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Over the past few decades, the Earth’s surface has witnessed
major changes in land use. These changes are likely to con-
tinue, driven by demographic pressure or by climate change.
In this context, monitoring tools are needed for maintaining
a sustainable ecological status, improving soil conservation
and water resource management. Floods, excess runoff, soil
erosion, and related contamination and disequilibrium of
the water and carbon cycles are, among others, key issues
that are controlled and influenced by soil surface char-
acteristics. The implementation of sustainable agricultural,
hydrological, and environmental management requires an
improved understanding of the soil, at increasingly finer
scales. Conventional soil sampling and laboratory analyses
cannot efficiently provide this information, because they are
slow, expensive, and could not retrieve all temporal and
spatial variabilities.

In this context, remote sensing has shown a high
potential in soil characteristics retrieving in the last three
decades. Different methodologies have been proposed for
the estimation of soil parameters, based on different remote
sensing sensors and techniques (passive and active). For
passive remote sensing, we can consider four principal types
of sensors:

(i) optical remote sensing with limited number of bands
(e.g., SPOT, ASTER, LANDSAT..., etc.) particularly
adapted for vegetation cover description, land use
analysis,

(ii) optical remote sensing based on hyperspectral sen-
sors, particularly adapted for soil texture description,

(iii) optical remote sensing with thermal infrared band,
adapted for soil temperature estimation,

(iv) passive microwave remote sensing adapted to soil
moisture and vegetation estimation.

For active remote sensing, different studies have shown a
considerable potential for the characterization of different
soil parameters: moisture, roughness, and texture. Active
remote sensing is particularly based on two types of sensors:
synthetic aperture radar (SAR) with high spatial resolution
adapted to local and regional studies and scatterometer
sensor more adapted to global estimations of soil parameters.

Three types of methodologies are generally used for
soil parameters estimation: empirical models based only on
satellite and ground databases, semiempirical models based
on a mixture between physical modelling and real data, and
finally physical models based only on the description of
radiative transfert physics to analyze relationship between
remote sensing signals and soil parameters.

These remote sensing studies concern particularly four
soil parameters (moisture, roughness, temperature, and
texture).

(i) Soil moisture is a key parameter, influencing the
manner in which rainwater is shared between the
phenomena of evapotranspiration, infiltration, and
runoff.

(ii) Soil surface roughness is involved in the separation
of water flow into infiltration and runoff. Moreover,
monitoring the evolution of surface roughness is a
way to estimate erosion risk particularly in agricul-
tural areas.

(iii) Soil texture is one of the most important soil
properties influencing most physical, chemical, and
biological soil processes. Hence, it is a key property
for soil management.
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(iv) Soil temperature is a key parameter in the description
of evapotranspiration and surface-atmosphere inter-
face processes.

Based on this high potential of remote sensing to retrieve
surface parameters, a high number of sensors have been
launched in the last years to improve different methodologies
proposed to retrieve operationally surface parameters.

In this context, our principal objective of this special
issue is to present different studies illustrating quantitative
analyses based on these different new sensors.

Pasolli et al. propose a technique for estimating soil
moisture based on the support vector regression algorithm
and the integration of ancillary data, using active remote
sensing (RADARSAT 2 SAR data).

Liu et al. investigated the impact of soil moisture on gross
primary production (GPP), chlorophyll content, and canopy
water content represented by remotely sensed vegetation
indices (VIs) in an open grassland and an oak savanna in
California.

Using SAR (RADARSAT-1) remote sensing, Khaldoune
et al. provide a classification of frozen/unfrozen soils in
the entire Bras d’Henri River watershed near Quebec City
(Quebec, Canada). It was developed to produce frozen soil
maps under snow cover.

Browning and Duniway present a method to map soils
with Landsat ETM+ imagery and high-resolution (5 m)
terrain (IFSAR) data. They then characterize soil classes
mapped using this semiautomated technique. The method
distinguished spectrally distinct soil classes that differed in
subsurface rather than surface properties.

Baptista et al. study tested the feasibility of applying
AVIRIS sensor (Airborne Visible/InfraRed Imaging Spec-
trometer) for mapping and quantifying mineralogical com-
ponents of three Brazilian soils. They showed to be possible
mapping and quantifying the weathering degree of the
studied soils.

Hively et al. propose the use of airborne hyperspec-
tral imagery to map tilled agricultural fields properties.
Soil hyperspectral reflectance imagery was obtained using
an airborne imaging spectrometer (400–2450 nm, ∼10 nm
resolution, 2.5 m spatial resolution). The resulting raster
maps showed variation associated with topographic factors,
indicating the effect of soil redistribution and moisture
regime on in-field spatial variability.

Finally, Oguro et al. discuss brightness temperature (BT)
measurements and statistics over Taklimakan Desert. They
are retrieved from the data of Landsat-7/ETM+ band 6 and
Terra/MODIS band 31 and 32.

In spite the limited number of scientific papers and the
difficulty to cover all techniques of remote sensing of soil,
we hope that the readers will find this as a useful source of
information.
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Soil hyperspectral reflectance imagery was obtained for six tilled (soil) agricultural fields using an airborne imaging spectrometer
(400–2450 nm, ∼10 nm resolution, 2.5 m spatial resolution). Surface soil samples (n = 315) were analyzed for carbon content,
particle size distribution, and 15 agronomically important elements (Mehlich-III extraction). When partial least squares (PLS)
regression of imagery-derived reflectance spectra was used to predict analyte concentrations, 13 of the 19 analytes were predicted
with R2 > 0.50, including carbon (0.65), aluminum (0.76), iron (0.75), and silt content (0.79). Comparison of 15 spectral math
preprocessing treatments showed that a simple first derivative worked well for nearly all analytes. The resulting PLS factors were
exported as a vector of coefficients and used to calculate predicted maps of soil properties for each field. Image smoothing with a
3 × 3 low-pass filter prior to spectral data extraction improved prediction accuracy. The resulting raster maps showed variation
associated with topographic factors, indicating the effect of soil redistribution and moisture regime on in-field spatial variability.
High-resolution maps of soil analyte concentrations can be used to improve precision environmental management of farmlands.

1. Introduction

Spatial assessment of soil properties is important for
understanding the dynamics of agricultural ecosystems. Site
specific data can provide information that is critical to main-
taining healthy soils and adequate nutrient supply for crop
production, preventing losses of nutrients and sediments to
the environment, and evaluating the transfer of elements
such as carbon between land and atmosphere. Research has
demonstrated that soil properties such as carbon content
are correlated with field topography, soil texture, electrical
conductivity, and soil reflectance [1–4]. A study by Venteris
et al. [5] documented accumulation of carbon in low areas
of fields following soil translocation from higher areas, with

resulting carbon loss and soil degradation in elevated areas,
and Thompson et al. [6] used soil-landscape modeling tech-
niques to evaluate topographic distribution of soil texture
and carbon content. These geographic approaches accounted
for 28% to 68% of variation in measured carbon and demon-
strated the complexity of environmental and management
practices that affect soil characteristics. Recent research into
soil health and sustainable cropping systems has demon-
strated the potential of improved systems management based
on knowledge of distributed soil properties [7]. Contempo-
rary farm management relies on moderate resolution soil
maps derived from photo and topographic interpretation.
Accurate mapping of soil properties is made difficult due
to high spatial variability observed within agricultural fields,
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errors in spatial assessment of soil properties can result from
inadequate or biased sampling of the landscape, and the high
cost associated with collecting and analyzing soil samples
often limits the amount information available to farmers
and land managers. However, advances in remote sensing
technology are now providing tools to support geospatial
mapping of soil properties, with applications in agricultural
and environmental management.

Diffuse reflectance spectroscopy offers a rapid and non-
destructive means for measurement of soil properties based
on the reflectance spectra of illuminated soil [8–10]. A
growing body of literature supports the use of spectral
reflectance to determine soil properties, mostly using lab-
oratory instrumentation to measure soil reflectance in the
visible (400–700 nm) near infrared (700–2500 nm) and mid-
infrared (2500–25,000 nm) wavelengths. Partial least squares
(PLS) regression has emerged as a successful chemometric
method for extracting predictive information from spectral
reflectance datasets [10–12]. The PLS method, characterizes
high leverage orthogonal factors within observed spectral
variance and matches them to similar factors that describe
observed variance within measurements of a corresponding
dependant variable. It has been successfully used to predict
the results of soil laboratory analysis for carbon content
[13, 14], particle size distribution [13, 15, 16] and elemen-
tal nutrient content [14, 17, 18], with results sometimes
approaching the analytical accuracy of laboratory tests [12,
19]. A review of 44 studies [20] documented R2 associated
with prediction of soil carbon that ranged from 0.45 to
0.98, with a median of 0.86. Prediction accuracy depends
on the signal : noise associated with the spectral data, and,
like most analytical calibrations, is also highly influenced
by the distribution of values in the measured dataset.
The PLS-derived predictive equations, like most analytical
calibrations, are most effective when the unknowns fall
with the range of observations used to create the predictive
equation, and the best success is obtained when an adequate
number of locally obtained samples are included in the
calibration data set [12, 21].

Advances in sensor technology have enabled satellite and
airborne collection of hyperspectral imagery, allowing the
acquisition of spectrally detailed geospatial reflectance data
at field and landscape scales. By combining PLS regression of
soil properties with reflectance data derived from airborne
imagery, high-resolution maps of soil properties can be
developed, thus overcoming the inaccuracies associated with
geospatial interpolation of soil test data. Reports in the
literature, for example, [16, 19, 22], indicate great potential
for remote sensing approaches to map surface soil properties.
However, additional research is needed to optimize data
analysis procedures and improve prediction ability [19].
Separation of signal from noise is an important part of
spectral data processing. Geometric and atmospheric adjust-
ments are first required to derive a geospatially representative
map of soil reflectance spectra. The imagery can then be
smoothed spatially by averaging adjacent pixels, for example
using a 3 × 3 low-pass filter. This can reduce the noise that
results from random signal variability within the detector
array while increasing the signal associated with number of

observations. It is also common to smooth the spectra in
various ways, often by averaging adjacent wavebands or by
calculation of first and second derivatives. Numerous math
pretreatments have been evaluated for application of PLS
to spectral reflectance data obtained from agricultural soils
[8, 14, 23, 24].

In this paper, we have three objectives: (1) to evaluate 30
combinations of spectral math pretreatments and imagery
smoothing techniques to identify most effective methods
of preparing remote sensing data for partial least squares
(PLS) analysis of soil properties (2) to develop and validate
PLS predictions of soil concentrations for 19 laboratory
analytes based on data extracted from airborne hyperspectral
imagery and (3) to export resulting PLS vectors to geospatial
imagery processing software and calculate high-resolution
raster maps of predicted soil characteristics. Six recently
tilled agricultural fields were intensively sampled to provide
the calibration data set.

2. Materials and Methods

2.1. Field Sampling. On 10 April, 2007, we collected 315 soil
samples from six fields (Figure 1) located on working grain
farms on the Eastern Shore of the Chesapeake Bay (Delmarva
Peninsula, near Easton, MD). Each of the fields (Temple 1S,
7.3 ha; Temple 1N, 7.1 ha; Temple 2, 8.9 ha; Temple 3, 18.1 ha;
Mason, 14.6 ha; Schrader 9.8 ha) was chosen to provide
uniform, smooth, bare-soil conditions, had been recently
tilled (moldboard plow, field cultivator, and disk), and had
little to no vegetation or plant residue. Soil conditions were
moderately dry at the time of sampling, with six days of
warm spring weather since the previous substantial rainfall
(25 mm on 04 April, 2007). All fields were relatively flat (0%
to 5% slope). Soil types included moderately well-drained silt
loams (Pineyneck PiA, Mattapex-Butlertown MtA), poorly
drained silt loams (Othello Ot), and well-drained sandy
loams (Indleside IgB). Although the majority of Eastern
Shore farms are managed using no-till practices, the tilled
fields were otherwise typical of regional cash grain crop
management strategies.

Sampling locations (315 total) were established at appro-
ximately 40 m intervals in transects across each field. Tran-
sects were established by using a tractor to pull a chisel
plow shank through the soil at 20 cm depth. All sampling
occurred on 10 April, 2007, during one long day of fieldwork
with a large sampling crew. The soil was already well mixed
from moldboard plowing, and this fresh tillage created an
area of lightly disturbed soil behind the chisel plow shank
from which surface soil samples (∼400 g) were collected at
each location. Because the chisel plow shank did not invert
the soil, this sampling method approximated conditions at
the bare soil surface that were observed by the imaging
spectrophotometer. Number of samples ranged from 30 to
86 per field. Global positioning system (GPS) points were
established for each sampling location using a handheld
Trimble Geo-XT unit with submeter accuracy, calculated as
the average of >20 sequential coordinate readings.

Soil samples were air dried (>48 hr) and ground to pass
through a 2 mm sieve. Sand, silt, and clay content were
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Figure 1: Field sites with soil sampling locations (black points) and SSURGO soil boundaries. See Materials and Methods for soil type
designations.

determined using the hydrometer method of particle size
analysis [25]. Standard soil nutrient analysis was performed
at the University of Delaware Soil Testing Laboratory
(http://ag.udel.edu/other websites/DSTP/), using Mehlich
III analysis [26] for potassium (K), calcium (Ca), magnesium
(Mg), manganese (Mn), zinc (Zn), iron (Fe), nitrogen (N),
phosphorus (P), copper (Cu), boron (B), sulfur (S), and alu-
minum (Al). Percent phosphorus saturation was calculated
as a ratio of phosphorus to iron and aluminum content.
Organic matter content (OM) was determined by loss on
ignition. Subsamples were roller-milled for 12 hours prior to
elemental analysis for carbon (C) and nitrogen (N) content
by dry combustion using a TruSpec CN analyzer (Leco
Corp, St. Joesph Mich, USA). None of the samples contained
significant inorganic carbon. On the same day as field sam-
pling for soils, airborne spectral imagery was acquired.

2.2. Imagery Collection. The airborne hyperspectral imaging
spectrometer (HyperSpecTIR) used in this study was a
push broom sensor developed by the SpecTIR Corporation
(Reno Nevada, USA). It measured irradiance in 178 spectral

channels between 400 and 2450 nm with approximately
10-nm resolution [27]. Orthorectification was established
to within one pixel (<2.5 m) tolerance. An upward facing
radiation sensor measured incoming solar radiation which
was used to calibrate imagery to ground reflectance and limit
atmospheric effects to the space beneath the aircraft.

The plane was flown at 1800 m altitude with a ground
speed of 210 km hr−1, between 10 : 00 and 14 : 00 hrs, on
10 April, 2007. At this altitude, the imagery covered a
swath 800 m wide (320 adjacent 2.5 m pixels). Flight paths
were flown parallel to the principle plane of the sun. A
correction for cross-track illumination was tested but did not
improve results and was therefore not adopted. A number of
sensor errors were identified where faulty detector elements
produced erroneous results within particular wavebands,
resulting in along-track striping in the field maps of pre-
dicted analyte concentrations. The 15 most obvious of these
errors were corrected with spatial smoothing by replacing
each faulty reflectance value with the average value of the two
neighboring detector elements within the particular faulty
waveband. While it was clear from visual inspection of the
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predicted imagery that bad detector elements remained, only
the 15 most obvious errors were corrected.

Soil spectra associated with each sampling location were
extracted from the imagery by overlaying GPS point shape-
files (<1 m geopositioning error) of sampling locations and
selecting the data associated with each underlying pixel. This
was done for both the original imagery (1-pixel extraction)
and spatially smoothed imagery to which a 3 × 3 low-pass
filter had been applied (9-pixel extraction). Imagery pro-
cessing was conducted using ENVI 4.7. Elevation data for
each pixel were derived from a 3-m LIDAR digital elevation
map that was resampled at 2.5 m resolution, with a vertical
accuracy of 0.20 m. A 2.5 m resolution wetness index was
also calculated from the LIDAR data, using SAGA software
to apply two consecutive iterations of an enhanced lee 3 × 3
filter. This measure approximates the cumulative influence of
upslope contributing area. Near infrared reflectance spectra
for each of the 315 dried, ground soil samples were also
obtained in the laboratory using a bench spectrometer
and controlled light source, with methods and PLS results
reported in McCarty et al. [28].

2.3. Spectral Data Processing. Fifteen spectral math pre-
treatments were evaluated using a SAS Ver. 9.12 program
modified for hyperspectral data processing [23]. These
included untransformed spectra, first derivatives with gap
ranging from 1 to 64, and second derivatives with gap
ranging from 1 to 64. Each of these math pretreatments
was applied separately to the smoothed and unsmoothed
spectra, resulting in a total of 30 data combinations that were
used independently to calculate PLS predictions for each
laboratory analyte using all 315 samples. Both the spectral
data and the analyte values were mean centered prior to PLS
analysis. The number of factors used in each PLS regression
was chosen by the PRESS algorithm [24] within SAS Proc
PLS and ranged from four to ten. Testing for outliers was
not performed, and all observed values were included in
the analysis. Goodness of fit was determined using repeated
leave-one-out cross validation, with results presented as
coefficient of determination (R2). Ranking analysis was
employed to test for significant differences among math
treatments, for all analytes predicted with R2 > 0.50.

Once the best math treatment was chosen, PLS Toolbox
Ver. 4.0 (Eigenvector Research, Wenatchee, Wash, USA),
operating within the Matlab (Ver. 7.0) environment, was
used to perform PLS analysis using mean-centered spectral
and analyte data from five of the six fields (269 samples).
Goodness of fit was determined using repeated leave-one-
out cross validation, with results presented as coefficient of
determination (R2) and residual mean square error (RMSE).
Data from the remaining field (Temple 1S, 46 samples)
were treated as unknown samples and predicted from PLS
coefficients, with prediction accuracy reported as bias (mean
of predicted values minus mean of observed values) divided
by the mean of predicted values (bias/mean(pred)) as well as
standard deviation of validation [24, Section 18.8] divided by
standard error of prediction (sd/se pred).

The use of Matlab allowed the mathematical flattening
of the PLS factors into a 178 band vector of coefficients, and

the scalar product of this vector with each pixel’s imagery-
derived spectrum was used to calculate predicted analyte
concentrations. This calculation was made for each pixel of
the hyperspectral imagery by using IDL code run within
the ENVI 4.7 programming environment to calculate the
appropriate band math. In this manner, geospatial field maps
of predicted analyte concentrations were produced.

3. Results and Discussion

3.1. Soil Test Results. Observed analyte concentrations for the
six sampled fields are described in Table 1. Soils were dry at
the time of sampling, with moisture content ranging from
10% to 23% for the majority (91%) of samples (Table 1).
Overall, the distribution of observed carbon content values
was not large, ranging from 0.6 to 2.0% (Table 1). The
Mason site, which had recently transitioned from long term
conventional grain production to organic grain production,
exhibited low soil carbon (mean 0.7%) content relative
to the other fields (means of 1.2 to 1.4%). The Schrader
site had received long-term applications of dairy manure
and exhibited somewhat increased soil C (mean 1.4%)
relative to the other fields. The remaining four fields
(Table 1: Temple 1S, Temple 1N, Temple 2, and Temple
3) were managed by one farmer, and were under similar
management (conventional corn-wheat/soybean rotation).
Overall, carbon content was low, as is typical of Maryland
Eastern Shore farmland. Concentrations of the remaining
analytes were within the normal range for agricultural soils,
although variability among sites was not great.

3.2. Choice of Math Treatment. A SAS “shotgun approach”
for hyperspectral data processing has previously been used
to provide a factorial comparison of the effects of various
math pretreatments on PLS analysis of soil spectra [23]. This
method was used to compare a total of 15 different spectral
pretreatments including 1st and 2nd derivatives with various
gap widths (Table 2). Results showed that there were no
statistical differences among the majority of the treatments,
with the simplest treatments (no derivative, first derivative
gap 2) often resulting in the best fit. This led to the conclusion
that the PLS data mining techniques are capable of extracting
the majority of signal information from the untransformed
spectral data, without the need for math pretreatment.

There is some argument to be made that different math
treatments are more appropriate for particular analytes, due
to the physical interaction of light with those particular con-
stituents. Some evidence for this was shown for potassium,
for which a first derivative gap 8 increased R2 from 0.514
(first derivative gap 2) to 0.578 (Table 2). However, caution
must be taken to prevent overfitting of datasets, and further
study is needed to justify the selection of a diversity of math
treatments for use with particular analytes. Ultimately, the
first derivative gap 2 was selected as the best math overall
treatment even though it was slightly, but not significantly,
outperformed in several cases (Table 2).

3.3.Partial Least Squares Regression: Calibration Dataset.Once
the best math treatment was decided upon, PLS regression
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Table 2: Partial least squares (PLS) prediction model goodness of fit (R2) associated with each of 15 math treatments, for the 13 analytes that
predicted with R2 > 0.5, calculated using data from all 315 soil sampling locations1. The first derivative gap two (1Dg2, depicted in bold)
was selected as the overall most successful model although it was occasionally outperformed (italic). See Section 2 for analyte descriptions.

Derivative Gap C Sand Silt Clay pH OM K Ca Mg Mn Zn Fe Al average

R2 R2 R2 R2 R2 R2 R2 R2 R2 R2 R2 R2 R2 R2

NON 0 0.578 0.762 0.763 0.585 0.442 0.685 0.555 0.669 0.692 0.642 0.670 0.754 0.777 0.659

1ST 1 0.555 0.770 0.761 0.565 0.517 0.706 0.522 0.654 0.719 0.624 0.606 0.707 0.799 0.654

1ST 2 0.591 0.763 0.763 0.617 0.549 0.717 0.514 0.676 0.708 0.638 0.647 0.740 0.782 0.670

1ST 4 0.595 0.754 0.740 0.596 0.451 0.692 0.513 0.630 0.616 0.565 0.675 0.703 0.773 0.639

1ST 8 0.584 0.748 0.739 0.600 0.413 0.668 0.578 0.635 0.642 0.580 0.636 0.637 0.727 0.630

1ST 16 0.588 0.740 0.744 0.550 0.442 0.672 0.547 0.610 0.619 0.567 0.591 0.666 0.725 0.620

1ST 32 0.525 0.730 0.722 0.554 0.381 0.640 0.520 0.648 0.619 0.542 0.580 0.669 0.765 0.607

1ST 64 0.338 0.623 0.619 0.470 0.317 0.537 0.413 0.519 0.580 0.488 0.568 0.636 0.669 0.521

2ND 1 0.542 0.585 0.597 0.424 0.361 0.526 0.484 0.708 0.705 0.529 0.599 0.665 0.729 0.573

2ND 2 0.507 0.681 0.682 0.372 0.499 0.566 0.493 0.665 0.664 0.566 0.591 0.673 0.769 0.595

2ND 4 0.576 0.714 0.724 0.409 0.449 0.660 0.484 0.672 0.669 0.606 0.613 0.749 0.752 0.621

2ND 8 0.536 0.698 0.689 0.533 0.472 0.602 0.528 0.595 0.631 0.542 0.638 0.743 0.753 0.612

2ND 16 0.580 0.729 0.725 0.573 0.487 0.661 0.498 0.590 0.640 0.598 0.617 0.680 0.712 0.622

2ND 32 0.564 0.715 0.698 0.609 0.432 0.631 0.548 0.622 0.592 0.548 0.606 0.639 0.688 0.607

2ND 64 0.525 0.596 0.589 0.421 0.156 0.599 0.511 0.556 0.464 0.501 0.538 0.602 0.614 0.513
1
Analytes that predicted poorly R2 (<0.5) included: N (<0.303), P (<.355), Cu (<0.358), B (<0.169), S (<0.282), and P saturation (<0.127).

was performed in Matlab using a calibration dataset of 269
samples (all sampling locations from five of the six fields),
with results reported in Table 3. It should be noted that
spectral data for the 315 samples used to calculate the SAS
PLS in Table 2 were extracted from an earlier version of
image processing output in which the 15 band errors had not
yet been corrected and to which cross-track illumination had
been applied. This discrepancy resulted in slightly lower R2

being used in Table 2 than in Table 3, but was not thought
to have affected the relative performance of math treatments.
Using Matlab PLS on 269 samples, 13 of the 19 analytes were
predicted with R2 > 0.50 (Table 3(a)), and the remaining
seven were predicted with R2 < 0.40: N (<0.30), P (<0.36),
Cu (<0.36), B (<0.17), S (<0.28), and P saturation (<0.13). A
comparison of observed and predicted values for a selection
of analytes (carbon, silt, aluminum, and iron) is shown in
Figure 2.

Prediction accuracy for carbon (R2=0.65) fell well within
the range of results (0.45 to 0.98) found in a survey of
44 studies [20] but was somewhat poor in comparison
with results found in some other studies for example, [11,
14, 15]. The somewhat poor R2 for carbon might lead
to the conclusion that the sensor did not capture a good
reflectance signal due to the increased noise often associ-
ated with airborne sensors that derives from atmospheric
effects and variations in sensor-soil-sun geometry across the
imagery. Indeed, a number of studies have found remote
sensing spectroscopy to have reduced signal : noise relative to
laboratory-based measurements [24]. However, the carbon
PLS results reported in McCarty et al. [28], calculated for
all 315 soil samples in this data set, using repeated leave-

one-out correlation to determine goodness of fit, showed
that spectra from the airborne sensor were as effective
(R2 = 0.67) as spectra from a near-infrared benchtop labora-
tory spectrophotometer (R2 = 0.64) in predicting soil carbon
concentrations. For the remaining 12 analytes under con-
sideration, the airborne sensor exhibited decreased accuracy
relative to the laboratory spectrophotometer in three cases
(change in R2 of −0.03 to −0.08) and exhibited increased
accuracy in nine cases (change in R2 of 0.01 to 0.20).

These observations led to the conclusion that the air-
borne sensor provides a viable option for mapping soil
properties and that the somewhat poor prediction accuracies
observed in this experiment apparently stemmed from
features associated with the local soil environment or the
calibration dataset, rather than the effectiveness of the
airborne sensor. The distribution and range of observed
analyte concentrations within a calibration dataset can have a
substantial impact on prediction accuracy, and the somewhat
low prediction accuracy for carbon content observed in this
study (R2 = 0.65) is likely associated with the limited range
and low values of soil carbon contents found within the
calibration dataset (0.6% to 2.0%).

For the other analytes, prediction accuracies (Table 3(a))
were comparable with those found in other studies [8, 15,
17, 18]. Using principal components regression, Chang et
al. [18] predicted Melich III analyte concentrations, and,
similarly to this study, found Cu and P to have poor
predictions, silt and clay content to predict with R2 ∼ 0.8,
and a number of other analytes, including Fe, Mg, Mn, K,
and pH, predicting with R2 > 0.6. It is not always known
whether successful predictions are the direct action of the
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Table 3: Partial least squares (PLS) model accuracy in predicting soil analyte concentrations1 for (a) the 269 calibration samples using
repeated leave-one-out cross validation and (b) 46 validation samples from the field (Temple 1S) that had been left apart from the calibration.
Results were derived using a first derivative gap 2 math pretreatment, using spectra derived from unsmoothed imagery (2.5 m2 pixel size)
or from spatially smoothed imagery to which a 3 × 3 low pass filter had been applied. See Section 2 for analyte descriptions. Units refer to
analyte residual mean squared error (RMSE) values. Bold indicates sd/sepred >1.20.

Factors no.
C% Sand% Silt% Clay% pH OM%

K
mg/kg

Ca
mg/kg

Mg
mg/kg

Mn
mg/kg

Zn
mg/kg

Fe
mg/kg

Al
mg/kg

8 9 10 9 10 10 4 8 9 10 8 10 10

(a) 269 calibration samples collected from five agricultural fields

using unsmoothed imagery

R2 0.65 0.79 0.79 0.66 0.51 0.75 0.59 0.69 0.69 0.62 0.64 0.75 0.76

RMSE 0.19 7.9 6.9 2.2 0.4 0.4 89.5 166.1 50.3 19.6 1.4 49.3 104.7

using smoothed imagery

R2 0.64 0.80 0.80 0.68 0.58 0.77 0.61 0.71 0.71 0.67 0.67 0.78 0.81

RMSE 0.18 7.2 6.2 2.0 0.4 0.3 86.1 151.8 45.5 17.8 1.2 43.8 89.0

(b) 46 validation samples collected from the remaining agricultural field (Temple 1S)

using unsmoothed imagery
2se pred 0.20 9.0 7.3 2.4 0.5 0.4 147.1 178.1 51.4 27.5 1.2 52.9 123.9
3bias 0.10 −2.88 1.42 1.00 0.03 0.34 24.92 40.45 31.84 3.23 0.45 2.12 107.33

bias/mean (pred) 0.08 −0.06 0.03 0.11 0.01 0.15 0.10 0.05 0.22 0.09 0.18 0.01 0.21
4sd/se pred 0.74 0.81 0.86 0.84 0.89 0.63 1.05 0.96 0.76 1.15 0.92 1.41 0.98

using smoothed imagery

se pred 0.15 9.5 7.9 2.9 0.4 0.3 154.9 233.6 58.5 38.3 1.3 98.0 170.4

bias −0.10 −0.87 −0.66 0.95 −0.25 −0.13 −23.06 −2.46 −2.07 −0.38 0.10 −5.26 77.66

bias/mean (pred) −0.08 −0.02 −0.02 0.10 −0.05 −0.06 −0.10 0.00 −0.02 −0.01 0.04 −0.03 0.14

sd/se pred 0.86 1.29 1.26 1.07 0.97 0.74 1.04 1.34 1.41 1.25 0.98 1.91 1.29
1
Analytes that predicted poorly (R2 < 0.5) in the set of 315 samples (N, P, Cu, B, S, and P saturation) are not included here

2se pred: sd(observed-predicted)
3bias: mean(pred)-mean(obs)
4sd: standard deviation.

analyte upon the reflectance signal or instead the covariation
of analyte concentrations with other factors which are influ-
encing the spectral response [29]. Phosphorus, for example,
has no expected reflectance resonance and is generally poorly
predicted (e.g., 0.36 in this study, 0.40 in [18], and as low as
0.10 in other studies [8, 29]), and yet occasionally will be
predicted with considerable accuracy [8, 29], likely due to
covariation with spectrally responsive factors associated with
labile organic matter.

3.4. Validation. Chemometric predictions of soil properties
are typically validated by predicting analyte concentrations
for samples that were not included in the calibration data
set, and comparing the predicted results to observed values.
This can be achieved by calculating repeated leave-one-
out or leave-ten-out predictions, or by selecting a distinct
set of samples either randomly, spatially, or based on even
sample distribution within the range of observed values
[24, Section 18]. We chose to adopt a rigorous validation
by removing an entire agricultural field comprising 46
samples (Temple 1S) from the data set, leaving 269 samples
for calibration. This field was one of four Temple fields
that received similar crop management (corn-soy/wheat
rotation with full tillage and no use of cover crops) and

it exhibited analyte concentrations in the mid-range of the
six fields (Table 1, Figure 2). When predicted values were
calculated for the 46 validation samples and compared to
observed values, bias ranged from 1% to 22% of observed
analyte concentrations (Table 3(b)). Seven of the analytes
exhibited sd/se pred >1.20 (bold text in Table 3(b)) using the
spectra extracted from smoothed imagery, indicating that the
prediction was useful for those elements (sand, silt, Ca, Mg,
Mn, Fe, and Al), while only one analyte (Fe) exhibited sd/se
pred > 1.20 using the spectra extracted from unsmoothed
imagery, indicating that spatial smoothing helped to increase
signal : noise in the spectral data set.

