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Uncovering the relationship between body mass index (BMI) and DNA methylation could be useful to understand molecular
mechanisms underpinning the effects of obesity. Here, we presented a cross-sectional study, aiming to evaluate the association
of BMI and obesity with long interspersed nuclear elements (LINE-1) methylation, among 488 women from Catania, Italy.
LINE-1 methylation was assessed in leukocyte DNA by pyrosequencing. We found a negative association between BMI and
LINE-1 methylation level in both the unadjusted and adjusted linear regression models. Accordingly, obese women exhibited
lower LINE-1 methylation level than their normal weight counterpart. This association was confirmed after adjusting for the
effect of age, educational level, employment status, marital status, parity, menopause, and smoking status. Our findings were in
line with previous evidence and encouraged further research to investigate the potential role of DNA methylation markers in
the management of obesity.

1. Introduction

Overweight and obesity are delineated by an excessive accu-
mulation of body fat, which results in a body mass index
(BMI) greater than or equal to 25 kg/m2 and 30 kg/m2,
respectively [1]. According to the most recent estimates by
the World Health Organization (WHO), nearly 2 billion
adults were overweight in 2016, out of which approximately
650 million were obese [2]. In line with these estimates,
more than one adult in ten (~13%) were obese in 2016, with
a prevalence that tripled in the last four decades [2]. The rea-
sons behind this increment is probably attributable—at least
in part—to the increased intake of energy-dense foods and
to the increasingly sedentary nature of human life [2]. Over-
weight and obesity also account for an important burden for
public health [3], because raised BMI is often associated
with an increased risk of cardiovascular diseases, diabetes,
musculoskeletal disorders, and some cancers [4]. It is also

noteworthy that raised BMI could have adverse conse-
quences on women of childbearing age and especially dur-
ing pregnancy. For instance, excessive weight gain prior
and during pregnancy was associated with adverse out-
come in both mothers and their children [5–11]. More-
over, children born from overweight or obese women
were not only at higher risk of being born large for gesta-
tional age [7, 9, 12, 13] and preterm [14] but also to
develop metabolic disorders later in life [15–17].

In this complex scenario, it would be interesting to
uncover molecular mechanisms associated with raised BMI
and obesity. Among them, epigenetic mechanisms surely
attracted the attention of many researchers, due to their
potential role in development of obesity from the early
stages of life [18]. For instance, previous studies already sug-
gested the involvement of DNA methylation, aberrant
miRNA expression, histone modification, and nucleosome
release in obesity and associated comorbidities [19–21].
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Specifically, DNA methylation is one of the best character-
ized epigenetic mechanisms, and previous studies investi-
gated its association with cardiovascular diseases, obesity,
diabetes, and cancer [22–24]. DNA methylation is generally
regulated by different DNA methyltransferases (DNMTs),
which are involved in several physiological and molecular
processes, such as genomic imprinting, X-chromosome
inactivation, gene expression, maintenance of chromosome
integrity, and DNA-protein interactions [25]. Several studies
used the methylation of long interspersed nuclear elements
(LINE-1) sequences as a proxy of global DNA methylation
level. Although there is still no consensus on the validity of
measuring LINE-1 methylation as a surrogate marker, aber-
rant methylation of these sequences might influence both
chromosomal stability and gene expression [26, 27]. Previ-
ous research suggested the potential relationship between
obesity and LINE-1 methylation, but further investigation
is still needed. Thus, the current cross-sectional study is
aimed at assessing the association of BMI and obesity with
LINE-1 methylation level among women from Catania,
Italy.

2. Materials and Methods

2.1. Study Design. The population of the present cross-
sectional study consisted of women from 15 to 85 years,
who underwent routine physical examination at three clini-
cal laboratories in Catania (Italy) from 2010 to 2017. Over-
all, the study was conducted on nonpregnant women
without previous or current diagnosis of cancer, diabetes,
cardiovascular, neurodegenerative, and autoimmune dis-
eases. The study protocol was in accordance with the Decla-
ration of Helsinki and approved by the ethics committees
“Catania” and “Catania 2” with the following protocol num-
bers: 52/2010/VE, 16/2015/CECT2, and 227/2011/BE. All
women who met inclusion criteria were invited to partici-
pate, after being informed of all aspects of the research pro-
tocol. Those who agreed to participate in the study had to
sign a written informed consent. At recruitment, height
and weight were measured to the nearest 1 cm and 1 kg,
respectively, using a medical digital scale with meter. BMI
was calculated as the ratio between weight (kg) and squared
height (m2), and participants were categorized into under-
weight, normal weight, overweight, and obesity according
to the WHO criteria [28]. At the same time, women pro-
vided a blood sample for DNA extraction and LINE-1 meth-
ylation assessment. Women with incomplete information on
anthropometric measures and those who did not provide a
blood sample were excluded from the current analysis.

2.2. LINE-1 Methylation Analysis. DNA extraction and the
assessment of LINE-1 methylation were performed using
standardized protocols [29]. In brief, DNA was extracted
from leukocytes using the QIAamp DNA Mini Kit (Qiagen,
Milan, Italy). Next, bisulphite conversion of 40 ng of the
extracted DNA was performed using the EpiTect Bisulfite
Kit (Qiagen, Milan, Italy). Specifically, the assessment of
methylation levels was performed on three CpG sites within
the LINE-1 sequence (GenBank Accession No. X58075). To

do that, the LINE-1 sequence was amplified by Hot start
PCR on the Eppendorf Mastercycler (Eppendorf, Milan,
Italy). The PCR reaction was conducted in a final volume
of 25μl, containing 1.5μl of bisulfite-converted DNA,
12.5μl of PyroMark PCR Master Mix 2x, 2.5μl of Coral
Load Concentrate 10x, and 2μl of primers (0.2μM for each).
The sequences of forward and reverse-biotinylated primer
were 5′-TTTTGAGTTAGGTGTGGGATATA-3′ and 5′
-biotin AAAATCAAAAAATTCC CTTTC-3′, respectively
[29]. The PCR conditions were the following: 1 cycle at
95°C for 15min, 40 cycles at 94°C for 30 s, 50°C for 30 s,
72°C for 30 s, and a final extension at 72°C for 10min.
Finally, the PCR products were sequenced by pyrosequenc-
ing on the PyroMark Q24 instrument (Qiagen, Milan, Italy),
using 0.3mM of the sequencing primer 5′-AGTTAGGTG
TGGGATATAGT-3′. For each CpG site, methylation level
was calculated as the percentage of methylated cytosines
over all cytosines. All the protocols were performed accord-
ing to the manufacturers’ instructions, and each sample was
analysed in triplicate. All the assays included a positive
(100% methylated DNA) and a negative (0% methylated
DNA) control, while failed assays were repeated. Intraobser-
ver coefficient of variability between replicates was 2.2%
(SD = 1:0%), as previously reported. For each sample,
LINE-1 methylation level was calculated as the mean of
methylation level of the three CpG sites [30].

2.3. Covariates. At the recruitment, information on socio-
demographic and behavioral factors were collected through
the administration of structured questionnaires. Specifically,
educational level was classified as low (primary school
diploma or none), medium (secondary school diploma), or
high (bachelor’s degree or higher). Women were also classi-
fied, according to their employment status, as employed
(including both part-time and full-time employment) or
unemployed (including housewives and retired). For each
woman, we also collected information about family structure
and specifically asking if women lived alone or in couple and
if they had at least a child. Regarding smoking status, women
were classified as current, former, and never smokers.
Instead, dietary data were obtained using a semiquantitative
Food Frequency Questionnaires (FFQ), from which we esti-
mated total daily energy intake [31].

2.4. Statistical Analysis. Statistical analyses were performed
on the STATA software (version SE 16.0, StataCorp, College
Station, USA). Prior to analysis, quantitative variables were
tested for normality using the Kolmogorov-Smirnov test.
Descriptive statistics were used to summarize categorical
variables (using frequency and percentage) and quantitative
variables (using median and interquartile range (IQR)). All
variables were compared across BMI categories using the
Chi-squared test for categorical variables and the Kruskal–
Wallis test for quantitative variables. The association of
BMI with LINE-1 methylation was examined by simple lin-
ear regression and further adjusting for age, educational
level, employment status, marital status, parity, menopause,
and smoking status. Similarly, the association of BMI cate-
gories with LINE-1 methylation was examined using normal

2 Disease Markers



weight as the reference group in unadjusted and adjusted
linear regression models. Results were reported as β coeffi-
cients and their standard error (SE). All the analyses were
two-sided and performed with a significance level of 0.05.

3. Results

3.1. Population Characteristics. Figure 1 describes the selec-
tion of participants according to inclusion and exclusion cri-
teria. In brief, 494 out of 844 participating women provided
a blood sample for the assessment of LINE-1 methylation.
Among them, 6 women were excluded because of incom-
plete information on anthropometric measures. Thus, the
study population consisted of 488 women, aged 15-85 years,
with a complete assessment of anthropometric measures and
LINE-1 methylation of leukocyte DNA. No differences
between included and excluded women were evident.
Regarding their education, 35.2% had a primary school
diploma, 47.1% obtained a secondary school diploma, and
17.6% earned a degree. Overall, 44.1% of women were
part-time or full-time employed, while 50.4% lived in couple.
Approximately 70% had at least a child, while only 9.3%
were menopausal. With respect to smoking status, most
women never smoked (57.3%), a low proportion of them
were former smokers (11.7%), and about one-third were
current smokers (31.0%). The median total energy intake
was 1935 kcal, and 17.4% used dietary supplements.

3.2. Comparisons across BMI Categories. According to their
BMI (median of 23.3 kg/m2), women were classified as
underweight (6.4%), normal weight (57.6%), overweight
(23.6%), or obese (12.5%). Table 1 compares the abovemen-
tioned characteristics across these BMI categories. Interest-
ingly, the median age and hence also the proportion of
menopausal women increased from the underweight to the
obese category (p < 0:001 and p = 0:023). In line with
increasing age, also the proportion of women who lived in
couple and those who had at least a child increased
(p < 0:001 and p = 0:004). Regarding social factors, the pro-
portion of women with low educational level and those
who were unemployed increased from the underweight to
the obese category (p values < 0.001). With respect to behav-
ioral information, the proportion of current smokers
decreased from the underweight to the obese category
(p < 0:001), while no differences were evident for total
energy intake and use of dietary supplements.

3.3. The Relationship between BMI and LINE-1 Methylation.
We first tested the relationship between BMI and LINE-1
methylation. As showed in the scatter plot reported in
Figure 2, we noted a negative association so that the percent-
age of LINE-1 methylation decreased by 0.125 for each unit
increase of BMI (SE = 0:057; p = 0:029). Accordingly, as
depicted in the violin plot reported in Figure 3, we observed
that LINE-1 methylation tended to decrease from the under-
weight to the obese category (p = 0:048). Indeed, median
LINE-1 methylation level was 69.7 (IQR = 10:0) in under-
weight, 68.7 (10.0) in normal weight, 67.3 (10.7) in over-
weight, and 65.0 (IQR = 9:5) in obese women.

3.4. The Association of Obesity with LINE-1 Methylation.
Finally, we tested the association of BMI and its catego-
ries with LINE-1 methylation level. To do that, we first
adjusted the negative relationship between BMI and
LINE-1 methylation for the potential effect of covariates
(Table 2). Notably, the percentage of LINE-1 methylation
significantly decreased by 0.145 for each unit increase of
BMI (SE = 0:058; p = 0:013). Moreover, we evaluated the
association between specific BMI categories and LINE-1
methylation, using normal weight women as the reference
group. In the unadjusted model, obese women exhibited
lower LINE-1 methylation level than their normal weight
counterpart (β = −1:971; SE = 0:876; p = 0:025), while no
significant differences were evident for underweight or
overweight women. Interestingly, the negative association
between obesity and LINE-1 methylation remained signif-
icant (β = −2:050; SE = 0:868; p = 0:019) after adjusting
for age, educational level, employment and marital status,
parity, menopause, and smoking habits.

4. Discussion

Our study demonstrated a negative relationship between
BMI and LINE-1 methylation, which resulted in lower
methylation level among obese women if compared with
their normal weight counterpart. These findings were par-
tially in line with the evidence summarized by a comprehen-
sive review published by Samblas and colleagues in 2019
[18]. Indeed, several investigations have already suggested
the relationship of weight gain and obesity traits with
DNA methylation. Yet, these studies were heterogeneous in
terms of study design, DNA source, methylation marker
under investigation, and outcome of interest [18]. This pro-
duced a lot of findings, which, however, were not easy to
interpret because in many cases they were often inconclusive
or controversial. Indeed, obesity was associated with DNA
methylation both positively and negatively, depending on
the genes or DNA sequences under study [18].

To the best of our knowledge, few studies investigated
the association between obesity and LINE-1 methylation.

