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'e goal of this research is to design an Artificial Intelligence controller for the active suspension system of vehicles. 'e Ring
Probabilistic Logic Neural Network (RPLNN) architecture has been adopted to design the proposed controller, and the pavement
condition has beenmodelled utilizing Gaussian white noise.'e results show that the proposed RPLNN controller has an effective
performance to reduce the unwanted stochastic effect of the road profile.

1. Introduction

1.1. Background. During the car transportation due to
conversion of absorbed energy by suspension and tire of the
vehicle to thermal energy, an energy loss happens. Utilizing
an effective suspension system gives an opportunity to re-
duce the energy loss and save energy [1], and saving energy
means reducing the fuel consumption. In recent years, many
researchers focus on reducing the undesirable effects of the
pavement and decrease the fuel consumption rate by de-
signing effective suspension systems [2].

In 2012, Ismail et al. [3] proposed an Artificial Neural
Network (ANN) model for a light-duty diesel engine
powered using blends of various biodiesel fuels with
conventional fossil diesel. Cay et al. [4] utilized ANN to
predict the brake specific fuel consumption. In 2014, Roy
et al. [5] modelled the performance and emission pa-
rameters of a single-cylinder four-stroke engine under
CNG-diesel dual-fuel mode by ANN. In 2015, the per-
formance, emission, and combustion characteristics of a
single-cylinder, four-stroke variable compression ratio
engine were predicted with the aid of ANN by Mur-
alidharan and Vasudevan [6]. As an intelligent technique,

particle swarm optimization has been adopted by Olivera
et al. [7] to reduce vehicle emissions and fuel consumption
in the city. In 2016, Lotfan et al. [8] combined ANN and
nondominated sorting genetic algorithm II to model and
reduce CO and NOx emissions from a direct injection
dual-fuel engine. ANN has been utilized by Perrotta et al.
[9] in 2017 to model fuel consumption of trucks. In 2018,
Azizi [10] proposed a PID controller to control fuel
consumption rate based on the changing pavement
condition. Although the result of the research shows that
the proposed PID controller can reduce the fuel con-
sumption, but the vibration at the beginning of the control
procedure because of the input control signal for few
seconds is high.

'e current research aims to design an effective
Artificial Intelligence (AI) architecture to decrease the
effect of the road profile which shows itself as imposed
vibration on vehicle. It means less fuel consumption and
higher parts life can be achieved by filtering such a noise.
In this research, Gaussian white noise has been adopted
to model the road profile. Different from previous works,
the aim of the current research is presenting an effective
approach to eliminate the mentioned fluctuation and
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control the fuel consumption rate even at the beginning
of the control process [11, 12]. For this purpose, Ring
Probabilistic Logic Neural Network (RPLNN) which is
an effective paradigm and has been utilized by re-
searchers as a function optimizer, prediction tool, and
plant simulator [13–16] is adopted here to be trained by
the PID controller proposed by Azizi et al. [10]. In this
paper, MATLAB software and Simulink toolbox have
been utilized to develop a simulation-based model of the
active suspension system of the vehicle and design an
effective RPLNN controller to investigate and reduce the
effect of the imposed vibration from the road profile. 'e
proposed simulator is capable of simulating the vertical
displacement of the vehicle before and after utilizing the
AI controller, also it is capable of analyzing these vi-
brations by examining the different values of the system
parameters. 'e results show that the proposed RPLNN
controller has a superior performance than the PID
controller and has an effective performance to reduce the
imposed vibration by the road profile and reducing the
fuel consumption rate.

After the brief introduction and literature review
about the research topic, the remaining parts of the paper
is organized in three more sections. First, in Section 2,
mathematical modeling of a proposed active suspension
of a quarter car model proposed RPLNN algorithm, and
the simulation-based model set up have been discussed in
detail. In Section 3, which is the results section, the
designed simulator has been verified by analyzing the
effect of the proposed controller’s effect on system vertical
displacement. Finally, in Section 4, the summary of the
research has been given and possible future works have
been suggested.

2. Methodology

Fuel consumption rate can be affected by two important
factors: vehicle handling performance and vehicle suspen-
sion system [17]. In conventional method, a passive sus-
pension system which is a combination of springs and
dampers has been utilized to reduce the imposed vibrations
to the vehicle from the pavement profile. It is important to
know that, since the damping ratio cannot be adjusted, so
such a system is not able to eliminate the imposed vibration.
Nowadays, by advancement in technology active suspension
systems which are equipped with effective controllers are
being utilized to reduce the effect of pavement conditions.
[18].

'e ultimate goal of this research has been defined as to
design an effective AI controller to reduce the undesirable
effect of the road profile on vehicles. 'e steps of the pro-
posed methodology in this research have been defined in the
following order. 'e first step is introducing the quarter car
model equipped with an active suspension system. 'e
second step is utlizing RPLNN algorithm to design an ef-
ficient controller\as a part of the active suspension system.
'e third step is utilizing MATLAB software to train the
proposed AI controller. 'e next step is simulating the
proposed set up utilizing Simulink, and the last step is testing

and analyzing the performance of the proposed RPLNN
controller and comparing it with the performance of the PID
controller.

2.1. Active Suspension Controller Model. 'e quarter car
model, which is a model to investigate the dynamic vibration
of a vehicle with regards to the road profile as the input of the
model, has been illustrated in Figure 1. It is important to
know that, in such a model some parameters such as geo-
metrical information, pitching, and rolling angles have not
been neglected, but most of the important features such as
the change of the load has been considered.

In the current work, to generate themathematical model,
the state space method which is one of the well-known
approaches in control engineering has been adopted [20].

To generate the state space representation, the first step is
analyzing the quarter car model (Figure 1), which has been
carried out by the following equations:

M1 €x1(t) + D _x1(t) − _x2(t)􏼂 􏼃 + k1 x1(t) − x2(t)􏼂 􏼃 � u,

(1)

M2 €x2(t) − D _x1(t) − _x2(t)􏼂 􏼃 + k1 x2(t) − x1(t)􏼂 􏼃

+ k2 x2(t) − x0(t)􏼂 􏼃 � −u.
(2)

M1 (300 kg) and M2 (40 kg) are the sprung and un-
sprung masses, respectively. K1 (15000N/m) and D
(1000N/m) are stiffness and damping coefficients of spring
and damper of the suspension system, respectively. K2
(150000N/m) is the stiffness coefficient of the spring which
is the model of the tire of the vehicle. 'e vertical dis-
placements of the sprung mass, unsprung mass, and
pavement condition have been shown by X1 (t), X2 (t), and
X0 (t), respectively, and the parameter U represents the
controlled force.

Now, the state variables with respect to the dynamic
equations (1) and (2) and can be defined as follows:

x1 � x2(t),

x2 � x1(t),

x3 � _x2(t),

x4 � _x1(t).

(3)

By substituting state variables presented on equation (3)
in equations (2) and (3), we will get the following
expressions:

_x4 � −
D

M1
x4 +

D

M1
x3 −

K1

M1
x2 +

K1

M1
x1 +

u

M1
, (4)

_x3 �
D

M2
x4 −

D

M2
x3 −

K1

M2
x1 +

K1

M2
x2 −

K2

M2
x1 +

K2

M2
x0 −

u

M2
,

(5)

In general state space variables, change can be defined as
follows:
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dX

dt
� AX + BU, (6)

X � x1 x2 x3 x4􏼂 􏼃
T
. (7)

So, based on equations (4) and (5) matrixes A and B of
equation (6) will be as follows:

A �

0 0 1 0

0 0 0 1

−
k1 + k2

M2

k1

M2
−

D

M2

D

M2

k1

M1
−

k1

M1

D

M1
−

D

M1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

B �

0 0

0 0

k2

M2
−

1
M2

0
1

M1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(8)

'e system input variable matrix is

U � x0(t) u􏼂 􏼃
T
. (9)

'e vehicle suspension system output matrix equation is

Y � CX + DU (10)

In this paper, the output has been defined as the dif-
ference of the vertical displacement of the sprung and un-
sprung masses:

Y � x2(t) − x1(t). (11)

So, based on equation (11) matrixes C and D of equation
(10) will be as follows:

C � −1 1 0 0􏼂 􏼃,

D � 0 0􏼂 􏼃.
(12)

After introducing the mathematical model of the quarter
car model, the next step is investigation of one of the inputs
of this mathematical model which is the pavement
condition.

2.2. White Noise Road Input Signal. Mathematical modeling
of the pavement condition due to its Gauss-distributed
stochastic behavior is too hard. To fulfill this task, the
Gaussian white noise which shows randomness behavior can
be utilized as the representative of the statistical pavement
power spectral density. As shown in equation (13), the re-
lationship of the random road input signal and the Gaussian
white noise per ISO/TC108/SC2N67 can be modelled
mathematically as shown in the following equation [21]:

q(s)

w(s)
�
2πn0

�������
Gq n0( 􏼁v

􏽱

s + 2πf0
. (13)

where q (s) is the random road input signal, w(t) is the
Gaussian white noise, n0 is Reference Spatial frequency, Gq
(n0) is the Road roughness coefficient, and f0 is the Filter
lower-cut-off frequency.

After introducing the quarter car mathematical model
and the Gaussian white noise as one the input signals of it,
the next step is the design of the controller utilizing the
RPLNN algorithm.

2.3. Ring Probabilistic Logic Neural Networks Controller.
Probabilistic Logic Neuron (PLN) is a weightless neuron
which its output can be defined as one, zero, or “don’t care”
states [22]. Because of the “don’t care” state, the PLNs have
flexibility to bind together and design a fast-learning
weightless neural networks [14]. Based on this property the
RPLNN has been proposed by Menhaj et al. [23] as a novel
algorithm to model, control, and optimize complex plants.
'e proposed design consists of PLNs in which the output
of the last one is fed by the input of the first one (see
Figure 2).

In 2016, Azizi et al. [15, 22] utilized RPLNN structure as
an optimizer tool to optimize weightless neural networks
and RFID networks. Later, the RPLNN structure has been
developed and utilized as a part of the hybrid optimizers
[13, 14, 16, 24, 25].

In the current research, different from previous works,
the weightless RPLNN has been utilized to be trained by the

Control
Controller

signal
U

Sprung Mass : M1

Unsprung Mass : M2

K2

K1

D

X1

X2

X0

Figure 1: Quarter car model equipped with the active suspension
system [19].
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proposed PID controller in previous reserach [10], so after
the accomplishment of the training process, the proposed
RPLNN has been utilized as the controller to reduce the
vertical vibration of the vehicle due to the road conditions
which can be considered as Gaussian white noise input.

'e input of the RPLNNwill be the vertical displacement
of the vehicle, and the output will be the actuator's force. It
means that the proposed controller regulates the active
suspension system’s force considering the vibration due to
road condition.

To fulfill this task, it is essential to define an objective
function. Since the proposed algorithm gives a fitter result in
each iteration, so it can be called as an evolutionary algo-
rithm. Here, since the aim is reducing the difference between
the vertical displacements of the sprung and unsprung
masses, so the objective function can be defined as the error
function (see equation (14)). In this case by minimizing the

objective function the RPLNN controller will be able to
adjust the active suspension force. It is important to know
that to train the RPLNN controller the reference modelis the
data of the PID controller, which has been proposed by Azizi
at el. [10, 26]:

E(t) � x1(t) − x2(t). (14)

3. Results

As seen in Figure 3, the proposed quarter car model has two
inputs: the first one is the road condition which is taken as
random input and has been modelled by Gaussian white
noise function, and the second input is the generated force
by the RPLNN controller to reduce the effect of the imposed
noise to the vehicle.

O O O O O

1 2 3 N – 1 N

I I I I I

.

Figure 2: RPLNN structure [13].

u y u

RPLNN Controller

+

+
+

–
– 1/m1

1/m2

1/s 1/sa1

D

D

k1

k1

k2

1/s 1/s

k2

Band-limited
white noise

Pavement
condition

Controlled
output

x1–x2

x2v2a2

x1v1

+
–

+

+

–
–

+
–

–

|u|

fcn

Figure 3: MATLAB Simulink Model of the Noise Cancellation system for the quarter car model.
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As seen in Figure 4, first input, which is the road con-
dition, has been modelled by Gaussian white noise and the
effect of this noise, which is the vertical displacement of the
car, has been shown as uncontrolled displacement in Figure 5.

As seen in Figure 5, the quarter car model fluctuates
based on the road input signal. Since it is the uncontrolled
behavior, so by comparing Figures 4 and 5, it can be ob-
served that the vehicle completely follows the road condition
which can results in increasing the fuel consumption and
compromising passenger’s safety.

As it is mentioned previously, the reference model which
has been utilized to train the RPLNN is the data of the PID
controller which has been presented in Figures 6 and 7.

'e RPLNN controller has been trained offline by
running the training for 100 iterations. As seen in Figure 8,
at the end of the training procedure the error function value

has been reduced to 0.001.'e output of the systemby uti-
lizing RPLNN controller has been calculated and shown in
Figure 9.

By comparing Figures 5 and 9, which are the indicators
of the behavior of the system equipped and not equipped
with RPLNN controller, it can be observed that the system
equipped with the RPLNN controller reduces the effect of
the pavement on the vehicle and reduces the vibrations.

Noise cancelation results utilizing PID and RPLNN
controllers have been shown in Figures 9 and 10, respec-
tively. By comparing these two figures, it can be observed
that both controllers are able to reduce the undesired effect
of the pavement profile on the vehicle. It is important to
mention that although both controllers are able to reduce the
vertical vibrations in the same simulation period, but since
the active suspension system equipped with the RPLNN
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Figure 4: Pavement condition.
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Figure 5: Uncontrolled displacement.
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controller has not shown an overshoot response, so it has a
superior performance than the PID controller.

To have a better overview on the performance of the
proposed RPLNN controller, the behavior of the system,
once equipped with PID and then with RPLNN controllers,
has been observed and compared.

As seen in Figure 9, at the first stages of the control
process, the system equipped with PID controller reacts to
the ground excitation with overshoot controlled response,
and after three seconds starts to cancel the noise properly.
However,as seen in Figure 10, by adopting the RPLNN
controller system from the beginning of the control process
shows a smooth response and prepares a convenient and safe
ride for passengers.

Finally, it can be concluded that utilizing RPLNN
controller, due to decreasing the imposed fluctuations to the

vehicle from the road profile (which has been considered as
Gaussian white noise), is an effective solution to be con-
sidered as noise cancelation tool, also it is obvious that, due
to the reduction of vertical vibrations, the lifetime of the car
parts has been increased.

4. Conclusion and Future Work

In the current research, to reduce the imposed vibrations to
the quarter car model via the ground excitation an effective
artificial intelligence controller for the active suspension
system has been designed and modeled. 'e RPLNN al-
gorithm has been utilized to design the proposed controller,
and the road input signal has been modelled by utilizing
Gaussian white noise.'e proposed setup has beenmodelled
by MATLAB and Simulink. 'e results show that the
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Figure 9: Noise cancellation utilizing the RPLNN controller.
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proposed RPLNN controller is able to reduce the undesired
effect of the road condition on the vehicle, which ultimately
results in decreasing the fuel consumption and increasing
the lifetime of the parts of the vehicle. 'e performance of
the RPLNN controller has been compared with the PID
controller and results show that the RPLNN controller has a
superior performance. As future work, other AI algorithms
such as Fuzzy Logic and Neural Networks can be utilized as
controllers, also adopting nonlinear models to evaluate the
performance of the designed controller will be an alternative
important topic to be investigated.
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For the preparation of orthopedic shoes, it is necessary to design boot-trees, where pathological abnormalities of club feet are
taken into account as much as possible. For the normal functioning of the club foot, we have to develop such an internal shape
of special-purpose footwear, which is comfortable for the patient. +is paper describes the methods and issues of the 3D design
for constructing the geometric shapes of the main cross sections of the orthopedic boot-tree. In the research process, the
authors’ team of this article relied mainly on the patient database, containing the anthropometric, strain-gauge, and
pedographic data on club and pathological feet. To construct the shapes of the main cross sections of the orthopedic boot-tree,
we have used the integral curves to the suitable second-order differential equations. By means of a computer program, we
executed turning and connection of sections of the obtained curves, on the basis of which we have the shapes of transverse-
vertical cross sections of the orthopedic boot-tree.+is paper also describes the main longitudinal-vertical section and the print
of the orthopedic boot-tree in 3D format. By using a program of 3D design (Delcam), a skeleton of the orthopedic boot-tree was
constructed in the spatial format.

1. Introduction

In the special-purpose shoe industry, considerable attention
is paid to design special-purpose boot-trees. It is well known
that geometrically, the orthopedic boot-tree has a complex
shape and its description using mathematical investigation
methods is a long enough and arduous process. In general,
the technical side of the boot-tree design is diverse. In the
process of the boot-tree design, it is necessary to take into
account the size and shape of the foot.

+e algorithm describing a geometrical shape of the
surface of the boot-tree was considered in academic writings
of different researchers [1–5]. To describe a geometrical
shape of the boot-tree, they have used the following methods
of mathematical investigation: radius-graphical, biquadratic
spline, and bicubic interpolating spline. +ese methods are

quite complex, labor-intensive, and time-consuming in the
process of boot-tree design.

+e authors’ team of this article conducted the an-
thropometric, strain-gauge, and pedographic investigations
of club and pathological feet. A database of patients has been
created, where pathological abnormalities of each patient’s
feet are specified. Based on biomechanics of the movement
of foot, it is necessary to transform the obtained parameters
and on that basis to determine curvilinear lines describing
the surface of the boot-tree. In particular, it is necessary to
construct the shapes of transverse-vertical, longitudinal-
vertical, and longitudinal-horizontal cross sections of or-
thopedic shoes. Development of a new algorithm describing
a geometric surface of the boot-tree and its use in practice is
one of the main and pressing problems in the orthopedic
shoe industry.
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2. Research Methods

+e authors’ team of this article decided to describe a
geometrical shape of the orthopedic boot-tree by means of
the integral curves of solutions of the singular Dirichlet
boundary value problem. +e issue will be completed in a
relatively short time, and the result will be much more
accurate.

+e goal of our work is to design the appropriate shapes
of transverse-vertical cross sections of the orthopedic boot-
tree for patients with club and pathological feet. To achieve
this goal, it would not be sufficient to use the simple
functional relationships. We consider the particular cases of
the singular Dirichlet boundary value problem. +e multi-
plicity of solutions of these problems allows us in choosing a
shape of orthopedic shoes we are seeking for club and
pathological feet.

An important novelty of research consists in obtaining
the approximate shapes of transverse-vertical cross sections
of the orthopedic boot-tree by means of the integral curves
of solutions of the singular Dirichlet boundary value
problem.

In the work [6], Rachunkova et al. consider the singular
Dirichlet boundary value problem:

u″(t) +
a

t
u′(t) −

a

t2
u(t) � f t, u(t), u′(t)( 􏼁, (1)

u(t) � 0,

u(T) � 0,
(2)

where a ∈ (− ∞; 1) andf satisfies the local Caratheodory
condition for a set [0, T] × D , D � (0; +∞) × R.

+is paper dwells on studying the existence of solution of
(1)-(2) problems, and besides, Lemma 3.1 [6] in this article
clearly shows the solution of (1)-(2) problems, particularly:

u(t) � c1t + c2t
− a

+ t 􏽚
T

t
S

− a− 2
􏽚

T

S
ξa+1

f t, u(ξ), u′(ξ)dξ( 􏼁􏼠 􏼡dξ,

(3)

where c1 c2 ∈ R, t ∈ [0, T].
Our goal is to write clearly the solution for the different

cases of a function f(t, u(t), u′(t)) presented on the right
side of the equation (1), and also using the formula (3) for
different values of a, and then to construct the integral
curves of these solutions that will allow us for obtaining the
desirable shapes of transverse-vertical cross sections of the
orthopedic boot-tree.

Let us consider the first particular case of (1) and (2)
problems:

u″ +
2
t
u′ −

2
t2

u � t, (4)

u(1) � 0,

u′(1) � c,
(5)

i.e., we put f(t, u(t), u′(t)) � t, a � − 2, and t ∈ [0, 1], and
the solutions of (4) and (5) problem is as follows:

u(t) �
t3

2
−
1
3

ct
− 2

− 1 −
1
3

c􏼒 􏼓t +
1
2
. (6)

If c� 0, then we have u(t) � (t3/2) − t + (1/2).
Figure 1 illustrates the appropriate integral curve

graphics for obtained solutions. Let us consider the same
particular case of (1) and (2) problems:

u″ +
a

t
u′ −

a

t2
u � t

2
, (7)

u(1) � 0,

u′(1) � c,
(8)

viz, with provision f(t, u(t), u′(t)) � t, a � − 2, and
t ∈ [0, 1], the solution of (7) and (8) problems is as follows:

u(t) � −
1
3

−
1
3

c􏼒 􏼓t +
1
3

c
1
t2

+
2
3

t −
t2

2
+

t4

6
. (9)

If c� 0, then we have u(t) � (t4/6) − (t2/2) + (1/3)t.
Figure 2 illustrates the appropriate integral curve

graphics for obtained solutions.
+us, by means of the integral curves of the solution to

suitable second-order differential equations, it is possible to
describe the shapes of the transverse-vertical cross section of
the orthopedic boot-tree.

By means of the abovementioned mathematical inves-
tigation method and the integral curves of solutions of
differential equations with deviating argument, we con-
structed the shapes (boot-tree print) of transverse-vertical,
main longitudinal-vertical, and longitudinal-horizontal
cross sections of the orthopedic boot-tree [7–11].

3. Discussion of Research Findings

Based on the 3D scanning results of abnormal and club feet,
the right-side terms of equations (4) and (6) were chosen
because various parts of the integral curves of the solutions
to these equations are as close as possible to the shapes of the
foot presented in the patient database.

Using the abovementioned methods of mathematical
research, we constructed the shapes of the following
transverse-vertical cross sections: 0.4D, 0.8D, and 0.9D
(where D is the length of the foot). +e following shapes of
transverse-vertical cross section have been constructed for
women’s orthopedic boot-tree, size 38.

To obtain the shape of the mentioned cross section, we
have used mainly the patient database. To construct the
transverse-vertical cross section of the orthopedic boot-tree
(0.4D), it was divided previously into eight parts and each
enumerated section was described by means of the integral
curves of solutions of differential equations given in the
following. From the integral curves, we choose those eight
parts that are identical to the geometric shapes of transverse-
vertical cross section of the orthopedic boot-tree on 0.4D, in
particular:

(1) AB curve corresponds that part of the solution of the
equation u(t) � (t3/2) + (1/3)ct− 2 − (1 − (1/3)c)t+
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(1/2), for which c� 0 and corresponds to a set [− 2,2;
− 2,95]× [− 1,3; 1];

(2) BC curve corresponds that part of the solution of the
equation u(t) � (− (1/3) − (1/ 3)c)t + (1/3)c(1/t2)+
(2/3)t + (t2/2) + (t4/6), for which c� 5 and corre-
sponds to a set [− 1,95; 1,3]× [− 2,4; 3,1];

(3) CD curve corresponds that part of the solution of the
equation u(t) � (− (1/3) − (1/3)c)t + (1/3)c(1/t2)+

(2/3)t + (t2/2) + (t4/6), for which c� 3 and corre-
sponds to a set [− 0,8; 4]× [− 0,44; 13,2];

(4) DE curve corresponds that part of the solution of the
equation u(t) � (− (1/3) − (1/3)c)t + (1/3)c(1/t2)+
(2/3)t + (t2/2) + (t4/6), for which c� 0 and corre-
sponds to a set [3; 3,8]× [ 2,6; 2,6];

(5) EF curve corresponds that part of the solution of the
equation u(t) � (t3/2) + (1/3)ct− 2 − (1 − (1/3)c)t+

(1/2), for which c� 0 and corresponds to a set [− 0,8;
1]× [ 0,3; 0,2];

(6) FN curve corresponds that part of the solution of the
equation u(t) � (t3/2) + (1/3)ct− 2 − (1 − (1/3)c)t+

(1/2), for which c� 2 and corresponds to a set [− 2,3;
− 7,1]× [− 1,4; − 2.7];

(7) NM curve corresponds that part of the solution of
the equation u(t) � (− (1/3) − (1/3)c)t + (1/3)

c(1/t2) + (2/3)t + (t2/2) + (t4/6), for which c� 5 and
corresponds to a set [− 2,9; 2,9]× [− 2,7; 4,1];

(8) MA curve corresponds that part of the solution of the
equation u(t) � (t3/2) + (1/3)ct− 2 − (1 − (1/3)c)t+

(1/2), for which c� 4 and corresponds to a set [1,55;
1,9]× [3; 11,9][3; 9, 11].

By means of a computer program, we executed turning
and connection of these curves, on the basis of which we
obtained a shape of the transverse-vertical cross section of
the orthopedic boot-tree on 0.4D, as shown in Figure 3.

Likewise, we have constructed the shapes of transverse-
vertical cross sections of the orthopedic boot-tree on 0.8D
and 0.9D.

To construct a shape of transverse-vertical cross sections
of the boot-tree on 0.8D, we have divided it previously into
six parts. Each enumerated section was described by means
of the integral curves of solutions of differential equations
given in the following. From the integral curves, we choose
those six parts that are identical to the geometric shapes of
transverse-vertical cross section of the orthopedic boot-tree
on 0.8D, in particular:

(1) AB curve corresponds that part of the solution of the
equation u(t) � (− (1/3) − (1/3)c)t + (1/3) c(1/t2) +

(2/3)t+ (t2/2) + (t4/6), for which c� 2 and corre-
sponds to a set [− 2,1; − 6]× [− 1,1; − 2,1];

(2) BC curve corresponds that part of the solution of the
equation u(t) � (t3/2) + (1/3)ct− 2 − (1 − (1/3)c)t+

(1/2), for which c� 0 and corresponds to a set [− 1,7;
− 0,5]× [− 2.6; 2,7];

(3) CD curve corresponds that part of the solution of the
equation u(t) � (t3/2) + (1/3)ct− 2 − (1 − (1/3)c)t+

(1/2), for which c� 0 and corresponds to a set [1,8;
1]× [2,8; 7,4];

(4) DE curve corresponds that part of the solution of the
equation u(t) � (− (1/3) − (1/3) c)t + (1/3)c(1/t2)+
(2/3)t + (t2/2) + (t4/6), for which c� 0 and corre-
sponds to a set [− 1,5; 0,5]× [− 1,9; 1];

(5) EF curve corresponds that part of the solution
of the equation u(t) � (− (1/3) − (1/3)c)t + (1/3)

u(t)
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Figure 1: Integral curve graphics for solutions of (4) and (5)
problems.
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Figure 2: Integral curve graphics for solutions of (4) and (5)
problems.
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c(1/t2) + (2/3)t + (t2/2) + (t4/6), for which c� 0 and
corresponds to a set [1,6; 0,5]× [ 2,1; 3];

(6) FA curve corresponds that part of the solution of the
equation u(t) � (− (1/3) − (1/3)c)t + (1/3) c(1/t2)+
(2/3)t + (t2/2) + (t4/6), for which c� 1 and corre-
sponds to a set [1,4; 1,3]× [ 2,9; 14,2].

Here, too, by means of a computer program, we con-
structed a shape of the transverse-vertical cross section of the
orthopedic boot-tree on 0.8D, as shown in Figure 4.

To construct a shape of transverse-vertical cross sections
of the boot-tree on 0.9D, we have divided it previously into
four parts. Each enumerated section was described similarly,
and it is given as follows:

(1) AB curve corresponds that part of the solution of the
equation u(t) � (− (1/3) − (1/3)c)t + (1/3) c(1/t2) +

(2/3)t+ (t2/2) + (t4/6), for which c� 0 and corre-
sponds to a set [− 2,2; − 2,1]× [0,4; 0,3];

(2) BC curve corresponds that part of the solution of the
equation u(t) � (t3/2) + (1/3)ct− 2 − (1 − (1/3)c)t

+(1/2), for which c� 3 and corresponds to a set [− 2;
4]× [− 2,6; 8];

(3) CD curve corresponds that part of the solution of the
equation u(t) � (t3/2) + (1/3)ct− 2 − (1 − (1/3)c)t+

(1/2), for which c� 0 and corresponds to a set [− 1,6;
− 0,8][− 2,5; 2,05];

(4) DA curve corresponds that part of the solution of the
equation u(t) � (− (1/3) − (1/3) c)t + (1/3)c(1/t2) +

(2/3)t + (t2/2)+ (t4/6), for which c� 1 and corre-
sponds to a set [1,4; 1]× [ 2,85; 13,05].
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Figure 4: A shape of the transverse-vertical cross section of the
orthopedic boot-tree on 0.8D.
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Figure 5: A shape of of the transverse-vertical cross section of the
orthopedic boot-tree on 0.9D.
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Figure 3: A shape of the transverse-vertical cross section of the orthopedic boot-tree on 0.4D.
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Figure 5 illustrates a shape of the transverse-vertical
cross section of the orthopedic boot-tree on 0.9D.

By using a program of 3D design (Delcam), Figure 6
illustrates the main transverse-vertical, longitudinal-vertical,
and longitudinal-horizontal (boot-tree print) cross sections
in the spatial format.

4. Conclusions

+us and so, based on the patient database, the authors’ team
of this article has constructed the shapes by means of the
integral curves of solutions to suitable second-order Euler
differential equations. +is method allows for describing with
high accuracy the shapes of the main cross section of the
orthopedic boot-tree. It also enables us to change the shapes of
the main transverse-vertical, longitudinal-vertical, and lon-
gitudinal-horizontal cross sections of the orthopedic boot-tree
an unlimited number of times, while changing the sizes of
orthopedic boot-trees. +e latter is particularly relevant
during the production of orthopedic shoes, when we deal with
patients having nonstandard or club and pathological feet.
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Figure 6: A skeleton of the orthopedic boot-tree in 3D format.
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Industrial robots have a great impact on increasing the productivity and reducing the time of the manufacturing process. To serve
this purpose, in the past decade, many researchers have concentrated to optimize robotic models utilizing artificial intelligence
(AI) techniques. Gimbal joints because of their adjustable mechanical advantages have been investigated as a replacement for
traditional revolute joints, especially when they are supposed to have tiny motions. In this research, the genetic algorithm (GA), a
well-known evolutionary technique, has been adopted to find optimal parameters of the gimbal joints. Since adopting the GA is a
time-consuming process, an artificial neural network (ANN) architecture has been proposed to model the behavior of the GA.(e
result shows that the proposed ANNmodel can be used instead of the complex and time-consuming GA in the process of finding
the optimal parameters of the gimbal joint.

1. Introduction

In the definition of the sustainable economic model,
natural resources such as energy and material are con-
sidered as limited resources. Industrial robots can be
utilized as a potential solution for the issue by increasing
the productivity and reducing the wastes which results in
the reduction in emission and contributing to sustain-
ability [1]. In the past decade, designing more precise and
accurate robots has been a point of research interest of
many scientists. In particular, many research studies have
been concentrated to utilize artificial intelligence (AI)
techniques to contribute to economic and environmental
sustainability [2–4].

A variety of novel techniques such as ring probabilistic
logic neural networks (RPLNNs) [5], genetic algorithms
(GA), particle swarm (PS), hybrid algorithms, and agent-
based algorithms have been presented by researchers to
provide an approximate solution of the synthesis of
mechanisms [5, 6]. In 2017, Soldberg [7] investigated the
possibility of object detection in agricultural robots via deep

neural networks. Jin et al. [8] presented the special form of
neural networks to optimize the redundant manipulators.
Fuzzy wavelet ANN approach has been utilized by Yen et al.
[9] in 2017 to control the industrial robot manipulator using
fuzzy wavelet neural networks. Also, in 2018, they adopted
recurrent fuzzy wavelet neural network approach to control
the manipulator [10].

In this paper, an ANN architecture has been adopted to
model the behavior of the GA optimizer in the process of
finding the optimal parameters of robotic arms equipped
with a gimbal driver. (e research presents a novel approach
in the training process of ANN by adopting data of genetic
algorithms (GAs) to train the proposed ANN, so at the end
of the training process, the proposed ANN acts as a function
optimizer instead of GA. In this research, MATLAB software
has been utilized to generate the ANN model and perform
the GA optimization process. It is important to highlight the
point that other effective optimization techniques such as
PSO, bee colony, and RPLNN can be adopted to train the
proposed ANN, and GA has been utilized just as an example
of an optimization technique.
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2. Methodology

(e ultimate aim of this research is to develop an ANN
model as a function approximator which is able to model the
dynamic behavior of the GA optimizer in the process of
finding the optimal parameters of gimbal drive in robotic
arms.

Different from previous works, the designed ANN has
not been trained by the general extracted data from the
mathematical model of the robotic arm, but its reference
model is the GA as the parameter optimizer of the gimbal
equipped robotic arm model. It means that the proposed
ANN should act as a function optimizer and will eliminate
the need of utilizing optimization techniques.

To reach this goal at the first step, the behavior of the
gimbal drive should be modeled mathematically, and the
next step is utilizing the introduced gimbal drive in 3 dif-
ferent well-known robotic arms and introducing the related
mathematical models. (e third step is to find the optimum
design parameters utilizing GA which is one of the well-
known AI evolutionary techniques.(e last step which is the
novelty part of this research is to design and train an ANN to
act instead of the optimization algorithm, GA.(e proposed
approach has been illustrated as a flowchart in Figure 1.

To fulfill the task, the rest of the manuscript has been
prepared in the following sequence: a brief introduction of
gimbal mechanisms is presented in the next section. Also,
the resistivity ellipsoid is formulated to measure the ma-
nipulability of robotic arms. Next, to be able to apply
maximum force in a desired direction, genetic algorithm
(GA) as one of the well-known evolutionary optimization
techniques has been employed to optimize the highly
nonlinear fitness function. As GA is very time-consuming,
an artificial neural network (ANN) as the novelty of this
research has been utilized to learn the relation between the
inputs and outputs of GA. (e ANN is trained using the
optimization results obtained from GA in several randomly
generated configurations. (us, the trained ANN could
replace the whole optimization process and act as a function
optimizer.(is way enables utilizing the trained ANNmodel
to obtain the optimized results for new configurations in-
stead of the GA optimizer. To have a better perception of the
effectiveness of this method, three simple robotic arms are
selected to investigate the task.

2.1.(e Gimbal Drive. In Figure 2, a regular one-degree-of-
freedom gimbal drive is shown. Following is the governing
equation on gimbal mechanism [11]:

θout � θof_out + tan−1 tan θc cos θin( 􏼁, (1)

where θin is the input angle (angle of rotation of vertical
shaft), θout is the output angle (angle of rotation of the
horizontal shaft/frame), θc is the gradient of the truncated
cylinder, and θof_out is the offset angle at the output. It can be
deduced that the gradient of the truncated cylinder, θc, is a
design parameter because it sets the range of output angle.

Verity is that, for any input value (θin), there exist two
possible output configurations (θout), which is another

advantage of the gimbal mechanism. (e effect of the re-
duction ratio should be considered too. We also should
notice that the gradient of θc is a design parameter because it
will set the range of the output angle.

To study manipulability modality, the classical criterion
of resistivity ellipsoid is formulated for manipulators with
traditional revolute joints. It is compared to the same
modality of the same arm in which some joints are
substituted with gimbal transmissions.

To have the maximum achievable force at the manip-
ulator tip point, the classical hypothesis is to assume that the
Euclidian norm of the joint torques remains unity [11]:

τT
.τ � 1. (2)

(e relation of the task-space force F and the vector of
joint torques τ is given by [11]

τ � J
T
F, (3)

where J is the Jacobian of the whole manipulator.
By substituting (3) in (2), one obtains the following

equation:

F
T

JJ
T
F � 1. (4)

Relation (4) changes the hypersphere of the joint forces
(2) into a hyperellipsoid that is called the resistivity ellipsoid.
(is method is largely employed to evaluate the manipu-
lability qualities of robotic arms.

Here, achieving greater force in a specified direction by
using the gimbal mechanism is the main goal.(e task-space
force vector is expressed as [11]

F � f

dx

dy

dz

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � f􏽢F, (5)

where f is the magnitude of F and dx dy dz􏼂 􏼃
T are the

unit vectors on the direction of f along X, Y, and Z axes,
respectively, and to maintain conciseness, substitute by 􏽢F.
Substituting (5) in (4) yields the following equation [11]:

f
2 􏽢F

T
JJ

T 􏽢F􏼒 􏼓 � 1. (6)

(us, the magnitude of the applicable force in a desired
direction at a specific point of manipulator’s workspace
should be determined. Comparing the magnitudes of the
applicable force, f, for different types of manipulators,
would lead to recognizing the efficient robot design and
whether using gimbal transmission instead of the traditional
revolute joints improves robot’s manipulability or not.

2.1.1. Case Studies

(1) RRR Arm. To get numerical examples, three case studies
have been performed. First, a spatial robot with three rev-
olute joints (RRR or 3R) shown in Figure 3 is investigated to
analyze the advantages of gimbal drive in robot joint
transmission. For convenience,
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cm...n � cos θm + · · · + θn( 􏼁,

sm...n � sin θm + · · · + θn( 􏼁,
(7)

are used instead, respectively. Assuming L1 � L2 � L4 � 0.5m
and L3 �1m, the Jacobian matrix of the 3R spatial robot is
given by [11]

J �

−
1
2
s1c23 − s1c2 −

1
2
c1s23 − c1s2 −

1
2
c1s23

−
1
2
c1c23 + c1c2 −

1
2
s1s23 − s1s2 −

1
2
s1s23

0
1
2
c23 + c2

1
2
c23

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (8)

Now it is desired to use gimbal transmissions at joints 2
and 3. To obtain a new Jacobian matrix, one shall substitute

for θ2 and θ3 of the 3R spatial robot. Assuming θof_out � 0 and
θc � 45°, the Jacobianmatrix for the manipulator with gimbal
transmissions at joints 2 and 3 becomes [11]

JG �

R1 R2 R3

R4 R5 R6

R7 R8 R9

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (9)

where JG is the Jacobian of the manipulator when a gimbal
transmission is used at joints 2 and 3. Using manipulability
ellipsoid, f in the simple and gimbal equipped 3R spatial
robots has been compared by Mohammadi et al. [11].

(2) Stanford Arm. A simplified version of Stanford arm
shown in Figure 4 has been investigated here. (e Jacobian
matrix for this arm, assuming L1 � 1m and L2 � 0.5m, is as
follows [11]:

Start

Mathematical modeling of the dynamic behavior of robotic arm equipped with gimbal drive

Find the optimum design parameters of the mathematical model utilizing genetic algorithms

Design artificial neural networks to model the GA optimization process

End

Figure 1: Flowchart of the proposed methodology.

θout

θc

θin

Figure 2: (e gimbal drive [11].
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Figure 3: RRR spatial robot arm [11].
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J �

d3c1c2 −
1
2
s1 −d3s2s1 s1c2

−d3c2c1 −
1
2
c1 −d3c1s2 c1c2

0 −d3c2 s2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (10)

Using gimbal drive at joint 2, the new Jacobian matrix is
obtained by substituting from (1) for θ2 in (11). Assuming
θof_out � 0 and θc � 45°, the following Jacobian matrix is
derived [11]:

JG �

R1 R2 R3

R4 R5 R6

R7 R8 R9

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (11)

JG �

−s1c2d3

1 + c22( 􏼁
(1/2)

−
1
2
c1

−c1s2d3

1 + c22( 􏼁
(1/2)

+
c1c

2
2d3s2

1 + c22( 􏼁
(3/2)

c1c2

1 + c22( 􏼁
(1/2)

c1c2d3

1 + c22( 􏼁
(1/2)

−
1
2
s1

−s1s2d3

1 + c22( 􏼁
(1/2)

+
s1c

2
2d3s2

1 + c22( 􏼁
(3/2)

s1c2

1 + c22( 􏼁
(1/2)

0
c2s2d3

1 + c22( 􏼁
(3/2)

1
1 + c22( 􏼁

(1/2)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (12)

where JG is the Jacobian of the manipulator where a gimbal
transmission is used at joint 2. Using manipulability ellip-
soid, we compare f in the simple and gimbal equipped
Stanford arm with traditional revolute joints and the arm
equipped with gimbal transmissions at revolute joint 2. To
this end, d3 (the joint variable of the arm’s mere prismatic
joint) is set to 1m.(e direction of the desired force vector is
assumed to be dx� dy� dz� 1 [11].

(3) RPR Planar Arm. Figure 5 shows a revolute-prismatic-
revolute (i.e., RPR) planar manipulator. (e Jacobian matrix

for the arm, assuming L1 � 1m and L2 � 0.5m, is as follows
[11]:

J �

−c13L2 − s1L1 + c1d2 s1 −c13L2

−s13L2 − c1L1 + s1d2 −c1 −s13L2

0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (13)

Gimbal transmission is used at joint 3 by replacing the
traditional revolute joint. To obtain a new Jacobian matrix,
one shall substitute from (1) for θ3 of the robot. Assuming

X0

Z0

Y0

θ1

θ2

L1 

L2

X2 

X3 
Z2 

Z3 

Y2 

Y3 

d2 

Z1
X1

Y1 

Figure 4: Stanford arm [11].
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θof_out � 0, the Jacobian matrix for the manipulator with
gimbal transmission at joint 3 becomes [11]

JG �

R1 R2 R3

R4 R5 R6

R7 R8 R9

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (14)

where JG is the Jacobian of the manipulator when a gimbal
transmission is used at joint 3. To maintain conciseness, the
elements of JG are not shown here.

2.2.GeneticAlgorithms. Genetic algorithm is one of the well-
known evolutionary optimization techniques, which has
been adopted by many researchers to optimize complex
problems [12–14]. Briefly, the optimization process by GA
can be divided into 6 steps as follows [15]:

(1) Creating population of possible answers
(2) Evaluation of fitness function
(3) Creating the next generation of possible answers
(4) Applying crossover
(5) Applying mutation
(6) Repeat steps 2–5

In this research, genetic algorithm has been utilized to
find optimal parameters of the gimbal joints (truncation
angles). For this purpose, the population generation tech-
niques as listed above have been explored to generate the
new population of the weight matrices. (is process con-
tinues until the selection of the last weight matrix or matrices
has been performed. In this simulation, a population of
weight matrices is produced randomly when the GA starts.
In each generation, the matrices of this population have been
modified through discrete crossovers and uniformly random
mutations, and their fitness values have been evaluated. (e
cycle of reconstructing the new population with better in-
dividuals and restarting the search is repeated until a better
solution is found.

(e fitness function has been defined as maximizing the
applicable force magnitude, f, by minimizing the parameters
of equation (6) [16]. To this end, to generate the fitness
function for each of the three robotic manipulators (RRR,
RPR, and Stanford), it is needed to substitute Jacobian
matrix of each of the case studies, equations (9), (12), and

(14) in equation (6) [16]. (en, the optimization process has
been started with a population of 20 individuals and has
been run for 1000 times. As it is shown in Table 1, the
probability of happening of crossover andmutation has been
assumed as 0.4 and 0.01, respectively.

2.3. Neural Networks. Artificial neural networks have been
utilized to different engineering and science fields such as
control, data processing [17], robotics [18], function ap-
proximation [19], and pattern and speech recognition [20].
An ANN consists of interconnecting neurons which have
been categorized into three layers which are, namely, input
layer, hidden layer, and output layer [21]. (ere could be
more than one hidden layer in an ANN making it more
flexible and accurate to learn at the cost of learning time and
effort.

Based on the type of connections between these neurons,
artificial neural networks can be divided into two different
groups: weighted artificial neural networks and weightless
artificial neural networks [22]. (is research focuses on
utilizing weighted neural networks as a function optimizer.

As seen in Figure 6, parameters of the networks should
be adjusted to enable the network to act as the plant (ref-
erence model). It means that by giving the same input to the
ANN and the plant, the output of the network should be
similar to the output of the plant. (e first step in training a
feed-forward network is to create the network object. It
requires three arguments and returns the network object.
(e first argument is a matrix of sample R-element input
vectors. (e second argument is a matrix of sample S-ele-
ment target vectors. (e sample inputs and outputs are used
to set up network input and output dimensions and pa-
rameters.(e third argument is an array containing the sizes
of each hidden layer (the output layer size is determined
from the targets). In this research, the mentioned unknown
function is the GA optimizer.(e proposed ANN consists of
a sigmoid hidden layer and a linear output layer.

Parameters of the ANN have been adjusted to enable the
ANN to act as the GA optimizer (reference model) which
optimizes the performance index of gimbal equipped robotic
arm. It means that by giving the same input to the ANN and
the GA, the output of the network should be like the output
of the GA which is the evaluated fitness function. It means
that the proposed ANN has a single input-single output
(SISO) architecture. Levenberg–Marquardt algorithm has
been adopted here to train the proposed ANN to model the
dynamic behavior of the GA optimizer of the gimbal
equipped robotic arms. (e input of ANN is a Jacobian
matrix with the dimension of 3∗ 3 and its output is the
matrix of the calculated maximum force with the demotion
of 1∗ 1.

