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In this research study, the design and performance evaluation of grid-tied photovoltaic systems has been carried out through
experimentation, HelioScope simulation, and black-box machine learning methods for data-driven artificial intelligence system
performance assessment and validation. The proposed systems are based on 15kWp of monoperk and polyperk, which are
separately installed in the industrial sector of Faisalabad, Pakistan. The experimental evaluation of the installed PV modules
was performed from November 2020 to August 2021. The performance of the PV modules was evaluated by determining the
annual average daily final yield (If), performance ratio (PR), and capacity factor (CF). The study showed that the annual
average of daily final yield, performance ratio, and capacity factor for 15kW polyperk was estimated to be 61.94 kWh, 84.17%,
and 19.12, respectively. The annual average of daily final yield, performance ratio, and capacity factor for 15kW monoperk
was estimated to be 58.32kWh, 81.42%, and 18.13, respectively. A comparison of final yield is obtained from simulation and
real-time systems obtained from polyperk PV and monoperk. A significant mean error exists between the experimentation and
simulation results which lie within the range of 1250 to 1470 kWh and 1600 to 1950 kWh, respectively. Substantial differences
between both aforementioned results were initially tested and highlighted by statistical values; i.e., the standard error lies
in-between 5 and 45% in polyperk crystalline and 5 and 25% in monocrystalline PV grid-connected module. Machine
learning logistical regression evaluated that monoperk crystalline grid-connected system, experimental work was found to
be more reliable with error difference reduces in off-peak months as compared to corresponding simulation study and vice
versa for polyperk crystalline grid-connected system. Model accuracy after training and testing produced resulted up to
99.5% accuracy for either grid-connected experimentation or simulation outcomes with validation.

1. Introduction

In any country, energy is one of the key factors for the
smooth and faster upgradation of the socioeconomic activi-
ties, and it has become a universal fact now. One of the major
drivers of economic growth is energy as identified by the
government of Pakistan. Therefore, Pakistan requires ade-

quate supplies of energy for the generation of healthy eco-
nomic activities. The country currently is passing through
the worst energy crisis in over 70 years. The energy crisis
has led to the hindrance of socioeconomic progress below
the level of critical sustainability and tolerance of the people.
Pakistan has a land area of 881,913 km* consisting of a pop-
ulation of 211.117 million [1]. In 2019, Pakistan’s electricity
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generation was recorded to be 87.3 TWh [1]. The energy mix
of Pakistan’s energy scenario depicts that thermal energy is
the widest energy resource upon which Pakistan has been
relying in recent years. To warrant adequate, secure, and
cheap energy supply to industries, transportation, domestic
needs, and agriculture availing available resources in such a
manner that it minimizes its losses should be the main objec-
tives of the energy sector. For the proper growth of renewable
energy sectors, they must be given the chance in the present
energy mix.

A photovoltaic system is not a new phenomenon as a
plethora of literature is available on the topic. It has been in
practice for the past few decades in our everyday life
producing renewable energy, which is not only efficient, but
it is carbon emission-free which is beneficial for the environ-
ment. Today, our technology has shifted to renewable
resources, such as biomass, wind, and solar. In the develop-
ment of countries, renewable energy plays a contentious role.
Nowadays, the resource in trend is solar power. There are var-
ious kinds of photovoltaic (PV) power plants that can be inte-
grated with existing power systems. PV energy plants
generally use various types of PV engineering such as mono-
crystalline, polycrystalline, and amorphous silicon. They come
as thin-film PV panels using copper indium di-selenide, cop-
per indium gallium selenide, and cadmium telluride.

Various studies have evaluated the performance param-
eters of installed PV power plants in different locations, with
the varying climatic condition, such as Europe [2-5],
tropical regions [6, 7], Malaysia [8, 9], Oman [10], and Asian
countries, India, Korea [11-15], and China [16-22]. It was
observed that the performance analysis is affected by system
losses, module quality, inverters, shading effect, losses in
wiring, array tilt angle, and type of grid connections. The
effect of these factors was confirmed by literature where a
190 kWp grid-connected PV power plant in India was eval-
uated [16]. In another study, it was found that these factors
played a crucial role in reducing the annual average daily
final yield. The efficiency of the PV module, inverter, and
system was found to be 14.9%, 89.2%, and 12.6%, respec-
tively. The capacity factor and performance ratio were found
to be 10.1% and 81.5%, respectively [2]. The impact of dust
is one of the significant factors which reduces the efficiency
of PV modules. As compared to previously mentioned fac-
tors, the effect of dust is inferior to the performance of the
PV systems [20]. Research about the performance evaluation
of PV systems installed in Serbia was carried out to investi-
gate the effects of ambient temperature and compare it with
similar studies around the world. The study reports an anal-
ysis of 2kW monocrystalline silicon (mc-Si) PV power plant
tied to the grid, which was built on the rooftop in Nis,
Republic of Serbia. The values of PR and CF of the reported
PV power plants were articulated to be 93.6% and 12.88%,
respectively [23]. Performance evaluation of polycrystal-
line silicon- (p-Si-) based PV systems was carried out at
various locations, namely, Singapore, Turkey, and Greece,
with installed capacities of 142.5kWp, 2.73kWp, and
171.36 kWp, respectively. From these studies, it can be
observed that local varying parameters such as CF, PR, and
final yield affect the performance of PV systems. PV systems
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have also been installed to meet the energy demands of local
office buildings in Singapore. The first zero-energy office
building used a 142.5kWp p-Si grid-connected system to
meet its energy demands by using inverter factors such as
efficiency and losses of heat. The first performance evaluation
of the PV system was carried out over 18 months, which
showed a good overall PR of 81% [24]. A similar study was
published where performance analysis of a 2.73kWp mc-Si
PV power station located in the Muglia climatic conditions
in Turkey was performed wherein winter thy efficiency of
mono PV module is increased. According to a study carried
out in Greece, a performance analysis of a fully monitored
171.36 kWp p-Si grid-connected PV system was done on an
hourly, daily, and monthly basis [4].

The claim regarding the change in the tilt angle of PV
modules and the change in efficiency can be supported by a
report coming from Italy. This article focused on the influ-
ence of climatic conditions on a 960 kWp mc-Si-based PV
power plant. The installed systems were divided into two
subfields with varying tilt angles and nominal powers (i.e.,
606.6 kWp and 353.3 kWp). The results revealed that the per-
formance ratio varied between 79% and 86.5% from March
to October 2012 [24]. Another study from Italy (northern),
articulated the functioning of two grid-tied PV systems (i.e.,
17.94kWp and 15.9 kWp) with the same factories but posses-
sing varying PV technology, their rated power, and overall
efficiency. The performance ratio was observed, over a year,
to be 89.1% for the first mc-Si wafer-based PV system and
82.7% for the second mc-Si-based PV system [25].

Although PV systems have been around for quite some
time but there is no articulated study from this region that
evaluates the performance of installed systems according to
the region’s environmental conditions, to the best of our
knowledge, there has not been a study conducted that takes
advantage of machine learning algorithms for the difference
in performance evaluation between installed and simulated
PV systems. This study has been carried out to evaluate
the performance of installed PV systems located in the
outskirts of Faisalabad on the same rooftop of an industry.
The objectives of this study were to investigate the difference
between power obtained from installed PV systems and via
simulation software. Further, a machine learning algorithm
was applied to analyze the performance of installed systems
for cost and timesaving in the future. The PV systems
(15kWp) have been analyzed over a time of seven months.
The renewable systems were based on polyperk and mono-
perk types of PV modules. Moreover, to classify hyperpara-
meter results of categorical division between experimental
and simulation results, machine learning-based logistical
regression has been introduced. Machine learning algorithm
contains the error to a minimum and provides useful insight,
corelation, and evaluation with class distinction according to
subjective weather and time horizon.

