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A topological index of graph G is a numerical quantity which describes its topology. If it is applied to molecular structure of a
chemical compounds, then it reflects the theoretical properties of the chemical compounds. In this paper, well-known degree-
based topological indices are applied on chemical structures of antituberculosis drugs. Chemical structure is considered as graph,
where elements are taken as vertices and bounds between them are taken as edges. Furthermore, QSPR analysis of the said
topological indices are discussed, and it is shown that these topological indices are highly correlated with the physical properties of
antituberculosis drugs. This theocratical analysis may help the chemist and people working in pharmaceutical industry to predict

properties of antituberculosis drugs without experimenting.

1. Introduction

Before discovery/invention of antibiotics, lives of humans
and animals were on great threat of being infected by some
bacteria. In previous century, different bacterial infections
were the most common causes of death until Alexander
Flemings discovered Penicillin in 1929, the first antibiotic
which was introduced to the world in 1940.

Tuberculosis (TB) is a contagious infection caused by
bacteria “Mycobacterium tuberculosis” that usually attacks lungs.
It can also spread to other parts of body, like brain and spine.

A molecular graph is a representation of the structural
formula of a chemical compound in terms of graph theory,
whose vertices correspond to the atoms of the compound
and edges correspond to chemical bonds between atoms.
Cheminformatics is a new subject which is a combination of
chemistry, mathematics, and information science. It studies
quantitative structure-activity (QSAR) and structure-prop-
erty (QSPR) relationships that are used to predict the bio-
logical activities and properties of different chemical
compounds. The molecular topological indices or simply the
topological indices are used in chemistry. Wiener was the

first who first showed that the Wiener index number is
closely correlated with the boiling points of alkane molecules
[18]. Later, work on quantitative structure-activity rela-
tionships showed that it is also correlated with other
quantities including the parameters of its critical point [16],
density, surface tension, viscosity of its liquid phase [14], and
the van der Waals surface area of the molecule [10]. In the
QSAR/QSPR study, physico-chemical properties and to-
pological indices are used to predict bioactivity of the
chemical compounds. In this work, it is shown that no single
topological index exists that correlates with all the physical
properties of chemical compounds.

A graph G (V, E) with vertex set V (G) and edge set E (G)
is connected if there exists a connection between any pair of
vertices in G. The distance between two vertices u and v is
denoted as d (1, v) = d (u, v) and is defined as the length of
shortest path between u and v in graph G. The number of
vertices of G adjacent to a given vertex v is the “degree” of
this vertex and will be denoted by d, (G) or if misunder-
standing is not possible simply by d,,. The concept of degree
is somewhat closely related to the concept of valence in
chemistry.
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Some of the degree-based topological indices which we
use in this work are defined as follows.

Definition 1. ABC index is proposed by Estrada et al. in [7],
as

d,+d,-2

ABC(G) = I

e=uveE (G)

1
Definition 2. The Randi ¢ indexis proposed by Milan Randi

¢ in [13], as
1
R(G) = w’ : 2)
e:m%:i(G) d“d"

Definition 3. The sum connectivity index is proposed by
Zhou and Trinjstic in [19], as

1
\G— (3)
e=uveE (G) d” + dV

S(G) = Z

Definition 4. The GA index is proposed by Vukicevic et al. in
[17], as

d,d
GA(G) = ) ‘Z:d”. (4)

e=uveE(G) "4

Definition 5. The first and second Zagreb indices are pro-
posed by Gutman and Trinajestic in [11], as

Ml (G) = z (du + dv)’

e=uveE(G) (5)
Mz (G) = z (dudv)'

e=uveE (G)

Definition 6. The Harmonic index is proposed by Fajtlowicz
et al. in [9], as

H(G) =

2
2 aid (6)

e=uveE(G) "4 v

Definition 7. The hyper-Zagreb index is proposed by Shirdel
et al. in [15], as

HM(@G)= )

e=uveE (G)

(d, +d,)" (7)

Definition 8. The third Zagreb index is proposed by Fath-
Tabar et al. in [1], as

ZG;(G) = ) |d,-d,] (8)
e=uveE (G)
Definition 9. The forgotten index is proposed by Furtula

et al. in [8], as
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F(G) =

Z [(du)2 + (dv)z] 9)

e=uveE (G)

Definition 10. The symmetric division index is proposed in
[2], as

SSD(G) = ) [gﬂ], (10)

e=uveE (G)

where P = min[d,,d,] and. Q = max[d,,d,].

Some of the work in this area can be seen in [3-6, 12].

2. Results and Discussion

The above defined 11 topological indices are used for the
modeling of six physical properties: boiling point (BP),
enthalpy of vaporization (E), flash point (F), molar refrac-
tivity (MR), molar volume (MV), and polarizability (P) of 15
antituberculosis drugs: amikacin, bedaquiline, clofazimine,
delamanid, ethambutol, ethionamide, imipenem-cilastatin,
isoniazid, levofloxacin, linezolid, moxifloxacin, p-amino-
salicylic acid, pyrazinamide, rifampin, and terizidone.

2.1. Regression Models. The following equation is used to
correlate the various physical properties of various drugs
used for the treatment of tuberculosis with some topological
indices. We have used the following linear regression model:

P=A+b[TI], (11)

where P is physical property of drug, A is constant, b is
regression coefficient, and T1 is topological index. Constant
A and regression coefficient b is calculated from SPSS
software for seven physical properties and eleven degree-
based topological indices of molecular structure of fourteen
drugs. Using equation (11), following are the linear re-
gression model for the defined degree-based topological
indices:

(1) Regression models for atom bond connectivity
index: ABC(G)

Boiling point = 142.94 + 19.699[ABC (G)]
Enthalpy = 38.04 + 2.605[ABC (G)]

Flash point = 67.648 + 11.254[ABC(G)]
Molar refraction = 1.797 + 4.588 [ABC (G)]
Molar volume = 8.698 + 12.686[ABC (G)]
Polarizability = 0.685 + 1.82[ABC (G)]

(2) Regression models for Randi c index: R(G)
Boiling point = 124.752 + 33.178 [R(G)]
Enthalpy = 35.127 + 4.424[R(G)]

Flash point = 59.012 + 18.814[R(G)]
Molar refraction = —=2.76 + 7.757 [R(G)]
Molar volume = —5.066 + 21.541 [R(G)]
Polarizability = —1.122 + 3.077[R(G)]
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TaBLE 1: Physical properties of drugs used for the treatment of tuberculosis.
Name of medicine B011‘1ng Meljung Fla.sh Entha.lpy- of Mol?r. Polarizability Surffice Molar
point point point vaporization refractivity tension volume
Amikacin 981.8 203.5 547.6 162.2 134.9 53.5 103.3 363.9
Bedaquiline 702.7 176 378.8 108 156.2 61.9 52.6 420.1
Clofazimine 566.9 210 296.7 85.1 136.2 54 47.1 366.1
Delamanid 653.7 193 349.1 96.3 127.7 50.6 50 368
Ethambutol 345.3 89 113.7 68.3 58.6 23.2 38.1 207
Ethionamide 247.9 163 103.7 46.5 49 19.4 39.8 142
Imipenem- 530.2 2745 92.7 72.7 28.8 71 183.9
cilastatin
Isoniazid 251.97 172 251 36.9 14.6 57.8 110.2
Levofloxacin 571.5 224 299.4 90.1 91.1 36.1 70.3 244
Linezolid 585.5 177 307.9 87.5 83 32.9 47.7 259
Moxifloxacin 636 270 338.7 98.8 101.8 40.4 60.6 285
gjmm"sahcyhc 380.8 145 184.1 66.3 39.3 15.6 83.4 102.7
Pyrazinamide 173.3 190 119.1 54.1 31.9 12.6 60.7 87.7
Rifampin 937.4 183 561.3 153.5 213.1 84.5 48 611.7
Terizidone 175 76.1 30.2 62.5 198.9
Physical properties are taken from ChemSpider.
(3) . Regression models for sum-connectivity index. Polarizability = 4.716 + 0.206[M, (G)]
$(G) (7) Regression models for harmonic index: H (G)
Boiling point = 133.839 + 31.497[S(G)] Boiling point = 124.25 + 34.754[H (G)]
Enthalpy = 36.755 + 4.169[S (G)] Enthalpy = 35.279 + 4.616[H (G)]
Flash point = 63.724 + 17.895[S (G)] Flash point = 59.249 + 19.664[H (G)]
Molar refraction = ~0.81 +7.373[S(G)] Molar refraction = ~3.359 + 8.161[H (G)]
Molar volume = 1.064 +20.419(S(G)] Molar volume = —6.627 + 22.655[H (G)]
Polarizability = ~0.348 +2.925[S(G)] Polarizability = —1.359 + 3.237[H (G)]
(4) Regression models for geometric-arithmetic index (8) Regression models for hyper-Zagreb index:

(5)

(6)

(GA(G))

Boiling point = 197.225 + 14.102[GA(G)]
Enthalpy = 45.041 + 1.89[GA(G)]

Flash point = 97.24 + 8.114[GA(G)]

Molar refraction = 21.849 + 3.067 [GA (G)]

Molar volume = 60.81 + 8.621 [GA(G)]
Polarizability = 8.648 + 1.216[GA (G)]

Regression models for first Zagreb index: M, (G)
Boiling point = 159.511 + 2.802[M, (G)]
Enthalpy = 40.359 + 0.37[M, (G)]

Flash point = 75.639 + 1.611[M, (G)]

Molar refraction = 4.118 + 0.664 [M, (G)]

Molar volume = 15.714 + 1.3[M, (G)]
Polarizability = 1.606 + 0.264[M, (G)]

Regression models for second Zagreb index: M, (G)
Boiling point = 176.377 + 2.294[M, (G)]
Enthalpy = 42.366 + 0.304[M, (G)]

Flash point = 85.303 + 1.32[M, (G)]

Molar refraction = 11.967 + 0.52[M, (G)]

Molar volume = 37.688 + 1.431[M, (G)]

HM (G)

Boiling point = 175.29 + 0.538 [HM (G)]
Enthalpy = 42.25 + 0.071 [HM (G)]

Flash point = 84.694 + 0.31[HM (G)]
Molar refraction = 10.754 + 0.123[HM (G)]
Molar volume = 34.659 + 0.34[HM (G)]
Polarizability = 4.237 + 0.049[HM (G)]

(9) Regression models for third Zagreb index: ZG; (G).

Boiling point = 188.731 + 14.187[ZG; (G)]
Enthalpy = 45.595 + 1.819[ZG, (G)]

Flash point = 96.444 + 7.998[ZG; (G)]
Molar refraction = 18.618 + 3.077[ZG5 (G)]
Molar volume = 49.304 + 8.748[ZG; (G)]
Polarizability = 7.358 + 1.221[ZG; (G)]

(10) Regression models for forgotten index: F(G)

Boiling point = 174.862 + 1.017[F (G)]
Enthalpy = 42.93 + 0.134[F (G)]

Flash point = 81.722 + 0.593[F (G)]
Molar refraction = 10.095 + 0.235[F (G)]
Molar volume = 32.425 + 0.648[F (G)]



4 Journal of Chemistry

TaBLE 2: Various drugs and topological indices values.

Name of medicine ABC(G) R(G) S(G) GA(G) MI(G) M2(G) H(G) HM(G) ZG3(G) F(G) SSD(G)

Amikacin 30.266 18.85 19.24  40.18 191 247 17.83 1046 38 542 101.33
Bedaquiline 28.46 17.61  18.41 38.95 190 197 17.08 959 29 501 90
Clofazimine 27.06 16.68 17.47 1897 186 216 16.16 901 29 469 85.16
Delamanid 30.38 1829 1915 4043 204 234 17.53 1004 42 536 99.41
Ethambutol 10.6 8.19 7.64 14.53 60 60 7.9 252 12 132 34
Ethionamide 7.95 5.23 5.22 10.57 50 54 5 234 10 124 26
Imipenem-cilastatin 15.88 9.87  10.07  21.03 108 130 9.33 550 18 290 53.33
Isoniazid 8.02 5.21 5.21 10.55 50 55 4.966 234 8 156 26.33
Levofloxacin 20.75 1237  13.05  27.99 146 186 11.83 754 22 394 67.66
Linezolid 19.43 11.95 124 26.08 130 152 11.46 640 42 336 62.66
Moxifloxacin 241 144 1529  16.97 172 215 13.866 894 24 464 77.33
p-Aminosalicylic acid 8.13 5.1 5.1 10.38 52 58 4.76 252 12 136 28
Pyrazinamide 6.54 4.3 4.3 4.84 55 43 413 182 6 96 21
Rifampin 44.87 2732 2814  59.19 309 374 25.78 1593 55 855 151.5
Terizidone 18.66 11.54  11.99 11.74 124 144 1113 604 20 316 50.33

TaBLE 3: Correlation coefficients.

Topological Correlation Correlation Correlation Correlation Correlation Correlation
iné)ex & coefficients of coefficients of  coefficients of flash coefficients of molar coeflicients of molar coefficients of
boiling point enthalpy point refraction volume polarizability
ABC(G) 0.921 0.866 0.903 0.980 0.973 0.980
R(G) 0.921 0.872 0.896 0.984 0.981 0.984
S(G) 0.919 0.864 0.897 0.983 0.978 0.984
GA(G) 0.894 0.865 0.883 0.909 0.917 0.908
MI(G) 0.899 0.840 0.887 0.974 0.965 0.974
M2(G) 0.921 0.869 0.910 0.953 0.943 0.954
H(G) 0.918 0.865 0.891 0.985 0.982 0.985
HM(G) 0.925 0.872 0.914 0.971 0.959 0.971
ZG3(G) 0.877 0.796 0.849 0.872 0.890 0.872
F(G) 0.917 0.868 0917 0.970 0.959 0.970
SSD(G) 0.925 0.879 0.912 0.978 0.974 0.978
Correlation Coefficients of Boiling Point Correlation Coefficients of Enthalpy
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FiGgure 1: Continued.
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F1GURE 1: Physical properties and topological indices. (a) Boiling Point on T1I. (b) Enthalpy on TI. (c) Flash point on TI. (d) Molar Refraction
on TIL (e) Molar Volume on TL (f) Polarizability on TI.
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FIGURE 2: Medicine with topological indices.



TABLE 4: Statistical parameters for the linear QSPR model for ABC(G).
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Physical property N A b r r2 F p Indicator
Boiling point 14 142.940 19.699 0.921 0.848 67.034 <0.0001 Significant
Enthalpy 13 38.040 2.605 0.866 0.750 33.027 <0.0001 Significant
Flash point 14 67.648 11.254 0.903 0.816 53.137 <0.0001 Significant
Molar refraction 14 1.797 4.588 0.980 0.961 320.196 <0.0001 Significant
Molar volume 15 8.698 12.686 0.973 0.947 233.580 <0.0001 Significant
Polarizability 15 0.685 1.820 0.980 0.961 322.025 <0.0001 Significant
TABLE 5: Statistical parameters for the linear QSPR model for R(G).
Physical property N A b r r2 F p Indicator
Boiling point 14 124.752 33.178 0.921 0.848 66.986 <0.0001 Significant
Enthalpy 13 35.127 4.424 0.872 0.760 34.889 <0.0001 Significant
Flash point 14 59.012 18.814 0.896 0.804 49.123 <0.0001 Significant
Molar refraction 14 -2.760 7.757 0.984 0.968 398.969 <0.0001 Significant
Molar volume 15 -5.066 21.541 0.981 0.963 338.102 <0.0001 Significant
Polarizability 15 -1.122 3.077 0.984 0.969 401.220 <0.0001 Significant
TABLE 6: Statistical parameters for the linear QSPR model for S(G).
Physical property N A b r r2 F p Indicator
Boiling point 14 133.839 31.497 0.919 0.845 65.492 <0.0001 Significant
Enthalpy 13 36.755 4.169 0.864 0.747 32.410 <0.0001 Significant
Flash point 14 63.724 17.895 0.897 0.804 49.215 <0.0001 Significant
Molar refraction 14 -0.810 7.373 0.983 0.967 382.171 <0.0001 Significant
Molar volume 15 1.064 20.419 0.978 0.956 285.344 <0.0001 Significant
Polarizability 15 —-0.348 2.925 0.984 0.967 384.473 <0.0001 Significant
TABLE 7: Statistical parameters for the linear QSPR model for GA(G).
Physical property N A b r r2 F p Indicator
Boiling point 14 197.225 14.102 0.894 0.799 47.624 <0.0001 Significant
Enthalpy 13 45.041 1.890 0.865 0.748 32.691 <0.0001 Significant
Flash point 14 97.240 8.114 0.883 0.779 42.398 <0.0001 Significant
Molar refraction 14 21.849 3.067 0.909 0.826 61.559 <0.0001 Significant
Molar volume 15 60.810 8.621 0.917 0.841 68.909 <0.0001 Significant
Polarizability 15 8.648 1.216 0.908 0.825 61.422 <0.0001 Significant
TaBLE 8: Statistical parameters for the linear QSPR model for M, (G).
Physical property N A b r 2 F p Indicator
Boiling point 14 159.511 2.802 0.899 0.808 50.411 <0.0001 Significant
Enthalpy 13 40.359 0.370 0.840 0.706 26.417 <0.0001 Significant
Flash point 14 75.639 1.611 0.887 0.787 44.458 <0.0001 Significant
Molar refraction 14 4.118 0.664 0.974 0.949 241.578 <0.0001 Significant
Molar volume 15 15.714 1.833 0.965 0.931 175.131 <0.0001 Significant
Polarizability 15 1.606 0.264 0.974 0.949 242.643 <0.0001 Significant
TABLE 9: Statistical parameters for the linear QSPR model for M, (G).
Physical property N A b r r2 F p Indicator
Boiling point 14 176.377 2.294 0.921 0.848 67.069 <0.0001 Significant
Enthalpy 13 42.366 0.304 0.869 0.755 33.832 <0.0001 Significant
Flash point 14 85.303 1.320 0.910 0.827 57.458 <0.0001 Significant
Molar refraction 14 11.967 0.520 0.953 0.909 130.015 <0.0001 Significant
Molar volume 15 37.688 1.431 0.943 0.889 104.388 <0.0001 Significant
Polarizability 15 4.716 0.206 0.954 0.909 130.608 <0.0001 Significant
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TaBLE 10: Statistical parameters for the linear QSPR model for H (G).
Physical property N A b r r2 F p Indicator
Boiling point 14 124.250 34.754 0.918 0.842 0.842 <0.0001 Significant
Enthalpy 13 35.279 4.616 0.865 0.748 32.682 <0.0001 Significant
Flash point 14 59.249 19.664 0.891 0.795 46.457 <0.0001 Significant
Molar refraction 14 -3.359 8.161 0.985 0.970 422.174 <0.0001 Significant
Molar volume 15 -6.627 22.655 0.982 0.964 347.348 <0.0001 Significant
Polarizability 15 -1.359 3.237 0.985 0.970 424.568 <0.0001 Significant
TaBLE 11: Statistical parameters for the linear QSPR model for HM (G).
Physical property N A b r 2 F p Indicator
Boiling point 14 175.290 0.538 0.925 0.857 71.653 <0.0001 Significant
Enthalpy 13 42.250 0.071 0.872 0.761 34.961 <0.0001 Significant
Flash point 14 84.694 0.310 0.914 0.835 60.823 <0.0001 Significant
Molar refraction 14 10.754 0.123 0.971 0.943 213.272 <0.0001 Significant
Molar volume 15 34.659 0.340 0.959 0.919 148.407 <0.0001 Significant
Polarizability 15 4.237 0.049 0.971 0.943 214.463 <0.0001 Significant
TABLE 12: Statistical parameters for the linear QSPR model for ZG; (G).
Physical property N A b r r2 F p Indicator
Boiling point 14 188.731 14.187 0.877 0.770 40.068 <0.0001 Significant
Enthalpy 13 45.595 1.819 0.796 0.634 19.044 <0.0012 Significant
Flash point 14 96.444 7.998 0.849 0.721 30.987 <0.0001 Significant
Molar refraction 14 18.618 3.077 0.872 0.761 41.284 <0.0001 Significant
Molar volume 15 49.304 8.748 0.890 0.793 49.736 <0.0001 Significant
Polarizability 15 7.358 1.221 0.872 0.761 41.320 <0.0001 Significant
TaBLE 13: Statistical parameters for the linear QSPR model for F(G).
Physical property N A b r r2 F p Indicator
Boiling point 14 174.862 1.017 0.917 0.841 63.583 <0.0001 Significant
Enthalpy 13 42.930 0.134 0.868 0.753 33.540 <0.0001 Significant
Flash point 14 81.722 0.593 0.917 0.842 63.799 <0.0001 Significant
Molar refraction 14 10.095 0.235 0.970 0.940 204.155 <0.0001 Significant
Molar volume 15 32.425 0.648 0.959 0.920 150.473 <0.0001 Significant
Polarizability 15 3.976 0.093 0.970 0.940 205.151 <0.0001 Significant
TaBLE 14: Standard error of estimate.
. Std. error of the  Std. error of the  Std. error of the  Std. error of the Std. error of the Std. error of the
Topological . P . f . f ) . for flash . f 1 . f
index estimate for estimate for estimate for molar estimate for flash estimate for molar estimate for
boiling point enthalpy refraction point volume polarizability
ABC(G) 98.80842 17.71587 10.53701 63.40101 34.10937 4.16784
R(G) 98.83840 17.35274 9.47621 65.44951 28.58485 3.74830
S(G) 99.78636 17.84127 9.67553 65.40054 31.00944 3.82645
GA(G) 113.75977 17.78385 22.27504 69.37762 59.18170 8.84300
MI(G) 111.19073 19.21715 12.05471 68.10000 39.05016 4.77125
M2(G) 98.78608 17.55617 16.08332 61.39726 49.43571 6.36590
H(G) 100.68522 17.78575 9.22010 66.92575 28.21576 3.64692
HM(G) 96.04169 17.33909 12.78650 59.96174 42.15912 5.05818
ZG3(G) 121.73452 21.44588 26.10552 78.04393 67.62305 10.35071
F(G) 76.32456 11.75776 17.41567 93.39236 73.68525 6.90532
SSD(G) 96.18479 16.88420 11.19841 60.73508 33.75294 4.43398
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FIGURE 3: Molecular structure of drugs. (a) Amikacin. (b) Bedaquiline. (c) Clofazimine. (d) Delamanid. (e) Ethambutol. (f) Ethionamide.
(g) Imipenem-cilastatin. (h) Isoniazid. (i) Levofloxacin. (j) Linezolid. (k) Moxifloxacin. (I) p-aminosalicylic acid. (m) Pyrazinamide.

(n) Rifampin. (o) Terizidone.
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TasLE 21: Correlation determination.

Coeflicient of Coefficient of

Coeflicient of

Coeflicient of Coeflicient of Coeflicient of

Ef;{loglcal determination of determination of determination of  determination of  determination of  determination of
boiling point enthalpy flash point molar refraction molar volume polarizability
ABC(G) 0.848 0.750 0.816 0.961 0.947 0.961
R(G) 0.848 0.760 0.804 0.968 0.963 0.969
S(G) 0.845 0.747 0.804 0.967 0.956 0.967
GA(G) 0.799 0.748 0.779 0.826 0.841 0.825
MI(G) 0.808 0.706 0.787 0.949 0.931 0.949
M2(G) 0.848 0.755 0.827 0.909 0.889 0.909
H(G) 0.842 0.748 0.795 0.970 0.964 0.970
HM(G) 0.857 0.761 0.835 0.943 0.919 0.943
ZG3(G) 0.770 0.634 0.721 0.761 0.793 0.761
F(G) 0.841 0.753 0.842 0.940 0.920 0.940
SSD(G) 0.844 0.773 0.831 0.956 0.948 0.956
TABLE 22: Statistical parameters for the linear QSPR model for SS D (G).
Physical property N A b 2 F p Indicator
Boiling point 14 147.016 5.962 0.925 0.844 71.404 <0.0001 Significant
Enthalpy 13 38.141 0.795 0.879 0.773 37.471 <0.0001 Significant
Flash point 14 68.953 3.421 0.912 0.831 58.981 <0.0001 Significant
Molar refraction 14 4.877 1.371 0.978 0.956 282.000 <0.0001 Significant
Molar volume 15 16.421 3.803 0.974 0.948 238.815 <0.0001 Significant
Polarizability 15 1.908 0.544 0.978 0.956 283.014 <0.0001 Significant

Polarizability = 3.976 + 0.093[F (G)]

(11) Regression models for symmetric division index:
SS D(G)

Boiling point = 147.016 + 5.962[SS D (G)]
Enthalpy = 38.141 + 0.795[SS D(G)]
Flash point = 68.953 + 3.421[SS D(G)]
Molar refraction = 4.877 + 1.371[SS D (G)]
Molar volume = 16.421 + 3.803[SS D (G)]
Polarizability = 1.908 + 0.544[SS D (G)]

2.2. Computation of Topological Indices and Their Comparison
with Correlation Coefficients of Some Physical Properties.
Table 1 shows the abovementioned physical properties of 15
drugs used for the treatment of tuberculosis.

In Table 2, the 12 topological indices are computed of the
graphs constructed from the molecular structures of the
drugs.

In Table 3, the correlation coefficients of the 6 physical
properties with respect to each topological index are com-
puted. The graph of the correlation coeflicient of all the
physical properties such as boiling point, enthalpy, flash
point, molar refraction, molar volume, and polarizability on
different topological indices are shown in Figure 1. The
graphical representation of topological indices of the dif-
ferent medicine is shown in Figure 2.

2.3. Computation of Statistical Parameters. In this section,
regression parameters have been computed. N is the
sample size, A is constant or Y-intercept, b is slope, r is
correlation coefficient, and r? is the percentage of the

dependent variable variation that a linear model explains.
The p value for each term tests the null hypothesis that the
coeficient is equal to zero (no effect), whereas a larger
(insignificant) p value suggests that changes in the pre-
dictor are not associated with changes in the response.
Suppose we are doing a test in which the null hypothesis is
that all of the regression coefficients are zero. The result of
this kind of a test gives us a value called F value. In this case,
the model has no predictive capability. With the help of this
test, one can compare their model with zero predictor
variables and decides whether their added coefficients have
improved the model. In Tables 4-13, these statistical pa-
rameters are computed for linear QSPR models for dif-
ferent topological indices. All of these analyses show that
the p value in each of the model is zero that indicates the
significance of the results.

2.4. Standard Error of Estimate. The Standard error of es-
timate is the measure of variation of an observation made
around the computed regression line. Table 14 shows the
standard error of estimate for six physical properties cor-
responding to each topological index.

2.5. Correlation Determination. The correlation determi-
nation describes the percentage of relation which gives you
more information about the relationship between variables.
When you square the correlation coefficient, you end up
with the correlation of determination 2.

2.6. Comparison. In this section, the comparison for known
values and computed values from our regression models is
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drawn. In Tables 15-20, the comparison of each physical
property is shown.

3. Conclusion and Future Study

3.1. Conclusion. Tuberculosis (TB) is a disease and its in-
fection is caused by bacteria “Mycobacterium tuberculosis”
that usually attacks lungs. It can also spread to other parts of
body, like brain and spine and cause death.

A molecular descriptor is actually a mathematical for-
mula that can be applied to any graph which models some
molecular structure. More precisely, a single number rep-
resents a chemical structure. In graph theory, this number is
called topological descriptor. When a topological descriptor
correlates with a molecular property, it is called molecular
index or topological index (TI). Thus, a topological graph
index is also called a molecular descriptor. Mathematically, a
topological index is a numeric quantity associated with a
graph which characterizes the topology of a graph. By
computing these topological indices, it is possible to analyze
mathematical values and further investigate some physio-
chemical properties of a molecule. Actually topological
indices are designed on the ground of transformation of
molecular graph into a number which characterizes the
topology of graph.

Molecular topological indices play a significant role in
mathematical chemistry, especially in quantitative structure-
property relationship (QSPR) and quantitative structure-
activity relationship (QSAR) investigations. (11) is used to
correlate the various physical properties of various drugs
used for the treatment of tuberculosis with some topological
indices. Therefore, it is an efficient way to avoid expensive
and time-consuming laboratory experiments. The purpose
of computing these 11 topological indices is that no single
topological index is found yet that can be efficient (given in
various tables) for all physical properties of these drugs.

Tables 1 and 2 gives the values of physical properties and
topological indices of medicines (Figure 3), respectively.
Table 3 and graphs (Figure 1) shows how degree-based
topological indices and physical properties of medicine
correlate. Upon examining correlation coefficients hori-
zontally for physical properties under consideration, we see
that H(G) index gives highest correlation coefficient for
molar refraction (r = 0.985), molar volume (r = 0.982), and
polarizability (r = 0.985). HM(G) index gives highest
correlation coeflicient for boiling point (r = 0.925). F(G)
has highest correlation coefficient for flash point (r = 0.925).
SS D gives highest correlation coefficient for boiling point
and enthalpy. When we look vertically, boiling point has also
good correlation with ABC(G) and R(G), i.e., (r = .921) for
both. Enthalpy has also good correlation with R(G) and
HM(G), i.e., (r=0.872). Flash point has also good cor-
relation with SS D (G), i.e., (r = 0.812). Molar refraction has
also good correlation with R(G), ie., (r =0.984). Molar
volume has also good correlation with R(G), ie,
(r = 0.981). Polarizability has also good correlation with
R(G) and S(G), i.e., r = .984.

Journal of Chemistry

While examining correlation determination (Table 21)
horizontally for physical properties under consideration, we
see that H (G) index gives highest correlation determination
for molar refraction (r?> =0.970), molar volume
(r* = 0.964), and polarizability (r* = 0.970). HM (G) index
gives highest correlation determination for boiling point
(r? = 0.857). F(G) has highest correlation determination for
flash point (r? =0.842). SS D gives highest correlation
determination for boiling point and enthalpy (r* = 0.773).
When we look vertically, boiling point has also good cor-
relation with ABC(G) and R(G), i.e., (> = 0.848) for both.
Enthalpy has also good correlation with R(G) and HM (G),
ie., (r>0.760). Flash point has also good correlation with
SS D(G) and HM (G), i.e., (r* =.0.831). Molar refraction
has also good correlation with R(G), i.e., (r* = 0.968). Molar
volume has also good correlation with R(G), i.e,
(r* = 0.963). Polarizability has also good correlation with
R(G) and S(G), i.e., r* = 0.969. One can easily gather from
the table of statistical parameters for the linear QSPR models
for different degree-based topological indices that are as
follows:

Harmonic index H (G) has positive and highly sig-
nificant correlation coefficient for molar refraction
(r = 0.985), molar volume (r =0.982), and polariz-
ability (r = 0.985).

Sum-connectivity S(G) index and hyper-Zagreb index
HM (G) has highly significant correlation coefficient
for boiling point, ie., (r = 0.925).

Sum-connectivity S (G) index also has highly significant
correlation coefficient for enthalpy.

Forgotten topological index F (G) has highly significant
correlation coefficient for flash point (r = 0.917).

From Table 21, we can also see high percentage cor-
relation between degree-based topological index and
physical properties of medicines.

Harmonic index H(G) has positive and high per-
centage of correlation for molar refraction (r* = 0.970),
molar volume (r* =0.964), and polarizability
(r* = 0.970).

Hyper-Zagreb index HM (G) has high percentage of
correlation correlation for boiling point, i.e,
(r* = 0.857).

Sum-connectivity S(G) index also has high percentage
of correlation for enthalpy (r* = 0.773 ).

Forgotten topological index F (G) has high percentage
of correlation for flash point (r? = 0.842).

Tables 4-13 and 22 show different statistical parameters
of correlation between values of eleven degree based to-
pological indices and six physical properties of medicine. We
could not find any correlation between degree-based to-
pological index and melting point of antituberculosis drugs.

This work indicated that this theocratical analysis may
help the chemist and people working in pharmaceutical
industry to predict properties of antituberculosis drugs
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without experimenting. It is also possible that different
composition of these drugs may be used for different dis-
eases; of course it depends on the range of the topological
indices which are computed in this work. In this work, we
have found the correlation coefficient for different topo-
logical indices; this will help the chemist to design new drugs
based on the combination of positively high correlated
drugs.

3.2. Future Study. In a similar pattern, relation between
physical properties for different drugs/medicine for the
treatment/preventive measures of a particular disease and
Topological indices can be established to estimate physical
properties of newly discovered medicine or candidate
drug(s) of particular disease.

It will be very important to find a topological index that
can correlate with all the physical properties.

Data Availability

The physical property data used to support the findings of
this study are included within the article.

Conflicts of Interest

The authors have no conflicts of interest.

References

[1] A. Astanesh-Asl and G. H Fath-Tabar, “Computing the first
and third Zagreb polynomials of certained product of graphs,
Iran,” Journal of Mathematical Chemistry, vol. 2, no. 2,
pp. 73-78, 2011.

[2] V. Alexander, “Upper and lower bounds of symmetric divi-
ssion deg index, Iran,” Journal of Mathematical Chemistry,
vol. 5, no. 2, p. 9198, 2014.

[3] Adnan and S. Ahtsham Ul Haq Bokhary, “On vertex PI index
of certain triangular tessellation networks,” Main Group Met.
Chem.vol. 44, pp. 203-212, 2021.

[4] M. Imran,S. Akhter, and S. Manzoor, “Molecular, topological
invariants of certain chemical networks,” Main Group Met.
Chem.vol. 44, pp. 141-149, 2021.

[5] M. Imran, Syed Ahtsham Ul Haq Bokhary, and S. Manzoor,
“On molecular topological properties of dendrimers,” Ca-
nadian Journal of Chemistry, vol. 94, pp. 120-125, 2016.

[6] Adnan, S. Ahtsham Ul Haq Bokhary, M. K. Siddiqui, and
M. Cancan, “On topological indices and QSPR analysis of
drugs used for the treatment of breast cancer,” Polycyclic
Aromatic Compounds, vol. 23, 2021.

[7] E. Estrada, L. Torres, L. Rodriguez, and I. Gutman, “An atom-
bond connectivity index: modeling the enthalpy of formation
of alkanes,” Indian Journal of Chemistry, vol. 37, pp. 849-855,
1998.

[8] B. Furtula and I. Gutman, “A forgotton topological index,”
Journal of Mathematical Chemistry, vol. 53, pp. 213-220, 2015.

[9] S. Fajtlowicz, “On conjectures of grafitti II,” Congressus
Numerantium, vol. 60, pp. 189-197, 1987.

[10] I. Gutman and T. Krtvlyesi, “Wiener indices and molecular
surfaces,” Zeitschrift fr Naturforschung, vol. 50, Article ID
6696671, 1995.

[11] I. Gutman, “Degree based topological indices,” Croatica
Chemica Acta, vol. 86, pp. 351-361, 2013.

17

[12] V. Lokesha, S. Suvarna, and A. Sinan Cevik, “Status index and
co-index of connected graphs,” Proc of the Jangjeon Mathe-
matical society, vol. 24, no. 3, pp. 285-295, 2021.

[13] M. Randi, “On Characterization of molecular branching,”
Journal of the American Chemical Society, vol. 97,
pp. 6609-6615, 1975.

[14] D. H. Rouvray and B. C. Crafford, “The dependence of
physical-chemical properties on topological factors,” South
African Journal of Science, vol. 72, p. 47, 1976.

[15] G. H. Shirdel, H. RezaPour, and A. M. Sayadi, “The hyper-
zagreb index of graph operations, Iran,” Journal of Mathe-
matical Chemistry, vol. 4, no. 2, pp. 213-220, 2013.

[16] L. I. Stiel and G. Thodos, “The normal boiling points and
critical constants of saturated aliphatic hydrocarbons,” AIChE
Journal, vol. 8, no. 4, Article ID 5276529, 1962.

[17] D. V.-B. Furtula, “Topological index based on the ratios of
geometrical and arithmetical means of end-vertex degrees of
edges,” Journal of Mathematical Chemistry, vol. 46,
pp. 1369-1376, 2009.

[18] H. Wiener, “Structural determination of paraffin boiling
points,” Journal of the American Chemical Society, vol. 69,
pp. 17-20, 1947.

[19] B. Zhou and N. Trinajstic, “On general sum-connectivity
index,” Journal of Mathematical Chemistry, vol. 47,
pp. 210-218, 2010.



Hindawi

Journal of Chemistry

Volume 2021, Article ID 7189918, 12 pages
https://doi.org/10.1155/2021/7189918

Research Article

Hindawi

Study of Vanadium Carbide Structures Based on Ve and Ev-Degree

Topological Indices

Abdul Rauf®,' Saba Maqbool,1 Muhammad Naeem (5,! Adnan Aslam ©,> Hamideh Aram,’

and Kraidi Anoh Yannick

'Department of Mathematics, Air University Multan Campus, Multan, Pakistan

Department of Natural Sciences and Humanities, University of Engineering and Technology, Lahore, Pakistan (RCET), Pakistan
3Department of Mathematics, Gareziaeddin Center, Khoy Branch, Islamic Azad University Khoy, Iran

*UFR of Mathematics and Informatics, University Felix Houphouet Boigny of Cocody, Abidjan, Céte d’Ivoire

Correspondence should be addressed to Kraidi Anoh Yannick; kayanoh2000@yahoo.fr

Received 13 June 2021; Accepted 7 December 2021; Published 27 December 2021

Academic Editor: Muhammad Imran

Copyright © 2021 Abdul Rauf et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Vanadium is a biologically active product with significant industrial and biological applications. Vanadium is found in a variety of
minerals and fossil fuels, the most common of which are sandstones, crude oil, and coal. Topological descriptors are numerical
numbers assigned to the molecular structures and have the ability to predict certain of their physical/chemical properties. In this
paper, we have studied topological descriptors of vanadium carbide structure based on ev and ve degrees. In particular, we have
computed the closed forms of Zagreb, Randic, geometric-arithmetic, and atom-bond connectivity (ABC) indices of vanadium
carbide structure based on ev and ve degrees. This kind of study may be useful for understanding the biological and chemical

behavior of the structure.

1. Introduction

Vertex degree concept has devised many topological in-
dices that are applicable in QSPR/QSAR studies. Topo-
logical indices are widely used in theoretical and
mathematical chemistry as they are associated with the
topology of a chemical structure along with its other
identical properties such as boiling points, strain energy,
and stability [1]. In chemical graph theory, a chemical
graph is referred as a molecular structure with atoms as its
vertices and chemical bonds as its edges. A topological
index is a numerical parameter that creates a link between
the physical and chemical properties of a molecule [2].
Many topological descriptors based on degree have been
introduced. These topological indices have provided as-
sistance in calculating different parametric calculations
related to molecular structures to make them under-
standable and beneficial. A lot of topological descriptors
have been defined and studied so far, but Zagreb indices
[3], Weiner index [4], and Randic index [5] are the most

studied among all of them. To read more about the
chemical applicability of topological descriptors, see
[5-12].

Researchers have attempted to study the varying be-
havior of transition metal carbides due to their complex
structures. Such mineral metals are available in commercial
places, and their salts are broadly utilized in our enterprises
related to electrochemistry and material science. Among
these, vanadium carbide complexes have shown crystal
morphologies and stoichiometrics and display a great
variety of superstructures. Very recently, many attempts
have been done to purify high quality vanadium carbide by
presenting different binary model system such as
VC,V,C,V,C5,V(Cs, and V¢C,. For more details, see
[13-16].

Let G be a simple connected graph with its edge set and
vertex set denoted by E and V/, respectively. The neighbor set
N (v) of a vertex v contains those vertices v, such that
vv, € E. The degree of vertex v is denoted by d, and is the
cardinality of the set N (v). Let N[v] = {v; € V: vy, € E}
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U {v} be the closed neighborhood of v. To read more about
the basic concepts related to graph, see [17].

M. Chellali et al. [18] first introduced the concept of ev
degree of an edge e and ve degree of a vertex v. The ev degree
of an edge e is denoted by d,, (e) and is defined as the total
number of vertices in the closed neighborhoods of the end
vertices of an edge e. The ve degree of a vertex v is denoted by
d,. (v) and is the total number of edges that are adjacent with
v and the first neighbor of v. Ediz [3] first introduced the
concept of ve degree and ev degree Zagreb and Randic
indices. The mathematical formulas of these indices are
presented in Table 1. These newly defined indices were
compared with Zagreb, Weiner, and Randic indices by
modeling some of the physical/chemical properties of octane
isomers. These indices have been observed to provide better
correlation than the Randic, Weiner, and Zagreb indices for
predicting some specific physical and chemical properties of
octane isomers. Recently, a lot of work is done in the di-
rection of computing newly defined ve degree and ev degree-
based indices [19-23].

2. Vanadium Carbide

Vanadium carbide belongs to the family of group IV to VI
transition metal carbides and shows homogeneity to metal
nitrides, monocarbides, and carbonitrides. They possess
unique associations between physio-chemical properties
such as high melting points, high temperature resistivity,
strength, and hardness which are associated with good
electrical and thermal conductivity. These rare combinations
of properties make such compounds very interesting for the
researchers. These materials can be used as wear-resistant

M (VC[m,n]) = 486mn — 262m — 262n + 130,

Journal of Chemistry

hard alloys and as hard coatings for protection purposes, due
to their nanochemical properties [24, 25].

Vanadium carbide is the hardest inorganic metal-car-
bide with the formula VC. VC is an incredibly hard re-
fractory ceramic with exceptional wear resistance, high
modulus of elasticity (400 GPa), and good strength retention
even at high temperatures [26-28]. VC coatings are used in
corrosion prevention, cutting tool application, machining,
drilling, and dyeing. Some industrial uses of VC are given in
[27, 29-31]. We denote the crystallographic structure of
vanadium carbide by VC[m, n]. The molecular structure of
vanadium carbide for m = 5 = n is depicted in Figure 1. The
structure of VC|[m,n] has total number of 3mn+m+n
vertices and 6mn — m — n edges. Let V; denote the vertex set
containing the vertices of VC[m,n] of degree i. Then, the
vertex set V (VC[m, n]) can be partitioned into six sets with
Vil=m+n+2, |V,|=2m+2n-4, |V5|=4m-2n+2,
Vyl=1, |Vs|=m+n-2, and |V4| =mn-m—-n+ 1. Let
E; j denote the edge set containing the edges of VC[m,n]
with end vertices of degree i and degree j. The edge set of
VC[m,n] can be partitioned based on the degree of end
vertices as follows: E, 4 with 1 edge, E; 5, with 2 edges,
E 6 with m+n—1 edges, E(, 4 with 2 edges, E(, 5 with
2m + 2n — 4 edges, E ;) with 2m + 2n - 6 edges, E ;4 with
1 edge, E(35 with 3m+3n-8 edges, and E; 4 having
6mn — 9m — 9n + 13 edges. In Theorem 1, we compute the ev
degree Randic and ev degree Zagreb index of VC|[m,n].

3. Main Results

Theorem 1. Let m,n>2, then

ev 1 1 2 3 9
R (VC[m,rl]) ZWmn+<W+W+—8+%—%)m (1)
1 2 2 3 9 1 4 4 6 8 13
+<W+W+%+%_W>n+<W+W_W_W_W+W>'

Proof. To compute the ev degree Zagreb and ev degree
Randic index of VC[m, n], we need to compute the ev degree

of the edges in each partition set E; j. This calculation is

W (VClmn) = Y d,(e)
ecE(Z)

presented in Table 2. Now, using the information presented
in Table 2 and the definition of ev degree Zagreb and ev
degree Randic index, we get

= (5P[Eqa| + (6)°|Equs)| + 7V’|E1g)| + (6)E )| + (7*|E 2]

+ (8)2|E(2,6)| + (7)2|E(3,4)| + (3)2|E(3,5)| + (9)2|E(3,6)l

=) (1) +(6)2Q2) + (7 (m+n—=1)+(6)*(2) + (7)> 2m + 2n — 4)
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TaBLE 1: Mathemat

ical formula of topological indices.

Topological indices Notation Mathematical formula

Ev degree Randic index R (G) Yecr(G)Aer (€)” (72

First Zagreb f-index vae (G) YuveeG) (dye (W) +d,, (v))

Ev degree Zagreb index M (G) ZggE(G)dev (e)?

Second Zagreb f-index Mg” (G) ZuveE(G) (dye () x d,, (V)

Ve degree harmonic index H"™(G) Yuver ((2)/(d,, (u) +d,, (v)))

Ve degree sum connectivity index X (G) Yuver(q) (dye (W) +d,, ()1

Ve degree geometric arithmetic index GA™(G) 2uver) 2Vd, W) xd,, (v)/(d,, (u) +d,, (v)
Ve degree atom bond connectivity index ABC” (G) Yuwer e W) +d,,(v) =2)/(d,, () xd,, (v)
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FiGURE 1: Molecular structure of vanadium carbide for m =5 and n = 5.

TaBLE 2: Ev-degrees of edges of vanadium carbide.

(d(u),d(v)) d,,(e) Frequenc
ev q Yy
Eq4 5 1
Eqs 6 2
Eqe 7 m+n—-1
E o 6 2
Ens 7 2m+2n—4
E(z)s) 8 2m+2n—-=6
E3y 7 I
Es 8 3m+3n-8
Eise 9 6mn—9m—-9n+13

+(8)*(2m +2n—6) +(9)* (1) + (7)* (3m + 3n—8)
+(8)2 (6mn— 9m — 9n + 13)
= 486mn — 262m — 262n + 130.

R (VClmnl) = Y d,(e)
ecE(Z)

= (5)71/2|E(1,4)| + (6)71/2|E(1,5)| + (7)71/2|E(1,6)| + (6)71/2|E(2,4)| + (7)71/2|E(2,5)|
+(8) *|E | + (D) |Eg| + (8) || + (97 E )]
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=GP +6) Q)+ () Pm+rn-D+6) Q)+ ()P 2m+2n-4)
+8) P em+2n-6)+9) (1) +(7) " Bm +3n-8)
+(8) Y (6mn - 9m — 9n + 13)

1 2 3 9 1 2 2 3 9

W”’”(f N7 VBTV f) (W*W*W*_s‘ﬁ)”

( LA 468 13) -
V56 NT VB VBB ’

Theorem 2. Let m,n>3, then

M (VCm, n]) = 216mn + 76m + 20n + 54,
M (VCm,n]) = 1944mn — 51m — 1887n + 1798,

ve _12+/324 24/84 44/130 4168 2\/12 4\/208 \/
GA™ (VC[m,n]) = mn + + +

20 23 26 30 29
+2\/288 N 16v306 30324 N 2vV84 N 4+/130 N 4+/168 N 2v121
- m
34 35 36 20 23 26 30

+4\/208 . 6+/252 .\ 2+/288 .\ 4+/306 30+/324 )n . (2\/3_2 . 4+/55

29 32 34 35 36 12 16
+6m_sm+4m+4m+4m_zom+4m+4m
16 20 17 21 22 23 22 25
+4\/m_20\/@+2\/m_12\/ﬁ+4\/@_ 16\/m+4\/ﬁ
22 26 22 30 27 29 27
+4\/ﬁ7+4\/2—3§_28\/2—5§_6@_20\/§%+2\/ﬁ5+74\/3—21>’

28 31 32 34 35 28 36

ve 1 10974905939 39532069 801297510323
H* (VC[m,n]) = —mn + m+ n+ ,
3 29469607440 247643760 950023374300

(3a)
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8 2 2 2 14 3 10 1 37
V29 V27 V28 NB1 W32 34 35 V28 36 )

6 1 2 2 1 2 3 1
R (VC[m,n]) = mn + + + + + + +
(VCIm, nl) 324 (\/8_4 V130 V168 /221 /208 /252 /288
s 8 15 s 1 s 2 s 2 s 1 s 2 s 3
— m
\/306 324 V84 /130 168 221 /208 /252
1 2 15 1 2 3 4 2 2
+ + - n+ + + - + +
1288 /306 /324 V32 V55 460 72 110 121
4 10 ) 2 . 2 10 . 1 . 6 . 2 8
V84 /130 117 +/154 +168 /112 +/221 +/182 /208
2 2 2 14 3 10 1 37
+ + + - - - + + . (3b)
V176 V187 /238 /252 /288 /300 /180 /324

Proof. To compute the ve degree-based indices, we need to  presented in Table 3. Now, using the values from Table 3 and
find the edge partition of E(VC[m,n]) based on the ve the definition of ve degree indices, we get
degree of end vertices of each edge. This partition is

M (VCImn) = Y (d, () +d,,(v)
uveE (VC[m,n])

= (12)|E,| + (16)|E,| + (16)|E;| + (20)|E,| + (17)|Es| + (21)| Eq]
+(22)|E;| + (23)|Eg| + (22)|Es| + (25)|E | + (22)|Eyy | + (26)|Ey| + (22)|Ey5]
+ (30)|Eyy| + 27)|Eys| + (29)|E | + (27)|E ;| + (28)|E 4
+ (B1)|Eyo| + (32)|Eyp| + (34)|Eyy | + (35)|Eyy |
+(28)|Eqs| + (36)| Eny

= (12)(1) +(16) (2) + (16) (3) + (20) (m + n — 4) + (17) (2) + (21) (2) + (22) (2)
+(23) (2m +2n - 10) + (22) (2) +(25) (2) + (22) (2) + (26) (2m + 21 - 10)
+(22)(1) + (30) (m + n — 6) + (27) (2) + (29) (2m + 2n — 8) + (27) (2) + (28) (2)
+(31)(2) +(32) (3m + 3n — 14) + (34) (m + n — 3) + (35) (8m + 2n — 10)
+(28) (1) + (36) (6mn — 15m — 151 + 37)

=216mn + 76m + 20n + 54,

W (VCImn) = Y (d,(u) xd,, (v))
uveE (VC[m,n])

= (32)|E,| + (55)|E,| + (60)|E;| + (84)|E,| + (72)|Es| + (110)|Eq|
+ (168)|Ey,| + (112)|Ey5] + (121)|E;| + (130)|Eg| + (117)|E,|
+ (154)|E;o| + (120)|Ey, | + (121)|E, 4| + (182)|E, 5| + (208)|E 4]

+(176)|Ey;| + (187)|Eys| + (238)|Ejo| + (252)|Eq| + (288)|Ey |
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TaBLE 3: Edge Partition of vanadium carbide.

Edge (dye (), d, (v)) Frequency
El (4> 8) 1

E, (5, 11) 2

E; (6, 10) 3

E, (6, 14) m+n—4
ES (9> 8) 2

Eg (10, 11) 2

E; (11, 11) 2

Eq (10, 13) 2m + 21— 10
E9 (9’ 13) 2

Ey (11, 14) 2

Ey (12, 10) 2

Ey, (12, 14) 2m+2n—10
Ej; (8, 14) 1

E4 (17, 13) m+n—=6
Eis (14, 13) 2

Eg (16, 13) 2m+2n-8
Ey; (16, 11) 2

Eg (17, 11) 2

Ey (17, 14) 2

Ey (18, 14) 3m+3n—14
E, (16, 18) m+n-3
E;, (17, 18) 2m+2n—10
Ey (18, 10) 1

Ey, (18, 18) 6mn — 15m — 15n + 37

+(306)|Epy| + (180)|Eqs| + (324)|E,,|

=(32)(1) +(55)(2) +(60) (3) + (84) m + n—4) + (72) (2) + (110) (2) + (121)(2)
+(130) (2m + 2n — 10) + (117) (2) + (154) (2) + (120) (2) + (168) (2m + 2n — 10)
+(112) (1) + (121) (m + n— 6) + (182) (2) + (208) (2m + 2n — 8) + (176) (2)
+(187)(2) +(238)(2) +(252) (3m + 3n — 14) + (288) (m + n — 3)
+(306) (8m + 2n — 10) + (180) (1) + (324) (6mn — 15m — 15n + 37)

= 1944mn — 51m — 1887n + 1798. (4)

e W) +d,, (v) -
uveE (VC[m,n]) \J (dve (u) X dve (V))

) (BB (s
(B (e (o)
Vi el (i T+ (g el (i )l
Vi (i sl (g il +( s 1o
f Vel + (g 1wl + (g i+ (Vs I
o I+ Vi st + 1)
.
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Nl (o sl (o Y
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GA"” (VC[m,n]) =

H”(VC[m,n]) =

288 306 324 84 130 168 121
27 30 32 34 10 14
+2\— +3 + +2 -15 n+{ \lz= +2\=—
208 252 288 306 324 32 55
14 18 15 21
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(s sl + (5 ) Esol+ (55 sl + (1Bl (55 )
(o ) sl + (55 IEad

1 10974905939 39532069 801297510323

=-mn+ m+ n+ ,
3 29469607440 247643760 950023374300
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TABLE 4: Numerical results of indices for vanadium carbide.
[m, n] ¥ (H) R (H) M (H) M (H) My (H)
[1,1] 92 0.1332 1324 2110 1804
[2,2] 1026 1.0704 2732 2854 5698
[3,3] 2932 2.763 6 4788 4030 13480
(4, 4] 5810 5.2126 7492 5638 25150
[5,5] 9660 8.4177 10844 7678 40708
[6,6] 14482 12.378 6 14 844 10150 60154
[7,7] 20276 17.0954 19492 13054 83488
(8,8] 27042 22.568 2 24788 16 390 110710
[9,9] 34780 28.7969 30732 20158 141 820
[10,10] 43490 35.7816 37324 24358 176 818
TaBLE 5: Numerical results of indices for vanadium carbide.

[m, n] ABCY (H) GAY (H) H" (H) X (H) R (H)
[1,1] 4.707 4 10.8570 1.708 8 1.8550 1.0319
[2,2] 13.2896 32.0346 3.2409 6.1227 2.7223
[3,3] 25.7590 65.2122 5.4396 12.3903 5.0793
(4, 4] 421157 110.3898 8.3050 20.6579 8.1030
[5,5] 62.3597 167.567 4 11.8370 30.9255 11.7933
[6,6] 86.4910 236.7450 16.0357 431932 16.150 3
[7,7] 114.509 6 317.9226 20.9011 57.4608 21.1740
(8, 8] 146.4155 411.1002 26.4332 73.728 4 26.864 3
[9,9] 182.208 7 516.2779 32.6319 91.9961 33.2213
[10,10] 221.8893 633.4555 39.4973 112.2637 40.2450

[T AT AT ETAE N AT AR A

123
4
> 6 6 5
n 787 m

(®)

FiGure 2: 3D plot of (a) M (VC[m,n]) (b) R® (VC[m,n]).

4. Numerical Results and Discussion

Topological indices are used as vital tools for the analysis
of chemicals, given the essential topology of chemical
structures. Zagreb-type indices are used to calculate the
total m—electronic energy of molecules [32]. The Randich
index is commonly used to determine the chemical
similarity of molecular compounds, as well as to calculate

the boiling point and Kovaz constants of molecules [33].
The atom-bond connectivity index (ABC) provides a very
good correlation for calculating strain energies as well as
for the stability of linear and branched chemical structures
[34]. It can be seen from Table 4 and 5 and Figures 2-6 of
indices, an increase in the value of m and n raises the
values of topological descriptors for vanadium carbide
structure.
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FIGURE 6: Graphical representation of R (VC|[m, n]).

5. Conclusion

Graphs invariants are calculated by some well-known to-
pological indices which are important tools for resembling
and forecasting the properties of chemical compounds in
QSPRs and the QSARs. The TI is a numerical measure that
represents the biological, physical, and chemical properties
of molecules such as boiling, melting, and flickering point;
moisture; and forming heat. In this paper, we have com-
puted the ev degree and ve degree-based topological indices
with graphical representations for the molecular structure of
vanadium carbide for a better understanding of pharma-
ceutical, physical, chemical, and biological properties.
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A topological index of graph G is a numerical quantity which describes its topology. If it is applied to the molecular structure of
chemical compounds, it reflects the theoretical properties of the chemical compounds. A number of topological indices have been
introduced so far by different researchers. The Wiener index is one of the oldest molecular topological indices defined by Wiener.
The Wiener index number reflects the index boiling points of alkane molecules. Quantitative structure activity relationships
(QSAR) showed that they also describe other quantities including the parameters of its critical point, density, surface tension,
viscosity of its liquid phase, and the van der Waals surface area of the molecule. The Wiener polarity index has been introduced by
Wiener and known to be related to the cluster coeflicient of networks. In this paper, the Wiener polarity index W, (G) and Wiener
index W (G) of certain triangular networks are computed by using graph-theoretic analysis, combinatorial computing, and vertex-

dividing technology.

1. Introduction

The Wiener index is originally the first and most studied
topological index (see for details in [1]). It was the first
molecular topological index that was used in chemistry.
Since then, a lot of indices were introduced that relate the
topological indices to different physical properties, and some
of the recent results can be found in [3-6]. Wiener shows
that the Wiener index number is closely correlated with the
boiling points of alkane molecules [2]. Later work on
quantitative structure activity relationships showed that it is
also correlated with other quantities including the param-
eters of its critical point [7], the density, surface tension, and
viscosity of its liquid phase [8], and the van der Waals
surface area of the molecule [9].

Mathematically, the Wiener index is sum of all the
distances between every vertex of the graph, denoted by
W (G), and is

WI(G) = Z d(p,q). (1)

eV (G)

Later on, Wiener introduced another descriptor known
as Wiener polarity index that is known to be related to the
cluster coefficient of networks. The Wiener polarity index is
denoted by W, (G) and is defined as the number of unor-
dered pairs of vertices that are at distance 3 in G. That is,

W, (G) =[{(p.@lds(p,@) =3, p.q € V(D). (2)

In organic compounds, say paraffin, the Wiener polarity
index is the number of pairs of carbon atoms which are
separated by three carbon-carbon bonds. Based on the
Wiener index and the Wiener polarity index, the formula

tp =aW(G) + bW, (G) + ¢ (3)

was used to calculate the boiling points ¢ of the paraffins,
where a, b, and ¢ are constants for a given isomeric group.
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By using the Wiener polarity index, Lukovits and Linert
demonstrated quantitative structure-property relationships
in a series of acyclic and cycle-containing hydrocarbons in
[10]. Hosoya in [11] found a physical-chemical interpreta-
tion of W, (G). Actually, the Wiener polarity index of many
kinds of graphs is studied, such as trees [12], unicyclic and
bicyclic graphs [13], hexagonal systems, fullerenes, and
polyphenylene chains [14], and lattice networks [15]. For
more results on the Wiener polarity index, we refer some
recent papers [16-19] and the survey paper [20].

2. The Wiener Polarity Index and Wiener
Index of Networks Obtained from
Triangular Mesh

The graph of the triangular mesh network, denoted by T, is
obtained inductively by the triangulation of the graph T',_,.
The procedure to construct this network is as follows:

(i) Consider a basic graph T; which is a cycle C; of
length 3.

(ii) Subdivide each edge of T'5, and then join them to
form a triangle; the resulting graph is T,.

(iii) Continuing in this way, construct a graph T, from
T,_, by subdividing each edge of T,_; and then
connect them to form triangles.

(iv) The graph T, has n vertices on each of its side:

The graph of triangular mesh network T'5 is shown
in Figure 1.

The vertices and edges of T', are defined as follows:
V(T,) = 1x1,,;: 1sl<n,1<m<lI;.

E(T,) = {x,%, m+1:2<l<n,1<m< I-1}U
{x,)m,xm’m: 1<i<n-1,1<m Sl} U {xl’ M, Xy,
m+1:1<l<n-1,2<m<l+1}L

The count of vertices of the graph T, is n(n + 1)/2 and
edges of T, is 3n(n—1)/2.

Furthermore, we partition the vertex set V (T,) as fol-
lows: V(T,) = ULV}, where V; = {x,,m: 1<i<nl Smsl}.

S

S

Wp (Tn) = Wp (Vl) +

kN

kN

Case 1. Let x;,, € V|, where 4<I<n. If d(x, y)<3, then
|l — m| < 3; then, for each I, there is only one vertex x;,, 5
which is at distance 3 from x;,,.

Since I<sm<n -3,

W,(V) ={(p.@ld(p.q) =3;p.qeV)}=1-3

T
3

n B _ (6)
(- 3) = (n 3)2(11 2).

=4

Wp (Vl) =

—
kN
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F1Gure 1: Triangular mesh.

Thus, the graph is divided into # sets. This will help us in
calculating the Wiener and Wiener polarity indices of T),.
The first main result of this chapter is proved in the
following.

Theorem 1. w, (T,) =9(m—-2)(n-3)/2, for n=3.

Proof. Now, we find a number of pair (p, q) of vertices of T,
which are connected through a path of length 3.
However,

W, (V) =[{(p.9ld(p.q) = 3: p.q € V}}|

(4)
W, (V,V,,) =[{(p.@ld(p.q) =3;p € Vi,q €V, }|

is the cardinality of the set of vertices in V,, that are at
distance 3 from V. From the construction of T,, it is im-
portant to note that there is no vertex pe V, and g€V,
such thatd (p,q) = 3 where [, m € {1,2, 3}. It implies that for
x € Vyand y € V,,, we have 4 cases to consider.

I=n I=n

W,(VpViy) + z W, (Vi Vi) + Z W, (Vi Vi) (5)
=4

=4

Case 2. Letu € V;and v € V_;, where 4 <[ <. In this case,
there are 21 — 6 vertices in V,_; that are at distance 3 from V;
for each i. Since i<m<n -3,

WP (Vl’ Vl—l) = 21 - 6

S

= (7)
W,(VpViy) =) 2-6=(n-2)(n-3).
1=4

N
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Case 3. Letu € V;and v € V_, where 4 <I<mn; in this case,
there are 2] — 6 vertices in V_, that are at distance 3 from V;
for each i. Since i<m<n -3,

WP (Vl’ VZ—Z) = 21 - 6

=" (8)
21-6=(n-2)(n-23).

=4

S

W,(ViVi,) =

N

Case 4. Letu € V;and v € V_; where 4 <[ <wn. In this case,
there are 4] + 6 vertices in V_, that are at distance 3 from V,
for each i. Since i<m<n -3,

WP (Vl’ Vl—3) = 41 + 6

I=n 9
W, (VpVi,) =) 4l+6=2(n-2)(n-3) ©)
I=4

=

N

Putting equations (6) and (7) and (31) and (9) in (5), we
get
(n-2)(n-13)
-

Wp (Tn) = )

n-2)(n-3)+(n-2)(n-23)

+2(n-2)(n-3)

In the next result, the Wiener index of the graph T, is
computed.

Theorem 2. W(T,) = W(T,_,) +n* —n*/4.

Proof. Let W (V,,T,_,) be the distance between the vertices

of V, and T,_,, where V, = {Xn,l’xn,Z’xn,3’ .. ,xn,n}.
For x;, e V(T,_)),
0=n
W(Vn’ Tn—l) = Z W('xn,@’ Tn—l) + W(Vn) (11)
6=1

This can be computed by finding the distance between
each vertex x,, 4 from the vertices of T,,_,. These distances are
listed in the following.

For2<f<nand 1<m<0-1,

d( ) n-1, form<l<n+m-0-1, (12)
X, 0%, ) =

> hm 0-m, forn+m-60<l<n-1.

For 1<0<mnand 6<m<n,

d(xnyg,xl)m)={n+m—l—9 form<l<n-1. (13)

Thus, we get
_9(n-2)(n-3)
= 2 .
(10)

0=n 0=nm=0-1I=n-1

Z W(xn,e’ Tn—l) = d(xnﬁ’ xlm)

0=1 0=1 m=1 I=m

0=n m=0-1I=n-1 0=n m=n-1I=n-1
= d('xn,e’ xlm) + d(xn,é" xlm)

0=nm=n-1l=n-1

+Y > Y (n+m-1-6)

0=1 m=0 I=m
12

W(v,) = gi"w(xn,@)

(14)
1 O0=nm=0-1 I=n-1
(n=-0n+) Y Y (6-m)
0=2 m=1 [=n+m-0
:L n4—2n3—n2+2n] +%[n4—n2] +11—2[n4—n2],
I=n-1 m=n-1 1 s
m= r [ - n]. (15)



By replacing the values of ZZZTW (x9: Tppoy) and W (V)
in equation (11), we get

1 1
WV,,T, )= O n*—2n’ +2n - nz] 5 [n4 - nz]
1 1
N (PR Py
12 6
(16)
This after simplification implies
1
W(Van—l) =Z[n4_n2]~ (17)

However, the Wiener index of T, is W(T,) =
W(T,.,)+W(V,T,_,). Therefore,

W (T,) =W (T, )+

4[714—712]. (18)

3. The Wiener Polarity Index and Wiener
Index of the Equilateral Triangular
Tetra Sheet

This section will start with the definition and properties of
the equilateral triangular tetra sheet network. The graph of
equilateral triangular tetra sheet network denoted by ET, is
obtained from the graph of triangular mesh network by
replacing each triangle by the complete graph K,. This can
be done by inserting a vertex in each triangle of the graph T,
and then connecting all the adjacent vertices to form K.
These new vertices will be denoted by u; and w;, where
I<i<m-1land 1<j<n-2.
The order and size of the graph ET (n) are

(3n - 3n+ 2)
|V (ETn)| = B
, (19)
|E(ET (n))| = M

2

The graph of equilateral triangular tetra sheet is shown in
Figure 2.

Wp (Vl) =
Wp (Ul) =

Wp (Wl) =

Wp (VI’V;) =
!

Wp (UZ’UZ) :|

—_— P A —p — A

Journal of Chemistry

FIGURE 2: The graph of equilateral triangular tetra sheet.

In order to compute the Wiener and Wiener polarity
indices, we want to find the distance between each pair of
vertices of ET,. For this purpose, we define partition of the
vertex set as follows: V(ET,) = UVv,uulr-ly,
U Ul2w,, where V= {x;,[l<m<I<n}, U= {u,ll <
m<l<n-1}, and W, = {w,, |1 <m<i<n-2}

Furthermore, define V;=V (ET))\V,, U;=V (ET)~
{ViuU}}, and W = V(ET))NMV,,, UUL, UW L

In the next result, the Wiener polarity index of the graph
ET, is computed.

Theorem 3. For n>3, W, (ET,) = 63n* — 357n + 504/2.

Proof. In order to find the Wiener polarity index, we have to
compute all those pairs of vertices that are at distance 3 to
each other. Since the vertex set of the graph ET,, is divided
into three parts, we first find the number of such pairs in
each possible set. Define w, (A, B) as the set of those vertices
of A that are at distance 3 from the vertices of B. For
simplicity, W, (AA) = w, (A). Thus, we have

(vyvn)ld (v, v1) = 3;v,v1€ VIH
(u,un)ld (u,ur) = 3;u,ure UZH

(w, wn|d (w,wr) = 3;w,wre W,

(v, x)|d(v,x) =3;v eV, x € V;4<I<n}
(, x)|d(u,x) =3;u €U, x €Up3<l<n— 1}| (20)

W,(W, W) =|{(w, x)ld (w, x) = 3;w € Wy, x e W;2<<n -2}

I=n

I=n-1

W, (ET (n) = Y (W, (V) +W,(V, V) + Y (W, (U) +W, (U, U)))

=4
I=n-2

=3

+ Y (W,(W)) + W, (W, W)

=2
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For simplicity, we compute the three factors separately: st. d(v,x) =3 which implies x € {V,_ UV,

(i) Let v €V, and x € V. From the construction of UVis VUL Ullif:f U Ui U.W”Z UWisU WH}.
ET,, there does not exist any x € V, g, 4<0<n—1 The value of 3,7, W, (V) is already calculated in
Theorem 1. Furthermore,

W, (ViV) =W, (ViU + W, (VW) + W, (Vi Vi) + W, (VUL + W, (Vi W)

(21)
+ W, (Vi Vi) + W, (VUi + W, (Vi Wiy).
IfxeU_ UW,,UU,_, UW/_, then there are 2] —
6 vertices that are at distance 3 from V. Thus,
Wo(ViUpy) =W, (Ve Wi,) =Wy (Vi Upy) =W, (Vi, Wi 5) =216
I=n I=n I=n I=n I=n
W,(ViUpy) = Y W,(VieW,) = Y W, (VisUiy) = ) =W, (VW) ) 21 -6 (22)
I=4 I=4 I=4 1=4 I=4
=(n-2)(n-23).
(ii) If x € U;_3 UW,_y, there are 3] — 12 vertices that are
at distance 3 from V.
W, (VUps) =W, (Vi Wiy) = 31 - 12
I=n I=n I=n 2 n (23)
3n" —-21" + 36
W,(VpUps) =D W, (VW)=Y 3l-12= —
I=4 1=4 I=4
From Theorem 1 and equations (22) and (23), we (iii) Letu € U,_, and x € U,_,. From the construction of
get after simplification ET,, there does not exist any x € U,_p, 4<0<n -1,
n s.t. d(u,x) =3 which implies x e {V,uV,_ U
(W, (V) +W,(V,,V]) =3(n-3)(4n-9). (24) VipU Ui WU, U0 UWL, UW U W)
- Thus, we get
w, U, Upy) = w, (U W) + w, (Ui Vi) + w, (U UL,)
+ W, (UL, W) + W (U, Vi) + W, (U, Ups) (25)

+ W, (Ui, W) + W, (Ui, Vi),
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We compute each of these factors as follows: (iv)If xeW,_,UV,_,UU,_,UW,;UV,,, then there
are 2] — 4 vertices x that are at distance 3 from U,_;.
Thus,

Wp (Ul—le—z) = Wp (Ul—le—l) = Wp (Ul—pUl—z)
= Wp (Ul—l’WZ—S) = Wp (UH»VH)
=2l-4,

I=n-1 I=n-1

z Wp (Ule—z) = Z Wp (Ul—l’Vl—1>
=3 1=3

I=n-1

= ; w, (U UL,) (26)

I=n-1

= z W,(UL,W,5)
=3
I=n—-1

= Z Wp (UI—I’VI—Z)
1=3
I=n-1

=) 2-4=(n-2)(n-3).

