calculated as

Y p0( 􏼁 � 􏽘
pn∈G

W pn( 􏼁 · X p0 + pn( 􏼁,
(2)

where pn enumerates all locations in 2D sampling gridG. On
the other hand, rather than using the predefined sampling
grid, deformable convolution automatically learns offset△pn

to augment the regular sampling grid and is calculated as

Y p0( 􏼁 � 􏽘
pn∈G

W pn( 􏼁 · X p0 + pn +△pn( 􏼁.
(3)

(a) (b) (c) (d)

Figure 4: Comparisons of 2D pancreas segmentations from the proposed DUNet with the manual segmentations. ,e first, second, and
third columns denote the CT slices with their segmentations and bounding boxes of pancreas (red), the manual segmentations, and the
network predictions, respectively. ,e last column denotes the overlapped maps between the network predictions and manual seg-
mentations, with overlapped regions marked by magenta. (a) Original. (b) Groundtruth. (c) Prediction. (d) Overlapped.

Standard
convolution

block

Conv

BN

ReLU

(a)

Deformable
convolution

block

ConvOffset

Conv

BN

ReLU

(b)

Figure 3: ,e comparison between (a) standard convolution block and (b) deformable convolution block.
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(a) (b) (c)

Figure 5: Comparisons of 3D pancreas segmentations from the proposed DUNet with the manual segmentations. ,e first, second, and
third columns denote the manual segmentations, the network predictions, and the overlapped maps between the network predictions
and manual segmentations, respectively. ,e manual segmentations are shown in red, and the network predictions are shown in light
green. (a) Label. (b) Prediction. (c) Overlapped.

(a) (b) (c) (d) (e)

Figure 6: Comparison of segmentation results between different models on the NIH dataset. (a) Original images with their segmentations and
bounding boxes of pancreas (red). (b) ,e ground truths. (c–e) ,e predictions generated by our DUNet, U-Net, and Deformable-ConvNet,
respectively.
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Table 1: Quantitative comparisons between the three different models on the NIH dataset. Bold denotes the best.

Model F-measure Recall Precision Mean DSC
Modified Deformable-ConvNet 0.8201 0.8084 0.8378 0.8203
U-Net 0.8738 0.9010 0.8499 0.8670
DUNet(Ours) 0.8878 0.8997 0.8898 0.8725

Table 2: Comparison of the DUNet with Dice loss (DL) and the proposed loss (DSC%). Bold denotes the best.

Method Min DSC Max DSC Mean DSC
DUNet +DL 68.65 93.18 86.29 ± 4.33
DUNet + FGDL(Ours) 77.03 93.29 87.25 ± 3.27

Input Output

Standard convolution block

deformable convolution block

Downsample

Upsample

Skip connection

Figure 7: An overview of the proposed DUNet. Input data are progressively convolved and downsampled or upsampled by factor of 2 at
each scale in both encoding and decoding branches. Schematic of the standard convolution block and deformable convolution block is
shown in Figure 3.

(a) (b) (c) (d)

Figure 8: Comparisons of the sampling points in 3 × 3 standard and deformable convolution. (a) Sampling points (marked as blue) of
standard convolution. (b) Deformed sampling points (marked as red) with learned displacements (pink arrows) in deformable convolution.
(c-d) Two cases of (b), illustrating that the learned displacements contain translation and rotation transformations.
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In particular, the 2D deformable convolution can be
mathematically formalized as follows:

W°X( 􏼁(i, j) � 􏽘

1

m�−1
􏽘

1

n�−1
W(i, j) × X i − m + δverticlei,j,m,n , j − n + δhorizontali,j,m,n􏼐 􏼑, ∀i � 1, . . . , H, ∀j � 1, . . . , N, (4)

where ° denotes the deformable convolution operation, W is
a 3× 3 kernel with pad 1 and stride 1, X is the image with
heightH and width N, and (i, j) denotes the location of pixel
in image. δverticlei,j,m,n and δhorizontali,j,m,n denote the vertical offset and
the horizontal offset, respectively, which are learned by ad-
ditional convolution on the preceding feature maps. Since the
learned offset is usually not an integer, we performed bilinear
interpolation on the output of the deformable convolutional
layers to enable gradient back-propagation available.

2.2. Loss Function. Since the pancreas occupies a small re-
gion relative to the large background and Dice loss is rel-
atively insensitive to class-imbalanced problem, most
pancreas segmentation works adopt soft, binary Dice loss to
optimize pancreas segmentation, and it is defined as follows:

L(P, G) � 1 −
􏽐

N
i�1 pigi + ε

􏽐
N
i�1 pi + gi + ε

−
􏽐

N
i�1 1 − pi( 􏼁 1 − gi( 􏼁 + ε
􏽐

N
i�1 2 − pi − gi( 􏼁 + ε

,

(5)

where gi ∈ 0, 1{ } and pi ∈ [0, 1] correspond to the probability
value of a voxel in the manual annotation G and the network
prediction P, respectively. N and ϵ denote the total number of
voxels in the image and numerical factor for stable training,
respectively. However, Dice loss does not consider the impact
of region size on Dice score. To balance the voxel frequency
between the foreground and background, Sudre et al. [37]
proposed the generalizedDice loss, which is defined as follows:

GDL � 1 − 2
􏽐

2
l�1 wl 􏽐

N
i pligli

􏽐
2
l�1 wl 􏽐

N
i pli + gli

, (6)

where coefficient wl � 1/(􏽐
N
i�1 gli) is a weight for balancing

the size of region.
Pancreas boundary plays an important role in dealineating

the shape of pancreas. However, the pixels around the
boundaries of the pancreas are hard samples, which are difficult
to delineate due to the ambiguous contrast with the sur-
rounding tissues and organs. Inspired by the focal loss [38, 39],
we propose a new loss function, the focal generalized Dice loss
(FGDL) function, to alleviate class-imbalanced problem in the
pancreas segmentation and allow network to concentrate the
learning on those hard samples, such as boundary pixels. ,e
focal generalized Dice loss function can be defined as follows:

FGDL � 􏽘
2

l�1
1 − 2

wl 􏽐
N
i pligli + ε

wl 􏽐
N
i pli + gli + ε

􏼠 􏼡

1/c

, (7)

where c varies in the range [1, 3]. We experimentally set
c � 4/3 during training.

3. Experiments

3.1. Dataset and Evaluation. We validated the performance
of our algorithm on 82 abdominal contrast-enhanced CT
images which come from the NIH pancreas segmentation
dataset [34]. ,e original size of each CT scan is 512 × 512
with the number of slices from 181 to 460, as well as the slice
thickness from 0.5mm to 1.0mm. ,e image intensity of
each scan is truncated to [−100, 240] HU to filter out the
irrelevant details and further normalized to [0, 1]. In this
study, we cropped each slice to [192, 256]. For fair com-
parisons, we trained and evaluated the proposed model with
4-fold cross validation.

Four metrics including the Dice Similarity Coefficient
(DSC), Precision, Recall, and F-measure (abbreviated as F1)
[40] are used to quantitatively evaluate the performance of
different methods.

(1) Dice Similarity Coefficient (DSC) measures the
volumetric overlap ratio between the ground truths
and network predictions. It is defined as follows [41]:

DSC �
2 Vgt ∩Vseg

�����

�����

Vgt

�����

����� + Vseg

�����

�����
. (8)

(2) Precision measures the proportion of truly positive
voxels in the predictions. It is defined as follows:

Precision �
Vgt ∩Vseg

�����

�����

Vseg

�����

�����
. (9)

(3) Recall measures the proportion of positives that are
correctly identified. It is defined as follows:

Recall �
Vgt ∩Vseg

�����

�����

Vseg

�����

�����
. (10)

(4) F-measure shows the similarity and diversity of
testing data. It is defined as follows:

F-measure � 2 ·
Precision · Recall
Precision + Recall

, (11)

where Vgt and Vseg represent the voxel sets of manual
annotations and network predictions, respectively. For DSC,
the experimental results are all reported as the mean with
standard deviation over all 82 samples. For Precision, Recall,
and F-measure metrics, we just reported the mean score over
all 82 samples.

Journal of Healthcare Engineering 7



3.2. Implementation Details. ,e proposed method was
implemented on the Keras and TensorFlow platforms and
trained using Adam optimizers for 10 epochs on a NVIDIA
Tesla P40 with 24GB GPU. ,e learning rate and batch size
were set to 0.0001 and 6 for training, respectively. In total,
the trainable parameters in the proposed DUNet are 6.44 M,
and the average inference time of our DUNet per volume is
0.143 seconds.

3.3. Qualitative and Quantitative Segmentation Results.
To assess the effectiveness of deformable convolution in the
pancreas segmentation, we compared the three models:
Deformable-ConvNet, U-Net, and DUNet. To make the
output size of Deformable-ConvNet to be the same as input,
we make modification on Deformable-ConvNet [29] by
substituting the original fully connected layers with
upsampling layers. Figure 6 qualitatively shows the im-
provements brought by deformable convolution. It can be
observed that our DUNet focuses more on the details of the
pancreas, which demonstrates that deformable convolution
can extract more pancreas information and enhance the
geometric recognition capability of U-Net.

,e quantitative comparisons of different models in
terms of the Precision, Recall, F1, and mean DSC are re-
ported in Table 1. It can be observed that our DUNet
outperforms the modified Deformable-ConvNet and U-Net
with improvements of average DSC up to 5.22% and 0.55%.
Furthermore, it is worth noting that our proposed DUNet
reported the highest average F-measure with 88.78%, which
demonstrates that the proposed DUNet is a high-quality
segmentation model and more robust than other two ap-
proaches. Figures 4 and 5 visualize the 2D and 3D overlap of
segmentations from the proposed DUNet with respect to the
manual segmentations, respectively. Visual inspection of the
overlapping maps shows that the proposed DUNet can fit
the manual segmentations well, which further demonstrates
the effectiveness of our method.

3.4. Impact ofLossFunction. To assess the effectiveness of the
proposed loss function, we test standard Dice loss and the
proposed loss with DUNet, i.e., Dice loss and the proposed
focal generalized Dice loss (FGDL); the segmentation per-
formance of the DUNet with different loss function is re-
ported in Table 2. It can be noted that DUNet with the
proposed FGDL improves mean DSC by 0.96% and min
DSC by 8.38% compared with Dice loss.

3.5. Comparison with Other Methods. We compared the
segmentation performance of the proposed DUNet with
seven approaches [14, 16, 17, 21–24] on the NIH dataset [34].
Note that the experimental results of other seven methods
were obtained directly from their corresponding literatures.
As shown in Table 3, our method achieves the min DSC of
77.03%, max DSC of 93.29%, and mean DSC of
87.25 ± 3.27%, which outperforms all comparison
methods. Moreover, the proposed DUNet performed the
best in terms of both standard deviation and the worst case,
which further demonstrates the reliability of our method in
clinical applications.

4. Discussion

,e pancreas is a very important organ in the body, which
plays a crucial role in the decomposition and absorption of
blood sugar and many nutrients. To handle the challenges of
large shape variations and fuzzy boundaries in the pancreas
segmentation, we propose a semiautomated DUNet to
adaptively learn the intrinsic shape transformations of the
pancreas. In fact, DUNet is an extension of U-Net by
substituting the standard convolution block of the second
and third layers in the encoder and counterpart layers in the
decoder of U-Net with deformable convolution. ,e main
advantage of the proposed DUNet is that DUNet utilizes the
changeable receptive fields to automatically learn the in-
herent shape variations of the pancreas, then extract robust
features, and thus improve the accuracy of pancreas
segmentation.

,ere are several limitations in this work. First, during
data processing, we first need radiologists to approximately
annotate the minimum and maximum coordinates of the
pancreas in each slice in order to localize it and thus reduce
the interference brought by complex background. ,is work
may be laborious. Second, the trainable parameters are
relatively excessive. In future work, we will further improve
pancreas segmentation performance from two aspects. First,
we will explore and adopt attention mechanism to eliminate
localization module and construct a lightweight network.
Second, we will consider how to fuse prior knowledge (e.g.,
shape constraint) to the network.

5. Conclusions

In this paper, we proposed a semiautomated DUNet to
segment the pancreas, especially for the challenging cases
with large shape variation. Specifically, the deformable

Table 3: Comparison with other segmentation methods on the NIH dataset (DSC%). Bold denotes the best.