841 women who
participated in the study

347 women who did not
provide blood sample

494 women who provided
blood sample

6 women without
anthropometric measures

488 with complete
assessment of BMI and

LINE-1 methylation

Figure 1: Flow chart of population selection.
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Among them, the cross-sectional study by Carraro and col-
leagues showed a positive association of waist circumference
and BMI with methylation level in blood samples from 40
health professionals aged 20-59 years [32]. By contrast, a
longitudinal analysis of the Bogota School Children Cohort
demonstrated a negative association between adiposity mea-
sures and LINE-1 methylation in blood samples from chil-
dren aged 5–12 years [33]. A negative association was also
observed in our study, which for the first time evaluated
the relationship between BMI, obesity, and LINE-1 methyl-
ation in a large population of women without previous or
current diagnosis of severe diseases.

These controversies might be at least partially
explained by the fact that several demographic, behavioral,

and physiological factors could affect DNA methylation
[18]. In the context of LINE-1 sequences, for example, it
has already been demonstrated how nutrients, foods, and
dietary patterns might influence methylation level. Specifi-
cally, the intake of nutrients involved in one-carbon
metabolism, the consumption of fruits and vegetables,
and the adherence to healthy dietary patterns appeared
to be associated with higher LINE-1 methylation level
[29]. In line with these findings, there was also evidence
that weight loss interventions might significantly increase
LINE-1 methylation level in blood samples [34, 35]. More-
over, it has been proposed that LINE-1 methylation level
prior to the intervention might significantly predict the
amount of weight loss [35]. Despite these interesting

Table 1: Characteristics of the study population across categories of the body mass index.

Characteristics Underweight (n = 31) Normal weight (n = 281) Overweight (n = 115) Obese (n = 61) p value

Age, years 30 (11) 39 (18) 46 (22) 44 (21) <0.001
Educational level

Low 19.3% 30.4% 46.2% 53.9%

<0.001Medium 49.1% 46.9% 44.0% 34.8%

High 31.6% 22.7% 9.9% 11.2%

Unemployed 45.6% 51.3% 59.9% 74.2% <0.001
Living in couple 18.6% 46.1% 68.3% 75.6% <0.001
Having children 36.8% 70.5% 80.9% 78.9% 0.004

Menopause 0.0% 15.2% 21.8% 15.8% 0.023

Smoking status

Never smokers 47.7% 54.0% 60.4% 61.8%

<0.001Former smokers 7.0% 7.9% 15.9% 13.5%

Current smokers 45.6% 38.1% 23.6% 24.7%

Total energy intake, kcal 2014 (705) 1923 (650) 1935 (708) 1950 (778) 0.335

Users of supplements 11.6% 15.7% 16.3% 15.6% 0.905

Results are reported as median (IQR) or percentage (%) and compared using the Kruskal-Wallis or the Chi-squared tests.
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Figure 2: Scatter plot of the relationship between body mass index
and LINE-1 methylation. The red line represents the linear
regression line with its 95% confidence interval.
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Figure 3: Violin plot showing the distribution of LINE-1
methylation level across categories of body mass index.
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suggestions, however, there were also studies that pro-
duced inconclusive or opposite results [36, 37]. This was
the case of the study by Martin-Nunez and colleagues,
which instead showed a reduction in LINE-1 methylation
level after an intervention promoting the adherence to
the Mediterranean diet [36].

Although our findings confirm the relationship
between obesity and LINE-1 methylation, their clinical
utility for predicting obesity risk and response to weight
loss programs is not immediate. In fact, the observational
and cross-sectional nature of our study did not allow to
establish a cause-effect relation. Specifically, further pro-
spective studies should be encouraged to assess if LINE-1
methylation is a molecular mechanism underpinning obe-
sity development or a consequence of this condition.
Moreover, additional experimental research is necessary
to confirm if LINE-1 methylation could be useful to pre-
dict weight loss in obese patients.

From a physiological point of view, several obesity-
related factors were associated with aberrant DNA methyla-
tion. However, most of them were investigated only in vitro
since they were challenging to be isolated in humans.
Indeed, obese subjects often exhibited nutritional and phys-
iological factors simultaneously, masking and/or confound-
ing their independent effect on DNA methylation [18].
Despite these difficulties, it appeared clear that chronic
inflammation [38, 39], oxidative stress [40], and insulin
resistance [41] might play a key role in DNA methylation
changes associated with obesity.

Our study had some limitations that should be consid-
ered when interpreting our findings. Firstly, the cross-
sectional nature of our analysis did not allow to under-
stand the causal relationship between obesity and LINE-1
methylation. Secondly, we used information on BMI and
its classification, even if other anthropometric measures
and adiposity indexes should have been considered addi-

tionally. For example, further studies should evaluate the
association of LINE-1 methylation with several measures
of fat deposition and abdominal obesity commonly used
in epidemiological research [1, 18]. Thirdly, although our
analyses were adjusted for several variables, other factors
that could potentially affect DNA methylation and obesity
(e.g., diet and physical activity) [42] should have been
considered.

5. Conclusions

Our study demonstrated how increased BMI was associated
with lower LINE-1 methylation level, especially in obese
women. These findings—adding to the current knowledge
on the relationship between obesity and DNA methyla-
tion—sustained the hypothesis that measuring obesity-
related DNA methylation markers could be helpful to
understand the molecular effects of inadequate weight gain.
Moreover, it could be also useful for identifying people at
higher risk of obesity or those who respond well to weight
loss programs. However, at present, these are just interesting
perspectives that merit further investigation through longi-
tudinal and well-structured studies.
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Table 2: Linear regression analyses between BMI, its categories, and LINE-1 methylation level.

Modela BMI β coefficient Standard error p value

Unadjusted

Continuous -0.125 0.057 0.029

Categories

Underweight 0.194 1.173 0.868

Normal weight Ref.

Overweight 0.170 0.687 0.803

Obese -1.971 0.876 0.025

Adjusted

Continuous -0.145 0.058 0.013

Categories

Underweight -0.015 1.161 0.990

Normal weight Ref.

Overweight -0.108 0.687 0.875

Obese -2.050 0.868 0.019

Results are reported as β coefficients, standard errors, and p values obtained through the linear regression analyses. The normal weight category was used as
the reference group (Ref.) where indicated. The adjusted models included age, educational level, employment status, marital status, parity, menopause, and
smoking status.
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Background. N6-methyladenosine (m6A) modification plays an essential role in diverse key biological processes and may take part
in the development and progression of hepatocellular carcinoma (HCC). Here, we systematically analyzed the expression profiles
and prognostic values of 13 widely reported m6A modification-related genes in HCC.Methods. The mRNA expression of 13 m6A
modification-related genes and clinical parameters of HCC patients were downloaded from TCGA, ICGC, GSE109211, and
GSE78220. Univariate and LASSO analyses were used to develop risk signature. Time-dependent ROC was performed to assess
the predictive accuracy and sensitivity of risk signature. Results. FTO, YTHDC1, YTHDC2, ALKBH5, KIAA1429, HNRNPC,
METTL3, RBM15, YTHDF2, YTHDF1, and WTAP were significantly overexpressed in HCC patients. YTHDF1, HNRNPC,
RBM15, METTL3, and YTHDF2 were independent prognostic factors for OS and DFS in HCC patients. Next, a risk signature
was also developed and validated with five m6A modification-related genes in TCGA and ICGC HCC cohort. It could effectively
stratify HCC patients into high-risk patients with shorter OS and DFS and low-risk patients with longer OS and DFS and
showed good predictive efficiency in predicting OS and DFS. Moreover, significantly higher proportions of macrophages M0
cells, neutrophils, and Tregs were found to be enriched in HCC patients with high risk scores, while significantly higher
proportions of memory CD4 T cells, gamma delta T cells, and naive B cells were found to be enriched in HCC patients with low
scores. Finally, significantly lower risk scores were found at sorafenib treatment responders and anti-PD-1 immunotherapy
responders compared to that in nonresponders, and anti-PD-1 immunotherapy-treated patients with lower risk scores had
better OS than patients with higher risk scores. Conclusion. A risk signature developed with the expression of 5 m6A-related
genes could improve the prediction of prognosis of HCC and correlated with sorafenib treatment and anti-PD-1
immunotherapy response.

1. Introduction

Hepatocellular carcinoma (HCC) is a common type of
cancer and represents the leading cause of cancer-related
death worldwide. HCC is still a serious burden to public
health [1]. There were about 841,000 patients developed
HCC, and 782,000 patients died from HCC alone in
2018 because of late diagnosis and limited treatment

options [1, 2]. Moreover, the incidence of HCC is increas-
ing rapidly with 50% recurrence rate after surgical treat-
ment [3, 4]. It is well recognized that development and
progression of HCC is the result of multistep process,
where interactions between genetics and epigenetics have
played important roles [5–8]. Understanding the patho-
genesis of HCC is the key to discover new diagnostic bio-
markers and therapeutic targets.
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RNA modification, discovered in the 1970s, has recently
been recognized as a third layer of epigenetics that could
modify a plethora of native cellular RNAs [9–11]. N6-
methyladenosine (m6A) modification is the most abundant
form of internal mRNA methylation among the kinds of
RNA modifications in eukaryotes [12]. m6A modifications
in mammalian cells are dynamic and reversible and are com-
monly regulated by binding proteins (“readers”), methyl-
transferases (“writers”), and demethylases (“erasers”) [13].
Among m6A modification-related genes, 13 genes, including
ZC3H13, WTAP, KIAA1429, METTL3, METTL14, RBM15,
YTHDC1, YTHDC2, YTHDF1, YTHDF2, HNRNPC,
ALKBH5, and FTO, are the most prominent [14–16]. These
m6A modification-related genes are primarily involved in
modulation of alternative mRNA splicing, precession of
pre-miRNA, stability of mRNA, and enhancement of transla-
tion efficiency of mRNA [13]. Not only do these 13 m6A
modification-related genes play essential roles in many
important biological processes, such as development of
embryonic and neural cells, differentiation of stem cell, and
stress responses [17–19], they also take part in the develop-
ment, progression, and radio resistance of various kinds of
cancers [20–23]. For example, overexpression of YTHDF1
is found to be related with poorer survival of HCC patients,
and KIAA1429 andMETTL3 are found to regulate migration
and invasion of HCC, indicating an important role of m6A
modification-related genes playing in HCC [24–26].

Recently, Zhou et al. explored the expression pattern and
prognostic values of m6Amodification-related genes of HCC
patients, but they mainly focused on the role ofMETTL3 and
YTHDF1 [27]. In the present study, we comprehensively ana-
lyzed the expression pattern and prognosis of the thirteen
widely reported m6A modification-related genes in TCGA
HCC cohort. Besides, we also developed and validated a risk
signature with the expression of 5 selected m6A
modification-related genes and analyzed its prognostic value
for HCC patients and its relation with tumor-infiltrating
immune cells in TCGA and ICGC HCC cohort. Moreover,
the prediction values of risk signature in sorafenib treatment
and anti-PD-1 immunotherapy response were also evaluated.

2. Materials and Methods

2.1. Ethics Statement. All the data analyzed in the present
study were received from TCGA, ICGC, and GEO dataset,
and written consents were already obtained before our study.

2.2. Data Collection. mRNA expression of TCGA HCC
cohorts, which included 374 HCC cases and 50 normal con-
trols, was got from GDC Data Portal (https://cancergenome
.nih.gov/). Meanwhile, corresponding clinical-pathological
data, including gender, age, histologic grade, tumor T stage,
N stage, M stage (M), TNM stage, overall survival (OS) time,
and disease-free survival (DFS) time, were also downloaded.
It was of note that 9 of 374 HCC patients were excluded
because of absence of corresponding clinical-pathological
data, and basic characteristics of 365 HCC patients were
summarized in Table 1. In addition, a total of 232 HCC
patients with available OS information and mRNA expres-

sion were got from the ICGC portal (https://dcc.icgc.org/
projects/LIRI-JP). The mRNA expression of 67 sorafenib-
treated HCC patients of GSE109211 was downloaded from
the GEO database (https://www.ncbi.nlm.nih.gov/geo/), and
there were 21 sorafenib treatment responders and 46 nonre-
sponders in GSE109211. Moreover, the mRNA expression of
27 melanoma patients with anti-PD-1 checkpoint inhibition
therapy of GSE78220 was also downloaded from the GEO
database. Four patients achieved complete response, 10
patients achieved partial response, and 13 patients achieved
no response.

2.3. Development and Validation of Risk Signature. First, uni-
variate analysis was carried out to select the genes related
with survival. Then LASSO algorithm was used for selecting
the most prognostic-related genes [28]. A risk signature was
developed based on the coefficients weighted by LASSO anal-
ysis. With this signature, we calculated a risk score for HCC
patients and divided HCC patients into high-risk group and
low-risk group based on the median risk score.

2.4. CIBERSORT. CIBERSORT (https://cibersort.stanford
.edu) is an online tool designed for estimating the abun-
dances of 22 kinds of tumor-infiltrating immune cells with
transcriptomic data [29], and we used it to calculate the
tumor-infiltrating immune cells of HCC patients basing on
the mRNA expression profiles of TCGA HCC cohort and
ICGC HCC cohort, respectively.

2.5. Data Analysis Flow Chart. To make the study to be better
understood, a workflow of the study was depicted and was
shown at Figure 1.