Levenberg–Marquardt algorithm computes the ap-
proximate Hessian matrix, which has dimensions n-by-n.
Gradient descent is the process of making changes to weights
and biases, where the changes are proportional to the de-
rivatives of network error with respect to those weights and
biases. (is is done to minimize network error. When the
performance function has the form of a sum of squares (as is

d3 X2

Z2

Z1

X1

X0

θ1

θ3
X3

Z3

Figure 5: RPR arm [11].
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typical in training feed-forward networks), then the Hessian
matrix can be approximated as

H � J
T
J, (15)

where J is the Jacobian matrix that contains first derivatives
of the network errors with respect to the weights and biases
and e is a vector of network errors. (e gradient can be
computed as

g � J
T
e. (16)

3. Results

As described previously to find the maximum value of f in
each of the introduced case studies, GA optimization
technique has been adopted in this research.(e process has
been started with a population of 20 individuals and has
been run for 1000 times and the probability of happening of
crossover and mutation has been assumed as 0.4 and 0.01,
respectively. (e results for normalized fitness function
values of each of the robotic arms in each iteration of the GA
optimization process have been shown in Figure 7. It can be
observed that the optimization process for all the three cases
works properly and normalized fitness values have been
increased in each iteration.

Table 2 shows the results achieved by running GA for four
different joint values and directions based on the fitness
function of RRR armwhich is used to evaluate and optimize the
maximum values for f, and also it compares the amount of
maximum force in gimbal equipped RRR robot with the robot
with revolute joints. It is shown that in these points, the amount
of force delivered by the gimbal equipped robot is greater than
the same quantity for the robot that uses revolute joints.(us, it
can be reasoned that gimbal drive has improved the manip-
ulability of the robot. Here, the values of θc2 and θc3 are re-
stricted to 10 to 85 degrees so that the design becomes feasible.

Table 3 shows the results achieved by running GA for
four different joint values and directions based on the fitness
function of RPR arm which is used to evaluate and optimize

the maximum values for f. It can be inferred from results that
implementation of gimbal drive in joint 2 has increased the
maximum achievable force at the tip point of the manip-
ulator. Here, the value of the truncation angle is bound to
ensure design feasibility between 49 and 85 degrees.

Table 4 shows the results achieved by running GA for
four different joint values and directions based on the fitness
function of Stanford arm which is used to evaluate and
optimize the maximum values for f. (e amount of maxi-
mum force in gimbal equipped robot has been compared to

Table 1: Parameters used for the genetic algorithm [16].

Population size 20
Generations 1000
Crossover probability 0.4
Mutation probability 0.01

Predicted output

Input

GA
optimizer

Error∑
–

+

Neural
networks Training 

algorithm

Figure 6: Proposed neural network model.
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Figure 7: Normalized fitness function values in each step of GA
optimization.

Table 2: GA optimization results for RRR arm [11].

Trial 1 2 3 4 Mean
θ1 0 0 45 90
θ2 45 30 −15 15
θ3 −45 −30 30 30
dx 0 1 1 1
dy 0 1 1 1
dz 1 1 0 1
θc2 85 85 10 85 66.25
θc3 15.2 13.6 10 12.56 12.84
F for gimbal equipped arm 80.31 15.06 50.49 21.89
F for simple arm 10.47 1.11 2.76 1.16

Table 3: GA optimization results for RPR arm [11].

Trial 1 2 3 4 Mean
θ1 0 30 45 90
d2 0.5 1 1 0.5
θ3 30 15 45 −30
dx 1 0 1 1
dy 1 1 1 1
θc 49.10 61.37 35.8 85 57.81
F for gimbal equipped arm 1.09 0.81 1.97 1.41
F for simple arm 0.97 0.76 1.41 1.29
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the robot with traditional revolute joints and shows that in
these points, the amount of force exerted by the gimbal
equipped robot is greater than the same quantity for the
robot that uses traditional revolute joints. (us, it can be
reasoned that gimbal drive has considerably improved the
manipulability of the robot. Here, the value of the truncation
angle is bound to ensure design feasibility between 10 and 85
degrees.

Now, by having the optimized results of the GA, the
training of the proposed ANN can be performed. Basically,
since the GA has been utilized to optimize three different
case studies which have different Jacobian matrixes, three
different ANNs have been trained for each of the robotic
arms. It is important to know that since the number of the
hidden layer’s neurons should be chosen arbitrary, in this
research the effect of increasing the hidden layer neurons has
been investigated for 15, 20, and 25 neurons, and also the
training mean square error limit has been defined as 0.9.
Figure 8 shows the ANN training results for RRR arm with
assuming 15, 20, and 25 neurons in the hidden layer.

From Figure 8, it can be observed that by increasing the
number of neurons from 15 to 20, training of the ANN has
been finalized in fewer steps, but the training mean square
error has been increased and it makes the simulation result
worse. On the other hand, by increasing the number of
neurons from 20 to 25, training of the ANN has been fi-
nalized in fewer steps, and the training mean square error
has been decreased even it is less than the case with 15
neurons and it makes the simulation result better.

Training results for RPR arm with assuming 15, 20, and
25 neurons in the hidden layer have been illustrated in
Figure 9.

In Figure 9, although the results show that the trainings
were successful, they do not follow the previous path as
described for RRR. (e difference is in the accuracy of the
simulations results which indicate that by increasing the
neurons in the hidden layer, training time and iterations will
be reduced, but the mean square error of the ANN with 15
neurons is the lowest one, so the related ANN has a superior
performance in comparison with the other two.

Training results for Stanford arm with assuming 15, 20,
and 25 neurons in the hidden layer have been illustrated in
Figure 10.

(e results shown in Figure 10 are completely different
from the results of RRR and RPR; also, the designed ANN
shows different behavior. Like the previous two cases, it can

be observed that by increasing the number of neurons in the
hidden layer, the training iterations have been increased.
Here, different from the results for RPR and RRR, the
training mean square error has been decreased by increasing
the number of neurons in the hidden layer. It means that the
ANN with 25 neurons in the hidden layer has the best
performance than the other two.

(e summary of all these observations has been shown in
Tables 5–7. (e results indicate that the behavior of the
proposed ANN cannot be predicted by the number of
hidden layer’s neurons, but one thing is obvious, and it is the
fact of the proposed ANN working properly.

Table 4: GA optimization results for Stanford arm [11].

Trial 1 2 3 4 Mean
θ1 0 90 90 90
θ2 0 0 90 90
d3 0.185 0.185 0.185 0.885
dx 1 1 0 1
dy 1 1 0 1
dz 1 1 1 1
θc 85 69 10 10 43.5
F for gimbal equipped arm 1.53 1.35 1 1.53
F for simple arm 1.51 1.34 1 1.21
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Figure 8: ANN training results for RRR arm with assuming 15, 20,
and 25 neurons in the hidden layer.
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Generally, following points regarding the training pro-
cedure of the proposed ANN for all three robot arms with
three different number of neurons in the hidden layer for
each case study can be observed from Tables 5–7.

1000 random points (inputs and outputs) have been
generated as a feed to ANN. (ey were generated according
to normal distribution in the permissible zone of the joint
space of each one of the robots. Moreover, validation and
test data samples are each set to 15 percent of the original
samples (see Tables 5–7). So, 300 random samples are used
for validation and test, and 700 samples are left for training.
Although it is correct, by changing this arrangement or using
larger data samples and retraining network over and over,
different results are faced, but one should note that it would
give some marginal improvements. To achieve reliable re-
sults, initial conditions are fixed for all three cases (RRR,
Stanford, and RPR).

A set of training samples are presented to the network
during training and the network is adjusted according to its
error. In addition, a set of validation data are used to
measure network generalization and to halt training when
generalization stops improving. Furthermore, a set of testing
samples have no effect on training and provide an
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Figure 10: ANN training results for Stanford arm with assuming 15, 20, and 25 neurons in the hidden layer.

Table 5: Neural network training results for RRR arm.

Number of neurons 25 20 15
Number of iterations 10 18 24
Number of training samples 700 700 700
Number of validation samples 150 150 150
Number of testing samples 150 150 150
Training mean square error 0.24 0.65 0.48
Validation mean square error 0.069 0.24 0.24
Test mean square error 0.26 0.31 0.22
Total mean square error 0.19 0.47 0.35
Training regression 0.8173 0.702 0.4985
Validation regression 0.4143 0.6003 0.1689
Test regression 0.4905 0.4245 0.473
Total regression 0.6648 0.6129 0.409

Table 6: Neural network training results for RPR arm.

Number of neurons 25 20 15
Number of iterations 14 32 37
Number of training samples 700 700 700
Number of validation samples 150 150 150
Number of testing samples 150 150 150
Training mean square error 0.89 0.9 0.61
Validation mean square error 0.95 0.74 0.97
Test mean square error 0.59 0.81 0.51
Total mean square error 0.82 0.84 0.62
Training regression 0.9449 0.9503 0.7899
Validation regression 0.8929 0.9076 0.877
Test regression 0.7317 0.9149 0.7060
Total regression 0.8832 0.9317 0.7762

Table 7: Neural network training results for Stanford arm.

Number of neurons 25 20 15
Number of iterations 11 21 28
Number of training samples 700 700 700
Number of validation samples 150 150 150
Number of testing samples 150 150 150
Training mean square error 0.59 0.61 0.68
Validation mean square error 0.63 0.18 0.23
Test mean square error 0.39 0.55 0.25
Total mean square error 0.54 0.44 0.46
Training regression 0.7555 0.8012 0.8318
Validation regression 0.7178 0.1051 0.4116
Test regression 0.6074 0.5734 0.4426
Total regression 0.7141 0.3640 0.6491
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independent measure of network performance during and
after training.

Mean square error is the average squared difference
between outputs and targets which lower values are better,
and zero means there is no error (see Tables 5–7).

Regression R values measure the correlation between
outputs and targets. An R value of 1 means a close rela-
tionship and 0 means a random relationship. As the data fed
into the neural network might be of the scattered type, the
discretion and correlation of data values are good measures
of those data. (is way the regression values help decide on
the closeness of the data used for training and the way the
ANN is predicting the unknown results.

It can be interpreted from Tables 5–7 that by increasing
the number of neurons from 15 to 25, in this special case
study, the number of iterations decreases which means that
the mean square error decreases to zero. It is important to
know this result cannot be used as a pattern for all cases, and
there is no guarantee to get better results by increasing the
number of neurons and there is a possibility to get worse
result by increasing the number of neurons.

(e results demonstrate that the increasing number of
neurons lead to a decreasing number of iterations which
means that the mean square error has been approaching to
zero, and the regression data have become closer to one in
the case study of this research. So, one may conclude that by
increasing the number of neurons, the proposed neural
network performance for this research has been increased.

4. Conclusion and Future Work

In this paper, synthesis of three robotic arms such as RRR,
RPR, and Stanford with gimbal drive which can be used to
achieving the maximum force have been analyzed. Genetic
algorithm has been employed to find optimal parameters of
the gimbal joints (truncation angles), and then it has been
utilized as a model reference for the proposed neural net-
works. (ousands of randomly generated points have been
used as the inputs to the gimbal dynamic model in the GA
optimization process. (ese points have been fed to the
neural network to find the relation between inputs and
outputs to investigate how well the proposed ANN algo-
rithm can act instead of the GA optimizer of the parameters
of the mechanism equipped with gimbal drive.

(e results confirm that the proposed ANN optimizer of
gimbal drive is a novel and effective technique which can be
utilized as an effective optimizer for improving the per-
formance of robots based on their applications. Since robots
make a qualitative contribution to productivity, improve-
ment of their performance contributes to sustainability by
reducing energy consumption and waste in manufacturing
processes.

One of the valuable topics of future works can be defined
as measuring the power consumption and material waste
reduction rates by utilizing the proposed ANN in real-life
industrial implementation which can give a better view to
understand how the proposed ANN contributes to sus-
tainability. As another future work, other well-known op-
timization techniques such as hybrid optimization

techniques, bee colony, and particle swarm can be utilized as
a reference model to train the proposed neural networks.
Also, different neural network models such as ring proba-
bilistic logic neural networks (RPLNN) and RAM-based
neural networks can be utilized instead of the proposed
ANN.
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)is study aims to stabilize the unwanted fluctuation of buildings as mechanical structures subjected to earth excitation as
the noise. In this study, the ground motion is considered as a Wiener process, in which the governing stochastic differential
equations have been presented in the form of Ito equation. To stabilize the vibration of the system, the ATMD system is
considered and located on the upmost story of the building. A sliding mode controller has been utilized to control the
ATMD system, which is a robust controller in the presence of uncertainty. For this purpose, the design of a sliding mode
controller for the general dynamic system with Lipschitz nonlinearity and considering the Ito relations has been ac-
complished. )e mentioned design has been implemented considering the presence of the Weiner process and existence of
uncertainty in the structure and actuator. )en, the obtained general control law has been generalized to control the ATMD
system. )e results show that the designed controller is effective to reduce the effect of the unwanted impused vibrations on
the building.

1. Introduction

Stochastic factors are one of the inherent aspects of most
dynamical systems that occur in different ways such as
external force and changes in the inherent parameters of the
system. Stochastic Differential Equations (SDE) in financial
mathematics and economics have been extensively inves-
tigated [1–6]. Also, the effect of stochastic factors in science
and mechanical and electronic engineering has been con-
sidered [7–20].

Earthquake is an example of a natural phenomenon that
influences the dynamics of a structures and building. Dy-
namic behavior of structures in the presence of earthquakes
has been extensively studies in [21–27]. In the mentioned
studies, the dynamic behavior of the structures has been
investigated under the influence of a particular earthquake.
But in this paper, we aim to examine the dynamic behavior
of the structure subjected to White Gaussian Noise (WGN)
because the density function of its power spectrum is

constant at all frequencies. So, unlike the previous studies, a
new formulation should be considered.

For this purpose, Itô formulation is considered to solve
governing SDE of the structure [28–30]. )e studied
structure is an 11-story building equipped with an ATMD
system at the upmost story. ATMD has been used to reduce
unwanted vibrations. )is system has been controlled by
means of the sliding mode controller. For this reason, the
sliding mode controller has been designed for the general
and nonlinear Lipschitz dynamic system in the presence of
actuator and system uncertainties and based on the Itô
theory. Finally, the designed controller has been generalized
to control the ATMD system.

)e dynamic behavior of the structure in the active and
passive mode and considering the uncertainties has been
studied. )e effect of various controller parameters on the
dynamic behavior of the structure has been also investigated.
Moreover, the effect of the controlled system and different
parameters of the controller on the basin of attraction was
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also studied. At the end, the controller’s robustness to
structural and actuator uncertainty has been studied and the
obtained results have been presented.

2. Model Description

)e physical and geometrical models of the studied system
are presented in this section. )e studied model is an 11-
story building, the schematic view of which is shown in
Figure 1. )e mass of each story is denoted by mi, where i
represents the story number. Moreover, the stiffness and
damping coefficient for each story are represented by Ki and
Ci, respectively. )e degree of freedom (DoF) of the system
is considered along the horizontal direction, since the
ground displacement effects are horizontally applied to the
structure. As shown in Figure 1, the displacement of each
story is denoted by xi. Upon ground excitation, each story
experiences a vibration and, given that the first mode of
vibration is more likely to occur, the largest displacement
occurs in the topmost story. To alleviate this deformation
caused by earthquakes, the 11th story is equipped with an
ATMD system. )e mass of this system, its stiffness, and
damping coefficient are denoted by m12, K12, and C12. After
installation, the DoF of system increases to 12.

)e dynamic equation governing the system behavior is
presented in the following equation [31]:

[M][ €X] +[C][ _X] +[K][X] � [U] +[D] €Xg􏽨 􏽩, (1)

where [M], [K], and [C] denote mass, stiffness, and
damping matrices, respectively. Moreover, [X] � [x1, x2, x3,

. . . , x11, x12]
T, [ _X], and [ €X] represent the structural dis-

placement, velocity, and acceleration, respectively. )e term
[U] � [0, 0, . . . , 0, b(x, t)u, − b(x, t)u]T is the control force

vector of the ATMD system responsible for controlling the
vibrations of the 11th story. )e term [D][ €xg] denotes the
effects of base excitation on the system, where €xg is the
acceleration of base excitations and [D] � − [m1, m2,

m3, . . . , m11, m12]
T. )e nominal matrix values for [M],

[K], and [C] are also presented in the following. However,
note that uncertainty will be also considered for these values
later in the control design process.

[M] �

m1 0 0 0 0 0 0 0 0 0 0 0

0 m2 0 0 0 0 0 0 0 0 0 0

0 0 m3 0 0 0 0 0 0 0 0 0

0 0 0 m4 0 0 0 0 0 0 0 0

0 0 0 0 m5 0 0 0 0 0 0 0

0 0 0 0 0 m6 0 0 0 0 0 0

0 0 0 0 0 0 m7 0 0 0 0 0

0 0 0 0 0 0 0 m8 0 0 0 0

0 0 0 0 0 0 0 0 m9 0 0 0

0 0 0 0 0 0 0 0 0 m10 0 0

0 0 0 0 0 0 0 0 0 0 m11 0

0 0 0 0 0 0 0 0 0 0 0 m12

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Figure 1: Schematic view of the studied building with ATMD.
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[K] �

k1 + k2 − k2 0 0 0 0 0 0 0 0 0 0
− k2 k2 + k3 − k3 0 0 0 0 0 0 0 0 0
0 − k3 k3 + k4 − k4 0 0 0 0 0 0 0 0
0 0 − k4 k4 + k5 − k5 0 0 0 0 0 0 0
0 0 0 − k5 k5 + k6 − k6 0 0 0 0 0 0
0 0 0 0 − k6 k6 + k7 − k7 0 0 0 0 0
0 0 0 0 0 − k7 k7 + k8 − k8 0 0 0 0
0 0 0 0 0 0 − k8 k8 + k9 − k9 0 0 0
0 0 0 0 0 0 0 − k9 k9 + k10 − k10 0 0
0 0 0 0 0 0 0 0 − k10 k10 + k11 − k11 0
0 0 0 0 0 0 0 0 0 − k11 k11 + k12 − k12

0 0 0 0 0 0 0 0 0 0 − k12 k12

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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,

[C] �

c1 + c2 − c2 0 0 0 0 0 0 0 0 0 0
− c2 c2 + c3 − c3 0 0 0 0 0 0 0 0 0
0 − c3 c3 + c4 − c4 0 0 0 0 0 0 0 0
0 0 − c4 c4 + c5 − c5 0 0 0 0 0 0 0
0 0 0 − c5 c5 + c6 − c6 0 0 0 0 0 0
0 0 0 0 − c6 c6 + c7 − c7 0 0 0 0 0
0 0 0 0 0 − c7 c7 + c8 − c8 0 0 0 0
0 0 0 0 0 0 − c8 c8 + c9 − c9 0 0 0
0 0 0 0 0 0 0 − c9 c9 + c10 − c10 0 0
0 0 0 0 0 0 0 0 − c10 c10 + c11 − c11 0
0 0 0 0 0 0 0 0 0 − c11 c11 + c12 − c12

0 0 0 0 0 0 0 0 0 0 − c12 c12

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(2)

3. Mathematical Modeling

Without loss of generality, the controller is initially designed
for a general system, after which it is applied to the studied
structural control.

Consider the mathematical model presented in the
following equation:

_x1 � x2,

_x2 � f(x, t) + b(x, t)u + h(x, t) _v,
􏼨 (3)

where f(x, t), b(x, t), and h(x, t) represent continuous
functions satisfying the Lipschitz condition. In this case, u, v,
and _v � dv/dt indicate the control force, standard Wiener
process, and white Gaussian noise, respectively. )e ob-
jective of the controller design is for the x1 to track xd. To
this end, the dynamic error of e � x1 − xd should be defined.
However, since xd is considered zero in structural control,
the error is defined as e � x1 and the corresponding dynamic
error is defined as follows:

_e1 � x2 − _xd,

_e2 � f(x, t) + b(x, t)u + h(x, t) _v − €xd.
􏼨 (4)

)e Lyapunov function is considered as V � 1/2E(s2).
From a mathematical viewpoint and based on Ito’s theory,

equation (4) can be reformulated in the form of a differential
equation as follows:

de1 � x2 − _xd􏼂 􏼃dt,

de2 � f(x, t) + b(x, t)u − €xd􏼂 􏼃dt + h(x, t)dv,
􏼨

€xd � 0.

(5)

Given that xd � _xd � €xd � 0, the abovementioned
equation is presented as follows for simplification purposes:

de1 � x2􏼂 􏼃dt,

de2 � [f(x, t) + b(x, t)u]dt + h(x, t)dv.
􏼨 (6)

)e abovementioned equation represents an Itô SDE
used instead of equation (4) and considering the Wiener
process. )e terms f(x, t) + b(x, t)u and h(x, t) represent
the drift function and diffusion, respectively [28, 29].

)e sliding surface was considered as s � e2 + λe1 in the
design of the sliding mode controller, from which _s � _e2 +

λe2 and ds � de2 + λe2dt can be derived. In the final form
and according to equation (4), the ds equation can be re-
written to obtain equation (5):

ds � f(x, t) + b(x, t)u + λe2􏼂 􏼃dt + h(x, t)dv. (7)

Assuming y � g(x, t) and employing Itô ’s differentia-
tion formula for dy, we have [28, 29]
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y � g(x, t),

dy �
zg

zt
dt +

zg

zx
dx +

1
2

z2g

zx2(dx)
2
.

(8)

Based on Ito’s formula, differentiating s2 produces
ds2 � 2sds + dsds. )erefore, the dV value emerges as
follows:

dV � E s f(x, t) + b(x, t)u + λe2􏼂 􏼃dt + h(x, t)dv􏼈 􏼉􏼒

+
1
2

f(x, t) + b(x, t)u + λe2􏼂 􏼃dt + h(x, t)dv􏼈 􏼉
2
􏼓.

(9)

By including the following relations proposed by [32, 33]
in the calculations,

dt · dt � 0,

dt · dv � 0,

dv · dv � dt.

(10)

And also considering the properties of the Wiener
process [28],

E[h(x, t)dv] � 0,

E[h(x, t)dv]
2

� h
2
(x, t)dt.

(11)

According to equations (10) and (11), the expected value
of dV is determined as follows:

dV � E s f(x, t) + b(x, t)u + λe2􏼂 􏼃dt􏼈 􏼉 +
1
2
h
2
(x, t)dt􏼒 􏼓.

(12)

Dividing the abovementioned relation by dt, _V is ob-
tained as follows:

_V � E s f(x, t) + b(x, t)u + λe2􏼂 􏼃( 􏼁 +
1
2

E h
2
(x, t)􏽮 􏽯. (13)

)e stability condition for the sliding mode controller is
defined as _V< 0 based on the Lyapunov second method for
stability [34]. Assuming the systems involve no uncertainty,
the controller stability is only guaranteed by considering
f(x, t) + b(x, t)u + λe2 � − θs, limiting the region of at-
traction associated with the sliding surface. However, given
the presence of uncertainty in most of dynamical systems,
the system uncertainties are included in the controller design
equations in the following part.

)e structural and actuator uncertainties have been
considered in the controller model in this study. To this end,
some of the inequalities associated with the f(x, t) and
b(x, t) functions along with their nominal values should be
taken into account.

Assuming 􏽢f(x, t) as the nominal values for f(x, t) and
F(x, t) is a positive function expressed as follows:

􏼌􏼌􏼌􏼌􏼌􏼌f(x, t) − 􏽢f(x, t)

􏼌􏼌􏼌􏼌􏼌􏼌≤F(x, t). (14)

As a result, the following equations hold true:
􏼌􏼌􏼌􏼌􏼌􏼌sf(x, t) − s􏽢f(x, t)

􏼌􏼌􏼌􏼌􏼌􏼌≤ |s|F(x, t),

sf(x, t)≤ s􏽢f(x, t) +|s|F(x, t).

(15)

If b(x, t) is defined as

0< b0 < b(x, t)< bM, (16)

where b0 and bM are positive values representing the upper
and lower bounds of the b(x, t) function, the following
equations are necessary for the controller design:

|s|F(x, t)≤ |s|
b(x, t)

b0
F(x, t), (17)

sλe2 � sλ
b

b0
e2 + sλe2 1 −

b

b0
􏼠 􏼡,

sλe2 ≤ sλ
b

b0
e2 +|s|λ e2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌b

1
b0

−
1
b

􏼠 􏼡,

attention to⟶ |s|λ e2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌b
1
b0

−
1
b

􏼠 􏼡≤ |s|λ e2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌b
1
b0

−
1

bM

􏼠 􏼡,

So,

sλe2 ≤ sλ
b

b0
e2 +|s|λ e2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌b

1
b0

−
1

bM

􏼠 􏼡,

(18)

s􏽢f(x, t) � s
b

b0

􏽢f(x, t) + s􏽢f(x, t) 1 −
b

b0
􏼠 􏼡,

s􏽢f(x, t)≤ s
b

b0

􏽢f(x, t) +|s|

􏼌􏼌􏼌􏼌􏼌􏼌
􏽢f(x, t)

􏼌􏼌􏼌􏼌􏼌􏼌b
1
b0

−
1
b

􏼠 􏼡,

attention to⟶ |s|

􏼌􏼌􏼌􏼌􏼌􏼌
􏽢f(x, t)

􏼌􏼌􏼌􏼌􏼌􏼌b
1
b0

−
1
b

􏼠 􏼡

≤ |s|

􏼌􏼌􏼌􏼌􏼌􏼌
􏽢f(x, t)

􏼌􏼌􏼌􏼌􏼌􏼌b
1
b0

−
1

bM

􏼠 􏼡,

So,

s􏽢f(x, t)≤ s
b

b0

􏽢f(x, t) +|s|

􏼌􏼌􏼌􏼌􏼌􏼌
􏽢f(x, t)

􏼌􏼌􏼌􏼌􏼌􏼌b
1
b0

−
1

bM

􏼠 􏼡.

(19)

)e following inequality holds true considering equa-
tions (15), (17), and (19):

sf(x, t)≤ s
b

b0

􏽢f(x, t) +|s|

􏼌􏼌􏼌􏼌􏼌􏼌
􏽢f(x, t)

􏼌􏼌􏼌􏼌􏼌􏼌b
1
b0

−
1

bM

􏼠 􏼡

+ |s|
b(x, t)

b0
F(x, t).

(20)

Equation (21) also holds true considering equations (18)
and (20):
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_V≤ sλ
b

b0
e2 +|s|λ e2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌b

1
b0

−
1

bM

􏼠 􏼡 + s
b

b0

􏽢f(x, t)

+ |s|

􏼌􏼌􏼌􏼌􏼌􏼌
􏽢f(x, t)

􏼌􏼌􏼌􏼌􏼌􏼌b
1
b0

−
1

bM

􏼠 􏼡 +|s|
b

b0
F(x, t) + sb(x, t)u

+
1
2
h
2
(x, t),

_V≤ s
b

b0
λe2 + 􏽢f(x, t)􏽨 􏽩 + sb(x, t)u +|s|b

1
b0

−
1

bM

􏼠 􏼡 λ e2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏽨

+

􏼌􏼌􏼌􏼌􏼌􏼌
􏽢f(x, t)

􏼌􏼌􏼌􏼌􏼌􏼌􏼕 +|s|
b

b0
F(x, t) +

1
2
h
2
(x, t).

(21)

By defining u as follows, the relation _V≤ − θE[s2]+

(1/2)E[h2(x, t)] holds true:

u � −
1
b0

λe2 + 􏽢f(x, t) + θ ×(s)􏽨 􏽩 − sign(s)[η + ψ], (22)

where η represents a positive value andψ(x, t) � ((1/b0) − (1/
bM))[λ|e2| + |􏽢f(x, t)|] + (1/b0)F(x, t). In fact, u � u1 + u2,
where u1 and u2, which are obtained as follows, cause the
nominal and uncertainty terms to be negative definite,
respectively:

u � u1 + u2,

λ
1
b0

e2 +
1
b0

􏽢f(x, t) + u1 � −
θ
b0

s,

u1 � −
1
b0

λe2 + 􏽢f(x, t) + θ ×(s)􏽨 􏽩,

sb(x, t)u2 +|s|b(x, t)
1
b0

−
1

bM

􏼠 􏼡 λ e2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 +

􏼌􏼌􏼌􏼌􏼌􏼌
􏽢f(x, t)

􏼌􏼌􏼌􏼌􏼌􏼌􏼔 􏼕 +
1
b0

F(x, t)􏼨 􏼩 � − ηb(x, t)|s|,

su2 +|s|
1
b0

−
1

bM

􏼠 􏼡 λ e2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 +

􏼌􏼌􏼌􏼌􏼌􏼌
􏽢f(x, t)

􏼌􏼌􏼌􏼌􏼌􏼌􏼔 􏼕 +
1
b0

F(x, t)􏼨 􏼩 � − η|s|,

ψ(x, t) �
1
b0

−
1

bM

􏼠 􏼡 λ e2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 +|􏽢f(x, t)|􏽨 􏽩 +
1
b0

F(x, t),

su2 � − η|s| − |s|ψ,

su2 � − |s|(η + ψ),

u2 � − sign(s)[η + ψ].

(23)

*eory. assume Δ as the following set:

Δ � s ∈ R E s
2

􏽨 􏽩
􏼌􏼌􏼌􏼌􏼌 ≤

H2

θ
􏼨 􏼩, (24)

where θ is a positive value. In fact, _V≤ − θE[s2] + (1/2)

E[h2(x, t)] represents the attraction set for the trajectory s(t).
Assuming at t � 0, the trajectory s(t) lies outside the attraction
set, i.e., E[s2(t � 0)]>H2/2θ, we obtain

_V≤ − θE s
2
(t � 0)􏽨 􏽩 +

1
2

E h
2
(x, t)􏽨 􏽩< 0, (25)

which indicates a declining rate for V as it tends to enter the
Δ set and ultimately remains in this region.

If it is located in the domain of s for the moment t � 0, it
will continue to be in this area.

)e designed sliding mode controller is then applied to
the system, as shown in Figure 1, based on the above-
mentioned equations. )e equation governing the dynamic
behavior of the 11th story is expressed as follows:

_x1 � x2,

_x2 � −
1

M11
K11 + K12( 􏼁x11 + C11 + C12( 􏼁 _x11 − K11x10􏼂

− K12x12 − C11 _x10 − C12 _x12􏼃 − €xg +
b(x, t)

M11
u.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(26)

)e f(x, t) for this equation is defined as follows:
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f(x, t) � −
1

􏽢M11 + ΔM11

􏽢K11 + ΔK11 + 􏽢K12 + ΔK12􏼐 􏼑x11􏼔

+ 􏽢C11 + ΔC11 + 􏽢C12 + ΔC12􏼐 􏼑 _x11 − 􏽢K11 + ΔK11􏼐 􏼑x10

− 􏽢K12 + ΔK12􏼐 􏼑x12 − 􏽢C11 + ΔC11􏼐 􏼑 _x10 − 􏽢C12 + ΔC12􏼐 􏼑 _x12􏼕,

(27)

where 􏽢M11, 􏽢K11, 􏽢K12, 􏽢C11, and 􏽢C12 denote nominal values
and ΔM11, ΔK11, ΔK12, ΔC11, and ΔC12 represent the
maximum value for the respective uncertainty term.

In this case, F(x, t) is defined as follows:

F(x, t) �
1

􏽢M11 − Δ 􏽢M11
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
Δ 􏽢K11

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + Δ􏽢K12

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑 x11

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + Δ􏽢C11

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼒􏼔

+ Δ􏽢C12
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼑 _x11
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + Δ 􏽢K11
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 x10
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + Δ 􏽢K12
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 x12
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

+ Δ􏽢C11
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 _x10
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + Δ􏽢C12
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 _x12
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼕.

(28)

Moreover, b(x, t) is assumed as b(x, t) � (1+

α sin t)/M21 in this case, meaning that the system’s actuator
includes the uncertainty (1 + α sin t). Under these condi-
tions, b0 and bM are expressed as follows:

b0 �
1 − α

􏽢M21 + Δ 􏽢M21
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
,

bM �
1 + α

􏽢M21 − Δ 􏽢M21
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
.

(29)

Finally, the term associated with the control force u is
conveniently determined using equation (22).

4. Results and Discussion

In this section, the obtained results will be presented and the
control of horizontal displacement of the 11-story building will
be discussed. Given that the first vibrational mode of the
building is easily excited, the largest displacement in this mode
is experienced by the topmost story. )erefore, vibration
analysis is conducted on the 11th story. )e physical and
geometrical specifications of the studied building are given in
Table 1. In the first scenario, the uncertainty was assumed as
ΔMi � 0.01Mi, ΔKi � 0.01Ki, ΔCi � 0.01Ci, and α � 0. )e
resulting horizontal displacement for story 11 is demonstrated
in Figure 2 for both active and passive cases. As shown in this
figure, the vibrational amplitude of the controlled system is
considerably smaller than that of the uncontrolled system.

)e variations of the control force u with respect to time
are demonstrated in Figure 3. As shown, the chattering
phenomenon is apparent within some time intervals.
Chattering is mainly caused by the term sign(s) in the
control force relation. In fact, the discontinuity and
undifferentiability of this function at point s � 0 is re-
sponsible for the chattering phenomenon. )e chattering
around the zero point is highly harmful, since, in addition to
the force magnitude, its sign also changes. However, at

nonzero points, the chattering only causes a decrease or
increase in the force magnitude. In our case, as shown,
chattering occurs at nonzero points.

To resolve the chattering problem and satisfy the con-
tinuity and Lipschitz condition, the term tanh(s)/ε was used
as an approximation of the sign(s) function for the function

Table 1: )e physical and geometrical specifications of the studied
building.

Properties Values
M1, M2, . . . , M11 255 × 103 kg
M12 77 × 103 kg
K1, K2, . . . , K11 25 × 106 N/m
K12 205 × 103 N/m
C1, C2, . . . , C11 216 × 103 Ns/m
C12 438 × 103 Ns/m
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b(x, t)u, where the continuity and differentiability condi-
tions are satisfied at point s � 0. )e diagram of horizontal
displacements for different ε values is demonstrated in
Figure 4. As shown, the displacement amplitude is increased
by increasing ε. However, this increase is negligible com-
pared to the displacement of the uncontrolled system.

)e variations of force u corresponding to Figure 4 for
different ε values are shown in Figure 5. As indicated, the
amplitude of force u at ε � 0.1 is smaller compared to other ε
values. Moreover, the chattering phenomenon is also fully
resolved in this case, while it is still observed at other cases,
for example, ε � 0.001. As shown in Figures 4 and 5, the

vibrational amplitudes for both sign(s) and tanh(s/0.001)

functions are consistent, which is due to the accurate ap-
proximation of the sign(s) function by tanh(s/0.001).

Moreover, the phase diagram for the 11th story is also
demonstrated in Figure 6 for different cases. As shown, by
increasing ε, the region of attraction is also extended. )is
region was almost similar for both sign(s) and tanh(s/0.001)

functions.
)e effect of h(x, t) on the dynamic behavior of the

structure and the region of attraction is discussed in this
part. )e vibrational amplitude of the uncontrolled system
for different h(x, t) values is shown in Figure 7. As
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Figure 4: (a) Controlled system behavior for different magnitudes of ε. (b) Detailed view of Figure 4(a).
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demonstrated, the displacement amplitude is linearly in-
creased by increasing h(x, t).

Also, the attraction domain for the mentioned figure is
presented in Figure 8. As is clear from this figure, the
domain of attraction set is extended with increasing
h(x, t).

)e horizontal displacement for the controlled case is
demonstrated in Figure 9 with respect to different h(x, t)

values. As shown, by increasing h(x, t), the vibrational
amplitude is also increased, but its value is substantially
smaller compared to the uncontrolled case. )e force var-
iations corresponding to Figure 9 is demonstrated in the

diagram of Figure 10. As shown, the amplitude of force
variations also experiences an increase as h(x, t) increases.

Moreover, the region of attraction corresponding to
Figure 9 is demonstrated in Figure 11. As shown, similar to
the uncontrolled case, the region of attraction increases by
increasing h(x, t).

)e effects of η and λ on the behavior of a controlled
system is discussed in this section. )e variations in hori-
zontal displacement of the system are demonstrated in
Figure 12 for different η values. As shown, for η values lower
than 1000, increasing the η values is not significantly ef-
fective, but increasing this parameter to 100,000 causes the
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Figure 12: )e variations in horizontal displacement for different values of η and λ � 1. (a) )e variations in horizontal displacement for
η � 1, η � 10, and η � 100 and λ � 1. (b) Detailed view of Figure 12(a). (c))e variations in horizontal displacement for η � 1, η � 1000, and
η � 100000 and λ � 1. (d) Detailed view of Figure 12(c).
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horizontal displacement of the system to increase
substantially.

Additionally, the region of attraction for an η value of
100,000 is shown in Figure 13. As shown, the region of
attraction is considerably expanded at this η value.

)e displacement amplitude of the system for different λ
values and a fixed η value of 1 is demonstrated in Figure 14.
As shown, the displacement amplitude is substantially de-
creased by increasing lambda.)e region of attraction for a λ
value of 5 is shown in Figure 15. Consider this figure suggests
that the region of attraction becomes more limited for a
lambda value of 5.

)is section discusses the controller robustness to
system uncertainty. In the first scenario, only the system
uncertainties were considered and the actuator

uncertainties were neglected. )e variations of hori-
zontal displacement for different Δ values are demon-
strated in Figure 16. As shown, the controller is highly
robust to uncertainties and even within some time in-
tervals, and the horizontal displacement of the system is
decreased by increasing Δ.

)is is due to the fact that F(x, t) is also increased by
increasing Δ. However, as expressed in equation (22),
presence of F(x, t) in this equation virtually increases the
term ψ(x, t) + η, and as shown in Figure 12, increasing η
increases the controller robustness. )e regions of at-
traction for Δ � 5% and Δ � 10% are plotted in Figure 17.
As shown, despite its larger extent for Δ � 10% compared
to Δ � 5%, the region of attraction has become more
compact.
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Figure 17: )e region of the attraction set for Figure 16 and considering different values of Δ � 5% and Δ � 10%. (a) )e region of the
attraction set for Δ � 5%. (b) )e region of the attraction set for Δ � 10%.
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Figure 18: )e horizontal displacement of 11th story for the active system considering uncertainty with Δ � 1% and different values of α.
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Figure 19: Related phase portrait to Figure 18. (a) α � 0.05. (b) α � 0.1. (c) α � 0.2.
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)e results for the case with actuator uncertainty and
Δ � 10% were extracted and presented in Figure 18. In this
case, b(x, t) � 1 + α sin t. )e results for different α values
are shown in this figure, which indicates the significant
controller robustness in presence of actuator uncertainty.

)e region of attraction in this case is depicted in
Figure 19. As shown, the extent of region of attraction is
increased by increasing α.

)e results in presence of actuator and system uncertainties
are shown in Figure 20. In this case, α is set to be 0.2. As shown,
the controller exhibits a high robustness in presence of actuator
and system uncertainties. )e region of attraction for this case
is demonstrated in Figure 21. As shown, the extent of region of
attraction is increased by increasing Δ.

5. Conclusion

)is study has examined the dynamic behavior of an 11-
story building equipped with an ATMD system. )e stim-
ulation force has been applied on the structure in the form of
a Wiener process and an earthquake. )e sliding mode
scheme has been used to control the ATMD system. So,
considering Lipschitz nonlinearity and based on the Ito
formulation, a sliding mode controller in the presence of the
uncertainty for the general dynamical system with the
second-order governing stochastic differential equation has
been designed.

)e designed controller has been further developed to
control the ATMD system. )e dynamic behaviors of the
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Figure 21: Related phase portrait of Figure 20.
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structure in the active and passive modes have been sim-
ulated. )e presented results demonstrate the high ability of
the sliding mode controller to reduce unwanted vibrations of
buildings under stimulation of the ground. Also, the results
show that the designed controller has a good robustness in
the presence of structural and actuator uncertainties. In
addition, the effects of the controller parameters on system
behavior have been studied. )e results show that reduction
of ε and increase of η reduce the structural vibration
amplitude.

Data Availability

No data were used to support this study.

Conflicts of Interest

)e author declares that there are no conflicts of interest.

Acknowledgments

)is work was supported by )e Research Council of Oman
with Grant no. ORG/CBS/14/008.

References

[1] D. Lamberton and B. Lapeyre, Introduction to Stochastic
Calculus Applied to Finance, Chapman and Hall/CRC, Boca
Raton, FL, USA, 2011.

[2] J. M. Steele, Stochastic Calculus and Financial Applications,
vol. 45, Springer Science & Business Media, Berlin, Germany,
2012.

[3] R. Carmona, Lectures on BSDEs, Stochastic Control, and
Stochastic Differential Games with Financial Applications, vol.
1, SIAM, Philadelphia, PA, USA, 2016.

[4] B. Remillard, Statistical Methods for Financial Engineering,
Chapman and Hall/CRC, Boca Raton, FL, USA, 2016.

[5] M. Di Somma, G. Graditi, E. Heydarian-Forushani, M. Shafie-
khah, and P. Siano, “Stochastic optimal scheduling of dis-
tributed energy resources with renewables considering eco-
nomic and environmental aspects,” Renewable Energy,
vol. 116, pp. 272–287, 2018.

[6] X. Zhao, T. R. Brown, and W. E. Tyner, “Stochastic techno-
economic evaluation of cellulosic biofuel pathways,” Bio-
resource Technology, vol. 198, pp. 755–763, 2015.

[7] S. Liu, P. X. Liu, and X. Wang, “Stochastic small-signal sta-
bility analysis of grid-connected photovoltaic systems,” IEEE
Transactions on Industrial Electronics, vol. 63, no. 2,
pp. 1027–1038, 2015.

[8] N. Onizawa, D. Katagiri, K. Matsumiya, W. J. Gross, and
T. Hanyu, “Gabor filter based on stochastic computation,”
IEEE Signal Processing Letters, vol. 22, no. 9, pp. 1224–1228,
2015.

[9] P. Pfeffer, F. Hartmann, S. Höfling, M. Kamp, and
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An algorithm using the differential transformation which is convenient for finding numerical solutions to initial value problems
for functional differential equations is proposed in this paper. We focus on retarded equations with delays which in general are
functions of the independent variable. .e delayed differential equation is turned into an ordinary differential equation using the
method of steps. .e ordinary differential equation is transformed into a recurrence relation in one variable using the differential
transformation. Approximate solution has the form of a Taylor polynomial whose coefficients are determined by solving the
recurrence relation. Practical implementation of the presented algorithm is demonstrated in an example of the initial value
problem for a differential equation with nonlinear nonconstant delay. A two-dimensional neutral system of higher complexity
with constant, nonconstant, and proportional delays has been chosen to show numerical performance of the algorithm. Results are
compared against Matlab function DDENSD.

1. Introduction

Functional differential equations (FDEs) are used to
model processes and phenomena which depend on past
values of the modelled entities. Indicatively, we mention
models describing machine tool vibrations [1], predator-
prey type models [2], and models used in economics [3].
Further models and details can be found for instance in
[4, 5] or [6].

Differential transformation (DT), a semianalytical ap-
proach based on Taylor’s theorem, has been proved to be
efficient in solving a variety of initial value problems (IVPs),
ranging from ordinary to functional, partial, and fractional
differential equations [7–11]. However, there is no publi-
cation about systematic application of DT to IVP for

differential equations with nonconstant delays which are
functions of the independent variable.

In this paper, we present an extension of DT to a class of
IVPs for delayed differential equations with analytic right-
hand side. Albeit the analyticity assumption seems to be
quite restrictive, it is reasonable to develop theory for such
class of equations [12, 13].

.e paper is organised as follows. In Section 2, we define
the subject of our study and briefly describe the methods we
combine to solve the studied problem, including recalling
necessary results of previous studies. Section 3 contains the
main results of the paper, including algorithm description,
new theorems, examples, and comparison of numerical
results. In Section 4, we briefly summarise what has been
done in the paper.
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2. Methods

2.1. Problem Statement. .e problem studied in this paper is
to find a solution on a given finite interval [t0, T] ⊂ [0,∞) to
an IVP for the following system of p functional differential
equations of n-th order withmultiple delays α1(t), . . . , αr(t):

u(n)
(t) � f t, u(t), u′(t), . . . , u(n− 1)

(t), u1 α1(t)( 􏼁, . . . , ur αr(t)( 􏼁􏼐 􏼑,

(1)

where u(n)(t) � (u
(n)
1 (t), . . . , u(n)

p (t))T ,u(k)(t) � (u
(k)
1 (t),

. . . , u(k)
p (t)), k � 0, 1, . . . , n − 1, and f � (f1, . . . , fp)T are

p-dimensional vector functions, ui(αi(t)) �

(u(αi(t)), u′(αi(t)), . . . , u(mi)(αi(t))) are (mi · p)-dimen-
sional vector functions, mi ≤ n, i � 1, 2, . . . , r, r ∈ N, and
fj: [t0, T) are real functions for j � 1, 2, . . . , p, where
ω � 􏽐

r
i�1mi.

We assume that each αi(t) � t − τi(t), where
τi(t)≥ τi0 > 0 for t ∈ [t0, T], i � 1, 2, . . . , r, is in general a real
function, that is, a time-dependent or time-varying delay.
Constant and proportional delays are considered as special
cases. In case that some αi is a proportional delay, we do not
require the condition τi(t)≥ τi0 > 0 to be valid at 0 if t0 � 0.