3.5. Prediction Maps. For each analyte, a PLS regression
vector of 178 coefficients was exported from Matlab and
applied to the mean-centered first derivative reflectance spec-
tra associated with each pixel of the hyperspectral imagery
to calculate a 2.5-m raster map of predicted analyte concen-
trations. Prediction maps for a selection of analytes (carbon,
silt, iron, and aluminum) were derived in this manner using
both unsmoothed and smoothed imagery (Figure 3). Ben-
Dor et al. [19] have discussed the need for attention to
imagery processing methods to extract maximum informa-
tion from spectroscopic imagery. In this study, smoothing
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Figure 2: Comparison of observed analyte concentrations with values predicted using partial least squares (PLS) regression on reflectance
spectra extracted from smoothed imagery to which a 3 × 3 low-pass filter had been applied, for (a) soil carbon, (b) silt, (c) iron, and (d)
aluminum content. The field containing 41 sampling points that were left out for validation (Temple 1S) is depicted with solid circles.

the hyperspectral imagery with a 3 × 3 low band filter prior
to spectral data extraction resulted in somewhat improved
prediction accuracies in comparison to unsmoothed imagery
(Table 3(a)). While this result implies that the smoothed
extent of nine adjacent pixels (56.2 m2) provided a better
average representation of soil characteristics at each sampling
point than did individual 6.25 m2 pixels, it is more likely that
the increased accuracy associated with the smoothed imagery
is attributable to improvement of signal and reduction in

sensor detector element variability (noise) that results from
coaddition of the nine adjacent spectra. Smoothing also
generally improved the range and distribution of predicted
analyte values found within each field image (Table 4), likely
due to the correction of aberrations within the detector
elements. However, it should be noted that discontinuities
(striping) along the plant’s flight path were evident in both
smoothed and unsmoothed predicted imagery (Figure 3),
indicating the effects of variable detector element sensitivity
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50 m

(a)

(b)

Figure 3: Maps of predicted soil carbon content calculated from (a) unsmoothed imagery (1-pixel data extraction) and (b) spatially
smoothed imagery (9-pixel data extraction). Two of the six sampled fields are depicted here, with Temple 3 on the left and Schrader on
the right. Predicted values ranged from 0.4% (black) to 2.5% (white).

along the sensor array and the need for continued improve-
ment in sensor technology. Several additional imagery
adjustments were considered, including cross-track illumi-
nation, transformation from reflectance (R) to log(1/R), and
also spectral smoothing (not shown). However, none of these
operations improved results and they were therefore avoided.

3.6. Topographic Analysis. Visual interpretation of field
topographic features relative to the predicted analyte maps
revealed accumulation of carbon, silt, iron, and aluminum in
low areas (Figure 4). This result is in agreement with previ-
ous studies in Iowa that have linked increased soil C carbon
contents in low areas with soil redistribution processes [3],
and with a study by Terra et al. [1] who detected a correlation
of soil properties with topographic indices and electrical con-
ductivity that explained 50% of observed variability in car-

bon content. Other studies have evaluated the links between
topography and soil constituents such as organic carbon at
the landscape scale, showing accumulation at the bottom
of slopes and in valley bottoms [30]. This study’s work was
conducted at the field scale, reflecting microtopographic
soil distribution processes within a relatively flat elevation
gradient (0%–5% slope), as well as the formative effects of
soil moisture distribution and spatially variable biological
processes resulting from soil heterogeneity and the balance of
redoxomorphic status between oxic and anoxic conditions.
Understanding distribution patterns of soil analytes, and the
influence of hydrogeomorphic controls on these patterns,
can provide greater certainty about the influence of soil
erosion and soil ecology on the fate of carbon and nutrients.

To investigate potential causes of spatial distribution in
predicted analyte values, a 2.5 m elevation map (re-sampled
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Table 4: Predicted concentrations of select analytes (C, Silt, Al, Fe) derived from n pixels of near infrared hyperspectral imagery for each of
the six bare soil fields using either unsmoothed (1-pixel) imagery with 2.5 m resolution, or spatially smoothed (9-pixel) imagery to which a
3× 3 low pass filter had been applied1. See Section 2 for analyte descriptions.

C Silt Al Fe

Field 1-pixel% 9-pixel% 1-pixel% 9-pixel%
1-pixel
mg/kg

9-pixel
mg/kg

1-pixel
mg/kg

9-pixel
mg/kg

Temple 1S min 0.97 1.13 14.6 14.4 34 245 40 56

n = 11731 max 1.86 1.94 80.1 58.7 1017 947 474 394

mean 1.41 1.48 42.1 41.1 633 631 194 192

sd 0.10 0.10 5.9 5.0 98 92 46 44

Temple 1N min 0.85 0.96 1.0 5.6 −31 147 37 64

n = 11436 max 1.95 2.04 68.9 59.1 1304 897 452 429

mean 1.23 1.25 43.6 42.1 589 555 200 210

sd 0.11 0.11 5.8 4.9 115 112 60 65

Temple 2 min −0.48 0.81 14.6 8.7 34 −389 40 54

n = 14221 max 2.07 2.92 80.1 75.7 1017 1013 474 529

mean 1.27 1.28 42.1 38.2 633 512 194 226

sd 0.25 0.18 5.9 7.1 98 146 46 63

Temple 3 min 0.39 0.60 0.2 1.2 −137 0 −288 −6

n = 28955 max 2.29 2.48 80.8 74.9 1173 1031 465 474

mean 1.27 1.27 52.3 51.7 632 639 173 170

sd 0.17 0.16 7.9 7.5 154 145 71 63

Mason min 0.41 0.44 −7.6 −7.5 −198 290 0 0

n = 23351 max 2.27 1.94 64.9 48.5 1231 1180 391 391

mean 0.81 0.81 27.7 28.7 755 776 111 108

sd 0.11 0.10 6.4 7.1 96 100 32 27

Schrader min 0.91 0.98 12.3 13.4 255 296 58 66

n = 15684 max 2.08 2.05 61.6 56.9 996 971 346 315

mean 1.45 1.48 38.6 38.3 669 681 177 172

sd 0.13 0.15 6.0 5.8 87 81 35 34

Overall min 0.97 1.13 14.6 14.4 255 296 58 66

n = 105378 max 1.86 1.94 61.6 48.5 996 897 346 315

mean 1.20 1.22 41.3 40.5 660 648 168 171
1
See Table 3 for the accuracy (R2) associated with each analyte prediction model.

Table 5: Correlation between predicted analyte concentrations and topographic indices including (a) relative elevation data derived from
3 m LIDAR DEM, and (b) wetness index calculated from 3 m LIDAR DEM, for one of the six sampled fields (Mason). Predicted values were
calculated for unsmoothed imagery (2.5 m pixel size) and for smoothed imagery to which a 3 × 3 low band filter had been applied. See
Section 2 for analyte descriptions.

C Silt Al Fe

R2 R2 R2 R2

(a) correlation with normalized elevation

unsmoothed 0.100 0.000 0.232 0.013

smoothed 0.051 0.007 0.386 0.000

(b) correlation with wetness index

unsmoothed 0.183 0.008 0.161 0.091

smoothed 0.178 0.021 0.317 0.037
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Figure 4: Map of predicted values for select analytes (C, Silt, Fe, Al), overlaid on a high-resolution digital elevation map, for one of the six
sampled fields (Mason). Predicted values were derived from imagery that had been smoothed with a 3× 3 low pass filter.

from 3-m LIDAR DEM) was used to calculate a normalized
elevation value (observed—field mean elevation) and a
soil wetness index (two consecutive iterations of a SAGA
enhanced lee 3 × 3 filter) for each pixel of the predicted
analyte maps. The normalized elevation variable was some-
what correlated (Table 5(a)) with predicted concentrations of
aluminum (R2 = 0.23, 0.39 for unsmoothed and spatially
smoothed imagery, respectively) and was not well correlated
with predicted concentrations of silt, iron, and carbon. The
wetness index was similarly correlated with predicted alu-
minum concentration (R2 = 0.16, 0.32) and was a better pre-
dictor for soil carbon, explaining 17% of observed variability
(Table 5(b)). In all cases, the topographic variables were
better correlated with spatially smoothed predictions than
those made from unsmoothed imagery. The comparatively
poor correlation with topographic indices observed in this
study might indicate that soil carbon and elemental nutrient
content is more related to variability in field management
and manure application than to elevation and soil redistri-
bution, or that a more complex set of topography-influenced
ecological and physical processes than was measured is at
play. On low relief (<2% slope), ditch drained, Coastal Plain

soils such as were sampled in this study, soil redistribution
due to erosion is likely limited to short distances (<1–10 m),
and prior converted wetland areas within fields can exhibit
retained capacity for redoxomorphic activities that affect iron
and aluminum transformations and increase denitrification
and carbon accumulation. In this landscape, spatial distribu-
tion of soil carbon and nutrient content is likely influenced
by a complex interaction of drainage status and land use
history that is not easily characterized [5], and ultimately it
may be more feasible to map surficial soil parameters using
remote sensing technology than to predict them based on
measurement and understanding of site specific processes.

Soil moisture can become an interfering variable in
remote sensing chemometric analyses, as it mutes the
soil’s reflectance signal in a number of specific wavebands
that are associated with water absorption bands [31]. Soil
moisture for the 315 samples included in this study ranged
between 5% and 42%, with most samples falling near the
mean of 15% moisture. When observed moisture content
was incorporated with the first derivative spectra of soil
samples as a 177th predictor variable (following appropriate
mean centering and variation normalization), the prediction
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accuracies associated with PLS models for C, silt, Al, and
Fe did not improve (change in R2 of <0.02). Similarly,
when silt was included as an additional predictor variable,
to possibly account for interferences between soil particle
size distribution and spectral reflectance, the prediction
accuracies associated with PLS models for C, silt, Al, and Fe
did not improve. These results verify that PLS analysis is a
robust method that can successfully extract predictive infor-
mation from remotely sensed imagery of in situ agricultural
soils.

4. Conclusions

Aircraft-based acquisition of hyperspectral reflectance
imagery can currently provide the necessary data to map
soil properties in an efficient and rapid manner, and future
improvements in sensor technology are expected to improve
the signal : noise and spatial resolution associated with
remote sensing imagery. Results of this remote sensing
study, conducted on relatively flat, moderately well drained,
Coastal Plain silt loam soils, showed that the PLS framework
is robust, and spectral math pretreatments can be kept
simple, with a first derivative gap 2 providing good results for
all analytes. Spatial smoothing of reflectance imagery using
a 3 × 3 low-band filter improved results, likely by reducing
noise inherent to variability within the spectrophotometer’s
detector array. Fifteen of the 19 tested analytes predicted
with R2 > 0.50 (with R2 from 0.51 to 0.79 for C, sand,
silt, clay, pH, OM, K, Ca, Mg, Mn, Zn, Fe, and Al content;
Table 3). Prediction accuracy for carbon was not particularly
good (R2 = 0.64) for this selection of sampled fields, perhaps
owing to the low concentrations and limited range of
observed variability (0.5% to 2%) in the calibration data set,
but prediction accuracies for other analytes were on par with
those found in other studies [8, 15, 18]. Predicted map values
of select analytes, particularly aluminum, were correlated to
field topography, indicating the influence of environmental
processes on soil properties. Further research is needed to
understand the interplay of measurable topographic and
hydrological variation inherent in this relatively flat agricul-
tural landscape with management variables such as tillage,
crop rotation, and additions of manures and fertilizers that
also affect soil chemical and physical properties.

Remote sensing approaches that use multispectral or
hyperspectral imagery to predict soil properties are necessar-
ily limited to analysis of plowed fields with very little crop
residue or vegetation cover (bare soil). As a result, techniques
that extrapolate soil properties data based on correlations
derived from more easily measured parameters, such as
topography, wetness, and cropping pattern may provide.
The fields used in this study were carefully selected to have
negligible amounts of surface residue, green vegetation, or
hydrologically active areas. If this technique were put in
practice on a larger scale, band filtering could be employed
to remove such non-soil areas from analysis based on
thresholding of spectral indices that correlate well with
biomass (e.g., normalized difference vegetation index [32]),
crop residue (e.g., cellulose adsorption index [33]), or soil
moisture (e.g., water adsorption [13, 31]).

As hyperspectral imagery becomes more readily available
and at lower cost, the application of partial least squares
(PLS) regression to soil spectral reflectance data can provide
an effective method for calculating high-resolution raster
maps of important soil properties including texture, pH, and
carbon and nutrient content. This information can then be
used to inform farmer decision making, support precision
environmental management of agricultural fields, increase
sustainable crop production, and help to reduce nutrient,
sediment, and carbon losses from agricultural systems.

Acknowledgments

This paper has benefitted greatly from the comments of two
anonymous reviewers, and the project is also indebted to
input from known scientific colleagues, with thanks going
out to Drs. Craig Daughtry, Terry Slonecker, Guy Serbin, and
the late Paul Doraiswamy. Technical assistance was provided
by Kusuma Prabhakara and Dr. Beth Gardner, and laboratory
and field work by Alex White and Antonio Pereira. Thanks to
the University of Delaware Soil Test Laboratory for efficient
sample processing. Thanks to Oliver Weatherbee and the
SpecTIR corporation for airborne imagery acquisition. Sup-
port for the this project was provided by the USDA Choptank
River Conservation Effects Assessment Project. Any use of
trade, firm, or product names is for descriptive purposes only
and does not imply endorsement by the U.S. Government.

References

[1] J. A. Terra, J. N. Shaw, D. W. Reeves, R. L. Raper, E. Van
Santen, and P. L. Mask, “Soil carbon relationships with terrain
attributes, electrical conductivity, and a soil survey in a coastal
plain landscape,” Soil Science, vol. 169, no. 12, pp. 819–831,
2004.

[2] G. C. Simbahan and A. Dobermann, “Sampling optimization
based on secondary information and its utilization in soil
carbon mapping,” Geoderma, vol. 133, no. 3-4, pp. 345–362,
2006.

[3] J. C. Ritchie, G. W. McCarty, E. R. Venteris, and T. C. Kaspar,
“Soil and soil organic carbon redistribution on the landscape,”
Geomorphology, vol. 89, no. 1-2, pp. 163–171, 2007.

[4] U. W. A. Vitharana, M. Van Meirvenne, D. Simpson, L.
Cockx, and J. De Baerdemaeker, “Key soil and topographic
properties to delineate potential management classes for
precision agriculture in the European loess area,” Geoderma,
vol. 143, no. 1-2, pp. 206–215, 2008.

[5] E. R. Venteris, G. W. McCarty, J. C. Ritchie, and T. Gish,
“Influence of management history and landscape variables on
soil organic carbon and soil redistribution,” Soil Science, vol.
169, no. 11, pp. 787–795, 2004.

[6] J. A. Thompson, E. M. Pena-Yewtukhiw, and J. H. Grove,
“Soil-landscape modeling across a physiographic region:
topographic patterns and model transportability,” Geoderma,
vol. 133, no. 1-2, pp. 57–70, 2006.

[7] O. J. Idowu, H. M. Van Es, G. S. Abawi et al., “Use of an
integrative soil health test for evaluation of soil management
impacts,” Renewable Agriculture and Food Systems, vol. 24, no.
3, pp. 214–224, 2009.

[8] R. A. Viscarra Rossel, D. J. J. Walvoort, A. B. McBratney, L. J.
Janik, and J. O. Skjemstad, “Visible, near infrared, mid infrared
or combined diffuse reflectance spectroscopy for simultaneous



Applied and Environmental Soil Science 13

assessment of various soil properties,” Geoderma, vol. 131, no.
1-2, pp. 59–75, 2006.

[9] J. B. Reeves III, G. W. McCarty, and W. D. Hively, “Mid-
versus near-infrared spectroscopy for on-site analysis of soils,”
in Proximal Soil Sensing, R. A. Viscarra Rossel, A. McBratney,
and B. Minasny, Eds., chapter 11, pp. 133–142, Springer, New
York, USA, 2010.

[10] D. J. Brown, K. D. Shepherd, M. G. Walsh, M. D. Mays, and T.
G. Reinsch, “Global soil characterization with VNIR diffuse
reflectance spectroscopy,” Geoderma, vol. 132, no. 3-4, pp.
273–290, 2006.

[11] H. M. Bartholomeus, M. E. Schaepman, L. Kooistra, A.
Stevens, W. B. Hoogmoed, and O. S. P. Spaargaren, “Spectral
reflectance based indices for soil organic carbon quantifica-
tion,” Geoderma, vol. 145, no. 1-2, pp. 28–36, 2008.

[12] D. J. Brown, R. S. Bricklemyer, and P. R. Miller, “Validation
requirements for diffuse reflectance soil characterization mod-
els with a case study of VNIR soil C prediction in Montana,”
Geoderma, vol. 129, no. 3-4, pp. 251–267, 2005.

[13] C. W. Chang, D. A. Laird, and C. R. Hurburgh, “Influence
of soil moisture on near-infrared reflectance spectroscopic
measurement of soil properties,” Soil Science, vol. 170, no. 4,
pp. 244–255, 2005.

[14] G. W. McCarty, J. B. Reeves, V. B. Reeves, R. F. Follett, and J. M.
Kimble, “Mid-infrared and near-infrared diffuse reflectance
spectroscopy for soil carbon measurement,” Soil Science
Society of America Journal, vol. 66, no. 2, pp. 640–646, 2002.

[15] G. W. McCarty and J. B. Reeves, “Comparison of near infrared
and mid infrared diffuse reflectance spectroscopy for field-
scale measurement of soil fertility parameters,” Soil Science,
vol. 171, no. 2, pp. 94–102, 2006.

[16] T. Selige, J. Böhner, and U. Schmidhalter, “High resolution
topsoil mapping using hyperspectral image and field data in
multivariate regression modeling procedures,” Geoderma, vol.
136, no. 1-2, pp. 235–244, 2006.

[17] J. Wetterlind, B. Stenberg, and M. Söderström, “Increased
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We investigated the impact of soil moisture on gross primary production (GPP), chlorophyll content, and canopy water content
represented by remotely sensed vegetation indices (VIs) in an open grassland and an oak savanna in California. We found for the
annual grassland that GPP late in the growing season was controlled by the declining soil moisture, but there was a 10–20-day
lag in the response of GPP to soil moisture. However, during the early and middle part of the growing season, solar radiation
accounted for most of the variation in GPP. In the oak savanna, the grass understory exhibited a similar response, but oak trees
were not sensitive to soil moisture in the upper 50 cm of the soil profile. Furthermore, while we found most VIs to be more or less
related to soil moisture, the Visible Atmospherically Resistance Index (VARI) was the most sensitive to the change of soil moisture.

1. Introduction

Plant-available soil moisture is a key element in ecosystem
functioning, since it links energy balance and hydrological
cycles, contributes to vegetation composition and richness,
and impacts productivity. California’s Mediterranean climate
is characterized by highly variable winter precipitation and
prolonged summer drought, and its vegetation communities
are strongly affected by the availability of water, resulting in
pronounced annual cycles of growth and senescence [1]. For
example, the growing season of annual grasslands typically
begins in the wet and cool winter after major rain events and
extends to the late spring supported by a declining supply of
soil moisture. Given the nature of the hydroclimate regime
in California, understanding the response of different plant
functional types to soil water availability should be a primary
objective of any advanced natural resource management
system.

Semiarid savanna in California, which is composed of
widely spaced trees, understory grasses, and forbs, is a com-
mon land cover type in California. It has been hypothe-
sized that trees and grasses are able to coexist because of
either their differences in resource-acquisition potentials or

differences in demographic mechanisms, under such dis-
turbances as fires and grazing [2–4]. In general, spatial
niche separation in root distributions appears to be more
prevalent in arid systems [5], and plant-available moisture,
rather than nutrients, may be the main resource limiting
plant growth in savannas [6, 7]. Regardless of the ultimate
controls on savanna structure, trees and grasses compete
for available soil water, and although grasses are typically
superior competitors for water in the upper horizons owing
to their relatively shallow and dense root systems, trees are
thought to persist because of exclusive access to deeper water
[2]. The exchange of carbon dioxide (CO2) and water vapor
between the atmosphere and plants is controlled in most
plants through the opening of stomata, which is driven by
a number of environmental factors including the amount
of water in soil [8]. The photosynthetic rate will decrease
as plants receive the signal of water stress through osmotic
adjustment [9]. Deficiencies of water have also been shown
to adversely affect chlorophyll production and canopy water
content in some plants [10], but not adversely impact
chlorophyll production in others [11, 12]. The correlation
between photosynthesis, chlorophyll content and canopy
water content with soil moisture therefore varies among
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different types of vegetation. In this study, we investigated
the responses of different plant functional types to soil
moisture dynamics within California’s semiarid oak savanna.
Vegetation responses may include many aspects, but here we
focused on: (1) CO2 assimilation, as measured by leaf CO2

exchanges, and (2) greenness and canopy water content, as
represented by remote sensing vegetation indices (VIs).

There have been many studies of the controls of envi-
ronmental variables, particularly precipitation, on CO2 ex-
changes in forests, savannas, and grasslands [13–19]. Many
long-term carbon flux studies have concluded that precip-
itation has a great impact on the interannual variability of
primary production, but have often ignored the fact that
precipitation is not equal to water available to vegetation.
Plant-available soil moisture depends not only on the
amount and the timing of precipitation, but also on the
hydrological and physical properties of soil. However, few
studies have concentrated on analyzing the impact of soil
moisture on productivity of vegetation, mainly due to the
scarcity of soil moisture data. Knapp et al. [20] evaluated
landscape variability in soil-water-plant relations and net
primary production (NPP) in tall grass prairie and found
that NPP was linearly related with soil water content along
two transects (R2 = 0.66). Reynolds et al. [21] studied
the relationship between rainfall, soil moisture and plant
responses, and their results suggested that productivity in
deserts did not respond to rainfall events directly but to
available soil moisture. Although Xu and Baldocchi’s [17]
study stated that leaf area index (LAI) explained over 84%
of the variance in gross primary production (GPP) in the
Mediterranean annual grassland and the remaining 16% was
attributed to some combinations of vapor pressure deficit
(VPD), temperature, radiation, and soil moisture, the direct
impact of soil moisture on GPP was not explored. Therefore,
it is essential to investigate the relationship between GPP and
soil moisture for arid and semiarid ecosystems dominated
by different plant functional types on both seasonal and
interannual timescales.

Soil moisture dynamics not only affect a plant’s car-
bon assimilation, but also impact canopy properties (such
as leaf area, leaf water content, and greenness) through
stomatal control and biochemical control [22, 23], resulting
in variability in vegetation spectral signatures. Although
microwave remote sensing has demonstrated the capability
for measuring soil moisture [24–26], it is difficult to evaluate
how vegetation responds to the change of soil moisture using
microwave remote sensing techniques, because vegetation is
semitransparent in the spectral region. VIs, derived from
optical remote sensing reflectance data, have proven to qual-
itatively and quantitatively respond to vegetation properties,
including chlorophyll content [26–28] and canopy water
content [29, 30]. Because of their sensitivity to changes
in vegetation properties, VIs have been related with soil
moisture either to estimate soil moisture or to evaluate the
extent of water stress. For example, Farrar et al. [31] showed
that the Normalized Difference Vegetation Index (NDVI)
varied with soil moisture in a concurrent month in southern
African savannas. Dennison et al. [32] found a significant
nonlinear relationship between soil water availability and

equivalent water thickness (EWT) derived from Airborne
Visible/Infrared Imaging Spectrometer (AVIRIS) for differ-
ent vegetation types. While EWT is not a vegetation index, it
is highly responsive to changes in leaf area [33]. Studies in the
US Corn Belt have also shown a linear relationship between
NDVI and soil moisture [34, 35]. In particular, Adegoke and
Carleton [34] found that vegetation indices lagged up to 8
weeks behind soil moisture. In addition, remotely sensed
vegetation indices together with surface radiant temperature
have also been used to estimate surface soil moisture [36–38].
These results provide evidence that vegetation indices are
responsive to soil moisture variations in arid and semiarid
areas, but the relationship between vegetation indices and
soil moisture is modified by temperature and soil properties.
As Rodriguez-Iturbe [39] stated in the vision of the future
water resources research “satellite measurements provide
us with a wealth of information about the spatiotemporal
evolution of vegetation at different scales and under different
climatic conditions. Much research needs to be carried out
in the development of models which effectively represent the
space-time dynamic interaction between climate, soil, and
vegetation, especially in water-controlled ecosystem.”

In this study, to explore vegetation responses to changes
in soil moisture, we evaluated the relationship between
soil moisture and GPP, and remotely sensed measures of
greenness and canopy water content in a Mediterranean-
climate annual grassland and an oak savanna. Specifically, we
addressed the following questions.

(1) How does GPP respond to seasonal soil moisture
fluctuations in annual grassland and oak savanna in
California? Is soil moisture the major factor deter-
mining seasonal variability of GPP for these grassland
and oak savanna?

(2) What is the relationship between MODIS-derived VIs
and field-measured soil moisture in Mediterranean-
climate grassland and oak savanna? Which index is
the most sensitive to the change of soil moisture?

2. Data and Methods

2.1. Site Information. We used data from two AmeriFlux sites
located in the foothills of the Sierra Nevada in California.
One site (Vaira Ranch) is located in an annual open
grassland ecosystem, and the other site (Tonzi Ranch) is an
of oak/grass savanna, 3 km away from the open grassland
in Varia Ranch. Deciduous blue oaks (Quercus douglasii)
dominate the savanna site, and oak trees cover about 40%
of the landscape within a square kilometer of the flux
tower. The vegetation under the oak trees and in the open
grassland is comprised of cool-season C3 annual nonnative
species, including Brachypodium distachyon L., Hypochaeris
glabra L., Trifolium dubium Sibth., Trifolium hirtum All.,
Dichelostemma volubile A., and Erodium botrys Cav [40].
The climate is Mediterranean with high temperatures, low
relative humidity, and no rain in summer, but cool and wet
winters. Precipitation is concentrated between October and
May, with the mean monthly precipitation ranging from
30 mm to 100 mm and the mean annual precipitation about
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559 mm. Detailed descriptions about these two sites have
been presented in Xu et al. [41], Baldocchi et al. [42], and
Ma et al. [40]. The soil in the open grassland site is an
Exchequer very rocky silt loam (Lithic Xerorthents), with
30% sand, 57% silt, and 13% clay [39]. At the oak savanna
site, the soil is classified as Auburn very rock silt loam (Lithic
Haploxerepts). It contains 43% sand, 43% silt, and 13% clay
[38].

2.2. Data. CO2 and water vapor fluxes were measured at
a 30 min interval using eddy covariance systems. At the
savanna site, the CO2 flux was measured both in the
understory (2 m above the ground) and overstory (23 m
above the ground). It is assumed that the overstory tower
collected CO2 flux from both oak trees and grasses, while the
understory tower primarily measured flux from grassland.
GPP was computed by subtracting ecosystem respiration
from net carbon exchange, in which ecosystem respiration
was derived from nighttime measurements of net ecosystem
carbon exchange using flux partitioning methods described
by Xu and Baldocchi [17].

Standard meteorological and soil parameters were mea-
sured continuously with an array of sensors. Volumetric
soil water content was measured with frequency domain
reflectometry sensors, which were placed vertically at depths
of 5, 10, and 20 cm for the open grassland site and 5, 20, and
50 cm for the oak savanna site. LAI of the herbaceous vege-
tation was measured periodically using destructive sampling
methods at intervals of 2–4 weeks [17]. Meteorological data
used in this study included precipitation, photosynthetically
active radiation (PAR), air temperature, and VPD. At the oak
savanna site, PAR, air temperature, and VPD were measured
in both the understory and overstory. Phenological dates of
the beginning and the end of growing season were based
on the data provided by Ma et al. [40]. Details about the
experiment, instruments, data processing, and data quality
have been presented by Flanagan et al. [16] and Baldocchi
et al. [42].

A composite MODIS time series at 500 m spatial res-
olution developed at UC Santa Barbara [43] was analyzed
from 2002 to 2006. These data have a 16-day compositing
period and preserve the original seven MODIS 500 m
resolution bands while selecting for the pixel within each
compositing period that is the most stable for spectral shape
and brightness, thereby minimizing the adverse impacts
of clouds, aerosols, and the changing viewing geometry
on MODIS spectra. Four vegetation indices that are sen-
sitive to chlorophyll content and canopy water content
were calculated based on reflectance data, including the
Normalized Difference Vegetation Index (NDVI: [44]), the
Visible Atmospherically Resistance Index (VARI: [45]), the
Normalized Difference Water Index (NDWI: [46]), and the
Shortwave Angle Slope Index (SASI: [47]).

2.3. Methods. In our analyses, half hourly measured air tem-
perature, volumetric soil water content, and VPD were aver-
aged during the daytime when PAR exceeded 10 μmol/m2/s,
and the measurements of PAR, GPP, and precipitation were

accumulated by day for both sites. Soil water content at 10 cm
and 20 cm was utilized in the analyses of grassland, and soil
water content at 20 cm and 50 cm was used for the oak tree
analyses. We chose soil moisture at a certain depth instead of
the average of soil water content at three depths because the
difference, in terms of comparing the values, between these
two approaches was minimal.

For analyzing relationships between vegetation indices
and soil moisture, soil moisture was extracted on the same
day as the selected MODIS pixel and it was also averaged
within the 16-day period. Vegetation indices were calculated
based on the reflectance of the day when the image was taken;
detailed information about NDVI, VARI, NDWI, and SASI
are presented below.

NDVI is calculated as

NDVI = (RNIR − Rred)
(RNIR + Rred)

, (1)

where RNIR and Rred represent the reflectance of near
infrared and red wavelengths, respectively. NDVI is the most
extensively used VI, a good indicator of canopy structure,
green biomass, green LAI, and chlorophyll content [48].
However, it is well documented that NDVI saturates at
high LAI values and it is also affected by other factors
such as soil background, canopy shadows, illumination, and
atmospheric conditions [48, 49]. Unlike NDVI, VARI utilizes
the difference between green reflectance and red reflectance
in response to changes in chlorophyll, and therefore VARI
is sensitive to variations of green vegetation fraction, with
correction of atmosphere effect. VARI is calculated as

VARI =
(
Rgreen − Rred

)
(
Rgreen + Rred − Rblue

) . (2)

NDWI replaces the red band in the NDVI with the 1240 nm
shortwave infrared (SWIR) band, in order to maximize the
spectral expression of water in leaves and to take advantage
of high near-infrared reflectance of vegetations and soils.
Thus NDWI responds to changes in the water content of a
vegetation canopy. It is calculated as

NDWI = (RNIR − RSWIR)
(RNIR + RSWIR)

, (3)

where RNIR and RSWIR represent reflectance of near infrared
and SWIR, respectively.

Whiting et al. [50] demonstrated that the SWIR region
could be fitted by an inverted Gaussian function that is highly
correlated to moisture content in soils. SASI simulates the
general shape of this part of the spectrum, calculated as
product of the angle at the SWIR1 (at 1240 nm) of MODIS
data and the difference of the reflectance at NIR and the
SWIR2 (at 1640 nm):

β = cos−1

(
a2 + b2 − c2

2∗ a∗ b

)
radians,

Slope = SWIR2−NIR,

SASI = β∗ Slope,

(4)
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Figure 1: Time series of GPP (gC/day), PAR (μmol/m2), and daily
soil moisture (m3/m3) at two different depths in the open grassland
(a) and the oak savanna (b).

where a, b, and c are the Euclidian distances between NIR
and SWIR1, SWIR1 and SWIR2, and SWIR2 and NIR. Since
SASI is based on the SWIR region, it is sensitive to moisture
and not photosynthetic activity, revealing different dynamics
from NDVI. High positive values characterize dry soils, and
high negative values characterize healthy vegetation, while,
for the case of plant dry matter, SASI approaches zero [51].