2. Designing of Solar Photovoltaic System

The PV systems are located at a latitude of 31.47° N, a lon-
gitude of 73.22° E, and an altitude of 186 m above sea level
in the outskirts of Faisalabad city in Pakistan (Figure 1).
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FIGURE 2: Overview of installed PV system (15 kWp): (a) location on map in Faisalabad; (b) real-time overview; (c) string diagram; (d) single

line diagram (SLD).

The monthly average daily values of solar radiation for the
region range from 5.5 to 5.8 kWhm™. Figure 2(a) displays
the aerial view of the installed PV systems. The PV systems
are installed on the rooftop of a switchgear manufacturing
firm, where the top row is designed with monoperk PV

modules, and the lower row is designed with polyperk PV
modules as depicted in Figure 2(b). These PV plates are sup-
ported by a steel stand having tilt angles of 30°. To mitigate
the effects of dust accumulation, it is necessary to regularly
clean the plates at least once a week [12].



2.1. Types of PV Modules. The capacity of the installed grid-
tied PV system is 15kWp which is composed of two
independent monocrystalline and polycrystalline segments.
Each segment is installed in a series parallel and has a capac-
ity of 15kWp. The systems are installed facing south having
an optimum monthly tilt angle to enhance their efficiency.
In this study, thirty-eight monocrystalline modules (model
CS3400WP) and thirty-four polycrystalline modules (model
CS3400WP) of similar maximum power output and effi-
ciency ratings are used. Properties of the installed modules
are summarized in Table 1. There are four mounting struc-
tures of galvanized steel frames holding six panels for each
type of PV module. The design of the support structure is
to keep a variable inclination with the horizontal plane with
the reinforced concrete foundation to withstand the weight
of modules and maximum wind speeds at the site as shown
in Figure 2(b).

The following formulae can be used for calculating
parameters related to the designing of a PV system.

Equations (1) and (2) can be used to calculate the
required numbers of PV panels.

(1)

where PV is the peak power of PV array (kWp), L, is the
electrical load (kWh/day), I is the peak solar intensity, H,,
is the average available radiation in kWh/m?*/d, and Ty is
the temperature correction factor (0.4-0.5% °C for crystalline
silicon) and the efficiency of inverter.

PV = M, 2)

where P, is the rated power of the selected panel and PV is
the number of PV panels.

I1+A
Size of inverter = Total Load + M , (3)

e’ A

where Afis the additional further load expansion (20%), I, is
the efficiency of inverter, and V4 is the volt-ampere.

Py =V Xy (4)

where V,, is the voltage at maximum power point, I, is the
current at maximum power point, and P,, is the maximum
power.

Soiling ratio:

. Pm(soiled module)
SRathmeasured = Pm (dean module) mismatch> (5)

where Pm (solid module) is the measured maximum power
of the solid module, Pm (Clean module) is the measured
maximum power of the clean module, kmismatch quantifies
the disparity in Pm between the clean and the soiled mod-
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ules, and SRatiomeasured compares the measured maxi-
mum power (Pm) of the soiled and the clean module.

2.2. Three-Phase Inverters. Since the PV modules are semi-
conductors in nature, they fundamentally generate direct
current (DC). The transmission and distribution systems
are designed for AC which is obtained by converting it from
DC via inverters and feeds the utility of the electrical grid by
synchronized frequency normally around 50 or 60 Hz. The
selection of the inverter is based on the maximum output
power from each type of PV module array. All inverters
are of SolisMax, model Solis-15 K Max; the technical features
of the inverters are provided in Table 2.

3. Parameters Considered for the Performance
Analysis of Installed PV Systems

Effective and credible assessment of any system’s perfor-
mance is crucial for the designing of an efficient power sys-
tem. The PV performance is a vital indicator to analyze the
quality of its design and reliable combination of PV equip-
ment. According to the International Electrotechnical Com-
mission (IEC) standard 61724, the standard performance
parameters for PV-based power systems play a crucial role
in the efficiency of a system.

3.1. Final Yield. The definition of the final yield revolves
around the portion of total energy generated (Eg,) by the
whole PV power plant to the rated output power (Ppy) per
kilowatt of installed PV array during a specified period
(i.e., day, month, or year). It can be calculated by

Final Yield = — A , (6)

PV Rated

where E, is the total energy generated and Ppy is the rated
output power.

3.2. Reference Yield. Referenced yield can be defined as the
total irradiance (H,) divided by irradiance (Ggpc), which,
primarily, is 1 kW/m? (Equation (7)). This constitutes the
solar energy that is available for a specifically mentioned
time frame at any place where the PV power system has
been deployed. It constitutes the hours per day that are
necessary to obtain solar radiation to be at reference irra-
diance level to produce the same incident energy as
received by the sun [25].

= )

stc

Reference yield =

where H, is the total irradiance and G, is the irradiance.

3.3. Performance Ratio. Performance ratio (PR) is a signifi-
cant parameter that depends on the PV power plant’s geo-
graphical location. It is represented by the ratio of energy
outputs obtained actually and theoretically over the time of
a month or a year as depicted by Equation (8). A high PR
value for a grid-connected PV is an indication that the sys-
tem is efficient and reliable. The overall losses from various
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TaBLE 1: Electrical and mechanical parameters of the installed PV modules.
Electrical parameters of PV module mc-Si p-Si
Maximum power (P,,..) 400 Wp 440 Wp
Module efficiency (#) 18.11% 19.7%
Maximum power point voltage (V) 387V 403V
Current at maximum power point (/) 10.34 A 1092 A
Open-circuit voltage (V) 472V 487V
Short circuit current (I.) 109A 11.4A
Module temperature at NOCT (Tyocr) 42+3°C 41+3°C
Temp. coeflicient of short circuit current (pIsc) 0.05%/°C 0.05%/°C
Temp. coeflicient of open-circuit voltage -0.29%/°C -0.28%/°C
Temp. coefficient of maximum power -0.37%/°C -0.36%/°C
Mechanical properties of PV module
Number of cells 144 144
Dimensions of cell 2108+1048+40 mm 2132%1048+30 mm
Operating temperature -40~85°C -40~85°C
Weight (kg) 224 224

TaBLE 2: Electrical datasheet of three-phase inverters.

Input (DC)
Max. Dc power (cos 0 =1) 15KV
Max. input voltage 1000V
MPP voltage range/rated input voltage 200-800V
Min. input voltage/initial input voltage 350V
Max. input current input A/input B 18 A+18 A
Output (AC)
Rated power (230V, 50 Hz) 15 kW
Max. apparent AC power 33kVA
Rated power frequency 50/60 Hz
Max. output current 21.7A
Power factor at rated power 0.8 (min.)
Maximum efficiency 97.5%
General data
Weight 30KG
Operating temperature range -26°C~60°C
Noise emission (typical) <30dBA

<1 watt (night)
Transformer less

Self-consumption (night)
Topology

Cooling concept Natural convection

factors such as inverter losses, module mismatch, wiring,
temperature, and dust or snow on the rated output power
are less. The overall efficiency of the solar photovoltaic
power system is closely related to the value of the perfor-
mance ratio, i.e., closer to 100% [25].

.Yy
Performance ratio = 7 (8)
r

where Y/ is the actual energy output and Y, is the theoretical
energy output.