Let t∗ � min1≤i≤r inf t∈[t0 ,T](αi(t))􏽮 􏽯 and m � max m1,􏼈

m2, . . . , mr}; hence, t∗ ≤ t0 and m≤ n. If m< n, we have a
retarded system (1); otherwise, if m � n, we call the system
neutral. Furthermore, if t∗ < 0, initial vector functionΦ(t) �

(ϕ1(t), . . . , ϕp(t))T must be prescribed on the interval
[t∗, t0].

DT algorithm for the case t∗ � t0 � 0 with all delays
being proportional is described in [14]. DTalgorithm for the
case t∗ < t0 when all delays are constant is introduced in [15].
In this paper, we develop the algorithm for the case t∗ < t0
when at least one delay is nonconstant.

To have a complete IVP, we consider system (1) together
with initial conditions:

u t0( 􏼁 � v0,

u′ t0( 􏼁 � v1, . . . , u(n− 1)
t0( 􏼁 � vn− 1,

(2)

and, since t∗ < t0, also subject to initial vector function Φ(t)

on interval [t∗, t0] such that

Φ t0( 􏼁 � u t0( 􏼁, . . . ,Φ(n− 1)
t0( 􏼁 � u(n− 1)

t0( 􏼁. (3)

We consider the IVPs (1)–(3) under the following
hypotheses:

(H1) We assume that all the functions ϕj(t), j �

1, . . . , p, are analytic in [t∗, t0], the functions αi(t), i �

1, . . . , r, are analytic in [t0, T] and the functions fj, j �

1, . . . , p, are analytic in an open set containing [t0,

T] × [u(t0), u(T) ]× . . . ×[ur(αr(t0)), ur(αr(T))].
(H2) If αi(t) � qit and mi � n in fj for some
i ∈ 1, . . . , r{ } and j ∈ 1, . . . , p􏼈 􏼉, that is, jth equation is
neutral with respect to the proportional delay αi, we
assume that u

(n)
l (αi(t)) ≡ 0 for l ∈ 1, . . . , p􏼈 􏼉, l≠ j. .is

hypothesis is included since if it is not fulfilled, the
existence of unique solution of IVP could be violated.

We note that these assumptions imply that the IVP
(1)–(3) has a unique solution in the interval [t0, T].

2.2. Method of Steps. .e basic idea of our approach is to
combine DT and the general method of steps. .e method
of steps enables us to replace the terms including delays with
initial vector function Φ(t) and its derivatives. .en, the
original IVP for the delayed or neutral system of differential
equations is turned into IVP for a system of ordinary dif-
ferential equations.

For the sake of clarity, we include a simple explanatory
example. Suppose that we have a system with three delays,
one of each type considered: α1(t) � t − τ1(t),
α2(t) � t − τ2, and α3(t) � q3t. We have to distinguish two
cases:

(a) If t0 � 0, applying the method of steps turns system
(1) into

u(n)
(t) � f t, u(t), . . . ,u(n− 1)

(t),􏼐

Φ1 t − τ1(t)( 􏼁,Φ2 t − τ2( 􏼁, u3 q3t( 􏼁􏼁,
(4)

while

(b) If t0 > 0, system (1) is simplified to

u(n)
(t) � f t, u(t), . . . ,u(n− 1)

(t),􏼐

Φ1 t − τ1(t)( 􏼁,Φ2 t − τ2( 􏼁,Φ3 q3t( 􏼁􏼁,
(5)

where

Φ1 t − τ1(t)( 􏼁 � 􏼒Φ t − τ1(t)( 􏼁,Φ′ t − τ1(t)( 􏼁, . . . ,

Φ m1( ) t − τ1(t)( 􏼁􏼓,

Φ2 t − τ2( 􏼁 � Φ t − τ2( 􏼁,Φ′ t − τ2( 􏼁, . . . ,Φ m2( ) t − τ2( 􏼁􏼒 􏼓,

u3 q3t( 􏼁 � u q3t( 􏼁, u′ q3t( 􏼁, . . . , u m3( ) q3t( 􏼁􏼒 􏼓,

Φ3 q3t( 􏼁 � Φ q3t( 􏼁,Φ′ q3t( 􏼁, . . . ,Φ m3( ) q3t( 􏼁􏼒 􏼓,

(6)

and ml ≤ n for l � 1, 2, 3, 4. More details on the general
method of steps can be found, for instance, in monographs
[4] or [6].

Continuation of the method of steps algorithm for
equations with constant delays τ1, . . . , τr is described in [15].
Briefly summarised, the interval [t0, T] is divided into
subintervals Il � [tl− 1, tl], l � 1, . . . , K, where tK � T and tl,
l � 1, . . . , K − 1, are the principal discontinuity points which
is the set of points tρ,σ , such that t0,1 � t0 and for ρ, σ ≥ 1, tρ,σ
are the minimal roots with odd multiplicity of r equations:

tρ,(σ− 1)r+μ − τμ � tρ− 1,σ, μ � 1, . . . , r. (7)
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If nonconstant nonproportional delays αi appear in
system (1), the principal set of discontinuity points is defined
as follows:

Definition 1. .e principal discontinuity points for the
solutions of system (1) are given by the set of points tρ,σ , such
that t0,1 � t0 and for ρ, σ ≥ 1, tρ,σ are the minimal roots with
odd multiplicity of r equations:

αμ tρ,(σ− 1)r+μ􏼐 􏼑 � tρ− 1,σ, μ � 1, . . . , r. (8)

Similar to the case of constant delays, we break the
interval [t0, T] into subintervals Il � [tl− 1, tl], l � 1, . . . , K.
We start with the mesh grid t0, . . . , tK􏼈 􏼉 formed by the
principal discontinuity points calculated using Definition 1.
To improve convergence or performance of the algorithm,
there is a possibility to refine the mesh grid by inserting
other points into it. For more details on the principal
discontinuity points and mesh grid, we refer to the
monograph [16].

2.3. Differential Transformation

Definition 2. Differential transformation of a real function
u(t) at a point t0 ∈ R is D u(t){ }[t0] � U(k)[t0]􏼈 􏼉

∞
k�0, where

U(k)[t0], k − th component of the differential transforma-
tion of the function u(t) at t0, k ∈ N0, is defined as

U(k) t0􏼂 􏼃 �
1
k!

dku(t)

dtk
􏼢 􏼣

t�t0

, (9)

provided that the original function u(t) is analytic in a
neighbourhood of t0.

Definition 3. Inverse differential transformation of
U(k)[t0]􏼈 􏼉

∞
k�0 is defined as

u(t) � D
− 1

U(k) t0􏼂 􏼃􏼈 􏼉
∞
k�0􏼈 􏼉 t0􏼂 􏼃 � 􏽘

∞

k�0
U(k) t0􏼂 􏼃 t − t0( 􏼁

k
.

(10)

In applications, the function u(t) is expressed by a finite
sum

u(t) � 􏽘
N

k�0
U(k) t0􏼂 􏼃 t − t0( 􏼁

k
. (11)

As we can observe in (10), DT is based on Taylor series;
hence, any theorem about convergence of Taylor series may
be used. However, we would like to point out the paper [17]
where the finest general explicit a priori error estimates are
given.

.e following formulas are listed, e.g., in [18] and will be
used in Section 3.3.

Lemma 1. Assume that F(k)[t0] and U(k)[t0] are differ-
ential transformations of functions f(t) and u(t),
respectively:

If f(t) �
dnu(t)

dtn
, then F(k) t0􏼂 􏼃 �

(k + n)!

k!
U(k + n) t0􏼂 􏼃.

If f(t) � t
n
, then F(k)[0] � δ(k − n),

where δ(k − n) � δkn is the Kronecker delta.

If f(t) � eλt
, then F(k)[0] �

λk

k!
.

(12)

Remark 1. Similar formulas can be obtained using nu-
merical approach called Functional Analytical Technique
based on Operator .eory [19, 20].

.e main disadvantage of many papers about DT is that
there are almost no examples of equations with non-
polynomial nonlinear terms containing unknown function
u(t) like, for instance, f(u) �

�����
1 + u35

√
or f(u) � e

���
sin u

√

.
However, DT of components containing nonlinear terms
can be obtained in a consistent way using the algorithm
described in [21].

Theorem 1. Let g and f be real functions analytic near t0
and g(t0), respectively, and let h be the composition
h(t) � (f ∘g)(t) � f(g(t)). Denote D g(t)􏼈 􏼉[t0] �

G(k){ }
∞
k�0, D f(t)􏼈 􏼉[g(t0)] � F(k){ }

∞
k�0, and D (f ∘g)􏼈

(t)}[t0] � H(k){ }
∞
k�0 as the differential transformations of

functions g, f, and h at t0, g(t0), and t0, respectively.Cen, the
numbers H(k) in the sequence H(k){ }

∞
k�0 satisfy the relations

H(0) � F(0) and

H(k) � 􏽘
k

l�1
F(l) · 􏽢Bk,l(G(1), . . . , G(k − l + 1)), for k≥ 1,

(13)

where 􏽢Bk,l(􏽢x1, . . . , 􏽢xk− l+1) are the partial ordinary Bell
polynomials.

.e following Lemma proved in [21] is useful when
calculating partial ordinary Bell polynomials.

Lemma 2. Ce partial ordinary Bell polynomials
􏽢Bk,l(􏽢x1, . . . , 􏽢xk− l+1), l � 1, 2, . . . , k≥ l, satisfy the recurrence
relation

􏽢Bk,l 􏽢x1, . . . , 􏽢xk− l+1( 􏼁 � 􏽘
k− l+1

i�1

i · l

k
􏽢xi

􏽢Bk− i,l− 1 􏽢x1, . . . , 􏽢xk− i− l+2( 􏼁,

(14)

where 􏽢B0,0 � 1 and 􏽢Bk,0 � 0 for k≥ 1.

3. Results and Discussion

3.1. Algorithm Description. Recall system (1)

u(n)
(t) � f t, u(t),u′(t), . . . , u(n− 1)

(t), u1 α1(t)( 􏼁, . . . , ur αr(t)( 􏼁􏼐 􏼑,

(15)

with initial conditions
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u t0( 􏼁 � v0,u′ t0( 􏼁 � v1, . . . ,u(n− 1)
t0( 􏼁 � vn− 1, (16)

and initial vector function Φ(t) on interval [t∗, t0]

satisfying

Φ t0( 􏼁 � u t0( 􏼁, . . . ,Φ(n− 1)
t0( 􏼁 � u(n− 1)

t0( 􏼁. (17)

Further recall that in Section 2.2, we broke the interval
[t0, T] into subintervals Il � [tl− 1, tl], l � 1, . . . , K. Define
I0 � [t∗, t0].

.en, we are looking for a solution u(t) of the IVP
(1)–(3) in the form

u(t) �

uI1
(t), t ∈ I1,

uI2
(t), t ∈ I2,

⋮

uIK
(t), t ∈ IK,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(18)

where solution uIj
in the jth interval Ij is obtained in the

following way. We solve the following equation:

u(n)
Ij

(t) � f t, uIj
(t), uIj
′ (t), . . . , u(n− 1)

Ij
(t),􏼒

uj,1 α1(t)( 􏼁, . . . ,uj,r αr(t)( 􏼁􏼑,

(19)

where

uj,i αi(t)( 􏼁 � uIl
αi(t)( 􏼁,uIl

′ αi(t)( 􏼁, . . . ,u mi( )
Il

αi(t)( 􏼁􏼒 􏼓,

(20)

if αi(t) ∈ Il, for t ∈ Ij, l ∈ 1, . . . , j􏼈 􏼉, j ∈ 1, . . . .K{ }.

In case that αi(t) ∈ I0 � [t∗, t0] for t ∈ Ij, then again

uj,i αi(t)( 􏼁 � ϕ αi(t)( 􏼁,ϕ′ αi(t)( 􏼁, . . . , ϕ mi( ) αi(t)( 􏼁􏼒 􏼓.

(21)

Application of DTat tj− 1 to equation (19) yields a system
of recurrence algebraic equations:

UIj
(k + n) tj− 1􏽨 􏽩 � F k,UIj

(k),UIj
(k + 1), . . . ,UIj

(k + n − 1)􏼒 􏼓,

(22)

where the function F is the DT of the righthand side of
equation (19) and involves application of .eorem 1.

Next, we transform the initial conditions (2). Following
Definition 2, we derive

UIj
(k) tj− 1􏽨 􏽩 �

1
k!
u(k)

Ij
tj− 1􏼐 􏼑, for k � 0, 1, . . . , n − 1, j ∈ 1, . . . , K{ }.

(23)

Using (22) with (23) and then inverse transformation
rule, we obtain approximate solution to (19) in the form of
Taylor series:

uIj
(t) � 􏽘

∞

k�0
UIj

(k) tj− 1􏽨 􏽩 t − tj− 1􏼐 􏼑
k
, t ∈ Ij, (24)

for all j ∈ 1, . . . , K{ }.
To transform (20) correctly, we need the following

theorem.

Theorem 2. Let αi(t) ∈ Il for t ∈ Ij, where l ∈ 1, . . . , j − 1􏼈 􏼉.
Let p ∈ N. Denote D αi(t)􏼈 􏼉[tj− 1] � Ai(k)[tj− 1]􏽮 􏽯

∞
k�0. Cen,

D u
(p)

Il
αi(t)( 􏼁􏽮 􏽯 tj− 1􏽨 􏽩

� 􏽘
k

y�0

(y + p)!

y!
UIl

(y + p) αi tj− 1􏼐 􏼑􏽨 􏽩

⎧⎪⎨

⎪⎩

· 􏽢Bk,y Ai(1) tj− 1􏽨 􏽩, . . . , Ai(k − y + 1) tj− 1􏽨 􏽩􏼐 􏼑
⎫⎬

⎭

∞

k�0

,

(25)

where 􏽢B0,0 � 1, 􏽢Bk,0 � 0 for k≥ 1, and

UIl
(y) αi tj− 1􏼐 􏼑􏽨 􏽩 � 􏽘

∞

x�0

x + y

x
􏼠 􏼡 αi tj− 1􏼐 􏼑 − tl− 1􏼐 􏼑

x

· UIl
(x + y) tl− 1􏼂 􏼃,

(26)

for y≥ 0.

Proof. Toprove (25) withp � 0, we use.eorem1withf(t) �

uIl
(t),g(t) � αi(t), and h(t) � (f ∘g)(t).We immediately get

H(k) tj− 1􏽨 􏽩 � 􏽘
k

y�1
UIl

(y) αi tj− 1􏼐 􏼑􏽨 􏽩

· 􏽢Bk,y Ai(1) tj− 1􏽨 􏽩, . . . , Ai(k − y + 1) tj− 1􏽨 􏽩􏼐 􏼑,

(27)

for k≥ 1. For k � 0, .eorem 1 yields H(0) [tj− 1] �

UIl
(0)[αi(tj− 1)] � UIl

(0)[αi(tj− 1)] · 􏽢B0,0(Ai(1)[tj− 1]). Now,
(25) for p> 0 is a consequence of Lemma 1 and it remains to
prove (26). We recall that

uIl
(t) � 􏽘

∞

k�0
UIl

(k) tl− 1􏼂 􏼃 t − tl− 1( 􏼁
k
, t ∈ Il. (28)

As the assumption was that αi(tj− 1) ∈ Il, we may apply
Definition 2 to (28) and obtain

UIl
(y) αi tj− 1􏼐 􏼑􏽨 􏽩 �

1
y!

dyuIl
(t)

dty
􏼢 􏼣

t�t0

1
y!

􏽘

∞

z�y

z!

(z − y)!
UIl

(z) tl− 1􏼂 􏼃

· t0 − tl− 1( 􏼁
z− y

.

(29)

Substituting t0 � αi(tj− 1) and z � x + y gives (26). □
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3.2. New DT Formulas. In the applications, we also use the
following DT formulas.

Theorem 3. Assume that F(k)[t0] is the differential
transformation of the function f(t) and r ∈ R:

(a) If f(t) � tr, then F(k)[t0] �
r

k
􏼠 􏼡tr− k

0 for all t such
that |t − t0|< |t0|,

where r

k
􏼠 􏼡 � r(r − 1) . . . (r − k + 1)/k! � (r)k/k!

and (r)k is the Pochhammer symbol.
(b) If f(t) � ln(t), then F(k)[t0] � (− 1)k− 1/(k · tk

0) for
k≥ 1.

Proof

(a) Recall the Newton’s generalisation of the binomial
formula: if x and y are real numbers with |x|> |y|,
and r is any complex number, one has

(x + y)
r

� 􏽘
∞

k�0

r

k
􏼠 􏼡x

r− k
y

k
, (30)

where r

k
􏼠 􏼡 � r(r − 1) . . . (r − k + 1)/k!. Let us rewrite tr as

tr � (t − t0 + t0)
r � (t0 + (t − t0))

r. Applying (30) yields

t
r

� 􏽘
∞

k�0

r

k
􏼠 􏼡t

r− k
0 t − t0( 􏼁

k
. (31)

(b) We start by proving the formula

(ln(t))
(k)

�
(− 1)k− 1(k − 1)!

tk
, (32)

by induction. For k � 1, we have (ln(t))′ � 1/t; hence, (32) is
valid. Suppose that (32) holds for k. .en,

(ln(t))
(k+1)

� (ln(t))
(k)

􏼐 􏼑′ �
(− 1)k− 1(k − 1)!

tk
􏼠 􏼡

′

� (− 1)
k− 1

(k − 1)! t
− k

􏼐 􏼑′

� (− 1)
k− 1

(k − 1)!(− k)t
− k− 1

�
(− 1)kk!

tk+1 .

(33)

.us, formula (32) is valid for all k ∈ N. Now by Definition 2,

F(k) t0􏼂 􏼃 �
1
k!

dk ln(t)

dtk
􏼢 􏼣

t�t0

�
1
k!

(− 1)k− 1(k − 1)!

tk
􏼢 􏼣

t�t0

�
(− 1)k− 1

k · tk
0

.

(34)
□

3.3. Applications. In this section, we introduce two test
problems and show how the practical implementation
of the presented algorithm looks like in concrete
examples. Comparison of numerical results is given in
Section 3.4.

As the first test problem, we choose an IVP for a scalar
equation with one nonconstant delay where the exact
solution is known to be the exponential function et.
.e purpose of including this example is to compare
results obtained by DT against values of the exact
solution and also against results obtained by Matlab
function DDENSD which has been designed to approx-
imate solutions to IVP for neutral delayed differential
equations.

Example 1. Consider the delayed equation:

u′(t) � u(t) − t + u(ln(t)), (35)

with the initial condition

u(1) � e, (36)

and with the initial function

ϕ(t) � e
t
, t ∈ [0, 1]. (37)

First we find the differential transform of the initial
condition (36) which is U(0)[1] � e. Further denote
D et􏼈 􏼉[0] � E(k)[0]{ }

∞
k�0 as the transformation of the ex-

ponential function with the center at 0 and D ln(t){ }[1] �

F(k)[1]{ }
∞
k�0 as the transformation of the logarithmic

function at 1, respectively. .en, Lemma 1 and .eorem 3
yield

E(k)[0] �
1
k!

,

F(k)[1] �
(− 1)k− 1

k
, for k≥ 1.

(38)

For t ∈ [1, e], equation (35) is transformed into

(k + 1)U(k + 1)[1] � U(k)[1] − δ(k) − δ(k − 1) + H(k)[1],

(39)

where

H(k)[1] � 􏽘
k

l�1
E(l)[0]􏽢Bk,l(F(1)[1], . . . , F(k − l + 1)[1]),

for k≥ 1,

H(0)[1] � E(0)[0] � 1.

(40)

We have
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U(1)[1] � e − 1 − 0 + 1 � e,

H(1)[1] � E(1)[0] · F(1)[1] � 1 · 1 � 1,

U(2)[1] �
1
2

(U(1)[1] − 0 − 1 + H(1)[1])

�
1
2

(e − 1 + 1) � e ·
1
2
,

H(2)[1] � E(1)[0] · F(2)[1] + E(2)[0] · (F(1)[1])
2

� 1 · −
1
2

􏼒 􏼓 +
1
2

· 1 � 0,

U(3)[1] �
1
3

(U(2)[1] + H(2)[1]) �
1
3

· e ·
1
2

� e ·
1
3!

,

⋮
(41)

Using the inverse transformation, we see that for
t ∈ [1, e],

u(t) � e 1 +(t − 1) +
(t − 1)2

2
+

(t − 1)3

3!
. . .􏼠 􏼡 � e · e

t− 1
� e

t
,

(42)

which corresponds to the exact solution to the IVPs
(35)–(37).

In the second step of the method of steps, i.e., in the
interval t ∈ [e, ee], we know that u(t) � et for t ∈ [1, e] and
equation (35) is transformed into

(k + 1)U(k + 1)[e] � U(k)[e] − eδ(k) − δ(k − 1) + H(k)[e],

(43)

where

H(0)[e] � U(0)[1],

H(k)[e] � 􏽘
k

l�1
U(l)[1]􏽢Bk,l(F(1)[e], . . . , F(k − l + 1)[e]),

for k≥ 1.

(44)

Here, F(k)[e], according to .eorem 3, are coefficients
of Taylor series of logarithmic function with the center at e:

F(0)[e] � 1,

F(k)[e] �
(− 1)k− 1

k · ek
, for k≥ 1.

(45)

Taking the values calculated in the first step and
substituting them into the recurrence formulas (43) and
(44), we obtain

U(0)[e] � u(e) � e
e
,

U(1)[e] � U(0)[e] − eδ(0) − δ(− 1) + H(0)[e]

� e
e

− e − 0 + e � e
e
,

H(1)[e] � U(1)[1] · F(1)[e] � e ·
1
e

� 1,

U(2)[e] �
1
2

(U(1)[e] − 0 − 1 + H(1)[e])

�
1
2

e
e

− 1 + 1􏼂 􏼃 �
1
2
e

e
,

H(2)[e] � U(1)[1] · 􏽢B2,1(F(1)[e], F(2)[e])

+ U(2)[1] · 􏽢B2,2(F(1)[e])

� e · F(2)[e] +
e

2
· (F(1)[e])

2

� e ·
1
2

− 1
e2

􏼒 􏼓 +
e

2
·

1
e

􏼒 􏼓
2

� 0,

U(3)[e] �
1
3

(U(2)[e] + H(2)[e]) �
1
3!

e
e
,

H(3)[e] � U(1)[1] · 􏽢B3,1(F(1)[e], F(2)[e], F(3)[e])

+ U(2)[1] · 􏽢B3,2(F(1)[e], F(2)[e]) + U(3)[1]

· 􏽢B3,3(F(1)[e])

� e · F(3)[e] +
e

2
· 2 · F(1)[e] · F(2)[e] +

e

3!
(F(1)[e])

3

� e ·
2
e3

1
3!

+ e ·
1
e

·
(− 1)

e2
·
1
2

+
e

6
·
1
e3

�
1
e2

1
3

−
1
2

+
1
6

􏼒 􏼓 � 0,

U(4)[e] �
1
4

(U(3)[e] + H(3)[e]) �
1
4!

e
e
.

(46)

Hence, for t ∈ [e, ee], we have

u(t) � e
e

+ e
e
(t − e) +

1
2
e

e
(t − e)

2
+
1
3!

e
e
(t − e)

3

+
1
4!

e
e
(t − e)

4
+ . . .

� e
e 1 +(t − e) +

(t − e)2

2
+

(t − e)3

3!
+

(t − e)4

4!
+ . . .􏼠 􏼡

� e
e

· e
t− e

� e
t
,

(47)

which again coincides with the exact solution to problems
(35)–(37).

In the second application, we have chosen an IVP for a
nonlinear system of neutral delayed differential equations
taken from the fully open access paper [18]..ere are several
reasons to test the proposed algorithm on the particular
problem. .e first is that the problem involves a nonlinear
system of neutral equations of high complexity whose exact
solution is unknown. Secondly, the proposed algorithm is a
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complete differential transform version of the algorithm
presented in [18] where modified Adomian formula has
been used. Furthermore, the calculations done in [18] are
shown only for the first step of the method of steps up to the
first principal discontinuity point, whereas we continue
calculations beyond that point in this paper. Last but not
least, we want to verify performance and reproduce values
obtained by DTand published in [18]. Rebenda et al. [18] has
been submitted 4 years ago for the first time, and since that
time, the Maple source code has been lost.

Example 2. Consider a nonlinear system of neutral delayed
differential equations:

u
‴
1 � u
‴
1 (t − 2)u1

t

3
􏼒 􏼓 +

�������

u1(t)( 􏼁
23

􏽱

+ u2′ t −
1
2

e
− t

􏼒 􏼓,

u
‴
2 �

1
2
u
‴
2

t

2
􏼒 􏼓 + u2′(t − 1)u1

t

3
􏼒 􏼓,

(48)

with initial functions

ϕ1(t) � e
t
,

ϕ2(t) � t
2
,

(49)

for t ∈ [− 2, 0], and initial conditions

u1(0) � 1,

u2′(0) � 1,

u1″(0) � 1,

u2(0) � 0,

u2′(0) � 0,

u2″(0) � 2.

(50)

For t ∈ [0, t1], where t1 ≈ 0, 351734 is the minimal root
of t − (1/2)e− t � 0, using the method of steps, we obtain

u
‴
1 � e

(t− 2)
u1

t

3
􏼒 􏼓 +

�������

u1(t)( 􏼁
23

􏽱

+ 2t − e
− t

,

u
‴
2 �

1
2
u
‴
2

t

2
􏼒 􏼓 + 2(t − 1)u1

t

3
􏼒 􏼓.

(51)

Weneed to find the differential transformof the considered
problem. We notice that system (2) contains nonlinear term

h(t) �

�������

(u1(t))2
3

􏽱

. To get DT of this term, D h(t){ }[0] �

H1(k)[0]􏼈 􏼉
∞
k�0, and we apply.eorem 1. First, applying DT to

system (2) at t0 � 0, we get the recurrent system:
(k + 1)(k + 2)(k + 3) U1(k + 3)[0]

� e
− 2

􏽘
l�0

k 1
l!

1
3

􏼒 􏼓
k− l

U1(k − l)[0] + H1(k)[0] + 2δ(k) −
(− 1)k

k!
,

(52)

(k + 1)(k + 2)(k + 3) 1 −
1

2k+1􏼒 􏼓 U2(k + 3)[0]

� 2
1
3

􏼒 􏼓
k− 1

U1(k − 1)[0] −
2
3k

U1(k)[0].

(53)

Denote g(t) � t2/3; then, h(t) � (g ∘ u1)(t), and fol-
lowing .eorem 1, we obtain

H1(0)[0] � G1(0)[1],

H1(k)[0] � 􏽘

k

l�1
G1(l)[1]􏽢Bk,l U1(1)[0], . . . , U1(k − l + 1)[0]( 􏼁,

(54)

for k≥ 1, whereD g(t)􏼈 􏼉[1] � G1(k)[1]􏼈 􏼉
∞
k�0 and,.eorem 3

being applied, G1(k)[1] �
2/3
k

􏼠 􏼡 for k≥ 0. Furthermore,

the transformed initial conditions are

U1(0)[0] � 1,

U1(1)[0] � 1,

U1(2)[0] �
1
2
,

U2(0)[0] � 0,

U2(1)[0] � 0,

U2(2)[0] � 1.

(55)

Using them, we compute the first three coefficients of the
nonlinear term h(t):

H1(0)[0] � G1(0)[1] � 1,

H1(1)[0] � G1(1)[1] · B1,1 U1(1)[0]( 􏼁 �
2
3

· 1 �
2
3
,

H1(2)[0] � G1(1)[1] · B2,1 U1(1)[0], U1(2)[0]( 􏼁

+ G1(2)[1] · B2,2 U1(1)[0]( 􏼁 �
2
3

·
1
2

−
1
9

· 1 �
2
9
.

(56)

Solving recurrent systems (52) and (53), we get

k � 0: U1(3)[0] �
1
6

e
− 2

U1(0)[0] + H1(0)[0] + 1􏼐 􏼑

�
2 + e− 2

6
,

U2(3)[0] �
1
3

− 2U1(0)[0]( 􏼁 � −
2
3
.

k � 1: U1(4)[0] �
e− 2

24
1
3

U1(1)[0] + U1(0)[0]􏼒 􏼓

+
1
24

H1(1)[0] + 1( 􏼁 �
4e− 2 + 5

72
,

U2(4)[0] �
1
18

2U1(0)[0] −
2
3

U1(1)[0]􏼒 􏼓 �
2
27

.

k � 2: U1(5)[0] �
e− 2

60
1
9

U1(2)[0] +
1
3

U1(1)[0]􏼒

+
1
2

U1(0)[0]􏼓 +
1
60

H1(2)[0] −
1
2

􏼒 􏼓

�
16e− 2 − 5
1080

,

U2(5)[0] �
2
105

2
3

U1(1)[0] −
2
9

U1(2)[0]􏼒 􏼓 �
2
189

.

(57)

Using the inverse DT (Definition 3), we get approximate
solution for the IVPs (48)–(50) on the interval [0, t1]:
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u1,I1
(t) � 1 + t +

1
2
t
2

+
2 + e− 2

6
t
3

+
4e− 2 + 5

72
t
4

+
16e− 2 − 5
1080

t
5

+ . . . ,

u2,I1
(t) � t

2
−
2
3
t
3

+
2
27

t
4

+
2
189

t
5

+ . . . ,

(58)

which is exactly the same approximate solution which has
been obtained in [18].

.e second step brings us to solving the given IVP on the
interval [t1, t2], where t2 is the minimal root of
t − (1/2)e− t � t1, t2 ≈ 0, 620556. Now taking into account
that both proportional delays q1t � (1/3)t and q2t � (1/2)t

and also the time-dependent delay t − τ1(t) � t − (1/2)e− t

map the interval [t1, t2] into the interval [0, t1], system (2)
becomes

u
‴
1 � e

(t− 2)
u1,I1

t

3
􏼒 􏼓 +

�������

u1(t)( 􏼁
23

􏽱

+ u2,I1
′ t −

1
2
e

− t
􏼒 􏼓,

u
‴
2 �

1
2
u
‴
2,I1

t

2
􏼒 􏼓 + 2(t − 1)u1,I1

t

3
􏼒 􏼓.

(59)

Denote D h(t){ }[t1] � H2(k)[t1]􏼈 􏼉
∞
k�0 and D f(t)􏼈 􏼉

[t1] � F2(k)[t1]􏼈 􏼉
∞
k�0, where f(t) � u2′(t − (1/2)e− t). By

application of.eorem 2 to corresponding terms, system (2)
transformed at t0 � t1 reads as

(k + 1) (k + 2) (k + 3) U1 (k + 3) t1􏼂 􏼃

� e
− 2

􏽘

k

l�0

et1

l!

1
3

􏼒 􏼓
k− l

􏽘

∞

x�0

x + k − l

x
􏼠 􏼡U1(x + k − l)[0]

t1

3
􏼒 􏼓

x

+ H2(k) t1􏼂 􏼃 + F2(k) t1􏼂 􏼃,

(60)

(k + 1) (k + 2) (k + 3) U2 (k + 3) t1􏼂 􏼃

�
1
2

􏼒 􏼓
k+1

(k + 3)(k + 2)(k + 1) 􏽘
∞

x�0

x + k + 3
x

􏼠 􏼡

· U2(x + k + 3)[0]
t1

2
􏼒 􏼓

x

+ 2􏽘

k

l�0
t1 − 1( 􏼁δ(l) + δ(l − 1)􏼂 􏼃

·
1
3

􏼒 􏼓
k− l

􏽘

∞

x�0

x + k − l

x
􏼠 􏼡U1(x + k − l)[0]

t1

3
􏼒 􏼓

x

.

(61)

Now denote D g(t)􏼈 􏼉[u1(t1)] � G2(k)[u1(t1)]􏼈 􏼉
∞
k�0;

then, according to .eorem 3, G2(k)[u1(t1)] �

2/3
k

􏼠 􏼡(u1(t1))
2/3− k for k≥ 0 and .eorem 1 implies

H2(0) t1􏼂 􏼃 � G2(0) u1 t1( 􏼁􏼂 􏼃 �

������

u1 t1( 􏼁
23

􏽱

,

H2(k) t1􏼂 􏼃 � 􏽘
k

l�1
G2(l) u1 t1( 􏼁􏼂 􏼃 · 􏽢Bk,l U1(1) t1􏼂 􏼃, . . . ,(

U1(k − l + 1) t1􏼂 􏼃􏼁, for k≥ 1.

(62)

Further denote e(t) � t − (1/2)e− t and
D e(t){ }[t1] � E2(k)[t1]􏼈 􏼉

∞
k�0. .en, f(t) � (u2′ ∘ e)(t) and,

since e(t1) � 0, .eorem 1 in combination with Lemma 1
yields

E2(k) t1􏼂 􏼃 � t1 · δ(k) + δ(k − 1) −
1
2

·
e− t1(− 1)k

k!
, k≥ 0,

F2(0) t1􏼂 􏼃 � U2(1)[0] � 0,

F2(k) t1􏼂 􏼃 � 􏽘
k

l�1
(l + 1)U2(l + 1)[0] · 􏽢Bk,l E2(1) t1􏼂 􏼃, . . . ,(

E2(k − l + 1) t1􏼂 􏼃􏼁, for k≥ 1.

(63)

To get the initial data U1(k)[t1] and U2(k)[t1] for
k � 0, 1, 2, we have to transform

ui(t) � Ui(0)[0] + Ui(1)[0]t + Ui(2)[0]t
2

+ Ui(3)[0]t
3

+ . . . ,
(64)

at t1, i � 1, 2. For k � 0, 1, 2, we have

Ui(k) t1􏼂 􏼃 � Ui(0)[0] + Ui(1)[0]
1
k

􏼠 􏼡t
1− k
1

+ Ui(2)[0]
2
k

􏼠 􏼡t
2− k
1 + Ui(3)[0]

3

k
􏼠 􏼡t

3− k
1 + . . . ,

(65)

i.e.,

Ui(0) t1􏼂 􏼃 � 􏽘
∞

k�0
Ui(k)[0]t

k
1,

Ui(1) t1􏼂 􏼃 � 􏽘
∞

k�0
(k + 1)Ui(k + 1)[0]t

k
1,

Ui(2) t1􏼂 􏼃 � 􏽘
∞

k�0

k + 2
2

􏼠 􏼡Ui(k + 2)[0]t
k
1.

(66)

.e initial values at t1 will be approximated by taking
finite sums in computer evaluations of the infinite sums
above. Observe that u1(t1) � U1(0)[t1].

Now let us compute the first few values of H2(k)[t1].
Denote 􏽢Bk,l � 􏽢Bk,l(U1(1)[t1], . . . , U1(k − l + 1)[t1]). .en,
the first values of 􏽢Bk,l are

8 Complexity



􏽢B0,0 � 1,

􏽢B1,1 � U1(1) t1􏼂 􏼃 · 􏽢B0,0 � U1(1) t1􏼂 􏼃,

􏽢B2,1 �
1
2
U1(1) t1􏼂 􏼃 · 􏽢B1,0 + U1(2) t1􏼂 􏼃 · 􏽢B0,0 � U1(2) t1􏼂 􏼃,

􏽢B2,2 � U1(1) t1􏼂 􏼃 · 􏽢B1,1 � U1(1) t1􏼂 􏼃( 􏼁
2
,

(67)

and the coefficients H2 for k � 0, 1, 2 are

H2(0) t1􏼂 􏼃 � u1 t1( 􏼁,

H2(1) t1􏼂 􏼃 �
2
3

u1 t1( 􏼁( 􏼁
− 1/3

· 􏽢B1,1 �
2
3

u1 t1( 􏼁( 􏼁
− 1/3

· U1(1) t1􏼂 􏼃,

H2(2) t1􏼂 􏼃 �
2
3

u1 t1( 􏼁( 􏼁
− 1/3

· 􏽢B2,1 −
1
9

u1 t1( 􏼁( 􏼁
− 4/3

· 􏽢B2,2

�
2
3

u1 t1( 􏼁( 􏼁
− 1/3

· U1(2) t1􏼂 􏼃 −
1
9

u1 t1( 􏼁( 􏼁
− 4/3

· U1(1) t1􏼂 􏼃( 􏼁
2
.

(68)

Let us turn our attention to the first few values of
F2(k)[t1]. Starting with E2(k)[t1],

E2(0) t1􏼂 􏼃 � t1 −
1
2
e

− t1 � 0,

E2(1) t1􏼂 􏼃 � 1 +
1
2
e

− t1 � 1 + t1,

E2(2) t1􏼂 􏼃 � −
1
2

·
e− t1

2
� −

t1

2
.

(69)

Now, 􏽢Bk,l are 􏽢Bk,l(E2(1)[t1], . . . , E2(k − l + 1)[t1]):

􏽢B0,0 � 1,

􏽢B1,1 � E2(1) · 􏽢B0,0 � 1 + t1,

􏽢B2,1 �
1
2
E2(1) · 􏽢B1,0 + E2(2) · 􏽢B0,0 � −

t1

2
,

􏽢B2,2 � E2(1) · 􏽢B1,1 � 1 + t1( 􏼁
2
.

(70)

Finally, coefficients F2 for k � 0, 1, 2 are

F2(0) t1􏼂 􏼃 � U2(1)[0] � 0,

F2(1) t1􏼂 􏼃 � 2U2(2)[0] · 􏽢B1,1 � 2 1 + t1( 􏼁,

F2(2) t1􏼂 􏼃 � 2U2(2)[0] · 􏽢B2,1 + 3U2(3)[0] · 􏽢B2,2

� − t1 − 2 1 + t1( 􏼁
2
.

(71)

At this moment, we substitute H2 and F2 into systems
(60) and (61). .e next three coefficients at t1 for U1 are

k � 0: U1(3) t1􏼂 􏼃 �
1
6

e
− 2

e
t1 · u1

t1
3

􏼒 􏼓 + u1 t1( 􏼁􏼒 􏼓,

k � 1: U1(4) t1􏼂 􏼃 �
1
24

e
− 2

e
t1 ·

1
3

· 􏽘
∞

x�0
(x + 1)U1(x + 1)[0]

t1
3

􏼒 􏼓
x

⎛⎝⎛⎝

+ e
t1 · u1

t1

3
􏼒 􏼓􏼓 +

2
3

· u1 t1( 􏼁( 􏼁
− 1/3

· U1(1) t1􏼂 􏼃

+ 2 1 + t1( 􏼁􏼁,

k � 2: U1(5) t1􏼂 􏼃 �
1
60
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􏼒 􏼓
2

· 􏽘
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x
􏼠 􏼡U1(x + 2)[0]⎛⎝

·
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x
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1
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u1 t1( 􏼁( 􏼁
− 4/3

· U1(1) t1􏼂 􏼃( 􏼁
2
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2
􏼓,

(72)

and for U2, we obtain

k � 0: U2(3) t1􏼂 􏼃 �
1
2

􏽘
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(73)

Using the inverse DT, again we get approximate so-
lution for the IVPs (48), (49), and (50) on the interval
[t1, t2]:
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u1,I2
(t) � U1(0) t1􏼂 􏼃 + U1(1) t1􏼂 􏼃 t − t1( 􏼁 + U1(2) t1􏼂 􏼃

· t − t1( 􏼁
2

+ U1(3) t1􏼂 􏼃 t − t1( 􏼁
3

+ . . . ,

u2,I2
(t) � U2(0) t1􏼂 􏼃 + U2(1) t1􏼂 􏼃 t − t1( 􏼁 + U2(2) t1􏼂 􏼃

· t − t1( 􏼁
2

+ U2(3) t1􏼂 􏼃 t − t1( 􏼁
3

+ . . . .

(74)

As the calculations are getting more complicated, all the
calculations have been done numerically only.

3.4. Numerical Results and Discussion. Table 1 shows
comparison of results for Example 1 obtained by DT al-
gorithm with the orders of Taylor polynomials of the
approximate solution N � 5, 10, 25 to results of Matlab
function DDENSD in the interval [1, e]. Since the exact
solution is known, absolute errors illustrate precision of
each algorithm setting. All numbers are rounded to four
decimal places. We see that DDENSD performs satis-
factory well and DT for N � 10, 25 does even better,
whereas DT for N � 5 does not show satisfactory
precision.

Table 2 brings the same comparison in the second in-
terval [e, ee]. We can observe a fast growth rate of the
function values of the exact solution, which leads to the
growth of absolute errors and loss of precision in all settings.
It indicates that at the end of the considered interval [e, ee],
the rate of precision would be better seen using relative
errors.

Implementation of DT in Matlab in case of Example 2
produces numerical results which are listed in Table 3. .e
results of DTwith order of the Taylor polynomial N � 10 are
compared to values obtained by DTcombined with modified
Adomian formula in [18] and to values produced by Matlab
function DDENSD.

First, we should say that the function DDENSD had
difficulty at 0 where the value of the delayed argument t/2

was equal to the argument itself. Hence, to make
DDENSD work, we replaced t/2 by t/2 − 10− 16 in the
second equation of (2). Our hypothesis is that the reason
of the DDENSD failure is a combination of two facts: the
second equation is neutral with respect to a proportional
delay and the interval where the problem is considered
contains 0.

Second, we should mention that the numerical results
for DDENSD were obtained by looking for approximate
solutions on the whole interval [0, t2]. When trying to
follow the method of steps, i.e., using DDENSD on [0, t1]

and then on [t1, t2], the results on the second interval
[t1, t2] did not correspond to reality: there was a dis-
continuity in u2 at t1.

Furthermore, we recall that the values taken from [18]
have been computed using symbolic software
Maple and the source code of the computation has been
lost.

Now, we can see a very good concordance of all al-
gorithms in numerical values of the second component u2,
while we observe a growing distance between the values of
the first component u1 computed by presented DT al-
gorithm and values computed by the other two algo-
rithms. As u1 has exponential characteristics, we interpret
the growing distance as growing lack of precision of DT
algorithm which is based on approximation by Taylor
polynomials. We suppose that dividing the intervals [0, t1]

and [t1, t2] into smaller subintervals, i.e., refining the mesh
grid, and applying the DT algorithm on those smaller
intervals consecutively will improve the performance of
the presented algorithm.

Although it seems that the algorithm used in [18] shows
better performance than the one presented in this paper, we
cannot claim it with certainty as the source code got lost and
we are not able to reproduce the data. Moreover, the ap-
proach used in [18] involves calculations of symbolic de-
rivatives which makes it difficult to implement in numerical
software like Matlab.

Table 1: Example 1, error analysis of u in [1, e].

Exact solution DT 5 DT 10 DT 25 Matlab DDENSD
t et |u − et| |u − et| |u − et| |u − et|

1 2.7183 0 0 0 0
1.4296 4.1769 0.0000 6.4890E − 12 8.8818E − 16 1.6976E − 5
1.8591 6.4182 0.0017 1.0381E − 8 8.8818E − 16 3.6095E − 5
2.2887 9.8622 0.0211 1.2409E − 6 3.5527E − 15 9.3438E − 5
e 15.1543 0.1273 3.0578E − 5 1.2861E − 12 1.4012E − 4

Table 2: Example 1, error analysis of u in [e, ee].

Exact solution DT 5 DT 10 DT 25 Matlab DDENSD
t et |u − et| |u − et| |u − et| |u − et|

e 15.1543 3.5527E − 15 3.5527E − 15 3.5527E − 15 0
5.8273 339.4331 32.3491 1.333 2.2737E − 13 0.0743
8.9363 7.6028E+ 3 4.4755E+ 3 397.5509 2.2638E − 5 3.1741
12.0453 1.7029E+ 5 1.5373E+ 5 5.6777E+ 4 0.9751 112.2467
ee 3.8143E+ 6 3.7554E+ 6 2.6576E+ 6 2.0358E+ 3 3.1395E+ 3
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4. Conclusion

In the paper, we presented an algorithm which makes use of
the differential transformation to initial value problems for
systems of delayed or neutral differential equations with
nonconstant delays. Two examples have been chosen to
validate and test the algorithm. Numerical comparison of the
presented semianalytical approach to Matlab function
DDENSD brought interesting and promising results.

Example 1 showed expected and reliable behaviour of the
differential transform in the first step of the method of steps
and expected deviation in the numerical results from values
of the exact solution in the second step. Furthermore, we
could observe a good concordance between the presented
algorithm and DDENSD.

After facing difficulties with DDENSD in Example 2, we
could confirm a very good concordance of both differential
transform and DDENSD in values of the component u2
which has a polynomial character on the considered in-
tervals. On the other hand, we observed a growing dis-
crepancy between the two methods in values of the
component u1 which has an exponential character. Our
conclusion is that the disagreement is caused by large lengths
of the intervals where the approximate solution is computed
using the differential transform and that refining the mesh
grid is necessary to obtain better performance.

Further investigation will be focused on experimenting
with different densities of mesh grids and studying con-
vergence of the algorithm to find the optimal mesh grid.
Numerical experiments will be focused on tuning the per-
formance on problems with high complexity whose exact
solutions are known and subsequently on applications to
nonartificial real-life problems whose exact solutions are
unknown.
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[11] J. Rebenda and Z. Šmarda, “A numerical approach for solving
of fractional Emden-Fowler type equations,” in Proceedings of
the International Conference of Numerical Analysis and Ap-
plied Mathematics (ICNAAM 2017), T. E. Simos, Ed., vol.
1978, p. 140006, AIP Publishing, Melville, NY, USA, 2018.