1=3

If x € U;_; UV,_5, then there are 3/ — 6 vertices of x
that are at distance 3 from U,_;.

Wp (Ul—l’ U1_3) = WP (U1_1,VZ_3) = 21 -6

I=n-1 l=n-1 I=n-1 1 5 (27)
Y W, (U Us)= ) W, (UL, Vi) = ) 21-6= 5 [3n” - 15n + 18].
1=3 1=3 1=3

If x € W_,, then there are 2] — 6 vertices that are at Substituting each of these values in the second

distance 3 from U,_,. factor, we get after simplification

W,(U_,W,_,)=21-6 Izl 19
p\MI-1> V"V -4
. L (W, (UL) +W, (U, ULY)) =<7n—21>(n— 3).
K s 5 1=4
Y W, (U psWiy)= ) 2-6=n"-7n+12. (30)
I=4 I=4
(28) Let w € W,_, and x € W/',. From the construction
of ET,, there does not exist any x € Uj_p, 4<0<n—
F:)fi.e\t/ery u3€fU,_1, there are [ — 2ure U;_, that are 1 st d(uwx)=3 This implies that
a Istance rom u. X € {Vl—l U Vl*2 U Ul—2 V] Ul—3 U Wl,3 U Wl,4}, and
W,(UL)=1-2 we get
I=n—1 I=n—1 2 n (29)
n-5+6
Y W,(U)= Y l-2=—T——.
1=3 1=3 2

W,(Wip, W) =W, (Wi Vi) + W, (Wi, Upy) + W, (W, Wis)
+ W, (Wi Vi) + W, (Wi Ups) + W, (Wi, Woy) (31)
+W, (Wi, Vi3)
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We compute each of the factors in the following.

If xeV, NnU_,UW,_3UV,, then there are 2/ -4

vertices that are at distance 3 from W,_,. This follows that

W,(Wip Vi) =W, (Wi, Upy) =W, (Wi, W) =W, (W, Vi)

=2]-4,
I=n-2 I=n-2
Z W,(Wi,, Vi) = Z W,(W,,U,,)
=3 =3
I=n-2
=2 W, (Wi Wis) (32)
=3
I=n-2
= Wp (Wl—z’ Vl—z)
=3
I=n-2

=Y @-9=n"-7n+12.
1=3

If x € U;_3 UV _5, then there are 4] — 6 vertices that are at
distance 3 from W,_,. This follows that

W,(WiUp3) =W, (W, Vi 5) =41-6,

I1=n-2 I=n-2

I=n-2 (33)

Y W,(WipUps)= > W, (Wi, Vis)= ) 4l-6=[2n"-12n+18].

1=3 1=3

If x € W,_,, then there are 3/ — 6 vertices that are at
distance 3 from W,_,. This follows that

W, (Wi, Wi y)=31-6

l=n—2 I=n-2 2

3n” - 21n+ 36
IZ W, (W5 Wi, = IZ 6=
=3 =3

(34)

For every w e W,_,, there are [—2 vertices x in
w' € W,_, that are at distance 3 from w.

Wp (Wl—l) =1-2,

I=n-2 I=n-2 n2 —Tn+ 12 (35)

ZWP(WH)z Zl—z: 5
1=3 =3

Replace all these values in the third factor, and we get
after simplification
I=n-2
Y (W, (Wiy) + W, (W, W, 3)) = 10n” - 661 + 108.
1=4

(36)

=3

By combining the values of all three factors in equation
(20), we found that the Wiener polarity index of the graph
ET, is

63n° — 3571 + 504
S :

W, (ET,) = (37)

Theorem
4. W(ET,) = W(ET,_,) + 1/12[28n* — 861> + 134n’—
172n + 120].

Proof. LetW (V,,, ET,,) be the distance between the vertices
of V,, from itself and from U,_,, W,_,, and ET,_,, where

Vn = {xn,l’xn,Z’xn,S’ e >xn,n ’U -1 = un,l’un,Z’
Upzs-- Uy, ), and W, = {,wn)l, Wy, 9 Wy35- -+ wn,n,z}.
Thus, for any vertex in V,, we have
0=n 0=n
W(V,,,ETn,) = Y W(x,0ET, )+ Y W(x,5U, )
=1 6=1
0=n
+ Y W(x,0W, ) +W(V,).
6=1

(38)
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This can further reduce to the following equation: For 2<f0<mand 1<m<0-1,

W(Vn,ETn,) ZW( ne,lﬁlvl) ZW( ng,lGZU,) d(xn,a,xz,m)={

n-1, form<l<n+m-0-1,

0-m, forn+m-0<i<n-1.

I=n-3 O=n (40)
+ W< , U w ) + ) Wix,q).
Z il : 9; ( n,0) For 1<0<nand <m<n,
(39) d(xme,xl)m):{n+m—l—6 form<l<n-1.
We compute each of the factors in equation (39) (41)
separately.
The first factor is computed with the help of following Thus, we get
distances:
0=n = 0=nm=0-1I=n-1
n—1
ZW< Xnpo Y Vl)) d(%,,0, X1,
6=1 6=1 m=1 I=m
0=nm=0-1I=n-1 0=nm=n-1Il=n-1
= d( n,6> xlm) + d( n,0> xlm)
0=2 m=1 I=m 0=1 m=0 I=m
0=n m=0-1l=n+m-6-1 O=nm=0-1 I=n-1
= d(xn,6> xlm) + Z d(xnﬂ’ xlm)
0=2 m=1 I=m 0=2 m=1 [=n+m-0
0=nm=n-1I=n-1
+ d(xn)e, xlm)
0=1 m=0 I=m (42)
0=n m=0-1l=n+m-6-1 O0=nm=0-1 I=n-1
= Y (n-D+)Y Y > (6-m)
0=2 m=1 I=m 0=2 m=1 Il=n+m-0
0=nm=n-1I=n-1
0 Y (n+m-1-06)
0=1 m=0 I=m
4 3 2 Ly oy . 1ra 5
:—[n -2n —-n +2n]+—[n -n ]+—[n —n]
12 12 12
1
=— [3714 -2’ = 3n" + 211].
12
d( ) <[n—l, form<l<n+m-0-1,
Th d factor i ted with the help of fol- Xpoo Upm ) =
e second factor is computed wi e help of fo n6> Uim 0—m. fornsm—0<l<n—1.

lowing distances:

For2<f<nand 1<m<6-1, (43)
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For 1<0<mn and 6<m<n,

d(xnﬁ,ul’m) ={n+m-1-6, form<li<n-1,

b=n l=n-1
> W U1))
0=1 -

d(xn,9> ulm)

= d(Xn’g, Mzm) + _Z d('xn,@’ ”Zm)

0=nm=n—1I=n-1

2 Y d(xe )

0=1 m=0 I=m

0=n m=0-1 I=n+m-0-1 O=nm=0-1 I=n-1

) ,; (n=D+) Y > (6-m

0=2 m=1 0=2 m=1 I=n+m-0
0=n m=n-1I=n-1

+ (n+m-1-0)
0=1 m=0 I=m

:%[n4—2n3—n2+2n]+1—12[n4—n2]+1—12[n4—n2]

= % [3114 -2’ =3 + Zn].

The third factor is computed with the help of following For 0 =nand 1<m<0-2,

distances:

For2<fO<m-land l1<m<O-1,

n-1+1,

d(xnﬂ’ wl,m) = {

0 —m,

d(xn)g,wl’m ={n-m form<i<n-2.

form<l<n+m-0-2, For1<0<n-2and 6<m<n-2,

fornt+m-0-1<l<n-2.

(45)

(44)

(46)
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d(xn)g,wl’m) ={n+m-1-6 form<l<n-2,

0=n 0=nm=0-1I=n-1

Zw<xn,9’ l:lgl Wl)) = d(x,0 i)
6=1 -

= _Z: d(xnﬂ’wlm)+ _z

6=1 m=0 I=m m=1 l=m (47)

0=n m=0-1Il=n+m-0-2 0=n-1m=60-1 I=n-2

Z (n—l+1)+z Z Z (60-m)
=2

0=2-1 m=1 I=m = m=1 |=n+m—-06-1

1
8]
3
1l
T
[3S]
-~

=n

-2
(n+m-1-0)

+ (n—m)+=zn:

= i [n4 —6n° +11n° — 6n] +i [n4 — 4’ + 5n% — 2n]
12 12

+ i [4713 — 120 + 8n] + i [n4 —m’ -+ Zn]
12 12

= i [3714 — 81 +3n” + 211].

12
W(V, ET, ) = - [on* - 10n° - 90 49
The fourth factor is w =i )T on = 10m"=9n +4n]. (49)
O=n I=n—1 m=n-1 1 . .
W(V,) = Z W(x 9) - = [n3 _ n]. Let W (U,,_, ET ) be the distance between the vertices
va " =1 m=1 6 of U,_, to itself and from ET,_;, and W,_,, where
(48) Upy = {un—l,l’un—l,Z’ Up 135> Uy 11> 1

Putting equations (42), (44), (47), and (48) in (39), we

get
O=n-1 O=n-1
WU, ,ET,) = Z W(un—l,ﬂ’ ETn—l) + W(”n—l,@’ Wn—Z) +W(U,.,)
6=1 =1
Uiy I=n-2 O=n I=n-1
WU, ,ET,) = ) W(”n—l,@’ Y Wz) + W(”n—l,@’ Y Vl) (50)
6=1 - f=1 -
O=n I=n-3 i
+ Z W(un_l’g, ZL—J Ul> + W(un_l’e).
6=1 =! 6=1
n-1-1, form<l<n+m-60-2,
Again, we compute each of the factors separately. d(unﬁ’ wl,m) 10 mel fornsm—6-1<l<n-2

The first factor is computed with the help of following (51)
distances:

For 2<f0<n-2and 1<m<0-1, For 1<f<n-1and O<m<n-2,
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d(un)g,wl)m) ={n+m-1-6 form<l<n-2,

O=n-1 I=n—2 O6=n-1 m=n-1l=n-1
Z W<”n-1,0’ U Wz)) = Z d(”n—l,@’ wlm)
f=1 6=1 m=1 I=m
6=n-2 m=0-1Il=n-1 6=n m=n-1Il=n-2
- Z d(un—l 0> wlm) + d(“n—l,@’ wlm)
0=2 m=1 I=m 6=1 m=0 I=m
6=n-2 m=0-1 l=n+m—6-2
= Z d(un—l,ﬁ’ wlm)
=2 m=1 I=m
0=n-2m=0-1 Il=n-2 0=n-1m=n-2l=n-2
+ d(un—lﬁ’ wlm) + d(“n—lﬁ’ wlm)
0=2 m=1 I=n+m—-6-1 0=1 m=0 I=m (52)
6=n-2 m=0-1 l=n+m—6-2 0=n-2m=0-1 I=n-2
-y Y m-1-D+ oY (0-m+1)
6=2 m=1 I=m 0=2 m=1 Il=n+m-06-1
0=n—1 m=n-2 l=n-2
+ Y (n+m-1-06)
=1 m=60 I=m
1 1
=— [n4 —6n° +111° —6n] +— [n4 —o’ -’ +2n]
12 12
1
+— [1/14—2713 —n? +2n]
12
1
=—[3n" - 10’ + 91" - 2n].
12
The second factor is computed with the help of fol- For 2<f<n-2and 1sm<6-1,
lowing distances:
n-1, form<l<n+m-0-2,
d(tty 0wy, ) = (53)
O0-m+1, forn+m-60-1<l<n-2.

For1<O0<n-2and 6<m<n-2,
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0=n-2 m=0-1l=n+m—-6-2

d(”n—l,@’ ulm)

(54)

—n = 0=n-2m=60-1 Il=n-2
=) Y m-D+ Y Y > (0-m+1)
0=2 m=1 I=m 0=2

m=1l=n+m—-0-1

6=n-1m=n-2l=n-2
+ ) n-1+j-0)
0=1 m=0 I=m
1
=— [714—4713 —n’ - 12] +— [114—2113 -’ +2n]
12

+i [144—2113 —n2+2n]
12

=—[3n* - 81’ - 31’ + 20n - 12].
12

The third factor is computed with the help of following
distances:

For2<0<m-land 1<m<0-1,

d( ) {n—l, form<l<n+m-0-1,
Uy, Wy, ) =
S O0-m+1, forn+m-0<l<n-1.

(55)
For 1<0<mn-2and 6<m<n-2,
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d(un)g,wl)m) ={n+m-1-6 form<l<n-1,
0=n—1 I=n-1 0=n—1 m=n—1Il=n-1
W(“n e Y V1>> = Z d( 1-1,00 xlm)
6=1 B 0=1 m=1 |=m
0=n—1 m=6-1Il=n-1 0=n—1 m=n—1Il=n-1
= Z d( n I,O’xlm) + Z d( n-1,0 xlm)
0=2 m=1 I=m 0=1 m=0 I=m
0=n-2 m=0-1 l=n+m—0-2
= z d( n 1,0’xlm)
0=2 m=1 I=m
O=n-1m=0-1 I=n-1 0=n-1m=n—1I=n-1
+ Z d( n 1,9>‘xlm) + Z d(“n—lﬁ’ xlm) (56)
6=2 m=1 I=n+m-0 0=1 m=0 I=m
0=n—1 m=0-1 l=n+m—0-1 0=n-1m=0-1 Il=n-1
=) D (n—l)+z oY (0-m+1)
6=2 m=1 I=m 0=2 m=1 I=n+m—-0
O=n-1 m=n-1I=n-1
+ Y n-1+j-0)
0=1 m=0 I=m
4 3 2 1 4 3 2 1 4 2
—[n -2n —n +2n]+—[n -2n —n +2n] +—[n - 2n ]
12 12
1 4 3 2
=—[3n —4n” - 3n +4n].
2
The fourth factor is
0=n—1 I=n-2 m=n-1 1 3
WU, )= Y W(u, )= m=— [2n - 14n + 12]. (57)
0=1 =1 m=2

Putting equations (52), (54), (56), and (57) in (50), we get

1
W(U,_,ET,») = 5 [9n” = 20n° + 31 + 8n]. (58)
0=n-2
W(wn Z’ET '”) - Z W<wn 2,6>
0=1
0=n
+ Z W(wmw,
6=1

Again, we find each factor separately.

The first factor is computed with the help of following
distances:

For 1<8<n-2and 1<m<0,

Now, let W(W,_,, ET ) be the distance between the
vertices of W,_, to itself and from ET,_,, where
W,,=w —21’wn 22 Wy23- -+ ’wn—Z,n—Z}; then, W(W,_,,
ET,n) = Yoot "W (W, 00 ET, 1) + (W,5).

This is equlvalent to

I=n-1 I=n-1
Y Vl) ZW< Wnzpr Y Uz)
N (59)
ln3 s
Uhw) e S wiw, )
= 6=1
-1, form<l<n+m-0-2,
d(une,w,m):«’[" e (60)
’ ? 0-m+1, forn+m-60-1<l<n-1.

For1<0<n-2and 0<m<n-2,



14 Journal of Chemistry

d(un,g,wl)m) ={n+m-1-6 form<l<n-1,

0=n-2 I=n-1 0=n-2 m=n—1Il=n-1
Z W<wn—2,0’ u V1>> = Z d(wn—Z,O’ xlm)
0=1 0=1 m=1 [=m
0=n-2 m=0I=n-1 0=n-2 m=n—1I=n-1
= Z d(wn—z,ﬂ’ xlm) + Z z Z d(wn—2,6> xlm)
0=2 m=1 |=m 0=1 m=0+1 Il=m
0=n-2 m=0 I=n+m-0-2 0=n-2m=0 Il=n-1
= Z d(wn—Z,G’ xlm) + d(wn—Z,H’ xlm)
0=2 m=1 I=m 0=2 m=1l=n+m—-0-1

O0=n—1 m=n-1Il=n-1

+ Z Z Z d(wnfz,e’xzm)

0=1 m=0+1 I=m (61)

0=n-2 m=0 I=n+m-6-2 0=n-2m=0 Il=n-1
=) -0+ Y Y Y (6-m+1)
=2 m=1 I=m 6=2 m=1Il=n+m—6-1

0=n—1 m=n—1Il=n-1

+ Y Y Y (n+m-1-60-1)

0=1 m=0+1 I=m

1 1
=— n4—2n3—n2+2n]+—[n4—4n3+5n2—2n]
12 12

+ i [n4 —4n’® + 50 — Zn]
12

1
=—[3n" - 101 + 99" - 2n].
12

The second factor is computed with the help of fol- For 1<f<n-2and 1sm<60-1,
lowing distances:

n-1, form<l<n+m-0-2,

d(un,(,, wl)m) ={ (62)

O0-m+1, forn+m-0-1<l<n-1.

dlu,gw,,)={n-1 for0<l<n-2. 63
For 1<f<n-1, (”»3 l>) { (63)
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For1<O0<n-2and 6<m<n-2,

d(unﬂ,wl)m) ={n+m-1-6 form<l<n-1,

0=n-2 0:

I=n-2 =n—2 m=n-2 l=n-2
Z W<wn_2’9) 191 Ul)) - Z d(w"—zﬂ’ ul"’)
6=1 N =1 m=1 I=m
0=n-2 m=0-11=n-2 0=n-2l=n-2
- z d(wn—z 0 ulm) + Z d(wn—Z,G’ ulm)
0=2 m=1 I=m 0=1 =0

0=n-2 m=n-2l=n-2

+ Z Z Z d(wn—Z,G’ulm)

0=1 m=0+1 I=m

0=n-2 m=0-1l=n+m—0-2 0=n-2m=0-1 I=n-2
= Z d(wn—2,9> ulm) + Z Z d(wn—Z,G’ ulm)
6=2 m=1 I=m 0=2 m=1 I[=n+m-0-1
0=n-2I=n-2 0=n-2 m=n-2 l=n-2 (64)
+ Z d(wn—2,9>ulm) + Z Z Z d(wn—2,0’ ulm)
0=1 I=60 0=1 m=0+1 I=m
0=n-2 m=60-1 l=n+m—0-2 0=n-2m=60-1 I=n-2
= Yo om=D+ Y Y Y (0-m+1)
6=2 m=1 I=m 0=2 m=1 I=n+m-6-1
0=n-2 l=n-2 0=n-2 m=n-2l=n-2
+ Y Y =D+ Y Y Y (n-l+m+0-1)
0=1 I=0 0=1 m=6+1 I=m

_ L [n4—4n3 —n*+ 16n - 12] b [n4—6n3 + 11n° —6n]
12 12
L [2n3 — l4n+ 12] L [n4 —6n’ + 11n* — 6n]

12 12

1
= 7 [3714 — 14 +21n* - IOn].

The third factor is computed with the help of following For2<f0<n-2and 1<m<6-1,
distances:

n-1-1, form<l<n+m-0-3,

d(un,e, wl)m) = { (65)

0-m-1, forn+m-0-2<l<n-23.

For1<0<mn-2and 6<m<n-3,
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d(unﬁ,wl’m) ={n+m-1-6-1 form<l<n-3,

0=n—2 m=n-3 I=n-3

"
I=n-2
Z W<wn—z,9> U Wz)) = d(wn—Z,Q’wlm)
6=1 =1 =1 m=1 I=m
0=n-2 m=0-11=n-3 0=n-2 m=n-3 l=n-3
- z d(wn—Z,H’wlm)+ Z d(wn—Z,G’wlm)
0=2 m=1 I=m 0=1 m=0 I=m
0=n-2 m=0-1l=n+m—-6-3

0=n-2 m=n-3 I=n-3
+ Z d(wn—Z,G’ wlm)
0=1 m=0 I=m (66)
0=n-2 m=0-1l=n+m—-6-3
0=2 m=1 I=m
0=n-2m=0-1 I=n-3

+ Z Y (0-m-1)

0=2 m=1 I|=n+m-0-2

+ n+m-1-6-1)

1 1
=—[n4—8n3+17n2+2n—24]+—[n4—6n3+11n2—6n]

12 12

1
+— [2n4 201> + 82n% — 160n + 120]
12

1
=5 [4n4 —34n° + 1101* — 164n + 96].

The fourth factor is

O=n-2 1=n-2 m=n-I 1
WW,,)= Y W(w, )= Y m= 5 [2n - 6n” - 8n + 24]. (67)
0=1 =2 m=2

Putting equations (61), (64), (66), and (67) in (59), we get 4, The Wiener Polarity Index of the Graph
Derived from Hexagonal Networks

1
W (w, o, ET,p) = — [10n" — 56n° + 134n” — 184n + 120]. . .
12 The graphs derived from hexagonal networks are finite

(68)  subgraphs of the triangular grid. In this section, Wiener
polarity index of the graph derived from the hexagonal
network is computed.

The graph of hexagonal network of dimension » is
denoted by HX,, (Figure 3). The graph contains 3n* - 3n + 1
vertices and 9n® — 151 + 6 edges, where n is the number of

Now, the Wiener index of the graph ET, is W (ET,) =
W (ET,_,) + W (V,,ET, ) + W (U,_,ET,»)) + W(W,_,, E
T,m). Hence, by using (49), (58), and (68), we get W (ET,)) =
W (ET,_;) + 1/12[28n* — 86n°+ 134n* — 172n + 120].
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FIGURE 3: Hexagonal network HX,, and its extension.

vertices on one side of the hexagon [5]. There is only one
vertex v which is at distance n— 1 from every other corner
vertices. This vertex is said to be the center of HX,, and is
represented by O.

Theorem 5. W, (HX,,) = 27n* — 81n + 48.
Proof. Inorder to find the vertex PI index of HX,, firstly, we

will divide the graph into two parts by drawing a line passing
through the central vertex and parallel to x-axis. Now,

W, (HX,) = Z(Wp (Typr) ~Wp(HX,, T,) - W, (Tn—l)) + W, (Vanoas Vnz)

extend the upper and lower part of the graph HX,, to form
triangular mesh networks T, , and T,, ; of dimension
2n — 1, respectively. Define the vertex set of T, , and T, ,
as  follows: V;={x,: 1<I<2n-1,1<m<I} and
Vi=1{v. 1<i<2n-1, 1<m<lI}.

It is easy to see that V(T,, ,)NV(T,, ;) =V,,, and
d (x4 Vi) >3 for 1<2n— 3. This implies that the Wiener
polarity index of HX,, can now be written in the following
form:

(69)

+W, (Vo Vapos) + w, (Van-3s Vi) = w, (Van-1)-

From Theorem 1, we know that
W, (T,) = 9(n* - 51+ 6)/2. This implies that

Wp (T, ) = 180 — 63n + 54. (70)

Now, we calculate the terms W, (Vapezs Vo)
W, (Va2 Viys), and W, (V,, 5,V 5), which are equal to
the number of vertices of the lower triangle that are at
distance 3 from the vertices of the upper tyiangle. However,
for every veV,, , and vieV,, ,, I{(v, vhld(v,vr) =
3}| = 4n — 8. Therefore,

W, (Vs Vyug) = 4n =8, (71)

Similarly, for every v € V,, , and vi€ V,, 5, we have
{(v,v)Id(v,v') = 3}| = 8n—14.
And, for every v € V,, 5 and vi€ V,, 5, we have

|{ (v, v1)|d (v, v1) = 3}| —sn- 14 (72)

This implies that

w, (Vanzs Vapz) = 4n = 8,

i (73)
w, (Van2sVopa) =4n-8.
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TaBLE 1: Comparison of Wiener and Wiener polarity indices of the TaBLE 2: Comparison of Wiener and Wiener polarity indices of
graph of triangular mesh network. ET,.
n W, (T,) W(T,) Comparison of Wiener and Wiener polarity index of ET,,
5 0 3 N W, (ETT,) W (ETT,)
3 0 39 4 42 339
4 9 159 5 147 1119
5 27 459 6 315 2921
6 54 1089 7 546 6522
7 90 2265 8 840 13020
8 135 4281 9 1197 23890
9 189 7521 10 1617 41040
10 252 12471 11 2100 66867
11 324 19731 12 2646 104313
12 405 30027 13 3255 156921
13 495 44223 14 3927 228891
14 594 63333 15 4662 325136
15 702 88533 16 5460 451338
16 819 121173 17 6321 614004
17 945 162789 18 7245 820522
18 1080 215115 19 8232 1079217
19 1214 280095 20 9282 1399407
20 1377 359895

1.0x10%04

3.5x10104

L 3.0x10%04 [
8.0x107%% - r

2.5x10704 |

0x10703 r
6.0x10 I 2.0x10704 _
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4.0x10%% |- r

1.0x10%04

Wiener & Wiener Polarity Index of ETT
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I 5.0x10*%% -

Wiener & Wiener Polarity Index of Triangular Mesh

0.0x10%00
2

—— Wiener Index
—— Wiener Polarity Index

—— Wiener Index
—— Wiener Polarity Index

FIGURE 4: Comparison of Wiener and Wiener polarity indices of ~ Figure 5: Comparison of Wiener and Wiener polarity index of the
graph T,. equilateral triangular tetra sheet.
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The term W, (HX,,T, ) is the cardinality of set of
vertices of T',_; that are connected through a path of length 3
from the vertices of HX,,. It is easy to see that
I=n+2 l=n+1
Wp (HXn’ Tn—l) = Z Wp (Vl’ Vn—l) + Z Wp (Vl’ Vn72) + Wp (Vn’ Vn—S)
I=n I=n
I=n+2 l=n+1
= Z w, (Vi Vi) + Z w, (ViVi,) + w, (Vo Vi)
I=n I=n
I=n+2 I=n+1 (74)
= > 4l-12+ ) 21-6+2n-6
I=n I=n
I=n+2 I=n+1

=) (@-12)+ ) (2-6)+2n-6

I=n

= 18n — 40.

The distance between the set of vertices of the set V,,_; is
equal to W, (V,,) and it is easy to see that

W, (Vyyy) =2n—4. (75)

Now, by replacing the values of all these factors in
equation (69) and simplifying, we get

W, (HX,) = Z(Wp (Tont) ~Wp(HX,, Ty y) =W, (Tn—l)) + W, (Vs Vna)
+ Wp (V2n—2’ V2n—3,) + Wp (V2n—3’ V2n—2,) - Wp (V2n71) (76)

=27n* — 81n + 48.

5. Conclusion

First of all, we will present comparison between two to-
pological indices analytically and graphically.

5.1. Comparison of Wiener and Wiener Polarity Indices of the
Triangular Mesh Network. The comparison between the
Wiener and Wiener polarity indices of triangular mesh
network T, for different values of n is shown in Table 1. The
values show that the Wiener index increases rapidly com-
pared to Wiener polarity index as # increases. The graphical
representation of both indices is also presented. In Figure 4,
the black curve denotes the behavior of the Wiener polarity
index and red line shows the behavior of the Wiener index.

5.2. Comparison of Wiener and Wiener Polarity Indices of the
Graph of Equilateral Triangular Tetra Sheet Networks. The
comparison between the Wiener and Wiener polarity in-
dices of equilateral triangular tetra sheet network ET, for
different values of nis shown in Table 2. The values show that
the Wiener index increases rapidly compared to Wiener
polarity index as n increases. The graphical representation of
both indices is also presented. In Figure 5, the black curve

denotes the behavior of Wiener polarity index and red line
shows the behavior of Wiener index.

In this work, we have derived the Wiener polarity index
and Wiener index of certain triangular networks. We have
considered triangular grids, equilateral triangular tetra
sheets, and hexagonal networks to formulate closed formulas
to find the Wiener polarity index and Wiener index.
Comparisons of these indices with the help of tables and
graphs are also included for two families of the graph. These
results will be useful to understand the molecular topology of
these important classes of networks.
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Cheminformatics is entirely a newly coined term that encompasses a field that includes engineering computer sciences along with
basic sciences. As we all know, vertices and edges form a network whereas vertex and its degrees contribute to joining edges. The
degree of vertex is very much dependent on a reasonable proportion of network properties. There is no doubt that a network has to
have a reliance of different kinds of hub buses, serials, and other connecting points to constitute a system that is the backbone of
cheminformatics. The Indu-Bala product of two graphs G, and G, has a special notation as described in Section 2. The attainment
of this product is very much due to related vertices at to different places of G, VG,. This study states we have found M-polynomial
and degree-based topological indices for Indu-Bala product of two paths Py and P; for j,k>2. We also give some graphical

representation of these indices and analyzed them graphically.

1. Introduction

Let G = (V(G), E(G)) be a simple and finite graph of order
n. We denote the nonempty vertex set by V (G) and edge set
by E(G). The fields of chemistry information sciences and
mathematics have undoubtedly revolutionized by chem-
informatics. It is a new subject that is very much helpful in
keeping the data and getting information about chemicals.
For this purpose, i.e., keeping the data and storing infor-
mation, a significant help can be taken from the theory
represented by graph in order to make index factors. The
study of molecules according to their structures and their
different functions based on QSAR models is also called a
biological activity. The indictors that represent topology are
also known as a subsidiary of the biological activity. To-
pological indices can be calculated using simply points
(atoms) and linkages (chemical bonds) in a graphical rep-
resentation. A polynomial, numeric number, a sequence of
numbers, or an array representing the full graph can be used
to identify it, and these representations are meant to be
calculated particularly for that graph. The values in math-
ematics serve as indicators that have a logical connection to

the graph and its topology. These are the indicators that give
various dimensions and kinds to topological indices from
distance based to degree based, counting conjugal polyno-
mials and graphs. In chemistry and especially in graph
theory, the degree-based topological indices play an essential
role. Precisely, we can say that X gives new shape to the index
connected with topology from real numbers to its zenith.
Various indicator networks are always present in an
entangled form of links nodes and hubs in a network. For
example, various networks have similarities in atomic
structure or molecular structure, such as honeycomb, grid
networks, and hexagonal. Topological properties of these
networks are very interesting, which are studied in various
aspects, such as minimum metric dimension of a honey-
comb network in [1] and silicate network in [2], topological
properties of this network in [3], and topological indicators
of honeycomb, silicate, and hexagonal networks in [4]. As we
study the evolution of the things biologically, different kinds
of structures having six dimensions and beehive shapes
come into our contact. Many authors have researched on
this topic; Hayat et al. computed topological indices of some
networks in [5] and for some interconnection networks in
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[6]. On organized populations, Perc et al. studied the evo-
lutionary dynamics of group interactions in [7] and on
coevolutionary games in [8], and Szolnoki et al. further
worked on the impact of noise on cooperation in spatial
public goods games in topology-independent ways in [9]
and on importance of percolation for evolution of coop-
eration in [10]. Mathematical references have also been
found in research of paraffin, Wiener’s approach [11].
Wiener invented the index that is also known as the route
number. This topological descriptor formed the basis for the
topological indices, in terms of theory and application in
[12, 13]. Therefore, the topological indices in the chemical
and quantitative literature are Weiner in [14], Zagreb in [15],
and Randic in [16]. The Indu-Bala product G, ¥G, of graphs
G, and G, is obtained from two disjoint copies of the join
G,VG, of G, and G, by joining the corresponding vertices in
the two copies of G,.

In this paper, we calculated some well-known topo-
logical indicators based on M-polynomial and degree based
indices for Indu-Bala product of two paths.

M(G,z,,2,) = Z m,-]-(G)z"lzé. (1)
0<i<j<9
As in [17], 6=min{d]s € V(G)},9 = Max{d|s €

V(G)}; m;;(G) is the edge z,z, € E(G);s<t.
Milan Randic in 1975 established the concept of Randic
index [18-20], which is represented as R_,, (G):

R—1/2 (G) = z

1
. (2)
zlzzeE(G)< \[dzldzz )

The generalized Randic index is defined as [21-28]

1
1) 3)
zlzng:(G) ( (dzleZ) >

Two indices M, (G), M, (G) were established by Gutman
and Trinajstic defined as follows:
Z (dz 1 de ) .

M (@G = Y (d,+d,),M,(G) =
2,2,€E(G) 2,2,€E(G)

R,(G) =

(4)

Another form of index is which is known as second
Zagreb is define as follows [11, 29-32]:

1
"M, (G) = — |
) zgec(d(zad(zz)) ©
The symmetric division index is defined as

in(d, ,d, d,.d,
(o) i)

max(dzl,dzz) min(dzl,dzz)

SDD(G) =
z,2,€E(G)

(6)

The harmonic index is defined as
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2
H(G) = ( ) 7
zlzzé(G) dzl + dzz ( )

“The inverse sum index is defined as

d,d,
Z <dzl +dzz>. (8)

z,2,€E(G)

I1(G) =
The augmented Zagreb index is defined as

d,d, }
2olaa = ©

z,2,€E(G)

A(G) =

These indices and deliberations which various re-
searchers laboriously worked on can be seen in [33-37] as
authentic references.

a(f(y.e)
Dy=y=%
p,= 209
s, = jf(};S)d% (10)

SZJMdS
& £ i

J(h(y,€) = f(1,9):Qu (h(y,€)) = y*h(y,e).

2. Computational Results on Topological
Indices for Indu-Bala Product of Two Paths P,
and P; When k > j

Our fundamental objective of studying M-polynomial and
all its related components is to establish a relationship be-
tween various affects of M-polynomials and its related things
on the Indu-Bala graph, see Figure 1.

2.1. Results. We split vertices and edges degree of the Indu-
Bala graph in Table 1. Similarly, we split the edge palpitations
of points on the Indu-Bala graph in Table 2.

Theorem 1. Let G be a Indu-Bala graph P, VP;, where
j=2,k>j+2. We have
M(G;a,b) = 4’V + 4ja’ ' b + 2 (k - 3)a’* ' b**?
+2j(k = 2)a’ b/ + 2ja" 2,
(11)

Proof. As in Figure 1, now we will compute M-polynomial
using the values of Tables 1 and 2:
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FIGURE 1: Indu-Bala graph P, VP,.

TaBLE 1: Number of vertices of different degrees of Indu-Bala graph.

Total no. of V(G) and E(G)

Vertices and edges

V(G)
E(G)

2(j+k)
25k +2(j+k)—-2

TaBLE 2: Points of edge partitioning of P, VP;.

Total no. of edges

Deg. of end nodes

Edges

aa
—_ 1 e
4]

N~
[o\Ia\] [o\ B Q\]
++ T+ +
— T e

T~
In It [l
—~ o~ ).\”
S5
| LT™R
11+22
.H..+.J.++

= —~
o
SEERSER
((d((
|| W
— N n
S

j+17 j+2 j+17 k+2
Z M50 (G)a’ b7 + Z M 1iir (G’ b
JH1<k+2
j+27 j+2 j+27 k+2
+ Y M @a Y my e, (G)a’ b

JH1<j+2

3 m(G:a),

i<j

M (G;a,b)

(12)

j+2<k+2

j+17 k+2
+ Z € Ejp k4 2my 4,0 (G)a’ 0™
uv

o >
~ g
= ~
N
3 =
~ +
S ~
—~ Iy
G —~
= O
o N~—"
T
5 2
+ =
< +
g s
~ I\
by : %
b
VI =
+ 3

Jj+27 k+2
+ Z € EjipkiaMjiisr (G)a’ b
uv

Jj+27 j+2
j+2,j42M 1212 (G)a’"b

+Z €E
uv

k+27 k+2
Myeyok+2 (G)a " b ' >

2

uVGEk+2,k+Z
jtlg j+2
|Ej+1,j+2|a b+

+

427 42
a’tut

|E

+
bk+2

|E

J+2,j+2

1 k+2
j+1,k+2|a b

j+2 2
@b 4| By,

>

k+2

k+2|a

40D + 4ja" TV 2 (K

>

+ |Ej+2,k+2

aj+1bj+2 + 2]- (k _ Z)aj+2bk+2 + 2jak+2bk+2.

-3)
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Theorem 2. In Indu-Bala graph P VP, j>2, k>j+2.  Proof.
Then,

M, (G) =2jk(j+k+8)+6(k—1). (13)

M (G, a,b) = 42’0/ + 42’V + 2(k - 3)a’™ ™ + 2j (k - 2)a’ b + 2jd 20,

(Ga.b) = f(@b):D,f (@b) =al,
of _ o
da Oa
of

as-=4(j+ a0 + 47 (G + Da/'V? +2(j + 2) (k - 3)a’ b

{4aj+1bj+2 + 4jaj+lbk+2 +2(k - 3)aj+2bj+2 +2j (k - Z)aj+2bk+2 T 2jak+2bk+2},

£2j(j+2) (k- 28" + 2 (k + 286 D, f (a,b) = b2 (14)

ob’
af 0 j+17 j+2 . 4l k42 j+27 j+2 . j+2 7 k+2 . k+2q k+2
ﬁz%{w b+ 4ja” 0 + 2(k - 3)a” 0 + 2 (k - 2)a” 0 + 2ja" P,
af . j+17 j+2 . j+17 k+2 . j+27 j+2
b$=4(]+2)a1 b+ 4j(k+2)a’" b+ 2(j +2) (k- 3)a’" Y

+2j(k +2) (k- 2)a’™b"? + 2 (k + 2)a" 2",
M, (G) = (D, + Dp) (f (a,b)| (4pyy

O
Theorem 3. In Indu-Bala graph P VP, j>2, k>j+2;  Proof. Suppose
then,
M, (G) = 8(k - j)+ j*(2k* + 6k — 6) + 2jk (10 + 3k) — 16.
(15)
M (G, a,b) = 42’0/ + 4o’V + 2(k - 3)a’ /™ + 2j (k - 2)a’ b + 2jd 2,
D,f(a,b) = 4(j + Da’™' V™ + 4j (G + D)a’ b + 2(j + 2) (k - 3)a’ b/
+2j(j+2) (k- 2)a’b"? + 2j (k + 2)a**?b"*,
D,D,f(a,b) = 4(j+1)(j+2)a’"' b + 4j(j + 1) (k + 2)a’ ' b"*? + 2(j + 2)* (k - 3)a’ b/ (16
+27(j +2) (k +2) (k = 2)a’™"? + 2j (k + 2) (k + 2)a"**b""?,
M, (G) = DyD, f (2, b)| (4=p-1)
+2(j+2)° (k=3)+2j(j+2)(K* —4) +2j(k+2)°,
M, (G) = 8(k - j)+ j*(2k* + 6k — 6) + 2jk (10 + 3k) - 16.
O
Theorem 4. In Indu-Bala graph P VP, j>2, k>j+2;
then (Figures 2 and 3),
27 + 7 (2k* = 2k + 4) + 7 (2k* = 2k + 8) + j(2k> + 8k* — 8k + 6) + 4 (k + 1)
mar 6y~ 4 )+ 7 )+ i( )+4k+ 1) (17)

JG+ 1) (k + 1)
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FIGURE 3: (a) Randic index for j<k and a = 1. (b) Modified second Zagreb index for j<k and a = 1.

Proof. Suppose

M (G;a,b) = 40’V + 4ja’ " U + 2 (k - 3)a’ b7 + 2 (k - 2)a’ b + 2ja" 2",
"M, (G) = 8,8, f (@, 0)] (4-p-1)»

= r fwb) du,

0 u

b
Sl’l = J Mdu,

0o u
fwb) = 4V + 4wV + 2 (k - 3 4 2u (k- 2)u 5 4 20T x|
u

k+2 bk+2

>

S =éaj+1bj+2+4aj+lbk+2+2(k_3)aj+2bj+2+2j(k_2)aj+2bk+2+ 2j a
T j+1 j+1 k+1
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:—'a

J'af(a, u) dr 4 j+1uj+1 +4aj+1uk+1 +2(.k_3)6lj+2uj+1 +2j(.k_2)aj+2uk+l n 2j ak+2uk+1)
0o u j j+1 j+1 k+1

b
SSaf (a,b) = ,[0 M du,

Sbsaf(a, b) = — 4 aj+1bj+2 4 4 aj+1bk+2 i 2 (k- 3)aj+2bj+2
J

(j+1) k+1 (j+1)°
2(k=2) _jyer, 2 g 1)
G+ 1) (k+1) (k +1)* ’
"M, (G) = 8,8, f (@, b) (4epr) = j(j4+ ot kj 1t 2(§k+_1)32) + (jzj Y){(;{i) ot (kijl)z’
20+ (2K - 2k + 4) + jP(2K7 - 2k +8) + j(2K7 + 8K® — 8k + 6) + 4 (k + 1)’
JG+ 1 (e+1)? '
O
Theorem 5. In Indu-Bala graph P VP, j>2, k>j+2;
then,
R (G)=4G+D(G+2)"+jk+2)" 1 +2(+2)"{(k=3)(j+2)" +2j(k-2)(k+2)"} (19)
+2j(k+2)*
Proof. Suppose
M (G;a;b) = 40’67 + 42 + 2 (k - 3)a’b*? + 2 (k - 2)a’ "2 + 2jd 2052,
R, (G) = DDy, f (a,b)] (p-g-1)s
DY f(a,b) = 42 + j)"a’ V™ +4j (2 + k) a6 £ 2(=3 + k) (j +2)%al b
+2j(=2+Kk) 2+ K% +2j (2 + k)*d* b,
DD f (a,b) = 4+ 1)°(j +2)%a’ 0™ + 45 (j + 1)° (k +2)%a’* 6™
+2(k=3)(+2)" "6 £ 2j (-2 + k) (2 + j)* (2 + k)*a/ b (20)
+2j(k +2)*d" 2",
R,(G) = DDy f (a,b)] (gopery = 4G+ DT (j+2)" + 45 (j+ 1D (k +2)"
+2(=3+k) Q2+ ) +2j(2+k) Q2+ ) Q+h) +2j(2+ k)™,
R(G) =41+ N+ +j+R)+2Q2+ N(-3+k) 2+ )" +2j(-2+k)(k+2)"}
+2j(2 + k)™
O

Theorem 6. In Indu-Bala graph P;VP, j>2,k>j+2.
Then,

4 (1 (k-3) _j(-2+K) 4 i
RR"‘(G)_(1+j)“{j“+2(j+1)"‘+2(1+k)"‘}+(1+k)“{2(k+1)“+1}' (21)
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Proof. Suppose

M (G;a,b) = 40’V + 4ja’ ' b + 2 (k - 3)a’? b7 + 2j (k - 2)a’ b2 + 2ja" D",
RR,(G) = 538, f (a4, b)] (4op-1)»

4 j+1bj+2 4 4j aj+lbk+2 " 2(k - 3)aj+2bj+2 + 2](k B 2)aj+2bk+2

Sl’=j+la k+1 j+1 k+1
2j k+27 k+2
T 1” o
. 4 I 4j e +2('k_33aj+2bj+2
(j+1) (k+1) (j+1)
2j (k - %x)aj+2 k+2 + 2j lxak+2 k+2’
(k+1) (k+1) (22)
o Qo 4 j+17 j+2 4 j+17 k+2 2(k—3) j+27 j+2
Susbf(a’ b) = mﬂj / + mdl b + W{l] b]

2j(k-2) L2k 2j ke

(i + D (k+ D) k+ =" 7
. 4 4 2(k -3) 2j(k-2) 2j
SaSp f (@, 0)] (qpr) = 7= at at + - at >
#50S (@Dl GG+ A+ 1+ (A+HA+A)" (1+k)™
RR, (G)
__ 4 (1 3%k j(2+R] 4 i
S+ Y 20+ DY 20+ k)% (1K) 200 + k) ‘
O
Theorem 7. In Indu-Bala graph P VP, j>2, k>j+2;
then,
4 .3 2 .2 2 .
k+2)+j(4k”+3k+2)+j(6k”+3k—-2)+4(k+1)(3jk+2
SSD(G):]( )+ 7 ) +5°( )+4(k+1)(3j ) 23)

jG+1D(k+1)

Proof. Suppose

M (G;a;b) = 40’0 + 4ja’ B2 + 2 (k - 3)a’?b/™? + 2 (k - 2)a’ b
+ zjak+2 bk+2,
SSD (G) = (ShDa + San)f (a, b)| (a=b=1)>

j+2 + 4j (] + l)aj+1bk+2 + 2(] + 2) (k - 3)aj+2bj+2

D , :4j+1
SpDaf (a.b) = 4a™"b k+1 j+1

. 2j(j+2) (k- 2)gj+2bk+2 N 2j(k+ 2)gk+2bk+2’
k+1 k+1
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S.Dyf(a,b) = waﬁlbﬁz +4(k +2)a b + 2(]%)(11{—3)6114%]42
] j
+Ma1‘+2bk+2 2j(k+2) A2k . (S,D, +S,D;) f (a.b),

j+1 k+1
:{4+4(J7?l—2)}aj+1bj+2+{4](]+ 1) 4(k+2)} iy +2
J k+1

+{2(j+2)(k—3)+2(j+2)(k—3)}aj+2bj+2+{2j(j+2)(k—2)

j+1 j+1 k+1
+2j(k+2)(k—2) AR 2j(k+2)+2j(k+2) aFrpke2
j+1 k+1 k+1 ’
8(j+1 4
SSD(G) = (S, + $,D4) (@ Wl gy = D4 S (24K 4+ 3k 4 2)
. . . 24)
4G+ (k=3) k=2 5 o 4j(k+2) (
4 1 >
T +(j+1)(k+1)(J +R 430tk +a) + =
457k - 4j° +8jk - 8j+8 , 2 2.
SSD (G) = G+ +(4(]+1)(] +k +]+3k+2)
1
. 2 2 . .
+](k—2)(] +k +3]+3k+4)+](k+2))m,
45’k -4 +8jk-8j+8
j(j+1)
Sk+2)+ 2(ak* + 3k +2) + j(2K* + 3k +2) + 4k (k +3) + 8
J i J
(G+D(k+1) ’
SSD(G)_] Yk +2) + (4K + 3k + 2) + (6% + 3k — 2)+4(k+1)(31k+2)
jG+1)(k+1)
|
Theorem 8. In Indu-Bala graph P VP, j>2, k>j+2;  Proof. Suppose
then,
25 + 45 (K +k)+](4k2+10k+12)+8(k+1)
H(G) =
jG+1D(k+1)
(25)
M (G;a,b) = 40’V + 4ja’ b + 2 (k - 3)a’?b*? + 2j (k - 2)a’ b2 + 2ja" 22,
H(G) =2S,jf(a,b)l,-;,
uf(a b) ]+1 ]+2+4 ]+1bk+2 2(,k_3)aj+2bj+2+2j(_k_2)aj+2bk+2+ 2j ak+2bk+2,
j+1 j+1 k+1
28,7 f (a,b) :§azj+3 4+ 8/ tk "3 +4(k_3)a2j+4+4j(k_2)aj+k+4+ 4j e (26)
alJ 14 j j+1 j+1 k+1”

4(k - 4i(k—2 4i
28,jf (@,0)l oy :§.+8+ (k 3)+ J('k )+ j ,
/ j+1 j+1  k+1

27 +47°(K* + k) + j(4Kk* + 10k + 12) + 8 (k + 1)
jG+1)(k+1)

H(G) =
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Theorem 9. In Indu-Bala graph P VP, j>2, k>j+2;
then,

I(G) =

47° + 205" + 7°(8K* + 40) + j2(4k’ + 14k* - 8k + 36) + j(16k* — 20k - 20) + 8 (k + 1)

jG+1)(k+1)

Proof. Suppose

M (G;a,b) = 40’V + 4ja’ ' V% 1+ 2 (k - 3)a’b7* + 2 (k - 2)a’* b + 2jd* "7,
I(G) =S,jD,D, f (a,b)|,;; D, D, f (a,b),
=4+ 1) G+2)a Y+ 45+ 1) (k+2)a’ B+ 2( + 2)7 (k - 3)a’ b
+2j(j+2) (k+2) (k- 2)a’?b"? + 2j (k +2) (k + 2)a**b***; S, jD,D, f (a, b),

_40+ 1)‘(J + 2)a2j+3 F 4G+ 1) (k + a4 2(j+ 21 ik 3)a2j+4
J

2j(j+2 2 -2) 2j(k+2 2
+ JG+ )('k +2)(k )a]+k+4 + jlk+2)(k+ )a2k+4;3ajDanf(a, Bl
j+1 k+1

4G +1(+2) 2(j+2)* (k-3)

+4(j+1)(k+2)+ i1

+2j(j+2)(k2—4)+2j(k+2)(k+2)
j+1 k+1

>

I(G) =

47° +20j" + j°(8K* + 40) + j*(4k + 14k* - 8k + 36) + j(16k* — 20k - 20) + 8 (k + 1)

jG+D(k+1)

Theorem 10. In Indu-Bala graph P VP, j>2, k>j+2;
then,

2G+1° +(k-2)(j+2)}.

H 3 . 3 . 3
I(G)ZZ(]+2)3{2(]+1) + (k_3)(]+2) }+ 2](k+2)

(2j+1)° (2j+2)° (j+k+1)°

Proof. Suppose

M (G; a,b) = 4a’'V/" + 4ja’ V% 1+ 2 (k - 3)a’ b7 + 2 (k - 2)a’ b + 2jd* 2172,
A(G) = 8,Q,jD,D, f (a,b)l ey,
DEDSf(a,b) = 4(j + 1)*(j+2)%a'V" + 4 (j + 1D* (k +2)%a 6"

+2(k=3)(j+2)" a6 + 2 (k= 2) (j + 2)* (k + 2)a’ 6",

(27)

(28)

(29)
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DD} f(a,b) = 4(j +1)° (j+ 2’0/ + 4j(j +1)° (k + 2)°a’ D
+2(k=3)(j+2)°a’b" 4+ 2j(k-2)(j +2)° (k+2)°a’b""?,
JD}D, f (a,b) = 4(j+t1)° (j+£2)°a* + 4j (j+t1)° (k+t2)°a?™* + 2 (k - 3) (j+£2)°a*
+2j(k=-2)(j+2) (k+2)°a’™*.Q_,jD’D; f (a,b),
=4+ 1) +2%a7 + 45 G+ 1) (k+ 2™ +2(k - 3) (j +2)°a¥*?
+2j(k=-2)(j+2)° (k+2)°a’™?%:8Q_,iD’D; f (a, b),
4G (G +2) I 4j(j+1)* (k +2)° gtk 20k~ 3)(j+2)° eye

(2]+1) (]+k+1) (2]+2)
2](k 2)(]+2) (k+2)° } jtk+2, SQ z]D Dbf(a B
(]+k+1)

_AGHD’(G+2) 4G+ (k42 2(k-3)(j+2)
2j+1)° (j+k+1) (2j+2)°
2J(k 2)(j+2)° (k+2)°

(]+k+1)

2+’ +(k-2)(j+2°}

3 . 3
A(G):Z(j+2)3{2(]+1) N (k=3)(j+2) }+ 2j(k+2)

(2j+1) (2j+2)° (j+k+1)
(30)
O
3. Computational Results on Topological Theorem 11. In Indu-Bala graph P;VP, j22, k2 j+2;
Indices for Indu-Bala Product of Two Paths P; then,
and P, When j>k M (G;a,b) = 2ka’ /™ + dka' 0!
Our fundamental objective of studying M-polynomial and +k(2j - 4)a’ b (31)

its related all components is to establish a relationship be-
tween various affects of M-polynomials and its related things
on the Indu-Bala graph, see Figure 4.

+ 4ak+1bk+2 + (21 _ 6)ak+2bk+2.

Proof. As in Figure 4, now we will compute M-polynomial

3.1. Results. We split vertices and edge degree of the Indu- using the values of Tables 3 and 4:

Bala graph in Table 3. Similarly, we split the edge palpitations
of points on the Indu-Bala graph in Table 4.

M(Gab)—Zm (Gab)

l<]
. 27742 . J+27 k+1
Y e (@Y s gy (G)a’ b
Jt2<j+2 jr2<k+1
. j+27 k+2 . k+17 k+2
+ Z J(j+2) (k+2) (G)a’™"b™" + Z Jan sy (Ga” b
Jj+2<k+2 k+1<k+2
. k+27 k+2
+ Z J ) (k) (BB,
k+2<k+2
. j+27 j+2 . j+27 k+1
= Z J(j+2) (j+2) (G)a """ + Z J(j+2) (k+1) (G)a”"b (32)
uveE ., jia uveE; 1
. j+27 k+2 . k+17 k+2
+ Z J(j+2) (ke+2) (G)a’b™" + Z Jan sy (G)a” b
uveE; 1 UVEE) ) kin
. k+27 k+2
+ Z J ) (k) (BB,
uveEy ., ko
427 j+2 j+2 k+1 j+27 k+2
|E]+2]+2 a 'E]+2k+l al 'E1+2k+2 a’b
k+17 k+2 k+27 k+2
+ |Ek+1,k+2 Ia b |Ek+2,k+2 |a b >

_ 2kaj+2bj+2 + 4kaj+2bk+1 + k(2] _ 4)aj+2bk+2 + 4ak+1bk+2 + (21 _ 6)ak+2bk+2. 0
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FIGURE 4: Indu-Bala graph P, VP,.

TaBLE 3: Number of vertices of different degrees of the Indu-Bala graph.

Total no. of V(G) and E(G)

Vertices
V(G)
E(G)

2(j+k)
2jk+2(j+k)-2

TasLE 4: Points of edge partitioning of P;VPy.

Total no. of edges

Deg. of end nodes
dh)y=j+2,d@{)=j+2

Edges

2k
4k

k(2j-4)

k+1

d(h)=j+2,d() =k+2

d(h)=j+2,d(i)

k+1,d(i)=k+2

2j-6

k+2,d(i)=k+2

d(h)
d(h)

Proof.

Theorem 12. In Indu-Bala graph P;VPy, j>2, k>j+2;

then,

(33)

M, (G) = j(2jk + 2k> + 16k + 8) — 12.

2kaj+2bj+2 +4kaj+2bk+1 +k(2j—4)aj+2bk+2 +4ak+1bk+2 + (2j—6)ak+2bk+2,

M(G,a,b)

of

=a

b)

(G,a,b) = f(a,b); D, f (a,

oa’

+ (21 _ 6)ak+2bk+2},

4)aj+2bk+2 +4ak+1bk+2

+k(2j-

0

da

of

{zkaj+2bj+2 + 4kaj+2bk+1

da

a?Tf = 2k (j +2)a’0 + 4k (j+2)a’ PV k(j +2) (2] - 4)a’ B
a

of
=Po

+4(k+ 1)a"™ v + (k +2) (2] - 6)a**b***, D, f (a, b)

4)aj+2bk+2 + 4ak+1bk+2 + (2] _ 6)ak+2bk+2},

{2ka’ V" + 4ka’ 6" + k(2)

af 9

ob ob
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b% = 2k(j +2)a? b + dk (k + D)a’ 6" + k(k +2) (2] — 4)a’ B2 + 4 (k + 2)a" "2

+(k +2)(2j - 6)a"?b"* M, (G) = (D, + D) (f (a,b)] (a1
=4k(j+2)+4k(j+k+3)+k(2j-4)(j+k+4)+4(2k+3)+2(k+2)(2j-6),
M, (G) = j(2kj + 2k* + 16k + 8) — 12.

(34)
O
Theorem 13. In Indu-Bala graph P;VP;, j>2, k>j+2;  Proof.
then,
M, (G) = j*(2k* + 6k) + j(6k* + 20k + 8) — 2k> — 12k — 6.
(35)
M (G, a,b) = 2ka’ b/ + 4ka’ b + k(2] — 4)a’ V" + 4a" B + (2 - 6)d VM,
D, f (a,b) = 2k (j +2)a’*b™** + 4k (j + 2)a’ b + k(j +2) (2] - 4)a’ b2
+4(k+1)d"'b™ + (k+2) (2 - 6)a"* b,
D,D, f(a,b) = 2k (j +2)*a’b™ + 4k (j + 2) (k + 1)a’ b + k(j +2) (k +2) (2] - 4)a’ b 6
+4(k+ 1) (k +2)a" b + (k + 2)* (2j - 6)a" 2™,
M, (G) = DD, f (a,b) (qpoy) = 2k (j+2)" + 4k (j +2) (k + 1) + k(j+2) (k +2) (2] - 4)
4(k+1)(k+2)+(k+2)*(2j-6),
M, (G) = j*(2k* + 6k) + j(6k + 20k + 8) — 2k* — 12k — 6.
O
Theorem 14. In Indu-Bala graph P;VPy, j>2, k>j+2;
then,
AL (G) = 24" +10(25° - 67) + k2657 - 2j) + k(27° +2j° =10 - 6) +4j° +8j + 4 37)
g k(j+1)* (k+1)° '
Proof.

M (G,a,b) = 2ka’ b/ + 4ka’ 0" + k(2] - 4)a’ 6" + 4d 05 + (2j - 6)a" B,

"M, (G) = $,8,f (@,0)] (azper);

a b
Sa:J f(x’b)dx;Sb=J de’
0 0

X X

f (x,b)

— zkxj+1bj+2 + 4kxj+1bk+1 + k(Zj _ 4)xj+1bk+2 + 4xkbk+2 + (2j _ 6)xk+1bk+2,
X

5, = ‘2k R '4k N k(%]’ - 4)aj+2bk+2 N éakﬂbkﬂ N 2j- 6ak+2bk+2’
j+1 j+1 j+1 k k+1
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Sa (61, x) 2k aj+2xj+1

x  j+1
b
8,8, f (a,b) = Jomdx

S$pS.f (a,b) =

X
27 j+2
2
+1)

Tkk+1)

"M, (G) = 88, (@,0) (azper) = -

>

4k k(2j-4) ; 4 2j-6
+o a]+2xk+1 + J a]+2xk+1 +fak+1xk“ + J ak+2xk+1,

+1 j+1 k k+1
4k , kQ2j-4)
J+27 k+2 Jj+2p k+2
G+rOk+1)" Foenke”
4 ak+1bk+2 2j - 62ak+2bk+2,
(k+1)
2k 4k k(2j—4) 4 2j-6

G1? GrDk+D) GrDk+1) kk+1) " (k+ 1)

2+ K25 - 67) + k(657 - 2j) + k(25 + 257 - 10j - 6) + 4" +8j + 4

k(j+1)*(k+1)

Theorem 15. In Indu-Bala graph P, VP, j>2, k>j+2;

then,

Proof.

R,(G)=2k(G+DY{(G+2)"+2(k+ 1" +k(j-2)(k+2)"}
+2(k+2)"2(k+ 1)+ j(k+2)"}.

M (G, a,b) = 2ka’b/** + 4ka’ 0" + k(2] - 4)a’ 6" + 4d05? + (2 - 6)a" B,
R, (G) = DDy f (@, )] (4opoys
DY f (a,b) = 2k (j +2)%a’*b7* + 4k (k + 1)%a?B"" + k(2j - 4) (k +2)%a’ b
+4(k +2)%a" B + (2j - 6) (k + 2)"a" b,
DD{ f (a,b) = 2k (j +2)**a’ b7 + 4k (j + 2)* (k + 1)%a’6"*" + 4(k + 1)* (k + 2)%a* """
+k(2j—4) (G +2)% (k +2)"a" 26" + (2j - 6) (k + 2)a"b",

R, (G) = DDy, f (a,b)| (gp-ry = 2k (j + 2)% +4k(G+2)"(k+ D"+ k(2j—4) (G +2) (k+2)"

+4(k+ 1) (k+2)" +(2j - 6) (k +2)%,
R (G)=2k(G+ 1) (+2)" +2(k+ 1" +k(j-2)(k+2)"}
+2(k+2)*2(k+1)" + j(k+2)"}

Theorem 16. In Indu-Bala graph P;VP;, j>2, k>j+2;

then,

RR, (G) =

2k

(G+D(K+k))

2

Y T e
k" (k+1)

Akj+ R+ 2j+2) (k+ D* + (j-2)((K + k) (j+ D)}

{2(k+1)% + (j - 3)k"}.

13

(38)

(39)

(40)

(41)
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Proof.

M (G,a,b) = 2ka’ b/ + 4ka’ ™" + k(2] - 4)a’ 6" + 4d 05 + (2j - 6)a" B,

RR,(G) = 828} f (@, b)] (4mpry

S, = .Zk 222 +%aﬁzbkﬂ +k(2j_4)aj+2bk+2+ 4 ke
j+1 k k+1 k+1
+ 2j - 6ak+2bk+2
k+1 ’
2k o 4k k(2j-4) . 4
o _ JR2p 2 Y2 kel ] 27 k+2 k+17 k+2
S, —(j+1)“a b +k“a b +7(k+1)“a +—(k+1)“
2j -6 k+27 k+2
Tk :
2k j+21 j+ 4k i+ + k(2] - 4) j+27 k+2
SeSy f (a,b) = a2 iy (42)
S (@0 = (k(j+1) (i + D (k+1)
4 k+17 k+2 2j_6 k+27 k+2
+—pa + a b,
(k(k+1)) (k+1)™
2k 4k k(2j—4) 4 2j-6

Sy O (azper) = I3 . o o >
SaS0 S (@ Dlammn = G G DG DY T RGBT (et D

% 12 (-2 2 2, j-3
B9 =155 1)“{(14 oG 1)“} Tl {k“ (ke + 1>“}’

2 . o . o . 2 . o
RR,(G) = 1 kj+R)"+2j+2)(k+1)"+(-2) (k" +k)(j+1)
G 0(F+0) {(kj j =2k + k) G+ D)}
+#{2(k+1)“+('—3)k“}
K (k+ 1) / '
|
Theorem 17. In Indu-Bala graph P;VP;, j>2, k>j+2;
then,
1
SSD(G) = —— 47 + K+ ik +37+3k+2 — 2k % + i (6k* + 8k
( J+1(J Jexs ) k(]+1)(k+1)( RSN ) 3)

+j(2k* + 6> — 28k + 8k + 16) — 12k - 28k* — 10k + 16).
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Proof.

M (G, a,b) = 2ka’ ™ b/** + 4ka’ ™" + k(2] - 4)a’ 6" + 4d0? + (2 - 6)a" B,
SSD (G) = (ShDa + San)f (a, b)l (a=b=1)>

2k(j+2) in, i 4k(j+2) 2i-4)(j+2) ;
S,D, f(a,b) = k(i'; )a1+2b1+2+ k(_;{*’ )a]+2bk+l+k( ]k+)§]+ )a]+2bk+2

. 4(k + 1)ak+1bk+2 . (2j-6)(k+ z)ak+2bk+2’
k+1 k+1

aj+2bk+1 + k(k + 2) (2] - 4)

. : aj+2bk+2
jt+1 j+1

SuDufay -2+, 064
+ Makﬂbku N wakﬂ

k+2
k k+1 b ; (SbDa + San)f (a, b),

ARG+ s KQIZO( K +3] 13k 4) S (44)
j+1 (GG+1)(k+1)

2 12 4 ,
4(] +k + 3j+k+ 2)aj+2bj+l N 8 (k + l)ak+1bk+2 N 4(j-3)(k+ 2)gk+2bk+2’
j+1 k k+1

+

4k(j+2)+k(2j—4)(j2+k2+3j+3k+4)

SSD(G) = (SbDa +Squ)f(a’b)|(a:b:1) = j+ 1 (] + 1)(k+ 1)

4(j2+k2+3j+k+2)+8(k+1)+4(j—3)(k+2)
j+l k k+1

+

>

4 2 2 . . 1 2.3 2 2
D(G)=——(4 2)+ ——— (2
SSD(G) j+1(]+k +jk+3j+3k+ )+k(j+1)(k+1)(k] +](6k +8k)

+j(2k" + 6k — 28Kk + 8k + 16) — 12k> — 28k — 10k + 16).

Theorem 18. In Indu-Bala graph P;VP;, j>2, k>j+2;  Proof.
then,

4{(j+7)(k3+k2)+k(j2+2)—k+2}

H(G) = k(GG+1)(k+1)

(45)

M (G, a,b) = 2ka’ b/ + 4ka’ b + k(2] - 4)a’ 6" + 4a" B2 + (2 - 6)d" 2V,

H(G) =25,jf (a,b)lo1s

S f(a,b) = j2+klaj+2bj+2 N j‘iklaﬁzbku N k(]z'i—l 4)aj+2bk+2 N éak“bk”
+ 2j B 6ak+2bk+2
k+1 ’
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+1 j+1 j+1 k k+1
. 4k 8k k(4j-8) 8 4j-12
2 D)oy = - ,
Saff (@:b)la-n j+1+j+1+ j+1 Tk ke
4{(j+7)(k3+k2)+k(j2+2)—k+2}
- k(j+1)(k+1) '

2Sajf (a, b) _ ‘4k a2j+4 + 8k aj+k+3 + k(4] - 8)aj+k+4 + §a2k+3 + 4j - 12a2k+4
J

(46)

H(G)

Theorem 19. In Indu-Bala graph P;VPy, j>2, k>j+2;
then,

j°(2K° + 10k% + 18k + 16) + j(4k® + 16k + 12k) - 2k* - 12k - 16

(j+D(k+1) 47)

I(G) =

Proof.

M (G, a,b) = 2ka’ b/ + 4ka’ b + k(2] - 4)a’ 6" + 4a" D2 + (2 - 6)d PV,
I(G) = S,jD,Dy f (a,b)|4-1; D, D, f (a,b),
=2k (G + 2% + 4k (j +2) (k+ Da’ 26" + k(G +2) (k +2) (2] — 4)a’ B
+4(k+ 1) (k +2)a"" v + (k +2)* (2j - 6)a"****;8,jD,D, f (a,b),

. 2 . . .
_ Zk(] +2) a2j+4 +4k(] +'2) (k+ 1)aj+k+3 +2k(k+2)F] +2) (] _z)aj+k+4
j+1 j+1 j+1

LAKEDED) s (2j-6) (K +2) )

2k+4 .
;S,71D,D ) 1,
k+1 “ k+1 a”5S4jDaDy f (a,b)l0y

_2k(j+2)2 4k(j+2)(k+1) 2k(k+2)(j+2)(j—-2)
- j+1 " j+1 * j+1

4(k+1)(k+2) (2j-6)(k+2)
+ +
k+1 k+1

>

j°(2K° + 10> + 18k +16) + j(4k° + 16k + 12k) — 2k — 12k - 16

HG) = G+ (k+1)

Theorem 20. In Indu-Bala graph P, VP, j>2, k>j+2;
then,

i 3 3 . 3
A(G)=2k(j+2)31 (j+2) 2(k+1)7 (j-2)(k+2) }

(2j+1)3+ (j+k)’ i (j+k+1)
(49)

+2(k+2)3{2(k+1)3 (j—3)(k+2)3}

(2k)° " 2j+1)°
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Proof.

M (G,a,b) = 2ka’ b/ + 4ka’ " + k(2j - 4)a’ b +

A(G) = $3Q,jD)D; f (a,b)] ey

17

4ak+1bk+2 + (2] _ 6)ak+2bk+2,

D°D{ f (a,b) = 2k (j +2)™a’ b7 + 4k (j + 2)* (k + 1)"a’2b"" + 4(k + 1) (k + 2)*a**'6"*?

+K(2j - 4) (G +2)" (k +2)%a" ™2 + (2 - 6) (k + 2)*a" ",

D’D; f (a,b) = 2k (j +2)°a’ b/ + 4k (j +2)° (k + 1)’V + 4(k + 1)° (k + 2)°a* 16"

+k(2j—4)(j+2)° (k +2)°a/ 6" + (2 - 6) (k +2)°a2b",

JDD; f (a,b) = 2k (j +2)°a™™ + 4k (j +2)° (k + 1)°a’™ + 4(k + 1) (k + 2)°a*"

+k(2j-4)(j+2) (k+2)°a”™ + (2 - 6) (k+2)°a™"*;Q,jD.D} f (a, b),

=2k(j+2)°a¥"? + 4k (G +2)° (k+ 1’0" + 4(k + 1)° (k + 2)°a®™!

+ k(2 -4)(G+2) (k+2)°a™ +(2j - 6) (k +2)°a****;S2Q_,jD’ D f (a, ),

_ 2k(j+2)° 2j42

4k (j+2)° (k+1)°

(50)

JHk+1 + 4(k + 1)3 (k + 2)3 2k+1

(2j+1)° (j+k)’

K =D+ R+ e

(]+k+1)

4(k+1)7° (k+2)’°

(2k)°

(2j-6)(k+ 2) g2k

:S°Q_,iD’D; f (a,b)| .,
(2k+1) QZ] a bf(a )lu—l

C2k(j+2)°

+4k(j+2)3(k+ 1)°
2j+1)°

(j+k)?

k(21 4)(j+2) (k+2)
(j+k+1) ’

(+2)

2(k +1)°

(2j - 6)(k+2)°
+

(2k)* 2k +1)°

_ a3
A(G) = 2k(j +2) {(2j+1)3

2(k+1)°

(j+k)

(J'—2)(k+2)3}
+

(j+k+1)3

+2(k + 2)31 T

4. Graphical Results and Their Discussion

In this section, we present some graphical results which
are related to M-polynomial and their degree-based in-
dices for the Indu-Bala product of two paths when one
path is greater than another path and vice versa. We have
used different values of k and j and drawn their respective

(j—3)(k+2)3}
+ - 3 .
(2j+1)

O

graphs as shown in Figure 5(a) (inverse Randic index for
j=kand & = 1) and Figure 5(b) (symmetric division index
for j>k and a = 1). We have observed from Figure 6(a)
(harmonic index for j>k and a=1) and Figure 6(b)
(inverse sum index for j>k and « = 1) that the overall
structure of indices increase with the increase of the value
of j and k.
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FIGURE 5: (a) Inverse Randic index for j>k and « = 1. (b) Symmetric division index for j>k and a = 1.
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FIGURE 6: (a) Harmonic index for j>k and « = 1. (b) Inverse sum index for j>k and « = 1.