Method Min DSC Max DSC Mean DSC
Roth et al., MICCAI’2015 [16] 23.99 86.29 71.42 ± 10.11
Roth et al., MICCAI’2016 [17] 34.11 88.65 78.01 ± 8.20
Zhou et al., MICCAI’2017 [14] 62.43 90.85 82.37 ± 5.68
Cai et al., 2019 [21] 59.00 91.00 83.70 ± 5.10
Liu et al., IEEE access 2019 [22] N/A N/A 84.10 ± 4.91
Zhu et al., 3DV’2018 [24] 69.62 91.45 84.59 ± 4.86
Man et al., IEEE T MED IMAGING 2019 [23] 74.32 91.34 86.93 ± 4.92
DUNet(Ours) 77.03 93.29 87.25 ± 3.27
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convolution andU-Net structure are integrated to adaptively
capture meaningful and discriminative features. ,en, a
nonlinear Dice-based loss function is introduced to super-
vise the DUNet training and enhance the representative
capability of DUNet. Experimental results on the NIH
dataset show that the proposed DUNet outperforms all the
comparison methods.
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loss for dense object detection,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 42, no. 2, pp. 318–327,
2020.

[39] N. Abraham and N. M. Khan, “A novel focal tversky loss
function with improved attention U-net for lesion segmen-
tation,” in Proceedings of the IEEE 16th International Sym-
posium on Biomedical Imaging, pp. 683–687, Venice, Italy,
April 2019.

[40] N. Lazarevic-Mcmanus, J. R. Renno, D. Makris, and
G. A. Jones, “An object-based comparative methodology for
motion detection based on the F-Measure,” Computer Vision
and Image Understanding, vol. 111, no. 1, pp. 74–85, 2008.

[41] L. R. Dice, “Measures of the amount of ecologic association
between species,” Ecology, vol. 26, no. 3, pp. 297–302, 1945.

10 Journal of Healthcare Engineering



Research Article
Tic Detection in Tourette Syndrome Patients Based on
Unsupervised Visual Feature Learning

Junya Wu ,1 Tianshu Zhou,2 Yufan Guo,3 Yu Tian,1 Yuting Lou,3 Hua Ru,2

Jianhua Feng ,3 and Jingsong Li 1,2

1Engineering Research Center of EMR and Intelligent Expert System, Ministry of Education,
Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science,
Zhejiang University, Hangzhou 310027, China
2Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou 311100, China
3Department of Pediatrics, -e Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road,
Hangzhou 310009, China

Correspondence should be addressed to Jianhua Feng; hzhz87083886@zju.edu.cn and Jingsong Li; ljs@zju.edu.cn

Junya Wu and Tianshu Zhou contributed equally to this work.

Received 5 March 2021; Revised 4 May 2021; Accepted 24 May 2021; Published 7 June 2021

Academic Editor: Jialin Peng

Copyright © 2021 Junya Wu et al. 3is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A clinical diagnosis of tic disorder involves several complex processes, among which observation and evaluation of patient
behavior usually require considerable time and effective cooperation between the doctor and the patient. 3e existing assessment
scale has been simplified into qualitative and quantitative assessments of movements and sound twitches over a certain period, but
it must still be completed manually. 3erefore, we attempt to find an automatic method for detecting tic movement to assist in
diagnosis and evaluation. Based on real clinical data, we propose a deep learning architecture that combines both unsupervised
and supervised learning methods and learns features from videos for tic motion detection. 3e model is trained using leave-one-
subject-out cross-validation for both binary and multiclass classification tasks. For these tasks, the model reaches average
recognition precisions of 86.33% and 86.26% and recalls of 77.07% and 78.78%, respectively. 3e visualization of features learned
from the unsupervised stage indicates the distinguishability of the two types of tics and the nontic. Further evaluation results
suggest its potential clinical application for auxiliary diagnoses and evaluations of treatment effects.

1. Introduction

Tourette syndrome (TS) is a childhood-onset neuro-
developmental disorder characterized by the presence of fluc-
tuating motor and vocal tics [1].3e core diagnostic features are
both multiple motor and one or more phonic tics lasting more
than one year. Typically, the same tic occurs at short-term
periodicity with short intervals [2]. 3e simple tic forms are eye
blinking, mouth twitching, head jerking, etc. Multiple studies
published since 2000 have consistently demonstrated that the
prevalence of TS is much higher than previously thought [3]. As
the understanding of this disease deepens, the number of
children diagnosed with tic disorder has gradually increased, but
most cases do not receive timely clinical attention in the early

stages of the disease. Furthermore, approximately 20% of per-
sons with TS are unaware that they have tics [4]. 3e clinical
diagnosis of TS involves complex processes that require con-
siderable time and effective cooperation between the doctor and
the patient, especially observation and evaluation of the patient’s
tic behaviors. A number of instruments for tics and associated
phenomena have been developed to assess tic severity [5] and
differ in construct, comprehensiveness, and ease of
administration.

Recently, artificial intelligence and machine learning
have been widely applied in the medical field. In particular,
the development of video-based human motion behavior
analysis technology has advanced various types of medical
diagnoses, such as Parkinson’s disease [6], seizure disorders
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[7], spinal muscular atrophy [8], and discomfort detection in
premature infants [9]. In part, noncontact video-based
analysis has attracted great attention due to the increasing
availability of camera monitoring systems. To identify tic
disorders, patients’ tic movements can be detected and
analyzed from video tapes that show the patient’s face, head,
or body and rated according to the Yale Global Tic Severity
Scale (YGTSS) [10] or the Modified Rush Video-based
Rating Scale (MRVRS) [11]. 3ese ratings can then be used
to assist a clinical doctor in evaluating the patient’s symp-
toms and severity.

Tic movements can be distributed throughout the body.
Rickard’s research [12] showed that patients’ twitches usually
start in the facial area and that eye twitches are the most
frequent. Chappell et al. [13] showed that, in addition to a
severity scale, the severity of Tourette syndrome can also be
determined by recording the patient’s tics with video for more
than ten minutes. Moreover, monitoring and recording pa-
tients in their natural states instead of facing a clinician ef-
fectively avoids interference in diagnosis and evaluation caused
by the patient actively controlling their tics. 3erefore, we aim
to develop a method to automatically detect tics to help cli-
nicians or parents spot and assess tic signs.

In recent decades, many studies have focused on the pa-
thology, genetics, and clinical treatment of TS [14–16], but only
a few studies have been published regarding the automatic
detection of TS-related motor disturbances. Jonathan et al. [17]
studied two patients with TS using deep brain stimulation
(DBS) during tics and found that low-frequency (1-10Hz)
centromedian (CM) thalamic activity and beta frequencymotor
cortex (M1) activity were tic features and that long complex tics
are concurrent with a highly detectable thalamocortical sig-
nature. Bernabei et al. [4] used a wearable device attached to the
patient’s trunk with an embedded triaxial accelerometer to
monitor tic events. 3is approach achieved a sensitivity of
80.8%, a specificity of 75.8%, and an accuracy of 80.5%.
However, the implementation process of this method is quite
complicated, which poses a major challenge and requires ex-
tensive cooperation between doctors and patients. Recently,
Barua et al. [18] proposed a deep learning approach for
detecting tic disorders using wireless channel information and
achieved an accuracy above 97%.3e data used in the task were
simulated using healthy human subjects. However, in a real
clinical situation, acquiring such data would be a considerably
more complicated task. Regarding methodological aspects,
action detection methods have made numerous advancements
in video comprehension, such as the two-stream network
[19–21], 3D ConvNet [22–24], and temporal enhancement-
and-interaction network (TEINET) [25], whereas these deep
learning networks require large amounts of labeled data, which
carries the high costs and slow procedures associated with
manual labeling. Data labeling is often costly and time con-
suming: an example is the popular ImageNet dataset [26].
However, in real-world situations, large amounts of readily
accessible unlabeled data exist; therefore, unsupervised learning
has attracted increasing attention from researchers.

From these perspectives, we instead adapt a two-stage
architecture by first training an unsupervised feature ex-
traction model to make full use of the more easily acquired

unlabeled data and then applying a comparatively simple
network attached to the former trained model for the
classification tasks. Visualizing the feature representation of
the labeled data shows the correspondence with the tic parts,
indicating that the unsupervised model learned the valid
feature representation.3is approach results in the following
contributions: (1) we employ a deep learning scheme by a
convolutional-neural-network- (CNN-) based model to
learn feature representation from abundant unlabeled video
data, (2) we apply a long short-termmemory neural network
(LSTM) to classify the feature sequences of video clips, and
(3) an automated video-based system for detecting tic
movements in TS patients is devised.

2. Materials and Methods

To solve the problem of insufficient labeled data but enough
monitoring video data, we propose a two-stage framework
that combines unsupervised and supervised learning, as
shown in Figure 1. In the first stage, we adopt a contrastive
learning network that learns from unlabeled video data by
extracting features by maximizing mutual information. 3e
core idea behind this is to maximize the mutual information
between the two nonoverlapping patch inputs. In the second
stage, we design an end-to-end architecture based on an
LSTM network connected to the feature extraction module
in the first stage that learns to classify tic movements from
video data labeled by doctors. We use a combination of
supervised and unsupervised learning to design and build an
end-to-end tic detection model.

2.1. Subjects. Sixty-eight patients (4–13 years old) diagnosed
with TS by two experienced specialists were employed in this
study. All participants were inpatients under normal
treatment recruited from the Second Affiliated Hospital of
Zhejiang University School of Medicine between May and
September 2019. 3is study was approved by the ethics
committee of the Second Affiliated Hospital of Zhejiang
University School of Medicine (YAN2019-148). All partic-
ipants provided written informed consent with the agree-
ment to participate in the study.

2.2. Data Acquisition and Preprocessing. 3e TS dataset was
sourced from the Department of Pediatrics at the Second
Affiliated Hospital of Zhejiang University School of Medi-
cine and was collected using EEG video acquisition
equipment installed in the pediatric ward. 3e video data
were recorded in two situations: (i) the patient was asked to
sit on a chair in front of the camera and (ii) before or after
EEG recording, the patient was asked to agree to video
recording. 3e two situations arise because the data were
collected in different periods: (i) represents data collected
during the preproject preparation phase, whereas (ii) is a
part of the routine during subsequent EEG video recording.
In both situations, every patient was informed in advance of
the recording period and asked to face the camera as much as
possible during recording, but no mandatory measures were
imposed; the patients could move freely, which may result in
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useless frames. 3e patients’ parents provided informed
permission for the collection procedure and research use of
the video recordings.

Due to different camera devices, the original video frame
rate includes video acquired at both 30 and 25 fps.3e duration
of all videos ranges from 5 to 15minutes, and all the videos have
a resolution of 1920×1080. 3e length of the videos is listed in
Table 1, and the distribution of the durations is presented in
Figure S1. In this TS dataset, 13 cases were annotated by two
specialists, who labeled the starting and ending timestamps of a
specific tic event, such as an eye tic or a mouth tic. 3ey
performed manual annotation frame by frame through the
video annotation software VoTT (https://github.com/
microsoft/VoTT), which then generated annotated JavaScript
Object Notation (JSON) files for postprocessing to extract
annotations. 3e annotation work was independently per-
formed by two clinicians and verified by the third expert, and
they performed an extra check if there were disagreements until
they reached a consensus. Finally, we cut and categorized the
videos based on the timestamped annotations to form the TS
research dataset, which can be supplemented at any time. We
also segmented the video segments between two labeled tic
events in the original video, which can be used as normal
recordings and act as negative samples.

3ere are more than five types of tics involving different
muscle groups in the labeled data. 3e most common tics are
eye tic and mouth tic. Not only in this research dataset but also
most in clinical practice, these two tic types are widespread from
a specialist’s perspective [12]. 3erefore, we defined two
classification tasks. (1)We chose these two tic types and normal
recordings to define a multiclass classification task. (2) We also
configured a binary classification task for the tic and normal
datasets—that is, all the tic video clips form the positive samples,
while the normal video clips form the negative samples. Figure 2
shows the category proportion of every patient in the labeled
dataset, defined in these two tasks.

3e proposed method is composed of two stages, and
there are slight differences in data preprocessing for the two

stages. 3e common operation is to obtain the region of
interest (ROI), which is defined as the area centered on the
patient’s face. 3is ensures that the models will focus on
features related to patients’ tic behaviors rather than on
other family members or physicians visible in the videos.
Identifying the ROI also reduces interference from different
camera angles and from patient movements since they are
free to move out of the camera view. 3is procedure uses a
neural-network-driven face detection method. We use the
multitask cascaded CNN (MTCNN) [27] architecture to
detect the patient’s face and obtain the ROI and use the
pretrained weights from Face2 [28]. To avoid the regional
deviations caused by free patient motion and obtain more
features in the face area, we extract the ROI area by
expanding the width of the face bounding box by 20%.
Figure 3 illustrates the ROI output margin. We also conduct
data augmentation during preprocessing, an approach that
has been widely used in both supervised and unsupervised
learning [29, 30]. 3e effectiveness of simple data aug-
mentation methods for contrastive learning tasks was ver-
ified by [31]. Similarly, after obtaining the ROI area,
combined data augmentation methods are adopted in-
cluding random cropping, random noise, and random color
distortion.