[12] T. Krisztin, “Analyticity of solutions of differential equations
with a threshold delay,” in Springer Proceedings in Mathe-
matics & Statistics, Recent Advances in Delay Differential and
Difference Equations, F. Hartung and M. Pituk, Eds., vol. 94,
pp. 173–180, Springer, Basel, Switzerland, 2014.

[13] J. Duarte, C. Januario, and N.Martins, “Analytical solutions of
an economic model by the homotopy analysis method,”
Applied Mathematical Sciences, vol. 10, no. 49, pp. 2483–2490,
2016.
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Combined with the research of mass customization and cloud manufacturing mode, this paper discussed the production planning
of mass customization enterprises in the context of cloud manufacturing in detail, analyzed the attribute index of manufacturing
resource combination, and given a system considering the characteristics of batch production in mass customization and the
decentralization of manufacturing resources in cloudmanufacturing environment.�en, a multiobjective optimizationmodel has
been constructed according to the product delivery date, product cost, and product quality that customers care most about. �e
Pareto solution set of production plan has been obtained by using NSGA-II algorithm. �is paper established a six-tier attribute
index system evaluation model for the optimization of production planning scheme set of mass customization enterprises in cloud
manufacturing environment. �e weight coe�cients of attribute indexes were calculated by combining subjective and objective
weights with analytic hierarchy process (AHP) and entropy weight method. Finally, the combined weights calculated were applied
to the improved TOPSIS method, and the optimal production planning scheme has been obtained by ranking. �is paper
validated the e�ectiveness and feasibility of the multiobjective model and NSGA-II algorithm by the example of company A. �e
Pareto e�ective solution has been obtained by solving the model. �en the production plan set has been sorted synthetically
according to the comprehensive evaluation model, and the optimal production plan has been obtained.

1. Introduction

With the advent of the big data era and the introduction of
the concept of cloud manufacturing, great changes have
taken place in the production mode of the manufacturing
industry. Cloud manufacturing mode can promote the value
added of resources and services, promote the comprehensive
sharing of resources, and improve the utilization of re-
sources. Due to the increasing diversity of people’s needs and
the increasing functional requirements of products, services
with a single function cannot meet the needs of customers,
but services with multiple functions have diversity and
quantity, which makes it possible to have a variety of
possibilities and uncertainties to select cloud manufacturing
resources. Because the problem of cloud manufacturing
production scheme is a multiobjective optimization prob-
lem, in order to enable manufacturing enterprises to choose

the optimal production plan, so as to carry out production in
an organized manner, it is necessary to design and optimize
the production planning.

�e concept of cloud manufacturing is put forward by
Lee et al. [1] in 2010; he thought the cloud manufacturing is
an advanced network manufacturing mode to manage the
manufacturing resources and provide the manufacturing
services for enterprises through the cloud manufacturing
service platform. In view of the cloud manufacturing ar-
chitecture proposed by Lee, many scholars have carried out
relevant theoretical research and proposed di�erent cloud
manufacturing architecture models applied in di�erent
¤elds. Du et al. [2] proposed a system architecture of the
cloud manufacturing platform based on double-chain ar-
chitecture to solve the problem of transaction security of the
cloud manufacturing platform, aiming at the common
problems of information islands and low trust in the cloud
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manufacturing platform. In the key technologies of cloud
manufacturing, in cloud manufacturing system, it is nec-
essary to virtualize and encapsulate manufacturing resources
scattered in different places and connect them into the cloud
manufacturing service platform [3]. In this process, the
capability and function of manufacturing resources should
be considered, so as to establish different granularity de-
scription models of manufacturing resources and capabil-
ities. S. Huang and B. Huang [4] analyzed the security
requirements of the cloud manufacturing platform in view
of the proposed architecture and established a security re-
quirement model of could manufacturing platform, which
strengthened the security of the cloud manufacturing
platform from three aspects: data security, access rights, and
network transmission security. In terms of search matching
of cloud manufacturing, Yang et al. [5] established an on-
tology-based cloud service discovery model to realize the
search and intelligent matching capabilities of cloud
manufacturing. In order to allocate cloud manufacturing
resources to manufacturing tasks more effectively, Zhang
et al. [6] proposed a dynamic parameter ant colony algo-
rithm in cloud manufacturing combinatorial optimization,
which was proved to be effective by an example.

,e scholars at home and abroad have also studied mass
customization. A domestic scholar named Zhou et al. [7]
thinks that mass customization is a kind of mass production
mode which meets the market environment and customers’
individualized requirements; it can provide customers with
products that can meet their individualized needs with mass
production costs. Liu et al. [8] described the process of
building a product family model based on product family
deformation design in product design and combined with
family table function in pro/pre to achieve rapid product
deformation design. Cariagai et al. [9] analyzed customer
needs and indexed customer demand information. On this
basis, the change of customer needs was studied through
encapsulation and analysis of data. Wu et al. [10] analyzed
and demonstrated the mechanism of mass intelligent cus-
tomization in view of the structure of the black box of
personalized demand and the linking of supply and demand
paths. It showed that with, the help of virtual market and
data technology effect, enterprises can meet the personalized
demand in the sense of scale. Katzy [11] constructed
a conceptual model of agile manufacturing and illustrated
the feasibility of the model through an application example
of an enterprise.

In this paper, the production planning and optimization
of mass customization manufacturing enterprises in the
cloud environment are studied, in order to make mass
manufacturing enterprises fully and reasonably meet cus-
tomer requirements and obtain maximum benefits in the
cloud manufacturing environment.

2. FormulationofProductionPlanninginCloud
Manufacturing Environment

Manufacturing enterprises in cloud manufacturing envi-
ronment can share information at a high level through cloud
manufacturing service platform, realize virtualization and

integration of manufacturing resources and manufacturing
capabilities, and realize the information exchange and
sharing among enterprises.

2.1. Influencing Factors of Production Planning

2.1.1. Production Cost. ,e cost of production-related
products mainly includes production cost, inventory cost,
and shortage cost. In the cloud manufacturing environment,
enterprises can obtain the services they need at any time
through the cloud manufacturing service platform, so the
inventory cost is neglected. However, the shortage of goods
will affect customer satisfaction and will also lead to the loss
of business opportunities and market share, which has
a great impact on the competitiveness of enterprises.
,erefore, the cost of shortage should be avoided as far as
possible. Cost control is particularly important for choosing
manufacturers.

2.1.2. Transportation Cost. ,e distance between each
manufacturer and the customer is different, so the trans-
portation cost is different, and the transportation cost ac-
counts for a certain proportion of the total cost. In order to
reduce the total product cost of manufacturing enterprises
and improve manufacturing efficiency, transportation cost,
as one of the product cost, is also a key factor to be
considered.

2.1.3. Product Quality. Manufacturers registered and ap-
proved in cloud manufacturing service platform need to
provide specific information about their manufacturing
resources and manufacturing capabilities and provide the
qualified rate of a certain product. When selecting
manufacturing suppliers, the quality of the products they can
supply shall be fully considered. ,e quality is an important
factor in selecting the manufacturing suppliers to complete
the manufacturing tasks.

2.1.4. Delivery Time. ,e delivery time refers to the time
between receipt of orders and delivery, which is influenced
by factors such as production time, transportation, and
information transmission, and has certain uncertainty.
Delivery time usually includes the production time of the
product and the transportation time. Customers have strict
requirements for delivery time, so delivery time has become
an important factor affecting production planning and
design in cloud manufacturing environment.

2.2. Model Construction

2.2.1. Problem Description. Combined with the actual
characteristics of multitask and multimanufacturer selection
in cloud manufacturing environment, considering the four
factors of production cost, transportation cost, product
quality, and delivery time as the key factors in the process of
production planning design in cloud manufacturing envi-
ronment, this paper chooses product cost (C), product

2 Complexity



quality (Q), and delivery time (T) as the objective of opti-
mization, in which the product cost includes the sum of
production cost and transportation cost. ,e lower the cost,
the higher the profit the manufacturing enterprise can get.
Product quality refers to the degree to which the product can
meet the needs of customers, expressed by the qualified rate
of the product. Delivery time includes the production time
of the product and the haulage time of the product, and the
delivery time needs to be completed within the customer’s
time limit. ,e shorter the delivery time is, the better it is.

To sum up, the problem can be described as follows: at
a certain time, a manufacturing enterprise receives the
demand of m kinds of products from customers. ,e en-
terprise makes production planning on the basis of com-
bining its own manufacturing resources and manufacturing
capacities. ,rough the intelligent search in the cloud
manufacturing service platform, it can be seen that there are
n manufacturing suppliers that meet the functional re-
quirements of the products, and the index values of different
manufacturing suppliers are different. ,e enterprise can
assign some of the products to umanufacturing suppliers, so
that the above index values can reach the optimal.

2.2.2. Model Assumptions

(1) Many kinds of products can be manufactured at each
manufacturer, and the products are independent of
each other

(2) Due to the limitation of manufacturing resources
and manufacturing capacities of manufacturing
enterprises, it is difficult to meet the needs of cus-
tomers on their own, so it is necessary to find the
products that can meet the needs of customers
through the cloud manufacturing service platform,
so as to allocate the manufacturing tasks

(3) Mass production and bulk delivery are carried out by
each manufacturing supplier, that is, delivery is
carried out for every batch of products completed

(4) ,ere is no idle time between the batches produced
by each manufacturer

(5) Transportation costs are borne by manufacturing
enterprises

(6) Taking into account the volume discount, when the
amount purchased meets the corresponding re-
quirements, all purchased products are given the
same discount

2.2.3. Symbol Meaning

i: the serial number of the manufacturing supplier that
can provide the product (i� 0, 1, 2, . . ., n) (if i� 0, the
product is provided by the manufacturer who received
the customers’ order)
n: number of manufacturing suppliers to choose from
j: the serial numbers of different types of products (j� 1,
2, . . ., m)

m: number of product categories in customer orders
received by manufacturing enterprises
xij: quantity of products j produced by manufacturing
supplier i (when i� 0, it is the cost of the product j
produced by the manufacturing enterprise itself )
pij: undiscounted unit price of product j provided by
manufacturing supplier i (when i� 0, it is the cost of
manufacturing enterprises’ own products j)
k: serial number of discount phase
rijk: the discount rate of the k stage given to the
manufacturing supplier i when the product j reaches
a certain quantity
yijk � 1,􏼈 if the periodic discount k of product j

can be obtained frommanufacturing supplier i, 0,

if not;
λij � 1,􏼈 if themanufacturing supplier i produces product
j, 0, if not;
Li: the transport batch frommanufacturing supplier i to
customers
b: the maximum number of products that can be
transported per batch
ci: transportation costs per batch betweenmanufacturer
i and customer
tij: unit production time for manufacturing supplier i to
manufacture product j
hi: transportation time from manufacturing supplier i
to customers
qij: product percent of pass of product j provided by
manufacturing supplier i
dj: demand for product j
Qj: acceptable minimum product percent of pass of
product j
PRij: maximum production capacity of manufacturer-
supplied product j, a constant (when i� 0, it is the
maximum production capacity of manufacturing en-
terprises themselves)

2.2.4. Constraint Condition

(1) Supply and Demand Balance Constraints. Supply-de-
mand balance means that the quantity of products supplied
by manufacturing suppliers should be in line with the
quantity of products required by customers. If the quantity
of products supplied does not reach the quantity of products
demanded by customers, it will affect customer satisfaction,
thereby reducing the reputation and economic benefits of
enterprises. If the quantity of products supplied exceeds the
quantity of demand, waste will occur to a certain extent, so
the supply-demand balance constraints are as follows:

􏽘
n

i�0
λijxij � dj, j � 1, 2, . . . , m. (1)
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(2) Production Capacity Constraints of Each Manufacturing
Supplier. Due to the different production capacities and
different constraints of each manufacturer, the maximum
production capacity that supplier i can provide is PRij.
,erefore, the output of products whether manufactured by
the manufacturing enterprise itself or by manufacturing
suppliers on the cloud manufacturing platform should not
be greater than the manufacturer’s maximum production
capacity. ,at is to say:

􏽘
m

j�1
λijxij ≤PRij, i � 0, 1, 2, . . . , m. (2)

(3) Discount Constraints on Purchased Products. Because of
the mass customization production model, when the
quantity of manufactured products that manufacturers can
provide is within a certain range, the discount constraint of
manufactured products can be provided for manufacturers.
,e discount rate of product j purchased frommanufacturer
i should only fall within one range, that is, only one discount
rate or no discount is used, that is,

􏽘
K

k�1
yijk ≤ 1. (3)

(4) Quality Constraints. With the gradual development of
customization and individualization, the quality level is one of
the most important factors for users. Good product quality
can win customer satisfaction, thus gaining the competi-
tiveness of the industry. Suppose Qj is the minimum quality
percent of pass acceptable to product j, qij is the percent of
pass the product j provided by the manufacturing supplier i.
,e percent of pass of product j provided by all manufacturers
should satisfy the following constraints:

􏽘
n

i�0
􏽘

m

j�1

λijxijqij

Dj

≥Qjdj. (4)

(5) Delivery Time Constraints. Customers’ requirements for
punctualization are gradually increasing, and punctual de-
livery of products can improve customer satisfaction and
thus gain industry competitiveness. ,e time of delivery
mainly includes production time and transportation time.
,e time for the enterprise to produce the product j in
factory i is tij, the time of transportation from factory i to
customers is Hi, and the time of delivery required by cus-
tomers is T′. ,en, the time of delivery should meet the
following constraints:

􏽘

n

i�0
􏽘

m

j�1
λijxijtij + 􏽘

n

i�0
Hi ≤T′. (5)

2.2.5. Objective Function

(1) Product Cost. Product cost is an important factor af-
fecting customer satisfaction. Product cost is mainly

composed of production cost and transportation cost.
Considering that manufacturers in cloud manufacturing
service platform can offer discounts, the objective function
of product cost is as follows:

P1 � 􏽘

m

j�1
x0jp0j + 􏽘

T

t�1
􏽘

n

i�1
􏽘

m

j�1
λijxijpijrijkyijk. (6)

Because the location of cloud manufacturing service pro-
viders is different from that of customers, the cost of products in
the transportation process should also be considered. Because
the manufacturing mode of products is mass customization,
there are a large number of products. Assuming that the
products are transported in batches, the transportation batches
from manufacturing suppliers to customers are as follows:

Li � 􏽘
m

j�1

λijxij

b
. (7)

,e transportation cost of the manufacturing supplier i
to the customer is given by

P2 � 􏽘
n

i�0
Lici � 􏽘

n

i�0
􏽘

m

j�1

λijxij

b
􏼠 􏼡ci. (8)

From the above, it can be seen that the product cost is
composed of production cost and transportation cost; the
smaller the cost, the better the attribute. ,en

Min P � P1 + P2 � 􏽘
m

j�1
x0jp0j + 􏽘

T

t�1
􏽘

n

i�1
􏽘

m

j�1
λijxijpijrijkyijk

+ 􏽘
n

i�0
􏽘

m

j�1

λijxij

b
􏼠 􏼡ci.

(9)

(2) Product Delivery Time. ,e competition in the
manufacturing industry is becoming more and more fierce.
Enterprise users have more stringent requirements on de-
livery time. Manufacturing suppliers need to strictly control
their delivery time, so as to improve customer satisfaction. In
cloud manufacturing environment, due to the geographical
location of eachmanufacturing supplier, transportation time
is a factor that must be considered besides production time.
On the premise of meeting customer needs, the shorter the
delivery time is, the better the objective function of delivery
time is as follows:

MinT � 􏽘
n

i�0
􏽘

m

j�1
λijxijtij + 􏽘

n

i�0
Hi. (10)

(3) Product Quality. Manufacturing products are gradually
developing towards individualization and diversification.
Customers’ requirements for product quality are getting
higher and higher. ,e quality of products affects customer
satisfaction. ,e higher the quality of the product is, the
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better it is. ,erefore, the objective function of product
quality is as follows:

maxQ � 􏽘
n

i�0
􏽘

m

j�1

λijxijqij

Dj

. (11)

From the above description, it can be seen that the
production planning problem of manufacturing enterprises
in cloud manufacturing environment is a multiobjective
optimization problem. ,e complete mathematical expres-
sion of this problem is as follows:

minP � P1 + P2 � 􏽘
m

j�1
x0jp0j + 􏽘

T

t�1
􏽘

n

i�1
􏽘

m

j�1
λijxijpijrijkyijk + 􏽘

n

i�0
􏽘

m

j�1

λijxij

b
􏼠 􏼡ci,

minT � 􏽘
n

i�0
􏽘

m

j�1
λijxijtij + 􏽘

n

i�0
Hi,

maxQ � 􏽘
n

i�0
􏽘

m

j�1

λijxijqij

Dj

,

􏽘

n

i�0
λijxij � dj ,

􏽘

m

j�1
λijxij ≤PRij,

􏽘

K

k�1
yijk ≤ 1,

􏽘

n

i�0
􏽘

m

j�1
λijxijqij ≥Qjdj,

􏽘

n

i�0
􏽘

m

j�1
λijxijtij + 􏽘

n

i�0
Hi ≤T′,

xij ≥ 0, i � 0, 1, 2, . . . , n, j � 1, 2, . . . , m.

(12)

2.3. Model Solution

2.3.1. Pareto Optimal Solution. For conventional multi-
objective programming problems, if the minimum value is to
be calculated, the concept of Pareto optimal solution corre-
sponds to the following: when setting the interval of variables,
for the variable group X∗, if there is no other design variable
group X, conform to fi(X)≤ fi(X∗) without conflict with
constraint conditions, then X∗ is the Pareto optimal solution.

For multiobjective optimization problems, the solution is
not a set of solutions, which constitutes the Pareto optimal
solution set to a large extent. ,ere are no more excellent
solutions in the feasible solution set, and there are no ad-
vantages or disadvantages among the Pareto optimal solutions.
,erefore, the decision makers can choose the most ideal
solution according to the will and the importance of the goal.

2.3.2. Algorithmic Design. ,e main process of the elite
strategy of NSGA-II is shown in Figure 1. According to the
image, the steps taken are as follows:

(a) Combining Pt and Qt, the corresponding population
Rt is obtained, and its actual size is equal to 2N.

(b) Complete the standardized nondominated sorting of
Rt, calculate the crowding distance of all individuals,
and define the individuals according to the level.
When the total number of individuals reaches N,
a new paternal population Pt+1 is formed.

(c) On this condition, a new generation of variation is
formed and the offspring population Qt+ 1 is
formed.

According to the analysis above, the calculation flow of
using NSGA-II to solve the production planning problem of
manufacturing enterprises in cloud manufacturing envi-
ronment is as follows:

Step 1: the initial population Pt with the total amount
equal to N is not oriented in the solution space. After
that, all target fitness values are analyzed, and then the
hierarchical operation is implemented on it, and the
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crowding distance corresponding to individuals in
various groups is calculated.

Step 2: the binary tournament mechanism is mainly
used to make a reasonable selection of the individuals
covered by population Pt, and then the genetic oper-
ation of variation is completed according to the
specification, and then the progeny population Qt with
the total amount equal to N is obtained.
Step 3 (elite strategy): Pt and Qt are merged effectively,
and then population Rt is obtained. After non-
dominated sorting, the front segment of the non-
dominated solution can be obtained. ,en, the
crowding degree is calculated and N individuals in the
front are selected to form Pt+1.
Step 4: let t� t+ 1, steps 2-3 are completed several times
in the set iteration interval to obtain the optimal so-
lution set corresponding to the production planning.

3. Optimization of Production Planning in
Cloud Manufacturing Environment

3.1. Problem Description. In order to optimize the existing
production planning and select the optimal production
planning, it is necessary to establish a set of perfect and rea-
sonable optimization system. Effective evaluation methods are
adopted to evaluate the production planning comprehensively.
On the basis of a comprehensive evaluation, the optimal se-
lection of production planning of mass customization enter-
prises in cloud manufacturing environment should be fully
combined with the needs of customers and the distinction of
importance should be made between competitive targets.

3.2. Construction of Evaluation and Optimization Model.
Combining with the three important selected attribute in-
dexes in this paper, this section gives a model of evaluation

and optimization of production planning in cloud
manufacturing environment as shown in Figure 2. ,e
following is a detailed description of resource layer, scheme
layer, criteria layer, weight layer, and target layer:

Resource layer: according to the request of manufacturing
enterprises, the cloud manufacturing service platform
searches for manufacturing suppliers who can complete
various manufacturing tasks.
Scheme layer: the functional requirements and specific
constraints of the manufacturing tasks proposed by the
manufacturing enterprises can be met, and the set of
manufacturing schemes is formed after being screened
by the multiobjective optimization algorithm.
Criteria layer: criteria layer is the evaluation attribute
indexes of candidate manufacturing scheme.
Weight layer: theweight layermainly determines theweight
coefficients of each attribute index, which is determined by
the users’ needs and the value of the attribute index itself.
Evaluation layer: evaluation layer uses a decision method
to evaluate and rank all alternativemanufacturing schemes
comprehensively.
Target layer: target layer is the optimal production
planning which is determined by comprehensive
evaluation of each production planning through at-
tribute index system. It is the best plan to fully meet
needs of customers and management and development
of enterprises. It is the ultimate goal to optimize the
production planning of manufacturing enterprises in
cloud manufacturing environment.

3.3. Model Solution

3.3.1. Pretreatment of Attribute Index Values for Scheme
Optimization. According to the characteristics that the
decision maker expects to show to the attribute value, the

Rt

F1

F2

Fi

Discard

Pt

Qt

Nondominated sorting Congestion distance sorting

......
...

Pt+1

Figure 1: Process sketch of NSGA-II elite strategy.
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types of attributes are usually divided into six categories, and
their names and characteristics are referred to in Table 1.

In this study, combined with the impact of the attribute
index value set by the scheme on the optimal selection, it can
be classified as benefit index and cost index. For the tra-
ditional three attribute indicators, time and cost are very
typical cost indicators, while quality is a representative
benefit indicator.

Because there are some deviations in the way of de-
scribing the attributes of the production planning, there are
great differences in the corresponding range and the unit of
quantification is also inconsistent. In order to effectively
reduce the negative impact of such factors on the optimi-
zation evaluation, so that the consistency check can be
completed in the course of the assessment, it is necessary to
carry out standardized pretreatment of the attribute index
value of the production planning. ,e representative
methods of data preprocessing include normative approach
and range transformation.

In the application of the range transformation data
preprocessing method, the attribute values measured by
each attribute index are mainly changed in [0, 1], and it is
convenient to carry out an objective evaluation of other
schemes.,erefore, this study mainly chooses the method of
range transformation.

Assuming that the total number of production schemes
ism, covering n attribute indexes, the original data matrix of

all attribute indexes is X� (xij)m×n, and xij refers to the value
of j attribute indexes at this time; the method of pre-
treatment that can be used at this time is as follows:

(1) Benefit indexes can be calculated as follows:

Rij �

xij − minjxij

maxjxij − minjxij

, max
j

xij − min
j

xij ≠ 0,

1, max
j

xij − min
j

xij � 0.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(13)

Optimal manufacturing scheme

Comprehensive evaluation based on improved TOPSIS method

Combination weighting method

AHP Entropy weight method

Cost P Time T Quality Q

Production planning
scheme 1

Production planning
scheme 2

Production planning
scheme n

Manufacturing resources in cloud manufacturing service platform

Target layer

Evaluation layer

Weight layer

Criteria layer

Scheme layer

Resource layer

Figure 2: A model for evaluating and optimizing production schemes in cloud manufacturing environment.

Table 1: Six common attribute types.

Attribute type Characteristic

Benefit ,e larger the attribute value, the better the
attribute

Cost ,e smaller the attribute value, the better the
attribute

Fixed ,e closer the attribute value is to a fixed value,
the better it is

Interval ,e closer the attribute value is or belongs to
a fixed interval, the better it is

Deviation ,e more the attribute value deviates from
a fixed value, the better it is

Deviation
interval

,e more the attribute value deviates from
a fixed interval, the better it is
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(2) Cost indexes can be calculated as follows:

Rij �

maxjxij − xij

maxjxij − minjxij

, max
j

xij − min
j

xij ≠ 0,

1, max
j

xij − min
j

xij � 0.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(14)

At this time, i� 1,2, . . .,m; j� 1,2, . . ., n; xij mainly refers
to the attribute index value corresponding to the scheme i;
minjxij refers to the minimum attribute index value cor-
responding to the group manufacturing resource service
composition; maxjxij refers to the maximum attribute index
value corresponding to the scheme m; and Rij refers to the
attribute index value obtained after normalization.

3.3.2. Combined Weight Method Based on AHP and Entropy
Method

(1) AHP. ,rough AHP, the core processes corresponding to
weight coefficients are defined:

(1) Constructing the hierarchy corresponding to the
objective problem.

(2) Constructing decision judgment matrix. Repre-
senting specific attributes by ai (i� 1, 2, . . ., n), aij
refers to the importance of ai over attributes aj,
which can be quantified with the values in Table 2. If
aij is obtained by comparing attribute ai with attri-
bute aj, the important level of comparison between aj
and ai is aji � 1/aij. ,e decision judgment matrix B
corresponding to the objective problem can be
established by using the following formula:

B �

a11 a12 . . . a1n

a21 a22 . . . a2n

⋮ ⋮ ⋮ ⋮
an1 an2 . . . ann

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (15)

(3) Consistency test:
In some cases, the constructed matrix will show
obvious inconsistency. In order to prevent this sit-
uation from leading to the lack of scientific results
after weight distribution, it must be tested and an-
alyzed according to the following formula:

CR �
CI
RI

. (16)

In the above formula, CR mainly refers to the random
consistency ratio corresponding to the decision
judgment matrix; CI refers to the corresponding
consistency index at this time, which can be calculated
by using formula (17); and RI refers to the random
consistency index corresponding to the matrix, and

the RI value corresponding to the judgment matrix is
shown in Table 3:

CI �
λmax − n( 􏼁

(n − 1)
. (17)

If the consistency ratio of matrix B conforms to
CR < 0.1, or the maximum eigenvalue conforms
to the standard of λmax � n, then the consistency of
matrix B can be determined to be acceptable. If it
does not meet the above criteria, it should
be adjusted to reach the criteria of consistency
testing.

(4) ,e maximum eigenvalues are calculated and the
specific eigenvectors are clarified. Matrix B is cal-
culated according to formula (18), so that its max-
imum eigenvalue is λmax and corresponding
eigenvector X� (X1, X2, . . ., Xn). At this time, all the
components corresponding to X are positive
components:

BX � λmaxX. (18)

(5) ,e weight coefficients are calculated. Eigenvector of
maximum eigenvalue λmax is processed according to
formula (19), so that the weight vector constructed
by weight coefficient can be obtained:

t �
X

􏽐
n
i�1Xi

. (19)

(2) Entropy Weight Method. Assuming that there are m sets
of data samples and n evaluation indexes, the initial data
matrix is X� (xij)m×n; xij mainly refers to the value of at-
tribute j. ,e process of defining the weight coefficients is as
follows:

(1) Data standardization: since the corresponding
order of magnitudes of each evaluation index is not
consistent, in order to effectively eliminate in-
comparability, the standardized processing of in-
formation should be carried out by the method of
range normalization, which lays a good foundation
for statistical analysis. Assuming that R refers to
the matrix obtained after processing, then the
operation steps of Rij refer to as formula (13) and
formula (14).

(2) ,e proportion of attribute index Pij is calculated. At
this time, the ratio corresponding to the evaluation
value of the object i is as follows:

Pij �
Rij

􏽐
m
i�1Rij

, 0≤Pij ≤ 1􏼐 􏼑. (20)

(3) ,e entropy value ej of the attribute index is cal-
culated, and then the entropy value corresponding to
attribute index j is as follows:
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ej �

−
1

ln(m)􏽐
m
i�1Pij lnPij

, Pij ≠ 0,

0, Pij � 0.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(21)

At this time, 0≤ ej ≤ 1.
(4) ,e diversity factor hi of attribute index is calculated,

and the diversity factor is as follows:

hj � 1 − ej. (22)

(5) ,e weight vj corresponding to the attribute index is
calculated, so the weight corresponding to the at-
tribute index of item j is as follows:

vj �
hj

􏽐
n
j�1hj

. (23)

(3) Combination Weighting Method. In this part, the sub-
jective weight method and the objective weight method are
effectively combined according to the objective needs. ,e
operation method is as follows:

wj �
tjvj

􏽐
n
j�1tjvj

. (24)

In the above formula, tj and vj refer to the weight co-
efficient corresponding to the j index obtained by the
method of AHP and entropy, and wj refers to the corre-
sponding combination weight coefficients.

3.3.3. Multiattribute Decision Method Based on Improved
TOPSIS. At present, assuming that the decision matrix
formed by m scheme and n attributes is X� (xij)m×n; at this
time, xijmainly refers to the attribute value of item j, and the
operating process of the TOPSIS method after adjustment is
as follows:

Step 1: firstly, the decision matrix R is established
according to the standard, and the operation method of
Rij is referred to as formulas (13) and (14) at this time.
Step 2: the weighted decision matrix V is established by
the decision matrix R, and Vij is given by

Vij � wjRij. (25)

At this time, wj mainly refers to the weight coefficients
corresponding to the attribute j;􏽐j� 1nwj � 1, solved by
formula (24).
Step 3: the ideal solutionV+ and the negative ideal solution
V − are clarified, which meet the following requirements:

V
+
j �

max V1j, V2j, . . . , Vmj􏽮 􏽯, Item j is a benefit attribute,

min V1j, V2j, . . . , Vmj􏽮 􏽯, Item j is a cost attribute,

⎧⎪⎨

⎪⎩

V
−
j �

min V1j, V2j, . . . , Vmj􏽮 􏽯, Item j is a benefit attribute,

max V1j, V2j, . . . , Vmj􏽮 􏽯, Item j is a cost attribute.

⎧⎪⎨

⎪⎩

(26)

Step 4: the distance between the two points of all
schemes are D+, D− ; at that time, D+ and D− are given
by

D
+
i �

������������

􏽘

n

j�1
Vij − V

+
j􏼐 􏼑

2

􏽶
􏽴

,

D
−
i �

������������

􏽘

n

j�1
Vij − V

−
j􏼐 􏼑

2

􏽶
􏽴

.

(27)

Step 5: the approximate horizontal Ci of each scheme i
to the ideal solution is calculated using the following
equation:

Ci �
D+

i

D+
i + D−

i

. (28)

Step 6: according to the relative degree of approxi-
mation Ci in Step 5, all the schemes are ranked rea-
sonably according to the method of descending order,
so as to optimize the selection of the schemes and
obtain the corresponding optimal production planning.

4. Case Analysis

4.1. Formulation of Production Planning of Company A in
CloudManufacturing Environment. Company A receives an
order for automobile production and processing. Because of
the limitation of production capacity and the high cost of
production, some production tasks need to be handed over
to some manufacturers through the cloud manufacturing
platform. ,e enterprise decomposes the automobile pro-
cessing order according to the modularization theory and
concludes that there are three kinds of specific modules that
need to be produced and processed, which are recorded as
Module 1, Module 2, andModule 3. After that, the enterprise
submits specific module requirements to the cloud
manufacturing platform. Due to the large difference in the
type and functional requirements of the module, some
candidate resources can be processed, some cannot be
processed, and some candidate resources can be partially
processed. Company A needs to work out a production
planning for the order according to the specific needs of the
customers, combined with the manufacturing resources and
manufacturing capabilities of the enterprise and the man-
ufacturers in the cloud manufacturing platform, and the
production planning is optimized according to the prefer-
ences of the decision makers and the objective situation. ,e
specific process is shown in Figure 3.

As company A still needs to assemble the parts after
the processing module to form the product in the order
for delivery, according to the requirements of quantity,
delivery time, and quality of products required by the
project order, company A adjusts the specific re-
quirements of the order according to its own processing
conditions as shown in Table 4.
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According to the functional requirements of the parts,
company A searches and matches the manufacturing re-
sources using the cloudmanufacturing platform and finds out
five production suppliers that can meet the requirements of
the module tasks. According to the situation of company A,
the specific parameters of the manufacturer of its
manufacturing module can be obtained from the enterprise
and cloud manufacturing platform as shown in Table 5.

In addition, because these enterprises are mass cus-
tomization production enterprises, when the number of
production batches reaches a certain level, there is also
a certain discount. ,e specific discount stage is as
follows:

k � 1, 0≤ xij ≤ 500,

k � 2, 501≤ xij ≤ 1000,

k � 3, 1001≤ xij ≤ 1500,

k � 4, xij ≥ 1501.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(29)

,e corresponding discount rate is given by

rij1 � 0.90, k � 1,

rij2 � 0.85, k � 2,

rij3 � 0.80, k � 3,

rij4 � 0.75, k � 4.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(30)

According to the multiobjective optimization model
proposed above, this paper uses the operation software of
Matlab2017a and the NSGA-II algorithm to solve the
model above. ,e RAM of CPU is 4G, 2.5 GHz. ,e initial
population is N � 100, the maximum iteration number is
maxgen � 200, the crossover probability is Pc � 0.90,
and the mutation probability is Pm � 0.05. ,e ratio of the
complete dominating set problem is shown in Figure 4,
which shows that the proportion of complete

nondominating set problem to population tends to be
stable after 60 generations of program operation. ,e
Pareto frontier map obtained by running the program
based on three dimensions selected is shown in Figure 5,
from which we can obtain the solution set of Pareto. ,e
running time of the program is 33.56 s.

Table 6 is the production planning information set
corresponding to all completely nondominating set
problem obtained by the algorithm. ,e results of calcu-
lation include 20 groups of noninferior solutions, and each
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Figure 3: Production planning and optimizing process of enterprise A in cloud manufacturing environment.

Table 2: Scale value of decision judgment matrix.

Order of importance Value of aij
Element ai is as important as element aj 1
Element ai is slightly more important than element aj 3
Element ai is obviously more important than
element aj

5

Element ai is mightily more important than element
aj

7

Element ai is extremely more important than
element aj

9

,e intermediate value of the adjacent judgment
above 2, 4, 6, 8

Table 3: ,e value of the mean random consistency index RI of n-
order decision judgment matrix.

n 1 2 3 4 5 6 7 8
RI 0 0 0.52 0.89 1.12 1.26 1.36 1.41

Table 4: ,e specific needs of the order.

Index Module 1 Module 2 Module 3
Quantity demanded 3000 3500 4000
Maximum delivery cost 15000
Latest delivery time 70000
Minimum qualified rate 80%
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Table 5: A enterprise and manufacturers on cloud platform.

Manufacturer Type of production
module

Productive
capacity

Production
unit price

Production
unit time

Product percent of
pass (%)

Delivery
time

Delivery cost
per batch

Company A
Module 1 1000 10 5 92

— —Module 2 — — — —
Module 3 2000 14 10 95

Cloud
manufacturer1

Module 1 3000 13 4 90
3 23Module 2 2000 25 12 92

Module 3 1000 12 11 85

Cloud
manufacturer 2

Module 1 — — — —
6 25Module 2 1000 20 6 85

Module 3 2000 14 8 92

Cloud
manufacturer 3

Module 1 3000 11 7 82
4 23Module 2 1500 22 5 90

Module 3 1500 13 8 85

Cloud
manufacturer 4

Module 1 1000 10 8 80
6 25Module 2 1500 21 6 88

Module 3 — — — —

Cloud
manufacturer 5

Module 1 2000 12 2 82
3 23Module 2 1000 23 8 82

Module 3 1000 13 10 80
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Figure 5: Solution set of Pareto.
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Table 6: Production planning set corresponding to completely nondominating solutions obtained by NSGA-II.

Number Type of modules Company A
Cloud manufacturer

Cost Delivery time Product quality (%)
1 2 3 4 5

Scheme 1
Module 1 251 1570 — 715 256 208

13581 58053 87.14Module 2 — 17 926 1150 549 858
Module 3 285 908 1892 172 — 773

Scheme 2
Module 1 254 1571 — 715 255 205

14155 55959 89.06Module 2 — 17 926 1453 169 935
Module 3 1908 16 1863 174 — 39

Scheme 3
Module 1 254 21 — 715 2556 1754

13453 62239 85.98Module 2 — 17 926 1455 170 932
Module 3 285 907 1863 172 — 773

Scheme 4
Module 1 254 1571 — 715 256 204

14265 61662 90.38Module 2 — 1852 258 1150 170 70
Module 3 1908 16 1863 175 — 38

Scheme 5
Module 1 254 1570 — 715 256 205

13915 59417 87.71Module 2 — 773 328 1454 169 776
Module 3 285 907 1863 172 — 773

Scheme 6
Module 1 19 21 — 715 735 1510

14038 67404 88.90Module 2 — 1852 328 1150 170 —
Module 3 1908 16 1863 172 — 41

Scheme 7
Module 1 251 1570 0 716 256 207

13751 60622 87.88Module 2 — 773 928 1453 169 177
Module 3 285 907 1863 172 — 773

Scheme 8
Module 1 19 21 0 715 255 1990

13523 68547 87.10Module 2 — 1852 328 1150 170 —
Module 3 285 907 1862 174 — 772

Scheme 9
Module 1 254 1570 — 715 256 205

13846 60305 87.65Module 2 — 773 925 1150 169 483
Module 3 286 907 1863 173 — 771

Scheme 10
Module 1 254 1571 — 716 256 203

14246 61801 90.41Module 2 — 1852 328 1150 170 —
Module 3 1909 18 1863 175 — 35

Scheme 11
Module 1 254 1570 — 715 256 205

14155 55964 89.06Module 2 — 17 926 1453 170 934
Module 3 1909 15 1863 174 — 39

Scheme 12
Module 1 19 21 — 715 735 1510

13312 63953 85.88Module 2 — 17 928 1455 549 551
Module 3 284 908 1862 172 — 774

Scheme 13
Module 1 19 21 — 715 256 1989

13431 62712 85.76Module 2 — 17 928 1454 170 931
Module 3 285 907 1863 172 — 773

Scheme 14
Module 1 19 21 — 715 735 151

13486 69030 87.01Module 2 — 1852 328 1150 170 —
Module 3 284 908 1862 172 — 774

Scheme 15
Module 1 254 21 — 173 256 1753

13371 63004 86.20Module 2 — 18 928 1455 549 550
Module 3 285 907 1863 716 — 772

Scheme 16
Module 1 254 1571 — 715 255 205

14494 57565 89.52Module 2 — 774 258 1368 169 931
Module 3 1909 16 1863 174 — 38

Scheme 17
Module 1 254 1570 — 715 256 205

13695 63430 88.51Module 2 0 1852 328 1150 170 —
Module 3 284 907 1863 174 — 772

Scheme 18
Module 1 253 1571 — 715 255 206

14074 56722 89.28Module 2 — 18 926 1453 548 555
Module 3 1909 16 1863 174 — 38
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group of noninferior solutions corresponds to a pro-
duction planning.

4.2. Optimization of Production Planning of Company A in
Cloud Manufacturing Environment

4.2.1. Weight Determination. According to the compre-
hensive evaluation model, firstly, the comprehensive weight
is determined from subjective and objective aspects by using
the AHP and the entropy weight method. According to the
preference degree of company A for product cost, product

delivery time, and product quality, the decision judgment
matrix is obtained as follows:

B �

1 3
1
2

1
3

1 2

2
1
2

1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (31)

By the method of AHP, it can be considered that the
weight vector of preference of company A for product cost,

Table 7: Comprehensive ranked list of the production planning scheme.

Number Product cost Delivery time Product quality (%) Relative proximity Rank
1 13581 58053 87.14 0.742858 6
2 14155 55959 89.06 0.454256 14
3 13453 62239 85.98 0.789696 1
4 14265 61662 90.38 0.240388 19
5 13915 59417 87.71 0.591227 8
6 14038 67404 88.90 0.303556 17
7 13751 60622 87.88 0.582332 9
8 13523 68547 87.10 0.569427 11
9 13846 60305 87.65 0.598745 7
10 14246 61801 90.41 0.238531 20
11 14155 55964 89.06 0.454184 15
12 13312 36953 85.88 0.759994 5
13 13431 32712 85.76 0.787249 2
14 13486 69030 87.01 0.573461 10
15 13371 63004 86.20 0.765317 4
16 14494 57565 89.52 0.356862 16
17 13695 63430 88.51 0.471384 12
18 14074 56722 89.28 0.434359 13
19 14038 67404 88.91 0.302320 18
20 13313 63594 85.89 0.768361 3

Table 6: Continued.

Number Type of modules Company A
Cloud manufacturer

Cost Delivery time Product quality (%)
1 2 3 4 5

Scheme 19
Module 1 19 21 — 715 735 1510

14038 67404 88.91Module 2 — 1852 328 1150 170 —
Module 3 1908 16 1863 172 — 41

Scheme 20
Module 1 20 21 — 715 735 1509

13313 63594 85.89Module 2 — 18 928 1455 549 550
Module 3 285 908 1862 172 — 773

Table 8: Final optimum production planning scheme.

Type of production Company A
Cloud manufacturer

Product cost Delivery time Product quality
1 2 3 4 5

Module 1 254 21 — 715 2556 1754
13453 62239 85.98Module 2 — 17 926 1455 170 932

Module 3 285 907 1863 172 — 773
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product delivery time, and product quality are T� [0.369841,
0.297884, 0.332275].

Secondly, according to the method of entropy, each
group of production planning schemes is weighted ob-
jectively. Because there are different quantitative levels and
dimensions among different evaluation indicators, it is
necessary to standardize the data of product cost, product
delivery time, and product quality indicators to obtain the
following data preprocessing matrix:

0.77242 0.839798 0.296774

0.286802 1 0.709677

0.880711 0.519547 0.047312

0.193739 0.563691 0.993548

0.489848 0.735445 0.419355

0.385787 0.124398 0.675269

0.628596 0.643256 0.455914

0.821489 0.036952 0.288172

0.548223 0.667508 0.406452

0.209814 0.553056 1

0.286802 0.999617 0.709677

1 0.388417 0.025806

0.899323 0.48336 0

0.852792 0 0.268817

0.950085 0.461021 0.094624

0 0.877133 0.808602

0.675973 0.428429 0.591396

0.35533 0.941627 0.756989

0.385787 0.124398 0.677419

0.999154 0.415882 0.027957
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. (32)

According to the calculation formula of the entropy
weight method, the objective index weight vector V�

[0.246654, 0.303342, 0.450004] is obtained by calculating the
three indexes of product cost, product delivery time, and
product quality.

,en according to the formula of the combination
weighting method established in Section 3.3.2, the sub-
jective weight obtained by AHP and objective weight
obtained by entropy weight method are synthesized, and
the final combination weight vector is W � [0.275508,
0.272903, 0.451589].

4.2.2. Optimal Selection of Production Planning Based on
TOPSIS Method. According to the relevant steps of the
TOPSIS method, the weight vector values calculated in the
previous section are calculated into the model, and the
weighted decision matrix V is obtained as follows:

0.212808 0.229184 0.13402

0.079016 0.272903 0.320483

0.242643 0.141786 0.021366

0.053377 0.153833 0.448676

0.134957 0.200705 0.189376

0.106287 0.033948 0.304944

0.173183 0.175547 0.205886

0.226327 0.010084 0.130135

0.15104 0.182165 0.183549

0.057805 0.150931 0.451589

0.079016 0.272799 0.320483

0.275508 0.106 0.011654

0.247771 0.131911 0

0.234951 0 0.121395

0.261756 0.125814 0.042731

0 0.239372 0.365156

0.186236 0.11692 0.267069

0.097896 0.256973 0.341848

0.106287 0.033948 0.305915

0.275275 0.113496 0.012625
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. (33)

,e positive ideal solution V+ and the negative ideal
solution V − are determined, and the distance from the point
corresponding to each production planning scheme to the
positive ideal solution and the negative ideal solution is
calculated, respectively. ,en the relative proximity of each
scheme to the ideal solution is calculated, and then each
production planning scheme is sorted according to the
relative distance, and the comprehensive ranking table is
shown in Table 7.

According to the comprehensive ranking calculated by
the comprehensive ranking table of production planning
schemes, company A can choose the highest comprehensive
ranking, that is, production planning Scheme 3 (as shown in
Table 8) to arrange production. If there is a change in the
actual production, the decision makers can also use the
scheme close to the optimal production scheme as the final
implementation scheme, in order to improve the flexibility
of the production plan.

5. Conclusion

(1) In this paper, the achievements of domestic and
foreign scholars in cloud manufacturing, mass
customization, multiobjective optimization, and so
on are thoroughly studied and sorted out, the
characteristics and attributes of cloudmanufacturing
system are summarized, and the operation process of
cloud manufacturing service platform is systemati-
cally introduced.
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(2) ,e current background is that the manufacturing
resources and manufacturing capacity of cloud
manufacturing are distributed in different geo-
graphical regions. Mass customization enterprises
have large manufacturing batches and limited pro-
duction capacity. Under the premise of meeting the
needs of customers, in order to improve the profit of
enterprises, the cost, time, and quality that customers
are most concerned about are taken as the index, and
a multiobjective mathematical model for the pro-
duction planning of mass customization enterprises in
cloud manufacturing environment with the lowest
cost, the shortest time, and the highest quality is
established. In view of the shortcomings of the tra-
ditional multiobjective optimization problem, the al-
gorithm of NSGA-II is used to solve the above
multiobjective optimization model.