2.6. Statistical Analysis. The R software (version 3.5.1) was
used for statistical analysis. Wilcox test was performed to
compare difference of m6A modification-related genes
between HCC and healthy controls. Correlation of the 13
m6A modification-related genes with each other was com-
pared by Spearman correlation analysis. One-way ANOVA
was carried out to compare difference of m6A
modification-related genes among different histologic grades
and TNM stages. Chi-square analysis was carried out to ana-
lyze distribution of clinical-pathologic parameters between
high-risk HCC patients and low-risk HCC patients. Univar-
iate and multivariate Cox regression analyses were carried
out to analyze the prognostic value of m6A modification-
related genes and risk signature. Kaplan-Meier analysis with
log-rank test was carried out to analyze difference of OS or
DFS between patients of different clusters or with risk scores.
Time-dependent ROC was carried out to analyze the predic-
tive accuracy and sensitivity of risk signature. Additional sta-
tistical analyses were performed with STAMP [30]. P < 0:05
was considered as statistically significant.

3. Results

3.1. Expression of m6A Modification-Related Genes of HCC
Patients and Their Associations with Clinical-Pathologic
Parameters. First, the mRNA expression of 13 m6A
modification-related genes was downloaded from TCGA
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and compared between HCC patients and normal controls.
As was shown at Figures 2(a) and 2(b), significantly higher
expression of FTO, YTHDC1, YTHDC2, ALKBH5,
KIAA1429, HNRNPC, METTL3, RBM15, YTHDF2,
YTHDF1, and WTAP was found in the tissues of HCC
patients compared to normal tissues (all P < 0:001). Interest-
ingly, we also found that the expression of most of the 13
m6A modification-related genes seemed to be lower than
those of other 32 kinds of tumors. Besides, most of the 13
m6A modification-related genes were positively correlated
with each other (Figure 2(c)). Moreover, genetic changes,
such as missense mutation, truncating mutation, amplifica-
tion, deep deletion, diploid, and gain, were observed in about
80% of the HCC patients (Figure 2(d)). Specifically, each
HCC patient might have one or more kinds of genetic
changes. The genetic rates of WTAP, KIAA1429, RBM15,
METTL3, METTL14, ALKBH5, YTHDC1, YTHDC2,
HNRNPC, YTHDF1, YTHDF2, FTO, and ZC3H13 were 7%,
4%, 17%, 40%, 5%, 5%, 7%, 8%, 18%, 11%, 9%, 13%, and

17%, respectively, suggesting that higher expression of m6A
modification-related genes might be the result of genetic
changes in related genes. Taken together, these results indi-
cated that m6A modification-related genes played important
roles in HCC.

3.2. Prognostic Value of m6A Modification-Related Genes in
HCC Cases. Next, we further analyzed prognostic values of
m6A modification-related genes. Univariate analysis showed
that higher expression of YTHDF1, WTAP, HNRNPC,
RBM15, METTL3, KIAA1429, YTHDC1, and YTHDF2 and
lower expression of ZC3H13 were statistically related to
poorer OS of HCC patients (all P < 0:05, supplementary
figure 1A); multivariate analysis showed that the expression
of YTHDF1, WTAP, HNRNPC, RBM15, METTL3,
KIAA1429, and YTHDF2 still remained significantly related
with OS after adjusting for gender, age, histologic grade, T
stage, N stage, M stage, and TNM stage (all P < 0:05,
supplementary figure 1B-1J). Then, the prognostic values of

Table 1: Basic characteristics of 365 HCC patients from TCGA.

Variables HCC patients (N = 365)
Gender (male/female) 246 (67%)/119 (33%)

Age (years, ≤60/>60) 173 (47%)/192 (53%)

Histologic grade (G1+G2/G3+G4/NA) 230 (63%)/130 (36%)/5 (1%)

T stage (T1+T2/T3+T4/NA) 271 (74%)/91 (25%)/3 (1%)

N stage (N0/N1/NA) 248 (68%)/4 (1%)/113 (31%)

M stage (M0/N1/NA) 263 (72%)/3 (1%)/99 (27%)

TNM stage (stage1+II/stage III+IV/NA) 254 (70%)/87 (24%)/24 (6%)

LASSO analysis

13 m6A related genes from TCGA-HCC cohort
(365 HCC vs 50 NC)

Mutation analysis DEGs

Univariate analysis

Prognosis
related DEGs

Validationm6A related risk signature for
prognosis of HCC patients

K-M analysis

ROC analysis

Correlation with
immune cells

infiltration

Correlation with
sorafenib treatment

response (GSE109211)

Anti-PD-1 immunotherapy
treatment response

(GSE78220)

ICGC-HCC cohort
(232 HCC)

Figure 1: The workflow chart of the present study.

3Disease Markers



Type
ZC3H13

METTL14

METTL3⁎⁎⁎

RBM⁎⁎⁎

YTHDF2⁎⁎⁎

YTHDF1⁎⁎⁎

WTAP⁎⁎⁎

FTO⁎⁎⁎

YTHDC1⁎⁎⁎

YTHDC2⁎⁎⁎

ALKBH5⁎⁎⁎

KIAA1429⁎⁎⁎

HNRNPC⁎⁎⁎

Type
N
T

2

0

–2

(a)

100

80

60

40

20

0

G
en

e e
xp

re
ss

io
n

ZC
3H

13
YT

H
D

F1
W

TA
P

FT
O

H
N

RN
PC

RB
M

15
M

ET
TL

3

M
ET

TL
14

YT
H

D
C1

YT
H

D
F2

YT
H

D
C2

A
LK

BH
5

KI
A

A
14

29

p < 0.001

p < 0.001

p = 0.831 p < 0.001

p < 0.001 p < 0.001

p < 0.001 p < 0.001

p = 0.062

p < 0.001

p < 0.001

p < 0.001

p = 0.001

(b)

ZC3H13

YTHDF1

WTAP

FTO

HNRNPC

RBM15

METTL3

METTL14

YTHDC1

YTHDF2

YTHDC2

ALKBH5

KIAA1429

ZC
3H

13

YT
H

D
F1

W
TA

P

FT
O

H
N

RN
PC

RB
M

15

M
ET

TL
3

M
ET

TL
14

YT
H

D
C1

YT
H

D
F2

YT
H

D
C2

A
LK

BH
5

KI
A

A
14

29

1

0.8

0.6

0.4

0.2

0

–0.2

–0.4

–0.6

–0.8

–1

(c)

ZC3H13

YTHDF1

WTAP

FTO

HNRNPC

RBM15

METTL3

METTL14

YTHDC1

YTHDF2

YTHDC2

ALKBH5

VIRMA

7%

4%

17%

40%

5%

5%

7%

8%

18%

11%

9%

13%

17%

Genetic alteration

No alterations

Missense mutation (unknown significance)

Truncating mutation (unknown significance)

Amplification

Deep deletion

mRNA high

mRNA low

(d)

Figure 2: Expression of 13 m6A modification-related genes in HCC and their associations with clinical-pathologic parameters. (a) Heatmap of
log2 transformed expression of 13 m6A modification-related genes between HCC patients and normal controls. (b) Violin plot of expression of
13 m6A modification-related genes between HCC patients and normal controls. (c) Correlation of the 13 m6A modification-related genes with
each other. (d) Genetic changes of the 13 m6A modification-related genes. ∗P < 0:05, ∗∗P < 0:01, and ∗∗∗P < 0:001.
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Figure 3: Continued.
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m6A modification-related genes for recurrence of HCC
patients were also analyzed. Univariate analysis indicated
that overexpression of YTHDF1, WTAP, HNRNPC, RBM15,
METTL3, YTHDC1, and YTHDF2 was statistically related
with shorter DFS (all P < 0:05, supplementary figure 2A);
multivariate analysis showed that the expression of
YTHDF1, HNRNPC, RBM15, METTL3, and YTHDF2 was
still statistically related with DFS after adjusting for gender,
age, histologic grade, T stage, N stage, M stage, and TNM
stage (all P < 0:05, supplementary figure 2B-2H). These
results strongly confirmed the important roles played by
m6A modification-related genes in HCC.

3.3. Development of Risk Signature with 5 m6A Modification-
Related Genes and Its Association with Clinical-Pathologic
Parameters. To better explore the prognostic value of m6A
modification-related genes, a risk signature was developed.
Based on the results of univariate analysis (Figure 3(a)),
ZC3H13, YTHDF1, WTAP, HNRNPC, RBM15, METTL3,
KIAA1429, YTHDC1, and YTHDF2 were associated with
OS and were considered as prognostic-related genes. Then,
LASSO analysis was used to further screen the prognostic-
related genes. In the end, 5 genes, including YTHDF2,
YTHDF1, METTL3, KIAA1429, and ZC3H13, were used to
develop the risk signature (Figures 3(a) and 3(b)). The risk
score was then constructed based on the coefficients weighted
by LASSO analysis and calculated as follows: risk score = ð
0:07 ∗ YTHDF2Þ + ð0:02 ∗ YTHDF1Þ + ð0:11 ∗METTL3Þ
+ ð0:04 ∗ KIAA1429Þ − ð0:1 ∗ ZC3H13Þ. We calculated the
risk score for every HCC case and assigned them into high-
risk group and low-risk group on the basis of the median risk
score. The expression of YTHDF2, YTHDF1, METTL3, and
KIAA1429 tended to be higher in patients with high risk

score; the expression of ZC3H13 seemed to be higher in
patients with low risk score (Figure 3(c)). Distribution of his-
tologic grade, T stage, and TNM stage was significantly dif-
ferent between high-risk subgroup and low-risk subgroup
(all P < 0:05, Figure 3(c)). High-risk subgroup contained
more patients with advanced histologic grade, T stage, and
TNM stage compared to patients of the low-risk subgroup.
Lastly, patients in the high-risk subgroup had poorer OS
(median OS time: 2.46 vs. 5.79 years, HR = 1:98, 95% CI:
1.39-2.83, and P < 0:001; Figure 3(d)) and shorter DFS
(median DFS: 1.07 vs. 2.97 years, HR = 3:83, 95% CI: 2.56-
5.90, and P < 0:001; Figure 3(e)) than those of patients of
the low-risk subgroup, which were consistent with the previ-
ous results.

3.4. Prognostic Value of Risk Signature for OS and DFS of
HCC Cases. The risk signature was found to be associated
with clinical-pathologic parameters. We next performed
univariate and multivariate analyses to analyze its prog-
nostic value. Based on the univariate analysis, T stage, M
stage, TNM stage, and risk signature were statistically
related with OS of HCC patients (all P < 0:05,
Figure 4(a)). The risk signature still remained statistically
related with OS after adjusting for T stage, M stage, and
TNM stage by multivariate analysis. In multivariate analy-
sis, after adjusting for TNM stage, the risk signature was
still significantly related with OS (P < 0:01, Figure 4(b)).
Similarly, univariate analysis also showed that T stage,
TNM stage, and risk signature were statistically related
with DFS of HCC patients. In univariate analysis, T stage,
TNM stage, and the risk signature were also significantly
associated with DFS in HCC patients (all P < 0:001,
Figure 4(c)). By incorporating these factors into
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Figure 3: Construction of risk signature with 5 m6A modification-related genes and its association with clinical parameters. (a, b) 5 m6A
modification-related genes identified by LASSO analysis. (c) Heatmap of the association of risk score with clinical-pathologic parameters.
(d) Kaplan-Meier analysis of OS of patients of high-risk subgroup and low-risk subgroup. (e) Kaplan-Meier analysis of DFS of patients of
high-risk subgroup and low-risk subgroup. T: tumor stage; N: lymph node stage; M: metastasis stage; stage: TNM stage; ∗P < 0:05, ∗∗P <
0:01, and ∗∗∗P < 0:001.
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multivariate analysis, the result suggested that only the risk
signature was statistically related with DFS (P < 0:001,
Figure 4(d)). To conclude, these results indicated that the
risk signature was an independent prognostic factor for
OS and DFS of HCC patients.

Next, we used time-dependent ROC cure analysis to ana-
lyze the predictive value of risk signature for HCC patients.
As were shown at Figure 5, the AUC of risk signature for pre-
dicting 1-, 3-, and 5-year OS was 0.765, 0.73, and 0.678,
respectively, which exhibited better predictive efficiency
compared to TNM stage, YTHDF2, YTHDF1, METTL3,
KIAA1429, and ZC3H13 (Figures 5(a), 5(c), and 5(e)). Like-
wise, the AUC of risk signature for predicting 1-, 3-, and 5-
year DFS was 0.695, 0.643, and 0.68, respectively, which also

showed better predictive accuracy than TNM stage,
YTHDF2, YTHDF1, METTL3, KIAA1429, and ZC3H13
(Figures 5(b), 5(d), and 5(f)).

