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+e majority of studies on road traffic flow prediction have focused on the flow of passenger cars or the flow of traffic as a whole,
which ignore the significant impact of trucks with different sizes and operational characteristics on traffic flow efficiency.
+erefore, in this paper, we focus on truck traffic flow and propose a Multifeatures Spatial-Temporal-Based Neural Network
model (M-BiCNNGRU) to improve its prediction.+e proposed model not only comprises conventional temporal characteristics
and spatial relationships but also includes a range of multifeatures. +ese multifeatures include policy limit, optimal time delay,
road resistance, and traffic congestion state. +e impacts of upstream and downstream road sections are considered on the spatial
relationship by using a Convolutional Neural Network (CNN). A Bidirectional Gated Recurrent Unit (Bi-GRU) is employed to
account for the temporal characteristics. To evaluate the proposed model, traffic flow data were collected from amajor expressway
in Beijing and the results were compared with those derived from existingmodels.+e results show that the prediction accuracy of
the BiCNNGRU model, with spatial-temporal characteristics, and the M-BiGRU model, with multifeatures and temporal, is,
respectively, 4.13% and 2.15% greater than that of the Bi-GRUmodel, with temporal characteristics.+e prediction accuracy of the
proposed M-BiCNNGRUmodel is 92.86%, which is 7.12% greater than that of the Bi-GRUmodel and 13.83% greater than that of
the Support Vector Regression (SVR) model. In general, therefore, the proposed M-BiCNNGRU model, which combines
multifeatures, temporal characteristics, and spatial relationships, can significantly improve accuracy in predicting truck
traffic flow.

1. Introduction

It is generally acknowledged that the efficient operation of
modern supply chains relies heavily on the use of trucks. +is
is particularly the case in China which has seen a growth of
over 40% in truck road traffic during the last decade [1]. +is
increased transportation dependency has essentially rein-
forced the importance of trucks but given their poor dynamic
performance and large sizes, the net effect of increased truck
traffic is the problem of potentially more congestion and
reduced traffic capacity overall [2]. Consequently, this
problem is now attracting the attention of academia, espe-
cially concerning the development of an accurate prediction

model for truck traffic flow, aiming to find solutions that can
reduce such traffic congestion that is caused primarily by the
increasing numbers of trucks on roads.

Despite the increasing congestion problems caused by
trucks, currently, most research related to congestion is
associated with cars [3] and mainly relies on historical traffic
data for traffic prediction and seeking rules from time
characteristics [4–7]. Li et al. [8] proposed a model based on
ensemble empirical mode decomposition and a random
vector functional link network to predict travel time in
mixed traffic flow. +ere are relatively few studies on the
influence of truck flow, even though it is a significant
component of overall road traffic. Several researches have
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predicted traffic flow from the perspective of temporal
characteristics and spatial relationships and obtained better
prediction results, indicating that increasing the spatial
relationship will benefit prediction accuracy [9–11]. Com-
pared with regular passenger cars, however, trucks have a
range of operational features or constraints. For example,
there are policies that restrict truck operation on specific
road sections and time periods. Such policies, therefore,
suggest that it is necessary to analyze such features that affect
truck traffic flow and explore whether these features can
effectively improve the efficiency of truck traffic flow
prediction.

In terms of traffic flow prediction, the models currently
employed can be classified as either parametric models or
nonparametric models [12]. +e parametric models mainly
include ARIMA, subset ARIMA, and Kalman filtering
[13–18]. However, a major drawback of the parametric
models is their inability to reflect nonlinear traffic flow data
with strong randomness, leading to traffic flow prediction
inaccuracies. Addressing this problem in order to improve
prediction accuracy, nonparametric models have been
proposed which are more adept in the capture of nonlinear
characteristics of traffic flow. +e nonparametric models
include K-Nearest Neighbor (KNN), Support Vector Re-
gression (SVR), Back Propagation Neural Network (BPN),
and Fuzzy Neural Networks [16, 19–22].

In recent years, not least with improvements in com-
puter performance, the field of deep learning has developed
rapidly. Of particular relevance, deep learning methods can
capture the characteristics of nonlinear traffic data and
achieve excellent results. However, each deep learningmodel
has its fields and characteristics. For example, the Con-
volutional Neural Network (CNN) has an excellent per-
formance in processing spatial data, and the Recurrent
Neural Network (RNN) has advantages in capturing tem-
poral features [23]. It also has been found that both historical
time data and the road network spatial relationship have an
impact on traffic flow, and such a finding led to the joint
deep learning model combining spatial-temporal advantages
being applied to traffic flow prediction [24]. Asadi and Regan
[25] proposed a CNN-LSTM deep learning framework for
spatiotemporal forecasting problems. LSTM (Long Short
Term Memory) is a variant of RNN [26], which solves the
problem of gradient explosion and disappearance of RNN by
adding memory modules, and has achieved positive per-
formance in time series prediction [27, 28]. Based on
temporal-spatial features, Li et al. [29] combined an ad-
vanced multiobjective particle swarm optimization algo-
rithm and deep belief networks to forecast traffic flow for the
next day. Yang et al. [28] proposed a hybrid deep learning
model to predict traffic flow, in which the LSTM and a CNN
component were applied to learn temporal and spatial
features, separately. A CNN-LSTM model was proposed by
Cheng et al. [30] to capture traffic flow evolution in a
transportation network. A CNN layer was applied to both
downstream and upstream road sections for spatial char-
acteristic mining, followed by the incorporation of an LSTM
layer. It is worth noting that the prediction performance of
the LSTMmethod depends on a large number of parameters

and training data and that its computing ability is limited by
computer bandwidth and memory. +e Gated Recurrent
Unit (GRU) was proposed to solve the deficiencies of LSTM,
and its parameters are relatively small in number and it is
easier to obtain a converged solution [31]. Fu et al. [3]
applied the GRU method to predict car traffic flow for the
first time, which performed better than the ARIMA model.
Considering the advantages of GRU and CNN in capturing
temporal and spatial features, they can be combined to
capture the temporal and spatial characteristics of truck
traffic flow to improve the prediction accuracy.

Compared with passenger cars, trucks are required to
adhere to special operational policies, mainly in terms of
driving time and space. For example, the transportation
department stipulates that trucks are prohibited from
passing on certain urban roads within 24 hours or trucks are
prohibited from passing through certain areas from 7:00–8:
30 and 16:30–18:30 during passenger car rush hours. Also,
traffic condition, the impedance of the road, and the mixed
flow rate of trucks all can affect traffic efficiency but there are
relatively few researches into the influence of these factors on
truck traffic flow prediction; most rely instead on the use of
single-source data from historical traffic flow records.

In general, to improve the prediction accuracy of truck
traffic flow, additional factors that affect such flow will be
analyzed from the perspective of policy, traffic status, and
road impedance. Within this approach, multiple factors are
defined as variables to form multiple features, and the input
variables are, therefore, changed from one-dimensional
traffic flow data to multidimensional feature data. Finally,
the spatial relationship between upstream and downstream
road sections is added to form a multifeatures spatial-
temporal-based joint deep learning model to predict truck
traffic flow and evaluate the prediction results. +e overall
aim and main contributions of this study are summarized as
follows:

(1) +e primary objective of the study is to improve the
prediction accuracy of truck traffic flow. Although
passenger car traffic flow forecasting has been widely
studied, the characteristics of trucks and passenger
cars are different, it is not feasible to apply the
forecasting method developed for passenger cars to
trucks. For this reason, it is necessary to incorporate
truck characteristics into the method for predicting
truck traffic flow.

(2) A Multifeatures Spatial-Temporal-Based Neural
Network model (M-BiCNNGRU) is proposed in this
study to improve the prediction accuracy of truck
traffic flow. In the proposed model, three types of
factors are considered, namely, “spatial relation-
ship,” “temporal series,” and “road operation.”
Moreover, the impacts of upstream and downstream
road sections are considered on the spatial rela-
tionship using a CNN. A Bidirectional Gated Re-
current Unit (Bi-GRU) is employed to account for
the temporal characteristics. +e road operation
factor includes a range of multifeatures. +ese
multifeatures include “policy limit,” “optimal time

2 Journal of Advanced Transportation



delay,” “road resistance,” and “traffic congestion
state.”+ese multifeatures are also through the CNN
model to explore the relationship between the truck
flow and multifeatures.

(3) +e prediction performance of the M-BiCNNGRU
model is explored. Several baseline models are also
trained and predicted, including (i) the BiCNNGRU
model, which considers spatial relationships and
temporal characteristics; (ii) the M-BiGRU model,
which considers multifeatures and temporal char-
acteristics; (iii) the Bi-GRU model, which considers
only temporal characteristics; (iv) the SVR model,
which again, only considers temporal characteristics;
(v) finally, the ARIMA model, which likewise only
considers temporal characteristics.”

+is paper is organized as follows. Section 2 introduces
the methodology of the multifeatures spatial-temporal-
based truck traffic flow prediction method. In Section 3, the
properties of road sections are introduced, and the spatial
relationship and congestion coefficient associated with road
sections are analyzed. +e results of the proposed model are
analyzed in Section 4. Section 5 discusses the prediction
performance during peak and low peak periods. Section 6
summarizes the conclusion.

2. Methodologies

In previous models, traffic flow predictions associated with
passenger cars were only inferred from historical traffic flow
data. However, other than historical traffic flow, there are
multiple other features that affect truck traffic flow, such as
current road conditions, road resistance, traffic congestion
index, and traffic restriction policies. To consider these
additional features, in this paper, we propose a Multifeatures
Spatial-Temporal-Based Neural Network prediction method
for truck traffic flow, which is termed M-BiCNNGRU. +e
CNN model is used for multifeatures and spatial feature
learning and Bi-GRU model is employed for temporal
characteristics learning. +e proposed M-BiCNNGRU
model structure is shown in Figure 1.

2.1. Multifeatures. Five features have been analyzed and
incorporated into the model to improve the prediction
performance of truck traffic flow. +e interpretation and
definition of the considered features are as follows:

(1) Truck traffic flow: Truck traffic flow has a self-cor-
relation, which means that historical truck traffic
flow will have an impact on future truck traffic. +e
truck traffic flow q refers to the number of trucks
passing through a road section in a certain time
interval and is also defined as a continuous variable.
+e definition of truck is that mainly used for car-
rying goods in terms of design and technical char-
acteristics, including special vehicles whose main
purpose is to carry goods (GA 802-2014). In this
paper, the authors regard all truck types as the re-
search object of truck traffic flow prediction. To unify

the different truck types, the authors converted the
traffic flow of each truck type to the Passenger Car
Equivalent (PCE). +e classification of truck type
and the PCE conversion factor is shown in Table 1.

(2) Policy limit: For different road sections and different
periods, truck operation will be restricted by policy,
which will cause changes in truck traffic flow. +e
policy limit variable is defined as a discrete variable.
If trucks are allowed to operate during a period, it is
defined as 1; if not, it is defined as 0.

(3) Optimal time delay: In this paper, the road section
where traffic flow is to be predicted is called the target
section. For situations when truck flow “upstream”
of the target section changes, a period of time is
incurred before the traffic information can be dis-
seminated to the target section. +erefore, it is
necessary to find a time delay difference r, which
represents the time taken for the upstream and
downstream sections to transmit truck flow char-
acteristics. +e optimal time delay rb refers to the
delay which provides the best match between two
road segments. +e time delay diagram of upstream
and downstream sections is shown in Figure 2. n is
defined as the number of truck flow time series.
In this paper, the Pearson correlation coefficient
(PCC) is used to calculate the correlation of truck
flow series under a different time delay r, where the
time delay under the maximum PCC is the optimal
time delay rb. Moreover, rb is a discrete variable
whose value is equal to the optimal time delay value.

(4) Road resistance: In previous models, the BPR
function was often used to calculate the road re-
sistance of passenger cars. However, for truck traffic,
the traditional BPR function is inadequate and led to
the development of an improved truck road resis-
tance function (1).

ta �
l
t
0

v
t
0

1 + α
􏽐 qt

a · et

ca · mt
a

􏼠 􏼡

β
⎡⎣ ⎤⎦, (1)

where lta is the length of the road section a at time t. vt
0

represents the speed of the truck when the traffic flow
of the road section is zero at time t. qt

a represents the
truck traffic flow on road section a. et represents the
coefficient for the conversion of trucks into equivalent
passenger cars; its respective values are 1.5, 2, and 3 for
small, medium, and heavy trucks. mt

a represents the
proportion of trucks in the overall traffic flow. ca

represents the traffic capacity of road section a. For
the improved truck road resistance function, the
length of the road section, the current truck traffic
flow, the truck traffic flow rate in the mixed traffic
flow, and the truck equivalent are taken into account
to express the road operation more accurately.

(5) Congestion coefficient: At present, the standards for
measuring congestion indicators are not uniform.
Due to the complex and diverse traffic operating
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environment of urban roads, the classification of
traffic operating status is often not accurate enough
and has a certain degree of ambiguity [32, 33]. For this
reason, the fuzzy evaluation method is used to
judge the traffic state. +is paper applies the truck
traffic flow fuzzy comprehensive evaluation
method to calculate the congestion coefficient on
the road section. +e function of the congestion
coefficient (CC) is

f
q
a �

za · q
t
a

ca · ma

. (2)

When (qt
a/ma) reaches the design flow limit, the road

section is in a serious congestion state, where the CC is equal

to 10; however, when the (qt
a/ma) is equal to 0, the road

section is in a clear state where the CC is close to 0.
For the fuzzy comprehensive evaluation method, the

threshold range according to the congestion degree needs to
be defined first. For the CC, the larger its value means the
more congested the road section is. +e CC of a road
network is ranked in a descending order and divided into
five levels according to a certain proportion. In this paper,
the definition of congestion is obtained with reference to
Beijing’s “Evaluation Index System for Urban Road Traffic
Operation” (EISU) published on April 28, 2011. EISU
proposed the recommended conversion relationship be-
tween the Road Network Operation Level (RNOL) and
Traffic Performance Index (TPI). When the TPI is between
the values [0, 2], [2, 4], [4, 6], [6, 8], and [8, 10], the RNOL is
defined as “unblocked,” “basically smooth,” “light conges-
tion,” “moderate congestion,” and “severe congestion,” re-
spectively. Moreover, the respective variables associated with
these RNOL definitions are 1, 2, 3, 4, and 5. Further details of
the above variable definitions can be found in Table 2. To
unify the types of discrete variables and continuous vari-
ables, the author performs one-hot encoding of discrete
variables.

2.2. Construct Feature Vector. Studies have shown that the
traffic conditions of the upstream and downstream sections
have an impact on the target section flow. However, the

Upstream DownstreamTarget section

Feature 1

...

Feature 2
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Feature n
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CNN
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Feature 1
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Feature n
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CNN
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Feature 1
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Feature 2
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Feature n
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CNN

...

Hidden layer

Drop out

Full connected layer

...

Bi-GRU

Figure 1: +e proposed M-BiCNNGRU model structure.

Table 1: +e classification of truck type and the Passenger Car
Equivalent (PCE) conversion factor.

Truck type Conversion
factor Load and passenger capacities

Small truck 1 Load capacity≤ 2.0 tons

Medium truck 1.5 2.0 tons＜ load capacity≤ 7.0
tons

Large truck 2 7.0 tons＜ load capacity≤ 14.0
tons

Extra large
truck 3 Load capacity> 14.0 ton
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target road section may have multiple upstream road sec-
tions as well as multiple downstream road sections, as shown
in Figure 3.

+e feature variables of the upstream section, the
downstream section, and the target section are defined as
Xu, Xd, and Xo, respectively, where Xu � [ru

p, ru
b , ru

s , qu
a ,r

u
c ],

Xd � [rd
p, rd

b , rd
s , qd

a ,r
d
c ], and Xo � [ro

p, ro
s , qo

a,r
o
c]. +e input

feature vector X of the proposed model is, therefore, con-
structed, as shown in equation (3).

X � Xu, Xt, Xd􏼂 􏼃. (3)

If the target road section has only one upstream and one
downstream road section, as shown in Figure 2(a), it is
relatively easy to compose the input feature vector. However,
a target road section often has multiple upstream road
sections and multiple downstream road sections, as shown
in Figure 3(b). Moreover, if the feature variables of multiple
road sections are all simply applied to the input feature
vector, there will be inconsistencies in the dimensions of the
input feature vectors. However, if one of the multiple up-
stream sections is simply selected as being representative of
the upstream section and because the upstream represen-
tative section may not accurately display the truck traffic
flow status of all upstream sections, errors may also be
introduced. It should be noted that discussions on the

multiple scenarios linking the target road section with the
upstream and downstream road sections are often ignored in
previous papers.

+erefore, when there are multiple upstream road sec-
tions, this paper proposes aggregating the feature variables
of multiple upstream sections into one upstream section.
+e aggregated rule is as follows:

(1) For the truck traffic flow variable, it is formed by
summing up the multiple upstream sections.

(2) For the policy limit, it is set as the policy for the road
section with the highest levels of truck traffic flow.

(3) For the optimal time delay, CC, and road resistance,
they are recalculated according to the sum of the
truck traffic flow in the multiple upstream sections.

+e rule for the downstream road section is the same as
the above upstream section. +rough the above processing,
multiple scenarios linking the target section with the up-
stream and downstream section are aggregated into a unified
dimension of the input feature vector.

2.3. Spatial Relationships. To mine the spatial relationship
between the upstream and downstream sections and the
target section, the CNN was chosen. +is is because CNN

Target section

Upstream

Time delay r n-r time series

n-r time series Time delay r

q1 q2 ... ...qn-r qn-r+1 qn

q1 qr ... ...qr+1 qn...

(a)

Target section

Downstream

q1 q2 ... ...qn-r qn-r+1 qn

q1 qr ... ...qr+1 qn...

Time delay r n-r time series

n-r time series Time delay r

(b)

Figure 2: Schematic diagram of time delay.

Table 2: +e details of the variable definition.

Symbol Feature Type Description
rp Policy limit Discrete variable 1: open to traffic; 0: closed to traffic
rb Optimal time delay Discrete variable 1: optimal time delay is 1; 2: optimal time delay is 2; 3: optimal time delay is 3

rs Road resistance Continue
variable Value of truck road resistance function

qa Truck traffic flow Continue
variable Value of truck traffic flow

rc

Congestion
coefficient Discrete variable 1: unblocked; 2: basically smooth; 3: light congestion; 4: moderate congestion; 5: the

severe congestion
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has advantages in mining spatial local related information
and has achieved significant results in other fields such as
natural language processing. +e conventional 1D CNN is
applied to learn the spatial relationship with the locality
structure of key features. +e CNN contains a convolutional
layer, activation layer, and a pooling layer. By performing 1D
convolution on the input feature vector X, the m-th feature
map of the 1D CNN is calculated:

hi � pool ki wi ∗Xi + bi( 􏼁( 􏼁, (4)

where hi is the weight vector of the i-th feature, bi is the bias,
ki is the nonlinear activation, ∗ represents convolution, and
pool denotes the pool function. To avoid overfitting, the
depth of the 1D CNN is set to 3. +e ReLU is applied for
nonlinear activation.

2.4. Temporal Characteristics. Truck traffic flow has a long-
term temporal dependency. In this paper, a Bi-GRU is in-
troduced to learn the temporal characteristics associated
with truck traffic flow. +is is because the Bi-GRU has
advantages in capturing time characteristics. Recently, an
LSTMmethod has been applied in numerous problems as it,
in general, performs well in terms of prediction accuracy, but
compared with LSTM, the Bi-GRU contains fewer param-
eters and has achieved a better performance in the field of
natural languages. However, for truck traffic flow, few
scholars have studied its potential benefits. Specifically, in
the Bi-GRU model, the reset gate and update gate were
applied to control the update status of the time series. +e
reset gate Ri and the update gate Ui are calculated using

Ri � σ WrSi + UrHi−1 + br( 􏼁, (5)

Ui � σ WuSi + UzHi−1 + bu( 􏼁, (6)

where Si is the input from the Bi-BRU, which is also the
output of the 1D CNN, σ is the activation, Wr and Wu are
the weight vectors, br and bz are biases, and Hi−1 is the
hidden layer output value. Also, the structure of the Bi-GRU
is composed of the forward and reverse sequences. +e
forward sequence is from start to end, and the reverse se-
quence is from end to start.

In summary, the Multifeatures Spatial-Temporal-Based
Neural Network prediction method, namely, the
M-BiCNNGRUmodel, is a new joint neural network model.
Compared with the CNN model, the proposed

M-BiCNNGRU model adds the structure of mining tem-
poral characteristics from the Bi-GRU neural network. As
far as the authors are aware, this study is the first to combine
the Bi-GRU and CNN neural networks for truck traffic flow
tasks. +e proposed model has three advantages; firstly, the
impact of the truck traffic flow in the upstream and
downstream sections on the target road section can be
explored using the spatial relationship. +erefore, the road
conditions of the upstream and downstream sections can be
well represented in the proposed model. Secondly, the Bi-
GRU neural network is well capable of mining the temporal
characteristics. +rough the full connectivity layer, the
output result of the spatial relationship is placed in the Bi-
GRU model which can then continue to explore the time
relationship. +irdly, the proposed model is more capable of
expressing the characteristics of truck flow from the traffic
perspective.

3. Data

3.1. Properties of the Road Section. +e data for the period
June 1st to June 5th, 2019, were provided by the traffic
survey in Beijing, China, and contains truck traffic flow as
well as passenger car traffic flow information.+e data were
collected by manual counting methods. +e data were
provided by Beijing Transport Institute, which invited
professional survey companies to conduct data collection
work, and a total of 30 investigators participated in this
work.+e time interval of truck traffic flow is one hour, and
the size of the data in the CSV format is 3.48 GB. As an
important part of Beijing’s northwest freight corridor, the
Sixth Loop Expressway is selected as the research object
and is divided into 1,293 road sections and numbered
accordingly. To consider different scenarios, six road
sections (S1–S6) were randomly selected as target road
sections, as shown in Figure 4.

From Figure 4, it can be seen that S3 and S6 have three
upstream sections and one downstream section, whereas S1,
S2, S4, and S5 each have one upstream section and one
downstream section. +e average daily truck traffic flow of
the selected six target section is shown in Figure 5. It is
known that the hourly distribution of daily truck traffic flow
is different from the distribution of morning and evening
peak flow of passenger cars.+e peak hour of the truck traffic
flow is during 11:00–23:00 and the low peak period is during
0:00–11:00.

Upstream Target section Downstream

(a)

Target section
Downstream-1Upstream-1

Downstream-2Upstream-2

. . . . . .

(b)

Figure 3: Multiple scenarios linking the target section with the upstream and downstream. (a) One upstream and one downstream section.
(b) Multiple upstream and multiple downstream sections.
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+e properties of the six selected target sections are
shown in Table 3. In this context, mean refers to the mean
truck traffic flow in 1 hour. Std refers to the mean standard
deviation. +e mixed ratio refers to the rate of trucks to the
overall traffic flow. Peak mean and peak std refer to the mean
truck traffic flow and standard deviation in peak hours (11:
00–23:00). Low peak mean and low peak std refer to the
mean truck traffic flow and standard deviation in low peak
hours (0:00–10:00).

3.2. Spatial Relationships. To show that the upstream and
downstream sections have a spatial relationship, PCC is
usually applied to study the interaction between sections.
+e PCC is defined as the quotient of the covariance and
standard deviation between the truck traffic flows of two
road sections.+e value of PCC is between −1 and 1.When it
is closer to 1, it indicates that there is a positive correlation
between road sections. +e PCC with the upstream and
downstream sections of the six selected target sections is
shown in Figure 6.

As can be seen from Figure 6, the PCC value is close to 1,
indicating that there is a strong spatial correlation between
the upstream and downstream sections and the target

section. +erefore, there is a certain basis for improving the
accuracy of predicting truck traffic by using the spatial re-
lationship between upstream and downstream sections.

3.3. CC. Using the fuzzy evaluation method, the TPI of six
road sections is obtained as shown in Figure 7.

+e congestion situation in the upstream and down-
stream will affect the flow of the target road section.
However, by calculating the CC, the operating status of the
road section can become well understood, which is helpful
for the prediction of truck flow. Similarly, the CCs of the
upstream and downstream sections of the six sections are
also calculated.

3.4. Evaluation. To analyze the performance of the proposed
model, model training and evaluation of the truck traffic in
the six selected road sections were carried out. +e first four
days of data were used for training purposes, and data from
the last day were used for verification, within which the
Mean Absolute Error (MAE), Mean Absolute Percentage
Error (MAPE), and Root Mean Square Error (RMSE) were
applied as parameters for evaluation.

4. Results

To explore the prediction performance of the M-BiCNN-
GRU model, several baseline models were also trained and
used in predicting truck traffic flows. +ese model include
the following:

(i) BiCNNGRU, which considers spatial relationships
and temporal characteristics.

(ii) M-BiGRU, which considers multifeatures and
temporal characteristics.

(iii) Bi-GRU, which considers temporal characteristics.
(iv) SVR, which considers temporal characteristics.
(v) ARIMA, which considers temporal characteristics.

For the deep learning algorithm, several super-
parameters that affect the performance of the
proposed model need to be discussed; these
superparameters include batch size, hidden unit
size, hidden layer number, time steps, and epochs.
When the values of the evaluation parameter of
MAPE, MAE, and RMSE reach their minimum, the
superparameters are selected as the optimal pa-
rameters. +e learning rate in the study is set to
0.001; the batch size is set to 20. Epochs are 100, 230,
130, 240, 160, and 210, respectively, for the six
sections of S1, S2, S3, S4, S5, and S6, as determined
from multiple iterations of training to find the
optimal parameters.

(1) For the training environment, Keras and Tensor-
Flow provided the deep learning packages, and
Python 3.6 was used as a general-purpose pro-
gramming language. +ese were hosted on a
desktop computer, comprising an Intel Xeon (R)
E5-2640 2.5GHz CPU and 32GB memory.
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Figure 5: +e average daily truck traffic flow.

Figure 4: Truck traffic flow locations.
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Figure 7: +e TPI for the six road sections. (a) S1 (b) S2. (c) S3. (d) S4. (e) S5. (f ) S6.

Table 3: +e properties of the six selected sections.

Section Mean Std Mixed ratio Peak mean Rush std Low peak mean Low peak std
S1 400.84 90.22 0.49 454.79 43.93 251.25 13.88
S2 216.11 38.02 0.42 232.64 25.95 150.00 12.04
S3 124.84 37.91 0.42 143.21 29.17 77.50 11.19
S4 46.21 14.90 0.21 52.21 9.31 20.75 4.02
S5 277.89 75.98 0.43 327.64 22.08 163.25 26.02
S6 182.47 46.67 0.32 210.21 24.04 113.00 15.60
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Figure 6: +e Pearson correction coefficient with the upstream and downstream sections.
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(2) For choosing the optimal hidden units, the evalu-
ation value with different hidden units was com-
pared. Firstly, the hidden units from [5, 10, 15, 30,
50, 100] were tested, respectively. +e results in-
dicated that the best parameter occurs for a unit of 5.
+en the hidden units from [1, 2, 3, 4, 5] were used
in further testing, where it was found that the re-
spective MAPE value for each hidden unit for the
road section S1 is 8.32%, 9.31%, 8.59%, 7.62%, and
9.65%.+e value of hidden unit 4 represented by the
lowest value of MAPE (7.62%) is, therefore, the
optimal parameter of the hidden unit.

(3) For different time steps, the proposed M-BiCNN-
GRU model has different evaluation performances.
+e evaluation values of MAPE, MAE, and RMSE
with different time steps [4, 8, 12, 16, 20, 24] were
tested, and the corresponding evaluation distribu-
tions are shown in Figure 8.

From Figure 8, it can be seen that when the time step is
gradually increased from 4 to 24, the distributions of MAPE,
MAE, and RMSE for road sections S1, S2, S3, S4, S5, and S6
all show a gradually increased trend.When the time step is 4,
the error values of MAPE, MAE, and RMSE are at their
lowest, suggesting that the proposed model has the best
performance and that time step 4 is the optimal parameter.
+at is to say, the best model fit is obtained by learning the
flow of the first 4 hours to predict the flow of the fifth hour.
+e evaluation results of the above six models are shown in
Table 4, and Figure 9.

It can be seen in Table 4 and Figure 9 that the
M-BiCNNGRU model, which combines multifeatures,
spatial relationships, and temporal characteristics performs
better than the baseline models.+e averageMAPE of the six
sections is 7.14, and the prediction accuracy is 92.86%, which
is 2.99%, 4.97%, 7.12%, 13.83%, and 13.14% lower than that
of BiCNNGRU, M-BiGRU, Bi-GRU, SVR, and ARIMA,
respectively. +e improved performance in prediction ac-
curacy of the proposed M-BiCNNGRU model indicates that
the spatial relationships, temporal characteristics, and op-
erational factors with multifeatures are significantly helpful
in predicting truck traffic flow accurately. To further analyze
multifeatures, spatial relationships, and temporal charac-
teristics that contribute to the accuracy improvement, the
authors designed several models with and without single
factors to evaluate the prediction performance.

+e BiCNNGRU model was designed by considering
the factors of spatial relationships and temporal charac-
teristics; its purpose is to explore whether the road oper-
ation factors of multifeatures play a positive role in
improving the prediction accuracy of truck traffic flow.+e
average MAPE value of the BiCNNGRU truck traffic flow
prediction model considering spatial and temporal factors
is 10.13, which is 2.99 higher than the proposed
M-BiCNNGRU model. However, without the road oper-
ation factors of multifeatures, the prediction accuracy re-
duces by 2.99%; hence, the results show that the operation
factors of multifeatures is effective in improving the pre-
diction accuracy of truck flow.

Concerning the M-BiGRU model, it was designed by
considering the factors of temporal characteristics and the
road operation factors of multifeatures; its purpose is to
explore whether spatial relationships of upstream and
downstream sections play a positive role in improving
prediction accuracy. +e average MAPE value of the
BiCNNGRU model is 12.11, which is 4.97 higher than the
proposed M-BiCNNGRU model. +e result shows that,
without the factor of spatial relationships, the prediction
accuracy is reduced by 4.97%. +e reduced accuracy of
4.97% by not considering spatial relationships is higher than
the reduced accuracy of 2.99% by not considering multi-
features. +is result indicates that, compared with multi-
features, the consideration of spatial relationships has a
higher accuracy contribution.

+e Bi-GRUmodel was designed by only considering the
factor of temporal characteristics. It is a deep learning model
which has been widely studied and applied as a result of its
good performance in the mining of temporal characteristics.
However, does this good performance also apply in truck
traffic flow prediction? How much of an increase in truck
flow prediction accuracy can be achieved using the Bi-GRU
model to mine the temporal characteristics compared to the
parameter-type model ARIMA and machine learning model
SVR?

+e average MAPE of the Bi-GRUmodel is 14.26, which
is 6.71 and 6.02 lower than that of SVR model and ARIMA
model, respectively, showing that the Bi-GRU model se-
lected in this paper to capture time characteristics has a good
prediction performance and perform better than the pa-
rameter-type models and machine learning models. It also
indicates that the Bi-GRUmodel can play a fundamental role
in obtaining a high prediction accuracy in the constructed
M-BiCNNGRU model.

Furthermore, the average MAPE of theM-BiGRUmodel
considering multifeatures and temporal characteristics is
12.11, which is 2.14 lower than that of Bi-GRU model only
considering temporal characteristics. It also indicates that
the operation factor of multifeatures is helpful in improving
truck flow prediction accuracy, and the improved prediction
accuracy value is 2.14%. +e average MAPE of the
BiCNNGRU model considering the spatial relationship and
temporal characteristics is 4.13 lower than the Bi-GRU
model only considering temporal characteristics. It also
indicates that the factor of spatial relationship is conducive
to improving the truck flow prediction accuracy, and the
improved prediction accuracy value is 4.13%, which is higher
than the improved prediction accuracy value 2.14% of
multifeatures. +e result shows that the contribution to
improving the prediction accuracy of spatial relationship
factor is greater than the operation factor of multifeatures.

In summary, the proposed M-BiCNNGRU model,
considering three type factors of spatial relationship, tem-
poral characteristics, and road operation multifeatures,
outperforms other models in predicting truck traffic flow.
Besides, for the contribution to improving the prediction
accuracy, the temporal characteristics are the biggest, fol-
lowed by the spatial relationship and then the road operation
factor of multifeatures.
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Figure 8: +e evaluation values of MAPE, MAE, and RMSE with different time steps.

Table 4: Forecasting effect of peak and low peak.

Period Section S1 S2 S3 S4 S5 S6 Mean

Peak
RMSE 28.88 13.68 12.84 3.30 37.40 16.88 18.83
MAE 24.73 11.82 10.14 2.63 32.77 11.62 15.62
MAPE 5.35 5.10 6.73 4.78 9.37 5.26 6.10

Low peak
RMSE 39.23 6.69 12.79 3.90 22.10 10.08 15.80
MAE 32.12 5.20 8.16 3.17 19.43 8.89 12.83
MAPE 11.53 2.79 8.14 10.37 10.31 7.07 8.37

Difference∗
RMSE −10.35 6.99 0.05 -0.60 15.29 6.80 3.03
MAE −7.39 6.63 1.98 −0.54 13.34 2.73 2.79
MAPE −6.18 2.31 −1.42 −5.59 −0.94 −1.81 −2.27

∗Peak value minus low peak value.
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Figure 9: Comparison of prediction performance of various models.
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Figure 10: Comparison of the predicted truck flow of peak and low peak.
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Figure 11: Prediction performance of peak and low peak.

Table 5: +e RMSEs, MAPEs, and MAEs of various models.

Model Evaluation S1 S2 S3 S4 S5 S6 Mean

M-BiCNNGRU Multifeatures/spatial/temporal
RMSE 26.46 18.71 12.82 3.53 26.09 14.74 17.06
MAPE 7.62 5.50 7.25 6.84 9.71 5.93 7.14
MAE 21.96 12.74 9.41 2.83 22.28 10.62 13.31

BiCNNGRU Spatial/temporal
RMSE 42.04 27.05 13.88 8.79 28.82 24.02 24.10
MAPE 8.42 9.95 9.92 12.61 9.16 10.72 10.13
MAE 33.58 21.19 11.69 7.25 24.51 19.71 19.65

M-BiGRU Multifeatures/temporal
RMSE 36.66 26.70 16.87 6.43 23.20 22.88 22.12
MAPE 9.08 12.17 15.03 13.40 9.59 13.41 12.11
MAE 28.43 18.24 13.84 5.08 18.30 17.72 16.94

Bi-GRU Temporal
RMSE 46.60 23.76 14.54 9.03 30.13 24.55 24.77
MAPE 11.47 15.84 15.51 18.67 10.19 13.89 14.26
MAE 38.20 18.80 11.25 7.85 23.11 18.39 19.60

SVR Temporal
RMSE 58.59 49.99 27.18 25.91 51.23 34.04 41.16
MAPE 14.88 21.18 22.14 28.92 15.55 23.15 20.97
MAE 25.02 22.54 19.19 28.10 33.14 19.29 24.55

ARIMA Temporal
RMSE 66.43 48.89 30.00 15.38 50.03 41.74 42.08
MAPE 15.43 20.78 21.46 29.28 16.39 18.33 20.28
MAE 53.20 34.88 23.22 11.32 40.96 29.28 32.14
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5. Discussion

To further discuss the performance of the M-BiCNNGRU
model, the original truck traffic flow is compared with the
predicted truck traffic flow values. At the same time, this
paper divides the day into two periods, low peak period (4:
00–10:00) and peak period (11:00–22:00), and compares the
prediction results of truck traffic flow in the two periods.+e
comparison results are shown in Figure 10.

For an improved quantitative analysis of the truck traffic
flow prediction model in both peak and low peak periods,
MAE, MAPE, and RMSE indexes were also used for eval-
uation. +e results are shown in Table 5.

It can be seen from Figure 10 and Table 4 that the overall
average MAPE of truck flow in the peak period is 2.27 lower
than that in a low peak period.+eMAPE value of the S1, S3,
S4, S5, and S6 road sections in the peak period is 6.18, 1.42,
5.59, and 0.94, respectively. +is means that the prediction
results are more accurate during peak periods than they are
in low peak periods. +e comparison of the evaluation
parameters of the six sections in peak and low peak periods is
shown in Figure 11.

6. Conclusions

+e paper proposes a Multifeatures Spatial-Temporal-Based
model (M-BiCNNGRU) for the accurate forecasting of truck
traffic flow. +e multifeatures include factors such as truck
operational policy, road resistance, truck traffic flow rate,
traffic congestion state, and optimal time delay which were
all incorporated into the model. +e novelty of the model is
that it includes the impact factors of multifeatures, as well as
temporal characteristics and spatial relationships.+emodel
was trained using data from six road sections from a major
expressway network in China collected over a five-day pe-
riod, where the final day’s data were excluded from the
training but were instead employed in verifying the per-
formance of the model. To gain further insight into the
prediction results of the M-BiCNNGRUmodel, five baseline
models, namely, BiCNNGRU, M-BiGRU, Bi-GRU, SVR,
and ARIMA were also applied. +e results show that the
prediction accuracy of the BiCNNGRU model is 89.87%,
which is 4.13%, 10.84%, and 10.15% higher than that of the
Bi-GRU, SVR, and ARIMA models. +is indicates that the
prediction performance of truck traffic flow can be improved
by increasing the spatial relationship between upstream and
downstream sections. +e prediction accuracy of the
M-BiGRU model is 87.89%, which is 2.15%, 8.86%, and
8.17% higher than that of the Bi-GRU, SVR, and ARIMA
models. +is indicates that the incorporation of multi-
features can help to improve prediction accuracy. +e
prediction accuracy of the M-BiCNNGRU is 92.86%, which
is 13.83% and 13.14% higher than that of the SVR and
ARIMA models with single temporal characteristics. In
summary, the proposed model based on multifeatures,
temporal characteristics, and spatial relationships outper-
forms baseline algorithms as demonstrated in this paper.
However, in this paper, the contributions of each individual
feature to the overall prediction effectiveness were not

specifically analyzed but it is suggested that this could form
part of a future study to determine the influence of each
feature in terms of weighting factors.
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Emission around intersections has become an issue in the urban traffic network. ,is paper aims to investigate the impact of
pedestrian and nonmotorized vehicle violations on emissions at mixed-traffic flow intersection based on the volumes of vehicles,
nonmotor vehicles, and pedestrians. Also, it focuses on the arterial and collector intersections with high vehicle volume and
limited space. Running red light and crossing intersection diagonally are two critical violations, accounting for 91.75% of effective
violations (interference with vehicles’ operation). In this context, a violation blocking model is developed to estimate the blocking
probability for each vehicle based on the volumes of pedestrians and nonmotor vehicles. ,e model includes two scenarios. (1)
,rough phase: the violation blocking model of running red light is developed based on the survival curve (the relationship
between waiting time and running red light probability). (2) Left-turn phase: the violation blocking model at this phase includes
two parts: (i) crossing the intersection diagonally model is developed for the first vehicle and (ii) running red light model is
developed for subsequent vehicles.,e existing emission model can estimate the emissions based on the blocking positions. In the
case study, emissions increase with the vehicle volume approaching the saturated flow rate and the volumes of nonmotor vehicles
and pedestrians increasing. Results show that the maximum emission increase of CO (carbon monoxide) for through phase and
left-turn phase can reach 16.7% and 36.4%.

1. Introduction

Emission around intersections has become an issue in the
urban traffic network. [1], especially in densely populated
metropolitans. Previous studies illustrate that high emis-
sions mainly resulted from the stop-and-go vehicle activities
at the intersection [2–4], which further lead to high pollutant
exposure pedestrians around the intersections [5].

Violation behaviors frequently exist in developing
countries such as China [6]. Frequent violations can not only
merely intensify the traffic risk but also increase the stop-

and-go activities (see Figure 1). Few studies have investi-
gated the impact of violations of pedestrians and nonmo-
torized vehicles on the vehicle emissions at real world
intersections. A violation blocking model based on real
world data is recently developed instead of hypothetical
violations [7]. In this paper, the main problem is that how
many emissions were caused by pedestrian and nonmo-
torized vehicle violations based on the volumes of vehicles,
nonvehicles, and pedestrians in the real world.

A lot of research focused on intersection emissions,
which could be summarized into six categories: the influence
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of emissions caused by traffic congestion, single point signal
timing [8–10], signal coordination between intersections
[2, 11, 12], intersection shape [13], road characteristics [14],
and traffic behaviour. And existing research related to in-
tersection emissions can be divided into two categories: (1)
intersection emissions estimation and (2) traffic congestion
and traffic behaviour at the intersection.

In the existing studies, Rakha et al. [15] studied the
impact of acceleration and deceleration behavior at inter-
sections on emissions and found that emission was more
sensitive to cruise under the same speed levels. Papson et al.
[16] estimate emissions in a combination with the average
emission rate at the four driving modes at signalized in-
tersections. However, the aggregation of four driving modes
cannot reflect trajectory characteristics. Zhang et al. [17]
developed SIDRA model for the emission estimation at the
intersection. Gokhale et al. [18] developed a CO concen-
tration model based on the traffic flow pattern at intersec-
tions. Braven et al. [19] estimated emissions based on fuel
consumption and emission data obtained from an existing
emission inventory dataset.

In terms of congestion, Stevanovic et al. [20] suggested
that the moderate speed, shortest delays, and fewest stops are
the best vehicles’ operation of traffic on arterial roads for
emissions. Frequent stops and accelerating at intersections

can result in high fuel consumption. ,e accelerations lead
to higher fuel consumption rates compared to idling or
deceleration [20]. Many researchers studied determining the
factors affecting the emission levels at intersections. ,ese
studies show that nonsmooth operations and stop-and-go
activities are the most important factors for high emissions
at urban intersections [21, 22]. More time was spent in
acceleration at intersections because of stop-and-go activi-
ties. ,e vehicle’s engine power operates at a higher level
during acceleration, and it causes excessive emissions
[23, 24].

In terms of traffic behaviour, Sun et al. [25] quantified
the effects of Advanced Traffic Signal Status Warning Sys-
tems (ATSSWS) on driving behaviour. ,e systems can
reduce traffic emissions at intersections by reducing un-
necessary brakes and accelerations. Przybyla et al. [26]
studied the changes of vehicle trajectory and follow-up laws
under the distracted driving behaviour.,e following model
of the front and subsequent vehicles was developed under
the distracted behaviour. Mudgal et al. [27] investigated the
impact of variability of driving behaviours on vehicle
emissions at the roundabout intersection.

However, the quantification of the impact of real-world
violations (based on the volumes of vehicle, nonmotor ve-
hicle, and pedestrian) on the operation and emissions was

(a) (b)

(c) (d)

Figure 1: Violations at signalized intersections under mixed-traffic in Beijing. (a) Running red light at the through phase. (b) Running red
light at the left-turn phase. (c) Crossing the intersection diagonally. (d) Intruding into the lane.
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not investigated in the existing studies. ,erefore, this paper
develops a violation blocking model to estimate vehicles’
operation and emissions at the protected intersections of
arterials and collectors.

2. Materials and Methods

,is paper includes three steps. (1) ,e first is determining
the arterial and collector intersections as research object by
comparing the violations’ frequency of pedestrians and
nonmotorized vehicles of different types of intersections and
signal control. (2) Second is developing the violation
blocking model according to the characteristics of the vi-
olations. ,e blocking probability for each vehicle can be
estimated based on the volumes of pedestrians and non-
motor vehicles. (3) ,ird is estimating emissions based on
blocking positions and average lost time (see Figure 2) [7].

2.1. Data Source. ,e paper includes two data sources. (1)
Field survey data is used for analysing vehicle behaviors and
developing violation mode under the violation at intersec-
tions. (2) Emission data is used for quantifying emission.

2.1.1. Field Survey Data. ,e video data of 5 signalized
intersections under mixed-traffic flow were collected in
Beijing, China, 2017. ,e data includes intersection attri-
butes and operation data listed as follows:

(1) Intersection attributes

(a) Channelization information
(b) Signal information

(2) Operation data

(a) Fundamental data: this includes two parts: (1) the
volume of vehicle, nonmotor vehicle, and pe-
destrian and (2) the time headway of all vehicles
with a precision of 0.02

(b) Trajectories data: ten vehicles’ trajectories, which
are interfered by violations, are collected

(c) Time headway: 388 groups of time headway were
collected with a precision of 0.02 s under the
influence of violations

2.1.2. Emission Data. ,e vehicle emissions data are derived
from local emission rates model for light-duty gasoline
vehicles [28, 29]. ,e emission standard of China III is
selected to provide the emission rates for LDVs. ,e VSP
(Vehicle Specific Power) is estimated after the data quality
control [30, 31].

,e emission factors are estimated with the following
procedures based on idling time and the number of stops [7]:

(1) Eighty-five VSP distributions are developed
according to the number of stops, idling times, and
divisions upstream and downstream (see Table 1);

(2) ,e average emission factors in each VSP bin are
estimated and the emission factors in 85 intervals are
estimated, which are corresponding to each

operation state of intersection vehicles [7]. ,e
emissions can be quantified based on the idling time
and number of stops of vehicles before and after
violations.

2.2. Determination of Study Object. In Beijing, the arterial
roads have abundant traffic volume. ,erefore, violation
pyramids are developed based on three types of intersections
(arterial and arterial, arterial and collector, and arterial and
branch) (see Figure 3). Taking pedestrian as an example, the
pyramid of violations is divided into three levels: (1) pe-
destrian volume, (2) violation volume, and (iii) effective
violation (interference with vehicles’ operation). Effective
violation is defined as the violation which can interfere with
the vehicles’ operation. In the real world, the arterial and
collector intersections have a higher proportion of the ef-
fective violations, due to the high vehicle volume and limited
space (see Figure 3). ,ere are more conflicts and violations
between the three components (vehicle, nonmotor vehicle,
and pedestrian) in limited space. ,erefore, this paper aims
to investigate the impact of pedestrian and nonmotorized
vehicle violations on emissions at arterial and collector
intersections.

At mixed-traffic flow intersection, the category of vio-
lations is diverse and their occurrence probability is dif-
ferent. Running red light and crossing the intersection
diagonally account for 91.75% of effective violations.
,erefore, the object of this research is running red light and
crossing the intersection diagonally at arterial and collector
intersections.

2.3. Impact of Pedestrian and Nonmotorized Vehicle Viola-
tions on Vehicle Trajectories. Figure 4 shows the vehicle
trajectories which are affected by pedestrian and nonmo-
torized vehicle violations in which x-axis is time, and y-axis
is distance. ,e positive ordinate is the downstream the
intersection, and the negative ordinate is the position of
queuing vehicles. ,e red point represents the position and
time of the violation. τ is the sum of driver’s reaction time
and braking time, and Sτ is the corresponding distance. ,e
dotted lines and solid lines with the same color indicate the
same vehicle before and after violations, respectively (see
Figure 4).

,e vehicle fleet affected by pedestrian and nonmotor-
ized vehicle violations includes two types. (1) ,e first is
idling vehicles (see Figure 4(a)). ,e trajectory is similar
regardless of violations. When idling vehicles delay a start-
up by violations, the fleet’s idling time and the number of
stops will increase. (2) Second is running vehicles (see
Figure 4(b)). ,e impact of violations on the trajectories of
running vehicles is different. ,e first affected vehicle has
three processes: deceleration, idling, andacceleration. ,e
fluctuation of the fleet is gradually transmitting to the
subsequent vehicles and becoming smaller. ,e following
vehicles will have longer idling time such as the fifth car if the
fluctuation is small enough. ,en, the subsequent vehicles
will cross the intersection with the saturated headway.
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2.4. Violation Blocking Model. In order to estimate the
blocking probability for each vehicle, a violation blocking
model is developed based on the volumes of vehicles,
nonmotor vehicles, and pedestrians. It is a basis for the
estimation of the emission increase of violations.

At the intersection of arterial and collector protected,
straight and left-turn vehicles cross the intersection at
different time and have different violation characteristics.
,erefore, this section includes two scenarios: (1)
through phase and (2) left-turn phase. All the violation

blocking models are developed based on the 55-cycle data
of arterial and collector intersections (Anli and Huizhong
North have 25 cycles, and Qinian and Zhushikou have 30
cycles).

2.4.1. 9rough Phase. Running red light is the main viola-
tion of through phase, because the diagonally crossing
nonmotor vehicles can cross the intersection twice legally.
,e 95.6% of red light runners will lead the head vehicle to

Table 1: Information of the eighty-five VSP distributions [7].

,e serial number ,e spatial position Number of stops Idling time(s)
1 Downstream intersection 0 0
2 Upstream intersection 0 0–2
3 Upstream intersection 1 2–5
4 Upstream intersection 1 5–10
5 Upstream intersection 1 10–15
⋮
30 Upstream intersection 1 135–140
31 Upstream intersection 1 140–145
32 Upstream intersection 1 145–150
33 Upstream intersection 2 10–15
34 Upstream intersection 2 15–20
35 Upstream intersection 2 20–25
⋮
83 Upstream intersection 2 260–265
84 Upstream intersection 2 265–270
85 Upstream intersection 2 270–275
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delay a start-up or restart; thus, the blocking position can be
regarded as the head vehicle at the through phase.

Huang et al. [32] have developed a survival curve to
describe the relationship between the probability of running
red light and the waiting time.

,e blocking probability at the through phase can be
estimated based on the probability of running red light and
the probability of the fleet being blocked under the running
red light condition.

,e violation blocking model at the through phase in-
cludes three parts: (1) correction coefficient is defined as the
probability of vehicle fleet being affected when pedestrian
and nonmotorized vehicle violations occur; k equals 0.402
according to the collected data; (2) the volume of pedestrians
and nonmotor vehicles is used to estimate how many pe-
destrians arrive at the waiting area during the specific time;
(3) pedestrians and nonmotor vehicles’ survival curve is used
to estimate how many pedestrians will run red light, and the
violation blocking model at the through phase is developed
as follows:

Pthrough � 1 − Pped · Pnon,

Pped � 􏽘
θ

i�1
k · C

i
θ · a

i
ped · 1 − a

i
ped􏼐 􏼑
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i
􏼔 􏼕,
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i
θ · a

i
non · 1 − a

i
non􏼐 􏼑

θ− i
· 1 − 1 − βnon( 􏼁

i
􏽨 􏽩,

aped �
Vped

C
,

anon �
Vnon

C
,

(1)

where Pthrough is the probability that the vehicle will be
affected in the through phase. Pped and Pnon are the violation
probability of pedestrian and nonmotor vehicles. K is cor-
rection coefficient, defined as the affected probability of
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Figure 4: Vehicle trajectories affected by the violation. (a) Idling vehicles. (b) Running vehicles.
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vehicle fleet when violations occur; k� 0.402. θ (s) is the
effective interval of nonmotor vehicle and pedestrian; ef-
fective interval is the crossing time of pedestrian and
nonmotor vehicle. I is used to describe that there are i
pedestrians running red light within the time θ. aped and anon
are the probability of reaching pedestrians per second. βped
and βnon are the probability of running red light when
pedestrians and nonmotor vehicles arrive. Vped and Vnon
(veh) are the volumes of pedestrian and nonmotor vehicle in
every signal period. C (s) is signal cycle time.

,e two intersections’ relative errors are 4.1% and 8.4%,
respectively, after inputting the actual data into the model.
,e result is acceptable due to the randomness of violation
behaviors (see Table 2).

2.4.2. Left-Turn Phase. At the left-turn phase, the vehicle
fleet can be blocked anywhere because the runners can insert
the fleet easily due to the lower speed and fewer lanes. ,e
violation blocking model at the left-turn phase includes two
scenarios: (1) the first vehicle affected by crossing the in-
tersection diagonally and (2) the subsequent vehicles af-
fected by running red light.

Both pedestrians and nonmotor vehicles have violation
behaviors. However, few pedestrians will have effective vi-
olations which can interfere with vehicle fleet at the left-turn
phase, due to the poor mobility of pedestrians and the long
distance between pedestrians and vehicles. ,us, the non-
motorized vehicle is the main research object at the left-turn
phase.

(1) Violation Blocking Model for Crossing the Intersection
Diagonally. ,e violation blocking model for crossing the
intersection diagonally has remarkable scale effect on vehicle
fleet. ,e head vehicle will delay a start-up or restart when
several nonmotor vehicles cross the intersection diagonally
together.

Based on the above analysis, the model for crossing
intersection diagonally includes two steps: (1) the estimation
of violation probability based on the volumes of nonmotor
vehicles and (2) the estimation of probability that the volume
of nonmotor vehicle crossing intersection diagonally ex-
ceeds specific scale.

,e violation blocking model for crossing the inter-
section diagonally is fitted by the logarithm model based on
the volumes of nonmotor vehicles, and the R2 equals 0.826.

P Nnon( 􏼁 � 0.1641 · ln Nnon( 􏼁 − 0.0978 Nnon ≥ 0,

P Nnon( 􏼁≤ 1,

(2)

where P (Nnon) is the probability of crossing intersection
diagonally. Nnon is the number of nonmotor vehicles that
want to arrive the diagonally opposite of intersections when
the turn-left light is on.

,e nonmotor vehicles will affect the start of the left-
turning fleet, when the number of nonmotor vehicles
crossing the intersection diagonally reaches a specific scale.
,e probability model of the number of violations exceeds a
specific scale that can be described as follows:

Pleft,diagonally Nnon( 􏼁 � 1 − 􏽘

Nscale−1

i�0
C

i
Nnon

P Nnon( 􏼁
i
· 1 − P Nnon( 􏼁􏼂 􏼃

Nnon− i
, (3)

where Pleft,diagonally is the probability of the head vehicle
affected. Nscale is the critical scale of violations, Nscale � 6.

,e two intersections’ relative errors are 0.32% and
19.56%, respectively, after inputting the actual data into the
model (see Table 3).

(2) Violation Blocking Model for Running Red Light. Non-
motor vehicles, which run the red light during the all-red
time, are always besides the left-turn fleet when the left-turn
light turns green. And red light runners will only affect the
subsequent vehicles due to the existence of the left-turn
waiting zone. ,e existing study indicates that the blocking
probability is increasing with time headway [33] (see Ta-
ble 4). ,e violation blocking model for running red light at
the left-turn phase includes two steps: (1) developing the
Gauss distribution of the time headway and (2) estimating
the corresponding blocking probability under the specific
time headway.

,e probability model of time headway is fitted by Gauss
model, and R2 equals 0.782. ,en, the corresponding
blocking probability can be estimated under the specific time
headway.

P(t) � 0.0077 + 0.0521 · e
−2.3222·(t−2.2864)2

,

Pleft,run(t) � t⟶ G(t),
(4)

where P (t) means that the probability of the time headway
is t. T (s) is time headway. Pleft, run (t) is the blocking
probability of running red light. G (t) is the correspon-
dence between the time headway and the blocking
probability.

2.4.3. Summary of Violation Blocking Model. ,e model’s
purpose is to estimate the blocking probability for each
vehicle based on the volumes of nonmotor vehicles and
pedestrians. ,e violation blocking model includes two
scenarios: through phase and left-turn phase.

At the through phase, the main pedestrian and non-
motorized vehicle violations are running red light, which
will lead the head vehicle to delay a start-up or restart. ,e
violation blocking model at through phase includes two
input parameters: (1) volumes of pedestrian and nonmotor
vehicle and (2) the survival curve which can quantify the
relationship between the probability of running red light and
the waiting time.

6 Journal of Advanced Transportation



At the left-turn phase, crossing the intersection diago-
nally affects the head vehicle’s operation, and running the
red light affects the subsequent vehicles’ blockage. ,e vi-
olation blocking model at left-turn phase includes three
input parameters: (1) volumes of pedestrian and nonmotor
vehicle, (2) the probability model of running diagonally, and
(3) the correspondence between the time headway and the
blocking probability.

2.5. Emission Model for Violation Blocking. ,e existing
emission model can estimate the emissions based on the
blocking positions. It includes two parts [7]. (1) ,e linear
emission model is developed considering the number of
stops and idling times, which is used for estimating emis-
sions under nonviolation and violation conditions. (2) Vi-
olation emission model is developed clearly at two levels:
trajectory level and traffic flow level (see Figure 5).

At the trajectory level, the study focuses on the first four
vehicles affected by pedestrian and nonmotorized vehicle
violations. First, the trajectory model of the head car is de-
veloped. ,en, the Gipps’ car-following model is also applied
for other three vehicles. Figure 5(a) shows the trajectories
under the impact of pedestrian and nonmotorized vehicle
violations in which x-axis is time, and y-axis is distance. ,e
red point represents the location and time of the violation. τ is
equal to the sum of driver’s reaction time and braking time,
and Sτ is the corresponding distance. ,e first affected vehicle
has three processes: deceleration, idling, and acceleration.,e
fluctuation of the fleet is gradually transmitting to the

subsequent vehicles and becomes smaller. When the fluctu-
ation is small enough, the following vehicles will have longer
idling time such as the fifth car.,en, the subsequent vehicles
will cross the intersection with the saturated headway. ,e
emissions can be estimated based on the speed and accel-
eration at 1 second interval (see Figure 5(a)).

At the traffic flow level, the study focuses on the sub-
sequent vehicles after the first four vehicles, and the study is
divided into unsaturated and saturated scenarios. It is as-
sumed that the total lost time of the first four effected ve-
hicles is 4 s. In the unsaturated scenario, the subsequent
vehicles’ idling time increases by 4 s, and the number of stops
is still one. In the saturated scenario, two vehicles will
transform from one stop to two stops due to the increase of
idling time. And the two-stop vehicles’ idling time increases
by 4 s. ,e emissions can be estimated according to the
developed linear emission model, whose input parameters
are the number of stops and idling times (see Figure 5(b)).

,e sum of the emissions on these two levels is the total
emissions at intersections affected by pedestrian and non-
motorized vehicle violations, which can be estimated as in
the following equation [7]:

AE �
􏽐

e+3
x�eEFincreased,trajectory,x + 􏽐

n
y�e+4 EFincreased,flow,y􏼐 􏼑 · D

􏽐
n
i�1 EFupstream,i + EFdownstream􏼐 􏼑 · D

− 1

(5)

where AE (%) is the increase of emissions. E is the eth vehicle,
which is the location of the first affected vehicle. N is the
vehicle number of the cycles. EFincreased,trajectory,x (g/km) is
the increased emission factors of the first four affected ve-
hicles. EFincreased,flow,y (g/km) is the increased emission
factors of the subsequent vehicles after the first four affected
vehicles. EFi (g/km) is the normal emission factors of ve-
hicles. EFupstream and EFdownstream (g/km) are the emission
factors at upstream and downstream the intersection. D
(km) is the distance of the study range, which is 0.2 km.

3. Case Study

Numerical simulations are designed in the case. Based on the
violation blocking model and the emission model, the im-
pact of pedestrian and nonmotorized vehicle violations on
intersection emissions can be quantified based on the

Table 3: Cross intersection diagonally at the left-turn phase: model error.

Intersection name
Blocking probability

Absolute error (%)
Actual blocking (%) Violation blocking model (%)

Anli and Huizhong North 12.00 12.32 0.32
Qinian and Zhushikou 46.67 65.23 19.56

Table 4: Gap accepted by nonmotor vehicles [33].

Time
headway(s) Refuse block Accept block Accept proportion (%)

1.5–2.0 41 0 0
2.0–2.5 163 16 9
2.5–3.0 111 37 25
3.0–3.5 92 48 34
3.5–4.0 57 82 59
4.0–4.5 33 90 73
4.5–5.0 10 56 85
5.0–5.5 8 96 92
5.5–6.0 0 61 100

Table 2: Running red light at the through phase: model error.

Intersection name
Blocking probability

Absolute error (%)
Actual blocking (%) Violation blocking model (%)

Anli and Huizhong North 53.3 57.4 4.1
Qinian and Zhushikou 60.6 69.0 8.4
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volumes of vehicles, nonmotorized vehicles, and pedes-
trians. ,e numerical simulation object of the case is the
arterial (north-south) direction of the intersection (see
Table 5). ,e five simulation conditions are listed as follows:

(1) Violation average lost time is 5.52 s
(2) ,e research range is 200 meters around the

intersection
(3) ,e subject of the simulation is all the vehicles ar-

riving at the research scope
(4) ,e number of pedestrians and nonmotor vehicles is

assumed to be the same
(5) ,e max number of stops is two times

Repetitive simulations are really necessary due to the
randomness of violations. ,e average increase of 50 groups
simulations can improve the simulation accuracy.

4. Results and Discussion

,e emission increase of pedestrian and nonmotorized
vehicle violations has x-axis indicating the pedestrian/
nonmotor vehicles volume and y-axis indicating the vehicle
volume (see Figure 6).

Emissions increase with the vehicle volume approaching
the saturated flow rate and the volumes of nonmotor ve-
hicles and pedestrians increasing. ,e maximum emission
increase of CO for through phase and left-turn phase can
reach 16.7% and 36.4%, as shown in Table 6.

,e emission increase of left-turn phase is higher than
that of the through phase, because the blockings have a
greater impact on the left-turn phase due to the shorter green
time.

As the volume of pedestrians and nonmotor vehicles’
increasing, the emission increase has two processes with the
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Figure 5: Vehicle characteristics affected by pedestrian and nonmotorized vehicle violations. (a) Trajectory level. (b) Traffic flow level. [7].
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specific number of vehicles: (1) rising and (2) stable. ,e
violation probability is relatively stable when pedestrians
and nonmotor vehicles’ volume are at a high level.

As the volume of motor vehicles’ increasing, there are
three periods of the emission increase. (1) ,e first is rising
slowly. Before the traffic flow reaches the saturated flow
rate, there is only one stop regardless of the violation; thus,
pedestrian and nonmotorized vehicle violations will only

increase the idling time. (2) Second is rising rapidly. When
the vehicle approaches the saturated flow rate, vehicles
transform from one stop to two stops due to pedestrian and
nonmotorized vehicle violations. (3) ,ird is declining
steadily. ,e emission increase will decline steadily when
the volume of vehicles exceeds the saturation flow rate. ,e
proportion of the vehicles, which transform from one stop
to two stops because of pedestrian and nonmotorized
vehicle violations, reduces. ,e proportion of the vehicles,
which always stops two times regardless of violation, is
increasing.

5. Conclusions

,is paper studies the impact of pedestrian and nonmo-
torized vehicle violations on emissions at arterial and col-
lector protected intersections in the real world. First, the

Saturation flow rate

Vehicle flow = saturation flow rate

780

760

740

720

700

680

660

640

620

600

Ve
hi

cle
 (v

eh
/h

/la
ne

)

0 100 200 300 400 500
Pedestrian/non-motor vehicles

0.16

014

0.12

0.1

0.08

0.06

0.04

0.02

0

0
2
4
6
8

10
12
14
16
18

Em
iss

io
n 

in
cr

em
en

t (
%

)

2 4 6 8 10 12 14 16 18 20 22 24 26 28 300
Pedestrian/non-motor vehicle number (ped/h)

(a)

Saturation flow rate

Ve
hi

cle
 (v

eh
/h

/la
ne

)

0 100 200 300 400 500
Pedestrian/non-motor vehicles

360

350

340

330

320

310

300

290

280

270

260

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0

0
5

10
15
20
25
30
35
40

Em
iss

io
n 

in
cr

em
en

t (
%

)

2 4 6 8 10 12 14 16 18 20 22 24 26 28 300
Pedestrian/non-motor vehicle number (ped/h)

(b)

Figure 6: Emission increase of CO after pedestrian and nonmotorized vehicle violations based on the volumes of vehicles, nonmotor
vehicles, and pedestrians. (a) ,rough phase. (b) Left-turn phase.

Table 6: Maximum emission increase of pedestrian and nonmo-
torized vehicle violations.

Pollutant ,rough phase (%) Left-turn phase (%)
CO2 32.6 66.6
CO 16.7 36.4
NOX 20.1 47.5
HC 28.1 59.2

Table 5: Signal and channelization information of case intersection [7].

Signal information Channelization information

Phase Green Yellow All red Direction
Lane number

North-south straight 74 3 2 Straight Left Right
North-south left-turn 42 3 2 North 3 1 1
East phase 34 3 2 South 3 1 Straight-right
West phase 28 3 2 East 0 1 Straight-right
Cycle time 198 West 1 1 Straight-right
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characteristics of violations are compared under different
types of intersections and violations. Second, violation
blocking model is developed to evaluate the blocking po-
sition based on the volumes of vehicles, nonmotor vehicles,
and pedestrians. Finally, a numerical simulation is con-
ducted to evaluate the impact of pedestrian and nonmo-
torized vehicle violations on the emissions based on the
existing study. Main conclusions can be summarized as
follows:

(i) ,e arterial and collector intersections have a higher
proportion of effective violations due to the high
vehicle volume and intersection’s limited space.
Running red light and crossing intersection diag-
onally are two typical violations at the arterial and
collector intersection, which occupy 91.75% of ef-
fective violations.

(ii) ,e proposed violation blockingmodel based on the
volumes of vehicles, nonmotor vehicles, and pe-
destrians can be used for estimating the blocking
probability for each vehicle at the through phase and
left-turn phase.

(iii) ,e variation of emissions is significant based on the
volumes of vehicles, nonmotor vehicles, and
pedestrians:

(a) Emissions increase with the vehicle volume
approaching the saturated flow rate and the
volumes of nonmotor vehicles and pedestrians
increasing. ,e maximum emission increase of
CO for through phase and left-turn phase can
reach 16.7% and 36.4%.

(b) As the volume of pedestrians and nonmotor
vehicles’ increasing, the emission increment has
two processes under the specific volume of ve-
hicles: (1) rising and (2) stable. ,e blocking
probability is relatively stable when pedestrians
and nonmotor vehicles’ volume are at a high level.

(c) Emission increase is increasing as the vehicle
volume is approaching the saturated flow rate.
,erefore, as the increasing of the vehicle vol-
ume, the emission increase has three processes:
(1) rising slowly, (2) rising rapidly, and (3)
declining steadily.

,is paper develops a method to quantify the impact of
pedestrian and nonmotorized vehicle violations on emis-
sions at mixed-traffic flow signalized intersections. Further
studies would be conducted on the general model, distri-
bution of lost time of different violations, and red light
pedestrians at left-turn phase.
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After the BOTroad operation contract expires, generally, the road will be transferred to the government, and then the government
operates the road independently without charging costs from its users. Facing the huge amount of the operation cost, Chinese
government tends to continue to charge the road users to guarantee the high quality of road operation.*en, the government will
have to decide whether a private firm or government itself would be suitable to operate the road. Amodel is presented for decision-
making through balancing interests between the government and the private firm with an introduction of an intermediate
variable, i.e., bidding price.*ree scenarios are investigated in the model, including the optimization of government operation, the
optimization of private firm operation, and government operation with an improper decision of the intermediate variable.
Improper intermediate variable will result in a higher toll charged by the government than by a private firm. *e method of
avoiding an improper decision is investigated. *e result shows that the intermediate variable should be determined to be the
government operation cost, based on which the private operator could be chosen, if available. With consideration of the private
operator’s profit to be guaranteed by the government, the maximum subsidy should be equal to the minimum private operator’s
profit to be disclosed when the contract is signed.

1. Introduction

Due to the tight government budget, a lot of transportation
facilities, especially highways, were built in the build-
operate-transfer (BOT) mode in the past forty years. At
present, more and more BOT contracts for the operation of
roads have expired or will be going to expire.