3e difference between the two main stages during data
preprocessing is that the first stage uses a relatively large
number of frames from an unlabeled video dataset. As well
known, the information between continuous video frames is
usually highly redundant, which can cause overfitting during
training. 3us, we perform a 3-fold downsampling proce-
dure, which extracts the first frame for every three
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Figure 1:3e architecture of the proposed method. (1) Stage 1: extracting representative visual features. (2) Stage 2: training an LSTM using
visual features.

Table 1: Original TS video dataset.

Category Labeled dataset Unlabeled dataset
Videos 13 55
Minutes 136 709
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consecutive frames on the original videos. In the second
supervised training stage, we first cut the original continuous
video data into video segments and divide them into motion
tic categories based on annotations. 3en, we cut each video
segment into 1 s video clips using a no overlapping sliding
window. 3ese clips form the input objects for Stage 2. We
then performed the same ROI extraction procedure as for
Stage 1 but without video frame downsampling because the
frame data are randomly extracted from every second of
input, which has an effect similar to downsampling.

2.3. Stage 1: Extracting Representative Visual Features.
3e dataset used in this work consists of a small amount of
labeled data (n� 13) and a relatively large amount of

unlabeled data (n� 55). Apparently, the labeled data we have
are insufficient to train a deep learning model. To explore the
value of the unlabeled data, we adopt a contrastive learning
framework similar to SimCLR [31] in Stage 1 to extract
representative visual features among the TS patient groups.
Specifically, a randomly selected minibatch S of N examples
is transformed into a minibatch pair S′ consisting of 2N
examples after applying a combination of a set of data
augmentation methods. 3en, S′ is input to the defined
contrastive prediction task. For every minibatch pair S′, each
pair (i, j) of augmented examples S′ (i, j) is treated as a
positive example (n� 2), while the others (n� 2(N-1)) are
treated as negative examples. Then the similarity sim(i, j) of
the pair S′(i, j) is defined as follows:

sim(i, j) �
S
′T
i Sj
′

Si
′

����
���� Sj
′

�����

�����􏼒 􏼓

, (1)

and the loss function of the pair loss(i, j) is defined as

loss(i, j) � −log
exp(sim(i, j)/τ)

􏽐
2N
k�1,k≠iexp(sim(i, k)/τ)

, (2)

where τ denotes a temperature parameter, as in [32]. For
each pair in every minibatch, the total loss is computed as
follows:

L �
1
2N

􏽘

N

k�1
[loss(2k − 1, 2k) + loss(2k, 2k − 1)]. (3)

As shown in Figure 1, we use ResNet [33] as the neural
network encoder (F) to extract the visual features after data
augmentation, and we use an MLP network (G) to map the
output feature f to the space where contrastive loss is applied.
3e contrastive prediction task involves finding the other
example j in examples S′(i≠ j)(n � 2N − 1) for example i in
each pair. In addition, we impose a restriction that every
minibatch input must be a set of continuous frames
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Figure 2: Category proportion of normalized video clips of patients in (a) the multiclass classification task and (b) the binary classification
task. 3e ordinate indicates the patient number in the labeled TS dataset.

(a) (b) (c) (d)

Figure 3: Region of interest in data preprocessing. (a) is the output
of the MTCNN, and (b), (c), and (d) are the random data aug-
mentation methods applied.
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randomly selected from the video frames of a single subject.
3is restriction eliminates the possibility of finding existing
macrofeatures between different faces during training and
helps the model focus on the microfeatures of tics.

2.4. Stage 2: Training the LSTM through Visual Features.
In Stage 2, we design a supervised learning framework based
on the formerly trained neural network encoder (F). 3e
LSTM network consists of a layer of LSTMwith dropout and
a fully connected layer with rectified linear unit (ReLU)
activation. Specifically, we take a one-second-long pre-
processed video clip as the input of this stage and randomly
select k frames (k< 25) to feed to F, which generates visual
feature vectors. Every visual feature vector came from one
frame of the input video clip and corresponded to one
neuron of the LSTM layer. 3ese visual feature vector se-
quences are then fed to the LSTM network to learn their
temporal features and deeper spatial features to accomplish
the classification task.

To alleviate the problem of imbalanced categories in our
labeled data, we use the focal loss [34] Lf, which is defined as
follows:

Lf � −αt 1 − pt( 􏼁
clog pt( 􏼁, pt �

p, if y � 1,

1 − p, otherwise,
􏼨

(4)

where y denotes a tic label, p is the output prediction of the
LSTM network, and α and c are network hyperparameters.

3. Evaluation and Results

3.1. Experimental Setup. Chen et al. [31] showed that the
simple operation of expanding the batch data volume can
replace the more complex memory library training model
[35, 36]. In this work, the two stages are trained separately.
In Stage 1, we set the batch size to 512 and limited the single-
input data to a randomly chosen person’s continuous data
due to the memory limitation of the training platform. For
the neural network encoder, we used a modified ResNet18
model, with an input dimension of 112×112× 3 and an
output dimension of 512. 3e following MLP network
consists of two layers: the first layer has 512 neurons and the
second layer has 256 neurons. All the preprocessed unla-
beled video datasets were randomly split into a training set
(70%) and a validation set (30%) at the patient level. During
training, we used the Adam optimizer [37] with an initial
learning rate of 3×10−4 adjusted by setting the cosine
annealing learning rate (LR) and a weight decay of 10-6.
Considering the limitation of our dataset, we used the
pretrained built-in weights of PyTorch [38]. 3e training
procedure is stopped when the loss of validation set has no
more drops within 10 epochs. 3en the ResNet model is
reused in Stage 2 to extract feature representations.

In Stage 2, each video clip generates a feature vector of
clip-length× 512 through F. Here, clip-length is set as 16,
which means that there are 16 frames randomly sampled
from each video clip, matching the time-step setting in the
LSTM network. 3e input size of the LSTM is 512 with a

drop rate of 0.8; the output size is 128; and the size of the
fully connected layer is changed to match the number of
classes in each classification task. Considering the limited
amounts of labeled data in the study that can easily cause
overfitting during training and validation, we adopted the
leave-one-subject-out cross-validation scheme in Stage 2,
which allows us to evaluate the differences between indi-
vidual patients. 3e setting for the overall analysis of a single
patient is in line with the real clinical scenario, which is
beneficial for the subsequent comprehensive analysis. We
assess the effectiveness of our proposed method by calcu-
lating the accuracy, precision, recall, F1-score, area under the
receiver operating characteristic (ROC) curve (AUC_ROC),
area under the precision-recall curve (AUC_PR), and a
confusion matrix for each subject evaluation. In the two
different classification tasks, we consider different cutoff
conditions during the training procedure by observing the
following indicators from the validation evaluation: (1)
accuracy and (2) the F1-score of the tic category. In addition
to the data used for experimental modeling, we also collected
individual test video data beyond those used for training
verification to verify the universality of the method.

3e next subsections report the details of the results and
provide discussions. Unfortunately, to the best of our
knowledge, no public TS dataset for tic detection exists,
whichmakes it difficult to compare the results of our method
with other works. Instead, we applied another two kinds of
supervised ConvNet architectures, convolutional 3D (C3D)
[22], and temporal segment network (TSN) [39], for
comparison.

3.2. Classification Tasks. C3D [22] is a simple yet effective
model that uses 3D convolution kernels for spatiotemporal
feature learning, and TSN [39] combines a sparse temporal
sampling strategy and video-level supervision. 3ey both
achieved good performances for action recognition in videos
when given limited training samples. As shown in Table 2,
compared with the former two approaches C3D [22] and
TSN [39], our method with the watch-accuracy strategy
achieves the best performances, with an average accuracy of
94.87%, precision of 86.26%, and both recall and F1-scores
of approximately 80%. 3ese results illustrate the effec-
tiveness of our proposed method for tic recognition on the
multiclass classification task.

Using the classification results for an individual subject,
we further examine the misclassified items. Taking Case 1 as
an example, as shown in Figure 4, after checking the original
data, we found that (a) in the false positive result where the
label is normal but the prediction is mouth twitching, the
mouth of the patient in this video clip does indeed twitch in
the corners during a smile, indicating that the classification
model has learned the features of the motion but cannot
precisely differentiate between a mouth-twitching motion
and a mouth-smiling motion when both are subtle; thus, it
misclassifies the action. (b) In false negatives where the labels
are eye tics while the prediction is normal, the patient in this
video clip is indeed blinking, but it is difficult for ordinary
people and for the model to determine whether the blink is
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normal or a twitch blink. 3is may be due to model mis-
understanding, but a small possibility of labeling error also
exists. 3ese two situations reflect either possible misclas-
sifications or misdiagnosis in the real situation; however, it
should be noted that the identification unit in this study is at
the level of a video clip, whereas the identification unit in the
clinic is the complete subject over time. A few misidenti-
fications from the clip may not be completely reflected at the
level of subject recognition. 3erefore, quantitative methods
and full quantification of the video data for the standard
duration at the subject level will be considered in future
research. 3is will allow individual subject evaluations to be
made and improve the model’s application prospects for
clinical auxiliary diagnosis.

3e evaluation results of the binary classification task are
shown in Table 3. Compared with the multiclass classification
task, the indicator results are slightly lower in Table 2, and its
watch-F1 strategy performs better. After comparing the datasets
of the two tasks, we find that themulticlass data use two types of
tics with more discriminative characteristics, which provides a
data quality advantage. In contrast, the positive samples in the
binary classification task cover all the tic categories that appear
in the TS dataset. Despite these shortcomings, our model still
achieves good recognition performance and will offer sub-
stantial clinical value after further optimization.

3.3. Further Evaluation. To verify the visual representation
performance of the unsupervised model in Stage 1, we vi-
sualized the final layer features of the neural network

encoder using the gradient-weighted class activation map-
ping (Grad-CAM) [40] method. As shown in Figure 5, the
feature attention areas are shown as heatmap colors, and the
attention areas are consistent with the corresponding tic
positions, indicating that the unsupervised model has ef-
fectively learned the visual features used in the follow-up
training.

To verify the validity of the proposed method and the
possibility of subsequent integrationwith scales such asMRVRS
[11], we compared the differences between the model’s output
and the clinician’s result.3is comparison test was based on the
labeled dataset using the leave-one-subject-out test. We used
two items based on theMRVRS andmodified it within our data
condition and one item for time comparison.3e number of tic
areas came from the annotations performed by clinicians and
the tic categories of the model output. 3e tic frequency was
calculated as the number of tic signs divided by the total length
of the video used for every patient.3en, a t-test was performed
on each of the items. 3e time for evaluation for clinicians was
recorded between the start and the end for each video evalu-
ation, and for ourmodel it was calculated as the sum of the time
taken for the whole process of our architecture, including
preprocessing, model calculation, and postprocessing, among
which preprocessing is the most time-consuming process. 3e
subitem clinician review refers to the time taken for the cli-
nician’s checking process on the results of our models, which is
divided into two categories: <5min (0−5min) and <10min
(5−10min). 3e results are listed as Table 4.3e p values of the
two scale-related items are greater than 0.05, which shows no
significant difference between the two groups of results. 3e p

Table 2: Evaluations of the multiclass classification task.

Accuracy Precision Recall F1-score
C3D [22] 0.7252 (±0.108) 0.7483 (±0.047) 0.7023 (±0.051) 0.7194 (±0.032)
TSN [39] 0.8988 (±0.117) 0.8354 (±0.089) 0.7284 (±0.054) 0.7600 (±0.070)
Ours-acc1 0.9487 (±0.0298)∗∗ 0.8626 (±0.084)∗∗ 0.7878 (±0.106)∗ 0.7975 (±0.093)∗
Ours-f12 0.9363 (±0.0390) 0.7628 (±0.209) 0.7362 (±0.198) 0.7391 (±0.198)
1Ours-acc means the proposed architecture with the watch-accuracy strategy. 2Ours-f1 means the proposed architecture with the watch-F1 strategy. ∗p value
<0.01; ∗∗p value< 0.001.

Correct cases Confusion matrix Misclassification cases
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Figure 4: Evaluation result of one subject. 3e confusion matrix is shown in the middle; the correct detection cases from the multiclass
classification task are shown on the left; and the misclassification cases are shown on the right. For the sake of patient privacy, the images
used in the cases were blurred.
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value of the time comparison is less than 0.0001, showing that
ourmodel can save considerable time on tic detection, especially
for videos with frequent tic events, which indicates great po-
tential for clinical application.