5. Conclusions

It is important to research the network through charts,
and topological indicators are important for under-
standing its basic topology. This type of research finds
global application in computer science, networks, and
communication systems, which uses various indexes
based on graph invariance to consider some stimulation
summary. The Indu-Bala networks we studied in this
paper are used to optimize (minimized) the operational
cost of the network and find the shortest linkage between
the connectors.In this article, we present some product for
M-polynomial and nine different degree-based topolog-
ical descriptors as discussed above for the Indu-Bala
product of two paths.
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The determination of Hosoya polynomial is the latest scheme, and it provides an excellent and superior role in finding the Weiner
and hyper-Wiener index. The application of Weiner index ranges from the introduction of the concept of information theoretic
analogues of topological indices to the use as major tool in crystal and polymer studies. In this paper, we will compute the Hosoya
polynomial for multiwheel graph and uniform subdivision of multiwheel graph. Furthermore, we will derive two well-known

topological indices for the abovementioned graphs, first Weiner index, and second hyper-Wiener index.

1. Introduction

Let G be a finite connected graph with vertex set V(G) =V
and edge set E(G)=E. The distance d,, between
u,v € V(G) is the length of the shortest path joining u, v. The
diameter d(G) of G is max(, ,d,, . The terminologies not
defined here can be seen in [1, 2]. The Weiner index W was
first put forward in chemistry by Harold Weiner to compute
the cardinality of the carbon-carbon bonds among all pairs
of carbon atoms in alkane. For a molecular graph G, it is
defined as

WG =) d,, 1)

u,veV

To read more about the chemical application of Weiner
index, see [3-6], and for its mathematical properties, see
[7, 8].

Milan Randic coined the term hyper-Wiener index
WW (G) of G [9] as

WW(G) =3 Y (d,+dk,) @

u,veV

To read more the properties of hyper-Weiner index, see
[9-12]. Hosoya polynomial was first introduced by Hosoya
[13] and it received the attention of a lot of researchers. The
same notion was independently put forward by Sagan et al.
[14] as Weiner polynomial G. The Hosoya polynomial
H (G, x) of G is defined as

H(G,x) = Z (xd’”). (3)

u,veV

Let a(G, k) be the number of ordered pair (u,v) in V
with d,, = k. Then, the above definition of Hosoya poly-
nomial can be expressed as

d(G)
H(Gx) =Y (a(G k)x" (4)
k=0
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The Hosoya polynomial has been investigated on
polycyclic aromatic hydrocarbons [15], benzenoid chains
[16], Fibonacci and Lucas cubes [17], zigzag poly-
hexnanotorus [9], carbon nanotubes [18], Hanoi graphs
[19], and circumcoronene series [20]. A significant impor-
tance of H (G, x) is that some distance-based topological
indices (TIs) such as W(G) and WW(G) of G can be
computed from the Hosoya polynomial as

W(G) = H (G: 1), WW(G) = H' (G; 1) +§H" (G; 1).

(5)

The readers can see the following papers [21-25] for the
results on distance-based TIs.

vV (mwW,) :{c,ulj,OSiSn— 1,1Sj§m},

E(mW,) :{cu{,OSiSn— 1,1§j§m}u{u1u1

Next, the theorem gives the expression for the Hosoya
polynomial of mW,,.

Theorem 1. Let m,n>1, then H(mW ; x) is of the form
H(mW,;x) = (mn+ 1) + 2mn)x

2 (7)
+|mn(n-3) +M X%

A
A

2

The cardinality of the above sets is « A = mn(n —3) and
oy, = (n(m-1))>(m)/2 and hence the coefficient
a(mW,,2)is equal to a(mW,,2) = ay +a, =mn(n-3)+

v ={(ulul,), 1<jsm,0<isn-1,2<l<n-2},
u
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2. Hosoya Polynomial of M-th Level
Wheel Graph

For n>2, the join K,VC,, is called a wheel graph denoted by
W.,..1. The vertex that comes from the graph K| is called the
core and is denoted by c. It has order n + 1 and size 2n. A
m-—level wheel graph denoted by mW , is the graph obtained
by taking m copies of the cycle C, and one copy of K, such
that all the vertices of each copy of C, are adjacent with the
core vertex c. The graph of mW , is depicted in Figure 1. Note
that mW , has mn + 1 vertices and 2mn edges. If we label the
vertices of cycle at the m-th level by uf, u?, 1}, ..., ul" |,
then the V (mW,) and the E(mW,) can be written as

, (6)

Jul,,0<i<n—1,1<j<m}.

Proof. It is easy to observe that the diameter of mW , is 2. In
order to derive the H (mW ; x), we compute the coeflicients
a(mW,,k) for k=0,1,2. By definition, we have
a(mW,,0) =mn+1 and a(mW,, 1) =2mn. To compute
a(mW,,2), we use the following notation:

a, = number of pair of vertices in set A. (8)

The cardinality of order pairs in V (mW ) with distance 2
can be characterized by the following two sets:

(9)

(ul,u)), O<isn-1,0<lsn-1,1<jsm-1, j+1<h<m}|.

(n(m-1)2(m)/2. Now, using  the values of
a(mW,,0), a(mW,,1), and a(mW,,2), we get the desired
result. |
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FIGURE 1: Multiwheel graph mW,,.

Corollary 1. Let m,n>1, then W (mW,) and WW (mW,)
are given as

2
W (,) = o) 23 L= D]

2
WW () = ) 3 - 3 0 D0

(10)

V(S(mwW,)) ={c,ulj,vf,x{, 0<i<n-1, lstm},

o J s
FU XU U X

E(S(mW,)) = {cvj, v/

It is easy to observe that order and size of are 3mn + 1
and 4mn, respectively. In the next theorem, we give the
analytic formula to derive the H (S(mW,); x).

J ulx! OsiSn—l,lstm}U{ujuj

3. Hosoya Polynomial of Subdivision of M-th
Level Wheel Graph

The subdivision graph S (mW,) of mW , is constructed from
mW ,, by adding a vertex into each edge of mW,. In other
words, we replace each edge of mW , by a path of length 2.
The graph of S (imW,) is depicted in Figure 2. If we label the
new vertices that we insert in the cycle at the j-th level by
x],x,...,x]_, for j=1,2,...,m, then the vertex set and
edge set of S(mW ) can be written as

(11)

iU, 0<i<n-—1, lstrn}.

Theorem 2. Let m,n>1, then the H(S(mW,); x) is of the

form

H(S(mW,); x) = (3mn + 1) + (4mn)x + [5mn + mn(n — 1)]x°

[(mn)z(m -1)
+ e —
2
+ [mn(n -4) +

Proof. Itis easy to observe that the diameter of mW , is 6. In
order to derive the H (S(mW,); x), we find the coefficients
a(S(mW,),k) for k=0,1,2,...,6. By definition, we have
a(S(mw,),0)=3mn+1 and o(S(mW,),1) =4mn. To

+3mn+mn(n-— l)]x3 + [m((m —Dn)> +mn(2n->5) + mn]x4

m((m—l)n)z] 5 [
I

(12)

2
mn(n—5)+w x°.

compute a(S(mW,), j) for j=2,3,4,5,6, we use the fol-
lowing notation:

o, = number of pair of vertices in set A. (13)
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FIGURE 2: Uniform subdivision of multiwheel graph mS,,.

The cardinality of order pairs in V (S (mW ,)) at distance

2 can be characterized by the following sets:

B, :{(c,ulj), 1<j<m,0<i<n- 1},

The  cardinality —of the above sets s
ag =ap =ag =ag =ag =mn, ap =mn(n-1), and
hence

a(S(mW,),2) = ap +ag +ap +ag +ap +ap 15)
=5mn+mn(n-1).

The cardinality of order pairs in V (S (mW,)) at distance
3 can be characterized by the following sets:

By :{(xl]’xszrl » 1=jsm, 0<i<n- 1}
(14)
C ={ex]), 1<jsmo<i<n-1},
C,={vlul,), 1<jsm 0<isn-1,1<l<n-1},
C3={(Vf>u{+k)’ 1sj£m,lsksm—j,OSiS”—LOSlS”‘I}’ (16)
Cy={ul.xl,), 1<jsm 0<isn-1},

Cs={(xlul,), 1<jsm 0sisn-1}.

The cardinality of the above sets is ag = ag, =a¢ =

mn, ap, = mn(n-1), ag, = (mn)* (m - 1)/2, and hence
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The cardinality of order pairs in V (S (mW,,)) at distance

a(S(mW,),3) = ac +ac +ac +ac +ac
" : ’ ’ ! ’ 4 can be characterized by the following sets:

_ (mn)’(m-1)

5 +3mn+mn(n-—1).

(17)

), lstm,OSiSn—l,ZSlSn—l},
™), 1<j<m—1,1<k<m-j,0<i<n-1,0<I<n-1},

L) 1sjsm, 0<isn-1,2<l<n-2},

ulul™), 1<jsm-1,1<ksm-j,0<isn-1,0<lsn-1}, (18)

The  cardinality of the above  sets s The cardinality of order pairs in V (S (mW,,)) at distance
ap, =mn (n- 2),0cD2 = m((m-1)n)?/2, ap, = mn(n— 3), 5 can be characterized by the following sets:
ap, = m((m - Dn)?*/2, ap, =mn, and hence
a(S(mW,),4) =ap +ap +ap +ap +ap,
1 2 3 4 5 (19)
=m((m - Dn)* + mn(2n - 4).

E, ={(uf,xj+l), 1<j<m, 0<i<n-1,3<l<n-2},

i

o (20)
E, ={(ul,x["), 1<jsm-1,1<ksm-j 0<i<n-1,0<l<n-1}.
The cardinality  of  the above sets is The cardinality of order pairs in V (S (mW,)) at distance
ag = mn(n—4), ag, = m ((m — 1)n)*/2, and hence 6 can be characterized by the following sets:
a(S(mW,),5) = agp +ap,
21
m((m - 1)n)* (21)
=mnn—4)+ —M——.
2
Fy={(x},x],)), 1<jsm, 0<isn-1,3<l<n-3}, )
F, ={(xl.x/"), 1<jsm-1,1<ksm-j 0<i<n-1,0<l<n-1}.
The cardinality = of  the above sets is Now, using the values of a(S(mW ), 0), a(S(mW,), 1),
ap = mn(n— 5),ocF2 = m((m - 1)n)*/2, and hence a(S(mw,),2), a(S(mw,),3), a(S(mw,),4),
a(S(mw,),5), and a(S(mW,),6), we get the desired
a(S(mw,),6) = Qp, + &p, result. O

m(m-vny

5 Corollary 2. Let m,n>1, then the W (mS,) and WW (mS,)

are

=mn(n->5)+



W (mS,,) = (4mn) + 2[5mn + mn(n—1)] + 3

+4[m((m —)n)? + mn(2n—-5) +mn] + 5[mn(n—4) +

+6[mn(n—5)+ 3

WW (mS,,) = (4mn) + 3[5mn + mn(n - 1)] + 6[

+ IO[m((m— Dn)* + mn(2n - 5) +mn] + 15[mn(n—4) +

+21[mn(n—5)+ 5

4. Conclusion

We examined the Hosoya polynomial and two vastly studied
TIs W(G) and WW (G) for multiwheel graph mW, and
subdivision of multiwheel graph mS,,.
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The second hyper-Zagreb coindex is an efficient topological index that enables us to describe a molecule from its molecular graph.
In this current study, we shall evaluate the second hyper-Zagreb coindex of some chemical graphs. In this study, we compute the
value of the second hyper-Zagreb coindex of some chemical graph structures such as sildenafil, aspirin, and nicotine. We also
present explicit formulas of the second hyper-Zagreb coindex of any graph that results from some interesting graphical operations
such as tensor product, Cartesian product, composition, and strong product, and apply them on a g-multiwalled nanotorus.

1. Introduction

A graph can be identified by a corresponding numerical
value, a sequence of numbers, or a special polynomial or a
matrix. Special attention is directed to chemical graphs
which constitute a wonderful topic in graph theory because
of the abundance of applications in chemistry or in medical
science [1, 2]. Topological index and coindex are invariant
under graph automorphism. The computation of these
numerical quantities is useful and well-proven in medical
information of new drugs without resorting to chemical
experiments [3, 4]. All graphs in this study are finite and
simple, let G be a finite simple graph on V (G) = n, vertices,
and E(G) = m, edges, and the degree of a vertex v is the
number of edges event to v, denoted by & (v). The com-
plement of G, denoted by G, is a simple graph on the same set
of vertices V (G), in which two vertices u and v are adjacent
by an edge uv, if and only if they are not adjacent in G.
Hence, uv € E(G) if and only if uv ¢ E(G). Obviously, we

have E(G)|J E(G) = E(K,), som = E(G) = (Z)—m, and

the degree of a vertex u in G is given by

0z (u) =n—-1-0g(u). (1)

Gutman and Trinajesti¢ [5] introduced the first and
second Zagreb indices as follows:

M@= Y 8 0= Y [6) +80)],

veV (G) uveE(G)

> 86 w)ds (v).

uveE (G)

(2)
M, (G) =

In 2008, Dosli¢ defined Zagreb coindices [6], which are
given as follows:

M, (G = )Y [66wd;W)],

uv¢ E(G) (3)
My(G) = Y [66wds;)).

uv¢ E(G)

Later in 2010, Ashrafi et al. have established the following
nice formulas for the precise relationship between the first
and second Zagreb indices and their coindices [7]:
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M,(G)=2m(n-1)-M,(G),

(4)
M, (G) =2m" - %Ml (G) - M, (G).

In 2013, Shirdel et al. [8] introduced degree-based
Zagreb indices named hyper-Zagreb index which is defined
as

HM(G)= Y (8c(w)+8:(v) (5)

uveE (G)

In 2013, Ranjini et al. introduced and defined the third
Zagreb index of a graph as [9]

ReZG3(G)= ) Scdc(M[o )+ (4

uveE (G)

Furtula and Gutman in 2015 introduced the forgotten
index (F-index) [10], which is defined as

F(G) = Z 6G3(V): Z [8G2(u)+6G2(V)]- (7)

veV (G) uveE (G)

In 2016, De et al. introduced forgotten coindex as
follows:

F(G = Y [8:w)+35 ()]
uv¢ E(G) (8)

=(n-1)M,(G) - F(G).

In 2016, Veylaki et al. [11] introduced hyper-Zagreb
coindex as follows:

HM(G) = ) (86(w)+38;(v). 9)

uv¢ E(G)

In 2016, Wei et al. [12] defined new version of Zagreb
topological indices. It is called the hyper-Zagreb index that is
defined as above. Then, the second hyper-Zagreb index of a
graph G is defined as the sum of the weights (J; (1)dg (»)?
and is equal to

HM,(G) = Y (8(u)d;(v)). (10)

uveE (G)

In 2020, Alameri et al. [13, 14] defined a new degree-
based of Zagreb indices named Y-index and Y-coindex as

Y@= ) [6w)+85 ),

uveE (G) (11)
YO = Y [0 W+ W],
uv¢ E(G)
where
Y(G) = (n-1)F(G) -Y(G). (12)

Here, we define a new version of Zagreb topological
indices, based on the hyper-Zagreb index that is defined as
above. It is called the second hyper-Zagreb index of a graph
G and defined as the sum of the weights (J; (u)d (v))?, such
that uv¢ E (G) and is equal to
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HM,(G)= Y (8c(w)d;(). (13)

uv¢E (G)

Eventhough, there are several research reports con-
tributing to the computation of topological indices of
chemical graphs. However, the studies on the computation
of topological coindices of octane isomers are very limited.
This study focused on one of the important topological
coindices named the second hyper-Zagreb coindex. Some
chemical graphs were obtained by this parameter. Moreover,
the second hyper-Zagreb coindex of graph operations was
computed and gave some of their applications such as a g-
multiwalled nanotorus.

2. Preliminaries

This section is devoted to some preparatory results that will
play a prominent role in our study.

Definition 2.1 (see [15, 16]). Suppose that G, and G, are two
connected graphs, then

(i) The tensor product G, ®G, of G, and G, is the
graph with V(G,® G,) =V (G,) xV (G,), and
E(G,®G,) = {(uy,uy) (v, vy) luy vy € E(G)),
u,v, € E(Gy)}

(ii) The Cartesian product G; x G, of G, and G, has the
vertex set V (G, xG,) =V (Gy) x V(G,), and
(a,x)(b,y) is an edge of G, xG, if a=b and
xy € E(G,) or ab € E(G,) and x=y.

(iii) The composition G, [G,] of G, and G, with disjoint
vertex sets V(G;) andV (G,) and edge sets E(G,)
and E(G,) is the graph with vertex set V (G,;) x
V (G,) and any two verticesu = (u;,v;) is adjacent
with v = (u,, v,) whenever (1, is adjacent with u,)
or (u; = u, and v, is adjacent with v,).

(iv) The strong product G, * G, of G, and G, is a graph
with V (G, *G,) =V (G;) xV (G,), and any two
vertices (u;,v;) and (u,, v,) are adjacent if and only
if  {u;=u,eV(G)) andvv,€E(G,)} or
{vi =v, € V(G,) and wu, € E (Gy)}.

Lemma 2 (see [17, 18]). Let G, and G, be graphs with
IV (Gl =ny, [V (G))| =ny, |E (G))| =my, and |E (G,)| =
m,. Then,
(i) |V (Gl ®G2)| = |V (G1 X G2)| = |V (Gl [G2])| =
[V (G, *G,)| = mn,
(ii) E(G,®G,)| = 2m;m,
(iii) |E(G; X Gy)| = mn, + nym,
(iv) |E(G,[G,])| = mn,® +myn,
(v) |IE(Gy *G,)| = mn, + nym, + 2m;m,
(vi) 8GI®G2(u, v) = (SG1 (u)(SG2 (v)
(@) g «q,(, v) = 8 (u) + 6g, (v)
(b) 8¢, 16,1 (> v) = myd¢ (1) + og, (v)
(c) 5G] +G, (u, v) = 661 (u) + 8Gz
() + 85, (W), ()
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Lemma 2.3 (see [17, 18]). Let G,,G, be two graphs with
ny, n, vertices and m,, m, edges, respectively, then.

(i) M, (G, ® G,) = M,(G,)M,(G,)
(ii)) M, (G, x G,) =n,M,(G;) +n M, (G,) + 8m;m,
(iii) M, (G,[G,]) = n,° M, (G,) + n,M,(G,) +
8n,m,m,
(iv) M,{(G; =G,) = (ny + 6m,)M, (G,) + 8m,m, +
(6m; +n,) M,(G,) +2M,(G,)M,(G,)

Lemma 2.4 (see [17, 18]). Let G, , G, be two simple graphs
with ny,n, vertices and m,,m, edges, respectively, then
(i) Y(G,® G,) =Y (G)Y(G,)
(ii) Y(G, x G,) =n,Y (Gy) + Y (G,) + 8m, F
(G,) + 8m,F (G;) + 6M, (G,)M, (G,)
(iii) Y (G,[G,]) = n,°Y (G,)+ m Y (G,) + 8n,>m,F
(G)) + 8n,m F (G,) + 6n,>M, (G,)M, (G,)
(iv) Y (G, *G,) =Y (G,)[4F(G,) + 6M,(G,)+ 8m,+
n,] + 4F (G,) [3M, (G,) + 2m,] + Y (G,) [4F (G;) +
6M, (Gy) + 8m, + n,] + 4F (G,) [3M, (G;) + 2m, ]+
Y (G)Y (Gy) + 12F(G))F (G,) + 6M, (G,)M, (G,)

Lemma 2.5 (see [17, 18]). Let G, , G, be two simple graphs
with n,n, vertices and m,, m, edges, respectively, then

(i) HM, (G, ® G,) = 2HM, (G,)HM, (G,)

(i) HM, (G, x G,) = m,HM, (G,) + n,HM, (G,) + 3F
(G)M,(G,) + 3F(G)M,(G)+m[Y(Gy)+
4ReZG; (G,)] + m, [Y (Gy) + 4ReZG;5 (G,)] + 4M,
(G))M, (G,) +4M, (G,)M, (G,)

(iii) HM, (G, [G,]) = n,° HM, (G,) + n,HM, (G,) +
n,'m, [Y (G,) + 4ReZG; (G))] + 4n,m,

ReZG; (G,) + 3n,* F (G, )M, (G,) + n,> M, (G,)

HMZ(G)+HM2(G):|: o+ Y
uveE (G) uv¢E (G)

S

ueV (G) veV (G

(86 Wds W] = Y. [0 (W]
) ve

[F(G,) + 4M, (G,)] + m;M*(G,) + 4n,m,
[4n,m, M, (G,) + M, (G,)M, (G,)]

(iv) HM, (G, *G,) =HM,(G,) [n, +10m, + 10m,
(G,) +8m,(G,) + 6F(G;) +4ReZG;(G;) +Y (G,)]
+HM, (G,) [n, + 10m, + 10m, (G,) + 8m, (G,) +
6F (G,) +4ReZG;5(G,) + Y (Gy)] + Y (Gy) [m; +
2M, (G;) +4M, (G,) + F(G;) +2ReZG;  (G)]IY
(G))[m, +2M,(G,) +4M, (G,) + F(G,) +
2ReZG;(G,)] + 4ReZG5(G,) [m+ 2M, (G))
+2M, (G)) +2F(G))] + 4ReZG5 (G,) [m, +
2M, (G,) + 2M, (G,) + 2F (G,)] + F(G,) [3M,

(G))  +8M,(G))] +4M, (G,)M,(G,) +4M, (G,)
M, (G,) +2HM,(G,)HM, (G,)+ 5F(G,)F(G,) +
6ReZG;(G,)ReZG;(G,)

3. Main Results

In the following section, we study the second hyper-Zagreb
coindex of some chemical graph structures, exactly silde-
nafil, aspirin, and nicotine.

Proposition 3.1. Let G be a graph with n vertices and m
edges. Then,

HM (G) = (n-2) M, (G) + 4m*> - HM (G). (14)

Proof. For the proof (Theorem 3.2), we refer to [10]. O

Proposition 3.2. Let G be a graph with n vertices and m
edges. Then,

HM, (G) = % M,*(G) —%Y(G) - HM, (G). (15)

Proof. By definition of the second hyper-Zagreb coindex
and using a similar method, as above in Proposition 3.1, then

] [86 (W8 (W]°

(16)

V(G)

:%[MIZ(G)—Y(G)].

Sildenafil (C,H30NO,S) is a drug used for pulmonary
arterial hypertension. It is taken by mouth or injection into a
vein (Figure 1) [19]. O

Proposition 3.3. The second hyper-Zagreb coindex of
sildenafil.

From the graph structure of sildenafil (Figure 1), it is
easy to obtain the dataset in Tables 1 and 2.

By Table 1 and definitions of the first Zagreb index and
the Y-index, we have

M, (sildenafil) = (7) (1) + (14) (4) + (11)(9) + (1) (16) = 178,
Y (sildenafil) = (7) (1) + (14) (16) + (11) (81) + (1) (256) = 1378.
(17)

Also, by Table 2 and definition of the second hyper-
Zagreb index, we have
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FIGURE 1: Graph structure of sildenafil.

TaBLE 1: Atoms dataset of the graph structure of sildenafil.

No. of atoms 7 14 11 1
S 1 2 3 4
v 1 4 9 16
&ty 1 16 81 256

TaBLE 2: Links dataset of the graph structure of sildenafil.

No. of links 2 3 7 16 [ 2
8 u 8%y 4 9 16 36 81 144

HM, (sildenafil) = (2) (4) + (3)(9) + (7) (16) + (16) (36)
+(6)(81) + (2) (144) = 1497.

(18)
Using Proposition 3.2, we have

HM, (sildenafil) = 13656. (19)

Aspirin (CoHgOy,) is known as acetylsalicylic acid (ASA).
Aspirin has many medicinal uses as it is a drug that is used to
reduce fever or inflammation, also given after a heart attack to
reduce the risk of death. Aspirin is also used as a nonsteroidal
anti-inflammatory drug because it has an antiplatelet effect by
inhibiting its normal functioning. Also, a lot of evidence in-
dicates that aspirin is considered a chemical agent that may

limit and reduce the incidence of general cancers (Figure 2)
(20, 21].

Proposition 3.4. The second hyper-Zagreb coindex of aspirin.

From the graph structure of aspirin (Figure 2), it is easy
to obtain the dataset in Tables 2 and 3.

Also, by Table 4 and definition of the second hyper-
Zagreb index, we have

HM, (aspirin) = (4) (9) + (3) (16) + (4) (36) + (2) (81) = 390.
(20)
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FIGURE 2: Graph structure of aspirin.

TaBLE 3: Atoms dataset of the graph structure of aspirin.

No. of atoms 4 5 4
ov 1 2 3
& 1 4 9
&y 1 16 81
TaBLE 4: Links dataset of the graph structure of aspirin.
No. of links 4 3 4 2
&u by 9 16 36 81
Using Proposition 3.2, we have
HM, (aspirin ) = 1206. (21)

Nicotine (C;oH;4N,) is an alkaloid that is widely used as
an anxiolytic. Nicotine is used as a drug to quit smoking, and
if it is not used well, it can lead to addiction. Many types of
research conducted on animals indicate that some inhibitors
found in tobacco smoke, such as monoamine oxidase, may
enhance some of the addictive properties of nicotine (Fig-
ure 3) [21, 22]. Any unexplained terminology is standard,
typically as in [22-24].

By Table 3 and definitions of the first Zagreb index and
the Y-index, we have

M, (aspirin) = (4) (1) + (5) (4) + (4)(9) = 60,

(22)
Y (aspirin) = (4) (1) + (5) (16) + (4) (81) = 408.

Proposition 3.5. The second hyper-Zagreb coindex of
nicotine.

From the graph structure of nicotine (Figure 3), it is easy
to obtain the dataset in Tables 5 and 6.

By Table 5 and definitions of the first Zagreb index and
the Y-index, we have

M, (nicotine) = (1) (1) + (8) (4) + (3) (9) = 60,

(23)
Y (nicotine) = (1) (1) + (8) (16) + (3) (81) = 372.

Also, by Table 6 and definition of the second hyper-
Zagreb index, we have
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FIGURE 3: Graph structure of nicotine.

TaBLE 5: Atoms dataset of the graph structure of nicotine.

No. of atoms 1 8

ov 1

&y 1 4 9
& 1 16 81

TaBLE 6: Links dataset of the graph structure of nicotine.

No. of links 1 6 4 2
8u 8%y 9 16 36 81

HM, (nicotine) = (1) (9) + (6) (16) + (4) (36)

24)
+(2)(81) = 483.
Using Proposition 3.2, we have
HM, (nicotine) = 1131. (25)

4. Applications

In the following section, we provide the exact value of the
second hyper-Zagreb coindex of graphs that are arisen from
mathematical operations such as the tensor product
G, ® G,, the Cartesian product G, x G,, the composition

G, [G,], and the strong product G, * G,. Also, we apply this
coindex on a g-multiwalled nanotorus.

Theorem 4.1. The second hyper-Zagreb coindex of G, x G,
is given by
2

_ 1
HM, (G, xG,) = E[nle (Gy) + M, (G,) + 8mym,]

_% [n,Y (G)) + m, Y (G,) + 8m,F(G,)

+8m,F(G,) + 6M, (G,)M, (G,)]

- [n,HM, (G,) + n,HM, (G,)
+3F(G,)M, (G,) + 3F (G,)M, (G,)
+m, [Y (G,) + 4ReZG; (G,)]
+m,[Y (G,) + 4ReZG, (G,)] + 4M,

< (G)M,(G,) +4M, (G,)M, (Gy)].
(26)

Proof. We have HM,(G)=1/2M*(G)-1/2Y(G)-H
M, (G), given in Proposition 3.2, and by replacing each G by
G, x G,, which yields HM, (G, x G,) = 1/2M? (G, X G,)
-1/2Y (G, xG,) - HM, (G, xG,), and by using (Lemma
2.2-Lemma 2.4), we obtain the required.

All proofs in Theorems 4.2-4.4 are given as Theorem
4.1. O

Theorem 4.2. The second hyper-Zagreb coindex of G, * G,
is given by

HM, (G, * G,) = -[(n, + 6m, )M, (G, ) + 8mymy (6m, +ny )M, (G,) +2M, (G,)M, (Gz)]z

1
2

1
2

[Y(G1)[4F (G,) + 6M, (G,) + 8m, + n,| + 4F (G,)[3M, (G,) + 2m,]

+Y (G,)[4F (G;) + 6M, (G,) + 8m; + n,] + 4F (G,)[3M, (G, ) + 2m, ]

+Y(G)Y (G,) + 12F(G,)F(G,) + 6M, (G;)M, (G,)] ~HM, (G,)

- [ny +10m, + 10M, (G;) + 8M, (G,) + 6F (G;) + 4ReZG;(G,) + Y (G,)]

+ HM, (G,) [n, + 10m, + 10M, (G,) + 8M, (G,) + 6F (G,) + 4ReZG; (G,) + Y (G,)]

+Y(G,)[m, +2M,(G,) +4M, (G,) + F(G,) + 2ReZG;(G,)] + Y (G, ) [m, + 2M, (G,) + 4M, (G,)

+F(G,) +2ReZG;(G,)] + 4ReZG; (G,) [m; + 2M, (G;) + 2M, (G,) + 2F (G,)].

+4ReZG;(G;) [m, +2M, (G,) +2M, (G,) + 2F (G,)] + F(G,)[3M, (G;) + 8M, (G,)]

+F(G;)[3M,(G,) + 8M,(G,)].

(27)



Theorem 4.3. The second hyper-Zagreb coindex of G, ® G,
is given by
1

HM,(G,® G,) = E[Ml (G)M, (Gy)]?

Y G)Y(G)] (28)

- [ZHMZ (GI)HMZ (GZ)]

Theorem 4.4. The second hyper-Zagreb coindex of G, [G,] is
given by

Proof. HM,(G,[G,]) = 1/2[";M1 (G)+ mM,(Gy) +8 m,
mymY (G,[G,]) = i3Y (G,) +nm,Y (G,) + Sngssz(Gl)+ 8n,
m F(G,) +6m2M, (G))M, (G,)]* +-12[n}Y (G)) +n, Y
(G,) + 8mm,F(G,) + 8nym, F(G,) + 615 M, (G))M, (G,)]
~[n,"HM, (G,) + m,HM, (G,) +n,*m,[Y (G,) + 4ReZG,
(G)] +4n, mReZG,(G,) +3n,"F(G,)M, (G,) + n,"M,
(G)DIF(Gy) +4M, (Gl +myM " (G,) +4n,  m,[4n,m,
M, (G)) + M, (G))M, (G,)]].

In [19, 25-27], authors computed some topological in-
dices of molecular graph of a nanotorus (Figure 4). In this
section, we compute the second hyper-Zagreb coindex of a
molecular graph of a nanotorus. O

Corollary 4.5. Let T=T[p; q] be the molecular graph of a
nanotorus. Then, the first Zagreb index of a q-multiwalled
nanotorus is M, (P, x T) = pq(25n — 18).

Proof. The proof of the above corollary is given by Gao et al.
in [3]. Obviously,

V(G| =V (P,)|=n,
|E(G))| =|E(P,)| =n-1,

[V (G,)| =IV(T)| = pg,

(29)
3

lE(Gz)l =|E(T)| =(5>Pq,

|M, (Gy)| =|M, (P,)| = (4n—6),

|M1 (G2)| :|M1 (T)| =9pq. O

Corollary 4.6. Let T=T[p; q] be the molecular graph of a
nanotorus. Then, the Y-index of a q-multiwalled nanotorus is

Y (P, xT) = pq(625n - 738). (30)

Proof. We have by Lemma 4.2,
Y (G, x G,) =mY (Gy) + mY (G,) + 8m,F(G,) (31)
+8m,F (G,) + 6M, (G,)M, (G,).

Then,
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FIGURE 4: The molecular graph of a nanotorus.

Y(P,xT)=(pq)Y (P,)+nY(T)+8(n—-1)F(T)
3 (32)
+8(3 ) paF (P,) + 6M, (P,)M, (T)

Therefore,
Y (P, xT) = (pq)(16n—30) +n(81pq) + 8(n—1)(27pq)
+ 12pg(8n —14) + 6 (4n — 6) (9pq)
= pq(625n — 738).
(33)
O

Corollary 4.7. Let T=T[p; q] be the molecular graph of a
nanotorus. Then, the second hyper-Zagreb index of a q-
multiwalled nanotorus is

HM, (P, xT) = (%) pq(2561n—3632).  (34)
Proof. We have by Lemma 2.5,
HM, (G, x G,) = n,HM, (G,) + n,HM, (G,)
+3F(G)M, (G,) + 3F (G,)M, (G,)
+m, [Y(G,) + 4ReZG; (G,)]
+m, [Y (G,) + 4ReZG; (G,)]
+4M, (G)M, (G,) +4M, (G,) M, (Gy).
(35)

As proof in Corollary 4.6, we have
1
HM, (P, xT) = (E) pq(2561n—3632),  (36)

where

243
|[HM, (P,)| = (16n - 40), [HM,(T)| = <T>pq. (37)
Now, we apply the second hyper-Zagreb coindex on a g-
multiwalled  nanotorus  using  Cartesian  product
operation. O

Corollary 4.8. Let T=T[p; q] be the molecular graph of a
nanotorus. Then, the second hyper-Zagreb coindex of a q-
multiwalled nanotorus is
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HM, (P, xT) = (%)pq[pq(ZSn — 18)? - 3186n + 4370).
(38)

Proof. We have by Proposition 3.2,
N 1 1
HM,(G) = M, (G) - SY(G) - HM(G). (39)

Then,

S 1 1
HM, (P, xT) = M,*(P,xT) -5Y (@~ HM, (P, xT).

(40)

By using Corollaries 4.5-4.7, we obtain

HM, (P, xT) = (%)pq [pq(25n - 18)* - 31861 + 4370].
(41)
O

5. Conclusion

In this study, we obtained the value of the second hyper-
Zagreb coindex of some chemical graphs, and we computed
some explicit formulas for their numbers under several
graph operations. Also, we applied the second hyper-Zagreb
coindex on a g-multiwalled nanotorus. The results of this
work may be used as a predictor, especially in the chemical
graph theory. For example, in quantitative structure-activity
relationships (QSAR) modelling, the predictors consist of
theoretical molecular descriptors of chemicals.
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A measurement of the molecular topology of graphs is known as a topological index, and several physical and chemical properties
such as heat formation, boiling point, vaporization, enthalpy, and entropy are used to characterize them. Graph theory is useful in
evaluating the relationship between various topological indices of some graphs derived by applying certain graph operations.
Graph operations play an important role in many applications of graph theory because many big graphs can be obtained from
small graphs. Here, we discuss two graph operations, i.e., double graph and strong double graph. In this article, we will compute
the topological indices such as geometric arithmetic index (GA), atom bond connectivity index (ABC), forgotten index (F),
inverse sum indeg index (ISI), general inverse sum indeg index ISI(, ), first multiplicative-Zagreb index (PM,;) and second
multiplicative-Zagreb index (PM,), fifth geometric arithmetic index (GA;), fourth atom bond connectivity index (ABC,) of
double graph, and strong double graph of Dutch Windmill graph DY,

This is also called the handshake lemma and was ob-
served by Lenford Euler in 1736. This observation is often
called the first theorem of graph theory [2].

The chemical graph theory connects graph theory and
chemistry to solve organic chemistry problems. Structured-
property (QSPR) and structured-activity (QSAR) relation-
ships are among the most important topics in this field.

1. Introduction and Preliminaries

For undetermined notations and terminologies, we rec-
ommend Robin J. Wilson book [1].

Assume that G is a simple graph that has no multiple
edges and loops. V (G) and E (G) are the vertex and edge sets
of graph G, respectively. The number of elements in V (G)

and E(G) represents the order and size of graph G. Vertex
degree is the number of edges joining to a vertex in a graph
G. A vertex degree is indicated by d, {r € V(G)} and
S, = ZseNG(,)dS, where N (r) = {s € V(G) | rs € E(G)}. The
following lemma is useful for computing the total number of
edges in a graph G.

Lemma 1. If G is a graph of size t, then
Z deg(r) = 2t. (1)

reV(G)

QSPR/QSAR research relies heavily on topological indices.
These topological indices analyse the structure of any finite
graph and are based on mathematical equations. Several
different kinds of topological indices exist, i.e., degree-based
topological indices [3-5], distance-based topological indices
[6], and counting-related topological indices [7, 8]. The
topological index concept comes from the work of Wiener,
who introduced the Wiener index, and thus, topological
indexing history begins.
The Wiener index is defined in [9] as follows:
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WG =3 Tds, @)

where (7, s) is the order pair of vertices in G and d (, s) is the
distance of vertex r-s in G.

The geometric-arithmetic index (GA) [10] of graph G is
defined as

2/d d,

GA(G) = I id (3)

rs€E(G)

The atomic bond connectivity index (ABC) of graph G is
defined [11] as

d. +d, -2
ABC(G) = \ ’7 (4)
rse;G) drds

The forgotten index (F) is defined [12] as
F(G = ) (d+d) (5)

rs€E (G)

The inverse sum indeg index (ISI) is defined [13] as

1
ISI(G) = — 6
) EEZ(G) 1/d, + 1/d, ©)

The general inverse sum indeg index (ISI(,) is defined
[14] as

ISI(a,[S) (G) = Z [drds]a [dr + ds]‘B’ (7)

rs€E(G)

where o and f are some real numbers.
The first multiplicative-Zagreb (PM,) and second mul-
tiplicative-Zagreb index index (PM,) is defined [15] as

PM,(G)= [] (4)% (8)
rs€E(G)

PM,(G) = [] (d.d,). 9)
rs€E(G)

The first multiplicative-Zagreb index (PM,) can also be
written in the sum of the edges [16] of G:

PM, (G) = H (d, +d,). (10)

rs€E(G)
The GA;(G) index is defined [17] as

24/, xS,

GAs(G) = ) S +S

rs€E(G)

, (11)

where S, is summation of degrees of all neighbor of vertex r,
and the same for S..
The ABC,(G) index is defined [18] as

S, +S, -2
ABC,(G) = 1/7 (12)
rseEZ(G) S” X SS

We suggest that readers read the following articles for
more detailed information on topological indices and mo-
lecular graphs [19-22].
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F1GURE 1: Dutch windmill graph Df.

Definition 1. A Dutch Windmill graph [23] is the graph
which is formed by taking the p copies of the cycle graph by
taking one mutual vertex. It is denoted by D}, where
p=> land n> 3. The order of Dutch Windmill graph is (n —
1)p + 1 and size pn. Dutch Windmill graph D}, is depicted in
Figure 1.

Definition 2. The double graph of graph G is represented by
D|[G]. Assume two copies of a graph, and join each vertex in
one copy to its neighbor in the other copy in order to
produce the double graph of the graph [24]. For example, the
double graph of Dutch Windmill graph D? is depicted in
Figure 2.

Definition 3. 'The strong double graph SD [G] of the graph G
is attained by taking two graphs and joining the closed
neighbourhoods of each vertex in one graph to the adjacent
vertex in the other graph [25]. For example, strong double
graph of graph G is depicted in Figure 3. A new type of
equienergetic and L-equienergetic graph has been found by
using strong double graphs.

The following is the structure of this paper. Sections 2
and 3 will analyse some degree-based topological indices of
double graphs and strong double graphs of Dutch Windmill
graphs, respectively. In Section 4, we provide concluding
remarks for the entire paper.

2. Degree-Based Topological Indices of Double
Graph of Dutch Windmill Graph D§

We will compute the vertex-based indices of the double
graph of the Dutch Windmill graph D} in this section.

Theorem 4. Let D(DY) be the double graph of Dutch
Windmill graph DY. Then, the geometric arithmetic index of
D(DY) is

GA[D(D})] =4p[1+ﬂ ] (13)

1+p

Proof. The total number of vertices and edges in the double
graph of Dutch Windmill graph is 2[2p + 1] and 12p, re-
spectively. In [D (Dé’ )], we have 4p vertices of degree 4 and 2
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FIGURE 2: (a). Dutch windmill graph D3. (b). Double graph of Dutch windmill graph D3.

o o o ° o ©
G

SD[G]
FIGURE 3: Strong double graph SD[G] of graph G.

vertices of degree 8p. We spilt the edges of [D(D%)] into
those of the type E[d,,d,] in which r, s are edges. [D(Df)]
contains edges of type E 4, 4) and E 4 4,), and Table 1 presents
the edges of these types.

By applying equation (3) and Table 1, we acquire the
desired results, i.e.,

2.
ydp +d

GAIG] =

rs€E(G

2+/d,d

res

GA[D(DS)] =|E (4|
wer (o)) & + s

NI
rsee([D(pf)]) “r s

GA[p(0)] - 49 255 | +sp 2L

4+4 4+4p

+|E ap)

GA[D(D%)] = 4p[1 + VP ]

[1+ p] -

Theorem 5. Let D(D}) be the double graph of Dutch
Windmill graph DY. Then, the ABC index of D (D?) is

3
p
p
D (D3)
(b)
TaBLE 1: Partitioning of edges.
E [dr> ds] E(4,4) E(4,4p)
Number of edges 4p 8p
ABC[D(D})] = pV6 +24/2p(1 + 2p). (15)

Proof. By applying equation (4) and Table 1, we acquire the
desired results, i.e.,

ABC(G) = Z

d,+d, -2
rs€E (G) drds ,

ABC[D(D‘;)] :lE(4,4)| Z
rseE ([D(D7)])

d +d. -2
HEwan| Y g
wer(((on)) | 9

 @vi2 fvap-2
EEA BT :

(16p)
e I2+4p
_4p\/;+8p —(16p)’
ABC[D(D)] = pV6 +2+/2p(1 +2p).

d,+d, -2
d,d

(16)
O

Theorem: 6. Let D (DY) be the double graph of Dutch
Windmill graph DY. Then, the forgotten index of D (DY) is

F[D(D})] = 128[p +(1+ p*)]. (17)

Proof. By applying equation (5) and Table 1, we acquire the
desired results, i.e.,



F(G= )Y (d+d)

rs€E(G)
FID(D))] =[Eual Y (d/+d)
rseE[D(D})]
el T (o) O
rseE[D(D})]
=4p(4” +47) + 8p(4°+(4p”)
F[D(D})] =128[p +(1+ p*)]. o

Theorem 7. Let D(D}) be the double graph of Dutch
Windmill graph DY. Then, the inverse sum indeg index of
D(D?) is

(19)

4
1S1[D(DY)] = Sp[l tq fp)].

Proof. By applying equation (6) and Table 1, we acquire the
desired results, i.e.,

_ ; _ (drds)
ISt[G] = rsé;@ 1/d, +1/d, m;@ (d, +d,)
d,d,)
ISI[D(D%)] =|E 44| _(dd)
LCHEC I rary
(d,d,)
+|E 3
Fuo rseE[Dzwg)] (d, +d)
(4)(4) (4) (4p)
1S1[D(DY)] = 4p[ s 4)] + Sp[ (4+4‘;) ,
4
1s1[D(DY)] = Sp[ a fp) .
(20)
O

Theorem 8. Let D(D}) be the double graph of Dutch
Windmill graph DY. Then, the general inverse sum indeg
index ISI , 5 of D(DY) is
IS5 [D(DF)] = 4p[16]°[81F + 8p[16p]* [4(1 + p)I.
(21)

Proof. By applying equation (7) and Table 1, we acquire the
desired results, i.e.,

Journal of Chemistry

ISI(ﬂ)'}) (G) = Z [dudv]a [du + dv]ﬁ

rseE(G)

= |E(4,4)| [drds]a [dr + ds]ﬂ
rseE[D(D})]

+ ‘E (44p) ‘ >

rseE[D(D)]
181 (0 [D(DS)] = 4pl(4) (4)]" [4 + 41
+8p[(4) (4p)]* [4 + 4p)F,
IS, [D(DF)] = 4pl16]" [8)F
+8p[16p]* [4(1+ p))F.

(d,d.)*[d, +d,]",

(22)
O

Theorem 9. Let D (DY) be the double graph of Dutch
Windmill graph Df. Then, the first multiplicative-Zagreb
index of D(DY) is

PM, [D(D%)] = 1024p” (1 + p). (23)

Proof. By applying equation (9) and Table 1, we acquire the
desired results, i.e.,

PM, (Gl = [] (d,+d,)

rs€E(G)

PM; [D(Dg)] = |E(4,4)| 1—[ (dr + ds)
rseE[D(D})]
Ea| ] (d+a)  ©Y
rseE[D (D})]
PM, [D(Df)] = 4p (4 +4) x 8p (4 + 4p),
PM, [D(DF)] = 1024p° (1 + p).
O

Theorem 10. Let D (DY) be the double graph of Dutch
Windmill graph DY. Then, the second multiplicative-Zagreb
index ofD(Df) is

PM, [D(Df)] = 8192p°. (25)

Proof. By applying equation (9) and Table 1, we acquire the
desired results, i.e.,
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PM, [G H (d,.d Theorem 11. Let D(Dg) be the double graph of Dutch
rseE(G) Windmill graph DY. Then, GA5(G) index of D (DY) is
PMZ[D(D3)] =|E(4,4)| 1_[ (d,.d,) GA5[D(D§)] = 4p (P+1)[ 1 N 4p\2 @)
rsek[D(Df)] (p+1) [Bp+1]

26

X|E(4,4p)| [T (d.d) (26)
rseE[D (D?)] Proof. We spilt the edges of [D(D3})] into those of the type
N EIS,,S,] in which “rs” is an edge. [D (Dg )] contains edge of
PM, [D(Ds )] =4p(4x4)x8p(4x4p), the type Eg (.18 (p+1) A0 E[g(ps1,16p)> and Table 2 presents

PM, [D(Dg)] = 8192p°. the edges of these types.
O By applying equation (11) and Table 2, we acquire the
desired results, i.e.,

GA, (G) = Z Z—VSTXSS

rs€E(G) Sr + SS

>

2./5. %S, 2./5. %S,
z 7x+'E[8(p+1)16p]‘ Z —X

= |E[8<p+1>,8(p+1)1|

rep[p(of)] ot Ss ree[p(of)] ot Ss 08)
N 16+/(p+1) 8+/8p(p+1)
GAS[D(D3)]_4P[2[8(p+1)]]+8 [ 83p + 1]
1 4p\2
GAL[D(D)] = 4p(p + 1)[(p+ e 1]].
O

Theorem 12. Let D(D%) be the double graph of Dutch  Proof. By applying equation (12) and Table 2, we acquire the
Windmill graph DY. Then, the fourth atom bond connectivity ~ desired results, i.e.,
index of D (DY) is

(4p-1)
ABC,|D(Df 16p—14
[p(h)] = pra) o =D
(29)
S, +8,-2
ABC,(G)= ) ﬁ
rs€E(G) r X Os
Sr+Ss_2 S,+Ss—2
“[Eogmapn] X TS el X TS
rseE[D (Df)] ! ¢ rseE[D (DY)] r s

(30)

oV o 16715 ], T [66p— 1)
ABC, [D(D1)] = 4p[ [8(p+1)]2]+8p[ 128p(p+1)]’

3(4p-1
s o) sy T o 2



TaBLE 2: Partitioning of edges.

E[S,,S,]
Number of edges 4p 8p

E[S(p+1),8(p+1)] E[8(p+1),16p]

3. Degree-Based Topological Indices of Strong
Double Graphs of Dutch Windmill Graph DY

We will compute the vertex-based indices of the strong
double graph of the Dutch Windmill graph D} in this
section. The strong double graph of D? is depicted in
Figure 4.

Theorem 13. Let SD (DY) be the strong double graph of
Dutch Windmill graph D}. Then, the geometric arithmetic
index of SD(Dg) is

Journal of Chemistry

8p\/20p +5

GA[SD(Df)] = 23

1+6p+ (31)

Proof. 'The total number of vertices and edges in [SD (DJ;J )]
are 2[2p + 1] and 14p + 1, respectively. In [SD(Dé’)], we
have 4p vertices of degree 5 and 2 vertices of degree 4p + 1.
We spilt the edges of [SD(Dg )] into those of the type
Eld,,d,] in which “rs” is an edge. [SD (D‘é7 )] contains edges
of the type E(s5), E(s4p1)> and E(4p,14p.1), and Table 3
presents the edges of these types.

By applying Equation (3) and Table 3, we acquire the
desired results, i.e.,

GA[G] = 2y/d,d,
recE(G) Fr + s
2+/d.d, 24/d.d,
lEaol X G HEsan qd
rseE([D(DD)]) 7 0 rseE([D(D)]) 7T
2+/d.d
+|E(4p+1,4p+1) d+d (32)
rseE([D(D5)]) T
V25 2+/5(4p + 1) 2/Gp+ D) {@Ap+1)
(6p) (p)5+(4p+1) ()(4p+1)+(4p+1)’
8p20p + 5
P\ = B
GA[SD(Df)] =1+6p+ 3
sD(D¥) is o
Theorem 14. Let SD(DY) be the strong double graph of (33)
Dutch Windmill graph DY. Then, ABC index for 12p\f (p+1) 22p 33
ABC[SD(D})] = + 16p\J(20p+5) Up+ 1)
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SD (D3)
() (b)

FIGURE 4: (a) Dutch Windmill graph D2. (b). Strong double graph of Dutch Windmill graph Dj.

TaBLE 3: Partitioning of edges.

E[dr: dS] E(s,s) E(5,4p+1) E(4p+1,4p+1)
Number of edges 6p 8p 1

Proof. By applying equation (4) and Table 3, we acquire the

desired results, i.e.,
d +d. -2
ABC[G] = ) \ﬁ,
rs€E(G) res

d, +d, -2
ABC[SD(DY)| =|Eis5| ) rtiic;

rseE([D(DF)]) e

d +d. -2
+'E(5,4p+1)| Z —
wer((pop) | Ak
d +d. -2
Z r s .
wer([p(op)]) Vs

8 5+(p+1)-2  [(8p+2)-2
ABC[SD<D§)]:6P\/£+8P \/I i+ D +\J’ <ZP+1)2 |

(34)

+ 'E(4p+1,4p+1)

_12p\/§+16 (p+1) . 24/2p
E \@op+5 " (4p+1)

ABC[sD(Df)]



Theorem 15. Let SD (DY) be the strong double graph of
Dutch Windmill graph DL. Then, the forgotten index of
SD(D5) is

F[SD(D})] = 128p° + 96p” + 524p + 2. (35)

Proof. By applying equation (5) and Table 3, we acquire the
desired results, i.e.,

F(G)= ) (d+d)

rs€E(G)

F[SD(Dg)] =[Ees) Z
rseE[D (D})]

Y o (d+d)

rseE[D(D})]

2 (d+d)

rseE[D(D})]

(d7 +d7)

+|E(5,4p+1)

+|E(4p+1),(4p+1)

= 6p(50) +8p(25+16p” +8p + 1)
+1[(16p° +8p+1) +(16p” +8p + 1)),
F[SD(D})] = 128p° + 96p* + 524p + 2.

(36)
O

(d,d,)
(d,+d,)

SIGI = )

rs€E(G)

1
vd, + 1/d, ”Z

€E(G)

Z (drds)

1SI[SD(D)] =[E s 5| d, +d) +E apn]

rseE[D (DY)]

Z (drds)

rseE[D(DY)]
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Theorem 16. Let S D (DY) be the strong double graph of
Dutch Windmill graph DY. Then, the inverse sum indeg index
of S D(DY) is

2
ISI[SD(D)] = 15p + 4p 20p+5] +[(4p”)

(2p+3) 2(4p+ 1) |
(37)

Proof. By applying equation (6) and Table 3, we acquire the
desired results, i.e.,

(4,4,
Z (d,+d,)
(38)

+ |E(4p+1),(4p+1)|
(d, +d,) rseE[D (D!)]

ISI[SD(D?)] - 6P[E (5+4p+1)

20p+5]+[(4p+1)2

ISI[SD(Df)] = 15p + 4p[ 3| |2psn |

Theorem 17. Let SD(D}) be the strong double graph of
Dutch Windmill graph DY. Then, general inverse sum indeg

index ISI o 3) of SD(D%) is

8p+2)

251 ¢ [(5)(4p+1)J +[(4p+1)(4p+1)])

ISI, 5 [SD(DF)] = 6p[25]" [10]? O

+8p[20p +5]° 2(2p+3))F  (39)
+[(ap+17]" 2(4p+ D).
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Proof. By applying equation (7) and Table 3, we acquire the
desired results, i.e.,

ISI(a,[S) (G) = Z [drds]a[dr + ds]ﬁ

rs€E(G)

= |E(5,5)| z [drds][x [dr + ds]ﬁ +‘E(5,4p+1)
rs€E(G)

rs€E(G)

=6p[25]" [10)° + 8p[(5) (4p + DI* [4p + 6] + [ (4p + 1’| [(4p + D) + (4p + D))

ISI o 5 [SD(DB)] = 6p[25]° (101 + 8p[20p + 51 [2(2p + 3))F + [ (4p + 1)*]" [2(4p + D)),

Theorem 18. Let SD (D) be the strong double graph of
Dutch Windmill graph DY. Then, the first multiplicative-
Zagreb index of SD (DY) is

PM, [SD(D%)] = 15360p" + 26880p° + 5760p°.  (41)

Proof. By applying equation (10) and Table 3, we acquire the
desired results, i.e.,

PM,[G] = [] (d,+d,),

rs€E(G)

PM,[SD(DF)] =|Eiss [
rseE[D (D})]

X'E(5,4p+l)' H

rseE[D (D})]

X 'E(4p+1,4p+1)| H
rseE[D (D})]

PM, [SD(D%)] = 6p(10) x 16p(2p + 3) x (8p + 2),

(d, +d,)
(d, +d,)

(d, +d),

PM, [SD(D%)] = 15360p" + 26880p” + 5760p.

(42)

Theorem 19. Let SD(DY) be the strong double graph of
Dutch Windmill graph D5. Then, the second multiplicative-
Zagreb index of SD(DY) is

PM, [SD(D%)] = (4p + 1)*(24000p° + 6000p” ). (43)

9
Z [drds]a [dr + ds]lg +|E(4A17+1),(4p+1) Z [drds]a [dr + ds]ﬁ
rs€E(G)
(40)
O

Proof. By applying equation (9) and Table 3, we acquire the
desired results, i.e.,

PM,[Gl = [] (d.d,),

rseE(G)

PM, [SD(D@’)] = |E(5,s)| H
rseE[D (DY)]

><|E(5,4p+1)| H

rseE[D (DY)]

><|E(4p+l),(4p+l)| H
rseE[D (DY)]

g)] = 6p(25) x 40p(4p+ 1) x (4p + 1),
PM, [SD(D%)] = (4p + 1)*(24000p° + 6000p" ).

(d,.d.)
(d,.d,)
(d,.d,),

PM, [D(D

(44)

Theorem 20. Let SD(D;;7 ) be the strong double graph of
Dutch Windmill graph DY. Then, the GA index of SD (DY) is

2p(48p +27 +4+[8p(24p +52) + 17)
- 16p +9 ’

GA;[SD(D})]

(45)

Proof. We spilt the edges of [SD (D‘;7 )] into those of the type
E[S,,S,] in which “rs” is an edge. [SD (Df )] contains edges

of the type E (55.17,8117)> E (8p+17,24p+1)> 30 E (24p.1 24p41)> and
Table 4 presents the edges of these types.



10 Journal of Chemistry

By applying equation (11) and Table 4, we acquire the
desired results, i.e.,

24/S, xS
GA;(G) = Z S—SS)
rs€E (G) r 9
24/S, xS,
GA5[SD(D§)] :|E(8p+17,8p+17)| Z 78 +S
rseE[D(D})] " S
24/S, xS 24/, X S
+|E(8p+17,24p+1)| z S 1S +|E(24p+1,24p+1)| Z T (46)
rseE[D(D})] " ¢ rseE[D(D})] 7 ¢
_2@8p+17) L 5p 2 @ FINCEPT D 2 (24p +1)°
- op 16p + 34 32p+18 48p +2
GA [SD(DP)] _ 2p(48p +27 +4+/8p(24p +52) + 17).
> ’ 16p +9
O

Theorem 21. Let SD(D%) be the strong double graph of  Proof. By applying equation (11) and Table 4, we acquire the
Dutch Windmill graph Df. Then, the fourth atom bond  desired results, i.e.,
connectivity index of SD (DY) is

12p/Ap+ [

ABC, [sD(DF)] = ZEVEIPE 55 2p+1
8p+17 \8p(24p+52)+17
443p

Tapr

(47)

S, +S, -2
rs€E(G) r X O

S, +S, -2
Z'E(8p+17,8p+17)| Z rs sz
rseE[D(DY)] reTs
S, +S, -2 S, +S, -2
+ |E(8p+17,24p+1)| Z ﬁ + |E(24p+1,24p+1)' Z ﬁ, (48)
rseE[D(D})] TS rseE[D(D})] TS

L 16p + 32 [ 32p+16 48p
ABC, [SD(Df)] = 61’[ G+ 17)2] +8p[\j(8p+ 17) (24p + 1)] +[\ (24p + 1)2]’

ABC, [sD(D%)] = L\/m+32p[ I 2p+1l ]+ 4/3p

8p+17 \8p(2ap+52)+17 | 24p+1
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TaBLE 4: Partitioning of edges.

E[S,.S,] E (3pr17.8p+17)

E(8p+17,24p+1) E(24p+1,24p+1)

Number of edges 6p

8p 1

4. Conclusion

The topological indices provide key information about a
molecule’s chemical structure and chemical activity, for
example, in order to derive quantitative structure-activity
relationships (QSARs). These models are derived by ap-
plying statistical measures of the molecular structure or
properties with descriptors representative of the biological
activity (including undesirable side effects) of chemicals
(drugs, toxicants, and environmental pollutants). Drug
discovery, lead optimization, and toxicity prediction are just
a few of the areas in which QSAR is being used. Our purpose
in this article was to construct two new graphs from the
Dutch Windmill graph using two graph operations, namely,
double graph and strong double graph. After that, we cal-
culated some vertex-based topological indices of double
graph and strong double graph of the Dutch Windmill
graph. Many graph theory applications rely on graph op-
erations. We recommend the readers to compute the to-
pological indices for double and strong double graphs of
some other classes of graphs or networks.
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A topological index is a numerical descriptor of the molecular structure based on certain topological features of the corresponding
molecular graph. Topological indices are scientific contemplations of a graph that outline its subatomic topology and are graph-
invariant. In a QSAR/QSPR study, topological indices are utilized to anticipate the physico-concoction resources and bioactivity
of compounds. In this paper, we study some distance-based topological indices such as eccentric connectivity index (ECI), total
eccentricity index (TEI), and eccentricity-based Zagreb index for dominating David-derived networks (DD network) and provide
exact formulae of the said indices. These outcomes are valuable to organize the science of hidden topologies of this network.

1. Introduction and Preliminary Results

Graph theory has given chemists a decent variety of helpful
apparatuses in terms of topological indices. Atoms and
molecular compounds are regularly displayed by a molecular
graph. An atomic graph is a delineation of the basic equation
of a synthetic compound as far as graph hypothesis whose
vertices deliver a connection between the molecules of
compound and edges relate to synthetic bonds. In the
QSAR/QSPR contemplate, topological files are utilized to
anticipate physico-concoction properties and bioactivity of
the substance mixes. A topological index is a number related
with a graph that portrays the topology of diagram; fur-
thermore, it is invariant under graph automorphism. Dis-
tance-based topological records are of incredible significance
and assume an essential part in concoction diagram hy-
pothesis and especially in hypothetical science.

Let G be an n-vertex molecular graph with vertex set
V(G) = {v;,v,,...,v,} and edge set E(G). The vertices of G
correspond to atoms, and an edge between two vertices
corresponds to the chemical bond between these atoms. For

a given vertex u € V (G), the eccentricity €(u) is defined as
the largest distance between u and any other vertex v in G.

The eccentric-connectivity index of graph G is denoted
as £(G). It is a distance-based topological index and is
defined as

§G)= ) deg(we(w). (1)

ueV (G)

When the vertices’ degrees are not taken into account,
we obtain the total eccentricity index of graph G defined by

(@)= ) (e 2)

ueV (G)

A new version of Zagreb indices of a molecular graph G
defined by Ghorbani and Hosseinzadeh [1] in terms of
eccentricity are expressed as follows:

M{(G)= Y (e,

veV (G)

M;(G)= Y  (ewe(v).

uveV (G)

(3)
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This paper first contains a little insight of the graph and
algorithm of dominating David-derived networks. Then,
the labeling of critical vertices of dominating David-de-
rived network is provided. Then, computation of eccen-
tricities of vertices is given. In the last segment, we process
and determine some distance-based topological indices,
such as eccentric-connectivity index (ECI), total-eccen-
tricity index (TEI), and eccentricity-based Zagreb index of
dominating David-derived DDD [n]. For some recent re-
sults, see [2, 3].

2. Algorithm and Insight into Dominating
David-Derived Networks

Simonraj [4] gave a construction algorithm for the domi-
nating David-derived networks, and DDD originated from
the graph of star of David. The algorithm for constructing
the DDD network (of dimension #) is as follows.

Consider a honeycomb network HC[n] of dimension .
Subdivide all edges of HC[n] by inserting a new vertex in
each edge. Then, connect every pair of vertices lying at
distance four in each hexagon. After removing the original
hexagonal network from the resulting graph, subdivide each
horizontal edge into two edges to obtain the dominating
David-derived network DDD[n] of dimension 7.

The graph DDD[1] is shown in Figure 1(a) is obtained
from the star of David as described in [4]. The graphs
DDD (3] and DDD|5] constructed from the same algorithm
are shown in Figures 1(b) and 1(c).

By an easy calculation, one can find the order and size of
DDD[n], ie., [V(DDD[n])| = 15n* -3n+6  and
|E(DDD[n])| = 33n* - 191 + 11.

Imran et al. [5, 6] studied the general Randic index,
ABC index, and GA index of DDD networks. Liu et al. [7]
studied some degree-based indices of David-derived
networks DD([n], dominating David-derived networks
DDD|[n], and regular triangulene silicate network
RTSL[n]. Farooq et al. [8, 9] studied some degree-based
indices of some interconnection networks. Baig et al. [10]
studied the Randic index, ABC index, and GA index of
DDD networks. Dimitris [11] has also studied star of
David which is a family of interwoven molecular inor-
ganic knots, prepared by the employment of naph-
thalene-2,3—-diol in 3 d/4f-metal cluster chemistry.
David-derived networks are being investigated for pos-
sible uses in information sciences and other fields. They
have huge range of applications in nanoscience, biology,
and chemistry. Bajaj et al. [12, 13] studied topological
models for the prediction of anti-HIV activity of
acylthiocarbamates. For more detailed study on the in-
dices, see [14-18].

In this paper, we compute and derive closed analytical
formulae for the distance-based topological indices such as
ECIL, TEI, and eccentricity-based Zagreb indices of some
families of DD networks discussed in Section 4. The ECI
gives the best forecast exactness rate with contrast to
different indices used in different natural exercises, for
example, anti-inflammatory activity, anticonvulsant
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activity, and diuretic activity. Thus, these indices have the
potential to be used in QSAR/QSPR studies. The obtained
results are useful in to explore the certain phyisco-chemical
properties of these chemical networks, for example, anti-
inflammatory activity, anticonvulsant activity, and diuretic
activity.

3. Main Results

3.1. Labeling of Critical Vertices in Dominating David-Derived
Networks. Using the symmetry of the graphs of dominating
David-derived networks DDD [#], it is suffice to calculate the
eccentricities of only one quadrant of DDD [n]. The vertices
of one quadrant of DDD|[n] are divided into six groups,
namely, a,b, ..., f. Each vertex of group x, where x is any of
a,b, ..., f, is represented by x; ;, where i refers to the col-
umn and j refer to the position of vertex x in each column.
Here, the index i increases towards the left and j increases
downwards. For n = 3, one quadrant of DDD (2) is labeled in
Figure 2.

There are some vertices in DDD [n] which exhibit dif-
ferent patterns of eccentricities as compared to the eccen-
tricities of other vertices. These vertices are referred to as
critical vertices of the graph DDD [n]. Thus, the vertices in
one quadrant of DDD([n] are further divided into three
regions by the vertical axis represented by a dotted line in
Figure 2. Regions [ and II, respectively, contain the vertices
lying above and below the critical vertices and region III
contains the rest of the vertices. The critical vertices of the
graph DDD [#] are included in region [. For n = 3 and 5, the
edges incidented with the critical vertices are represented by
bold lines in Figure 2. The three regions are also labeled in
the same figure.

3.2. Eccentricities of Dominating David-Derived Network
DDD(n]. The grid vertices of DDD|[n] are the vertices of
the underline grid represented by bold edges in Figure 3.
Note that the grid vertices of DDD|[n] only belong to the
groups a, ¢, and e. Let a;; (resp., ¢;; and e; ;) denotes a grid
vertex in the i" column of group a (resp., c and ), where k
denotes the position of grid vertex in column i. For n = 5,
the grid vertices lying in region II of DDD|[5] are also
shown in Figure 2. The eccentricities of vertices of
DDD(n] lying in region II are calculated by the help of
eccentricities of grid vertices. The eccentricities of ver-
tices of DDD|n] lying in region II are given by the fol-
lowing cases.

Case 1. When n = 1(mod4). The eccentricities of grid
vertices a;;’s are €(a; (3,2)+ (9i2)+3k—7) = 61 + 6i + 4k — 12 for
i=1(mod2), &(a; )4 (9i2)3k-(13/2)) = 61 + 6i + 4k — 12
for i=0(mod2), where 1<i<(n-1)/ 4+1,1
<k<n/2-2i+5/2. The eccentricities of a;;’s above and
below grid vertices of type a are given by
€(a; (301204 (9i12)+3k-8) = 61 + 61 + 4k — 13, where 2<k < (n/2)
=2+ (5/2) and 1<i< (T’l - 1)/4 & (ai’(3n/2)+(9i/2)+3k_6)
=6n+6i+4k—-10, where 1<k<n/2-2i+3/2 and
1<i< (n-1)/4



Journal of Chemistry

v‘. “v’!‘"x‘x’z‘v:‘ “
RN XS 0"'30‘»‘0"

»’««cu'n,u'o«««»».
v ’ ’ .:"‘v. "v"" ‘“'
0‘,‘3 uu' 'u'o ,’.,‘0'00:,0

'mmc x«mmm».«m»'

«.3.3232.2’ (XXX
i
«mo'mom
'mm'«'m ook

&

'.
.

XXX TR « «
BRERK T SRR
X m‘wm‘».‘ ‘.c‘n"‘a‘u“c‘n X

XX 0'«' u ‘o,s‘ «‘0 XX

@ (b) ()

XX 5
XXX

0000800000
TR
RREXIALS,

CRTREXK e

(a) (b)

FIGURE 2: The vertex labeling of the dominating David-derived network DDD (3) (a) and grid representation of DDD(5) (b).

The eccentricities of grid vertices ¢;;’s are The eccentricities of grid vertices e;;’s are
S(Ci,(3n/2)+(9i/2)+3k—5) =6n+ 6i + 4k -10 for i=1 (mod 2), S(ei)(3n/2)+(9i/2)+3k_4) =6n+6i + 4k -8 for i=1 (mod 2),
€(C; (32 (9i/2)+3k— (13/2)) = 61 + 61 + 4k — 10 for  e(e; 32+ 9i2)r3k-3) = 6N+ 6i +4k -8 for i=0(mod2),

i=0(mod2), where 1<i<(n-1)/4,1<k<n/2-2i+ 3/2. where 1<i< (n—1)/4,1<k<n/2 —2i+ 1/2. The eccentric-
The eccentricities of «¢;;’s above and below grid ities of¢;;’s above and below grid vertices of type e are given
vertices of type ¢ are given by €(c; ;3,204 0i2yr3k-4) =+ by (e 3u2)s(0ir2)i3k-5) = 6n+ 6i +4k -9, where 2<k
6i + 4k — 8, where 1 <k<n/2-2i+3/2and 1<i< (n—-1)/4 <n/2-2i+1/2 and 1<i< (n-1)/4 €(e; 32+ 9ir2)+3k-3) =

€(C; (am2y+ 9if2)+3k—6) = ON + 6i + 4k — 11, where 2<k<n/2-  6n+6i+4k-6, where 1<k<n/2-2i+1/2 and
2i+3/2and 1<i< (n-1)/4. 1<i<(n-1)/4.
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FIGURE 3: The grid vertex labeling of the dominating David-derived network DDD (5) along with critical line in bold.

Similarly, eccentricities of b;, d;j, and f;; in the i
column are &(b;,,3;,; 3) = 6n+6i+2k-9, where 1<i
S(m-1)/4,1<k<n—4i+3. e(d;, 31,1,) = 6n+6i +2k -
7, where 1<i<(n—1)/4,1<k<n—4i+2. e(f; 30-1) =
6n+ 6i + 2k —5, where 1<i<(n-1)/4, 1<k<n-—4i.

Case 2. When n=3(mod4), the eccentricities of grid
vertices a;;’s are given by €(a; (3,2)+ (9i/2)43k—7) = 61 + 6i +
4k — 12 fori = 1(mod2), £(a; (3u2)+ (9ir2)+3k-(13/2)) = 61 + 6i +
4k - 12 for i = 0(mod2), where 1<i<
(n—13/4) +1,1<k< (n/2) — 2i + (5/2). The eccentricities of
a;;’s above and below the grid vertices of type a are
€(a; (3n12)+ (9i/2)+3k-8) = 61 + 61 + 4k — 13, where 2<k<n/2 -
2i+ (5/2) and 1 <i< ((n - 3)/4) (a; 302+ 9ir2)+3k-6) = ON +
6i + 4k — 10, where 1<k<n/2-2i+3/2 and
1<i< (n-3)/4.