When the roads previously operated in the BOT mode
are transferred to the government, it is usually assumed that
they will become public roads, and the government will take
over the responsibility of operating and maintaining these
roads with its own budget. In fact, the operation cost (OC)
including but not limited to the maintenance cost is much
less than the initial construction cost of the roads. In general,
no toll will be charged for the public roads. In fact, in order
to guarantee the standard of the service relating to the road
operations, the government needs to invest heavily to cover
the OC. Due to the tight fiscal budget and for decreasing the

government financial burden, continuing tolling after the
transfer of the roads becomes a logical decision and, to some
extent, a universal operation mode. In fact, Chinese gov-
ernment intends to charge the fees for these roads [1].
Chinese government could decide either to charge in its own
name or entrust a private firm with this task.

Based on the above description, the road outside the
BOT concession period is referred to as the public toll road
(PTR) hereinafter, and the toll will be charged continuously
to make up the OC. Tan et al. [2] and Niu and Zhang [3]
pointed out that normally, a private firm would define the
whole road life cycle as the BOT concession period in the
BOT contract. However, it is not the case in China. All the
BOT roads will have to be transferred to the government
when the contracts expire. In this paper, we assume that PTR
begins a new period after the road has been transferred to the
government. *e road life cycle, including the BOT con-
cession period and PTR period, is illustrated in Figure 1.
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*ere are numerous studies on the BOT road con-
struction and operation [2–12]; however, few researchers
consider the case after the roads are transferred to the
government. To our best knowledge, the influence of OC
during the PTR period has not been intensively studied
yet. *is paper aims to investigate whether the govern-
ment or a private firm should operate the road under the
charge of road toll if the government decides to charge to
compensate the OC. *is paper comes up with a new
concept compared with previous studies concerning the
BOT road. Previous research studies generally focus on
the selection of the road operator among private firms in
the BOT mode. *is paper will explicitly examine the
selection mechanism to determine whether the govern-
ment or a private firm will operate the road under the
charge of road toll during the PTR period. Note that the
revenue collected from road users will be used to com-
pensate the OC, which is different from traditional pricing
scenarios such as tolling for the return of the loan (BOT
and public-private-partnership).

Referring to Shi et al.’s study [13], we regard that OC is
composed of two parts: the demand-related OC and ca-
pacity-related OC. *e demand-related OC denotes the
cost relating to traffic demand; the capacity-related OC
denotes the cost relating to the capacity of the road, in-
cluding but not limited to the maintenance cost. *en, we
introduced an intermediate variable presented by the
government in the bidding document, which serves as
perfect information to both government and private firms.
*e government and private firms are fully aware of their
respective OCs, while the government is not clear about the
potential profit to be earned by private firms. We consider
the intermediate variable as crucial, based on which we
studied the case by analyzing the relationship of the in-
termediate variable, OC of the private firm, and that of the
government. *e government may determine an improper
intermediate variable based on the limited information. In
contrast, we provide an optimal solution that the gov-
ernment sets its anticipated operation cost as the inter-
mediate variable.

*e remainder of the paper is organized as follows:
Section 2 reviews the previous studies relating to toll road
operation. Section 3 introduces the basic notations and

assumptions necessary to our analysis model. Section 4 looks
into the issue whether the government or a private firm is
proper to operate the PTR under the condition that the toll is
charged if the government decides to collect the toll to cover
the OC. Section 5 investigates the optimal solution to be
adopted by the government. Finally, Section 6 concludes this
paper.

2. Literature Review

Literature on auction mechanisms of the BOT project is
closely related to our research. *ese studies can let the
government select the operator from several private firms
efficiently. *e least-present-value-of-revenue (LPRV)
auction mechanism is used on highway franchise. According
to auction theory [14], LPRVmechanism equaled to a type of
auction: the first-price sealed-bid where the winner was the
firm who offered the lowest bid for total revenue. Engel et al.
[5] presented a framework to evaluate different awarding
mechanisms for the franchise contract, and based on the
LPRV auction mechanism, they presented a simple auction.
Furthermore, Engel et al. [15] showed that the commonly
used fixed-term contract of franchise highway did not al-
locate the demand risk optimally and then proposed a new
auction mechanism for the franchise highway based on the
LPRV mechanism.

On the variable-term-based concept [5], Rus and
Nombela [16] pointed out that if operation cost was not
negligible, the LPVR mechanism would not guarantee the
best concessionaire; then, they proposed the least-present-
value-of-net-revenue (LPRNV) mechanism which required
private firm making offers on total revenue, maintenance
costs, annual operation and routine maintenance cost, and
so on; and this mechanism eliminated the demand risk
effectively. Based on a flexible-term contract and bidi-
mensional bids for maintenance costs and total net revenue,
Nombela and de Rus [17] proposed a new franchising
mechanism, comparing with fixed-term concessions, which
could promote the selection of efficient concessionaires
through eliminating the traffic risk. Verhoef [18] investi-
gated welfare impacts of franchise regimes for congestible
toll roads and found that patronage-maximizing auction was
not optimal when considering the second-best network

BOT concession period PTR period

End of the BOT concession period,
namely, the private firm transfers the

road to the government
End of the public road lifePrivate firm constructs

the BOT road initially

The road begins a new road life 
under the PTR period

Private firm operates the road 
during the BOT concession period

The entire life cycle of the road

Figure 1: Relationship of the BOT concession period and PTC period.
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aspects. Ubbels and Verhoef [19] looked into how to get the
desired welfare through analyzing the auction rules which
were set by the government in the process of bidding and
found that a bid with minimal price on the toll road would
lead to satisfying results for unsubsidy auction; however,
considering subsidies, the best bid would appear to involve
the minimum generalized travel costs. van den Berg [20]
investigated private supply of two congestible infrastructures
under four market structures including a monopoly and
three duopolies that differed in how private firms interact
with each other and found that a duopoly could lead to a
different rule of capacity than the first-best one which dif-
fered from the duopoly with the facilities.

However, all the above studies focus on the BOT road
operation as well as how to choose a private road operator.
Any existing selection mechanisms decide a private road
operator without considering the government as one of the
potential road operators. *erefore, compared to the pre-
vious studies, we investigate a mechanism to select the best
party to operate the road during the PTR period among the
government and private firms.

3. Notation and Assumptions

As mentioned above, we are aware that Chinese government
will have to decide whether to collect the toll in its own name
or to entrust a private firm with this task. Furthermore, we
assume that the PTR is the unique one connecting two
neighboring cities, and the private firms are able to operate
the road in a more efficient and profitable way than the
government. Besides, we further assume that the social
welfare for the public and the private firm’s profit derived
from operating the PTR are functions of the toll pricing and
the road capacity.

Let v≥ 0 and c≥ c1 be the travel demand and road
capacity, respectively, which are measured by the number
of vehicles per unit time; c1 is the road capacity when it is
transferred to the government. Let B(v) be the inverse
demand function (or a function of the marginal benefit)
and t(v, c) be the travel time function. Moreover, the
demand-supply equilibrium condition holds, i.e.,
B(v) � p + βt(v, c), where p is the toll charged by the
operator and β is the value of time that converts time into
an equivalent monetary cost. *e above condition means
that the travel demand of a new road is determined by the
total cost (including travel time and toll collected from
road users) of a trip. In this paper, we only consider
homogeneous users. Subsequently, we get a price
function:

p(v, c) � B(v) − β · t(v, c). (1)

Equation (1) implies that the toll p is determined by
travel demand v uniquely for a given road capacity c.
Hereinafter, v and c are equivalent to p and c.

Let Ms(v) and Mg(v) be the demand-related OC of a
private firm and the government, respectively. Let Md(v) be
an intermediate demand-related OC which is a function of
the intermediate variable. *en, we have

Ms(v) � msv,

Mg(v) � mgv,

Md(v) � mdv,

(2)

where ms and mg are the unit demand-related OC of the
private firm and the government, respectively, and md is the
intermediate variable.

Let Js(v, c) and Jg(v, c) be the OC of a private firm and
the government, respectively. Let Jd(v, c) be an intermediate
OC. *en, we have

Js(v, c) � I(c) + Ms(v) � I(c) + msv,

Jg(v, c) � I(c) + Mg(v) � I(c) + mgv,

Jd(v, c) � I(c) + Md(v) � I(c) + mdv,

(3)

where I(c) is the capacity-related OC of the toll road. *e
construction material information of a road is known in the
market, so we assume that I(c) is the perfect information
and identical for a private firm and the government in the
paper. Given the same I(c), we can regard md as the in-
termediate variable that is set by the government in the
bidding document. In practice, based on md, the govern-
ment will evaluate the road OC including the management
cost and construction cost before determining the road
operator. *roughout this paper, we make the following
assumptions on B(v), t(v, c), Ms(v), Mg(v), and I(c).

Assumption 1
(a) *e inverse demand function, B(v), is a strictly

continuously decreasing and differentiable function
of v for any v≥ 0.

(b) *e travel time function t(v, c) is a continuously
differentiable and strictly convex function of v and c

for v≥ 0 and c≥ 0. t(v, c) strictly decreases with c for
v> 0 and strictly increases with v for c≥ c1.

(c) *e demand-related OC function of the government,
a private firm, and the intermediate variable,
Mg(v), Ms(v), and Md(v), are continuously in-
creasing and differentiable with respect to v for v≥ 0;
the road construction cost function I(c) is contin-
uously increasing and differentiable with respect to c
for c≥ c1.

(d) For any given c≥ c1, the revenue collected from road
users is given by R(v, c) � v · p(v, c), which is a
strictly concave function of v for v≥ 0, i.e.,
zR2/zv2 < 0.

It is assumed that the government knows the OC of a
private firm, but is not clear of its profit; so, the government
will select a private firm through a determined intermediate
variable md. With the given intermediate variable md, the
problem in the following cases can be analyzed. If private
firms take part in the bidding process and obtain the right to
operate the PTR with md, the selection procedure will
terminate. If the government sets the value of md too high,
there will be no private firms participating in the bidding.
*e government has to take the right approaches to avoid
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this situation. In order to offer proposals for the government
to make a proper decision, two solution approaches are
proposed: set the right value of the intermediate variable;
provide guarantee for the private firms to ensure their profit.
If not selecting a private firm to operate the PTR, the
government will operate the road by itself.

We first consider the profit of both roles. Let Pg(v, c),
Ps(v, c), and Psc(v, c) be the governmental profit, private
firm profit without governmental guarantee, and private
profit with governmental guarantee, respectively.

Pg(v, c) � R(v, c) − Jg(v, c) � v · B(v) − vβt(v, c)

− I(c) + mgv􏽨 􏽩,

Ps(v, c) � R(v, c) − Js(v, c) � v · B(v) − vβt(v, c)

− I(c) + msv􏼂 􏼃,

(4)

Psc(v, c, n) � R(v, c) − Js(v, c) + n � Ps(v, c) + n, (5)

where R(v, c) is the total revenue obtained from the road
users; the last term of equation (5) is the government
guarantee that the government will offer subsidy for the
private firm operating the PTR. Equation (5) shows that
private firm profit includes two parts: one is profit from the
project Ps(v, c), and the other is the government subsidy n.
*en, the revenue is

R(v, c) � v · p(v, c) � v · B(v) − vβt(v, c). (6)

Next, we define the function of social welfare. When the
government operates the road, the social welfare function is
formulated as

Wg(v, c) � Us + Pg(v, c) � 􏽚
v

0
B(w)dw − βvt(v, c) − Jg(v, c),

(7)

where Us is the total social surplus.
With equation (1), the total social surplus is defined by

Us � 􏽚
v

0
B(w)dw − vB(v) � 􏽚

v

0
B(w)dw − v[p(v, c) + βt(v, c)].

(8)

When the private firm operates the toll road without the
government guarantee, the social welfare is given by

Ws(v, c) � Us + Ps(v, c) � 􏽚
v

0
B(w)dw − βvt(v, c) − Js(v, c).

(9)

When the private firm operates the toll road with the
government guarantee, the social welfare can be computed
as

Wsc(v, c) � Us + δ · Psc(v, c) − n � 􏽚
v

0
B(w)dw

− (1 − δ)vB(v) − βvt(v, c) − δJs(v, c) − (1 − δ)n,

(10)

where δ is a weighting factor, 0< δ < 1. *e first term on the
right side of equations (7)–(10) is the total social surplus of

road users; the second term of equation (7) is the govern-
ment profit; the second term of equation (9) is the private
profit; the second term of equation (10) is the weighted
provider’s surplus [21]; and the last term of equation (10) is
the government guarantee.

Assumption 2
(a) t(v, c) is homogeneous of degree zero in v and c, i.e.,

t(αv, αc) � t(v, c) for any α> 0
(b) Constant return to scale in the construction and

capacity-related cost, namely, I(c) � kc, where k
denotes the constant cost per unit capacity

(c) vB(v) is a concave function of v for any v≥ 0

Part (a) of Assumption 2 shows that vehicle travel time
on the road is only related with the volume-capacity ratio,
r � v/c. For example, the BPR (Bureau of Public Roads)
travel time function satisfies this assumption. In equation
(1), the toll p can be uniquely determined by the travel
demand v for a given road capacity c. In other words, social
welfare and profit, created by both the government and a
private firm, are determined by the travel demand v, road
capacity c, and the government subsidy n.

4. The First Selection of the PTR Operator by
the Government

*e government has the right to set an intermediate variable
md as the threshold value of the public toll road for private
firms. *e government will not select md >mg; otherwise, it
will operate the road by itself. So, when the government aims
to choose a private firm to build/rebuild and operate the
road, obviously, it will set the intermediate variable md ≤mg.

4.1. Under the Condition of ms >mg with the Government
Operation. *e government and private firm know the
information of OC for each other. When the unit demand-
related OC of the private firm is greater than the govern-
ment’s, namely, ms >mg, the government will operate the
PTR by itself to maximize social welfare. In order to dis-
tinguish from the analysis of Section 4.3, the superscript
“s>g” is used to represent the case ms >mg. *en, if
ms >mg, the unconstraint social welfare maximization
problem is formulated as

max
(v,c)

W
s>g
g (v, c) � 􏽚

v

0
B(w)dw − βvt(v, c) − J

s>g
g (v, c),

(11)

where the first-order optimal conditions of equation (11) can
be found in Tan et al. [2].

*ere are many highways operated by the government in
China.*e government needs the revenue collected from the
road users at least to cover the road investment including
operation and construction cost. So, when analyzing the
operating PTR, it is necessary to analyze the social welfare
maximization under the condition that the total investment
including but not limited to operation costs is equal to the
total revenue R(v, c), namely, the road operator obtains
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positive profit or zero profit from the project. *en, if the
government operates the road on its own, the constrained
problem is defined as

max
(v,c)

W
s>g
g (v, c) � 􏽚

v

0
B(w)dw − βvt(v, c) − J

s>g
g (v, c),

(12)

subject to

P
s>g
g (v, c) � R

s>g
g (v, c) − J

s>g
g (v, c)≥ 0, (13)

v≥ 0,

c≥ c1,
(14)

where equation (13) implies nonnegative profit; P
s>g
g (v, c) is

the profit of the government; and R
s>g
g (v, c) is the gov-

ernmental revenue.

4.2. Under the Condition of ms ≤mg with the Private Firm
Operation. In practice, the OC of a private firm, with
stronger execution and more flexibility, is usually lower than
that of the government. If the government makes a correct
decision on md, the private firm will be willing to operate the
PTR with proper profit. In this section, we first propose the
condition that the private firm operates the road under the
condition of ms ≤mg; then, based on the unconstrained and
constrained maximization private profit models, the defi-
nitions of the first-best and second-best problems for the
private firm are provided, respectively. For simplicity, the
subscript “s” was used to denote ms ≤mg.

First, the following proposition provides the condition
for the private firm to operate the road. We assume the
acceptable profit to be Pa.

Proposition 1. If the sum of the unit demand-related OC
and unit benefit of the private firm is less than md, namely,
ms + Pa/v≤md, and the government sets md in the interval
[ms + Pa/v, mg), then the contract between the government
and a private firm will be signed.

Proof. If allowed to operate the PTR, the private firm will
aim to make maximal profit from the project; and the
government will certainly not let the private firm get so
much profit. In other words, the private profit will be less
than the difference between the intermediate OC and the OC
of the private firm. *en, we have

v · p(v, c) − Js(v, c)≥Pa,

v · p(v, c) − Js(v, c)≤ Jd(v, c) − Js(v, c)
(15)

such that

Jd(v, c)≥Pa + Js(v, c). (16)

Since I(c) is the perfect information,

Md(v)≥Pa + Ms(v). (17)

*e proof is completed.

Although Proposition 1 includes the OC of the private
firm and the intermediate OC, it does not mean that the
government knows the amount of the private profit. In
reality, only when the government sets the intermediate
variable md, the private firm will decide whether or not to
operate the road according to its OC and profit. However,
the government usually evaluates the trade secret Pa of
private firms to determine md.

Getting the road franchising, the private firm will
maximize its profit by selecting the road capacity c and toll
p(c). In the extreme case of the private profit maximization
without any constraints, the unconstraint optimal problem
can be formulated as

max
(v,c)

Ps(v, c) � vp(v, c) − Js(v, c). (18)

*en, we investigate the profit maximization under the
constraint that the private profit is not larger than the
difference between the intermediate OC and the private firm
OC. *e constrained optimization problem can be formu-
lated as

max
(v,c)

Ps(v, c) � vp(v, c) − Js(c), (19)

subject to

vp(v, c) − Js(v, c)≥Pa, (20)

vp(v, c) − Js(v, c)≤ Jd(v, c) − Js(v, c), (21)

ms <md ≤mg,

v≥ 0,

c≥ c1,

Pa ≥ 0,

(22)

where Pa ≥ 0 is the minimum profit of the private firm. Even
if md >ms, the government is still willing to let a private firm
operate the road, which meets constraint (20). Alternatively,
only when the private profit is larger than the profit margin
Pa, the private firm will be willing to operate the road.
Constraint (21) means that the private firm profit will not be
larger than the difference between the intermediate OC and
the private firm OC, and the government will permit the
private firm to operate the PTR.

Based on the aforementioned problems, the definition of
the first-best and second-best solutions of the private firm is
introduced. □

Definition 1. (first-best and second-best profit solutions of
the private firm). Let (vs, cs) be an optimal solution to
optimal problems (19)–(22); it will be the first-best solution
if it maximizes problem (18); otherwise, it will be the second-
best solution.

Definition 1 is based on the profit maximization that
could classify the private profit problems. It is different from
the definition of the first-best and second-best contracts
based on the social welfare [22]. In fact, the private firm will
easily reach the second-best solution with constraints (20)
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and (21). By comparing first-best problem (18) and second-
best problems (19)–(22), the following observation can be
obtained based on Definition 1.

Observation 1. *e first-best solution of the private firm
exists if there only exists a solution (v∗s , c∗s ), which solves the
first-best problem and satisfies

v · p v
∗
s , c
∗
s( 􏼁 − Js v

∗
s , c
∗
s( 􏼁≥Pa, (23)

v
∗
s · p v

∗
s , c( 􏼁 − Jd v

∗
s , c
∗
s( 􏼁≤ 0. (24)

*e above observation is intuitive. If the total revenue
generated by the first-best profit solution can cover the OC
and create an acceptable profit threshold for the private firm,
then the first-best profit solution can be archived.

FromDefinition 1 andObservation 1, it is clear that if the
government permits the private firm to determine the op-
timal profit by itself, the private firm will choose either the
first-best or second-best solution, but not both.*e first-best
solution exists only if conditions (23) and (24) are satisfied;
otherwise, the private firm will obtain the second-best so-
lution. *erefore, to solve private profit problems (19)–(22),
it is necessary to solve problem (18) and check whether its
solution satisfies constraints (23) and (24). If these condi-
tions hold, it is unnecessary to consider problems (19)–(22).

*e Kuhn–Tucker conditions can be applied to obtain
the first-order conditions (Appendix A). Note that let Psb

s be
the optimal value of the objective function of problems
(19)–(22), and it distinguishes from the value of Ps that is a
monopoly optimal solution of problem (18).*e relationship
between Psb

s and Ps is that Psb
s ≤Ps, and Psb

s is on the left side
of Ps in Figure 2. *e following observation about Psb

s can be
obtained through analyzing the constraints.

Observation 2

(a) If constraints (20) and (21) are effective, the ac-
ceptable private firm profit is equal to the maximal
profit Jd − Js, namely, Psb

s � Pa � Jd − Js � Md − Ms

(b) If constraint (20) is effective but constraint (21) is
inactive, the private firm profit is Psb

s � Pa

(c) If constraint (21) is effective but constraint (20) is
inactive, the private firm profit is
Psb

s � Jd(v, c) − Js(v, c)

(d) If both constraints (20) and (21) are ineffective and
the second-best problem becomes the first-best
problem, then the private firm profit is Psb

s � Ps

From the aforementioned observations, we investigate
the case of the first-best and second-best private profit
problem, which is presented on the left side of the monopoly
optimum in Figure 2. However, when will the monopoly
optimum case happen? As shown in Figure 2, we can see
that, responding to the same private profit, social welfare on
the right side of the monopoly optimum is higher than that
on the left side. Additionally, the government can make
some rules in the contract to make the private firm set the
social welfare maximization as the goal [23]. So, it is

necessary to analyze the following two problems with private
firm management: one is the unconstrained social welfare
maximization problem; the other is the constrained social
welfare maximization problem.

Base on equation (7), the unconstrained social welfare
maximization problem can be formulated by

max
(v,c)∈Ω

Ws(v, c) � 􏽚
v

0
B(w)dw − βvt(v, c) − Js(v, c). (25)

*e constrained social problem is given by

max
(v,c)∈Ω

Ws(v, c) � 􏽚
v

0
B(w)dw − βvt(v, c) − Js(v, c), (26)

subject to

vp(v, c) − Js(v, c)≥Pa, (27)

vp(v, c) − Js(v, c)≤ Jd(v, c) − Js(v, c), (28)

ms <md ≤mg,

v≥ 0,

c≥ c1,

Pa ≥ 0,

(29)

where Ω � (v, c): v≥ 0, c≥ 0{ }.*e constrained conditions
are the same as those of the second-best problem of the
private firm, i.e., (20)–(22), which guarantee the private firm
to operate the road.

Since this kind of constrained social welfare problem
has more constraints than the traditional Pareto optimal
problem, the win-win optimal problem is defined as
follows.

Definition 2. (win-win optimal problem). A pair
(vwws , cwws ) ∈ Ω is called the win-win solution if there are no
other feasible solutions (v, c) ∈ Ω such that
W(v, c)≥W(vwws , cwws ) and P(v, c)≥P(vwws , cwws ) with at
least one strict inequality.

*e definition of the win-win optimal problem is a
meaningful and important concept which meets all the
conditions of the Pareto problem, but with more constraints,
and its solution is a part of the Pareto optimal solution.

In general, more than one constrained condition in
problems (27)–(29) will be effective. In response to the
case on the right side of monopoly optimum in Figure 2,
similar to Observation 2, the following observation is
provided through analyzing the constrained conditions
(Appendix B).

Observation 3

(a) If constraints (27) and (28) are effective, the ac-
ceptable private firm profit is the same as its maximal
profit, which is equal to Jd − Js, namely,
Pa � Md − Ms

(b) If constraint (27) is effective and constraint (28) is
inactive, the private firm profit is equal to Pa
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(c) If constraint (28) is effective and constraint (27) is
inactive, the private firm profit is equal to Md − Ms

Furthermore, let 􏽥vs and vs be the social welfare optimality
solution of problem (18) and the monopoly optimal solution
of problem (25), respectively. *e following proposition is
obtained in terms of the above second-best solution of the
private problem and win-win optimal problem (see more
details in Appendix C).

Proposition 2. It holds that vsbs < vs ≤ vwws ≤ 􏽥vs for the win-
win optimal solution (vwws , cwws ) and the second-best solution
of the private firm (vsbs , csbs ) when the private firm operates the
road.

Proposition 2 means that travel demand of the win-win
solution should not be strictly less than the level of the profit
maximization and less than the level of the social welfare
maximization. Travel demand of the second-best optimal
solution is smaller than that of any other optimal solutions.
Figure 2 implies that the government must set the regulation
to gain the win-win optimal solution, namely, make Md −

Ms on the right side of the monopoly optimal solution.
Otherwise, the private firm will optimize the travel demand
vsbs .

Based on the second-best solution and the Win-Win
optimal solution, Proposition 3 can be derived:

Proposition 3. For the second-best solution of the private
firm, the bigger Md − Ms is, the more possible it is that the
government and a private firm have the same objective; For
the win-win solution, the smaller Md − Ms is, the more
possible it is that the government and private firm have the
same objective.

Refer to the proof in Appendix D. Proposition 3 tells us
why the private firm wants to know the value of Md and the
government also wants to evaluate the demand-related OC
of the private firm to set a better Md.*e result is consistent
with Figure 2, which implies the objective of the government
and private firm will be realized at the same time on the left
side of monopoly optimality, namely, the private firm ob-
tains the maximum solution, while the government achieves

the maximal social welfare. If the difference Md − Ms is
bigger, the private firm will obtain more profit. On the right
side ofmonopoly optimality in Figure 2, the government and
private firm will have different objectives, namely, when the
private firm chooses the profit maximization, the govern-
ment will reach the minimum social welfare. If the difference
Md − Ms is smaller, the private firm will obtain more profit,
and the government can also gain more social welfare.
However, welfare on the right side that belongs to the win-
win optimal solution is bigger than that on the left side.

Let Psw be the private profit corresponding to the social
optimal welfare. Based on Proposition 3, an extreme case is
analyzed: if private profit satisfies Pa ≤Psw, when the in-
termediate variable set by the government meets
(Md − Ms)≥Psw, namely, the variable relationship meets
Pa ≤Psw ≤ (Md − Ms); under the win-win optimal regula-
tion in the contract, not only that the government may gain
the optimal social welfare but also the private firm meets its
profit. So, the ideal condition is Pa ≤Psw � (Md − Ms),
which is also the best case for the win-win optimal solution.

Some private firms usually earn huge profit from the
project, which happened in China such as Beijing Airport
Expressway and Guangzhou-Shenzhen Highway. Although
these roads were built with the largest road capacity (allowed
by the design code), there is oversaturated traffic flow every
day. In contrast with the traditional contract, we can regard
constraint (21) as a regulation to allow the private firm to
make the decision. *en,

vp(v, c) − Js(v, c)> Jd(v, c) − Js(v, c). (30)

The above condition implies that if the private firm profit
is bigger than the difference between the intermediate OC
and private firm OC, the government will operate the road
by itself. Condition (30) can be simplified by

vp(v, c) − I(c) + mdv􏼂 􏼃> 0. (31)

If there is heavy traffic pressure, then the private firmwill
get profit from the project quickly. Meanwhile, condition
(31) implies that if the road is operated, all terms of (31) are
the symmetric information for the government and a private

Pa

(0, 0)

Benefit
Monopoly optimum

Social optimum

Traffic flow

Ps

Pssb Pssb

Pa

Psw

val varv
_vdsl vdsrvs vswvs0

vw0

Figure 2: A geometric illustration of Pa, Ps, Ps, andPsb
s .
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firm, namely, the road capacity has been determined when
the road is operating; the government can get the infor-
mation of road capacity, toll, and travel demand from real
data. *en, the government knows the profit of the private
firm based on the intermediate variable even if it knows
nothing about the private firm operation. When condition
(31) is satisfied, the government can operate the road by
itself, namely, condition (31) points out that the difference
between profit vp(v, c) and intermediate variable md de-
termines the road operation right of the private firm.

In the last part of this section, the private firm zero profit
will be analyzed. If private firms get the road franchise, they
will have the right to determine locations of on-ramps and off-
ramps that have an impact on the land development, and so
on.With the above description, the private firmwill be willing
to operate the toll road projects with zero profit or negative
profit to earn more profit from other aspects. So, it is nec-
essary to analyze the zero or negative profit case. However, in
the light of knowing nothing about howmuch loss the private
firm can bear, the zero profit is analyzed as follows.

Proposition 4. Under the condition of zero profit, the unit
demand-related OC of the private firm ms can approach the
biggest value, namely, ms is equal to mg.

Proof. From constraints (20) and (21),

Jd(v, c) − Js(v, c)≥Pa. (32)

If the private profit is equal to zero, namely, Pa � 0, then

Md(v, c) − Ms(v, c) � 0. (33)

If Md(v, c) � Mg(v, c), then

Ms(v, c) � Mg(v, c). (34)

*e proof is completed. □

4.3. Under the Condition of ms ≤mg with the Government
Operation. Different from Section 4.1, it is assumed that the
government knows nothing about the private profit, whichmay
make the government set an improper decision on the inter-
mediate variablemd.*e private firmwill not operate the road if
it cannot gain the satisfied profit from the project.*e following
two cases are related with an improper decision of md.

In contrast with Section 4.2, we provide the condition
that the private firm cannot gain enough profit. Using
constraints (20) through (22),

Jd(v, c) − Js(v, c)≥Pa, (35)

which implies that only when the difference between the in-
termediateOC and the privateOC is larger than the private firm
profit, the private firm will be willing to operate the toll road.

On the contrary,

Jd(v, c) − Js(v, c)<Pa, (36)

which implies that the government will be reluctant to
operate the road by itself.

If md given by the government is less than the private
OC, namely, md ≤ms <mg, the private firm will not operate
the road due to the negative profit.

In Section 4.1, we analyze the case that the government is
willing to operate the road. In this section, there will be no
contract between the government and a private firm. *e
superscript “s<g” is used to represent ms ≤mg. *en, the
problem can be formulated as

max
(v,c)

W
s<g
g (v, c) � 􏽚

v

0
B(w)dw − βvt(v, c) − J

s<g
g (v, c).

(37)

In the above analysis, two kinds of government opera-
tion scenarios were considered: the first one was analyzed in
Section 4.1 given ms >mg; the second one was analyzed in
this section under the condition of ms ≤mg. If the gov-
ernment does not make an improper decision on md, we
assume that the government will choose to maximize the
social welfare without loss, so it is not necessary to analyze
this case. Edelson [24] showed that a private firmmay charge
a lower toll than the government for a given and fixed
capacity. Let c∗d be the given road capacity, and all analyses of
this section are based on this capacity. *en, we compare the
toll charged by the government and the private firm based on
the assumption that the government makes an improper
decision on the variable md under the condition of
ms ≤mg.Note that the toll charged by the government is the
solution at the zero profit, namely, the governmental rev-
enue just covers its capital cost.

*en, we define the average social cost (ASC) of the
government and private firm, respectively:

ASCs<g
g �

βvt v, c
∗
d( 􏼁 + J

s<g
g v, c

∗
d( 􏼁

v
� βt v, c

∗
d( 􏼁 +

J
s<g
g v, c

∗
d( 􏼁

v
,

(38)

ASCs �
βvt v, c

∗
d( 􏼁 + Js v, c

∗
d( 􏼁

v
� βt v, c

∗
d( 􏼁 +

Js v, c
∗
d( 􏼁

v
. (39)

*e first term of equations (38) and (39) on the right side
is the average travel time in monetary units; the second term
is the cost of operation per trip. Intuitively, with Assump-
tions 1 and 2 and the condition of ms ≤mg, the average social
cost of the government will be bigger than the private firm
OC for given road capacity and travel demand.

If considering the average social profit in the cost of the
private firm, equation (39) can be rewritten as

ASCsp � βt v, c
∗
d( 􏼁 +

Js v, c
∗
d( 􏼁

v
+

Ps

v
. (40)

*en, combining equations (38) and (40) for the given
travel demand and road capacity c∗s ,

ASCs<g
g − ASCsp �

M
s<g
g (v) − Ms(v) + Ps􏼂 􏼃

v
, (41)

where Ps is in the interval [Pa, Md − Ms].
From equation (41), though Ps � Md − Ms, the average

social cost of the government will be bigger than that of
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private firm operation under Md ≤Mg. We know that the
government may charge a higher toll than the private firm
under the condition that the government operates the road
without loss.

Let ps, 􏽥ps, and 􏽥ps<g
g be the monopoly price of the private

firm, the price of social optimal welfare of the private firm,
and the price of social optimal welfare of the government,
respectively. *en, the following proposition can be ob-
tained (Appendix E).

Proposition 5. With a given road capacity c∗d , the toll
vs, 􏽥vs, 􏽥vs<g

g has the following relationship: 􏽥ps ≤ 􏽥ps<g
g <ps.

Proposition 5 shows that if the social welfare maximum is
reached, the toll charged by a private firm is less than the
government, which is derived from the improper decision of
the government on the intermediate variable. In order to
avoid the circumstance that the government operates the road
with higher charge than the private firm, the best option for
the government is investigated to get a satisfactory result.

5. The Optimal Intermediate Variable

*e case discussed in Section 4.3 occurs because of the
improper intermediate variable md given by the govern-
ment. With the governmental operation, road users will pay
higher toll that is analyzed in Section 4.3 for ms ≤mg. So, in
order to find a proper private firm to operate the road and
not let the road users undertake higher toll, the government
will make a change on the selection tactics. In the following,
two modes will be studied to avoid the improper decision on
md: one is without guarantee, and the other is considering
guarantee provided by the government.

5.1. $e Selection Mode without the Government Guarantee.
At first, we investigate the mode that the government will
not provide guarantee for the private firm. In Section 4, we
discussed the case that the private firm and the government
were willing to operate the road; we also discussed the case
that the government was reluctant to operate the road under
the improper decision. Under the condition of knowing
nothing about private profit Pa, the government will try its
best to make a correct decision. In Section 4, we pointed out
that the case of md >mg was impossible in that the gov-
ernment would operate the road by itself. So, in this section,
we only investigate the value of md which can result in a
satisfactory result for the government under md ≤mg. We
firstly provide the satisfactory result and unsatisfactory re-
sult under md ≤mg and Pa ≥ 0.

*e definition of satisfactory results:
(a)If md � mg and ms >md, the government will
operate the road by itself

(b) If ms ≤md � mg and ms + Pa/v>md, the govern-
ment will operate the road by itself

(c) If ms ≤md ≤mg and ms + Pa/v>md, a private firm
will operate the road

(d) If md <ms ≤mg and ms + Pa/v>md, the government
will operate the road by itself

*e definition of unsatisfactory results:
(e) If ms ≤md <mg and ms + Pa/v>mg, the government

will be reluctant to operate the road by itself
(f ) If md <ms ≤mg and ms + Pa/v>mg, the government

will be reluctant to operate the road by itself

With the definition of satisfactory results and unsatis-
factory results of the government, we have the following
proposition. We know that there are two constraints: ms +

Ps/v>md and Ps ≥Pa. *en, we make another assumption
that the government must obtain the satisfactory result.

Proposition 6. If the government wants to obtain a satisfied
result, the intermediate variable md should be equal to the
demand-related OC of the government mg, namely, md � mg.

At the beginning of this section, we pointed out that the
government is not clear about profit of the private firm. The
governmental objective is to obtain the satisfied result with
the private firm. If the government determines the value of
the intermediate variable so that the private firms, after their
independent calculation, believe that they will be able to
make necessary profit from running the project, the private
firms may decide to take part in the bid. The government
does not need to know the OC of the private firm. So, when
the government sets md � mg, the government can easily
choose a proper road operator under the condition of sat-
isfactory results.

When md � mg, the problem can be transformed to the
following:

max
(v,c)

Ws(v, c) � 􏽚
v

0
B(w)dw − βvt(v, c) − Js(v, c), (42)

subject to

v · p(v, c) − Js(v, c)≥Pa,

v · p(v, c) − Js(v, c)≤ Jg(v, c) − Js(v, c),

ms ≤mg,

v≥ 0,

c≥ c1,

Pa ≥ 0.

(43)

*en, the government can make the decision to obtain
satisfactory results through comparing formulas (39)–(42)
with the social optimal welfare problem in Section 4.3.
Private firm can obtain its profit through setting the toll and
road capacity based on the solution of problems (39)–(42).

5.2. $e Selection Mode with the Government Guarantee.
In this section, the government guarantee will be considered
to make the government reach a satisfactory result. In order
to obtain satisfactory results, like in Section 4.3, the gov-
ernment can make proper decisions through providing
subsidy for the private firm.

We firstly give the condition that the government may
provide the guarantee for a private firm:
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v · p(v, c) − Js(v, c) � Ps(v, c)<Pa. (44)

From equation (44), we know that the private firm will
not operate the road in that it will not get satisfactory profit
from the project or get negative profit. If the government
wants the private firm to operate the road, it must provide
guarantee, namely, additional profit for the private firm,
which makes sure the private profit is not less than a
threshold value Pa [25]. *en, we have

Psc(v, c) � Ps(v, c) + n � v · p(v, c) − Js(v, c) + n≥Pa,

(45)

where the first term on the left side of the inequality is the
private profit and n is the government subsidy. *erefore,
private profit is composed of a private firm profit and the
government subsidy.

Even if providing subsidy for the private firm, the
government will be reluctant that the total amount of profits,
the OC of the private firm, and subsidies are bigger than the
governmental OC. According to Proposition 6, we point out
that md � mg is a better option for the government. *en,
the second constraint becomes

v · p(v, c) − Js(v, c) + n≤ Jg(v, c) − Js(v, c). (46)

Equation (46) can be simply written as
v · p(v, c) + n≤ Jg(v, c). According to equation (46), the
government can control the biggest subsidy which is
n � Jg(v, c) − v · p(v, c). With this constraint, even if
nothing is known about private profit, the government can
determine the minimal subsidy. An extreme case is that the
minimal private profit is equal to the maximum of guar-
antee, namely, Pa � Jg(c) − Js(c). From Proposition 6, as
long as the subsidies do not exceed the maximum subsidies,
the government will regard it as a satisfactory result.

In the bidding process, many private companies have
put forward different subsidy requirements, which can
further determine subsidies. If the government provides
subsidies for the private firm, it must require a private firm
to select the win-win optimal solution. With constraints
(45) and (46) and objective function (10), the optimal
problem with the government guarantee can be formu-
lated by

max
(v,c)

Wsc(v, c, n) � 􏽚
v

0
B(w)dw − vB(v)

+ δ v · p(v, c) − Js(c)􏼂 􏼃 − (1 − δ)n,

(47)

subject to equations (45) and (46), and

ms ≤mg,

v≥ 0,

c> c1,

0< δ < 1,

Pa ≥ 0.

(48)

Based on the above problem, we have the following
proposition (Appendix F).

Proposition 7. If the government provides guarantee for the
private firm, the minimum private profit is equal to the
maximum subsidies.

$e above proposition shows that if the government wants
to provide guarantee for the private firm, the private firm will
choose the maximum subsides. And the government will not
permit the total amount of toll sum charged by the private
firm and guarantee larger than the governmental OC on the
PTR.

6. Conclusions

*e operation of the PTR becomes a significant issue of
the government. *is study offers valuable insights into
the selection mechanism of PTR operators by comparing
the OC of the government and the private firms. Previous
studies conducted few research on the PTR operation.
Considering a combination of the toll charge, road ca-
pacity, and guarantee, this paper analyses the operation
problem through an intermediate variable. If the gov-
ernment sets the right intermediate variable in the bidding
document, private firms will be willing to operate the road
actively with the profit maximization. *e first-best and
second-best optimal solutions for the private firm and the
win-win solution of the private operation were investi-
gated. *e average social cost and the toll charged by
operators were compared; in some cases, the toll charged
by the government is higher than private firms. *e case
that toll collected by the private firm from the road users is
lower than that of the government will happen. Analytical
results show that the social optimal pricing set by the
private firm is less than that of the government, and then
two approaches are proposed to solve the problem given a
biased decision of the intermediate variable. *e first
approach sets the intermediate variable equal to the
governmental OC without guarantee; the second one is
that the government provides profit guarantee for the
private firm.

To optimize the succeeding operation of different kinds
of facilities developed in the BOTmode after the concession
period expires, future research can be carried out under
information asymmetry to investigate whether and how to
charge the toll and to set regulations to be followed by the
private firms when operating these facilities. Even if the
government is in a position to build/rebuild and operate its
transportation facilities, it is still necessary for it to seriously
consider how to operate them in a sustainable way to
maximize social welfare.

Appendix

A. Proof of Observation 2

Proof. It is assumed that (vsbs , csbs ) is any second-best op-
timal solution of private problem (19). From constrained
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optimization problems (19)–(22), the following Lagrange-
like function can be defined:

L � Ps(v, c) + λs<g
sb1 Ps(v, c) − Pa􏼂 􏼃 + λs<g

sb2 − v · p(v, c) + Jd(v)􏼂 􏼃,

(A.1)

where λs<g
sb1 ≥ 0 and λs<g

sb2 ≥ 0 are the Lagrangian multipliers
which are associated with constraints (20) and (21), re-
spectively. Using the Kuhn–Tucker condition, the first-order
conditions can be determined:

zL

zv
| vsb

s ,csb
s( ) � 1 + λs<g

sb1 − λs<g
sb2􏽨 􏽩 · p v

sb
s , c

sb
s􏼐 􏼑 + v

sb
s · pq
′ v

sb
s , c

sb
s􏼐 􏼑􏽨

− ms􏼃 + λs<g
sb2 md − ms􏼂 􏼃 � 0,

zL

zc
| vsb

s ,csb
s( ) � 1 + λs<g

sb1 − λs<g
sb2􏽨 􏽩 · v

sb
s · py
′ − k􏽨 􏽩 + λs<g

sb2 · k � 0,

zL

zλs<g
sb1

| vsb
s ,csb

s( ) � Ps v
sb
s , c

sb
s􏼐 􏼑 − Pa ≥ 0,

zL

zλs<g
sb2

| vsb
s ,csb

s( ) � − vsb · p v
sb
s , c

sb
s􏼐 􏼑 + Jd v

sb
s , c

sb
s􏼐 􏼑≥ 0,

(A.2)

λs<g
sb2 ≥ 0, (A.3)

λs<g
sb1 ≥ 0, (A.4)

λs<g
sb2 ·

zL

zλs<g
sb2

| vsb
s ,csb

s( ) � λs<g
sb2 · − v

sb
s p v

sb
s , c

sb
s􏼐 􏼑 + Jd v

sb
s , c

sb
s􏼐 􏼑􏽨 􏽩 � 0,

(A.5)

λs<g
sb1 ·

zL

zλs<g
sb1

| vsb
s ,csb

s( ) � λs<g
sb1 · Ps v

sb
s , c

sb
s􏼐 􏼑 − Pa􏽨 􏽩 � 0. (A.6)

If constrained conditions (20) and (21) are effective and
the Lagrangian multipliers λs<g

sb1 > 0 and λs<g
sb2 > 0, then

Ps(q, y) − Pa � 0, (A.7)

Ps(v, c) � vp(v, c) − Js(v, c) � Jd(v, c) − Js(v, c). (A.8)

From equations (A.7) and (A.8),

Pa � P
sb
s � Jd(v, c) − Js(v, c) � Md − Ms. (A.9)

Note that if profit Md(v) − Ms(v) is on the right side of
the monopoly optimum (see Figure 2), the private firm will
choose travel demand v to obtain the monopoly optimum
solution. So, the private firm will choose the optimal profit
point, i.e., Md(v) − Ms(v), on the left side of the monopoly
optimum, the corresponding travel demand of which is vds l.
*us, part (a) of Observation 2 is proved.

If constraint (20) is effective and constraint (21) is in-
active, the Lagrangian multipliers λs<g

sb1 > 0 and λs<g
sb2 � 0. If

λs<g
sb2 � 0, constraint (21) can be ignored. From equations
(A.3) and (A.5), we can determine that the private firm will

choose Ps(v, c) � Pa corresponding to travel demand qal

(Figure 2). *us, part (b) of Observation 2 is proved.
If constraint (21) is effective and constraint (20) is in-

active, the Lagrangian multipliers λs<g
sb1 � 0 and λs<g

sb2 > 0. If
λs<g

sb1 � 0, we can ignore constraint (20). *en, from equa-
tions (A.4) and (A.6), we can determine that the private firm
will choose Ps(v, c) � Md − Ms corresponding to travel
demand vds l (Figure 2). *us, part (c) of Observation 2 is
proved.

If constraints (20) and (21) are inactive, the Lagrangian
multipliers λs<g

sb1 � 0 and λs<g
sb2 � 0. We can ignore all of the

constraints. *e problem becomes a monopoly optimal
problem (or the first-best problem of the private firm), and
the private firm can obtain the maximum profit Ps. *us,
part (d) of Observation 2 is proved. *is completes the
proof. □

B. Proof of Observation 3

Proof. It is assumed that (vww
s , cww

s ) is any win-win optimal
solution of private problem (26). From constrained opti-
mization problems (26)–(29), the following Lagrange-like
function can be defined:

L � Ws(v, c) + λs<g
sw1 Ps(v, c) − Pa􏼂 􏼃 + λs<g

sw2 − vp(v, c) + Jd(c)􏼂 􏼃,

(B.1)

where λs<g
sw1 ≥ 0 and λs<g

sw2 ≥ 0 are Lagrangian multipliers,
which are associated with constraints (27) and (28), re-
spectively. Using the Kuhn–Tucker condition, the first-order
conditions can be determined by

zL

zv
| vww

s ,cww
s( ) � 1 + λs<g

sw1 − λs<g
sw2􏽨 􏽩 · B v

ww
s( 􏼁 − βt v

ww
s , c

ww
s( 􏼁􏼂

− βrt′(r) − ms􏼃

+ λs<g
sw1vBv
′(v) + λs<g

sw2 md − ms − vBv
′(v)􏼂 􏼃 � 0,

zL

zc
| vww

s ,cww
s( ) � 1 + λs<g

sw1 − λs<g
sw2􏽨 􏽩 · β r

ww
s( 􏼁

2
· t′ r

ww
s( 􏼁 − k􏽨 􏽩 � 0,

zL

zλs<g
sw1

| vww
s ,cww

s( ) � Ps v
ww
s , c

ww
s( 􏼁 − Pa ≥ 0,

zL

zλs<g
sw2

| vww
s ,cww

s( ) � − v
ww
s · p v

ww
s , c

ww
s( 􏼁 + Jd v

ww
s , c

ww
s( 􏼁≥ 0,

(B.2)

λs<g
sw1 ·

zL

zλs<g
sw1

| vww
s ,cww

s( ) � λs<g
sw1 · Ps v

ww
s , c

ww
s( 􏼁 − Pa􏼂 􏼃 � 0,

(B.3)

λs<g
sw2 ·

zL

zλs<g
sw2

| vww
s ,cww

s( ) � λs<g
sw2 · − v

ww
s p v

ww
s , c

ww
s( 􏼁 + Jd c

ww
s( 􏼁􏼂 􏼃 � 0,

(B.4)
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λs<g
sw1 ≥ 0, (B.5)

λs<g
sw2 ≥ 0. (B.6)

Note that profit Md(v) − Ms(v) is on the right side of the
monopoly optimum (see Figure 2), and the private firm will
choose the optimal profit point, Md(v) − Ms(v), which is
close to the monopoly optimum (Figure 2), the corre-
sponding travel demand of which is vds r. *us, part (a) of
Observation 3 is proved.

If constraint (26) is effective and constraint (27) is in-
active, the Lagrangian multipliers λs<g

sw1 > 0 and λs<g
sw2 � 0. If

λs<g
sw2 � 0, we can ignore constraint (21). From equations (B.3)
and (B.5), we can determine that the private firm will choose
Ps(v, c) � Pa corresponding to travel demand var (Figure 2)
for the same reason of part (a).*us, part (b) of Observation
3 is proved.

If constraint (27) is effective and constraint (26) is inactive,
the Lagrangianmultipliers λs<g

sw1 � 0 and λs<g
sw2 > 0. If λ

s<g
sw1 � 0, we

can ignore constraint (26). *en, from equations (B.4) and
(B.6), we can determine that the private firm will choose
Ps(v, c) � Md − Ms corresponding to travel demand vds r

(Figure 2) for the same reason of part (a). *us, part (c) of
Observation 3 is proved. *is completes the proof. □

C. Proof of Proposition 2

Proof. We first take the partial derivatives of social welfare
Ws(v, c) and private profit Ps(v, c) with respect to demand v

and capacity c. Based on social welfare function Ws(v, c)

given by (25), we have

zWs(v, c)

zv
� B(v) − βt(v, c) − βv

zt(v, c)

zv
− ms, (C.1)

zWs(v, c)

zc
� − βv

zt(v, c)

zc
+ k􏼠 􏼡, (C.2)

and according to the private profit function given by (18), we
have

zPs(v, c)

zv
� R′(v) � B(v) − βt(v, c) + vB′(v) − βv

zt(v, c)

zv
− ms,

(C.3)

zPs(v, c)

zc
� − βv

zt(v, c)

zc
+ k􏼢 􏼣. (C.4)

For exposition simplicity, we define private profit Ps(v)

and social welfare Ws(v) for given c∗s . Let 􏽥vs be the unique v

that could maximize Ws(v, c); then, with equation (C.1),

B 􏽥vs( 􏼁 − β · t 􏽥vs, c
∗
s( 􏼁 − β · 􏽥vs ·

zt 􏽥vs, c
∗
s( 􏼁

zv
− ms � 0. (C.5)

Let qs be unique q that could maximize Ps(q, y); then,
with equation (C.3)

B vs, c
∗
s( 􏼁 + vs · B′ vs( 􏼁 − β · t vs, c

∗
s( 􏼁 − β · vs ·

zt vs, c
∗
s( 􏼁

zv
− ms � 0.

(C.6)

With Assumption 1, there exist unique vs and 􏽥vs satis-
fying (C.5) and (C.6), respectively. By comparing equations
(C.5) and (C.6), we can observe that vs < 􏽥vs.

Let (vww
s , cww

s ) be the solution of win-win optimality.
Comparing (C.1) and (C.3), we have zW/zv > zP/zv for any
feasible solution (v, c) with the condition B′(v)< 0. If
(vww

s , cww
s ) is a win-win solution, zW(vww

s , cww
s )/zv and

zP(vww
s , cww

s )/zv will not be positive or negative at the same
time; otherwise, the change of v will increase or decrease
private profit and social welfare simultaneously, which
contradicts with the fact that (vww

s , cww
s ) is a win-win optimal

solution. *us, we have zW(vww
s , cww

s )/zv≥ 0 and
zP(vww

s , cww
s )/zv≤ 0. *en, vs ≤ vww

s ≤ 􏽥vs.
From Definition 1, we know that Ps(vsb

s , c∗s )≤Ps(vs, c∗s )

for given road capacity. If Ps(v, c) is the strictly concave
function in v and Ps(v, c) is the strictly increasing function in
v for v< vs, we have that vsb

s < vs. *is completes the
proof. □

D. Proof of Proposition 3

Proof. For constraints (20) and (21), we have Md − Ms ≥Pa,
which implies that the objective value of equation (19), Ps, is
in the interval [Pa, Md − Ms]. Based on Assumption 1, we
know that Ws(v, c) and Ps(v, c) are the concave functions of
v. According to Proposition 2, we know that vs < 􏽥vs.

Since Ws(v, c) is an increasing function of v for v≤ 􏽥vs

and Ps(v, c) is an increasing function of v for v≤ vs, Ws(v, c)

and Ps(v, c) are increasing functions of v for v≤ vs. *en,
under the condition of the second-best problem of the
private firm, social welfare will increase with private profit.
For the profit approaching maximization profit, Md − Ms,
social welfare approaches a maximizing value under the case
of the second-best problem of the private firm. So, the larger
Md − Ms is, the larger the social welfare is.

Since Ws(v, c) is an increasing function of q for v≤ 􏽥vs

and Ps(v, c) is a decreasing function of v for v≥ vs, Ws(v, c)

is an increasing function of v for vs ≤ v≤ 􏽥vs and Ps(v, c) is an
increasing function of q for v≥ vs. *en, under the condition
of the win-win optimal problem, social welfare will decrease
with private profit. And with the profit approaching max-
imization Md − Ms, social welfare approaches the minimum
value under the case of the win-win optimal problem of the
private firm. So, the smaller Md − Ms is, the larger the social
welfare is. *is completes the proof. □

E. Proof of Proposition 5

Proof. Assume cd is a given and fixed capacity. Let
ps, 􏽥ps, and 􏽥ps<g

g be the monopoly price of the private firm,
social optimal price of the private firm, and social optimal
price of the government, respectively.
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According to equation (1), regard v as the function of toll
charge p and road capacity c. Using the implicit function
theorem, we take derivative v with respect to p:

vp
′ �

1
Bv
′(v) − βtv

′(v, c)􏼂 􏼃
. (E.1)

For the first-best problem of private firm (18), we take
partial derivatives of (19) with respect to p, and we have

zPs

zp
�

z vp(v, c) − Js(v, c)􏼂 􏼃

zp
� v + p · vp

′ − ms · vp
′ � 0.

(E.2)

Recall equation (E.1). We have

ps � ms − v Bv
′(v) − βtv

′ v, cd( 􏼁􏼂 􏼃. (E.3)

For the social optimal problem of private firm (25), we
take partial derivatives of (25) with respect to p, and we have

zWs

zp
�

z 􏽒
v

0 B(w)dw − βvt(v, c) − Js(v, c)􏽨 􏽩

zp

� B(v) · vp
′ − β · t v, cd( 􏼁 · vp

′ + βv · tv
′ v, cd( 􏼁 · vp

′􏽨 􏽩

− ms · vp
′ � 0.

(E.4)

*us,

􏽥ps � ms + βv · tv
′ v, cd( 􏼁. (E.5)

For the social optimal problem of the government (37),
we take partial derivatives of (37) with respect to p, and we
have

zW
s<g
g

zp
�

z 􏽒
v

0 B(w)dw − βvt(v, c) − J
s<g
g (v, c)􏽨 􏽩

zp

� B(v) · vp
′ − β · t v, cd( 􏼁 · vp

′ + βv · tv
′ v, cd( 􏼁 · vp

′􏽨 􏽩

− m
s<g
g · vp
′ � 0.

(E.6)

*us,

􏽥p
s<g
g � m

s<g
g + βv · tv

′ v, cd( 􏼁. (E.7)

From Assumption 1 that B(v) is a decreasing function of
v, Bv
′(v)< 0; recall equations (E.3), (E.5), and (E.7) and

ms ≤m
s<g
g ; we have 􏽥ps ≤ 􏽥ps<g

g <ps. *is completes the
proof. □

F. Proof of Proposition 7

Proof. It is assumed that (vsc
s , csc

s , n∗) is any optimal solution
of problem equations (45)–(48). From constrained opti-
mization problems (45)–(48), the following Lagrange-like
function can be defined:

L � 􏽚
v

0
B(w)dw − vB(v) + δ v · p(v, c) − Js(v, c)􏼂 􏼃 − (1 − δ)n

+ λs<g
sc1 · v · p(v, c) − Js(v, c) + n − Pa􏼂 􏼃 + λs<g

sc2

· − v · p(v, c) + Jg(v, c) − n􏽨 􏽩,

(F.1)

where λs<g
sc1 ≥ 0 and λ

s<g
sc2 ≥ 0 are Lagrangian multipliers which

are associated with constraints (45) and (46), respectively.
Using the Kuhn–Tucker condition, the first-order condi-
tions of the problem can be determined by

zL

zv
| vsc

s ,csc
s ,n∗( ) � − v

sc
s · Bv
′ v

sc
s( 􏼁 + λs<g

sc2 mg − ms􏼐 􏼑+

δ + λs<g
sc1 − λs<g

sc2􏽨 􏽩 · B v
sc
s( 􏼁 − βt v

sc
s , c

sc
s( 􏼁 + v

sc
s · Bv
′ v

sc
s( 􏼁􏼂

− β · v
sc
s · tv
′ v

sc
s , c

sc
s( 􏼁 − ms􏼃 � 0,

zL

zc
| vsc

s ,csc
s ,n∗( ) � δ + λs<g

sc1 − λs<g
sc2􏽨 􏽩 · v

sc
s · pc
′ − k􏼂 􏼃 � 0,

zL

zλs<g
sc1

| vsc
s ,csc

s ,n∗( ) � Ps v
sc
s , c

sc
s( 􏼁 + n

∗
− Pa � v

sc
s · p v

sc
s , c

sc
s( 􏼁

− Js v
sc
s , c

sc
s( 􏼁 + n

∗
− Pa ≥ 0,

zL

zλs<g
sc2

| vsc
s ,csc

s ,n∗( ) � − v
sc
s · p v

sc
s , c

sc
s( 􏼁 + Jg v

sc
s , c

sc
s( 􏼁 + n

∗ ≥ 0,

(F.2)

λs<g
sc1 ·

zL

zλs<g
sc1

| vsc
s ,csc

s ,n∗( ) � λs<g
sc1 · v

sc
s · p v

sc
s , c

sc
s( 􏼁 − Js v

sc
s , c

sc
s( 􏼁􏼂

+ n
∗

− Pa􏼃 � 0,

(F.3)

λs<g
sc2 ·

zL

zλs<g
sc2

| vsc
s ,csc

s ,n∗( ) � λs<g
sc2 · − v

sc
s · p v

sc
s , c

sc
s( 􏼁 + Jg v

sc
s , c

sc
s( 􏼁􏽨

− n
∗
􏼃 � 0,

(F.4)

zL

zc
� − (1 − δ) + λsc1 − λsc2 � 0, (F.5)

λsc1 ≥ 0, (F.6)

λsc2 ≥ 0. (F.7)

Form equation (F.5) and 0< δ < 1, we have λs<g
sc1 − λs<g

sc2 �

1 − δ > 0 and λs<g
sc1 > λ

s<g
sc2 . With equations (F.6) and (F.7), we

know that λs<g
sc1 � 0 and λs<g

sc2 � 0 will not happen simulta-
neously. From the above analysis, we know that the gov-
ernment must let equation (46) hold, which results in
λs<g

sc2 > 0. If the private firm takes part in the bid actively,
constraint (45) will be effective, and then λsc1 > 0. In general,
if the government provides guarantee, it will satisfy the

Journal of Advanced Transportation 13



requirement of the private firm, which also implies the ef-
fectiveness of constraint (45).

*en, there is only one case to investigate, namely,
λs<g

sc1 > λ
s<g
sc2 > 0. With equations (F.3) and (F.4), we have

v
sc
s · p v

sc
s , c

sc
s( 􏼁 − Js v

sc
s , c

sc
s( 􏼁 + n

∗
− Pa � 0, (F.8)

− v
sc
s · p v

sc
s , c

sc
s( 􏼁 + Jg v

sc
s , c

sc
s( 􏼁 − n

∗
� 0. (F.9)

Recall equations (F.8) and (F.9), and we have

n
∗

� Pa − v
sc
s · p v

sc
s , c

sc
s( 􏼁 + Js c

sc
s( 􏼁 � Jg c

sc
s( 􏼁 − v

sc
s · p v

sc
s , c

sc
s( 􏼁.

(F.10)

*is completes the proof. □
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Managed lanes, such as a dedicated lane for connected and automated vehicles (CAVs), can provide not only technological
accommodation but also desired market incentives for road users to adopt CAVs in the near future. In this paper, we investigate
traffic flow characteristics with two configurations of the managed lane across different market penetration rates and quantify the
benefits from the perspectives of lane-level headway distribution, fuel consumption, communication density, and overall network
performance. %e results highlight the benefits of implementing managed lane strategies for CAVs: (1) A dedicated CAV lane
significantly extends the stable region of the speed-flow diagram and yields a greater road capacity. As the result shows, the highest
flow rate is 3400 vehicles per hour per lane at 90% market penetration rate with one CAV lane. (2) %e concentration of CAVs in
one lane results in a narrower headway distribution (with smaller standard deviation) even with partial market penetration. (3) A
dedicated CAV lane is also able to eliminate duel-bell-shape distribution that is caused by the heterogeneous traffic flow. (4) A
dedicated CAV lane creates a more consistent CAV density, which facilitates communication activity and decreases the
probability of packet dropping.

1. Introduction

%e mobility landscape is experiencing a paradigm shift
due to rapid advancements of the information and ve-
hicular technologies. Among them, the connected and
automated vehicle (CAV) technologies have been con-
tributing to the adoption of next-generation vehicles that
are equipped with connectivity (i.e., connected vehicles)
and/or automation (i.e., automated vehicles). In spite of
CAV’s immense benefits and potentials in reshaping the
mobility landscape, the adoption of CAVs by consumers is
still uncertain [1], although some lower-level vehicle
automation in the form of driver-assistance system has
been commercially available.

%e near-term deployment of CAVs is characterized by
mixed traffic conditions, where human-driven vehicles
(HVs) and CAVs constantly interact with each other. %e
potential benefits from CAVs may be offset by the inter-
actions among different types of vehicles. For example, the

short following time gap (e.g., 0.6 s) is only feasible when a
CAV follows another CAV. To overcome such shortcoming
in near-term CAV deployment, managed lane strategies,
such as CAV dedicated lane, are one of the promising so-
lutions in order to facilitate the formation of the CAV
strings. Practically, managed lane strategies are freeway lanes
that are set aside and operated under various fixed and/or
real-time strategies in response to certain objectives, such as
improving traffic operation [2]. It is also anticipated that
managed lane strategies incentivize the adoption of CAV,
just as they did for encouraging car-pooling or low emission
vehicles.

%e goal of this study is to investigate the impact of
different lane use strategies under mixed traffic conditions at
vehicle trajectory, as well as lane, level. For clarity, we refer
mixed traffic condition to the condition that CAVs and HVs
operate on the same roadway network in the following
discussions. %e contributions of the paper include the
following:
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(1) %e analysis of CAV-enhanced traffic flow charac-
teristics at the lane level and vehicle level

(2) %e investigation of traffic performance with gradual
introduction of CAV platoons under difference
managed lane strategies

(3) %e implications of managed lane strategies from a
dedicated short-range communication (DSRC)
perspective

%e remainder of the paper is organized as follows.
Related work regarding the research of CAVs in mixed
traffic and managed lanes is reviewed in Section 2, followed
by the evaluation methodology, including customized CAV
module and defined scenarios, in Section 3. %e simulation
results are presented and discussed in Section 4. Lastly,
findings and recommendations are discussed in Section 5.

2. Literature Review

%ere have been numerous studies on the implementation
and evaluation of CAVs in various traffic settings. Aligning
with our research topic, we focused our literature search on
two key aspects of CAV studies: (1) CAV evaluation in
mixed traffic conditions at network level and (2) managed
lane strategies for CAV. A list of abbrevations used can be
found in Table 1 in the Appendix.

2.1. CAVEvaluation inMixedTrafficConditions. %ree main
approaches have been used to assess the benefits of CAVs: (1)
analytical study, (2) simulation evaluation, and (3) field test
with equipped vehicles.

On-road testing provides the utmost degree of realism
with equipped automated driving systems (ADS) and real-
world traffic environment. However, the safety and effi-
ciency issues for testing CAV on public roads have been the
major concern, especially after several severe CAV-in-
volved accidents in recent years. Due to safety, techno-
logical, and budgetary limitations, the scale of a CAV field
test at current stage tends to be small (e.g., with a handful of
CAVs). As a result, the conclusions from these small-scale
field tests may not be reliably generalized to a traffic flow
level. Furthermore, it was estimated by Kalra and Paddock
that billions of kilometers of road test would be required to
achieve the desired level of confidence in terms of safety of
an ADS [3]. %us, analytical and simulation approaches
serve as two primary methods for evaluating traffic flow
impact of CAVs.

%e majority of the analytical models is based on
macroscopic traffic flow models and may experience
difficulty in faithfully capturing the complex phenomena
in transportation networks, such as lane drop. Smith et al.
proposed an analytical framework for assessing the
benefits of CAV operations [4]. %e results indicated that
CAVs improved network mobility performance, even
with low MRP and no managed lane policies. %rough-
put, without managed lanes increased by 4%, 10%, and
16% at the MPR of 10%, 20%, and 30%, respectively. It
was also discovered that the managed lane policy

facilitated homogeneous CAV traffic flow, leading to
more consistent and stable network outputs. An ana-
lytical model for determining the optimal managed lane
strategy was proposed in [5], where the maximum system
throughput in a mixed traffic condition could be calcu-
lated under the assumption of random vehicle distri-
bution on a freeway facility. %ree types of headways (i.e.,
conservative, neutral, and aggressive) were used in the
model. Wang et al. proposed a second-order traffic flow
model for mixed traffic streams with HVs and AVs. %e
authors found that the second-order model consistently
outperformed the first-order one in terms of the accuracy
of traffic density when the variability of the penetration
rate increased [6].

At the corridor level, a capacity of 4250 vph/pl (vehicle
per hour per lane) was observed in [7] on a 6 km highway
segment with uniformly distributed ramps under full market
penetration of CAVs. %e study by Shladover et al. observed
a pipeline capacity of 3600 at 90% MPR of CAVs [8], where
the pipeline capacity refers to the throughput observed on a
single-lane roadway without any interference of lateral
movements [9].

Arnaout and Arnaout evaluated CAVs under mod-
erate, saturated, and oversaturated demand levels on a
hypothetical 4-lane highway under different market
penetrations. %ey found that 9400 vehicles could be
served within an hour when the CAV MPR reached 40%
[10]. Songchitruksa et al. assessed the network

Table 1: List of abbreviations.

Abbreviation Definition
ADAS Advanced driver-assistance systems
ADS Automated driving systems
ACC Adaptive cruise control
AV Automated vehicles
API Application programming interface
BSM Basic safety message
CV Connected vehicles
CAV Connected and automated vehicles
CACC Cooperative adaptive cruise control
CAH Constant-acceleration heuristic
CDF Cumulative probability function
CHEM Comprehensive modal emission model
DSRC Dedicated short-range communication
DLL Dynamic-link library
DTG Desired time gap
E-IDM Enhanced intelligent driver model
GPL General purpose lane
HV Human-driven vehicle
HOV High-occupancy vehicles
IEEE Institute of Electrical and Electronics Engineers
MPR Market penetration rate
MOVES Motor vehicle emission simulator
PET Postencroachment time
SSAM Surrogate safety assessment model
SAE Society of Automotive Engineers International
SUMO Simulation of urban mobility
TTC Time to collision
VAD Vehicle awareness device
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performance with CAVs on the 26-mile I-30 freeway in
Dallas, TX, and found the highest throughput being
4400 vph at 50% MPR [11] among four MPR scenarios
(i.e., 10%, 30%, 50%, and 70%). Another study [12] also
revealed that the mobility benefits of CAV emerged at 30%
MPR.

Liu et al. investigated the benefits of alleviating freeway
merge bottleneck and compared the performance of CACC
with ACC under full market penetration. %e results
showed that CACC yielded a 50% reduction in fuel con-
sumption (as estimated with the EPA MOVES model)
while increasing corridor capacity by 49%, compared to the
ACC scenario [13]. With a subsequent test on an 18 km
segment of SR-99, the research team found that deploying
vehicle awareness device- (VAD-) equipped vehicles along
with managed lane strategies was helpful in improving
corridor-level traffic flow under low and medium CAV
market penetrations [14]. Besides MOVES, comprehensive
modal emission model (CMEM) [15], VT-Micro [16], and
the Future Automotive Systems Technology Simulator
(FASTSim) [17] are among the commonly used vehicle
emission models in quantifying potential environmental
impact of deploying CAVs.

%e potential impact of the short following time
headway of CAVs on HVs has also been studied in
previous studies. Among them, the KONVOI project
found the carry-over effect for CACC drivers in manual
driving after the disengagement of the CACC system
[18]. In recent years, driving simulator has been
employed to study the behavioral adaptation of human
drivers operating in the vicinity of CAVs. Nowakowski
et al. found that test participants are likely to drive under
a shorter following distance in the presence of CACC
platoons in the adjacent lane [19]. A similar study was
conducted by Gouy et al. to investigate the behavioral
adaptation of human drivers along a CACC platoon, in
which two CACC platoon configurations were tested: (1)
a 10-truck platoon with 0.3 s intraplatoon headway and
(2) a 3-truck platoon with 1.4 s intraplatoon headway. It
was found that a smaller average HV headway was ob-
served in the first scenario, under which participants
spent more time under a 1 s headway, although such short
headway was generally deemed unsafe in previous studies
(e.g., [20]).