We performed all statistical calculations with MATLAB
7.1. For regression analysis, we used the least-square method,
and the probability of significance (P value) was determined
at the significance level of .01. The significance of the
correlation between two variables was evaluated using the
Pearson correlation coefficient (r) and the coefficient of
determination of linear regressions (R2).

3. Results

3.1. GPP and Soil Moisture in the Grassland and Oak Savanna

3.1.1. In the Open Grassland. To understand the environ-
mental conditions and the impact of soil moisture on GPP
in the open grassland, time series of daily GPP, PAR, and
volumetric soil moisture from 2002 to 2006 are shown
in Figure 1(a). The invasive grasses at this site typically
germinate a week after an autumn rainstorm with total
precipitation of at least 15 mm [17]. At the beginning of the
growing season, soil-water resources were sufficient, but the
temperature was low and PAR was limited, so the grasses
grew slowly, leading to a slow, steady increase in GPP. In the
spring, warmer temperature, longer day length, and ample
soil moisture contributed to the fast growth of grasses and
GPP reached its peak in March or April. Grasses usually
maintained peak GPP for a short time of one to two weeks,
and then following the rapid decline in soil moisture and an
increase in air temperature after peak, GPP declined to zero
within two months.

Although grasses respond to increased soil moisture,
our analysis shows that, at the beginning of the winter
growing season, well before GPP reached its peak, grass
growth was not controlled by soil water availability. The
relationship between GPP and soil moisture at both depths
was negative and weak. This is because the frequent winter
precipitation and low evapotranspiration rate at this time
led to sufficient soil water, but the low PAR and low air
temperature limited photosynthesis, resulting in slow growth
and low water demand. However, the soil dry-down curve
did coincide with declining grass GPP (Figure 2). Both
soil moisture and GPP decreased to a steady state within
two months, but the decrease of soil moisture occurred
earlier than GPP. Therefore, we assessed the correlation
between GPP and lagged soil moisture for each year when
they were decreasing. Interestingly, there was a significant
linear relationship between GPP and soil moisture lagged
by 10 to 20 days in the open grassland site. And the
relationship was stronger for soil moisture at 10 cm than
for soil moisture at 20 cm. The lag time was determined
based on the maximum correlation coefficients between GPP
and lagged soil moisture. Table 1(a) shows the lag between
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Figure 2: An example of decreasing GPP in agreement with declin-
ing soil moisture. Seasonal variation in GPP and soil moisture at
10 cm in 2006, the highlighted part showing the declines in GPP
and soil moisture.

GPP and soil moisture at 10 cm, the regression models, and
statistics for the open grassland site.

Autumn rainfall determined the timing of grassland
greenup, and frequent rainfall in the spring maintained
ample moisture in the soil, ensuring the steady growth of
grasses. Years 2002, 2003, and 2006 had moderate amounts
of precipitation. We found a significant linear relationship
between GPP and a roughly 20-day lagged soil moisture
in these three years in the open grassland, indicating the
declining rate of grassland productivity was controlled by
the dry-down rate of the soil. The small slope of the linear
relationship in 2003 was caused by the abrupt drop of GPP
on day 136, from 8.89 gC/day to 3.67 gC/day, and GPP stayed
below 4 gC/day after the drop. This decrease in GPP was
probably caused by an increase in the daytime mean air
temperature from 17.7◦C on day 135 to 19.5◦C on day 136,
which led to an increase in VPD. Year 2004 experienced much
less precipitation and a longer drought period. The early
decrease of soil moisture resulted in a shortened growing
season and low annual GPP. Year 2005 was very wet, and
the soil maintained high soil water content until the end of
May, resulting in a lengthy period of elevated GPP. In 2006,
daily GPP in the growing season was less than the other
years, with a maximum of 8.9 gC/day, while in the other
years, except in 2004, daily GPP was as high as 10.5 gC/day
in April. Continuous hot and dry weather following the day
when GPP reached its peak of 8.9 gC/day was the main reason
that caused the quick decrease of soil moisture as well as
GPP. Smaller magnitudes of GPP during the growing season
resulted in the smaller slope values in the linear relationship
for 2006.

3.1.2. In the Oak Savanna. Environmental conditions in the
grassland under the canopy of oak trees are different from

the open grassland, primarily because the canopy modifies
PAR, air temperature, and VPD (Figure 1). For example,
the average annual cumulative PAR beneath the canopy was
only 10%–30% of the values in the open grassland. The
comparison between soil moisture in open grassland and
soil moisture measured under oak trees at the same depth
suggests that soil in oak savanna had higher water holding
capacity and higher wilting point. The lower GPP in grasses
under oak canopies was mainly caused by reduced PAR due
to shading, which in turn reduced the photosynthetic rates of
grasses. The reduced PAR under the oak canopy substantially
limited the extension of leaves as well as photosynthetic
activities.

The relationship between declining GPP and lagged
soil moisture at the end of spring was still observed in
grasses under the oak canopy, but it was less pronounced
(Table 1(b)). The lag with the highest correlation between
GPP and soil moisture ranged from 5 days in 2003 to 22
days in 2002, differing slightly from the open grassland.
This difference was likely caused by the modified radiation
and air temperature environment under the tree canopy.
It is also likely that the oak trees impacted soil water in
ways that affected below-canopy grasses, such as by hydraulic
redistribution [52].

The comparison of seasonal variations in oak tree canopy
GPP against 50 cm soil moisture suggests that oak GPP is
not controlled by soil water availability in the upper soil
horizons. Oak trees in the savanna started to develop leaves
in March when soil moisture and light were ample and
air temperature was increasing. The leaf expansion stage
overlapped with vigorous growth of grasses. Peak oak canopy
GPP was achieved in May while the moisture in shallow
soil was depleted and the understory grasses were senescing.
A substantial portion of the growing season lacked any
precipitation and the trees retained leaves for several months
until winter arrived. The weak relationship between oak GPP
and soil water content in the upper horizons is supported
by the findings of others that trees are able to store water
and nutrients and to tap water from deeper soil horizons
[53, 54]. The cumulative GPP in the growing season of oak
trees for each year did not change much even in the very dry
year, indicating that the growth of oak trees is not prone to
the short-term environmental changes, presumably due to
its very deep root system and possibly some internal storage
capability.

3.2. Vegetation Indices and Soil Moisture. In this section, we
investigate the impact of soil-moisture fluctuations on the
canopy chlorophyll content and water content as represented
by different vegetation indices derived from MODIS data.
Figure 3 shows the time series of indices and soil moisture at
20 cm at both sites. NDVI, VARI, and NDWI showed similar
responses to the changing soil moisture over the five-year
period, while SASI responded in an opposite way. However,
changes in the indices were not in phase with the change of
soil moisture, similar to the GPP response to the declining
soil moisture. At the beginning and the middle part of the
growing season (before GPP and VIs decreased), NDVI,
VARI, and NDWI were low (SASI was high) and started
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Table 1: Regression models and statistics of relationships between GPP and lagged volumetric soil moisture at 10 cm in open grassland (θ10)
and at 20 cm in oak savanna (θ20). All the relationships are significant at the 99% level.

(a) Open grassland

Year Lag (day) Period Regression models R2

2002 18 84–125 GPP = −4.293 + 44.217∗ θ10 0.94

2003 15 121–150 GPP = −1.0791 + 17.161∗ θ10 0.92

2004 24 63–101 GPP = −5.303 + 42.952∗ θ10 0.73

2005 25 92–129 GPP = −4.663 + 47.295∗ θ10 0.78

2006 20 96–136 GPP = −3.070 + 35.811∗ θ10 0.92

(b) Oak savanna

Year Lag (day) Period Regression models R2

2002 22 84–125 GPP = −2.16 + 0.14∗ θ20 0.79

2003 5 131–151 GPP = −1.14 + 0.11∗ θ20 0.60

2004 20 69–92 GPP = −1.98 + 0.12∗ θ20 0.52

2005 22 128–156 GPP = −0.56 + 0.1∗ θ20 0.34

2006 20 126–150 GPP = −1.47 + 0.1822∗ θ20 0.87
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Figure 3: Time series of NDVI, VARI, NDWI, SASI, and soil mois-
ture at 10 cm in the open grassland (a) and at 20 cm in the oak
savanna (b).

to increase (SASI started to decrease) when soil moisture
became sufficient. NDVI, VARI, and NDWI began to decline
(SASI began to increase) after soil moisture started to drop in
the spring. To analyze relationships between four vegetation
indices and soil moisture, we evaluated Pearson correlation
coefficients (r) between these indices and soil moisture at
different depths extracted on the exact day selected for the
composite and averaged over the 16-day compositing period
(Table 2). The results demonstrate that the four indices are
more or less related to soil moisture. Overall, VARI had the
strongest relationship at both sites, and VARI increased as
soil moisture increased during the five-year study period.
The weaker relationships between NDWI/SASI and soil
moisture were surprising as one would expect NDWI and
SASI to be more responsive to the change of soil moisture
because of their sensitivity to the leaf water content. In
the open grassland, the relationship was marginally stronger
with averaged soil moisture at 10 cm compared to 20 cm; in
the oak savanna, the relationship was slightly stronger with
soil moisture at 20 cm.

Interestingly, the curve of the relationship between VARI
and 16-day average soil moisture was slightly different in the
open grassland and oak savanna site, although at both sites,
the relationship can be fitted with a quadratic polynomial
statistical function (Figure 4). The relationship in the open
grassland was clear and nearly linear, but in the oak savanna,
the relationship is more scattered and VARI tends to drop
at high soil water content. VARI in the oak savanna site
was more variable (variance is 0.21) than it was in the open
grassland (variance is 0.14). VARI changed dramatically in
the middle of the growing season of grasses. This is probably
because the growing season of Blue Oaks starts later than
the grasses in the oak savanna, which may cause the abrupt
increase in vegetation indices during the period when trees
were greening up and grasses were in the middle of the
growing season. In addition, VARI was lower in the oak
savanna at the beginning of the growing season when soil
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Figure 4: The relationship between VARI and averaged soil moisture at 10 cm in open grassland and averaged soil moisture at 20 cm in oak
savanna during the same five-year measurement period.

Table 2: Correlation coefficients (r) between NDVI, VARI, NDWI,
SASI, and instantaneous volumetric soil moisture (θ10 and θ20)
and 16-day average soil moisture (θavg 10 and θavg 20) in the open
grassland (a) and oak savanna (b).

(a) Open grassland

NDVI VARI NDWI SASI

θ10 0.71 0.81 0.43 −0.45

θ20 0.69 0.79 0.41 −0.43

θavg 10 0.74 0.82 0.46 −0.48

θavg 20 0.72 0.80 0.44 −0.46

(b) Oak savanna

NDVI VARI NDWI SASI

θ20 0.65 0.79 0.45 −0.50

θ50 0.61 0.74 0.40 −0.44

θavg 20 0.69 0.78 0.41 −0.49

θavg 50 0.67 0.74 0.38 −0.45

moisture was sufficient, resulting in a cluster of low VARI at
high soil water content. However, further studies about the
background effect and the reflectance signature of the oak
savanna are needed to explain the variations of vegetation
indices in the oak savanna site.

Furthermore, we analyzed the relationships between the
indices and soil moisture during the beginning and middle
part of the growing season before GPP and VIs began
to decrease. We also analyzed the relationships separately
during the dry-down and senescence season when soil
moisture began to decline and finally became depleted. We

did not find significant relationships between any of the
indices and soil moisture during the beginning and middle
part of the growing season, which explained the scattered
pattern shown in Figure 4 as well as the weak relationship
for NDWI and SASI. The analysis during dry-down and
senescence period revealed a stronger linear relationship
between VARI and averaged soil moisture (Figure 5(a)),
suggesting that VARI can quantify the change of soil moisture
via the change in chlorophyll content when plants are subject
to water stress.

Since GPP was linearly related with lagged soil moisture
during the dry-down season in the grassland, we evaluated
the relationship between the vegetation indices and soil
moisture lagged by 0 to 30 days during the dry-down
season. A stronger linear relationship between VARI and
17–22-day lagged soil moisture was observed in the open
grassland (Figure 6(a)). This result is in agreement with
the finding of the strong relationship between GPP and
lagged soil moisture from year 2002 to year 2006 during the
dry-down season in the open grassland. We also examined
the relationship between VIs and soil moisture in the oak
savanna during the same dry-down period (Figure 6(b)).
Relationships are slightly stronger with 11-day lagged soil
moisture. Using lagged soil moisture improved the signifi-
cance of the relationship between soil moisture and VARI
(Figure 5(b)), implying that canopy chlorophyll content is
affected by the antecedent soil water status.

The comparison between VARI and NDWI at both sites
suggests that the change of NDWI at the beginning of
the growing season was slower than the change of VARI.
VARI began to increase after the first major autumn rain-
storm, which coincided with the phenology data provided by
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Figure 5: The relationships between VARI and averaged soil moisture (a), lagged soil moisture (b) at 10 cm in the open grassland and at
20 cm in the oak savanna during the dry-down and senescence season.

Ma et al. [40], while NDWI did not respond to the change of
canopy until January. This explained the significant relation-
ship, particularly in the open grassland, between NDWI and
soil moisture during the five-year period.

4. Discussion

4.1. Environmental Controls on GPP. GPP was weakly cor-
related with soil moisture during the beginning and middle
part of the growing season, but was strongly correlated with

soil moisture lagged up to 25 days during the dry-down
period. To investigate factors other than soil moisture that
controlled GPP, we evaluated the relationships among
GPP and PAR, air temperature, precipitation, and VPD
by calculating the correlation coefficients (r) in the open
grassland and in the grassland under oak canopy. At both
sites, PAR and air temperature were strongly correlated
with GPP during the beginning and middle part of the
growing season before GPP began to decline. However, the
regression model between air temperature and GPP was less
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Figure 6: The correlation coefficients between VIs and soil moisture lagged up to 30 days at 10 cm in open grassland (a) and at 20 cm in oak
savanna (b) during the dry-down and senescence season.

significant in comparison to the correlation between PAR
and GPP, indicating the stronger control of PAR on GPP.
Figure 7 shows the linear relationship between GPP and PAR
during the beginning and middle part of the growing season.
Outliers highlighted in Figure 7 revealed the pulses of GPP
in response to specific rainfall events when GPP increased
abruptly on the sunny day right after the rainfall in the open
grassland site.

Grasses responded slowly to the change of soil moisture,
in comparison to their responses to VPD. During the late
growing season, after GPP reached its peak, VPD was neg-
atively correlated with GPP, explaining from 20% (in 2002)
to 57% (in 2004) of the variability in GPP. However, GPP
was also observed to decrease because of cool weather, with
low temperature and low PAR, even though the precipitation
events had occurred several days before and supplied suffi-
cient water.

The impact of environmental variables on the GPP of oak
trees was not significant. PAR accounted for only 20% of the
variability in GPP in the growing season. At the beginning
of the growing season, pulses of GPP in response to specific
rainfall events were observed. After the rain stopped, the GPP
of oak trees was negatively correlated with air temperature in
the dry season, which accounted for 60% of the variability
in GPP of oak trees. The impact of VPD on stomatal
conductance and thus leaf photosynthesis and GPP was more
obvious in the middle of the growing season (between April
and July), when water in the soil was becoming limited.
During this period, VPD was negatively correlated with GPP,
explaining about 40% to 48% percent of the variability of
GPP. GPP usually decreased as soon as VPD reached above
2.0 kPa and when air temperature exceeded 19◦C.

4.2. The Soil Effect on the Relationships between Vegetation
Indices and Soil Moisture. Based on the previous analyses,
VIs derived from MODIS data respond to the change in
soil moisture, particularly in the open grassland, because a
change in soil moisture may induce a change in leaf water

content as well as a change in chlorophyll concentration and
leaf internal structure [55]. Factors that may confound the
relationship between soil moisture and a change in a VI are
the combined impacts of the amount of exposed soil and
green vegetation density within the pixel. In an early stage
of vegetation development, green LAI is low and exposed
soil or senesced plant material may be high. In this case,
the change in substrate albedo associated with a change
in soil moisture may significantly modify pixel reflectance
[56, 57]. At maximum LAI, the amount of exposed soil is
low, and VIs would be expected to be the least sensitive to
changes in substrate albedo and most sensitive to a change
in leaf water content or chlorophyll content. To evaluate a
potential impact of exposed soil- and soil-moisture-related
changes in substrate albedo, the VI-soil-moisture correlation
was analyzed at low LAI (0.4-0.5 for the open grassland and
0.1-0.2 for the grassland under oak canopy at the beginning
and the end of the growing season) and at the high LAI
(2.0–2.5 for the open grassland and 1.0–1.5 for the grassland
under oak canopy). At low LAI, the relationships between VIs
and soil moisture were weak, suggesting that soil-moisture-
related changes in albedo were minimal on normalized
vegetation indices as shown by [57, 58]. In contrast, strong
linear relationships between NDVI/VARI and soil moisture
were observed at both sites when LAI was high (Figure 8).
This result implies that when leaves are fully developed,
the chlorophyll content and leaf area are highly sensitive
to the change of soil moisture. The linear relationships are
more pronounced in open grassland than in oak savanna,
where oak trees are not developing in phase with grasses and
confounding the reflectance signal.

5. Conclusions

In this paper, we explored the responses of a grassland and
an oak savanna to changing soil moisture based on five years
of flux tower and meteorological data, along with MODIS
imagery for the same period. Analysis of the relationship
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Figure 7: The relationship between daily PAR and GPP in the growing season of the open grassland before GPP declined. Pulses due to rain
events are highlighted by circles.
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Figure 8: Relationships between vegetation indices and averaged soil moisture at 10 cm in the open grassland (a), and at 20 cm in the oak
savanna (b) when LAI reached its maximum at each site.

between soil moisture and GPP in open grassland and oak
savanna showed that in annual grasslands, the senescence
rate of grasses was controlled by the declining rate of
soil moisture, but with a 10–20-day lag between GPP and
soil moisture. This result implies that GPP during the
late growing season is affected by antecedent soil water
availability. However, during the beginning and middle part
of the growing season, the build-up toward maximum GPP
was largely controlled by PAR, which drives photosynthesis,
surface sensible and latent heating, and air temperature.
Although GPP during the late growing season in understory
grasses was still linearly correlated with antecedent soil mois-
ture, the relationship was weaker than in the open grassland.
The phenology of the Blue oak canopy is somewhat divorced
from the rainfall cycle; this species leafs out in March and
senesces in October or November, and thus missing the
initial stages of the annual soil moisture recharge while
remaining photosynthetically active after the soil dry-down

period. The annual GPP of oak trees did not vary across
years, and even in the extreme dry year 2004, the annual oak
GPP only decreased 2.1% in comparison to the GPP in prior,
normal rainfall year (2003).

To investigate the impact of soil moisture on canopy
chlorophyll content and water content, we assessed the
relationships between soil moisture and four VIs derived
from MODIS imagery. Overall, grass NDVI and VARI had
a stronger relationship with soil moisture during the dry-
down and senescence season, when the leaf water content and
greenness were the most sensitive to changes in soil moisture.
Furthermore, as expected, VIs were linearly correlated with
lagged soil moisture during the dry-down period. The anal-
ysis of the relationship between VIs and soil moisture at low
grass LAI value demonstrated that normalized reflectance
reduced the soil background effect which resulted from
the change of soil water content. However, at the highest
LAI value, when grasses are fully developed, chlorophyll
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content was highly responsive to the change of soil moisture,
leading to strong relationships between NDVI/VARI and soil
moisture.

Although this study was based in California, the results
should be applicable to other semiarid and arid regions in
the world, including warm desert and semidesert, and other
Mediterranean-climate areas. These regions are important
because of their high plant diversity and, in Mediterranean-
climate regions, their high human population density. As
climate change may aggravate water stress in these areas,
studies focusing on the response of ecosystems to the change
of soil water availability are essential for conservation studies
and for natural resource management. The combination
of flux tower data and remotely sensed data provides a
novel strategy for examining the response of vegetation to
soil-moisture fluctuations. The clear relationship between
MODIS-derived VIs and soil moisture in the open grassland
during the dry-down period indicates that remotely sensed
data can detect soil water availability in shallowly rooted
vegetation during the water-limited period. However, it is
difficult to effectively use remotely sensed data to assess
the response to soil water availability in ecosystems that
are dominated by deeply rooted plants, because deeply
rooted plants are less responsive to the short-term change of
environmental variables. Within these limitations, it seems
clear that incorporation of remotely sensed data in studies
of vegetation response to declining soil water availability will
expand the range of spatial scales and advance prediction of
plant water stress in climate change scenarios.
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This paper presents an empirical model for classifying frozen/unfrozen soils in the entire Bras d’Henri River watershed (167 km2)
near Quebec City (Quebec, Canada). It was developed to produce frozen soil maps under snow cover using RADARSAT-1 fine
mode images and in situ data during three winters. Twelve RADARSAT-1 images were analyzed from fall 2003 to spring 2006 to
discern the intra- and interannual variability of frozen soil characteristics. Regression models were developed for each soil group
(parent material-drainage-soil type) and land cover to establish a threshold for frozen soil from the backscattering coefficients (HH
polarization). Tilled fields showed higher backscattering signal (+3 dB) than the untilled fields. The overall classification accuracy
was 87% for frozen soils and 94% for unfrozen soils. With respect to land use, that is, tilled versus untilled fields, an overall accuracy
of 89% was obtained for the tilled fields and 92% for the untilled fields. Results show that this new mapping approach using
RADARSAT-1 images can provide estimates of surface soil status (frozen/unfrozen) at the watershed scale in agricultural areas.

1. Introduction

Soil freezing is a critical attribute for sustaining agricultural
production. It has a major impact on soil water erosion at
snowmelt [1, 2] and causes winterkill of perennial crops [3].
Soil water erosion and surface runoff are major sources for
transporting water from agricultural land to streams. Soil
sediments adversely affect surface water quality and often
carry phosphorus, ammonia, pathogens, trace elements, and
other contaminants from agricultural sources [4]. In Eastern
Canada, the extent of this diffuse pollution is exacerbated
when significant snowmelt runoff occurs on bare and
erodible frozen agricultural soils located on sloping fields [5].
Environmental conditions in spring can significantly affect
water transport. Early snow accumulation on wet soils may
result in more unfrozen soils [6], or shallowly frozen soils,
that allow higher infiltration of water at spring melt which
consequently decreases runoff [7, 8]. Late snow accumula-
tion on relatively dry soils with cold air temperatures will
allow frost to penetrate deeper below the soil surface. Soils

frozen below a 15-cm depth can impede water infiltration [9]
and generate a greater risk of erosion and snowmelt runoff
at spring thaw. Despite the environmental impacts of frozen
soils, soil temperature is poorly documented in Canada; agri-
cultural lands are not systematically monitored by meteoro-
logical stations. Clearly, soil temperature is a critical attribute
needed in meteorological databases to predict frozen soil
status, to analyze environmental impacts of agricultural
production, and to develop best management practices.

Remote sensing offers promising techniques for monitor-
ing near-surface frozen and unfrozen soil status on broad
geographical scales [10]. In the past, passive microwave
remote sensing was explored. [11] used special sensor
microwave/imager (SSM/I) data to detect soil freeze and
thaw states over snow-free land. Using data from the Nimbus
7 scanning multichannel microwave radiometer (SMMR)
for brightness temperature, [12] shows that frozen ground
can be discerned from unfrozen ground for pasture soils.
Both sensors provide poor spatial resolution (10–50 km),
however, which restricts their use to only very large areas.
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Satellite measurements of thermal radiation (3–14 um) have
been widely used to determine soil surface temperature [13–
15], but these thermal sensors cannot provide data under
cloudy conditions. In addition, since much of the frozen
soil in Eastern Canada is covered by snow, the need to
determine frozen and unfrozen status under snow cover
conditions is obvious. Unlike the thermal infrared or passive
microwave sensors, synthetic aperture radar (SAR) systems
can potentially provide information concerning soil freezing
dynamics under snow cover at high resolution regardless
of cloud cover and time of day and night. The radar
signal predominantly depends on the dielectric constant
of soil which itself is directly related to the water and ice
content, respectively [16]. RADARSAT-1 is a high SAR spatial
resolution (9 m) sensor operating in the C-band (5.3 GHz)
which also covers the watershed level when the soil is dry
and the snow cover is virtually transparent [17]. According
to [18], only 5% of the transmitted signal is diffused into
the snow cover to a 30-cm depth, which corresponds to
a decrease of approximately 0.2 dB in the backscattered
signal. Some specific studies on radar conclude that results
obtained using SAR sensors may provide useful information
on ground moisture and near-surface frozen and unfrozen
bare soil status [17, 19–21]. However, imaging frozen soil on
the watershed scale using RADARSAT-1 remains unexplored.

Active sensors discern frozen soil by detecting variations
in liquid soil water content. These variations are related to
soil dielectric constant values [22–26]. The average dielectric
constant value of dry soil is about 2-3, while that of liquid
water is 80 [27]. The dielectric contrast between soil and air is
low when the soil is dry (∼3), because less energy is diffused
at its surface [23]. The soil dielectric constant increases
proportionally with volumetric liquid water content, which
allows the radar sensor to discern dry soil from wet soil.
Under critical winter conditions, a greater proportion of soil
water freezes which leads to a significant decrease of the
average soil dielectric constant; frozen water has a dielectric
constant of ice (3.2) which is similar to that of dry soil [28–
30]. The opposite phenomenon occurs during spring thaw
when the ice within soil melts, which results in the radar
cross-section increasing by several dB [31–34]. Reflections
occur at interfaces that are related to abrupt changes in
dielectric permittivity, for example, at the frozen/unfrozen
ground interface. Hence, radar can be employed to spatially
distinguish between dry and wet areas as well as between
frozen and unfrozen soil.

Soil properties (i.e., structure, texture, and drainage)
influence the soil water content and consequently its freezing
dynamics. Each soil has its specific latent heat flux that
increases with water content and which requires more heat
loss to freeze [35, 36]. Mineral soils freeze more quickly and
more deeply than organic soils because of their lesser capacity
to store water [37]. The same relation exists between sandy
and clay soils.

Soil moisture is not the only attribute that affects the
radar backscattering signal; vegetative cover and soil surface
roughness also have an effect [38, 39]. Many studies have
evaluated the effects of surface roughness on the radar signal
[23, 40–43]. For example [44] report that surface roughness

effects are more important with greater soil moisture content
and [45] suggest that the effect of roughness may be
considered as being constant within an agricultural area
for some cases. Although surface roughness indices are
affected by many factors, such as crop, soil management, crop
residues, and field orientation, winter conditions preceding
the spring melt in eastern Canada present more stable indices
due to the lack of agricultural activity compared with other
seasons. Consequently, these more stable surface conditions
are favourable to successive radar image acquisitions during
winter.

The objective of this study was to classify the near-
surface agricultural soils as being frozen or unfrozen relative
to changes in the RADARSAT-1 backscattering signal under
dry snow cover. A linear regression model between the
soil surface temperature and the radar backscattering signal
was developed to predict surface temperatures, to classify
RADARSAT-1 images, and to derive frozen soil maps on
the watershed scale. The regression model was assessed
from interactions between in situ ground measurements and
remote sensing data acquired from 12 representative agri-
cultural fields within the Bras d’Henri watershed (167 km2)
during winters from 2003 to 2006.

2. Material and Methods

2.1. Study Area. The Bras d’Henri study site (167 km2) is
a subwatershed of the Beaurivage and Chaudière basins,
located south of Quebec City and the Saint-Lawrence
River (Figure 1). Soil classification and attributes of the
studied area are described in Table 1; they belong mainly
to the podzol (47.6%), gleysol (30.5%), organic (11.1%),
and brunisol (5.7%) order. The drainage classes for the
mineral and organic soils ranged from being well (21.9%),
moderately (16.6%), imperfectly (17.2%), poorly (26.5%),
and very poorly drained (15.2%). The surface texture ranged
from sandy loam to loam, while the family particle-size
classes include soils with sandy, coarse-loamy, fine-silty,
and sandy-skeletal attributes (Table 1). The organic soils
identified in the watershed consist of highly decomposed
humic layers [46]. Soils were generally developed over fluvial
and fluviolacustrine deposits [47].

The cold temperate climate is characterized by a severe
winter with a moderate and subhumid summer. Mean
annual temperature is 4.5◦C–6.6◦C with an average annual
precipitation of 1126 mm and a normal snowfall of 320 cm.
Early snow accumulation may insulate the soil from freezing
depending on local conditions. The freezing period starts
around mid-November and lasts until mid-April. The stud-
ied area has the most intensive livestock production of the
watershed, which generates a surplus of nutrients. Slope
of the fields in the studied area ranges from 0% to 9%,
which increases the risk of surface runoff, soil water erosion,
and the transport of sediments, phosphorus, and other
contaminants (pathogens, herbicides, and trace elements)
from agricultural land to streams [6].

2.2. In Situ Data Measurements. Field observations, includ-
ing soil temperature, soil moisture content, and snowpack
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Figure 1: Location of the 12 study fields within the Bras d’Henri watershed.

characteristics, were measured in 12 fields and are described
in Tables 1 and 2. Field data for analysis were collected
simultaneously with satellite acquisitions. All soil attributes
repeatedly measured on the same field were averaged.
Because the influence of soil moisture on radar signals
under dense vegetation (forest) is weak, these areas were
eliminated from the radar image analysis. Therefore, soil
moisture measurements were considered for only bare soil
and sparsely dispersed vegetation (Figure 2).

The soil temperature was measured at six different depths
(5, 10, 15, 35, and 50 cm below the soil surface) using copper-
constantan thermocouples (Type T, Omega, Standford,
Connecticut). Thermocouples were installed during the fall
and their locations were georeferenced. Air temperature
was measured with a portable thermometer. Each field was
sampled over five temperature profiles, with the minimum
distance between profiles being 45 m. A digital elevation
model (DEM) and detailed soil maps were used to determine
five representative locations within each field.

A time domain reflectometer (TDR) probe was also
installed at 5 cm below the soil surface for dielectric con-
stant measurement [48]. Soil moisture was measured using
TDR technology. An automatic meteorological station was
mounted on a representative field within the monitoring
network. Hourly average air temperature, snow height, and

wind direction were recorded. The snow was considered to
be dry when the air temperature was below 0◦C on the night
preceding a SAR image acquisition.

The effect of soil type and land use (tilled versus un-
tilled) on the radar signal was evaluated relative to the
soil series classification according to [49]. The resultant soil
classification was based on soil properties, with emphasis
on various soil drainage indicators. The Beaurivage sandy
loam soils belong to the moderate-to-rapid soil permeability
class (5–15 cm hr−1), whereas the other soils have moderate-
to-slow permeability (0.5–1.5 cm hr−1). Since the measure-
ments taken by synthetic aperture radar (SAR) instruments
are sensitive to soil moisture, it is hypothesized that the
drainage class of each soil type studied within the watershed
has an impact on the radar backscattering signal. Moreover,
the soil classification at the series level is principally based on
soil drainage and soil water holding capacity, two attributes
highly related to soil moisture content and soil dielectric
constant.