The eccentricities of grid vertices ¢;;’s are
€(C; (3m/2)+ (9i/2)+3k-3) = On + 6i + 4k — 10 for i=1(mod2),
(€ 32y (9i/2)+3k-132) = 6n + 6i + 4k — 10 for i = 0(mod2),
where 1<i< (n—3)/4,1<k<n/2 —2i+ 3/2. The eccentric-
ities of ¢;;’s above and below the grid vertices of type c are
=6n+6i+4k—8, where 1<k<n/2

1<i<(n=3)/4  &(c; 32+ 9i12)+3k-6)
where 2<k< (n/2)-2i+ (3/2) and

€ (Ci, (3n/2)+(9i/2)+3k—4)
—-2i+3/2 and

=6n+6i+4k - 11,
1<i< (n-3)/4.

The eccentricities of grid vertices e;;’s are
s(ei,(3n/2)+(9i/2)+3k—4) =6n+ 61 + 4k -8 fOI' i=1 (mod2),
£(ei)(3n/2)+(9i/2)+3k73) =6n+6i+4k -8 for i= O(mOdZ),

where 1<i< (n—3)/4,1<k<n/2 - 2i + 1/2. The eccentric-
ities of e;;’s above and below the grid vertices are
=6n+6i+4k—-9, where 2<k<n/2

1<i<(n-3)/4 (e 3u)+ 0i2)+3k-3)

€ (ei,(3n/2)+ (9i/2)+3k—5)
-2i+1/2 and

=6n+6i+4k—-6, where 1<k<n/2-2i+1/2 and
1<i< (n-3)/4.

Similarly, eccentricities of b;, d;;, and f; in the i
columns are  &(b;,,3;43) =6n+6i+2k-9, where
1<i<(n-3)/4,1<k<n-4i+3; e(d; 31042) =6n+6i+
2k -7, where 1<i<(n-3)/4,1<k<n-4i+2; and ¢
(fimizitk_1) = 61+ 6i + 2k -5, where 1<i<(n-3)

/4,1 <k<n-4i

3.3. Topological Invariants of DDD[n]

Theorem 1. The eccentric-connectivity index of David-
derived networks DDD[n] for n = 1(mod4) and n>1 is given

by

1 1
(—480162 + 888n + 84)<gn + E) (4)

Proof. Using symmetry of the network DDD [n], we use only
one quadrant of DDD [#] as labeled in Figure 2. We take one
representative from a set of vertices which has same degree
and eccentricity. These representatives are labeled by
a;,b;,c;,d;, e, and f; for 1 <i<n and shown in Table 1 with
thelr eccentricities. Using Table 1, the ECI of DDD[n] for
n>1 can be written as follows.

After simplification, we obtained the required result.
This completes the proof. O

Corollary 1. The total-eccentricity index of DDD[n] David-
derived networks for n = 1(mod4) is given by
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755 /1 1\ 1 3\> 11271  3\* 368/1 7\° ) 1 1y
E(DDD[n])z—(—n+—> +504<—n+—> +—(—n+—> +—<—n+—> -33n —48<—n+—>
4 \8 2 4 4 3\8 8 3\8 8 202

1 1\ 1 ) 1
+— (3456n + 432)(— n) +— (864n +432n — 696)(— n)
12 8 12 8

1 1\ 1 2 1 2553
— (864n — 432)<—n> +— (1728n — 1296n + 120)(—11) -y
12 2 12 2

1 2
— (600n —3168n + 5464)
12

1 7 1 1 7\’
<7n +7) +— (1488n — 5112)<7n + 7>
8 ] 12 8 8 (5)

1 I 3\ 1 ) 1 3\ 1 1 1)
+—(—1392n+648)<—n+—> +—(—192n +2160n—176)<—n+—>+—(—864n—1872)<—n+—>
12 8 '8) 12 8" '8/ 12 8" 2

1 5 11
+— (—1728n +3312n + 24)<—n + —) +
12 )

1 1 3\ 1 ) I 3\ 1 I 1\?
— (3024n - 25236)<—n +—) +—(—1512n — 62281 + 33408)<—n +—) +— (432n + 648)<—n+ —)
12 4 4 12 4 4/ 12 20 2

1 5 1 1
+— (864n —1728n + 408)<—n + —)
12 202

1\? 1\?
- 96<7n> + 288<7n> .
2 8

Corollary 2. The first Zagreb-eccentricity index of DDD|[n]
David-derived networks for n = 1(mod4) is given by

8224051 +8768419 5 4309975 5 1
n n - 7

M’ (DDD[n]) = .
1 (DDD[n)) 16 24 24

e — (2985984113 +1244160n° — 10575361
144

1\ 1 1 \?
- 138240)(§n) 1o (373248n" + 248832n° — 51840n° - 152064 + 260928)(§n)

1 1\° 1 \*
— (11943936 + 995328)(—n) (8957952n2 + 19906561 — 1586304)(—n)
144 8 3

1
+ _
144
1 4 3 2 1y’ 1 4
+—(1492992n —1492992n” — 109008171389312n — 85120) —-n +—(2985984n
144 2 144

1 1 1\
— 74649604n° + 62208001 — 2419200n + 313344)(5;1) T (9953281 — 995328)(511)

1 1 \* 1
i (—1617408n2 + 12441601 — 190080)(—n) f— (1492992;43 — 4976640n° +
144 2 144

1\ 1 1 7
51425281 — 1029888)(511) *Ta (—401472n" + 5172480n° - 25766016n” + 500386561 — 32767296)(§n + g)

1
1o (200736114 — 47652481 + 346041601 — 905558401

1 7\ 1 3 ) 17\
+ 76006112)(—n + —) +— (1452672n —20433792n" + 805816321 — 92178048)(—n + —)
8 8 144 8 8

1 1 7V 1
+— (60334081 — 21371904)(41 + 7) +— (—4464768n235209728n
144 8 8 144

1 7\* 1 1 \2
+ 61509056)(—n + —) +— (-41472n + 131328)(—n)
8 8 144 2



Journal of Chemistry

1
+ (—41472n2 +179712n - 153216)(E n) +(—2426112n" + 622080n" + 41615424;13)

1 3 1 1 \?
-1076284801° + 2205155521 — 237895776)(171 + Z) *Tm (—41472(5 n) +-41472n)

1
+ 48384)(5 n) + 14463361 311817601 + 107639280n° — 319616928 + 435719808)

1

332 1 1 3\* 1
(—n + —) F— (7651584n2 — 834209281 + 228655440)<—n + —) b (7216128;13 — 471381121 + 231435360n
4" 4) 144 4" 4) 144

1 3 1 I 3V 1 )
- 422601408)(—11 + —) +—— (11943936n — 65380608)(—11 + —) +— ((995328n
4 4) 144 4 4) 144
2

1y 1
— 19906561 — 1078272)(E n> +(~746496n" + 1866240n” + 20736n — 300672)(5 n)

1
+(—1492992n4 + 44789761 — 2032128n* — 2488321 + 622080)<E n) — 1605888n*

1 3 1 1\?
+4773888n° — 27110401 — 9054721 — 1027200)<§n + g) * T ((497664n + 1741824)(5 n>

1 2
+(-373248n" — 1119744n + 611712)<E n>

1
+(—746496n3 — 1866240n° + 22602241 — 1067904)(5 n>

2

1 3\2 1 1\ 1
+859392n — 3377664n° — 354048n* + 4248576 + 3335296)<§n + g) t T <—663552(En) + (4976641 — 248832)(E n)

1
+(995328n” — 9953281 + 414720)(5 n> +423936n° + 2784768n* — 5166336n — 5852544)

1 3\ 1 1\?
(—n + —) i (995328n2 — 19906561 — 193536)(— n> +(—7464096n3 + 26127361 — 21358081
8 8/ 144 2

1 \? 1
- 141696)(5 n> +(—1492992n4 +4478976n° — 3193344n> + 774144n — 50688)<5 n)

— 8087041 + 5909761 + 46776961 — 65914561

1 1 1 1 3y 1
+2104128n — 127008)(—n + —) +— (—6144n - 2921472)<—n + —) +— (—922368712 + 18961921 + 5733184)
8 8/ 144 8 8 144

1 3\* 1 I 5
(7n+7> +—((497664n+1244160)<7n) +(—373248n —373248n+1358208)
8" '8) 144 2

1 \? 1
<E n) +(~746496n" - 1119744n” + 1596672n 494208)(511)

3

1 NV 1 1
+ 10886401 — 70917121° + 63944641 + 19249921 — 842400)<§n + E) *Tm (—663552(E n)

1 2
+ (4976641 — 746496)(5 n) +(995328n2 +995328n + 304128)

1 1 1\ 1 1 1\’
(w) +2032128#° + 684288n* — 7727616n + 815616)(41 + 7> +— (-995328n — 1990656)(41 + 7)
2 8 2/ 144 )

1 ) 1 1\* 37120
+— (—161740811 + 5474304n + 1330560)(41 + 7) +
144 8 2

9

1 3\° 1\ 1 1\° 188672/1 7\° 1 \® 1 3\°
<—n+—> +4608<—n> +4608<—n+—> + <—n+—> +41472<—n> +53568<—n+—>
8 8 2 8 2 9 8 8 8 4 4
3337835 88453 289 5 265793 ,
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TaBLE 1: Eccentricities of graph DDD [n] when n =1 (mod4).
£(a,)=6n+6i—9 I<i<(n-1)/4+1 1<j<3n/2+9i/2 -5andiodd, 1< j<3n/2 +9i/2 - 9/2andieven
i (n-1)/4+2<i<n 1<j<3n-3+landiodd, 1<j<3n-3+1andieven
_ . I<i<s(n-1)/4+1 . . : .
e(a;)=6n+6i-38 (n—1)/d+2<i<n 1<j<sn+3i-31<j<2n—i
e(a)=6n+6i—7 1<i<®l+l 1<j<3n/2+9i/2—-3andiodd, 1< j<3n/2+9i/2 —9/2andieven
i (n-1)/4+2<i<n 1<j<3n-3i/2+1/2andiodd, 1< j<3n—3i/2andieven
~ . 1<i< (n-1)/4 . . . .
e(a;;)=6n+6i-6 (n—1)d+1<i<n 1<j<n+3i-21<j<2n—i
e(a,)=6n+6i—5 I<i<(n-1)/4 1<j<3n/2+9i/2-2andiodd, 1< j<3n/2 +9i/2 - 3/2and i even
i/ m-1D/M4+1<i<n 1<j<3n-3%-3andiodd, 1<j<3n-3-1andieven
B . 1<i<(n-1)/4 . . . .
e(a;)=6n+6i-4 (n-1/d+1<i<n—1 1<j<n+3i-11<j<2n-i-1
Theorem 2. The eccentric-connectivity index of David-de-
rived networks DDD [n] for n = 3 (mod4) and n> 1 is given by
1 1\ 1 I 1\ 1 5
&(DDD[n]) = 1680(—n+—) +—(20160n—48240)<—n+—> +—(—10080n —2160n+6816)
4 4 24 4 4 24
11y 32961 1\ 1 I 1\ 1 )
(—n+—>+—<—n+—> +—(24000n+23616)(—n+—> +—(11136n
4 4 3 \8 8 24 8 8 24
1 1y 800/1 5\° 1 1 5\2 1 )
+13152n—20368)<—n+—>+—<—n+—> +—(—6960n—6000)<—n+—) +—(~10680n
8§ 8 3 \8 8 24 8 8 24
1 5 1\ 1 1\ 1 , 1
+30576n—10792)(—n+—>—320(—n> +—(8640n—6144)<—n> +—(14400n —21024n+8928)<—n>
8 8 2 24 2 24 2
12517 3 7421 , 3199 6579
+ n - n - n+ :
12 8 3 8
(7)

Proof. Using symmetry of the network DDD [n], we use only
one quadrant of DDD [#] as labeled in Figure 2. We take one
representative from a set of vertices which has the same
degree and eccentricity. These representatives are labeled by
a;,b;,¢;,d;, e, and f; for 1 <i<nand shown in Table 2 along

with their eccentricities and frequencies. The proof of the
theorem is the analogue of Theorem 1. O

Corollary 3. The total eccentricity index of DDD[n] David-
derived networks for n = 3(mod4) is given by

2
£(DDD[n]) = 504(%;4 + i) + %

1 I 1\ 1 )
+— (3792n+2880)<—n+—> +—(1104n +1800n
12 8 8/ 12

3
1 1 1
—) +—(3024n - 7380)<—n +
12 4

5 11
(—1512n — 4681 + 1320) +(on+=
4

1184(1 1)3
4 4) 3 \8 8

1 1\ 244/1 5\% 1 1 5\ 1 )
—2936)(cn+ o)+ (n+3) + (-1104n—1584)( —n+ =) +—(-1560n
8 8 3 \8 8 12 8 8 12
1 5 1\ 1 1\ 1 ,
+3816n+208)(=n+=)-96(=n) +— (864n—144)(=n +—(1728n - 10081
8 8 2 12 2 12

1295 5 435 , 1385

1
+72)<—n> + n n +171.
2 4 2

(8)
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TaBLE 2: Eccentricities of graph DDD[n] when #n = 3 (mod 4).

<i<(n-3)4+1
(n-3)/4+2<i<n
1<i<s(n-3)/4+1
(n-3)/4+2<i<n
1<i<(n-3)/4+1
(n-3)/4+2<i<n
1<i<(n-3)4+1
(n-3)/4+2<i<n
1<i<(n-3)/4+1
(n-3)/4+2<i<n-1
1<i<(n-3)/4
(n-3)/4+1<i<n-1

s(aij):6n+6i—9
s(aij):6n+6i—8
s(a,-j)=6n+6i—7
e(a,-j)=6n+6i—6
s(aij):6n+6i—5

s(aij):6n+6i—4

1<j<3n/2+9i/2-5andiodd, 1< j<3n/2 + 9i/2 — 9/2 andieven
1<j<3n-3i/2+1/2andiodd, 1< j<03n - 3i/2 + 1andieven

1<j<n+3i-3 1<j<2n-i.

3n/2 +9i/2 = 3andiodd, 1< j<3n/2 + 9i/2 — 5/2and i even
j<3n-3i/2+1/2andiodd, 1< j<3n - 3i/2andieven

1<j<
1<
1<j<n+3i-21<j<2n—i.

1<j<3n/2+9i/2—-3andiodd, 1< j<3n/2 +9i/2 - 5/2andieven
1<j<3n-3i/2+3/2andiodd, 1< j<3n-3i/2 -~ 1andieven

l<jsn+3i-11<j<2n—i—1

Corollary 4. The first Zagreb eccentricity index of DDD|[n]

David-derived networks for n = 3 (mod4) is given by

693425

M’ (DDD[n)) 5

1 3
+(10368n3 — 224641 + 420160n — 3168) KE n>J +(
1 5\ 33992 ,

— 18816 K§n+§>J +<——3 1~ + 380167 +

2 1
+(6912n —6912n + 2880) l<5n>J -

30488 , 184936 65944 1
+ n - n- ) <—
3 3 3

n
8

4 3 2 1 2
n+(10368n — 120961° + 4464n —2880n+1508) o

19456

3
249968) (1
-n+
9 8

1 3
4608[(E n)J +138321°

§)4J + ((3456n — 1728) K% n)J

2

+ g)aJ +((~25921" - 7776n + 3960) K% n)J

4 3 2 1
+ ((—1036811 +31104n" — 14400n" — 672n + 3352) KE n>J>

2 1 3 2 1
+(6912n —1382411—7488)[(5;1” +(6912n —13824n—7488)K5n>J

; 101498 , 820 17618
+ 31252° — n —-——n—-—-
3 3 3
373120 1 1\’

5 1
+(6912n — 46081 + 1728) KE")J -

|G-

15248 , 10952 69080
+ n + n-
3 3 3

260720 , 38576 1
+( 3 n —368n—T> (7n

3
—5616n° + 3908n*

|G5))

1 4
+ 7) + (34561 — 2880)
8" "3

1 3
4608[(E n)J +34087°

wa) (-3 1Gr)])

( 3 2 1
+(-5184n" + 7776n —4176n+1080) En + (3456n

1\ 4 3 2020 ,
—2880)(571) +9856n" — 2280n +Tn —24592n +

176812

)(%n + é)z +((—5184n3
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2 132 » 2 1)1 2 133 4 3
+7776n —4176n+1080< (En> —10368<n —§n+2> (En>+(6912n —4608n+1728)<5n> — 784n" - 3136n
4000 , 18160 /1 1
+—n +9408n——)<—n+—>+
3 3 '\8 '8
1 y? 1 4 3 2
(—288(511) +(—288n+336)<5n>+10044n —679321° +90027n° — 48696n
1 1\2 1 \2 7\ /1 s
+12706)(—n+—> + (—288n+336)<—n> - 288 n—— (—n)—16848n
4 4 2 6] \2
1 1
+24408n" + 62521° — 21930n* + 112761 — 1798 )(Zn + Z) + (829441 — 139536)
1 1\° ) I
<—n+—> +(53136n" — 1784161 + 134205)(—n+—>
4" 4 4 4
501121° — 1234441 + 136662n \ /1 1\° 1y
( " " ”)(—n+—) +(—6912n+4608)(—n)
—58824 4 4 2
1 \* 8999 149865 ; 623113 ,
+(—11232n62+8064n—2952)<—n> + - "+ "
2 2 8 24
33403 , 733393 . 1 1)\° 1 \® 43520/1 5\°
+ n — n +53568(—n+—> +4608<—n> +—<—n —)
3 4 4 2 9 \8 '8
596992 /1  1\°88453 3N/ 3 1\/1
+ <fn+f> —n +10368<n—7><n -n +fn——>(fn). 9)
9 \8 '8/ 8 2 72/\2

4. Conclusion

Graph theory has been successfully employed through the
translation of chemical structures into characteristic nu-
merical descriptors in the chemical graph theory and
computational chemistry. In the present study, the rela-
tionship of anti-inflammatory activity of David-derived
networks with the eccentric connectivity index and the other
eccentricity-based topological indices was investigated.

In this paper, we give formulae of the eccentric-con-
nectivity index, total-eccentricity index, and an eccentricity-
based Zagreb index of dominating David-derived network.
Dominating David-derived networks being derived from
honeycomb structures has an imperative impact in studying
materials with minimal density and high compression
properties in chemistry. These structures are also used in
studying the tension in different materials which are used in
aerospace structures. So, our subject study will be quite
helpful in studying the interwoven molecular inorganic
knots and metal cluster chemistry. It will also be attributable
in slow relaxation of the magnetization and magnetocaloric
properties, depending on the metal ion. Investigation of
different indices for David-derived networks has the po-
tential to provide the best forecast rate used in different
natural exercises, as anti-inflammatory activity, anticon-
vulsant activity, and diuretic activity.

Open Problem 1. Researchers are invited for open problem
to study the same network for the calculation of eccentric-
connectivity index, total index, and Zagreb index of David-
derived networks DDD[n] for n=0(mod4) and
n = 2(mod4) for n>1 which definitely will change the re-
sults and structure of the network.
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In view of the successful applications of graph theory, relationships between the biological activity and chemical structure have
been developed. One of the popular topics in graph theory is problems relating to topological indices. Degree-based topological
indices, distance-based topological indices, and counting-related topological indices are various types of topological indices.
Physiochemical properties such as boiling point and stability of chemical compounds are correlated by these topological indices. A
topological index of a graph is a numerical quantity obtained from the graph mathematically. A cactus graph is a connected graph
in which no edge lies in more than one cycle. In this study, we have derived certain degree-based topological indices for some
families of graphs consisting of graph obtained by the rooted product of paths and cycles and two types of cactus graph (paracactus

and orthocactus) with the help of the generalized Zagreb index.

1. Introduction

Let G be a graph, V (G) be vertices of G, and E (G) be the
edge of G; then, the total number of vertices in G is called the
order of G, and the total number of edges in G is called the
size of G; any edge having the same starting and ending
vertex is called a loop. In a graph, if two or more edges have
the same starting and ending vertex, then we call this
multiple edge. A graph which does not contain a loop or
multiple edge is called a simple graph, and a graph which
contains a loop or multiple edge is called a multigraph. A
graph G is a planar graph if we draw it into the plane without
any edge intersection. If it is not possible, then we call it a
nonplanar graph. In a graph G, from one vertex to another
vertex, we give orientation or directions to each edge; then,
this graph is called a directed graph; if we start moving from
one vertex and, after travelling different edges, we reach back
that vertex, then it forms a cycle. If a graph has no cycle, then
we call it a tree. Spanning tree is a subgraph which has the

same vertex as the original graph. In this paper, we use
undirected graphs. Graph theory was successfully employed
through the translation of chemical structures into char-
acteristic numerical descriptors by resorting to graph in-
variants. A graph invariant is any function on a graph that
does not depend on labeling of its vertices. Such quantities
are also called topological indices. Hundreds of different
invariants have been employed to date in QSAR/QSPR
studies. Among more useful of them appear two that are
known under various name. Topological indices are nu-
merical parameters of a graph which are invariant under
graph isomorphism. Interest in the field of computational
chemistry in topological indices has been on the rise for a
considerable length of time. A graph can be recognized by a
numerical number, a polynomial, an arrangement of
numbers, and either a network or a matrix which represents
the whole graph. A topological index is a numerical amount
related to a graph, which describes the geography of the
graph and is invariant under diagram automorphism [1-7].
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There are some significant classes of topological indices, for
example, distance-based topological indices, degree-based
topological indices, and eccentricity-based and counting-
related polynomials and indices of the graph. Among these
classes, degree-based topological indices have overwhelming
significance and perform a pivotal role in the preparation of
graph hypothesis, especially in science. If it is made more
precise, a topological list Top (G) of a graph is a number with
the property that, for each graph H isomorphic to G,
Top (H) = Top (G). The concept of topological indices came
from Wiener when he was studying the boiling point of a
member of the alkene family, called paraffins. He named this
topological index the path number. When research in
chemical graph theory progressed, the name Wiener index
was given to the path number. Owing to its interesting
theoretical properties and wide range of applications, the
Wiener index is the most investigated molecular topological
index in chemical graph theory [8, 9]. The first and the
second Zagreb indices were introduced by Gutman and
Trinajestic [10]. H. Wiener gave the concept of the topo-
logical index, namely, as the Wiener index [11] and is de-
fined as

W@ =2 Y dipag. (1)

PqeE(G)

The chemist Randi¢ introduced a topological index
under the name branching index:

R(G) = ) [d(pd(q)]". )

PqeE(G)

Vukicevic and Furtula et al. introduced one of the well-
known connectivity topological indices, namely, atom-bond
connectivity (ABC) index [12], defined as

d(p)d(q) -
— (3)
paEG) d(p)d(q)

ABC(G)= )

Nikoli¢ et al. [13] introduced Zagreb indices defined as

M, (G)= ) 8(p)s
peV(G)
(4)
MG = Y 8(p)d(g).
pqeV (G)

Vukitevi¢ and Furtula [12] introduced another well-
known connectivity topological descriptor, namely, geo-
metric-arithmetic (GA) index:

2+d(p)d(q)

GAG= ) Ty rda) (5)

PqeE(G)

Some more degree-based topological indices are dis-
cussed in [14-16]. Aslam et al. computed topological indices
of line graphs of subdivision graphs of the ith vertex rooted
product graphs [17]. Ahmad et al. computed polynomials of
degree-based indices for swapped networks modeled by the
optical transpose interconnection [1]. Ahmad computed
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degree-based topological indices of the benzene ring in the
p-type surface in the 2D network [3].

M,(G) =
R,(G)

(8mn + 4m + 4n)2” + (16mn — 4m — 4n)3°,
= (4m + 4n)2* + (16mn — 6m — 61)3% + (16mn)6°.
(6)

Vukicevic and Furtula computed the topological index
based on the ratios of geometrical and arithmetical means of
the end vertex degree of edges. In this paper, they introduced
anovel topological index based on the end vertex degree and
its basic features. They named it as the geometric-arithmetic
index [12].

Farahani computed Zagreb indices and Zagreb poly-
nomials of polycyclic aromatic hydrocarbons. In this paper,
he computed the first Zagreb index Z, (G), second Zagreb
index Z 5,(G)s and their polynomials Z,(G,x)and Z, (G, x)
of the family of hydrocarbon structure polycyclic aromatlc
hydrocarbons [5]. Sarkar et al. computed the general Zagreb
index of some carbon structures. They computed the general
Zagreb index for three carbon allotropes theoretically [15].
Sarkar et al. computed the general Zagreb index of some
dendrimer structures. Dendrimers are generally large,
complex, and hyperbranched molecules synthesized by re-
peatable steps with nanometer-scale measurements. They
computed the general Zagreb index of some regular den-
drimers and hence obtained some vertex degree-based to-
pological indices [16]. Mustapha Chellali computed bounds
on the 2-domination number in cactus graphs. He proved
that if G is a nontrivial connected cactus graph with K (G)
even cycles, then y, (G)>y, (G)-K(G), and if G is a graph of
order n with at most one cycle, then y, (G)=(n+1-5)/2
improving Fink and Jacobson’s lower bound for trees with
I > s, where y,, I, and s are the total domination number. He
also proved that if T is a tree of order n > 3, then

p,<B(T)+s-1 [8].

2. Main Results

We derive the topological indices of the rooted product
graph C, (P,,) of cycle and path graphs. In this work, the
mathematical property of the general Zagreb index or
(s,t)-Zagreb index of some general ortho- and paracactus
chains is studied, and hence, their special cases such as
triangular chain cactus T',, orthochain square cactus O,,, and
parachain square cactus Q, are considered where n denotes
the length of the chain, and then we derive some explicit
expressions of the same for other degree-based topological
indices such as Zagreb indices, forgotten index, redefined
Zagreb index, general first Zagreb index, general Randic¢
index, and symmetric division index for particular values of s
and ¢ of the general Zagreb index.

3. Topological Indices of the Rooted Product
Graph C, (P,,) of the Cycle and Path Graphs

Let C, and P,, be the cycle and path graphs on n and m
vertices, respectively. Taking # copies of P,, and joining each
vertex of C,, with one vertex of P,,, we get the rooted product



Journal of Chemistry

FIGURE 1: Example of the rooted product graph C,(P,,) for n =8 and m = 5.

graph C, (P,,) of the cycle and path graphs. The edge set of
C,(P,,) can be partitioned into the following subsets:

E,(C,(P,)) ={e = pq;d(p) = d(q) = 3},

E,(C,(P,)) ={e=pg;d(p) = 3,d(q) = 2}, @)
E;(C,(P,)) ={e=pg;d(p) =d(q) =2},
E (C,(P,)) ={e=pg;d(p) =2,d(q) =1},

such that |E,(C,(P,)|=mn, |E,(C,(P,)l=n 1|E(C,
(P, =n(m-3), and |E,(C,(P,)| =n. In Figure 1, the
rooted product Cg (P5) is explained.

Theorem 1. If C, (P,,) is the rooted product graph of cycle
and path graphs, then

(1) M,(C,(P,)) =M, ,(C,(P,)) = 4nm + 2n

(2) M, (C,(P,)) =1/2M,,(C, (P,,)) = 4nm + 5n

(3) F(C,(P,)) = M,,(C,(P,,)) = 8nm + 12n

(4) R,ZM(C,(P,)) = M,,(C,(P,,)) = Ll6nm + 42n

(5) M*(C,(P,)) =M, 1,(C,(P,,)) =3"xn+2%xnx
(m=-2)+1%xn

(6) R, (C,(P,)) =1/2M,,(C,(P,)) = n(9)* +n(6)* +

n(m-3n4)*+n2)*

(7) SDD (C,(P,))=M,_,(C,(P,)) =2n+13n/6 +n
(m-3)(2)+5/2n

Proof

(1) We know that the corresponding (s, t)-Zagreb index
of the first Zagreb index M,(C,(P,)) is
M, ,(C,(P,)).

M, (C,(Py)) = M,,(C,(Py,)) =7
M (C,(P))= )  {d(p)+d(@)}
pacE (C, (P,y))
=n(3+3)+n(3+2)+n(m-3)4)+n(3)
=6n+5n+4nm—12n+ 3n
M, (C,(P,,)) = 4nm + 2n.

n m

(8)
The general Zagreb index of (C\y, (P,,)) is given by

M, (C,(P,)= ) {dprd(@ +d(p) d(@’}

pacE (C, (Pn))

=n(3°3" +3'3°) + (32" + 3'2°) + n(m - 3)(2°2 +2'2°) + n(2°1" + 2'1°). 9)

M, (C,(P,)) = n(3" +3) + n(3°2' + 3'2°)
+n(m=3)(2" +27) + n(2°1" + 2'1°).

Putting s = 1 and ¢ = 0 in equation (1), we have
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M, (C,(P,)) =n(3+3)+ n(312° + 3021) (2) We know that the corresponding (s, t)-Zagreb index
) . Lo 0.1 of the second Zagreb index M,(C,(P,,)) is
+n(m—-3)(2' +2') +n(2'1° +2°1") 1/2M,, (C, (P,)).

=n(6)+n3+2)+n(m-3)4)+n(3)
=6n+5n+4nm—12n+ 3n
= 4nm + 2n.

(10)

My (C, () = 5M1, (G (P,)) =2

M, (C,(P,))= > d(pd(g
pacE (C, (P,))

M, (C,(P,,)) =n(9) +n(6) + n(m—-3)(4) +n(2)
=9+6n+4nm—12n+2n

= 4nm + 5n,

(11)
M, (C,(P,)) =n(3"x3"'+3" x3") +n(3" x2' +2" x3") + n(m-3)(2" x 2!
=n(9+9)+n(6+6)+n(m-3)4+4)+n(2+2)
=18n+ 12n+n(m—3)(8) + 4n
= 2[4nm + 5n],
M1 (Co(P)) = My (C, (P,.)) = 4 + 5,
(3) We know that the corresponding (s, t)-Zagreb index Putting s = 2 and t = 0 in equation (1),
of the forgotten topological index F(C,(P,,)) is
MZ,O (Cn (Pm))
F(Cn (Pm)) = MZ,O (Cn (Pm)) =7
F(C,(P)= ) {d(p)’+d@’}
pacE(C, (P,)
=n(3*+3%) +n(3* +2%) (12)
+n(m=-3)(2"+2°) +n(2 +17)
=18n+13n+n(m-3)(8) + 5n
= 8mn + 12n.
Mo (C,(P,)) =n(3" x3°+3°x3%) +n(3° x 2° + 32 x2°) + n(m - 3)(2* x 2°
+2%x 22) +n(22 x1°+12 ><2°)
=n(9+19)+n09+4)+n(m-3)4+4)+n(4+1) (13)

=18n+ 13n+ 8mn — 24n + 5n
=8mn+ 12n,
MZ,O (Cn (Pm)) = F(Cn (Pm)) = 8mn + 12n.
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(4) We know that the corresponding (s, t)-Zagreb index
of the redefined Zagreb index ReZM (C, (P,,)) is
M,,(C,(P,)).

Re ZM (C, (P,,)) = M, (C,(P,)) = 7
RZM(C,(P))= Y d(pd@ld(p)+d(@)
pa<E (C, (Py))
=n(3)(3)(3+3)+n3)(2)(3+2)+n(m-3)(2)(2)(2+2)
+n(2)(1)(2+1)
=n(9)(6) +n(6)(5) + n(m—3)(4)(4) + n(2)(3)
=n(54) + n(30) + n(m — 3) (16) + n(6)
54n + 30n + 16mn — 48n + 6n.
ReZM (C,(P,,)) = 16mn + 42n.

Putting s = 2 and t = 1 in equation (1),

M, (C,(P,)) =n(3" x3' +3" x3%) +n(3" x 2" + 3" x2%) + n(m - 3)(2* x 2'
+2! ><22) +n(22 x 1"+ 1% ><21)
n(9x3+3%x9)+n(9x2+3x4)+n(m-3)(4x2+2x4)
+n(4+2)

=n(27+27)+n(18+12) + n(m —3)(8 + 8) + 6n,
= 54n + 30n + 16mn — 48n + 6n,

M, (C,(P,,)) = 16mn + 42n.

M, (C,(P,,)) = Re ZM(C,(P,,)) = 16mn + 42n.

(5) We know that the corresponding (s, t)-Zagreb index M*(C,(P,,)) = Z d(p)“.

of the general Zagreb index M*(C,(P,,)) is pev(C, (Pn))

(14)

(15)

M,y_10(C,(P,)).
w10 (Cn (P)) M*(C,(P,,)) =3" xn+2"xnx(m-2)+1“xn.

Ma (Cn (Pm)) = Mtx—l,O (Cn (Pm)) =7 (16)

(17)

The general Zagreb index M*(C, (P,,)) is given by Putting s = @ — 1 and t = 0 in equation (1), we get
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M, 19(C,u(P,) =n(3"" x3%+3°x 37 1) +n(3°71) x 27 + 3% x2*71)
+n(m=3)(2"" x2"+ 2" x 2" )+ (27 x 1%+ 177 % 2°)

= n(2 X 3“_1) +n(3"‘_1 +2'x_1) +n(m- 3)(2 X 2“_1) +n(20‘_1

+1%°! ><20)
=2 x3 7 e m3 X 2% h mmx 2%~ 3nx 2° (18)
+n(2”H +19 ! x 1)
=3"1Bn] + 2 ' 2n] + +n x 1% + mn.2* - 3n x 2%
=3"xn+2"xn+2xn[+m-31+nx1%
=3"xn+2xnx(m-3)+1“xn.

(6) We know that the corresponding (s, t)-Zagreb index R, (C,(P,,)) =n(9)* +n(6)* +n(2)" + n(m - 3)(4)".
of the general Randi¢ index R, (C,(P,)) is 1)
1/2M  (C,,(P,,)).

1 . .
Ry(C,(P,) = Mua (G, (B)) =2 (19) Using equation (1)
M, (C,(P,,) = n(3" +3) +n(3%2 +3'2%)
The general Randi¢ index R, (G) is given by +n(m-— 3)(252t + ths) (22)

Ru(cn(Pm)) = Z {d(P)d(q)}u sqt tqs
st (G (2) (20) +n(2°1" +2'1°).
Putting s = & and ¢ = « in equation (1), we have

So,
M, (C,(P,)) = n(3% +3%) + n(3% x 2% + 3% x 2%) + n(m - 3)(2** + 2*)
+n(2" x 19+ 2% x 1%)
=n(2x3%) +n(2x23%) + n(m - 3)(2x 2**) + n(2x 2%
(23)
=2{n(9)" +n(6)" + n(m-3)n(4)" +n(2)"},
%MM (C,(P,)) =n(9)*+n(6)" +n(m-3)n(4)" +n(2)",
M (Co(P) = Ry (G, (B,) = n O + n(6)" + nm = 3n(4)" +n(2)"
(7) We know that the corresponding (s, t)-Zagreb index SDD(C,(P,,)) = M, _,(C,(P,,)) = 7. (24)

of the symmetric division deg index S DD (C,, (P,,))
is M, _, (C,(Py)). Putting s = 1 and t = -1 in equation (1), we have
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M, (C,(P,)) =n(3""+3" ) +n(3' x 271 +37 x2") + n(m-3)(2"!

+21’1)+n(21 x17 41! ><2’1)

) ) () ()

=n(1+1)+n(¥)+n(m—3)(1+1)+n<

13 5
M, (C,(P,)) =2n+ ?” +n(m-3)(2) + 7”

4+1)
2 >

(25)

d(p) d(g)

SDD(C,(P,,)) = D {d(q) +

pa<E (C, (Pn))

3 3

d(P)}

:n<—+§>+n<%+§>+n(m—3)(2)+52—n

3

13 5
:2n+?n+n(m—3)(2)+—n,

SDD(C, (P,)) = M,_, (C,(P,.)) = 2n + %” Fnlm-3)(2) +

4. Topological Indices of Some General Cactus
Chain Graphs

In this section, we find topological indices of two general
cactus chain graphs, namely, paracactus chain graph and
orthocactus chain graph of cycles. We first consider the
paracactus chain graph in which the cut vertices are not
adjacent. The paracactus chain graph of cycles is denoted by
Cn where m is the number of vertices of each cycle and # is
the length of the chain. The number of vertices of C, is
mn—n+ 1, and the number of its edges is mn.

Theorem 2. Let C, be the paracactus chain graphs of cycles
for m=>3 and n>2; then,

2

5n

>

M) (C) = 4(n - 1)25+t(2S + Zt) + (mn — 4n + 4)2°71 0
(26)

Proof. The edge set of C!! can be partitioned into the
following subsets:

E,(C,) ={e = pq:dC,, (p) = dC, () = 2},
E,(C,,) ={e = pqg:dC;, (p) = 2,dC;, (q) = 4},
such that [E (C))|=2(m~-2)+ (m—-4)(n-2) and

|E,(Ci)l =4(n-1).
Then, for the general Zagreb index, we have

(27)

M, (Ch)= Y {d(prd(q) +d(p) d(q’}

pa<E(Cy))
= Y (Z2+22)+ ) (24 +2'0)

pa<E, (Cp,) pacE, (Cy) (28)
=|E, (C))|(2°2" +2'2°) +|E, (C},)| (2°4' + 2'4")
={2(m=-2)+(m-4)(n-2)} x 2" + 4(n- 1) x 27(2° +2')
=4(n-1)27"(2° +2) + (mn — 4n+ 4) x 25",

O

Corollary 1. Let C},, be the paracactus chain graph of cycles
for m=3 and n>2; then,

(3) X(Cr) =1/2{mn—4n(1 - (vV2/3)) +4(1 - (v2/3))}
(4) ABC(C") = 1/V2mn-2n(V2 = V3) +2(2 - V3)
(5) S(C:) = 1/8mn

(6) R_y(C}p) = 1/2(mn —2n +2)

(1) My (C)=4mn+8n—-38
(2) M, (Cp)) = 4mn+ 16n - 16



8
(7) R_ymy (Cp) = (1/2){mn—-2n(2-~2)+2(2-+2)}
Proof
M (C)= ) {dp+dg)}

Ppa<E(Cy)
=2m-2)+(m-4)(n-2)2+2)+4(n-1)(2+4)
=2m-4+mn-2m-4n+8)4 + (4n—4)6

M, (C}) = 4nm + 8n - 8.

(29)
My(Cr)= ) d(pd(g
pacE(Cy,)
=(mn-4n+4)4 + (4n-4)8 (30)
=4mn —16n+ 16 + 32n - 32M, (C.)
=4nm + 16n — 16.

(1) The sum-connectivity index of CI;, is

1
X(C,) = =
Pq%%) vep €l
1

1
:(mn—4n+4)—+(4n—4)\/g

V4

1 1
:E(mn—4n+4)+%(4n—4)

1 V2 V2
:zmn—Zn(l—\/g)+2(l—\/§>

1 V2 V2
“Amm—an[1-2 ) +4[1-22 )L
s =35) ()
(31)
(2) The atom-bond connectivity index is given by

[d(p)xd(g) -2
paci(cy) | 4P XD

ABC(Cp)= )

2x2-2
=(mn-4n+4)
2x2
2x4-2
+(4n—4)
2x4
1 V3
=(mn-4n+4)—+ (4n—-4)—
( )\/Z ( )2

=%mn—2n(\/— —3)+(VZ - \3).

(32)

(3) The Sanskruti index of C, is given by

Journal of Chemistry

. d(p)+d(g)-2)°
R R
pqeg%) d(p)xd(q)
=(mn—4n+4)<2;i;z)3
_ 3 (33)
+(4”_4)<2J2ri42>
1
=§{mn—4n+4+4n—4}
_i’l’l?’l
-
RAC= Y G
whm d(p)xd(q)

pacE(Cx)

1 1
=(mn-4n+4)——+(“4n-4)—
2x2 2x4

=l(mn—4n+4)+é(4n—4) (34)

'S

1
:Z(mn_4n+4+2n_2)

1
=— -2n+2).
4(mn n+2)

1
R (Cp) = Z T
paci(cy)) V(P ¥ 4(4)

=(mn—-4n+ 4)(%) + (4n - 4)(%)

=%(mn—4n+4)+(4n—4)ﬁ)

:%{mn—Zn(Z— V2)+2(2-V2)}
(35)
O

If m = 4, then we have the graph as shown in Figure 2.

If m = 6, then we have the graph as shown in Figure 3.

Putting m =4 and m =6 in equation (1), we get the
desired results. Also, putting m = 4 and m = 6 in Corollary
1, we get results for the above graph.

Now, consider the orthochain cactus graph of cycles
where its cut vertices are adjacent. Let this type of cactus
chain graph be denoted by COI; where m is the length of
each cycle and # is the length of the chain. The number of
vertices is mn —n + 1, and the number of edges is mn. We
calculate the Zagreb index of COJ,.

Theorem 3. Let COJ, be the orthocactus chain graph of cycles
for m=>3andn>?2; then,
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FIGURE 2: Example of the paracactus chain graph of cycles for m =4 and n = n.
FIGURE 3: Example of the paracactus chain graph of cycles for m = 6 and n = n.
M, (COp) =2(n-2)4%" + 2nx 209 (2° + 2) E,(CO,,) ={e = pq;d(p) =d(q) = 4},
+2[2(m_2)+(m_3)(n_2)]2(s+t). E2 (CO"m) :{e:pq;d(p) = Z,d(q) 24}, (37)
(36) E4(CO},) ={e = pg;d(p) = d(q) =2},

such that [|E,(CO;)|= (n-1), |E,(CO;)|=2n and
Proof. 'The edge set of CO" can be partitioned into the  |E;(CO})l=2(m—-2)+ (m-3)(n-2). The general
following subsets: Zagreb index is

My (CO) = ) {d(pyd(@)’ +d(p)d(q)}

pgeE (COL)

= Z (454t+4t45)+ Z (2S4t+2t4‘)+ Z (252‘+2t25)

pacE (COY) pacE (COL) paeE (COy,)
=|E, (CO,)|(4°4" + 4'4°) +|E, (COy, )| (2°4 + 2'4%) +|E, (CO),)|(2°2" + 22°) (38)
=(n-1)(44 +4'4) +2n(2°4 + 2'4) + 2(m - 2) + (m - 3) (n - 2)(2°2" + 2'2")
=2(n-2)4"" + 20 x 27(2) + 2{(m - 2) + (m = 3) (n - 2)}2°"

M, (COL) =2(n—-2)4"" + (mn - 3n+4)2" + 2nx 25+t + 1 (25 + 2t). 5

Corollary 2. Let CO”, be the orthocactus chain graph of (5) ABC(CO") = 1/V2mn + n/4(4V3 + V14 +6V2) +
cycles for m>3 andn>2. Then, (4-+/28/2V2)

(6) S(CO;;) = 1/8mn —37/512n + 37/256

(7) R_, (CO™) = 1/16 (4mn — 7n + 6)

(8) R, (COM) = 1/2mn + 1/4n(2V2 - 5) + 1/2

(1) M, (CO}) =4mn+8n—38
(2) M, (CO}) = 4mn +20n — 24
(3) GA(COCO") = mn—2n(1 - (2v2/3))

(4) X(COL) =1/2mn+ (n/4V/3) (V6 +4v2 —6+/3) +
(V2 -1/4/2) Proof
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M, (COp) = ) {d(p)+d(q)}

pqeE (COz,)

=n-2)4+4)+2nR+4)+2(m-2)+(m-3)(n-2)](2+2)

(39)
=8n-16+12n+(2m-4+mn—-2m-3n+6)4
=8n—-16+12n+4mn—-12n+ 8

=4mn+ 8n — 8.

M,(CO,) = ) {d(p)xd(q)}
pqeE (COy,)
=n-2)4x4)+2n(2x4)+(mn-3n+2)(2x2) (40)
=16n-32+16n+4mn—-12n+ 8
= 4mn + 20n — 24.

. 2/d(p) xd(Q)
GA(CO") = mhlad¥ £hahid, 2
pqu%)Ofn) d(p)+d(q)
2WEX4 | 2V2x4 VZX2

=(n-2) +2n +(mn-3n+2)x2
4+4 2+4 2+2

=(n—2)¥+2n%§+(mn—3n+2)§ (41)

2
:n—2+§n2\/_+mn—3n+2
2
:mn—Zn(l—\/—>

1
Xx(cor) = —
PqEE%CO ) \/_d P +d(q

=(n-2)—— + 2n)——=+(mn-3n+2)

1
\/ V2 +2 (42)

%mn+%(\/g +4V2 - 6V3) +

n ,d(p)Xd(q)—Z
ABC (Com) = —_—
pqu%:CO ) d(p) X d(q)

4x4-2
=(n-2) ) (2n) %2

=(n- 2( Zrl)\f+(mn 3n+2)\f (43)

o )(5)

\/_

1
+(mn—3n+2)ﬁ
V2-1
v

=(n—2)

+(mn 3n+ 2)

V24 V3 2 V2

mn n - /28
T——(4\/_+\/_+6\/_) ( NG )
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FiGure 4: Example of the orthocactus chain graph of cycles for m =3 and n =n.
d(p)+d(q) -2\
sory = Y (—(dp) (dq) )
pqeE (COz,) (p) xd(q)
_( 2)(4+4—2>3+2 <2+4—2>3+( 3 +2)<2+2—2>3
-V 4x4 "\ T2xa e 2%2 (44)
6\’ 4\ 2\’
=(n—2)(—> +2n(—> +(mn—3n+2)<—)
16 8 4
1 37 37
=—mn—-—n+—.
8 512 256
R, (COy)= ) !
-1 m) = ETS YT
pact (o) (P X 4(D)
1 2 1
:(n—2)—+—n+(mn—3n+2)—
16 8 4 (45)
mn n 2n 3n 2 2
=t —t———+-——
4 16 8 4 4 16
1
=— (4mn-7n+6).
16
" mn 1 1
R,(COL) =—+-n(2V2 - 5) + . (46)
2 4 2 0

Corollary 3. Let T, be the triangular cactus chain for n>2;
then,

M, (T,) =2""? +nx 2" y2x(n-2)4".  (47)

Proof. Putting m = 3 in equation (1), we get the desired
result. O

We have an orthocactus graph for m =3 and n=n as
shown in Figure 4.

Corollary 4. Let T, be the triangular cactus chain for n>2;
then,
(1) M,(T,)=20n-38
(2) M, (T,) = 32n— 24
(3) G(T,) = 3n—-2n(2+2/3)
(4) X(T,) = 3/2n+n/4\/3
((V2-1)/v2)
(5) ABC (T,) =3/\V2n+n/4 (4/3 + V14 +6V2)+
(4- /28/22)
(6) S(T,) =3/8n—37/512n + 37/256
(7) R_, (T,) = 12/16n—7/16n + 6/16
(8) (R_,) =3/2n+1/4n(2V2 - 5)

(V6 +4v2 —6+/3)+

Proof. Puttingm = 3 in the results of Corollary 2, we get the
desired results.

5. Conclusion

The topological indices such as the first Zagreb index, second
Zagreb index, forgotten index, redefined Zagreb index, and
general Randi¢ index have been computed in this paper and
have been compared with their corresponding (s,t)-Zagreb
indices for the graph C, (P,,). In this study, some closed
expressions of the general Zagreb index of some cactus chain
graphs have also been obtained, leading to some other
important degree-based topological indices for some par-
ticular values of s and ¢. Results given by these indices can
very much be correlated with molecular structures so as to
understand their physical and chemical properties. The
general Zagreb index of some other graph structures can be
computed for further studies.
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We have studied topological indices of the one the hardest crystal structures in a given chemical system, namely, M-carbon. These
structures are based and obtained by the famous algorithm USPEX. The computations and applications of topological indices in
the study of chemical structures is growing exponentially. Our aim in this article is to compare and compute some well-known
topological indices based on degree and sum of degrees, namely, general Randi¢ indices, Zagreb indices, atom bond connectivity
index, geometric arithmetic index, new Zagreb indices, fourth atom bond connectivity index, fifth geometric arithmetic index, and
Sanskruti index of the M-carbon M (r,s,t). Moreover, we have also computed closed formulas for these indices.

1. Introduction

One of the hardest structures of carbon is diamond. In
2011, Andriy and Artem searches 9500 structures of
different system sizes, and they produced a large number
of superhard allotropes; these allotropes being as hard as
diamonds [1]. One of the superhard carbon allotropes
that they studied was M-carbon (Figure 1). Scientists also
believe that the synthesis and practical applications of
some of these structures may be possible. Some studies
also exist giving indications that these types of carbon
allotropes such as M-carbon have been obtained by ap-
plying cold compression on graphite [2, 3].

In this study, we intend to study and compute the
degree-based topological indices of M-carbon structures.
One of the first and very old topological indices is the
Wiener index [4], and this index is also known as the path
number. After that, the scientists of various field started
exploring this new technique to study chemical and
physical properties of chemical structure, compounds,
and molecules. A list of topological indices that we shall
discuss in this study is given in Table 1, which includes
Randi¢ index, general Randi¢ indices, Zagreb indices,

atom bond connectivity index, geometric arithmetic
indices, new Zagreb indices, fourth atom bond connec-
tivity index, fifth geometric arithmetic index, and San-
skruti index. For some literature study and results related
to these indices, see [5-13].

In Table 1, the number S(o) represents the sum
Yoree(Gd(€) and the number S(¢) represents the sum
Y roce(G)d (0), where d,, is the degree of vertex o and d,
represents the degree of vertex ¢. In 2016, Gutman et al. [26]
proved the following theorems for some of the indices in
Table 1.

Theorem 1 (See [26]). Let G be a graph with |V (G)| vertices
and |E(G)| edges. Then,

M, (G) =2IE(G|(IV(G) - 1) - M, (G). (1)

Theorem 2 (See [26]). Let G be a graph with |V (G)| vertices
and |E(G)| edges. Then,

M,(6) =BG - M, (@) - MG, @)
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FiGure 1: The M-carbon structure M[3,3,2].
TaBLE 1: Famous degree-based topological indices.
181.0 Topological index Notation Formula Authors
1 Randi¢ index R_(12 (G) Yotery1/\dodp Randi¢ [14] in 1975
o, « Bollobés and Erdos [15] and Amic et al.
2 General Randi¢ index R, (G) Yorer(G) (dode) [16] in 1988
3 Atom bond connectivity index ~ ABC(G) YoteE(G) VA, + dp —2/d,d, Estrada et al. [17]
4 Geometric arithmetic index GA(G) Yorer(G)2Ndod,pld, + d, Vukicevi¢ and Furtula. [18]
5 First Zagreb M, (G) Yotc(G) (dy + dy) Gutman and Trinajsti¢ in 1972[19]
6 Second Zagreb M, (G) Yorer(G) (do X dy) Gutman and Das in 2004 [20]
7 New degree-based Zagreb index HM (G) Yoter(G)do + d,)? Shirdel et al. [21] in 2013
8 First Zagreb coindex M, (G) Yot¢(G) Ao + dy] In 2008, Dosli¢ [22]
9 Second Zagreb coindex M, (G) Y oteE(G)Aods Same as above
1o Fourthatom bond connectivlty - ype, (G) ¥, VS(@) 7S@ ~2S(@)S(®  Ghorbhani and Hosseinzadeh [23]
Fifth version of geometric
11 arithmetic index GA; Y ote(G)2VS (0)S(£)/S (0) + S(€) Graovoc et al. [24]
12 Sanskruti index S(G) Yoece) (S(0) X S(8)/S(0) + S(€) - 2)* In 2016, Hosamani [25]

2. Construction of M [r, s, t] for
Topological Study

In this section, we shall present our main results about the
M-carbon structure denoted as M [r, s, t]. First, we need to
give a brief explanation of the variables 7, s, ¢ in the notation
Mi{r, s, t]. To find and compute the topological indices of the
M-carbon structure, we have introduced a way of con-
structing its structure by the means of these three variables,
where  represents the unit as shown in Figures 2(a) and 2(b)
represents a chain containing three units, where the con-
nection (bond) is shown in blue color. The variable s rep-
resents the number of connected chains with each having r
numbers of units (Figure 3). The variable ¢ represents the
number of connected layers. There are two types of layers
odd layer for t = 1,3,5, ... and even layers for t = 2,4,6,.. .,
both are generated by different unit cells. The one depicted in
Figure 3 is the odd layer (thatis fort = 1, 3,5, ...) which was
generated by the unit of Figure t = 2,4,6,...). The unit cell
of an even layer is shown in Figure 4(a), the chain in even

layer is shown in Figure 4(b), and Figure 4(c) depicts an even
layer. Then, finally, the M-carbon structure M]{r,s,t] is
shown in Figure 5, which also depicts how two layers, an
even and odd, are connecting. In Figure 5, these connections
(bonds) between two layers are shown in red colour. So, in
this way, we get structure of M-carbon (Figure 1). By our
construction, the graph of M-carbon
M{r,s, t],r>2,s>2,t>2 consists of 8rst number vertices
and 16rst — 4rt — 5st — 2rs + t + s number of edges.

3. Main Results

The graph M|r,s,t] has 2(s+ 1)t,4r — 2+ 2(s — 1)t, 2rst+
2rs +6rt — st —6r —s — 3t + 3, and 6rst — 2rs — 6rt—
3st +2r +s+ 3t — 1 vertices of degrees 1,2,3, and 4, re-
spectively. The degree-based edge partition of M[r,s,t] is
given in Table 2.

In all the theorems in the following, we used Maple for
the computations of mathematical expression and graphical
comparisons.
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Theorem 3. Let G be the chemical structural graph of M-carbon
M{r, s, t], and the general Randi¢ index of M [r, s,t] is given by

R, (M[r,s,t]) =2x4" =7 x16" +2x2°t +8x 6"r +2x6"s + 2 x 6"t — 4 x 8"s — 6 x 8"t

—4x9r —-2%x9%s-3x9-2x12%s —4x 12 -4 x 16°r + 7 x 16°s
+10x16°t —8x6" —2x3"+2x2% +2x 3%t +4 x 8%st + 2 x s

+6x9%rt +4x12%s+4x 127t — 8 x 16%rs — 14 x 16°rt — 11 x 16”st
+5x97 +16 x 16%rst + 6 x 8" +2 x 12°.

Proof. Let G be the chemical structural graph of M-carbon
M{r, s, t]; then, by using serial number 2 of Table 1 and edge

R, (M[r,s,t) = Y (d,xd,)"

0teE (G)

=2t +2)(1x2)*+(2st —=2) (1 x3)*+(2)(2x2)" + (87 + 25+ 2t —8) (2 x 3)*
+(4st —4s— 6t +6) (2 x4) + (61t +2rs —4r — 25 — 3t + 5) (3 x 3)% + (4rs + 4rt — 25 — 4t + 2) (3 x 4)*

+ (16rst — 8rs — 14rt — 11st —4r + 7s + 10t — 7) (4 x 4)%.

The result follows after some simple computations from  Corollary 1

this equation.

It is very simple and clear to see that from the above

Theorem 3, the following Corollary

R, (M[r,s,t]) = -

is true. |

[ 2561st — 62rs — 122rt — 138st — 52r + 50s + 53t — 37

23r 17s 23st 13t rt rs 77
——+t—+—+—+—+1rst+—
36 144 48 24 8 18 144

24/3 st +4+/8 st +2/9rs + 16\/16 rst — 2+/3

+2V2 +2V2t+8V6 1 +265+2+/6t - 4+/8s
—6V8t—4\9r—24/95-3/9t-2/12s

—4\/12t — 4167 + 74/16 s + 1016 ¢ + 2+/4

-86 + 648 +5v9 +2+/12 - 7+/16 +6~/9rt
+4+/127rs + 412 rt — 11/16 st — 1416t — 8/16rs

24/3 st 8st 29 2+/3
\/;S+\/;S+ \/;rs+\/ﬁrst—T\/—+\/§

4\/6r +6s 6t +/8s 38t 49r

+V2t+ -
V2 3 3 3 2 4 9

249s 9t 12s 12t \/ﬁr+7x/ﬁs+5x/ﬁt

9 3 6 3 4 16 8
VA _4V6 3VB 5V9 V12 7VI6 29t
2 3 4 9 6 16 3
+\/ﬁrs+ \/ﬁrt_ llx/ﬁst_ﬁ/ﬁrt_ Viérs
3 3 16 8 2

ifa=1

ifa = -1

1
ifa=—=
2

ifoo = —
2

(3)

partition given in Table 2, the general Randi¢ index R, (G) of
Mi{r,s,t] is computed as follows:

(4)

(5)
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FIGURE 2: (a) The M-carbon unit cell. (b) Chain of three units and units connected by blue edges.

(a) (b)

FiGure 4: Even layer construction. (a) The unit cell. (b) Chain of three units. (c) The layer of three chains.

‘

Wl Wl
W

FiGure 5: The structure M (3, 3,2]. The connection of two layers.
Bonding is shown is red color.

Corollary 2. The second Zagreb index M, (M |[r,s,t]) is the
same as R, (M|r,s,t]) for a« =1, so M, ([M][r,s,t]]) can be
obtained from Corollary 1.

Theorem 4. The first Zagreb index M, (M][r,s,t]) of
M-carbon structure is given by

TaBLE 2: Degree-based edge partition of M[r,s,t] for r,s,t >2.

(d,.d,) Frequency

1,2) 2642

a, 3) 2st-2

2,2) 2

2,3) 87 +2s+2t-8

2, 4) 4st—45—6t+6

(3, 3) 6rt + 2sr—4r—2s-3t+5

3, 4) 4rs+4rt—2s—4t+2

(4, 4) 167st—8rs—14rt—11st—4r+ 7s + 10t-7

M, (MTr,s,t]) = 128rst — 24rs — 48rt — 56st — 161

(6)
+ 16s + 141 — 10.

Proof. Let G be the chemical structural graph of M-carbon
M{r, s, t]; then, by using serial number 5 of Table 1 and edge
partition given in Table 2, the first Zagreb index R, (G) of
M{r,s,t] is computed as follows:
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TABLE 3: Sum degree-based edge partition of M[r,s,t] for r,s,t > 3.

(8(0),S(8)) Frequency (S8(0),S(0)) Frequency

(3,7) 4 3, 8) 2

(4, 11) 2t (4, 12) 2st-25—4t +6

(4, 13) 2st—2s—4t+4 (5, 5) 2

(5, 7) 2 (5, 8) 2

(6, 7) 2 (6, 8) 45-10

6, 9) 8r-8 (7, 8) 2t-2

(7, 11) 2 (7, 12) 242

(7, 15) 2 (8, 8) 2-2

(8, 10) 24-2 (8, 11) 242

(8, 12) 45t-10t+6 (8, 14) 2

(8, 15) 24 (9, 10) 8r-8

9, 12) 2 (9, 14) 2r-2

(9, 15) 4r—6 (10, 10) 4rs+ 6rt—16r—45s—8t + 18

a0, 11) 2 (10, 14) 476

(10, 15) drs + Art—12r—4s—4t + 12 (11, 12) 22

11, 15) 2t-2 (11, 16) 2

12, 13) Dst—2s—4t +4 (12, 15) 2t

12, 16) 2t + 25—4t—6 (13, 14) 2-2

13, 15) 4st—4s5—10¢ + 10 (14, 15) 4r-4

(14, 16) 4r-6 @15, 15) 6rt—2r—7t+1

(15, 16) 107s—28r—10s + 4rt—4t + 30 (16, 16) 167st—24rt—20rs—21st + 38t + 23s + 24r—40
TaBLE 4: Numerical comparison of indices of M[r,s,t] for some initial values of r,s,t>2.

(r,s,1) R, R, R, R, M, M, M, HM

2,2,2) 825 13.3 260.9 32.4 530 10558 14398 3376

3, 3, 3) 4130 36.7 1157.6 106.2 2336 143 434 2245544 16724

(4, 4, 4) 11399 79 1157.6 250 6190 868642 1450978 45992

(5, 5, 5) 24168 147.3 6397.8 489.6 12860 3453670 5989852 97324

(6, 6, 6) 43973 246.6 11510 847 23114 10587574 18818838 176864

(7,7,7) 72350 383 18796 1339 1347 37720 2.72 % 107 290756

(8,8, 8) 110835 563 28636 2013 57446 6.14 x 107 1.1 x 108 445144

9,9,9) 160964 792 41418 2871 83060 1.2 x 108 2.3 %108 646172

(10, 10, 10) 224273 1077 57525 3943 115330 2.3 %108 4.4 %108 899984
TABLE 5: Numerical comparison of indices of M [r, s, t] for some initial values of r,s,£>2.

(r,s,t) ABC GA ABC, GA, S

2,2,2) 59.3 86.2 — — —

(3, 3, 3) 220 334.6 138.8 334.7 114310

(4, 4, 4) 546.8 847.8 330.6 843.3 347250

(5,5, 5) 1098 1721 651.8 1712.2 775750

(6, 6, 6) 1933 3052 1135 3037 1.4595 x 10°

(7,7,7) 3110 4936 1813 4914 2.46 x 10°

(8, 8, 8) 4688 7469 2720 7440 3.8 x 10°

9,9,9) 6725 10747 3887 10711 5.6 x 10°

(10, 10, 10) 9282 14865 5348 14820 7.9 x 10°
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M, (Mlr,st])= Y (d,+d,)

oleE (G)

=2t+2)(1+2)+(2st=2)(1+3)+(2)(2+2)+(8r+2s+2t —8)(2 + 3) (7)
+(4st —4s—6t+6)(2+4) +(6rt +2rs—4r —2s =3t +5)(3+3)+ (drs+4rt —2s — 4t +2) (3 + 4)
+ (16rst — 8rs — 14rt — 11st — 4r + 7s + 10t — 7) (4 + 4).

Thus, the result follows by simple calculations. Proof. Let G be the chemical structural graph of M-carbon
The next theorem gives us the new degree-based Zagreb ~ M [r, s, t]; then, by using serial number 7 of Table 1 and edge
index as defined in [21]. O  partition given in Table 2, the new degree-based Zagreb

index HM of M|r,s,t] is computed as follows:
Theorem 5. The new degree-based Zagreb index
HM (MIr, s, t]) of M-carbon structure is given by

HM (M{[r, s, t]) = 1024rst — 244rs — 484rt — 528st
— 2007 + 184s + 188t — 136.

HMM[r,s,t) = Y (d,+d,)’
oleE (G)

=2t+2)(1+2°+(2st —=2)(1+3)*+(2) (2 +2)* + (8r + 25+ 2t — 8) (2 + 3)°
+(4st —4s— 6t +6) (2 +4)* + (6rt +2rs —4r — 25— 3t +5) (3 +3)” + (4rs + 4rt — 25 — 4t + 2) (3 + 4)°

+(16rst —8rs—14rt — 11st —4r + 7s + 10t — 7 (4 + 4)2).

(9)
Thus, the result follows by simple calculations. Theorem 6. The first Zagreb coindex index M, (M [r, s, t]) of
In the next two theorems, we shall compute the newly  M-carbon structure is given by
defined Zagreb coindex indices which are defined in the
form of nonedges of a chemical graph. O
M, (M[r,s,t]) = 256r°s°t* — 32r°s’t — 64r°st> — 80s°t°r + 165°rt + 16t°rs — 160rst + 28rs (10)

+ 56rt + 66st + 16r — 18s — 16¢ + 10.

Proof. The first Zagreb coindex index of chemical structural ~ serial number 8 of Table 1 and Theorem 1. It is explained and
graph of M-carbon M [r, s, t] can be computed by using both  calculated as follows:

E(M[r> S, t]) = 2|E(M[r> S, t])' (lV(M[T’, S, t]) - 1) - M1 (M[T, S, t])
=2(16rst —4rt — 5st —2rs+t + s) (8rst — 1) — 128rst — 24rs — 48rt — 56st (11)

— 16r + 16s + 14t — 10.
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Thus, the result follows by simple calculations. O

M, (M][r,s,t]) = 512¢°s*t* — 128r%s°t —

+ 1045°rt + 144¢%rs + 505°t°
+ 1467t + 25° + 170st + 2t* + 60r —

Proof. The second Zagreb coindex index of chemical
structural graph of M-carbon M [r, s, t] can be computed by

25677 st*

7
Theorem 7. The second Zagreb  coindex  index
M, (M|r,s,t]) of M-carbon structure is given by
—3205°t%r + 875" + 32r%st + 32r°t
— 8577 — 344rst — 16rt” — 2057t — 20st” + 74rs (12)

58s — 60t + 42.

using both serial number 9 of Table 1 and Theorem 2. It is
explained and calculated as follows:

M, (M[r,s,t]) = 2|[E(M][r,s, t])I2 —%Ml (M[r,s,t]) - M, (M][r,s,t])

=2(16rst —4rt —5st —2rs+1t + s)2 —(1/2) (128rst — 24rs — 48rt — 56st — 161 + 16s + 14t — 10) (13)

— (256rst — 62rs — 122rt — 138st — 52r + 50s + 53t — 37).

Theorem 8. Consider the graph G = M |r,s,t] of M-carbon
with r>2,s>2,t >2; then, its ABC index is equal to

Thus, the result follows by simple calculations.

In the coming two theorems, we shall find closed for-
mulas for the ABC and GA indices of M [r,s,t] M-carbon
structure. O

ABC(M[rst])—.z”j_ 2”3“_ rsv6 —mf ZSSItf 4rt+%_”31_5
B s LI, IR, AR L P M (19)
7\/—5 5\/—t 8r 4s
= + V2 +4V2r r-g -5 2

partition given in Table 2, the ABC index of M|r,s,t] is
computed as follows:

Proof. Let G be the chemical structural graph of M-carbon
M{r, s, t]; then, by using serial number 3 of Table 1 and edge

-2
ABC (M|r, s, t]) = Z %
0leE(G) (a4

1+2-2 1+3-2 2+2-2
stV Vst -2 2l ) 4 (2) o ) + (87 + 25 + 2t — 8)
1x2 1x3 2x2
/2+3—2 f2+4—2
+|{ \[——— |+ st —4s—6t+6)| \[— | +(6rt +2rs —4r — 2s — 3t + 5) (15)
2x3 2x4
3+3-2 3+4-2
(o )+ s+ 4t — 25— 4t +2) \/7
3x3 3x4
4+4-2
+ (16rst — 8rs — 14rt — 11st — 4r + 7s + 10t — 7) “axa1 [



The results now follow after some simple computations
of above expression. O

82

16\/5+ 8+/2st  8+/2s

2t 16v2
GA(M{r,s,t]) = 16rst — llst—T+—\/_

5 3 3
8+/3s  16+/3t
7 7

Proof. Let G be the chemical structural graph of M-carbon
M{r, s, t]; then, by using serial number 4 of Table 1 and edge

2+/d, x d,

GAM([rst]) = )

Journal of Chemistry

Theorem 9. Consider the graph G = M |r,s,t] of M-carbon
with r>2,s>2,t>2; then, its GA index is equal to

V3 16V6r 4+/6s 4+/6t
+V3st + — + + +
7 5 5 5
163 16+/3rt
—6rs—8rt —8r+5s+ 7t + \;—rs+ \;_r (16)

partition given in Table 2, the GA index of M[r,s,t] is
computed as follows:

0leE(G) d0+d€
21 x2 241 %3 242 %2 22 %3
2t +2) —— |+ @st=-2) | ——— |+ ) —— | + (8r + 25 + 2t = 8)[ ——
1+2 1+ 242 2+3
22 x4 23 %3
+ (4st —4s — 6t +6)| ————— | + (6rt + 2rs —4r — 25 — 3t + 5)| ——— (17)
2+4 3+3
23 x4
+(47’S+47’t—25—4t+2)<3j>

+ (16rst — 8rs — 14rt — 11st — 4r + 7s + 10t — 7)(

The results now follow after some simple computations
of the above expression.

Table 3 provides the edge partition of the M-carbon
structure M [r, s, t] on the bases of sum of the degrees in the
open neighbourhood of the end vertices of each an edge for
each edge of M [r, s, t]. The first of such type of indices were
introduced by Ghorbhani and Hosseinzadeh [23], and then,

24/4 x4
4+4 )

another one was introduced by Hosamani [25]. These are
defined in Table 1.