2.2. CAVs andManaged Lanes. Managed lanes have been in
practice over the years to improve target operation ob-
jectives, such as (1) promoting the adaptation of envi-
ronment-friendly vehicles by offering priority usage to
specific travel lanes (e.g., the California Clean Air Vehicle
Decal [21]), (2) encouraging car-pooling by adopting high-
occupancy vehicle (HOV) lanes [22], and (3) performing
active traffic management with the aid of high-occupancy
toll (HOT) lanes [23]. A CAV lane is one variant of
managed lane strategies which provides exclusive lane use
privilege to CAVs. Although managed lane strategies have
been widely applied to highway operation with successful
cases, due to distinctive operational characteristics of

CAVs, knowledge learned from a conventional managed
lane may not be directly transferable to the implementation
of a CAV lane.

%e provision of a CAV-managed lane has two pri-
mary reasons. First, CAV-managed lanes can incentivize
the adaptation of CAVs by offering priority usage to
managed lanes, which typically provides better and more
reliable travel because of active traffic management. More
importantly and unique to CAVs, CAV-managed lanes
can provide accommodations for the underlying opera-
tional characteristics of CAVs. A CAV is able to operate at
a much closer headway than a human driver with the
assistance of V2V wireless communication and the au-
tomated driving system (ADS) [24, 25]. Hence, the nec-
essary condition for realizing such a short following
headway is the availability of the vehicle driving infor-
mation of at least one of the predecessors on the same
lane, that is, through a CAV following another CAV.
Otherwise, the string stability of CAVs cannot be guar-
anteed [26], and the lack of thereof is termed as CAV
degradation [27], which could potentially be a major
hurdle for CAVs operating in mixed traffic. A numerical
example by Wang et al. has showed that the current
technological maturity of CACC contributed negatively to
the stability of heterogeneous flow [27].

Tomitigate CAV degradation, ad hoc coordination, local
coordination, and global coordination are the three major
strategies that outline the organization of CAV platoons
[28]. Ad hoc coordination assumes that CAVs arrive in
random sequence and do not actively seek clustering op-
portunities in a traffic stream. By extension, the probability
of driving around other CAVs is highly correlated to MPR.
On the contrary, CAVs actively identify and approach an
existing CAV cluster (or other free-agent CAVs) to form a
new cluster through local coordination, regardless of CAV
MPRs. Finally, global coordination (a.k.a. end-to-end pla-
tooning) requires a high-level route planning and extensive
communication to coordinate vehicles traveling with the
same origin-destination pair even before the CAVs enter
highway sections [29].

To successfully form and maintain platoons, accurate
and cost-effective localization of CAVs in a dynamic
traffic environment remains one of the biggest challenges,
especially for local coordination [28, 30]. In the presence
of a CAV-managed lane, a higher concentration of CAVs
facilitates local coordination with much less stringent
requirements on the accuracy of vehicle localization. In
addition, the CAV-managed lane strategy aligns well with
the three-stage deployment roadmap considering market
diffusion and technological maturation for CAVs [31]. In
the first stage, the adoption of CAVs is incentivized by
allowing the use of the managed lane free of charge. At this
stage, the following headway of CAVs on the managed
lane may be comparable to that which has been observed
from HVs for safety reasons in a mixed traffic condition.
In the second stage, a shorter following headway for CAVs
could be implemented to further increase the carrying
capacity of the managed lane when the demand of CAVs
along with the familiarity of road users to CAVs increases.
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In the third stage, when the CAVs reach a critical level of
MPR, high-performance driving enabled by the CAVs can
be achieved due to homogeneous CAV traffic flow on the
managed lane.

To assess the impact of CAV-managed lane strategies,
Zhang et al. compared the performance of a managed lane
and general propose lanes (GPL) based on average speed,
throughput, and travel time [32]. %e results indicated that
the speed improvement in the managed lane was significant
compared to that of GPLs. With 20% MPR, the latent de-
mand (the demand that cannot enter the simulation network
due to congestion) decreased to zero. Inspired by the fluid
approximation of traffic, Wright et al. proposed an algo-
rithm for simulating the weaving activity at the interface of a
managed lane and the adjacent GPL at a macroscopic scale
[33]. Chen et al. proposed a time-dependent deployment
framework that was formulated with a network equilibrium
model and a diffusion model. With the constraint of a given
set of candidate lanes which corresponds to the field con-
dition, the social cost was minimized with the consideration
of different MPR levels [34]. Zhong and Lee studied four
managed lane strategies and compared the benefits for GPL
and managed lane users in terms of mobility, safety,
emission, and equity [35]. In freeway settings, the authors
recommended a 30% minimal MRP for deploying a CAV-
managed lane to avoid lane use imbalance that could de-
grade the performance [31, 36].

Qom et al. proposed a multiresolution framework to
study the mobility impact of CAV lanes. Traffic flow-based
static traffic assignment and the mesoscopic simulation-
based dynamic traffic assignment were adapted in the bilevel
framework. %e former yielded the MPR-based trends,
whereas the latter refined the trend based on traffic con-
gestion. %e results indicated that it was not beneficial to
provide toll incentive for CAVs at lower MPR due to the
marginal increase in highway capacity [37]. Ghiasi et al.
proposed an analytical capacity model for mixed traffic [38].
%e model relied on the Markov chain representation of the
spatial distribution of heterogeneous and stochastic head-
way. With the sufficient and necessary condition of capacity
increase proven, the authors emphasized the importance of
quantitative analysis of the actual headway setting.

%e introduction of a CAV lane to a signalized corridor
was reported in [39]. Two configurations of a CAV lane,
along with other managed lanes, were evaluated. To
accommendate for the turning movements, buffer zones
were implemented, where HVs are allowed to temporarily
use the CAV lane. Papadoulis et al. evaluated the safety
impact of CAVs using the Surrogate Safety Assessment
Model (SSAM) [40]. %e time to collision (TTC) and the
postencroachment time (PET) were adapted with safety
thresholds of 1.5 s and 5 s, respectively. %ey observed
substantial safety benefits in terms of reduction in traffic
conflicts: 12–47% at 25% MPR to 90–94 % at 100% MPR. In
[41], TTC was also used to assess the safety conditions for

HVs when CAV local clustering strategy was employed. Ali
et al. found that drivers with advanced traffic information
enabled by connectivity tend to wait longer and maintained
a larger space on mandatory lane change (the communi-
cation delay for lane merging assistance was unnoticeable
when it was less than 1.5 s). Postencroachment time (PET)
analysis also indicated improved travel safety from CAV
implementation [42].

2.3. Summary. %e vast majority of previous studies eval-
uated the benefits of CAVs at an aggregated level with the
emphasis of overall traffic improvement. Analytic models
are in macroscopic nature under overly ideal conditions, and
they have difficulty in factoring the stochastic nature of
human drivers in a mixed traffic environment. CAV-
managed lane strategy could be instrumental in the near-
term deployment of CAVs, but it is still an underexplored
area, despite its increasing recognition.

3. Evaluation Framework and
Experiment Design

%is study focuses on analyzing mixed traffic flow charac-
teristics at a corridor level considering different CAV MRPs
and managed lane strategies. In this section, the integrated
simulation test bed, transportation network, and simulation
scenarios are discussed in detail.

3.1. CAV Behavior Model. %e PTV Vissim [43], a com-
mercial-off-the-shelf microscopic simulation package, is
chosen for the evaluation. Vissim has been widely adapted
by transportation practitioners and researchers, owing to its
high-fidelity simulation mechanism and flexible modules.
Compared to other open-source traffic simulators (e.g.,
SUMO), one reservation for Vissim being a commercial
software is its close-sourced nature. As shown in Table 2, a
calibrated Wiedemann car-following model and the en-
hanced intelligent driver model (E-IDM) [44] were used to
model HVs and CAVs, respectively. %e intelligent driver
model (IDM) and its variants have been used to design the
ACC/CACC controller that resembles human-like car-fol-
lowing behaviors [45–49]. As an improved iteration of the
collision-free IDM [50], the E-IDM deals with CAV lon-
gitudinal maneuver. %e behavior model of the E-IDM is
expressed in equations (1)–(3): where a is the maximum
acceleration; b is the desired deceleration; c is the coolness
factor; δ is the free acceleration exponent; _x is the current
speed of the subject vehicle; _xdes is the desired speed, _xlead is
the speed of the lead vehicle; s0 is the minimal distance; €x is
the acceleration of the subject vehicle; €xlead is the acceler-
ation of the lead vehicle; €xIDM is the acceleration calculated
by the original IDM model [50]. %e minimal distance can
be calculated as s∗( _x, _xlead),
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where T is the desired time gap; and €xCAH is the acceleration
calculated by the constant-acceleration heuristic (CAH)
component, where Θ is the Heaviside step function that is
used to eliminate the negative approaching rate of subject
vehicle [44].

In this study, the E-IDM model is selected as the lon-
gitudinal control for the CAVs. Although without built-in
multianticipative car-following function, as the literature
shows, E-IDM is still a good simple car-following model for
CAVs, as the stochastic nature of human driving is removed
(i.e., automation property), and the acceleration of the
preceding vehicle is taken into account in the driving model
(i.e., connectivity property). As shown in Table 3, all the
parameters remain the same as those originally specified in
[44], with the exception of the desired time gap (DTG),
which is defined with two values: 0.6 s and 1.2 s. %e former
DTG is used when the communication between a preceding
CAV and the subject CAV is successful, whereas the latter
one is in effect when the communication failure occurs. %e
updating frequency for the E-IDMmodel in Vissim is 10Hz.
%e density of CAVs which is used to calculate the com-
munication activity is updated at a 2Hz frequency to reflect
the traffic dynamic. Each transmission is assumed to have up
to five attempts (four retransmissions). At least one suc-
cessful attempt is required for a transmission to be con-
sidered successful, upon which the DTG is determined.

To implement these two car-following models in Vissim,
the subset of the human driving behavior is realized by
adjusting car-following parameters of the Wiedemann car-
following model, which is relatively straightforward. %e
E-IDM, on the other hand, is implemented via the external
driver model application programming interface (API) and
connected with Vissim through a dynamic link library
(DLL).%eDLL is invoked in each simulation time step such
that the default car-following behavior will be overwritten

for a specified vehicle type. %e DSRC wireless communi-
cation module, discussed later in Section 3.2, is also
implemented in the API to achieve a dynamic response
based on prevailing traffic conditions.

One of the most prominent features in CAV behavior
modeling is the short time headway during car-following,
which is manifested by several key differences between a
CAV and a HV. First, the stochasticity of the CAVs is
significantly lower than that of human drivers. %is is en-
abled by the on-board sensors that are able to continuously
and accurately perceive the surrounding environment.
However, the stochasticity cannot be completely eliminated
due to sensor noise and communication delay/error. Second,
a CAV has minimal reaction time due to its algorithmic
decision-making process and computational power. Past
studies have already identified the impact of the reaction
time of human drivers in various traffic phenomena, in-
cluding capacity drop [51] and flow stability [47], whereas
driving simulation tests revealed that the information
augmented by connectivity could decrease the reaction time
for drivers [52].

In addition, human factor plays a crucial role in the
resumption of control of a CAV when an ADS exits its
operational domain (e.g., high risk of collision, sensor
failure, and communication interference). Quantitative ev-
idence regarding the transition of control from traffic
psychology or human-machine interactions is still limited
[53], though few frameworks have been proposed to sim-
ulate human behavior endogenously [54, 55]. For example,
the prospect theory was used to model the risk and human
perception [56, 57]. %e Risk Allostasis %eory [58] was
adopted for modeling relationship between cognitive pro-
cessing of information and physical performance. %e Task
Capacity Interface [59] was employed by Saifuzzaman et al.
for quantifying situational awareness of a driver.

Table 2: Differences between HVs and CAVs in the simulation models.

Vehicle type Longitudinal control DTG Stochasticity
HV Wiedemann 99 1.4 s Y
CAV E-IDM 0.6, 1.2 s N
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Calvert and van Arem developed a framework that
encompasses the driving task demand and driver task sat-
uration [53]. %e framework’s main goal is to assess the
performance impact during the transition of control for
AVs. %e total task demand, situational awareness, and
reaction time during the transition of control fromAVs were
explored. %e framework showed promising capability in
capturing the interactive effects of humans with lower-level
AVs. However, empirical evidence is still needed to relax the
assumptions used in the framework not only from the
cognitive point of view but also from vehicle dynamics and
intervehicle interactions.

Another human factor is driver compliance to the ADS.
Since, in lower or medium level of automation, the driver is
ultimately responsible for his or her vehicle, which means
overwriting, when deemed necessary, is possible by the
human driver, this control authority, in extreme cases, could
cancel out the benefits promised by the CAV technologies.
In a recent study [57], Sharma et al. employed the prospect
theory to model driver decision-making mechanisms in-
cluding irrational ones and captured the negative rela-
tionship between headway and compliance decision by a
driver.

In this study, we represent the differences of a CAV and a
HV with different desired time headways through separate
car following models, with the following assumptions made
for CAVs: (1) no error for the on-board sensors and the
vehicle controller, that is, perfect perception; (2) no human
factor modeling pertaining to the transition of authority; and
(3) no behavior adaptation for CAVs for non-CAV drivers.

3.2. Wireless Communication Model. In an early study, we
implemented a packet-level communication module
through Vissim API [36]. Similar adaptations for the model
were also found in previous studies [11, 36, 60]. %e ana-
lytical model [61] was developed from ns-2, an empirical
packet-level network simulator that returns the probability
of one-hop broadcast reception of basic safety message
(BSM) under IEEE 802.11p, an approved amendment tai-
lored to wireless access in vehicular environment (WAVE)
in the 802.11 family protocol. %e model uses the concept of
communication density level, a metric representing channel
load in vehicular communication in the form of the sensible
transmission per unit of time and per unit of the road [62].
%e data reception rate is determined jointly by commu-
nication density level and transmission power. An illus-
tration for the reception probability is shown in Appendix
B. Note that this communication model only pertains to the
physical layer of the DSRC communication (e.g., no MAC
layer delay):

Pr(x, δ,φ, f) � e
−3(x/φ)2 1 + 􏽘

4

i�1
hi(ξ,φ)

x

φ
􏼠 􏼡

i

⎛⎝ ⎞⎠,

ξ � δ · φ · f,

(4)

where hi(ξ,φ) is the two-dimensional polynomial of fourth-
degree for all curving fitting parameters [63], which is also
shown in Appendix B; ξ is communication density, events/s/
km; and φ is the transmission power, m; δ is vehicle per
kilometer that periodically broadcast messages, veh/km; and
f is transmission rate, Hz.

3.3. Transportation Network. A 9.3 km 4-lane hypothetical
network was constructed in Vissim with two interchanges
located at mile markers 2 (km) and 6 (km), respectively.
An abstract geometry of the network along with vehicle
demand of the origins and destination is shown in
Figure 1. %e primary reason for using a simply synthetic
network is to limit variables for the simulation. Note that
the driving behavior parameters for the Wiedemann car-
following model (for HVs) are the same as those in
previous studies [31, 41, 64, 65], representing a subset of
the calibrated driving behavior in the I-66 segment in
northern Virginia. %e demand originated on the main-
line is deliberately set higher than usual to create a
congested network. %e speed limit for the mainline of the
network is set as 120 km/h. %ree data collectors are
placed at “C1,” “C2,” and “C3” locations.

3.4. Managed Lane Scenarios. %ree cases of CAV lanes, as
shown in Table 4, are implemented in the network:

(1) No managed lane (NML): %is scenario serves as the
base condition of the study. %ere is no priority lane
use for CAVs, and they are mixed with HVs
throughout the network;

(2) One CAV lane (CAV-1): In this strategy, one CAV
lane is implemented in the left-most lane (the fourth
lane from the right);

(3) Two CAV lanes (CAV-2): An additional CAV
lane is added to the CAV-1 case, making two CAV
lanes available at the left-most lane and the
second-left-most lane in the roadway segment. It
aims to investigate the duel managed lane
configuration.

As revealed in previous studies [31, 32, 66, 67], a
managed lane may have a detrimental effect on traffic
performance if implemented prematurely, that is, usually
with an MPR less than 30%.%erefore, in this study, we set
CAVMPRs for “CAV-1” to start from 30%. With the same
logic, the “CAV-2” cases start with 40% to cover certain
transition MPR, since the linear extrapolation may not
hold.

Table 3: E-IDM vehicle control parameters.

Parameter Tintra Tinter s0 a b c θ _xdes

Value 0.6 s 1.2 s 1m 2m/s2 2m/s2 0.99 4 105 km/h
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4. Results and Analysis

Five replications are run for each combination of managed
lane policies and MPRs. Aggregated data are collected at 5-
minute intervals, and the raw data are collected at each
simulation time step. %e analysis is performed on five
aspects: (1) traffic flow characteristics, (2) headway distri-
bution, (3) fuel consumption, (4) wireless communication,
and (5) overall network performance.

4.1. Traffic Flow Characteristic. Figure 2 exhibits the speed-
flow characteristics of the simulation scenarios having 40%
MPR and above. %e plot is color-coded by travel lanes with
index “1” representing the right-most lane and “4” the left-
most lane. %e speed-flow diagram is comprised of a stable

region and an unstable (congested) region, separated by the
optimum (maximum) flow. Several distinctive patterns can
be observed. First, regardless of the managed lane strategy,
the sample points become more concentrated as the MPR
increases, with the disappearance of the congested region
typically found in the lower speed region. Second, the CAV
lane has a distinct pattern compared to the GPLs. Such
pattern is most apparent in CAV-1, where the traffic samples
on the left-most lane (CAV lane) shift to the right along the
flow axis. %e congested region disappears when MPR
reaches 70% in the CAV-1 case for all of the lanes. %e
improvement for the GPs is due to a higher carrying capacity
of the CAV lane, which results in less traffic on the GPLs.%e
homogeneity of the CAV traffic is the primary factor in
realizing the mobility benefit of CAVs: in NML cases, the
sample points from different lanes are evenly distributed, in
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Figure 1: Network geometry and demand.

Table 4: Managed lane evaluation plan.

Policy No managed lane Managed lane #1 Managed lane #2
ID NML CAV-1 CAV-2
1st lane HV+CAV HV+CAV HV+CAV
2nd lane HV+CAV HV+CAV HV+CAV
3rd lane HV+CAV HV+CAV CAV
4th lane HV+CAV CAV CAV
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Figure 2: Speed-flow curves.
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contrast to managed lane cases. For the CAV-2 case, the
separation of the CAV lanes (the left-most and the second
left-most) started to appear at 70% MPR. At full penetration
(100%), the traffic patterns are very similar, as the managed
lane becomes irrelevant.

4.2. Headway Distribution. %e simulation collects raw data
from the data collector, an equivalent of real-world detectors
(e.g., loop detectors, video cameras, andmicrowave sensors).
By analyzing the high-resolution raw data (collected every
0.1 s), the headway distribution in CAV lanes can be

obtained. Recall that the collectors are placed in three
sections of the roadway segment, as shown in Figure 1.

%e cumulative probability function (CDF) curves are
displayed in Figure 3. %e vertical lines in the figure are the
headways when 100% cumulative probability is reached.%e
slope of the CDF indicates the level of concentration of the
samples within a distribution. In NML cases, two types of
tipping points exist: the one at lower headway resulting from
a high MPR and the one with higher headway observed at a
low MPR (below 40%). For CAV-1, the pattern for CDF at
30% and 40% is transformed to the pattern observed at high
MPRs.With 2 CAV lanes, the CDF increases gradually in the
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mid-range MPR (40% to 60%) because of undersaturation
on the CAV lanes, as illustrated in the CDF on the 3rd and
4th lanes. Such undersaturation situation is alleviated when
the MPR reaches 70%. A similar pattern in CDFs is observed
at a high MPR range (i.e., 80% to 90%) regardless of the
managed lane strategies, indicating a high concentration of
samples with headway above 1 s.

Two-sample Kolmogorov-Smirnov (K-S) test is adopted
to analyze the CDFs to check whether two random samples
are from the same population [68]. It is a nonparametric test
where no assumption is made regarding the distribution of
the variables [69]. %e null hypothesis (H0) of the two-
sample K-S test is that the two sample sets are from the same
continuous distribution. Nearly all the CDFs in the pairwise
comparison reject the null hypothesis with a low p value at
the 0.05 significance level, with the exception of the com-
parison of 40% and 50% in NML. Figure 4 is a heatmap that
shows the pairwise K-S statistics that represent the
supremum of the two tested empirical CDFs. %e denser the
color, the higher the difference in cumulative probability
between two comparing scenarios.

%e average headway for HVs and CAVs in every travel
lane is shown in Figure 5.%e row represents the vehicle types,
whereas the column represents the travel lane. Recall that the
4th lane is the left-most lane. For HVs, their averaged headway
decreases as the MPR increases in CAV-1 and CAV-2 cases.
While the headway also decreases in the NML case, it is at a
lesser rate. When it comes to CAVs, the decreasing rate in
CAV-2 is greater than that in CAV-1 or NML. %e mean
headway is around 4 s in CAV-2 case when the MPR is low or
in middle range due to low lane utilization in the CAV lanes.
%e average headway in CAV-2 case reaches a comparable
level to its counterparts at 70% MPR, which is the deflection

point.%e lowest mean headway achieved among all scenarios
is observed at 70% MPR in CAV-1 case for CAVs, which
corresponds to the maximum capacity with all other factors
being equal. Lastly, the headway trend for CAVs remains a
similar pattern across four travel lanes in the NML case, since
CAVs are uniformly distributed across all lanes.

Figure 6 shows the comparison of headway distributions
in the left-most lane among three managed lane scenarios
under different MPRs. In the 40% to 70% MPR range, it is
shown that implementing a managed lane for CAVs clearly
shifts the distribution to the left-hand side, which represents
smaller headways. %e distributions of headway collected for
either CAV-1 or CAV-2 become “narrower” (with less standard
deviation), as the MPR increases from 40% to 70%.%e highest
bin of the histogram for both CAV-1 and CAV-2 cases is
1 s–1.2 s when theMPR is below 50%.When theMPR is higher
than 50%, the highest bin of the histogram shifts to 0.8 s–1 s. In
comparison, the NML case does not exhibit such a concen-
tration pattern as the MPR increases. %e result indicates that a
homogeneous traffic flow comprised of only CAVs is able to
realize the short headway benefits from deploying CAVs.

4.3. Fuel Consumption. %e VT-Micro model [16], an in-
dividual vehicle- and operation-level emission model, is
adopted to calculate the instantaneous fuel consumption
rate. %e inputs for the VT-Micro model are instantaneous
vehicle speed and acceleration, and the output is the second-
by-second fuel consumption rate, as shown in equation (5),
where _x is the instantaneous speed, €x is instantaneous ac-
celeration, and Le

i,j and Me
i,j are regression coefficients for

emission and fuel consumption at speed power i and ac-
celeration power j, respectively:
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%e vehicle data was derived from the raw data from the
detectors in three locations marked in Figure 1. %e result
for the fuel consumption is plotted in Figure 7, which shows
two distinctive patterns for the GPLs and the managed lane.
%e concentration of fuel consumption is within 5ml/s to
10ml/s for lanes that allow HV operation (i.e., mixed traffic),
when the MPR for CAVs is equal to or less than 60%. When
the MPR rises to above 60%, the instantaneous fuel con-
sumption shifts to lower values with a “narrower” slope:
higher concentration between 5ml/s and 7ml/s.

We then isolate the CDF curve for both CAVs and
HVs, when they operate on the left-most lane under
homogeneous flow condition. More specifically, the
separated CDF curves represent the observations of HVs
from the 0% MPR in NML case and the observations for
CAVs from the 100% MPR for CAV-1 case. %e CDF
curves in Figure 7 exhibit two different patterns for CAVs
and HVs. %e former with 60% of the observations fall
below 4ml/s, whereas the latter with 60% of the obser-
vations fall below 12ml/s with a wider spread. %e wider
spread for HVs is probably caused by the stochastic nature
of human drivers (which is simulated by the Wiedemann
model). Hence, the mixed traffic condition is comprised of
two competing flows that excrete their influence.

In the GPLs, the MPR plays a role as an indicator for the
dominance of each traffic flow. %e higher the MPR is, the
closer the CDF curves approach the pattern of managed
lane that is used by CAV exclusively. In the managed lane,
the CAV traffic is the sole dominating traffic. %erefore, the
fuel consumption curve exhibits only CAV traffic char-
acteristics, regardless of the MPR. We include the fuel
consumption rate CDF curves for HVs and CAVs in
Appendix C, Figures 8 and 9: both figures demonstrate the

shift towards CAV fuel consumption CDF pattern as the
MPR grows. %e difference in fuel consumption between
two types of homogeneous flow can be found in Figure 10
in Appendix.

4.4. Wireless Communication. Figure 11(a) shows the
maximum and the average density for instances of V2V
communication among three managed lane policies. Recall
that the DSRC communication model only deals with the
physical layer. While the transmission density increases as
the MPR increases, the maximum density in NML is higher
than CAV-1 and CAV-2, because the CAV platoons were
broken down by certain HVs, which are susceptible to
shockwaves. As such, the traffic flow is compressed, pro-
ducing a higher traffic density and thus higher transmission
density. With the aid of CAV lane, the communication
density is thusmaintained at a lower level. In a CAV lane, the
CAVs distribute longitudinally on the managed lane. %e
NML, in comparison with two managed lane cases, is more
likely to generate pockets of traffic with CAVs across
multiple lanes, which could result in localized higher
transmission activity.

%e probability of successful reception of BSM from
a leading vehicle to a subject vehicle is shown in
Figure 11(b). %e probability curves under CAV-1 and
CAV-2 scenarios are in close proximity to each other
and they are showing the same trend. %e maximum
difference between these two curves is 0.04 at 90% MPR.
%e probability of successful communication of NML at
high MPR range (60% to 90%) is consistently lower than
those of CAV-1 and CAV-2. %is is caused by the
compression of traffic flow by localized shockwaves.
%ere is an overall decreasing trend of the probability as
the MPR increases but there still remains a successful
rate of 94% and above.

4.5.NetworkPerformance. %emeasures used in this section
gauge the overall performance of the simulation network at
an aggregated level. %e throughput represents the total
number of vehicles that have arrived at their destinations,
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Figure 6: Headway distributions in the left-most lane. (a) 40% MPR. (b) 50% MPR. (c) 60% MPR. (d) 70% MPR.
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shown in Figure 12. As mentioned before, the network was
configured with a higher than usual demand. With a
10,000 vph demand for a four-lane highway, the network
was only able to process 6500 vph in the absence of CAVs.
Under the NML scenario, as the MPR of CAVs increases, so
does the network throughput. %e throughput reaches

approximately 8000 vph with 40% and 50%MPRs. However,
at 60% MPR, the network throughput is boosted again and
remains at the same level at 9600 vph when theMPR is above
70%. %e throughput in CAV-1 case begins to outperform
the NML case at MPR 50% and keeps increasing to 9700 vph
at 70%MPR, where the throughput starts leveling in spite of
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the increase in MPR. For the CAV-2 policy, the system
throughput only reaches the same level of the two coun-
terparts at 70% MPR due to underutilization of CAV lanes
with low MRPs.

%e average delay experienced by vehicles (plotted in
Figure 13(a)) within the network is calculated by dividing
the total delay by the sum of the vehicles within the
network and the vehicles that have exited the network.
For three strategies, the average delay starts to decrease as

the throughput levels off: at 60% for NML and CAV-1 and
at 70 % for CAV-2. Such seemingly counter-intuitive
phenomena could be explained by taking into account the
average speed, which is shown in Figure 13(b): when the
throughput is in a graduate increase as the MPR goes
until 60%, the average speed exhibits a decreasing trend,
which is in an inverse relationship with vehicle delay. %is
trend is in agreement with the speed-flow fundamental
diagram.
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Figure 11: V2V communication performance measure. (a) Vehicle density. (b) Packet perception rate.

Base
MPR (%)

0

2,000

4,000

6,000

8,000

10,000

12,000

V
eh

ic
le

 ar
riv

ed
 (v

eh
)

NML
CAV-1
CAV-2

ML policy

10 20 30 40 50 60 70 80 90 100

Figure 12: Network throughput.

Base 10 20 30 40 50 60 70 80 90 100
MPR (%)

0

20

40

60

80

100

120

A
ve

ra
ge

 d
el

ay
 (s

)

NML
CAV-1
CAV-2

(a)

Base 10 20 30 40 50 60 70 80 90 100
MPR (%)

NML
CAV-1
CAV-2

0

20

40

60

80

100

120

A
ve

ra
ge

 sp
ee

d 
(k

m
/h

)

ML policy

(b)

Figure 13: Average speed and delay. (a) Average delay. (b) Average speed.

14 Journal of Advanced Transportation



5. Discussion and Conclusions

In this section, we highlight the findings from the previous
section and discuss the study in a boarder context.

5.1. Summary. %e analysis results indicate that the in-
troduction of CAV could increase the throughput of the
overall system, even when no managed lane policy is in
place. %e congestion region in the speed-flow diagram
disappears as the MPR of the CAVs increases. %is is an
indication of the improvement of roadway capacity owing
to CAVs, which is consistent with the findings of previous
studies. More importantly, the congestion region first
disappears in the CAV lane in CAV-1 case, illustrating
that the homogeneity of CAV traffic results in a more
stable traffic flow with a high throughput. A CAV lane,
with an MPR as low as 40%, is able to accommodate more
traffic compared to a GP lane and it helps to alleviate the
overall congestion of the network. %e average vehicle
delay exhibits a decreasing trend, even after the network
throughput levels after 70% MPR. %is is an indicator that
the network is able to carry more traffic than the high
demand specified in Figure 1.

%e individual headways among consecutive vehicles are
measured for each lane. From the headway distribution, one
can measure not only the compactness of the traffic but also
the stability of the traffic flow. Both HVs and CAVs have a
predominate headway as shown in Table 4. In a heteroge-
neous traffic flow, two spikes with different tipping points
can be observed in the headway CDF curve. Each segment
indicates a high concentration for the headway samples. One
is for the following headway samples observed on HVs, and

the other is for the headway samples for CAVs. With traffic
homogeneity on the CAV lane, there is only one spike on the
CDF curves. %e magnitude of the spike also depends on the
lane occupancy, as evidenced by the comparison of CAV-1
and CAV-2 at the sameMPR.%e two-spike pattern remains
even at high-range MPR (i.e., 60–80%) in the absence of
CAV lane (the NML case).

%e VT-Micro model, which produces instantaneous
fuel consumption for individual vehicles, was employed to
estimate the environmental impact of the CAV lane. %e
vehicle speed and acceleration were collected as inputs and
the relative fuel consumption, instead of the absolute one,
was examined. Again, distinct patterns for a GPL and a CAV
lane were observed. %e average instantaneous fuel con-
sumption for CAV lane has a narrower distribution.

Lastly, the DSRC communication was measured using
an analytical communication model that is derived from a
package-level network simulator. It simulates the physical
layer of the DSRC communication that is an integral element
of CAVs. We found a lower communication density in CAV
lane, as the CAVs were more evenly distributed longitudi-
nally. A lower communication density indicates a less
congested communication channel, which increases the
performance of the V2V communication. Compared to
CAV-1 and CAV-2 scenarios, it is more likely under NML
scenario to generate pockets of traffic with CAVs across
multiple lanes, which could introduce higher localized
transmission activity and increase the loss of BSM packets.

%e overall results show that a single CAV lane in a four-
lane highway network is able to provide the necessary tech-
nical accommodation efficiently in themixed traffic conditions
with a wide range of MPR. A CAV dedicated lane is helpful to
guarantee the benefits of CAVs, as it creates a homogeneous
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CAV flow. Implementing two CAV lanes, however, may
adversely affect the overall traffic, especially when the MPR of
CAV does not warrant an additional CAV lane.

5.2. Limitations. While the paper demonstrates the benefits
of managed lane for CAV at lane level and vehicle level, we
should note that there are limitations in this study and the
benefits are realized in a controlled environment under
certain assumptions. First of all, although the Wiedemann
model is behaviorally sound and has been adopted by nu-
merous researchers for simulating human drivers, the
complexity of a human driver under dynamic traffic con-
ditions is difficult, if possible at all, to be captured by
simulation models. In addition, the behavioral adaptation
for human drivers in the presence of CAV is not known yet,
due to the lack of empirical evidence in the public domain.
Preliminary results revealed that a smaller time headway was
adopted by a HV when driving along side closed platooned
CAVs [70]. Note that the Wiedemann driver behavior pa-
rameters were calibrated using field data where CAVs have
not been deployed on the roadway yet. %e calibrated pa-
rameters represent a subset of the driving population, and
they may not be directly transferable to other driving
conditions or demographics. %e E-IDM, while being widely
adopted, does not contain the multianticipative car-fol-
lowing feature, which has been promoted as one of the
crucial features enabled by V2V communication. %erefore,
the performance of the CAVs is expected to be more
conservative. Like many existing CAV car-following models,
the E-IDMdoes not factor the aspects of human factor that is
anticipated to be more pronounced in the lower levels of
automation.

In addition, there are several salient issues regarding the
low-level automation and its modeling as well. For a CAV,
the drivers’ acceptance of short following headway (e.g.,
0.6 s) is still an open question [24], given that the short
following headway is technologically attainable. It is rea-
sonable to expect that the acceptance of extremely short
headway would be low initially, although it will gradually
increase as CAV penetration increases.%e pace of adaption,
though, is largely depending on the level of confidence to the
ADS from human drivers. %e level of compliance from
drivers (in the absence of automation) is also an important
factor in harnessing rich information brought by the con-
nectivity. %e layer of driver stochasticity in reacting to
traffic information remains. In the extreme case, a complete
disregard of useful information could negate the benefits of
connectivity.

Another crucial issue is the transition of control from
the ADS back to the human driver. As per the definition of
vehicle automation by the SAE, the level 3 automation
(and below) requires a fallback receptive driver when the
ADS exits its designed operational domain. As studies have
shown, such fallback process is way more complicated than
merely retaking the steering wheel. First, a driver needs to
regain situational awareness of the traffic environment
from the disengagement of driving. %e surge in cognitive
demand during the initial period of reengaging in driving

tasks could result in deterioration in driver’s performance
(e.g., increased reaction time and inadequate situational
awareness). %is aspect rarely exists in current CAV
models, and much likely it will require an endogenous
cognitive model that is able to take into account the
driving task demand and the cognitive capacity of human
drivers [53]. %erefore, the human-machine interfacing is
seldom captured in current simulation model, including
the one used in this study.

5.3. Future Research. %e future research would focus on
relaxing the assumptions in this study. %e first direction is
the CAV behavior modeling. Researchers have recently
started the incorporation of human factor aspect, such as an
extension module in IDM to model driver’s responses to
advanced traffic information [57], and an explicit human
cognitive model for the transition of control [53]. Such
developments offer a great opportunity to introduce human
factor in a mixed traffic flow in the future. Second, the inner-
most lane is generally assigned as the managed lane in
current practices, which requires eligible users to merge to
access the managed lane and induces additional demand of
lane changing. %e access plan (e.g., ingress and egress points
of the managed lane, eligibility) requires further study to
minimize the negative impacts caused by induced weaving
activity. A cost-benefit analysis may also be warranted for
comparing managed lane strategies with other emerging
technologies, such as vehicle awareness device (VAD), for the
near-term deployment of CAV. Some researchers have started
the exploration of right-mostmanaged lane inUSA [65]. Lastly,
the characteristics of mixed traffic flow that is anticipated in the
near-term deployment of CAV need further exploration. In
particular, the impact of CAVs at individual trajectory level by
analyzing high-resolution vehicle trajectory data requires
further exploration (Appendix A).

Appendix

A. List of Abbreviations

%e list of abbreviation used is provided in Table 1.

B. Coefficients for the Wireless
Communication Model

%e coefficients obtained from the polynomial function
hi(ξ,φ) are shown in Figure 14(a). It is worth stressing that
even seemingly negligible values, if omitted, could result in
deviation in the probability of reception from 8% to 100%
[63]. %e probability distribution curves for transmission
scenarios are shown in 14(a).

C. Instantaneous Fuel Consumption for HV
and CAV

Instantaneous fuel consumption for HV and CAV is shown
in Figures 8 and 9. %e instantaneous fuel consumption
curve for homogeneous flow is shown in Figure 10.
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Traffic congestion in the adjacent region between the highway and urban expressway is becoming more and more serious. +is
paper proposes a traffic speed forecast method based on the Macroscopic Fundamental Diagram (MFD) and Gated Recurrent
Unit (GRU) model to provide the necessary traffic guidance information for travelers in this region. Firstly, considering that the
road traffic speed is affected by the macroscopic traffic state, the adjacent region between the highway and expressway is divided
into subareas based on the MFD. Secondly, the spatial-temporal correlation coefficient is proposed to measure the correlation
between subareas. +en, the matrix of regional traffic speed data is constructed. +irdly, the matrix is input into the GRU
prediction model to get the predicted traffic speed. +e proposed algorithm’s prediction performance is verified based on the GPS
data collected from the adjacent region between Beijing Highways and Expressway.

1. Introduction

With the continuous growth of the scale of China’s highway
network and traffic volume, the traffic load of the intercity
highway in some developed cities is increasing. Many adjacent
regions (network of in- and out-of-town roads) between
highway and expressway have become part of the urban
commuting road. Besides, due to the restrictions of traffic
management measures, trucks are not allowed to enter the
urban area in fixed hours. +ey can only drive on adjacent
regions between the highway and urban expressway, which
caused the trucks to accumulate, resulting in low road capacity
and service level during peak hours, severe traffic congestion,
and frequent traffic accidents. What is more, the abnormal
weather also often leads to local traffic congestion, which
gradually evolves into spread congestion in the regional net-
work. To sum up, it is essential to conduct research on traffic
states predicting at the intersection of highways and urban

expressways and publish accurate traffic guidance information
to travelers to alleviate traffic congestion.

+e evolution of road traffic flow has complex nonlinear
characteristics [1], which makes it challenging to realize ac-
curate traffic flow predictions. Many machine learning algo-
rithms have been used to research transportation [2], especially
traffic flow prediction. Liu et al. proposed a hybrid road
network traffic speed predictionmodel based on the state-space
neural network and extended Kalman filter [3]. Zhang et al.
predicted the traffic speed considering the heterogeneity of
different roads [4]. Dhivyabharathi et al. proposed amethod for
predicting river traffic time using the particle filtering method
[5]. Zhao et al. integrated the charging data and microwave
detection data to predict traffic speed [6]. Zhao et al. proposed a
prediction algorithm combining equal spacing interpolation
and Sage–Husa adaptive Kalman filtering [7]. Wang et al.
improved the reliability method of driving time prediction
based on GPS point velocity distribution by calculating the
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variable velocity distribution coefficient [8]. Zhou et al. pro-
posed a recurrent neural network based microscopic car-fol-
lowing model on predicting traffic oscillation [9]. Wang and
Goodchild developed a logit model to determine the truck
route’s influencing factors and estimate the driving time [10].
Jula et al. developed a hybrid method composed of dynamic
programming and genetic algorithm to find trucks’ shortest
path [11]. Dong et al. proposed a traffic crash prediction
method based on the support vector regression (SVR) model
[12]. Yu et al. proposed the random forests based on the near
neighbor (RFNN) method to predict bus travel time [13]. Xie
and Wei proposed Elman neural network to predict truck
speed [14]. Wang and Xu constructed the short-term traffic
flow prediction model of urban expressway based on the Long
Short-Term Memory (LSTM) network under deep learning
[15]. Luo et al. proposed a short-term traffic flow prediction
model based on deep learning combining the features of
convolutional neural network and support vector regression
classifier [16]. Yao et al. discussed the application of Support
Vector Machine theory to predict road travel time [17]. Wu
et al. [18] proposed a traffic flow prediction model based on
Deep Neural Networks (DNN) by utilizing the weekly/daily
periodicity and space-time characteristics of traffic flow [18]. Jia
et al. proposed a deep learning method for short-term traffic
speed information prediction-deep belief network (DBN)
model [19]. Due to the problem that the commonly used
weight optimization algorithm could not adjust the learning
rate adaptably, Zhao et al. adopted Adam, Adadelta, and
Rmsprop to optimize the weight in the GRUmodel of the deep
learning algorithm [20]. Wang et al. established a travel time
prediction model based on the LSTM (Long Short-Term
Memory) considering the precipitation data [21]. Zang et al.
proposed an all-day traffic speed prediction method for ele-
vated highways based on deep learning [22]. Peng et al. pro-
posed a 3D Convolutional Neural Network-Deep Neural
Network method to recognize and predict traffic status from
aerial videos [23]. +e author has also conducted many studies
on how to improve prediction accuracy [24–26]. +e existing
machine learning algorithm cannot fully dig out the essence of
traffic flow characteristics. Deep learning model, such as GRU,
can help us learn and seize the inherent complex features
effectively and predict traffic flow without prior knowledge
[27]. Using the deep learning algorithm to mine traffic flow
rules becomes the direction of traffic state prediction.

+e prediction of road segment traffic speed belongs to
the study of microscopic traffic flow characteristics. It is also
affected by the traffic states at the macrolevel, such as road
network and neighboring region. At present, it is rare to
combine macro- and microcharacteristics to predict traffic
speed. +e Macroscopic Fundamental Diagram (MFD) is a
model reflecting the road network’s macroscopic traffic
state. According to specific indicators, MFD divides a
complex and large road network into several independent
subregions and implements appropriate control optimiza-
tion strategies according to the subareas’ characteristics.
Based on the subregion division results, several road sections
that are most similar to the predicted target road can be
selected. Meanwhile, the spatial and temporal correlation
between traffic flows in each subregion can be analyzed. +e

subregions with strong correlation can be selected to con-
struct the traffic flow sequence dataset and input the pre-
diction model, which is conducive to improving the
prediction accuracy. Many scholars have studied the sub-
regional division method of MFD. Ji and Geroliminis
proposed a static normalized cut (Ncut) based subregions
division method based on traffic congestion’s spatial char-
acteristics and minimizing the subarea’s vehicle density [28].
Ji et al. also proposed a dynamic subarea delineation method
based on GPS data targeting the maximum connected ele-
ment [29]. Haddad and Geroliminis proposed a division
method based on the operational stability of the subregions
[30]. Ma et al. used a spectral approach to divide traffic zones
based on neighboring intersections [31]. Ncut is a graph
theory-based partitioning algorithm derived from the image
partitioning domain. +is algorithm not only considers the
similarities within regions but also normalizes the similar-
ities within regions using the similarities between regions.
And then, the cutting scheme that minimizes the similarities
between regions after normalization is found. In this paper,
the Ncut algorithm is used to divide the traffic subregions.
+en, the stability of the MFD for each subdivided subregion
is calculated and analyzed to justify the division results.

GPS data has a wide coverage area and can better reflect
the characteristics of urban road traffic flow [32]. What is
more, in recent years, China has strengthened the supervision
of freight vehicles. It is required that the GPS devices be
installed on the large heavy-haul trucks to monitor the trucks’
running status. +is produces a large amount of trajectory
data, especially in the adjacent region between highway and
expressway. In this paper, based on the average roadway speed
and flow data extracted from the truck GPS data, a short-time
traffic flow prediction method combining MFD and GRU is
proposed. Using the characteristics ofMFD, the road network
area is divided into subregions, and the microtraffic flow
characteristics and macrotraffic conditions are combined to
develop a traffic forecasting method. +e test results of real
traffic flow data show that the method proposed in this paper
has lower prediction errors and higher accuracy than the
existing prediction models. It is a reasonable and effective
method to predict short-time traffic flow. +e technical
framework of this paper is shown in Figure 1.

2. Subdivision Method of Road Network
Based on MFD

2.1. Construction of Road Network Weighted Graph Based on
Traffic Operation Similarity. A stable MFD exists in a net-
work of roads with operational homogeneity. A large area
can be divided into subregions based on the operational
homogeneity of traffic.+e starting point of the MFD theory
is to study the relationship between traffic demand and
traffic supply in the road network, the maximum traffic
volume can directly reflect the traffic supply of each road
section and the overall road network, and the traffic volume
data can be easily obtained through traffic flow detection.
+us, the traffic volume is taken as the fundamental traffic
characteristic of the road section in this paper. +e road
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section’s maximum traffic volume is used to define the traffic
operation similarity between adjacent connected sections.

Let the similarity degree of traffic operation between
adjacent connected sections i and j in road network G be:

w(i, j) � exp − q
m
i − q

m
j􏼐 􏼑

2
􏼔 􏼕, (1)

where qm
i is the maximum traffic volume of section i in road

networkG and qm
j is the maximum traffic volume of section j

in road network G. Using the natural constant transfor-
mation, the difference value of the maximum traffic volume
between adjacent connected sections is squared mapped to
the interval of 0-1. If the similarity is 0, the traffic operation
similarity between the road sections is the least. If the
similarity is 1, the traffic operation similarity between the
road sections is the biggest.

Based on graph theory, the road network is first “node-
arc transformation,” so that the similarity degree of traffic
operation between adjacent road sections is expressed as the
weight of the arc section in the graph. +e Laplace matrix is
constructed based on the similarity degree of traffic oper-
ation, which is the basis for the subgraph division in graph
theory. +e details are as follows.

When road segment i in road network G is connected
with road segment j, aij � 1.When segment i is disconnected
from segment j, aij � 0. When i is equal to j, aij � 0. +e
weighted adjacency matrix of road network G is W, and the
element in W is

wij �
w′(i, j), aij � 1,

0, aij � 0.

⎧⎨

⎩ (2)

+is paper adopts road sections as node V in the un-
directed graph G, so that w′(i, j) � −w(i, j). +e matrix D is
the diagonal matrix:

D � diag di􏼈 􏼉,

di � 􏽘
j

w′(i, j). (3)

D-W is the Laplace matrix of road network G, in which
the sum of all the rows and columns is zero. Based on the
transformations and calculations, it is possible to obtain a
road network weighted by traffic operations similarity be-
tween adjacent connecting sections.

2.2. Road Network Subarea Division Method Based on Nor-
malized Cut. Ncut is one of the neutron graph partition
methods in graph theory, which is a subgraph division
method at the macrolevel. +e focus is not on the graph’s
details, but on the overall characteristics of the graph. +e
optimal normalized cut problem of the graph can be
expressed as

min
x

Ncut(x)

s.t. x ∈ V.
(4)

It is an NP-hard problem to solve the minimum value of
the normalized cut. +e spectral clustering method is a
widely used method that can solve NP-hard problem ap-
proximately by solving eigenvalue and eigenvalue vector.
+erefore, the Fiedler method is used to calculate the

Validation

Highway section traffic status identification

Road network subregion division 
based on Ncut algorithm

Verification of partitioning results 
by MFDstability calculationsRegionalism

Training GRU model

Testing dataset

Data forecasting

Training dataset Trafficspeed
matrix

Error analysis

Section traffic 
status 

identification

Data dumps

Fill the missing

Eliminate anomaly

Noise processing

Floating car data

Map matching Workday

Holiday

Rainy day

Accident

Algorithm 
validation

Time-space correlation analysis of 
subregions

Data preprocessing

Traffic data processing

Figure 1: +e technical framework of the paper.
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eigenvalues and eigenvectors of the matrix and divide the
subareas of the road network. +e point set V of figure G is
divided into two subsets, and the transformation can express
the optimal normalized cut problem of A and B:

minxNcut(x) � miny

y
T
(D − W)y

y
T

Dy

s.t.

xi � 1, if xi ∈ A

xi � −1, if xi ∈ B

yi ∈ −1, b{ }

y
T
D1 � 0,

(5)

where y � (1 + x) − b(1 − x), b � ((􏽐xi>0di)/(􏽐xi<0di)),
di � 􏽐jwij, and x is a vector of columns consisting of 1 and
−1. When the i-th node is subdivided into subregion A,
x � 1; when it is subdivided into subregion B, x � −1.

Since all rows and columns in a Laplace matrix have a
sum of 0, the matrix always has an eigenvalue of 0. If graphG
is connected, then the second small eigenvalue is positive.
+e corresponding eigenvector is called the Fiedler vector,
which contains important information about the graph; that
is, the numerical size of the elements in the Fiedler vector
reflects the correlation of their corresponding vertices.
When the road network is divided according to the Fiedler
vector, the vertices corresponding to the Fiedler vector can
be divided according to different critical value S. +ere are
many methods to select the S value, among which the 0-
point method is practical and straightforward.

3. Stability Calculation of MFD

By calculating the stability of MFD, the rationality of the
subregion division can be proved. MFD stability depends on
stability in the critical state. In the critical state, if the average
traffic volume fluctuates less under the same road network
density, the road network traffic operation will be more
controllable. +is article refers to the method (Fuzzy c-means
algorithm) in our research [33] to divide the test data sets into
three categories: unblocked, critical, and congested. Two in-
dicators, the regional traffic volume and regional density, are
used to classify the three traffic states. Firstly, FCM (Fuzzy
c-means algorithm) is used to divide the data points of the
spatial distribution of multidimensional data into specific
classes. Each data point belongs to a certain class to some
extent, and the membership degree is used to indicate the
degree to which each data point belongs to a certain clustering.
FCM divides n vectors into c fuzzy groups and calculates each
group’s clustering center tominimize the objective function of
nonsimilarity indexes. +en, the traffic state is divided into
three stages: unblocked, critical, and congested.

+e dispersion of road network traffic operation, that is,
the dispersion of weighted average traffic volume of road
network in the critical state, represents MFD’s stability in the
critical state.+e lower the dispersion of road network traffic
operation is, the more stable the road network operation is,

and the higher the MFD stability is. +e higher the dis-
persion of road network traffic operation, the more unstable
the road network operation will be and the lower the MFD
stability. +e dispersion of road network traffic operation is

s �

�����������������
(1/n) 􏽐

n
e�1 q

w
e − q

w
c( 􏼁

􏽱

q
w
c

,

q
w
c � αq

w
m,

(6)

where qw
e is the average traffic volume in the test data. qw

c is
the critical average traffic volume of road network, qw

m is the
maximum average traffic volume of road network, and α is
undetermined parameters, 0< α< 1.

+e whole road network’s dispersion degree is calculated
by the weighted average of each subarea’s dispersion degree.
+e calculation results can be used as the judgment index of
the subarea division to characterize the whole network’s
MFD stability. If the entire road network is divided into N
subareas, and the dispersion of road network traffic oper-
ation in subarea i is si, then the dispersion of the whole road
network traffic operation is SN

SN �
􏽐

N
i�1 q

w
cisi

􏽐
N
i�1 q

w
ci

, (7)

where qw
ci is the critical average traffic volume in subarea i.

4. Traffic SpeedPredictionMethodBasedon the
Spatial-Temporal Correlation of Subareas

+e evolution of traffic speed on a road section in a specific
subarea is affected not only by the temporal evolution law of
the traffic flow on the road sections but also by the spatial
influence of the road sections in other subareas. +is paper
proposes a traffic speed prediction algorithm that considers
the spatial-temporal correlation of subareas.

4.1. Correlation Analysis of Subareas

4.1.1. Spatial Correlation Analysis. Firstly, the spatial cor-
relation between each subarea is analyzed.

In spatial correlation analysis, it is necessary to measure
the adjacency relationship of the neighboring subregions.
+is requires quantitatively describing the adjacency rela-
tionship of adjacent regions to perform the calculation of
spatial correlation statistics.

In this paper, the spatial adjacency matrix is used to
express the spatial relationship between subregions.

Suppose that there are m subregions in the study area,
and the spatial weight matrix Wsp � [w

sp
ij ]m×m is used to

express the spatial correlation between the subregions:

w
sp
ij �

1, when subregions i and j are adjacent,

0, when subregions i and j are not adjacent,
􏼨

(8)

where Wsp is m × m dimensional spatial weight matrix and
w

sp
ij is the spatial weight between the regional units i and j.
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Besides, to ensure that the subregions cannot be adjacent to
themselves specifies that when j � i, w

sp
ij � 0. When two

subregions are sharing one or more nodes, it is adjacent.
+e standardized formula of the spatial weights is

ωsp
ij �

w
sp
ij

􏽐jw
sp
ij

. (9)

4.1.2. Temporal Correlation Analysis. +e Pearson correla-
tion coefficient formula is improved to measure the time
correlation of the two regions. If two subregions in the study
area have spatial adjacencies, the time correlation can be
calculated by the following formula over a certain period:

cij �
E qi(t) − μi( 􏼁 qj(t) − μj􏼐 􏼑

σiσj

, (10)

where qi(t) and qj(t) are the traffic volume of subregions i
and j at time t; ui and uj are the mean traffic volume for i and
j; and σi and σj are the variances.

According to the road network area studied in this paper,
the regional correlation is calculated as ωsp

ij cij(ac), where
ωijis the spatial correlation of areas i and j and cij(ac) is the
correlation of two areas in the study period.

In this paper, the data of the K most relevant regions to
the region where the predicted target segment is located are
selected for constructing the input matrix of the prediction
model. In this paper, the K values are determined as follows:
K (K� 0, 1, ..., 4) are used to input the data from the most
relevant regions into the GRU model, and the K-value with
the smallest prediction error is taken.

One input sample of the deep learning algorithm is

V11(t − 1) · · · V1(o−1)(t − 1) V21(t − 1) · · · V2o(t − 1) · · · Vko(t − 1) Va(t − 1)

⋮ · · · · · · · · · · · · · · · · · · · · · ⋮

⋮ · · · · · · · · · · · · · · · · · · · · · ⋮

⋮ · · · · · · · · · · · · · · · · · · · · · ⋮

V11(t − L) · · · V1(o−1)(t − L) V21(t − L) · · · V2o(t − L) · · · Vko(t − L) Va(t − L)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (11)

where L is timestep, o is the number of sections of road
included in Area k, and a represents the target section.

4.2. GRU-Based Traffic Speed Prediction Algorithm. RNN
(recurrent neural network) is a kind of deep neural network
designed to process sequence data, which plays an important
role in the field of sequence mining.

+e GRU model is an improvement of recurrent neural
network, which is one of the hot technologies of deep
learning in recent years. Different from the traditional
recurrent neural network, the internal structure of the
GRU’s hidden layer nodes does not use a single activation
function.

+e specific calculation steps of GRU are as follows:
firstly, the current state input zt and the previous time
output ht−1 are input into the update gate, and then a value
between 0 and 1 can be output, where 0 represents the
complete discarding information and 1 represents the
complete reserving information, and the calculation formula
is as shown in formula (12). Secondly, zt and ht−1 entering
the reset gate of the sigmoid layer output the value between 0
and 1. Meanwhile, tanh layer will create a new candidate
value vector 􏽥ht, and the calculation formulas are shown in
equations (13) and (14). +irdly, the update gate is used as

the weight vector, and the candidate vector and the output
vector at the last moment are weighted averages to obtain the
output ht of GRU cells. +e calculation formula is shown in
equation (15):

ηt � σ pη + Uηzt + Qηht−1􏼐 􏼑, (12)

rt � σ pr + Urzt + Qrht−1( 􏼁, (13)

􏽥ht � tanh ps + Uszt + Qsrtht−1( 􏼁, (14)

ht � 1 − ηt( 􏼁ht−1 + ηt
􏽥ht, (15)

where η represents the update gate vector; r represents the
reset gate vector; p represents the bias vector; U represents
the input weight; Q represents the cyclic weight; zt repre-
sents the input vector at t time; and ht represents the output
vector at t time.

Regularization is generally defined as the modification of
the learning algorithm, and the goal is to reduce general-
ization error rather than training error. Common regula-
rization methods include L1 and L2 parameter paradigm
penalty, Dropout, multitask learning, and early termination,
which are common, where the penalty terms L2 and L1 of
parameter normal form can be expressed as
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L2(θ) �
1
2
z 􏽘

i

θ2i
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, L1(θ) � z 􏽘
i

θi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, (16)

where θi can be expressed as the reciprocal of weight Q of
each layer, indicating that, for the layer with too high weight
learned, its updating degree should be reduced. On the
contrary, for the node with too low weight learned in the
layer, its updating degree should be improved to achieve the
goal of amortizing the ownership value in the layer.

To sum up, the flow of the stroke speed prediction al-
gorithm proposed in this paper is shown in Figure 2. +e
input is a three-dimensional vector composed of features,
time step, and samples. +is 3D tensor is input to the GRU
model with a dropout layer and fully connected layer to get
the travel time’s predicted result. One column of the matrix
in equation (11) corresponds to the input of one time step of
the GRU model.

5. Algorithm Validation

5.1. Road Network Subarea Division and Stability Calculation
of MFD. +is paper uses truck GPS data as the basis for
algorithm validation. As shown in Figure 3, the experimental
area selected in this paper is located in Beijing’s southeast.
Beijing’s expressway and the main road, including the 5th
and 6th ring roads, Jingtai, Jinghu, and Jingha highway, are
selected to verify algorithm accuracy. +e area is approxi-
mately 110 square kilometers.+e total length of roads in the
road network is about 131 km. According to the analysis, the
selected area has more accidents and more GPS data of
truck.

+e time range of the data used for validation is May 1,
2018, to July 31, 2018.

+emethods of mapmatching, anomaly data processing,
and traffic speed time series extraction of truck GPS data in
this paper are from literature [20]. In this paper, the collected
truck GPS data is organized into the form of a time series of
the traffic speed of the road section with a period of 5
minutes. +en, according to the chosen K-value, it is or-
ganized into equation (11). L takes 12; that is, the prediction
is made using the previous hour’s data.

Sample size is a critical concern when using probe ve-
hicles to collect real-time traffic information, and it is
necessary to determine the number of probe vehicles needed
for traffic state estimation. In this paper, the required sample
size for different combinations of confidence levels of the
study area is determined with reference to the method in
[34].

May and June’s average speed data are used as the
training data set for GRUmodel training.+e rest of the data
serves as a test set for the algorithm. In this paper, the study

area’s road network is abstracted into the road network
diagram, as shown in Figure 4, and there are 32 road sections
and 21 nodes.

+e regional division of the cases of the parties is shown
in Figure 5. +e dispersion of traffic operation in subareas
and the whole road network is shown in Table 1. When the
network is divided into 5 subareas, the whole road network’s
traffic discrete degree is the smallest, 0.05673. +e network
has been divided into smaller regions. If continuing, the
change of discrete degree of the whole road network is not
too big. However, for speed prediction, the dimensionality of
the data input to the model will increase. +us, the pre-
diction difficulty will increase. So, take five as the optimal
scheme of areas division.

+eMFD of each subarea is shown in Figure 6.+e traffic
state classification results based on the FCM algorithm for
subarea 1 are shown in Figure 7. +e clustering centers are
shown in Table 2.

5.2. Traffic Speed Prediction. Two indexes, MAPE and
RMSE, are selected to evaluate the prediction accuracy of the
model. +e calculation method of MAPE and RMSE is
shown in the following formulas:

MAPE �
1
L

􏽘
L

VY(t) − V(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

V(t)
, (17)

RMSE �

������������������
1
L

􏽘
L

VY(t) − V(t)( 􏼁
2
,

􏽳

(18)

where VY(t) is the predicted traffic speed at time t, V(t) is
the actual traffic speed at time t, and L is the total number of
predicted cycles.

+is paper selects nodes 17 to 18 (Section 1) and 9 to 10
(Section 2) belonging to different regions as the experi-
mental verification sections. +e accuracy of the algorithm
was verified in four different scenarios. +e prediction re-
sults were compared with the GRU prediction algorithm
based on a single time series of the road segment. +is GRU
model has the same parameter settings as the model pre-
sented in this paper.

+e first step is to determine the number of regions K
that are input to the GRUmodel, so the relationship between
the number of inputs and the prediction accuracy of the
model is analyzed. Table 3 shows the prediction accuracy of
Section 1 for different K values. Table 4 shows the prediction
accuracy of Section 2 for different K values. From Table 3, it
can be seen that the K of road Section 1 take 1. From Table 4,
it can be seen that the K of road Section 2 take 1.
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Figure 5: Subregional division of each scheme.

Table 1: Dispersion of traffic flow of each scheme.

Subarea number Transportation dispersion in subareas Dispersion of traffic flow in the whole road network

2 0.08350 0.063340.07194

3
0.05627

0.061300.05957
0.06334

4

0.05627

0.064990.05957
0.03872
0.11177

5

0.05627

0.05673
0.05957
0.03872
0.07729
0.06224
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Figure 4: Node number of the road network.
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Figure 6: MFD of each subregional. (a) Subregional one. (b) Subregional two. (c) Subregional three. (d) Subregional four. (e) Subregional
five.
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5.2.1. Working Days

(1) Section 1. +e predicted results of Section 1 on July 2
(working day) are shown in Figure 8.+e errors are shown in
Figure 9. It can be seen that on July 2, the average speed of
the morning rush hour and noon rush hour sections is low,
in a congested state, and the road section was in a state of

smooth flow at night. +e algorithm proposed in this paper
can achieve acceptable prediction results.+e results of error
evaluation indicators MAPE and RMSE are shown in Ta-
ble 5. MAPE was 2.30%, 3.05%, and the RMSE was 1.34 and
1.68, respectively.

(2) Section 2.+e predicted results of Section 2 on July 2
(working day) are shown in Figure 10.+e errors are shown
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Figure 7: +e traffic state classification results for subarea 1.

Table 2: +e clustering centers.

Traffic state Regional density Regional traffic volume
Unblocked 5.49 272
Critical 20.13 1200
Congested 38.74 1780

Table 3: Prediction accuracy of road Section 1 for different K values.

GRU K� 0 K� 1 K� 2 K� 3 K� 4
MAPE (%) 4.15 4.275 4.018 4.120 4.49 4.667
RMSE 2.331 2.251 2.217 2.294 2.402 2.42

Table 4: Prediction accuracy of road Section 2 for different K values.

GRU K� 0 K� 1 K� 2 K� 3 K� 4
MAPE (%) 4.003 4.016 3.903 4.009 4.16% 3.955
RMSE 3.136 3.122 2.97 3.051 3.142 3.145
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in Figure 11. +e algorithm proposed in this paper can
achieve acceptable prediction results. +e results of error
evaluation indicators MAPE and RMSE are shown in
Table 6. MAPE was 1.42%, 2.53%, and the RMSE was 1.05
and 1.79, respectively.

5.2.2. Weekend. (1) Section 1. +e predicted results of
Section 1 on July 1 (weekend) are shown in Figure 12. +e
errors are shown in Figure 13. +e algorithm proposed in
this paper can achieve acceptable prediction results. +e
results of error evaluation indicators MAPE and RMSE are
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Figure 8: Prediction results on July 2, 2018, Section 1.
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Figure 9: Errors on July 2, 2018, Section 1.

Table 5: Section 1 prediction error.

Working day Weekend Rainy day
7.2 7.1 7.5

Evaluation index MAPE RMSE MAPE RMSE MAPE RMSE
GRU-MFD 2.30 1.34 3.93 2.17 2.86 1.65
GRU 3.05 1.68 4.25 2.31 3.23 1.86
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shown in Table 5. MAPE was 3.93%, 4.25%, and the RMSE
was 2.17 and 2.31, respectively.

(2) Section 2.+e predicted results of Section 2 on July 1
(weekend) are shown in Figure 14. +e errors are shown in
Figure 15.+e algorithm proposed in this paper can achieve
acceptable prediction results. +e results of error evalua-
tion indicators MAPE and RMSE are shown in Table 6.
MAPE was 2.46%, 3.93%, and the RMSE was 1.89 and 2.18,
respectively.

5.2.3. Rainy Day. (1) Section 1. +e predicted results of
Section 1 on July 5 (rainy day) are shown in Figure 16. +e
errors are shown in Figure 17. +e algorithm proposed in
this paper can achieve acceptable prediction results. +e
results of error evaluation indicators MAPE and RMSE are
shown in Table 5. MAPE was 2.86%, 3.23%, and RMSE were
1.65 and 1.86, respectively.

(2) Section 2.+e predicted results of Section 2 on July 5
(rainy day) are shown in Figure 18. +e errors are shown in
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Figure 10: Prediction results on July 2, 2018, Section 2.
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Figure 11: Errors on July 2, 2018, Section 2.
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Figure 19. +e algorithm proposed in this paper can achieve
acceptable prediction results. +e results of error evaluation
indicators MAPE and RMSE are shown in Table 6. MAPE
was 1.49% and 2.55%, and the RMSE was 1.03 and 1.82,
respectively.

5.2.4. Accident. +e predicted results of Section 2 on July 11
are shown in Figure 20. +e errors are shown in Figure 21.

+ere was a traffic accident in the early hours of themorning.
+e results of MAPE and RMSE are shown in Table 6. MAPE
was 7.35% and 8.94%, and the RMSE was 5.05 and 5.83,
respectively.

It can be seen from the above figures and tables that,
compared with the traditional prediction method based on
single segment time series, the prediction accuracy of the
proposed algorithm is improved. When no accident happened,
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Figure 12: Prediction results on July 1, 2018, Section 1.
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Figure 13: Errors on July 1, 2018, Section 1.

Table 6: Section 2 prediction error.

Working day Holiday Rainy day Accident
7.2 7.1 7.5 7.11

Evaluation index MAPE RMSE MAPE RMSE MAPE RMSE MAPE (%) RMSE
GRU-MFD 1.42 1.05 2.46 1.89 1.49 1.03 7.35 5.05
GRU 2.53 1.79 3.93 2.18 2.55 1.82 8.94 5.83
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Figure 14: Prediction results on July 1, 2018, Section 2.
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Figure 15: Errors on July 1, 2018, Section 2.
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Figure 16: Prediction results on July 5, 2018, Section 1.
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Figure 19: Errors on July 5, 2018, Section 2.
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MAPE increased by about 0.5%, and on the day of the accident,
MAPE increased by about 1.5%.+eRMSE also improvedmore
on accident day, compared with the day of no accident.

6. Conclusions

+e traffic speed in adjacent regions between highway and
expressway has gradually become important information
concerned by highway managers and travelers. +is paper
proposes a prediction method of road traffic speed that con-
siders microscopic traffic flow characteristics and macroscopic
traffic status based on the road section average speed and flow
data extracted from the GPS data.

Based on MFD, road network subareas are divided and
evaluated. Firstly, the Ncut algorithm is used for the division
of the road network. Secondly, to ensure the stability of the

divided subarea’s MFD, the definition of the road network’s
discrete degree is proposed. +e traffic state is divided
combined with FCM to get the best scheme for dividing the
subregions after the calculation of the discrete degree of the
whole network.

+e spatial-temporal correlation coefficient is proposed
to measure the correlation between subareas. +en, the
traffic speed time sequence of the study subarea and the
related area is used to build a matrix of traffic speed. +e
regional matrix of traffic speed data is input into the GRU
model, and the output result is the predicted traffic speed of
the studied region.

+is paper takes the adjacent region between the highway
and expressway of Beijing as an example to verify the algorithm.
+e southeast corner of the Beijing road network is selected as
the research area.+e area consists of two ring expressways and
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Figure 21: Errors on July 11, 2018, Section 2.