2.3. SAR Data Acquisitions. Twelve RADARSAT-1 SAR im-
ages were acquired during three winter seasons, from fall
2003 to spring 2006. Images were centered on 46◦ 29′ N
and 71◦ 14′ W. RADARSAT-1 was scheduled to acquire C
band (frequency 5.3 GHz corresponding to a wavelength of
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Fields 1, 9

(a)

Fields 2, 5, 6

(b)

Fields 3, 7, 14

(c)
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(e)

Field 11

(f)

Figure 2: Photographs showing the types of land cover considered in this study: untilled fields (1, 3, 7, 9, and 14), tilled fields (2, 4, 5, 6, 10,
11, and 12).

Table 2: Soil textures and attributes of the 12 fields selected as training/validation sites.

Field no. Organic (%) Sand (%) Silt (%) Clay (%) Texture Altitude (m)

1 4.31 56.7 30.5 12.8 Sandy loam 139.36

2 3.50 55.0 31.6 13.5 Sandy loam 140.03

3 3.35 47.9 38.7 13.4 Loam 180.37

4 5.11 52.3 34.2 13.5 Sandy loam 178.46

5 4.25 47.4 42.0 10.7 Loam 158.06

6 2.68 44.2 43.2 12.5 Loam 157.31

7 3.75 47.6 45.0 7.4 Loam 184.38

9 3.05 52.8 39.7 7.4 Sandy loam 282.81

10 3.75 41.2 45.4 13.3 Loam 292.37

11 42.06 — — — Organic 173.19

12 3.40 69.4 25.4 5.3 Sandy loam 173.67

14 1.82 79.5 17.1 3.4 Loamy sand 131.88

5.6 cm) polarization HH SAR images on ascending orbit in
fine mode (F1F), which corresponded to incidence angles
varying from 36.9◦ to 40.1◦. It has been shown that low
incidence angles (20◦–30◦) reduce the influence of soil
surface roughness [23, 43, 50–52]. However, for this study,
despite its high incidence angle, the fine beam mode of
RADARSAT-1 was selected for its fine spatial resolution (9 m
× 9 m) that offers an advantage for mapping frozen soils
at the field scale. Moreover, the roughness has to remain
unchanged during the acquisition of all images.

The OrthoEngine program of PCI Geomatica (V9.1.5)
was used to geometrically correct each RADARSAT-1 image
registered with intensity (power) backscatter values in 32-
bit real channel. The mathematical modelling was based
on a photogrammetry method [53], and the output images

were resampled to a pixel spacing of 9 m using the bilinear
technique.

A mask was applied to all fields allowing the extraction
of the mean, the minimum, the maximum, and the standard
deviation from image intensity values. Radar data intensity
values were converted to backscattering coefficients (dB)
using (1) and (2) to allow a quantitative comparison of
frozen and unfrozen soil values within the scene

dB = 10 × log10

(
Intensity

)
, (1)

where the intensity (power) is given by

Intensity = σi j = DN ∗DN + A0

Aj
∗ sin

(
Ii j
)

, (2)
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Table 3: Description of the RADARSAT-1 images acquired over the Bras d’Henri watershed during the three winter seasons (2003-2004 to
2005-2006) and the reasons for the use of only 12 radar images in this study.

Winter season Dates of RADARSAT-1 image acquisitions Use (yes/no) Reason

08 November 2003 Yes Dry snow

02 December 2003 Yes Dry snow

26 December 2003 No Wet snow surface coinciding with the

RADARSAT-1 overpass

First 19 January 2004 Yes Dry snow

25 January 2004 No Wet snow surface coinciding with the

RADARSAT-1 overpass

29 February 2004 Yes Dry snow

02 November 2004 Yes Dry snow

06 December 2004 No Acquisition failures due to the

conflicts with other users.

10 January 2005 No Acquisition failures due to the

Second conflicts with other users.

13 January 2005 Yes Dry snow

06 February 2005 No Wet snow surface coinciding with the

RADARSAT-1 overpass

14 February 2005 No Acquisition failures due to the

conflicts with other users.

08 January 2006 Yes Dry snow

01 February 2006 Yes Dry snow

Third
25 February 2006 Yes Dry snow

21 March 2006 Yes Dry snow

14 April 2006 Yes Dry snow

08 May 2006 Yes Dry snow

where σi j is the output backscattering coefficient for line i,
pixel j, DN is the input image value for line i, pixel j, A0 is
the gain offset from the first member of SAR scaling offset
segment (A0SEG), Aj is the expanded gain scaling tabular
value for pixel j, and Ii j is the local incidence angle.

In order to map frozen soils on the watershed scale,
only images that presented dry snow cover conditions were
retained (Table 3). Images taken wherever air temperature
was above the freezing point were discarded due to a wet
snow cover. The backscattering behavior changes for a wet
snow cover, resulting in low values of the backscattering
coefficient for incident angle θ > 20◦. The lower values under
wet snow conditions are due to increased attenuation by the
snow cover when its surface is relatively smooth [54, 55]. The
RADARSAT-1 images were filtered to smooth and wipe off
the noise, reducing the speckle effect. To achieve this task, a 5
× 5 Gaussian filter was applied to all 12 RADARSAT-1 images
[56].

The three assumptions underlying the linear regression
model were verified prior to using the data: (1) residuals were
normally distributed, (2) the residual mean was equal to zero,
and (3) residuals were not autocorrelated

3. Results and Discussion

The effects of land use, air temperature, and snow cover
thickness on frost depth were studied for the 12 fields
selected for monitoring and validation. In the following
sections, the backscattering coefficients of the images are
related to ground data measurements (snow cover thickness,
soil moisture, and frozen soil depth) taking soil type into
account. These relationships were developed for untilled and
tilled fields (Figure 2), during two winters (November 2003
to April 2004 and November 2004 to April 2005) and then
applied to a third winter (January to April 2006).

3.1. Snow Cover and Soil Temperature. The weather records
for the 2004, 2005, and 2006 winter seasons are presented
in Figure 3. In general, the average daily temperature drops
below 0◦C on November and the snowpack initiates on
December. However, the average air temperature does not
stay continuously below 0◦C during the winter Figure 3(a).
The minimum recorded air temperature was −27.5◦C on
January 25, 2004, −27◦C on January 13, 2005, and −17◦C
on February 26, 2006. The daily average snow accumulation
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Figure 3: Temporal variation for: (a) air temperature, (b) snow
height, and (c) frozen depth (0–50 cm depth).

reached its maximum in different months from year to year
(Figure 3(b)).

During the winter of 2004, it was observed that when the
air temperature dropped below −10◦C, the near-surface soil
layers froze. The first soil type to freeze was the Neubois loam
(fields 5 and 6), while the organic soil (field 11) was the last
(results not shown). Snow accumulation began on December
22 with a snow-cover thickness of about 38 cm. The period of
freezing was preceded by snow accumulation which reached
a maximum of 66 cm in field 2 on February 29, 2004. Because
field 2 was tilled, the frost penetrated deeper in the soil
(30 cm) than in the untilled field 1 (11 cm), which was
covered with hay. The winter of 2005 had less precipitation
and less snow cover (20 cm), while the air temperature was
similar to the winter of 2004. This condition accelerated the
frost penetration into the ground, which reached a depth of
up to 50 cm. The variation in the snow cover (10 to 66 cm)
was compared with the variation of soil surface temperature.
Soil surface temperature was maintained near 0◦C during

σ
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Figure 4: Linear regression models between backscattering coeffi-
cient, σ◦, with ground measured soil temperature (0–5 cm depth)
for tilled fields (triangle) and untilled fields (square).

long periods. Generally, snow cover played an important role
by maintaining heat on the soil surface, even when the air
temperature dropped below −10◦C. Thaw started in mid-
March (Figure 3(c)).

The winter of 2006 was warmer. In March, with the onset
of snowmelt, the shallow unfrozen ground quickly became
saturated up to the surface. Flow occurred overland because
the ground had limited storage capacity (Figure 3(c)).

3.2. Backscattering Coefficients and Ground Soil Measure-
ments. Figure 4 illustrates the relationship between back-
scattering coefficients (σ◦) and the soil temperature for data
acquired during 2004, 2005, and 2006. Since the spatial
resolution of the developed model is approximately 9 m,
the radar signal mean values were compared with the mean
values of the ground soil temperature and the soil moisture
(Figure 5) taken from the same sampling cells. It is assumed
that surface roughness was homogenous for each considered
class (tilled and untilled). Thus, a regression line was fitted
to all points belonging to each class (tilled and untilled)
(Figure 4). For both the tilled and untilled class, the coef-
ficient of determination (R2) was 0.52, which is considered
satisfactory. There is a comparable correlation between σ◦

and soil temperature for surface soil temperatures below
0◦C, which progressively becomes weaker with increasing
surface soil temperature. When the soil temperature is below
0◦C, there is no significant difference in the σ◦ and the
soil temperature relationship for the tilled and the untilled
fields. However, when the soil temperature is above 0◦C,
one can distinguish two relationships wherein the σ◦ for the
tilled fields is higher than that of the untilled fields. This
can be explained by the high sensitivity of the backscattered
signal to soil roughness when soil moisture increased. Given
that the range of observations from this study is −7◦C to
7◦C, soil moisture would have decreased when the soil was
frozen, and thus the soil would have been dry [23, 33].
Consequently, the radar signal would penetrate the soil
with minimal effect on soil roughness. However, when soil
temperature increases, soil moisture content also increases,
and consequently, the backscattered signal increases and can



8 Applied and Environmental Soil Science

y = 0.12x − 13.01

R2 = 0.38

y = 0.06x − 14.36

R2 = 0.34

−18

−16

−14

−12

−10

−8

−6

−4

−2

0
0 10 20 30 40 50 60

Soil moisture (%)

σ
◦

(d
B

)

(a)

0 10 20 30 40 50 60 70

Soil moisture (%)

−18

−16

−14

−12

−10

−8

−6

−4

−2

0

σ
◦

(d
B

)

y = 0.09x − 12.08

R2 = 0.25

y = 0.05x − 13.93

R2 = 0.29

(b)

Figure 5: Linear regression models between backscattering coef-
ficient, σ◦, with ground measured soil moisture (0–5 cm depth)
for soil drainage types: (a) moderate to good drainage and (b)
poor drainage. Symbols for each field class; tilled (triangle), untilled
(square).

be significantly affected by field surface conditions (tilled
or untilled). This explains the increase in the backscattering
coefficient for the tilled fields.

As presented in Figure 5, a regression analysis was also
performed between σ◦and soil moisture, separately for
two drainage groups (good; moderately to well-drained
soils: poor; poorly drained soils), according to each land
use class (tilled versus untilled fields). The coefficient of
determination (R2) between σ◦ and surface soil moisture
was 0.38 for tilled and 0.34 for untilled fields with good
soil drainage. For the poorly drained soils, the R2 value was
0.29 for tilled and 0.25 for untilled fields (Figure 5). These
correlation coefficients were lower than those previously
reported [57, 58]. Empirical relationships between σ◦ and
near-surface water content show considerable scatter, and the
relationships vary with land use (tilled/untilled). One prob-
able reason for the absence of a good relationship between
σ◦ and near-surface water content is that soils show different
relationships between soil dielectric properties and soil water
content. This is due to differences in particle-size distribution
affecting the partitioning between bound and free water
[59]. Another reason behind the observed discrepancy is the

directional effects of the rows on the SAR return signal which
increases when the row direction is almost perpendicular
to the SAR antenna, as for fields 1, 2, and 12 (Figure 1).
This effect makes the return signal stronger compared with
other fields. The accuracy of the proposed relationship for
estimating soil moisture is considered satisfactory, because
cartographic and measurement errors are common in this
type of analysis. In spite of the large variation in radar and
volumetric moisture content data, the positive correlation
between σ◦ and volumetric soil water content shows that
the backscattered radar signals are related to soil moisture.
Generally, the backscattering coefficient was found to vary
from −8 to −16 dB for volumetric soil moisture content that
ranged from 42% to 12%. For tilled fields, the average of
σ◦ is relatively high (−10 dB) compared with untilled fields
(−12 dB) with a R2 of 0.37.

At first, a decrease of σ◦ (3 dB) was noted between
December 2, 2003, and January 19, 2004, for all fields (data
not shown) when the soil was frozen (air temperature =
−11◦C). The backscattering coefficient decreased by 3 dB
for the Mawcook, sandy loam soils in the untilled field 1.
For the tilled field 2 (same soil type), the backscattering
coefficient decreased by 2 dB where the frost depth increased
from 8 to 50 cm. The decreased backscattering coefficient
over the Bras d’Henri watershed was associated with a
decreased surface soil temperature below 0◦C, and depended
on soil type. On November 2, 2004, a strong backscattering
coefficient, of about −5 dB, was recorded; this increase may
be explained by increased soil moisture content (about 40%)
and amplification as a result of surface roughness. The
portion of the transmitted energy from the soil surface to
the sensor was larger when the soil was wet because of the
strong dielectric differential between water and air. The same
phenomenon occurred again on February 6, 2005, when an
increased backscattering coefficient was also noted (i.e., σ◦=
−5 dB) in most fields except for fields 1, 2, 9, and 14 (results
not shown). In this case, the air temperature was recorded at
2◦C for the satellite pass; the snow cover was between 0 and
9 cm, while the frost depth was about 50 cm. This increase in
the backscattered signal was not associated with the thaw but
rather with an increase in moisture on the soil surface.

3.3. Frozen Soil Mapping Algorithm. The linear regression in
this study was used to identify different values of backscatter-
ing coefficients (σ◦) that can be used to distinguish between
frozen and unfrozen fields for different soil conditions.
Three categories were considered for each soil series, as
follows: tilled frozen soils, untilled frozen soils, and frost-free
soils. The threshold for determining whether a field was
frozen or not was predicted by the σ◦ value corresponding
to the zero temperature from the regression model for each
soil group (i.e., soil series having similar parent material,
family particlesize, and drainage conditions). Thus, the soil
condition (frozen or not) was identified by applying the
predicted σ◦ thresholds for each delineation on the soil
map.

In this temporal study, we assumed that soil surface
roughness was constant over time for each land use type
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Figure 6: Linear regression models describing the variation of soil temperature measured at 5 cm in relation to the backscattering coefficient,
σ◦, according to soil type: (a) Mawcook, sandy loam, (b) Le Bras, loam, (c) Neubois, loam, (d) Beaurivage, sandy loam, (e) Woodbridge,
loam, (f) organic soil, and land use type; tilled fields (©) and untilled fields (•).

(untilled versus tilled fields) during the same winter sea-
son, because the soil surface would not be ploughed nor
naturally modified before spring snowmelt [60]. Under this
assumption, it is possible to consider that for each field,
the backscattering coefficient (σ◦) was related to soil surface
moisture status [31]. In this section, the regression analysis
was performed between the soil temperature at 5 cm and σ◦,
taking the soil series into account.

For the 12 fields under study, the average σ◦ was extracted
and plotted versus the in situ measured soil temperature
(Figure 6). Different simple linear regression models were
performed for different soil types as well as for tilled
and untilled soils. Figure 6 show that σ◦ increased as soil
temperature increased, indicating a positive correlation bet-
ween σ◦ and soil temperature. The soil types under study
gave different R2 values: 0.80 for Mawcook, sandy loam
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Figure 7: Maps of the frozen/unfrozen soil conditions in the Bras d’Henri watershed (2003–2006) using 12 RADARSAT-1 SAR images.
Green: unfrozen soils, orange: tilled frozen soils, yellow: untilled frozen soils, and white: mask applied for forest area.

(fields 1 and 2), 0.74 for Beaurivage, sandy loam (fields 7
and 12), 0.85 for Neubois, loam (fields 5 and 6), 0.55 for
Woodbridge, loam (fields 9 and 10), 0.35 for Le Bras, loam
(fields 3 and 4), and 0.94 for the organic soil (field 11). A
low coefficient of determination (R2 = 0.20) was determined
for Le Bras, loam, especially in the corn field after harvest
(fields 4). This result can be explained by the interaction
between the radar signal and dried corn residue and stalks
remaining in the field after harvest. The moisture content
of these stalks and residue may have varied throughout the
field and during the fall season, which would increase the
uncertainty of the estimated backscatter values. As the soil
surface temperature decreased below 0◦C, the σ◦ decreased
by 3 to 5 dB depending on soil type. Also, the reader should
note that for each soil type class, σ◦ for the tilled fields
(fields 2, 4, 6, 10, 11, and 12) were always greater, by at
least 2 dB, than σ◦ for the untilled fields. When the soil is
frozen, it has a dielectric constant similar to dry soil. In this
case, the signal penetrates the soil and is less sensitive to soil
surface roughness. However, when the soil is unfrozen under
the snow pack, soil water content increases, and the signal
becomes more sensitive to soil surface roughness.

The regression equations given in Figure 6 identify the
radar backscattering coefficient thresholds, which are used
to differentiate frozen and unfrozen soils. These thresholds
represent the backscattering values that correspond to soil

temperatures below 0◦C (Table 7). Several maps of near-
surface frozen soil conditions (frozen versus unfrozen soils)
for the Bras d’Henri watershed were created for the winter
seasons 2003-2004, 2004-2005, and 2005-2006 (Figure 7).

It should be emphasized that although the models devel-
oped in this study were applied to Bras d’Henri using avail-
able data to demonstrate models usefulness, however, more
data should be acquired to update the developed models.

3.4. Frozen Soil Maps Derived from the Classification Algo-
rithm. The classification algorithm developed in this paper
was applied to the Bras d’Henri watershed (167 km2) to
identify frozen and unfrozen soils for all agricultural fields
distributed over the entire watershed. To visualize the
results, a color scale was used to display the near-surface
frozen/unfrozen soils. Untilled frozen soils are in yellow,
tilled frozen soils in orange, and unfrozen soils in green. A
white mask was applied to cover the forest area that was
excluded from the study (Figure 7). There are notable inter-
annual variations in frozen soil distribution between each
winter season over the Bras d’Henri watershed. Frozen soils
covered a large area in 2004 (85%) and 2005 (74%) but
covered only 35% of the area in 2006 (Table 8).

The minimum soil temperature at 5 cm was recorded as
−7◦C for the untilled Beaurivage soils on February 6, 2005;
the maximum was 13◦C at 1 cm for the tilled organic soils
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Table 4: Classification results of six selected RADARSAT-1 SAR images compared with soil temperature at the 12 training/validation study
fields.

Total
Classification results

Frozen Unfrozen Total Success (%) Omission (%)

Ground observations
Frozen 33 5 38 86.8 13.2

Unfrozen 2 32 34 94.1 5.9

Total 35 37 72 90.3

Commission (%) 5.7 13.5 Kappa = 0.81

Table 5: Classification results of six selected RADARSAT-1 SAR images compared with soil temperature measurements at the 12
training/validation study fields, by land use.

Classification results

Frozen Unfrozen Total Success (%) Omission (%)

Tilled fields

Ground observations
Frozen 17 3 20 85 15

Unfrozen 1 15 16 94 6

Total 18 18 36 89

Commission (%) 6 17 Kappa = 0.78

Untilled fields

Ground observations
Frozen 16 2 18 89 11

Unfrozen 1 17 18 94 6

Total 17 19 36 92

Commission (%) 6 11 Kappa = 0.83

on April 21, 2004. Soil temperatures showed strong variation
near the surface (following changes in air temperature) but
varied less at greater depths. The unfrozen moisture content
increased in frozen soils with increasing soil temperatures at
all depths and, more markedly, after the onset of snowmelt
when soil temperatures increased rapidly (Figure 3).

In general, freezing starts in November and moves
gradually toward the watershed depending on soil type,
snow cover, and air temperature. The soil temperature
decreased gradually as the frozen front progressed. When
air temperature decreased in November, soil temperatures
decreased quite uniformly throughout the unfrozen soil pro-
file, and freezing set in abruptly after the 0◦C isotherm was
encountered. The progress of freezing apparently reflected
the heterogeneity of the soil. At a given negative temperature,
the quantity of unfrozen water varied considerably with
soil type and was greater for soils with a finer texture.
Furthermore, the greater organic matter content of organic
soils (field 11) reduced both their soil heat capacity and soil
thermal conductivity [61]. Also, they retained more water
and the latent heat conductivity of water is greater than air.

This result may be understood as a complex interaction
between thermal and hydraulic conductivities, both of which
decrease with decreasing unfrozen water content. It is also
related to the larger amount of latent heat that is released
from soils with high water content. Soils with low water con-
tent (Beaurivage, loamy sand (field 14)) may be expected to
initially freeze earlier because the release of latent heat is less.
The maps show that the distribution of the frozen areas over

the watershed correlate well with soil type distribution and
the interannual variation of air temperature and snow cover.
The detectability of the freezing onset seems to be sensitive
to land use (i.e., tilled versus untilled fields). On November
2, 2004, freezing had already occurred, particularly in the
tilled fields, because the surface was directly exposed to low
air temperatures, due to the low snow accumulation and
because tillage promoted good drainage, which consequently
accelerated the heat transfer through the porous soil.

When the near-surface frozen extension over the Bras
d’Henri watershed is compared over the three winter seasons
(2003-2004 to 2005-2006), the main difference between them
is snow cover depth; it was substantial during the third winter
season (∼45 cm) but was 30 cm for the first winter and only
17 cm for the second winter. These results show that the
presence of seasonal snow cover during the cold season has
a significant influence on the ground thermal regime. In sea-
sonally frozen ground regions, snow cover can substantially
reduce the seasonal freezing depth. In fact, snow cover plays
an insulating role by maintaining surface soil near the freez-
ing point [62, 63]. Therefore, a frozen soil under a seasonal
snow cover could eventually thaw during winter even though
it may have been frozen before the snow cover occurred.

3.5. Validation of the Classification Algorithm. The empirical
algorithm validation is based on the soil temperature data
of the top 5 cm soil layer for the six RADARSAT-1 images
acquired between January and May 2006. Using the 12 train-
ing/validation fields of the third winter season, confusion



12 Applied and Environmental Soil Science

Table 6: Classification results of six selected RADARSAT-1 SAR images compared with soil temperature at the 12 training/validation study
fields, by acquisition date.

Classification results

Frozen Unfrozen Total Success (%) Omission (%)

January 8, 2006

Ground observations
Frozen 11 1 12 92 8

Unfrozen 0 0 0 100 0

Total 11 1 12 92 8

Commission (%) 0 100 8 Kappa = NA(a)

February 1, 2006

Ground observations
Frozen 7 1 8 88 12

Unfrozen 1 3 4 75 25

Total 8 4 12 83 17

Commission (%) 13 25 17% Kappa = 0.63

February 26, 2006

Ground observations
Frozen 11 1 12 92 8

Unfrozen 0 0 0 100 0

Total 11 1 12 92 8

Commission (%) 0 100 8 Kappa = NA(a)

March 21, 2006

Ground observations
Frozen 4 2 6 67 33

Unfrozen 1 5 6 83 17

Total 5 7 12 75 25

Commission (%) 20 29 25 Kappa = 0.50

April 14, 2006

Ground observations
Frozen 0 0 0 100 0

Unfrozen 0 12 12 100 0

Total 0 12 12 100 0

Commission (%) 0 0 0 Kappa = NA(a)

May 8, 2006

Ground observations
Frozen 0 0 0 100 0

Unfrozen 0 12 12 100 0

Total 0 12 12 100 0

Commission (%) 0 0 0 Kappa = NA(a)

(a)
Because only one class is represented, the Kappa coefficient cannot be calculated (division by zero).

matrices were computed to compare results from the pro-
posed algorithm that classified soils as being frozen with the
in situ soil temperatures. The analysis consisted of examining
and displaying errors of commission and omission and the
overall classification accuracy. From these percentages, a
performance measure known as Kappa was calculated. The
Kappa coefficient (κ) was used to represent the overall clas-
sification agreement [64]. Kappa values range from −1 to 1;
a value of zero indicates that the effect of the classifier equals
chance agreement, and a value of 1 indicates a perfectly effec-
tive classification without a contribution from chance agree-
ment. Any negative value indicates a poor classification in
which chance agreement is more important than the classifi-
cation effect. Therefore, a Kappa value of 0.75 or greater indi-
cates a very good to excellent classification performance [65].

Table 4 contains the full contingency table as evidence of
classification results for all the six SAR images. The overall
classification accuracy was 90% (κ = 0.81) over the Bras

d’Henri watershed. According to classification results, frozen
soils had an average classification accuracy of 87%. The
highest classification accuracy of 94% was obtained for the
unfrozen soils, with only two fields incorrectly classified,
while five fields were incorrectly classified for frozen soils.
It is apparent that the soil attributes measured in the field
were better suited for discerning the near-surface frozen and
unfrozen status. In the next step, classification results were
compared with land use, that is, tilled versus untilled fields
(Table 5). The lowest individual class accuracy of 89% (κ
= 0.78) was obtained for the tilled fields. This result may
be explained by the higher within-class variability resulting
from a greater diversity of tillage practices and orientation
settings where freezing occurred and which would have
increased the backscattering signal.

Table 6 presents the classification results for each RA-
DARSAT-1 image. The best classification accuracy (100%)
was achieved when all fields were thawed (March 2005). On
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Table 7: Radar backscattering coefficient thresholds (dB) used to differentiate frozen from unfrozen soils taking soil and land use type into
account over the Bras d’Henri watershed.

Soil types (field number)
Field type

Tilled Untilled

Mawcook, sandy loam (1, 2) −10.5 −12.9

Le Bras, loam (3, 4) −11.8 −13.1

Neubois, loam (5, 6) −10.8 −13.2

Beaurivage, sandy loam to loamy sand (7, 12, 14) −9.5 −13.0

Woodbridge, loam (9, 10) −9.9 −12.8

Organic soils (11) −9.8 –(a)

(a)
Because the untilled field is not represented.

Table 8: Distribution of frozen/unfrozen soils for the12 radar images acquired during the three winter seasons (2003-2004 to 2005-2006)
over the Bras d’Henri watershed, by land use.

Winter season Date (dd/mm/yyyy) Untilled frozen soils (%) Tilled frozen soils (%) Unfrozen soils (%)

First

08/11/2003 31 34 35

02/12/2003 39 43 18

19/01/2004 47 49 4

29/02/2004 43 52 5

Second
02/11/2004 31 38 31

13/01/2005 39 40 21

Third

08/01/2006 19 21 60

01/02/2006 10 12 78

25/02/2006 24 27 49

21/03/2006 23 29 48

14/04/2006 10 14 76

08/05/2006 9 11 80

March 2006, two out of six frozen fields were classified as
unfrozen. The resulting classification accuracy is equal to
75%.

It is important to note some limitations in applying
the proposed approach. First, the mapping of frozen soil
is mainly realised during winter under the presence of a
snow cover. When the snow is wet, the backscattered signal
cannot penetrate the snow cover, and therefore, we cannot
have reliable information about the soil surface status. Thus,
SAR radar images should be acquired under dry or refrozen
snow cover. Second, the proposed methodology assumes that
roughness parameters will be time invariant. Although this
may be a reasonable assumption within the same season, it is
known that roughness in agricultural fields tends to decrease
over time as a result of weathering and rainfall erosion. Then,
it would be necessary to have an annual map of land use.
Finally, agricultural fields have a periodic row structure that
affects the surface backscattering values.

4. Conclusions and Future Perspectives

In this study, a classification algorithm was developed to
classify the near-surface agricultural soil under snow cover
as being frozen or unfrozen using RADARSAT-1 images.
The developed algorithm is based on linear regression

analysis. Regression models were performed for different soil
types and land uses to identify a soil-freezing threshold.
This threshold was identified by establishing a relationship
between the backscattering coefficient and the soil tempera-
ture measured at 5 cm below the soil surface. The coefficient
of determination obtained for the regression models varies
between 0.2 and 0.96.

The developed algorithm was validated by field measure-
ments using the Kappa index. Results indicate that there is
good association between image-derived surface soil status
(frozen/unfrozen) and measured field soil temperature.
Results of the Kappa index show that accuracy varies between
75% and 100%. Excellent accuracy values were obtained
for untilled agricultural fields. The main discrepancies are
associated with later stages of snowmelt, especially in March,
when the frozen and unfrozen fringe is not stable.

The studied fields were stratified into two land use
classes (tilled and untilled fields). It was found that the
backscattering coefficient from tilled fields was greater than
that from the untilled fields. These results may indicate that
surface roughness, mainly caused by soil ploughing, plays
an important role. Radar signals are probably responsive to
multiple bounces by the near-surface rock fragments when
they penetrate a few centimetres below ground surface, in
addition to the scattering due to surface roughness.
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Important observations were made in the monitoring of
the interannual variations of soil temperature according to
the atmospheric conditions and pedological attributes, and
also in the monitoring of surface status.

The conditions under which the model was developed,
applied, and validated are best suited to its application in
agricultural areas where the vegetation is sparse, snow cover
is dry, and the surface roughness does not change during the
winter. In this study, we consider that soil surface roughness
is constant or slightly altered during the winter season, since
no agricultural activity is undertaken. However, soil surface
roughness can change from year to year due to land use
changes. This does not really affect the algorithm developed
here, because a land use stratification is realised before
applying the classification algorithm.

Of note, for higher soil temperatures than those observed
in this study, soil moisture content may decrease (the
soil may be considered dry), which allows the penetration
of the backscatter signal into the soil; this will decrease
the backscatter coefficient. However, classification between
frozen and unfrozen soils is mainly based on a small range
of soil temperatures around 0◦C.

The new approach developed in this study may be con-
sidered a first step for classifying soil surface frozen/unfrozen
status. Clearly, additional validations should be done for
other similar watersheds. Another problem concerns the
status of the soil surface under wet snow. This weakness is a
limiting factor, because the radar return cannot necessarily
be attributed to effects from the liquid soil water content.
Additional research should concentrate on the retrieval of
soil frozen/unfrozen status which may include the effects of
temporal surface modification. To broaden the applicability
of the model to other watersheds, additional validation work
is needed. In particular, future research should investigate the
application of the model to a broader range of soil types and
moisture conditions. Further, the method developed in this
study is applied for monopolarization C-band radar image
and its applicability for multipolarizations and others radar
frequencies needs to be determined. Multipolarisations SAR
sensors such as RADARSAT-2 (operational since May 2008)
can provide input for classification schemes from different
scattering mechanisms. When data is acquired in polarimet-
ric mode, both the amplitude and phase information of the
SAR signal are retained; the use of this information provides
input for classification algorithms. Hence, it will be possible
to extract information on land use directly from images,
which may make it possible to systematically update land
cover maps and monitor land conditions.
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polarimétrique à synthèse d’ouverture,” Canadian Journal of
Remote Sensing, vol. 34, no. 4, pp. 418–429, 2008.

[11] T. Zhang and R. L. Armstrong, “Soil freeze/thaw cycles
over snow-free land detected by passive microwave remote
sensing,” Geophysical Research Letters, vol. 28, no. 5, pp. 763–
766, 2001.

[12] B. Zuerndorfer and A. W. England, “Radiobrightness decision
criteria for freeze/thaw boundaries,” IEEE Transactions on
Geoscience and Remote Sensing, vol. 30, no. 1, pp. 89–102,
1992.
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The brightness temperature (BT) of Taklimakan Desert retrieved from the data of Landsat-7/ETM+ band 6 and Terra/MODIS
band 31 and 32 indicates the following features: (1) good linear relationship between the BT of ETM+ and that of MODIS, (2) the
observation time adjusted BT of ETM+ is almost equal to that of MODIS, (3) the BT of Terra/MODIS band 31 is slightly higher
than that of band 32 over a reservoir while opposite feature is recognized over desert area, (4) the statistical analysis of 225 sample
data of ETM+ in one pixel of MODIS for different landcovers indicates that the standard deviation and range of BT of ETM+
corresponding to one pixel of MODIS are 0.45◦C, 2.25◦C for a flat area of desert, while respective values of the oasis farmland and
shading side of rocky hill amount to 2.88◦C, 14.04◦C, and 2.80◦C, 16.04◦C.