In the following three theorems, we gave closed formula
for the three indices, namely, fourth atom bond connectivity
index ABC, (G), fifth version of geometric arithmetic index
GA;(G), and Sanskruti index S(G) for the graph of
G = M]|r,s,t]. O
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Theorem 10. The ABC, index of the graph G = M{[r, s, t] of
M-carbon with r>3,s>3,t>3 is given by

V462 . 11t4/5 . t+\/143  3+/770 s 2090 24/5 . 34/3 . 472
21

ABC, (G) =3 + V3st +
+(@) V3s 15 11 35 55 5 "2 "o

5 2 18 21 22 28 5 3 4 11

+4r\/330 4~\7r 14\/7t+2r\/770+6r\/%+t\/% sVA2  t+42
45 15 15 35 35 10 6 3

.\ 23t/182 . 3r/30 . 28154/30 . 41t4/30 . 4t+/110 s 4r~\/170 2r~/138
182 2 240 24 55 15 5

254/138 2t\/138+4r\/%+5\/% t\/%+t\/374+t\/357 7r~/435
15 15 9 12 6 22 21 15

_SV435  tv435 (18)
6 15

sy/195 2t+/195 /897 2t4/897 5rs/30 3rt+/30 251st+/30
13 13 39 39 4 2 240

2rs\/138 2rt\/138 st\/78 /6 37/42 /374
+ + + +— +rstV/30 + >

15 15 12 6 92 2

62s 5\/§t+\/§ \/357+5x/ﬁ+\/ﬁ 12\/§t+\/€r+t\/ﬁ+t\/ﬁ

LT 435 s rt\/435 . stA/195 . st+/897 s stA/42 . 6+2rs . 9+/2rt
6 15 13 39 6 5 5

+4\/7rt 4\/170+4\/ﬁ+2\/195+2\/138+\/ﬁ+3\/110 11\/%+\/ﬁ

5 15 21 13 5 77 110 6 7

+\/435+2\ﬁ 1370 23+/182 25\/ﬁ+2\/897 194/2r  2+/330
2 15 35 182 36 39 5 15

Proof. Let G be the chemical structural graph of M-carbon  edge partition given in Table 3, the ABC index of M [r, s, t] is
M{r, s, t]; then, by using serial number 10 of Table 1 and  computed as follows:

S(0) +S(&) -2
056;6) §(0)S(¢)
3+7-2 ’3+8—2 4+11-2
<\/m> (\/W)
A \———— |+ Q2st—2s -4t +4)| \————
4x12 4x13
5+5-2 5+7-2 5+8-2 6+7-2 6+8-2
(s e ) e Fas ) re(ies ) e (Fas)
6+9-2 7+8-2 7+11-2 7+12-2
+(8r_8)< W>+(2t_2)( VW>+(2)< W)"L(Zt_z)(\' 7x12 )

ABC,(M][r,s,t])
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7+15-2 8+8—-2 8+10-2 8+11-2
+(2) \|————— |+ 2t -2) \[————— |+ 2t -2)[ \——— |+ 2t -2)| \|——————
7 %15 8x8 8x10 8x11
8+12-2 8+14-2 8+15-2 9+10-2
+4st =10t +6) | \——— |+ ) \(—— |+ 2t - \—— |+ (8r = 8)| \|————
8x12 8x 14 8x15 9% 10
9+12-2 9+14-2 9+15-2
+2) \———r—~ |+ Q2r-2) \—— | +dr-6){ \/—————
9x12 9x 14 9x%x 15
10+10-2 10+11-2 10+14-2
+4rs+6rt—16r —4s—8t+18)| \/——— |+ ) \——— |+ @r -6)[ \|/——
10 x 10 10x 11 10 x 14
10+15-2 11+12-2 11+15-2
+4rs+4rt —12r —4s— 4t + 12)| \——— |+ 2t -2)[ \——— |+ 2t =-2)[ \|/——
10 x 15 11 x12 11 x 15
/11+16—2 ’12+13—2 /12+15—2
+2) \—————— |+ @st—2s—dt+4) | \——— |+ Q)| \—————— | + (2st + 25 — 4t — 6)
11x 16 12x 13 12 x 15
12+16-2 13+14-2 13+15-2
. — |+ 2t -2)[ \——— | + (45t —4s - 10t + 10) x| \|——
12 x 16 13 x 14 13 x 15
[14+15—2 {14+16—2 [15+15—2
+4r -4\ \——————— |+ @r-6)| \————— |+ (6rt =2r -7t + 1)| \|/———
14 x 15 14 x 16 15 x 15

15+16 -2
15x 16

(19)

+(10rs—28r—105+4rt—4t+30)(
16 +16-2
\"16x16 /)

The results now follow after some simple computationof =~ Theorem 11. Consider the graph G = M [r, s,t] of M-carbon
the above expression. O  withr,s,t>3; then, its GA5 index is given by

) + (16rst — 24rt — 20rs — 21st + 38t + 23s + 24r — 40)

15\/§st+ 16t+/5
7 9

21st

25t +

85 13+/3 4+/19
GA;(G]) =-21+6r+19s+ —T\/_+ ;/—+ \é_

. 16+/13 . \3s  30-/3t . 164/11 91614 . 548r/14 s 2r~/35 s 8t/21 . 48r~/10

17 7 7 27 345 345 3 19 19
+8t\/ﬁ 80sv15 32t+/15 8+6r 8+/6s 28+/6t v 16 +8tm 84/210
- - - - - —12rt — 16rs -

19 31 31 5 5 5 15 29
2\/165+4t\/182+8t\/% 254195 St\/195+52\/€+85t\/@
13 27 23 7 7 11 25

(20)

16rst

8+/13st 4+/42 2st~/195
T Ttz T f

. 24/105 . 8t/11 s 2t4/165 8+/21 . 54/195
11 15 13 19 7

8+/13s 16\/ﬁt+387x/ﬁ 8+/22 472«/E+2\/ﬁ+4x/110

17 17 62 19 247 9 21
16+/30 2\/§+8\/7 4\/182+8r\/210+16\/§ 8\/§+8t\/§
23 3 11 27 29 25 23 23

85139 16tv/39 193r+/15 s 80rsv/15 . 32rt/15 . 8rs1/6 s 8rt/6 . 8st\/6
25 25 31 31 31 5 5 5 °
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Proof. Let G be the chemical structural graph of M-carbon
M{r, s, t]; then, by using serial number 11 of Table 1 and

2+/S(0) x S(€)

GAs(Mr,s,t]) = "S(0)+S(0)

oleE(G)

:(4)(2\/3><7>+(2)(2\/3x > ‘2 )(2\/4><1

3+7 3+8

2V4 x 12
4+12

(2\/5>< ) (2\/5><
+(2)

2\/7><1 +(2) 24/7 x 15
7+12 7+ 15

_ (2\/8 X 10) (2t - 2)(2\/8 x 11

8+10

)+(25t—25—4t+4)(

11

edge partition given in Table 3, the GA index of M [r, s, t] is
computed as follows:

>+(25t—25—4t+6)
11

24 x 13 24/5x%x5
4+13 +2 5+5

Jra(er ) e(T)

6+7 6+8

+8 11

+(8r—8)<26v6+><99)+(2t—2)<27v7x ) ()(ZV7><1 >+(2t—2)

)+(2t—2)(2V8X8)+(2t—2)

8§+38
28 x 12
+ (4st — 10t + 6)[ ————
8+ 12

()(2\/8><1 ) (Zt_4)(2\/8><1 )+(8r_8)(2\/9><10>

14 15 9+ 10
(z)(2 V9 Xli ) +(2r - z)(i2 V9+X1i4 ) +(4r - 6)<72 5 9+X1;5 ) (21)

+ (4rs + 6rt — 16r — 4s — 8t + 18)(

2+/10 x 14
10+ 14

(2\/11x12 2t - )(2\/11><1 ) ()(2\/11><1
15

11

(2 16 (Zt_2)<2\/13x1

)+(4rs+4rt— 12r — 4s — 4t + 12)(

15

)
()
).
)

10 + 11

2\/0><1 ) ()(2\/10><1 >+(4r_6)

2v/10x 15
T2 ) (2t -2)
10+ 15

+ (2st — 2s — 4t + 4)
16

)+(25t+25—4t—6)

> + (4st — 4s — 10t + 10)

14
24/13 x 15 2\/14><l 214 x 16
+ (4r — 4) +(4r—-6)| ———— |+ (6rt —=2r—-7t+1)
13+15 C14+15 14 + 16
2415 % 15 2+/15 % 16
| ————— | + (10rs — 28r — 10s + 4rt — 4t + 30)| ——
15+ 15 15+ 16
2416 x 16
+ (16rst — 24rt — 20rs — 21st + 38t + 23s + 24r — 4O)<W).
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The results now follow after some simple computation of
the above expression. O

Theorem 12. Consider the graph G = M [r, s, t] of M-carbon
with r,s,t > 3; then, its Sanskruti index S(G) is given by

S(G)) = ¢;1 + ¢35 — ¢y — €45t + ¢yt — 51t — cgt's + ¢, 18t
(22)

where ¢, = (177434147265976313012358335881357 65065
63/ 233972495845970544399543494688000000), ¢, = (384
10 15904100770126879995213/ 3876335270 2814242 799

3
GAs(M[r,s,t]) = ) m>

oleE(G)

( S(0) xS(¢)

= )(3 + ; : 2)3 i (D(%f " Qt)(ﬁ

Journal of Chemistry

6964000), ¢, = (42042269311169825975177/81507807551
42420850), ¢; = (33779105325980576848378857231211/
3203582868001177090884000000), ¢, = (56697 7749527 70
1739/61888713909750), cs = (731518633569104009441/98
93 2250100348000), ¢, = (26845875203 03660 8/5408
104050675) and, ¢, = (33554432/3375).

Proof. Let G be the chemical structural graph of M-carbon
M{r, s, t]; then, by using serial number 12 of Table 1 and
edge partition given in Table 3, the Sanskruti index
S(M{[r,s,t]) of M[r,s,t] is computed as follows:

4x11 3
2) +(2st —2s — 4t + 6)

4x12 3 4x13 3 5%x5 \°
(7) +(25t—2$—4t+4)(7) ()( )
4+12-2 4+13-2 5+5-2
5x7 5%8 \° 6x7 \3 6x8 \3
r0(525) + 05 ) +0(r ) @)
()5+7—2 ()5+8 ()6+7 ()6+8—2
6x9 \3 7x8 \? 7x11 \?
+(8r—8)<7) +(2t—2)(7> +(2)<—> + (2t -2)
6+9-2 7+8-2 7+11-2
7% 12 3 8x8 \3
< ) ( ) + (2t - z)(7> +(2t-2)
7+ 12— 7+15-2 8+8—-2
8x10 8x11 \3 8x12 \?
(Y (Y 10 (2
8+ 10— 8+11-2 8+12-2
4 \3 8x15 \3 9x10 \?
24— ———) +8r-8)—-——
()< 2) + )< 15—2) (8r )<9+10—2>
9x12 \? 9x14 \3 9x15 \3
+(2)(7> +(2r—2)<7> T (4r 6)<7) (23)
9+12-2 9+14-2 15-2
10x10 \3 10x11 3
+(4rs+6rt—16r—4s—8t+18)< > +(2)<4> + (4r — 6)
+10 - 10+11-2
10x14 3 10x15 3
< ) +(4r5+4rt—12r—4s—4t+12)<7> + (2t -2)
10+14-2 10+15-2
11x12 3 x 15 \3 11x16 \?
< ) +( ( ) ()(*) + (25t — 25 — 4t + 4)
11+12-2 11+15- 11+16-2
12x13 3 12x15 3
( ) +(2t)< ) T (25t + 25 — 4f — 6)
12+13-2 12+15-2
12x16 \3 13x14 3
< ) + (2t - ( ) + (4st — 4s — 10t + 10)
12+16- 2 +14-2
13x15 \3 14x15 > 14x16 \>
x( ) +( ( ) +(4r—6)(—> +(6rt =2r =7t +1)
13+15-2 14+15-2 14+16- 2
15x15 \3 15x16 \°
< ) + (107rs — 287 — 10s + 4rt — 4t + 30)<7>
15+ 15— 2 16— 2
16 x 16
+ (16rst — 24rt — 20rs — 21st + 38t + 23s + 24r — 40)( ) .
16 + 16
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FiGUure 6: Comparison of GA index and GA; index of M [r, s, t] for
fix t = 1. Red color represents GA, and green color represents GAs.
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FIGUre 7: Comparison of R_;, R_,,, ABC,, R, ABC, and GA
indices of M [r,s,t] for fix t = 1. Niagara azure, green, cyan, blue,
purple, and red representsR_;, R_;,,, ABCy, R;),, ABC, and GA
indices, respectively.

The results now follow after some simple
calculations. O

4. Comparison and Discussion

In this section, we shall discuss and compare all the computed
indices (degree based and sum degree based) from Theorems
3-12 both graphically and numerically (by a tables).

Tables 4 and 5 provide us a numerical comparison. From
these two tables and computations, we can analyse that which
type of indices are closed related and can be used to study the
same type of chemical, biochemical, physical, and biophysical
properties of the structure of M[r,s,t]. We can see that the
values of GA and GA; are very close and almost similar, so we
can purpose that any one of them can be used in place of each
other for the study of chemical structure M [r, s, t]. They also
show the same kind of behaviour in graphical analysis
(Figure 6). On the same pattern, we can also see the closely

13

1.6 x 106
1.2x 100

8.x 10°

Figure 8: Comparison of first Zagreb coindex index M, and
second Zagreb coindex M, of M [r, s, t]. Purple and blue represents
M, and M,, respectively.

FiGure 9: Comparison of M, and M, indices of M[r, s, t], where
purple color represents M, and blue color represents M,.

related values of R_;, R_;,,, ABCy, R, ABC, GA, and GA;,
and these values are also produced in an increasing order,
respectively. So, we can purpose to use those indices which give
smaller values for the study of respective properties of structure
M{r, s, t] giving smaller values after the experimental study
and the graphical comparison in Figure 7 which also shows the
same type of patterns. Similarly, the indices M,
R;,HM,S,M,, and M, give us larger values even for such
small initial inputs of 7, s, £. Such behaviour shows that (and we
purpose that) they cannot be used as closely related to the
previous mentioned indices to study the same type of prop-
erties of M [r,s,t]. We can also see the behaviour of these
indices in Figures 8 and 9. It is purposed to use these indices in
the study of such properties of M [r,s,t] which gives higher
experimental values.

5. Conclusion

In this article, we have studied the structure M[r,s,t] of
M-carbon in the form of its degree and sum degree-based
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indices. The indices that we computed and discussed in the
article are R_,, R_,,, ABC,, R,,, ABC, GA, GA;M,,
R;,,HM,S,M,, and M,. We also compared these indices
numerically and graphically to show which type of indices
behaved in different and same patterns (or values). We have
found exact formulas for these indices for the structure of
M [r,s,t] of M-carbon.
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Metal-organic networks (MONSs) are among the unique complex and porous chemical compounds. So, these chemical com-
pounds consist of metal ions (vertices) and organic ligands (edges between vertices). These networks represent large pore volume,
extreme surface area, morphology, excellent chemical stability, highly porous and crystalline materials, and octahedral clusters.
MON:Ss are mostly used in assessment of chemicals, gas and energy storage devices, sensing, separation and purification of different
gases, heterogeneous catalysis, environmental hazard, toxicology, adsorption analysis, biomedical applications, and biocom-
patibility. Recently, drug delivery, cancer imaging, and biosensing have been investigated by biomedical applications of zinc-
related MONSs. The versatile applications of these MON's make them helpful tools in many fields of science in recent decade. In this
paper, we discuss the two different zinc oxide and zinc silicate related MONs according to the number of increasing layers of metal
and organic ligands together. We also compute the connection-based Zagreb indices such as first Zagreb connection index (ZCI),
second ZCI, modified first ZCI, modified second ZCI, modified third ZCI, and modified fourth ZCI. Moreover, a comparison is
also included between the zinc-related MON s by using numerical values of connection-based Zagreb indices. Finally, we conclude

that zinc silicate-related MON is better than zinc oxide-related MON for all values of n.

1. Introduction

There are so many chemical compounds in the field of
chemistry. One of the most popular recent chemical
compounds is metal-organic network (MON) which
consists of metal ions and organic ligands. A new MON
with zinc as the metal ion and benzene-1,3-dicarboxylic
acid as the organic ligand (linker) has been synthesized
with the help of hydrothermal method. This MON is also
used as a selective nanoadsorbent for the preconcentration
and extraction of trace amounts of cadmium with the help
of solid-phase extraction method. A category of crystalline
and porous materials is porous coordination polymers
which are newly known as MONs [1]. One of the most
important aspects which can be considered in the matter of
MONSs in bioapplications is their surface modification and

control of their particle size distribution [2]. Zn-related
MON:Ss as chemical sensors could be converted into devices
for luminescent characteristics [3]. The electron-rich
T-conjugated fluorescent ligands are friendly to make Zn-
MONSs with nucleophilic properties in efficient luminescent
sensors [4].

The low toxicity of zinc ions as the desirable character is
considered to introduce Zn-related MONs into bio-
application domains, especially drug carries. The anti-
bacterial activity has been validated by combining different
antibiotic drugs and metals [5]. In reality, Zn*" is an en-
dogenous low-toxic transition metal cation which is widely
used in dermatology as a cicatrizing agent and skin
moisturizer with astringent, antidandruff, antibacterial,
and anti-inflammatory agents [6]. In nonlinear optically
active MONSs, Zn*" is commonly used as a connecting point
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to prevail undesired d-d transitions in the visible region.
Moreover, the toxicology, biomedical applications, and
their biocompatibility are recently reported production
procedures of zinc-related MONs. For more details, refer to
[7].

Eddaoudi et al. [8] synchronized the isoreticular series
(IRMOFEF-1 to IRMOF-16) of 16 highly crystalline mate-
rials. The free and fixed diameter of pores from IRMOF-1
to IRMOF-16 varies in the range of 3.8-19.1 and
12.8-28.8, respectively. The design of an IRMOEF-10 series
based on MON-5 was initiated by determining the re-
action conditions necessary to produce the octahedral
cluster with a ditopic linear carboxylate. Therefore, many
IRMOF structures can be developed by using zinc oxide
octahedral clusters (Zn,O(CO),) as the metal corners
linked via diverse organic dicarboxylate linkers and dif-
ferent three-dimensional cubic networks are formed. For
more information, see [9]. All the IRMOFs have the ex-
pected topology of CaB¢(13) and happened through the
prototype IRMOF-1 in which an oxide-centered Zn,O
tetrahedron is edge bridged. Some IRMOFs such as
IRMOEF-8, IRMOF-10, IRMOF-12, and IRMOF-16 have
been seen in noncrystalline porous systems for SiO,
xerogels and aerogels (16). For further investigation, see
[7, 10-12].

MONSs also predict the physicochemical properties
such as grafting active groups [13], impregnating suitable
active material [14], ion exchange [15], preparing com-
posites with different substances [11], changing organic
ligands and postsynthetic ligands [16], and biosensors
enhancing sensitivity, response time, and selectivity [17].
Yap et al. [18] and Lin et al. [19] presented the recent
progress in precursors on the preparation of several
nanostructures and MON-related applications such as
sensing, photocatalysis, electrocatalysis, supercapacitors,
catalyst for production of fine chemicals, and lithium ion
batteries. Graph theory provides useful tools in the field of
modern chemistry which represent the chemical and
physical properties of chemical compounds such as heat
of formation, heat of evaporation, flash point, melting
point, boiling point, temperature, pressure, density, re-
tention in chromatography, and tension and partition
coefficient [20-22]. First, distance-based topological in-
dex (TI) was discovered by Wiener to study the different
properties of chemical compounds (boiling point of
paraffin) in 1947 [23]. The very well-reputed first-degree-
based TI was discovered by Gutman and Trinajsti¢ to
check the chemical physibility on the total m-electron
energy of the chemical compounds (alternant hydrocar-
bons) in 1972 [24].

Recently, Zhao et al. [25] introduced two connection
number (number of vertices at distance two) based TIs to
compute the general results for modified Zagreb connection
indices of subdivision and semitotal point operations on
graphs. Nowadays, these degree and connection number-
based TIs are abundantly used in the topological properties
of four-layered neural networks and MONs [26, 27]. Ali et al.
[28] computed connection-based indices and coindices for
the product of molecular networks. Gutman and Furtula

Journal of Chemistry

discussed various topological properties of different mo-
lecular structures; see [29-31]. Ali and Trinajstic [32] and
Javaid et al. [33] computed different connection-based TIs of
graphs under different operations. Moreover, a variety of
networks has been defined with the help of connection
number-based TIs [34-37].

In this paper, we compute the connection-based Zagreb
indices of two different zinc-related MONs such as zinc
oxide (ZNOX (n)=IRMOF-10) and zinc silicate (ZNCL
(n) =IRMOF-14) networks with respect to the increasing
layers, n> 3, taking both metal nodes and linkers together.
The rest of the paper is organized as follows. Section 2
provides the preliminaries, definitions, and some important
results which can be used in the main results. Sections 3 and
4 provides the main results for zinc oxide and zinc silicate
networks, and Section 5 provides comparisons and
conclusions.

2. Preliminaries

The vertex and edge sets are V (G) and E (G) for a simple and
connected network G. |V (G)| and |E (G)| are the cardi-
nalities of vertex set and edge set which are equal to u and e,
respectively. In a connected network, there is a path between
two vertices. The distance between two vertices p and q is the
shortest path between them. It is denoted by ds (p,q). In
general [37], Ng(g/m)={p € V(G);d(p,q) =m} is the
open m-neighborhood set of g, where m represents a positive
integer and |Ng (g/m)| = dg; (q/m) is called m-distance de-
gree of a vertex ¢. In particular,

(i) Ifm=1,d5(q/1) = INg(q/1)| = ds(gq) =degree of q
(number of vertices at distance one from q)

(ii) If m = 2,d; (q/2) = INg(q/2)| = 15(q) = connection
number of g (number of vertices at distance two
from q)

For more terminologies and notations, see [36] and
references therein.

Definition 1. For a (molecular) network G, the first Zagreb
index (M, (G)), second Zagreb index (M, (G)), and third
Zagreb index (M;(G)) are defined as follows:

(@) M (G) = Ygev () lds (@1 = Yo ldg(p)+ dg
(@]

(b) M, (G) = X pger (o) [d (p) x dg (9)]

(c) M5(G) = quV(G) ldg (‘1)]3 = queE(G) [d¢ (p) +dg;
(9]

These degree-based TIs are defined by Gutman and
Trinajstic [24]. These are abundantly used to predict better
findings in molecular networks such as ZE isomerism, ab-
solute value of correlation coeflicient, entropy, acentric
factor, and heat capacity.

Definition 2. For a (molecular) network G, the first ZCI
(ZC,(G)), second ZCI (ZC,(G)), and modified first ZCI
(ZC7 (G)) are defined as follows:
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(@) ZCy(G) =Y yev () (16 (@)
(b) ZG,(G) = queE(G)[TG (p) x 16(q)]
(©) ZCY(G) = X (pger () = [16(P) + 16(q)]

These connection-based TIs are defined by Ali and
Trinajstic [32] (2018). They also reported that the modified
first Zagreb connection index has better correlation coeffi-
cient value for the thirteen physicochemical properties of
octane isomers than classical Zagreb indices.

Definition 3. For a (molecular) network G, the modified
second Zagreb connection index (ZCj; (G)) and modified
third Zagreb connection index (ZC;(G)) are defined as
follows:

(a) ZC; (G) = queE(G) [dg(p)15(q) +dg (@15 ()]
(b) ZC5 (G) = ¥ pger() [dg (P) 16 (p) +dg (@75 (9)]

Definition 4. For a (molecular) network G, the modified
fourth Zagreb connection index (ZCj(G)) is defined as
follows:

ZC1(G) = Y ldo(Ptg(p)xdg@t@]

P9€E(G)

These connection-based TIs are defined by Javaid et al.
[35] to compute the exact solutions of several wheel-related
graphs.

Definition 5. Zinc oxide network (ZNOX (n)): a chemical
compound zinc oxide (ZnO) is insoluble in water which is an
inorganic compound of white powder shape with 5.61 g/cm’
density. The zinc oxide is heated with carbon (coke) that
reduces to the metal vapor to condense the liquid from
which the solid metal freezes.

ZIIO(S) + C(s) — Zn(g) + CO(g) (2)

Zinc is a reactive metal to produce zinc ion (Zn**) and
hydrogen gas. It also reduces those metal ions whose re-
duction potentials are higher than Zn**. Zinc oxide is mostly
used in making rubber, enamels, glazes, pigment in white
paint, photoconductive surfaces, and protective coating for
other metals. Zinc oxide-related MON is Zn,O (BPDC);,
which is also known as IRMOF-10. IRMOF-9 is a catenated
version of IRMOF-10. IRMOEF-10 is three-dimensional
cubic structures with a pore size diameter of 16.7/20.2 A°. In
Figure 1, the zinc oxide-related MON of dimension 3 is
presented. In general, the vertices and edges in ZNOX (n) of
dimension n are 70n+46 and 85n+ 55, respectively. For
more understanding, see Figure 1.

Definition 6. Zinc silicate network (ZNSL (n)): silicate
(§i0y) is the most charming class of minerals. Silicate is the

FiGUre 1: Zinc oxide network (ZNOX (n) = H) for n=3.

chemical mixture of metal oxide or metal carbonate with
sand. The basic unit of silicate is tetrahedron. So, all silicates
gain SiO, tetrahedron. In chemistry, oxygen ions and silicon
ions are represented by the corner vertices and centre
vertices of SiO,, respectively. In graph theory, we represent
corner vertices and centre vertices of SiO, with oxygen
nodes and silicon nodes. If we require a variety of silicate
networks, it is easy to change the arrangement of the tet-
rahedron silicate.  Zinc  silicate-related MON  is
Zn,O (PDC);, which is also known as IRMOF-14. IRMOEF-
14 is three-dimensional cubic structures with a pore size
diameter of 14.7/20.1 A°. In Figure 2, the zinc silicate-related
MON of dimension 3 is presented. In general, the vertices
and edges in ZNSL (n) of dimension n are 82n+50 and
103n+ 61, respectively. For more understanding, see
Figure 2.

Now, we present some important results which are used
in the main results.

Lemma 1. Let G be a connected network with u vertices and e
edges. Then, 75 (p) +dg (P) < Yyen,, (pdc (@), where equality
holds if and only if G is a {C,,C,}-free network.

Lemma 2 (see [35]). Let G be a connected and {C;, C,}-free
network with u vertices and e edges. Then,

(i) Yqev ()9 (@) = 2e

(i1) quV(G)TG (@) =M, (G) - 2e

Lemma 3 (see [25]). Let G be a connected and {Cs,C,}-free
network with u vertices and e edges. Also, G = P,. Then

(i) ZC; (G) =8u—-22 ifu>4

(ii) ZC:(G) = 8u-22 if u>3
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FiGURE 2: Zinc silicate network (ZNSL(n) = K) for n=3.

3. Main Results Based on Zinc Oxide Network
(ZNOX (n))

In this section, we compute the main results for first Zagreb
connection index (ZCI), second ZCI, modified first ZCI,
modified second ZCI, modified third ZCI, and modified
fourth ZCI of zinc oxide-related MON (ZNOX (n)). Let H =
ZNOX (n) be the zinc oxide network of dimension # in the
plane, see Figure 1. The partitions of H with respect to the
vertex set and edge set are V (H) and E (H). We can easily
see each vertex of degrees 2, 3, and 4. We have
Vi={veV(H)d, =2}, V,={veV(H)d, =3}, and
Vy={veV(H)|d, =4}, where |V||=42n +30, |V,|=
26n+14, and |V3|=2n+2. So, [V(H)|=v=|V |+|Va|+]|
V3| =70n + 46. Now, the partitions of vertices according to
connection number are Vi ={veV (H)|, 7,=2}, V,={veV
(H)|r, =3}, V3={veV (H)|r,=4}, V4={veV (H)|r,=5},
and Vs={veV (H)|r,=8}, where |V||=2n+6, |V,|=
28n+20, |V3| =30n+ 10, | V4| =8n+8, and | V5| =2n+2. So, |
V (H)|=v=|Vi| +|Va| +| V3| + | V4| +|V5| =70n + 46. These
vertex partitions are shown in Tables 1 and 2.

There are four types of partitions of edge sets of H
according to the degree as |E (H)|=|Ef,|+|Ed,|+
|E4,| +|E4,| =85n+ 55, and there are seven types of parti-
tions of edge sets of H according to the connection number
of  vertices as |E  (H)|=|E5;|+|ES;|+|ES,l+
|ES 5| + | ES 4] + |ES 5|+ |ES g | = 851 + 55. These edge partitions
are shown in Tables 3 and 4.

2C, Q)= ) [1@])

qeV (G)

TaBLE 1: Partitions of H’s vertices according to the degree.

d 2 3 4

Id,| 421+ 30 26n+ 14 2n+2

TaBLE 2: Partitions of H’s vertices according to the connection
number.

T, 2 3 4 5 8
28n+20  30n+10  8n+8  2n+2

|7l 2n+6

TaBLE 3: Partitions of H’s edges according to the degree.

y a4 d a d
Edpaw E3, E5, E5; E5,

6n+16 52n+28 In+3 8n+8

d
1EG (p)aq)

Theorem 1. Let H = ZNOX (n) be a zinc oxide network of
dimensions n> 3. Then, the first Zagreb connection index is

ZC, (H) = 1068n + 692. (3)

Proof. By definition,

= (2n+6)(2)* + (281 + 20) (3)* + (301 + 10) (4)* + (8n + 8) (5)* + (2n + 2) (4)* (4)
= 81+ 24 + 2521 + 180 + 4801 + 160 + 2007 + 200 + 1281 + 128

= 10681 + 692.

Theorem 2. Let H = ZNOX (n) be a zinc oxide network of

dimensions n> 3. Then, the second Zagreb connection index is

ZC, (H) = 1376n + 896. (5)
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TaBLE 4: Partition of H’s edges according to the connection number.
El (@) Eys E5s E5, Es Eia Eis E5g
|E;(p),r(q)| 4n+12 4n+12 24n+12 4n+12 2ln+7 12n+4 8n+8
Proof. By definition,
72C,6) = ) [16(p) x16(q)]
P9€E(G)
= Z (71 (p) x 711 (@)] + Z (70 (P) X T (@)] + Z (71 (P) x 71 (9)]
PqEEs PgEEs; PgEES
+ Z (71 (p) x 751 (@)] + Z (71 (P) X 71 (@)] + Z (71 (P) X 711 ()]
pqui5 pqui4 pqugA
+ ) @ x @]+ Y [tu(p) x 14(9)]
PaeEy, PqeEsy
(6)
=[E 30| (2% 3) +]E (33| (3 % 3) +|E 3.5 an)| (3% 5) +|E 5 ey (4 % 5)
1B 0y )| (4% ) +]E 5.0y )| (3 % 4) +[E (4.0 | (4 X 4) +]E 5. 1) (5 % 8)
=(4n+12)(2x3)+(12n+4)(3x3)+(4n+12)(3%x5) + (12n +4) (4 x 5)
+(12n+4)(4x4)+(24n+8)(B3x4) + (M +3)(4x4) +(81n+8)(5%x 8)
=24n+ 72+ 108n + 36 + 60n + 180 + 240n + 80 + 1921 + 64
+ 288n + 96 + 144n + 48 + 320n + 320
= 1376 896.
n+ 0
ZCT (H) = 672n + 432. (7)
Theorem 3. Let H = ZNOX (n) be a zinc oxide network of
dimensions n> 3. Then, the modified first Zagreb connection
index is Proof. By definition,
ZC(G) = Z [76(P) + 76 ()]
PqeE(G)
= Z (70 (p) + 71 ()] + Z (71 (p) x 711 (9)] + Z (7 (p) + 71 (9)]
pqug)3 pqu;3 pqug,5
) lm@xm@]+ Y [m@xm@] + Y [ () x1H(q)]
PacEs PacEy, PacEs,
+ ) P xm @]+ Y (1 (p) x 14 (q)]
PqEE, PqeEs;
(8)

=[E 3| (2 +3) +|E (33| 3+ 3) +[E 35| 3+ 5) +|E a5 )| (4 + 5)
|E oy | (4 +4) +|E | B+ 4) +[E gy | (4 + 4) +[E 5.9, | (5 + 8)

=4n+12)(5) + (12n+ 4)(6) + (4n+ 12)(8) + (12n+ 4) (9) + (12n + 4) (8)
+(24n+8)(7) + (9 + 3)(8) + (8n + 8)(13)

=20n+60+72n+24+32n+96 + 108n + 36 + 96n + 32 + 168n + 56
+72n+ 24 + 104n + 104

= 672n + 432.



Theorem 4. Let H = ZNOX (n) be a zinc oxide network of =~ Proof. By definition,
dimensions n>3. Then, the modified second Zagreb con-
nection index is

ZC; (H) = 1740n + 1124. 9)

2G5 (@) = ) [dG(p)r6(9) +dg (@16 (p)]
P9EE(G)

= Y [duPru@+dy @7y (P)]+ Y [dy(P)ry (@) +diy (@75 (p)]

PgeE; 5 PaEEs;

+ Y dy(P)ry (@ +dy @t (P + Y [dy (P71 (@) +dy (@74 ()]

PgeEs; P9<Eys

+ Y dy (Pt (@ +dy @t (P + Y [dy (P11 (@) +dy (@74 ()]

PqEEfm P‘YGE;A

+ Y du(P)ra (@ +dy @t (P + Y [dy (p)1 (@) + dy (@74 ()]

PaeE;, PaeEs

_|xC
= |Ez,3

+|EGL 2 x4+ 3% 4) +[ES, [ (2 x 4+ 3% 3) +[EL,| (3x 4+ 3 x4) +[ESy| (3x 8+ 4x5)

=(4n+12)(10) + (12n+4) (12) + (4n+ 12) (19) + (12n + 4) (22) + (121 + 4) (20)
+(24n+8)(17) + (9n + 3) (24) + (8n + 8) (44)

=40n + 120 + 144n + 48 + 76n + 228 + 264n + 88 + 240n + 80
+408n + 136 + 216n + 72 + 352n + 352

=1740n + 1124.

ZC; (H) = 1808n + 1184.
Theorem 5. Let H = ZNOX (n) be a zinc oxide network of

dimensions n > 3. Then, the modified third Zagreb connection
index is Proof. By definition,

2C; @) = Y [de(P)r6(p) +dg (@16 (9)]

PqeE(G)
= Y |du(Pra(P) + dy @Ten @]+ Y [ (P (p) + diy (@71 (9)]
PqEE;.s pqu;3
+ Z [dH(p)TH\(p)+dH(q)TH(q)]+ Z (A (p)ty (p) +dy (@71 ()]
pqu;5 pqui5
+ Y [du (P (P) +dy @ty @]+ Y [dy (P (p) + dpy (@74 ()]
PacE;, PgEEs,
+ Y [du (Pt (p)+ dy @1y @]+ Y [dy(p)1y (p) + diy (@74 ()]
PqeEy, PqEES

=|E5 5| (2% 2+2x3) +|E55| (2% 3+2x3) +|E55| (2% 3+ 3%5) +|Ej 5| (2 x4+ 3x5)
+|Eqa| (2 x4+3x4) +|E5 [ (2x3+3x4) +|Ey| (3x4+3x4) +|ESg|(3x5+4x8)

= (4n+12)(10) + (12n + 4) (12) + (4n + 12) (21) + (121 + 4) (23) + (121 + 4) (20)
+(24n + 8) (18) + (91 + 3) (24) + (8n + 8) (47)

=40n + 120 + 144n + 48 + 84n + 252 + 276n + 92 + 240n + 80
+432n + 144 + 216n + 72 + 376n + 376

= 1808n + 1184.

(2><3+2><2)+'E§f3|(2x3+2x3)+|E§5|(2x5+3x3)+|Eis|(2x5+3><4)

Journal of Chemistry

(10)

(11)

(12)
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Theorem 6. Let H = ZNOX (n) be a zinc oxide network of =~ Proof. By definition,
dimensions n> 3. Then, the modified fourth Zagreb connec-
tion index is
ZCy (H) = 10344n + 7224. (13)
ZCi(G) = Y dg(p)1g(q) x dg ()16 (p)]
P9€E(G)
= 2 @)@ xdy @7 (P + Y, [du ()7 (@) X diy (974 (p)]
PgEEs PgEEs;
+ 2 du (@ xdy @ra (P + Y, [du(P)7 (@) % dy (@74 ()]
PgEEs PgEEy 5
+ ) du (@ xdy @t (] + ) [du (P17 (@) x iy (@7 (p)]
PgeEy, PqeEs,
+ Y [du (P @ xdy @ (D] + Y [dy (D)1 (@) X dyy (@711 (p)] (14)
Pg<Ey, PgeEsy
=|E55| (2% 3x2x2) +]E5 5| (2% 3x2x3) +|E55| (2% 5% 3% 3) +|Ey 5| (2x5x 3 x4)
B (2 x 4 x 3% 4) +[ES [ (2 x 4 x 3 % 3) +|E(; | (3 x4 x 3 x 4) +|ES [ (3x 8 x4 % 5)
=(4n+12)(24) + (12n+4) (36) + (4n + 12) (90) + (12n + 4) (120) + (121 + 4) (96)
+(24n + 8) (72) + (9n + 3) (144) + (8n + 8) (480)
=96n + 288 + 432n + 144 + 360n + 1080 + 1440n + 480 + 1152n + 384
+1728n + 576 + 1296n + 432 + 3840n + 3840
= 10344n + 7224.
O

4. Main Results Based on Zinc Silicate Network
(ZNSL (n))

In this section, we compute the main results for first Zagreb
connection index (ZCI), second ZCI, modified first ZCI,
modified second ZCI, modified third ZCI, and modified
fourth ZCI of zinc silicate-related MON (ZNSL (n)). Let K =
ZNSL (n) be the zinc silicate network of dimension 7 in the
plane, see Figure 2. The partitions of K with respect to the
vertex set and edge set are V (K) and E (K). We can easily see
each vertex of degrees 2, 3, and 4. We have V; ={ve V (K)|d,
=2}, Vo={veV (K)|d,=3}, and V3={veV (K)|d, =4},
where | V1| =42n+ 30, |V,| =38n+ 18, and | V3| =2n+2. So, |
V (K)|=v=|Vi| +|V5| +| V3| =82n+ 50. Now, the partitions
of vertices according to connection number are V,={veV
(K)|z,=2} Vo={veV (K)|r,=3}, Vas={veV (K)|r,=4},
Via={veV (K)|r,=5}, Vs={veV (K)|r,=6}, and
Ve={veV (K)|r, =8}, where |V,|=2n+6, |V,|=16n+16, |

2C, Q) = ) [w6@])

qeV (G)

V3| =48n+16, |V, =8n+8, |Vs|=6n+2, and |V¢=2n+2.
So, |V (K)|=v=|Vi|+]|Va|+|V3|+| V4| +]|Vs| =82n+ 50.
These vertex partitions are shown in Tables 5 and 6.
There are four types of partitions of edge sets of K
according to the degree as |E
(K)| =|ES,| + |ES 5| + |E4,| + |ES,| = 103n + 61, and there are
seven types of partitions of edge sets of Kaccording to the
connection number of vertices as |E (K)| = |ES;|+
|ES 5| + [ES | + |ES s + | ES 4| + |EG 5| + |ES6l + [ES gl +|Eg 6] =
1037 + 61. These edge partitions are shown in Tables 7 and 8.

Theorem 7. Let K = ZNSL (n) be a zinc silicate network of
dimensions n> 3. Then, the first Zagreb connection index is

ZC, (K) = 1464n + 824. (15)

Proof. By definition,

=(2n+6)(2)* + (161 + 16) (3)* + (481 + 16) (4)* + (8n + 8) (5)* + (61 + 2) (6)* + (2n + 2) (8)* (16)
= 81+ 24 + 144n + 144 + 768n + 256 + 2001 + 200 + 2161 + 72 + 128n + 128

= 1464n + 824.
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TaBLE 5: Partitions of K’s vertices according to the degree.

d, 2 3 4
Id,| 42n+30 38n+18 2n+2
TaBLE 6: Partitions of K’s vertices according to the connection number.

T, 2 3 4 5 6 8
|7l 2n+6 16n+16 48n+16 8n+8 61+ 2 2n+2
TaBLE 7: Partitions of K’s edges according to the degree.

Ej (p)d(9) E5, ESs ES, Ef,
|Eg(p),d(q)| 10 + 14 64n +32 2ln+7 8n+8
TaBLE 8: Partition of K’s edges according to the connection number.

Bl @ Es Es, ES, Ess Ef, Eis Eis Esg Ege
|E§(P))T(q)| 4n+12 6n+2 12n+4 4n+12 42n+14 12n+4 12n+4 8n+8 3n+1

Theorem 8. Let K = ZNSL (n) be a zinc silicate network of ~ Proof. By definition,
dimensions n > 3. Then, the second Zagreb connection index is
ZC,(K) =1910n + 1074. (17)
ZC,(G) = ) [r(p) x1G(9)]
P9EE(G)
= 2 [@xmw@l+ ) [e@xm@]+ Y, [re(p)x e (@)]
PqeEs PqEEs PIEES
+ 2 @ x @]+ Y (@ xmw@] + Y [P x (@)
PacEis PgeE;, PacEs,
+ Z [k (p) x T (@)] + Z [k (p) x Tk (@)] + Z [tk (p) x 7x (9)]
PacEy, PacEig PacEq
+ ) [P xmc(@)]
PaeEs
(18)

= [Eauol 2% 3) +[E 3500 (3% 3) +]E3.510| (3 % 5) +[E 45| (4 % 5)
+E (000 (4% ) +[E (3,910 | (3 X 4) +[E 4,010 (4% 4) +[E (46,10 | (4 % 6)
+|E 66)(10)] (6 % 6) +[E (5.9, 1| (5 x 8)

=(4n+12)(2x3)+(6n+2)(3x3)+(4n+12)(3x5)+(12n+4)(4 X 5)
+(B6n+12)(4x4)+(12n+4)(3x4) +(6n+2)(4 x4) + (12n+4) (4 X 6)
+(Bn+1)(6%x6)+(8n+8)(5x%x38)

=24n+ 72+ 54n+ 18 + 60n + 180 + 240n + 80 + 576n + 192
+ 144n + 48 + 96n + 32 + 288n + 96 + 1081 + 36 + 320n + 320

= 1910n + 1074.
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Theorem 9. Let K = ZNSL (n) be a zinc silicate network of ~ Proof. By definition,
dimensions n > 3. Then, the modified first Zagreb connection
index is

ZC} (K) = 876n + 500. (19)

ZC1(G) = )Y [16(p)+16(q)]

P9€E(G)

= Z [ (p) + ¢ (9] + Z [k (p) + T (@)] + Z [k (p) + ¢ (9)]

P9EE; PYEE;, PEEs

+ Y [P +@]+ Y [k @+ @]+ Y [tk (p) + 14 (9)]

pqu;5 pquiy 4 pqugy 4

+ Y [P +@]+ Y [P+ @]+ Y [rc(p) + 7 (q)]

P9EE], PaEE; pqu;6

+ Y [tk (p) +1x(9)]

PacEsy

= [Eayol 2+3) +[E @5 00| 3 +3) +|Egs5 0] 3+ 5) +[E 45 )| (4 +5)
HEwauo (449 +E 00| G +4) +|E o] (4 +4) +E 10| (4 +6)
+|E 00| (6 +6) +[E 55 10| (5 + 8)

=(4n+12)2+3)+(6n+2)(3+3)+(4n+12)(3+5)+(12n+4)(4 +5)
+(B6n+12)(4+4)+(12n+4)(3+4)+(6n+2)(4+4)+(12n+4)(4 +6)
+(3n+1)(6+6)+(8n+8)(5+8)

=20n+60+36n+ 12+ 32n+ 96 + 108n + 36 + 2881 + 96 + 84n + 28 + 48n + 16
+ 120n + 40 + 36n + 12 + 104n + 104

= 876n + 500.

ZC5 (K) = 2340n + 1324.
Theorem 10. Let K = ZNSL (n) be a zinc silicate network of

dimensions n>3. Then, the modified second Zagreb con-

nection index is Proof. By definition,

(20)

2



10 Journal of Chemistry

ZC(G) = Y [dg(p)rg(q) +dg (916 (p)]
PqeE(G)

= Y [de(P)rx (@ +dx @t (P)] + Y [dic (P)1x(q) + dic (@7 (P)]

P9EES P4€Es;

+ Z [dx ()1 (@) +dk (@Tk (P)] + Z [dx (P)7x (@) +di (@)Tk (p)]

PgeEs PacEy s
+ 2 AP (@ +de@rc ()] + Y [di (D7 (@) +dc (@ic (p)]
PpacEs, PgeEs,
+ ) AP @ +dx @ (D] + ), [dic ()7 (@) + i (@) 7k ()]
P9, PaeE;
+ 2 LA (P@+de @]+ ) [di (P)7c (@) + dic (97 (p)]
PaeEG, Pa<Es,
=|E55| (2% 3+2x2) +|E55| (2% 3+2%3) +|ES5| (2% 5+ 3x3) +|Ey 5[ (2x5+3x4) +|Ef | (2x4+3x4)
+|ES 4| (2 x4+ 3 x3) +|E, | (3x4+3x4) +|Ej4| (3% 6+3x4) +|Egg| (3% 6+3x6)+|Esq|(3x8+4x5)
= (4n + 12) (10) + (61 + 2) (12) + (4n + 12) (19) + (1211 + 4) (22) + (361 + 12) (20) + (1211 + 4) (17)
+ (61 +2)(24) + (12n+4) (30) + (3n+ 1) (36) + (8n + 8) (44)
=40n+ 120 + 72n + 24 + 76n + 228 + 264n + 88 + 720n + 240 + 204n + 68 + 144n + 48 + 360n + 120
+108n + 36 + 352n + 352
= 2340n + 1324.

(22)

ZC; (K) =2396n + 1380. (23)
Theorem 11. Let K = ZNSL (n) be a zinc silicate network of

dimensions n > 3. Then, the modified third Zagreb connection
index is Proof. By definition,

2C5(G) = ), [de(P16(p) +dg (@16 (9)]

PqeE(G)

= Y [de(P)rx () +di (@1 @]+ Y [dic (P)1x (p) +dic (D)7 (@)]

pqui3 pqug‘3

+ Y [de (Pt (p) +dx @7k @] + Y [di ()7 (p) + di (@)7x (9)]
PEES 5 PgeE;s

+ Y [de (P (p) +dc @t (@] + Y [dic (P)Ti (p) + dc (@) 7k (9)]
pqufL4 pqug,4

+ Y [de (Pt (p) +di (@i @]+ Y [dic (P)Ti (P) + dic (@) 7k (9)]
PqeES, PqEE;

+ Z [dx (P)Tx (p) + di (@)1 (q)] + Z [dx (P)x (p) + di (@) 7k (9)]
pqué)6 P‘JGE;,S

=|E55| (2% 2+2%3) +|E55| (2% 3+ 2% 3) +|E5 5| (2x 3+ 3x5) +|E; [ (2x4+3x5) +|Ej | (2x4+3x4)
+|ES,[ (2 x 343 x4) +|Ey, | (3x4+3x4) +|Ej4| (3% 4+3x6)+|Egg|(3x6+3x6)+|Esq|(3x5+4x8)

= (4n+ 12)(10) + (61 + 2) (12) + (4n + 12) (21) + (121 + 4) (23) + (361 + 12) (20) + (1211 + 4) (18)
+(61n+2)(24) + (12n+4) (30) + (3n + 1) (36) + (8n + 8) (47)

=40n+ 120+ 72n + 24 + 84n + 252 + 276n + 92 + 720n + 240 + 216n + 72 + 144n + 48 + 360n
+ 120 + 108n + 36 + 3761 + 376

= 2396n + 1380.

(251)
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Theorem 12. Let K = ZNSL (n) be a zinc silicate network of
dimensions n> 3. Then, the modified fourth Zagreb connec-
tion index is

ZC, (K) = 14700n + 8676. (25)

ZCi(G) = ) [de(P6(a) x dg(9)6(p)]
PqeE(G)

11

Proof. By definition,

= Y [de(P)rx (@ xdi @1 (P)] + Y [dic (P)7x (q) x dic (@7 (p)]

pqui3 pqu;3

+ z [dx (P)Tk (@) x di (@7 (P)] + Z [dx (P)Tk (@) x di (@7 (p)]
pqej‘i;5 P‘IGEZ,S

+ Z [dx (P)Tx (@) x di (@7 (P)] + Z [dx (P)Tx (@) X di (@7 ()]
PEE;, P9EE;,

+ ) [Pk @ xdg @t (P + ) [di (P)7x (@) X dic (@)7k ()]
P9EES, P9

+ ) APk (@ x dg (@i (P)] + ) [dx (p)x (@) x dic (@)7k (P)]
pqué)6 pqug,8

=|E55| (2% 3x2%2) +|E55| (2% 3% 2% 3) +|ES 5| (2x5x3x3) +|Ey [ (2x5x3 x4) +|Ef | (2x4x3x4)

+|E5,| (2 x4 x 3% 3) +|E,

(3x4x3x4)+|E; | (3x6x3x4)+|Egq|(3x6x3x6)+|E;g|(3x8x4x5)

=(4n+12)(24) + (6n+2)(36) + (4n + 12)(90) + (12n + 4) (120) + (361 + 12) (96) + (12n + 4) (72)
+ (61 +2)(144) + (12n + 4) (216) + (3n+ 1) (324) + (8n + 8) (480)
=96n + 288 + 216n + 72 + 360n + 1080 + 1440n + 480 + 3456n + 1152

+ 864n + 288 + 864n + 288 + 2592n + 864 + 972n + 324 + 3840n + 3840

= 14700n + 8676.

5. Comparisons and Conclusions

In this section, we compare zinc oxide (H) and zinc silicate
(K) related MONs via some Zagreb connection indices
(ZClIs) such as first ZCI, second ZCI, modified first ZCI,
modified second ZCI, modified third ZCI, and modified
fourth ZCI with the help of Tables 9-14 that have been
constructed by using numerical values of the aforemen-
tioned ZClIs. The graphical presentations for ZCIs of MONs
are presented in Figures 3-10.

The comparative study of zinc-related MONs is high-
lighted by the following conclusions:

(i) From Tables 9-14 and Figures 3-8, we see that the
behaviors for all the ZCIs of zinc silicate MONSs have
more values and upper lines than zinc oxide MONs
with the following order:

ZC, (K) = ZC, (H), ZC, (K) = ZC, (H), ZC? (K)
ZC; (H), ZC5 (K)>ZC; (H), ZC; (K) > ZC; (H),
and ZCj (K) > ZCj} (H).

(ii) From Tables 15 and 16 and Figures 9 and 10, we see
that modified fourth ZCI (ZCj) attains more values

(26)

O
and upper lines than other ZCIs for both zinc-re-
lated MONSs.

(iii) The modified first Zagreb connection index (ZC7)
attained better values of correlation coefficient for
the thirteen physicochemical properties of octane
isomers than other classical Zagreb indices. In this
paper, novel connection-based Zagreb index ZC}
attains better values of correlation coefficient for

increasing order in both the cases of zinc-related
MON:s.

(iv) Table 17 shows that zinc silicate-related MON of
dimension n for the aforesaid ZCIs has attained
upward position than zinc oxide-related MON.

(v) Moreover, these general relations (Tables 15-17)
indicate that the chemical capability of zinc silicate-
related MON is better than zinc oxide-related MON
for all values of n.

Now, the problem is still open for prism, product,
subdivision, and their compliment networks with the help of
connection-based Zagreb indices.



12 Journal of Chemistry
TaBLE 9: Numerical values of ZC, for H and K networks on dimensions 3 <n<10.
ZCls 3 4 5 6 7 8 9 10
ZC, (H) 3896 4964 6032 7100 8168 9236 10304 11372
ZC,(K) 5216 6680 8144 9608 11072 12536 14000 15464
TaBLE 10: Numerical values of ZC, for H and K networks on dimensions 3 <n<10.
ZCls 3 4 5 6 7 8 9 10
ZC, (H) 5024 6400 7776 9152 10528 11904 13280 14656
ZC, (K) 6804 8714 10624 12534 14444 16354 18264 20174
TaBLE 11: Numerical values of ZC} for H and K networks on dimensions 3 <n < 10.
ZCls 3 4 5 6 7 8 9 10
ZCy (H) 2448 3120 3792 4464 5136 5808 6480 7152
ZCi (K) 3128 4004 4880 5756 6632 7508 8384 9260
TaBLE 12: Numerical values of ZC; for H and K networks on dimensions 3 <n< 10.
ZCls 3 4 5 6 7 8 9 10
ZC5 (H) 6344 8084 9824 11564 13304 15044 16784 18524
ZC5 (K) 8344 10684 13024 15364 17704 20044 22384 24724
TaBLE 13: Numerical values of ZC; for H and K networks on dimensions 3 <n < 10.
ZClIs 3 4 5 6 7 8 9 10
ZCj5 (H) 6608 8416 10224 12032 13840 15648 17456 19264
ZC;5 (K) 8568 10964 13360 15756 18152 20548 22944 25340
TaBLE 14: Numerical values of ZCj for H and K networks on dimensions 3 <n < 10.
ZCls 3 4 5 6 7 8 9 10
ZCy (H) 38256 48600 58944 69288 79632 89976 100320 110664
ZCj (K) 52776 67476 82176 96876 111576 126276 140976 155676
18000 -
16000 -
14000 -
12000 ~
10000 -
8000
6000 -
4000 ~
2000 -
0
3 4 5 6 7 8 9 10
—o— ZC, (H)
- ZC (K

FIGURE 3: Comparison of ZC, index for H and K networks on dimensions 3 <n < 10.
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0
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W ZC, (K)

FiGUure 4: Comparison of ZC, index for H and K networks on
dimensions 3 <n<10.

16000 -
14000 -
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9000 - n 12000 -
8000 4 o E 10000 -
7000 1 8000
6000 4 6000 -
5000 -
4000 - 4000 -
3000 - 2000
2000 4 0
1000 A . ) ) ) . . . . . . 3 4 5 6 7 8 9 10
R 4 6 8 9 0 - ZG,(H)
> 7 ! -m- ZC, (K)
—— ZC; (H)

: F1Gure 8: Comparison of ZC} index for H and K networks on
m ZC (K) . .

dimensions 3 <n<10.
FIGURE 5: Comparison of ZCj index for H and K networks on

dimensions 3 <n<10.
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40000 -
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FIGURE 6: Comparison of ZC; index for H and K networks on Figure 9: Comparison of ZCIs of network H on dimensions

dimensions 3 <n<10. 3<n<10.
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180000 -
160000 -
140000 -
120000 -
100000 -
80000
60000
40000 -
20000 -

0

3 4 5 6 7 8 9 10

—— ZC; (K) - ZC, (K)
m ZC, (K) =%~ ZC; (K)
A ZCy (K) —o— ZCy (K)

FIGURre 10: Comparison of ZCIs of network K on dimensions 3 <n<10.

TaBLE 15: Numerical table for indicated ZCIs of network H on dimensions 3 <n < 10.

ZCls ZC, (H) ZC, (H) ZC: (H) ZC (H) ZC: (H) ZC: (H)
3 3896 5024 2448 6344 6608 38256
4 4964 6400 3120 8084 8416 48600
5 6032 7776 3792 9824 10224 58944
6 7100 9152 4464 11564 12032 69288
7 8168 10528 5136 13304 13840 79632
8 9236 11904 5808 15044 15648 89976
9 10304 13280 6480 16784 17456 100320
10 11372 14656 7152 18524 19264 110664
TaBLE 16: Numerical table for indicated ZCIs of network K on dimensions 3<n<10.
ZCls ZC, (K) 7C, (K) ZC: (K) ZC3 (K) ZC: (K) ZC; (K)
3 5216 6804 3128 8344 8568 52776
4 6680 8714 4004 10684 10964 67476
5 8144 10624 4880 13024 13360 82176
6 9608 12534 5756 15364 15756 96876
7 11072 14444 6632 17704 18152 111576
8 12536 16354 7508 20044 20548 126276
9 14000 18264 8384 22384 22944 140976
10 15464 20174 9260 24724 25340 155676
TaBLE 17: Comparison of indicated ZClIs for all n.
ZCls K- H=ZNSL (n) - ZNOX (n) Results
First ZCI 396n + 132 K>H
Second ZCI 534n+178 K>H
Modified first ZCI 204n + 68 K>H
Modified second ZCI 6007 + 200 K>H
Modified third ZCI 588n + 196 K>H
Modified fourth ZCI 4356m + 1452 K>H
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A topological index (TI) is a molecular descriptor that is applied on a chemical structure to compute the associated numerical
value which measures volume, density, boiling point, melting point, surface tension, or solubility of this structure. It is an efficient
mathematical method in avoiding laboratory experiments and time-consuming. The forgotten coindex of a structure or
(molecular) graph H is defined as the sum of the degrees of all the possible pairs of nonadjacent vertices in H. For D € {S,R,Q, T}
and the connected graph H, the derived graphs D (H) are obtained by applying the operations S (subdivided), R (triangle parallel),
Q (line superposition), and T (total graph), respectively. Moreover, a derived sum graph (D-sum graph) is obtained by the
Cartesian product of the graph H, with the graph D (H,). In this study, we compute forgotten coindex of the D-sum graphs
Hy,sH, (S-sum), H,xH, (R-sum), H,,oH, (Q-sum), and H;,yH, (T-sum) in the form of various indices and coindices of the
factor graphs H, and H,. At the end, we have analyzed our results using numerical tables and graphical behaviour for some

particular D-sum graphs.

1. Introduction

Chemical graph theory being the combination of graph
theory and chemistry is a branch of mathematical chemistry
in which we study the various physical and chemical
properties of a chemical structure or network using different
graph theoretical techniques. A topological index is one of
the most used graph theoretical technique that studies the
different properties of the molecular structure such as
volume, density, freezing point, vaporization point, boiling
point, melting point, surface tension or solubility, heat of
formation, and heat of evaporation numerically [1, 2].

TIs are categorized in three types such as degree, dis-
tance, and polynomial based, but according the latest survey
[3], the degree-based TIs are more studied than others.
Wiener was the first scientist who calculated the boiling
point of paraffin by using a distance-based TI [4]. Gutman
and Trinajsti [5] introduced degree-based TIs known as

Zagreb indices to calculate total m-electron energy of hy-
drocarbons. Rouvary [6] and Balaban [7, 8] discussed the
structure-activity correlations of different chemical phe-
nomenon using TIs. Klein et al. introduced a molecular
topological index and drive a close relation with the Wiener
index [9, 10]. Mendiratta et al. and Cornwell used Wiener’s
TI to study structure-activity study on antiviral 5-vinyl-
pyrimidine nucleoside analogs [11]. Gutman and Estrada
calculated the TIs based on the line graph of the molecular
graph [12]. Biye et al. wrote a novel on TI for QSPR/QSAR
study of organic compounds [13]. Qinghua et al. calculated
the TI for octane number of acyclic alkane by autocorre-
lation [14]. Baig et al. computed the TIs for polyoxide and
silicate DSL and DOX-like networks [15].

In 2015, Furtula and Gutman redefined a TI with the
name forgotten index (F-index) as the sum of cubes of vertex
degrees of a molecular graph [16]. Gutman et al. listed the
graphs having smallest forgotten index [17]. Zhongyuan and
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Zhibo computed bounds of the F-index using Cauchy-
Schwarz inequality, Jensen’s inequality, and Chebyshev’s
sum inequality [18]. Gao and Liu calculated F-index of
different chemical structures [19, 20]. Ahmad et al. worked
online graph of benzene ring in the 2D network and cal-
culated the degree-based TIs for these graphs [21]. Javaid
et al. calculated bound on F-index for unicyclic graphs with
fixed number of pendent vertices [22]. Imran et al. [23]
investigated the family of unicyclic graphs with extreme
F-coindex.

Ashrafi et al. introduced the concept of coindex of graph
and investigated Zagreb coindices of composite graph op-
erations such as union, disjunction, and various product of
graphs [24]. Havare et al. computed the F-index and
F-coindex for carbon base nanomaterial [25]. Basavanagoud
and Desai calculated the F-index and hyper-Zagreb index of
generalized transformation graphs [26]. Gao et al. calculated
electron energy of molecular structures F-index [27]. Yasir
et al. computed F-index of dendrimers-like structure [28].
Basavanagoud and Timmanaikar calculated first Zagreb and
F-index of some dominating transformation graphs [29].
Sana et al. characterized the extremal graphs and proved the
ordering among the different subfamilies of graphs with
respect to F-index [30].

Various operations on a graph play the important role in
the development of different new classes of graphs. Yan et al.
listed five graphs line graph L (H), subdivided graph S (H),
line superposition graph Q (H), triangle parallel R (H), and
total T (H) by performing different operations on H and
computed Wiener indices of these five graphs [31]. Eliasi and
Taeri defined the derived sum graphs (H,,,H,) and
computed their Wiener indices, where D € {S, R, Q, T} [32].
Later on, for these derived sum graphs, Deng et al. [33]
computed first two Zagreb indices, and Akhtar and Imran
calculated the F-index [34, 35]. Javaid et al. (2021) inves-
tigated the first Zagreb connection index and coindex [36],
and Javaid et al. investigated forgotten index of these graphs
[37]. Moreover, Pattabiraman and Peng computed F-indices
and their coindices of some classes of graphs [38, 39]. Ali
et al. forgotten coindex of some nontoxic dendrimers
structure used in targeted drug delivery [40].

In this study, we compute forgotten coindices of D-sum
graphs H,,,H,, where D € {S,R,Q, T} in the form of for-
gotten index, first Zagreb indices, and coincides of their
basic graphs H, and H,. At the end, the obtained results are
also illustrated with the assistance of the examples for some
particular D-sum graphs. In Section 2, the definitions and
notations are presented, Section 3 includes the main results
of our work, and Section 4 presents particular examples
related to the main results.

2. Preliminaries

Let H = (V(H), E(H)) be a connected graph, where V (H)
and E (H) be the set of vertices and edges of H, respectively.
For any vertex x € V (H), its degree is denoted by d (x) and
defined as the number of edges connecting it. The joining of
two vertices x,y € V(H) formed an edge denoted by
xy € E(H). Gutman and Trinajstic [5] introduced Zagreb
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indices M, (H) and M, (H) to calculate total 7 electron
energy of hydrocarbons. The Zagreb indices M, (H) and
M, (H) are defined as

M, (H) = Z [dy (ry) +dy (r2)],

rr,€E(H) (1)
M, (H) = Z [dy (ry)dy (r2)]-

rr,€E(H)

_ Ashrafi et al. [24] defined Zagreb coincides such as
M, (H) and M,(H) of the Zagreb indices. The Zagreb
coindices are defined as

M, (H) = Z [dy (ry) +dy (r2)],

riry ¢ E(H) 2)
M, (H) = Z [dy (ry)dy (r2)]-

rr, ¢ E(H)

Furtula and Gutman [16] defined forgotten index
(F-index), and its mathematical form is given by

FH) = Y [dg(n)+dy(n)] (3

rir,€E(H)

Nilanjan et al. [41] introduced the forgotten coindex
(F-coindex) for F-index with mathematical formulation as

F(H) = Z [dH (r)" +dy (”2)2]' (4)

rry, ¢ E(H)

Let H be a simple connected graph; then, its derived
graphs are defined as follows.

(i) S(H) is a graph formed by inserting a new vertex in
each edge of H
(ii) R(H) is a graph obtained from S (H) by adding an
edge between the adjacent vertices of H
(iii) Q(H) is a graph formed from S(H) by adding an
edge between the pairs of new vertices which are on
the adjacent edges of H

(iv) T (H) is formed by performing both operations of
R(H) and Q(H) on S(H)

Suppose that H, and H, are two connected graphs; then,
their derived sum graph (D-sum graphs) is denoted by
H,,pH, and defined with vertex set V(H,,pH,) =
V(H,)UE(H,) xV (H,), and edge set is defined as the
vertices (r;,r,) and (s;,s,) of H,,p,H,, where D € {S,
R,Q, T} are joined iff.

(i) r, =s, € V(H,) and r,-s, € H,
(ii) ry = s, € V(H,) and r|~s, € D(H,)

Where r-s € H, presents the xy is an edge in H, [26].
For the D-sum graphs, refer Figures 1 and 2.

3. Main Results

In this section, we discuss main results related to F-coindex
for D-sum graphs. Let H, be a graph of its order, and the size
is denoted by n, and e, respectively. Let H, be the com-

plement of H,, and the edge set for H, is given by
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1 2 3 4 1 2 3 4

(d) (e)

FiGure 1: (a) G = P,, (b) S(G) =S(P,), (¢) R(G) = R(P,), (d) Q(G) =Q(P,), and (e) T(G) =T (P,).

1 2 G 3 4 a H b
(f, ) (g a) (e, ) (f,a) (g, 2)

(1,a) (4,2) (1,a) (4, a)
(1,b) (4,b) (1,b) (4,b)
(e, b) b (g b) (e, b) (£ b) (g, b)

(G +g H) (G +Q H)
(f, a) (g, a) (e, ) (f, ) (g, )

(1,a) (4,2) (1,a) (4, a)
(1,b) (4,b) (1,b) (4,b)
(e,b) (£, b) (g b) (e,b) (f, b) (gb)

(G +R H) (G +T H)

FiGure 2: G= P, H = P,, and G,p,H = P, ,P,.



n
( 21 ) — e,. Further assumed some sums by , &}, «,, a5, and

a, are given as follows.

(i) a= (ny(ny, — 1) +e,(n, - 1))
(i) @y = ¥ 11ry ¢ 5o, (g, ()2 + dper ()]

r1€V(Hy)
rpeV(D(Hy)-V(Hp))

(ii)) &y = Y r.r, ¢ 5Dy [y, (1) +dp ) (7))
r1€V(Hyp)
r2£V(L1)(H1)*lV(H1))

Journal of Chemistry

(V) a3 = X .7, ¢ E(H,) Dpr, (17)
rieV(Hy)
1€V (D(H})-V (H}))

V) ay =2 rr, ¢ E(H,) g, (1)

rieV(Hy)
ryeV(D(Hy)-V(Hy))

Theorem 1. Let H, ,¢H, be a S-sum graph; then, its
F-coindex is

F(HysH,) = 4(”36% - ”261) +2e,M, (H,) +4e,M, (H,) + m F(H,) +n, (F(H;) + F(H,))

+2(e; +€) + (e (n, —2))M, (H,) +4e, (M, (H,) + M, (H,)) +2[(e, +&,) (F(H,)

_ _ _ - (5)
+F(H;)) + (e; + &) (F(H,) + F(H,)) + (M, (H,) + M, (H,)) (M, (H,) + M, (H,))]
+my0y + ooy +ay) +eyny (M, (Hy) + My (H,)) +4(e, + &) (2as + ay).
Proof. Using equation (4), we have
F(HysH,) = Z [d("psl)z + d(’z’sz)z])
(rl,rz) (sl,sz) ¢ E(Hust)
F(H,,sH,) = > DY Y [dtres) +d(rs)], ©)
T, € (V(SHl)—V (Hl)) T €V T, €V (S (Hl)) 5156V,
€V (H,)
eV (S(H,)-V (H,))
= Z A+ Z B+ Z C,
ZAZ Z [dS(Hl)(rl)"-dS(Hl)(rZ)] = Z (22+22),
rl,rzEV(S (Hl)—V(Hl)) 5156V, rl,rZEV(S (Hl)—V(Hl)) 51,56V, (7)

ZA = 4(11;6% - nzel),

YB=YB,+) B+ B,

ZBI: Z Z [d(r,sl)2+d(r,52)2]: Z

reVy, 515, ¢ By,

reVy, 515, ¢ By,

-3

r€Vy, 515, ¢ By,
reVy, s15; ¢ By,

=2¢e,M, (H,) + 4e,M, (H,) + n,F (H,),

Y (@) +d(s))’ +(d(r) +d(s,))’]

Y (d@?+d (s, +2d(Md(s,)) +(d(r)’ +d(sy)* +2 d(r)d(s,))]

Y [2d)+(d(s)’ +d(s,)’) +2d(r) (d(s,) +d(s,))]

YB, Y Y [(d(r)+d(s) +(d(r,) +d(9))]

S€Viy, 11,1V,

=222
s€Viy, \"172€En,

rry ¢ By,

=222
s€Vy, \"172€En,

1y ¢ By,

) [(d(r)?+d () +2d(r,))d(s)) +(d(ry)’ +d(s)* +2 d(ry)d(s))]

) [(d(r)?+d(ry)*)+2d(s)* +2d(s)(d(r,)) +d(ry))]
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=n,(F(H,)+F(H,))+2M, (H,) (e, + &) + 4e;, (M, (H,) + M, (H,)),

K Z;f ’ Z¢:E >< ZE ' ;5 )][d(rl,sl)2+d(r2,52)2]
K - A )( Z + Z )][(d(h)z+d(r2)2)+2(d(i’1)d(sl)+d(r2)d(52))+(d(51)2+d(52)2)]

515€Ey, 515, ¢ By,

2[(e; +&,) (F(H,) + F(H,)) + (e, + &) (F(H,) + F(H,)) + (M, (H,) + M, (H,)) (M, (H,) + M, (H,))],

ZB =2e,M, (H,) +4e,M, (H,) + n,F (H,) + ny (F(H,) + F(H,) + 2M, (H,) (e, +¢,)

+4e, (M, (H,) + M, (H,)) +2[(e, + &) (F(H,) + F(H,)) + (e, + &) (F(H,) + F(H,)),

YC=)YC+)YC+)C,

2.6

2.6

= Z Z [d (r1,8)" + d(rz,s)z]
7, QE(S(HI)) seVy,
rev (H,)
r,eV (S(H,)-V (H,))

_ y Y (@6 + e +2 a6)d) +(dggu, (2)?)]
riry, ¢ E(S(H,)) s€Vy,
revV (Hy)
€V (S(H,)-V (H,))

=may +e; (n —2)M, (H,) + de,a3,
= Z Z [d(rl’sl)z +d(7’2>52)2]
rir, ¢ E(S(H,)) 51,56V,

€V (Hy)
reV (S(H,)-V (H,))

-2 < D) )[(dm)ﬂd(sl)ﬂzd<r1>d(s1)+(ds(Hl<r2>2]

riry ¢ E(S(H,)) 5156V, s1.8 €V,
rieV (H,)
r eV (S(H,)-V (H,))

= aw, +e; (n, —2) (M, (H,) + M, (H,)) + 4 (e, +&,)as,

= Z Z [d(rl’sl)z +d(r2,52)2]

rir,€E(S(H,)) 51,56V,
€V (Hy)
reV (S(H,)-V (Hy))

> ( D) )[(d<n)2+d(s1)2+zd<r1>d<s1>+(ds(Hl(rz)2]

riry€E (S(H,)) 515V, s8¢V,
r €V (Hy)
r eV (S(H,)-V (H,))

aa, +2e, (M, (H,) + M, (H,)) +4(e; +&,)ay.