Further evaluation for independent testing was addi-
tionally conducted on new data to identify tic events, in-
cluding 1 new patient video and 4 non-TS patient videos.
3e binary classification task was adopted for this experi-
ment. In the non-TS patient video testing, as shown in
Table 5, the recognition accuracy for every non-TS patient
was above 90%; the highest accuracy exceeded 98%. As
discussed in the preceding subsection, the evaluation scores
are computed at the video-clip level. If that were to be
upgraded to the subject level in a clinical application, this
level of individual evaluation would be acceptable. For the
patient data, we must take recall into account; that is, the tic
detection accuracy reaches 72.69%. Although we have only

one testing video for this initial study, while these results lack
statistical significance, they can still indicate that this ap-
proach has optimistic application prospects.

4. Discussion

Tourette syndrome is a highly individualized neurological
disease whose expression changes over time. In the process
of long-term observation, diagnostic evaluation, and

Eye tic

Mouth tic

Figure 5: Visualization of two tic video clips of representation learning in Stage 1. 3e first row shows the original video clip frames; the
second row shows the corresponding CAM image.

Table 4: Evaluations of some items of scales.

Test ID
Number of tic areas Tic frequency (tics/min) Time for evaluation (min)

Clinician Our model Clinician Our model Clinician Our model Clinician review
1 2 2 6 5 >40 <5 <5
2 2 2 6 7 >40 <5 <5
3 1 2 2 1 >30 <5 <5
4 1 1 40 37 >70 <5 <10
5 1 1 3 1 >30 <5 <5
6 1 1 9 12 >50 <5 <10
7 1 1 15 14 >60 <5 <5
8 1 1 0 0 >30 <5 <5
9 1 1 1 1 >30 <5 <5
10 1 1 11 8 >50 <5 <10
11 2 2 3 3 >30 <5 <5
12 1 0 0 0 >30 <5 <5
13 1 2 4 2 >40 <5 <5
p value 0.7211 0.8666 <0.0001 –

Table 5: Non-TS patient evaluation.

No. Accuracy Number of clips
1 0.9701 67
2 0.9531 192
3 0.9016 193
4 0.9890 91

Table 3: Evaluations of binary classification task.

Accuracy AUC_ROC AUC_PR Precision Recall F1-score
Ours-acc 0.8890 (±0.0458) 0.7532 (±0.080) 0.7035 (±0.138) 0.8057 (±0.103) 0.7532 (±0.103) 0.7634 (±0.093)
Ours-f1 0.9057 (±0.0479) 0.7815 (±0.155) 0.7669 (±0.187) 0.8633 (±0.150) 0.7707 (±0.296) 0.7874 (±0.264)
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management of the patient, the ability to continuously
monitor and record tic events is the key to obtaining a
patient-specific understanding of the disease. While
reviewing and evaluating these monitoring data is a highly
time- and cost-intensive process for doctors, the use of
computer-assisted detection of tic movements can save time
and cost, empower doctors to optimize and adjust medi-
cation responses, and help establish a good evaluation and
management process for patients. Our work is the first
application of a deep learning for video-based assessment of
Tourette syndrome.

As the above experimental evaluations show, our
video-based architecture possesses the ability to detect
motor tic events in TS from videos acquired in a natural
state. In the classification tasks, we detected two kinds of
tics that occur most often in patients. Although the
multiclass classification task involves limited motor tic
categories in our dataset, it represents a unique result: to
the best of our knowledge, no other similar research that
has used surveillance video data for automatic tic rec-
ognition and classification exists. In the evaluation of
subsequent results of the model, we defined some items
that frequently appeared on the tic scales applied on these
model outcomes and obtained consistent results with
those from clinicians based on the MRVRS, which shows
the ability to integrate observation-based scales or
screening instruments for tics, although our current
dataset limited a part of it. If we expand to audio data in
the near future, it could be more comprehensive for
developing an automatic rating scale of tics. For the binary
classification task, it achieved good accuracy on video-
clip-based recognition; however, it needs more video data
for individual tests and other clinical data to support its
outstanding performance in computer-aided diagnosis.

From our perspective, this work has application pros-
pects from two main aspects: (a) automatic annotation of a
video TS dataset. Because our classification task is based on
small video clips, the task model can be used to prelabel the
video and can then be checked by a doctor in a subsequent
continuous data collection task, thereby reducing the doc-
tor’s labeling workload and accelerating the accumulation of
labeled data. (b) Home-based health management applica-
tions: the extensive use of monitoring cameras makes it
possible to extend this work to home-based health moni-
toring and management since acquiring video at home
enhances the retrieval of objective tic expression [41]. In this
case, object recognition and tracking, multiangle analysis,
body tic detection, etc. all need to be considered and re-
solved. Furthermore, noise reduction and voice extraction
are also significant for voice tic detection. A home-based tic
surveillance system allows doctors and family members to
better manage and provide more effective treatments for
patients with tics who are undergoing long-term observation
and treatment.

3e inadequacy of labeled data is a clear limitation to
future work and constitutes a weakness that we alleviate
through unsupervised learning methods. We will continue

to try to ameliorate this limitation by integrating the few-
shot learning method, which has performed well on many
tasks with only small amounts of available training data
[42, 43]. Moreover, this work can be applied and expanded
to multicenter data analysis similar to [44, 45]; a larger
research platform may result in additional interesting re-
search works.

5. Conclusions

In this work, we introduce the first application of a deep
learning method that combines unsupervised and super-
vised learning for video-based facial tic motion detection
in TS patients. 3e developed model achieved good
classification results on both multiclass and binary clas-
sification tasks; it can both detect and classify facial tic
behaviors. 3is study effectively utilized large amounts of
unlabeled data, which greatly reduced the labeling
workload. A subsequent quantification of tic behavior has
potential clinical application value for early identification
and auxiliary diagnosis and evaluation of treatment effects.
In the future, more video data will be collected and used to
evaluate our scheme.

Data Availability

3e TS video data used to support the findings of this study
are restricted by the Ethics Committee of the Second Af-
filiated Hospital of Zhejiang University School of Medicine
to protect the patient privacy. 3e data are not publicly
available due to ethical restrictions.

Conflicts of Interest

3e authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

3is work was supported by the National Key Research and
Development Program of China (No. 2018YFC0116901), the
National Natural Science Foundation of China (Nos.
81771936 and 81801796), the Fundamental Research Funds
for the Central Universities (No. 2021FZZX002-18), the
Major Scientific Project of Zhejiang Lab (No.
2020ND8AD01), and the Youth Innovation Team Project of
the College of Biomedical Engineering and Instrument
Science, Zhejiang University.

Supplementary Materials

Figure S1: Distribution diagram of the TS dataset, including
the unlabeled dataset and the labeled dataset. 3e upper
panel shows the frame distribution of every patient video,
and the lower panel shows the time distribution of the videos
in the TS dataset. (Supplementary Materials)

8 Journal of Healthcare Engineering

https://downloads.hindawi.com/journals/jhe/2021/5531186.f1.pdf


References

[1] M. M. Robertson, V. Eapen, H. S. Singer et al., “Gilles de la
Tourette syndrome,” Nature Reviews Disease Primers, vol. 3,
no. 1, 2017.

[2] B. S. Peterson and J. F. Leckman, “3e temporal dynamics of
tics in Gilles de la Tourette syndrome,” Biological Psychiatry,
vol. 44, no. 12, pp. 1337–1348, 1998.

[3] L. Scahill, M. Specht, and C. Page, “3e prevalence of tic
disorders and clinical characteristics in children,” Journal of
Obsessive-Compulsive and Related Disorders, vol. 3, no. 4,
pp. 394–400, 2014.

[4] M. Bernabei, G. Andreoni, M. O. Mendez Garcia et al.,
“Automatic detection of tic activity in the Tourette Syn-
drome,” in Proceedings of the 2010 Annual International
Conference of the IEEE Engineering in Medicine and Biology,
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*e use of medical image synthesis with generative adversarial networks (GAN) is effective for expanding medical samples. *e
structural consistency between the synthesized and actual image is a key indicator of the quality of the synthesized image, and the
region of interest (ROI) of the synthesized image is related to its usability, and these parameters are the two key issues in image
synthesis. In this paper, the fusion-ROI patch GAN (Fproi-GAN)model was constructed by incorporating a priori regional feature
based on the two-stage cycle consistency mechanism of cycleGAN. *is model has improved the tissue contrast of ROI and
achieved the pairwise synthesis of high-quality medical images and their corresponding ROIs. *e quantitative evaluation results
in two publicly available datasets, INbreast and BRATS 2017, show that the synthesized ROI images have a DICE coefficient of
0.981± 0.11 and a Hausdorff distance of 4.21± 2.84 relative to the original images.*e classification experimental results show that
the synthesized images can effectively assist in the training of machine learning models, improve the generalization performance
of predictionmodels, and improve the classification accuracy by 4% and sensitivity by 5.3% compared with the cycleGANmethod.
Hence, the paired medical images synthesized using Fproi-GAN have high quality and structural consistency with real
medical images.

1. Introduction

Medical imaging is a clinically important noninvasive
diagnostic method; imaging specialists can diagnose
breast cancer or precancer through mammography im-
ages [1]. With the development of deep learning tech-
nology, medical image synthesis [2, 3], classification [4],
and segmentation [5] based on deep learning have become
topical issues in medical research. Deep neural networks
usually require a large number of training samples, and
the size of medical image data is usually small because of
the high collection cost, thus limiting the application of
deep learning models for medical images [6]. Generative
adversarial networks [7] usually learn feature mappings

from source modality to target modality by constructing
generators and discriminators that can be used to syn-
thesize medical images and thus expand training samples
[8, 9]. However, the gradient disappearance, pattern
collapse, and structural consistency problems between
real and synthetic images in the current GAN research
process seriously affect the quality of synthetic images [3].
In addition, the region of interest (ROI) of medical images
is a key factor in aiding imaging research and is often used
in training medical image segmentation tasks. However,
we found that the synthesis of the ROI has rarely been
studied [10, 11]. *us, in the present study, we focused on
the synthesis of high-quality medical images and their
ROI images.
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Nie et al. [12] were the first to propose a generative
adversarial model using a fully convolutional neural network
as a generator that implements the conversion between MRI
and CT images of brain tumor images. *e 3D-based fully
convolutional neural network proposed in this paper well
solves the problem of discontinuity across slices in 2D neural
networks, and the method improves the quality of the
generated images by calculating the gradient difference of
the images as a loss function. *e experimental results show
that the method proposed in this paper can effectively
predict CT images from MRI images, which is an early
research and exploration of generative adversarial networks
in the field of medical image synthesis. Guibas et al. [13]
propose a novel pipeline model based on generative
adversarial networks for the current medical images that are
not easily accessible. *e model proposed in this paper
consists of Stage-I GAN and Stage-II GAN, which enables
the generation of higher quality images by enhancing the
learning of mask image features of images. In addition, John
et al. created an online synthetic medical image database
called SynthMed, while again demonstrating the feasibility
of GAN-based synthesis of medical images. In addition,
Chartsias et al. [8] proposed a multi-input, multi-output
fully convolutional neural network for MRI synthesis, which
embeds all input modalities into a shared potential space and
converts the shared features into target output modalities by
learning the potential space mapping through a decoder.
Although this method can achieve multimodal output, the
generated images are adulterated with redundant infor-
mation. Wolterink et al. [9] used cycleGAN to learn the
mapping of source modality to target modality through
adversarial loss, resulting in synthetic CT images that are
similar to the real CT images. Considering the lack of direct
constraints between the real CT images and the synthesized
CT images, this approach still cannot guarantee the struc-
tural consistency between the synthesized and the input
images. Kang et al. [14] proposed a conditional GAN to
improve model estimation and quantitatively evaluate the
resulting images, but this approach resulted in uneven
quality across domains of the synthesized images. Huang
et al. [15] synthesized glioma images by using the WEENIE
model, which uses a priori information instead of noise as
input to the model, but the consistency of the synthesized
images with the real images needs to be improved.