(3) ,e index evaluation model of mass customization
enterprise production planning optimization under
cloud manufacturing environment is established,
and the calculation method of weight coefficient in
comprehensive evaluation is improved. ,e method
of combining AHP with entropy weight is used to
combine subjective and objective weighting, which is
applied to the improved TOPSIS multiattribute
decision method, and select the optimal production
plan according to the final order.

(4) CompanyA is taken as an example tomake a case study.
According to the needs of customers, combinedwith the
company’s own production capacity constraints, the
manufacturing resources and manufacturing capacities
that meet the manufacturing conditions are searched
from the cloud manufacturing platform. According to
the multiobjective optimization model proposed above,
a set of Pareto solutions satisfying the conditions are
solved. According to the comprehensive evaluation
model proposed above, the optimal production plan-
ning is selected according to the final ranking by using
the combined weighting method and TOPSIS, which
provides a reference for mass customization enterprises
to formulate and optimize the production planning and
then verifies the effectiveness of the production planning
and optimization method for mass customization en-
terprises in cloud manufacturing environment.
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 e Marchuk model of infectious diseases is considered. Distributed control to make convergence to stationary point faster is
proposed. Medically, this means that treatment time can be essentially reduced. Decreasing the concentration of antigen, this
control facilitates the patient’s condition and gives a certain new idea of treating the disease. Our approach involves the analysis of
integro-di�erential equations. e idea of reducing the system of integro-di�erential equations to a system of ordinary di�erential
equations is used.  e �nal results are given in the form of simple inequalities on the parameters.  e results of numerical
calculations of simulation models and data comparison in the case of using distributive control and in its absence are given.

1. Introduction

Distributed feedback control system is a challenging
problem, but only a few papers were devoted to it (see, for
example, [1] and literature therein). A noise in the feedback
delay control is one of the main reasons for developing
mathematical models with distributed inputs.  e second
one is resulted from the fact that the dynamics of the
processes rather depends on the average value of the process
than on the value at a corresponding moment.

We propose a method reducing the stability analysis of
the system with memory to the analysis of a corresponding
�nite-dimensional system. is idea was proposed, as well as
we know, in [2] and realized, in �nite spectrum assignment
(see, for example, [3–6]). Our realization of this idea is
di�erent. We propose a simple method that allows to reduce
the analysis of systems with memory to one of a higher order
but �nite-dimensional systems. Questions of stability and
estimates of solutions can be considered on this base.

 e model of infectious diseases, constructed by
Marchuk in his well-known book [7], re�ects the most
signi�cant patterns of the immune system acting during
these diseases.  is model was studied in many works; note,
for example, the recent papers [8–12] and the bibliography

therein.  e adding control was proposed, for example, in
[11–14]. In [10, 15], the basic mathematical model that takes
into account the concentrated control of the immune re-
sponse was proposed. It can be noted that the use of in-
formation about behavior of a disease and the immune
system for a long time (de�ned by distributed control, for
example, in the form of an integral term) looks very natural
in choosing strategy of a possible treatment. Optimal control
in the basic model of the infectious diseases was considered
in the work [15], where the control function characterizing
the realization of an immunotherapy which consists in
administration of ready immunoglobulins or donor anti-
bodies is proposed. In [16], the model of in�uence of an
immunotherapy on dynamics of an immune response which
represents a generalization of basic model was considered.
On the basis of the proposed model, the problem of de-
termination of coe�cients on the basis of laboratory data
was considered and also the management was proposed in
[13, 14, 17]. Such task is called control in uncertain con-
ditions [11].  e control algorithm in the case of uncertain
conditions was proposed in the work ([15], see pages 71–73).

 e Lyapunov exponents characterize the rate at which
solutions approach each other with increasing time. In our case,
one of these solutions is a certain stationary state of the system.
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,e stationary state determines the conditions of recovery of the
body after exposure to infection. ,e speed of approaching this
state has a very important role. It allows us to estimate the
duration of treatment. In some cases, this can determine the
choice of treatment strategy. It is enough to imagine a situation
when the patients’ body is weakened by some chronic diseases
and is not able to endure too long treatment.

Our approach to treatment modeling can be described as
follows. We introduce a distributed feedback control in the
form of an integral term.,is management is based on long-
term monitoring of the patient’s condition and comparing
the patients’ condition with a certain stationary state over a
long period of time. ,us, a closed controlled system, the
purpose of which is to improve the patient’s condition, is
created. Intuitively, such a treatment strategy is un-
derstandable. Further, the scheme of reducing the integro-
differential system to a system of ordinary differential
equations is proposed. ,is ordinary differential system is
studied. ,e technique based on properties of the Cauchy
matrices is used to estimate possible deviations of solutions
in the case of various modifications of this model, such as
nonlinear models or delay models, from the solution of this
system ordinary differential equation. Note the papers
[1, 18–21] where the distributed control was also considered
for various problems.

In this paper, we consider the Marchuk model of in-
fectious diseases [7]:

dV

dt
� βV(t) − cF(t)V(t),

dC

dt
� ζ(m)αF(t)V(t) − μc C(t) − C

∗
( 􏼁,

dF

dt
� ρC(t) − ηcF(t)V(t) − μfF(t),

dm

dt
� σV(t) − μmm(t),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

where V(t) is the antigen concentration rate, C(t) is the
plasma cell concentration rate, F(t) is the antibody con-
centration rate, and m(t) is the relative features of the body.
Denote α, β, c, ρ, σ, η, μc, μf, and μm as corresponding co-
efficients described in [7]. ζ(m) takes into account the
destruction of the normal functioning immune system,
ζ(0) � 1. Denote C∗ as the plasma rate concentration of the
healthy body and F∗ the antibody concentration that we
wish to achieve after the treatment.

Let us discuss every equation in the model (1) in more
detail. ,e first equation dV/dt � βV(t) − cF(t)V(t) pres-
ents the block of the virus dynamics. It describes the change in
the antigen concentration rate and includes the amount of
antigen in the blood. Antigen concentration decreases as a
result of interaction with antibodies. ,e immune process is
characterized by the number of antibodies, whose concen-
tration is described by the equation dF/dt � ρC(t) − η
cF(t)V(t) − μfF(t). ,e value of F(t) decreases as a result of
the interaction and mutual destruction with antigens. ,e
amount of the antibody cells also decreases as a result of

natural destruction. However, the plasma restores antibodies
and therefore the plasma state plays an important role in the
immune process. ,us, the change in the plasma cell con-
centration rate is included in several equations of the system.
Taking into account the healthy body level of plasma cells and
their natural aging, the term μc(C(t) − C∗) is included in the
second equation of system (1). It is assumed that the plasma is
restored as a result of the interaction of the antigen and the
antibody cells. ,e second and third equations present the
block of the humoral immune response dynamics.

Concerning the last equation dm/dt � σV(t) − μmm(t)

of system (1), we can note the following. ,e value of m
increases with the antigen’s concentration rate V(t). ,e
maximum value of m is 1 in the case of 100% organ damage
and is equal to 0 for a fully healthy organ. ,e coefficient μm

describes the rate of degeneration of the target organ.
,e main goal of this paper is to demonstrate new ideas

in the use of distributed control in the model of infectious
diseases [7]. Our goal is to make convergence to a stationary
point faster. ,is allows us to decrease the duration of
disease’s treatment. We add a distributed control in the
equation describing antibody concentration rate. Numerical
simulations demonstrate that this approach could open
some new possibilities for a treatment.

2. Modeling Distributed Control

Let us consider the following system:

dV

dt
� βV(t) − cF(t)V(t),

dC

dt
� ζ(m)αF(t)V(t) − μc C(t) − C

∗
( 􏼁,

dF

dt
� ρC(t) − ηcF(t)V(t) − μfF(t) − bu(t),

dm

dt
� σV(t) − μmm(t).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

Comparing this system with the model of Marchuk (1),
we see the control u(t) added in the third equation describing
the antibody concentration rate. Note that this control is a
reasonable one from the medical point of view [10, 15].

We choose the control u(t) in the following form:

u(t) � 􏽚
t

0
F(s) − F

∗
( 􏼁e

− k(t− s)ds. (3)

It can be noted that influence of a corresponding average
value instead of F(t) − F∗ at the point t looks reasonable
since the control u(t) is rather dependent on an “average”
value of the difference F(s) − F∗ on a corresponding time-
interval than on this difference at the moment t only. ,e
integral term in (3) increases the influence of the previous
moments which are closer to the current moment t.

Following [15], we can pass to the dimensionless case,
substituting V(t) � v(t)Vm, C(t) � s(t)C∗, F(t) � f(t)F∗,

and u(t) � 􏽥u(t)F∗ in (2). In the dimensionless case, system
(2) is of the following form:
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dv

dt
� βv(t) − cF

∗
f(t)v(t),

ds

dt
� αVm

F∗

C∗
ζ(m)f(t)v(t) − μc(s(t) − 1),

df

dt
�
ρC∗

F∗
s(t) − ηcVmf(t)v(t) − μff(t)

− b 􏽚
t

0
(f(s) − 1)e

− k(t− s)ds,

dm

dt
� σVmv(t) − μmm(t).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4)

Consider the system
dv

dt
� βv(t) − cF

∗
f(t)v(t),

ds

dt
� αVm

F∗

C∗
ζ(m)f(t)v(t) − μc(s(t) − 1),

df

dt
�
ρC∗

F∗
s(t) − ηcVmf(t)v(t) − μff(t) − b􏽥u(t),

dm

dt
� σVmv(t) − μmm(t),

d􏽥u

dt
� f(t) − 1 − k􏽥u(t).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(5)

Denoting in (5)

α1 � β,

α2 � cF
∗
,

α3 � αVm

F∗

C∗
,

α4 � μf �
ρC∗

F∗
,

α5 � μc,

α6 � σVm,

α7 � μm,

α8 � ηcVm,

(6)

we obtain
dv

dt
� α1v(t) − α2f(t)v(t),

ds

dt
� α3ζ(m)f(t)v(t) − α5(s(t) − 1),

df

dt
� α4(s(t) − f(t)) − α8f(t)v(t) − b􏽥u(t),

dm

dt
� α6v(t) − α7m(t),

d􏽥u

dt
� f(t) − 1 − k􏽥u(t).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(7)

Let us find possible stationary points of system (7). ,eir
coordinates v, s, f, m, and 􏽥u satisfy the following algebraic
system:

α1v − α2fv � 0,

α3ζ(m)fv − α5(s − 1) � 0,

α4(s − f) − α8fv − b􏽥u � 0,

α6v − α7m � 0,

f − 1 − k􏽥u � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(8)

Only in two cases, the first equation is satisfied: v � 0 or
f � α1/α2. Let us start with the first case. If v � 0, then s � 1
from the second equation and m � 0 from the fourth one.
We have the system for f and 􏽥u:

α4 − α4f − b􏽥u � 0,

f − k􏽥u � 1.
􏼨 (9)

From the last equation, we have 􏽥u � (f − 1)/k, and
substituting this into the first one, we obtain f � 1, and then
􏽥u � 0. ,us, starting with v � 0, we can come only to the
stationary point v � m � 􏽥u � 0, s � f � 1. In the second case
of f � α1/α2, we consider only the case of v≠ 0, since in the
case of v � 0, we come to the same stationary point. From the
fourth equation α6v � α7m, we obtain that m≠ 0.,is means
that there is no possibility to completely disinfect the affected
organ. ,at is why we study below the behavior of solutions
only in the neighborhood of the noted above stationary
point v � m � 􏽥u � 0, s � f � 1.

Remark 1. It was obtained in [15] on the basis of the lab-
oratory data that α1 �0.25;α2 �8.5000332;α3 � 1792175675;

α4 �1.95992344 ·10− 7;α5 �0.5;α6 �10;α7 �0.4;α8 �1.7 ·10− 3.
It was noted above that ζ(0) � 1. Linearizing systems (7)

and (4) in the neighborhood of the stationary point, we
obtain the corresponding linear systems:

dx1

dt
� α1 − α2( 􏼁x1,

dx2

dt
� α3x1 − α5x2,

dx3

dt
� − α8x1 + α4x2 − α4x3 − bx5,

dx4

dt
� α6x1 − α7x4,

dx5

dt
� x3 − kx5,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(10)

dx1

dt
� α1 − α2( 􏼁x1,

dx2

dt
� α3x1 − α5x2,

dx3

dt
� − α8x1 + α4x2 − α4x3 − b 􏽚

t

0
x3(s)e

− k(t− s)ds,

dx4

dt
� α6x1 − α7x4,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(11)
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where x1 � v, x2 � s − 1, x3 � f − 1, x4 � m, x5 � 􏽥u, re-
spectively. Denote the matrix of the coefficients of system
(10):

A �

α1 − α2 0 0 0 0

α3 − α5 0 0 0

− α8 α4 − α4 0 − b

α6 0 0 − α7 0

0 0 1 0 − k

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (12)

Note that a corresponding linear system for theMarchuk
model of infectious diseases without control (see system (1))
can be written in the form:

dx1

dt
� α1 − α2( 􏼁x1,

dx2

dt
� α3x1 − α5x2,

dx3

dt
� − α8x1 + α4x2 − α4x3,

dx4

dt
� α6x1 − α7x4.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(13)

3. About Comparison of the
Lyapunov Exponents

Our approach is based on the following auxiliary assertion.

Lemma 1. "e solution-vector col(v(t), s(t), f(t), m(t)) of
system (4) and 4 first components of the solution-vector
col(v(t), s(t), f(t), m(t), 􏽥u(t)) of system (5) satisfying the
condition 􏽥u(0) � 0 coincide.

Proof of Lemma 1. Let us consider the last equation of
system (5). Using the representation of solution of the first-
order scalar equation, we can write 􏽥u(t) �

􏽒
t

0 e− k(t− s)(f(s) − 1)ds + 􏽥u(0)e− kt. Note that system (5) is
considered with the condition 􏽥u(0) � 0. Substituting now
this representation of 􏽥u(t) into the third equation of system
(5), we obtain the third equation of system (4). ,us in
systems (4) and (5), the first, second, and fourth equations
coincide and the third equation of (4) is equivalent to the last
equation of system (5) with the initial condition 􏽥u(0) � 0.

,is completes the proof of Lemma 1. □

Remark 2. It is clear that Lemma 1 can be used also for
integro-differential system (11) and system of ordinary
differential equations (10). Every solution-vector (x1(t),

x2(t), x3(t), x4(t)) of integro-differential system (11) co-
incides with the first 4 components of the solution-vector.

Take (x1(t), x2(t), x3(t), x4(t), x5(t)) of system (10)
with the initial condition x5(0) � 0.,us, if we take a part of
the space of solutions of ordinary differential system (10),

satisfying the initial condition x5(0) � 0 and delete then the
fifth component of solution-vectors, we come to the 4-space
of solutions of integro-differential equation (11). Now, it is
clear that the exponential stability of the 5-dimensional
ordinary differential system (10) implies the exponential
stability of 4-dimensional integro-differential system (11).
,e roots of the characteristic equation for ordinary dif-
ferential system (10) can be used in the representation of
vector-solution in the space of solutions of integro-differ-
ential system (11). Negativity of real parts of the roots of the
characteristic equation of system (10) with constant co-
efficients allows to make the conclusion about the expo-
nential stability of the integro-differential system (11). ,e
root with maximal real part of the characteristic equation for
(11) cannot be greater than the one of the characteristic
equations for (10).

,e characteristic polynomial of system (10) of ordinary
differential equations,

P5 λ∗( 􏼁 � λ∗ − α1 + α2( 􏼁 λ∗ + α5( 􏼁 λ∗ + α7( 􏼁

· λ∗
2

+ α4 + k( 􏼁λ∗ + kα4 + b􏼔 􏼕,
(14)

has 5 roots λ∗1 , λ∗2 , λ∗3 , λ∗4 , and λ∗5 .
Denote λi, i � 1, 4 as the roots of the characteristic

polynomial of systems (13), and 􏽥λ � max1≤i≤4λi,
􏽥λ∗ �

max1≤j≤5Re(λ
∗
j ).

Theorem 1. If β< cF∗, b> 0 and k> 0, then integro-
differential system (11) is exponentially stable, and if in
addition, the inequality k> α4 is fulfilled then 􏽥λ≥ 􏽥λ∗.

,e proof is based on the following assertion.

Lemma 2. For the roots of the characteristic polynomials of
systems (11) and (13), the following facts are true:

λ1 � λ∗1 , λ2 � λ∗2 , λ3 � λ∗3 , (15)

and if k> α4, b> 0, then
λ4 >Re λ∗4( 􏼁,

λ4 >Re λ∗5( 􏼁.
(16)

Proof of Lemma 2. ,e characteristic polynomial of systems
(13) is

P4(λ) � λ − α1 + α2( 􏼁 λ + α4( 􏼁 λ + α5( 􏼁 λ + α7( 􏼁, (17)

and the characteristic polynomial of system (10) is (14).
It is clear from the definition of the coefficients αj (6)

that

λ2 � λ∗2 � − α5 < 0, λ3 � λ∗3 � − α7 < 0, λ4 � − α4 < 0. (18)

,e inequality β< cF∗ in the conditions of ,eorem 1
implies that α1 − α2 < 0 and consequently λ1 � λ∗1 � α1 −

α2 < 0. It is clear that
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λ∗4 �
− α4 + k( 􏼁 −

������������

α4 − k( 􏼁
2

− 4b

􏽱

2
,

λ∗5 �
− α4 + k( 􏼁 +

������������

α4 − k( 􏼁
2

− 4b

􏽱

2
.

(19)

In the case of complex roots λ∗4 and λ∗5 , we have Reλ
∗
4 �

Reλ∗5 < 0 if k> 0. In the case of real roots λ∗4 and λ∗5 , we have
λ∗4 ≤ λ

∗
5 < 0. ,us we obtain the exponential stability of

system (10). According to Remark 2 mentioned above,
system (11) is exponentially stable.

Comparing the values of the roots of the characteristic
polynomials (17) and (14) we have to verify only the inequality

Re λ∗5( 􏼁< λ4, (20)

in (16). Substituting the values of λ∗5 and λ4 to (20), we have
to obtain the inequalities:

− α4 + k( 􏼁 +

������������

α4 − k( 􏼁
2

− 4b

􏽱

2
< − α4,

(21)

for the case of real roots λ∗4 and λ
∗
5 , and

− α4 + k( 􏼁

2
< − α4, (22)

for the case of the complex roots λ∗4 and λ
∗
5 .

,e inequalities (21) and (22) are fulfilled if k> α4 and
b> 0.

Substituting the values of αi in Remark 1, we see that
λ4 > max1≤i≤3 λi. If the inequalities k> α4 and b> 0 are ful-
filled, then (16) is true.

Note the assertion following from ,eorem 1. □

Corollary 1. Let the coefficients αi be defined by the formulas
in Remark 1, and k> 1.95992344 · 10− 7, b> 0, then the
Lyapunov exponents of system (11) are less than the ones of
system (13).

4. Numerical Simulations and Comments

,emathematical model can be represented in the following
form:

dx

dt
� Φ(x(t)), x(t) � col v(t), s(t), f(t), m(t), 􏽥u(t)􏼈 􏼉,

(23)

where Φ(x(t)) is the right-hand side of (7). Values of the
parameters are defined in Remark 1, k � 4 and b � 1 and the
initial conditions are v(0) � 10− 6,f(0) � 1, s(0) � 1,m(0) � 0
and u(0) � 0. We use the second-order Runge–Kutta’s scheme
with a constant step h.

In Figures 1–4, the solution of model with the natural
flow of data without the control of disease is presented by
curves of red color and disease in the case of considered
distributed control by curves of green color.

Figure 1 demonstrates the dynamics in antigen con-
centration during the course of the disease. ,e insert

detailing the process in the first two days was performed on
a different scale and demonstrates the fact that the man-
agement transfers the disease from the acute form to the
subclinical one (the antigen concentration only decreases
after injection). Figure 2 demonstrates the dynamics in
plasma cell concentration during the disease process. It can
be seen from the figure that control leads to a faster increase
in the concentration of plasma cells, which in this case
ensures a transition to the subclinical form of the disease.
In addition, it is necessary to note a fourfold increase in the
maximum concentration of plasma cells in the case of
control, compared with the option without control. Fig-
ure 3 demonstrates the dynamics in antibody concentra-
tion during the disease process. ,e graph shows that the
concentration of antibodies in the solution with control
practically does not change, because in this case, they are
replaced by donor antibodies, which is what the control
actually consists of. ,e dynamics in the proportion of
target organ cells destroyed by antigen during the disease
process is presented in Figure 4. ,e values for the variant
with control are given with an increase of 104 times. ,us,
control allows to reduce the maximum proportion of affected
cells of the target organ by more than 2.5 × 104 times. ,e
dynamics of the control (concentration of donor antibodies)
during the disease process is presented in Figure 5.

Remark 3. ,e integral term can accumulate small mistakes
made in the process of numerical integration. ,is explains
difficulties in the use of numericalmethods for solving integro-
differential equations. ,e idea to reduce a system of integro-
differential equations to a corresponding system of ordinary
differential ones and the use of the well-developed technique
for their solution could be one of the possible ways to develop
numerical methods for integro-differential equations.

5. System with Delay in Equation of
Plasma Concentration

It was explained in [7] why the delay τ(t) can appear in the
second equation of system (1) in the model of infectious
diseases:

dV

dt
� βV(t) − cF(t)V(t),

dC

dt
� ζ(m)αF(t − τ(t))V(t − τ(t)) − μc C(t) − C

∗
( 􏼁,

dF

dt
� ρC(t) − ηcF(t)V(t) − μfF(t),

dm

dt
� σV(t) − μmm(t).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(24)

We have to define what should be set instead of V(t −

τ(t)) and F(t − τ(t)) when t − τ(t)< 0. We consider all
delay systems with the initial function V(ζ) � 0 for ζ < 0. Let
us consider the following system with the control in anti-
body concentration:
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Figure 1: Dynamics of the immune response: antigen.
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Figure 2: Dynamics of the immune response: plasma.
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Figure 3: Dynamics of the immune response: antibodies.
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Figure 4: Dynamics of the immune response: rate of the destroyed cells.
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dV

dt
� βV(t) − cF(t)V(t),

dC

dt
� ς(m)αF(t − τ(t))V(t − τ(t)) − μc C(t) − C

∗
( 􏼁,

dF

dt
� ρC(t) − ηcF(t)V(t) − μfF(t) − bu(t),

dm

dt
� σV(t) − μmm(t),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(25)

where u(t) � 􏽒
t

0(F(s) − F∗)e− k(t− s)ds.
We can pass to dimensionless case
dv

dt
� βv(t) − cF

∗
f(t)v(t),

ds

dt
� αVm

F∗

C∗
ς(m)f(t − τ(t))v(t − τ(t)) − μc(s(t) − 1),

df

dt
�
ρC∗

F∗
s(t) − ηcVmf(t)v(t) − μff(t) − b􏽥u(t),

dm

dt
� σVmV(t) − μmm(t),

d􏽥u

dt
� f(t) − 1 − k􏽥u(t).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(26)

Denoting αi (i � 1, . . . , 8), according to (6), we obtain

dv

dt
� α1v(t) − α2f(t)v(t),

ds

dt
� α3ς(m)f(t − τ(t))v(t − τ(t)) − α5(s(t) − 1),

df

dt
� α4(s(t) − f(t)) − α8f(t)v(t) − μff(t) − b􏽥u(t),

dm

dt
� α6V(t) − α7m(t),

d􏽥u

dt
� f(t) − 1 − k􏽥u(t).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(27)

For stability studies, only behavior of solutions for suffi-
ciently large t is considered. Below, we assume that t − τ(t)≥ 0.
We can write the second equation in the following form:
ds

dt
� α3ς(m) f(t)v(t) − 􏽚

t

t− τ(t)
[f(φ)v(φ)]′dφ􏼢 􏼣

− α5(s(t) − 1),

ds

dt
� α3ς(m) f(t)v(t) − 􏽚

t

t− τ(t)
f′(φ)v(φ) + f(φ)v′(φ)􏼂 􏼃dφ􏼢 􏼣

− α5(s(t) − 1).

(28)

We can write the expression under the integral in the
following form:
f′(φ)v(φ) + f(φ)v′(φ) � v(φ)􏼂α4(s(φ) − f(φ))

− α8f(φ)v(φ) − μff(φ) − b􏽥u(φ)􏼃

+ f(φ) α1v(φ) − α2f(φ)v(φ)􏼂 􏼃

� α4[(s(φ) − 1 + 1) − (f(φ) − 1 + 1)]v(φ)

− α8f(φ)v
2
(φ) − μff(φ)v(φ)

− b􏽥u(φ)v(φ) + α1v(φ)(f(φ) − 1 + 1)

− α2f
2
(φ)v(φ)α1v(φ).

(29)

Linearizing system (27) in the neighborhood of the
stationary point

v � m � 􏽥u � 0,

s � f � 1,
(30)

we obtain
dx1

dt
� α1 − α2( 􏼁x1,

dx2

dt
� α3x1 − α5x2 − α3 􏽚

t

t− τ(t)
α1x1(φ)dφ,

dx3

dt
� − α8x1 + α4x2 − α4x3 − bx5,

dx4

dt
� α6x1 − α7x4,

dx5

dt
� x3 − kx5.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(31)
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Figure 5: Control function.
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Consider the system

X′(t) � P(t)X(t) + G(t), (32)

where P(t) is a (n × n)-matrix and G(t) is n-vector. ,e
general solution X(t) � col x1(t), . . . , xn(t)􏼈 􏼉 can be rep-
resented in the following form:

X(t) � 􏽚
t

0
C(t, s)G(s)ds + C(t, 0)X(0), (33)

where n × n-matrix C(t, s) � Cij(t, s)􏽮 􏽯
n

i,j�1 is called the
Cauchy matrix. Its j-th column (j � 1, . . . , n) for every fixed
s as a function of t is a solution of the corresponding ho-
mogeneous system:

X′(t) � P(t)X(t), (34)

satisfying the initial conditions xi(s) � δij, where

δij �

1, i � j,

0, i≠ j,

i � 1, . . . , n.

⎧⎪⎪⎨

⎪⎪⎩
(35)

Construction of the Cauchy matrix of system with or-
dinary differential equations can be found, for example, in
[22].

Let us denote τ∗ � ess supt≥0τ(t).

Theorem 2. If β< cF∗, k> 0, b> 0 and

τ∗max
1≤j≤5

sup
t≥0

􏽚
t

0
C2j(t, s)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌ds<
1

α3α1
, (36)

where C(t, s) � Cij(t, s)􏽮 􏽯
5
i,j�1 is the Cauchy matrix of system

(10), then system (31) is exponentially stable.

Proof of "eorem 2. Consider the nonhomogeneous system
corresponding to homogeneous system (31):

dx1

dt
� α1 − α2( 􏼁x1 + g1(t),

dx2

dt
� α3x1 − α5x2 − α3 􏽚

t

t− τ(t)
α1x1(φ)dφ + g2(t),

dx3

dt
� − α8x1 + α4x2 − α4x3 − bx5 + g3(t),

dx4

dt
� α6x1 − α7x4 + g4(t),

dx5

dt
� x3 − kx5 + g5(t),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(37)

where g1(t), . . . , g5(t) are measurable essentially bounded
functions on the semiaxis (i.e., they are from the space L∞).

We can write system (37) in the following form:

x′(t) � Ax(t) +(Fx)(t) + G(t), (38)

where

x(t) � col x1(t), x2(t), x3(t), x4(t), x5(t)􏼈 􏼉,

(Fx)(t) � col 0, − α3 􏽚
t

t− τ(t)
α1x1(φ)dφ, 0, 0, 0􏼨 􏼩,

G(t) � col g1(t), g2(t), g3(t), g4(t), g5(t)􏼈 􏼉,

(39)

andA is defined by (12). It is clear that the use of the standard
formula of solutions’ representation leads to the following
system:

x(t) � 􏽚
t

0
C(t, s)(Fx)(s)ds + 􏽚

t

0
C(t, s)G(s)ds + C(t, 0)x(0).

(40)

It follows from,eorem 1 that the Cauchy matrix C(t, s)

satisfies the exponential estimate, i.e., there exist such
positive c and N, then all elements Cij(t, s) of the Cauchy
matrix C(t, s) satisfy the following estimate:

Cij(t, s)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤Ne
− c(t− s)

,

0≤ s≤ t<∞,

i, j � 1, . . . , 5.

(41)

Now it is clear that the vector-function
􏽥G(t) ≡ 􏽒

t

0 C(t, s)G(s)ds + C(t, 0)X(0) is bounded for
t ∈ [0,∞).

Define the operator K : C5⟶ C5 (C5 is the space of 5-
dimensional vector-functions x : [0,∞) with continuous
components) by the following formula:

(Kx)(t) � 􏽚
t

0
C(t, s)(Fx)(s)ds. (42)

System (40) can be rewritten in the form

x(t) � (Kx)(t) + 􏽥G(t), (43)

where

􏽥G(t) � 􏽚
t

0
C(t, s)G(s)ds + C(t, 0)x(0). (44)

,e inequality (36) implies that the norm of the operator
K : C5⟶ C5 is less than one, then there exists the operator
(I − K)− 1 : C5⟶ C5 and it is bounded. ,us, the solution-
vector x(t) is bounded for t ∈ [0,∞), for every bounded on
the semiaxis right-hand side G(t). Now the exponential
estimate of the solution x(t) of the homogeneous system
(31) follows the Bohl–Perron theorem [23, 24]. We have
proven the exponential stability of system (31). □

Remark 4. It is clear that system (31) is exponentially stable
if β< cF∗, k> 0, b> 0 for sufficiently small delay τ(t).

Remark 5. Let us compare the difference of solution x(t) �

col x1(t), . . . , x5(t)􏼈 􏼉 of system (10) and solution
y(t) � col y1(t), . . . , y5(t)􏼈 􏼉 of system (31) with the same
initial conditions x(0) � y(0). It is clear that

8 Complexity



y′(t) − x′(t) � A(y(t) − x(t)) +(Fy)(t). (45)

Denote z(t) � y(t) − x(t). z(t) satisfies the following
equation:

z′(t) � Az(t) +(Fy)(t). (46)

,e solution z(t) can be represented in the following
form:

z(t) � 􏽚
t

0
C(t, s)(Fy)(s)ds. (47)

It follows from the exponential estimates of C(t, s) and
y(t) that z(t) tends to zero exponentially, when t⟶∞.

In order to estimate z(t), we can use the results of the
paper [25], where the elements of the Cauchy matrix C(t, s)

were constructed.

6. Construction of the Cauchy Matrix and
Stability of Model with Delay

In order to use,eorem 2, we have to obtain the estimates of
max1≤j≤5 supt≥0 􏽒

t

0 |C2j(t, s)|ds. In this section, we present
these estimates.

Let us denote c � (a2
1 − 2a1a2+ a1a4 + a1k + a2

2 − a2a4 −

a2k + a4k + b)/(a1a8 − a2a8 − a3a4 + a5a8),

α31 � −
2b

a4 − k +

������������

a4 − k( 􏼁
2

− 4b

􏽱

􏼒 􏼓

,

α32 � −
2b

a4 − k −

������������

a4 − k( 􏼁
2

− 4b

􏽱

􏼒 􏼓

,

α24 � −
a4a5 − a4k − a2

5 + a5k − b( 􏼁

a4
,

α34 � − a5 + k,

α15 � − c a5 + a1 − a2( 􏼁,

α25 � − ca3,

α35 � a1 − a2 + k,

α45 � −
a5 + a1 − a2( 􏼁a6c

a1 − a2 + a7
.

(48)

Lemma 3 (see [25]). If (a4 − k)2 > 4b, then the second col-
umn of the Cauchy matrix of (10) is as follows:

C
→

2(t, s) �
α32 − α34

α24 α31 − α32( 􏼁

0

0

−
2b

a4 − k +

������������

a4 − k( 􏼁
2

− 4b

􏽱

0

1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

e
− a4− k+

�������
a4− k( )

2
− 4b

􏽰
( 􏼁/2( 􏼁(t− s)

−
α31 − α34

α24 α31 − α32( 􏼁

·

0

0

−
2b

a4 − k −

������������

a4 − k( 􏼁
2

− 4b

􏽱

0

1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

e
− a4− k−

�������
a4− k( )

2
− 4b

􏽰
( 􏼁/2( 􏼁(t− s)

+
1
α24

0

−
a4a5 − a4k − a2

5 + a5k − b

a4

− a5 + k

0

1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

e
− a5(t− s)

.

(49)

Let us denote β31 � − 2b/a4 − k, β52 � 2/a4 − k, β24 �

− a4a5 − a4k − a2
5 + a5k − b/a4, β34 � − a5 + k, β15 � − c(a5 +

a1 − a2), β25 � − ca3, β35 � a1 − a2 + k, β45 � − (a5 + a1 − a2)

a6c/a1 − a2 + a7.

Lemma 4 (see [25]). f (a4 − k)2 � 4b, then the second col-
umn of the Cauchy matrix of (10) is as follows:

Complexity 9



C
→

2(t, s) � −
β34

β24β31

0

0

−
2b

a4 − k

0

1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−
β31 − β34
β31β24β52

0

0

0

0
2

a4 − k

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+(t − s)

0

0

−
2b

a4 − k

0

1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

e
− a4+k( )/2( )(t− s)

+
1
β24

0

−
a4a5 − a4k − a2

5 + a5k − b

a4

− a5 + k

0

1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

e
− a5(t− s)

.

(50)

Let us denote c32 �

������������

4b − (a4 − k)2
􏽱

/2, c24 � − a4a5 −

a4k − a2
5 + a5k − b/a4, c15 � − c(a5 + a1 − a2), c25 � − ca3,

c35 � a1 − a2 + k, c45 � − (a5 + a1 − a2)a6c/a1 − a2 + a7.

Lemma 5 (see [25]). If (a4 − k)2 < 4b, then the second col-
umn of the Cauchy matrix of (10) is as follows:

C
→

2(t, s) � −
1

c24
·

0

0
k − a4

2
0

1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

· e
− a4+k( )/2(t− s)

· cos

������������

4b − a4 − k( 􏼁
2

􏽱

2
(t − s)⎛⎜⎜⎝ ⎞⎟⎟⎠

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

+

0

0

−

������������

4b − a4 − k( 􏼁
2

􏽱

2
0

0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

· e
− a4+k( )/2(t− s)

· sin

������������

4b − a4 − k( 􏼁
2

􏽱

2
(t − s)⎛⎜⎜⎝ ⎞⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1
2

a4 − 3k + 2a5

c24c32

·

0

0
������������

4b − a4 − k( 􏼁
2

􏽱

2
0

0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

· e
− a4+k( )/2(t− s)

· cos

������������

4b − a4 − k( 􏼁
2

􏽱

2
(t − s)⎛⎜⎜⎝ ⎞⎟⎟⎠ +

0

0
a4 − k

2
0

1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

· e
− a4+k/2(t− s)

· sin
������������

4b − a4 − k( 􏼁
2

􏽱

/2(t − s)􏼒 􏼓􏼕
1

c24
·

0

−
a4a5 − a4k − a2

5 + a5k − b

a4

a5 − k

0

1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

· e
− a5(t− s)

.

(51)

10 Complexity



"e following assertions are results of substitutions of
C2j(t, s) presented in Lemmas 3–5 into inequality (36) in
"eorem 2.

Theorem 3. If (α4 − k)2 > 4b, β< cF∗, k> 0, b> 0, and

τ∗max

α32 − α34
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

α24 α31 − α32( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

2b

a4 − k +

������������

a4 − k( 􏼁
2

− 4b

􏽱􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌

2

− a4 − k +

������������

a4 − k( 􏼁
2

− 4b

􏽱􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌

+
α31 − α34

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

α24 α31 − α32( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

·
2b

a4 − k −

������������

a4 − k( 􏼁
2

− 4b

􏽱􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌

2

− a4 − k −

������������

a4 − k( 􏼁
2

− 4b

􏽱􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌

+
1
α24

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

a4a5 − a4k − a2
5 + a5k − b

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

a4

1
a5

α32 − α34
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

α24 α31 − α32( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

2

− a4 − k +

������������

a4 − k( 􏼁
2

− 4b

􏽱􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌

+
α31 − α34

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

α24 α31 − α32( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

2

− a4 − k +

������������

a4 − k( 􏼁
2

− 4b

􏽱􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌

+
1
α24

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

1
a5

1
α24

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

a5 + k

a5

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

<
1

α3α1
,

(52)

then system (31) is exponentially stable. Theorem 4. If (α4 − k)2 � 4b, β< cF∗, k> 0, b> 0, and

τ∗max

1
β24

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

a4a5 − a4k − a2
5 + a5k − b

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

a4

1
a5

β34
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

β24β31
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

4b

a2
4 − k2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
+

β31 − β34
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

β31β24β52
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

2b

a4 − k
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

4
a4 + k( 􏼁

2 +
1
β24

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

a5 + k

a5

β34
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

β24β31
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

2
a4 + k

+
β31 − β34

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

β31β24β52
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

4
a2
4 − k2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
+

β31 − β34
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

β31β24β52
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

4
a4 + k( 􏼁

2 +
1
β24

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

1
a5

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

<
1

α3α1
, (53)

then system (31) is exponentially stable. Theorem 5. If (α4 − k)2 < 4b, β< cF∗, k> 0, b> 0, and

τ∗max

1
c24

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌a5

a4a5 − a4k − a2
5 + a5k − b

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

a4

1
c24

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

a4 − k
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

a4 + k
+

1
c24

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

������������

4b − a4 − k( 􏼁
2

􏽱

a4 + k
+
1
2

a4 − 3k + 2a5
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

c24c32
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

������������

4b − a4 − k( 􏼁
2

􏽱

a4 + k

+
1
2

a4 − 3k + 2a5
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

c24c32
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

a4 − k
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

a4 + k
+

1
c24

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

a5 − k
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

a5

1
c24

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

2
a4 + k

+
a4 − 3k + 2a5

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

c24c32
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

1
a4 + k

+
1

c24
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

1
a5

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

<
1

α3α1
, (54)

then system (31) is exponentially stable.
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�e residual symmetry of a negative-order Korteweg–de Vries (nKdV) equation is derived through its Lax pair. Such residual symmetry
can be localized, and the original nKdV equation is extended into an enlarged system by introducing four new variables. By using Lie’s
�rst theorem, we obtain the �nite transformation for the localized residual symmetry. Furthermore, we localize the linear superposition
of multiple residual symmetries and construct n-th Bäcklund transformation for this nKdV equation in the form of the determinants.

1. Introduction

It is well known that in�nitely many symmetries or �ows
appear for �nding evolution equations, and a general
method was proposed by Olver, which was applied to the
Korteweg–de Vries (KdV), modi�ed Korteweg–de Vries
(mKdV), Burgers, and sine-Gordon equations [1, 2]. �en,
Olver’s concept of a recursion operator for symmetries of an
evolution equation was extended to negative powers of the
operator, and some negative-order Korteweg–de Vries
(nKdV) equations were derived, including the following
nKdV equation [3–12]:

ux − vt � 0,

uxxx + 4uxv + 2uvx � 0.
(1)

Several years later, Lou reobtained the negative KdV
hierarchy from the conformal invariance of its Schwartz
form [13]. �is new method used for the KdV equation can
be extended to get more symmetries from known ones for
arbitrary partial di�erential equations without using a re-
cursion operator. Also, the theory can be used as a new
criterion to verify whether a model is integrable or not.
Based on the regular KdV system, Qiao originally studied
nKdV equations, particularly their Hamiltonian structures,
Lax pairs, conservation laws, and explicit multisoliton and

multikink wave solutions through bilinear Bäcklund
transformations [14–17]. By using the simpli�ed form of
Hirota’s direct method, Wazwaz developed the nKdV
equation and negative-order Kadomtsev–Petvishvili (nKP)
equation in 2 + 1 dimensions and found multiple soliton
solutions with free coe¤cients [18]. However, Kudryashov
showed that existence of multisoliton solutions for the
nonlinear evolution equation is the consequence of complete
integrability [19, 20]. According to �eorem 1 in Reference
[14], the nKdV equation (1) admits a Lax pair with the
parameter λ as follows:

Lψ ≡ ψxx + vψ � λψ,

ψt � −
1
2λ
uψx +

1
4λ
uxψ,

(2)

and also possesses a Lax pair without the parameter as
follows:

Lψ � z2x + v( )ψ � 0,

Mψ � 4z2xzt + 4vzt + 2uzx + 3ux( )ψ � 0.
(3)

�is paper is organized as follows: In Section 2, with the
aid of the Lax pair, the residual symmetry of the nKdV
equation (1) is derived, and this nonlocal symmetry is lo-
calized by introducing four auxiliary variables. Subsequently,

Hindawi
Complexity
Volume 2019, Article ID 5479695, 10 pages
https://doi.org/10.1155/2019/5479695

mailto:phycao@lsu.edu.cn
https://orcid.org/0000-0002-9684-4835
https://orcid.org/0000-0002-5389-2052
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/5479695


we can obtain the finite symmetry transformation by solving
the initial value problem. In Section 3, through localizing the
linear superposition of multiple residual symmetries and
constructing the infinite transformation for the nKdV
equation, multiple residual symmetries and n-th Bäcklund
transformation are obtained. A direct result shows that one
can derive special soliton solutions from some seed solutions.
A brief summary is given in Section 4.

2. Nonlocal Symmetry and Finite
Transformation of the nKdV Equation

First, under the infinitesimal transformations u⟶ u + εσ1
and v⟶ v + εσ2 with the infinitesimal parameter ε, the
symmetries σ1 and σ2 of the nKdV equation (1) can be
expressed as a solution of their linear equations:

σ1,x − σ2,t � 0, (4a)

σ1,xxx + 4vσ1,x + 2vxσ1 + 4uxσ2 + 2uσ2,x � 0, (4b)

which means that equation (1) is form invariant. At the same
time, we can obtain the linear form of equation (2) under the
infinitesimal transformation as follows:

ψ⟶ ψ + εσ3. (5)

,at is, the symmetric equations of the Lax pair (2) are

σ3,xx − λσ3 + vσ3 + ψσ2 � 0, (6a)

σ3,t +
1
2λ

uσ3,x + ψxσ1􏼐 􏼑 −
1
4λ

uxσ3 + ψσ1,x􏼐 􏼑 � 0. (6b)

Second, supposing the symmetries σ1 and σ2 with the
auxiliary variable ψ as

σ1 � ψψt,

σ2 � ψψx,
(7)

the symmetry σ3 can be derived from equations (1), (6a)-
(6b), and (7) as follows:

σ3 � −
fψ
4

, (8)

where the auxiliary variable ψ satisfies ψ2 � fx, and the
corresponding symmetric equation is 2ψσ3 − σ4,x � 0, where
f is a auxiliary function and its infinitesimal transformation
is f⟶ f + εσ4. ,e direct result is

σ4 � −
f2

4
. (9)

So, equation (1) can be expressed by the auxiliary var-
iable ψ through equation (2) as

u � −
1

2ψψx

ψψxxt − ψxxψt + 4λψψt( 􏼁, (10a)

v �
λψ − ψxx

ψ
. (10b)

,e consistent condition of the auxiliary function f is
derived from equation (10) as

ft �
1

4λψx

ψ2ψxxt − ψψxxψt + 4λψ2ψt + 4ψ2
xψt − 4ψψxψxt􏼐 􏼑.

(11)

Indeed, equation (11) has a typical Schwarzian form of
the nKdV equation defined as follows:

St + 4λCx � 0,

C �
ft

fx

,

S �
fxxx

fx

−
3f2

xx

2f2
x

,

(12)

which is invariant under the Möbius transformation

f⟶
a + bf

c + df
, (ad − bc≠ 0). (13)

,e corresponding symmetric equation of equation (11)
is

ψxxψt + 4ψxψxt − 2ψψxxt − 8λψψt( 􏼁σ3

+ 4 λft + ψψxt − 2ψxψt( 􏼁σ3,x

+ ψψxx − 4ψ2
x − 4λψ2

􏼐 􏼑σ3,t + ψψtσ3,xx

+ 4ψψxσ3,xt − ψ2σ3,xxt + 4λψxσ4,t � 0.

(14)

Since the nonlocal symmetry could not be used to
construct the explicit solutions of a partial differential
equation (PDE) directly, we need to transform these com-
ponents to local ones. In this part, we will seek an enlarged
system which possesses a Lie point symmetry for the
nonlocal symmetry. For this purpose, we further introduce
four auxiliary variables g, h, p, and q, which need to obey the
rule

ψt � g,

ψx � h,

ft � p,

ht � q.

(15)

,e related symmetries are

σ3,t − σ5 � 0,

σ3,x − σ6 � 0,

σ4,t − σ7 � 0,

σ6,t − σ8 � 0,

(16)

under the infinitesimal transformations g⟶ g + εσ5,
h⟶ h + εσ6, p⟶ p + εσ7, and q⟶ q + εσ8.

It can be verified that equations (7)–(9), (14), and (16)
have the following solution:
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σ ≡ σ1, σ2, σ3, σ4, σ5, σ6, σ7, σ8􏼈 􏼉

�
⎧⎨

⎩gψ, hψ, −
fψ
4

, −
f2

4
, −

1
4

(pψ + fg), −
1
4

ψ3
+ fh􏼐 􏼑,

−
fp

2
, −

1
4

3gψ2
+ ph + fq􏼐 􏼑

⎫⎬

⎭.