(8)
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By substituting the values in equation (6), we get the = Theorem 2. Let H,,,H, be a R-sum graph; then, its
required result. O  F-coindex is

F(HzH,) = 4(”56% - ”261) +8e,M, (H,) + 8¢, M, (H,) + n, F(H,)
+4n, (F(H,) +(2¢, + (e, (n, - 2))))M, (H,) + 8e,M, (H,)
+24(ey + &) (F(H,) + F(Hy)) + (e, + &) (F(H,) + F(H,)) (©)
+2(M, (H,) + M, (H,))(M, (H,) + M, (H,))]
+ma, +a(a, +a,) +eny (M, (H,) + My (H,)) +4(e, + &) (205 + ay).

Proof. Using equation (4), we have

F(H\.xH,) = Z [d (£ ;)" +d (s, xz)z]’
(tl’tz) ("1”‘2) ¢E (H1+SH2)

F(H,.H) = ) D) Y [deis) +d(msy] (00
rira€ (V(R(H,)-V (H,)) €V r,r,€V (R(H,)) 5156V,
€V (H,)
r,€V (R(H,)-V (H,)) |

:_ZA+ZB+ZC.

Using equation (7),

ZA = 4(}’156% - nzel),
ZB = ZBI +ZB2 +ZB3
YBi=Y Y [drs)+d(rns)]= Y Y [@dr)+d(s)) +(d(r) +d(s,))’]
reVy, 515, ¢ By, reVy, 815, ¢ By,
=Y Y [8dm)+(d(s)? +d(s,))) +4 d(r)(d(s,) +d(s,)))]
r&Vy, 815, ¢ By,
= 8¢,M, (H,) + 8e, M, (H,) + ”1F(H2)’

ZBZ = Z Z [(d(rl) + d(s))2 +(d(ry) + d(s))z]

s€Viy, 111V,

=) ( Y o+ ) )[4(d(r1)2 +d(ry)?)+2d(s) +4d(s)(d(r))) +d(r,)]
s€Vy, \"n€Ey, iy ¢ Ey,
=4n, (F(H,) + 2¢,M, (H,) + 8¢,M, (H,),

SEREN Ry T

rerEEH] rir, ¢ EH] slszeEH2 518, ¢ EH2
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=< >t X )( >t )[(d(r1)2+d(rz)2)+(d(51)2+d(52)2+2(d(r1)d(31)+d(f’z)d(52))]

rlrzeEHl rlrzéEHl slszeEH2 slszeEHz

=< Z + Z )( Z + Z )[22(d(r1)2+d(r2)2)+(d(sl)2+d(sz)2+4(d(r1)d(sl)+d(r2)d(52))]

rlrzeEHl ri7, ¢EH1 SISZEEHZ 518, ¢EH2
=2[4(e; +,) (F(H,) + F(H;)) + (e, +&,) (F(H,) + F(H,)) + 2(M, (H,) + M, (H,)) (M, (H,) + M, (H,))]
ZB = 8e,M, (H,) + 8¢, M, (H,) + n,F (H,) + 4n, (F (H,) + 2¢,M, (H,) + 8¢, M, (H,)
+2[4(e, +&) (F(H,) + F(H})) + (e, +¢,) (F(H,) + F(H,))
+2(M, (Hy) + M, (H,))(M, (H,) + M, (H}))],
YC=YC+YC+YC,
ch Z Z [d(rl,s)2+d(r2,s)2]

T, ¢E(R(Hl)) SEVHZ

€V (H,)

ry€V (R (Hl)’v (Hl))

_ y Y [P0 +d(9? +4d()d©) +(dsp, ()]

rry ¢ E(R(H,)) sV,
r eV (H,)

r€V (R(H))-V (H,))

may +ep (1 = 2)M, (H,) + 4eya3,

Yo=Y ( Y+ Y )[(d<n>2+d<s1>2+zd(m)d(s1>+(d5(Hl<r2>Z]

rr, ¢ E(R(H,)) 5155V, $15; € Vi,
r €V (H,)

reV (R(H,)-V (H,))

ay +ey (n =2) (M, (H,) + M, (H,)) +4(e; +¢,)as,

YCi- ) )[(w wd ()’ +2 d(r)d (s)) + (s, ()]

+
rlrzeE(R(Hl)) (51’525VH2 5158 ¢ Vi,
€V (Hy)

reV (R(H,)-V (H,))

= aa, +2e, (M, (H,) + M, (H,)) +4(ey +&,)ay.

(11)

By substituting the values in equation (10), we get the
required result. O
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Theorem 3. Let H,,oH, be a Q-sum graph; then, F-coindex is

F(H,,oH,) = nZF(Q, (G1)> 128+ (n, - 1))<M1<QIH1> + 1)F(Q' G,)

+F<Q’ (G1)>> +28,M, (H,) +4e,M, (H,) + m F (H,) + ny (F (H,) + F (H,))
. _ 12
2V, (Hy) (e + )+ dey (M (HL) + ¥, (H,)) + 2[(es + &) (F(Hy) + F(HL) 1

+ (e, +2,) (F(H,) + F(H,)) + m,F(Q(H,)) + e, (n, - 2)M, (H,)
+a(a +ay) + ey (M, (H,) + M, (Hy)) +4(e; + &) (205 + aty).

Proof. Using equation (4), we have

F(H1+QHz) = Z [d(tl,x1)2+d(t2,x2)2],
(t1:t2) (x1%2) ¢ E (HyoH,)

F(HHQHz): z Z + Z + Z
rne (QH)-V () 5oV, Vi rnev (Q(H))

rIGV(Hl)
reV (Q(H,)-V (H,)) |

: ZV [d(rpsl)z +d("2>52)2]
= ZA+ZB+ZC,
YA=Y A+ A+ ) A+ ) A,

ZAI = Z Z dq(n, (”1)2 +dq(n, (”2)2 =1y,
( (
rir, ¢ E(Q(Hl)) SEVHZ
r.r,€V (Q(H,)-H,)

Z [dQ(H1 (’"1)2 + dQ(Hl (rz)z]
it ¢E(Q(Hl))
r.r,€V (Q(H,)-H,)

if ¥ [dQ(Hl (r)* + do (rz)z] - F(Ql (Hl)), then Y A, = nZF(Q, (H1)>,
rr, ¢ E(Q(H,)))
.,V (Q(H,)-H,)

Z [dQ(H1 (”1)2 + dQ(Hl (72)2]

reV (Q(H,)-(H,)) 515,€Ey,

24

+ Z )[dQ(Hl (”1)2+dQ(Hl (r,)’

reV (Q(H,)-V (H,)) (5152 ¢ By,  515,€Ey,

2
=2(e,+(n, - 1)) Y [dQ(Hl(r) )]
reV (Q(H,)-V (H,))
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if D [dQ(Hl (r)z)] = Ml(QIH1>, then = 2 (e, + (n, — 1))M1<Q/H1>,
rev (Q(H,)-(H,))
ZA3 - Z Z [dQ(H1 (r)+ dq(n, (rz)z]
rnr ¢ E(Q(H,))  sp%2&Vy,
r.r,€V (Q(H,)-H,)

- Z [ Z <dQ(H1(r1)2+dQ(Hl(rz)2>

7, éE(Q(Hl)) s15,€Ey,
r,r,€V (Q(H,)-V (H,))

+ Z (dQ(H1(71)2+dQ(H1(72)2>:|

515, ¢ EHZ

= 2(e,+ (- 1)) Y [doqn () +dogu, ()’
rir, ¢ E(Q(H,))
ri,r,€V (Q(H,)-V (H,))

if Z [dQ(H1 (r)" + do(u, (rz)z] = F(Q’ (H1)> =2(e, +(n, - 1))F<Q’ (Hl))>
riry ¢ E(Q(Hy))
r,r,€V (Q(H,)-V (H,))

ZA4 - Z Z [dQ(Hl (r)* + dq(n, ("2)2]
rir ¢ E(Q(Hy)) 15V,
r,r,€V (Q(H,)-V (H,))

= Z [ Z <dQ(H1(r1)2+dQ(H1(rZ)2>

", éE(Q(Hl)) 515,€Ey,
r,r,€V (Q(H,)-V (H,))

+ Z <dQ(H1(”1)2+dQ(H](Tz)2>:|

515, ¢ EHZ

= 2(e,+ (m, - 1)) Y [doqn () +dogu, ()]
riry ¢ E(Q(Hy))
rl,rzéV(Q (Hl)_V(Hl))

Take y [dQ (1, () + do (rz)z] - F(@ (H1)>, then = 2(&, + (m, - 1))F<Q, (Hl)).
riry ¢ E(Q(Hy))
r,r,€V (Q(H,)-V (H,))
(13)

Consequently,

Y= nZF(Q/ (G1)> +2(2, + (my — 1))M1<QIH1> +2(2, + (ny - 1))F<QI (Gy) + F(Q/ (Gl))>. (14)
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TaBLE 1: For two graphs, H, = P, and H, = P,, values of forgotten coindex for their D-sum graphs by taking different values for n and m.

n,m F(P:fz+Sprn) F(PrHRpm) F(PnJrQPm) F(Pn+Tpm)
3,2 332 528 410 632
4,2 840 1268 1760 1820
5,2 1476 2552 3214 4002
6,2 2276 4585 4160 6552
7,2 3332 6448 7034 9830
8,2 4840 9512 9514 14362

7000

6000

5000

4000

3000

2000

1000

0

1 2 3 4 5

FIGURE 3: Graphical presentations of F-coincides for P,,,P,, graphs such as H,¢H,, H,xH,, Hy,oH,, and Hy,yH, are represented by
blue, orange, gray, and yellow, respectively.

Using equation (8), we directly have

ZB =2¢,M, (H,) +4e;M, (H,) + n,F (H,) + n, (F(H,) + F(H,) + 2M, (H,) (e; +¢,)

+4e, (M, (H,) + M, (H,)) + 2[(e, +&,) (F(H,) + F(H,)) + (e; + &) (F(H,) + F(H,)),

YC=)Ci+)YC+) Gy,

Z Z [d(rl,s)2 +d(r2,s)2]
Ty ¢E(S(H1)) sV,
T1EV(H1)r2€V(Q(H1)’V(Hl))

Z Z [(d (rl)2 + d(rz)z) +d(s)*+2 d(rl)d(s)] =ma, +e, (n, —2)M, (H,) + 4e,a3,
Ty 1 SEVHZ
e
reV (S(H,)-V (H,))

Z ( Z + Z )[(d(r1’51)2+d(”2>52)2)]
rr, ¢ E(Q(H,)) 5192V, 15 ¢ Ep,
eV (H,)

reV (S(H,)-V (H,))
ay +e; (ny =2) (M, (H,) + M, (H,)) +4(e; +2,)as,
Sy )[(dm,sl)z T

rir,€E(Q(H,)) (51v52€VH2 518 ¢ Vi,
r eV (H,)rev (S(H,)-V (H,))

(15)

= aa, +2e, (M, (H,) + M, (H,)) +4(e, +&,)ay.
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By substituting the values in equation (13), we get the = Theorem 4. Let H, ,rH, be a T-sum graph; then, its
required result. O  F-coindex is

F(H,,+H,) = n2F<QI (Gl)) +2(e, +(n, — 1))(M1<QIH1> + 1>F(QI (G1)>
+2(e +(ny - 1))F<Q’ (G1)> +e,M,(H,) +8¢;M, (H,) +n,F(H,)
+4n, (F(H,) +2e,M, (H,) + 8¢,M, (H,) + 2[4(e, + &) (F (H,) (16)
+F(H,)) + (e, + &) (F(H,) + F(H,)) +2(M, (H,) + M, (H,)) (M, (H,)
d+M,(H,))| +mF(T(H))) +e, (n, = 2)M, (H,) + a(a; + ;)

+eyny (M, (Hy) + M, (H,)) +4(e; + &) (205 + ay).

Proof. It follows from Theorems 2 and 3. O forgotten index, first Zagreb indices, and coincides
their basic graphs H, and H,.

4. Conclusion (ii) We illustrated Theorems 1-4 with the help of some

particular path graphs such as P, ¢P,,, P,.xP,

In this study, we have computed forgotten coindex of D-sum P,.qP,,and P, 1P, for n,m>2. Forgotten coindex

graphs such as F(H,,sH,), F(H,,xH,), F(H,oH,), and of D-sum graphs from the paths is also computed as

F(H,,rH,) in their general forms. If H, = P, and H, = P,, applications of the obtained results.

of order n,m =2, then (iii) Table 1 and Figure 3 present that forgotten coindex

(i) In this study, we computed the exact values of of (P,,rP,) is dominant than forgotten coindex of
forgotten coindex of D-sum graphs such as PysPps PpigPs and PPy,

(H,,pH,), where D € {S,R,Q, T} in the form of

F(P,.,sP,) =4m(n-1)(m(n-1)-1)+(m-1)(m—-2)M(P,) + 4(n—1)MP,, + nF (P,,)
+m(F(P,+F(P,)+n(n—1)M,(P,,)+4(m-1)(M,(Pn) + M, (Pn))
+m(m - 1)(F(Pn) +F(Pn)) +n(n- 1)(F(Pm) + ﬁ(Pm)) + 2(M1 (Pm) +M1 (Pm)) (Ml (Pn)
+]M, (P,)) + mE(S(P)) + (n— 1) (n - 2)M, (P,,) + 4(m - DB(S(P))) + ocF(S(P/)n>
+(n-1)(n-2)(M,(P,) +M,(P,)) +2m(m—1)B(S(P,)) + aF (S(P}))
+2(n-1)(M,(P,,)+M,(P,,)) +2m(m—1)B(S(P,)),

F(P,..zP,) =4mn-1)(mn-1)-1)+4(m-1)(m-2)M(P,) + 8(n— 1)MP,, + nF (P,,)
+4mF (P, +n(n-1)M,(P,,) + 8(m—1)M, (Pn) + 4m(m - 1) (F(P,) + F(P,)) + n(n—1)(F(P,,)
+F(P,,)) +4(M,(P,,) + M, (P,,)) (M, (P,) + M, (P,)) + mF(R(P,)) + (n 1) (n - 2)M, (P,,)
+4(m-DB(R(P)) + oc?(R(Pl)n) +(n-1)(n—2)(M, (P,) + M, (P,)) + 2m(m - DB(R(PL))
+aF (R(P,)) +2(n-1)(M,(P,,) + M,(P,,)) + 2m(m - 1)B(R(P,)),

F(P,.qP,) =nF(Q'P,) +2(m+n- 2)<M1(QIH1> + F(Qan> + F(len»
+(m—-1)(m-2)Mp +4(n- I)Mpm +nF(P,,)+m(F(P,+F(P,)+n(n-1)M,(P,,)
+4(m-1)(M,(Pn) + M, (Pn))+m(m—1)(F(P,)+ F(P,)) +n(n-1)(F(P,,) + F(P,,))
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+2(M, (P,) + M, (P,,)) (M, (P,) + M, (P,)) + mF (Q(P,)) + (n = 1) (n = 2)M, (P,

+4(m-1)B(S(P))) + ocF(S(QI)n> +2m(m

- 1DB(S(Q))

+ (1= 1) (n=2) (M, (P,,) + M, (P,.)) + aF (Q(P})) + 2(n = 1) (M, (P,,) + 7, (P,.))

+2m(m - 1)B(Q(P,)),

F(P,,rP,) = nF(QIPn> +2(m+n— 2)<M1<QIH1> + F(Q/Pn> + F(Q:Pn»

(17)

+4(m—1)(m-2)Mp +8(n—-1)Mp +nF(P,)+4mF (P, +n(n—1)M,(P,) +8(m - 1)M, (Pn)

+4m(m-1)(F(P,)+F(P,)) +n(n-1)(F(P,,) + F(P,,)) + 4(M,(P,,)

+ M, (P,,)) (M, (P,)

+]M, (P,)) + mE(T(P)) + (n— 1) (n-2)M, (P,,) + 4(m - DB(B(P,)) + af(T(P/)n)

+2m(m-1)B(S(P))) +(n—1)(n-2)(M,(P,,) + M, (P,,)) +2m(m—-1)B(T(P,))

+aF (T(P,))+2(n-1)(M,(P,)+M,(P,)).

Open problem 1. Investigate the existence of the distance-
based coindices for the D-sum graphs.
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The most significant tool of mathematical chemistry is the numerical descriptor called topological index. Topological indices are
extensively used in modelling of chemical compounds to analyse the studies on quantitative structure activity/property/toxicity
relationships and combinatorial library virtual screening. In this work, an attempt is made in defining three novel descriptors,
namely, neighborhood geometric-harmonic, harmonic-geometric, and neighborhood harmonic-geometric indices. Also, the
aforementioned three indices along with the geometric-harmonic index are tested for physicochemical properties of octane
isomers using linear regression models and computed for some carbon nanotubes.

1. Introduction

The applications of graph theory are diversified in every field,
but chemistry is the major area of the implementation of
graph theory. In chemical graph theory, topological index
plays a vital role which facilitates the chemists with a treasure
of data that correlate with the structure of the chemical
compound. The topological index is a numerical descriptor,
defines the graph topology of the molecule, and predicts an
extensive range of molecular properties 5[1-6].

From the last two decades, topological indices (TIs) are
identified and used in pharmacological medicine, bio-
inorganic chemistry, toxicity, and theoretical chemistry and
are also used for correlation analysis [7-11].

Topological descriptors are frequently used in the dis-
covery of drugs as they have rich datasets that give high
predictive values. These descriptors give the information
depending on the arrangement of atoms and their bonds of a
chemical compound. They are studied for chemical

compounds where, generally, the hydrogen atoms are
suppressed. The originality of QSAR/QSPR models depends
on physicochemical properties for chemical compounds
with high degree of precision. These models depend on
various factors such as selecting the suitable compounds,
suitable descriptors, and suitable algorithms or tools used in
model development [12]. The QSAR/QSPR analysis is based
on the data obtained by the numerical descriptors. These
data are used to verify whether the compound under the
study is suitable for drug making as the TIs provide com-
putational data about the compound. Considering the in-
formation of the compound, QSAR/QSPR/QSTR analyses
are carried out.

The TIs have increasing popularity in the field of re-
search as they involve only computation without performing
any physical experiment. Recent years have proved con-
siderable attention in TIs as the effects of an atomic type and
group efforts are considered in QSAR/QSPR modelling
[13-15]. Distance-based TIs are used in QSAR analysis,
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while chirality descriptors are introduced based on molec-
ular graphs [16].

Alkanes are acyclic saturated hydrocarbons in which
carbons and hydrogens are arranged in a tree-like structure.
The main use of alkanes is found in crude oil such as pe-
troleum, cooking gas, pesticides, and drug synthesis. The
compounds that contain absolutely the same number of
atoms but their arrangement differs are termed as isomers. A
study is carried out for eighteen octane isomers (refer
Figure 1).

A structure whose size is between the microscopic and
molecular structure is referred to as a nanostructure. There
are different types of nanostructures, namely, nanocages,
nanocomposites, nanoparticles, nanofabrics, etc. In the re-
cent years, nanostructures have attracted a lot of researchers
in the areas of biology, chemistry, and medicines. Topo-
logical indices of nanostructures can be studied from
[17-24]. The nanostructures made of carbons with cylin-
drical shape are carbon nanotubes (CNTs). They have a
similar structure to that of a fullerene and graphene except
their cylindrical shape. The shape of fullerene is as that of a
football or basketball design where hexagons are connected.

In 1991, Iijima [25] used carbon nanotubes that have
attracted many researchers in nanoscience and nanotech-
nology worldwide. As they have exotic properties, they are
widely used in both research and applications. Nanotubes
have a distinctive structure with remarkable mechanical and
electrical properties. In case of carbon nanotubes, the
hexagons are surrounded by squares, and each of these
patterns is linearly arranged. Carbon nanotubes reveal ex-
ceptional electrical conductivity and possess wonderful
tensile strength and thermal conductivity as they have
nanostructures in which the carbon atoms are strongly
connected.

Carbon nanotubes have applications in orthopaedic
implants, especially in total hip replacement and other
treatments pertaining to bone-related ailments. They are
used as a grouting agent placed between the prosthesis and
the bone as a part of their therapeutic use. The CNTs are used
in biomedical fields because of their structural stiffness and
effective optical absorption from UV to IR. Also, they can be
altered chemically which are expected to be useful in many
fields of technology such as electronics, composited mate-
rials, and carbon fibres. They have incredible applications in
the field of materials science [26]. When the hexagonal
lattice is rolled in different directions, it looks like single-wall
carbon nanotubes have spiral shape and translational
symmetry along the tube axis. It has rotational symmetry
along its own axis. Even though nanotubes have favourable
applications in a variety of fields, their large-scale production
has been restricted. The main constraint that obstructs their
use lies in difficulty in controlling their structure, impurities,
and poor process ability. To enhance their usage, they have
grabbed the attention especially in the formation of com-
posites with polymers.

There are two types of configurations in the arrangement
of nanotubes, namely, zigzag and armchair. In the zigzag
configuration, the hexagons are placed one below the other
linearly, whereas in the armchair configuration, they are
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placed next to each other. This gives two different types of
configurations with different terminologies discussed now.
To explain the structure of a nanotube that is infinitely long,
we imagine it to be cut open by a parallel axis and placed on a
plane. Then, the atoms and bonds coincide with an imag-
inary graphene sheet. The length of the two atoms on op-
posite edges of the strip corresponds to circumference of the
cylindrical graphene sheet [27-29].
The main objectives of this work are as follows:

To define novel indices

To discuss the physical and chemical applicability of
octane isomers using regression models

To compute defined indices for carbon nanotubes such
as C,Cq (S), C,Cg (R), and H-naphthalenic nanosheets

Let G = (V, E) be a graph with a vertex set V (G) and an
edge set E(G) such that |V (G)| =n and |E(G)| = m. For
standard graph terminologies and notations, refer to
[30, 31].where (u, v) is an element of E (G), d,, represents the
degree of the vertex u, and S, represents the neighborhood
degree of the vertex u.

Definition 1. Recently, Usha et al. [32] defined the geo-
metric-harmonic (GH) index, inspired by Vukicevic and
Furtula [33] in designing the GA index:

(du +dv) Vdu’dv. (1)

GH(G) = Z S

Motivated by the above work, in this paper, an attempt is
made to define three novel indices based on degree and
neighborhood degree, namely, harmonic-geometric (HG),
neighborhood geometric-harmonic (NGH), and neighbor-
hood harmonic-geometric (NHG) indices. They are defined
as follows:

HG(G) = Z(d N—
NGH(G) = ¥ Bu SNV S, +ng (2)
2

NHG(®) = Y (55 )vEose

1.1. Chemical Applicability of GH, NGH, HG, and NHG
Indices. In this section, a linear regression model of four
physical properties is presented for GH, NGH, HG, and
NHG indices. The physical properties such as entropy(S),
acentric factor (AF), enthalpy of vaporization (HVAP), and
standard enthalpy of vaporization (DHVAP) of octane
isomers have shown good correlation with the indices
considered in the study. The GH, HG, NGH, and NHG
indices are tested for the octane isomers’” database available
at https://www.moleculardescriptors.eu/dataset.htm. The
GH, HG, NGH, and NHG indices are computed and tab-
ulated in columns 6, 7, 8, and 9 of Table 1.
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FIGURE 1: (a) n-Octane, (b) 2-methylheptane, (c) 3-methylheptane, (d) 4-methylheptane, (e) 3-ethylhexane, (f) 2,2-dimethylhexane, (g) 2,3-
dimethylhexane, (h) 2,4-dimethylhexane, (i) 2,5-dimethylhexane, (j) 3,3-dimethylhexane, (k) 3,4-dimethylhexane, (1) 3-ethyl-2-methyl-
pentane, (m) 3-ethyl-3-methylpentane, (n) 2,2,3-trimethylpentane, (o) 2,2,4-trimethylpentane, (p) 2,3,3-trimethylpentane, (q) 2,3,4-tri-
methylpentane, and (r) 2,2,3,3-trimethylbutane.

TaBLE 1: Experimental values of S, AF, HVAP, and DHVAP and the corresponding values of the GH index, HG index, NGH index, and
NHG index of octane isomers.

Alkane S AF HVAP DHVAP GH NGH HG NHG
n-Octane 111.700 0.398 73.190 9.915 24.423 84.496 2.193 0.679
2-Methylheptane 109.800 0.378 70.300 9.484 27173 98.746 1.962 0.573
3-Methylheptane 111.300 0.371 71.300 9.521 27.954 107.475 2.058 0.568
4-Methylheptane 109.300 0.372 70.910 9.483 27.954 113.356 2.058 0.600
3-Ethylhexane 109.400 0.362 71.700 9.476 28.735 131.941 2.154 0.476
2,2-Dimethylhexane 103.400 0.339 67.700 8.915 33.607 122.970 1.689 0.471
2,3-Dimethylhexane 108.000 0.348 70.200 9.272 31.637 110.622 1.862 0.498
2,4-Dimethylhexane 107.000 0.344 68.500 9.029 30.885 123.236 1.827 0.474
2,5-Dimethylhexane 105.700 0.357 68.600 9.051 32.248 133.242 1.731 0.469
3,3-Dimethylhexane 104.700 0.323 68.500 8.973 35.213 151.398 1.829 0.449
3,4-Dimethylhexane 106.600 0.340 70.200 9.316 32.418 117.701 1.958 0.578
2-Methyl-3-ethylpentane 106.100 0.332 69.700 9.209 32.418 176.111 1.958 0.342
3-Methyl-3-ethylpentane 101.500 0.307 69.300 9.081 36.820 149.222 1.968 0.377
2,2,3-Trimethylpentane 101.300 0.301 67.300 8.826 38.834 164.366 1.606 0.338
2,2,4-Trimethylpentane 104.100 0.305 64.870 8.402 36.537 155.874 1.459 0.358
2,3,3-Trimethylpentane 102.100 0.293 68.100 8.897 39.659 141.657 1.649 0.462
2,3,4-Trimethylpentane 102.400 0.317 68.370 9.014 35.321 168.797 1.666 0.390

2,2,3,3-Trimethylbutane 93.060 0.255 66.200 8.410 46.000 223.620 1.263 0.227




Using the method of least squares, the linear regression
models for S, AF, HVAP, and DHVAP are fitted using the
data of Table 1.

The fitted models for the GH index are

S =133.078 (+ 1.82) — 0.833 (+ 0.054)GH, (3)

acentric factor = 0.557 (+ 0.009) — 0.007 (+ 0.000)GH,
(4)

HVAP = 79.613 (% 1.878) — 0.315(+ 0.056)GH, (5)
DHVAP = 11.273 (% 0.285) — 0.065 (+ 0.008)GH. (6)
The fitted models for the HG index are

S =76.608 (+ 4.486) + 15.766 (+ 2.435)HG, (7)
acentric factor = 0.114 (+ 0.037) + 0.121 (+ 0.020)HG,
(8)

HVAP = 54.960 (+ 1.356) + 7.773 (+ 0.736)HG, 9

DHVAP = 6.428 (+ 0.249) + 1.477(+ 0.135)HG.  (10)

The fitted models for the NGH index are
S=121.77(+ 2.35) = 0.119(+ 0.017)NGH, (11)
acentric factor = 0.465 (+ 0.018) — 0.001 (+ 0.000)NGH,
(12)

HVAP = 75.007(+ 1.552) — 0.043(+ 0.011)NGH, (13)

DHVAP =10.363(+ 0.257) — 0.009 (+ 0.002)NGH. (14)

The fitted models for the NHG index are
S =89.524 (+ 2.505) + 34.35(+ 5.271)NHG, (15)

acentric factor = 0.207 (+ 0.018) + 0.277 (+ 0.038)NHG,
(16)

HVAP = 62.667 (+ 1.352) + 14.044 (+ 2.846)NHG, (17)

DHVAP = 7.793 (£ 0.219) + 2.882(+ 0.460)NHG. (18)

Note: in equations (3)-(18), the errors of the regression
coeflicients are represented within brackets.

Tables 2-5 and Figures 2-5 show the correlation coef-
ficient and residual standard error for the regression models
of four physical properties with GH, HG, NGH, and NHG
indices.
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From Table 2 and Figure 2, it is obvious that the GH
index highly correlates with the acentric factor and the
correlation coeflicient |r| = 0.987. Also, the GH index has
good correlation coefficient |r| = 0.968 with entropy, |r| =
0.815 with HVAP, and |r| = 0.885 with DHVAP.

From Table 3 and Figure 3, it is noticed that the HG
index highly correlates with DHVAP and the correlation
coefficient r = 0.939. Also, the HG index has good corre-
lation coeflicient r = 0.85 with entropy, r = 0.833 with the
acentric factor, and r = 0.935 with HVAP.

From Table 4 and Figure 4, it is clear that the NGH index
highly correlates with the acentric factor and the correlation
coefficient |r| = 0.877. Also, the NGH index has good cor-
relation coeflicient || = 0.873 with entropy, || = 0.695 with
HVAP, and |r| = 0.778 with DHVAP.

From Table 5 and Figure 5, it is clear that the NHG index
highly correlates with the acentric factor and the correlation
coefficient r = 0.877. Also, the NHG index has good cor-
relation coefficient = 0.852 with entropy, r = 0.777 with
HVAP, and r = 0.843 with DHVAP.

2. GH, NGH, HG, and NHG Indices of C,C; (S),
C,C; (R), and H-Naphthalenic Nanosheets

2.1. Results for the C,C4(S) Nanosheet. The alternating
pattern of 4 carbon atoms forming squares and 8 carbon
atoms forming octagons constitutes the TUC,Cq (S)[a, b]
nanosheet.

In this section, GH, HG, NGH, and NHG indices of the
C,C; (S) nanosheet are computed. The pattern of carbon
atoms gives rise to two types of nanosheets, namely,
T'[a,b] and T?[a,b]. The 2-dimensional nanosheet is
represented by T'[a,b], where a and b are parameters
(Figure 6). In T'[a, b], C, acts as a square, while Cg is an
octagon in which a and b represent the column and row,
respectively. Figure 7 depicts the type 1-C,Cq(S)
nanosheet. The number of vertices of the C,Cq(S)
nanosheet is 8ab, and the number of edges is
12ab — 2a - 2b.

The edge partition of the T [a, b] nanosheet based on the
degree of vertices is detailed in Table 6.

Theorem 1. Let T'[a,b] be an (a,b)-dimensional nano-
sheet; then, GH and HG indices are equal to

4938 4938 376

GH(T'[a,b]) = 108ab-——a-—_b+—,
125 125 125

(19)

4 33 33 69

HG(T'[a,b]) = zab+——a+——b+_—

3 125 125 500

Proof. Using Table 6, the definitions of GH and HG indices
are as follows:
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TABLE 2: Parameters of regression models for the GH index.
Physical properties Value of the correlation coefficient Residual standard error
Entropy -0.968 1.17
Acentric factor —-0.987 0.0059
HVAP -0.815 1.21
DHVAP -0.885 0.184
TaBLE 3: Parameters of regression models for the HG index.
Physical properties Value of the correlation coefficient Residual standard error
Entropy 0.85 2.448
Acentric factor 0.833 0.020
HVAP 0.935 0.74
DHVAP 0.939 0.136
TaBLE 4: Parameters of regression models for the NGH index.
Physical properties Value of the correlation coefficient Residual standard error
Entropy -0.873 2274
Acentric factor -0.877 0.0176
HVAP -0.695 1.502
DHVAP -0.778 0.248
TaBLE 5: Parameters of regression models for the NHG index.
Physical properties Value of the correlation coefficient Residual standard error
Entropy 0.852 2.436
Acentric factor 0.877 0.018
HVAP 0.777 1.315
DHVAP 0.843 0.213
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FIGURE 2: Scatter diagram of physical properties S, AF, HVAP, and DHVAP with the GH index.
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FIGURE 6: A TUC,Cq (S)[a, b] nanotube.
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Figure 7: Type 1-C,Cq (S) nanosheet T![a, b].
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TaBLE 6: The edge partition of T [a, b].

(d,.d,) with uv € E(G) Number of edges
(2,2) 2(a+b+2)
(2,3) 4a+4b -8
(3,3) 12ab — 8a - 8b + 4

GH(T' b)) - ¥ (d, +d,)\d, xd,

uveE(G) 2

(2+2)(V2x2)
2

:(2a+2b+4){

} +(4a+4b_8){w}

2

+(12ab—8a — 8b + 4){% “3)}

4938 4938 376
GH(T[a,b]) = 108ab — —2 g - 220 1270
(T"(a.0]) 25 4T 125 VT 125

(20)
2
HG(T" [a,b]) =
(7" 1ab]) W;Z(G)(du+dv)\/m
2 2
:(2a+2b+4){m}+(4a+4b—8){W \/ZX?))}
+(12ab—8a—8b+4){m}
HG(Tl[a,b])=§ab+%a+% +56T90~
O

The edge partition of the T" [a, b] nanosheet based on the Theorem 2. Let T'[a,b] be an (a,b)-dimensional nano-
neighborhood degree of vertices is detailed in Table 7. sheet; then, NGH and NHG indices are equal to

251531 251531 N 159121
a - b
500 500 1000

NGH(T1 (a, b]) =972ab —
(21)

37 91 91 157
NHG(T1 [a,b]) =——ab+ a+ b+ .
250 1000 1000 1000

Proof. Using Table 7, the definitions of NGH and NHG
indices are as follows:
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TasLE 7: Edge partition of T![a,b] for neighborhood degree-based vertices.

(S,,S,) with uv € E(G)

Number of edges

(4,4) 4
(4,5) 8
(5,5) 2a+2b-8
(5.8) da+4b-8
(8,8) 2a+2b-4
(8,9) da+4b-8
(9,9) 12ab - 14a - 14b + 16
NGH(T'[a,b]) = ¥ (Sut S8 xS, S”)ZVS“ XS
uveE(G)
:4{M+AJSMX4)}+8{M+5¥y4xs)}+@a+2b—84(5+5%j5X5)}+Ma+4b—&
'{(5+&;V5x8)}+Qa+2b_@{(8+&2V8x8w”+ua+4b_84(8+%;V§;§w
+(1zab-14a-14b-+16){£giigl%lgﬁigl}
NGH(#&LM)=9Zmb—2msya—25631—kw9m{
500 500 1000 )
NHG(T o b)) = ¥ et SVS XS, Sv)zvs” xSy
uveE(G)
—44———23———7 8————;£———7 (2 2b—8)4———!£———7 (4a + 4b - 8)
“Maroaxn| T @es(vaxs)[ T G+ (Vox5)| 4T
2 lioarw-al— 2 | iaasap-gl— 2
NG+ (x| T TN B (VExs) | T T (84 9) (VB x9)
2
+ (12ab — 14a - 14b + 16){W}
NHG(T" [a,b]) = %ab + 13(1)0 a+ 13;0 b+ 1105070.
O

2.2. Results for the C,Cq(R) Nanosheet. This structure is
formed by 4 carbon atoms forming a rhombus that are
linearly bridged by edges whose sequence looks like 4
rhombuses connected by 4 edges row and column wise
resulting in an alternating pattern of rhombuses and octa-
gons and is represented as T2[a,b]. The 2-dimensional
lattice of the TUC,Cg (R)[a, b] nanosheet, where a and b are
parameters, is shown in Figure 8. Figure 9 shows the type
2 — C,C4 (R) nanosheet. In the following theorem, GH, HG,
NGH, and NHG indices of this nanosheet are computed. The
number of vertices of the type-2 structure is 4ab+4
(a +b) + 4, and the number of edges is 6ab + 5a + 5b + 4.

The edge partition of the T?[a, b] nanosheet for degree-
based vertices is detailed in Table 8.

Theorem 3. Let T?[a,b] be an (a,b)-dimensional nano-
sheet; then, GH and HG indices are equal to

669 669
GH(T"[a,b]) = 54ab +— ~a+= ~b+16,

(23)
191 191

HG(T[a,b]) = Zab+ s Dy,
3 250 250
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FiGgure 8: A TUC,Cq (R)[a, b] nanotube.

=

FiGure 9: Type 1I-C,Cgq (R) nanosheet T2[a, b].

TasLE 8: Edge partition of T2[a, b].

(d,.d,) with uv € E(G)

Number of edges

(2,2)
(2,3)
(3,3)

4
4(a+Db)
6ab+a+b

Proof. Using Table 8, the definitions of GH and HG indices

are as follows:

GH(T?[a,b]) =

GH(T?[a,b]) =

HG(T?[a, b)) =

HG(T?[a,b]) =

(d, +d,)d, xd,
2 ;

uveE (G)
= 4{%} +(4a + 4b){%} +(6ab +a + b){% M}

S4ab + 669 669b

20 20
(24)
Z 2

uveE (G) (du + dV) Vdu X dv
=2 2| (arav) 2 | (6ab+a+b 2
= m + (4a + m +(6ab +a + ) W

91 191
—ab +—>b+1
250 250
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The edge partition of the T?[a, b] nanosheet based on the
neighborhood degree of vertices is detailed in Table 9.

Theorem 4. Let T?[a,b] be an (a,b)-dimensional nano-
sheet; then, NGH and NHG indices are equal to

20549 20549 21549
NGH(T2 [a, b]) 486ab + b+ ,
100 100 500
37 107 107 19
NHG(T?[a,b]) = ——ab + ——b+—
500% " 1000 T 1000 " 100
(25)

Z (Su + Sv)m

NGH(T?[a, b]) = 5

uveE (G)

11

TasLE 9: Edge partition of T2 [a, b].

(S,,S,) with uv € E(G) Number of edges

(5,5) 4

(5.8) 8

(6,8) da+4b-8
(8,8) 2a+2b+4
(8,9) da+4b-8
(9,9) 6ab — 5a — 5b + 4

Proof. Using Table 9, the definitions of NGH and NHG
indices are as follows:

=4{(5+5)(\/5x5)}+8{(5+8)(\/5x8)

2 2

. {W} +(4a+4b_8)
2054 2 4 2154

NGH(T?[a,b])) = 486ab + OB 5 208, 2D
100 100 500

NHG(T?[a,b]) =

2
uve%:(G) (Su + SV) VSu X Sv

1(8+9)(\/8x9)}
2

+(2a+2b+4)

} +(4a+4b—8){W]>

+(6ab—5a—5b+4){—(9+9)(2V9X9)}

2

2 2
:4{(5+5)(\/5x5)}+8{(5+8)(\/5><8)}+(4a+4b_8){(6+8)(\/6><8)

2l (4a+4b-8)
8+8)(V8x8)| ¢
107 107 19
NHG(T?[a,b]) = ——ab + .
500 1000 1000 100

2.3. Results for the H-Naphthalenic Nanosheet. Carbon atoms
bonded in the form of a hexagonal structure constitute
carbon nanotubes. They are peri-condensed benzenoids
which mean three or more rings share the same atoms.
H-Naphthalenic nanosheet is constituted by the alternating
sequence of squares C,, hexagons C,, and octagons Cq and is
represented as T°[a, b], where a and b are the parameters.
The number of vertices of the H-naphthalenic nanosheet is
10ab, and the edges are 15ab — 2a — 2b. The GH, HG, NGH,
and NHG indices of this nanosheet are computed; see
Figure 10.

2
(8+9)(vV8x9)

}+(2a+2b+4)

2
} + (6ab— 5a — 5b+4){W}

(26)

O
The edge partition of the T° [a, b] nanosheet based on the
degree of vertices is detailed in Table 10.

Theorem 5. Let T3[a,b] be an (a,b)-dimensional nano-
sheet; then, GH and HG indices are equal to

4101 7901 301

GH(T3 [a, b]) = 135ab — 100 W +m

(27)
1667 39 33 69

HG(T*[a,b]) =——ab+-—a+——b+——

1000 200” " 125" T 1500
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FiGURE 10: An H-naphthalenic nanosheet T°[a, b].
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TaBLE 10: The details of edges and types of the T°[a, b] nanosheet based on the degree of vertices.

(d,.d,) with uv € E(G)

Number of edges

(2,2)
(2,3)
(3,3)

2a+4
8a+4b-8
15ab — 10a — 8b + 4

Proof. Using Table 10, the definitions of GH and HG indices
are as follows:

GH(T3 [a, b]) = Z (d, +d,)d, xd,

uveE(G) 2

=(2b+4)

{(2+2)(22X2)} +(8a + 8b - 8)

+ (15ab — 10a — 8b +4){w}

2
4101 7901 301

GH(T’[a,b]) = 135ab - ——a - —b+ —.
(T°1a.1) %%~ 700 “~ 200 * " 100

2
HG(T’[a,b]) =
( ) W;G) (d,+d,)\Jd, xd,
bl — 2l sarsp-g) 2
- C+2)(vzx2)| T
+(15ab-10a—8b+4)]— 2
“ (+3)(V3x3)
, 1667 39 33 69
HG(T’[a,b]) = 1000 " 200% " 125° * 1500

{(2+3)(\/2x3)}
2

(243)(V2x3)

(28)
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TasLE 11: Edge partition of T2 [a, b).

(S,,S,) with uv € E(G)

Number of edges

(4,5)
(5,5)
(5.7)
(5.8)
(6,7)
(6,8)
(7,9)
(8,8)
(8,9)
(9.9)

8
2b-4
4
4b -4
4a -4
4a -4
2a
2a+2b-4
4a+4b-8
15ab — 18a — 14b + 16

The edge partition of the T° [a, b] nanosheet based on the
neighborhood degree of vertices is detailed in Table 11.

Theorem 6. Let T?[a,b] be an (a,b)-dimensional nano-
sheet; then, NGH and NHG indices are equal to

11199 251531 17382
NGH(T*[a, b]) = 1215ab - a- b+ ,
20 500 125
37 15 91 249
NHG(T’[a,b]) =~ —ab+-_—a+——b+——
200 200 1000 2500
(29)

Proof. Using Table 11, the definitions of NGH and NHG
indices are as follows:

NGH(Plabl) = 3 (s, +sv)2\/—s X3,
uveE(G)
:8{(4+5)(2\/4><5)}+(2b_4){(5+5)(2\/5><5)}+4{(5+7)(2\/7><7)}+(4b_4)
‘{(5+8)(2\/5><8)}+(4a_4){(6+7)g\/6><7)}+(4a_4)1(6+8)(2\/6><8)}
Za{—(7+9)(2v7><9)}+(2a+2b—4){—(8+8)(2V8X8)}+(4a+4b—8)
. {(8+9)(28X9)} + (15ab — 18a — 14b + 16){(9+9)(29X9)}
NGH(T3 a, b]) — 1215ab - 1119961 B 251531 b 17382’
20 500 125 (30)
NHG( [ab]) Z M VSu X S,
uveE (G) 2
_gd 2 Liop-a 2 4 2 (4b — 4)
TN @ Vas) | T T NGy | T G| T
2 2 2
'{(5+8)(\/5x8)}+(4a_4){(6+7)(\/6x7)}+(4a_4)1(6+8)(\/6><8)}
al— 2 liarm-al— 2 | iarap-s)
NT+oyrxo T (8+8)(V8x8)| "4t
2 i (sab-18a-14br16)d— 2
B9 (VEx9)[ T T AT T N 9 9 (Vo x9)
NHG(T3[a,b])——ab DOl 2
200 200 1000 2500
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3. Conclusion

This paper is devoted to defining NGH, HG, and NHG
indices, and the chemical applicability is studied for some
physical and chemical properties of octane isomers using
regression models including the recently introduced GH
index. The GH index has a high negative correlation with
acentric factor having r = 0.987 with a residual standard
error of 0.0059. The HG index has a high positive correlation
with DHVAP having r = 0.939 with a residual standard
error of 0.136. The NGH index has a high negative corre-
lation with acentric factor having r = 0.877 with a residual
standard error of 0.0176. The NHG index has a high positive
correlation with acentric factor having r = 0.877 with a
residual standard error of 0.018. The applications of carbon
nanotubes have considerably increased because of their
excellent mechanical, thermal, and electrical properties. The
novel indices introduced in this paper would be of great help
to understand the physicochemical and biological properties
of various compounds in addition to the existing degree-
based indices.
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A relation between topological indices and thermodynamics properties of terbium IV oxide has been established by using a
rational method as it was found the most efficient method based on mean squared error (MSE). Terbium IV oxide has huge
application as an insulator in modern technologies such as microelectronics, gas detectors, and luminiferous owing to mechanical
and thermal stability, high dielectric constant, radiation resistance, and variable electrical conductivity. The chemical graph and
topological indices have attracted the research community due to their potential application in discrete mathematics, biology, and
chemistry. Our commitment is to investigate topological indices and thermodynamic properties of terbium I'V oxide that depend
on an innovative data utilitarian. Moreover, a relationship between topological indices and curve fitting has been established as an

application point of view. All curve fittings have been found using MATLAB software.

1. Introduction

Terbium, a rare earth metal, is a member of the 4f series of
the periodic table called lanthanides and has electronic
configuration [Xe] 4 f°6s%. It is found between the (n— 1)d
and ns block elements and has properties identical to
d-block elements. Due to unfilled f orbital, electrons are
added to the (1 —2) level’s ‘f” suborbitals. It is silvery white
soft metal with a silvery appearance whose melting point
ranges from 1000 to 1200 degrees Celsius and is an excellent
heat and electricity conductor. Except for promethium,
lanthanides are nonradioactive in nature [1, 2]. The synthesis
of terbium IV oxide conventionally uses the precipitation
approach, but newly designed self-propagation high-tem-
perature synthesis (SHS) provides the high yield of weakly
agglomerated nanosized powder of terbium IV oxide. The
flow sheet of this process is given in Figures 1 and 2 [3].
Terbium IV oxide films have huge application as an
insulator in microelectronics, gas detectors, and

luminophores due to unique properties such as radiation
resistance and very small leakage current density besides
variable electrical conductivity in different gaseous fluids
[4, 5]. It is found that various oxidation states cause changes
in the stoichiometry of terbium IV oxide that predetermines
variations in its optical properties, thus making it useful for
the aforementioned applications as well as in Fresnel lenses,
pigments, antireflection layers, and photoelastic films [6, 7].
Terbium compounds are brightly fluorescent, and most
terbium supplies are used to produce green phosphorous
worldwide that allow trichromatic lighting [8]. It is also
often used as a dopant for fuel-cell materials and crystalline
solid-state devices. The large surface basicity, rapid oxygen
ion mobility, and interesting catalytic characteristics of earth
oxides are well known. These are the qualities which make
them a good chemical sensor [9].

The bulk structure of TbO, is crystallized as a Tb,Og4. In a
crystal of terbium oxide, oxygen atoms are located in the
cubic closed packed terbium atoms (Figure 1) [10].
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FiGUrE 2: Unit cell structure of terbium oxide [4].

Metal oxide redox reactions are currently regarded being
one of the most favorable long-term methods for producing
renewable H, for immediate use in fuel cells. Terbium IV
oxide is a promising candidate for thermochemical pro-
duction of hydrogen through solar thermochemical water
splitting (Tb-WS) cycle. The first step of the cycle includes
the thermal reduction of TbO, into Tb and O,, while the
second step involves oxidation of Tb through a water
splitting reaction to produce H,. The unit cell structure of
terbium oxide is depicted in Figure 2.

Step 1. Step 1:
TbO, — Tb + O,. (1)
Equation (1) is the endothermic reduction.
Step 2.
Tb + HO, — TbO, + 2H,. (2)

Equation (2) is the endothermic reduction.
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2. Degree-Based Topological Indices

Let G = (V,E) be a graph where V is the vertex set and E is
the edge set of G. The degree T (a) of a vertex a is the number
of edges of G incident with a.
In 2013, Shirdel et al. [11] introduced the “Hyper-Zagreb
index™:
HM=HM(G) = ) [I(a)+1(b)]. 3)
abeE(G)

In 2012, Ghorbani and Azimi [12] defined multiple
Zagreb indices as

PM,G) = [] T@+T0),

abeE (G)
PM, (G) (4)

= [] T@+1w)l

abeE (G)

For more details about these indices, see [13, 14].
In 1972, Furtula and Gutman [15, 16] presented the
forgotten topological index which was characterized as

FG) = Y (I +I®)) (5)

abeE (G)

Furtula et al. [17] introduced the “augmented Zagreb

index™:
~ ~ 3
( I(a)xI(b) ) ' ©)

AZIG) = ), T@+10)-2

abeE(G)

The Balaban index [18, 19] is a topological index based
on order »n and size m of graph G:

m 1

m—n+2 uh;@ VI(a)x1(b) )

where T (a),T(b) are the degrees of the vertices a,b € V (G).
For more details about these indices, see [20-22].
The redefined version of the Zagreb indices was defined
by Ranjini et al. [23].

J(G) =

T(a) +1(b)

ReZG, (G) = AT

DT 2 T@xTw)
ReZG, (G) = (@) xI(b) (8)

abeb ()1 (@) +1(D)

ReZG; (G) = z T(a) xT(b)(I(a) +1(b)).
abeE(G)

For more details about these indices, see [24-31].

3. Results for Terbium Oxide (TbO,)

The number of vertices and edges of the structure of terbium
oxide denoted by (TbO,) are 22 mn and 32 mn, respectively.
There are three type of vertices in TbO,, namely, the vertices
of degree 1, 2, and 4, respectively. The vertex partition of the
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vertex set TbO, is presented in Table 1. Also, the edge The hyper Zagreb index is computed by using
partition of TbO, based on degrees of end vertices of each Table 2 as follows:
edge is depicted in Table 2.

(i) The Hyper-Zagreb index:

HM@G) = Y (T@+T®),

abeE (G)
= Y T@+I®)’'+ Y (J@+I®)Y’+ Y (J(a)+I10h)),
abeE, (G) abeE, (G) abeE; (G) (9)
= HM(G) = (12mn - 2n - 2m) (1 + 4) + (4mn — 2m — 2n) (2 + 4)°
+ (16mn + 4m + 4n) (4 + 4)%,
= HM (G) = 4540mn + 902m + 902n.
(ii) The first and second multiplicative Zagreb index: The first multiplicative Zagreb index is computed as
PMI (G) — (1 +4)(12mn—2n—2m) . (2 +4)(4mn—2m—2n) . (4+4)(16mn+4m+4n)
PM (G) _ 5(12mn—2n— 2m) . 6(4mn— 2m-2n) . 8(16mn+4m+4n) ( )
) = > 10
PM, (G = [] (Ta)+Tw)= [] T@+Tw)+ [ T@+I®)+ [] @) +T(b)).
abeE (G) abeE, (G) abeE, (G) abeE; (G)
The second multiplicative Zagreb index is com-
puted as
PM, Q)= [] a+Ien= [] A@+Te)+ [ T@+To)+ [] T@+1®),
abeE (G) abeE, (G) abeE, (G) abeE; (G)
PM2 (G) - (1 +4)(12mn—2n—2m) . (2 +4) (4mn-2m-2n) (4+4)(16mn+4m+4n)) (11)
PM (G) _ 4(12mn— 2n—2m) . 8(4mn— 2m—2n) . 16(16mn—%—47n+—4n)
,(G) = .
(iii) The first and second multiplicative Zagreb index: (iv) The forgotten index:
The numerical representation of the above com- The forgotten index is computed as
puted results is presented in Table 3.
F(G) = sum e (1(a)* +T(b)*),
=F(G) = Y [T@ +1®?*]+ > [1@*+1®)*]+ > [’ +1(b)],
abeE, abeE, abeE;
(12)

= (12mn - 2n - 2m)((1)* + (4)*) + (4mn — 2m = 2n)( (2)* + (4)°) + (16mn + 4m + 4n)((4)* + (4)°),
= (12mn - 2n—2m)(17) + (4mn — 2m — 2n) (20) + (16mn + 4m + 4n) (32)
- 796mn + 54m + 54n.



TaBLE 1: Vertex partition of TbO, based on the degree of vertex.
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TaBLE 3: Comparison of indices HM (G), PM,, PM, (G).

1(a) Frequency Set of vertices
1 4mn + 4 v,
2 2n+2m-—4 Vv,
4 18mn — 2m — 2n V,

TaBLE 2: Edge partition of TbO,.

[m, n] HM (G) PM, (G) PM, (G)

[1, 1] 6344 1.844 x 107 5.192296859 x 103

[2, 2] 21768 2.699 x 1010 4332296397 x 10'%7
[3, 3] 46272 3.132 x 10%7 5.808659799 x 10281
(4, 4] 79856 2.883 x 10%20 1.251505764 x 1049
[5, 5] 122520 2.105 x 10%°° 4.333002103 x 1077°
[6, 6] 174264 1.219 x 10°# 2.410705053 x 10110
(7, 71 235088 5.600 x 101280 2.155253650 x 10'00

(I(a),1(b) Frequency Set of edges
1, 4) 12mn —2n-2m E,
2, 4) 4mn - 2m —2n E,
(4, 4) 16mn +4m + 4n E,

(v) The Augmented Zagreb index:

AZIG) ( T(a) x1(b) f
wio \I(@) +1(b) - 2

AZI(G) =

abeE,

abeE,

T@) <1 \
) (T(a)+7(b)— 2) )

abeE,

I1x4 \3 2x4
- < )+ (
Z 1+44-2 Z 2+4-2
abeE,

The Augmented Zagreb index is computed as

follows:

T(a) x1(b) f+
T(a)+1(b) -2

abeE;

3 4x4
)+ Y (s
et 4+4-2

64 512
=3 (12mn - 2n - 2m) + 8 (4mn — 2m — 2n) +7 (16mn + 4m + 4n),

9824mn 496m 496n
= + + 3
27 9 9

(vi) The Balaban index:

q 1
J(G) = —F— TN T
(G) q_p+2ab§® ](a)xl(b)

q [ 1
G=—2=2 N e 7 A%
J(G) q—P+2_az;51 I(a)xl(b)+az;sz

i)

_q_p+2_abeEl al;E 2x4

3 22mn
T lomn-2"

1
VI(a) x I(b)

(12 2n-2m) + —— !
mmn — 2n — 2m
\/_

( I(a)x1(b) )
T(a)+1(b)-2)"

(13)

The Balaban index is computed as

Z 1
abeE, V4X4]

)

abeE;

\ﬁWMTw}

(14)

(4mn —2m —2n) +— (16mn +4m + 4n)]



Journal of Chemistry 5
The numerical representation of the above- The redefined Zagreb indices are computed as
computed results is presented in Table 4.

(vii) The redefined Zagreb indices:
ReG, (G) = Y Ha)+ 1)
abeE ()1 (@) x 1(b)
Ry (@ - Y 100, 5 10210 5 T+ 10
aber, 1(@) x 1(b) = 1(a) xI(b) i 1(a) x 1(b)
1+4 2+4 4+4
= + + ,
u£11x4 u;€22x4 u;€34x4
5 3 1
=1 (12mn - 2n - 2m) + 1 (4mn —-2m —2n) + 5(16mn +4m + 4n)),
I I(b
ReG,(G) = Y LT
e (o)1 (@) x1(b)
I I I I I I
ReGy(@) = 3 1@ 5 1@ 10 5 1)+ 1)
abeF, I(a) xI(b) abeF, I(a) x1(b) abeF, I(a) xI(b) (15)
1x4 2x4 4x4
= + + ,
abeF, 1+4 az;s22+4 a£34+4

4 4
=z (12mn — 2n - 2m) + 3 (4mn — 2m — 2n) + (2)(16mn + 4m + 4n)),

ReG; (G)= ) [T(@I(b)(I(a)+1(b))],

abeE(G)

ReG;(G) = Y [T(@)I(b)(T(a)+T(b))]

abeE,

+ Y [[@I®) T (@) +TB)] + Y [T@Ib)(I(a)+1(1))],

abeE,

abeE;

=20(12mn — 2n — 2m) + 48 (4mn — 2m — 2n) + 128 (16mn + 4m + 4n),

= 2480mn + 376m + 376n.

The numerical representation of the above computed
results is presented in Table 5.

4. Heat of Formation and Entropy of Terbium
IV Oxide

The topological indices HM(G),PM(G), PM2(G), F(G),
AZI(G), ] (G), ReG1(G),ReG2(G), and ReG3 (G) were cal-
culated for various numbers of unit cells of terbium IV
oxide. The thermodynamic properties of terbium IV oxide,
such as heat of formation or enthalpy and entropy, are
related to these indices HM (G), PM(G), PM2(G), F (G),
AZI(G), ] (G),ReG1(G), ReG2 (G), and ReG3 (G). Terbium

IV oxide has a standard molar enthalpy of —972.2 kJmol ™",
and the standard molar enthalpy for one formula unit was
calculated by dividing it by Avogadro’s number. The en-
thalpy of a cell was determined by multiplying the acquired
value by the number of formula units within the cell. The
enthalpy of terbium IV oxide is directly proportional to its
crystal size and increases as the number of unit cells in-
creases, according to these findings. The entropy of terbium
IV oxide was calculated using the same process. The molar
standard entropy of terbium IV oxide is 86.9 Jmol 'K™!. The
result was then determined by multiplying the number of
formula units in a single unit cell. If the number of cells gets
exponential, the entropy value decreases. The downward
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TaBLE 4: Comparison of indices for F(G), AZI(G), ] (G) TbO,.
[m, n] F(G) AZI(G) J(G)
[1,1] 904 474.07 27.5
[2,2] 3400 1675.85 99.18
[3,3] 7488 3605.33 221.59
(4, 4] 13168 6262.52 394.26
[5,5] 20440 9647.41 617.16
[6,6] 29304 13760 890.28
[7,7] 39760 18600.3 1213.63

TaBLE 5: Comparison of ReG;, (G), ReG, (G), ReG; (G) indices for TbO,.

[m,n] ReG, (G) ReG, (G) ReG; (G)
(1,1] 2 54.4 3232
[2,2] 96 202.67 11424
(3,3] 222 444.8 24576
(4, 4] 400 780.8 42688
[5,5] 630 1210.67 65760
[6,6] 912 1734.4 93792
[7,7] 1246 2352 126784

trend is the complete opposite of the heat of formation. The
graphical representation is depicted in Figures 3-5.

The values for entropy and heat of formation of terbium
oxide (TbO,) for 1<m<7 and 1<n<7 corresponding to
different formula units are computed in Table 6.

5. A Mathematical Description of Heat of
Formation and Entropy of Terbium Oxide in
Terms of Topological Indices

Computational approaches integrated with other disciplines
of science provide a coherent way to understand a scientific
problem more intensely. Usually, it is not apprehending to
understand a problem based on just one science discipline,
so adding some computational approaches to the study
might provide a clear picture which helps to investigate the
underlying phenomenon more deeply and clearly. Devel-
oping a mathematical model to describe the dynamics of
objects or components involved in a study provides a very
convenient mode to tackle and analyze the matter of con-
cern. At present, software technology is playing a vital role in
conducting such studies, as they provide more efficient
programs to convert an experimental study into a mathe-
matical problem and analyze it.

In this section, we have developed mathematical models
to represent the thermodynamic properties, namely, heat of
formation and entropy, in the form of topological indices of
terbium oxide. This might provide us an efficient way to
understand the molecular structure of terbium oxide based
on its chemical graph structure properties. We have used the
software of MATLAB to estimate such models. There are
several built-in methods to fit curves between two variables.
We tried all of them and found the rational method as the
most efficient one as it was providing the least residuals

between empirical and fitted values. Tables 7 and 8 contain
root mean squared error (RMSE), sum of squared error
(SSE), and R?, where ratij represents rational fit with nu-
merator degree i and denominator degree j.

5.1. General Models for Indices vs. Heat of Formation. In this
section, a mathematical framework has been developed
between each topological index and heat of formation (HoF)
of terbium oxide. All the fitted curves are shown in
Figures 6-12, whereas the estimated parametric values are
provided in Tables 9-15.

HoF (HM) = i p12 |
(HM)” + g, x (HM)” + g, x HM + g,
(16)
2
HoE (F) = P XX P X I Py (17)
F +q xF +g,xF+gq;
2
HoF (AZI) = — L1 x (AZD)" + p;xAZI+ P
(AZI) +q1 X(AZI) +q2XAZI+q3
(18)
2
HoF(J) = 3P1><] +2P2><]+p3 | )
] +ql><] +q2>(]+q3
HoF (ReGl) = p1 X ReG; + p,

(ReG1)3 +q, X (ReG1)2 +q, X ReG; + q3'
(20)
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( ) P Coeflicients (with 95% confidence interval (CI)) are
HoF(ReG,) = 3 3 . given in Table 9.
(ReG,)" + 4y x (ReG, )" + 4, X ReG, +45 Coeflicients (with 95% confidence bounds) are given in
(21)  Table 10.
Coeflicients (with 95% confidence bounds) are given in
Table 11.
P Coefficients (with 95% confidence bounds) are given in
HoF (ReG;) = Table 12.

(ReG3)3 +q X (ReG3)2 +¢q, X ReG; + q3.
(22)

Coefficients (with 95% confidence bounds) are given in
Table 13.
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TaBLE 6: Values of heat of formation and entropy for different formula units of TbO,.
[m, n] Formula units Heat of formation x1072! kJ Entropy x10722 k]
[1,1] 4 ~6.456 5.768
2,2] 16 -0.258 0.2307
3,3] 32 -0.516 0.5191
[4,4] 64 ~0.0103 0.9228
(5,5] 100 ~0.0614 0.0144
[6,6] 144 -0.0232 0.0207
[7,7] 196 ~0.0316 0.0286
TaBLE 7: Goodness of fit for heat of formation vs. indices for TbO,.
Index Fit type SSE R? RMSE
HM (G) rat03 0.0121 0.9996 0.0635
F(G) rat23 0.003584 0.9999 0.05987
AZI(G) rat23 0.0001696 1.000 0.01302
J(G) rat23 0.001481 1.000 0.03849
ReG, (G) ratl3 0.003094 0.9999 0.03933
ReG, (G) rat03 0.005014 0.9999 0.04088
ReG; (G) rat03 0.01194 0.9997 0.06308
TaBLE 8: Goodness of fit for entropy vs. indices for TbO,.
Index Fit type SSE R? RMSE
HM (G) ratl3 0.001071 1.000 0.02314
F(G) ratl3 0.001065 1.000 0.02307
AZI(G) rat03 0.001078 1.000 0.01895
J(G) rat05 0.001031 1.000 0.0321
ReG, (G) ratl4 0.001118 1.000 0.03344
ReG, (G) rat05 0.0004906 1.000 0.02215
ReG; (G) ratl3 0.001069 1.000 0.02312
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Coeficients (with 95% confidence bounds) are given in  topological index and entropy of terbium oxide. All the fitted
Table 15. curves are shown in Figures 13-19 while the estimated
parametric values are given in Tables 16-22.

5.2. General Models for Indices vs. Entropy. This section
establishes a mathematical framework between each

p1 xHM + p,
Entropy (HM) = 5 3 - (23)
(HM)” + g, x (HM)" + g, x HM + g5
F
Entropy (F) = P X"t P (24)

F3+q1xF2+q2><F+q3'
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TaBLE 9: HoF vs. HM.

11

pi CI q; CI
i=1 178.2 (-9.679 e+ 06, 9.679 e + 06) 1.176 e + 04 (—6.386 e+ 08, 6.386 e+ 08)
i=2 — — 1.94e+04 (-1.053 e+ 09, 1.053 e +09)
i=3 — — 7138 (-3.876 e+ 08, 3.876 ¢ + 08)
Tasre 10: HoF vs. F.
pi CI q; CI
i=1 2.805 (-6.115e+ 05, 6.115¢ + 05) 688.5 (~1.482 e+ 08, 1.482e +08)
i=2 —-20.61 (-4.445 e + 06, 4.445 ¢ + 06) 1156 (-2.493e+08, 2.493e+08)
i=3 -9.782 (-2.11e+06, 2.11 e+ 06) 444 4 (-9.587 e+ 07, 9.587 e +07)
TaBLE 11: HoF vs. AZIL
pi CI q; CI
i=1 —-0.05294 (-0.3091, 0.2032) 1.691 (-1.61, 4.992)
i=2 —-0.03912 (-0.4201, 0.3419) 0.6454 (-4.759, 6.05)
i=3 —0.005199 (-0.08769, 0.07729) —-0.008204 (-1.979, 1.962)
TaBLE 12: HoOF vs. J.
pi CI q; CI
i=1 -190.1 (-1.44 e+ 08, 1.44e + 08) 1.333e+ 04 (-1.009 e + 10, 1.009¢ + 10)
i=2 -630 (-4.771 e+ 08, 4.771e + 08) 2.228 e+ 04 (-1.687 e+ 10, 1.687 ¢ + 10)
i=3 -236.6 (-1.792 e + 08, 1.792 e + 08) 8555 (-6.479e+09, 6.479 e +09)
TaBLE 13: HoF vs. ReG,
pi CI q; CI
i=1 -175.5 (-2.397 e + 06, 2.396€ + 06) 3781 (-5.159e+07, 5.16e+07)
i=2 -112.8 (-1.541 e+ 06, 1.54 e+ 06) 6438 (-8.788e+07, 8.79e+07)
i=3 — — 2553 (-3.485e+07, 3.486 ¢ +07)
TaBLE 14: HOF vs. ReG,.
pi CI q; CI
i=1 —-0.003307 (-0.02053, 0.01391) 2.406 (1.359, 3.452)
i=2 — — 1.881 (0.1678, 3.595)
i=3 — — 0.4865 (-0.1403, 1.113)
TaBLE 15: HoF vs. ReG;.
pi CI q; CI
i=1 172.1 (-9.52e+06, 9.52e+06) 1.171e+04 (-6.476 e+ 08, 6.476 ¢ + 08)
i=2 — — 1.93e+04 (-1.067 e + 09, 1.067 e + 09)
i=3 — — 7118 (-3.937e+08, 3.937 ¢+ 08)
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Entropy (AZI) = P

(AZI)’ + g, x (AZI)* + q, X AZL + g5

J 4
]5+QIX]4+‘]2X]3+Q3 ><]2+q4><]+q5'

Entropy (J) =

13

(25)

(26)



TaBLE 16: Entropy vs. HM.
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bi Cl 9 Cl
0.001132 (—0.04439, 0.04666) 1.842 (1.762, 1.922)
0.01288 (=0.03159, 0.05736) 0.9484 (0.8749, 1.022)
— — 0.1427 (0.1092, 0.1761)
TaBLE 17: Entropy vs. F.
pi CI q; CI
0.001791 (—0.04354, 0.04713) 1.845 (1.766, 1.925)
0.01254 (=0.03159, 0.05667) 0.9604 (0.8889, 1.032)
— — 0.1465 (0.1139, 0.1792)
TaBLE 18: Entropy vs. AZL
D CI q; CI
0.01144 (0.007304, 0.01558) 1.845 (1.812, 1.877)
— — 0.9537 (0.9148, 0.9925)
— — 0.1431 (0.1392, 0.147)
TaBLE 19: Entropy vs. J.
Ppi Cl q; CI
-110.9 (—2.497e+07, 2497 e+ 07) 2563 (-5.765e+ 08, 5.765 e + 08)
— — -3952 (—8.901 e + 08, 8.901 e+ 08)
— — —-1.355e + 04 (-3.052e+09, 3.052 e+ 09)
— — —-8056 (-1.814e+09, 1.814e +09)
— — -1311 (=2.951 e+08, 2.951 e +08)
TaBLE 20: Entropy vs. ReG;.
bi Cl 4qi CI
1.041 (-1.206 € + 06, 1.206 ¢ + 06) -1145 (-1.341e+09, 1.341 e+ 09)
-10.05 (-1.175e+07, 1.175e + 07) -2126 (—2.487 e+ 09, 2.487 e +09)
— — -1121 (-1.311e+09, 1.311 e +09)
— — -170.7 (-1.996 e + 08, 1.996 e + 08)
TaBLE 21: Entropy vs. ReG,.
Ppi Cl q; CI
103.9 (—2.399 e + 06, 2.399 e + 06) -3508 (-8.104e+07, 8.103 e+ 07)
— — —-384.3 (-8.831e+06, 8.83e+06)
— — 7836 (-1.81e+08, 1.81 e +08)
— — 5312 (-1.227 e + 08, 1.227 ¢ + 08)
— — 909.8 (-2.101e+07, 2.101 e+ 07)
TaBLE 22: Entropy vs. ReG;.
D CI q; CI
i=1 0.001368 (—0.04409, 0.04682) 1.843 (1.763, 1.923)
i=2 0.01276 (—0.0316, 0.05712) 0.9527 (0.8799, 1.025)
i=3 — — 0.144 (0.1109, 0.1772)
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ReG
Entropy (ReGl) = Z P13>< P 2 : (27)
eG,)" +q; x (ReG,)” + g, x (ReG,)” + g5 X ReG; + g,
(ReG;)" +q; X (ReGy)” + g, x (ReG,)" + g3 X ReG; +q
Entropy (ReG,) = = I P 3 3 . (28)
eG,)” +q, x (ReG,)" + g, x (ReG,)” + g3 X (ReG,)” + g, x ReG, +
(ReG,)” +q; X (ReG,)" + g, X (ReG,)” + g3 X (ReG,)” + g4 X ReG, + g5
x ReG; +
Entropy (ReG;) = 2 31 Py (29)

Coefficients (with 95% confidence bounds) are given in
Table 16.

Coefficients (with 95% confidence bounds) are given in
Table 17.

Coefficients (with 95% confidence bounds) are given in
Table 18.

Coefficients (with 95% confidence bounds) are given in
Table 19.

Coefficients (with 95% confidence bounds) are given in
Table 20.

Coeflicients (with 95% confidence bounds) are given in
Table 21.

Coefficients (with 95% confidence bounds) are given in
Table 22.