3.4. Capacity Factor. The capacity factor is mainly the ratio
of produced electricity capacity factor. Geothermal energy
and biomass among the clean and renewable energies per-
form at higher capacity factors compared to intermittent
renewable sources which tend to have lower capacity factors.
For PV plants, the capacity factor ranges from 10% to 30%,
as their outputs fluctuate resulting from weather conditions
[25]. Tt can be calculated by using

Capacity factor = —J 9
apacity factor = — —, (9)

where Y/ is the actual energy output.

3.5. Meteorological Data. To examine the performance of the
PV system, it is required to study the weather data recorded
by the weather station. This may include data set comprising
temperature and wind speed. The ambient and module tem-
perature fluctuated during the nominated period from
November 2020 to August 2021 individually. Undesirable
module temperature was usually observed during nighttime.
During the measured period, wind velocity varied from
I ms" in January and 2ms-' in June on average, whereas
relative humidity reached almost 87% level during the mon-
soon season (i.e., July and August), and the maximum value
of global-tilt solar irradiation of 1225 Wm ™ was recorded for
Faisalabad. It has been observed that on any sunny day, the
module performance is affected by three meteorological
parameters. These factors include temperature, solar irradia-
tion, and wind speed, whereas other parameters are shown
in Table 3.



TaBLE 3: Meteorological data for Faisalabad.

Value obtained
0.0-1400.0Wm™

Parameter measured

Measuring range

Resolution <1Wm™
Spectral range 300-2800nm
Sensitivity range 5-20pv/Wm™
Operating temperature rate -40°C to+80°C
Maximum operational irradiance 2000Wm™
Relative humidity range 4.35-17.4 Psi
Relative humidity accuracy +2%RH
Air temperature range -50°C to +60°C
Air temperature accuracy 0.5°C
Wind speed range 0.8-40m™
Wind speed measuring accuracy +0.5%

4. Performance Analysis and Result Discussion

This comparative study visualizes that in winter, the effi-
ciency of monoperk is better as compared to other types
of modules. In summer, polyperk performed with better
efficiency because it is highly efficient in the high-
temperature range. The maximum production of kWh in
winters was more than 2,100kWh for polyperk. The data
obtained displayed that the annual average of daily final
yield, performance ratio, and capacity factor for 15kW
polyperk was estimated to be 61.94kWh, 84.17%, and
19.12, respectively. The annual average of daily final yield,
performance ratio, and capacity factor for 15kW mono-
perk was estimated to be 58.32 kWh, 81.42%, and 18.13,
respectively. The reported results are comparatively better
than a similar study conducted in Iran [26].

On the other hand, a maximum yield of around
1,700kWh was obtained from monoperk as summer
ambient temperature is high leading to reduced efficiency.
At the start of November, the ambient temperature began
to decrease, and thus, the efficiency of monoperk also
increased, whereas the efficiency of polyperk started decreas-
ing till December as the highest temperature of the season
was monitored this month. In March, the yield of monoperk
plummeted, whereas for the polyperk modules, the yield
improved. In April, May, June, and July, the ambient tem-
perature stayed at a peak level. Therefore, the efficiency of
polyperk increased, and consequently, the efficiency of
monoperk decreased. In August, temperature variation was
observed due to the monsoon season. On warm days, the
efficiency of polyperk increased whereas, on the other hand,
the efficiency of monoperk increased on relatively cool days
as depicted by simulation results in Figure 3(b). So, it can be
concluded that polyperk modules outperform monoperk
type modules when the ambient temperature increases.
The common material used in solar cells, crystalline silicon,
does not help to prevent them from getting hot either. As a
great conductor of heat, silicon actually speeds up the heat
building up in solar cells on hot summer days. Mono PV
modules are made from a single crystal of silicon whereas
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poly is made from several fragments of silicon melted
together which prevents it from heating up.

As it can be seen in Figure 3(a), HelioScope-based sys-
tem generated higher power in comparison to a real-time
system as the software considers ideal conditions and
ignores various factors that affect the real system output per-
formance such as dust losses and shadow factor.

Scatter plot in Figure 4 displays two hotspots and dis-
tinct regions highlighted by two circles. The upper-end circle
has a wide range of experimental mono- and polycrystalline
systems and polyperk simulation yield results. The lower cir-
cle has a keen distribution of yield results in experimental
monocrystalline systems and polyperk simulated systems.
Only peculiar results in raw data for the distinctive mono-
crystalline solar energy material produce oblique and rela-
tively lesser in midseason.

Quantified data and behavior in tail line circles need to
be categorized using learning, training, and testing data sets
for relative comparison, which is a new theme in solar
energy system classification; further details are defined in
Section 4.

Ideal conditions and real-time working systems classify
two different data sets and elucidated graphs. Statistical
graphs show the relatively higher difference in total yield
over the time scale length in real time due to undistinguished
and random errors in calculations and measurement.
Figure 4 shows the hotspot regions using the estimated data
varying from lower tail to high end. Figures 5 and 6 depict
raw data sets in peak slope form. Figures 4 and 5 show dis-
tinct groups and variations in estimated and calculated
values. In polyperk system experimentation, Figure 6 shows
the error doping in mean values for polyperk crystalline
modules (simulation and experiment result comparison). A
greater mean error exists in the experimentation results with
the range lying in 1250 to 1470 kWh in comparison to sim-
ulation results with the least mean error in the upper bound
of 1950 kWh. Significance of new advance predictive and
artificial intelligence tools in the realm of statistical-based
machine learning produces a counterproductive approach
using both real-time and ideal simulation patterns and data
sets for classification and decision-making for applied appli-
cations while using monoperk and polyperk solar systems.
The apparent results are statistically plotted for heat map-
ping to understand the relationship between the distinctive
classes of monoperk and polyperk crystalline modules of
simulation and experimental data sets.

Figures 7 and 8 display futuristic parameters that are
independent and dependent in nature on each other.
Plasma-type heat map of monoperk crystalline modules
shows maximum nonlinearity in the experimental and sim-
ulation results up to -0.86. The corresponding increase in
module yield is inferred from the heat map but linearity is
minimum in experimental and simulation results with
values as low as 0.14 and 0.16. In polyperk crystalline
modules, greater amount of synergy is accounted for in the
experimental and simulation results. The corresponding
results are accounted for and validated with heat map-
linearity values greater than monoperk crystalline modules
up to ~0.98. However, in relationship with months and
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FiGure 3: Comparison of yield obtained from simulation and real-time systems: (a) yield obtained from polyperk PV modules; (b) yield

obtained from monoperk PV modules.

method classes, a reverse effect has been observed with neg-
ative values of as low as -0.061 and -0.96 for experimental
and simulation data sets.

Heat maps in Figures 7 and 8 depict the statistical differ-
ence with nonlinearity and class distinction. An efficient

technique must be applied for validating results, consolidat-
ing decisions for which type of crystalline modules and
which method needs to be implemented for desirable calcu-
lation of yield measurement according to our requirements.
Machine learning algorithms are statistically powerful
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algorithms that over the period of using artificial intelligence
learning update their sets and make the logical decision of
either using experimental means or simulation for time
and cost-saving.

4.1.  Machine Learning-Based Relative  Performance
Investigation of Mono- and Polyperk Modules. As previously

defined, the nonlinearity and class distinction in the available
raw data sets are classically classified into the categorical divi-
sion between experimental and simulation results. Paramet-
ric results of machine learning-based logistical regression
have been introduced as a strategic machine learning algo-
rithm due to its robust nature and easiness with mixed data
set performance. Using this technique, the algorithm will
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evaluate the reasons behind the performance gap between
simulation and real-time system outputs as shown in
Figure 3 and help to contain the error to a minimum; it
also provides useful insight, corelation, and evaluation
with class distinction according to subjective weather and
time horizon.