16 Journal of Advanced Transportation



three highways with a total area of approximately 110 square
kilometers. Truck GPS data from this region is the basis of this
study. +e proposed algorithm’s accuracy is verified under the
working days, weekend, rainy days, and accident scenarios.+e
result shows that, compared with the traditional prediction
method based on single segment time series, the prediction
accuracy of the proposed algorithm is improved. +is will
enhance the level of traffic information services in the adjacent
region between the highway and urban expressway and ease
traffic congestion.
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Stopping behavior during yellow intervals is one of the critical driver behaviors correlated with intersection safety. As the main
index of stopping behavior, stopping time is typically described by Accelerated Failure Time (AFT) model. In this study, the
comparison of survival curves of stopping time confirms the existence of group specific effects on drivers. However, the AFT
model is developed based on the homogeneity assumption. To overcome this drawback, shared frailty survival models are
developed for stopping time analysis, which consider the group heterogeneity of drivers. (e results show that log-logistic based
frailty model with age as a grouping variable has the best goodness of fit and prediction accuracy. Analysis of the models’
parameters indicates that phone status, maximum deceleration, vehicles’ speed, and the distance to stopping line at the onset of the
yellow signal have significant impacts on stopping time. Additionally, heterogeneity analysis illustrates that young, middle-aged,
and female drivers are more likely to brake harshly and stop past the stop line, which may block the intersection. Furthermore,
drivers, who are more familiar with traffic environments, are more possible to make reasonable stopping decisions approaching
intersections. (e results can be utilized by traffic authorities to implement road safety strategies, which will help reduce traffic
incidents caused by improper stopping behavior at intersections.

1. Introduction

Signalized intersections are crucial components in road
networks, where traffic accidents occur frequently [1]. 15,188
vehicles are involved in fatal crashes at intersections and
more than 50 percent of all crashes occurred in intersections
according to the statistics on the National Highway Traffic
Safety Administration (NHTSA) in 2017 and the Federal
Highway Administration (FHWA) in 2018 accordingly
[2, 3]. One of the reasons causing high accident rates at
intersections is drivers’ incorrect decisions of going or
stopping at the onset of a yellow signal. Improper stopping
behavior may lead to stopping at intersections illegally, or
rear-end collision. Recent research has shown that stopping
behavior is a crucial influencing factor for designing traffic

facilities, such as red-light camera and countdown timers
[4, 5], so it is urgent to understand the principle of stopping
behavior if we want to reduce the accident rate at
intersections.

Most driver behavior studies focus on drivers’ decision-
making processes at the onset of yellow signals, especially in
the dilemma zone. Since driving decisions can be seen as a
binary classification problem, methods such as binary lo-
gistic model [6, 7], binary probit model [8, 9], and ordered
probit model [10] are widely adopted in this issue. In ad-
dition, influencing factors on driver behaviors are widely
detected, such as vehicle’s factors (e.g., speed, deceleration
rates, and distance to stop line) [11, 12], driver character-
istics (e.g., age and gender) [13, 14], distracting factors (e.g.,
cell phone use and listening to music) [15–17]. Results have
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indicated that higher approach speeds are always associated
with higher deceleration rates and aggressive driving be-
havior [12, 18]. Older drivers usually employ greater de-
celeration levels compared with younger and middle-aged
drivers [11], while female drivers generally have a greater
level of variability in their driving style [19], and cell phone
use has detrimental effects on both novice and experienced
drivers [20]. However, the major concern of the above
studies is drivers’ stop/go decisions, and few studies in-
vestigate drivers’ stopping behavior approaching
intersections.

Driver stopping behavior can be divided into four steps:
perception, judgement, manipulation, and stop. Previous
research pays more attention to the driver’s preparation
reaction time (PRT) of braking behavior [21, 22]. Methods
commonly focus on the analysis of variance (ANOVA) and a
series of linear mixed models [23–25]. However, the stop-
ping process is a continuous-time state, while PRT can only
reflect the initial state of the period.(erefore, stopping time
is selected to describe the entire stopping behavior at in-
tersections, and the survival analysis model is an appropriate
and effective way for timing analysis.

In recent years, the survival analysis model has attracted
more attention from researchers as it is convenient and
suitable to analyze time-related data [26, 27]. (is model has
also been widely used in the transportation field, including
traffic accident analysis, travel behavior, pedestrian crossing
behavior, and so forth [28–32]. Among survival analysis
models, the nonparametric methods and semiparametric
models are desirable methods if only the duration times are
available or distributional assumptions for the duration data
are unexplicit. For example, Tiwari et al. the select non-
parametric methods to produce the Kaplan–Meier survival
curves analyzing pedestrian risk exposure at signalized in-
tersections [33]. Hao and Cheng conduct nonmotor vehi-
cles’ waiting time survival curve to evaluate nonmotor
vehicles’ street-crossing behavior at signalized crosswalk
[34]. However, the above methods cannot build a rela-
tionship between event time and key affecting factors, re-
spectively. (e parametric AFT duration model is approved
by further studies, which can embody specific assumptions
about the distribution of failure times. Bella et al. select the
AFT model with a Weibull distribution to analyze reaction
time and speed reduction time for the evaluation of the
effects on driving performance [35]. Li and Silvestri develop
an AFTduration model to evaluate the intersection crossing
completion time of drivers [36]. (ough some key factors
were analyzed in these studies, unobserved heterogeneity
was neglected for the limitation of homogeneity assumption
among objectives in AFT model.

(e reasons causing heterogeneity are various, including
unobserved covariates, traffic conditions (e.g., traffic vol-
ume, vehicles’ type, road geometry), and driver characters
(e.g., gender, age, and driving experience) [37–39]. Studies
have shown that there are clear differences in driving sen-
sitivity, crash severity, and decision-making among different
age and gender driver groups when approaching intersec-
tions [40–42]. (erefore, it is necessary to consider be-
havioral differences among driver groups. Methods like

random parameters model and latent class model have been
combined to develop a mixed logit model and probit model
to reflect these differences in driver decision-making be-
havior [42–44], but these studies mainly focus on unob-
served heterogeneity, few studies explore group
heterogeneity in stopping behavior at intersections.

Considering the group heterogeneity among driver
group, the shared frailty survival model is developed to
predict stopping time approaching intersections. (e pri-
mary contribution of the study is that it makes an initial
attempt to avoid the effect of group heterogeneity by in-
corporating a fragility to describe the difference among
driver groups. In this way, the frailty is assumed to be a
random distribution across driver groups. Furthermore, the
relationship between stopping time and influencing factors
has been amply explored. More importantly, the results of
the model can be used to make effective traffic management
and operational strategies, which will reduce the accidents
caused by improper stopping behavior at intersections.

2. Methodology

Because the survival analysis model is well-suitable in an-
alyzing the law between events and time, it is employed as a
basic model to explore various factors that influence vehi-
cles’ stopping time approaching intersections.

2.1. SurvivalAnalysisModel. (e survival analysis model has
three basic types, nonparametric methods, semiparametric
models, and full-parametric models [26]. If there are only
the duration times available, then life tables and survival
curves can be definitely a good choice to analyze the survival
trend for a dataset, so nonparametric methods usually ap-
plied for the first step in survival analysis. Semiparametric
models, like Cox’s proportional hazards model, are suitable
for modeling duration data with one or more covariates
observed and only minimal assumptions about the under-
lying distribution. (is kind of model is more specific than
the nonparametric model undoubtedly, but due to its limited
flexibility, it cannot deal with heterogeneity among objec-
tives. (erefore, for further study, more specific and flexible
models, parametric models are developed for analyzing
survival data.

2.2.AFTModel. AFTmodel, as a kind of parametric survival
analysis model, can mine the impact directly of different
influencing factors on survival time and hazard function. In
this study, to analyze the different factors that affect the
driver’s stopping behavior, the timing variableT is defined as
the stopping time, which has a probability function f(t),
survival function S(t), and hazard function h(t). (e sur-
vival function is defined as the probability that an individual
survives longer than a certain time point t and the hazard
function of survival time T gives the conditional failure rate,
which is defined as the probability of failure during a small
time interval. (e specific functions and their relationships
are as follows:
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S(t) � P(T≥ t),

h(t) � lim
Δt⟶0

P(t<T≤ t + Δt)
Δt

,

h(t) �
f(t)

S(t)
.

(1)

According to the meaning of stopping time, the survival
function in this study can reflect the probability of a driver
who has not stopped at a certain time point and the hazard
function represents the probability of stop during a very
small time interval. (e greater the hazard rate, the more
likely drivers stop at that time point.

(e regression form between the log of stopping time T

and various variables in the AFT model is as follows:

logTi � β0 + β1xi1 + · · · + βkxik + σεi, (2)

where εi is a random disturbance term, xij(j � 1, 2, . . . , k)

represents the j variable of individuali, β0, . . . , βk and σ are
parameters to be estimated, β0is the model’s constant term,
β1, . . . , βkis the corresponding coefficient ofxij, and Ti

represents the survival time of the individual i.
One of the advantages of AFTmodel is that it can provide

explicit distributions for stopping time, such as exponential,
Weibull, log-normal, log-logistic, and generalized gamma
distributions. In this study, the above distributions were all
considered in conducting models like equation (2), and the
maximum likelihood estimation (MLE) method was used to
select the best model.

2.3. SharedFrailtySurvivalModel. (e shared frailty survival
model is a type of developed mixture AFTmodel, which can
solve the group heterogeneity among different groups by
setting an unobservable multiplicative effect, called frailty, α,
which is assumed to be random in each cluster [45, 46].

For individuals q(l � 1, . . . , n, q � 1, . . . , np) in the l

group, the hazard function is set as

hlq t|αl( 􏼁 � αlhlq(t) � αlh0(t)exp βT
Xlq􏼐 􏼑, (3)

where Xlq is the covariate vector and β is the fixed coefficient
vector to be estimated. h0(t) refers to the baseline hazard
function and hlq(t) represents the individual hazard when
the covariate is Xlq. (e frailty, α, is a random positive
quantity and, for identifiability of the model, supposed to
have mean 1 and variance θ. (e larger the variance value,
the greater the difference between different driver groups.
For mathematical tractability, we limit the choice of frailty
distribution to either the gamma ((1/θ), θ) distribution or
the inverse-Gaussian (1, (1/θ)) distribution, and the cor-
responding survival functions are

gamma : · Sθ(t) � exp[1 − θ log S(t){ }]
− (1/θ)

,

inverse − Gaussian : · Sθ(t) � exp
1
θ

1 − [2θ log S(t){ }]
(1/2)

􏼐 􏼑􏼚 􏼛,

(4)

where Sθ(t) is the survival function under the corresponding
frailty distribution and S(t) is the basic survival function.

It can be seen from the hazard function of the shared
frailty survival model that the model assumes that all
stopping times in a driver group are independent given the
frailty, α. In other words, the model is a conditionally in-
dependent model and mainly deals with differences between
different driver groups.

3. Application to Stopping Time Prediction

3.1. Data Description and Preparation. (e dataset comes
from the Driver Behavior Analysis Competition organized
by the Transportation Research Board (TRB) in 2014
[47, 48]. (e data study was conducted at the National
Advanced Driving Simulator (NADS) at the University of
Iowa, which is a high-fidelity driving simulator, aiming to
detect the influence of wireless phone use on driver be-
haviors. During the experiment, each participant had three
drives. Each drive consisted of 3 equivalent segments and
each segment had one urban field and one rural field. Be-
sides, five signal intersections were set in each segment, and
two of the intersections’ traffic signals were randomly
triggered to change states to yellow when the driver ap-
proaches. In addition, secondary tasks were randomly ap-
plied, which exposed participants to 3 cell phone interfaces,
including baseline (no phone call), outgoing call (calling
out), and incoming call (answering a call). For each drive,
the participant experienced a different order of segments/
interfaces that are otherwise equivalent. (e incoming and
outgoing calls were started before the arrival at each seg-
ment.(erefore, there were 6 times yellow light decisions for
each drive and each participant needed to go through 18
times of that.

(e original dataset was collected from 49 participants,
with a total of 1157 observations. After deleting the missing
and abnormal data, there are still 838 observations left,
including 306 “go” observations and 532 “stop” observa-
tions. (is study selects 532 “stop” observations as the re-
search object.

In this study, seven factors related to driver’s stopping
behavior were selected as independent variables, including
driver’s age (Age), gender (Gender), phone status (PS),
maximum deceleration (MD), maximum acceleration (MA),
vehicle’s approaching speed (GTYV), and the distance to the
stopping line (GTYD) at the onset of yellow light. (e
detailed descriptions and values for each variable are shown
in Table 1. (ere are more young drivers in the subject
groups andmale drivers are a bit more than female, while the
numbers of three kinds of phone status’ drivers are relatively
equal, noticing that maximum decelerations are negative,
and the mean of their absolute value is 6.11 m · s− 2. Besides,
the mean of the vehicle’s speed at the onset of yellow light is
18.95 m · s− 1, and the mean distance is 62.36 meters.

(e stopping time (FST) was selected as the duration
variable, which was the time from the onset of yellow light to
the vehicle stopping completely. Statistics on overall stop-
ping time are shown in Table 2. Vehicles begin to stop at 3.63
seconds after the onset of yellow light and all vehicles stop

Journal of Advanced Transportation 3



under 12.97 seconds. (e mean stopping time is 6.24 sec-
onds and 90%, 75%, 50%, and 25% of drivers stop within
8.92 seconds, 7.68 seconds, 5.84 seconds, and 4.69 seconds
accordingly.

To understand the probability that vehicles haven’t
stopped at a certain time better, this study conducts an
overall survival curve for 532 “stop” data. Figure 1 presents
that vehicles begin to stop at 3.63 seconds and most vehicles
can stop completely under 10 seconds.

3.2.HeterogeneityAnalysis. Drivers’ stopping behaviors may
be different under different driver groups; therefore survival
curves under different grouping variables were developed for
preliminary verification.

(e survival curves of stopping time are varied under
different driving times, age, gender, and phone states, as
shown in Figure 2, which presents evidence for the existence
of group heterogeneity. So, in this study, we employ the
shared frailty survival model to analyze stopping time, which
can avoid the homogeneity assumption of the AFT model.

Behavioral characters of different driver groups are
assessed by the dangerous driving index. According to early
research, driver behavior is assumed to be statistically con-
sistent within a certain population when facing certain levels of
conflicts [49, 50]. (erefore, this study employs the possibility
of dangerous stopping in the original dataset to evaluate the
dangerous stopping behavior in different driver groups. (e
dangerous driving index can be described as the probability of
dangerous stopping behaviors and can be calculated:

R �
1
m

􏽘

m

r�1
br, (5)

where R represents the dangerous driving index of each
driver group and mrepresents the number of stopping ob-
servations in each driver group, when the r observation’s
record is over-the-line stopping and the value of br is 1;
otherwise, br is set to 0.

According to the definition of the dangerous driving
index, the greater it is, the greater the tendency of this driver
group to stop over the line. Table 3 presents the dangerous
driving index for different driver groups. It can be found that
the dangerous driving index of middle-aged drivers is the
highest among age groups, and young drivers in it are also
very high while old drivers’ are the lowest. Besides, female
drivers’ index is higher than male, and the index is a little
higher when there are phone interferences than no phone
call.(e results also show that dangerous driving indexes are
changeable under different driving times; especially the
index is the highest under the second drive.

4. Results and Discussion

4.1. Model Results. Based on 532 “stop” observations
approaching intersections, the shared frailty survival models
with grouping variables, including driving times, age, gen-
der, and phone status, are constructed, and parameters can

Table 1: Statistical description of independent variables.

Variables Description Value Count Mean Std. Dev.

Age
Old (50∼60 years) 0 131

Middle (30∼45 years) 1 197
Young (18∼25 years) 2 204

Gender Female 0 242
Male 1 290

PS
Outcoming call (O) 0 178
Incoming call (I) 1 181

Baseline (B) 2 173
MD(m·s− 2) Maximum deceleration Continuous 532 − 6.11 1.53
MA(m·s− 2) Maximum acceleration Continuous 532 3.47 0.43
GTYV(m·s− 1) Vehicle’s speed at the onset of yellow light Continuous 532 18.95 2.27
GTYD (m) Distance between the vehicle and the stopping line at the onset of yellow light Continuous 532 62.36 10.56

Table 2: Quartile statistics of stopping time.

Quantile 90% 75% 50% 25% Min. Max. Mean Std. Dev.
Stopping time (s) 8.92 7.68 5.84 4.69 3.63 12.97 6.24 0.078
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Figure 1: Survival curve of overall stopping time.
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Figure 2: Survival curves under different grouping variables. (a) Survival curves of different driving times. (b) Survival curves of different
age groups. (c) Survival curves of different gender groups. (d) Survival curves of different phone status.

Table 3: Dangerous driving index of different driver groups.

Group Description Number of drivers Number of unsafe stops Dangerous driving index

Age
Old 131 8 0.061

Middle 197 24 0.122
Young 204 24 0.112

Gender Female 242 29 0.120
Male 290 27 0.093

PS
Outcoming call 178 19 0.107
Incoming call 181 19 0.105

Baseline 173 18 0.104

Drive
Drive 1 162 13 0.080
Drive 2 176 22 0.125
Drive 3 194 21 0.108
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be estimated by using the maximum likelihood estimation
method at a significance level of 0.1.

In order to select the best distribution type and grouping
variable for modeling the stopping time, twomodel selection
statistics, including the Akaike information criterion (AIC)
statistic and the Bayesian information criterion (BIC) sta-
tistic are adopted. In general, the model has better goodness
of fit with smaller values of the AIC and BIC. Criterion
statistics in Table 4 illustrates that generalized gamma dis-
tribution is the best-fitted distribution among AFTmodels,
while the log-logistic distribution is proved to be the best
distribution among shared frailty survival models, especially
when age is selected as grouping variables.

In addition, better distributions are also selected by
comparing Cox-Snell residuals [51]. Figures 3(a)–3(d) il-
lustrate the Cox–Snell residuals for different distributions of
AFT models; it can be seen that the plotted points in gen-
eralized gamma distribution of AFTmodel fall closer to the
reference line with a slope of 1, which confirms the goodness
of fit of the model. At the same time, Figures 3(e)–3(h)
indicate that log-logistic distribution is the best fit distri-
bution among shared frailty survival models.

Table 5 presents the estimated results of the parameters
of the above good fitted models. Among the shared frailty
survival models, except for the model that grouping variable
is gender, in which the frailty α follows gamma distribution,
other shared frailty survival models’ α follow the inverse
Gaussian distribution. Variances θ of frailty α are all far
greater than 0, which also indicate the existence of significant
differences between different driver groups. Besides, refer-
ring to Table 4, it is easy to find that all shared frailty survival
models have smaller values of AIC and BIC than that of the
AFTmodel, which indicates the improved goodness of fit for
the shared frailty survival model. Besides, the model with the
grouping variable of Age has the smallest value of AIC, BIC.
(erefore, the shared frailty survival model with the age
grouping variable is selected to analyze the key factors that
affect the stopping time.

(e results of the optimal model in Table 5 show that
phone status, maximum deceleration, vehicle’s speed, and
the distance to the stopping line at the onset of yellow light
are significant variables that affect the stopping time. Dif-
ferent variables’ effects on stopping time can be calculated
referring to equation (2). Table 6 illustrates the influence of
significant variables on the stopping time. It can be seen
when incoming calls (PS � 1) that the stopping time is
relatively reduced by 1.0% (e− 0.001 − 1) compared to out-
coming calls (PS � 0) states where the stopping time is
increased by 1.3% (e0.013 − 1) compared to no phone calls
condition (PS � 2). Besides, the stopping time under in-
coming calls is relatively shorter than that of outcoming
calls, which means that the driver may stop harshly when
receiving a call. (e reason for this phenomenonmay be that
the driver does not have sufficient psychological preparation
when receiving a call rather than calling out, so greater
distraction is caused, which agrees with the previous re-
search [20, 52]. At the same time, referring to the dangerous
driving index in Table 3, it is found that the dangerous
driving index is higher than no phone call situation when

there are phoning tasks, indicating that the driver is more
likely to stop over the line when distracted by phone use.
(erefore, when approaching intersections, drivers are
suggested to avoid distractions such as making and receiving
calls. At the same time, because the value of the maximum
deceleration (MD) variable in this study is negative,
according to the sign of variable coefficients, it is found that
the maximum deceleration (MD) and vehicle’s speed at the
onset of yellow light (GTYV) have a negative impact on the
stopping time. When there is a unit increase in the absolute
value of maximum deceleration and the value of vehicle
speed at the onset of yellow light, the stopping time decreases
by 5.8% and 1.3% accordingly. (erefore, there is a close
relationship between the maximum deceleration, vehicle’s
speed at the onset of yellow light, and the emergency stop
behaviors, so these two factors should be reasonably con-
trolled. Additionally, the distance to the stopping line at the
onset of yellow light (GTYD) has a positive effect on the
stopping time, and for every meter increase of GTYD, the
stopping time increases by 1.1%. (erefore, it is necessary to
reasonably control the braking distance to ensure a smooth
stopping of the vehicle.

Additionally, other model results in Table 5 also show
that Age and Gender variables have an impact on stopping
time. (e coefficients of young (Age � 2), middle (Age � 1),
and male (Gender � 1) drivers are all negative at a signifi-
cance level; this means young, middle, and female drivers
have shorter stopping time and stop more urgently than
older and male drivers accordingly, which agree with the
previous research finding [19]. Referring to the dangerous
driving index in Table 3, the dangerous driving index of
young (0.112) and middle (0.122) drivers is higher than that
of old (0.061) drivers, and the index of female drivers (0.120)
is higher than that of male drivers (0.093), indicating that
young, middle, and female drivers are also more likely to
stop over the line, which may cause intersection jams.

4.2. Model Accuracy. (e mean absolute percentage error
(MAPE) is used to compare the prediction accuracy of the
model [53]. (e smaller the value, the better the prediction
accuracy. (e median survival time is selected to calculate
the predicted value in this article:

MAPE �
1
N

􏽘

n

i�1

yi − y
∗
i

yi

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
, (6)

where N is the number of observed individuals, yi is the
actual observed value of the individual i, and y∗i is the
predicted value.

Table 7 presents values of MAPE for the AFT model
(15.04%) and the shared frailty survival model with the age
grouping variable (13.92%). It can be seen that both models
have a good prediction accuracy [54]. However, compared
with the AFT model from a global perspective, there is a
negligible improvement in MAPE, 1.12%, in the shared
frailty survival model. (erefore, this study adopts a cate-
gorical analysis in prediction accuracy. Note that 75% of
drivers will stop under 7.7 seconds in Table 2, so this study
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divides the dataset into two categories at this time point and
analyzes the prediction accuracy for each data category.
Table 7 presents the accuracy results.

When the stopping time is less than 7.7 seconds, the
improved shared model can have a very high accurate
prediction (MAPE is 6%) and a small mean prediction error
(0.36 sec); besides, it improves prediction accuracy by 3%
compared with AFTmodel. (ough both the above models
do not have good prediction accuracy when stopping time is
larger than 7.7 seconds, the prediction accuracy is also

acceptable [54]. (erefore, the predictions can be used to
analyze driver stopping behaviors reasonably.

4.3. Effects of GroupHeterogeneity. As mentioned above, the
evidence of heterogeneity is seen in the core results of the
models presented in Figure 2 and Table 5. It is found that,
compared with the AFT model, the shared frailty survival
model’s advantages are reflected not only in improving the
model’s goodness of fitting and prediction accuracy but also

Table 4: Statistics of criterion based on different distribution types.

Criterion
AFT model distribution type Shared frailty survival model distribution type

Weibull Log-normal Log-logistic Generalized gamma Loglogistic (d-rive) Log-logistic (age) Log-logistic (gender) Log-logistic (PS)
AIC 90 − 88 − 101 −508 − 517 −526 − 529 − 500
BIC 146 − 33 − 46 −448 − 474 −491 − 482 − 457

Reference line
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Figure 3: Cox–Snell residuals for different distribution types.(a) Weibull. (b) Log-normal. (c) Log-logistic. (d) General gamma. (e) Log-
logistic (Drive). (f ) Log-logistic (Age). (g) Log-logistic (Gender). (h) Log-logistic (PS).
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in the mining impacts of other potential variables on drivers’
stopping behaviors.

Comparing with the AFT model, the value and sign of
significant variables’ coefficients have changed in the shared
frailty survival model. For example, in the shared frailty
survival model with grouping variable age, the sign of in-
coming calls’ (PS � 1) coefficient changes to negative
compared to the AFTmodel, which is more in line with the
fact that the incoming distraction situation has a greater
impact on the driver’s behavior. What is more, the reduced
absolute value of coefficients for phoning states and vehicle’s
speed at the onset of yellow light variables, reduced constant
terms of all shared frailty survival models compared to the
AFT model, also illustrates that some of the significant
variables’ effect on stopping time is shared after considering
the heterogeneity of varied driver groups. Besides, other
shared frailty survival models also highlight the significant
effects caused by age, gender, and different driving times on
drivers’ stopping behavior. Table 3 shows that, in the first,
second, and third drives, the dangerous driving indexes
show a trend of increasing first and then decreasing. (e

dangerous driving index in the second drive is the highest
with a value of 0.125. (e reason for this phenomenon may
be drivers in the second drive have been already familiar
with the driving environment and are not concentrating on
driving enough. While in the third drive, drivers accumulate
the previous two driving experiences and make the stopping
decision more accurate and reduced the probability of
stopping over the line, which reflects that familiarity with the
traffic environment directly affects the safety of driver’s
stopping behavior, drivers who are more familiar with the
traffic environment can make more reasonable stopping
decisions, and these effects are difficult to mine by the AFT
model.

5. Conclusions

To further understand drivers’ stopping behaviors at in-
tersections during the yellow interval, a survival analysis
model was proposed. However, the parameter AFT model
has a homogeneity assumption among drivers. To overcome
this limitation, the developed shared frailty survival models

Table 5: Model estimation results.

Variables AFT model
Shared frailty survival model

Group variable (drive) Group variable (age) Group variable (gender) Group variable (PS)
Distribution of FST Generalized gamma Log-logistic Log-logistic Log-logistic Log-logistic
Distribution of α — Inverse Gaussian Inverse Gaussian Gamma Inverse Gaussian
Variable Coefficient Coefficient Coefficient Coefficient Coefficient
Age � 1 − 0.005 − 0.007 — − 0.007 − 0.006
Age � 2 − 0.017∗∗∗ − 0.013∗∗ — − 0.011∗ − 0.014∗∗
Gender � 1 — — — − 0.014∗∗∗ —
PS � 1 0.004 0.001 − 0.001 − 0.002 0.004
PS � 2 0.021∗∗∗ 0.016∗∗∗ 0.013∗∗ 0.012∗∗ 0.019∗∗∗
MD 0.056∗∗∗ 0.056∗∗∗ 0.056∗∗∗ 0.055∗∗∗ 0.056∗∗∗
MA — — — — —
GTYV − 0.014∗∗∗ − 0.013∗∗∗ − 0.013∗∗∗ − 0.013∗∗∗ − 0.013∗∗∗
GTYD 0.011∗∗∗ 0.011∗∗∗ 0.011∗∗∗ 0.011∗∗∗ 0.011∗∗∗
Constant 1.511∗∗∗ 1.483∗∗∗ 1.472∗∗∗ 1.477∗∗∗ 1.481∗∗∗
θ — 31.273 27.512 3.380 32.601
θ is the variance of frailty α. ∗∗∗, ∗∗, ∗ mean statistical significance at α� 0.01, 0.05, 0.1, respectively.

Table 6: Driver’s stopping risk percentage change.

Variable Coefficient EXP(β) Percentage change (%)
PS � 1 − 0.001 0.999 − 1.0
PS � 2 0.013 1.013 1.3
MD 0.056 1.058 5.8
GTYV − 0.013 0.987 − 1.3
GTYD 0.011 1.011 1.1

Table 7: Statistics on model accuracy.

Stopping time category (sec) Count Model MAPE (%) Mean prediction error (sec)

Overall 532 AFT 15.04 1.11
Shared (Age) 13.92 1.13

FST≤ 7.7 400 (75%) AFT 9 0.51
Shared (Age) 6 0.36

FST> 7.7 132 (25%) AFT 32 2.94
Shared (Age) 38 3.46
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with grouping variables, including driving times, age, gen-
der, and phone status, were conducted in this study.

Results show that the shared frailty survival models can
improve the fitness and prediction accuracy compared with the
AFTmodel, and the model with the grouping variable of age
fits best. In this best-fitting model, variables, including phone
status, maximumdeceleration, vehicle’s speed, and the distance
to the stopping line at the onset of yellow light, have significant
effects on stopping time. Drivers stop relatively in emergency
and are easier to stop over the line when there are phoning
tasks’ distraction.(e greater the vehicle’s speed at the onset of
yellow light and the absolute value of the maximum decel-
eration, the more likely the vehicle to have an emergency stop,
while the greater the value of the distance to the stopping line at
the onset of yellow light, the smoother the vehicle stop.

By heterogeneity analysis, other potential influencing
factors on stopping time are also explored in this study.
Except for the best-fitting shared frailty survival model,
models with other grouping variables also highlight the
driving behaviors’ significant differences in varied age,
gender, and driving times groups. Results show that young,
middle, and female drivers are more likely to stop emergency
and stop over the line, which may cause intersection jams.
Besides, familiarity with the traffic environment has a direct
impact on the safety of the stopping behavior; drivers who
more familiar with the traffic condition could make a more
reasonable stopping decision.

Based on the above results, drivers are recommended to
reasonably predict the braking distance when approaching
the signalized intersections, control the vehicle’s speed and
deceleration, and avoid distracting behaviors such as having
phone calls. Besides, young, middle-aged, and female drivers
are more likely to stop over the stop line and block the
intersections. (ese groups of people may need more at-
tention from traffic managers such as intensive observation.
Familiarity with the traffic environment may help drivers
make proper decisions, so intersection safety will be im-
proved if drivers are provided useful road and traffic in-
formation such as speed limits and signal ahead. However,
the dataset in this study only contains three driving times, so
related data collection is needed for further studying the
explicit effects of the familiarity with traffic environment on
drivers’ stopping behaviors. (is study can help researchers
better understand driver stopping behavior at the onset of
yellow light and also can be applied to driver assistance
systems and intersection design studies.
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Microscopic modeling of mixed traffic (i.e., automaton-driven vehicles and human-driven vehicles) dynamics, particularly car-
following, lane-changing, and gap-acceptance, provides the opportunity to gain a more accurate estimation of flow-density
relationships for both traditional traffic with human-driven vehicles and different mixed traffic scenarios. Our paper proposes a
microscopic framework to model multilane traffic for both vehicle types on shared roadways which sets the stage to explore the
capability of macroscopic car-following models in general to explain the fundamental flow-density relationship. Since prior
models inadequately represent the fundamental diagram realistically, we propose a rectified macroscopic flow model that can
account for the impact of both lane-changing and gap-acceptance. Differentiability, boundary conditions, and flexibility of the
proposed model are tested to validate its applicability. Finally, the capability to interpret the flow-density relationship by the
proposed model is verified for different mixed traffic scenarios. Although fewmodel parameter values were obtained directly from
the simulation input, the rest of the parameters have been calibrated by flow and density outputs from the simulations. *e
analysis results show a distinct correlation between the proposed model parameters with automation-driven vehicle shares and
lane-changing rates of traffic. *e findings from this study emphasize the importance of taking complete motion dynamics into
account, rather than partial motion dynamics (i.e., car-following) as has been the case in the previous studies, to explain
macroscopic traffic flow characteristics, irrespective of the vehicle type.

1. Introduction

*e rapid development of Connected and Automated Ve-
hicle (CAV) technology has motivated researchers and
practitioners to consider collaborative approaches, such as
AutoDrive Challenge by SAE and General Motors [1], to
solve traditional transportation problems. Consequently,
researchers have been exploring traditional, fundamental
concepts of traffic flow theories from new perspectives and
questioning the understanding of the concepts in resulting
scenarios.With an improved grasp on fundamental concepts
of traffic flow and informed decision making, sustainable
growth of CAV technology is possible, as is the identification
of the optimal combinations of new technology with tra-
ditional transportation infrastructure. *e resultant para-
digm shifts on traffic operational technologies have
prompted researchers to determine the limitations of partial

motion dynamics (i.e., car-following) in explaining mac-
roscopic features of multilane traffic flow and ask the
question of how to complete vehicle motion dynamics could
be considered in equilibrium flow models of traditional and
mixed traffic. As such, this study attempts to determine the
effectiveness of the macroscopic adaptation of a traditional
microscopic car-following model (i.e., the Intelligent Driver
Model (IDM) [2] in explaining fundamental features of
traffic through detailed microscopic multilane modeling.
More significantly, this study proposes a newly conceived,
realistic traffic flow model that can (i) account for complete
motion dynamics (i.e., car-following, lane-changing, and
gap-acceptance) and (ii) interpret the transformation of the
fundamental diagram in mixed traffic (i.e., Human-Driven
(HuD) and Automaton-Driven (AuD) vehicles) scenarios.

A considerable issue in the research findings up to this
point is that, while car-following is the dominant maneuver
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in traffic flow, the capability of this microscopic feature to
explain the relationship of flow with density is debatable.
More promisingly, the IDM is a microscopic car-following
model that aims to represent the car-following behavior
through stimulus-response characteristics of human drivers.
Since car-following models such as the IDM can describe
steady-state and homogenous conditions, the macroscopic
form can be attained from this model through local ag-
gregation. Since IDM-prescribed acceleration is generated
from both speed and headway, one can redevelop the
fundamental diagram from a speed-spacing diagram of car-
following [3]. *e initial goal of this research, then, is to
assess the proficiency of the derived fundamental diagram in
reproducing an actual flow-density relationship. We, then,
put forward an inclusive traffic flow model that reflects the
complete motion dynamics of traffic, thereby addressing
significant shortcomings in the previous efforts. We also
explore the suitability of the proposed model to assess the
remaining microscopic features. Finally, we analyze varying
mixed traffic flow scenarios developed through the multilane
microscopic modeling framework for adaptability attributes
of the proposed model.

*e rest of the paper is organized as follows: the liter-
ature review summarizes the findings from leading studies
on macroscopic car-following models and their ability to
explain the fundamental features of traffic. Additionally,
articles exploring mixed traffic scenarios and their impli-
cations on both microscopic and macroscopic perspectives
are reviewed. *e following section provides a detailed
description of the microscopic modeling framework that
establishes the foundation of this comprehensive study. An
in-depth discussion of the limitations of the macroscopic
adaptation of the car-following model and a macroscopic
model that accounts for complete motion dynamics of ve-
hicles are, then, described in the next section. *e func-
tionality of the proposed model when identifying flow-
density patterns is evaluated in the penultimate section,
followed by the final section summarizing the research
findings and contributions to the literature.

2. Literature Review

To review scholarly contributions made by previous studies
that correlate with the present one, we chose to divide the
review discussion into two segments and address each
segment separately. *e two segments of review discussion
are (a) macroscopic fundamental relations from car-fol-
lowing models and their capability to explain the funda-
mental diagram and (b) microscopic and macroscopic
aspects of mixed traffic. Some remarkable research efforts
and studies that coincide with these two topics have been
summarized in this section of the paper to provide insight
into current research and existing groundwork available to
support the research presented here.

Inspired by Greenshield et al.’s [4] single-regime con-
tinuity model, many models have been proposed to for-
mulate speed-spacing (microscopic) or flow-density
(macroscopic) relationships [5–17]. *ese models share two
commonalities: (1) the variations of traffic states are

explained from one specific perspective, either microscopic
or macroscopic, and (2) the traffic is assumed to be ho-
mogenous. Under the assumption of homogenous traffic,
microscopic models can be upscaled to macroscopic traffic
flow models. Ni [18] showed this type of expansion by
converting the IDM and longitudinal control model, which
are microscopic car-following models, to macroscopic
fundamental equations through local aggregation. *e
macroscopic IDM model is capable of generating a realistic
flow-density diagram by employing four parameters to
obtain a desirable shape with good fitting quality. While Ni
did not explore the generated macroscopic models’ com-
petence in explaining traffic flow features, our study will
utilize the macroscopic adaptation of the IDM for this di-
rection of research. A reversed approach was taken by Duret
et al. [19] where the authors simplified the fundamental
diagram in an attempt to quantify individual vehicles’ speed-
spacing relationship. *e results indicated that taking in-
dividual variability into account could improve the accuracy
of vehicle trajectories. Chiabaut et al. [20] proposed a
method to calibrate Newell’s car-following model parameter
[6], eventually assisting in calibrating the macroscopic
model from individual observation. *e influence of driver
behavioral heterogeneity on the capacity drop was studied by
Chen et al. [21]. *e findings from the study concluded that
both the lane-changing maneuver and variations in driver
characteristics could reduce the bottleneck discharge rate by
8–23%. Treiber and Kesting [22] proposed a calibration and
validation method for car-following models in the micro-
scopic scale. However, the implications of calibrated pa-
rameters and its effect on best fit on the fundamental
diagram remain unexplored. A similar approach to cali-
bration and validation of car-following models was taken by
Zheng et al. [23]. *is study provided an intriguing insight
into the validation and accuracy of car-following models by
suggesting that the inclusion of a higher number
of parameters in a car-followingmodel could provide greater
accuracy but might overfit in some scenarios. To address this
issue, the authors suggested using different parameters and
car-following models in different traffic conditions.

Due to the rapid expansion of CAV vehicle technology
use, the coexistence of HuD with AuD on shared roadways
have been studied extensively over the last few years. Liu
et al. [24] proposed comprehensive instruction for modeling
mixed traffic on multilane freeway facilities. *is study
specifically looked into mobility improvements brought
upon by the introduction of AuD, warranting further study
on fundamental features of mixed traffic. *e authors were
influenced by the modeling structure proposed in this study
but pivoted the study focus towards macroscopic correla-
tions of flow-density. An analytical capacity model was
proposed by Gjaisi et al. [25] for mixed traffic. *is study
examined the different mixed traffic scenarios (i.e., varying
demand, market shares, platooning, and technology use) to
determine optimal AuD vehicle lanes for maximizing mixed
traffic throughput. Based on a similar goal, Chen et al. [26]
developed a general formulation to estimate the capacity of
mixed traffic based on vehicle spacing, platoon configura-
tions, and AuD shares. Gong and Du [27] developed a
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cooperative platoon control based on a model predictive
control strategy for mixed traffic that focused on reducing
oscillation propagation and stabilizing traffic flow. A sim-
ulation-based traffic state estimation study was executed by
Fountoulakis et al. [28] that demonstrated satisfactory es-
timation results for varying traffic state and penetration
rates. Talebpour and Mahmassani [29] developed a simu-
lation framework to analyze overall stability and throughput
at different mixed traffic conditions. Additionally, the co-
existence of HuD and AuD were found to be effective in
preventing shockwave formation and propagation. Deng
[30] proposed a simulation framework of mixed traffic in-
corporating human driving behavior from VISSIM and
Adaptive Cruise Control and Cooperative Adaptive Cruise
Control models from Van Arem et al. [31]. Ye and
Yamamoto [32] proposed a modeling strategy to study the
impact of dedicated AuD lanes on traffic flow throughput.

What is evident from the literature review is that a need
exists to connect microscopic models with macroscopic
models for both traditional and mixed traffic scenarios.
While microscopic models could be accurate, to some ex-
tent, in estimating an individual vehicle’s movement, the fit
of these models to macroscopic scale requires significant
extrapolation. Furthermore, although mixed traffic dy-
namics modeling has initiated considerable research efforts
recently, major theoretical aspects that understand the true
potential of CAV technology are yet to be explored. Critical
reservation of mixed traffic-related studies would be a
complete dependence on car-following models of hypo-
thetical single-lane roadways. Hence, developing a traffic
flow model that can incorporate the implications of com-
plete motion dynamics of traffic movements will be the
initial focus of this study and a significant effort to address
the aforementioned shortcomings. At the same time, this
study will present realistic, multilane, complex motion dy-
namics of both vehicle types and explore the resulting
implications on the flow-density diagram, an important step
in the study. Altogether, this study will attempt to specify the
limitations of partial motion dynamics on a macroscopic
scale and provide a reasonable approach to overcome those
limitations.

3. Microscopic Modeling Framework of Mixed
Multilane Traffic

To meet the developed objectives, we performed numerical
simulations of 22 vehicles in a hypothetical homogenous
two-lane roadway segment in MATLAB. At the beginning of
the simulation, the number of vehicles varied between 8–12
vehicles in each lane. Significantly for our study, the sim-
ulated environment developed complete motion dynamics
that included car-following, lane-changing, and gap-ac-
ceptance rules for individual vehicles corresponding to the
vehicle type. All vehicles in the simulation revised their
acceleration, lane-changing, and gap-acceptance decisions at
each time-step with response to the surrounding vehicles’
relative positions and velocities. Each simulation time-step
duration was taken as 0.1 second (sec) of real-world time,
and the simulation length was 9001 time-steps (0 to 9000)

totaling 15 minutes of duration. First, two control-vehicles,
one in each of the two lanes, followed a predefined accel-
eration profile. At the beginning of the simulation (0 time-
step), all vehicles were placed on the roads by uniformly
spacing them according to a simulated flow rate (from 1000
vehicles per hour to 2600 vehicles per hour) at 90 kilometers
per hour (kph). *e acceleration profiles of each lead vehicle
were formed to generate bottlenecks for the following ve-
hicles in each lane. At the 3001 time-step, the lead vehicles of
each lane decelerated at the rate of − 2 meter/sec2 (m/s2) to
drop the speed of vehicles from 90 kph to 30 kph. *is speed
drop created an intentional bottleneck on the roadway
segment where the following vehicles in each lane were
unable to pass the lead vehicles. *is provided an important
opportunity to explore congested traffic states. *en, at the
4917 time-step, both lead vehicles accelerated at the rate of
2m/s2 to regain the speed from 30 kph to 90 kph.

3.1. Car-following Principles. Car-following, being the pre-
dominant maneuver during driving, has a greater influence
on traffic states. In the proposed modeling framework, the
car-following principles of vehicles primarily relied on
paired vehicle types (e.g., HuD, AuD) of a subject vehicle
and corresponding lead vehicle in the same lane of that
subject vehicle. *e HuD subject vehicles maintained the
car-following IDM [2] irrespective of the lead vehicles type
(i.e., HuD or AuD) for car-following maneuvers. *e AuD
vehicles adhered to car-following rules (i.e., Adaptive Cruise
Control (ACC) and Cooperative Adaptive Cruise Control
(CACC)) in response to the lead vehicle’s type. If the lead
vehicle was a HuD vehicle, then the AuD vehicles would
follow ACC with relatively higher safety headway. Other-
wise, the HuD vehicle would choose CACC and try to form a
CACC platoon of AuD vehicles with the lead vehicle. *e
ideal ACC/CACC car-followingmodel and parameter values
were adopted from the work of Hu et al. [33]; an AuD vehicle
would prefer to form CACC platoon with other AuD ve-
hicles in the traffic stream. Platoon formation depended on
the platoon configuration (i.e., intraplatoon headway,
interplatoon headway, and maximum platoon length) (de-
tailed descriptions of different platoon configurations and
principles are available in the work of Seraj et al. [34]).
Influenced by the findings from Seraj et al. [34], the present
study employed a fixed platoon configuration (i.e., intra-
platoon headway� 0.50 sec, interplatoon headway� 2.0 sec,
and max. platoon length� 5 vehicles) to attain optimal
mobility and safety benefits in mixed traffic environments.

In addition to usual car-following models, our modeling
framework adopted a few subjective car-following models
acquired from the IDM and ACC. *e purpose of intro-
ducing these additional car-followingmodels was to ensure a
smooth adjustment to accommodate other two maneuvers
(i.e., lane-changing and gap-acceptance) of vehicle motion
dynamics. *e preceding car-following (PCF) model was
triggered for a subject vehicle prior to lane-changing when
the vehicle was to change lanes but could not execute the
maneuver due to lack of an adequate gap in the target lane.
By contrast, the succeeding car-following (SCF) model was
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activated to facilitate a subject vehicle’s transition from the
PCF principle right after the lane-changing maneuver. *e
accommodative car-following (ACF) model was used to
enable a subject vehicle to increase spacing with its lead
vehicle and accept a lane-changing vehicle from the nearby
lane.*e maximum duration a vehicle could remain in PCF,
SCF, or ACF was chosen to be 5 sec (50 time-steps). Each
vehicle had an acceleration equation specific to its’ car-
following state for each time-step. Relevant formulae to
simulate vehicle movements are provided in Figure 1(a).

3.2. Lane-Changing Principles. *e complex elements of
motion dynamics (i.e., lane-changing and gap-acceptance)
for vehicles had restricted application on the developed
simulation structure. For HuD vehicles, only discretionary
lane-changing that was motivated to gain free-flow speed
was considered for modeling in this simulation. If a HuD
vehicle were to drive below free-flow speed for 5 consecutive
seconds, the vehicle driver would indicate the intention to
change lane and start checking for an acceptable safety gap in
the target lane. As for AuD vehicles, lane-changing inten-
tions were only triggered by the possibility to form a CACC
platoon with the lead vehicle in the target lane. However, an
AuD vehicle would not intend to change lanes if it were
already a part of the platoon. Both lane-changing and gap-
acceptance rules developed for simulation were influenced
by strategies proposed by Liu et al. [35] for mixed traffic
movements. While the intentions for lane changes were
conveyed as soon as the requirements were fulfilled, exe-
cution of lane-changing operations only occurred once the

available gap in the target lane was governed by the gap-
acceptance principles for respective vehicle types. In mixed
traffic scenarios, vehicles were assigned with a Platoon
Position ID (P2ID) that indicated whether the vehicle was a
part of CACC platoon, as well as identifying their physical
position in that platoon. *e P2ID for all HuD vehicles was
assigned as zero (0). AuD vehicles’ P2ID derived from the
lead vehicle’s type and P2ID. For instance, if the lead vehicle
in the same lane was a HuD vehicle, then the AuD vehicle’s
P2ID would be one “1,” and it would follow ACC car-fol-
lowing rules. However, if the lead vehicle was an AuD ve-
hicle, then the subject AuD vehicle would form a CACC
platoon with the lead vehicle, and a P2ID would be assigned
to the subject AuD vehicle according to the CACC platoon
configuration (i.e., maximum platoon length). In another
scenario, if the lead vehicle in the lane of an AuD vehicle
were a HuD vehicle and the lead vehicle in the target lane
was an AuD vehicle, the subject vehicle would attempt lane-
changing from the current lane to the target lane, and the
following vehicle in the target lane would try to safely receive
the subject vehicle.

Since the motivation for discretionary lane-changing is
not as strong as mandatory lane-changing, a conservative
approach was taken to estimate required clearance for the
maneuver by discounting extreme braking scenarios. A gap-
searching subject vehicle would execute a lane-changing
maneuver by implementing the following acceleration
equation based on the vehicle type and start SCF from the
next time-step.

aLC(t) �

amax 1 −
v(t − 1)

vf

􏼠 􏼡

4

−
s0 + max 0, v(t − 1) × T′ + (v(t − 1) × Δv(t − 1))/2

�����
amaxb

􏽰
( 􏼁􏼂 􏼃

s(t − 1)
􏼠 􏼡

2
⎡⎣ ⎤⎦, (forHuD),

k1 Δp(t − 1) − v(t − 1) × T′ − s0􏼂 􏼃 + k2Δv(t − 1), (for AuD),

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(1)

and within 5-seconds of a lane-changing operation, the
subject vehicle would reclaim its actual safety headway (T)

and transfer to the car-following state according to the
vehicle type and lead vehicle type. Meanwhile, the following
vehicle would start adjusting the spacing with a new lead
vehicle right after the lane-changing by the subject vehicle. A
complete motion dynamic modeling scheme for both HuD
and AuD vehicles are presented in Figures 1(b) and 1(c).

3.3. Gap-Acceptance Principles. *e gap-acceptance of dis-
cretionary lane-changing for both vehicle types was based on
the minimum accepted gap by the driver if the driver chose
to merge into an available gap in the target lane. *is gap
must meet the following conditions to be considered a
possibility for lane-changing by the subject vehicle:

Gs,min ≥ 2g0 + L,

Gl,min, Gf,min ≥g0.
(2)

Here, (Gs,min) �minimum total clearance in the target
lane, (Gl,min) �minimum lead clearance, and
(Gf,min) �minimum following clearance. Upon satisfying the
minimum boundary conditions, the total available clearance
in the target lane, between the lead and following vehicles,
would be compared with the acceptable gap of the subject
vehicle for the corresponding time-step. If the subject vehicle
had a total gap in the target lane smaller than an acceptable
lane-changing gap, the subject vehicle would move to PCF
(provided that the vehicle was not in PCF for last 5-second
time-step). *e subject vehicle would stay on PCF for the
maximum 5-second time-step and actively examine the
available gap in the target lane to execute a lane-changing
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Intelligent driver model (IDM)

a (t) = amax 1−
v (t − 1)

vf
−

s0 + max 0, v (t − 1) × T + v (t − 1) × ∆v (t − 1)
2 amaxb

s (t − 1)

a (t) = acceleration at time step t amax = maximum acceleration, 2.5m/s2

v (t − 1) = speed at time step (t − 1) vf = free flow speed
s0 = minimum spacing (7.5m) = g0 + L g0 = jam clearance, 2m
L = average vehicle length, 5.5m ∆v (t − 1) = speed difference with lead vehicle at (t − 1)
b = desirable deceleration, 2.5 m/s2 s (t − 1) = clearance with lead vehicle at (t − 1)
T = safety head way, for a HuD vehicle T is fixed throughout the simulation period and varied randomly from 2 to 3 sec.
Adaptive cruise control (ACC)
a (t) = k1 [∆p (t − 1) − v (t − 1) × T − s0] + k∆v (t − 1)
k1, k2 = control constants for relative distance and relative velocity respectively (k1 = 0.3, k2 = 0.5)
T = safety headway = 1.5 sec for vehicles at ACC
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Figure 1: Continued.
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Figure 1: (a) Implemented formulae for the modeling framework, (b) principles for a human driver, and (c) principles for an automaton
driver to model multilane traffic movements.
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operation. If the vehicle could not find an acceptable gap
within this 5-second time-step in PCF, it would move back to
the primary car-followingmode (i.e., IDM, ACC).*e subject
vehicle would, then, seek the following conditions to identify
an acceptable gap (Gs,acc) for lane-changing at any time-step:

Gs,acc t′( 􏼁 � max Gs,min, Gs,req t′( 􏼁􏽮 􏽯,

Gs,req t′( 􏼁 � vs t′( 􏼁 + Δvf t′( 􏼁􏽨 􏽩Ts
′ + vs t′( 􏼁 + Δvl t′( 􏼁􏼂 􏼃Ts

′ + L,

Δvl � vs t′( 􏼁 − vl t′( 􏼁􏼂 􏼃,

Δvf � vs t′( 􏼁 − vf t′( 􏼁􏽨 􏽩,

(3)

where Gs,acc � acceptable clearance, t′ � time-step in PCF,
s � subject vehicle, l � lead vehicle in the target lane,
f � following vehicle in the target lane, Gs,req � required
clearance, Δv � speed difference, and Ts

′�modified safety
headway of the subject vehicle.

Similarly, if a subject vehicle observed that a lead vehicle
in a neighbour lane had activated PCF (assumed to be
conveyed by indicator light), the subject vehicle would move
to the ACF mode for a maximum 5-second time-step to
receive that vehicle as a new lead vehicle. Upon successful
lane-changing by the lead vehicle in the target lane within
the 5-second time-step, the subject vehicle would shift to the
PCF mode specific to the vehicle type. Otherwise, the subject
vehicle would automatically move back to the primary car-
following mode (i.e., IDM, ACC) after the 5-second time-
step in ACF. Within this 5-second window, the safety
headway (T′) for the subject vehicle would change gradually
to allow for a smaller acceptable gap for lane-changing (in
PCF) to broaden the gap between the lead vehicle and itself
in the same lane to accommodate the lane-changing of the
lead vehicle from a neighbor lane (in ACF) and to increase
the gap between a new lead vehicle (in SCF) and itself. *e
safety headway would meet the conditions mentioned in
Figure 1(a), specific to subjective car-following modes. If a
vehicle can successfully execute a lane-changing maneuver,
the vehicle would shift to SCF in the following time-step and
stay on that mode until it reclaimed its initial safety headway
(T).

4. Flow-Density Relationships for a Human-
Driven Vehicle

4.1. Limitations of the Macroscopic Adaptation of the Car-
following Model. In a real-world scenario, car-following
action is the most frequent task performed by drivers in
vehicle motion. *erefore, the amplification of a micro-
scopic car-following model for homogenous traffic in a
state of steady equilibrium should provide an ideal rep-
resentation of the fundamental diagram. In this regard, the
IDM was expanded to obtain traffic flow models between
speed and density. *e following forms of equation were
obtained [18]:

k �
1

s0 + vT( 􏼁 1 − v/vf􏼐 􏼑
δ

􏽨 􏽩
− (1/2)

,

v � vf 1 −
k

k∗
􏼠 􏼡

2
⎡⎣ ⎤⎦,

q �
v

s0 + vT( 􏼁 1 − v/vf􏼐 􏼑
δ

􏽨 􏽩
− (1/2)

,

(4)

where k �mean density, s0 �minimum spacing, vf � free-
flow speed, k∗ � desired mean density, and q �mean traffic
flow. *e macroscopic form of the IDM involved four pa-
rameters (i.e., vf, s0, T, δ) that determine the shapes and
features of fundamental relations (i.e., flow, speed, and
density). To check the capability of the derived macroscopic
model to explain these relations, a wide range of traffic flow
scenarios (i.e., flow rates� 1000 vph–2600 vph) was simu-
lated under the proposed modeling framework containing
only HuD vehicles in the traffic stream. Measured outputs
from the simulations were computed and calibrated to
obtain flow-density values and model parameters, respec-
tively. Macroscopic parameter values were measured
according to the techniques proposed in the Highway Ca-
pacity Manual [36]. Flow and respective density values for
different simulated traffic flow scenarios are plotted in
Figure 2.*e macroscopic form of the IDM is also plotted in
the same figure with the premeditated parameter values (i.e.,
(s0 � 7.5m, vf � 90 kph, T � 1.98 sec , δ � 4) used for the
simulation.

Since the parameters required to generate the Funda-
mental Diagram (FD), derived from the IDM, were obtained
from the parameters provided as inputs of the car-following
IDM in the simulation, calibration of the parameters was
exempt. *erefore, the FD obtained from the given pa-
rameter set should represent the real-world implications of
an expanded IDM on the flow-density relation. However, as
observed in Figure 2(a), the plotted FD, derived from IDM,
did not capture the extremity and variations observed from
the simulated flow-density results. Analysis of the simulated
traffic’s microscopic features revealed that, for 90.73% of the
total duration, the vehicles maintained the car-following
state (i.e., IDM). *e remaining share of vehicle movements
was spent on lane-changing-related motion dynamics (i.e.,
LC, PCF, SCF, and ACF).*e comparison between the flow-
density points from the simulation with the generated FD
revealed that the lane-changing gap-acceptance control
decisions had an influential impact from a macroscopic
perspective. While car-following was a predominant ma-
neuver on the microscopic scale, the impact of lane-
changing gap-acceptance was far more significant from a
macroscopic viewpoint.

To further investigate the capability of the FD derived
from the IDM, we explored empirical data obtained from a
recurrent bottleneck segment of an urban freeway corridor:
Whitemud Drive, Edmonton, Canada. Whitemud Drive is a
multilane freeway with a posted speed limit of 80 kph and
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serves as a part of Edmonton’s inner ring road. *e annual,
average daily traffic (AADT) of its westbound section was
greater than 100,000 vehicles in 2017 [37]. For the study
purpose, we have used 24 hr data from 30 workdays (from
August 7, 2017, to September 18, 2017). Based on field
observations and bottleneck information, the weaving seg-
ment after the 122 Street on-ramp and the segment around
Fox Drive were selected as critical segments for this study.
*e selected segments were, then, equipped with loop de-
tectors on each lane to collect traffic flow data (i.e., speed,
flow, and occupancy) at 20-second intervals. *e studied
roadway segment had four (4) lanes with a one-lane on-
ramp at the beginning and a one-lane off-ramp at the end of
the segment. *e free-flow speed for the FD was taken to be
80 kph since this was the maximum speed limit of the
freeway. *e minimum spacing was taken as 7.5m (5.5m
(average vehicle length) + 2m (safety clearance)), and δ � 4

was considered. *e safety headway (T�1.98 sec) for traffic
was calibrated for the FD using empirical data points.
Analogous to earlier observations, the FD failed to capture
the entirety of the fundamental relation between flow and
density.*e FD provided a lower capacity value and failed to
explain the capacity drop phenomenon. *erefore, traffic
flow models, by expanding the car-following dynamic, do
not adequately explain most of the traffic flow states and
events. While the microscopic car-following model con-
sidered vehicle-to-vehicle interactions in the same lane, this
model failed to apprehend interactions of vehicles in mul-
tiple lanes. As such, FDs derived from car-following models
cannot be expected to comprehensively interpret traffic flow
characteristics. In that context, a macroscopic model can
only consider safety spacing during car-following and ac-
commodate speed, as well as space sensitivity, from drivers
relevant to lane-changing and gap-acceptance.
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Figure 2: Resulting fundamental diagrams by the macroscopic IDM from (a) simulation data and (b) empirical data.
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4.2. Proposed Traffic Flow Model. Premised on these find-
ings, a new, flexible, and integrated traffic flow model can
now be formulated. In general, the proposed model must
consist of a safety spacing principle, predominant in car-
following dynamics, while integrating broad-scale speed and
space sensitivity, which are prevailing aspects on lane-
changing and gap-acceptance. *ese considerations are
incorporated when reviewing numerous forms of traffic flow
and result in the following formulation:

k �
1

s0 + vT + λv
2

􏼐 􏼑 1 − ln 1 − v/vf􏼐 􏼑􏼐 􏼑􏽨 􏽩
(1/η)

􏼒 􏼓

,

v � vf 1 − e
1− k∗/k( ){ }η

􏽨 􏽩,

q �
v

s0 + vT + λv
2

􏼐 􏼑 1 − ln 1 − v/vf􏼐 􏼑􏼐 􏼑􏽨 􏽩
(1/η)

􏼒 􏼓

,

(5)

where v �mean speed of traffic, vf � free-flow speed,
k �mean density, and k∗ � the desired mean density. *e
latter, considering traffic safety rules, then takes the fol-
lowing form:

k
∗

�
1

s0 + vT + λv
2. (6)

Here, λ� represents the awareness of the mean speed of
traffic; T � the mean safety headway of the driving pop-
ulation; s0 �minimum spacing; and η� represents sensi-
tivity to the average spacing of traffic.

Since simulated, discretionary lane-changing was as-
sumed to be motivated by speed gain and successful lane-
changing maneuvers depend on the available spacing be-
tween vehicles, and the new parameters (i.e., λ and η) should
account for and relate to the lane-changing of vehicles in
traffic.

4.3. Differentiability of the Proposed Traffic Flow Model.
*e ability of the proposed model to explain the flow-density
relationship can be further analyzed to generate sensible
information. For instance, one can take the first derivatives
of flow (q) with respect to velocity (v) to find the capacity
and set the result to zero.

dq

dv
� k + v

dk

dv
� v −

(T + 2λv) 1 − ln 1 − v/vf􏼐 􏼑􏼐 􏼑􏽨 􏽩
− (1/η)

s0 + vT + λv
2

􏼐 􏼑
2 −

1 − ln 1 − v/vf􏼐 􏼑􏼐 􏼑􏽨 􏽩
− 1− (1/η)

ηvf 1 − v/vf􏼐 􏼑􏼐 􏼑 s0 + vT + λv
2

􏼐 􏼑

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦ +
1 − ln 1 − v/vf􏼐 􏼑􏼐 􏼑􏽨 􏽩

− (1/η)

s0 + vT + λv
2

􏼐 􏼑
.

(7)

Additionally, the traffic flow (q) can be differentiated
with respect to density (dq/dk) to obtain the slope of a
tangent at any point on a flow-density curve. Hence,

dq

dk
� v + k

dv

dk
� v +

k

(dk/dv)

�
1 − ln 1 − v/vf􏼐 􏼑􏼐 􏼑􏽨 􏽩

− (1/η)

s0 + vT + λv
2

􏼐 􏼑 − (T + 2λv) 1 − ln 1 − v/vf􏼐 􏼑􏼐 􏼑􏽨 􏽩
− (1/η)

􏼒 􏼓/ s0 + vT + λv
2

􏼐 􏼑
2

􏼒 − 1 − ln 1 − v/vf􏼐 􏼑􏼐 􏼑􏽨 􏽩
− 1− (1/η)

/ηvf 1 − v/vf􏼐 􏼑􏼐 􏼑 s0 + vT + λv
2

􏼐 􏼑􏼒 􏼓􏼔 􏼕

+ v.

(8)

Moreover, as a boundary condition of the flow-density
relationship, shockwave speed (wj) at density can be de-
termined from the abovementioned equation:

wj �
dq

dk
|k � kj, v � 0 � −

s0

T + s0/ηvf􏼐 􏼑
. (9)

4.4. Sensitivity of the Proposed Traffic FlowModel Parameters.
An expected feature of the traffic flow model is the flexibility
to explain different shapes of fundamental diagrams from a
single model. Two additional parameters introduced in the
proposed model (i.e., λ and η) provide greater flexibility and

precision in replicating wide variations of flow-density re-
lationships. Figure 3 illustrates a group of fundamental
diagrams generated from the proposed model with varying
speed and spacing sensitivity parameters. Figure 3 estab-
lishes that both speed and spacing sensitivity can effectively
influence the shape of the flow-density relationship and
produce diverse shapes based on empirical data. However,
the interaction of speed and spacing sensitivity with other
parameters in the model requires further analysis.

4.5. Applicability on Simulated and Empirical Observations.
With the potential of the proposed model now established,
its proficiency in portraying fundamental features of traffic,
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Figure 3: Continued.
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for both simulated and empirical data, was tested and
compared with the macroscopic IDM. Common parameters
for both models (i.e., s0 � 7.5m, vf � 90 kph, and
T � 1.98 sec) were maintained for fundamental diagram
calibration. As shown in Figure 4, the fundamental diagrams
generated through the proposed model were a better fit than
the macroscopic extrapolation of the IDM. *e Root Mean
Square Error (RMSE) was reduced by 42.67% for the sim-
ulation data and by 37.41% for the field data in comparison
to the IDM. Additionally, the congestion element to the
fundamental diagram of the proposed model had curvilinear
shapes that were instrumental in explaining the capacity
drop phenomenon. A similar output was experienced for
empirical observations, which established the
absolute superiority of the proposed model over macro-
scopic adaptation of the IDMwith respect to the competence
of explaining traffic flow features.

4.6. Flow-Density Relationship for Mixed Traffic. *e capa-
bility of the proposed model to apprehend the macroscopic
implications of complete motion dynamics has been
established in the previous section of this paper.We will now

explore the model’s adeptness to explain flow-density re-
lationships for different mixed traffic scenarios and corre-
lations of model parameters with AuD vehicle shares and
lane-changing rates in this section. Our mixed traffic sce-
narios, for this study, were developed considering different
AuD vehicle shares in simulated traffic while adhering to the
aforementioned traffic dynamic principles (i.e., car-follow-
ing, lane-changing, and gap-acceptance) according to ve-
hicle types (i.e., AuD and HuD vehicle). *e obtained results
from the simulation were utilized to calibrate the model
parameters and plot the flow-density diagrams for different
mixed traffic conditions; Table 1 and Figure 5. *e flexibility
of the proposed model allowed for more precise replication
of a wide variety of fundamental relations. Additionally,
both parameters introduced in the proposed model dem-
onstrated their sensitivity to different traffic conditions.

As described in the section on the microscopic modeling
framework of mixed multilane traffic, two types of vehicle
were simulated by following the developed car-following,
lane-changing, and gap-acceptance principles for varying
flow rates (i.e., 1000–2600 vphpl) and specific AuD vehicle
shares. Microscopic parameters of individual vehicles were
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Figure 3: Variability of the fundamental diagram resulting from changes in the (a) spacing sensitivity parameter and (b) speed sensitivity
parameter.
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recorded throughout the simulation period for specific
simulation scenarios (i.e., flow rate and AuD share). *ese
parameters included position, velocity, acceleration, and
current lane. *e average number of lane changes by the
vehicles in traffic was measured from assessing these

features. *is average was presumed to have a notable in-
fluence on traffic flow and was, therefore, measured for each
simulation scenario. *e recorded microscopic features
were, then, translated into macroscopic traffic flow pa-
rameters for the simulated roadway segment. *e flow,
density, and average speed of traffic were calculated from
microscopic data for specific AuDmarket shares and plotted
to develop a traffic condition-specific flow-density diagram
Figure 5. *e calibrated flow-density curves demonstrated
the combinatorial impact of introduced parameters (i.e., λ
and η) in effectively portraying the correlation between
traffic flow parameters.

To demonstrate the implications of lane-changing on
mixed traffic scenarios, the interactions of the lane-changing
rate with increasing traffic flow rates were assessed.*e lane-
changing rate (number of lane changes/minute) of traffic
was measured by counting the total number lane changes by
simulated traffic (22 vehicles) over the simulation period in
minutes (15 minutes). *e simulated environment provided
the opportunity to precisely measure every instance of lane-
changing by the vehicles and otherwise a difficult task when
working with real-world traffic. Results showed a strong
linear correlation of the lane-changing rate with increasing
flow rates Figure 6. *e observations outlined in Figure 6
show the regression line for 0% displaying an upward trend
with increasing flow rates. However, the higher residuals
indicated an unstable correlation between the variables at 0%
AuD traffic. Further analysis demonstrated a reduction in
residual values with an increased number of AuD vehicles in
traffic. Moreover, a gradual decrease in the lane-changing
rate with increased AuD vehicle shares was observed. Al-
though the extent of reduction in lane-changing rates varied
for different flow rates, the trend of diminishing lane-
changing was notable. *e result of this particular analysis
warrants future examination of lane-changing demand and
supply equilibrium in different mixed traffic scenarios.
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Figure 4: Comparison of the calibrated fundamental diagrams resulting from the macroscopic IDM and proposed traffic flow model on (a)
simulation data and (b) empirical data.

Table 1: Model parameters of the proposed model for distinct
mixed traffic scenarios.

AuD share (%) s0 (m) vf (kph) T (sec) λ (s2/m) η

0 7.5 89.86 1.98 − 0.0668 1.349
25 7.5 87.89 1.76 − 0.0617 1.401
50 7.5 88.16 1.46 − 0.0523 1.470
75 7.5 88.50 1.31 − 0.0447 1.690
100 7.5 90.00 1.18 − 0.0394 1.849
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Figure 5: Resulting fundamental diagrams for distinct mixed traffic
conditions generated from numerical simulations.
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To justify the inclusion of speed and space sensitivity
in the traffic flow model, the correlation of both pa-
rameters with changing traffic conditions was analyzed.
Analysis of the flow-density relationship in mixed traffic
scenarios demonstrated the evolution of the fundamental
diagram, plotted by the proposed macroscopic model,
with an increasing share of AuD vehicles. While minimum
spacing (s0) was predefined for the simulation, free-flow
speed (vf) and safety headway of traffic (T) were com-
puted from the simulation outcomes. Afterwards, the
speed and spacing sensitivity parameter (λ and η) were
calibrated to best fit the obtained flow-density points of
different mixed traffic scenarios. *is study used neutral
regression by normalizing the RSME of two fundamental
parameters (flow and density) to minimize overall errors.
Analysis of the best fit of λ and η values uncovered their
correlation with AuD vehicle shares; Figure 6(c). While λ
was linearly correlated with the simulated mixed traffic
scenarios (i.e., 0%, 25%, 50%, 75%, and 100% AuD vehicle
shares), η showed a quadratic correlation with AuD ve-
hicle shares. High R2 values for both cases established a
strong correlation between λ and η with AuD vehicles’
presence in traffic. Further analysis of λ and η values at
different AuD vehicle shares proved their association with
lane-changing maneuvers; Figure 6(d).