1. Introduction

The brightness temperatures (BTs) retrieved from the data
of thermal infrared (TIR) bands of the sensors onboard
Terra, Aqua, and meteorological satellites are widely used in
the study of global warning including energy flux between
land surface and the atmosphere, while there are not a few
demands for the BT retrieved from the TIR band of Landsat-
7/ETM+ (Enhanced Thematic Mapper Plus). The spatial
resolution of the data of the TIR band of Landsat-7/ETM+ is
approximately 60 m which is a great advantage for the study
of meso and small scale phenomena however it is extremely
difficult to get satisfactory data due to long repeat cycle of
16 days [1, 2]. On the other hand, in case of Terra/MODIS
(MODerate resolution Imaging Spectroradiometer) and
Aqua/MODIS the TIR band data can be acquired almost in
daily basis although the spatial resolution is approximately
1000 m [3, 4].

For the reflective solar bands, the data of the surface
reflectance of Terra/MODIS were analyzed together with the
data of Landsat-7/ETM+ and confirmed that the absolute

error of the land surface products was less than 5% [5]. In
addition, the intercalibration between the reflected bands of
Landsat-7/ETM+ and those of Terra/MODIS was performed
for the vegetation analysis [6]. Based on these analyses, it was
concluded that the reflectance bands of Landsat-7/ETM+
and Terra/MODIS have good linear relationship.

For TIR bands the level-2 MODIS land surface tempera-
ture (LST) product of 1 km spatial resolution (MOD11 L2)
obtained from the TIR bands 31 and 32 of Terra/MODIS
it was confirmed that the error of LST products ranging
from 263 K (−10◦C) to 322 K (49◦C) is less than 1 K for the
atmospheric column water vapor ranging from 0.4 to 3.0 cm
[3]. Furthermore it was also confirmed that the error of the
daily level-3 MODIS LST product of 1 km spatial resolution
(MOD11A1 Version 5 for Terra and MYD11A1 Version 5
for Aqua) obtained from the same bands of both Terra and
Aqua/MODIS was less than 1 K in the range from 263 K
(−10◦C) to 331 K (58◦C) for the atmospheric column water
vapor ranging from 0.4 to 3.5 cm [7].

The objective of this paper is to compare the BT of
selected targets of Taklimakan Desert in China observed with
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Table 1: Satellite specification of Landsat-7 and Terra.

Satellite Sensor Launch date
Altitude

(km)
Inclination
(degrees)

Swath
(km)

Repeat cycle
(days)

Crossing time
(UTC)

Landsat-7 ETM+ April 15, 1999 705 98.2 185 16
10:00–10:15
(Descending

node)

Terra MODIS
December 18,
1999

705 98.2 2330 1-2
10:30

(Descending
node)

Table 2: Band specification of the TIR bands of Landsat-7/ETM+ and Terra/MODIS.

Center wavelength

Satellite Sensor Band
Spectral range

(μm)
For spectral range

(μm)

For cumulative
histogram at 50%

of RSR (μm)

Spectral
radiance

(W/(m2·sr·μm))

Spatial
resolution

(m)

Landsat-7 ETM+ 6 10.31–12.36 11.335 11.217
8.20 (LG)
6.09 (HG)

60

Terra MODIS
31 10.78–11.28 11.030 11.011 9.55 (300 K)

100032 11.77–12.27 12.020 12.027 8.94 (300 K)

Note that LG and HG for Landsat-7/ETM+ indicate the low gain and the high gain, respectively.

the TIR bands of Landsat-7/ETM+ and Terra/MODIS and to
clarify the relationship between the BT obtained from both
sensors.

2. Analysis Data and Study Area

2.1. Data Analysis. The specification of Landsat-7 [2] and
Terra [4] is shown in Table 1, which indicates that the orbits
of two satellites are almost same and the observation time
difference is within 30 minutes. The specification of TIR
band of Landsat-7/ETM+ and Terra/MODIS is shown in
Table 2. The relative spectral response (RSR) of band 6 (TIR
band) of ETM+ [1, 2, 5] and bands 31 and 32 of MODIS
[4, 8] is shown in Figure 1. The separation of RSR of MODIS
band 31 and 32 is good which suggests the effectiveness of
split-window (SW) method [9] to retrieve BT of the land
surface. The major difference of two sensors is spatial and
spectral resolution, swath width, and repeating cycle.

The instrument malfunction occurred on the Scan Line
Corrector (SLC) of Landsat-7/ETM+ on May 31, 2003
subsequently SLC was turned off, and now only SLC-off
mode data are acquired [2, 10]. In this study, we decided to
analyze SLC-on mode data of ETM+ acquired before May
31, 2003. To reduce the shading effects on the BT of the land
surface of vegetated area the data of higher sun elevation were
selected.

2.2. Study Area. The study area is around Hotien Oasis of the
southwestern part of Taklimakan Desert in XinJiang, China.
Covering the area between 74◦E and 96◦E, 36◦N and 43◦N
Taklimakan Desert is the largest sandy desert in Asia with
the area of about 270,000 km2 [11, 12]. The main reasons of
having chosen the area are

(1) During a fairly large-scale research project “Japan-
China Joint Study on Desertification (1989–1994)”,
using a hand-held radiometer we have collected
abundantly the land surface and underground tem-
perature data of this area together with near surface
meteorological data and also radio sounding data.

(2) Surrounded by high mountain ranges with average
height of 1200 meter above sea level the area is char-
acterized with extremely dry atmospheric condition
resulting in very little effect of water vapor.

(3) Locating between two rivers, the Karakax River and
the Yurungkax River, Hotien Oasis is the largest oasis
in the southern part of the desert [13, 14]. There is a
good weather station equipped with radio sounding
facilities, land surface, and underground temperature
observing facilities. This area was one of the major
target areas of concentrated observation during the
joint study.

The analyzed satellite data of Landsat-7/ETM+ and
Terra/MODIS over and around Hotien Oasis are shown in
Table 3, while the false color images of Landsat-7/ETM+ (R,
B, G: bands 4, 3, and 2) and Terra/MODIS (R, G, B: bands
7, 2, and 1) over the Hotien Oasis in Taklimakan Desert
observed on June 8, 2002 are shown in Figure 2. In addition,
the observation areas of Landsat-7/ETM+ and Terra/MODIS
are shown in Figure 3. The range of sensor nadir angles of
Landsat-7/ETM+ is approximately ranging from 7.28◦ (west)
to 7.28◦ (east) and that of Terra/MODIS is approximately
ranging from 9.51◦ (west) to 8.09◦ (east). Furthermore,
the data of meteorological observation of Hotien station is
shown in Table 4.
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Table 3: Analyzed data of Landsat-7/ETM+ and Terra/MODIS over the Hotien Oasis in Taklimakan Desert.

Satellite Sensor
Product
type

Acquisition
date

Scene ID
Scan time

(UTC)

Sun
azimuth
(degrees)

Sun
elevation
(degrees)

Landsat-7 ETM+ Level 1T June 8, 2002
146-034

(Path-Row)
05:05:01

(Scene center)
119.65 65.23

Terra MODIS MOD021KM June 8, 2002
13148

(Orbit number)
05:35–05:40 130.56–135.53 69.51–70.61

Table 4: The metrological observation on June 8, 2002 at the Hotien station (ID: ZWTN).

Time
Pressure
(hPa)

Air temperature
(◦C)

Relative
humidity

(%)

Perceptible
water
(mm)

Visibility
(km)

Wind
speed

(km/h)

00Z 858 21.2 28 15.28 — —

12Z 851 35.2 28 6.76 — —

—
854.3
(Mean)

27.9 (Mean)
20.1 (Min.)
35.8 (Max.)

21
(Mean)

0
(Precipitation

amount)

15
(Mean)

10.7 (Mean)
14.4 (Max.)

Note that international station number 51828, 37.13◦N, 79.93◦E, and 1375 m (above sea level).
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Figure 1: Characteristics of band 6 of ETM+, Terra MODIS bands
31 and 32.

3. Data Processing

3.1. Conversion of Landsat-7/ETM+ Band 6 Data to BT.
Conversion of calibrated digital numbers (Qcal) of Landsat-
7/ETM+ Level-one Terrain-corrected (L1T) products back
to observed spectral radiance (Lλ) requires the minimum
and maximum limit of the original rescaling factors Lmin λ

and Lmax λ. The pre-launch calibration constants of the TIR
band 6 of Landsat-7/ETM+ for converting Qcal to observed

spectral radiance are shown in Table 5. The conversion
equation [2, 15] is

Lλ =
(

Lmax λ − Lmin λ

Qcalmax −Qcalmin

)
(Qcal −Qcalmin) + Lmin λ

= Grescale ×Qcal + Brescale,

Grescale =
(

Lmax λ − Lmin λ

Qcalmax −Qcalmin

)
,

Brescale = Lmin λ −
(

Lmax λ − Lmin λ

Qcalmax −Qcalmin

)
Qcalmin,

(1)

where Lλ is observed spectral radiance in W/(m2·sr·
μm), Qcal is quantized calibrated pixel value in digital
numbers of 8 bits unsigned integer data, Qcalmin is minimum
quantized calibrated pixel value corresponding to Lmin λ,
Qcalmax is maximum quantized calibrated pixel value
corresponding to Lmax λ, Lmin λ is observed spectral radiance
scaled to Qcalmin in W/(m2·sr·μm), Lmax λ is observed
spectral radiance scaled to Qcalmax in W/(m2·sr·μm), Grescale

is band-specific rescaling gain factor in W/(m2·sr·μm),
and Brescale is band-specific rescaling bias factor in
W/(m2·sr·μm).

The data of the TIR band 6 of Landsat-7/ETM+ can be
converted from observed spectral radiance (Lλ) to observed
BT. The conversion equation [2, 15] is

T6 = K2

ln((K1/Lλ) + 1)
, (2)

where T6 is observed BT in Kelvin, K1 is calibration con-
stant 1 (666.09 W/(m2·sr·μm)), K2 is calibration constant
2 (1282.71 K) and Lλ is observed spectral radiance in
W/(m2·sr·μm).
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Table 5: Calibration constants of the TIR band of Landsat-7/ETM+ for converting calibrated digital numbers to observed spectral radiance.

Band
Lmaxλ

(W/(m2·sr·μm))
Lmin λ

(W/(m2·sr·μm))
Grescale

(W/(m2·sr·μm)/Qcal)
Brescale

(W/(m2·sr·μm))

6 (Low gain)
6 (High gain)

0.0
3.2

17.04
12.65

0.067087
0.037205

−0.07
3.16

Note that Qcal is calibrated digital numbers.

38 ◦N

37 ◦N

80 ◦E
81 ◦E

79 ◦E

(a)

38 ◦N

37 ◦N

80 ◦E
81 ◦E

79 ◦E

(b)

Figure 2: False color images of Landsat-7/ETM+ (R, B, G: bands 4, 3, and 2) (a) and Terra/MODIS (R, G, B: bands 7, 2, and 1) (b) over
the Hotien Oasis in Taklimakan Desert observed on June 8, 2002. The geographic locations of the four corners (clockwise starting at the top
left) of the image are UL (38.45◦N, 78.87◦E), UR (38.47◦N, 81.70◦E), LR (36.49◦N, 78.92◦E), and LL (36.50◦N, 81.68◦E). In the false color
images, yellow is sandy desert and sand dunes, gray is desert of stones and pebbles, white is rocks, red is farmlands and grasslands, and black
is water of river and reservoir.

Table 6: Calibration constants of the TIR bands of Terra/MODIS
data (MOD021KM, Collection 5) for converting SI to observed
spectral radiance.

Band
Rscaleλ

(W/(m2·sr·μm))
Roffsetλ

31 0.00084002200 1577.3397

32 0.00072969760 1658.2212

Note that: SI is scaled integer.

3.2. Conversion of Terra/MODIS Bands 31 and 32 Data to BT.
Conversion of the scaled integer (SI) values of the Scientific
Data Sets (SDSs) of Terra/MODIS Level 1B Version 5.0
products back to observed spectral radiance (Lλ) requires
the lower and upper limit of the original rescaling factors
Rscale and Roffset written as attributes of SDSs. The pre-launch
calibration constants of the TIR bands of Terra/MODIS
1 km spatial resolution data (MOD021KM, Collection 5) for
converting SI to observed spectral radiance are shown in
Table 6. The conversion equation [4] is

Lλ = Rscale λ(SIλ − Roffset λ),

Rscale λ = Lmax λ − Lmin λ

32767
,

Roffset λ = −32767× Lmin λ

Lmax λ − Lmin λ
,

(3)

where Lλ is observed spectral radiance in W/(m2·sr·μm), SIλ
is scaled integer value of 16 bits unsigned integer data in

Dimensionless, Lmin λ is observed spectral radiance scaled to 0
in W/(m2·sr·μm), Lmax λ is observed spectral radiance scaled
to 32767 in W/(m2·sr·μm), Rscale λ is radiance rescaling gain
factor in W/(m2·sr·μm), and Roffset λ is radiance rescaling
offset factor in Dimensionless.

The data of the TIR bands 31 and 32 of Terra/MODIS
can be converted from observed spectral radiance (Lλ)
to observed BT applying the Planck’s law of blackbody
radiation. The conversion equation [4] is

T = hc/kλ

ln
(

2hc2/(Lλλ5 × 10−6) + 1
) , (4)

where T is observed BT in Kelvin, h is Planck constant
(6.62606896 ×10−34 J·s), c is speed of light (2.99792458 ×
10+8 m/s), k is Boltzmann constant (1.3806504 ×10−23 J/K),
λ is center wavelength in meter, and Lλ is observed spectral
radiance in W/(m2·sr·μm).

From (2) and (4), the center wavelengths of the TIR band
6 of Landsat-7/ETM+ can be estimated as follows:

K1 = 2hc2

λ5
1 × 10−6

⇐⇒ λ1 = 11.2167μm,

K2 = hc

kλ2
⇐⇒ λ2 = 11.2326μm,

λ = (λ1 + λ2)
2

= 11.2247μm.

(5)

The estimated center wavelength of the TIR band 6 of
Landsat-7/ETM+ is nearly equal to the center wavelength
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Figure 3: True color image of Terra/MODIS (R, G, B: bands 1, 4, and 3) observed at UTC 05:35 on June 8, 2002. The red rectangle indicates
the observation area of Landsat-7/ETM+ on June 8, 2002 (Path-Row: 146–034).

obtained from the cumulative histogram at 50% of RSR as
shown in Table 2.

4. Results and Discussion

4.1. Rough Analysis of the Entire BT of the Images. BT of
Landsat-7/ETM+ band 6 and that of Terra/MODIS bands 31
and 32 were computed by (2) and (4), respectively. BT images
over Hotien Oasis acquired on June 8, 2002 of Landsat-
7/ETM+ band 6, Terra/MODIS bands 31 and 32 are shown
in Figure 4. The geographic locations of the four corners
are same as those in Figure 2. From Figure 4 it is found
that the range of BT is approximately 20–60◦C. In addition,
BT of desert of Terra/MODIS band 32 image seems a little
higher than the other images. An example of the surface
temperature observed with a hand-held radiometer in the
desert around the Hotien Oasis at 10:30–11:00 (local time)
on September 26, 1992 is shown in Figure 5. The retrieved
value seems to be reasonable in referring to these LSTs
although the observation year and day are different.

4.2. Detailed Analysis of BT’s Retrieved from the Data of Band
6 of ETM+ and MODIS Bands 31 and 32. For accurate

comparison of BT’s retrieved from the data of band 6
of ETM+ and MODIS bands 31 and 32, following data
processing was performed:

(1) correction of geometric distortions of the data in
reference to the ground control points which had been
accumulated during the Japan-China Joint Study of Deserti-
fication; (2) resampling of MODIS data of 1 km×1 km size to
make 900 m×900 m pixels so that each MODIS pixel contains
exactly 225 ETM+ (60 m× 60 m) pixels; since the difference
of the sizes of the original and resampled pixels is small the
Nearest Neighborhood Method was adopted for resampling;
(3) five clear pixels of MODIS were selected from each
category of landcover within the area of ETM+ image; (4)
for each of 20 landcover categories, statistical values such as
mean, standard deviation, maximum and minimum values,
ranges, and ratios of the number of samples belonging to
m (mean) ±1 and 2 σ (standard deviation) of 20 categories
were computed for each of 5 ETM+ images corresponding to
5 selected pixels of MODIS image; (5) the average values of
the items listed above were computed from the above stated
5 ETM+ image samples and shown in Table 7. The means
of MODIS Bands 31 and 32 were computed from 5 pixels of
each landcover category.
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Figure 4: Brightness temperature images of Landsat-7/ETM+ band 6 (a), Terra/MODIS bands 31 (b), and 32 (c) over the Hotien Oasis in
Taklimakan Desert observed on June 8, 2002. The geographic locations of the four corners are the same as in Figure 2.

Although it is clear from the table some noteworthy
features of the BTs of ETM+ will be pointed out.

(A) Surprisingly large range for specific targets: 16.04◦C
for shading side of rocky hill and 14.04◦C for the
oasis farmland, while comparatively small range for
a flat desert with the value of 2.25◦C. The reason of
large range of the oasis farmland is due to the fact
that subdivided farmlands are surrounded with tall
wind and sand break forests. The low temperatures of
the tree leaves and shadows of the forests contribute
to the large range.

(B) Reflecting the large values of ranges, the shading
side of rocky hill and the oasis farmland show large
standard deviation. The oasis farmland shows the
largest value of 2.88◦C while the flat desert shows the
smallest value of 0.45◦C. Since number of sample of
MODIS is only 5 the standard deviation of MODIS
data was not computed.

(C) As to BT the observation time of MODIS is nearer to
the local noon than that of ETM+ by about 30 min-

utes therefore the BTs of MODIS is generally higher
than those of ETM+ except sunny side of rocky hills
and the beach of the upper reach of the large river
which have slightly higher BTs than MODIS. The rea-
son is that the slope of the sunny side of these places
with a favorable orientation for the sun received more
sun radiation and was warmed up than other places.

(D) Among the BTs of ETM+ for different landcover
categories the top 3 ranking BTs of the target in the
descending order is (1) sandy desert and sand dunes,
(2) grassland and river beach of the lower reach of
the large river, and (3) desert of stone and pebble,
and rocky hill (sunny side) while the top 3 bottom
ranking in the ascending order is (1) reservoir, (2)
oasis farmland with scattered bare land, and (3)
rocky hill with dry vegetation (shading side).

(E) As to the distribution of the samples of ETM+
the distribution for the following categories shows
semi-normal distribution: sunny side rocky hills,
oasis farmland with scattered bright bare land and
grass land near the upper reach of the large river.
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Table 7: Summary of statistical analysis of the brightness temperature samples of ETM+ corresponding to one pixel of MODIS. In the table
#1σ and #2σ are the ratio (%) of the numbers of samples of ETM+ in (m±1σ) and(m± 2σ), respectively, in the area of one pixel of MODIS.

Name

ETM+ MODIS

Band 6 Band 31 Band 32

Mean Std.D. Min. Max. Range #1σ% #2σ% Mean Mean

Desert (flat) 51.55 0.45 50.37 52.62 2.25 64.11 97.04 53.73 54.63

Area of small sand dune 50.21 0.58 48.76 51.79 3.03 61.22 95.89 52.22 53.28

Area of large sand dune 50.63 0.50 48.60 52.79 4.19 64.78 96.91 53.79 54.62

Desert of stone and pebble (bright) 45.70 0.54 44.01 46.96 2.95 77.53 96.80 47.20 47.82

Desert of stone and pebble (dark) 45.47 0.67 43.92 47.14 3.22 61.13 96.33 46.24 46.71

Rocky hill (sunny side) 45.11 1.67 39.92 49.60 9.68 67.66 96.42 44.61 45.14

Rocky hill (shading side) 35.28 2.80 29.66 45.70 16.04 71.64 95.13 39.19 39.25

Rocky hill with dry vegetation (sunny side) 40.83 1.90 34.54 45.36 10.82 69.78 95.62 40.01 40.25

Rocky hill with dry vegetation (shading side) 33.59 1.65 29.32 39.03 9.71 63.89 97.07 36.29 36.21

Oasis farmland 37.00 2.88 30.59 44.63 14.04 66.42 96.18 38.73 38.43

Oasis farmland with scattered bright bare land 32.65 2.31 29.04 41.08 12.04 70.49 95.33 34.41 34.17

Oasis farmland withscattered dark bare land 32.52 2.20 28.64 38.65 10.01 63.02 97.42 33.59 33.45

Oasis farmland with paved roads 40.30 2.09 33.63 45.07 11.44 67.18 96.11 41.30 41.48

Urban area with paved roads 42.05 1.39 37.75 45.59 7.84 67.62 96.36 43.08 43.11

Grassland near lower reach of large river 48.59 2.20 42.67 51.96 9.29 64.56 97.47 50.98 50.98

Grassland near upper reach of large river 40.70 2.08 35.78 45.66 9.88 68.44 96.07 40.98 41.16

River beach of lower reach of large river 48.63 1.64 41.53 51.38 9.85 70.09 96.67 49.82 50.36

River beach of upper reach of large river 41.92 1.07 37.71 45.24 7.53 76.96 94.98 41.22 41.84

Reservoir 23.84 0.98 22.50 30.71 8.21 77.91 96.40 26.89 26.17

Total (Mean) 41.40 1.56 37.31 45.84 8.53 68.11 96.33 42.86 43.11

m: mean, σ : standard deviation, unit of BT:◦C, #1σ = m ± 1σ , #2σ = m ± 2σ , samples of ETM+: 225.

4.3. Linearity between BT of Landsat-7/ETM+ and Terra/
MODIS. The relations between BT of Landsat-7/ETM+
band 6 and Terra/MODIS bands 31 and 32 are shown in
Figures 6 and 7, respectively. In these figures, it can be seen
that BT of Landsat-7/ETM+ and that of Terra/MODIS bands
31 and 32 indicate high correlations, and the correlation
coefficients are approximately 0.97. The regression equations
between Landsat-7/ETM+ band 6 and Terra/MODIS band
31 and 32 are

T31 = 0.9625× T6 + 3.0097 (for Terra/MODIS band 31),

T32 = 1.0140× T6 + 1.1312 (for Terra/MODIS band 32).
(6)

4.4. Effects of the Emissivity of the Targets and the Atmosphere
to the BTs of MODIS Bands 31 and 32. An attempt is
made to estimate the effects of emissivity of the targets and
the atmosphere to the BTs by introducing two adjustment
parameters α and β into (2) and (4) as are shown in (7) and
(8), respectively.

T6 = K2

ln
((
αβK1/Lλ

)
+ 1
) , (7)

T = hc/kλ

ln
(
αβ2hc2/(Lλλ5 × 10−6) + 1

) (8)

where α is adjustment parameter to atmospheric effect, β is
adjustment parameter to emissivity effect.

The land cover classification image over the study area
is shown in Figure 8. The emissivity and pixel number of
each category of the TIR bands of Terra/MODIS is shown
in Table 8. The values of emissivity are taken from the paper
by Wan [7]. The large part of the study area is occupied with
bare land and rock, and the overall emissivity of the study
area to Terra/MODIS bands 31 and 32 are 0.967 and 0.973,
respectively.

The estimation result of overall BT of the study area is
shown in Table 9. The value of α is function of the extinction
coefficient of the atmosphere which is influenced by the
amount of water vapor, dust, and minute sands blown up
by the dust devil which frequently occurs in the area. Under
such condition, it is difficult to obtain exact value of the
extinction coefficient therefore two values of 1.000 and 1.032
for α are adopted in the computation. As to the value of β of
ETM+ band 6, the average value of those of MODIS band 31
and 32 is adopted.

From Table 9, it can be concluded that the difference
of BT between Landsat-7/ETM+ and Terra/MODIS is the
observation time difference. On the other hand, it is
concluded that in the difference of BT of Terra/MODIS bands
31 and 32, the atmospheric effect is approximately 0.21◦C
and the emissivity effect is approximately 0.35◦C.
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Figure 5: Examples of the surface and underground temperature together with the near surface air temperature distribution at 10:30 and
11: 00 local time. The data at 10:30 were acquired at a flat area with sparsely grown short tamalix and reed while those of 11:00 were acquired
at the top of a small sand dune of several meters height with scarcely grown short reed in Taklimakan Desert. The height of both places is
1200 m above sea level.

Table 8: The values of referred emissivity of the TIR bands of Terra/MODIS.

Legend ε31 ε32 Pixels Ratio% Δ ε31 Δ ε32

Water 0.992 0.988 7200 0.02 0.00015 0.00015

Evergreen needleleaf forest 0.987 0.989 0 0.00 0.00000 0.00000

Evergreen broadleaf forest 0.981 0.984 0 0.00 0.00000 0.00000

Deciduous needleleaf forest 0.987 0.989 0 0.00 0.00000 0.00000

Deciduous broadleaf forest 0.981 0.984 0 0.00 0.00000 0.00000

Mixed forest 0.981 0.984 0 0.00 0.00000 0.00000

Woody savannas 0.982 0.985 0 0.00 0.00000 0.00000

Savannas 0.983 0.987 2700 0.01 0.00006 0.00006

Closed shrubland 0.983 0.980 284400 0.61 0.00603 0.00601

Open shrubland 0.972 0.976 3760082 8.11 0.07884 0.07916

Grassland 0.983 0.987 1763562 3.80 0.03739 0.03755

Cropland 0.983 0.987 524245 1.13 0.01112 0.01116

Bare soil and rocks 0.965 0.972 40008359 86.30 0.83281 0.83885

Urban and built-up 0.970 0.976 8100 0.02 0.00017 0.00017

Total — — 46358648 100.00 0.96657 0.97312

Note: Δ ε = ε × ratio.
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Figure 6: Comparison between the brightness temperatures obtained from band 6 of Landsat-7/ETM+ and Terra/MODIS band 31.

20

25

30

35

40

45

50

55

60

20 25 30 35 40 45 50 55 60

ETM + band 6 (◦C)

Desert (flat)

Area of small sand dune

Area of large sand dune

Desert of stone and pebble (bright)

Desert of stone and pebble (dark)

Rocky hill (sunny side)

Rocky hill (shading side)

Rocky hill with dry vegetation (sunny side)

Rocky hill with dry vegetation (shading side)

Oasis farmland

Oasis farmland with scattered bright bare land

Oasis farmland with scattered dark bare land

Oasis farmland with paved roads

Urban area with paved roads

Grassland near the lower reach of the large river

Grassland near the upper reach of the large river

River beach of the lower reach of the large river

River beach of the upper reach of the large river

Reservoir

y = 1.0140x + 1.1312

R = 0.9730

M
O

D
IS

ba
n

d
32

(◦
C

)

Linear

Figure 7: Comparison between the brightness temperatures obtained from band 6 of Landsat-7/ETM+ and Terra/MODIS band 32.
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Table 9: The values of various factors adopted in the evaluation of the effects of emissivity and atmosphere to the value of brightness
temperatures.

Adjustment parameters
α and β

L6 L31 L32 BT6 BT31 BT32 BT31 − BT32

(W/(m2·sr·μm)) (W/(m2·sr·μm)) (W/(m2·sr·μm)) ◦C ◦C ◦C ◦C

α = 1.000
β = 1.000

12.35 12.95 11.92 47.02 49.01 49.57 −0.56

α = 1.000
β6 = 0.970
β31 = 0.967
β32 = 0.973

12.73 13.40 12.25 49.44 51.69 51.90 −0.21

α = 1.032
β6 = 1.000
β31 = 1.000
β32 = 1.000

11.96 12.55 11.55 44.56 46.57 46.91 −0.35

α = 1.032
β6 = 0.970
β31 = 0.967
β32 = 0.973

12.34 12.98 11.87 46.94 49.21 49.21 0.00
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81 ◦E

79 ◦E

Water
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Figure 8: Land cover classification image [16]. The geographic
locations of the four corners are the same as in Figure 2.

5. Conclusion

The result of the analysis lead to the following conclusions

(1) good linear relationship between the retrieved BT
from the data of Landsat-7/ETM+ band 6 and those
of Terra/MODIS bands 31 and 32;

(2) BT retrieved from the data of Terra/MODIS is slightly
higher than that of Landsat-7/ETM+, however con-
sidering the observation time of Terra/MODIS is
approximately 30 minutes nearer to the noon, it can
be concluded that the value of BT of Terra/MODIS

will be equal to that of Landsat-7/ETM+ if adjust-
ment for the observation time difference is made;

(3) comparing of the retrieved BT of the targets from the
observed data of Terra/MODIS band 31 and 32, the
values of band 31 are slightly higher than that of band
32 over the water while with opposite trend over the
desert and vegetated area;

(4) the standard deviation and range of BT of ETM+
corresponding to one pixel of MODIS are 0.45◦C,
2.25◦C for a flat area of desert while respective values
of the oasis farmland and shading side of rocky hill
amount to 2.88◦C, 14.04◦C, and 2.80◦C, 16.04◦C.
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The purpose of this study was to test the feasibility of applying AVIRIS sensor (Airborne Visible/InfraRed Imaging Spectrometer)
for mapping and quantifying mineralogical components of three Brazilian soils, a reddish Oxisol in São João D’Aliança area (SJA)
and a dark reddish brown Oxisol and Ultisol in Niquelândia (NIQ) counties, Goiás State. The study applied the spectral index
RCGb [kaolinite/(kaolinite + gibbsite) ratio] and was based on spectral absorption features of these two minerals.The RCGb index
was developed for the evaluation of weathering degrees of various Brazilian soils and was validated by the analysis of soil samples
spectra imaged by AVIRIS and checked against laboratory mineralogical quantification (TGA:Thermal Gravimetric Analysis).
Results showed to be possible mapping and quantifying the weathering degree of the studied soils and that the two selected areas
presented different weathering degrees of their soils even for a same soil type.

1. Introduction

Soil is a product of forming factors such as parent material,
climate, time, organisms, and topography. The great variabil-
ity in soils results from interactions of these factors and their
influence on the formation of different soil profiles. Mineral
types and their proportions in soils are also dependable on
soil-forming factors and have strong influence on agricul-
ture, forestry, soil engineering, among others [1].

Tropical soil scontain mineralogical variations that can-
not be perceived in field works.The determination of soil
mineral composition depends on laboratory analysis of
soil samples collected in field, and an extrapolation of the
representativeness of the results to a broader area depends
on landscape morphological characteristics and accuracy
of the field work [2]. For cartographic purposes, the
spatial distribution of values from point-sampled minerals
is done by using morphological criteria in correlation with
topography, parent material, and other parameters.

Reliable criteria to discriminate soils with varied
amounts of kaolinite and gibbsite do not exist, and the quan-
tification of these two minerals in soils demands systematic
samplings with high-density points. Because this procedure
greatly increases costs of soil surveys, new techniques and
resources that can ease pedological surveys are strongly
desirable. Recent advances in remote sensing with the image
spectroscopy appear to be a promising alternative in soil
science. However, most of the optical remote sensing means
cannot detect the entire soil body (“pedon”) that extends
from the surface to the parent material, and the thin, upper
soil layer that is eventually sensed by optical sensors may be
affected by many factors such as dust, rust, plowing, particle
size distribution, vegetation coverage, litter, and physical and
biogenic crusts. Thus, optical remote sensing of soils from far
distances is a challenge [1].