4.1.1. Machine Learning-Based Logistic Regression Modeling.
Machine learning- (ML-) based regressions are keenly a new
method for inference of error and hyperparameter deduc-
tion. For efficient future predictive system installation, result
synchronization, and error reduction between the simula-
tion model and real-time system, machine learning-based
logistic regression modeling has been performed in this sec-

tion. ML classification has been done on the following three
algorithms:

(1) Supervised learning
(2) Unsupervised learning

(3) Reinforcement learning

Flowchart classification of machine classes, input and
output data set nature, and algorithms are presented in
Figure 9.

The categorical data in ML lies mainly in the domain
of logistic regression. Linear and polynomial regressions
are commonly used for conventional regressive weight
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parameters and their corelations based on p values. ML
differentiates logistical regression from linear regression
based on the continuous and descriptive data set, respec-
tively. The regular fit in linear regression mainly highlights

continuous values in a data set. Logistic regression predicts
whether something is either true or false, yes or no, and 1
or 0, instead of predicting the weight or performance
based on the mean absolute, R?, etc., values. Due to
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significant differences between the simulation results and
experimental results performed earlier and as highlighted
by statistical values, ie., the standard error lies in-
between 5 and 45% for polyperk crystalline and 5 and
25% for Monocrystalline PV grid-connected module. ML-
based logistic regression modeling has been carried out.
A pair plot drawn in Python using the Seaborn library
assimilates the finest set of attributes and features for a
relative explanation of relationships between two and more
variables. The plot displays clusters and separation of off-
set data points along with hyperparameters that results
in decision-making and classification of either supervised
or unsupervised algorithm for machine learning. Pair plots
in Figures 10 and 11 show class representations in mono-
perk and polyperk module data sets with bar plots show-
ing energy yield produced over a time series.

Monoperk crystalline grid-connected system shows the
sigmoidal plot and two hotspot regions mainly featuring
yield and timeline variable, ie., month. Figures 10 and
11 also depict method validity for the experimentation
and simulation results. The pair plot of monoperk has
data sets more aligned statistically for simulation data
and interpretations, while the polyperk features data more
viable within experimentation data points. The pair plot
consists of scatter plots and bar plots. Experimentation
data points in the pair plot depict a higher yield for polyperk
as compared to the monoperk crystalline grid-connected
system.

The under discussion ML-based case study for mono-
perk and polyperk crystalline module-based grid-tied sys-
tems is being conducted first time as no previous literature
is available regarding the Al-based performance analysis.
This method highlights the significance of implications
between simulated and experimental methods with error
reduction, consolidation, and the performance evaluation
of grid-tied PV solar modules.

Anaconda-Python 3.8 libraries including NumPy,
Matplotlib, Seaborn, pandas, and scikit-learn have been uti-
lized for data analysis and machine learning-based decision
modeling between experimental and simulation results.
The initial case study for the polyperk crystalline module
data set shows a higher error doping in mean values during
experimental evaluation in comparison to simulation results
as shown in Figure 5.

Figure 5 displays the comparison based on error occur-
rence between simulation and experimental results in the
polyperk crystalline module where class 0 represents experi-
mental and class 1 represents simulation results. In both
simulated and experimental environments, per month yield
maximum output has been calculated. The descriptive statis-
tics of the polyperk and monoperk crystalline PV module
performance can be seen in Tables 4 and 5.

It can be seen from the extracted features represented in
Tables 4 and 5 that there is a significant difference between
simulation and experimental data. This difference is due to
the ideal scenario of the software as there is no consideration
of temperature variance and its effect on the system perfor-
mance as well as other factors such as dust factor and
shadow factor. Based on the abovementioned features, a
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TaBLE 4: Statistics (extracted features) based on performance
analysis of polyperk modules.

Features Experimental values Simulated values
Mean 1842.98 1733.76
Standard error 196.6675 112.8729366
Median 2152.85 1909.65
Standard deviation 6219171 356.9355659
Sample variance 386780.9 127402.9982
Kurtosis -1.78782 -1.825932887
Skewness -0.51473 -0.450257756
Range 1537.4 879.6
Minimum 900.8 1243
Maximum 2438.2 2122.6
Sum 18429.8 17337.6
Count 10 10
Largest (1) 2438.2 2122.6
Smallest (1) 900.8 1243
Confidence level (95.0%) 444.8927 255.3363221

TaBLE 5: Statistics (extracted features) based on performance
analysis of monoperk modules.

Features Experimental values Simulated values
Mean 1265.67 1849.62
Standard error 108.0271232 122.1181821
Median 1328.6 2037.5
Standard deviation 341.6117584 386.1715992
Sample variance 116698.5934 149128.504
Kurtosis -2.063216661 -1.835603662
Skewness -0.155217059 -0.435316653
Range 827.7 957.9
Minimum 834.6 1317.3
Maximum 1662.3 2275.2
Sum 12656.7 18496.2
Count 10 10
Largest (1) 1662.3 2275.2
Smallest (1) 834.6 1317.3
Confidence level (95.0%) 244.3743305 276.2505204

machine learning algorithm has been used to signify the
error reduction and predictability module.

4.1.2. Logistical Regression Mathematical Representation.
Logistical regression is generally used for two-class problems
and can be extended for implications in the multiclass prob-
lems but becomes highly unstable in calculations when clas-
ses are well separated; the working diagram is represented in
Figure 12. The baseline for the mathematical formulation of
logistical regression is simple linear regression.

y=b, +byx, (10)
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where y is the continuous output result while the b, is the
intercept of the line, b, is the slope of the line, and x is the
input or independent variable. In continuous data, we can
utilize linear regression, but in distinct classes, we cannot
draw the best-fit curve. We introduce a classifier for whether
an action/event shall occur or not. Figure 13 shows that the
output in logistical regression is binomial. LR has a sigmoid
function based on the probability of an event (P) and ranges
from 0 to 1 and is given as

p= L (11)

(1+e7)

Introducing P in the LR equation and computing at the
natural log scale gives the following mathematical expression:

p
In (1—P> =b, + b;x. (12)
Weighted output is in the range of either 0 or 1; if the out-
put is <0.5, then it corresponds to Oth class if not then Ist
class. For training and testing data sets after incorporation
into machine learning the module, accuracy is defined by

Corrrect Predictions

Accuracy (%) = % 100%. (13)

Total Predictions
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TABLE 6: Data set of monoperk crystalline module in simulation and experimental work.
Month Monoperk experimental results Monoperk simulation results Method/class max. yield output Difference Error percentage
January 1629.5 1329 0 300.5 18.44123964
February 1591 1561 0 30 1.885606537
March 1456.5 2003.5 1 547 27.30222111
April 1200.7 2110.7 1 910 43.11365898
May 1000.2 2275.2 1 1275 56.03902954
June 899.1 2254.1 1 1355 60.11268355
July 865.5 2071.5 1 1206 58.21868211
August 834.6 2111.6 1 1277 60.47546884
November 1662.3 1462.3 0 200 12.03152259
December 1517.3 1317.3 0 200 13.1813089
TaBLE 7: Data set of polyperk crystalline module in simulation and experimental work.

Month Experimental polyperk results Polyperk simulation results Method/class max. yield output Difference Error percentage
January 900.8 1245.8 1 345 27.69304864
February 1371.2 1471.2 1 100 6.797172376
March 2007.1 1881.1 0 126 6.277714115
April 2311.1 1976.1 0 335 14.495262
May 2298.6 2122.6 0 176 7.656834595
June 2405.6 2105.6 0 300 12.47090123
July 24382 1938.2 0 500 20.50693134
August 2377.5 1977.5 0 400 16.82439537
November 1276.5 1376.5 1 100 7.264802034
December 1043.2 1243 1 199.8 16.07401448

The accuracy of a system based on the prediction of
classification problems is either correct or can be incorrect
so a matrix, namely, a confusion matrix, is formed for a rela-
tional summary of actual and predicted values of classifica-
tion problems.