In the study of GAN-based generative models, the
structural consistency between the real and synthetic images
usually affects the quality of the synthetic images [3]. To
improve the structural inconsistency between the real and
synthesized image during image synthesis and synthesize the
ROI of the image, we proposed a new method for synthe-
sizing paired medical images based on cycleGAN. *e
method incorporates regional a priori features on the basis of
cycleGAN two-stage cycle consistency to achieve high-
quality medical images and their ROI synthesis. In the
medical image synthesis process, the first stage model im-
plements feature mapping from the medical image domain
to the ROI domain and targets the learning contrast features
of ROI and non-ROI tissues. *e second stage network
reduces the ROI domain to the medical image domain to

synthesize medical images. By contrast, in the synthesis
process of ROI, the input ROI image is first reduced to a
medical image, and then a high-quality ROI image is syn-
thesized based on the regional contrast of the medical image.
*e two-stage synthesis process is implemented through the
cycle consistency function of cycleGAN [16]. In this paper,
we validated the quality of the synthesized images by using
two publicly available datasets, where the benign data of the
INbreast dataset has no corresponding ROI images. *en,
we quantitatively analyzed the synthesis results from various
metrics only. *e results show that our proposed method
effectively improves the structural consistency between the
synthesized and real image, and the quality of the synthe-
sized image is better than several recent popular models. In
addition, we have verified that the images synthesized in this
paper can improve the classification performance of the
prediction model in the brain glioma classification experi-
ment.*e experimental results demonstrate that the method
in this paper can effectively generate high-quality paired
medical images, which will bring new solutions for medical
disease research where it is difficult to obtain data.

*e contribution of this work is summarized as follows.

(1) We proposed a new synthesis method for the
synthesis of paired medical images on the cycle
consistency mechanism of cycleGAN and called it
Fproi-GAN

(2) To improve the quality of the synthesized images,
this paper assists the generative model to learn ROI
and non-ROI organizational features by supple-
menting a priori regional features

(3) Fproi-GAN proved its effectiveness on two experi-
mental datasets, and the experimental results show
that our method can effectively improve the struc-
tural consistency of synthesized images with real
images and outperform many popular image syn-
thesis methods

2. Materials and Methods

2.1. Dataset. INbreast [17, 18] contains 303 normal (no
mass) mammograms and 107 pairs of mammograms, in-
cluding mass data and corresponding ROI images. Con-
sidering that training requires paired data, only 107 pairs of
images containing masses were finally selected as the ex-
perimental data and then preprocessed. *e mammograms
had a resolution of 3,328× 4,084 pixels or 2,560× 3,328
pixels, and the images were stored in dicom format. We first
cropped the original images according to the provided lesion
areas, and the cropped images to 256× 256 were converted
into PNG format, as shown in Figure 1(a). *e processed
paired data were divided into training and test sets in a ratio
of 7 : 3, and the image intensity was linearly normalized to
[0,1] by using maximum normalization. Subsequently, the
influence of data irregularity on the experimental results was
eliminated, and the network was accelerated to determine
the optimal solution.

*e BRATS 2017 [19, 20] dataset contains 285 medical
images and their corresponding ROI images from four
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sequences, Tl-weighted (T1), Tl-weighted and contrast-en-
hanced (T1ce), T2-weighted (T2), and FLAIR, including 210
high-grade gliomas (HGG) and 75 low-grade gliomas (LGG),
with image sizes of 240× 240×155 voxels. T2 sequences were
selected as the experimental data, and the 90th and 100th
layer slices of the HGG images (the middle layer contains
more brain image information relative to the edge of the voxel
images) and the corresponding ROI slices were extracted first.
Similarly, the 90th, 95th, 100th, and 105th layer slices of LGG
images and the corresponding ROI slices were extracted, and
each of the 272 pairs of HGG and LGG images were collected,
as shown in Figure 1(b). Finally, all images were adjusted to
256× 256 pixels.*e two small datasets, HGG and LGG, were
normalized according to INbreast’s partitioning and pro-
cessing method.

2.2. Methods. To enable the network learn the contrast
information of ROI and non-ROI tissues, we improved the
cycleGAN model and proposed a pairwise image synthesis
method that incorporates regional features. Figure 2 shows
the flowchart of the model, where the input of the network is
the medical image and its corresponding ROI. Before the
network started training, the medical image matrix was first
multiplied with its ROI image matrix to obtain the regional
image containing only the tumor. *en, we designed a re-
gional feature extraction block (RFB) to extract the semantic
features of regional images and fuse the extracted regional
features with medical images as the input of source domain
X and ROI as the input of target domain Y. During network
training, the model discriminates between ROI and non-
ROI organizational features by learning the mapping of
domain X to domain Y. *e a priori regional features en-
hance the learning process and then reduces domain Y to
domain X to synthesize medical images. ROI synthesis first
reduces the mapping of domain Y to domain X and

synthesizes high-quality ROI images based on the mapping
of domain X to domain Y. Figure 2(c) shows the synthesis of
medical images, and the process can be represented as:
x⟶ G(x)⟶ F(G(x)) ≈ x as shown in (i); similarly, the
synthesis process of ROI can be represented as:
y⟶ F(y)⟶ G(F(y)) ≈ y, as shown in (ii). *e model
proposed in this paper is composed of two generators,
namely,G and F, and two discriminators, namely,Dx andDy.

2.2.1. Regional Feature Extraction. First, the medical image
was multiplied with the ROI matrix to obtain the regional
image, and the operation steps are shown in Figure 2(a). We
designed the RFB for extracting high-level semantic features
of the region image, and its structure is shown in Figure 3.
*e feature extraction block is a simple convolutional neural
network consisting of two mirror fill layers, three con-
volutional layers, and one deconvolutional layer. In the
network, the operational details of the three convolutional
layers are zoomed into the right side of Figure 3, where the
convolutional details include convolution, instance nor-
malization, and activation operations. *e feature map
output after the RFB is fused with the medical image as the
input of domain X.

2.2.2. Network Architecture. *e Fproi-GAN model consists
of two generators and two discriminators, where the
structures of the generators G and F are shown in Figure 4.
*e generator consists of four convolutional layers, two
fusion layers, and two deconvolutional layers, and the op-
eration details of each convolutional layer include convo-
lution, instance normalization, and activation operations. To
extract each pixel in the fused image, the generator first
performs a 3× 3 mirror fill of the image, and the feature map
size is filled from 256× 256 pixels to 262× 262 pixels after
filling. After three convolution processes, a 128-dimensional

3328

4084

256

(a)

×

240 × 240 × 155 (voxels)

(b)

Figure 1: (a) Cropping of the INbreast. (b) Slices containing tumor regions were extracted from the 3D images of glioma; × indicates that
images that do not contain tumor domains were excluded.
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64× 64 feature map is obtained. *e convolution aims to
downsample the image and extracts its structural features,
where the details of the three convolution layer operations
are zoomed into the corresponding color boxes on both
sides. In addition, we added two fusion layers to the gen-
erator to preserve the low-level image information. Finally,
two deconvolution layers restore the image to its initial size
and complete the image synthesis.

*e inputs of the discriminator Dx include real and
synthetic medical images, while the inputs of the discrim-
inator Dy include synthetic and real ROI images. *e dis-
criminator consists of four convolutional layers, flatten
layer, dense layer, and sigmoid activation layer. *e

convolved image is flattened by the flatten layer, and the
dense layer reduces the features to one dimension. Finally,
the sigmoid function determines whether the image is
synthetic or real, and the details of the discriminator layers
are depicted in Figure 5. *e discriminator is executed
immediately after the output of the generator.

2.2.3. Training Loss. *e loss functions used in the synthesis
of the images include the traditional adversarial [7] and cycle
consistency loss [16]. *e model uses adversarial loss as the
mapping function. *e mapping function G: X⟶ Y and
its discriminator DY are expressed in (1) as follows:

LGAN G, DY, X, Y( 􏼁 � Ey∼Pdata(y) log DY(y)􏼂 􏼃 + Ex∼Pdata(x) log 1 − DY(G(x))( 􏼁􏼂 􏼃, (1)

where G(x) generates an image similar to the Y domain, and
DY distinguishes between the synthesized sample and the
real sample. In this process, G(x) aims to distinguish be-
tween information from ROI and non-ROI tissue, resulting
in subsequent F(G(x)) restoration process. G aims to
minimize this objective against an adversary DY that tries to
maximize it, in which minGmaxDY

LGAN(G, DY, X, Y).
Similarly, in the restoration process of F(G(x)), a similar
mapping functionF: Y⟶ X learns the mapping from the
ROI image to the medical image, in which
minFmaxDX

LGAN(F, DX, Y, X), where DX represents its
discriminator.

Traditional adversarial losses can only intermittently
learn the mapping function from domain X to domain Y or
vice versa. To constrain the consistency of the real image
with the synthetic image, we used a cycle consistency loss
function in the model to enhance the reduction process. In
Figure 2(c), x⟶ G(x)⟶ F(G(x)) ≈ x constrains the
synthesis process of the medical image, while
y⟶ F(y)⟶ G(F(y)) ≈ y constrains the synthesis
process of the ROI image. *ese two components constitute
the cycle consistency loss, as shown in the following:

Lcyc(G, F) � Ex∼Pdata(x) ‖F(G(x) − x)‖1􏼂 􏼃 + Ey∼Pdata(y) ‖G(F(y) − y)‖1􏼂 􏼃. (2)

2.3. Evaluation Measures. *e peak signal-to-noise ratio
(PSNR) [21], structural similarity (SSIM) [22], and

multiscale structural similarity (MS-SSIM) [23] were used
for the quantitative evaluation of the synthesized medical

Regional feature extraction

(a) (b) (c)

(i)

(ii)

Reconstructed imageBase model

xG

F
y
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G

F

F

X Y

Feature extraction block

Region extraction

Dx

DxDy

Y⌃

X⌃

x⌃

y⌃

Feature 
maps Dy

Figure 2: (a) Regional feature extraction method. (b) *e base model is a like-cycleGAN model consisting of two generators and two
discriminators. (c) Synthesis of paired images. (i) Process synthesis of medical images. (ii) Process synthesis of ROI images.
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images. Dice coefficient and Hausdorff distance were used
for the quantitative evaluation of the synthesized ROI im-
ages. Given the original input and synthetic images, the
PSNR can be defined as follows:

PSNR(x, F(G(x))) � 10log10
MAX2

range(x, F(G(x)))

N
−1
voxel‖x − F(G(x))‖

2
2

,

(3)

where MAXrange(x, F(G(x))) represents the maximum
number of pixels for x and F(G(x)) images, and Nvoxel
represents the total number of pixels for x or F(G(x)). *e
higher the PSNR value, the better the synthesis performance.
SSIMwas used to measure three metrics of image brightness,
contrast, and structure, which can be expressed as follows:

SSIM(x, F(G(x))) �
2μxμF(G(x)) + c1􏼐 􏼑 2σxF(G(x)) + c2􏼐 􏼑

μ2x + μ2F(G(x)) + c1􏼐 􏼑 σ2x + σ2F(G(x)) + c2􏼐 􏼑
,

(4)

where μ and σ2 denote the mean and variance of the image,
respectively, and σxF(G(x)) denotes the covariance of x and
F(G(x)). *e closer the SSIM is to 1, the higher the
structural similarity is. *e larger MS-SSIM values represent
a better synthesis performance [24]. Dice coefficients [25, 26]
are often used to represent the performance of the syn-
thesized ROI image based on the ROI image y and the
synthesized ROI images G(F(y)) as follows:

Dice(y, G(F(y))) �
2|y∩G(F(y))|

|y| +|G(F(y))|
. (5)

*e Hausdorff distance [27], a complement to the Dice
evaluation metric, can be expressed as follows:

Hausdorff(y, G(F(y))) � max maxy∈y(min(d(y, G(F(y))))),maxG(F(y))∈G(F(y))(min(d(y, G(F(y)))))􏼐 􏼑, (6)

where d represents the Euclidean distance.

3. Results and Discussion

Our network implementation was based on the PyTorch
framework. All experiments were performed on a 12-core Intel
Xeon 3.7GHzCPUandGeForce RTX2080 (8GB) by using the
Ubuntu 18.04 operating system. All figures were plotted on a
computer with Windows 10 (8GB) operating system. During
the synthesis task, all models were trained for 300 epochs,
where the trained models used the Adam optimizer [28] with
default parameters, and the learning rate was set to 0.0002.