5. Concluding Remarks

*is paper has considered the fundamental drawbacks to the
conversion of a microscopic model into a macroscopic
model. In place of this, we have proposed an efficient, flexible
traffic flow model that is capable of capturing limits and
variations of fundamental diagrams. *e proposed model is
formulated by taking the impact of vehicles’ complete
motion dynamics into account. While the proposed model
was portrayed in the macroscopic scale, it also balanced the
microscopic vehicle dynamics through speed and spacing
sensitivity parameters that gave themodel better adaptability
to recognize the fundamental features with greater precision.
Proficiency of the proposed model was compared with the
macroscopic car-following model by fitting both simulation
and empirical data.*e flexibility of the proposed model was
also evaluated by calibrating the model parameters to shape
the fundamental diagrams for different mixed traffic
conditions.

Considering the magnitude of research warranted by the
identified issues from previous research, this study makes
notable contributions to the transportation literature by (i)
revealing the limitations of the macroscopic car-following
model to explain the fundamental features of multilane
traffic flow, (ii) establishing the prominence and capability of
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a single-regime equilibrium traffic flowmodel to account for
the complete motion dynamics of traffic, (iii) capturing the
variations of the fundamental diagram with different mixed
traffic scenarios through single traffic flow models, and (iv)
explaining the correlation of model parameters with vehicle
motion dynamics and AuD shares on traffic. Given these key
contributions, the most substantial theoretical significance
of this study is in addressing the highly contested expla-
nation of the macroscopic fundamental diagram by ex-
ploring the implications of the lane-changing maneuver.
Although lane-changing has long been proposed as an el-
ementary source of disturbance with broader consequences
on traffic, surprisingly little empirical evidence that meets
scientific standards was available to support this claim.
Hence, this study carefully examined the macroscopic im-
plications of complete motion dynamics to address the
considerable gap in the existing body of knowledge.What we
found was that incorporating the influences of bidirectional
movements of traffic through speed and space sensitivity
parameters would promote more accurate estimation of the
fundamental diagram while providing adequate flexibility to
adapt with varying mixed traffic scenarios.

*e unique properties characterizing the proposed traffic
flow model facilitate the replication of numerous traditional
and mixed traffic scenarios. *is substantially improved
model can successfully explain the roadway capacity and
capacity drop phenomenon, thus recognizing both oppor-
tunities and limitations of the roadway. Furthermore,
leveraging the proposed model can facilitate more advanced
and accurate highway performance functions to assist dy-
namic route choice on a traffic network. A future extension
of this study will be to examine the applicability of the
proposed model in signalized, arterial traffic and modifi-
cations required when considering the implications of a
traffic signal on traffic flow. Besides, the lane-changing
implications on traffic flow at varying mixed traffic scenarios
will be further explored.
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&is paper attempts to propose a discretionary lane-changing decision-making model based on signalling game in the context of
mixed traffic flow of autonomous and regular vehicles. &e effects of the heterogeneity among different drivers and the
endogeneity of same drivers in lane-changing behaviours, e.g., aggressive or conservative, are incorporated through the spec-
ification of different payoff functions under different scenarios. &e model is calibrated and validated using the NGSIM dataset
with a bilevel calibration framework, including two kinds of methods, genetic algorithm and perfect Bayesian equilibrium.
Comparative results based on simulation show that the signalling game-based model outperforms the traditional space-based
lane-changing model in the sense that the proposed model yields relatively stable reciprocal of time to collision and higher success
rate of lane-changing under different traffic densities. Finally, a sensitivity analysis is performed to test the robustness of the
proposed model, which indicates that the signalling game-based model is stable to the varying ratios of driver type.

1. Introduction

Lane-changing behaviour is vital in its effects on traffic flow.
&e behaviour that drivers execute lane-changing to obtain a
better driving condition (higher speed, lager space, etc.) or
get to the correct lane is a complicated decision-making
process which is affected by many observable and unob-
servable factors of the surrounding environment and
drivers. A bad lane-changing decision can lead to serious
traffic problems [1], such as traffic breakdowns, bottleneck
discharge rate reduction, stop-and-go oscillations, and safety
hazards [2], while cooperative lane-changing may poten-
tially improve traffic situation.

Compared to traditional cars, connected and autono-
mous vehicles enabled in vehicle-to-vehicle and vehicle-to-
infrastructure communication technology are promising in
improving traffic efficiency and safety [3]. However, one can
foresee that within a certain period of time, regular vehicles

and autonomous vehicles coexist on the road [4].&is means
a certain level of cooperation is needed between human
drivers and autonomous vehicles. Autonomous vehicles
need to respond correctly and accurately to the environment
and with respect to the specific drivers.

Existing studies on lane-changing of autonomous ve-
hicles are mostly focused on the development of lane-
changing trajectory, design of lane-changing controller, and
prediction of lane-changing intention, while the lane-
changing decision-making of autonomous vehicles has not
been addressed sufficiently, especially in the interactions and
heterogeneity between different drivers, which is an im-
portant issue in lane-changing process. To fill this research
gap, this paper proposes a lane-changing decision-making
mechanism for autonomous vehicles in the context of mixed
traffic flow with conventional vehicles. Drivers’ heteroge-
neous lane-changing behaviour is integrated based on a
signalling game approach, whereas different payoff functions
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are established according to the type of drivers, aggressive or
conservative. &e model is calibrated and validated using
NGSIM data. Furthermore, sensitivity analysis is performed
through microsimulations to examine the model robustness
in comparison with the traditional space-based model.

&e remainder of this paper is organized as follows:
Section 2 reviews existing lane-changing approaches. Sec-
tion 3 introduces the methodology that is proposed in this
paper. Data processing and model calibration and validation
are presented in Sections 4 and 5, respectively. Sections 6 and
7 present the details of simulation process and main find-
ings. &e paper is summarized in Section 8 with a discussion
of future possible research aspects.

2. Literature Review

In the literature of lane-changing research, three types of
models dominate the modelling of lane-changing decisions:
rule-based models, utility-based models, and game theory-
based models [2].

&e pioneer rule-based model proposed by Gipps [5]
contains a couple of factors influencing on lane-changing
behaviour, such as collision avoiding, position of barrier,
type of vehicles, special lane, and the possibility of advanced
speed. When there are multiple lanes to change, a set of
priority rules is used to decide the target lane. Although the
involved affecting factors are reasonable and rather ex-
haustive, the interactions and communication between ve-
hicles, e.g., considering other vehicles as moving obstacles,
were ignored. Another limit is that this model fails to take
heterogeneous drivers into account and assumes the char-
acteristics of the same driver is constant over time (e.g.,
sometimes a conservative driver can do some aggressive
actions for certain reasons). Based on Gipps’s work, Yang
and Koutsopoulos [6] made some improvement by splitting
this lane-changing process into four steps: considering a
lane-changing, determining the target lane, searching for the
acceptable gap, and executing the change. However, no
calibration and validation of this model had been done.
Hidas [7] classified three types of lane-changing behaviour:
free lane-changing, cooperative lane-changing, and forced
lane-changing and proposed a new model which is capable
to describe the interactions between vehicles and overcome
one of flaws in Gipps’s model.

Differing from rule-based models, utility-based models
assume that the different levels of lane-changing behaviour
depend on driver characteristics and status which vary
across individual drivers [8]. Ahmed [9] expanded themodel
by incorporating mandatory lane-changing decisions. Fur-
thermore, to address the possible dependency between
discretionary lane-changing and mandatory lane-changing
decisions, Toledo et al. [10] proposed an integrated model
and introduced a random term to capture unobserved
variables, which may explain the heterogeneity between
different drivers and change in styles of the same driver over
time.

&e third approach in modelling lane-changing behav-
iour is game theory which provides a way to model the
interactions between drivers. &e first work focusing on the

merging behaviour of regular vehicles was conducted by Kita
[11]. After that, Meng et al. [12] used vehicles’ velocity and
acceleration to construct payoff functions without consid-
ering drivers’ heterogeneity. Yu et al. [13] represented a
Stackelberg game model to describe the lane-changing de-
cision-making process of autonomous vehicles. &e payoff
function is defined as a linear combination of vehicle spacing
and safety factor. In addition, the coefficients were con-
sidered as a function of driver’s aggressiveness. &e model
has great advantages in comparison with the traditional rule-
based model as it involves aggressiveness revealed by ve-
hicle’s lateral movement. Nevertheless, other psychological
factors such as regret and conformity were considered. Ali
et al. [2] proposed a game model under mandatory lane-
changing scenarios in which the strategy set was screened by
empirical data. Based on the NGSIM US101 data [14] and
driving simulator data, the model was validated through
predefined microscopic indicators, such as confusion ma-
trix, time, and location error.

In addition to the models presented above, researchers
have also applied artificial intelligence to model the lane-
changing decision process, such as BP neural network [15]
and fuzzy inference system [16]. It is no doubt that these
models can generally achieve a better prediction, and the
model performance largely depends on the quality and
quantity of the mixed traffic flow data which are still difficult
to obtain. Moreover, artificial intelligent models are often
inexplainable models in the sense it could not help much to
understand the mechanism of lane-changing behaviour.

Relative to the situation of human drivers only, future
traffic condition will be mixed with autonomous vehicles,
indicating a variety of interactions between human drivers
and autonomous vehicles. Several issues that differ from the
traditional traffic environment may arise. First, autonomous
vehicles receive massive information about surroundings
(i.e., real-time traffic information and vehicle-to-vehicle
communication) through various sensors or cameras, which
indicates that an optimal lane-changing decision can be
made relatively easier than human drivers if the information
can be correctly and sufficiently recognized and used. &is
means when modelling the lane-changing behaviour of
autonomous vehicles, additional assumptions may be
needed. Moreover, the lane-changing decision of autono-
mous vehicles plays a vital part in the coordination of traffic
system. Human drivers use their experience to decide
whether to change lanes, while autonomous vehicles need to
learn to interact with human drivers instead of following
fixed rules or being constantly courteous. Autonomous
vehicles need a higher degree of accuracy and effectiveness in
responses than human drivers to cope with different styles of
driving and lane-changing behaviour.

Recent studies have attempted to differentiated drivers
from the perspective of discretionary lane-changing be-
haviour and specified the payoff functions based on safety
and efficiency. Depending on a group of interviewers’
subjective opinion or using clustering algorithms, different
driving styles such as aggressive or not aggressive can be
identified [17–19]. &e effects of the heterogeneity among
different drivers in their lane-changing behaviour on other
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vehicles are critical, especially in a connected environment
and with autonomous vehicles. However, this heterogeneity
may be insufficient to reflect the variation of decisions of a
same driver. Research has shown that drivers typically adjust
their driving styles in different traffic situations [1] such that
the same driver may have different lane-changing styles in
different temporal and spatial situations [20,21].

&is signifies the importance and necessity that, when
building a reasonable lane-changing decision-making mecha-
nism for autonomous vehicles in amixed traffic flow, one should
systematically incorporate the interactions and heterogeneity
between different drivers. First, discretionary lane-changing is
not a one-way decision-making process, which needs interac-
tions with others. In a lane-changing scenario, decisions of two
participants are affected by each other. However, such an in-
teraction has been ignored by all existing approaches except the
game theory. Second, in addition to the heterogeneity between
different drivers, the changes in the characteristics of the same
driver have not been paid attention. Decisions should be made
by considering the real-time reaction of drivers rather than a
fixed driving style of classification since drivers can act in an
opposite way to normal in certain situations.

&erefore, in this paper, we attempt to incorporate the
heterogeneous behaviour among different drivers and of the
same driver into the lane-changing decision-making pro-
cess. To the best of our knowledge, this is the first attempt to
take into account the effects of both the heterogeneity be-
tween different drivers and the endogeneity of same drivers
in lane-changing decisions. In order to mimic the dynamic
feature of such decisions, a signalling game approach is
proposed. In the following sections, we will present the
methods and our simulation results.

3. Materials and Methods

Here, we regard a lane-changing decision-making process as
a game considering that game theories are potentially useful
to the modelling of lane-changing behaviour. In the fol-
lowing sections, we first present the concept of game theory
and the signalling game that is adopted in this study. &en
we present the specification of games in lane-changing
behaviour in the setting of mixed traffic flow of autonomous
and human driver cars.

3.1. Game -eory and Signalling Games. Game theory is a
powerful and well-developed mathematic tool. It is usually
used to model the interaction process between two or more
players in economic fields. With a number of disciplines,
game theory has been widely used in logical decision-making
in humans. It has six main concepts: game, player, strategy,
payoff, information set, and equilibrium. Game is defined as
any circumstances that are affected by players’ decision, and
a player is seen as a decision-maker in this game. Strategy is a
decision that a player may take in that circumstance. Payoff
is used to measure the cost due to a pair of decisions. In-
formation set consists all available information. Equilibrium
is the optimal state of a game, yielding every player’s decision
and their payoffs.

Solutions under equilibrium in game theory can be
classified in four types by the nature of timing and infor-
mation. In the case of simultaneous move games with
complete information, the appropriate solution concept is
Nash equilibrium (NE), while for games of sequential timing
with complete information, the best solution is subgame
perfect equilibrium (SPE). When there is incomplete in-
formation, Bayesian Nash equilibrium (BNE) and perfect
Bayesian equilibrium (PBE) are the solutions to solve si-
multaneous move and sequential timing games, respectively.
It is a set of strategies and beliefs such that the strategies are
sequentially rational given the players’ beliefs and players
update beliefs via Bayes rule wherever possible [22].

Among the various games, signalling game is a simple
type of dynamic Bayesian game in game theory [23]. It
includes two players, called sender and receiver, and a party
called Nature who randomly decides the type of a sender for
a receiver.&e receiver does not know the type of senders for
sure but knows about the probability of the sender type. For
example, assuming there are two potential types, strong and
weak. Even if the Nature decides that the sender is a weak
type, the receiver only infers the type of the sender by
observing its actions, e.g., the receiver has information that
the probability of being weak is 0.4 and 0.6 of being strong.

Since lane-changing behaviour is sequential (one takes
actions according to the other’s actions) and the information
may be incomplete (the type of vehicles on the target lane is
unknown to the vehicle who wants to change lanes), we
apply signalling games based on PBE in a lane-changing
process.

3.2. Signalling Game of Lane-Changing. In the process of
lane-changing decision with mixed traffic flow, autonomous
(CAR-E) and regular vehicles (CAR-TF) are the two players.
When a CAR-E has a demand of changing lanes, it indicates
its intention to the other vehicle, CAR-TF. CAR-TF will
respond to the intention by sending a signal as soon as the
intention is received. Note that sending a signal could be
generally regarded as a warning behaviour of drivers, such as
a significant acceleration or horning. However, an aggressive
driver may have a higher probability of sending a signal than
other types of drivers. Observing the reaction of CAR-TF,
CAR-E can then analyse the behaviour of the CAR-TF and
calculate the payoff values in order to make an optimal
decision.

Due to the fact that the type of drivers in CAR-TF, e.g.,
aggressive or conservative, which largely affects lane-
changing decision of CAR-E is unknown to CAR-E, we
assume the probability that CAR-E knows CAR-TF as an
aggressive driver is p. CAR-TF knows that this is the belief of
CAR-E, and CAR-E knows that CAR-TF knows that this is
the belief of CAR-E, which means p is the common
knowledge between both players [24].

Here, we defined that the set of CAR-TF types is
Θ� θ1, θ2􏼈 􏼉, where θ1 and θ2 represent the aggressive type
and conservative type, respectively. &e prior probability of
the one type is p, then the prior probability of being the other
type is 1 − p(0≤p≤ 1) Let the signal set of CAR-TF be
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A1 � S,NS{ }, where S and NS denote signalling and not
signalling, respectively. &e action set of CAR-E is defined as
A2 � C,W{ }, where C denotes lane-changing behaviour and
W represents waiting decision. For each signal that CAR-E
receives and the possible action that each CAR-TF takes,
there is a payoff for CAR-TF (Pij) and CAR-E (Qij). All sets
of possible strategies of this game are presented in Table 1.

In the game sequence, “Nature” selects the type of CAR-
TF, and CAR-E knows the prior probability of type θi, p(θi).
Note that “Nature” is virtual and not participating in the game.
When the CAR-TF receives the intention of CAR-E, it chooses
an action a1 ∈ A1 (usually is related to the driver’s types).&en,
CAR-E observes the action of CAR-TF, a1, then infers the
posterior probability 􏽥p(θ | a1) using Bayes’ rules. &en CAR-E
takes an action, a2 ∈ A2. Considering the multiple possibilities
at each stage of the sequence, a game tree can be built to
describe the decision mechanism, as shown in Figure 1.

In Figure 1, Ct is the cost of CAR-TF for sending a signal,
such as decreased attention and acceleration fluctuation. FA

TF
and FA

E are losses of CAR-TF and CAR-E, respectively, in the
situation that CAR-E changes lanes when the driver of CAR-
TF is aggressive. GC

TF and GC
E are losses of CAR-TF and the

benefit of CAR-E, respectively, in the situation that CAR-E
changes lane when the driver of CAR-TF is conservative. RA

TF
and RA

E are regrets of aggressive and conservative CAR-TFs
in the situation that CAR-E changes lanes when the driver of
CAR-TF did not send a signal.

Figure 2 shows an example of the lane-changing process
where CAR-E is assumed to change lanes. E represents CAR-
E, and TF represents CAR-TF. TL and L1 are the leading
vehicles in the target lane and current lane, respectively,
called CAR-TL and CAR-L1.

Considering that speed and driving space are the two
main factors influencing lane-changing behaviour, we in-
clude the space and speed into the payoff function. In ad-
dition, an indicator of regret is also taken into account to
mimic individuals’ decision-making.

Let t0 be the starting time of lane-changing and Δt be the
time to finish this process. &en, the distance between ve-
hicles can be calculated as below:

D1 � y
0
L1 − y

0
E − L,

D1′ � y
0
TL − y

0
E − L,

D2 � y
0
E − y

0
TF − L,

(1)

where, D1, D1′, and D2 denote the distance between CAR-E
and CAR-L1, CAR-E and CAR-TL, and CAR-E and CAR-TF
at t0, respectively; L denotes the length of vehicles.
y0

L1, y0
E, y0

TL, and y0
TF denote the longitudinal position of the

centre of CAR-L1, CAR-E, CAR-TL, and CAR-TF at t0
respectively. &us, the distance between CAR-E and CAR-
TF at t0 + Δt, D2′, is

D2′ � v
0
TF − v

0
E􏼐 􏼑 × Δt +

Δt2

2
􏼠 􏼡 × a

0
TF − a

0
E􏼐 􏼑 − L, (2)

where v0TF and v0E are the instantaneous speed of CAR-TF
and CAR-E at t0 and a0

TF and a0
E are the acceleration rates of

CAR-TF and CAR-E at t0.

Here, the regret of aggressive and conservative CAR-TFs
are defined as functions of the speed difference between
CAR-TF and CAR-E as below:

R
A
TF �

c1 × vE
′ − vTF′( 􏼁, vE

′ − vTF′ > 0,

0, vE
′ − vTF′ ≤ 0,

⎧⎨

⎩

R
C
TF �

c2 × vE
′ − vTF′( 􏼁, vE

′ − vTF′ > 0,

0, vE
′ − vTF′ ≤ 0,

⎧⎨

⎩

(3)

where vTF′ and vE
′ are the speed of CAR-TF and CAR-E at

t0 + Δt, respectively. c1 and c2 are the parameters to be
estimated.

&e cost of CAR-TF to send a signal is defined based on
the difference in acceleration at different time, which in-
dicates distraction caused by sending a signal, given by the
following equation:

Ct � ε × aTF′ − a
0
TF􏼐 􏼑, (4)

where aTF′ is the acceleration of CAR-TF at t0 + Δt. ε is a
parameter to be estimated.

For aggressive CAR-TFs, the loss is dependent on the
difference in distance between the two vehicles at time t0 and
t0 + Δt, which can be calculated by using the following equation:

F
A
TF � f

1
TF × D2 − D2′( 􏼁, (5)

where f1
TF is the parameter to be estimated.

Let vTF′ and vE
′ be the speed of CAR-TL and CAR-E at

t0 + Δt, respectively. GC
TF is quantified by loss of space and

speed; thus, the loss of conservative CAR-TFs can be cal-
culated by using the following equation:

G
C
TF � g

1
TF × D1′ + D2 + L − D2′( 􏼁 + g

2
TF × vTL′ − vE

′( 􏼁, (6)

where g1
TF and g2

TF are the parameters to be estimated.
Similarly, the payoff functions of aggressive and con-

servative CAR-Es can be calculated as below:

F
A
E � f

1
E × 1 − η1( 􏼁 × D2 − D2′( 􏼁,

G
C
E � g

1
E × 1 − η1( 􏼁 × D1′ − D1( 􏼁 + g

2
E × η1 × v

0
TL − v

0
E􏼐 􏼑,

(7)

where η1 denotes the weight coefficient of speed benefit in
the payoff of CAR-E, which can be set in the controller
manually. &e higher η1 is, the more the attention paid on
speed is. Lower η1 can be set in some risky road segments to
create a more cautious driving style for autonomous vehi-
cles. g1

E, g2
E, and f1

E are the parameters to be estimated.

3.3. Equilibrium Setting and Model Solution. According to
the previous studies on Game&eory, signalling game can be
solved by the following method [23]. Let θ(θ ∈ Θ) be the
type of CAR-TF, which is selected by the Nature.
a1(a1 ∈ A1) and a2(a2 ∈ A2) denote the actions selected by
CAR-TF and CAR-E.&e payoffs of the CAR-TF and CAR-E
are represented as u1(a1, a2, θ) and u2(a1, a2, θ). σ1(· | θ) is
a probability distribution to each type of CAR-TF over
action a1, and σ2(· | a1) is a probability distribution to each
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action a1 over action a2. In addition, when CAR-E updates the
probability of CAR-TF’s type by Bayesian rules, the strategies of
CAR-TF and CAR-E become σ ∗1 (· | θ) and σ2(· | a1),

respectively. Consequently, a perfect Bayesian equilibrium
(PBE) for a signalling game is a strategy profile σ∗ and a
posterior belief μ(· | a1), which satisfy the following equation:

Table 1: Possible strategies in the game.

TF (P)
E (Q)

Aggressive TF Conservative TF
Change lane (C) Wait (W) Change lane (C) Wait (W)

Signalling (S) P11, Q11 P12, Q12 P13, Q13 P14, Q14
Not signalling (NS) P21, Q21 P22, Q22 P23, Q23 P24, Q24

Nature

Aggressive 
CAR-TF (p)

CAR-TF S

NS

C

W

CAR-E

CAR-TF

NS

S

CAR-E

W

W

C

C

W

C

Not 
signalling

Signalling

Payoff function

CAR-TF CAR-E

–Ct 0

0 0

–Ct 0

0 0

Conservative 
CAR-TF (1 – p)

CAR-E

CAR-E

–Ct – FTF
A –FE

A

–FE
A

–Ct – GTF
C GE

C

GE
C

–FTF – RTF
A A

–GTF – RTF
C C

Figure 1: Extended signalling game of lane-changing behaviour.

E

TF TL

L1

D1

D2 D′1

Figure 2: Lane-changing representation in a two-lane scenario.
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P1( 􏼁∀θ, σ ∗1 (·|θ) ∈ argmax
a1

u1 a1, σ
∗
2 , θ( 􏼁,

P2( 􏼁∀a1, σ
∗
2 ·|a1( 􏼁 ∈ argmax

a2
􏽘
θ
μ θ|a1( 􏼁u2 a1, σ

∗
2 , θ( 􏼁,

(B)μ θ|a1( 􏼁 �
p(θ)σ ∗1 a1|θ( 􏼁

􏽘θ′∈Θp θ′( 􏼁σ ∗1 a1
􏼌􏼌􏼌􏼌 θ′􏼐 􏼑

,

if 􏽘

θ′∈Θ

p θ′( 􏼁σ ∗1 a1
􏼌􏼌􏼌􏼌 θ′􏼐 􏼑> 0,

μ ·|a1( 􏼁 is any probability distribution overΘ.

(8)

Note that condition (P1) means that CAR-TF takes into
account the influence of a1 on CAR-E and condition (P2)

means that CAR-E makes the best response to the action of
CAR-TF by knowing the posterior beliefs. Moreover, con-
dition (B) is the application of the Bayesian rule.

According to different actions of players, the PBE of this
game can be divided into three subcategories, namely,
separating equilibrium, pooling equilibrium, and semi-
separating equilibrium. As discussed below, these equilib-
riums are used to derive the full set of game solutions.

A separating equilibrium represents that different types
of CAR-TFs select different actions with the probability of 1,
i.e., actions reveal types definitively. For example, aggressive
drivers always select to send a signal, while conservative
drivers always choose to be silent (i.e., doing nothing). In
this situation, once CAR-TFs take an action, CAR-E can
distinguish its type correctly and make the optimal action.

&ere are two different possible situations: (1) all ag-
gressive drivers send a signal, and all conservative drivers do
nothing; (2) all aggressive drivers do nothing, and all
conservative drivers send a signal.

In the first case, we assume all aggressive drivers send a
signal, and all conservative ones do nothing. Firstly, let us
consider payoffs from CAR-E’s perspective. If CAR-E observes
a signal, it believes the CAR-TF is an aggressive one based on
the assumption. According to the payoff matrix in the game
tree, it costs FA

E (i.e., the payoff is − FA
E ) to change lane, while

that would be 0 in case of waiting decision. Apparently, 0 is
larger than − FA

E ; therefore, it tends towait instead of changing a
lane. On the contrary, if CAR-E does not observe any actions
(i.e., CAR-TF does nothing), it will reckon that the driver is
more conservative. If CAR-E changes lane, the payoff will be
GC

E , which is higher than the payoff of waiting (0).&us, CAR-E
is more likely to change lanes. Consequently, CAR-E’s strategy
can be concluded as below:

C, if CAR − TFNS,

W, if CAR − TF S.
􏼨 (9)

To reach the equilibrium, payoffs of both sides are
necessary to be considered. &erefore, further analysis is
conducted in terms of CAR-TF’s interest. Several situations
can be concluded in Table 2 according to corresponding
branches of the game tree.

In order to meet the assumption made before, a set of
inequality can be derived:

payoff(S | aggressive)> payoff(NS | aggressive),

payoff(S | conservative)< payoff(NS | conservative).
􏼨

(10)

&erefore, the condition of this equilibrium is
G

C
TF + R

C
TF <Ct<F

A
TF + R

A
TF. (11)

&e same procedure can be performed in the second
case.

A pooling equilibrium denotes that different types of
CAR-TFs choose the same action, which makes CAR-Es
unable to update the prior probability. In other words, no
further information is included in the sender’s choice. &e
only thing CAR-E can do is to predict the type according to p

(the original probability).
&ere are two situations: all drivers go for signalling or

do nothing. Under the first circumstance, CAR-E’s payoffs
can be derived as below:

payoffC � − pF
A
E +(1 − p)G

C
E,

payoffW � − p × 0 +(1 − p) × 0 � 0.
(12)

Here, if payoffC > payoffW, then CAR-E will choose to
change a lane. On the contrary, if payoffC < payoffW, then
CAR-E will choose to wait for another chance.

In case that the first condition is matched, the payoffs of
CAR-TF can be summarized in Table 3 based on its interest.

According to the discussion above, a set of inequality
conditions can be derived:

payoffC > payoffW,

payoff(S | aggressive)> payoff(NS | aggressive),

payoff(S | conservative)> payoff(NS | conservative),

⎧⎪⎪⎨

⎪⎪⎩

(13)

here comes the first strategy.

When
− pF

A
E + (1 − p)G

C
E > 0,

R
A
TF >Ct,

R
C
TF >Ct,

⎧⎪⎪⎨

⎪⎪⎩
all CAR-TFs will send a

signal and CAR-E will change lanes.&e remaining branches
can be derived by the same way.

Semiseparating equilibrium is the most complicated
situation.&is means that some types of CAR-TFs randomly
choose actions, and other types of CAR-TFs choose specific
actions. A conservative driver is more likely to yield when a
vehicle in the other lane shows lane-changing intention.
However, he/she may also pretend to be an aggressive driver
in order to protect his/her own interest. Consequently, in
this study, semiseparation equilibrium can be divided into
two categories. One is that a part of aggressive CAR-TFs
choose to send a signal and the rest not, while the con-
servative ones do not take any actions. On the contrary, the
other case is that a part of conservative CAR-TFs chooses to
send a signal and the rest not, while all aggressive drivers
choose to send a signal.
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In the first case, when CAR-E receives a signal, it will
determine CAR-TF is an aggressive type and choose to wait
in order to get the optimal payoff.&e other scenario is more
complicated, when there is no signal, CAR-E will have to
determine the best strategy according to the probability. Let
x (x< 1) be the probability of the signalling action of ag-
gressive drivers, i.e., P(S | aggressive) � x. Let y (y< 1) be
the probability of the lane-changing action of autonomous
vehicles when observing a signal, i.e., P(C | S) � y. &en, the
probability of CAR-E observing nothing is

P(NS) � p × P(NS | aggressive) +(1 − p)

× P(NS | conservative)

� p(1 − x) +(1 − p)

� 1 − px.

(14)

&en,

P(aggressive |NS) �
p(1 − x)

1 − px
,

P(conservative |NS) �
1 − p

1 − px
.

(15)

&erefore, the payoffs of CAR-E under different strat-
egies can be concluded below:

payoffC � P(aggressive |NS) × − F
A
E􏼐 􏼑

+ P(conservative |NS) × G
C
E

�
− p(1 − x) × F

A
E +(1 − p) × G

C
E

1 − px
,

payoffW � P(aggressive |NS) × 0

+ P(conservative |NS) × 0 � 0.

(16)

x can be determined by equation payoffC � payoffW;
thus,

x � 1 − (1 − p) ×
G

C
E

pF
A
E

< 1. (17)

According to CAR-TF’s strategies, its payoffs can be
summarized in Table 4.

Accordingly, y can be determined by aggressive drivers’
payoff equation, payoffS � payoffNS; thus,

y �
Ct

R
A
TF + F

A
TF􏼐 􏼑
< 1. (18)

&e assumption is that all the conservative drivers do not
take any actions; therefore, from their perspective,
payoffS < payoffNS, i.e.,

− Ct< − y G
C
TF + R

C
TF􏼐 􏼑. (19)

In conclusion, when (1 − p) × G
C
E <pF

A
E ,

Ct<R
A
TF + F

A
TF <G

C
TF + R

C
TF,

􏼨 ag-

gressive CAR-TFs choose to send a signal or not, while the
conservative ones do nothing.

According to the analysis presented above, the whole
model solution can be summarized in Table 5.

4. Data

&eNGSIMUS-101 dataset is used to calibrate the proposed
model. &is dataset, which was collected on Hollywood
Freeway, Los Angeles, includes the detailed vehicle trajec-
tories at every 0.1 second. Figure 3 shows the study area of
the NGSIM US-101 dataset.

In order to implement the proposed model, the data
were first cleaned according to the following principles:

(1) Since the model focuses on car’s lane-changing
behaviour, the records of other types of vehicles (i.e.,
motorcycles and heavy vehicles) were removed.

(2) Hollywood Freeway is a five-lane highway with an
auxiliary lane and two ramps (i.e., Lane 6, Lane 7,
and Lane 8). &erefore, records related to these three
lanes, which could be seen as mandatory lane-
changing behaviour, were removed.

(3) Considering vehicles’ lane-changing behaviour is
quite different when the traffic flow is overly con-
gested or in a free-flow situation, records with
spacing headway longer than 30meters or shorter
than 6meters were filtered out [26].

In addition, a driver’s decision time window was em-
pirically considered as 2 seconds [2]; thus, we extract the
dataset based on a 2-second interval.

Moreover, we split the process of lane-changing into
three phases, namely, lane-keeping (LK) decision horizon,
lane-changing (LC) decision horizon, and LC duration. LC
point is determined when the centre of the vehicle passes the
lane boundary. Details can be seen in Figure 4.

In order to simulate lane-changing decision of auton-
omous vehicles, the records of lane-changing and waiting
were selected randomly from the data. Additionally, there
are more lane-keeping cases than lane-changing cases in the
dataset. Too many lane-keeping cases will have an enormous
effect on model calibration and cause a low predictive rate in

Table 2: Payoffs for CAR-TF in the first case of separating
equilibrium.

Type Strategy (CAR-TF, CAR-E) Payoff (CAR-TF)

Aggressive S, W − Ct
NS, C − FA

TF − RA
TF

Conservative S, W − Ct
NS, C − GC

TF − TC
TF

Table 3: Payoffs for CAR-TF in the first condition of pooling
equilibrium.

Type Strategy (CAR-TF, CAR-E) Payoff (CAR-TF)

Aggressive S, C − Ct − FA
TF

NS, C − FA
TF − RA

TF

Conservative S, C − Ct − GC
TF

NS, C − GC
TF − RC

TF
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Table 4: Payoffs for CAR-TF in the first case of semiseparating equilibrium.

Type Strategy (CAR-TF, CAR-E) Payoff (CAR-TF)

Aggressive S, W − Ct
NS, P (C)� y − y(FA

TF + RA
TF)

Conservative S, W − Ct
NS, P (C)� y − y(GC

TF + RC
TF)

Table 5: Solutions in three equilibriums.

Type
Strategy

Condition&e sender (CAR-TF)
&e receiver (CAR-E)

Aggressive Conservative
Separating
equilibrium

S NS If S, then W; if NS, then C GC
TF + RC

TF <Ct<FA
TF + RA

TF
NS S If S, then C; if NS, then W Not available

Pooling
equilibrium

NS NS If NS, then C/W C, whenpFA
E < (1 − p)GC

E, RA
TF <Ct, andRC

TF <Ct
W, whenpFA

E > (1 − p)GC
E

S S If S, then C pFA
E < (1 − p)GC

E, RA
TF >Ct, andRC

TF >Ct

Semiseparating
equilibrium

S P(S) � x

Update information using p
and x.

If S, then P(C |NS) � y; if NS,
then C

pFA
E < (1 − p)GC

E, yFA
TF <FA

TF + RA
TF, andRC

TF >Ct,
wherex � pFA

E /(1 − p)GC
E andy � (GC

TF + RC
TF − Ct)/GC

TF.

P(S) � x NS

Update information using p
and x.

If NS, then P(C |NS) � y

Update information; if S, then
W

pFA
E > (1 − p)GC

E, y(GC
TF + RC

TF)>Ct, andRA
TF + FA

TF >Ct,
wherex � 1 − ((1 − p)GC

E/pFA
E ) andy � Ct/(RA

TF + FA
TF).

S� signalling; NS�not signalling; C� changing lane; W�waiting.

Ventura blvd.
on-ramp

Vehicle trajectory
study area

Cahuenga blvd.
off-ramp

Figure 3: &e study area of the NGSIM US-101 dataset [25].
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lane-changing behaviour. &erefore, it is important to de-
termine the ratio between the records of lane-changing and
lane-keeping. &e longer the LK decision horizon is, the
more the LK cases are. A sensitivity analysis therefore is
performed to determine the LK decision horizon. As a result,
this study takes 2 seconds as the LK decision horizon, i.e., the
ratio between the two cases are equal.

&e strategies of CAR-E (i.e., waiting or changing) can be
determined by the existence of lane-changing point. How-
ever, it is a challenge to extract the strategies of CAR-TF
from vehicle trajectories, i.e., signalling or not.&erefore, the
steady-state regime is adopted to identify CAR-TF’s action
based on vehicles’ acceleration status in the sense that a
steady-state regime is achieved when the acceleration or
deceleration rate is lower than 0.05 g (“g” is the gravitational
acceleration) [27]. When the acceleration or deceleration is
smaller than 0.05 g, CAR-TF’s strategy can be seen as “not
signalling”; otherwise it is treated as “signalling.”

Due to the limitation of trajectory data, it is impossible to
find out the exact time and position when a LC decision is
made. However, it can be derived from LC duration since the
LC point is easy to be determined. LC duration is normally
defined as the time taken by completing LC manoeuvre.
Many researches have been done to figure out the LC du-
ration (Table 6). In this study, 4s is adopted, which is used to
find out the endpoint of LC decision. &en, the start point
for LC decision can be determined according to the 2-second
decision time window.

Finally, a total of 741 observations were selected, in-
cluding 391 lane-changing records and 350 lane-keeping
records. Table 7 shows the distribution of extracted
strategies.

5. Model Calibration

&e calibration of the proposed model is implemented in the
way that we estimate the parameters in order to minimize
the difference between observed decision in the NGSIM
dataset and the decision predicted by the proposed model.
&is paper adopts the calibration framework established by
Liu et al. [35], which was also applied by Ali et al. [2] and
Kang and Rakha [36].

As shown in Figure 5, the whole problem is divided into
two levels: upper and lower level. &e upper level is used to
narrow the difference between predicted decisions and
observed decision, while the lower level aims to find a full set
of equilibrium for this game. Before programming, decisions
need to be extracted from the original observed data. Let k be
the iteration index. At the first stage, a set of parameters are
initialized. By applying these parameters into payoff func-
tions defined before, strategies can be found for each vehicle
using the PBE method. &en, we calculate the difference
between predicted strategies and the actual decisions in
upper level. &ese steps are iterated and do not stop until the
convergence is reached.

&e function of the upper problem of this programming
is defined as the difference between the observed data and
predicted data as below:

min􏽘
n

i�1
y
∗
i − yi( 􏼁

2
, (20)

where n is the number of observations; i is the index of
records; and y∗i and yi are the predicted action and observed
action, respectively.

&e genetic algorithm is used in the upper level problem
to minimize the objective function since it is not limited by
the form of functions [37].

On the contrary, the lower level problem is solved
according to the perfect Bayesian equilibrium. In order to
seek the entire solution set for the Nash equilibrium, tools
like Gambit [38] and the Nashpy [39] package in Python [40]
have been developed to find the equilibrium of a simple
game. However, signalling game is more complicated be-
cause of its dynamic feature with incomplete information.
&erefore, instead of adopting these packages directly, we
explore three different equilibriums (i.e., separating equi-
librium, pooling equilibrium, and semiseparating equilib-
rium) to seek the optimal solution in the level problem.

Two indicators were calculated to measure model pre-
dictability, namely, recall (also called sensitivity) and F1 score
[41].&ey are widely used in the classificationmodel inmachine
learning and can be derived from equations (21) and (22):

recall �
TP

TP + FN
, (21)

F1 Score � 2 ×
TP2

(TP + FP) ×(TP + FN) ×((TP/(TP + FP)) +(TP/(TP + FN)))
, (22)

E E E E E E

E

LC decision LC durationLK decision

LC point

Figure 4: Lane-changing process.
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where TP denotes the true positive cases, i.e., the observation
and the predicted action are both positive; FP denotes the
false positive cases, i.e., the observation is negative, while the
predicted action is positive; FN denotes the false negative
cases, i.e., the observation is positive, while the predicted
action is negative.

Using 70% of the data to calibrate the model and the
remaining in validation, Table 8 summarizes the results of
parameters. We can see from the table that c1 is lower than
c2, which means that conservative drivers are more likely to
regret than aggressive drivers. &e negative ε indicates that
distraction exists when CAR-TFs send a signal. Also, it can

Table 6: Summary of lane-changing duration.

Source
Duration

Mean (s) Range (s)
Olsen et al. [28] 6.28 —
Toledo and Zohar [29] 4.6 1.0 to 13.3
Gurupackiam and Jones [30] 4.19 —
Cao et al. [31] 2.54 1.0 to 6.8
Sajjad et al. [32] 4.3 —
Yang et al. [33] 3.75/4.22 —
Ali et al. [34] 5.11 —

Table 7: Distribution of extracted strategies.

No. of cases CAR-E
Changing lane (C) Waiting (W)

CAR-TF Signalling (S) 194 171
Not signalling (NS) 197 179

k = 0
Initialize parameters

E’s payoff function TF’s payoff function

Parameter estimation: Bi level programming

1) Upper-level Programming

2) Lower-level Programming
Perfect Bayesian Equilibrium

Convergence? k = k + 1
N

para.k

Observation data

Decision extracted

para.∗ = para.k

Y

min
n

i = 1
(yi – yi)2∗∑

Figure 5: Calibraion framework.
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be concluded that conservative drivers value distance more
than aggressive drivers since f1

TF is lower than g1
TF.

6. Simulation

Based on the calibrated parameters presented above, sim-
ulation experiments are performed. For the purpose of
compassion, a traditional space-based LC model which only
considers gaps between vehicles is also applied. &e simu-
lation framework is presented in Figure 6. It can be divided
into five parts, lanes initializing, vehicles input and output,
manoeuvre controlling, information updating, and perfor-
mance evaluation.

&e length of the lane is set to 10 kilometres. It is as-
sumed that a vehicle is randomly distributed in two lanes at
the initial time (initializing lanes). And there are three pairs
of ramps on roads, where vehicles enter or exit the road
randomly every second (vehicle input and output). In ad-
dition, the information of vehicles, such as position, speed,
and acceleration, is updated every 0.1 second in the simu-
lation (information updating). &e car-following part is
designed according to equation (23) [42]:

vi �
vi, D≥Ds,

min vi+i, sp( 􏼁, D<Ds,
􏼨 (23)

where sp is calculated by sp � (− φ +
����������
φ2 + (4cDs)

􏽰
)/2c; vi

and vi+1 are defined as the instantaneous speed of the fol-
lowing vehicle and the leading vehicle, respectively; D is the
distance between two vehicles; Ds denotes the safety dis-
tance; φ � 0.75s is the reaction time; and c � 0.0070104s2/m
is the reciprocal of twice the maximum average deceleration

of the vehicle. A detailed parameter setting is presented in
Table 9. And an example of the simulation scenario is
presented in Figure 7 (modified from Anushagj [43]).

7. Results and Discussion

&is section evaluates the model performance using effi-
ciency and safety indicators, which can be presented by the
successful rate of LC for the first time (LC rate) and the
reciprocal of time to collision (TTC) [44].

7.1. Results of LC Rate. LC rate means that drivers can finish
LC successfully after the first attempt when there is a need to
change lanes. Figure 8 presents the LC rates of the proposed
model and the space-based model under different traffic flow
densities. One can see that, with the increasing density, the
space headway between vehicles decreases. &erefore, LC
rates of the two models are both in the trend of declining.
However, the LC rates of signalling game-based model are
higher than those of the spaced-basedmodel over the period,
which means signalling game-based model is more efficient.
A possible scenario is when the space headway between
autonomous vehicles and regular vehicles is not big enough,
a space-based controller chooses to wait. On the contrary,
the signalling game-based controller analyses and interacts
with the other, taking the best action, i.e., changing lanes.
&is helps autonomous vehicles understand the traffic in-
formation and make a more reasonable strategy instead of
being overly cautious, i.e., waiting for bigger gaps.

Note that the rates represented are the results of the first
attempt of a vehicle to change lanes at the very first time

Table 8: Results of calibration and validation.

Parameter Value Parameter Value

Calibration

c1 0.170 g1
TF 1.165

c2 0.363 g2
TF − 1.584

ε − 1.198 g1
E 0.103

f1
TF 0.406 g2

E 1.789
f1

E 0.144 p 0.127

Validation Recall 0.590
F1 Score 0.632

Initialize
lanes

Input
vehicles

Output
vehicles

Update
information

Car-following
control

Lane-changing
control

Update
information

Evaluate
performance 

Figure 6: Framework of simulation.
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when the lane-changing desire emerges. In reality, it is
impossible that every driver can always change lane suc-
cessfully as soon as he or she wants to because there still
needs time to find a proper position to cut in. &erefore, it is
comprehensible that the rates of two models are only 20% or
so. In conclusion, the model established is superior to the
space-based model in terms of efficiency.

7.2. Results of TTC− 1. TTC refers to the time that a target
vehicle can use by adjusting its own speed to avoid collision
with the preceding vehicle. Its reciprocal can be calculated by
using the below equation:

TTC− 1
�

vF − vL

D
, (24)

Table 9: Simulation parameters.

Parameter Value
Road map Two lanes, one direction, three pairs of ramps
Road length 10 kilometres
Safety distance 10 meters
Speed [22.35, 31.29]m/s
Acceleration [0, ±5]m/s2

Arrival/departure rate 0.611
Traffic density 20–55 veh/ln/km
p 0.2

3m

Lane2 Lane1

Entry
Exit

x

y

0

2500
3000

5500
6000

8000
8500

10000

2500
3000

Figure 7: Simulation scenario.

12 Journal of Advanced Transportation



where vF is the instantaneous speed of the following vehicle;
vL is the instantaneous speed of the leading vehicle; and D is
the distance between the two vehicles.

Obviously, when the reciprocal of TTC is negative, the
speed of the following vehicle is lower than that of the
leading vehicle, so there is no danger of collision. Con-
versely, when the reciprocal of the collision time is positive
(i.e., the speed of the following vehicle is greater than that of
the leading vehicle), the risk of collision increases as the

value increases. Figure 9 shows the results under different
densities of traffic flow. &e reciprocal of TTC of the two
lanes stays relatively steady as density changes. &us, the
performance of signalling the game-based model is almost as
good as the spaced-based model in terms of safety.

In order to examine the reliability of the above findings,
we further compare the results of TTC− 1 of the two lanes
under different scenarios of the decision-making controllers.
&e results are shown in Table 10. It can be seen that the 85th
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percentile and the 15th percentile of TTC− 1 of the basic
space-based model are slightly higher than those of the
signalling game-based model, indicating that the proposed
model results in a relatively low value of TTC− 1. In another
word, the proposedmodel not only has higher efficiency (i.e.,
higher lane-changing rate) but also provides a relatively safer
traffic condition.

To evaluate the performance of the proposed model in its
stability, themodel was run under different scenarios regarding
the varied ratios of aggressive drivers (p) and traffic flow
densities. Figure 10 and Table 11 show the results. It can be
found that TTC− 1 values stay at a stable level under different
scenarios, and the LC rate of the proposedmodel are in general
higher than that of the space-based model. &erefore, we can
conclude that the performance of the signalling game-based
model is stable under different values of p.

8. Conclusions

&emain emphasis of this paper is to establish an integrated
lane-changing model for autonomous vehicles under mixed
traffic flow condition by applying the signalling game ap-
proach. Several simulations were performed to evaluate the
performance of the proposed model. &e results show that
the proposed model has higher lane-changing rates than the
space-based model and remains almost a similar level of
TTC− 1 value at the same time under different densities.
&erefore, we conclude that the proposed model improves
the efficiency of lane-changing without decreasing the safety.
Also, different ratios of the two types of drivers (conservative

Table 10: TTC− 1 under different scenarios of the decision-making
controllers.

Density
(veh/ln) Indicator

TTC− 1 (1/s)

Space-based Signalling
game-based

Lane 1 Lane 2 Lane 1 Lane 2

200

Mean − 0.023 − 0.034 0.013 − 0.024
85th

percentile 0.134 0.125 0.136 0.129

15th

percentile − 0.170 − 0.179 − 0.156 − 0.170

250

Mean − 0.031 − 0.022 0.033 − 0.030
85th

percentile 0.131 0.138 0.130 0.138

15th

percentile − 0.174 − 0.171 − 0.175 − 0.191

300

Mean − 0.026 − 0.031 − 0.019 − 0.052
85th

percentile 0.144 0.155 0.129 0.132

15th

percentile − 0.185 − 0.187 − 0.200 − 0.187

350

Mean − 0.024 − 0.043 − 0.034 − 0.216
85th

percentile 0.153 0.140 0.127 0.124

15th

percentile − 0.186 − 0.201 − 0.189 − 0.204

400

Mean − 0.062 − 0.044 − 0.092 − 0.022
85th

percentile 0.138 0.138 0.114 0.126

15th

percentile − 0.196 − 0.186 − 0.200 − 0.193

450

Mean − 0.048 − 0.035 − 0.049 − 0.079
85th

percentile 0.125 0.126 0.131 0.122

15th

percentile − 0.188 − 0.180 − 0.211 − 0.201

500

Mean − 0.036 − 0.047 − 0.028 − 0.054
85th

percentile 0.122 0.118 0.088 0.117

15th

percentile − 0.186 − 0.189 − 0.188 − 0.195

550

Mean − 0.047 − 0.043 0.002 − 0.328
85th

percentile 0.118 0.118 0.108 0.105

15th

percentile − 0.173 − 0.188 − 0.205 − 0.196
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Figure 10: Average of TTC− 1 under different scenarios.

Table 11: Lane-changing rate under different scenarios (road traffic
density and p).

Density (veh/ln) p
LC rate (%)

Signalling game-based Space-based

200

0.1 27.9 18.0
0.3 28.4 17.2
0.5 25.8 18.1
0.7 22.9 16.0
0.9 19.9 16.9

300

0.1 24.1 13.0
0.3 26.3 12.3
0.5 23.8 12.2
0.7 21.8 11.9
0.9 18.6 12.6

400

0.1 23.3 8.5
0.3 24.7 9.5
0.5 23.6 9.7
0.7 19.6 8.6
0.9 17.6 9.4

500

0.1 20.8 6.5
0.3 23.4 6.4
0.5 21.4 6.7
0.7 20.7 6.5
0.9 18.7 6.6
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or aggressive) are set to test the sensitivity of the model. One
can see that the signal game-based model is stable to the
varying ratios, which means that it can be used in different
areas with different composition of drivers.

In spite that the proposal model outperforms the space-
based model, there is still room to further improve the
model. One possibility is to relax the assumption that only
two types of drivers exist. &is will unavoidably increase the
complexity of the model. In addition, the data of mixed
traffic flow involving autonomous vehicles do not exist in the
NGSIM dataset, neither in many other available datasets.
However, since autonomous vehicles are trained to imitate
human behaviour, using traditional data to calibrate au-
tonomous vehicles should not induce great difference.
However, this should not rule out the possibility to recali-
brate the proposed model when the data of connected ve-
hicles become available.

Nevertheless, the proposed model shows its potential to
be applied in complex situations, such as modelling the
interactions and conflicts between connected vehicles with
more driving styles and between vehicles with insufficient
information of surroundings. When dealing with these
cases, the scope of the game needs to be expanded further,
e.g., add the behaviour of leading vehicles into the model,
quantify the impacts of different driving behaviours on the
process of lane-changing decision, and refine the payoff
functions related to human psychology. It will also be in-
teresting to consider the impact of the weather conditions
and the appearance of road obstacles on the proposedmodel.
We consider these aspects as our future work.
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(e introduction of automated vehicles is expected to affect traffic performance. Microscopic traffic simulation offers good
possibilities to investigate the potential effects of the introduction of automated vehicles. However, current microscopic traffic
simulation models are designed for modelling human-driven vehicles. (us, modelling the behaviour of automated vehicles
requires further development. (ere are several possible ways to extend the models, but independent of approach a large problem
is that the information available on how automated vehicles will behave is limited to today’s partly automated vehicles. How future
generations of automated vehicles will behave will be unknown for some time. (ere are also large uncertainties related to what
automation functions are technically feasible, allowed, and actually activated by the users, for different road environments and at
different stages of the transition from 0 to 100% of automated vehicles. (is article presents an approach for handling several of
these uncertainties by introducing conceptual descriptions of four different types of driving behaviour of automated vehicles
(Rail-safe, Cautious, Normal, and All-knowing) and presents how these driving logics can be implemented in a commonly used
traffic simulation program. (e driving logics are also linked to assumptions on which logic that could operate in which en-
vironment at which part of the transition period. Simulation results for four different types of road facilities are also presented to
illustrate potential effects on traffic performance of the driving logics. (e simulation results show large variations in throughput,
from large decreases to large increases, depending on driving logic and penetration rate.

1. Introduction

(e introduction of automated vehicles (AVs) is expected to
affect traffic performance. Both urban and national road
authorities are interested in how the introduction should be
handled and what measures they should or should not apply
to avoid negative effects and boost positive effects of the
introduction of AVs. Investigations on how road design and
traffic control measures affect traffic performance are
commonly based on results from traffic models.

Microscopic traffic simulation models are state-of-the-
art tools in transport planning. By simulating the move-
ments of every vehicle, the models provide indicators (travel
time, queue length, vehicle throughput, etc.) describing the
performance of road facilities. Traffic simulation models are
typically applied for designing, testing, and analysing road
network sections with their traffic control facilities. (ey
extend traditional highway capacity manuals (HCM) by
providing methods for capacity analysis with varying de-
mand, demand-actuated traffic control facilities, and

Hindawi
Journal of Advanced Transportation
Volume 2020, Article ID 8850591, 17 pages
https://doi.org/10.1155/2020/8850591

mailto:johan.olstam@vti.se
https://orcid.org/0000-0002-0336-6943
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/8850591


coordinated signal control. Current microscopic traffic
simulation models are designed for modelling vehicles with
no automation. Hence, modelling the behaviour of AVs
requires model extensions. (ese extended models also need
to be calibrated and validated which is a problem since the
systems to a large extent do not exist yet.

(ere are several possible approaches to incorporate the
driving behaviour of AVs into traffic simulation models.
However, there is limited information available on how AVs
will behave. (e information available so far is from tests
with today’s partly automated vehicles, mainly from test
tracks. How future generations of AVs will behave will be
unknown for some time.(us, investigations of future traffic
conditions with future versions of AVs and with higher
penetration rates of AVs in general require consistent as-
sumptions on how the behaviour of AVs will evolve.

Traffic simulation investigations of AVs commonly as-
sume one type of automated vehicle and that all AVs behave
the same. Furthermore, several traffic simulation investi-
gations of AVs investigate vehicles with only one automation
function, such as adaptive cruise control (ACC) or con-
nected/cooperative adaptive cruise control (CACC). In-
vestigations of one automation function at the time give
valuable insights but limited knowledge on how the intro-
duction of automated vehicles might affect the traffic system
during the transition period. As discussed in Calvert et al.
[1], the transition period from no to 100% AVs will most
probably be long and it will likely include mixes of con-
ventional (human-driven) vehicles and AVs with different
levels of automation and different generations of automation
functions.

Traffic simulation investigation of automated vehicles
for estimation of effects during the transition period needs
to apply a structured and systematic approach for handling
the uncertainties related to how different generations of
automated vehicles will behave and which mixes of dif-
ferent generations of automated vehicles that are likely to
coexist at different stages of the transition period. (e aim
of this article is to present an approach for handling un-
certainties related to the behaviour and composition of
vehicle fleets with varying levels of automation in traffic
simulation experiments for the transition period from
mainly human-driven vehicles to 100% fully automated
vehicles. (is aim is approached by considering a discrete
number of moments during the transition period, in ad-
dition to the commonly studied case of full automation and
no automation.

(is article is structured as follows. Section 2 gives an
overview of traffic simulationmodels with respect to how the
automated vehicles are modelled and how the transition
period is handled in previous studies. (e approach we
suggest for the handling of different types of automated
vehicles with different driving logics is presented in Section
3. Section 4 presents how these driving logics can be
implemented in a microscopic traffic simulation model and
Section 5 presents an example on how these driving logics
affect traffic performance for four common road facility
types. Section 6 ends the article with conclusions and needs
for future research.

2. Approaches for Traffic Simulation including
Automated Vehicles

Simulation of a traffic system that includes automated ve-
hicles obviously requires modelling of the driving behaviour
of the automated vehicles. (ere are several approaches for
how the driving logics of automated vehicles can be in-
corporated in traffic simulation models (see Section 2.1).
Furthermore, the transition from today’s traffic situation
with only a small fraction of partially automated vehicles to a
future situation with a fleet consisting of exclusively fully
automated vehicles will imply an extended time period with
a range of mixes of vehicles with different levels of auto-
mation. Hence, traffic simulation experiments of the tran-
sition period need to consider a range of different automated
vehicle behaviours. An overview of approaches for how the
transition period has been handled in previously conducted
simulation experiments is presented in Section 2.2.

2.1. Approaches for Modelling of the Driving Behaviour of
Automated Vehicles. To the best of our knowledge, three
approaches for how to include behaviour of driver assistance
systems and automated vehicle functions are reported in the
literature:

(i) Simulation of automated driving behaviour by
adjustment of behavioural model parameters in the
traffic simulation model

(ii) Replacement of behavioural models in the traffic
simulation model with automated vehicle driving
behaviour models

(iii) Extension of the driving behavioural models with
“nanoscopic” modelling of automated vehicles,
including simulation of sensors, vehicle dynamics,
and driving behaviours

One of the simplest andmost frequently usedmethods to
include automated vehicles in traffic simulation models is to
adjust parameters in an existing behaviour model for con-
ventional vehicles to represent the driving behaviour of
automated vehicles. (is can, for example, be adjusting
reaction time, gap-related parameters, acceleration param-
eters, and speed limit acceptance.(ere are traffic simulation
investigations [2–13] that utilize this approach to simulate
ACC/CACC equipped vehicles, or vehicles assumed to be
highly automated in a specific road environment. Some
investigations focus on one-lane roads without on/off-ramps
and without overtaking possibilities (e.g., [14]), which, due
to the fact that there is no lane-changing, is equivalent to
simulation of just the ACC part of the automated vehicle
functionality. (e drawback of this approach is that the
behavioural models in the traffic simulation model were
developed to mimic human driver behaviour and it is un-
clear whether the driving behaviours of automated vehicles
can be modelled by only adapting the parameters or if
fundamental changes of the drivingmodels are required.(e
advantage is that the unknown AV behaviour easily can be
specified in terms of changes in relation to human driver
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behaviour, e.g., shorter reaction times and changed desired
speed distribution.

(e second approach is to develop new submodels for
the driving behaviour of the automated vehicles [15]. (e
most common approach is to replace the car-following
model used for simulation of conventional vehicles with a
newmodel describing the longitudinal control by some ACC
or CACC logic, while the existing car-following model is still
used for simulation of the conventional vehicles in the mixed
flow.

(e third approach extends the common vehicle-driver
unit approach used in most microscopic traffic simulation
models to a “nanoscopic” approach. Here, nanoscopic refers
tomore detailedmodelling of the vehicle, whichmay include
modelling of sensors, engine, gearbox, and vehicle dynamics.
(is approach can, for example, be used to analyse the
dynamic characteristics and control algorithms of vehicles
(see, e.g., Bahram et al. [15]). (e practical solution for these
kinds of simulations is commonly some kind of cosimula-
tion in which an AV or AV vehicle simulation model is
connected to a traffic simulation model using an application
program interface. (is approach has, for example, been
used by automotive industry researches to support the ve-
hicle simulation with a more realistic description of the
traffic surroundings (see, e.g., Tapani et al. [6]). Other ex-
amples where traffic simulation has been combined with
more detailed simulation models of vehicle dynamics, en-
gine, and support systems, are in [16–19].

2.2. Approaches for Simulation of a Mix of Automated and
Manual Driven Vehicles. Even though simulation investi-
gations of platoons of ACC or CACC are relevant and
provide important insights on platoon stability (see, e.g.,
Bose and Ioannou [20], Milanés and Shladover [21], or Xiao
et al. [22]), these investigations give limited knowledge on
how the introduction of automated vehicles might affect the
traffic system during the transition period and for common
road facilities.

Several studies aim to investigate how AVs affect traffic
performance, but in principle the analysis is limited to how
the longitudinal control (e.g., ACC or CACC) affects the
traffic performance (see, e.g., Bierstedt et al. [4] and Van
Arem et al. [23]). In some cases, also the speed limit ac-
ceptance is considered, as in Calvert et al. [1]. In addition to
these AV/ACC investigations, there are several simulation
investigations focusing purely on the effects of ACC
[9, 21, 24–31], as well as investigations on effects of some
kind of CACC [11, 16, 21, 32–34].

It is rather common that traffic simulation investigations
of AVs focus on simulations of separate AV functions such
as ACC, CACC, and lane keeping assistant (LKA). However,
since AVs will be more than a vehicle with an ACC, several
investigations focus on traffic effects of AVs with different
assumptions of speed limit acceptance and gap acceptance in
addition to the longitudinal control. Calvert et al. [1], for
example, conduct simulations of vehicles with ACC and
LKA, while Aria et al. [2] and Atkins [3] make adjustments
to the car-following and lane-changing-related parameters

in Vissim to reflect expected AV behaviour based on
statements in the literature. Another example is Olia et al.
[33] which includes modelling of both AVs and cooperative
AVs by extending a car-following model, with detection
range and desired spacing, and by introducing a cooperative
merging model.

In addition to modelling of the driving behaviours of
AVs, it may for some applications also be important to
consider differences in perception between conventional
vehicles and AVs. As mentioned in Section 2.1, nanoscopic
modelling or cosimulation of vehicle and AV technology
and traffic simulation are two ways to include sensor ca-
pabilities and the vehicles perception of the surroundings.
However, it is also possible to capture some parts of the
potential differences in perception by adjusting parameters,
such as look-ahead distance and number of vehicles con-
sidered in car-following or lane-changing. Such approaches
for taking the sensor range into account are, for example,
used in Talebpour and Mahmassani [16], Aria et al. [2], and
Atkins [3].

(ere are few investigations that address the issue that
different types of automated vehicles will exist and that the
capabilities of the AVs and their driving behaviour will
evolve during the transition period. Calvert et al. [1] present
estimations of how penetration rates of ACC, LKA, high
automation, full automation, and vehicle cooperation might
evolve during the transition period. (e estimations are
based on a wide range of various predictions from industry,
academia, and authorities. (e estimations are used to il-
lustrate that the transition period will be quite long and
include a mix of different types of automated vehicles.
However, it does not seem like the simulations conducted
and presented in Calvert et al. [1] investigate scenarios with
different mixes of automated vehicles but only investigate
different penetration levels of ACC+LKA equipped vehi-
cles. Instead, the variation in AV behaviour is modelled by
the distribution of the model parameters of the AVs, as-
suming the same distribution in parameters independently
of the penetration rate. Variations in AV behaviour are also
addressed in Atkins [3], which considers nine different AV
capability levels ranging from cautious to assertive. How-
ever, no mix of capabilities is considered in the conducted
simulation experiments. (e experiments are investigating
the traffic effects of penetration levels between 0 and 100%
for each capability level separately. In the Analysis/Mod-
elling/Simulation (AMS) Framework for Connected and
Automated Vehicle Systems in the USA [35], the plan is to
use four vehicle categories: manual nonconnected, manual
connected, automated nonconnected, and automated con-
nected. Similar simulation experimental designs of mixed
traffic consisting of manual human-driven vehicles, auto-
mated nonconnected, and automated connected vehicles are
presented in Mahmassani [36] and Mattas et al. [37].
However, both the planned investigations in Mahmassani
et al. [35] and simulations presented in Mahmassani [36]
and Mattas et al. [37] seem to assume that the driving be-
haviours of the two different versions of automated vehicles
will stay the same independently of the penetration level.
(is indirect assumption that there is no correlation between
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the technological development of AVs and the penetration
rate seems to be made in most traffic simulation investi-
gations described in the literature.

Another approach is to consider the effect of AV-human
driver interaction in traffic flow simulation with the in-
corporation of more sophisticated human factors in
mathematical models for driving behaviour. van Lint and
Calvert [38] and Calvert and van Arem [39] proposed an
improved simulation approach for the interactions between
AVs and their drivers, and interactions with other human
drivers. (e framework especially considered the transition
of control (ToC) as an important aspect of vehicle-driver
interaction for the simulation of automated vehicles. More
research is however needed in regard to human factors in
driving and vehicle automation to refine the framework.

Do et al. [40] present a literature review of simulation-
based investigations of connected and automated vehicles.
Most of the studied articles simulate ACC or CACC systems,
and for the ones simulating AVs or CAVs, the authors
conclude (partly based on the conclusions in Milakis et al.
[41]) that the model parameters are not calibrated based on
real field data due to that AVs of level 3 or higher are still
immature. Furthermore, Do et al. [40] conclude that the
different studies use their own assumptions for the capa-
bilities of the automated vehicles which can lead to in-
consistencies in conclusions. Hence, “standardized driving
characteristics of intelligent vehicles are necessary for future
research studies as most studies use different assumptions on
the key features of intelligent vehicles” and “the impact
analysis of intelligent vehicles is still in a preliminary stage
involving many uncertainties” [40].

3. Suggested Approach for How to Represent
Different Levels of Automation

(ere are several uncertainties regarding the introduction of
AVs. (ere are, for example, large uncertainties on how the
mix of vehicles with different levels of automation will evolve
during the transition period from 0 to 100% automated
vehicles. One way of taking these uncertainties into account
is to conduct scenario-based analysis.

To investigate the range of conditions that are likely to
occur during the gradual introduction of AVs, we define three
stages of coexistence: the introductory, established, and
prevalent stages. (ese stages can be complemented by the
stages of no automation and full automation. (e use of three
stages enables limitation of the number of scenarios, while still
providing insight into the whole range of the transition period
of introduction of AVs.(e stages are not defined in terms of
specific number of years in the future, but rather by the level
of automation in a specific case study. (e exact nature of the
stages may vary significantly between different road facilities,
and all three stages may not be relevant for all road facilities
and case studies. Also, depending on many factors, including
technological development and adoption rates, and changes
to the legal framework, the stages may have vastly differing
durations. Hence, defining the stages in terms of time is not
only highly speculative but also problematic since the

durations of the stages might vary. At a conceptual level, the
stages are as follows:

(i) Introductory: automated driving has been intro-
duced, but most vehicles are conventional cars.
Automated driving is in general significantly con-
strained by limitations (real or perceived) in the
technology.

(ii) Established: automated driving has been established
as an important mode in some areas. Conventional
driving still dominates in some road environments
due to limitations (real or perceived) in the
technology.

(iii) Prevalent: automated driving is the norm, but
conventional driving is still present.

(e descriptions of the stages above are not quantitative
definitions, but rather qualitative descriptions. (e quan-
titative definition of each stage is given by the penetration
rates of the various AV classes defined below. When ap-
plying the suggested approach for analysing a specific case,
relevant uncertainty factors, such as penetration rates and
AV mixes, need to be quantified for each stage based on
assumptions on the evolution and deployment of AVs for
the area of study with respect to the road environment and
driving context. (e assumptions will be highly uncertain,
especially for the later stages. Hence, several versions of each
stage with different combinations of penetration rates and
AV mixes need to be evaluated in order to obtain a range of
simulation results for each stage to illustrate the uncertainty
in traffic impacts during the different stages of the transition
period. (e result ranges may also be used to estimate at
what stage one can expect significant benefits from the
introduction of AVs.

In addition to handle the penetration rates of automated
vehicles during the different stages of the transition period,
there is a need to handle the variety of automated vehicles
with different levels of automation. One possibility would be
to use the SAE (SAE International 2018) levels, but they
focus on to what extent the vehicle is driving by itself, where
it can drive itself, and who is responsible for the driving. For
example, SAE levels 1 and 2 relate to driver support systems
that assist in the dynamic driving task, but the driver is
responsible for the driving. At level 3, an automation driving
system (ADS) performs the entire dynamic driving task but
can only operate in some limited operational design domain
(ODD) and the driver is responsible for the driving. Level 4
is an extension of level 3 in which the ADS is responsible for
the driving. (e focus of this article is automated vehicles
with level 4 capabilities for some ODDs. However, the SAE
levels do not distinguish how the driving behaviour varies
between different levels or within a level. (erefore, we
suggest that the level of automation is specified by the
following two concepts:

(i) AV class (Basic AV, Intermediate AV, and Advanced
AV)

(ii) Driving logic (Rail-safe, Cautious, Normal, and All-
knowing) for different road environments
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3.1.AVClasses. AnAV class is a high-level description of the
behaviour and capabilities of the vehicles. We assume that
the main priority at each class is safety and that difference
between the classes lies in the operational design domain
(ODD) and how “offensively” the vehicles can handle dif-
ferent road environments and traffic contexts. We think that
at least three classes are needed and suggest the following
classes as a starting point:

(i) Basic AV: the first type of AVs with SAE level 4
capabilities only for one-directional traffic envi-
ronments with physical separation with active
modes. (e behaviour is in general quite cautious
and risk minimizing.