3.5. Validation of Risk Signature. To independently test the
applicability of the signature, 232 HCC patients with avail-
able OS information from the ICGC portal (https://dcc.icgc
.org/projects/LIRI-JP) were further used to examine the
applicability of the signature. Risk score for every patient
was computed. Similarly, the signature could effectively strat-
ify high-risk HCC patients with poorer OS and low-risk
patients with better OS (HR = 2:309, 95% CI: 1.302-4.369,
and P = 0:006; Figure 6(a)). Moreover, the AUC of risk signa-
ture for predicting 1-, 3-, and 5-year OS was 0.7, 0.74, and
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Figure 4: Prognostic value of risk signature for OS and DFS of HCC patients. (a) Univariate analysis of risk signature with OS of HCC
patients. (b) Multivariate analysis of risk signature with OS of HCC patients. (c) Univariate analysis of risk signature with DFS of HCC
patients. (d) Multivariate analysis of risk signature with DFS of HCC patients. Gender: male vs. female; age: >60 vs. ≤60; grade: G3+G4 vs.
G1+G2; T: T1 vs. T0; N: N1 vs. N0; M: M1 vs. M0; TNM stage: stage III+IV vs. stage I+II.
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Figure 5: Continued.
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Figure 5: Predictive value of risk signature, TNM stage, YTHDF2, YTHDF1, METTL3, KIAA1429, and ZC3H13. Time-dependent ROC
analysis was used to evaluate the predictive value in predicting (a) 1-year, (c) 3-year, and (e) 5-year OS and predicting (b) 1-year, (d) 3-
year, and (f) 5-year DFS in HCC patients.
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Figure 7: Correlation of risk signature with tumor-infiltrating immune cells in TCGA and ICGC HCC cohort. Difference of 22 kinds of
infiltrating immune cells between patients with different risk scores of (a) TCGA HCC cohort. Difference of 22 kinds of infiltrating
immune cells between patients with different risk scores of (b) ICGC HCC cohort.
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0.714 (Figure 6(b)), respectively, which convincingly sug-
gested the good discrimination and prediction of our
signature.

3.6. Correlation of Risk Signature with Tumor-Infiltrating
Immune Cells in TCGA and ICGC HCC Cohort. CIBERSOR
was used to calculate 22 kinds of infiltrating immune cells
in patients with different risk scores. In TCGA HCC cohort,
significantly higher proportions of macrophages M0 cells,
memory B cells, follicular helper T cells, and neutrophils
were found to be enriched in HCC patients with high risk
score, while significantly higher proportions of resting mem-
ory CD4 T cells and monocytes were found to be enriched in
HCC patients with low risk score (all P < 0:05, Figure 7(a)).
In ICGC HCC cohort, significantly higher proportions of
macrophages M0 cells and Treg cells were found to be
enriched in HCC patients with high risk score, while signifi-
cantly higher proportions of naive B cells and gamma delta T
cells were found to be enriched in HCC patients with low risk
score (all P < 0:05, Figure 7(b)). These results suggested that
the risk signature was significantly associated with tumor-
infiltrating immune cells, and different kinds of infiltrating
immune cells in patients with different risk scores might con-
tribute to their different prognosis.

3.7. Risk Signature as Indicator in Sorafenib Treatment
Response for HCC Patients. To investigate the association
between risk signature and sorafenib treatment response,
we calculated risk score for each HCC patients treated with
sorafenib of GSE109211, which contained 21 sorafenib treat-
ment responders and 46 nonresponders. Significantly lower
risk scores were found at sorafenib treatment responders
compared to those in nonresponders (P < 0:001,

Figure 8(a)). Moreover, the AUC for predicting sorafenib
treatment response was 0.794 (Figure 8(b)). Taken together,
the risk signature might be served as an indicator for sorafe-
nib treatment response in HCC patients.

3.8. Correlation of Risk Signature with Anti-PD-1
Immunotherapy. As a major breakthrough in cancer therapy,
immunotherapies represented by immunological checkpoint
blockade (PD-1/L1 and CTLA-4) proved promising clinical
efficacy, and previous study proved that combination treat-
ment with anti-PD-1 antibodies and sorafenib exhibited a
more potent antitumor effect, but only a small number of
patients could achieve durable responses [31, 32], so in the
present study, we also explored whether the risk signature
could predict patients’ response to immune checkpoint
blockade therapy in an anti-PD-1 cohort of GSE78220.
Encouragingly, patients with lower risk score had better OS
than patients with higher risk score (HR = 3:81, 95% CI:
1.13-11.08, and P = 0:03; Figure 9(a)). Besides, despite there
was no statistical difference, lower risk score was found at
patients with complete immunotherapeutic response com-
pared to that in patients with partial response and patients
with no response, and lower risk score was also found in alive
patients treated with anti-PD-1 than that in patients of death,
which might due to the limitation number of patients in the
cohort (Figures 9(b) and 9(c)). Moreover, the AUC of the risk
signature for predicting 1 year-, 1.5-year, and 2-year OS of
patients with anti-PD-1 immunotherapies was 0.669, 0.725,
and 0.639 (Figure 9(d)). In a word, the above results strongly
indicated that risk signature was significantly correlated with
response to anti-PD-1 immunotherapy, which might be used
as a new biomarker for predicting the response to anti-PD-
1/L1 immunotherapy.
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Figure 8: Association of risk signature with sorafinib treatment response of GSE109211 cohort. (a) Difference of risk score between sorafinib
treatment responders and nonresponders. (b) AUC of risk signature in predicting in sorafinib treatment response.
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4. Discussion

m6A modifications are mainly controlled by methyltransfer-
ases and binding proteins and [13]. Studies have reported the
conservative role and mechanism of m6A modification-
related genes in regulating RNA modification, but only a
few literatures have studied the role of m6A modification-
related genes in HCC patients. Zhao et al. found that
YTHDF1 was significantly upregulated in HCC and posi-
tively correlated with pathology stage [24]. Cheng et al. also
reported that the expression of KIAA1429 was higher in
HCC and HCC cell lines, and KIAA1429 could regulate the
progression of HCC by regulating ID2 m6A modification
[26]. Chen et al. discovered that METTL3 was significantly
upregulated in HCC. Knockdown ofMETTL3was also found
to suppress the tumorigenicity and progression of HCC
through YTHDF2-dependent posttranscriptional silencing
of SOCS2 [25]. Moreover, Yang et al. found that YTHDF2
was significantly related to malignancy of HCC, and miR-
145 could inhibit the tumorigenicity of HCC by decreasing

YTHDF2 [33]. Collectively, these results indicated that m6A
modification-related genes promoted the tumorigenesis of
HCC.

Whether expressions of m6A modification-related genes
could be considered as prognostic biomarker is one of the
trending research topics in m6A modification research [20].
Upregulation of YTHDF1 and METTL3 expression was
found to be related to poorer OS of HCC patients [24, 25,
27]. Similarly, in our study, THDF1, HNRNPC, RBM15,
METTL3, and YTHDF2 were independent prognostic factors
for OS and DFS in HCC patients. Next, a risk signature based
on the expression of five genes could differentiate HCC
patients into high-risk patients with poorer OS and DFS
and low-risk patients with better OS and DFS. Interestingly,
this risk signature together showed better predictive effi-
ciency in predicting OS and DFS than TNM stage or any sin-
gle gene estimation alone. Therefore, this risk signature
might be an advantageous method for individualized thera-
peutic strategies in HCC patients. In addition, we also found
that the risk signature was significantly associated with
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Figure 9: Association of risk signature with anti-PD-1 immunotherapy treatment response of GSE78220 cohort. (a) Kaplan-Meier analysis of
OS of anti-PD-1 immunotherapy-treated patients with different risk scores. (b) Difference of risk score among complete anti-PD-1
immunotherapy response, partial anti-PD-1 immunotherapy response, and no anti-PD-1 immunotherapy response. (c) Difference of risk
score between alive patient with anti-PD-1 immunotherapy and dead patients with anti-PD-1 immunotherapy. (d) AUC of risk signature
in predicting1-year, 1.5-year, and 2-year OS in patients with anti-PD-1 immunotherapy response.
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tumor-infiltrating immune cells, which might influence
prognosis of patients with different risk scores. Significantly
higher proportions of macrophages M0 cells, neutrophils,
and Treg cells were found to be enriched in HCC patients
with high risk scores. Previous studies showed that macro-
phages could be recruited to tumor tissues and become
proangiogenic cells, which were significantly associated with
microvessel density and poor OS and DFS of HCC [34, 35];
Zhou et al. also found that tumor-associated neutrophils
could promote the progression of HCC and resistance to
sorafenib by recruiting macrophages and Treg cells [36].
These results might partly explain the reason for poorer OS
and DFS in HCC patients with high risk score. Moreover, sig-
nificantly higher proportions of memory CD4 T cells, gamma
delta T cells, and naive B cells were found to be enriched in
HCC patients with low risk score, suggesting higher propor-
tions of infiltrated T cells and B cells. Garnelo et al. found that
the degree of infiltrated T cells and B cells of tumor tissues
significantly related with the improved prognosis of HCC
patients [37], which might also partly explain the reason for
longer OS and DFS in HCC patients with low risk score.

As an oral multikinase inhibitor, sorafenib is one of the
standard care therapies for advanced stage HCC patients
approved by FDA. It can prolong the survival time of HCC
patients by inhibiting cell proliferation and angiogenesis
and promoting cell apoptosis through inhibiting a variety of
intracellular and cell surface kinases (such as c-raf, BRAF,
and RET), vascular endothelial growth factor receptor
(VEGFR), and platelet-derived growth factor receptor
(PDGFR) [38, 39]. However, some studies have also found
that HCC rapidly became sorafenib-resistant, and only about
30% of the patients could benefit from sorafenib treatment,
which might greatly limit the wide clinical application of
sorafenib [40, 41]. Besides, as a major breakthrough in cancer
therapy, immunotherapies represented by immunological
checkpoint blockade (PD-1/L1 and CTLA-4) proved promis-
ing clinical efficacy, and previous study proved that the com-
bination treatment with anti-PD-1 antibodies and sorafenib
exhibited a more potent antitumor effect, but only a small
number of patients could achieve durable responses [31,
32], so identifying the HCC patients suitable for sorafenib
treatment or anti-PD-1 immunotherapy or their combina-
tion therapy might be urgent and clinically significant.
Encouragingly, in the present study, we found the m6A-
related risk signature was significantly correlated with
response to sorafenib treatment and anti-PD-1 immunother-
apy. Significantly lower risk scores were found at sorafenib
treatment responders or anti-PD-1 immunotherapy
responders, and anti-PD-1 immunotherapy-treated patients
with lower risk score had better OS than patients with higher
risk score, which strongly indicated that the risk signature
might be used as a new biomarker for predicting the response
to sorafenib treatment and anti-PD-1 immunotherapy and
even the combination of them. But independent prospective
studies with a larger sample size were still needed to confirm
our findings.

Though the risk signature exhibited good performance
for the prognosis of HCC, several limitations should be
addressed. First of all, although the prognostic value of the

risk signature has been validated in external cohort, indepen-
dent cohorts consist of more HCC patients were required to
further verify the model. Secondly, we did not explore the
potential biological functions and pathways of risk signature.
The experiment in vitro and in vivo should be carried out to
uncover the relevant mechanisms. Finally, previously, Huang
et al. suggested that the significant expression of m6A
modification-related genes was found in circulating tumor
cells (CTCs) [42]. Further studies were needed to examine
whether these m6A modification-related genes could be
detected in peripheral blood in HCC patients and whether
the risk signature in blood could still have good prognostic
value.

In conclusion, THDF1,HNRNPC, RBM15,METTL3, and
YTHDF2 were independent prognostic factors for OS and
DFS in HCC patients. A risk signature developed with the
expression of YTHDF2, YTHDF1, METTL3, KIAA1429, and
ZC3H1 could improve the prediction of prognosis and corre-
late with sorafenib treatment and anti-PD-1 immunotherapy
response.
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Background. Mechanical ventilation could lead to ventilator-induced lung injury (VILI), but its underlying pathogenesis remains
largely unknown. In this study, we aimed to determine the genes which were highly correlated with VILI as well as their
expressions and interactions by analyzing the differentially expressed genes (DEGs) between the VILI samples and controls.
Methods. GSE11434 was downloaded from the gene expression omnibus (GEO) database, and DEGs were identified with
GEO2R. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were
conducted using DAVID. Next, we used the STRING tool to construct protein-protein interaction (PPI) network of the DEGs.
Then, the hub genes and related modules were identified with the Cytoscape plugins: cytoHubba and MCODE. qRT-PCR was
further used to validate the results in the GSE11434 dataset. We also applied gene set enrichment analysis (GSEA) to discern the
gene sets that had a significant difference between the VILI group and the control. Hub genes were also subjected to analyses by
CyTargetLinker and NetworkAnalyst to predict associated miRNAs and transcription factors (TFs). Besides, we used
CIBERSORT to detect the contributions of different types of immune cells in lung tissues of mice in the VILI group. By using
DrugBank, small molecular compounds that could potentially interact with hub genes were identified. Results. A total of 141
DEGs between the VILI group and the control were identified in GSE11434. Then, seven hub genes were identified and were
validated by using qRT-PCR. Those seven hub genes were largely enriched in TLR and JAK-STAT signaling pathways. GSEA
showed that VILI-associated genes were also enriched in NOD, antigen presentation, and chemokine pathways. We predicted
the miRNAs and TFs associated with hub genes and constructed miRNA-TF-gene regulatory network. An analysis with
CIBERSORT showed that the proportion of M0 macrophages and activated mast cells was higher in the VILI group than in the
control. Small molecules, like nadroparin and siltuximab, could act as potential drugs for VILI. Conclusion. In sum, a number of
hub genes associated with VILI were identified and could provide novel insights into the pathogenesis of VILI and potential
targets for its treatment.