Laboratory spectral analysis and multispectral data anal-
ysis have been utilized to detect the occurrence of some soil
main components [2–18]. It is well known that a wide range
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of soil constituents such as the total iron, water content,
mechanical compositions, carbonate, and organic carbon
can be derived through reflectance spectroscopy under
laboratory conditions [1]. Many studies have pointed out the
possibility of using hyperspectral images to display the occur-
rence and variation in concentrations of minerals in some
pedological sequences in tropical environments, expanding
the contribution of these new remote sensing products to
soil research studies [1, 19–32]. In this sense, one of the most
important factors for mapping pedological environments is
to spatialized and map different degrees of soil weathering.
A spatial differentiation in mineralogy is important for
elucidating soil genesis processes, determining the most
appropriate management systems, and classifying soils.

Soil formation in the tropics (i.e. Oxisols) is character-
ized by the remotion of SiO2, followed by the increase
in Al2O3 concentration.The weathering degree of a soil is
usually depicted by the Ki index, which is the molecular
ratio of SiO2 to Al2O3. In the RCGb index kaolinite/
(kaolinite + gibbsite), kaolinite [Al2Si2O5(OH)4] represents
the SiO2 leftover and gibbsite [Al(OH)3] represents the
Al2O3 concentration in soils [27].

Therefore, the purpose of this study was to evaluate the
feasibility of applying a hyperspectral sensor (AVIRIS) for
mapping and quantifying the weathering degree of some
Brazilian soils.

2. Material and Methods

2.1. AVIRIS Sensor. AVIRIS (Airborne Visible/InfraRed Imag-
ing Spectrometer) is one of the hyperspectral sensors that cur-
rently operate. It is an aerotransported system consisting of
four spectrometers that continuously image at 0.4 to 2.5 μm
range of the optical reflected spectrum, on 224 bands, with
approximate width of 10 nm, owned by the Jet Propulsion
Laboratory (JPL/NASA). It was the first hyperspectral sensor
to image Brazilian soils, and it has been used for rock, soil,
vegetation, water, and snow mapping in many countries.

2.2. RCGb Spectral Index. Many hyperspectral sensors can
detect kaolinite and gibbsite in soils but the presence of
Al2O3 in both of the minerals spoils the use of Ki index
(molecular ratio of [SiO2]/[Al2O3]) in remote sensing.
Therefore, indexes derived from Ki have been proposed to
make possible the use of remote sensing for soil mapping [2].
The spectral index RCGb(kaolinite/kaolinite + gibbsite) used
in this work was proposed by Baptista [33, Equation 1].It is
based on the spectral features of kaolinite and gibbsite and
the values obtained with RCGb index have been showed to be
proportional to Ki values. One can use the RCGb with either
radiance (R) or reflectance (R) spectra because the spectral
features of kaolinite and gibbsite are present in both spectra
(1).

RCGb =
((
R2,127 + R2,226

)
/2− (R2,176 + R2,196

)
/2
)

((
R2,127 + R2,226

)
/2− (R2,176 + R2,196

)
/2
)

+
((
R2,226 + R2,286

)
/2− R2,266

) , (1)

where R is the radiance (W·m−2·sr−1) or reflectance value
(%) in various wavelengths adapted to the AVIRIS’ bands.

Validation of the RCGb spectral index adopted the same
reflectance spectra analyzed by Madeira Netto [2] for 56 soil
samples that correspond to the surface and deeper layers of
27 soil profiles [27]. Out of the 56 spectra, four samples with
opaque minerals were removed, although these minerals
have an influence on the determination of the RCGb spectral
index. However, they are not a factor that impedes appli-
cability, although they do slightly reduce the RCGb index
efficiency [33]. The correlation factor between the RCGb
index and Ki values for the 52 samples was r = 0.93, P < .01).

2.3. Study Areas. The study imaged areas considered a
red-dish Oxisol transect in São João D’Aliança (SJA), a
dark reddish brown Oxisol, and an Ultisol in Niquelândia
(NIQ) counties, Goiás State, central part of Brazil (Figure 1).
Most of the differences measured between hyperspectral
images and their targets are rather explained by spectral
calibration uncertainties, like relative radiometric calibration
and errors in atmospheric correction, particularly when
regarding water vapor, which has significant absorption
features in the spectral domains (2143–2269 nm) used for
clay content estimations [34]. In this regard, Baptista [33]
found no significant differences between radiance images

and reflectance data corrected by the Green’s method [35]
or by Atmospheric Removal Program (ATREM) [36, 37]
for Brazilian soil minerals. Therefore, the radiance raw data
were neither corrected for atmospheric effects nor reduced to
scaled surface reflectance of in this study.

The RCGb spectral index was applied to the concatenated
AVIRIS data (Figure 2), as they were obtained on the same
day with less than 1/2 hour between acquisitions—the
flight over São João D’Aliança(SJA) and Niquelândia (NIQ)
counties, Goiás State, Brazil. As neither image presented
clouds, and the official website of the SCAR-B mission
(http://asd-www.larc.nasa.gov/scar/scarb.html in June 8th
2000) considered the atmospheric conditions of the entire
flight on that day to be “slight mist, no clouds, small fires, one
large fire,” it was assumed that the atmospheric conditions
did not significantly vary from one image to the other.
Working scale was based on AVIRIS spatial dimension of
20 m and which correspond to 1:50,000.

A topological sequence was chosen in SJA (13 imaged
plots, 1–13) and another in NIQ area (17 imaged plots,
1–17; Figure 2). The distance between surveying plots was
of 100 m (Figure 2), covering 1.2 km in SJA and 1.6 km in
NIQ. Soil samples were collected between 0–20 cm soil depth
from the same sequence with an auger for mineralogical
analyses in laboratory (Thermal Gravimetric Analysis, TGA).
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Figure 3: Spatial distribution of RCGb values in SJA and NIQ.

Comparisons between AVIRIS and TGA data were done by
statistical methods, and AVIRIS data were then scaled for
correction purposes for quantifying the weathering degree of
the soils.

Response units of the two procedures (AVIRIS and
TGA) to determine the RCGb refer to index, and the use
of parametric tests is not appropriated. Thus, the Mann-
Whitney test was used to compare the two sets of data [38].

3. Results and Discussion

The greater the value of RCGb, the greater the presence
of silica in soils (represented by the kaolinite). On the
other hand, lower values of RCGb show a tendency for
greater amounts of alumina (gibbsite) to be present in
soils. There was not an apparent variation in soil color that
suggests no different weathering degrees of soils in the areas
(Figure 2). But the application of RCGb index showed that
the soils of São João D’Aliança (SJA) and Niquelândia (NIQ)
have different weathering degrees (Figure 3). AVIRIS data
processing allowed for a better division of the areas according
to the weathering degree of their soils, because the result is
not based only on soil color or the morphology of the terrain,
but on the relation of the minerals by means of spectral
analysis.

SJA area presented soils with smaller variation in weath-
ering degree, depicted by a less intense tonal variation than
the region of NIQ (Figure 3). The lighter portion of the
terrain in SJA area (Figure 3) presents a gentle and long
slope that may be a result of either new soil formation or
a less eroded area. The darker portion of the soil spot in
SJA (Figure 3) represents a small deep depression, which
was eroded and currently accumulates more water. Higher
amounts of water make soils and parent materials more
subject to alterations, and less silica and more aluminum
remain in these soils. In the lighter parts of NIQ (Figure 3)
may occur deposition of silica as this area is at the foot hill of
the Ultramafic unit. The terrain inclination results in water
accumulation, silica removal, and the consequent relative
concentration of aluminum in these soils. The RCGb shows
such soils in darker color (Figure 3).

Table 1: RCGb obtained by means of TGA and AVIRIS data for
samples collected in São João D’Aliança (SJA) and in Niquelândia
(NIQ).

Soil samples
Minerals (%) RCGb

Gibbsite Kaolinite TGA AVIRIS

SJA 1 11.68 32.81 0.74 0.73

SJA 2 13.84 34.53 0.71 0.76

SJA 3 14.10 52.95 0.79 0.76

SJA 4 11.71 57.99 0.83 0.76

SJA 5 13.18 60.79 0.82 0.76

SJA 6 14.16 60.14 0.81 0.75

SJA 7 14.22 55.61 0.80 0.73

SJA 8 16.30 54.75 0.77 0.72

SJA 9 18.64 55.47 0.75 0.70

SJA 10 19.02 53.17 0.74 0.69

SJA 11 22.86 52.59 0.70 0.66

SJA 12 23.27 54.53 0.70 0.64

SJA 13 25.66 55.04 0.68 0.64

NIQ 1 30.66 19.71 0.39 0.52

NIQ 2 26.38 35.13 0.57 0.56

NIQ 3 23.08 39.69 0.63 0.58

NIQ 4 26.35 33.70 0.56 0.58

NIQ 5 27.09 54.85 0.67 0.60

NIQ 6 27.17 53.56 0.66 0.61

NIQ 7 24.98 47.61 0.66 0.62

NIQ 8 13.84 52.87 0.79 0.65

NIQ 9 20.71 52.28 0.72 0.68

NIQ 10 20.73 52.34 0.72 0.68

NIQ 11 21.34 47.67 0.69 0.69

NIQ 12 16.16 61.72 0.79 0.69

NIQ 13 19.06 50.27 0.73 0.70

NIQ 14 14.55 56.65 0.80 0.81

NIQ 15 7.61 57.25 0.88 0.81

NIQ 16 6.51 58.81 0.90 0.82

NIQ 17 11.49 60.97 0.84 0.68

AVIRIS data have been showed to be appropriate for
quantifying the weathering degrees of the imaged soils.
The reddish Oxisol in SJA had 11.7–25.7% of gibbsite and
32.8–60.8% of kaolinite. NIQ soils presented 23.1–30.6%
of gibbsite, 19.7–54.8% of kaolinite (dark reddish brown
Oxisol, NIQ 1-NIQ 5), and 6.5–19.0% of gibbsite, 50.2–
61.7% of kaolinite (Ultisol; NIQ 12-NIQ17, Table 1). A soil
transitional area occurred between the two last soils types
that correspond to plots NIQ 6-NIQ 11 on Table 1. This
area showed a gradual variation in mineral amounts between
the dark reddish brown Oxisol and the Ultisol (Table 1).
Except for the plot named NIQ 1 (Table 1), soils in SJA
and NIQ areas are kaolinitic, according to the Brazilian
soil classification system [39]. NIQ 1 topographic position,
where water accumulates, may explain such a difference of
gibbsite and kaolinite concentrations. From the agricultural
point of view, kaolinitic and gibbsitic soils demand different
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chemical treatments. The use of RCGb identified differences
in kaolinite and gibbsite contents within a same soil type
as well (Figure 3) that can potentially optimize fertilizer
applications if this characteristic is taken into account.

RCGb values were calculated from the proportions of
kaolinite and gibbsite in the soils samples (TGA) presented
and good fit (R

2 = 0.75; P < .01) on RCGb calculated from
AVIRIS data (Table 1; Figure 4). The Mann-Whitney or U
test showed no differences of RCGb values between the two
AVIRIS and TGA. For SJA, n1 and n2 = 13 eUcalc = 50 and
U ′

calc = 118; if U ′
calc ≥ Utab or if Ucalc < Utab, reject H0, if

not do not reject H0. For the greater Utab = 121 and the
lesser Utab = 45, for n1 and n2 = 13 and α = 0.05, therefore
do not reject H0 and the two populations are the same. For
NIQ, n1 and n2 = 17 and Ucalc = 105,5 e U ′

calc = 183, 5. For
the greater Utab = 202 and the lesser Utab = 87, for n1 and
n2 = 17 e α = 0, 05, do not reject H0 and the two sample
populations are also the same. Therefore, TGA and AVIRIS
are independent, H0 is true, and TGA ≈ AVIRIS.

Dark reddish brown Oxisol in NIQ has a significant
amount of opaque minerals such as magnetite (Fe3O4),
which may reduce the efficiency of the spectral index.
However, there was a good relationship between AVIRIS data
and TGA values and this made it possible to spread out
the quantitative mapping through the terrain (Figure 5). SJA
presented three weathering degrees of kaolinitic soils, and
NIQ had two plots of gibbsitic soils and five variations in the
weathering degree of kaolinitic soils at 1:50,000 scale.

4. Conclusions

Conjoint treatment of images of bare soils from two different
geological contexts showed that the AVIRIS sensor is able of
capturing features to demonstrate that soils with different
amounts of kaolinite and gibbsite can be investigated by
means of the RCGb spectral index.

RCGB index could capture differences in amounts of
kaolinite and gibbsite for a same soil type over a continuous
area and depict its weathering degree.

The method can be utilized on a large scale due to the
fact that this remote hyperspectral sensor is available on an
orbital platform, favoring multitemporal analyses.

Further research should be carried out to better com-
prehend the factors that influence spectral features and to
discover new mineral ratios, to improve spectroscopy as a
method for mineralogical identification and quantification
of tropical soils.
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Spatially explicit data for soil properties governing plant water availability are needed to understand mechanisms influencing
plant species distributions and predict plant responses to changing climate. This is especially important for arid and semiarid
regions. Spatial data representing surrogates for soil forming factors are becoming widely available (e.g., spectral and terrain
layers). However, field-based training data remain a limiting factor, particularly across remote and extensive drylands. We present
a method to map soils with Landsat ETM+ imagery and high-resolution (5 m) terrain (IFSAR) data based on statistical properties
of the input data layers that do not rely on field training data. We then characterize soil classes mapped using this semiautomated
technique. The method distinguished spectrally distinct soil classes that differed in subsurface rather than surface properties. Field
evaluations of the soil classification in conjunction with analysis of long-term vegetation dynamics indicate the approach was
successful in mapping areas with similar soil properties and ecological potential.

1. Introduction

Soil properties are critical for understanding patterns of veg-
etation community composition and primary productivity
in arid and semiarid ecosystems globally [1, 2]. The relation-
ship between incoming precipitation and water availability
for plant growth in these water-limited systems is modified
by vegetation, topography, and soil properties that affect
surface redistribution, infiltration, and water retention [3–
5]. Therefore, spatially explicit information for relevant soil
properties is needed to understand the mechanisms gov-
erning plant species distributions and vegetation dynamics,
particularly in efforts to forecast responses to changing
climate. High-resolution imagery and terrain data sets are in-
creasingly available globally, enhancing opportunities for
digital soil mapping opportunities to yield accurate spatially
explicit soil maps that capture many of these important
hydrologic properties with reduced effort.

Although soil mapping is a long-standing science,
broad scale mapping efforts often lack sufficient detail for

understanding mechanisms regulating vegetation patterns
and dynamics. This is particularly relevant for spatially
extensive arid and semiarid regions (i.e., drylands). For
example, in the United States, soil mapping efforts were
initially focused on lands suitable for cultivated agriculture
and fewer resources were allocated to mapping other areas,
including drylands. Map units outside of valuable agricul-
tural lands typically contain several different soils that can
function quite differently from an ecological perspective.
Therefore, in many drylands, updated soil maps with greater
resolution and accuracy are needed to understand plant
community patterns and dynamics. Digital, raster-based
maps of soil properties are ideally suited for such analyses.

Enhanced availability of satellite imagery with increasing
spectral, spatial, and temporal resolutions provide ample
opportunities for predictive soil mapping at different levels of
detail across a range of spatial extents [6–8]. McBratney et al.
[9] proposed a framework for predictive digital soil mapping
(DSM) that generalized Jenny’s [10] five soil forming factors
(climate, organisms, relief, parent material, and time) to also
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consider spatial position and allow for interactions between
soil forming factors to predict either spatially-explicit soil
classes or discrete soil properties. The McBratney et al.
[9] approach capitalizes on the availability of computing
power and the ever-increasing wealth of remotely sensed data
sources that serve as environmental covariates. The choice
of satellite imagery for soil mapping should be based on
cost and logistical (e.g., storage/computing) constraints in
conjunction with the requisite detail of mapped result.

Land management and planning for spatially extensive
drylands require prudent evaluation of the costs and benefits
of available resources to meet the ever-increasing need for
digital soil map layers. For example, in the USA, while
detailed soil survey data are available in places, mapped
soil units are often grouped together into general types
based on the type and amount of potential vegetation and
the site’s ability to respond to management activities based
on soil-vegetation feedbacks and properties (i.e., NRCS
Ecological Site, see [11]). For such applications, a lower
spatial resolution product that can be easily obtained over
large areas, such as with Landsat imagery, serves a broader
purpose more effectively than more detailed, labor-intensive
soil map products. Furthermore, archive and contemporary
Landsat imagery provides an easily assessable source of data
commensurate with landscape features that coincide with the
rangeland monitoring and land-cover mapping [12, 13].

Spectral information regarding soil surface conditions
and vegetation indices as surrogates for vegetation cover
have been combined with high-resolution terrain models to
improve DSM efforts [7, 14]. Boettinger et al. [6] effectively
demonstrate the utility of remotely sensed imagery (i.e.,
Landsat) for characterizing soil surface features in drylands
with modest vegetation cover. In another study focused on
automated soil mapping with Landsat imagery and terrain
layers, Saunders and Boettinger [15] combine unsupervised
classification techniques with classification trees to evaluate
utility of this combined approach to classify soils compared
to a classification approach based on expert knowledge and
field survey data.

Physical properties of the land surface relevant to soil
forming factors are provided by satellite imagery and topo-
graphic features derived from digital elevation data [6, 16].
The availability of environmental covariates in digital format
along with computing power and integration with local
knowledge of change and degradation are key components
to a worldwide effort to map soils for land management
and carbon storage planning [17]. Despite advances in the
availability of digital data and modeling algorithms (e.g.,
[14]), predictive digital mapping of soil properties at broad
spatial scales is commonly hampered by a lack of supporting
ancillary or training data [18]. This is especially so in spatially
extensive and often remote dryland ecosystems. We present a
statistically-based approach to derive spectral signatures for
classifying soils without prior extensive field sampling and
then characterize the soil types and properties of the mapped
soil classes to facilitate interpretation.

We set out to isolate the effects of soil properties on
dynamic changes in shrub and grass vegetation over 71
years in an arid grassland in southern New Mexico, USA.

We assume soil properties delineated in our contemporary
mapping effort represent those over the 71 year period.
Requisite digital soils map data commensurate with patch-
level dynamics were not readily available. The objectives of
this study were to (1) delineate distinct soil classes within the
study area using spatially explicit data layers for topographic
and spectral features and (2) characterize derived soil classes
to facilitate interpretation of observed vegetation dynamics.

2. Materials and Methods

2.1. Study Area. The study was conducted across a 150
ha landscape within the Chihuahuan Desert Rangeland
Research Center in the northern Chihuahuan Desert of
southern New Mexico, USA (Figure 1). The soil mapping
endeavor was conducted as part of a larger study to discern
the influence of soils in an analysis of long-term vegetation
dynamics. The climate is characterized by a warm dry spring,
hot wet summer, and cold dry winter. Long-term (1930
to 2008) average annual rainfall is 232.0 mm. Annual pan
evaporation rates far exceed rainfall, with a measured annual
average of 2,204.1 mm (1953 to 1979) [19]. The soil temper-
ature regime for the area is Thermic, and the soil moisture
regime is Ustic to Typic Aridic. The study area, with a long
history of livestock grazing [20], occurs at 1,324 m elevation.

The area is dominated by sandy soils that are part
of the broad alluvial plain of the ancestral Rio Grande
River. Deposition of sediments by the Rio Grande on the
alluvial plain ended approximately 1.6 million years ago
[21], providing time for substantial pedogenic development
including formation of argillic horizons and thick petrocalcic
horizons. However, the area is now a mosaic of primarily
sandy soil types due to postdepositional geologic and geo-
morphic processes, mainly tectonic uplift and reworking of
the sediments by wind [22]. In areas receiving recent eolian
deposition, surface textures are typically very coarse (>90%
sand) and there is little clay or carbonate accumulation
within the top meter. In eroded areas, the depth to the
petrocalcic horizon can be relatively shallow (<50 cm) and
the surface textures finer due to loss of surface soils.

The area was historically dominated by grasses but has
transitioned to a shrub-dominated ecosystem [23, 24]. Shrub
cover, dominated by honey mesquite (Prosopis glandulosa
Torr.), increased from 1% in 1937 to ca.16% in 2008 [25];
this shift in mesquite dominance occurred amidst declines in
grass cover, constituting black grama (Bouteloua eriopoda),
tobosa (Pleuraphis mutica), and dropseed species (Sporobolus
spp.) from ca. 19% in 1937 to 1% in 2008. Proliferation of
shrubs and the decline in grasses were highly heterogeneous
across space and time; interactions between soils and climate
(i.e., drought) are expected to explain some of the observed
heterogeneity.

2.2. Mapping Soils. A combination of unsupervised and
supervised classification techniques were used to delineate
distinct soil classes using spectral and topographic variables
across the 150 ha study area. We chose to use Landsat 7
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Figure 1: Location of the Jornada Basin LTER (JRN) in southern New Mexico at the northern extent of the Chihuahuan Desert (depicted
in gray in Panel (a)). The 150 ha study site (white on inset map in Panel (b)) occurs on the Chihuahuan Desert Rangeland Research Center
(CDRRC), which together with the Jornada Experimental Range (JER) constitutes the JRN. Topographic complexity of the JRN is illustrated
with a shaded relief map from a 10 m digital elevation model. Panel c is a natural color composite Landsat 7 ETM+ image of the study site
(in white outline). Color bands display as Landsat 7 band 3 (red), band 2 (green), and band 1 (blue) with no histogram stretch applied.

Enhanced Thematic Mapper (ETM+) imagery over that
from other sensors for its accessibility (i.e., freely available)
to land managers and soil scientists through the GLOVIS
portal administered by the USA Geological Survey [26].
Spectral information was derived from a 24 February 2002
Landsat 7 ETM+ Level 1T image product that was precision
and terrain corrected [27]. The winter image was selected
from the Landsat archive to maximize the reflected radiant
energy from the soil surface in winter, when vegetation
cover is low and during a period of below-average rainfall.
We assume that spectral properties reflected exposed soil
surfaces based on a preponderance of evidence from long-
term ecological research (LTER) site data sources collected
at nearby study sites. Field-estimates of vegetation biomass
collected 12–18 February 2002 indicate that production of
annual and perennial grasses, forbs, and shrubs was near zero
[28]. In addition, monthly observations of plant phenology
corroborate the supposition that perennial grasses and
shrubs were dormant when the image was acquired.

2.2.1. Input Layers. Topographic variables were derived from
a digital terrain model (DTM) acquired with an airborne
interfermetric synthetic aperture radar (IFSAR) sensor in
2006 (Intermap Technologies Inc., Englewood, Colo. USA).
The native spatial resolution of the DTM was 5 m. Topo-
graphic derivatives evaluated were slope, slope shape (planar
and profile curvature), and the Topographic Wetness Index
(TWI). TWI provides a relative index of whether a point is in
a landscape position likely to receive run-in water by taking
the natural log of the specific catchment area divided by the
local slope [29, 30]. Higher TWI values indicate a point with
greater contributing area and/or lower slopes; lower values
indicate points with less contributing area and/or higher
slopes. Slope, slope shape, and TWI were calculated using
Model Builder and Spatial Analyst in ArcGIS (Environmental
Science Research Institute, Redlands, Calif, USA, v 9.3).

The pixel-based parametric classification scheme re-
quires all input layers share a common spatial resolution.
We chose to summarize the fine-scale terrain data within a
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neighborhood coinciding with the larger footprint of Land-
sat image pixels rather than to increase the redundancy
in the spectral data by resampling to a smaller pixel size.
This decision was based on the need to avoid limitations
related to collinearity in the signature derivation process
(see Section 2.2.2). We summarized topographic derivatives
(using mean, standard deviation, minimum, and maximum
values) within a focal 6 × 6 pixel window corresponding to
the 30 m× 30 m pixel size of the ETM+ image.

The ETM+ image was radiometrically calibrated, and
spectral reflectance values were adjusted to remove the effects
of attenuation and scattering of photons due to atmospheric
interference using the COST model [31]. The atmospher-
ically corrected reflectance values for the six multispectral
bands ranged in value from 0 to 1; spectral index calculations
were based on atmospherically corrected reflectance values.
Short-wave infrared ETM+ bands (5 and 7) are sensitive
to surface soil moisture [32] and are commonly used in
digital soils mapping [6]. Normalized difference ratios were
calculated for established band combinations (e.g., gypsic
soil index [16] using ETM+ short wave infrared bands 5
and 7 and iron oxide index [33] using bands ETM+ bands
3 (red) and 1 (blue)). Our combination of spectral bands
and topographic derivatives as inputs for the classification
process represents environmental covariates commonly used
for digital soil mapping (e.g., [7]).

2.2.2. Assessment of Spectral and Topographic Input Layers.
Reflectance values for image bands representing distinct, yet
overlapping, portions of the electromagnetic spectrum are
correlated. Collinearity in image band values can prohibit the
derivation of spectrally distinct signatures [34]. Our initial
attempts to employ a statistically driven assessment of signa-
ture separability with the entire set of 20 spectral and topo-
graphic image layers were unsuccessful because redundancy
in the dataset prevented the creation of invertible covariance
matrices in ERDAS Imagine. Therefore, we implemented a
combination of methods to reduce the number of image
bands to drive the unsupervised classification. In an effort
to facilitate data interpretation, we did not use principle
components analysis to reduce dimensionality of the dataset.
Instead, we evaluated correlation matrices for image bands
to identify redundant bands, quantified the optimal index
factor (OIF) [35] to identify the subset (n = 3) of spectral
bands that maximize the variance within the Landsat ETM+
scene while minimizing duplication, and examined input
image bands with the coregistered digital landform data
layer. OIF is calculated for each 3-band combination as the
sum of the standard deviations for the six Landsat image
bands divided by the sum of the two pairwise correlations
between the three candidate image bands [22].

2.2.3. Unsupervised Classification and Signature Derivation.
The first step in the image classification process was to
perform an unsupervised classification of the entire study
area. Unsupervised classification is a computer-driven pro-
cess that applies user-specified input parameters (such as
convergence threshold and number of output classes) to

initialize thematic classes and to identify clusters of pixels
with similar spectral characteristics. The unsupervised clas-
sification algorithm supported by ERDAS Imagine (v.9.3,
ERDAS, Inc., Norcross, Ga, USA) is the Iterative Self-
Organizing Data Analysis Technique (ISODATA). Because
the initial clusters in the algorithm are based, in part, by the
number of output classes specified by the user, it is important
to double the number of classes you expect to retrieve (based
on available data).

Existing soils maps were used to determine the number
of output classes to specify for the ISODATA algorithm. In
our case, the existing 3rd-order soil survey conducted in 1980
(mapped at 1 : 48,000 scale, largely mapped as associations
or complexes) delineated two soil map units across the study
area: Berino-Bucklebar association (25% Typic Haploargid
and 60% Typic Calciargid) and Wink-Harrisburg association
(35% Typic Haplocalcid and 25% Typic Petrocalcid) [36].
A spatially distinct, ephemerally flooded 2.8 ha playa occurs
within the study area; the playa is characterized by heavy clay
soils and was delineated previously [22]. In the classification
process, we manually assigned image pixels associated with
the playa to a separate soil class. Combining information
from the 1980 soil survey with a recent landform map of the
area that included four landforms (Alluvial Plain Uplifted,
Alluvial Plain Eroded, Alluvial Plain Wind Worked, and
Playa; [22]), we estimated a maximum of five distinct soil
types in the study area. Doubling the number of potential
soil classes to allow for good separation in unsupervised
classification process, we specified 10 output classes from the
unsupervised classification of the entire study area.

The ISODATA algorithm was implemented with the fol-
lowing parameters. We specified 10 output thematic classes,
selected a default convergence threshold of 0.950, initialized
clusters using statistics encompassing 95% of the data along
the principal axis, and allowed a maximum of 10 iterations.
The ISODATA algorithm assigns pixels to clusters based on
the minimum spectral distance from the cluster centroid.
The centroid is recalculated after each class assignment
with the convergence threshold serving as a measure of
“classification completion.” This threshold represents the
proportion of pixels that do not change classes from iteration
to iteration. The ISODATA algorithm runs iteratively until
either 95% of the pixels do not change clusters or the
maximum number of iterations is completed. The 10 spectral
signatures representing distinct soil classes of spectrally sim-
ilar data were output for subsequent analysis and evaluation.

Transformed Divergence (TD) is a commonly used
measure of signature separability in image classification [35].
The TD metric represents the spectral distance between two
signatures based on the covariances between the signatures
for a specific combination of spectral bands. Transformed
Divergence is computed as follows:
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where i and j = the two signature classes being compared,
Ci is the covariance matrix of signature i, μi is the mean
vector of signature i, tr is the trace function, and T is the
transpose function [36, 37]. Mausel et al. [38] found that
TD outperformed other statistical measures of separability
in selecting the optimum subset of multispectral bands to
distinguish between crop types in Hildago County, TX, USA.
We used the TD measure to achieve two primary objec-
tives: (1) determine the number statistically and spectrally
separable soil classes occurring within the study area and
(2) identify the subset of data layers that best discriminates
between the distinct soil classes. The TD measure of signature
separability ranges from 0 to 2,000 for a given class pair.
We used a minimum value of 1,900 for all class pairs as the
threshold to indicate spectrally distinct classes [35].

We used the TD measure in the ERDAS Signature Editor
to determine the number of distinct soil classes based on
spectral and topographic properties. We invoked the TD
utility to calculate divergence values for all possible pairwise
comparisons of 10 classes (n = 45 class-class comparisons).
The TD utility outputs two matrices; the first matrix contains
the class pairs and the second matrix contains the TD
measure of separability for each associated class pair in the
first matrix. For each iteration, we identified the class pair
with the lowest TD value, merged the two specified classes
in the ERDAS Signature Editor, deleted the original two
signatures, and recomputed the TD metric. This process
was performed iteratively until all class pairs had a TD
value of 1,900 or higher, indicating spectrally distinct soil
classes.

2.2.4. Supervised Classification. The second step in the clas-
sification process was to apply soil signatures derived from
spectral and topographic input layers in the previous exercise
back to atmospherically corrected ETM+ image (containing
relevant spectral and topographic image bands) to perform
the supervised classification. Supervised classification with
parametric spectral signatures uses the statistical properties
of the signatures to drive the class membership decision rule.
We used the Maximum Likelihood decision rule, which does
not employ a separate rule for overlap. This signifies that
each pixel in the image will be applied to one of the spectral
classes in the signature file. It is worth noting that supervised
classification is traditionally used to classify multispectral
imagery using field-collected or otherwise derived known
vegetation or land surface data. In the absence of field-
sampled training data for soils, we derived spectral signatures
based solely on the Transformed Divergence metric to map
distinct soils classes across the study area.

Small pixel clusters in the classified images may result
from misclassification or aberrant reflectance data [39].
Further, while small patches of 1- and 2-pixel clumps could
possibly represent soil inclusions, the number of small
patches was low and would have complicated stratification
of the site for field assessment. Therefore, we generalized the
classified images slightly by removing 1- and 2-pixel clumps.
These values were replaced with values of surrounding
pixels.