3.1. Results of the INbreast Dataset. *is subsection provides
a comparison of three commonly used synthesis models,
namely, DCGAN [11], Pix2Pix [15], and cycleGAN [16].
Table 1 evaluates the whole and tumor domains of the
synthesized images, and Table 2 compares the synthesis
results of ROI images. Tables 1 and 2 compare the differences
between Fproi-GAN and the other methods using paired-
samples T-tests [29], and the underline indicates a signifi-
cant difference between Fproi-GAN and the other methods at
a significance level of 0.05. Based on the experimental results
in Table 1, the Fproi-GAN image synthesis method achieved

the highest results for the three evaluation metrics, whereas
the DCGAN synthesized image results were the lowest.
Based on the quantitative analysis results of the whole image
domain, the Fproi-GAN values were 0.832, 0.053, and 0.016
higher than those of the cycleGAN method in the three
evaluation metrics of PSNR, SSIM, and MS-SSIM, respec-
tively, and 1.813, 0.113, and 0.056 higher than the DCGAN,
respectively. In the tumor domain, the Fproi-GAN values
were 3.657, 0.085, and 0.042 higher than those of the
cycleGAN method in the three evaluation metrics of PSNR,
SSIM, and MS-SSIM, respectively, and 4.911, 0.095, and
0.052 higher than the DCGAN method, respectively. Fproi-
GAN method was significantly improved relative to other
synthesis methods in Table 1. Based on the experimental
results in Table 2, Fproi-GAN obtained the highest DICE
coefficient, which is 0.154 higher than DCGAN, and the
lowest evaluated value in Hausdorff Distance, which is 3.10
lower than DCGAN. Figure 6 shows the visual performance
of the four synthesis methods, and Fproi-GAN performs
closer to the original image in some detail positions.

3.2. Results of the BraTS 2017 Dataset. *is subsection
provides comparison with three commonly used synthetic
models, such as DCGAN [11], Pix2Pix [15], and cycleGAN

Regional image
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Figure 3: RFB architecture; the convolution process zoomed into
the box on the right side corresponding to the dimension.
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[16]. Tables 3 and 4 compare the differences between Fproi-
GAN and other methods by using paired-sample t-test [29],
and the underline indicates that Fproi-GAN is statistically
significantly different from other methods at a significance
level of 0.05. Based on the experimental results in Table 3,
the quantitative analysis results of Fproi-GAN in the HGG
data for the whole image domain are higher than those of
cycleGAN in PSNR, SSIM, and MS-SSIM by 0.604, 0.002,

and 0.003, respectively, and by 9.135, 0.104, and 0.097,
compared with DCGAN, respectively. In the tumor do-
main, the Fproi-GAN values were higher than cycleGAN in
PSNR, SSIM, and MS-SSIM by 6.236, 0.02, and 0.023,
respectively, and 12.349, 0.094, and 0.083 higher than
DCGAN method, respectively. *e quantitative analysis
results of Fproi-GAN in LGG data in the whole image
domain are 1.999, 0.006, and 0.008 higher than cycleGAN
in the three evaluation metrics of PSNR, SSIM, and MS-
SSIM, respectively, and 6.951, 0.069, and 0.066 higher than
DCGAN, respectively. In the tumor domain, the Fproi-
GAN values were 11.248, 0.004, and 0.007 higher than
cycleGAN and 14.631, 0.105, and 0.079 higher than
DCGAN.

Based on the experimental results in Table 4, Fproi-GAN
in HGG data achieved the highest DICE coefficient, which is
0.128 higher than DCGAN, and the lowest evaluated value in
Hausdorff distance, which is 3.44 lower than DCGAN. *e
DICE coefficient of Fproi-GAN in LGG data part was higher
than DCGAN by 0.101, and the Hausdorff distance was
lower thanDCGAN by 3.75. Figure 7 shows the visual results
of the four synthesis methods, in which the synthesis results
of the tumor domain, as well as the results of the non-tumor
domain, are compared, as shown in the medical images of
LGG. III shows the results of the synthesized paired images
in ITK-SNAP [30], and the results show that Fproi-GAN
method has less noise points than the other synthesis
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Figure 4: Generator architecture; the convolution details of the generator are zoomed into the boxes on both sides.
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methods. *e results of the image distribution of the four
synthesis methods are compared in Figure 8, where the
histogram indicates the distribution of the image grayscale
and the trend of the image grayscale.*e Fproi-GANmethod
is always closer to the original image than the three other
methods, both in terms of image distribution and trend of
image grayscale.

In addition to the quantitative evaluation of the syn-
thesized MR images, this paper supplements a glioma HGG
and LGG classification experiment to verify the auxiliary
effect of the synthesized MR images for the classification
experiment. Considering that the INbreast dataset without
mass data lacks corresponding ROI images, our synthesis
method is not applicable, and the auxiliary effect on its
dataset could not be verified in the classification. In the
image synthesis experiments, the training set included 380
images, consisting of 190 HGG and LGG data, and the test
set included 164 images, consisting of 82 HGG and LGG
data. In the classification experiments, the data used for
testing in the synthesis method were used as the training set
with 164 images, the data used for training in the synthesis
method were used as the test set with 380 images, and the
data from each of the four groups synthesized images were
added as comparison experiments, as shown in Table 5.
Referring to article [31, 32] for the classification method,
the first 500 features were extracted for each group of
images by using the Resnet [33] network, followed by 30
features selected by the recursive feature elimination [34]
with fivefold cross-validation, and the filtered features were
classified using the kernel-based SVM algorithm [35]. *e
metrics used to assess the classification results include
AUC, accuracy (Acc), sensitivity (Sen), and specificity
(Spe), where AUC represents the area of the ROC curve and
the other three metrics can be defined as (7)–(9):

Acc �
TP + TN

TP + FP + TN + FN
, (7)

Sen �
TP

TP + FN
, (8)

Spe �
TN

FP + TN
, (9)

where TP represents the number of samples, in which HGG
was correctly predicted, TN represents the number of
samples, in which LGG is correctly predicted, FN represents
the number of samples, in which HGG is predicted as LGG,
and FP represents the number of samples, in which LGG is
predicted as HGG. *e experimental results in Table 5 show
that, by adding the images synthesized by our method for
training the machine learning model, the prediction ability
of the model was effectively improved, in which Fproi-GAN
achieved the best results in the four metrics, and our method
achieved a high classification sensitivity of 0.913.*e ROC of
the classification experiments is shown in Figure 9.

3.3. Discussion. Currently, most image synthesis methods
are in single-input, single-output mode, and the synthesis
of ROI images is rarely studied. Our work utilizes the
cycleGAN’s cyclic consistency mechanism to solve the
problem of structural inconsistency between real and
synthetic images and improves the contrast information
between ROI and non-ROI domains by incorporating
regional features a priori, resulting in the synthesis of
high-quality medical images as well as the corresponding
ROI images. To evaluate the quality of the synthesized
images, we compared several currently popular synthesis
methods, such as DCGAN, Pix2Pix, and cycleGAN, and
evaluated the synthesis results in terms of the whole image
domain of the images and the tumor domain. *e results
show that the Fproi-GAN method synthesized high-
quality medical images on both datasets and achieved the
best results in PSNR, SSIM, MS-SSIM, dice, and Hausdorff
distance metrics. *e poor quality of the DCGAN syn-
thesized images may be due to the collapse of the model
during training, and we found that the synthesized images
of Pix2Pix and cycleGAN are not of high quality due to the
low structural consistency of the model. In addition, the
comparison results from the whole and tumor domain of

Table 1: Quantitative evaluation of the INbreast dataset (mean± standard deviation). We compared the measurements of the different
synthesis methods over the whole image domain and the tumor domain at a significance level of 0.05, and the underline indicates that Fproi-
GAN is statistically significantly different from other methods.

Region Methods PSNR SSIM MS-SSIM

Whole image

DCGAN [11] 16.834± 3.28 0.769± 0.15 0.879± 0.21
Pix2Pix [15] 17.398± 3.81 0.843± 0.13 0.923± 0.19

cycleGAN [16] 17.815± 5.18 0.829± 0.17 0.919± 0.18
Fproi-GAN 18.647 ± 3.25 0.882 ± 0.16 0.935 ± 0.15

Tumor region

DCGAN [11] 19.231± 7.43 0.872± 0.15 0.894± 0.23
Pix2Pix [15] 21.811± 6.98 0.915± 0.11 0.902± 0.22

cycleGAN [16] 20.485± 6.15 0.882± 0.07 0.904± 0.18
Fproi-GAN 24.142 ± 6.70 0.967 ± 0.08 0.946 ± 0.18

Table 2: Results of the quantitative evaluation of the ROI images of
the INbreast dataset (mean± standard deviation) with a signifi-
cance level of 0.05; the underline indicates that the Fproi-GAN is
statistically significantly different from other methods.

Methods Dice coefficient Hausdorff distance
DCGAN [11] 0.827± 0.25 7.31± 4.95
Pix2Pix [15] 0.945± 0.17 7.27± 4.18
cycleGAN [16] 0.952± 0.13 6.83± 3.38
Fproi-GAN 0.981 ± 0.11 4.21 ± 2.84
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Figure 6: Comparison of Fproi-GAN with the three other synthesis methods on the INbreast dataset. (a) Input image. (b) DCGAN. (c)
Pix2Pix. (d) cycleGAN. (e) Fproi-GAN.

Table 3: Results of the quantitative evaluation of the BRATS 2017 dataset (mean± standard deviation), where we compare the mea-
surements of the different synthesis methods over the whole image domain and the tumor domain at a significance level of 0.05, and the
underline indicates that Fproi-GAN is statistically significantly different from the other methods.

Data Region Methods PSNR SSIM MS-SSIM

HGG

Whole image

DCGAN [11] 25.749± 3.49 0.882± 0.04 0.890± 0.05
Pix2Pix [15] 28.938± 4.68 0.952± 0.03 0.956± 0.05

cycleGAN [16] 34.280± 4.85 0.984± 0.02 0.984± 0.05
Fproi-GAN 34.884 ± 5.18 0.986 ± 0.02 0.987 ± 0.04

Tumor region

DCGAN [11] 29.539± 5.05 0.903± 0.02 0.910± 0.05
Pix2Pix [15] 33.031± 5.99 0.951± 0.02 0.952± 0.04

cycleGAN [16] 35.652± 5.97 0.977± 0.03 0.970± 0.04
Fproi-GAN 41.888 ± 6.06 0.997 ± 0.004 0.993 ± 0.03

LGG

Whole image

DCGAN [11] 23.093± 4.71 0.895± 0.11 0.908± 0.06
Pix2Pix [15] 25.912± 4.95 0.933± 0.09 0.945± 0.07

cycleGAN [16] 28.045± 4.47 0.958± 0.08 0.966± 0.03
Fproi-GAN 30.044 ± 4.21 0.964 ± 0.08 0.974 ± 0.03

Tumor region

DCGAN [11] 25.809± 4.39 0.892± 0.09 0.911± 0.07
Pix2Pix [15] 30.228± 5.28 0.939± 0.08 0.948± 0.07

cycleGAN [16] 29.192± 7.22 0.993± 0.01 0.983± 0.06
Fproi-GAN 40.440 ± 7.51 0.997 ± 0.02 0.990 ± 0.03

Table 4: Results of the quantitative evaluation of the ROI images of the BRATS 2017 dataset (mean± standard deviation) with a significance
level of 0.05; underline indicates that the Fproi-GAN is statistically significantly different from other methods.

Data Methods Dice coefficient Hausdorff distance

HGG

DCGAN [11] 0.808± 0.29 8.36± 5.66
Pix2Pix [15] 0.876± 0.23 7.54± 5.90

cycleGAN [16] 0.931± 0.18 5.15± 3.03
Fproi-GAN 0.936 ± 0.18 4.92 ± 3.22

LGG

DCGAN [11] 0.889± 0.26 7.83± 4.84
Pix2Pix [15] 0.947± 0.23 6.25± 3.12

cycleGAN [16] 0.984± 0.21 4.66± 2.33
Fproi-GAN 0.990 ± 0.25 4.08 ± 2.79
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the images showed that the tumor domain is more in-
formative than the whole domain by incorporating re-
gional features.

As shown in Figure 7, our synthesis method resulted in
the least noise points in the medical image processing tool
ITK-SNAP, but the images generated by DCGAN contain
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Figure 8: Image distribution results and grayscale trends of the four synthesis methods under HGG and LGG, where Fp(roi)-GAN
represents Fproi-GAN. (a) HGG. (b) LGG.
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Figure 7: Comparison of Fproi-GANwith the three other synthesis methods on the BRATS 2017 dataset, where III is the visual performance
in ITK-SNAP. (a) Input image (HGG). (b) DCGAN. (c) Pix2Pix. (d) cycleGAN. (e) Fproi-GAN. (f ) Input image (LGG). (g) DCGAN. (h)
Pix2Pix. (i) cycleGAN. (j) Fproi-GAN.

Table 5: Classification results.