4.1.3. Performance Analysis of Mono- and Polyperk
Crystalline Modules. The total reading count of simulation
and experimental work is divided into 80% training and
20% testing data as shown in Figure 14. The classifier is
introduced for encoding purposes to have the binary distinc-
tion between greater probability events. The timeline hori-
zon consists of 10 months; no data was conceived for the
month of September and October.

log (p) =In (- (14)

where P is the probability of a discrete event defined earlier.

The training data set selects a total of 80% values from
raw data. The algorithm reads the pattern according to the
problem statement and improves the probability values. In
each run, a class check is run for appointing the new red
and green distribution as highlighted in Figure 14. An
increase in the iterations increases the width of class bound-
aries. Based on the extracted features and training/testing of

both modules, the data set collected from simulation and
experimental work of mono- and polyperk crystalline mod-
ule for a one-year cycle (except September and October) can
be seen in Tables 6 and 7 which depict the difference
between them ranging from 1% to 60.5% in monoperk and
6% to 27% in polyperk crystalline.

In logistical regression training, the data set values deter-
mine the probable event in advance. The most likelihood
and unlikelihood are distinguished for experimental and
simulation results. For the monoperk crystalline grid-
connected system in the experimental scenario, readings
are likelihood, and the probability after training and testing
the data set lies about 99% accuracy. The confusion matrix
produces an absolute validated summary result for the
method and material to be incorporated in each particular
scenario. A 20% test data set values in most actual and pre-
dicted values are in harmony with each other using the ML
module. In further classification, as shown in the heat map
and pair plot in Figures 8-11, the class distinction reflects
that those major values classified in the experimental work
are authentic.

To determine the evaluation of the monoperk crystalline
grid-connected system, experimental work is more reliable
than compared to a simulation study. The error difference
reduces in off-peak months of the data cycle, i.e., January,
February, and March, whereas in peak months, the
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evaluation results are likely the same and coherent. In the
case of polyperk crystalline grid-connected studies, a greater
significance and accuracy lies within the simulation and
experimental studies, and the likelihood of probability is
significant as seen in Tables 6 and 7. Model accuracy after
training and testing produces results of up to 99.5%. Simula-
tion results are likely most favorable in predicting the perfor-
mance evaluation of maximum vyield in grid-connected
systems. During off-peak (i.e., winter season), the error
difference increases due to various factors such as mod-
ule angle, line losses, cell dimension, and temperature
invariability.

5. Conclusions

In this research, a comparative study was conducted for two
solar systems of 15kW. The systems primarily included
monoperk and polyperk crystalline. From the study, it was
observed that maximum yield was produced, in winters, by
monoperk, while during summers, polyperk displayed
enhanced efficiency. In Faisalabad, polyperk has proven to
be eflicient considering the high rates of temperature
whereas monoperk, consequently, reduced the efficiency of
the solar system. The annual average of daily final yield, per-
formance ratio, and capacity factor for 15kW polyperk was
estimated to be 61.94kWh, 84.17%, and 19.12, respectively.
The annual average of daily final yield, performance ratio,
and capacity factor for 15kW monoperk was estimated to
be 58.32kWh, 81.42%, and 18.13, respectively. The efficiency
can also be attributed to the quality of the system. For exam-
ple, good quality inverter requires quality plates for
enhanced efliciency. Additionally, the production of a 430-
watt panel was noted as 400 watts. Furthermore, according
to the applied machine learning module, a significant differ-
ence was observed in the considered PV module types (i.e.,
mono- and polyperk). A machine learning modeling study
using logistical regression was applied to determine the
greater significance of experimentation results in monoperk
crystalline with an accuracy of 99.5%, while the results in
polyperk using simulation studies are more accurate and
recommended in the evaluation of PV-connected grid.
Depending upon observed parameters and frequency period,
the model elucidated a better understanding of the per-
formed real-time analysis leading to both cost and time
saving for the installation of similar projects in the region.
Furthermore, better performance can be achieved from
installed systems if factors such as dust, tilt angle, and
shadow effects are considered before the installation of PV
systems.
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The United Nations Development Programme (UNDP) 2030 agenda illustrates the requirement of expanding infrastructure and
advancing technology for delivering modern and sustainable energy services for all in developing countries. Moreover, UNDP also
set a goal of increasing the renewable energy share in the global energy. Renewable energy resources are eco-friendly and widely
available resources from nature for generating energy. Geothermal energy, wind energy, solar energy, tidal energy, and biomass
energy are renewable energy sources. Solar energy is one of the renewable energy generation approaches that harvests energy
widely from sun radiation. Photovoltaic (PV) and concentrating solar power (CSP) are the primary technologies to capture
solar energy. This study presents the significance of utilizing solar energy for electricity generation globally using PV and CSP
technologies. Furthermore, the distinct energy capturing and storing mechanisms of PV and CSP technologies are presented in
detail. This article presents the significance and implementation of thermal energy storage for storing energy obtained through
CSP technology. Finally, the study presents a considerable gap between PV and CSP in terms of development with future trends.

1. Introduction

Over many years, momentum in establishing worldwide
renewable energy sources has intensified. Renewable ener-
gies tend to be significant in the context of sustainable
energy generation [1, 2], and the production of renewable
resources worldwide, estimated at 20 percent, is primarily
made up of biomass [3] and hydroelectricity [4]. The dra-
matic prospects for critical trends for the succeeding 60-70
years, assuming a “business as usual” behavior correlated
with stable progress and demographic perspective for the
southern and northern countries, embody profound trans-
formation which is clearly shown in Figure 1.

Figures 2(a) and 2(b) present the statistical data regard-
ing the anticipation rise in electricity demand. Moreover,
the reduction of proven oil supplies, the prefoliation of
nuclear plant safety like danger of nuclear waste accumula-
tion, the spike of carbon dioxide concentration in the envi-
ronment, etc. are the critical concerns of the next century
(Figure 3). However, the fact remains that such innovations
are not able to adapt to the need for increased power gener-
ation, environmental conservation, and a potential decline in
the usage of coal and oil. As long as environmental pollution
is related, renewable energy is crucial for reducing pollution
in a sustainable manner [7, 8]. It has been anticipated that
every billion kilowatt-hours of renewable energy will cut
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FIGURE 1: Energy demand projection (1960-2100) [5].

down sulfur emissions by 10,000 tonnes, particulate emis-
sions by 2,000 tonnes, and carbon emissions by more than
200,000 tonnes [9]. There is an immediate need to build
alternative energy sources that are environmentally sustain-
able. In spite of the above, it is of extreme significance that
precise assessments are paid to appropriate measures such
as a substantial reduction in energy use by the usage of alter-
native energy sources, energy conservation measures, and
the combination of various types of energy. It should be
pointed out that the reduction of energy demand is a daunt-
ing task, especially in terms of developing countries’ needs,
as it is intrinsically hard to operate in this field without an
adverse effect on the development of the economy.