2.3. Field Assessment of Mapped Soil Classes. To characterize
soil classes mapped with this semiautomated classification
procedure, we formulated a stratified random sampling
strategy based on within-soil class topography. Depth to
petrocalcic horizon is one of the key distinguishing soil
properties in the study area. Much of the variability in
the depth to petrocalcic in this area is due to reworking
of the overlying sandy horizons by wind and water. To
ensure our samples captured the representative range in
deposition (likely deep) and erosional (likely shallow) areas
we used stratified-random approach based on mean planar
curvature within a 25 m×25 m moving window. We selected
eight locations for field sampling within each of the three
spectrally distinct soil classes (see Section 3.1, Digital Soil
Mapping) for a total of 24 field samples.

For each sample location, we recorded horizon morphol-
ogy and collected surface and subsurface samples for textural
analysis. Soil was excavated using a hand auger to a depth
of 100 cm or until a petrocalcic horizon was encountered.
Horizon morphology information included descriptions of
clay and carbonate accumulation in the top 100 cm. Each
sample was classified to soil taxonomic Suborder following
Soil Taxonomy [40]. At locations where a petrocalcic horizon
occurred within 100 cm of the soil surface, we classified
the soil to Great Group (e.g., Petrocalcid). Soil samples
were collected from the surface (0–5 cm) and the horizon
encountered with the maximum clay content (as estimated
in the field by hand) for later particle size analysis in
the lab [41]. For each soil class, average soil surface and
subsurface texture and frequency of each taxonomic class
were calculated using the probability of inclusion from the
stratified sampling (PROC MEANS; SAS version 9.2, Cary,
NC, USA). Analysis of variance was conducted on surface
and subsurface texture to test if classes differed in surface
or subsurface sand, silt, and clay (PROC GLM; SAS version
9.2).

3. Results

3.1. Digital Soil Mapping

3.1.1. Assessment of Spectral and Topographic Variables/Input
Layers. The three-step process to assess input bands for
the unsupervised classification led to the selection of four
spectral and two topographic input bands. The first step
was to calculate the optimal index factor (OIF) on the
six spectral bands to identify the three-band combination
that maximized within-ETM+ scene variance with the least
redundancy. The 1, 5, 7 band combination yielded an OIF
value of 0.701. The second step was to evaluate the correla-
tion between spectral data (bands and indices; Table 1) and
topographic derivatives (Table 2). The correlation matrix for
the spectral data revealed that the gypsic index exhibited the
least correlation with other spectral bands when compared
with the other two normalized indices and that band 1 was
not strongly correlated with bands 5 and 7 (Table 1). The
short-wave infrared bands (5 and 7) were highly correlated
(r = 0.959); the TD metric was used to determine which of
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the two short-wave infrared bands were more informative
to characterizing the spectral signatures (i.e., Band 7, see
Section 3.1.2). In general, topographic derivatives were
less correlated with one another than the spectral bands
(Table 2). In this case, visual inspection of candidate image
bands (step 3) was most effective for identifying topographic
derivatives for classifying soils. We evaluated maps for the
10 topographic derivatives with the existing (albeit general)
3rd-order soil survey [42] to determine that mean slope
and maximum planar curvature most effectively represented
relevant topographic features (i.e., relief and curvature).
Selecting candidate image bands for an array of options to
drive the image classification, while subjective, is a common
procedure best accomplished in conjunction with available
ancillary data sources [6, 15].

3.1.2. Spectral Signature Derivation. Starting with 10 signa-
tures associated with classes from the unsupervised classi-
fication, we computed the Transformed Divergence (TD)
metric eight times using all seven input bands (Band 1,
Band 5, Band 7, B5−B7/B5+B7, B3−B1/ B3+B1, mean slope,
and maximum planar curvature) to achieve a minimum
TD value of at least 1,900 for each class pair (Table 3).
The minimum TD value ranged from 1,511 when eval-
uating 45 class pairs between 10 clusters to 1,940 when
evaluating three class pairs between three clusters. There
was a clear break in minimum TD values between the six
pairwise comparisons for four (1,715) and the three pairwise
comparisons for three clusters (1,940) (Table 3). Using the
three spectrally distinct signatures, we then calculated the
TD metric using the best six (of seven) input bands to
determine that ETM+ Band 5 was the least informative
of the seven image bands. The subsequent supervised
classification was then performed using six input bands (i.e.,
Band 1, Band 7, gypsic index (B5−B7/B5+B7), iron oxide
index (B3−B1)/(B3+B1), mean slope, and maximum planar
curvature).

Spectral response curves for the three spectrally distinct
signatures revealed a low dynamic range in values for
the spectral bands and the normalized ratios; in contrast,
mean slope (summarized within 30 m × 30 m windows)
demonstrated the largest difference between the three classes
(Figure 2(a)). Relativized topographic derivatives were used
in the image classification; absolute values are presented
(Figures 2(b) and 2(c)) to illustrate that mean percent slope
for soil class 1 was 3.4 and was considerably higher than
mean percent slope of 2.1 for soil class 2 (Figure 2(b)).
There were no distinguishable differences in mean maximum
planar curvature for the three soil classes (Figure 2(c)).

3.1.3. Supervised Classification. Pixels that coincided with
the ephemerally flooded playa were manually assigned to a
separate soil class 4, constituting 1.6% of study area. This
resulted in 41.2% of the study area classified as soil class 1,
50.1% mapped as soil class 2, and 7.1% mapped as soil class
6; soil class 6 was interspersed between class 1 and class 2
pixels (Figure 3(a); Table 4). Field assessment of the mapped
soil classes was based on 24 field sites.
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Figure 2: Class signatures for three spectrally distinct classes as
determined using a minimum Transformed Divergence value of
1,900 (a). Six image bands were used in the maximum likelihood
supervised classification; four bands were derived from a 24
Feb 2002 Landsat ETM+ image, and two were derived from a
digital terrain model based on 5 m resolution IFSAR data. Band
values represent atmospherically corrected reflectance (e.g., Bands
1 and 7), normalized difference ratios, or topographic derivatives
standardized to range between zero and one. Average (standard
deviation) absolute values for slope (b) and maximum planar
curvature (c).

3.2. Field Assessment of Soil Classes. Field diagnostics and
lab analyses indicated that soil classes 1 and 2 exhibited
different subsurface properties and that soil class 6 is a
transitional soil more similar to class 2 than 1 (Table 4,
Figure 3(a)). Of the eight sites surveyed in soil class 1, none
exhibited a petrocalcic layer within the top 100 cm. Five of
the sites (68.5% of the area), with very little clay or carbonate
accumulation in the top 100 cm, were classified as Cambids;
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Table 1: Correlation matrix for six spectral bands and four normalized indices calculated from a 24 Feb 2002 Landsat ETM+ image.
Normalized indices were calculated using ETM+ spectral bands: gypsic index [(B5−B7)/(B5+B7)] from [16] and iron oxide index
[(B3−B1)/(B3+B1)] from ERDAS Imagine (v.9.3, ERDAS, Inc., Norcross, Ga, USA) software.

B1 Blue B2 Green B3 Red B4 NIR B5 SWIR B7 SWIR B5-B7/ B5+B7 B3-B7/ B3+B7 B3-B2/ B3+B2 B3-B1/ B3+B1

Band 1 1.000 0.838 0.667 0.610 0.440 0.438 −0.128 0.555 −0.052 −0.021

Band 2 1.000 0.908 0.868 0.739 0.742 −0.232 0.450 0.205 0.449

Band 3 1.000 0.964 0.893 0.895 −0.269 0.334 0.596 0.729

Band 4 1.000 0.929 0.904 −0.177 0.237 0.586 0.731

Band 5 1.000 0.959 −0.144 −0.042 0.669 0.791

Band 7 1.000 −0.416 −0.121 0.672 0.802

B5-B7/ B5+B7 1.000 0.272 −0.203 −0.267

B3−B7/ B3+B7 1.000 −0.091 −0.066

B3−B2/ B3+B2 1.000 0.849

B3−B1/ B3+B1 1.000

Table 2: Correlation matrix for ten topographic indices derived from 5 m IFSAR digital terrain model. Variables were transformed to range
between zero and one. Values are summarized from 36 pixels that occurred within a 30 m× 30 m Landsat image pixel.

Mean plan† SD plan Max plan Mean pro SD pro Max pro Mean slope Mean TWI SD TWI Max TWI

Mean plan 1.000 −0.017 0.630 −0.431 −0.034 −0.313 0.028 −0.491 0.003 −0.430

SD plan 1.000 0.611 0.047 0.250 0.229 0.114 −0.052 0.183 0.099

Max plan 1.000 −0.261 0.152 −0.052 0.069 −0.387 0.105 −0.245

Mean pro 1.000 −0.016 0.588 0.047 0.397 0.093 0.376

SD pro 1.000 0.660 −0.135 −0.130 0.146 0.067

Max pro 1.000 −0.090 0.135 0.151 0.289

Mean slope 1.000 0.324 −0.427 −0.212

Mean TWI 1.000 −0.135 0.555

SD TWI 1.000 0.570

Max TWI 1.000
†plan: planar curvature; SD: standard deviation; pro: profile curvature; max: maximum; TWI: topographic wetness index.

Table 3: Transformed Divergence (TD) values for iterative assess-
ment of spectral signatures to distinguish soil classes over a 150 ha
study area on the Chihuahuan Desert Rangeland Research Center in
southern New Mexico. Minimum (Min) and mean TD values were
tabulated within the Signature Editor in ERDAS Imagine software
(v.9.3, ERDAS, Inc., Norcross, Ga, USA).

No.
clusters

Pairs per
combination

Min TD value
Average TD

value

10 45 1,511 1,887

9 36 1,365 1,882

8 28 1,595 1,882

7 21 1,614 1,870

6 15 1,481 1,867

5 10 1,658 1,859

4 6 1,715 1,856

3 3 1,940 1,957

the remaining three sites had illuvated clays and were
classified as Argids. Carbonate accumulation in the three
Argid locations was very slight, with only a few carbonate
filaments occurring at depth in most locations. In contrast,
all eight field sites in soil class 2 had a petrocalcic horizon

within the top 100 cm, distinguishing them as Petrocalcids.
Average depth to a petrocalcic horizon in soil class 2 was
fairly shallow (51.5 cm). All eight sites in soil class 6 exhibited
some carbonate or clay accumulation; the majority of sites
were Petrocalcids (63.6%) with the remaining sites classified
as Argids (36.4%). Argids in soil class 2 had more visible
carbonate accumulation with depth than did soil class 1;
most soil class 1 sites had common carbonate filaments and
nodules. No significant differences were detected in surface
(0-5 cm) textures, although soil class 1 was slightly coarser
(with more sand and less silt and clay) than soil classes 2 and
6 (Table 4). Subsurface textures of soil classes 1 and 2 were
significantly different with class 2 having more clay (13.5
versus 9.2%) and silt (15.5 versus 11.7%) and less sand (71.0
versus 79.1%) than class 1. Soil class 6 had significantly less
sand and more silt than 1 but did not differ in percent clay.

4. Discussion

4.1. Implications for Digital Soils Mapping. We demonstrate
that combined use of unsupervised and supervised image
classification methods with a semiautomated approach using
the Transformed-Divergence metric to derive distinct signa-
tures based on spectral and topographic features successfully
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Figure 3: Supervised classification representing soil classes for the 150 ha study area on the Chihuahuan Desert Rangeland Research Center in
southern New Mexico. Spectral classes were derived in an automated fashion using the Transformed Divergence feature in ERDAS Imagine.
A field assessment of 24 points (blue triangles) was conducted by generating a stratified random sample to characterize soils within mapped
classes (a); labels correspond to mapped soil classes. Mapped soil classes are depicted in the context of mapped landforms of the Jornada
Basin (b); labels coincide with landforms described by Monger et al. [22].

Table 4: Field attributes associated with mapped soil classes that include percent of study area for each soil class, distribution of soil
taxonomic orders and suborders (where possible) within each soil class, and average soil class properties. Soil classes were mapped by
supervised classification of Landsat ETM+ imagery and topographic indices. Data were derived from field surveys of 24 sites (n = 8 for each
soil class) where soils were augered to depth of 1 m.

Soil Area† Argid‡ Cambid‡ Petro-calcid‡ Soil Depth§
Surface¶ Subsurface¶

Sand Silt Clay Sand Silt Clay

% cm % %

1 41.2 31.5 68.5 0.0 >100.0 87.3 (1.7)a# 9.0 (1.2)a 3.8 (0.5)a 79.1 (1.7)a 11.7 (0.7)a 9.2 (1.0)b

2 50.1 0.0 0.0 100.0 51.1 (19.2) 83.3 (1.8)a 11.5 (1.0)a 5.1 (0.8)a 71.0 (2.4)b 15.5 (0.7)b 13.5 (2.1)a

6 7.1 36.4 0.0 63.6 36.3 (27.1) 82.6 (1.7)a 11.8 (1.0)a 5.6 (0.7)a 71.0 (2.1)b 17.5 (1.5)b 11.5 (0.9)ab
†Percent of study area corresponding to three mapped soil classes that were evaluated in the field.
‡Percent soil class.
§Average in soil class where petrocalcic occurred within 100 cm of the soil surface (Petrocalcids).
¶Average in soil class; surface is 0 to 5 cm; subsurface is horizon with maximum clay in the top meter.
#Standard deviation in parenthesis, numbers in columns followed by the same letter are not significantly different from Fisher’s least significant difference
(P > .05).

delineated two soils classes with distinct subsurface soil
properties (soils 1 and 2) and one transitional class (soil 6).
We explore reasons why subsurface (rather than surface) soil
properties were distinguishable with our mapping approach
in subsequent sections.

4.1.1. Mapping in the Absence of Field Data. Derivation of
spectrally distinct signatures for supervised classification
using the Transformed Divergence metric circumvented the
need for guesswork in the soil mapping process. Yet, only

with a field sampling effort to characterize the mapped soil
classes across the study area were we able to interpret the final
product. This approach not only yielded an interpretable
map of soil classes, but the delineated unique classes also
provide an effective means to stratify the landscape for
other types of interpolation (e.g., kriging). Such a stratifi-
cation approach has some advantages over other sampling
approaches designed to mimic the natural distribution of
soils (e.g., [43]) in that it is effective in capturing rare but
complex soil units (e.g., soil class 6), where a higher number
of samples was needed for optimal characterization.
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The combined use of unsupervised and supervised
classifications in digital soil mapping is not necessarily
novel. Saunders and Boettinger [15] combine unsupervised
classification techniques with classification trees to compare
a semiautomated image classification approach based on
expert knowledge and field survey data. The novelty of our
approach was in using a statistical metric to delineate distinct
soil classes in the absence of field data or expert knowledge
to train the supervised classification and characterizing the
mapped soil classes as a means to assess the performance of
this approach.

Field evaluation of mapped soil classes in this study
indicates this approach can accurately map the distribution
of soil types within a landscape without field samples to
drive the image classification. We were surprised by the
relatively small contribution of image bands in the visible
spectrum and the TWI to distinguishing soil classes. We
expected that shallow calcic and petrocalcic horizons would
display different levels of brightness near the soil surface. In
addition, selecting a Landsat image acquired in winter during
a period of below-average rainfall to maximize reflected soils
properties may have dampened the benefit of short-wave
infrared bands (Band 7 and the normalized ratio of Bands
5 and 7) which are generally sensitive to near surface soil
moisture. Although Mean TWI (calculated within 30 m ×
30 m window) did reflect a higher mean index value for the
ephemerally flooded playa (Figure 4), it did not relate well to
ancillary soil layers in the data screening process. It is possible
that the ideal catchment area size for TWI calculations in this
system is larger (or smaller). Future work will examine TWI
at a range of spatial scales (i.e., window sizes). In contrast,
the slope layer was an effective covariate in distinguishing
soil classes. This is due to the improved accuracy and detail
(5 m) afforded by the IFSAR sensor and the prominence of
landform in soil formation at this site (see Section 4.1.2).

The increased resolution of terrain derivatives con-
tributed to the effectiveness of this mapping effort. We
contend that the enhanced accuracy of the IFSAR digital
terrain model effectively captured slope and slope shape and
that these properties were maintained in the summarized
30 m × 30 m depiction of the derived layers. If our analysis
had been based on a 30 m resolution slope layer derived
from a widely available digital elevation model, we feel that
subtleties of slope shape contributing to overland water flow
would have been missed. Previous attempts to incorporate
slope derived from the previous standard 30 m elevation
product to map vegetation were unsuccessful [34]. This was
particularly important for distinguishing soil class 6 which
was juxtaposed between soil classes 1 and 2 (Figure 3) and
may not have been particularly discernable using a native
30 m DEM product.

Spectral response of bare soils has been shown to
demonstrate a linear relationship between reflectance in red
and near-infrared image bands [44], where soil moisture and
surface roughness are the primary factors which determine
where upon the line individual soils occur [45]. Vegetation
within a given image pixel will contaminate the pure soil
response, and this principle has been applied to depict vege-
tation contributions to reflectance [46, 47]. We demonstrate
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Figure 4: Mean Topographic Wetness Index (TWI) values sum-
marized within 6 × 6 (5 m) pixel windows for each of four soil
classes across the 150 ha study area. Three classes were mapped
using a combination of unsupervised and supervised classification
methods, and the fourth class (soil class 4) was identified as an
ephemerally flooded playa by Monger et al. [22]. Mean values are
plotted with error bars representing one standard deviation.

that reflectance values in the 23 Feb 2002 ETM+ image in
this analysis were not detectably influenced by vegetation
due to general conformity of all pixel values to the soil line
(Figure 5). As noted earlier, soil moisture was very low for
all soils during this time period, thereby circumventing its
utility in distinguishing between soil types.

4.1.2. Mapped Soils in the Context of Landform. The success
in mapping these subsurface properties was likely due to
the correlation between slope, slope shape, and geomorphic
processes that affect soil formation. Soil class 1 partially
corresponds with the Alluvial Plain Uplift geomorphic area
mapped by Monger et al. [22] (Figure 3(b)). The study area
slopes gently to the north and is just below the ridgeline of
this gentle uplift. The predominant wind direction in the
study area is from the southwest to northeast [19]. Hence,
soil class 1 is immediately on the leeward side of this ridge
and likely has been accumulating eolian sediments since the
uplift occurred, resulting in the younger soils with less clay
and carbonate accumulation in the soil class. In contrast, soil
class 2 is on a flatter, more stable portion of the landscape,
where deposition of eolian sands is less pronounced and the
petrocalcic horizon is within 100 cm of the soil surface.

Slope shape (maximum planar curvature), which in this
system is likely an indicator of reworking of sediments by
wind, was similar for soil classes 1 and 2. Although broad-
scale deposition was not likely occurring across soil class
2, reworking of surface sediments by wind is common in
this geomorphic surface [22, 48]. Soil class 6 is intermediate
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Figure 5: Soil line representing three mapped soil classes based
on Landsat 7 ETM+ reflectance values corrected for atmospheric
effects. Values are plotted for all pixels and support ancillary
evidence to demonstrate that vegetation cover was very low and
did not contribute substantially to the reflected spectral signal. See
Table 4 for soil classification of field samples.

to classes 1 and 2 both in terms of soil properties and
topography (Table 4, Figures 2(b) and 2(c)). Soil class 6 slope
is intermediate to the flat class 2 and sloping class 1 and slope
shape of class 6 was smoother (i.e., fewer undulations) than
that of classes 1 and 2. This class primarily occurs at the toe-
slope of soil class 1, and in the transition from soil class 2
to the playa (soil class 4). The shallow depth to petrocalcic
and commonly observed surface carbonate fragments in the
field indicate that soil class 6 represents areas dominated by
erosion of surface horizons, due either to wind or water.

4.2. Enhanced Interpretation of Long-Term Vegetation Dynam-
ics. We set out to generate a spatially explicit depiction of
ecologically relevant soil properties to evaluate the influence
of the topoedaphic template on our long-term analysis
of vegetation dynamics. An understanding of the interac-
tions between soils, vegetation, and landscape treatments
is strongly desired by land managers and decision makers.
The digital soil map produced by this effort captured
important differences in soil properties that help to explain
the divergent shrub and grass vegetation dynamics over the
study area. Our analysis of changes in shrub and grass cover
from 1937 to 2008 revealed that grasses were distributed over
both dominant sandy soils in 1937, but grass loss and shrub
proliferation diverged following the 1950s drought [49]. Soil
class 1 was characterized by low water holding capacity in
the top 100 cm with little clay or carbonate accumulation

with depth. Soils with these properties have been correlated
with low grass resilience to drought due to inability to retain
water during dry periods [3, 50]. Such low near-surface water
holding capacity is expected to benefit mesquite (Prosopis
glandulosa, the dominant woody invader in this system)
since this species develops extensive, deep rooting systems
soon after plants are established [51, 52]. In contrast, soil
class 2 captured soils with slightly higher clay amounts
and much greater near-surface carbonate accumulation (in
the form of petrocalcic horizons) than soil class 1. Such
shallow petrocalcic soils are known to promote resilience of
grasses during drought due to their ability to retain water
at plant available tensions for nearly a year following rain
events [3, 40]. This high near-surface water holding capacity
would likely lessen the competitive advantage of deep-
rooted mesquite plants relative to shallow-rooted grasses
by retaining a larger proportion of infiltrated water where
it is available to both shallow- and deep-rooted species.
Soil class 1 does also have a slightly steeper average slope
(3.4%) and soil class 1 (0.9%, Figure 2). Soils with steeper
slopes are likely to have a greater fraction of precipitation
be lost to runoff than soils with shallower slopes. However,
coarse surface textures (Table 4), modest differences in
slope, and the importance of petrocalcic horizons for water
dynamics [3] and grass persistence during drought [50]
indicate that the subsurface soil properties were likely more
important factor than the topography governing vegetation
dynamics.

We demonstrate that it is possible to extract ecolog-
ically meaningful information about soil properties from
a remotely sensed perspective. Extensive field sampling
and knowledge of ground conditions is not required a
priori, but the method does require post-hoc allocation
of effort to characterize soil class maps generated. This
study used established image processing techniques with a
semiautomated method to derive soil class signatures to
ultimately distinguish differences in site potential (i.e., shrub
dominated versus shrub-invaded grassland; [49]). Field
evaluations of the resulting soil classification and analysis of
long-term vegetation dynamics among soil classes indicate
the approach was successful in mapping areas with similar
soil properties and ecological potential. As such, the method
provides a basis for mapping soil classes across landscapes or
for effectively stratifying sites to make the most efficient use
of human resources.
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Soil moisture retrieval is one of the most challenging problems in the context of biophysical parameter estimation from remotely
sensed data. Typically, microwave signals are used thanks to their sensitivity to variations in the water content of soil. However,
especially in the Alps, the presence of vegetation and the heterogeneity of topography may significantly affect the microwave signal,
thus increasing the complexity of the retrieval. In this paper, the effectiveness of RADARSAT2 SAR images for the estimation of soil
moisture in an alpine catchment is investigated. We first carry out a sensitivity analysis of the SAR signal to the moisture content of
soil and other target properties (e.g., topography and vegetation). Then we propose a technique for estimating soil moisture based
on the Support Vector Regression algorithm and the integration of ancillary data. Preliminary results are discussed both in terms
of accuracy over point measurements and effectiveness in handling spatially distributed data.

1. Introduction

Soil moisture content is a key parameter in many hydrologi-
cal processes. It controls the infiltration rate during precipi-
tation events, runoff production, and evapotranspiration [1].
Thus it influences both global water and energy balances. As
a consequence, the information about the spatial distribution
and concentration of soil moisture is of great importance
in both hydrological applications, such as floods predictions
in case of extreme rainfall events, watershed management
during dry periods, irrigation scheduling, precision farming,
and earth sciences, like climate change analysis and mete-
orology. When we move the attention to the mountainous
environment, such as the Alps, the scale of the spatial and
temporal variability reduces, due to the heterogeneity and
the variability of the environment [2, 3]. This aspect makes
the knowledge of accurate and reliable information on soil
moisture status much more complex and at the same time

important and critical for all the applications cited above
[4].

In the last few years, the increasing number of space-
borne sensors, with complete and frequent coverage of the
Earth’s surface, has determined an increasing interest for
the estimation of bio-geophysical surface parameters from
remotely sensed data. In this field, one of the most challeng-
ing problems is related to the estimation of soil moisture
content from microwave sensors, in particular Synthetic
Aperture Radars (SARs).

The sensitivity of microwave signals to the soil moisture
content depends on the influence of water on the dielectric
constant and has been well established in several studies
[5–7]. The challenge in the moisture content retrieval from
microwave signals is represented by the complexity and non-
linearity of the estimation process. Moreover, several studies
pointed out the sensitivity of the microwave signal to oth-
er target properties, such as the roughness of the soil and
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the presence of vegetation, which introduce additional am-
biguities and nonlinearity in the retrieval process [8, 9].
In order to reduce these effects, several studies have been
carried out on the use of microwave data acquired with
multiple incidence angles, frequencies, and polarization con-
figurations. In particular, the combined use of C and L band
microwave signals has shown to be particularly suitable in
order to disentangle the vegetation contribution from that of
the soil [10]. However, most operative satellite systems (e.g.,
ERS-2, RADARSAT, and ENVISAT) have onboard a C-band
SAR sensor only, thus limiting the possibility of applying
multifrequency approaches in operative conditions. Another
possible solution is the integration in the retrieval process of
data acquired by optical sensors, which may provide useful
information for reducing the ambiguity due to the presence
of vegetation [11]. Concerning the polarization features,
the use of both co- and cross-polarized backscattering coef-
ficients has shown to be effective for the reduction of the
ambiguity in the signal due to roughness [12]. However,
even though the polarimetric approach has demonstrated to
be very promising, it has not been fully exploited yet due to
only recent availability of fully polarimetric satellite orbiting
sensors. Some recent papers deal with the use of polarimetric
RADARSAT2 images. Hendrickx et al., 2009, validate the
RADARSAT2 retrieved soil moisture values against ground
measurements and optical indices in semiarid areas provid-
ing promising results.

Topography is another important aspect (in addition to
the effects of vegetation and surface roughness) to be taken
into consideration when dealing with the estimation of soil
parameters. Satellite systems, in particular SAR systems, are
strongly affected by the topography of the area. Distortion
effects (i.e., foreshortening, layover, and shadowing) may
occur due to the side-looking acquisition geometry (specific
of the SAR sensor) and the presence of topography on the
ground. Even if these extreme distortion effects do not occur,
the SAR signal is affected by the local incidence angle and
the distance between the target area and the sensor antenna.
These topographic effects are usually taken into considera-
tion during the calibration of the data. However, when deal-
ing with mountain areas, such as the Alps, it is fair to expect
to have a nonnegligible residual contribution within the
signal due to the extreme topographic conditions [13]. Also
this contribution may significantly influence the sensitivity
of the microwave signal acquired by the satellite sensor to the
moisture content of the soil and consequently could further
increase the complexity of the estimation problem. However,
limited effort has been devoted to this challenging aspect in
the assessment of soil moisture in Alpine areas. For example,
Paloscia et al., 2010, investigate the effectiveness of ASAR
remotely sensed data in combination with optical images
for the estimation of soil moisture in the Cordevole area
(Veneto region, Italy). The analysis points out the significant
influence of the vegetation coverage on the backscattering
signal. However, the area of interest does not present
significant variability in terms of topography, thus limiting
the applicability of the presented analysis on other mountain
areas with different topographic conditions. Heitz et al.,
2010, correlated RADARSAT2 backscattering coefficients to

ground measurements indicating that retrieved soil moisture
values are able to recognize the topographic soil wetness
gradient.

From the methodological viewpoint, the retrieval of soil
moisture content can be considered as a mapping problem
from the space of the measured signal (i.e., the backscattering
signal) to the space of the desired biophysical parameter (i.e.,
the soil moisture content). This task is commonly addressed
by means of the inference of the desired mapping from
theoretical forward models, such as the Integral Equation
Model (IEM), with the use of iterative methods or nonlinear
machine learning techniques [12, 14]. Theoretical models
can describe a great variety of experimental conditions in
terms of acquisition parameters and target properties. They
ensure a high degree of generality to the estimation process
and the possibility to handle operative conditions in which
no (or very few) field ground truth is available. However,
the formulation of theoretical models is typically extremely
complex and involves a certain number of input parameters,
thus making the inversion process nonlinear, analytically
nontractable, and ill posed. Another critical point is the
fact that theoretical models may relay on simplifications and
approximations of the physical phenomena which may not
be completely verified in the field especially in presence of
complex environmental conditions [15]. This could be the
case of the Alpine environment, due to the presence and
heterogeneity of the vegetation coverage together with the
effect of topography. These issues could significantly affect
the accuracy and reliability of the estimation.

All these aspects make the problem of the character-
ization of soil moisture in alpine areas from remotely sensed
data extremely complex and challenging. With the prospec-
tive of the integration of soil moisture estimates in real appli-
cative scenarios, like those cited above, it is important to have
a clear comprehension of the possibilities, but also the limi-
tations, of the new generation satellite SAR sensors in com-
bination with advanced state-of-the-art methodologies for
the retrieval of soil parameters in the Alpine environment.
Although some works in this direction have started, further
analysis is required. The SOFIA project (SOil and Forest
Information retrieval with RADARSAT2 images) inserts in
this context and aims at investigating the capability of new
generation polarimetric RADARSAT2 satellite SAR sensors
in combination with advanced state-of-the-art methods for
the estimation of soil and forest biophysical parameters in
the Alpine environment. This paper introduces the rationale
behind the experimental analysis carried out in the context
of the SOFIA project for the specific topic of soil moisture
estimation. The main objectives of the proposed work are

(i) to present the test area and the setup for the ground
measurements,

(ii) to analyze the sensitivity of the RADARSAT2 polari-
metric data on the soil moisture content in an Alpine
catchment and the necessity to integrate SAR images
with ancillary data,

(iii) to present the first results of soil moisture estimation
derived from the inversion procedure based on the
Support Vector Regression technique.
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Figure 1: Study area of the SOFIA project: (a) Alto Adige Province and (b) Mazia Valley, with the localization of the fixed measurement
stations. The stations called “Transect” are the most complete ones, including 4 soil water content sensors in each station at two depths (5
and 20 cm). The stations called “Catchment” include one soil water content sensor at two depths (5 and 20 cm).

The rest of the paper is organized as follows. Section 2 intro-
duces the study area on which our analysis is focused and de-
scribes the dataset adopted. The analysis of the sensitivity of
the RADARSAT2 data to the soil moisture content is present-
ed in Section 3, while Section 4 is devoted to the proposed
estimation algorithm and to the experimental setup for its
validation. Section 5 shows the first experimental results
achieved. Finally, Section 6 draws the conclusion of the work.

2. Study Area and Dataset Description

2.1. Study Area. The study area of the SOFIA project is
the Alto Adige Province, located in Northern Italy (see
Figure 1(a)). Alto Adige covers an area of about 7400 km2

with a lowest altitude of 220 m and a highest one of 3900 m.
Historical climate observations have proved that the climate
in the Alps has changed significantly. In the future, the
strongest climatic change in the Alps can be expected for the
summer months with much drier and warmer conditions in
all regions, particularly in the southern part [16]. In addition,
climate models agree on a higher interannual variability [17].
This means on the one hand increasing drought periods
(summer), while on the other hand higher probability of
heavy rain (winter). These variations may have a strong
impact on the water availability [18] for agricultural and
human purposes and may be strongly related to natural
hazards such as floods and landslides [19].

Thus, Alto Adige represents an interesting test site for the
following reasons:

(i) high vulnerability to climate change in fields highly
connected to the projects objectives (drought, lack of
water, natural hazards, yield),

(ii) representativeness at least for the central and south-
ern Alps,

(iii) high diversity of land use with almost all types of land
use of central European mountain areas,

(iv) good data supply, good contact to partners and access
to the results of several scientific projects.