Data Methods AUC Acc Sen Spe
BRATS2017

Resnet + SVM

0.872 0.789 0.823 0.778
BRATS2017 +DCGAN 0.881 0.803 0.720 0.831
BRATS2017 + Pix2Pix 0.894 0.815 0.857 0.855
BRATS2017 + cycleGAN 0.928 0.855 0.910 0.843
BRATS2017 + Fproi-GAN 0.943 0.882 0.913 0.868
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Figure 9: Continued.
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more noise points. Based on the image distribution and
grayscale change trend in Figure 8, the proposed method is
closest to the distribution of the original image. From the
previously mentioned experimental evaluation results, the
sets of experiments show that the method proposed in this
paper is more likely to be applied in the near future research
of medical images. At last, in the BRATS 2017 classification
experiments, we supplemented the synthesized data into the
training set to effectively assist the training of the machine
learning model and improve the classification effect of the
model, in which the highest classification accuracy was
achieved by adding the data synthesized by the Fproi-GAN
method. Although many adversarial generation models have
been proposed, the quality of the generated images has been
an important goal for researchers to pay attention to, and in
addition, whether the generated images can be used in recent
studies is also a key concern for research. In this paper, our
proposed method generates high-quality images and is
validated in brain glioma classification experiments, which
proximately illustrates the feasibility and superiority of our
proposed generation method in the process of medical
imaging research.

4. Conclusions

GAN is widely studied in the field of medical imaging,
including cross-modal synthesis, super-resolution recon-
struction, and medical image denoising. In this paper, we
proposed the Fproi-GAN method to synthesize paired
medical images. Moreover, we validated the results of the
synthesized images via quantitative analysis, image distri-
bution comparison, and visual evaluation. In the BRATS
experiment, we added a classification experiment to verify
the effect of synthesized data on the classification experi-
ment. *e results show that the addition of synthetic images

effectively assisted the training of the machine learning
model and improved the classification performance of the
prediction model. Although this paper does not further
validate the impact of the synthesized ROI images on the
segmentation problem, the quantitative analysis indicated
that our method has higher quantitative evaluation results
than the other synthesis methods. In the future, we will
further determine the effect of synthetic images on tasks,
such as medical image classification and segmentation.
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For deep learning, the size of the dataset greatly affects the final training effect. However, in the field of computer-aided diagnosis,
medical image datasets are often limited and even scarce. We aim to synthesize medical images and enlarge the size of the medical
image dataset. In the present study, we synthesized the liver CT images with a tumor based on the mask attention generative
adversarial network (MAGAN). We masked the pixels of the liver tumor in the image as the attention map. And both the original
image and attention map were loaded into the generator network to obtain the synthesized images. (en, the original images, the
attention map, and the synthesized images were all loaded into the discriminator network to determine if the synthesized images
were real or fake. Finally, we can use the generator network to synthesize liver CT images with a tumor. (e experiments showed
that our method outperformed the other state-of-the-art methods and can achieve a mean peak signal-to-noise ratio (PSNR) of
64.72 dB. All these results indicated that our method can synthesize liver CT images with a tumor and build a large medical image
dataset, which may facilitate the progress of medical image analysis and computer-aided diagnosis. An earlier version of our study
has been presented as a preprint in the following link: https://www.researchsquare.com/article/rs-41685/v1.

1. Introduction

Medical image analysis and processing is the core of
computer-aided diagnosis, which has been greatly prompted
by deep learning. And the training of deep learning can be
extensively influenced by the size of the dataset; that is, the
more datasets can be obtained, the better the performance
the trained deep learning model can achieve. However, in
the field of computer-aided diagnosis, the medical image is
very limited and even scarce, due to the privacy of patients,
the expense of medical image acquisition, and so on.
(erefore, synthesized medical images can be seen as the
only feasible way to solve this problem, and generative
adversarial networks (GAN) [1, 2] provide us a powerful tool
to realize it.

GAN was firstly proposed by Goodfellow and colleagues
in 2014 and was widely used in various fields, such as image
processing, natural language processing, and even medical
image synthesis [3]. For skin lesion images, Baur and

colleagues synthesized the images of skin lesions with GAN
[4], which enlarged the skin image dataset and improved the
performance of lesion segmentation. For liver CT images,
GAN was mainly used for expanding the dataset of the liver
lesion [5] or image denoising [6], but the focus of GAN was
only on the liver lesion, not on the whole liver CT images.
For brain images [7], there are many image modules, such as
CT images, magnetic resonance (MR) images, and positron
emission tomography (PET), and different modules have
different image acquisition methods and different influences
on human brains. Dong Nie and colleagues used GAN to
synthesize 7T images from 3T MR images [8] because 7T
magnetic resonance (MR) images were very rare due to the
expensive image acquisition costs and the side effects of high
magnetic field strength. Moreover, some studies proposed to
train a GAN to generate CTimages fromMR images to avoid
the radiation from the CT image acquisition [9, 10]. For
retinal images, the image resolutions were generally smaller
than 100×100, and the image contents were only limited to
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single color background and vessels. Based on the charac-
teristics, some studies [11] used GAN to synthesize the whole
retinal image to enlarge the retinal image dataset, but the
method cannot be generalized to other medical image
modules with bigger image resolution and more organs,
such as liver CT image or brain MR image.

Above all, all these medical image synthesis methods can
be categorized into three types: (1) transformation of dif-
ferent modules, such as from CT images to MR images, (2)
transformation between the different parameter of image
acquisition, such as from 3T MR images to 7T MR images,
and (3) image synthesis of the small resolution, such as skin
and retinal images. Although there were many existing
methods, medical image synthesis is far from clinical ap-
plications, since there are still some shortcoming.

1.1. Image Resolution. Many current medical image syn-
thesis methods can only synthesize images with low reso-
lution, which were lower than 128×128. However, most of
the medical images in the clinical application were high
image resolution, such as 512× 512 CT images and 512× 512
MR images.

1.2. Lesions or Tumors. (e current existing medical image
synthesis methods cannot synthesize images with abnor-
malities, such as liver lesions and liver tumors. As we know,
the size and variety of the training dataset are essential to the
performance of deep learning methods. During the training
of medical images’ classification and analysis, it was essential
to have both normal images and abnormal images to create
an effective data set, but the medical images with abnor-
malities were relatively rare due to the hospital policy, pa-
tients’ privacy, and so on. (erefore, synthesizing medical
images with abnormalities can enlarge the dataset of deep
learning methods and upgrade the performance.

To solve the shortcomings, we proposed a novel image
synthesis model for normal liver CT images and liver CT
images with tumors based on mask attention generative
adversarial network (MAGAN). Using this model, we can
build a liver CT image dataset consisting of thousands of
synthesized 512× 512 slices; furthermore, it also can facili-
tate the progress of computer-aided diagnosis and the
training of deep learning models.

(emain contributions of our work are as follows: (1) we
combined GAN with attention mechanism and proposed a
novel MAGAN model and (2) we proposed an effective
method of enlarging the existing medical image dataset.

2. Materials and Methods

In the present study, we synthesized liver CT images with
tumors based on the mask attention generative adversarial
network (MAGAN) model [12], whose framework is shown
in Figure 1. Firstly, all the pixels of liver tumors in the
original image were labeled by the white color and used as
the attention map. According to the attention mechanism,
liver tumors were the highlighted relevant features of the CT
images, and the attention map was also the key part of the

success of the proposed algorithm. In the procedure of image
synthesis, the liver tumor was the saliency map in the whole
liver CT image, which meant that all the pixels of the liver
tumors were masked by the attention map. (e original
image and the attention map were paired together and called
“pairing A.” (en, the original image and the attention map
were loaded into the generator network to obtain a syn-
thesized image, and the attention map and the synthesized
image were paired together and called “pairing B.” Next,
pairing A and pairing B were both loaded into the dis-
criminator network to determine if the synthesized image
was real or fake. (e generator network and the discrimi-
nator network were trained with adversarial learning so that
both of them can become more and more powerful. After
training, the generator network can fill the pixels of the
attention map with similar gray values, texture, and shape of
liver tumors, to synthesize liver CT images with tumors.
More details of our model can be obtained from Sections
2.1∼2.3.

2.1. Attention Model. All liver CT images used in our
method were from a public liver CT dataset, Liver Tumor
Segmentation (LiTS) [13, 14], which was from the MICCAI
2017 competition. In the LiTS dataset, the pixel distance was
from 0.55mm to 1.0mm, the slice spacing was from
0.45mm to 6.0mm, and the image resolution was 512× 512.
LiTS consisted of 131 enhanced CT image sequences, and all
the tumors in the liver CT images were manually labeled by
radiologists. We aimed to synthesize liver CT images with
tumors, and the synthesized materials were from two as-
pects, liver CT images from healthy controls and liver tumor
CT images from patients. Moreover, the liver tumor was the
most salient region for clinicians and was also the most
difficult part of the whole synthesis procedure. (erefore,
according to the tumor labels from the LiTS dataset, the
image values of all the corresponding pixels in the tumors
were changed to 4096, which meant “white color,” and
represented as an attention map in our model. Based on the
attention mechanism, the original image and the attention
map were transformed into feature maps A and B by using
1× 1 convolution, respectively, and then all these feature
maps were concatenated by using matrix multiplication,
shown in Figure 2:

Si,j � A
T
i Bj. (1)

(en, we performed softmax on the concatenated feature
maps Si,j to calculate the distribution of attention Di,j on the
ith position of the jth synthetic region:

Di,j �
exp si,j􏼐 􏼑

􏽐
N
i�1 exp si,j􏼐 􏼑

. (2)

(erefore, the liver tumor mask images were used as
attention maps to efficiently find the liver tumors’ internal
and external characteristics of the images.
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2.2. Generator Network. (e structure of our generator
network is shown in Figure 3, which consisted of two
contracting paths and an expansive path, showing the
U-shape architecture [15]. (e input of these two con-
tracting paths was the original image and attention map,
respectively; both of them consisted of nine blocks, and each
block was composed of the ReLu layer, convolutional layer,
and batch normalization (BN) layer.

In the contracting path, the image resolution was re-
duced but the feature information was increased. To over-
come the drawback of a regular convolution operator, whose
receptive field was small, we used a dilated convolution
operator [16] in the first four layers of the contracting path,
so that we can capture image features from a larger scale.
And we used a regular convolution operator in the other five
layers of the contracting path because the sizes of the images
were already smaller than 32× 32, which cannot support a

dilated convolution operator. (e feature maps from both of
the two contracting paths were firstly loaded as input to the
attention model, whose framework is shown in Figure 2, and
then the distribution of attention value was transferred via
residual connections. In the expansive path, the spatial in-
formation and the feature information were combined
through a sequence of upconvolutions layer, BN layer, ReLu
layer, and residual connections with high-resolution features
from the attention model. Residual connections played
important roles in MAGAN, which were used to bypass the
nonlinear transformation, accelerate the training speed, and
upgrade the performance of our model in the training of the
deep CNN.

512× 512 original image and attention map were loaded
as inputs into the generator network, and the image reso-
lution was reduced by half while passing each block in the
contracting path. After nine blocks in the contracting path,

Original image

Original image

Attention map

Generator
network

Synthesized image

Pairing A

Pairing B
Discriminator

network

Real/fake?

Figure 1: (e framework of our model: ⊗ represents matrix multiplication.

Distribution of
attention value

Matrix 
multiplication

1 × 1

1 × 1

Feature maps A

Feature maps B

Original image

Attention map

Softmax

Figure 2: (e framework of the attention model.
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the input images became 1× 1 with 1024 feature maps.(en,
these feature maps were upconvolved in the expansive path,
and the size of the image increased one time while passing
each block in the expansive path. After nine blocks in the
expansive path, the image was restored as a 512× 512 res-
olution image. In the generator network, the whitened re-
gions in the liver CT images can be transformed into tumor
regions.(e loss function of our generator network is shown
as the following formula:

Ladv(G) � Εv,r∼pdata(v,r) ‖r − G(v)‖1􏼂 􏼃, (3)

where r denotes the real image, v denotes the concatenated
image, and G(v) denotes the synthesized image calculated by
the generator network.

2.3. Discriminator Network. (e structure of our discrimi-
nator network is shown in Figure 4, which consisted of six

blocks, and each block was composed of a convolutional
layer, ReLu layer, BN layer, or sigmoid layer.

(e inputs of the discriminator network were two
pairings, which were pairing A (original image, attention
map) and pairing B (synthesized image, attention map).
Inspired by PatchGAN [12], all the 512× 512 resolution
images were divided into 900 patches, whose size was
142×142. After going through six blocks of the discrimi-
nator network, the sizes of output probabilities maps were
30× 30, which indicated each pixel in the output proba-
bilities maps corresponded to one patch of the input images.
(e mean value of all the pixels in the probabilities maps can
be recognized as the result of the discriminator network.