6. Conclusions

A connection between topological indices and thermody-
namic properties of terbium IV oxide has been developed.
This study helps to understand the chemical structure of
terbium IV oxide based on the graphical properties of its
underlying graph more deeply as this was economical and
more efficient. Curve fitting techniques have been utilized to
establish such a relation among indices and heat of for-
mation and entropy. The rational fitting approach was se-
lected based on its efficacy. This direct connection might
help to explore the dynamical properties of this terbium IV
oxide.
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Polymers, drugs, and almost all chemical or biochemical compounds are frequently modeled as diverse w-cyclic, acyclic, bipartite,
and polygonal shapes and regular graphs. Molecular descriptors (topological indices) are the numerical quantities and computed
from the molecular graph I' (2D lattice). These descriptors are highly significant in quantitative structure-property or activity
relationship (QSPR and QSAR) modeling that provides the theoretical and the optimal basis to expensive experimental drug design.
In this paper, we study three isomeric natural polymers of glucose (polysaccharides), namely, cellulose, glycogen, and amylopectin
(starch), having promising pharmaceutical applications, exceptional properties, and fascinating molecular structures. We intend to
investigate and compute various closed-form formulas such as ABC, GA, sum-connectivity y _,/,), ABC,, GAs, and Sanskruti indices
for the aforementioned macromolecules. Also, we present the closed-form formulas for the first, second, modified, and augmented
Zagreb indices, inverse and general Randi¢ indices, and symmetric division deg, harmonic, and inverse sum indices. Furthermore, we

provide a comparative analysis using 3D graphs for these families of macromolecules to clarify their nature.

1. Introduction

Cheminformatics is a comparatively new area of information
technology that comprises chemistry, mathematics, and other
informational sciences that concentrate on gathering, storage,
treatment, and examination of chemical data. A molecular
descriptor (MD) distinguishes the topology of a molecular
graph and is invariant under isomorphism. Some of these
descriptors take part in QSAR/QSPR analysis [1, 2] which infer
about the bioactivities and physicochemical properties of
biochemical materials. Various types of distance-based, de-
gree-based, spectral, and polynomial-related descriptors of
graphs are well established and extensively studied in the
literature. Out of these classes, vertex degree-based descriptors
turn out to be the most important and play a phenomenal role
in chemical graph theory (CGT). These descriptors are used, in
combination, to infer physicochemical, biological, and phar-
macological properties such as the stability, chirality, melting

point, boiling point, similarity, connectivity, entropy, enthalpy
of formation, surface tension, density, critical temperature,
and toxicity of chemical compounds in CGT; see [3, 4].

Throughout, in this work, I denotes a simple, finite, and
connected graph, whereas E (I') and V (T) represent the edge
and vertex set of I, respectively. For a vertex v e V(I),
degree of vertex v is denoted by d,,, and the sum of the degree
of vertices at unit distance from v is represented by S,, i.e.,
S, = ZweNr(v)dw, where Ny (v) ={w e V(D)|vw € E(T)}.
Here, we specify few distinct, significant, and well-studied
bond-additive invariants of our concern.

In [5], Gutman and Trinajsti¢ proposed two degree-
based invariants known as the first Zagreb index (FZI) M,
and the second Zagreb index (SZI) M,. These indices ini-
tially appeared in the expression of the total 71-electron of the
molecular graph and were later applied to study molecular
complexity and ZE isomerism. The formulas of M, M,, and
the modified Zagreb index (MSZI) are given as
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M (T)= ) (d,+d,),

uveE(T)

MZ(F): Z (dude)’ (1)
uveE(T)

"M,(D)= )

uveE(T) (d”dV)

In [6], Randi¢ offered a very influential invariant which is
considered to be a prototype of degree-based invariants and
is called Randi¢ index. It is the oldest and extensively studied
invariant that measures the amount of branching in the
carbon atom skeleton of saturated hydrocarbons [7, 8]. For a
molecular graph T, Randi¢ index is defined as

R(T) = Z \/dl_d (2)

uveE(T)

In [9], Bollobas and Erdoés initiated the concept of the
general Randi¢ index (GRI), and it is given as

R,(MD= ) (d4d) acR (3)

uveE (T)

Moreover, the inverse Randi¢ index (IRI) is defined by
the following formula:

RR, (I) = Z (dudv)a' (4)

uveE (T)

In [10], Zhou and Trinajsti¢ instigated the concept of the
generalized sum-connectivity index (GSCI) that is defined as
follows:

Xa(r) = Z (du + dv)a, a € R. (5)

uveE(T)

For a = (-1/2) and a =2, we have sum-connectivity
index x(_,/,) (SCI) and “hyper-Zagreb index” (HZI) [11],
respectively.

In [12], Li and Zheng introduced the first general Zagreb
index (FGZI), and it is defined by the following formula:

Yod) =) (At +di). (6)

veV (T) uveE (T)

MY =

For a = 3, we obtain the forgotten index (FI). In [13],
Azari and Iranmanesh initiated the idea of the generalized
Zagreb index (GZI) that is given as

Z,.D)= ) (dd+dd), )

uveE(T)

where r,s € Z* U {0,-1}.

In [14], Estrada et al. introduced a significant invariant
called atom-bond connectivity index ABC(I) that proved to
be a good predictor for the stability of alkanes and strain
energy of cycloalkanes [15, 16]. In [17], Vukitevi¢ and
Furtula suggested another prominent invariant known as
geometric-arithmetic index GA (I'). These indices are de-
fined as follows:

Journal of Chemistry

d,+d, -2
ABC(I) = e (8)
uv;(l") d”d‘/
2dd,
GA(T) = SV 9)
uveE (T) d"- + d"

An interested reader may refer to the surveys [18, 19]
regarding Randi¢ and GA indices of graphs, respectively. In
[20, 21], Ghorbani and Hosseinzadeh and Graovac et al.
proposed the fourth version of ABC and the fifth version of
GA that are denoted by ABC, and GA;, respectively.
Likewise, Hosamani introduced the Sanskruti index denoted
by SI [22]. These invariants are based on the sum of
neighbor’s degrees of end vertices and are defined as

S, +S, -2
ABC,(I)= ) ‘/73 < (10)
uveE(T) u=v

2,55,
GAD= D 5 s

uveE(T) U v

SIM) = )

( S,S, )3 1)
uveE(T) S” + SV -2

For a molecular graph (I'), some other invariants of key
importance and related to our concern are SDD (symmetric
division deg), HI (harmonic index), ISI (inverse sum index),
and AZI (augmented Zagreb index). These indices are de-
fined as follows:

> +d?
SDD(I) = ) (ﬁ),

(11)

uveE (T)
2
HI(T) = ( )
uv;(l") d“ +d1’
(13)
d,d
ISI(T) = ( uy )
uveZE:(l“) d” +dV

dd ’
AZIT) = Y (7)
) d,+d,— 2

uveE (T

In [23], Ranjini et al. proposed the idea of first, second,
and third redefined Zagreb invariants that are given by the
following formulas:

d,+d
ReZM, () = Y (Zld )

uveE (T)
d,d
ReZM, (T) = ( uzy ) (14)
uve%(l") d,+d,

ReZM,(I) = Y (d,d,)(d,+d,).

uveE (T)
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It is evident that ReZM; = n and violates the criteria to
be a topological index. Furthermore, ReZM, is the same as
the already defined topological index called the inverse sum
index. Consequently, the only novel invariant is ReZM; (T')
known as redefined Zagreb index (ReZI) and is denoted by
ReZM (T).

In [24], Deutsch and Klavzar initiated the idea of M-
polynomial for graph I' = (V(I), E(I)), and it is mathe-
matically given as

MTixy) = f(xy) = Y myDxy, (5

i<j

where m; (D) denotes the number of edges uv € E (T'), where

)

Table 1 depicts the relationship between some essential
topological indices and the M-polynomial, where
DM = x(0M/ox), D,M = y(0M/dy), J(M(x,y)) =M
(x,x), S,M = [ (M(t,y)it)dt, S,M = [} (M(x,t)/t)dt,
and QM = x*M.

Note: all formulas depicted in Table 1 will be calculated at
x=y=1

We summarize the relationship of GZI with certain
important invariants in Table 2.

Harry Wiener, an American theoretical chemist, ob-
served that invariants estimated from the molecular graph of
a chemical compound carry information and properties of
that chemical compound. Camarda and Maranas [25]
employed the connectivity indices to invent and create the
polymers correlated with a certain optimal characteristic.
Dendrimers are acknowledged to be the “polymers of the
21st century” due to their increased popularity, which is
evident through research articles and patents registered. In
[26], Wang et al. provided the closed-form formula for the
k-connectivity invariant in the class of nanostars and
dendrimers. In [27], Ali et al. derived general formulas of
certain invariants for some specific polymers such as pol-
yphenylenes, nanostars, and dendrimers. In [28], Shao et al.
worked out for the maximum value of the ABC index and
provided its characterization in the class of chemically
oriented graphs. In [29], Gao et al. figured out the enthalpy
and entropy for copper oxide I and copper oxide II. Kang
et al. [30], Liu et al. [31], and Gao et al. [32] studied various
topological aspects of 2D silicon-carbons, nanotubes, and
dendrimers, respectively.

Liu et al. [33] investigated and identified proteins having
nucleotide-binding activity using star graph TIs. Ali et al.
[34, 35] and Du et al. [36] studied and applied some degree-
based TIs such as the first Zagreb connection index, ordinary
generalized geometric-arithmetic index, general Platt index,
and general sum-connectivity index to establish extremal
results for alkanes. Hayat et al. [37] performed comparative
testing of certain chemical structures (carbon nanotubes,
carbon nanocones, and tetrahedral diamond) using various
degree-based TIs. Arockiaraj et al. [38] computed variants of
Wiener indices for the molecular graphs of coronoid sys-
tems, carbon nanocones, and SiO, nanostructures. In [39],
Ahmad et al. computed and compared several invariants of
synthetic polymers such as bakelite, vulcanized rubber, and

TaBLE 1: Formulas to derive some promising invariants from the
M-polynomial.

Topological indices Formulas derived from the M-polynomial

FZI M, (D, +D,)M (x, y)
SZI M, (D, -D)M(x,y)
MSZI "M, (S, - Sy)M(x, ¥)
GRI R, D% D% M (x, y)
IRI RR, S% - SM (x, y)
SDD (D,S, +8$,D,)M (x, y)
HI 2S. JM(x, y)

IS $,JD,D,M (x, y)
AZI $3Q,JDLD}M (x, y)

TaBLE 2: Few particular cases of GZI.

Topological index Corresponding (7, s)-Zagreb index

FZI M, (T) Zyg
SZI M, (T) (1/2)Z,,
FI F(T) Zyg
ReZI ReZM (T) Zyy
GFZI M*(T) Za10
GRI R, (D) (172)Z
SDD index SDD () Zy

acrylic (polymethyl methacrylate) to ascertain a relationship
between their physicochemical properties. From their
monomers, we develop the polymeric graphs of three closely
related natural polymers (isomeric), broadly known as
cellulose, glycogen, and amylopectin, to compute certain
invariants to anticipate their physicochemical properties.
Numerous theoretical, mathematical, and chemical prop-
erties of diverse chemical structures based on various in-
variants obtained from their molecular graphs have been
investigated in [40-43].

Polymers pervade every aspect of our daily life, and it is
hard to imagine a society without natural as well as synthetic
polymers, and they are characterized into four major types
based on their molecular chains; see Figure 1.

Typically, almost all food items comprise macromole-
cules which are some sort of polymers. Most of the food
items primarily include naturally occurring polymers
(polysaccharides) such as starch and cellulose. The main
biological functions of these polysaccharides are nutritional,
e.g., energy storage for metabolism (starch and glycogen),
and building material (cellulose). Like graphite and dia-
monds, glycogen, starch, and cellulose are also composed of
the same substance but with different structures. We know
glycogen, starch, and cellulose are all natural polymers of
glucose (carbohydrate) having the same chemical formula
(C4H,(O5),.. The entire class of natural polymers is made up
of smaller segments called monomers (monosaccharides),
and glucose is the basic building block for cellulose, gly-
cogen, and starch. They differ from each other based on the
glucose type present and the nature of the bond which links
the glucose monomers together. Glucose is a type of sugar
comprising carbon, hydrogen, and oxygen. These elements
bind together to create a hexagonal structure having six
carbon atoms (numbered C,; to C¢) with one of the carbons
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FIGURE 1: Polymer characterization with regard to structural chains.

sticking oft the end. Distinct glucose rings can be attached at
different carbons to produce different types of structures.
Some segments of the ring are flipped, causing two different
forms of glucose, known as a-glucose (alcohol OH attached
to C, is down) and $-glucose (alcohol OH attached to C, is
up); see Figure 2. There are two types of bonding, namely,
a(C, - Cy) and a(C, — C) glycosidic bonding in amylo-
pectin and glycogen; see Figure 2. Natural polymers, par-
ticularly of carbohydrate origin, have been found very
promising pharmaceutical applications in different forms
[44-46].

2. Discussion and Construction of the Planar
Graph of Cellulose Network CL,

Cellulose is among the most abundant, renewable, and
biodegradable organic compounds found in nature.
Anselme Payen (1838), a French chemist, recognized the
existence of cellulose in green plants [47]. It is the main
component of tough cell walls that surround plant cells, thus
making plant stems, leaves, and branches strong as well as
rigid. The rigid structure of cellulose allows plants to stand
upright, difficult to digest, and hard to break down. Recently,
the government, as well as industry, is highly interested in
products from sustainable and renewable energy resources
that produce low human health and environmental risks
[48]. Cellulose-based materials (cellulosics) are used as key
excipients in compounding pharmaceutical objectives and
gained immense attraction due to various intriguing features
such as low cost, biocompatibility, reproducibility, and
recyclability (green technology).

First, we explain the chemical structure of cellulose, in
general, and then convert it into a mathematical object called
a molecular graph to investigate its properties using tools

from graph theory. It comprises over 3,000 D-glucose units
that are linked by B(C, — C,) glycosidic bonding (see Fig-
ure 3) and have general formula (C;H,,05),,. Cellulose is a
linear unbranched polymer: unlike glycogen and starch, no
coiling occurs. Multiple hydroxyl groups on the glucose ring
from one chain create hydrogen-oxygen bonding on the
same or a neighboring linear chain (highly cross-linked
polymer) that results in the formation of microfibrils having
high tensile strength.

Now, we provide the construction, from scratch, for
the molecular graph of CL}, . The basic building unit of the
cellulose network is (C4H,;,O5),, depicted in Figure 3,
consisting of three hexagons and one octagon with three
pendant edges. Out of these pendants, one is fixed carbon,
and the remaining two pendants are OH (hydroxyl
group), one at the upper side and one at the lower side for
further bonding. Here, n represents the number of
hexagons in basic units, and when we add one monomer
to the basic unit, we get 7 hexagons. Similarly, every single
addition of the monomer resulted in an increment of four
hexagons.

Assume n to be the number of hexagons in one hex-
agonal chain with / isomeric units and m to be the number of
hexagonal chains in cellulose network CL}. Clearly, the
number of hexagons in each chain is odd, and the relation
between hexagons in one chain with isomeric units / is given
asn=41+3,1=0,1,2,3,.... Figure 4 elaborates a three-
dimensional network of cellulose CL] along with its planar
network. We recognize three types of the polygon in the
molecular graph of cellulose, namely, hexagons, octagons,
and decagons.

2.1. Results for Cellulose Network CL], . Using simple counting
techniques, we observe that the total number of vertices in
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FIGURE 2: Basic units, a- and f-glucose, and their linkages.

CL), n =4l + 3,is 22ml + 20m - 2, and the number of edges
is 30ml + 25m — 2] — 4. To compute our results, we require
edge partition of edge set E (CL} ). There is one and only edge
having degrees 1 and 3 of end vertices, i.e., |E;; (CL})| = 1.
The number of edges with end vertices, each of degree 2, is
|Ey, (CL])| = 4m + 41 + 1. We detect total edges with degrees
2 and 3 of end vertices as |Ey; (CL})| = 12ml + 12m — 2.
Finally, we identified the number of edges with end vertices,
each of degree 3, as |E;; (CL})| = 18ml + 9m — 6] — 4. An

edge partition of the cellulose network comprising different
parameters is presented in [49]. For the sake of computational
ease, we summarized the edge partition of the cellulose

network in Table 3.

Theorem 1. Let CL! be a cellulose network having m
hexagonal chains and n = 41 + 3 hexagons in each chain. The

Beta Glucose

Cl1

C4

CH,OH

C5

Cl

c3 | C2
oy OH

formula for GZI Z_ (CL}) is given as
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FIGURE 4: Chemical structure and equivalent molecular graph of cellulose CLj.
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TaBLE 3: Partitioning of the edge set with respect to degrees of end vertices for CL},,.

(d,,d,): vw € E(CL") (1,3) (2,2) (2,3) (3,3)

Number of edges= |E; ;| 1 dm+4l+1 12ml + 12m -2 18ml + 9m — 61 — 4

Zr’s (CL:;H) _ (4 x 3r+s+2 + 2r+2 > 3s+1 + 25+2 x 3r+1)ml
+(2r+5+3 + 2r+2 % 3s+1 + 2s+2 % 3r+1 +2 % 3r+s+2)m +(2r+5+3 —4x 3r+s+l)l (16)

+(3r + 35 + 27+s+1 _ 2r+1 ~ 35 _ 23+1 « 3r —8x 3r+s)‘
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Proof. Employing equation (7) and using Table 3, we obtain
the desired result as follows:

Z,(Cly) = ) (dd,+dyd)= ) (dd,+d,d)+ ) (dd,+d,d)

vweE (CL,) VweEy; Vweks,
+ Y (dd,+dyd)+ Y (dd,+d,d)
VWEE,;3 VweE;;3

=(3+3")+(4m+4l+1)(272° +2'2°) + (12ml + 12m - 2) (2"3° + 3"2°)
+(18ml + 9m — 61 — 4) (373" + 3737)

= (1223 +2737) + 36 x 3™ )ml +(12(23° + 2°3") + 2 x 372 4+ 27 )m (17
=(27 —ax 3T (37 + 37 - 2(2737 4 2°37) + 27 - 8 x 37
= (4 x 37 4 Tty 3L 4 sty 37! )ml

+(275 27 3 1 27 3T 4 2 3T ) 4 (27 — 4 x 3T

+(37 4354 27 22 3T 2% 3T -8 % 3T), _

Corollary 1. Using formulas outlined in Table 2 in equation
(17), we derived the following results of different TIs:
(1) M, (CL}) = Z,,(CL}) = 168ml + 130m — 20l —

(2) M,(CL}) = (1/2)Z,, (CL?) = 468ml + 338m —
761 —

(3) F(CL}) = Z,,(CL;,) = 480ml + 350m — 76l —

(4) ReZM(CL}) = Z (CL?) =1332ml + 910m —
2601 — 248

(5) M*(CL}) = Z, (CLL) = (16 x 3% + 3 x 2%1)
ml+52% +2 x3%m + 4(2% = 3%)r + (1 — 3**1)

(6) R, (CL}) = (1/2) Zyo(CLY) = (6% + 9% yml +
(22(x+1 + 6o¢+1 + (9o¢+1/2)) m+ (22a+1 _ 32(x+2)l_
((3%/2) + 221 — 6% -2 x 3%%)

(7) SDD(CLY) = Z, | (CL..) = 62ml + 52m — 4] -

Theorem 2. Let CL; be a cellulose network having m
hexagonal chains and n =4l + 3 hexagons in each chain.
Then,

(1) ABC(CL.) = (12+6V2)ml+ (6+8V2)m +
(2V2 - 41+ (1/ 6) (26 —3+/2 —16)

(2) GA(CLL) = (90 +24~/6) (ml/5) + (65+ 246 ) (m/
5) — 21— (1/10) (5+/3 —8+/6 —30)

(3) SCI(CL}) = x(_1/y (CLy) = ((12/~/5) + 3~/6 )ml +
(2+(12/\/—)+(9/\/_)) m+ (2-6)+ (1-(2/
V5) - (4/V6))

Proof. We determine the required results with the help of
Table 3 along with equations (8), (9), and (5), respectively.

1 ABC(CL!,) = (utds =2 ;‘Z dy+d, 2 +d 2
uveE(CL” uveE,; ( CL"
d,+d, - d +d -2
d d,
uveE,, (CL“ uveE,; ( CLy,)

)

d,+d,-2
uveE;; (CL“m) d”dv

2 2 4
= \g+(4m+4l+ 1)\/£+(12ml+ 12m—2)\/§+(18ml+9m—6l—4)\g

—(12+6\/_)ml+(6+8\/—)m+(2\/——4)l+

(2v6 - 32 - 16),
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. 2 d, 2@ d, INC
2GA(CLL) = ), d,+d, 2 d,+d 2

uveE(CLp,) % 7V uveE;; (CLy) v quEZZ(CL"m) v

s Z 2\/_ Z 24/d,d,

Ltd

uveEz3(CL) V. uveEg(CLr) H TV

(2\/—)+(4m+4l+1)( f)+(12ml+12m—2)(¥>+(18ml+9m—6l 4)( \/—)

:(90+24\/€)m?l+(65+24\/6)%—2l—1i0(5\/5 - 8v6 - 30),

+
QU

1
(L) = - - B
- uveEZ(:CL") V uveEHZ(CL ) V quEZZZ(:CL ) d” + dv

1 1
R e AP e

uveEy, (CLY,) utdy uveEy, (CLY,)

1

! (12ml+12m —2) + —
A

(dm+4l+1)+ 7

\/_ (18ml + 9m — 6l — 4)

:(\lé +3\/—)ml+<2+\/_ \/_)m+(2 \/—)l+< %—%)

Theorem 3. Let CL) be a cellulose network having m
hexagonal chains andn = 4l + 3 hexagons in each chain; then,
the M-polynomial of CL}, is

M(CLL;x, ) = xy° + (dm + 4l + DX’y + (12ml + 12m - 2)x°y” + (18ml + 9m — 6] — 4)x"

Proof. To calculate the M-polynomial of CL!, we apply
equation (15) as follows:

M(CLy;x,y) = Z Mijxiyj = Z ]\/wa;‘/3

d<i<j<A 1<3
2.2 2.3 3.3
+ZM22xy +ZM23xy +ZM33xy
252 2<3 3<3

=|Eys (Can)|x;V3 +|Ex (Can)|x2)’2 +|Ep (Can)|x2y3 +|Es3 (CL;‘1)|x3y3
= xy3 +(4m+4l+ 1)x2y2 + (12ml + 12m — 2)x2y3

+ (18ml + 9m — 6l — 4)x3y3.

(19)

(20)
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Proposition 1. For cellulose network CL}, , the formulas for
the modified second Zagreb, inverse Randi¢, harmonic,
inverse sum, and augmented Zagreb indices are

(1) ™Z,(CL") = 4ml + 4m + (I/3) — (7/36)

(2) RR,(CL!) =2(6"%+ 9" )ml + (4" * +2x 6"+
M Nm+ (47 —6x9 )+ (37 +4%-2x6 % —
4%x97%)

(3) HI(CL}) = (54/5)ml + (49/5)m — (17/15)
(4) ISI(CL},)) = (207/5)ml + (319/10)m — 5] — (133/20)

(5) AZI(CL") = (9633/32)ml + (14753/64)m — (1163/
32)] — (803/16)

Proof. Consider the M-polynomial derived in Theorem 3:

M(CL);x,y) = xy3 +(4m + 4l + 1)x2y2 +(12ml + 12m — 2)x2y3 + (18ml + 9m — 61 — 4)x3y3. (21)

First, we apply the combination of operators given in
derivation Table 1 on the above polynomial as follows:

1 1 1 1
(SxSy)M(x, y) = gxy3 + 1 (4m+ 4l + l)xzy2 + i (12ml + 12m - 2)x2y3 + 3 (18ml + 9m — 61 — 4)x3y3,

1 1 1 1
SiSi‘,M(x, y) = ?xf + e (4m + 4l + l)xzy2 + & (12ml + 12m — 2)362)/3 + 5 (18ml + 9m — 61 — 4)x3y3,

S IM(x,y) = % (2m+20+ 1)x* +§ (6ml + 6m — 1)x° +é (18ml + 9m — 61 — 4)x°, (22)

7 6 3
S,JD,D M (x,y) = <4m +4l + Z)x“ s (12ml + 12m - 2)x° + > (18ml + 9m — 61 — 4)x°,

91 216 729
$3Q,J DD M (x, y) = <32m +320 + g)xz + = (12ml +12m - 2)x° + "o (18l +9m — 6l - 4)x*,

(1) Modified second Zagreb index = (SXS},)MI,C:y:1 =4
m L+ 4m+ (1/3) - (7/36)

(2) Inverse Randic index = (S§-S5)M|,_,_, = 2(67%+
Ol-®yml + (4% +2x67% + 9f*“)m +(417% —6x
9N+ (37 %+4*-2Xx6 *—4x9°%

(3) Harmonicindex = 25, JM (x)|,_, = (54/5)ml + (49/
5)m — (17/15)

(4) Inverse sumindex = S,JD, D M|, = (207/5)ml +

(319/10)m — 51 — (133/20)

(5) Augmented Zagreb index = S$3Q_, ]chDi,M looy =

(9633/32)ml + (14753/64)m — (1163/32)] — (803/16)

To compute ABC, (CL},), GA;(CL ), and SI(CL} ), we
need the partitioning of edge set E(CL],) with respect to
neighbor’s degree sum of end vertices for cellulose network
CL},. We observe and identify eight different kinds of edges
in CL}. Now, the partition of the edge set of CL] with
respect to the degree-sum of the neighbors of the end
vertices of each edge is summarized in Table 4. O

Theorem 4. Let CL) be a cellulose network having m
hexagonal chains and n = 4l + 3 hexagons in each chain; then,
ABC,, GAs, and SI of CL}, are given as follows:

1)

1
ABC,(CLy,) = ¢ (12V/462 + 842 + 6314 +84/30 + 728)ml

1
+—— (504435 + 85514 + 63V110 + 150V462 +90V182 + 8402 + 21030 + 4130)m

1260

(23)

1
35 (12635 +450V14 + 63V110 — 30V462 — 2102 — 2103 — 560)]

1
* 3520 (1185V14 — 6722 — 126V110 +420V10 —300V462 — 90182 — 42030 — 980).
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TaBLE 4: Partitioning of the edge set with respect to neighbor’s degree sum of end vertices for CL},,.

(s,58,): vw € E(CL}) Number of edges

(3, 6) 1

(4, 5) 4(m+1)

(5, 5) 1

(5, 8) m+4l-1

(6, 6) 1

6, 7) 4ml + 5m — 4l —

(6, 8) 8ml+3m+1

(7, 8) 2m+1

(7,9) 2ml +2m - 2] —

(8, 8) 4ml +2m + 81— 1

8,9) 8ml +2m — 81 —

9,9) dml+m—4l-1

Total edges 30ml + 25m — 21 — 4
(2)

1
GA;(CL!) = —— (3808\/5 +28288V3 +4641V7 + 349442 +49504)ml

1
278460(495040Vr-+]39230VF_ 5 + 85680110 + 21420042

+477360/3 + 14851214 + 2088457 + 3931202 + 835380)m

+-———(14144Vf'+9792v" 489642 — 5967+/7 — 449282 + 31824)]

79
- - 7 —92820).
928
(24)
(3)
" 157939036549489 821225692630075333 45814497669489
si(cu) - (L2009 ( o )
58436224000 513537536512000 58436224000 (25)
(26341741253143399)
36681252608000 /°

Proof. Using equation (10) and edge partition presented in
Table 5, we proceed as follows:

1ABC4(Can)_ Z \L_| 36'\/7
vweE (CL},)
+|E45|\/7 |Ess|( |Es7|( |E58|(
B\ 4By 4 Bl B
14 14 15 16
+|E5o| @+|ESS| a+|E89| —+|E99| —
7 7
=\/1—‘8+\j%(4 4l)+—+\[(3 +3)+\/7(m+4l—1)
11
+\/%(4ml+5m—4l—5)+§(8ml+3m+1)+\/%(Zm—l)
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TaBLE 5: Partitioning of the edge set with respect to neighbor’s degree sum of end vertices for GL/,.

(5,,5,): vw € E(GLfﬂ)

Number of edges

(3.5
(3) 6)
4,5
(5,5
(5, 6)
5.7
(6) 6)
(6,7)
(7,7)
Total edges

m+1
8m+ml—1-1
2m+ 2
1lm+ml-1-1
12m+ml -1
10m+ml—-1-2
28m + 3ml — 31 —
17m +2ml -2 + 1
m-—1
Im(l+10)-91-5

+ \]E+ JE(2m1+2m—21—2)+ \/z(4ml+2m+81—1)
18 63 32

+\/E(Sml+2m—81—2)+il(4ml+m—4l—2)

——(12\/K+84\/'+63\/_+84\/_+728)ml+—(504\/_

126

+855v14 +63V110 + 150462 + 90/182 + 8402 + 21030 + 4130)m
+—(126\/_ +450v/14 + 63V110 — 30V462 — 210V2 —210+/3 — 560)]

315

+ﬁ (1185V14 — 672V/2 — 126110 + 420V10 — 300V462 — 90/182

Employing equation (11) and edge partition presented in
Table 5, we compute the result in the following manner:

2GA; (Cqu) = Z ZW = |E36|(@>

vweE (CL},) Sy ¥ Sw ?

D)),

2136
) ()

+|Egs

o

Enl

\1

[
sl Sy ) 1wl (e )+ |E89|(

(26)

—420/30 — 980).

( )+( )(4m+4l)+1+<\/2_>(3 3)+(@)(7n+4l—1)

+1+<2\1/:—2)(4ml—5m—4l—5) (4\7/_)(8ml+3m+1)

("

(12\/’

)(8ml+2m 81—-2)+ 4ml+m—4l-2)

)(2 +1)+< g )(2ml+2m 21 -2)+ (4ml+2m+ 81— 1)
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1

= s (380842 + 282883 + 46417 + 349442

+ (4950405 + 1392304/35 + 85680V10 +

278460

+ 14851214 + 2088457 +393120V2 + 835380)m

Journal of Chemistry
+49504)ml
214200V42 + 4773603
(27)

1
+—— (141445 +9792V10 — 489642 — 59677 — 449282 + 31824)]

7956
1
92820

+

The Sanskruti index SI(CL}) can be calculated as

(s -

3SI(CL") = Sl

2

ek (c) N Sw T 2

20\3

3

)

2ml +2m -2l -2)

3
+(25—4> (8ml + 2m — 81 - 2)

157939036549489

Exl(

) (4m + 4) +<

(4ml + 5m —

821225692630075333

(530403 — 69160V2 + 4641035 — 2856010 — 71400V42 + 2475214 — 696157 — 92820).

18
7

;

3
(m+4l-1)

+ <;>3 (3m+3) +(%>

56\°
41 - 5) + 64(8ml + 3m + 1) +<E) m+1)

(28)

3
+<§) (4ml+2m+8l-1)

3
+<§) (4ml +m — 41— 2)
16

( Jri+(

58436224000

26341741253143399

Jon

513537536512000

(458 14497669489>l (

58436224000
3. Discussion and Construction of the Planar
Graph of Glycogen GLin and Amylopectin
Aan Networks

In the 19th century, Claude Bernard, a prominent French
physiologist, discovered glycogen that mainly resides in the
liver and muscles. Natural polymers such as cellulose, chitin,
proteins, carbohydrates, and glycogen are a great source of

36681252608000

)

energy as they are the key component for life to keep going.
Glycogen (C¢H,(Os),, is a giant, complex, and highly branched
polymer consisting of about 30,000 monomers of glucose. It
comprises chains of glucose molecules linearly linked via
a(C, — C,) glycosidic linkages, and after every ten to twelve
residues, a chain of glucose branches off via a(C, — Cy) gly-
cosidic linkages. This latter kind of bonding creates branching
and winding patterns in glycogen. On the contrary, cellulose (a
close ally) has B(C, — C,) glycosidic linkages that produce a

O
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more rigid linear chain and hence cannot be broken down in
our stomach. Glycogen has only one reducing end, whereas it
has plenty of nonreducing ends; see Figure 5. Glycogen
molecules contain glucose as the principal storage reservoir in
human and animal cells, and when desired, glycogen is readily
processed to release glucose. This self-regulating process
maintains the amount of glucose in blood at a constant level
even though the supply is uneven. The interaction between
glycogen and glucose is at the heart of what is commonly
interpreted as the Cori cycle (muscleglycogen —
blood lacticacid —  liver glycogen —  blood glucose
— muscle glycogen). Although sufficient investigation has
been performed about the regulation of glycogen metabolism
by hormones such as insulin, glucagon, and adrenaline
[50-52], however, still it is the subject of extensive investiga-
tion. In glycogen, approximately after every 10 glucose resi-
dues, a (C, — C¢) glycosidic bonding occurs which creates the
branch. The network of our interest GL,, is constructed from
the glycogen molecule in such a way that it has # — 1 branches
of length 1 <1< 10; see Figure 6.

Amylopectin is an analog of glycogen that has fewer
branches and is less compact as compared to glycogen. The
helical branching structure gives an open structure to these
molecules; as a result, they are easily accessible by enzymes,
and so, they can be broken down or assembled quickly. In
amylopectin, approximately after every 20 glucose residues,
a(C, — Cq4) glycosidic bonding occurs which creates the
branch. The network of our interest AM!, is constructed from
the amylopectin molecule in such a way that it has m -1
branches of length 1 << 20.

3.1. Results for Glycogen Network GL! and Amylopectin
Network AM',. The following lemmas manifest some basic
structural properties of the glycogen and amylopectin net-
works and are essential for upcoming results.

Lemma 1. Let GL. be the glycogen network shown in Fig-
ure 6, with m — 1 branches each of length I; then, the total

Z,(GL,) =(3"(3+5x2""%) +

+(37(1+3%) +3°(1+53") + 27 %2 ) (m - 1)

+(2r+2 > 35 _ 2s+2 %

Proof. Employing equation (7) and using Table 6, we obtain
the desired result as follows:

(did,, +d,d,) =

z.(GL,)= )

Journal of Chemistry

number of vertices and edges is 8m(l+10)—8/-9 and

9m (I + 10) — 91 — 11, respectively.

Proof. Suppose V4, (GL!)and E, y (GL!,) denote the vertex
set and edge set partition and are defined as V;={u eV
(GL},)ld, = deg} and E, , (GL},) = {uv € E (GL})| (d,.d,)
= (x, y)}, respectively. In the molecular graph of glycogen
network GL!, we recognize three kinds of vertices with
degrees 1, 2, and 3, ie., S(GLI )=1 and A(GLZ ) =3. By
applying the basic counting principle, we acquire the partition
of the vertex set, and it is presented as |V || =m (9+1) -1,
|V, =42m + 4ml — 41 -2, and |V5| =29m+ 3 ml - 3] -
Subsequently, the total number of vertices |V(GLZM)| of the
glycogen network is 8m(l+10) -8l —4. Similarly, we
identify four types of edges in GL! with respect to degrees of
end vertices of each edge. Again, employing the basic
counting principle, we get the partition of the edge set, and it
is given as |E 5| = 9m +ml — L, |E,,| = 12m+ ml —I,| E5;| =
60m+ 6ml — 6l —4, and |E;| = 9m +ml — 1 — 1. Therefore,
the total number of edges IE(Gle)I is 9m (I +10) - 91 -
Lemma 2 reveals some basic properties of the amylo-
pectin network that are of utmost importance for promising
results. Note that we skip the proofs of results for the
amylopectin network as they would have been attained by
working on the same lines as for the glycogen network. [

Lemma 2. Let AM', be the amylopectin network with m — 1
branches each of length I; then, the total number of vertices
and edges is 8m(l+10) -8l -4 and 9m(l+10) -9l -
respectively.

Without loss of generality and further use, the vertex set
and edge set partition of GL and AM! are illustrated in
Tables 6 and 7, respectively.

Theorem 5. Let GL!, be a glycogen network having (m — 1)
branches of length I, where 1<1<10. The formula for GZI
Z,.(GL.) is given as

3r+1(3 +5x% 25+2) +3x 2r+s+3)m
(29)
3" -2x3™),

Y (dydy, +dydy)+ Y (dydy, +did;)

yweE (GLﬁﬂ) vweE 5 vweE,,
r 1S T S
Y (dd,+dyd)+ Y (dd,+d,d)
VWEE VweEs;
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TaBLE 6: Degree-based partitioning of the vertex set and edge set for GL!, .
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d;ve V(GLin) Number of vertices d,.d,): vwe E(GLL{) Number of edges

1 mO+1)-1 1, 3) Im+ml—1

2 2m+4ml—41 -2 2, 2) 122m+ml -1

3 29m +3ml - 31 -2 2, 3) 60m + 6ml — 61 — 4
(3)3) 9m+ml—l—1

Total vertices

8m(l+10) -8l -4 Total edges

9m(l+10)-91-5

TABLE 7: Partitioning of the edge set with respect to the degree of end vertices for AM,.

d, ve V(AMlm) Number of vertices (d,.d,): vwe E(AMlm) Number of edges

1 19m+ml -1 1, 3) 19m+ml -1

2 82m + 4ml — 4l - 2 2, 2) 22m+ml -1

3 59m + 3ml — 31 -2 (2, 3) 120m + 6ml — 61 — 4
(3, 3) 19m+ml-1-1

Total vertices

160m + 8ml — 81 — 4 Total edges

180m + 9ml — 91 — 5

=Om+ml-1)(3°+3") + (12m+ml - 1)(2"2° + 2'2°)

+(60m +6ml —61—4)(2"3° +3"2°) + (9m +ml —1-1)(3"3" +373°)
=(372+ 372 +3x 2™ 4602737 +372°) +2x 37 )m

+(3T 3+ 2 4 6(273° 4 3727) +2x 37 ) (ml - 1)

+(2r+2 ~ 35 _ 25+2 % 3r _ 3r+s+1)
=(3"(3+5%2™) + 3™ (34 5%x27) + 3% 2™ )m

+(37(1+3) + 3 (1+5x3") +2" x 2" ) (m - 1)l

+(2r+2 % 35 _ 2s+2 % 3r 2% 3r+s).

(30)
O

Corollary 2. From equation (30) of the GZI, we derived the
following results of different TIs presented in Table 2:
(1) M, (GL.) = Z, ,(GL!)) = 438m + 44l (m - 1) - 26
(2) M, (GL.)=(1/2)Z,, (GL )=516m+52I (m—1)-33
(3) F(GL.) = Z,,(GL!)) = 1128m + 114l (m - 1) - 70
(4) ReZM(GL.) = Z,, (GL! ) = 2586m + 2621 (m — 1) -
174
(5) M*(GL.)) = Z,_, o (GL.)) = (42 x 2 +29 x 3% + 9)m
+(2972 439 L 1) (m— 1)1 - (2% +2x 3%

(6) R (GLL) = (1/2)Z, . (GL ) = (3 x 2242 + 392 (1 +
3%+ 10 X 6% Nym + (22% + 3% (1 + 3%) +6*) (m - 1)
[— (293 x 3% + 2 x 32%)

(7) SDD(GL.))=Z, _, (GL!)) = 202m + (61/3) (m—1)I -
(32/3)

Theorem 6. Let AM!, be an amylopectin network having
(m — 1) branches of length I, where 1 <1< 10. The formula for
GZ1 Z, (AMﬁn) is given as

Z,(AM},) =(19(37+3°) + 11 x 27 4 5(27737 4 37727) 4 2% 37 )m

+(3r(1 +3x 2”1) + 35(1 +3x 2”1)

(31)

+2(27+37)) (m - DI -2 x 3727 +3°(27 + 1)),
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Corollary 3. From equation (31) of the generalized Zagreb
index, we derived the following results of different TIs:
(1) M, (AM) = Z, . (AM!) = 878m + 441 (m — 1) - 26
(2) My (AM.) = (1/2)Z, ; (AM!) =1036m + 521 (m - 1)
-33
(3) F(AM!))=Z,,(AM!,) =2268m + 114l (m— 1)~ 70
(4) ReZM(AM!) = Z,, (AM!,)) = 5206m + 2621 (m — 1)
-174
(5) M*(AM) = Z 1 o (AM,)) = (41 x 21 +177 x 3!
+19)m + (292 + 3% 1 1) (m - 1)] — (2% +2x 3%)
(6) Ry(AM!) = (1/2)Z,  (AM!) = (38 x 3% (1 +3%) +
202 (11 X 2% + 20 x 3% ))m + (2291 + 2 x 3%(1 + 3¢
+3x2%1) (m — 1)I - 2 x 3% (2%%2 + 39)

(7) SDD(AM!)=Z, | (AM!) = (1216/3)m + (61/3) (m

Journal of Chemistry

Theorem 7. Let GL!, be a glycogen network having (m — 1)
branches of length I, where 1 <1< 10; then,

(1) ABC(GL!) =3(12v2 + V6 +2)m + (1/6) (21V2 +
216 +4)(m - 1) - ((6v2 +2)/3)

(2) GA(GL)) = ((9v/3/2) +24+/6 +21)m+ ((12+/6/5) +
(V/3/2)+2) (m—1)l - ((8V6 ~5)/5)

(3) SCI(GLY,) = x_y») (GLL) = ((21/2) +3+/(3/2) +12
VS (652 (8 +1) (m - D+ (546 -
24+/5)/30)

Proof. Using Table 6 and equations (8), (9), and (5), respec-
tively, we compute the desired result as given in the following:

-1)I-(32/3)
(1) ABC(GL,, ) =
uvek (GLy,) wveEy, (GLL,)
\/m d, +d, -2 +d -2
uveEy, (GLI dyd uveE,, (G
d,+d, -2
+ Y \/T
uveEs; (GL,) utty
2 D 3
:(9m+ml—l)\g+(12m+ml—l)\/;+(60m+6ml—61—4)\£
+(9m+ml—l—1)\/§
=3(12v2 + V6 +2)m+é(21\/§ +2V6 +4)(m—1)l—(6\/§3+2))
2vd,d 2yd,d, 2d,d
2 A Ll = uv_ u-y u“ty
(2)GA(GL,) WGE%GL,)dﬁdV I

5 29 d,

d +d

uveE,; (GL’m) u v

+

uveE 3 (GLin) u v

uveE;; (GL’m) u

(#) Om+ml=1)+(12m+ml — l)(%> + (60m + 6ml —

+(9m+ml-1- 1)(2\/—)

uvek,, (GLIm) u

2+/d,d

d +d

v

(%)

4

5

(9\/— 24\/—+21> (12;/6+?+2)(m—1)l—<8\/g_5>,
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Oxcnfl)= ¥ s ¥ gt ¥ e
uveE (GLL,) V¥ +dy uveE; (GL,,) V¢ +d, uveE,, (GL},) V¢ +dy
v Y . 5 1
uveE,; (GLin) du + dV uveE,; (GLin) du + dV
=L omaml— 1)+ 2= (12m 4 ml — 1) + — (60m + 6mi — 6] - 4) (32)
V4 V4 V5
1
+%(9m+ml—l— 1)
21 3 6 1 546 —24+/5
_(7+3\g+12\/§)m+($+%+1)(m—1)l+(730 ) _

Theorem 8. Let AM!, be an amylopectin network having
(m — 1) branches of length I, where 1 <1< 10; then,

(1) ABC(AM' ) = (38 +213 2 +19+6)(m/3) + (4 +
212 +26) ((m = 1I/6) + (3v2 +1)(2/3)

(2) GA(AM!)) = (1943 + 966 +82) (m/2) + (5V/3 +
24+/6 +20) ((m — 1)I/10) — ((8+/6 +5)/5)

(3) SCI(AM! ) = y_,, (AM!, ) = (144+/5 + 19+/6 +123)
(m/6) + (3045 +5+/6 +30) ((m—1)I/30) + ((24
V5 +5+/6)/30)

M(GLin;x, y) =(9m+ml - l)xy3 + (12m + ml — l)xzy2 +

Proof. To calculate the M-polynomial of GL!

> We apply
equation (15):

In the next theorem, we compute the M-polynomial of
glycogen network GL! , which will eventually be used to

formulate closed-form formulas of certain TIs of our
interest.

Theorem 9. Let GL', be the glycogen network consisting of
(m — 1) branches where each branch has length I; then, M-
polynomial of GL' is

M(GLin;x, y) = Z M,-jxiyj = Z M13xy3 + ZMzzxzy2 + Z M23x2y3 + ZM33x3y3

O<i<j<A 1<3 222

= |E13(GLfﬂ).xy3 +.E22(GLL1)|x2y2 +'E23(Gle)|x2y3 +|E33(Gle) x3y3

=(9m +ml - l)xy3 +(12m +ml - l)xzy2 +

Proposition 2. For glycogen network GL. , formulas for the
modified second Zagreb index, inverse Randic index, sym-
metric division degree index, harmonic index, inverse sum
index, and augmented Zagreb index are as follows:

(1) "Z,(GL! ) = 17m + (61/36) (m — 1)l - (7/9)

(2) RR,(GL! )= (32 %+3x4"% +10x 6" *+ 91" %)ym  +
(617 +917% + (1/3%) + (1/4%)) (m — 1) - ((4/6%) + (1
/9%))

M(GLin;x, y) =(9m+ml - l)xy3 + (12m + ml — l)xzy2 +

(60m + 6ml — 61 — 4)x*y” + (9Im + ml =1 - 1)x”y’. (33)
2<3 3<3

(34)

(60m + 6ml — 61 — 4)362)/3 +(9m+ml-1- 1)x3y3. -

(3) HI(GL. ) = (75/2)m + (56/15) (m — 1)] - (29/15)

4) ISI(GLin) = (417/4)m + (209/20) (m — 1) — (63/
10)

(5) AZI(GL!) = (45369/64)m + (4529/64) (m — 1)I—
(2777/64)

Proof. Consider the M-polynomial derived in Theorem 9:

(60m + 6ml — 61 — 4)x2y3 +(9m+ml-1- 1)x3y3. (35)
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We apply the combination of operators given in deri-
vation Table 1 on the above polynomial as follows:

Journal of Chemistry

1 1
(SxSy)M (x,9) = 3 (9m +ml — l)xy3 + 1 (12m + ml - l)xzy2

1 1
+g(60m+6ml—6l—4)x2y3 *3 (Om+ml-1-1)x"y’,

1 1
SZS;M (x,y) = 3 (Om +ml-Dxy’ + e (12m + ml - )x*y*

1 1
+?(60m+6ml—6l—4)xzy3 +— Om+ml—1- 1)x3y3,

9°

1 2 1
28, JM (x, y) = 5 (21m + 2ml - 2D)x* + S (60m + 6ml — 61 — 4)x° + 3 (9m+ml—1-1)x°,

S,JD,D,M(x,y) = i (75m + 7ml — 71)x* +g (60m + 6ml — 61 — 4)x° +§ (9m +ml —1-1)x°,

SiQ,ZJDiDiM (x,9) = 2§7 (9m +ml - )x* + 8(12m + ml - )x°

729
+ 8(60m + 6ml — 6] — 4)x° toer (9m +ml —1-1)x".

(1) Modified second Zagreb index= (SxSy)M |x=y=1 =
17m — (61/36) (m — 1)l — (7/9)

(2) Inverse Randi¢ index= (S} -S§IM|,_,_; = (3% %+
3x47C410x 6"+ 9 )m+ (617 + 9% + (1/
3%) + (1/4%)) (m — 1) — ((4/6%) + (1/9%))

(3) Harmonic index= 2S,JM (x)|,_, = (75/2)m+ (56/
15) (m — 1)l — (29/15)

(36)

(4) Inverse sum index = Sx]DnyM|x=1 = (417/4)m +
(209/20) (m — 1)l — (63/10)

(5) Augmented Zagreb index =$Q,JD;D)M|,_; =
(45369/64)m + (4529/64) (m — 1)l — (2777/64) O

Theorem 10. Let AMﬁn be the amylopectin network con-

sisting of (m — 1) branches where each branch has length I;

then, M-polynomial of AM, is

M(AMLI; X, y) =(19m +ml - l)xy3 +(22m+ml - l)xzy2 + (120m + 6ml — 61 — 4)xzy3 +(19m+ml—1- l)xsyS. (37)

Proposition 3. For amylopectin network AM’, , formulas for
the modified second Zagreb index, inverse Randic index,
symmetric division degree index, harmonic index, inverse sum
index, and augmented Zagreb index are as follows:

(1) "Zy(AM ) = (611/18)m — (61/36) (m — 1)] — (7/9)

(2) RR,(AM! ) = (19 x 37%(1 +37%) + 11 x 2!~ % + 20x
6" Nm+ (37 (1+3 ") +272+6" ) (m-1)- (4
X6~% +372%)

(3) HI(AM!,) = (449/6)m + (56/15) (m — 1)l — (29/15)

(4) ISI(AM) = (835/4)m + (209/20) (m—1)I - (63/10)

(5) AZI(AM.) = (90659/64)m + (4529/64) (m — 1)] —
(2777/64)

Again, to calculate ABC,(CL}), GA;(CL}), and
SI(CL"), we require the partitioning of edge set E(GL!)
with respect to neighbor’s degree sum of end vertices for
glycogen network GL!. We observe and identify eight
different types of edges in GL! . Now, the partition of the
edge set of GL! with respect to the degree-sum of the
neighbors of the end vertices of each edge is summarized in
Table 5.
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TaBLE 8: Partitioning of the edge set with respect to neighbor’s degree sum of end vertices for AM,.

(5,5 8,): vw € E(AML‘)

Number of edges

(3, 5)
(3,6)
4, 5)
(5,5
(5, 6)
(5,7)
(6, 6)
(6,7)
(7. 7)
Total edges

m+1
18m+ml—-1-1
2m+2
2lm+ml-1-1
22m+ml -1
20m+ml—1-2
58m +3ml - 31— 4
37m+2ml -2l + 1
m-—1
180m + 9ml — 91 -5

Similarly, the neighbor’s degree sum edge partition for
amylopectin is depicted in Table 8.

Theorem 11. Let GL be the glycogen network consisting of
(m — 1) branches where each branch has length I; then, ABC,,
GAs, and SI of GL! are given as follows:

1)

1
ABC,(GL,,) i (1022V10 +580V14 + 4235 +924V2 +252/30 + 85V462 + 603 )m

1
+500 (65V14 +84V2 + 105V10 + 10V462 +21/30) (m — 1)I (38)

1
*>10 (4235 — 9810 — 9514 — 168V2 +5V462 — 603 ).

)
1
GA;(GL,,) = SliE (128715 +27456V2 + 45765 +936/30 + 8580V35 + 1346442 + 205920)m
1
+oog (572V2 — 156V/30 + 143/35 +264V42 + 3432) (m — 1)l (39)
1
+ 18 (11715 - 312V2 +416/5 - 156V35 + 7242 —2808).
3)

(40)

m

31( ar! )_(2940909850294457> (298773851517107) (
- 788889024000

788889024000

Proof. Using equation (10) and edge partition presented in
Table 5, we proceed as follows:

(DABC,(GL, )= )
vweE (GL,,)

)l (21671 1945260101)
788889024000

S, t S, —

et s e
SySw SIS

7 7 8 9
+|Ese| E+|E45| %+|E55| E+|E56| 30
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10 10 11 12
B+ B B o+
2 7 7
= \E(WH 1)+ \/1:8(8m+ml—l— 1)+ \/%(2m+2)

+\/g(llm+ml—l—2)+\/%(12m+ml—l)+\/%(10m+ml—l—2)

11 12
+1—58 (28m + 3ml — 31 — 4) + \/%(17m+2ml—21+ 1)+g (m—1) (41)

1
=315 (102210 + 580V14 +42+/35 + 9242 +2524/30 + 851462 + 603 )m

1
+m(65\/ﬁ + 8442 + 10510 + 10V462 +21/30) (m — 1)I

1
+ 775 (4235 —98V10 — 95V14 — 168V2 +5V462 — 60V3).

Employing equation (11) and edge partition presented in
Table 5, we compute the result in the following manner:

@GAs(cL,)= Y 2V5v5w2|E35|(@)

vweE (GL’m) S+ Sw 8

+|E36|<@) +|E45|<@> +|E55|<%) +|E56|(@)

2135 2v36 242 2149
A5 e (55 el (557 ) (1)

=<§)(m+ 1)+<¥)(8m+ml—l— 1)+(¥>(2m+2)

V35 (42)

(12m+ml—l)+(T)(10m+ml—l—2)

+(11m+ml—l—1)+(@)

2+/42
13

+(28m+3ml—31—4)+( )(17m+2ml—21+1)+(m—1),

1
GA;(GL,) = S8 (1287V15 +27456V2 + 45765 +936/30 + 8580V35 + 13464142 + 205920)m

1
s (572V2 — 156130 + 143+/35 + 26442 + 3432) (m - 1)I

1
o (11715 - 312V2 +416V5 - 15635 + 72142 — 2808).

The Sanskruti index SI(GL', ) can be calculated by using
equation (12) as follows:
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FIGURE 7: 3D graph of the M-polynomial of CLL®, GL}, and AMj.
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FiGURE 8: Comparison of CL!, GL! , and AM!, using M, and M,. (a) 3D graphs of the first Zagreb index. (b) 3D graphs of the second
Zagreb index.

3 3
CECINEND) )(%:;j;_z) el ()

vweE (GL,,

18\3 20\3 25\3 30\°
Bal(7) +IEl(Z) +1sl(5) +IEl(5)

35\3 36\° 42\3 49\3
+1Es(3g) +1Eal(g) +1Eal(3) +1EI(55)

:<1—z5)(m+ 1)+(%)(8m+ml—l— 1)+<%>(2m+2)
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Theorem 12. Let AM', be the amylopectin network con-
sisting of (m — 1) branches where each branch has length I;
then, ABC,, GAs, and SI of AM', are given as follows:

Journal of Chemistry

1)

1
ABC,(AM,)) =70 (207210 + 1230V14 + 4235 + 17642 + 46230 + 185V462 + 603 )m

1
+30 (65V14 +84V2 +105V10 + 10462 +21v/30) (m — 1)I (44)

1
+0o (42+/35 — 98110 — 9514 — 842 + 5462 — 60+/3).

(2

1
GAS(AML,) T (11715 +5616V2 + 4165 + 1872+/30 + 15604/35 + 2664142 + 37440)m

1
+ 558 (5722 + 14335 + 15630 + 26442 + 3432) (m — 1)I (45)

1
+— (117V/15 = 312V/2 + 4165 + 15635 + 72142 — 12168).

468

3)

SI(AM,,,) =<

5928648365465527)
788889024000

<298773851517107)( N (46)

788889024000

(213033772785851 )
788889024000

4. Concluding Remarks: A Comparative
Analysis of Cellulose, Glycogen, and
Amylopectin Networks

Figure 7 demonstrates a comparison between 3D graphs of
the M-polynomial of cellulose, glycogen, and amylopectin
networks (all having the same number of monomers, i.e., 75
hexagons).

Figures 8-13 provide a visual comparison among various
TIs of cellulose, glycogen, and amylopectin networks.

Although both natural and synthetic polymers are ap-
propriate for the drug delivery and, in general, for the
pharmaceutical industry, however, natural polymers are
more suitable as they are nontoxic, biocompatible, without
side effects, and economical. As pointed out earlier, M|, M,,
R (i), and Randi¢-type indices (y(_,/,, ABC, and AZI)
assess the intensity of branching and connectivity in the
molecular graph. Figures 8-11 pronounce the subsequent
order between the indices for the same number of mono-
mers (i.e., same values of m and [ in each polymer). Hence,

TI(GL,) <TI(AM! ) <TI(CL!) where TI e {M,,M,,
R(1/2)x 1 ABC, azi- This ordering is convincing due to the
fact that there exists extensive cross-linking in cellulose,
while glycogen (frequent branching) and amylopectin (less
branching) are branched polymers. In [53], properties of the
SDD index and ISI are investigated, and it turned out that
the ISI and SDD index are reasonable predictors of total
surface area for octane isomers and polychlorobiphenyls,
respectively. We conjecture, relying on the comparison
presented in Figure 12, the relationship between surface
areas (SAs) of cellulose, glycogen, and amylopectin which
could have been organised as SA(AMlm) SSA(Gle) <
SA(CLin), for the same number of monomers.

We observe, from Figures 8-11 and Figure 13, that all the
graphs of TIs for cellulose behave like an outlier as compared
to glycogen and amylopectin. We anticipate that the ec-
centric behavior of cellulose is due to its nature of being used
as a building material (forms the plant cell wall) as well as its
physical properties such as the presence of monomer
B-glucose, insoluble, indigestible, and considerable tensile
strength. Moreover, all the graphs of TIs for glycogen and
amylopectin go alongside, which might be due to the
presence of monomer a-glucose, solubility, digestibility, and
their nature of being used as energy storage (bonds break
easily) in animal organs and plants, respectively. Also, the
results obtained in this section could further be applicable in
QSPR/QSAR analysis to predict the biological properties of
the natural polymers under discussion.

For future research, the study of polysaccharides can be
further enhanced to molecular graphs of other natural
polymers. Develop molecular graphs for some new natural
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polymers such as proteins and nucleotides (RNA and DNA),
and give a mathematical formulation of degree-based indices
studied in this article. Finally, compare their physico-
chemical properties, theoretically and mathematically, using
these indices.

Data Availability
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included within this article. However, the reader may
contact the corresponding author for more details of the
data.
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In 1972, Gutman and Trinajstic showed that total 7-energy of a molecule depends upon a numeric quantity which is often called as
Zagreb index. In the same report, they also discussed another numeric quantity depending on the number of atoms at a distance
two from a particular atom and proved influencing results on 7-energy of a molecule. In modern literature, this quantity is named
as connection number. In this article, we will describe some Zagreb connection numbers for hourglass section in carbon nanocone

network with different lengths of cycle in the central core.

1. Introduction

In the theoretical branch of chemistry, molecular quantities
are important for modeling structural information of dif-
ferent molecules. The purpose for getting this information is
to capture physical and chemical properties of the molecules.
To attain this, a chemical structure of a molecule is presented
as graphs, and the molecular quantities obtained from a
particular chemical structure are graph invariants under
graph isomorphism. In the mathematical branch of chem-
istry, this study is termed as quantitative structural activity
relationship (QSAR). Predicting electron energy and melting
(boiling) point for a structure are primary applications of
these studies [1].

In discrete branch of mathematics, studying mathe-
matical structures by modeling pairwise relations between
sets of objects results in graphs. Simply, a graph consists of
some vertices, which are joined by edges. Commonly, the set
of vertices in a graph G is described by V, whereas the set of
edges is represented by E. Chemical graph theory is a branch

of mathematics which combines graph theory and chem-
istry. Graph theory is used to mathematically model mol-
ecules in order to gain insight into the physical properties of
these chemical compounds. In this branch, a chemical
structure for a compound is visualized as a unique form of a
graph by showing its atoms as vertices and bonds between
atoms as edges. This is a simple transformation of a structure
into a graph which helps chemists to study physical and
chemical structural properties for a particular network [2].
Very recently, a new two-dimensional bilayered naturally
existing network of germanium phosphide is topologically
explained in [3]. Some degree-based topological indices for
p-type benzene ring for a two-dimensional network are
given in [4]. A computer paradigm cellular neural network is
explained by a new kind of dominating topological in-
variants by Ejaz et al. [5].

In 1972, Ivan Gutman and Nenad Trinajstic [6] very
firstly defined a numeric quantity while studying the electron
energy of a molecule. Later on, this quantity will have been
called as the Zagreb index. It depends on the number of
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bonds (edges) connected to an atom. Particularly, the
number of bonds attached to an atom is called degree, and
Zagreb index is purely based on degrees of all atoms in a
structure. After this, these same mathematicians defined
another quantity while studying molecular branching of
orbitals which is called the second Zagreb index. With the
passage of time, the abovementioned quantities would be
termed as the first and second Zagreb indices by many graph
theorists and chemists. More than hundreds of researchers
did work on it and published their work in highly reputed
journals [7].

In [1, 8], these two quantities are modified and redefined
as noval quantities on the basis of connection numbers, and
this experiment shows very effective results in different
aspects. As we know that the number of edges (bonds) is the
degree of an atom (vertex), similarly, the second degree is the
number of edges from a particular vertex to a vertex at a
distance two. In other words, for a vertex u in a graph, the
number of vertices at a distance two is called the connection
number for u and represented as 7,,. In the following, we will
define these modified versions of Zagreb indices and are
termed as the first Zagreb connection number (ZC,), second
Zagreb connection number (ZC,), and more modified type
of first Zagreb as first modified connection number (ZCy).

ZCI = Z Ti, (1)
ueV

2C, = ) (ru-7,), 2)
uveE

ZC;k = Z (Tu +Tv)' (3)
uveE

2. Carbon Nanocone

Round about in 1968, the first appearance of a carbon
nanocone comes under observation by naturally existing
graphite surface. The attraction of these structures is its
applications in biosensors, energy and gas storage, nano-
electric devices, and many more. These nanocones are
carbon-consisting networks which are infinite undirected
planar structures in theory of graphs [9].

Carbon nanomaterials have drawn focusable attention
and attraction during the last two decades because of its
effective physical applications in nanotechnology as
emerging materials of splendid practical application. But
carbon nanocones (CNCs) have drawn full attention after
the discovery of free-standing structures or canonical to-
pology as cap on one end of nanotubes (CNTs) [10-12].
CNCs are admired as alternatives of (CNTs) because of the
absence of potentially poisonous metal catalyst in synthesis
and mass production at room temperature [13]. In general,
during the declamation of CNTs, strong acids are used in
order to close out metal catalysts. In this process, deficiency
introduced with the hindrance of destructing the graphite
structure. On the other hand, the useful applications and
attractive properties of CNCs are easy to approach. The
application of CNCs as drug delivery capsules [14] and gas
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storage devices increased their significance in modern era.
Throughout the years, this subject has been developing
unique scientific obsession with planar, curved, and wrapped
nanoscale structures, such as graphene, fullerenes, and
nanotubes [15]. It has a strong technological interest just as
their innovative structural, noticeable electronic and me-
chanical properties. Curved carbon structures are used to
investigate growth and nucleation. Especially, pentagon
presence in CNCs plays vital role [16]. The 60 declination
defect was detected when the pentagon inserted in a graphite
sheet. This is the key of CNCs formation with pentagon as tip
apex which leads us to the existence of nanotubes with tip
topology [17]. This type of defects in graphite networks were
theoretically considered for the study of electronic states
[18]. CNCs have free-standing structures with sharp edges as
these properties have applications in technology and elec-
tronics [19, 20]. The basic cell unit of carbon nanocone-
consisting benzene ring is shown in Figure 1(a), and two
benzene rings having a common edge in naphthalene is
shown in Figure 1(b).

A graphical representation of these cones shows conical
shape with a cycle of specific length at its core with hex-
agonal layers around the core. We are interested particularly
in a structure with some different structural forms with n
layers of hexagons around the centre. In Section 3, we will
explain the noval structural form derived from CNC very
similar to the bow-tie shape. Javaid et al. discussed some
important results related to rhombus-type silicate and oxide
networks and calculated indices to study the chemical be-
haviour [21]. Chemical properties and chemical bonding
networking in the neural network were studied significantly
by using indices [22, 23]. These gave a wider range to study
the connection numbers and other indices on different
chemical networks for observing the chemical behaviour and
connectivity among the chemical bonds. Calculation of
Zagreb connection numbers is based upon the specific
distance. Formulas for many topological indices look like
similar to one another. Degree-based, distance-based, and
specific-restricted domain topological indices can differen-
tiate among all of them. Leap Zagreb indices, dominating
topological indies, and zagreb connection indices are close to
each other by formulas but different by chemical structural
properties of chemical structural-based compound [24].

3. Hourglass Section in Carbon Nanocone

Carbon nanocones have nice and interesting geometrical
properties. These structures are connected, with infinite
chains of concatenated hexagons having the property of two
adjacent connected hexagons with a common edge. The
construction property defines a definite rule for carbon
nanostructure and it provides building block structure. That
is why, it gives a planar simple connected graph obtained by
connected regular hexagons [25].

Observing this geometrical property of the CNC here, we
will describe its structure as similar to the hourglass. In this
system, the core is centred with a cycle of specific length,
whereas the layers of hexagons are around it. Moreover, this
structure is similar to the doubled cone having a common
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FIGURE 1: Some hydrocarbons with associated chemical graphs. (a) Benzene with chemical graph. (b) Naphthalene with chemical graph.

cycle core at the centre. We will term this unique noval
system as “hourglass system carbon nanocone” (HGSCNC),
whereas we will express the n-dimensional system as
HGSCNC (1, k), where n is the dimension of the system
which is the number of hexagon layers around the core and k
represent the length of cycle at the core. We will discuss two
cases for k: (1) when k is odd and (2) when k is even.

3.1. When Length of Cycle m Is Odd in n-Dimensional
HGSCNC. In this case, we are presenting the HGSCNC with a
cycle of odd length m up to n-dimension. We will observe
sharpness and scattered pattern in n-dimensional hexagonal
layers with odd length cycle. By observing the structural property
of this particular case, we have found that this structure has
2n* + 12n + m total number of vertices with 7>2 and m>7,
whereas the edge set has total 3n? + 151 + m edges with n>2
and m > 9. Here, 1 represents the number of hexagon layers and
m € O is the length of the cycle. A simple connected graph for
this particular case is shown in Figure 2 and mathematically
expressed as HGSCNC (n, m). A graphical display for HGSCNC
for n = 4 with cycle of odd length for m = 7 is shown in Figure 3.
By working on some structural properties and behaviour
of HGSCNC (n,m) upto n dimensions, we found it very
interesting and rapid growing network. Here, we will state a
lemma about its structural behaviour given as follows.

Lemma 1. For n>2 and m = 7HGSCNC, we have the first
Zagreb connection number ZC, which is as follows:

ZC, (HGSCNC (1, 7)) = 72" + 1921 + 58. (4)

Lemma 2. For n>2 and m = 9HGSCNC, we have first
Zagreb connection number ZC,, second Zagreb connection
number ZC,, and first modified Zagreb connection number
ZC} which are as follows:

ZC, (HGSCNC (1,9)) = 108n* + 228n + 84,

(5)
ZC} (HGSCNC (1,9)) = 36n° + 120n + 46.

3.1.1. Main Results. In this section, we will state our main
results about connection numbers with the help of the
abovementioned lemma and its consequences. These results
are related to Zagreb connection numbers HGSCNC (n, m).

Theorem 1. Hourglass carbon nanocone system holds closed
expression for first Zagreb connection number ZC,, second
Zagreb connection number ZC,, and first modified Zagreb
connection number ZC; which are as follows:

ZC, (HGSCNC (n,m)) = 721 + 1921 + 4m + 30¥n>2andm>7,
ZC, (HGSCNC (1, m)) = 108n” + 228n + 4m + 40¥n>2andm > 9, (6)

ZC; (HGSCNC (1n,m)) = 361° + 120n + 4m + 70¥n =2 and m > 9.

Proof. Working on Lemma 1, we have found some prop-
erties of the vertex set in Table 1 and edge set properties in
Table 2 concluded as a result of 2 for HGSCNC (n, m)

ZC, (HGSCNC (n,m)) = 4(m — 3) + 9(10) + 16 (121 — 10) + 25(2) + 36(2n” — 1) +49(2)

depending on the connection number of carbon atoms in the
n-dimensional network. By using equation (1), we have

(7)

=ZC, (HGSCNC (n,m)) = 72n° + 192n + 4m + 30.
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FIGURE 3: Hourglass carbon nanocone HGSCNC (4, 7).

TaBLE 1: Vertex partition of HGSCNC (n,m)Vn>2 and m >7 with respect to connection number 7.

T, 2 3 4 5 6 7

u

Number of vertices m-—3 10 12n-10 2 2m? -1 2

TasLE 2: Edge partition of HGSCNC (n,m)Vn>2 and m >9.

(7, 7)) (2,3) (4.3) (4,4) (4,5) (6,6) (4,6) (5,6) (6,7) (4,7) (2,2)

Number of edges 10 10 12n-16 2 3n* - 3n-2 6n—4 2 4 2 m-—8
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From equation (2) and by using the abovementioned
connection numbers for different edges, we have
ZC, (HGSCNC (n,m)) = 6(10) + 12(10) + 16 (12n — 16) + 20(2)
+36(3n” — 3n - 2) + 24(6n — 4) + 30(2) + 42(4) + 28(2) + 4(m - 8) (8)
=7C, (CNCs (n)) = 108 + 228n + 4m + 40.
From equation (3) and by using the abovementioned
connection numbers for different edges, we have
ZC; (HGSCNC (n,m)) = 5(10) + 7(10) + 8(12n - 16) + 9(2)
+12(3n = 3n-2) + 10(6n - 4) + 11(2) + 13(4) + 11(2) + 4(m - 8) 9)
=ZC} (HGSCNC (n,m)) = 361" + 120n + 4m + 70.
ZC, (HGSCNC (1, 14)) = 108n* + 228n + 32, r

3.2. When the Length of Cycle p Is Even in n-Dimensional
HGSCNC. In this case, we are presenting the HGSCNC
with even length p € E cycle up to n dimensions. We will
observe sharpness and scattered pattern in n-dimensional
hexagonal layers with even length cycle. On observing the
structural property of this particular case, we have found
that this structure has 2n* + 8n+ p + 8 total number of
vertices with n>2 and p>10, whereas the edge set has
total 3n* + 151 + p edges with n>2 and p>14. Here, n is
representing the number of hexagon layers and p € E is
the length of cycle. A simple connected graph for this
particular case is shown in Figure 4 and mathematically
expressed as HGSCNC(n, p). A graphical display for
HGSCNC for n = 3 with a cycle of odd length for p = 101is
shown in Figure 5.