1. Introduction

Mechanical ventilation is widely used in surgery and inten-
sive care and offers a substantial advantage in managing
patients’ breathing during general anesthesia. It is also
regarded as one of the most important means to treat patients
who are undergoing respiratory failure as well as acute or
chronic lung injury [1]. However, mechanical ventilation is
a double-edged sword during respiratory support in some

cases [2]. For example, improper use of mechanical ventila-
tion may aggravate the original pathological damage or lead
to direct lung injury, known as ventilator-induced lung
injury (VILI) [3]. Patients with no original acute lung injury
may develop acute lung injury after being subjected to
mechanical ventilation for more than 48 hours [4]. Nearly
half of the patients who had received mechanical ventilation
for more than two weeks got pulmonary complications asso-
ciated with mechanical ventilation. For this reason, it is of
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great pertinence to elucidate the pathogenesis of VILI and
take protective or therapeutic measures against it. A lot of
efforts have been made to reduce VILI occurrences during
perioperative anesthesia and in critical care units.

At present, the primary measure taken for VILI preven-
tion is the lung protective ventilation approach in which a
small tidal volume is used, but its efficacy is highly limited
[5]. The pathogenesis of VILI is still unclear, and effective
interventions have yet to be investigated [6]. Therefore, it is
vital to identify the involved key genes to better understand
the molecular mechanism of VILI pathogenesis for an early,
effective intervention.

As a powerful analytic tool, bioinformatics analysis has
gradually been used in predicting the molecular mechanisms
of VILI pathogenesis. For instance, Tamás et al. conducted
the gene expression analysis in a mouse overventilation
model and validated upregulated expressions of five genes
(Areg, Akap12, Nur77, Cyr61, and Il11) [7]. Similarly, Ma
et al. analyzed genes affected by VILI and validated the
expression levels of randomly selected genes [8]. Despite
those reports, the VILI-correlated hub genes have not yet
been identified. In this study, analyses of hub genes that could
be associated with VILI were performed based on extensive
gene expression data of a mouse VILI model published
online, to study their potential and specific roles in VILI.

2. Materials and Methods

2.1. Gene Chip Analysis and Identification of DEGs. The pro-
cedures of analysis in this study can be seen in Figure 1. GEO
is a database for storing and distributing the sequencing data
[9]. In this study, we downloaded the GSE11434 dataset from
GEO, based on the GPL1261 [10, 11]. GSE11434 was used to
identify the hub genes associated with VILI. GSE11434 con-
sisted of ten microarray chips and was divided into two
groups: the VILI and control groups, with five samples in

each group. The criteria of adj. p < 0:05 and ∣log2 FC ∣ >1
were applied for screening DEGs.

2.2. GO and KEGG Enrichment Analysis. GO defines and
standardizes terms for describing genes and their products,
which contain three aspects [12]: cellular component (CC),
molecular function (MF), and biological process (BP). CC
is used to describe the area where the gene products are
located in cells and could be a cellular substructure, an organ-
elle (such as cytoplasm and nucleus), or a gene product set
(such as a major histocompatibility complex). MF describes
the function of gene products, such as carbohydrate binding
and ATP-dependent hydrolase activity. BP specifies a more
complex and advanced form of function systematically
formed by a particular set of molecular process, such as mito-
sis and purine metabolism. DAVID (Ver. 6.8) was used to
conduct the GO and KEGG enrichment analysis of DEGs
[13]. The Benjamini-Hochberg corrected p value (p < 0:05)
was set as the threshold for statistically significant
enrichment.

2.3. Protein-Protein Interaction (PPI) Network Construction
and Hub Gene Identification. PPI represents the process of
forming a protein complex by noncovalent bonding between
proteins [14]. The gene set data were imported into the
STRING database to analyze their interaction. A confidence
score ≥ 0:4 was considered as statistically significant. A PPI
network graph was retrieved based on this standard.

Cytoscape (Ver. 3.7.1) is open-sourced software for bio-
informatics analysis and is commonly used to visualize the
molecular interaction network [15]. NetworkAnalyzer, a
Cytoscape plugin, was used to perform topological analysis.
The results exported from the STRING database were
imported into Cytoscape to identify the top 10 DEGs by
applying five algorithms in cytoHubba, and the overlapping
genes of them were considered as hub genes [16]. The
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Figure 1: Flow chart of investigations in this study.
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MCODE was used to screen out the statistically significant
modules which were visualized by using Cytoscape [17].

2.4. Analysis of miRNA and TFs Related to VILI. CyTarge-
tLinker is a plugin for Cytoscape that can extend the biolog-
ical regulatory interactive network [18] and can be used to
analyze the interactive relationship between various miRNA
targets. In this study, we downloaded the murine gene data-
sets and selected miRTarBase, MicroCosm, and TargetScan
databases to predict the regulatory relationship between
hub genes and miRNAs. NetworkAnalyst was used to predict
the TFs that could regulate VILI-associated genes [19]. Hub
genes were selected in the above cases of prediction. The
miRNA-TF-hub gene network was constructed using
Cytoscape.

2.5. Gene Set Enrichment Analysis (GSEA). GSEA uses a pre-
defined gene set that can sort genes according to the degree of
differential expression between samples from different
groups and can subsequently validate whether the preset
gene set is enriched at the top or bottom of the sorting list
[20]. We downloaded the GSEA software from its official
website and run it in a Java environment following instruc-
tions from a previous literature. Later, a curated KEGG gene
set was downloaded from the MSigDB database, and then, an
enrichment analysis was conducted according to the
weighted enrichment statistic method in GSEA. The random
number was set to 1000 to calculate the normalized enrich-
ment score (NES) and false discovery rate (FDR). In GSEA,
gene sets were considered significantly enriched when meet-
ing the condition of NES ≧ 1:0, NOM p < 0:05, and FDR ≦
0:25.

2.6. Immune Cell Composition Analysis. CIBERSORT is an
algorithm that could be applied to estimate cell composition
in complex tissues based on standardized gene expression
data [21]. In this study, we used CIBERSORT to assess the
relative proportion of 22 immune cells in each lung tissue.
The mRNA expression profiling data of lung tissues from
the VILI and control groups were extracted. Then, these data
were calibrated using the Limma package in R. Subsequently,
the LM22 signature matrix was applied in 1000 arrays to pre-
dict the proportion of immune cells. The samples were
screened at the significance level of p < 0:05. The histogram
of the proportion of each type of immune cell, the heat
map of immune cell expression, the violin plots, and the cor-
relation chart of immune cell proportion in lung tissues were
plotted accordingly.

2.7. Identification of Potential Drugs. DrugBank is a database
that integrates detailed data of drugs and comprehensive
information of the drug target [22]. The identified hub genes
were analyzed in the DrugBank database to determine poten-
tial molecules associated with VILI.

2.8. Animal Preparation and Experimental Protocol. Ten
healthy specific pathogen-free male ICR mice (20-25 g) were
procured from Shanghai JSJ-Lab and were separated in two
groups: the VILI group (in which mice received mechanical
ventilation) and the control group (in which mice breathed

without any mechanical assistance). Mice were abstained
from food 4 hours prior to anesthetization by intraperitoneal
injection of 7.5% pentobarbital sodium solution (75mg/kg).
After the mice forming the VILI group were deeply anesthe-
tized, they then received mechanical ventilation. Mice of the
mechanical ventilation group were ventilated with tidal vol-
ume of 30ml/kg, 65 breaths/min, and fraction of inspired
oxygen of 0.21. Mice from the control group were allowed
to breathe spontaneously. After 4 h of mechanical ventilation,
the mice were euthanized, and then, lung tissues were
harvested.

2.9. RNA Extraction and Quantitative Real-Time Reverse
Transcription PCR (qRT-PCR). The total RNA was extracted
from mice lung tissues using TRIzol reagent (Takara, Japan).
cDNA synthesis was performed using the PrimeScript RT
Reagent kit (Takara, Japan). qRT-PCR was operated with
the SYBR Green method (Qiagen, Germany) on the Quant-
Studio 7 flex real-time PCR system. The cDNA was used as
templates to perform qRT-PCR for 40 cycles under the fol-
lowing conditions: an initial denaturation at 95°C for 20 s,
followed by denaturation at 95°C for 15 seconds, and anneal-
ing at 60°C for 1 minute. The primers for cDNA sequences
used in qRT-PCR are listed in Supplemental Table (available
here). The mRNA expression levels of target gene were nor-
malized to that the housekeeping gene GAPDH. The ΔΔCt
method was used to calculate expression fold change of target
genes.

2.10. Statistical Analysis. The histograms of gene expression
were plotted using GraphPad (Ver. 8.0). The gene expres-
sions were expressed in the form of mean ± standard
deviation (SD). The comparison of differences between the
VILI group and control was performed by independent sam-
ples t-test. p < 0:5 was deemed as denoting statistical
significance.

3. Results

3.1. Identification and Enrichment of DEGs between the VILI
and Control Groups. To identify VILI-associated DEGs, we
downloaded the GSE11434 expression profiles from GEO.
A total of 141 DEGs were evaluated with GEO2R by follow-
ing the criteria of adj. p < 0:05 and ∣log2 fold change ∣ ≥1.
Among them, 108 genes were upregulated and 33 were
downregulated (Figure 2(a)).

To determine the specific functions of DEGs, GO annota-
tion and KEGG pathway analyses were conducted with
DAVID. In terms of BP, these DEGs were mainly involved
in positive regulation of transcription from RNA polymerase
II promoter as well as responses to lipopolysaccharide and
cAMP (Figure 2(b)). In terms of CC, they were mostly
enriched in the cytoplasm, nucleus, and nucleoplasm
(Figure 2(c)). And primary enrichments in MF were mainly
associated with TF activity, sequence-specific DNA binding,
and protein binding (Figure 2(d)). p values were ranked in
ascending order based on the results of pathway enrichment
analysis. The top 20 enriched pathways, including MAPK,
JAK-STAT, and TLR signaling, are shown in Figure 2(e).
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3.2. PPI Network and Module Analysis of DEGs. To deter-
mine the interactive relationship between VILI-associated
DEGs, an interaction network of DEG-encoded proteins
was constructed. A total of 141 DEGs were mapped into
the STRING database to retrieve a PPI network graph. As
shown in Figure 3(a), the network included 133 nodes (target
proteins) and three hundred and forty-eight edges (PPI).
Topological analysis of the constructed PPI network was
conducted using NetworkAnalyzer and revealed that the net-
work topological parameters followed a power law distribu-
tion (Figures 3(b)–3(e)). The most significant module was
screened out from the PPI network using MCODE, and 14
genes were identified (Figure 3(f)). We conducted functional
enrichment analysis for these genes and found that they were
mainly enriched in TNF and JAK-STAT signaling pathways
(Tables 1 and 2).

3.3. The Identification and Validation of Hub Genes. To
determine the VILI-associated hub genes, cytoHubba was
used throughout the PPI network construction. Five algo-
rithms (Degree, EPC, MCC, MNC, and Stress) present in
cytoHubba were utilized to evaluate hub genes. The top 10
genes identified by each algorithm were intersected to obtain
hub genes, which included Fos Proto-Oncogene (FOS), MYC

Proto-Oncogene (MYC), Signal Transducer and Activator of
Transcription 3 (STAT3), Early Growth Response 1 (EGR1),
Activating Transcription Factor 3 (ATF3), Interleukin-6 (IL-
6), and Interleukin-1 Beta (IL-1B) (Figure 4(a)). Notably, all
those hub genes were contained in the most highly connected
module mentioned above. In comparison with the control,
the expression levels of all seven hub genes were upregulated
in the VILI group (Figure 4(b)). We found out that the func-
tions of these hub genes were mainly about inducing inflam-
mation and TLR signaling pathway regulation. Then, we
performed qRT-PCR experiment for further validation. The
results showed that the hub genes were all overexpressed in
VILI tissues, which is consistent with the prediction results
(Figure 4(c)). GO and KEGG enrichment analyses of hub
genes were then conducted. It turned out that hub genes were
largely enriched in TLR and JAK-STAT inflammatory signal-
ing pathways (Tables 3 and 4).

3.4. GSEA. GSEA was performed to determine the gene sets
that had significant difference between the VILI and control
groups. The gene sets positively correlated with the VILI
group were mainly involved in the TLR and JAK-STAT path-
ways, which was consistent with the results obtained in GO
and KEGG enrichment analysis (Figure 5). It was revealed
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Figure 2: DEGs and enrichment analysis in the VILI and control groups. (a) Volcano plot of all DEGs in GSE11434. Red dots indicate
upregulated genes and green dots indicate downregulated genes. (b) Top 15 terms in BP. (c) Top 15 terms in CC. (d) Top 15 terms in MF.
(e) Top 15 KEGG pathway analysis.
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Figure 3: PPI network and module analysis. (a) PPI networks of DEGs. The topological parameters of PPI networks were as follows: (b)
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that they were also enriched in NOD, antigen presentation,
and chemokine pathways.