In 2017, ambient carbon dioxide levels were 406.5
parts per million, up 2.3 ppm relative to last year. The sec-
ond hottest high was last year, just 0.99 Celsius in 2016,
above the average of 1951-80 [11]. It is suggested that
larger government supplies for clean energy sources would
help to offset the more than 60 percent growth in world
electricity demand over the midterm and quickly cross
the coal divide in the United States, EU, China, India,
and Mexico. A study [12] is carried out to optimize the
heliostat layout in central receiver solar power plants in
order to obtain optimum heliostat field efficiency using
genetic algorithm, and the result concludes that increasing
the tower height and decreasing the heliostat height by 7.7
and 19.5 percent, respectively, increase the total efficiency
of the field by nearly 4% while decreasing the total area
of heliostats by 17%. Innovative coolant tube layouts are
developed and numerically modelled to achieve maximal
exergy and energy efficiencies of photovoltaic-thermal
(PV-T) systems [13]. Energy and exergy analyses of a
photovoltaic-thermal system with wavy tubes are explored
numerically using different coolant fluids to build a more
efficient water-cooled photovoltaic-thermal system [14].

The contribution of the study is as follows:

(i) The overview and significance of solar energy are
presented with statistics

(ii) The distinct types and mechanisms of photovoltaic
(PV) and concentrated solar power (CSP) are
presented

(iii) The implementation of thermal energy storage for
storing the energy obtained through the CSP is
addressed

International Journal of Photoenergy

(iv) A considerable gap between the PV and CSP tech-
nology is presented for future enhancement

The structure of the study is as follows: Section 2 covers
the overview of solar energy and the importance of PV and
CSP technologies for harvesting solar energy. Section 3
covers the concept of thermal energy storage for storing
the energy obtained by CSP. Section 4 provides the consider-
able gap of development between PV and CSP, and the final
section concludes the article.

2. Solar Energy

Solar power promises to be the primary technology for the
transition to a decarbonized supply of energy among the
numerous renewable energy sources, which can be installed
almost throughout the world. The efficiency of the photovol-
taic (PV) system is directly proportional to solar energy
[15-17]. Many countries identify that renewables and energy
conservation solutions are chosen to be a functional
approach for combating coal usage. Solar resources are vast
in Europe and worldwide, and a 98-gigawatt solar power
plant is the highest power capacity built-in 2017 [18]. It is
indeed worth remembering that, in 2017, a gross amount
of USD 279.8 billion was apportioned to all renewables glob-
ally. The energy sector earned $2.5 billion on public markets
in 2017, a spike of $1 billion in 2016 [19]. Across several
energy scenarios, solar energy has been viewed as a critical
factor.

The utilization of solar energy has split into two signifi-
cant technologies based on solar radiation harvesting and
transforming into electricity [20]. The technologies are solar
photovoltaic (PV) and concentrated solar power (CSP) tech-
nology. The CSP enhances solar energy density and also pro-
vides both electricity and thermal power. On the other hand,
PV is the only technology that provides flexibility or even
lowers future costs; regardless of how fast the electricity
prices are rising, in the future, solar power by both photovol-
taic (PV) and concentrated solar power (CSP) seems to be a
successful mechanism not only to fulfill the need for electric-
ity in the globe but also to satisfy the demand for the deple-
tion of fossil fuels from other sources. Meanwhile, numerous
future clean energy systems are only photovoltaic technol-
ogy that has a larger potential to prevent carbon emissions
and tackle energy problems in the future [21]. “Power for
World,” an exciting initiative to encourage and provide elec-
tricity to more than a billion people in impoverished devel-
oped world countries, was initiated by Dr. Wolfgang Palz
[22]. The industry has been abandoned because a photovol-
taic plant with a total capacity of 10 GW is adequate to fulfill
the minimum requirement of 10 Wp per person for the
poorest inhabitants of the earth.

2.1. Photovoltaic (PV). As is the case today, PV is well
accepted by most developed countries in the world. Several
nations economically powerful sufficient, such as China,
the United States, Japan, European countries, and India,
have already made substantial investments in the growth of
this specific field through their national programs [23].
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The PV industry in the world has seen significant innova-
tions. It is indeed noteworthy that photovoltaic, with built-
in remote and central power stations generating hundreds
of megawatts, is a technology that has already proven its reli-
ability and is quite promising for the production of electrical
energy on a global scale [24, 25]. The year 2019 was yet
another streak year for the solar photovoltaic (PV) industry;
about 60 GWp of new solar PV installations was installed
throughout the year. Figure 4 demonstrates that by the end
of the year, the global total deployed PV capacity is equiva-
lent to 632.4 GW (gigawatt), and in 2019, the global cumula-
tive solar capacity amounted to 633.7GW and with
1169 GW of new PV capacity installed in the same year
[26]. Midterm projections for global combined PV capacity
by 2020 increase from 600 GWp to 700 GWp, relying on
the policy scenario. It is to be noted that the cumulative
installed capacity of photovoltaic energy in 2019 in the Euro-
pean Union is mounted to be 134 GW. In contrast, it is
expected that the same will be increasing to 370 GW in
2030 and up to 1051 GW in 2050.

In the foreseeable future, the European PV Technology
and Innovation Platform (ETIP PV) benchmark scenario
predicts that the global combined PV capacity will be about
9,000GWp by 2050 [27]. Considering the International
Energy Agency (IEA) demand growth scenario, this power
will produce around one-third of the world’s annual energy
use, considering the International Energy Agency (IEA)
demand growth scenario.

The main pillars of photovoltaics are divided into three
categories: PV fabrication technologies, PV system technolo-
gies, and advanced services to industries [26], which are
shown in Figure 5. Crystalline silicon-based (c-Si) modules
currently have more than 90% market share and will be
the predominant PV platform in the future [29]. In multi-
junction methods, the incorporation of layers of distinct
materials to the roof of silicon might increasingly boost
quality. The significant benefit of silicon-based PV modules
is that the critical raw material, silicon, is the second most
abundant (after oxygen) in the earth’s crust [30]. Many PV
cells are composed of silicon, refined, and filtered from sili-
con dioxide, which is sand. Very few thin-film products
are available in the market, which is the amalgamation of
copper indium gallium selenide (CIGS) and cadmium tellu-
ride (CdTe) [31].

However, thin-film technologies also weakened their
comparative benefit over c-Si modules as silicon is now plen-
tiful and very affordable which are illustrated in Figure 6(b).
Thin films include rare elements such as indium and tellu-
rium, which may be inconvenient if the production volumes
were to escalate ten or a hundred times as anticipated by
potential expansion [32]. Tellurium is almost as rare as plat-
inum or copper, while silicon is about 60 million times more
abundant than tellurium. First Solar is undoubtedly among
the ten biggest PV module producers in the world, the only
thin filmmaker [33]. Other PV technologies, such as organic
or dye-sensitized cells, are also available but are still in the
testing or demonstration process. They have a challenge
with low efficiency and fast degradation in outdoor condi-
tions, and it is not likely that they will ever be able to com-
pete on a large scale with c-Si modules [34]. As of today,
PV is well recognized by most of the industrialized countries
in the world.

In 2015, solar energy attracted 56% of all new renewable
energy investments or USD 161 billion [35]. Private sector
interest in renewables is picking up but accelerating that
interest will need a significant increase in concessional
finance. The critical factor behind this accelerated growth
is the drastic price decline of the solar PV modules. In nom-
inal terms, the recent PV module price, 0.40-0.50 USD/Wp,
is just 10 percent of the cost in 2008, and the price of the
module will dip below $0.30/Wp, according to IHS Markit
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by 2020 [36]. ETIP PV will suggest a long-term basis sce-
nario where the module’s price is down to USD 0.10/Wp
by 2050 [27].

In contrast to the modules, the PV system mounted con-
tains components such as the Balance of System (BoS)
inverters, wires, assembly, and construction structures. The
contribution of the BoS cost in overall PV system capital
(CAPEX) depends on the scale of the system. Still, typically
less than half of it is utilized in large ground installations
on competitive markets such as India [37]. The photovoltaic
industry is effectively a semiconductor industry, where vol-
ume growth immediately reduces cost. The price of photo-
voltaic modules traditionally dropped by 20-25% each time
the total installed capacity in the world doubled [38]. More

effective use of materials, efficient processing methods, and
enhanced efficiency of solar cells are the main determinants.