(17)

,is is a local Lie point symmetry of the prolonged
equations (1), (2), and (15) with ψ2 � fx.

Correspondingly, the initial value problem can be
written as follows:

dU(ε)
dε

� G(ε)Ψ(ε), U(0) � u,

dV(ε)
dε

� H(ε)Ψ(ε), V(0) � v,

(18a)

dΨ(ε)
dε

� −
1
4

F(ε)Ψ(ε), Ψ(0) � ψ,

dF(ε)
dε

� −
1
4
F
2
(ε), F(0) � f,

(18b)

dG(ε)
dε

� −
1
4

[P(ε)Ψ(ε) + F(ε)G(ε)], G(0) � g,

dH(ε)
dε

� −
1
4
Ψ3(ε) + F(ε)H(ε)􏽨 􏽩, H(0) � h,

(18c)

dP(ε)
dε

� −
1
2

F(ε)P(ε), P(0) � p,

dQ(ε)
dε

� −
1
4

3G(ε)Ψ2(ε) + P(ε)H(ε) + F(ε)Q(ε)􏽨 􏽩, Q(0) � q.

(18d)

By solving this initial value problem, one can obtain the
following finite transformation theorem.

Theorem 1. If u, v,ψ, f, g, h, p, q􏼈 􏼉 is a solution of the ex-
tended system (1), (2), and (15), so is

U(ε) � u +
4gψε
4 + fε

−
2pψ2ε2

(4 + fε)2
,

V(ε) � v +
4hψε
4 + fε

−
2ψ4ε2

(4 + fε)2
,

(19a)

Ψ(ε) �
4ψ

4 + fε
,

F(ε) �
4f

4 + fε
,

(19b)

G(ε) �
4g

4 + fε
−

4pψε
(4 + fε)2

,

H(ε) �
h

4 + fε
−

ψ3ε
(4 + fε)2

,

(19c)

P(ε) �
16p

(4 + fε)2
,

Q(ε) �
4q

4 + fε
−
4 ph + 3gψ2( 􏼁ε

(4 + fε)2
+

8pψ3ε2

(4 + fε)3
,

(19d)

where ε is an arbitrary group parameter.

3. Bäcklund Transformation Related to
Multiple Residual Symmetries

Considering the intrusion of the spectral parameter λ in the
nonlocal symmetry of equation (7), we can derive infinitely
many residual symmetries of the fields u and v, that is,

σ1 � 􏽘
n

i�1
ciψiψi,t,

σ2 � 􏽘
n

i�1
ciψiψi,x,

(20)

where ψi(i � 1, 2, . . . , n) are spectral functions of the Lax
pair in equation (2) with different spectral parameters
λi ≠ λj(i≠ j).
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Just as the case of n � 1, to find the finite transformation
of equation (20), we have to introduce a suitable prolonged
system such that the symmetry can be localized to a Lie point
symmetry. ,e corresponding finite transformation can be
summarized as the following theorem.

Theorem 2. If u, v,ψi, fi, gi, hi, pi, qi, i � 1, 2, . . . , n􏼈 􏼉 is a
solution of the enlarged system

ux − vt � 0,

uxxx + 4uxv + 2uvx � 0,

(21a)

ψi,xx + vψi − λiψi � 0, (21b)

ψi,t +
1
2λi

uψi,x −
1
4λi

uxψi � 0, (21c)

ψ2
i − fi,x � 0,

4λifi,tψi,x − ψ2
i ψi,xxt + ψiψi,xxψi,t − 4λiψ

2
i ψi,t

− 4ψ2
i,xψi,t + 4ψiψi,xψi,xt � 0,

(21d)

ψi,t − gi � 0,

ψi,x − hi � 0,

fi,t − pi � 0,

hi,t − qi � 0,

(21e)

then the symmetry (20) is localized to a Lie point symmetry as
follows:

σ1 � 􏽘
n

i�1
cigiψi,

σ2 � 􏽘
n

i�1
cihiψi,

(22a)

σ3i
� −

1
4
cifiψi −

1
4

􏽘
j≠i

cjψj hiψj − hjψi􏼐 􏼑

λi − λj

,

σ4i
� −

1
4
cif

2
i −

1
4

􏽘
j≠i

cj hiψj − hjψi􏼐 􏼑
2

λi − λj􏼐 􏼑
2 ,

(22b)

σ5i
� −

1
4
ci piψi − figi( 􏼁 −

1
4

􏽘
j≠i

cj gj hiψj − hjψi􏼐 􏼑 +ψj qiψj − qjψi􏼐 􏼑 +ψj gjhi − gihj􏼐 􏼑􏽨 􏽩

λi − λj

, (22c)

σ6i
� −

1
4
ci ψ3

i + fihi􏼐 􏼑 −
1
4

􏽘
j≠i

cj

hj hiψj − hjψi􏼐 􏼑

λi − λj

+ψiψ
2
j

⎡⎣ ⎤⎦, (22d)

σ7i
� −

1
2
cifipi −

1
2

􏽘
j≠i

cj hiψj − hjψi􏼐 􏼑 qiψj − qjψi + gjhi − gihj􏼐 􏼑

λi − λj􏼐 􏼑
2 , (22e)

σ8i
� −

1
4

ci 3giψ
2
i + pihi + fiqi􏼐 􏼑 −

1
4

􏽘
j≠i

cj

qj hiψj − hjψi􏼐 􏼑 + hj gjhi − gihj􏼐 􏼑 + hj qiψj − qjψi􏼐 􏼑

λi − λj

+ψ2
jgi + 2ψjψigj

⎡⎣ ⎤⎦. (22f)

Proof. ,e enlarged system (21a)–(21e) has the following
linearized form:

σ1,x − σ2,t � 0,

σ1,xxx + 4vσ1,x + 2vxσ1 + 4uxσ2 + 2uσ2,x � 0,

(23a)

σ3i ,xx − λiσ3i
+ vσ3i

+ ψiσ2 � 0, (23b)

σ3i ,t
+

1
2λi

uσ3i ,x
+ ψi,xσ1􏼐 􏼑 −

1
4λi

uxσ3i
+ ψiσ1,x􏼐 􏼑 � 0,

(23c)

ψi,xxψi,t + 4ψi,xψi,xt − 2ψiψi,xxt − 8λiψiψi,t􏼐 􏼑σ3i

+ 4 λifi,t + ψiψi,xt − 2ψi,xψi,t􏼐 􏼑σ3i ,x

+ ψiψi,xx − 4ψ2
i,x − 4λiψ

2
i􏼐 􏼑σ3i ,t

+ ψiψi,tσ3i ,xx

+ 4ψiψi,xσ3i ,xt − ψ2
i σ3i ,xxt + 4λiψi,xσ4i ,t

� 0,

(23d)
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2ψiσ3i
− σ4i ,x

� 0,

σ3i ,t
− σ5i

� 0,

σ3i ,x
− σ6i

� 0,

σ4i ,t
− σ7i

� 0,

σ6i ,t
− σ8i

� 0,

i � 1, 2, . . . , n.

(23e)

We first consider the special case, i.e., for any fixed
i � k, ck ≠ 0 while cj � 0(j≠ k) in equations (22a)–(22f ).
In this case, we obtain the localized symmetry for
u, v,ψk, fk, gk, hk, pk, and qk from equation (17) as
follows:

σ ≡ σ1, σ2, σ3k
, σ4k

, σ5k
, σ6k

, σ7k
, σ8k

􏽮 􏽯

� ckgkψk, ckhkψk, −
ckfkψk

4
, −

ckf2
k

4
, −

ck

4
pkψk + fkgk( 􏼁, −

ck

4
ψ3

k + fkhk􏼐 􏼑, −
ckfkpk

2
, −

ck

4
3gkψ

2
k + pkhk + fkqk􏼐 􏼑􏼨 􏼩.

(24)

For j≠ k, we eliminate v through equation (21b) by
taking i � k and i � j, respectively. ,en, we have

ψj,xx �
ψjψk,xx

ψk

− λk − λj􏼐 􏼑ψj. (25)

Substituting σ2 � ckhkψk, into equation (23b) with i � j

and vanishing ψj,xx through equation (25), we have

λk − λj +
ψj,xx

ψj

􏼠 􏼡σ3j
− σ3j,xx − cjψkψjψj,x � 0. (26)

It can be easily verified that equation (26) has the fol-
lowing solution:

σ3j
� −

cjψj hkψj − hjψk􏼐 􏼑

4 λk − λj􏼐 􏼑
. (27)

,e symmetry for σ4j
, σ5j

, σ6j
, σ7j

, and σ8j
can be easily

obtained from equation (23e) with i � j:

σ4j
� −

cj hjψk − hkψj􏼐 􏼑
2

4 λk − λj􏼐 􏼑
2 ,

σ5j
� −

cj gj hkψj − hjψk􏼐 􏼑 + ψj qkψj − qjψk􏼐 􏼑 + ψj gjhk − gkhj􏼐 􏼑􏽨 􏽩

4 λk − λj􏼐 􏼑
,

(28a)

σ6j
� −

1
4

cj

hj hkψj − hjψk􏼐 􏼑

λk − λj

+ ψkψ
2
j

⎡⎣ ⎤⎦,

σ7j
� −

1
2

cj hkψj − hjψk􏼐 􏼑 qkψj − qjψk + gjhk − gkhj􏼐 􏼑

λi − λj􏼐 􏼑
2 ,

(28b)

σ8j
� −

1
4

cj

qj hkψj − hjψk􏼐 􏼑 + hj gjhk − gkhj􏼐 􏼑 + hj qkψj − qjψk􏼐 􏼑

λk − λj

+ ψ2
jgk + 2ψjψkgj

⎡⎣ ⎤⎦. (28c)
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After taking the linear combination of the above results
for all k � 1, 2, . . . , n, ,eorem 2 is proved.

When a nonlocal symmetry is localized to a Lie point
symmetry, searching for its finite transformation is in-
evitable according to Lie’s first principle. For the Lie point
symmetry (22a)–(22f), its initial value problem has

dU(ε)
dε

� 􏽘
n

i�1
ciGi(ε)Ψi(ε), U(0) � u,

dV(ε)
dε

� 􏽘
n

i�1
ciHi(ε)Ψi(ε), V(0) � v,

(29a)

dΨi(ε)
dε

� −
1
4
ciFi(ε)Ψi(ε)

−
1
4

􏽘
j≠i

cjΨj(ε) Hi(ε)Ψj(ε) − Hj(ε)Ψi(ε)􏽨 􏽩

λi − λj

,

Ψi(0) � ψi,

(29b)

dFi(ε)
dε

� −
1
4

ciF
2
i (ε)

−
1
4

􏽘
j≠i

cj Hi(ε)Ψj(ε) − Hj(ε)Ψi(ε)􏽨 􏽩
2

λi − λj􏼐 􏼑
2 ,

Fi(0) � fi,

(29c)

dGi(ε)
dε

� −
1
4
ci Pi(ε)Ψi(ε) − Fi(ε)Gi(ε)􏼂 􏼃

−
1
4

􏽘
j≠i

cj

λi − λi

􏼚Gj(ε) Hi(ε)Ψj(ε) − Hj(ε)Ψi(ε)􏽨 􏽩

+ Ψj(ε) Qi(ε)Ψj(ε) − Qj(ε)Ψi(ε)􏽨 􏽩

+ Ψj(ε) Gj(ε)Hi(ε) − Gi(ε)Hj(ε)􏽨 􏽩􏼛,

Gi(0) � gi,

(29d)

dHi(ε)
dε

� −
1
4
ci Ψ

3
i (ε) + Fi(ε)Hi(ε)􏽨 􏽩

−
1
4

􏽘
j≠i

cj

⎧⎨

⎩

Hj(ε) Hi(ε)Ψj(ε) − Hj(ε)Ψi(ε)􏽨 􏽩

λi − λj

+ Ψi(ε)Ψ
2
j(ε)

⎫⎬

⎭, Hi(0) � hi,

(29e)

dPi(ε)
dε

� −
1
2
ciFi(ε)Pi(ε) −

1
2

􏽘
j≠i

cj

λi − λj􏼐 􏼑
2

· Hi(ε)Ψj(ε) − Hj(ε)Ψi(ε)􏽨 􏽩%􏼂Qi(ε)Ψj(ε)

− Qj(ε)Ψi(ε) + Gj(ε)Hi(ε) − Gi(ε)Hj(ε)%􏼃,

Pi(0) � pi,

(29f)

dQi(ε)
dε

� −
1
4
ci 3Gi(ε)Ψ

2
i (ε) + Pi(ε)Hi(ε) + Fi(ε)Qi(ε)􏽨 􏽩

−
1
4

􏽘
j≠i

cj
⎡⎣

1
λi − λj

%( Qj(ε)( Hi(ε)Ψj(ε)

− Hj(ε)Ψi(ε)􏼁 + Hj(ε) Gj(ε)Hi(ε) − Gi(ε)Hj(ε)􏼐 􏼑

+ Hj(ε) Qi(ε)Ψj(ε) − Qj(ε)Ψi(ε)􏼐 􏼑%􏼁⎤⎦,

dQi(ε)
dε

� −
1
4

ci 3Gi(ε)Ψ
2
i (ε) + Pi(ε)Hi(ε) + Fi(ε)Qi(ε)􏽨 􏽩

−
1
4

􏽘
j≠i

cj

⎧⎨

⎩

Qj(ε) Hi(ε)Ψj(ε) − Hj(ε)Ψi(ε)􏽨 􏽩

λi − λj

+
Hj(ε) Gj(ε)Hi(ε) − Gi(ε)Hj(ε)􏽨 􏽩

λi − λj

+
Hj(ε) Qi(ε)Ψj(ε) − Qj(ε)Ψi(ε)􏽨 􏽩

λi − λj

+ Ψ2j(ε)Gi(ε) + 2Ψj(ε)Ψi(ε)Gj(ε)
⎫⎬

⎭, Qi(0) � qi.

(29g)

,en, one can get the following n-th Bäcklund theorem
for the enlarged system (21a)–(21e) by solving
(29a)–(29g). □

Theorem 3. If u, v,ψi, fi, gi, hi, pi, qi, i � 1, 2, . . . , n􏼈 􏼉 is a
solution of the prolonged nKdV equations (21a)–(21e), so is
U(ε), V(ε),Ψ i(ε), Fi(ε),􏼈 Gi(ε), Hi(ε), Pi(ε), Qi(ε), i � 1, 2,

. . . , n}, where

U(ε) � u + 2(lnΔ)xt,

V(ε) � v + 2(lnΔ)xx,
(30a)

Ψi(ε) �
2Γi
Δ

,

Fi(ε) �
2Δi

Δ
,

Gi(ε) � Ψi,t(ε),

(30b)
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Hi(ε) � Ψi,x(ε),
Pi(ε) � Fi,x(ε),
Qi(ε) � Ψi,xt(ε),

(30c)

where Δ,Δi, and Γi are three determinants of the matrices
D, Di, and Ei, respectively, which are defined as follows:

D �

c1εf1 + 4 c1εμ1,2 · · · c1εμ1,j · · · c1εμ1,n

c2εμ1,2 c2εf2 + 4 · · · c2εμ2,j · · · c2εμ2,n

· · · · · · · · · · · · · · · · · ·

cjεμ1,j cjεμ2,j · · · cjεfj + 4 · · · cjεμj,n

· · · · · · · · · · · · · · · · · ·

cnεμ1,n cnεμ2,n · · · cnεμj,n · · · cnεfn + 4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, μi,j �
hjψi − hiψj

λi − λj

,

Di �

c1εf1 + 4 c1εμ1,2 · · · c1εμ1,i− 1 c1εμ1,i c1εμ1,i+1 · · · c1εμ1,n

c2εμ1,2 c2εf2 + 4 · · · c2εμ2,i− 1 c2εμ2,i c2εμ2,i+1 · · · c2εμ2,n

· · · · · · · · · · · · · · · · · · · · · · · ·

ci− 1εμ1,i− 1 ci− 1εμ2,i− 1 · · · ci− 1εfi− 1 + 4 ci− 1εμi− 1,i ci− 1εμi− 1,i+1 · · · ci− 1εμi− 1,n

μ1,i μ2,i · · · μi,i− 1 fi μi,i+1 · · · μi,n

ci+1εμ1,i+1 ci+1εμ2,i+1 · · · ci+1εμi− 1,i+1 ci+1εμi,i+1 ci+1εfi+1 + 4 · · · ci+1εμi+1,n

· · · · · · · · · · · · · · · · · · · · · · · ·

cnεμ1,n cnεμ2,n · · · cnεμi− 1,n cnεμi,n cnεμi+1,n · · · cnεfn + 4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

Ei �

c1εf1 + 4 c1εμ1,2 · · · c1εμ1,i− 1 c1εμ1,i c1εμ1,i+1 · · · c1εμ1,n

c2εμ1,2 c2εf2 + 4 · · · c2εμ2,i− 1 c2εμ2,i c2εμ2,i+1 · · · c2εμ2,n

· · · · · · · · · · · · · · · · · · · · · · · ·

ci− 1εμ1,i− 1 ci− 1εμ2,i− 1 · · · ci− 1εfi− 1 + 4 ci− 1εμi− 1,i ci− 1εμi− 1,i+1 · · · ci− 1εμi− 1,n

ψ1 ψ2 · · · ψi− 1 ψi ψi+1 · · · ψn

ci+1εμ1,i+1 ci+1εμ2,i+1 · · · ci+1εμi− 1,i+1 ci+1εμi,i+1 ci+1εfi,i+1 + 4 · · · ci+1εμi+1,n

· · · · · · · · · · · · · · · · · · · · · · · ·

cnεμ1,n cnεμ2,n · · · cnεμi− 1,n cnεμi,n cnεμi+1,n · · · cnεfn + 4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(31)

From ,eorem 3, we can obtain an infinite number of
new solutions from a suitable seed solution of the nKdV
equation (1). Especially, one can obtain recursive soliton
solutions of this system from the known one. For example,
taking the seed solution u � α and v � β for equation (1), it
is not difficult to verify that equations (21a)–(21e) possess
the following solution:

ψi � exp
ξi

2
􏼠 􏼡,

fi �
1
2ki

exp ξi( 􏼁,

λi � k
2
i + β,

μi,j �
exp ξi + ξj􏼐 􏼑/2􏼐 􏼑

ki + kj

,

ξi � 2kix −
αkit

k2
i + β

,

i, j � 1, 2, . . . , n.

(32)

,e corresponding first three multiple wave solutions for
equation (1) are

Δ1 ≡ Δ � c1εf1 + 4, (33)

u � α + 2 lnΔ1( 􏼁xt � α −
32c1k

3
1αε exp ξ1( 􏼁

k2
1 + β􏼐 􏼑 8k1 + c1ε exp ξ1( 􏼁􏼂 􏼃

2,

(34a)

v � β + 2 lnΔ1( 􏼁xx � β +
64c1k

3
1ε exp ξ1( 􏼁

8k1 + c1ε exp ξ1( 􏼁􏼂 􏼃
2, (34b)

for the line soliton solution:

Δ2 ≡ Δ � c1εf1 + 4( 􏼁 c2εf2 + 4( 􏼁 − c1c2ε
2μ21,2

� 16 + 4c1εf1 + 4c2εf2 +
c1c2ε2 k1 − k2( 􏼁

2
f1f2

k1 + k2( 􏼁
2 ,

(35)

u � α + 2 lnΔ2( 􏼁xt,

v � β + 2 lnΔ2( 􏼁xx,
(36)
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Figure 2: Interactions of two-resonant solitons expressed by equation (36) for solution of the nKdV equation (1) with the parameters
a � ε � c1 � c2 � k1 � 1 and k2 � 1/2.
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Figure 3: Interactions of three-resonant solitons expressed by equation (37) for solution of the nKdV equation (1) with the parameters
a � ε � c1 � c2 � c3 � k1 � 1, k2 � 1/2, and k3 � 2.
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Figure 1: Plots of two line solitons expressed by equations (34a)–(34b) for solution of the nKdV equation (1) with the parameters
a � ε � c1 � k1 � 1.
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u � α + 2 lnΔ3( 􏼁xt,

v3 � β + 2 lnΔ3( 􏼁xx,
(37)

Δ3 �

c1εf1 + 4 c1εμ1,2 c1εμ1,3

c2εμ1,2 c2εf2 + 4 c2εμ2,3

c3εμ1,3 c3εμ2,3 c3εf3 + 4

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

� 64 + 16c1εf1 + 16c2εf2 + 16c3εf3

+
4c1c2ε2 k1 − k2( 􏼁

2
f1f2

k1 + k2( 􏼁
2 +

4c1c3ε2 k1 − k3( 􏼁
2
f1f3

k1 + k3( 􏼁
2

+
4c2c3ε2 k2 − k3( 􏼁

2
f2f3

k2 + k3( 􏼁
2

+
c1c2c3ε3 k1 − k2( 􏼁

2
k1 − k3( 􏼁

2
k2 − k3( 􏼁

2
f1f2f3

k1 + k2( 􏼁
2

k1 + k3( 􏼁
2

k2 + k3( 􏼁
2 .

(38)

For illustrating more details, the parameters are set as
follows: a � ε � c1 � c2 � c3 � k1 � 1, k2 � 1/2, and k3 � 2.

Figure 1 displays the bell-like bright and dark solitons for the
above condition of equations (34a)–(34b). Figure 1(a) shows
a line dark soliton for u1 with the amplitude 1, while
Figure 1(b) shows a bright one for v1 with the amplitude 2.
Similarly, Figure 2 shows the collision of two-resonant
solitons in equation (36), and Figure 3 shows interactions of
three-resonant solitons expressed in equation (37).

4. Summary

,e nonlocal symmetry of the nKdV equation is obtained
with the aid of its Lax pair. After introducing four auxiliary
variables g, h, p, and q, an enlarged system which possesses
a Lie point symmetry for the nonlocal symmetry is taken.
By applying Lie’s first theorem for the localized point
symmetries, we obtain the corresponding finite trans-
formation. Furthermore, we can localize the linear su-
perposition of multiple residual symmetries and construct
the infinite transformation for the nKdV equation. From
,eorem 3, the n-th Bäcklund transformation can be
expressed in a compact way of determinants. According to
this conclusion, one can derive special soliton solutions
from some seed solutions.
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New sufficient conditions for the oscillation of all solutions to a class of third-order Emden–Fowler differential equations with
unbounded neutral coefficients are established. The criteria obtained essentially improve related results in the literature. In
particular, as opposed to known results, new criteria can distinguish solutions of third-order differential equations with different
behaviors. Examples are also provided to illustrate the results.

1. Introduction

This paper is concerned with the oscillation of solutions of
the third-order Emden–Fowler neutral differential equation

𝑧󸀠󸀠󸀠 (𝑡) + 𝑞 (𝑡) 𝑥𝜆 (𝑔 (𝑡)) = 0, 𝑡 ≥ 𝑡0 > 0, (1)

where 𝑧(𝑡) fl 𝑥(𝑡) + 𝑝(𝑡)𝑥(𝜂(𝑡)), 𝜆 > 0 is the ratio of odd
positive integers. Throughout, the following conditions are
assumed to hold:

(C1) 𝑝, 𝑞 : [𝑡0,∞) 󳨀→ R are continuous functions,𝑝(𝑡) ≥ 1, 𝑝(𝑡) �≡ 1 for large 𝑡, 𝑞(𝑡) ≥ 0, and 𝑞(𝑡) is
not identically zero for large 𝑡;

(C2) 𝜂, 𝑔 : [𝑡0,∞) 󳨀→ R are continuous functions,𝜂(𝑡) ≤ 𝑡, 𝜂 is strictly increasing, and lim𝑡󳨀→∞𝜂(𝑡) =
lim𝑡󳨀→∞𝑔(𝑡) = ∞.

The study of (1) is important due to the further devel-
opment of the oscillation theory and its practical reasons.

Emden–Fowler differential equations have numerous appli-
cations in physics (mathematical, theoretical, and chemical
physics) and engineering; see, e.g., the papers by Agarwal et
al. [1], Li and Rogovchenko [2–5], and Wong [6].

By a solution of (1) we mean a continuous function 𝑥 :[𝑡𝑥,∞) 󳨀→ R, 𝑡𝑥 ≥ 𝑡0, such that 𝑧 ∈ C3([𝑡𝑥,∞),R) and𝑥(𝑡) satisfies (1) on [𝑡𝑥,∞).We consider only proper solutions𝑥(𝑡) of (1) that satisfy sup{|𝑥(𝑡)| : 𝑡 ≥ 𝑇} > 0 for all 𝑇 ≥𝑡𝑥. Furthermore, we tacitly suppose that (1) possesses such
solutions. Such a solution 𝑥(𝑡) of (1) is said to be oscillatory
if it has arbitrarily large zeros on [𝑡𝑥,∞); i.e., for any 𝑡1 ∈[𝑡𝑥,∞), there exists a 𝑡2 ≥ 𝑡1 such that 𝑥(𝑡2) = 0; otherwise,
it is called nonoscillatory, i.e., if it is either eventually positive
or eventually negative. Equation (1) is said to be oscillatory if
all its proper solutions oscillate.

In recent years, there has been much research activity
concerning the oscillation and asymptotic behavior of solu-
tions to various classes of third-order neutral differential
equations. We refer the reader to the papers [2, 7–17] and
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the references contained therein as examples of recent results
on this topic. However, the sufficient conditions established
in these papers except [10, 13] ensure that every solution𝑥(𝑡) of equations either oscillates or converges to zero as𝑡 󳨀→ ∞. This means that these results cannot distinguish
solutions with different behaviors. On the other hand, the
papers [2, 7–17] were concerned with the case where 𝑝 is
bounded, i.e., the cases where −1 < 𝑝0 ≤ 𝑝(𝑡) ≤ 0, 0 ≤𝑝(𝑡) ≤ 𝑝0 < 1, and 0 ≤ 𝑝(𝑡) ≤ 𝑝0 < ∞ were considered.
In view of the observations above, we wish to develop new
sufficient conditions which not only ensure oscillation of (1)
but also can be applied to the case where 𝑝 is unbounded.
We would like to point out that only a few results are known
regarding oscillatory and asymptotic behavior of third-order
neutral differential equations for unbounded 𝑝; see, e.g., the
papers [18–20], where the Riccati transformation technique
and comparison method were used to obtain the results.
A similar observation as above is valid for these papers as
well, i.e., the sufficient conditions established in these papers
cannot distinguish solutions with different behaviors too.

Consequently, our work is of significance because of the
above-mentioned reasons. Moreover, the results obtained in
this paper can easily be extended to more general third-order
differential equations with unbounded neutral coefficients to
derive more general oscillation results. It is our belief that
the present paper will contribute significantly to the study
of oscillatory behavior of solutions of third-order neutral
differential equations. In the sequel, all functional inequalities
are supposed to hold eventually.

2. Main Results

We begin with the following lemmas that will play an
important role in establishing ourmain results. For notational
purposes, we let

𝜑 (𝑡) fl 1𝑝 (𝜂−1 (𝑡)) (1 − 1𝑝 (𝜂−1 (𝜂−1 (𝑡)))) ≥ 0,
𝜓 (𝑡) fl 1𝑝 (𝜂−1 (𝑡)) (1

− 1𝑝 (𝜂−1 (𝜂−1 (𝑡))) (𝜂
−1 (𝜂−1 (𝑡)))2/𝑙1
(𝜂−1 (𝑡))2/𝑙1 ) ≥ 0,

(2)

where 𝑙1 ∈ (0, 1) is a constant and 𝜂−1 is the inverse function
of 𝜂.
Lemma 1 (see [21]). Let the function ℎ satisfy ℎ(𝑖)(𝑡) > 0, 𝑖 =0, 1, . . . , 𝑚 and ℎ(𝑚+1)(𝑡) ≤ 0 eventually. Then, for every 𝑙 ∈(0, 1), ℎ(𝑡)/ℎ󸀠(𝑡) ≥ 𝑙𝑡/𝑚 eventually.

Lemma 2. Let conditions (𝐶1) and (𝐶2) be satisfied and
assume that 𝑥 is an eventually positive solution of (1). Then for
sufficiently large 𝑡, either

(I) 𝑧(𝑡) > 0, 𝑧󸀠(𝑡) > 0, 𝑧󸀠󸀠(𝑡) > 0, and 𝑧󸀠󸀠󸀠(𝑡) ≤ 0; or

(II) 𝑧(𝑡) > 0, 𝑧󸀠(𝑡) < 0, 𝑧󸀠󸀠(𝑡) > 0, and 𝑧󸀠󸀠󸀠(𝑡) ≤ 0.
Proof. The proof is not difficult and so is omitted.

Theorem 3. In addition to conditions (𝐶1) and (𝐶2), assume
that there exists a function 𝜎 ∈ C([𝑡0,∞),R) such that 𝑔(𝑡) ≤𝜎(𝑡) < 𝜂(𝑡) for 𝑡 ≥ 𝑡0. If for some constants 𝑙1, 𝑙2 ∈ (0, 1), the
two first-order delay differential equations

𝑌󸀠 (𝑡) + (𝑙1𝑙2)𝜆2𝜆 𝑞 (𝑡) 𝜓𝜆 (𝑔 (𝑡)) (𝜂−1 (𝑔 (𝑡)))2𝜆
⋅ 𝑌𝜆 (𝜂−1 (𝑔 (𝑡))) = 0

(3)

and

𝑊󸀠 (𝑡) + 12𝜆 𝑞 (𝑡) 𝜑𝜆 (𝑔 (𝑡)) (𝜂−1 (𝜎 (𝑡)) − 𝜂−1 (𝑔 (𝑡)))2𝜆
⋅ 𝑊𝜆 (𝜂−1 (𝜎 (𝑡))) = 0 (4)

oscillate, then (1) oscillates.

Proof. Let 𝑥 be a nonoscillatory solution of (1). Since −𝑥
is also a solution of (1), without loss of generality, we may
suppose that there exists a 𝑡1 ∈ [𝑡0,∞) such that, for 𝑡 ≥ 𝑡1,𝑥(𝑡) > 0, 𝑥(𝜂(𝑡)) > 0, and 𝑥(𝑔(𝑡)) > 0. It follows from
Lemma 2 that 𝑧 satisfies either case (𝐼) or case (𝐼𝐼).

Assume first that case (𝐼) holds. By virtue of the definition
of 𝑧, we conclude that

𝑥 (𝑡) = 1𝑝 (𝜂−1 (𝑡)) (𝑧 (𝜂−1 (𝑡)) − 𝑥 (𝜂−1 (𝑡)))
= 𝑧 (𝜂−1 (𝑡))𝑝 (𝜂−1 (𝑡))
− 𝑧 (𝜂−1 (𝜂−1 (𝑡))) − 𝑥 (𝜂−1 (𝜂−1 (𝑡)))𝑝 (𝜂−1 (𝑡)) 𝑝 (𝜂−1 (𝜂−1 (𝑡)))

≥ 𝑧 (𝜂−1 (𝑡))𝑝 (𝜂−1 (𝑡)) − 𝑧 (𝜂−1 (𝜂−1 (𝑡)))𝑝 (𝜂−1 (𝑡)) 𝑝 (𝜂−1 (𝜂−1 (𝑡))) .

(5)

Taking into account (𝐼) and Lemma 1 with𝑚 = 2, we deduce
that, for every 𝑙1 ∈ (0, 1),𝑧 (𝑡)𝑧󸀠 (𝑡) ≥ 𝑙1 𝑡2 , (6)

which yields

(𝑧 (𝑡)𝑡2/𝑙1 )
󸀠 = 𝑡𝑧󸀠 (𝑡) − (2/𝑙1) 𝑧 (𝑡)𝑡(2/𝑙1)+1 ≤ 0. (7)

Hence, 𝑧(𝑡)/𝑡2/𝑙1 is nonincreasing for sufficiently large 𝑡. It
follows from 𝜂(𝑡) ≤ 𝑡 and the monotonicities of 𝜂(𝑡) and𝑧(𝑡)/𝑡2/𝑙1 that

𝑧 (𝜂−1 (𝜂−1 (𝑡))) ≤ (𝜂−1 (𝜂−1 (𝑡)))2/𝑙1(𝜂−1 (𝑡))2/𝑙1 𝑧 (𝜂−1 (𝑡)) . (8)
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Using (8) in (5), we arrive at

𝑥 (𝑡) ≥ 𝜓 (𝑡) 𝑧 (𝜂−1 (𝑡)) , (9)

and thus

𝑥 (𝑔 (𝑡)) ≥ 𝜓 (𝑔 (𝑡)) 𝑧 (𝜂−1 (𝑔 (𝑡))) . (10)

Combining (1) and (10), we obtain

𝑧󸀠󸀠󸀠 (𝑡) + 𝑞 (𝑡) 𝜓𝜆 (𝑔 (𝑡)) 𝑧𝜆 (𝜂−1 (𝑔 (𝑡))) ≤ 0. (11)

It follows now from (6) and (11) that

𝑧󸀠󸀠󸀠 (𝑡)
+ 𝑙1𝜆2𝜆 𝑞 (𝑡) 𝜓𝜆 (𝑔 (𝑡)) (𝜂−1 (𝑔 (𝑡)))𝜆 (𝑧󸀠 (𝜂−1 (𝑔 (𝑡))))𝜆
≤ 0.

(12)

Letting 𝑤(𝑡) fl 𝑧󸀠(𝑡), we have
𝑤 (𝑡) > 0,
𝑤󸀠 (𝑡) > 0,
𝑤󸀠󸀠 (𝑡) ≤ 0,

(13)

and inequality (12) can be written as

𝑤󸀠󸀠 (𝑡)
+ 𝑙1𝜆2𝜆 𝑞 (𝑡) 𝜓𝜆 (𝑔 (𝑡)) (𝜂−1 (𝑔 (𝑡)))𝜆 𝑤𝜆 (𝜂−1 (𝑔 (𝑡)))
≤ 0.

(14)

Combining (13) and Lemma 1 with 𝑚 = 1, we get, for every𝑙2 ∈ (0, 1), 𝑤 (𝑡)𝑤󸀠 (𝑡) ≥ 𝑙2𝑡, (15)

and so

𝑤(𝜂−1 (𝑔 (𝑡))) ≥ 𝑙2𝜂−1 (𝑔 (𝑡)) 𝑤󸀠 (𝜂−1 (𝑔 (𝑡))) . (16)

Using (16) in (14), we deduce that

𝑤󸀠󸀠 (𝑡) + (𝑙1𝑙2)𝜆2𝜆 𝑞 (𝑡) 𝜓𝜆 (𝑔 (𝑡)) (𝜂−1 (𝑔 (𝑡)))2𝜆
⋅ (𝑤󸀠 (𝜂−1 (𝑔 (𝑡))))𝜆 ≤ 0.

(17)

Letting 𝑌(𝑡) fl 𝑤󸀠(𝑡), we see that 𝑌 is a positive solution of
the first-order delay differential inequality

𝑌󸀠 (𝑡) + (𝑙1𝑙2)𝜆2𝜆 𝑞 (𝑡) 𝜓𝜆 (𝑔 (𝑡)) (𝜂−1 (𝑔 (𝑡)))2𝜆
⋅ 𝑌𝜆 (𝜂−1 (𝑔 (𝑡))) ≤ 0.

(18)

Therefore, by [22, Theorem 1], we conclude that, for every𝑙1, 𝑙2 ∈ (0, 1), (3) has a positive solution, which contradicts
the fact that (3) oscillates.

Next, suppose that case (𝐼𝐼) holds. Since 𝑧 is strictly
decreasing and 𝜂(𝑡) ≤ 𝑡, we have

𝑧 (𝜂−1 (𝑡)) ≥ 𝑧 (𝜂−1 (𝜂−1 (𝑡))) . (19)

Using (19) in (5), we conclude that

𝑥 (𝑡) ≥ 𝜑 (𝑡) 𝑧 (𝜂−1 (𝑡)) , (20)

and thus

𝑥 (𝑔 (𝑡)) ≥ 𝜑 (𝑔 (𝑡)) 𝑧 (𝜂−1 (𝑔 (𝑡))) . (21)

Substitution of (21) into (1) implies that

𝑧󸀠󸀠󸀠 (𝑡) + 𝑞 (𝑡) 𝜑𝜆 (𝑔 (𝑡)) 𝑧𝜆 (𝜂−1 (𝑔 (𝑡))) ≤ 0. (22)

Since 𝑧(𝑡) > 0, 𝑧󸀠(𝑡) < 0, 𝑧󸀠󸀠(𝑡) > 0, and 𝑧󸀠󸀠󸀠(𝑡) ≤ 0, for
V ≥ 𝑢 ≥ 𝑡2, one can easily arrive at

𝑧 (𝑢) ≥ (V − 𝑢)22 𝑧󸀠󸀠 (V) . (23)

By virtue of 𝑔(𝑡) ≤ 𝜎(𝑡) and the fact that 𝜂 is strictly
increasing, we deduce that 𝜂−1(𝑔(𝑡)) ≤ 𝜂−1(𝜎(𝑡)). Substitute𝑢 = 𝜂−1(𝑔(𝑡)) and V = 𝜂−1(𝜎(𝑡)) into (23) to obtain

𝑧 (𝜂−1 (𝑔 (𝑡)))
≥ (𝜂−1 (𝜎 (𝑡)) − 𝜂−1 (𝑔 (𝑡)))22 𝑧󸀠󸀠 (𝜂−1 (𝜎 (𝑡))) . (24)

Using (24) in (22), we get

𝑧󸀠󸀠󸀠 (𝑡) + 12𝜆 𝑞 (𝑡) 𝜑𝜆 (𝑔 (𝑡)) (𝜂−1 (𝜎 (𝑡)) − 𝜂−1 (𝑔 (𝑡)))2𝜆
⋅ (𝑧󸀠󸀠 (𝜂−1 (𝜎 (𝑡))))𝜆 ≤ 0. (25)

Letting𝑊(𝑡) fl 𝑧󸀠󸀠(𝑡), we see that𝑊 is a positive solution of
the first-order delay differential inequality

𝑊󸀠 (𝑡) + 12𝜆 𝑞 (𝑡) 𝜑𝜆 (𝑔 (𝑡)) (𝜂−1 (𝜎 (𝑡)) − 𝜂−1 (𝑔 (𝑡)))2𝜆
⋅ 𝑊𝜆 (𝜂−1 (𝜎 (𝑡))) ≤ 0. (26)

The rest of the proof is similar to that of case (𝐼) and hence is
omitted. This completes the proof.

From [23], it is well known that if

lim inf
𝑡󳨀→∞

∫𝑡
𝜏(𝑡)
𝑅 (𝑠) d𝑠 > 1

e
, (27)

then the first-order delay differential equation

𝑥󸀠 (𝑡) + 𝑅 (𝑡) 𝑥 (𝜏 (𝑡)) = 0 (28)

oscillates, where 𝑅, 𝜏 ∈ C([𝑡0,∞),R), 𝑅(𝑡) ≥ 0, 𝜏(𝑡) < 𝑡, and
lim𝑡󳨀→∞𝜏(𝑡) = ∞.Therefore, by virtue ofTheorem 3, we have
the following result.
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Corollary 4. Let conditions (𝐶1) and (𝐶2) be satisfied and𝜆 =1. Assume that there exists a function 𝜎 ∈ C([𝑡0,∞),R) such
that 𝑔(𝑡) ≤ 𝜎(𝑡) < 𝜂(𝑡) for 𝑡 ≥ 𝑡0. If for some constant 𝑙1 ∈(0, 1),

lim inf
𝑡󳨀→∞

∫𝑡
𝜂−1(𝑔(𝑡))

𝑞 (𝑠) 𝜓 (𝑔 (𝑠)) (𝜂−1 (𝑔 (𝑠)))2 d𝑠 > 2𝑙1e (29)

and

lim inf
𝑡󳨀→∞

∫𝑡
𝜂−1(𝜎(𝑡))

𝑞 (𝑠) 𝜑 (𝑔 (𝑠))
⋅ (𝜂−1 (𝜎 (𝑠)) − 𝜂−1 (𝑔 (𝑠)))2 d𝑠 > 2

e
,

(30)

then (1) oscillates.

Corollary 5. Let conditions (𝐶1) and (𝐶2) be satisfied and𝜆 <1. Assume that there exists a function 𝜎 ∈ C([𝑡0,∞),R) such
that 𝑔(𝑡) ≤ 𝜎(𝑡) < 𝜂(𝑡) for 𝑡 ≥ 𝑡0. If for some constant 𝑙1 ∈(0, 1),

∫∞
𝑡0

𝑞 (𝑡) 𝜓𝜆 (𝑔 (𝑡)) (𝜂−1 (𝑔 (𝑡)))2𝜆 d𝑡 = ∞ (31)

and

∫∞
𝑡0

𝑞 (𝑡) 𝜑𝜆 (𝑔 (𝑡)) (𝜂−1 (𝜎 (𝑡)) − 𝜂−1 (𝑔 (𝑡)))2𝜆 d𝑡
= ∞, (32)

then (1) oscillates.

Proof. Applications of (31), (32), and [24, Theorem 2]
imply that (3) and (4) oscillate. Hence, by Theorem 3, (1)
oscillates.

Next, we present the following interesting result for which
we need to assume that the function 𝑔 in condition (𝐶2) is
nondecreasing.

Theorem 6. In addition to conditions (𝐶1) and (𝐶2), assume
that the function 𝑔 with 𝑔(𝑡) < 𝜂(𝑡) is nondecreasing on[𝑡0,∞). If for some constant 𝑙1 ∈ (0, 1),

lim sup
𝑡󳨀→∞

(𝜂−1 (𝑔 (𝑡)))2𝜆

⋅ ∫∞
𝑡
𝑞 (𝑠) 𝜓𝜆 (𝑔 (𝑠)) d𝑠{{{

> 2𝑙1 , if 𝜆 = 1,
= ∞, if 𝜆 < 1,

(33)

and

lim sup
𝑡󳨀→∞

∫𝑡
𝜂−1(𝑔(𝑡))

𝑞 (𝑠) 𝜑𝜆 (𝑔 (𝑠)) (𝜂−1 (𝑔 (𝑡)) − 𝜂−1 (𝑔 (𝑠)))2𝜆 d𝑠{{{
> 2, if 𝜆 = 1,
= ∞, if 𝜆 < 1, (34)

then (1) oscillates.

Proof. Let 𝑥 be a nonoscillatory solution of (1). Without loss
of generality, we may suppose that there exists a 𝑡1 ∈ [𝑡0,∞)

such that, for 𝑡 ≥ 𝑡1, 𝑥(𝑡) > 0, 𝑥(𝜂(𝑡)) > 0, and 𝑥(𝑔(𝑡)) > 0. It
follows from Lemma 2 that 𝑧 satisfies either case (𝐼) or case(𝐼𝐼).

Assume that case (𝐼) holds. Proceeding as in the proof of
Theorem 3, we deduce that (13), (14), and (16) hold for every𝑙1, 𝑙2 ∈ (0, 1). Integrating (14) from 𝑡 to 𝑢, 𝑢 ≥ 𝑡 and letting𝑢 󳨀→ ∞, we obtain

𝑤󸀠 (𝑡) ≥ ∫∞
𝑡

𝑙1𝜆2𝜆 𝑞 (𝑠) 𝜓𝜆 (𝑔 (𝑠)) (𝜂−1 (𝑔 (𝑠)))𝜆
⋅ 𝑤𝜆 (𝜂−1 (𝑔 (𝑠))) d𝑠
≥ (∫∞
𝑡

𝑙1𝜆2𝜆 𝑞 (𝑠) 𝜓𝜆 (𝑔 (𝑠)) (𝜂−1 (𝑔 (𝑠)))𝜆 d𝑠)
⋅ 𝑤𝜆 (𝜂−1 (𝑔 (𝑡))) .

(35)

Using (16) in (35), we conclude that

𝑤󸀠 (𝑡)
≥ (∫∞
𝑡

(𝑙1𝑙2)𝜆2𝜆 𝑞 (𝑠) 𝜓𝜆 (𝑔 (𝑠)) (𝜂−1 (𝑔 (𝑠)))𝜆 d𝑠)
⋅ (𝜂−1 (𝑔 (𝑡)))𝜆 (𝑤󸀠 (𝜂−1 (𝑔 (𝑡))))𝜆 ,

(36)

which yields

𝑤󸀠 (𝑡) ≥ (∫∞
𝑡

(𝑙1𝑙2)𝜆2𝜆 𝑞 (𝑠) 𝜓𝜆 (𝑔 (𝑠)) d𝑠)
⋅ (𝜂−1 (𝑔 (𝑡)))2𝜆 (𝑤󸀠 (𝜂−1 (𝑔 (𝑡))))𝜆 .