3.5. miRNA-TF-Hub Gene Regulatory Network. miRNA
could function as a regulator in lung injuries. Thus, miRNAs
that could interact with the screened hub genes were pre-
dicted using CyTargetLinker. And 72 miRNA-target interac-
tions were found in TargetScan, and 207 were found in
MicroCosm (Figure 6(a)). The overlap threshold was set to
2 for the analysis, and the results showed that interactions
occurred between 18 miRNAs and 5 target genes. TFs play
important roles in controlling gene expressions. Therefore,
we predicted TFs that could regulate the hub genes using

NetworkAnalyst and these TFs were incorporated with the
predicted miRNA to construct the miRNA-TF-gene regula-
tory network (Figure 6(b)). Overall, the regulatory network
could help to clarify the roles of miRNA and TFs in the devel-
opment of VILI.

3.6. Analysis of Immune Cell Composition. To understand the
involvement of immune cells in VILI, we used CIBERSORT
to detect the contributions of different types of immune cell
in the lung tissues of mice in the VILI group. We evaluated
immune cell composition in samples from both VILI and
control groups (Figure 7(a)). Accordingly, these samples
were divided into two main clusters (Figure 7(b)). The three

Table 1: GO analysis of the most significant clustering module in PPI networks.

Category Term p value

GOTERM_BP_DIRECT GO:0006351~transcription, DNA-templated 1:19E − 04
GOTERM_BP_DIRECT GO:0045893~positive regulation of transcription, DNA-templated 7:52E − 04
GOTERM_BP_DIRECT GO:0006357~regulation of transcription from RNA polymerase II promoter 7:63E − 04
GOTERM_BP_DIRECT GO:0006954~inflammatory response 0.013427

GOTERM_BP_DIRECT GO:0043066~negative regulation of apoptotic process 0.014684

GOTERM_BP_DIRECT GO:0035914~skeletal muscle cell differentiation 0.024883

GOTERM_BP_DIRECT GO:0051091~positive regulation of sequence-specific DNA binding transcription factor activity 0.048278

GOTERM_BP_DIRECT GO:0006355~regulation of transcription, DNA-templated 0.048792

GOTERM_CC_DIRECT GO:0005634~nucleus 3:27E − 06
GOTERM_CC_DIRECT GO:0005654~nucleoplasm 0.039133

GOTERM_MF_DIRECT GO:0003700~transcription factor activity, sequence-specific DNA binding 1:82E − 06
GOTERM_MF_DIRECT GO:0003677~DNA binding 8:51E − 05
GOTERM_MF_DIRECT GO:0000978~RNA polymerase II core promoter proximal region sequence-specific DNA binding 0.001059

GOTERM_MF_DIRECT GO:0043565~sequence-specific DNA binding 0.002782

GOTERM_MF_DIRECT
GO:0001077~transcriptional activator activity, RNA polymerase II core promoter proximal region

sequence-specific binding
0.009683

GOTERM_MF_DIRECT
GO:0000982~transcription factor activity, RNA polymerase II core promoter proximal region

sequence-specific binding
0.014036

GOTERM_MF_DIRECT GO:0046983~protein dimerization activity 0.015108

Table 2: KEGG analysis of the most significant clustering module in PPI networks.

Category Term p value

KEGG_PATHWAY ssc04668:TNF signaling pathway 1:84E − 08
KEGG_PATHWAY ssc05166:HTLV-I infection 2:59E − 06
KEGG_PATHWAY ssc05202:transcriptional misregulation in cancer 1:31E − 04
KEGG_PATHWAY ssc05200:pathways in cancer 4:31E − 04
KEGG_PATHWAY ssc04380:osteoclast differentiation 0.001668

KEGG_PATHWAY ssc04630:JAK-STAT signaling pathway 0.001932

KEGG_PATHWAY ssc05161:hepatitis B 0.0024

KEGG_PATHWAY ssc04917:prolactin signaling pathway 0.006385

KEGG_PATHWAY ssc04931:insulin resistance 0.017635

KEGG_PATHWAY ssc05169:Epstein-Barr virus infection 0.018235

KEGG_PATHWAY ssc05152:tuberculosis 0.040023

KEGG_PATHWAY ssc05168:herpes simplex infection 0.043435
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most relevant immune cells included eosinophils and T fol-
licular helper cells, activated neutrophils and memory CD4
T cells, and naive CD8 T cells and B cells, all with an R value
of 0.49 (Figure 7(c)). It was revealed that the proportion of
M0 macrophages and activated mast cells was higher in the

VILI group than in the control (Figure 7(d)). The proportion
of other immune cells does not show any statistically signifi-
cant difference between samples from the VILI and control
groups. Together, it indicated that immune cells, particularly
macrophages, were involved in the early stage of VILI.
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Figure 4: Hub genes in the VILI group. (a) Intersecting genes selected as hub genes by using 5 algorithms in cytoHubba. (b) The expression
levels of seven hub genes in the lung samples from the VILI and control groups in GSE11434 were as follows: FOS, STAT3, MYC, ATF3,
EGR1, IL-6, and IL-1B. (c) qRT-PCR analysis of hub genes in lung samples of the VILI and control groups.

Table 3: GO enrichment analysis of hub genes.

Category Term p value

GOTERM_BP_DIRECT GO:0035914~skeletal muscle cell differentiation 2:15E − 04
GOTERM_BP_DIRECT GO:0045944~positive regulation of transcription from RNA polymerase II promoter 0.002266

GOTERM_BP_DIRECT GO:0006351~transcription, DNA-templated 0.002534

GOTERM_BP_DIRECT GO:0070102~interleukin-6-mediated signaling pathway 0.00354

GOTERM_BP_DIRECT GO:0043066~negative regulation of apoptotic process 0.006244

GOTERM_BP_DIRECT GO:0050679~positive regulation of epithelial cell proliferation 0.018091

GOTERM_BP_DIRECT GO:0006355~regulation of transcription, DNA-templated 0.034263

GOTERM_BP_DIRECT GO:0042493~response to drug 0.034428

GOTERM_BP_DIRECT GO:0042593~glucose homeostasis 0.042752

GOTERM_CC_DIRECT GO:0005654~nucleoplasm 0.016377

GOTERM_CC_DIRECT GO:0005634~nucleus 0.02582

GOTERM_MF_DIRECT GO:0005125~cytokine activity 0.001928

GOTERM_MF_DIRECT
GO:0001077~transcriptional activator activity, RNA polymerase II core promoter proximal region

sequence-specific binding
0.004063

GOTERM_MF_DIRECT GO:0000978~RNA polymerase II core promoter proximal region sequence-specific DNA binding 0.008486

GOTERM_MF_DIRECT
GO:0000982~transcription factor activity, RNA polymerase II core promoter proximal region

sequence-specific binding
0.011174

GOTERM_MF_DIRECT GO:0046983~protein dimerization activity 0.017511

GOTERM_MF_DIRECT GO:0003700~transcription factor activity, sequence-specific DNA binding 0.022809

GOTERM_MF_DIRECT GO:0008134~transcription factor binding 0.039418

GOTERM_MF_DIRECT GO:0003677~DNA binding 0.042522
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3.7. Drug Prediction for Hub Genes. DrugBank is a database
that provides detailed drug data and information about com-
prehensive drug targets. To predict possible drugs that may
be developed for the treatment of VILI, the DrugBank data-
base was used to identify small molecules that would poten-
tially interact with the hub genes. As shown in Table 5, the
most significant molecules included nadroparin, siltuximab,
ginseng, donepezil, minocycline, and gallium nitrate.

4. Discussion

It has been known that mechanical ventilation could lead to
VILI, though the exact pathological process of VILI is still
far from clear [6]. Efforts for VILI interventions yield few
positive results, and there is no specific treatment for it except
preventive measures like low tidal volume ventilation. A bet-
ter understanding of the underlying molecular mechanism of
VILI development, therefore, may help to shed light on the
VILI pathogenesis. It is noteworthy that novel tools have
been widely used in several health applications. Novel bioin-
formatics analysis has been applied in analyzing the roles
played by mRNA, lncRNA, and miRNA in the VILI develop-
ment [7, 23, 24]. Xu et al. identified several critical lncRNAs
which may help to get a better picture of the VILI pathogen-
esis [23]. Vaporidi et al. found several differentially regulated
miRNAs during the pathological progress of VILI [24]. How-
ever, there have been few studies to investigate VILI-
associated hub genes using bioinformatics approaches.
Besides, miRNA-gene regulatory network has rarely been
used in the studies of VILI.

In this study, we acquired the GSE11434 dataset, contain-
ing genetic data on the tissues of mice with VILI induced by
high-volume ventilation and tissues of control mice, for bio-
informatics analysis. A total of 141 DEGs, including 108
upregulated and 33 downregulated genes, were identified.
Then, PPI analysis and GSEA were performed to explore
their biological significance as regards VILI.

Go enrichment analysis of these DEGs in this study
reveals that they are largely enriched in RNA polymerase II
promoter and responses to lipopolysaccharide and cAMP.
And the roles played by the cAMP signaling pathway include
inflammatory response and immune mediator induction
[25]. Those results indicate that abnormal inflammatory
responses may be involved in the pathological process of
VILI.

The PPI network analysis in this study provides some
insights for studying the VILI pathogenesis. We constructed
a network consisting of DEG-coded proteins. The distribu-
tion of degrees, clustering coefficient, distribution of the
shortest path, and closeness centrality all demonstrated high
connectivity between these proteins. Our network topology
analysis confirmed that the network was biologically scale-
free. We further applied the MCODE plugin in the PPI net-
work and found that a module consisting of 14 nodes could
be the key regulatory network for VILI. The enrichment anal-
ysis of this module showed that those genes were largely
enriched in inflammatory response, DNA binding, TNF,
and JAK-STAT signaling pathways. This finding was consis-
tent with the results in previous studies which revealed that
the DNA-binding activity of NF-?B in VILI cases increased

Table 4: KEGG enrichment analysis of hub genes.

Category Term p value

KEGG_PATHWAY bta05161:hepatitis B 4:74E − 06
KEGG_PATHWAY bta05166:HTLV-I infection 4:92E − 05
KEGG_PATHWAY bta04620:toll-like receptor signaling pathway 8:79E − 05
KEGG_PATHWAY bta05142:Chagas disease (American trypanosomiasis) 1:12E − 04
KEGG_PATHWAY bta05162:measles 2:07E − 04
KEGG_PATHWAY bta04630:JAK-STAT signaling pathway 2:59E − 04
KEGG_PATHWAY bta05020:prion diseases 3:61E − 04
KEGG_PATHWAY bta05168:herpes simplex infection 5:10E − 04
KEGG_PATHWAY bta04623:cytosolic DNA-sensing pathway 0.001314

KEGG_PATHWAY bta05321:inflammatory bowel disease (IBD) 0.001727

KEGG_PATHWAY bta05133:pertussis 0.002086

KEGG_PATHWAY bta05132:Salmonella infection 0.002419

KEGG_PATHWAY bta05323:rheumatoid arthritis 0.003158

KEGG_PATHWAY bta04668:TNF signaling pathway 0.004063

KEGG_PATHWAY bta05200:pathways in cancer 0.00434

KEGG_PATHWAY bta04380:osteoclast differentiation 0.006194

KEGG_PATHWAY bta05164:influenza A 0.010163

KEGG_PATHWAY bta05152:tuberculosis 0.011088

KEGG_PATHWAY bta04060:cytokine-cytokine receptor interaction 0.015837

KEGG_PATHWAY bta04010:MAPK signaling pathway 0.021328
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Figure 5: Continued.
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Figure 5: GSEA of six primary pathways in which VILI was significantly enriched.
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[26]. TNF has been reported to be involved in early inflam-
matory response and stretch-induced pulmonary edema
[27, 28]. Subsequently, we used the cytoHubba plugin to fur-
ther screen out hub genes from the PPI network, which
included FOS, STAT3, MYC, ATF3, EGR1, IL-6, and IL-1B.
Strikingly, all hub genes were contained in the above-
obtained module.

STAT3, an important member of the STAT family, is
involved in the transcription activation of the JAK-STAT sig-
naling pathway. Hoegl et al. discovered that IL-22 activates
STAT3 signaling and reduces SOCS3 expression, thus allevi-
ating lung injury in VILI cases [29]. In contrast, in our study,
the expression of STAT3 is increased in the VILI group, com-
pared with the control. This indicted that STAT3 may have
dual effects on the inflammatory process. Wolfson et al.
found that STAT3 upregulates HMGB1 expression, thereby
exacerbating systemic inflammatory responses in VILI cases
[30]. The specific roles of FOS and MYC in VILI have not
been systematically studied. FOS can respond to mechanical
stimuli and promote immune activation in the lung alveoli
[31]. It binds with AP-1 sites to play a role in the proinflam-
matory signaling pathways in acute lung injuries [32]. Similar
to FOS, MYC is transcribed under mechanical stimuli [33].

ATF3 is a transcription factor belonging to the CREB/
ATF family. Shan et al. found that ATF3 could protect
against lung injury by reducing barrier disruption and
inflammatory cell recruitment [34]. Our analysis showed that
the ATF3 expression in the VILI group was significantly
upregulated compared with the control. Its specific patho-
physiological mechanism is unclear and needs to be further

studied. EGR1 is a transcription factor in the zinc finger
protein family and can be activated by various environ-
mental signals [35]. Copland et al. found that the expres-
sion of EGR1 could increase even under low-volume
mechanical ventilation, suggesting its role in the upstream
regulation [36].