(ii) Intermediate AV: AVs with level 4 capabilities in
some road environments and driving contexts. (e
behaviour at more complex road environments and
driving contexts is still cautious and riskminimizing
while the behaviour at less complex road environ-
ments and driving contexts can be less cautious and
still be safe.

(iii) Advanced AV: AVs with level 4 capabilities in most
road environments and driving contexts. (e ad-
vanced AVs can drive more “offensively” but still
safe in most road environments and driving con-
texts but still need to apply a more cautious be-
haviour in complex road environments and driving
contexts.

3.2. Driving Logics. While an individual vehicle always be-
longs to the same AV class, its behaviour changes depending
on the infrastructure and traffic conditions; structured
environments with physical separation to other modes
and directions of travel require less caution than complex
environments with multidirectional interactions. (at is,
a given vehicle can drive more offensively—keep shorter
following distance and accept smaller gaps—in highly
structured environments like motorways, compared to
less structured environments like urban streets or shared
spaces. (us, to specify the driving behaviour of a vehicle
of a specific AV class, we need to specify how it behaves at
each type of road environment it may encounter. (is
environment dependence of the behaviour could be
specified taking into account details of the local condi-
tions of the specific road link, but that would be pro-
hibitively complex and would impede both model
implementation and generalizations of the results. (us,
we propose using a small number of AV driving behav-
iours, called driving logics, paired with a small number of
road types, to specify the environment-dependent be-
haviour of each AV class.

A basic assumption for all of the driving logics is that
automation will lead to a shift in legal responsibility in case
of accidents, from the driver to the manufacturer of the
vehicle. Since this will lead to an accumulation of respon-
sibility to a relatively small number of developers or cor-
porate executives that will be legally responsible for all
accidents of a given vehicle model, there will be strong

incentives to minimize the number of accidents that can be
seen as caused by the AV from a legal perspective. (us, all
automated vehicles are assumed to strictly follow the road
code, and the user cannot, for example, set the desired speed
above the legal limit.

(e driving logics are given purely functional definitions,
that is, the definitions specify the functionality of the vehicles
without reference towhat hardware or software that enables the
functionality. (is is an important simplification that allows
specifying archetypal behaviours without differentiating based
on speculations regarding the technology used to achieve the
behaviour. We propose four driving logics: the first two cor-
respond approximately to driving behaviour that have already
been implemented in prototype AVs, while the remaining two
correspond to possible future milestone capabilities of auto-
mated vehicles. We propose the following driving logics:

(i) Rail-safe: the vehicle follows a predefined path for
the whole trip and emergency brakes if anything is
on the collision course and slows down every time
its sensors can have blind angles to avoid surprises.
(is driving logic is not dependent on communi-
cation or cooperation with other vehicles or the
infrastructure.

(ii) Cautious: calculates gaps accurately and only
merges when gaps are acceptable, and as the Rail-
safe logic it slows down due to sensor blind angles.
(is driving logic is not dependent on communi-
cation or cooperation with other vehicles or the
infrastructure.

(iii) Normal: uses the logic of an average driver but with
the augmented (or diminished) capacities of the
sensors for the perception of the surroundings. (is
type of driving logic may require devices for vehicle
communication and cooperation.

(iv) All-knowing: perfect perception and prediction of
the surroundings and the behaviour of the other
road users. (is automated driver is capable of
forcing his way on other drivers whenever is needed
without however ever being responsible for causing
accidents. (is type of driving logic requires devices
for vehicle communication. If the devices fail, the
logic may fall back to the Normal or Cautious
driving logic depending on the driving context.
With additional communication devices and con-
trol logics, the driving logic enables cooperation
with other AVs with communication and cooper-
ation functionality.

As indicated by the specifications of the driving logics
above, communication is not explicitly modelled, but is for
all driving logics except the All-knowing logic regarded as
one of many possible technologies that could contribute to
produce the specified functionality. For the All-knowing
driving logic, however, communication is assumed to be
required to achieve the functionality, but it is still not ex-
plicitly modelled.

(e four driving logics are described inmore detail in the
following sections.
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3.2.1. =e Rail-Safe Driving Logic. Motivated by compliance
with the machinery directive (Directive 2006/42/EC of the
European Parliament and of the Council of 17 May 2006 on
machinery, and amending Directive 95/16/EC, ELI: http://
data.europa.eu/eli/dir/2006/42/2016-04-20), the Rail-safe
(RS) driving logic represents a fail-safe deterministic driving
behaviour.(e vehicle follows a predefined path from which
it cannot deviate, and the speed is set by the guiding
principle that it should be able to brake for anything that
may come in its way. To guarantee the ability to emergency
brake, the brakes are preactuated, as in rolling stock, so
emergency braking will be executed even in the case of total
power failure. (is strategy is safe only up to certain speeds,
depending on the restraining systems for the passengers,
which significantly limits the top speeds of RS vehicles.

(e maximum speed is determined by the distance to
other road users and obstacles that blocks the field of view of
the vehicle. (e maximum speed is set such that the vehicle
can brake with an acceptable deceleration for any road user
that can reasonably enter its predefined path, including
hypothetical road users currently out of view due to ob-
stacles. In particular, this strategy implies the RS vehicle
never approaches another road user closer than the “brick
wall stop distance” (BWS), that is, the RS vehicle keeps a
distance such that it can avoid collision by emergency
braking even if the leading vehicle instantly stops.

(e full focus on fail-safe operation leads to that the RS
logic only can operate efficiently at higher speeds if it has a
reserved lane with separation to both neighbouring lanes
and sidewalks, in the form of either a buffer area or a physical
barrier. Also, it can only cross conflicting streams if it has
absolute right of way. Conceived to certify automated shuttle
services on public roads together with some European
Ministry of Transport, this driving logic is called Rail-safe
logic because it follows for certification an approach derived
from the rail technical standards as explained in Alessan-
drini [42]. (e example in Figure 1 is an urban multilane
arterial with three lanes per direction, unsignalised inter-
sections at grade, and unprotected sidewalks. An infra-
structure as such will never be certified for the “Rail-safe”
logic but nevertheless is a good example to show what can
and cannot be done with this logic and the others. More
detailed explanations on how to insert automated road
transport systems (ARTS) [43] in urban environments are
given in Cignini et al. [44] and Tripodi et al. [45]. In
Figure 1(a), the automated vehicle is all alone. It has a full
view on the sidewalk, which is empty and can therefore ride
at its maximum speed. As soon as a pedestrian is present on
the sidewalk, the speed of the vehicle is limited by the time to
collision with such “obstacle” that might arise if the pe-
destrian decides to suddenly cross the street. If the sidewalk
is a metre away from the automated vehicle course and a
pedestrian walk at a metre per second, the vehicle can only
overtake the pedestrian at a speed which would allow it a full
stop in one second. If the maximum allowed deceleration is
1.2 meters per square seconds (standing nonrestrained
passengers on board), the maximum speed can be 1.2 meters
per second (nearly 4.5 km/h), which grows to 18 km/h with
sitting and belted passengers on board. To increase the

vehicle’s speed, the sidewalk needs either to be separated
from the road or some safety boundary put between the
sidewalk and the automated vehicle lane.

As shown in Figure 1(b), the vehicle cannot change lane
and, as shown in Figure 1(c), it cannot turn left. To turn left,
the vehicle must have a clearly marked lane (as shown in
Figure 1(d)) and a dedicated traffic light without conflicting
traffic stream allowed when the automated vehicle passes.
Where necessary, this logic forces communication with the
traffic lights in the infrastructures and with specially installed
roadside sensors to guarantee operations as safe as in rail
transport.

3.2.2. =e Cautious Driving Logic. In contrast to the guiding
principle of the RS logic, which is to do everything to not be
involved in an accident, the guiding principle of the Cau-
tious driving logic is to do everything not to be responsible
for an accident.(is implies that it always strictly follows the
road code and always is on the safe side when accepting gaps.

Similar to the RS logic, the Cautious logic needs to
assume that anything can turn up where its field of view is
blocked and that following only can be done at BWS dis-
tance. However, in contrast to the RS logic, the Cautious
logic assumes that other road users behave reasonably
according to the road code; pedestrians are assumed to not
suddenly jump out in the road, and vehicles in the neigh-
bouring lanes are assumed not to suddenly cut in in front.
(us, the Cautious logic can handle nonsignalised conflicts,
such as crossing or joining a traffic stream with right of way,
changing lanes, or even overtaking slow vehicles. However,
in all cases, it only acts when gaps are larger than BWS
distance to guarantee that it does not cause an accident by
conflicting with the prioritized flow.

BWS is not a criterion normally used on the roads;
however, it is the only safety criterion which “can be proven
safe”. (e reason for including BWS in the Cautious driving
logic is that a vehicle keeping a BWS distance is never at fault
in an accident. As discussed in Section 3.2, the legal re-
sponsibility in accidents will shift from drivers to makers
concentrating responsibilities (especially the criminal one)
for many accidents on few designers and company execu-
tives, many vehicle makers will want to be sure their vehicles
will not be held responsible for causing accidents, and
implementing BWS distance keeping would be one possible
strategy to strongly reduce the number of accidents where
the AV can be seen as causing the accident. Other criteria
(for the Normal and the All-knowing driving logics) have
been set to consider more normal and aggressive driving
behaviours, but for the cautions it was necessary to set a
reference which has a specific legal reasoning behind.

In Figure 2(c) the vehicle is allowed to turn left. How-
ever, it can do so only if each vehicle in the incoming lane is
far enough away so that they do not have to decelerate.
Assuming each vehicle will continue with its own speed and
given the speed of the automated vehicle when the auto-
mated vehicle clears the path of the incoming vehicle, a BWS
distance needs still to be in place. Should for any reason the
automated vehicle stop in the middle of the crossing, the
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incoming vehicle can still come to a full stop without risking
collision with the stopped automated vehicle. In case the
automated vehicle passes through the intersection as
planned, the incoming vehicle does not need to decelerate.

(e case is similar in lane-changing (Figure 2(b)).(e lane-
changing manoeuvre is considered possible when the auto-
mated vehicle has reached the same speed of the flow of vehicles
in the lane and the vehicle in the back (at the same speed) still
has a BWS distance from the automated vehicles. (is leads to
the difficulty to conduct lane changes in heavy traffic.

3.2.3. =e Normal Driving Logic. (e Normal driving logic
imitates the general human driver behaviour, but with the
advantages and limitations of machines compared to
humans, for example, shorter reaction time, more exact
measurements of distances and time gaps, and precise

execution of intended manoeuvres, but possibly more oc-
clusion of the field of view by dynamical obstacles. However,
the Normal driving logic does not imitate unwanted features
of human drivers; it complies perfectly with the road code
and there is no randomness in its behaviour.

(e Normal driving logic is easy to implement in traffic
simulation software: the driving logic is modelled using the
regular model for conventional driving, but with stochasticity
removed, reaction time improved, and occlusion of sensors
approximately included. Accepted gaps and following gaps
are similar in size to the ones of human drivers, due to that the
Normal driving logic has shorter reaction time but lacks some
of the predictive capabilities of human drivers.

3.2.4. =e All-Knowing Driving Logic. For automation to
lead to more efficient, in addition to safer, traffic, a vehicle

(a) (b) (c) (d)

Figure 1: Illustration of the Rail-safe driving logic for road following (a), prohibited lane-changing (b), and left-turning (c). To allow left-
turning for a Rail-safe logic, the road needs to be clearly marked and a traffic light inserted with a dedicated aspect for the automated vehicle
left-turning which can even turn left from the right lane at this point (d).

(a) (b) (c)

Figure 2: Gap acceptance for car-following (a), lane-changing (b), and left-turning (c) in the Cautious driving logic.
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with the All-knowing driving logic predicts the behaviour of
all road users detected by all connected detectors, on both
vehicles and the infrastructure. (is leads to very few blind
spots and massive amounts of data to use as a basis for
accurate predictions, which allows the All-knowing vehicle
to keep short gaps and even force its way in conflicts when
needed to achieve efficient flow, while keeping its ma-
noeuvres safer than most human drivers.

(is driving logic is of course much easier to simulate
than implement in reality; in the simulation, we know the
exact trajectory of all road users and their behaviour, so
predicting it is not a problem. In reality, on the other hand, it
is completely unknown how this driving logic would be
implemented or how hard it would be. (e All-knowing
driving logic thus represents an extreme case that will not be
realized in the foreseeable future.

Lane-changing as shown in Figure 3(b) happens with
such small gaps that the following vehicle yields to let it
merge as in a sort of cooperative manoeuvre. Left-turning as
shown in Figure 3(c) can be done with small gaps and even
when some of the vehicles in the furthest lanes are not in
sight. Such behaviour can happen either because prediction
models are perfect or because there is cooperation between
vehicles; however, in simulation, it is not important which is
the technology but only the resulting behaviour.

3.3. Assumptions on the Relation between Driving Logics and
AV Classes for Road Environments. Simulations of auto-
mated vehicles do need to consider not only the driving
logic of the vehicle but also the operational design domain
(ODD) in which it can operate and according to which
driving logic. As noticed in previous research [46], au-
tomated vehicles may have to adjust their driving be-
haviour depending on the road environment and the
driving context. In this section, we present initial as-
sumptions on which type of driving logic vehicles of
different AV classes would be able to use for different types
of vehicles and for different types of road environments.
(ese assumptions were derived based on workshops and
discussions between traffic model developers, traffic en-
gineers, vehicle industry, and human factors researchers.
It is important to note that these are general assumptions
and that they might need to be adjusted depending on
information or expectations for a specific case study. In
this article, we used the following division and definitions
of road environments:

(i) Motorway: multilane roads with physical barriers
between directions and grade-separated intersections

(ii) Arterial: single- or multilane roads with at-grade
intersections (mainly larger type of intersections as
signalized intersections or roundabouts). Bicycle
and pedestrian traffic are clearly separated from the
vehicle traffic by either physical barriers or medians.
Vehicles, bikes, and pedestrian may interact at in-
tersections depending on if secondary conflicts
between vehicles and active modes are separated or
not.

(iii) Urban street: single- or multilane roads with at-
grade intersections (also stop or yield regulated
intersection). No physical separation between ve-
hicle traffic and pedestrian and bicycle traffic.
Walkways and bikeways directly at the side of the
vehicle lanes.

(iv) Shared space: vehicle, bicycles, and pedestrian share
the same space, which can be unstructured or
semistructured.

Table 1 presents the assumptions for which driving logic
cars and trucks will use at the various road environments.
Basic AVs are assumed to be able to drive in automated
mode only on motorways and arterials. Furthermore, they
are assumed to drive according to the Cautious driving logic
on these road types.(e Intermediate AVs are assumed to be
able to use the Normal driving logic onmotorways due to the
development of sensor technology and anticipatory capa-
bilities. (e more complex arterials with at-grade inter-
sections with interactions with active modes still constrain
the AVs capabilities, and the behaviour is still according to
the Cautious driving logic. Exceptions might be highly
separated arterials with total conflict separation between
vehicles and active modes, in which Intermediate AVs can be
assumed to be able to drive according to the Normal driving
logic. Furthermore, the Intermediate AV is assumed to be
able to drive according to a Cautious driving logic on urban
streets and according to the Rail-safe logic in shared spaces.
However, it is questionable to what extent drivers would
accept the Rail-safe logic driving in shared space due to the
high “politeness” of the driving logic and the resulting low
speed. (us, it might from a traffic simulation point of view
be more reasonable to assume manual driving. (e Ad-
vanced AV class cars are assumed to be able to drive
according to at least the Cautious logic in all the road en-
vironments, ranging from the All-knowing driving logic on
motorways and arterials to the Normal driving logic on
arterials and Cautious logic in shared spaces.

4. Implementation of AV Classes and Driving
Logics in the Traffic Simulation
Model VISSIM

(e descriptions of the driving logics in the previous section
are of conceptual nature. Further specifications are required
to be able to implement the driving logics in a traffic
simulation model. As described in Section 2.1, driving logics
can be implemented either by replacing behavioural models
in the traffic simulation model with automated vehicle
driving behaviour models or by adjustment of behavioural
model parameters in the traffic simulation model. (e ap-
proach in this article has been to as far as possible try to
adjust the behavioural parameters of the available behav-
ioural models and when necessary extend the currently
available models. (is approach is chosen in favour of
replacing the behavioural models. (e idea behind this is
that it, from a traffic performance point of view, is more
important to capture the main characteristics of different
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types of automated vehicles instead of modelling all different
types and combination of automation functions in detail.

Independently of approach, data for calibration of pa-
rameters are required. (e Rail-safe and the Cautious
driving logics correspond approximately to driving behav-
iour that have already been implemented in prototype AVs,
while the Normal and All-knowing logics correspond to
possible future milestone capabilities of automated vehicles.
Hence, data from field test of current AV concepts can only
be used to some extent to calibrate the suggested driving
logics. We have therefore combined the data from field trials
and cosimulations, which can give some information about
currently available driving logics, e.g., with respect to fol-
lowing behaviour, with assumptions based on the conceptual
descriptions of the driving logics presented in Section 3.2.

4.1. Results from Test-Track Tests with Automated Vehicles
with TNO’s Driving Logic. Within the CoEXist project, a
test-track field test using CAV prototypes developed by TNO
was conducted.(ree vehicles were used in the field test, one
with ACC, one with Cooperative ACC (CACC), and one
with Degraded CACC (dCACC). Several different scenarios
with different combinations of behaviour of the three ve-
hicles in a platoon were tested (see example in Figure 4). In

the example, the first vehicle is driven by a human, the
second by an ACC-controlled vehicle, and the third by a
CACC-controlled vehicle. Two different cases are shown:
one in which the communication with the second vehicle
regarding relative position and speed is on and then when it
was turned off.

In this section, we summarize the key findings of this
data collection, and the full details of the design, execution,
and results are available in Sukennik et al. [47]. (e key
findings from the experiments are listed below. (ese
findings might not be generalizable to all types of cooper-
ative vehicle-following systems but may apply only to the
specific control strategy that the test vehicles used in this
research. However, it is always difficult to sustain that any
conclusion is universally valid when most of the automated
driving technology which needs to be implemented in the
traffic simulation model is still to be developed.

(i) (ere is a linear deterministic relationship between
headway and speed when an automated car is
following another automated vehicle with car-to-
car (C2C) communication. Human imperfection
while driving is replaced by higher precision and
deterministic nature of technical equipment and
algorithms.

(a) (b) (c)

Figure 3: Gap acceptance for car-following (a), lane-changing (b), and left-turning (c) in the All-knowing driving logic.

Table 1: Specification of the driving logics envisioned for the three AV classes in the different road environments for cars.

Road type Basic AV Intermediate AV Advanced AV
Motorway Cautious Normal All-knowing
Arterial Cautious Cautious/Normal1 All-knowing
Urban street Manual Cautious Normal
Shared space Manual Rail-safe2/Manual Cautious
1(e Normal driving logic will only be possible if all conflicts between vehicles and active modes are separated, e.g., by separate phases in a traffic signal. 2It is
questionable to what extent drivers would accept the Rail-safe logic driving in shared space due to the high “politeness” of the driving logic and the resulting
low speed. (us, it might from a traffic simulation point of view be more reasonable to assume manual driving.
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(ii) (ere is an almost linear relationship between
headway and speed when an automated car is
following a manually driven car or an automated
car without C2C communication. (e linear rela-
tionship is not as neat as with C2C communication
but could be approximated.

(iii) Oscillations during the following process are small
and without much variance in comparison with
human drivers.

(iv) Safety distance without C2C communication is
much higher than in the communication case: with
C2C communication, the test vehicles were able to
drive safely with a 0.6- or 0.3-second headway.
After the disconnection of the C2C communica-
tion, the vehicle adapted larger following distance
because of safety reasons.

(v) (e safety distance in drive-away behaviour is
larger when there is no communication. When
following from standstill, the test vehicle kept a
significantly larger safety distance in the case
without C2C communication than with C2C.

(vi) No stochastic variation in drive-away behaviour.
(vii) When an automated vehicle followed another

vehicle from a standstill (in front of a signal
head), the following process did not show sto-
chastic variations—the same behaviour applied
each time.

4.2. Parameter Changes in Vissim and Added Modelling
Concepts. (e AV classes described in Section 3.1 are
implemented in Vissim in a common way similarly as
conventional vehicles. Each link representing a road seg-
ment is coupled with a link behaviour type. For a link be-
haviour type, the modeller can specify a driving behaviour
for each vehicle class.

(e driving logics are implemented in Vissim as new
driving behaviours based on theWiedemann 99 [48] driving
behaviour model. (e Wiedemann model operates at small
reaction times (each time step) and takes oscillation in car-
following into account (as observed by AVs in Figure 4).(is
is important for modelling AVs. But the model also accounts
for psychological aspects as well as for physiological re-
strictions of drivers’ perception of what we do not expect
from AVs driver logics.(erefore, an extension to the model
is required to model the behaviour of AVs as observed in
Section 4.1. (e contribution to the model results in these
new features to allow for fundamental principles needed to
model the AV driving logics:

(i) Reduction of implicit stochastic: the option “use
implicit stochastic” can now be switched off for a
specific driving behaviour. A vehicle using this
driving behaviour does not use any internal sto-
chastic variation, which is meant to model the
imperfection of human drivers. For all distributions
that cannot be explicitly set by the user, a median
value is used instead of a random value.

Prius 3Prius 1Prius 2

dx

dv = v(foll) – v(lead)
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Figure 4: Relationship between speed difference and distance to preceding vehicle when following.
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(ii) Brick wall stop distance: the option “enforce ab-
solute braking distance” can now be activated for a
specific driving behaviour. Vehicles using this
driving behaviour will always make sure that they
can brake without a collision, even if the leading
vehicle comes to an immediate stop (turns into a
brick wall). Brick wall stop (BWS) distance is
maintained by vehicles with the Rail-safe and
Cautious driving logics.

(iii) Differentiable following parameters based on the
leader vehicle class: this allows to set different
headways for CAV following another CAV as for
CAV following conventional vehicle or for any
other combination of vehicle classes. (is feature is
applicable for driving logics such as the All-knowing
logic which is based on the vehicle capability to
recognise the leader vehicle class in the following
process.

(iv) Sensors/equipment limitations: number of objects
and vehicles that the vehicle can see and interact
with can be defined separately for each driving logic.
(e number of interaction vehicles defines an upper
limit for the observed leading vehicles; therefore, for
example, this could be set to 1 for automated ve-
hicles with a sensor equipment that cannot see
through the leading vehicle. A red signal down-
stream of the leading vehicle could still be observed,
but not the second real vehicle downstream.

(e findings from the field trials in combinations with
calibrations of the Wiedemann 99 model to the field trial
vehicle trajectories were used to estimate parameters for the
following behaviour in Vissim (see Table 2). To describe a
more deterministic behaviour, the oscillation-related pa-
rameters are “turned off” expect that some minor acceler-
ation oscillations are kept. (e more advanced logics (e.g.,
Normal and All-knowing) possibilities to keep shorter gaps
are implemented using the three following gap-related pa-
rameters (CC0, CC1, and CC3). Acceleration rate-related
parameters are adjusted to reflect the more cautious be-
haviour of the Rail-safe and Cautious driving logics and the
more offensive behaviour of the All-knowing logic.

Since no field data were available for adjustment of the
lane-changing behaviour parameters, these are adjusted based
on the conceptual descriptions of the driving logics according
to Tables 3 and 4. Maximum and desired accepted deceleration
rates follow the same pattern as for the car-following accel-
eration-related parameters. Hence, the Cautious driving logic
does not accept as high deceleration rates as a consequence of a
potential lane change. (e parameter “−1m/s2 per distance”
affects the distance at which a driver starts to accept higher
deceleration rates than the desired acceleration rate for
accepting a gap in the target lane. (e Cautious driving logic is
assumed to start accepting higher deceleration rates later while
the Normal and All-knowing would behave similarly to a
human driver in this matter.

Table 4 presents the parameter values related to coop-
eration and gap acceptance in connection with lane changes.

(e Normal logic is assumed to follow a human driver while
the Cautious logic requires a larger minimum headway, less
reduction of safety distance, and lower deceleration rates for
cooperation.

In addition to the car-following and lane-changing
parameters, AVs are assumed to drive more homogeneously
compared to human-driven vehicles in terms of individual
speeds and acceleration/deceleration behaviour. Desired
speed distributions for AVs are assumed to be narrow and
concentrated around the speed limit since the AVs are as-
sumed to follow the road code. Individual settings of desired
speeds may be possible for lower SAE levels (as driver
support systems or conditional automation), like in today’s
automated cruise control vehicles, where the driver still is
responsible for the driving. However, as discussed in Section
3.2, we assume that the producer of the vehicle will get
increased legal responsibilities at SAE level 4 and we
therefore assume complete compliance with the road code.

Furthermore, it is expected that automated vehicles will
behave deterministically instead of stochastically like human
drivers, which might have implications on the acceleration
and deceleration behaviours. (erefore, all AVs are assumed
to have the same maximum and desired acceleration and
deceleration values. Different types of AVs or different
vehicle brands might of course apply different acceleration
rates in similar situations. However, when operated in au-
tomated mode, the utilized acceleration and deceleration
rates will need to be constrained by comfort and safety
requirements of the passengers, which lead to the as-
sumption that the acceleration behaviour of automated
vehicle will be very similar.

Moreover, the perception capabilities of the different
driving logics are considered by limiting the number of
vehicles ahead taken into account to one vehicle for the Rail-
safe, Cautious, and Normal driving logics. Reactions on
signals are assumed the same for all AV driving logics and
the main differences compared to human drivers are that the
AVs require full safety distance in interaction with other
vehicles and that they only start passing the signal when it is
green (red-amber is interpreted as stop). (e AVs are as-
sumed to have no reaction time while the reaction time of
the human drivers depends on site-specific calibration. In
the example simulations presented in Section 5, humans
have zero reaction time.

5. Numerical Experiments

To illustrate the effects on traffic performance of the different
driving logics, a set of simulations was conducted and results
in form of maximal throughput and fundamental diagrams
were produced. Here we present simulations of four dif-
ferent networks representing basic traffic situations:

(1) A simple one-lane link under ideal conditions
without influence of intersections, parking ma-
noeuvres, or other sources of disturbance

(2) A two-lane motorway without on- and off-ramps but
with varying uphill gradient (from 0 to 3.4%)
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(3) A three-lane motorway section with one on-ramp
and one off-ramp

(4) A one-lane approach to a traffic signal (considering
only one approach)

(e networks were populated with different shares of
vehicles using one of the AV driving logics Cautious,
Normal, and All-knowing at the time or a combination of
those. (e remaining shares of vehicles were simulated as
human-driven vehicles using calibrated parameters (mo-
torway networks with interchange and road with gradients)
or the default parameters (models with simple link and link
with signal) in Vissim. In case of combinations of different
AV driving logics, the shares between the AV driving logics
are equally distributed. For example, in case of 50% AV
penetration rate for a combination of AV cautious and AV
normal, 50% of the vehicles are human-driven vehicles, 25%

use AV cautious, and 25% use AV normal. Simulations of
the Rail-safe logic were not conducted since the logic mainly
is applied to minibuses and shuttles which commonly do not
reach high penetration rates of all vehicles on the road. To
observe the impact of the driving logics compared to hu-
man-driven vehicles in terms of throughput, penetration
rates (which equals the proportion of AVs compared to all
vehicles in the simulation) of 10% steps from 0 to 100% are
simulated. For each driving logic and penetration rate,
several simulations with eight different demand configu-
rations were conducted. For each combination of driving
logic, penetration rate, and demand category, we run 10
simulations with different random seeds. Initially, the
resulting relations between flow, density, and speed were
then curve fitted to the functional relation by van Aerde [32].
However, the curve fitting was not appropriate at some
locations of some networks because no breakdowns occur in

Table 2: Recommended driving behaviour parameters for following in Vissim.

Parameter (Wiedemann 99 following model) ∗ ∗
Driving logic

Rail-safe Cautious Normal All-knowing Def ∗ ∗ ∗

CC0—standstill distance (m) 1.5 1.5 1.5 1 1.5
CC1—spacing time (s) 1.5 ∗ 1.5 ∗ 0.9 0.7 ∗ ∗ ∗ ∗ 0.9
CC2—following variation (m) 0 0 0 0 4
CC3—threshold for entering “following” (s) −10 −10 −8 −6 −8
CC4—negative “following” threshold (m/s) −0.1 −0.1 −0.1 −0.1 −0.35
CC5—positive “following” threshold (m/s) 0.1 0.1 0.1 0.1 0.35
CC6—speed dependency of oscillation (10−4 rad/s) 0 0 0 0 11.44
CC7—oscillation acceleration (m/s2) 0.1 0.1 0.1 0.1 0.25
CC8—standstill acceleration (m/s2) 2 3 3.5 4 3.5
CC9—acceleration at 80 km/h (m/s2) 1.2 1.2 1.5 2 1.5
∗If “enforce absolute braking distance” is on, brick wall stop distance is guaranteed. ∗ ∗See Vissim manual [48] for detailed description. ∗ ∗ ∗Default values
forWiedemann99 followingmodel in Vissim (conventional vehicles). ∗ ∗ ∗ ∗ If the followed vehicle is a conventional one, the follower maintains 0.9 s spacing
time.

Table 3: Recommended driving behaviour parameters for necessary lane change in Vissim.

Driving logic—urban (motorway if the value differs)
Rail-safe Cautious ∗ ∗ Normal All-knowing Def

Parameter for necessary
lane change ∗

Own
veh

Trailing
veh

Own
veh

Trailing
veh Own veh Trailing

veh Own veh Trailing
veh Own veh Trailing

veh
Maximum deceleration n.a. n.a. −3.5 −2.5 −4 −3 −4 −4 −4 −3
−1m/s2 per distance n.a. n.a. 80 (160) 80 (160) 100 (200) 100 (200) 100 (200) 100 (200) 100 (200) 100 (200)
Accepted deceleration n.a. n.a. −1 −1(−0,5) −1 −1 (−0,5) −1 −1.5 (−1) −1 −1 (−0,5)
∗Necessary lane change means a lane change which is necessary in order to follow a defined route (it is not overtaking because of higher own desired speed).
∗ ∗ If “enforce absolute braking distance” is on, brick wall stop (BWS) distance is guaranteed. n.a.� not available.

Table 4: Recommended driving behaviour parameters for lane change in Vissim.

Behavioural functionality
Driving logic

Rail-safe Cautious ∗ ∗ Normal All-knowing Def
Advance merging ∗ n.a. On ∗ ∗ ∗/off On ∗ ∗ ∗ On On
Cooperative lane change ∗ n.a. On ∗ ∗ ∗/off On ∗ ∗ ∗ On Off
Safety distance reduction factor n.a. 1 + EABD 0.6 0.75 0.6
Min. headway (front/rear) n.a. 1 0.5 0.5 0.5
Max. deceleration for cooperative braking n.a. −2.5 −3 −6 −3
∗Depends on technical equipment and implemented connectivity and cooperation functions. ∗ ∗EABD (enforce absolute breaking distance) must be on.
∗ ∗ ∗If the AV cannot detect that the other vehicle wants to change lanes, the value should be off/zero. n.a.�not applicable.
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Figure 5: Example of van Aerde diagrams (a) and the 95% quantile (b) for the flow-speed relationships derived from simulations of a two-
lane motorway with a one-lane off-ramp and on-ramp for an AV penetration rate of 90% of either the Cautious, Normal, All-knowing, and
combined logics. For cases with mixes of driving logics, the shares of the AV logics are equal, e.g., 50/50 and 33/33/33.
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the simulations with automated vehicles, e.g., for the one-
lane road, the bottleneck is already at the inflow of the
simulation network and traffic does not break down.
(erefore, we derived the capacity not from van Aerde
(Figure 5(a)) but from the 95% quantile of all demands
(Figure 5(b)).(e capacity derived from van Aerde is similar
to the 95% quantile of all demands for the scenarios where
we observed breakdowns as seen in Figure 5.

Figure 5 shows flow-speed for one of the networks used
for numerical experiments (two-lane motorway with a one-
lane off- and on-ramp) and one selected AV penetration rate
(90%). (ere is a significant difference between Cautious
logic and the other two (Normal and All-knowing). (e
Cautious driving logic shows lower maximum throughput
and lower average speed at the same volume in comparison
with the other two behaviour logics. (at is because the
Cautions driving logic follows the brick wall stop distance
requirement for following and also for lane-changing. (e
All-knowing driving behaviour with settings corresponding
to higher aggressiveness does not lead to high improvement
because of causing disturbances in mixed flow with lot of
lane change maneuverers. Higher gains with All-knowing
behaviour logic would be theoretically possible with higher
level of cooperation, which was not implemented in the
model.

Figure 6 shows the results in maximum throughput
depending on the penetration rate for the four different
networks and for the Cautious, Normal, and All-knowing
driving logics and for equal combinations (mixes) of these
driving logics. Because of a larger headway compared to
conventional vehicles, the throughput of the Cautious driver
logic decreases with increasing penetration rate and on

contrary because of the shorter headway, the All-knowing
driver logic increases the throughput with increasing pen-
etration rate. (e Normal driving logic, where the headway
is similar to conventional human-driven vehicle behaviour,
increases the throughput with increasing penetration rate.
(is is because of a more consistent behaviour of AVs
compared to conventional human-driven vehicles with less
differences in individual behaviour. All-knowing behaviour
logic brings an even higher increase in throughput in tested
networks, except the highway scenario (motorway with off-
and on-ramp), where the Normal and All-knowing driving
logic and their combination lead to similar values, especially
with penetration rates under 80%. As mentioned before, the
number of lane-changing maneuverers and resulting dis-
turbances in the traffic flow are the limiting factors. Further
experiments with more varied mixes of conventional and
automated vehicles with different driving logics are planned
for the end phase of the CoEXist project.

6. Conclusions and FurtherDevelopmentNeeds

(ere exist several uncertainties related to vehicle fleet
composition during the transition period from 0 to 100%
automated vehicles, e.g., regarding what automation func-
tions are technically feasible, allowed, and actually activated
by the users, for different road environments and at different
stages of the introduction of AVs. In addition, we can also
expect all these factors to be highly heterogeneous over the
vehicle population, due to various functions being available
for different brands and price levels, for the different times of
production of the vehicles in the fleet. Hence, traffic sim-
ulation investigations of the transition period need to
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Figure 6: Results in maximum throughput depending on the AV penetration rate and driving logic mix for four different networks:
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consider that different types of automated vehicles with
different capabilities and behaviour will exist and maybe
coexist. Some possible heterogeneities, such as the possible
heterogeneity in acceleration behaviour of AVs, have been
simplified away in the presented model, which may impact
the particular simulation results through effects on lane-
changing behaviour. However, the proposed framework for
handling uncertainties can in principle be extended to in-
corporate any and all uncertainties in the behaviour of the
simulated road users, including any uncertainties in the
heterogeneity of the acceleration behaviour, if this is deemed
important for the considered application.

In this article, we present four conceptual descriptions of
four different types of driving behaviour of automated ve-
hicles and present how these driving logics can be imple-
mented in a commonly used traffic simulation program.(e
idea behind the conceptual driving logic approach is that the
information available so far on AV behaviour comes from
tests with today’s partly automated vehicles, mainly from test
tracks. How future generations of AVs will behave will be
unknown for some time.(us, investigations of future traffic
situations with future versions of AVs and with higher
penetration rates of AVs require consistent assumptions on
how the behaviour of AVs will evolve. (e development and
implementation of the four driving logics is one way of
dealing with this issue. Furthermore, we believe that it is
from a traffic performance point of view more important to
capture the main characteristics of different types of auto-
mated vehicles instead of modelling all different types and
combination of automation functions in detail, which are
not available yet in real traffic.

To regard all uncertainties related to the introduction
of automated vehicles as independent in a traffic simu-
lation investigation would be infeasible in practice due to
the curse of dimensionality; the number of simulation
experiments required would become too large. We
therefore suggest a simplified treatment of the uncer-
tainties related to the vehicle fleet evolution by assuming
that the penetration rate of AVs and the availability of
advanced automation functions and driving logics covary
and that they become available first for highly separated
environments like motorways and later for more complex
environments, such as urban streets. (ese assumptions
allow us to constrain the space of possibilities in need of
exploration to the vicinity of what we believe to be the
most likely development. Furthermore, we suggest to
divide the transition period into three stages: introduc-
tory, established, and prevalent. (e stages are not defined
in terms of specific number of years in the future, but
rather by the level of automation in a specific case study.
(e reason is that depending on many factors, including
technological development and adoption rates, and
changes to the legal framework, the stages may have vastly
differing durations. Hence, defining the stages in terms of
time is not only highly speculative but also problematic
since the durations of the stages might vary.

(e developed approach for simulation of different
driving logics taking into account their expected ODD and
penetration rates for different stages of the transition period

will in further work be applied to several different case
studies in order to investigate the impact of the introduction
of automated vehicles in, for example, signalized intersec-
tions, motorways, urban arterials, roundabouts, and shared
spaces.

An important simplification in the approach presented
here is that we do not consider the handover between au-
tomated and manual driving, even though we implicitly
assume that such handovers are taking place. Hence, we
assume that a specific simulated vehicle operates as either
automated or human-driven. However, a vehicle might
change driving logic when going from one type of road to
another, and only then. Furthermore, this work does not
consider potential behavioural adaptation of human drivers
due to the introduction of automated vehicles, but this is an
important uncertainty that needs to be addressed in future
research. Since data availability on potential behavioural
adaptation is limited, our suggestion is to conduct sensitivity
analysis given different assumptions (e.g., regarding the
adaptation of desired speed, following time gap, and over-
taking willingness) [49].

Data Availability

(e data from the test-track tests with automated vehicles
with TNO’s driving logic (Section 4) is proprietary data of
Siemens/TASS. (e data from the numerical experiment
(Section 5) can be reproduced using PTV Vissim (version 11
and higher) software with the defined driving logics (Section
4.2). Simulation results are available on request from Peter
Sukennik or Jochen Lohmiller.
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Understanding the chaos of air traffic flow is significant to the achievement of advanced air traffic management, and trajectory
data are the basic material for studying the chaotic characteristics. However, at present, there are two main obstacles to this task,
namely, large amounts of noise in the measured data and the tedium of existing data processing methods.)is paper improves the
incorrect trajectory processing method based on ADS-B trajectory data and proposes a method by which to quickly extract the
traffic flow through a certain waypoint. Currently, the commonly used theoretical analysis tools for nonlinear complex systems
include the classical nonlinear dynamics analysis method and the newly developed complex network-based analysis method. )e
latter is currently in an exploratory stage because it has just been introduced into the study of air traffic flow. From these two
perspectives, the chaotic characteristics of air traffic flow are studied in the present work. From the perspective of nonlinear
dynamics, the improved C-C method is used to calculate the reliability parameters, namely, the time delay τ and embedding
dimension m, of phase-space reconstruction, and the maximum Lyapunov index is calculated by using the small data volume
method to prove the existence of chaos in the system. From the perspective of complex networks, the construction of a visibility
graph and horizontal visibility graph is used to prove the existence of chaos in the system, and the goodness-of-fit parameters of
the degree distributions of two fitting methods under different time scales are evaluated, which provides support for the air traffic
flow theory.

1. Introduction

With the growth of China’s national economy, its civil
aviation industry has also been greatly improved. Air traffic
transportation is an important component of the modern
transportation system, and the study of air traffic flow
characteristics has gradually become a crucial task. Air traffic
flow refers to the number of aircraft passing through a
certain point or a certain route in a unit of time. China’s air
traffic flow is characterized by rapid growth and very uneven
distribution. )e dynamics of air traffic flow depend on the
number and the length of air routes, the number of airports,
the number of takeoffs and landings, etc. Air traffic flow is
mainly concentrated in a few airports located in cities that
are political, economic, and tourism centers, especially in the

more developed areas in the eastern part of China. With the
rapid increase of domestic flights, the problem of flight delay
has become increasingly more obvious, and the study of the
chaotic characteristics of air traffic flow is beneficial to its
management and control.

In recent years, many scholars have studied the non-
linear mechanism of traffic flow, especially by applying chaos
theory to understand the dynamics of transportation sys-
tems. Chaos refers to the seemingly random and irregular
phenomenon in deterministic nonlinear systems, but this
kind of quasi-random phenomenon contains some laws and
order. Chaotic systems are very sensitive to initial values,
and a small change in the initial value will lead to a great
difference in the long-term evolution results of the system.
)ere exist various models for traffic flow prediction,
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including the chaos theory, fractal theory, wavelet analysis,
and catastrophe theory models. )e premise of the appli-
cation of the chaos theory model is that the system has
chaotic characteristics. )us, when short-term traffic flow is
predicted based on the chaos theory model, it must be
determined in advance whether there are chaotic charac-
teristics in the traffic flow.

)e research on the chaotic dynamic characteristics of
ground traffic flow has received substantial attention within
the last decade. In 1984, Disbro and Frame first introduced
chaos theory into the traffic system [1]. Low and Addision
investigated the concept of chaotic behavior in a deter-
ministic car-following model [2]. Tang et al. improved the
chaos forecasting method to be effective in forecasting
conflicting traffic flows [3]. Based on the maximum Lya-
punov index, Liu and Zhang determined the chaotic
characteristics of traffic flow and realized the prediction of
short-term traffic flow [4].

With the development of ground traffic flow theory,
scholars began to explore the nonlinear characteristics of air
traffic systems. )e time series of air traffic flow based on
measured data is an effective method by which its nonlinear
characteristics can be studied. Frank et al. found that the
Lyapunov exponent calculation provides a clear indication
of chaos [5]. Time series are closely related to time scales,
and there are great differences between time series extracted
from different time scales. If the time scale is too small,
it is difficult to determine the fluctuation of traffic flow;
in contrast, if the time scale is too large, the macro-
characteristics of traffic flow will be more reflected, and it is
difficult to capture the detailed features. )ese are both
mentioned in Zheng’s research on the macro time series of
air traffic flow under different time scales [6] and Wang’s
empirical analysis of time-dependent air traffic flow based on
the Hurst index [7]. At present, the tool used most often for
the analysis of the chaotic dynamic characteristics of air
traffic flow is the classical nonlinear dynamic analysis
method; however, there also exist new analysis methods
based on complex networks.

1.1. Nonlinear Dynamics AnalysisMethod. Li et al. proposed
an improved maximum Lyapunov exponential algorithm
based on the small data volume method and wavelet noise
reduction theory, identified the chaotic characteristics in
flight conflict time series, and proved the feasibility of the
application of chaos theory to flight conflict prediction [8].
Cong and Hu used time-series data of traffic flow in the
airspace sector to study the chaotic characteristics of the air
traffic system; they solved the correlation dimension and the
maximum Lyapunov index of the traffic flow time series via
the G-P algorithm and the small data volume method,
thereby proving the existence of chaos and fractal charac-
teristics in the air traffic flow time series [9]. Zheng used real
trajectory data to study the chaotic characteristics of air
traffic flow from both the macro- and microperspectives via
the maximum Lyapunov index and recursive graphs [6].
Yang proposed a dynamic identification method for the
chaotic characteristics of flow time series to solve the

timeliness problem of judging the chaotic characteristics of
flow time series; he proved that, with the increase of data,
flow time series gradually possess chaotic characteristics
[10].

1.2. Complex Network-Based Analysis Method. Complex
networks are a new network research theory characterized
by partial or total self-organization, self-similarity, and
attractors and by being small-world and scale-free. In recent
years, with the rise of network science, the study of time
series from the perspective of complex networks has
attracted widespread attention. Some scholars began to use
complex networks to analyze nonlinear time series. )e
analysis method based on complex networks is often used in
the research on the fluctuation of gold prices and vegetable
species prices. Researchers have also explored the degree
distribution characteristics of networks constructed from air
traffic flow time series. Yang and Yang proposed a reliable
procedure for the construction of complex networks from
the correlation matrix of a time series [11]; they found that
the degree distribution of the original series can be well fitted
with a power law, while that of the return series can be well
fitted with a Gaussian function. Gao and Jin proposed a
reliable method for the construction of complex networks
from a time series with each vector point of the recon-
structed phase space represented by a single node and edge
determined by the phase space distance [12]. Donner et al.
investigated in detail the corresponding potentials and
limitations of networks based on recurrences in the phase
space [13]. Pan et al. introduced a novel method for the
condition diagnosis of complex systems in the chemical
process industry with complex network-based time series
analysis [14]. Scholars also gradually introduced complex
networks into the study of traffic flow. For example, Tang
et al. converted a traffic flow time series into a complex
network and then analyzed the characteristics of traffic flow
states from the perspective of the complex network [15]. In
2018, Wang and Zhu first analyzed air traffic flow time series
based on complex network theory [16]; he examined the
mechanical characteristics of air traffic flow from a new
perspective, laying a foundation for the future application of
other research results of complex network theory in the air
traffic field.

)is remainder of this paper is structured as follows.
Section 2 explains the processing of trajectory data, proposes
four types of incorrect trajectory data, and introduces the
process of automatic dependent surveillance-broadcast
(ADS-B) trajectory data collection. Moreover, it presents an
improvement of the efficient identification and processing
method of incorrect trajectory data, and the results of
clustering and nonclustering when extracting the air traffic
flow passing through a waypoint are compared. Section 3
extracts time series of different scales. Section 4 analyzes the
chaotic characteristics of air traffic flow based on the classical
nonlinear dynamic analysis method, while Section 5 ana-
lyzes the chaotic characteristics of air traffic flow based on
complex networks. Finally, the conclusions of this work
are drawn in Section 6.
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2. Processing of ADS-B Trajectory Data

In this paper, an analysis method based on the measured
data of the operating environment is adopted, and the data
source is ADS-B trajectory data. ADS-B mainly carries out
air-to-air and air-to-ground surveillance. In general, only
airborne electronic equipment is needed; the GPS (Global
Positioning System) receiver, data link transceiver, and
antenna, and CDTI (cockpit display of traffic information)
can complete the relevant functions without any ground
support equipment, and an aircraft equipped with ADS-B
can broadcast its precise location and other data (such as its
speed and height and whether the aircraft is turning,
climbing, falling, etc.) through the data chain. )e ADS-B
receiver, in combination with air traffic control systems
and airborne ADS-B from other aircraft, provides accurate,
real-time conflict information both in the air and on the
ground. ADS-B is a new technology that redefines the three
key elements of modern air traffic control, namely, com-
munication, navigation, and surveillance.

)e ADS-B provides detailed data on individual flights,
such as the aircraft serial number, registration number,
ICAO, flight call sign, latitude, longitude, altitude, speed,
heading, vertical speed, receiver IP address, and flight time.
Because the research object of this paper is air traffic flow, it
is necessary to extract the time series of traffic flow from the
trajectory data.

In this work, it is found that there are some incorrect
trajectory data in the dataset. Incorrect trajectories originate
from system errors in recording the trajectory data, which
leads to the recording of noise. Erroneous trajectory data are
different from abnormal trajectory data; anomalous tra-
jectory data refer to the trajectory deviating from the pre-
vailing traffic flow, not an incorrect trajectory. )e existence
of an abnormal trajectory reflects the randomness of air
traffic operation and the influence of control measures on air
traffic flow. If the trajectory data are not processed, it will
result in difficulties in the subsequent analysis, as presented
in Figure 1.

)erefore, before traffic flow identification, it is neces-
sary to identify and process the incorrect trajectory data. In
this section, based on the types and characteristics of the
incorrect trajectory data found in the research process, re-
lated identification and processing methods are studied.
)ere were mainly four types of incorrect trajectory data
found in the research process of the present work, namely,
scattered, multiconnected, misplaced, and defective trajec-
tories. )e scatter diagram and trajectory diagram of in-
correct trajectories are presented in Figure 2.

As shown in Figure 2(a), the scattered trajectory is
composed of a series of scattered points that may be far away
from each other, and the connecting lines may misrepresent
the movement state of the aircraft. )ere are few track
points, which are far less than the average of the number of
normal track points. Such trajectory data can be either point
or noise data consisting of several straight lines.

As shown in Figure 2(b), the multiconnected trajec-
tory is the erroneous connection of two trajectories. )e
original data may be confused with the same track during

transcription and encoding. Such trajectory data will
create an extra line between two unrelated track points.
Even if the points are filled by linear interpolation, the
trajectory diagram will not change.

As shown in Figure 2(c), the misplaced trajectory is
represented as an acute turning point, and the aircraft will
not turn at an acute angle when it turns. When the three
adjacent track points are misaligned, it will appear as an
acute angle, which is represented as an obvious sharp bulge
in the trajectory diagram.

As shown in Figure 2(d), the defective trajectory shows
that the distance between two adjacent track points is large,
which is caused by data loss.

Incorrect trajectory data cannot represent the correct
trajectory of the aircraft; this will increase the number of
trajectories and affect the data processing efficiency, which
is not conducive to the identification of prevailing traffic
flow. According to the characteristics of the incorrect
trajectory data, four processing methods for this data are
proposed in this paper. Because each piece of data is in-
formation acquired by radar, it has the significance of
existence. To retain the original trajectory characteristics, it
is necessary to deal with the incorrect trajectory data
according to the principle of “more dismantling and less
deletion;” the scattered trajectory data must be deleted, the
multiconnected trajectory data must be split, the misplaced
trajectory data must be smoothed, and the defective tra-
jectory data must be supplemented.

)e process diagram is presented in Figure 3.
Figure 4 presents a comparison of the effects before and

after the processing of incorrect trajectory data from the
entire day of December 14, 2019, over LASAN (a waypoint)
in Shanghai. By comparison, it can be found that there are
many lines on the left side of the figure that do not pass
through the position of the prevailing traffic flow.)ese lines
are the lines that connect two unrelated trajectories in
multiple pieces of data. When multiple pieces of data are
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Figure 1: Original trajectory data.
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split, the lines disappear. )e comparison demonstrates that
the traffic flow becomes clearer after the incorrect data are
deleted, and the original features are still retained.

3. Extraction of Air Traffic Flow Time Series
on Different Time Scales

Trajectory clustering is the main means by which traffic flow
from chaotic trajectory data is identified; at present, the
prevailing trajectory clustering method is adopted in most
domestic and international research on air traffic flow
identification. In this paper, the object of study for the traffic
flow is on the air route, so the clustering of traffic flow in
terminal areas need not be considered. )erefore, in this
paper, a traffic flow identification method based on the air
route network structure proposed by Zheng [6] is adopted;
the air route network structure of air traffic flow is used for
automatic identification, and the traffic flow is simulta-
neously determined via the waypoint sequence.

Taking the traffic flow over Laiyang City, Shandong
Province, as an example, the trajectory data in the research
area are processed and the traffic trajectory through P449 are
extracted, as shown in Figure 5.

)e complete clustering steps were found to be re-
dundant for traffic flow extraction. For all the traffic flow
data in Figure 5(a), if only extract the trajectory data whose
closest distance to P449 is less than 10 km, it can be extracted
as the traffic flow passing through the route point, as shown
in Figure 6. )e total traffic flow is 12% greater than the total
traffic flow after clustering. Compared with the manual
sorting of traffic flow sequences after pattern recognition,
this not only realizes complete automation but is also more
practical.

)e air traffic flow time series Tf � [tf1, tf2, . . . ,

tfi, . . . , tfn′] can be obtained by calculating the number of

flights in a certain time scale, and the sequence length is n’.
)e traffic flow passing through P449 on December 14 is
used as an example. Due to the low traffic flow during the
period of 0:00 to 8:00 (PEK time), the traffic flow charac-
teristics cannot be studied as a research sample. )erefore,
the period of 8:00 to 24:00 is selected as the observation time,
and the time series is constructed with four different time
intervals of 2min, 5min, 10min, and 15min as the time
scales, as shown in Figure 7.

By comparing the subgraphs in Figure 7, it can be
determined that, although the time scales are different,
similar peaks or troughs appear at the same time; however,
the detailed characteristics of the time series are different.
)e reason for this is that larger time scales can smooth
the data, but the resulting flow time series loses the in-
ternal details of the traffic flow. In this paper, a suitable
time scale is selected to analyze the chaotic dynamics of air
traffic flow.

4. Chaotic Characteristics of Air Traffic Flow
Based on the Classical Nonlinear
Analysis Method

4.1. Judgment of Chaotic Characteristics. In recent years, the
chaotic time series analysis method has been widely used in
many scientific studies and engineering fields. Phase-space
reconstruction is the basis of chaotic time series analysis;
according to this theory, the calculation of the time delay τ
and embedding dimension m [17] is the key problem of
nonlinear time series phase-space reconstruction. For a
given time series, such as the macroscopic traffic flow time
series Tf � [tf1, tf2, . . . , tfi, . . . , tfn′], it is assumed that the
delay time is τ and the embedding dimension is m. )e
m-dimensional vector Xn is the phase point produced by
the phase space reconstruction as follows:

(a) (b) (c) (d)

Figure 2: Scatter diagram and trajectory diagram corresponding to wrong trajectory. (a) Scattered trajectory. (b) Multiconnected trajectory.
(c) Misplaced trajectory. (d) Defective trajectory.
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Xn � tfn, tf(n− t), tf(n− t), . . . , tf[n− (m− 1)t]􏽨 􏽩, (1)

n ∈ [(m − 1)τ + 1, (m − 1)τ + 2, . . . , N]. (2)

Takens’ theorem, which was put forward for infinitely
long time series with the absence of noise, provided the
foundation for the selection of the embedding dimension,
and the time delay τ may take any value [18]. However,

the system dynamics dimension d is unknown, and actual
time series have a finite length and noise interference;
therefore, the selection of the appropriate time delay τ
and embedding dimension m are the key to calculation.
)ere are currently two main views regarding the se-
lection of these values. One view holds that the two are
mutually independent, for instance, in the time delay
autocorrelation method [19], the average mutual
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Figure 4: December 14, 2019, 122.2°–123.1° east longitude, 30.9°–31.82° north latitude trajectory data. (a) Before processing wrong. (b) After
processing wrong.

–1 –0.5 0 0.5 1
Abscissa (m)

–1

–0.5

0

0.5

1

O
rd

in
at

e (
m

)

×105

×105

(a)

–1

–0.5

0

0.5

1

O
rd

in
at

e (
m

)

Abscissa (m) ×104

×105

–5 0 5 10

(b)

Figure 5: Traffic flow through P449 extracted on December 14, 2019. (a) All traffic flows over Laiyang on December 14, 2019. (b) Traffic flow
through P449 extracted on December 14, 2019.
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information method [20], the embedded dimension G-P
algorithm [21], the FNN method (false proximity
method) [22], and the Cao method (the improvement of
the false nearest proximity method) [23]. )e other view
holds that the two are related, for instance, in the em-
bedded window method [24], C-C method [25], and
improved C-C method [26].

In this paper, an improved C-C method is used to
calculate these two parameters. )e traditional methods
have a certain advantage in the reconstructed phase space,
while the improved method C-C method better conforms to
the actual situation to achieve the estimates of the optimal
time delay τ and the optimal delay time window τω. )e
improved method uses the following two processes to
modify the associated parameters.

(1) )e time series standard deviation σ, which depends
on the search radius r, is expanded to a certain extent
according to the variation degree of the time series to
reduce the interference caused by numerical oscil-
lation. σ � std(x)(1 + cv/3) is utilized, where cv
represents the coefficient of variation for discrete
sequences and cv � std(x)/mean(x).

(2) )e fixed value of r is changed to a function related to
the embedded dimension m: r(m) � r ln(m + 1).
With the change of the refactoring dimension, the
search scope is appropriately expanded to reduce in-
terference, especially high-dimensional data oscillations.

)e remaining statistics are calculated according to the
rules defined by the traditional C-C method. When ana-
lyzing and calculating the results, the first local minimum
peak τω of the cyclical nature of S2cor(t) is searched as the
optimal delay time window. For nonobvious cyclical qual-
itative results, the value of S2cor(t) of the global minimum
point is selected to determine the optimal delay time window

S2cor(t). Moreover, the value of ΔS2(t) of the first local
minimum point is used as the optimal time delay τ.

)e Lyapunov index is an important index to measure
the dynamic characteristics of a system. It represents the
average exponential rate of convergence or divergence be-
tween adjacent orbits in the phase space. )e basic char-
acteristic of chaotic motion is that the motion state is highly
sensitive to the initial conditions. )e orbitals generated by
two very close initial values are separated exponentially over
time, and the Lyapunov index is a quantitative description of
this phenomenon.

If the Lyapunov index is greater than 0, the system is in a
chaotic state. )is judgment method is simple and definite
and has little error. )ere are many methods to calculate
the maximum Lyapunov index, including the definition
method, Wolf method, small data volume method, Jacobian
method, p-norm algorithm, and singular value decompo-
sition method. For the study of time series, the Wolf method
and the small data volumemethod are more applicable. Both
methods require the calculation of the average period P,
which can be obtained by using the Fourier transform to
draw the power spectrum curve. In the case of a limited data
volume, the small data volume method can better meet the
computing needs [27].

4.2. Chaotic Characteristics at Different Time Scales.
Based on the previously mentioned methods, the time series
Tf of air traffic flow is reconstructed by the phase space
Xn � [tfn, tf(n− τ), tf(n− 2τ), . . . , tf[n− (m− 1)τ]]. )e maximum
Lyapunov indices of the time sequence under different time
scales presented in Section 3 are calculated based on the
small data volume method, and the results are shown in
Figure 8.

)e maximum Lyapunov indices of the traffic flow time
series in the sample at different time scales are all greater
than zero ( λmax > 0), indicating that there are chaotic
characteristics in the air traffic flow. Via further comparison,
it can be concluded that, with the increase of the time scale,
the maximum Lyapunov index increases, indicating that the
degree of chaos of the system increases. Consistent with
previous research results [6], the length of the time scale has
an important impact on the mining of traffic flow charac-
teristics.)e variation of the time scale will directly affect the
morphological characteristics of traffic flow time series and
will then affect the expression of system characteristics. If the
time scale is too small, it is difficult to reflect the fluctuation
of the traffic flow; if the time scale is too large, the overall rule
of traffic flow variation throughout the day can be easily
reflected, but it will be difficult to reveal the detailed
characteristics of the traffic flow variation [6, 13].

5. Chaotic Characteristics of Air Traffic Flow
Based on the Complex Network Theory

5.1. Visibility Graph and Horizontal Visibility Graph of Time
Series. A complex network is a system composed of different
individuals interacting with each other. )e nodes corre-
spond to units in the network, while an edge refers to the

–5 0 5 10
Abscissa (m)

–1

–0.5

0

0.5

1

O
rd

in
at

e (
m

)

12
3

4 5

6
7

8
9

10

11
12 13

×104

×105

Figure 6: Traffic flow through P449 extracted on December 14,
2019.
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connection between two nodes and represents the interac-
tion between them. )ere are many statistical characteristics
of complex networks, such as the degree distribution, ac-
cumulation coefficient, and community characteristics that
are used to analyze the features contained in the original
time series.

At present, complex network theory has become a new
research direction for the use of complex networks as an
analysis tool for the dynamic characteristics beneficial to the
traffic flow theory, but also provide for time series analysis.
To date, there has been little application of the complex
network theory to the analysis of traffic flow time series. In
this paper, complex networks are applied to the exploration
of the characteristics of air traffic flow to expand support for
actual traffic management and control.

In 2008, Lacasa et al. [28] proposed a new algorithm,
namely, the visibility graph (VG) method, for the mapping
of time series into complex networks. )e principle of VG is

that each node in the network corresponds to each time
point in the discrete time series data.)e edge of the network
is the connection of two points in these nodes that meet the
visibility rules specified in advance. )e basic idea of the
algorithm is that each node cannot be connected to itself,
and each line of sight cannot pass through other straight
bars.

)e visibility criterion is as follows. If any two data
points (ta, ya) and (tb, yb) in the time series are visible to
each other, then for any point (tc, yc), where ta < tc < tb, the
following is satisfied:

yc >ya +
ya − yb( 􏼁 ta − tc( 􏼁

tb − ta

. (3)

With the development of VG research, Luque et al. [29]
proposed a geometrically simpler and less statistical algo-
rithm based on the VG algorithm in 2009, namely, the
horizontal visibility graph (HVG) method.
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Figure 7: Different time scales of the time series. (a) Δt� 2min. (b) Δt� 5min. (c) Δt� 10min. (d) Δt� 15min.
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)e principle of HVG is expressed as follows. If a
horizontal line of sight can be drawn between two straight
bars without crossing other straight bars, the two points are
considered to be connected in the network. In mathematical
terms, the two data points are connected if the height of the
corresponding bar is greater than that of the other bars
located between the two points.

)e visibility criterion is as follows. If any two data
points in the time series Xn, such as (ta, ya) and (tb, yb), are
visible to each other, then for any (ti, yi), where ta < ti < tb,
the following is satisfied:

yi <ya,

yi <yb.
(4)

Taking the time series corresponding to the four time
scales presented in Section 3 as an example, the time series
are, respectively, mapped into visibility and horizontal
visibility graphs, and the results are presented in Figure 9.

5.2. Analysis of theDegreeDistributions of ComplexNetworks.
)edegree distribution p(k) is defined as a probability of the
random selection of nodes with degree k. In reality, the
degree distributions of many complex networks follow a
power-law distribution: p(k) � k− λ. Lacasa and Toral [30]
demonstrated that random and chaotic time series of degree
distributions of complex networks under the HVG algo-
rithm present exponential distribution forms: p(k)～ e− ck.
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)e VG and HVG in Figure 9 are used as examples to
draw diagrams of the degree distributions, as presented in
Figures 10 and 11.

In his research on the visual network analysis of non-
linear time series, Zhang [31] mentioned that the effect of the
oblique line fitting of degree distributions can be described

via the correlation coefficient R2, the residual squared, and
the sum of squares due to error (SSE). )e smaller the value
of SSE, the closer R2 is to 1, and the higher the reference
value of relevant coincidences, the better the fitting. )e
exponential distribution in a single logarithmic coordinate
system is approximately a straight line. According to the
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Figure 9: Visual graph and horizontal visual graph of the sample. (a) Δt� 2min. (b) Δt� 5min. (c) Δt� 10min. (d) Δt� 15min.
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steps outlined previously, the results of the four views in
Figure 10 after fitting with the power-law distribution and
exponential distribution are, respectively, calculated, as re-
ported in Figure 12 and Table 1.

Similarly, according to the steps outlined previously, the
results of the four horizontal visibility graphs in Figure 11 are
calculated after fitting with the power-law distribution and
exponential distribution, as reported in Figure 13 and Table 2.

In addition toR2 and SSE, themean squared error (MSE)
is also used to evaluate the fitting effect. MSE is the mean
sum of the squares of the corresponding point errors be-
tween the predicted data and the original data, i.e., SSE/n,
and the root-mean-squared error (RMSE) is the square root
of the MSE. When the original data increase, the repre-
sentativeness of SSE will be affected, and the results of MSE
and RMSE will be more convincing.
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Figure 10: Degree distribution of visual graph. (a) Δt� 2min. (b) Δt� 5min. (c) Δt� 10min. (d) Δt� 15min.

HVG

0

0.2

0.4

0.6

P(
K)

3 60 41 72 5
K

(a)

HVG

0

0.2

0.4

P(
K)

3 60 41 72 5
K

(b)

HVG

0

0.1

0.2

0.3

0.4

P(
K)

3 60 71 42 5
K

(c)

HVG

0

0.1

0.2

0.3

0.4

P(
K)

3 60 41 2 5
K

(d)

Figure 11: Degree distribution of horizontal visual graph. (a) Δt� 2min. (b) Δt� 5min. (c) Δt� 10min. (d) Δt� 15min.

Journal of Advanced Transportation 11



10–2P(
K)

101 102100

K

(a)

10–2

P(
K)

101100

K

(b)

5 10 15
K

10–2

10–1

P(
K)

(c)

5 10 15
K

10–2

10–1

P(
K)

(d)

10–2

100

P(
K)

500
K

(e)

10–2

P(
K)

10 200
K

(f )

10–2

P(
K)

10 200
K

(g)

10–2

10–1

P(
K)

10 200
K

(h)
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Table 1: Statistics of goodness of fit parameters.

Figure Fitting method λ/c SSE R2 RMSE
(a) Power law distribution − 1.236059 37.3785 0.4913 1.1554
(b) Power law distribution − 0.868055 23.3142 0.3079 1.2071
(c) Power law distribution − 1.403329 2.7372 0.7364 0.5232
(d) Power law distribution − 1.446997 1.7388 0.8448 0.4395
(e) Exponential distribution − 0.101365 33.7598 0.5406 1.098
(f) Exponential distribution − 0.125702 18.0168 0.4651 1.0612
(g) Exponential distribution − 0.182581 3.8681 0.6556 0.6219
(h) Exponential distribution − 0.190391 2.4722 0.7795 0.5241
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By comparing the results in Tables 1 and 2, it can be
found that, for the VG algorithm, when the time scale is
2min and 5min, the degree distributions are closer to the
exponential distribution; however, at this time, R2 is too
small, and the fitting results are not reliable. When the time
scale is 10min and 15min, the distributions of the time
degree are closer to the power-law distribution, and R2

approaches 1; thus, the fitting results are reliable. However,
for the HVG algorithm, the distribution of the uniform
degree is closer to the exponential distribution. Additionally,
with the increase of the time scale, the RMSE is smaller, but
the results are unsatisfactory; moreover, R2 is too close to 0,
and the fitting results are very unreliable.

Inspired by the existing VG and HVG algorithms, this
paper proposes a new visual graphic network construction
method, namely, the equal-height horizontal visibility graph
(EHHVG) method. )e proposed EHHVG differs from the
HVG in that a horizontal visual line can be drawn between
two vertical bars and can pass through a vertical bar of the
same height.)e visibility criterion is as follows. For any two
points, such as (ta, ya) and (tb, yb) that are visible in the
time series Xn, for any (tk, yk), where ta < tk < tb, the fol-
lowing is satisfied,

yk ≤ya,

yk ≤yb.
(5)

According to the new criterion, four EHHVG maps of
the sample and their degree distributions are redrawn, and
the results are presented in Figures 14 and 15.

)e results of the fitting of the degree distributions are
reported in Figure 16 and Table 3.

As is evident from Table 3, the fitting results are not ideal
for the time scales of 2min and 5min, while they are good
for the time scales of 10min and 15min. Compared with the
degree distribution of the HVG presented in Table 2, the
fitting results are more reliable. When the time scale is too
small, the degree distribution points are very scattered,
which is similar to the fitting results of the degree distri-
bution of the VG reported in Table 1.

By comparing the results of the VG, HVG, and EHHVG
network construction methods presented in Figures 9 and
14, it is clear that the connectivity between each node in the
VG and EHHVG is relatively complex. By comparing
Figures 10 and 15, the degree distribution results of the VG
and EHHVG are also more dispersed, but there are some
differences between the performances of various algorithms
and the shape of air traffic flow after time-series feature
recognition.

)e conclusions of this section can be drawn as follows
by comparing the goodness-of-fit parameters.

(1) In terms of the goodness of distribution fitting of the
three complex network construction methods, the
time series under the time scales of 10min and
15min are better than those under the time scales of
2min and 5min.

(2) )e time series of air traffic flow are transformed into
more concentrated and simple degree distributions
of HVG.
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Figure 13: Results after power law distribution and exponential distribution fitting. (a) Δt� 2min. (b) Δt� 5min. (c) Δt� 10min. (d)
Δt� 15min. (e) Δt� 2min. (f ) Δt� 5min. (g) Δt� 10min. (h) Δt� 15min.

Table 2: Statistics of goodness of fit parameters.