(e loss function of our discriminator network is shown
as the following formula:

Ladv(D) � Ev,r∼pdata(v,r) log D(v, r)real􏼂 􏼃 + Ev∼pdata(v) log 1 − D(v, G(v, r))fake( 􏼁􏼂 􏼃, (4)

where r denotes the real image, v denotes the attention map,
G(v, r) denotes the synthesized image calculated by the
generator network, and D(v, r) denotes the discrimination
probability calculated by the discriminator network.

(e total loss function of our GAN is shown as the
following formula:

L � argmin
G

max
D

λ1Ladv(G) + λ2Ladv(D), (5)

where λ1 and λ2 are coefficients.

3. Results

In our experiments, we used LiTS as our image dataset of
liver CT images with tumors, which consisted of only 131
sequences. (e size of LiTS was not big enough for the

training of deep learning algorithms, such as liver tumor
segmentation or classification. To enlarge the LiTS, we chose
4555 2D slices with tumors from 131 sequences of liver CT
images. (en, all the images were normalized by using the
following formula:

valuenormalized �
valueoriginal − mean

std
, (6)

where valueoriginal and valuenormalized represent the original
and normalized image pixels value, respectively. Mean in-
dicate the mean value of image pixels, and std indicate the
standard deviation of image pixels. Moreover, we specially
cut the tumor regions from the liver CT images and built a
liver tumor dataset; then, we augmented the tumor dataset
by flipping, rotating, and scaling the original tumor region so
that we can create a liver tumor dataset of 50000 slices from
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Figure 3: (e framework of our generator network.
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the original 4555 slices, which were used as the mask at-
tention map in our method.

(e hardware and software configuration of our ex-
periments are shown in Table 1. (e quantitative evaluation
metric used in our experiments was the peak signal to noise
ratio (PSNR). (ere were four sections in our experiments,
including training of our model, quantitative comparison
between our method and other state-of-the-art methods,
Turing test for the synthesized images by radiologists, and
the evaluation of the synthetic dataset for the medical image
segmentation.

3.1. Training of Our Model. (e configurations of hyper-
parameters in our model during the training are shown in
Table 2. (e proposed MAGAN network was implemented
by Python 2.7 and TensorFlow 1.1 and trained on an
NVIDIA GeForce GTX 1080 GPU using Adam optimizer

with a learning rate of 0.0002. It costs about ten hours for the
whole procedure of the training.

As shown in Figures 5(a)–5(d), we can find that, as the
number of iterations increased, the performance of the
synthesized CT liver images became better and better. After
the first iteration of training (in Figure 5(a)), the perfor-
mance of the synthesized image from the generator network
was terrible; for example, most pixels were black and the
contour was blurring, intense chessboard effect. All these
bad performances indicated that the training had just
started, andmore iterations were needed. After ten iterations
(in Figure 5(b)), the whole image was more clear, the
contour was more vivid, but the chessboard effect still
existed. After one hundred iterations (in Figure 5(c)), the
performance of the synthesized image was much better and
closer to the real image, more details can be visualized,
human organs were vivid, the chessboard effect was weaker
but still existed, and whitened regions were not filled with
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Figure 4: (e framework of our discriminator network.
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tumor texture. After one thousand iterations (in
Figure 5(d)), the chessboard effect disappeared, all details of
liver CTwere restored, and it was hard to tell the differences
between synthesized image and real image.

(e loss function of the generator network, discrimi-
nator network, and total network during the training is
shown in Figures 6–8, respectively, and we can conclude that
the loss functions decreased as the number of iterations
increased and became steady after about 10000 iterations,
which indicated that our model performed well during the
training.

Results of the synthesized image are shown in Figure 9:
three liver tumor images with tumor masks were in the first
row, which was used as inputs of our model, and we can
obtain the synthesized images in the second row. We
compared the synthesized images and the real images and
calculated the differences between them. (e color image of
the differences is shown in the fourth row. All these results
showed that our method can synthesize liver CT images with
tumors, and the synthesized images were almost identical to
the real images.

To test the impact of the dilated convolution operators in
the MAGAN, we replaced the dilated convolution operators
with the regular convolution operators in the contracting
path of the generator network and quantitatively compared
the PSNR of these two GAN networks. And we found that
the network with regular convolution operators can provide
a PSNR of 59.66, while the MAGAN with dilated convo-
lution operators can provide a PSNR of 64.72, which in-
dicated the effectiveness of the dilated convolution operators
in our network.

To test the impact of the residual connections in the
MAGAN, we removed the residual connections and
quantitatively compared the PSNR of these two GAN

networks. And we found that the network without residual
connections can provide a PSNR of 55.23, while the
MAGAN with residual connections can provide a PSNR of
64.72, which indicated the effectiveness of the residual
connections in our network. (e running time of the pro-
posed method was 0.087 seconds per frame.

Besides, we can also manually or automatically “add”
tumor regions on the healthy liver CT images using our liver
tumor dataset of 50000 slices, to create a diseased liver CT
image, shown in Figure 10.(e healthy liver CT images were
in the first row. In the second row, manually change the pixel
values of two regions to white color, which meant that these
two regions were the selected tumor regions. Using our
method, the results of the synthesized images are shown in
the third row. All these results showed that our method can
intelligently create liver CT images with tumors based on the
healthy liver CT images, and the synthesized diseased images
were almost identical to the real ones.

3.2. Quantitative Comparison. In this section, we quantita-
tively compared our method with other seven state-of-the-art
medical synthesis methods using the same dataset as ours: (1)
atlas-based method [17]; (2) sparse representation (SR) based
method; (3) structured random forest with ACM (SRF+) [18];
(4) manipulable object synthesis (MOS) [19]; (5) deep con-
volutional adversarial networks (DCAN) method [8]; (6)
multiconditional GAN(MC-GAN) [20]; and (7) mask em-
bedding in conditional GAN (ME-cGAN) [21]. (e first four
methods were implemented by our group, and the source
codes of DCAN, MOS, and ME-cGAN were downloaded
from GitHub (http://www.github.com/ginobilinie/
medSynthesis, http://www.github.com/HYOJINPARK/
MC_GAN, and http://www.github.com/johnryh/
Face_Embedding_GAN). (e results of the quantitative
comparison are shown in Table 3, which indicate that our
method outperformed the other seven approaches and
benefited from attention mechanism, dilated convolution
operator, and residual connections.

3.3. Turing Test. To further verify the effectiveness of our
method, we did the Turing test. Two experienced radiologists
from Shengjing Hospital of China Medical University were
asked to classify one hundred liver CT images into two types:
real image or synthesized image. (e radiologists were not
aware of the answer to each image before the Turing test.(e
one hundred liver CT images consisted of fifty real CT
images and fifty synthesized images.(e results of the Turing
test are shown in Table 4: radiologist number 1 made correct
judgments for 74% real image slices and 64% synthesized
image slices and radiologist number 2 made correct judg-
ments for 84% real image slices and 12% synthesized image
slices. (e radiologists made correct judgments for most of
the real images and may be psychologically influenced by the
existence of a synthesized image, so they made some errors
about the real images. Furthermore, the radiologists made
difficult judgments for the synthesized images and cannot
tell the obvious differences between the real images and the
synthesized images. And according to radiologist #1, his

Table 2: Hyperparameters of our model.

Parameter Value
Initial learning rate 0.0002
Adam momentum 0.5
λ1 in formula (5) 100
λ2 in formula (5) 1
Exponential decay 0.99
Batch_size 1
Epoch 10
Dropout 0.5
Frequency of saving loss value 100
Frequency of saving model 500

Table 1: Hardware and software configuration of our experiments.

Item Configuration
Operating system Ubuntu 16.04
GPU NVIDIA GeForce GTX 1080
CPU Intel Core i5-7500 @3.4GHz
Software toolkit Python 2.7; TensorFlow 1.1; MATLAB 2016b
Disk 500GB
GPU memory 8GB
System memory 16GB
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(a) (b)

(c) (d)

Figure 5: Synthesized image during the training of the proposed model: (a) after one iteration of training, (b) after ten iterations of training,
(c) after one hundred iterations of training, (d) after one thousand iterations of training.
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Figure 6: (e loss function of the generator network during the training.
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most reliable evidence of telling the difference was the color
of the tumor region was a little darker than the real ones,
which was also the improvement we needed to do in the
future. All these results of the Turing test indicated that our
method can synthesize liver CT images with a tumor, which
were almost identical to the real ones.

3.4. Evaluation of Synthetic Dataset for Medical Image
Segmentation. To evaluate the effectiveness of the synthetic
dataset in the training of deep learning models, we used a
fully connected network (FCN) [15] to perform the tumor
segmentation task in the liver CT images and trained the
FCN model using the LiTS dataset (images from 131 sub-
jects) and the new dataset obtained by our method (images
from 131 real subjects and 865 synthetic subjects). And we
used the Dice Index to quantitatively evaluate the perfor-
mance of the segmentation results from the two trained FCN
models. (e FCN model trained by the LiTS dataset can
provide a Dice value of 0.611 for the tumor segmentation,

and the FCN model trained by a new dataset can provide a
Dice value of 0.658 for the tumor segmentation. (e result
indicated that the synthesized liver CT images obtained by
the proposed method can effectively enlarge the original
dataset, and as the number of images in the dataset in-
creased, the performance of the training of the deep learning
model can become better, which resulted in the higher Dice
value for the liver tumor segmentation.

4. Discussion

In the present study, we combined the attention mechanism
and GAN model and proposed a novel CT image synthesis
algorithm, which was MAGAN. As far as we know, the
existing medical image synthesis methods mainly focused on
the transformation of different modules or transformation
between the different parameter of image acquisition, and
our study was the first research of synthesizing the liver CT
images with tumors in high resolution and enlarging the size
of the medical image dataset.
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Figure 7: (e loss function of the discriminator network during the training.
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Suppose that we had a dataset of chest CT images with
lung nodules, whose size was one hundred. While we used
this dataset for the training of deep learning, we may find
that the trained model was not good enough due to the small
size of the dataset. Under these circumstances, the proposed
MAGAN can be used to synthesize thousands of chest CT
images with lung nodules based on the original one hundred
images. (is kind of similar requirements from clinical
researches and deep learning studies is very common. And
the proposed method can meet the requirements.

From the quantitative comparison between the proposed
method and the other seven state-of-the-art medical image
synthesized methods, we can conclude that the proposed

method outperforms the others, and the main reasons were
the attention map, which mainly focused on the regions of
interest in the medical images, such as liver tumors or lung
nodules.

During the Turing test, two experienced radiologists
cannot clearly distinguish the synthesized liver CT images
and the real liver CT images. We used the judgments of
experts as the golden standard, and we may conclude that
the synthesized liver CT images with tumors can be used as
the real ones, and the size of the training dataset of medical
images can be enlarged from one hundred to thousands.(e
bigger the medical image dataset is, the better the training
performance can be.

4003002001000–100–200–300–400

Differences between
synthesized and

real images

Real images

Synthesized
images

Liver CT images
with tumors

Figure 9: Results of the synthesized images and the comparison between the synthesized images and real images. (e pixel values of the
fourth rows are weak and low because the differences between the real images and synthesized images were very small.
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5. Conclusions

In the present study, we proposed a method of synthesizing
liver CT images with tumors based on mask attention
generative adversarial networks. (e experimental results
showed that our method outperformed the other seven
widely used approaches and can achieve 64.72 db mean
PSNR, and the Turing test indicated that even the experi-
enced radiologists cannot tell the differences between the
synthesized images from our method and the real ones. All

these results meant that, using our method, we can build a
huge medical image dataset to facilitate the diagnosis of
computer-aided diagnosis and the training of deep learning.

Data Availability

Liver CT images used in our method were from a public liver
CT dataset, which is Liver Tumor Segmentation (LiTS), and
the data can be obtained from https://academictorrents.
com/details/27772adef6f563a1ecc0ae19a528b956e6c803ce.

Healthy liver
CT images

Whitened regions were
added in the liver

Results of synthesized
images

Figure 10: Adding tumor regions on the healthy liver CT images and synthesizing diseased liver CT images using our method.

Table 4: (e Turing test of our method.

Real image (50 slices) Synthesized image (50 slices)
Be judged as real

images
Be judged as synthesized

images
Be judged as real

images Be judged as synthesized images

Radiologist number
1 37 13 18 32

Radiologist number
2 42 8 44 6

Table 3: (e quantitative comparison between our method and seven other approaches.

Method
Atlas [17] SR SRF+ [18] MOS [19] DCAN [8] MC-GAN [20] ME-cGAN [21] Our method

Mean PSNR(dB) 45.15 49.77 55.30 60.11 58.26 59.29 61.35 64.72
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