On working some structural properties and behaviour of
HGSCNC (n,m) up to n dimensions, we found it very in-
teresting and rapid growing network. Here, we will state
some lemmas about particular cases for connection numbers
when the length of the cycle is fixed.

Lemma 3. For n>2 and p = 10 HGSCNC, we have first
Zagreb connection number ZC, which is as follows:

ZC, (HGSCNC (1, 10)) = 72n* + 128n + 156. (10)

Lemma 4. For n>2 and p =14 HGSCNC, we have first
Zagreb connection number ZC, , second Zagreb connection
number ZC,, and first modified Zagreb connection number
ZC} which are as follows:

(11)
ZC; (HGSCNC (n, 14)) = 361" + 1201 + 56.

3.2.1. Main Results. In this section, we will state our main
results about connection numbers with the help of the
abovementioned lemma and its consequences. These results
are related to Zagreb connection numbers for
HGSCNC (#, p).

Theorem 2. Hourglass carbon nanocone system holds closed
expression for first Zagreb connection number ZC,, second
Zagreb connection number ZC,, and first modified Zagreb
connection number ZC| which are as follows:

ZC, (HGSCNC (1, p)) = 721" + 128n + 4p + 116,  (12)

Vn>2 and p>10
ZC, (HGSCNC (1, p)) = 108n* + 228n+ 4p — 24,  (13)

Vn>2 and p>14

ZC} (HGSCNC (1, p)) = 361n” + 1201 + 4p¥n>2and p > 14.
(14)

Proof. Working on the lemma, we have found some
properties of the vertex set in Table 3 and edge set in Table 4
of HGSCNC (1, p) depending on the connection number of
carbon atoms in the n-dimensional network. By using
equation (1), we have
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FIGURE 4: Generalized hourglass carbon nanocone HGSCNC (#, p).

) L]

. L]

n

n+1
T
"
5

FiGure 5: Hourglass carbon nanocone HGSCNC (3, 10).

ZC, (HGSCNC (n, p)) = 4(p - 6) + 9(12) + 16 (8n + 2) + 36(2n")

(15)
=ZC, (HGSCNC (n, p)) = 72n* + 128n + 4p + 116.
From equation (2) and by using the abovementioned
connection numbers for different edges, we have
ZC, (HGSCNC (n, p)) = 6(12) + 12(12) + 16 (121 — 12) + 36(3n” — 3n) + 24 (6n) + 4(p — 12) 06
16

=7C, (HGSCNC (1, p)) = 108n” + 228n + 4p — 24.
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TaBLE 3: Vertex partition of HGSCNC (n, p)Vn>2 and p>10.

T, 2 3 4 6
Number of vertices p-6 12 8n+2 2n?
TaBLE 4: Edge partition of HGSCNC (n,m)Vn>2 and p > 14.

(1, 7,) (2,3) (4,3) (4,4) (6,6) (4,6) (2,2)
Number of edges 12 12 12n— 12 3n* - 3n 6n p-12

Comparison of HGSCNC (n, m)

1x10°

500000

100

Bl zC1
M zc2
Ll zc1

()

Comparison of connection numbers for HGSCNC (n, p)

1 x 10°

100
500000

0

100

W ZC
H ZC,
m ZC,

(b)

Ficure 6: Comparison of connection number for HGSCNC. (a) Comparison of ZC,, ZC,, and ZC;| for HGSCNC (1, m). (b) Comparison of

ZC,, ZC,, and ZCj for HGSCNC (#, p).

From equation (3) and by using the abovementioned

connection numbers for different edges, we have

ZC} (HGSCNC (n, p)) = 5(12) +7(12) + 8 (12n — 12) + 12(3n” - 3n) + 10(6n) + 4(p - 12)
=7ZC; (HGSCNC (n, p)) = 361" + 1201 + 4p.

4. Graphical Comparison

In this section, we will compare our results via graphical
view. Firstly, we have compared our output results among
ZC, , ZC,, and ZC] for HGSCNC(n,m), and results are
shown in Figure 6(a). Similarly, we have compared our
output results among ZC, , ZC,, and ZCj for
HGSCNC (n, p), and results are shown in Figure 6(b).

5. Conclusion

In this article, we have computed closed results for the family
of Zagreb connection number in the hourglass system

(17)

O
carbon nanocone (HGSCNC) and with its core of even
length and its core of odd length. For the first time, we have
evaluated the Zagreb connection numbers for
HGSCNC (n,m) and HGSCNC (1, p). The results are very
interesting, and we concluded that HGSCNC (n,m) is the
fast predicting network as compared to HGSCNC (n, p).
Furthermore, we have concluded that ZC, has better pre-
diction for both HGSCNC(n,m) as well as for
HGSCNC (n, p). Predicting ability of a topological index
encourages the theoretical study of the chemical structure.
We computed Zagreb connection indices ZC,, ZC,, and ZC;
for HGSCNC upto n dimensions for different lengths of
central core. These results will facilitate the understanding of



topological properties of the noval structure of HGSCNC.
Our results will motivate to investigate new structure of
different chemical structures and their line graphs and
studying their topological and physical properties.
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A topological index is a characteristic value which represents some structural properties of a chemical graph. We study strong
double graphs and their generalization to compute Zagreb indices and Zagreb coindices. We provide their explicit computing
formulas along with an algorithm to generate and verify the results. We also find the relation between these indices. A 3D graphical
representation and graphs are also presented to understand the dynamics of the aforementioned topological indices.

1. Introduction

Chemical graph theory is an important topological field of
mathematical chemistry that deals with mathematical
modelling of chemical compound structures. A molecular
structure of a compound consists of many atoms. Specially,
hydrocarbons are chemical compounds which consist of
carbon and hydrogen atoms. A graph consisting of hy-
drocarbons is known as a molecular graph which represents
the carbon structure of a molecule [1].

We consider a simple molecular graph, say G, which
consists of nonhydrogen atoms and covalent bonds. In
graph theory, the nonhydrogen atoms are represented by a
set of vertices V = V (G) and the covalent bonds with the set
of edges E = E(G). The number of atoms and bonds in a
structure is represented by n = [V| and m = |E|, respectively.
The valency of an atom is represented by R (v), and it is
known as the degree of vertex v € V(G), which also rep-
resents the number of adjacent (or neighboring) vertices of
V. A set consisting of neighboring vertices of v is known as
open neighborhood and denoted as
N (v) ={w € V(G): vw € E(G)}. If the vertex v is included
in open neighborhood, then the set of vertices is called closed
neighborhood, and it is denoted as N[v] = N (v) U {v}.

A double graph D(G) is generated by taking two copies
of a graph G and connecting every vertex v; in one copy with
the opened neighborhood N (v;) of the corresponding vertex

with its second copy. For details, see Figure 1 in which a path
graph P, and its double graph are presented. A strong
double graph S D (G) is generated by taking two copies of a
graph G and connecting every vertex v; in one copy with
closed neighborhood N[v,] = N(v;)u{v;} of the corre-
sponding vertex with its second copy. For details, see Fig-
ure 2 in which a strong double graph of P, and its k-iterated
strong double graph are presented.

A complement G of a graph G consists of the same set of
vertices, where two vertices v and w are adjacent by an edge
vw if and only if they are not adjacent in G. Hence,
vw € E(G) © vw ¢ E(G). A complement of a graph consists
of a number of edges and the degree of vertex v which are

represented as 7 = (;) -mand dz(v) =n-1-R;(v),

respectively.

A molecular descriptor is known as the topological index
provides specific information about the structure of mole-
cules. In graph theory, the molecular structure is considered
as a graph G. The topological index is also known as the
connectivity index [2, 3]. Topological indices are largely
applied in chemistry to develop the quantitative structure-
activity relationship (QSAR) in which the characteristics of
molecules can be correlated with their chemical structures
[4]. The physicochemical properties of a molecule can also be
explained through topological indices. The first index of a
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FIGURE 1: The graph P, and its double graph. (a) P,. (b) D(P,).
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Figure 2: The strong double graph of P, and its generalization. (a) SD*! (P,). (b) SD**(P,).

chemical graph was introduced by Harold Wiener [5] in
1947 as an aid to determining the boiling point of the
paraffin compound. This index is known as the Wiener index
and defined as W (G) = Y, v ()4 (4, v), where the nota-
tion d (u, v) represents the distance between u and v.

A topological index is defined as a function T: y — R,
where v is the set of finite simple graphs and R is a set of real
numbers which satisfy the relation T'(G) =T (H) if G is
isomorphic to H. Recently published work [6, 7] motivated
us to further investigate the Zagreb indices and coindices of
strong double graphs.

The first Zagreb index M, (G) and second Zagreb index
M, (G) were introduced by Gutman and Trinajsti¢ in 1972
[8] and elaborated by Nikoli¢ et al. after 30 years in 2003 [9].
M, (G) and M, (G) are defined as

M (G = ) [Rew)+Rs)],

uveE(G)
(1)
MG = Y [Rew)Re()].
uveE (G)
The first Zagreb index is also written as

2vev(o) [Re Q)

Recently, some useful versions of Zagreb indices have
been discovered, such as multiplicative Zagreb indices
[3, 7, 10], multiplicative sum Zagreb indices [11, 12], Zagreb
coindices [6], and multiplicative Zagreb coindices [13].

The important variants of the Zagreb index are the first
and second Zagreb coindices, which are defined as follows,
respectively:

MG = )Y [Rew)+RW)]

u#vuv¢ E(G)
_ (2)
M@= Y [RewRcW)].

u#v;uv¢ E(G)

Doslic [14] introduced M, (G) and M, (G) in 2008. In
2009, Ashrafi et al. [15] determined the extremal values of
these new invariants for some special graphs. They [6] also
explored their fundamental properties and provided some
explicit formulas for these versions under different graph
operations.

2. Main Results

In this section, we study Zagreb indices and Zagreb
coindices of strong double graphs. We also study these
indices for generalized k-iterated strong double graphs.
We use the concept of edge partition to reduce compu-
tation complexity and obtain computing formulas for
these indices.

For the sake of simplicity, we consider S D (G)
G* and G** = (G* D*)* for k> 2. Assume that G*
the sake of consistency.

In the following theorem, we study the first and second
Zagreb indices of the strong double graph.

=Gl* =
= G for

Theorem 1. Let G be a simple connected graph of order n and
size m; then,

(i) M, (G*) =8M,(G) + 16m + 2n
(ii)) M, (G*) = 16 M, (G) + 12M, (G) + I2m +n

Proof. For the sake of convenience, we label all vertices in G
as {v;,v5...,v,}. Suppose that x; and y; are the corre-
sponding clone vertices, in strong double graph G*, of v; for
eachi=1,...,n

For any given vertex v; in G and its clone vertices x; and
y;, there exists dg. (x;) =dg (¥;) =2Rs(v;)) +1 by the
definition of the strong double graph.
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For v;,v; € V(G), if vv; € E(G), then x;x; € E(G"), Type 2: the adjacent vertex pairs {x;, y;} for each
Yiyj € E(G¥), Xy € E(G*), and yix; € E(G*). i=1,.
So, we only need to consider the total contribution of the Type 3. the adjacent vertex pairs { Xy } and { ¥, x-}
. . . >/ j P>
following three types of adjacent vertex pairs both to where v;v; € E(G)
M, (G*) and to M, (G*). J
The total contribution of adjacent vertex pairs of type 1

Type 1: the adjacent vertex pairs {xi,xj} and {yi,yj}, in M, (G*) is given by

where viv; € E(G)

2 o () rda ()= X [da- () +do-(5))]

x;x;€E(G*) ¥iyj€E(G*)
Y (@R (v) + 1) +(2R(v;) +1)]
vaE(G) (3)
=2 Y [Ro(m)+Re(v )]+2|E(G)|WE,5(G
vveE(G)
=2M, +2m,

and M, (G*) is given by

2 |do () -do-(x))] = 2 [de- () -de-(v))]

x;x;€E(G*) yiy;€E(G*)
= Y [@Re(v) +1)- (2R6(v;) +1)]
vivjEE(G) (4)
=4 ) [Re(m)-Ra(v)]+2 Y [Ra(m)+Re(v))] +IEGlyyerc
v,-vjEE(G) v,vjEE(G)
=4M, +2M, + m.
dg (x;) +dg- (¥;
The total contribution of adjacent vertex pairs of type 2 ' ‘GZE:(G*)[ o (xi) +dg- ()]
in M, (G") is given by
= D [@Re(m)+1)- 2R (v) +1)]
Z [dg- (x;) +dg- ()] V€V (G)
e =4 Z [mG(Vi)]z + 4 Z Rs () +|V(G)|vieV(G)
= Z [(2Rs (v;) +1) + 2R (v;) + 1)] eV (G) v,V (G)
R ©) 4M, (G) +8
= +8m+n.
=4 Y Re() +2V Ol 1 mn
v,V (G) (6)
= 8m + 2n, The total contribution of adjacent vertex pairs of type 3
and M, (G*) is given by in M, (G") is given by

Z [dg- (x;) +dg- ()] = Z [dg- (3;) +dg- (x;)]

x;y;€E(G*) yix;€E(G*)
Y [ER(m) + 1) +(2Ra(v;) + 1)]
v-v»EE(G) (7)
=2 ) [Re(n)+ Re W] +IE@G),yex0)
vveE(G)

= 2M, (G) +2m,



and M, (G*) is given by

2 [do(x)-da(v))] = 2

x;y;€E(G*) y;%;€E(G*)
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[dG* ()’i) “dg (xj)]

= Y [@Rc(v)+1)- (2Re(v;) +1)]

v[v}-EE(G)

(8)

=4 > [Re() - Ro(v))]+2 Y [Ro() +Ra(v))] HE @y, e 6)

vivjeE(G)

v,»vjEE(G)

=4M, (G) +2M, (G) + m.

Therefore, by using equations (3), (5) and (7), we have

M (G )= Y [dg (x)+dg-(x;)]+ )

x%;€E(G") 1¥;€E(G*)
Y ldo(x) +de- )]+ )
x;;€E(G¥) x;y;€E(G*)

[de- (x;) +dg- (vi)] +

[dg- (3:) +dg- ()]

Z [dG* (y;) +dg- (xj)]

y;x;€E(G") 9)

= (2M, (G) +2m) + (2M, (G) + 2m) + (8m + 2n) + (2M, (G) + 2m) + (2M, (G) + 2m)

=8M, (G) + 16m + 2n.

By using (4), (6) and (8), we also have

MyG)= Y e () de(x)]+ Y

x;x;€E(G*) Yiy;i€E(G*)
+ z [dg- (x:) - dg- (y;)] + Z
X;y;€E(G*) x;y;€E(G*)

[dg- (x;) - dg- (y:)] + z

[dg- (i) - dg- ()]

[dc* () - dg- (xj)]
yix;€E(G*) (10)

= (4M, (G) +2M, (G) + m) + (4M, (G) + 2M, (G) + m)
+(4M, (G) + 8m + n) + (4M, (G) + 2M, (G) + m) + (4M, (G) + 2M, (G) + m)

=16M,(G) + 12M, (G) + 12m + n.

In this theorem, we study the first and second Zagreb
coindices of the strong double graph. O

Theorem 2. Let G be a simple connected graph of order n and
size m; then,

(i) M, (G*) = 8M, (G) + 4n* — 4n — 8m
(ii)) M, (G*) = 16M, (G) + 8M, (G) + 2n* — 2n — 4m

Proof. For the sake of convenience, we label all vertices in G
as {v;,v,,...,v,}. Suppose that x; and y, are the corre-
sponding clone vertices, in strong double graph G*, of v; for
eachi=1,...,n

For any given vertex v; in G and its clone vertices x; and
y;, there exists dg. (x;) =dg. (y;) =2R;(v;)) +1 by the
definition of the strong double graph.

For v;,v; € V(G), if vivi ¢ E(G), then XiX; ¢ E(G),
yiyj ¢ E(G), x;y; ¢ E(G), and y;x; ¢ E(G).

So, we only need to consider the total contribution of the
following two types of nonadjacent vertex pairs both to
M, (G*) and to M, (G*).

Type 1: the nonadjacent vertex pairs {x,», x j} and
{yi,yj}, where v;v; ¢ E(G)
Type 2: the nonadjacent vertex pairs {x,», y j} and
{yi,xj}, where v;v; ¢ E(G)

The total contribution of nonadjacent vertex pairs of type
1 in M, (G") is given by
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2 |do () rda(x))] = ) [do: () +da-(7))]
xixjéE(G*) }’i}’ng(G*>

= Y [@Re(n)+1)+(2Re(v;) +1)]

v,y 4E (G) -
=2 ) [Re(m)+Re(v;)] +2EG)]

v[ngéE(G)

=2M1(G)—2m+n2—n,

and M, (G*) is given by

2 Ao () do(x))] = > [do () -do-(5))]

x;x;¢E(G*) Yiy¢E(G*)
= Y [@Re(m)+1)- (2Rs(v;) +1)]
vivjeE(G)
(12)
=4 Y [Re()-Ro(v)]+2 Y [Ro(w)+Rs(v;)] +IE@G)I
v,-ngéE(G) vivjriE(G)
= 4M, (G) + 2M, (G) + % (n* —n—2m).
The total contribution of nonadjacent vertex pairs of type
2 in M, (G*) is given by
2 o) rda(y)]= ) [do () +do(x))]
x;y;¢E(G") yix;¢E(G*)
= Y [@Re(n)+1)+(2Rg(v;) +1)]
ViVJ(iE(G) (13)
=2 Y [Re(n)+Rs(v;)] +21E@G)|
ViVj¢E(G)
:ZMI(G)—2m+n2—n,
and M, (G*) is given by
2 do(x)-do-(y))]= 2 [do(x) +do-())]
%,y £ (GY) yix; $E(G*)
= Y [eRe()+1)- (2Re(v;) +1)]
vi,vj¢E(G)
(14)

4 Y [Re()-Ro(v;)]+2 Y Re(v)+Re(v;) +IE@G)

v,,v; ¢ E(G) v;,v; ¢ E(G)
Yy J

1
= 4M; (G) +2M, (G) + 3 (n* —n—2m).
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Therefore, by using equations (11) and (13), we have

M, (G") = Z [dc* (x;) +dg- (xj)] = Z [dc* (yi) + dc*(}’j)]
x;,x; ¢ E(G*) Yy $E(G*)
+ Z [dG* (x;) +dg- (yj)] + Z dg. (y;) +dg- (x]-)
x;y;¢E(G") yix; ¢ E(G*)
(15)
=(2M1 (G)-2m+n* - n) +(2M1 (G)-2m+n* — n)
+(2M1 (G)-2m+n* — n) +(2M1 (G)-2m+n* — n)
=8M,(G) - 8m + 4n” — 4n.
By using equations (12) and (14), we also have
M, (G*) = Z [dc* (xi) “dg (xj)] = Z [dc* (;Vi) “dg (J’j)]
XX ¢ E(G*) yiyj¢E(G*)
+ Z [dc* (x;) - dc*()’j)] + Z dg. (y;) - dg- (xj)
%y, 4E(G") i $E(G")
= G G)+ (i G G+ (i (16)
—(4M2( ) +2M, ( )+E(n —n—2m)> +<4M2( ) +2M, ( )+£(n —n—2m)>

+(4M2 (G) + 2M, (G) +%(n2 —n- 2m)> +<4M2 (G) +2M, (G) +%(n2 “n- 2m)>

= 16M, (G) + 8M, (G) + 2(n’ = n—2m).

Now, we present the first and second indices and
coindices of k-iterated strong double graphs. O

Theorem 3. Let G be a nontrivial graph of order n and size
m, and let G* be its k- iterated strong double graph. Then,

(i) M, (G**) = 8"M, (G) + 22+1) (2k — 1)m + 2k
2k -1)n
(ii) M, (G**) = 3.2k 1. 2k — )M, (G) + 4*M,
(G)+3-2%. 2k —1)’m+ 212k -1)°n
(iii) M, (G**) = 8*M, (G) + (2 - 1)4* (n? — n - 2m)
(iv) M,  (G*f) = 2%M, (G) + 23 . (2F - 1)M, (G) +
221 (2K — 1) (n? — n —2m)

Proof. For any nontrivial graph G with n vertices and m
edges, the number of vertices in G* is 2n and the number of
edges in G* is 2m plus those edges between the sets
{x1, %5, ..., x,} and {y1, ¥5s ..., y,,}, that is, 45m +n.

Now, we deduce that G** has 2km vertices and 4*m +
(2%F=1 — 2k=1yy edges.

(i) M,(G**) =8M,(G)+ 22D
2% = D)m + 2K (2% - 1)%n.
As we know,

M, (G") =8M,(G) + 16m + 2n. (17)

Using the size of strong double
m = 4km + (221 — 2k 1)y we have

graph

M, (G*) = 8M, (G) + 16{4"m + (2" = 2 ")n} + 2n,
M,y (G) =M, (G* ) + 4. 2% m + (2 -2 4 2)n,
(18)

By Theorem 1 and the definition of the k-iterated
strong double graph, for k> 1, we have
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M, (G*) =8M,(G* V) + 4. 2%m+(8. 27 - 8.2 + 2
M, (G*) =8{8M,(G* ") + 4.2 m + (8. 27" — 8. 22 4+ 2 )}
+4-2%m+(8.2%7 8.2+ 25
="M, (G* ) +12.2%m + 2% (6 2% - 15 - 2F)n

19
=8*{8M,(G* V") + 4.2 'm + (8- 270 — 8. 2" + 2P} (19)
+12-2%m+ 2% (6.2 — 15 2")n
=8'M,(G*") + 28 2%m +(14. 2% - 63 2°)n
2
M, (G*) =8M (G) + 2™V (2"~ 1)m + 25 (2" - 1) .

(ii) M, (G*f) =3.23%1. 2k —1)M, (G) + 4% M, Using M, (G*) =8M,(G) +4-2%m+ (2% 1-
(G) +3-2%. (2 - 1)?2m+ 212k - 1)*n. 2k1 4 2)nand the number of edges of strong double
As we know, graph m = 4km + (221 — 2" 1)n, we have

M, (G") =16M,(G) + 12M, (G) + I2m+n.  (20)
M, (G*) = 16M, (G) + 12{8M, (G) + 4 - 2%m + (2" = 27+ 2)n} + 12{d"m + (22" =2 )} 4,
(21)
M, (G*) = 16M,(G) +96M, (G) +(192 + 12-2%)m +(6- 2% - 6. 2" + 25)n.
By Theorem 1 and the definition of the k-iterated
strong double graph, for k>1, we have
M, (G*) =16M,y(G* V) +12. 2% M, (G) +(6-2°* "V + 6. 22 )m +(6- 4 = 6.2 + 525 D)
=16{16M,(G* ") +12- 2P M, (G) +(6- 2°* P + 6. 2°* P )m}
+16-(6-47 -6-27 + 57 )+ 12. 2V (6)
+(6-22% V1622 N+ (6.41 - 6.2 4+ 52y
ey 9230 9.2% 9.2% 15.2% 41.5%
:162M2(G(k 1))+ M, (G)+| ——+—— |m+ - +27-2541 |n,
2 4 32 2 625
M,(G*) =16416M,(G* ) + 12 2°%M, (G) +(6- 2% + 6. 2° 5 )m]
(22)
9.93®
+16°-(6-47 - 627 + 52 ) 4 M, (G)

(9-23" 9-25"> (15-22" 41.5%
+ m+ -

+ +27-2541 |n,
4 32 2 625

3k

21.2% 21-2“‘) (63-22k 1281 - 5%
+ m+

®\ 3 (k=3)x 21-2
M, (G7) =16 MZ(G )+ 2 4 64 2 15625

Ml(G)+< +219.2F +1)n,

My(G*) =3 2% (2 )M, () + 4¥M,(G) + 3. 2% (2 - 1) 'm+ 2 (26— 1) .
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(iii) M, (G**) = 8*M, (G) + (2F - 1)4* (n? — n - 2m). By Theorem 1 and the definition of the k-iterated
_ t doubl h, for k>1, h
M, (G") = 8M, (G*) — 8m + 4 + 4n. (23) strong double graph, for we have

Ml(Gk*) _ SMI(G(kfl)*) _2kl a2k, 2 a2k
Ml(Gk*) _ S{SHI(G(]"Z)*) _ 2kl 520k 2 22(k—1)n}

2k+1 2k 2

-2""m+2"n +22kn

=8'M,(G* ) -6-2%m+3.2%n" +3.2%n
— SZ{SMI (G(k—S)*) _ 22(k—2)+1m + 22(k_2)7’12 + 22(k—2)n} —6- 22km (24)
2k 2

+3.2%0 +3.2%,

=8"M,(G*) - 14 2%m + 7. 2% + 7. 2%n

M,(G*) = 8"M, (G) +(2" - 1)4"(n* = n - 2m).

_ _ _ M,(G*) = 16M,(G* V") + 8M, (G* 1
(iV) M2 (G*k)=24kM2 (G)+23k' (2k—l)M1 (G)+ 22k—1. 2( ) 2( ) 1( )

(26)
(2K =12 (n* -n-2m). + Z(nz—n—Zm),

and using M, (G*) = 8M, (G) — 8m + 4n* + 4n, we have
M, (G") = 16M, (G) + 8M, (G) + 2(n’* - n—2m). (25)

By Theorem 1 and the definition of the k-iterated strong
double graph, for k> 1, we have

Mz(Gk*) = 16M2(G(k71)*) + S{SMI (G) — 8m +4n” + 4n} + 2(112 -n-— 2m) )
27
= 16M2(G(k71)*) +64M, (G) + 32(;12 -n- 2m) + 2(;12 -n- Zm).

By rearranging the terms, we have
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M,(G*) = 16M,(G* V") +8- 8% VM, (G) + 32%7V(n* — n - 2m)
+ 29 — - 2m)
=16{16M,(G*?*) + 8- 8% M, (G) + 32%7(n’ - n-2m)}
+16-2%9(n* —n-2m) +8-8%M, (G)
+ 329 (n —n—2m) + 2% (0’ - n—2m)
=16"M,(G* %) +3.2%9M, (G) + = o (n* —n-2m)
220 o)
(28)

=16"{16M,(G* ") + 8.8 M, (G) + 32" (i* - n - 2m)}

+16°- 2% (n* —n-2m) +3.2°"M, (G)

3.200
64

+

= 163M2(G(k’3)*) +7-2893(G) +

7209
g (7 )

nz—n—2m)+

(3k)
32 (n2 -n-— Zm)
(5k)
.1228 (n2 -n- Zm)

M,(G*) =2%M, (G) + 2% - (2" - 1)M, (G) + 22" (2" - 1)2(n2 —n—-2m).

Here, we present an algorithm to generate and verify the
first and second Zagreb indices and coindices of any finite
simple connected graph G. This algorithm is based on the
adjacency matrix of G (Algorithm 1). O

Example 1. Let A, B, and C be the matrices of path graph P,
and strong double graphs SD'*(P,) and SD**(P,), re-
spectively. These matrices are square and symmetric, and

choose value 1 (one) at the ith row and jth column if v; and
v; are adjacent vertices in a graph; otherwise, it is 0. The
suggested algorithm is applied on these matrices to compute
the first Zagreb index IM,, second Zagreb index IM,, first
Zagreb coindex CM,, and second Zagreb coindex CM,.
These adjacency matrices have been obtained by drawing the
respective graphs in “GraphTea” software; this software is

easily available, and it is free of cost.
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@)
)
3)
4
(5)
(6)
(7)
(8
©)
(10)
an
12)
13)
14)
(15)

Input: A is an adjacency matrix of a finite simple connected graph
Output: IM,, IM,, CM,, CM,
Variables used: nr =number of rows in A, nc =number of columns in A,
IM, :=0,IM, :=0,CM, :=0,CM, :=0
fori=1tonr
for j =i tonc
s; := sum of ith row of A,
s; = sum of jth column of A.
i AGj) =1
IM, = IM, + (S;+ S))
IM; :=IMy + (8= S))
end if
ifA(i,j)=0andi#j
CM, :=CM, + (S;+ S})
CM, = CM, + (S * S})
end if
end for j
end for i

Journal of Chemistry

ALGoRrITHM 1: Computing the first Zagreb index IM,, second Zagreb index IM,, first Zagreb coindex CM |, and second Zagreb coindex

CM,.

0100
ao|torof
0101
0010
01001100
10101110
01010111
00100011
B=l11000100]
11101010
01110101
0011001 0.
(0100110011001000)
1010111011100000
0101011101110000
0010001100110000
1100010010001100
1110101000001 110
011101010000011 1
001100100000001 1
““1i1100100001001100[
1110000010101110
011100000101011 1
001100000010001 1
1000110011000100
0000111011101010
0000011101110101
[0000001100110010

(29)
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8000
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-2000
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(d)

FiGure 3: 3D surface plot of Zagreb indices and coindices of S D(P,).

— M - CM,
--= M, - = CM,

FIGURE 4: 3D curve plot of Zagreb indices and coindices of
SD(P,).

The result of the algorithm is given as follows:

Graph Matrix AM, AM, CM, CM,
P, A 10 8 8 5

. (30)
sD'(p,) B 136 288 88 156
SD*(P,) C 756 2652 864 2802

Now, we provide graphs of Zagreb indices and coindices.
Such type of graphical representation will be more helpful to
study the dynamics of topological descriptors of the mo-
lecular graphs. Here, we present the strong double graph of
the path graph, S D(P,), where2<n<2landm =n-1.In
Figure 3, the behaviour of the first Zagreb index M, and
second Zagreb index M, is linear as the straight plane, and
the behaviour of the first Zagreb coindex CM, and second
Zagreb coindex CM, is nonlinear as the curved form. In

Figure 4, we have drawn the curves of these indices and
coindices for S D(P,) to understand their dynamics. This
figure shows the relation between Zagreb indices and
coindices as M; <M, <CM, <CM,.

3. Conclusion

We have presented generalized explicit formulas to calculate
the first Zagreb index M, (G), second Zagreb index M, (G),
first Zagreb coindex M, (G), and second Zagreb coindex
M, (G) of the strong double graph S D(G) and k-iterated
strong double graph SD**(G). The relation between these
indices and coindices is also  presented as
M, <M, <CM,<CM,. We have also presented an algo-
rithm with a given adjacency matrix to verify these indices
and coindices by programming and numerically. Computer-
generated graphs are also given to understand the dynamics
of these indices and coindices.

This family of graphs can be considered for other degree-
based and distance-related topological indices for further
studies.
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Topological indices give immense information about a molecular structure or chemical structure. The hardness of materials for the
indentation can be defined microscopically as the total resistance and effect of chemical bonds in the respective materials. The aim
of this paper is to study the hardness of some superhard BC, crystals by means of topological indices, specifically Randi¢ index and

atom-bond connectivity index.

1. Introduction

Hardness measures the crystal property of resistance into its
deformation. In crystal-type materials, the resistence de-
pends on the chemical bonds between its atoms. In the case
of common metals and materials, there exists a delocalized
form of bonding. For the domination of the hardness value,
the dislocation density which is stored in metals is sufficient.
There are many strategies that exist to establish the mi-
croscopic theory for the hardness level, and the main ideas
are to analyze the experimental material (or metal). There
also exist some microscopic hardness models for the pre-
diction of hardness, and these can be applied to covalent
(and in some cases to ionic type) crystals (see Gao et al. [1]).
A technique to relate the hardness of Vickers for a large class
of crystals of covalent type to their microscopic properties
has been studied in [2]. To energetically break an electron
pair bond has the meaning that two electrons excite from the
valence band to the conduction band in covalent crystals. In
[3], Gilman proved that the activation energy that is required
for a plastic slip is double the band gap denoted as E,. The
force of resistance of a bond can be computed by studying
respective E, of the materials. The form of the hardness for
pure covalent-type crystals consists of three variables, and it
is formulated as

H(Gpa) = ANE,, (1)

where A is the constant of proportionality and N, represents
the covalent bond number, and it is per unit area; this area is
such that it can be computed from the valence electron

density N, as
iniZ; N.\*?
Na= (sz ) =<7> ’ 2

where #; is the position in the form of a number of the ith
atom in the unit cell, Z; is the valence electron number of the
ith atom crediting to the covalent bond, and V' is the volume
of the unit cell. More results on the hardness (various
definitions of hardness) study of crystals can be referred to
Suzuki et al. [4], Armstrong et al. [5], Mamun et al. [6], Shkir
et al. [7], and Palatnikov et al. [8].

Now, if we talk about the unit crystals studied in this
article, then the first one is BC,, and by the first-principles
computations, BC, was predicted originally from (a kind of
tetragonal phase) the cubic diamond structure. The lattice of
the BC, structure is tetragonal, and this structure possesses
the simple kind of the stacking sequence such as BC,BC, . ..
along with the c-axis. Monitoring different states of the
electronic densities of BC, shows that, in the crystal, all the
B — C- and C — C-type bonds are purely metallic. The known
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hardness level of BC, is 56 GPa (gigapascal), and this level is
very close to that of cubic boron nitride.

Now, compound BC; has a different type of crystal
structure which is more like and similar to graphite, and so,
it has a hexagonal crystal-type structure. A study was per-
formed in [2] to investigate some improved oxidation re-
sistance in a graphitic material that contains very high
collections of secondary boron. The procedure to create and
find such samples is a reaction between boron trichloride
and benzene to examine for chemical composition and
crystal structure.

Another class of recently discovered compounds, which
has almost the same structure as that of the diamond, is the
crystal structure of BCs. For the purpose of correlation,
compound BC; is very important, and it is also very useful to
know under which type of conditions this compound can be
extracted. As a function of pressure, the stability of com-
pound BC; is relative to a solution of compound BC; and
graphite.

Another similar but different compound is the BC,
crystal structure which is more like to both compound
structures of graphite and diamond. By computing the
constants of elasticity and frequencies of phonon, the
structural stability of the assumed compound crystal
structure BC; has been confirmed. Similar to the direction
for tensile strength of the diamond-like BC,, its ideal tensile
strength was 155.2 GPa; this strength is about 52% more
than that of the recent diamond-like predicted structure
BCs. The theoretical Vickers hardness of the diamond
crystals like BC, was 78 GP, which indicates that it is a
superhard material; these readings show that BC, is a
superhard material (see in [2]).

We can formulate the Vickers hardness in the form of f,
N,, and d as follows:

—L191f, N3 1191,

75— = 350 < P (3)

N
H, (GPa) = 556 —2

where f; is the ionicity of the chemical bond in a crystal scale
and d is the bond length in angstroms [9].

In the 70’s, one of the famous degree-based indices is the
Randi¢ index which was introduced by Randi¢ [10] in 1975,
and it is characterized as

1
R—(1/2) (G) = g 4
MVEZE(G) dud" ( )

In 1998, Bollobds and Erdos [11] and Ami¢ et al. [12]
proposed the general Randi¢ index which is stated as

Roc G) = Z (dudv)a' (5)

uveE (G)

Das et al. [13] studied the relationship between the
Randi¢ index and other degree-based indices. Milivojevi¢
and Pavlovi¢ [14] presented the extremal value and graphs
for the variation of the Randi¢ index with regard to mini-
mum and maximum degrees.

Atom-bond connectivity index (in short, ABC index)
was introduced by Estrada et al. [15] to measure the stability
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of alkanes and the strain energy of cycloalkanes which can be
formulated by

d,+d,—2

ABC(G)= ) T

uveE (G)

(6)

Dimitrov [16] provided an affirmative answer of a
strengthened version of the previous conjecture and pre-
sented that a tree with a minimal ABC index cannot contain
a pendent path of length 3 if its order is larger than 415.
Dimitrov and Milosavljevi¢ [17] manifested several prop-
erties of the degree sequences of the trees with minimal ABC
index, and a new algorithm for minimal-ABC trees is given.
The definitions of more topological indices and results can
be referred to Gao et al. [18-22]. Some more literature
studies are also available in [23, 24].

The applications of moving correlation coefficient tech-
nique enable us to examine the variation in the degree of
correlation between correlation stratigraphic sequence and
analysis the measure of variables within the framework of a
single stratigraphic sequence. Cumulative correlation technique
allows to determining more precisely, where such variation took
place and it influences every member within the sequence of the
preceding ones.

Since both hardness properties and topological indices
are important topics in crystal science, it inspired us to study
the relationship between them. The main contribution of
this paper is to study the hardness of some superhard BC,
crystals in the light of topological indices.

2. Main Results

Many B - C binary systems show high resistance to oxi-
dation and reaction with ferrous metals, compared with the
carbon-based materials. In Figure 1, we present selected BC,,
systems with specific crystal structures found in [2]. The
Randi¢ and atom-bond connectivity indices of these 12 types
of BC crystals are computed as follows.

From Figure 1(a), we can see that the number of edges in
the unit cell of BC,/41/amd is 36. We present the edge
partition of BC,/41/amd in Table 1 based on the degree of
vertices of each edge. The Randi¢ index and ABC index for
the BC,/41/amd crystal are computed using Table 1, and
they are 14.136584 and 25.3452096, respectively.

The number of edges of BC;P4 m2, from Figure 1(b), is
12, and 8 of its edges are of type (1, 3), and 4 are of type (3, 4).
This gives us the Randi¢ and ABC indices 5.773502692 and
9.113961545, respectively.

The number of edges in both BC;Pmmaa and
BC;Pmmab is 12 by Figures 1(c) and 1(d). The edge type of
these two structures is also the same, containing 4 edges of
type (1, 3), 2 edges of type (3, 3), 4 edges of type (2, 3), and 2
edges of type (2, 2). So, the Randi¢ and ABC indices of
BC;Pmmaa and BC;Pmmab are the same. They are
5.6090609 and 8.84196034, respectively.

From Figure 1(e), we can see that BC5I4 m2 consists of
20 edges. The degree-based edge partition of this structure is
given by 10 edges of type (2, 2), 8 edges of type (2, 3), and 2
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FIGURE 1: Crystal structures of (a) BC,I41/amd, (b) BC,P4m2, (c¢) BC;Pmma-a, (d) BC;Pmma-b, (e) BCsI41/amd, (f) BCsPmma-1,
(g) BCsPmma-2, (h) BC,P4 3m, (i) BC,P3ml, (j) BC,Pmm2, (k) BC,P4mz2, and (I) BC,R3m. Boron atoms are shown in orange.

TaBLE 1: Edge partition of BC,I41/amd.

d,.d, Frequency
@, 3) 8
(2,3) 12
(3.4 16

edges of type (3, 3). This gives us the Randi¢ and ABC indices
as 8.93265299 and 14.0612554, respectively.

The number of edges of BC;Pmmal, from Figure 1(f), is
15. Its degree-based edge partition is given by 4 edges of type
(1, 3), 2 edges of type (2, 3), 2 edges of type (1, 1), and 7 edges
of type (2, 2). So, the Randi¢ and ABC indices are 12.4282032
and 9.62994735, respectively.

The number of edges of BC;Pmma2, from Figure 1(g), is
36. Its degree-based edge partition contains 4 edges of type
(2, 3), 24 edges of type (3, 3), and 8 edges of type (3, 4). So,
the Randi¢ and ABC indices are 11.9423942 and 23.9924049,
respectively. From Figure 1(h), the number of edges of

BC,P4 3m is 16. Its degree-based edge partition contains 4
edges of type (1, 4) and 12 edges of type (2, 4). So, the Randi¢
and ABC indices for this crystal are 6.24264069 and
11.949383, respectively.

The number of edges of BC, P3m1, from Figure 1(i), is 15.
Its degree-based edge partition is given by 1 edge of type (1, 1), 3
edges of type (1, 2), 5 edges of type (2, 4), 3 edges of type (1, 4),
and 3 edges of type (2, 3). So, the Randi¢ and ABC indices are
7.61383217 and 10.3762508, respectively. From Figure 1(j), the
number of edges of is 18. BC,Pmm?2 Its degree-based edge
partition is given by 12 edges of type (2, 3), 2 edges of type (3, 3),
and 4 edges of type (2, 2). So, the Randi¢ and ABC indices are
7.56564615 and 12.6470418, respectively.

The number of edges of BC;P4m?2, from Figure 1(k), is
24. Tts degree-based edge partition contains 8 edges of type
(1, 3), 8 edges of type (3, 4), and 8 edges of type (2, 3). So, the
Randi¢ and ABC indices are 10.1941896 and 17.3528047,
respectively. From Figure 1(l), the number of edges of
BC,R3m is 51. Its degree-based edge partition contains 2
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TaBLE 2: Hardness (H) of crystals BC,I41/amd, BC;P4m2, BC;Pmmma-a, BC;Pmmma-b, BC;141/amd, BCsPmmma-1, BC;Pmmma-2,
BC,P43m, BC,P3ml, BC,Pmm2, BC,P4m2, and BC,Pmm2.

Crystal Symmetry Hardness Reference
BC, I4,/amd 56 [28]
Pam2 65.8 [26]
BC, Pmma — a 61.9 [26]
Pmma - b 64.8 [26]
I4m2 80 [30]
BC, Pmma -1 74 [25]
Pmma -2 70 [25]
P43m 77.6 [29]
P3ml 65.3 [27]
BC, Pmm2 80.7 [27]
P4m2 75.2 [27]
R3m 65.4 [27]

TaBLE 3: Structure symmetry, Randi¢ index (R), atom-bond connectivity (ABC) index, calculated hardness (H), and their cumulative
correlations (Cor) between (R, H) and (ABC, H).

Crystal Symmetry Randi¢ index (R) ABC index Hardness of crystals Cor (R, H) Cor (ABC, H)
BC, I4,/amd 14.136584 25.3452096 56.0 — —
P4m2 5.77350269 9.11396154 65.8 -1 -1
BC, Pmma —a 5.6090609 8.84196034 61.9 -0.911790078 —0.9128016
Pmma — b 5.60906090 8.84196034 64.8 —0.921902798 —0.92264538
I4m2 8.93265299 14.0612554 80.0 —0.267918644 —0.33848122
BC; Pmma — 1 12.4282032 9.62994735 74.0 —0.028477805 —0.39185327
Pmma -2 11.9423942 23.9924049 70.0 0.019298886 —0.23407776
P43m 6.24264069 11.949383 77.6 -0.11272915 —0.26114031
P3ml 7.61383217 10.3762508 65.3 —0.092422184 —0.2263985
BC, Pmm?2 7.56564615 12.6470418 80.7 —0.134370355 —0.22184915
P4m2 10.1941896 17.3528047 75.2 —0.096163473 —0.17150281
R3m 22.8743687 34.3374432 65.4 —-0.197758916 —0.24340232
Cluster chart Line chart
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FiGgure 2: Cluster and line chart of R and H.
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FiGure 3: Cluster and line chart of ABC and H.
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FiGure 4: Cluster and line chart of R and ABC.
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Ficure 5: Cluster and line chart of ABC, R, and H.
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FIGURE 6: The magnitude of the effectiveness of ABCI and HC over RI.
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FIGURe 7: The magnitude of the effectiveness of RI and HC over ABCI.
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FIGURE 8: The magnitude of the effectiveness of ABCI and RI over HC.

SEM

Endogenous variables

Observed : RI

Exogenous variables

Observed : ABCI HC

Fitting target model :

Iteration 0 : log likelihood = -108.5116
Iteration 1 : log likelihood = -108.5116

Structural equation model

Estimation method = m1

Log likelihood = -108.5116

Number of obs = 12

OIM

Standardized Coef. Std. Err. z P>z [95% conf. interval]
Structural
RI <-
ABCI 0.9025842 0.0636826 14.17 0.000 0.7777685 1.0274
HC 0.0219322 0.1313459 0.17 0.867 -0.2355011 0.2793655
_cons 0.0757925 1.32599 0.06 0.954 -2.523101 2.674686
Mean (ABCI) 1.978639 0.4964462 3.99 0.000 1.005622 2.951655
Mean (HC) 9.373905 1.935094 4.84 0.000 5.581191 13.16662
Var (e.RI) 0.1944974 0.1007828 0.0704443 0.5370088
Var (ABCI) 1
Var (HC) 1
Cov (ABCIL, HC) -0.2434024 0.2715727 -0.90 0.370 -0.775675 0.2888702

LR test of model vs. saturated: chi? (0) = 0.00, prob > chi? = .

FIGURE 9: Tabular form of the magnitude of the effectiveness of ABCI and HC over RI as shown in Figure 6.
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Endogenous variables

Observed : ABCI

Exogenous variables

Observed : HC RI

Fitting target model :

Iteration 0 : log likelihood = -108.5116
Iteration 1 : log likelihood = -108.5116

Structural equation model Number of obs = 12

Estimation method = m1

Log likelihood = -108.5116

OIM

Standardized Coef. Std. Err. z P> [95% conf. interval]
Structural
ABCI <-
HC ~0.0686487 0.1293607 -0.53 0.596 ~0.3221911 0.1848937
RI 0.88367 0.0664661 13.30 0.000 0.7533988 1.013941
_cons 0.7953603 1.311625 0.61 0.544 -1.775377 3.366097
Mean (HC) 9.373905 1.935094 4.84 0.000 5.581191 13.16662
Mean (RI) 2.067271 0.5112733 4.04 0.000 1.065194 3.069348
Var (e.ABCI) 0.1904215 0.0989202 0.0687914 0.5271064
Var (HC) 1
Var (RI) 1
Cov (HC, RI) -0.197759 0.2773855 -0.71 0.476 -0.7414245 0.3459065

LR test of model vs. saturated: chi? (0) = 0.00, prob > chi’=.

FiGure 10: Tabular form of the magnitude of the effectiveness of RI and HC over ABCI as shown in Figure 7.



Endogenous variables
Observed : HC
Exogenous variables
Observed : RI ABCI
Fitting target model :

Iteration 0 : log likelihood = -108.5116
Iteration 1 : log likelihood = -108.5116

Structural equation model
Estimation method = m1
Log likelihood = -108.5116
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Number of obs = 12

OIM
Standardized Coef. Std. Err. z P> [95% conlf. interval]
Structural
HC <-
RI 0.1058366 0.6327297 0.17 0.867 -1.134291 1.345964
ABCI -0.3383638 0.6263131 -0.54 0.589 -1.565915 0.8891874
_cons 9.824612 1.935909 5.07 0.000 6.030301 13.61892
Mean (RI) 2.067271 0.5112733 4.04 0.000 1.065194 3.069348
Mean (ABCI) 1.978639 0.4964462 3.99 0.000 1.005622 2.951655
Var (e.HC) 0.9385716 0.1343048 0.7090303 1.242424
Var (RI) 1
Var (ABCI) 1
Conv (RI, ABCI) 0.8972459 0.0562772 15.94 0.000 0.7869446 1.007547

LR test of model vs. saturated: chi® (0) = 0.00, prob > chi?=.

FiGure 11: Tabular form of the magnitude of the effectiveness of ABCI and RI over HC as shown in Figure 8.

edges of type (1, 1), 5 edges of type (1, 2), 14 edges of type (2,
2), 2 edges of type (4, 4), 25 edges of type (2, 4), and 3 edges
of type (3, 3). So, the Randi¢ and ABC indices for this crystal
are 22.8743687 and 34.3374432, respectively.

In [25-30], Lietal., Liu etal., L. Xu et al., and Yao et al.
computed the hardness of the above selected crystals
shown in Figure 1. The hardness of all the crystals is given
in Table 2.

Table 3 shows the crystal structures of Figure 1 along
with their Randi¢ index (R), atom-bond connectivity (ABC)
index, calculated hardness (H) from Table 2, and cumulative
correlations (Cor) between (R, H) and (ABC, H).

3. Comparison

In this section, we have compared the hardness of subjected
materials with Randic and ABC indices. Figure 2 shows the
comparison between the Randic index and hardness of the
subjected materials given in Table 3. Figure 3 shows the
comparison between the ABC index and hardness.

Figure 4 shows the comparison between the Randic index
and ABC index of the subjected materials given in Figure 1.

Figure 5 shows the comparison between the hardness,
Randic index, and ABC index of the subjected materials
given in Figure 1.
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4. Conclusion and Discussion

We have investigated the association among the Randi¢
index (RI), hardness of the crystal (HC), and atom-bond
connectivity index (ABCI). For this purpose, the struc-
tural equation model (SEM) has been applied by the
structure of three equations. Figures 6-8 show us the
magnitude of the effectiveness of ABCI and HC over RI, of
RI and HC over ABCI, and of ABCI and RI over HC,
respectively. Figures 9-11 give us the tabular form of the
magnitude of the effectiveness of ABCI and HC over Rl as
shown in Figure 6, of RI and HC over ABCI as shown in
Figure 7, and of ABCI and RI over HC as shown in
Figure 8, respectively. Estimates of three equations depict
that ABCI is positively and significantly associated with
RI, and 1 unit increase in ABCI improves 0.90 units of RI,
while HC is positively and insignificantly related with RI.
Negative and insignificant magnitude of HC is observed
with ABCI. However, RI is positively and significantly
related with ABCI. Contradictory results are observed
about the impact of RI and ABCI on HC; both RI and
ABCI are insignificantly linked with HC. In this article, we
have started a new study which relates the hardness and
topological indices of superhard crystals; which can
contribute to some futuristic applications, and we en-
courage others to do more research in this area.
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Recently, there has been increasing attention on the system network due to its promising applications in parallel hanging
architectures such as distributed computing (Day (2004), Day and Al-Ayyoub (2002)). Related networks differ in the cir-
cumstances of topology, and the descriptors were freshly examined by Hayat and Imran (2014) and Hayat et al. (2014). Distance-
based descriptors, counting-related descriptors, and degree-based descriptors are all examples of topological descriptors. These
topological characteristics are linked to chemical features of a substance, such as stability, strain energy, and boiling point. The
specifications for the 1st Zagreb alpha, 1st Zagreb beta, 2nd Zagreb, sum-connectivity, geometric-arithmetic, Randic, harmonic,

and atom-bond connectivity indices for mesh networks (MN,

1. Introduction

Cheminformatics is a relatively new field that combines
chemistry, mathematics, and information science. Chem-
informatics is primarily used to store, index, and retrieve in-
formation on chemicals. In index factors, graph theory is very
essential. Biological activity is used as an introduction to nu-
merous structural properties of molecules in the study of
(QSAR) models. Topological indicators are a fascinating subset
of these factors. Topological indices can be calculated using
simply nodes (atoms) and edges in a graph representation
(chemical bonds) [1, 2]. A series of numbers, a polynomial, or a
numeric number can all be used to identify a graph. A complete
graph is represented by numbers or an array, and for those
graphs, these interpretations are supposed to be unique. The
topological index is a mathematical term that belongs to a graph
and is unaffected by graph automorphism. It identifies the
structure of the graph. Degree-based topological indices,
counting-related polynomials, and graph indices are some of the
most common types of topological indices in [3, 4]. A topo-
logical index is a function “Top” from X to the set of real

) based on VE and EV degree are discussed in this paper.

mxn

numbers. Topological indicators in a network are, of course, the
number of nodes and links present in the network. Numerous
networks having an atomic or molecular structure, such as
honeycomb, grid networks, and hexagonal, are comparable.
Topological properties of this network are very interesting,
which are studied in various aspects in [5, 6]. Hexagonal and
honeycomb structures have also been identified as important in
biological evolution, where intersecting triangles are critical for
transmission of aid in societal problems, particularly for the
development of collaboration [7, 8]. Appropriate research on
this topic and further benefit from the new research findings are
given in [9-12]. While working on paraffin breaking, Wiener’s
approach [13] gave the impression of being a topological de-
scription. This identifier is known as the route number. After
this, Wiener index is used to remember the route number. In
terms of theory and practice, this topological descriptor served
as the foundation for the topological index, see [14, 15] for
details. Therefore, the topological lesions in the chemical and
quantitative literature are Weiner, Zagreb, and Randic [16, 17].
By using the previous degree concepts, all of the above works
were completed. In grid history, Chellali et al. [18] developed
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two additional degree theories, namely, VE degrees and EV
degrees, after some time. These concepts are a twist on the
previous degree-based concept.

2. Preliminaries

In this section, we recall some fundamental definitions
concerned to network which is usually represented by
N = (P,C), where P is the set of points and C is the set of
connections of network. The degree of a point is the number
of connections joined to that point. The open neighborhood,
indicated as N(v), for a point v, is written as
N (v) = u € Plu, v € C in networks. If we add the point v to
the set of N (v), we get the same as the closed neighborhood of
v, represented by N [v]. The number of connections that are
connected to any points from the closed neighbourhood of v
is equal to the vertex-edge degree, denoted by ¢, (v), specified
in [19], of the point v € P. Furthermore, the number of points
in the union of the closed neighbourhoods of u and v is equal
to the edge-vertex degree of the connection e = uv € C, in-
dicated by ¢,v (e) specified in [19]. Let N be a simple network
and e = uv € C(N). The EV and VE degree topological de-
scriptor-related details can be seen in [18, 19].

Consider N to be a basic network in all of the illus-
trations and v € V(N).

The Zagreb indices for edge-vertex degree are specified
as

MT(N) = Y (0 ()
ecC(N)

The first Zagreb alpha indices for vertex-edge degree are

specified as
MYF(N) =Y ¢, (). )

ueP(N)

The first Zagreb beta indices for vertex-edge degree are
specified as

MYENY =Y (9, (1) + ¢y, (). (3)

uveC(N)

The second Zagreb indices for vertex-edge degree are
specified as

ﬂ;e (N) = Z (¢ve (u) X ¢ve(v))' (4)

uveC (N)

The Randic indices for vertex-edge degree are specified
as

R (N) = Z (¢ve (u) x ¢ve (V))_(llz)' (5)

uveC (N)
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The Randic indices for edge-vertex degree are specified
as

e%ev (N) _ Z ¢Ve (e)—(1/2). (6)

ecC(N)

The atom-bond connectivity indices for vertex-edge
degree are specified as

I(pve (u) + ¢ve (V) -2

BE*(N)= V) % )

uveC (N)

(7)

The geometric-arithmetic (ve — GA) indices for vertex-
edge degree are specified as

2V e (1) X ¢y (v)
e (W) + 6, (v)

gd”(N)= )

uveC(N)

(8)

The harmonic (ve — H) indices for vertex-edge degree
are specified as

2
A _ 2
(N) uve;([\]) ¢ve (u) + ¢ve (V) (9)

The sum-connectivity (ve-y) indices for vertex-edge
degree are specified as

N =Y (@@, ) g

uveC(N)

3. Result for Mesh Network (MN

mxn)

In this part, we calculate several mesh network (MN,,.,,)
topological indices based on EV and VE degree, seen in
Figure 1. Let (MN,,,,) be a mesh network. (MN,,,) has
mn points and 2mn — (m + n) connections. Table 1 shows
how we partition the set of connections of (MN,,,) into
four components on the behalf of degrees of end points.-
Similarly, partition the collection of points into three
components based on the degrees of points, as shown in
Table 2.

Depending on the EV degree of the links of (M N,,,.,,) for
n>5, we separate them in Table 3 and partition the points
and connections in Table 4 and Table 5 depending on the VE
degree of (MN,,,,) for n>5.

mxn

3.1. Edge-Vertex Degree-Based Indices. Now, we will calcu-
late Zagreb and Randic indices for the mesh network
(MN,,,,) depending on the EV degree.

mxn
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FIGURE 1: Mesh network (MN)s,,.

TaBLE 1: Connection division of (MN,,,)-

No. of connections (deg(u), deg(v))

3
TaBLE 3: Link partitioning of (MN,,,.).
No. of connections Degree of end points EV degrees
8 (2,3) 5
2m+2n—12 (3,3) 6
2m+2n—-8 (3,4) 7
2mn—>5(m+n)+ 12 (4,4) 8
TaBLE 4: Points partitioning of (MN,,,.,,).
No. of points Degree (u) VE degrees
4 2 6
8 3 9
2(m+n)—16 3 10
4 4 14
2(m+n)-16 4 15
mn—4(m+n)+16 4 16

TasLe 5: The VE degree of the end points of connections of

8 (2,3) (MN,,1).
2m+2n—12 (3,3)
2m+2n—8 (3,4) No. of connections Degree of end VE degree of end
2mn —5m—5n+ 12 (4,4) points points
8 (2,3) (6,9)
8 (3,3) (9,10)
2(m+n)-20 (3,3) (10,10)
8 (3,4) (9,14)
TaBLE 2: Points partitioning of (MN,,,.). 2(m+n) - 16 (3,4) (10, 15)
- 8 (4,4) (14,15)
4N°' of points deg2 T (4, 4) (15,15)
2(m+n-4) 3 2(m+mn)-16 (4,4) (15,16)
mn—2(m+n)+4 4 2mn —9(m +n) + 40 (4,4) (16, 16)
3.1.1. Zagreb Index. Employing Table 3, the Zagreb index is
calculated as follows:
2
M (MNy) = ) be(€)
ecE (MN,,,,)
M (MN,,,) =8x5 +(2(m+n)—12) x 6+ (2(m+n) —8) X 7* + (2mn - 5(m +n) + 12) x 8 (11)

=200+ 72 (m + n) — 432 + 98 (m + n) — 392 + 128mn — 320 (m + n) + 768

= 128mn — 150 (m + n) + 144.

3.1.2. The Randic Index. Employing Table 3, the Randic
index is calculated as follows:

R (MN,) = Y ¢,

ecE (MN,,.,)

R (MN

mxn)

L2, 2
=—F=mn
V2

=0.707mn — 0.195 (m + n) — 0.102.

=8x5 " 1 2m+n)-12)x6 Y+ 2m+n) -8)x7 VP + 2mn—50m+n) +12) x 2

(12)

—+——i>(m+n)+( 8
Vo N7 22 5
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3.2. Vertex-Edge Degree-Based Indices. Now, we will calcu-  3.2.1. The Ist Zagreb Alpha Index. Employing Table 4, the

late the 1st Zagreb alpha, 1st Zagreb beta, 2nd Zagreb,  1st Zagreb alpha index is calculated as follows:
geometric-arithmetic, sum-connectivity, Randic, harmonic,

and atom-bond connectivity indices for the mesh network

(MN,,,,) depending on VE.

ﬂ‘fve (Mmen) = Z ¢ve (u)2>

ueV (MN,,,)

ML (MN,) = 4% 6° +8x 9"+ (2(m+n) — 16) X 10° + 4 x 14% + (2(m + n) — 16) X 15° + (mn — 4(m + n) + 16) x 16

= 144 + 648 + 200 (m + 1) — 1600 + 784 + 450 (m + 1) — 3600 + 256mn — 1024 (m + n) + 4096
= 256mn — 374 (m + n) + 472.

3.2.2. The Ist Zagreb Beta Index. Employing Table 5, the 1st
Zagreb beta index is calculated as follows:

MY (MN )= Y (6 () + 6, (1),

uveE (MN,,.,)

/%f”e(Mmen)=8x15+8x19+(2(m+n)—20)x20+8x23+(2(m+n)—16)><25+8><29
+(2(m+n)—20)x30+2(m+n)—16) x 31+ (2mn—9(m +n) + 40) x 32
=120 + 152 + 40 (m + n) — 400 + 184 + 50 (m + n) — 400 + 232 + 60 (m + n) — 600
+62(m +n) — 496 + 64mn — 288 (m + n) + 1280
=64mn—76(m+n)+ 72.

3.2.3. The 2nd Zagreb Index. Employing Table 5, the 2nd
Zagreb index is calculated as follows:

MY (MN )= > (e (W) X ¢y, (W),

uveE (MN,,,,)
M5 (MN,,.,) = 8x 54 +8x 90+ (2(m +n) —20) X 100 + 8 x 126 + (2(m + n) — 16) x 150
+8x%x210+ (2(m+mn)—20) x 225+ (2(m +n) — 16) x 240 + 2mn — 9 (m + n) + 40) x 256
=432 + 720 + 200 (m + n) — 2000 + 1008 + 300 (m + 1) — 2400 + 1680 + 450 (m + n)
— 4500 + 480 (m + n) — 3840 + 512mn — 2304 (m + n) + 10240
= 512mn — 874 (m + n) + 1340.

3.2.4. The Randic Index. Employing Table 5, the Randic
index is calculated as follows:

(13)

(14)

(15)
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R(MNo) = ) ($e@) x ¢, (1)),
uveE (MN,,,,.,)
R (MN, ) = 8 x 54~ 4+ 890" 4 (2(m +n) - 20) x 1007""? + 8 x 126"
+(2(m+n) —16) x 15012 1 8 x 2107 + (2 (m + n) — 20) x 225~V
+(2(m+n) - 16) x 240" Y 1 2mn — 9 (m + n) + 40) x 256 2 (16)
+( =+ 2 + 2 + ! ° (m+n)
=—mn+| - — -—|(m+n
8 5 546 15 2+/15 16
8 8 8 16 8 4 4 5
+ + -2+ - + -== + =
346 3410 3v14 546 210 3 415 2
0.125mn + 0.063 (m + n) + 0.0241.
3.2.5. The Atom-Bond Connectivity Index. Employing Ta-
ble 5, we calculate the above said index as follows:
+ -2
BE" (MN,p)= Y (b (0 + 6, () -2
uveE (MN,,.,) Pre (1) X 6 (V)
15-2 ’19—2 20 -2 23 -2
BEC"” (MN =8x / +8x +(2(m+n)—20) X \|——+ 8 x \——
(MN,,) \ 52 \gg *(Blm+m) =200 x =50 \"126
25-2 29 -2 30-2
+(2 +—16><I +8\j +(2 +n) —20) x
(20m+m) = 16) x ==+ 8 x o=+ (2(m o+ m) = 20) x (=
31-2 32-2 (17)

+(2(m+mn)-16) X

+(2 -9 +n) +40) x
0 (2mn (m+n) ) T

VB (32 2B 47 B 9V
= ™\ s 5 s Tavis 16 )T

—+ - + - +
3/6 3410 372 5v6 /70 3 V15 2

<8\/B 817 83 16423 24  4+/28 4429 5\/%)
+ 6V2 + -

= 0.68mn — 0.048 (m + n) — 0.138.

3.2.6. The Geometric-Arithmetic Index. Employing Table 5,
the above said index is calculated as follows:
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Gl (MN,) = Y S PelX 0]
uveE (Mmen) ¢ve (u) + ¢ve (V)
?‘dve(Mmen):8X2\1/55_4+8X2\1/99_0+(2(m+1’1)—20)X2T+8X2\£;T6
+(2(m+”)—16)X2m+8x2m+(2(m+n)—20)x2\/m
2> 29 30
+(2("““”)_16)><zxflm+(2mn—9(m+n)+40)><2\§225_6 (18)

46 16115
=2mn+| 2+ 5 +2+ 31

—9)(m+n)

166 48+/10 4814 3246 164210 128+/15
+| —+ -20+ - + -20- +40
5 19 23 5 29 31

=2mn — 1.041 (m + n) — 0.037.

3.2.7. The Harmonic Index. Employing Table 5, the har-
monic index is calculated as follows:

2
%ve MN ) = 2z
(MN ) ME(%NW)gbw(u)+¢w(v)

2 2 2 2 2 2
7" (MN =8X—+8X—+2(m+n) —-20)Xx —+8X—+2(m+n)—16) X —+ 8 x —
(MN,,,,) 5 19 (2(m+n) ) 20 7 (2(m+n) ) 75 o

Jr(z(m+”)_20)><%+(2(m+71)—16)><%+(2mn—9(m+n)+40)><3i )

1 <1424
5

9
=—mn+ +—+—+———>(m+n)
8 25 15 31 16

16 16 16 32 16 4 32 5
+ 24 ———=+—= +
15 19 23 25 29 3 31 2

= 0.125mn + 0.063 (m + n) + 0.0241.

3.2.8. The Sum-Connectivity Index. Employing Table 5, the
sum-connectivity index is calculated as follows:
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KCMN,) = Y (b +¢,, (1),

uveE (MN,,,,.,)

X“(MN,,.,) =8x15 "2 18x 197" 1 (2(m+n) - 20) x 20" +8x 237 4 (2(m +n) - 16) x 25~

+8x29° Y 4 2(m+n) -20)x 30" + 2(m +n) - 16) x 31

+(2mn — 9 (m + n) + 40) x 32712

2 2 2

1 1 9
:ﬁmn+($+g+m+\/ﬁ_4\/§)

8 10 8 16 8

1/2)

(20)

(m+mn)

20 16 10)

8
*(ﬁ*ﬁ‘ﬁ*m "5 TV™ VR V3L V2

= 0.3533mn — 0.0194 (m + n) — 0.071.

4. Conclusion

It’s crucial to explore the structure using graphs, and to-
pological indicators are crucial for grasping the network’s
core topology. This sort of analysis has a wide range of
applications in computer science, where different indexes
based on graph invariance are used to evaluate multiple
stimulation summaries. Invariants stats are essential factors
for analyzing and predicating the features of chemical
structures in the quantitative structure-property relationship
(QSPR) and quantitative tructure-activity relationship
(QSAR) explorations. We offer several finished products for
VE degree and EV degree-based indices, such as the indices
depending on the vertex-edge degree are the 1st Zagreb
alpha, 1st Zagreb beta, 2nd Zagreb, geometric-arithmetic,
sum-connectivity, Randic, harmonic, and atom-bond con-
nectivity indices, in this article, for the mesh network
(MN,,,), and EV degree Randic and Zagreb indices. There
will be some who are involved in designing new grids in the
future, and we are examining their topological indices in
order to grasp their core topology.

Data Availability

The data used to support the findings of this study are cited
at relevant places within the text as references.
Conlflicts of Interest

The authors declare that they have no conflicts of interest.

Authors’ Contributions

All authors contributed equally to this work.

References

[1] K. Day, “Optical transpose k-ary n-cube networks,” Journal of
Systems Architecture, vol. 50, no. 11, pp. 697-705, 2004.

[2] K. Day and A.-E. Al-Ayyoub, “Topological properties of
OTIS-networks,” IEEE Transactions on Parallel and Distrib-
uted Systems, vol. 13, no. 4, pp. 359-366, 2002.

[3] P. Manuel, R. Bharati, I. Rajasingh, and C. Monica, “On
minimum metric dimension of honeycomb networks,”
Journal of Discrete Algorithms, vol. 6, no. 1, pp. 20-27, 2008.

[4] P. Manuel and I. Rajasingh, “Minimum metric dimension of
silicate networks,” Ars Combinatoria, vol. 98, pp. 501-510,
2011.

[5] P. Manuel and I. Rajasingh, “Topological properties of silicate
networks,” in Proceedings of the 2009 5th IEEE GCC Con-
ference & Exhibition, vol. 15, pp. 15-25, Kuwait City, Kuwait,
March 2009.

[6] B. Rajan, A. William, C. Grigorious, and S. Stephen, “On
certain topological indices of silicate, honeycomb and hex-
agonal networks,” Journal of Mathematics and Computer
Science, vol. 5, pp. 530-535, 2012.

[7] S. Hayat and M. Imran, “Computation of topological indices
of certain networks,” Applied Mathematics and Computation,
vol. 240, pp. 213-228, 2014.

[8] S. Hayat, M. Imran, and M. Y. H. Mailk, “On topological
indices of certain interconnection networks,” Applied
Mathematics and Computation, vol. 244, pp. 936-951, 2014.

[9] M. Perc, J. Gémez-Gardeiies, A. Szolnoki, L. M. Floria, and
Y. Moreno, “Evolutionary dynamics of group interactions on
structured populations: a review,” Journal of the Royal Society,
Interface, vol. 10, 2013.

[10] M. Perc and A. Szolnoki, “Coevolutionary games-a mini
review,” BioSystems, vol. 99, no. 2, pp. 109-125, 2010.

[11] A. Szolnoki, M. Perc, and G. Szabd, “Topology-independent
impact of noise on cooperation in spatial public goods games,”
Physical Review. E, Statistical, Nonlinear, and Soft Matter
Physics, vol. 80, pp. 56109-56166, 2009.

[12] Z. Wang, A. Szolnoki, and M. Perc, “If players are sparse social
dilemmas are too: importance of percolation for evolution of
cooperation,” Scientific Reports, vol. 2, no. 1, pp. 369-379,
2012.

[13] H. Wiener, “Structural determination of paraffin boiling
points,” Journal of the American Chemical Society, vol. 69,
no. 1, pp. 17-20, 1947.

[14] A. A. Dobrynin, R. Entringer, and I. Gutman, “Wiener index
of trees: theory and applications,” Acta Applicandae Mathe-
maticae, vol. 66, no. 3, pp. 211-249, 2001.



(15]

(16]

(17]

(18]

(19]

I. Gutman and O. E. Polansky, Mathematical Concepts in
Organic Chemistry, Springer-Verlag, New York, NY, USA,
1986.

Y. Li, F. Li, Z. Zhou, and Z. Chen, “SiC, silagraphene and its
one-dimensional derivatives: where planar tetracoordinate
silicon happens,” Journal of the American Chemical Society,
vol. 133, no. 4, pp- 900-908, 2010.

L.-J. Zhou, Y.-F. Zhang, and L.-M. Wu, “SiC; siligraphene and
nanotubes: novel donor materials in excitonic solar cells,”
Nano Letters, vol. 13, no. 11, pp. 5431-5436, 2013.

M. Chellali, T. W. Haynes, S. T. Hedetniemi, and T. M. Lewis,
“On ve-degrees and ev-degrees in graphs,” Discrete Mathe-
matics, vol. 340, no. 2, pp. 31-38, 2017.

M. Cancan, “On edge-vertex degree and vertex-edge degree
topological properties of tickysim spiking neural network,”
Computational Intelligence and Neuroscience, vol. 8, pp. 11-31,
2019.

Journal of Chemistry