(37)

Using (13) and the fact that 𝜂−1(𝑔(𝑡)) ≤ 𝑡, we have
𝑤󸀠 (𝜂−1 (𝑔 (𝑡))) ≥ 𝑤󸀠 (𝑡) , (38)

and so inequality (37) implies that

𝑤󸀠 (𝑡) ≥ (∫∞
𝑡

(𝑙1𝑙2)𝜆2𝜆 𝑞 (𝑠) 𝜓𝜆 (𝑔 (𝑠)) d𝑠)
⋅ (𝜂−1 (𝑔 (𝑡)))2𝜆 (𝑤󸀠 (𝑡))𝜆 ,

(39)

i.e.,

(𝑤󸀠 (𝑡))1−𝜆
≥ (∫∞
𝑡

(𝑙1𝑙2)𝜆2𝜆 𝑞 (𝑠) 𝜓𝜆 (𝑔 (𝑠)) d𝑠) (𝜂−1 (𝑔 (𝑡)))2𝜆 . (40)

Taking lim sup as 𝑡 󳨀→ ∞ in (40), we obtain a contradiction
to (33).

Next, let case (𝐼𝐼) hold. Then, we arrive at (22) and (23).
For 𝑡 ≥ 𝑠 ≥ 𝑡2, we see that 𝜂−1(𝑔(𝑡)) ≥ 𝜂−1(𝑔(𝑠)). Putting𝑢 = 𝜂−1(𝑔(𝑠)) and V = 𝜂−1(𝑔(𝑡)) into (23), we get

𝑧 (𝜂−1 (𝑔 (𝑠)))
≥ (𝜂−1 (𝑔 (𝑡)) − 𝜂−1 (𝑔 (𝑠)))22 𝑧󸀠󸀠 (𝜂−1 (𝑔 (𝑡))) . (41)
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Integrating (22) from 𝜂−1(𝑔(𝑡)) to 𝑡 and using (41), we obtain
𝑧󸀠󸀠 (𝜂−1 (𝑔 (𝑡))) ≥ (∫𝑡

𝜂−1(𝑔(𝑡))

12𝜆 𝑞 (𝑠) 𝜑𝜆 (𝑔 (𝑠))
⋅ (𝜂−1 (𝑔 (𝑡)) − 𝜂−1 (𝑔 (𝑠)))2𝜆 d𝑠)
⋅ (𝑧󸀠󸀠 (𝜂−1 (𝑔 (𝑡))))𝜆 ,

(42)

which can be written as

(𝑧󸀠󸀠 (𝜂−1 (𝑔 (𝑡))))1−𝜆 ≥ ∫𝑡
𝜂−1(𝑔(𝑡))

12𝜆 𝑞 (𝑠) 𝜑𝜆 (𝑔 (𝑠))
⋅ (𝜂−1 (𝑔 (𝑡)) − 𝜂−1 (𝑔 (𝑠)))2𝜆 d𝑠.

(43)

Taking lim sup as 𝑡 󳨀→ ∞ in (43), we obtain a contradiction
to (34). The proof is complete.

We conclude this paper with the following examples and
remarks to illustrate the main results. The first example is
concerned with the case where 𝑝(𝑡) 󳨀→ ∞ as 𝑡 󳨀→ ∞,
whereas the second example is concernedwith the case where𝑝 is a bounded function.

Example 7. Consider the sublinear Emden–Fowler neutral
differential equation

(𝑥 (𝑡) + 𝑡𝑥 ( 𝑡2))
󸀠󸀠󸀠 + 𝑘𝑡𝛼 𝑥1/3 ( 𝑡4) = 0, 𝑡 ≥ 17, (44)

where 𝑘 > 0 and 0 < 𝛼 < 1 are constants. Here 𝜆 = 1/3,𝑝(𝑡) = 𝑡, 𝜂(𝑡) = 𝑡/2, 𝑔(𝑡) = 𝑡/4, 𝑞(𝑡) = 𝑘/𝑡𝛼, 𝜂−1(𝑔(𝑡)) = 𝑡/2,
and 𝜑(𝑔(𝑡)) = 2(1 − 1/𝑡)/𝑡. Let 𝑙1 = 1/2. Then 𝜓(𝑔(𝑡)) =2(1 − 16/𝑡)/𝑡 and condition (31) becomes

∫∞
17

𝑘𝑡𝛼 (2𝑡 − 32𝑡2 )1/3 ( 𝑡2)
2/3

d𝑡
= 122/3 ∫

∞

17

𝑘𝑡𝛼 (2𝑡 − 32)1/3 d𝑡 ≥ 121/3 ∫
∞

17

𝑘𝑡𝛼 d𝑡
= ∞.

(45)

Letting 𝜎(𝑡) = 𝑡/3, then 𝜂−1(𝜎(𝑡)) = 2𝑡/3 and condition (32)
reduces to

∫∞
17

𝑘𝑡𝛼 (2𝑡 − 2𝑡2 )1/3 ( 𝑡6)
2/3

d𝑡
= 162/3 ∫

∞

17

𝑘𝑡𝛼 (2𝑡 − 2)1/3 d𝑡 ≥ 2
5/3

62/3 ∫
∞

17

𝑘𝑡𝛼 d𝑡
= ∞.

(46)

Therefore, by Corollary 5, (44) oscillates.

Example 8. Consider the linear differential equation

(𝑥 (𝑡) + 6𝑡 + 9𝑡 + 1 𝑥 ( 𝑡2))
󸀠󸀠󸀠 + 𝑘𝑡3 𝑥( 𝑡3) = 0, 𝑡 ≥ 1. (47)

Here 𝜆 = 1, 𝑝(𝑡) = (6𝑡 + 9)/(𝑡 + 1), 𝜂(𝑡) = 𝑡/2, 𝑔(𝑡) = 𝑡/3,𝑞(𝑡) = 𝑘/𝑡3, and 𝑘 > 1390 is a constant. It is easy to deduce
that 6 ≤ 𝑝(𝑡) ≤ 15/2, 𝜂−1(𝑔(𝑡)) = 2𝑡/3, 𝜑(𝑔(𝑡)) ≥ 1/9, and𝜓(𝑔(𝑡)) ≥ 1/25 for some constant 𝑙1 ∈ (1/2, 1). Using 𝜆 = 1
in (33), we have

(𝜂−1 (𝑔 (𝑡)))2𝜆 ∫∞
𝑡
𝑞 (𝑠) 𝜓𝜆 (𝑔 (𝑠)) d𝑠

≥ 125 (2𝑡3 )
2 ∫∞
𝑡

𝑘𝑠3 d𝑠 = 2𝑘225 .
(48)

That is, condition (33) with 𝜆 = 1 holds.
Next, using 𝜆 = 1 in (34), we obtain

∫𝑡
𝜂−1(𝑔(𝑡))

𝑞 (𝑠) 𝜑𝜆 (𝑔 (𝑠))
⋅ (𝜂−1 (𝑔 (𝑡)) − 𝜂−1 (𝑔 (𝑠)))2𝜆 d𝑠 ≥ 19
⋅ ∫𝑡
2𝑡/3

𝑘𝑠3 (2𝑡 − 2𝑠3 )2 d𝑠 = 𝑘81
⋅ ∫𝑡
2𝑡/3

(4𝑡2𝑠3 − 8𝑡𝑠2 + 4𝑠 ) d𝑠 = 𝑘81 (4 ln 32 − 32) .

(49)

That is, condition (34) with 𝜆 = 1 holds. Therefore, by
Theorem 6, (47) oscillates.

Remark 9. For a class of third-order Emden–Fowler delay
differential equations with unbounded neutral coefficients
(1), we established new oscillation criteria which complement
and improve results in the cited papers because these criteria
apply also in the case where 𝑝 is unbounded and ensure that
all solutions of (1) are oscillatory (that is, these results can
distinguish solutions with different behaviors).

Remark 10. Using different methods, we improve results of
Li and Rogovchenko [2] by removing restrictive condition𝜂 ∘ 𝑔 = 𝑔 ∘ 𝜂, which, in a certain sense, is a significant
improvement compared to the results reported in the cited
papers.

Remark 11. CombiningTheorem 3 and the results obtained in
[25], one can derive various oscillation criteria for (1) in the
linear case. To study the oscillation of (1) in the superlinear
case, it would be of interest to establish oscillation criteria for
(3) and (4) assuming that 𝜆 > 1.
Remark 12. In the conclusion of Lemma 1, the existence of the
constant 𝑙 ∈ (0, 1) is necessary in some cases. For instance, for𝑡 ≥ 2, if 𝑦(𝑡) = 𝑡 − 1/𝑡, then 𝑦󸀠(𝑡) > 0, 𝑦󸀠󸀠(𝑡) < 0, and 𝑦(𝑡) <𝑡𝑦󸀠(𝑡), and so the function 𝑦 does not satisfy the conclusion
of Lemma 1 provided that there is no 𝑙 ∈ (0, 1). On the basis
of Lemma 1, one can easily revisit the results reported in [26–
28].
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Dust plasma is a new field of physics which has developed rapidly in recent decades. The study of dust plasma has received much
attention due to its importance in the environment of space and the Earth. Dust acoustic waves are generated because of the inertia
of dust mass while the restoring force is provided by the thermal pressure of electrons and ions. Since dust acoustic waves were first
reported theoretically in unmagnetized dust plasma by Rao et al., they have become a research hot spot. In this paper, the excitation
of dust acoustic waves by a gravity field in a dust plasma is analyzed. According to the control equations of dust plasma motion and
employing multiscale analysis and perturbation method, we have obtained a (3+1)-dimensional ZK model. Because of the space
property of dust plasma, (3+1)-dimensional ZK equation is more suitable than KdV equation and (2+1)-dimensional ZK equation
to describe the real dust acoustic waves. Then, the (3+1)-dimensional time-space fractional ZK (TSF-ZK) equation describing the
fractal process of nonlinear dust acoustic waves is given for the first time. To further explore how dust acoustic waves change energy
as they travel, we discuss the conservation laws of the newmodel. Moreover, we study the exact solution of (3+1)-dimensional TSF-
ZK equation by using extended Kudryashov method. Finally, based on the exact solution, we further investigate the effect of the
parameter 𝑘, the charge properties of dust particle 𝑍𝑑0, the fractional order values 𝛼, 𝛽, 𝛾, and 𝜃, the temperature𝑇𝑑, the gravity 𝑔,
and the collision frequency 𝛽0 and 𝛽1 on the properties of dust acoustic waves by a gravity field in dust plasma.

1. Introduction

Plasma is a macroscopic system composed of a large number
of charged particles, and it is the fourth state in which
matter exists. The characteristics of motion of plasma are
more complex than those of other substances. In many cases,
the production and maintenance of plasma are difficult.
Therefore, plasma physics is a branch with research value,
which is closely related to the generation of new technology.
In recent years, plasma physics has become an important
basis for human understanding of the universe and an
important guarantee for understanding and controlling the
changes of the Earth’s environment. It is hoped that mankind
will finally solve the energy problem in the future. As a result,
plasmas are getting more attention.

In recent years, the study of nonlinear structures in
various kinds of plasmas has been the emphasis of the
researchers [1, 2]. Dust plasma is a new field of physics

research which has developed rapidly in recent decades. In
addition to electrons, ions, and neutral gases, dust plasma
also contains dust particles of any shape and size ranging
from tens of nm to a few microns. Charged dust grains exist
widely in space, plasma equipment in laboratory as well as
plasma processing. It is widely believed that dust plasma plays
a very important role in the formation of galaxies, such as
planetary rings, cometary surroundings, interstellar clouds,
and the Earth’s ionosphere. Dust plasma is also important in
the laboratory. And themain reason is that dust plasmamode
is formed due to the existence of mixtures, which greatly
affects the state or behavior of plasma. The dust acoustic
waves are generated due to the inertia of dust mass while
the restoring force is provided by the thermal pressure of
electrons and ions. Low frequency dust acoustic waves were
first predicted by Rao [3] in a dust plasma in 1990. Later, in
1992, Shukla-Silin [4] obtained the high frequency dust ion-
acoustic waves.Merlino [5] has experimentally confirmed the
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existence of dust acoustic waves and dust ion-acoustic waves
in 1998. Since then, more and more attention has been paid
to the study of dust acoustic waves.

At the beginning of the investigations, the (1+1)-
dimensional model was used to study the dust acoustic
waves. Using the reductive perturbation method, a KdV
equation has been derived by Bharuthram [6] to study the
large amplitude ion-acoustic solitons in a dust plasma, and
Duan [7] got a KdV equation to describe the effect of
dust size distribution for two ion temperature dusty plasma.
Later, Kadomstev and Petviashvili [8] made an attempt
to describe the solitons in (2+1)-dimensional systems by
applying Kadomstev-Petviashvili (KP) equation. Singh and
Honzawa [9] studied the effects of ion temperature and
relativistic factor on the width and amplitude of ion-acoustic
solitons in an unmagnetized two-dimensional weakly rela-
tivistic collisionless plasma with finite ion temperature by
using the KP equation. Lin [10] derived the KP equation
which is considered as two-dimensional extension of KdV
equation to study dust acoustic waves in hot dusty plasma.
Employing multiscale analysis and perturbation method, a
KP equation was obtained for the stability of dust acoustic
waves for host dust plasma by Duan [11]. Gill [12] proved the
existence of compressive and rarefactive dust acoustic soli-
tons under the solution of KP equation in two-dimensional
dusty plasma with two-temperature ions. However, in the
real environment, dust plasma moves in space, so we must
study the higher dimensions of dust acoustic waves. Thus,
in this paper, we will be working on the (3+1)-dimensional
model.

For a long time, people have been committed to the study
of integral calculus. Therefore, researchers conduct scientific
research based on integer order models [13–18]. However,
with the continuous development of calculus theory, the
appearance and development of fractional order have become
amajor trend of integral science [19–21]. As we know, Leibniz
was the first to study the theory of fractional derivatives.
So far, the development of fractional derivatives has been
very mature, and fractional calculus and the corresponding
fractional partial differential equations have attracted wide
attention in many subjects [22–28]. Compared with integer
order models, fractional models can better explain nonlinear
physical processes and propagation characteristics in real
environment [29–33].However, fractionalmodelswere rarely
used to study the dust plasma in the past. Therefore, it is of
great research value to construct the (3+1)-dimensional TSF-
ZK equation to discuss the influence of fractional order for
the dust acoustic waves in gravity field for dust plasma.

The solution of the nonlinear partial differential equa-
tion is an important research topic in nonlinear physical
phenomena. Similarly, the solutions of fractional differential
equations have attracted the attention of researchers in many
fields. Thus, many methods have been proposed one after
another, such as the first integral method [34, 35], (G’/G)-
expansion method [36, 37], the Hirota method [38, 39], the
trial functionmethod [40], the subequation method [41], and
others [42–46]. In this paper, using extended Kudryashov
method [47], the exact solution of (3+1)-dimensional TSF-ZK
equation is obtained.

The rest of the paper is organized as follows. In
Section 2, based on the control equations of motion, a (3+1)-
dimensional integer order ZK equation is derived by employ-
ing multiscale analysis and perturbation method [48, 49].
Applying the semi-inverse method and the fractional varia-
tional principle [50], the integer order ZK equation is trans-
formed into a time-space fractional ZK (TSF-ZK) equation.
Next, we study the exact solution of (3+1)-dimensional TSF-
ZK equation by using extended Kudryashov method. Then,
the conservation law of (3+1)-dimensional TSF-ZK equation
is got by applying Lie symmetry analysis method. In the
end, on the basis of the exact solution of (3+1)-dimensional
TSF-ZK equation, we further investigate the property of dust
acoustic waves. The influence of the parameter 𝑘, the charge
properties of dust particle 𝑍𝑑0, fractional order values 𝛼, 𝛽,𝛾, 𝜃, temperature 𝑇𝑑, gravity 𝑔, and collision frequency 𝛽0, 𝛽1
on the properties of dust acoustic waves by a gravity field in
dust plasma are studied.

2. Derivation of the (3+1)-Dimensional
ZK Equation

For low frequency dust acoustic wave, the control equations
are composed of mass conservation equation, momentum
conservation equation, and Poisson equation [51, 52] follow-
ing

𝜕𝑛𝑑𝜕𝑡 + ∇ (𝑛𝑑󳨀→𝑢𝑑) = 0,
𝑛𝑑𝑚𝑑 𝜕󳨀→𝑢𝑑𝜕𝑡 + 𝑛𝑑𝑚𝑑󳨀→𝑢𝑑 ⋅ ∇󳨀→𝑢𝑑 + 𝑇𝑑∇󳨀→𝑢𝑑 − 𝑛𝑑𝑒𝑍𝑑∇𝜙
= −𝛽󸀠𝑛𝑑𝑚𝑑󳨀→𝑢𝑑 + 𝑛𝑑𝑚𝑑󳨀→𝑔,

Δ𝜙 = 4𝜋𝑒 (𝑍𝑑𝑛𝑑 + 𝑛𝑒 − 𝑛𝑖) ,

(1)

whereΔ = ∇2 = 𝜕2/𝜕𝑥2+𝜕2/𝜕𝑦2+𝜕2/𝜕𝑧2 is three-dimensional
Laplace operator, 󳨀→𝑢𝑑 is the velocity of dust particles, 𝜙 is the
electrostatic potential, 𝑛𝑑, 𝑛𝑒, and 𝑛𝑖 are the number densities
of the dust particles, electrons, and ions in the dusty plasma,
respectively, 𝑇𝑑 is the temperature of dust particles, 𝑍𝑑 is the
basic unit electric quantity of dust particles, and its positive
and negative represent the electrical properties of dust parti-
cles. 󳨀→𝑢𝑑 is expressed by 󳨀→𝑢𝑑 = 𝑢𝑑󳨀→𝑖 + V𝑑

󳨀→𝑗 + 𝑤𝑑󳨀→𝑘 , where 󳨀→𝑖 ,󳨀→𝑗 , and 󳨀→𝑘 are the unit vectors in the 𝑥, 𝑦, and 𝑧 directions,
respectively. 𝑛𝑒 = ]𝑒𝑠𝛿𝜙 and 𝑛𝑖 = 𝜇𝑒−𝑠𝜙, where 𝑠 = 1/(𝜇 + ]𝛿),𝛿 = 𝑇𝑒/𝑇𝑖,𝑇𝑒𝑓𝑓 = 𝑇𝑒𝑇𝑖/(𝜇𝑇𝑒+]𝑇𝑖) is the effective temperature,
where 𝑇𝑒 and 𝑇𝑖 are the temperatures of electrons and ions,
respectively, 𝜇 = 𝑛𝑖0/𝑛𝑑0𝑍𝑑0, and ] = 𝑛𝑖0/𝑛𝑑0𝑍𝑑0. In a
state of complete constant temperature, the ions and electrons
will obey the Boltzmann condition. The equilibrium state
satisfies the neutral condition 𝑛𝑖0 = 𝑍𝑑0𝑛𝑑0 + 𝑛𝑒0, where 𝑛𝑑0,𝑛𝑖0, 𝑛𝑒0, and 𝑍𝑑0 are the unperturbed number densities of
dust particles, ions, electrons, and the numbers of electrons
residing on the dust particles, respectively. 𝑛𝑑 is normalized
by 𝑛𝑑0, and 𝑍𝑑 is normalized by 𝑍𝑑0. The space coordinates(𝑥, 𝑦, 𝑧), time 𝑡, velocity (𝑢𝑑, V𝑑, 𝑤𝑑), electrostatic potential𝜙, collision frequency 𝛽󸀠, and gravity 𝑔 are normalized by
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Debye length 𝜆𝐷𝑑 = (𝑇𝑒𝑓𝑓/4𝜋𝑍𝑑0𝑛𝑑0𝑒2)1/2, the characteristic
dust period 𝜔−1𝑝𝑑 = (𝑚𝑑/4𝜋𝑍𝑑0𝑛𝑑0𝑒2)1/2, the dust acoustic
speed 𝐶𝑑 = (𝑍𝑑0𝑇𝑒𝑓𝑓/𝑚𝑑)1/2, and 𝑇𝑒𝑓𝑓/𝑒, respectively, and
the collision frequency 𝛽󸀠 refers to the number of collisions
between one plasma and another over a period of time. The
detailed description is given in [45].

We assume that the charge of dust particles is constant;
that is, 𝑍𝑑 = 𝑍𝑑0, 𝑍𝑑0 is constant. Then the dimensionless
forms of the control equations are as follows:

𝜕𝑛𝑑𝜕𝑡 + 𝜕𝜕𝑥 (𝑛𝑑𝑢𝑑) + 𝜕𝜕𝑦 (𝑛𝑑V𝑑) + 𝜕𝜕𝑧 (𝑛𝑑𝑤𝑑) = 0,
𝜕𝑢𝑑𝜕𝑡 + 𝑢𝑑 𝜕𝑢𝑑𝜕𝑥 + V𝑑

𝜕𝑢𝑑𝜕𝑦 + 𝑤𝑑 𝜕𝑢𝑑𝜕𝑧 + 𝑇𝑑𝑍𝑑
1𝑛𝑑
𝜕𝑛𝑑𝜕𝑥 − 𝜕𝜙𝜕𝑥

= −𝛽𝑥𝑢𝑑 + 𝑔,
𝜕V𝑑𝜕𝑡 + 𝑢𝑑 𝜕V𝑑𝜕𝑥 + V𝑑

𝜕V𝑑𝜕𝑦 + 𝑤𝑑 𝜕V𝑑𝜕𝑧 + 𝑇𝑑𝑍𝑑
1𝑛𝑑
𝜕𝑛𝑑𝜕𝑦 − 𝜕𝜙𝜕𝑦

= −𝛽𝑦V𝑑,
𝜕𝑤𝑑𝜕𝑡 + 𝑢𝑑 𝜕𝑤𝑑𝜕𝑥 + V𝑑

𝜕𝑤𝑑𝜕𝑦 + 𝑤𝑑 𝜕𝑤𝑑𝜕𝑧 + 𝑇𝑑𝑍𝑑
1𝑛𝑑
𝜕𝑛𝑑𝜕𝑧 − 𝜕𝜙𝜕𝑧

= −𝛽𝑧𝑤𝑑,
𝜕2𝜙𝜕𝑥2 + 𝜕

2𝜙𝜕𝑦2 + 𝜕
2𝜙𝜕𝑧2 = 𝑛𝑑 + 𝑛𝑒 − 𝑛𝑖.

(2)

We introduce the following slow space-time variables:

𝜉 = 𝜖1/2 (𝑥 − V0𝑡) ,
𝜂 = 𝜖1/2𝑦,
𝜁 = 𝜖1/2𝑧,
𝜏 = 𝜖3/2𝑡.

(3)

Then we have

𝜕𝜕𝑡 = 𝜖3/2 𝜕𝜕𝜏 − 𝜖1/2V0 𝜕𝜕𝜉 ,
𝜕𝜕𝑥 = 𝜖1/2 𝜕𝜕𝜉 ,
𝜕𝜕𝑦 = 𝜖1/2 𝜕𝜕𝜂 ,
𝜕𝜕𝑧 = 𝜖1/2 𝜕𝜕𝜁 .

(4)

The dependent variables 𝑛𝑑, 𝑢𝑑, V𝑑, 𝑤𝑑, and 𝜙 are expanded
as follows:

𝑛𝑑 = 1 + 𝜖𝑛𝑑1 + 𝜖2𝑛𝑑2 + 𝜖3𝑛𝑑3 + ⋅ ⋅ ⋅ ,
𝑢𝑑 = 𝑢𝑑0 + 𝜖𝑢𝑑1 + 𝜖2𝑢𝑑2 + 𝜖3𝑢𝑑3 + ⋅ ⋅ ⋅ ,

V𝑑 = 𝜖3/2V𝑑1 + 𝜖5/2V𝑑2 + 𝜖7/2V𝑑3 + ⋅ ⋅ ⋅ ,
𝑤𝑑 = 𝜖3/2𝑤𝑑1 + 𝜖5/2𝑤𝑑2 + 𝜖7/2𝑤𝑑3 + ⋅ ⋅ ⋅ ,
𝜙 = 𝜖𝜙1 + 𝜖2𝜙2 + 𝜖3𝜙3 + ⋅ ⋅ ⋅ ,
𝛽𝑥 = 𝛽0 + 𝜖𝛽1,
𝛽𝑦 = 𝜖𝛽1,
𝛽𝑧 = 𝜖𝛽1.

(5)

Substituting (4) and (5) into (3), the following equations can
be got:

(𝜖3/2 𝜕𝜕𝜏 − 𝜖1/2V0 𝜕𝜕𝜉) (1 + 𝜖𝑛𝑑1 + 𝜖2𝑛𝑑2 + 𝜖3𝑛𝑑3)
+ (𝜖1/2 𝜕𝜕𝜉) [(1 + 𝜖𝑛𝑑1 + 𝜖2𝑛𝑑2 + 𝜖3𝑛𝑑3)
⋅ (𝑢𝑑0 + 𝜖𝑢𝑑1 + 𝜖2𝑢𝑑2 + 𝜖3𝑢𝑑3)] + (𝜖1/2 𝜕𝜕𝜂)
⋅ [(1 + 𝜖𝑛𝑑1 + 𝜖2𝑛𝑑2 + 𝜖3𝑛𝑑3)
⋅ (𝜖3/2V𝑑1 + 𝜖5/2V𝑑2 + 𝜖7/2V𝑑3)] + (𝜖1/2 𝜕𝜕𝜁)
⋅ [(1 + 𝜖𝑛𝑑1 + 𝜖2𝑛𝑑2 + 𝜖3𝑛𝑑3)
⋅ (𝜖3/2𝑤𝑑1 + 𝜖5/2𝑤𝑑2 + 𝜖7/2𝑤𝑑3)] = 0,

(𝜖3/2 𝜕𝜕𝜏 − 𝜖1/2V0 𝜕𝜕𝜉) (𝑢𝑑0 + 𝜖𝑢𝑑1 + 𝜖2𝑢𝑑2 + 𝜖3𝑢𝑑3)
+ (𝑢𝑑0 + 𝜖𝑢𝑑1 + 𝜖2𝑢𝑑2 + 𝜖3𝑢𝑑3) ⋅ (𝜖1/2 𝜕𝜕𝜉) (𝑢𝑑0
+ 𝜖𝑢𝑑1 + 𝜖2𝑢𝑑2 + 𝜖3𝑢𝑑3) + (𝜖3/2V𝑑1 + 𝜖5/2V𝑑2
+ 𝜖7/2V𝑑3) (𝜖1/2 𝜕𝜕𝜂) (𝑢𝑑0 + 𝜖𝑢𝑑1 + 𝜖2𝑢𝑑2 + 𝜖3𝑢𝑑3)
+ (𝜖3/2𝑤𝑑1 + 𝜖5/2𝑤𝑑2 + 𝜖7/2𝑤𝑑3) (𝜖1/2 𝜕𝜕𝜁) (𝑢𝑑0
+ 𝜖𝑢𝑑1 + 𝜖2𝑢𝑑2 + 𝜖3𝑢𝑑3) + 𝑇𝑑𝑍𝑑0
⋅ 11 + 𝜖𝑛𝑑1 + 𝜖2𝑛𝑑2 + 𝜖3𝑛𝑑3 (𝜖1/2

𝜕𝜕𝜉) (1 + 𝜖𝑛𝑑1
+ 𝜖2𝑛𝑑2 + 𝜖3𝑛𝑑3) − (𝜖1/2 𝜕𝜕𝜉) (𝜖𝜙1 + 𝜖2𝜙2 + 𝜖3𝜙3)
= − (𝛽0 + 𝜖𝛽1) (𝑢𝑑0 + 𝜖𝑢𝑑1 + 𝜖2𝑢𝑑2 + 𝜖3𝑢𝑑3) + 𝑔,

(𝜖3/2 𝜕𝜕𝜏 − 𝜖1/2V0 𝜕𝜕𝜉) (𝜖3/2V𝑑1 + 𝜖5/2V𝑑2 + 𝜖7/2V𝑑3)
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+ (𝑢𝑑0 + 𝜖𝑢𝑑1 + 𝜖2𝑢𝑑2 + 𝜖3𝑢𝑑3) (𝜖1/2 𝜕𝜕𝜉) ⋅ (𝜖3/2V𝑑1
+ 𝜖5/2V𝑑2 + 𝜖7/2V𝑑3) + (𝜖3/2V𝑑1 + 𝜖5/2V𝑑2 + 𝜖7/2V𝑑3)
⋅ (𝜖1/2 𝜕𝜕𝜂) (𝜖3/2V𝑑1 + 𝜖5/2V𝑑2 + 𝜖7/2V𝑑3) + (𝜖3/2𝑤𝑑1
+ 𝜖5/2𝑤𝑑2 + 𝜖7/2𝑤𝑑3) (𝜖1/2 𝜕𝜕𝜁) (𝜖3/2V𝑑1 + 𝜖5/2V𝑑2
+ 𝜖7/2V𝑑3) + 𝑇𝑑𝑍𝑑0
⋅ 11 + 𝜖𝑛𝑑1 + 𝜖2𝑛𝑑2 + 𝜖3𝑛𝑑3 (𝜖1/2

𝜕𝜕𝜂) (1 + 𝜖𝑛𝑑1
+ 𝜖2𝑛𝑑2 + 𝜖3𝑛𝑑3) − (𝜖1/2 𝜕𝜕𝜂) (𝜖𝜙1 + 𝜖2𝜙2 + 𝜖3𝜙3)
= − (𝜖𝛽1) (𝜖3/2V𝑑1 + 𝜖5/2V𝑑2 + 𝜖7/2V𝑑3) ,

(𝜖3/2 𝜕𝜕𝜏 − 𝜖1/2V0 𝜕𝜕𝜉) (𝜖3/2𝑤𝑑1 + 𝜖5/2𝑤𝑑2 + 𝜖7/2𝑤𝑑3)
+ (𝑢𝑑0 + 𝜖𝑢𝑑1 + 𝜖2𝑢𝑑2 + 𝜖3𝑢𝑑3) (𝜖1/2 𝜕𝜕𝜉) ⋅ (𝜖3/2𝑤𝑑1
+ 𝜖5/2𝑤𝑑2 + 𝜖7/2𝑤𝑑3) + (𝜖3/2V𝑑1 + 𝜖5/2V𝑑2
+ 𝜖7/2V𝑑3) (𝜖1/2 𝜕𝜕𝜂) (𝜖3/2𝑤𝑑1 + 𝜖5/2𝑤𝑑2 + 𝜖7/2𝑤𝑑3)
+ (𝜖3/2𝑤𝑑1 + 𝜖5/2𝑤𝑑2 + 𝜖7/2𝑤𝑑3) (𝜖1/2 𝜕𝜕𝜁) (𝜖3/2𝑤𝑑1
+ 𝜖5/2𝑤𝑑2 + 𝜖7/2𝑤𝑑3) + 𝑇𝑑𝑍𝑑0
⋅ 11 + 𝜖𝑛𝑑1 + 𝜖2𝑛𝑑2 + 𝜖3𝑛𝑑3 (𝜖1/2

𝜕𝜕𝜁) (1 + 𝜖𝑛𝑑1
+ 𝜖2𝑛𝑑2 + 𝜖3𝑛𝑑3) − (𝜖1/2 𝜕𝜕𝜁) (𝜖𝜙1 + 𝜖2𝜙2 + 𝜖3𝜙3)
= − (𝜖𝛽1) (𝜖3/2𝑤𝑑1 + 𝜖5/2𝑤𝑑2 + 𝜖7/2𝑤𝑑3) ,

(𝜖 𝜕2𝜕𝜉2)(𝜖𝜙1 + 𝜖2𝜙2 + 𝜖3𝜙3) + (𝜖 𝜕
2

𝜕𝜂2)(𝜖𝜙1 + 𝜖2𝜙2
+ 𝜖3𝜙3) + (𝜖 𝜕2𝜕𝜁2)(𝜖𝜙1 + 𝜖2𝜙2 + 𝜖3𝜙3) = (1 + 𝜖𝑛𝑑1
+ 𝜖2𝑛𝑑2 + 𝜖3𝑛𝑑3) + (𝜖𝜙1 + 𝜖2𝜙2 + 𝜖3𝜙3) .

(6)

In (6), letting

𝑇 = 𝑇𝑑𝑍𝑑0
11 + 𝜖𝑛𝑑1 + 𝜖2𝑛𝑑2 + 𝜖3𝑛𝑑3 (𝜖1/2

𝜕𝜕𝜉)

⋅ (1 + 𝜖𝑛𝑑1 + 𝜖2𝑛𝑑2 + 𝜖3𝑛𝑑3) = 𝑇𝑑𝑍𝑑0 (𝜖1/2
𝜕𝜕𝜉)

⋅ [ln (1 + 𝜖𝑛𝑑1 + 𝜖2𝑛𝑑2 + 𝜖3𝑛𝑑3)] ,
(7)

and using the Taylor’s series, 𝑇 can be approximately rewrit-
ten as

𝑇 = 𝑇𝑑𝑍𝑑0 (𝜖1/2
𝜕𝜕𝜉) (𝜖𝑛𝑑1 + 𝜖2𝑛𝑑2 + 𝜖3𝑛𝑑3 + ⋅ ⋅ ⋅) . (8)

A series of approximate equations for 𝜖 in the following form
can be obtained

𝜖0 : −𝛽0𝑢𝑑0 = 𝑔; (9)

𝜖1 : 𝛽1𝑢𝑑0 + 𝛽0𝑢𝑑1 = 0; (10)

𝜖3/2 :
{{{{{{{{{
(𝑢𝑑0 − V0) 𝜕𝑛𝑑1𝜕𝜉 + 𝜕𝑢𝑑1𝜕𝜉 = 0,
(𝑢𝑑0 − V0) 𝜕𝑢𝑑1𝜕𝜉 + 𝑇𝑑𝑍𝑑

𝜕𝑛𝑑1𝜕𝜉 − 𝜕𝜙1𝜕𝜉 = 0; (11)

𝜖2 : {{{{{
𝛽0𝑢𝑑2 + 𝛽1𝑢𝑑1 = 0,
𝜕2𝜙1𝜕𝜉2 + 𝜕

2𝜙1𝜕𝜂2 + 𝜕
2𝜙1𝜕𝜁2 = 𝑛𝑑2 + 𝜙2;

(12)

𝜖5/2 :
{{{{{{{{{
(𝑢𝑑0 − V0) 𝜕𝑛𝑑2𝜕𝜉 + 𝜕𝑢𝑑2𝜕𝜉 = −𝜕𝑛𝑑1𝜕𝜏 − 𝑛𝑑1 𝜕𝑢𝑑1𝜕𝜉 − 𝑢𝑑1 𝜕𝑛𝑑1𝜕𝜉 ,
(𝑢𝑑0 − V0) 𝜕𝑢𝑑2𝜕𝜉 − 𝜕𝜙2𝜕𝜉 + 𝑇𝑑𝑍𝑑

𝜕𝑛𝑑2𝜕𝜉 = −𝜕𝑢𝑑1𝜕𝜏 − 𝑢𝑑1 𝜕𝑢𝑑1𝜕𝜉 .
(13)

Based on (9) and (10), we get the following relations

𝛽0 = 𝑔𝑢𝑑0 ,
𝛽1 = −𝛽0 (𝑢𝑑0 − V0)𝑢𝑑0 𝜙1 = −𝛽20 (𝑢𝑑0 − V0) 𝜙1𝑔 𝜙1.

(14)

According to (11), the following relationship can be given as

[(𝑢𝑑0 − V0)2 − 𝑇𝑑𝑍𝑑 ]
𝜕𝑛𝑑1𝜕𝜉 + 𝜕𝜙𝑑1𝜕𝜉 = 0. (15)

Assuming that

𝑛𝑑1 = −𝜙1, (16)

we get

𝑢𝑑1 = (𝑢𝑑0 − V0) 𝜙1,
𝑍𝑑0𝑍𝑑0 (𝑢𝑑0 − V0)2 − 𝑇𝑑 = 1.

(17)

Combining (12), (13), (16), and (17) and letting 𝜙1 = 𝜙, we
can obtain the following model:

𝜕𝜙𝜕𝜏 + 𝑎1𝜙𝜕𝜙𝜕𝜉 + 𝑎2 𝜕
3𝜙𝜕𝜉3 + 𝑎3 𝜕

3𝜙𝜕𝜉𝜕𝜂2 + 𝑎4 𝜕
3𝜙𝜕𝜉𝜕𝜁2 = 0, (18)
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where

𝑎1 = 3 (𝑔 − 𝛽0V0)2𝛽0 = 32√𝑍𝑑0 + 𝑇𝑑𝑍𝑑0 ,
𝑎2 = 𝑎3 = 𝑎4 = − 𝛽02 (𝑔 − 𝛽0V0) = −

12√ 𝑍𝑑0𝑍𝑑0 + 𝑇𝑑 .
(19)

When𝑎3 = 𝑎4 = 0, (18) is theKdVequation.When 𝑎4 = 0,
(18) is the ZK equation. On the basis of 𝑎3(𝜕3𝜙/𝜕𝜉𝜕𝜂2) and𝑎4(𝜕3𝜙/𝜕𝜉𝜕𝜁2), (18) is a (3+1)-dimensional ZK equation. It is
well known that the KdV equation reflects the propagation
of dust acoustic waves along a line, and the ZK equation
can describe the propagation of dust acoustic waves on one
surface. Dust acoustic waves in dust plasma move around in
space.Therefore, the (3+1)-dimensional ZK equation is more

suitable to describe the dust acoustic waves in the real dust
plasma.

3. Derivation of the (3+1)-Dimensional
Time-Space Fractional
ZK (TSF-ZK) Equation

Based on the above section, we get a (3+1)-dimensional
ZK equation. In this section, the (3+1)-dimensional TSF-ZK
equation is obtained by using the semi-inverse method and
the fractional variational principle.

Firstly, let us introduce some basic fractional definitions.

Definition 1 (see [50]). The Riemann-Liouville fractional
derivative operator is defined as

𝐷𝛼𝑡 𝑢 =
{{{{{{{

𝜕𝑚𝑢𝜕𝑡𝑚 , 𝛼 = 𝑚 ∈ 𝑁,
1Γ (𝑚 − 𝛼) 𝜕𝑚𝜕𝑡𝑚 ∫

𝑡

0

𝑢 (𝜏, 𝑥)(𝑡 − 𝜏)𝛼+1−𝑚𝑑𝜏, 𝑚 − 1 < 𝛼 < 𝑚, 𝑚 ∈ 𝑁. (20)

Definition 2 (see [50]). The modified Riemann-Liouville
fractional derivative operator is defined as

𝐷𝛼𝑡 𝑓 (𝑡) = 1Γ (1 − 𝛼) 𝑑𝑑𝑡 [∫
𝑡

𝑎

𝑓 (𝜏) − 𝑓 (𝑎)(𝑡 − 𝜏)𝛼 𝑑𝜏] ,
0 ≤ 𝛼 < 1.

(21)

Letting 𝜙 = 𝑄𝜉, where𝑄(𝜏, 𝜉, 𝜂, 𝜁) is a potential function,
then the (18) can be written as

𝑄𝜉𝜏 + 𝑎1𝑄𝜉𝑄𝜉𝜉 + 𝑎2𝑄𝜉𝜉𝜉𝜉 + 𝑎3𝑄𝜉𝜉𝜂𝜂 + 𝑎4𝑄𝜉𝜉𝜁𝜁 = 0. (22)

The functional of the above potential equation can be given
as

𝐽 (𝑄) = ∫
𝑅
𝑑𝜉 ∫

𝑅
𝑑𝜂∫

𝑅
𝑑𝜁∫

𝑇
𝑑𝜏 [𝑄 (𝜏, 𝜉, 𝜂, 𝜁) (𝑏1𝑄𝜉𝜏 + 𝑏2𝑎1𝑄𝜉𝑄𝜉𝜉 + 𝑏3𝑎2𝑄𝜉𝜉𝜉𝜉 + 𝑏4𝑎3𝑄𝜉𝜉𝜂𝜂 + 𝑏5𝑎4𝑄𝜉𝜉𝜁𝜁)] , (23)

where 𝑑𝑖 (𝑖 = 1, 2, 3, 4, 5) are Lagrangian multipliers, which
can be obtained later, and 𝜉 ∈ 𝑅. Integrating (23) by parts
and letting 𝑄𝜏|𝑇 = 𝑄𝜉|𝑅 = 𝑄𝜂|𝑅 = 𝑄𝜁|𝑅 = 𝑄𝜉|𝑇 = 𝑄𝜉𝜉𝜉|𝑅 =𝑄𝜉𝜂𝜂|𝑅 = 𝑄𝜉𝜁𝜁|𝑅 = 0, we can get

𝐽 (𝑄) =∭
𝑉
𝑑𝜉𝑑𝜂𝑑𝜁∫

𝑅
(−𝑏1𝑄𝜏𝑄𝜉 − 12𝑏2𝑎1𝑞3𝜉

+ 𝑏3𝑎2𝑄2𝜉𝜉 + 𝑏4𝑎3𝑄2𝜉𝜂 + +𝑏5𝑎4𝑄2𝜉𝜁)𝑑𝜏,
(24)

where 𝑉 = [𝑅 × 𝑅 × 𝑅]. Using the variation of (24) and
integrating each term by parts, we get

𝐹 (𝜏, 𝜉, 𝜂, 𝜁, 𝑄,𝑄𝜏, 𝑄𝜉, 𝑄𝜉𝜉, 𝑄𝜉𝜂, 𝑄𝜉𝜁)
= − 𝜕𝜕𝜏 ( 𝜕𝐹𝜕𝑄𝜏) −

𝜕𝜕𝜉 ( 𝜕𝐹𝜕𝑄𝜉) +
𝜕2𝜕𝜉2 ( 𝜕𝐹𝜕𝑄𝜉𝜉)

+ 𝜕2𝜕𝜉𝜂 ( 𝜕𝐹𝜕𝑄𝜉𝜂) +
𝜕2𝜕𝜉𝜁 ( 𝜕𝐹𝜕𝑄𝜉𝜁)

= 𝑏1𝑄𝜉𝜏 + 3𝑏2𝑎1𝑄𝜉𝑄𝜉𝜉 + 2𝑏3𝑎2𝑄𝜉𝜉𝜉𝜉 + 2𝑏4𝑎3𝑄𝜉𝜉𝜂𝜂
+ 2𝑏5𝑎4𝑄𝜉𝜉𝜁𝜁.

(25)

Thus, the following comparison expression is given as

𝑏1𝑄𝜉𝜏 + 3𝑏2𝑎1𝑄𝜉𝑄𝜉𝜉 + 2𝑏3𝑎2𝑄𝜉𝜉𝜉𝜉 + 2𝑏4𝑎3𝑄𝜉𝜉𝜂𝜂
+ 2𝑏5𝑎4𝑄𝜉𝜉𝜁𝜁 = 0. (26)

At this point, (26) is equivalent to (22), so the Lagrangian
multipliers are as follows:

𝑏1 = 12 ,
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𝑏2 = 13 ,
𝑏3 = 𝑏4 = 𝑏5 = 12 .

(27)

The Lagrangian form of the (3+1)-dimensional ZK equation
can be written as follows:

𝐿 (𝑄𝜏, 𝑄𝜉, 𝑄𝜉𝜉, 𝑄𝜉𝜂, 𝑄𝜉𝜁)
= −12𝑄𝜏𝑄𝜉 − 16𝑎1𝑄3𝜉 + 12𝑄2𝜉𝜉 + 12𝑄2𝜉𝜂 + 12𝑄2𝜉𝜂.

(28)

Similarly, the following Lagrangian form of the (3+1)-
dimensional TSF-ZK equation can be obtained

𝐹 (𝐷𝛼𝜏𝑄,𝐷𝛽𝜉𝑄,𝐷𝛽𝛽𝜉𝜉 𝑄,𝐷𝛽𝜉𝐷𝛾𝜂𝑄,𝐷𝛽𝜉𝐷𝜃𝜁𝑄)
= −12𝐷𝛼𝜏𝑄𝐷𝛽𝜉𝑄 − 16𝑎1 (𝐷𝛽𝜉𝑄)3 + 12 (𝐷𝛽𝛽𝜉𝜉 𝑄)3
+ 12 (𝐷𝛽𝜉𝐷𝛾𝜂𝑄)2 + 12𝐷𝛽𝜉𝐷𝜃𝜁𝑄,

(29)

where 𝛼, 𝛽, 𝛽, and 𝜃 are fractional order values. Thereby the
functional of (3+1)-dimensional TSF-ZK equation is given as
follows:

𝐽𝐹 (𝑄) =∭
𝑉
(𝑑𝜉)𝛽 (𝑑𝜂)𝛾 (𝑑𝜂)𝜂

⋅ ∫
𝑇
𝐹 (𝐷𝛼𝜏𝑄,𝐷𝛽𝜉𝑄,𝐷𝛽𝛽𝜉𝜉 𝑄,𝐷𝛽𝜉𝐷𝛾𝜂𝑄,𝐷𝛽𝜉𝐷𝜃𝜁𝑄)

⋅ (𝑑𝜏)𝛼 ,
(30)

where

∫𝑡
𝑎
𝑓 (𝜏) (𝑑𝜏)𝛼 = 𝛼∫𝑡

𝑎
𝑓 (𝜏) (𝑡 − 𝜏)𝛼 𝑑𝜏. (31)

Using the fractional integration by parts

∫𝑏
𝑎
𝑓 (𝑡)𝐷𝛼𝑡 𝑔 (𝑡) (𝑑𝜏)𝛼
= Γ (1 + 𝛼) [𝑔 (𝑡) 𝑓 (𝑡)󵄨󵄨󵄨󵄨𝑏𝑎 − ∫𝑏

𝑎
𝑔 (𝑡) 𝐷𝛼𝑡 𝑓 (𝑡) (𝑑𝜏)𝛼] ,
𝑓 (𝑡) , 𝑔 (𝑡) ∈ [𝑎, 𝑏] ,

(32)

optimizing the above functional (30), and letting 𝛿𝐽𝐹(𝑄) = 0,
we can get the following Euler-Lagrange equation of (3+1)-
dimensional TSF-ZK equation

− 𝐷𝛼𝜏 ( 𝜕𝐹𝜕𝐷𝛼𝜏𝑄) − 𝐷𝛽𝜉 (
𝜕𝐹
𝜕𝐷𝛽
𝜉
𝑄) + 𝐷𝛽𝛽𝜉 (

𝜕𝐹
𝜕𝐷𝛽𝛽
𝜉
𝑄)

+ 𝐷𝛽
𝜉
𝐷𝛾𝜂( 𝜕𝐹

𝜕𝐷𝛽
𝜉
𝐷𝛾𝜂𝑄) + 𝐷

𝛽

𝜉
𝐷𝜃𝜁 ( 𝜕𝐹

𝜕𝐷𝛽
𝜉
𝐷𝜃
𝜁
𝑄)

= 0.