IL-6 is a pleiotropic cytokine that is involved in regulat-
ing leukocyte function and apoptosis and thus exhibits proin-
flammatory and anti-inflammatory effects [37]. Ko et al.
reported that NF-κB-IL-6 signaling pathways contribute to
the VILI development by inducing inflammation [38].
Experimental lung injury can be attenuated by an IL-1β
antagonist [39]. This indicates that the inflammatory
response may not only be a downstream reaction but also
involved in the progression of lung injury. Enrichment anal-
ysis of those hub genes identified in this study showed that
they were largely enriched in TLR and JAK-STAT inflamma-
tory signaling pathways, a finding that is consistent with the
results from previous studies that inflammation is an essen-
tial factor in the VILI development.

GSEA could be used to obtain relevant information when
large-scale genes were at a small fold change. The GSEA in
this study revealed that gene expressions in the VILI samples
showed a significant correlation with TLR and JAK-STAT
pathways, compared with those in the control samples. In
combination with the abovementioned enrichment analysis,
we speculate that TLR and JAK-STAT may play vital roles
in inflammation observed in VILI cases. Moreover, the anti-
gen presentation pathway was also where enrichment
occurred. It could be inferred that the immune system might
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Figure 6: miRNA-TF-hub gene regulatory network. (a) miRNAs related to hub genes predicted by CyTargetLinker. Red edges mean
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also be involved in the VILI development. Indeed, a previous
study has already raised concerns about involvement of the
immune system in VILI [40].

We used CIBERSORT to analyze the immune cell com-
position in VILI samples and found that the proportion of
M0 macrophages and activated mast cells was significantly
higher in the VILI group than in the control. Macrophage
is known to play a considerable role in the innate immune
system. A previous study has found that mechanical ventila-
tion may induce macrophages to switch to the M1 phenotype
[41]. That indicates that macrophages could mainly remain
as M0 phenotype in the early stage of VILI.

In addition, hub genes were mapped into the DrugBank
database to predict small molecular drugs. It is still unclear
whether these compounds can contribute therapeutic effects

on VILI, so further investigation is required as to whether
these molecules can be used to treat VILI in the future.

There are still some limitations in this study. First,
changes in gene mutations (such as SNPs), protein expres-
sion levels, or cellular metabolism may also play important
roles in the occurrence and development of VILI. Limited
by a lack of relevant data, we are currently unable to carry
out such detailed analysis. Second, our study constructed a
PPI network based on transcriptomics data rather than pro-
teomics data. Proteomic analysis of VILI will be conducted in
our further studies. Lastly, our study included only a small
number of samples, and thus, investigations with a larger
sample size shall be further conducted in our future studies.

To summarize, this study systematically analyzed the
transcriptomic characteristics of lung tissues from the VILI
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Figure 7: Landscape of immune cell composition in lung samples from the VILI and control groups. (a) Histogram of the immune cell
composition of samples from the VILI and control groups. (b) Heat map of immune cell types in lung samples from the VILI and control
groups. (c) Correlation matrix of immune cell types in lung samples of the VILI and control groups. (d) Violin plot of immune cell types
in lung samples of the VILI and control groups.

Table 5: Potential drugs that target hub genes derived from DrugBank.

Gene Drug Accession number Groups Interaction type

FOS Nadroparin DB08813 Approved, investigational Inhibitor

MYC Nadroparin DB08813 Approved, investigational Inhibitor

IL-6 Siltuximab DB09036 Approved, investigational Antagonist

IL-6 Ginseng DB01404 Approved, investigational, nutraceutical Antagonist

IL-1B Donepezil DB00843 Approved Inhibitor

IL-1B Minocycline DB01017 Approved, investigational Modulator

IL-1B Gallium nitrate DB05260 Approved, investigational Antagonist
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and control groups to identify DEGs and hub genes. These
hub genes, including FOS, STAT3, MYC, ATF3, EGR1, IL-
6, and IL-1B, play vital roles in the VILI pathogenesis and
thus provide potential therapeutic targets for future VILI
treatment.

5. Conclusion

In a word, we identified a series of hub genes from the DEGs
between the VILI group and the control group, which may
provide novel insights into the pathogenesis of VILI and gene
targets for its treatment.
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Non-small-cell lung cancer (NSCLC) is one of the most devastating diseases worldwide. The study is aimed at identifying reliable
prognostic biomarkers and to improve understanding of cancer initiation and progression mechanisms. RNA-Seq data were
downloaded from The Cancer Genome Atlas (TCGA) database. Subsequently, comprehensive bioinformatics analysis
incorporating gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and the protein-protein interaction
(PPI) network was conducted to identify differentially expressed genes (DEGs) closely associated with NSCLC. Eight hub genes
were screened out using Molecular Complex Detection (MCODE) and cytoHubba. The prognostic and diagnostic values of the
hub genes were further confirmed by survival analysis and receiver operating characteristic (ROC) curve analysis. Hub genes
were validated by other datasets, such as the Oncomine, Human Protein Atlas, and cBioPortal databases. Ultimately, logistic
regression analysis was conducted to evaluate the diagnostic potential of the two identified biomarkers. Screening removed 1,411
DEGs, including 1,362 upregulated and 49 downregulated genes. Pathway enrichment analysis of the DEGs examined the Ras
signaling pathway, alcoholism, and other factors. Ultimately, eight prioritized genes (GNGT1, GNG4, NMU, GCG, TAC1,
GAST, GCGR1, and NPSR1) were identified as hub genes. High hub gene expression was significantly associated with worse
overall survival in patients with NSCLC. The ROC curves showed that these hub genes had diagnostic value. The mRNA
expressions of GNGT1 and NMU were low in the Oncomine database. Their protein expressions and genetic alterations were
also revealed. Finally, logistic regression analysis indicated that combining the two biomarkers substantially improved the ability
to discriminate NSCLC. GNGT1 and NMU identified in the current study may empower further discovery of the molecular
mechanisms underlying NSCLC’s initiation and progression.

1. Introduction

As one of the most devastating diseases worldwide, lung can-
cer causes nearly 1.6 million mortalities each year [1–3].
Approximately 85% of lung cancers are characterized as

non-small-cell lung cancer (NSCLC) [4–6], which is typically
classified into two subtypes, squamous cell carcinoma (SCC)
and adenocarcinoma (AD), using standard pathology
methods [7–10]. Tobacco smoking is the most common risk
factor for lung cancer. Smoking is also associated with

Hindawi
Disease Markers
Volume 2021, Article ID 6696198, 14 pages
https://doi.org/10.1155/2021/6696198

https://orcid.org/0000-0003-1201-3987
https://orcid.org/0000-0003-2242-1386
https://orcid.org/0000-0001-5449-186X
https://orcid.org/0000-0001-8083-7190
https://orcid.org/0000-0002-1498-6718
https://orcid.org/0000-0003-0461-2728
https://orcid.org/0000-0001-7753-0147
https://orcid.org/0000-0002-0904-7740
https://orcid.org/0000-0002-7202-2167
https://orcid.org/0000-0002-0878-2575
https://orcid.org/0000-0002-7812-1203
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/6696198


multiple risks, including worse tolerance of treatment, higher
risk of failure and second primary tumors, and poorer quality
of life. Indeed, it has become clear that the significant reduc-
tion in tobacco consumption would result in the prevention
of a large fraction of lung cancer cases and other smoking-
related diseases [11–13].

In addition, other factors such as air pollution, poor diet,
occupational exposure, and hereditary factors have been
reported in association with NSCLC in nonsmokers [14–16].
Over the past few years, newly developed cytotoxic agents,
including paclitaxel, gemcitabine, and vinorelbine, have
emerged to offer multiple therapeutic choices for patients with
LUAD [17–20]. However, chemotherapy for advanced NSCLC
is often considered ineffective or excessively toxic [21–23].

In an attempt to improve treatments for NSCLC, new
therapeutic strategies, such as the development of noncyto-
toxic targeted agents, have emerged [24–27]. Moreover, the
targeted therapies have significantly improved clinical out-
comes in a subset of lung cancer patients whose tumors har-
bor EGFR [28], ALK [29, 30], and HER2 alterations [31–33].

Despite recent advances in cancer treatment, unfortu-
nately, the current five-year survival rate of NSCLC remains
unsatisfactory [34–37]. Thus, it is imperative to identify
potential biomarkers and explore NSCLC’s underlying bio-
logical mechanisms.

In recent years, bioinformatics analysis has been utilized
as a powerful tool to explore novel prognostic and therapeu-
tic biomarkers and to unveil the potential mechanisms of
NSCLC [38–41]. For instance, a novel model including seven
genes was reported to indicate a promising prognostic bio-
marker for lung SCC patients using integrated bioinformatics
methods [41–43]. In addition, studies used comprehensive
bioinformatics analysis to show that the cell cycle pathway
may play a significant role in NSCLC in nonsmokers [44–47].

In the present study, RNA-Seq data were downloaded
from The Cancer Genome Atlas (TCGA) database. Then,
the EdgeR package was applied to uncover differentially
expressed genes (DEGs) between NSCLC tissues and normal
tissues. Using the resulting data, this study is aimed at unveil-
ing the underlying molecular mechanism of NSCLC onset and
progression through gene ontology (GO), Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathway enrichment analysis,
and the protein-protein interaction (PPI) network. Subse-
quently, cytoHubba, a novel Cytoscape plugin, was used to
reveal the hub genes from 12 topological analysis methods.
Furthermore, the prognostic and diagnostic values of the
hub genes were further confirmed by survival analysis and
receiver operating characteristic (ROC) curve analysis.

The screening revealed two key genes, GNGT1 and NMU,
and the protein expressions of these genes were validated by
the Human Protein Atlas online database at the system level.
Their genetic alteration and coexpression were also revealed.
Finally, a logistic regression model was built to evaluate the
combined diagnostic capability of GNGT1 and NMU.

2. Materials and Methods

2.1. Downloading of TCGA Datasets and DEG Screening. The
mRNA expression data of NSCLC patients were downloaded

from the TCGA database (https://cancergenome.nih.gov/)
[48]. The criteria used were as follows: primary site (lung),
data category (Transcriptome Profiling), project ID
(TCGA-LUAD and TCGA-LUSC), experimental strategy
(RNA-Seq), and workflow type (HTSeq-counts). The other
filters were kept as default. Practical Extraction and Report-
ing Language (Perl) was utilized to extract the sample infor-
mation, generate the mRNA expression matrix, and
annotate gene symbols. Finally, data from a cohort contain-
ing 1,145 samples were obtained from TCGA. Of these
1,145 samples, there were 108 normal tissue and 1,037
NSCLC samples, respectively. The EdgeR package from Bio-
conductor was used to screen the DEGs between normal tis-
sue and NSCLC [49–51]. The adjusted P < 0:001, and
fold change ðFCÞ > 4 were set as the cutoff criteria.

2.2. DEG Functional Enrichment Analysis. Gene ontology
(GO) analysis provides a standardized description of gene
products in terms of molecular function (MF), biological
process (BP), and cellular component (CC) [52]. The Kyoto
Encyclopedia of Genes and Genomes (KEGG) is a database
offering gene functional meanings and expressed proteins
[53]. GO and KEGG enrichment analyses were conducted
using the powerful online tool DAVID (DAVID, https://
david.ncifcrf.gov/) and visualized by the R package “ggplot2”
[54]. In addition, P < 0:05 was considered to indicate statisti-
cal significance.

2.3. Constructing the Protein-Protein Interaction Network.
The Search Tool for the Retrieval of Interacting Genes
(STRING, https://string-db.org/) database, a database that
integrates all functional interactions between proteins, was
used to build the PPI network [55]. An interaction score of
≥0.4 was considered statistically significant.

2.4. Hub Gene Selection and Analysis. A Cytoscape plugin,
Molecular Complex Detection (MCODE), was utilized to
screen modules of PPI networks with a node score cutoff of
0.2, degree cutoff of 2, k-core of 2, and max depth of 100. A
P value of <0.05 was considered statistically significant. Next,
the DEGs were ranked by cytoHubba [56], which contains 12
algorithms: Maximal Clique Centrality, Edge Percolated
Component, Betweenness, Density of Maximum Neighbor-
hood Component, Degree, Bottleneck, Eccentricity, Close-
ness, Radiability, Maximum Neighborhood Component,
Stress, and Clustering Coefficient. The MCODE and cyto-
Hubba results were combined to identify the hub genes.

2.5. Survival Analysis of Hub Genes. Whether the expression
level of hub genes was associated with overall survival was
investigated using the Kaplan–Meier plotter (http://www
.kmplot.com/). An online database is capable of assessing
the effect of 54,675 genes on survival using 10,461 cancer
samples, including samples from 2,437 lung cancer, 1,065
gastric cancer, 1,816 ovarian cancer, and 5,143 breast cancer
patients. P < 0:05 (Cox) was considered statistically
significant.

2.6. ROC Curve. The ROC curve analysis was applied to eval-
uate the specificity and sensitivity of the hub genes. The area
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under the curve (AUC) and P value were calculated. P < 0:05
was considered to denote statistical significance.