Figure Fitting method λ/c SSE R2 RMSE
(a) Power law distribution − 0.410612 24.9337 0.0187 2.231
(b) Power law distribution − 0.099414 16.2789 0.0017 1.8044
(c) Power law distribution − 0.058225 10.6363 0.0009 1.4585
(d) Power law distribution − 0.148364 6.2668 0.0077 1.2517
(e) Exponential distribution − 0.366281 21.6516 0.1478 2.0809
(f) Exponential distribution − 0.158647 15.6019 0.0432 1.7665
(g) Exponential distribution − 0.126737 10.1961 0.0422 1.428
(h) Exponential distribution − 0.188867 5.6909 0.0988 1.1928
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(3) )e fitting results of the power-law distribution and
exponential distribution of the time series of the
EHHVG algorithm are superior to those of the HVG
method.

5.3. Chaotic Characteristics at Different Time Scales. Zhou
et al. [32] found that the degree distribution of a complex
network converted by the VG algorithm from chaotic time
series presented an irregular multi-peak structure, but this
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structure disappeared due to the weak antinoise capability of
the HVG algorithm. As shown in Figure 10, the complex
networks converted by the VG algorithm conform to the
multipeak structure, proving that the four groups of air traffic
flow data at different time scales all exhibit chaotic charac-
teristics. A multipeak structure is not present in Figure 11,
indicating that the noise-resistance capability of the HVG

algorithm is weaker than that of the VG algorithm. By ana-
lyzing the degree distribution diagram of EHHVG presented in
Figure 15, it can be found that a similar multipeak structure is
also present. )e EHHVG algorithm therefore has better noise
resistance than the classical HVG algorithm.

In the research by Lacasa Toral [30], it was proven that
the HVG algorithm could accurately distinguish random

EHHVG

0 10 20 30 40
K

0

0.05

0.1

P(
K)

(a)

EHHVG

0 5 10 15 20 25
K

0

0.05

0.1

0.15

0.2

P(
K)

(b)

EHHVG

0 5 10 15
K

0

0.05

0.1

0.15

0.2

P(
K)

(c)

EHHVG

0 5 10 15
K

0

0.1

0.2

P(
K)

(d)

Figure 15: Degree distribution of visual graph and horizontal visual graph. (a) Δt� 2min. (b) Δt� 5min. (c) Δt� 10min. (d) Δt� 15min.

10–2P(
K)

101100

K

(a)

10–2

P(
K)

101100

K

(b)

P(
K)

10–2

10–1

10 155
K

(c)

5 10 15
K

10–2

10–1

P(
K)

(d)

10–2

P(
K)

20 400
K

(e)

10–2

P(
K)

10 200
K

(f )

10–2

P(
K)

10 200
K

(g)

10–2

P(
K)

10 200
K

(h)

Figure 16: Results after power law distribution and exponential distribution fitting. (a) Δt� 2min. (b) Δt� 5min. (c) Δt� 10min.
(d) Δt� 15min. (e) Δt� 2min. (f ) Δt� 5min. (g) Δt� 10min. (h) Δt� 15min.

Journal of Advanced Transportation 15



time series from chaotic time series. After fitting the degree
distribution into an exponential distribution form
p(k) ∼ e− ck, c � ln(3/2) is the boundary between random
and chaotic time series; when c> ln(3/2), the time series is
chaotic. As presented in Figure 13, the results under the four
time scales all conform to c< ln(3/2); thus, the time series
have chaotic characteristics under the four time scales.

6. Conclusions

)e innovations of the present work are as follows:

(1) )is paper simplifies the steps of pattern recognition
in air traffic flow extraction and proposes a method
to quickly extract the traffic flow passing through a
certain waypoint.

(2) )is paper uses an advanced improved C-C method
to calculate the reliability parameters.)ese methods
are applied to the analysis of air traffic flow time
series, thereby laying a solid foundation for the
analysis of the chaotic characteristics of the system.

(3) )is paper proposes a new visibility graph network
construction method, analyzes its degree distribution
characteristics, and compares it with two existing
classic visibility algorithms, thereby enriching the re-
search on complex networks for the determination of
the nonlinear characteristics of time series.

(4) )ree complex network analysis methods, namely,
the VG algorithm, HVG algorithm, and proposed
EHHVG algorithm, are compared in terms of the
goodness-of-fit parameters of the degree distribu-
tions in different time scales. Regarding the goodness
of distribution fitting of the three complex network
construction methods, the time series under the time
scales of 10min and 15min are better than those
under the time scales of 2min and 5min.

)ere are many aspects of the characteristics of air traffic
flow that are worthy of the in-depth study. )eoretical re-
search on air traffic flow can better guide the management
and control of local air traffic flow, which is of great im-
portance for solving the problems of heavy traffic loads and
frequent flight delays.
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)is paper presents two models to investigate the traffic assignment problem. In the two models, the emission cost for gasoline
vehicles (GVs) is considered. )e credit schemes are considered in the constraint of the models. )e operation costs for battery
electric vehicles (BEVs) and GVs are also studied. Particularly, the constraints related to the credit schemes can be utilized to
adjust the number of GVs and to promote growth of the number of BEVs, which is a novel idea that was not studied. Preliminary
numerical experiments demonstrate that the models are effective and the extended distance limit of BEVs can raise the volume of
BEVs under the condition that the unit traffic cost of BEVs is lower than GVs. )erefore, it is feasible to control the quantity of
GVs by adjusting the total credit schemes, and it is viable to reduce the emission by enlarging the number of BEVs’ users.

1. Introduction

In recent years, in order to decrease petroleum consump-
tion, various organizations are pushing to utilize various
electric vehicles (e.g., [1–5]). It is predicted that electric
vehicles will take up a significant market share in the near
future as a result of the maturity of electric vehicle tech-
nologies and increasing public acceptance [6]. In light of
engine technologies, the electric vehicles can be divided into
two classes: plug-in hybrid electric vehicles (PHEVs) and
battery electric vehicles (BEVs). )e main difference be-
tween them is that the former is equipped with both gasoline
engine and electric motor, while the latter is only equipped
with electric motor. Bradley and Brank [7] stated that
PHEVs do not fully mitigate environmental consequences
since they still require gasoline. On the contrary, Lin and
Greene [8] presented that, due to the characteristic of uti-
lizing electricity entirely, BEVs may provide a definitive
solution for electrification of personal transportation.

PHEVs and gasoline vehicles (GVs) can be substituted
for BEVs to realize the goal of declining petroleum con-
sumption, enhancing energy security, and improving

environmental sustainability. However, similarly as stated by
He et al. [3] and Nie and Ghamami [9], the users of BEVs
may bump into a different kind of problems such as the cost
caused by the limited driving range of BEVs, long charging
time, scarce availability of charging stations, and limitation
of battery technologies.)ese problems lead the BEVs not to
be universally accepted by users who also have to bear the
worry of being stranded when battery runs out of charge,
which is normally referred to as range anxiety in the lit-
erature (e.g., [10]). It is still unrealistic to eliminate range
anxiety in the near future, although more and more public
charging stations have been deployed and many other
strategies to deal with range anxiety have emerged (e.g., [3]).

PHEVs and gasoline vehicles (GVs) can be substituted
for BEVs to realize the goal of declining petroleum con-
sumption, enhancing energy security, and improving en-
vironmental sustainability. However, similarly as stated by
He et al. [3] and Nie and Ghamami [9], the users of BEVs
may bump into a different kind of problems such as the cost
caused by the limited driving range of BEVs, long charging
time, scarce availability of charging stations, and limitation
of battery technologies.)ese problems lead the BEVs not to
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be universally accepted by users who also have to bear the
worry of being stranded when battery runs out of charge,
which is normally referred to as range anxiety in the lit-
erature (e.g., [10, 11]). It is still unrealistic to eliminate range
anxiety in the near future, although more and more public
charging stations have been deployed and many other
strategies to deal with range anxiety have emerged (e.g., [3]).

On the other hand, the fact that that the idea of tradable
credit schemes was employed to decrease emissions and/or
to reduce traffic congestion in urban was investigated in the
latest decade. Yang and Wang [12] suggested a tradable
credit plan to assuage jam which may eliminate unfairness of
traditional jam pricing and analyze more reasonable pikes
strategies.)ree steps can be adopted as follows: initial credit
allocations, credit charges, and credit transactions. Com-
pared with traditional jam pikes plan, the financial transfer
from users to governments is not contained. Afterward,
transportation investigators have extensively concentrated
on the tradable credit schemes. )e effects of transaction
costs on auction market and negotiated market for tradable
credits were investigated by [13], whose investigation
demonstrated that the initial allocation of credits may in-
fluence the equilibrium state. Under some proper condi-
tions, the auction market can reach the equilibrium
allocation of credits under appropriate conditions and, in
the negotiated market, the transaction costs can divert the
system from the desired equilibrium. )e tradable credit
plan for heterogeneous users with discrete value of time
(VOT) was introduced by Wang et al. [14], who formulated
adequate tradable credit plans and confirmed that these
schemes could distribute optimal or Pareto-improving op-
timal traffic flow patterns to users. Moreover, the existence
of optimal tradable credit scheme was proved by Xiao et al.
[15], who eradicated the bottleneck queue. )e price of
tradable credits was studied by Shirmohammadi et al. [16],
in which the aim of the study was to reduce congestion in
urban by adjusting the price of tradable credits. A multiclass
traffic network equilibrium issue under a given tradable
credit plan with VOT decentralization was studied by Zhu
et al. [17]. In addition, a novel jam decrease approach for
optimizing tradable credit schemes on general traffic net-
work was presented byWang et al. [18]. On the other hand, a
stochastic user equilibriummodel containing tradable credit
plan was studied by Han and Cheng [19], in which the
maximization of volume of the traffic network capacity was
the goal of the study. A public-private hybrid transportation
network with tradable credits was scouted by Wang and
Zhang [20] and Wang et al. [21], who solved the problem by
equilibrium theory. For managing private financing and
mobility, Bao et al. [22] proposed bilevel programming to
study the problem, of which the tradable credits plan was
considered. In view of the application of the tradable credits
for operating the trip of car, a review paper was proposed by
Dogterom et al. [23], which focused on the investigation of
empiricism and the pertinent behavioral methods. In order
to lessen the emission of vehicles, multiperiod tradable credit
scheme methods were proposed by Miralinaghi and Peeta
[24, 25]. In order to manage the queue length of vehicles at
bottleneck, tradable credit plan was employed by

Shirmohammadi and Yin [26]. Lahlou and Wynter [27]
investigated a binary transport game containing tradable
credit plans and introduced a Nash equilibrium model to
solve the problem. In view of tradable credit scheme idea,
tradable bottleneck permits were firstly introduced by
Akamatsu and Wada [28], which was utilized to operate the
transportation demand. In the design of the discrete traffic
network, the noncontinuous credit pricing policy was
scrutinized by Wang et al. [29]. Dogterom et al. [30] studied
the adjustment actions at the trip level, in which the tradable
credit plan was contained. Guo et al. [31] studied the
tradable credit scheme based on the system optimum of the
evolutionary traffic flows and evaluated the convergence of
the system. )e fact that the system optimum theory was
utilized to investigate the tradable credit arrangement was
introduced by Lv et al. [32]. Based on experimental eco-
nomics method, Tian et al. [33] analyzed the tradable
mobility credit plan with the influence factors of behavior.
)e experimental results demonstrate that the stated trad-
able mobility credit plan in their study was well-organized
and economically maintainable. A novel model for tradable
credit arrangement was stated by Lian et al. [34] and it was
formulated based on driving-day under the congestion
situation in urban. )e existence of the unique equilibrium
of dynamic jam noninternality with tradable credit policies
was investigated by Bao et al. [35]. Gao et al. [36] studied the
incremental-cost pricing of the tradable credits and utilized
Cobweb model to explore the constancy of the credit price.
)e fact that the cyclic tradable credits were employed to
improve the social justice was stated by [37]. In the same
year, assuming that the nonhomogeneity of the demands
and the commuters were conservative, Miralinaghi et al. [38]
investigated the tradable credit scheme problem under the
morning traffic congestion. )e zero-emission vehicles were
studied by Miralinaghi and Peeta [39]. )e robust multi-
period tradable credit plan was employed to promote drivers
to choose zero-emission vehicles and the target was to lessen
the emission. For decreasing emission, the allocation effi-
ciency of the method of tradable permit schemes was
scrutinized by De Palma and Lindsey [40]. By their inves-
tigation, the good performance of the method was verified.
)e tradable credit scheme in a bimodal transportation
network based on uncertain behaviors of traveler was re-
connoitered by Han et al. [41], who formulated the issue to a
variational equality model and proposed a heuristic ap-
proach to solve the model. Miralinaghi and Peeta [42]
presented a bilevel model to optimize the multiperiod
tradable credit scheme.)e goal of the study was to diminish
the emission and alleviate congestion.

However, how to distribute the preliminary credits is a
significant and complicated procedure and it contains how
to recognize the eligibility of travelers and allocate credits to
competent travelers. Nie and Yin [43] suggested a bottleneck
model that contains the allocation of credit without con-
sidering the initial distribution of credits to the avoidance of
these difficulties. Liu and Huang [44] stated a model without
initial credit distributions for general traffic network and
gained a credit toll. )ey formulated the problem as
mathematical programming with equilibrium constraints
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and gained a credit charging mechanism under some
conditions. Zhu et al. [45] presented a biobjective model
without initial credit distribution to optimize jam and
emissions and stated a system containing linear equalities
and linear inequalities to solve the model.

Furthermore, the models mentioned above ignored the
association between congestion and emission. Yin and
Lawphongpanich [46] introduced a counterexample for
social cost pricing and a nonnegative first-best emissions
pricing strategy to the system optimum pricing issue for
congestion and emissions. )ey provided methods to cal-
culate the trade-off between conflicting objectives and al-
leviating congestion versus reducing traffic emissions. Chen
and Yang [47] stated a biobjective optimization model to
study the relationship between congestion and emissions on
traffic networks. Abdul Aziz and Ukkusuri [48] also pro-
posed a biobjective model to study the trade-off between
travel time and emissions. In addition, Grant-Muller and Xu
[49] scrutinized the tradable credit plan to operate a traffic
jam and the behavior of the model choice, of which the goal
was to decrease the total miles of vehicles. Furthermore, Li
et al. [50] proposed a model for dynamic carbon credit plan
to operate traffic network mobility and emissions. In the
study, a bilevel model was constructed and a projection
search approach was introduced to deal with the model.

In this paper, we consider a mixed traffic network in
which travelers can select GVs or BEVs and the goal is to
minimize the sum of traffic cost and emission cost of GVs
with the constraints of credit schemes. In fact, some people
may have GVs only, which makes the network optimization
problem similar to the basic traffic assignment problem;
some people may have BEVs only, which has already been
studied by Jiang et al. [51]; others may own both GVs and
BEVs, which is similar to the study conducted by Jiang and
Xie [52]. In addition, a network user equilibrium problem
for BEVs and GVs was studied by Hu et al. (2017), in which
the BEVs and GVs were embraced in the study and the
battery exchanging centers and road grade constraints also
were included. Furthermore, two new impedance functions
for the traffic time on the road of EVs and GVs were
proposed by Lin et al. [53] and Zou et al. [54]. On the other
hand, the problem that EVs and GVs were contained in ride-
sourcing market was investigated by Ke et al. [55]. In the
study, recharging schedules of EV drivers were considered in
a time-expanded traffic network. Jensen et al. [56] stated an
investigation of the real path problem, in which BEVs and
internal combustion engine vehicles were contained in the
study and the behavior of drivers was considered.

Based on the above discussions, the studies can be
summarized as several types: some researchers investigated
the traffic congestion with tradable credit scheme, some
scholars studied the emissions with tradable credit plan of
traditional fuel vehicles (GVs), and some investigators
scrutinized the traffic assignment problem of EVs and GVs.
Compared with the existing works, our main contributions
can be stated as follows:

(i) Two novel models are presented in this paper, which
contain BEVs and GVs. Particularly, the former

model can be employed to expand the usage of
BEVs and control the number of GVs in the traffic
network.

(ii) In the models, the constraints of credit schemes
have two cases: constraints containing both BEVs
and GVs and constraints containing GVs only. )e
latter case can be regarded as a promotion of the
travelers choosing BEVs with adjusting the total of
credits displayed in our third experiment.)at is, on
the one hand, credit scheme can be utilized to adjust
the traffic congestion. On the other hand, it can be
employed to promote utilization of BEVs, which is
an interesting perspective that was not investigated.

(iii) Particularly, the study of Miralinaghi and Peeta [39]
must be noticed. )e zero-emission vehicles were
considered in the study. In the experiments of the
investigation, the credits were distribution between
internal combustion engine vehicles and zero-emission
vehicles. Furthermore, in our study, it needs to be
emphasized that the credits only for GVs are studied in
the experiment and model (3.6)-(3.13) is investigated.

)is paper is organized as follows: In Section 2, we
introduce a new link travel time function and demonstrate
its advantages. )e models are constructed in Section 3, and
numerical experiments are displayed in Section 4. )e
conclusions are drawn in Section 5.

2. Link Time Functions

As is known to us, the transportation optimization models
are generally in the forms of

min pt 􏽘
a∈A

ta va(ρ)( 􏼁,

or min pt 􏽘
a∈A

ta xa( 􏼁,

(1)

min pt 􏽘
a∈A

pta va(ρ)( 􏼁 + c xa( 􏼁,

or min pt 􏽘
a∈A

pta xa( 􏼁 + c xa( 􏼁,

(2)

subject to link constraints, path constraints, and some other
related constraints. Here, A is the set of all links in the
network, ρ denotes traffic density per mile, xa denotes traffic
flow on link a ∈ A, va denotes a speed-density impedance
function, ta denotes a time-speed or time-flow impedance
function, p is the price of unit time, and c stands for other
costs associated with vehicles such as energy cost.

)e objective functions (1) and (2) require traffic net-
work to minimize total travel costs and main difference
between them is that (2) also minimizes other related costs.
Model (2.1) was firstly applied to describe network equi-
librium by Jiang et al. [51], while (2) was firstly considered by
Jiang and Xie [52]. )e GVs and BEVs were embraced in the
two studies. Both are reasonable from their own perspec-
tives. In this paper, we introduce two models different from
the objective functions (1) and (2).
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)e impedance function ta, which reveals the relation-
ship between travel costs and traffic conditions on the road
reflecting the crowed effect of traffic network, plays a sig-
nificant role in (1) and (2). )e most popular impedance
function is the Bureau of Public Roads (BPR) function
defined by

t
BPR
a xa( 􏼁 � t

0
a 1 + α

xa

Ca

􏼠 􏼡

β
⎛⎝ ⎞⎠, (3)

where xa, t0a, and Ca denote the traffic flow, free travel time,
and capacity on link a, respectively, and α> 0 and β> 0 are
specified parameters. )is function is gained through re-
gression method based on investigating lots of road section
by the Bureau of Public Roads in 1964.

In this paper, in view of the link travel time function
given by [53], we define a new time impedance function:

ta xa, ba( 􏼁 �

t0a, ba ≤xa + ba ≤Ca,

t0a 1 + α
xa + ba − Ca

Za − Ca

􏼠 􏼡

β
⎛⎝ ⎞⎠, Ca < xa + ba ≤Za,

t0a 1 + α
ϵ

Za − xa − ba + ϵ
􏼠 􏼡

β
⎛⎝ ⎞⎠, Za < xa + ba <Za + ϵ.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4)

Here, the meanings of xa, t0a, α, β, Ca􏼈 􏼉 are the same as
above, Za is a critical value over which there will be a traffic
jam on link a, ba ≥ 0 is the number of the buses on link a, and
ϵ> 0 is a small constant. )is impedance function, which is
depicted in Figure 1, has the following properties.

Comparing with the BPR function and the time function
of [53], the number of the buses is contained on link a in
equation (4), which is more in line with the actual traffic
conditions in urban. On the other hand, since the bus travel
route is fixed, there is no need to assign the routing.)us, we
ignore the factor in the study.

Theorem 1. Suppose that α> 0, β> 1, ba ≥ 0, and
ϵ≤Za − Ca − ba. 2en, one has the following statements:

(1) 2e function ta(xa, ba) is continuous over [0, Za + ϵ)

(2) 2e function ta(xa, ba) is differentiable everywhere
over [0, Za + ϵ) except the point Za

(3) 2e functions ta(xa, ba) and ta(xa, ba) · xa are both
convex over [0, Za + ϵ)

Proof. )e proof of theorem (1) is analogous to [53].
Comparing with the BPR function and the time function

of [53], the advantages of this link travel time function can be
stated as follows:

(1) When the number of vehicles is no more than the
capacity allowing to travel freely, travel time is stable
in general.

(2) When the number of vehicles is more than the ca-
pacity, travel time begins to change sharply when
approaching the threshold value.

(3) When congestion happens, few vehicles can travel
into the network. In this case, we may think that the
number of vehicles is a constant but travel time still
increases. □

3. Models

)e notations in the considered traffic network are as fol-
lows: K denotes the set of O-D pairs; k ∈ K means a single
O-D; kg ∈ K and ke ∈ K mean feasible paths of GVs and
BEVs of O-D pair k, respectively; ωkg

and ωke
stand for the

traffic flows of GVs and BEVs between O-D pairs k, re-
spectively; ωa

kg
and ωa

ke
stand for the traffic flows of GVs and

BEVs on link a betweenO-D pairs k, respectively;A is the set
of all links in traffic network; a ∈ A denotes a single link in
the traffic network; ag ∈ A and ae ∈ A, respectively, are
feasible links of GVs and BEVs for a ∈ A; xag

and xae
denote

the total traffic flows of GVs and BEVs on link a, respec-
tively; dkg

and dke
denote the original outflows or terminal

inflows of GVs and BEVs between O-D pairs k, respectively.

3.1. Constraints. )e set of feasible path flow patterns is
defined by

Γω � ωke
,ωkg

􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
ωke
≥ 0,ωkg
≥ 0, 􏽘

k

ωke
� dke

, 􏽘
k

ωkg
� dkg

, ke ∈ k, kg ∈ k, k ∈ K
⎧⎨

⎩

⎫⎬

⎭, (5)

and the set of feasible link flow patterns is defined by

Γx � xae
, xag

􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
xae

� 􏽘
ke∈K

ωa
ke

, xag
� 􏽘

kg∈K
ωa

kg
, xag

+ xae
+ ba ≤Za, ag ∈ a, ae ∈ a, a ∈ A

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
. (6)
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In addition, let Q be an upper bound of the total amount
of credits, with which the traffic management department
intends to control the total of the vehicles in the traffic
network [43, 45]. In other words, in general, the total de-
mand for the credits may be more than the supply. )us, in
order to adjust the traffic situation, the traffic management
department can adjust the upper bound of the total amount
of credits in the traffic network.

3.2. Travel Cost Function. In a traffic network, the traffic
costs consist of several parts: the traffic time cost, operating
cost, and depreciation charge of vehicles. Here, we consider a
mixed traffic network with GVs and BEVs, which is dis-
tinguished by two factors: driving distance limit and travel
cost. )e operating cost contains the cost of consumption of
energy and depreciation charge. For simplicity, since the
routes of buses need not be assigned, thus, let cae

(xae
+

xag
, la) and cag

(xag
+ xae

, la) denote the total operating costs
functions of BEVs and GVs, respectively; let cae

and cag
be

the unit price of the BEVs and GVs on link a, respectively; let
pa be the price of unit time on link a; and la denotes the
length of link a. )en, we can establish the system cost
function for the mixed traffic network by

F � 􏽘
a∈A

pata xae
+ xag

, ba􏼒 􏼓 xae
+ xag

􏼒 􏼓 + cae
xae

+ xag
, la􏼒 􏼓􏼒

+ cag
xae

+ xag
, la􏼒 􏼓􏼓.

(7)

Note that the objective function is similar to [51, 57].
However, the time function of equation (7) is different from
that in papers [51, 57]. )us, (7) is more reasonable.

3.3. Emissions Function from Vehicles. )e emission en-
gendered by gasoline vehicles on link a is a detachable

function ra(xa) of link flow and speed. Yin and Law-
phongpanich [46] investigated the first-best nonnegative
emission tolls for minimization emission problem and
proved that a first-best nonnegative emission toll exists when
the emission function ra(xa) is increasing with respect to
link a ∈ A in a transportation network, which is expressed as

Ra � ra xa( 􏼁xa, (8)

where xag
� 􏽐k∈Kωa

kg
is the sum of the traffic flow of GVs

on link a and R(xag
) denotes the sum of the emissions of the

traffic network.
)e relationship between emission and traffic flow on

link a has been investigated in recent years (e.g.,
[45–47, 58]), which is formulated as

ra xa( 􏼁 � 0.2038ta xa( 􏼁exp
0.7962la

taxa( 􏼁
􏼠 􏼡, ∀a ∈ A, (9)

where la denotes the length for link a ∈ A.
In this paper, we only consider the emissions of GVs.

)en, the emissions function $R_a$ on link $a$ can be
formulated as

Ra � ra xag
+ xae

􏼒 􏼓xag
� 0.2038ta xag

+ xae
􏼒 􏼓

· exp
0.7962la

ta xag
+ xae

􏼒 􏼓

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠xag

,

(10)

where ta(xa) is defined as (4).

3.4. Optimization Models. In this subsection, we state two
models to optimize the flow assignment problem and
emissions of GVs in urban traffic network. )e first model is
to minimize the sum of travel time cost and operating cost of
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Figure 1: )e impedance function ta(xa)}. (a) Different value of α. (b) Different value of β.
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BEVs and GVs, the anxiety cost of BEVs, and the emissions
cost of GVs; that is,

minωke
,ωkg

α1 􏽘
a∈A

pata xae
+ xag

􏼒 􏼓 xae
+ xag

􏼒 􏼓 + cae
xae

+ xag
, la􏼒 􏼓 + cag

xae
+ xag

, la􏼒 􏼓􏼒 􏼓 + α2 􏽘
a∈A

ra xag
+ xae

􏼒 􏼓xag
, (11)

s.t. Ekg
ωkg

� dkg
ikg

, ∀kg ∈ K , (12)

Eke
ωke

� dke
ike

, ∀ke ∈ K, (13)

xag
� 􏽘

k∈K
ωa

kg
, ∀a ∈ A, (14)

xae
� 􏽘

k∈K
ωa

ke
, ∀a ∈ A, (15)

xag
+ xae
≤Za, ∀a ∈ A, (16)

􏽘
a

κaxag
≤Q, ∀a ∈ A, (17)

ωkg
≥ 0,

ωke
≥ 0,

∀kg ∈ K,

ke ∈ K.

(18)

Here, α1 ≥ 0 and α2 ≥ 0 are weight factors, and λa is the
unit price of emissions. )e first two equalities follow from
the fact that each column of the matrix Ekg

has only two
nonzero elements 1, − 1{ } and so is the matrix Eke

. )e
vectors ikg

� (1, 0, . . . , 0, − 1)T and ike
� (1, 0, . . . , 0, − 1)T are

with suitable dimensions, where the element 1 corresponds
to the original of kg or ke and the element − 1 corresponds to
the terminal of kg or ke. Conditions (12) and (13) are flow
balance constraints of GVs and BEVs; that is, the flows at
middle nodes are equal to zero and the flows at origins or
terminals are equal to dk. Conditions (14)–(16) mean that
the total traffic flow on each feasible link is no more than its
threshold value. Condition (17) is the sum of credits that is
no more than the given number of the traffic managements.

In addition, constraint (17) is only for the GVs; that is,
BEVs are not constrained by the credit schemes, which can
be regarded as a new method to expand the usage of BEVs in
the traffic network.

If the link flow of BEVs is not considered in constraint
(17), we use

􏽘
a

κa xae
+ xag

􏼒 􏼓≤Q, ∀a ∈ A, (19)

to replace (17). )at means that GVs and BEVs are con-
strained by the credit schemes and (17) can be utilized to
adjust the volume of GVs and BEVs in the traffic network.
)en, model (11)–(18) can be transferred as another model:

minωke
,ωkg

α1 􏽐
a∈A

pata xae
+ xag

􏼒 􏼓 xae
+ xag

􏼒 􏼓 + cae
xae

+ xag
, la􏼒 􏼓 + cag

xae
+ xag

, la􏼒 􏼓􏼒 􏼓 + α2 􏽐
a∈A

ra xag
+ xae

􏼒 􏼓xag
, (20)

s.t. (12) − (16), (18), (19). (21)

Models (11)–(18) and (20) and (21) are not studied in the
former studies. Particularly, the constraint of the credits
schemes is utilized to control the GVs number and to
promote the usage of BEVs in the traffic network.

Remark 1. As the study of [57], the distance constraint of
BEV is ignored in models (11)–(18) and (20) and (21). It is
considered in algorithm in the next section.
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Proposition 1. In model (11)–(18), if Q � 0, there are no
GVs in the traffic network and so the emission of GVs is 0; that
is, all users choose BEVs.

Proof. Since Q � 0, according to (17), (14), and (18), we
have xag

� 0 and R(ωkg
) � 0. )is completes the proof.

Based on model (11)–(18), we know that reducing the
number of credits of GVs can promote the utilization of
BEVs in the traffic network.

On the other hand, note that the Lagrangian function of
model (11)–(18) can be expressed as

L ωae
,ωag

, c, μ􏼒 􏼓 � α1 􏽘
a∈A

pata xae
+ xag

􏼒 􏼓 xae
+ xag

􏼒 􏼓􏼒

+ cae
xae

+ xag
, la􏼒 􏼓 + cag

xae
+ xag

, la􏼒 􏼓􏼓

+ α2 􏽘
a∈A

ra xae
+ xag

􏼒 􏼓xag

+ 􏽘
kg∈K

c
T
kg

Ekg
ωkg

− dkg
ikg

􏼒 􏼓

+ 􏽘
ke∈K

c
T
ke

Eke
ωkg

− dke
ike

􏼒 􏼓

+ 􏽘
a∈A

μa xag
+ xae

− Za􏼒 􏼓

+ μc 􏽘
a

κaxag
− Q⎛⎝ ⎞⎠

− 􏽘
kg∈K

μT
kg
ωkg

− 􏽘
ke∈K

μT
ke
ωke

,

(22)

where the Lagrangian multipliers μT
kg
and μT

ke
are the vectors

of μa
kg

and μa
ke
for a ∈ A, respectively. One has

xag
� 􏽘

kg∈K
ωa

kg
,

xae
� 􏽘

ke∈K
ωa

ke
,

∀a ∈ A.

(23)

)en, the optimality conditions for model (11)–(18) can
be written as

zL

zωa
kg

� α1 pta
′ xae

+ xag
􏼒 􏼓 · xae

+ xag
􏼒 􏼓􏼒

+ pta xae
+ xag

􏼒 􏼓 + cae
′ xae

+ xag
, la􏼒 􏼓

+ cag
′ xae

+ xag
, la􏼒 􏼓􏼓

+ α2 ra
′ xae

+ xag
􏼒 􏼓xag

+ ra xae
+ xag

􏼒 􏼓􏼒 􏼓

+ c
ai

kg
− μaj

kg
􏼒 􏼓 + μa + μc − μa

kg
� 0,

zL

zωa
ke

� α1 pta
′ xae

+ xag
􏼒 􏼓 · xae

+ xag
􏼒 􏼓􏼒

+ pta xae
+ xag

􏼒 􏼓 + cae
′ xae

+ xag
, la􏼒 􏼓)

+ cag
′ xae

+ xag
, la􏼒 􏼓 + α2ra

′ xae
+ xag

􏼒 􏼓xag

+ c
ai

ke
− μaj

ke
􏼒 􏼓 + μa − μa

ke
� 0,

xag
+ xae

− Za ≤ 0,

μa ≥ 0,

μa xag
+ xae

− Za􏼒 􏼓 � 0,

􏽘
a

κaxag
− Q≤ 0,

μc ≥ 0,

μc 􏽘
a

κaxag
− Q⎛⎝ ⎞⎠ � 0,

xag
� 􏽘

kg∈K
ωa

kg
,

xae
� 􏽘

ke∈K
ωa

ke
,

∀kg ∈ K, ke ∈ K, a � ai, aj􏼐 􏼑 ∈ A.

(24)
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We then have the following results. □

Proposition 2. 2e Lagrangian multipliers of
c

ai

kg
, μaj

kg
, μa

kg
, c

ai

ke
, μaj

ke
, μa, and μa

ke
satisfy the equation

μaj

kg
+ c

ai

ke
􏼒 􏼓 − c

ai

kg
+ μaj

ke
􏼒 􏼓 + μa

kg
− μa

ke
􏼒 􏼓 + μa

� α2ra xae
+ xag

􏼒 􏼓.

(25)

Proof. Since zL/zωa
kg

� zL/zωa
ke

� 0, the conclusion can be
proved immediately.

From Proposition 2, we have an interesting property that
the Lagrangian multipliers only relate to the emission cost
and the weight factor α2 for every a. In addition, in model
(11)–(18), the definitions of the operating function do not
impact the values of the Lagrangian multipliers. Further-
more, the emissions are only affected by the shadow prices,
while the model reaches optimality. □

Proposition 3. If there are no waiting users in the traffic
network, then the Lagrangian multiplier μa is equal to zero for
all a in A.

Proof. According to the definition of Za and the as-
sumption of this proposition, we have xag

+ xae
<Za. It

follows that μa � 0 on all links in the traffic network.
It means that constraint equation (16) is noneffective.

)at is, the situation of traffic does not attain the critical
value over which there will be a traffic jam. □

Proposition 4. If the total credits are more than the demand
in the traffic network, then the Lagrangian multiplier μc is
equal to zero.

It means that constraint equation (17) is noneffective.)at
is, decreasing emission by setting the total credits is invalid.

In addition, two properties can be obtained as follows:

(1) If α1 > 0 and α2 � 0, the objective functions of models
(11)–(18) and (20) and (21) do not involve the
emission factor. )at is, in this situation, models
(11)–(18) and (20) and (21) only study the credit
schemes problem by minimizing the sum of the time
cost and operating cost of BEVs and GVs.)emodel
is only employed to reduce traffic congestion by
choosing proper traffic paths. Of course, if the traffic
is smooth, the emission also is declined.

(2) If α1 � 0 and α2 > 0, the models only consider the
emission of the traffic network with the credit
schemes. )at is, the goals of models (11)–(18) and
(20) and (21) are utilized to lessen the emission by
assigning proper paths.

4. Algorithm and Numerical Experiments

In our numerical tests, we use a Windows 8.1-based PC
equipped with a Core (TM) 2 CPU i5-4210M processor
running at 2.60GHz as the computing platform and

algorithm is coded in Matlab2010b. In addition, the nu-
merical experiments contained two main steps: find feasible
path of GVs and BEVs; choose proper algorithm to solve the
optimization models.

In particular, the emission function is chosen as (10) and
the time function ta(xae

+ xag
) is defined as (4).

4.1. Algorithm Frame. In this subsection, we give an algo-
rithm frame (see Table 1) to solve the models.

In view of Table 1, the algorithm can be summarized as
two stages: find the feasible paths with distance limit $D$ of
BEVs and feasible paths of GVs and solve model (11)–(18).

4.2. Numerical Experiments. In our tests, we had four aims:
(1) checking the effect of changing distance limit of BEVs for
choice of users in model (11)–(18); (2) testing the influence
of changing unit operation cost of BEVs and GVs for pick of
users in model (11)–(18); (3) verifying the impact of varying
total credits for pick of users in model (11)–(18); (4) testing
the influence of variation of λa in Ra � ra(xa)xa � λaxag

la
for selection of users in model (20) and (21).

Nguyen–Dupuis’ network contains 13 nodes and 19
links (see Figure 2). More information about this network
can be found in [59]. All feasible paths, O-D pairs, route
compositions, and length of every path are shown in Table 2
[53, 54]. )e travel demand of each O-D pair was set to be
400 and α1 � α2 � 1, α � 0.15, β � 100, ρ � 1, and p � 10 in
all experiments.

In the first experiment, for simplicity, in model
(11)–(18), let the unit price p of travel time be equal to 10. Let
the operating cost functions of BEVs and GVs on link a be
expressed as cae

� 0.3la(xae
+ xag

) and cag
� la(xae

+ xag
),

respectively. Furthermore, let emissions cost ra(xa) be
equivalent to xag

la and the upper bound of the credits Q be
set to 50000. In addition, the distance limit of BEVs was from
30 to 45.

Numerical results in Figures 3 and 4 reveal that the
number of BEVs’ users increases as the distance limit is
getting longer. In more details, when the distance limit is 30,
there is no BEV in the traffic network since no feasible path
of BEVs exists. On the other hand, when the distance limit is
39, all users choose BEVs in the traffic network since the unit
cost of BEVs is lower than the unit cost of GVs and there is
no emission of BEVs in the network.When the distance limit
is 31, on path 4, all users give up using GVs but other paths
are not because only the O-D pair (1, 2) has a feasible path
for BEVs; see Figure 4(a) and Table 2. Since the shortest path
of the O-D (4, 2) is index 15, the users of the O-D pair (4, 2)
select BEVs when the distance limit of BEVs is no less than
35. From this experiment, promoting the BEVs is utilized by
expending the longest traveling distance of BEVs. )is
means that increasing the number of BEVs by technological
progress is feasible.

In the second experiment, let the distance limit of BEVs
be equal to 45. Let the operating cost functions of BEVs
and GVs on link a be expressed as cae

(xae
+xag

) � 0.005 +

βe(xae
+ xag

)2 and cag
(xae

+ xag
) � 1, respectively. Further-

more, let βe � 0.00001, 0.0001, 0.001, 0.01, 0.1, 1 in model
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(11)–(18).)e results displayed in Figures 5 and 6(a) indicate
that the number of BEVs’ users reduces with β increasing. In
detail, the first reduction is the O-D pair (4, 2) with
β � 0.001. When βe � 0.1, all users choose GVs; that is, there
are no BEVs in the traffic network. )is experiment dem-
onstrates that we can increase the number of BEVs’ users by
reducing the operating cost such as cutting down the price of
BEVs or increasing subsidies for BEVs.

In the third experiment, let the distance limit of BEVs be
also equal to 45. Let the operating cost functions of BEVs and
GVs on link a be expressed as cae

� 1 and cag
(xae

+

xag
) � 0.005 + βg(xae

+ xag
)2, respectively. Furthermore, let

βg � 0.00001, 0.0001, 0.001, 0.01, 0.1, 1 in model (11)–(18).
)e traffic flows of BEVs and GVs on each optimization
feasible path for each O-D pair are displayed in Figure 7.)e
total traffic flow of all O-D pairs is exhibited in Figure 6(b).
)e results show that the amount of BEVs’ users is in-
creasing with βg increasing. In particular, when βg � 0.001,
the number of GVs’ users reduces in all feasible paths of all
O-D pairs. In the first experiment, the quantity of users is
changing only between the O-D pairs (4, 2) when βe � 0.001.
)e reason for this difference may be that the emission
contains GVs only.

In the fourth experiment, model (11)–(18) was consid-
ered. In the model, the upper bound of total credit schemes
$Q$ is set to be 0, 100, 500, 1000, 5000, 10000, 30000, 50000,
100000, and 500000 and there is no distance limit of BEVs.

Table 1: Algorithm frame.

Step 1. Initialization x0, tolerances εmin, and maximum iterations kmax.
Step 2. Find the feasible paths with distance limit D of BEVs and feasible paths of GVs.

Step 3. Input A, b, Aeq, beq, lb, ub, nonlcon, and the constraints.

Step 4. Set ω0 � ωa
kg0

,ωa
ke0

: kg ∈ K, ke ∈ K, a ∈ A􏼚 􏼛 such that the strict inequalities in (16)–(18) hold. Let H0 be the unit matrix.

Step 5. Solve the approximation quadratic programming problem
min 1/2dTHnd + ∇g(ωn)Td
s.t. (16)–(18)
to get Lagrange multiplier λn and the search direction d(n) � ω(n+1) − ω(n). Here, g(ωn) is the objective function in model (11)–(18).
Step 6. Calculate the new iteration point ωn+1 � ωn + αndn, where αn is a stepsize calculated by one-dimensional search.
Step 7. If ‖ωn+1 − ωn‖≤ ε, stop. Otherwise, go to step 8.
Step 8. Update the Hessian matrix Hn by BFGS algorithm, let n � n + 1, and go to Step 4.

4 8765

1 12

9

313

10 11 2

Figure 2: Nguyen–Dupuis’ network.

Table 2: Analysis results for Nguyen–Dupuis’ network.

O-D Route Node sequence Length

(1, 2)

1 1-5-6-7-8-2 33
2 1-5-6-7-11-2 38
3 1-5-6-10-11-2 43
4 1-12-8-2 31
5 1-5-9-10-11-2 48
6 1-12-6-7-8-2 46
7 1-12-6-7-11-2 51
8 1-12-6-10-11-2 56

(1, 3)

9 1-5-6-7-11-3 39
10 1-5-6-10-11-3 44
11 1-5-9-13-3 39
12 1-5-9-10-11-3 49
13 1-12-6-7-11-3 52
14 1-12-6-10-11-3 57

(4, 2)

15 4-5-6-7-8-2 35
16 4-5-6-7-11-2 40
17 4-5-6-10-11-2 45
18 4-9-10-11-2 45
19 4-5-9-10-11-2 50

(4, 3)

20 4-5-6-7-11-3 41
21 4-5-9-13-3 41
22 4-9-13-3 36
23 4-5-6-10-11-3 46
24 4-5-9-10-11-3 51
25 4-9-10-11-3 46
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Figure 3: Changing distance limit of BEVs of all O-D pairs in
Nguyen–Dupuis’ network.
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Figure 4: Changing distance limit of BEVs of each O-D pair in Nguyen–Dupuis’ network. (a) O-D pair (1, 2). (b) O-D pair (1, 3). (c) O-D
pair (4, 2). (d) O-D pair (4, 3).
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Figure 5: Continued.
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)e operation cost functions of BEVs and GVs were
expressed as cae

� 2la(xae
+ xag

) and cag
� la(xae

+ xag
). )e

results stated in Figures 8 and 6(c) show that Q � 0, which
means that the traffic network only includes BEVs of all O-D
pairs. )is experiment indicates that the volume of GVs’

users increases with the upper bound of total credits en-
larging in a proper range. In detail, when Q is a large number
such as Q � 50000, 100000, 500000, the traffic network only
embodies GVs in Figures 5 and 6(b). In addition, from
Figures 8 and 6(c), the number of GVs in the traffic network
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Figure 5: Changing unit operating cost of BEVs of each O-D pair in Nguyen–Dupuis’ network. (a) O-D pair (1, 2). (b) O-D pair (1, 3). (c) O-
D pair (4, 2). (d) O-D pair (4, 3).
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Figure 6: Total traffic flow. (a) Unit operating cost of EVs. (b) Unit operating cost of GVs. (c) Unit credit cost of GVs. (d) Unit price λa of
GVs.
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Figure 8: Continued.
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Figure 7: Changing unit operating cost of GVs in Nguyen–Dupuis’ network. (a) O-D pair (1, 2). (b) O-D pair (1, 3). (c) O-D pair (4, 2).
(d) O-D pair (4, 3).
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can be adjusted by modifying total credits for optimization
model (11)–(18). )is is an interesting approach to promote
the number of BEVs.

In the last experiment, the unit price λa on link a of
emissions of GVs was tested.)e operation cost functions of
BEVs and GVs were formulated as cae

� 0.5la(xae
+ xag

) and
cag

� 0.25la(xae
+ xag

). )e distance limit of BEVs was set to

be 45. )e upper bound of credits was equal to 500000. )e
unit price λa of emissions of GVs was set to be 0, 0.1, 0.2, 0.3,
0.4, 0.5, and 0.6. )e results are given in Figures 6(d) and 9.
)is experiment manifests that the volume of GVs’ users
decreases with the unit price of emissions rising. )us, for
accelerating the utilization of BEVs, raising the unit price of
emissions may be employed.
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Figure 9: Changing λa of GVs in Nguyen–Dupuis’ network. (a) O-D pair (1, 2). (b) O-D pair (1, 3). (c) O-D pair (4, 2). (d) O-D pair (4, 3).
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Figure 8: Changing total credits of GVs in Nguyen–Dupuis’ network. (a) O-D pair (1, 2). (b) O-D pair (1, 3). (c) O-D pair (4, 2). (d) O-D pair
(4, 3).
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5. Conclusions

We studied two types of vehicles (BEVs and GVs) in urban
road network. We presented two models for the traffic flow
assignment and emissions problems with the credits con-
straint. One of them is to minimize the sum of traffic cost
and emissions cost by adjusting the total credits for BEVs
and GVs in the traffic network. Another tries to adjust the
volume of BEVs in the traffic network by changing the upper
bound of total credits for GVs. Furthermore, we gave a
simple algorithm to solve the models.

In our experiments, we first checked the influence of
distance limits of BEVs and observed that expanding the
distance limit of BEVs may promote the utilization of BEVs
by technical progress. )en, we investigated the effect of
changing unit operating cost of BEVs and GVs. It was
observed that reducing the unit operating cost of BEVs may
promote the utilization of BEVs and the total GVs in the
traffic network may be controlled by changing the upper
bound of total credits of GVs in model (11)–(18); that is, we
may give a smaller upper bound of the volume of credits of
GVs to promote the employment of BEVs in the traffic
network. Finally, the unit price of emissions of GVs was also
investigated and it was observed that the number of GVs is
reducing with increasing the unit price of emission of GVs;
in other words, diminishing the amount of GVs in the traffic
network may be realized by raising the unit price of
emissions of GVs.

As a future research direction, dynamic cases may be
considered. )e cases that some uncertainties (weather,
traffic accidents, etc.) occur in the network may also be
considered. Biobjective models or bilevel optimization
models will be studied and the two-way street traffic network
will also be considered. In addition, we will study more
details about the anxiety cost function. )e multiple charges
of BEVs will also be considered in the future.
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Adverse weather conditions have a significant impairment on the safety, mobility, and efficiency of highway networks. Dense fog is
considered themost dangerous within the adverse weather conditions. As to improve the traffic flow throughput and driving safety in
dense fog weather condition on highway, this paper uses a mathematical modeling method to study and control the fleet mixed with
human-driven vehicles (HDVs) and connected automatic vehicles (CAVs) in dense fog environment on highway based on dis-
tributed model predictive control algorithm (DMPC), along with considering the car-following behavior of HDVs driver based on
cellular automatic (CA) model. It aims to provide a feasible solution for controlling the mixed flow of HDVs and CAVs more safely,
accurately, and stably and then potentially to improve themobility and efficiency of highway networks in adverse weather conditions,
especially in dense fog environment. )is paper explores the modeling framework of the fleet management for HDVs and CAVs,
including the state spacemodel of CAVs, the car-followingmodel of HDVs, distributedmodel predictive control for the fleet, and the
fleet stability analysis.)e state spacemodel is proposed to identify the status of the feet in the global state.)e car-followingmodel is
proposed to simulate the driver behavior in the fleet in local. )e DMPC-based model is proposed to optimize rolling of the fleet.
Finally, this paper used the Lyapunov stability principle to analyze and prove the stability of the fleet in dense fog environment.
Finally, numerical experiments were performed in MATLAB to verify the effectiveness of the proposed model. )e results showed
that the proposed fleet control model has the ability of local asymptotic stability and global nonstrict string stability.

1. Introduction

Adverse weather conditions have a significant impact on the
safety, mobility, and efficiency of highway networks [1]. Based
on the statistical data, weather contributed to about 20% of
traffic accidents, 38.3% of traffic congestion, 23% of all non-
reoccurring delays and caused billions dollars’ loss by closed
highways, vehicle delays, and traffic accidents [2]. )e con-
sequent adverse impact on the safety and mobility of highway
networks makes it important to research and develop new and
more efficient methods to address highway management and
operation problems during adverse weather conditions [3]. Xu
[4] explored crashes under different weather conditions on the
highway and found that adverse weather conditions can lead to
dangerous driving conditions and greatly increase the crash

rate. Moreover, due to its limited visibility and accident sus-
ceptibility, dense fog is considered the most dangerous within
the adverse weather conditions [4].

Besides visibility impairments in foggy weather conditions,
the ability of risk perception is reduced as the driver inability to
judge the driving state and safe distance accurately. )erefore,
the driver tends to continue driving until the following distance
is equal to or less than the safety distance. After realizing the
crash-prone traffic condition, the driver will operate the vehicle
with sequential rushed acceleration or nasty deceleration to
keep out of traffic accidents [5]. Furthermore, the researchers
found that most drivers prefer to drive at high speeds when
they cannot see the vehicle in front. In this case, even if the
driver finds the vehicle in front of the visibility boundary and
braking timely, it is difficult to avoid a crash [4, 6].
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In addition, the dense fog weather condition will greatly
reduce the driver’s ability of identification traffic conditions.
For example, when the visibility is less than 50m, the driver’s
visual search focus will increase by 23.6%, and the scope and
efficiency visual selective attention will decrease [7]. In these
situations, the combination of speed perception, speed
feedback, driving performance feedback, and other capa-
bilities that support the driver to make vehicle operation
decisions is not always in the best safety interest [6]. Fur-
thermore, the individual differences among drivers must
also be considered in the driving conditions, such as dif-
ferences in age, gender, and psychological quality.

)e internal and external adverse impact on driver
behavior in dense fog environment makes it becoming the
most dangerous type within adverse weather conditions [8].
Wang [9] analyzed 1,513,792 traffic accidents and found that
the number of fatal traffic accidents caused by dense fog is 35
times that of clear weather. Traffic safety concerns in dense
fog on the highway were intense due to the fatal traffic
accidents, as the individuals and groups are increasingly
concerned with the adverse weather condition impact on
highway travelling [10–12].

Based on the state-of-the-art in literatures and researches
for driving safely in dense fog weather conditions, the
proposed methods can be divided into macrolevel and
microlevel. In respect of macrolevel mode, it mainly focuses
on risk prediction under dense fog weather conditions based
on historical data and then makes up corresponding risk
management and control approaches such as setting
warning flags and installing security infrastructure. Wu [13]
analyzed the effects of real-time warning systems on driving
under fog conditions by comparing the effectiveness of
beacons and dynamic message signs in foggy areas. Zhai [14]
used the historical traffic collision data, traffic flow data, and
dense fog conditions to set up a collision risk prediction
model to predict the collision risk under specific visibility.
Ahmed [8] predicted the risk of traffic accidents on highways
near the airport in dense fog weather conditions based on
variables such as airport weather data, historical crash data,
and road characteristics. Hassan [15] used detectors and
radar sensors to receive real-time traffic flow data, which are
used to predict the likelihood of traffic accidents in low-
visibility situations, and then conduct proper traffic man-
agement 5–15 minutes before the highway may collide. In
this study, the probability of correctly identifying a collision
reached 69%. Winkle [16] proposed a systematic safety
analysis framework that combines the spatial analysis
function in ArcGIS with a clustering model to select areas on
highways that are prone to fogging, thus providing guidance
for highway safety strategies and active traffic management.

In respect of microlevel mode, the studies mainly fo-
cused on the vehicle itself to provide anticollision function.
For example, a networked vehicle collision warning system
(CWS) was designed on the basis of connected vehicles. )is
system used real-time data to predict the collision risk of
vehicles and promptly alert drivers to improve the ratio-
nality and safety of driver’s driving operations [17]. Li [18]
developed a control strategy with a variable speed limit
(VSL) to reduce the risk of secondary collision during

adverse weather. In addition, self-driving vehicles were
tested on-site in areas with poor visibility. It was expected
that self-driving cars that adapt to various scenarios in the
real world would be developed soon [16]. To the best of our
knowledge, the current research is aimed at independent
human-driven vehicles (HDVs) accident-related behavior
analysis or connected automatic vehicles (CAVs) control
strategy in dense fog weather conditions, respectively.

Although interest in CAVs has been growing exponen-
tially in recent years, with increasing levels of automation
being introduced to newer vehicles, many new technologies
are being developed to intelligent infrastructure-based
equipment on the smart highway construction [19]. Due to
the wide range of potential applications, the objectives, and
framework of control, CAVs will significantly enhance the
safety, mobility, and efficiency of highway networks, espe-
cially in adverse weather conditions. However, the transition
to CAVs is going to be a gradual process. It is expected to see a
mixed flow of HDVs and CAVs for the next 50 years [20, 21].

A mixed flow of HDVs and CAVs in the traffic flow will
lead to a highly heterogeneous traffic management and
control environment. )e dynamics, safety, and mobility of
traffic flow will change due to the mutual interference caused
by the performance differences of HDVs and CAVs, espe-
cially in adverse weather conditions. )erefore, how to
manage and control the mixed traffic flow to improve the
safety, mobility, and efficiency will be a consistent issue
before the CAVs society fully realize. As the CAVs will be
first practically applied in the highway environment, based
on the research and development programs of governments
and enterprises [22], this paper attempts to propose a fleet
control model to manage themixed flow of CAVs andHDVs
passing through the dense fog environment safely on the
highway. )e main work of this paper is as follows:

(1) A cellular automatic- (CA-) based HDV following
model is proposed to analyze the motion charac-
teristics of HDVs in the mixed flow of HDVs and
CAVs, along with considering the following behavior
of drivers in dense fog weather conditions.

(2) A fleet control model based on the distributed model
predictive control (DMPC) algorithm is proposed by
using a mathematical modeling method to manage
the HDVs and CAVs within the fleet. It attempts to
provide a feasible solution for controlling the fleet to
improve the mobility and efficiency of highway
network in adverse weather conditions, especially in
dense fog environment.

In the aspect of dense fog in the highway, the previous
researches mostly focused on the association between the
driver behavior and traffic accidents by considering the
driver’s physiology and psychology and environmental fac-
tors [12, 23, 24]. )is paper focuses on modeling the driver
behavior in the fleet mixed with HDVs and CAVs based on
the Nagel–Schreckenberg (NaScH) cellular automatic (CA)
model, which has advantages in describing the complex
behavior and simulating the characteristics of traffic flow
under various scenarios and traffic conditions [25–28].
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In the aspect of traffic flow control in dense fog envi-
ronment, the researches were aimed at independent HDVs
or CAVs, respectively. )is paper aims to manage the fleet
mixed with HDVs and CAVs based on DMPC, which is
widely used in control engineering and has advantages in
dealing with the uncertainty during dynamical optimization
and controlling operation, particularly in the area of vehicle
dynamics and motion control [29–31].

)e rest of the paper is organized as follows. Section 2
presents the assumptions and scenarios of the proposed
model and formulates the fleet control model for HDVs and
CAVs in dense fog weather conditions. Section 3 analyzes
the feasibility and stability of the fleet control model in dense
fog environment. )e numerical experiments and discus-
sions are presented in Section 4. Section 5 concludes this
article with a summary of the contributions and the limi-
tations of the proposed model, as well as the perspectives on
future work.

2. ProblemDescription andModel Formulation

2.1. Problem Description. Given weather and traffic sensors
installed along the side of the highway networks, the stability
and time delay of communication among vehicle-to-vehicle
(V2V) or vehicle-to-infrastructure (V2I) are important
factors that influence the safety and robustness in fleet
management and control. )e highway road alignment,
gradient, and surface conditions also influence the mobility
and acceleration performance of vehicles in adverse weather
conditions. )e driver’s ability and intention play an im-
portant in car-following modeling and characteristics
analysis in mixed traffic flow. )is paper mainly focuses on
the fleet management and control for HDVs and CAVs in
dense fog weather conditions. As to restrict influence factors,
we assume the following:

(1) )e information interaction time delay between V2V
or V2I is less than 20ms. )e time delay can be
ignored in the CAVs control. )e communication is
uninterrupted and functional in dense fog weather
conditions.

(2) All the drivers in HDVs have the same motivation
that pass through dense fog environment safely. )e
drivers have no significant difference in driving
ability. Nobody breaks out of the fleet during passing
through the dense fog environment.

(3) )e road alignment, gradient, and surface condition
of highway in dense fog environment are consistent.
)e road gradient and surface condition do not affect
the mobility and acceleration performance of vehicles
during passing through the dense fog environment.

As to improve the traffic flow throughput and driving
safety in dense fog weather condition on the highway, the
fleet is composed of HDVs and CAVs. In the fleet, HDVs are
driven by human completely and have not the capacity of
V2I or V2V communication. CAVs are automatically
driving and connect with each other. )e HDVs are sepa-
rated by CAVs in the mixed fleet as to reduce the collision

risk caused by limited visibility in dense fog environment.
)e CAVs serve as an automated guided vehicle (AGV) to
percept traffic conditions in dense fog environment.)e fleet
mixed with HDVs and CAVs is shown as Figure 1.

In Figure 1, the sequence numbers of CAVs and HDVs
are labeled as the indices i and j, respectively. )e number
sequence is from the head to tail of the fleet.
i � 1, 2, 3, . . . , n{ }. j � 1, 2, 3, . . . , n{ }. n is a natural num-
ber. )e ith CAV and jth HDV in the fleet are defined as
CAV(i) and HDV(j), respectively. If j � i, it means that the
HDV(j) is following the CAV(i).

2.2. Model Formulation

2.2.1. 0e State Space Model of CAVs. In the fleet, the speed
of CAV(i) and HDV(j) at time t are defined as vi(t) and
vj(t), respectively. )e locations of CAV(i) and HDV(j) at
time t are defined as di(t) and dj(t), respectively. )e values
of vj(t) and dj(t) can be detected and transferred by the
following CAV. )e minimum safety distance (MSD) be-
tween CAV(i) and HDV(j − 1)(i � j) and between CAV(i)

and HDV(j)(i � j) are defined as [32]

d
∗
i (t) � −

v2i (t)

2 × ai(t)
+ lf, (1)

d
∗
f (t) � vj(t).c −

v2j(t)

2 × aj(t)
+ lf, (2)

where ai(t) and aj(t) are minimum deceleration of the
CAV(i) and HDV(j) at time t, respectively; lf is the critical
headway; and c is the reaction time of drivers.

s∗i (t) is defined as the equilibrium spacing (ES) between
CAV(i) and HDV(j − 1)(i � j) at time t, and
s∗i (t)>d∗i (t) for CAV(i) in the fleet.)e ES of the CAVs in
the fleet has the same value; that is, s∗i (t) � s∗(t),

∀i � 1, 2, . . . .n{ }.
Within the fleet, we pursue the CAV following the HDV

with the same velocity of HDV and keeping a safety distance
in ES. )erefore, the state of CAV(i) within the fleet is
defined as

Xi :� Δdi(t),Δvi(t)􏼂 􏼃
T
, (3)

where Δdi(t) is the distance difference to ES at time t; Δvi(t)

is the speed difference to HDV(j − 1) at time t.

Δdi(t) � dj− 1(t) − di(t) − s
∗
(t). (4)

Δvi(t) � vj− 1(t) − vi(t). (5)

Putting formulas (4) and (5) into formula (3), the state
space model of CAVs within the fleet can be written as

Xi
′(t) � AXi(t) + Bui(t) + Daj− 1(t), (6)

where Xi
′(t) �

Δ di
′(t)

ΔVi
′(t)

􏼢 􏼣, A �
0 1
0 0􏼢 􏼣, B �

0
− 1􏼢 􏼣,

D �
0
1􏼢 􏼣; Δdi

′(t) is the first derivative of Δdi(t), Δvι′(t) is
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the first derivative of Δvi(t), ui(t) is the acceleration of
CAV(i) at time t; aj− 1(t) is the acceleration of HDV(j − 1)

at time t; and j � i and i � 1, 2, 3, . . . , n{ }.
As to describe the dynamic state space of CAVs in the

fleet control, Δts is defined as the discrete sampling time
interval, and Δts > 0. K is the discrete sampling time, and
KΔts ≤ t≤ (K + 1)Δts. If Δts is small enough, the dis-
cretization equation can represent the dynamic moving
process of CAVs [33, 34]. )erefore, the c2d function in
MATLAB is used to disperse the state space of CAVs. )e
discretization equation is written as

Xi(K + 1) � A′Xi(K) + B′ui(K) + D′aj− 1(K), (7)

where Xi(K + 1) �
Δdi(K + 1)

ΔVi(K + 1)
􏼢 􏼣; Xi(K) �

Δdi(K)

Δvi(K)
􏼢 􏼣;

A′ � 2 Δts

0 1􏼢 􏼣; B′ � − (Δ2ts/2)

− Δts

􏼢 􏼣; D′ � Δ
2ts/2
Δts

􏼢 􏼣; ui(K) is

the acceleration of CAV(i) at time K; aj− 1(K) is the ac-
celeration of HDV(j − 1) at time K; j � i and
i � 1, 2, 3, . . . , n{ }; K � 1, 2, 3, . . . ,m{ }; and m is a natural
number, m> 1.

2.2.2. 0e Car Following Model of HDVs in Dense Fog En-
vironment on Highway. Rosey [35] found that when the
front vehicle is driving at a suitable speed in the dense fog
environment, most of the following vehicles will drive and
follow within the visibility range. )erefore, in the fleet
management, it is important to guide the HDVs to keep
safety driving in low-visibility environment by dynamically
imposing restrictions on the velocity of AGV in the fleet, as
to ensure the AGV always in the vision scope of HDVs and
release the nervousness of driver in HDVs. In this situation,
modeling the driver behavior of HDVs and the accuracy of
car-following model of HDVs in dense fog environment will
directly affect the performance of the fleet management,
such as feasibility, reliability, stability, and robustness. )e
cellular automata (CA) model is widely used in traffic flow
analysis and has advantages in describing the complex be-
havior and simulating the characteristics of traffic flow under
various scenarios and traffic conditions [25–28]. However,
as the CA models in the previous researches mainly focused
on interactive between homogeneous vehicles, the current
car-following model based on CA cannot be used directly
between heterogeneous vehicles environment. )erefore,

this paper attempts to model the car-following behavior with
a Nagel–Schreckenberg (NaScH) cellular automatic (CA)
model to describe the driver behavior in dense fog envi-
ronment within the fleet mixed with HDVs and CAVs. )e
model is modeled as follows:

(1) If di(K) − dj(K)≥ L and i � j, then HDV driver will
accelerate. It means that if the AGV is not in the
scope of visibility, the driver of HDV will accelerate
carefully to find the AGV [36]. )e acceleration
action is described as

uj(K) � b (b> 0), (8)

where di(K), dj(K) are the location of CAV(i) and
HDV(j) at the time K, respectively. L is the distance
of visibility in dense fog environment on the high-
way; b is the random value within a reasonable range
of acceleration. )e uncertainty of b reflects the
randomness of the drivers under the interference of
the actual situation.

(2) If di(K) − dj(K)< L and i � j, then the HDV driver
willmake an appropriate adjustment based on the speed
and acceleration of HDV and the distance to AGV.

(i) If di(K) − dj(K)≥df(K), then the HDV driver
will try to keep pace with the velocity of AGV.
)at is, if vi(t)> vj(t) and i � j, the HDV driver
will accelerate to keep pace with the AGV; and if
vi(t)< vj(t) and i � j, the HDV driver will de-
celerate to keep pace with the AGV. )e action is
described as

uj(K) � ui(K) + c, (9)

where df(K) is the MSD between CAV(i) and
HDV(j)(i � j) at the time K. c is the random value
within a reasonable range of acceleration or
deceleration.

(ii) If di(K) − dj(K)<df(K), then the HDV driver will
decelerate. )e deceleration action is described as

uj(K) � f (f< 0), (10)

where f is the random value within a reasonable range of
deceleration.

4 3
di df

AGV

The leading vehicle

3 2 2 1 1

Human-driven vehicle (HDV) RadarConnected automatic vehicle (CAV)

The ith car in the CAVsi The jth car in the HDVsjSuccessful communication

Figure 1: )e layout of fleet in dense fog environment.
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Based on the driver behavior described above, the dy-
namic state of HDVs in the fleet in dense fog environment
on the highway can be described as

vj(K + 1) � vj(K) + uj(K).

dj(K + 1) � dj(K) + vj(K)Δts.
(11)

We verified the effectiveness of the improved CA model
in Section 4.1 and used it as the car-following model of
HDVs in the fleet to further verify the fleet control model.

2.2.3. Distributed Model Predictive Control (DMPC).
Model Predictive Control (MPC) can deal with the dis-
turbance and uncertainty, and it is widely used in the dy-
namic vehicle control analysis and simulation [37]. )e key
difference between MPC and other control methods lies in
the use of rolling optimization and rolling implementation
of the control function, which makes the MPCmore suitable
for the complex traffic environments with low visibility.
)erefore, CAVs using MPC can respond to the latest status
of HDVs at every control moment. On the other hand, in the
fleet which is mixed with HDVs and CAVs, it demands for
the real-time and dynamical interactive among the CAVs to
pass through the dense fog environment safely. As the
central communication and control will increase time delay,
computation complexity and reduce stability in the fleet
control [38], the distributed control mode can take the
advantage of CAVs computation, communication ability
and reduce the time delay of communication and improve
the stability of the system [39]. In addition, according to the
layout of the fleet as shown in Figure 1, each CAV has the
ability to perform the optimal control by itself. )erefore,
this paper attempts to use the distributed model predictive
control (DMPC) model to control the fleet in dense fog
environment.

)e interaction of CAVs within the fleet is described as
in Figure 2. In the dense fog environment, the CAVs need to
adjust their state according the state of the following HDVs
in the fleet. As to adjust the state accurately, CAV(i) needs to
obtain the driving state of HDV(j − 1) from CAV(i − 1)

which can perceive the speed, acceleration, and location of
HDV(j − 1). At time K, CAV (i − 1) processes the detected
historical information, such as locations, speeds of CAV (i −

1) and HDV (j − 1). )en, CAV (i − 1) will calculate the
length p and the acceleration of HDV (j − 1) in the pre-
diction horizon. Furthermore, CAV(i − 1) will pass the
information, such as dj− 1(K), vj− 1(K), aj− 1(K), aj− 1(K + 1),
. . .,aj− 1(K + p) to CAV(i). In synchronization, CAV(i − 1)

completes the optimization control according to the in-
formation transmitted by CAV(i − 2). )e optimization
control process can be divided into two parts: (1) the fleet
state prediction and (2) the fleet control based on DMPC.

(1) 0e Fleet State Prediction. In the processes of the fleet
passing through the dense fog environment, CAV(i − 1)

perceives the speeds and locations of HDV(j − 1) then
evaluates the accelerations of HDV(j − 1) at the time
K. )en, the CAV(i − 1) transfers these information of

HDV(j − 1) to CAV(i). In addition, CAV(i − 1) processes
the speeds and locations of HDV(j − 1) before information
interaction between CAVs (j � i and i � 2, 3, . . . , n{ }). )e
CA-based HDVs following model makes the trajectory of
HDV(j − 1) consistent with CAV(j − 1) in a spatial-tem-
poral delay τj− 1(K) at time K, as shown in Figure 2.)us, the
locations dj− 1(K + ρ) and speeds vj− 1(K + ρ) of HDV(j − 1)

in prediction horizon can be obtained by dynamical equa-
tion. With the spatial-temporal delay τj− 1(K), the acceler-
ations or decelerations aj− 1(K + ρ) ρ � (0, 1 . . . .p − 1) of
HDV(j − 1) in the prediction horizon can be predicted by
CAV(i − 1) based on kinematic equation as

dj− 1(K + ρ + 1) � dj− 1(K + ρ) + vj− 1(K + ρ) × Δts

+ 0.5 × aj− 1(K + ρ) × Δt2s .
(12)

)e spatial-temporal delay τj− 1(K) can be obtained by
curve matching based on Gong and Du’s research [29]. )e
spatial-temporal delay matching curve is shown in Figure 3.

In Figure 3, it can be seen that there is a critical pa-
rameter Te (time range) in curve matching. And the sim-
ulation results showed that if the time range Te is longer, the
more effective information and accurate can be obtained in
the prediction. However, the longer time range Te, the more
computation resources are needed in CAVs. As to balance
the calculation load and the accuracy of prediction, this
paper sets the time range as Te � 100s based on Chen’s
research [40].