(33)

According to (29), (33) can be rewritten as

𝐷𝛼𝜏 (𝐷𝛽𝜉𝑄) + 𝑎1𝐷𝛽𝜉𝑄𝐷𝛽𝛽𝜉 𝑄 + 𝑎2𝐷𝛽𝛽𝛽𝛽𝜉
𝑄

+ 𝑎3𝐷𝛽𝛽𝜉 𝐷𝛾𝛾𝜂 𝑄 + 𝑎4𝐷𝛽𝛽𝜉 𝐷𝜃𝜃𝜂 𝑄 = 0.
(34)

Letting 𝐷𝛽
𝜉
𝑄 = 𝜙(𝜉, 𝜂, 𝜁, 𝜏), we get

𝐷𝛼𝜏𝜙 + 𝑎1𝜙𝐷𝛽𝜉𝜙 + 𝑎2𝐷𝛽𝛽𝛽𝜉 𝜙 + 𝑎3𝐷𝛽𝜉𝐷𝛾𝛾𝜂 𝜙 + 𝑎4𝐷𝛽𝜉𝐷𝜃𝜃𝜂 𝜙
= 0. (35)

Equation (35) is a new model, namely, the (3+1)-
dimensional TSF-ZK equation. When 𝛼 = 𝛽 = 𝛾 = 𝜃 =1, (35) is the integer order (3+1)-dimensional ZK equation.
This shows that the integer order model is the special type
of fractional model. The fractional derivatives of the (3+1)-
dimensional TSF-ZK equation are related to the dust acoustic
waves propagation with fractal properties. Equation (35) can
describe fractal processes of the dust acoustic waves. The
fractional order model could simulate various real plasma
environments more adequately than the integer order model
and provide an excellent tool for the description of dynamical
processes. Therefore, (3+1)-dimensional TSF-ZK equation
can better describe the dust acoustic waves in the real dust
plasma.

4. Conservation Law of the (3+1)-Dimensional
TSF-ZK Equation

In the last section, we extend the integral order equations
describing dust acoustic waves to the fractional order of time-
space and obtain some new properties of dust acoustic waves
propagation. In this section, in order to research the energy
changes during the propagation of dust acoustic waves, we
use the Lie symmetrymethod to obtainmultiple conservation
law of the (3+1)-dimensional TSF-ZK equation.

Considering that, under one-parameter Lie group of
point transformations, (35) is invariant with the dependent
and independent variables, the transformations are given by

𝜉 󳨀→ 𝜉 + 𝜀𝜄 (𝜉, 𝜂, 𝜁, 𝜏) + 𝑂 (𝜀2) ,
𝜂 󳨀→ 𝜂 + 𝜀𝜅 (𝜉, 𝜂, 𝜁, 𝜏) + 𝑂 (𝜀2) ,
𝜁 󳨀→ 𝜁 + 𝜀𝜐 (𝜉, 𝜂, 𝜁, 𝜏) + 𝑂 (𝜀2) ,
𝜏 󳨀→ 𝜏 + 𝜀𝜎 (𝜉, 𝜂, 𝜁, 𝜏) + 𝑂 (𝜀2) ,
𝜙 󳨀→ 𝜙 + 𝜀Φ (𝜉, 𝜂, 𝜁, 𝜏) + 𝑂 (𝜀2) ,
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𝐷𝛼𝜏𝜙 󳨀→ 𝐷𝛼𝜏𝜙 + 𝜀Φ𝜏𝛼 + 𝑂 (𝜀2) ,
𝐷𝛽
𝜉
𝜙 󳨀→ 𝐷𝛽

𝜉
𝜙 + 𝜀Φ𝜉𝛽 + 𝑂(𝜀2) ,

𝐷𝛽𝛽𝛽
𝜉
𝜙 󳨀→ 𝐷𝛽𝛽𝛽

𝜉
𝜙 + 𝜀Φ𝜉𝜉𝜉𝛽 + 𝑂(𝜀2) ,

𝐷𝛼𝜏𝐷𝛽𝛽𝜉 𝜙 󳨀→ 𝐷𝛼𝜏𝐷𝛽𝛽𝜉 𝜙 + 𝜀Φ𝜏𝜉𝜉𝛼,𝛽 + 𝑂 (𝜀2) ,
𝐷𝛼𝜏𝐷𝜃𝜃𝜁 𝜙 󳨀→ 𝐷𝛼𝜏𝐷𝜃𝜃𝜁 𝜙 + 𝜀Φ𝜏𝜃𝜃𝛼,𝜁 + 𝑂 (𝜀2) ,

(36)

where 𝜄, 𝜅, 𝜐, 𝜎 are infinitesimal function of the transforma-
tions, 𝜀 << 1 is the group parameter, and Φ𝜏𝛼, Φ𝜉𝛽, Φ𝜉𝜉𝜉𝛽 ,Φ𝜏𝜉𝜉𝛼,𝛽, Φ𝜏𝜃𝜃𝛼,𝜁 are extended infinitesimal functions in the follow-
ing explicit expression:

Φ𝜏𝛼 = 𝐷𝛼𝜏 (Φ) + 𝜄𝐷𝛼𝜏 (𝜙𝜉) − 𝐷𝛼𝜏 (𝜄𝜙𝜉) + 𝜅𝐷𝛼𝜏 (𝜙𝜂)
− 𝐷𝛼𝜏 (𝜅𝜙𝜂) + 𝜐𝐷𝛼𝜏 (𝜙𝜁) − 𝐷𝛼𝜏 (𝜐𝜙𝜁)
+ 𝐷𝛼𝜏 (𝐷𝜏 (𝜎) 𝜙) − 𝐷𝛼+1𝜏 (𝜎𝜙)
+ 𝜎𝐷𝛼+1𝜏 (𝜙) ,

Φ𝜉𝛽 = 𝐷𝛽𝜉 (Φ) + 𝐷𝛽𝜉 (𝜙)𝐷𝜉 (𝜄) − 𝐷𝛾𝜂 (𝜙)𝐷𝜉 (𝜅)
− 𝐷𝜃𝜁 (𝜙)𝐷𝜉 (𝜐) ,

Φ𝜉𝜉𝜉𝛽 = 𝐷𝛽
𝜉
(Φ𝜉𝜉𝛽 ) − 𝜙𝜉𝜉𝜉𝐷𝛽𝜉 (𝜄) − 𝜙𝜉𝜉𝜂𝐷𝛽𝜉 (𝜅)

− 𝜙𝜉𝜉𝜁𝐷𝛽𝜉 (𝜐) − 𝜙𝜉𝜉𝜏𝐷𝛽𝜉 (𝜎) ,
Φ𝜏𝜉𝜉𝛼,𝛽 = 𝐷𝛽𝜉 (Φ𝜂𝜂𝛽 ) − 𝜙𝜉𝜂𝜉𝐷𝛽𝜉 (𝜄) − 𝜙𝜉𝜂𝜂𝐷𝛽𝜉 (𝜅)

− 𝜙𝜉𝜂𝜁𝐷𝛽𝜉 (𝜐) − 𝜙𝜉𝜂𝜏𝐷𝛽𝜉 (𝜎) ,
Φ𝜏𝜃𝜃𝛼,𝜁 = 𝐷𝛽𝜉 (Φ𝜁𝜁𝛽 ) − 𝜙𝜉𝜁𝜉𝐷𝛽𝜉 (𝜄) − 𝜙𝜉𝜁𝜂𝐷𝛽𝜉 (𝜅)

− 𝜙𝜉𝜁𝜁𝐷𝛽𝜉 (𝜐) − 𝜙𝜉𝜁𝜏𝐷𝛽𝜉 (𝜎) ,
(37)

where𝐷𝜏 and𝐷𝜉 are the total derivative operators as follows:
𝐷𝜏 = 𝜕𝜕𝜏 + 𝜙𝜏 𝜕𝜕𝜏 + 𝜙𝜏𝜏 𝜕𝜕𝜙𝜏 + 𝜙𝜉𝜏

𝜕𝜕𝜙𝜉 + 𝜙𝜂𝜏
𝜕𝜕𝜙𝜂

+ 𝜙𝜁𝜏 𝜕𝜕𝜙𝜁 + ⋅ ⋅ ⋅ ,
𝐷𝜉 = 𝜕𝜕𝜉 + 𝜙𝜉 𝜕𝜕𝜉 + 𝜙𝜉𝜉 𝜕𝜕𝜙𝜉 + 𝜙𝜏𝜉

𝜕𝜕𝜙𝜏 + 𝜙𝜂𝜉
𝜕𝜕𝜙𝜂

+ 𝜙𝜁𝜉 𝜕𝜕𝜙𝜁 + ⋅ ⋅ ⋅ .

(38)

Applying the generalized Leibnitz rule and the chain rule,
the extended symmetry operator Φ can be introduced in the
following form:

Φ𝜏𝛼 = 𝜕𝛼Φ𝜕𝜏𝛼 + (Φ𝜙 − 𝛼𝐷𝜎𝜏) 𝜕
𝛼𝜙𝜕𝜏𝛼 − 𝜙

𝜕𝛼Φ𝜙𝜕𝜏𝛼
+ ∞∑
𝑛=1

[( 𝛼𝑛 )
𝜕𝛼Φ𝜙𝜕𝜏𝛼 − ( 𝛼

𝑛 + 1)𝐷𝑛+1𝜏 (𝜎)]𝐷𝛼−𝑛𝜏
− ∞∑
𝑛=1

( 𝛼𝑛 ) [𝐷𝑛𝜏 (𝜄) 𝐷𝛼−𝑛𝜏 (𝜙𝜉) + 𝐷𝑛𝜏 (𝜅)𝐷𝛼−𝑛𝜏 (𝜙𝜂)
+ 𝐷𝑛𝜏 (𝜐)𝐷𝛼−𝑛𝜏 (𝜙𝜁)] + 𝑅𝜏,

(39)

where

𝑅𝜏 = ∞∑
𝑛=2

𝑛∑
𝑚=2

𝑚∑
𝑘=2

𝑘−1∑
𝑟=0

[(𝛼𝑛)(
𝑛
𝑚)(

𝑘
𝑟) 1𝑘! 𝜏𝑛−𝛼Γ (𝑛 + 1 − 𝛼) (−𝜙)𝑟 𝜕

𝜙

𝜕𝜏𝜙 (𝜙)𝑘−𝑟 𝜕
𝑛−𝑚+𝑘Φ𝜕𝜏𝑛−𝑚𝜕𝜙𝑘 ] . (40)

Similarly, we also have the following equation:

Φ𝜉𝛽 = 𝜕𝛽Φ𝜕𝜉𝛽 + (Φ𝜙 − 𝛽𝐷𝜄𝜉) 𝜕
𝛽𝜙𝜕𝜉𝛽 − 𝜙

𝜕𝛽Φ𝜙𝜕𝜉𝛽
+ ∞∑
𝑛=1

[(𝛽𝑛)
𝜕𝛽Φ𝜙𝜕𝜉𝛽 − ( 𝛽

𝑛 + 1)𝐷𝑛+1𝜉 (𝜄)]𝐷𝛽−𝑛𝜉

− ∞∑
𝑛=1

(𝛽𝑛) [𝐷𝑛𝜉 (𝜎)𝐷𝛽−𝑛𝜉 (𝜙𝜏) + 𝐷𝑛𝜉 (𝜅)𝐷𝛽−𝑛𝜉 (𝜙𝜂)
+ 𝐷𝑛𝜉 (𝜐)𝐷𝛽−𝑛𝜉 (𝜙𝜁)] + 𝑅𝜉,

(41)

where

𝑅𝜉 = ∞∑
𝑛=2

𝑛∑
𝑚=2

𝑚∑
𝑘=2

𝑘−1∑
𝑟=0

[(𝛽𝑛)(
𝑛
𝑚)(

𝑘
𝑟) 1𝑘! 𝜉𝑛−𝛽Γ (𝑛 + 1 − 𝛽) (−𝜙)𝑟 𝜕

𝜙

𝜕𝜉𝜙 (𝜙)𝑘−𝑟 𝜕
𝑛−𝑚+𝑘Φ𝜕𝜉𝑛−𝑚𝜕𝜙𝑘 ] . (42)
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Introducing the Lie algebra 𝑁 associated with (35) is
composed of the following infinitesimal generator

𝑁 = 𝜄 𝜕𝜕𝜉 + 𝜅 𝜕𝜕𝜂 + 𝜐 𝜕𝜕𝜁 + Φ 𝜕𝜕𝜙. (43)

Applying the infinitesimal transformations, the (35) is
invariable that results in the invariance conditions given as

𝑃𝑟(𝛼,𝛽,𝛾,𝜃,4)𝑁(Δ)󵄨󵄨󵄨󵄨󵄨Δ=0 = 0, (44)

where Δ represents the (3+1)-dimensional TSF-ZK equation.
We get following symmetry determining equation by

using the third prolongation to (35)

Φ𝜏𝛼 + 𝑎1Φ𝐷𝛽𝜉𝜙 + 𝑎1Φ𝜉𝛽 + 𝑎2Φ𝜉𝜉𝜉𝛽 + 𝑎3Φ𝜉𝜂𝜂𝛽,𝛾 + 𝑎4Φ𝜉𝜁𝜁𝛽,𝜃
= 0. (45)

Substituting (37), (38), (39), and (41) into this equation,
letting the same coefficients of derivatives to zero, and then
solving the series of determining equations, we can obtain the
following infinitesimal functions

𝜎 = 𝑏1𝜏𝛼 + 𝑏2,
𝜄 = 𝑏1𝜉𝛽 + 𝑏3,
𝜅 = 𝑏1𝜂2𝛾 + 𝑏4,
𝜐 = 𝑏1𝜁2𝜃 + 𝑏5,
Φ = 𝑏1 (3 − 𝛽 − 𝛼𝛽 + 𝛼 )𝜙,

(46)

where 𝑏𝑖, 𝑖 = 1 ⋅ ⋅ ⋅ 5, are arbitrary constants, since the
corresponding infinitesimal generators can be expressed as

𝑁1 = 𝜕𝜕𝜉 ,
𝑁2 = 𝜕𝜕𝜂 ,
𝑁3 = 𝜕𝜕𝜁 ,
𝑁4 = 𝜕𝜕𝜏 ,
𝑁5 = 𝜏𝛼 𝜕𝜕𝜏 + 𝜉𝛽 𝜕𝜕𝜉 + 𝜂2𝛾 𝜕𝜕𝜂 + 𝜁2𝜃 𝜕𝜕𝜁

+ (3 − 𝛽 − 𝛼𝛽 + 𝛼 )𝜙 𝜕𝜕𝜙 .

(47)

The conserved vector of (35) is𝐶 = (𝐶𝜏, 𝐶𝜉, 𝐶𝜂, 𝐶𝜁)which
satisfies the conservation equation

𝐷𝜏 (𝐶𝜏) + 𝐷𝜉 (𝐶𝜉) + 𝐷𝜂 (𝐶𝜂) + 𝐷𝜁 (𝐶𝜁) = 0. (48)

A formal Lagrangian for the (3+1)-dimensional TSF-ZK
equation is given as

𝐿𝑎 = 𝜌 (𝜉, 𝜂, 𝜁, 𝜏) (𝐷𝛼𝜏𝜙 + 𝑎1𝜙𝐷𝛽𝜉𝜙 + 𝑎2𝐷𝛽𝛽𝛽𝜉 𝜙
+ 𝑎3𝐷𝛽𝜉𝐷𝛾𝛾𝜂 𝜙 + 𝑎4𝐷𝛽𝜉𝐷𝜃𝜃𝜂 𝜙) ,

(49)

where 𝜌(𝜉, 𝜂, 𝜁, 𝜏) is the new dependent variable.
In the considered linear case, the adjoint equation to (35)

as the Euler-Lagrange equation is represented as

𝐹∗ = 𝛿𝐿𝑎𝛿𝜙 = 0. (50)

Here 𝛿/𝛿𝜙 is the Euler-Lagrange operator which is defined as
𝛿𝛿𝜙 = 𝜕𝜕𝜙 + (𝐷𝛼𝜏)∗ 𝜕𝜕𝐷𝛼𝜏 + (𝐷𝛽𝜉 )

∗ 𝜕
𝜕𝐷𝛽
𝜉
𝜙

− (𝐷𝛽𝛽𝛽
𝜉
)∗ 𝜕
𝜕𝐷𝛽𝛽𝛽
𝜉
𝜙 − (𝐷𝛽𝜉𝐷𝛾𝛾𝜂 )

∗ 𝜕
𝜕𝐷𝛽
𝜉
𝐷𝛾𝛾𝜂 𝜙

− (𝐷𝛽
𝜉
𝐷𝜃𝜃𝜁 )∗ 𝜕

𝜕𝐷𝛽
𝜉
𝐷𝜃𝜃
𝜁
𝜙 ,

(51)

where (𝐷𝛼𝜏)∗, (𝐷𝛽𝛽𝛽𝜉 )∗, (𝐷𝛽
𝜉
𝐷𝛾𝛾𝜂 )∗, and (𝐷𝛽

𝜉
𝐷𝜃𝜃𝜁 )∗ are the

adjoint operators.
Hence, the adjoint equation (50) can be rewritten as

𝐹∗ = (𝐷𝛼𝜏)∗ 𝜌 + 𝑎1𝜙 (𝐷𝛽𝜉 )∗ 𝜌 − 𝑎2 (𝐷𝛽𝛽𝛽𝜉 )∗ 𝜌
− 𝑎3 (𝐷𝛽𝜉𝐷𝛾𝛾𝜂 )∗ 𝜌 − 𝑎4 (𝐷𝛽𝜉𝐷𝜃𝜃𝜂 )∗ 𝜌 = 0.

(52)

We introduce the Lie characteristic function 𝑊 for
generator𝑁 as follows:

𝑊 = Φ − 𝜄𝜙𝜉 − 𝜅𝜙𝜂 − 𝜐𝜙𝜁 − 𝜎𝜙𝜏. (53)

The fractional Noether operator for the variables 𝜏, 𝜉, 𝜂, and𝜁 are given by

𝐶𝜏 = 𝑛−1∑
𝑘=0

(−1)𝑘𝐷𝛼−1−𝑘𝜏 (𝑊)𝐷𝑘𝜏 ( 𝜕𝐿𝑎𝜕 (𝐷𝛼𝜏𝜙)) − (−1)𝑛

⋅ 𝐽 (𝑊,𝐷𝑛𝜏 ( 𝜕𝐿𝑎𝜕 (𝐷𝛼𝜏𝜙))) ,
𝐶𝜉 = 𝑚−1∑

𝑘=0

(−1)𝑘𝐷𝛽−1−𝑘𝜉 (𝑊)𝐷𝑘𝜉 ( 𝜕𝐿𝑎𝜕𝐷𝛽
𝜉
𝜙 + 𝐷𝛽𝛽𝜉

𝜕𝐿𝑎𝜕𝐷𝛽𝛽𝛽
𝜉
𝜙

+ 𝐷𝛾𝛾𝜂 𝜕𝐿𝑎𝜕𝐷𝛽
𝜉
𝐷𝛾𝛾𝜂 𝜙 + 𝐷

𝜃𝜃
𝜁

𝜕𝐿𝑎𝜕𝐷𝛽
𝜉
𝐷𝜃𝜃
𝜁
𝜙) − (−1)𝑚
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⋅ 𝐽(𝑊,𝐷𝑚𝜉 ( 𝜕𝐿𝑎𝜕𝐷𝛽
𝜉
𝜙 + 𝐷𝛽𝛽𝜉

𝜕𝐿𝑎𝜕𝐷𝛽𝛽𝛽
𝜉
𝜙

+ 𝐷𝛾𝛾𝜂 𝜕𝐿𝑎𝜕𝐷𝛽
𝜉
𝐷𝛾𝛾𝜂 𝜙 + 𝐷

𝜃𝜃
𝜁

𝜕𝐿𝑎𝜕𝐷𝛽
𝜉
𝐷𝜃𝜃
𝜁
𝜙)) ,

𝐶𝜂 = 𝑙−1∑
𝑘=0

(−1)𝑘𝐷𝛾−1−𝑘𝜂 (𝑊)𝐷𝑘𝜂 (𝐷𝛽𝜉 𝜕𝐿𝑎𝜕𝐷𝛾𝛾𝜂 𝜙) − (−1)𝑙

⋅ 𝐽 (𝑊,𝐷𝑙𝜂 (𝐷𝛽𝜉 𝜕𝐿𝑎𝜕𝐷𝛾𝛾𝜂 𝜙)) ,
𝐶𝜁 = 𝑠−1∑

𝑘=0

(−1)𝑘𝐷𝜃−1−𝑘𝜁 (𝑊)𝐷𝑘𝜁 (𝐷𝛽𝜉 𝜕𝐿𝑎𝜕𝐷𝜃𝜃
𝜁
𝜙) − (−1)𝑠

⋅ 𝐽 (𝑊,𝐷𝑙𝜁(𝐷𝛽𝜉 𝜕𝐿𝑎𝜕𝐷𝜃𝜃
𝜁
𝜙)) ,

(54)

where

𝑛 = [𝛼] + 1,
𝑚 = [𝛽] + 1,
𝑙 = [𝛾] + 1,
𝑠 = [𝜃] + 1,

(55)

and 𝐽 is an integral equation.
Consequently, the conservation law of the (3+1)-

dimensional TSF-ZK equation is obtained. This indicates
that the dust acoustic wave described by this new model is
conserved in energy during its propagation, no matter in the
fractal process or in the interaction.

5. The Solution of the (3+1)-Dimensional
TSF-ZK Equation

In this section, we seek the exact solution of (3+1)-
dimensional TSF-ZK equation by using the extended
Kudryashov method. Firstly, for a given nonlinear partial
differential equation

𝐹 (𝜙, 𝜙𝜏, 𝜙𝜉, 𝜙𝜂, 𝜙𝜁, . . . , 𝐷𝛼𝜏𝜙,𝐷𝛽𝜉𝜙,𝐷𝛾𝜂𝜙,𝐷𝜃𝜁𝜙, . . .)
= 0, (56)

we present the main solving process by using the extended
Kudryashov method [47].

Step 1. We introduce the traveling wave solutions of the
given nonlinear partial differential equation by making the
following transformations:

𝜙 (𝜉, 𝜂, 𝜁, . . . , 𝜏) = 𝜙 (𝐸) ,
𝐸 = 𝑘1𝜏𝛼Γ (1 + 𝛼) + 𝑘2𝜉𝛽Γ (1 + 𝛽) + 𝑘3𝜂𝛾Γ (1 + 𝛾) + 𝑘4𝜁𝜃Γ (1 + 𝜃) + ⋅ ⋅ ⋅ ,

(57)

where 𝑘𝑖 (𝑖 = 1, 2, 3, ⋅ ⋅ ⋅ ) are arbitrary constants. Thus, the
nonlinear partial differential equation reduces to a nonlinear
ordinary differential equation as follows:

𝐺 (𝜙, 𝜙𝐸, 𝜙𝐸𝐸, 𝜙𝐸𝐸𝐸, ⋅ ⋅ ⋅) = 0. (58)

Step 2. We let the new nonlinear ordinary differential equa-
tion have the following solution:

𝜙 (𝐸) = 𝑁∑
𝑖=0

𝑐𝑖𝑃𝑖 (𝐸) , 𝑐𝑁 ̸= 0, (59)

where 𝜙(𝐸) = ±1/√1 ± 𝑒2𝐸 and the function 𝑃 satisfies the
following equation:

𝑃𝐸 (𝐸) = 𝑃3 (𝐸) − 𝑃 (𝐸) . (60)

Step 3. We assume that the solution of (58) can be given in
the following form:

𝜙 = 𝑐𝑁𝑃𝑁 + 𝑐𝑁−1𝑃𝑁−1 + ⋅ ⋅ ⋅ . (61)

In order to determine the value of the pole order 𝑁, we
balance the highest order nonlinear terms 𝜙𝑙(𝐸)𝜙(𝑠)(𝐸) and
the highest order linear terms (𝜙(𝑝)(𝐸))𝑟 analogously. In the
traditional method [53], we assume that the value of the pole
order of 𝜙(𝐸) is 𝑜(𝜙(𝐸)) = 𝑁, so the values of the pole order
of the other terms are as follows:

𝑜 (𝜙𝑙 (𝐸) 𝜙(𝑠) (𝐸)) = (𝑙 + 1)𝑁 + 𝑠,
𝑜 ((𝜙(𝑝) (𝐸))𝑟) = (𝑁 + 𝑝) 𝑟. (62)

Letting 𝑜(𝜙𝑙(𝐸)𝜙(𝑠)(𝐸)) = 𝑜(𝜙(𝑝)(𝐸)), we get 𝑁. However,
there are some differences in the extended Kudryashov
method. The value of the pole order𝑁 is defined as

𝑁 = 2 (𝑠 − 𝑟𝑝)𝑟 − 𝑙 − 1 . (63)

Step 4. Substituting (59), (60), (61), and (63) into (58) and
equating the coefficients of 𝑃𝑖 to zero, we can get a series of
algebraic equations. The exact solution of (56) can be gained
by solving those algebraic equations.

For the (3+1)-dimensional TSF-ZK equation, we intro-
duce the traveling wave solutions by making the following
transformations

𝜙 (𝜉, 𝜂, 𝜁, 𝜏) = 𝜙 (𝐸) ,
𝐸 = 𝑘1𝜏𝛼Γ (1 + 𝛼) + 𝑘2𝜉𝛽Γ (1 + 𝛽) + 𝑘3𝜂𝛾Γ (1 + 𝛾) + 𝑘4𝜁𝜃Γ (1 + 𝜃) ,

(64)

where 𝑘𝑖 (𝑖 = 1, 2, 3, 4) are arbitrary constants. Thus, the
(3+1)-dimensional TSF-ZK equation reduces to a nonlinear
ordinary differential equation as follows:

𝑘1𝜙𝜉 + 𝑎1𝑘2𝜙𝜙𝜉 + (𝑎2𝑘32 + 𝑎3𝑘2𝑘23 + 𝑎4𝑘2𝑘24) 𝜙𝜉𝜉𝜉 = 0. (65)
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Next, 𝜙(𝐸) is expanded to the following power series of the
Jacobian elliptic function:

𝜙 (𝐸) = 𝑐0 + 𝑐1𝑃 + ⋅ ⋅ ⋅ + 𝑐𝑁−1𝑃𝑁−1 + 𝑐𝑁𝑃𝑁, 𝑐𝑁 ̸= 0, (66)

where 𝜙(𝐸) = ±1/√1 ± 𝑒2𝐸 and the function 𝑃 is the solution
of 𝑃𝐸(𝐸) = 𝑃3(𝐸) − 𝑃(𝐸). In (65), balancing the highest order
nonlinear terms 𝜙(𝐸)𝜙𝜉(𝐸) and the highest order linear terms𝜙𝜉𝜉𝜉(𝐸), we acquire𝑁 = 4.Thus, the 𝜙𝜉𝜉𝜉(𝐸) can be expanded
as follows:

𝜙 (𝐸) = 𝑐0 + 𝑐1𝑃 + 𝑐2𝑃2 + 𝑐3𝑃3 + 𝑐4𝑃4, 𝑐4 ̸= 0. (67)

Based on (67), we obtain

𝜙𝜉 = 4𝑐4𝑃6 + 3𝑐3𝑃5 + (2𝑐2 − 4𝑐4) 𝑃4 + (𝑐1 − 3𝑐3) 𝑃3
− 2𝑐2𝑃2 − 𝑐1𝑃,

𝜙𝜉𝜉 = 24𝑐4𝑃8 + 15𝑐3𝑃7 + (8𝑐2 − 40𝑐4) 𝑃6
+ (3𝑐1 − 24𝑐3) 𝑃5 + (16𝑐4 − 12𝑐2) 𝑃4
+ (9𝑐3 − 4𝑐1) 𝑃3 + 4𝑐2𝑃2 + 𝑐1𝑃,

𝜙𝜉𝜉𝜉 = 192𝑐4𝑃10 + 105𝑐3𝑃9 + (48𝑐2 − 432𝑐4) 𝑃8
+ (15𝑐1 − 225𝑐3) 𝑃7 + (304𝑐4 − 96𝑐2) 𝑃6
+ (147𝑐3 − 27𝑐1) 𝑃5 + (56𝑐2 − 64𝑐4) 𝑃4
+ (13𝑐1 − 27𝑐3) 𝑃3 − 8𝑐2𝑃2 − 𝑐1𝑃.

(68)

Substituting (67) and (68) into (65) and collecting the
coefficient of each power of 𝑃𝑖 (𝑖 = 12, 3, ⋅ ⋅ ⋅ ), we can present
a system of algebraic equations in the following form:

𝑃10 : 4𝑎1𝑘2𝑐24 + 192𝑐4 (𝑎2𝑘32 + 𝑎3𝑘2𝑘23 + 𝑎4𝑘2𝑘24) = 0,
𝑃9 : 7𝑎1𝑘2𝑐3𝑐4 + 105𝑐3 (𝑎2𝑘32 + 𝑎3𝑘2𝑘23 + 𝑎4𝑘2𝑘24) = 0,
𝑃8 : 𝑎1𝑘2 (6𝑐2𝑐4 + 3𝑐23 − 4𝑐24)
+ (48𝑐2 − 432𝑐4) (𝑎2𝑘32 + 𝑎3𝑘2𝑘23 + 𝑎4𝑘2𝑘24) ,

𝑃7 : 𝑎1𝑘2 (5𝑐1𝑐4 + 4𝑐2𝑐3 − 4𝑐3𝑐4)
+ (15𝑐1 − 225𝑐3) (𝑎2𝑘32 + 𝑎3𝑘2𝑘23 + 𝑎4𝑘2𝑘24) = 0,

𝑃6 : 4𝑘1𝑐4 + 𝑎1𝑘2 (4𝑐0𝑐4 + 4𝑐1𝑐3 + 2𝑐22 − 6𝑐2𝑐4 + 3𝑐23)
+ (304𝑐4 − 96𝑐2) (𝑎2𝑘32 + 𝑎3𝑘2𝑘23 + 𝑎4𝑘2𝑘24) = 0,

𝑃5 : 3𝑐3𝑘1 + 𝑎1𝑘2 (3𝑐0𝑐3 + 3𝑐1𝑐2 − 5𝑐1𝑐4 − 5𝑐2𝑐3)
+ (147𝑐3 − 27𝑐1) (𝑎2𝑘32 + 𝑎3𝑘2𝑘23 + 𝑎4𝑘2𝑘24) = 0,

𝑃4 : (2𝑐2 − 4𝑐4) 𝑘1
+ 𝑎1𝑘2 (2𝑐0𝑐2 − 4𝑐0𝑐4 + 𝑐21 − 4𝑐1𝑐3 − 2𝑐22)
+ (56𝑐2 − 64𝑐4) (𝑎2𝑘32 + 𝑎3𝑘2𝑘23 + 𝑎4𝑘2𝑘24) = 0,

𝑃3 : (𝑐1 − 3𝑐3) 𝑘1 + 𝑎1𝑘2 (𝑐0𝑐1 − 3𝑐0𝑐3 − 3𝑐1𝑐2)
+ (13𝑐1 − 27𝑐3) (𝑎2𝑘32 + 𝑎3𝑘2𝑘23 + 𝑎4𝑘2𝑘24) = 0,

𝑃2 : −2𝑐2𝑘1 − 𝑎1𝑘2 (𝑐0𝑐2 + 𝑐21)
− 8𝑐2 (𝑎2𝑘32 + 𝑎3𝑘2𝑘23 + 𝑎4𝑘2𝑘24) = 0,

𝑃 : −𝑐1𝑘1 − 𝑎1𝑘2𝑐0𝑐1
− 𝑐1 (𝑎2𝑘32 + 𝑎3𝑘2𝑘23 + 𝑎4𝑘2𝑘24) = 0.

(69)

Solving the above algebraic equations, the coefficients can be
written as

𝑐0 = 2𝑎1 𝑘 ( 3√12𝑎2 − √12𝑎2) ,
𝑐1 = 𝑐3 = 0,
𝑐2 = 12𝑘√12𝑎2𝑎1 ,
𝑐4 = −12𝑘√12𝑎2𝑎1 ,
𝑘1 = 𝑘,
𝑘2 = 𝑘3 = 𝑘4 = − 3√ 𝑘12𝑎2 .

(70)

Thus, we get the solution of (3+1)-dimensional TSF-ZK
equation in the following form:

𝜙 = 2𝑎1 𝑘 ( 3√12𝑎2 − √12𝑎2) +
3𝑘√12𝑎2𝑎1

⋅ sech2 [2 3√ 𝑘12𝑎2 (
𝜉𝛽Γ (1 + 𝛽) + 𝜂𝛾Γ (1 + 𝛾)

+ 𝜂𝜃Γ (1 + 𝜃)) − 2𝑘 𝜏𝛼Γ (1 + 𝛼)] .
(71)

6. The Property of the Dust Acoustic Waves by
a Gravity Field in Collisional Dust Plasma

According to the above section, we can obtain the exact
solution of (3+1)-dimensional TSF-ZK equation. Assuming
that 𝛼 = 𝛽 = 𝛾 = 𝜃, (71) can be rewritten as

𝜙 = 2𝑎1 𝑘 ( 3√12𝑎2 − √12𝑎2) +
3𝑘√12𝑎2𝑎1
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⋅ sech2 [ 2Γ (1 + 𝛼)
⋅ 3√ 𝑘12𝑎2 (𝜉𝛽 + 𝜂𝛾 + 𝜂𝜃 − 𝑘 3√

12𝑎2𝑘 𝜏𝛼)] .
(72)

Letting 𝜙𝑚 and 𝜔 be amplitude and width of solitary waves,
respectively, we gain the following definitions:

𝜙𝑚 = 3𝑘√12𝑎2𝑎1 ,
𝜔 = Γ (1 + 𝛼)2 3√12𝑎2𝑘 .

(73)

When 𝛼 = 𝛽 = 𝛾 = 𝜃 = 1, the motion velocity of the solitary
wave is

V = 𝑘√3 3√12𝑎2𝑘 . (74)

Furthermore, according to (17), the phase velocity of solitary
waves is in the following form:

V0 = 𝑔𝛽0 ± √1 +
𝑇𝑑𝑍𝑑 . (75)

6.1. Study of the Charge Properties of Dust Particle𝑍𝑑0 in Dust
Acoustic Waves. According to 𝜙𝑚, we know that when 𝑎1𝑎2 >0, the TSF-ZK equation has the bright soliton solution, and
when 𝑎1𝑎2 < 0, the (3+1)-dimensional TSF-ZK equation has
the dark soliton solution.

Case 1. We assume that the dust particles are negatively
charged; that is, 𝑍𝑑0 > 0. Based on the coefficient equation
(19) of (3+1)-dimensional TSF-ZK equation, we know that 𝑎1
and 𝑎2 are real numbers and 𝑎1𝑎2 < 0. Therefore, in a dust
plasma system, the solution (72) of an solitary wave in the
case of negative dust charge is a dark soliton. These results
are consistent with those obtained by the Sagdeev potential
method used by Ma [54].

Case 2. We assume that the dust particles are positively
charged; that is, 𝑍𝑑0 < 0. Based on (19), when 𝑇𝑑 < −𝑍𝑑0,
we also get that 𝑎1 and 𝑎2 are real numbers and 𝑎1𝑎2 < 0. At
this time, the solution (72) is dark soliton in the dust plasma
system. When 𝑇𝑑 > −𝑍𝑑0, 𝑎1 and 𝑎2 are complex numbers;
that is, solitary waves show a trend of decay, so there are no
solitary waves in dust plasma system.

6.2. Study of the Parameter 𝑘 in Dust Acoustic Waves. Based
on the extended Kudryashov method, the exact solution
(72) of (3+1)-dimensional TSF-ZK equation is obtained. For
the (3+1)-dimensional TSF-ZK equation and its solution, we
know that the positive and negative of 𝑘 are the same as
the positive and negative of 𝑎2, indicating the direction of
propagation of dust acoustic waves. 𝑎2 > 0 represents the

right traveling waves, and 𝑎2 < 0 represents the left traveling
waves. As long as there are dust acoustic waves in the system,
where 𝑎1 and 𝑎2 are real numbers, there is always 𝑎2 < 0. This
indicates that the left traveling waves exist in the dust plasma
system.

Furthermore, we know that polynomial coefficients and
parameters are in the same equivalence classwith the solution
which is obtained by using classical method. However,
according to the solution by using extended Kudryashov
method, as the value of 𝑘 changes, the amplitude, wave-
length, and velocity of the dust acoustic waves could change
accordingly. From Figure 1, we find that when 𝑘 increases,
so do the amplitude and wavelength of the solitary waves.
When 𝑘 󳨀→ ∞, the amplitude, wavelength, and velocity
of the dust acoustic waves reach their maximum values. At
a physical level, dust acoustic waves are driven by electron
thermal pressure and the ion pressure 𝑇𝑖. The increase of 𝑘
can be regarded as the increase of electron thermal pressure,
which increases the amplitude, wavelength, and velocity of
the solitary waves with small amplitude.

6.3. Study of the Fractional Order Values 𝛼, 𝛽, 𝛾, and 𝜃 in
Dust Acoustic Waves. In this section, we study the effect
of the variation of fractional order values 𝛼, 𝛽, 𝛾, and 𝜃
in the dust acoustic waves. Based on the soliton solution
(74), we obtain Figure 2. Figure 2(a) shows that the time
fractional order value 𝛼 of differentiation has a small effect
only on the position of the wave peak. It does not change
the amplitude and wavelength of dust acoustic waves. As
the value of 𝛼 increases, the wave peak moves to the left.
Figure 2(b) shows that the space fractional order values 𝛽, 𝛾,
and 𝜃of differentiationhave a small effect only on the position
of the wave peak. They also do not change the amplitude and
wavelength of dust acoustic waves. And as the values of 𝛽, 𝛾,
and 𝜃 increase, the wave peak moves to the left.

6.4. Study of the Temperature 𝑇𝑑 in Dust Acoustic Waves. At
this point, the effect of dust temperature on dust acoustic
waveforms is considered. When the dust ion temperature
increases, the nonlinear term coefficient 𝑎1 and disper-
sion coefficient 𝑎2 of (3+1)-dimensional TSF-ZK equation
both decrease. According to the exact solution of (3+1)-
dimensional TSF-ZK equation, we obtain three pictures of
the dust acoustic waves. Based on Figure 3, we know that
the dust acoustic waveforms are constantly changing with
the temperature of dust ions. Furthermore, with the increase
in temperature, the motion velocity and the phase velocity
of the dust acoustic waves also increase. In [55], the effect
of temperature ratio between ions and electrons 𝜎 = 𝑇𝑖/𝑇𝑒
on classical solitons is studied. The amplitude of the classical
isolator increases and the characteristic width decreases with
the decrease of 𝜎, which is consistent with the waveform
change of the dust acoustic waves in Figure 3.

6.5. Study of the Gravity 𝑔 and the Collision Frequency 𝛽0, 𝛽1
in Dust Acoustic Waves. According to the (3+1)-dimensional
TSF-ZK equation and its exact solution, we can study the
effect of gravity 𝑔 and collision frequency 𝛽0 on the dust
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Figure 1: Plots for the evolution of the exact solution of dust acoustic solitary waves with (a) 𝑘 = 0.5, 𝑡 = 2, 𝑎1 = 1.67, 𝑎2 = 𝑎3 = 𝑎4 = 1.29,𝛼 = 0.5, 𝛽 = 𝛾 = 𝜃 = 1, and 𝑘2 = 𝑘3 = 𝑘4 = 0.26; (b) 𝑘 = 1, 𝑡 = 2, 𝑎1 = 1.67, 𝑎2 = 𝑎3 = 𝑎4 = 1.29, 𝛼 = 0.5, 𝛽 = 𝛾 = 𝜃 = 1, and𝑘2 = 𝑘3 = 𝑘4 = 0.26; (c) 𝑘 = 1.5, 𝑡 = 2, 𝑎1 = 1.67, 𝑎2 = 𝑎3 = 𝑎4 = 1.29, 𝛼 = 0.5, 𝛽 = 𝛾 = 𝜃 = 1, and 𝑘2 = 𝑘3 = 𝑘4 = 0.26.
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Figure 2: The dust acoustic waves with position at different values of (a) 𝛼 for 𝑘 = 2, 𝑡 = 2, 𝑎2 = 𝑎3 = 𝑎4 = 1.29, 𝛽 = 𝛾 = 𝜃 = 1, and𝑘2 = 𝑘3 = 𝑘4 = 0.38; (b) 𝛽, 𝛾, 𝜃 for 𝑘 = 2, 𝑡 = 2, 𝑎2 = 𝑎3 = 𝑎4 = 1.29, 𝛼 = 0.5, and 𝑘2 = 𝑘3 = 𝑘4 = 0.38.

acoustic waves. Assuming that there are no collisions and
no gravity in the neutral gas and using the same reduced
perturbation method, we can get the following coefficients
and phase velocity

𝑎1 = −3V02 ,
𝑎2 = 12V0 ,

V0 = ±√1 + 𝑇𝑑𝑍𝑑0 .
(76)

The result shows that, in the presence of gravity and
collision frequency, that is, taking 𝑔 and 𝛽0 into account,
the phase velocity of the dust acoustic waves is increasing.
Because 𝑔 > 0 and 𝛽0 > 0, their ratio 𝑔/𝛽0 is always positive.
There is no significant influence on the amplitude of the
dust acoustic waves. However, using reduction perturbation
analysis, we find that the collision disturbance 𝛽1 of neutral
gas contributes to the nonlinear term; thus the soliton
solution appears in the colliding plasma. In [52], we can know
that if there are unstable dust acoustic waves, that is, there is
an imaginary part in the dispersion relationship, the solitary
wave will not exist. The difference between our study and
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Figure 3: Plots for the evolution of the exact solution (72) of dust acoustic solitary waves with (a)𝑇 = 2, 𝑡 = 2, 𝑎1 = 1.67, 𝑎2 = 𝑎3 = 𝑎4 = 1.29,𝛼 = 0.5, 𝛽 = 𝛾 = 𝜃 = 1, and 𝑘2 = 𝑘3 = 𝑘4 = 0.38; (b) 𝑇 = 3, 𝑡 = 2, 𝑎1 = 1.67, 𝑎2 = 𝑎3 = 𝑎4 = 1.29, 𝛼 = 0.5, 𝛽 = 𝛾 = 𝜃 = 1, and𝑘2 = 𝑘3 = 𝑘4 = 0.38; (c) 𝑇 = 4, 𝑡 = 2, 𝑎1 = 1.67, 𝑎2 = 𝑎3 = 𝑎4 = 1.29, 𝛼 = 0.5, 𝛽 = 𝛾 = 𝜃 = 1, and 𝑘2 = 𝑘3 = 𝑘4 = 0.38.

[52] is that we consider the collision of neutral gases as the
perturbation term. From the actual physical background, this
view is more reasonable.

7. Conclusion

In this paper, according to the control equations of motion,
we obtain a (3+1)-dimensional ZK equation describing the
propagation of nonlinear dust acoustic waves in space. Then,
we extend this equation to the fractional order for the first
time and have a completely new model which is the (3+1)-
dimensional TSF-ZK equation. The fractional equation that
can describe fractal processes of the dust acoustic waves is
related to the dust acoustic waves propagation with fractal
properties. In the following, we study the conservation law
of the (3+1)-dimensional TSF-ZK equation. This indicates
that the dust acoustic wave described by this new model is
conserved in energy during its propagation, no matter in the
fractal process or in the interaction. In addition, according to
the extended Kudryashov method, we get the exact solution
of (3+1)-dimensional TSF-ZK equation. Then we draw on
the exact solution to study the effect of the parameter 𝑘, the
charge properties of dust particle 𝑍𝑑0, the fractional order
values𝛼,𝛽, 𝛾, and 𝜃, the temperature𝑇𝑑 , the gravity𝑔, and the
collision frequency 𝛽0 and 𝛽1 on the properties of nonlinear
dust acoustic waves by a gravity field in dust plasma.
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