2.7. Validation of Hub Genes. The expression level of hub
genes in LUAD was validated by Oncomine (https://www
.oncomine.org/resource/login.html) [57]. The threshold was
set as the following: P < 1E − 4, fold change > 2, and gene
ranking in the top 10%.

2.8. Human Protein Atlas. The Human Protein Atlas (https://
www.proteinatlas.org) is an online website that includes
immunohistochemical data of nearly 20 types of tumors
[58]. In our study, immunohistochemical images were used
to directly compare the expression of biomarkers in normal
and NSCLC tissues. The intensity of antibody staining indi-
cated the protein expression of hub genes.

2.9. Genetic Alteration of Hub Genes. The cBio Cancer Geno-
mics Portal (http://www.cbioportal.org/) is an open platform
that provides visualization, analysis, and downloads of large-
scale cancer genomic datasets for various cancer types [59].
Complex cancer genomic profiles can be easily obtained
using the portal’s query interface, enabling researchers to
explore and compare genetic alterations across samples.
cBioPortal was used to explore genetic alterations, coexpres-
sion, and overall survival of two hub genes, GNGT1 and
NMU.

2.10. Statistical Analysis. SPSS version 23.0 (SPSS Inc., Chi-
cago, IL, USA) was used to perform logistic regression anal-
ysis. ROC curves were generated to evaluate the diagnostic
accuracy of GNGT1 and NMU, and AUC was used to evalu-
ate sensitivity and specificity.

3. Results

3.1. Identification of DEGs in NSCLC. The workflow is shown
in Figure 1(a). DEGs were identified using the criteria of
P < 0:001 and FC > 4. A total of 1,411 DEGs were
screened out between NSCLC and normal samples, includ-
ing 1,362 upregulated genes and 49 downregulated genes
(Figures 1(b) and 1(c)).

3.2. Functional and Pathway Analysis of DEGs. To further
investigate the specific function of these genes, all DEGs were
uploaded to the online tool DAVID. GO analysis revealed
that in terms of BP, the DEGs were associated with nucleo-
some assembly, transcription from RNA polymerase II pro-
moter, telomere organization, flavonoid glucuronidation,
and DNA replication-dependent nucleosome assembly.

When examined in terms of MF, DEGs were enriched in
protein heterodimerization activity, retinoic acid-binding,
hormone activity, glucuronosyltransferase activity, and
extracellular ligand-gated ion channel activity. Regarding
CC, the DEGs were mainly enriched in the extracellular
region, cornified envelope, nucleosome, extracellular space,
and intermediate filament. KEGG analysis found that the
DEGs were predominantly involved in the Ras signaling
pathway, nicotine addiction, steroid hormone biosynthesis,
alcoholism, and systemic lupus erythematosus (Figure 2(a)).

3.3. PPI Network Construction, Module Analysis, and Hub
Gene Selection. The PPI network was constructed using the
STRING database and visualized in Cytoscape. The PPI net-
work consisted of 787 nodes and 2,104 edges, including 1,362
upregulated genes and 49 downregulated genes. The overlap-
ping genes of different algorithms selected by cytoHubba
were GNGT1, GNG4, NMU, GCG, TAC1, GAST, NPSR1,
and GCGR (Figure 2(b)). The top modules were then
extracted from the PPI network (Figure 2(c)).

3.4. Survival Analysis. The Kaplan–Meier plotter was used to
predict the prognostic value of the six identified hub genes.
The results demonstrated that high expressions of GNGT1
(HR = 1:17 ð1:03 – 1:33Þ, logrank P = 0:017), GNG4
(HR = 1:42 ð1:2 – 1:67Þ, logrank P = 4:4e − 05), NMU
(HR = 1:48 ð1:3 – 1:68Þ, logrank P = 2:5e − 09), GCG
(HR = 1:15 ð1:01 – 1:31Þ, logrank P = 0:031), TAC1
(HR = 1:23 ð1:08 – 1:39Þ, logrank P = 0:0017), GAST
(HR = 1:27 ð1:12 – 1:44Þ, logrank P = 0:00025), GCGR
(HR = 0:79 ð0:69 – 0:89Þ, logrank P = 0:00022), and NPSR1
(HR = 1:21 ð1:02 – 1:42Þ, logrank P = 0:024) were associated
with worse overall survival for NSCLC patients (Figure 3).

3.5. ROC Curve. According to ROC curve analysis, the AUCs
of GNGT1, GNG4, NMU, GCG, TAC1, GAST, GCGR1, and
NPSR1 were 0.9027 (P < 0:0001), 0.8729 (P < 0:0001), 0.9323
(P < 0:0001), 0.559 (P < 0:0432), 0.6822 (P < 0:0001), 0.7426
(P < 0:0001), 0.816 (P < 0:0001), and NPSR1 0.8949
(P < 0:0001), respectively (Figure 4(a)).

3.6. Validating Hub Gene Expression. The Oncomine data-
base was used to validate the expression of hub genes. The
results demonstrated that GNGT1 had high expression in
LUAD (P: 0.024, FC: 1.877) and LUSC (P: 9.77E-6, FC:
3.358). In Bhattacharjee’s study, NMU showed high expres-
sion in LUAD (P: 0.007, FC: 5.186) and LUSC (P: 0.012,
FC: 2.378) (Figure 4(b)).

3.7. Human Protein Atlas. After studying the mRNA expres-
sion of hub genes in NSCLC, we tried to explore the protein
expression of hub genes using the Human Protein Atlas. The
results revealed that NMU protein was not expressed in nor-
mal lung tissues, whereas medium expression of NMU pro-
tein was observed in the NSCLC tissues. However, GNGT1
was not detected in either normal lung tissues or NSCLC tis-
sues (Figure 4(c)).

3.8. Genetic Alteration of Hub Genes. The two hub genes
altered in 22 (4%) of the 584 patients, and the frequency of
alteration of each hub gene, are shown in Figure 5(a).
GNGT1 and NMU were altered most often (2.7% and 1.7%,
respectively), with mutation, amplification, and mRNA
upregulation as the main types of alterations observed
(Figure 5(b)). The expression of GNGTA was correlated with
NMU (Spearman: 0.13, P = 2:415e − 3; Pearson = 0:13, P =
4:821e − 3) (Figure 5(c)). Patients with CYP1A2 and GSTA3
alteration had worse overall survival than patients without
CYP1A2 and GSTA3 alteration (P = 0:465) (Figure 5(d)).

Notably, according to the ROC curve analysis, the AUC
of GNGT1 was 0.903 (P < 0:0001). For NMU, the AUC was
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Figure 1: Identification of DEGs in NSCLC. (a) Workflow for the identification of key pathways and genes between non-small-cell lung
cancer and normal samples. (b) DEGs between LUAD tissue and normal tissue. The volcano plot showed 1,411 DEGs. The red dots
represented the upregulated genes, while the green dots represented downregulated genes. DEGs: differentially expressed genes. (c)
Heatmap of the 20 upregulated and downregulated DEGs. The red color represents high expression, and the blue color represents low
expression.
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overlapping genes of different algorithms selected by cytoHubba. (c) The most significant modules obtained from the PPI network. PPI:
protein-protein interaction.

5Disease Markers



0.932 (P < 0:0001). The AUC was largest when GNGT1
was combined with NMU (AUC = 0:969, P < 0:0001)
(Figure 5(e)).

4. Discussion

Elucidating the molecular mechanisms of the initiation and
development of NSCLC would benefit the early diagnosis
and targeted therapy efforts [60–63]. In this study, we identi-
fied 1,362 upregulated genes and 49 downregulated genes

and selected GNGT1, GNG4, NMU, GCG, TAC1, GAST
NPSR1, and GCGR as hub genes using Molecular Complex
Detection (MCODE) and cytoHubba. These genes were
primarily enriched in terms of the Ras signaling pathway,
steroid hormone biosynthesis, nicotine addiction, alcohol-
ism, steroid hormone biosynthesis, and systemic lupus
erythematosus.

The Ras signaling pathway is closely related to the occur-
rence and progression of most human tumors [64–67]. The
activation of RAS-RAF-MEK-MAPK in gene transcription
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Figure 3: The prognostic value of hub genes in NSCLC patients. Kaplan–Meier curve analysis between hub gene expression and prognosis in
NSCLC patients from the KM plotter database.
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Figure 4: The expression and prognostic value of four hub genes in NSCLC patients. (a) The ROC curves of hub genes. AUC and P values of
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regulation can promote proliferation, migration, and angio-
genesis of cancer cells [68–70]. RAS-PI3K interaction is an
important signaling node and potential therapeutic target
in EGFR-mutant lung cancer [71–73]. In addition, steroid
hormones were not previously considered to be involved
with lung function [74–76]. However, numerous studies have
reported that steroid hormones are important in normal lung
development and function [77], as well as in the pathogenesis
of pulmonary diseases, including lung cancer [78–81].

Cigarette smoking is a well-known risk factor for the
occurrence and progression of malignant diseases [82–85].
Nicotine, the major constituent in cigarette smoke, plays
key roles in cancer progression [86–89]. Nicotine likely pro-
motes lung cancer cell proliferation by upregulating HIF-1α
and SOCC components [90–93]. It was demonstrated that
nicotine increased NSCLC cell proliferation through nico-
tinic acetylcholine receptor-mediated signals [94–97]. Nico-
tine can also induce the expression of embryonic stem cell
factor Sox2, which is indispensable for self-renewal and the
maintenance of stem cell properties in NSCLC cells [98–100].

Several studies have been conducted to investigate the
association between alcohol and lung cancer. Some studies
have reported that alcohol is linked to a number of human
diseases, including cancers [101–103]. Interestingly, another
report shows that alcohol has nothing to do with lung cancer
[104]. Thus, conducting further experiments is necessary to
confirm whether lung cancer is attributable to alcohol abuse.
All in all, the findings of these studies are consistent with our
results.

In the current study, the expressions of GNGT1 and
NMU were low both in the Oncomine and TCGA databases,
indicating that GNGT1 and NMU may play a role as onco-
genes. The transducin γ-subunit gene (GNGT1) has been
localized to human chromosome 7 [104] and is associated
with various forms of cancer [105–108]. GNGT1 exerts
effects in different tissues regulating cell proliferation, migra-
tion, adhesion, and apoptosis [109–111]. One study showed
that GNGT1 could serve as a marker of medulloblastoma
[112]. GNGT1 can be utilized to differentiate gastrointestinal
stromal tumor and leiomyosarcoma, two cancers that have
very similar histopathology, but require very different treat-
ments [113–115]. In the current study, GNGT1 was signifi-
cantly upregulated and high mRNA expression of GNGT1
was associated with poor overall survival in NSCLC patients.
Furthermore, KEGG analysis showed that GNGT1 was
involved in the Ras signaling pathway. Therefore, it is reason-
able to regard GNGT1 as a hub gene of NSCLC. Further
studies are needed to better understand GNGT1’s association
with NSCLC.

Neuromedin U (NMU) has been reported to exhibit early
alterations associated with cancer, including lung cancer,
pancreatic cancer, breast cancer, renal cancer, and endome-
trioid endometrial carcinoma, through promoting migration,
invasion, glycolysis, a mesenchymal phenotype, a stem cell
phenotype of cancer cells, and resistance to the antitumor
immune response [116–118]. It is overexpressed in pancre-
atic cancer and increases the cancer invasiveness through
the hepatocyte growth factor c-Met pathway [119–121]. A
role has also been implicated for NMU in human breast can-

cer and endometrial cancer [122–124]. The protein encoded
by NMU can amplify ILC2 to drive allergic lung inflamma-
tion [125]. NMU is regulated by RhoGDI2, a metastasis
inhibitor, which can be used as a target for lung metastasis.
The expression of NMU is negatively correlated with progno-
sis in most types of cancer [126–128]. In the present study,
the higher mRNA and protein expression of NMU were neg-
atively correlated with overall survival. Therefore, our results
are in line with these previous studies, which indicated that
NMU may be directly or indirectly important in NSCLC
development.

Moreover, to explore the predictive ability of GNGT1
and NMU, logistic regression analysis was performed. The
logistic regression analysis showed a probabilistic nonlinear
regression, which has functions in discrimination and pre-
diction. Notably, according to logistic regression analysis,
the AUC of the ROC curve of GNGT1 was 0.903
(P < 0:0001), and the AUC of NMU was 0.932 (P < 0:0001).
Combining the two biomarkers enabled a relatively high
capacity for discrimination between NSCLC and normal
patients, with an AUC of 0.969, indicating that the combined
test of GNGT1 combined with NMU was superior to testing
for either gene individually, with better clinical accuracy and
higher diagnostic value. Therefore, it is of high scientific
value to use a logistic regression model as a diagnostic model
for NSCLC.

In conclusion, our results identified two hub genes,
GNGT1 and NMU, as prognostic target genes, and
highlighted their probable role in NSCLC. Nevertheless, a
few limitations to this study should be acknowledged.
Because all the data analyzed in the current study were
retrieved from the online databases, further independent
experiments are required to validate our findings and to
explore the molecular mechanism of the hub genes in
NSCLC development and progression.
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