Within the Alto Adige area, the Mazia valley (Figure 1(b)),
and represented by the red contour in Figure 1(a), a small
side valley into the Venosta valley, has been chosen for
the first investigations on soil moisture content estimation.
Mazia valley covers an area of ca. 100 km2 with altitudes that
vary from 920 meters a.s.l. (Sluderno) to 3738 meters a.s.l.
(Palla Bianca). The area is almost dry, with mean annual pre-
cipitation of 525 mm (Mazia, 1580 meters a.s.l.). However,
wet patterns with higher soil moisture can be observed
mainly due to irrigation practice in highly intensively man-
aged meadows (in the valley floor) and the presence of
wet buffers along small rivers going down from the top of
the mountains. The land use types present in the area are
well representatives for the whole South Tyrol, thanks also
to the high variability in altitude. Meadows and pastures
present heterogeneous characteristics in terms of vegetation
species and human usage, becoming less intensively managed
moving from the lower to the higher altitudes.

The valley is equipped with 16 fixed stations for the
measurement and monitoring in time of soil parameters
(moisture content at 5 and 20 cm depth) and meteorological
data (air temperature and humidity, precipitation, wind
speed and direction, solar radiation) [20]. The stations
are distributed along the valley in locations representative
of different elevation, slope, aspect, soil type, and land
cover conditions (see Figure 1). Meadows and pastures are
a significant presence in the valley. All these conditions make
this area particularly suitable for sampling the high spatial
variability typical of the mountain environment.
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Figure 2: RADARSAT2 image acquired on July 21st, false color RGB
composition (R = HH, G = HV, B = VV).

2.2. Satellite Imagery. During the summer of 2010, two
images were acquired by RADARSAT 2 over the Mazia valley
on 3rd June and 21st July. The sensor acquisition mode was
Standard Quad Polarization, with a mean incidence angle of
45◦ and an ascending orbit. The acquisition geometry has
been selected such that the area of interest, characterized
by a highly variable topography, was imaged minimizing
the layover and shadowing effects on the east side of the
valley, where a higher number of field measurement stations
are present. Original images were provided in single look
complex (SLC) format with pixel size of 4.93 m and 17.48 m
in azimuth and ground range directions, respectively. Thus
the data have been multilooked, calibrated, and geocoded
with the help of a high-geometrical resolution (2.5 meters)
digital elevation model and filtered with a Frost filter
(window size 5 × 5) in order to reduce the effect of
speckle noise. The final resolution of the processed images
is 20 m. All the preprocessing has been carried out with the
SARscape software (http://www.sarmap.ch/). Figure 2 shows
the results of the preprocessing in the case of the 21st July
image. Polarimetric features have been composed in this
RGB image in order to enhance the different information
content of each channel. On the west side of the valley, the
effects of geometric distortions (i.e., foreshortening, layover,
and shadowing) are particularly evident. These effects are
minimized in the east side, thanks to the specific acquisition
geometry selected.

2.3. Field Measurement Campaign. Contemporary to the
satellite acquisitions, two field measurement campaigns have
been carried out in the Mazia valley. The aim was to acquire
information on the soil parameters (moisture content and
roughness) and on the vegetation status (biomass and
vegetation water content) of meadow and pasture areas.
These measurements have been exploited during the project
for different purposes: (1) the calibration of the fixed
measurement stations located in the valley, in order to have
consistent information at these locations also in correspon-
dence to future satellite overpasses and acquisitions, (2)

Table 1: Ranges of variability of the dielectric constant (real part)
values measured during the field campaigns.

Meadow Pasture

June 2010 July 2010 June 2010 July 2010

Min dielectric
constant value

6.7 3.8 6.4 3.2

Max dielectric
constant value

23.2 27 17.7 8.7

Average dielectric
constant value

16.7 15.4 11.6 5.7

the analysis of the sensitivity of RADARSAT2 measurements
to the properties of soils and vegetation in alpine areas, and
(3) the development and validation of the algorithm for the
estimation of the soil parameters from the satellite images.

Two different kinds of measurements have been per-
formed: (1) destructive measurements of both vegetation
and soil samples, by physically taking a sample of grass and
soil. This kind of sampling was necessary to have accurate
measurements of biomass, vegetation water content, soil
gravimetric moisture, and bulk density. All the samples have
been acquired, weighted, and then sealed in order to be
dried in the laboratory according to standard measurement
protocols [21]; (2) nondestructive measurements, which
where possible thanks to the use of a mobile sensor (the
Delta T WET 2 sensor, http://www.delta-t.co.uk/); these last
measurements regarded only the soil dielectric constant, but
had the advantage to be easier and faster with respect to
the destructive measurements, so that it was possible to
collect a higher number of samples. Sampling areas were
selected in order to ensure a good representativeness in terms
of local topographic and land use conditions. Moreover,
repeated measurements (3 to 5) were collected in each
sampling area and then averaged, in order to increase their
spatial representativeness. More than 350 dielectric constant
measurements were collected in more than 100 different
sampling areas. Both destructive and nondestructive field
measurements were concentrated on the west side of the
valley, due to the better imaging properties of the selected
acquisition geometry. Table 1 reports minimum, maximum,
and average values of the dielectric constant measured on
meadows and pastures during the two field campaigns. As
can be observed, meadows present higher and much more
variable dielectric constant values with respect to pastures,
which are in general drier. This is probably due to the
irrigation practice in some areas and to the differences in the
soil type and vegetation coverage of meadows with respect
to pastures. In fact, soil is quite heterogenous, ranging from
Cambisols, Humic Leptosols, and Podsols to locally limited
Planolsols and Histosols in hydromorphic areas. Also organic
content, grain size distribution, and bulk density are highly
variable even within areas of the same land cover type. On
meadows and pastures, the dominant soil type is brown
soil. Above the tree line, combinations of brown soils and
ranker appear. In the forest in contrary also semipodzols
are common, partly also the overlapping transition in
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Figure 3: Scatter plots of backscattering coefficients extracted from the RADARSAT2 images versus dielectric constant measurements in the
case of (a) HH polarization configuration and (b) HV polarization configuration.

semipodzolidation of brown soils. Podzols are predominant
for coniferous forests. In the vicinity of streamlets also gley
may appear. Regarding the soil texture of fine earth, the
fraction of sand is dominant (45–75%), the fraction of silt
is quite variable (10–40%), and the fraction of clay is mostly
low (5–15%). Therefore, soil moisture measurements might
be an additional information to validate soil maps as well as
to understand the effect of soil texture and organic matter.

In this paper, we address the real part of dielectric con-
stant because it represents the dielectric properties to which
the SAR e.m. waves are particularly sensitive. The imaginary
part of dielectric constant is in general very low and in most
cases can be considered negligible [5].

2.4. Ancillary Data. To carry out the analysis presented in
this work, ancillary data already available or extracted from
satellite optical sensors have been considered. In greater
detail,

(1) a digital elevation model (DEM) with high spatial
resolution (2.5 m) obtained from the processing of
airborne lidar acquisitions over the whole Alto Adige
area during a measurement campaign in 2008,

(2) two normalized difference vegetation index (NDVI)
maps extracted from two images acquired by the
NASA MODIS sensor onboard the Terra satellite as
close as possible to the RADARSAT2 satellite over-
passes (i.e., within ±1 day from the RADARSAT2 ac-
quisition). MODIS is a multispectral sensor with 36
spectral channels which acquires information in the
visible and infrared portions of the spectrum with
daily coverage of the whole Earth’s surface. The high
temporal resolution of this system allows extracting
useful information of the area of interest maximizing
the probability to have cloud-free acquisitions as
close as possible to the date of interest. The spatial
resolution of the sensor is 250 m in the red and near-
infrared bands, the portions of the spectrum consid-
ered for the computation of the NDVI values,

(3) a high-resolution (25 m) land-cover map of the
Mazia valley derived from ortho-photos, ground
surveys, and visual interpretation.

Ancillary data have been geocoded and resampled (bilinear
convolution) in order to be completely superimposed with
the RADARSAT2 images.

3. Sensitivity Analysis

In order to understand the sensitivity of the RADARSAT2
signal to the moisture content of the investigated area, scatter
plots of the backscattering coefficients at different polariza-
tion configurations versus the dielectric constant values were
generated. To this purpose, in the two satellite images a small
3× 3 pixels region was considered in correspondence of each
field measurement point. Then the backscattering values
were averaged and the resulting mean value was associated
to the corresponding field measurement. Samples associated
to foreshortening and layover areas were discarded from the
analysis. Finally, considering both the acquisition dates and
both meadow and pasture land cover types, 75 samples were
used in the analysis. Figure 3 shows the plots in the case of
HH and HV backscattering coefficients (analogous results
have been achieved for the VV and VH configurations).

From a first analysis, it is possible to observe that the
points associated to meadows present an expected increasing
trend versus the dielectric constant values (more evident in
the case of the HH with respect to the HV polarization). On
the contrary, no clear trend can be recognized in the samples
associated to the pastures. In greater detail, these samples
show a high level of ambiguity (i.e., samples with similar
dielectric constant values present significant differences
in terms of backscattering coefficients) especially for low
dielectric constant values. As explained previously, different
target properties and external factors may affect the mi-
crowave signal acquired by the satellite sensor. Taking into
account the environmental conditions observed during the
field measurement campaigns, two factors can be considered
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Figure 4: Scatter plots of backscattering coefficients extracted from the RADARSAT2 images versus dielectric constant measurements over
pasture areas and with dielectric constant values between 4.5 and 5.5 in the case of (a) HH polarization configuration and (b) HV polarization
configuration. The samples are grouped into 4 clusters according to the topographic features extracted from the DEM.

as mainly responsible for the variability and ambiguity ob-
served in the pasture samples: (1) the topography and (2) the
heterogeneity of the vegetation/land-cover. In the following,
these two aspects are better investigated with the help of
ancillary data, in order to understand if and to what extent
they affect the RADARSAT2 measurements.

3.1. Effect of Topography. As explained previously, topogra-
phy significantly affects the signal acquired by a satellite SAR
system. In our case, although the calibration of the signal
was carried out with the help of a detailed digital elevation
model, residual topographic effects are expected to introduce
significant ambiguity in the backscattering coefficients. This
is expected especially for pastures, since they extend over
large portions of the valley sides, with altitudes ranging
from 1200 to 2400 meters. On the contrary, meadows are
mainly located in the valley floor, thus they present similar
topographic conditions.

In order to investigate the effect of topography on the
backscattering signal, the digital elevation model has been
exploited for the extraction of two topographic features:
the local incidence angle of the SAR signal (i.e., the angle
between the line of sight of the SAR sensor and the direction
normal to the surface within the resolution cell, which
takes into account the local topography of the area) and
the local altitude. The samples associated to the pasture
(which demonstrated the highest ambiguity in the SAR
signal, as shown in Figure 3) were divided into different
dielectric constant classes (e.g., below 4.5, between 4.5 and
5.5, between 5.5 and 6.5, and so on until 12.5; after this value
the number of samples is reduced and the variability limited,
as shown in Figure 3) in order to keep constant this variable
in the analysis. Then, according to the topographic features,
the samples of each class were grouped into four clusters:
(1) low altitude/high incidence angle, (2) low altitude/low
incidence angle, (3) high altitude/high incidence angle, and

(4) high altitude/low incidence angle. Intermediate condi-
tions were excluded from the analysis. Figure 4 shows the
resulting scatter plot for values of dielectric constant between
4.5 and 5.5 (which demonstrated the highest variability in the
backscattering coefficients) and both HH and HV polariza-
tion configurations. Analogous results were obtained for the
other dielectric constant ranges.

In the plots, it is possible to observe that samples with
similar characteristics in terms of altitude and local incidence
angle are quite close one to each other and located in specific
portions of the feature space. In greater detail, samples
acquired in areas with low altitude and high local incidence
angles of the SAR signal present the lowest values of the
backscattering coefficient. On the contrary, samples associ-
ated to areas with high altitude and low local incidence angles
are characterized by the highest backscattering coefficients.
The difference between these two extreme topographic con-
ditions is particularly enhanced and can be quantified in 8-
9 dB for both HH and HV polarization configurations. The
samples with intermediate topographic characteristics, that
is, low altitude and low incidence angle and high altitude
and high incidence angle, are located between these two
extremes. It emerges that both the local incidence angle of
the SAR signal and the local altitude of the investigated area
affect the backscattering coefficient, introducing attenuation
or increase of its value. However, a certain level of variability
still remains in the data, as can be observed for example, in
the cluster of samples associated to high-altitude and high-
local incidence angle. This suggests that topography is not the
only factor that affects the SAR signal in these environmental
conditions.

3.2. Effect of Vegetation/Land-Cover Heterogeneity. As it was
observed in the Mazia valley during field campaigns, the
Alpine landscape is characterized by a high variability and
heterogeneity in terms of vegetation/land-cover. Meadows,
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Figure 5: Scatter plots of backscattering coefficients extracted from the RADARSAT2 images versus dielectric constant measurements over
pasture areas and with dielectric constant values between 4.5 and 5.5 in the case of (a) HH polarization configuration and (b) HV polarization
configuration. NDVI values are shown for the samples which show strong residual variability in the backscattering coefficient value.

located in the valley floor, are intensively farmed and irri-
gated. The soil is typically homogeneous, flat in terms of
roughness, and the grass is typically thick. Cut events during
the summer period determine variations in the biomass of
the vegetation coverage. Pastures have completely different
characteristics. First of all, they are located on the sides of
the valley where the terrain becomes steep and the altitude
increases. The soil is heterogeneous, with the presence of
stones and in some cases of large rock’s areas when the
altitude becomes higher. Also the vegetation coverage is ir-
regular, presenting areas with a significant presence of grass
and others less vegetated or quite bare.

Vegetation influences the microwave signal by introduc-
ing an attenuation effect with respect to bare soils, as indi-
cated in several studies [22]. On the contrary, the presence of
stones and rocks as well as the irregularity of the surface may
increase the backscattering coefficient values, due to both
multiple reflections and the high irregularity of the surface.
Thus, these two factors may explain the residual ambiguity
and variability observed in the SAR signal after taking into
account the topographic effects. In order to verify this
hypothesis, we exploited the normalized different vegetation
index (NDVI) extracted from two MODIS Terra satellite
images acquired as close as possible to the RADARSAT2 over-
passes. This index is sensible to variations in the green leaf
vegetation and thus in biomass. For the purposes of our anal-
ysis, it can be exploited as proxy to quantify the vegetation/
land-cover heterogeneity of the alpine area. In particular, this
index will have the highest values in presence of meadows
with dense and tall vegetation, while the value will pro-
gressively decrease moving to cut meadows or pastures with
lower vegetation coverage and an increasing presence of
rocks. NDVI values were associated to the samples presenting
similar characteristics in terms of dielectric constant value,
topography, and land use class (meadow or pasture) but
showing a residual variability in the backscattering values.

For the sake of brevity, in this paper, we will present the
analysis just for the samples of Figure 4, but good agreement
was found also for the other cases.

Plots shown in Figure 5 suggest that the NDVI can
explain the residual variability within the samples of each
topographic cluster. In particular, for each class of topo-
graphic conditions (e.g., high altitude/high incidence angle),
it is possible to observe that lower NDVI values are associated
to higher backscattering values and vice versa. This confirms
the hypothesis that also the vegetation/land-cover hetero-
geneity affects the SAR signal in the investigated area. It is
worth noting that the NDVI map considered for the analysis
presented above is characterized by a quite coarse spatial
resolution (250 meters) with respect to both the SAR images
and the heterogeneity of the landscape. However, it provided
useful indications (at least qualitative) for explaining the
variability inside the SAR signal. Further and more detailed
analysis will be carried out on this point, with the help of
higher geometrical resolution images.

The sensitivity analysis presented in this sections sug-
gests that the backscattering coefficients measured by the
RADARSAT2 SAR sensor are sensitive to variations in the
dielectric constant of soils, thus to variations in the moisture
content. However, the microwave signal is also strongly af-
fected by the topography of the area (also after standard
topographic correction) and the heterogeneity of the vegeta-
tion/land-cover. These factors should be properly taken into
consideration for the retrieval of the moisture content of soils
in presence of these challenging environmental conditions.

4. Soil Moisture Estimation Technique

Due to the effect of topography and vegetation/land-cover
heterogeneity on the SAR signal, the retrieval of soil moisture
content in alpine areas becomes particularly challenging and
complex. Estimation approaches based on the inversion of
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theoretical models may be not effective. Due to the high
complexity and heterogeneity of the physical phenomena
that affect the microwave signal, it is fair to expect that
theoretical models (which introduce in their formulation
several approximations and simplifications) will be not
reliable and accurate in the estimation. In order to deal with
this issue, a possible solution is the direct exploitation of
the information contained in the data acquired during the
field campaigns by means of nonlinear machine learning
techniques. In particular, in this work we propose to address
the estimation problem with the ε-insensitive Support Vector
Regression [23], which presents properties suitable for the
challenges and constraints of the estimation problem of
interest.

Thanks to its formulation, SVR is able to handle complex
nonlinear estimation problems with good intrinsic general-
ization capability also in presence of a limited number of
training samples [24, 25]. Moreover, it easily handles high-
dimensional input spaces, also with features extracted from
different sources. These properties allow us to effectively
exploit the samples collected during the field campaigns to
infer the mapping between the SAR images and the target
variable and at the same time to integrate in the retrieval pro-
cess the information extracted from ancillary data. The latter
is required to properly take into account the effects of topog-
raphy and vegetation/land-cover heterogeneity on the input
SAR data.

4.1. ε-Insensitive Support Vector Regression. Let us consider
a generic estimation problem. We would like to retrieve a
continuous variable y (e.g., the soil moisture content), given
a set x = (x1, x2, . . . , xm) of m features extracted from the
signals acquired using remote sensors. From an analytical
viewpoint, the estimation problem can be expressed as

y = f (x) + e, (1)

where f denotes the desired and unknown input-output
mapping and e is a Gaussian random variable with zero mean
and unitary variance gathering all the noisy contributions
affecting the considered estimation problem. The estimation
of y corresponds to the problem of determining the function
f ′ as close as possible to the true mapping f for the task
considered.

Given a set of N reference samples {xi, yi | i = 1, . . . ,N},
the goal of the ε-insensitive SVR technique is to find a
smooth function f ′ that approximates f while keeping at
most a deviation ε from the targets yi [23]. To this purpose,
the original m-dimensional input domain is mapped into
a higher dimensionality feature space, where the function
underlying the data is supposed to have an increased flatness.
Thus it is approximated in a linear way:

f ′(x) = w ·Φ(x) + b, (2)

where w represents the vector of weights of the linear
function, Φ(·) is the mapping that projects the samples from
the original into the higher-dimensional feature space, and b
is the bias.

f (x)

x

y − f (x)

|ξ|ε

Training
sample

ε-Insensitive
loss function

ε-Insensitive
tube

Figure 6: Example of a possible choice of the ε-insensitive loss
function characterizing the SVR learning approach.

The optimal linear function in the transformed feature
space is selected minimizing a cost function, which is the
combination of the training error (empirical risk) and
the model complexity (structural risk). The first term is
calculated according to a ε-insensitive loss function, for
example,

λ(ε) =
⎧⎨
⎩

0 ⇐⇒ ∣∣y − f ′(x)
∣∣ ≤ ε,∣∣y − f ′(x)− ε

∣∣ ⇐⇒ ∣∣y − f ′(x)
∣∣ > ε,

(3)

where ε is the tolerance to errors, that is, it allows one to
define an insensitive tube surrounding the function f ′ (see
Figure 6). Equation (3) means that losses smaller than this
tolerance are neglected (thus increasing the robustness of
the technique to the small errors and to the noise in the
training set), whereas a penalty is assigned to estimates lying
outside the tube. Equivalently, the penalty is expressed by
means of nonnegative slack variables ξ , ξ∗, which measure
the deviation of the training samples outside the ε-insensitive
tube and are defined as follows:

ξ = λ(ε) ⇐⇒ λ(ε) > 0,

ξ∗ = λ(ε) ⇐⇒ λ(ε) < 0.
(4)

The second term is expressed through the Euclidean norm
of the weight vector w, which can be inversely related to the
geometrical margin of the corresponding solution and thus
(under a geometrical interpretation) to the complexity of the
model. Thus, the cost function to minimize becomes

Ψ(w, ξ) = 1
2
‖w‖2 + C

N∑
i=1

(
ξi + ξ∗i

)
, (5)

and it is subject to the following constraints:

yi − [w ·Φ(xi) + b] ≤ ε + ξi,

[w ·Φ(xi) + b]− yi ≤ ε + ξ∗i , i = 1, 2, . . . ,N ,

ξi, ξ∗i ≥ 0.

(6)
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C is a regularization parameter that tunes the trade-off
between the complexity (flatness) of the function f ′ and the
tolerance to empirical errors.

The constrained optimization problem in (5) can be
reformulated through a Lagrange functional, which leads in
the dual formulation to a convex (easy to handle) quadratic
problem (QP) and thus to a unique solution (global mini-
mum of the cost function). Leaving out mathematical details
(for those we refer the reader to [23]), the final result of the
estimation problem, in the original input domain, becomes

f ′(x) =
∑
i∈N

(
αi − α∗i

)
Φ(xi) ·Φ(x) + b

=
∑
i∈N

(
αi − α∗i

)
k(xi, x) + b,

(7)

where αi and α∗i represent the nonzero Lagrange multipliers
of the QP and k(·, ·) is a kernel function. The latter must
satisfy the Mercer’s theorem, so that it can be associated to
some type of inner product in the highly dimensional feature
space (i.e., k(xi, x) = φ(xi) · φ(x)). Thus, the kernel function
allows one to evaluate the similarity between a couple of
samples in the transformed feature space as a function of
the samples in the input space, that is, without the explicit
definition of the mapping function φ(·). This strongly
reduces the analytical complexity related to the latter issue.
Commonly adopted kernels are polynomial functions and
Gaussian radial basis functions [24]. Lagrange multipliers
weight each training sample according to its importance in
determining the solution function f ′. Samples associated to a
nonzero Lagrange multiplier are called support vectors. The
other samples have no weight in the definition of the result
since they fall within the ε-tube (according to the definition
of the ε-insensitive loss function). Consequently, to increase
ε means to reduce the number of support vectors. This will
increase the sparseness of the final representation of the data
at the price of lower approximation accuracy on training
samples. In this sense, ε quantifies the trade-off between data
sparseness and approximation accuracy of the model.

4.2. Estimation Algorithm and Experimental Setup. The re-
trieval process is divided into two phases: (1) the training of
the SVR algorithm and (2) the estimation phase.

During the training, the available training samples
(i.e., the measurements acquired during the field campaign
associated to the corresponding values of the microwave
signal extracted from the RADARSAT2 images) are provided
to the technique in order to learn the underlying relationship
between the input features and the output target value.
Typically, the samples are divided into two subsets: the first
is used as training and the second is used as validation to
assess the estimation performance of the technique (in terms
of accuracy or other quality metrics) with different configu-
rations of the free model parameters. In our analysis, in order
to avoid problems related to the choice of the training and
validation sets, we applied a k-fold cross validation proce-
dure. Training samples are divided into k subsets. Iteratively,
k − 1 subsets are used for the training of the regressor
while the remaining subset is exploited for the validation.

At the end of the k iterations, the performance over the
validation sets is averaged. In this way, all the samples are
considered for both training and validation of the algorithm,
thus ensuring a high robustness and good generalization
of the training procedure. The selection of the best model
among different possible configurations of the free model
parameters (model selection issue) has been carried out by
means of a multiobjective model selection strategy, which
allows one to jointly optimize different and competing
quality metrics. In this way the model selection process
becomes more robust, since it relies on multiple criteria
and not just one. Moreover, multiple optimal solutions are
obtained according to the concept of Pareto optimality. Each
one represents a different tradeoff among the considered
quality metrics. The user has thus the possibility to choose
the configurations which meets the requirement in terms of
estimation quality related to the application considered. For
further details we refer the Reader to [26].

After the regressor is trained, it is applied to the multi-
dimensional image (which shall contain the same features
considered during the training of the technique) in order to
obtain the estimated moisture content map.

In our experiments, we considered a 5-fold for the cross
validation procedure and the mean squared error (MSE) and
the slope of the linear trend of estimated versus true target
values as quality metrics to drive the multiobjective model
selection. The optimal solution is selected on the basis of a
visual inspection of the estimated Pareto front (i.e., the set
of optimal solutions of the multiobjective model selection
problem). Concerning the SVR technique, we selected an
RBF Gaussian kernel and the following ranges for the model
parameters: [10−3;103] for γ, the kernel width, [10−4;103] for
C, and [10−4,10] for ε.

As input features of the estimation system, we considered
the four polarimetric configurations of the RADARSAT2
image: the altitude and the local incidence angle extracted
from the DEM as topographic features and the NDVI and
land-cover maps as features for the characterization of the
vegetation/land-cover heterogeneity. Different experiments
were carried out with different combinations of these fea-
tures selected according to a sequential forward selection
(SFS) strategy, in order to define the subset of them that pro-
vides the best results in terms of estimation accuracy.

From an operative viewpoint, for the implementation
of the SVR algorithm, we considered the LibSVM software,
freely available online [27]. The multiobjective model selec-
tion and the sequential forward feature selection strategies
were implemented on our own using Matlab.

5. Experimental Results

5.1. Quantitative Assessment with Punctual Measurements. In
order to evaluate the estimation performance of the SVR
algorithm, different quality metrics were considered: the
mean squared error (MSE) (or equivalently the Root MSE
(RMSE)), which provides an information on the average
error over the estimates; the slope and intercept of the linear
regression line between estimated and true target values,
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Table 2: Estimation accuracies achieved by the proposed algorithm
with the best input feature configuration.

Global Meadow Pasture

RMSE 2.68 4.05 1.68

R2 0.79 0.58 0.75

Slope 0.78 0.58 0.7

Intercept 2.26 7.15 2.3

which indicate whether and to what extent the retrieval
algorithm under- and overestimates the target variable with
respect to the ideal case of a one-to-one line; the determi-
nation coefficient (R2), which provides a measure about the
spread of the estimates around the linear regression line (in
the ideal case of a one-to-one line, this metric equals one).
These metrics were evaluated over the available reference
samples according to the 5-fold cross validation scheme
described before. As previously explained, different input
feature configurations were considered in the experiments
according to the SFS strategy. Here, due to space constraints,
we show and discuss the case with the input feature con-
figuration that provided the best performances, that is,
the configuration containing 2 polarimetric features (HH
and HV), the 2 topographic features (Altitude and Local
Incidence Angle), the NDVI, and the land-cover map. Table 2
presents the accuracies achieved by the proposed algorithm
in this case, while Figure 7 shows the scatter plot of estimated
versus measured dielectric constant values.

Globally, the achieved accuracies are promising, with an
RMSE of 2.68 and a determination coefficients near to 0.8.
Analyzing in more detail the results, it is possible to observe
that the retrieval algorithm provides better performance over
pastures with respect to meadows. In the latter case, the error
is slightly higher and the algorithm tends to overestimate
low values and underestimate high values of the dielectric
constant. This effect is probably due to (1) the range of
variability of the target variable, which is much larger in the
case of meadows with respect to pastures and (2) the number
of reference samples, which is lower in the case of meadows
with respect to pastures (see Table 1). Both these factors may
increase the complexity of the retrieval problem in the case of
meadows. Further effort will be put on this issue, in order to
better understand and, if possible, overcome the limitations
of the estimation over meadows.

5.2. Soil Moisture Content Maps. After the training phase and
the assessment over point measurements, the SVR algorithm
was tested over the distributed dataset available, that is, the
RADARSAT2 images acquired in June and July over the
Mazia valley. The two images were provided in input to the
trained SVR with in addition ancillary data according to the
input features configuration considered for the training of
the algorithm. The results of this processing step are two
maps representing the estimated dielectric constant values
over the area of interest and are shown in Figure 8. The
masked values correspond mainly to forest, water bodies,
rocks, and urban areas, according to the land use mask.
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Figure 7: Scatter plot of estimated versus measured dielectric
constant values obtained with the proposed algorithm with the best
input features configuration.

From a qualitative viewpoint, the maps reproduce well
the expected trend of soil moisture content, presenting high
values near to the valley floor (where the irrigated meadows
are located) and progressively decreasing values moving
to the pastures at higher altitudes. At the same time, the
humidity patterns are well recognized, as for example, in the
case of the small rivers going down to the valley floor along
the side shown in the details of the maps (Figures 8(a) and
8(b)).

A comparison between the map of June and that of July
indicates that the soil in the second date presents a drier
behavior, especially in the lower part of the valley side, as can
be observed in the details shown in Figure 8. This trend is
confirmed by the field measurements carried out in the areas
during the two campaigns, as indicated in Section 2.3. In the
upper part of the valley side, the maps indicate a slightly
drier condition in the case of the June 2010 acquisition. This
behavior will be better validated with the help of the soil
and meteorological measurements provided by the stations
located in the valley, as soon as the data will be available and
properly calibrated.

6. Conclusion

In this paper, polarimetric RADARSAT2 SAR images are
exploited for the estimation of soil moisture content in an
alpine catchment. We first carried out a sensitivity analysis
with the help of field measurements of the target parameter
and ancillary data. This analysis pointed out that both
topography and vegetation/land-cover heterogeneity strong-
ly affect the backscattering signal acquired over alpine areas,
introducing a significant variability and ambiguity in the
data. The altitude, the local incidence angle, and the NDVI
revealed to be useful features to explain the high level of
variability intrinsic in the SAR data.

The following step was the development of a tech-
nique for the estimation of soil moisture content from
the RADARSAT2 images. We opted for an algorithm based
on the ε-insensitive Support Vector Regression technique.
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(a)
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Figure 8: Maps of the dielectric constant of the east side of the Mazia valley: (a) 3rd June 2010 and (b) 21st July 2010. The small squares
represent a zoom over particular areas extracted from the maps of June and July (indicated with the white square).

Thanks to its formulation, this method is able to handle com-
plex nonlinear estimation problems with good generalization
ability also when a limited number of reference samples
is available. Moreover, it handles easily high dimensional
input spaces, also containing heterogeneous features. The
latter characteristic is important in order to integrate in the
retrieval process the information extracted from ancillary
data. Preliminary results achieved indicate that the proposed
technique is promising in terms of (1) capability to exploit
the information provided by the ancillary data to reduce
the ambiguity intrinsic into the SAR signal and address the
complex estimation problem in alpine areas, (2) estimation
accuracy over punctual measurements, and (3) capability
to reproduce the soil humidity patterns when applied on
distributed data.

Future development of this work regards first of all a
better characterization of the effect of vegetation/land-cover
heterogeneity on the SAR signal. This will be carried out with
the help of high geometrical resolution data. In particular,
the effect of rocks and stones on the microwave signal in
relationship to the retrieval of soil parameters will be ana-
lyzed. A second interesting development is the exploitation
of the polarimetric capability of the RADARSAT2 sensor
by means of polarimetric decompositions of the signal, in
order to improve the feature extraction/selection process and
thus the retrieval of soil parameters. Moreover, an extended
validation of the algorithm, by exploiting the measurements
provided by the field stations in the Mazia valley and further
RADARSAT2 SAR acquisitions over the whole Alto Adige
area will be considered. Finally, the availability of high
resolution spatially distributed surface soil moisture maps
coming from the RADARSAT2 sensor can represent a major
improvement for the validation of distributed hydrological
models.
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