Hj,q1 � (dj,qh
, tj,qh

), qh � 1, 2, 3, . . . , |Hj|􏽮 􏽯 and Ci,qc
�􏽮

(di,qc
, ti,qc), qc � 1, 2, 3, . . . , |Ci|} (i � j) are the historical

trajectory and current trajectory of HDV(j) and CAV(i),
respectively, in Figure 3. dj,qh

, tj,qh
are the location and time

of the qh point in the historical trajectory of HDV(j), re-
spectively. di,qc

, ti,qc are the location and time of the qc point
in the current trajectory of CAV(i), respectively. )e pro-
cedure of spatial-temporal delay matching is described as
follows:

Step 1. Find the smallest distance point from Ci to c

based on the least square method as

D Hj,Ci,qc
􏼐 􏼑 � min Hj − C2

i,qc

�����

�����
2
, (13)

where D(Hj,Ci,qc
) is the minimum distance from the qc

point on Ci to Hj.
Step 2. Calculate the minimum offset of spatial-tem-
poral delay after finding the matching points pair of qh
and qc in historical trajectory and current trajectory,
respectively.

MinFtI �
1
KI

􏽘

KI

K�1
HI

j,K + tI − CI
i,K

�����

�����
2
, (14)

where FtI is the minimum offset of spatial-temporal
delay between Ci and Hj; (HI

j,K, CI
i,K) is the Kth pairing

point in the Ith iteration; KI is the number of matching
points in the Ith iteration; and tI is the delay vector.
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t∗I � −
􏽐

KI
k�1 HI

j,K − CI
i,K􏼐 􏼑

KI
, (15)

where t∗I is the best solution of tI.
Step 3. Repeat Step 1 and Step 2 until t∗I is small
enough. )en, the HDV(j) trajectory can be predicted
by the sum of t∗I as

− τj(K), dsj(K)􏼐 􏼑
T

� 􏽘 t
∗
I , (16)

where dsj(K) is the spatial delay of HDV(j) at the time K;
− τj(K) is the temporal offset of HDV(j) at the time K.

)en, the length of prediction horizon p of the system at
the time K can be calculated as

p �
τj− 1(K)

Δts

􏼢 􏼣 + 1. (17)

(2) 0e Fleet Control Based on DMPC. In the fleet.
CAV(i)can obtain the following information by information
interaction and prediction.

(1) )e location and speed of HDV(j − 1) at time K
(2) )e accelerations or decelerations of HDV(j − 1) in

prediction horizon and the length of prediction horizon

MPC
prediction model

MPC
control model

MPC
prediction model

aj–1 (K)

dj–1 (K) vj–1 (K)

MPC
control model

Reference
index

CAV (i – 1) CAV (i)

Reference
index

Detect the state of
HDV (j – 1) at K

HDV (j – 1) delay
prediction model

Detect the state of
HDV (j) at K

HDV (j) delay
prediction model

Figure 2: CAVs information interaction and DMPC control in the fleet.
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Figure 3: Spatial-temporal delay matching curve for HDV in prediction.
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CAV(i) obtains these pieces of information to update the
state space of the system in horizon prediction and fleet control.
In addition, the aim of the fleet control in dense fog envi-
ronment is passing through the dense fog environment safely
and steadily, keeping the vehicles in safety distance and within
the scope of visibility. )us, the object function of the fleet
control in dense fog environment can be described as

minJi(K) � 􏽘

p

s�1
X

K
i,K+s􏼐 􏼑

T
Qi X

K
i,K+s􏼐 􏼑 + Ri u

K
i，K+s− 1􏼐 􏼑

2
􏼚 􏼛

+ X
K
i,K+p􏼐 􏼑

T
Wi X

K
i,K+p􏼐 􏼑,

(18)

where XK
i,K+s is the (K + s)th (s � (1, 2, . . . , p)) state space of

the system which is predicted at time K; uK
i，K+s− 1 is the

(K + s)th control variable which is calculated at time K; XK
i,K+p

is the terminal state space of system which is predicted at time
K; and Qi, Ri are weight matric or weight value, respectively.
Qi is symmetric and positive definite matric, which is usually
designed as Qi � diag(αi1, αi2)(αi1 > 0, αi2 > 0); Ri is the co-
efficient that affects control variable and driver comfort, Ri > 0.
Qi and Ri are the critical coefficient parameters in the fleet
control and affect the stability of the fleet.

In formula (18), a comprehensive balanced control method
is used to ensure the CAV(i) performing the best operation at
time K. It adopts two items to achieve this goal.)e first item is
(XK

i,K+s)
TQi(XK

i,K+s), which attempts to reduce the position and
speed errors of CAV(i) and HDV(j − 1) during passing
through the dense fog environment. And Ri(uK

i，K+s− 1)
2 is

used to reduce CAV(i)’s energy consumption and improve the
comfort. )e second item is (XK

i,K+m)TWi (XK
i,K+m), which is

used to reduce the errors between the state variables and the
equilibrium state of the system at the end of the prediction
horizon. In this study, Wi is the solution of the discrete al-
gebraic Riccati equation as formula (20), which is used to
ensure the local asymptotic stability of the fleet [41].

Wi � Qi + A′ Wi − WiB′ Ri + B′
T
WiB′􏼒 􏼓

− 1
B′

T
Wi􏼢 􏼣A′.

(19)

)e constraints of object function in the fleet control are
set as follows:

(1) Control constraints:

umin ≤ u
K
i,K+s ≤ umax ∀s ∈ 0, 1, 2, . . . p − 1􏼈 􏼉. (20)

(2) State constraints:

vmin ≤ v
K
i,K+s ≤ vmax ∀s ∈ 1, 2, 3, . . . ..p􏼈 􏼉, (21)

where vmin and vmax are the minimum and maximum speed
of the fleet during passing through the dense fog environ-
ment on highway, respectively.

ΔdK
i,K+s + s

∗
(t)≥d

∗
i (K + s |K), (22)

where ΔdK
i,K+s is the (K + s)th distance difference of system

which is predicted at time K; d∗i (K + s |K) is the (K + s)th

MSD of CAV(i) which is predicted at time K.

Δd−
i ≤Δd

K
i,K+s ≤Δd

+
i ∀s ∈ 1, 2, 3, . . . p􏼈 􏼉, (23)

where

Δd−
i � − max Δdr

i− 1,σ
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑for i> 1 for ∀σ ∈ 1, 2, 3, . . . ,K{ },

Δd+
i � max Δdr

i− 1,σ
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑for i> 1 for ∀σ ∈ 1, 2, 3, . . . ,K{ },

(24)

where Δdr
i− 1,σ is the actual state of CAV(i − 1) at time σ.

)e constraint formulas (23) and (24) are used to
guarantee the stability of the fleet.

3. Analysis Feasibility and Stability of Fleet
Control in Dense Fog Environment

Based on the theory of Lyapunov stability [42, 43], if the fleet
is in the status of feasibility, it means that it can find out the
optimal control based on the state constraints. Within the
feasibility analysis, the stability analysis includes analysis of
the asymptotic stability and string stability. )e asymptotic
stability refers to the ability of the elements in the system to
return to the initial stable states in a short period when
subjected to slight disturbances. In this paper, it refers to the
CAVs in the fleet. And the string stability reflects the ability
of the system (the fleet) to resist slight disturbances.
)erefore, the feasibility and stability analysis for the fleet is
the premise of performing optimal control. )rough the
analysis, it can tell us whether the optimal control can be
found out to keep the fleet stable.

3.1.0e Feasibility of Fleet Control. In the fleet control, as to
enforce the feasibility of the controller, the controller should
have the capability to endure a certain range of disturbances.
As to improve the feasibility of the fleet, the constraints of
the fleet can be rewritten as

U � uKi，K+s|umin ≤ u
K
i，K+s ≤ umax, vmin ≤ v

K
i，K+s􏽮

≤ vmax, d
K
j− 1,K+s − d

K
i,K+s +

vK
i,K+s􏼐 􏼑

2

2umin

− lf ≥ 0, d
K
j− 2,K+s − d

K
i− 1,K+s

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≥ d
K
j− 1,K+s − d

K
i,K+s

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼛,

(25)

where uKi，K+s is the sth control value of CAV(i) in prediction
horizon at time K; dK

j− 1,K+s is the sth location of HDV(j − 1)

in prediction horizon at time K; dK
i,K+s is the sth location of

CAV(i) in prediction horizon at time K; and vKi,K+s is the sth

speed of CAV(i) in prediction horizon at time K,
j � i and i � 2, 3, . . . , n{ }(n ∈ R+), s � (1, 2, . . . p).

Assume that the (s − 1)th optimal control is feasible; then
the speed constraint in formula (25) can be obtained as
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vmin ≤ v
K
i,K+s− 1 + ΔvKi,K+s− 1 ≤ vmax. (26)

)en, the range of uK
i，K+s− 1 can be obtained by writing

the formula 26 as

vmin − vKi,K+s− 1

Δt
≤ uKi，K+s− 1 ≤

vmax − vKi,K+s− 1

Δt
. (27)

Define uv1 � (vmin − vKi,K+s− 1/Δt) and uv2 � (vmax−

vKi,K+s− 1/Δt). As the (s − 1)th optimal control is feasible, and
vmin ≤ vKi,K+s− 1 ≤ vmax, it can deduced that uv1 < 0 and uv2 > 0.
)us, we can get the control value that satisfies both the
acceleration and speed value in the fleet can be restricted to
satisfy the constraints and make sure the fleet is feasible.

In addition, as the (s − 1)th optimal control is feasible,
the MSD constraint in formula (25) can be obtained as

d
K
j− 1,K+s − d

K
i,K+s +

vKi,K+s􏼐 􏼑
2

2umin
− lf � d

K
j− 1,K+s− 1 + vKj− 1,K+s− 1Δt +

Δt2

2
a
K
j− 1,K+s− 1􏼠 􏼡

− d
K
i,K+s− 1 + vKi,K+s− 1Δt +

Δt2

2
u
K
i,K+s− 1􏼠 􏼡 +

vK
i,K+s− 1 + uK

i,K+s− 1􏼐 􏼑
2

2umin
− lf �
Δt2

2umin
u
K
i,K+s− 1􏼐 􏼑

2

+
vKi,K+s− 1Δt􏼐 􏼑

umin
−
Δt2

2
⎛⎝ ⎞⎠u

K
i,K+s− 1 + d

K
j− 1,K+s− 1 − d

K
i,K+s− 1􏼐 􏼑􏽨

+ Δt vKj− 1,K+s− 1 − vKi,K+s− 1􏼐 􏼑 +
Δt2

2
a
K
j− 1,K+s− 1 +

vKi,K+s􏼐 􏼑
2

2umin
− lf

⎤⎥⎥⎥⎦ � 0,

(28)

where aK
j− 1,K+s− 1 is the (s − 1)th control value of HDV(j − 1)

in prediction horizon at time K; vK
j− 1,K+s− 1 is the (s − 1)th

speed of HDV(j − 1) in prediction horizon at time K.

Givenumin < 0 and dK
j− 1,K+s − dK

i,K+s + ((vK
i,K+s)

2/
2umin) − lf ≥ 0, then uK

i,K+s− 1 is between the two roots of
formula 30

umsd1 �
umin

2
+

uv1

Δt
+

umin

2Δt
��
C

√
, (29)

umsd2 �
umin

2
+

uv1

Δt
−

umin

2Δt
��
C

√
, (30)

C �
Δt2umin + 8 lf − dK

j− 1,K+s− 1 + dK
i,K+s− 1􏼐 􏼑 − 4Δt vKj− 1,K+s− 1 + vKj− 1,K+s − vKi,K+s− 1􏼐 􏼑

umin
. (31)

As the (s − 1)th optimal control is feasible, then
lf − dK

j− 1,K+s− 1 + dK
i,K+s− 1 < 0. If the control interval Δt is small

enough, the vehicles in the fleet will have little difference in
speed. )us, vKj− 1,K+s− 1 + vKj− 1,K+s − vKi,K+s− 1 > 0, A> 0, and
umsd1 < umsd2.

u1 � max umin, uv1, umsd1􏼐 􏼑,

u2 � min umax, uv2, umsd2( 􏼁,
(32)

where u1 is the lower boundary of the constraint; u2 is the
upper bound of the constraint.

Givenuv1 < 0umin < 0, and 0<Δt< 1, the change of uv1
can be obtained as

umsd1 <
uv1

Δt
< uv1. (33)

)en, u1 � max(umin , uv1) according to formula (33).
Based on formulas (1), (22), (27), (30), and (31), the range of
umsd2 can be obtained as

umsd2 ≥
uminΔt + 2uv1 +

������������������������
Δt2u2

min + 8u2
v1 + 4Δt2uminuv1

􏽱

2Δt

>
uminΔt + 2uv1 + uminΔt + 2

�
2

√
uv1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

2Δt
> 0.

(34)

)us, umsd2 > uv1 and umsd2 > umin. If uv1 < 0 and
umin < 0, then u2 > u1. It can be concluded that the first three
constraints in formula (25) are feasible.

Next, it can be found that the fourth constraint in
formula (25) makes the constraint (25) loose. )at is due to
the fact that |dK

j− 2,K+s − dK
i− 1,K+s|> (− ((vKi− 1,K+s)

2/2umin) + lf),
which (− (vK

i− 1,K+s)
2/2umin)􏽮 􏽯 is approximately equal to

(− (vK
i,K+s)

2/2umin) when the fleet is running normally. )us,
the fourth constraint is more relaxed than the third con-
straint in formula (25). In other words, the controller rolling
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optimization at the control time is feasible under a certain
range of disturbances.

3.2. 0e Stability Analysis for Fleet Control. Stability is an
important feature for the fleet. In this study, we analyze the
asymptotic stability of the single system and the string
stability of the formation. According to the theorem de-
veloped by Mayne [44], Zhou [30], and the Lyapunov sta-
bility principle [42, 43], if the optimal control meets the
following five conditions, the asymptotic stability of the
system can be guaranteed:

(1) Xi,e ∈ Zf

(2) Kf(XK
i,K+s, aK

j− 1,K+s) ∈ U ∀XK
i,K+s ∈ Zf

(3) A′XK
i,K+s + B′Kf(XK

i,K+s, aK
j− 1,K+s) +

D′aK
j− 1,K+s ∈ Xf , ∀XK

i,K+s ∈ Zf

(4) F(A′XK
1,K+p + B′Kf(XK

1,K+p)) − F(XK
1,K+p) +

L(A′XK
1,K+p + B′Kf(XK

1,K+p))≤ 0 XK
1,K+p ∈ Zfand

(5) CAV(i) is robust recursive feasibility,∀i ∈
(2, 3, . . . n).

Here, Xi,e is the equilibrium state; Zf is the terminal
state domain; Kf is the implicit control law; F, L are the cost
functions, respectively. )e other symbols have the same
meaning as above.

Zf is set as a subset of the robust invariant set according
to Zhou [30] as

i,RIS � X
K
i,K+s � ΔdKi,K+s,Δv

K
i,K+s, a

K
j− 1,K+s􏽨 􏽩⊆ i,RIS A′XK

i,K+s + B′Kf X
K
i,K+s, a

K
j− 1,K+s􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌􏼚

+ D′aK
j− 1,K+s ∈ i,RIS,Kf X

K
i,K+s, a

K
j− 1,K+s􏼐 􏼑 ∈ Uand a

K
j− 1,K+s ∈ U􏽯.

(35)

Obviously, Xi,e ∈ i,RIS and let Zf ⊆ i,RIS; then, con-
ditions (1), (2), and (3) as mentioned above are fulfilled.

According to formula (7) and formula (18), condition (4)
can be reorganized as

A′XK
1,K+p + B′Kf X

K
1,K+p􏼐 􏼑􏼐 􏼑

T
Wi A′XK

1,K+p + B′Kf X
K
1,K+p􏼐 􏼑􏼐 􏼑 − X

K
1,K+p􏼐 􏼑

T
Wi X

K
1,K+p􏼐 􏼑

+ A′XK
1,K+p + B′Kf X

K
1,K+p􏼐 􏼑􏼐 􏼑

T
Qi A′XK

1,K+p + B′Kf X
K
1,K+p􏼐 􏼑􏼐 􏼑 + Ri Kf X

K
i,K+p, a

K
j− 1,K+p􏼐 􏼑􏼐 􏼑

2
≤ 0.

(36)

Assume the implicit control law Kf(XK
1,K+s) � kXK

1,K+s
(s � (1, 2, . . . , p), formula (36) can be rewritten as

X
K
1,K+p􏼐 􏼑

T
A′ + B′k( 􏼁

T
Wi A′ + B′k( 􏼁 − Wi􏽮

+ A′ + B′k( 􏼁
T
Qi A′ + B′k( 􏼁 + Rik􏽯 X

K
1,K+p􏼐 􏼑≤ 0.

(37)

Let ϑ � (A′ + B′k)TWi(A′ + B′k) − Wi + (A′ + B′k)T

Qi(A’ + B’k) + Rik and k � 0; the first three conditions are
also satisfied and ϑ will be simplified as

ϑ � A′( 􏼁
T
Wi A′( 􏼁 − Wi + A′( 􏼁

T
Qi A′( 􏼁, (38)

whereA′ �
2 Δts

0 1􏼢 􏼣; Qi � diag(αi1, αi2). Let Wi � diag

(βi1, βi2); then ϑ can be rewritten as

ϑ �
3βi1 + 4αi1, 2Δtsβi1 + 2Δtsαi1,

2Δtsβi1 + 2Δtsαi1, Δt2sβi1 + Δt2sαi1 + αi2.
􏼢 􏼣. (39)

If ϑ is a negative semidefinite matrix, ϑ satisfies the
conditions as follows:

3βi1 + 4αi1 ≤ 0, (40)

3βi1 + 4αi1( 􏼁 Δt2sβi1 + Δt2sαi1 + αi2􏼐 􏼑

− 2Δtsβi1 + 2Δtsαi1( 􏼁
2 ≥ 0.

(41)

It can be deduced that formula (36) will be proved under
formula (40). Furthermore, as the appropriate weight ma-
trixes Q, w, and R are selected, formula (36) can be guar-
anteed in different Kf which satisfies conditions (1), (2), and
(3) as mentioned above. )us, the above four conditions
have proved to be feasible; it can be concluded that the single
system of fleet is asymptotically stable.

As to prove CAV(i) is robust recursive feasibility, it
should be ensured that CAVs can predict HDVs accurately
and interact successfully betweenCAVs. In the stability
theory of dynamical systems, the string stability is well
known as the higher level of formation control, which re-
quires the control error gradually decreasing during the
formation propagation. Based on the constraints of the
object function of fleet control in dense fog environment, it
can further set the constraint to meet the string stability as

ΔdK
i,K+s

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤max Δdr
i− 1,σ

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑, (42)
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where ΔdK
i,K+s is the control error of state space at the time

K + s which is predicted by of CAV(i) at the time K.
In the restriction in execution, DMPC-based fleet exe-

cutes the first control variable in each time; ΔdK
i,K+s can be

defined as

ΔdK
i,K+1 � Δdr

i,K+1. (43)

)en, formula (29) can be replaced as

Δdr
i,K+1 ≤max Δdr

i− 1,σ
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑. (44)

If the restrictions in formula (44) are adopted in the fleet
control, the fleet will be consistent with the performance of
CAVs formation.)e control error can gradually decrease in
the fleet during the formation propagation [11]. However, in
the fleet, the uncertainty and randomness are generated by
HDVs drivers.)e CAVs following the HDVs need a greater
control action to compensate the uncertainty and ran-
domness made by the HDVs drivers. )e string stability
between CAVs can ensure the global asymptotic stability by
reducing the control error during the formation propaga-
tion. )erefore, the fleet control in this paper can provide a
nonstrict string stability during passing through dense fog
environment on the highway.

4. Numerical Experiments

As to verify the performance of fleet in dense fog envi-
ronment on highway, this paper uses numerical experiments
to analyze the ability and capability of fleet with the pro-
posed control model. Firstly, we verified the effectiveness of
the improved HDV car-following model; that is, the model
can reflect the driving characteristics of the driver in a dense
fog environment condition. Secondly, we discussed the
driving conditions of the fleet under different visibility to
verify the feasibility and asymptotic stability of DMPC.
)en, we changed the order of HDVs in the fleet and further
analyzed the effective ability of the DMPC-based control
model. Finally, we studied the relationship between string
stability and control requirements for the fleet. )e nu-
merical experiments are performed by MATLAB R2018b on
Windows 10 with Intel® Core™ i5-6200U CPU @ 2.30GHz
RAM 4.00GB.

4.1. 0e CA-Based NaScH Car following Model Verification.
Whether the HDV car-following model meets the driving
characteristics of drivers in dense fog weather conditions is
the first most important factor in managing and controlling
the fleet mixed with HDVs and CAVs efficiently and pre-
cisely. Siebert and Wallis [45] had studied “how speed and
visibility influence preferred headway distances in highly
automated driving.” Based on the study of Siebert andWallis
on the relationship between visibility and speed, the pro-
posed car-following model is verified in three parameters
groups. )e parameters setting in the car-following model is
shown in Table 1. VL is the limited speed of fleet in the
visibility L. )e initial headway between CAVs and HDVs in
the fleet is set equal to the visibility L in the simulation. )e

random value of b, c, and f is generated by the MATLAB
random function within a defined range in Table 1.

It can be seen from Figures 4(c), 4(f), and 4(i) there is no
significant different in acceleration characteristics in CAVs
or HDVs under different visibility conditions. )e control
behavior of CAVs and HDVs seems to have the same
characteristics. It means that the proposed car-following
model can describe the characteristics of HDVs drivers
trying to keep pace with AGV in the dense fog environment
within the fleet. Based on this characteristic, the HDVs
trajectories are following the CAVs trajectories in the fleet in
different visibility conditions, as shown in Figures 4(a), 4(d),
and 4(g). As to follow up the AGV within the scope of
visibility, the HDV driver tries to keep pace with the speed of
AGV by dynamically accelerate up or decelerate down the
HDV, as shown in Figures 4(b), 4(e), and 4(h), corre-
sponding to Figures 4(c), 4(f ), and 4(i), respectively. It is
worth noting that there is an acceleration behavior at the
initial stage of HDV speed diagram in Figures 4(b), 4(e), and
4(h). It is due to the fact that the initial headway in the fleet is
set equal to the distance of visibility. AGV is in the edge of
visibility. )erefore, the HDV driver accelerates to keep pace
with the AGV. )e CA-based NaScH car-following model
can reflect this phenomenon. As shown in Figure 4, the
trajectory, speed, and acceleration of HDVs are keeping pace
with the AGV in the dense fog environment within the fleet.

As to further verify the effectiveness of the proposed car-
following model in the dense fog environment with the dis-
tance of visibility as 70m, the initial headway is set as 30m,
50m, and 70m in the verification simulation, respectively. In
this situation, 30m is less than the MSD. 50m is a little more
than the MSD. 70m is equal to the distance of visibility. As
shown in Figure 3, if the initial headway is 30m,HDVwill slow
down to keep always from the AGV until the distance is in the
safety distance. If the initial headway is 70m, HDV will ac-
celerate to keep pace with AGV and keep the AGV within the
scope of visibility. If the initial headway is 50m, the HDV will
maintain the following state to keep the AGV within the scope
of visibility and keep a safety distance from the AGV. )e
proposed car-following model also reflects these characteristics
of HDVs drivers in the dense fog environment within the fleet.

From the phenomena shown in Figures 4 and 5, they are
consistent with the assumptions of HDV driver character-
istics discussed above and falls into the relationship of speed
and visibility as studied by Siebert and Wallis [45]. )ere-
fore, the proposed car-following model above can effectively
describe the driver behavior within dense fog environment
in the fleet control.

4.2. 0e DMPC-Based Fleet Control Model Verification.
In this section, we focus on verifying the feasibility and
stability of the mixed flow of HDVs and CAVs within the
fleet. In the fleet, three CAVs and three HDVs are used to
form the fleet in the numerical experiments. CAV alternates
with HDV in the fleet. )at is, the first, third, and fifth are
CAV vehicles, and the second, fourth, and sixth are HDV
vehicles. )ree limited visibility ranges in dense fog envi-
ronment are used as the fleet scenarios on the highway. )e
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Table 1: )e parameters in the car-following model of HDVs.

Parameter L (m) VL (m/s) b c f df (m) Initial headway (m)

Simulation 1 40 11 (1, 2) (− 0.5, 0.5) (− 1, 0) 21 40
Simulation 2 60 17 (1, 3) (− 0.5, 0.5) (− 1, 0) 37 60
Simulation 3 70 19 (1, 3) (− 0.5, 0.5) (− 1, 0) 44 70
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Figure 4: Continued.
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parameters setting in the numerical experiments are shown
in Table 2.

In the control performance as shown in Figures 6(a), 6(b),
7(a), 7(b), 8(a), and 8(b), CAVs can be basically consistent with
theHDVs in trajectory and speed under different driving states,
which shows that the controller can guarantee the safe oper-
ation of the fleet. Furthermore, as shown in Figures 6(c), 7(c),
and 8(c), the spacing in the fleet is controlled within the safety
distance under different visibilities. It illustrates that the DMPC
predictionmodel can accurately predict the states of HDVs and
passes the information to the rear CAVs. On the other hand,
the fleet can maintain the ideal distance between CAVs and
HDVs under random disturbance. It shows that the system can
ensure asymptotic stability. It should be noted that the

continuous fluctuation of the states in the experiments is the
result of the joint effect of the experimental inputs and the
randomness of HDVs.

4.3. Further Verification by Adjusting the Order of HDVs and
CAVs in the Fleet. As to further test the mixed flow of HDVs
and CAVs and find out which layouts of the fleet have better
performance by the DMPC-based control model, we
changed the following number of HDVs between CAVs to
two HDVs, three HDVs, and four HDVs in the fleet, re-
spectively. We call these as regular alignment of the fleet, as
shown in Figure 9. )en, we changed the queue of the fleet
with one HDV between CAVs and three HDVs between
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Figure 4: )e car-following behavior of HDVs in the fleet within dense fog environment on highway. (a) )e vehicle location of CAVs and
HDVs (L� 40m). (b) )e vehicle speed of CAVs and HDVs (L� 40m). (c) )e vehicle acceleration of CAVs and HDVs (L� 40m). (d) )e
vehicle location of CAVs and HDVs (L� 60m). (e) )e vehicle speed of CAVs and HDVs (L� 60m). (f ) )e vehicle acceleration of CAVs
and HDVs (L� 60m). (g) )e vehicle location of CAVs and HDVs (L� 70m). (h) )e vehicle speed of CAVs and HDVs (L� 70m). (i) )e
vehicle acceleration of CAVs and HDVs (L� 70m).
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Figure 6: Continued.
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vironment on highway.

Table 2: )e parameters in the numerical experiments.

Visibility(m) VL(m/s) b(m) c(m) f(m) d∗j (m) d∗i (m)

50 14 (1,2) (− 0.5,0.5) (− 0.5,0) 28 14
70 19 (1,3) (− 0.5,0.5) (− 1,0) 44 20
90 25 (1,4) (− 0.5,0.5) (− 2,0) 66 41
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Figure 6:)e fleet in dense fog environment with the visibility being 50m. (a))e location of formation. (b))e speed of formation. (c))e
spacing of formation.
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Figure 7:)e fleet in dense fog environment with the visibility being 70m. (a))e location of formation. (b))e speed of formation. (c))e
spacing of formation.
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CAVs. We call this as irregular alignment of the fleet, as
shown in Figure 10.)e car-following model between HDVs
still used the NaScH CA-based car-following model in the
experiments.

Based on the NaScH CA-based car-following model of
HDV and the DMPC-based control model, the fleet in the
experiments which have different regular alignment or ir-
regular alignment were all can drive normally, as shown in
Figures 11(a), 11(b), 11(d), 11(e), 11(g), and 11(h). However,
as the number of HDVs between the CAVs within the fleet is
increasing, the uncertainty of the fleet is also increasing. For
example, by comparing among Figures 11(b), 11(e), and
11(h), it can be seen that as the number of HDVs between
the CAVs within the fleet increases to two or three HDVs,
the speed volatility of the fleet increases significantly.

In addition, the randomness of HDVs will be transmitted
and accumulated between the adjacent HDVs. As shown in

Figures 11(c), 11(f), 11(i), and (12), when the preceding
vehicles in adjacent HDVs tend to travel at a higher speed and
maintain an MSD from the preceding vehicles, the following
vehicles in adjacent HDVs also have the same tendency. And
the spacing fluctuation of the CAVs after the HDVs is clearly
larger than that of the front CAVs. It is worth noting that the
NaScH CA-based car-following model does not include ag-
gressive drivers. If there are aggressive drivers in the fleet, it
will be difficult to control and optimize the fleet. )at is, the
higher the penetration rates of CAV in the formation, the
more effective the DMPC-based control model.

4.4. 0e Stability of Fleet Control Verification. Finally, the
relationship between string stability and control quality is
checked. )e relationship checking is carried out under the
dense fog environment with the visibility being 70m. )e
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Figure 8:)e fleet in dense fog environment with the visibility being 90m. (a))e location of formation. (b))e speed of formation. (c))e
spacing of formation.
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Figure 9: )e regular alignment of the fleet.
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Figure 10: )e irregular alignment of the fleet.
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Figure 11: Continued.
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Figure 13: )e fleet control under low stability requirement. (a) )e acceleration of CAVs. (b) )e control error of CAVs.
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Figure 14: )e fleet control under high stability requirement. (a) )e acceleration of CAVs. (b) )e control error of CAVs.
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corresponding parameters are set as in Table 2. )e ex-
periments are checked under the low control quality and
high control quality for the fleet in dense fog environment,
respectively.)e experiments results are shown in Figures 13
and 14.

As shown in Figure 13(a), CAV(3) and CAV(2) are not
significantly difference in acceleration. However, the control
error of CAV(3) is greater than theCAV(2), as shown in
Figure 13(b). In Figure 14(a), CAV(3) is greater than the
CAV(2) in acceleration, but the control error of CAV(3) is
smaller than the CAV(2), as shown in Figure 14(b). )e
reason is that when the fleet is controlled under low stability
requirements, the system has low control requirements for
the CAV(3). CAV(3) performs the control strategy without
pursuing the purpose of reducing errors in the fleet. In this
situation, due to the randomness of HDV, the control error
of CAV(3) will be greater than that of the CAV(2).
However, when the fleet is controlled under high stability
requirement, the CAV(3) must ensure the control error is
smaller than the CAV(2). As to achieve this requirement
and offset the randomness of HDVs, the CAV(3) needs to
perform larger acceleration or deceleration. It can be con-
cluded that the string stability of fleet is not easy to pursue.
However, it is feasible to seek the balance of control effi-
ciency and stability in fleet control based on DMPC by using
a reasonable acceleration range for CAVs to make the fleet
safety in passing through the dense fog environment.

5. Conclusions

)is paper provides a control model for the fleet mixed with
HDVs and CAVs in dense fog environment on highway
based on distributed model prediction control (DMPC).
Firstly, the state space model of CAVs is proposed to de-
scribe the state of CAVs within the fleet in dense fog en-
vironment. )e paper used the discretization equation to
describe the dynamical changing of state of CAVs in the fleet
control. Secondly, a car-following model of HDVs in dense
fog environment on highway is presented. It is used to
describe the characteristic of the driver in dense fog envi-
ronment as to follow the AGV within the scope of visibility
and keep safety distance from the AGV. )e simulation
results show that the phenomenon shown in the simulation
is consistent with the assumptions of HDV driver charac-
teristics and fall into the relationship of speed and visibility
as studied by Siebert andWallis [45].)irdly, the distributed
serial model predictive control (DMPC) model is used to
control the fleet in dense fog environment. )e controlling
procedure is divided into two parts: (1) the fleet state pre-
diction and (2) the fleet control based on DMPC. Predicting
the states of the system based on DMPC focuses on the
HDVs perception and prediction by CAVs and transfer
between CAVs. Rolling optimization based on DMPC is
used to optimize the local object of fleet control in dense fog
environment with constraints. Rolling implementation of
the control function is used to ensure the local equilibrium
state of CAVs in the fleet control. )en, the proposed fleet
control model is analyzed to meet the characteristics of the
system asymptotic stability, and it can provide a nonstrict

string stability during passing through dense fog environ-
ment on the highway. Finally, numerical experiments under
different visibility in dense fog environment on highway are
used to verify the effectiveness of the proposed model. )e
experiments results show that the proposed DMPC control
algorithm can make CAVs consistent with HDVs under
different visibilities. )e spacing between CAVs and HDVs
can be controlled within a predetermined safety distance.
)e effectiveness of the DMPC-based is highly related to the
penetration rates of CAVs in the fleet and the alignment of
the fleet. Furthermore, the systems of the fleet controlled
based on the proposed model can guarantee the local as-
ymptotic stability and global nonstrict string stability,
simultaneously.

)is paper provides the approach to control the fleet
mixed with HDVs and CAVs in dense fog environment on
highway. However, the method and model of the present
study are not free from limitations. )e first limitation is
that that the present study only considers the impact of
visibility. However, in dense fog environment, restrictions
such as road friction and driver specificity also greatly affect
the fleet driving on the highway. )e second limitation is
that the arrangement of the fleet vehicles in this study
cannot guarantee the safety of the system that the HDV
follows CAV. A third limitation is that this study did not
consider the effect of the delay between CAVs in DMPC
control.

Furthermore, there are some topics that remain to be
studied. Further research work includes the following. (1)
Other restrictions, such as communication delay, road
friction coefficient, and drivers’ specificity in dense fog
environment, should be considered in the fleet. (2) Strict
string stability of the fleet can be achieved through im-
proving CAV prediction methods or communication
technology. (3) At present, only the simulator-based tests are
performed; the hardware experiments, in-vehicle tests, and
scenarios’ tests for the proposed modeling methods should
be carried out in the future.
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To better understand the mechanism of air traffic delay propagation at the system level, an efficient modeling approach based on
the epidemicmodel for delay propagation in airport networks is developed.(e normal release rate (NRR) and average flight delay
(AFD) are considered to measure airport delay.(rough fluctuation analysis of the average flight delay based on complex network
theory, we find that the long-term dynamic of airport delay is dominated by the propagation factor (PF), which reveals that the
long-term dynamic of airport delay should be studied from the perspective of propagation. An integrated airport-based Sus-
ceptible-Infected-Recovered-Susceptible (ASIRS) epidemic model for air traffic delay propagation is developed from the network-
level perspective, to create a simulator for reproducing the delay propagation in airport networks. (e evolution of airport delay
propagation is obtained by analyzing the phase trajectory of the model.(e simulator is run using the empirical data of China.(e
simulation results show that the model can reproduce the evolution of the delay propagation in the long term and its accuracy for
predicting the number of delayed airports in the short term is much higher than the probabilistic prediction method. (e model
can thus help managers as a tool to effectively predict the temporal and spatial evolution of air traffic delay.

1. Introduction

Flight delays are one of the most important performance
indicators of air transportation system. It has become in-
creasingly more serious, which directly causes huge damage
to the quality of civil aviation services, such as declines in
operational safety, increases in operating costs, and more
serious environmental pollution. Notably, commercial avi-
ation players understand delays as the difference between
scheduled and real times of departing or arriving fights [1].
According to the Federal Aviation Administration (FAA), a
flight can be considered as delayed if the operation takes
place 15 minutes after schedule [2].

(e delay of an individual flight seems to be random at a
glance. A flight delay may be transferred and amplified by
consequent operations. Some delays that originate from
upstream flights spread to downstream flights, which is

particularly evident when an aircraft flies multiple flight legs.
(is phenomenon is defined as delay propagation (DP)
[3–6]. Actually, DP causes delays to obey certain statistical
laws [7] when long-term delay records for a large number of
flights are taken into account, which form airport delay
propagation. Consequently, a congested airport may
propagate delays to connecting airports through the delayed
flights, which eventually has an impact on the performance
of a significant part of the entire network [8]. (e delay can
be magnified when it is examined in multiairport networks
[9].

(ere are many factors affecting airport delays. (e
factors can be divided into two categories: propagation
factors (PF) (airport delays caused by connected delayed
airports) and nonpropagation factors (NPF) (airport delays
caused by original factors, such as extreme weather and
equipment trouble) [10]. As the number of flights increases,
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increasingly more airport delays are caused by the PF [11]. If
there are many delayed flights in one airport, the connected
airports may become delayed, which can affect further
operations in a cascade-like effect. Due to the complexity of
air transportation, the mechanisms of delay propagation at
the airport level are not fully understood.(erefore, research
on the mechanism of delay propagation is timely yet
challenging.

Delay spreading has received lots of attention from the
Air Traffic Management (ATM) community during the last
decade. Some studies [12–14] have established flight delay
propagation models based on Bayesian Networks and an-
alyzed the internal factors influencing air traffic delay
propagation. Pablo Fleurquin [15] introduced an agent-
based model that reproduces the delay propagation patterns
observed in U.S. performance data and identified passenger
and crew connectivity as the most relevant internal factor
contributing to delay spreading. Qiu [16] constructed a joint
distribution of continuous flight delays by using the 2D
copula function. Wong and Tsai [17] established a cox
proportional hazard model for flight delay propagation
based on survival analysis theory. Kalfe and Zou [3] pro-
moted a delay propagation pattern based on an econometric
method and analyzed factors by using the Heckman two-
step method.

To the best of our knowledge, gaps still remain in un-
derstandings of the delay propagation in airport networks.
(e process of delay propagation needs to be analyzed from
a broader and network-based perspective because flight
scheduling for airlines and airport operations is increasingly
synchronized from the perspective of network operation.
(e linkage in the airport networks is the direct operation by
the airlines linking the airports [18]. It is an essential feature
of the network structure of the air traffic system. (erefore,
the propagation dynamics cannot be understood without
referring to the underlying complex network structure.
Some scholars have used complex network theory to
characterize transportation [19–22]. (e initial studies
[23, 24] have identified a high heterogeneity in the traffic
sustained by each edge. Most of the airport network exhibits
a heavy-tailed degree distribution, which is often well ap-
proximated for a significant range of values of degree k by a
power-law behavior (P(k) ∼ k−c), from which the name
“scale-free network” originated [25–29]. Further studies
have used the complex network characteristics to explain the
propagation of air traffic congestion and flight delay [29–34].
From a macroperspective, the airport delay is usually caused
by air traffic congestion.(us, the application of the complex
network theory to the air traffic problems is feasible. And
most of them focused on the delay propagation between
sequence flights from the perspective of single airport
operation.

As aforementioned, due to the large number of airports
and complex interactions, the features of delay propagation
cannot be understood based on the information of an in-
dividual airport. Complex network theory and its associated
metrics and tools present an opposite approach to study the
air transport system beyond what is offered by classical
techniques. To further understand the effects of delay

propagation, most of the existing achievements focused on
the delay propagation between sequence flights from the
perspective of single airport operation. In this paper, we
propose a network-based approach to modeling airport
delay propagation. (ere are several classical epidemic
models in complex network theory, such as Susceptible-
Infected (SI) model, Susceptible-Infected-Susceptible model
(SIS), Susceptible-Infected-Recovered (SIR) model, and
Susceptible-Infected-Recovered-Susceptible (SIRS) model.
Because the propagation mechanisms of SIRS is the most
similar to that of airport delay propagation(the details can be
seen in Section 4.1), the SIRS model is utilized to understand
the process of air traffic delay propagation in the context of
an airport network and explain the spreading characteristics
between different airports in this paper. (e SIRS model has
been normally used to simulate the process of how diseases
[35], safety risk [36], or computer virus [37] spread.

To the best of the authors’ knowledge, this study is the
first to apply the SIRS model to air traffic delay propagation.
Firstly, the metrics for measuring airport delays are intro-
duced. (en, the fluctuation of airport delay is studied from
different time scales based on complex network theory in
order to find out the propagation factors, PF or NPF. (en,
an integrated airport-based SIRS (ASIRS) model is devel-
oped. At last, the effective and accuracy of this model is
demonstrated using empirical data of China.

(e outline of the remainder of this paper is as follows.
(e data sources and a measurement of airport delay are
provided in Section 2. Section 3 is devoted to fluctuations of
the average flight delay and the determination of airport
delay status. (e ASIRS model is established in Section 4.
(e data-driven description of the ASIRS model is presented
in Section 5. Finally, Section 6 contains the conclusions.

2. Data Description and Airport
Delay Measurement

(e dataset analyzed in this paper is provided by the Civil
Aviation Administration of China (CAAC) and consists of
all flight information of China from June to December in
2015. (ere are totally 93630 records of flights. (e number
of carriers in the data is 295. (e information from the
historical flight data consists of flight ID, date of flight, real
and scheduled departure (arrival) times (Beijing Time),
origin, and destination. A short sample of the original da-
tabase is shown in Table 1.

(ere are 205 domestic airports in the database. A
sample of airports are shown in Table 2.

(e identification of the airport delay state is the first
problem to be solved. As we know, the delay state of an
airport is the concentrated performance of individual flight
delay. (us, the airport delay is measured by the delays of
arriving and departing flights.

In our study, the normal release rate (NRR) and average
flight delay (AFD) are considered to measure airport delay:

(1) (e NRR of an airport is the ratio of the number of
normal released flights to the total number of de-
parture flights. According to the Federal Aviation

2 Journal of Advanced Transportation



Administration (FAA), a flight is considered as ab-
normal if the departure operation takes place more
than 15minutes after schedule:

NRR �
N − n

N
, (1)

where N represents the number of departure flights
and n represents the number of abnormal flights.

(2) (e AFD of an airport is the ratio of the total delay
time to the total number of all the departure and
arrival flights of the airport:

AFD �
􏽐

N+M
i�1 di

N + M
, (2)

where M represents the number of arrival flights and di

represents the delay of flight i.

(e NRR and AFD are counted every 1 hour using the
above database. Partial statistical results are shown in
Tables 3 and 4.

3. Fluctuations of Airport Delay and
Determination of Airport Delay Status

3.1. Fluctuations of Airport Delay. To explore the propaga-
tion laws of airport delay, the delay fluctuations should be
studied from the perspective of airport networks. Fluctua-
tions can be considered by investigating the coupling be-
tween the average flux and the fluctuations, which is actually
the mean and standard deviation analysis, as developed in
[38–42]. It is found that the standard deviation σi and the

average flux 〈fi〉 on individual nodes obey a unique scaling
law as

σi∝〈fi〉
α
,

〈fi〉 � 􏽘
T

t�1
f
Δt
i (t),

σi �

����������������

􏽘

T

t�1
fΔti (t) −〈fi〉( 􏼁

2

􏽶
􏽴

,

(3)

where fΔti (t) denotes the flux of node i in time interval
[(t − Δt), t].

As the strength of the external driving force increases,
the value of α gradually increases.

A method to separate the internal dynamics from the
external fluctuations of complex systems is also promoted in
[38–42].

(e dynamical variable fi(t) can be separated into two
components:

fi(t) � f
int
i (t) + f

ext
i (t), (4)

where fext
i (t) is generated by external factors and fint

i (t) is
generated by internal factors. (ey can be described as
follows:

f
ext
i (t) � Ai 􏽘

N

i�1
fi(t),

f
int
i (t) � fi(t) − Ai 􏽘

N

i�1
fi(t),

Ai �
􏽐

T
t�1 fi(t)

􏽐
N
i�1 􏽐

T
t�1 fi(t)

.

(5)

Table 1: A sample of the original database.

Flight ID
Scheduled
departure
airport

Scheduled
departure time

Scheduled
arrival airport

Scheduled
arrival time

Real
departure
airport

Real departure
time

Real
arrival
airport

Real arrival
time

CES2265 ZLXY 201510071525 ZGHA 201510071700 ZLXY 201510071606 ZGHA 201510071737
CES2266 ZGHA 201510071740 ZLXY 201510071920 ZGHA 201510071848 ZLXY 201510072030
CES2266 ZLXY 201510072045 ZLIC 201510072150 ZLXY 201510072202 ZLIC 201510072256
HXA2689 ZUCK 201510071415 ZLLL 201510071555 ZUCK 201510071421 ZLLL 201510071549
GCR7567 ZGOW 201510071530 ZJHK 201510071650 ZGOW 201510071533 ZJHK 201510071648
JYH1032 ZBMZ 201510071625 ZYCC 201510071755 ZBMZ 201510071621 ZYCC 201510071750
CHH7702 ZGSZ 201510072140 ZBAA 201510080040 ZGSZ 201510072225 ZBAA 201510080106
UEA2755 ZSLG 201510071105 ZYTX 201510071250 ZSLG 201510071109 ZYTX 201510071241
CSN6633 ZHCC 201510071035 ZLXN 201510071225 ZHCC 201510071051 ZLXN 201510071242

Table 2: A sample of airports.

1 2 3 4 5 6 7 8
Airport code ZBAA ZBMZ ZGGG ZGHA ZGOW ZGSZ ZHCC ZJHK
City Beijing Inner Mongolia Guangzhou Changsha Shantou Shenzhen Zhengzhou Haikou
Airport code ZPPP ZSHC ZSLG ZSPD ZSSS ZUCK ZUUU ZLXY
City Kunming Hangzhou Lianyungang Shanghai Shanghai Chongqing Chengdu Xi’an
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Furthermore, whether or not the fluctuations are mainly
internally or externally imposed can be determined:

ηi �
σexti

σinti

, (6)

σexti �

������������������

〈fext
i (t)2〉 −〈fext

i (t)〉2
􏽱

, (7)

σinti �

������������������

〈fint
i (t)2〉 −〈fint

i (t)〉2
􏽱

. (8)

If ηi≫ 1, the system dynamics are dominated by the
network-wide factors, while for ηi≪ 1, local dynamics
overshadow the network-imposed changes.

We aggregate the data and carry out the scaling law
analysis at different time scales. In our study, 〈fΔti 〉 rep-
resents the AFD in the time scale Δt of airport i and σΔti

represents the standard deviation.
Figure 1 shows the relationship between 〈fΔti 〉 and σΔti ,

with time scale Δt � 1 h, 3 h, and 6 h.(e scaling law between
σ and 〈f〉 can be clearly observed.

It can be seen that the value of the scaling exponent α
increases as Δt increases, suggesting that the system may
have an inhomogeneous influence, as pointed out by Eisler
and Kertesz [43]. (e reason for this result is that the
fluctuations of AFD are due mainly to network-wide factors
such as the PF when Δt is much bigger; on the contrary, the
fluctuations of AFD are due mainly to local factors such as
the NPF when Δt is much smaller. When Δt is much bigger,
airport delays may be caused by connected delayed airports.
Some delays that originate from upstream flights spread to
downstream flights, which is particularly evident when an
aircraft flies multiple flight legs. When Δt is much smaller,
airport delays may be caused by original factors, such as
extreme weather and equipment trouble. Additionally, the
ratio ηi for the 1 hour interval is calculated using the above
method. (e result reveals that the average ηi is 5.665353,
which shows that the dynamic of airport delay of every 1
hour is dominated by PF. And the larger the time scale is, the
bigger the value of ηi is. When the time scale is 3 hours, the
value of ηi is 6.431234. When the time scale is 6 hours, the

value of ηi is 8.534778. (us, we have to study how does the
delay originating from an airport propagate to other airports
in a large time scale.

3.2. Determination of Airport Delay Status. NRR and AFD
are used to determine if the airport is in the delay state. (e
specific criteria is as follows:

If AFDi(t)> ξ1&NRRi(t)< ξ2􏼈 􏼉, airport i is in the delay
state in the time interval t.
To explore the characteristics of airport delay propa-
gation, the value of the time interval t is 1 hour, as the
dynamic of airport delay of every 1 hour is dominated
by PF. When the delay propagates in the airport net-
work, the airport delay is usually severe. (e airport
delay deduced by NPF is much small in the time scale of
one hour. (us, in order to eliminate the influence of
NPF, the values of threshold ξ1 should be relatively
large and the values of threshold ξ2 should be relatively
small. Here, ξ1 � 15min and ξ2 � 0.7.

4. Epidemic Model of Airport
Delay Propagation

4.1. Airport-Based Susceptible-Infected-Recovered-Susceptible
Model. From the discrimination of delay propagation, we
find that the epidemic model in a complex network is a
valuable research tool for the exploration of fundamental
laws and trends of delay propagation in airport networks.
(ere are three kinds of individuals in the SIRS model:
susceptible ones (S), infected ones (I), and recovered ones
(R). (e susceptible ones are currently in a healthy state, and
when they contact the source of the infection, they will
become infected ones with an infection rate α. (e infected
ones are unhealthy ones, and they can infect susceptible
ones. (e infected ones will be cured with a cure rate β and
become recovered ones, and the recovered ones become
healthy ones with an immunity ability. (e immunity will
disappear under some certain situations, and the recovered
ones will become susceptible ones with an immunity-loss
rate c. (e infectious mechanism is described in Figure 2.

Table 3: Samples of average flight delay (minute).

0 : 00–1 : 00 1 : 00–2 : 00 2 : 00–3 : 00 3 : 00–4 : 00 4 : 00–5 : 00 5 : 00–6 : 00 6 : 00–7 : 00 7 : 00–8 : 00
ZGSZ 152.5 104 113 61.78 95 43.66 13.84 24.2187
ZJHK 0 0 0 0 0 0 28.37 14.5714
ZPPP 86.5 22 22 0 0 0 9.5 22.1395
ZBAA 40.36 31.27 30.75 27 52 89.91 31.5 30.7857
ZLXY 39 162 68 0 0 0 0 14.76

Table 4: Samples of airport normal release rate (%).

0 : 00–1 : 00 1 : 00–2 : 00 2 : 00–3 : 00 3 : 00–4 : 00 4 : 00–5 : 00 5 : 00–6 : 00 6 : 00–7 : 00 7 : 00–8 : 00
ZGSZ 81.81 87.5 75 40 80 25 24 5.88
ZJHK 100 0 0 0 0 0 27.27 6.66
ZPPP 33.33 50 0 0 0 0 33.33 10.41
ZBAA 6.66 21.42 7.69 20 50 16.66 28.94 5.40
ZLXY 40 0 50 0 100 0 0 24.24
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In an airport network, the original airport delay may be
due to capacity reduction, airport equipment trouble, and
extreme weather. In the process of delay propagation for
resource-shared flights, delays are propagated from an
upstream flight at the departure airport to the arrival airport.
As shown in Figure 3, the airports with “delay root” rep-
resent the susceptible ones, the airports with “delay prop-
agation” represent the infected ones, and the airports with
“delay termination” represent the recovered ones. (e
propagation of airport delay has traditionally been described
as graphs with vertices representing airports and edges
representing connectivity. When the delay is serious in one
airport, the delay of its connected airports may be increased
due to the delay spreading. Furthermore, the delay of spread
airports may be absorbed in the subsequent operations, and
they would not be influenced again by the same initial
airport delay. However, they may be affected by another
original airport delay later. Because of the complexity of
airport networks [32], the evolution of delay within them
possesses the characteristics of propagation in complex
networks.

From the above analysis, we find that the infectious
mechanism of SIRS is similar to the propagation charac-
teristics of airport delay discussed before. Suppose there are
three kinds of airports in the network at time t: non-delayed
airports (S) which are easily infected, delayed airports (I),
recovered airports (R) which used to be delayed but are back
to normal.(e recovered airports only have immunity to the
current delay spread and may become susceptible ones later.

As the stochastic process is applied to all flights, the airports
are affected by probability.

(e dynamics of ASIRS model can be written as
dS(t)

dt
� −αS(t)I(t) + cR(t),

dI(t)

dt
� αS(t)I(t) − βI(t),

dR(t)

dt
� βI(t) − cR(t),

S(t) + I(t) + R(t) � 1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(9)

where S(t), I(t), andR(t) represent the fraction of sus-
ceptible airports, infected airports, and recovered airports,
respectively, at time t; α is the infection rate; β is the cure
rate; and c is the immunity-loss rate.

Assume that the proportion of infected airports, sus-
ceptible airports, and recovered airports at the initial mo-
ment t0 is I0(I0 > 0), S0(S0 > 0), and R0(R0 � 0),
respectively:

dI(t)

dt
� αS(t)I(t) − βI(t), I(0) � I0,

dS(t)

dt
� −αS(t)I(t), S(0) � S0.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(10)

(e phase trajectory of the ASIRS model is analyzed.(e
S-I plane is called the phase plane, and the domain of the
phase trajectory is (S, I) ∈ D:

D � (S, I) | S(t)≥ 0, I(t)≥ 0, I(t) + R(t)≤ 1{ }. (11)

Let δ � β/α. (e following equation can be obtained:

<f>

10–1

10–1

100

100

101

101 102

σ

102

103

Total delay α = 0.693319

(a)

<f>
100 101 103102

Total delay α = 0.73139
10–1

100

101σ

102

103

(b)

100

101

σ

102

103

103

<f>
100 101 102

Total delay α = 0.75172

(c)

Figure 1: Scaling relations between fluctuations σ and AFD 〈f〉 at different time scales. (a)Δt � 1 h. (b)Δt � 3 h. (c)Δt � 6 h. (e estimated
values of scaling exponent α are also indicated.

S I R S
Infect Cure Loss

immunity

α β γ

Figure 2: Infectious mechanism of SIRS.
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I(t) � I0 + S0 + δ ln
S(t)

S0
− S(t). (12)

(e phase trajectory diagram is shown in Figure 4.
When t⟶∞, the limit values of I(t), S(t), andR(t)

are I∞, S∞, andR∞, respectively:

(1) No matter how the initial values of S0 and I0 change,
the airport delay situation will eventually disappear,
I∞ � 0.

(2) In equation (10), let I(t) � 0. (e value of S∞ can be
calculated, which is the root value of equation (11) in
the range of (0, δ). S∞ is the abscissa of the inter-
section point between the phase trajectory and
transverse axis in the range of (0, δ):

I0 + S0 + δ ln
S(t)

S0
− S∞ � 0. (13)

(3) If S0 < δ, I(t) increases first; if S(t) � δ, I(t) reaches
its maximum and then decreases to zero. At the same
time, S(t) is monotonically reduced to S∞:

Im � I0 + S0 − δ ln
1
δ
S0 + 1􏼒 􏼓, (14)

where Im is the maximum of I.

According to the above analysis, the following conclu-
sions can be drawn:

(1) If αS(t)< β, I(t) increases and the airport delay will
spread to more airports

(2) If αS(t)> β, I(t) decreases, the delay situation of the
airport network will be alleviated, and the airport
delay will not spread to others

(3) If αS(t) � β, I(t) reaches the maximum and the
delay situation of the airport network is the most
serious

4.2. Parameter Analysis. As mentioned above, the ASIRS
model contains three parameters: α,β, and c. To investigate
the change of I(t), S(t), andR(t) over time, suppose α � 1,
β � 0.1, and c � 0.1. (e change of I(t), S(t), andR(t) is
shown in Figure 5.

4.2.1. Analysis of Parameter α. First, the influence of α on
airport delay propagation is discussed. Figure 6 shows the
changes of I(t), S(t), andR(t) under different values of α
with the assumptions that β � 0.1 and c � 0.1.

As seen, the higher α is, the earlier I(t) andR(t) reach
their peak value and the higher the peak value is. (e higher
α is, the earlier S(t) reaches its minimum and the lower the
minimum is. (us, it can be concluded that, as the speed at
which airport delay propagates increases, more airports will
be infected more quickly, and more airports will be
recovered.

4.2.2. Analysis of Parameter β. Figure 7 shows the changes of
I(t), S(t), andR(t) under different values of β with the
assumption that α � 1 and c � 0.1.

When the value of β becomes smaller, the peak of I(t)

appears later and the trough of S(t) appears later also. (e
trends of R(t) with β� 0.5/1 and β� 0.1/0.2 are not the same.
(us, R(t) is much more complex than I(t) and S(t).

4.2.3. Analysis of Parameter c. Figure 8 shows the changes of
I(t), S(t), andR(t) under different values of c with the
assumption that α � 1 and β � 0.1.

(e higher c is, the earlier I(t) reaches its peak value and
the higher the peak value is. (e lower c is, the later S(t)

reaches its minimum, the lower the minimum is, and the
higher R(t) is. Parameter c has little effect on I(t) and S(t) in
the early stage and mainly affects the later stage.

5. Case Study

5.1. Statistical Calculation of I(t), S(t), andR(t).
According to Section 3.2, we calculate I(t), S(t), andR(t)

based on the following criteria:

(1) If NRRi(t)> 15min&ADFi(t)< 0.7􏼈 􏼉, airport i is
infectious at time t

(2) If NRRi(t)≤ 15min |ADFi(t)􏼈 ≥ 0.7}& NRRi􏼈

(t − 1)> 15min&ADFi(t)< 0.7}, the airport is re-
covered at time t and infectious at time t − 1

(3) Apart from the above situations, the airport is sus-
ceptible and can be easily infected by infectious
airport

Airport 1

Airport 2

Airport 3

Airport 4

Airport 5

Airport 6 Airport 8

Airport 7

Delay root

Delay propagation

Delay termination

Figure 3: Delay propagation tree.
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5.2. Determination of ASIRS Parameters. (e hourly states
of all the airports in the network can be identified based
on the above criteria using Tables 1 and 2. Taking the
airport ZBNY in October 1, 2015, for example, Figure 9(a)
shows the time varying state of airport ZBNY. It can be
seen that the airport ZBNY is infected in {6 : 00–10 : 00,
14 : 00–20 : 00}, susceptible in {0 : 00–6:00, 11 : 00–14 : 00,
21 : 00–24 : 00}, and recovered in {10 : 00–11 : 00, 20:0–21 :
00}. We also investigate the air traffic flow of ZBNY,
which is shown in Figure 9(b). Comparing Figures 9(a)
and 9(b), we find that the larger the traffic flow is, the
more the airport tends to be infected. It should be noted
that, although the airport has a small number of flights,
the flight delay is serious, which may be deduced by the
delay propagation in the airport network.

In addition, we find that there are 7 infectious airports in
4 : 00–5:00: ZBAA, ZGSZ, ZUCK, ZGGG, ZSHC, ZSPD, and
ZHCC. Six of these are the top 10 airports by throughput in
China (the throughput of airports is provided by the CAAC),
as shown in Table 5. (ere are many flights in the six air-
ports. Large departure delays may influence the operations
of the arrival airports, and the flights will arrive at or depart
this airport with big delays. (us, the phenomenon of delay
propagation appears.

(e simulationmodel is ASIRS established in Section 4.1,
as shown in equation (7). (e simulation method is that we
use the real information of flights in China to calculate the
values of I(t), S(t), andR(t) and then calibrate the pa-
rameters of α, β, and c. (us, the ASIRS model for simu-
lating the real flight data can be obtained.

Next, we calculate the values of I(t), S(t), andR(t).
Partial statistical results are shown in Table 6.

(e parameters in the ASIRS model are calibrated based
on the statistical values of I(t), S(t), andR(t) by using the
numerical simulation method. For every day’s traffic situ-
ation, we can always build an excellent ASIRS model. Taking
October 1, 2015 (there are 16804 scheduled flights con-
necting 199 different commercial airports), for example, we
find that the model fits the actual operation situation to the
highest level when α � 0.47, β � 0.175, and c � 0.45.

5.3. Accuracy of the Long-Term Simulation of Delay
Propagation. (e values of I(t), S(t), andR(t) for October
1, 2015, in Figure 10 are the actual values, which are counted
based on the database. (e values of I(t), S(t), andR(t) in
Figure 11 are the simulations of the ASIRS model for that
day.

Comparing Figure 10 with Figure 11, it can be seen that
the long-term trends of the actual and predicted values of
I(t), S(t), andR(t) are similar, although there are some
differences between local values. (us, from a qualitative
point of view, we can conclude that the ASIRS model is
reasonable and can describe the real situation of airport
delay propagation to a certain extent.

To further examine the application of the ASIRS model,
we also study the characteristics of airport delay propagation
derived from the degree distribution.

First, the ASISRmodels for the peak period of 12 : 00–19 :
00, October 1, 2015, and the nonpeak period of 00 : 00–07 :
00, October 1, 2015, are constructed. (e parameters’ values
of the two models are determined based on trial calculation
using the actual data:

(1) 12 : 00–19 : 00: α � 0.4, β � 0.25, c � 0.8
(2) 00 : 00–07 : 00: α � 0.38, β � 0.28, c � 0.6

(e α and c values of 12 : 00–19 : 00 are bigger than those
of 00 : 00–07 : 00, and the β values of 12 : 00–19 : 00 are
smaller than those of 00 : 00–07 : 00. According to the pa-
rameter analysis mentioned above, the conclusion can be
obtained that airport delays propagate faster and wider in
12 : 00–19 : 00 than in 00 : 00–07 : 00.

(e relative cure rate ρ is the ratio of the infection rate α
to the cure rate β:

ρ �
α
β

, (15)

where ρ reflects the recovery speed of delay propagation.(e
larger ρ is, the more the delay propagation tends to alleviate.
(e value of ρ for 12 : 00–19 : 00 is 0.625; the value of ρ for 00 :
00–07 : 00 is 0.737. (e relative recovery rate of delayed
propagation in 00 : 00–07 : 00 is higher than that in 12 :
00–19 : 00. (is is consistent with the actual situation.

Next, the degree k and the degree distribution p(k) of
the Chinese airport network in the above two periods are
counted. (e degree of airport A represents the number of
airports with flights to or from A in the statistical time
period. (us, the same airport may have different degrees at
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Figure 4: Phase trajectory diagram.
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different time periods. Partial results of the statistics are
shown in Table 7.

As seen in Table 7, the maximum airport degrees of the
nonpeak period and the peak period are 92 and 275, re-
spectively. Figure 12 shows the relationship between k and
p(k), with time periods 00 : 00–07 : 00 and 12 : 00–19 : 00,

respectively. A scaling law between k and p(k) can be ob-
served clearly.

Figures 12(a) and 12(b) illustrate two segments that
follow the power laws:

(1) 00 : 00–07 : 00 p(k) ∼ k−1.1966, k≤ 53,

k−0.4054, k> 53.
􏼨
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Figure 6: I(t), S(t), andR(t) under different α.
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Figure 7: I(t), S(t), andR(t) under different β.
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Figure 8: I(t), S(t), andR(t) under different c.
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(2) 12 : 00–19 : 00 P(k) ∼ k−2.0460, k≤ 83,

k−0.4497, k> 83.
􏼨

(e degree distributions are strikingly different from
those of random graphs, small-world networks, and scale-
free networks. First, the degree distributions of the Chinese
airport network display two segments and follow the Double
Pareto Law. (e degree of the critical airports is approxi-
mately 53 for 00 : 00–07 : 00 and 83 for 12 : 00–19 : 00. (e
smaller the exponent is, the stronger the heterogeneous
characteristics of the network are [44]. (e exponents of 12 :
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Figure 9: (a) Time varying airport states of airport ABNY. (b) Time varying air traffic flow volume of airport ABNY. In (a), “1” represents
infected state, “2” represents susceptible state, and “3” represents recovered state.

Table 5: (e top 10 airports.

Airport Takeoffs and landings Ranking
ZBAA 590199 1
ZSPD 449171 2
ZGGG 409679 3
ZGSZ 305461 4
ZPPP 300406 5
ZUUU 293643 6
ZLXY 267102 7
ZSSS 256603 8
ZUCK 255414 9
ZSHC 232079 10

Table 6: Samples of I(t), S(t), andR(t) statistics of October 1,
2015.

0 : 00–1 :
00

1 : 00–2 :
00

2 : 00–3 :
00 . . .

4 : 00–5 :
00

5 : 00–6 :
00

I(t) 0.105528 0.080402 0.085427 . . . 0.381910 0.201005
S(t) 0.894472 0.879397 0.884422 . . . 0.497487 0.582915
R(t) 0 0.040201 0.030151 . . . 0.120603 0.216080
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Figure 10: Actual value of I(t), S(t), andR(t) of Chinese airport
network.
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Figure 11: Simulated value of I(t), S(t), andR(t) by the ASIRS
model.

Table 7: Airport degree distribution.

00 : 00–07 : 00 12 : 00–19 : 00
k N p(k) k N p(k)

1 33 0.340206 1 19 0.104972
2 16 0.164948 2 23 0.127072
3 8 0.082474 3 21 0.116022
4 7 0.072165 4 12 0.066298
⋮ ⋮ ⋮ ⋮ ⋮ ⋮
53 1 0.010309 185 1 0.005525
55 1 0.010309 201 1 0.005525
60 1 0.010309 220 1 0.005525
92 1 0.010309 275 1 0.005525
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00–19 : 00 are smaller than those of 00 : 00–07 : 00, which
indicates that the heterogeneous characteristics of the
Chinese airport network in 12 : 00–19 : 00 are stronger than
those in 00 : 00–07 : 00. (us, airport delays during 12 :
00–19 : 00 spread over the airport network more easily,
quickly, and widely.

Obviously, the results from the ASIRS model and the
degree distribution are consistent, which further indicates
that the ASIRSmodel is well suited for characterizing airport
delay propagation.

5.4. Accuracy of the Short-Term Prediction of Delay
Propagation. As mentioned above, the ASIRS model can
describe the characteristic of delay propagation in the long
term, but the forecast accuracy is not very good (seen in
Figures 10 and 11). How about the forecast accuracy of the
ASIRS model in the short term?

To gauge the forecast accuracy, we introduce the
probabilistic prediction method, which is common to delay
forecast [45]. Intercepting the delay period (the period is

usually no more than 4 hours) on a typical day, we forecast
the number of delayed airports by constructing ASIRS
models for every 4 hours.(e prediction results are shown in
Figure 13.

We use the Root Mean Square Error (RMSE) and Mean
Absolute Percentage Error (MAPE) to compare the accuracy
of the two methods.

MAPE �
1
T

􏽘

T

t�1

At − Ft

At

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
× 100%,

RMSE �

�������������

1
T

􏽘

T

t�1
At − Ft( 􏼁

2

􏽶
􏽴

,

(16)

where At is the actual value in the time interval t, Ft is the
forecast value in the time interval t, and T is the number of
time intervals.

Table 8 shows a comparison of the twomethods. It can be
seen that theMAPE and RMSE of the SIRSmodel are smaller
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Figure 12: Scaling relations between k and p(k) at different time periods. (a) 00 : 00–07 : 00 and (b) 12 : 00–19 : 00.
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than those of the probabilistic model.(us, the ASIRSmodel
is more accurate than the model based on probability in
forecasting the number of delayed airports in the short term.

6. Conclusion

Understanding the process and evolution of airport delay
propagation is very important for both air traffic manage-
ment and aviation planning. In this study, we investigated
the mechanism of delay propagation among airports from a
new perspective:

(1) (e delay fluctuations of airport networks are
studied. To quantify the delay dynamics, we collected
the airport delay at 199 Chinese airports and iden-
tified the existence of a certain scaling law, which
indicates that the dynamic of airport delay is
dominated by a propagation factor.

(2) (e ASIRS model for airport delay propagation is
presented to reveal the macroscopic appearance of
delay propagation. (e modeling approach is data
driven in the sense that it is based on real China
performance data.

(3) (e long-term characteristics of delay propagation is
described through building the ASIRS model. (e
accuracy of the short-term prediction of delay
propagation is also examined.

It is remarkable that the airport delay is the result of
the coupling of different factors, and there is no infor-
mation on delay factors in the datasets. We cannot de-
termine a delay is caused by which factors. (us, we study
the delay propagation from the overall delay data and
simulate the overall delay without considering the spe-
cific factors.

Our ongoing work involves further calibration and
validation of the ASIRS model. It is interesting to compare
the epidemic model of airport delay propagation in different
countries and investigate the practices of the countries. We
will come up with insights for mitigating airport delay from
such international comparisons.
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