The average performance of PV modules is approximately
around 16 percent and is expected to grow to 30 percent by
2050. Few commercial modules achieved 23 percent efficiency
[39]. Best business modules now achieve a productivity of 23
percent. The automatic improvement in productivity lowers
the PV CAPEX because about half the BoS cost is connected
to the field. Better efficiency ensures that the PV modules use
a smaller region every time. Best commercial modules already
reach 23 percent efficiency which is shown in Figure 6. Increas-
ing the efficiency drastically decreases the PV CAPEX because
half of the BoS cost is area related. Better efficiency always
means a smaller area required for the PV modules.
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In a climate zone, average temperatures have no signifi-
cant effect on the output of solar panels. In fact, in more
excellent conditions, solar panels are generally marginally
more effective at generating electricity. If we reside in a
cooler climate, you just get enough sunlight while the solar
panels are working only a step farther north. Anyway, the
terrific PV capacity growth was encouraged by reward
mechanisms. According to the majority experts, grid parity
can be attained before 2020 in most implementations and
the early 20s in the remaining [41]. Complete form for con-
sumer product (on-grid/off-grid) systems includes clocks,
calculators, toys, greenhouse and production bunkers, resi-
dential applications, and electrical power plants. From
0.01 W up to 100 MW, residential applications are prevail-

ing. Further drastic technical advances will lead to accurate
market changes such as high-efficiency multilayers, quan-
tum dots, and nanotubes and nanowires.

PV manufacturing is fundamentally a semiconductor
industry, where the spike in production significantly reduces
costs [42]. The average price of European crystalline silicon
modules in 2017 dropped by 14% and is projected to fall
by a further 15% in 2018 which has doubled; the pricing of
PV modules has dropped 20-25 percent [43]. Other key fac-
tors are a more productive use of materials, more robust
production practices, and better solar cell performance.
Striking decrements in PV module cost is increasing BOS
cost-share: from 30% to today’s 50%. As for BOS cost decre-
ment, perspectives are mainly linked to scale effects, but for
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inverters (10% cost-share), average prices went down by
17% from 1990 to 2008, primarily due to efficiency increase
(from 90% to 98%) [44]. Cutting down dangerous air pollu-
tion and diversifying energy supplies for a better source of
safety may undoubtedly play a similar role, especially in
the growth of low-carbon energy sources in emerging Asia
as it was. Generation from renewables is expected to exceed
7600 TWh by 2021. Over the next five years, renewables will
remain the fastest-growing source of electricity generation,
with their share growing to 28% in 2021 from 23% in 2015
[45]. Notably, it makes an impressive remark that almost
half a million solar panels were installed worldwide every
day last year. Certainly, last year has been a turning point
for renewables, but there is still proof that it continues on
renewable growth for the transportation and for heat sectors
to remain weak and in need of even stronger government
efforts.

2.2. Concentrating Solar Power System (CSP). CSP is a
mechanism of enhancing solar power density and deliver-
ing electricity and thermal power. Using different mirror
configurations, CSP generates electric power by transform-
ing the solar energy into high-temperature warmth;
thereby, a typical generator is utilized for channeling the
heat [46]. Plants contain two parts: one that harvests and
transforms solar power into heat and the other that pro-
duces electricity from heating energy. CSP for the village
is 10km/w, and for the grid, applications may be scaled
up to 100 megawatts [47]. During cloudy hours or at night,
some devices have thermal storage available. Other elements
can be paired with gas, and hybrid power stations will have
dispatchable hybrid power. For thousands of years, CSP has
been perceived and recognized by inventors. The origin of
the current solar focus is believed to be in the seventeenth
century. In the early 20th century, several new projects for
concentrating varied from solar pumps to steam power tur-
bines to distilling water. Concentrated solar (CS) technology
is categorized into two distinct types, and they are shown in
Figure 7. Tracking CS and nontracking are the two technolo-
gies of CSP.

There are four primary tracking CS technologies such as
parabolic trough, solar tower, linear Fresnel reflectors, and
parabolic dish defined based on the radius and technical
treatment of the sun which are shown in Figure 8. Parabolic
troughs are the most evolved CS methods and comprise
most existing commercial plants. The parabola trough is
the linear fixation collector composed of a cylindrically
curved parabola mirror, reflecting the sunlight of a tube in
the parabola focal line [48]. The tubular receiver comprises
the heat-absorbing liquid and passes it into the furnace or
other steam-making system through the circulation. The
linear Fresnel reflector includes the FLR mirror tracking
phase, which concentrates solar-based beam radiation onto
a receiver tube mounted on the focal point of the Fresnel
mirror and produces high-temperature working media to
produce thermal cycle power [49]. Sunshine is converted
into renewable energy by solar power towers. Many large
heliostats are used to concentrate the sunlight on a receiver
over a tower [50].

Parabolic-dish solar concentrators are two-axis solar
tracking systems focusing solar radiation onto the heat
receiver at the center point of the platform collector [52, 53].
The technical specifications of these four CS technologies are
illustrated in Table 1. The capacity, implementation status,
and operating year are discussed in the table. The parabolic
dish Stirling tracking CS technology is installed in the outer
environment, and it been operating from 1986 with a capacity
of 10-25kW.

3. Thermal Energy Storage

The attributable benefits of CSP innovations are achieved
through the incorporation of traditional heat plants. A
carbon burner is incorporated in conventional thermal
cycles by thermal storage solar heat plants which can offer
firm capabilities without needing to build separate backup
power plants and without stochastic grid disturbance [55,
56]. Trough designs can incorporate thermal storage setting
aside the heat transfer fluid in its hot phase allowing for elec-
tricity generation several hours into the evening [57]. All
parabolic trough plants for this study are hybrids, meaning
they use fossil fuel to supplement the solar output during
periods of low solar radiation. Typically, a natural gas-fired
heat or a gas steam boiler/preheater is used; troughs also
can be integrated with existing coal-fired plants. The reflector
follows the sun during the daylight hours by tracking along a
single axis. A working fluid is heated to 150—350oc as it
flows through the receiver and then utilized as a heat source
for a power generation system. The complete mechanism of
the power generation is shown in Figure 9.

The Archimedes scheme integrates the best technologies
of today with today’s solar field, a storage facility, and a
steam engine, the first of its kind in the world to be unveiled
in Italy on 15 July 2010 [58]. Solar energy is stored in 360
linear parabolic collectors in the modular solar region. To
optimize the working temperature and the capacity to store
heat, the Italian National Agency for New Technologies,
Energy and Sustainable Economic Development (ENEA),
has unveiled a novel fluid heat carrier. The new concept of
a concentrator based on thinner mirrors is another creative
aspect of ENEA, saving building and installation expenses
[59]. The utilization of ample heat storage enables the plant
to heat the steam generator 24 hours a day at a uniform fre-
quency regardless of the fluctuations in solar power avail-
ability. The steam generator includes heat exchangers “tube
and shell” in which heat is transported to water to form
superheated steam to be used in conventional thermoelectric
plants. 5 MW solar plant worth almost €60 million has a spe-
cific characteristic to capture and store the solar thermal
energy for several hours, allowing both off-sunshine and
overcast sky power to be produced by the plant [60]. It is fac-
tual that the 2100 tonnes of oil saved and carbon dioxide
emissions cut by 3250 tonnes over one year. The current
findings represent a significant achievement, costing approx-
imately five or six times more for the kilowatt-hour pro-
duced about the energy costs extracted using traditional
tuels [10]. Access to large volumes of water is a significant
obstacle for CSP use in arid areas because the water supplies
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TABLE 1: Details of tracking CS [54].

Tracking CS Capacity Status Operating
Parabolic trough 50-200 MW Proven utility-scale technology 1984
Liner Fresnel reflectors 50-200 MW In development 2012
Solar tower 50-100 MW Demo plants built 2007
Parabolic dish Stirling 10-25kW Installation 1986

Concentrating
system

\

Solar receiver

J

Storage

FIGURE 9: Process of thermal energy storage.

available are widely regarded by many stakeholders. Dry air
cooling is a powerful alternative used in North Africa on the
ISCC plants under development. However, it is more costly
and reduces productivity. When installed in hot desert
trough plants, it tends to decrease the annual production
of energy by 7% and elevates the cost of electricity generated
by approximately 10%. For solar towers, the efficiency pen-
alty is less than for parabola dry cooling. Solar process heat
promises an exciting future for the solar thermal industry,
the need for industrial process heat is enormous, and many
demonstration systems are fully operational. It is a technol-
ogy ready for deployment and well-identified in the sector
and the primary trend in research and development. Excep-
tionally, a medium-size solar process heating plant should be
engineered, and feasibility analysis was undertaken out so
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that the graduates can realize the position of a system devel-
oper or an engineer in the industry.

4. Discussion

4.1. The Gap between PV and CSP Development. The CSP
method operates only for irradiance, whereas the diffuse
radiation can also be used for PV systems. The PV can then
be mounted anywhere, while the required CSP areas are far
more limited. PV plants will have opportunities for a dis-
persed and decentralized generation while CSP plants do
not scale down well, and CSP production needs to provide
a transmission grid. The photovoltaic system is primarily
about solar panels, and CSP power plants incorporate a
significant number of critical mechanical and chemical com-
ponents. CSP plants require equal to 10 acres per MW, while
crystalline technology needs around 4.5-5 acres of area for
1 MW of electricity, and thin-film technology requires about
6.5-7.5 hectares [61]. It is only an approximate criterion that
can differ depending on panel technology and performance.
In terms of materials, CSP plants demand a significant level
of iron and cement. In contrast, in their manufacturing
phase, PV plants need essential materials such as indium
and rare earth elements.

In small-scale systems, the construction cost for photo-
voltaic plants is about 2,000-2,500 EUR/kW, and the price
for the larger ones is just 1500 EUR/KW [62]. It is important
to remember that, for both utility (MW-scale) and industrial
(kW-scale) plants, the average cost of PV plants has been
declining over the last few years, with a much less price

decline to come in the future forecast. The infrastructure
costs for CSP plants vary from 2,000-6,000 EUR/KW,
depending on the technology, size, and potential usage of
the heat storage facility. Ordinary annual operating costs
for the photovoltaics plant are equivalent to 1% of initial
expenditure compared with around 20/0 for CSR energy
depletion. Moreover, the entire life span of the installation
(ranging from 0.5 to 1% each year) has minor economic
consequences for the CSP plant than for the PV plant. CSP
generates more electricity than PV plants with the same
rated capacity and the same environmental conditions. It
demonstrates that the CSP’s economic return is more sub-
stantial. PV systems are now the world’s most common solar
electric technologies.

At the end of 2015, over 235 GW of photovoltaic power
systems had been installed worldwide, while there are now
fewer than five GW of CSP technology [63]. Yet, this global
CSP capacity is projected to reach up to 22 GW by 2025 with
1.2 GW of newly added capacity and a turnaround in activ-
ities shortly [64]. A few of the benefits of the CSP device are
likely the conservation of heat. Power supply at peak time is
an essential and demanding factor of power plant projects.
As an intermediate phase to produce electricity over peak
hours, CSP system provides the capacity to provide quick,
reliable, and environmental storage of heat energy. Distinct
technologies allow thermal storage for use in CSP systems.
The second significant aspect is some possible technological
transformations that might intensify CSP production in the
area of “solar fuels.” When comparing the CSP trend with
the other sources of renewable energy, we can see that CSP
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is at a significant shift. The initial and operational effect of
CSP schemes would undoubtedly have a considerable
impact on mirrors, vacuum receivers, optics, support sys-
tems, efficient heat transfer fluid, and turbines. CSP systems
could provide about 10 percent of world energy in the most
favorable circumstance [65]. The mass manufacturing of
photovoltaic systems and public subsidies culminated in
the development of low cost-effective multifunctional cells.
In short, one technology cannot be claimed to be superior
to another. Here, we tried to illustrate those problems that
must be weighed before determining which solar energy is
the best for a given situation.

Figure 10 illustrates an implementation of the PV system
with dSPACE controller to check the power, voltage, and
current characteristics under different irradiations. The flow
chart of the proposed system is shown in Figure 11. The PV
panel is deployed in the outer environment; the voltage
obtaining from the PV is powered to the bulbs. The power
to the bulb is provided by inverting the voltage obtaining
from PV. The zeta converter can convert input voltage into
a noninverted output voltage that might be lower or greater
than the input voltage.

The system starts with maximum open-circuit voltage
(V,.) to account the real-time maximum power point oper-
ation (MPP) with varying I-V characteristics as represented
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FIGURE 14: Practical results under high and low sun insolation
conditions.

by the pink dotted line (Figure 12). Further, the black dotted
line represents the I-V characteristics of the solar cell oper-
ated at maximum power point voltage (Vpp) for different
radiation levels over a day. The variation in current with
respect to voltage is demonstrated by an angle ().
Figure 13 describes the actual functioning of the solar cell
(respective to power, voltage, and current parameters) upon
irradiation. It is visible that with increasing irradiation time,
the voltage across the cell decreases with increasing current
and further becomes constant confirming the accurate
behavior of the solar system.

The practical current responses of the proposed PV
system under low and high sun insolation have been realized
at obtained constant voltage as shown in Figure 14. It is
observed that the exhibited current is higher at high irradia-
tion compared to low irradiation. Hence, higher power is
gained at high irradiation. Payback analysis, net benefit anal-
ysis, saving-to-investment ratio, adjusted internal rate of
return, and life-cycle cost analysis are five economic analysis
parameters that are frequently used for solar PV plant place-
ment. Currently, in this study, the proposed system is shown
as proof of concept for showing significance of the PV sys-
tem for electricity generation. In the future, the proposed
system will be deployed in a wide range and the economic
aspects of the system will be evaluated in detail.
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5. Conclusion

The UNDP set a target of comprehensive implementation of
renewable energy sources for minimizing the impact of car-
bon emissions on the environment. Renewable energy
sources have the potential to generate sustainable electricity
for all. Solar energy is one of the prominent renewable ener-
gies that is generated through the radiation of the sun. At
present, solar energy is widely implemented in many coun-
tries to meet the electricity demand sustainably. PV and
CSP are the two different technologies utilized to capture
the heat generated from the sun. This article presents the
mechanism, types, and advancement of PV and CSP technol-
ogy concerning the widely implemented technologies in
many countries for electricity generation. Thermal energy
storage is one of the prominent technologies utilized for stor-
ing the heat energy obtained through CSP. A gap between the
PV and CSP technologies is presented in the article to
enhance the performance. As part of the proof of concept,
an experiment is carried with PV panels in the outer environ-
ment. The power, current, and voltage analysis of the sug-
gested system are evaluated in this experiment, and it is
found that the observed current is higher at high irradiation
relative to low irradiation. In the future scope, PV and CSP
technologies play a crucial role for the generation of renew-
able power in a sustainable manner that minimizes impact
on the environment.
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